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Abstract

The interactions between organic molecules and minerals is fundamental to the under-

standing of processes such as biomineralisation, the attachment of bacteria to surfaces

and the design of synthetic materials within biomimetics. This thesis shows how molec-

ular dynamics simulations can be employed to study the organic - inorganic interactions

and give new insights into the molecular binding at mineral surfaces that play a role in

these processes.

The incorporation of amino acids within calcium carbonate crystals was simulated

and show a high energy associated with the incorporation of these molecules. The

amino acids get incorporated in-between the lattice planes of the crystal, causing small

anisotropic distortions to the crystal. The inclusion of these molecules occurs via a

goodness-of-fit principle, where disruptions to the crystal lattice should be kept to a

minimum. These simulations show good agreement with experimental X-ray data.

Simulations of multiple tripeptides show a different conformational behaviour of the

peptides in solution than on the surface of calcium carbonate. Whereas the pep-

tides exhibit a flexible behaviour in solution, binding to the mineral surface induces

a disorder-to-order transition and the peptides become rigid. These changes in con-

formational behaviour offer insight into the structure and behaviour of intrinsically

disordered proteins.

The polymer poly acrylic acid was simulated to analyse its conformational behaviour.

In the presence of counter ions the polymer exhibits a flexible, extended conformation,

whereas a coiled conformation is found in the absence of counter ions. The simulations in

this work agree well with experimental spectroscopy studies. The binding of the polymer

to a mineral surface is not only governed by the number of functional groups, but also

the flexibility of the polymer. These results give an insight in how such molecules can

aid the attachment of bacteria to surfaces.
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Chapter 1

Introduction

1.1 Biomineralisation

During the existence of the earth, both the relative amounts and the diversity of min-

erals on the surface of the planet have drastically changed. A wide range of chemical,

biological and physical processes such as changes in temperature, pressure, and the

abundance of volatile gases such as H2O, CO2 and O2 have caused an increase in

the number and type of minerals. It is estimated that over time the number of min-

erals that can be found on the earth’s surface has increased from a few hundred to

over 4400 [1–3]. The work described here is focused on the mineral calcium carbon-

ate (CaCO3), which has been present throughout the history of the earth, although

its abundance has changed over time. CaCO3 appears from ca. 2.7 Ga onwards, but

in terms of volume the early Cambrian period (before 0.54 Ga) saw a significant in-

crease in the amount of CaCO3 deposited in the forms of calcite and aragonite [1].

This large change in mineral formation is attributed to the development of biological

life on earth and the rise of biomineralisation, a process of combining hard and soft

matter to create functional materials for organisms [4]. The ability of biological or-

ganisms to include hard, inorganic minerals completely changed their development and

1



increased their chances of survival. Integration of both organic and inorganic materi-

als via these biomineralisation processes allowed organisms to form materials to fulfill

a range of functions, such as protection, mechanical strength, buoyancy, and gravity

sensing [5].

1.1.1 Calcium carbonate

Calcium carbonate (CaCO3) exists in several different polymorphs. Calcite, arago-

nite and vaterite are the main three anhydrous crystalline polymorphs, and ikaite and

monohydrocalcite are two hydrated polymorphs. Amorphous calcium carbonate is the

amorphous, non-crystalline phase of CaCO3.

Calcite

At standard temperature and pressure calcite is the thermodynamically most stable

polymorph of calcium carbonate and is found abundantly in nature. Calcite appears

as a trigonal crystal system but by combining several unit cells can be described as a

hexagonal lattice (Figure 1.1) in space group R3̄c with lattice parameters a = b = 4.991

Å, c = 17.062 Å, α = β = 90◦ and γ = 120◦ [6]. The unit cell of calcite has alternating

layers of CO3
2– and Ca2+ ions perpendicular to the c-axis, with the C−O bonds of the

CO3
2– ions in consecutive layers pointing in opposite directions. Calcite is a brittle

material and has a hardness of 3 on the Mohs scale of mineral hardness1. The density

of calcite is 2.7102 g cm−3. The crystal of calcite can be cut along several different

cleavage planes to expose a surface. Cleaving the crystal along the hexagonal (101̄4)

plane yields the thermodynamically most stable surface, where both Ca2+ and CO3
2–

ions are exposed on the surface (Figure 1.2) [8]. The model (101̄5) and (101̄3) surfaces,

which are stepped surfaces based on the (101̄4) surface, are the next thermodynamically

favourable surfaces, followed by the planar (0001) and (101̄0) surfaces (Table 1.1) [9]. As

1The Mohs scale is an ordinal scale of hardness of materials to describe the scratch resistance of a
material [7].
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Figure 1.1: Schematic representation of the unit cell of calcite in space group R3̄c with
cell parameters a = b = 4.991 Å, c = 17.062 Å, α = β = 90◦ and γ = 120◦.

the (101̄4) surface is most stable surface of calcite, it will therefore be the predominantly

expressed face of growing calcite.

Aragonite

Aragonite is the second thermodynamically stable polymorph of calcium carbonate and,

like calcite, also has a widespread availability in nature. The lattice system of aragonite

is orthorhombic with lattice parameters a = 4.962 Å, b = 7.969 Å, c = 5.743 Å and

α = β = γ = 90◦ and has the space group Pmcn (Figure 1.3) [10, 11].
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Figure 1.2: Schematic representation of the unit cell of calcite in with the hexagonal
(101̄4) lattice planes.

Surface Surface energy (J m−2)

(101̄4) 0.60

(101̄5) 0.69

(101̄3) 0.87

(0001)a 0.97

(0001)b 0.99

(101̄0) 0.97

Table 1.1: The calculated surface energies of various calcite surfaces in solution. a layer
terminated by Ca2+ ions; b layer terminated by CO3

2– ions. Adapted from [9] with
permission of The Royal Society of Chemistry.
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Figure 1.3: Schematic representation of the unit cell of aragonite in space group Pmcn
with cell parameters a = 4.962 Å, b = 7.969 Å and c = 5.743 Å.

Vaterite

Whereas the crystal structures of calcite and aragonite are well defined, the structure of

the metastable polymorph vaterite is not. Several crystal structures have been proposed

over the last half century [12–14] and even with advances in experimental diffraction

techniques and computational simulations the discussion about its structure is still

ongoing. Recent ab initio calculations and experiments [15,16] have hypothesised that

vaterite exists as multiple structures in several hexagonal and monoclinic space groups

(P3221, C2/c and C1̄, Figure 1.4) in which the CO3
2– ions are dynamic and can be

displaced and rotated. Demichelis et al. [15] hypothesise that this dynamic behaviour

is the cause of the uncertainty in the structure of vaterite.

Hydrated polymorphs

Ikaite, or hexahydrate calcium carbonate (CaCO3 · 6 H2O), is a metastable polymorph

of calcium carbonate that has been observed to exist in rare cases (low temperature and

high pressure) in nature [17]. Due to its low stability ikaite will rapidly convert to the

more stable polymorph calcite at standard conditions [18]. Ikaite exists in a monoclinic
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(a) Space group P3221. (b) Space group C2/c. (c) Space group C1̄.

Figure 1.4: Schematic representation of the unit cells of vaterite proposed by Demichelis
et al. [15].

structure in space group C2/c with a = 8.792 Å, b = 8.310 Å, c = 11.021 Å, α = γ = 90◦

and β = 110.53◦ [19]. Monohydrocalcite (CaCO3 · H2O) can also be observed at low

temperatures and high pressures, although near ambient conditions, both dry and in

the presence of water, the crystal will transform to either calcite or aragonite and

is thus another metastable polymorph of calcium carbonate [20]. The space group of

monohydrocalcite is the hexagonal P321 with a = 6.0931 Å and c = 7.5446 Å [21].

Amorphous calcium carbonate

Amorphous calcium carbonate (ACC) is isotropic, does not diffract X-rays and is the

only polymorph of calcium carbonate that does not have a crystalline phase [5]. Both

anhydrous and hydrated ACC exist, although the former is less stable. Hydrated ACC is

a precurser for other crystalline polymorphs such as calcite within many organisms [22].

The main biological relevant form of ACC is approximately CaCO3 · H2O. Hydrated
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ACC structures can be stable for days to months, depending on the conditions and

the presence of foreign molecules, and organisms have been seen to stabilise these ACC

structures for extended periods of time [5]. X-ray experiments and computational

studies have shown that although ACC is an amorphous phase, short range order does

exist within the structure [23–26] and the overall structure of ACC is still not fully

understood.

1.1.2 Nucleation and growth

The formation of the crystalline polymorphs of calcium carbonate starts via a nucleation

event when concentrations of the calcium and carbonate ions in solution are high enough

to form crystals. This nucleation event is still poorly understood, but several theories

exist that describe the event. In the 1930s the concept of classical nucleation theory

was developed [27], describing the nucleation of crystals from supersaturated solutions

under the assumptions that growing clusters are spherical, grow one species at a time

and that there is a clear distinction between the bulk and surface energies, with the bulk

energy of a cluster equal to the relevant bulk energy of a perfect crystal and the surface

energy of a cluster equal to the surface energy of the bulk crystal surface. The bulk

energy of these crystals is lower than the individual ions in solutions, and therefore the

formation of these crystals is thermodynamically favourable. However, the interfacial

energy between the surface of these crystals and solution is positive, preventing small

crystals from forming if the interfacial energy is larger than the bulk energy.

The bulk energy scales with respect to the volume of the crystals, and thus with the

cube of the crystal radius (r3). The interfacial energy of the forming crystals scales

with respect to the surface area, which is scaled with the square of the radius (r2).

Although the unfavourable interfacial energy rises with an increasing particle radius,

the favourable bulk energy increases quicker. This results in a critical radius at which

the favourable bulk energy will dominate (Figure 1.5), leading to the formation of
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small crystals that will continue to grow. Particles smaller than the critical radius

will be thermodynamically unstable and will dissolve in the solution. The free energy

change of the system (∆g) is given by the sum of the bulk and surface terms: ∆g =

∆gbulk+∆gsurface [28]. The free energy is minimised (vanishing first derivative), yielding

a critical radius for nucleation:

rcritical = 2
Ωα

∆µ
(1.1)

where Ω is the volume per molecule, α is the interfacial free energy and ∆µ is the

change in chemical potential.

Figure 1.5: Schematic representation of the classical nucleation theory, where the sum
of the bulk and surface energies will result in a critical particle radius after which the
favourable bulk energy will dominate and crystals will continue to grow. From [29].
Published by The Royal Society of Chemistry.

However, the well established concept of the classical nucleation theory has been ques-

tioned with recent claims of thermodynamically stable clusters which are smaller than

the assumed critical radius and stable larger pre-nucleation clusters of amorphous phase

which exist for long time scales [29–31]. These pre-nucleation clusters are relatively large

(up to 4 nm) agglomerations of calcium and carbonate ions that have not crystallised.

These stable pre-nucleation clusters form via the aggregation of ions in supersaturated
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solutions, and the formation of crystals from this phase has been hypothesised to be

a stepwise pathway: “pre-nucleation clusters → dense liquid nanodroplets → liquid

ACC → solid ACC → anhydrous crystalline polymorphs” [29]. Where the classical

nucleation theory predicts the nucleation of CaCO3 via the addition of ions to a single

cluster, this new theory describes the nucleation as an aggregation of amorphous pre-

nucleation clusters which subsequently crystallise (Figure 1.6). The debate between

the two theories is still ongoing, with both experimental and computational simulation

studies being utilised to shed light on this problem [26,29,32–35].

Figure 1.6: Schematic representation of the classical nucleation theory and the forma-
tion of pre-nucleation clusters. From [32]. Reprinted with permission from AAAS.

1.1.3 Biomineralisation in nature

Growth control

In nature organisms utilise the interactions between organic macromolecules such as

proteins, peptides and polysaccharides, to control the nucleation and growth of the

mineral phase into (single) crystals. By using both organic and inorganic matter they

are able to create biocomposite materials that exhibit intricate hierarchical architec-
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tures and increased mechanical properties compared to the organic or inorganic phases

alone.

Perhaps the best known example of this biomineralisation process is that of coc-

colithophores, eukaryotic unicellular micro algae with a mineralised calcium carbon-

ate exoskeleton. The coccolithophores concentrate HCO3
– and Ca2+ ions from their

environment which are subsequently crystallised into intricate single crystal CaCO3

platelets [36,37] to form this exoskeleton. During the crystallisation process an organic

phase composed of coccolith associated polysaccharides (CAPs) interacts with the acute

steps2 on the surface of growing calcite and by blocking the acute growth sites the CAPs

promote the growth of surfaces parallel to the c-axis [37]. The highly intricate structure

of the coccolith platelets formed via this process is shown in Figure 1.8. The interac-

tions between the CAPs and the mineral phase is an excellent example of the control

these organisms can exert on the mineral phase to produce the shapes and structures

required.

Figure 1.7: The edges of a growing (101̄4) calcite surface have an obtuse (102◦) and
acute (78◦) step on either side of the surface.

Polymorph selection

In many organisms the control over the growth and nucleation of CaCO3 crystals ex-

tends further to the control over polymorph selection [39, 40]. One of these examples

is the mollusc species Atina rigida where an aragonite structure, nacre (Figure 1.9a),

is formed on the inside of the mollusc shell. Remarkably, this aragonite structure is

complemented with a prismatic layer of calcite crystals on the outside of the shell (Fig-

ure 1.9b) [4]. The small aragonite platelets on the inside of the shell are surrounded

2The edges of a growing (101̄4) calcite surface will show an obtuse and acute step on either side of
the surface, shown in Figure 1.7.
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Figure 1.8: Scanning electron microscope (SEM) images of the exoskeleton of Emiliania
huxleyi coccolithophores. The exoskeleton consists of small CaCO3 platelets produced
by the organism and the complex structures of these platelets are formed due to the
interactions between polysaccharides and the mineral phase during their formation.
Scale bars represents 1 µm. Adapted by permission from Macmillan Publishers Ltd:
Nature, [38] copyright 2000.

by a thin organic matrix when crystallised [4,41] and are packed tightly within lamella

sheets. Neighbouring sheets are rotated by 90 degrees relative to one another, with sep-

arate shell layers tilted by another 45 degrees (Figure 1.10) to form a crossed-lamellar

structure that minimises the anisotropy of the structure and transforms the normally

brittle aragonite into an elastic material [41].

The fracture resistance of these crossed-lamellar structures is five orders of magnitude

higher than that of geological aragonite [42]. The outer layer of the shell (Figure 1.9b),

consisting of calcite crystals, also display mechanical properties that exceed their geo-

logical counterparts, due to the organic molecules included within the crystal structure

of these materials [43]. The example of these mollusc shells shows that the organisms

not only control the polymorph selection of the mineral phases, but in doing so are able

to construct a highly hierarchical structures with mechanical properties that far exceed

their geological counterparts.

1.1.4 Biomineralisation in vitro

Within the biomineralisation examples set out above there is an important interplay

between the crystallising mineral and the organic phase present. A range of biomolecules

within the organic phase supports the mineral phase to take its form by promoting
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(a) Nacreous part of the shell. (b) Prismatic part of the mollusc shell.

Figure 1.9: The inner shell of a mollusc is comprised of the composite material nacre, or
mother of pear, an iridescent material composed of aragonite platelets and an organic
matrix that has mechanical properties that exceed its geological counterparts. The
prismatic structure on the outside shell consists of calcite crystals. Reprinted (adapted)
with permission from [44]. Copyright 2008 American Chemical Society.

Figure 1.10: The crossed-lamellar structure of nacre uses an hierarchical structure to
transform brittle aragonite into an elastic material. Reprinted from [41] with permission
from Elsevier.
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nucleation events, managing the growth of certain crystal polymorphs and controlling

the growth of the mineral in certain crystallographic directions. A vast number of in

vitro experiments have been performed to mimic the control that biomolecules have over

the crystallisation of the mineral phase as seen in nature [45]. Both macromolecules

found in nature such as proteins, peptides and polysaccharides, and novel biomolecules

such as peptides, peptoids and polymers have been used to assess their control over the

nucleation, polymorph selection and growth of calcium carbonate.

In vitro growth control

In vitro recrystallisation experiments in the presence of a range of isolated intra-

crystalline protein fractions from both sea urchin spines and mollusc samples were

performed by Albeck et al. [46]. Protein fractions extracted from sea urchin spines

were observed to interact only with crystal planes parallel to the crystallographic c-

axis, promoting an elongated growth of the crystal along this axis. The major protein

fraction extracted from the mollusc showed the opposite behaviour and was found to

bind primarily to planes perpendicular to the c-axis, inducing the formation of smooth

(001) surfaces. The authors suggest that these two organisms are clearly able to direct

a high level of control over the crystallisation of the mineral phase by their ability to

secrete these intra-crystalline proteins in “a perfectly orchestrated sequence in time and

space” [46]. Two other nacre proteins that were isolated from an abalone shell, AP8-α

and AP8-β, also displayed control over the morphology of growing calcite crystals in

vitro [47]. With either of the two proteins present in solution the normally rhombo-

hedral calcite crystals developed rounded, acute edges and were elongated along the

crystallographic c-axis when analysed with scanning electron microscopy (SEM) (Fig-

ure 1.11).

Synthetic organic molecules were able to induce a similar control over the morphology of

growing CaCO3 crystals. Chen et al. [48] synthesised a range of peptoids (Figure 1.12a),
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Figure 1.11: SEM images of: a) Calcite growth in the absence of organic additives. The
rhombohedral structure is clearly visible. b,c) Calcite crystal grown in the presence of
10 µg mL−1 AP8-α. The acute edges of the crystal appear rounded, whereas the
obtuse edges remain untouched. Scale bar represents a) 10 µm, b,c) 5 µm. From [47].
Reprinted with permission from the Wiley Company.

synthetic poly-N-substituted glycines in which the side chains of the peptide are at-

tached to the nitrogen of the backbone, rather than the α-carbon, to study their effect

on the morphology of calcite. In high concentrations the peptoids were able to control

the morphology of the crystallising calcite (Figure 1.12b), with the formation of elon-

gated spindles, truncated rhombohedral, twinned spherical shaped, cross-shaped and

twisted paddle shaped structures being obtained in the presence of different peptoids.

With the changes in morphology it can be seen that both the number of functional

groups and the position of these functional groups throughout the peptoids are impor-

tant factors in the control over the final morphology of the calcite crystals.

In addition to peptoids, synthetic polymers have also been found to alter the growth of

calcite particles. In the presence of rigid synthetic polymers [49, 50] (Figure 1.14) the

morphology of growing calcite changed as the polymers were able to block the growth of

calcite in all but the crystallographic c-axis (Figure 1.13), promoting the crystal growth

on the (101) surface, along the c-axis. Other rigid polymers have been supported on

metal substrates to produce self assembled monolayers (SAMs), and the nucleation of

calcite crystals can be induced on top of these SAMs. Several research groups such as

Aizenberg et al. [51–53], Travaille et al. [54, 55] and Hu et al. [56] were able to control

the CaCO3 nucleation on a range of SAMs. The nucleating crystals showed distinct

homogeneous surfaces, but different SAMs induced different nucleating crystallographic
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(a) Molecular structures of the peptoids. (b) SEM images of calcite crystals.

Figure 1.12: The effect of peptoids on the morphology of growing calcite crystals. SEM
images a-e show elongated spindles, truncated rhombohedral, twinned spherical shaped,
cross-shaped and twisted paddle shaped structures in the presence of peptoids 2, 3, 4,
5 and 7 respectively. SEM image f is a control with no additives. Reprinted (adapted)
with permission from [48]. Copyright 2011 American Chemical Society.

planes. These experiments show that the flexibility of the underlying organic matrix

and the interface that can be formed between the nucleating mineral phase and the

organic phase are important features of the nucleation events.

Figure 1.13: SEM images of calcite crystals formed in the presence of rigid synthetic
polymers during calcite precipitation. Reprinted (adapted) with permission from [49].
Copyright 2002 American Chemical Society.

Polymorph selection

As mentioned in Chapter 1.1.3, the shell of certain species of mollusc consists of both

aragonite and calcite polymorphs. Experimental studies [40,57] have been performed to
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Figure 1.14: Molecular structures of the rigid alanyl-alanine-derived poly(isocyanide)
polymer used within the precipitation experiments of Donners et al. and the [49] and
the tricarboxylic acid derivative used in the work of Estroff et al. [50].

induce calcium carbonate precipitation in the presence of organic matter isolated and

purified from the aragonite and the calcite partitions of the mollusc shells. These studies

show that, under the same conditions, aragonite crystals formed in the presence of the

organic phase isolated from the aragonite partition and calcite crystals were precipitated

in the presence of biomolecules from the calcite partition. Another biomolecule thought

to be involved with specific polymorph selection is the protein n16, one of many [58]

proteins found in the Japanese pearl oyster Pinctada fucata, and several studies [59–62]

have used the n16 sequence in crystallisation experiments to show that the peptide can

induce aragonite nucleation in vitro. It is clear from these in vitro experiments that

the organic phase is responsible for the polymorph selection of these crystals in vivo,

although the exact control of the organic phase on the nucleation and growth is still

poorly understood.

Kinetic control

Henriksen et al. [37] performed in vitro calcite precipitation experiments in the presence

of CAPs isolated from coccolithophores and found a preferential binding of the CAPs to

the acute stepped surface of calcite, and blocking the acute growth sites, slowing down,
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or inhibiting, the growth of the calcite. Similar results of the inhibition of calcite growth

were observed by Lakshtanov et al. [63,64] who analysed the inhibition of calcite in vitro

by (branched) polysaccharides and found an increasing inhibition of calcite precipitation

with increasing concentration of polysaccharide in solution. The authors speculated

that the growth of calcite is inhibited by the polysaccharides attaching to and blocking

the active sites on the growing surface, and that both the structure and position of the

functional groups on the polysaccharides were responsible for their control of calcite

inhibition.

Surprisingly, when analysing the growth kinetics of calcite crystals using in situ atomic

force microscopy (AFM) in in vitro experiments with AP8-α and AP-β, the opposite

effect is observed. Both AP8-α and AP-β have been seen to alter the calcite growth

kinetics by increasing the step growth speed at both the obtuse and acute steps on the

calcite (101̄4) surface. With low concentrations of the proteins (0.15 µM), growth ac-

celerations of 3.3-fold and 2.3-fold for AP8-α, and 2.2-fold and 1.5-fold for AP8-β were

observed at the obtuse and acute steps respectively. The mechanism for this increase

in growth kinetics proposed by the authors is that the proteins act as surfactants,

with large hydrophilic regions of the proteins that are rich in aspartic acid3. These

hydrophilic regions interact with water molecules and ions in solution, modifying the

thermodynamics at the step edges by lowering the energy barrier for the attachment of

calcium and carbonate ions to the growing surfaces. Elhadj et al. [65,66] measured the

increase of step growth at the (101̄4) calcite surface in the presence of various aspartic

acid (di)peptides and analysed the correlation between the step growth acceleration and

the molecular charge and hydrophilicity of the peptides. Their results showed that both

the net charge and hydrophilicity of the peptides are good descriptors for the acceler-

ation in step growth. In situ AFM measurements were also performed to measure the

growth kinetics in the presence of peptoids (Figure 1.12a), and extraordinary increases

of up to 23-fold in step growth were observed for both the obtuse and acute steps on

3A list of all amino acids is included in Appendix A.
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the (101̄4) surface. The authors suggest a few possible mechanisms for this dramatic

increase, with the disruption of the water layer on the mineral surface by the peptoids

being the most likely source of this increased step growth.

Macromolecular attachment

The attachment of the organic phase to the surface of minerals also plays a significant

role in the formation of bacterial biofilms, for example. Microbial cells tend to ag-

glomerate and attach to surfaces via the excretion of extracellular polymer substance

(EPS). This EPS consists of organic material that is made up of macromolecules such

as polysaccharides, proteins and lipids [67]. Functional groups such as carboxyl groups

play an important role in the attachment of macromolecules such as lipopolysaccharides,

mycolic acid and alginate that are found in the EPS. These surface - macromolecular

interactions are of great interest in the study of the attachment of bacterial cells to the

surface of minerals.

1.2 Computational studies

Computational methods can be used to build models of biomineral systems to provide

atomistic details of the processes involved with biomineralisation. The range of length

scales, from µm to cm, involved in these biomineralisation processes make the simulation

of these processes difficult, and we must therefore consider different computational

approaches for each problem [68,69]. There are a number of computational techniques

available which are described in Chapter 2. A large range of computational studies has

been employed to study biomineralisation processes, ranging from the simulation of the

aqueous interface to the nucleation of CaCO3 and the binding of biomolecules to the

surfaces of these crystals. A small selection of these studies is discussed below.
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1.2.1 Nucleation

Simulation studies on the stability of small calcite particles in water have shown that

the water structure on the surface of these particles stabilises the particles [70, 71].

Simulation studies of particle formation from an amorphous precursor have also been

performed, and to overcome the long time scales it takes for these events to take place,

Quigley et al. [25, 34] used accelerated molecular dynamics (MD) simulations to map

the relative stabilities of different polymorphs as a function of particle size. Small

nano particles formed of 75 or 192 CaCO3 formula units were seen to be stable as

both vaterite-like and calcite structures, although the vaterite-like structures collapsed

to amorphous particles with continuous simulations. In the case of larger particles

(300 CaCO3 formula units), only the original metastable amorphous phase and cal-

cite particles were observed. The same research group performed simulations of the

ACC nucleation in the presence of biomolecules [72] and showed that in the presence

of the eggshell protein OC-17 the energy barrier between the amorphous and calcite

phases disappears, causing the amorphous particles to rapidly nucleate to calcite par-

ticles.

Simulations performed by Raiteri and Gale [26] with ACC particles showed that both

the water interface and the inclusion of water molecules throughout the amorphous

phase lowered the free energy of the ACC and stabilised the particles in an aqueous

environment, supporting recent claims by Gebauer et al. [29] that crystallisation of

CaCO3 occurs via these stable ACC particles. Simulations to analyse the CaCO3 nu-

cleation behaviour on the surface of SAMs have also been performed by various research

groups [56, 73–75] to mimic experiments [51–55]. These simulations indicate that the

ionisation of the functional groups on the SAMs is important for the nucleation of the

mineral phase. Furthermore, the flexibility of the SAMs, its ability to form a close

match between the epitaxy of the nucleating calcite and the charge density on the

SAMs are important for the nucleation to occur.
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1.2.2 The effect of the aqueous interface

From the simulations described above it is clear that water plays an important role in

the nucleation events of CaCO3, and de Leeuw and Parker [8, 9] have simulated the

adsorption of water on the surfaces of calcite, aragonite and vaterite to calculate the

surface and hydration energies for these crystals. Other studies [70, 76–78] have also

simulated the adsorption of water molecules on calcite surfaces and found a highly

ordered water structure, with two water layers at 2.3 and 3.2 Å from the surface,

stabilised by hydrogen bonding between the molecules. Experimentally these water

layers can also be seen with X-ray scattering experiments [79]. From these simulations

it is clear that this water double layer is an important feature of the mineral surfaces

and should not be ignored.

1.2.3 Organic - mineral interactions and the control of growth

Within biomineralisation processes the organic-mineral interactions are of particular

interest and a large number of simulations have been performed to study the binding

of biomolecules to the surfaces of minerals. Simulations with a range of mono-, di- and

poly-saccharides on various calcite surfaces have been performed by various research

groups [80–82] and show that the adsorption of these molecules disrupts the ordered

water layers on the surface of calcite. In the simulations of a mono-saccharide an

energy barrier of ca. 50 kJ mol−1 was calculated between 5.1 and 6.6 Å from surface

due to the water layers [81]. Yang et al. [82] observed that the binding energy for poly-

saccharides depends on the site of adsorption, with a higher energy of adsorption seen

at acute stepped surface sites than flat or obtuse sites. Simulations of methylamine

and methanoic acid [83] showed a higher energy of adsorption for the latter, due to

stronger interactions between the calcite surface ions and the carboxyl functional group.

The importance of the functional groups in the binding process were also observed by

Perry et al. [80] who suggested that the placement of the functional groups on the
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di-saccharides used in their simulations was important for the interaction with the

underlying surface, and therefore the strength of the binding. Simulations involving

larger biomolecules have also been performed, with the adsorption of the protein OC-17

to flat calcite surfaces being performed by Freeman et al. [84]. Simulating the adsorption

of the protein in several conformations on a solvated calcite surface they observed that

the minimisation of the surface waters during the binding process resulted in the most

favourable binding energies.

1.3 Research objectives and outline

I have shown above, using several examples, that the interactions between the organic

and inorganic phases play an important role in the biomineralisation process. The

role of the binding of biomolecules to the mineral surfaces can be considered from

the point of view of the biomolecule or the surface. The presence of the biomolecules

can control the mineral growth of the surfaces that it binds to, and if the molecules

become incorporated within the mineral itself, it can profoundly influence the properties

of the resulting composite material. On the other hand, the interplay between the

arrangement of the functional groups on the biomolecule and the mineral surface can

determine the strength of the attachment and the conformation of a biomolecule.

These biomineralisation processes can be applied in a range of research disciplines. The

strong interactions between biomolecules and mineral surfaces for example plays an im-

portant factor in the bacterial binding to surfaces to form biofilms [85]. In the research

area of carbon sequestration the trapping of CO2 from the atmosphere into CaCO3

storage becomes feasible with the recent developments of Chen et al., who observed

calcite growth accelerations of 23-fold for their synthetic peptoids [48, 86]. Within the

area of composite materials, the highly hierarchical architectures and inclusion of or-

ganic macromolecules seen in biological systems are just some of the solutions employed

to improve the properties of a material [41, 43, 87–89] and similar methods can be em-
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ployed within synthetic materials design to produce composite materials with improved

mechanical and physical properties [90].

The research described in this thesis uses a range of simulation methods to investigate

the interactions between biomolecules and the mineral calcium carbonate. The work

has been performed to gain a better understanding of the interplay between hard, in-

organic matter and soft, organic matter, with the objective to answer the questions

of how these biomolecules interact with the mineral phase; what are the key interac-

tions between the two phases; and what effect does the mineral phase have on the

conformation of these biomolecules. The aim of this research is to elucidate the specific

interactions between the organic molecules and the mineral phase. The methodology

behind the computational simulations performed in this work is set out in Chapter 2.

Next, the research performed is separated into four chapters, each of which investigates

the organic-inorganic interactions from a different point of view.

In Chapter 3 the incorporation of small biomolecules within a calcite crystal is inves-

tigated to analyse the effect of the inclusion of biomolecules on the crystal lattice and

to suggest possible modes of incorporation of these biomolecules. This research was

performed with the collaboration of the experimental research group of Fiona Meldrum

at the University of Leeds.

Chapter 4 reports research into the behaviour of disordered tripeptides on the surface

of calcite and discusses to what extent the peptide-peptide and mineral-peptide interac-

tions control the conformational behaviour of the binding biomolecules. As part of this

research, I have carried out calcite precipitation experiments at the NanoGeoScience

laboratory at Copenhagen University. The aim of this study is to gain an understand-

ing of the interactions that govern the binding of flexible molecules to the surface of

calcite.

In Chapter 5 the polymer poly acrylic acid is used as a model to study the attachment

of bacterial cells to the surface of calcite. The conformational behaviour of the polymer
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is analysed in solution and on the surface of the mineral, and the adsorption energy of

the biomolecules to the mineral surface is calculated. This research has been performed

in collaboration with the experimental research group of Maria Romero-Gonzalez at

the University of Sheffield.

Chapter 6 is a preliminary study, linked to the work on the inclusions of amino acids

into calcite set out in Chapter 3. Within this chapter the binding of amino acids to the

surface of amorphous calcium carbonate has been simulated, to get an understanding

of the strength of the mineral-amino acid interactions.
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Chapter 2

Molecular modelling

2.1 Introduction

Computational simulations of molecular systems have become a widely used aid in a

range of scientific applications. Examples of these applications include the calculation

of electronic structures via quantum mechanical methods, the prediction of physical

properties in, for example, polymers, the elucidation of chemical processes such as the

reaction pathway of enzymes, and the prediction of activity and toxicology of drugs in

the pharmaceutical industry. There are a range of computational methods available

for the simulations of these systems, and the choice of method depends strongly on the

length and time scales of the problem (Figure 2.1) [91].

