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Abstract

This thesis presents theoretical and numerical results on the penetration of small

amplitude free-stream vortical disturbances into a compressible laminar bound-

ary layer, the formation and evolution of streamwise-elongated, low-frequency

fluctuations inside the boundary layer and the wall-based feedback control of

such disturbances.

The theoretical formulation of the low-frequency disturbances, also called

laminar streaks or Klebanoff modes, builds upon the works of Leib, Wundrow

& Goldstein [43], Ricco & Wu [58] and Ricco [56], and it is based on the com-

pressible linearised unsteady boundary region equations. For the first time, the

incompressible framework by Ricco [56] is extended to the compressible case. The

initial and outer boundary conditions for the outer layer compressible disturb-

ances are therefore derived and put into context of the compressible Klebanoff

modes analysis by Ricco & Wu [58]. Numerical results on the boundary region

equations for the compressible and incompressible cases are presented.

The general adjoint theory is presented and applied to the compressible linear

unsteady boundary region equations for the first time. The theoretical formula-

tion considers blowing and suction and wall thermal actuation to attenuate the

Klebanoff modes. This further develops the works of Cathalifaud & Luchini [13]

on spatial control for the incompressible linear boundary region equations and of

Zuccher, Luchini & Bottaro [72] for the incompressible nonlinear boundary re-

gion equations. However, the previous studies were limited to the incompressible

cases and neglected the free-stream turbulent forcing. Numerical solutions of the

attenuated Klebanoff modes via an iterative feedback algorithm are presented,

focusing on optimal wall-normal blowing suction.
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Chapter 1

Introduction

In mechanical, aeronautical, civil and naval engineering systems, it is common to

encounter objects moving through fluids. From such interactions, a thin boundary

layer forms near the surface, where viscous effects play a crucial role. A boundary

layer may experience dynamically different states which can be broadly grouped

into the laminar, transitional or fully-developed regimes. In the laminar flow, the

fluid layers move parallel to one another without any large-scale, vortical mix-

ing between them. The transitional regime occurs downstream of the laminar

regime and is characterised by the breakdown of the laminar flow disturbances.

Turbulent spots occur during transition, and, as they merge downstream, the

fully-developed turbulent regime ensues. Turbulence displays a spectrum of spa-

tial and temporal scales; it is chaotic in nature and strongly dissipative. Friction

and heat transfer increase as the flow evolves from the laminar to the turbulent

regime, leading to higher energy required to move an object through the fluid.

The effects of turbulence must be taken into account in wing design, as drag

reduction is important for an efficient aircraft. The surface roughness and geo-

metry can be altered to minimise drag. Laminar-turbulent breakdown may occur

along the wing, which leads to enhanced drag between the wing and the fluid.

Optimal conditions may be achieved by maintaining the laminar regime along the

entire wing and fuselage. Therefore, it is of utmost importance to have knowledge

of which regime governs the fluid flow.
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In the literature, the free-stream disturbances are commonly termed free-

stream turbulence (FST), and are usually characterised by the turbulence level

Tu (i.e. the root-mean-square value of the velocity fluctuations) and turbulence

length scales.

Laminar-turbulent breakdown is believed to result mainly from environmental

perturbations affecting the boundary layer, which include the leading edge, sur-

face roughness, pressure gradients, or disturbances coming from the free stream

(e.g. acoustic, temperature and vortical fluctuations).

Although laminar-turbulent breakdown has been studied for over a century,

the physical mechanisms are yet to be fully understood and it remains a challenge

to determine where it occurs.

Dryden [18] discovered that the location of transition moves upstream as Tu

increases. From numerous experiments, it is widely accepted that transition is

initiated by the growth of Tollmien-Schlichting (TS) waves at a very low turbu-

lence level (i.e. Tu < 1%). As Tu increases, the TS growth rate and wavelength

predicted by classical stability theory are altered [68]. At a relatively higher tur-

bulence level (i.e. around Tu > 5%), direct non-linear laminar-turbulent break-

down may occur without apparent involvement of TS waves. The breakdown due

to medium-to-high levels of FST is also referred to as bypass transition. This

term applies when the main mechanism responsible is not linked to the TS waves

predicted by classical stability theory. [51].

A literature review of boundary-layer laminar-turbulent transition induced

by free-stream disturbances and feedback flow control of shear flows is presented

in chapter 1. The theoretical formulation for the response of a boundary layer

subjected to free-stream small vortical disturbances based on the work of Leib,

Wundrow & Goldstein [43], Ricco & Wu [58] and Ricco [56] is described and

extended in chapter 2. Chapter 3 presents the general adjoint theory, and its

application to the compressible boundary region equations is given in chapter 2.
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1.1 Laminar regime and bypass transition within bound-

ary layers

1.1.1 Experiments

A review of the literature shows that the first studies of transition in boundary

layers under the influence of FST were carried out by Dryden [17] and Taylor

[64]. They performed experimental studies on the flat-plate boundary layer at

low speed and observed unsteady, streamwise-elongated streaks with spanwise

alternatingly low and high streamwise fluctuations. The streamwise velocity fluc-

tuations achieved amplitudes several times larger than those in the free stream.

They suggested that these “breathing modes” preceded and caused transition.

However, research on breathing modes was not pursued in the subsequent years

because Schubauer & Skramstad [61] provided experimental evidence for Tollmien

[65] and Schlichting’s [60] linear stability theory. This led to the dominance of

studies being performed with low levels of FST (i.e. Tu < 1%) to study the exist-

ence of Tollmien-Schlichting (TS) waves. Several decades later, Klebanoff’s [41]

experiments confirmed and expanded Dryden’s [17] and Taylor’s [64] work. This

instigated a renewed interest in the topic (Arnal & Juillen [4], Kendall [37][38][39]

and Roach [59]).

Arnal & Juillen [4] obtained the first detailed measurements of a Blasius

boundary layer subjected to FST using Tu above 1%, with the objective of in-

vestigating the mechanism leading to laminar breakdown. They confirmed that

the main disturbances inside the boundary layer were caused by low frequency

FST, which led to breathing modes instead of TS waves.

Before the laminar breakdown, the maximum streamwise velocity fluctuations

occurred in the middle of the boundary layer, achieving amplitudes of up to 5−7%

of the streamwise mean velocity. TS waves reached maximum amplitudes close

to the wall with a characteristic streamwise wavelength which was smaller than

the one of the breathing modes [49]. They deduced that, even though TS waves
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were present, low frequency fluctuations appeared to play the main role in the

laminar-turbulent breakdown.

Using hot-wire anemometry and flow visualisation, Kendall [37] carried out

further work on the pre-transitional laminar Blasius boundary layer subjected to

low level FST generated by a grid upstream. The maximum streamwise velocity

fluctuations were found to grow in linear proportion to the boundary layer thick-

ness. He validated the occurrence of the breathing modes and renamed them

Klebanoff modes.

Later, Kendall [38][39] studied the receptivity to very low grid-produced FST

(i.e. 0.1% ≤ Tu ≥ 0.2%) and confirmed that TS waves are developed in the

Blasius boundary layer. The increase of velocity fluctuations led to turbulent

spots further downstream. The effects of different surface roughness on the re-

ceptivity subjected to FST was investigated by covering the flat-plate surface

with fine and rough sandpaper. The rough surface resulted in turbulent spots

that led to turbulence upstream as compared to the fine surface [44].

Westin et al. [67] & Boiko et al. [9] performed experiments using hot-wire

anemometry and smoke flow visualisation in a Blasius boundary layer in a wind

tunnel with a turbulence level of below 0.02%. They used flat plates with stream-

wise lengths of 2.16m and 4.22m and streamwise free-stream velocities between

4ms−1 and 8ms−1. A grid was placed 1.5m upstream of the leading edge point

to obtain nearly isotropic FST with a 1.5% turbulence level [67]. The meas-

urements were taken between 100mm and 1000mm downstream of the leading

edge. To accomplish a uniform pressure gradient at the leading edge, they used

two-dimensional potential flow theory to optimise the design of the leading edge

together with a trailing edge flap to adjust the pressure stagnation line [67]. Tur-

bulent spots were detected at 1000mm for a streamwise free-stream velocity of

8ms−1, indicating the onset of transition [67]. After inserting a grid upstream,

they obtained FST levels between 1.35% and 1.5% for the free-stream stream-

wise mean velocities of 4ms−1 to 8ms−1, respectively. The boundary layer was

perturbed by unsteady streaks elongated in the streamwise direction that grew
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downstream both in length and amplitude (i.e. Klebanoff modes). The peak

value of normalised root-mean-squared streamwise velocity fluctuations increased

in linear proportion to the Reynolds number (R = 1.72
√

U∞x/ν, where U∞ is

the free-stream velocity and ν is the kinematic viscosity). Furthermore, no re-

lation was found between the amplitude of the perturbations and the onset of

transition [67]. TS waves measurements were carried out during the same ex-

periments. They demonstrated that it was possible to generate and measure TS

waves within the boundary layer subjected to FST levels of at least 1.5%. The

TS waves subjected to FST were similar to an undisturbed boundary layer by

FST; however, the linear amplification rate decreased as FST increased [9].

