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Abstract 

Synthetic antioxidants are commonly used for retarding rancidity in cooking oils.  

However, they are not effective at frying temperature and are potential 

carcinogens.  To replace synthetic antioxidants with a natural source, which is 

safer and heat resistance, Pandanus amaryllifolius Roxb. (PD) and Piper 

sarmemtosum Roxb. (PS) were investigated.  Total phenol content, antioxidant 

activity and synergistic effects of extracts of both leaves were determined.  By 

comparing the results, PS leaf extract showed a higher total phenol content and 

antioxidant activity.  So, PS was selected for further study on extraction 

conditions.  PS extract extracted with 80 % ethanol (PSE extract) had the highest 

total phenol content.  PS extract extracted with petroleum ether (PSL extract) 

possessed both highest total flavonoids and antioxidant activity.  Compounds 

present in PSE and PSL extracts were identified using UHPLC-PDA-ESI-MS and 

quantified using HPLC.  Seven compounds were identified as chlorogenic 

acid/neochlorogenic acid, caffeic acid, vitexin, ρ-courmaric acid, hydrocinnamic 

acid, quercetin and caffeine.  The protective effects of PSE and PSL extracts on 

degradation of rice bran and corn oil were determined at accelerated storage and 

frying temperatures.  In accelerated (60+3 °C), PSE extract  inhibited lipid 

oxidation by lowering the peroxide, ρ-Anisidine, TBA and Totox values in both 

oils.  The PSL extract did not retard lipid oxidation.  However, butylated 

hydroxytoluene (BHT) showed a superior protective effect over PSE and PSL 

extracts throughout storage time.  At frying (180 °C), PSE and PSL extracts had a 

significantly (p<0.05) positive protective effect on both rice bran and corn oil 

showing a lower photometric colour, acid value, peroxide value, TBARS value and 

total polar compounds than the control oils.  The most effective extracts were 
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PSE 0.2 %, PSL 0.05 % and PSL 0.1 %.  The Piper sarmentosum Roxb. leaf extract 

showed a better protective effect than BHT and therefore could be used as 

alternative natural antioxidants in frying oils. 
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1 Introduction  

1.1 Basic concepts of fats and oils 

Fats and oils occur naturally in animal tissues, seeds and fruits.  They have a 

major role in the human diet: provide satiety to foods (enhancing flavour, 

texture), provide energy and contain essential fatty acids which cannot be 

produced by the human body (O'Brien, 2004).  In general, the term fats is used 

when they appear as a solid at room temperature.  If they appear as liquid at 

room temperature, they are called oils (O'Brien, 2004).  Fats and oils are 

comprised of triglycerides (which are glycerol esters of fatty acids as shown in 

Figure ‎1-1 and nonglyceride components such as phospholipids, tocopherols, 

sterols, trace metals and pigments (e.g. carotene, chlorophyll).  The chemical and 

physical properties of fats and oils are influenced by the fatty acid and the 

attachment position of each fatty acid to the glyceride (O'Brien, 2004). 

 

Figure ‎1-1: Esterification of triglycerides, adapted from Food Network Solution (2011) 

 

If there was only one fatty acid attached, it is known as a monoglyceride whereas, 

it is a diglyceride if there are two fatty acids attached to the glycerol molecule 

(Figure ‎1-2).  When there are three fatty acids attached, it is called a triglyceride.  
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It is a simple triglyceride when the three fatty acids in the molecule are the same 

and when two or three different fatty acids are present in the molecule, it is a 

mixed triglyceride, Figure ‎1-2 (a) & (b)(Lawson, 1995).     

 

Figure ‎1-2: Structure of mono, di and triglycerides, adapted from Lawson (1995) 

 

A fatty acid consists of a straight chain with an even number of carbon atoms, 

with hydrogen atoms along the length of the chain and at one end of the chain, a 

carboxyl group (−COOH).  It is the carboxyl group that makes it an acid 

(carboxylic acid).  Figure ‎1-3 shows the structure of saturated and unsaturated 

fatty acids.  If the carbon-to-carbon bonds are all single, the acid is a saturated 

fatty acids (Sinha, 2014).  The polyunsaturated fatty acids have two or more 

double bonds which are separated by a single methylene group, or 1,4-diene 

structure.  For instance, linoleic acid with two cis double bonds in the 9,12 
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positions is designated as 18:2 n-6 (9,12) as shown in Figure ‎1-3 (c) and linolenic 

acid is 18:3 n-3 (9, 12, 15) as shown in Figure ‎1-3 (d), (Frankel, 1998b).       

 

 

Figure ‎1-3: Structure of a saturated fatty acid (a), monounsaturated fatty acid (b) and 

polyunsaturated fatty acids (c, d), adapted from Frankel (1998b) 

 

 

Figure ‎1-4: Orientation of the double bond in an unsaturated fatty acid, adapted from Child 

(2012) 

 

There are 2 geometric configurations of an unsaturated fatty acid which depends 

on the position of the hydrogens of the double bonds (Child, 2012).  In a ‘cis-’ 

orientation, the hydrogens are on the same side of the double bond, mostly found 

in natural fat and oils.  In ‘trans-’ formation, the hydrogens are on opposite sides 

of the double bond (Figure ‎1-4).  This phenomenon in fatty acid molecules gives 

rise to different physical properties and characteristics (Nettleton, 1994).   
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The chain length of fatty acid varies from short chains containing 4-6 carbons, 

medium chain length 8-10 carbons, long chain length 12 – 18 carbons or very 

long chain length containing 20 or more carbons (Rossell, 2001b; Nettleton, 

1994).  The saturated fatty acids commonly found are lauric (12:0), myristic 

(14:0), palmitic (16:0), stearic (18:0), arachidic (20:0), behenic (22:0) and 

lignoceric (24:0).  Oleic acid (18:1) and erucic acid (22:1) are the most important 

monounsaturated fatty acids.  Linoleic acid (18:2) and linolenic acid (18:3) are 

essential polyunsaturated fatty acids (O'Brien, 2004). 

1.2 Frying oil  

The quality of frying oils is very important due to it having an impact on the 

quality of fried food.  It has influences over oil absorption and the types of by-

products, and residues absorbed by food (Kochhar, 2001).  The criteria for 

selecting frying oils and fats, particularly in the food industry, are high oxidative 

stability, high smoke point, low foaming, low melting point, bland flavour and 

high nutritional value.  Many types of frying oils such as refined rapeseed oil, 

partially hydrogenated rapeseed oil, palm oil/rapeseed oil or soybean oil blends, 

and palm olein or super olein, are used in the food industry and in the household.  

Animal fats such as tallow or lard are also still used in specific products (Kochhar, 

2001).  Several new frying oils, both with good stability and a fatty acid 

composition similar to virgin olive oil,  have been developed such as Nu-Sun; a 

mid-oleic sunflower oil (National Sunflower Association, 2015) or Good-Fry® 

edible oil, which is comprised of high-oleic sunflower oil blended with a small 

portion of refined sesame oil and rice bran oil (Silkeberg and Kochhar, 2000).  

The fatty acid composition of some types of the fats and oils used for frying are 

summarised in Table ‎1-1.    
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1.2.1 Chemistry of deep fat frying oils 

Deep fat frying is one of the common cooking methods which gives specific 

desirable characteristics of fried foods such as the fried flavour, the golden 

brown colour and crisp texture.  However, it can also give an undesirable off-

flavour if perished oil is used.  Heating the oil causes physical and chemical 

changes in the qualities of the oil (Warner, 2002).  During frying, the oil is heated 

over a wide range of high temperatures from 130 °C up to 220 °C (Pokorny, 2001; 

Lawson, 1995).  During this process hundreds of chemical reactions occur, in 

which 3 major reactions are categorised: hydrolysis, oxidation and thermal 

polymerisation (Paul et al., 1997).  From these reactions, volatile and non-volatile 

products are formed which greatly affect the functional, sensory and nutritional 

qualities of oils, thus affecting the food quality (Warner, 2002).   

1.2.1.1 Hydrolysis reaction 

When food is placed in oil at frying temperatures with the presence of air and 

moisture, the water and steam react (hydrolyse) with triglycerides resulting in 

the formation of decomposition products such as free fatty acids, monoglycerides, 

diglycerides (diacylglycerol) and glycerol (glycerine), a decrease in smoke point 

and a decrease in the stability and shelf life of the frying oils (Warner, 2002; Paul 

et al., 1997).   
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  Table ‎1-1: Typical fatty acid compositions of some frying oils, adapted from Rossell 

(2001a), Codex Alimentarius (1999) and Kochhar (2001)         
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Hexanoic (6:0) - - - - - - - - - - 

Octanoic (8:0) - - - - - - - - - - 

Decanoic (10:0) - - - - - - - - - - 

Dodecanoic (12:0) - 0-0.2 0-0.3 <0.1 <0.5 <0.1 <0.1 - - - 

Tetradecanoic (14:0) 0.05 0-1.0 0-0.3 <0.2 
0.5-
2.0 

<0.2 <0.2 2.5 - - 

Hexadecanoic (16:0) 7.5-
20.0 

14-23 
8.6-
16.5 

8.0-
13.5 

39.3-
47.5 

8.0-
13.5 

5.0-
7.6 

24.5 8.8 4.5 

Hexadecenoic (16:1) - 0-0.5 0-0.5 <0.2 <0.6 <0.2 <0.3 - - - 

Heptadecanoic (17:0) - - 0-0.1 <0.1 <0.2 <0.1 <0.2 - - - 

Heptadecenoic (17:1) - - 0-0.1 <0.1 - <0.1 <0.1 - - - 

Octadecanoic (18:0) 0.5-5.0 
0.9-
4.0 

0-3.3 
2.0-
5.4 

3.5-
6.0 

2.0-
5.4 

2.7-
6.5 

18.5 2.3 3.7 

Octadecenoic (18:1) 
(oleic acid) 

55.0-
83.0 

38-48 
20-
42.2 

17-30 
36.0-
44.0 

17-30 
14-
39.4 

40 64.5 78.7 

Octadecadienoic 
(18:2) (linoleic acid) 

3.5-
21.0 

21-42 
34-
65.6 

48-59 
9.0-
12.0 

48-59 
48.3-

74 
5 22.1 10.8 

Octadecatrienoic 
(18:3) (linolenic acid) 

1.0 
0.1-
2.9 

0-2.0 
4.5-
11 

<0.5 
4.5-
11.0 

<0.3 0.5 0.4 0.1 

Eicosanoic (20:0) 0.6 0-0.9 
0.3-
1.0 

0.1-
0.6 

<0.1 
0.1-
0.6 

0.1-
0.5 

0.5 - - 

Eicosenoic (20:1) 0.4 0-0.8 
0.2-
0.6 

<0.5 <0.4 <0.5 <0.3 0.5 - - 

Eicosadienoic (20:2) - - 0-0.1 <0.1 - <0.1 - <0.1 - - 

Docosanoic (22:0) 0.2 0-1.0 0-0.5 <0.7 <0.2 <0.7 
0.3-
1.5 

- - - 

Docosenoic(22:1) - - 0-0.3 <0.3 - <0.3 <0.3 - - - 

Docoasdienoic (22:2) - - - - - - <0.3 - - - 

Tetracosanoic (24:0) 0.2 0-0.9 0-0.5 <0.5 - <0.5 <0.5 - - - 

Tetracosenoic (24:1) - - - - - - - - - - 
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1.2.1.2 Oxidation reactions 

The oxygen existing in fresh oil, at the oil surface and by addition of food can 

cause an oxidative reaction, which is a series of reactions, contributing to the 

formation of both volatile and non-volatile decomposition products, such as free 

radicals, hydroperoxides and conjugated dienoic acids (Warner, 2002; Paul et al., 

1997).  The mechanism of oxidative reactions in frying oil occurs in 3 stages 

Primary oxidation (initiation stage)  LH + R


 → L


 + RH 

Secondary oxidation (propagation stage) L


      + O2   →  LOO


  

LOO


 + LH  →  L


 + LOOH 

Tertiary oxidation (termination stage)  

  

Secondary initiation    LOOH  → LO


 + 


OH 

               2 LOOH  → LO


 + LOO
 + H2O     

Metal-catalysed initiation  M(n)+ + LOOH  → LO


 +  
¯
OH + M (n+1)+

 

     M (n+1)+ + LOOH →  LOO
 + H+ + M (n)+ 

LH is an unsaturated lipid and R is the initial oxidizing radical or pre-existent 

lipid hydroperoxides in oils (which may be formed by lipoxygenase action in the 

LOO


 + LOO


 →  LOOL + O
2
 ----- 

LOO


 + L


 → LOOL  ---------------           non-radical products 

L


  + L


 → LL  ---------------------- 
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plant prior to and during extraction of the oil).  Secondary initiation by homolytic 

cleavage of hydroperoxides is a relatively low energy reaction, and it is normally 

the main initiation reaction in edible oils.  This reaction is commonly catalysed by 

metal ions (Gordon, 2001).  When the lipid is oxidized in the initiation stage, the 

alkyl radical (L) is generated which is a highly reactive and can react with 

oxygen rapidly to form a lipid peroxyl radical (LOO) in propagation stage 

(Frankel, 1998c).  The reaction produces hydroperoxides and conjugated dienes 

which are unstable and rapidly decomposed further into secondary oxidation 

products, as affected by very high temperatures of frying (Warner, 2002).  These 

peroxyl radicals (LOO) can attack other unsaturated fatty acids to form more 

free radicals or they can extract a hydrogen from a fatty acid and yield a lipid 

hydroperoxide (LOOH) and alkyl radical (L).  The lipid hydroperoxides (LOOH) 

are very unstable, they can break down into a wide range of compounds 

including alcohols, aldehydes, carbonyls, free fatty acids, malonaldehyde, 

ketones, hydrocarbons and radicals including the peroxy (alkoxyl) radical (LO).  

In the termination stage, the free radicals react with each other to form non-

radical products.  Numerous compounds formed at this stage produce the most 

decomposition products: oxidised monomers, oxidative dimers, trimers, 

polymers, epoxides, alcohols, hydrocarbons, also polar and non-polar compounds 

and also affect the physical properties by increasing viscosity and darkening of 

the oil (Frankel, 1998c; Gutierrez et al., 1988; Lumley, 1988; Stevenson et al., 

1984).  The distinctive off-odours of heated oil come from saturated and 

unsaturated aldehydes such as hexanal, heptanal, octanal, nonanal and 2-decenal 

being produced (Neff et al., 2000).  However, some of the volatile products from 

this stage, are desirable due to their contribution to the characteristic fried 
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flavour of fried food and in the oil.  Such  compounds are 2,4-decadienal, 2,4-

nonadienal, 2,4-octadienal, 2-heptenal and 2-octenal (Warner et al., 2001; Neff et 

al., 2000). 

1.2.1.3 Polymerisation 

Polymerisation involves a great number of chemical reactions that result in the 

formation of various compounds with high molecular weight and polarity.  The  

resultant effect is an increase in the viscosity of the oil.  Polymers can form from 

free radicals or triglycerides by the Diels–Alder reaction.  Cyclic fatty acids can 

form within one fatty acid; dimeric fatty acids can form between two fatty acids, 

either within or between triglycerides; and polymers which have high molecular 

weight are obtained through cross-linking of these molecules (Warner, 2002).  If 

the cyclic compounds are formed with the oxygen, the polymers will contain 

oxygen in their structure.  The presence of oxygen in the structure of a polymer, 

increases its polarity.  The polymer formation scheme is illustrated in Figure ‎1-5.     

 

Figure ‎1-5: Polymer formation through Diels-Alder condensation mechanism, adapted from 

Frankel (1998c) 
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1.2.1.4 Decomposition products 

In summary, high heated oils deteriorate and produce volatile and non-volatile 

decomposition products which change the physical and chemical properties of 

the oil.  Figure ‎1-6 is a phenomenon of the production of the decomposition 

products during the frying process and Table ‎1-2 summarises the decomposition 

products found in frying oil.  As discussed in chapter 1.3.2, some of the 

compounds can breakdown further and cause undesirable properties such as off 

flavour, colour, texture and can be potentially toxic.   

 

Figure ‎1-6: A phenomenon of production of the decomposition products during the frying 

process, adopted from Warner (2002) 

 

Table ‎1-2: Volatile and non-volatile decomposition products produced  

                      during frying, adapted from Warner (2002) 

Non-volatile 

monoacylglycerol, diglyceride, oxidised 

triglyceride, triglyceride dimer, triglyceride 

trimer, triglyceride polymer, free fatty acid 

Volatile 
hydrocarbon, ketone, aldehyde, alcohol, ester, 
lactone 
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1.2.1.5 Health effects of deteriorated frying oil 

There also have been many studies on the harmful compounds in heated frying 

oil and their impact to human health.  For example, the study of Clark and Serbia 

(1991) reported that the degradation products of frying oil are harmful to human 

health, as they destroy vitamins, inhibit enzymes, potentially cause mutations 

and can cause gastrointestinal irritations.  Excessive amounts of polar 

compounds found in cooking oil have also been related to hypertension (Soriguer 

et al., 2003).  In terms of legislation, in many European countries, polar 

compounds and triglyceride oligomers are used as the basis of discarding frying 

oil (Boskou, 2010).  For example, Austria set an acceptable maximum for polar 

compounds at 27 %, France, Italy and Portugal accept 25 % as the maximum and 

in Germany it is set at 24 %.  Gutierrez et al. (1988) and Rojo and Perkins (1987) 

found more cyclic monomers are formed in oils related with a higher content of 

linolenic acid.  Cyclic monomers forming from the intramolecular cyclization of C18 

polyunsaturated fatty acids are potentially harmful as they can join the body fat 

along with natural fatty acids (Rojo and Perkins, 1987).  Dobarganes and 

Marquez-Ruiz (1998) found aldehydes have exhibited mutagenic properties.  

Moreover, Choe and Min ( 2007) found that acrolein formed from heating the oil 

reacted with asparagine which further formed acrylamide.  Acrylamide has been 

found to cause genetic damage and cancer in laboratory animals (Boskou, 2010).  

Malonaldehyde is a secondary lipid oxidation product formed from hydroperoxide.  

It is reportedly mutagenic and carcinogenic.  Malonaldehyde causes skin cancer 

in rats and can cross-link with lipids and proteins, inactivate ribonuclease and 

bind covalently to nucleic acids.  In cultured mammalian cells, it induces 

chromosomal aberrations (Marnett, 1999; Madhavi and Salunkhe, 1995; Bird et 
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al., 1982).  Crawford et al. (1965) reported acute toxicity or lethal dose (LD50) of 

malonaldehyde in rats as 527 mg/kg.  Draper et al. (1986) reported that feeding 

mice with drinking water containing malonadehyde 0.1-10.0 µg/g/day for 12 

months produced dose-dependent hyperplastic and neoplastic changes in liver 

nuclei and increased mortality at the highest level.  

1.2.2 Factors affecting oil deterioration and control measures 

There are many factors that affect the deterioration of frying oil such as the 

unsaturated fatty acid content, oil temperature, oxygen absorption, catalysing 

metals or food matrix and this makes it complicate to understand the mechanism 

of deterioration (Warner, 2002). 

1.2.2.1 Degree of unsaturation of free fatty acids 

The degree of unsaturation of free fatty acids has a significant effect on the 

thermo-oxidative degeneration rather than chain length.  The oxidation rate of oil 

increases as the content of unsaturated fatty acids of frying oil increases (Choe 

and Min, 2007; Warner et al., 1994; Stevenson et al., 1984).  Shiota et al. (1999) 

and  Mamat et al. (2005) stated that the blending of several oils can change the 

fatty acid composition and can decrease the oxidation of oils during frying (Choe 

& Min, 2007).  Liu and White (1992) and Xu et al. (1999) found the content of 

linolenic acid is critical to the frying performance, the stability of oil and the 

flavour quality of fried food.  Warner et al. (1997) observed that polar compound 

formation increased proportionally with the linoleic acid content in cottonseed 

oil during frying potato chips.  Although, hydrogenation and genetic modification 

are used to improve stability of oil by decreasing the unsaturated fatty acids, it 

will generate trans fatty acids instead and may have a metallic flavour (Choe and 
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Min, 2007; Warner and Knowlton, 1997; Warner and Mounts, 1993).  Consumption 

of trans fatty acids has been linked to increased low-density lipoprotein 

cholesterol and decreased high-density lipoprotein cholesterol in the human 

blood serum and coronary vascular disease (Willett et al., 1993; Mensink and 

Katan, 1990). 

1.2.2.2 Filtration 

Daily filtration to remove the accumulated food particles e.g. charred food, 

charred batter or charred bread can help reduce the deterioration rate of the oil, 

excess colour formation and undesirable bitter flavours and odours.  The filtration  

can be done by using metal screens, paper filters, plastic cloths, diatomaceous 

earth, filter aids etc. (Frankel, 1998c).  The filtering of oil in the presence of 

adsorbents lowers free fatty acids and improves the quality of frying oil (Choe 

and Min, 2007).  Maskan and Bagci (2003)  filtered used sunflower oil with a 

mixture of 2 % pekmez earth, 3 % bentonite and 3 % magnesium silicate and 

found that the amounts of free fatty acids and conjugated dienoic acids of the oil 

decreased during frying at 170 °C.  This was similar to the study by Bheemreddy 

et al. (2002), they used different adsorbents; a mixture of calcium silicate based 

hubesorb 600, magnesium silicate based magnesol and rhyolite and citric acid 

based fry powder.  They found decreasing levels of free fatty acids and polar 

compounds formation and concluded the process can improve the frying quality 

of oil.  Mancini et al. (1986) had reported that the treatment of shortening with 

bleaching clay, charcoal, celite or magnesium oxide can improve the quality of oil 

and the adding of ascorbyl palmitate to fresh oil can lower the amount of free 

fatty acid, but can change the dielectric constant and colour. 
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1.2.2.3 Replenishment of fresh oil 

A high ratio of fresh oil to total oil can improve frying oil quality (Paul et al., 

1997).  Frequently replenishing with fresh oil can decrease the formation of polar 

compounds, diacylglycerols and free fatty acids, thus increasing the frying life of 

the oils (Romero et al., 1998).  Stevenson et al. (1984) recommended replenishing  

15 % to 25 % of the capacity of the fryer with fresh oil and the higher the amount 

replenished, the less antifoaming agent, such as silicones, needs to be used.  

Sanchez-Muniz et al. (1993) reported that replenishment can improve the quality 

of the frying oil after the 30th frying, while Cuesta et al. (1993) found frequent 

turnover of the oil can cause oxidative reactions rather than hydrolytic reactions 

during deep fat frying of potatoes.   

1.2.2.4 Frying time and temperature 

There are many studies reported showing that frying time and temperature has 

an effect on the quality of oil by accelerating thermal oxidation and polymerisation 

(Blumenthal, 1991).  This will increase the production of free fatty acids, polar 

compounds and polymers (Tompkins and Perkins, 2000; Xu et al., 1999; Romero et 

al., 1998; Mazza and Qi, 1992).  However, Cuesta et al. (1993) found the formation 

of polar compounds rapidly increases during the first 20 fryings, with no significant 

increase after the 30th frying (P> 0.05).  Tyagi and Vasishtha (1996) reported the 

amount of conjugated dienes and trans fatty acids when frying potato chips at 

170 °C was 3.09 % and 1.68 %.  When the frying temperature was increased to 

190 °C, the amounts of those compounds increased to 4.39 % and 2.60 %.  Kim et 

al. (1999) found high frying temperature decreased polymers with peroxide 

linkage and increased the polymers with ether linkage or carbon to carbon 

linkage.  Clark and Serbia (1991) found the intermittent heating and cooling of 
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the oils caused a higher deterioration than continuous heating, due to increasing 

solubility of the oxygen when the oil cools down from its frying temperature. 

1.2.2.5 Food composition 

The moisture in food affects the hydrolysis reaction during deep fat frying.  The 

higher the moisture content of the food, the greater the hydrolysis of oils due to 

the moisture in foods creating a steam blanket over the fryer and reducing 

contact with air (Choe and Min, 2007; Paul et al., 1997).  Lecithin from food can 

cause foam formation at the early stage of frying (Stevenson et al., 1984).  Fat 

from fish can decrease the frying oil stability.  Starch or battered food can degrade  

oil more quickly (Alvarez et al., 2012).  Artz et al. (2005) reported that transition 

metals such as iron, which is found in meat, were accumulated in the oil during 

frying and increased the oxidation rate and thermal degradation of the oil.  Kim 

and Choe (2003) found a reduction in the formation of free fatty acids, 

conjugated dienoic acids and aldehydes in palm oil during frying at 160 °C by 

adding red ginseng extract (1 % and 3 %) to flour dough.  Holownia et al. (2000) 

reported that an edible film coating on chicken strips (hydroxyl propyl 

methylcellulose film) can reduce free fatty acid formation in peanut oil during 

deep frying. 

1.2.2.6 Fryer  

Selection and maintenance of fryers are also important.  A fryer with a large 

heating area enables faster and more uniform heating of the oil and can prevent 

the formation of hot spots (Paul et al., 1997).  A small surface to volume ratio of 

fryer minimizes air to oil contact at the surface which can reduce the oxidative 



16 
 

degradation, whilst copper, iron and alloys such as bronze and brass accelerates 

the oxidation of the oils (Choe and Min, 2007; Paul et al., 1997). 

1.2.2.7 Minor components of oils 

Minor components in fats and oils such as γ-tocopherols, phospholipids (at less 

than 100 mg/kg), carotenoids (at low level), squalene and certain sterols (∆5-

avenasterol) are beneficial to the stability of the oils (Kochhar, 2001).  Sesamolin 

(antioxidant precursor), sesaminol and its isomers, sesamol and its dimer, and 

oryzanol (a group of ferulic acid esters of sterols present in rice bran oil) possess 

stabilizing effects during frying operations (Kochhar, 2001).  Additions of some 

agents or compounds such as anti-foaming (dimethyl-polysiloxane) or antioxidants 

have also been reported to improve the stability of frying oil (Warner, 2002; 

Kochhar, 2001).   

1.3 Antioxidants 

Antioxidants are compounds even when present in trace amounts or at very low 

concentrations can delay or inhibit the oxidation processes which occur in the 

presence of oxygen or reactive oxygen species (Halliwell et al., 1995; Wichi, 

1988).  Their role can improve the quality of foods and extend shelf life 

(Yanishlieva, 2001; Giese, 1996). 

1.3.1 Mechanisms of antioxidants 

Antioxidants can inhibit or retard oxidation in 2 ways: direct and indirect 

scavenging free radicals (Reische et al., 2002; Michael, 2001). 
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 Direct scavenging free radicals  

In this case the compounds are called primary antioxidants or chain breaking 

antioxidants due to their action by converting free radicals to more stable 

products.  

 

Primary antioxidants (AH) will donate one electron (hydrogen atom) to the free 

radicals (lipid radicals, L


 , LO
 

, LOO


) and therefore, the free radicals are 

reduced.  Polyphenols are very active in this action (Yanishlieva, 2001). 

 Indirect scavenging free radicals  

In this case, the compounds do not directly involve scavenging of free radicals, 

but they will operate a variety of possible actions to slow the rate of oxidation.  

Therefore, the compounds are called secondary antioxidants or preventive 

antioxidants.  Secondary or preventive antioxidants can act via several different 

mechanisms to retard the oxidation reaction by deactivating the active species 

and possible precursors of free radicals and suppressing the generation of free 

radicals and thus, reducing the rate of oxidation (Yanishlieva, 2001).   They can 

chelate pro-oxidant metals and deactivate them, replenish hydrogen to primary 

antioxidants, decompose hydroperoxides to non-radical species, deactivate 

singlet oxygen, absorb ultraviolet radiation or act as oxygen scavengers (Reische 

et al., 2002).  The secondary or preventive antioxidants are often referred to as 

synergists because they contribute to the antioxidant activity of primary 

L


       +   AH    →    LO


 

LO


    +   AH    →    LOH     +  A
 

LOO


 +   AH    →    LOOH  +  A

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antioxidants.  Examples of these synergistic compounds are ascorbic acid, 

ascorbyl palmitate, lecithin and tartaric acid (Reische et al., 2002). 

1.3.2 Natural antioxidants  

Antioxidants can occur as natural constituents of foods. Their source of origins 

can be plants, animal tissues, microorganisms, fungi or can be formed during 

processing (Pokorny, 2007; Simic, 1981).  Examples of natural antioxidants, 

would be ascorbic acid, tocopherols, carotenoids, flavonoids, amino acids, 

proteins, protein hydrolysates, fermentation products, nitrosyl compounds from 

curing, maillard reaction products, phospholipids, sterols and enzymes.  

Numerous natural antioxidants are in plant sources and vegetable extracts.  

Phenolic compounds are the majority and the important groups are tocopherols, 

flavonoids and phenolic acids  (Reische et al., 2002; Yanishlieva, 2001).   

There are advantages and disadvantages of naturally occurring or added 

antioxidants in oils and foods on the oil quality during frying.  Several factors 

have influenced the efficacy of natural antioxidants, including  fatty acid 

composition of the oil, the temperature of frying, the amount and type of natural 

antioxidant, the presence of synergists, chelators, sequesterants and pro-oxidant 

trace metals, light and product manufacturing conditions.  For instance, the 

appropriate addition of tocopherols can improve oil stability and if adding in 

excessive amounts (more than 1000 mg/kg) can enhance oxidation (Rossell, 

2001a; Frankel, 1998a).         

Polyphenols and classification 

Polyphenol or phenolic compounds are wide spread in all plants and add benefits 

to the human diet (Bravo, 1998).  Fruits, vegetables and beverages are the main 
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sources of phenolic compounds (Landete, 2012) which have antioxidant 

activities to protect or reduce the risk of coronary heart disease, brain 

dysfunction and cancer (Honglian et al., 2001; Gordon, 1996).  Moreover, 

antioxidants from polyphenol have become an essential part of the food and 

cosmetic industries to be used as natural colourants and preservatives (Bravo, 

1998).  Polyphenol or phenolic compounds are secondary plant metabolites that 

play an important role in plant growth, reproduction, protection against 

pathogens and predators (Ignat et al., 2011; Bravo, 1998).  Flavonoids, phenolic 

acid, tannins (hydrolysable and condensed), stilbenes and lignans are the main 

groups of polyphenols (D'Archivio et al., 2007).  The polyphenol are synthesised 

from two pathways: the shikimic acid pathway and the acetate pathway (Bravo, 

1998).  In nature, the majority of polyphenol in plants are in a conjugated form 

known as a glycoside with different sugar unit and acylated sugars at different 

positions of the phenol skeletons (Tsao, 2010).  They can be classified according 

to their source of origin, biological function or chemical structure (Tsao, 2010).  

The following main classes of polyphenol are divided by their chemical 

structures. 

 Flavonoids 

Flavonoids are low molecular weight compounds and constitute a large group of 

naturally occurring plant phenolics.  They are characterised by the carbon 

skeleton C6-C3-C6.  The basic structure of these compounds consists of two 

aromatic rings linked by three-carbon aliphatic chain which normally has been 

condensed to form a pyran or a furan ring (less commonly).  There are 13 

subclasses according to the difference in the degree of hydrogenation and 

hydroxylation of the three ring systems.  The most important 6 subclasses are 
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flavonols, flavanols, flavones, flavanones, isoflavones and anthocyanins (or 

anthocyanidins).  The basic structure and an example, are presented in Figure ‎1-7.  

Flavones and flavonols are found in almost every plant, particularly in the leaves 

and petals, with flavonols occurring more frequently than flavones.  Flavonoids 

also occur as sulphated and methylated derivatives, conjugated with 

monosaccharides, disaccharides and form complexes with oligosaccharides, 

lipids, amines, carboxylic acids and organic acids (Maria, 2013).  However, 

approximately 90 % of the flavonoids in plants occur as glycosides (Yanishlieva, 

2001).  Flavonoids have been reported in their ability to inhibit lipid oxidation  

by acting as antioxidants scavenging radicals (superoxide anions, lipid peroxyl 

radicals and hydroxyl radicals).  Other mechanisms of action of selected 

flavonoids include singlet oxygen quenching, metal chelation and lipoxygenases 

inhibition (Ignat et al., 2011; Tsao and Yang, 2003; Yanishlieva, 2001).  The 

excellent antioxidant activity of flavonoids is related to the presence of hydroxyl 

groups in position 3’ and 4’ of B ring (Figure ‎1-7), which confer high stability to 

the formed radical by participating in the displacement of the electron, and a 

double bond between carbons C2 and C3 of the ring C together with the carbonyl 

group at the C4 position, which makes the displacement of an electron possible 

from the ring B.  Free hydroxyl groups in position 3 of ring C and in position 5 of 

ring A, together with the carbonyl group in position 4, are also important for the 

antioxidant activity of these compounds.  The effectiveness or antioxidant 

activity of flavonoids decreases with the substitution of hydroxyl groups for 

sugars (glycosides) or in other word, flavonoids with glycosides are less effective 

antioxidants than the aglycones (no sugars) (Giada, 2013b).  For maximum 

radical scavenging activity a flavonoid molecule needs to meet the following 
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criteria (1) 3’,4’-dihydroxy structure in the B ring, (2) 2,3-double bond in 

conjunction with a 4-oxo group in the C ring and (3) presence of a 3-hydroxyl 

group in the C ring and a 5-hydroxyl group in the A ring.  Flavonoids with free 

hydroxyl groups act as free radical scavengers and multiple hydroxyl groups, 

especially in the B ring, enhance their antioxidant activity.  The hydroxyls in ring 

B are the primary active sites in interrupting the oxidation chain (Yanishlieva, 

2001).   

 Phenolic acids 

Phenolic acids are divided into 2 groups; benzoic acids and their derivatives, and 

cinnamic acids and their derivatives.  The derivatives of cinnamic acid are more 

active antioxidants than the derivatives of benzoic acid (Yanishlieva, 2001).  They 

are present in plants in free and bound forms, which bind to various plant 

components through ester, ether or acetal bonds.  Their molecular structure 

consists of a benzene ring, a carboxylic group and one or more hydroxyl and/or 

methoxyl groups.  The different forms of phenolic acids result in varying 

extraction conditions and susceptibilities to degradation (Maria, 2013; Ignat et 

al., 2011; Ross et al., 2009; Bravo, 1998).  Structures of phenolic acid compounds 

are presented in Figure ‎1-8.  The antioxidant activity of phenolic acids is 

generally governed by their chemical structures.  The activity increases as the 

number of hydroxyl (OH) and methoxy groups increases, with the number of OH 

groups being more important.  Thus, caffeic acid is more active than ferulic acid, 

which in turn is more active than coumaric acid (Pekkarinen et al., 1999).  

Polyphenolic acids are more efficient than monophenolic acids and the 

introduction of a second hydroxyl group in the ortho or para position increases 

the antioxidative activity.  The inhibition efficacy of monophenolic acid is 
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increased by one or two methoxy substitutions.  The combination of two acid 

phenols increases the efficiency, such as rosmarinic acid (comprising of 2 

molecules of caffeic acid) is more effective than caffeic acid.  Esterification by 

sugar moiety decreases its activity, so chlorogenic acid is less effective than 

caffeic acid (Yanishlieva, 2001).   

 Tannins 

Tannins are high molecular weight compounds, which can be divided into 

hydrolysable and non-hydrolysable or condensed tannins.  Proanthocyanidins 

(condensed tannins) are polymeric flavonoids.  Tannins are potential metal ion 

chelators, protein precipitation agents and biological antioxidants (Ignat et al., 

2011). 

 Stilbenes and lignans 

Stilbenes are present in small amounts in food.  An example of the compound is 

resveratrol which is mostly in the glycosylated form, and found in both cis and 

trans isomeric form (Ignat et al., 2011).  Lignans are mostly present in the free 

form.  Their glycoside derivatives are only a minor form.  Lignans and their 

derivatives are thought to have efficacy in cancer chemotherapy and various 

pharmacological effects (Saleem et al., 2005). 
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Figure ‎1-7: Basic structures of the main sub-class of flavonoids, adapted from Tsao (2010),  

Waterhouse (2005) and Bravo (1998)  
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     (a) Basic structure of benzoic acid          (b) Basic structure of cinnamic acid 

(a) R1 R2 R3 R4 (b) R1 R2 R3 R4 

ρ-Hydroxybenzoic 
acid 

H OH H H Hydroxycinnamic 
aicd  

H H H H 

Vanillic acid OCH3 OH H H ρ-Coumaric acid H H OH H 

Gallic acid OH OH OH H Caffeic acid H OH OH H 

Syringic acid OCH3 OH OCH3 H Ferulic acid H OCH3 OH H 

     Sinapic acid H OCH3 OH OCH3 

Figure ‎1-8: Basic structure of phenolic acids, adapted from Maria (2013) 

 

1.3.3 Synthetic antioxidants  

Several synthetic antioxidants have been approved for use in food products,  such 

as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary 

butylhydroquinone (TBHQ), propyl gallate (PG), octyl gallate (OG), docedyl 

gallate (DG), Ionox-100, ethoxyquin,  trihydroxybutyrophenone (THBP) and 

ascorbyl palmitate.  Chemical structures are provided in Figure ‎1-9.  The 

efficiency of synthetic antioxidants depends on their structures; the difference in 

structure leads to differences in physical properties and antioxidant activity 

(Reische et al., 2002).  Four synthetic phenolic compounds; BHA, BHT, TBHQ and 

PG, are the most active antioxidants and have been used in food products for over 

50 years (Saad et al., 2007).   
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Figure ‎1-9: Structure of some synthetic antioxidants, adapted from Reische et al. (2002) and 

Yanishlieva (2001) 

 

The limitation of usage had been set to a maximum of 0.02 % of the fat or oil 

content of the food.  However, the type and allowance are different depending on 

the food product and also varies in regulatory guidelines among the countries 

(Shahidi, 2005a; Reische et al., 2002).  The regulatory approval of synthetic 

antioxidants in some countries is provided in Table ‎1-3 
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Table ‎1-3: Approval of synthetic antioxidants used in food and oil in some  

 countries, adapted from Shahidi ( 2005a) 

Country 
Antioxidants 

BHA BHT Gallates TBHQ 

Australia / / / / 

Brazil / / / / 

China / / / x 

Denmark / / / x 

France / / / x 

Germany / / / x 

Indonesia / x x x 

Iran / / / / 

Japan / / / x 

Malaysia / / / / 

Thailand / / / / 

United Kingdom / / / x 

        X = not allowed to use      / = allowed to use 

 

For instance, BHA, BHT, PG, OG, DG and TBHQ are permitted by the European 

Union for use in frying oils and fats (except olive pomace oil).  They are also 

permitted for using in oils and fats for manufacturing heat-treated foods 

individually or in combinations at maximum levels of 200 mg/kg oil or fat, while 

BHT is only permitted alone up to 100 mg/kg oil or fat (Marquez-Ruiz et al., 

2014; The European Union, 2011).  BHA, BHT, PG and TBHQ have lower 

effectiveness at frying temperatures due to rapid decomposition and 

volatilisation (Marquez-Ruiz et al., 2014).  The stability of these synthetic 

antioxidants were reported differently.  TBHQ has been noted as the most 

suitable for frying applications due to heat stability and it has good carry-through 
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(Allam and Mohamed, 2002; Yanishlieva, 2001; Gordon and Kourimska, 1995; 

Buck, 1991).  In contrast to the study of Hamama and Nawar (1991), it was 

revealed the high temperature and the presence of steam from the food 

accelerated the evaporation and decomposition of the synthetic  antioxidants.  