Quantum mechanical methods provide an accurate description of the forces, enabling

the prediction of accurate energies and structures, but at great computational costs [92].

Molecular mechanics use a simplified model of the inter-atomic forces, providing a

method to reach longer time and length scales. Coarse graining covers a range of meth-

ods designed to cover even longer time and length scales by grouping atoms together

into beads, whilst continuum methods neglect the atomistic structure of the system

altogether. In this chapter an overview of these methods is given, and an in depth
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Figure 2.1: The hierarchy of the computational methods utilised at approximate time
and length scales, ranging from quantum mechanical methods at small time and length
scales to continuum methods for larger systems.

discussion regarding the methods used within this work (molecular dynamics) is pro-

vided.

Quantum mechanics

Within theoretical physics and chemistry, quantum mechanics (QM) is used to explic-

itly model electrons and derive structures and properties from the electron distribution.

As the electron distribution is involved in chemical reactions such as the forming and

breaking of bonds, these reactions can also be studied using QM methods. The elec-

tronic state of a system for a given arrangement of nuclei can be described by the

electronic Schrödinger equation HΨ = EΨ, where H is the Hamiltonian operator, Ψ

the wavefunction describing the electrons, and E is the corresponding energy. The

Hamiltonian operator H can be written as Equation 2.1:

H =
−~2

2m
∇2 + U(r) (2.1)
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where ~ is the reduced Planck constant, m is the mass of an electron, ∇2 is the sum of

the second derivatives with respect to the electron positions and U(r) is the potential

energy. The Schrödinger equation is a second order partial differential equation for

which the wave function Ψ can only be solved analytically for a few simple systems

(particle in a box, harmonic oscillator, hydrogen atom etc.). For poly electronic systems

the Schrödinger equation cannot be solved exactly, but can be approximated. Within

these systems one must also include inter-electron interactions. However, the positions

of the electrons depend on the wave function, for which the Hamiltonian is needed,

and the Hamiltonian depends on the positions of the electrons. To solve this problem,

one can use an iterative self consistent field approach such as the well-known Hartree-

Fock (HF) method. Within the HF approximation, the Schrödinger equation for an

electron is solved by assuming that a given electron is moving in a field created by

the nuclei and other electrons. An alternative method that can be used to investigate

the electronic structure is Density Functional Theory (DFT). DFT is based on the

Hohenberg-Kohn theorem that states that the ground state properties of a system are

determined by the electron density of the system. By using a functional of the electron

density the electronic structure and properties can be approximated [93]. Many semi-

empirical methods exist that use simplifications and parameters to gain computational

speed-ups with these calculations, such as the AM1 method used within this work to

calculate the atomic charges of organic molecules (see Appendix B for further details).

As QM methods are generally not used within this work, they will not be discussed

further.

Classical methods

Due to the large number of particles involved in QM calculations, these methods are ex-

tremely computationally expensive and not suitable for the simulation of larger systems.

Using the Born-Oppenheimer approximation, the motion of the nuclei and electrons can

be separated and the total energy of the system can be written in a functional form
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of an inter-atomic potential U(rN). Such an inter-atomic potential can be used to

predict atomic structures by minimising the energy of the system. Both Monte Carlo

(MC) and MD methods can be utilised to obtain configurational properties of the sys-

tem of interest. MC methods can be used when only static configurational properties

are required (such as equilibrium thermodynamic properties). With MD methods, the

inter-atomic potentials can be used in combination with Newton’s laws of motion to

create time dependent trajectories of a system to obtain dynamic properties of a sys-

tem, such as transport coefficients and time correlation functions. The MD methods

are used throughout this work and are described in more detail in Sections 2.3 and

2.4.

Coarse graining

Coarse grained models have been developed to extend the system size and simulation

time of classical models. Many coarse graining methods, in particular those involved

with biomolecular simulations, group atoms together as pseudo-atoms or beads. This

minimises both the number of particles in a system and the number of interactions

that have to be calculated, and increases the size of time steps that can be used during

simulations. The parameters for these coarse graining methods can be fitted to ex-

perimental data or to atomistic scale simulation data, an approach that is increasingly

taken. Using coarse graining methods, the simulation of large systems and long time

scales is made possible. However, this achievement of longer time scales and larger

simulations has the drawback of the inevitable loss of detailed information due to the

lower resolution of the system.
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2.2 Force fields

2.2.1 Potentials

The forces within a system, and therefore all the interactions between all the particles,

can be calculated via quantum or classical mechanical methods. In general, if the de

Broglie wavelength of a particle in the system is larger than the size of the system,

quantum mechanical methods should be used to calculate the forces within the system.

If the de Broglie wavelength is smaller than the size of the system however, the wave

nature of the particles in question is negligible, and classical mechanics can be utilised.

Due to the large number of particles in MD simulations, the computationally expensive

QM methods to calculate the forces are often replaced by the less computationally

expensive classical methods. The Born-Oppenheimer approximation can be used to

separate the total wave function into a nuclear and electronic part (Equation 2.2):

Ψ(nuclei,electrons) = Ψ(nuclei)Ψ(electrons) (2.2)

This separation is possible due to the mass disparity between the electrons and nu-

clei: as the nuclei have a large mass compared to the electrons, they can be considered

as stationary particles. As the fast electrons can rapidly adjust to changes in nuclei

positions, the electron wave function and energy are functions of the nuclei positions,

and thus the total energy of the system can be described in terms of the nuclei po-

sitions only. In order to speed up calculations, the positions of and the interactions

between the nuclei can be described by a inter-atomic potential U(rN), or force field: a

set of simplistic mathematical models that have been parametrised using QM calcula-

tions and/or experimental data. The interactions described through such a force field

are the inter-molecular potentials, encompassing van der Waals forces and Coulomb

interactions, and intra-molecular potentials, which include two-, three- and four-body

terms.
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2.2.2 Inter-molecular potentials

van der Waals

The van der Waals pair-wise interactions between particles can be described by a num-

ber of mathematical models. The Lennard-Jones 12-6 potential is a commonly used

potential which describes both the repulsive and attractive interactions. The short

range repulsive term arises from the fact that two electrons are prohibited to occupy

the same quantum state (Pauli exclusion principle). The long range attractive term is

due to the attraction between (induced) dipoles in the system. Within the Lennard-

Jones potential the attractive and repulsive behaviours vary with the separation of the

particles and are described as r−6
ij and r−12

ij respectively, where rij is the separation

between particles i and j. The physical basis for the attractive term comes from the

dipole-dipole interaction, which goes as 1/r6. The repulsive term (r−12
ij ) was chosen

arbitrarily for computational convenience as it is a square of the already calculated

attractive term, and an exponential form would be more appropriate than the current

term. The combination of these components describe the pair-wise energy between

the particles, and the Lennard-Jones potential contains two parameters that can be

adjusted: the depth of the energy well (εij) and the equilibrium separation distance

at which the force is zero (rminij ). The potential is most often written in the form of

Equation 2.3:

U(rij) = εij

[(
rminij

rij

)12

− 2

(
rminij

rij

)6
]

(2.3)

This expression can be re-written in a simplistic AB-form (Equation 2.4), where A =

4εσ12 and B = 4εσ6:

U(rij) = (
A

r12
ij

)− (
B

r6
ij

) (2.4)
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Alternatively, a Buckingham potential can be used which takes the form of Equation 2.5

and has three constants that can be adjusted: A, ρ and C:

U(rij) = A exp(−rij
ρ

)− C

r6
ij

(2.5)

Note that at small rij values the Lennard-Jones potential rises to infinity and becomes

highly repulsive. The Buckingham potential becomes highly attractive at small rij

values as the attraction term goes to negative infinity. As such, care must be taken

that the inter-atomic distances do not become too small, as this can result in particles

clumping together. In both the Lennard-Jones and Buckingham potentials the inter-

action energy approaches zero at high separation values. In order to avoid calculating

these interactions at high separations, these potentials can be cut-off at a specific dis-

tance. To avoid any discontinuity, a smooth taper function can be used to reduce the

potentials to zero, such as the use of a scaling factor applied to the region around the

cut-off.

Coulomb electrostatic

The charge distribution of a molecule can be modelled in a number of ways and a

common approach is the placement of partial point charges throughout the molecule.

The total electrostatic energy of a set of charges can be described via a Coulomb sum

with the functional form of Equation 2.6:

U(rij) =
1

2

N∑
i=1

N∑
j=1

qiqj
rij

(2.6)

where N is the number of point charges in the system, qi and qj are the particle charges

and rij is the separation between the particles. Note that these electrostatic interactions

are given in terms of reduced electrostatic units, which correspond to being divided by

a factor of 1/4πε0, where ε0 is the vacuum permittivity constant. The problem with
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calculating this Coulomb sum is that it is conditionally convergent: the interaction

energy decays with an increasing separation, but the number of interactions increases

with the separation.

Figure 2.2: Representation of the Ewald summation in which the point charges (a) are
screened by a Gaussian distribution summed in real space (b), which are then cancelled
out by a Gaussian distribution which is summed in reciprocal space (c). It is also
necessary to remove the interactions between Gaussians and point charges on the same
site.

The most common method to overcome this problem is by using the Ewald summa-

tion [94]. With the Ewald method, the point charges of the system are screened by a

Gaussian charge distribution with the opposite sign (Figure 2.2b). A second Gaussians

distribution is added (Figure 2.2c) to cancel out the first set of Gaussians. The sum-

mation corresponding to Figure 2.2b can easily be calculated from Equation 2.7:

U(real) =
1

2

N∑
i 6=j

qiqj
rij

erfc(η
1
2 rij) (2.7)

where N is the number of point charges in the system, erfc(x) is the complementary

error function given as Equation 2.8:

erfc(x) =

(
2√
π

)∫ ∞
x

exp(−u2)du (2.8)

and the width of the Gaussians is given by
√

2/η. This summation is calculated in
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real space and converges rapidly. The summation of the second set of Gaussians (Fig-

ure 2.2c) converges rapidly in reciprocal space via Equation 2.9:

U(reciprocal) =
1

2L3

∑
k 6=0

4π

k2
qiqj exp(ik · rij) exp

(
−k2

4η

)
(2.9)

where L is the side of the cubic system and k is a reciprocal lattice vector, given

as k = (2π/L)n, with n the lattice repeat vector, describing the periodic boundary

conditions of the system. A self energy correction term between a charge and a Gaussian

on the same site (Equation 2.10) then needs to be subtracted from the system. The

total electrostatic energy of the system can then be calculated from these three terms

(Equation 2.11). The width of the added Gaussians is defined by the variable η and the

convergence of the real and reciprocal terms of Equation 2.11 depend on this parameter,

chosen by the user. A small value of η ensures a quick convergence of the reciprocal

term, whereas the real term will converge rapidly with a large value of η. A balance

between the two can be found experimentally by simulating a system using a range of

Gaussian widths and plotting the coulombic energy. A correct convergence of both the

reciprocal and real terms will result in a plateau of the coulombic energy.

U(self) =
(η
π

)1
2

N∑
i=1

q2
i (2.10)

U(electrostatic) = U(real) + U(reciprocal) − U(self) (2.11)

2.2.3 Intra-molecular potentials

Two body terms - bonds

As described in Section 2.2.1, the Born-Oppenheimer approximation can be used to sep-

arate the nuclei and electronic contributions, and thus the total energy can be decoupled
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into electronic, vibrational and rotational contributions. The latter two terms can be

described by a intra-molecular potential: a simplistic mathematical model parametrised

using QM calculations and/or experimental data. The intra-molecular interactions be-

tween two particles, or bond stretching, is a two-body term that can be described in a

number of ways, most commonly described as a harmonic spring. The functional form

of a simple harmonic spring used in this work is shown in Equation 2.12:

U(rij) =
1

2
k(rij − r0)2 (2.12)

where k is the bond stretching force constant of the spring and r0 is the reference or

natural bond length. This potential gives a fair representation of the bond behaviour

close to the equilibrium distances, but as rij−r0 increases, U(rij) tends towards infinity.

As such, the harmonic potential is unbreakable and gives a poor representation far from

the equilibrium distances. More sophisticated potentials such as the Morse potential

and reactive potentials, in which the breaking and forming of bonds is possible, can be

used. However, as in many biomolecular systems the bonds do not deviate far from their

equilibrium values, a simple harmonic spring can be used to give a good approximation

of the bond length. The stiffness of the spring also has an impact on the timestep used

in MD simulations (see Section 2.3), where a stiffer spring requires a lower timestep in

order to maintain a stable simulation.

Three body terms - angles

The angles between three particles can be described by a three-body potential and, as

with bond stretching, this angle bending (Figure 2.3a) is often described using a simple

harmonic potential (Equation 2.13):

U(θijk) =
kθ
2

(θijk − θ0)2 (2.13)
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where θijk is the angle between the three particles and θ0 is the reference angle.

(a) Three-body angle term. (b) Four-body dihedrals term.

Figure 2.3: Diagrams of the three- and four-body terms of the intra-molecular forces
described by force fields.

Four body terms - dihedrals and out of plane

The dihedral or torsion angle between four bonded particles describes the angle between

two planes (Figure 2.3b). This dihedral can be described by a potential with a cosine

functional form (Equation 2.14):

U(φijkl) = A[1 + cos(mφijkl − δ)] (2.14)

where A is a constant responsible for the height of the energy barriers, m determines the

multiplicity of the dihedral (number of minima) and δ determines the energy minimum

position of the rotation. In addition to dihedral angles, four-body terms can describe

the out-of-plane bending motions of particles and this motion can be described by ri jkl,

where ri jkl is the distance of particle i from the plane described by particles j, k and l.

For example, the four atoms in a carbonate ion (CO3) are bonded together in a planar

orientation. In order to force the carbonate ion to remain planar, the out-of-plane

movement of the carbon atom needs to be restricted, which can be accomplished with

a potential such as Equation 2.15:

U(ri jkl) = Ar2
i jkl +Br4

i jkl (2.15)
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2.2.4 Force fields used in this work

As described above, the interactions between atoms can be described by the inter-

atomic potential U(rN), or force field. These force fields are simplistic models that are

empirically parametrised using experimental data and/or QM calculations. It must be

noted that the quality of the force fields used within molecular modelling dictates the

quality of the results, and as such, these force fields must be properly constructed and

tested. For the modelling in this work, force fields for calcium carbonate, water and

organic molecules have been taken from the literature and are described below.

Calcium carbonate

There has been a considerable effort in the generation of suitable potentials for calcium

carbonate in the last few decades, and Raiteri et al. [95] give a substantial overview of

these efforts, of which a few are described below.

Several CaCO3 potentials were developed in the early ’90s, [96–98], of which the Pavese

potential [98] has seen the most use. This potential describes the carbonate ion as

a molecular group with harmonic angles and improper torsion terms and uses a shell

model for the oxygen on the carbonate group. The improper torsion term is mainly used

to maintain a planar configuration of the carbonate ion. In a revised version [99] a Morse

potential was added to the carbon to oxygen interaction. Fisler et al. [100] subsequently

made revisions to the Pavese potential by changing the carbonate group, and De Leeuw

and Parker [101] combined a shell model of water with the Pavese potential to model

the hydrated surfaces of CaCO3. Bruneval et al. [102] later combined the potentials by

Fisler et al. and De Leeuw and Parker to create a potential with polarisable descriptors

for the water. Freeman et al. [103] combined parts of the Pavese potential and the

potential by De Leeuw and Parker with a TIP3P water model [104] to create a potential

to use within biomineralisation simulations. In 2010 Raiteri et al. [95,105] fitted a new

potential to experimental dissolution enthalpies of the ions in water, with the purpose
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of developing a potential that could accurately describe the thermodynamic energies of

CaCO3 and the energy difference in the calcite-aragonite phase transition.

The Raiteri potential is extensively used throughout the biomineralisation community

and is used for the MD simulations within this work. The parameters for this potential

are shown in Table 2.1.

Water

There are a range of simple water models available to use within MD simulations

that have different methods of describing the geometry of the the water molecule and

the inter- and intra-molecular interactions. The SPC (Simple Point Charge) [106] and

TIP3P (Transferable Interaction Potential 3P) [104] are the most common water models

that contain three sites for the electrostatic interactions (Figure 2.4). Refined four and

five site models (TIP4P and TIP5P) are also available, but are computationally more

expensive. Within this work the TIP3P water model is used, as it gives structural

and thermodynamic properties in close agreement with experimental values at room

temperature [104] and is computationally inexpensive to simulate. Additionally, most

organic force fields have been parametrised using TIP3P. The potential parameters for

TIP3P are described in Table 2.2.

Figure 2.4: Model of a three site water molecule, such as TIP3P.

36



Charges

Atom Charge (au) Atom Charge (au)

Ca +2.000 C(carbonate) +1.123

O(carbonate) -1.041 Ow(water) -0.834

Hw(water) +0.417

Bonds (Equation 2.12)

Interaction k (kJ mol−1 Å−2) r0 (Å)

C-O (carbonate) 3463.8 1.313

Angles (Equation 2.13)

Interaction k (kJ mol−1 rad−2) θ0 (deg)

O-C-O (carbonate) 1160 120.0

Out-of-plane term (Equation 2.15)

Interaction A (kJ mol−1 rad−2) B (deg)

C-O/O/O (carbonate) 2006.508 360.0

Lennard-Jones potential (Equation 2.3)

Interaction ε (kJ mol−1) σ (Å)

Ca-Ow(water) 0.09166 3.35

Buckingham potential (Equation 2.5)

Interaction A (kJ mol−1) ρ (Å) C (kJ mol−1 Å−6)

Ca-O(carbonate) 305050.84 0.27151 0.0

Ca-C(carbonate) 1157823690 0.12 0.0

O(carbonate)-O(carbonate) 6159641.3 0.19891 2691.844

O(carbonate)-Ow(water) 1209391.23 0.2020 1166.507

O(carbonate)-Hw(water) 38237.1 0.2170 0.0

Table 2.1: CaCO3 inter- and intra-molecular terms from the Raiteri potential [105].

37



Charges

Atom Charge (au) Atom Charge (au)

Ow -0.834 Hw +0.417

Bonds (Equation 2.12)

Interaction k (kJ mol−1 Å−2) r0 (Å)

Ow-Hw 3768.12 0.9572

Angles (Equation 2.13)

Interaction k (kJ mol−1 rad−2) θ0 (deg)

Hw-Ow-Hw 104.52 460.52

12-6 potential (Equation 2.4)

Interaction A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

Ow-Ow 2436397.374231 2491.2067290

Table 2.2: Inter- and intra-molecular terms for the TIP3P water model [104].

Biomolecules

Biomolecular MD simulations have been performed for decades and a large number

of force fields are available to model these systems, such as the CHARMM (Chem-

istry at Harvard Molecular Mechanics) [107], GROMOS (Groningen Molecular Simu-

lation) [108], OPLS (Optimized Potentials for Liquid Simulations) [109], COMPASS

(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies)

[110] and AMBER (Assisted Model Building with Energy Refinement) [111] force fields.

All these force fields were developed in the 1980s or 1990s and have had a substantial

number of revisions over the years, and comparison studies [112, 113] have suggested

that the differences between these force fields is minimal. The AMBER force field is

one of the most used force fields for organic systems, in particular for system that in-

clude proteins, peptides and nucleic acids. Within this work the AMBER ff12SB force

field is used, which is parametrized using the TIP3P water model. The calculation of

the atomic charge distribution was performed using the AM1 method, as described in

Appendix B.
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Biomineral cross-terms

The potentials used within biomineralisation simulations must include terms that de-

scribe the interactions between the water/organic phase and the mineral phase, but

existing potentials that describe these two phases are quite dissimilar. Mineral po-

tentials often describe the crystalline phase as ionic solids with large charges, whereas

potentials for organic molecules emphasise the intra-molecular bonding terms and use

smaller atomic charges. In order to describe the interactions between these two phases

appropriately, the two sets of potentials need to be combined to create the cross-terms

between the mineral and organic phase. One of the methods that could be used to

combine two sets of potentials is the Lorentz-Berthelot mixing rules to obtain Lennard-

Jones cross potentials [114], as given in Equations 2.16 and 2.17:

σAB =
σA + σB

2
(2.16)

εAB =
√
εAεB (2.17)

The Lorentz-Berthelot mixing rules describe the Lennard-Jones interactions between

the mineral and organic phases, but due to the inconsistencies in the atomic charges

between the two phases, the binding energies of organic molecules at the surface of

the mineral can be largely overestimated. Another technique to combine two sets of

potentials is by using the Schröder method [115], and Freeman et al. [103] described a

generalised methodology to generate a robust and reliable potential set for biomineral

systems based on the Schröder method without the need to fit a whole new potential

to new systems.

The methodology described by Freeman et al. is a stepwise procedure to find a short

range potential that is consistent with the reduced electrostatic interactions between

the mineral ions and the organic molecules. Firstly, the scaled charges in a chosen
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mineral structure are determined. The scaled charges need to fulfil the conditions set

out in Equations 2.18 and 2.19:

qAnewqBnew = qAmineralqBorganic (2.18)

∑
I

qInew = 0 (2.19)

where A and B are atoms in the original mineral and organic phase respectively, qAnew

and qBnew are the new scaled charges for the new chosen mineral structure used to fit the

short range potential and I is any atom within the new system. The new charges qInew

can be scaled with respect to the original mineral, as shown in Equation 2.20:

qI = αIqBnew (2.20)

where αI is the scaling factor derived from the original mineral to be used to obtain

the new short range potential (Equation 2.21):

αI =
qImineral
qBmineral

(2.21)

Combining these equations with the original condition that the combined charges of

the new system must equal the combined charges of the old system (Equation 2.18),

the charges qBnew can be deduced from Equation 2.22, and by using Equation 2.18 all

other charges qI for the new system can be determined.

αAq
2
Bnew = qAmineralqBorganic (2.22)

The second step in the methodology is the refitting of the inter-atomic mineral potentials
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with the new, scaled, charges. As the charges of the mineral are scaled down, the

repulsive term of the potential has to be reduced such that the structure of the mineral

kept intact. These newly fitted inter-atomic potentials are the cross-terms between

the organic and mineral phases, and for each atom in an organic potential that is

also present in the mineral phase, these cross-terms must be included. As the cross-

terms used depend on the organic potentials used, they must be refitted when changing

the organic force field. Note that using this method the mineral potential remains

unchanged and is only used to generate the cross-terms. The results obtained from

simulations that use these cross-terms have been compared with DFT calculations, and

in the case of the interactions of small organic molecules with calcite surfaces they

produce adsorption energies that agree well with the DFT calculations [83, 103]. All

cross-terms used throughout this work are described in their respective chapters.

2.3 Molecular dynamics

As mentioned in 2.2.1 using the Born-Oppenheimer approach, an inter-atomic potential

U(rN) can be used to describe the structure and energy of a system. Using this in combi-

nation with Newtons laws of motion, the time dependent interactions between particles

can be determined. These molecular dynamics simulations involve the calculation of

the movement of atoms over a period of time. By solving Newtons motion equations of

a set of particles, the interactions between these particles can be calculated and both

thermodynamic and dynamic properties of the system can be determined.

2.3.1 Newton’s laws of motion

The positions and momenta of the particles in the system are governed by the interac-

tions between the particles. The movement of the particles in a system are determined

by Newton’s laws of motion:
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1. Particles continue to move at constant velocity unless a force acts upon them.

2. The force on a particle is equal to the rate of change of momentum.

3. For each action there is an equal and opposite reaction.

From Newton’s second law, the interactions between particles can be described as Equa-

tion 2.23:

Fi = miai = mi
d2ri
dt2

(2.23)

where Fi is the the force exerted on particle i and mi, ai and ri are the mass, acceleration

and position of the particle respectively at time t. The force exerted on the particles is

taken from the gradient of the potential energy of the system (Equation 2.24), where

the potential energy U is differentiated with respect to ri, and is the result of the

interactions of all particles in the system. As the motions of the particles in question

are coupled to the interactions between all particles in the system, it is impossible to

analytically solve these equations of motion for all but the simplest examples. The

equations of motion within MD simulations can be solved numerically using a finite

difference method.

Fi = −∇riU (2.24)

2.3.2 Finite difference method

The finite difference method is a method to integrate Newton’s laws of motion to obtain

an evolving trajectory of the particles in the system. There are many integration

schemes available, of which the time-reversible and computationally inexpensive Verlet

algorithm [116] is the most popular. This algorithm assumes that the positions r of the

particles at time t+δt can be approximated by a Taylor expansion (Equation 2.25):
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r(t+ δt) = r(t) + δtv(t) + 1
2
δt2a(t) + 1

6
δt3b(t) +O(δt4) (2.25)

where O(δt4) is the error associated to the truncation of the Taylor expansion. Similarly,

the position of the particles at time t− δt can be approximated by Equation 2.26:

r(t− δt) = r(t)− δtv(t) + 1
2
δt2a(t)− 1

6
δt3b(t) +O(δt4) (2.26)

A summation of Equations 2.25 and 2.26 gives

r(t+ δt) + r(t− δt) = 2r(t) + a(t)δt2 +O(δt4) (2.27)

and rearrangement of this equations gives

r(t+ δt) = 2r(t)− r(t− δt) + a(t)δt2 (2.28)

where the positions of the particles at time t+δt can be calculated without the velocities.

The velocities of the particles can subsequently be determined from the difference in

positions (Equation 2.29):

v(t) = [r(t+ δt)− r(t− δt)]/2δt (2.29)

Note that the positions of the particles contain a truncation error in the order of δt4,

and the error associated with the velocities is in the order of δt2. Several variations

of the Verlet algorithm have been developed such as the Velocity Verlet and the leap-

frog algorithm [117]. The leap-frog algorithm calculates the velocities at time t + 1
2
δt

(Equation 2.30) and subsequently the positions at t + δt (Equation 2.31), such that

the two calculations “leap” over each other, and both the positions and velocities are
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calculated correct to the second order.

v(t+ 1
2
δt) = v(t− 1

2
δt) + a(t)δt (2.30)

r(t+ δt) = r(t) + v(t+ 1
2
δt)δt (2.31)

The velocities at time t can be calculated as the average of the velocities at t+ 1
2
δt and

t− 1
2
δt (Equation 2.32):

v(t) = 1
2
[v(t+ 1

2
δt) + v(t− 1

2
δt)] (2.32)

Other, higher order integration methods such as the Runge-Kutta and Gear predictor-

corrector methods are also available and details of these can be found elsewhere [114,

118]. The length of the time step δt is the bottleneck of simulations and is responsible

for the computational cost of the simulations. Using a short time step will not allow

the simulation to cover much of the phase space throughout the simulations. A large

time step will cover more of the phase space within simulations but are more prone to

develop instabilities within the integration algorithm due to the increased truncation

error associated with the larger time step.

2.3.3 Running molecular dynamics simulations

Within MD simulations the initial state of a system contains the positions and momenta

of the particles. The initial momenta of particles in MD simulations are typically as-

signed randomly from a Maxwell-Boltzmann distribution, whilst ensuring that the total

momenta of the system is equal to zero. With the starting positions and momenta an

integration algorithm can be implemented to propagate the system. The starting posi-

tions of the particles are unlikely to be in a low energy region since, for computational
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convenience, they are usually setup in a highly special configuration. Therefore an

equilibrium period is needed in order to relax the system. To check whether a simula-

tion has reached an equilibrium minimum, the thermodynamic variables of the system

can be tracked. These variables should fluctuate around the mean but not show any

systematic drift.

Periodic boundary conditions

In MD simulations, a large number of particles within the simulation box are in contact

with the boundaries of the system. If the purpose of the simulation is to calculate

the properties of a bulk system, the behaviour of those particles interacting with the

boundaries must be excluded. As interactions between particles and the boundaries

can extend up to 10 Å into the simulation box, the number of particles that would have

to be excluded is extensive. Using periodic boundary conditions (PBC) the particles

can be simulated as though no boundaries are present, effectively calculating bulk

properties.

The basis of PBC is to place replicas of the simulation box around the original simulation

to give a periodic array, as indicated by the two-dimensional example in Figure 2.5. The

movements of all particles within the original simulation box are replicated throughout

the neighbouring boxes, and a particle i interacts not only with the other particles within

its own simulation box, but with all particles in neighbouring replicas, thus providing

a bulk simulation. Should particle i move through the boundary into a neighbouring

box, an image particle i′ will enter the box from the opposite side, keeping the number

of particles constant. This method enables the whole system to be treated as a pseudo-

infinite system.
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Minimum image convention and potential cut off

Within MD simulations the most time consuming calculations are the non-bonded inter-

actions between particles. Whereas the number of bonded interactions is proportional

to the number of particles N in the system, the number of non-bonded (pair) inter-

actions increases as N2. As the value of the non-bonded potentials used for these

interactions drastically falls at longer distances, the interactions at larger distances can

be discarded in order to speed up the simulations. The minimum image convention can

be applied, in which a particle interacts only with at most one replica of every other

particle in the system. A potential cut-off can also be applied, in which any interactions

outside the cut-off distance are discarded. In simulations using PBC this cut-off must

be chosen such that there are no interactions between a particle and its replica, and as

such the cut-off distance should be less than half the simulation cell when simulating

a cubic box. To avoid any discontinuity of these potentials at the cut-off distance, a

smooth taper function can be used to reduce the potentials to zero.

2.3.4 Analysis

The trajectory of the MD simulations can be analysed in a number of ways. Firstly, the

trajectory can be visually analysed to explore the dynamic behaviour of the particles

in a time dependent manner. Moreover, a range of thermodynamic and structural

properties can be calculated from the trajectories.

Energies

Thermodynamic properties such as the energy, heat capacity and temperature can easily

be obtained from MD simulations. The total potential energy of the system is evaluated

at each time step in the simulation as the sum of all values evaluated from the inter-

and intra-molecular potentials. Additionally, the kinetic energy of the system at time
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Figure 2.5: Two dimensional example of the use of periodic boundary conditions, where
replicas are placed around the original simulation cell.

t can be directly calculated from the velocities of the particles via Equation 2.33:

Ukinetic(t) =
1

2

N∑
i

miv
2
i (t) (2.33)

The changes in the energy of the system can be analysed over the length of the simu-

lation and fluctuations in these energies can give indications of changes throughout in

the system.

The energies of the system can also be used to calculate the thermodynamic differences

between two configurations (e.g. binding energies, conformational relaxation etc.) by

subtracting the two mean energies from one another. The error of the difference be-

tween these two configurations can be calculated using the standard error (SE) of the

difference between the means of two samples, as described in Equation 2.34:
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SE =

√
[(
sd2

a

na
) + (

sd2
b

nb
)] (2.34)

where sda and sdb are the standard deviations for the data of configuration a and b

respectively, and na and nb are the population size of a and b respectively.

Radial distribution function

Another tool that can be utilised to analyse structural features of a system is the

radial distribution function (RDF), or pair correlation function. The RDF, or g(r),

describes the probability of finding a particle at distance r from another reference

particle relative to the probability for a random distribution. The RDF calculates the

number of particles found between a distance r and r + δr from the reference particle.

As this is described in a spherical region around the reference particle, the form of the

RDF is (Equation 2.35):

g(r) =
V

4πr2δrN
〈
N∑
i=1

N∑
j 6=i

δ(r − rij)〉 (2.35)

where V is the volume of the simulation, 4πr2δr is the volume of a spherical shell of

width δr, and N is the number of particles. The g(r) is dimensionless and the values

are averaged over the entire simulation. In a perfect crystal, the RDF has a number of

sharp, intense peaks corresponding to the lattice equilibrium positions of the particles.

The movement of the particles away from these equilibrium positions will result in a

broadening of the peaks in the RDF.

Diffusion coefficient

The translational movement of particles throughout a simulation can be described by

the mean-square displacement of the particles. This displacement can be calculated
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as an ensemble average over all the particles, relative to the starting positions and is

related to the particle diffusion coefficient, D, in Equation 2.36:

D =
1

6Nt
lim
t→∞

N∑
i=1

〈|ri(t0 + t)− ri(t0)|2〉 (2.36)

where t0 is the initial time origin and ri(t0 + t) is the position of particle ri at time

t. The diffusion coefficient is not used within this work and is only included for com-

pleteness. Details of the practicalities of calculating D can be found in Allen and

Tildesley [114].