Experimental studies using flow visualisation and hot-wire anemometry in the

same low FST wind tunnel used by Westin et al. [67] & Boiko et al. [9] were

performed by Matsubara & Alfredsson [49] to describe the Blasius boundary layer

flow subjected to turbulence levels between 1.5% and 6.6%. Grids with round

bars were placed 1.6m upstream of the leading edge to obtain turbulence levels of

1.5% and 2.2%. Another grid with square bars was used 1m upstream of the lead-

ing edge to produce the highest turbulence level (Tu = 6.6%). All grids provided

nearly homogeneous FST at the leading edge with free-stream velocities of up

to 12ms−1 [49]. Through smoke flow visualisation, they observed the Klebanoff

modes as well defined unsteady streaky structures. These are illustrated in figure

1.1 which displays turbulence levels of 6.6% and free-stream velocities of 2ms−1

and 3ms−1 for the left and right pictures respectively. The spanwise scale was re-

ported to be close to 1cm. The smoke filled regions represent negative fluctuations

of streamwise velocity while the darker regions correspond to positive fluctuations

of streamwise velocity [49]. Their measurements confirmed that the spanwise di-

mensional scale is large compared to the boundary-layer thickness, while further

downstream it approaches the boundary-layer thickness. Some streaks exhibited

waviness in the streamwise direction that often grew into turbulent spots. These

turbulent spots grew and merged, leading to a fully turbulent flow. The meas-

urements showed that the initial growth of the streamwise velocity fluctuations is
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proportional to the laminar boundary layer thickness, confirming previous results

(e.g. Westin et al. [67]).

Figure 1.1: The flow direction is from left to right. In the left picture small

turbulent spots are shown downstream. In the right picture turbulent spots

appear upstream with full developed turbulence downstream. [49].

Fransson [20] used the same low wind tunnel to study the transitional flow

exposed to grid-generated free stream turbulence levels from 1.4% to 6.7%. One

of the grids was active; it had orifices that injected air jets into the stream, where

different jet velocities were induced to increase the FST. As with previous results,

the velocity fluctuations within the boundary layer experienced a slower growth

close to the leading edge and faster growth downstream. This can be explained

by the FST scales requiring some distance to adapt to the boundary layer growth

[20]. The transitional Reynolds number was found to be inversely proportional to

the square of the turbulence level. The non-dimensional length of the transitional

region grew linearly with the transitional Reynolds number and possessed a min-

imum value for the turbulence levels measured [20]. Fransson concluded that for

turbulence levels around or above 2.5%, the relative length of the transitional

region increases with the turbulence level. The transitional Reynolds number

was related to the turbulence level and the rate of the generated turbulent spots

to describe the transitional region more accurately than in previous studies [20].

Similar studies were performed by Mans, Lange, & van Steenhoven [48]. They

found that the propagation speed of unstable modes was around 80% of the

free-stream streamwise velocity under uncontrolled conditions. Additionally, the
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growth rate was about 0.01U∞/δ, where U∞ and δ represent the free-stream

streamwise mean velocity and the local boundary layer displacement thickness

respectively.

Hernon, Walsh & McEligot [32] investigated bypass transition within the

Blasius boundary layer subjected to Tu between 1.3% and 6%. They found that

the peak of the streamwise velocity fluctuations within the low and high speed

streaks shifted location as it approached the laminar-turbulence breakdown. The

negative fluctuations moved towards the outer layer, while the positive fluctu-

ations moved towards the wall.

1.1.2 Direct Numerical Simulations (DNS)

To better understand the phenomenon of laminar-turbulent breakdown subjected

to FST, Jacobs & Durbin [35] conducted direct numerical simulations of the

Blasius boundary layer subjected to FST. A rectangular box was used as the flow

domain to study the flow downstream of the leading edge. The incompressible

Navier-Stokes equations were solved using a fractional step algorithm. In order

to emulate the grid-generated FST commonly used in the experiments, inflow

conditions were set using a combination of the Orr-Sommerfeld modes and the

Squire modes to model the oncoming isotropic turbulence. Because of these

inlet conditions, the streamwise and transverse velocity contours displayed small

scale motions near the inlet. The velocity fluctuations contours clearly show the

Klebanoff modes and the downstream turbulent spots growing and merging to

form fully-developed turbulent flow. These Klebanoff modes were created through

the penetration of low frequency fluctuations into the boundary layer. The low

velocity streaks eventually lifted to the outer layer and interacted with scales to

form the turbulent spots. Jacobs & Durbin argued that the streamwise velocity

streaks in the laminar and the turbulent regime might be related. However, it

was also observed that the streaks present in the fully turbulent region are not

the continuation of the laminar streaks.

Brandt, Schlatter & Henningson [10] also investigated the Blasius boundary
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layer subjected to FST via DNS. They studied the relation between the FST in-

tegral length scale and the formation of boundary layer disturbances to elucidate

the mechanism behind the boundary layer laminar-turbulent breakdown. They

noticed that for similar turbulence levels, the transition onset happens further

downstream for lower values of the FST integral length scale. They confirmed

that the large scales originating from the FST managed to penetrate to the core of

the Blasius boundary layer, thereby inducing Klebanoff modes, while small scales

tended not to go beyond the outer layer. They also observed that the spanwise

scale of the Klebanoff modes was only slightly affected by the FST characteristic

scales.

A further DNS study was performed by Zaki & Durbin [71] to investigate

bypass transition. Their approach was similar to the previous DNS studies de-

scribed. They verified the penetration of the low and high frequency disturbances

into the boundary layer by neglecting the pressure gradient and using only two

modes as inlet flow, one of low and the other of high frequency. They found that

the lower frequency mode penetrated the boundary layer and produced Kleban-

off modes, while the high frequency mode strongly disturbed the lifted Klebanoff

modes, leading to turbulent spots, which merged to generate the fully turbulent

flow. To further assess the influence of the modes, they set a high frequency mode

with the same amplitude while increasing the low frequency mode; the Klebanoff

modes were observed to be more disturbed. When the amplitude of the high

frequency mode was kept fixed and the one of the low frequency was decreased,

they verified that the high frequencies may not lead to transition as the high fre-

quency disturbance did not penetrate into the core of the boundary layer. They

surmised that, for such an interaction, an amplitude threshold for the Klebanoff

modes must be met, otherwise transition may be suppressed and occurs further

downstream. Higher amplitude streaks were also simulated, leading to less stable

Klebanoff modes.

Nagarajan, Lele & Ferziger [52] and Ovchinnikov, Choudhari & Piomelli [53]

analysed bypass transition within the Blasius boundary layer via DNS. The lead-
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ing edge was included in their simulations. An elliptic leading edge was considered

throughout the simulations to investigate the role of the bluntness and integral

scale of FST. They also found that for low Tu, the Klebanoff modes are connected

to the transition downstream. Turbulent spots were detected without apparent

relation to the Klebanoff modes for high values of FST intensity.

1.1.3 Theory

Experimental data and DNS revealed that low-frequency velocity perturbations

had the highest penetration level within the Blasius boundary layer. The studies

suggest that the Klebanoff modes play a key role for transition for medium-to-

high levels of free-stream turbulence, i.e., for Tu between 1% and 6%, while

TS waves have a dominant role for lower FST levels. Despite numerous experi-

ments and simulations, the subject of laminar-turbulent breakdown preceded by

the Klebanoff modes is yet to be fully understood, although theories have been

developed to describe the early pre-transitional formation of streaks.

Nearly a century ago, Taylor [64] derived the first approximation of the mode

shape to fit the experimental data, also used by Klebanoff [41]. It considered

a perturbed boundary layer, where the streamwise velocity was related to the

boundary layer thickness which varied in the spanwise direction. The Taylor

expansion for small variations of the boundary layer thickness led to an initial

profile of the streaks.

Crow [16] performed an asymptotic linear analysis of the Blasius boundary

layer under a steady spanwise disturbance of an otherwise laminar uniform free

stream. He obtained a model of the Blasius boundary layer that included streaks.

Crow’s model becomes invalid when the boundary layer thickness approaches

the spanwise length scale, where the Blasius boundary layer is described by the

boundary region equations [70]. The term boundary region equations was first

introduced by Kemp [36], and they consist of the Navier-Stokes equations with

the streamwise derivatives neglected in the viscous and pressure-gradient terms.