They reported TBHQ had the highest loss at 185 °C and the stability of 4 synthetic 

antioxidants against thermal oxidation in order was BHT>PG>BHA>TBHQ.  This 

also contrasted with the finding of Augustin and Berry (1983) who reported BHT 

could not show a protecting effect on heated sunflower oil at 180 °C.  The study of 

Tian and White (1994) and Frankel et al. (1985) showed the use of TBHQ alone 

did not extend the frying life of hydrogenated soybean oil and cottonseed oil.  

Moreover, the effect of BHA, BHT, TBHQ and PG in binary and ternary mixtures 

with ascorbyl palmitate and tocopherols studied by Allam and Mohamed (2002) 

showed negative and positive synergistic effects during high temperature 

treatment (180 °C).  According to the study of Choe and Lee (1998),  four synthetic 

antioxidants:  butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 

propyl gallate (PG) and tert-butyl hydroquinone (TBHQ), slowed down oxidative 

deterioration at room temperature, however, they become less effective at frying 

temperatures due to loss through volatilisation.  In other studies, Schroeder et al. 

(2006) found that carotenes reacted with oil radicals in red palm olein, but they 

cannot prevent thermal oxidation of the oil.  Kim and Choe (2004) reported that 

lignin compounds in sesame oil: sesamol, sesamin and sesamolin are stable 

during heating and contribute to the high oxidative stability of roasted sesame oil 

during heating at 170 °C.  This is similar with the findings by Kochhar (2000), 

where the addition of sesame oil and rice bran oil enhanced the oxidative 

stability and flavour stability of high oleic sunflower oil.  This may be as a result 
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of avenasterol which is stable at high temperatures.  Frankel et al. (1985) found 

that the combination of methyl silicone and TBHQ have a synergistic effect by 

decreasing the oxidation of soybean oil during deep frying 190 °C.  Similar results 

were reported by Jaswir et al. (2000) and Che Man and Tan (1999), where a 

mixture of rosemary and sage extracts reduced oil deterioration during deep 

frying for 30 hours.  Jaswir et al. (2000) indicated that rosemary,  sage and citric 

acid showed the synergistic antioxidant effects on palm olein during frying 

potato chips.  Kim and Choe (2004) also found that the hexane extract of burdock 

is a potential antioxidant of oil for deep frying and has a significant effect on 

decreasing the formation of conjugated dienes and aldehydes in lard at 160 °C. 

1.3.4 Health impacts of synthetic antioxidants  

Although, synthetic antioxidants have good efficiency, low cost and, high stability 

when used in foods, and have been tested for safety, some toxicity data shows 

that extended use may have an adverse effect to health.  BHA, BHT, TBHQ, PG, OG 

and DG have been identified to cause dermatitis, urticarial, asthma, liver damage 

and carcinogenesis (Race, 2009; Reische et al., 2002; Wichi, 1988; Grice, 1986).  

The study by Fisherman and Cohen (1973) reported seven people, who were 

given 250 mg of BHA and BHT by oral route, had the following symptoms within 

2 hours: vasomotor rhinitis, headache, flushing, asthma, conjunctival suffusion, 

dull high retrosternal pain radiating to the back, diaphoresis (excessive 

sweating), or somnolence (sleepiness).  In addition, their study found cross 

reactivity with aspirin where twenty-one people were intolerant to both 

compounds.  BHA and BHT also cause liver damage and carcinogenesis in 

laboratory animals (Wichi, 1988; Grice, 1986).  The study of Nera et al. (1984) 

reported that feeding TBHQ to rats and hamsters at 0.25 % for 9 days, had no 
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significant effect on inducing cellular proliferation.  However, at a level of 1 % a 

significant increase in cell proliferation was observed.  Also, there was a case 

reported of allergic contact dermatitis when in contact with vegetable oil which 

contained 0.1 % TBHQ (Aalto-Korte, 2000). 

1.4 Pandanus amaryllifolius Roxb.  

Pandanus amaryllifolius Roxb. (Figure ‎1-10) is commonly known as pandan leaf.  

This tropical plant belongs to the Pandanus genus, family Pandanaceae 

(Gangopadhyay et al., 2004).  The leaves are upright, green in colour and have a 

long-narrow blade-like shape.  It has a very sweet fragrant aromatic odour, so 

widely used for enhancing flavour or as food colouring in sweet and savoury 

dishes in Southeast Asian cooking (Thai, Malaysian and Indonesian).    

 

Figure ‎1-10: Pandanus amaryllifolius Roxb., adopted from Termsuk (2015) 

 

The leaves are used as folk medicine and many studies had been reported to 

confirm its effect on health.  It is used to refresh the body, reduce fever and 

relieve indigestion and flatulence (Cheeptham and Towers, 2002).  Quisumbing 

(1951) described the essential oil from the leaf as a stimulant and antispasmodic, 

which also has effects against headaches, rheumatism and sore throats.  Raj et al. 

(2014) reported the aqueous extract from root and leaves possess anticancer 
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activity.  Various compounds are found in pandan leaf such as essential oils, 

carotenoids, tocopherols, tocotrienols (Lee et al., 2004), quercetin (Miean and 

Mohamed, 2001) and alkaloids (Tan et al., 2010; Takayama et al., 2002; Busque et 

al., 2002).  Ghasemzadeh and Jaafar (2013) studied the profiling of phenolic 

compounds and antioxidant activity of pandan leaf (from 3 local areas) extracted 

using 80 % methanol (ratio 1:20) at 70 °C.  They reported the amount of total 

flavonoids ranged from 1.12-1.87 mg/g dried weight (DW) and total phenol 

content ranged from 4.88-6.72 mg/g DW.  The antioxidant activity was 

determined using free radical scavenging (DPPH) assay ranged from 50.10 % - 

64.27 % and determined using Ferric reducing antioxidant power (FRAP) assay 

ranged from 314.8 – 517.2 µm Fe(II)/g DW.  Phenolic compounds present in the 

extract were rutin, epicatechin, naringin, catechin, kaempferol, gallic acid, 

cinnamic acid and ferulic acid.  Nor et al. (2008) studied antioxidant properties of 

pandan leaf and the potential use as a natural antioxidant.  They extracted the 

leaf powder using ethanol (ratio 1:10) at 50 °C for 8 hours.  The total phenol 

content was found to be 102+0.4 mg gallic acid equivalent/g extract.  The 

antioxidant activity of pandan extract (50 mg/L and 100 mg/L) was determined 

using DPPH assay and found to be 45 % and 70 % respectively.  The extract was 

also tested for antioxidant capacity using linoleic acid peroxidation system at 3 

concentrations (1000 mg/L, 2000 mg/L and 3000 mg/L), the percentage of 

inhibition was 0.60 %, 0.65 % and 0.70 % respectively. 

1.5 Piper sarmentosum Roxb.  

Piper sarmentosum Roxb. as shown in Figure ‎1-11, belongs to the Piperaceae 

family.  It has several names; locally known as Cha-plu in Thailand, Sirih duduk, 

Akar buguor or Mengkadak in Indonesia and Pokok Kadok or Kaduk in Malaysia 
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(Seyyedan et al., 2013; Saralamp et al., 1996; Rukachaisirikul et al., 2004).  The plant is 

about 60 cm in height, with a green trunk and jointed at the nodes.  The leaves 

are thin, green, heart shape.  It has a, spicy taste and pungent odour (Ridtitid et 

al., 2007). 

 

Figure ‎1-11: Piper sarmentosum Roxb., adopted from Frynn (2015) 

 

In Thailand, the leaves are not only consumed as savoury snacks or in main 

dishes but also various parts of the plant are used as folk medicine.  This plant 

has been used as an expectorant, a carminative, to sooth the throat, an anti-

flatulence, to enhance the appetite, relieve asthma, treat muscle pain and coughs 

(Taweechaisupapong et al., 2010; Sireeratawong et al., 2010; Ridtitid et al., 2007; 

Pongboonrod, 1976).  In Malaysia and Indonesia, the plant is used for treating 

sickness such as toothache, fungoid, dermatitis on the feet, coughing, pleurisy, 

diabetes, hypertension and joint aches (Seyyedan et al., 2013; Ridtitid et al., 

2007).  A number of studies have been performed to identity the phytochemicals 

present within the various parts of Piper sarmentosum Roxb.  The leaves, fruits 

and roots were found to contain flavonoids, alkaloids, amide, lignans, 

phenylpropanoids, tannins, phenolic, ascorbic acid, carotenes, tocopherol and 

xanthophylls (Hussain et al., 2010; Sumazian et al., 2010; Sim et al., 2009; 
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Chanwitheesuk et al., 2005).  Other various compounds were found such as 

naringenin, hydroxycinnamic acid, sarmentosine, sarmentine, quercetin, rutin, 

sesamin etc. (Seyyedan et al., 2013).  The research done on chemical constituents 

of the leaf extracts are summarised in Table ‎1-4.  Chanwitheesuk et al. (2005) 

studied antioxidant activity of Piper sarmentosum Roxb. (PS) using β-carotene 

bleaching method.  The PS leaf was cleaned, cut, dried at 50 °C and pulverised, 

then extracted using methanol at ratio 1:20 w/v.  They reported an antioxidant 

index of the extract to be 13.0+0.84, ascorbic acid content to be 16.6+0.06 

mg/100 g and the total phenol content to be 123+0.12 mg/100 g.  Ugusman et al. 

(2012) studied flavonoids and protective effects against oxidative stress of Piper 

sarmentosum Roxb. (PS) leaf.  The leaf was cleaned, cut, sun dried and pulverised.  

Flavonoids were extracted from the leaf powder by soaking in water at ratio 1:9 

w/v and incubated in a high speed mixer at 80 °C for 3 hours.  They reported the 

amount of total phenol content present in the extract was 91.02+0.2 mg 

quercetin equivalent/g and total flavonoid content was 48.57+0.03 mg quercetin 

equivalent/g.  The flavonoid compounds present in the extract were analysed 

using HPLC.  Rutin and vitexin were reported as the main flavonoids in this water 

extract (75.70+0.05 mg/L and 51.93+0.55 mg/L respectively).  Subramaniam et 

al. (2003) reported that the antioxidant activity of PS extract, extracted using 

methanol and  determined by superoxide scavenging assay, was  87.6 %.  The 

extract was also analysed for phenolic compounds using HPLC and found 

naringenin.  Hussain et al. (2011) reported the antioxidant activity (DPPH assay) 

of the PS leaf extract extracted using ethanol (21.8 %) was more than using 

aqueous extract (5.3 %).  Sumazian et al. (2010) determined the antioxidant activity 

of aqueous and boiled aqueous PS leaf extracts using FRAP and DPPH assays.   
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Table ‎1-4: Chemical constituents found in Piper sarmentosum Roxb. leaf extracts 

 

Compound name Structure 
Extraction 

media 
References 

Hydrocinnamic acid 

 Petroleum 
ether 

Niamsa and 
Chantrapromma 

(1983) 

β-sitosterol 

 

Naringenin 

 

Aqueous-
methanol 

Subramaniam et 
al. (2003) 

Myricetin 

 Aqueous-
methanol 

Rukachaisirikul et 
al. (2004) 

Quercetin 

 

Apigenin 

 

Hexane and 
methanol 

Rutin 

 

 
 

Aqueous-
methanol 

Miean and 
Mohamed (2001) 

1-allyl-2,6-dimethoxy-3,4-
methylenedioxybenzene 

 

Methanol 
Masuda et al. 

(1991) 

1-allyl-2,4,5-
trimethoxybenzene          
(γ-asarone)  

1-(1-E-propenyl)-2,4,5-
trimethoxybenzene  
(α-asarone)  

1-allyl-2-methoxy-4,5-
methylenedioxybenzene         
(asarone)  
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The aqueous extract showed antioxidant activity 377.4 mg FeSO4 equivalent/L 

using FRAP assay and 15.4 % of inhibition capacity using DPPH assay, while, the 

boiled aqueous extract showed 98.8 mg FeSO4 equivalent/L and 40 % of 

inhibition capacity using FRAP and DPPH assays respectively.  They reported the 

amount of total flavonoids was 3.05 mg/g in aqueous extract and 2.03 mg/g in 

boiled aqueous extract.  The total phenol content in aqueous extract was 6.35 mg 

gallic acid equivalent/g and 7.66 mg gallic acid equivalent/g in boiled aqueous 

extract.  Wan-Ibrahim et al. (2010) determined antioxidant activity of aqueous 

extract of PS leaf using DPPH and FRAP assay.  The extract showed 24.3 % 

inhibition capacity with DPPH assay and 394+20.4 µmol FeSO4 equivalent/L with 

FRAP assay.  The amount of total phenol content was 430+3.1 mg gallic acid 

equivalent/g. 

1.6 Rice bran oil and corn oil  

Corn oil is derived from the germ or embryo of the corn kernel, while, rice bran 

oil is extracted from bran of rice paddy (Figure ‎1-12) (O'Brien, 2004; Gunstone, 

2002). 

 

Figure ‎1-12: Diagram of the corn kernel and rice paddy, adopted from The Corn Refiners 

Association (2015) and Henan Kingman M&E Complete Plant Co. (2015) 

 

 

                               
      Corn kernel  Rice paddy 
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1.6.1 Fatty acid composition of rice bran oil and corn oil 

Both rice bran oil and corn oil contain long chain fatty acids, with high levels of 

unsaturated fatty acids (oleic and linoleic acids).  Their typical fatty acid 

compositions are illustrated in Table ‎1-5. 

Table ‎1-5: Fatty acid profiles of refined rice bran oil and refined corn oil, adapted from 

              Gunstone (2002) and The Corn Refiners Association (2015) 

Fatty acids  
g / 100 g oil 

Rice bran oil Corn oil 

Myristic acid (14:0) 0.2-0.7 - 

Palmitic acid (16:0) 12-28 11-13 

Palmitoleic acid (16:1) 0.1-0.5 - 

Stearic acid (18:0) 2-4 2-3 

Oleic acid (18:1) 35-50 25-31 

Linoleic acid (18:2) 29-45 54-60 

Linolenic acid (18:3) 0.5-1.8 1 

Arachidic acid (20:0) 0.5-1.2 - 

Paullinic acid (20:1) 0.3-1.0 - 

Behenic acid (22:0) 0.1-1.0 - 

Others 1 1 

 

1.6.2 Natural antioxidants in rice bran oil and corn oil 

As shown in Table ‎1-6, vitamin E and oryzanols are the main endogenous 

antioxidants presence in rice bran oil and the main antioxidant in corn oil is 

vitamin E. 
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Table ‎1-6: Natural antioxidants in rice bran oil and corn oil,  adapted from Clifford 

(2001) and O'Brien (2004) 

Natural antioxidant 
mg / kg oil 

Rice bran oil Corn oil 

Tocopherol  

   α-Tocopherol 

   β-Tocopherol 

   γ-Tocopherol 

   δ-Tocopherol 

343 

0-454 

0-10 

16-358 

0-42 

1,477 + 183 

116-172 

0-22 

1,119-1,401 

59-65 

Tocotrienol  

   α-Tocotrienol 

   β-Tocotrienol 

   γ-Tocotrienol 

265 

0-174 

62-975 

0-104 

355 + 355 

132.2 

242.5 

- 

Oryzanol  2,847 - 

 

1.6.2.1 Tocopherols and Tocotrienols 

Tocopherols and tocotrienols (tocols) are natural antioxidants found in plant-

based oils (O'Brien, 2004).  Their chemical structures are shown in Figure ‎1-13.  

Seed oils are rich sources of tocopherols while tocotrienols are prevalently found 

in palm oil, cereal oils such as barley and rice bran oil and legumes (O'Brien, 

2004; David et al., 2002).  Tocopherols and tocotrienols, have 4 isomers; alpha 

(α), beta (β), gamma (γ) and delta (δ) (O'Brien, 2004).  They inhibit lipid 

oxidation by acting as a free radical terminator in autoxidation reactions and 

their presence has a major effect on oil flavour quality (Shahidi, 2005b; O'Brien, 

2004).  They have a synergistic effect with ascorbic acid, citric acid and 

phospholipids.  Their antioxidant activity depends on temperature and the type 

of isomer.  α-Tocopherol has lower antioxidant activity in edible oils than others, 

whereas γ-tocopherol has been credited to have the highest antioxidant activity 

(Shahidi, 2005b; O'Brien, 2004; Yanishlieva, 2001; White, 2000).  The amount of 
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tocols lost during processing are highest during the refining and deodorisation 

stage (O'Brien, 2004).  An excessive addition of tocopherols can be a 

disadvantage due to its enhanced pro-oxidant effect, enhanced oxidation of 

unsaturated fatty acids and can cause haemorrhage (Reische et al., 2002; White, 

2000; Takahashi, 1995).  Thus, the addition of tocopherols needs to be controlled 

(Shahidi, 2005b).   

1.6.2.2 γ-Oryzanol 

Rice bran oil is a rich source of γ-oryzanol which is not found in other plant oils.  

It is predominant in the germ/bran fraction of the rice kernel (Clifford, 2001).  

The term γ-oryzanol is usually referred to as a mixture of ferulic acid esters of 

phytosterols and triterpene alcohols.  The following 5 compounds are sterol 

esters of ferulic acid:(1) cycloartenyl ferulate, (2) 24-methylene cycloartanyl 

ferulate, (3), campesteryl ferulate (4) β-sitosteryl ferulate and (5) cycloartanyl 

ferulate (Kochhar, 2001), of which 1-4 are the most abundant in rice bran oil 

(Figure ‎1-14) (Angelis et al., 2011).  Several studies found γ-oryzanol extracted 

from rice bran had a strong stabilizing effect during storage and frying (Mariod et 

al., 2010; Chotimarkorn et al., 2008). 

1.6.2.3 Ferulic acid 

Ferulic acid is another antioxidant presence in small amounts in corn oil but it 

contributes to the excellent oxidative stability of corn oil (O'Brien, 2004).  The 

chemical structure of ferulic acid is provided in Figure ‎1-15. 
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Figure ‎1-13: Structure of tocopherols and tocotrienols, adapted from Shahidi ( 2005b) 

 

 

Figure ‎1-14: Structure of γ-oryzanols isolated from rice bran oil which are ferulic esters, 

adapted from Angelis et al. (2011) 
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  Figure ‎1-15: Structure of ferulic acid, adapted from Balasundram et al. (2006)  

 

1.7 Justification, aim and objectives of the study 

The quality of frying oils certainly affects the quality of the fried food.  During 

deep frying processes, the oil is heated repeatedly at high temperature.  Under 

these conditions the oil is degraded, which changes the chemical and physical 

properties.  Many factors affect the quality changes of oil during frying and 

numerous methods have been studied and proposals made to extend the life of 

frying oil.  Synthetic antioxidant such as BHA, BHT, TBHQ and PG, are added to 

the oils to prevent autoxidation.  However, the efficiency of those compounds are 

under room or mild temperature conditions.  At frying temperatures, many 

studies have reported the synthetic antioxidants decompose and fail to protect 

the oil (Marquez-Ruiz et al., 2014).  The safety issue concerning the use of 

synthetic antioxidants, particularly, toxicity evidence involving carcinogenesis 

(Race, 2009) has given rise to numerous studies looking to replace them with 

new antioxidants from natural sources.  Both Pandanus amaryllifolius Roxb. and 

Piper sarmentosum Roxb., which are used as food and folk medicine in South East 

Asia (particularly in Thailand and Malaysia), have shown antioxidant activity in a 

number of studies which have mostly emphasised on the pharmacological effects 

(Seyyedan et al., 2013).  The quantity and activity of such natural antioxidants 
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depends on both internal and external factors.  External factors are those such as 

the extraction model; extraction conditions and different solvents at different 

concentrations; as well as differences in the assays used for determining their 

antioxidant activities.  The internal factors for example, are variation of genotype, 

growing area, harvesting method, harvesting time (ripeness), climate condition 

etc. which can also cause differences in antioxidant activities (Apak et al., 2013; 

Pokorny, 2010; Yanishlieva et al., 2001).  Numerous studies on the efficacy of the 

various natural extracts added in cooking oils, have been tested at storage or 

mild heating temperatures.  For example, Hashemi et al. (2011) reported that 

sunflower oil with added essential oil extract of Zataria multiflora Boiss. at 0.025 

%, 0.05 % and 0.075 % showed an antioxidant effect but lower than BHA and 

BHT during storage at 37 °C and 47 °C.  Mariod et al. (2010) reported rice bran oil 

supplemented with rice bran extracts 0.1 % and 0.25 % showed a decreasing 

value of peroxide value, ρ-Anisidine value and TBARS value during storage at  

70 °C compared to the negative control oil but higher than the oil with added 

BHA.  The study of Merrill et al. (2008) reported the oxidative stability of 

conventional and high oleic vegetable oils with added rosemary extract 1000 

mg/L, mixed tocopherols 200 mg/L and ascorbyl palmitate 1000 mg/L at 110 °C 

showed a significant oxidative stability compared to no antioxidant oils but it was 

not as effective as TBHQ.  The effects of frying condition has rarely been studied.  

Therefore, it is essential to seek an antioxidant from a natural source that can be 

used to replace synthetic antioxidants in cooking oil, which have a good efficacy 

at frying temperature.  The aim of this research was to analyse whether extracts 

from either Pandanus amaryllifolius Roxb. (PD) or Piper sarmentosum Roxb. (PS) 
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could be utilised as a natural antioxidant in frying oil.  In order to achieve this 

aim,  the objectives of the thesis were: 

1) To determine the total phenol content, antioxidant activity and any 

synergistic effect of extracts of both PD and PS leaves. 

2) To select the leaf extract that was higher in phenol content and 

antioxidant activity and further analyse the effect of extraction conditions.   

3) To analyse the phenol profiles of selected leaf extracts in order to better 

understand their antioxidant activities.   

4) To determine the effect of frying temperature on a commercial rapeseed 

oil, to gain a better understanding of the thermal deterioration pattern 

and to determine the heating conditions, analytical parameters and 

analytical methods to be used in further studies.    

5) To evaluate the use of aluminium oxide to remove synthetic antioxidants 

present in palm olein oil and to then determine the oxidative stability of 

the stripped and unstripped oil.   

6) To develop a HPLC method to determine which cooking oils are free of 

synthetic antioxidants and then select oils which were free of synthetic 

antioxidants for further experiments.   

7) To determine the amount of extract to be used in frying oil by carrying out 

a preliminary investigation, measuring autoxidation. 

8) To determine if there is a protective effect on thermal degradation of the 

chosen oils during mild heat and frying conditions.   
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2 Materials and methods 

All the materials (chemicals, reagents and preparations) and analytical methods 

employed throughout the research are included in this chapter.   

2.1 Chemicals and Reagents 

All the chemicals and reagents were AR or ACS grade. 

 Absolute ethanol - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 ABTS or 2, 2’-Azinobis-(3-ethylbenzothiozoline-6-sulfonic acid) - 

Calibiochem Co. Ltd (Darmstadt, Germany) 

 Acetonitrile HPLC gradient - VWR International S.A.S (France) 

 Acetonitrile LC/MS grade - VWR International S.A.S (France) 

 Activated charcoal powder, NoRIT® SA 2 – ACROS Co. Ltd (New Jersey, 

USA) 

 Aluminium chloride – Alfa Aesar Co. Ltd (Heysham, England) 

 Ammonium molybdate – BDH Ltd (Poole, UK) 

 Ammonium thiocyante – Alfa Aesar Co. Ltd (Heysham, England) 

 ρ-Anisidine - Sigma-Aldrich Co. Ltd (St. Louis, USA)    

 Barium chloride dehydrate - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Butanol or n-Butanol – Fluka Chemicals Ltd (Dorset, UK)  

 Butylated hydroxytoluene (BHT) - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Caffeic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Caffeine – Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Catechin- Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Catechol – Sigma-Aldrich Co. Ltd (St. Louis, USA)  

 Chloroform - Sigma-Aldrich Co. Ltd (St. Louis, USA) 
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 Chlorogenic acid (3CQA) - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 ρ-Courmaric acid- Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Cryptochlorogenic acid (4CQA) - Sigma-Aldrich Co. Ltd (St. Louis, USA)  

 DCPIP or 2, 6-Dichlorophenol indophenol  sodium salt dehydrate >99  % – 

Fluka Chemicals Ltd (Switzerland)   

 Diethyl ether - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 DPPH·  or 1, 1-Diphenyl-2-picrylhydrazyl radical – Sigma Co. Ltd 

(Darmstadt, Germany) 

 Epicatechin - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Epicatechingallate – Cambridge Bioscience Ltd (Cambridge, UK) 

 Epigallocatechin – Cambridge Bioscience Ltd (Cambridge, UK) 

 Epigallocatechingallate – Cambridge Bioscience Ltd (Cambridge, UK) 

 Ethylenediaminetetraacetic acid (EDTA) – Fluka Chemicals Ltd (Dorset, 

UK)  

 Ferric chloride – Sigma Co. Ltd (Steinheim, Germany) 

 Ferrous (II) chloride or Iron (II) chloride – Sigma-Aldrich Co. Ltd 

(Steinheim, Germany) 

 Ferrous (II) sulphate heptahydrate - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Ferrous chloride anhydrous - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Ferrous sulphate heptahydrate - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Ferulic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Folin & Ciocalteu’s phenol  reagent - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Formic acid (99  %) - Sigma-Aldrich Co. Ltd (St. Louis, USA)   

 Gallic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Glacial acetic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 
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 Hesperidin - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Hydrochloric acid – Fisher Scientific Ltd (Leicestershire, UK) 

 Hydrochloric acid 37  % - Fisher Scientific Co. Ltd (Leicestershire, UK) 

 Hydrocinnamic acid- Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Hydrogen peroxide – BDH Ltd (Poole, UK) 

 4-Hydroxybenzoic acid - ACROS Co. Ltd (New Jersey, USA) 

 Iron (III) chloride - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Iron (III) chloride hexahydrate - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 L-ascorbic acid - Fisher Scientific Ltd (Leicestershire, UK) 

 Linoleic acid – Sigma-Aldrich Co. Ltd (Steinheim, Germany) 

 Metaphosphoric acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Methanol HPLC grade - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Naringenin - LKT Laboratories Inc. (St. Paul, USA) 

 Neochlorogenic acid (5CQA) - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 iso-Octane or 2,2,4- Trimethylpentane - Fisher Scientific Ltd 

(Leicestershire, UK) 

 Oxalic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Petroleum ether spirit 40°-60° - VWR International S.A.S (France)  

 Phenol phthalein - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Phloridzin - Extrasynthese (Genay, France) 

 Potassium dihydrogen orthophosphate - BDH Ltd (Poole, UK)   

 Potassium ferricyanide – Aldrich Chemical Co. Ltd (Dorset, England) 

 Potassium hydroxide – BDH Ltd (Poole, UK) 

 Potassium persulphate - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 2-Propanol or iso-Propyl alcohol - VWR International S.A.S (France)  
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 Rutin - ACROS Co. Ltd (New Jersey, USA) 

 Sinapic acid – Aldrich Chemical Co. Ltd (Dorset, England) 

 Sodium acetate trihydrate - Fisher Scientific Co. Ltd (New Jersey, USA) 

 Sodium carbonate - Fisher Scientific Co. Ltd (New Jersey, USA) 

 Sodium chloride - FSA supplies (Loughborough, UK) 

 Sodium dehydrate orthophosphate - BDH Ltd (Poole, UK) 

 Sodium hydroxide - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Sodium nitrite – Fisher Scientific Ltd (Leicestershire, UK) 

 Sodium phosphate dibasic anhydrous – Sigma Co. Ltd (Darmstadt, 

Germany) 

 Sodium phosphate heptahydrate (dibasic) – Sigma Co. Ltd (Steinheim, 

Germany) 

 Sodium phosphate monohydrate (monobasic) – BDH Ltd (Poole, UK) 

 Sulphuric acid - BDH Ltd (Poole, UK) 

 Syringic acid – Alfa Aesar Co. Ltd (Lancaster, England)  

 Tannic acid- Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Taxifolin - Sigma-Aldrich Co. Ltd (St. Louis, USA)  

 2-Thiobarbituric acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 TMP or 1,1,3,3-Tetraethoxyopropate malonaldehyde bis (dimethyl acetal) 

- Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Toluene - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 TPTZ or 2, 4, 6- Tri [2-pyridyl]-5-triazine - Sigma-Aldrich Co. Ltd (St. 

Louis, USA) 

 Trans-cinnamic acid - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Trichloroacetic acid – Fisher Scientific (Loughborough, England) 
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 Trolox - Calibiochem Co. Ltd (Darmstadt, Germany) 

 Tween 40 - Fisher Scientific (Loughborough, England) 

 Vanillic acid – Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Vanillin - BDH Ltd (Poole, UK) 

 Vitexin - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

 Water - Millipore grade – Food Analytical Laboratory, School of Food 

Science and Nutrition, University of Leeds (UK) 

 Xylenol orange - Sigma-Aldrich Co. Ltd (St. Louis, USA) 

2.2 Raw materials 

2.2.1 Oils 

 Alfa One® Rice bran oil - Hansells Foods UK Ltd (London, UK) 

 King® Rice bran oil – Thai Edible Oil Co. Ltd (Bangkok, Thailand) 

 Oleen®  RBD Palm olein oil – Oleen Co., Ltd (Samutsakorn, Thailand) 

 Morrisons® vegetable oil (rapeseed oil) – Morrisons supermarket (Leeds, 

UK) 

 Sainsbury’s® Corn oil – Sainsbury's supermarkets Ltd (London, UK) 

 Sainsbury’s® Rapeseed oil – Sainsbury's supermarkets Ltd (London, UK) 

 Yorkshire® Rapeseed oil cold press – Wharfe Valley Farms (Collingham, 

UK) 

 Yors® Rapeseed oil cold press – Wharfe Valley Farms (Collingham, UK) 

2.2.2 Plants 

 Pandanus amaryllifolius Roxb. leaves (Bai Taey leaf) – Nong Fern Thai 

supermarket (Leeds, UK)  
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 Piper sarmentosum Roxb. leaves (Cha Plu leaf) – Nong Fern Thai 

supermarket (Leeds, UK)  

2.2.3 French fries 

 McCain®, pre-fries French fries (90 x 5 x 5 mm) – Morrisons supermarket 

(Leeds, UK) 

 Morrisons®, pre-fries French fries (95 x 8 x 8 mm)– Morrisons 

supermarket (Leeds, UK) 

2.3 Instruments and apparatus 

2.3.1 General apparatus 

 Analytical balance (KERN KB) – KERN & SOHN GmbH Co. Ltd (Balingen, 

Germany) 

 Analytical balance (Mettler Toledo Xs 104) – Mettler–Toledo Ltd 

(Beaumont Leys Leicester, UK) 

 Burette 10 + 0.02 mL borosilicate glass - School of Food Science and 

Nutrition, University of Leeds (UK) 

 Chromatography column, reverse phase C18; 5µm, 250 x 4.6 mm (Gemini 

5µ C18 110A, S/NO 540974-22) – Phenomenex® (Cheshire, UK) 

 Chromatography column, reversed phase C18; 2.2 µm, 100 x 4.6 mm 

(Shim-pack XR-ODS , S/NO 70644748) - Shimadzu® (Shimadzu 

corporation, Japan) 

 Erlenmeyer flask with glass stopper 250 mL - School of Food Science and 

Nutrition, University of Leeds (UK) 

 Evaporator (Genevac EZ-2) – Genevac Ltd (Ipswich, UK) 
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 Extraction Manifold 20 positions, 16 x 100 mm tubes (Waters) – Waters 

Ltd (Hertfordshire, UK) 

 Electrical deep fat fryer (4 L) - Kenwood Ltd (Havant, UK) 

 Electrical deep fat fryer (3 L) - Russell Hobbs (Bristol, UK) 

 Electrical deep fat fryer (0.5 L) – Coopers of Stortford (Hertfordshire, UK) 

 Grinder machine (Kenwood Chef Classic KM336) – Kenwood Ltd (Havant, 

UK) 

 Heated circulating bath (Grant TxF 200) - Grant Instruments (Cambridge, 

UK) 

 pH Meter (Hanna Basic HI 2210) – Hanna Instruments Ltd (Bedfordshire, 

UK) 

 Rhemometer (Kinexus ultra+) – Malvern Instruments Ltd (Worcestershire, 

UK) 

 Soxhlet (fat extraction apparatus) - School of Food Science and Nutrition, 

University of Leeds (UK) 

 Spectrophotometer (Cecil CE 3021) – Cecil Instruments Ltd (Cambridge, 

UK) 

 Ultrasonic water bath (Grant OLS 200) – Grant Instruments (Cambridge, 

UK) 

 Vortex mixer (FB 15013) – Fisher Scientific Ltd (Loughborough, UK) 

2.3.2 High Performance Liquid Chromatography (HPLC) 

 High Performance Liquid Chromatography (UFLCXR ) consisting of binary 

pump, a photodiode array (PDA) with multiple wavelength SPD-20A and a 

LC-20AD Solvent Delivery Module coupled with an online unit degasser 
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DGU-20A3/A5, a thermostatised autosampler/injector unit SIL-20AC - 

Shimadzu Corporation (Kyoto, Japan) 

The HPLC technique is used for separation and quantification of non-volatile 

compounds.  This technique is comprised of three components: a mixture of 

compounds that need to be separated sample solution, a column (stationary 

phase) and a solvent (mobile phase).  In general, the sample solution is injected 

into the system and moved through a column along with the mobile phase.  The 

compounds in the sample will have different affinities and interactions with the 

material packed in the column, leading to separation of those components in the 

sample solution.  The molecules with a stronger interaction with the stationary 

phase will move slowly or will be retained for longer in the column than 

components with weaker interactions.  Therefore, the difference in interactions 

with the column will help separate sample components from each other (Kupiec, 

2004).  The separated components can be detected once eluted from the column 

by a detector.  This HPLC technique can use a variety of stationary phases, among 

those the most widely used packing materials is silica-based.  Reverse-phase 

HPLC is the most popular technique for separation and determination of polar or 

non-polar polyphenols with most common detection systems being diode array 

detector (DAD) and, mass or tandem mass spectrometry.  The features of 

reverse-phase HPLC are a non-polar column packing material such as C18 coating 

on octadecyl-silica (ODS-silica) and a polar mobile phase, which is usually a 

mixture of water and a polar organic solvent such as methanol or acetonitrile.  

The HPLC technique is a highly sensitive, selective and reliable method, therefore 

this method is widely used for determination of polyphenol compounds (Agilent 

Technologies, 2011b).  
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2.3.3 Ultrafast-High Performance Liquid Chromatography-Mass 

Spectrometry (UHPLC-MS) 

 Ultrafast-High Performance Liquid Chromatograph-Mass Spectrometry 

(UHPLC-MS, NexeraTM) comprised of a system controller (CBM-20Alite), 

solvent delivery pumps (LC-30AD), a degasser (DGU-20A5), a Mixer MR 

20 µL, a reservoir tray, an auto sampler (SIL-30AC), a column oven (CTO-

30A), a UV-VIS detector (SPD-20a UFLC) and mass spectrometer (LCMS-

2020) with an electron spray ionization (ESI) source and a single 

quadrupole - Shimadzu Corporation (Kyoto, Japan) 

UHPLC is a special chromatographic method that is faster, gives better resolution 

of peaks and uses less solvent than conventional HPLC when it is used with a 

smaller column packed with smaller particles (usually less than 2 µm in 

diameter).  The UHPLC-MS is a HPLC system coupled with a mass 

spectrophotometer detector.  Although, a DAD detector offers good resolution, it 

may be difficult to identify or quantify any multicomponent which elutes at 

approximately the same time.  In this case, mass spectrometry offers a better 

analysis technique due to its highly sensitive detection based on mass-to charge 

ratios of the molecule.  Following the injection of the sample, the eluent is divided 

into two fractions.  One fraction goes to a photodiode array detector (PDA, UV-Vis 

detector) at 200-600 nm to analyse the component compounds in the extracts.  

The other fraction is sent to a quadrupole mass spectrometer.  The liquid is 

sprayed and ionized under atmospheric pressure by the atmospheric pressure 

ionization probe (ESI probe).  Subsequently, the ions are separated in accordance 

with their mass-to-charge ratio (m/z) by a quadrupole mass filter and are 

detected.  The detected ion signals are amplified and then processed by the LCMS 
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solution data processing software.  MS data are acquired in the negative 

ionisation mode (Shimadzu Corporation, 2008). 

2.4 Consumable materials 

All these disposable materials were used throughout the studies. 

 Cap (2 mL vial with PTFE/Neoprene septa) - Thermo Scientific Ltd 

(Waltham, USA) 

 Cellulose extraction thimbles (30 x 100 mm)– Whatman® Fisher Scientific 

Co. Ltd (Leicestershire, UK) 

 Centrifuge tube (15 mL and 50 mL) – School of Chemistry, University of 

Leeds (UK) 

 Cuvette polystyrene (semi micro 1.5 mL) – Brand® (Wertheim, Germany) 

 Eppendorf micro-centrifuge (2 mL) – Thermo®, Electron Corporation 

(Germany) 

 Filter papers no.1– Whatman®, Fisher Scientific Co. Ltd (Leicestershire, 

UK) 

 Magnetic stirrer – Stuart Scientific Co. Ltd (Surrey, UK) 

 Pasteur pipette graduated (3 mL) - School of Chemistry, University of 

Leeds (UK) 

 SPE silica cartridge (500 mg, 6 mL) – Thermo Scientific Ltd (Waltham, 

USA) 

 Syringe 3 part polypropylene (1 mL and 5 mL Luer) -BD PlasticpakTM, BD 

(Oxford, UK) 

 Syringe filter membrane 0.45 µm (PTFE) - Fisher Scientific Co. Ltd 

(Leicestershire, UK) 
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 Syringe filter membrane, nylon 0.22 µm (PDVF)– Fisher Scientific Co. Ltd 

(Leicestershire, UK) 

 Test tube (polypropylene, 16 mm x 100 mm) – Fisher Scientific Co. Ltd 

(Leicestershire, UK) 

 Tip for pipette 10 µL, 200 µL, 1000 µL and 5000 µL – Starlab Ltd (Milton 

Keynes, UK) 

 Vial amber glass (2 mL) – Thermo Scientific Ltd (Waltham, USA) 

2.5 Reagents preparation 

2.5.1 ABTS solution (7 mM) 

ABTS (0.3841 g) was dissolved in water (100 mL) to make 7 mM ABTS solution. 

2.5.2 ABTS radical cation (ABTS ·+) solution 

The ABTS·+ solution was a mixture of 7 mM ABTS solution and 2.45 mM 

potassium persulfate at 1:1 ratio (v/v).  The mixture solution was mixed well and 

stored in the dark for 12-16 hours to complete the oxidation of the ABTS and 

given a bluish-green colour (Re et al., 1999).  The ABTS·+ solution was diluted, 

before used, until the diluted solution gave the absorbance 0.700 + 0.02 at 734 nm. 