2.4 Statistical mechanics

The exact state of a system (the microstate) can be described by the three positional

and three momentum values of each particle of that system, and for a system containing

N particles, the microstate of the system can thus be described with 6N values. The

6N -dimensional space that can be described by a combination of these 6N values make

up the phase space.

All possible microstates for a system consistent with a given thermodynamic state

defined by macroscopic variables such as the pressure, temperature and volume can

be described as an ensemble. MD simulations are calculations that generate a series

of time dependent microstates within this phase space, a trajectory that describes the

dynamic changes in the 6N variables. MD simulations are a deterministic method, such

that future microstates (future 6N variables) are determined by the current microstate

(current 6N variables).

Properties such as the energy, heat capacity and pressure of a system can be calculated

from the positions and momentum of all particles in the system. Instantaneous values

for these properties can be calculated from a microstate, and the time average (Aaverage)
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values can be calculated from the system trajectory (Equation 2.37):

Aaverage = lim
τ→∞

1

τ

∫ τ

t=0

A(rN(t), pN(t))dt (2.37)

where A is the property of interest and rN and pN are the positions and momentum

values for particle N respectively. The property values can also be calculated over all

possible microstates for the system (ensemble), given Equation 2.38:

〈A〉 =

∫∫
A(rN , pN)ρ(rN , pN)drNdpN (2.38)

where 〈A〉 is the ensemble average and ρ(rN , pN) is the probability density, i.e. the

probability of finding a specific microstate with pN and rN within the phase space. An

essential assumption in using MD simulations to construct these averages is the ergodic

hypothesis which states that averages over time obtained from MD simulations can be

used to calculate the ensemble average - or that Equation 2.37 can be used to calculate

Equation 2.38.

2.4.1 Ensembles

The probability density for these ensemble averages depends on the ensemble that is

simulated. MD simulations can sample from a range of different ensembles, which are

described below.

Microcanonical (NVE) ensemble

Molecular dynamics simulations are most naturally performed within a subset of a

microcanonical ensemble, an isolated system where Newton’s laws of motion conserve

linear momentum of particles. In this ensemble the number of particles (N), volume

(V) and energy (E) are held constant, and it is described as an isolated system: no
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exchange of energy or matter with the outside is possible. As the energy is constant,

the probability of finding a microstate depends on the energy of the system and can be

written as Equation 2.39 over the energy range δ[E −H(rN , pN)]:

ρ(rN , pN) =


1

ΩNV E
for E < H(rN , pN) < E + δE

0 for other cases

(2.39)

where ΩNV E is the partition function for the NVE ensemble, shown in Equation 2.40

and H is the Hamiltonian function, the sum of the kinetic and potential energy of the

microstate. The factor N ! arises to remove indistinguishable particle count from the

partition function. The h3N factor represents the volume of phase space occupied by

the microstate and, from Heisenberg uncertainty principle, this is the smallest volume

in phase space that can be specified.

ΩNV E =
1

N !h3N

∫∫
drNdpNδ[E −H(rN , pN)] (2.40)

Canonical (NVT) ensemble

In the canonical ensemble (NVT) the number of particles (N), volume (V) and tem-

perature (T) are kept constant. This ensemble is regarded as a closed system: it can

exchange energy (heat) with its environment, but not matter. Therefore the energy of

the system is allowed to fluctuate, and can exchange heat via a heat bath (thermostat)

connected to the system. The probability density within an NVT ensemble is given by

Equation 2.41:

ρ(rN , pN) =
1

QNV T

exp[−βH(rN , pN)] (2.41)

where QNV T is the partition function, a normalisation of the accessible microstates at

a given temperature, which is given by Equation 2.42. The variable β is defined as
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Equation 2.43 in which kB is the Boltzmann constant and T the temperature.

QNV T =
1

N !h3N

∫∫
drNdpN exp[−βH(rN , pN)] (2.42)

β =
1

kBT
(2.43)

Isothermal-isobaric NPT ensemble

With a constant number of particles (N), constant pressure (P) and constant tempera-

ture (T), an isothermal-isobaric (NPT) ensemble is classed as a closed system. As with

an NVT ensemble, there is an energy exchange with the outside but no exchange of

matter. The energy and volume of the system are allowed to fluctuate, regulated via

the connection to a thermostat and barostat. The probability density of the system

can be written as Equation 2.44:

ρ(rN , pN , V ) =
1

QNPT

exp[−β{H(rN , pN) + PV }] (2.44)

where QNPT is the partition function of the NPT ensemble which is a transform of the

NVT partition function with respect to the volume (Equation 2.45):

QNPT =

∫ ∞
0

dV QNV T exp(−βPV ) (2.45)

2.4.2 Thermostats and barostats

Microcanonical ensembles are commonly used within MD simulations, where the num-

ber of particles, volume and energy are conserved. The temperature within such a

system can thus fluctuate. In order to perform simulations whereby the temperature

is fixed, i.e. a canonical NVT ensemble, a thermostat must be implemented to ensure

52



the temperature is kept constant. Within a system the temperature is related to the

kinetic energy of the system following Equation 2.46:

〈k〉NV T = 3
2
NkBT (2.46)

where 〈k〉NV T is the time average kinetic energy of the NVT ensemble. As the tem-

perature of this system is set by the kinetic energy of the particles, the temperature of

these simulations can be controlled by scaling the velocities of the particles. The direct

scaling of the velocities, however, does not generate a proper canonical ensemble. In-

stead, a heat-bath can be linked to the system as an external source of thermal energy.

The Nosé-Hoover thermostat [119] considers the heat-bath to be an integral part of the

system, following Equation 2.47:

δvi(t)

δt
=
Fi(t)

mi

− ξ(t)vi(t) (2.47)

where vi is the velocity, Fi the total force on the particles and ξ is the friction coefficient

of the heat-bath. Integrating the equations of motion gives Equation 2.48:

v(t+ δt) = v(t) + [
F (t)

m
− ξ(t)v(t)]δt (2.48)

The Hamiltonian of the extended system given as Equation 2.49:

H(Nosé-Hoover) =
N∑
i=1

p2
i

2mis2
+ U(rN) +

ξ2Q

2
+ gkBT ln s (2.49)

with N particles of mass mi and positions pi, Q the fictitious mass, s the number

of degrees of freedom and ξ the friction coefficient of the heat-bath. Simulations of

the system using the extended Hamiltonian and a properly chosen friction coefficient ξ

return a proper canonical distribution of the particle coordinates and momentum.
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A similar approach can be taken to keep the pressure of the system constant in isothermal-

isobaric NPT ensembles. Here, a pressure-bath is added to extend the system, defined

by a piston with fictitious mass W and friction coefficient η. The Hamiltonian as de-

scribed in Equation 2.49 is extended by adding a term for the pressure PextV and the

pressure-bath 1
2
(η2W ). The fictitious mass of the of the heat-bath (Q) and pressure-

bath (W ) determine the coupling between the heat or pressure-bath and the simulation,

and can be expressed in terms of a relaxation time. These relaxation times must be

chosen to efficiently generate the proper ensemble. Within the simulations in this work,

the relaxation times were chosen such that the system was equilibrating quickly, whilst

ensuring that a constant temperature and pressure was maintained.

2.5 Biased potential methods

A common (and serious) problem that occurs in MD simulations is the difficulty of

sampling the whole of the phase space during a simulation, and the presence of (mul-

tiple) local energy minima with large free energy barriers can prevent simulations from

visiting all configurations. Additionally, rare events, for instance phase transitions and

conformational changes such as protein folding, take place on time scales beyond the

reach of MD simulations. Brute force methods can be employed for the latter problem,

although these have the disadvantages of a lack of statistical averages, and are very

computationally expensive. Methods such as coarse graining can also be employed,

although these require extensive parametrization and offer no atomistic detail.

Several accelerated molecular dynamics methods have been developed to overcome the

problems of local energy minima and appropriate phase space sampling. These methods

include (but are not limited to) potential of mean force (PMF), umbrella sampling and

metadynamics.
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2.5.1 Potential of mean force and umbrella sampling

With PMF calculations, the simulations are confined to a reaction coordinate R(x),

and the free energy surface along this reaction coordinate is calculated. The free en-

ergy FR(R′) for a particular point R′ along the reaction coordinate is given by Equa-

tion 2.50:

FR(R′) = −kBT lnPR(R′) + constant (2.50)

where PR(R′) is the probability of finding the system at this reaction coordinate. The

PMF method relies on a properly sampled system in which all of the phase space is

visited. If the variation of the free energy along a reaction coordinate is more than

a few kBT , the simulation will not sample enough of the phase space due to high

energy barriers, and will lead to large inaccuracies in the obtained PMF values. The

umbrella sampling method [120] can be employed to overcome the sampling problem. A

reaction coordinate between two states is defined and the simulation samples along this

reaction coordinate. A bias is added to the system to force the simulation along this

reaction pathway, therefore overcoming any local minimum that the simulation might

be stuck. From these biased simulations a potential of mean force can be generated

that describes the free energy of the system along the chosen reaction pathway. Using

umbrella sampling the system can sample a larger area of the phase space and enables

the visualisation of the local energy minima along the reaction coordinates.

2.5.2 Metadynamics

Another method to improve the sampling of a system and to overcome energy bar-

riers within MD simulations is the metadynamics method developed by Liao and

Parinello [121]. Within metadynamic simulations the system is coaxed to explore new

configurations by adding a biased potential to drive the system forwards. This biased
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potential is added as a function of Collective Variables (CVs), which are numerical

descriptors of the the system as a function of atomic positions. Throughout the simu-

lations, in addition to the standard potential U(rN), a biased potential VG(rN , t) in the

form of Equation 2.51 is added to the system:

VG(rN , t) = ω
∑

t′=τG,2τG,...(t′<t)

exp

(
−

d∑
α=1

[Sα(rN)− sα(t′)]2

2δs2
α

)
(2.51)

where d is the number of CVs used, Sα(rN) is the function of the coordinates in the

system that defines the CV, sα is the value of the CV, ω and δsα are the height and width

of the added Gaussians respectively and τG is the frequency in which these Gaussians

are added to the system. By depositing Gaussians along the trajectory at small intervals

(τG), the system is driven forward in a random walk. Local energy minima that exist

within the system will get filled up with these Gaussians, driving the system away

from configurations it has visited previously towards new configurations. Figure 2.6

shows the addition of Gaussians (top graph) during the simulation. The simulation has

started in the central local minima, and after the addition of 20 Gaussians (blue line)

the system is driven to explore a different region of the phase space.

As the biased potential VG(rN , t) is a history dependent potential, an estimate of the

underlying free energy surface of the system can be recreated from the Gaussians added

during the simulation (Figure 2.6). The bottom graph shows this recovered free energy

surface. This free energy is a sum of the added Gaussians and as such is a function of

the collective variables used to drive the system. Equation 2.52 shows that the slow

deposition of the biased potential tends towards the negative of the free energy F .

lim
t→∞

VG(s, t) = −F (s) (2.52)
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Figure 2.6: Top: Time evolution of the added bias potential along a trajectory with
metadynamics simulations. Blue line: after the addition of 20 Gaussians the system
escapes the energy minimum. Red line: the biased potential after the addition of 69
Gaussians. Yellow line: biased potential after 180 Gaussians. Bottom: The free energy
surface approximation generated with the sum of the added Gaussians. From [122]. c©
IOP Publishing. Reproduced with permission. All rights reserved.

The system in metadynamics is biased along a trajectory described by the CVs, and

thus the choice of CVs is an important factor in order to create reliable trajectories

and free energy surfaces. The properties of the CVs must adhere to the following

principles:

• The CVs must be able to clearly distinguish between different states (configura-

tions) of the system. This includes not only the start and final configurations but

also any intermediate configurations.

• The CVs must be able to describe all the slow variables that occur during the

process of interest. If a CV descriptor is omitted, this process will not be observed.

• The number of CVs must be limited to avoid long simulation times to fill the free

energy surfaces.

The CVs can be any function of the coordinates in the system, such as geometry
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variables, coordination number or potential energy. A correct set of variables will

normally return a smooth free energy [122]. Metadynamics have been used in a range

of simulation studies. Quigley et al. [25, 34] used a combination of Steinhardt order

parameters [123] and the potential energy of the system as CVs to construct a free

energy landscape of the stability of CaCO3 nano particles in water. Bulo et al. [124]

used the distance between atoms, the coordination number, contact number and radius

of gyration as CVs to describe the binding of Ca2+ ions to poly acrylate chains in

water.

Metadynamics simulations provide a method to simulate larger systems whilst ensuring

that all of the phase space is sampled. Unlike methods such as umbrella sampling, the

history dependent bias potential that is added to the system allows for a estimation

of the free energy of the system to be be obtained. Instead of driving the system

along a set pathway, the metadynamics method enables the system to explore more

of the phase space. The main drawback of metadynamics is the difficulty of choosing

the appropriate CVs to describe the reaction, which greatly affect the results of the

experiment [125].
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Chapter 3

Inclusion of amino acids into calcite

crystals

3.1 Introduction

3.1.1 Inclusions within minerals

The inclusion of biomolecules within mineral crystals is a well known and well doc-

umented phenomenon. In nature, many biomolecules are responsible for the specific

nucleation and growth of minerals (Chapter 1.1.3) and these biomolecules often get

incorporated within the crystal. In the case of calcium carbonate, one example of this

phenomenon is with the structure of nacre (Figure 3.1) where, in addition to the organic

matrix in between the aragonite tablets, intra-crystalline proteins have been observed

within the aragonite single crystals [126]. The incorporation of these intra-crystalline

biomolecules in calcium carbonate is a widespread phenomenon, and recently Pokroy

et al. [87] studied the behaviour of biogenic calcite found in five different organisms

to study the effects of the inclusion of these biomolecules on the calcite crystal. They

found that these intra-crystalline proteins adhere to the calcite basal planes which

lie perpendicular to the c-axis of the crystal, an observation that was shared by Li
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et al. [127]. Using experimental techniques (annular dark-field scanning transmission

electron microscopy, ADF-STEM, in combination with focussed ion beam, FIB) they

were able to slice the surface of a sample of biogenic calcite from a mollusc shell and

create a three dimensional tomogram of the included biomolecules (Figure 3.2). The

biomolecules that were observed to be included within the single calcite crystals were

not incorporated in an isotropic manner. Perpendicular to the c-axis of the crystal the

particles were elongated, whereas along the c-axis they appeared more uniform and

circular, supporting the suggestion by Pokroy et al. that these inclusions adhere to

the planes perpendicular to the c-axis. The inclusion of these biomolecules within the

framework of the minerals leads to nanocomposite materials which exhibit enhanced

physical properties (such as hardness, fracture toughness and modulus) compared to

their geological mineral counterparts [41]. Thus, the inclusion of these biomolecules

within calcite crystals is an excellent method to (synthetically) alter the physical prop-

erties of these minerals.

Figure 3.1: SEM images of the lamellar growth of aragonite platelets in nacre. The
organic phase incorporated in between the platelets and within the single aragonite
crystals are the cause of the high hierarchical structure of the material. Reprinted
from [128] with permission from Elsevier.

The synthetic alteration of (calcium carbonate) crystals has been well documented, with

examples of the inclusion of organic dye molecules such as Congo Red within aragonite

and calcite to add colour to the normally transparent crystals going back centuries

[129]. More recently, Li et al. [130] used an ammonium diffusion method to grow single

calcite crystals from solution in the presence of an agarose (a linear polysaccharide)

hydrogel with the aim to mimic the fibrous organic matrix found in biogenic calcite.
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Figure 3.2: Three dimensional tomograph for biogenic calcite from Atrina rigida. The
organic phase is seen to be distributed throughout the whole crystal. From [127].
Reprinted with permission from the Wiley Company.

Using the same techniques as described above (ADF-STEM and FIB) they were able

to show that the fibrous biomolecules get incorporated within calcite, forming a three

dimensional network throughout the crystal, whilst maintaining a perfect rhombohedral

single calcite crystal. Calcite crystals were also grown by Pokroy et al. [87] in the

presence of the well known intra-crystalline protein caspartin [131] to analyse the effect

of the incorporation of this protein on the calcite lattice. Their experiments resulted

in the growth of single calcite crystals with different morphologies from those crystals

grown in the absence of caspartin. The lattice of the crystals with inclusions was

expanded anisotropically, with an increased lattice distortion in the c-direction of the

crystal.

The changes in physical properties of these nanocomposite materials in nature have

also been observed by Kim et al. [88] who artificially created a nanocomposite material

using calcium carbonate precipitation experiments in the presence of functionalised

polystyrene polymer micelles with diameters of 220 to 250 nm. This research group
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managed to synthesise single crystal calcite with organic inclusions of up to 20 vol %.

The inclusion of these macromolecules affected the physical properties of the mineral,

with a decrease in the modulus and hardness of the calcite being observed. However,

upon nano indentation, cracks appeared in the crystal faces and the polymer micelles

were found to bridge the gaps over these cracks, enhancing the fracture toughness of

the material when compared to pure calcite (Figure 3.3).

The same research group has managed to refine the process of the incorporation of a

range of biomolecules within calcite whilst still obtaining single crystals. They have

included large co-polymer micelles [132], reaching up to 13 wt % or 30 vol % of inclu-

sions that were uniformly distributed throughout the crystal without changing the mor-

phology of the crystal (Figure 3.4). The incorporation of such large macromolecules is

surprising but can be explained by a strong affinity between specific calcite surfaces and

the biomolecules, and the balance between the fast growth mechanism of the calcite and

the adsorption of the biomolecules. Presumably the affinity between the biomolecules

and the surface is strong enough to allow a molecule to reside on the surface long enough

for the fast growing calcite to precipitate around the molecule, enclosing it within the

crystal. Thus the specific interactions between the host crystal and the biomolecule to

be included plays an important factor in these inclusions.

Figure 3.3: Upon nano indentation the polymer micelles included within the calcite
crystal elongate and bridge the gap of the formed crack, inhibiting the crack propaga-
tion and enhancing the fracture toughness of the nano composite material. From [88].
Reprinted with permission from the Wiley Company.
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Figure 3.4: The polymer micelles included within the crystal are uniformly distributed
throughout the crystal, and not just present near the surface of calcite. From [88].
Reprinted with permission from the Wiley Company.

3.1.2 Amino acid inclusions

The importance of specific interactions between included biomolecules and the host

crystal has recently been investigated by Borukhin et al. [133], who published research

on precipitation experiments of calcium carbonate in the presence of small amino acids.

They adopted a systematic approach to map the incorporation of amino acids and the

effects of the incorporation of these amino acids on the lattice parameters of calcite.

The results from this study of the 20 common amino acids1 (with the exception of

the insoluble tyrosine) showed that most, but not all, amino acids can be incorporated

within a calcite crystal using an ammonium diffusion method (Figure 3.5). Of all amino

acids, aspartic acid (Asp) is the most readily incorporated within the calcite crystal

and a molar incorporation of 0.82 mol % was observed. It should be noted that these

experiments were performed with low amino acid concentrations in the solution (10 to

40 mM). Using X-ray diffraction the effects of the inclusion of the amino acids on the

c-lattice parameters of the calcite crystal were analysed (Figure 3.6). Upon inclusion of

1A list of all amino acids is included in Appendix A
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Asp a shift in the (101̄4) peaks to larger d-spacings can be observed, indicating that the

included amino acids have a significant effect on the lattice parameters of calcite. The

data in Figure 3.7 shows the distortion of the calcite crystal lattice upon the inclusion

of the amino acids. When normalising the lattice distortion to the molecular weight of

the included amino acids, the degree of packing of these species within the crystal can

be analysed, and the relative packing of two amino acids, histidine (His) and glycine

(Gly), can be seen to be enhanced. The effect of His, with a large imidazole ring, can be

explained by its bulk, but the inability of the small amino acid Gly to pack effectively

into the calcite lattice is not well understood.

Figure 3.5: Molar concentrations of amino acids included within the calcite crystal
using precipitation experiments. From [133]. Reprinted with permission from the Wiley
Company.

Based on the high levels of incorporation shown by Asp and the unusual packing be-

haviour of the small amino acid Gly, both amino acids were selected by Kim et al. [134]

for further in-depth analysis. Their analysis consisted of both experimental work and

computational simulations, which are described in this work. Using an ammonium dif-

fusion method [135] the research group studied the inclusion of Asp and Gly for a range

of amino acid concentrations in the initial precipitation solution. The use of higher

amino acid concentrations within the initial solutions resulted in much higher levels
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Figure 3.6: X-ray diffraction data for the d-spacing in the (101̄4) diffraction peaks upon
inclusion of aspartic acid within the calcite crystal. An increase in the d-spacing can
be observed upon inclusion. From [133]. Reprinted with permission from the Wiley
Company.

Figure 3.7: The distortion of crystal lattice in the c-direction upon inclusion of amino
acids. From [133]. Reprinted with permission from the Wiley Company.
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of amino acid inclusions than reported by Borukhin et al. [133]. The amino acid Asp

showed a maximum incorporation of 4.0 mol % with an initial amino acid concentration

of 50 mM (Figure 3.8). The inclusion of Gly resulted in similar incorporations, although

higher amino acid concentrations in solution were needed. At similar concentrations

of initial solution Gly was incorporated at lower levels than Asp, with a maximum

inclusion of 1.7 mol % at 100 mM. However, higher inclusions of Gly of 4.4 mol % and

6.9 mol % were obtained by increasing the concentration of amino acid concentrations

to 200 mM and 400 mM respectively. This data suggests that Asp is more readily

incorporated within the calcite crystal than Gly, supporting the findings by Borukhin

et al. [133].

The calcite crystals with incorporated amino acids were subjected to high resolution

synchrotron powder X-ray diffraction experiments to analyse the effect of the inclusions,

with both the peak shifts and peak broadening in the diffraction data being analysed.

The peak shifts are a measure of the lattice distortions within the crystals and the

data shows that in both the c- and a-directions the crystal lattice becomes distorted

upon inclusion of the amino acids (Figure 3.9). Inclusion of Asp and Gly gave a max-

imum distortion in the ∆c/c direction of 0.003 and 0.005 respectively, relative to the

original lattice parameters. The lattice distortion in the ∆a/a direction was an order

of magnitude lower with a maximum distortion of 0.00045 and 0.00065 for Asp and

Gly respectively. The discrepancy between the c- and a-axis lattice distortions can be

attributed to the anisotropic behaviour of the calcite crystal, with layers of calcium and

carbonate ions stacked horizontally in the (001) direction (Figure 1.1).

The peak broadening, a measure of the degree of local strain (microstrain) within

the crystal, of the inclusions is shown in Figure 3.10. Not all diffraction peaks are

broadened equally and this asymmetrical broadening is another indication that the

crystal is distorted anisotropically. Maximum peak broadening (measured as the full

width half maximum, FWHM) for the (006) plane were found at molar inclusions of

1.01 mol % and 1.70 mol % for Asp and Gly respectively. These inclusions caused a
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peak broadening of 0.05 for Asp and 0.07 for Gly. At higher inclusions of Asp the

peaks broadening levels out, whereas with Gly a contraction of the peaks is observed,

an indication that at these levels the amino acids could get incorporated within the

lattice via a different mode, such as aggregation of the biomolecules.

Figure 3.8: The effect of the amino acid concentration on the iInclusion of Asp and Gly
within the calcite crystal. The data shows a linear relationship between inclusion and
amino acid concentration of initial solution. From Kim et al. [134].

Figure 3.9: High resolution synchotron powder X-ray diffraction data for calcite crystals
with both Asp and Gly included for the a-direction and c-direction. The crystal gets
distorted in both directions, although the amount of distortion is higher within the
c-direction. From Kim et al. [134].

Raman spectroscopy of the samples was performed to analyse the crystal lattice by

investigating the configuration and molecular environment of the carbonate groups.

The vibrational frequencies at ∼283 cm−1, corresponding to the optical phonons of
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Figure 3.10: High resolution synchotron powder X-ray diffraction data shows peak
broadening of the calcite peaks within the crystals. This indicates a degree of micros-
train within the crystal upon inclusion. From Kim et al. [134].

carbonate lattice vibrations (Figure 3.11a), and ∼1085 cm−1, corresponding to the

carbonate v1 symmetric stretch (Figure 3.11b) were investigated [136]. The data shows

that upon inclusion of amino acids the two vibrational peaks shifted by approximately

4 cm−1 and 1.5 cm−1 respectively. The same shifts are observed for both Asp/Gly

inclusion, and these shifts are another indication of the disruption to the crystal lattice

upon the inclusion of biomolecules.

(a) Carbonate lattice mode vibrations. (b) Carbonate v1 symmetrical stretch.

Figure 3.11: Schematic representation of the Raman modes of vibration for carbonates.

Visual analysis of the morphology of the crystals was performed using scanning electron

microscopy (Figure 3.12). The morphologies of the crystals remain perfect rhombohe-

dral until initial concentrations of 5 mM Asp and 100 mM of Gly. The discrepancy

between the onset of rounded edges and elongation is consistent with the lower level
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of inclusions of Gly as seen in Figure 3.8. Similar morphology changes of calcite crys-

tals have been observed in the presence of many other biomolecules, as discussed in

Chapter 1.1.4.

The similarities between the calcite crystals with amino acid inclusions and biogenic

calcite can further be seen when analysing the mechanical properties of these crystals.

The hardness of these crystals (the resistance of the material to localised plastic de-

formation) was measured using nano indentation and the data shows an increase in

hardness of the material with an increasing amount of included amino acid. The hard-

ness increased from 2.3±0.2 GPa for pure calcite to 4.1±0.3 GPa and 3.4±0.4 GPa for

the inclusion of Asp and Gly respectively. These values are similar to those found in the

literature of 2.30±0.14 to 2.54±0.07 GPa for Icelandic Spar calcite (geological calcite)

and 3.47±0.21 to 4.19±0.27 GPa for the biogenic calcite of a mollusc [43].

Figure 3.12: SEM images of calcite with Asp and Gly inclusions shows changes in
morphology as a function of Asp (a-f) and Gly (g-l) concentration in solution. a. 1
mM, b. 5 mM, c. 10 mM, d. 20 mM, e. 50 mM and f. 100 mM. (scale bar = 10 µm).
g. 5 mM, h. 10 mM, i. 20 mM, j. 50 mM, k. 100 mM and l. 200 mM. (scale bar = 20
µm). From Kim et al. [134].
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3.1.3 Aims

The inclusion of these biomolecules within the calcite crystal can be observed via many

experimental techniques, as described above. However, the modes of inclusion on an

atomistic length scale will not necessarily be observable using these techniques. Us-

ing computational simulations, the interactions between the biomolecules and the ions

within the crystal can be observed in great detail, and possible modes of the inclusion

of these species can be suggested. Within this work molecular dynamics simulations

were performed to analyse the interactions between the amino acids Asp and Gly and

the calcite crystal. Using this technique the behaviour of the crystal lattice could be

observed when these biomolecules were inserted within small vacancies in the crys-

tal. Close collaboration with the experimental research groups of Fiona Meldrum2 and

Lara Estroff3 enabled the conditions of the simulations to be in line with experimental

protocols.

3.2 Methods

3.2.1 Preparation of amino acids

The charged state of amino acids changes depending on the pKa of the amino acid

functional groups and the environment the amino acid is exposed to. The pH range of

the experimental set-up for the precipitation experiments typically exceeds pH 9 [135]

and as the pKa values of the amino acids used in this work are close to the experimental

pH values, a range of charged states must be considered. Four differently charged amino

acids were used within this work, to include the zwitterionic states of the amino acids

(Figure 3.13).

The amine functional groups of the amino acids were considered to be either neutral

2School of Chemistry, University of Leeds, Leeds.
3Department of Materials Science and Engineering, Cornell University, Ithaca, NY.
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(NH2) or positively charged (NH3
+), whereas the carboxyl groups were always consid-

ered to be negatively charged (COO–) due to the pKa of these groups. The pKa values

for the amine and carboxyl functional groups and the overall charges of these amino

acids are detailed in Table 3.1.

(a) Asp1−. (b) Asp2−. (c) Gly0. (d) Gly1−.

Figure 3.13: Chemical structures of the four amino acids used within this work.

Amino acid pKa(NH2) pKa(COOH) pKa(COOH sidechain) Total charge

Asp1− 9.82 2.10 3.86 -1

Asp2− 9.82 2.10 3.86 -2

Gly0 9.60 2.34 - 0

Gly1− 9.60 2.34 - -1

Table 3.1: Details of the pKa values of Asp and Gly and the total charge of the species
used in this work.

3.2.2 Preparation of mineral

A calcite crystal of 144 unit cells measuring 34 Å x 44 Å x 34 Å and containing 864

CaCO3 formula units was created such that the symmetric periodicity of the crystal

was kept intact, thus creating a bulk crystal system when simulated with periodic

boundary conditions. The orientation of the crystal was chosen such that the (001)

planes of calcite were positioned perpendicular to the z -axis. The reasoning for this

orientation was that anisotropic expansion of the crystal lattice along the crystal a/b-

and c-directions was also along the Cartasian x/y- and z -directions. Defects were

created within the crystal by removing Ca2+ and CO3
2– ions situated next to each

other - either in the same or adjacent calcite layers - to produce a cavity and these

cavities were filled with small amino acids. The amino acids were simulated within an

71



aqueous environment to obtain an initial configuration, before being inserted within the

cavities in a random orientation using the program Packmol [137]. Figure 3.14 details

the method used to create the cavities within the crystal and the inclusion of the amino

acid Asp. To avoid an overall net charge of the system, the number of ions deleted

from the crystal varied, as set out in the solution chemistry as shown in equations 3.1

to 3.4:

CaCO3(s) + 2nAsp1−(aq) + nCa2+(aq) −−⇀↽−− CaCO3 · 2nAsp1− · nCa(s) (3.1)

+ 4nCaCO3(s)

CaCO3(s) + nAsp2−(aq) + nCa2+(aq) −−⇀↽−− CaCO3 · nAsp2− · nCa(s) (3.2)

+ 2nCaCO3(s)

CaCO3(s) + nGly0(aq) −−⇀↽−− CaCO3 · nGly0(s) (3.3)

+ 2nCaCO3(s)

CaCO3(s) + 2nGly1−(aq) + nCa2+(aq) −−⇀↽−− CaCO3 · 2nGly1− · nCa(s) (3.4)

+ 4nCaCO3(s)

Within these equations, the first term denotes a solid block of calcite (CaCO3(s)) that is

the whole simulation cell. Next, the amino acid and a calcium counter ion are simulated

in an aqueous environment (aq). These amino acids with their counter ion are then

placed within the inclusion site of the calcite block, described by the first term on the

right hand side of the equation. In the case of Asp1– the inclusion site is generated by

the removal of three Ca2+ and three CO3
2– ions from the calcite block. These ions are

removed from the inclusion site to become part of the bulk lattice in a way analogous

to the definition of a Schottky defect. Thus, for n inclusions, 3nCa2+ and 3nCO3
2– ions

make place for 2nAsp1– and nCa2+.
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The energetics of the system have to be compared to the reference state of all separate

ions of the system. This comparison can be made with either the separate ions in

solution or as part of the bulk calcite crystal. In this work the energetics of the excess

Ca2+ and CO3
2– ions were calculated with respect to bulk calcite. With this method

the results did not depend on the reference state of the system, and any effect of the

solvation of the mineral ions and the effects of structured water layers surrounding these

ions in solution did not affect the energetics. An increasing number of amino acids was

incorporated within the crystal in the range of 0 up to 5.2 wt %, corresponding to 0 to

2.3 mol %, or 0 to 25 molecules.

The detection of small biomolecules in calcite crystals and their distribution through-

out the crystal is not possible using experimental techniques, although the detection of

larger biomolecules is possible [88,127,130,132]. The results of these studies show that

the large biomolecules are distributed evenly throughout the crystal and are not ag-

glomerated on the surface. Additionally, they observed that although the biomolecules

agglomerated in solution, these clusters did not interact with the growing crystal sur-

face [132]. Based on these results the amino acids within this work were modelled as

individual inclusions distributed throughout the crystal instead of agglomerated clus-

ters. As the amino acids are thought to be incorporated within the crystal by a rapid

crystal growth front, the movement of the biomolecule whilst adsorbed on the surface

will be minimal, resulting in a small, confined vacancy in which the amino acid is sit-

uated. Based on this presumption the vacancies within the crystal were modelled such

that the amino acids were confined within a small space.