By using the linear theory for inviscid incompressible shear flows, Ellingsen
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& Palm [19] and Landhal [42] demonstrated that the three-dimensional disturb-

ances can grow at least linearly (algebraically) in time. Landhal showed that the

streamwise velocity fluctuations grow algebraically in time to an infinite amp-

litude when a spanwise velocity remains present [42].

The Blasius boundary layer subjected to steady transversal velocity disturb-

ances interacting nonlinearly to an otherwise uniform laminar free stream was

investigated by Goldstein, Leib & Cowley [24]. Goldstein & Leib studied the

same problem, but considered streamwise vortical disturbances to an otherwise

uniform laminar free stream [23].

Luchini [45] studied a spatially developing Blasius boundary layer subjected to

algebraic growth and described a three-dimensional mode of instability. He also

suggested that the boundary layer instability was independent of the Reynolds

number of the equivalent unperturbed flow because the phenomenon is described

by Prandtl’s boundary-layer equations.

Andersson, Berggren & Henningson [3] and Luchini [46] further developed

the algebraic growth theory of Landhal [42] and Luchini [45] using the linearised

boundary region equations to study the spatial growth of steady perturbations.

They expanded it by using an iterative adjoint method to find the optimal dis-

turbance that led to maximum perturbation downstream. The maximum per-

turbation amplification was found to have a null frequency.

A rigorous mathematical asymptotic approach was developed by Leib, Wun-

drow & Goldstein [43] (referred to hereinafter as LWG) to investigate the signa-

ture (i.e. the root-mean-square of the streamwise velocity fluctuation) of the FST

within a Blasius boundary layer. The unsteady incompressible boundary region

equations were used to obtain the velocity and the pressure fluctuations within

the boundary layer. Rapid-distortion theory [21] was used to solve the inviscid

flow above the leading edge, and weak turbulence was induced by superimpos-

ing FST on the uniform free stream. The FST disturbances were imposed on

the boundary layer as a convected gust. The interaction between the boundary

layer and the FST was accounted for by matching the boundary region equations
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with the inviscid flow on the top of the boundary layer. The asymptotic ana-

lysis showed that the low-frequency transversal velocity fluctuations originating

from the FST are the main factor for the production of Klebanoff modes. Iso-

tropic turbulence and axisymmetric turbulence with low frequency was used in

the simulations to reproduce experimental data. The linear theory was compared

with the experimental measurement performed by Kendall using low frequency

broadband anisotropic FST. It predicted values of the normalised root-mean-

square streamwise velocity slightly below the experimental data, showing good

agreement for the low-frequency range, i.e. between 0Hz and 4Hz. For the high

frequencies comparison (4Hz to 8Hz), it predicted root-mean-square streamwise

velocity with smaller amplitude as it evolves downstream. These differences may

be linked to the nonlinear interactions, which are not taken into account by the

linear theory.

Wundrow & Goldstein [69] investigated the Klebanoff modes near a finite

thickness flat plate originated by small-amplitude streamwise velocity fluctuations

imposed on the upstream mean flow. They used the incompressible nonlinear

unsteady boundary-region equations. Their predictions showed that the span-

wise gradient length scale drives the streamwise velocity perturbations. Initially,

the streamwise velocity perturbations growth increases with decreasing spanwise

length scale. Further downstream where the boundary-layer thickness becomes of

the same order as the spanwise length scale, the growth trend is reversed because

of the viscous effects. They suggested that the Klebanoff modes would ultimately

run out of energy; this would occur when the spanwise length scale became too

short if the viscous effects did not stop the growth of the streamwise velocity

fluctuations. The balance of these mechanisms may help to explain whether the

spanwise length scale is defined by the FST or by the boundary layer.

Wundrow & Goldstein [70] used the nonlinear boundary region equations to

study the effects of small-amplitude, steady, streamwise vortices upstream of the

Blasius boundary layer. Their results showed how initially linear perturbations

evolve into small-amplitude nonlinear cross-flow far downstream of the leading
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edge. They suggested that any cross-flow perturbation introduced within the

boundary layer may develop Klebanoff modes because of the lift up mechanism.

Ricco, Luo & Wu [57] expanded the LWG theory to the nonlinear case using

the incompressible nonlinear unsteady boundary region equations to investigate

the evolution and instability of Klebanoff modes subjected to free-stream vortical

disturbances.

Most of the experiments, DNS and theoretical studies on Klebanoff modes

were conducted for incompressible flows. However, the LWG theory was expan-

ded to the compressible case by Ricco & Wu [58]. They investigated the penet-

ration of low-frequency vortical free-stream disturbances into the boundary layer

using the compressible linearised boundary region equations. They discovered

that the low-frequency vortical disturbances penetrate the boundary layer to

generate thermal streaks in addition to the Klebanoff modes. The temperature

fluctuations induced by the FST may trigger a second instability that leads to

laminar-turbulence breakdown. They reported that for a vortical disturbance

with a comparatively large spanwise wavelength, the induced boundary-layer

fluctuations eventually evolve into an amplifying wave because of a receptiv-

ity mechanism. The mechanism consists of a vortical disturbance which excites

a decaying quasi-three-dimensional Lam-Rott eigensolution. Then, the decay-

ing eigensolution undergoes wavelength shortening to form a spanwise pressure

gradient. Furthermore, the pressure gradient balances with inertia in a viscous

sublayer which leads to an exponential growth.

A different framework is also available for the study of boundary layers that

can be considered as an intermediate method between the described theories and

DNS. This framework is known as the Parabolised Stability Equations (PSE).

They account for non-parallel effects and have been used vastly to study the

stability of boundary layers, e.g. Bertolloti et al. [6], Airiau [2], et al. [54].

The PSE include both growth mechanisms; the algebraic transient growth and

exponential growth through primary and higher instabilities. PSE differs from

the previous equations as they include weak ellipticity. A thorough literature

12



review of the PSE was conducted by Herbert [31] where the advantages and

issues of this method are demonstrated and explained.

1.2 Adjoint-based methods applied to flow control

In literature, the process of controlling a fluid flow is termed flow control, and it

is a multidisciplinary field that includes disciplines such as control theory, applied

mathematics and fluid mechanics.

With the objective of attenuating the Klebanoff modes in the Blasius bound-

ary layer subjected to environmental disturbances to delay laminar-turbulent

breakdown, some concepts regarding flow control and its applications to linear

models are revised, so that they may be applied to the boundary layer theory to

meet this project’s aims.

1.2.1 Linear theory

To perform control using linearised equations, two main approaches are available;

the iterative approach (i.e. adjoint-based) and the direct approach (i.e. Riccati-

based) [40]. The two approaches are related and are designed to control a state

system in order to optimise pre-defined parameters, i.e. an objective functional.

The adjoint-based methods perform a linearisation about a trajectory of the

system, then determine how to update the control variables to achieve optimal

solutions. The process iterates until the nullified gradient is obtained throughout

the interval of actuation defined. These methods can be applied to nonlinear

systems; however, the solution may only be locally optimal instead of a globally

optimal solution.

On the contrary, the direct approaches perform a single linearisation about a

representative mean flow state. It is important to note that it does not have to be

a solution of the governing equation. This leads to a unique optimal point of the

mean flow optimisation. The Riccati-based methods impose the gradient equal to

zero and then solve the state and adjoint fields that result from that. This often
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requires more computational resources than the adjoint methods. Therefore, the

adjoint-based and Riccati-based approaches both rely on linearisation to achieve

optimisation. However, the Riccati-based methods are only suitable for linear

systems [40].

The Riccati-based methods are in fact derived from the adjoint-methods using

the linear map between the adjoint variables and the state variables that lead to

the Riccati equation. Riccati equations can be solved by numerous algorithms

available in commercial packages such as MATLAB.

1.2.2 Optimal and robust control in the predictive control frame-

work

Bewley et al. [7] described several relevant temporal objective functionals that

can be used with the adjoint-based methods to control turbulent flows. In many

applications, reducing drag is very important. The optimisation of drag reduction

using actuation profiles derived from adjoint-based methods requires the future

state of the flow. Such an analysis may require the computation of the flow in a

large interval of time, which is not always feasible. For turbulence, drag reduction

is often seen as the end goal; thus, investigating the causes of drag may allow

optimisation to be done for smaller intervals of time. The turbulence itself causes

wall-normal convective transport that leads to higher values of drag; therefore,

regulating the time-averaged turbulent kinetic energy can achieve drag reduction

while saving computational power. Furthermore, Bewley et al. [7] suggested

regulation of large-scale and intermediate-scale structures because of the physics

and computational power available at the moment. Thus, controlling the larger

structures that feed the smaller structures may be more effective in achieving

drag reduction.