2.5.3 Ammonium molybdate solution (5 % w/v) 

An ammonium molybdate (5 g) was dissolved in distilled water (100 mL) to 

make 5 % ammonium molybdate solution. 

2.5.4 Ammonium thiocyanate solution (30 %) 

Ammonium thiocyante (30 g) was dissolved in water (100 mL) to make 30 % 

ammonium thiocyanate solution. 
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2.5.5 ρ-Anisidine in glacial acetic acid (0.25 %) 

ρ-Anisidine (0.5 g) was dissolved in glacial acetic acid (200 mL) to make 0.25 % 

ρ-Anisidine reagent.  The reagent was stored in a dark and cool place until used. 

2.5.6 DPPH· solution (0.3 mM) 

DPPH·  (0.01183 g) was dissolved in absolute ethanol to make volume 100 mL.  

The solution was freshly prepared each time and kept in amber glass container to 

protect from light. 

2.5.7 Elution solvent 

Petroleum ether spirit 40-60 °C (900 mL) was mixed with diethyl ether (100 mL) 

to make elution solvent 9:1 v/v.    

2.5.8 Ferric chloride solution (0.1 %) 

Ferric chloride anhydrous (0.025 g) was dissolved in water (25 mL) to make  

0.1 % ferric chloride solution. 

2.5.9 Ferrous chloride (20 mM in 3.5 % hydrochloric acid) 

Ferrous chloride (0.1268 g) was dissolved in water (30 mL).  The concentrated 

hydrochloric acid (3.5 mL) was added.  The solution was made to volume (50 mL) 

using water.   

2.5.10 Hydrochloric acid (40 mM) 

Concentrated hydrochloric acid (73 µL) was added to water (50 mL) to make  

40 mM hydrochloric acid.  The solution was kept at room temperatures 20-25 °C. 
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2.5.11 Iron chloride solution 

Ferrous sulphate heptahydrate (0.25 g) was dissolved in water (25 mL).  Barium 

chloride dehydrate (0.20 g) was dissolved in water (25 mL), then slowly added to 

ferrous sulphate heptahydrate solution with constant stirring.  Hydrochloric acid 

(10 M, 1 mL) was added and mixed.  The mixed solution was filtered with filter 

paper (Whatman no.1) and transferred into an amber glass container.  The 

solution was stored in a dark at room temperatures 20-25 °C  and was used 

within 1 month. 

2.5.12 Linoleic acid emulsion 

Linoleic acid (0.28 g) was mixed with Tween 40 (0.28 g) and 0.2 M PBS pH 7.0 

(50 mL).  The mixture was mixed well until homogeneous. 

2.5.13 Metaphosphoric acid (6 %) 

Metaphosphoric acid (6 g) was dissolved in water (100 mL) to make 6 % 

metaphosphoric acid.  The solution was freshly prepared each time. 

2.5.14 Mixed solvent acetic acid : chloroform (3:2) 

Glacial acetic acid (1500 mL) was added in to chloroform (1000 mL) to make 3:2 

mixture solvent. 

2.5.15 Mixed solvent iso-propanol : toluene (1:1) 

Iso-propanol (1000 mL) was added to toluene (1000 mL) and mixed well to 

make 1:1 mixture solvent. 
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2.5.16 Oxalic acid-EDTA solution 

The solution was freshly prepared before used.  Oxalic acid (0.05 M, 3.1518 g) 

and EDTA (0.2 mM, 0.0372 g) were dissolved in water to make volume 500 mL.  

2.5.17 Phosphate buffer saline (0.2 M PBS, pH 6.6) 

Sodium phosphate monobasic (5.52 g) was dissolved in water (200 mL) to make 

a solution.  Sodium phosphate dibasic solution was also prepared using the same 

procedure (10.72 g in 200 mL).   The PBS was a mixture of  sodium phosphate 

monobasic solution (31.25 mL) and sodium phosphate dibasic solution (18.75 mL).   

2.5.18 Phosphate buffer saline (0.2 M PBS, pH 7.0)  

Sodium phosphate monobasic and sodium phosphate dibasic solution were  

prepared using the same procedure as ‎2.5.17.   The PBS was a mixture of  sodium 

phosphate monobasic solution (39 mL) and sodium phosphate dibasic solution 

(61 mL).   

2.5.19 Potassium ferricyanide (1 %) 

Potassium ferricyanide (1 g) was dissolved in water (100 mL) to make 1 % 

potassium derricyanide solution. 

2.5.20 Potassium hydroxide (0.1 N) 

Potassium hydroxide (6.80 g) was dissolved in water (950 mL) and brought to 

boil.  The solution was cooled down and made to volume (1000 mL).  To obtain 

the precise concentration, 0.1 N potassium hydroxide was titrated with 

potassium hydrogen phathalate solution.  The potassium hydrogen phathalate 

solution was a mixture of potassium hydrogen phathalate (0.0105 g) and 

potassium iodide (0.15 g) in water (10 mL).  The mixture was incubated in the 
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dark for 10 min before titrating with 0.1 N potassium hydroxide solution using 

starch solution as an indicator.  The endpoint was reached when the blue colour 

disappeared.  The precise concentration was calculated using the following 

equation. 

𝑁 𝑜𝑓 𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚 ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑𝑒 =  
𝑊1  × 1000

𝑊2   × 49.032
 

W1 = weight of potassium hydrogen phathalate, g 

W2 = weight of potassium hydrogen hydroxide, g 

2.5.21 Potassium persulfate solution (2.45 mM) 

Potassium persulfate (0.0662 g) was dissolved in water (100 mL) to make  

2.45 mM potassium persulfate. 

2.5.22 Starch indicator solution (1 %) 

Soluble starch (1 g) was dissolved in water (100 mL) to make 1 % starch 

indicator solution. 

2.5.23 Saturated potassium iodide solution 

Potassium iodide (30 g) was dissolved in water (100 mL). 

2.5.24 Saturated sodium carbonate solution 

Sodium carbonate (100 g) was dissolved in water (400 mL).  The solution was 

heated using hot plate and cooled down before dissolving more sodium 

carbonate to make it saturated.  Then, the solution was filtered through filter 

paper (Whatman no.1). 
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2.5.25 Sodium acetate buffer (300 mM, pH 3.6) 

Sodium acetate trihydrate (3.1 g) was dissolved in water (900 mL).  Glacial acetic 

acid (16 mL) was added.  The solution then was made up to 1000 mL.  The pH 

was measured using a pH meter and adjusted to pH 3.6 with glacial acetic acid.  

The buffer solution was stored at 4 °C and used within 6 months. 

2.5.26 Sodium thiosulphate (0.1 N) 

Sodium thiosulphate pentahydrate (24.8200 g) was dissolved in water (1000 mL) to 

make 0.1 N sodium thiosulphate solution.  To obtain the precise concentration, 

0.1 N sodium thiosulphate was titrated with potassium hydrogen phathalate 

solution as described in chapter ‎2.5.20.   

2.5.27 Standard phenols (1000 mg/L) 

A standard phenol (1 g) was dissolved in 80 % ethanol (1000 mL) to  make 1000 

mg/L standard stock solution.  The standard phenols were vanillin, vanillic acid, 

caffeine, caffeic acid, catechin, catechol, epicatechin, epigallocatechingallate, 

epicatechingallate, epigallocatechin, ferulic acid, gallic acid, 4-hydroxybenzoic 

acid, trans-cinnamic acid, hydrocinnamic acid, rutin, vitexin, ρ-courmaric acid, 

syringic acid, phloridzin, sinapic acid, chlorogenic acid (3CQA), cryptochlorogenic 

acid (4CQA), neochlorogenic acid (5CQA), taxifolin, hesperidin, tannic acid and 

naringenin (chapter ‎2.1). 

2.5.28 Standard phenols (10 mg/L) 

The standard stock solution (10 µL, chapter ‎2.5.27) was added to 80 % ethanol 

(9.99 mL) to make a working standard for identification 10 mg/L. 
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2.5.29 Standard synthetic antioxidants (50 mg/L) 

The standard synthetic antioxidants BHA, BHT and TBHQ (50 mg, chapter ‎2.1) 

were dissolved in acetonitrile (1000 mL) to make concentration 50 mg/L.  They 

were filtered through a filter membrane 0.45 µm PVDF (nylon) before injection 

into the HPLC system. 

2.5.30 Sulphuric acid solution (5 % v/v) 

Sulphuric acid anhydrous (5 mL) was dissolved in water (100 mL) to make 5 % 

sulphuric acid solution. 

2.5.31 TPTZ solution (10 mM) 

TPTZ (0.031 g) was dissolved in 40 mM HCl and made to volume (10 mL). 

2.5.32 Trichloroacetic acid solution (10%) 

Trichloroacetic acid (10 g) was dissolved in water (100 mL) to make 10 % 

trichloroacetic acid solution. 

2.5.33 Working reagent for FRAP assay 

The working reagent for the FRAP was a mixture of 300 mM sodium acetate 

buffer pH 3.6, 10 mM TPTZ in 40 mM hydrochloric acid and 20 mM of iron (III) 

chloride hexahydrate solution at ratio 10:1:1 respectively.   

 

 

 



59 
 

2.6 Methods used for the initial investigation of total phenol 

content and antioxidant activities of Piper sarmentosum 

Roxb. and Pandanus amaryllifolius Roxb. leaf extracts 

2.6.1 Leaf preparation 

Piper sarmentosum Roxb. (PS) leaves (chapter ‎2.2) were cleaned, trimmed and 

dried at 40 °C using an air oven for 24 hours, then pulverized using a grinder.  

The powder was stored at -20 °C until analysis.  Pandanus amaryllifolius Roxb. 

(PD) leaves (chapter ‎2.2) were also prepared using the same procedure. 

2.6.2 Antioxidant extraction procedure 

An ultrasonic bath was used to assist extraction as described by Kim and Lee 

(2005a) with some modifications.  PS leaf powder (chapter ‎2.6.1) was extracted 

using 80 % ethanol and absolute ethanol.  The powder was mixed with the 

solvent at a ratio 1:20.  The mixture was mixed using a vortex mixer for 1 min 

and extracted using an ultrasonic bath for 20 min (controlled temperatures not 

exceeding 40 °C).  After that, the mixtures were centrifuged at 4,000 rpm for 10 

min.  The supernatants were filtered through a filter paper no.1.  The residue was 

re-extracted twice by repeating the same procedure.  The volume of the filtrates 

was reduced to 10 to 30 mL using a Genevac.  The extract solution was made to 

volume (100 mL) using distilled water.  This extract solution was then used for 

further analysis.  PD leaf powder (chapter ‎2.6.1) was extracted using the same 

procedure.   

A mixture of extracts was prepared to test the synergistic effect.  The filtrates of 

PD and the filtrates of PS (which were reduced to 10-30 mL using a Genevac) 
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were mixed together at ratio 1:1.  The mixed extracts solution (PDPS) was made 

to volume (100 mL) using distilled water and used for further analysis. 

2.6.3 Determination of total phenol content   

The total phenol content in the PS extract solution (chapter ‎2.6.2) was 

determined using the Folin-Ciocalteu method (Waterhouse, 2005).  The PS extract 

solution (chapter ‎2.6.2, 10 µL)  was added to distilled water (790 µL) and Folin & 

Ciocalteu’s phenol  reagent (50 µL).  The solution was mixed well, incubated not 

exceeding 8 minutes and saturated sodium carbonate reagent (150 µL) was added.  

The absorbance was measured at 765 nm after incubating at 40 °C in the dark for 

30 minutes.  The PD extract solution (chapter ‎2.6.2) was determined using the 

same procedure as described above.  A calibration curve was established using 

gallic acid as a standard solution (0, 50, 100, 250, 500 mg/L).  The total phenol 

content was calculated using the following equation and expressed as milligram 

of gallic acid equivalent per gram of leaf powder. 

 

𝑇𝑜𝑡𝑎𝑙 𝑝ℎ𝑒𝑛𝑜𝑙𝑖𝑐 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑎𝑠 𝑚𝑔 𝑔𝑎𝑙𝑙𝑖𝑐 𝑎𝑐𝑖𝑑 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =  
𝐴 ×  100

𝑤𝑡 × 1000
   

 

A = concentration (mg/L) from standard curve 

wt = mass of leaf  powder in gram 

100 = final volume (mL) of sample solution 

1000 = constant value to change unit into mL 

 

2.6.4 Determination of antioxidant activities 

The difference in amounts, chemical structures, polarity of antioxidants and 

variation of food components and food systems result in different antioxidant 
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activities.  Thus, the antioxidant activity of the extracts extracted using different 

solvent in this study was evaluated by various methods. 

2.6.4.1 Ferric reducing antioxidant power (FRAP) assay 

The FRAP assay is determined the antioxidant capacity to reduce the ferric 

complex form to ferrous complex form at low pH, which was performed 

according to the method of Benzie and Strain (1999).  This assay is a direct 

method for determining total antioxidant power of the extract which is fast, 

reliable and can be used for antioxidants in aqueous solutions.  At low pH, the 

intense blue colour generated from the reduction of ferric tripyridyltriazine 

complex (Fe 3+-TPTZ) to the ferrous form (Fe 2+) was measured as the absorption.  

The intensity of the blue colour is directly related to an increase in the 

absorbance and direct proportion to the concentration of the antioxidant 

compounds.  The PS extract solution (50 µL, chapter ‎2.6.2) was added to working 

reagent (1.5 mL, chapter ‎2.5.33) and incubated at room temperatures 20-25 °C 

for 6 minutes before measuring the absorbance at 593 nm.  Ferrous (II) sulphate 

heptahydrate was used as a standard solution (0, 20, 50, 100, 200 mg/L) to 

construct the calibration curve.  The standard curve was used for calculating the 

ability of antioxidants in the extract to reduce ferrous to ferric ions.  The FRAP 

was calculated using the following equation. 

𝐹𝑅𝐴𝑃  𝑎𝑠 𝑚𝑔 𝑓𝑒𝑟𝑟𝑜𝑢𝑠 (𝐼𝐼)𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑔⁄ 𝑑𝑟𝑖𝑒𝑑 𝑙𝑒𝑎𝑓 =  
𝐴 ×  100

𝑤𝑡 ×  1000
  

 

A = concentration (mg/L) from standard curve 

wt = mass of leaf  powder in gram 

100 = final volume (mL) of sample solution 

1000 = constant value to change unit into mL 
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2.6.4.2 DPPH radical scavenging assay  

This assay is used for determining the ability of the antioxidant to scavenge the 

radical anion 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·), which based on the 

method proposed by Maizura et al. (2011).  DPPH radical (DPPH·) is a stable free 

radical due to the delocalisation of the spare electron on the whole molecule.  The 

DPPH· solution has an intense purple colour in absolute ethanol.  Once the radical 

has accepted an electron or hydrogen atom (from antioxidant) to become a stable 

molecule, the mixed solution will show less purple colour.  The loss of the colour 

is directly proportional to a decrease in the absorbance which is indirectly 

proportional to the amount/concentration of the antioxidant.  Thus, the 

less/pale/decolourised colour, the higher the scavenging capacity and the higher 

the amount of antioxidant.  This assay is strongly influenced by pH and the 

solvent properties, so it may suite lipophilic antioxidants.  However, there is a 

solvent effect as it can compete with the antioxidant to scavenge hydrogen, so 

this can lead to false positive results.   The DPPH· reagent (0.3 mM, 1 mL, 

chapter ‎2.5.6) was added to the extract solution (2.5 mL, chapter ‎2.6.2) and kept 

in the dark at room temperatures 20 to 25 °C for 30 minutes before measuring 

the absorbance at 517 nm.  The blank was prepared using absolute ethanol (1 

mL) instead of 0.3 mM DPPH.  The control was prepared by using absolute 

ethanol (2.5 mL) instead of the extract solution.  Percentage of DPPH· scavenging 

activity or percentages of inhibition activity of the extract were calculated using 

the following equation. 

 % 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑜𝑟  % 𝐷𝑃𝑃𝐻 𝑠𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝐴𝑐  −  𝐴𝑠

𝐴𝑐
) × 100  

Ac = absorbance of control 

As = absorbance of the extract 
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2.6.4.3 ABTS∙+ assay 

The ABTS radical cation (ABTS∙+) decolourisation assay is determined the 

antioxidant capacity to scavenge the radical which was performed based on the 

method published by Re et al. (1999).  The bluish green colour of ABTS∙+ solution 

was obtained from the reaction between ABTS and potassium persulfate.  When 

the antioxidant compound is added to the ABTS∙+ solution, the amount of radical 

is reduced, resulting in a variation of the colour which relates indirectly to the 

antioxidant concentration.  Thus, the less colour, the higher scavenging capacity,  

and the higher the amount of antioxidant. This assay is suitable for both 

hydrophilic and  lipophilic antioxidant compounds.  An aliquot of the extract 

solution (20-40 µL, chapter ‎2.6.2) was added to ABTS∙+ solution (2 mL, 

chapter ‎2.5.2), mixed and stood at room temperatures 20-25 °C for 1 min before 

measuring the absorbance at 734 nm.  A range of standards 0-1000 mg/L (0, 50, 

100, 500, 1000 mg/L) were prepared using Trolox in absolute ethanol solution to 

construct a standard curve.  The ability of the extract to decolourise the ABTS∙+ 

was calculated from the standard curve using the following equation and the data 

was expressed as milligrams of Trolox equivalent per gram of dry leaf powder. 

 

𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴 ×  100

𝑤𝑡 × 1000
  

 

A = concentration from standard curve (mg/L) 

wt = mass of leaf  powder in gram 

100 = final volume (mL) of sample solution 

1000 = constant value to change unit into mL 
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2.6.4.4 Potassium ferricyanide reducing power assay 

The potassium ferricyanide reducing power of the extract was determined using 

the method of Jayaprakasha et al. (2001).  The antioxidant reacts with potassium 

ferricyanide to form potassium ferrocyanide and then later reacts with ferric 

trichloride result to form a ferric ferrocyanide complex.  This complex compound 

gives a blue colour with a maximum absorbance at 700 nm.  The increased 

absorbance of the mixtures indicates a higher reducing power of the extract, 

which directly relates to the higher amount or concentration of the antioxidant 

compound.  The extract solution (100 µL, chapter ‎2.6.2) was mixed with 0.2 M 

phosphate buffer solution pH 6.6 (2.5 mL, chapter ‎2.5.17) and 1 % potassium 

ferricyanide (2.5 mL, chapter ‎2.5.19).  The mixture solution was incubated for 20 

min at 50 °C before adding 10 % trichloroacetic acid (2.5 mL, chapter ‎2.5.32), 

followed by centrifuging at 4000 rpm for 10  min.  The supernatant (2.5 mL) was 

added to distilled water (2.5 mL ) and 0.1 % ferric chloride solution (0.5 mL, 

chapter ‎2.5.8).  The absorbance was measured at 700 nm.   

2.7 Methods used for the study of the effect of solvent extraction 

method on total phenol content and antioxidant activity in 

Piper sarmentosum Roxb. leaf extracts 

The PS leaf powder was prepared as described in chapter ‎2.6.1 and extracted 

using 3 different solvents (water, ethanol and petroleum ether).  PS leaf powder 

following petroleum ether extraction was re-extracted using water and ethanol.  

The extract solution was used to determined total polyphenol, total flavonoid 

content, L-ascorbic acid and antioxidant activities.  The experimental scheme is 

shown in Figure ‎2-1. 
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Figure ‎2-1: Experimental scheme of the study of Piper sarmentosum Roxb. leaf extract.   

 

2.7.1 Preparation of the extracts 

2.7.1.1 Petroleum ether extraction 

The conventional soxhlet method (Nielsen, 2010)  was used to extract 

antioxidants from the leaf powder using petroleum ether.  The PS leaf powder  

(1-6 g, chapter ‎2.6.1) was placed into a thimble before placing in the soxhlet 

apparatus.  An oven-dried round bottomed flask was weighed and assembled 

into the soxhlet device.  Petroleum ether spirit 40-60 °C (250 mL) was used as 

extraction medium and extracted at 250 °C for 5 hours.  The spirit was then 

removed, leaving only the petroleum extract residue (PSL) in the container.  The 

container with the extract was dried in an oven 30+2 °C for 1 hour and cooled in 

a dessicator before weighing.  The PSL extract was dissolved with absolute 

ethanol (10-30 mL) and made to volume 100 mL using distilled water for further 
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analysis.  The leaf powder following the extraction (defatted leaf powder, DFPS) 

was used for further water and ethanol extraction. 

2.7.1.2 Water extraction 

PS leaf powder (chapter ‎2.6.1) and DFPS leaf powder (chapter ‎2.7.1) were 

extracted using distilled water by following the antioxidant procedure as 

described in chapter ‎2.6.2.  These extract solutions (PSW and DFPSW) were used 

for further analysis. 

2.7.1.3 Ethanol extraction 

PS and DFPS leaf powder (chapters ‎2.6.1 and ‎2.7.1 respectively) were extracted 

using 20 %, 50 %, 80 % and absolute ethanol by following the antioxidant extraction 

procedure as described in chapter ‎2.6.2.  These extract solutions (PS20%EtOH, 

PS50%EtOH, PS80%EtOH, PSAbEtOH, DFPS20%EtOH, DFPS50%EtOH, DFPS80%EtOH, 

DFPSAbEtOH) were used for further analysis. 

2.7.2 Determination of total phenol content 

The total phenol content of the extract solutions (chapters ‎2.7.1, ‎2.7.1.2 and ‎2.7.1.3) 

were determined using the Folin-Ciocalteu method (Waterhouse, 2005) as described 

in chapter ‎2.6.3. 

2.7.3 Determination of total flavonoid content  

The amount of flavonoids present in the extract solutions (chapters ‎2.7.1, ‎2.7.1.2 

and ‎2.7.1.3) were determined using spectrophotometry as described by Floegel 

et al. (2011).  The extract solution (500 µL) was added to distilled water (3.2 mL), 

followed by 5 % sodium nitrite (150 µL).  The solution was mixed and left for 5 

min before adding 10 % aluminium chloride (150 µL).  The solution was mixed 
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well and stood for 6 min before adding 1 M sodium hydroxide (1 mL).  The 

solution was mixed well and measured at 510 nm using a spectrophotometer.  A 

calibration curve was established using catechin as a standard solution ranging 

from 0-500 mg/L (0, 50, 100, 500 mg/L).  The total flavonoid content was 

calculated using the following equation and expressed as milligram of catechin 

equivalent per gram of leaf powder. 

𝑇𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑣𝑜𝑛𝑜𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑎𝑠 𝑚𝑔 𝑐𝑎𝑡𝑒𝑐ℎ𝑖𝑛 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =  
𝐴 ×  100

𝑤𝑡 ×  1000
   

A = concentration (mg/L) form standard curve 

wt = mass of leaf  powder in gram 

100 = final volume (mL) of sample solution 

1000 = constant value to change unit into mL 

 

2.7.4 Determination of total L-ascorbic acid content 

2.7.1.1 Spectrophotometric assay 

L-Ascorbic acid content in PS leaf powder (chapter ‎2.6.1) and PS extract solutions 

(chapters ‎2.7.1 to ‎2.7.1.3) were determined by spectrophotometer according to 

Chanwitheesuk et al. (2005) with slight modification.  The ammonium molybdate 

solution forms a complex with ascorbic acid where present.  L -ascorbic acid content 

can be determined by measuring the molybdate blue complex at 760 nm using a 

calibration graph of standard ascorbic acid.  PS leaf powder (0.5 g) or PS extract 

solutions (2 mL) were analysed by adding oxalic acid-EDTA solution (10 mL, 

chapter ‎2.5.16) and sonicating for 10 min at room temperatures 20-25 °C.  The 

upper layer of the sample solution was filtered through a filter paper no.1 and the 

residue was re-extracted twice with oxalic acid-EDTA solution (5 mL).  An aliquot 

of filtrated upper layer (2.5 mL) was transferred into a 25 mL volumetric flask.  
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The reagents, oxalic acid-EDTA solution (2.5 mL), metaphosphoric acid-acetic 

acid solution (0.5 mL, chapter ‎2.52.5.13), sulphuric acid solution (0.1 mL, 

chapter ‎2.5.30) and ammonium molybdate (2 mL, chapter ‎2.5.3) were added.  

The volume was then made up to 25 mL with distilled water, mixed and stood for 

15 min before the absorbance was measured at 760 nm.  A range of standards (0, 

10, 50, 100, 200 mg/L) were prepared using L-ascorbic acid to construct a 

standard curve of absorbance against concentration.  The L-ascorbic acid content 

was calculated using the following equation. 

𝐿 − 𝑎𝑠𝑐𝑜𝑟𝑏𝑖𝑐 𝑎𝑐𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑚𝑔 𝑔)⁄ =
𝐴 × 𝑑𝑓

1000 × 𝑤𝑡
   

A = concentration from calibration curve, mg/L 

df = dilution factor 

wt = mass of leaf powder, g 

1000 = constant value to change unit into mL 

 

2.7.1.2 HPLC assay 

The HPLC technique was used to determine L-ascorbic acid due to its high 

sensitivity, selectivity and reliability.  The L-ascorbic acid present in PS leaf and 

the extract can be identified by comparing retention times with standard L-

ascorbic acid.  L-Ascorbic acid content in PS leaf powder (chapter ‎2.6.1), PS 

extract solutions (chapter ‎2.7.1 to ‎2.7.1.3) were determined using high 

performance liquid chromatography (HPLC) according to the method of Scherer 

et al. (2012) with slight modification.  PS leaf powder (0.5+0.0001 g) and PS 

extract solutions (2 mL) were treated with 6 % metaphosphoric acid (5 mL) and 

sonicated for 5 min.  The mixtures were centrifuged at 4000 rpm for 5 min and 

the supernatant was filtered through a filter paper no.1.  The residue was re-

extracted twice with the same procedure.  The filtrate was made to volume 25 mL 
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using 6 % metaphosphoric acid before filtering through a 0.45 µm PVDF filter 

membrane.  To determine the ascorbic acid present in the samples, 20 µL of the 

samples were injected into HPLC-PDA system, the UFLCXR (chapter ‎2.3).  A 

reversed phase (C18) column (100 x 4.6 mm., 2.2 µm) was used.  The analytical 

conditions were isocratic elution with mobile phase 0.01 M potassium 

dihydrogen phosphate buffer solution pH 2.6, flow rate 0.5 mL/min, column 

temperatures 45 °C, PDA diode array UV detector at 250 nm and a cycle time 15 

min.  A range of standards (0, 10, 50, 100, 200 mg/L) were prepared using L-

ascorbic acid to construct a standard curve of absorbance against concentration.  

The L-ascorbic acid content was calculated using the same equation as displayed in 

spectrophotometric method (chapter ‎2.7.1.1). 

2.7.5 Determination of antioxidant activities 

2.7.5.1 Ferric reducing antioxidant power (FRAP) assay 

PSL extract solution (chapter ‎2.7.1.1), water extract solutions (‎2.7.1.2) and 

ethanol extract solution (chapter ‎2.7.1.3), were used to determine the antioxidant 

capacity using FRAP assay (chapter ‎2.6.4.1). 

2.7.5.2 DPPH radical scavenging assay  

PSL extract solution (chapter ‎2.7.1.1), water extract solution (chapter ‎2.7.1.2) 

and ethanol extract solution (chapter ‎2.7.1.3), were used to determine the 

inhibition capacity using DPPH assay (chapter ‎2.6.4.2). 
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2.7.5.3 ABTS∙+ assay 

PSL extract solution (‎2.7.1.1), water extract solution (chapter ‎2.7.1.2) and 

ethanol extract solution (‎2.7.1.3), were used to determine the antioxidant 

capacity using ABTS∙+ assay (chapter  ‎2.6.4.3). 

2.7.5.4 Reducing power assay 

PSL extract solution (chapter ‎2.7.1.1), water extract solution (chapter ‎2.7.1.2) 

and ethanol extract solution (chapter ‎2.7.1.3), were used to determine the 

antioxidant capacity using reducing power assay as described in chapter ‎0. 

2.7.5.5 Linoleic lipid peroxidation inhibition assay or ferric thiocyanate 

method 

This assay was performed according to Anesini et al. (2008) and Jayaprakasha et 

al. (2001).  Any peroxides occurring from linoleic acid oxidation will react with 

ferrous chloride and ammonium thiocynate solution to form a complex that can 

be measured by spectrophotometry at 500 nm.  This step was repeated every 24 

hours until the control (phosphate buffer plus linoleic acid) reached its maximum 

absorbance value.  High absorbance values indicate high levels of linoleic acid 

oxidation, and the lower inhibition capacity of the antioxidant.  Therefore, the 

less intense the colour or the lower absorbance, the higher the inhibition capacity 

and the higher concentration of the antioxidant.  The extract solution (500 mL, 

chapters ‎2.6.2 to ‎2.7.1.3) was mixed with 0.2 M phosphate buffer pH 7.0 (2.5 mL, 

chapter ‎2.5.18) and  linoleic acid emulsion (2.5 mL, chapter ‎2.5.12).  Following 

mixing, the mixtures solution was incubated at 37 °C for 120 hours.  The incubated 

mixtures solution (100 µL) was sampled at 24 hours intervals.  75 % ethanol (5 

mL), 30 % ammonium thiocyanate solution (0.1 mL, chapter ‎2.5.4) and 20 mM 
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ferrous chloride in 3.5 % HCl (0.1 mL, chapter ‎2.5.9) were added and mixed well 

and incubated at room temperatures 20-25 °C for 3 min before measuring the 

absorbance at 500 nm.  The control was performed by the same procedure 

without adding the extract solution.  The percentage inhibition of lipid peroxidation 

of linoleic acid was calculated by following equation. 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑 𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ( %)  = 100 − ( 
𝐴𝑠

𝐴𝑐
  × 100)  

As = absorbance of the extract 

Ac = absorbance of the control 

2.8 Methods used for the study of the effect of decolourisation 

on total phenol content and antioxidant activity of the PSE 

extract 

2.8.1 Decolourisation  

The PS leaf powder (chapter ‎2.6.1) was extracted using 80 % ethanol by following 

the extraction procedure in chapter ‎2.7.1.3.  The extract solution (20 mL) was mixed 

with activated charcoal (0.1 g or 0.5 % w/v, 0.2 g or 1 % w/v, 0.4 g, 2 % w/v).  The 

mixture was stirred for 10 min at room temperatures 20-25 °C prior to centrifuge 

at 4000 rpm for 10 min.  The supernatant was filtered through a filter paper no.1 

and a 0.45 µm filter membrane PTFE respectively.  The filtrated extract solution 

was used for further analysis.  To determine the efficiency of the extraction 

method,  gallic acid (50 + 0.0001 mg) was added to PS dried leaf powder 

(chapter ‎2.6.1) prior to extraction using 80 % ethanol as described in chapter ‎2.6.4.2.  

The extract solution was decolourised using activated charcoal following the 

procedure as explained above.  The spiked treated extract solution was used for 
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further analysis.  The control was prepared the same procedure without treating 

with activated charcoal and no spiking.  

2.8.2 Determination of total phenol content, antioxidant activity and 

efficiency of extraction model 

The filtrated extract solution (chapter ‎2.8.1) was used to analyse total phenol 

content and antioxidant capacity using FRAP assay as described in chapter ‎2.6.3 

and ‎2.6.4.1 respectively.  The extract solution with spiked was analysed total 

phenol content and calculated percentage of recovery by the following equation. 

 % 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝐴 − 𝐵 

𝐶 
× 100 

A = amount of total phenol as gallic acid in the extract solution with spiked 

B = amount of total phenol as gallic acid in the extract solution without 

       spiked 

C = amount of gallic acid added 

 

2.9 Methods used for the study of polyphenol profile of Piper 

sarmentosum Roxb. leaf extract 

2.9.1 Preparation of PS and DFPS extracts  

The PS and DFPS extract solutions were prepared using 80 % ethanol following 

the method in chapter ‎2.7.1.3.  These solutions were filtered through a filter 

membrane 0.22 µm PVDF (nylon) prior to injection into an ultra-high performance 

liquid chromatograph mass spectrometer (UHPLC-ESI-MS), the NexeraTM (chapter ‎2.3). 
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2.9.2 Preparation of PSL extract 

The PSL extract was prepared using petroleum ether for extraction (chapter ‎2.7.1.1).  

To extract polyphenol present in PSL extract, the methods of Saad et al. (2007) 

and Perrin and Meyer (2003) were used.  Hexane (5 mL) and acetonitrile (3 mL) 

were added to the PSL extract and mixed for 1 min followed by centrifugation at 

4000 rpm for 10 min.  The acetonitrile layer was collected.  The hexane layer was 

re-extracted twice with acetonitrile (3 mL).  The acetonitrile layers were filtered 

through a filter membrane 0.22 µm PVDF (nylon) prior to injection into the 

NexeraTM. 

2.9.3 Identification of phenol compounds  

The component compounds present in the extracts had very close retention 

times, so it was difficult to identify those compounds.  Each polyphenol has a 

specific mass-to-charge ratio and therefore using this it is possible to determine 

the polyphenols.  Thus, mass spectrometry was considered due to its high 

sensitivity and the detection based on mass-to-charge ratios of the molecule.  An 

LC-MS, the NexeraTM (Shimadzu, chapter ‎2.3) operation system was used for 

identifying compounds present in the extract by comparing retention times and 

mass-to-charge ratios (m/z) with standard phenols.  A reversed phase column 

(C18), 5 µm particle size, 4.6 mm x 25 cm; Phenomenex®, was used.  Solvents for 

the mobile phase were  0.1 % formic acid in water (mobile phase A) and 0.1 % 

formic acid in acetonitrile (mobile phase B).  The injection volume was 10 µL 

with flow rate 0.5 mL/min of binary gradient mobile phase.  Elution conditions 

were applied as following: the starting mobile phase condition was 10 % B, held 

isocratic for 2 min.  Accordingly, solvent B was increased to 25 % (2-12 min) and 

then to 100 % B (linear gradient 12-32 min).  The conditions were held at 100 % 
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B for 2 min (isocratic 32-35 min) prior to returning to 10 % B (linear gradient 

35-38 min) with a final isocratic run to 10 % B from 38-45 min for reconditioning the 

column.  The column oven was set at 25 °C.  The operation was carried out at 

room temperatures 20-25 °C.  The total analysis time was 45.01 min.  Phenol 

compounds were measured at 275, 280, 320 and 360 nm.  A single quadrupole mass 

spectrometer with atmospheric pressure ionization probe (ESI) was used.  The 

liquid sample was sprayed and ionized under atmospheric pressure by the probe.  

The ions were separated in accordance with their mass-to-charge ratio (m/z) by 

a quadrupole mass filter and were detected by mass spectrophotometer.  The 

detected ion signals were amplified and then processed by the LCMS solution 

data processing software (Shimadzu Corporation, 2008).  The mass spectral data 

were acquired using SIM negative mode.  Ionisation was performed using nitrogen as 

nebulizer with gas flow at 1.5 litre/min and drying gas (15 litre/min).  The 

compounds were identified by comparing the retention time and m/z with 26 

standards.   

2.9.4 Quantification of phenol compounds  

A series of standard curves (5, 10, 25, 50, 75, 100 mg/L) were constructed to 

quantify the amount of identified compounds (chapter ‎2.9.3).  The extract 

solutions (10 µL, chapters ‎2.9.1 and ‎2.9.2), were injected into HPLC-PDA system, 

the UFLCXR (chapter ‎2.3).  The amount of the identified compound was measured  

using the same condition as in chapter ‎2.9.3 at its specific wavelength which gave 

the highest absorbance.  The amount of phenol compound presence in the PSE, 

DFPSE and PSL were calculated using the following equation. 

𝑚𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑  100 𝑔⁄  =   
𝐴 × 𝑑𝑓

𝑤𝑡
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A = concentration (mg/L) from standard curve 

df = dilution factor = 10 for ethanol extract, = 1.2 for petroleum ether extract 

wt = mass of leaf  powder, g 

 

2.10  Methods used for the study of the effect of repeated frying 

on the physical and chemical characteristics of the oils   

2.10.1 Materials  

Morrisons® vegetable oil (chapter ‎2.2.1), pre-fried French fries (McCain® and 

Morrisons®, chapter ‎2.2 ) and electrical deep fat fryer (4 L, chapter ‎2.3) were used for 

this preliminary frying. 

2.10.2 Frying procedure 

A batch of French fries (100 g) was fried in oil (3 L) at 190 0C, 3 min for McCain® 

French fries and 3.5 min for Morrisons® French fries.  The frying process was 

continuously conducted for six days frying, ten batches a day.  After frying 10 

batches, the fryers were turned off and the oil was left to cool down.  The oil  

(50 mL) was sampled, filtered through cotton wool for each day.  The heated oil 

samples were kept in tight container at 20-25 0C for further analysis. 

2.10.3 Analysis of physical changes in oils 

2.10.3.1 Determination of colour changes 

The changes in colours of the heated oils were measured the absorbance at 460, 

550, 620 and 670 nm using the photometric method based on AOCS Cc 13c-50 

(AOCS, 1998d).  The heated oil (1 mL, chapter ‎2.10.2) was placed into a cuvette 

(chapter ‎2.4) and the absorbance measured at 4 different wavelengths (460, 550, 



76 
 

620 and 670 nm).  The photometric colour of the heated oil was calculated by the 

following equation. 

𝑃ℎ𝑜𝑡𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑙𝑜𝑢𝑟 =  1.29 𝐴460 +  69.7 𝐴550 + 41.2 𝐴620 − 56.4 𝐴670 

A = absorbance at specified wavelength 

Wavelengths between 400-700 nm are in the visible light wavelength and are 

associated with colour from violet to red (Loughrey, 2005).  The four 

wavelengths at 460, 550, 620 and 670 nm reflect the light in the violet-blue, 

green-yellow, orange and red region respectively (McNicholas, 1935).  In addition, 

these wavelengths are also responsible for pigment measurements for example,  

the wavelength between 400 and 500 nm are used for carotenoids pigments 

(Rodriguez, 2005).  Flavonoids/carotenoids are normally measured at 510-550 

nm which are suitable for yellow, red to brown colour (Floegel et al., 2011; AOCS, 

1998d).  The wavelength between 490 to 580 nm are used for measuring 

anthocyanin pigment (red to purple to blue colour) which varies depending on 

pH of the pigment solution (Zhao and Yu, 2010; Giusti and Wrolstad, 2005) and 

600 to 670 nm are used for chlorophyll pigments (Pokorny et al., 1995; Pohle and 

Tierney, 1957; McNicholas, 1935).  Within the plant kingdom, the most abundant 

pigments are the lipid soluble chlorophylls and carotenoids.  The carotenoids 

pigments are often covered by green chlorophyll pigments.  Anthocyanins are 

water soluble pigments in the flavonoid group which give blue, purple, red and 

orange colours of many plants and fruits.  All these pigments are found in all 

higher plants due to their functions of photosynthesis and photoprotection.  

These pigments, their derivatives or their formation of pigment decomposition 

products contribute to food colour (Schwartz, 2005).  Therefore, the colour of oil 
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is also influenced by pigments responding to these wavelength.  The colour or 

pigments contained in the oil may be obtained from fried food or natural 

pigments such as carotenoids in crude palm oil (dark orange-red colour), 

chlorophyll and carotenoid in olive oil (Moyano et al., 2010; Man et al., 1996; Tan 

et al., 1985).  The above equation using four measurements was found to give a 

strong correlation of 0.993 with the Lovibond method.  Therefore, this 

photometric method has been adopted to replace the Lovibond method (AOCS, 

1950). 

