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Abstract

This study aims to gain insight into the distribution of genes within a local
bacterial population. It is based on genomic and phenotypic data for seventy-two
Rhizobium leguminosarum strains isolated from Trifolium repens and Vicia sativa
plants growing in a 1 m? area of roadside vegetation located between Wentworth
College and Walmgate Stray on the University of York campus, UK. These were
previously classified into five genospecies based on a phylogeny of 305 universal
core genes. Because of the incongruence in the phylogeny of genes from different
replicons shown in the previous study, the congruence of each rhizobium gene
was first analysed by clanistics. Clanistics were applied to each gene tree of the
population and can not only identify conserved genes in symbiovar and
genospecies but also genes shared between two symbiovars and within
genospecies. Genes of the rhizobium population were investigated along with
their occurrence patterns in the population using Pearson’s correlation. A
broader view of occurrence of genes in the population was illustrated in the gene
co-occurrence network, which reflected the organisation of genes with favoured
and disfavoured co-occurrence in the population. The computation demonstrated
clusters of genes involved in the nodulation process including both annotated and
unannotated genes. Due to the diversity of ability to utilise carbon substrates in
the rhizobium population, class association rule was chosen as the method to
relate the ability to utilise carbon substrates with the distribution of genes in the
population. Results demonstrated that there not only exists a relationship
between the ability to utilise a substrate and the distribution of genes in the
population, but also cooperation of genes involved in the substrate utilisation.
The methods discovered genes involved in the utilisation of y-hydroxybutyric
acid, which were consistent with evidence from experiments and the literature.
Hence, it can be concluded that gene transfer and loss can cause variation in the
gene content of a population, resulting in recognisable sets of genes present in a
particular symbiovar or genospecies, or associated with phenotypes such as

substrate utilisation.
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Chapter 1 Introduction

1.1 Introduction

Since the sequencing of the first bacterial genome (Haemophilus influenzae)
(Fleischmann et al, 1995), the attempt to gain an insight into bacterial
genomes has never stopped. The first comparative study of bacterial genomes,
involving two strains of Helicobacter pylori (Alm et al., 1999), was published
five years later. It revealed two types of genes, viz. genes present in both the
strains and genes present in only one of the two strains. Even if the findings in
the study did not officially constitute a novel branch of comparative genomics,
it triggered an intense study of comparative genomics to answer the question
whether an individual sequenced genome would be enough to describe a
bacterial species.

Tettelin et al. (2005) introduced the concept of “pan-genome” by comparing
eight strains of Streptococcus agalactiae. The pan-genome was described as a
gene pool containing all genes that can potentially be present in that species.
As a result of advances in techniques used in the biological sciences,
sequencing the genome of an organism is no longer a time-consuming task but
a technology that provides more accurate outcomes at less expense resulting
in useful high-throughput data. As a result, many bacterial genomes have been
sequenced and studied based on the concept of pan-genome. Comparative
studies have revealed many aspects and facts of the bacterial genome
including distinct features of genes in the pan-genome (Young et al., 2006),
pathogenesis (Hogg et al, 2007, Donati et al., 2010, Tomida et al,, 2013, Méric
et al., 2014), ecological niche adaptation (Cadillo-Quiroz et al.,, 2012, Ellegaard
et al, 2013, Ooi et al, 2013, Zhang et al., 2014), host specificity (Black et al,
2012) and redefinition of bacterial species by using genes shared by all strains
(Lan et al., 1996).

This study aims to explore and investigate the distribution of genes within a
bacterial population. This chapter provides an introduction to replicon
architecture in bacteria, genetic exchange in bacteria, and Rhizobium

leguminosarum, which used in this study as a model species.



1.2 Replicon architecture in bacteria

The domain Bacteria is one of three primary domains of life, the other two
being Archaea and Eukarya (Woese et al, 1990). Bacteria are minute, single-
celled microorganisms. Cellular architecture of bacteria is considerably
simpler than eukaryotes. Like Archaea, bacteria have no membrane-bound
organelles. Chloroplasts and mitochondria, membrane-bound organelles in
eukaryotes, may have originated from bacteria as a result of endosymbiosis
and hence carry their own genetic material (Gray, 1999). The hereditary
information in bacteria is carried on three classes of replicon, viz.

chromosome, chromid and plasmid (Harrison et al. 2010).

1.2.1 Chromosome

The bacterial chromosome is usually circular and the largest replicon
(Ochman, 2002), and carries a set of core genes responsible for encoding
fundamental processes, the basic aspects of biology of a species and its major
phenotypic traits. The chromosome generally has a higher percentage of
guanine and cytosine (GC) than plasmids. Previous studies (Bentley et al,
2004, Nishida, 2012) have reported that chromosomal size and base
composition have a linear positive correlation. Larger genomes tend to have a
high GC content (i.e. CG-rich), while smaller genomes tend to have low GC
content (alternately, AT-rich).

A traditional view has been that the bacterial genome is contained in a single
replicon, the chromosome (unipartite genomes) as in Streptococcus
pneumoniae (Tettelin et al.,, 2001) and Porphyromonas gingivalis (Nelson et al.,
2003); but some bacteria always carry replicons (chromids and plasmids) in

addition to the chromosome (multipartite genomes).

1.2.2 Chromids

Chromids were first described as “secondary chromosomes” or
“megaplasmids” when discovered in the Rhodobacter sphaeroides 2.4.1
(Suwanto et al., 1989). Harrison et al. (2010) performed a systematic analysis

on these secondary chromosomes. These replicons reflect some features of a



chromosome and others of a plasmid. These replicons are normally larger in
size than plasmids but smaller than the chromosome. Harrison et al. (2010)
called them ‘chromids’ and established three criteria to clarify and distinguish
chromids from accompanying plasmids and primary chromosome: (i)
chromids have plasmid-type maintenance and replication systems, (ii)
chromids have a nucleotide composition close to that of the primary
chromosome, and (iii) chromids carry several essential (core) genes that are

found on the chromosome in other species.

1.2.3 Plasmids

Plasmids are described as the smallest self-replicating elements (Ochman,
2002, Frost et al, 2005). A majority of genes on plasmids are accessory genes
that are responsible for additional properties such as virulence (Duangsonk et
al, 2006), ecological determinants (Prosser et al., 2007, Norman et al, 2009)
and host specificity (Paulsson, 2002). Genes on plasmids exhibit diversity that
can be observed in strains of the same species. Horizontal gene transfer is the
key mechanism for transmission of plasmid genes. The transmission can be in
the form of transient genes or the entire replicon may be transferred between
bacteria. Genes and their dynamic transmission in plasmids lead to genetic
diversity within the species and drive bacterial evolution. The plasmids carry
some conserved genes (viz. ‘backbone genes’) that are present in all plasmids,
such as the replication system repABC in alpha-proteobacterial plasmids

(Cevallos et al., 2008).

1.3 Genetic exchange in bacteria

Asexual reproduction processes in bacteria, including bipolar division, binary
fission, budding, and multiple fission (Angert, 2005) do not provide an
opportunity for genetic exchange. Genetic material in the bacteria can be
exchanged via homologous recombination and horizontal gene transfer (HGT).
The modified genetic material is passed from donor (providing a genetic

element) to recipient (receiving the genetic element) in a single direction.



1.3.1 Homologous recombination

Homologous recombination is described as the migration of homologous
genes or short pieces of genes from a donor cell to a recipient cell, occurring in
closely related microbes. Abundant genes in a species show a greater impact
of homologous recombination than rare (Ochman et al, 2000). Hence, this
type of genetic exchange affects core genes more than accessory genes
(Didelot et al, 2012). Rather than introducing uniqueness to the genome,
homologous recombination retains the fitness of the bacterial species (Donati
et al., 2010). This suggests that this type of genetic exchange does not play an
important role in creating novel ecological and physiological adaptation but
helps in the maintenance of adaptation. In addition, the degree of homologous
recombination is higher within a subgroup than between different subgroups

of the species (Ellegaard et al., 2013, Méric et al., 2014).

1.3.2 Horizontal gene transfer

Horizontal Gene Transfer (HGT) (also known as Lateral Gene Transfer (LGT))
is defined as the acquisition of non-homologous genes or short pieces of genes
from distantly related or unrelated taxa (Goldenfeld et al., 2007, Lawrence et
al, 2009, Boto, 2010). This genetic transfer involves acquiring non-
homologous DNA, so its impact is generally observed to be more frequent on
accessory genes (shared by some strains in the species) than the core genes
(shared by all strains). This type of genetic exchange helps bacteria to obtain
benefits from acquisition of novel genes conferring abilities such as
environmental adaptation (Espinosa-Urgel et al, 1998) and pathogenesis
(Furuya et al, 2006). Furthermore, the genetic exchange also promotes
bacterial speciation (Ochman et al, 2000). Hence, the acquisition of genes by
HGT possibly increases the uniqueness of bacteria.

Genetic transfer can be described as the mechanism by which DNA of a donor
cell passes to a recipient cell. For homologous recombination and HGT, genes
can be transferred by three distinct mechanisms viz. transformation,

transduction and conjugation (Figure 1.1).
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Figure 1.1 Mechanism of genetic exchange in bacteria (Griffiths et al., 2000).

Transformation is an event in which a recipient cell takes up exogenous DNA
directly from the environment. Griffith (1928) demonstrated transformation
in Streptococcus pneumoniae, which can adapt itself under the host immune
system and does so by acquiring DNA from dead cells.

Transduction is a mechanism driven by viruses called bacteriophages, which
are able to infect bacterial cells and use the bacterial cells as host for
reproduction. During multiplication, the bacteriophage genome may integrate
into the host genome. When it leaves the old host and infects the new host, it
may accidentally transfers gene from the donor to the recipient cell.
Conjugation is a genetic transfer mechanism based on cell-to-cell contact.

During conjugation, the donor cell produces a tube-like structure, called a



pilus which recognises and binds to the surface of the recipient cell forming a
bridge. After the donor and recipient cells are connected by the pilus, genetic
transfer is initiated. Plasmids carrying transfer (tra) genes and oriT (origin of
transfer) sequences are able to organise conjugation. However, plasmids that
are not carrying tra genes but having oriT sequences are known as
mobilizable plasmids and are able to use the conjugation machinery provided

by self-transmissible conjugative plasmids.

1.4 The bacterial pan-genome

Tettelin et al. (2005) introduced the concept of “pan-genome” by comparing
eight strains of Streptococcus agalactiae. The pan-genome (“pan” - “mav”
means “whole” in Greek) is a gene pool containing all genes that can
potentially be present in that species (Medini et al., 2005).

The Core Genome Hypothesis (CGH) was proposed to describe distinct
features of genes in the bacterial genome (Lan et al, 1996). The bacterial
genome can be differentiated into a core genome and an accessory genome
(Medini et al.,, 2005, Riley et al., 2009).

The core genome is the genome shared by all member of a species and
contains mostly chromosomal genes that have a stable organisation. The
typical core genes also have a high GC content and are passed from the parent
cell to their daughter cells through vertical gene transfer (VGT). These core
genes carry out essential functions relating to survival (Rogel et al, 2011) such
as assembly of the transcription machinery, ribosome synthesis, chaperones,
and cell division. They have orthologs in related species and their phylogenies
harmonize with those inferred from rRNA sequences. These core genes are
therefore used to define general bacterial or species-specific characteristics.
The accessory genome contains accessory genes, which are mostly genes on
plasmids and other genes that might be present on genomic islands on the
chromosome. The accessory genome has a low GC content and confers
functions in supplementary biological pathways encoding products that serve

ecological adaptation, antibiotic resistance, etc. The accessory genes vary



greatly from strain to strain in a bacterial population and are transferred by
HGT (Lawrence, 1999, Ragan, 2001, Riley et al., 2009).

The CGH (Lan et al,, 1996) points out that during the evolution of bacteria,
core genes will, on average, display a neutral rate of evolution, while accessory
genes will experience a variety of selective pressures. Thus, the average rate of
evolution for accessory genes could be about anything and the variance
around this rate could be extreme. Hence the distribution of genes may have
underlying patterns, which may reveal the characteristics of genetic
organization by their occurrence.

As the pan-genome size grows with an increase in the number of sequenced
strains, the increment in accessory genes after sequencing of new strains
characterises the pan-genome as an “open” pan-genome. An open pan-genome
is usually found in species that colonize multiple niches and exchange genes in
multiple ways such as Propionibacterium acnes (Tomida et al, 2013),
Streptococcus agalactiae (Tettelin et al, 2005), Streptococcus pneumoniae
(Donati et al., 2010), and Haemophilus influenzae (Hogg et al., 2007). A pan-
genome is characterised as a “closed” pan-genome when new strains are
sequenced but the pan-genome size does not change. A closed pan-genome is
more conserved, niche-isolated and has limited genetic exchange, like Bacillus
anthracis (Medini et al., 2005), Campylobacter coli and C. jejuni (Lefébure et al.,
2010).

1.5 Rhizobium used in this study as model bacterium

Rhizobial data were used in order to test the performance of research
methods. Rhizobia are bacteria that play a very important role in agriculture
by inducing nitrogen-fixing nodules on roots of leguminous plants including
vetch, pea, bean, clover and alfalfa. Many rhizobia have been described,
including a group of closely related species in the genus Rhizobium consisting
of R. etli, R. fabae, R. pisi, R. phaseoli and R. leguminosarum. The type species of
the genus Rhizobium is R. leguminosarum. Symbiovars in rhizobia have been
used to distinguish symbiotically distinct subgroups within a single rhizobial

species (Long, 1989, Rogel et al,, 2011). In Rhizobium leguminosarum, three



symbiovars have been defined using host specificity, viz.: viciae (nodulating
pea, broad bean and vetch), trifolii (nodulating clover), and phaseoli
(nodulating kidney bean).

The complete sequence of R. leguminosarum biovar viciae strain 3841
(RIv3841) was published in 2006 (Young et al, 2006). The 7.75 Mb genome
comprises one circular chromosome and six circular plasmids viz. pRL7,
pRLS8, pRLY, pRL10, pRL11, and pRL12 (Figure 1.2). Bacterial genomes can be
distinguished into two distinct components: a conserved core and a variable
accessory genome. Although core genes are considered functionally essential
in the genome and carried by the chromosome, Harrison et al. (2010) pointed
out that plasmids pRL11 and pRL12 also contains core genes and called them
“chromids” because their properties were intermediate between those of
chromosomes and plasmids.
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Figure 1.2 Genomic structure of R. leguminosarum biovar viciae strain 3841 comprising

one circular chromosome and six plasmids (taken from Young et al. (2006)).



Seventy-two R. leguminosarum strains were isolated from an area of one
metre squared behind Wentworth College, University of York. These 72 local
strains consisted of 36 bv. viciae strains isolated from Vicia sativa (vetch) and
36 bv. trifolii strains isolated from Trifolium repens (clover). The variation
amongst the isolates was investigated by mapping the 72 Wentworth strains of
R. leguminosarum along with isolates from different geographical locations to
RIv3841 (similarity sequence search based on GSmapper). A phylogeny based
on 305 universal core genes showed five clear clades within R. leguminosarum

(Figure 1.3), which were called genospecies A-E (Kumar et al.,, 2015).

Related species Rhizobium leguminosarum population
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Figure 1.3 The 305 core-gene phylogeny constructed from rhizobium strains obtained from
different locations shows differences between the genospecies (gs). With Wentworth strains
(bv. trifolii as @ and bv. viciae as @), Swedish strains as @, and Scottish strains as ®: gs A has
only one strain, gs B includes RIv3841 (reference strain M) and 12 more strains, gs C includes

52 strains, gs D and E contain 4 and 3 strains, respectively (taken from Kumar et al. (2015)).

1.6 Aims of the study

The overall aim of the study is to explore and investigate the distribution and

contribution of core and accessory genes in the bacterial population by



computational approaches. The study is carried out bearing in mind the
following questions.
1. How do patterns of gene transfer relate to genomic location, gene
function, and population substructure in a bacterial population?
2. Can genes with related functions be identified from patterns of gene co-
occurrence in a bacterial population?
3. Can gene functions be discovered by examining the relationship between
genotype and phenotype in a bacterial population?
To answer these questions, each chapter has objectives as follows:
Chapter 2 Clanistics as a tool to explore gene distributions in a local
population of Rhizobium leguminosarum
* Investigate discordant and concordant genes in subspecies and
symbiovars of the rhizobium population.
* Investigate degree of gene transfer between subspecies and between
symbiovars.
* Explore relationship of discordant and concordant genes and their
function.
Chapter 3 Co-occurrence of genes in a local population of Rhizobium
leguminosarum
* Investigate and explore co-occurrence of genes in the bacterial
population by correlational computation.
* Compare and find the most suitable computational method for
extracting co-occurrence of genes.
* Apply network analysis to disclose latent relationships of genes in the
bacterial population.
Chapter 4 Analysis of phenotype-genotype data of the local population of
Rhizobium leguminosarum
* Assess association between sequence and functional features to
identify contribution of presence of genes responsible for a phenotype.
* Compare and find the most suitable computational method for

identifying the genes responsible for a phenotype.

10



Chapter 2 Clanistics as a tool to explore
gene distributions in a local population of
Rhizobium leguminosarum

2.1 Abstract

Evolutionary signals in the local rhizobium population were observed via an
incongruence in the phylogenetic trees constructed from distinct replicons in
the genome. The patterns of gene acquisition in a local population are
explored by classifying the arrangement of the symbiovar or the genospecies
categories on the phylogeny of each gene in turn, an approach known as
“clanistics”. An unrooted-tree-based analysis was applied to 6,509 unrooted
gene trees in order to detect candidate genes with remarkable events of gene
transfer. Results from the analysis will reveal the plurality of evolutionary
signals in the local population and dominant features of genes affected by

genetic transfer events.

2.2 Introduction

Prokaryotic or bacterial evolution is not only influenced by duplication, losses,
and vertical gene transfer events but also homologous recombination and
horizontal gene transfer (HGT). Shared evolution of genes in the rhizobium
population by recombination and/or HGT between strains necessarily leads to
incongruence among single gene phylogenies (Miller et al, 2007, Tian et al,

2010, Rogel et al., 2011).

Phylogenies of 6 non-chromosomal replicons (Figure 2.1) demonstrate
incongruence between them and the five genospecies defined by the
chromosomal phylogeny. While pRL9, pRL10, and the two chromids (pRL11
and pRL12) do not demonstrate much incongruence, noticeable phylogenetic
incongruence is observed on the phylogenies of pRL7 and pRL8, which are
conjugative plasmids and contain mainly accessory genes (Young et al, 2006).
This phylogenetic incongruence may result from gene transfer in the

rhizobium population that has occurred between genospecies. The shared
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evolution of genes is considerably driven by recombination and/or relatively

frequent HGT between strains.

pRL11 pRL12

Figure 2.1 Phylogenies of six plasmids are constructed from Rhizobium strains from
different locations. 72 rhizobium strains are coloured by their genospecies ( : genospecies
A, ©: genospecies B, @: genospecies C, ©: genospecies D, and @: genospecies E) (taken from
Kumar et al. (2015)).
However, manifest gene transfer events are not observed on the
chromosomal, pRL9, pRL10, pRL11 and pRL12 phylogenies (Figure 2.1)
because these phylogenies are obtained from many genes on each replicon.
Many studies (Mutch et al.,, 2004, Tian et al, 2010, Bailly et al., 2011) attempt
to find evidence of gene transfer in the population using a comparative

genome approach.

Phylogenetic analysis of nodulation genes on pRL10 (Figure 2.2) has revealed

that the nod gene phylogeny conflicts with the core gene phylogeny. Strains

12



that are genetically closely linked in the core gene phylogeny have varied nod
genes that are genetically distant on the nod gene phylogeny. These nod genes
leave a trace of gene transfer events (Kumar et al, 2015). Another study on the
72 Wentworth strains conducted by Kailin Hui demonstrated that there are
five genes carried on pRL8 (which is the smallest replicon) that are present
only in bv. viciae and are absent from bv. trifolii, i.e. symbiovar viciae specific
(bvs genes). It is plausible that these five bvs genes serve a specific adaptive
function in symbiovar viciae. Consequently, the exploration of incongruence in
phylogenetic gene trees in the rhizobium genome may disclose gene transfer
signals in the rhizobium population.
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Figure 2.2 Phylogeny of 11 nodulation genes (nodABCDEFIJLMN) of Rlv 3841 and RIt
WSM1325 for two symbiovars viciae and trifolii. Each strain is coloured by their genospecies
(®@: genospecies A, : genospecies B, @: genospecies C, ©: genospecies D, and @: genospecies
E) (taken from Kumar et al. (2015)).

Phylogenetic trees are a key tool for studying evolution. However, rooting a
phylogeny of bacterial genes is a difficult task because bacterial genes are
regularly disturbed during evolution by processes such as loss, duplication
and horizontal gene transfer. For this reason, study of the evolution of bacteria
is conducted using unrooted phylogenetic trees. The terminology of
relationship in an unrooted phylogenetic trees is slightly different from that of
a rooted phylogenetic tree (Wilkinson et al, 2007) (Figure 2.3). The
properties of an unrooted phylogenetic tree were developed by Lapointe et al.

(2010) as a tool for phylogenomic study to detect a genetic sharing signal.
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(b)

Figure 2.3 Illustration of clanistics concept for an unrooted tree (a) A clan is identified
by every bipartition of an unrooted tree. In this figure {1,2,3,4} and {0,9} are clans. A slice is
identified by every tripartition of an unrooted tree. In this figure {5,6,7,8} is slice. (b)
Categories are defined with three different colours, for example, if @ is defined as native to a
group then the other colours are intruders if they occur within that group. A complete group
is defined as a clan or slice including all members from a single category. Clan {1,2,3,4,5,6,7} is
complete because it includes all natives. A homogeneous group is defined a clan or slice with
members from the same category. Clan {8,9,0} is homogeneous because it contains elements
from a single category. A perfect group is defined a clan or slice that contains all members
from a single category and no intruders. Clan {5,6} is a perfect clan (redrawn from Lapointe et

al. (2010)).

Clanistic analysis (Lapointe et al., 2010) employs features of an unrooted tree
such as clans and introduces novel features like slices (Figure 2.3) to harvest a
signal of genetic sharing by partitioning unrooted phylogenetic trees in a
forest (a collection of unrooted trees). A principal idea of clanistic analysis is
to provide coherent partition(s) on unrooted trees in order to capture
evolutionary signals among operational taxonomical units (OTUs) which are
labelled either “native” or “intruder”, in which native is a member of the

category of interest, while intruder is not. The selection of the interesting
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category is dependent on what evolutionary questions need to be answered.
For example, in the case of pathogenicity, pathogenic strains are defined as
natives and non-pathogenic are defined as intruders (Beauregard-Racine et al,,
2011). Lifestyle adaption of bacteria is also used for category definition, such
as anaerobes defined as native and their complement defined as intruder
(Schliep et al, 2011). After partitioning, genes with evidence for
recombination are specified when the unrooted gene tree either gets more
than one split or contains a heterogeneous group (a group that includes native
and intruder) in the same partition. Alternately, genes without recombinant
evidence are specified when the unrooted gene tree gets no more than one

split or contains a homogeneous group (a group that includes single category).

In this chapter, we focus on genetic sharing in the Wentworth rhizobium
population. At the beginning, genes of the local rhizobium population that
have orthologs in RIv3841 are investigated to find evidence of genetic transfer
by using either the two symbiovars or the five genospecies for category
definition. Next, genes with or without evidence for recombination are further

investigated for their location in the genome and function.

2.3 Chapter aims

1. Identifying rhizobium genes that have or have not been transferred
between species-related categories, based on clanistic analysis.

2. Highlighting genes with remarkable clanistic patterns specific to biological
entities as species specificity and/or host specificity.

3. Illustrating the distribution of gene sharing patterns that vary among host
plants, replicons, and subspecies.

4. Illustrating the relationship between gene transfer patterns and their

genomic function.
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2.4 Methods
2.4.1 Sequence data

The gene sequences of R. leguminosarum used for this analysis are those that
map to the RIv3841 genome. Analysis was carried out on 7,148 genes found in
81 strains of which 72 are Wentworth strains (36 bv. viciae and 36 bv. trifolii
strains), seven Swedish strains (from Dr. Kerstin Huss-Danell), and two
Scottish strains (from Dr. Euan James). Five of seven Swedish strains were
isolated from Vicia cracca, so they belong to symbiovar viciae (VCSn). Two of
them were isolated from Trifolium pratense, so they belong to symbiovar
trifolii (TPSn). One of the Scottish strains came from Vicia cracca (VCS6) and
another came from Trifolium pratense (TPS6), hence these strains belong to
symbiovar viciae and trifolii, respectively. Lists of rhizobium strains and other

rhizobium used in this work are shown in Table 2.1 and Table 2.2.

2.4.2 Multiple sequence alignment

In order to achieve phylogenetic analysis, an alignment of each gene was
conducted using MUSCLE (MUIltiple Sequence Comparison by Log-
Expectation) (Edgar, 2004) at the nucleotide level. Elements of the algorithm
include fast distance estimation using contiguous subsequence of length k
(also known as kmer) counting, progressive alignment using a new profile
function called the log-expectation score, and refinement using tree-
dependent restricted partitioning. To exclude sequences that were too
incomplete for reliable phylogeny, the mean sequence length (excluding
sequence of RIv3841), was computed for each gene file. Gene sequences with
length shorter than the mean length were removed from the analysis. Also,
since unrooted trees required at least four strains to construct a tree, then the
number of retained strains for a given gene file was considered. The gene files
having less than four strains were excluded from the analysis. This step was

implemented by bio3d package (Grant et al., 2006).
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Table 2.1 List of strains of the two symbiovars (trifolii: trx for Wentworth strains, otherwise

TPS and viciae: vsx for Wentworth strains, otherwise VCS) that are classified into 5

genospecies based on the 305 core genes

Genospecies trx (bv. trifolii) vsx (bv.viciae) (TRX/VSX) Total
A trx34 VCS1 (2/4) 6
TPS1 VCS3
VCS4
VCS5
B trx2 vsx15 (10/2) 12
trx12 vsx18
trx13
trx15
trx18
trx25
trx27
trx31
trx32
trx33
C TPS6 VCS6 (20/34) 54
trx1 vsx1
trx3 VSX2
trx5 vsx3
trx6 vsx4
trx7 vsx5
trx10 VSx6
trx14 vsx7
trx16 vsx8
trx17 vsx9
trx19 vsx10
trx20 vsx11
trx21 vsx14
trx23 vsx16
trx24 vsx17
trx26 vsx19
trx28 vsx21
trx30 vsx22
trx35 vsx23
trx36 vsx24
vsx25
vsx26
vsx27
vsx28
vsx29
vsx30
vsx31
vsx32
vsx34
vsx35
vsx36
vsx37
vsx38
vsx39
D TPS5 (5/0)5
trx4
trx8
trx11
trx29
E trx9 VCS2 (2/2) 4
trx22 vsx33
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Table 2.2 Other R. leguminosarum strains sequenced in this study

Genospecies Strains Host Location
KHDVB 646.3 (VCS1) Vicia cracca .
KHDVE 7173 (TPS1) | Trifolium pratense | -2PPland, Sorsele, Ammarnds meadow
A 0OYAVB 169.1 (VCS3) Vicia cracca Visterbotten, Umed, Angersjo edge of
OYAVB 296.5 (VCS4) Vicia cracca field
OYAVB 349.6 (VCS5) Vicia cracca Visterbotten, Ume3, Alidhem roadside
S 273.16(VCS6) Vicia cracca
S 272.1 (TPS6) Trifolium pratense Tayport, Shanwell Farm farm track
D OYAVB 371.3 (TPS5) | Trifolium pratense | Viasterbotten, Umed, Alidhem roadside
E KHDVB 902.1 (VCS2) Vicia cracca Lappland, Sorsele, Kraddsele meadow

2.4.3 Phylogenetic analysis

Neighbour-joining (Saitou et al, 1987) is a distance-based tree method. Tree
construction is carried out by finding neighbours (which are two strains
whose distance leads to the largest reduction in tree length if they are
connected). The distance matrix used in this study was obtained from LogDet
transformation (Lockhart et al, 1994), which allows for unequal rates of
substitution (e.g. comparison between GC rich and AT rich taxa) at different
sites. The reliability of inferred phylogenetic trees was derived from 100
bootstrap replicates (Efron et al, 1983). These were implemented in the R
language using the Ape package (Paradis et al, 2004), which provides

functions for manipulating phylogenetic trees.

2.4.4 Clanistic Analysis

2.4.4.1 Coherent partitions on unrooted phylogenies

Initially, each gene on the unrooted tree is labelled as either native or intruder.
Natives are defined as genes from strains that belong to the category of
interest, or native category, while intruders are defined genes from strains
that belong to an intruder category (alternatively defined as the complement
of natives).