Bewley et al. [7] performed simulations by applying DNS to a turbulent chan-

nel flow and using the receding-horizon predictive control framework to reduce

drag. The computation of the adjoint field is of the same order as the physical

flow field for a similar time interval. The simulations performed were of very
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high dimensions to identify different characteristics of methods and control ap-

proaches in order to compare them. The algorithm may be slightly modified to

include both far temporal and intermediate intervals in the optimisation. Better

understanding of the physics may help in defining an appropriate cost functional.

The strategies that are designed for long temporal intervals prove to be better

than the strategies for shorter temporal intervals. The strategies that focus on

the end result while sacrificing intermediate temporal results are more effective

than simply regulating the quantity that is intended to be optimised. The con-

trol of the terminal values of turbulent kinetic energy has a bigger impact on the

flow than the control of drag. Bewley et al. [7] concluded that by using wall

transpiration by small amounts of blowing and suction (i.e. the actuators do

not change the mass flow rate of the system), it is possible to fully relaminarise

low Reynolds number turbulent channel flows, which may result in a drag reduc-

tion of over 50%. The computational resources required to run such simulations

makes it more difficult for the strategies to be implemented on current systems

to provide real-time control. However, as the computational resources increase

and faster algorithms appear, it may become possible to compute such flows on

closed-loop real systems.

1.2.3 Temporal growth of laminar disturbances

Högberg & Henningson [34] used DNS to study linear optimal control applied

to temporal growing Falkner-Scan-Cooke boundary layers. They derived the sta-

tionary Riccati equation from the adjoint system by considering an infinitely large

time scale for the measured parameters. Using blowing and suction as the actu-

ator and assuming non-parallel effects to be small, the controller was extended to

spatially developing boundary layers. The tests performed in a Blasius boundary

layer showed that TS waves were fully stabilised and the transient growth was

attenuated by the controller. Furthermore, the control was applied to a spatial

Falkner-Scan-Cooke flow with unstable perturbations where the linear control-

ler was able to attenuate the growth of cross-flow vortices and delay secondary
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instabilities. Additionally, their results suggest that the controller works for sta-

tionary, time-varying perturbations and for relatively high levels of nonlinearity.

Monokrousos, Åkervik, Brandt & Henningson [50] used an adjoint-based

method to study the global linear stability of the Blasius boundary layer sub-

jected to three-dimensional disturbances upstream. The optimisation was to

maximise the energy growth of the perturbations. Therefore, the initial condi-

tions were optimised using an adjoint-based method to obtain the largest growth

for different finite times. Time-periodic wall forcing was added to amplify the

growth rate of the perturbations. They found that the optimal initial condi-

tions for spanwise wavelengths of the order of the boundary-layer thickness are

finite-length vortices that exploit the lift-up mechanism to generate Klebanoff

modes. For long spanwise wavelengths, the perturbations growth is caused by

the Orr mechanism combined with oblique waves. They verified that the lift-up

mechanism is most efficient for small frequencies.

1.2.4 Spatial growth of laminar disturbances

The strategies suggested by Bewley et al. [7] may be modified to work on spatial

instead of temporal control. Similar work was performed by researchers on the

pre-transitional Blasius layer to attenuate the streaks and thus delay the laminar

breakdown into transition.

Cathalifaud & Luchini [13] applied control theory to the algebraic growth

theory (e.g. [46]). They defined an optimal perturbation as the input disturb-

ance of the boundary layer that maximises the output disturbance energy. As

shown by Luchini [46], the optimal upstream disturbance consists of station-

ary streamwise vortices. The attenuation of the steady perturbations originating

from the optimal upstream disturbance within the boundary layer was performed

using blowing and suction as actuators. The method used was an adjoint-based

strategy that considered optimal control as the minimisation of a given object-

ive functional [13]. The framework proposed is described for a chosen objective

functional that is minimised through a formal procedure to obtain the state and
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adjoint equations along with the conditions of optimality. The solutions of such

a system result in the optimal controller [13]. The optimal control profiles for

flat and curved plates showed that the portion of wall near the leading edge was

where the actuation was highest, especially for curved geometries. They sugges-

ted that blowing and suction can be highly effective for large curvatures. The

disturbances within the boundary layer were successfully dampened. However,

special care should be taken while attenuating the flow with objective function-

als that only optimise the end of the interval of actuation, i.e. only guarantee

attenuation shortly downstream of the actuators. This may result in an increase

of the velocity fluctuations within the interval of actuation which may possibly

lead to undesired transition. This can be avoided by considering the energy of

the velocity fluctuations throughout the whole interval of actuation in the object-

ive functional. Alternatively, a limited energy input may be introduced at the

actuators to obtain a smooth attenuation of the steady fluctuations.

Zuccher, Luchini & Bottaro [72] expanded the work of Cathalifaud & Luchini

[13] for the Blasius boundary layer using the incompressible nonlinear boundary-

region equations. Their results also showed that increased actuation is necessary

close to the leading edge, compared to further downstream, to attenuate the flow.

A different approach was taken by Cathalifaud & Bewley [11], who proposed

a noncausal framework that attenuates developing boundary-layers using active

and closed-loop control. They considered a linear boundary layer subjected to

small, spatially developing, three-dimensional perturbations with blowing and

suction distribution over a portion of the wall as actuators. A state estimation

is performed by collecting measurements of skin friction and pressure over the

same region. The proposed new framework uses a Riccati-based feedback con-

trol approach that considers the parabolic feature in the streamwise direction of

the linear boundary-layer equations. The framework was implemented and the

simulations led to an attenuated flow [12].

Chevalier et al. [15] extended the work of Högberg & Henningson [34] by

running DNS on spatially developing boundary layers with restrained information
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for the controller. A thin strip of measurements were taken at the wall. In

addition, noise was added to the wall measurements. Followed by the sensors, a

thin strip of unsteady blowing and suction actuators was added to attenuate the

flow. Also, stochastic perturbations were generated upstream.

Semeraro et al. [62] studied the active linear control applied to a flat-plate

boundary layer with the objective of delaying the onset of turbulence. They

carried out DNS of the nonlinear, transitional regime of the boundary layer,

while employing a three-dimensional, localised initial condition that triggered TS

waves of finite amplitude to numerically simulate the transition to turbulence.

They also used reduced-order models of the linearised Navier-Stokes equations

to design linear quadratic Gaussian controllers. Their optimisation was done

through a parametric study that changed the direction and magnitude of the

actuators and the weight of the controllers. They concluded that the fully linear

control approach was effective in delaying the onset of turbulence in the presence

of the created disturbances that had an amplitude of approximately 1% of the

free-stream velocity at the location of the actuator.

Belson et al. [5] used DNS to study the effects of different types and positions

of actuators and sensors on the controllers’ performance and robustness in the

linearised 2D Blasius boundary layer. They considered two different configura-

tions, one where the sensor is upstream of the actuator, and another where the

sensor is placed after the actuator. Their findings revealed that when the sensors

are placed upstream of the actuator, the performance is increased, as observed

in previous works. However, when the sensor is placed after the actuator, they

demonstrated that the performance was degraded by the additional disturbances

and uncertainties in the plant model.

A different approach to delay the onset of turbulence in a Blasius boundary

layer was investigated by Hanson et al. [30]. They performed experiments using

a spanwise array of symmetric plasma actuators that had the capacity to form

spanwise-periodic counter-rotating vortices. The disturbances in the boundary

layer were generated by an array of rough elements, and after improving the
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geometry of the array of actuators, they obtained up to 70% energy reduction of

the total disturbance energy.

Their work was further expanded by Hanson et al. [29] by modifying the

experiment to a closed loop, using feedback from wall-shear stress measurements.

This significantly increased the energy reduction to over 95%, with the initial

control iteration already showing over 89% reduction.

Hack & Zaki [28] used DNS to study the influence of harmonic spanwise

wall motion on bypass transition in incompressible boundary layers. They found

that with optimal wall-oscillation parameters, attenuation of the laminar flow

regime was achieved, and that the cost of actuation was worth the reduction in

propulsion power. However, further forcing amplitudes resulted in an upstream

onset of turbulence.

An expansion of the work conducted by Hack & Zaki [28] was carried out

by Hicks & Ricco [33] by employing a Wentzel-Kramers-Brillouin-Jeffrey analysis

to investigate the effects of wall oscillation on the incompressible Blasius flow

above an otherwise stationary flat-plate described by LWG [43]. They obtained

Klebanoff modes energy reduction of up to 90% which indicates that actuation in

the spanwise direction can be very effective in controlling the Klebanoff modes.