2.10.3.2 Determination of smoke point 

The smoke point is the temperature that the oil begins to breakdown to glycerol 

and free fatty acids and is marked as the beginning of flavour and nutritional 

degradation (Bockisch, 1998).  To investigate changes of the smoke point of each 

oil sample, the sample was analysed by following the AOCS Cc 9a-48 method 

(AOCS, 1998c).  The oil (2 mL, chapter ‎2.10.2) was placed into a stainless plate (7 

cm diameter) and heated.  The smoke point temperature was recorded when the 

heating oil gave off a thin, continuous stream of smoke. 

2.10.3.3 Determination of viscosity 

The viscosity of the samples was determined using a rhemometer (chapter ‎2.3) 

to evaluate the impact of thermal degradation.  The oil (6+0.4 mL, chapter ‎2.10.2) 

was loaded into the cylindrical controlling cartridge before measuring the 

viscosity at room temperatures 20-25 °C using shear rate (1 s-1).  The viscosity is 

expressed in terms of poise (η). 
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2.10.4 Analysis of chemical changes in oils 

2.10.4.1 Determination of acid value and free fatty acid value 

Exposing oil to prolonged high temperatures causes the triglyceride and diglyceride 

present to be converted to fatty acids and glycerol by a hydrolysis reaction 

resulting in the rancidity of the oils.  This rancidity is measured by the acid value.  

The acid value was measured using the AOCS Cd 3a-63  (AOCS, 1998a).  The acid 

value is represented by the number of mg of potassium hydroxide (KOH) to 

neutralize the free acids in 1 g of sample.  The oil (0.0800 – 0.5000 g, chapter ‎2.10.2) 

was dissolved in mixed solvent (125 mL, chapter ‎2.5.15).  Phenol phthalein 

indicator (2 mL) was added before titrating with standardised 0.1 N potassium 

hydroxide (chapter ‎2.5.20).  The end point was determined by a fuchsia colour 

which persist for at least 15 sec.  The acid value is expressed as mg KOH/g of oil 

and also can be expressed in terms of free fatty acid as a percentage of oleic acid 

by dividing the acid value by 1.99 as shown in following equations. 

𝐴𝑐𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑠 𝑚𝑔 𝐾𝑂𝐻 𝑔. 𝑜𝑓 𝑜𝑖𝑙 ⁄  =  
𝑚𝐿 𝐾𝑂𝐻 × 𝑁 × 56.1

𝑤
   

𝐹𝑟𝑒𝑒 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑 𝑎𝑠  % 𝑜𝑙𝑒𝑖𝑐 =  
𝐴𝑐𝑖𝑑 𝑣𝑎𝑙𝑢𝑒

1.99
  

 

N = normality of standardised KOH 

w = weight of sample in g 

56.1 = molecule weight of KOH 

1.99 = conversion factor 

2.10.4.2 Determination of peroxide value (Iodometric method) 

Hydroperoxide, one of the primary products from the initial stage of lipid 

oxidation, can be determined using the iodometric method and colourimetric 
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methods.  The iodometric method is based on the measurement of the iodine 

liberated from excess potassium iodide by the peroxides present in the oil.  The 

results are expressed as milliequivalents of active oxygen per kilogram of oil 

(meq/kg).  This method was performed as described by AOCS-Cd 8-53 (AOCS, 

1998b).  The oil (2.50 + 0.05 g, chapter ‎2.10.2) was dissolved with a mixed 

solvent (15 mL, chapter ‎2.5.14).  Saturated potassium iodide (250 µL, chapter ‎2.5.23) 

was added and continuous shaking for 1 min.  Distilled water (15 mL) was added 

to the solution followed by titrating with standardised 0.1 N sodium thiosulphate 

(chapter ‎2.5.26) until a pale yellowish colour was achieved.  The starch indicator 

solution (250 µL, chapter ‎2.5.22) was added (the solution turned to blue colour), 

the titration continued until the endpoint was reached (the blue colour disappeared).  

The peroxide value can be calculated using the following equation. 

𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑠 𝑚𝑒𝑞 𝑜𝑥𝑦𝑔𝑒𝑛 𝑘𝑔 𝑜𝑖𝑙⁄ =
(𝑆 − 𝐵) × 𝑁 × 1000

𝑊
  

S = mL of sodium thiosulfate used in titrating sample 

B  = mL of sodium thiosulfate used in titrating blank 

N = normality of standardised sodium thiosulfate 

W = weight of sample (oil), g 

1000 = conversion unit to kg 

 

2.10.4.3 Determination of the 2-thiobarbituric acid value (TBA) 

Hydroperoxides, products from primary oxidation stage, break down into 

secondary products and produce an odour associated with rancidity (Pegg, 

2005b).  Monitoring the changes of secondary lipid oxidation of fats and oil, can 

be performed directly by measuring the TBA value based on IUPAC 2.531 (IUPAC, 

1987b) or AOCS Cd 19-90 (AOCS, 1998e).  Increasing TBA values indicate that lipid 

oxidation is proceeding (Pegg, 2005b).  The TBA value is defined as the increase 
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of absorbance measured at 532 nm due to the reaction of the equivalent of 

sample (1 mg) per 2-thiobarbituric acid (1 mL) (Pokorny and Dieffenbacher, 

1989).  The oil (50-200 + 0.1 mg, chapter ‎2.10.2) was dissolved in 1-butanol to 

make volume to 25 mL.  The oil solution (5 mL) was taken to a screw cap test 

tube.  0.2 % TBA in 1-butanol (5 mL) was added and mixed well before heating in 

a water bath 95 °C for 2 hours.  After cooling down (within 10 min), the absorbance  

of the test solution was measured at 532 nm.  The TBA value was calculated using 

the following equation. 

𝑇𝐵𝐴 𝑣𝑎𝑙𝑢𝑒 =  (50 × 𝐴532) 𝑚⁄  

50  = dilution factor 

A532 = the absorbance of the test solution 

m = mass of the test sample, mg 

 

2.10.4.4 Determination of 2-thiobarbituric acid reactive substance 

 (TBARS) 

Malonaldehyde, the important product from the secondary stage of lipid 

oxidation was determined by following the method as described by Pegg 

(2005b).  Two molecules of TBA react with one molecule of malonaldehyde 

forming TBA-MA complex which produces a red pigment with a maximum 

absorbance at 532 nm.  The reaction is shown in Figure ‎2-2.  The oil (50-200 + 

0.1 mg, chapter ‎2.10.2) was analysed using the TBA procedure (chapter ‎2.10.4.3).  

The absorbance was measured at 532 nm against the standard curve.  A range of 

standards (0-1.0 mmol/L) were prepared using TMP (chapter ‎2.1) standard 

solution.  The TBARS values expressed as malonaldehyde were calculated using 

the following equation. 
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𝑇𝐵𝐴𝑅𝑆 𝑣𝑎𝑙𝑢𝑒 𝑎𝑠 𝑚𝑚𝑜𝑙 𝑀𝑎𝑙𝑜𝑛𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 𝑒𝑞 𝑔⁄  𝑜𝑖𝑙 =  
 𝐴 × 5 

𝑤𝑡
  

A = amount from standard curve, mmol 

wt = oil mass in g 

5 = mL of oil solution 

 

 

 

  Figure ‎2-2: Reaction of 2-thiobarbituric acid (TBA) and  malonaldehyde (MA) in TBA test, 

adapted from Pegg (2005b) 

 

2.10.4.5 Determination of ρ-Anisidine value 

The ρ-Anisidine value is another method to monitor the secondary stage of lipid 

oxidation.  It measures the content of important aldehydes, principally,  

2-alkenals and 2,4-alkadienals (Shahidi, 2005a; Rossell, 2001a).  The reaction of 

ρ-Anisidine with aldehyde is shown in Figure ‎2-3.  Malonaldehyde in an oil reacts 

with ρ-Anisidine under acidic condition and produces a yellowish product which 

absorb at 350 nm.   According to IUPAC 2.504 (IUPAC, 1987c) and Steele (2004), 

ρ-Anisidine is defined as the absorbance of a solution resulting from the reaction 

of  fat (1 g) in isooctane solution (100 mL) with ρ-Anisidine (0.25 % in glacial 

acetic acid).  To analyse ρ-Anisidine, the oil sample (0.5 + 0.0001 g, chapter ‎2.10.2) 

was dissolved in isooctane (25 mL).  The oil solution (5 mL) with added 0.25 %  

ρ-Anisidine reagent (1 mL, chapter ‎2.5.5) was mixed well and stored in the dark 

for exactly 10 min before measuring the absorbance at 350 nm.  The blank 

solution was prepared using isooctane (5 mL) instead of oil solution and treated 
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with the same procedure.  The ρ-Anisidine value can be calculated from the 

following equation. 

𝜌 − Anisidine value =  
25 × (1.2𝐴𝑠  −  𝐴𝑏)

𝑚
  

As = absorbance of the sample 

Ab = absorbance of the blank 

m = weight of the sample, g 

25 = dilution factor  

 

 

Figure ‎2-3: Reaction of ρ-Anisidine reagent with aldehyde to form a coloured product, adapted 

from Steele (2004) 

 

2.10.4.6 Determination of total oxidation value (Totox value) 

Totox value or oxidation value is a measurement of total oxidation including 

primary and secondary products, thus this value can be used for assessment of 

oxidation of oils (Fennema, 2008).  The Totox value is derived from combining 

the ρ-Anisidine value with peroxide value.  The value can be calculated using the 

following equation (Fennema, 2008; Shahidi and Wanasundara, 2008).   

𝑇𝑜𝑡𝑜𝑥 𝑣𝑎𝑙𝑢𝑒 = 2𝑃𝑉 + 𝜌𝐴𝑛𝑉  

PV = peroxide value 

𝜌𝐴𝑛𝑉 = ρ-Anisidine value 
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2.10.4.7 Determination of total polar compounds  

The total amount of new compounds formed during the early stages of 

degradation and polymerisation reactions of oil, can be determined as total polar 

compounds.  The analysis was performed based on adsorption chromatography 

using a silica column to separate the oil into non-polar and polar compounds 

(IUPAC, 1987a) with slight modifications using silica cartridges for solid-phase 

extraction (Marmesat et al., 2007).  The silica cartridges were activated 

(preconditioned) using elution solvent (5 mL, chapter ‎2.5.7) before using.  The oil 

(50-100 + 0.1 mg, chapter ‎2.10.2) was dissolved with elution solvent (2 mL) and 

loaded into the preconditioned cartridge.  The flow rate was adjusted to 0.5 

mL/sec.  The non-polar compound fraction was eluted with elution solvent (3 

mL) and collected in an oven dried test tube (103+2 °C).   The solvent was 

removed using the water bath at 60 °C, dried at 103+2 °C and cooled down before 

weighing.  The total polar compounds was calculated using the following 

equation. 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 (%)  =  
𝑚 − 𝑚1

𝑚
 × 100  

m = sample mass, g 

m1 = non-polar fraction, g   
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2.11 Methods used for the study of the oxidative stability of 

stripped and unstripped palm olein oil in the presence of  

Piper sarmentosum Roxb. leaf extract 

2.11.1 Preparation of the PSE extract 

The crude PSE extract was prepared by extracting PS powder (chapter ‎2.6.1) 

with  80 % ethanol using the same procedure in chapter ‎2.6.2.  The solvent was 

removed from the filtrated extract solution using a Genevac.  The residue or the 

crude PS extract (PSE) was used for further experiments. 

2.11.2 Experimental procedure 

The stripped oil was prepared by following the method of Atares et al. (2012).  

The stability of stripped oil in the presence of antioxidants was tested under 

accelerated temperatures following the method of Zhong and Shahidi (2012).  

The aluminium oxide was activated by drying at 200 °C for 5 hours before 

packing in a stainless steel column.  The palm olein oil, Oleen® (chapter ‎2.2.1) 

was loaded into the column and passed through the aluminium oxide assisted by 

vacuum force to prepare stripped oil.  The PSE extract from ‎2.11.1 (0 g, 0.02 g, 

0.05 g, 0.1 g) was dissolved in the stripped oil (100 mL) to make concentrations  

0 %, 0.02 %, 0.05 % and 0.1 % w/v respectively.  These oils were incubated in 

the hot air oven at 60+2 °C for 120 hours and were sampled every 24 hours for 

further analysis.  A set of control samples were prepared using unstripped oil 

instead and following the same procedure as the stripped oil. 

 

 



85 
 

2.11.3 Determination of ρ-Anisidine value  

Oxidative stability of the stripped and unstripped Oleen® oil, in the presence of 

PS crude extract (PSE, chapter ‎2.11.1) were measured for the ρ-Anisidine value 

(chapter ‎2.10.4.5). 

2.12 Methods used for the study of identification of synthetic 

antioxidants in cooking oils 

2.12.1 Extraction of synthetic antioxidants from cooking oils 

The variety of cooking oils: corn oil, rice bran oil, rapeseed oil and palm olein oil 

(Sainsbury’s®, Yors®, King®, Yorkshire®, Oleen® and Alfa 1®, chapter ‎2.22.2.1) 

were extracted to analyse synthetic antioxidants.  The synthetic antioxidants 

were extracted from these oils following the methods of Saad et al. (2007) and 

Perrin and Meyer (2003).  The oil  (0.5+0.0001 g) was dissolved in hexane (5 

mL).  Acetonitrile (3 mL) was added and mixed for 1 min followed by 

centrifugation at 4000 rpm for 10 min.  The acetonitrile layer was collected.  The 

hexane layer was re-extracted twice with acetonitrile (3 mL).  The acetonitrile 

layers were pooled together and filtered through a 0.45 µm PVDF (nylon) filter 

membrane prior to injection into the HPLC system.  Another set of oils, Oleen® 

and Alfa 1®, were passed through activated aluminium oxide chapter ‎2.112.11.2) 

followed by the same extraction.  The synthetic antioxidant free oils (unstripped) 

were used as control samples and were prepared using the same procedure as 

the stripped oils. 
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2.12.2 Identification of synthetic antioxidants from cooking oils 

The UFLCXR (HPLC-PDA system, chapter ‎2.3) operation system was used for 

identifying synthetic antioxidants presence in cooking oil by comparing retention 

times with standard synthetic antioxidants: BHA, BHT and TBHQ (chapter ‎2.5.29).  

The analytical conditions were trialled and the final optimised method (8th trial 

conditions) was used.  The samples (10 µL, chapter ‎2.12.1) were injected into the 

UFLCXR.  The analytical conditions were used a reversed phase column (C18),  

5 µm, 4.6 mm x 25 cm, Phenomenex®.  Mobile phase A was 1 % acetic acid in 

water and mobile phase B was acetonitrile.  The flow rate was 0.8 mL/min of 

binary gradient mobile phase A (10 %) to mobile phase B (90 %).  The injection 

volume was 20 µL, column oven was set at 45 °C, PDA diode array UV detector at 

280 nm and the cycle time was 20 min.   

2.13  Methods used for the study of antioxidant activity of  

Piper sarmentosum Roxb. leaf extract in rice bran oil and 

corn oil at mild temperature 

2.13.1 Preparation of PS extract and oils 

The PSE and PSL extracts were used for this study.  The PSE extract was prepared 

by extracting PS powder (chapter ‎2.6.1) with  80 % ethanol using the same 

procedure in chapter ‎2.6.2.  The PSL extract was prepared using the same 

procedure in chapter ‎2.92.9.2.  The PSL extract residue (after removing solvent) 

was weighed and ready to use.  King® Rice bran oil and Sainsbury’s® corn oil 

(synthetic antioxidants free, chapter ‎2.122.12.2) were used.   
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2.13.2 Schaal oven tests  

The oxidative stability of the oils with added PSE and PSL extracts, were carried 

out by following the method of Zhong and Shahidi (2012).  PSE and PSL extracts 

(chapter ‎2.13.1, 0.005 g, 0.01 g, 0.025 g, 0.05 g and 0.1 g) were mixed in rice bran 

oil (50 mL, chapter ‎2.13.1) and corn oil (50 mL, chapter ‎2.13.1) to make 

concentrations of 0.01 %, 0.02 %, 0.05 %, 0.1 % and 0.2 % w/v respectively.  The 

control oils were prepared using BHT (0.1 g or 0.02 % w/v) as a positive control 

and the oils without adding antioxidants as a negative control.  These oils were 

incubated in oven at 60+3 °C for 120 hours and were sampled every 24 hours. 

These samples were then analysed to determine the peroxide value, TBA value, ρ-

Anisidine value, and Totox value (chapters ‎2.10.4.2, ‎2.10.4.3, ‎2.10.4.5 and ‎2.10.4.6 

respectively). 

2.14  Method used for the study of the performance of  

Piper sarmentosum Roxb. leaf extract on quality changes in 

rice bran oil and corn oil at frying temperatures 

2.14.1 Preparation of PS extract and oils 

The PSE extract used in this study was prepared by extracting PS powder 

(chapter ‎2.6.1) with  80 % ethanol using the same procedure in chapter ‎2.6.2.    

The PSL extract was prepared using the same procedure in chapter ‎2.92.9.2.  The 

PSL extract residue (after removing solvent) was weighed and ready to use.  

King® Rice bran oil and Sainsbury’s® corn oil (synthetic antioxidants free, 

chapter ‎2.122.12.2) were used.   
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2.14.2 Frying procedure  

PSE and PSL extracts (0.5 g, 1 g and 2 g, chapter ‎2.14.1) were dissolved in rice 

bran oil (1000 mL, chapter ‎2.13.1) and corn oil (1000 mL, chapter ‎2.13.1) to 

make concentrations of 0.05 %, 0.1 % and 0.2 % w/v respectively.  The control 

oils were prepared using BHT (0.1 g or 0.02 % w/v) as a positive control and the 

oils without antioxidants added were the negative control.  These oils were 

consecutively heated in a thermostatic fryer (chapter ‎2.3) at 180 °C for 5 days, 5 

hours a day and were sampled every day.  Only the oil samples at 0, 5, 15 and 25 

heated hours were used for further analysis. 

2.14.3 Analysis of changes in oils at frying temperature 

The heated oils were analysed to monitor the chemical and physical changes 

using the acid value, peroxide value, 2-thiobarbituric reactive (TBAR) substance 

as malonaldehyde, total polar compounds and photometric colour 

(chapters ‎2.10.4.1, ‎2.10, ‎2.10.4.4, ‎2.10.4.7 and ‎2.10.3.1 respectively). 

2.15   Statistical analysis 

All experiments were done in triplicate analysis.  The data was reported as an 

average value with standard error (Mean+SE).  IBM SPSS statistics software 

version 22 was used for statistical testing. 
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2.15.1 Statistics used for the study of initial investigation of the total 

phenol content and antioxidant activities of Piper 

sarmentosum Roxb. and Pandanus amaryllifolius Roxb. leaf 

extract 

PD extract, PS extract, 80 % ethanol and absolute ethanol were considered as 

independent factors that may have an effect on total phenol content and 

antioxidant activity of the 4 assays (FRAP, ABTS·+, DPPH and reducing power 

assay). The data met assumption requirements (normality and equality of 

variance) by the Shapiro-Wilk test and homogeneity test respectively.  

Multivariate Analysis of Variance (MANOVA) was employed to analyse these 

multiple effects and the Tukey’ s test was used for testing the difference between 

the groups at 95 % confidence (George, 2011a).  The association between total 

phenol content and antioxidant capacity from each assay, was explored by 

Pearson Product-Moment correlation Coefficient (Wiredu, 2012; George, 2011b). 

2.15.2 Statistic used for the study of effect of solvent extraction 

method on total phenol content and antioxidant properties in 

Piper sarmentosum Roxb. leaf extract 

PS leaf powder, DFPS leaf, extraction solvents (water, 20 %, 50 %, 80 %, absolute 

ethanol and petroleum ether) were considered as independent factors which 

may have an effect on total phenol content and antioxidant activity from the 5 

assays (FRAP, ABTS·+, DPPH , reducing power and linoleic lipid peroxidation 

assay).  The data met assumption requirements (normality and  equality of 

variance) by the Shapiro-Wilk test and homogeneity test respectively.  

Multivariate Analysis of Variance (MANOVA) was used to analyse the effect of 
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these multiple factors and the Tukey’s test was used for testing the significant 

different between groups (George, 2011a).   

2.15.3 Statistic used for the study of the effect of decolourisation on 

total phenol content and antioxidant activity of the PSE extract  

The amount of activated charcoal (0 %, 0.05 %, 0.1 % and 0.2 % w/v) was 

considered as an independent factor that may have an effect on total phenol 

content and antioxidant capacity (FRAP assay) of the PSE extract.  The data met 

assumption requirements (normality and  equality of variance) by the Shapiro-

Wilk test and homogeneity test respectively.  An one-way ANOVA was used to 

analyse the effect of decolourisation process and the Tukey’s test was used for 

testing the difference between the groups at 95 % confidence (George, 2011a). 

2.15.4 Statistic used for quantification of the compounds present in 

Piper sarmentosum Roxb. leaf extract  

A Tukey’s test was used for testing the difference amounts of identified 

compound contained among the extracts (PSE, DFPSE and PSL) at 95 % 

confidence (George, 2011a). 

2.15.5 Statistic used for the study of oxidative stability of stripped 

and unstripped palm olein oil in the presence of Piper 

sarmentosum Roxb. leaf extract 

Three independent variables: stripped and unstripped oils, concentrations of the 

PS extract (0.01 %, 0.02 %, 0.05 %, 0.1 % and 0.2 % w/v) and sampling time 

(every 24 hours for 5 days), may have an effect on the changes of ρ-Anisidine 

value of the oil.  The data met assumption requirements (normality and equality 
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of variance) by the Shapiro-Wilk test and homogeneity test respectively.  

Factorial Repeated Measures ANOVA was used to analyse the effect of these 

multiple factors and a Tukey’s test was used to test the difference between the 

groups at 95 % confidence (George, 2011a) 

2.15.6 Statistic used for the study of the performance of the Piper 

sarmentosum Roxb. leaf extract on quality changes in rice bran 

oil and corn oil at frying temperature  

The PSE extract, PSL extract, concentrations of the extract (0.05 %, 0.1 % and  

0.2 % w/v) and sampling time (every 5 hours for 5 days) were considered as 

independent factors that may have an effect on the changes in acid value and 

total polar compounds of the oils.  The data met assumption requirements 

(normality and equality of variance) by the Shapiro-Wilk test and homogeneity 

test respectively.  Factorial Repeated Measures ANOVA was used to analyse the 

effect of these multiple factors and the Tukey’s test was used for testing the 

difference between the groups at 95 % confidence (George, 2011a) 
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3 Results and discussion  

3.1 Initial investigation of total phenol content and antioxidant 

properties of Piper sarmentosum Roxb. and Pandanus 

amaryllifolius Roxb. leaf extract 

Pandanus amaryllifolius Roxb. and Piper sarmentosum Roxb. have shown 

antioxidant activity in many studies.  However, the variation of extraction 

protocols, methods of analysis and the plant sources, lead to variations in the 

results of the phenol content and antioxidant activities (Apak et al., 2013; 

Pokorny, 2010; Yanishlieva et al., 2001).  Therefore, it is important to firstly 

explore the antioxidant properties of both plants under different extraction 

methods, prior to determining if they are suitable for use in frying oils.  The aim 

of this experiment was to select either Piper sarmentosum Roxb. (PS) or Pandanus 

amaryllifolius Roxb. (PD) to use in further experiments as a potential natural 

antioxidant in frying oils.   

3.1.1 The total phenol content and antioxidant activities of Piper 

sarmentosum Roxb. and Pandanus amaryllifolius Roxb. leaf 

extracts 

The amount of phenols contained in the PD, PS and PDPS extracts solution were 

determined using the Folin-Ciocalteu method.  The results were calculated using 

gallic acid as a standard curve.  The standard curve for gallic acid ranging from 0 

to 500 mg/L, is showed in Figure ‎3-1. 
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Figure ‎3-1: Gallic acid calibration curve (0-500 mg/L) for determining total phenol content 

using Folin-Ciocalteu assay, n=3, error bars represent the standard error (SE) of triplicate 
measurements. 

 

Figure ‎3-2 shows the total phenol content in mg gallic acid equivalent (GAE) per 

gram of dried leaf extracting using 80 % ethanol and absolute ethanol.  There are 

significant differences between different concentrations of the extraction solvent.  

The results show extracting using 80 % ethanol gives a significantly (p<0.05) 

higher phenol content than the extraction using absolute ethanol.   

 

Figure ‎3-2: Total phenol content of Piper sarmentosum Roxb. (PS), Pandanus  amarylliforius 

Roxb. (PD) and a 1:1 mixture of both leaves extracted (PDPS), extracted using 80 % ethanol 
(80%EtOH) and absolute ethanol (AbEtOH).  The value is expressed as gallic acid 
equivalents (mg/g dried leaf), bars represent the mean±SE of triplicate analysis. Different 
letters indicate significant differences between samples by Tukey’s test (p < 0.05) 
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The PD extract using 80 % ethanol (PD80%EtOH) has a total phenol content of 

9.61+0.21 mg GAE/g which is higher than the extraction using absolute ethanol 

(PDAbEtOH) (4.37+0.05mg GAE/g).  The amount of total phenol found in this 

study was more than the study by Ghasemzadeh and Jaafar (2013).  They 

reported the total phenol content of the pandan extract ranged from 4.88-6.72 

mg/g with the variation related to cultivar locations.  The difference of total 

phenol content compared to this present study, is not only caused by different 

cultivar locations but also could be caused by the different extraction procedure.  

The extraction of this study was assisted using ultrasound (ultrasonic bath) at a 

temperature of 40 °C , while, Ghasemzadeh and Jaafar (2013) used reflux 

technique at 70 °C.  Therefore, the extraction method used in this study could be 

optimised or some phenols might be lost during reflux at 70 °C.  The PS extracted 

using 80 % ethanol (PS80%EtOH) has a total phenol content of 17.93+0.33 mg 

GAE/g which is higher than the extract using absolute ethanol (PSAbEtOH) 

(3.48+0.10 mg GAE/g).  The total phenol content of the mixture (PDPS) is also 

higher in the 80 % ethanol extract (PDPS80%EtOH) (6.71+0.60 mg GAE/g) 

compared to the absolute ethanol extract (PDPSAbEtOH) (3.96+0.09 mg GAE/g).  

There is no synergistic effect of total phenol content of the PDPS mixture 

compared to PD or PS extract in the 80 % ethanol extract or absolute ethanol 

extract.  Overall, the highest amount of phenols was detected in the PS80%EtOH 

extract.  It has a significantly higher phenol content than the others (p<0.05).  

According to Waterhouse (2005), different types of plants have different phenol 

compounds (so are different in chemical structure) which gives different 

responses.  The two plants leaves may have different phenol compounds leading 

to a difference in total phenol content and antioxidant capacity.  This is in 
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agreement with a number of studies which have found variations in the phenol 

content and antioxidant activity in different plant sources (such as vegetables, 

fruits, seeds, spices or herbs), which were extracted using different solvents or 

different concentrations of solvent (Phomkaivon and Areekul, 2009; Lin and 

Tang, 2007; Tangkanakul et al., 2006; Kahkonen et al., 1999).  The antioxidant 

capacity of the extracts determined by FRAP assay were measured against a 

ferrous (II) sulphate standard curve ranging from 0 to 200 mg/L.  For the ABTS 

radical cation decolourisation (ABTS·+) assay, Trolox was used as the standard 

and the standard curve ranged from 0 to 600 mg/L (Figure ‎3-3).  

 

Figure ‎3-3: Ferrous (II) sulphate calibration curve 0-200 mg/L for determining antioxidant 

capacity (FRAP assay)(A) and Trolox calibration curve 0-500 mg/L for determining 
antioxidant capacity (ABTS·+ assay)(B), n=3, error bars represent the standard error (SE) of 
triplicate measurements. 

 

Figure ‎3-4 illustrates the antioxidant capacity of the extracts determined by ferric 

reducing power (FRAP) assay as mg of ferrous sulphate equivalent per gram of 

dried leaf.  The results show a significant difference between 80 % ethanol and 

absolute ethanol in their ferric reducing power (p<0.05) for both plants and the 
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Figure ‎3-4: The antioxidant capacity (determined using ferric reducing power assay) of Piper 

sarmentosum Roxb. (PS), Pandanus  amarylliforius Roxb. (PD) and a 1:1 mixture of both 
leaves extracted (PDPS), extracted using 80 % ethanol (80%EtOH) and absolute ethanol 
(AbEtOH).  The value is expressed as ferrous (II) sulphate equivalents (mg/g dried leaf), 
bars represent the mean±SE of triplicate analysis. Different letters indicate significant 
differences between samples by Tukey’s test (p < 0.05) 

 

The highest ferric reducing power is found in PS80%EtOH extract (21.35+5.60 

mg FeSO4 eq/g).  The PDPS80%EtOH extract has lower antioxidant capacity than 

PS80%EtOH and shows no significant difference, when compared to the 

PD80%EtOH (p<0.05).  Therefore, there is no synergistic effect of ferric reducing 

power of the PDPS mixture.    

The antioxidant capacity of the extracts determined using the ABTS·+ assay is 

shown in Figure ‎3-5.  The ABTS·+ reducing power of the PD80 %EtOH, PS80 %EtOH 

and PDPS80 %EtOH extracts are 9.08+0.13, 20.94+0.69 and 14.77+0.07 mg 

Trolox equivalent/g respectively.  These are significantly (p<0.05) higher than 

the PDAbEtOH, PS AbEtOH and PDPS AbEtOH extracts (7.60+0.15, 7.78+0.10, 

8.62+0.16 mg Trolox equivalent/g respectively) which show no significant 

difference between themselves.  The highest ABTS·+ reducing power is found in 

the PS80%EtOH extract.  The PDPS80%EtOH extract has a significantly lower 
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reducing capacity than the PS80%EtOH extract but is significant higher than the 

PD80%EtOH extract.   

 

Figure ‎3-5: The antioxidant capacity (determined using  ABTS·+ assay) of Piper sarmentosum 

Roxb. (PS), Pandanus  amarylliforius Roxb. (PD) and a 1:1 mixture of both leaves extracted 
(PDPS), extracted using 80 % ethanol (80%EtOH) and absolute ethanol (AbEtOH).  The 
value is expressed as Trolox equivalents (mg/g dried leaf), bars represent the mean±SE of 
triplicate analysis. Different letters indicate significant differences between samples by 
Tukey’s test (p<0.05) 
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Figure ‎3-6: The antioxidant capacity (determined using DPPH assay) of Piper sarmentosum 

Roxb. (PS), Pandanus  amarylliforius Roxb. (PD) and a 1:1 mixture of both leaves extracted 
(PDPS), extracted using 80 % ethanol (80%EtOH) and absolute ethanol (AbEtOH).  The 
value is expressed as percentage of inhibition, bars represent the mean±SE of triplicate 
analysis. Different letters indicate significant differences between samples by Tukey’s test 
(p<0.05) 

 

Reducing power is measured at an absorbance of 700 nm and the higher the 

absorbance, the higher the reducing power.  The extracts using 80 % ethanol 

show a significantly higher reducing power (Figure ‎3-7) than the extracts using 

absolute ethanol (p<0.05).  Again, the highest reducing power is obtained in the 

PS80 %EtOH extract and there is no synergistic effect of the PDPS mixture.   The 

extraction yield and the antioxidant activity of the extracts from plants highly 

depend on the solvent polarity.   From numerous literatures, it has been noted 

that methanol is a popular choice of solvent, mostly as a water mixture, due to it 

being efficient, having a high boiling point and low cost (Waterhouse, 2005).   
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Figure ‎3-7: The reducing power of Piper sarmentosum Roxb. (PS), Pandanus  amarylliforius 

Roxb. (PD) and a 1:1 mixture of both leaves extracted (PDPS), extracted using 80 % ethanol 
(80%EtOH) and absolute ethanol (AbEtOH).  Bars represent the mean±SE of triplicate 
analysis. Different letters indicate significant differences between samples by Tukey’s test 
(p<0.05) 
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properties of a mixture between lycopene, vitamin E, vitamin C and beta-

carotene were superior to the sum of the individual antioxidant activities.  

However, the PDPS extracts in this study have not shown a synergistic effect.  

This could be due to Fuhrman et al. (2000) and Liu et al. (2008) using pure 

chemical antioxidants to study rather than using crude natural extracts as in this 

present work.  The natural antioxidants presence in PDPS extracts could be 

bonding with various compounds such as sugars, amino acids etc. that can hinder 

the synergistic effect of the mixture (Pokorny, 2007).  This is similar to the study 

by Maizura et al. (2011) which found no synergistic effect between the mixture of 

kesum, ginger and turmeric juice extracts.  In addition, the ratio of the mixture  

(1:1) in the current study might not be an appropriate ratio to express synergism 

of the extracts (Liu et al., 2008).   

The difference in results of the 4 assays could be caused by the 4 assays work 

differently and therefore, depending on the compounds.  The antioxidant 

compounds presence in the PS or PD extracts can vary in amounts of lipophilic or 

degree of hydrophilic compounds (Kim and Lee, 2005b).  The difference in 

amount , type and degree of hydrophilicity or lipophilicity has an impact on the 

reacting or scavenging power of the free radicals in each assay (Apak et al., 

2013).  Therefore, it comes to reason that the results from different assays were 

not comparable.  However, the results from the 4 assays showed the same 

pattern, so they can give an idea of the protective potential of these plants and 

the use of more than one assay might be needed.   

3.1.2 Correlation of total phenol content and antioxidant activity 

Pearson’s correlation coefficients (r) between total phenol content and 

antioxidant activity (4 assays) are shown in Table ‎3-1.  The results show a 
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positively significant association so the higher the total phenol content, the 

greater the antioxidant capacity as determined by the assay.   

Table ‎3-1: Pearson’s correlation coefficients of total phenol content 

        and antioxidant assays  

Correlation coefficients  Total phenol 
contentA 

Total phenol 
contentB 

FRAP assay  0.964** 0.816** 

DPPH assay        0.495       -0.544 

ABTS·+ assay 0.721*       -0.044 

Reducing power assay  0.870**        0.463 

                          A = extraction using 80 % ethanol, B = extraction using absolute ethanol  

                      *, ** significant at p<0.05 or 0.01 (2-tailed) respectively  

 

The correlation coefficient between total phenol content and antioxidant activity 

determined by the FRAP assay, in 80 % ethanol extracts and absolute ethanol 

extracts, show the highest relationship (p<0.01) due to the very high r value 

(0.964 and 0.816 respectively).  The high antiradical reducing power or the high 

percentage of scavenging of the 80 %EtOH extract could be explained by the 

positive correlation coefficients between the amount of total phenols and the 

antioxidant activity.  They show a similar pattern and a strong association with a 

high significance (0.495<r<0.964, p<0.01), especially between the phenol content 

based on using the FRAP assay (r=0.964, p<0.01).  This can support that 

extraction using 80 % ethanol can extract more phenol compounds and 

contribute to a higher antioxidant activity than using absolute ethanol.  This is in 

agreement with several studies that reported phenol compounds in spices, herbs, 

fruits or vegetables significantly contributed to their antioxidant properties 

(Maizura et al., 2011; Thaipong et al., 2006; Wong et al., 2006; Shan et al., 2005; 
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Wu et al., 2006).  To summarise, the findings from the first investigation reveal 

that leaf extracts obtained from Piper sarmentosum Roxb. possess significantly 

higher amounts of total phenols and antioxidant activity (p<0.05) than Pandanus 

amaryllifolius Roxb. leaf extracts when extracted with 80 % ethanol.  A very 

strong relationship was found between total phenol content and antioxidant 

activity determined using FRAP assay (p<0.01).  Therefore, Piper sarmentosum 

Roxb. leaf will be selected for the future studies.   

3.2 Effect of solvent extraction method on total phenol content 

and antioxidant properties in Piper sarmentosum Roxb. leaf 

extracts 

The following study was designed based on the findings from chapter ‎3.1.1, 

where Piper sarmentosum Roxb. was selected for further study.  Both water and 

ethanol at various concentrations were used to extract PS in order to determine 

the best solvent for extraction and alongside this, soxhlet extraction was carried 

out to observe the effects of petroleum ether extraction.  The aims of the study 

were to determine the most effective solvent for extraction and to investigate 

whether defatting the PS leaf powder had an effect on the analytical results.   

3.2.1 Effect of solvent extraction method on total phenol content, 

total flavonoid content and L-ascorbic acid content   

Using a standard curve for gallic acid, the total phenol content in mg gallic acid 

equivalents (GAE) per gram of dried PS leaf extracts extracted with different 

solvents were calculated (Figure ‎3-8).   
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Figure ‎3-8: Total phenol content of Piper sarmentosum Roxb. leaf extracts. PS = the extracts 

from PS leaf powder extracted using water or ethanol (EtOH),  AbEtOH = absolute ethanol, 
DFPS = the extracts from defatted PS leaf powder extracted using water or ethanol, PSL = 
the extracts from PS leaf powder extracted using petroleum ether.  The value is expressed 
as gallic acid equivalents (mg/g dried leaf).  Bars represent the mean±SE of triplicate 
analysis.  Different letters indicate significant differences between samples by Tukey’s test 
(p < 0.05) 

 

The total phenol content in PS and DFPS extracts, on the whole increased as the 

ethanol concentration increased up until 80 % concentration (p<0.05).  The 

greatest amount of total phenols were obtained in PS80%EtOH, DFPS80%EtOH 

and DFPS50%EtOH extracts (18.64+0.13 mg GAE/g, 17.15+0.64 mg GAE/g and 

17.15+0.52 mg GAE/g respectively).  The smallest amount of total phenols were 

obtained in PSAbEtOH and DFPSAbEtOH extracts (2.32+0.07 mg GAE/g and 

1.35+0.05 mg GAE/g respectively).  The amount of total phenols in PSL extract 

extracted with petroleum ether at 250 °C for 5 hours was 8.64+0.00 mg GAE/g 

which is higher than PSAbEtOH and DFPSAbEtOH extracts, but, there was no 
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extracts.  Figure ‎3-9 to Figure ‎3-10 are standard curves used for calculating the 

amount of flavonoid and L-ascorbic acid contained in the extracts.   

 

Figure ‎3-9: Catechin standard curve 0-500 mg/L for determining the amount of total flavonoid 

content, n=3, error bars represent the standard error (SE) of triplicate measurements  

 

 

Figure ‎3-10: L-Ascorbic acid standard curve 0-200 mg/L for determining the amount of total 

L-ascorbic acid content, n=3, error bars represent the standard error (SE) of triplicate 
measurements 
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Figure ‎3-11: Total flavonoid content of Piper sarmentosum Roxb. leaf extracts, PS = the 

extracts from PS leaf powder extracted using water or ethanol (EtOH),  AbEtOH = absolute 
ethanol, DFPS = the extracts from defatted PS leaf powder extracted using water or ethanol, 
PSL = the extracts from PS leaf powder extracted using petroleum ether. The value is 
expressed as mg chatechin equivalent/g dried leaf (mg CE/g).  Bars represent the mean±SE 
of triplicate analysis.  Different letters indicate significant differences between samples by 
Tukey’s test (p<0.05) 

 

Figure ‎3-11 shows the amount of total flavonoid contained in Piper sarmentosum 

Roxb. extracts extracted using different solvents and concentrations.  The 
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amount of flavonoid (25.98+0.12 mg CE/g) with a significant difference to all 

other extracts(p<0.05).  The lowest amount of total flavonoid was found in DFPS 

extract extracted using absolute ethanol (0.48+0.02 mg CE/g, p<0.05).  