3.2.3 Modelling protocols

The models of the amino acids in this work were prepared using the Amber 12 Antechamber

package [138]. The atomic charges of the molecules were calculated using the AM1-BCC

method [139], further explained in Appendix B. The inter- and intra-molecular inter-
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(a) The calcite crystal without any defects or
inclusions within its structure.

(b) Two carbonate ions and one calcium ion
are selected for removal (coloured green).

(c) The carbonate and calcium ions are re-
moved from the crystal to form a cavity.

(d) Using the program Packmol, the amino
acid Asp2− is inserted within the cavity.

Figure 3.14: The mechanism of inclusion of amino acids within the calcite crystal, in
which several ions are selected for removal before an amino acid molecule is inserted
within the created vacancy. Oxygen, carbon, nitrogen and hydrogen atoms are depicted
in red, cyan, blue and white respectively, with calcium ions represented as cyan spheres.
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actions of the calcite were described by the potentials developed by Raiteri et al. [26].

The well used potentials from the AMBER ff12SB force field [111] were used for the

amino acids and water molecules. The cross-terms between the organic (amino acids

and water) and inorganic (CaCO3) phases were calculated using the method described

by Freeman et al. [103]. For further details on the potentials see Chapter 2.2.4. The

potential details for these simulations are shown in Appendix E.

Inclusion simulations

All simulations of the calcite with inclusions (Figure 3.15) were carried out using the

molecular dynamics package DL POLY Classic [140]. The systems were equilibrated at

a temperature of 300 K for 100 ps with a timestep of 0.1 fs in an NVT ensemble with

a Nosé-Hoover thermostat [119] with a relaxation time of 0.5 ps. The configurational

energy of the system during the equilibration simulations was analysed to ensure a fully

equilibrated system. A second equilibration simulation for 100 ps with a timestep of

1.0 fs in an NPT ensemble at 300 K and and at standard pressure (105 Pa) using a

Nosé-Hoover thermostat and a Hoover barostat [141], both with a relaxation time of

0.5 ps, was performed. Subsequently, a 2.0 ns simulation using a timestep of 1.0 fs in

an NPT ensemble with the same thermostat and barostat variables was carried out for

data analysis.

Anisotropic expansion

In order to analyse the anisotropic behaviour of the calcite crystal, simulations were car-

ried out in which the crystal was independently expanded in the a/b- and c-directions.

The initial setup of the crystal was chosen such that the (001) planes of calcite were po-

sitioned perpendicular to the Cartasian z -axis, to enable this expansion to correspond

to the Cartasian x/y- and z -directions. Three separate systems were simulated with

2.3 mol % Asp2−, 2.8 mol % Gly0 and no inclusions. These amounts of inclusions were
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Figure 3.15: Model of the calcite crystal with seven amino acids included throughout
the crystal.

chosen to reflect the maximum level of inclusion that were observed with experiments

by the research group of Meldrum. The Asp2− and Gly0 systems were chosen as they

represented the closest pH match to experiments. The inclusions were inserted into

the crystal at random positions and in random orientations, as described above. Each

simulation box was expanded manually along either the crystal a/b-axes or the c-axis

independently in increments of 0.05 % of the initial lattice parameter. After each ex-

pansion the systems were subjected to an equilibration simulation at a temperature of

300 K in an NVT ensemble with a Nosé-Hoover thermostat with a relaxation time of

0.5 ps for 10 ps with a timestep of 1.0 fs, followed by a 0.5 ns data production run.

For these anisotropic expansion simulations an NσT ensemble (constant number of par-

ticles, constant stress and constant temperature) could be implemented. By applying a

constant stress along all cell parameters, this ensemble allows those cell parameters to

vary anisotropically. However, for this work we opted to use an NVT ensemble in which

the cell size was manually maintained and expanded. By altering the cell dimensions

independently, the anisotropic behaviour of the crystal could be mapped in detail. This
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method not only provided the energy minimum of the lattice parameters but also the

energy gradients surrounding this minima.

Additional simulations

Additional simulations were carried out to calculate the formation of vacancies within

the crystal. In order to keep the overall charge of the system neutral, the energy of

pair defects was considered, where both a cation and an anion are removed from the

crystal. The defects were created within the crystal by removing a Ca2+ and CO3
2–

ion situated next to each other - either in the same or adjacent calcite layers. An

increasing number of defects were created throughout the crystal in the range of 0 to

10. The systems were equilibrated at a temperature of 300 K and at standard pressure

(105 Pa) for 100 ps with a timestep of 1.0 fs in an NPT ensemble using a Nosé-Hoover

thermostat and a Hoover barostat [141], both with a relaxation time of 0.5 ps. Data

was collected during subsequent simulations of 1.0 ns with a timestep of 1.0 fs using

the same parameters.

The inclusion energy of water molecules within the calcite crystal was modelled by

removing a Ca2+ and CO3
2– ion situated next to each other - either in the same or

adjacent calcite layers - from the crystal. Subsequently two TIP3P [104] water molecules

were inserted within the created vacancy in a random orientation using the program

Packmol. An increasing amount of vacancies with included water molecules was created

throughout the crystal in the range of 0 to 10 vacancies. The systems were equilibrated

at a temperature of 300 K and at standard pressure (105 Pa) for 100 ps with a timestep of

1.0 fs in an NPT ensemble using a Nosé-Hoover thermostat and a Hoover barostat [141],

both with a relaxation time of 0.5 ps. Data was collected during subsequent simulations

of 1.0 ns with a timestep of 1.0 fs using the same parameters.

To calculate the energies of inclusion for the systems according to the solution chemistry

shown in Equations 3.1 to 3.4, additional simulations were carried out for the calculation
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of the system energy of the amino acids, calcium and carbonate ions in solution. The

necessary simulations performed are detailed in Table 3.2. All of these simulations

were carried out using DL POLY Classic. Using the program Packmol all molecules

were randomly inserted in a box of 30 Å x 30 Å x 30 Å, containing 1100 TIP3P water

molecules. The simulation of pure water was of the same dimensions and had no other

species included. All simulations were equilibrated at a temperature of 300 K for 1.0

ns with a timestep of 1.0 fs in a NVT ensemble using a Nosé-Hoover thermostat with

a relaxation time of 0.5 ps, and subsequently equilibrated for 1.0 ns with a timestep of

1.0 fs in a NPT ensemble using a Nosé-Hoover thermostat and a Hoover barostat, both

with a relaxation time of 0.5 ps. The configurational energy of the systems was obtained

from subsequent data runs of 1.0 ns in an NPT ensemble with the same variables.

Equation Species to simulate

3.1 2 Asp1−, 1 Ca2+

3.2 1 Asp2−, 1 Ca2+

3.3 1 Gly0

3.4 2 Gly1−, 1 Ca2+

3.1 to 3.4 2 CO3
2–, 2 Ca2+

3.1 to 3.4 3 CO3
2–, 3 Ca2+

3.1 to 3.4 H2Oa

Table 3.2: Details of species to be simulated in an aqueous environment. a simulation
of pure water, without any added ions.

3.3 Results and discussion

3.3.1 Energies of inclusion

In all systems the calculations of the energetics of the excess Ca2+ and CO3
2– ions

were performed with respect to bulk calcite so that the results did not depend on the

reference state of the system. The energy of inclusion of the amino acids cannot be

directly calculated, but can be determined using the solution chemistry as shown in
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Equations 3.1 to 3.4. The reaction energy of the inclusion of n amino acids within

the solid crystal: amino acid(aq) −−⇀↽−− amino acid(s) can therefore be calculated as

Equations 3.5 to 3.8:

EAsp1−inclusion = (ECaCO3·2nAsp1−·nCa(s) + E4nCa2+(s) + E4nCO3
2−(s)) (3.5)

− (ECaCO3(s) + E2nAsp1−(aq) + EnCa2+(aq))

EAsp2−inclusion = (ECaCO3·nAsp2−·nCa(s) + E2nCa2+(s) + E2nCO3
2−(s)) (3.6)

− (ECaCO3(s) + EnAsp2−(aq) + EnCa2+(aq))

EGly0inclusion = (ECaCO3·nGly0(s) + E2nCa2+(s) + E2nCO3
2−(s)) (3.7)

− (ECaCO3(s) + EnGly0(aq))

EGly1−inclusion = (ECaCO3·2nGly1−·nCa(s) + E4nCa2+(s) + E4nCO3
2−(s)) (3.8)

− (ECaCO3(s) + E2nGly1−(aq) + EnCa2+(aq))

The two terms in brackets represent the final and initial states of the system. The

final state also includes water without ions in it. Instead, the ions removed from the

inclusion site are added as extra bulk crystal. The inclusion energies calculated for

all four amino acid inclusions via the method in Equations 3.5 to 3.8 are shown in

Figure 3.16. This plot shows the amount of energy (in kJ mol−1, representing the total

energy of the inclusion per simulation cell, not per mol amino acid included) that is

required to include a certain mol % amino acid within the crystal. The energy for each

inclusion rises with an increasing amount of included amino acid. It is obvious from

this graph that the inclusion energies are particularly high, with the energy of including

5 mol % amino acid being between 10,000 and 18,000 kJ mol−1. The fact that these

energies of inclusions are so high and that a rapid inclusion of these species are observed

throughout experiments strongly suggests that a kinetic pathway of inclusion for these

small organic molecules is being used, rather than a thermodynamic mechanism being
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found. The difference between individual charged amino acids is hard to discern from

these simulations. Out of all four species, Gly1− is seen to have the highest energy of

inclusion, whereas Gly0 exhibits the lowest energy of inclusion, similar to Asp2−. The

inclusion of Asp1− lies in between these values, and a crossover with Asp2− at low levels

of incorporation and with Gly1− at higher levels of incorporation is observed.

Figure 3.16: Inclusion energies calculated using molecular dynamics simulations for
Asp1−, Asp2−, Gly0 and Gly1−. The graph shows the amount of energy that is required
to include a certain mol % amino acid within the crystal.

In order to analyse the high energy of inclusion observed in the above simulations,

the inclusion energies of the amino acids in calcite were compared to vacancies in the

crystal and the inclusion of water molecules within the cavities created. Fisler et al. [100]

previously calculated the energy of a Schottky pair defect - a defect where both a Ca2+

and a CO3
2– were removed from the crystal - as 46.378 eV (4474.796 kJ mol−1). Note

that this value represents the removal of a defect to an infinite distance and not - as

is the norm for Schottky defect calculations - to the surface of the calcite. This value

should therefore be interpreted as a maximum defect energy. The energy for n pair

defects can be calculated via Equation 3.9:

Epairdefect = (ECaCO3defects
+ nECa2+(s) + nECO3

2−(s))− (ECaCO3(s)) (3.9)
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As with the inclusion of amino acids, these energies are calculated with respect to bulk

calcite. Up to ten defects were simulated, randomly placed throughout the crystal,

and the average energy per defect in these simulations (Table 3.3) ranges from 338.8

to 461.9 kJ mol−1 for a single defect to ten defects in the crystal respectively. These

simulations show that even without larger biomolecules included these calcite crystals

are subjected to a high degree of strain, evident from the relative high energies for

the crystals with empty defects, and that the individual defect energy rises with an

increasing amount of defects. The inclusion of two water molecules within these empty

defects led to a slight increase of the defect energies of between 25 to 50 kJ mol−1, as

shown in Table 3.3.

Number of Total vacancy Average vacancy Total water Average water

defects energy (kJ mol−1) energy (kJ mol−1) energy (kJ mol−1) energy (kJ mol−1)

1 338.5 338.8 384.9 384.9

2 805.0 402.5 891.7 445.9

3 1250.3 416.8 1399.7 466.6

4 1763.0 440.8 1865.8 466.5

5 2226.8 445.4 2352.3 470.5

6 2680.3 446.7 2912.0 485.3

7 3146.5 449.5 3405.7 486.5

8 3596.8 449.6 3987.5 498.4

9 4156.8 461.9 4414.1 490.5

10 4616.0 461.6 5071.1 507.1

Table 3.3: Defect energies for vacancy defects and included water molecules within
these defects calculated with the MD simulations within this work. The energy in kJ
mol−1 represents the total energy of the defects or inclusion per simulation cell, not per
mol of excluded CaCO3/included water.

3.3.2 Lattice distortion

The influence of the amino acid inclusions on the crystal lattice during the simulations

was also analysed and it was found that there is indeed a certain degree of disruption

to the lattice. The global disruption to the lattice was analysed using the radial distri-
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bution function (RDF), or pair correlation function. In an isotropic system, the RDF,

g(r), describes the probability of finding an atom at distance r from another reference

atom with respect to the probability for a random system, as described in Chapter 2.3.4

and is a useful tool to describe the structure of a system. The distribution of the calcium

ions throughout the system during the molecular dynamics simulations was analysed

by calculating the RDF of the calcium to calcium distances, shown in Figure 3.17. The

data for calcite without any inclusions shows a series of well defined, regular peaks,

indications of the regular crystal without distortions. The data for the inclusions of

Asp2− and Asp1− and the data for Gly0 and Gly1− showed a similar behaviour and

for clarity only the data for Asp2− and Gly0 is shown. The inclusion of 2.3 mol %

Asp2− within the crystal shows no shift in the peaks with respect to the crystal without

inclusions. The peaks are however broadened, with the first peak showing a FWHM

broadening of 0.045 Å. Upon the inclusion of 2.8 mol % Gly0, the first peak is shifted to

the right by 0.07 Å and shows a broadening of 0.07 Å. The regularity seen for the lattice

without inclusions has made way for irregular single peaks, showing that throughout

the crystal the calcium to calcium distances are disordered. The same behaviour can

be observed with the radial distribution functions of the calcium to carbonate-oxygen

distances within the crystal (Figure 3.18). In this instance the inclusion of both Asp

and Gly causes the regularity of the peaks in the graph to be distorted and shifted away

from the pure calcite peaks. The first peak broadening for the inclusion of Asp2− and

Gly0 is 0.09 and 0.1 Å respectively.

A full width at half maximum (FWHM) analysis of the first peak in the calcium to

calcium and calcium to carbonate-oxygen RDF plots has also been carried out. The

FWHM is a description of the width of a peak at half the maximum height of the peak.

The RDF data for both Asp2− and Gly0 were analysed and are shown in Figure 3.19.

This data shows that upon inclusion of Asp and Gly the disruption to the calcium to

carbonate disruption is larger than the calcium to calcium distances. The onset of the

disruption to the crystal can be seen to start early on in the inclusion process for Gly0
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Figure 3.17: Radial distribution function of the calcium to calcium distance within the
calcite crystal with no inclusion (red dotted line), 2.3 mol % Asp2− inclusion (green
solid line) and 2.8 mol % Gly0 inclusion (blue solid line).

Figure 3.18: Radial distribution function of the calcium to carbonate-oxygen distance
within the calcite crystal with no inclusion (red dotted line), 2.3 mol % Asp2− inclusion
(green solid line) and 2.8 mol % Gly0 inclusion (blue solid line).
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(0.25 mol %), whereas in the case of Asp2− the onset of this disruption starts later

(0.75 mol %), indicating that the calcite crystal can accommodate the inclusion of Asp

better than the inclusion of Gly.

Figure 3.19: Full width at half maximum analysis of the calcium and calcium to
carbonate-oxygen RDF data for Asp2− and Gly0 inclusions.

The RDF between the calcium to carbonate-oxygen can also be compared to the RDF of

the calcium to carboxyl-oxygen of the included amino acids. These data (Figure 3.20)

show that the peaks of the calcium to carboxyl-oxygen for the inclusion of Asp and

Gly are comparable to the calcium to carbonate-oxygen distances in the original calcite

lattice, suggesting that the carboxyl functional groups of the included amino acids

occupy the positions of the carbonate ions in calcite. This effect is more pronounced

with the inclusion of Asp, showing well defined peaks, whereas Gly shows a more

disrupted positioning. Asp is seen to be incorporated within the calcite crystal such

that both carboxyl functional groups mimic the distance and positions of the carbonate

ions. With the inclusion of Gly, only one carboxyl functional group is present, resulting

in a less favourable positioning.

Visual analysis of the inclusions of these amino acids confirm this behaviour, where the

Asp carboxyl groups mimic the positions of carbonate groups. The amine functional

group is situated in the place of the vacant calcium (Figure 3.21). Although during the
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Figure 3.20: Radial distribution function of the calcium to carbonate-oxygen within
calcite without inclusions (red dotted line) and the calcium to carboxyl-oxygen distances
for 2.3 mol % Asp2− inclusion (green solid line) and 2.8 mol % Gly0 inclusion (blue solid
line).

setup of the simulations the amino acids are placed within the vacancies of the crystal

in a random orientation, throughout the simulations the majority of the amino acids

rotate and position themselves such that the carboxyl groups mimic the carbonate

vacancies in the crystal. There are a few exceptions and, as mentioned before, the

inclusion energy (Figure 3.16) for some of the amino acids show an irregular behaviour,

particularly pronounced with the inclusion energy for Asp2−. The discrepancy of these

data points can be attributed to local distortions caused by the misalignments of the

included amino acids in the crystals. When analysing the simulations in which the

energy of inclusion was particularly high, the amino acids were found not to occupy

the ion sites directly, and most likely the amino acid has been positioned such that a

rotation or translation of the molecule would result in a large energy barrier, causing

the configuration to get stuck in a local rather than global minimum.
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Figure 3.21: Visual analysis of the inclusion of Asp2− within the calcite crystal. The
amine functional group is situated in the place of the vacant calcium ion and the
carboxyl groups mimic the positions of carbonate groups.

3.3.3 Anisotropy of calcite

In addition to analysing the local distortions in the lattice due to the interaction between

the amino acids and the calcite crystal, simulations were performed to analyse the effect

that the inclusion of amino acids have on the global lattice parameters of calcite. Data

obtained from X-ray diffraction experiments by Borukhin et al. [133] and Kim et al. [134]

and Raman spectroscopy experiments by the latter research group all show that the

calcite crystal responds anisotropically to the inclusion of amino acids, with the c-

direction of the crystal experiencing a significantly higher disruption than the a- and

b-directions. With the molecular dynamics simulations of calcite without inclusions

and with the inclusions of Asp2− and Gly0, the total configurational energy of the

system was monitored whilst the simulation box was expanded manually along the

crystal a/b-axes or the c-axis independently. This method allowed the generation of

a three dimensional plot of the configurational energy of the crystal under the strain

of expansion. These three dimensional plots are shown in Figures 3.22 to 3.27, which

show the configurational energy of the systems as a function of the change of lattice

parameters (∆ab/ab) and (∆c/c) with respect to the original calcite lattice parameters.

In these plots the configurational energy is normalised between 0 and 1. For clarity,

these plots have also been converted to contour plots, shown in Figure 3.28.
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Figure 3.22: Three dimensional surface of anisotropy of calcite with no inclusions.

(a) a/b-direction. (b) c-direction.

Figure 3.23: Three dimensional surface of anisotropy of calcite with no inclusions.
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Figure 3.24: Three dimensional surface of anisotropy of calcite with included Asp2−.

(a) a/b-axis (b) c-axis

Figure 3.25: Three dimensional surface of anisotropy of calcite with included Asp2−.
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Figure 3.26: Three dimensional surface of anisotropy of calcite with included Gly0.

(a) a/b-axis (b) c-axis

Figure 3.27: Three dimensional surface of anisotropy of calcite with included Gly0.
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When analysing the data for the expansion of calcite without any inclusions, the energy

minimum is found when no expansion has occurred, which can be expected from a calcite

structure in its natural, low energy conformation. Expansion of this crystal in both

the a/b- and c-directions results in unfavourable configurations as the configurational

energy increases. The expansion in the a/b-direction is less favourable by a factor

of two than the c-direction, as can be seen from the steeper increase in energy along

this direction. The expansion of the crystal with 2.3 mol % included Asp2− shows a

favourable expansion along the c-direction, and the energy minimum for the crystal is

found to be shifted such that the lattice parameters are distorted by ∆ab/ab = 0.0008

and ∆c/c = 0.002 with respect to the original calcite structure. This preference of

expansion along the c-axis can further be observed by the differences in gradient of

the configurational energy between the a/b- and c-directions (Figures 3.25a and 3.25b

respectively).

A similar effect on the calcite crystal is seen for the inclusion of 2.8 mol % Gly0 (Fig-

ures 3.26 and 3.27), where the minimum energy configuration is found with an expansion

of 0.0002 and 0.003 for ∆ab/ab and ∆c/c respectively. Similarly, the configurational

energy of the system show that the steeper gradients are observed when moving along

the ab-axis, revealing the anisotropic behaviour of the calcite crystal upon inclusion of

Gly. Data of these simulations are in good agreement with the X-ray diffraction data

obtained by Kim et al. [134] who found values of ∆ab/ab = 0.0004 and ∆c/c = 0.0025

for similar Asp inclusions and ∆ab/ab = 0.0005 and ∆c/c = 0.0038 for similar Gly

inclusions.

When analysing biogenic calcite samples that have intra-crystalline biomolecules in-

cluded within the crystal, the same anisotropic effects can be observed, as shown by

Pokroy et al. [87]. This study analysed the disruption to the lattice parameters of

biogenic calcite and found maximum ∆a/a distortions of 0.0008 and maximum ∆c/c

distortions of 0.002 compared to geological calcite samples. In all cases the distortion

in the c-direction was significantly higher than the a-direction. They explained this
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(a) No inclusion. (b) 2.3 mol Asp2− inclusion.

(c) 2.8 mol Gly0 inclusion.

Figure 3.28: Contour plots of the anisotropy of calcite crystal. The 0,0 point indicated
by the crossed lines represents the energy minimum of calcite without inclusions. The
red dot on the plots for Asp and Gly represents the expansion seen in experimental
data by Kim et al. [134].
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anisotropic behaviour of calcite with the fact that the intra-crystalline biomolecules are

situated on the basal plane of calcite, perpendicular to the c-axis of the crystal. This

causes the carbonate and calcium layers of the crystal to be pushed away from each

other by the incorporation of these biomolecules, resulting in a greater disruption in

the c-direction than in the a- or b-directions of the crystal. The same can be observed

when visually analysing the molecular dynamics simulations in this work (Figure 3.29).

The included amino acids position themselves in between the planes perpendicular to

the c-axis of the crystal. This causes the crystal planes to be pushed further apart,

resulting in an anisotropic distortion.

Figure 3.29: The amino acids Asp and Gly included within the calcite crystal are
observed to position themselves between the planes perpendicular to the c-axis of the
crystal, causes the crystal planes to be pushed further apart, resulting in an anisotropic
distortion.

3.4 Conclusion

The molecular dynamics simulations of the inclusion of amino acids performed here

show that the inclusion of Asp and Gly within a calcite crystal results in a high energy

of inclusion. Together with the high inclusion levels found in experiments this supports
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the argument that the inclusion of these species is controlled via a kinetic rather than

via a thermodynamic pathway. The high energies obtained from the vacancy defect

simulations and the inclusion of water reaffirm this point of view.

Structural data obtained from these simulations suggest that Asp is more readily in-

corporated within the crystal whilst causing a minimal disruption to the crystal lattice.

The inclusion of Gly on the other hand causes more pronounced lattice distortions, ev-

ident from the RDF and FWHM data. This can be explained by the geometry of Asp

where the distances between both carboxyl functional groups are such that upon inclu-

sion the amino acid can mimic both the distances and positions of vacant carbonate

ions, with the amine functional group occupying a vacant calcium position. With no

side chain and only one carboxyl group, the positioning of Gly within the crystal is less

favourable. These results are in good agreement with recent experimental results [134],

that suggest an easier incorporation of Asp compared to Gly. The defect energy and

the structural data from these simulations suggest that a ‘goodness of fit’ principle is

maintained, whereby molecules will get incorporated within the calcite crystal if the

disruption to the lattice can be minimised.

Simulations on the expansion of the calcite crystal in both the a/b- and c-directions

show the same anisotropic of the calcite behaviour upon inclusion as seen in various

experiments. The expansion of the crystal in the c-direction is an order of magnitude

larger than the expansion in the a/b-directions. The energy minima at expansions of

∆ab/ab = 0.0008 and ∆c/c = 0.002 for Asp and ∆ab/ab = 0.0002 and ∆c/c = 0.003

for Gly are similar to those from X-ray diffraction data. These values also show a

remarkable similarity to biogenic calcite with intra-crystalline proteins, suggesting that

the inclusion of both small and large biomolecules result in similar structures. The

current simulations show that the included biomolecules are positioned in between the

planes perpendicular to the c-axis of the crystal, as previously proposed by Borukhin

et al. [133].
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Chapter 4

Conformational behaviour of

tripeptides on calcite surfaces

4.1 Introduction

As described in Chapter 1.1, biomolecules such as proteins, peptides, polysaccharides

and polymers can alter the polymorph selection, crystal face selection and nucleation

and growth rates of calcium carbonate crystals. Some of the proteins that are involved

with the biomineralisation processes in natural organisms have been found to be intrin-

sically disordered proteins (IDPs) - proteins that lack a fixed three-dimensional ordered

structure. In this chapter the results of computational simulations and experimental

studies of a short tripeptide (Glu-Asn-Gly) are discussed. This tripeptide is used as

model system for IDPs and its conformational behaviour and adsorption onto calcite

are studied.

4.1.1 Intrinsically disordered proteins

The paradigm in structural biology that the function of a protein is linked to its three-

dimensional structure is widely used and accepted. However, many proteins and protein

94



domains exhibit little or no globular structure whatsoever, suggesting that this view

should be reassessed. Over the years the appearance of intrinsically disordered (or un-

structured) proteins has been discussed in a range of reviews [142–145]. IDPs are of two

kinds: intrinsic molten globular structures, containing partial folded regions, or random

coiled structures [144]. The structures of proteins and the disorder within them can

be assessed using various techniques, such as X-ray crystallography, nuclear magnetic

resonance (NMR), ultraviolet-visible (UV-vis) spectroscopy, hydrodynamic techniques

(gel filtration, dynamic light scattering) or circular dichromism (CD) spectroscopy. CD

spectroscopy can provide structural information of proteins by detecting the presence

of secondary structures such as α-helices, β-sheets, β-turns and random coils. This

technique is widely used to assess the secondary structures of IDPs.

The amino acid sequence (primary protein structure) can also provide information on

the structure of the protein. Amino acids1 that induce flexibility, low hydrophobicity

and a high net charge are indicators of the absence of structure in proteins and the

presence of amino acids such as Ala, Glu, Gly, Lys, Pro, Gln, Arg, Ser, Asp and Asn

are found to promote the disordered structures in proteins [144, 145]. Vice versa, the

inclusion of amino acids such as Cys, Phe, Ile, Leu, Val, Trp and Tyr are depleted in

disordered protein structures.

Robinson and Robinson [146] performed a statistical study of unstable and flexible

residue triplets and found that Glu and Asn are often found within these triplets.

With triplets involving Asn, the nearest neighbours most frequently found on either

side of this residue were Gly and Glu, with the tendency for Gly to be on the right of

Asn, stabilising the normally flexible amino acid Asn. Within other studies of flexible

domains of proteins and peptides, such as hairpin turns and reverse turns, the residues

Asn and Gly are often seen to be involved [147–149]. This Asn-Gly repeat is the same

sequence that is found within many biomineralisation proteins, such as AP7 and n16,

as described below.

1A list of amino acids is included in Appendix A.
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There are several advantages of proteins or protein domains to have a disordered struc-

ture. The flexibility involved with the disorder creates a structure that is adaptable and

can bind to a target (e.g. another protein or a surface) via multiple points of contact.

The flexibility of the peptide chain allows the spacing between these points of contact

to vary, depending on the target. Whereas globular proteins with a highly ordered

three-dimensional structure will have limited binding targets, unstructured proteins

have versatile interactions and can bind to multiple targets, a so-called one-to-many

signalling mechanism. Some IDPs have also shown the opposite behaviour, a many-to-

one mechanism, where recognition of the target does not depend on a precise sequence

but rather the presence of select residues in a chain [150]. Furthermore, IDPs have

been shown to display disorder-to-order transitions, an induced folding of their struc-

ture when binding to a target. This disorder-to-order transition is coupled to a decrease

in the conformational entropy of the protein, and thought experiments by Schulz [151]

proposed that the binding of IDPs could lead to a gain in free energy (Figure 4.1) and

lead to a high specificity coupled to a low affinity of the protein.

Figure 4.1: Thought experiment of disorder-to-order transition within IDPs. The bind-
ing of an IDP to a target is coupled to a gain in free energy. The flexibility and
disorder-to-order transition of the IDP when binding to a target leads to a combina-
tion of a high specificity and low affinity of the protein. Reprinted from [151] with
permission from Elsevier.
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4.1.2 Intrinsically disordered proteins and peptides in biomin-

eralisation

Studies in the biomineralisation research area have uncovered a vast range of IDPs

within the organic matrices of organisms that have various effects on the crystal growth

of calcium carbonate. An overview of developments of IDPs in biomineralisation can be

found in a review by Evans [152]. Biomineralisation associated proteins are often found

to exhibit open, extended, conformations and are found to have a large acidic residue

content. The presence of acidic residues (Asp and Glu) is not surprising, because these

negatively charged residues are found to be able to coordinate to Ca2+ ions. Three

examples of IDPs in the area of biomineralisation are given below: The AP7 & AP24

proteins from a mollusc shell, the Starmaker protein and the small n16 protein. Many

more IDPs are involved in the biomineralisation of CaCO3, such as the Asprich protein

family [153, 154], SM50 [155, 156], Lustrin A [157] and PM27 [158], but will not be

discussed here.

Growth control

The proteins AP7 and AP24 (Aragonite Protein with molecular weight of 7 kDa (1 Da =

1 g mol−1) and 24 kDa respectively) are found in abalone molluscs [159–162] (Table 4.1).

Although UV-vis and CD spectroscopy studies of both proteins show small regions of

α-helices and β-sheets in the secondary structure, the majority of the proteins exhibit

extended and random coil conformations. With in vitro experiments both proteins are

seen to affect the morphology of calcite crystals, where rounding of the calcite steps

is observed (Figure 4.2). Additionally, at high concentrations of AP7 in solution, the

protein can induce the formation of amorphous and aragonite aggregates [162]. The 30

amino acid N-terminus of these proteins (AP7-N and AP24-N) contain a high amount

of the acidic Asp and Glu residues and are Ca2+ binding domains. When analysing the

effect of the N-terminus binding domains alone on calcite, a similar but less pronounced
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effect can be seen compared to the full proteins. Interestingly, Kim et al. [160] used

the peptide sequence of AP7-N and scrambled the primary amino acid sequence to

form a random version of the peptide, AP7-Ns. The effect of AP7-Ns on growing

calcite crystals was similar to that of the native AP7-N, suggesting that the amino acid

composition of these proteins is more important than their amino acid sequences.

Figure 4.2: SEM images of the morphology of calcite crystals in the presence of a)
no additives, b-d) 5, 10, 15 µM AP7. The calcite crystals show rounded edges when
nucleated in the presence of the AP7 protein. Reprinted (adapted) with permission
from [162]. Copyright 2009 American Chemical Society.