Optimal partitions completely separate natives from intruders on the
unrooted tree. The number of splits, described by parsimony score (p-score)
and homogeneity score within partitions of the unrooted tree, was used to

derive the optimal partitions with significant signals (Schliep et al. 2011).
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First, p-score was used for describing the number of splits. The p-score is the
number of cuts required to separate natives from intruders. A single split or a
perfect clan gives a p-score of 1. A pair of splits or a perfect slice gives a p-score
of 2. Higher parsimony scores (p-score > 2) indicate that there is combination
of the natives and intruders in the tree that would require additional
partitioning to split them.

Second, the homogeneity of the partitions in the tree (alternately,
quantification of the distribution of intruders within partitions) is measured
by the equitability index (E), which is derived from the Shannon diversity
index (H) (Shannon, 1948).

E = H/H' where H' = logn

where n is a number of natives of a given category. — XX . (p;log p;) was
denoted the Shannon diversity index (H). The k largest homogeneous clans
contain the n natives with relative sizes p;. A null value of E demonstrated
that all intruders of a given category are completely separated into a perfect
partition within the smallest complete partition of natives. The larger values
of E values, the more dispersion of the intruders. The maximum equitability
(E =1) is reached when the n natives split into n partitions (Lapointe et al.,
2010).

The optimal partitions with evolutionary significance were derived herein by

the R function called getDiversity in the Phangorn package (Schliep, 2011).

2.4.4.2 Evolutionary signal detection

Clanistic analysis was performed and obtained coherent partitions (later
called clanistic patterns) on each rhizobial gene. The clanistic patterns based
on genospecies (Figure 2.4) were herein classified into two classes, viz.
“concordant” pattern describing a gene without evidence for HGT, and
“discordant” pattern describing a gene with evidence for HGT.

The concordant pattern included trees with natives only (null £ and p-score of
0) (Figure 2.4 (a)), trees with intruders only (null E and p-score of 0) (Figure
2.4 (b)), and trees with a perfect clan (null E and p-score of 1) (Figure 2.4 (e)).
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(a.) pRL110057| (b.) pRL110176| (c) pRL110521]| (d.) pRL110067| putative (e.) pRL110018| major (f) pRL110077 (g.) pPRL110131
hypothetical hypothetical hypothetical protein glycosyltransferase facilitator subfamily | ABC transporter | hypothetical

protein protein transporter protein permease protein

Figure 2.4 Examples of different clanistic patterns found in analysing genes on pRL11, which define genospecies B in @ as natives and complement of
genospecies B in @ as intruders (a.) tree containing only natives ("), (b.) tree containing only intruders (H), (c.) trees with natives + single intruder (' ), (d.) trees
with intruders + single native (H), (e.) tree with perfect clan (), (f.) tree with perfect slices (M), and (g.) mélange tree without any kind of perfect group (H). All

of these patterns were defined using p-score of the tree, clan and slice, respectively. Patterns (c.), (d.), (f.), and (g.) can be explained in terms of phylogeny by

invoking at least one HGT.
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The natives-only pattern represented candidate genes that might be specific
genes of the native category. Genes with intruders-only pattern are absent
from the native category. The clan patterns represent genes for which the
assigned category can be separated from its complement.

Other clanistic patterns were specified as discordant patterns. Trees with
intruders + single native (E> 0 and p-score of 1) (Figure 2.4 (d)), trees with
natives + single intruder (E> 0 and p-score of 1) (Figure 2.4 (c)), trees with
slice (E> 0 and p-score of 2) (Figure 2.4 (f)), and trees with a mélange of
natives and intruders (E> 0 and p-score>2) (Figure 2.4 (g)) patterns notably
show at least one species having evidence for HGT (Schliep et al., 2011).

A similar analysis was also performed based on symbiovar categories rather
than genospecies. In this case, the concordant pattern with “no evidence for
HGT” should be interpreted as identifying genes that have the same
distribution as the symbiosis genes, and hence might be involved in the
symbiosis. The discordant pattern with “evidence for HGT” should be

interpreted as genes shared in the two symbiovars.

2.4.5 Host specificity and genospecies categories

The analysis categorised the strains either by symbiovar (bv. trifolii and bv.
viciae) or genospecies (A to E), and considered each category in turn as native.
For example, if the genospecies B was considered as native then all rhizobium
strains belonging to genospecies B were considered as native and strains
belonging to others genospecies were intruders (in this case, the intruders
were implicitly genospecies A, genospecies C, genospecies D and genospecies
E).

Another use of these defined categories was to discover sets of genes that may
be transferred together among the five genospecies by defining a discordance
index. The discordance index is the number of trees (out of five) using
genospecies as native category, which have clanistic patterns representing an
evidence of HGT. For example, pRL80044 demonstrated mélange using
genospecies A as native, intruders only for using genospecies B, clan for using

genospecies E and slice for using genospecies C and D as native. Hence,
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discordance index of pRL80044 is 3. Fisher’s exact test (Routledge, 2005)
examined the distribution of clanistic patterns by different native categories
and the association between discordance index and each replicon. Fisher’s

exact test was computed using fisher.test() in R.

2.4.6 Functional Analysis

The relationship between gene transfer and gene function was examined by
an enrichment analysis. To determine functions that involved frequently or
infrequently transferred genes with statistical significance, each tree was first
assigned to a function based on 23 categories of the proteins they encode
defined in the COG database (Tatusov et al, 2001) and then classified by
distinct native categories and discordance index. Fisher’s exact test examined
the distribution of clanistic patterns in each functional category by different
native categories and the association between discordance index and

functional categories.

2.4.7 Computational Resources

The whole procedure was run on an Apple MacBook Pro Intel Core i5 2.3 GHz
CPU with 4GB 667 MHz RAM running Mac OS X 10.8.4. R version 2.15.2 was

used in this chapter.

2.5 Results

The results on clanistic pattern of each gene by different replicon for each of

the two symbiovars and five genospecies are in Figures 2.5-2.12.

2.5.1 Clanistic Patterns Distribution based on Native Categories of two
symbiovars

First, the host-specific categories of bv. viciae and bv. trifolii were assigned as
natives (Figure 2.12) and their patterns were compared for genes on different

replicons. For example, using bv. trifolii as native, the frequency of genes with
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a perfect clan on pRL7 was compared with the frequency for genes located

elsewhere, using Fisher’s exact test (Table 2.3).

Table 2.3 Frequency of genes with clan pattern on pRL7 and other replicons when bv. trifolii

is the native category

Replicon
pRL7 Not pRL7
Clan 9 78
Clanistic pattern
Not clan 147 6,914

(p-value = 0.00011, two-sided Fisher’s exact test)

Using bv. trifolii as native, genes with a perfect clan were overrepresented on
pRL7.
Features of the distributions of the clanistic patterns on the two symbiovar

categories (Figures 2.5-2.11) can be explained as follows.

The two symbiovars are complementary categories. For example, a gene that
demonstrates a pattern of natives only, given bv. viciae as native category, will
demonstrate a pattern of intruders only when bv. trifolii is the native category.
Genes with a single-category pattern might be presumed to be host-specific
genes of either bv. viciae or bw. trifolii. However, RIv3841, used as a reference
strain for mapping sequence data in this study, is bv. viciae. In the case of
genes with natives-only pattern for bv. trifolii as native, these genes are not

really absent in all bv. viciae because they are present in Rlv3841.

Chromosomal genes are core genes and reflect the core phylogeny.
Consequently mélange patterns for symbiovar as native are overrepresented

in chromosomal genes (M in Figure 2.12).

In contrast to clanistic patterns found in chromosome, clanistic patterns of
plasmid genes may be either concordant or discordant. Genes having
concordant patterns of clanistics are present in other replicons. Salient

features of these genes are as follows.

Because the reference strain, RIv3841, is bv. viciae, genes with a natives-only
pattern for bv. viciae as native were highlighted to be bv. viciae specific genes

(" in Figure 2.12). The bvs genes (biovar viciae specific genes) are five genes
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on pRL8 (pRL80073 - pRL80077) whose clanistic patterns are illustrated in
Figure 2.13. The nod, nif, and fix genes on pRL10 are also identified by clanistic
analysis to be bv. viciae specific genes. A list of detected bv. viciae specific
genes on pRL8 and pRL10 is given in Table 2.4. Genes probably transferred
between the two symbiovars were found on pRL7, pRL9, pRL10, pRL11, and
pRL12.
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Figure 2.5 Clanistic patterns of chromosomal genes for different native categories. Rows represent defined native categories, and columns

HH *

represent chromosomal genes arranged according their locus tag (I trees with natives only, B trees with intruders only, " trees with natives + single
intruder, M trees with intruders + single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders, and

M genes excluded from analysis).
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Figure 2.6 Clanistic patterns of pRL12 genes for different native categories. Rows represent defined native categories, and columns represent

pRL12 genes arranged according their locus tag (I trees with natives only, B trees with intruders only, | trees with natives + single intruder, B trees
with intruders + single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders, and M genes excluded

from analysis).
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Figure 2.7 Clanistic patterns of pRL11 genes for different native categories. Rows represent defined native categories, and columns represent

pRL11 genes arranged according their locus tag (I trees with natives only, B trees with intruders only,

trees with natives + single intruder, B trees

with intruders + single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders, and M genes excluded

from analysis).
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Figure 2.8 Clanistic patterns of pRL10 genes for different native categories. Rows represent defined native categories, and columns represent
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pRL10 genes arranged according their locus tag (I trees with natives only, B trees with intruders only, | trees with natives + single intruder, B trees

with intruders + single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders, and M genes excluded

from analysis).
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Figure 2.9 Clanistic patterns of pRL9 genes for different native categories. Rows represent defined native categories, and columns represent pRL9
genes arranged according their locus tag (" trees with natives only, B trees with intruders only, " trees with natives + single intruder, B trees with
intruders + single native,  trees with perfect clan, B trees with perfect slice, B trees with mélange of natives and intruders, and B genes excluded

from analysis).
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Figure 2.10 Clanistic patterns of pRL8 genes for different native categories. Rows represent defined native categories, and columns represent pRL8
genes arranged according their locus tag (I trees with natives only, B trees with intruders only, = trees with natives + single intruder, Bl trees with
intruders + single native,  trees with perfect clan, B trees with perfect slice, B trees with mélange of natives and intruders, and B genes excluded

from analysis).
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Figure 2.11 Clanistic patterns of pRL7 genes for different native categories. Rows represent defined native categories, and columns represent pRL7
genes arranged according their locus tag (I trees with natives only, B trees with intruders only, = trees with natives + single intruders, B trees with
intruders+ single native,  trees with perfect clan, B trees with perfect slice, B trees with mélange of natives and intruders, and M genes excluded from

analysis).
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Figure 2.12 Distribution of the rhizobium gene trees when strains are classified into the
two symbiovars. Each plot indicates, for a given category, the fraction of gene trees
associated with the assigned category (" trees with natives only, B trees with intruders only,

trees with natives + single intruder, B trees with intruders + single native,  trees with
perfect clan, M trees with perfect slice, M trees with mélange of natives and intruders, and M
genes excluded from analysis). Fisher’s exact tests identified (*) a category which is

overrepresented relative to its abundance on other replicons.
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Table 2.4 List of genes on pRL8 and pRL10 with natives-only clanistic patterns with bv. viciae (vsx) as native category. Locus tags of biovar-specific

genes are in bold.

Locus tag Gene symbol Protein accession Annotated function COG function
Amino acid transport and
pRL80073 bvs1 YP_770968.1 Selenocysteine lyase/Cysteine desulfurase metabolism
pRL80074 bvs2 YP_770969.1 DNA-binding transcriptional regulator, LysR family Transcription
Translation, ribosomal structure
Enamine deaminase RidA, house cleaning of reactive and biogenesis, and Defense
pRL80075 bvs3 YP_770970.1 enamine intermediates, YjgF/YER057c/UK114 family mechanisms
pRL80076 bvs4 YP_770971.1 Predicted amidohydrolase General function prediction only
Periplasmic DMSO/TMAO reductase YedYZ, Energy production and
pRL80077 bvs5 YP_770972.1 molybdopterin-dependent catalytic subunit conversion
Nitrogenase molybdenum-iron protein, alpha and beta Energy production and
pRL100158 nifN YP_770436.1 chains conversion
Nitrogenase molybdenum-iron protein, alpha and beta Energy production and
pRL100159 nifE YP_770437.1 chains conversion
Nitrogenase molybdenum-iron protein, alpha and beta Energy production and
pRL100160 niﬂ( YP_770438.1 chains conversion
Nitrogenase molybdenum-iron protein, alpha and beta Energy production and
pRL100161 nifD YP_770439.1 chains conversion
pRL100162 nifH YP_770440.1 Nitrogenase subunit NifH, an ATPase General function prediction only
pRL100175 nod0 YP_770454.1 - -
pRL100177 - YP_770455.1 - -
pRL100179 nodN YP_77045 7.1 ACyl dehydratase Llpld transport and metabolism
Glucosamine 6-phosphate synthetase, contains Cell wall/membrane/envelope
pRL100180 nodM YP_770458.1 amidotransferase and phosphosugar isomerase domains biogenesis
pRL100181 nodL YP_770459.1 Acetyltransferase (isoleucine patch superfamily) General function prediction only
Lipid transport and metabolism,
pRL100182 nodE YP_770460.1 3-oxoacyl-(acyl-carrier-protein) synthase and Q
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Locus tag Gene symbol Protein accession Annotated function COG function
Lipid transport and metabolism,
pRL100183 nodF YP_770461.1 Acyl carrier protein and Q
pRL100184 nodD YP_770462.1 DNA-binding transcriptional regulator, LysR family Transcription
pRL100185 nodA YP_770463.1 - -
Carbohydrate transport and
metabolism, and Cell
wall/membrane/envelope
pRL100186 nodB YP_770464.1 Peptidoglycan/xylan/chitin deacetylase, PgdA/CDA1 family biogenesis
Glycosyltransferase, catalytic subunit of cellulose synthase Cell wall/membrane/envelope
pRL100187 nodC YP_770465.1 and poly-beta-1,6-N-acetylglucosamine synthase biogenesis
pRL100188 nodl YP_770466.1 ABC-type multidrug transport system, ATPase component Defense mechanisms
Carbohydrate transport and
metabolism, and Cell
ABC-type polysaccharide/polyol phosphate export wall/membrane/envelope
pRL100189 nod] YP_770467.1 permease biogenesis
Radical SAM superfamily enzyme, MoaA/NifB/PqqE/SkfB
pRL100195 nifB YP_770473.1 family General function prediction only
Transcriptional regulator containing GAF, AAA-type Transcription, and Signal
pRL100196 nifA YP_770474.1 ATPase, and DNA-binding Fis domains transduction mechanisms
Energy production and
pRL100198 fixC YP_770476.1 Dehydrogenase (flavoprotein) conversion
Energy production and
pRL100199 fixB YP_770477.1 Electron transfer flavoprotein, alpha subunit conversion
Energy production and
pRL100200 fixA YP_770478.1 Electron transfer flavoprotein, alpha and beta subunits conversion
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Figure 2.13 Clanistic patterns of the five bvs genes. All five genes exhibited unrooted trees with natives-only pattern for bv. viciae as native category.
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2.5.2 Clanistic pattern distribution based on native categories of five
genospecies

In general, the fraction of concordant clanistic patterns is higher for
genospecies than for symbiovar. Features of the distributions of the clanistic
patterns when each genospecies is, in turn, taken as native (Figure 2.14-2.16)
can be described as follows.

Chromosomal genes of all five genospecies show overrepresented proportions
of trees with a perfect clan. A majority of chromosomal genes are not
transferred among the five genospecies and are well conserved in each
genospecies. Some of chromosomal genes with evidence for HGT represent
clusters of genes transferred between genospecies and reveal that
chromosomal genes can behave like accessory genes transferred among the
five genospecies.

Genes on pRL8 represents a significant fraction of patterns without evidence
for HGT as they have an intruders-only pattern for genospecies B (l in Figure
2.14), implying that these genes are absent in genospecies B. However,
RIv3841, used as a reference strain for mapping sequence data in this study, is
in genospecies B and does, of course, have the genes. Then genes with

intruders pattern only in this case are not really absent in genospecies B.
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Figure 2.14 Distribution of the rhizobium gene trees in genospecies A and B based on
different tree patterns. Each plot indicates, for a given category, the fraction of gene trees
associated with the assigned category (I trees with natives only, B trees with intruders
only, " trees with natives + single intruder, B trees with intruders + single native,  trees
with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders,
and M genes excluded from analysis). Fisher’s exact tests identified (*) a category which is

overrepresented relative to its abundance on other replicons.
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Figure 2.15 Distribution of the rhizobium gene trees in genospecies C and D based on
different tree patterns. Each plot indicates, for a given category, the fraction of gene trees
associated with the assigned category (I trees with natives only, B trees with intruders
only, " trees with natives + single intruder, B trees with intruders + single native,  trees
with perfect clan, M trees with perfect slice, B trees with mélange of natives and intruders,
and M genes excluded from analysis). Fisher’s exact tests identified (*) a category which is

overrepresented relative to its abundance on other replicons.
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Figure 2.16 Distribution of the rhizobium gene trees in genospecies E based on
different tree patterns. Each plot indicates, for a given category, the fraction of gene trees
associated with the assigned category (I trees with natives only, B trees with intruders
only, © trees with natives + single intruder, B trees with intruders + single native, trees
with perfect clan, B trees with perfect slice, B trees with mélange of natives and intruders,
and M genes excluded from analysis). Fisher’s exact tests identified (*) a category which is

overrepresented relative to its abundance on other replicons.

pRL9 genes strongly exhibit patterns without evidence for HGT in all five
genospecies. There is a cluster of genes in only genospecies B (" in Figure
2.14). Table 2.5 and 2.6 represent lists of genes carried by strains in

genospecies B.

Table 2.5 List of genes with natives-only clanistic patterns on pRL9, pRL11, and pRL12 with
genospecies B as native category. Locus tags and other information of 26 genes held by all 12

members of genospecies B.

Locus tag Gene symbol | Protein accession Annotated function
pRL90043 - YP_765336.1 Multidrug resistance efflux pump
ABC-type multidrug transport system,
pRL90045 - YP_765338.1 permease component
pRL90121 - YP_765413.1 Predicted ATPase
DNA-binding transcriptional regulator,
pRL90122 - YP_765414.1 Lacl/PurR family
ABC-type sugar transport system,
pRL90124 - YP_765416.1 permease component
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Locus tag Gene symbol | Protein accession Annotated function
ABC-type glycerol-3-phosphate transport
pRL90125 - YP_765417.1 system, permease component
ABC-type glycerol-3-phosphate transport
pRL90126 - YP_765418.1 system, periplasmic component
Cupin domain protein related to
pRL90188 - YP_765475.1 quercetin dioxygenase
pRL90189 - YP_765476.1 Predicted dehydrogenase
ABC-type glycerol-3-phosphate transport
pRL90190 - YP_765477.1 system, permease component
ABC-type glycerol-3-phosphate transport
pRL90192 - YP_765479.1 system, periplasmic component
ABC-type transport system, periplasmic
pRL90231 - YP_765518.1 component
pRL90232 - YP_765519.1 Arylsulfatase A or related enzyme
Glycine cleavage system T protein
pRL90255 - YP_765541.1 (aminomethyltransferase)
5,10-methylenetetrahydrofolate
pRL90256 - YP_765542.1 reductase
pRL90315 - YP_765597.1 Predicted ATPase
Predicted enzyme related to
pRL90317 - YP_765599.1 lactoylglutathione lyase
Organic hydroperoxide reductase
pRL90318 ohr YP_765600.1 OsmC/OhrA
pRL110057 - YP_771090.1 -
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL110132 - YP_771166.1 family
pRL110198 - YP_771232.1 -
pRL110199 - YP_771233.1 -
pRL110301 - YP_771334.1 -
pRL110302 - YP_771335.1 -
pRL120089 - YP_764606.1 -
TRAP-type mannitol/chloroaromatic
- compound transport system, periplasmic
pRL120500 YP_765005.1 component

Table 2.6 List of genes with natives-only clanistic patterns on pRL7, pRL9, pRL10, pRL11, and

pRL12 with genospecies B as native category. Locus tags and other information of 48 genes

held by 6-11 members of genospecies B.

Locus tag Gene symbol | Protein accession Annotated function
Plasmid stabilization system protein
pRL70123 - YP_770853.1 ParE
pRL90041 groEL YP_765335.1 Chaperonin GroEL (HSP60 family)
DNA-binding transcriptional regulator,
pRL90119 - YP_765411.1 LysR family
Uncharacterized conserved protein YurZ,
alkylhydroperoxidase/carboxymuconola
pRL90120 - YP_765412.1 ctone decarboxylase family
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Locus tag

Gene symbol

Protein accession

Annotated function

pRL90157 - YP_765446.1 -
DNA-binding transcriptional regulator,
pRL90257 - YP_765543.1 GntR family
Branched-chain amino acid ABC-type
pRL90259 - YP_765545.1 transport system, permease component
Tryptophan-rich sensory protein
(mitochondrial benzodiazepine receptor
pRL90314 - YP_765596.1 homolog)
Uncharacterized protein, contains PIN
pRL100005 - YP_770307.1 domain
pRL100006 - YP_770308.1 Uncharacterized protein
pRL100316 - YP_770592.1 -
pRL100468 - YP_770743.1 -
NADPH:quinone reductase or related Zn-
pRL110134 - YP_771168.1 dependent oxidoreductase
Phenylpyruvate tautomerase PptaA, 4-
pRL110135 - YP_771169.1 oxalocrotonate tautomerase family
pRL110139 - YP_771173.1 Predicted dehydrogenase
pRL110338 - YP_771370.1 -
pRL110494 - YP_771528.1 -
pRL110497 - YP_771531.1 -
pRL110585 - YP_771619.1 -
pRL120075 sthC YP_764592.1 Plasmid stability protein
Predicted nucleic acid-binding protein,
pRL120076 stbB YP_764593.1 contains PIN domain
pRL120086 - YP_764603.1 Phage shock protein A
pRL120092 - YP_764609.1 Glutathionylspermidine synthase
pRL120103 - YP_764620.1 -
pRL120118 - YP_764633.1 Predicted oxidoreductase
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120119 - YP_764634.1 family
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120120 - YP_764635.1 family
Dihydroorotase or related cyclic
pRL120121 - YP_764636.1 amidohydrolase
Peptidoglycan/xylan/chitin deacetylase,
pRL120123 - YP_764638.1 PgdA/CDA1 family
Nucleoside-diphosphate-sugar
pRL120124 - YP_764639.1 epimerase
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120125 - YP_764640.1 family
Dihydroorotase or related cyclic
pRL120126 - YP_764641.1 amidohydrolase
pRL120127 - YP_764642.1 -
ABC-type dipeptide/oligopeptide /nickel
pRL120128 - YP_764643.1 transport system, ATPase component
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Locus tag Gene symbol | Protein accession Annotated function
ABC-type dipeptide/oligopeptide /nickel
pRL120129 - YP_764644.1 transport system, permease component
ABC-type dipeptide/oligopeptide /nickel
pRL120130 - YP_764645.1 transport system, permease component
Transcriptional regulator GIxXA family,
contains an amidase domain and an
pRL120132 - YP_764647.1 AraC-type DNA-binding HTH domain
Predicted nucleic acid-binding protein,
pRL120133 stbB YP_764648.1 contains PIN domain
pRL120134 sthC YP_764649.1 Plasmid stability protein
DNA-binding transcriptional regulator,
pRL120168 - YP_764680.1 LysR family
DNA-binding transcriptional regulator,
MurR/RpiR family, contains HTH and SIS
pRL120428 - YP_764935.1 domains
pRL120429 - YP_764936.1 Asp/Glu/hydantoin racemase
ABC-type dipeptide/oligopeptide /nickel
pRL120430 - YP_764937.1 transport system, ATPase component
ABC-type dipeptide/oligopeptide /nickel
pRL120433 - YP_764940.1 transport system, permease component
ABC-type transport system, periplasmic
pRL120434 - YP_764941.1 component
pRL120497 - YP_765002.1 -
TRAP-type mannitol/chloroaromatic
compound transport system, large
pRL120498 - YP_765003.1 permease component
TRAP-type mannitol/chloroaromatic
compound transport system, small
pRL120499 - YP_765004.1 permease component

Contemplating genospecies B, pRL11 and pRL12 genes exhibit the clanistic
pattern without evidence for HGT as natives-only pattern (" in Figure 2.14).
Those genes were carried by strains genospecies B. These genes may be
considered as genospecies B specific genes (Table 2.4 and 2.5).

Discordance index was employed to clarify the degrees of gene transfer within
the five genospecies by computing the discordance index from results on
clanistic pattern number of recombinant species to number of excluded genes
from analysis of each replicon (Figure 2.17).

For example, a null hypothesis, tested by Fisher’s exact test, was that the
distribution of genes on pRL9 with discordance index of 0 was evenly

distributed within five genospecies. Under the null hypothesis, a 2x2

contingency table was drawn (Table 2.7).
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Table 2.7 Frequency of genes with discordance index of 0 on pRL9 and other replicons under

the defined hypothesis.

Replicon
pRLO Not pRL9
0 126 1,883
Discordance index
>0 179 4,960

(p-value <0.0001, two-sided Fisher’s exact test)

Genes with discordance index of 0 were overrepresented on pRLO.

Genes with discordance index of 0 were found on the chromosome, pRL9, and
pRL12 (M Figure 2.17) because chromosomal genes have a large number of
genes with clans, which can distinguish the native genospecies from the other

genospecies, while pRL9 and pRL12 carried genes specific to genospecies B.

0.8-

0.6-

*
*
*
0.4-
*
* *
*
*
*
0.2- *
- *
* x
I *
0.0- | | u | |

chrom pRLO7 pRLO8 pRLO9 pRL10 pRL11 pRL12

N

Figure 2.17 Distribution of genes in each replicon, classified by discordance index
(discordance index of 0 M, 1 M, 2 " ,3 ,4 " ,5 M, and M genes excluded from analysis).

Fisher’s exact tests identified (*) fraction of genes with overrepresented in analysed data.

Genes with discordance index of at least 1 were present in significant numbers

on every replicon apart from pRL8, pRL9, and pRL11. These genes may be
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transferred between one genospecies, which was considered as native, to at
least one of the other four genospecies. These implied that HGT within five
genospecies could be found on every type of replicon in the genome.

Genes excluded from the analysis represented significant fractions on pRL7,
pRL8, pRL10 and pRL11 (M in Figure 2.17). This situation can be described by
genome architecture that pRL8, pRL7 and pRL10 are plasmids, which genes
are present in some strain and a number of strains carrying these genes not
qualifying the assumption of analysing method, similarly to a fraction of

excluded genes of pRL11, which is a chromid.

2.5.3 Overrepresented functional categories in clanistic patterns using the
two symbiovars native categories

Plots of the two symbiovars viz. bv. trifolii (Figure 2.18) and bv. viciae (Figure
2.19) defined as native category and functional categories reveal that genes
with evidence for HGT were found in almost all 22 functional categories.

Clanistic patterns of genes associated with their function were hypothesised
and investigated by different replicons. For example, a null hypothesis that
genes with native-only pattern in function category Q (Secondary metabolites
biosynthesis, transport and catabolism) evenly distributed using genospecies

B as native was established (Table 2.8).

Table 2.8 Frequency of genes with natives-only pattern in category Q and other categories

under the defined hypothesis.

Clanistic pattern

Native only Not native only
Q 14 172
Function
Not Q 138 7,470

(p-value = 0.02302, two-sided Fisher’s exact test)

It was concluded that the genes with native-only pattern were

overrepresented in category Q.

Symbiovar-specific genes were overrepresented in inorganic transport and

metabolism. Of 343 genes involving in inorganic transport and metabolism, 5
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genes, nifNEKDH (pRL100158-pRL100162) on pRL10, have intruders-only

pattern for bv. trifolii as native (M in Figure 2.18) and natives-only pattern for

bv. viciae as native (
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Figure 2.18 Distribution of gene trees in 22 functional categories based on different
tree patterns, given bv. trifolii as a native category. Each graph describes the percentage
of gene trees associated with a given COG function (" trees with natives only, B trees with
intruders only, " trees with natives + single intruder, B trees with intruders + single native,

trees with perfect clan, B trees with perfect slice, B trees with mélange of natives and
intruders, and M genes excluded from analysis). Fisher’s exact tests identified (*) fraction of

genes with overrepresented in analysed data.
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Figure 2.19 Distribution of gene trees in 22 functional categories based on different
tree patterns, given symbiovar viciae as a native category. Each graph describes the
percentage of gene trees associated with a given COG function. (I trees with natives only, l
trees with intruders only, trees with native + single intruder, B trees with intruders +
single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of
natives and intruders, and B genes excluded from analysis). Fisher’s exact tests identified (*)

fraction of genes with overrepresented in analysed data.
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2.5.4 Overrepresented functional categories in clanistic patterns using
native categories as five genospecies

Plots of functional categories when each of the five genospecies was defined as
native show the proportion of genes with and without evidence of HGT
associated with a given COG (Figure 2.20-2.24).