Figure ‎3-12 shows the spectrophotometry result of the L-ascorbic acid contained 

in Piper sarmentosum Roxb. leaf extract.  The amount of L-ascorbic acid in 

DFPSAbEtOH was lowest, followed by PS* leaf powder (before extraction with 

different solvents and concentrations) (15.92+9.08 mg/g, 18.21+0.65 mg/g 

respectively).  The PS extracts using ethanol showed an increasing amount of  

L-ascorbic acid as concentration increased up to 80 % ethanol.  The highest  

L-ascorbic acid content was found in PSL extract (413.19+119.18 mg/g).  

However, these results were found to contrast with the results analysed by HPLC 

assay as shown in Figure ‎3-13 to Figure ‎3-15 as no ascorbic acid detected in any 

extract .  

 

Figure ‎3-12: L-ascorbic acid of Piper sarmentosum Roxb. leaf extracts determined using 

spectrophotometry, PS* = PS leaf powder prior extracted using water, ethanol or 
petroleum ether, PS = the PS extracts extracted using water or ethanol (EtOH),  AbEtOH = 
absolute ethanol, DFPS = the DFPS extract extracted using water or ethanol, PSL = the PS 
extract extracted using petroleum ether. The value is expressed as mg L-ascorbic acid/g 
dried leaf (mg/g).  Bars represent the mean±SE of triplicate analysis.  Different letters 
indicate significant differences between samples by Tukey’s test (p<0.05) 
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Figure ‎3-13: HPLC analysis of L-ascorbic acid content of Piper sarmentosum Roxb. leaf 

extracts, PS = the extracts from PS leaf powder extracted using water (w) or ethanol  
(20 %EtOH – 80 %EtOH) and absolute ethanol (AbsEtOH)  
 

 

 

Figure ‎3-14: HPLC analysis of L-ascorbic acid content of Piper sarmentosum Roxb. leaf 

extracts, DFPS = the extracts from defatted PS leaf powder extracted using water (w) or 
ethanol (20 %EtOH – 80 %EtOH) and absolute ethanol (AbsEtOH)  
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Figure ‎3-15: HPLC analysis of L-ascorbic acid content of Piper sarmentosum Roxb. leaf, PS leaf 

= PS fresh dried leaf powder, PSL = the extracts from PS leaf powder extracted using 
petroleum ether 
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using 80 % methanol and 80 % ethanol had the highest amount of total phenols 

compared to absolute methanol and absolute ethanol.  The study by Mahae and 

Chaiseri (2009) obtained less flavonoids when extracted using water compared 

to using 50 % ethanol.  Kim and Lee (2005b) explained that phenol compounds 

are often most soluble in solvents less polar than water.  In a study by 

Chanwitheesuk et al. (2005), the total phenol content in Piper sarmentosum Roxb. 

leaf extracts (PS) extracted using absolute methanol, was found to be 123+0.12 

mg GAE/100 g dried leaf which was higher than the present study (2.32+0.07 mg 

GAE/100 g dried leaf).  Also, a study by Ugusman et al. (2012) found higher total 

phenol  and total flavonoid content in Piper sarmentosum Roxb. leaf extracts 

(91.02+0.02 mg GAE/g dried leaf and 48.57+0.03 mg quercetin equivalent/g 

dried leaf respectively) than the present study.  The difference in amount of total 

phenol content and total flavonoids content could result from the variety of the 

plants and also the differences in extraction models.  Chanwitheesuk et al. (2005) 

prepared the leaf extracts by soaking the dried leaf powder in methanol 

overnight.  Ugusman et al. (2012) extracted the leaf using a high speed mixer at 

80 °C for 3 hours.  In case of total flavonoids, it is not appropriate to compare the 

amount of flavonoids as they were calculated from different standards.  The 

amount of flavonoids in the present study are better extracted using petroleum 

ether.  This could be due to the non-polarity of petroleum ether that can better 

extract less polar flavonoid compounds such as isoflavones, flavanones, while 

flavonoid glycosides which more polar are better extracted with alcohols or 

alcohol water mixtures (Marston and Hostettmann, 2006).        

Using the spectrophotometric method, L-ascorbic acid was found in all PS 

extracts.  The amount of L-ascorbic acid in Piper sarmentosum Roxb. leaf extract 
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reported by Chanwitheesuk et al. (2005) (16.3+0.06 mg/100 g dried leaf) was 

lower than this present study (18.21+0.65 mg/g in PS leaf powder).  Although, 

the plants were cleaned, cut and dried similar to in the present study, the greater 

loss could be from the drying temperature used.  They dried the leaf at 50 °C 

which was higher than the present study (40 °C).  However, according to 

Moeslinger et al. (1995), the spectrophotometric method has some limitations on 

sensitivity and specificity because of interference due to the presence of sugars, 

amino acids or glucuronic acid which is usually found bonded with phenols 

(Landete, 2012).  Therefore, it cannot be certain that these results are a true 

reflection of the L-ascorbic acid content in the extracts.  Therefore a HPLC 

method was used due to high sensitivity and specificity.  The HPLC 

chromatograms show L- ascorbic acid was not found in any of the extracts or the 

leaf powder itself (Figure ‎3-13 to Figure ‎3-15).  This may be due to loss or 

decomposition during processing as a result of susceptibility to heat, light, pH 

and oxygen (Shahidi, 2005b).  The leaves were cleaned, cut, trimmed and dried 

overnight.  Moreover, grinding or pulverising to a fine powder can increase the 

deterioration rate of ascorbic acid.  It would also be expected that the ascorbic 

acid in the defatted leaf (DFPS) or in PSL extracts would be destroyed, due to the 

high temperature (250 °C) of heating for 5-6 hours.  Therefore, on the basis of the 

reasons of sensitivity and selectivity, the results obtained by the HPLC method 

were accepted as a true reflection of the L-ascorbic acid content.  

The temperature used in the soxhlet extraction procedure, showed no effect on 

the amount of total phenols and total flavonoids.  The results in Figure ‎3-8 and 

Figure ‎3-11, show the total phenol content and total flavonoid content obtained 

in defatted leaf powder (DF) was similar to that obtained in dried leaf (PS).  This 
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suggests that the phenols in PS leaf are heat resistant as there was no loss on 

defatting, so PS leaf could be used in high temperature conditions.  It also 

suggests that by using different extraction solvents, different amounts or types of 

compounds are extracted.  The phenol compounds obtained by petroleum ether 

extraction might give a better solubility in fat or lipid matrix, so it could be easily 

dissolved in cooking oil. 

3.2.2 Effect of solvent extraction method on antioxidant activity  

Figure ‎3-16 shows the antioxidant capacity of the PS extracts as mg of ferrous 

sulphate equivalent per gram of dried leaf, which was determined by the FRAP 

assay.  In terms of extraction solvent, the ferric reducing power in PS and DFPS 

extracts extracted with different solvents have been found to be significantly 

different (p<0.05).  The results show an increase in ferric reducing capacity when 

extracted using an ethanol mixture (20-80 % ethanol, p<0.05). The highest ferric 

reducing power was obtained in both PS80%EtOH and DFPS80%EtOH extracts 

(34.14+0.15 mg FeSO4 equivalent/g, 32.41+0.74 mg FeSO4 equivalent/g,  

respectively).  The lowest ferric reducing power was found in PS and DFPS 

extracts extracted using absolute ethanol (PSAbEtOH and DFPS AbEtOH, 

6.28+0.13 and 6.67+0.47 mg FeSO4 equivalent/g).  PS extracts extracted using 

petroleum ether at 250 °C for 5 hours (PSL) found no significant difference in 

ferric reducing power (48.74+2.93 mg FeSO4 equivalent/g) compared with PS 

and DFPS extracts extracted using water or 20 % ethanol.  PS and DFPS extracts, 

extracted using the same solvent, showed no significant difference in ferric 

reducing power for all extracts. 
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Figure ‎3-16: The antioxidant capacity (determined using Ferric reducing power assay) of 

Piper sarmentosum Roxb. leaf extracts. PS = the extracts from PS leaf powder extracted 
using water or ethanol (EtOH),  AbEtOH = absolute ethanol, DFPS = the extracts from 
defatted PS leaf powder extracted using water or ethanol, PSL = the extracts from PS leaf 
powder extracted using petroleum ether.  The value is expressed as ferrous (II) sulphate 
equivalents (mg/g dried leaf).  Bars represent the mean±SE of triplicate analysis.  Different 
letters indicate significant differences between samples by Tukey’s test (p<0.05) 

 

 

Figure ‎3-17: The antioxidant capacity (determined using  ABTS·+ assay) of Piper sarmentosum 

Roxb. leaf extracts. PS = the extracts from PS leaf powder extracted using water or ethanol 
(EtOH),  AbEtOH = absolute ethanol, DFPS = the extracts from defatted PS leaf powder 
extracted using water or ethanol, PSL = the extracts from PS leaf powder extracted using 
petroleum ether.  The value is expressed as Trolox equivalents (mg/g dried leaf).  Bars 
represent the mean±SE of triplicate analysis.  Different letters indicate significant 
differences between samples by Tukey’s test (p<0.05) 
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Figure ‎3-17 shows ABTS·+ reducing power of Piper sarmentosum Roxb. extracts, 

as mg Trolox equivalent/g dried leaf.  The highest ABTS·+ reducing power was 

found in PS extracts extracted using  80 % ethanol (PS80%EtOH, 28.59+0.40 mg 

Trolox eq/g), showing no significant difference with DFPS80%EtOH extracts 

(25.68+0.79 mg Trolox eq/g).  The lowest reducing capacities were PS and DFPS 

extracts extracted using absolute ethanol (PSAbEtOH and DFPSAbEtOH, 

3.02+0.22 and 0.97+0.33 mg Trolox eq/g) and PSL extract (6.08+0.83 mg Trolox 

eq/g) which show no significant difference between them.  PS and DFPS extracts, 

extracted using the same solvent, showed no significant difference in ABTS·+ 

reducing power for all extracts.  Figure ‎3-18 shows the reducing power of Piper 

sarmentosum Roxb. extracts, measured at 700 nm by spectrophotometer.  The 

higher the absorbance, the higher the reducing power.   

 

Figure ‎3-18: The reducing power of Piper sarmentosum Roxb. leaf extracts. PS = the extracts 

from PS leaf powder extracted using water or ethanol (EtOH),  AbEtOH = absolute ethanol, 
DFPS = the extracts from defatted PS leaf powder extracted using water or ethanol, PSL = 
the extracts from PS leaf powder extracted using petroleum ether.  Bars represent the 
mean±SE of triplicate analysis.  Different letters indicate significant differences between 
samples by Tukey’s test (p<0.05) 
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The reducing power in PS and DFPS extracts extracted using different solvents 

was found to be significantly different (p<0.05).  The results showed an increase 

in reducing capacity when extracted using ethanol mixture (p<0.05).  The highest 

absorbance was found in PS extracts extracted using 80 % ethanol (PS80%EtOH, 

0.201+0.002), which shows no significant difference with DFPS80 %EtOH 

extracts (0.197+0.006).  PS and DFPS extracts extracted using water, have not 

shown any reducing power with this assay.  PSAbEtOH, DFPS AbEtOH and PSL 

extracts have very low absorbance (0.022+0.001, 0.016+0.001 and 0.007+0.001 

respectively) and no significant differences are found between them.  Figure ‎3-19 

shows the percentage inhibition of DPPH radical scavenging activity of Piper 

sarmentosum Roxb. extracts, measured at 517 nm.  The higher the percentage, 

the higher the scavenging power.  The scavenging power in PS and DFPS extracts 

extracted using water/ethanol mixtures have been found to be increasingly 

significant (p<0.05), as ethanol increases, up to 80 % ethanol.  The highest 

scavenging power obtained in PS extracts was extracted using both absolute 

ethanol (PSAbEtOH, 93.15 %+0.009), and DFPS80%EtOH extracts (90.19 

%+0.003) which found no significant difference between them.  The extract with 

the lowest scavenging power was PS extracted using water (47.65 %+0.009).  

There was no significant difference in scavenging power between the PSL extract 

(59.05 %+0.002) and PS and DFPS extracts extracted using 20 % ethanol (59.34 

%+0.011 and 60.41 %+0.003 respectively).  
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Figure ‎3-19: The antioxidant capacity (determined using DPPH assay) of Piper sarmentosum 

Roxb. leaf extracts. PS = the extracts from PS leaf powder extracted using water or ethanol 
(EtOH),  AbEtOH = absolute ethanol, DFPS = the extracts from defatted PS leaf powder 
extracted using water or ethanol, PSL = the extracts from PS leaf powder extracted using 
petroleum ether.  The value is expressed as percentage of inhibition.  Bars represent the 
mean±SE of triplicate analysis. Different letters indicate significant differences between 
samples by Tukey’s test (p<0.05) 

 

 

Figure ‎3-20: The antioxidant capacity (determined using linoleic lipid peroxidation assay) of 

Piper sarmentosum Roxb. leaf extracts. PS = the extracts from PS leaf powder extracted 
using water or ethanol (EtOH),  AbEtOH = absolute ethanol, DFPS = the extracts from 
defatted PS leaf powder extracted using water or ethanol, PSL = the extracts from PS leaf 
powder extracted using petroleum ether.  The value is expressed as percentage of 
inhibition.  Bars represent the mean±SE of triplicate analysis. Different letters indicate 
significant differences between samples by Tukey’s test (p<0.05) 
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Figure ‎3-20 shows the ability (percentage) of Piper sarmentosum Roxb. extracts 

to inhibit lipid peroxidation.  The higher the percentage, the higher the inhibition.  

The inhibition of lipid peroxidation of PS and DFPS extracts extracted using 

different concentrations of ethanol showed an increase in trend with a range of 

54-72 %.  The highest inhibition capacity was obtained in PS extracts extracted 

using absolute ethanol (72.12 %+0.003), which had no significant difference with 

the DFPS80%EtOH extract (70.30 %+0.003).  The lowest inhibition was found in 

PSL (42.42 %+0.003).  There was a significant difference in inhibition of lipid 

peroxidation between PS and DFPS extracts, extracted using the same solvent, 

apart from between PSW and DFPSW extracts (57.58 %+0.003 and 59.39 

%+0.003 respectively) (p<0.05). 

The findings from these results show that the difference in extraction solvent  

and its concentration, have an effect on antioxidant activity of the extracts.  For 

water and ethanol extracts, the antioxidant capacity demonstrates a similar 

pattern between all assays and gives similar trends to the total phenol content 

assay.  The antioxidant capacity of the extracts determined by FRAP, ABTS·+ and 

reducing power assays found the highest antioxidant capacity in the extracts 

extracted by 80 % ethanol for both PS and DFPS leaf.   Findings were similar in 

the study done by Ayusuk et al. (2009) where the extracts extracted by 70 % 

ethanol gave a higher antioxidant capacity with FRAP and ABTS·+ assays than the 

DPPH assay.  The antioxidant capacity of the dried leaf (PS) and defatted dried 

leaf (DF) extracts increased when increasing the concentration of ethanol 

(Figure ‎3-17 and Figure ‎3-19).  The results for antioxidant activity may be 

contributed by the amount of phenols present as there is a strong correlation 

between total phenol content and the 4 antioxidant assays (Table ‎3-1). 
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The antioxidant capacity of the extracts extracted by absolute ethanol and 

petroleum ether, obtained by DPPH and linoleic acid peroxidation assays are 

higher than FRAP, ABTS·+ and reducing power assays.  This is similar to the 

findings by Phomkaivon and Areekul (2009).  Similarly with the study by Maizura 

et al. (2011) reported that the plant extracts without using water had higher 

antioxidant capacity when determined with DPPH assay than FRAP assay.  

Franco et al. (2008) compared antioxidant capacity between ethanol extracts and 

water extracts by DPPH assay.  The results showed that the ethanol extracts has 

higher inhibition ability than water extracts, which was also confirmed in the 

present study.  These phenomena were explained by Kim et al. (2002).  The 

ABTS·+ assay is based on an aqueous system which measures the intense of 

blue/green colour generated from  ABTS·+.  This assay is applicable to both 

hydrophilic and lipophilic antioxidants, whereas, the DPPH assay is based on an 

organic system, therefore, it has a higher response to hydrophobic (or lipophilic) 

antioxidants.  Therefore, the majority of the compounds in the extract extracted 

by using absolute ethanol, may be lipophilic compounds.  However, the present 

results contrast with the study by Floegel et al. (2011).  They found the fruits, 

vegetable and beverage extracts (extracted by absolute methanol) measured 

using ABTS·+ assay had higher antioxidant capacity than DPPH assay due to the 

high pigmented and hydrophilic antioxidants were better reflected by ABTS·+ 

assay than DPPH assay.  The results of the antioxidant capacity of PS extracts 

show effective antioxidant activity, particularly when tested by DPPH and linoleic 

lipid peroxidation assays.  All the extracts tested by the linoleic acid peroxidation 

assay show good ability to inhibit lipid peroxide, although they were extracted 

using different solvents and concentrations.  The system of linoleic acid 
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peroxidation assay is an emulsion system which is prepared by a mixture of 

linoleic acid in phosphate buffer (Tween 20 was used as emulsifier).  Therefore, 

due to the emulsion system, the assay is applicable to both hydrophilic and 

lipophilic antioxidants.  From the results of the study, it appears that the 

antioxidant capacity of defatted dried leaf (DF) extracts,  show similar results as 

normal dried leaf (PS) extracts and in most case there is no significant difference.  

This suggests that temperature used in soxhlet extraction has no effect on the 

antioxidant capacity of the extracts.  As different solvents and concentrations 

used for extraction result in different types and amounts of active compounds 

and therefore give a variety responses to different assays, different antioxidant 

assays should be employed when measuring antioxidant capacity.   

In summary, according to the findings, the PS extracts extracted with 80 % 

ethanol (PSE) has the highest total phenol content and petroleum ether extracts 

(PSL) possess highest total flavonoids.  They also exhibit high antioxidant activity 

as assessed by a various assays.  Therefore, Piper sarmentosum Roxb. leaf will be 

extracted by 80 % ethanol and petroleum ether for future experiments.  As there 

is no significant difference between defatted leaf (DFPS) extract and normal leaf 

(PS) extracts with each assay, it suggests that PS leaf and its extracts are heat 

resistant and so could be used in high temperature conditions.  Also, as the PS, 

DFPS and PSL extracts demonstrate antioxidant capacity in linoleic lipid 

peroxidation system, it suggest that these extracts could also be used in oil or 

emulsion food matrices.  
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3.3 The effect of decolourisation on total phenol content and 

antioxidant activity of the PSE extracts 

Chlorophyll present in oils, may have an effect on the autoxidation of lipids 

(Warner, 2002).  Chlorophyll has been supposed to exert its pro-oxidative action 

on the deterioration of oils.  It acts as a photosensitizer which accelerates the 

oxidation of oils when exposed to light (Endo et al., 1985).  Natural antioxidant 

extracts from plant leaves (crude extracts) contain chlorophyll pigments which 

take part in causing dark colour in fats or oils, and act as pro-oxidants in the light, 

particularly when present at higher concentrations (Pokorny, 2010; Hall et al., 

1994).  Some approaches used to remove or reduce chlorophyll, pigment colour, 

odour or bitter substances from the crude extracts are using fractionation for 

purifying pigments of ethanol or methanol extracts, using activated carbon for 

bleaching the crude extracts prepared by polar or non-polar solvent or using 

ultraviolet irradiation with activated charcoal (Scheepers et al., 2011; Pokorny, 

2010; Chang et al., 1977).  However, all those applications have an impact on the 

yield of active substances of the crude extracts (Pokorny, 2010).  The aim of this 

experiment is to observe the effect of a decolourisation process on the total 

phenol content and antioxidant capacity of the PS80%EtOH extracts (PSE) and to 

evaluate the efficiency of the extraction method.  The results will determine if the 

crude extracts will be decolourised. 

3.3.1 Effect of decolourisation on total phenol content and 

antioxidant activity of the PSE extract  

The PSE extracts treated with activated charcoal at 0 %, 0.5 %, 1 % and 2 % w/v 

are shown in Figure ‎3-21.  The colour of the bleached extracts become less green 
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in colour as the bleaching agent increases, turning to clear at 2 % w/v of 

activated charcoal.  However, although the green colour in the bleached PSE 

extracts treated with 2 % w/v activated charcoal has disappeared, the noticeable 

black colour from the activated charcoal appears instead.   

 

Figure ‎3-21: PSE extracts treated with activated charcoal from left to right 0 %, 0.5 %,  

                    1 % and 2 % w/v, respectively 

 

Using gallic acid to form the standard curve, the results of the amount of total 

phenol of PSE extracts treated with activated charcoal (0 %, 0.5 %, 1 % and 2 % 

w/v) show a significant decrease as the amount of activated charcoal increases 

(p<0.05), Figure ‎3-22.  As the results show, remarkably, the amount of phenol  

has rapidly declined by 75 % from 21.10 mg GAE/g to 5.10 mg GAE/g with the 

0.5 % w/v activated charcoal.  The amount of total phenol  is approximately 95 % 

reduction in the extracts treated with 2 % w/v activated charcoal.  The results of 

the FRAP assay of PSE extracts treated with activated charcoal (Figure ‎3-23) also 

show a significant decrease as the amount of activated charcoal increased 

(p<0.05).  The antioxidant activity of the extracts has rapidly decreased by 70 % 

from 25.86 mg FeSO4 equivalent/g to 7.84 mg FeSO4 equivalent/g with the 0.5 % 

w/v activated charcoal.  The extracts treated with 2 % w/v activated charcoal 

demonstrate very low antioxidant capacity which is approximately a 95 % 

reduction. 
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Figure ‎3-22: Total phenol content of Piper sarmentosum Roxb. leaf extracts.  PSE = the extracts 

from PS leaf powder extracted using 80 % ethanol and treated using  activated charcoal  
0 %, 0.5 %, 1 % and 2 % w/v respectively.  Bars represent the mean±SE of triplicate 
analysis.  Different letters indicate significant differences between samples by Tukey’s test 
(p<0.05) 

 

 

 

Figure ‎3-23: Antioxidant activity of Piper sarmentosum Roxb. leaf extracts (determined using 

ferric reducing power assay).  PSE = the extracts from PS leaf powder extracted using 80 % 
ethanol and treated using  activated charcoal 0 %, 0.5 %, 1 % and 2 % w/v respectively. 
Bars represent the mean±SE of triplicate analysis.  Different letters indicate significant 
differences between samples by Tukey’s test (p<0.05) 

 

0

5

10

15

20

25

30

0% 0.50% 1% 2%

% activated charcoal

T
o

ta
l 

p
h

e
n

o
l 

co
n

te
n

t 
a

s 
m

g
 

g
a

ll
ic

 a
ci

d
 e

q
u

iv
a

le
n

t 
/

 g
 d

ri
e

d
 l

e
a

f

PSE

a

b

c
d

0

5

10

15

20

25

30

0 0.50% 1% 2%

% activated charcoal

Fe
rr

ic
 r

e
d

u
ci

n
g

 p
o

w
e

r 
a

ss
a

y
 a

s 
m

g
 

Fe
S

O
4

  e
q

u
iv

a
le

n
t 

/
 g

 d
ri

e
d

 l
e

a
f

PSE

a

d

c

b



122 
 

3.3.2 The efficiency of the extraction method  

The efficiency of the extraction method is shown in Table ‎3-2 as percentage 

recovery.  The highest recovery of gallic acid is obtained in PSE extracts without 

activated charcoal treatment (93.01 %), while the extracts treated with activated 

charcoal 0.5 %, 1 % and 2 % w/v reduce to 87.77 %, 74.87 % and 59.36 % 

respectively.  According to the results, the decolourisation treatment has a 

negative effect on the amount of total phenols and antioxidant capacity of Piper 

sarmentosum Roxb. leaf extracts.  A rapid reduction of total phenol content and 

ferric reducing power, is related to an increasing amount of activated charcoal.   

Table ‎3-2: Recovery of total phenol content as mg gallic acid equivalent in PSE extracts, 

spiking with gallic acid standard 50 mg prior to the decolourisation and extraction 
process.  The value represents the mean±SE of triplicate analysis 

Extracts 

Recovery ( %) 

activated charcoal ( % w/v) 

0 % 0.5 % 1 % 2 % 

PSE 93.01 87.77 74.87 59.36 

      

This agrees with the results of Chang et al. (1977).  They bleached rosemary and 

sage crude extracts (extracted with various organic solvents) with activated 

charcoal.  The bleached rosemary and sage extracts extracted with methanol 

showed a loss in antioxidant activity and the extracts of benzene and hexane had 

no antioxidant activity at all.  North et al. (2012) used activated charcoal to 

reduce phenol compounds in culture media.  They found that the activated 

charcoal significantly reduced the phenol content (53 % reduction) in culture 

media supplemented with activated charcoal.  The reduction in the amount of 

phenols is caused by absorption by the bleaching agent.  Activated charcoal has 
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differences in size, porous structure and different in functional groups (mainly 

oxygen).  This characteristic contributes to its absorption property.  Some 

phenols and their derivatives can be absorbed to carbon due to the functional 

group, hydroxyl group, on the phenol molecule (Dabrowski et al., 2005).  

Although, the present study has examined a low amount of activated charcoal 

(0.5-2 % w/v), the extract appeared black in colour in the extracts treated with  

2 % activated charcoal.  Therefore, the increasing amount of activated charcoal 

might lead to other problems alongside the reduction of total phenol content and 

antioxidant activity.  Moreover, the results of recovery show the efficiency of the 

extraction method.  The normal sample (PSE) without bleaching has a 93 % 

recovery which is an acceptable result.  The bleached extracts with activated 

charcoal demonstrate a reduction of recovery which is correlated to the level of 

activated charcoal added.  The loss of gallic acid might be due to it being 

absorbed by the charcoal as gallic acid has 3 hydroxyl groups in a molecule.  

To summarise, the results in this part demonstrate that the decolourisation 

process has a huge effect on the loss of phenol content and antioxidant activity.  

Therefore, the bleaching treatment is not appropriate for this study.  However, 

when analysing the extraction efficiency it was clear that the original method 

using 80 % ethanol gave a good recovery which emphasises the effectiveness of 

this method of extraction.  

3.4 Characterisation of polyphenol profile of Piper 

sarmentosum Roxb. Leaf extracts  

According to the results from chapter ‎3.2, the Piper sarmentosum Roxb. leaf 

extracts extracted using 80 % ethanol (PSE) possessed the highest total phenol 
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content and antioxidant activity.  Defatted leaf extracts (DFPSE) extracted using 

80 % ethanol had a slightly lower total phenol content but no significant 

difference was observed with antioxidant activity.  Although, PS leaf extracted by 

petroleum ether (PSL) had a lower total phenol content and antioxidant activity 

than PSE and DFPSE, it had the highest total flavonoid content.  As these solvents 

are likely to have extracted different active compounds, it would be useful to 

know the type of compounds present in the crude extracts that will be studied 

further.  The aim of this study is to explore the antioxidants or polyphenols that 

are present in the PSE, DFPSE and PSL extracts.        

3.4.1 Optimisation of the HPLC method 

To find the best conditions for identifying the compounds present in the extracts, 

several trials were carried out.  The conditions used for each trial are shown in 

Table ‎3-3 and the chromatograms are shown in Figure ‎3-24 to Figure ‎3-28.  

Reverse phase column (C18), the UFLCXR (HPLC system) photodiode array (PDA) 

with multiple wavelengths and PSE extract were used for these trials 

(chapter ‎2.3).  The 4th trial shows the best peak resolutions of the PSE extract 

(Figure ‎3-27).  Therefore, the 25 standard phenols and a standard caffeine were 

analysed using the 4th trial conditions.   
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Table ‎3-3: Trial conditions used for optimising the HPLC method to identify 
polyphenols present in Piper sarmentosum Roxb. leaf extracts 

Trial Conditions Chromatogram    

1 Mobile phase A was 0.1 % formic acid in water, mobile 
phase B was 0.1 % formic acid in acetonitrile.  The flow 
rate was 0.3 mL/min of binary gradients.  Starting at 
0.01 min with mobile phase B (10 %) hold for 5 min 
before increasing to 15 % at 9 min.  Mobile phase B was 
increased to 95 % at 28 min and hold for 4 min before 
reducing to 10 % at 35 min until 45 min the system 
was completed a cycle time.  The injection volume was 
10 µL and column oven was set at 25 °C. 

Figure ‎3-24 

2 Only flowrate of the binary gradients was adjusted to 
0.5 mL/min and column oven was set at 45 °C.  Other 
conditions were the same as trial 1.  

Peak 
resolutions are 
improved, 
Figure ‎3-25 

3 The flow rate of binary gradient was 0.5 mL/min and 
adjusted with mobile phase B 10 % at 0.01 min hold for 
5 min before increasing to 15 % at 9 min.  Mobile phase 
B was increased to 95 % at 32 min and hold for 4 min 
before reducing to 10 % at 39 min until 50 min the 
system was completed a cycle time.  The injection 
volume was 10 µL and column oven was set at 40 °C.  

Peak 
resolutions are 
better than 2nd 
trial, 
Figure ‎3-26 

4 The analysis was started with mobile phase B (10 %) at 
0.01 min, reached to 25 % at 12 min.  The increasing of 
mobile phase B to 100 % at 32 min was hold for 3 min 
before reduced to 10 % at 38 min.  The cycle time was 
completed at 45 min.  The column was set at 25 °C.  The 
flow rate was 0.5 mL/min. 

Peak 
resolutions are 
better than 3rd 
trial, 
Figure ‎3-27 

5 The binary gradients were adjusted and started with 
mobile phase B (10 %) at 0.01 min reached to 25 % at 
12 min.  The increasing of mobile phase B to 100 % at 
17 min was hold for 10 min before reduced to 10 % at 
32 min.  The cycle time was completed at 45 min.  The 
flow rate was 0.5 mL/min. 

Peaks 
resolution are 
worse, 
Figure ‎3-28 
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Figure ‎3-24: HPLC chromatogram of PSE extract (1st trial) 

 

 

Figure ‎3-25: HPLC chromatogram of PSE extract (2nd trial) 

 

 

Figure ‎3-26: HPLC chromatogram of PSE extract (3rd trial) 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 min

0

25

50

75

100

125

150

175

200

225

250

275

mV
Detector A:280nm 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 min

0

25

50

75

100

125

150

175

200

225

mV
Detector A:275nm 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 min

0

25

50

75

100

125

150

175

200

225

mV
Detector A:275nm 



127 
 

 

Figure ‎3-27: HPLC chromatogram of PSE extract (4th trial) 

 

 

Figure ‎3-28: HPLC chromatogram of PSE extract (5th trial) 

 

3.4.2 Identification of polyphenols in Piper sarmentosum Roxb. leaf  

extracts  

Using the UFLCXR (HPLC-PDA), the retention time of the standards were found to 

be very close.  So, it was necessary to use a mass spectrometer to assist in the 

identification of peaks.  The UHPLC-ESI-MS, (NexeraTM) coupled with a single 

quadrupole mass spectrometer equipped with an ESI probe, was used 

(chapter ‎2.3) and the analysis conditions were based on the 4th trial 
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(chapter ‎3.4.1).  The characteristics of 25 phenol standards and a caffeine 

standard (retention time, maximum wavelength and m/z) analysed by UHPLC-

ESI-MS are presented in Table ‎3-4.  Following this, PSE, DFPSE and PSL extracts 

were analysed to see if any of these standard compounds were present.  Each 

individual m/z ratio was observed and the retention times of the standards 

compared to the extracts to determine the presence of any of the standard 

polyphenols and caffeine.  Profiling of the 3 extracts (PSE, DFPSE and PSL) 

obtained by UHPLC-ESI-MS, are shown in Figure ‎3-29.   

Table ‎3-5 shows the identified compounds present in the extracts which have a 

retention time and m/z ratio match with the standards.  The identified 

compounds present in PSE and DFPSE extracts are chlorogenic acid, caffeic acid, 

vitexin, ρ-courmaric acid, quercetin, hydrocinnamic acid and caffeine.  Vitexin, 

hydrocinnamic acid and caffeine are also identified in PSL extract.  The matching 

of retention time and m/z ratio between the standard and the peak observed in 

the extracts are shown in Figure ‎3-30 to Figure ‎3-36, mass chromatogram and 

mass spectra are shown in appendices ‎A.1 to ‎A.7.   
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 Table ‎3-4: Characterisation of standard compounds analysed using UHPLC-ESI-MS 

Retention 
time (min) 

Compound λmax  
[M-H]¯  

m/z 
Phenol group 

4.074 trans-Cinnamic acid 275 147 Cinnamic acids 

9.179 Gallic acid 275 169 Benzoic acids 

14.414 Catechin 275 289 Flavanols  

14.642 3-CQA (chlorogenic acid) 320 353 Cinnamic acids 

14.805 5-CQA (neochlorogenic acid) 320 353 Cinnamic acids 

15.403 4-CQA (cryptochlorogenic acid) 320 353 Cinnamic acids 

15.940 Hydroxybenzoic acid 265 137 Benzoic acids 

16.046 Epicatechin (EC) 275 289 Flavanols 

16.783 Vanillic acid 275 167 Benzoic acids 

16.797 Caffeic acid 320 179 Cinnamic acids 

16.812 Epigallocatechin gallate (EGCG) 275 457 Flavanols 

16.843 Syringic acid 275 197 Benzoic acids 

19.364 Rutin 360 609 Flavones  

19.614 Vitexin 320 431 Flavones 

20.068 Vanillin 280 151 Benzoic acids 

20.300 Epicatechin gallate (ECG) 275 441 Flavanols 

20.539 ρ-Courmaric acid 320 163 Cinnamic acids 

20.791 Sinapic acid 320 223 Cinnamic acids 

20.817 Hesperidin 280 609 Flavanones  

21.040 Ferulic acid 320 193 Cinnamic acids 

21.325 Taxifolin  280 303 Flavanones 

21.907 Phloridzin 280 471 Chalcones  

24.467 Quercetin 360 301 Flavones 

24.992 Hydrocinnamic acid 275 149 Cinnamic acids 

25.692 Naringenin 280 271 Flavanones 

27.748 Caffeine 275 193 Alkaloid 

min=minute, lmax=wavelength showed the maximum absorbance, [M-H]¯ = molecular ion in 
negative mode, m/z = mass to charge ratio 
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Figure ‎3-29: Profiling of Piper sarmentosum  Roxb. leaf extracts extracted using 80 % ethanol 

(PSE), defatted leaf extracts extracted using 80 % ethanol (DFPSE) and petroleum ether 
extracts (PSL) at 275 nm.   m/z =193 is mass to charge ratio of vitexin.   Analysed by 
UHPLC-ESI-MS using the same conditions.  1= chlorogenic acid, 2=caffeic acid, 3=vitexin, 
4=ρ-courmaric acid, 5=quercetin, 6=hydrocinnamic acid, 7=caffeine.  Letters A-Q 
=unidentified compounds 
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Table ‎3-5: Identified compounds present in Piper sarmentosum Roxb. leaf 
extracts analysed using UHPLC-ESI-MS 

Peak 
Retention 

time 
(min) 

λ max                 
[M-H]¯ 

m/z 
Identified compound  

Extract 

PSE DFPSE PSL 

1 14.68 320 353 Chlorogenic acid (3CQA)    

 14.81 320 353 Neochlorogenic acid 
(5CQA) 

   

2 16.82 275 179 Caffeic acid    

3 19.61 320 431 Vitexin    

4 20.56 320 163 ρ-Coumaric acid    

5 24.44 360 360 Quercetin    

6 24.99 280 149 Hydrocinnamic acid    

7 27.76 320 193 Caffeine     

min=minute, lmax=wavelength showed the maximum absorbance, [M-H]¯ = molecular ion in 
negative mode, m/z = mass to charge ratio, Extract = Piper sarmentosum Roxb. leaf extracts 
extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL), = found  

 

Figure ‎3-30 shows chromatograms of PSE, DFPSE and PSL extracts compared to 

the standards 3CQA, 4CQA and 5CQA.  Chlorogenic acid (3CQA) was identified in 

PSE and DFPSE extracts according to the retention time (14.68 min) and m/z 

ratio (353) which matched the standard 3CQA.  However, as the retention time of  

the standard 5CQA (neochlorogenic acid) (14.805 min) is close to the retention 

time of the peak and it has the same m/z ratio (353) , then the PSE and DFPSE 

extracts could also be identified as containing 5CQA (appendix ‎A.1).  However, 

the tiny peak observed at 15.2 min does not represent 4CQA present in the PSE 

and DFPSE extracts due to an absence of a peak at retention time (15.2-15.8 min) 

with the same m/z as the standard 4CQA (appendix ‎A.2). 
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Figure ‎3-30: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard chlorogenic acid 
(3CQA), cryptochlorogenic acid (4CQA), neoochlorogenic acid (5CQA), mass-to-charge ratio 
(m/z) =353, retention time 14.68, 15.40, 14.80 min respectively, wavelength 320 nm. 

 

There are peaks shown at 16.82 min with a m/z ratio of 179 in PSE and DFPSE 

extracts, but not the PSL extract.  Using Table ‎3-4, the PSE and DFPSE extracts 

therefore contain caffeic acid.  The chromatograms are presented in Figure ‎3-31 

and appendix ‎A.3.    
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Figure ‎3-31: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard caffeic acid, mass-to-
charge ratio (m/z) =179, retention time 16.82 min, wavelength 320 nm 

 

According to the retention time and m/z ratio, vitexin was also identified in the 

PSE, DFPSE and PSL extract.  The chromatograms are presented in Figure ‎3-32 

and mass spectra are shown in appendix ‎A.4.    
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Figure ‎3-32: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard vitexin, mass-to-charge 
ratio (m/z) =431, retention time 19.61 min, wavelength 320 nm 

 

There were peaks in PSE and DFPSE extracts which had a retention time at 20.56 

min and showed the same mass-to-charge ratio (m/z) of 163.  This was identified 

as ρ-courmaric acid.  PSL extract showed no peak at 20.56 min.  The chromatograms 

are presented in Figure ‎3-33 and appendix ‎A.5. 
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Figure ‎3-33: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard ρ-courmaric acid, 
mass-to-charge ratio (m/z) = 163, retention time 20.56 min, wavelength 320 nm 

 

Only PSE and DFPSE showed peaks which were identified as quercetin.  The PSL 

extracts had no peak at 24.44 min, thus, no quercetin was present in PSL extracts.  