Polymorph selection

Otoliths are small mineral crystals present in the inner ear of fish that are part of their

gravity and acceleration detection system. These otoliths are made up of small aragonite
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Protein Amino acid sequence

AP7-N DDNGNYGNGMASVRTQGNTYDDLASLISYL

AP7-Ns AYVQGNTDNADMDNGIRYSLLYNDTSLGSG

AP24-N ADDDEDASSGLCNQYNQNVTTRPNNKPKMF

Stma NNNGTDNDESAADQRHIFTVQFNVGTPAPA

DGDSVTTDGKDSAEKNEAPGDSSDTTEKPG

TTDGKDSAEQHGVTTDGKDEAEQHGVTTDG

QDSAEKRGEADGAPDKPDTQNGTDDTDSDQ

ETDASHHKTGDSDENKDKPSAEDHTDGNHA

n16-N AYHKKCGRYSYCWIPYDIERDRYDNGDKKC

n16-Ns EPRYCKWCDNKHGDRAGCKYSIDYYKIRDY

n16-NN AYHKKCGRYSYCWIPYNIQRNRYNNGNKKC

n16.3 AYHKKCGRYSYCWIPYDIERDRYDNGDKKC

CFCRYAWSPWQCNEEERYEWLRCGMRFYSL

CCYTDDDNGNGNGNGNGNGLNYLKSLYGG

YGNGNGEFWEEYIDERYDN

Table 4.1: Primary amino acid sequences for peptides seen to affect the nucleation
and growth of CaCO3. The Glu-Asn and Asn-Gly repeat units are underlined in each
sequence. a Only residues 55 to 205 shown. Sequences from [59,159,163,164].

crystals enveloped in an organic matrix that is mainly made up of (glyco)proteins2. One

of the proteins in this organic matrix that has been found to be involved in the aragonite

polymorph selection of the otoliths is the protein Starmaker (Stm, Table 4.1). In vivo

experiments [164] performed on wild-type and Stm knock-out zebra fish showed that

in the absence of the Stm protein the normal aragonite composition of the otoliths

disappeared in favour of the calcite polymorph (Figure 4.3). CD spectroscopy and in

silico predictions [165] show that the secondary structure of Stm is highly disordered

and the presence of large hydrophilic regions and a high number of acidic residues (24.6

% Asp, 10.6 % Glu) cause the protein to adopt an open, extended conformation.

Another protein involved with polymorph selection is the n16 protein from the Japanese

pearl oyster which is involved in the formation of nacre platelets. Experimental studies

have shown that the protein can stabilise aragonite formation in vitro [59]. Using

the N-terminus domain (n16-N) of the protein, thought to be involved in the binding

2Glycoproteins are proteins that have oligosaccharides bound to the residue side chains.
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Figure 4.3: Effect of the starmaker (Stm) protein on CaCO3 crystals in zebra fish. In
wild type (a), aragonite crystals are formed. With a decreased amount of Stm (b), the
formed aragonite crystals are misshapen. With the Stm gene completely knocked out,
calcite crystals are formed (c). From [164]. Reprinted with permission from AAAS.

to CaCO3, researchers were able to control the nucleation of CaCO3, with vaterite,

aragonite, calcite and ACC particles being formed [61, 62, 166–168]. Two synthetic

modifications were made to the primary sequence of the n16-N peptide, one where the

sequence was scrambled to produce a random peptide (n16-Ns) and one where the acidic

residues were substituted (Asp → Asn, Glu → Gln) to produce an uncharged peptide

(n16-NN, Table 4.1). The in vitro experiments [61, 62, 169] using these two modified

peptides showed that scrambling the primary sequence did not alter the effect of the

polypeptide much, but the substitution of the Ca2+ binding residues diminished the

effects, indicating that the overall amino acid sequence is less important to the function

of the peptide than the inclusion of specific residues.

Experiments performed [170] with a 108 amino acid N-terminus peptide chain (n16.3)

showed that the IDPs oligomerize in solution to form protein films. The formation of

these supra-molecular clusters is promoted by the many Asn-Gly repeat units in the

peptide which, apart from inducing disorder in the protein, provide a strong agglomer-

ation effect.

Computational simulations on the n16-N peptide have been performed by Brown et al.

[171] using accelerated molecular dynamics simulations to ensure a sufficient sampling

of the conformational space. Using replica exchange solute tempering, a simulation
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method in which the phase space of a system is explored at different temperatures,

the authors were able to confirm the findings by Collino and Evans [166] that the

peptide conformation is mainly a random coil. The agglomeration of these peptides in

solution was also analysed, and although the simulations were too short for statistical

analysis, evidence of a large number of hydrogen bonds between two peptides indicated

agglomeration is likely, as has been observed in experiments [170].

4.1.3 Aims

In the three examples described above the structural conformations of the peptides

are disordered and the function of these peptides is thought to be carried out with a

disorder-to-order transition upon the binding of these molecules to CaCO3, a transition

that is seen as thermodynamically favourable for these disordered peptides. Within this

work we have employed the conformational analysis of a short tripeptide, Glu-Asn-Gly,

to analyse the conformational behaviour of peptides in solution and at the surface of

CaCO3. This short tripeptide was selected for various reasons. Firstly, the Asn-Gly re-

peating sequence can be observed in proteins involved with biomineralisation processes

such as AP7, Stm and n16, and primarily within their CaCO3 binding domains. This

sequence also induces the agglomeration of the peptides and is prone to induce disorder

within peptides due to their flexibility. The addition of the Glu residue was based on

the statistical preference of this residue next to the Asn residue found in peptides and

proteins. In addition, the Glu-Asn-Gly peptide is readily available to purchase from

chemical companies and as such provides an easy route for experimental analysis of the

tripeptide. Using this small peptide as a model system of IDPs, the aim of this project

is to gain an understanding of the peptide - peptide interactions of flexible molecules

and the peptide - calcite interactions.
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4.2 Conformational behaviour

4.2.1 Methods

The conformational behaviour of the Glu-Asn-Gly tripeptides in solution and on the

(101̄4) surface of calcite was analysed using molecular dynamics simulations. Details of

the simulation setup, protocols and analysis techniques are described below.

System setup

In order to analyse the conformational behaviour and preferred secondary structure of

the Glu-Asn-Gly peptide in solution, simulations of one, two, three, six and ten peptides

in an aqueous environment were performed. The tripeptide Glu-Asn-Gly (Figure 4.5

and Appendix C) was prepared using the Amber 12 Antechamber package [138] and the

atomic charges of the molecules were calculated using the AM1-BCC method [139] (see

Appendix B).

For the simulations of the peptides in solution, one, two, three, six or ten peptides

and 20,000 TIP3P water molecules [104] were inserted in a simulation box in random

positions and orientations using the program Packmol [137], ensuring that the density of

the system was 1.0 g ml−1. For the simulations involving the adsorption of the peptides

to the surface of calcite, a surface of calcite with a (101̄4) orientation, with a depth of

26 Å (10 CaCO3 layers) and surface dimensions of 81 x 83 Å, containing 3380 CaCO3

formula units was generated using the program buildcalcite.jar3. The surface was

solvated with 20,000 TIP3P water molecules, and the Glu-Asn-Gly peptides were placed

near the surface (<5 Å) in a random orientation. The simulation was setup as seen in

Figure 4.4, to allow periodic boundary conditions to be used in all three directions.

3Program developed by Robert Darkins at The London Centre for Nanotechnology, University
College London.
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Figure 4.4: Schematic representation of the simulation setup used in this work. Using
periodic boundaries the system is enclosed within a three dimensional box.

Figure 4.5: Chemical structure of the Glu-Asn-Gly peptide used throughout this work.

Modelling protocols

For the peptide simulations the AMBER ff12SB potentials [111] were used to describe the

intra- and inter-molecular interactions between the peptides and water molecules. In the

simulations involving the mineral phase, the potentials developed by Raiteri et al. [26]

were used to describe the inter- and intra-molecular interactions of the calcite. The

cross-terms between the organic and inorganic phases were calculated using the method

described by Freeman et al. [103], see Chapter 2.2.4. The details of the potentials used

are described in Appendix F.

All simulations of the tripeptides, water and calcite were carried out using the molec-

ular dynamics package DL POLY Classic [140]. The systems were equilibrated at a

temperature of 300 K for 100 ps with a timestep of 0.1 fs in an NVT ensemble with

a Nosé-Hoover thermostat [119] with a relaxation time of 0.5 ps, and subsequently for

500 ps with a timestep of 1.0 fs using the same parameters. The density of the water-
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box was monitored during the equilibration period to ensure the correct density was

maintained. The configurational energy of the system during the equilibration simu-

lations was analysed to ensure a fully equilibrated system. Production runs of 5.0 ns

using a timestep of 1.0 fs in an NVT ensemble were performed, from which both the

conformations and energetics of the Glu-Asn-Gly peptides were analysed.

Conformational analysis

The conformational behaviour of proteins and peptides has been studied since the first

determination of protein crystal structures in the 1950s. In 1963 Ramachandran et

al. [172] studied the dihedral angles of short polypeptide chains and proposed that the

three-dimensional conformations of these chains can be described by the φ (phi, C’-N-

Cα-C’) and ψ (psi, N-Cα-C’-N) backbone dihedral angles (Figure 4.6) and can be plotted

on a two dimensional map. By systematically rotating the φ and ψ dihedral angles in

increments through 360◦, the conformational space of the molecule could be explored,

and the resultant plot of φ and ψ backbone dihedral angles is called a Ramachandran

map [92]. Ramachandran et al. used a hard-sphere model to represent the atoms of

the short peptides in their study, and molecular conformations that led to steric clashes

between two atoms (atoms that occupy the same space) were classed as disallowed.

Two atomic radii were used for the hard spheres in order to define an allowed region

and an outer limit region, as shown in Figure 4.7a.

Lovell et al. [173] refined the map generated by Ramachandran et al. by analysing

97,368 residues from 500 protein structures. In their study they used a soft sphere

atomistic model and added a hydrogen bonding term for the repulsive and attractive

forces between the atoms. By using a large data set they were able to obtain a detailed

map of the allowed regions of the φ and ψ angles (Figure 4.7b). Lovell et al. separately

analysed the conformational behaviour of the Gly residue, as its behaviour within pro-

teins is seen to be different than other residues. The Ramachandran map of 7705 Gly
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Figure 4.6: The three-dimensional conformations of peptides can be described by the
φ (C’-N-Cα-C’) and ψ (N-Cα-C’-N) backbone dihedral angles, which describe the ori-
entations of the two amide planes.

residues in their data set is shown in Figure 4.7c. Due to the lack of a side chain there

is less steric hindrance for this residue, enabling the φ and ψ angles to rotate freely

and explore the right quadrant of the Ramachandran map, although the inaccessible

conformations around φ = 0◦ are still observed due to the large steric clashes of a planar

conformation. The φ and ψ angles of the peptide bonds also give an indication of the

secondary structure of the peptide. As indicated in Figure 4.7a, peptides or proteins

with φ and ψ angles in the upper left quadrant of the Ramachandran map will exhibit

β-sheet secondary structures. The secondary structures of a right handed α-helix (Rα),

turns (γ-turn and type II-turn) and the left handed α-helix (Lα) can also be deduced

from the dihedral angles.

This technique of analysing the dihedral angles of a peptide has been utilised to study

the conformational behaviour of the Glu-Asn-Gly peptide in the simulation work pre-

sented here. The distribution of the φ and ψ angles throughout the simulations gives

an indication of the preferred secondary structure of the peptide. Additionally, using

this technique the changes of the peptide conformation when interacting with other
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(a) Ramachandran map de-
notes the secondary struc-
tures associated with dihedral
angles.

(b) Ramachandran map of
all residues based on 97,368
residues from 500 protein
structures.

(c) Ramachandran map of
Gly residue only, based on
7705 residues within the data
set.

Figure 4.7: The φ and ψ backbone dihedral angles of peptides and proteins can be plot-
ted in a Ramachandran map, giving an indication of the conformation of the molecule.
From [173]. Reprinted with permission from the Wiley Company.

peptides and when binding to the surface of calcite can be observed. Throughout the

simulations the φ, ψ backbone dihedral angles were measured and saved every 20 fs,

to produce 50,000 conformations per ns of simulation time. The dihedral data for all

peptides was collected and normalised, before being plotted as a Ramachandran map

with 3◦ x 3◦ bins, a bin width chosen to retain enough detail of the individual dihedral

angles whilst ensuring a clear statistical representation of the data.

4.2.2 Conformation in solution

The conformational data for a single Glu-Asn-Gly peptide and multiple (three, six

and ten) peptides in an aqueous environment were analysed and are described below.

Note that as the conformational data was obtained in a similar fashion for the single

peptides as the multiple peptides, more data points are available for analysis of the

multiple peptides in solution.
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Single peptide

The conformational data for a single Glu-Asn-Gly peptide in solution is shown in Fig-

ure 4.8a. Throughout the simulations the peptide is seen to explore the whole conforma-

tional space of the φ and ψ dihedral angles, an effect that with larger peptides is often

only seen when a bias is applied to the dihedral angles (systematic rotation around the

angles). As the tripeptides in these simulations are relatively small, the ns time scale

simulations were enough to sample most of the conformations. Although the entirety of

the Ramachandran map was sampled, the vast majority of the peptide conformations

were observed in the upper left quadrant of the map (φ = -160◦ and ψ = 70◦) appearing

to be the lowest energy conformation of the tripeptide free in solution. As discussed

previously, residues in peptides and proteins exhibiting similar φ and ψ dihedral angles

to these are primarily associated with a β-sheet secondary structure.

Two peptides

The data for two peptides in solution sample the same extent of the conformational

space as a single peptide in solution (Figure 4.8b). However, during the simulations the

peptides are seen to interact with each other, causing the lowest energy conformation

of the peptides to shift away from the upper left quadrant of the Ramachandran map.

Three major conformations are observed, around φ = 130◦, ψ = -160◦; φ = 130◦, ψ

= -70◦ and φ = 50◦, ψ = 50◦. Analysis of the structures observed throughout these

simulations reveals strong interactions between the two peptides, causing an aggregation

of the peptides. The interactions between the two peptides are caused by a number

of hydrogen bonds between the two molecules (Figure 4.9). These hydrogen bonds

between the two peptides are long lasting throughout the entire simulation, and the

total life times for these bonds are shown in Table 4.2. A hydrogen bond is defined

between a donor atom (D) with a hydrogen (H) on it and an acceptor atom (A) as

shown in Figure 4.11, where the distance between D and A is less than 3.5 Å and
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(a) One peptide. (b) Two peptides.

(c) Three peptides. (d) Six peptides.

(e) Ten peptides.

Figure 4.8: Ramachandran maps obtained with MD simulations for the Glu-Asn-Gly
peptide(s) in solution. The colour coding represent a linear scale for the number of
counts in each bin, with increasing count from grey, red, orange. yellow, green, blue,
black.
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the D-H-A angle deviates no more than 20◦ from a linear bond. The hydrogen bonds

between the Glu-Asn-Gly peptides are formed between the amide-hydrogens as donors

and the carboxyl functional groups as acceptors (Figure 4.10).

Figure 4.9: Hydrogen bond interactions between two peptides in solution observed
throughout the MD simulations.

The conformation of the peptides seen at φ = 50◦, ψ = 50◦ is normally associated with

a left handed α-helix secondary structure, whereas the other two conformations (φ =

130◦, ψ = -160◦ and φ = 130◦) are normally only associated with Gly residues, due to

the steric strain between the side chains and the rest of the molecule. The agglomeration

of these peptides and the strong interaction between them must overcome the energy

barrier associated with this conformation and stabilises these conformations to make it

them energetically viable. Interestingly, the peptide conformation at φ = 130◦ and ψ =

-160◦ shows a concentrated and detailed outline on the Ramachandran map, suggesting

that the peptides dihedral angle is in a fixed position for an extended period of time.

The well defined edges of the data observed in this data are not seen with single peptides

in solution, which exhibit data that is more spread out, most likely caused by the more

flexible behaviour of a single peptide. The rigid behaviour of the peptides here are most
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likely caused by the strong hydrogen bonding between the two peptides, causing the

flexible molecule to become rigid upon the peptide - peptide binding.

Figure 4.10: The amide functional groups on the Glu-Asn-Gly peptide. These amides
(H1 to H5) are primarily responsible as hydrogen bond donors.

Figure 4.11: Hydrogen bonds (represented as a dotted line) in this work are defined
between an electronegative donor atom (D) with a hydrogen (H) on it and an elec-
tronegative acceptor atom (A), where the distance between D and A is less than 3.5 Å
and the D-H-A angle deviates no more than 20◦ from a linear bond.

Three peptides

In the case of three peptides in solution, a mixture of the conformational behaviour

for a single peptide and two peptides is seen in the Ramachandran map (Figure 4.8c).

Interactions between two of the peptides are seen to shift the φ and ψ angles for these

peptides towards the lower right quadrant of the Ramachandran map, whereas one of the

peptides appears as a single free peptide in solution, exhibiting the same conformational

behaviour as a single peptide (upper left quadrant). The dihedral angles for the single

peptide and the dimer do not completely mimic the data in Figures 4.8a and 4.8b,

110



Donor Total life time Donor Total life time

Peptide-1 of H-bond (ns) Peptide-2 of H-bond (ns)

N-H1 0.33 N-H1 0.34

N-H2 0.90 N-H2 1.10

N-H3 1.86 N-H3 1.41

N-H4 4.66 N-H4 2.91

N-H5 3.50 N-H5 3.58

Average 2.25 Average 1.87

Table 4.2: Hydrogen bonding between peptides during a 5.0 ns MD simulations of two
Glu-Asn-Gly peptides in solution. The total life time of the hydrogen bonds is measured
from the total number of frames (saved every 20 fs) that the donor atom displayed a
hydrogen bond interaction.

presumably due to the fact that there are still some remnant interactions between the

single peptide and the dimer. The hydrogen bonding between the peptides is shown

in Table 4.3. The detailed edges of the conformational data for the two interacting

peptides and the wide spread of the data for the single peptide again points to the

difference in flexibility between the single peptide and the dimer.

Donor Total life time Donor Total life time Donor Total life time

Peptide-1 of H-bond (ns) Peptide-2 of H-bond (ns) Peptide-3 of H-bond (ns)

N-H1 1.45 N-H1 2.47 N-H1 0.75

N-H2 0.48 N-H2 0.40 N-H2 0.16

N-H3 2.13 N-H3 2.17 N-H3 0.53

N-H4 3.34 N-H4 4.01 N-H4 0.13

N-H5 2.15 N-H5 3.02 N-H5 0.53

Average 1.91 Average 2.41 Average 0.42

Table 4.3: Hydrogen bonding between peptides during a 5.0 ns MD simulations of three
Glu-Asn-Gly peptides in solution. The total life time of the hydrogen bonds is measured
from the total number of frames (saved every 20 fs) that the donor atom displayed a
hydrogen bond interaction.

Six and ten peptides

The Ramachandran maps for six and ten peptides in solution are shown in Figures 4.8d

and 4.8e respectively. The distribution of φ and ψ dihedral angles shows that the
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majority of the configurational space of the dihedral angles is sampled. The most

visited conformations of the six and ten peptides in solution show a similar behaviour

to the simulations with three peptides in solution. Single peptides not interacting with

the other organic molecules in the system are observed in the upper left quadrant.

The right quadrant shows the φ and ψ dihedral angles of those peptides that interact

with each other and form hydrogen bonds. In the case of six and ten peptides, multiple

clusters of interacting peptides are observed throughout the simulations. These clusters

of agglomerated peptides consist either of two or three peptides each (Figure 4.12).

The strong hydrogen bonding between the peptides allow these clusters to stay intact

throughout the simulations and the hydrogen bonds in the simulation of six peptides

are shown in Table 4.4. The data for ten peptides in solution is similar, and is shown

in Appendix D.

Figure 4.12: Hydrogen bond interactions between multiple peptides in solution cause
the peptides to agglomerate and form clusters. Throughout the simulations, single
peptides, two peptide clusters and three peptide clusters are observed.

Aggregation and hydrogen bonding

The simulations of multiple peptides in solution all show a preference for peptide -

peptide interactions and the agglomeration of the peptides into small clusters. The

main constituents of the interactions between the peptides is seen to be the amide
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Donor Total life time Donor Total life time Donor Total life time

Peptide-1 of H-bond (ns) Peptide-2 of H-bond (ns) Peptide-3 of H-bond (ns)

N-H1 0.10 N-H1 0.42 N-H1 1.41

N-H2 0.14 N-H2 0.95 N-H2 0.68

N-H3 0.26 N-H3 0.73 N-H3 0.48

N-H4 0.36 N-H4 3.18 N-H4 1.17

N-H5 0.27 N-H5 3.83 N-H5 1.44

Average 0.23 Average 1.82 Average 1.03

Donor Total life time Donor Total life time Donor Total life time

Peptide-4 of H-bond (ns) Peptide-5 of H-bond (ns) Peptide-6 of H-bond (ns)

N-H1 0.86 N-H1 2.34 N-H1 0.22

N-H2 0.53 N-H2 0.12 N-H2 0.20

N-H3 0.58 N-H3 1.41 N-H3 0.76

N-H4 1.60 N-H4 2.51 N-H4 1.53

N-H5 2.13 N-H5 4.16 N-H5 3.92

Average 1.14 Average 2.11 Average 1.33

Table 4.4: Hydrogen bonding between peptides during a 5.0 ns MD simulations of six
Glu-Asn-Gly peptides in solution. The total life time of the hydrogen bonds is measured
from the total number of frames (saved every 20 fs) that the donor atom displayed a
hydrogen bond interaction.
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functional groups of the peptide bonds between the residues, as seen in Tables 4.2 to

4.4). As seen in the Ramachandran maps from the simulations, the interactions that

occur between the peptides affect their conformation. conformations of the peptides.

When the peptides agglomerate into small clusters the hydrogen bonds between the

peptides force them in conformations otherwise not accessible.

The average life times of the hydrogen bonds within these clusters also differ depending

on the cluster size. Over all the simulations the average lifetime of hydrogen bonding

for peptides in a cluster of two is 1.90 ns. Within these clusters amides N − H1 and

N − H3 are primarily involved with the hydrogen bonding. These two donors are on

the main backbone of the peptide (Figure 4.10), causing the peptides to interact whilst

parallel to one another. The average life time of hydrogen bonds within clusters of

three peptides decreases to 1.06 ns and the involvement of donors N −H1 and N −H3

decreases. Within three peptide clusters the amides N−H4 and N−H5 are the primary

donors, situated on the end the Asn side chain. Shifting the interactions from the main

backbone to the sidechain of the peptide causes the peptides to interact head on, as

seen in Figure 4.12.

4.2.3 Conformation on surface

Using the φ and ψ dihedral angles in a Ramachandran map the conformations of the

Glu-Asn-Gly peptides can be mapped when adsorbing onto the (101̄4) surface of cal-

cite.

Single peptide

The adsorption of a single peptide on the surface of calcite (Figure 4.13a) does not alter

the conformation with respect to a free peptide in solution. The major conformation

that can be observed is at φ = -160◦ and ψ = 70◦, the same β-sheet domain as observed

before. However, the data in the Ramachandran map show clearer, sharper edges for
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the angle distribution, similar to data seen before for i.e. two peptides in solution

(Figure 4.8b), where a large peptide - peptide interaction is present. The well defined

data suggests that the conformation of the peptide is more rigid than in solution and

that upon binding to the calcite surface the peptide undergoes a transition to more

rigid, structured molecule. Additionally, in contrast to the peptide in solution, the

conformations of the peptide that are sampled throughout the simulation are limited.

Where in solution the majority of the φ/ψ conformations were visited, in the adsorbed

state the peptide is kept in a rigid conformation, and only a narrow set of angles is

observed, much like a disorder-to-order transition seen in IDPs.

Two peptides

A distinct difference in the conformation of multiple peptides can be seen upon binding

to the surface of calcite. Whereas in solution the interactions between two peptides

caused the conformation of the peptides to lie within the lower right quadrant of the

Ramachandran map, upon binding to the calcite surface this conformational behaviour

is lost. The peptides behave as though they are single peptides binding to the surface

and the φ and ψ angles observed for the peptides (Figure 4.13b) replicate those seen

in a single peptide on the surface of calcite (Figure 4.13a). There is, however, still a

large number of interactions present between the two peptides in the form of hydrogen

bonding. The conformational behaviour that is observed can be attributed to the inter-

action between the peptide and the calcite surface, which has a more pronounced effect

than the peptide - peptide interaction. This surface effect on the peptide conformation

can be compared to that observed for larger peptides, such as n16-N, where the peptide

- surface interaction induces an ordering of the peptide, similar to the disorder-to-order

transitions that can be observed in the case of IDPs.
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(a) One peptide. (b) Two peptides.

(c) Three peptides. (d) Six peptides.

(e) Ten peptides.

Figure 4.13: Ramachandran maps obtained with MD simulations for the Glu-Asn-Gly
peptide(s) on the (101̄4) surface of calcite. The colour coding represent a linear scale
for the number of counts in each bin, with increasing count from grey, red, orange.
yellow, green, blue, black.
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Three, six and ten peptides

With multiple peptides in solution the peptides show a very uniform behaviour. When

analysing the φ and ψ dihedral angles for the simulations with three, six and ten

peptides interacting with the surface, similar Ramachandran maps are obtained (Fig-

ures 4.13c, 4.13d and 4.13e for three, six and ten peptides respectively) although more

conformations are sampled in the simulations with six and ten peptides, most likely

due to the number of peptides in these simulations.

These results suggest that when the peptide is adsorbing to the calcite surface it is

restricted to a specific conformation. This restricted conformation is likely to be the

lowest energy conformation that enables the peptide to bind to the surface with minimal

disruption to the water on top of the surface. Such restricted binding conformations

are also seen in the case of IDPs upon binding to their target. Throughout the sim-

ulations the peptides still agglomerate together in clusters and the hydrogen bonds

between the peptides are still intact. However, the peptide - surface interactions are

seen to more important and have a more pronounced effect than the peptide - peptide

interactions.

Binding conformation

Although the peptides were inserted in a random orientation during the system setup,

in all the simulations the peptides are seen to be adsorbing onto the calcite (101̄4)

surface in the same manner, as seen in Figure 4.14. As discussed in Chapter 1.2.2, the

highly structured water layer on top of the calcite surface creates an energy barrier for

adsorbing molecules, and the most favourable binding energies arise from conformations

that minimise the disruption to this water layer. The conformation of the peptides on

the surface of calcite are seen to be penetrating the water layer with minimal disruption

and binding to the surface with the carboxyl functional groups, considered to generate

stronger interactions than the amide functional groups [83].
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The Z-density profile of the water oxygen and the carboxyl oxygen of the Glu-Asn-Gly

peptide (Figure 4.15) shows the ordered water layers on top of the calcite surface and

the carboxyl oxygen situated the same distance from the surface as the first water layer

oxygen.

Figure 4.14: The Glu-Asn-Gly peptides are seen to be binding onto the surface of calcite
in the same manner, with the carboxyl functional group binding to the surface and the
majority of the molecule extending away from the surface. Water molecules are omitted
for clarity.

4.3 Adsorption of tripeptides on calcite surface

4.3.1 Energetics calculations from simulations

The adsorption energies of the Glu-Asn-Gly peptides on the surface of calcite were cal-

culated from the simulations described earlier. Additional simulations of a water-only

solvated (101̄4) calcite surface with 20,000 TIP3P water molecules and a bulk water

system were performed in order to calculate these energies. The same simulation pro-

tocols were used as for the peptide simulations (Chapter 4.2.1). Using Equation 4.1 the
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Figure 4.15: The Z-density profile of a single Glu-Asn-Gly peptide adsorbing onto the
calcite (101̄4) surface. The profile shows the water oxygen (blue solid line) and peptide
carboxyl oxygen (red dashed line). The carboxyl functional group is seen to bind to
the surface at the same distance as the first water layer.

adsorption energies of the peptides (Eadsorption) with respect to the water-only solvated

surfaces (Ewater−calcite) and the solvated peptides (Ewater−peptide) were calculated,

Eadsorption = Ewater−calcite−peptide − Ewater−calcite − Ewater−peptide (4.1)

where Ewater−calcite−peptide is the energy of the solvated calcite - peptide system.

Adsorption energies

The adsorption energies for the peptides are shown in Table 4.5. The energy of ad-

sorption of a single peptide is comparable to other small molecules on the surface of

calcite, e.g. -64.1 kJ mol−1 for methanoic acid [83], -22.9 to -60.6 kJ mol−1 for various

polysaccharides [82], -73.6 kJ mol−1 for mannose [81] and -46.5 kJ mol−1 for acrylic

acid functional groups (this work, Chapter 5). Despite the strong binding of the water

to the calcite surface the peptides are still seen to penetrate through the water and

bind via a strong bond between the carboxyl functional group. The data in Table 4.5
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shows no clear trend in the adsorption energy per peptide with an increasing amount

of peptides in the system. It is, however, clear that the system with two peptides has

a significant lower adsorption energy per peptide (-57.1 kJ mol−1) than in the case of a

single peptide (-69.5 kJ mol−1). This effect can be attributed to the strong binding be-

tween the two peptides, influencing the binding to the surface. With the adsorption of

the peptides in the simulations of three, six and ten peptides, a combination of binding

modes can be observed, with peptides binding as single molecule or in clusters of two

or three peptides.

Number of Adsorption energy Standard error Adsorption energy per

peptides (kJ mol−1) (kJ mol−1) peptide (kJ mol−1)

One -69.5 2.3 -69.5

Two -114.1 1.9 -57.1

Three -184.6 3.4 -61.5

Six -374.9 1.6 -62.5

Ten -538.6 2.4 -53.9

Table 4.5: Adsorption energies of Glu-Asn-gly peptides on the surface of (101̄4) calcite.
The energy in kJ mol−1 refers to the total energy of the simulation box. Where the
adsorption energy is calculated per peptide this is done by dividing the total energy by
the number of peptides in the system.

Thermodynamic cycle

The association energy for the peptide - peptide interaction between two peptides in so-

lution and on the surface of calcite can be calculated using Equations 4.2 and 4.3:

Eassociation−solution = (Ewater−two−peptides−Ewater) (4.2)

−2(Ewater−one−peptide − 2Ewater)

Eassociation−surface = (Ewater−calcite−two−peptides−Ewater) (4.3)

−2(Ewater−calcite−one−peptide − 2Ewater)
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where Ewater is the energy of the water only and Ewater−one−peptide, Ewater−two−peptides,

Ewater−calcite−one−peptide and Ewater−calcite−two−peptides are the energies of the solvated pep-

tides systems and solvated calcite-peptide systems respectively.

With the energies of the surface - peptide interactions from Equation 4.1 and the ener-

gies of the peptide - peptide interactions both in solution and on the surface of calcite

from Equations 4.2 and 4.3 respectively, a thermodynamic cycle can be constructed.

This cycle is shown in Figure 4.16 and shows the energetic behaviour of two Glu-Asn-

Gly peptides in solution and on the surface of calcite.

Figure 4.16: From the adsorption energies and the interaction energies between the
Glu-Asn-Gly peptides a thermodynamic cycle can be constructed that describes the
energetic behaviour of multiple peptides. The negative association energy in solution
indicates that the aggregation of these peptides is a favourable process, unlike their
interactions on the surface of calcite.

The negative association energy between the peptides in solution indicates that the

aggregation of these peptides in solution is a favourable process, with an energy of -9.6

± 1.9 kJ mol−1 associated with the aggregation of the two peptides. Vice versa, the as-

sociation of these peptides when adsorbed onto the surface of calcite is not a favourable
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process, with an interaction energy of 12.4 ± 1.8 kJ mol−1. These results are an indi-

cation that the aggregation of the peptides in solution is likely, as has been calculated

from previous simulations [171] and experiments [170] of larger peptides.

4.3.2 Precipitation experiments

A preliminary study was performed to analyse the effect of the Glu-Asn-Gly tripeptide

on the growth of CaCO3 using experimental techniques. The ready availability of Glu-

Asn-Gly enabled this peptide to be used within constant composition precipitation

experiments as described by Lakshtanov and Stipp [63]. The quantitative effect on

the growth of calcite using these constant composition precipitation experiments was

measured at the NanoGeoScience laboratory at Copenhagen University.

Experimental setup

Calcium carbonate (reagent grade CaCO3, 99.95 %, supplied by Merck) was recrys-

tallised by exposure to deionised water and 100 % CO2 gas, using the method of Stipp

and Hochella [174], to remove any organic impurities and to increase the homogeneity

of the crystal seeds. Using N2 adsorption, the BET surface area4 of the calcite seeds

was determined to be 0.2 m2g−1. Reagent grade CaCl2 · H2O and double distilled MQ

water5 was used to prepare a solution of CaCl2. The Ca2+ content of the solution was

analysed using an atomic absorption spectrometer (Perkin Elmer AAS Analyst 800).