The five genospecies (Figure 2.20-2.24) showed gene trees having evidence of
HGT were overrepresented in amino acid transport and metabolism,
carbohydrate transport and metabolism, inorganic ion transport and
metabolism, translation, ribosomal structure and biogenesis, replication,
recombination and repair, intracellular trafficking, secretion, and vesicular
transport, mobilome: prophages, transposons, posttranslational modification,
protein turnover, chaperones, secondary metabolites biosynthesis, transport
and catabolism, signal transduction mechanisms, energy production and
conversion, cell motility, extracellular structures, general function prediction
only, unknown function, and genes with no information in COG.

Genes with natives-only pattern (© in Figure 2.21) were considered to be
candidates of genospecies B specific genes. The genes were predominantly
involved in secondary metabolites biosynthesis, transport and catabolism,
general function prediction only, mobilome: prophages, transposons, and as
genes with no available information in COG.

For given different native categories, genes excluded from the analysis (M in
Figure 2.18-2.24) were overrepresented in replication, recombination and
repair, intracellular trafficking, secretion, and vesicular transport, mobilome:
prophages, transposons, and as genes with no available information in COG

database.
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Figure 2.20 Distribution of gene trees in 22 functional categories based on different
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fraction of genes with overrepresented in analysed data.
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Figure 2.21 Distribution of gene trees in 22 functional categories based on different
tree patterns, given genospecies B as a native category. Each graph describes the
percentage of gene trees associated with a given COG function (' trees with natives only, H
trees with intruders only, trees with natives + single intruder, B trees with intruders +
single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of
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fraction of genes with overrepresented in analysed data.
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Figure 2.22 Distribution of gene trees in 22 functional categories based on different
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Figure 2.23 Distribution of gene trees in 22 functional categories based on different
tree patterns, given genospecies D as a native category. Each graph describes the
percentage of gene trees associated with a given COG function (' trees with natives only, l
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Figure 2.24 Distribution of gene trees in 22 functional categories based on different
tree patterns, given genospecies E as a native category. Each graph describes the
percentage of gene trees associated with a given COG function (' trees with natives only, ll
trees with intruders only, ' trees with natives + single intruder, B trees with intruders +
single native,  trees with perfect clan, M trees with perfect slice, B trees with mélange of
natives and intruders, and M genes excluded from analysis). Fisher’s exact tests identified (*)

fraction of genes with overrepresented in analysed data.
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To delineate association between degree of gene transfer and functional
categories, discordance index from results on clanistic patterns number of
recombinant species to number of excluded genes from analysis were plotted
against 22 functional categories (Figure 2.25).

Degrees of transferred gene within five genospecies associated with their
function were also hypothesised and investigated. It was exemplified that the
distribution of genes with discordance index of 0 and function F (Nucleotide
transport and metabolism) were evenly distributed. 2x2 contingency table

was drawn (Table 2.9)

Table 2.9 Frequency of genes with discordance index of 0 in category F and other categories

under the defined hypothesis.

Discordance index

0 >0
F 49 73
Function
Not F 2,212 5,640

(p-value = 0.0031, two-sided Fisher’s exact test)

It was concluded that the genes with discordance index of 0 were

overrepresented in F category.

Genes with discordance index of zero represented strong association with
nucleotide transport and metabolism, lipid transport and metabolism and cell
wall/membrane/envelope biogenesis.

Genes with discordance index of 1 and greater represented strong association
with amino acid transport and metabolism, carbohydrate transport and
metabolism, inorganic ion transport and metabolism, energy production and
conversion, transcription, secondary metabolites biosynthesis, transport and
catabolism, signal transduction mechanisms, translation, ribosomal structure
and biogenesis, mobilome: prophages, transposons and genes with no

available information in COG database.
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Figure 2.25 Distribution of gene trees in 22 functional categories based on different
discordance index. Each graph describes the percentage of gene trees associated with a

given COG function (discordance index of M0, @ 1, 2, 3,7 4,5, and M genes excluded

from analysis). Fisher’s exact tests identified (*) fraction of genes with overrepresented in

analysed data.

2.6 Discussion
2.6.1 Interspersed and conserved genes between two symbiovars

In this study, the two symbiovars, trifolii and viciae, have an interspersed
distribution on the phylogenies of the majority of genes in the genome, not
just those on the chromosome (M gene trees with mélange in Figure 2.12 for
given bv. viciae as native). For chromosomal genes, a mélange was expected

because of the symbiovar definition. Symbiovars are strains within a bacterial
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species that share chromosomal genes but are differentiated by symbiosis
genes (Rogel et al.,, 2011).

However, for bv. viciae as native, it was found that the two symbiovars also
shared genes that showed symbiovar-related patterns on plasmids pRL7 (M
gene trees with perfect slice), pRL9 (M trees with intruders + single native and
M trees with perfect slice), pRL10 (¥ trees with natives + single intruder and
M trees with intruders + single native), pRL11 (M trees with intruders + single
native), and pRL12 (M trees with intruders + single native and M trees with
perfect slice Figure 2.12). These genes suggest that evolution related to these
two symbiovars may also be seen on other replicons.

When a symbiovar is defined as the native category, the natives-only pattern
represents differences between the two symbiovars. Some genes with the
natives-only pattern were the well-known symbiosis-related genes on pRL10
(Young et al, 2006). pRL100177, which was newly identified as a bv. viciae
specific gene, was carried by VCS2, VSX15, VSX22 VSX31, and VSX36. The
recently-described bvs genes on pRL8 (Kumar et al, 2015) were also
highlighted, though their annotated functions are not related to symbiosis

(Table 2.4).

2.6.2 Effects of genes transferred within five genospecies

This study has revealed that the genomes of the five genospecies have a
complex mix of genes with or without evidence of HGT.

The five genospecies were defined by a 305-gene core phylogeny (Figure 1.3
in Chapter 1). The 305 genes are the universal genes described by Harrison et
al. (2010). Clanistics identified 201 genes with evidence for HGT between
genospecies that were in the set of universal genes (discordance index of all
305 genes in Appendix Table LI). Similar instability of the core genome was
also found in other bacterial populations (Didelot et al, 2010, Beauregard-
Racine et al.,, 2011, Didelot et al, 2011, Cadillo-Quiroz et al., 2012).

Clanistics demonstrated the roles that each replicon has taken in evolution.
The chromosome not only carried genes with no evidence for HGT, of which a

majority formed clans (Figure 2.14-2.16), supporting the concept of species
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maintained by barriers to gene transfer, but also carried mobile genes. Genes
on pRLY and pRL12 with concordance index of zero and with a natives-only
pattern (Figure 2.14) were identified as genospecies B specific genes (Table
2.8 and 2.9), while genes with evidence of HGT were found on pRL7, pRL10,
and pRL12 (Figure 2.17). Genes on chromids and plasmids are generally
recognised as adaptive and mobilisable genes in bacterial population
genomics studies (Heuer et al., 2012, Galardini et al, 2013, Sentchilo et al,
2013).

The genes without evidence of HGT were overrepresented in the categories of
nucleotide transport and metabolism, and lipid transport and metabolism, cell
wall/ membrane/ envelope biogenesis (Figure 2.25), which include many
housekeeping functions that one would expect to be part of the core genome.
Genes relevant to mobilome: prophages, transposons were overrepresented
with evidence for HGT within five genospecies because transposons and
plasmids are mobilome elements (Siefert, 2009) and naturally transferred
between species (Nakamura et al, 2004, Beiko et al, 2005, Tamminen et al.,
2012). Genes with evidence for HGT are also overrepresented in the functional
categories of energy production and conversion, amino acid transport and
metabolism, carbohydrate transport and metabolism, inorganic ion transport
and metabolism, secondary metabolites biosynthesis, transport and
catabolism, translation, ribosomal structure and biogenesis, transcription,
signal transduction mechanisms, and as genes with no available information in
COG (Figure 2.25). Genes related to operational categories including amino
acid biosynthesis, biosynthesis of cofactors, cell envelope proteins,
intermediary metabolism, fatty acid and phospholipid biosynthesis, nucleotide
biosynthesis, and regulatory genes tended to be transferred.
Overrepresentation of horizontally transferred operational genes has been
reported in previous studies (Jain et al, 1999, Nakamura et al, 2004,
Zhaxybayeva et al., 2006, Kanhere et al, 2009). The complexity hypothesis
(Jain et al,, 1999) stated that the operational genes are usually members of
small assemblies of a few genes products which makes them more portable.

Another possible explanation is that these genes encode enzymes required for
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niche adaptation (Wisniewski-Dyé et al, 2012, Dziewit et al.,, 2014, Guo et al,
2015).

Genes with evidence for HGT were also preferentially found in translation,
ribosomal structure and biogenesis, transcription, and signal transduction
mechanisms categories, which contradicts the complexity hypothesis of Jain et
al. (1999), but is in agreement with Kanhere et al. (2009), Wisniewski-Dyé et
al. (2012), Dziewit et al. (2014), and Epstein et al. (2014). The genes belonging
to the transcription category often produced proteins associated with
transcription that was required for the stable maintenance of bacterial
plasmids and regulation of accessory genes.

[t is noticeable that some of the genes with evidence for HGT were in a “poorly
characterized” category, including genes with no available information in
COG, general function unknown and function unknown. This finding
corresponded with studies of comparative genomics in other bacteria
(Wisniewski-Dyé et al, 2012, Dziewit et al, 2014, Epstein et al, 2014) and
reflects the fact that the functions of accessory genes are generally less well
understood than those of core genes. It should be noted that Choi et al. (2007)
reported a conflicting result, in that they did not find any association between

functional categories and gene transferred.

2.6.3 Limitations of the analysis

Sequences with insufficient information, for example, length of sequence
lower than the threshold, were excluded from the analysis. This limitation
may result in the analysis suffering because many genes on pRL7, pRL8, and
pRL10 were excluded because they did not qualify on the criteria of sequence
length and number of sequences. For example, orthologues of pRL80012 were
carried by eight strains (VSX2, VSX3, VSX5, VSX22, VSX34, VSX36, VSX31, and
RIv3841) but their length ranged from 175 to 1,125 nucleotides. After
removing sequences whose length was less than mean of length of all eight
sequences, three sequences were remained, which were not sufficient for

further analysis. As another example, pRL80002 had orthologues in just two
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strains, TRX18 and RIv3841, reflected the fact that pRL7 and pRL8 carried
accessory genes, which are often rare in the population.

The criterion of sequence length also affected identification of candidate
native-specific genes. For example, for bv. viciae specific genes, clanistics
identified six candidate genes, but five of them were not only carried by bv.
viciae but also by bv. trifolii strains, whose sequences were removed because
they were too short. However, this tool is friendly with a large amount of data,
provides reasonable time on computation, and computational results with
statistics.

The reference strain has an effect in this study because RIv3841 is bv. viciae
and genospecies B. When a gene with intruders-only pattern is found for
genospecies B or bv. viciae as native, this means that RIv3841 is an exception
compared to strains of the same genospecies or symbiovar in our population.
The gene is not actually absent in genospecies B or bv. viciae in general, as it is
in RIv3841, but it is absent from these groups in our population. This means
genes absent from genospecies B cannot be detected. Conversely, when a gene
with natives-only pattern is found for given genospecies A, and C-E or bv.
trifolii as native, the gene is not actually present only in genospecies A, and C-E
or bv. trifolii. There are genes in the population which are not present in
RIv3841. These genes may be specific to genospecies A, and C-E or to bv.
trifolii, as shown in Figure 4 of Kumar et al. (2015). Consequently, using a
different reference strain, which is from genospecies A, and C-E or bv. trifolii,
might help to disclose further gene transfer events in the population.

Some genes have well-known functions, but these are not recorded in the COG
database; for example nodO (pRL100175, genes with no information in COG),
nodA (pRL100185, genes with no information in COG), nifB (pRL100195,
General function prediction only). In general, the COG database has more
accurate information on core genes that on accessory genes, and this may bias
the apparent relationship between functional characteristics and gene

transfer.

In this chapter, clanistics can detect dispersed and conserved genes between

two symbiovars by looking at concordance and discordance on clanistic

58



patterns. Genes specific to bv. viciae were confirmed in line with previous
studies. Within five genospecies, rhizobium genes were identified that have or
have not been transferred. Many more genes were well conserved within five
genospecies than between two symbiovars. Use of the discordance index
demonstrated that chromosomal, pRL9 and pRL12 genes were less affected by
HGT, some of these had been used for core phylogeny construction. The
clanistics results could be used to identify a set of core genes that were
reliable markers for identifying the genospecies of new isolates. Clanistics also
detected genes specific to genospecies B that were located on pRL7, pRL9,
pRL10, pRL11 and pRL12, so it appears that the differences between
genospecies are not confined to chromosomal genes but also extend to

plasmid-encoded genes (or, at least, genes that are plasmid-encoded in 3841).
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Chapter 3 Co-occurrence of genes in the
local population of Rhizobium
leguminosarum

3.1 Abstract

In the previous chapter, gene transfers were observed in the rhizobium
population which reflected the genetic diversity within the five genospecies.
Within the genospecies, the genes tend to be either lost or conserved in the
genome, thus increasing the distinctiveness of a genospecies or its ability to
adapt to a specific environment during evolution. Patterns of gene
presence/absence (i.e. gene distribution in the population) are investigated in
this chapter. To obtain the patterns within the occurrence data, gene
presence/absence profiles (alternatively called phylogenetic profiles) were
first evaluated as relationships of gene pairs by different measures. Co-
occurrence and anti co-occurrence of genes quantified by these different
measures were later compared in order to find an optimal measure. Before co-
occurrence and anti co-occurrence relationships were converted to a co-
occurrence gene network, an optimal threshold of correlation values was
determined to prevent network construction from spurious correlations. The
co-occurrence gene network was constructed based on optimal parameters to
visualise a broader view of genomic relationships in the rhizobium population.
The final network included 2,663 genes and 33,318 interactions of which a
majority were co-occurrence. Co-occurrence subnetworks contained
neighbouring genes, genes participating in the same biological process (e.g.
symbiosis genes) or genes present in the same subpopulation (e.g. genes
specific to genospecies). Anti co-occurrence relationships between
subnetworks were detected for chromosomal genes on genomic islands and

for plasmid or chromid genes with replaceable functions.
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3.2 Introduction

The diversity of ecological properties, such as ability to utilise carbon
substrates and symbiotic host range, or symbiovar (Rogel et al, 2011), is a
consequence of interplay between numerous genes. These genetic
dependencies require the co-occurrence of those genes in the population
(Huynen et al, 2000, Cui, 2010, Kim et al, 2011). Comparative studies of
genomes in bacterial populations revealed that there are many mechanisms,
including recombination and horizontal gene transfer, that relate to
adaptation of organisms to their specific environmental conditions during
evolution (Tian et al, 2010, Bailly et al, 2011, Kumar et al, 2015).
Homologous recombination or horizontal gene transfer can result in variation
of gene distribution in the bacterial population (Yerrapragada et al, 2009,
Mallet et al., 2010, Smokvina et al., 2013, Sugawara et al., 2013, Méric et al,
2014).

Table 3.1 Phylogenetic profiles. Rows represent strains, and columns represent gene

presence/absence in a strain, which are encoded with binary values (0: absent gene and 1:

present gene) (redrawn from Cokus et al. (2007)).

Gene 1 Gene 2 Gene 3 Gene 4
Strain A 1 0 1 1
Strain B 0 0 0 1
Strain C 0 0 1 0
Strain D 1 0 1 0
Strain E 1 1 0 0

Patterns of genetic elements were firstly investigated as gene homologs
(Overbeek et al., 1999) and protein homologs (Pellegrini et al, 1999, Cokus et
al, 2007). The presence/absence profile of genes, called the phylogenetic
profile, is in a binary format (0: absence of gene and 1: presence of gene)
(Table 3.1). Analyses of gene occurrence have been done previously by using
data from the COG database (Wu et al, 2003, Kim et al, 2011, Cohen et al,
2012). Gene occurrence in Mycoplasma genitalium was compared with
evidence from gene fusions and genomic neighbourhood (Huynen et al,

2000). These studies classify the relationship of genes into co-occurrence
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(genes that tend to occur in the same genome) and anti co-occurrence (genes
that tend not to be found in the same genome). Their findings indicate that
genes with co-occurrence relationships participate or play a role in the same
pathway or under a specific condition, while anti-co-occurrence genes may

encode the same function but perform in a different way.
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Figure 3.1 Presence/absence matrix of pRL8 obtained for 72 R. leguminosarum strains

using RIv3841 small plasmid genes. The presence of genes is shown in blue, absent genes
are in white. Rows represent 72 strains, and columns represent plasmid genes that are
longer than 100 bp. Strains are arranged according to their respective genospecies (A-E).
The bvs (symbiovar viciae specific) genes in pRL8 are in brown (taken from Kumar et al

(2015)).

In the comparative study of 72 rhizobium strains by Kumar et al. (2015), the
diversity of gene occurrence in the population was represented in a gene
presence/absence matrix format with reference to the replicons of RIv3841 (e.
g. Figure 3.1). The presence of many genes was found to be restricted to some
strains in the population, but dispersed among the five genospecies. Focusing
on the five bvs genes on pRL8 (Table 2.4 in Chapter 2), the results of the
previous chapter demonstrated that the unrooted trees of these five genes
represented natives-only patterns for bv. viciae as the native category (Figure
2.13 in Chapter 2). The occurrence patterns and clanistic results of these five

genes supported the co-occurrence relationships of these bvs genes.
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This chapter aims to quantify co-occurrence and anti co-occurrence
relationships of genes in the rhizobium population, which may not only give
us a better insight into gene organisation of the rhizobium genome but also
allow us to infer function of unknown genes. To achieve this, co-occurrence
relationships measured by different coefficients will be compared to find the
optimal measure. In order to display the co-occurrence of genes that may be
on distinct replicons, significant co-occurrence relationships of genes will be
converted to a gene co-occurrence network. The significant co-occurrence
relationships are greater than or equal to an optimal threshold, which is a
minimum correlation value used for the gene co-occurrence network
construction. Finding the optimal threshold is a challenge because defining a
low threshold may include spurious relationships in the network, whereas
defining a high threshold may exclude significant relationships from the
network. The threshold of the gene co-occurrence network will be selected by

using methods based on graph theory.

3.3 Chapter aims

1. Evaluating co-occurrence and anti co-occurrence relationships of gene pairs
in a rhizobium population.

2. Constructing the gene co-occurrence network from optimised parameters
and analysing the gene co-occurrence network based on graph theory.

3. Extracting biological features of co-occurrence and anti co-occurrence

relationships reflected from the gene co-occurrence network.

3.4 Materials and methods

3.4.1 Gene presence/absence data

The gene data included in the study were obtained from 85 rhizobium strains
as detailed in Chapter 2. The data used herein were profiles containing gene
distribution in terms of gene presence/absence from the rhizobial population
for each gene in the genome of the reference strain RIv3841. They are
illustrated in Figure 3 of Kumar et al (2015). According to Nitin Kumar

(personal communication), the phylogenetic profile of each gene was collected
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in binary format (1: present and 0: absent) from reference-based assembly
against RIv3841 (Newbler 2.5 software with 90% sequence identity and 40-bp

minimum overlap as parameters).

3.4.2 Quantification of co-occurrence genes

To gain insight into the interaction of co-occurring genes, standard measures

of profile similarity were considered.

Jaccard similarity index (/) (Jaccard, 1912) is used for quantifying
association of either similarity or difference between two genes present in the
population. The Jaccard similarity index of two genes is a ratio between the
number of strains containing the two genes and the number of strains

containing either of them, where

Number of strains where both gene, and geney are present

]geneA,geneB -

Number of strains where gene, and/or geney are present

The Jaccard similarity index ranges between 0 and 1. The index equals 1 if the
occurrence of the two genes is identical in the population, while the index
equals O if there is no strain carrying both genes. The Jaccard index is
considered to be an effective measure when there are strains carrying both
the two genes. A weakness of the Jaccard is that when the two genes have
presence patterns that are complements of each other, the Jaccard index of the
two genes is “0”, although actually the two genes have a negative relationship.

Pearson correlation coefficient (7,ene, geney) fOr binary variables, used by

Kim et al. (2011), is defined as follows :
C

geney,genep
rgeneA,geneB
\/ Egene,Egenes (N - EgeneA)(N - Egenes)

enegenep d€NoOtes Pearson’s correlation in occurrence between genes and

N —E E

geneyg“genep

Ty

genes. Cgene  geney 1S the number of strains carrying both genes and genes.

E

gene, iS the number of strains containing genea. N denotes the total number

of strains in the dataset. The value of 7yepne, gene, iS standardized to lie

between -1 and 1. 0 means that the strains having genes are completely

independent of the presence of genes. There is no relationship between the
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presence of genes and genep. 1 means genes and geneg have a maximal co-
occurrence relationship because the presence of genes and geneg is identical,
i. e, every strain that carries genes has to carry genep. -1 means means geney
and genep have an anti co-occurrence relationship: every strain that carries
geney, does not carry genep and vice-versa.

Mutual information (Mgepe, geney) (Huynen et al, 2000, Steinhauser et al,
2007, Kensche et al, 2008) quantifies dependence between genes and geneg.
Mgene , geney; 1S derived from the entropy of genes (Hgene ) and genes (Hgene,) -
The mutual information is described mathematically by the log-odds ratio of

the expected co-occurrence of pairs of genes, based on their individual

frequencies, to the observed frequency of occurrence.

ngneA = _z PgeneA longeneA
geney

ngneB = _z PgeneB logpgeneg
genepg

ngneA,geneB = - z PgeneA,geneB logpgeneA,geneB
geney.genepg

MgeneA,geneB = ngneA + ngneB - ngneA,geneB

z PgeneA,geneB/PgeneA PgeneB
geney,genep

P,

zene, Tepresents the probability of all possible events relating to genes

(herein events mean the presence or absence of genea). Pyene , gene TEPresents
the probability of all possible events relating to genes and geneg (herein events
mean the combination of presence or absence of genes and geneg).
Mgene , genep 1S 0 if and only if the measurements on the genes and genep are
statistically independent. The mutual information of genes and genes gets
higher if the occurrence of genes and genep is more similar. The maximum
mutual information is given when (1) both genes are present in about 50% of
the genomes (the individual entropies of the genes are maximum), and (2) the
genes are completely present together (the combined entropy is minimum).
The combined entropy is theoretically minimal when the genes are never

found together. That event does not occur when studying the genes from one

genome.
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The probability (p-value) was computed in order to verify the significance of
correlation strength. If this p-value is lower than 0.05, the correlation
coefficient is considered to be statistically significant (Steinhauser et al,

2007).

3.4.3 Threshold estimation

The co-occurrence genes network consisted of genes and their interactions
that are represented as nodes and edges, respectively. In order to derive a
biologically meaningful network, threshold selection is a crucial step. By
setting too low a threshold, either a false negative or a false positive
relationship can be retained in the network. Likewise if this threshold is set
too high, important relationships can be lost from the network.

Graph-based topology (including network density, connected components,
and clustering coefficient) and spectral graph theory were introduced here in
order to optimise threshold of the network.

Density of network (Pavlopoulos et al,, 2011) is the proportion of all possible
edges that are actually found.

2|E|
Vidvi—1)

where |V| is the number of nodes and |E| is the number of edges. Density of

density =

network tends to decrease when the correlation threshold is increased. An
increment in threshold removes edges having a correlation value lower than
the threshold from the network, and also removes isolated nodes. At high
correlation, the density increases again as the number of nodes tends to be
stable while the number of edges gradually decreases. Network threshold is
expected to be found at a minimal value of network density (Aoki et al, 2007,
Ozaki et al., 2010).

Connected component in the network can be described as a subnetwork in
which any two nodes are connected to each other. A number of connected
components are studied in order to find the network threshold. As the
threshold is increased, edges in the network are removed, the network shows
a tendency to be sparse. The number of connected components then increases.

At the correlation value showing a sharp transition in the number of

66



connected components, the optimal threshold is observed (Fukushima et al,
2011).

Clustering Coefficient (Barabasi et al, 2004) measures the tendency of a
node to form a cluster. Considering node;, the local clustering coefficient of
node; (C; )is defined by a ratio between the number of links between

neighbour nodes of a node; (e; ) and the number of neighbour nodes (k;).
_ 2|e|
ki(k; — 1)

The average Clustering Coefficient of the whole network Cgyerqge is given by

Ci

1yn _2lel

Caverage - N &i=1 ki(ki—1)

where N = |V| represents the number of nodes. This clustering coefficient
value ranges between 0-1. The network is likely to be clustered, if this average
local clustering coefficient is closer to 1. When the threshold is increased,
edges are gradually removed from the network resulting in a decrease in the
average clustering coefficient. When the average clustering coefficient is
lowered the network becomes highly ‘cliquish’, referring to disconnected
subnetworks, and average clustering coefficient starts increasing again. A
transition of average clustering coefficient is observed at the potential
threshold (Gupta et al, 2006, Elo et al., 2007).

Spectral graph theory method (Perkins et al, 2009) uses eigenvalues and
eigenvectors of the largest component in the network to quantify a number of
spectral clusters. Different numbers of spectral clusters are found by
increasing the cutoff value. A potential threshold is identified when a peak in
the number of spectral clusters is seen. The spectrum of the largest connected
component is considered because it contains a majority of nodes in the
network. Analysis of spectral clusters of the network is conducted on
eigenvalues and eigenvectors of Laplacian matrix. The Laplacian matrix is
derived from an adjacency matrix (A) and a degree matrix (D) (Ding et al,
2001). The smallest eigenvalue will be zero and the remaining eigenvalues
will not be zero; the smallest non-zero eigenvalue is named the algebraic
connectivity. At the lowest algebraic connectivity, the network will have
nearly-connected components (Ding et al., 2001), the potential threshold will

then be identified. The number of spectral clusters is maximised by detecting
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the cluster on the eigenvector associated with the smallest non-zero
eigenvalue. Cluster detection is conducted based on searching the gap
between eigenvector values by using a sliding window technique. With a
sliding window five elements wide, a new cluster is detected when the

difference between the lowest and the highest value in the window is greater
than m + p where m is the median of all difference in positions windowsize

apart and s is the standard deviation of this set of values.

3.4.4 Community analysis

The property of community in the networks is defined by densely connected
nodes within them but sparse connections to the other nodes. Pons et al.
(2005) developed a random-walk algorithm named Walktrap. Walktrap
combines a distance optimization for measuring node similarity and a
modularity evaluation for investigating community. Intuitively, random walks
on the network tend to be “trapped” within highly connected parts of local
communities. Hence, this algorithm is called Walktrap and is implemented in

igraph (Csardi et al., 2006).

The unweighted graph G has an associated adjacency matrix A; A;; = 1 if
there is an edge between i and j, and 4;; = 0 otherwise. In the journey
between i and j, if the visited nodes are chosen randomly and uniformly, it is
referred to as a Markov chain. At each time point, the random walk process

starts at node i and in the walk of length ¢, a random step is taken to an

Aij
dagy
where d(i) is the degree of i, d(i) = X;A;;. These transition probabilities

adjacent node j. The transition probability from i to j is defined as P;; =

define a transition matrix P. The transition matrix P satisfies two general
. t 1 .
properties of the random walk process. P;; stands for the probability of going

from i to j through a random walk of length t.

The basic idea of community detection is to partition densely connected nodes
from sparsely connected nodes. A partition (P = {Cy,C;,...,C}) of the

network is defined as an optimal community providing maximum modularity.
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The modularity is computed by the fraction of edges inside the community

compared to the fraction of edges bound to community in the partition.

In a random walk length t starting ati towards infinity, the probability of

being on node j tends to be the degree of node j:

d(j)
Vi lim PG = S a0

where k is an index of all nodes n in graph G.

The probabilities of walking from i to j and from j to i through a random walk

of a length t have a ratio that only depends on the degrees d (i) and d(j):
Vi, V), d()Pf; = d(j)P}

The transition probabilities Pﬁ are not only used to measure structural

similarity between vertices but also similarity between communities.

A partition P; of the graph into n communities is reduced to a single node. The
distances between all adjacent nodes are computed. Iterative methods are
used to find the optimal communities in the network. An overview of the

algorithm at step k is provided.

- Choose two communities C; and C, in P, on a criterion based on the
distance between the communities (of which details are provided later).

- Merge C; and C, into a new community C; and create the new partition:
Prev1= P\ {C1,C2 }) L {C3}.

- Update the distances between communities.