The chromatograms are presented in Figure ‎3-34 and appendix ‎A.6.    
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Figure ‎3-34: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard quercetin, mass-to-
charge ratio (m/z) =301, retention time 24.44 min, wavelength 360 nm 

 

All extracts (PSE, DFPSE and PSL) have shown peaks at 24.99 min with the same 

m/z ratio of 149 which is hydrocinnamic acid.  Therefore, all 3 extracts are found 

to contain hydrocinnamic acid.  Their chromatograms are shown in Figure ‎3-35 

and appendix ‎A.7. 
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Figure ‎3-35: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard hydrocinnamic acid, 
mass-to-charge ratio (m/z) =149, retention time 24.99 min, wavelength 275 nm 

 

All extracts (PSE, DFPSE and PSL) have shown peaks at 27.75 min with the same 

m/z ratio of 193 which is caffeine.  Therefore, all 3 extracts are found to contain 

caffeine.  Their chromatograms are shown in Figure ‎3-36 and appendix ‎A.8.    
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Figure ‎3-36: UHPLC-ESI-MS chromatograms of Piper sarmentosum Roxb. leaf extracts 

extracted using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol 
(DFPSE) and petroleum ether extracts (PSL) comparing to standard caffeine, mass-to-
charge ratio (m/z) =193, retention time 27.75 min, wavelength 275 nm 

 

The profile of PS leaf extracts in Figure ‎3-29 also shows unidentified peaks A to Q.  

Some of them such as peak H, I, K, L, M and P, have retention times close to the 

epicatechin, vanillic acid, rutin, taxifolin, phloridzin and naringenin standards 

respectively (Table ‎3-4).  The results in appendices ‎A.9-‎A.14 clearly show that 

these standard compounds are not present in PS extracts due to the absence of 

peaks found at the same retention times with the same m/z ratio as the 

standards.  With the limitation of a single quadrupole mass spectrometer which 

could not generate fragments, these unidentified compounds could not be 

defined directly.  To try and elucidate the type of compounds these unknown 

peaks represent, tentative compounds could be proposed as based on the 

characterisation of maximum absorbance (λ max) of the standards in Table ‎3-4.  
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The maximum absorbance of each unknown compound was determined 

(appendix ‎A.15) and the proposed compounds are shown in Table ‎3-6.  Peaks A, 

B, C and D are proposed to be cinnanic acid compounds due to their λ max being in 

the range 275-280 and their elution times close to the trans-cinnamic acid 

standard.  Peak E may be a benzoic acid compound due to its λ max and elution 

time being similar to the gallic acid standard.  Peak F could be a cinnamic acid 

compound due to its λ max being over 300 nm and elution time was close to 3CQA.  

Peaks  G and H are categorised as being cinnamic acid compounds due to their λ 

max being over 300 nm and retention times between the 4CQA and caffeic acid 

standards.  Peak I could be a benzoic compound due to its having an λ max and 

elution time very close to vanillic acid standard.  Peaks J and K could be major 

compounds present in the extracts.  They are considered to be flavones 

compounds due to their λ max (334 and 338 nm) and retention times close to rutin 

or vitexin standards.  Peak L and M are proposed to be cinnamic acid compounds 

as their λ max (319 and 317 nm) and retention time close to the ρ-courmaric acid 

standard.  The flavanone compounds also could be either peak N, O or P due to 

their λ max (290-300 nm) and elution time were between retention time of 

taxifolin and naringenin.  Peak Q, is proposed to be a flavone compound due to its 

λ max (352 nm) and elution time being similar to the pattern of quercetin or 

flavones group.  According to the results, an alkaloid was identified as caffeine.  

Four cinnamic acids were identified as 3CQA or 5CQA, caffeic acid, ρ-courmaric 

acid and hydrocinnamic acid.  Ten tentative cinnamic acid compounds and a 

tentative benzoic acid compound were proposed.  Cinnamic acid and benzoic acid 

are subgroups of phenolic acids.  Two flavones were identified as vitexin and 

quercetin.  Three tentative flavones and 3 tentative flavanones compounds were 
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proposed.  Flavones and flavanones are subgroup of flavonoids.  Flavones J and 

flavones K are main compounds present in PSE and DFPSE extracts.  Vitexin, 

flavones J and flavones K are in flavonoids groups.  In total, an alkaloid, 15 

phenolic acid compounds and 8 flavonoid compounds were identified, so this 

indicates that Piper sarmentosum Roxb. leaf extracts are a rich source of phenolic 

acids and flavonoids, so it is a good source of antioxidants.   

 

Figure ‎3-37: Chemical structure of the compounds found in Piper sarmentosum Roxb. leaf 

extracts which are in phenolic acid group, cinnamic acid subgroup.  Adapted from Giada 
(2013a)   

 

 

Figure ‎3-38: Chemical structure of the compounds found in Piper sarmentosum Roxb. leaf 

extracts.  Vitexin and quercetin are in flavonoid group.  Caffeine is an alkaloid compound.  
Adapted from Giada (2013a) and Azam et al. (2003) 
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Table ‎3-6: Propose tentative compounds present in Piper sarmentosum Roxb. leaf 
extracts analysed using UHPLC-ESI-MS 

Peak 
Retention 

time 
(min) 

λ max                 Tentative compound  
Extract 

PSE DFPSE PSL 

A 4.5 280 Cinnamic acid A    

B 5.2 263 Cinnamic acid B    

C 6.3 289 Cinnamic acid C    

D 7.5 352 Cinnamic acid D    

E 9.6 278 Benzoic acid E    

F 13.5 306 Cinnamic acid F    

G 15.5 323 Cinnamic acid G    

H 16.0 315 Cinnamic acid H    

I 16.5 277 Cinnamic acid I    

J 18.5 334 Flavones J    

K 19.1 338 Flavones K    

L 21.5 319 Cinnamic acid L    

M 21.9 317 Cinnamic acid M    

N 22.5 290 Flavanones N    

O 24.0 290 Flavanones O    

P 25.5 300 Flavanones P    

Q 29.2 352 Flavones Q    

min=minute, lmax=wavelength showed the maximum absorbance,  
m/z = mass to charge ratio, Extract = Piper sarmentosum Roxb. leaf extracts extracted  
using 80 % ethanol (PSE), defatted leaf extracts extracted using 80 % ethanol (DFPSE)  
and petroleum ether extracts (PSL), = found 
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3.4.3 Quantification of the compounds present in Piper sarmentosum 

Roxb. leaf extracts 

Quantification of the identified phenol compounds and caffeine that were present 

in the Piper sarmentosum Roxb. leaf extracts (PSE, DFPSE, PSL) was performed by 

preparing standard curves as shown in Figure ‎3-39.  The measurement was done 

in triplicate according to the maximum wavelength of each standard.  As 3CQA 

could also be 5CQA, the quantification was carried out using 3CQA to represent 

its amount (using the standard curve of 3CQA).  The results are presented in 

Table ‎3-7.  According to the results, there was no significant difference in the 

chlorogenic acid present in the DFPSE extract compared with the PSE extract.  

Caffeic acid and ρ-coumaric acid are higher in the DFPSE extract than in the PSE 

extract with significance (p<0.05).  Vitexin levels are found to be significantly 

higher among the extracts (p<0.05).  The amount of vitexin in the PSE extract is 

higher than in DFPSE and found in only a small amount in the PSL extract.  

Quercetin presented in both PSE and DFPSE extracts are found to be significantly 

different (p<0.05).  The amount of hydrocinnamic acid is found to be significantly 

different for all extracts (p<0.05).  The highest amount is obtained in PSL extract.   

The amount of caffeine is highest in the PSL extract and found to be significantly 

different to PSE and DFPSE extracts (p<0.05), while the  caffeine present in the 

DFPSE extract is less than in the PSE extract with no significant difference.   
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Figure ‎3-39: Calibration curves of standard caffeine 0-100 mg/L at 275 nm (A), standard 

hydrocinnamic aicd 0-100 mg/L at 275 nm (B), standard quercetin 0-100 mg/L at 360 nm 
(C), standard ρ-courmaric acid 0-100 mg/L at 320 nm (D), standard caffeic acid 0-100 
mg/L at 320 nm (D), standard chlorogenic acid (3CQA) 0-100 mg/L at 320 nm (D) and 
standard vitexin 0-100 mg/L at 320 nm (D) for quantifying the identified compounds using 
UHPLC-ESI-MS.  Results are expressed as mean±SE of triplicated analysis.     
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Table ‎3-7: The quantification of identified compounds contained in Piper sarmentosum 

Roxb. leaf extracts analysed by UHPLC-ESI-MS 

Peak Compound 
RT 

(min) 
λ 

max                
[M-H]¯ 

m/z 

mg / 100 g dried weight 

PSE DFPSE PSL 

1 3CQA, 5CQA 14.68 320 353 75.59+1.19a 101.88+2.78a ND 

2 Caffeic acid 16.82 275 179 75.42+0.02a 81.15+0.17b ND 

3 Vitexin 19.61 320 431 150.32+0.01a 115.23+0.65b 7.20+0.27c 

4 ρ-Coumaric 
acid 

20.56 320 163 27.20+0.37a 33.58+0.03b ND 

5 Quercetin 24.44 360 301 5.58+0.01a 5.13+0.01b ND 

6 Hydrocinnamic 
acid 

24.99 275 149 16.52+0.45a 11.25+0.60b 44.98+1.89c 

7 Caffeine  27.76 320 193 28.66+0.14a 12.21+0.44a 551.84+1.03b 

Results are reported as mean±SE mg/100 g of dried weight, RT= retention time (minute), λmax = 
wavelength shows the highest absorbance, [M-H]¯ = molecular ion in negative mode, PSE = 
Piper sarmentosum Roxb. leaf extracts extracted using 80 % ethanol, DFPSE = defatted 
Piper sarmentosum Roxb. leaf extracts extracted using 80 % ethanol, PSL = Piper 
sarmentosum Roxb. leaf extracts extracted using petroleum ether, ND = not detected.  
Values with similar letters within row are not significantly difference (p<0.05, n=3)  

 

A number of studies have reported the presence of flavonoids, phenolic acids and 

alkaloids in different parts of Piper sarmentosum Roxb. (Ugusman et al., 2012; 

Sim et al., 2009; Subramaniam et al., 2003).  Caffeine (1, 3, 7-trimethylxanthine) 

is an alkaloid compound which can show both antioxidant activity and 

prooxidant activity (Yashin et al., 2013; Farah and Donangelo, 2006; Azam et al., 

2003; Shi et al., 1991).  Standard phenolic compounds and caffeine which were 

available in the Food Chemistry Laboratory were used for this study.  Of the 

standard polyphenols chosen for analysis, many of them have very close 

retention times.  It is therefore essential to use an advance technique which is 

appropriate for identification.  The technique of using mass spectrometry has 

been employed by a number of researchers to identify phenols in plants, food or 

beverage samples such as fruit, vegetables, seeds, wine, beverages etc. 



145 
 

(Puigventos et al., 2015; Brito et al., 2014; Ghasemzadeh and Jaafar, 2013; Zhang 

et al., 2013; Jimenez et al., 2011; Fattouch et al., 2008; Alonso-Salces et al., 2004; 

Ma et al., 2004).  This study used a single quadrupole mass spectrometer to 

detect the mass of the molecular ions of phenols present in PS leaf extracts.  The 

chromatograms produced by the DFPSE extracts were almost like to those found 

in the PSE extracts.  However, the peaks were different for the PSL extract 

(Figure ‎3-29).  The different profiling of PSL extracts may result from using 

petroleum ether for extraction which is non polar.  The compounds present in the 

PS leaf which are less polar or are non-polar will be extracted better using 

petroleum ether and will be eluted after higher polarity compounds (such as 

phenolic acids).  However, with this method, it could detect a few compounds in 

the PSL extracts which reflect to ineffectiveness of binary gradients.  This is also 

true for the 3CQA and its isomers (4CQA or 5CQA) which have the same 

molecular mass.  So, it is not possible to distinguish them by using their m/z ratio 

and their retention time is almost the same.  This may be improved by adjusting 

the binary gradient with a longer cycle time.  Aladedunye and Matthaeus (2014) 

analysed phenolic compounds from rowanberry fruit extract using a reverse 

phase column and mobile phase the same as this present study.  The binary 

gradient of mobile phase B (0.1 % formic acid in acetonitrile) was set to gradually 

increase and the cycle time was lengthened to 70 min.  The 3CQA, 4CQA and 

5CQA were then perfectly separated and eluted at different times.  By improving 

the binary gradient such as gradually increasing the acetonitrile proportion and 

time, more compounds such as flavonoids may also be found in PSL extract due 

to these compounds being lipophilic.  Several studies have identified component 

compounds of Piper sarmentosum Roxb.  Ugusman et al. (2012) reported the 
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finding of rutin and vitexin (51.93 mg/100 g dried weight) in leaf extracted using 

water.  The amount of vitexin in this present study are higher.  Rukachaisirikul et 

al. (2004) reported the presence of quercetin and myricetin in leaf extracted 

using aqueous methanol and stigmasterol was found in fruit extracted using the 

same solvent.  Subramaniam et al. (2003) reported naringenin present in 

methanol treated leaf extract.  Myricetin, rutin and naringenin were not found in 

this study.  Niamsa and Chantrapromma (1983) reported the finding of 

hydrocinnamic acid in leaf extracted using petroleum ether which was in 

agreement to this study.  Likhitwitayawuid et al. (1987) reported the presence of 

β-sitosterol in leaf and fruit extracted using petroleum ether.  Suzgec et al. (2005) 

also extracted Helichrysum compactum leaf using petroleum ether and reported 

an abundance of flavonoid compounds present in the extract.  The difference of 

their findings to this study may attribute to many factors such as the variation of 

plant sources, extraction protocols (different concentrations or extraction 

procedures) and method of analysis.  Likhitwitayawuid et al. (1987) extracted PS 

leaf powder using petroleum ether at 40-60 °C which was much lower than this 

study (250 °C), while Niamsa and Chantrapromma (1983) and Suzgec et al. 

(2005) did not state the temperature used.  In their studies, they also treated 

their petroleum ether extracts further using different polarity solvent 

concentrations and passed the extracts through a chromatography column.  The 

techniques used to identify compounds present in the extract were also different 

to this study.   Rukachaisirikul et al. (2004) and Likhitwitayawuid et al. (1987) 

used a NMR technique.  Ugusman et al. (2012) used HPLC and used similar 

mobile phases to this study but different binary gradients, flow rate and cycle 

time.  Therefore, using different methods can result in different findings.  
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Figure ‎3-37 and Figure ‎3-38 show the 7 identified compounds (3CQA, caffeic 

acid, vitexin, ρ-courmaric acid, quercetin, hydrocinnamic acid and caffeine).  It 

has been noted that phenolic acids and their esters are widely distributed in 

plant tissue at a cellular and subcellular level and they have a high antioxidant 

activity depending on the number of hydroxyl groups in the molecule, especially 

chlorogenic acid and caffeic acid.  Chlorogenic acid has higher antioxidant activity 

than caffeic acid and ρ-courmaric acid.  As seen in Figure ‎3-37, chlorogenic acid 

has 3 hydroxyl groups in the molecule while caffeic acid has 2 hydroxyl groups 

and ρ-courmaric acid has 1 hydroxyl groups in the molecule (Pandey and Rizvi, 

2009).  Flavonoids with free hydroxyl groups act as free radical scavengers and 

multiple hydroxyl groups, especially in the B-ring (Figure ‎1-7), enhance their 

antioxidant activity (Yanishlieva, 2001).  The structure of  vitexin has 7 hydroxyl 

groups and quercetin has 5 hydroxyl groups (Figure ‎3-38).  The total phenol 

content, total flavonoid content and antioxidant capacity of the extracts examined 

in chapter ‎3.2 may result from some of these compounds including the tentative 

compounds A to Q.  The flavonoid content and antioxidant activity of PSL extract 

may result from vitexin, hydrocinnamic acid, caffeine and tentative flavones Q.  

Based on the literature reviewed, it seems no studies had ever reported the 

presence of caffeine in this plant (Piper sarmentosum Roxb.) and also no one has 

reported finding vitexin and caffeine in petroleum ether extracts.   

3.5 Preliminary studies of frying oil 

The work in this section firstly looks to understand the behaviour of oil when 

exposure to frying temperature.  The focus then moves to finding synthetic 

antioxidant free commercial oil.  The information acquired will give a better 

understanding of the deterioration pattern of oil and give information on what is 
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occurring during heating, analytical parameters and analytical methods to be 

used in the final stage of the study.   

3.5.1 Effect of repeated frying on the physical and chemical 

characteristics of the oils   

The aim of this experiment is to understand the behaviour of oil when subject to 

frying temperature (190 °C).  The information obtained will be used to create a 

frying method, as well as to determine the analytical parameters to be used for 

further experiments. 

3.5.1.1 Effect of repeated frying on oil colour 

A test was carried out to observe colour changes of the heated oils using a 

photometric method.  The results of this test are shown in Figure ‎3-40.  The 

colour of both oils used for frying McCain® and Morrison® chips sharply 

increased in darkness from the 1st day to the 6th day of frying compared to the 

un-used oil (day 0).  In addition, the colour of the oil used to fry Morrison® chips 

was darker than the oil used to fry McCain® chips, possibly due to the longer 

frying time (3.5 min).  The results of the present study are in agreement with 

many studies, such as the results reported by Plimon (2012).  They found the 

colour of blended oil was darker as the number of fryings were performed.  The 

study by Aladedunye and Przybylski (2009) reported canola oil which was 

heated at 185 OC and 215 OC, had increased in colour after frying each day.  The 

study of Baixauli et al. (2002) showed an increase in darkness in sunflower oil 

colour after frying battered squid rings.  Takeoka et al. (1997) had reported 

seven types of frying oils (soybean salad oil, corn oil, soybean liquid frying 

shortening, canola salad oil, cottonseed oil, canola liquid frying shortening, beef 
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tallow) which were heated at 190 °C for 8 days, and all had increased in 

photometric colour index as frying days increased.  The darkening of the frying 

oil could be caused by substances from fried foods (sugar, starch, protein, 

phosphate, sulphur compound and trace metal) that collect in the oil during 

frying.  These substances can brown themselves or react with the oil and cause 

the oil to darken (Lawson, 1995). 

 

Figure ‎3-40: Changes of rapeseed oil colour at different frying days.  The photometric colour 

value is expressed as mean±SE of triplicate analysis 

 

3.5.1.2 Effect of repeated frying on oil smoke point 

The smoke point of the oils was determined and the results are shown in 

Figure ‎3-41.  The overall trend of the smoke point temperature of the oils was a 

decrease from day 1 to day 6 of frying when compared with the un-used oil  

(day 0).  The smoke point of the oil used to fry Morrison® chips was lower than 

the oil used to fry McCain® chips, possibly due to the longer frying time (3.5 min).  

The smoke point of the oil was used for frying Morrison® chips had dropped in 

temperatures from 183.7 °C to 178 °C (day 1 to day 2) before rising up to 188 °C 
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in day 3, then the temperatures gradually decreased to 155 °C by day 6.  The 

smoke point of the oil which was used for frying McCain® chips also showed 

fluctuation.  The smoke point was in general decreased over time but was 145 °C 

on day 4, 160 °C on day 5 and then 155 °C on day 6.  This result is in agreement 

with the study by Man and Hussin (1998).  They found the smoking point of palm 

olein oil and coconut oil used for frying potato chips at 180 °C for 5 days, declined 

over the frying days.  The declination of smoking point results from the oil 

breaking down to free fatty acids, which happens during heating the oil.  The 

longer heating time, the more free fatty acids are produced (Bockisch, 1998).  

The amount of smoke released from the frying oil is directly proportional to the 

amount of free fatty acids and volatile compounds (low molecular weight 

decomposition products) in the degraded oil (Tarmizi and Ismail, 2008).  The 

free fatty acids and other volatiles leaving the fat as vapours will appear as 

smoke when their concentration is high enough to permit aggregation to colloidal 

size particles (Man and Hussin, 1998).  Whilst this assay is still used for 

monitoring the changes in frying oil as it can relate to free fatty acids, some 

researchers stated the disadvantage of using this method.  According to Wu and 

Nawar (1986) and Warner (2002), the smoking point assay is a visual inspection 

which has less repeatability or reproducibility as it is difficult to notice the first 

temperature that produces continuous smoke from the oil, so they did not 

recommend this method for assessment of the quality of oil.  Although, the 

present study has clearly results of decreasing smoking point as the days of 

frying increase, it also shows some difficulties as seen in day 4 to 5 for the frying 

oil used for frying Morrison® chips.  Thus, the author agrees with the view of 
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Warner (2002) and Wu and Nawar (1986) as it is difficult to notice the first thin 

continuous smoke stream.   

 

Figure ‎3-41: Changes of smoke point in rapeseed oil at different frying days.  Temperature is 

expressed as mean±SE of triplicate analysis 

 

3.5.1.3 Effect of repeated frying on oil viscosity 

The oil samples were measured to evaluate the impact of thermal degradation on 

oil viscosity.  The results, as shown in Figure ‎3-42, indicate that the viscosity of 

the oils increase with frying time.  Both oils used for frying McCain® and 

Morrison® chips gradually increased in viscosity over time.  The frying oil from the 

Morrison® chips was more viscous than the frying oil from the McCain® chips, 

possibly due to longer frying time (3.5 min).  The increasing viscosity attributes to the 

formation of high molecular weight and polar compounds, such as polymers and 

cyclic fatty acids, which are products from a polymerisation reaction (Warner, 

2002).  These results are similar to the study of Santos et al. (2005).  They heated 

cooking oils up to 190 OC for 8 hours and found that the viscosity of the cooking 
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oils increased in direct proportion to frying time and was caused by oxidation 

and polymerisation. 

 

Figure ‎3-42: Changes of viscosity in rapeseed oil at different frying days.  The value is 

expressed as mean±SE of triplicate analysis  

 

3.5.1.4 Effect of repeated frying on acid value of oil 

The hydrolysis reaction which occurs in frying oil causing triglycerides and 

diglyceride to be converted to free fatty acids and glycerol resulting in the 

rancidity of the oils.  The changes of this reaction can be monitored by 

determining the acidity (or can be expressed as free fatty acids) of heated oils.  As 

can be seen in Figure ‎3-43, the acid value of the oils used for frying McCain® and 
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acidity of the heated oils are a result of a hydrolysis reaction which is generated 

by 3 factors: water, steam and oxygen (Choe and Min, 2007).  Water will react 

with the ester linkage of triacylglycerol and produce di and monoaclyglycerol, 

glycerol and free fatty acids (Choe and Min, 2007).  The acid value of the oil used 

for frying Morrison® chips is higher than the oil used for frying McCain® chips, 

possibly due to the water or moisture present in the chips.  Higher amounts of 

water or moisture can hydrolyse the oil rapidly (Dana et al., 2003) and faster 

than steam (Pokorny, 1989).  The moisture present in Morrison® chips may be 

higher than McCain® chips due to the bigger size or volume of the Morrison® 

chips, so relating to a higher in acid value.  

 

Figure ‎3-43: Changes of acid value in rapeseed oil at different frying days.  The value is 

expressed as mg potassium hydroxide (KOH)/gram oil, mean±SE of triplicate analysis 
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samples fluctuated during frying time, as seen in Figure ‎3-44.  There was a sharp 

increase on the first day of frying from 8.76 to 50 meq/kg for Morrison® chips 

and to 29.37 meq/kg for McCain® chips.  After that the PV dropped for both oils 

but increased on day 5 for the oil which fried Morrison® chips before decreasing 

on day 6.  The PV of Morrison® chips were higher than McCain® chips, this 

probably due to the longer frying time of Morrison® chips (3.5 min).  The 

fluctuation of PV during frying time is similar to findings reported by Marinova et 

al. (2012), Farhoosh and Moosavi (2009), Baixauli et al. (2002) and Nawar 

(1984).  They found that the PV of frying different vegetable oils had shown an 

increase during the early stages of frying followed by a decrease.  The 

fluctuations of peroxides were caused by the frying temperatures as they are 

sensitive to high temperatures.  Peroxides can be destroyed at the high frying 

temperature used because they can undergo further reactions such as oxidation, 

dimerisation and polymerisation (Choe and Min, 2007) but can reform during 

cooling (Fritsch, 1981).  Therefore, peroxide value might not be a good indicator 

for analysing the oxidative reaction (Paul et al., 1997; Fritsch, 1981). 
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Figure ‎3-44: Peroxide value in rapeseed oil at different frying days.  The value is expressed as 

milli equivalence (meq) oxygen/kilogram (kg) oil, mean±SE of triplicate analysis 

 

3.5.1.6 Effect of repeated frying on ρ-Anisidine value and TBA value of oil 

The secondary oxidative products of lipid oxidation can be monitored by  

ρ-Anisidine value or TBA value.  The TBA assay can be also expressed as TBA 
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standard curve used for malonaldehyde calculation range 0 to 1.20 µmol/mL is 

shown in Figure ‎3-47.  The results determined by the 3 different methods show a 

similar increasing trend as seen in Figure ‎3-45 to Figure ‎3-46 and Figure ‎3-48.  

All methods show an increase in value over the number of frying days.   
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Figure ‎3-45: ρ-Anisidine value in rapeseed oil at different frying days.   The value is expressed 

as mean±SE of triplicate analysis  

 

 

Figure ‎3-46: 2-Thiobarbituric acid value (TBA value) in rapeseed oil at different frying days.  

The value is expressed as mean±SE of triplicate analysis  
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Figure ‎3-47: Standard curve of 1,1,3,3-tetrethoxypropane (TMP) 0-1.20 µmol/mL in 1-butanol 

for determining TBA reactive substances (TBARS) at a wavelength of 532 nm.  Results are 
expressed as mean±SE of triplicated analysis 

 

 

Figure ‎3-48: TBA reactive substance (TBAR) in rapeseed oil at different frying days.  The value 

is expressed as mean of malonaldehyde equivalent±SE of triplicate analysis 
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the oil used for frying McCain® chips (due to Morrison® chips having a longer 

frying time).  The fluctuation of TBA values were caused by frying temperature.  

The TBA values are representative to the secondary stage of lipid oxidation.  The 

products which are unstable, can undergo further reactions such as oxidation and 

polymerisation (Choe and Min, 2007; Pegg, 2005a).  The results of ρ-Anisidine 

value in heated oils of this study are similar to the studies reported by Ammari et 

al. (2012), Naz et al. (2004), Man and Hussin (1998) and Rade et al. (1997).  

Ammari et al. (2012) reported an increasing ρ-Anisidine value in sunflower oil 

which was heated at 140 °C as the heating time increased from 60 to 180 min.  

Naz et al. (2004) found the ρ-Anisidine value in olive oil, corn oil and soybean oil 

used for frying 158 French fries at 180 °C for 30, 60 and 90 min, increased as 

frying time increased.  Man and Hussin (1998) reported the ρ-Anisidine value in 

palm olein oil frying potato chips at 180 °C for 5 days,  increased as frying days 

increased.  Rade et al. (1997) found an increasing of ρ-Anisidine value in palm 

olein oil used for frying French fries as frying hours increased.  In addition, the 

increase of TBA value from this present study is also in agreement with the study 

by Man and Tan (1999).  They reported the TBA value in palm olein used for 

frying potato chips at 180 °C for 7 consecutive days showed a continuous 

increase over the frying days.  However, the study of frying French fries in canola 

oil at 185 °C and 215 °C by Aladedunye and Przybylski (2009) and the study of 

frying chips in coconut oil by Man and Hussin (1998) showed a different trend of 

ρ-Anisidine value from the present study.  They found the ρ-Anisidine value 

increased in the first day of frying and declined in the following days.  This may 

be attributed to the very low content of unsaturation of the oils they used 

(Arumughan et al., 1984) or it might have already taken part in polymerisation as 
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aldehyde products are quite reactive (Berger, 1984).  When, TBA values 

(Figure ‎3-46) are expressed as malonaldehyde equivalents (TBAR, Figure ‎3-48), 

the values also show some fluctuations over frying time which were affected by 

frying temperature, but both figures have a similar increasing trend.  However, 

the TBA value is a semi-quantitative classical assay with some limitations and 

may give falsely high readings (Pegg, 2005b).  The limitations are due to 

interferences by non-oxidation substances and are also affected by the method 

employed (extraction or distillation).  For this reason, the limitations can be 

avoided by using a standard curve (Pegg, 2005b), so it is TBARS assay. 

In summary, the results of these experiments show that the secondary 

degradation products are produced in the oils.  This can be determined using the 

ρ-Anisidine assay and TBA assays (TBA and TBARS value).  For further experiments  

in this study, the ρ-Anisidine assay will be used for determining Totox value. 

3.5.1.7 Total oxidation value (Totox value) of repeated frying oil 

Totox value is a combination of primary and secondary oxidation products.  It is 

the summation of the peroxide value and ρ-Anisidine value, thus, this value will 

reflect the overall outcome of the oxidation reactions.  In other words, if the 

peroxide value and/or ρ-Anisidine value is increased, the Totox value will be 

increased.  The results for Totox value is shown in Figure ‎3-49.  It shows an 

increasing trend versus length of frying period.  The Totox value of the oil used to 

fry Morrison® chips is higher than the oil used for frying McCain® chips.  The 

data shows the Totox value sharply increases in the 1st day of frying from 19 to 

119 for the oil frying Morrison® chips, and from 19 to 68 for the oil frying 

McCain® chips.  Then, the values of the 2 oils show a gradual increase over the 

frying time.  This is the result of the sharp increase in the 1st day of frying of the 
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peroxide value as seen in Figure ‎3-49.  The results of this study are in agreement 

with the study by Man and Hussin (1998).  They reported the Totox value of palm 

olein oil used for frying potato chips increased over the frying time, while, the 

Totox value of coconut oil used for frying potato chips decreased after the second 

till the last day of frying.   

 

Figure ‎3-49: Totox value of the rapeseed oil at different frying days.  The value is expressed as 

summation of 2(peroxide value) + ρ-Anisidine value 

 

3.5.1.8 Effect of repeated frying on total polar compounds of oil 

The amount of total polar compounds in the oil samples after frying McCain® 
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frying Morrison® chip and 1.21+0.25 % in the oil used for frying McCain® chip.  

The results also indicate that the rate of formation of polar compounds in the oil 
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than the oil used for frying McCain® chips (increase from 1.21 % to 63.35 %).  It 

shows that the two oils increased in percent polar compounds over the frying 
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days.  This finding is similar to the researches by Aladedunye and Przybylski 

(2009), Tarmizi and Ismail (2008), Xu et al. (1999), Man and Hussin (1998), Rade 

et al. (1997) and Takeoka et al. (1997).  Aladedunye and Przybylski (2009) found 

the total polar compounds increased almost linearly with the frying time at a rate 

affected by frying temperature. Tarmizi and Ismail (2008) found the polar 

compounds increased in plam olein oil and special palm olein as the frying time 

increased.  Xu et al. (1999) reported total polar compounds in all 6 oil types 

increased significantly during frying and were strongly correlated with frying 

time (p<0.001, r >0.964).  Rade et al. (1997) found the polar compounds 

contained in the oils during frying French fries increased in relation to frying 

time.  Takeoka et al. (1997) reported the amount of polar compounds contained 

in all 7 different cooking oils heated at 190 °C and 204 °C increased over the 

number of heating days, and the oils heated at 204 °C contained more polar 

compounds than the oils heated at lower temperature.  Man and Hussin (1998) 

found increasing polar compounds in palm olein oil used for frying potato chips 

in respect to frying days, as well as in coconut oil.  Polar compounds are a result 

of hydrolysis and oxidation reactions occurring during heating the oils.  They are 

composed of breakdown products, non-volatile oxidised derivatives, polymeric 

and cyclic substances including non-triglyceride materials soluble in, emulsified 

in or suspended in oil (Rossell, 2001a; Xu et al., 1999; Paul et al., 1997; Stevenson 

et al., 1984).  Total polar compounds have been considered as a good and 

important indicator of frying oil quality.  As cyclic monomers, decomposed 

products from oil degradation are highly harmful and so food authority agencies 

or food regulators in many countries have set the maximum amount of total polar 
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compounds present in the frying oil which varies from country to country, from 

23-28 % (Rossell, 2001a; Paul et al., 1997). 

 

Figure ‎3-50: Percentage of total polar compounds in rapeseed oil at different frying days.   

                   The value is expressed as mean±SE of triplicate analysis  
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p<0.01) among indices of acid value,  ρ-Anisidine value, TBA value, colour, smoke 

point and viscosity, but weak correlation with peroxide value.  Therefore, these 

indicators could be chosen for monitoring quality changes in repeatedly heated oil 

in this experiment.  While, the peroxide value could not be used alone itself due 

to it has weak correlation to other indices.  The findings from this experiment are 

in agreement with the previous study by Takeoka et al. (1997) who found total 

polar compounds in cooking oils had high correlation with colour index.  Xu et al. 

(1999) also found high positive correlation between total polar compounds with 

colour change and the acid value.   

Table ‎3-8: Pearson’s coefficient correlation (r) of the oil quality indicators used for 

frying Morrison® chips 

Correlation (r) TPC AV PV ANI TBA COL SMOKE 

AV 0.979**       

PV 0.401  0.438      

ANI 0.978** 0.964** 0.249     

TBA 0.931** 0.960** 0.398 0.914**    

COL 0.978** 0.952** 0.265 0.986** 0.916**   

SMOKE -0.953** -0.968** -0.489 -0.912** -0.969** -0.939**  

VISC 0.969** 0.949** 0.310 0.980** 0.919** 0.955** -0.890** 

 **,* correlation is significant at the 0.01 level, 0.05 level (2-tailed) respectively.  TPC = total polar 
compounds, AV=acid value, PV=peroxide value, ANI=ρ-Anisidine value, TBA=TBA value, 
COL=colour, SMOKE=smoke point, VISC=viscosity 

 

In conclusion, the results revealed that the oils used for frying chips at 190 °C 

show deterioration which increases over the frying days.  The oils have changed 

in physical and chemical properties.  For physical changes, it shows an increase 

in colour (darker) and viscosity, while the smoke point decreases.  For chemical 
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changes, the peroxide values show fluctuation, acid value increases over frying 

time as does the ρ-Anisidine value, TBA value and the total polar compounds.  

Table ‎3-9: Pearson’s coefficient correlation (r) of the oil quality indicators used for 

frying McCain® chips 

Correlation (r) TPC AV PV ANI TBA COL SMOKE 

AV 0.959**       

PV 0.405 0.309      

ANI 0.985** 0.964** 0.351     

TBA 0.843* 0.813* 0.438 0.904**    

COL 0.996** 0.968** 0.439 0.983** 0.859*   

SMOKE -0.954** -0.959** -0.547 -0.956** -0.888** -0.973**  

VISC 0.995** 0.973** 0.391 0.993** 0.859* 0.992** -0.964** 

    **,* correlation is significant at the 0.01 level, 0.05 level (2-tailed) respectively.  TPC = total polar 
compounds, AV=acid value, PV=peroxide value, ANI=ρ-Anisidine value, TBA=TBA value, 
COL=colour, SMOKE=smoke point, VISC=viscosity  

 

In addition, the results from this study have revealed that deterioration of the 

frying oils is not only influenced by the number of frying days but also is 

attributed to the length of frying time (3.5 minutes for Morrison® chips and 3 

minutes for McCain® chips).  Although, it was the same food (chip) a different 

size related to a different frying time.  It could also be that the food has moisture 

which relates to an increase in acid value.  This shows that there is an influence of 

the food being fried on the deterioration rate of heated oil.  Therefore, food was 

not taken into account in further experiments so that the deterioration of the oil 

alone can be monitored.  The frying or heating temperature will also be adjusted 

to 180 °C according to the good frying practice which is recommended by DGF 

(2008).  Based on the correlation results, it shows that the changes in colour, 

viscosity, acid value, ρ-Anisidine value, TBA value, Totox and total polar 
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compounds, can be used as indicators for deterioration of frying oil.  It also 

shows that the testing methods used in the study are suitable too.  However, 

there were concerns with the method of smoke point and peroxide value.  Even 

though this study had a clear result for smoke point the method is based on 

visual inspection and so the results cannot be guaranteed to be accurate and/or 

precise.  Thus, this method was not used in further experiments.  For the 

peroxide value, as it is an intermediate compound in primary lipid oxidation, 

which can decompose further and also reform, it is not a good indicator for frying 

oil. 

3.5.2 Oxidative stability of stripped and unstripped palm olein oil in 

the presence of Piper sarmentosum Roxb. leaf extracts   

In order to gain a clear observation of the effect of using natural antioxidants in 

cooking oils, a synthetic antioxidant free oil is required.  Oils stripped of natural 

antioxidants have been used by a number of studies (Atares et al., 2012; Zhong 

and Shahidi, 2012; Khan and Shahidi, 2000) where the existing natural 

antioxidant originally present in the oil, such as tocopherol, were removed.  

Different adsorbents have been used such as silicic acid, celite 545, activated 

charcoal or aluminium oxide (Atares et al., 2012; Khan and Shahidi, 2000).  The 

study by Khan and Shahidi (2000) reported that the existing natural antioxidants 

cannot be guaranteed to be completely removed and the proportion removed for 

each compound may be different depending on the efficiency of the adsorbent 

material used.  Nevertheless, the method used for removing natural antioxidants 

will be used to see if it can remove the synthetic ones in this present study.  The 

aim of this study is to find oil free of synthetic antioxidants and use it for further 

experiments.  The effect of PSE extract on oxidative stability of stripped and 
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unstripped palm olein oil using ρ-Anisidine as a representative assay are 

presented in Table ‎3-10.  In general,  the ρ-Anisidine value in the unstripped oil 

and stripped oil with and without adding PSE show a gradual increase, although, 

the values do fluctuate during the incubation time.   

Table ‎3-10: Effect of Piper sarmentosum Roxb. leaf extracts (PSE) on ρ-Anisidine value of 

palm olein oil (Oleen®)which was passed and unpassed aluminium oxide 

Oil 
PSE 

(%) 

ρ-Anisidine value 

24 h 48 h 72 h 96 h 120 h 

Un- 

stripped    

0 6.02+0.06a,b,A 6.10+0.10a,A,B 6.39+0.05a,B 6.83+0.05a,C 6.27+0.11a,b,B 

0.02 5.86+0.27a,b,A 6.60+0.05b,B 6.53+0.09b,d,B,C 6.83+0.05a,C 6.89+0.14c,B,C 

0.05 6.36+0.09a,A 6.92+0.00c,B 6.92+0.06d,B,C 7.22+0.10b,C,D 7.55+0.06e,D 

0.1 6.33+0.37b,A 7.05+0.05c,A,B 6.80+0.09b,d,A,C 7.14+0.09b,B,D 6.86+0.09c,A,D 

Stripped   0 5.82+0.06a,A 5.88+0.10d,A,B 6.42+0.05a,C 6.69+0.00a,D 6.08+0.05a,B 

0.02 6.29+0.00a,b,A 6.56+0.00b,B 6.72+0.06b,c,C 7.17+0.05b,D 7.18+0.06d,D 

0.05 5.95+0.06b,A 6.10+0.05a,B 6.56+0.05a,c,C 6.66+0.06a,C 6.40+0.10b,C 

0.1 6.30+0.05b,A 6.23+0.05a,A 6.73+0.06b,c,B 6.80+0.05a,B 7.19+0.05d,C 

Un-stripped = oil was unpassed through the activated aluminium oxide, stripped = oil was passed 
through the activated aluminium oxide, h = hour.  The value was expressed as mean + SE of 
triplicate analysis.  Different capital letters in the same row are significant difference at 
p<0.05.  Different normal letters within each column are significantly different at p<0.05.   