A 0.66 M peptide solution was prepared by solvating 1.0 mg Glu-Asn-Gly (Sigma) in

5.0 mL 0.1 M NaCl solution. All other solutions, with ionic strength I = 0.1 M, were

prepared by mixing stock solutions of NaHCO3 and NaCl with MQ water.

In a double walled glass vessel, kept at a constant temperature of 298 K, a weighed

4The BET surface area is derived from the Brunauer-Emmett-Teller theory which describes the
physical adsorption of gas molecules on surfaces [175].

5MQ or Milli-Q water is a trademark from Merck Millipore who produce ’ultra pure’ Type 1 water
which has an ion resistivity of >18.0 MΩcm at 298 K [176].
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amount of calcite seeds was added to a 2 mM Ca2+ HCO3
– supersaturated solution

made up with NaCl. A pH-stat titration system (Metrohm 780 meter and Metrohm

NTC/glass/3M KCl electrode) was used to maintain steady state and super saturation

conditions. The precipitation of calcite occurs via the growth of the existing calcite

crystals and via the reaction in Equation 4.4:

Ca2+ + HCO3
− −−→ CaCO3 ↓ + H+ (4.4)

where CaCO3 precipitates by consuming the Ca2+ and CO3
2– ions in the solution,

causing a decrease in the pH of the system. A decrease below a pH of 8.3 triggers

the influx of 0.09 M CaCl2 and 0.09 M Na2CO3 via a syringe pump, replenishing the

Ca2+ and CO3
2– ions in the solution and raising the pH. In this equilibrium of constant

supersaturated solution the precipitation rate of calcite can be calculated via the slope

of the plot of added volume CaCl2/Na2CO3 versus time. The precipitation rate R can

be written as Equation 4.5:

R = R′
[Ca]titrant
Aseeds

= R′
[Ca]titrant
mseedsSseeds

(4.5)

where [Ca]titrant is the Ca2+ concentrations of the added titrant solution, Aseeds is the

total surface area of the calcite seeds, mseeds is the mass of calcite seeds, Sseeds the

specific BET surface area of the calcite seeds and R′ denotes the titrant addition rate.

When the precipitation rate is constant (measured by a constant titrant addition rate),

a specific amount of Glu-Asn-Gly peptide solution is added to the reaction vessel. By

measuring the change in precipitation rate before (R′0) and after (R′) the addition of the

peptide to the solution, the quantitative inhibition effect of the peptide on the growth

of calcite can be observed. The initial precipitation rates, R0, for all experiments were

measured and are seen to be similar in all experiments, independent of the amount of

calcite seeds added. All details of the experimental setup are shown in Table 4.6.
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Seed mass Cpeptide x10−3 R′0 x10−4 R0 x10−6 R′ x10−4 R x10−6 Relative

(mg) (g L−1) (L s−1) (mol m−2s−1) (L s−1) (mol m−2s−1) growth

33.5 - 1.41 0.88 - - -

33.4 - 1.61 1.01 - - -

26.5 - 1.38 1.09 - - -

33.3 0.26 1.71 1.08 1.68 1.06 0.98

26.7 0.26 1.35 1.06 1.34 1.05 0.99

31.5 0.66 1.53 1.02 1.47 0.99 0.96

32.6 0.66 1.71 1.10 1.65 1.06 0.96

28.0 0.66 1.44 1.08 1.34 1.00 0.93

27.6 1.32 1.43 1.08 1.27 0.96 0.88

26.6 1.32 1.28 1.01 1.26 0.99 0.98

27.5 2.64 1.30 0.99 1.29 0.98 0.99

27.0 2.64 1.30 1.01 1.21 0.94 0.93

26.5 2.64 1.12 0.89 1.16 0.92 1.03

26.5 3.30 1.24 0.98 1.19 0.94 0.96

Table 4.6: Details for all experimental runs where Cpeptide is the peptide concentration
added; R′0 is the initial titrant addition rate; R0 is the initial precipitation rate; R′ is
the titrant addition rate after addition of the peptide, R is the precipitation rate after
addition of the peptide and the relative growth rate is the ratio of R/R0.

Inhibition of calcite growth

The constant composition precipitation experiments showed a constant precipitation

rate of calcite, as measured by the added volume of Na2CO3 and CaCl2, as seen in

Figure 4.17a. After an initial constant precipitation rate it is seen that the precipitation

rate steadily decreases after approximately 10,000 s (Figure 4.17b). This decrease occurs

at the same time as calcite crystals are observed to adhere to the glass surface of the

experiment chamber. As the adhesion of the calcite crystals on the walls of the vessel

directly affects the available surface area of calcite seeds, this growth decline is expected.

Since this adhesion of the crystals to the glass vessel affects the results, the data after

the first 2,000 steps of the experiment were discarded.

The effect of the Glu-Asn-Gly peptide on the growth of calcite was measured over a

peptide concentration range of 0 - 3.3 mgL−1 and the results are shown in Figure 4.18.
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Whereas previous experiments [37,63,65,66] using similar small molecules saw a range

of effects on calcite growth, the data for the Glu-Asn-Gly peptide shows no discernible

effect of the tripeptide on the growth of calcite. The lack of effect on calcite growth

seen in these preliminary precipitation experiments is counter to the binding observed in

the MD simulations. Further precipitation experiments with the Glu-Asn-Gly peptide

using a larger range of peptide concentration are desirable. The inclusion of Langmuir

adsorption isotherm experiments would be able to shed light on binding behaviour of

these peptides. Additionally, the effect of the peptide on other polymorphs of CaCO3,

such as aragonite, could be analysed.

(a) Constant precipitation rate. (b) Tail-off for a precipitation experiment.

Figure 4.17: Examples of the constant composition precipitation experiments results.
The precipitation rate of calcite stays constant until ca 10,000 s, after which the adhesion
of the calcite crystals on the walls of the vessel affects this precipitation rate.

Figure 4.18: Inhibition of the calcite growth rate by the Glu-Asn-Gly peptide in con-
stant composition precipitation experiments.
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4.4 Conclusion

The conformational behaviour of the Glu-Asn-Gly peptides in solution depends strongly

on the presence of other biomolecules. Single peptides show a single conformation as

shown by the φ and ψ dihedral angles in the Ramachandran maps and the peptide

exhibits a flexible behaviour. This single behaviour of the peptide changes when inter-

acting with another peptide. The strong peptide - peptide interactions, which occur

due to a large number of hydrogen bonds between the molecules, force the peptides

into a more rigid conformation with a different set of φ/ψ angles. The Ramachandran

maps of multiple peptides in solution show dihedral angle conformations that exhibit

sharp, detailed edges that correspond to this rigid structure. A similar behaviour can

be observed for IDPs, where inter-molecular interactions between the IDP and a tar-

get molecule or surface induce a disorder-to-order transition, transforming the flexible

peptide or protein into a rigid molecule.

The simulations of three or more peptides in solution show a mixture of the above

behaviours where some peptide molecules are seen to be behaving as single, free peptides

in solution and the appearance of two- and three-peptide clusters. The conformation

of the peptides within these clusters depend on the size of the clusters. Within two-

peptide clusters, the hydrogen bonding occurs predominantly between the backbone

amides and causes the peptides to interact parallel to one another. In the case of three-

peptide clusters the side chain amide is involved with the majority of the hydrogen

bonding, causing the conformation of the peptides to shift slightly. The ability of

these peptides to agglomerate is also seen with IDPs involved with biomineralisation

processes, such as the n16 peptide [170,171].

The binding of a single peptide to the (101̄4) calcite surface induces a large disorder-

to-order transition, as the peptide is seen to change from a flexible to a rigid structure.

The binding of the peptide occurs via the carboxyl functional group situated on the C-

terminus of the peptide. The Z-density profile of the simulations show that the carboxyl

126



oxygen is situated at the same distance from the surface as the water oxygen in the

first surface layer. The rest of the peptide is extended away from the surface into the

aqueous environment in order to minimise the disruption to the structured water layers

on top of the mineral surface.

The binding of multiple peptides occurs in the same manner as a single peptide. The

binding conformations all show a distinct similar behaviour, with the same φ and ψ

backbone dihedral angles as for a single peptide adsorbing onto the surface. The in-

teractions between the peptides are still intact and the hydrogen bonds between the

peptides are observed for extended time scales. The conformational behaviour that is

observed can be attributed to the relative strong interactions between the peptide and

the calcite surface compared to the peptide - peptide interactions. The effect that the

calcite surface has on the conformation of the peptide can be compared to that of larger

peptides, such as n16-N, where the peptide - surface interaction induces an ordering of

the peptide, much like a disorder-to-order transition seen in IDPs.

Similar changes in conformational rotation can be observed in simulation work on con-

formational kinetics of butane in slit pores by Travis and Searles [177] and Brookes et

al. [178], which show that a change of conformation can be observed when n-butane is

in proximity to the surface of a confinement. A layering effect can be seen to occur at

the surface, with the conformation of the molecules changing to allow for closer pack-

ing, resulting in a higher molecular density. In addition, the diffusion of these flexible

molecules also becomes diminished by the addition of rigidity within the molecule, as

seen by the work on torsional flexibility of linear alkanes by Braga and Travis [179].

Within the constant composition precipitation experiments performed using the Glu-

Asn-Gly peptides, no effect of the peptide on the growth of calcite was observed. Pre-

vious experiments using small molecules [37, 63, 65, 66] show a range of calcite growth

inhibition, and similar results were expected. The absence of any inhibition can be

explained by several factors. Although the setup of the precipitation experiments and
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in particular the peptide concentrations used was similar to previous experiments [63],

duplicate experiments should be performed to rule out any experimental error. Another

explanation for the lack of inhibition could be the strong agglomeration seen between

the tripeptides. Throughout the simulations the majority of the peptides reside in clus-

ters with strong, long lasting hydrogen bonds keeping these clusters intact. Within the

experimental setup this agglomeration might have impeded the interactions with the

calcite surface.

The binding energy obtained from the MD simulations for a single Glu-Asn-Gly peptide

of -69.5 kJ mol−1 shows the favourable binding of the peptide to the calcite surface and

compares well with other simulations of similar biomolecules. With the adsorption of

two peptides to the surface a decrease in this adsorption energy can be observed from

-57.1 to -61.5. For multiple peptides a mixture of these binding behaviours is observed,

with average binding energies of -62.5 and -53.9 kJ mol−1 for six and ten peptides

respectively.

These results show that in solution hydrogen bonding between unstructured peptides

or proteins induce a strong transition from a flexible to ordered structure. The calcite

surface has a similar influence of the conformation of the peptides and upon binding

to the surface the peptides exhibit a rigid behaviour. These results help to show that

the paradigm in structural biology that the function of peptides or proteins is linked

to their three-dimensional structure does not hold for all molecules. Instead, the three-

dimensional structure of these biomolecules is not a fixed arrangement. The presence of

a surface or indeed other biomolecules can induce structure to these flexible molecules,

allowing them to remain versatile and able to bind to many targets.
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Chapter 5

Adsorption of poly acrylic acid onto

calcite surfaces

5.1 Introduction

Previous chapters (1,4) have described the attachment of biomolecules to mineral sur-

faces such as calcite. One of the research areas in which this attachment of biomolecules

is important is in the study of microbial cells. Using organic biomolecules these micro-

bial cells attach to mineral surfaces to form biofilms. In this chapter the polymer poly

acrylic acid is used as a model system for these biomolecules and molecular dynamics

simulations are performed to analyse the behaviour of this polymer in solution and on

the surface of calcite. The results are compared to experimental studies performed in

close collaboration with the computational simulations.

5.1.1 Biofilms and bacterial growth on surfaces

Microbial cells, or prokaryotes, are microscopic unicellular life forms such as bacteria

that are invisible to the naked eye yet make up a large portion of the Earth’s life forms.

It is estimated that there are a total of 4−6×1030 prokaryotic life forms on earth [180].
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Instead of existing as individual floating cells these microbial cells tend to agglomerate

and attach to surfaces. Through translocation, aggregation and surface attachment

they can position themselves in niches on the surface as dynamic and structurally

complex biological systems, which are referred to as biofilms [85,181]. The formation of

these biofilms occurs in three distinct steps (Figure 5.1). Firstly, single prokaryote cells

attach themselves to the surface. Secondly, multiple cells on the surface aggregate into

microcolonies and thirdly, through the excretion of extracellular polymer substance

(EPS) by the prokaryotic cells, these microcolonies form an organic matrix binding

the microbial cells together. The EPS consists of organic material excreted by the

microbial cells and is made up of macromolecules such as polysaccharides, proteins and

lipids [67]. This organic matrix shows a classic viscoelastic behaviour and can withstand

rapid changes in shear stress and can dissipate long lasting load stresses through the

viscosity of the material, and can therefore rapidly adapt to its environment.

The aggregation and attachment to surfaces has several advantages. The surface on

which these cells agglomerate provides a stable growth environment for the cells to

gather nutrients. The biofilms can concentrate nutrients and dispose of toxic metabo-

lites through permeable water channels in the EPS matrix. The close proximity of these

microbial cells allows for inter-cellular interactions and communication to adapt to the

environment, and adapt to changes in cell density [182]. The EPS matrix also serves

as protection against the environment and shields the cells from harsh environmental

factors such as extreme pH values, extreme temperatures, UV radiation, osmotic shocks

and desiccation. The formation of these biofilms also has the advantage of increasing

the resistance of these microbial cells to antibiotics, and studies have reported up to a

1,000-fold increase in resistance of bacteria in biofilms compared to free floating bacte-

ria [183]. This resistivity is thought to be partly caused by the EPS barrier itself through

the direct interaction between the organics in the EPS and antibiotic molecules.

Because of the adaptation of these biofilms, their formation is observed to be widespread

throughout nature, even in extreme environments such as acid mine drainages at pH=0
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[184] and thermal hot springs [185]. Biofilms are also present in the human body and

it is thought that more than 60 % of all hospital infections are due to biofilm formation

[181]. Examples of diseases in which biofilms play a major role are cystic fibrosis, a

condition where the lungs get filled with mucus; chronic ear infection caused by bacterial

biofilms; tuberculosis, a bacterial disease where nodules grow within the lung tissue;

periodontitis, a chronic inflammation of the gums around the teeth, caused by biofilm

formation around cavities in the teeth; and bacterial endocarditis, inflammation of heart

or blood vessel tissue do to the formation of bacterial biofilms on already damaged

tissue [85, 181, 186, 187]. Costs associated with these diseases are high (£931 million

per annum in England [188]) and mortality rates for some can be severe (up to 70% for

bacterial endocarditus [187]).

Figure 5.1: Schematic representation of bacterial biofilm formation in three distinct
steps: i) attachment of prokaryote cells to the surface; ii) aggregation of the cells on
the surface; iii) excretion of organic macromolecules to form EPS matrix.

5.1.2 Poly acrylic acid as model system for biofilms

The design of the experiments associated with the simulations described here is focused

on the interaction between the EPS macromolecules and the surfaces it attaches itself

to. Previous studies [189, 190] have shown the importance of functional groups such

as carboxyl groups in the attachment of macromolecules such as lipopolysaccharides,

mycolic acid and alginate that are found in the EPS. The polymer poly acrylic acid

(PAA, Figure 5.2) has been suggested as a suitable system to model the interactions

between EPS and surfaces, due to its carboxylic acid functional groups [189–191].
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The polymer PAA is a well-studied polymer and several experimental and compu-

tational groups have studied the interactions between the polymer and surfaces and

counter ions. The behaviour of the polymer in solution has been studied by Laguecir

et al. [192] who found that increasing the polymer chain length also increased the total

electrostatic potential on each monomer, making it harder to ionise the polymer. The

diffusivity of the polymer in solution decreased with increasing chain length, which

can be explained by either a conformational change of the polymer in solution or the

aggregation of multiple polymers, and this decrease is also seen with increasing pH

values. Bulo et al. [124] examined the interactions between short chain PAA (Mw

= 1200 g mol−1) and calcium ions in solution using computational simulations and

found that at high ionic strengths the PAA chains exhibit an extended conformation

stabilised by calcium ions. The same research group also performed computational

studies on the complexation of PAA with calcium and carbonate ions, showing that

PAA chains strongly bind to calcium carbonate species [193]. Geffroy et al. [194] used

microcalorimetry to analyse the binding of PAA on the surface of calcite and found a

positive enthalpy of binding (+2 kJ mol−1) and suggested that the mechanism in which

the polymer would bind onto the surface would have an entropic driving force. The

same group also suggested that small molecular weight polymers will have a greater

affinity for the surface than large molecular weight polymers, as the positive counter

ions in solution reduces the electrostatic repulsion of the short chains rapidly.

Previous computational studies have been performed on the adsorption of PAA on

calcite, and a wide range of adsorption energies have been obtained from these simu-

lations. Liu et al. [195] performed molecular dynamics simulations of PAA chains (10

monomers) in a vacuum. The adsorption process of the polymer onto calcite resulted in

a strong binding to the surface and they found that the coulombic interaction was the

most important contribution to the interaction energy between the PAA and surface.

The interaction energies of these simulations varied depending on the calcite surface

used, and they calculated an interaction energy of -917 kJ mol−1 for a (101̄4) surface.
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However, as these simulations were performed in vacuum, these values can not be con-

sidered relevant as they do not take into account the effect of the solution. Aschauer et

al. [196] later performed molecular dynamics simulations with a PAA chain consisting of

10 monomer units using SPC water as solvent. The simulations they performed showed

a lack of binding of the PAA on a flat (101̄4) calcite surface and a binding energy of

+395 kJ mol−1 on acute stepped calcite. The authors explain this surprising positive

binding energy as the result of a large energy barrier to break through the strongly

layered water structure on top of the calcite surface and the formation of complexes

that stabilises the PAA in a coiled configuration on the surface of calcite. As the PAA

polymer is still observed to bind to the surface of calcite, they hypothesise that a large

gain in entropy by the disruption of the water layers on the surface will result in a neg-

ative free energy of adsorption. Using molecular dynamics simulations of a PAA dimer

in solution and on the surface of calcite, Zhu et al. [190] calculated a binding energy of

-45 kJ mol−1 on the surface of (101̄4) calcite. Because of the widely different methods

used throughout these calculations, no direct comparison can be made between the

simulations.

5.1.3 Aims and objectives

The computational studies in this work were designed to study the conformational

behaviour of PAA macromolecules in solution at different pH values, analyse the ad-

sorption of these polymers to the surface of calcite and compare these computational

results to experimental studies. The difficulty with studying large macromolecules in

computer simulations is the number of degrees of freedom that the macromolecule has

and the large energy barriers between the different conformations that it can adopt. It

is difficult to sample all the conformational configurations that such macromolecules

can adopt using straightforward molecular dynamics simulations, and in order to in-

crease the efficiency of sampling this phase space a different approach must be used, as

discussed in Chapter 2. The metadynamics method developed in 2002 by Laio and Par-
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rinello [121] has been utilized in this work to enhance the sampling of the system. By

using the history dependent metadynamics method and suitable variables to describe

to conformation of the polymer, a free energy landscape of the polymer conformation

can be obtained. A 28 monomer polymer of PAA with molecular weight of ca. 2000

g mol−1 was used in the simulation work and results were compared to experimental

studies by the research group of Romero-Gonzalez1, who used a PAA chain with a

molecular weight of Mn = 19580 g mol−1. The behaviour of the different lengths of

PAA chain in the experiments and simulations is expected to slightly differ, with larger

chains showing a decrease in diffusivity and a decrease in the degree of ionisation as

described above.

The aim of this work is to gain a better understanding of the conformational behaviour

of macromolecules when interacting with the surface of calcite, and to assess what func-

tionalities of these macromolecules are important when adsorbing onto the surface of

(101̄4) calcite. Molecular dynamics studies that focus on the conformational behaviour

of PAA in solution and the adsorption of the polymer chain onto the (101̄4) surface

of calcite for a range of pH values will give an insight into the behaviour of these

macromolecules.

5.2 Methods

5.2.1 System setup

To model the PAA chain, a polymer consisting of 28 monomer units (Figure 5.2) was

used throughout all the simulation work. An atactic polymer with a random stere-

ochemical configuration was chosen to mimic experimentally obtained PAA. In order

to simulate the polymer at different pH values, the degree of ionisation of the chain

was adjusted by removing hydrogen atoms from the carboxylic acid functional groups

1Department of Civil and Structural Engineering, Kroto Research Institute, University of Sheffield.
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throughout the polymer. The pH values were chosen as pH 6.5 and pH 9.5, a range

that would reflect the environment found in biological systems and that shows a distinct

difference in the degree of ionisation of the polymer. These values are also in line with

experimental protocols of PAA adsorption. To model the environmental conditions of

pH 6.5, 20 randomly selected functional groups were ionised to produce a polymer with

degree of ionisation α = 0.75, in line with experimental values obtained via titration

techniques (Figure 5.3) [192], and a net charge of -20. All 28 functional groups were

ionised (α = 1.00) to model the polymer at pH 9.5 with a net charge of -28. The atomic

charges of the polymer were calculated using AMBER 12 Antechamber [138] which uses

the AM1-BCC method, a semi-empirical method to calculate atomic charges for or-

ganic molecules, as described in Appendix B. The polymers were simulated within

an aqueous environment to obtain initial configurations. A purpose built program

(buildcalcite.jar2) was used to create a slab of calcite with a perfect (101̄4) surface

with a depth of 32 Å (12 CaCO3 layers) and surface dimensions of 104 x 108 Å. The

program Packmol [137] was used to add the PAA polymer, Ca2+ counter ions and a

waterbox containing 40,000 TIP3P [104] water molecules with a density of 1.0 g ml−1

on top of the calcite surface in a similar fashion as seen in Figure 4.4. The polymer was

started either in solution or on the surface of calcite (<3 Å from the surface). Eight

different setup configurations were generated, as shown in Table 5.1, to explore the

configurational behaviour of the polymer in solution and on the surface of calcite and

to analyse this behaviour in the presence and absence of nearby counter ions.

5.2.2 Metadynamics

The metadynamics method developed by Laio et al. [121] was implemented to enhance

the sampling of the system and explore all configurations of the PAA polymer. The

metadynamics method is explained in detail in Chapter 2.5.2. The method relies on a

2Program developed by Robert Darkins at The London Centre for Nanotechnology, University
College London.
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Figure 5.2: Chemical structure of poly acrylic acid (PAA) which consists of a carbon
backbone with carboxylic acid functional groups.

Figure 5.3: Experimental titration for PAA of various chain lengths. Reprinted from
[192] with permission from Elsevier.
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Config pH Number of functional Complexation Polymer

groups ionised environment

1 6.5 20 Ca2+ close (<5 Å) surface

2 6.5 20 Ca2+ close (<5 Å) solution

3 6.5 20 Ca2+ far (>10 Å) surface

4 6.5 20 Ca2+ far (>10 Å) solution

5 9.5 28 Ca2+ close (<5 Å) surface

6 9.5 28 Ca2+ close (<5 Å) solution

7 9.5 28 Ca2+ far (>10 Å) surface

8 9.5 28 Ca2+ far (>10 Å) solution

Table 5.1: Details of the different poly acrylic acid configurations used for the metady-
namic simulations.

biased potential that is added to the total potential in the form of added Gaussians at

a given point on the trajectory described using a set of collective variables (CVs). The

addition of this history dependent bias in combination with properly chosen Gaussians

leads to the generation of a free energy surface as a function of the chosen CVs. As the

aim of this work was to gain a better understanding of the conformational behaviour

of the polymer, the shape of the polymer was used to define the CV that control the

biased potential to be added the the total potential. In polymer chemistry the radius

of gyration can be used to describe the size and shape of a polymer, and can be used

to differentiate between polymer configurations - in particular between coiled, globular

configurations and extended, open configurations. The radius of gyration (Rgyr) is

written as the mass weighted rmsd of all n atoms to the centre of mass of the polymer

(Equation 5.1):

Rgyr =

(∑
n
i |ri − rcm|2∑

n
imi

) 1
2

(5.1)

where n is the number of atoms in the polymer, ri is the three dimensional position of

atom i, mi is the mass of atom i and rcm is the centre of mass of the polymer and is

defined as Equation 5.2
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rcm =

∑
n
i rimi∑
n
imi

(5.2)

To sample the whole configurational space of the polymer and escape the local energy

minima of certain configurations, the radius of gyration of the polymer was used as the

CV for the metadynamics simulations.

5.2.3 Modelling protocols

The molecular dynamics package DL POLY Classic [140] in combination with the meta-

dynamics plug-in Plumed v. 1.3.0 [197] was used for all simulations. The calcite

potentials developed by Raiteri et al. [26] were used for the mineral phase, the organic

phase was described by the AMBER ff12SB potentials [111] and the method developed

by Freeman et al. [103] was used to produce cross-terms between the organic and min-

eral phases, as described in Chapter 2.2.4. The details of the poly acrylic acid potentials

used are described in Appendix G. To relax the water on the surface of calcite and

around the PAA molecule and counter ions, all simulations were subjected to an equi-

libration stage, in which the system was simulated using an NVT ensemble, with the

metadynamic bias potential set to zero to avoid any biased configurations at this stage.

The system was equilibrated at a temperature of 295 K for 1.0 ns with a timestep of 0.1

fs, with a Nosé-Hoover thermostat [119] with a relaxation time of 0.5 ps. The density of

the waterbox was monitored during the equilibration period to ensure the correct den-

sity was maintained. To ensure the system was fully equilibrated, the configurational

energy was analysed during the simulations and observed to level out.

Subsequent metadynamics simulations were run for 2.0 ns in an NVT ensemble with

a timestep of 0.1 fs, using a Nosé-Hoover thermostat with a relaxation time of 0.5 ps.

The radius of gyration of the PAA polymer (Equation 5.1) was used as CV to bias the

simulation. The timestep, width and height of added Gaussians were chosen such that

the system explored a large configurational space efficiently whilst ensuring that the
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energy of the system stayed consistent. The Gaussians were added every 0.5 ps and the

Gaussian height (the weight of the added bias) and width were chosen to be ω = 0.05

kJ mol−1 and δsα = 0.35 Å respectively. As only a single CV was used during the

metadynamics the free energy surface of the system was reconstructed by summing the

Gaussians added during the simulation trajectory.

Four configurations were taken from the metadynamics simulations to calculate the

adsorption energy of the PAA polymer on the surface of calcite: a coiled configuration

in solution; a coiled configuration adsorbed on the surface of calcite; an extended con-

formation in solution; and an extended conformation on the calcite surface. Whereas

metadynamics simulations provide a free energy landscape as a function of the CV, these

simulations were performed to retrieve a configurational energy of the system. Molec-

ular dynamics simulations without metadynamics were performed with these starting

configurations. The simulations were run in an NVT ensemble with a timestep of 0.1

fs and a Nosé-Hoover thermostat with a relaxation timestep of 0.5 ps. The system

was equilibrated for 0.5 ns, after which a data production simulation of 1.0 ns was

performed.

5.2.4 Experimental methods

Experimental studies of the PAA polymer were carried out by the research group of

Romero-Gonzalez in close collaboration with the simulations [198]. Using time-resolved

anisotropy measurements (TRAMS) the conformational behaviour of a long PAA chain

was analysed. The basis of TRAMS is the observations of time dependent intensities

of fluorescence emitted in planes parallel and perpendicular to a polarised light source

used to excite the sample (Equation 5.3):

r(t) =
i‖(t)−Gi⊥(t)

i‖(t) + 2Gi⊥(t)
(5.3)
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where r(t) is the decay of anisotropy of a molecule, i‖(t) and i⊥(t) are the intensities

in the parallel and perpendicular planes respectively, and G is a correction factor [199].

The rotation of a fluorophore attached to a macromolecule is linked to the anisotropy

of this macromolecule. The anisotropy decays via a mono exponential function in

Equation 5.4:

r(t) = ro exp(−t/τc) (5.4)

where ro is the intrinsic anisotropy and τc is the correlation time which characterizes

the motion of the fluorophore. The correlation time relates back to the conformational

behaviour of the macromolecule, with a short τc being associated with an expanded

flexible chain while a large τc would be consistent with a collapsed slow moving globular

structure [200–202].

5.3 Results and Discussion

5.3.1 Poly acrylic acid conformation in solution

The free energy surface of the PAA polymer in solution was reconstructed by summing

the bias Gaussians that were added to the total potential during the trajectory of the

simulation. This free energy surface is shown in (Figure 5.4) and demonstrates the

influence of the Ca2+ counter ions present in the solution on the conformation of the

polymer. It is evident from the radius of gyration shown in the free energy surface plot

that when the Ca2+ counter ions are in close proximity to the polymer, the polymer

adopts an open and extended conformation. When these counter ions are moved further

away from the polymer, the preferred conformation of the polymer is a random-coiled,

closed conformation, evident from the deep well of ca. 6 kJ mol−1 in Figure 5.4. The

presence of the positively charged counter ions in proximity to the polymer forces the
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polymer into a more open and extended conformation due to the strong interactions

between the counter ions and the carboxyl groups of the polymer, an interaction that

induces a rigidity to the polymer that is supported by the high density of charge on

backbone of the negatively charged polymer.

Figure 5.4: Free energy surface of the radius of gyration of the polymer in solution, as
calculated with the metadynamics simulations.

The complexation of the polymer throughout the simulations is found to be constant.

The Ca2+ counter ions that are bound to the carboxylate groups stay associated to

the same groups throughout the simulation and do not dissociate. Ca2+ ions that have

been placed further away from the polymer in the starting configuration (>10Å) tend

not to associate with the carboxylate groups during the simulation time. The radial

distribution function of the Ca2+ to carboxylate-oxygen distance is plotted in Figure 5.5

and shows a strong association of the carboxylate groups to the Ca2+ ions during the

simulations of the complexed polymer (solid blue line). In the simulations where the

counter ions are moved away from the polymer, there is no interaction observed be-

tween the two (dashed red line). The strong binding of the Ca2+ ions to the carboxylate

groups that is observed throughout these simulations constrains the polymer backbone

and promotes an extended, less flexible conformation of the polymer. Molecular dy-
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Figure 5.5: Radial distribution function of the calcium to carboxylate-oxygen in solu-
tion. The solid blue line shows the rdf for the PAA with Ca2+ ions complexed to the
polymer; the dashed red line shows the rdf for the Ca2+ not complexed to PAA. The
radial distribution function for the non-complexed system is expanded on the right.

namics simulations of Ca2+ ions and PAA chains in water by Bulo et al. [124] showed a

similar results with strong interactions between the carboxylate groups and the counter

ions.

The difference in configurational between the polymer complexed by counter ions and

not complexed with counter ions can be calculated from the MD simulations that were

run without metadynamics. When comparing the conformational energies of the two

systems, an energy difference of -23.7 ± 16.6 kJ mol−1 and -37.5 ± 20.9 kJ mol−1 at

pH 6.5 and pH 9.5 respectively can be observed. These results show that the complex-

ation of the polymer in solution by Ca2+ counter ions is an energetically favourable

reaction.

The changes observed in the conformational behaviour of the PAA polymer in solution

from a coiled conformation with a small radius of gyration to a more extended, open

conformation is also visible in experimental TRAMS measurements. Previous work by

Ebdon et al. [203] and Soutar et al. [200] show that PAA that was tagged with an

acenapthylene (ACE, Figure 5.7a) fluorescence label collapses into a partially coiled

conformation at low pH values, whereas it will adopt an extended chain conformation

at high pH values due to the repulsion of negative charges on the carboxylate functional

groups. The experimental work used in the work of Sparks et al. [198] used PAA poly-
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Figure 5.6: Free energy surface of the radius of gyration of the polymer on the surface
of calcite, as calculated with the metadynamics simulations.

mers labelled with ACE and 4-amino napthalene-1-sulfonic acid (AmNS, Figure 5.7b)

and is shown in Figure 5.8. The conformational behaviour observed in these experi-

ments is similar to previous studies [200, 203]. The data with the AmNS fluorescence

label shows the same trend as the ACE-labelled PAA, although the behaviour is less

pronounced. This difference can be explained by the differences in the method of at-

tachment of the fluorescence label to the polymer. The ACE label is rigidly attached to

the polymer via two bonds and can not rotate with respect to the polymer backbone.