This similarity can be used in hierarchical clustering. The distance between

the two vertices i and j, (7;; ) is computed by:

z (Pt — PL)
d(k)

69



The probability of going from community C to node j at time t is:

1
t _ t
PCj_ﬁE Pij

iec

Likewise, the distance between two communities C; and C; (r¢,c,) is:

n

2
_ z (Pctlk - PCtZk)
Tc,c, =

d(k)

k=1

where Pglk measures the probability of traversing from a node in C; to node k
(j=1,2). At each step k in the merge algorithm, two communities (C;, C,) are
determined to merge by minimizing the mean g, of the squared distances

between each vertex and its community.

1
O, = Ezzrlzc

CERy i€C

After the merge of C; and C,, the squared distances (Ag) between the two

communities is updated and calculated by:

1 lGlic!

Ao (Cy, Cy) = - mrclc2

Maximizing modularity (Q) is performed to find the optimal communities in

the network. The modularity is derived by

0P) = ) e a

Cep

where e, represents the fraction of edges inside the community. a, represents
the fraction of edges bound to community C. Further background and details
of the Walktrap implementation can be found in the original work (Pons et al,

2005).
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3.5 Results

3.5.1 Results on different measures of association

All standard association measures were compared in order to find the optimal
measure for use in this work. Because this work focuses on association of gene
presence/absence, we considered the effect of gene abundance, i e. the
number of strains carrying the gene in the population, on each measure. In the
distribution of abundance of genes on pRL10 (Figure 3.2), coloured bars were
identified as genes with high or low abundance in the population that will be

considered later by different association measures.

40

30

20

Gene abundance

Frequency of gene abundance

Figure 3.2 Histogram of gene abundance on pRL10. Plots are coloured by gene
abundance (B genes with high are found in at least 79 strains, Bl genes with low abundance

are found in 0-6 strains, and [J genes with low abundance are found in 7-78 strains).

Jaccard was the basic measure to compare similarity between gene profiles.
Jaccard worked well when gene presence was the focus. Genes (M in Figure
3.2) with low abundance in the population can represent high values of
Jaccard because pairs of them were possibly present in the same few strains
and usually absent from the rest of the strains (® in Figure 3.3).

When genes had high abundance (B in Figure 3.2), pairs of such genes (® in
Figure 3.3) had a high value of Jaccard that was not surprising because those

genes were found in almost all strains in the population. However, these gene
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pairs were not interesting in this work because they were found generally in
the population and may not represent specific functions in a subgroup of the
population. A drawback of this measure was found in the case of two genes
that tend to be present in complementary strains. These two genes may be
considered as either independent or anti co-occurring genes. If these two
genes are anti co-occurring genes, Jaccard cannot enumerate their association.

This measure then was ultimately discarded for further analysis.
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Figure 3.3 Plot of frequency of pRL10 gene pairs and their Jaccard values. Nodes are
coloured by abundance of genes in a pair (® gene pairs with low abundance, found in 0-6
strains, @ gene pairs with high abundance, found in at least 79 strains; and @ gene pairs

found in 7-78 strains).

Next, Pearson’s correlation was considered. Pearson’s correlation can quantify
not only the strength of association of a gene pair by amount of correlation
value but also the type of their interaction as shown by the sign of the
correlation value. Co-occurring and anti co-occurring genes can be described
with positive and negative signs of the correlation, respectively. The strength
of the interaction can be expressed as the amount of Pearson’s correlation. An
independent gene pair will have a Pearson’s correlation value of zero that
indicates that the two genes were present independently of each other.

Pairs of genes with low abundance in the population (M in Figure 3.2)

presented a wide range of Pearson’s correlation values (@ in Figure 3.4). High
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positive correlation of pairs of genes with low abundance was observed when
they were present in the same few strains and absent from the rest of the
strains. Pairs of genes with high abundance in the population (l in Figure 3.2)
also represented a wide range of Pearson’s correlation values (@ in Figure
3.4), differing from Jaccard since Pearson’s correlation not only counted the
gene presence but also gene absence in the population. Gene pairs with high
abundance had high values of Pearson’s correlation if those genes were absent
in the same few strains. Gene pairs with high abundance had low values of
Pearson'’s correlation if those genes were missing from different strains. These
associations are shown in @ in Figure 3.4, near the zero of Pearson’s

correlation.
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Figure 3.4 Plot of frequency of pRL10 gene pairs and their Pearson’s correlation
values. Nodes are coloured by abundance of genes in a pair (® gene pairs with low
abundance, found in 0-6 strains; @ gene pairs with high abundance, found in 79 strains;

and @ gene pairs found in 7-78 strains).

Mutual information was the last association measure considered here.
Because mutual information measures the information that two genes give
about each other, high values of mutual information were represented in the
middle of the plot shown in Figure 3.5, belonging to two genes present in
about half of the population. It was also found that genes with low and high

abundance in the population had low mutual information values. Considering
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two pairs of gene with complementary frequencies, their mutual information
values are equal, so this measure generates a symmetrical plot (Figure 3.5)
(Knobbe et al,, 1996). Mutual information was robust to gene pairs with high
or low abundance. Mutual information values of these genes were not as high

as correlation values of these genes from Jaccard and Pearson’s correlation.

Mutual information

Abundance of gene 2

Abundance of gene 1

Figure 3.5 Plot of frequency of pRL10 gene pairs and their mutual information values.
Nodes are coloured by abundance of genes in a pair (@ gene pairs with low abundance,
found in 0-6 strains; @ gene pairs with high abundance, found in 79-85 strains; and ® gene

pairs found in 7-78 strains).

Even though mutual information was able to quantify the amount of
association between two genes without gene abundance bias and find non-
linear relationships, it cannot specify the direction of the relationship. It was
also found that the computed Pearson’s correlation and mutual information
values for the data used in this study were similar (Figure 3.6). This situation
was also found in a study on co-expressed genes (Steuer et al, 2002).

In order to achieve the objectives of this chapter, Pearson’s correlation was

therefore chosen to be the association measure for this work.
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Figure 3.6 A comparison between the Pearson’s correlation and mutual information
of pRL10 genes. Nodes are coloured by abundance of genes in a pair (@ gene pairs with
low abundance, found in 0-6 strains; @ gene pairs with high abundance, found in 79-85

strains; and @ gene pairs found in 7-78 strains).

3.5.2 Results on threshold estimation

An optimal threshold of association value is important for the study of a co-
occurring gene network because the threshold affects the conclusions
acquired from the resulting co-occurring gene network. An absolute value of

Pearson’s correlation was evaluated for threshold selection.
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Figure 3.7 Overview of co-occurrence gene networks derived from 72 strains of the
rhizobium population. (a) The number of genes in the network at various thresholds of
absolute values of Pearson’s correlation for co-occurrence genes network (b) The number

of edges in the network at various thresholds for co-occurrence genes network.

An average clustering coefficient was computed at different thresholds (Figure
3.8). At the threshold value of 0, every node was linked. Hence, the average
clustering coefficient values was 1. After zero, it declined because many edges
in the network were removed. Then it increased again as genes that were
isolated were removed. At threshold values approaching 1, the clustering
coefficient was close to 1 again because almost all genes and edges had been
removed. At the threshold of 1, the value cannot be enumerated because there

was no genes or edges in the network. This is a property found in large
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networks (Elo et al, 2007). When the threshold value was increased, the
network tended to be sparse and more cliquish, which can be described as
every node in the connected components having connections. The optimal
threshold was identified at a sharp increase (Gupta et al., 2006), which was

observed in our study at 0.70.
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Figure 3.8 Average clustering coefficient was enumerated at various thresholds of
absolute values of Pearson’s correlation for co-occurrence genes network. An inset figure

represents a sharp increase at the optimal threshold value.

The number of connected components was counted at different thresholds
(Figure 3.9). The number of connected components increased gradually from
zero after that. As the threshold increased, edges were removed from the
network and the network became sparser, resulting in the number of
connected components increasing. The threshold was determined at the
steepest slope of the number of connected components in the network
(Fukushima et al, 2011). In this study, there were two sharp increases at

Pearson’s correlation 0.70 and 0.80.
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Figure 3.9 Number of connected components were counted at various thresholds of
absolute values of Pearson’s correlation for co-occurrence genes network. An inset figure
represents two sharp increases at two threshold values, Pearson’s correlation of 0.70 and

0.80.

The density of network was calculated at various thresholds (Figure 3.10); at
zero, all genes in the network were connected. The density value, which is the
ratio between the actual number of edges and the number of possible edges in
the network, was equal to 1. Above zero, the density of network decreased
suddenly because edges with correlation values lower than the threshold were
removed. The network density value was reduced to the lowest network
density due to removal of isolated genes and edges having Pearson’s
correlation lower than the threshold of the network. After that, the network
density increased. At high threshold values, the number of nodes and the
number of edges decreased, resulting in the number of possible edges in the
network being not much different from that found in the beginning. This led to
an increment in network density. The threshold was seen at the lowest value
(Aoki et al., 2007, Ozaki et al., 2010). The threshold was selected at 0.80 by
this principle. It was also found that correlation values of 0.71-0.86 had values

of network density lower than 0.009.
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Figure 3.10 Network density was measured at various thresholds of absolute value of
Pearson’s correlation for the co-occurrence genes network. An inset figure represents

thresholds with density values lower than 0.009.

Threshold selection using spectral graph theory was based on decomposing
the network into eigenvalues and eigenvectors, conducted on the largest
connected components in the network (Perkins et al, 2009) because these
contained the majority of genes in the network (Figure 3.11). When doing the
spectrum analysis on the largest component, the smallest eigenvalue was zero
and the rest were nonzero. The smallest nonzero eigenvalue is called
“algebraic connectivity” (4;). Lower algebraic connectivity represented the
network becoming sparser or in nearly-disconnected components (Ding et al.,
2001). The algebraic connectivity identified an optimal threshold at its lowest
value. The algebraic connectivity value was computed at different Pearson’s
correlation thresholds (Figure 3.12). The co-occurring gene network reached
the lowest algebraic connectivity at 0.80 Pearson’s correlation. Some of the
thresholds computed represented relatively low values of algebraic
connectivity (less than 0.05 as shown in B in Figure 3.12). This method

provided many possible thresholds.
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Figure 3.11 Largest component coverage was computed by the percentage of genes
included in the largest connected components at various thresholds of absolute value of

Pearson’s correlation.

Spectral clustering was performed next to detect the threshold. An
eigenvector associated with A, (defined as v;) was selected and sorted in
ascending order as a step function (Figure 3.13). A number of clusters were
detected by a sliding window approach 5 elements wide. The number of
clusters was quantified at different thresholds (Figure 3.14). Forty-four
clusters, which is the highest number of clusters, were detected at a
correlation value of 0.74. As a result, 0.74 was chosen as the optimal threshold

using spectral clustering.
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Figure 3.12 Algebraic connectivity computed at various thresholds of absolute value of
Pearson’s correlation for co-occurrence genes network. Pearson’s correlation values in H

also exhibited relatively low values of algebraic connectivity (less than 0.05).
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Figure 3.13 Sorted eigenvector associated with 4, in the co-occurrence network at

threshold of 0.74. The associated eigenvector was plotted for each gene.
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Number of clusters

" Pearson's correlation
Figure 3.14 Number of clusters computed based on spectral graph theory for co-
occurrence genes network at various thresholds of absolute value of Pearson’s correlation.
The highest number of clusters was observed at 0.74 (H), which was therefore determined

to be the threshold.

When comparing the threshold determined by different methods (Table 3.2),
it was observed that the optimal threshold ranged from 0.70 to 0.80. Pearson’s
correlation of 0.70 was selected by Average Clustering coefficient, Number of
connected components, and Algebraic connectivity. Ultimately the optimal

threshold was chosen at Pearson’s correlation = 0.70.

Table 3.2 Thresholds were determined by different methods

Selection methods Selected threshold
Average Clustering coefficient 0.70
Number of connected components 0.70, 0.80
Network density 0.71-0.86
Algebraic connectivity 0.64-0.87
Spectral clustering 0.74

3.5.3 Results on gene abundance in the population

Pearson’s correlation can be strong between two genes rarely or generally
found in the population (Figure 3.15), but these values are based on very few

strains so may be unreliable. In order to explore effects of gene abundance on
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the co-occurrence network, the co-occurrence gene network was then created
without removing genes carried by fewer than 6 or more than 79 strains.

Genes with low and high abundance played a major role in the structure of the
network (Figure 3.16). This may lead to network relationships that are not
biologically significant. In the case of strong correlation among genes with
high abundance, many of these genes were probably core genes that were
present in all strains but were sometimes not detected in strains with low
sequence coverage. These genes with high abundance were therefore removed
from the network. Strong correlations among genes with low abundance could
possibly reflect rare clusters of genes operating under the same conditions or
confined to a group of closely-related strains. To avoid problems caused by
missing genes during the sequencing process or false negative sequencing

results, all genes with low abundance were also removed.
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Figure 3.15 Gene abundance in the population. (a) Strains numbers carrying genes in red
and blue are fewer than 6 and more than 79, respectively. Two bar plots on the right represent
frequency of gene abundance by each replicon; (b) genes carried by fewer than 6 strains and (c)

genes carried by more than 79.

Genes with low abundance were generally found on every replicon apart from
pRL9 (Figure 3.15(b)). Genes with high abundance can be found on every
replicon apart from pRL7 and pRL8 (Figure 3.15(c)). This is possibly because

pRL7 and pRL8 are relatively small conjugative plasmids containing genes
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carried by just some strains in the population (Young et al., 2006). It is not

surprising then that a majority of them were excluded from the analysis.

3.5.4 Results on network construction

The resulting network was constructed using Pearson’s correlation threshold
of 0.70 with a p-value < 0.05 (Figure 3.16 (a)) and excluding genes carried by
less than 6 or greater than 79 strains (Figure 3.16 (b)). The co-occurrence
gene network contains 2,663 genes, 33,318 interactions (consisting of 1,150
anti co-occurrence interactions and 32,168 co-occurrence interactions),
0.7152 average clustering coefficient, and 6.4636 average path length with
diameter of 20. The largest connected component in the network consists of
1,211 genes. There are connected components containing 44, 22, 21, 14, 9, and
5 nodes (one of each). 8-node, 7-node, 6-node, and 4-node connected
components are found 2, 3, 4, and 6 times respectively, in the resulting
network. There are 14 triplets, 22 pairs, and 1,122 singletons.

Co-occurrence relationships are mostly observed between neighbouring genes
on the same replicon. A spatial arrangement of these neighbouring genes may
reflect their translocation in the population controlled by the same elements
or their participation in the same biological process. However, missing genes
in an ordering in some clusters were seen because they did not qualify under
the abundance criterion. Most genes connected to each other by co-occurrence
interactions (positive correlation values) are carried by similar numbers of
strains in the population and presumably have similar profiles (Figure
3.17(a)). In contrast, the genes connected with anti co-occurrence interactions
(negative correlation values) were inversely related in abundance (Figure
3.17(a)).

To find co-occurrence and anti co-occurrence relationships on distinct
replicons, genes in the network were coloured by seven colours, each colour
denoting a different replicon (Figure 3.17(b)). Co-occurrence relationships are
observed  between chromosome-chromosome, chromosome-plasmid
(especially large plasmids like pRL9 and pRL10), chromosome-chromid,
chromid-plasmid, plasmid-plasmid, and chromid-chromid genes. Co-

occurrence relationships between genes on the chromosome and small
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plasmids, like pRL7 and pRL8, were not observed. The genes on pRL7 and
pRL8 are accessory genes and rarely found in the population, in contrast to
chromosomal genes most of which are carried by most isolates in the
population.

Anti co-occurrence relationships were found within and between replicons
consisting of chromosome-chromosome, chromid-chromid, plasmid-plasmid,
and plasmid-chromid genes. It is noticeable that there is no anti co-occurrence
relationship observed between chromosome-chromid and chromosome-
plasmid genes.

The anti co-occurrence relationship is basically considered as the relationship
of genes with replaceable functions. It appears that the functions of
plasmid/chromid and accessory chromosomal genes are not interchangeable.
Most of the co-occurrence relationships were observed between neighbouring
genes, in contrast to the anti co-occurrence that can be observed genes

between distant genes.
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(a) (b)
Figure 3.16 Co-occurrence gene networks derived from 72 strains of the rhizobium population. (a) The network consists of 5,748 genes (nodes)
and 135,385 interactions (edges). Red (@) and blue (@) nodes represent genes with low (genes carried by fewer than 6 strains) and high (genes carried

by more than 79 strains) abundance in the population, respectively. Grey (—) and red (—) edges specify co-occurrence and anti co-occurrence
interactions, respectively (b) The resulting network after removing low and high abundance genes consists of 2,663 genes and 33,318 interactions.
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Figure 3.17 The resulting co-occurrence genes network. The co-occurrence genes network consists of 2,663 genes and 33,318 interactions. Grey

(—) and red (—) edges specify co-occurrence and anti co-occurrence interactions, respectively (a) Nodes are coloured by their abundance in the
population. (b) Nodes as genes are coloured by 7 different replicons ( chromosome, ® pRL7, ® pRL8, ® pRL9, ® pRL10, © pRL11, and @ pRL12).
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3.5.5 Results on co-occurrence relationships

The largest subnetwork contains co-occurrence and anti co-occurrence
relationships (Figure 3.17) whereas the rest of the network contains
predominantly co-occurrence relationships. Co-occurrence relationships are
hence described as two different original subnetworks consisting of 1) the

subnetworks excluding the largest subnetwork and 2) the largest subnetwork.

3.5.5.1 Results on co-occurrence of genes in the network excluding the
largest subnetwork

1,202 subnetworks are observed in the network excluding the largest
network. The second largest subnetwork has 44 genes. Most of subnetworks
are singletons. The distribution of subnetwork size is shown in Figure 3.18. It
was observed that a majority of them included genes on a single replicon

(Figure 3.19).
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Figure 3.18 Distribution of subnetwork sizes in the network excluding the largest
subnetwork. The largest subnetwork has 44 genes. 8-node, 7-node, 6-node, and 4-node
connected components were found 2, 3, 4, and 6 times respectively, in the resulting

network. There were 14 triplets, 22 pairs, and 1,122 singletons.
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Figure 3.19 Subnetworks in the network excluding the largest subnetwork and isolated nodes Grey (—) and red (—) edges specify co-

occurrence and anti co-occurrence interactions, respectively. Nodes represent genes and are coloured by 7 different replicons (| chromosome, ® pRL7,

® pRL8, ® pRLY, ® pRL10, @ pRL11, and @ pRL12).
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3.5.5.2 Results on co-occurrence relationships in the largest subnetwork

In contrast to the subnetworks observed in the previous section, the largest
subnetwork, containing 1,211 nodes, includes both co-occurrence and anti co-
occurrence relationships. Focusing on co-occurrence relationships in the
largest subnetwork, anti co-occurrence relationships were first removed from
the subnetwork. Then the remaining subnetworks contain only co-occurrence
relationships to explore. The remaining co-occurrence subnetworks (Figure
3.20) include one subnetwork each of 480 genes, 374 genes, 272 genes, 28
genes, 19 genes, 12 genes, and 11 genes, four subnetworks of pair of genes,
and seven of singletons.

Since three large subnetworks having more than 100 genes are observed, a
community detection technique is applied to those three large subnetworks to
decipher co-occurrence relationships in the large network. Results on

community detection of each large subnetwork are as described below.
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Figure 3.20 The largest subnetwork. Nodes are coloured by clusters of genes connected
with co-occurrence interactions. Grey (—) and red (—) edges specify co-occurrence and anti

co-occurrence interactions, respectively (© 480-gene subnetwork, @ 374-gene subnetwork,
® 272-gene subnetwork, @ 28-gene subnetwork, @ 19-gene subnetwork, @ 12-gene

subnetwork, ® 11-gene subnetwork, four @ 2-gene subnetworks and seven @ singletons).

The 480-gene subnetwork (© in Figure 3.20) contains 27 pRL9, 30 pRL10, 36
pRL11, 114 pRL12 and 273 chromosome genes. Community detection reveals
that there are 36 communities (Figure 3.21). The largest community has 77
genes, all of which are chromosomal genes. The second largest community,
whose size is not much different from the largest community, has 60 genes
from plasmids and chromids. Investigating the type of genes in every single
community shows that relationships within each community are strongly
conserved on types of replicon. It is observed that chromosomal gene

communities and chromid-plasmid gene communities are distinct (Table 3.3).
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These imply that the distributions of chromosomal accessory genes and of

plasmid-chromid genes are independent.
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Figure 3.21 Distribution of community sizes in the 480-gene subnetwork. Community
sizes of this cluster in the range of 1-77 genes are shown. More than half of the communities
contain < 5 genes. The remaining communities contain 6-77 genes. The largest community

has 77 genes.

Table 3.3 Location of genes found in each community of the 480-gene subnetwork

Number of genes Number of communities Location of genes
77 1 Chromosome (1)
57 1 Chromosome (1)
46 1 pRL12 (1)

37 1 Chromosome (1)
24 1 pRL12 (1)
23 1 pRL12 (1)
21 1 Chromosome (1)
Chromosome (1)
17 2
pRLI (1)
14 1 Chromosome (1)
13 1 Chromosome (1)
12 1 pRL10 (1)
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The subnetwork of 374 genes (@ in Figure 3.20) has plasmid (pRL7, pRLS,
pRLY, and pRL10) and chromid (pRL11 and pRL12) genes. Forty communities
are observed in the subnetwork of 374 genes. Distribution of community size
of the 374-gene subnetwork is shown in Figure 3.21. The largest community
has 170 genes. Among dense co-occurrence relationships in the 170-gene
community (@ in Figure 3.23), some pRL9 and pRL12 genes from this
community have been reported as genomic islands carried by genospecies B

(appendix table L.I and L.II). Another community reflecting species specificity is
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community of 26 pRL12 genes ( in Figure 3.23). 9 out of 26 genes are absent
in genospecies C.
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Figure 3.22 Distribution of community sizes in the 374-gene subnetwork. Community
sizes of this subnetwork range from 1 to 170 genes as shown in a histogram. Most

communities (21) are singletons. Apart from the largest community, which has 170 genes,

the rest of the communities contain 2-57 genes.
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Figure 3.23 The 374-gene subnetwork. A community of 170 genes is highlighted in
magenta (@), which contains genospecies B specific genes. A community of 26 genes is

highlighted in yellow (), which contains genes absent in genospecies C.

The 272-chromosomal-gene subnetwork comprised 9 communities. It is
noticeable that the chromosomal genes in this subnetwork are sporadically
distributed across strains, which is different from the general pattern of

chromosomal genes that are ubiquitously distributed. However, the detected
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communities in this subnetwork do not represent specificity to a particular
genospecies or any symbiovar. The distribution of community size of the 272-

gene subnetwork is shown in Figure 3.24.
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Figure 3.24 Distribution of community sizes in the 272-gene subnetwork. Community
sizes of this subnetwork range from 1 to 138 genes as shown in a histogram. This
subnetwork has 3 singletons, 3 pairs of genes, one each of 56-gene, 69-gene, and 138-gene

communities. The largest community has 138 genes.

The remaining subnetworks, having fewer than 30 genes, are explored
individually.

The 28-gene subnetwork (Figure 3.25) is a subnetwork of pRL8 and pRL10
genes. All five pRL8 genes included in this subnetwork have been reported as
symbiovar viciae specific genes (Table 3.2). These five genes are present only
in symbiovar viciae strains. The rest of the genes in this subnetwork are
pRL10 genes. Some of them are symbiosis genes (Table 3.4), which were
relevant to nodulation of this symbiovar. These genes then are used to
distinguish symbiovar viciae and trifolii. It could be inferred that genes in the
28-gene subnetwork are abundant in a particular symbiovar, namely viciae. It
was also found that the subnetwork also contained a cluster of pRL100162A,

pRL100163, pRL100164 (rhil), pRL100169 (rhid), pRL100170 (rhiB),
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pRL100171 (rhiC), and pRL100172 (rhiR), which are indirectly involved in
nodulation (Rodelas et al., 1999, Wisniewski-Dye et al., 2002). Consequently,

genes in the subnetwork were functionally related to the nodulation.

Figure 3.25 The 28-gene subnetwork This subnetwork represents co-occurrence
relationships between pRL8 and pRL10 genes, all of which are abundant in bv. viciae. These
genes are symbiosis genes on pRL10 (including nod (*), nif (®), and fix (®) genes) and Bvs
genes (@) on pRLS.

Table 3.4 List of genes in the 28-gene subnetwork. Locus tag of symbiosis genes is in bold.

Locus tag Gene symbol | Protein accession Annotated function
pRL80073 bvs1 YP_770968.1 cysteine desulfurase
pRL80074 bvs2 YP_770969.1 LysR family transcriptional regulator
pRL80075 bvs3 YP_770970.1 endoribonuclease L-PSP
pRL80076 bvs4 YP_770971.1 aliphatic nitrilase
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Locus tag Gene symbol | Protein accession Annotated function
pRL80077 bvs5 YP_770972.1 molybdenum-binding oxidoreductase
pRL100151 exsl YP_770430.1 transccriptional regulator

nitrogenase molybdenum-cofactor
pRL100158 nifN YP_770436.1 biosynthesis protein NifN
pRL100162A - YP_770441.1 asparagine synthase
pRL100163 - YP_770442.1 asparagine synthase
pRL100164 rhil YP_770443.1 autoinducer synthesis protein
pRL100169 rhiA YP_770448.1 hypothetical protein
pRL100170 rhiB YP_770449.1 rhizosphere induced protein RhiB
pRL100171 rhiC YP_770450.1 hypothetical protein
pRL100172 rhiR YP_770451.1 transcriptional regulator
pRL100174 - YP_770453.1 hypothetical protein
pRL100175 nod0 YP_770454.1 nodulation protein
pRL100179 nodN YP_770457.1 nodulation protein

glucosamine--fructose-6-phosphate
pRL100180 nodM YP_770458.1 aminotransferase
pRL100181 nodL YP_770459.1 nodulation protein
pRL100183 nodF YP_770461.1 nodulation protein F
pRL100184 nodD YP_770462.1 nodulation protein D
pRL100185 nodA YP_770463.1 acyltransferase NodA
pRL100189 nodJ YP_770467.1 nodulation protein
pRL100195 nifB YP_770473.1 FeMo cofactor biosynthesis protein
pRL100196 nifA YP_770474.1 nifA transcriptional regulator
pRL100197 fixX YP_770475.1 ferredoxin-like protein
pRL100199 fixB YP_770477.1 FixB electron transfer protein
pRL100200 fixA YP_770478.1 FixA electron transfer protein

The 19-gene subnetwork contains 2 genes on pRL7 and 17 genes on pRL10

(Figure 3.26). An exploration in this subnetwork reveals that three pRL10

genes carried in this subnetwork, which are called attKLM (pRL100134,

pRL100135,

and pRL100136),

have been

reported as involved

in

hydroxybutyrate metabolism (Chai et al, 2007, Prell et al, 2009, White et al,

2009).
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Figure 3.26 The 19-gene subnetwork. This subnetwork contains three pRL10 genes ()

relating to y-hydroxybutyrate metabolism.

The 12-gene (®) subnetwork (Figure 3.20) is a chromosomal gene
subnetwork and includes RL3920, RL3921, RL3924, RL3928, RL3930-RL3934,
and RL3936-RL3938. The 11-gene (®) (Figure 3.20) subnetwork is a pRL11
gene subnetwork and includes pRL110389-pRL110399. It is observed that

those two subnetworks are subnetworks of neighbouring genes (Figure 3.27).
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Figure 3.27 Genome map of the two subnetworks from KEGG database (Tanabe et al, 2002) (a.) the 12-gene (underlined @)
subnetwork and (b.) the 11-gene (underlined ®) subnetwork. The numbers at the end represent genomic location in base pairs (bp).
Genes are shown as arrows representing the direction of transcription and coloured by KEGG pathway categories (M lipid metabolism,

B carbohydrate metabolism, B amino metabolism, environmental information processing and [ unclassified).
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3.5.6 Results on anti co-occurrence relationships

Anti co-occurrence relationships are identified by negative values of
correlation between pairs of genes. The anti co-occurrence relationships are
mainly seen in the largest subnetwork. An exploration on the largest
subnetwork reveals that there are nine types of subnetworks classified by
genes contained in each subnetwork, which each subnetwork connected to
others by anti co-occurrence relationships (Figure 3.20). These nine types of
subnetwork are one each of 480-gene subnetwork, 374-gene subnetwork,
272-gene subnetwork, 28-gene subnetwork, 19-gene subnetwork, 11-gene
subnetwork, 12-gene subnetwork, 4 pairs of genes, and 7 singletons.
Prominent features of each subnetwork are described as follows:

The largest genes subnetwork contains 480 genes (© in Figure 3.20). Genes in
this subnetwork are carried by most of the population and negatively
correlated to two subnetworks of genes including 1) the 374-gene (@ in
Figure 3.20) subnetwork, which is a subnetwork of plasmid (pRL7, pRLS,
pRL9, and pRL10) and chromid (pRL11 and pRL12) genes, and 2) the 272-
gene (® in Figure 3.20) subnetwork, which is a chromosomal gene
subnetwork. Pairs of genes showing anti co-occurrence relationship between
the 480-gene and the 374-gene subnetwork were investigated their
distribution in the population (Figure 3.28). It was found that the anti co-
occurrence relationships between the 480-gene and the 374-gene subnetwork
arose because isolates that carried the genes in the 480-gene subnetwork did

not carry genes in the 374-gene subnetwork.
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Figure 3.28 Phylogenetic profiles of genes in the 480-gene and the 374-gene subnetworks having anti co-occurrence relationships. The
presence of genes is shown in M, the absence of genes is shown in M. Columns represent genes that have anti co-occurrence relationships and are
arranged according to their subnetwork (# 480-gene and B 374-gene subnetwork). Rows represent 85 strains and are arranged according to their

respective genospecies (@: A, ®: B, ®: C, ®: D, ®: E) and type strains (@®).
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Likewise, there are anti co-occurrence relationships between the 480-gene (

in Figure 3.20) and the 272-gene (® in Figure 3.20) subnetworks, both of
which are chromosomal gene subnetworks. The 272-gene subnetwork may be
carried on genomic islands on the chromosome. It can be observed that those
genomic islands were partially absent from strains carrying genes in the 480-

gene subnetwork (Figure 3.29).