 

The ρ-Anisidine value of unstripped and stripped oils for each concentration, 

show a significant increase over incubation time after 72 hours onward 

compared to 24 h (p<0.05).  Comparing, the effect of PSE extract, the unstripped 

oil and stripped oil without adding PSE (0 % PSE) shows no significant difference 

of ρ-Anisidine value at 24, 72, 96 and 120 hours.  At 0.02 % PSE, the ρ-Anisidine 

value of unstripped and stripped oil shows no significant difference at 24, 48 and 

72 hours, while, they show a significantly different ρ-Anisidine value at 96 and 

120 hours (p<0.05).  At 0.05 % PSE, the ρ-Anisidine values of unstripped and 
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stripped oil are gradually increasing.  The stripped oil has a slightly lower  

ρ-Anisidine value than the unstripped oil with significant difference through the 

incubation periods (p<0.05).  At 0.1 % PSE, the results are varied.  On the whole 

the unstripped oil fluctuates over the storage time whilst the stripped oil shows a 

general increase over time and has a general slightly lower ρ-Anisidine value 

than the unstripped oil with a significant difference at 48, 72 and 96 hours of 

incubating time (p<0.05).  The results of this experiment indicate that the PSE 

does not work well in stabilising the oil neither in the unstripped oil or stripped 

oil, compared to the control oil (0 % PSE).  It implies the oils used in the experiment 

may contain other compounds which can interfere with the activity of the PSE 

extract or may have stronger protective effect over the PSE extract.  These results 

differ from the study by Zhang et al. (2010).  They found the ρ-Anisidine value in 

sunflower oil with added rosemary extract were lower than the unstripped oil 

under storage at 60 °C for 21 days.  Hras et al. (2000) reported the ρ-Anisidine 

values in sunflower oil with added rosemary extract, ascorbyl palmitate and citric 

acid during storage at 60 °C for 12 days, were also lower than the unstripped oil.  

Mariod et al. (2010) reported the ρ-Anisidine values in rice bran oil with added 

defatted rice bran extract during storage at 70 °C for 168 hours, were lower than 

the control oil and were lower when the amount of the extract was increased.  It 

has been noticed that they used synthetic antioxidant free oils for the studies 

which were supplied directly from oil manufacturers.  In this study, the oils were 

purchased from a local supermarket and synthetic antioxidants were not declared 

on the label.  Therefore, synthetic antioxidants such as butylated hydroxyanisole 

(BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydroquinone (TBHQ), 

may be present in oil and the stripping process may be unable to remove them.  
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Therefore, it is very important to have the synthetic antioxidant free oil for this 

research study to fully understand the effects of adding PSE extracts. 

3.5.3 Determination of synthetic antioxidants in cooking oils  

The common synthetic phenol compounds also known as synthetic antioxidants 

used in cooking oils are butylated hydroxyanisole (BHA), butylated hydroxytoluene 

(BHT) and tertiary butyl hydroquinone (TBHQ).  They were added to prevent or 

delay the lipid oxidation (autoxidation) during processing and storage time (Saad 

et al., 2007).  Synthetic antioxidants are mostly unlisted in product labels (Dengate, 

2015).  The results in chapter ‎3.5.2, showed the ρ-Anisidine values of the unstripped 

oil and stripped oil with added PSE extracts are higher than the unstripped oil, as 

well as, there being no significant difference between the unstripped oil and 

stripped oil (0 % PSE) themselves.  It means the unstripped oil (0 % PSE) had 

better oxidative stability than the oil treated with PSE extracts.  The results led to 

the suspicion that the oils might contain active phenol compounds especially 

synthetic antioxidants which may have an impact on PSE activity.  Therefore, the   

aim of this study was to prove the hypothesis that the oil used in chapter ‎3.5.2 

contained synthetic antioxidants, to check that aluminium oxide cannot remove 

synthetic antioxidants present in commercial cooking oil and to find synthetic 

antioxidant free cooking oils for use in this research study.  It is necessary to use 

a reliable detection method.  A HPLC method was optimised and used to identify 

synthetic antioxidants by comparing with the relevant standards: butylated 

hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl 

hydroquinone (TBHQ). 
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3.5.3.1 Optimisation of the HPLC method 

To find the best conditions for identifying synthetic antioxidants, several trials 

were carried out.  The conditions used for each trial and chromatograms are 

shown in Appendix B.  Reverse phase column (C18), photodiode array (PDA) at 

280 nm and standard BHA were used throughout the trials (chapter ‎2.12.2).  The 

final optimised HPLC method was achieved at the 8th trial conditions.  By using 

this final method, chromatograms of standard TBHQ and BHT were also 

obtained.  The chromatogram of the mixed standards of BHA, BHT and TBHQ  

250 mg/L shows a good resolution with stable base line (Figure ‎3-51).  

Therefore, synthetic antioxidants (BHA, BHT and TBHQ) in cooking oil could be 

analysed. 

 

Figure ‎3-51: HPLC chromatogram of mixed standard TBHQ, BHA and BHT 250 mg/L, elution 

time at 3.60, 4.0 and 5.75 min, respectively.  Mobile phase A was 1 % acetic acid in water, 
mobile phase B = acetonitrile.  The flow rate was 0.8 mL/min of isocratic binary gradients 
(10 % A:90 % B).  The cycle time was 20 min, injection volume was 20 µL and column oven 
was 45 °C. 
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antioxidants by comparing retention time with mixed standard BHA, BHT and 

TBHQ 250 mg/L.  The retention times of the 3 standard synthetic antioxidants at 

280 nm are 3.65 + 0.08 min for TBHQ, 4.03 + 0.08 min for BHA and 5.52 + 0.05 

min for BHT, as seen in Figure ‎3-52.  The results are shown in Figure ‎3-53 to 

Figure ‎3-57.    

 

Figure ‎3-52: HPLC chromatogram of mixed standard synthetic antioxidants 250 mg/L: TBHQ 

(tertiary butyl hydroquinone, retention time 3.65±0.08 min), BHA (butylated 
hydroxyanisole, retention time 4.03±0.08 min) and BHT (butylated hydroxytoluene, 
retention time 5.52±0.05 min) at 280 nm  

 

 

Figure ‎3-53: HPLC Chromatogram for identification of synthetic antioxidants in corn oil 

Sainsbury’s® at 280 nm. 
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Figure ‎3-54: HPLC Chromatogram for identification of synthetic antioxidants in rapeseed oil 

Yor® at 280 nm 

 

 

Figure ‎3-55: HPLC Chromatogram for identification of synthetic antioxidants in rapeseed oil, 
Sainsbury’s® at 280 nm 

 

Figure ‎3-56: HPLC Chromatogram for identification of synthetic antioxidants in rice bran oil, 

King® at 280 nm 
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Figure ‎3-57: HPLC Chromatogram for identification of synthetic antioxidants in rapeseed oil, 

Yorkshire® at 280 nm  

 

According to the results, there are only 3 oils free from synthetic antioxidants; 

corn oil (Sainsbury’s®), rapeseed oil (Yor®) and rice bran oil (King®).  The rest of 

them contained only BHA (rapeseed oil Sainsbury’s® and Yorkshire®).  Among 

the 3 oils which are free from synthetic antioxidants, the corn oil (Sainsbury’s®), 

and rice bran oil (King®) will be selected for further experiments throughout the 

study because they are easier to source.   
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oils 
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studying Figure ‎3-58 to Figure ‎3-59.  In both the normal Oleen® oil (not passed 

through aluminium oxide) and the stripped oil (passed through aluminium 

oxide) peaks which match with the retention times of the standard TBHQ, BHA 

and BHT are found as shown in Figure ‎3-58 and Figure ‎3-59. 
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Figure ‎3-58: HPLC Chromatogram of normal palm olein oil (Oleen®)(A) which has not passed 

through aluminium oxide and stripped Oleen® oil (B) which has passed through aluminium 
oxide, at 280 nm 
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Figure ‎3-59: HPLC Chromatogram of normal rice bran oil (Alfa 1®)(A) which has not passed 

through aluminium oxide and stripped Alfa 1® oil (B) which has passed through aluminium 
oxide, at 280 nm 
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the doubt on the Oleen® oil used in the previous experiment (chapter ‎3.5.2) as it 

has been proven to contain BHA, BHT and TBHQ.  Several studies have prepared 

purified edible oils for oxidative studies using aluminium oxide to remove 

natural antioxidants such as tocopherols in oils.  The expectation of removing 

natural antioxidants is to determine the effects without them.  However, the 

stripping process may not always be required, therefore, the natural antioxidants 

would be kept in the oil and the PS extract added for additional protection.  The 

previous experiment (chapter ‎3.5.2) showed neither the unstripped oil nor the 

stripped oil with added PSE extracts has oxidative stability lower than the control 

oils (0 % PSE).  In reality it may not be necessary to remove all natural 

antioxidants in cooking oils.  Therefore, the synthetic antioxidant free oil used in 

further studies would not be stripped to determine the possibility of Piper 

sarmentosum Roxb. leaf extract replacing synthetic antioxidants in frying oil.  

According to the studies of Yasho Industries (2015), Omura (1995) and Sherwin 

(1972), they reported the antioxidants TBHQ,  BHA and BHT demonstrated a 

synergistic effect when they were used in combination or mixtures.  Thus, the use 

of all 3 synthetic antioxidants together in Oleen® oil is more effective in protect 

the autoxidation of the oil.  This may lead to the results in the previous 

experiment (chapter ‎3.5.2) that showed neither the unstripped oil nor the 

stripped oil with added PSE extracts has an oxidative stability lower than the 

control oil (0 % PSE).  The findings of this chapter support the notation of 

Dengate (2015) that synthetic antioxidants are the most hidden of all additive.  

The author had examined the labels of the oils used in this current study, and 

found no synthetic antioxidant be listed on the labels at all.  This is due to 

exemptions of ingredients used in small quantities that need not be declared 
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according to the food labelling regulations 1996, UK (Food Standard Agency, 

2015).  According to the results, the reverse phase HPLC UV/Vis analytical 

method optimised for used in this study, showed a good separation of peaks for 

the 3 standards BHA, BHT and TBHQ.  Therefore, the optimised conditions as 

well as the extraction procedure for sample preparation, illustrate that this 

method is suitable for the determination of synthetic antioxidants in edible oils.  

The attempt to remove synthetic antioxidants in the oils by passing them through 

aluminium oxide applying the stripping oil process failed.  However, three brands 

of commercial cooking oils were found to be free from synthetic antioxidants.  

With both corn oil (Sainsbury’s®) and rice bran oil (King®) being easy to source.  

These oils will be used for further experiments in this study.   

3.6 Antioxidant activity of Piper sarmentosum Roxb. leaf 

extracts on quality changes in rice bran oil and corn oil 

under mild temperature  

A trend in searching for natural antioxidants of polyphenol extracts from various 

parts of plants has been researched for decades.  Numerous studies were 

reported on the antioxidant activities of the herb or spice extracts, such as 

rosemary, on oxidative stability of vegetable oils under storage conditions 

(Frankel et al., 1996; Lee and Sher, 1984; Chang et al., 1977).  Regarding the results in 

chapter ‎3.2 and chapter ‎3.4, Piper sarmentosum Roxb. leaf extract can be a new 

source of  natural antioxidant.  No studies have reported the use of PS extract to 

inhibit lipid oxidation in edible oils.  Therefore, the antioxidant activity of PS leaf 

extract on protecting lipid oxidation of vegetable oils (rice bran oil and corn oil) 

under storage condition would be the first examined by this study.  The oxidative 



177 
 

stability of the edible oils can be evaluated by storing them at room temperatures 

20-25 °C (time consuming) or accelerated storage at 60-63 °C in an oven (Schaal 

oven test) which is more rapid (Shahidi and Wanasundara, 1997).  It has been 

observed that one day of storage under the Schaal oven condition is equivalent to 

one month’s storage at room temperatures 20-25 °C (Pegg, 2005a; AbouGharbia 

et al., 1996).  The aim of this study was to know the protective effect of Piper 

sarmentosum Roxb. leaf extract on autoxidation of the oils.   

3.6.1 Effect of Piper sarmentosum Roxb. leaf extracts on peroxide 

value in rice bran and corn oils under accelerated storage 

conditions Antioxidant activity of Piper sarmentosum Roxb. leaf 

The influence of PSE and PSL extracts during accelerated storage on peroxide 

value in the rice bran and corn oils are presented in Figure ‎3-60 to Figure ‎3-63.  

As shown in Figure ‎3-60, the peroxide values of rice bran oil show an increasing 

trend with all samples over the storage time.  The peroxide value of the oil with 

added BHT is the lowest.  The oils with the PSE extracts at all levels illustrate a 

lower peroxide value than the synthetic antioxidant free oil from 72 hours 

onwards.  The peroxide values of corn oil with and without PSE extracts and BHT 

show an increasing trend over the storage time, as shown in Figure ‎3-61.  The 

synthetic antioxidant free corn oil has the highest peroxide value compared to all 

samples, while, the corn oil with added BHT is the lowest with exception of the 

oil with PSE 0.02 % at 72 hours.  In general, the PSE extract at 0.02 % in rice bran 

oil and corn oil showed a lower peroxide value than at other concentrations.   
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Figure ‎3-60: Effect of PSE extracts on peroxide value of rice bran oil during storage at 60±3 °C 

for 120 hours.  The value is expressed as milli equivalence (meq) oxygen/kg oil, mean±SE 
of triplicate analysis.  R =  rice bran oil, S = PSE extract, T = BHT, % = percentage added 

 

 

Figure ‎3-61: Effect of PSE extracts on peroxide value of corn oil during storage at 60±3 °C for 

120 hours.  The value is expressed as milli equivalence (meq) oxygen/kg oil, mean±SE of 
triplicate analysis.  C =  corn oil, S = PSE extract, T = BHT, % = percentage added 
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The peroxide value of the rice bran oil with and without PSL extracts also show 

an increasing trend with storage time, as seen in Figure ‎3-62.  The lowest 

peroxide values are found in the rice bran oil with added BHT.  The highest 

peroxide values are obtained in the oil with added petroleum ether extracts 

(PSL) at 0.2 %.  After a storage time of 24 hours, the peroxide values in all the oils 

with added all amounts of the PSL extract are found to be higher than the control 

oil values.  

 

 

Figure ‎3-62: Effect of PSL extracts on peroxide value of rice bran oil during storage at 60±3 °C 

for 120 hours.  The value is expressed as milli equivalence (meq) oxygen/kg oil, mean±SE 
of triplicate analysis.  R =  rice bran oil, L = PSL extract, T = BHT, % = percentage added 
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obtained by the oil with added BHT.  Amongst the oils treated with PSL extract, 

the oils with 0.01 % PSL extracts seem to give a lower peroxide value than others. 

 

 

Figure ‎3-63: Effect of PSL extracts on peroxide value of corn oil during storage at 60±3 °C for 

120 hours.  The value is expressed as milli equivalence (meq) oxygen/kg oil, mean±SE of 
triplicate analysis.  C =  corn oil, L = PSL extract, T = BHT, % = percentage added 
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study by Aladedunye and Matthaeus (2014) reported the rapeseed oil with added 

polyphenolic fractions from rowanberry and crabapple fruit extract showed a 

lower increasing peroxide value than the synthetic antioxidant free oil but higher 

than the oil with added BHT throughout accelerated storage hours.  They 

assumed the lower antioxidant activity of the extracts compared to BHT may be 

due to the influence of some compounds in the extracts acting as pro-oxidants.      

The rice bran oils and corn oils with added PSE extracts demonstrate a lower 

peroxide value than the synthetic antioxidant free oils which is different to the 

results of the oils with added PSL extracts.  The oils with added PSL extracts 

show a higher peroxide value than the synthetic antioxidant free oil and the oil 

with added BHT.  This means the PSL extract does not exhibit a positive trend to 

protect oxidation in both oils which is opposite to the PSE extract.  This may be 

due to the PSE extract having a variety and higher amount of polyphenols 

(flavonoids and phenolic acids) than the PSL extract, as seen in chapters ‎3.4.2 

and ‎3.4.3, which resulted from using different extraction solvents.  Also, the 

effectiveness of PSE extract may be due to its polarity as the effectiveness of 

phenolic antioxidants in bulk oil is dependent on their hydrophilic or lipophilic 

capacity (Yanishlieva, 2001).  The PSE extract was extracted using 80 % ethanol, 

so it is more polar than the PSL extract which was extracted using petroleum 

ether (non polar).  The PSL extract was found to have a high content of caffeine 

(Table ‎3-7) which may provide pro-oxidant activity when present in high 

amounts (Azam et al., 2003; Shi et al., 1991). 
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3.6.2 Effect of Piper sarmentosum Roxb. leaf extracts on ρ-Anisidine 

value and TBA value in rice bran and corn oils under 

accelerated storage conditions 

3.6.2.1 The effect on ρ-Anisidine value 

The ρ-Anisidine value of the rice bran oils treated with the PSE extracts and the 

controls are presented in Figure ‎3-64.  The values of all the samples are 

increasing over the time, with the oil with added BHT illustrating the lowest ρ-

Anisidine  value.  The rice bran oil treated with 0.01 % and 0.02 % PSE extracts 

demonstrate higher ρ-Anisidine values than rice bran oil treated with 0.05 %, 0.1 

% and 0.2 %.   Also, corn oil with added PSE extract 0.1 % and 0.2 % showed 

higher ρ-Anisidine values than corn oil with added PSE extract 0.01 %, 0.02 % 

and 0.05 %.  It showed a lower ρ-Anisidine value in rice bran oil with added PSE 

extract 0.2 % and in corn oil with added PSE extract 0.01 %. 

 

Figure ‎3-64: Effect of PSE extracts on ρ-Anisidine value of rice bran oil during storage at  

60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  R = rice 
bran oil, S = PSE extract, T = BHT, % = percentage added 
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The ρ-Anisidine value of the corn oils treated with PSE extracts including the 

controls show no clear difference between them from 0 to 48 hours of storage  

(Figure ‎3-65).  Most of them show an increasing ρ-Anisidine value except the oil 

treated with 0.1 % PSE extract which shows fluctuation.  The oil with added BHT 

has a fairly stable ρ-Anisidine value throughout the time.  The negative control oil 

without PSE extracts shows the highest ρ-Anisidine value after 72 hours storage.   

 

Figure ‎3-65: Effect of PSE extracts on ρ-Anisidine value of corn oil during storage at 60±3 °C 

for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  C = corn oil, S = 
PSE extract, T = BHT, % = percentage added 
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in the oils with added the PSL extracts are higher than the synthetic antioxidant 

free oil through the 120 hours. 

 

Figure ‎3-66: Effect of PSL extracts on ρ-Anisidine value of rice bran oil during storage at  

60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  R = rice 
bran oil, L = PSL extract, T = BHT, % = percentage added 
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amount of the extracts, the lower ρ-Anisidine value.  These results are in agreement 

with the findings of Mariod et al. (2010).  They reported that the ρ-Anisidine value 

of rice bran oil with added rice bran extract was higher than the oil with added 

BHA, but lower than the synthetic antioxidant free oil and the higher amount of 

the extract, the lower ρ-Anisidine value. 

 

Figure ‎3-67: Effect of PSL extracts on ρ-Anisidine value of corn oil during storage at 60±3 °C 

for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  C = corn oil, L = 
PSL extract, T = BHT, % = percentage added 
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3.6.2.2 The effect on TBA value 

The 2-thiobarbituric acid (TBA) value of the rice bran oil and corn oil with added 

PSE extracts as well as the synthetic antioxidant free oils are shown in 

Figure ‎3-68 and Figure ‎3-69.  They show an increasing TBA value over the 

storage time.  The TBA value of the control oil with added BHT rice bran oil and 

corn oil are quite stable.  The rice bran oils and corn oils treated with the PSE 

extracts show a lower TBA value than the synthetic antioxidant free oils but are 

higher than the control oils with added BHT.  The lower TBA value in rice bran oil 

and corn oil were produced when 0.1 % PSE extract and 0.05 % PSE extract were 

added respectively.   

 

Figure ‎3-68: Effect of PSE extracts on 2-thiobarbituric acid value (TBA) of rice bran oil during 

storage at 60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  
R = rice bran oil, S = PSE extract, T = BHT, % = percentage added 
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Figure ‎3-69: Effect of PSE extracts on 2-thiobarbituric acid value (TBA) of corn oil during 

storage at 60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  
C =  corn oil, S = PSE extract, T = BHT, % = percentage added 
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increased over storage time which was lower than the synthetic antioxidant free 

oil and also lower than the oil with added BHT.     

 

Figure ‎3-70: Effect of PSL extracts on 2-thiobarbituric acid value (TBA) of rice bran oil during 

storage at 60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  
R = rice bran oil, L = PSL extract, T = BHT, % = percentage added 

 

 

Figure ‎3-71: Effect of PSL extracts on 2-thiobarbituric acid value of corn oil during storage at 

60±3 °C for 120 hours.  The value is expressed as mean±SE of triplicate analysis.  C = corn 
oil, L = PSL extract, T = BHT, % = percentage added 
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The results in this present study showed a relationship where increasing PSE 

extract gives a lower TBA value in both oils, which is in agreement with the study 

of Mariod et al. (2010).  They reported the TBA value of rice bran oil with added 

defatted rice bran extract increased over storage time.  The higher concentration 

of rice bran extract added the lower TBA value.  However, the TBA value of oil 

with added rice bran extract were higher than the oil added with BHA, which was 

the same pattern as this present study. 

3.6.3 Effect of Piper sarmentosum Roxb. leaf extracts on total 

oxidation value (Totox value) in rice bran and corn oils under 

accelerated storage conditions 

As shown in Figure ‎3-72, the Totox value of rice bran oil with all samples shows 

an increasing trend throughout the storage time. Between 24 to 96 hours of 

storage, the Totox value of the oils with added PSE extracts at all concentrations 

are similar to the synthetic antioxidant free oil.  At the storage time of 120 hours, 

the oils with added PSE extracts show a lower Totox value than the synthetic 

antioxidant free oils.  This  indicates that the PSE extracts have shown a positive 

effect on protecting the oil from oxidation.  However, throughout the storage 

time, the oil with added BHT has exhibited a superior protective effect than the 

other samples.  The slow increasing Totox values in the first 72 hours of storage 

and then the sharp increase at the end of storage time, may be due to the multiple 

effects from the inherent natural antioxidants (oryzanol or tocopherol) and PSE 

extract to protect against lipid oxidation.  The longer storage time, the lower the 

concentration of antioxidants present to protect the oils.  Thus, the Totox value 

showed a sharp increase at the end of storage time. 
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Figure ‎3-72: Effect of PSE extracts on Totox value of rice bran oil during storage at 60±3 °C for 

120 hours.  The value is expressed as 2(peroxide value)+ρ-Anisidine value.  R = rice bran 
oil, S = PSE extract, T = BHT, % = percentage added 
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Figure ‎3-73: Effect of PSE extracts on Totox value of corn oil during storage at 60±3 °C for 120 

hours.  The value is expressed as 2(peroxide value)+ρ-Anisidine value.  C =  corn oil, S = PSE 
extract, T = BHT, % = percentage added 
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Figure ‎3-74: Effect of PSL extracts on Totox value of rice bran oil during storage at 60±3 °C for 

120 hours.  The value is expressed as 2(peroxide value)+ρ-Anisidine value.  R = rice bran 
oil, L = PSL extract, T = BHT, % = percentage added 

 

 

Figure ‎3-75: Effect of PSL extracts on Totox value of corn oil during storage at 60±3 °C for 120 

hours.  The value is expressed as 2(peroxide value)+ρ-Anisidine value,  C =  corn oil, L = PSL 
extract, T = BHT, % = percentage added 
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In addition, in rice bran oil, it also shows a negative effect relating to the amount 

of PSL extract added as a higher Totox value is found with higher amount of 

added PSL extract.  The order of Totox value of the rice bran oil with added PSL 

extracts is 0.2 % > 0.1 % > 0.05 % > 0.01 %.  However, it has been noticed that 

the Totox value in rice bran oils is quite high at the start.  This was a resulted 

from the initial high ρ-Anisidine value in rice bran oils, as show in Figure ‎3-64 

and Figure ‎3-66.   

The effectiveness of the oils treated with PSE extracts are similar to the findings 

of Hashemi et al. (2011) on sunflower oil.  They reported the Totox value of the 

oils with added Zataria multiflora extracts, increased over the storage time which 

was lower than the synthetic antioxidant free oil but higher than the oil with 

BHT.  The Totox value found in rice bran oils with and without PSE extracts, are 

higher than corn oils.  It is likely the extracts are working better in corn oil as can 

be seen by the close values of the 0.02 % and 0.1 % PSE extracts to the oil with 

added BHT.  It is suspected that the phytochemical compounds present in the PSE 

extract (chapter ‎3.4) may have a greater effect on endogenous antioxidants in the 

corn oil than in rice bran oil.  Corn oil is a rich source of tocopherols and 

tocotrienols (Table ‎1-6) particularly γ-tocopherol which has the highest 

antioxidant activity among other isomers (Shahidi, 2005b; O'Brien, 2004; 

Yanishlieva, 2001; White, 2000).  Zhu et al. (2000) reported natural flavonoids 

(kempferol, morin, myricetin and quercetin) showed a protective activity against 

the depletion of α-tocopherol.  Reblova and Okrouhla (2010) reported α-

tocopherol was preserved during the heating of sunflower oil at 180 °C by 

phenolic acids; gallic acid, caffeic acid and gentisic.  Jennings and Akoh (2009) 

reported no significant difference in the γ-oryzanol content in rice bran oil before 
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and after enzymatic modification which indicated that γ-oryzanol did not exert 

any antioxidant effects.  Therefore, it is likely the PSE extracts work better in corn 

oil.  In this study, the increasing concentration of PSE extract showed a positive 

trend by lowering the peroxide value, ρ-Anisidine value, TBA value and Totox 

value in both oils.  In contrast, the increasing concentration of PSL extract 

showed the opposite effect by increasing these values which were higher than 

the synthetic antioxidant free oils.  This pro-oxidant activity may be caused by 

some compounds which are present in the extracts such as caffeine.  Caffeine has 

been reported to possess antioxidant activity but has shown pro-oxidant 

properties when present in high amounts (Yashin et al., 2013; Azam et al., 2003; 

Shi et al., 1991).  Due to the different polyphenol compounds present in the 

extracts, polyphenol compounds present in the PSE extract may have stronger 

antioxidant activity than in the PSL extract.  It is important to note here that 

autoxidation can occur immediately in the presence of heat, light, metal, 

chlorophyll or several initiations under mild conditions (Gunstone, 2004; 

Frankel, 1998b).  Pigments contained in PSE and PSL extract such as chlorophyll 

may therefore be involved in the ineffectiveness of the extracts due to photo-

oxidation, which is an alternative route leading to the formation of 

hydroperoxides (Gordon, 2001).  A final point to note is that the results in some 

test samples of this study showed the fluctuation of the peroxide value, ρ-

Anisidine value and TBA values.  This is due to the fact that lipid oxidation is a 

dynamic process, it tends to increase reach the maximum value and then decline.  

The products produced in these stages are unstable, so they can break down, 

reform or form  new compounds (Pegg, 2005a).  
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3.7 Performance of the Piper sarmentosum Roxb. leaf  

extracts on quality changes in rice bran oil and corn oil  

at frying temperature 

Synthetic antioxidants such as BHA, BHT, TBHQ and PG, are added to the oils to 

inhibit rancidity.  These compounds give a good efficiency under room or mild 

temperature conditions but not at frying temperatures as they decompose, so fail 

to protect the oil (Allam and Mohamed, 2002; Hamama and Nawar, 1991).  Also, 

from a safety issue, synthetic antioxidants promote carcinogenesis (Race, 2009).  

A large number of studies have been under taken to replace them with new 

antioxidants from natural sources but these mostly have been tested at storage 

temperatures, rather than during frying conditions.  As Piper sarmentosum Roxb. 

leaf extracts extracted using 80 % ethanol (PSE) and extracted using petroleum 

ether (PSL) have the highest antioxidant activity and heat resistance (chapter ‎3), 

PS leaf extract could be a new source of natural antioxidant.  No studies have 

applied the use of PS extract to inhibit thermal deterioration of frying oils.  

Therefore, the antioxidant activity of PS leaf extract on protecting thermal 

degradation of repeatedly heated oil at frying temperatures would be the first 

investigated by this study.  According to the findings of preliminary studies of 

frying oil in chapter ‎3.5,  the study by Brown (2013) and the study by Zhang and 

Taher (2012), frying temperature, frying time (number of frying and length of 

frying) and food being fried, have an effect on the degradation of the oils.  The 

higher the temperature, the increase in number of fryings, the longer frying time 

and the more food being fried, the more degraded the oils become.  Zhang and 

Taher (2012) also reported replenishing the oil could retard the oxidation but 

the acid values looked similar so there might not be an effect on hydrolysis.  
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Therefore, the frying model for this experiment will be based on these studies.  

The rice bran and corn oils will be treated with the PSE and PSL extracts and 

continuously heated at 180 °C without food particles and without replenishing.   

Also, the concentration of PSE and PSL extracts were chosen based on the finding 

in chapter ‎3.2.  As some samples showed a positive trend when increasing the 

concentration of PSE, and PSL extracts at 0.05 % showed less fluctuation of TBA 

value than other concentrations in both oils, the concentrations of PSE and PSL 

extracts will be studied at 0.05 %, 0.1 % and 0.2 %.  To compare the effectiveness 

between the PS extract and synthetic antioxidants, BHT was chosen as positive 

control due to most of countries allow to be used in the oils rather than TBHQ 

(Shahidi, 2005b).  The aim of this study was to evaluate the ability of PSE and PSL 

extracts to stabilise the changes in rice bran oil and corn oil during frying and 

determine their possible use as natural antioxidant in these frying oils. 

3.7.1 Effects of Piper sarmentosum Roxb. leaf extracts on acid value in 

rice bran and corn oils at frying temperature 

Figure ‎3-76 to Figure ‎3-77,  present the acid value results of rice bran oil and 

corn oil which were heated at 180 °C in total for 25 hours over 5 consecutive 

days.  Both the rice bran oil and corn oil samples illustrate the acid values 

increased over the heating time.  It indicates that high temperatures had an effect 

on the total acid value of the oils.  The negative control oils (rice bran oil and corn 

oil without added extracts)  had a higher acid value than other samples.  The rice 

bran oil and corn oil with added PSE and PSL extracts are significantly (p<0.05)  

lower in acid value, compared to the both negative and positive control oils, after 

5 hours of heating.  The rice bran oil with added PSE extract at 0.2 % and the oil 

with added PSL extract at 0.1 % show a significantly lower and more stable acid 
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value than both the synthetic antioxidant free oil and the oil with added BHT 

after start of heating (p<0.05).  The corn oils with added PSE and PSL extracts 

showed significantly lower acid values than the synthetic antioxidant free oil 

over the heating period and behaved as the oil with added BHT as no significant 

difference was found (p<0.05). 

 

Figure ‎3-76: Effect of PSE and PSL extracts on acid values of rice bran oil heated at 180 °C for 

25 hours.  The values are expressed as mg potassium hydroxide (KOH)/g rice bran oil, 
mean±SE of triplicate analysis.  Different letters for each heating hours are significantly 
different at p<0.05. R = rice bran oil, S = PSE extract, L = PSL extract, T = BHT, % = 
percentage added 
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Figure ‎3-77: Effect of PSE and PSL extracts on acid values of corn oil heated at 180 °C for 25 

hours.  The values are expressed as mg potassium hydroxide (KOH)/g corn oil, mean±SE of 
triplicate analysis.  Different letters for each heating hours are significantly different at 
p<0.05.  C = corn oil, S = PSE extract, L = PSL extract, T = BHT, % = percentage added 
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of the rice bran and corn oils are illustrated in Figure ‎3-78 to Figure ‎3-79 

respectively.  The protective effect of the PSE and PSL extracts in rice bran oil can 

be seen clearly after 5 hours of heating.  The PSE and PSL extracts at all 

concentrations show an effective effect over the synthetic BHT (except the 0.1 % 

PSE extracts after 18 hours of heating) in rice bran oil.  The most effective 

concentrations of PSE and PSL extracts in rice bran oils is 0.05 % which resulted 

in the lowest peroxide values throughout the heating procedure.     

 

Figure ‎3-78: Effect of PSE and PSL extracts on peroxide values of rice bran oil heated at 180 °C 

for 25 hours.  The values are expressed as milli equivalent (mEq) active oxygen/kg rice 
bran oil, mean±SE of triplicate analysis.  R = rice bran oil, S = PSE extract, L = PSL extract,  
T = BHT, % = percentage added 
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Figure ‎3-79: Effect of PSE and PSL extracts on peroxide values of corn oil heated at 180 °C for 

25 hours.  The values are expressed as milli equivalent (mEq) active oxygen/kg corn oil, 
mean±SE of triplicate analysis. C = corn oil, S = PSE extract, L = PSL extract, T = BHT,  
% = percentage added 
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found with increasing concentrations of the extract, the peroxide values were 

lower, so they were more resistant to thermal oxidation of the oils.  The 

effectiveness of PSE and PSL extract in this frying study is different to the 

accelerated storage results (chapter ‎3.6).  In the accelerated storage study, BHT 

showed the most effective protection effect, PSE extract at 0.02 % showed a 

positive trend in both rice bran and corn oils, but not PSL extract.  The positive 

protective effect from both extracts may be influenced by the temperature.  The 

variation in temperature may change the mechanism of action of some 

antioxidants and result in their effectiveness (Yanishlieva, 2001).  Marinova and 

Yanishlieva (1992) reported at 100 °C α-tocopherol exhibits greater effectiveness 

than at room temperature by reducing the rate of oxidation when the 

temperature increased.  As seen in Figure ‎3-79 with the corn oils supplemented 

with PSE and PSL, all concentrations show a lower peroxide value than the 

synthetic antioxidant free oil.  The PSL extract at 0.05 % offers the best inhibition 

effects.  All concentrations of PSE extracts (0.05 %, 0.1 % and 0.2 %) lose their 

inhibition performance after frying for 20 hours compared to the oil with added 

BHT.  It is likely PSL extracts work better at frying temperatures than the 

accelerated storage study.  This is suspected as the effect of phytochemical 

compounds present in the extract such as quercetin or caffeine may show a 

greater effectiveness when the temperature is increased.  Elhamirad and 

Zamanipoor (2012) reported that at 180 °C, quercetin had the most effective 

antioxidant activity compared to catechin, gallic acid and caffeic acid.  The study 

by Bera et al. (2006) showed a small increase in peroxide value of flaxseed oil 

with added ajowan extract when the temperature was increased from 25-200 °C.  

While, the normal flaxseed oil without the extract had a sharp increase in 
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peroxide value when the temperature was increased.  This meant the natural 

extract could have a greater protective effect on the lipid oxidation when the 

temperature increased.  However, caffeine showed a negative effect when the 

concentration is increased.         

3.7.3 Effects of Piper sarmentosum Roxb. leaf extracts on 2-

thiobarbituric acid reactive substance (TBARS) value in rice 

bran and corn oils at frying temperature 

According to the results in chapter ‎3.5.1.6, it showed the limitation of using TBA 

assay.  Thus, in this experiment the formation of secondary lipid oxidation 

products was monitored using TBARS assay expressed as malonaldehyde  

instead.  Using a standard curve of 1, 1, 3, 3-tetraethoxypropane (TMP) range  

0-1.20 µmol/mL (Figure ‎3-47), the results of TBARS in rice bran and corn oils 

with added PSE and PSL extracts are presented in Figure ‎3-80 to Figure ‎3-81 

respectively.  The rice bran and corn oils supplemented with PSE extracts, PSL 

extracts and BHT are lower in malonaldehyde than the synthetic antioxidant free 

oils.  Both synthetic antioxidant free oils have increasing malonaldehyde forming 

rates over the heating hours, whilst, the supplemented oils are lower with 

fluctuation throughout the heating time.  Rice bran oil and corn oil with added 

PSE and PSL extracts at some heating hours have lower malonaldehyde 

formation than the oils with added BHT.  This means PSE and PSL extracts show 

a positive protective effect over BHT. 
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Figure ‎3-80: Effect of PSE and PSL extracts on 2-thiobarbituric acid reactive substances 

(TBARS) in rice bran oil heated at 180 °C for 25 hours.  The values are expressed as µmol 
malonaldehyde equivalent/g rice bran oil, mean±SE of triplicate analysis. R = rice bran oil, 
S = PSE extract, L = PSL extract, T = BHT, % = percentage added 

 

 

Figure ‎3-81: Effect of PSE and PSL extracts on 2-thiobarbituric acid reactive substances 

(TBARS) in corn oil heated at 180 °C for 25 hours.  The values expressed as µmol 
malonaldehyde equivalent/g corn oil, mean±SE of triplicate analysis.  C = corn oil, S = PSE 
extract, L = PSL extract, T = BHT, % = percentage added 
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The fluctuation of the supplemented oils may be the result of the protective 

effects of those extracts and BHT to inhibit the hydroperoxide compounds 

formed in the primary stage of oxidation.  Polyphenols present in the PSE and 

PSL extracts may act as chain breaking antioxidants by scavenging free radicals; 

alkyl radicals or peroxyl radicals.  These radicals will react further to produce 

hydroperoxide and conjugated dienes (Frankel, 1998c).  Polyphenols donate 

hydrogen to these radicals to convert them into stable products (Yanishlieva, 

2001), reducing the amount of hydroperoxides or conjugated dienes produced.  

Hydroperoxides are precursors for malonaldehyde formation.  Thus, the less 

hydroperoxides, the less formation of malonaldehyde (Raharjo and Sofos, 1993).  