AmNS on the other hand is only attached through one bond and can therefore rotate

freely through this bond. The effect of this rotation is that the data obtained for AmNS

not only describes the motion of the backbone polymer, but also the rotation of the

fluorescence tag. Due to this extra rotation the data obtained from experiments will

exhibit shorter τc values, although these data are still of value in revealing the confor-

mational behaviour of the polymer since it is likely to be sensitive to the microviscosity

of the environment.

Previous studies [201, 204] with polymethacrylic acid showed that various fluorescence

labels could distinguish between conformational changes of the polymer, irrespective

143



of their mode of attachment to the polymer. The data presented in Figure 5.8 show

that above pH 8 the polymer exhibits a short τc due to the free rotation of both the

ACE- and AmNS-labels, caused by the extended conformation of the polymer. At pH

values below 6, the polymer contracts into a partially coiled structure which inhibits

the free movement of the fluorescence labels and causes a longer τc. These anisotropy

measurements follow the results obtained by Laguecir et al. [192], who observed a

polymer expansion at high pH values and a contraction of the polymer at low pH

values with a PAA polymer tagged with a Rhodamine 123 fluorescence tag.

(a) Acenapthylene. (b) 4-amino napthalene-1-sulfonic acid.

Figure 5.7: Chemical structure of the fluorescence tags used in the experimental studies.

5.3.2 Poly acrylic acid conformation on calcite surface

The reconstructed free energy surface of the polymer on the surface of calcite is shown

in Figure 5.6. The behaviour of the PAA chain on the surface of calcite during the

metadynamics simulations shows a similar behaviour to the polymer in solution. The
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Figure 5.8: Conformation of PAA as a function of pH using time resolved anisotropy
measurements (TRAMS). From Sparks et al. [198].

radius of gyration of the PAA polymer is seen to be dependent on both the pH of the

system and the presence of counter ions near the polymer. The complexation of the

polymer induces an open, extended conformation of the polymer whereas a coiled, closed

conformation is observed when the counter ions are absent. Throughout the simulations

the polymer stays in close contact with the surface and the strong interaction between

the calcite surface and the polymer inhibits the polymer from desorbing.

Experimental data for the AmNS-labelled PAA polymer on the surface of calcite has

been produced by Sparks et al. [198] using TRAMS measurements, and can be seen in

Figure 5.9. From the TRAMS data the correlation time can be observed to increase

at pH 7, 9 and 11. Previous studies have reported extremely long correlation times for

polymers upon binding to surfaces. Soutar et al. [202] studied a fluorescence-labelled

polydimethylacrylamide polymer and reported a change in τc from ca. 2 ns for the

polymer in solution to ca. 1 µs when adsorbed on the surface of silica. The increase

in correlation time in the studies by Sparks et al. indicates that the polymer has a

smaller radius of gyration, indicating that the conformation of the polymer exhibits a

partially collapsed, coiled structure on the surface of calcite. However, these data may
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also reflect the fact that motion of the macromolecular chain is restricted as adsorption

proceeds and PAA binds to the mineral. At 1.0 wt% added calcite, the correlation time

decreases for both pH values. This drop off in correlation time (or increase in radius of

gyration of the polymer) can be explained by a saturation of the calcite surface by a full

layer of PAA chains. Additional polymer chains added to the solution cannot adsorb

to the surface and are either floating in solution or are loosely bound to other polymer

chains in the first adsorption layer. The same effect can be observed when analysing

the absorbed amount of PAA onto the calcite surface using steady state fluorescence

spectroscopy (Figure 5.10) where the amount of adsorbed PAA on calcite reaches a

plateau at a PAA concentration of ca. 3 mM. Computational studies performed by

Molnar et al. [205] have shown a similar effect, where Ca2+ ions associate with single

PAA chains, shielding the negative charges on the polymer chains and facilitating the

agglomeration of polymers on the mineral surface to form biofilms.

Figure 5.9: Conformation of PAA adsorbed to the surface of calcite as measured by
TRAMS. From Sparks et al. [198].
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Figure 5.10: Experimental adsorption of AmNS-labelled PAA onto calcite surface at
pH 7 and pH 11, measured using solid state fluorescent spectroscopy. From Sparks et
al. [198].

5.3.3 Adsorption energies

The adsorption energy of the PAA polymer on the surface of calcite can be calculated

using the energetics from the molecular dynamics simulations of the polymer in solution

and on the surface of calcite. Using Equation 5.5 the adsorption energies of the polymer

(Eadsorption) with respect to the water-only solvated surfaces (Ewater−calcite) and the

solvated polymer (Ewater−polymer) were calculated:

Eadsorption = (Ewater−calcite−polymer − Ewater−calcite − Ewater−polymer) (5.5)

where Ewater−calcite−polymer is the configurational energy of the solvated calcite-polymer

system. This method calculates the adsorption energy for the PAA polymer taking into

account only the enthalpic contribution of the system. However, using this method the

entropic contribution to the binding is ignored. The adsorption of the PAA macro-

molecules to the surface of calcite will be a positive entropic process, as the binding

process will disrupt the highly ordered water layers on the surface of calcite. In or-

der to calculate an estimate of the free energy of adsorption (which takes into account
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pH Eadsorption
a (kJ mol−1) nb TnSc (kJ mol−1) Ad (kJ mol−1)

ext’ed coiled ext’ed coiled ext’ed coiled ext’ed coiled

6.5 -325±28.9 -203±40.2 30.1 15.4 53.8 27.5 -118.1 -30.2

9.5 -317±33.0 -178±35.5 30.7 14.8 54.9 26.5 -112.1 -15.6

Table 5.2: Calculated values for the energy of adsorption of extended and coiled PAA
chains onto the surface of (101̄4) calcite. a enthalpy of adsorption from simulations;
b number of displaced water molecules; c entropic contribution due to displaced water
molecules; d estimated free energy of adsorption.

the entropy of the system), the entropic energy of the release of these water molecules

needs to be taken into account. An estimate of the free energy of adsorption, A, can

be made by assuming the most important entropy term arises from the displacement

of water molecules from the surface. As our simulations show a similar conformational

behaviour of the PAA polymer in solution and on the surface of calcite, it is a rea-

sonable assumption that the conformation entropy of the molecules in both cases will

be similar. Therefore the estimate of the free energy of adsorption can be written as

Equation 5.6:

A = U − TnS (5.6)

where U is the internal energy of adsorption, T is the temperature, n is the number

of water molecules displaced from the calcite surface during adsorption and S is the

entropic contribution arising from the displacement of a single water molecule. Freeman

and Harding [81] estimated this entropic contribution for a water molecule on the surface

of (101̄4) calcite to be ca. 6 J mol−1 K−1. From the PAA simulations performed in this

work both the configurational energy of adsorption as calculated by Equation 5.5 and

the estimated free energy of adsorption as calculated by Equation 5.6 on the (101̄4)

calcite surface were calculated. The data for these energies are shown in Table 5.2.

The predicted binding energy decreases with increasing pH values, indicating that the

polymer binds more strongly to the calcite surfaces at lower pH values.
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An adsorption energy can also be calculated from experimental data by extracting the

data from the steady state fluorescence experiments (Figure 5.10). By fitting an ad-

sorption isotherm to the experimental data, an adsorption constant can be obtained,

with which the energy of adsorption can be calculated. The Langmuir isotherm, devel-

oped in the early 1900s [206], is one of the most used adsorption isotherms and has the

functional form of Equation 5.7:

qe =
qmKaCe

1 +KaCe
(5.7)

where qe is the equilibrium adsorption capacity (mg g−1), qm is the maximum adsorp-

tion capacity (mg g−1), Ka is the adsorption equilibrium constant (L mg−1) and Ce is

the equilibrium concentration (mg L−1). With the experimental data the equilibrium

adsorption constant Ka can be obtained, and from the relationship between ∆G0 and

Ka in Equation 5.8 the Gibbs free energy change ∆G0 of the system can be calcu-

lated:

∆G0 = −RTlnKa (5.8)

For the calculation of the adsorption constant with a Langmuir isotherm, the following

assumptions are made: The surface to which the molecules adsorb is flat and homo-

geneous; all adsorption sites have the same energy; no more than a single mono layer

can be adsorbed onto the surface; and adjacent molecules adsorbed onto the surface

do not interact with each other. It should be pointed out that the saturation seen in

experiments does not imply that all the binding sites are individually occupied. Large

molecules can occupy more than one binding site. Indeed, jamming [207], whereby the

molecules block large number of possible sites, is almost inevitable in a system of this

kind. A Langmuir isotherm energy may include mediated bonding through calcium ions

and even a contribution from PAA molecules that are loosely attached to an absorbed
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PAA layer. Sparks et al. [198] fitted a Langmuir isotherm to the experimental data and

obtained the adsorption free energies of -2.12, -1.41 and -1.18 kJ mol−1 at pH 7, 9 and

11 respectively. The negative values for ∆G indicates a favourable binding of PAA to

the surface of calcite, with the polymer binding more strongly to the surface at lower pH

values, when less functional groups are ionised. These experimental adsorption energies

are within the same range of those obtained by Geffroy et al. [194], who measured an

adsorption enthalpy of +2 kJ mol−1 for PAA adsorption onto calcite.

The difference between the free energy obtained from the calculated energy of absorp-

tion and the Langmuir isotherm analysis of the experimental absorption curve for the

PAA molecule can be explained by the fact that these two values refer to different

quantities. Due to the small chain length of the polymer simulated in the computa-

tional studies, the calculated free energy of adsorption refers to the binding of a small

molecule on the surface of calcite, in which a large number of the functional groups

are involved with the direct binding to the surface. For the experimental obtained free

energy, this is calculated with respect for a much larger polymer system, where parts of

the macromolecule can exhibit different modes of binding (Figure 5.11), such as loops

(part of the polymer extends into the solution), trains (extended parts of the polymer

attached to the surface) and tails (end of the polymer chain extended into solution).

The longer polymer chain in the experimental studies will exhibit these behaviours

upon binding, whereas the shorter polymer used in simulation studies (by necessity)

will not be able to exhibit all these conformations. As the computational simulations

will only represent part of the binding process of the polymer (indicated by the red box

in Figure 5.11), this will result in a higher effective binding energy per unit length of

the polymer than seen in the experimental studies.
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Figure 5.11: Polymer attachment mechanism to surfaces, showing trains, loops and
trails. The smaller polymer chain used in the computational simulations will be able
to represent only a small section of the polymer (indicated by the red box) and thus
the calculated binding energy will differ to that measured experimentally.

Conformation pH 6.5 pH 9.5 Average Percentage of total functional groups

Extended 7.1±0.9 6.7±0.8 6.9 25%

Coiled 4.0±0.6 3.9±0.7 4.0 14%

Table 5.3: Number of functional groups of PAA interacting with the calcite surface.

5.3.4 Binding mechanism

The number of functional groups interacting with the calcite surface upon binding can

be calculated from the computational simulations and are displayed in Table 5.3. The

number of displaced water molecules depends strongly on the conformation adopted

by the PAA chain, with twice as many water molecules displaced when the polymer

adopts an extended conformation than for a coiled conformation. Similarly, the num-

ber of functional groups involved with the binding process changes depending on the

adopted conformation. In an extended conformation (Figure 5.12) the average num-

ber of carboxylic acid groups interacting with the surface is 6.9, corresponding to 25%

of the total number of functional groups on the polymer. This number drops to 4.0

(14%) for a more coiled conformation (Figure 5.12). The configurational binding en-

ergies per functional group interacting with the surface at pH 9.5 are -45.7 ± 17.3 kJ

mol−1 (coiled) and -47.3 ± 10.6 kJ mol−1 (extended) are not significantly different and

suggest that there is a much larger entropic gain with the adsorption of the extended

conformation on the surface of calcite than with the coiled conformation.
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Figure 5.12: Typical binding motif of an extended PAA chain (left) and a coiled PAA
chain (right) on the surface of 10.4 calcite. Oxygen, carbon, hydrogen atoms and Ca2+

counter ions are depicted in red, cyan, white and orange respectively. Water molecules
are omitted for clarity.

Table 5.3 shows that only up to a quarter of the functional groups present in the

polymer are involved with the binding process, and that this number does not drastically

increase with more charged functional groups at higher pH values of the environment.

When analysing a typical binding motif of an extended polymer chain on the surface

of calcite (e.g. Figure 5.12) it can be seen that only the central part of the polymer

stays in constant contact with the surface, much the same as seen in the train like

conformation of longer polymeric chains (Figure 5.11). Additionally, only alternating

functional groups in the central section of the polymer are seen to be involved in the

binding process. This behaviour suggests that not only the number of charged functional

groups present will dictate the binding of a molecule to surfaces, but also the spacing

between these groups. On the surface of (101̄4) calcite there are a lot of exposed CO3
2–

ions present which could hinder the adsorption of molecules with a high density of

negative charges. The complexation of the polymer with positively charged calcium

ions might therefore be aiding the adsorption of the polymer to the calcite surface by

shielding these negative charges. The counter ions are complexed to the polymer for

extended periods of time and continue to be associated with the polymer when bound

to the surface, indicating this complexation could be a mechanism of calcium transport

to the surface.
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5.4 Conclusion

Whereas previous computational studies have focussed on the binding energies of PAA

on the surfaces of minerals and on the binding of free calcium ions in solution, the work

presented here is a study of both the adsorption of longer polymer chains on the surface

of calcite and the conformational behaviour of these chains. Using molecular dynamics

simulations in combination with metadynamics, a good comparison could be made with

the experimental results obtained by the research group of Romero-Gonzalez.

The role of calcium counter ions in the system is of great importance for the conforma-

tion and binding of the polymer. The polymer complexed with Ca2+ counter ions will

prefer an extended conformation in which the counter ions are strongly associated with

the carboxylate functional group throughout the simulations, whereas the conformation

adopted by the polymer when not complexed by counter ions is a coiled, sphere like

structure. The extended conformation has a higher adsorption energy on the calcite

surface than the adopted conformation of the polymer when not complexed. The long

time-scales of the polymer - calcium association, even when binding to the surface of

calcite, provides an insight of a possible mechanism of how the calcium ions could be

transported through the tightly bound water layers to the surface of calcite.

The computational methodology developed in this work to study the conformation and

binding of large macromolecules in solution and on the surface of calcite can be used

in future to study similar sized macromolecules. The large differences in adsorption

energies between experiment and simulation can be explained by the differences in chain

length of the polymer used as the short chained polymers used within the simulation

work are expected to have a higher affinity for the surface compared to those used

experimentally. The adsorption experiments performed using steady state fluorescence

spectroscopy and the computational simulations of adsorption both indicate that PAA

is readily adsorbed onto the surface of calcite due to the functional groups present in

the molecule. The strength of this adsorption is dependent on the pH of the system
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and the presence of counter ions in solution and the polymer binds more strongly to

the surface of calcite in a lower pH environment.

The strong binding of the PAA polymers and the extended conformations of the polymer

chains that maximise the points of contact with the surface in the simulations provided

here and the experimental work by the research group of Romero-Gonzalez shows that

flexible macromolecules with the right functional groups can bind strongly to calcite

surfaces. The binding strength of these molecules is dependent on both the pH and

counter ions, and can be related to the binding of bacteria via cell-wall macromolecules

such as mycolic acid to surfaces and the formation of biofilms.

The enhanced binding of the extended conformation PAA on the surface of calcite shows

that flexible chains, such as intrinsically disordered proteins, could be beneficial to the

binding of these macromolecules. The fact that only 14 to 25% of the functional groups

present on the polymer are involved in the binding process suggests that the total

number of functional groups is not the only factor that plays a role in the adsorption of

biomolecules on the surface of minerals. In addition the the total charge, the spacing

between these charged groups to match the underlying charge pattern of the mineral

surface plays a role, a fact that is important for the future design of biomolecules to

interact with these mineral surfaces.
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Chapter 6

Adsorption of amino acids onto

amorphous surfaces

6.1 Introduction

Amorphous calcium carbonate (ACC) is the non crystalline phase of CaCO3 and is

highly unstable. Due to this instability the amorphous phase will transform into one

of the crystalline phases, a process both thermodynamically favoured and kinetically

fast [22, 208, 209]. Biogenic ACC, however, is observed to last for longer time scales.

Within many different organisms ACC has been observed to be present either as a

precursor for the crystalline CaCO3 phases or for longer periods of time as amorphous

material [4, 210].

The difficulty with identifying ACC within organisms is the close association between

the amorphous and other crystalline phases within the same material and as such,

the use of ACC as a material within biology is probably underestimated. There are,

however, a good few examples of the use of ACC within organisms, as shown in Table 6.1

and Figure 6.1. The fact that the ACC is seen to be stabilised within a variety of

organisms shows that the crystallisation process of ACC can be inhibited by these
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organisms, and several experiments have shown that an organic phase within these

organisms is in part responsible for this stabilisation [208,211].

Organism Location Function

Crustaceans Crab cuticle Mechanical strength

Echinoids Larval spicules Precurser phase

Porifera Spicules Strength/protection

Ascidiacea Spicules Mechanical strength

Plants Leaves Calcium store

Table 6.1: Occurrence of amorphous calcium carbonate in nature.

6.1.1 Earthworms

One of the organisms that has been seen to produce calcium carbonate particles is the

earthworm, which excretes CaCO3 granules in a process observed as early as 1880 by

Darwin [212]. Earthworms such as the Lumbricus terrestris and Lumbricus rubellus

are responsible for the production of calcium carbonate nanoparticles in soils, which

are important in the biogeochemical cycles of soils [213–217]. These calcium carbonate

granules range from single crystals to particles of 2.5 mm in diameter [213] and are

produced in the calciferous glands of earthworms and subsequently excreted and consist

mainly of calcite [214]. However, other phases of calcium carbonate are seen to be

present: vaterite, aragonite and anhydrous amorphous calcium carbonate regions are

seen to exist for long time scales in these granules (Figure 6.2) [215]. The unusually

high stability of this amorphous state, existing for >2 years, is of great interest for a

range of applications, including for example the prevention of scaling in pipes used for

oil recovery.

As the structure of anhydrous amorphous calcium carbonate is inherently unstable, it

is abnormal to see this phase is such high quantities for long periods of time. Recent

work by Demarchi et al. [218] shows that several amino acids, including glutamic acid

and glutamine, are present in high concentrations in the vicinity of the ACC granules
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Figure 6.1: SEM images of examples of the use of amorphous calcium carbonate in
biology. a) Body spicule from the sea tulip Pyura pachydermatina made up completely
of ACC. b) Cross section of a tunic spicule of the Pyura pachydermatina which shows an
ACC core separated from an outer calcite layer by an organic membrane. c) A cystolith,
a small agglomeration of mineral ions, from the leaves of a the Ficus microcarpa. d)
ACC granules from the crustacean Orchestia cavimana, a temporarily calcium store.
From [5]. Reprinted with permission from the Wiley Company.

Figure 6.2: High resolution transmission electron microscope image of a granule pro-
duced by the earthworm Lumbricus friendi shows areas of calcite, aragonite and ACC.
Reprinted from [215] with permission from Elsevier.
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excreted by earthworms. The unusual high presence of these small amino acids might

give an insight into the increased stability of the ACC particles.

6.1.2 Simulation studies

Several simulation studies have looked at the interactions between ACC and biomolecules.

Freeman et al. [72] performed computational studies of the chicken eggshell protein

ovocleidin-17 in the presence of small amorphous calcium carbonate (ACC) nano parti-

cles and found that the protein catalyses the transformation of ACC to calcite. Recently,

Raiteri et al. [219] have performed computational experiments on the interactions be-

tween organic molecules and ACC. Using metadynamics simulations with the distance

between the organic molecules and separate calcium and carbonate ions as collective

variable, they resolved a free energy landscape of the association between CaCO3 and

Asp, acetate and citrate. Throughout their simulations they observed that the calcium

ions strongly associate with the carboxyl functional groups on the organic molecules.

When simulating the adsorption of these organics on the surface of small ACC nano

particles they observed a weak solvent separated adsorption of the organics on the ACC

surface.

6.2 Aims and objectives

The aim of this preliminary project is to gain an understanding of the interactions

between small biomolecules and anhydrous ACC and gain insight into the binding

strength of these small biomolecules to amorphous surfaces. Within this work molecular

dynamics simulations were performed to analyse the interactions between a range of

amino acids and the amorphous surface. Several analysis techniques were used to gain

a better understanding of the interactions involved with the binding of the amino acids

to the surface, and to gain an understanding of the strength of these interactions.
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6.3 Methods

6.3.1 System setup

The charged state of amino acids changes depending on the pKa of the amino acid

functional groups and the environment the amino acid is exposed to. The pH values

considered in this work were chosen to reflect those normally used within experimental

work. Four amino acids were used within this work (Figure 6.3): aspartic acid (Asp,

D), glycine (Gly, G), glutamic acid (Glu, E) and arginine (Arg, R). The pKa values for

the amine and carboxyl functional groups and the overall charges of these amino acids

are detailed in Table 6.2. In order to charge balance the simulations, Ca2+ and CO3
2–

counter ions were added to the simulations. One Ca2+ counter ion was added to the

simulation of Asp, one Ca2+ counter ion was added to a simulation with two Glu and

one CO3
2– counter ion was added to the simulation with two Arg amino acids.

(a) Asp. (b) Glu. (c) Gly. (d) Arg.

Figure 6.3: The chemical structures of the amino acids used within this work.

Amino acid pKa(NH2) pKa(COOH) pKa(COOH sidechain) Total charge

Asp 9.82 2.10 3.86 2-

Gly 9.60 2.34 - 0

Glu 9.47 2.10 4.07 1-

Arg 9.04 2.01 12.48 1+

Table 6.2: Details of the pKa values and the total charge of the amino acids used within
this work: Asp, Gly, Glu and Arg.

To model the anhydrous amorphous calcium carbonate a slab of calcite of 27 Å x 28 Å x

29 Å and containing 294 CaCO3 formula units was melted and subsequently quenched
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to produce an amorphous CaCO3 surface. Subsequently a water box containing 3000

TIP3P water molecules [104] was placed on top of the amorphous surface using the

program Packmol [137], ensuring a water density of of 1.0 g ml−1 in a setup similar to

that as seen in Figure 4.4. The amino acids were placed at a distance of 4 Å from the

surface. Two configurations for each amino acid were simulated, in which the starting

positions were different.

6.3.2 Modelling protocols

The models of the amino acids in this work were prepared using the Amber 12 Antechamber

package [138]. The atomic charges of the molecules were calculated using the AM1-BCC

method [139] which uses a semi-empirical method with charge corrections to calculate

the electronic structure of a molecule, as detailed in Appendix B. The inter- and

intra-molecular interactions of the calcium carbonate were described by the potentials

developed by Raiteri et al. [26] and the potentials from the AMBER ff12SB forcefield [111]

were used for the amino acids and water molecules. The cross-terms between the or-

ganic and inorganic (CaCO3) phases were calculated using the method described by

Freeman et al. [103] (Chapter 2.2.4). Details of the specific potentials for this work are

detailed in Appendix H.

All simulations were carried out using the molecular dynamics package DL POLY Classic

[140]. The calcite slab was simulated at 3000 K for for 3.0 ns with a timestep of 1.0 fs

in an NVT ensemble with a Nosé-Hoover thermostat [119] with a relaxation time of 0.5

ps. Subsequently the system was quenched in steps of 300 K with simulations of 1.0 ns

at each temperature step using the same parameters. A final simulation was performed

at 300 K for 3.0 ns to properly equilibrate the system. After the addition of the water,

the systems were equilibrated at a temperature of 300 K for 100 ps with a timestep

of 0.1 fs in an NVT ensemble with a Nosé-Hoover thermostat [119] with a relaxation

time of 0.5 ps. A second equilibration simulation for 1.0 ns with a timestep of 1.0 fs
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was performed. The density of the waterbox was monitored during the equilibration

period to ensure the correct density was maintained. The configurational energy of the

system during the equilibration simulations was analysed to ensure a fully equilibrated

system. Subsequently, a 2.0 ns simulation using the same parameters was carried out

for data analysis.

Additional simulations of the water-only solvated amino acids with 3000 TIP3P water

molecules and a bulk water system were performed in order to calculate the energies

of adsorption. The same simulation protocols were used as described above, and the

simulations were performed for 1.0 ns. Using Equation 6.1 the adsorption energies of the

amino acids (Eadsorption) with respect to the water-only solvated surfaces (Ewater−acc)

and the solvated amino acids (Ewater−aminoacid) were calculated:

Eadsorption = (Ewater−acc−aminoacid − Ewater−acc − Ewater−aminoacid) (6.1)

where Ewater−acc−aminoacid is the conformational energy of the solvated ACC - amino

acid system.

6.4 Results and discussion

6.4.1 Amorphous slab

The radial distribution function (RDF) of the calcium to calcium distances for both the

calcite slab and the amorphous slab are shown in Figure 6.4. From this RDF it is clear

that the crystalline structure of the calcite has disappeared and that the slab is fully

amorphous. The short and medium range order that is still present within ACC [5,220]

is also seen within the structure produced here. The long range order, however, has

completely disappeared. In order to analyse the surface of the amorphous phase, the

density of the water and calcium carbonate in the z -direction throughout the simulation
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box has been measured and is displayed in Figure 6.5. It can be seen that the surface

between water and calcium carbonate is not well defined and that water penetrates

slightly into the structure of the amorphous calcium carbonate.

Figure 6.4: Radial Distribution Function of Ca-Ca distances in the system before (cal-
cite) and after (ACC) melting at 3000 K.

Figure 6.5: Normalised Z-density profile of Calcium, C(carbonate) and O(water) in a
simulation with an ACC slab with water. The surface of the amorphous phase is not
well defined, and this surface can be seen between 5 and 11 Å.

6.4.2 Adsorption energies

The adsorption energies of the amino acids on the surface of the ACC slab were cal-

culated with Equation 6.1 and these energies and the standard error can be found in
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Table 6.3. From these adsorption energies a clear distinction can be made between the

adsorption of Arg and the adsorption of Asp, Gly and Glu. The former amino acid

exhibits a relatively high, favourable adsorption energy, whereas the latter amino acids

show a positive energy. For the three amino acids with a positive energy of adsorption,

this energy is seen to decrease with an increase in negative charge of the system, with

average adsorption energies of 63.15 kJ mol−1 for neutral Gly and 27.53 and 37.50 kJ

mol−1 for the negatively charged Asp and Glu respectively.

When comparing the modes of binding for all three amino acids, the positive nature of

these adsorption energies becomes clear. In Figure 6.6 the binding modes of Asp, Gly

and Glu are shown.

Amino acid Energy config 1 Standard error Energy config 2 Standard error

(kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

Asp 24.62 4.60 30.44 4.20

Gly 68.54 4.49 57.75 4.62

Glu 44.69 5.23 30.31 4.68

Arg -139.70 4.32 -121.04 4.74

Table 6.3: Binding energies of the amino acids Asp, Gly, Glu and Arg on the surface
of ACC.

Throughout the simulations the amino acids Asp and Glu are seen to hover above

the surface at a distance of approximately 2 to 4 Å, with the carboxyl functional

groups complexed to a Ca2+ ion throughout the majority of the simulations. This

strong complexation is common with carboxyl functional groups, as shown in previous

computational studies [124]. The amino acids are seen to be inhibited from adsorbing

nearer the surface, an effect due to an energy barrier caused by either a charge repulsion

or the water structure on top of the surface of ACC. For the amino acid Gly a different

interaction is observed, one between the amine functional group and a CO3
2– ion. In

the simulations of Gly the amino acid is seen to distance itself approximately 4 Å from

the rest of the ACC surface, associating with a carbonate ion situated on top of the

ACC surface.
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In the case of the amino acid Arg, a different mode of adsorption is observed altogether

(Figure 6.7). Throughout the simulations strong hydrogen bonds are developed between

the three nitrogen atoms of the Arg side chain and three separate carbonate ions on the

ACC surface. A fourth carbonate ion becomes associated with the amine group on the

C-terminus of the amino acid, causing the amino acid to fully adsorb onto the surface of

the ACC. This strong interaction is reflected in the highly negative adsorption energies

observed for the Arg amino acid.

The Z-density profiles for all four amino acids on the surface of ACC are shown in

Figure 6.8. A few observations can be made from these plots. Firstly, the surface of the

ACC is rough, with the water and mineral interface not well defined. Secondly, some

of the Ca2+ and CO3
2– ions are seen to be dissociating from the surface. The distances

between the ACC and the amino acids is also distinctly different between in the case

of Asp, Gly and Glu versus the Arg amino acid. The Z-density plot of the latter shows

a closer adsorption to the surface than the other three amino acids, due to the strong

interactions with the nitrogen atoms in the side chain of the Arg molecule.

Figure 6.6: The binding configurations of the amino acids Asp, Gly and Glu on the
surface of ACC.
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Figure 6.7: The binding configuration of the amino acids Arg on the surface of ACC.

(a) Asp. (b) Gly.

(c) Glu. (d) Arg.

Figure 6.8: Normalised Z-density profiles of the amino acids Asp, Gly, Glu and Arg
on the surface of ACC. The surfaces between the ACC and water are not well defined,
with these surfaces starting at 8 - 10 Å from the centre of the simulation box.
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6.5 Conclusion

The binding energies calculated for the four amino acids on the surface of ACC show

that there is a weak interaction of the amino acids Asp, Gly and Glu with the surface

that involves the interaction between the carboxyl functional groups and calcium ions

in the case of Asp and Glu, and an interaction between the amine functional group

and a carbonate ion with the adsorption of Gly. The amino acids are separated from

the ACC surface by a water layer, a similar behaviour as seen in the recent simulation

study by Raiteri et al. [219], who show that the binding of Asp, acetate and citrate is

mediated through a solvent layer.

The average adsorption energies of 27.53, 63.15 and 37.50 kJ mol−1 for the amino acids

Asp, Gly and Glu respectively in this work are positive and show that the organic and

mineral phases are separated by a water layer. The average adsorption energy of -130.37

kJ mol−1 for Arg, however, is negative and is indicative of a highly favourable interaction

between the amino acid and CaCO3. The differences in the energies of adsorption seem

to rise from the highly favourable interaction between the amine functional groups on

the Arg side chain and the carbonate ions in solution.

The simulations performed in this work show that there are a number of interactions

present between amino acids and the amorphous surface of calcium carbonate. The fact

that strong interactions can be found to exist between both the carboxyl functional

group and the mineral cations and the amino functional groups and mineral anions

shows that although the adsorption energies for these molecules are positive, there are

still several interactions available that may well be able to induce a stabilisation of

ACC nano particles. Indeed, the experimental results from Raiteri et al. [219] show

that the organic additives used in their experiments were able to inhibit nucleation

events, stabilise amorphous particles and stabilise pre-nucleation clusters.

Computational simulations give a good indication of the interactions between the or-

ganic molecules and the mineral phase, and can shed light on the amorphous nature

166



of calcium carbonate, such as the nano particles excreted by earthworms in soil sam-

ples. The preliminary simulations performed within this work, however, would have to

be extended to confirm any of the conclusions drawn from the differences in binding

energies. Potential of mean force calculations such as those performed by Raiteri et

al. [219] would be able to offer more rigorous results than have been calculated to date.

Additionally, the simulation of the interactions between a larger range of amino acids

and the surface of these ACC nanoparticles could shed light on the relative strengths

of these interactions.
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Chapter 7

Conclusion and future work

7.1 Inclusion of amino acids into calcite crystals

This work presents the first simulation study of the inclusion of amino acids within

calcite crystals. Molecular dynamics simulations show that the inclusions of these

biomolecules are associated with a high energy of inclusion. The mode of these inclu-

sions must be via a kinetic rather than a thermodynamic pathway. The high vacancy

defect energies for these systems also supports that claim. The simulations of these

inclusions show that a ‘goodness of fit’ principle is maintained, where molecules will get

incorporated within the crystal if the disruption to the lattice can be minimised. This

is apparent when looking at the structural data for the inclusions of Asp and Gly within

the calcite crystal. The amino acid Asp is more readily incorporated within the crystal

whilst causing a minimal disruption to the crystal lattice, whereas Gly causes more

pronounced lattice distortions. The geometry of Asp is such that the distances between

both carboxyl functional groups of the amino acid can mimic both the distances and

positions of vacant carbonate ions, with the amine functional group occupying a vacant

calcium position.