Figure 3.29 Phylogenetic profiles of genes in the 480-gene and the 272-gene
subnetworks having anti co-occurrence relationships. The presence of genes is shown
in M, the absence of genes is shown in M. Columns represent genes that have anti co-
occurrence relationships and are arranged according to their subnetwork (¥ 480-gene and
B 272-gene subnetwork). Rows represent 85 strains and are arranged according to their

respective genospecies (@: A, @: B, ®: C, ®: D, ®: E) and type strains (@).
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The 374-gene (@ in Figure 3.20) subnetwork associates negatively with six
genes of pRL10 including (pRL100163, pRL100164 (rhil), pRL100169 (rhiA),
pRL100170 (rhiB), pRL100171 (rhiC), and pRL100172 (rhiR)) in the 28-gene
(® in Figure 3.20) subnetwork. Genes in the 374-gene subnetwork are largely
absent in genospecies C, in contrast to the six genes in the 28-gene

subnetwork (Figure 3.30).
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Figure 3.30 Phylogenetic profiles of genes in the 374-gene and the 28-gene
subnetworks having anti co-occurrence relationships. The presence of genes is shown
in M, the absence of genes is shown in M. Columns represent genes that have anti co-
occurrence relationships and are arranged according to their subnetwork (Il 374-gene and
B 28-gene subnetwork). Rows represent 85 strains and are arranged according to their

respective genospecies (@: A, @: B, ®: C, ®: D, ®: E) and type strains (@).
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The other two subnetworks connected with anti co-occurrence relationships
are the 28-gene (® in Figure 3.20) and the 19-gene (@ in Figure 3.20)
subnetworks. Six genes on pRL10 included in the 19-gene subnetwork have
anti co-occurrence relationships to 18 genes on pRL8 and pRL10 in the 28-
gene subnetwork. Most of the 18 genes in the 28-gene subnetwork are
symbiosis genes on pRL10 and all five bvs (biovar viciae specific) genes on

pRL8 (Figure 3.31).

3.6 Discussion

3.6.1 Observation on neighbouring genes and gene within the same
replicon in the same sub co-occurrence network

The systematic study revealed that a majority of genes in the same co-
occurrence subnetwork were neighbouring genes, for example in the 12-gene
and 11-gene subnetworks (Figure 3.27). The plausible explanation was they
may functionally related genes and tend to be conserved their presence in the
genome (Tamames et al, 1997, Tamames, 2001, Huyen et al, 2000). As a
result, they may be transferred within the population together through
horizontal gene transfer (Achtman et al,, 2008).

After conducting community detection to reveal subtle relationships within
the 480-gene subnetwork, the presence of chromosomal and non-
chromosomal communities (Table 3.3) implied that these replicons took

responsibilities for different functions in the population.

3.6.2 Detection on genes with specific characteristic

A subnetwork of bv. viciae specific genes including genes abundant in bv.
viciae (Figure 3.25 and Table 3.4) was discovered. Five bvs genes on pRL8
(Kumar et al, 2015) were found only in bv. viciae. Symbiosis genes on pRL10,
nod, nif, and fix genes (Young et al,, 2006) directly involving in nodulation and
nitrogen fixation, were identified. The analysis also identified rhi genes which
are indirectly involved in nodulation (Rodelas et al, 1999). In addition,

pRL100162 and pRL100163, encoded asparagine synthase, were in this
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subnetwork Asparagine, which is an amino acid produced by nodules, may
regulate nodulation (Oti-Boateng et al., 1993, Lodwig et al., 2003). These genes

exhibited strong correlation within the population with significant statistics.
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Figure 3.31 Phylogenetic profiles of genes in the 28-gene and the 19-gene
subnetworks having anti co-occurrence relationships. The presence of genes is shown
in M, the absence of genes is shown in M. Columns represent genes that have anti co-
occurrence relationships and are arranged according to their subnetwork (B28-gene and
B 19-gene subnetwork). Genes in the 28 genes subnetwork are highlighted by their
annotated function including nod (), nif (M), and fix (M) genes on pRL10 and bvs genes
pRL180073-pRL80077 on pRL8. Rows represent 85 strains and are arranged according to
their respective genospecies (@: A, @: B, @: C, ®: D, ®: E) and type strains (@).
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Community detection was applied to unravel complicated relationships in the
subnetworks containing more than 100 genes. In the community of 170 genes
in the 374-gene cluster, 79 out of them (Figure 3.23) are highly correlated
with genospecies B. 26 genes (appendix table LI) are observed in all
genospecies B isolates and have been reported as a genospecies B specific-
island (Kumar, 2013). Another community in this cluster, including 27 genes,
also represents nine pRL12 genes that are absent in genospecies C (appendix
table LIII). It is interesting to note that there are no chromosomal genes

detected as candidate genospecies-specific or symbiovar-specific genes.
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Figure 3.32 The 28-gene (®) and the 19-gene (®) subnetworks having anti co-
occurrence relationships. Genes in the 28 genes subnetwork are highlighted by their

annotated function including nod (), nif (O), fix (O), and rhi (O) genes on pRL10 and Bvs
genes (O) on pRL8. Grey (—) and red (—) edges specify co-occurrence and anti co-

occurrence interactions.

3.6.3 Observations on anti co-occurrence relationships that represent
mobile genetic elements, and the negative relationship between bvs genes,
symbiosis genes and y-hydroxybutyric acid genes

One possible explanation for the anti co-occurrence relationship between the

480-gene and the 272-gene subnetwork (° and @ in Figure 3.20,

respectively) could be the activity of mobile genetic elements which are
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moveable and present in some strains. 20 chromosomal genes in the 480-gene
and 43 chromosomal genes in the 272-gene subnetworks are identified as GIs

(Table 3.5 and 3.6, respectively) by using IslandViewer 3 (Dhillon et al, 2015).

Table 3.5 List of 20 chromosomal genes found in the 480-gene subnetwork and annotated as

genomic islands by using IslandViewer 3

Locus tag Gene symbol | Protein accession Annotated function
RL0461 - YP_766070.1 hypothetical protein
RL0462 - YP_766071.1 transmembrane protein
RL0465 - YP_766074.1 hypothetical protein
RL0466 - YP_766075.1 hypothetical protein
RL1894 - YP_767497.1 hypothetical protein
RL2261 - YP_767855.1 hypothetical protein
RL2262 cya3 YP_767856.1 adenylate cyclase
RL2263 - YP_767857.1 transmembrane protein
RL2264 - YP_767858.1 arylsulfatase
RL2265 - YP_767859.1 hypothetical protein
RL2266 - YP_767860.1 hypothetical protein
RL2267 - YP_767861.1 arylsulfatase
RL2272 - YP_767866.1 hypothetical protein
RL3833 - YP_769412.1 short-chain dehydrogenase/reductase
RL3834 - YP_769413.1 ErfK/YbiS/YhnG oxidoreductase
RL3835 - YP_769414.1 hypothetical protein
RL3836 - YP_769415.1 transmembrane protein
RL3837 - YP_769416.1 hypothetical protein

transmembrane
RL3838 - YP_769417.1 dehydrogenase/oxidoreductase
RL4664 - YP_770227.1 transmembrane protein

Table 3.6 List of 43 chromosomal genes found in the 272-gene subnetwork and annotated as

genomic islands by using IslandViewer 3

Locus tag Gene symbol | Protein accession Annotated function
RL0458 - YP_766067.1 adenylate cyclase
RL0459 - YP_766068.1 hypothetical protein
RL0460 - YP_766069.1 hypothetical protein
RL0793 - YP_766402.1 transposase-related protein

transmembrane copper resistance
RL1135 - YP_766745.1 protein
RL1136 - YP_766746.1 hypothetical protein
RL1137 - YP_766747.1 hypothetical protein
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Locus tag Gene symbol | Protein accession Annotated function
RL1138 - YP_766748.1 ECF sigma factor
RL1139 - YP_766749.1 transmembrane protein
two component response regulator
RL1846 - YP_767450.1 transcriptional regulatory protein
RL1847 - YP_767451.1 transcriptional regulator
RL1848 - YP_767452.1 epoxide hydrolase
RL1849 - YP_767453.1 hypothetical protein
RL1850 - YP_767454.1 isochorismatase
RL1851 - YP_767455.1 hypothetical protein
RL1852 - YP_767456.1 enoyl-CoA hydratase
RL1853 - YP_767457.1 endoribonuclease L-PSP family protein
RL1854 - YP_767458.1 oxidoreductase
RL1858 - YP_767461.1 protease
RL1859 - YP_767462.1 hypothetical protein
RL1887 - YP_767490.1 transmembrane protein
RL1888 - YP_767491.1 hypothetical protein
RL1890 - YP_767493.1 transmembrane protein
RL1891 - YP_767494.1 transmembrane protein
RL1892 - YP_767495.1 cation transporting P-type ATPase
RL1893 - YP_767496.1 transmembrane protein
RL1895 - YP_767498.1 hypothetical protein
RL2258 - YP_767852.1 hypothetical protein
RL2279 - YP_767873.1 hypothetical protein
RL2333 - YP_767924.1 hypothetical protein
RL2334 - YP_767925.1 AraC family transcriptional regulator
transmembrane component of ABC
RL2843 - YP_768428.1 transporter
solute-binding component of ABC
RL2844 - YP_768429.1 transporter
RL2845 aroE YP_768430.1 shikimate dehydrogenase
RL2846 - YP_768431.1 glyoxalase/dioxygenase
RL2847 - YP_768432.1 shikimate dehydrogenase
RL2848 - YP_768433.1 LysR family transcriptional regulator
2-pyrone-4,6-dicarboxylic acid
RL2849 - YP_768434.1 hydrolase
RL2850 - YP_768435.1 hypothetical protein
RL3100 - YP_768679.1 hypothetical protein
RL3101 - YP_768680.1 transmembrane protein
RL3102 - YP_768681.1 PadR family transcriptional regulator
RL3855 - YP_769434.1 cytochrome c protein

Another possible explanation for an anti co-occurrence relationship between

subnetworks might be their replaceable functions. For example, genes from
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the 480-gene and the 374-gene subnetworks having anti co-occurrence

relationships, and some of them have similar annotated functions (Table 3.7).

Table 3.7 List of genes with anti co-occurrence relationship and their annotated function in

the 374-gene and 480-gene subnetworks

Locus tag of gene in Locus tag of gene in
Annotated function the 374-gene the 480-gene
subnetwork subnetwork
ABC-type branched-chain amino acid
transport system, periplasmic component pRL90258 pRL120493
ABC-type branched-chain amino acid
transport system, permease component pRL90260 pRL120489
ABC-type dipeptide/oligopeptide /nickel
transport system, ATPase component pRL120128 pRL120338
ABC-type dipeptide/oligopeptide /nickel pRL90228
transport system, permease component pRL120129 pRL120337
ABC-type oligopeptide transport system,
ATPase component pRL90229 pRL120339
ABC-type transport system, periplasmic pRL90231
component pRL120131 pRL120333
DNA-binding transcriptional regulator, AcrR pRL100457
family pRL110082
DNA-binding transcriptional regulator, GntR pRL90193
family pRL9I0257 pRL120527
pRL110026
DNA-binding transcriptional regulator, LysR pRL90119 pRL120457
family pRL120275 pRL120347
pRL120294 pRL120544
pRL120120
pRL120119
pRL120125
NAD(P)-dependent dehydrogenase, short- pRL110132
chain alcohol dehydrogenase family pRL120143
pRL120144
pRL120569
pRL120292 pRL120488
Pimeloyl-ACP methyl ester carboxylesterase gﬁﬁ;g;;g PRL120450

However, the 19-gene subnetwork (® in figure 3.20) contains genes relating
to y-hydroxybutyric acid utilisation such as attKLM (pRL100134, pRL100135,
and pRL100136) (Chai et al, 2007, Prell et al, 2009, White et al, 2009), and
presents an anti co-occurrrence relationship to the 28-gene subnetwork (@ in
figure 3.20), which contains genes abundant in bv. viciae, such as symbiosis

genes on pRL10 (including nifN (pRL100158), nodO (pRL100175), nodNML
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(pRL100179-pRL100181), nodF (pRL100183), nodA (pRL100185), nod]
(pRL100189), nifB (pRL100195), and fixB (pRL100199) (Figure 3.32). It is
implied that most isolates that can utilise y -hydroxybutyrate belong to
symbiovar trifolii. Of 34 strains in the population utilising y-hydroxybutyrate,
25 strains are bv. trifolii and 9 strains are bv. viciae. However, attKLM are
absent from trx32, vsx18, vsx16, vsx26, vsx27, and vsx37. Consequently, there
is no evidence for any functional relationship between att and symbiosis

genes.

This chapter aimed to explore and investigate co-occurrence and anti co-
occurrence relationship of genes in the rhizobium population by employing
correlational computation and network analysis. The different correlational
computation methods were first evaluated to find the most suitable for the
data. In the step of network construction, correlation values were converted to
network using the optimal threshold. In order to retain biological significance
of the constructed network, many criteria were applied to find a compromised
optimal threshold. The network then was generated with the optimal
threshold. The gene co-occurrence network reflected global relationship of
genes in the population, which occurrence of gene did not occur by chance.
Genes with positive correlation, co-occurrence genes, were shown in the same
subnetwork and included functionally related genes like the symbiosis and rhi
genes on pRL10. Moreover, the community detection allowed us to gain
insight into genes present under the same conditions despite complicated
relationship in the subnetwork, for example, a community of genes specific to
genospecies B in the 374-gene subnetwork. Genes with negative correlation,
anti co-occurrence genes, were also shown in the constructed network. Anti
co-occurrence relationship reflected mobile genetic elements as GIs on
chromosome which were found in the 272 and 480-gene subnetworks. The
relationship between anti co-occurring genes was possibly that they may be
involved in adaptation to the same conditions but they may achieve this by
alternative means. For example, the anti co-occurrence of the 374 and 480-
gene subnetworks included genes with potentially replaceable functions. On

the other hand, the anti co-occurrence relationship between the 19 and 28-
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gene subnetwork cannot be ascribed to functional equivalence. Genes in the
19-gene subnetwork, annotated as genes involving y-hydroxybutyric acid
utilisation, were negatively correlated to symbiosis genes in the 28-gene

subnetwork. This will be investigated in the next chapter.
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Chapter 4 Analysis of phenotype-genotype
data of the local population of Rhizobium
leguminosarum

4.1 Abstract

The co-occurrence gene network in the previous chapter identified clusters of
genes with either favoured or disfavoured occurrence. The co-occurrence gene
network reflected the diversity of presence/absence of genes in the
population. Ability of the population to utilise different carbon substrates was
also examined in the laboratory and there is diversity in the ability of carbon
substrate utilisation within the population. The substrate utilisation is usually
a result of cooperation between a number of genes. Hence the gene
presence/absence of the population might be reflected in the ability to utilise
carbon substrates. This chapter aims to identify genes relevant to the
utilisation of carbon substrates, by using computational methods to select
important genes. The phylogenetic profiles of 72 Wentworth strains were
used as genotypic data. A phenotypic data or metabolism profile of each
rhizobium strain was obtained from the GN2 Biolog Microplate. The gene
selection was computed by different computational methods. The most
suitable method and its results were included in further analysis. The selected
genes or candidate genes were investigated for their properties including
function, distribution in the population and presence in the co-occurrence

gene network.
4.2 Introduction

4.2.1 Diversity of phenotypic traits in the microbial population

Comparative genomic study in bacteria has demonstrated variation within a
bacterial species not only in the gene content but also in metabolism, which is
a result of the concerted action of multiple encoding genes. Study of growth-

related phenotypes of Pseudomonas aeruginosa and its mutants demonstrated
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the different phenotypic patterns amongst them (Pommerenke et al, 2010).
Multiple Lactococcus lactis strains exhibited diversity in substrate utilisation
(Bayjanov et al., 2013). These studies suggest that the diversity in metabolic
ability is probably a consequence of the distribution of genes. Studies of
genotype-phenotype  relationships involve  voluminous data and

computational analyses (Kell, 2004, Price et al., 2004).

4.2.2 Computational methods for studying interdependence between
phenotype and genotype data

The identification of genes closely relevant to the phenotype, called feature
selection in machine learning (Guyon et al., 2003, Saeys et al, 2007, Blaby-
Haas et al, 2011), aims to quantify interdependence between phenotype and
genotype data. Genotypic data used in a study of phenotype-genotype
association can be single nucleotide polymorphisms (Gamazon et al,, 2012),
orthologous groups (Goh et al, 2006, Slonim et al., 2006, Tamura et al., 2008,
Bayjanov et al, 2013, Li et al, 2014) or gene expression profiles from
microarrays (Dudoit et al., 2002, Schadt et al, 2005). Phenotypic data in the
study can be, for example, disease (Dudoit et al, 2002, Schadt et al., 2005,
Gamazon et al, 2012, Li et al, 2014), metabolomics (Pommerenke et al, 2010,
Bayjanov et al, 2013), or lifestyle traits (Goh et al, 2006, Slonim et al.,, 2006,

Pommerenke et al., 2010).

4.2.2.1 Pairwise association

The relationships between genotype and phenotype were measured directly
by pairwise association metrics such as mutual information (Slonim et al,
2006, Wu et al., 2009) and Pearson’s correlation (Goh et al, 2006, Li et al,
2014). An advantage of mutual information is that the method is not
influenced by the relationships found very rarely or abundantly in the
population, but the method cannot identify the direction of the relationship
(gene present or absent when the substrate was utilised). Pearson’s
correlation has the advantage that it specifies the direction of the relationship.
Weaknesses of Pearson’s correlation are that the measure cannot be used for

capturing non-linear relationship in the data and is unduly influenced by
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relationships found rarely or abundantly in the population, resulting in

identification of spurious associations.

4.2.2.2 False discovery rate

Genotype-phenotype data that is represented by a small number of
observations (n) and a large number of features (p) can result in acquiring
“significant” correlation between gene and phenotype that occurs by chance,
sometimes called the “small n, large p” problem. One approach to control the
significant correlation between gene and phenotype that occurs by chance, or
type I error, is to control false discovery rate (FDR)(Reiner et al, 2003, Storey
et al, 2003). False discovery rate (FDR)(g-value)(Schweder et al, 1982,
Benjamini et al., 1995) is the expected proportion of rejected null hypotheses

that were incorrectly rejected.

4.2.2.3 Random forest

Ensemble methods (Dietterich, 2000) such as random forest were introduced
to evaluate correlation on phenotype-genotype data (Kursa et al, 2010b,
Bayjanov et al.,, 2012) due to the voluminous data. The random forest method,
first introduced by Breiman (2001), is conducted based on Bootstrap
aggregating (Bagging) (Breiman, 1996). Each tree in a forest is grown using a
bootstrap sample of learning data without pruning and predictions are made
by the majority vote, with all trees (i.e. the forest) having same weight. The
random forest slightly differs from Bagging in that its algorithm is keen on
partitioning variables present in a random sample instead of all the variables
(Breiman, 2001). Random forest construction can be divided into two main
steps, namely bootstrap sampling and aggregation. Assume data on n strains
and p genes. In the step of bootstrap sampling, learning data (£) containing m
strains are generated from n-strain data where m < n. £; is drawn randomly
but with replacement to construct a tree classifier C;(wherei = 1,2, ..., k), as a
result £; may or may not contained replicated samples. To obtain
classification trees (C; wherei = 1,2,...,k) in the forest, growth of each
classification tree is preceded by selecting variables that are present in each
learning dataset. Some of the learning data is excluded from the tree

construction, which are denoted as out-of-bag (OOB) data similar to a cross-
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validation method, are use to test performance of the classification tree.
Aggregation then takes place to find prediction results by majority vote among
the resulting decision trees, and these predictions are used to estimate an
error rate given from the forest.

Procedures of feature selection in random forest are based on computation of
feature importance. The feature or gene importance computation is basically
to replace the contribution of the selected gene with random noise. If the
random noise decreases the accuracy of the prediction of the ability to use the
substrate, the selected gene is determined to be relevant to the substrate
utilisation. On the contrary, if the random noise exhibits less effect on the
accuracy of the prediction, the selected gene is determined to be irrelevant to

the substrate utilisation.

4.2.2.4 Class association rules

Pairwise association computation and random forests were used for finding
one-to-one relationships. One-to-one relationships were found to be less
powerful than many-to-one relationships. To analyse multiple genes involved
in the same phenotype (a many-to-one relationship), class association rules
were introduced (Carmona-Saez et al., 2006, Tamura et al., 2008). Association
rules (AR henceforth) (Agrawal et al,, 1993, Agrawal et al, 1994) have been
used as a tool for identifying relationships between items in a large database.
The idea of association rules is to predict the occurrence of an item based on
the occurrences of other items in the database. Alternately, the association
rules are generated following if-then syntax i.e. (Set of items):1 = (Set of
items),, where (Set of items): and (Set of items), are disjoint. A class
association rule (CAR henceforth), a subset of association rules, defined (Set of
items), as gene presence and (Set of items); as ability of substrate utilisation
(utilising/not utilising substrate), which is called a class (i.e. class association
rule).

The association rules algorithm can be broken down into two main steps; 1)
Rules and their frequencies are generated and 2) All generated rules in the
previous step are evaluated for their strength. NETCAR (Tamura et al, 2008), a

CAR mining algorithm, is conducted to find sets of genes relevant to the
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substrate utilisation. First, rules and their frequency are generated, since
genes and substrate utilisation profiles are different from market basket data,
which AR was initially applied to analyse. The genes and substrate utilisation
profiles contain a larger number of genes (variables) than strains
(observations), resulting in a large space of rules and irrelevant rule
generation (Liu, 2007). Mutual information is proposed to narrow down the
size of generated rules by constructing co-occurrence gene networks. The co-
occurrence network contains nodes as genes and edges computed from
mutual information. If the mutual information between their phylogenetic
profiles is greater than a threshold, rules generated from genes are kept. Not
only does this reduce computational time but rules generated from genes
having close phylogenetic profiles may provide more information on
biological function.

In a previous study by Kumar et al. (2015), the utilisation of carbon substrates
in the 72 Wentworth strains was studied by using the Biolog GN2 Microplate.
Each Biolog plate has 96 wells with 95 different carbon substrates and a blank
well with water (Figure 4.1). These 95 substrates can be classified into 5
groups based on substrate classes that are 1) neutral, 2) sugar / sugar
derivative, 3) carboxylic / dicarboxylic acid, 4) amino acid / amino acid
derivative, and 5) miscellaneous intermediates of metabolism. This system
employs a universal reporter of metabolism involving a redox dye and shows
results based on utilisation of the substrate (as not utilised/poorly
utilised/strongly utilised) in each well. The diversity in ability to utilise

substrate in the 72 Wentworth strains is shown in Figure 4.2.
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Figure 4.1 The Biolog GN2 substrate panel. The substrates are coloured coded as followed:
polymers, B sugars/sugar derivatives, carboxylic/dicarboxylic acid, amino acid/amino acid

derivative and " miscellaneous intermediates of metabolism (Bochner, 1989).

This chapter aims to find genes relevant to ability of utilisation of specific
substrates in the rhizobium population. Initially, candidate genes relevant to
the substrate utilisation were selected by using different measures including
1) Pairwise associations and FDR, 2) random forest and 3) class association
rules. Later, candidate genes were investigated for their function, related

pathways and occurrence pattern in the genome.

4.3 Chapter aims

Analysing and exploring associations between genotype and phenotype of the
rhizobium population from phylogenetic gene profiles of the local rhizobial

population and their phenotypic data.
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Figure 4.2 Profile of substrate utilisation of 72 Wentworth strains and the reference
strain, RIv3841. Rows represent substrates with number of strains utilising the substrate in
the brackets and colour-labelled by carbon substrate (M polymers, M sugars, B acids, H
amino acids and M miscellaneous intermediates). Columns represent strains in this study
arranged according to five genospecies (l: A, l: B, l: C, M: D, and M: E) and colour-labelled
by their symbiovar (@ bv. trifolii and @ bv. viciae). Ability of substrate utilization is defined
by M strain able to utilise the substrate, M strain able to partially utilise the substrate and Ml

strain unable to utilise the substrate.

4.4 Materials and methods
4.4.1 Genotype and phenotype data

The genotype data of 72 Wentworth strains were used in the study. The
phenotypic test data of 72 Wentworth strains were obtained using Biolog GN2
MicroPlate Gram-negative identification test panel system (Kumar et al,
2015). The level of substrate utilisation was designated at 3 levels that were
‘1’ designating the ability of the strain to utilise the substrate, ‘0.5’ designating
the ability of the strain to partially utilise the substrate and ‘0’ designating the

inability of the strain to utilise the substrate.
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4.4.2 Pre-processing data

Substrates utilised both by RIv3841 and by some strains in the population
were focused on, because presence or absence of genes in the genotypic data
was inferred from the RIv3841 genome. Substrates that were not utilised by
any strains, utilised by all 72 Wentworth strains, not utilised by RIv3841 or
partially used by RIv3841 were excluded from further analysis. Hence, of the
95 carbon substrates, only 21 substrates that were utilised by RIv3841 and
some, but not all, of the Wentworth isolates were included for further analysis
(Figure 4.2). The full list of the 95 substrates in the Biolog plate can be seen in
Appendix Table IILI.

4.4.3 Computational methods on substrate utilisation and gene occurrence

4.4.3.1 Pearson correlation coefficient
Pearson correlation coefficient (Tgene 4substrate;) 1S defined as below (Goh et al.,

2006).

substrateB)

N -
jzl(XgeneA,j - XgeneA)(Yj,substrateB
Tgeney,substrateg >
N N
\/Zj:1(XgeneA,j - XgeneA) \/Zj:1(yj,substrate3 - YsubstrateB)

2

Xgene,,j is the presence or absence of genes within strain;, andY;sypstrates

represents the utilisation of substratep of strain;. X, is defined as the mean

Xgenea
of the distribution of genea for the population. Ygypstratey is the mean of
utilisation of substrateg for the population. The value of rgepe , substrate, Fanged
between -1 to 1. A value of 0 means that the presence of genes is completely
independent of the utilisation of substrates. A value of 1 means that all the
strains carrying geney, and none of the others, are able to utilise substratep. A
correlation of -1 means that every strain that carries geney is unable to utilise

substrategp and vice-versa. The computation of Pearson’s correlation was

implemented with WGCNA (Langfelder et al., 2008).
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4.4.3.2 Mutual information

Mutual information (Mgepe, substrateg) (Slonim et al., 2006, Wu et al., 2009)

The empirical mutual information can be estimated as follows.