Luchini & Bottaro [47] performed a thorough review of the use of adjoint

equations in hydrodynamic stability theory. They demonstrated the powerful

capabilities of the adjoint-based methods both in analytical and numerical applic-

ations applied to the scope of fluid mechanics, not only to optimal perturbations,

but also with the opposite application, i.e. to disrupt the base flow.

1.3 The objectives of the thesis

• To extend the incompressible framework by Ricco [56] to the compressible

case for the first time by including the components {ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)}.

This provides a correct prediction for the velocity, pressure and temperat-

ure fluctuations in the outer layer of the compressible Blasius boundary
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layer.

• To apply control to the theoretical formulation of the compressible bound-

ary layer subjected to free-stream small vortical disturbances based on the

work of LWG [43], and Ricco & Wu [58], with the objective of attenuating

the streaks.

• To apply control to the extension of the theoretical formulation of the in-

compressible framework by Ricco [56] derived in the present work, with the

same objective of reducing the amplitude of the streaks.

• The objectives for the control framework are described below:

– To obtain the adjoint compressible linear unsteady boundary region

equations for the first time.

– To design a controller to attenuate the streamwise velocity fluctuations

and temperature fluctuations within the compressible boundary layer.

– To apply feedback control by the use of wall actuators.

– To study the viability of alternative wall actuators: heat transfer actu-

ators, and a blowing and suction mechanism with an angle of attack.
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Chapter 2

Linear response of a

compressible boundary layer to

free-stream vortical

disturbances

In this chapter, based on the work of Leib, Wundrow & Goldstein (LWG) [43],

Ricco [55][56] and Ricco & Wu [58], the theoretical formulation of the compress-

ible boundary layer subjected to free-stream small vortical disturbances is de-

scribed. The incompressible framework by Ricco [56] is extended to the com-

pressible case for the first time.

The formulation and scaling are introduced in §2.1. The flow above the bound-

ary layer, and in the proximity of the leading edge is described in LWG [43]. The

flow within the boundary layer, including its boundary and initial conditions, is

shown in §2.2, §2.3 and §2.4. The numerical procedures are then presented in

§2.5, together with the numerical solutions of the boundary region in §2.6.
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2.1 Formulation: scaling and asymptotic structure of

flow domain

xλ∗

z

yλ∗

z

zλ∗

z
I

II

III

IV

λ∗

z λ∗

zRλ

λ∗

z

δλ∗

z

λ∗

z

U∗

∞
, T ∗

∞

ǫu∞(x − t, y, z)

Figure 2.1: A schematic illustration of the different asymptotic regions of the

flow.

This formulation is closely guided by Ricco &Wu [58] and LWG [43]. Consider

an air flow with uniform velocity U∗
∞ and constant temperature T ∗

∞ passing over

an infinitely thin flat plate. The plate is regarded as an adiabatic wall, and the

air, a perfect gas with the speed of sound in the free stream, described as:

c∗∞ =
√

γR∗T ∗∞, (2.1)

where γ is the ratio of the specific heats and R∗ the universal gas constant defined

as γ = 1.4 and R∗ = 287.05 N m kg−1 K−1 respectively. A diagram of this flow

is shown in figure 2.1. The Mach number M is defined in the usual way as:

M ≡ U∗
∞

c∗∞
(2.2)

and is taken to be of O(1).
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Vortical disturbances originating from the free stream are superimposed on

U∗
∞ to represent weak turbulence in the FST. The vortical disturbances are of

the convected gust type and are treated as statistically-stationary, homogeneous

turbulent vortical fluctuations.

A Cartesian coordinate system is used to represent the flow where a point

is described by a position vector x = x̂i + yĵ + zk̂, where x, y and z describe

the streamwise, wall normal and spanwise directions. The space coordinates

are non-dimensionalised by the spanwise integral length scale of the free-stream

turbulence λ∗
z. For the special case of a single Fourier component, λ∗

z is the

spanwise wavelength of the free-stream vortical disturbance.

The symbol ∗ is used to represent dimensional quantities. The velocities are

non-dimensionalised by U∗
∞, the temperature by T ∗

∞ and the pressure by ρ∗∞U∗2
∞ .

Time is normalised by λ∗
z/U

∗
∞. The fluid properties are made dimensionless by

their values in the free stream, i.e., the density, dynamic viscosity and thermal

conductivity are normalised by ρ∗∞, µ∗
∞ and k∗∞ respectively.

The intensity of the turbulent velocity fluctuations is assumed to be small

so that the flow can be considered as a linear perturbation of the mean flow.

As in LWG [43], the perturbations are viewed as a superposition of sinusoidal

disturbances:

u− î = ǫu∞(x− t, y, z) = ǫû∞ei(k·x−kxt) + c.c., (2.3)

where c.c. is the complex conjugate and û∞ and k are real vectors defined as:

û∞ =













û∞x

û∞y

û∞z













(2.4)

and

k =













kx

ky

kz













(2.5)

23



respectively. The components û∞x , û∞y and û∞z are of O(1), ǫ ≪ 1 is a measure

of turbulent intensity and k is the wavenumber vector. The continuity equation

reads:

û∞ · k = 0. (2.6)

Experiments show that low-frequency (i.e. long wave-length) vortical turbulence

penetrates the boundary layer to form Klebanoff modes. Therefore, components

with kx ≪ 1 are considered. Due to the linearity, each Fourier mode can be

analysed individually and the sum of the Fourier modes leads to the continuous

free-stream turbulence spectrum.

According to LWG [43], a turbulent Reynolds number is defined as:

rt = ǫRλ = O(1) (2.7)

with:

Rλ ≡ U∗
∞λ∗

z

ν∗∞
(2.8)

and:

Rλ ≫ 1, (2.9)

where ν∗∞ is the kinematic viscosity of the fluid in the free stream. Goldstein

[22] has considered an asymptotically large Rλ and taken a small ǫ while keeping

rt = O(1); this leads to a flow that can be divided into four asymptotic regions,

as illustrated in figure 2.1.

Region I: it is an inviscid region located above the boundary layer and around

the leading edge. The solution of this region is described in LWG [43].

Region II: it is viscous in nature and located below region I where the un-

steady perturbations are characterised by the linearised unsteady boundary layer

equations (LUBL) described by Gulyaev et al. [26] and LWG [43] for the in-

compressible case and by Ricco [55] and Ricco & Wu [58] for the compressible

case, in which their compressible formulation is used here. Within this region,

the boundary layer thickness δ∗ is related to the location x∗ by:

δ∗ = O
(

x∗√
R∞

)

, (2.10)
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where:

R∞ ≡ U∗
∞x∗

ν∗∞
. (2.11)

The LUBL equations are valid while the boundary layer thickness δ∗ is smaller

than the spanwise length scale λ∗
z, which leads to:

x∗ ≪ O (λ∗
zRλ) (2.12)

or

x

Rλ
≪ O(1). (2.13)

Goldstein’s [22] numerical solutions of the LUBL equations show that the max-

imum value of the velocity perturbations occur when x = O
(

k−1
x

)

. Thus, the

following scaling is done:

kx = O
(

R−1
λ

)

, (2.14)

which can also be written as:

x̄ ≡ kxx = O(1). (2.15)

Therefore, the boundary layer thickness δ∗ becomes

δ∗ = O(λ∗
z) (2.16)

as:

x

Rλ
= O(1). (2.17)

This invalidates the solution of the LUBL equations as the diffusion in the span-

wise direction becomes of the same order of magnitude as the wall-normal direc-

tion.

Region III: it is the viscous region that follows downstream of region II be-

comes invalid, i.e., at O (λ∗
zRλ) from the leading edge. It has a width of O(λ∗

z)

and its unsteady flow is described by the boundary region equations [36], i.e.,

Navier-Stokes equations while neglecting the streamwise viscous diffusion and

streamwise pressure-gradient. The boundary region equations are parabolic in
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the streamwise direction and elliptic in the spanwise direction. Similar to re-

gion II, the terms (2.14) and (2.15) are used; however, equation (2.13) becomes

x/Rλ = O(1).

Using the above assumptions, the compressible boundary region equations

can be deduced from the compressible Navier-Stokes equations (cf. Ricco [55]).