The anisotropic behaviour of the calcite crystal can also clearly be seen from the simu-
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lations performed in this work, and the expansion of the crystal in the c-direction is an

order of magnitude larger than the expansion in the a/b-directions. The simulations

show that the included biomolecules are positioned in between the planes perpendicular

to the c-axis of the crystal, and show a similar behaviour to biogenic calcite with intra-

crystalline proteins, suggesting that the inclusion of both small and large biomolecules

result in similar structures. The computational simulation results show a good agree-

ment with experimental studies that have been performed in close collaboration.

The work presented here shows that the key feature for the inclusion of biomolecules

within the calcite mineral phase is the minimisation of the disruption to the crystal

lattice. Those molecules that exhibit a good fit within the lattice will be more readily

incorporated. These simulation studies together with the experimental data shows that

the mechanical properties of these biocomposite materials can be altered depending

on the amino acid content, and shows a way in which composite materials with im-

proved mechanical and physical properties can be produced within synthetic materials

design.

The scope for future work within this project is extensive, as the simulations can be ex-

tended to include a whole range of biomolecules such as amino acids and larger peptides

or proteins, and there is a plethora of experimental work available on the inclusion of

these molecules. In addition to energetics and structure analysis the mechanical prop-

erties such as the fracture toughness of these composite materials can also be analysed

using computational techniques to create a complete picture of the effect of these in-

clusions.

7.2 Conformational behaviour of biomolecules

The conformational behaviour of both small and large biomolecules in solution and on

the (101̄4) surface of calcite was investigated using computational simulations.
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7.2.1 Glu-Asn-Gly

Whereas many computational studies focus on the analysis of single molecules in solu-

tion or on the surface of minerals, this study has analysed the conformational behaviour

of multiple small Glu-Asn-Gly tripeptides. In solution these peptides show a strong de-

pendence on the presence of other biomolecules in close proximity. Throughout the

simulations the flexible structure of single peptides is seen to change when interacting

with other peptides. The strong peptide - peptide interactions are caused by extensive

hydrogen bonding between the molecules. The Ramachandran maps of the dihedral

backbone angles of these molecules show that the peptide - peptide interactions force

the peptides into a more rigid conformation with a different set of φ/ψ angles.

The adsorption of the peptides on the (101̄4) surface of calcite show a favourable in-

teraction between the organic and mineral phases. A distinct binding conformation is

observed for these peptides via the carboxyl functional group situated on the C-terminus

of the peptide. Upon binding the oxygen of this functional group is situated at the same

distance from the surface as the first water layer on top of the calcite surface. The rest

of the peptide is extended into the aqueous environment away from the surface. This

conformation minimises the disruption to the highly ordered water layers on top of the

surface of calcite, and maximises the binding energy of the peptides.

The hydrogen bonds between the peptides that are present throughout the molecular

dynamics simulations induce the aggregation of two or three peptides into small clusters.

The simulations show that this aggregation is a favourable process, a similar result as

seen in other simulation and experimental studies of flexible, intrinsically disordered

peptides [170, 171]. The data from the simulations performed here show that both the

presence of the calcite surface and other biomolecules in solution induce a disorder-

to-order transitions within the peptides. This transition alters the three-dimensional

structure of the peptide from a flexible molecule to a rigid one with a fixed configuration.

This behaviour is similar to that seen for intrinsically disordered proteins, in which the
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flexible nature of the molecules allow them to remain versatile and able to bind to many

targets.

The simulations show that the key interaction between the Glu-Asn-Gly peptide and

the calcite surface is the carboxyl functional group binding to the surface, together

with the minimisation of the disruption to the water structure on the surface. It is

clear that the mineral surface also has a great effect on the conformational behaviour of

the peptides with a flexible to rigid transformation occurring within the peptide.

As the use of intrinsically disordered peptides/proteins throughout the biomineralisa-

tion area is widespread, future work on these systems is desirable. Accelerated molecular

dynamics such as those performed on the n16N peptide [171] could help to gain a better

understanding of the peptide - petide and peptide - mineral interactions.

7.2.2 Poly acrylic acid

The work on poly acrylic acid presented in Chapter 5 is a study on conformational

behaviour of a longer polymer in solution and its adsorption on the surface of calcite.

In the presence of Ca2+ counter ions the polymer will prefer an extended conformation

in which the counter ions are strongly associated with the carboxylate functional groups

on the polymer. A coiled, sphere like conformation is observed in the absence of these

counter ions. When adsorbing onto the (101̄4) surface of calcite the polymer favours

the open, extended conformation over the closed, coiled conformation. The enhanced

binding of this extended conformation on the surface of calcite shows that flexible

chains, such as intrinsically disordered proteins, could be beneficial to the binding of

these macromolecules.

The key features of the interactions between the soft, organic phase and the hard,

mineral phase are the carboxyl functional groups. Interestingly, only 14 to 25% of the

functional groups present on the polymer are involved in the binding process. This

suggests that the total number of functional groups present on a molecule is not the
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only factor that influences the strength of adsorption onto the mineral surface. The

charge and spacing of these functional groups to match the underlying charge pattern is

also of importance, supporting the notion that flexible molecules would be beneficial to

binding to mineral surfaces and a fact that could aid the future design of biomolecules

to interact with these surfaces. The strong binding of the polymer via the carboxyl

functional groups shows the mechanism in which such biomolecules attach to surfaces

to form biofilms.

The computational methodology developed in this work can be used in future to analyse

the conformational behaviour of similar sized macromolecules. As the work on smaller

tripeptides shows a strong aggregation of flexible chains in solution, future work in this

area could include the simulation of multiple poly acrylic acid polymers. Additionally,

macromolecules such as lipopolysaccharides, mycolic acid and alginate, which are found

in bacterial extracellular polymeric substance, could be simulated.

7.3 Adsorption of amino acids on amorphous sur-

faces

The preliminary simulation study of amino acids on the surface of ACC shows a distinct

difference in the mode of binding of different amino acids. The amino acids Asp, Gly

and Glu are seen to have a weak interaction with the surface of ACC mediated with

a water layer between the organic and inorganic phases, similar to that observed in a

recent simulation study [219]. The amino acid Arg on the other hand shows a strong,

direct interaction with the surface of calcite in which the amine functional groups on the

side chain of the amino acid are bound to carbonate ions on the surface of ACC.

These preliminary simulations would have to be extended to confirm any of the con-

clusions drawn from the differences in binding energies. Simulations that are able to

construct a free energy surface of the interactions between the amorphous phase and
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the organic phase, such as potential of mean force calculations would be able to offer

more accurate results on these interactions. From experimental results [208,211,215] it

is clear that a range of biomolecules is able to stabilise the amorphous phase of CaCO3,

and as such an variety of biomolecules could be simulated in the presence of ACC to

uncover the key mineral - organic interactions that lead to this stability.
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[27] R Becker and W Döring. The kinetic treatment of nuclear formation in supersat-

urated vapors. Ann. Phys, 24(719):752, 1935.

[28] JJ De Yoreo and PG Vekilov. Principles of crystal nucleation and growth. Reviews

in mineralogy and geochemistry, 54(1):57–93, 2003.

[29] D Gebauer, M Kellermeier, JD Gale, L Bergström, and H Cölfen. Pre-

nucleation clusters as solute precursors in crystallisation. Chemical Society Re-

views, 43(7):2348–2371, 2014.

[30] D Gebauer, A Völkel, and H Cölfen. Stable prenucleation calcium carbonate

clusters. Science, 322(5909):1819–1822, 2008.

[31] D Gebauer and H Cölfen. Prenucleation clusters and non-classical nucleation.

Nano Today, 6(6):564–584, 2011.

[32] FC Meldrum and RP Sear. Now you see them. Science, 322(5909):1802–1803,

2008.

[33] MH Nielsen, D Li, H Zhang, S Aloni, T Han, C Frandsen, J Seto, JF Banfield,

H Cölfen, and JJ De Yoreo. Investigating processes of nanocrystal formation and

transformation via liquid cell tem. Microscopy and Microanalysis, 20(02):425–436,

2014.

[34] D Quigley, CL Freeman, JH Harding, and PM Rodger. Sampling the structure

of calcium carbonate nanoparticles with metadynamics. The Journal of chemical

physics, 134(4):044703, 2011.

[35] H Cölfen. Biomineralization: a crystal-clear view. Nature materials, 9(12):960–

961, 2010.

[36] JR Young, JM Didymus, PR Brown, B Prins, and S Mann. Crystal assembly and

phylogenetic evolution in heterococcoliths. Nature, 356(6369):516–518, 1992.

177



[37] K Henriksen, SLS Stipp, JR Young, and ME Marsh. Biological control on calcite

crystallization: AFM investigation of coccolith polysaccharide function. American

Mineralogist, 89(11-12):1709–1716, 2004.

[38] U Riebesell, I Zondervan, B Rost, PD Tortell, RE Zeebe, and FMM Morel. Re-

duced calcification of marine plankton in response to increased atmospheric CO2.

Nature, 407(6802):364–367, 2000.

[39] HA Lowenstam and S Weiner. On biomineralization, volume 324. Oxford Uni-

versity Press New York, 1989.

[40] G Falini, S Albeck, S Weiner, and L Addadi. Control of aragonite or calcite

polymorphism by mollusk shell macromolecules. Science, 271(5245):67–69, 1996.

[41] S Weiner, L Addadi, and HD Wagner. Materials design in biology. Materials

Science and Engineering: C, 11(1):1–8, 2000.

[42] LT Kuhn-Spearing, H Kessler, E Chateau, R Ballarini, AH Heuer, and SM Spear-

ing. Fracture mechanisms of the strombus gigas conch shell: implications for the

design of brittle laminates. Journal of materials science, 31(24):6583–6594, 1996.

[43] ME Kunitake, LM Mangano, JM Peloquin, SP Baker, and LA Estroff. Evaluation

of strengthening mechanisms in calcite single crystals from mollusk shells. Acta

biomaterialia, 9(2):5353–5359, 2013.

[44] JS Evans. Tuning in to mollusk shell nacre-and prismatic-associated protein

terminal sequences. implications for biomineralization and the construction of

high performance inorganic-organic composites. Chemical reviews, 108(11):4455–

4462, 2008.

[45] LA Estroff, editor. Chemical Reviews: Biomineralization, volume 108. ACS

Publications, 2008.

[46] S Albeck, J Aizenberg, L Addadi, and S Weiner. Interactions of various skele-

tal intracrystalline components with calcite crystals. Journal of the American

178



Chemical Society, 115(25):11691–11697, 1993.

[47] G Fu, SR Qiu, CA Orme, DE Morse, and JJ De Yoreo. Acceleration of calcite

kinetics by abalone nacre proteins. Advanced materials, 17(22):2678–2683, 2005.

[48] C Chen, J Qi, RN Zuckermann, and JJ DeYoreo. Engineered biomimetic polymers

as tunable agents for controlling CaCO3 mineralization. Journal of the American

Chemical Society, 133(14):5214–5217, 2011.

[49] JJJM Donners, RJM Nolte, and NAJM Sommerdijk. A shape-persistent poly-

meric crystallization template for CaCO3. Journal of the American Chemical

Society, 124(33):9700–9701, 2002. PMID: 12175216.

[50] LA Estroff, CD Incarvito, and AD Hamilton. Design of a synthetic foldamer that

modifies the growth of calcite crystals. Journal of the American Chemical Society,

126(1):2–3, 2004.

[51] J Aizenberg, AJ Black, and GM Whitesides. Control of crystal nucleation by

patterned self-assembled monolayers. Nature, 398(6727):495–498, 1999.

[52] J Aizenberg, AJ Black, and GM Whitesides. Oriented growth of calcite controlled

by self-assembled monolayers of functionalized alkanethiols supported on gold and

silver. Journal of the American Chemical Society, 121(18):4500–4509, 1999.

[53] YJ Han and J Aizenberg. Face-selective nucleation of calcite on self-assembled

monolayers of alkanethiols: Effect of the parity of the alkyl chain. Angewandte

Chemie, 115(31):3796–3798, 2003.

[54] AM Travaille, JJJM Donners, JW Gerritsen, NAJM Sommerdijk, RJM Nolte, and

H van Kempen. Aligned growth of calcite crystals on a self-assembled monolayer.

Advanced Materials, 14(7):492, 2002.

[55] AM Travaille, L Kaptijn, P Verwer, B Hulsken, JAAW Elemans, RJM Nolte, and

H van Kempen. Highly oriented self-assembled monolayers as templates for epi-

179



taxial calcite growth. Journal of the American Chemical Society, 125(38):11571–

11577, 2003.

[56] Q Hu, Michael H Nielsen, CL Freeman, LM Hamm, J Tao, JRI Lee, Thomas

Yong-Jin Han, U Becker, JH Harding, PM Dove, et al. The thermodynamics

of calcite nucleation at organic interfaces: Classical vs. non-classical pathways.

Faraday Discussions, 159(1):509–523, 2012.

[57] AM Belcher, XH Wu, RJ Christensen, PK Hansma, GD Stucky, and DE Morse.

Control of crystal phase switching and orientation by soluble mullusc-shell pro-

teins. Nature, 381:56–58, 1996.

[58] F Marin and G Luquet. Molluscan shell proteins. Comptes Rendus Palevol,

3(6):469–492, 2004.

[59] T Samata, N Hayashi, M Kono, K Hasegawa, C Horita, and S Akera. A new

matrix protein family related to the nacreous layer formation of pinctada fucata.

Febs Letters, 462(1):225–229, 1999.

[60] RA Metzler, JS Evans, CE Killian, D Zhou, TH Churchill, NP Appathurai,

SN Coppersmith, and PUPA Gilbert. Nacre protein fragment templates lamellar

aragonite growth. Journal of the American Chemical Society, 132(18):6329–6334,

2010.

[61] EC Keene, JS Evans, and LA Estroff. Matrix interactions in biomineralization:

Aragonite nucleation by an intrinsically disordered nacre polypeptide, n16N, as-

sociated with a β-chitin substrate. Crystal Growth & Design, 10(3):1383–1389,

2010.

[62] EC Keene, JS Evans, and LA Estroff. Silk fibroin hydrogels coupled with the

n16Nβ-chitin complex: An in vitro organic matrix for controlling calcium car-

bonate mineralization. Crystal Growth & Design, 10(12):5169–5175, 2010.

180



[63] LZ Lakshtanov, N Bovet, and SLS Stipp. Inhibition of calcite growth by alginate.

Geochimica et Cosmochimica Acta, 75(14):3945–3955, 2011.

[64] JW Nielsen, KK Sand, CS Pedersen, LZ Lakshtanov, JR Winther, M Willemoës,
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Appendix A

List of amino acids

Amino acid Three letter One letter Amino acid Three letter One letter

code code code code

Alanine Ala A Leucine Leu L

Arginine Arg R Lysine Lys K

Asparagine Asn N Methionine Met M

Aspartic acid Asp D Phenylalanine Phe F

Cysteine Cys C Proline Pro P

Glutamic acid Glu E Serine Ser S

Glutamine Gln Q Threonine Thr T

Glycine Gly G Tryptophane Trp W

Histidine His H Tyrosine Tyr Y

Isoleucine Ile I Valine Val V

Table A.1: List of amino acids with three and one letter codes.
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Appendix B

Partial charges from a

semi-empirical method

As discussed in Chapter 2.1 several methods are available to arrive at an approximation

of the wave function, such as the Hartree-Fock method, and methods that rely on the

electron density, such as the Density Functional Theory. Other semi-empirical methods

are available that use simplifications and parameters to get an approximation of the

wave function. The advantage of semi-empirical methods is the significant computa-

tional speed up, especially for larger systems. The disadvantage is the less accurate

approximations that can be made with these methods. One of these semi-empirical

methods is the Austin Model-1 (AM1) method [221].

Within the AM1 method, as with many semi-empirical methods, only valence electrons

are considered, with the core electrons being represented by a repulsion function. The

AM1 uses repulsive Gaussian functions to describe the core-core repulsion, and adds sev-

eral attractive Gaussian functions to compensate for excessive repulsions. The variables

of the AM1 method were parametrised using experimental results of the heat of forma-

tion, ionisation energy and the dipole moments for a range of organic molecules.

The method utilised to calculate partial charges for the organic molecules in this work
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is the AM1-BCC (bond charge correction) method developed by Jakalian et al. [222]

as a fast method to generate high quality partial charges. The partial charges qi for an

atom i are constructed using two terms (Equation B.1):

qi = qprei + qcorri (B.1)

where qprei are the atomic charges calculated using the fast AM1 method, and qcorri is

a correction term to reproduce charges calculated by sophisticated, high level quantum

mechanical methods (HF/6-31G∗ basis set). The correction term is given by Equa-

tion B.2:

qcorri =

γ∑
α=1

Tiαpα (B.2)

where the summation is over the total number of bond types in the molecule γ, T is the

connectivity matrix and pα is the bond charge correction. The bond charge corrections

pα are parametrised using high level quantum mechanical computations.
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Appendix C

Glu-Asn-Glu peptide structure

The N-terminus of peptides refers to the end of the peptide with the free amine func-

tional group. However, the Glu residue in an N-terminus is prone to an intra molecular

cyclisation between amine functional group and the carboxyl side chain, as shown in

Figure C.1. This reaction is known as a pyroglutamic acid formation and the resulting

structure of Glu-Asn-Gly is used throughout this work.

Figure C.1: The N-terminus amino acid Glu can undergo an intra molecular cyclisation
reaction to form a pyroglutamic acid.
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Appendix D

Hydrogen bond lifetime for ten

tripeptides

Donor Total life time Donor Total life time Donor Total life time

Peptide-1 of H-bond (ns) Peptide-2 of H-bond (ns) Peptide-3 of H-bond (ns)

N-H1 0.12 N-H1 0.32 N-H1 0.75

N-H2 1.97 N-H2 0.52 N-H2 0.20

N-H3 0.58 N-H3 0.91 N-H3 0.91

N-H4 0.56 N-H4 4.43 N-H4 2.99

N-H5 0.14 N-H5 0.15 N-H5 0.13

Average 0.67 Average 1.27 Average 0.97

Table D.1: Hydrogen bonding between peptides during a 5.0 ns MD simulations of ten
Glu-Asn-Gly peptides in solution.
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Donor Total life time Donor Total life time Donor Total life time

Peptide-4 of H-bond (ns) Peptide-5 of H-bond (ns) Peptide-6 of H-bond (ns)

N-H1 0.60 N-H1 0.73 N-H1 0.26

N-H2 0.05 N-H2 0.36 N-H2 0.15

N-H3 0.71 N-H3 2.48 N-H3 0.59

N-H4 2.02 N-H4 4.09 N-H4 1.07

N-H5 0.35 N-H5 0.32 N-H5 0.39

Average 0.75 Average 1.60 Average 0.49

Donor Total life time Donor Total life time Donor Total life time

Peptide-7 of H-bond (ns) Peptide-8 of H-bond (ns) Peptide-9 of H-bond (ns)

N-H1 0.32 N-H1 1.09 N-H1 1.92

N-H2 0.16 N-H2 0.44 N-H2 0.17

N-H3 0.30 N-H3 1.56 N-H3 0.52

N-H4 2.10 N-H4 0.86 N-H4 1.45

N-H5 0.55 N-H5 0.70 N-H5 2.90

Average 0.69 Average 0.93 Average 1.39

Donor Total life time

Peptide-10 of H-bond (ns)

N-H1 0.07

N-H2 0.18

N-H3 0.67

N-H4 2.71

N-H5 2.47

Average 1.22

Table D.2: Continued... hydrogen bonding between peptides during a 5.0 ns MD sim-
ulations of ten Glu-Asn-Gly peptides in solution.
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Appendix E

Potential information for amino

acid inclusions

Asp1− Charge (au) Atom type

C1 -0.2014 backbone carbon

C1 -0.0075 sidechain carbon

C 0.8976 carboxyl carbon

C 0.9116 carboxyl carbon

O -0.8083 carboxyl oxygen

O -0.8333 carboxyl oxygen

N -0.8656 amine nitrogen

H1 0.0737 backbone hydrogen

HC 0.0692 sidechain hydrogen

HN 0.4455 amino hydrogen

Asp2− Charge (au) Atom type

C1 0.0785 backbone carbon

C1 -0.1559 sidechain carbon

C 0.8954 carboxyl carbon

C 0.9115 carboxyl carbon

O -0.8929 carboxyl oxygen

O -0.8812 carboxyl oxygen

N -0.9059 amine nitrogen

H1 -0.0100 backbone hydrogen

HC 0.0355 sidechain hydrogen

HN 0.3317 amino hydrogen
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Gly0 Charge (au) Atom type

C1 -0.0952 backbone carbon

C 0.9326 carboxyl carbon

O -0.7553 carboxyl oxygen

N -0.8356 amine nitrogen

H1 0.0887 backbone hydrogen

HN 0.4438 amino hydrogen

Gly1− Charge (au) Atom type

C1 0.0118 backbone carbon

C 0.8806 carboxyl carbon

O -0.8528 carboxyl oxygen

N -0.8948 amine nitrogen

H1 0.0287 backbone hydrogen

HN 0.3258 amino hydrogen

Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

C1 C1 4367168.3069 2828.6533

C1 C 3872045.8800 2507.9582

C1 O 2712383.7593 2623.9516

C1 N 4167877.6150 3085.2839

C1 H1 284187.9963 444.1229

C1 HC 406834.7544 531.3850

C1 HN 10746.6001 86.3646

C C 3433057.3544 2223.6214

C O 2404870.5299 2326.4642

C N 3695349.5264 2735.4936

C H1 251968.5255 393.7710

C HC 360710.3555 471.1399

C HN 9528.2173 76.5731

O O 1590466.5073 2365.0646

O N 2540673.0890 2835.3883

O H1 154690.3401 385.6847

O HC 227871.2130 468.1074

O HN 4295.4573 64.2695

N N 3953566.9079 3354.9813

N H1 259860.4396 474.1637

N HC 375462.5897 569.9563
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Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

N HN 8901.1862 87.7570

H1 H1 13647.6962 59.9032

H1 HC 20874.8341 74.0853

H1 HN 248.9753 8.0909

HC HC 31468.3113 90.9615

HC HN 448.7983 10.8629

HN HN 0.5860 0.3925

OC C1 55486.4674 183.3127

OC C 49195.7562 162.5298

OC O 26516.9115 149.1753

OC N 48654.7479 191.6599

OC H1 1966.0414 21.2421

OC HC 3217.3484 27.1727

CC O 2404870.529954 2326.464284

CC N3 3695349.526463 2735.493631

CC H1 251968.525521 393.771044

CC HC 360710.355574 471.139955

CC HN 9528.217324 76.573140

Buckingham A (kJ mol−1) ρ (Å)

CA O 104684.0984 0.2970

CA N 628351.1060 0.2530

OC HN 32641.4600 0.2170

Table E.1: Potential parameters for the interactions between the amino acids Asp and
Gly and calcite.
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Appendix F

Potential information for

Glu-Asn-Gly peptide

Atom Charge (au) Atom type

O -0.4025 carboxyl oxygen

O -0.5077 carboxyl oxygen

O -0.4516 carboxyl oxygen

O -0.4622 carboxyl oxygen

O -0.4424 carboxyl oxygen

OH -0.4119 carbonyl oxygen

HO 0.3783 carbonyl hydrogen

N -0.1993 amide nitrogen

N -0.1352 amide nitrogen

N -0.0260 amide nitrogen

N -0.5808 amine nitrogen

C 0.0622 carboxyl carbon

C 0.2716 carboxyl carbon

C -0.0302 carboxyl carbon

C 0.5332 carboxyl carbon

C 0.4300 carboxyl carbon

C1 -0.0537 backbone carbon

C1 -0.3799 backbone carbon

C1 -0.2201 backbone carbon

C1 -0.0167 backbone carbon

C1 -0.4121 backbone carbon

C1 -0.3037 backbone carbon
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Atom Charge (au) Atom type

HN 0.3094 amide hydrogen

HN 0.3047 amide hydrogen

HN 0.3067 amide hydrogen

HN 0.3065 amine hydrogen

H1 0.1491 backbone hydrogen

H1 0.1930 backbone hydrogen

H1 0.2024 backbone hydrogen

HC 0.1826 sidechain hydrogen

HC 0.1722 sidechain hydrogen

HC 0.1834 sidechain hydrogen

Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

O O 1589402.8514 2363.4829

O OH 1970677.7509 2632.9941

O N 2538973.9689 2833.4921

O C1 2710569.8043 2622.1968

O C 2403262.2274 2324.9084

O H1 154586.8879 385.4267

O HC 227718.8198 467.7944

O HN 4292.5846 64.2266

OH OH 2434264.7108 2927.7406

OH N 3116979.0157 3140.9891

OH C1 3311820.7510 2899.8464

OH C 2936347.0744 2571.0799

OH H1 195360.3799 433.4913

OH HC 285677.9265 524.2042

OH HN 5877.1402 75.1874

N N 3950922.8850 3352.7376

N C1 4165090.2712 3083.2206

N C 3692878.1936 2733.6642

N H1 259686.6533 473.8466

N HC 375211.4922 569.5751

N HN 8895.2334 87.6983

C1 C1 4364247.6852 2826.7616

C1 C 3869456.3764 2506.2809

C1 H1 283997.9402 443.8259

C1 HC 406562.6762 531.0297

C1 HN 10739.4131 86.3068

210



Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

C C 3430761.4344 2222.1343

C H1 251800.0168 393.5077

C HC 360469.1239 470.8248

C HN 9521.8451 76.5219

H1 H1 13638.5691 59.8632

H1 HC 20860.8737 74.0358

H1 HN 248.8087 8.0855

HC HC 31447.2663 90.9006

HC HN 448.4982 10.8556

HN HN 0.5856 0.3922

O OW 1978737.9948 2432.8169

OH OW 2437216.7646 2701.2760

N OW 3106071.7699 2891.2019

C1 OW 3288207.0262 2664.3689

C OW 2915410.5271 2362.2993

H1 OW 199036.8403 403.4615

HC OW 289429.5515 486.5268

HN OW 6362.5509 72.1358

O OC 1982919.0241 2850.8057

OH OC 2455794.4937 3174.0117

N OC 3158085.5283 3412.4014

C1 OC 3366671.8764 3155.5780

C OC 2984979.5197 2797.8182

H1 OC 193985.5277 466.3015

HC OC 285116.0456 565.2947

HN OC 5522.7808 78.7189

Table F.1: Potential parameters for the interactions between the Glu-Asn-Gly peptide
and calcite.
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Appendix G

Potential information for poly

acrylic acid

Atom Charge (au) Atom type

C1 -0.0737 terminal carbon

C1 -0.0409 CH2 carbon

C1 -0.1477 backbone carbon

CC 0.9150 carboxyl carbon

OC -0.9130 carbonyl oxygen

H1 0.0171 Hydrogen of CT

H1 0.0262 Hydrogen of CH2

H1 0.0528 Hydrogen of CHCOO-

Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

C1 C1 4367168.3069 2828.6533

C1 CC 3872045.8800 2507.9582

C1 O 2712383.7593 2623.9516

C1 H1 406834.7544 531.3850

CC CC 3433057.3544 2223.6214

CC OC 2404870.5299 2326.4642

CC H1 360710.3555 471.1399

OC OC 1590466.5073 2365.0646

OC H1 227871.2130 468.1074

H1 H1 31468.3113 90.9615

C1 OW 3290574.2908 2664.06319

CC OW 2917509.4066 2362.0282
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Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

OC OW 1979952.4366 2432.6108

H1 OW 289587.4783 486.5014

C1 O 55486.4674 183.3127

CC O 49195.7562 162.5298

OC O 26516.9115 149.1753

H1 O 3217.3484 27.1727

Buckingham A (kJ mol−1) ρ (Å)

CA OC 104684.0984 0.2970

OC OW 48241.6996 0.2300

Table G.1: Potential parameters for the interactions between poly acrylic acid and
calcite.
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Appendix H

Potential information for

amorphous calcium carbonate

Asp Charge (au) Atom type

C1 0.0785 backbone carbon

C1 -0.1559 sidechain carbon

C 0.8954 carboxyl carbon

C 0.9115 carboxyl carbon

O -0.8929 carboxyl oxygen

O -0.8812 carboxyl oxygen

N -0.9059 amine nitrogen

H1 -0.0100 backbone hydrogen

HC 0.0355 sidechain hydrogen

HN 0.3317 amino hydrogen

Gly Charge (au) Atom type

C1 -0.0952 backbone carbon

C 0.9326 carboxyl carbon

O -0.7553 carboxyl oxygen

N -0.8356 amine nitrogen

H1 0.0887 backbone hydrogen

HN 0.4438 amino hydrogen
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Glu Charge (au) Atom type

C1 -0.0694 backbone carbon

C1 -0.1684 sidechain carbon

C1 0.0035 sidechain carbon

C 0.8876 carboxyl carbon

C 0.8956 carboxyl carbon

O -0.6168 carboxyl oxygen

O -0.8323 carboxyl oxygen

N -1.1236 amine nitrogen

H1 0.0387 backbone hydrogen

HC 0.0642 sidechain hydrogen

HC 0.0627 sidechain hydrogen

HN 0.3931 amino hydrogen

Arg Charge (au) Atom type

C1 -0.1084 backbone carbon

C1 -0.0844 sidechain carbon

C1 -0.0285 sidechain carbon

C1 0.0163 sidechain carbon

C 0.5383 amide carbon

C 0.9106 carboxyl carbon

O -0.7993 carboxyl oxygen

N -0.8296 amide nitrogen

N -0.3791 guanidine nitrogen

N -0.4922 guanidine nitrogen

N -0.4292 guanidine nitrogen

H1 0.0857 backbone hydrogen

HC 0.0657 sidechain hydrogen

HC 0.0737 sidechain hydrogen

HN 0.4548 amide hydrogen

HN 0.2987 guanidine hydrogen

HN 0.4818 guanidine hydrogen

HN 0.3117 guanidine hydrogen
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Lennard-Jones A (kJ mol−1 Å−12) B (kJ mol−1 Å−6)

C1 C1 4367168.3069 2828.6533

C1 C 3872045.8800 2507.9582

C1 O 2712383.7593 2623.9516

C1 N 4167877.6150 3085.2839

C1 H1 284187.9963 444.1229

C1 HC 406834.7544 531.3850

C1 HN 10746.6001 86.3646

C C 3433057.3544 2223.6214

C O 2404870.5299 2326.4642

C N 3695349.5264 2735.4936

C H1 251968.5255 393.7710

C HC 360710.3555 471.1399

C HN 9528.2173 76.5731

O O 1590466.5073 2365.0646

O N 2540673.0890 2835.3883

O H1 154690.3401 385.6847

O HC 227871.2130 468.1074

O HN 4295.4573 64.2695

N N 3953566.9079 3354.9813

N H1 259860.4396 474.1637

N HC 375462.5897 569.9563

N HN 8901.1862 87.7570

H1 H1 13647.6962 59.9032

H1 HC 20874.8341 74.0853

H1 HN 248.9753 8.0909

HC HC 31468.3113 90.9615

HC HN 448.7983 10.8629

HN HN 0.5860 0.3925

OC C1 55486.4674 183.3127

OC C 49195.7562 162.5298

OC O 26516.9115 149.1753

OC N 48654.7479 191.6599

OC H1 1966.0414 21.2421

OC HC 3217.3484 27.1727

CC O 2404870.529954 2326.464284

CC N3 3695349.526463 2735.493631

CC H1 251968.525521 393.771044

CC HC 360710.355574 471.139955

CC HN 9528.217324 76.573140
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Buckingham A (kJ mol−1) ρ (Å)

CA O 104684.0984 0.2970

CA N 628351.1060 0.2530

OC HN 32641.4600 0.2170

Table H.1: Potential parameters for the interactions between the amino acids Asp, Gly,
Glu and Arg and amorphous calcium carbonate.
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