MgeneA,substrateB

p I PgeneAJr,substrateBJr
= + +l0g

ene 4" ,substrate

geney B PgeneA+ XP

substrate B+

P

gene,t substrateg™

+ PgeneA+,substrateB_log P <P —
geneyt substratep

geneA_,substrateBJr

+log

gene, ,substratep

P,

geney— ><PsubstrateB+

PgeneA_,substrateB_

+ PgeneA_,substrateB_logP p _
geneA_>< substratep

P,

wene, Fepresents the probability of the presence (Pgepe,+) or absence (Pgene,,-)

of genea. Psypstrate, iS the probability of the utilisation of substrates, which can
be either the substrate was utilised (PsubstrateB+) or not (Psypstrates™) -

P,

sene 4,substrate; F€Presents the probability of the distribution of genes and the

utilisation of substratep, which can be the probability of the presence of gene

, the presence of genes in

in strains utilising substrateg (PgeneA+,SubstrateB+)

strains not utilising substrates (P ), the absence of genes in

gene, T ,substrateg”

strains utilising substratep (PgeneA_,Substratef), and the absence of genes in

strains not utilising substratep (Pgene A—,SubstrateB—). Mgene , substrate, 1S 0 if and

only if the measurements on the distribution of genes and the ability to utilise
substratep are independent. The mutual information of genes and substrateg is
greater if the distribution of genes and the ability to utilise substratep are
relevant, it could be said that disappearance of genes was found in stains able
to utilise substratep or appearance of genes was found in stains able to utilise
substrateg. The mutual information computation was implemented with

infotheo (Meyer, 2009), an R package.

4.4.3.3 False Discovery Rate (FDR) control
To control the number of genes with false discoveries, the approach of

Benjamini et al. (1995) was used. Given m tested null hypotheses, for each
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hypothesis H; (i=1,..,m), p-value is calculated along with the corresponding p;

(i=1,..,m). R denotes the number of null hypotheses rejected by a procedure. V
represents the number of true null hypotheses with incorrect rejection. The

FDR (q-value) is defined as E(V/R).

First, the p-values are ordered so that P(1) < - < P(m)- Second, each value P(i)
is compared with g %, where q is the desired FDR level. Finally, with k = max(i
L P() =4 mi) all hypotheses belonging to P(1)~-P(k) are rejected. By using

Benjamini-Hochberg (BH) rule, the following is simple correction of p-

values:

m
BH = - — ] =
p;7 =i order(pi)'l 1,..,m.

where order (p;) equals one for the smallest and m for the largest p-value,

respectively. The fdrtool package in R (Strimmer, 2008) was used to compute

FDR in this study.

4.4.3.4 Random forest
Selection of genes related to the substrate utilisation was performed using the
Boruta (Kursa et al, 2010b) and randomForest (Liaw et al., 2002) packages
for R. Boruta is a wrapper algorithm. The wrapper approach quantifies the
subset of variables, which provides the maximum prediction accuracy, by
using the training data and the classifier as part of the evaluation (Kohavi et
al, 1997). The variable importance of the Boruta algorithm is enumerated
from the Z-scores of the original RF variable importance score against the
randomly shuffled original observations for each variable, which latter are
called shadow variables, to determine which variables are truly important
(Kursa et al.,, 2010b). The following are the steps in the Boruta algorithm.

* Extend the information system by adding at least 5 shadow attributes

* Shuffle the added shadow attributes to remove their correlations with

the response.
* Run a random forest classifier on the extended information system and

gather the Z scores computed.
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* Quantify the maximum Z score among shadow attributes (MZSA)

* Mark variables with Z score lower than MZSA as ‘irrelevant’ and
remove them from the analysis.

* Mark variables with Z score higher MZSA as ‘relevant’.

* Remove all shadow attributes.

* Repeat the procedure until no further variables are marked irrelevant
or until the maximum number of user-defined iterations has been
reached.

Since random forests chose genes based on random selection, iteration on
gene selection was operated three times in order to stabilise the results of
gene selection (Van Landeghem et al.,, 2010, Bayjanov et al., 2013). Genes with
three times “Confirmed” result were considered as genes relevant in the

substrate utilisation.

4.4.3.5 Class association rules

The strength of rules in the NETCAR algorithm is evaluated by using Confidence
and Support (Agrawal et al., 1994). Confidence is the conditional probability of
the ability of substrate utilisation (utilising/not utilising substrate) given by
the set of genes. Support is the fraction of strains in which the rule is valid in

the data. For example, geneyq and geneg = utilising substratec with 100%
Confidence, it means that in all strains carrying geneg and genep it is observed

that substratec is utilised. Strength of the converse relation is evaluated by
mutual information to ensure the generated rule has biological relationships
following the syntax, set of present genes < ability of substrate utilisation. The
basic algorithm is described as follows:

* Select Parent genes whose profile shows a strong relationship with
the substrate utilisation phenotype.

* Construct a connectivity graph of gene presence/absence (a co-
occurrence network). An edge is present if the mutual information
between two genes is greater than the threshold.

* Select Child genes that are within s-1 (s is denoted as width of rule
or number of genes present in a rule) steps from a Parent on the

gene presence/absence graph. For s=5, unconnected subgraphs
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start being generated, resulting in production of redundant rules
and long computational times. The maximum width of rule is
therefore 4 genes.

* Generate rules or candidate sets of genes containing at least one
Parent gene and Child genes from a connected subgraph on the gene

presence/absence connectivity graph. At this step, geneg and genep

= utilising substratec is generated.

* Evaluate mutual information of the converse relationship of Set of
present genes < ability of substrate utilisation. If the converse
relationship exhibits mutual information that is larger than the
defined threshold, the rule is kept.

The class association rule uses accuracy, F-score, precision, and recall to select

significant rules.

Number of strains carrying genes and not utilising substrate
+ Number of strains not carrying genes and utilising substrate

Accuracy =
Y Number of all strains
F-score =2 - preclis_ion-recall
precision+recall
. Number of strains carrying genes and not utilising substrate
Precision = - - ——
Number of strains carrying genes and not utilising substrate +
Number of strains carrying genes and utilising substrate
Recall Number of strains carrying genes and not utilising substrate
ecall =

Number of strains carrying genes and not utilising substrate +
Number of strains not carrying genes and not utilising substrate

In this study, the width of rules was varied between 2 and 4 genes. Genes were
considered to relate to the substrate utilisation when the genes were present

in significant rules.

4.4.4 Computational Resources

The correlation and random forest were run on an Apple MacBook Pro Intel
Core i5 2.3 GHz CPU with 16GB 1333 MHz RAM running Mac OS X 10.10.4. R
version 3.1.3 were used in this chapter. NETCAR, a java application, was

computed the University of York Biology Linux grid, comprising of 27 quad
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core machines with 16GB RAM, controlled by Sun Microsystems Grid engine

6.1u2. java version 1.7.0_79 was used in this chapter.

4.5 Results
4.5.1 Results on computational methods

4.5.1.1 Results on pairwise association methods

The threshold of correlation value and mutual information was chosen as the
area above the 80t percentile of the entire correlation and mutual information
values (Li et al., 2014). By using the criterion of genes with correlation value
lying above about 81.2 % of the entire correlation values of the analysed data
(Figure 4.3), genes with absolute correlation value equal to or greater than
0.14 were considered to be potential genes. Of 125,592 correlation values in
total, 23,712 correlation values were considered to involve potential genes by

this criterion.
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Figure 4.3 The distribution of correlation between substrate utilisation and genes. Genes with
correlation value greater than 0.14 or less than -0.14 in B were considered to be potential genes

involved in substrate utilisation.

When the number of strains utilising a substrate was equal to the number of

strains with genes and no genes were found in strains not utilising substrate, a
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Pearson’s correlation of 1 was obtained (® in circle Figure 4.4). In this study,
genes with a Pearson’s correlation of 1 were from substrates that were used
by 71 of 72 strains in the population, viz. i-erythritol, L-rhamnose, and
succinic acid. The genes with a Pearson’s correlation of 1 were present in the
strains utilising the substrates and absent from the single strain that did not
use the corresponding substrate. Pearson’s correlation of -1 (@ in circle Figure
4.4) was seen in substrates that were utilised by 71 of 72 strains in the
population, viz. adonitol and L-rhamnose. Genes representing a Pearson’s
correlation of -1 were absent from the strains utilising adonitol and L-
rhamnose.

Though Pearson’s correlation of -1 and 1 identified genes completely
dissociated or associated with the substrate utilisation ability, associations
that depend on a single isolate can readily arise by chance, which is a
drawback of Pearson'’s correlation.

There were some genes in the analysed data in which the gene was present in
all (or nearly all) strains that utilised the substrate, but their correlation
values were not equal to 1 or -1 (® and ® outside the circles Figure 4.4)
because the correlation value was reduced by the presence of strains that had

the gene but did not utilise the substrate.
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Figure 4.4 Plot of number of strains utilising substrate, abundance of genes in strains
utilising the substrate and their Pearson’s correlation values. Nodes are coloured by
abundance of genes, the number of strains utilising substrate and their Pearson’s
correlation values (@ gene with correlation value equal or less than -0.14 and having equal
numbers of strains utilising substrate and an abundance of genes in strains not utilising the
substrate, @ gene with correlation value equal or greater than 0.14 and having equal
number of strains utilising substrate and an abundance of genes in strains that utilise the
substrate, ® gene with absolute of correlation value equal to or greater than 0.14 and
having unequal numbers of genes and strains utilising substrate, and ® gene with absolute

of correlation value less than 0.14).

Mutual information values were calculated between the presence of genes and
the ability to utilise substrate (Figure 4.5), and genes with values of mutual
information equal or greater than 0.011, lying above more than 80.3% of
mutual information values (24,804 mutual information values of 125,592
mutual information values in total), were considered to be potential genes

associated with the substrate utilisation by this criterion.
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Figure 4.5 The distribution of mutual information between substrate utilisation and
genes. Genes with mutual information value equal or greater than 0.011 in B were

considered to be potential genes for utilising substrate.

The mutual information was robust with regards to genotype-phenotype
relationships that were from substrates used by most strains in the population
and abundance of genes carried by the strains (Figure 4.6). The mutual
information values between substrates utilised by 71 strains and genes
present in the same 71 strains (giving Pearson’s correlation of 1) were @
encircled in Figure 4.6. Likewise, the mutual information value between
substrate utilised by 71 strains without the gene and one strain not utilising
substrate but carrying the gene (giving Pearson’s correlation of -1) were @
encircled in Figure 4.6. Mutual information values of these genes are not as
high as their Pearson’s correlation values. Consequently, cases of 1 and -1 of

Pearson’s correlation were handled better by mutual information.
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Figure 4.6 Plot of frequency of number of strains utilising substrate, abundance of
genes in strains utilising the substrate and their mutual information values. Nodes are
coloured by abundance of genes, the number of strains utilising substrate and their mutual
information values (@ gene with mutual information equal to or greater than 0.011 and
having equal number of strains utilising substrate and an abundance of genes in strains not
utilising the substrate, ® gene with mutual information equal to or greater than 0.011 and
having equal number of strains utilising the substrate and an abundance of genes in strains
that utilise the substrate, ® gene with mutual information value equal to or greater than
0.011 and having unequal numbers of genes and strains utilising substrate and ® gene with

mutual information value less than 0.011).

It was found that Pearson’s correlation and mutual information provided
results in the same way (Figure 4.7 (a)). Using the criterion of selecting
Pearson’s correlation and mutual information above the 80th percentile, there
were 27,699 significant associations, including associations between the
substrates utilised by most of strains in the population and genes with high

abundance, which might be random associations.
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Figure 4.7 Plots of Pearson’s correlation and mutual information value. (a) Nodes are coloured by association value from different measures and
significance (@ gene with significant mutual information and correlation value and having equal number of strains utilising substrate and abundance of
genes of strains that did not utilise the substrate, ® gene with significant mutual information and correlation value and having equal number of strains
utilising the substrate and abundance of genes of strains that utilise the substrate, ® gene with significant mutual information and significant
correlation, ® gene with significant mutual information or significant correlation value, and ® gene with insignificant mutual information and
correlation values). (b) Nodes are coloured by association value from different measure and False Discovery Rate g-value (@ gene with significant

mutual information, correlation, and g-value < 0.05, ® gene with insignificant mutual information or correlation and g-value > 0.05)
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In order to alleviate effects of associations between the substrates utilised by
most strains in the population and genes with high abundance considered as
potential genes, FDR was applied to the data (Figure 4.7 (b)). After FDR was
applied to the analysed data, of 27,699 associations, 44 associations between
genes and substrates exhibited significant relationships. The 44 associations
were all involved in the utilisation of GHB (y-hydroxybutyric acid) and D-

galactonic acid lactone.

4.5.1.2 Results on random forests

Random forest identified genes involving 11 substrates, consisting of 29 genes
involved in the utilisation of GHB (Figure 4.8), 8 genes involved in the
utilisation of D-galactonic acid lactone (Figure 4.9), 4 genes involved in the
utilisation of D-mannitol, 2 genes involved in D-alanine, D-gluconic acid, and
uridine utilisation, 1 gene involved in a-keto glutaric acid, D-glucosaminic
acid, D-raffinose, succinic acid, and thymidine utilisation (Appendix Figure
ILI-IILIX).

The utilisation of GHB and D-galactonic acid lactone were demonstrated
because the results of the two substrates exhibited strong relationships as
found by other methods. Figures 4.8 and 4.9 display genes that were identified
as relevant and tentatively relevant to the substrate utilisation. Genes
identified as not important to the substrate utilisation were not displayed

because of their abundance.
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Random Forest method. Three independent iterations of the gene selection algorithm

are illustrated. Vertical axis represents Z-score. Columns represent genes coloured by the
confirmation of their involvement in the three iterations (M genes confirmed as relevant
genes by 3 iterations and M genes confirmed relevant genes by 1-2 iterations). Each plot
was coloured by Z-score by comparing to the maximum Z-score among shadow attributes
(MZSA) (M identified as genes involved in the substrate utilisation, B identified as
tentative genes involved in the substrate utilisation, and M Z-score of shadow attributes).
In box-and-whisker plot, the horizontal center of each box represents median, boxes
represent 25t to 75t percentiles, and whiskers represent 10t and 90t percentiles. Dots

located out of the box represent outliers.
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Figure 4.9 Z-score profiles of genes implicated in the utilisation of D-galactonic acid

lactone by the Random Forest method. See legend to Figure 4.8 for details.
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4.5.1.3 Results on class association rules

Of 21 substrates, two substrates, viz. GHB and D-galactonic acid lactone,
presented groups of genes whose presence was strongly associated with
substrate utilisation. The suggested width of rules was three but in this study
the width of rules was varied from 1-4 genes in order to find the optimal
width of rules for further analysis. The rules constructed by NETCAR were
ordered by their Accuracy value. To reduce redundancy, rules with mutual
information = 0.25 were selected for further analysis. Table 4.1 represents
parameters of different width rules with mutual information = 0.25 and
minimum accuracy.

In the case of GHB, all rules were generated with positive correlation, which
mean that genes in the rules were present in strains utilising GHB. Confidence
values increased when width of rules was changed from 1 to 2, and then
stabilised. This meant that more than one gene participated in a pathway of
substrate utilisation. In contrast, support values decreased when width of
rules was changed from 1 to 2, and then stabilised because the number of
strains utilising GHB and genes carried in the qualified rules compared against
all strains in the analysed data were much different in size. However, the
stable confidence and support values demonstrated consistency in the rules.
Accuracy and F1-score values indicated performance of the constructed rules,
when width of rules was changed from 1 to 2, and then stabilised. The
decrease was acceptable. There was no significant change of the support and
accuracy of the rules when the width of rules was increased from 2 to 4, while
confidence increased when the width of rules was increased from 1 to 2 and
stabilised after that. Hence the optimal width of rule was chosen by the
number of genes involved in the GHB utilisation; the optimal width of rules
was 4.

Unlike the correlation of genes found to be involved in GHB utilisation, genes
correlated with D-galactonic acid lactone were absent from strains utilising D-
galactonic acid lactone, or alternately negatively correlated genes. There was
no qualified rule when width of rule was varied from 1-3 genes. It was
observed that rules were generated with mutual information less than 0.25.

However, qualified rules were observed when the width of rules was 4 genes.
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The strength of the rules was not higher because the number of strains not
utilising D-galactonic acid lactone was small compared to the ones utilising D-
galactonic acid lactone. This resulted in low strength of the rules relating to
the number of strains carrying the genes. Considering accuracy and F-score
value in the previously mentioned equations, the accuracy was high because
the number of strains that can utilise D-galactonic acid lactone (66 of 72
strains, and most of them did not carry the genes) was much larger than of
those that cannot utilise D-galactonic acid lactone. The F-score was low
compared to that for the utilisation of GHB. The F-score focused on the number
of strains carrying the genes and not utilising D-galactonic acid lactone, which

was a small number (6 of 72 strains).
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Table 4.1 Number of rules and genes with mutual information = 0.25. The accuracy, confidence, and support value is shown for the rule with the

minimum F-score in each case. The optimal width of rules used in the study is in bold.

Substrate Width of Number of Number of Accuracy Confidence Support (%) Min F-score
rules rules genes (%) (%)
GHB 1 9 9 0.792 85.2 319 75.9
2 102 20 0.764 94.7 25 67.9
3 757 24 0.764 94.7 25 67.9
4 6,919 57 0.764 94.7 25 67.9
D-galactonic acid 1 - - - - - -
lactone
4 272 28 0.958 25 2.8 5.5
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4.5.2 Genes associated with GHB utilisation in the population

GHB utilisation is brought about by the activity of two dehydrogenases. The
first dehydrogenase converts GHB to succinic semialdehyde (SSA). Another
dehydrogenase converts SSA to SA (Figure 4.10), which is hence completely
metabolised via the electron transport chain and is an intermediate of the
tricarboxylic acid (TCA) cycle. TCA is beneficial to rhizobium for colonising

plant host and developing effective nitrogen fixation (Dunn, 1998).

y-Hydroxybutyric acid

Dehydrogenase
E.C.1.1.1.61 DRL100135
KEGG R01644 pRL120227

\/

Succinic semialdehyde

Succinic semialdehyde

E.C.1.2.1.16 Dehydrogenase (gabD)
KEGG R00713 RLO101

phases

KEGG R00714 PRL110161

(NADP*) pRL120603

N/ DPRL120628

Succinic acid
Figure 4.10 Pathway for utilisation of GHB from KEGG database (Tanabe et al., 2002).

Arrows define the direction of metabolism of each intermediate (EC enzyme numbers (E.C.
X.X.X.XX), KEGG reaction number (KEGG RXXXXX) and locus tag of genes involved in each
metabolic step). Locus tags in red were genes also found by using computational methods

in this study.

In Agrobacterium tumefaciens C58, which is in a genus related to Rhizobium,
GHB was involved in the utilisation of GBL as an intermediate (Carlier et al,
2004). The sequence of reactions starts with a lactonase encoded by the gene
attM (Zhang et al., 2002) converting a ring-structured GBL to the open ring
GHB. Subsequently, GHB is oxidised by attL to SSA, which is finally oxidised by
attK (gabD (Prell et al., 2009)) to SA. These genes were regulated by attKLM
operon (Chevrot et al, 2006, Wang et al, 2006, White et al., 2009), whose
expression was repressed by att/ (Zhang et al, 2002). The existence of GBL,
GHB, and SSA in the cell was reported as attKLM operon inducers and att/

repressor (Carlier et al., 2004, Chai et al, 2007). Furthermore, attM can also
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catabolise N-acyl-homoserine lactones, which is known as a quorum-sensing
signal in Rhizobium (Wisniewski-Dye et al, 2002), to an open ring, N-
acylhomoserine (Carlier et al, 2004), resulting in inactivation of quorum

sensing (Chai et al.,, 2007).

O\JEG BL

AttM ¢

HOJOKG;B\

AttL

i
HO CHO
AttK

SA
)K/\ Figure 4.11 Pathway for y-butyrolactone utilisation
HO COCH (y-butyrolactone: ~ GBL,  GHB:  GHB,  succinic

CH20H

semialdehyde: SSA, and succinic acid: SA) (taken from

C l
L e Carlier et al. (2004)).

Genes identified as candidate genes relating to GHB utilisation were found on
pRL7, pRL8, pRL10, pRL11 and pRL12 (gene list in Appendix Table IILII). A
network of candidate genes involved in the GHB utilisation was constructed
from rules generated by class association rules (Figure 4.12). The size of node
represents frequency of nodes in all the generated rules. The six adjacent
genes of large size were more frequently found in significant generated rules
for GHB utilisation than the small ones. The four adjacent genes, viz.
pRL100133 (att/] with 60% amino acid identity), pRL100134 (gabD) (attK
with 78% amino acid identity), pRL100135 (attL with 83% amino acid
identity), and pRL100136 (attM with 90% amino acid identity), are homologs
of att/KLM genes of Agrobacterium tumefaciens C58. The adjacent genes
pRL100137 (metX, homoserine O-acetyltransferase) and pRL100138 (MerR-
family transcriptional regulator) are also identified as genes related to GHB
utilisation (Kumar et al.,, 2015). The role of pRL100135 (attL) and pRL100136
(attM) in GHB utilisation in RIv3841 has been investigated and confirmed by

mutational knock-out (Lad, 2013). These genes were discovered by all three
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computational methods. Two other genes identified by all three
computational methods and confirmed as relevant genes in the utilisation are
pRL100104 and pRL100105, which possibly encode subunits of
polyhydroxybutyrate synthase. Another gene, pRL100103, identified by class
association rule and pairwise correlation, is an alcohol dehydrogenase and

homolog of attL with 51% amino acid identity.
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Figure 4.12 Genes involving in the utilisation of GHB. Nodes represent genes. Edges
connect genes present in the same rules. The size of node represents frequency of nodes in
the extracted rules. The orange nodes (®) represent genes found by pairwise association,
random forest, and class association rules. The yellow nodes () represent genes found by
two of these methods. The nodes with purple border represent annotated Y-
hydroxybutyric-acid-related genes. The cyan nodes (©') represent genes that are found in

strains that can utilise the substrate but do not have annotated GHB-related genes.

The distribution of genes associated with GHB in the population is shown in
Figure 4.13, 34 strains in the population were able to utilise GHB. Of 34
strains, 28 strains carried genes pRL100103-pRL100105 and pRL100133-
pRL100138, which were annotated with functions related to the utilisation of

GHB.
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Figure 4.13 The distribution of genes associated with GHB utilisation in the
population and profile of computational methods (a.) The distribution of genes
associated with GHB utilisation. Rows represent rhizobium strains used in this study (®
strains that cannot utilise substrate, @ strains that can utilise the substrate and have
annotated y-hydroxybutyric-acid-related genes and @ strains that can utilise the substrate
but do not have annotated y-hydroxybutyric-acid-related genes). Columns are genes
associated with substrate utilisation (B gene absent and B present). (b.) Profile of
computational method identifying associated genes. Rows represent the computational
methods and are coloured by their identified relation (M gene not associated with substrate
utilisation, B gene associated with substrate utilisation, Bl gene presence associated with
substrate utilisation, and B gene absence associated with substrate utilisation). Column
labels are coloured by their location (@ chromosome, ® pRL7, @ pRL8, ® pRL9, ® pRL10,
pRL11, and @ pRL12).
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The genes confirmed as genes related to GHB utilisation were absent from
trx32, vsx18, vsx16, vsx26, vsx27, and vsx37. However, the class association
rules identified genes on pRL11 (© Figure 4.12 and " in Figure 4.13) that
might be involved in the GHB utilisation and are carried by trx32, vsx18,
vsx16, vsx26, vsx27, and vsx37. These genes were interesting because they
were abundant in trx32, vsx18, vsx16, vsx26, vsx27, and vsx37 and absent in

some of the other strains utilising GHB.
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Figure 4.14 Genes involved in the utilisation of D-galactonic acid lactone. Nodes
represent genes. Edges represent genes present in the same rule. The size of the node
represents frequency of nodes in the extracted rules. The orange nodes (®) represent
genes found by pairwise association, random forest, and class association rules. The yellow

nodes () represent genes found by two of these methods.
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4.5.3 Genes associated with D-galactonic acid lactone utilisation in the
population

In contrast to the rules that generated the utilisation profile of GHB, results of
class association rules for D-galactonic acid Lactone consisted of genes absent
from strains able to use the substrate (Figure 4.14). Genes whose occurrence
was involved in D-galactonic acid Lactone utilisation in the population were
scattered on pRL7, pRL9, pRL10, pRL11, and pRL12 (genes list in Appendix
Table IILIII) (Figure 4.15). Amongst the significant generated rules,
pRL120010 was frequently found because pRL120010 was absent in a

majority of strains utilising the substrate (Figure 4.15).
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Figure 4.15 The distribution of genes associated with D-galactonic acid lactone
utilisation in the population and profile of computational methods (a.) The
distribution of genes associated with D-galactonic Acid Lactone utilisation. Rows represent
rhizobium strains used in this study (@ strains that cannot utilise the substrate and @
strains that can utilise the substrate). Columns are genes associated with substrate
utilisation (B gene absent gene and M present). (b.) Profile of computational method
identifying associated genes. Rows represent the computational methods and are coloured
by their identified relation (M gene not associated with substrate utilisation, Bl gene
associated with substrate utilisation, and B gene absence associated with substrate
utilisation). Column labels are coloured by their location (® pRL7, ® pRL9, @ pRL10,
pRL11, and @ pRL12).
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4.5.4 Presence and absence of genes related to substrate utilisation in the
population

Occurrence patterns of genes whose presence was involved in the substrate
utilisation was investigated in order to find relationships between occurrence
patterns of genes and their participation in the utilisation of the same
substrate. In the co-occurrence network obtained in Chapter 3 with threshold
of Pearson’s correlation > |0.70| (Figure 3.17 in Chapter 3), genes involved in
the utilisation of the same substrate were in the same cluster (Figure 4.16).

However, in the case of genes associated with GHB, there was more than one
cluster of genes observed. Cluster 1 (Figure 4.16 (b)) contained genes that
were annotated as genes involved in GHB metabolism. It was found that genes
in Cluster 1 were carried by the almost same strains and most of them can
utilise GHB. Cluster 3 (Figure 4.16 (b)) contained genes that have not been
annotated as genes involved in GHB utilisation (Table 4.2). A difference
between these two disjointed clusters was the distribution of genes in the
population. Genes in the two disjointed clusters might be able to use GHB by

an alternative pathway.

Table 4.2 List of candidate genes involved in GHB utilisation present in trx32, vsx18, vsx16,

vsx26, vsx27, and vsx37.

Locus tag | Gene Symbol | Protein accession Annotated function
pRL110292 hycG YP_771325.1 putative formate hydrogenlyase subunit 7
pRL110293 hycE YP_771326.1 putative formate hydrogenlyase subunit 5
pRL110294 hyfF YP_771327.1 hydrogenase 4 subunit F
pRL110295 hyfE YP_771328.1 putative hydrogenase-4 component E
pRL110296 hycD YP_771329.1 putative hydrogenase protein
pRL110297 hyfB YP_771330.1 hydrogenase 4 subunit B

Cluster 2 (Figure 4.16 (b)) exhibited an anti co-occurrence relationship
between genes required in the utilisation of GHB and genes absent from
strains utilising D-galactonic acid lactone. One plausible explanation is related
to the strains utilisation pattern of the two substrates i.e. most strains able to
utilise GHB also utilised D-galactonic acid lactone. Genes were negatively

correlated with the utilisation of D-galactonic acid lactone and found in strains
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that did not utilise the substrate. Cluster 2 implies that the genes involved in
GHB utilisation are also positively associated with D-galactonic acid lactone

utilisation.
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Figure 4.16 Genes associated with substrate utilisation in the population according to the gene co-occurrence network (as seen in Chapter 3).
Nodes represent genes coloured by substrates (® and @ genes involved in GHB utilisation, D-galactonic acid lactone utilisation, respectively and @
genes not involved in utilisation of these substrates). Node size represents frequency of gene found in rules. Edges specify co-occurrence (—) and anti

co-occurrence (—) interactions. (a) the entire gene co-occurrence network (b) genes involved in the substrate utilisation are enlarged.
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4.6 Discussion
4.6.1 Gene selection by different methods

In this study, pairwise association (including Pearson’s correlation and mutual
information), random forest and class association rule were applied to analyse
the data in order to select genes relevant to the utilisation of substrate.

The pairwise association methods were considered to be simply methods for
extracting relationships between genes relating to substrate utilisation. The
methods selected genes from the frequency of genes carried by strains
utilising and not utilising substrate (Figure 4.4 and 4.6)(Dash et al, 1997).
These resulted in generating false positives when random high correlation
values were identified, even though FDR was applied to remove results from
these spurious correlations. The FDR was found to provide restricted results
with the analysed data. For example, in the case of utilisation of GHB,
candidate genes identified to be involved in the substrate utilisation were
genes that were present in the majority of strains utilising the substrate
(Figure 4.13). The methods missed genes in some strains which were able to
use the substrate but did not carry genes with significant pairwise association.
Another interesting point observed when using pairwise association to select
genes was that a majority of strains utilising GHB were bv. trifolii. The method
identified bv. viciae specific genes having negative relationship to the
substrate utilisation with significant statistics (p < 0.001, two-sided Fisher's
exact test). However, not only bv. trifolii but bv. viciae too can utilise the
substrate (Figure 4.13). This means that there exists a significant correlation
between symbiovar and GHB utilisation, but this could be a chance association
because utilisation is present, and absent, in strains of both symbiovars.