Considering x scaled by:

x̃ =
x

Rλ
, (2.18)

and time t∗ by:

t̃ =
t∗ν∗∞
λ∗2
z

, (2.19)

keeping y scaled by λ∗
z because δ∗ = O(λ∗

z) and taking into account that Rλ ≫ 1,

leading to:

u =ũ
(

x̃, y, z, t̃
)

+ . . . (2.20a)

v =R−1
λ ṽ

(

x̃, y, z, t̃
)

+ . . . (2.20b)

w =R−1
λ w̃

(

x̃, y, z, t̃
)

+ . . . (2.20c)

p =R−2
λ p̃

(

x̃, y, z, t̃
)

+ . . . (2.20d)

τ =T̃
(

x̃, y, z, t̃
)

+ . . . (2.20e)

ρ =ρ̃
(

x̃, y, z, t̃
)

+ . . . (2.20f)

and:

continuity equation

∂ρ̃

∂t̃
+

∂

∂x̃
(ρ̃ũ) +

∂

∂y
(ρ̃ṽ) +

∂

∂z
(ρ̃w̃) = 0; (2.21)

x-momentum equation

ρ̃

(

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z

)

=
∂

∂y

(

µ
∂ũ

∂y

)

+
∂

∂z

(

µ
∂ũ

∂z

)

; (2.22)

y-momentum equation

ρ̃

(

∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z

)

= −∂p̃

∂y
+

∂

∂x̃

(

µ
∂ũ

∂y

)

+
∂

∂y

[

µ

(

−2

3

∂ũ

∂x̃
+

4

3

∂ṽ

∂y
− 2

3

∂w̃

∂z

)]

+
∂

∂z

[

µ

(

∂ṽ

∂z
+

∂w̃

∂y

)]

;

(2.23)
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z-momentum equation

ρ̃

(

∂w̃

∂t̃
+ ũ

∂w̃

∂x̃
+ ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z

)

= −∂p̃

∂z
+

∂

∂x̃

(

µ
∂ũ

∂z

)

+
∂

∂y

[

µ

(

∂ṽ

∂z
+

∂w̃

∂y

)]

+
∂

∂z

[

µ

(

−2

3

∂ũ

∂x̃
− 2

3

∂ṽ

∂y
+

4

3

∂w̃

∂z

)]

;

(2.24)

energy equation

ρ̃

(

∂T̃

∂t̃
+ ũ

∂T̃

∂x̃
+ ṽ

∂T̃

∂y
+ w̃

∂T̃

∂z

)

=
1

Pr

[

∂

∂y

(

k
∂T̃

∂y

)

+
∂

∂z

(

k
∂T̃

∂z

)]

+(γ − 1)M2µ

(

∂ũ

∂y

)2

;

(2.25)

where k is the thermal conductivity of air and Pr is the Prandtl number which

is set to Pr = 0.7.

The O(ǫ) fluctuations in the free stream lead to O (ǫ/kx) streamwise velocity

disturbances in the boundary layer [43]. Consistent with LWG [43], ǫ/kx ≪ 1 is

used together with equation (2.14) to obtain the linearisation condition:

ǫRλ = rt ≪ 1, (2.26)

which is used throughout this chapter. The linearisation condition (2.26) is em-

ployed to linearise the boundary region equations to obtain the linearised un-

steady boundary region equations.

Region IV: above region III, there is also a viscous flow. Region IV is in-

fluenced by the displacement of the flow underneath, i.e., region III. Logically,

the flow differs at subsonic, transonic or supersonic speeds. Region IV is treated

according to the LWG [43] formulation.

2.2 The mean compressible laminar boundary layer

flow

Consider the flow above a flat plate and further downstream, i.e. x > 0. The

equations to describe the steady compressible laminar boundary layer equations

are derived from the steady Navier-Stokes equations, similar to the incompress-

ible case. However, the simplification of the x-momentum and energy equa-
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tions to a system of ordinary differential equations (ODE) requires the Howarth-

Dorodnitsyn coordinate transformation [63]:

Ȳ = Ȳ (x, y) ≡
∫ y

0
ρ (x, ỹ) dỹ. (2.27)

When the pressure gradient is not present, a similarity solution is obtained by

using the similarity variable:

η ≡ Ȳ

√

Rλ

2x
. (2.28)

Assuming a constant Prandlt number Pr, the similarity solution leads to the

coupled ODE system:

FF ′′ +
(µ

T
F ′′
)′

= 0, (2.29)

1

Pr

(µ

T
T ′
)′

+ T ′F + (γ − 1)M2 µ

T
(F ′′)2 = 0, (2.30)

where:

F = F (η), (2.31)

T = T (η), (2.32)

µ = µ(T ), (2.33)

with the following boundary conditions:

F (0) = 0, (2.34)

F ′(0) = 0, (2.35)

T ′(0) = 0, (2.36)

F ′ → 1 as η → ∞, (2.37)

T → 1 as η → ∞. (2.38)

Equation (2.36) is obtained by considering an adiabatic wall. From equations

(2.29) and (2.30), the steady streamwise velocity U , steady wall-normal velocity

V and steady temperature T can be obtained:

U = F ′, (2.39)

28



V =
1√
2xRλ

(

ηcTF
′ − TF

)

, (2.40)

T = T (η), (2.41)

where:

ηc ≡
1

T

∫ η

0
T (η̆) dη̆. (2.42)

The boundary conditions (2.34) and (2.35) are found from the no-slip condition

at the wall, i.e.:

U = V = 0, (2.43)

and equations (2.28), (2.39) and (2.40). The relation between viscosity µ and the

temperature T is assumed to be given by the power law [14]:

µ = Tω, with ω = 0.76, (2.44)

as is appropriate for a M < 4 [63].

2.3 The linear boundary layer flow: region II

Region II originates from the inviscid flow described in LWG [43] as region I,

which encounters the wall that imposes a no-slip condition, i.e., the velocities

are nullified at the wall. This leads to the viscous region II, which is commonly

known as the boundary layer.

The unsteady perturbations are linearised about the steady laminar compress-

ible boundary layer. In this section, the steady flow is considered first, followed

by the unsteady perturbations (cf. Ricco & Wu [58]).

2.3.1 The unsteady velocity and temperature perturbation flow

Considering that the flow is periodic in time and in the spanwise direction, the

solution for the velocities u, v, w and temperature τ can be given by a single
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Fourier component of the disturbance:



















u

v

w

τ



















=



















U

V

0

T



















+ ǫ



















ū0 (x̄, η)
√

2x̄kx
Rλ

v̄0 (x̄, η)

w̄0 (x̄, η)

τ̄0 (x̄, η)



















ei(kzz−kxt) + c.c. (2.45)

Substituting equation (2.45) into equations (2.21)-(2.25) and linearising the

equations yields the LUBL equations:

continuity equation

ηc
2x̄

T ′

T
ū0 +

∂ū0
∂x̄

− ηc
2x̄

∂ū0
∂η

− T ′

T 2
v̄0 +

1

T

∂v̄0
∂η

+
ikz
kx

w̄0 +

(

i

T
− 1

2x̄

T ′F
T 2

)

τ̄0

−F ′

T

∂τ̄0
∂x̄

+
1

2x̄

F

T

∂τ̄0
∂η

= 0;

(2.46)

x-momentum equation

(

−i− ηc
2x̄

F ′′
)

ū0 + F ′∂ū0
∂x̄

+
1

2x̄

(

µT ′

T 2
− F − µ′T ′

T

)

∂ū0
∂η

− 1

2x̄

µ

T

∂2ū0
∂η2

+
F ′′

T
v̄0 +

1

2x̄

(

FF ′′

T
− µ′F ′′′

T
− µ′′T ′F ′′

T
+

µ′T ′F ′′

T 2

)

τ̄0

− 1

2x̄

µ′F ′′

T

∂τ̄0
∂η

= 0;

(2.47)

z-momentum equation

−iw̄0 + F ′∂w̄0

∂x̄
+

1

2x̄

(

µT ′

T 2
− µ′T ′

T
− F

)

∂w̄0

∂η
− 1

2x̄

µ

T

∂2w̄0

∂η2
= 0; (2.48)

energy equation

− ηc
2x̄

T ′ū0 − (γ − 1)M2 1

x̄

µF ′′

T

∂ū0
∂η

+
T ′

T
v̄0

+

(

−i+
1

2x̄

T ′F
T

− 1

2x̄

1

Pr

µ′′(T ′)2

T
− 1

2x̄

1

Pr

µ′T ′′

T
+

1

2x̄

1

Pr

µ′(T ′)2

T 2

−(γ − 1)M2 1

2x̄

µ′(F ′′)2

T

)

τ̄0 + F ′∂τ̄0
∂x̄

+
1

2x̄

(

−F − 2

Pr

µ′T ′

T
+

1

Pr

µT ′

T 2

)

∂τ̄0
∂η

− 1

2x̄

1

Pr

µ

T

∂2τ̄0
∂η2

= 0;

(2.49)

with boundary conditions:

ū0 = 0 at η = 0, (2.50)
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v̄0 = 0 at η = 0, (2.51)

w̄0 = 0 at η = 0, (2.52)