The amount of malonaldehyde forming throughout heating in both rice bran and 

corn oils is lower than the level to cause acute toxicity in rats (527 mg/kg or 

37.98 mol/g) as reported by Crawford et al. (1965).  It is also likely PSL extracts 

work better at frying temperatures as it did not exhibit protective effects in the 

accelerated storage study.  As discussed in chapter ‎3.6.3, this is also suspected to 

be the effect of polyphenols present in the extract such as caffeine which may 

show a greater effectiveness when the temperature is increased.  This hypothesis 

may be possible due to the finding of the study by Bera et al. (2006).  They 

reported that the flaxseed oil with added ajown extract showed an increasing 

protective effectiveness as very low TBAR values arose when the temperature 

was increased from 100 °C, 130 °C, 160 °C, 190 °C and 220 °C at 1, 2 and 3 hours 

of heating.  The normal flaxseed oil (without ajowan extract) showed a sharp 

increase in TBAR values throughout the heating time and temperatures.  With a 

longer heating time (3 hours) and temperature increased to over 160 °C, the 

ajown extract showed a greater effectiveness over the oil with added BHT. 
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3.7.4 Effects of Piper sarmentosum Roxb. leaf extracts on total polar 

compounds in rice bran and corn oils at frying temperature 

The major decomposition products of polymerisation of frying oil are non-

volatile polar compounds and triacylglycerol dimers and polymers (Choe and 

Min, 2007).  The determination of polar compounds contained in the frying oils is 

the most reliable parameter for monitoring the deterioration of the heated oils 

(Aladedunye, 2014; Shahidi, 2005a).  As shown in Figure ‎3-82 to Figure ‎3-83, the 

rate of formation of polar compounds in rice bran oil and corn oil are found to 

significantly (p<0.05) increase over the heating time.   This indicates that the high 

temperature has an effected on the formation of polar compounds.  The rice bran 

oil with added 0.2 % PSE extracts and all concentrations of PSL extracts show 

significantly lower polar compounds than synthetic antioxidant free oils and the 

oils with added BHT at 5, 15 and 25 heating hours.  The rice bran oil treated with 

0.2 % PSE extracts and 0.1 % PSL extracts also have significantly (p<0.05) lower 

polar compounds than the oils with added BHT after frying for 5 hours.  It is 

deduced that the 0.2 % PSE extracts and 0.1 % PSL extracts illustrate the highest 

protective effects on the rice bran oil.   
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Figure ‎3-82: Effect of PSE and PSL extracts on total polar compounds in rice bran oil heated at 

180 °C for 25 hours.  The values are expressed as mean±SE of triplicate analysis.  Different 
letters for each heating hours are significantly different at p<0.05.  R = rice bran oil, S = PSE 
extract, L = PSL extract, T = BHT, % = percentage added 

 

For the corn oil, as seen in Figure ‎3-83, the amount of polar compounds are 

increased over heating time.  The lowest polar contents are found in the corn oil 

with added 0.2 % PSE extract and 0.05 % PSL extracts which are significantly 

different (p<0.05) from the other samples.  So 0.2 % PSE extract and 0.05 % PSL 

extract demonstrate the highest protective effect on corn oil throughout the 

heating time.  The results from this study reveal that PSE and PSL extracts have a 

positive protective effect inhibiting polar compounds formation.  The effective 

amount of PSE extract in rice bran oil and corn oil was 0.2 %.   While, the effective 

amount of PSL extract in both oils was different, (0.1 % in rice bran oil and  

0.05 % in corn oil).  With these effective amount of the extracts, it may enough to 

scavenge free radicals between 5-25 hours.   
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Figure ‎3-83: Effect of PSE and PSL extracts on total polar compounds in corn oil heated at  

180 °C for 25 hours.  The values are expressed as mean±SE of triplicate analysis.  Different 
letters for each heating hours are significantly different at p<0.05.  C = corn oil, S = PSE 
extract, L = PSL extract, T = BHT, % = percentage added 
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were heated at 180 °C for 16 hours.  The results showed an increase in polar 

compounds over the heating hours.  A smaller increase in polar compounds was 

found in the oils with both extracts added which was not found to be significantly 

different.  These fortified oils showed a smaller increase in polar compounds than 

the oil with added BHT and normal rapeseed oil.  It is likely that BHT will lose 

performance to inhibit thermal lipid oxidation in the oil as an increase in polar 

compounds were not found to be significantly different to the synthetic 

antioxidant free oils throughout the heating times.  The failure of BHT during 

frying may be due to the losses through evaporation, decomposition and 

scavenging reactions (Augustin and Berry, 1983).  The results of this study 

indicated that the polyphenols present in the PSE or PSL extracts are more 

thermally stable than the synthetic antioxidant, BHT.  These results also illustrate 

that both extracts, particularly PSL extracts exhibit the protective effectiveness at 

frying temperatures or when the temperature was increased as it could not be 

seen from the previous accelerated storage study.  The temperature variation 

therefore may change the mechanism of action of some compounds present in 

the extracts which results in their greater effectiveness at high temperature 

(Yanishlieva, 2001).  This indicated by a number of studies such as the study by 

Fukasawa et al. (2009).  They reported mixed tocopherols were more effective 

than the rooibos tea extract in soybean oil at 120 and 140 °C, but the extract was 

significantly effective compared to the mixed tocopherols at 160 and 180 °C.  

Similarly, Bensmira et al. (2007) reported lavender and thyme incorporated in 

sunflower oil showed no effect at 25 °C but the extracts showed a dramatic 

increase in effectiveness on oil stability at 150, 180 and 200 °C.  Some 

polyphenols such as quercetin, catechin, gallic acid and caffeic acid, have been 
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compared in relation to their antioxidant activity when increasing the temperature 

to 180 °C (Elhamirad and Zamanipoor (2012).  They reported at 120 °C, gallic 

and caffeic acids were more effective than catechin and quercetin in sheep tallow 

olein.  At 180 °C, quercetin was more effective than catechin, gallic acid and caffeic 

acids respectively.  So, the presence of quercetin in the PSE and PSL extracts in this 

present study may relate to the effectiveness of the extracts in retarding thermal 

degradation at frying temperature.  The PSE and PSL extracts showed a better 

protective effect on thermal degradation in corn oil than rice bran oil.  This may be 

due to the different endogenous components between corn oil and rice bran oil.  

Table ‎1-6 shows corn oil has an abundance of γ-tocopherol which is able to slow 

down the formation of hydroperoxides (Lampi et al., 1999; Ochi et al., 1989) and 

also has ferulic acid which contributes to the excellent oxidative stability of corn 

oil (O'Brien, 2004).  Deepam et al. (2011) reported that stripped rice bran oil 

with added Tocols was more stable than the stripped rice bran oil with added 

oryzanol and sterol.  This was in agreement with the findings by Jennings and 

Akoh (2009) and Nystrom et al. (2007) who reported that the γ-oryzanol 

component, stiosteryl ferulate, did not exert as antioxidants. 

3.7.5 Effects of Piper sarmentosum Roxb. leaf extracts on colour 

changes in rice bran and corn oils at frying temperature 

Figure ‎3-84 to Figure ‎3-87,  illustrate the photometric colour changes in rice bran 

oil and corn oil supplemented with PSE and PSL extracts compared to synthetic 

antioxidant free oils and oils with added BHT.  The colour of the rice bran oil and 

corn oil increased in darkness over the heating time.  The colour of the rice bran 

oil with added BHT was darker than corn oil with added BHT.  Nevertheless, the 
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colour of the both oils with added BHT were the darkest compared to the other 

oils heated.   

 

Figure ‎3-84: Effect of PSE extract on photometric colour changes in rice bran oil heated  

at 180 °C for 25 hours.  The values are expressed as mean±SE of triplicate analysis.   
R = rice bran oil, S = PSE extract, T = BHT, % = percentage added 
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Figure ‎3-85: Effect of PSL extracts on photometric colour changes in rice bran oil heated at 

180 °C for 25 hours.  The values are expressed as mean±SE of triplicate analysis.  R = rice 
bran oil, L = PSL extract, T = BHT, % = percentage added 

 

 

Figure ‎3-86: Effect of PSE extracts on photometric colour changes in corn oil heated at 180 °C 

for 25 hours.  The values are expressed as mean±SE of triplicate analysis.  C = corn oil,  
S = PSE extract, T = BHT, % = percentage added 
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Figure ‎3-87: Effect of PSE extracts on photometric colour changes in corn oil heated at 180 °C 

for 25 hours.  The values are expressed as mean±SE of triplicate analysis.  C = corn oil,  
L = PSL extract, T = BHT, % = percentage added 

 

The results of this present study have shown that the colour of the oils with 

added PSE and PSL extracts are lighter than the synthetic antioxidant free oils 
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results (chapter ‎3.7.6).  It was found that the change in colour has strong 

correlation with total polar compounds with statistical significance (p<0.05).  In 
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So, the green pigments in PSE extract could be chlorophylls and brownish-yellow 

pigment in PSL extract could be carotenoids.  It has been observed that the 

absorbance obtained from the oils with added PSE extracts measured at this 

wavelength (670 nm)  was found highest at 0 hours (un-heated) and then 

decreased to the lowest as heating time increased.  The colour of the oils became 

less green and more like the synthetic antioxidant free oil colour then became 

darker as heating time increased.  These incidents are affected by the temperature.  

The high temperature will degrade chlorophylls and induce pheophytin formation.  

Thus, during heating the green colour is lost, turns to olive brown instead and 

also due to polymerisation of the oil.  (Schwartz et al., 2008; Boekel and Martinus, 

2000).  In this respect, the photometric colour indices from the equation are 

greatly affected by chlorophyll pigments (response at 670 nm) and hence why 

the colour index drops below zero.  The more chlorophylls contained in the oil 

due to the concentration of PSE extracts, the lower the colour index will show 

from the start of heating until the oil turns brown.  So, the low colour index of the 

oils with added PSE extracts is as follows: 0.2 %<0.1 %<0.05 % which relates to 

the amount of chlorophyll that would be present.  Therefore, the findings from 

this study completely agree with Pohle and Tierney (1957) that high chlorophyll 

content oils have an unrealistic colour by this method due to the negative factor 

with excessive weight (constant number) given for measurement at this 

wavelength (670 nm) in the equation.  The photometric colour index of the oils 

with added PSL extracts also show a similar pattern to the oils with added PSE 

extracts.  The absorbance obtained from the oils with added PSL extracts 

measured at 550 nm were found to be lower than the absorbance measured at 

670 nm.  This implies that there might have also been some chlorophyll present 
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(Schwartz, 2005).  Again the effects of the negative factor as mentioned above are 

seen when the concentration of PSL extracts added to the oils are higher, as 

noticed from the oils with added 0.2 % PSL extract.   

These results show an effect of pigments on colour of the oil which were different 

from the results in the preliminary study of frying chips in chapter ‎3.5.1.1.  

Therefore, these findings agree with many researchers such as Bansal et al. 

(2010), Man et al. (1996) and Tan et al. (1985) that the colour of the degraded oil 

depends upon colour of the oil and types of fried food being fried.  However, it 

was still clear to see that the oils all got darker with an increase in heating time.   

3.7.6 Correlation between acid value, peroxide value, TBARS value, 

colour and total polar compounds in rice bran and corn oils at 

frying temperature 

The relationship between monitored parameters in rice bran oil and corn oil with 

and without added PSE and PSL extracts and with added BHT, were examined by 

Pearson’s correlation coefficient and the results are presented in Table ‎3-11 to 

Table ‎3-14.  If the correlation coefficients > 0.3, it means there is a relationship 

between the factors (Wiredu, 2012).  The higher value, the stronger the 

correlation (Wiredu, 2012).  As shown in Table ‎3-11, the formation of polar 

compounds in normal rice bran oil has a very strong correlation with the acid 

value (p<0.01) and peroxide value (p<0.05).  In normal corn oil, the formation of 

polar compounds has a very strong correlation with TBARS value, peroxide value 

(p<0.01), and acid value (p<0.05).  Both oils has a strong relationship between 

polar compound formation and colour changes but no significantly difference is 

found.  
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Table ‎3-11: Pearson’s correlation coefficient (r) of normal rice bran oil and corn oil 

(without added extracts) 

Correlation 
coefficients (r) 

Rice bran oil  Corn oil 

AV PV TBARS Col  AV PV TBARS Col 

PV .971*     .990*    

TBARS .914 .895    .946 .980*   

Col .933 .985 .806   .956* .907 .810  

TPC .999** .980* .928 .940  .972* .991** .995** .862 

*, ** correlation is significant at the 0.05 and 0.01 level (2-tailed) respectively, AV = acid value,  
PV = peroxide value, TBARS = 2-thiobarbituric acid reactive substance value, Col = colour, 
TPC = Total polar compounds 

 

Table ‎3-12, the formation of polar compounds in rice bran oil with added PSE 

extracts shows a very strong relation with acid value (p<0.01) and peroxide 

value (p<0.05).  Also in corn oil with added PSE extract, the formation of polar 

compounds has a strong correlation with acid value, peroxide value and TBARS 

value (p<0.01).  Both oils show a weak correlation between formation of polar 

compounds and colour changes.  Table ‎3-13, rice bran oil with added PSL extract 

show a very strong correlation between the formation of polar compounds and 

acid value (p<0.05), while corn oil with added PSL extract shows a very strong 

relationship between polar compounds formation with acid value, peroxide value 

and TBARS value (p<0.01).  Rice bran oil with added PSL extract shows a very 

weak relationship between polar compounds formation with colour changes.  No 

correlations are found between the formation of polar compounds with peroxide 

value, TBARS value in rice bran oil with added PSL extract and between colour 

changes in corn oil with added PSL extract.  
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Table ‎3-12: Pearson’s correlation coefficient (r) of rice bran oil and corn oil with added 

PSE extracts 

Correlation 
coefficients (r) 

Rice bran oil  Corn oil 

AV PV TBARS Col  AV PV TBARS Col 

PV .608*     .770**    

TBARS .481 .071    .771** .838**   

Col .353 .218 .414   .599* .392 .390  

TPC .825** .652* .388 .484  .870** .794** .936** .456 

*, ** correlation is significant at the 0.05 and 0.01 level (2-tailed) respectively, AV = acid value,  
PV = peroxide value, TBARS = 2-thiobarbituric acid reactive substance value, Col = colour, 
TPC = Total polar compounds 

 

Table ‎3-13: Pearson’s correlation coefficient (r) of rice bran oil and corn oil with added 

PSL extracts 

Correlation 
coefficients (r) 

Rice bran oil  Corn oil 

AV PV TBARS Col  AV PV TBARS Col 

PV .251     .445    

TBARS .315 .357    .475 .819**   

Col .798** .183 .266   .148 .107 .500  

TPC .702* .064 .007 .325  .739** .875** .754** .069 

*, ** correlation is significant at the 0.05 and 0.01 level (2-tailed) respectively, AV = acid value,  
PV = peroxide value, TBARS = 2-thiobarbituric acid reactive substance value, Col = colour, 
TPC = Total polar compounds 

 

Table ‎3-14, in rice bran oil with added BHT, the formation of polar compounds 

shows a very strong correlation with colour changes (p<0.01) and acid value 

(p<0.05).  Corn oil with added BHT shows a very strong correlation between the 

formation of  polar compounds with peroxide value (p<0.01) and acid value 

(p<0.05).  Corn oil with added BHT also shows a strong relationship between the 
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formation of polar compounds with colour changes but no significant difference 

is found. 

Table ‎3-14: Pearson’s correlation coefficient (r) of rice bran oil and corn oil with added 

           BHT 

Correlation 
coefficients (r) 

Rice bran oil  Corn oil 

AV PV TBARS Col  AV PV TBARS Col 

PV .922     .946    

TBARS .659 .410    .838 .946   

Col .997** .937 .666   .510 .747 .888  

TPC .984* .938 .695 .995**  .981* .990** .908 .652 

*, ** correlation is significant at the 0.05 and 0.01 level (2-tailed) respectively, AV = acid value,  
PV = peroxide value, TBARS = 2-thiobarbituric acid reactive substance value, Col = colour, 
TPC = Total polar compounds 

 

The correlation testing results of this study clearly indicate that the formation of 

polar compounds in both oils at frying condition 180 °C for 25 hours with or 

without antioxidant additions are related to peroxide values and TBAR values 

which are primary and secondary products from thermal lipid oxidation.  

However, some of the correlation coefficients (r) show a strong correlation with 

no significance or show no relationship at all (Table ‎3-13).  These can support the 

fact that peroxide compounds or malonaldehydes which occurred in primary and 

secondary oxidation are not stable.  They can decompose or form other 

compounds.  Thus, these values (peroxide and TBARS values) may not suitable to 

use for investigating lipid thermal oxidation or monitoring quality of frying oil.  It 

is interesting that the hydrolysis reaction has a very strong correlation with 

oxidative reaction (lipid oxidation) which occur during heating oil at frying 

temperatures, as the results (Table ‎3-11 to Table ‎3-14) show very strong 
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correlations between the formation of polar compounds and acid value with 

significance (p<0.05 and p<0.01) for both oils with all concentration of the 

extracts and with added BHT.  The correlations between the formation of polar 

compounds with colour changes in both oils with and without added antioxidants 

show variations.  Some are a strong correlation but no significant differences 

were found, some are weak relationships and some show no relationship 

between them.  The results in chapter ‎3.7.5, revealed that the colour changes of 

the repeating heated oil are greatly influenced by pigments from the extracts.   

This research determined changes in oils during frying through several 

indicators.  It was manifestly observed that the indicators used for monitoring 

changes of primary and secondary product from lipid oxidation (peroxide value, 

ρ-Anisidine value, TBA value or TBARS value), should not be used for evaluating 

quality of the oil as the products measured in these tests are unstable so they can 

reform or decompose further (Paul et al., 1997; Fritsch, 1981).  Although, 

changes of colour had a strong correlation with total polar compound and the oils 

got darker as heating time increased, the changes in colour of the degraded oil is 

influenced by pigments contained in the oil and types of fried food being fried 

(Bansal et al., 2010; Man et al., 1996; Tan et al., 1985).  Therefore, the colour 

indicator can only be used if the acceptable value was specifically set for each oil 

and each food fried in it.  The best indicators overall for monitoring quality 

changes in frying oil are total polar compounds and acid value (or free fatty acid).  

They showed a significant strongly correlation to each other despite them 

generating from different reactions.  Free fatty acids develop from a hydrolysis 

reaction.  Total polar compounds are end products of lipid oxidation.  The higher 

frying temperature or the longer frying time, the more free fatty acids are formed 
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which also promotes the oxidation due to hydrolysis leading to an increase in the 

solubility of oxygen (Kochhar, 2001).  Bhattacharya et al. (2008) and Kochhar 

(2001) also discovered the relationship between free fatty acids and total polar 

compounds in frying oil.  According to Rossell (2001c), the International 

symposium on Deep Fat Frying in Germany in March 2000 recommended the 

combination of two tests is the best way of analysing suspect frying fats and oils.  

Therefore, based on this study,  the best pair of indicators for monitoring thermal 

degradation of frying oils is acid value (free fatty acid) and total polar 

compounds. 
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4 Conclusion and Recommendation 

4.1 Conclusion  

The findings from the first investigation revealed that the Piper 

sarmentosum Roxb. (PS) leaf had a higher antioxidant activity and total phenol 

content than Pandanus amaryllifolius Roxb. (PD) leaf.  It was found that 80 % 

ethanol had a better extraction efficiency than absolute ethanol and there was no 

synergistic effect of the mixture of both leaf extracts.   

The results of the effect of the extraction method on total phenol content 

and antioxidant properties in PS leaf extracts clearly showed that the petroleum 

ether extracts (PSL) and the dried leaf (DFPS) following soxhlet extraction at  

250 °C for 5 hours still contained phenols, flavonoids and had antioxidant activity 

with no significant difference when compared to the normal leaf extracts (PS).  

However, it was found that the 80 % ethanol extract still gave the highest total 

phenol content, total flavonoids and antioxidant activity.  The decolourisation 

process had a huge effect on the loss of phenol content and antioxidant activity.  

The efficiency of the extraction was high with a 93 % yield.  The PS, DFPS and PSL 

extracts demonstrated antioxidant capacity in linoleic lipid peroxidation system 

too, so these extracts showed the possibility for use in oil or emulsion food 

matrices.  Based on these finding, it could be concluded that the Piper 

sarmentosum Roxb. leaf extracts possess a high antioxidant activity and are heat 

resistant because there was no loss in phenols, flavonoids or antioxidant activity 

when the leaf was defatted at such high temperatures for a long time.    

The exploring polyphenol compounds that are present in the PSE, DFPSE 

and PSL extracts using HPLC-PDA-ESI-MS.  Seven compounds were identified in 
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PSE and DFPSE extracts.  They were 3CQA/5CQA, caffeic acid, vitexin, ρ-

courmaric acid, hydrocinnamic acid, quercetin and caffeine.  Vitexin, 

hydrocinnamic acid and caffeine were found in PSL extract.  The quantified 

results revealed that the phenols which were found in PSE and DFPSE extracts 

showed no significant difference.  Vitexin was found in the highest amount in PSE 

extract and caffeine was found in the highest amount in PSL extract.  

Nevertheless, unidentified compounds present in the extracts were proposed as 

tentative compounds which were 10 cinnamic acids, a benzoic acid, 3 flavones 

and 3 flavanones.  Two flavones were main compounds in PSE and DFPSE extracts 

which are in the flavonoid group.  Therefore, Piper sarmentosum Roxb. leaf extracts 

are rich source of phenolic acids, flavonoids and caffeine and therefore, it is a 

good source of antioxidants.   

The study of the effect of repeated frying on the physical and chemical 

characteristics of the oils revealed that the oils used for frying chips at 190 °C 

show deterioration which increases over the frying days.  It showed an increase 

in colour (darker) and viscosity, while the smoke point decreased, the peroxide 

values showed fluctuation, acid value increased over frying time as did the ρ-

Anisidine value, TBA value and the total polar compounds.  The results also 

revealed that deterioration rate of the frying oils were influenced by the length of 

frying time (a thicker chip required a longer frying time) and moisture from the 

food being fried.  In addition, the findings by this study revealed that the 

following indicators: smoke point, peroxide value, ρ-Anisidine value, TBA value 

or TBARS value and colour changes should not be used to evaluate quality of 

repeated frying oil.  The best pair of indicators to be used for evaluating 

degradation of frying oil are total polar compounds and total acid value (free 
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fatty acid).  This information is very important for choosing the indicator to 

monitor the quality of repeated frying oils. 

The results of oxidative stability of stripped and unstripped palm olein oil 

in the presence of PSE extract showed that the process of stripping the oil by 

using aluminium oxide may not have removed or completely eradicated the 

existing compounds present in the oils, especially, synthetic antioxidants.  The 

attempt to find synthetic antioxidant free oil available in local shops was 

successful with confirmation using the HPLC analysis.  Rice bran oil (King®), corn 

oil (Sainsbury’s®) and rapeseed oil (Yor®) are synthetic antioxidant free oils.  The 

study also showed that the palm olein oil (Oleen®) and rice bran oil (Alfa 1®), 

both stripped and unstripped using aluminium oxide contained 3 synthetic 

antioxidants BHA, BHT and TBHQ.  It also proved that the stripping process using 

aluminium oxide does not remove synthetic antioxidants.   

The study of antioxidant activity of PSE and PSL extracts on quality changes 

in rice bran oil and corn oil under mild temperature revealed that the effective 

concentration of the PSE extracts varies among the tests and among the oils 

throughout storage time.  Thus, the effective amount of the extract could not be 

achieved from this study.  The results also revealed that BHT exhibited a superior 

protective effect over PSE and PSL extracts.  The PSL extracts did not show any 

positive effect to retard lipid oxidation in both oils over the storage time.  PSE 

extracts showed a lipid oxidation inhibiting effect by lowering the peroxide value, 

ρ-Anisidine value, TBA value and Totox value in both oils.  The reason PSL 

extracts showed different results to PSE extracts, may be due to the different 

amount and types of polyphenol compounds present in each extract.   
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At frying temperature, the results showed that the quality changes in the 

oils with or without added PS extracts are affected by high temperature and there 

is an increased deterioration as the heating time is increased.  The results also 

indicate that the PSE extract and PSL extract have a significantly positive 

protective effect on both rice bran oil and corn oil during heating at frying 

temperatures.  The most effective extracts were 0.2 % PSE, 0.05 % PSL and 0.1 % 

PSL because these concentrations show a significant decrease in acid value and 

polar compounds compared to oils with added BHT and of course lower than the 

synthetic antioxidant free oils.  It means that 0.2 % PSE, 0.05 % PSL and 0.1 % 

PSL have a better performance than the synthetic antioxidant, BHT.  The 

pigments contained in these natural crude extracts (PSE and PSL) did not seem to 

have had an impact from photo-oxidation due to they are degraded or destroyed 

at the frying temperatures.   

To summarise, the results indicate that the PSE and PSL extracts could 

retard thermal degradation of repeatedly heated rice bran oil and corn oil at a 

frying temperature of 180 °C for 25 hours and the extracts had a protective effect 

better than BHT.  Therefore, Piper sarmentosum Roxb. leaf extract shows high 

potential to be used as an alternative natural antioxidant in frying oils.  Also, it is 

evident that the action of the antioxidants (either natural or synthetic) at frying 

temperatures, are not the same as at low or moderate temperatures.  At high 

temperature, the loss of water or moisture from fried material can activate or 

enhance the antioxidant activity of the hydrophilic (polar) antioxidant, so this 

may be one reason why the polar antioxidants or PSE extracts showed more 

effective protective effect at frying temperature and the non-polar (lyophilic) 

antioxidants more effective in storage.  Therefore, it is important to look at a 
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range of temperatures and oils as what might be successful in a storage test 

might not be successful at frying temperatures, and vice versa.   

4.2 Recommendation for future work  

1) The optimised analytical method using UHPLC-PDA-ESI-MS in this study 

showed a good resolution of peaks with the PSE extract only.  This method could 

detect only a few compounds in the PSL extract.  To improve this, further work 

should amend the analytical method so as to detect more compounds from the 

PSL extract.  This could be done by changing the binary gradient of the 

acetonitrile content (or organic mobile phase).  As the crude extracts are natural 

antioxidants which are complex and comprise of different compounds (Pokorny, 

2010) and compounds in the PSL extract are likely to be nonpolar compounds, so 

by adjusting binary gradients, flavonoid and alkaloid compounds will be 

separated better.  In addition there were a number of unidentified compounds 

which were found using the single quadrupole mass spectrometer.  Without 

standard compounds and/or if the identified compounds have very close 

retention times with the same m/z ratio (isomer or derivatives), this method 

cannot identify or distinguish isomer compounds.  To elucidate the proposed 

tentative compounds and their derivatives (or isomers) obtained by this study, 

more information is needed of molecular structure (Fulcrand et al., 2008).  To 

obtain structural information, the analyte ions are fragmented by a process 

known as collision-induced dissociation (CID) or collision-activated dissociation 

(CAD) (Agilent Technologies, 2011a).  The CID is mostly associated with multi-

stage MS (also called tandem MS or MS/MS or MSn) which is a powerful way to 

obtain structural information.  In triple-quadrupole (or quadrupole / quadrupole / 

time-of-flight instruments (Q-TOF)), the first quadrupole is used to select the 
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precursor ion.  CID takes place in the second stage (quadrupole or octopole), then 

the third stage (quadrupole or TOF) will generate a spectrum of the resulting 

identify particular ions and derivatives (Agilent Technologies, 2011a).  Some of 

the successive works using these multiple techniques can be found in the study 

by Puigventos et al. (2015).  They used tandem spectrometry to analyse an 

authentication of fruit-based products and fruit-based pharmaceutical 

preparations.  Alonso-Salces et al. (2004) used LC-MS with atmospheric pressure 

ionisation (APCI) to obtain molecular weight, number of hydroxyl groups, 

number of sugars and an idea about the substitution pattern of apple 

polyphenols.  Oszmianski et al. (2011) used triple quadrupole mass spectrometer 

equipped with electrospray ionisation source to identified and quantified 

flavonoids and phenolic acids compounds in berry leaf extracts.  The ion-trap 

mass analyser also has a very helpful in identifying unknown compounds 

(Fulcrand et al., 2008).  Fischer et al. (2011) used an ion-trap mass analyser for 

identification and quantification of phenolic compounds from pomegranate peel, 

mesocarp, aril and differently produced juices.  Aladedunye and Matthaeus 

(2014) used Q-TOF mass spectrometer to identified phenolic compounds from 

rowanberry fruit extract and crabapple fruit extract.  So, the further work can be 

done to find out the unidentified compounds or analyse other phytochemical 

compounds present in the PS leaf by using these techniques.   

2) In accelerated storage conditions, the PSE and PSL extracts did not show 

a protective effect in both oils.  This could be because of the pigments contained 

in the extracts.  Chlorophyll can have an effect on the rancidity of oils (Pokorny, 

2010; Hall et al., 1994). When chlorophyll is in the presence of light autoxidation 

will occur via the photo-oxidation route leading to the formation of hydroperoxides 
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(Gordon, 2001).  However, it was unable to decolourise the extracts as the results 

of decolourisation in chapter ‎3.3, where activated carbon was used to remove the 

pigments in the crude extract led to a huge loss of total phenol content and its 

antioxidant activity.  However, in order to determine the effect of pigments 

contained in the extract on photo-oxidation, the experiment could be repeated by 

controlling the light throughout the storage times and the decolourised extracts 

should also be investigated.  By comparing all the results,  decolourised and non-

decolourised, controlled and uncontrolled light, the influence of the pigments and 

the antioxidant activity of the extracts on lipid oxidation could be evaluated.  

3) The PSE and PSL extracts were seen to retard thermal degradation of 

rice bran oil and corn oil.  The PSL extract which contains non-polar compounds 

may have more advantage in terms of solubility in oil.  Thus, the PSL extract can 

be used in oil and emulsion food systems.  However, the concentration ranges of 

the extracts used in this study were limited.  Future work should look at a wider 

concentration range of the extracts using the findings from this study as a 

guideline.  Based on the results, PSE extract showed an increasing protective 

trend when the concentration increased, whereas PSL showed a pro-oxidant 

effect when the concentration increased.  So, the range of concentrations used for 

PSE extracts should be increased and decreased for PSL extracts.  Future work 

should trial both polar and non-polar antioxidants at low and high temperatures, 

and also should control the light throughout storage time.  From this, the best 

effective concentration of PSE or PSL extract can be obtained.   
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Appendix A 

A.1 Mass chromatogram and mass spectrum of standard 

Chlorogenic acid  compared to Piper sarmentosum Roxb. leaf 

extracts 
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Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

3CQA 14.642 19190997 11284.82 627481 353 14.300 16.628 

4CQA 15.468 7677103 4836.12 340376 353 15.100 17.233 

5CQA 14.805 4935488 2336.68 251775 353 14.533 15.667 

PSE 14.685 22868 18.07 1509 353 14.483 15.033 

DFPSE 14.670 20694 19.32 1428 353 14.465 14.997 

 

A.2 Mass chromatogram of PSE and DFPSE extracts at 15.468 

min, m/z=353 

 

 
 
There is no peak found at 15.468 min, m/z ratio 353, so no 4CQA present in PSE 
and DFPSE extracts 
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A.3 Mass chromatogram and mass spectrum of standard Caffeic 

acid compared to Piper sarmentosum Roxb. leaf extract 

 

Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

Caffeic acid 16.797 21744731 3122.82 857855 179 16.500 17.508 

PSE 16.821 13461 9.58 941 179 16.628 17.105 

DFPSE 16.827 16068 10.65 1051 179 16.628 17.160 
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A.4 Mass chromatogram and mass spectrum of standard Vitexin 

compared to Piper sarmentosum Roxb. leaf extracts 
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Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

Vitexin 19.614 6981129 3347.48 317383 431 19.342 20.240 

PSE 19.616 1534524 1435.54 86295 431 19.342 20.387 

DFPSE 19.601 1476361 1397.49 83529 431 19.323 20.368 

PSL 19.550 1823 2.42 118 431 19.360 19.947 
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A.5 Mass chromatogram and mass spectrum of standard ρ-

Courmaric acid compared to Piper sarmentosum Roxb. leaf 

extracts 

 

 

 

 

 

 

Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

ρ-Courmaric 

acid   

20.539 7326133 4638.60 371800 163 20.332 21.157 

PSE 20.564 72435 61.54 4683 163 20.368 21.028 

DFPSE 20.549 76646 64.30 4712 163 20.350 21.065 
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A.6 Mass chromatogram and mass spectrum of standard 

Quercetin  compared to Piper sarmentosum Roxb. leaf extracts 

 

 

 

 

Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

Quercetin 24.454 36230819 6531.62 1357502 301 24.167 25.600 

PSE 24.447 23107 10.37 754 301 24.017 25.417 

DFPSE 24.414 6904 3.83 291 301 24.117 24.950 
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A.7 Mass chromatogram and mass spectra of standard 

hydroxycinnamic aicd compared to Piper sarmentosum Roxb. 

leaf extracts 
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Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

Hydroxycinnamic 

aicd 

24.992 6354 12.02 334 149 24.768 25.392 

PSE 25.045 4502 4.31 197 149 24.64 25.447 

DFPSE 24.952 3484 3.93 205 149 24.677 25.593 

PSL 25.054 9312 11.62 415 149 24.713 25.337 

 

 

  

PSL 
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A.8 Mass chromatogram and mass spectrum of standard Caffeine  

compared to Piper sarmentosum Roxb. leaf extracts 

 

 

 

 

Peak Retention 

Time 

Area S/N Height m/z Peak 

Start 

Peak 

End 

Caffeine 27.748 17487 28.21 883 193 27.537 28.288 

PSE 27.756 17849 19.70 1091 193 27.555 28.087 

DFPSE 27.739 13644 10.86 761 193 27.555 28.160 

PSL 27.793 17479 26.97 908 193 27.518 28.233 
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A.9 Mass chromatogram of PSE and DFPSE extract at 16.0 min, 
m/z 289   

 

 

 
There is no peak found at 16.0 min, m/z = 289, so there is no epicatechin present 
in PSE and DFPSE extracts 
 
 
 
 

A.10 Mass chromatogram of PSE and DFPSE extract at 16.5 min, 
m/z 167  
 

 
 

 
 
There is no peak found at 16.5 min, m/z = 167, so there is no vanillic acid present 
in PSE and DFPSE extracts 
 
 
 

PSE, DFPSE 

Standard vanillic acid 

PSE, DFPSE 

Standard epicatechin 
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A.11 Mass chromatogram of PSE and DFPSE extract at 19.1 min, 
m/z 609  
 
 

 

 
 
There is no peak found at 19.1 min, m/z = 609, so there is no rutin present in PSE 
and DFPSE extracts 
 
 

A.12 Mass chromatogram of PSE and DFPSE extract at 21.5 min, 
m/z 303  
 

 
 

 
 
There is no peak found at 21.5 min, m/z = 303, so there is no taxifolin present in 
PSE and DFPSE extracts 
 
 
 
 

Standard rutin 

PSE, DFPSE 

PSE, DFPSE 

Standard taxifolin 
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A.13 Mass chromatogram of PSE and DFPSE extract at 21.9 min, 
m/z 471  
 

 

 
 
 
There is no peak found at 21.9 min, m/z = 471, so there is no phloridzin present 
in PSE and DFPSE extracts 
 
 

A.14 Mass chromatogram of PSE and DFPSE extract at 25.5 min, 
m/z 271  
 
 

 
 

 
 
 
There is no peak found at 25.5 min, m/z = 271, so there is no naringenin present 
in PSE, DFPSE and PSL extracts 
  

PSE, DFPSE 

PSE, DFPSE. PSL 

Standard phloridzin 

Standard naringenin 
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A.15 Maximum absorbance of unidentified peaks of Piper 

sarmentosum Roxb. leaf extracts 
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Appendix B 

 

Summary of operating trial conditions of HPLC method to 

identify synthetic antioxidants in cooking oils 

Trial Conditions Results    

1 Mobile phase A was 0.02 % formic acid in water, mobile 
phase B was 70:30 (v/v) of acetonitrile:methanol.  The 
flow rate was 0.5 mL/min of binary gradients.  Starting 
at 0.01 min with mobile phase A (65 %) to mobile phase 
B (35 %), then mobile phase B was increased to 45 % 
within 2.52 min and hold for 2.40 min before increasing 
to 100 % within 2.5 min.  At 10 min, mobile phase B was 
decreased to 35 % and hold for 3.5 min.  The cycle time 
was 14 min, injection volume was 10 µL and column 
oven was set at 25 °C.  

The standard 
BHA was 
eluted 
together with 
mobile phase  

2 Mobile phase A and B were the same as trial 1.  The 
binary gradients were started with mobile phase B 35 % 
at 0.01 min reached to 50 % at 7.00 min and hold for 3 
min.  Mobile phase B was then decreased to 35 % at 
13.50 min and finished the cycle time at 14 min.  The 
flow rate was set to 1.0 mL/min, injection volume was 
20 µL and column oven was set at 45 °C. 

Base line 
drifted  

3 Mobile phase A and B were the same as trial 1.  The 
binary gradients started with mobile phase B 30 % at 
0.01 min reached to 35 % at 2.50 min, 45 % at 5.20 min 
and hold 45 % until reached to at 9 min.  Mobile phase B 
was then increased to 100 % at 14 min and decreased to 
70 % at 20 min, 30 % at 25 min.  The cycle time was 30 
min.  The flow rate was set to 0.4 mL/min, injection 
volume was 20 µL and column oven was set at 45 °C. 

Found 2 peaks,  

4 Using mobile phase the same as trial 1.  Binary gradient, 
injection volume and column oven the same as trial 3.  
The flow rate was changed to 1.0 mL/min. 

The standard 
BHA was 
eluted at 16 
min, base line 
drifted 
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Trial Conditions Results  

5 Mobile phase A and B were the same as trial 1.  The 
binary gradients were started with mobile phase B 30 % 
at 0.01 min reached to 35 % at 2.50 min, 45 % at 5.20 
min and hold 45 % until reached to at 9 min.  Mobile 
phase B was then increased to 70 % at 14 min and hold 
for 6 min before decreased to 30 % at 25 min.  The cycle 
time was 30 min.  The flow rate was set to 0.4 mL/min, 
injection volume was 20 µL and column oven was set at 
45 °C. 

Found 3 peaks 

6 Using mobile phases, binary gradients, injection volume 
and column oven the same as trial 5.  The flow rate was 
changed to 1.0 mL/min.   

The standard 
BHA was 
eluted at 16 
min, base line 
drifted 

7 Trial with a new set of mobile phase.  Mobile phase A 
was 1 % acetic acid in water, mobile phase B was 
acetonitrile.  The flow rate was 0.8 mL/min of isocratic 
binary gradients (10 % A:90 % B).  The cycle time was 
10 min.  Injection volume was 20 µL and column oven 
was set at 45 °C. 

The standard 
BHA was 
eluted at 3.85 
min, base line 
more stable  

8 Using mobile phases, flow rate, isocratic binary 
gradients, injection volume and column the same as trial 
7.  The cycle time was extended to 20 min. 

The standard 
BHA was 
eluted at 4.0 
min, base line 
was stable 
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The 1st trial  

 

 

The 2nd trial  

 

 

The 3rd trial  

 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 min

-20

-10

0

10

20

30

40

50

60

70

80

90

100

mAU
280nm4nm (1.00)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 min

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

mAU
280nm,4nm (1.00)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 min

-50

-25

0

25

50

75

100

125

150

mAU
280nm,4nm (1.00)



265 
 

 

The 4th trial : chromatogram of standard BHA, retention time 16 min,  

 

 

The 5th trial : chromatogram of standard BHA  

 

 

The 6th trial : chromatogram of standard BHA, retention time 16 min,  
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The 7th trial : chromatogram of standard BHA 100 mg/L, retention time 3.85 min,  

 

 

The 8th trial : chromatogram of standard BHA 100 mg/L, retention time 4.0 min, 280 nm,  

the final method to identify synthetic antioxidants by HPLC method 

 

 

Chromatogram of standard TBHQ 100 mg/L, retention time 3.60 min, 280 nm, using the 
final method (the 8th trial conditions) to identify synthetic antioxidants by HPLC 
method.   
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Chromatogram of standard BHT 100 mg/L, retention time 5.75 min, 280 nm, using the  
final method (the 8th trial conditions) to identify synthetic antioxidants by HPLC 
method.   
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