In this study, we used the implementation of random forest called the Boruta
algorithm (Kursa et al, 2010a). Due to random selection of genes to
investigate potential of each gene, the random forest algorithm required
iterative computation to obtain consistent computational results. Herein, the
suggested three-time iteration was applied (Bayjanov et al, 2013). However,

the analysed data was considered to have an imbalance of class data (Chawla
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etal, 2004), in which the number of strains utilising substrate and strains not
utilising were much different. This is considered to be a general problem in
feature selection (herein gene selection) using machine learning because the
method focused on features that were significant to the majority of
observations (referring to substrate utilising or non-utilising strains in this
study) and ignored the minority of observations. To clarify this situation in the
case of strains utilising GHB, the methods also could not identify genes in
some strains, which were able to use the substrate but did not carry genes
confirmed to be important to substrate utilisation (Figure 4.13). Considering
identified genes relevant to substrates utilised by most of the population
(ranging 52-71 strains), the method usually selected genes whose presence or
absence was found in the majority class (which was either utilising strains or
non-utilising strains) (Appendix Figure IILI-IILIX). The imbalance of class
problem was overcome by balancing statistical measure performance of
binary classification (Menon et al, 2013). The implementation of random
forest, Boruta, used in this study did not provide any statistical measure to
guard against the imbalance of class problem.

Class association rule was another computational method used in this work.
NETCAR (Tamura et al., 2008), which is an implement of class association rule,
was applied to the data. Potential chosen genes from NETCAR were evaluated
by mutual information and F-score, as well as traditional measures such as
confidence and support (Agrawal et al., 1994). The mutual information can deal
with redundancy of generated rules, while the F-score introduces measures for
reducing cost of imbalance in class data (Menon et al, 2013). It is noticeable
that rules involving multiple genes were more powerful. This is exemplified by
the pRL11 genes identified as candidate genes involved in the utilisation of
GHB (Figure 4.13). The pRL11 genes were not detected by the other methods
because of the distribution of the pRL11 genes in the population. Hence the
class association rule was considered to be the most informative method in

this study.

Pairwise association methods including mutual information and Pearson’s

correlation were beneficial to discover the relationship between an individual
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gene and substrate utilisation (one-to-one relationship). Results of gene
selection based on pairwise association depend on the distribution of genes
and not on observations (herein, rhizobium strains), like the random forest.
The random forest cannot specify the direction of the relationship between
genes and phenotype. However, the previous studies (Bayjanov et al,, 2013)
suggested that the direction of the relationship can be inferred by comparing
the distribution of genes in the analysed data. For example, in the case of GHB
utilisation, genes annotated as relating to GHB utilisation on pRL10
(pRL100133-138) were all discovered by all computational methods (Figure
4.9), the pRL10 genes were carried by a majority of strains utilising GHB.
Some strains utilising GHB did not carry the pRL10 genes. The class
association rule method demonstrated genes on pRL11 and pRL12 as
potential genes involving in GHB utilisation apart from the pRL10 genes and
present in strains not carrying the pRL10 genes. This might be a result of more
than one pathway with the capability for substrate utilisation. The class
association rule can deal with many-to-one relationships and relationship
direction. Hence, the class association rule was selected as the method of

choice for gene selection in this study.

4.6.2 Genes relevant to the substrate utilisation

Substrate utilisation ability did not relate closely to the symbiovars and
genospecies of the population (Figure 4.2). Diversity in the substrate
utilisation ability was controlled by genes present in the rhizobium strains
(Kumar et al, 2015). This behaviour is also evident in Pseudomonas
aeruginosa (Pommerenke et al, 2010), Lactococcus lactis (Bayjanov et al,

2013) and Myxococcus xanthus (Yan et al,, 2014).

In this study, genes not present in every strain in the population were focused
on because these genes represented the gene diversity of the population. Such
genes are known as accessory genes (Young et al., 2006). Hence all candidate
genes were accessory genes, of which a majority were located on plasmids.
The results of the study supported the hypothesis that the diversity in the

distribution of accessory genes was relevant to the substrate utilisation.
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Alternatively, accessory genes were carried by some strains for specific
purposes. In the co-occurrence genes network, genes that participate in the
same substrate utilisation have short distance in the network and were
transferred together in the population. When genes utilised the substrate by
different pathways, the genes might possibly present themselves as
unconnected subnetworks in the co-occurrence genes subnetwork. A plausible
explanation might be that the strain acquiring either of them was able to

utilise the substrate.

In summary, this chapter made use of computational methods for selecting
genes involved in the metabolic ability of the rhizobium population. To
achieve this, the computational results from different methods were
compared to find the most suitable method for the data. The most suitable
tool, class association rule, was selected by referring to prior knowledge. The
class association rule could identify nine genes on pRL10 that were annotated
as GHB related genes. The method also discovered candidate genes carried in
strains utilising GHB but not carrying the annotated genes. The results of this
study demonstrated that the ability of substrate utilisation did not relate to
symbiovar or genospecies but the ability of substrate utilisation depended on
genes carried by the strains. Furthermore, most of the genes required for the
substrate utilisation were transferred together in the population. However, an
exception was found in the co-occurrence network, as disjointed subnetworks

were found when genes possibly utilised the substrate by alternate pathways.
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Chapter 5 General discussion

The distribution of genes across seventy-two strains of a local population of
Rhizobium leguminosarum was investigated in a comprehensive way using
computational approaches. Chapters 2 and 3 demonstrate uses of
computational methods to identify clusters of genes that are functionally
related by examining their distribution across strains in a population without
prior knowledge of experimental data. In Chapter 2, gene transfer within the
population affecting the distribution of genes in the bacterial population was
investigated through incongruence of the gene tree of each gene. In Chapter 3,
occurrence of genes in the population was studied in order to find patterns of
gene co-occurrence. Chapter 4 demonstrates an integrated analysis using
experimental data and the distribution of genes. Chapter 4 studied
relationship, in the population, of occurrence of genes and ability to utilise
substrate. The study illustrates some of the insights that can be gained by
integrating comparatively simple data across multiple individuals, rather than
by studying single individuals in detail. This chapter provides a synopsis that
assesses the contribution and limitations of each chapter. Finally, some
directions for future analysis and conclusions are presented, using knowledge

obtained through this work.

5.1 Synopsis

In Chapter 2, gene distributions in a local population of Rhizobium
leguminosarum were explored. Compositional methods, including atypical
nucleotide content (Lawrence et al., 1997, Karlin, 2001, van Passel et al., 2005,
Putonti et al,, 2006) and codon usage (Lawrence et al., 1998) was applied to
detect transferred genes. A comparison of sequence similarity between
analysed genes and genes in a public database (Lawrence et al, 1998,
Lefébure et al, 2010) has been used for assessing HGT using tools for
searching similarity of sequences (i.e. BLAST (Altschul et al, 1990) ).
Horizontally transferred genes were identified when the analysed genes and

hit genes from the database had high similarity score. Incongruence on
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phylogenetic trees is another approach for gene transfer detection. A tree of
analysed genes (e.g. set of orthologs or genes in the same family) is
constructed and compared to a reference tree (i.e. core gene phylogeny).
Genes transferred horizontally were observed when the analysed gene tree
was not consonant with the reference tree. For example, phylogenies were
constructed from core genes on distinct replicons compared to the core
phylogeny for example Sinorhizobium (Bailly et al, 2011) and Rhizobium
leguminosarum (Tian et al., 2010, Kumar et al., 2015).

In this study, clanistics was used as a tool to explore gene distribution in a
local population of Rhizobium leguminosarum. Clanistics (Lapointe et al,
2010) was chosen as a tool because the method was flexible for detecting
shared genes between two symbiovars and transferred genes within five
genospecies. Using each of the two symbiovars as natives, many genes,
particularly chromosomal genes, showed discordant patterns, reflecting the
common background of core genes shared by the two symbiovars (Young et
al, 1987, Young et al., 2006, Mauchline et al,, 2014). On the other hand, genes
with concordant patterns were found in a particular symbiovar, of which a
majority were known symbiosis genes (nod, nif, and fix genes) and used for
defining the symbiovar (Long, 2001, Miller et al.,, 2007, Rogel et al, 2011). The
genes with concordant patterns were overrepresented on plasmids. The
overrepresentation of symbiosis genes with concordant clanistic patterns
reflected the fact that the symbiosis genes on plasmids served to differentiate
the two symbiovars. Not only were annotated symbiosis genes discovered
using clanistics, but also a novel gene (pRL100177) on pRL10 that is specific
to bv. viciae but has no annotated function.

Clanistics was also used for detecting transferred and non-transferred genes
within the five genospecies. The chromosome not only carried genes with no
evidence for HGT but also carried mobile genes. The observation of core genes
shared either by the whole population or just a single genospecies in the
bacterial population has been reported not only in our study but also in other
bacteria such as Streptococcus (Lefébure et al., 2007), Sinorhizobium (Bailly et
al, 2011, Sugawara et al, 2013), Campylobacter (Lefébure et al., 2010, Méric et

al, 2014), Agrobacterium tumefaciens (Lassalle et al, 2011) and Lactobacillus
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paracasei (Smokvina et al.,, 2013). Genospecies-specific genes were found on
plasmids and chromids, which are known to carry adaptive and mobilisable
genes in bacterial population genomics studies (Heuer et al., 2012, Galardini et
al, 2013, Sentchilo et al, 2013). Some of these specific genes on pRL9 and
pRL12 have also been annotated as genospecies B specific genes by a different
approach (Kumar et al, 2015). The novel genospecies B specific genes
emphasised that not only chromosomal genes but also plasmid-encoded genes
(or, at least, genes that are plasmid-encoded in RIv3841) may be responsible
for the differences between genospecies.

Investigation into the relationship between functional assignment and gene
transfer in the population demonstrated that genes relevant to the mobilome
(prophages, transposons) were overrepresented among those with evidence
for HGT within the five genospecies because transposons and plasmids are
mobilome elements (Siefert, 2009) and generally transferred within the
population (Nakamura et al, 2004, Beiko et al., 2005, Tamminen et al., 2012).
Genes relevant to operational categories tended to be transferred, as noted in
previous studies (Jain et al, 1999, Nakamura et al, 2004, Zhaxybayeva et al,
2006, Kanhere et al, 2009). Genes with evidence for HGT were also
preferentially found in translation, ribosomal structure and biogenesis,
transcription, and signal transduction mechanisms categories, which
contradicts the complexity hypothesis of Jain et al. (1999), but is in agreement
with Kanhere et al. (2009), Wisniewski-Dyé et al. (2012), Dziewit et al. (2014),
and Epstein et al. (2014). Genes in the “poorly characterized” category
frequently had evidence for HGT, which has also been seen in previous studies
of comparative genomics in other bacteria (Wisniewski-Dyé et al, 2012,
Dziewit et al, 2014, Epstein et al., 2014) and reflects the fact that the functions
of accessory genes are generally less well understood than those of core genes.
However, in contrast to many other studies, Choi et al. (2007) reported that
there was no association between functional categories and gene transferred.
This chapter confirmed that there was instability of the bacterial genomes
within the local rhizobium population, which were affected by homologous

recombination or HGT. Similar instability of the core genome was also found
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in other bacterial populations (Didelot et al, 2010, Beauregard-Racine et al,
2011, Didelot et al.,, 2011, Cadillo-Quiroz et al., 2012).

Studies of gene content in bacterial populations using multiple genomes can
identify contributions of gene transfer to the population, for example
genospecies maintenance (Bailly et al., 2011, Lassalle et al., 2011, Smokvina et
al, 2013, Sugawara et al., 2013, Kumar et al, 2015), host specificity (Rogel et
al, 2011, Sugawara et al., 2013), virulence (Hogg et al., 2007, Lefébure et al,
2007, Lefébure et al., 2010, Beauregard-Racine et al,, 2011, Méric et al,, 2014)
and environmental adaptation (Shapiro et al.,, 2012, Smokvina et al., 2013).
Chapter 3 investigated occurrence patterns of genes in the rhizobium
population. This chapter exploited correlational computation and network
analysis on gene present/absent data of multiple genomes. A comparable
study of Mycoplasma genitalium (Huynen et al., 2000) revealed genes related
to the same function using mutual information for relationship quantification.
Rather than using the phylogenetic profile of genes of one species, Kim et al.
(2011) employed occurrence of genes in multiple bacterial species, and their
results also showed gene occurrence patterns across species. These two
studies reported results on co-occurrence and anti co-occurrence
relationships compatible with our study.

Pearson’s correlation was chosen to find gene occurrence relationships
classified into co-occurrence genes with positive correlation and anti co-
occurrence genes. Network analysis was applied to a massive set of
correlations by converting numerical values, filtered by an optimal threshold,
to a view of the gene co-occurrence network. The gene co-occurrence network
reflected global relationships of genes in the population.

Genes with positive correlation, i.e. co-occurrence genes, were frequently
found to be neighbouring genes (Tamames, 2001) which might be transferred
via horizontal gene transfer (Achtman et al., 2008). Co-occurrence genes were
placed in the same subnetwork and subnetworks could be used to identify
functionally related sets of genes like, for example, the symbiosis genes
(Young et al., 2006) and rhi genes (Rodelas et al., 1999, Wisniewski-Dye et al.,
2002) on pRL10, which are relevant to nodulation and nitrogen fixation.

Furthermore, co-occurrence relationships of attKLM (pRL100134,
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pRL100135, and pRL100136) (Chai et al.,, 2007, Prell et al., 2009, White et al,,
2009) represent genes necessary for y -hydroxybutyric acid utilisation.
Another set of co-occurrence genes, five bvs genes on pRL8, were found only in
bv. viciae (Kumar et al, 2015). pRL100162A and pRL100163, encoding
asparagine synthase, were also in this subnetwork. Asparagine, which is an
amino acid produced by nodules, may regulate nodulation (Oti-Boateng et al.,
1993, Lodwig et al.,, 2003). Moreover, community detection not only allowed
us to recognise genes present under the same conditions amongst complicated
relationships in the subnetwork, for example, the community of genes specific
to genospecies B in the 374-gene subnetwork, which have been reported as a
genospecies B specific-island (Kumar, 2013), but also revealed the subtle
relationships within the 480-gene subnetwork, the presence of chromosomal
and non-chromosomal communities implied that these replicons took
responsibilities for different functions in the population.

Genes with negative correlation, anti co-occurrence genes, also appeared in
the constructed network. These anti co-occurrence genes might be on
alternative mobile genetic elements such as GIs which could be identified by
IslandViewer 3 (Dhillon et al, 2015). The other possible explanation for the
anti co-occurrence relationship between subnetworks might be their
replaceable functions.

Chapter 4 aimed to investigate phenotypic differences of the population in
relation to the distribution of genes in the population. The chapter employed
computational methods for selecting genes involved in the metabolic ability of
the rhizobium population. Class association rules were identified as the most
suitable tool for the data and can identify genes involved in y-hydroxybutyric
acid utilisation. Some of the candidate genes on pRL10 were annotated as y-
hydroxybutyric acid related genes (Chai et al., 2007, Prell et al., 2009, White et
al, 2009). Interestingly, the genes reported as y-hydroxybutyric acid related
genes were not present in all strains utilising the substrate. The class
association rule can identify other candidate genes carried in strains utilising
y-hydroxybutyric acid besides the annotated genes. The study emphasised
that the diversity of presence of accessory genes was relevant to phenotypic

differences in the population such as substrate utilisation abilities. The study
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demonstrated that the ability to use substrates did not relate to symbiovar or
genospecies, but depended on genes carried in the strains. This is compatible
with studies in Pseudomonas aeruginosa (Pommerenke et al, 2010),
Lactococcus lactis (Bayjanov et al, 2013), Myxococcus xanthus (Yan et al.,
2014), and Lactobacillus rhamnosus (Ceapa et al., 2015). A majority of the
genes that were identified as relevant to substrate utilisation were on

plasmids and shared by some, but not all, strains in the population.

5.2 Directions for future study

In general, this study exploited computational approaches to the raw data
obtained from laboratory studies, such as sequencing data in Chapter 2,
phylogenetic profiles of genes in Chapter 3, and substrate utilisation profiles
in Chapter 4, all of which data were obtained from multiple strains of bacteria.
Comparative genomic study here illustrates some of the insights that can be
gained by integrating comparatively simple data across multiple individuals,
rather than by studying single individuals in detail. Clanistics as a tool to
explore gene distribution (Chapter 2) can be beneficial for studying the
distribution of genes in the population by using a user-defined category that
varies with the research question, such as pathogenicity (Beauregard-Racine
etal, 2011, Xu et al, 2014) or life style of organism (Schliep et al.,, 2011). This
could be extended to other user-defined categories in order to answer
evolutionary questions. Correlational computation and network analysis of
gene occurrence would be useful for viewing gene organisation at the genome
level. Some subnetworks were validated with the experimental results or
available literature, but many other subnetworks were identified for which
there is not yet supporting evidence from either the laboratory or literature.
To extend this study, laboratory-based experiments could be conducted to
extend the interpretation of the network. Rather than using phylogenetic
profiles of genes to study variation of gene content, as in the bacteria
presented in this study, or functional annotation (Huynen et al, 2000, Kim et
al, 2011), the principle of the method can apply to other data in a comparable

format with different research questions. The presence/absence of bacteria
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has been used to explore the relationship of bacteria and their habitat
(Barberan et al,, 2012, Faust et al., 2012). Phylogenetic profiles of mutant and
non mutant genes were informative for drug discovery (Cui, 2010). In Chapter
4, the analysis on integrated data (phylogenetic profiles of gene and substrate
utilisation profile) allows us to comprehend genes involved in substrate
utilisation. Although some candidate genes identified by the class association
rule method were supported by literature and their annotated function, there
remained genes without supporting evidence. To validate these candidate
genes, laboratory studies could be done. Apart from correlating the
distribution of gene and substrate utilisation in the population, this approach
can apply to the other analysis of phenotype-genotype relationships with
analogous data. Published examples include genes across multiple microbial
species and profiles of intracellular pathogenicity phenotype obtained from
the NCBI database (Slonim et al, 2006) or COG database (Goh et al, 2006,
Tamura et al,, 2008), and genes associated with disease (Li et al, 2014), for
which phenotype-genotype data were generated from PubMed, containing
information of symptom and disease, disease gene association databases
(PharmCKB, OMIM, and CTD), and protein databases (genotype data) (MINT,
DIP, HPRD, and IntAct).

As we are witnessing an incredible increment of massive genomic data, the
systematic computation used in this study will hopefully be increasingly useful

for comparative genomic studies.
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Table LI The 305 core genes held by pRL8, pRL9, pRL10, pRL11, pRL12 and chromosome
(Harrison et al, 2010). Locus tag, gene symbol, protein accession, replicon, and HGT index are
mentioned in Chapter 2.

Locus tag Gene symbol Protein accession Replicon HGT index
pRL080044 acsA YP_770942.1 pRL8 3
pRL090212 - YP_765499.1 pRL9 2
pRL100453 - YP_770729.1 pRL10 3
pRL110033 - YP_771066.1 pRL11 0
pRL110442 thiE YP_771476.1 pRL11 2
pRL120279 prC YP_764789.1 pRL12 2
pRL120359 panC YP_764869.1 pRL12 3
pRL120360 panB YP_764870.1 pRL12 1
pRL120416 dadX YP_764923.1 pRL12 2
pRL120642 groEL YP_765148.1 pRL12 0
pRL120643 groS YP_765149.1 pRL12 0
RL0O003 aroE YP_765607.1 Chromosome 0
RL0O004 coaE YP_765608.1 Chromosome 0
RL0O012 gyrB YP_765616.1 Chromosome 0
RL0021 trpB YP_765625.1 Chromosome 3
RL0022 trpA YP_765626.1 Chromosome 1
RL0024 folC YP_765628.1 Chromosome 3
RL0025 - YP_765629.1 Chromosome 5
RL0029 - YP_765633.1 Chromosome 0
RL0042 hisF YP_765646.1 Chromosome 0
RL0043 hisA YP_765647.1 Chromosome 0
RL0046 hisH YP_765650.1 Chromosome 0
RL0048 hisB YP_765652.1 Chromosome 2
RL0O106 rpsA YP_765710.1 Chromosome 1
RL0108 aroA YP_765712.1 Chromosome 2
RL0O120 pnp YP_765724.1 Chromosome 1
RL0O123 truB YP_765727.1 Chromosome 2
RL0125 infB YP_765729.1 Chromosome 2
RL0O127 nusA YP_765731.1 Chromosome 1
RLO131A recR YP_765736.1 Chromosome 2
RL0O134 dnaX YP_765739.1 Chromosome 0
RL0139 - YP_765744.1 Chromosome 0
RLO151 dnaj YP_765756.1 Chromosome 0
RLO152 dnak YP_765757.1 Chromosome 1
RL0O160 polA YP_765765.1 Chromosome 1
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Locus tag Gene symbol Protein accession Replicon HGT index
RLO161 - YP_765766.1 Chromosome 0
RLO181 - YP_765786.1 Chromosome 1
RLO254 lepA YP_765860.1 Chromosome 2
RLO268 rplT YP_765874.1 Chromosome 2
RL0269 pheS YP_765875.1 Chromosome 1
RLO270 pheT YP_765876.1 Chromosome 0
RL0282 xseA YP_765888.1 Chromosome 1
RLO315 guaA YP_765921.1 Chromosome 1
RLO326 - YP_765932.1 Chromosome 2
RL0328 - YP_765934.1 Chromosome 2
RLO334 dnaN YP_765940.1 Chromosome 0
RLO335 - YP_765941.1 Chromosome 1
RLO357 coaBC YP_765964.1 Chromosome 3
RLO371 ubiE YP_765978.1 Chromosome 1
RLO375 dnaA YP_765982.1 Chromosome 1
RLO377 hemN YP_765984.1 Chromosome 0
RLO378 - YP_765985.1 Chromosome 1
RL0382 - YP_765989.1 Chromosome 0
RL0388 trmB YP_765995.1 Chromosome 0
RL0389 metK YP_765996.1 Chromosome 1
RL0393 - YP_766000.1 Chromosome 0
RL0394 phoH YP_766001.1 Chromosome 0
RLO395 miaB YP_766002.1 Chromosome 0
RLO404 mviN YP_766011.1 Chromosome 0
RL0406 mutS YP_766013.1 Chromosome 0
RLO421 - YP_766028.1 Chromosome 0
RL0433 fimt YP_766040.1 Chromosome 0
RL0445 argB YP_766052.1 Chromosome 0
RLO504 pgi YP_766113.1 Chromosome 1
RLO550 argF YP_766160.1 Chromosome 3
RLO572 - YP_766181.1 Chromosome 0
RLO611 murA YP_766221.1 Chromosome 3
RLO613 hisD YP_766223.1 Chromosome 2
RLO616 infA YP_766226.1 Chromosome 2
RL0680 - YP_766290.1 Chromosome 0
RLO743 - YP_766353.1 Chromosome 0
RLO847 guaB YP_766458.1 Chromosome 0
RLO877 hisS YP_766489.1 Chromosome 0
RL08S3 groEL YP_766495.1 Chromosome 1
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Locus tag Gene symbol Protein accession Replicon HGT index
RL0884 groES YP_766496.1 Chromosome 4
RL08S6 ribF YP_766498.1 Chromosome 1
RL0889 ileS YP_766501.1 Chromosome 2
RLO891 - YP_766503.1 Chromosome 4
RL0892 - YP_766504.1 Chromosome 2
RL0910 mutL YP_766522.1 Chromosome 0
RL0920 - YP_766532.1 Chromosome 0
RL0930 rnhB YP_766542.1 Chromosome 0
RL0937 ispB YP_766549.1 Chromosome 1
RL0945 aroA YP_766557.1 Chromosome 1
RL0947 purD YP_766559.1 Chromosome 0
RL0956 ubiA YP_766568.1 Chromosome 0
RL0960 - YP_766572.1 Chromosome 0
RL0969 rumA YP_766581.1 Chromosome 3
RL0973 dxs YP_766585.1 Chromosome 2
RL1007 aroC YP_766618.1 Chromosome 2
RL1014 pdxH YP_766625.1 Chromosome 1
RL1030 ispH YP_766641.1 Chromosome 0
RL1078 mutY YP_766689.1 Chromosome 4
RL1262 - YP_766867.1 Chromosome 1
RL1370 msrB YP_766976.1 Chromosome 0
RL1412 groEL YP_767017.1 Chromosome 0
RL1503 smpB YP_767107.1 Chromosome 3
RL1510 sipS YP_767114.1 Chromosome 1
RL1543 cysS YP_767147.1 Chromosome 2
RL1546 purF YP_767150.1 Chromosome 2
RL1548 radA YP_767152.1 Chromosome 0
RL1550 - YP_767154.1 Chromosome 0
RL1551 dnaC YP_767155.1 Chromosome 4
RL1552 rpll YP_767156.1 Chromosome 2
RL1554 rpsR YP_767158.1 Chromosome 2
RL1558 fabG YP_767162.1 Chromosome 1
RL1564 ksgA YP_767168.1 Chromosome 0
RL1580 ndk YP_767184.1 Chromosome 3
RL1595 purN YP_767199.1 Chromosome 2
RL1596 purM YP_767200.1 Chromosome 2
RL1605 aspS YP_767209.1 Chromosome 1
RL1616 hemB YP_767220.1 Chromosome 1
RL1620 glyA YP_767224.1 Chromosome 2
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Locus tag Gene symbol Protein accession Replicon HGT index
RL1621 ribD YP_767225.1 Chromosome 2
RL1632 ribH YP_767236.1 Chromosome 1
RL1668 argC YP_767272.1 Chromosome 1
RL1672 rpsl YP_767276.1 Chromosome 2
RL1673 rpIM YP_767277.1 Chromosome 4
RL1688 clpP YP_767292.1 Chromosome 1
RL1723 dnaE YP_767327.1 Chromosome 2
RL1735 topA YP_767339.1 Chromosome 0
RL1736 smf YP_767340.1 Chromosome 0
RL1737 - YP_767341.1 Chromosome 0
RL1739 pyrB YP_767343.1 Chromosome 0
RL1760 nusG YP_767364.1 Chromosome 0
RL1761 rplK YP_767365.1 Chromosome 5
RL1762 rplA YP_767366.1 Chromosome 2
RL1764 rplJ YP_767368.1 Chromosome 2
RL1765 rplL YP_767369.1 Chromosome 2
RL1767 rpoC YP_767371.1 Chromosome 2
RL1770 rpsG YP_767374.1 Chromosome 1
RL1771 fus YP_767375.1 Chromosome 0
RL1774 rplC YP_767378.1 Chromosome 3
RL1775 rplD YP_767379.1 Chromosome 1
RL1776 rplW YP_767380.1 Chromosome 3
RL1777 rplB YP_767381.1 Chromosome 1
RL1778 rpsS YP_767382.1 Chromosome 2
RL1779 rplvV YP_767383.1 Chromosome 3
RL1780 rpsC YP_767384.1 Chromosome 1
RL1781 rplP YP_767385.1 Chromosome 5
RL1783 rpsQ YP_767387.1 Chromosome 1
RL1784 rpIN YP_767388.1 Chromosome 3
RL1785 rplX YP_767389.1 Chromosome 3
RL1786 rplE YP_767390.1 Chromosome 2
RL1788 rpsH YP_767392.1 Chromosome 3
RL1789 rplF YP_767393.1 Chromosome 3
RL1790 rpIR YP_767394.1 Chromosome 3
RL1791 rpsE YP_767395.1 Chromosome 2
RL1793 rplO YP_767397.1 Chromosome 1
RL1794 secY YP_767398.1 Chromosome 1
RL1795 adk YP_767399.1 Chromosome 1
RL1797 rpsK YP_767401.1 Chromosome 1
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Locus tag Gene symbol Protein accession Replicon HGT index
RL1798 rpoA YP_767402.1 Chromosome 0
RL1799 rplQ YP_767403.1 Chromosome 2
RL1803 ilvD YP_767407.1 Chromosome 1
RL2035 valS YP_767633.1 Chromosome 1
RL2041 argS YP_767639.1 Chromosome 0
RL2043 nagZ YP_767641.1 Chromosome 1
RL2048 tatC YP_767646.1 Chromosome 0
RL2049 serS YP_767647.1 Chromosome 1
RL2050 surE YP_767648.1 Chromosome 1
RL2055 secD YP_767653.1 Chromosome 0
RL2069 map YP_767667.1 Chromosome 2
RL2099 rec/ YP_767697.1 Chromosome 0
RL2221 rpsB YP_767815.1 Chromosome 0
RL2222 tsf YP_767816.1 Chromosome 0
RL2223 pyrH YP_767817.1 Chromosome 0
RL2224 frr YP_767818.1 Chromosome 0
RL2225 uppS YP_767819.1 Chromosome 2
RL2227 ecfE YP_767821.1 Chromosome 1
RL2238 kdsA YP_767832.1 Chromosome 0
RL2239 eno YP_767833.1 Chromosome 1
RL2249 - YP_767843.1 Chromosome 3
RL2254 ispDF YP_767848.1 Chromosome 1
RL2255 dus YP_767849.1 Chromosome 3
RL2288 cysG2 YP_767882.1 Chromosome 3
RL2381 glmU YP_767971.1 Chromosome 2
RL2382 glms YP_767972.1 Chromosome 2
RL2384 recG YP_767974.1 Chromosome 2
RL2386 mfd YP_767976.1 Chromosome 2
RL2392 glnA YP_767982.1 Chromosome 1
RL2393 glnB YP_767983.1 Chromosome 0
RL2398 uvrA YP_767988.1 Chromosome 3
RL2399 ssb YP_767989.1 Chromosome 3
RL2401 gyrd YP_767991.1 Chromosome 1
RL2403 coaD YP_767993.1 Chromosome 2
RL2406 queA YP_767996.1 Chromosome 1
RL2407 tgt YP_767997.1 Chromosome 1
RL2442 ilvl YP_768032.1 Chromosome 1
RL2472 - YP_768057.1 Chromosome 1
RL2473 metG YP_768058.1 Chromosome 1
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Locus tag Gene symbol Protein accession Replicon HGT index
RL2476 tmk YP_768061.1 Chromosome 2
RL2493 trpD YP_768077.1 Chromosome 4
RL2494 trpC YP_768078.1 Chromosome 3
RL2511 pyrG YP_768095.1 Chromosome 0
RL2528 thrS YP_768112.1 Chromosome 0
RL2532 hisl YP_768116.1 Chromosome 0
RL2555 lipB YP_768139.1 Chromosome 0
RL2588 tyrS YP_768172.1 Chromosome 0
RL2598 rpe YP_768182.1 Chromosome 0
RL2612 purL YP_768196.1 Chromosome 0
RL2624 rpsD YP_768208.1 Chromosome 2
RL2627 murl YP_768211.1 Chromosome 2
RL2636 alaS YP_768220.1 Chromosome 0
RL2637 recA YP_768221.1 Chromosome 0
RL2648 - YP_768232.1 Chromosome 1
RL2650 folC YP_768234.1 Chromosome 0
RL2691 - YP_768276.1 Chromosome 1
RL2798 leuS YP_768383.1 Chromosome 2
RL2801 ddl YP_768386.1 Chromosome 1
RL2824 cobA YP_768409.1 Chromosome 3
RL2957 uvrB YP_768542.1 Chromosome 2
RL2987 argG YP_768571.1 Chromosome 2
RL2990 ubiA YP_768573.1 Chromosome 2
RL3013 tyrS YP_768596.1 Chromosome 1
RL3071 ftsZ YP_768653.1 Chromosome 3
RL3170 - YP_768750.1 Chromosome 2
RL3205 ilvC YP_768785.1 Chromosome 3
RL3244 ilvH YP_768824.1 Chromosome 1
RL3245 ilvl YP_768825.1 Chromosome 0
RL3249 miaA YP_768830.1 Chromosome 1
RL3276 pcrA YP_768857.1 Chromosome 0
RL3293 ligA YP_768872.1 Chromosome 0
RL3295 recN YP_768874.1 Chromosome 1
RL3298 ftsZ YP_768877.1 Chromosome 1
RL3301 ddl YP_768880.1 Chromosome 2
RL3306 murC YP_768885.1 Chromosome 0
RL3307 murG YP_768886.1 Chromosome 1
RL3309 murD YP_768888.1 Chromosome 1
RL3310 mraY YP_768889.1 Chromosome 0
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Locus tag Gene symbol Protein accession Replicon HGT index
RL3311 murF YP_768890.1 Chromosome 0
RL3312 murE YP_768891.1 Chromosome 0
RL3313 - YP_768892.1 Chromosome 0
RL3315 mraW YP_768894.1 Chromosome 0
RL3402 rpoD YP_768982.1 Chromosome 1
RL3408 dnaG YP_768988.1 Chromosome 2
RL3411 carA YP_768991.1 Chromosome 3
RL3419 carB YP_768999.1 Chromosome 3
RL3460 proC YP_769040.1 Chromosome 1
RL3465 - YP_769045.1 Chromosome 0
RL3468 prs YP_769048.1 Chromosome 0
RL3471 - YP_769051.1 Chromosome 0
RL3474 pth YP_769054.1 Chromosome 1
RL3479 ychF YP_769059.1 Chromosome 0
RL3521 trpE YP_769101.1 Chromosome 0
RL3553 engA YP_769133.1 Chromosome 1
RL3765 rLuD YP_769344.1 Chromosome 2
RL3768 purd YP_769347.1 Chromosome 2
RL3957 mnmA YP_769535.1 Chromosome 0
RL3965 ftsH YP_769543.1 Chromosome 1
RL3983 - YP_769560.1 Chromosome 1
RL3986 ruvC YP_769563.1 Chromosome 2
RL3989 ruvA YP_769566.1 Chromosome 1
RL3990 ruvB YP_769567.1 Chromosome 0
RL4006 cbbT YP_769583.1 Chromosome 0
RL4007 gap YP_769584.1 Chromosome 1
RL4017 rpmE YP_769594.1 Chromosome 0
RL4044 purE YP_769621.1 Chromosome 0
RL4060 pykA YP_769637.1 Chromosome 1
RL4085 gltA YP_769660.1 Chromosome 1
RL4184 gltx YP_769759.1 Chromosome 1
RL4203 talB YP_769778.1 Chromosome 0
RL4207 - YP_769782.1 Chromosome 1
RL4265 msrB YP_769840.1 Chromosome 0
RL4279 clpB YP_769854.1 Chromosome 0
RL4281 hemK YP_769856.1 Chromosome 1
RL4282 prfA YP_769857.1 Chromosome 0
RL4298 secA YP_769872.1 Chromosome 1
RL4323 argH YP_769896.1 Chromosome 2
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Locus tag Gene symbol Protein accession Replicon HGT index
RL4325 lysA YP_769898.1 Chromosome 1
RL4352 aroB YP_769923.1 Chromosome 1
RL4353 aroK YP_769924.1 Chromosome 0
RL4412 priA YP_769982.1 Chromosome 3
RL4436 sucD YP_770006.1 Chromosome 2
RL4438 sucC YP_770008.1 Chromosome 2
RL4493 gpsA YP_770060.1 Chromosome 4
RL4494 gcp YP_770061.1 Chromosome 2
RL4495 hem(C YP_770062.1 Chromosome 2
RL4506 typA YP_770073.1 Chromosome 2
RL4507 dcp YP_770074.1 Chromosome 0
RL4515 argG YP_770080.1 Chromosome 3
RL4522 - YP_770087.1 Chromosome 2
RL4550 rimM YP_770115.1 Chromosome 1
RL4551 trmD YP_770116.1 Chromosome 0
RL4552 rplS YP_770117.1 Chromosome 2
RL4555 - YP_770120.1 Chromosome 0
RL4563 - YP_770128.1 Chromosome 1
RL4565 glnB YP_770130.1 Chromosome 1
RL4630 ispG YP_770194.1 Chromosome 0
RL4677 rpmA YP_770239.1 Chromosome 4
RL4681 obgE YP_770243.1 Chromosome 2
RL4682 proB YP_770244.1 Chromosome 1
RL4683 proA YP_770245.1 Chromosome 0
RL4689 - YP_770251.1 Chromosome 1
RL4692 ctpA YP_770254.1 Chromosome 1
RL4705 leuD YP_770267.1 Chromosome 1
RL4707 leuB YP_770269.1 Chromosome 1
RL4722 purH YP_770284.1 Chromosome 2
RL4727 acs YP_770289.1 Chromosome 4
RL4731 - YP_770293.1 Chromosome 0
RL4732 leuS YP_770294.1 Chromosome 0
RL4735 parB YP_770297.1 Chromosome 1
RL4736 parA YP_770298.1 Chromosome 0
RL4738 gidA YP_770300.1 Chromosome 0
RL4739 trmE YP_770301.1 Chromosome 1
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Table ILI The genospecies B specific islands in pRL9 and pRL12. Locus tags and other