∂τ̄0
∂η

= 0 at η = 0, (2.53)

τ̄0 → 0 as η → ∞. (2.54)

Similar to the steady flow, the no-slip condition at the wall is imposed by (2.50)-

(2.52) and the adiabatic condition at the wall by (2.53). Due to the lack of

temperature forcing from the free stream, the temperature fluctuations must

vanish in the free stream, i.e. (2.54). Considering that the LUBL equations

require seven boundary conditions, the remaining two are given by the kinematic

forcing at the free stream. According to LWG [43], Ricco & Wu [58] and Ricco

[56], the remaining boundary conditions are found by expressing the solution as

in Gulyaev et al. [26]:



















ū0

v̄0

w̄0

τ̄0



















= C(0)



















ū(0)

v̄(0)

− ikx
kz

w̄(0)

τ̄ (0)



















+ C



















ikz
kx

ū

ikz
kx

v̄

w̄

ikz
kx

τ̄



















(2.55)

with:

C(0) ≡ û∞x +
ikx

√

k2x + k2z
û∞y (2.56)

and:

C ≡ û∞z +
ikz

√

k2x + k2z
û∞y . (2.57)

The continuity equation (2.46) simplifies to:

ηc
2x̄

T ′

T
ū+

∂ū

∂x̄
− ηc

2x̄

∂ū

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ +

(

i

T
− 1

2x̄

T ′F
T 2

)

τ̄

−F ′

T

∂τ̄

∂x̄
+

1

2x̄

F

T

∂τ̄

∂η
= 0.

(2.58)

The matching of the kinematic components ū and w̄ with the region I de-

scribed in LWG [43] yields:

ū → 0 as η → ∞, (2.59)
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w̄ → eix̄ as η → ∞. (2.60)

The procedure to obtain the initial conditions for the LUBL equations can be

found on page 24 and Appendix A of Ricco [55].

2.4 The boundary region flow (region III) and the

outer solution (region IV)

The boundary layer equations fail to describe the flow when the spanwise diffusion

cannot be neglected, i.e., the boundary layer thickness δ∗ becomes of the same

order of magnitude as the spanwise length scale in the free-stream disturbance

λ∗
z. The location where it occurs is given by equation (2.17).

The boundary region equations are used to describe the flow in region III. The

unsteady streaks generated in the boundary layer lead to an unsteady pressure

in region IV. The new unknown is treated in a similar way to the velocities and

temperature fluctuations. In line with LWG [43], Ricco & Wu [58] and Ricco [56],

the pressure p is written according to Gulyaev [26]:

p = −1

2
+ ǫp̄0 (x̄, η) e

i(kzz−kxt) + c.c., (2.61)

where:

p̄0 =
kx
Rλ

C(0)p̄(0) + iκz

√

kx
Rλ

Cp̄, (2.62)

with:

κz ≡ kz√
kxRλ

. (2.63)

C(0) and C are given by equations (2.56) and (2.57) respectively.

The terms proportional to the components ū, v̄, w̄, τ̄ and p̄ are analysed in

LWG [43] for the incompressible case, and in Ricco [55] and Ricco & Wu [58]

for the compressible case. They represent the dominant part of the velocities,

pressure and temperature fluctuations within the core of the boundary layer,

i.e., in the middle and close to the wall within the boundary layer. The terms

proportional to the components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0) were studied for the
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incompressible case by Ricco [56] and for the first time, the compressible case

is solved in the present study. These represent second order components of the

Klebanoff modes within the core of the boundary layer, and because of that, have

been neglected in previous works [43][58]. However, in the outer layer, they are

the dominant components of the Klebanoff modes, and thus the components ū(0),

v̄(0), w̄(0), τ̄ (0) and p̄(0) are important to obtain more realistic profiles along the

wall-normal direction.

The components {ū, v̄, w̄, τ̄ , p̄} and the components
{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

satisfy the compressible linear unsteady boundary region (referred to hereinafter

as CLUBR) equations (cf. Ricco & Wu [58]):

continuity equation

ηc
2x̄

T ′

T
ū+

∂ū

∂x̄
− ηc

2x̄

∂ū

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ +

(

i

T 2
− 1

2x̄

T ′F
T 2

)

τ̄

−F ′

T

∂τ̄

∂x̄
+

1

2x̄

F

T

∂τ̄

∂η
= 0;

(2.64)

x-momentum equation

(

−i− ηc
2x̄

F ′′ + κ2zµT
)

ū+ F ′ ∂ū
∂x̄

+
1

2x̄

(

µT ′

T 2
− F − µ′T ′

T

)

∂ū

∂η

− 1

2x̄

µ

T

∂2ū

∂η2
+

F ′′

T
v̄ +

1

2x̄

(

FF ′′

T
− µ′F ′′′

T
− µ′′T ′F ′′

T
+

µ′T ′F ′′

T 2

)

τ̄

− 1

2x̄

µ′F ′′

T

∂τ̄

∂η
= 0;

(2.65)
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y-momentum equation

1

(2x̄)2
(

TF − ηcTF
′ + ηcT

′F − ηc
2TF ′′) ū+

1

3x̄
µ′T ′∂ū

∂x̄
− 1

6x̄
µ
∂

∂x̄

(

∂ū

∂η

)

+
1

12x̄2

(

ηcµ
′T ′ − ηc

µT ′

T
+ µ

)

∂ū

∂η
+

ηc
12x̄2

µ
∂2ū

∂η2
+
(

−i+
ηc
2x̄

F ′′

− 1

2x̄

T ′F
T

+
1

2x̄
F ′ + κ2zµT

)

v̄ + F ′ ∂v̄
∂x̄

+

(

− 1

2x̄
F − 2

3x̄

µ′T ′

T

+
2

3x̄

µT ′

T 2

)

∂v̄

∂η
− 4

3

1

2x̄

µ

T

∂2v̄

∂η2
+

2

3

1

2x̄
µ′T ′w̄ − 1

3

1

2x̄
µ
∂w̄

∂η

+

(

−FF ′ + ηc(F
′)2 − T ′F 2

T
+ ηcFF ′′ +

1

3x̄2
µ′T ′′F

T
− 1

3x̄2
µ′(T ′)2F

T 2

+
1

3x̄2
µ′′(T ′)2F

T
+

1

3x̄2
µ′T ′F ′

T
+

ηc
4x̄2

µ′T ′F ′′

T
− 1

4x̄2
µ′F ′′ − ηc

4x̄2
µ′′T ′F ′′

− ηc
4x̄2

µ′F ′′′
)

τ̄ − 1

2x̄
µ′F ′′ ∂τ̄

∂x̄
+

(

− ηc
4x̄2

µ′F ′′ +
1

3x̄2
µ′T ′F
T

)

∂τ̄

∂η

+
1

2x̄

∂p̄

∂η
= 0;

(2.66)

z-momentum equation

− ηc
2x̄

κ2zµ
′TT ′ū+

1

3
κ2zµT

∂ū

∂x̄
− ηc

6x̄
κ2zµT

∂ū

∂η
+ κ2zµ

′T ′v̄ +
1

3
κ2zµ

∂v̄

∂η

+

(

4

3
κ2zµT − i

)

w̄ + F ′∂w̄
∂x̄

+
1

2x̄

(

µT ′

T 2
− µ′T ′

T
− F

)

∂w̄

∂η
− 1

2x̄

µ

T

∂2w̄

∂η2

+
1

3x̄
κ2zµ

′T ′F τ̄ − κ2zT p̄ = 0;

(2.67)

energy equation

− ηc
2x̄

T ′ū− (γ − 1)M2 1

x̄

µF ′′

T

∂ū

∂η
+

T ′

T
v̄

+

(

−i+
1

2x̄

T ′F
T

− 1

2x̄

1

Pr

µ′′(T ′)2

T

− 1

2x̄

1

Pr

µ′T ′′

T
+

1

2x̄

1

Pr

µ′(T ′)2

T 2
+

1

Pr
κ2zµT − (γ − 1)M2 1

2x̄

µ′(F ′′)2

T

)

τ̄

+F ′ ∂τ̄
∂x̄

+
1

2x̄

(

−F − 2

Pr

µ′T ′

T
+

1

Pr

µT ′

T 2

)

∂τ̄

∂η
− 1

2x̄

1

Pr

µ

T

∂2τ̄

∂η2
= 0.

(2.68)

The boundary conditions for the CLUBR at the wall are obtained through the

no-slip condition, which imposes:

ū = v̄ = w̄ = ū(0) = v̄(0) = w̄(0) = 0, (2.69)

while the adiabatic wall leads to:

∂τ̄

∂η
=

∂τ̄ (0)

∂η
= 0. (2.70)
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The outer boundary conditions, i.e. η → ∞, requires the CLUBR to match the

outer flow above (region IV).