informations of 29 genes of pRL9 and pRL12 held by all 12 members of genospecies B.

Locustag | Gene name Protein accession Annotated function
pRL90041 groEL YP_765335.1 Chaperonin GroEL (HSP60 family)
pRL90043 - YP_765336.1 Multidrug resistance efflux pump
ABC-type multidrug transport system,
pRL90045 - YP_765338.1 permease component
DNA-binding transcriptional regulator,
pRL90119 - YP_765411.1 LysR family
Uncharacterized conserved protein YurZ,
alkylhydroperoxidase/carboxymuconola
pRL90120 - YP_765412.1 ctone decarboxylase family
pRL90121 - YP_765413.1 Predicted ATPase
DNA-binding transcriptional regulator,
pRL90122 - YP_765414.1 Lacl/PurR family
ABC-type sugar transport system,
pRL90124 - YP_765416.1 permease component
ABC-type glycerol-3-phosphate transport
pRL90125 - YP_765417.1 system, permease component
ABC-type glycerol-3-phosphate transport
pRL90126 - YP_765418.1 system, periplasmic component
Glycine cleavage system T protein
pRL90255 - YP_765541.1 (aminomethyltransferase)
5,10-methylenetetrahydrofolate
pRL90256 - YP_765542.1 reductase
DNA-binding transcriptional regulator,
pRL90257 - YP_765543.1 GntR family
Branched-chain amino acid ABC-type
pRL90259 - YP_765545.1 transport system, permease component
pRL120118 - YP_764633.1 Predicted oxidoreductase
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120119 - YP_764634.1 family
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120120 - YP_764635.1 family
Dihydroorotase or related cyclic
pRL120121 - YP_764636.1 amidohydrolase
Peptidoglycan/xylan/chitin deacetylase,
pRL120123 - YP_764638.1 PgdA/CDA1 family
Nucleoside-diphosphate-sugar
pRL120124 - YP_764639.1 epimerase
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL120125 - YP_764640.1 family
Dihydroorotase or related cyclic
pRL120126 - YP_764641.1 amidohydrolase
pRL120127 - YP_764642.1 -
ABC-type dipeptide/oligopeptide /nickel
pRL120128 - YP_764643.1 transport system, ATPase component
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Locustag | Gene name Protein accession Annotated function
ABC-type dipeptide/oligopeptide /nickel
pRL120129 - YP_764644.1 transport system, permease component
ABC-type dipeptide/oligopeptide /nickel
pRL120130 - YP_764645.1 transport system, permease component
Transcriptional regulator GIxXA family,
contains an amidase domain and an
pRL120132 - YP_764647.1 AraC-type DNA-binding HTH domain
Predicted nucleic acid-binding protein,
pRL120133 stbB YP_764648.1 contains PIN domain
pRL120134 stbC YP_764649.1 Plasmid stability protein
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Table ILII Candidate specific islands of genospecies B in pRL7, pRL9, pRL10, pRL11 and
pRL12. Locus tags and other informations of 50 genes of pRL7, pRL9, pRL10, pRL11 and
pRL12 held by genospecies B.

Locustag | Gene name Protein accession Annotated function
Plasmid stabilization system protein

pRL70123 - YP_770853.1 ParE

pRL70124 - YP_770854.1 -

PRL90157 - YP_765446.1 -

Cupin domain protein related to
pRL90188 - YP_765475.1 quercetin dioxygenase
pRL90189 - YP_765476.1 Predicted dehydrogenase

ABC-type glycerol-3-phosphate transport
pRL90190 - YP_765477.1 system, permease component
ABC-type glycerol-3-phosphate transport
pRL90192 - YP_765479.1 system, periplasmic component
ABC-type transport system, periplasmic
pRL90231 - YP_765518.1 component
pRL90232 - YP_765519.1 Arylsulfatase A or related enzyme
Tryptophan-rich sensory protein
(mitochondrial benzodiazepine receptor
pRL90314 - YP_765596.1 homolog)
pRL90315 - YP_765597.1 Predicted ATPase
Predicted enzyme related to
pRL90317 - YP_765599.1 lactoylglutathione lyase
Organic hydroperoxide reductase
pRL90318 ohr YP_765600.1 OsmC/OhrA
Uncharacterized protein, contains PIN
pRL100005 - YP_770307.1 domain
pRL100006 - YP_770308.1 Uncharacterized protein
Site-specific DNA recombinase related to
pRL100139 - YP_770421.1 the DNA invertase Pin
PRL100316 - YP_770592.1 -
PRL100468 - YP_770743.1 -
pRL110057 - YP_771090.1 3
NAD(P)-dependent dehydrogenase,
short-chain alcohol dehydrogenase
pRL110132 - YP_771166.1 family
pRL110133 - YP_771167.1 Predicted ATPase
NADPH:quinone reductase or related Zn-
pRL110134 - YP_771168.1 dependent oxidoreductase
Phenylpyruvate tautomerase PptaA, 4-
pRL110135 - YP_771169.1 oxalocrotonate tautomerase family
Glyoxylase or a related metal-dependent
pRL110137 - YP 771171.1 hydrolase, beta-lactamase superfamily II
pRL110139 - YP_771173.1 Predicted dehydrogenase
PRL110189 - YP_771223.1 -
PRL110198 - YP_771232.1 -
PRL110199 - YP_771233.1 -
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Locustag | Gene name Protein accession Annotated function
pRL110301 - YP_771334.1 -
pRL110302 - YP_771335.1 -
pRL110338 - YP_771370.1 -
pRL110494 - YP_771528.1 -
pRL110497 - YP_771531.1 -
pRL110585 - YP_771619.1 -
pRL110607 - YP_771641.1 Transposase
pRL120075 stbC YP_764592.1 Plasmid stability protein
Predicted nucleic acid-binding protein,
pRL120076 stbB YP_764593.1 contains PIN domain
pRL120086 - YP_764603.1 Phage shock protein A
pRL120089 - YP_764609.1 -
pRL120092 - YP_764620.1 Glutathionylspermidine synthase
pRL120103 - YP_764592.1 -
DNA-binding transcriptional regulator,
pRL120168 - YP_764680.1 LysR family
DNA-binding transcriptional regulator,
MurR/RpiR family, contains HTH and SIS
pRL120428 - YP_764935.1 domains
pRL120429 - YP_764936.1 Asp/Glu/hydantoin racemase
ABC-type dipeptide/oligopeptide /nickel
pRL120430 - YP_764937.1 transport system, ATPase component
ABC-type dipeptide/oligopeptide /nickel
pRL120433 - YP_764940.1 transport system, permease component
ABC-type transport system, periplasmic
pRL120434 - YP_764941.1 component
TRAP-type mannitol/chloroaromatic
compound transport system, large
pRL120498 - YP_765003.1 permease component
TRAP-type mannitol/chloroaromatic
compound transport system, small
pRL120499 - YP_765004.1 permease component
TRAP-type mannitol/chloroaromatic
compound transport system, periplasmic
pRL120500 - YP_765005.1 component
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Table ILIII pRL12 genes absent in genospecies C. Locus tags and other informations of 9

genes of pRL12 absent in members of genospecies C.

Locus tag | Protein accession Annotated function
ABC-type sugar transport system, periplasmic component,
pRL120756 YP_765259.1 contains N-terminal xre family HTH domain
pRL120757 YP_765260.1 ABC-type sugar transport system, ATPase component
Ribose/xylose/arabinose/galactoside ABC-type transport
pRL120758 YP_765261.1 system, permease component
pRL120759 YP_765262.1 DNA-binding transcriptional regulator LsrR, DeoR family
Predicted oxidoreductase (related to aryl-alcohol
pRL120760 YP_765263.1 dehydrogenase)
pRL120761 YP_765264.1 Glycerol-3-phosphate dehydrogenase
pRL120762 YP_765265.1 Fructose-bisphosphate aldolase class Ia, DhnA family
pRL120763 YP_765266.1 Sugar (pentulose or hexulose) kinase
pRL120764 YP_765267.1 Choline dehydrogenase or related flavoprotein
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Table IILI Carbon substrates in Biolog GN2 microplate and classified by the utilisation of
RIv3841. Substrates used in this study is in bold (" polymers, B sugars/sugar derivatives,

carboxylic/dicarboxylic acid, amino acid/amino acid derivative and B miscellaneous

intermediates of metabolism).

Carbon substrates

Cis-Aconitic Acid

p-Hydroxy Phenylacetic Acid
Itaconic Acid

L-Alanyl-glycine
L-Asparagine
L-Aspartic Acid
L-Glutamic Acid
Glycyl-L-AsparticAcid
Glycyl-L-Glutamic Acid

L-Threonine
D,L-Carnitine
y-Amino Butyric Acid

Glucose-6-Phosphate

Glycogen
a-Cyclodextrin
Tween 40
Tween 80

a-D-Glucose
a-D-Lactose

Citric Acid Maltose
Formic Acid D-Mannitol
D-Galacturonic Acid D-Mannose
D-Glucuronic Acid B-Methyl-D-Glucoside
a-Hydroxy Butyric Acid D-Psicose

D-Raffinose
L-Rhamnose

a-Keto Butyric Acid D-Sorbitol
a-Keto Valeric Acid Sucrose
Propionic Acid D-Trehalose
Quinic Acid Turanose
D-Saccharic Acid Xylitol
Sebacic Acid

D-Galactonic Acid Lactone
D-Gluconic Acid
D-Glucosaminic Acid
-Hydroxy Butyric Acid
v-Hydroxy Butyric Acid
a-Keto Glutaric Acid
D,L-Lactic Acid

Hydroxy-L-Proline Succinic Acid
L-Leucine
L-Ornithine D-Alanine
L-Phenylalanine L-Alanine
D-Serine L-Histidine

L-Pyroglutamic Acid
L-Serine

Urocanic Acid

2,3-Butanediol Inosine
Phenyethylamine Thymidine
Putrescine Uridine
2-Aminoethanol L-Alaninamide
Glucuronamide Methyl Pyruvate
Glucose-1-Phosphate Mono-Methyl-Succinate
D,L-a-glycerol Phosphate Glycerol

Bromo Succinic Acid
Succinamic Acid

Dextrin

Not Used Used Used Partially
N-Acetyl-D-Galactosamine Adonitol Malonic Acid
N-Acetyl-D-Glucosamine L-Arabinose Acetic Acid

D-Galactose D-Arabitol
Gentiobiose D-cellobiose L-Proline
m-Inositol i-Erythritol

Lactulose D-Fructose
D-Melibiose L-Fucose
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Table IILII List of genes whose presence is significantly related to y-Hydroxybutyric acid

utilisation by wusing class association rule. Bold Locus tags were annotated as y-

Hydroxybutyric-acid-related genes.

Locus tag Gene symbol | Protein accession Annotated function
pRL70053 - YP_770796.1 transmembrane protein
pRL70068 - YP_770805.1 transposase-like protein
pRL70102 - YP_770836.1 hypothetical protein
pRL70176 - YP_770893.1 transposase-related protein
pRLB0096 - YP_770989.1 1S30 family transposase

1-aminocyclopropane-1-carboxylate
pRL100087 acdS YP_770380.1 deaminase
pRL100093 - YP_770383.1 hypothetical protein
pRL100103 - YP_770388.1 alcohol dehydrogenase
pRL100104 - YP_770389.1 hypothetical protein
polyhydroxyalkanoate synthase
pRL100105 - YP_770390.1 subunit C
pRL100106 - YP_770391.1 hypothetical protein
pRL100107 - YP_770392.1 hypothetical protein
pRL100119 - YP_770400.1 propionate CoA-transferase
pRL100120 - YP_770401.1 hypothetical protein
pRL100121 acsA YP_770402.1 acetyl-coenzyme A synthetase
pRL100124 - YP_770405.1 transposase family protein
IcIR family transcriptional regulatory
pRL100133 - YP_770415.1 protein
succinate-semialdehyde
pRL100134 gabD YP_770416.1 dehydrogenase
pRL100135 - YP_770417.1 1,3-propanediol dehydrogenase
pRL100136 - YP_770418.1 beta lactamase/homoserine lactonase
pRL100137 metX YP_770419.1 homoserine O-acetyltransferase
pRL100138 - YP_770420.1 MerR family transcriptional regulator
pRL100163 - YP_770442.1 hypothetical protein
pRL100170 rhiB YP_770449.1 rhizosphere induced protein RhiB
pRL100171 rhiC YP_770450.1 hypothetical protein
pRL100172 rhiR YP_770451.1 transcriptional regulator
pRL100198 fixC YP_770476.1 nitrogen fixation FixC protein
pRL100201 - YP_770479.1 hypothetical protein
pRL100202 - YP_770480.1 hypothetical protein
pRL110291 - YP_771324.1 hypothetical protein
putative formate hydrogenlyase
pRL110292 hycG YP_771325.1 subunit 7
putative formate hydrogenlyase
pRL110293 hycE YP_771326.1 subunit 5
pRL110294 hyfF YP_771327.1 hydrogenase 4 subunit F
pRL110295 hyfE YP_771328.1 putative hydrogenase-4 component E
pRL110296 hycD YP_771329.1 putative hydrogenase protein
pRL110297 hyfB YP_771330.1 hydrogenase 4 subunit B
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Locus tag Gene symbol | Protein accession Annotated function

indolepyruvate ferredoxin
pRL120179 - YP_764691.1 oxidoreductase
pRL120180 - YP_764692.1 oxidoreductase
pRL120181 - YP_764693.1 GntR family transcriptional regulator
pRL120182 - YP_764694.1 alcohol dehydrogenase

ABC transporter substrate-binding
pRL120333 - YP_764843.1 protein
pRL120334 - YP_764844.1 hydrolase
pRL120335 - YP_764845.1 acylase
pRL120339 - YP_764849.1 ABC transporter ATP-binding protein
pRL120347 - YP_764857.1 LysR family transcriptional regulator
pRL120450 cpO YP_764956.1 chloroperoxidase
pRL120453 - YP_764959.1 transcriptional regulator
pRL120456 - YP_764962.1 dioxygenase
pRL120457 - YP_764963.1 LysR family transcriptional regulator
pRL120459 - YP_764965.1 hypothetical protein
pRL120528 - YP_765033.1 dihydrodipicolinate synthase
pRL120529 - YP_765034.1 aldehyde dehydrogenase
pRL120530 - YP_765035.1 dehydrogenase/oxidoreductase
ABC transporter substrate-binding

pRL120531 - YP_765036.1 protein
pRL120532 - YP_765037.1 ABC transporter ATP-binding protein
pRL120533 - YP_765038.1 ABC transporter permease
pRL120534 - YP_765039.1 ABC transporter permease
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utilisation by using class association rule.

Table IILIII List of genes whose presence is significantly related to D-Galactonic acid lactone

Locus tag Protein accession Annotated function
pRL070013 YP_770758.1 hypothetical protein
pRL090039 YP_765334.1 hypothetical protein
pRL090116 YP_765408.1 putative ribitol 2-dehydrogenase
pRL090117 YP_765409.1 putative D-ribulokinase/ribitol kinase
pRL090280 YP_765566.1 hypothetical protein
pRL090281 YP_765567.1 hypothetical protein
pRL100173 YP_770452.1 outer-membrane immunogenic protein
pRL100255 YP_770534.1 hypothetical protein

transmembrane polysaccharide synthesis
pRL100311 YP_770586.1 protein
pRL100312 YP_770587.1 hydrolase
pRL100313 YP_770588.1 hypothetical protein
pRL100313A YP_770589.1 hypothetical protein
pRL100314 YP_770590.1 hypothetical protein
pRL100314A YP_770591.1 hypothetical protein
pRL110045 YP_771078.1 hypothetical protein
pRL110105 YP_771137.1 LysR family transcriptional regulator
pRL110521 YP_771555.1 hypothetical protein
pRL110525 YP_771559.1 hypothetical protein
pRL120010 YP_764527.1 hypothetical protein
pRL120011 YP_764528.1 substrate-binding periplasmic protein precursor
pRL120012 YP_764529.1 ABC transporter permease
pRL120013 YP_764530.1 ABC transporter permease
pRL120015 YP_764532.1 glycerophosphoryl diester phosphodiesterase
pRL120016 YP_764533.1 DeoR family transcriptional regulator
pRL120017 YP_764534.1 hydrolase
pRL120084 YP_764601.1 hypothetical protein
pRL120085 YP_764602.1 hypothetical protein
pRL120721 YP_765224.1 hypothetical protein
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Figure IILI Z-score profiles of genes involving in the utilisation of a-keto glutaric acid.
Three independent iterations of the gene selection algorithm are illustrated. Vertical axis
represents Z-score. Columns represent genes coloured by the confirmation of their
involvement in the three iterations (Ml genes confirmed as relevant genes by 3 iterations
and M genes confirmed relevant genes by 1-2 iterations). Each plot was coloured by Z-score
by comparing to the maximum Z-score among shadow attributes (MZSA) (M identified as
genes involved in the substrate utilisation, M identified as tentative genes involved in the
substrate utilisation, and B Z-score of shadow attributes). In box-and-whisker plot, the
horizontal center of each box represents median, boxes represent 25t to 75t percentiles,

and whiskers represent 10t and 90t percentiles. Dots are located out of the box represent

outliers.
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Table IILIV Contingency table of candidate genes of the utilisation of a-keto glutaric acid

identified by random forest.

pRL120084
Present Absent
Utilising 9 43
Not utilising 11 9
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Figure IILII Z-score profiles of genes involving in the utilisation of D-glucosaminic

acid. See legend to Figure IILI for details.

Table IIL.V Contingency table of candidate genes of the utilisation of D-glucosaminic acid

identified by random forest.

pRL120084
Present Absent
Utilising 3 48
Not utilising 8 13
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Figure IILIII Z-score profiles of genes involving in the utilisation of D-raffinose. See

legend to Figure IILI for details.

Table III.VI Contingency table of candidate genes of the utilisation of D-raffinose identified by

random forest.

pRL90235
Present Absent
Utilising 24 39
Not utilising 8 1
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Figure IILIV Z-score profiles of genes involving in the utilisation of succinic acid. See

legend to Figure IILI for details.

Table IIL.VII Contingency table of candidate genes of the utilisation of Succinic Acid identified

by random forest.

RL1272
Present Absent
Utilising 71 0
Not utilising 0 1
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Figure IIL.V Z-score profiles of genes involving in the utilisation of Thymidine. See

legend to Figure IILI for details.

Table IILVIII Contingency table of candidate genes of the utilisation of Thymidine identified

by random forest.

pRL110022
Present Absent
Utilising 56 10
Not utilising 2 4

183



[ urmopeus

f xenmopeus

b soezm

b sevozind

f eecozind

f eccozind

Loz0ziad

b ssvoo1d

I ovvooid

f sov00id

- eso00iad

- eLo00iud

b eziormd

04

03

02 -

03

—

o e b ummopeus

L veapmopeus

[ xenmopeus

I osvozind

b ezsond

b zvond

- sovooid

f veeooind

b eszooiud

b zmioemd

I zsoormsd

b seoormsd

b sooornse

0.2

R — +E

o | unmopeys

[ veopmopeys

[ xenmopeus

f wiosozsne

I esvozinad

b tvozid

b sivooid

L ovvooiaud

- sso0oiaad

I esoooiasd

b sziormd

b ez

I ssoornud

0.4

0.2

0.0

0.2

tion of D-alanine. See

ilisa

in the ut

ing

Figure IILVI Z-score profiles of genes involv

legend to Figure IILI for details.

184



Table IILIX Contingency table of candidate genes of the utilisation of D-alanine identified by

random forest.

pRL70038
Present Absent
Utilising 1 54
Not utilising 7 10
pRL100313
Present Absent
Utilising 54 1
Not utilising 12 5
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Table II1.X Contingency table of candidate genes of the utilisation of D-gluconic acid identified

by random forest.

pRL100313
Present Absent
Utilising 5 59
Not utilising 6 2
pRL100313A
Present Absent
Utilising 4 60
Not utilising 6 2
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legend to Figure IILI for details.
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Table IILXI Contingency table of candidate genes of the utilisation of uridine identified by

random forest.

RL3605
Present Absent
Utilising 8 61
Not utilising 1 2
pRL100042
Present Absent
Utilising 7 62
Not utilising 3 0
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Figure IILIX Z-score profiles of genes involving in the utilisation of D-mannitol. See

legend to Figure IILI for details.
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Table IILXII Contingency table of candidate genes of the utilisation of D-Mannitol identified

by random forest.

pRL70134
Present Absent
Utilising 1 69
Not utilising 2 0
pRL120333
Present Absent
Utilising 65 5
Not utilising 0 2
pRL120487
Present Absent
Utilising 67 3
Not utilising 0 2
pRL120491
Present Absent
Utilising 67 3
Not utilising 0 2
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