2.4.1 Region IV: outer flow

The velocity field in region IV is expanded as (cf. LWG [43] and Ricco & Wu

[58]):

u =













∂Ψ
∂y

−∂Ψ
∂x

0













+ ǫu(0)ei(kzz−kxt) + c.c.+ . . . (2.71)

where the stream function Ψ is given by Ricco [55] for the compressible case as:

Ψ = y − (βc + γc)Re









√

√

√

√

2
(

x+ iy
√
1−M2

)

Rλ









,M < 1,M = O(1) (2.72)

and

Ψ = y − (βc + γc)Re









√

√

√

√

2
(

x+ iy
√
M2 − 1

)

Rλ









,M > 1,M = O(1), (2.73)

where Re denotes the real part and:

βc ≡ lim
η→∞

η − F , (2.74)

γc ≡ lim
η→∞

ηc − η. (2.75)

The second terms of Ψ in equations (2.72) and (2.73) represent the viscous dis-

placement. Despite the differences of Ψ according to subsonic or supersonic flow,

for y ≪ 0 it approximates to:

Ψ ∼ y − (βc + γc)

√

2x

Rλ
, (2.76)

which can be rewritten as:

Ψ → y(0)√
kxRλ

as y → 0, (2.77)

where:

y(0) ≡
√
2x̄η̄ (2.78)
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and

η̄ ≡ η − βc. (2.79)

Taking into account that the pressure and temperature fluctuations vanish in

region IV, the equation (2.71) is substituted into the momentum equations (2.65)-

(2.67) to find the velocity disturbance u(0) (x̄, y) obtained by:

(

−i+
∂

∂x̄
− ∂Ψ

∂x

∂

∂y
− 1

kxRλ

∂2

∂y2
+ κ2z

)

u(0) = 0. (2.80)

Introducing Ψ as a new independent variable into equation (2.80) leads to:

(

−i+
∂

∂x̄
− 1

kxRλ

∂2

∂Ψ2
+ κ2z

)

u(0) = O
(

kx
Rλ

)

. (2.81)

The solution of (2.81) that satisfies the upstream boundary condition in (2.3)

(LWG [43]) is:

u(0) = û∞e
i(x̄+kyΨ)−(κ2

z+κ2
y)

(

x̄−x̄†
L

)

, (2.82)

where:

x̄†L ≡ kxx
†
L (2.83)

and

κy ≡ ky√
kxRλ

. (2.84)

The solution (2.82) can be further simplified using equations (2.77) and (2.78)

to:

u(0) = û∞ei(x̄+κyy(0))−(κ2
z+κ2

y)x̄. (2.85)

2.4.2 Outer boundary conditions

The outer boundary conditions, i.e. η → ∞, of the CLUBR equations (2.64)-

(2.68) are found by matching the large-η limit of the CLUBR equations with the

outer flow. Both components {ū, v̄, w̄, τ̄ , p̄} and
{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

satisfy

the large-η limit of the CLUBR equations (2.64)-(2.68), which can be read in

terms of y(0) as (cf. Ricco [55]):

large-η limit of the continuity equation

∂ū

∂x̄
− βc + γc√

2x̄

∂ū

∂y(0)
+

√
2x̄

∂v̄

∂y(0)
+ w̄ + iτ̄ − ∂τ̄

∂x̄
= 0; (2.86)
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large-η limit of the x-momentum equation

(

−i+ κ2z
)

ū+
∂ū

∂x̄
− ∂2ū

∂y(0)2
= 0; (2.87)

large-η limit of the y-momentum equation

−βc + γc

(2x̄)2
ū+

(

−i+
1

2x̄
+ κ2z

)

v̄ +
∂v̄

∂x̄
− ∂2v̄

∂y(0)2
+

1√
2x̄

∂p̄

∂y(0)

+(βc + γc) τ̄ − 1

3
√
2x̄

∂

∂x̄

(

∂τ̄

∂y(0)

)

+
i

3
√
2x̄

∂τ̄

∂y(0)
;

(2.88)

large-η limit of the z-momentum equation

(

−i+ κ2z
)

w̄ +
∂w̄

∂x̄
− ∂2w̄

∂y(0)2
− 1

3
κ2ziτ̄ +

1

3
κ2z

∂τ̄

∂x̄
− κ2z p̄ = 0; (2.89)

large-η limit of the energy equation
(

−i+
κ2z
Pr

)

τ̄ +
∂τ̄

∂x̄
− 1

Pr

∂2τ̄

∂y(0)2
= 0. (2.90)

The solutions of the large-η limit equations (2.86)-(2.90) that match the outer

solution (2.85) are:

ū = 0, (2.91)

v̄ =
ieix̄

(κy − i|κz |)
√
2x̄

[

eiκyy(0)−(κ2
z+κ2

y)x̄ − e−|κz |y(0)
]

+
|κz|eix̄−|κz|y(0)

√
2x̄

∫ x̄

0
g (x̆) e−ix̆dx̆,

(2.92)

w̄ =
eix̄

κy − i|κz|
[

κye
iκyy(0)−(κ2

z+κ2
y)x̄ − i|κz|e−|κz |y(0)

]

+κ2ze
ix̄−|κz|y(0)

∫ x̄

0
g (x̆) e−ix̆dx̆,

(2.93)

τ̄ = 0, (2.94)

p̄ = g (x̄) e−|κz|y(0) , (2.95)

and

ū(0) =
eix̄

κy − i|κz |
[

κye
iκyy(0)−(κ2

z+κ2
y)x̄ − i|κz|e−|κz |y(0)

]

, (2.96)

v̄(0) =
eix̄−|κz|y(0)

κy − i|κz |

[

−2i |κz|3 (βc + γc) +
1√
2x̄

+
βc + γc

4x̄
i|κz|

(

1 + 2|κz |y(0)
)

]

+
eix̄+iκyy(0)−(κ2

z+κ2
y)x̄

κy − i|κz|

[

κy (βc + γc)
(

κ2y − κ2z
)

2x̄
(

κ2z + κ2y
) −

1 + i
(

κ2z + κ2y
)

√
2x̄

]

+
|κz |√
2x̄

eix̄−|κz|y(0)
∫ x̄

0
g(0) (x̆) e−ix̆dx̆,

(2.97)
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w̄(0) =
2i (βc + γc) κ

2
yκ

2
z√

2x̄
(

κ2z + κ2y
)

(κy − i|κz |)
eix̄+iκyy(0)−(κ2

z+κ2
y)x̄

+
iκ2z (βc + γc)

κy − i|κz |
eix̄−|κz|y(0)

[

1

2
√
2x̄

+
|κz|y(0)√

2x̄
− 2κ2z

√
2x̄

]

+κ2ze
ix̄−|κz|y(0)

∫ x̄

0
g(0) (x̆) e−ix̆dx̆,

(2.98)

τ̄ (0) = 0, (2.99)

p̄(0) =− i (βc + γc) e
ix̄

(2x̄)
3
2 (κy − i|κz |)

[(

1

2
+ |κz|y(0)

)

e−|κz|y(0)

+
2κ2y

κ2z + κ2y
eiκyy(0)−(κ2

z+κ2
y)x̄

]

+ g(0) (x̄) e−|κz |y(0) ,

(2.100)

where the functions g (x̄) and g(0) (x̄) are unknown functions. However, its beha-

viour can be determined as x̄ → 0 by matching with region I (see LWG [43] and

Ricco [56]). The solutions (2.91)-(2.99) match the ones found by Ricco [56] for

the incompressible case. Based on LWG [43], g (x̄) and g(0) (x̄) can be eliminated

from the solutions (2.92), (2.93), (2.95), (2.97), (2.98) and (2.100) by imposing

the mixed type boundary conditions as η → ∞:

ū = 0, (2.101)

∂v̄

∂η
+ |κz |

√
2x̄v̄ → −e(i−κ2

z−κ2
y)x̄+iκy

√
2x̄η̄, (2.102)

∂w̄

∂η
+ |κz|

√
2x̄w̄ → iκy

√
2x̄e(i−κ2

z−κ2
y)x̄+iκy

√
2x̄η̄, (2.103)

τ̄ = 0, (2.104)

∂p̄

∂η
+ |κz|

√
2x̄p̄ → 0, (2.105)

and

∂ū(0)

∂η
+ |κz |

√
2x̄ū(0) → 0, (2.106)

∂v̄(0)

∂η
+ |κz |

√
2x̄v̄(0) → iκ2z (βc + γc) e

ix̄−|κz|
√
2x̄η̄

√
2x̄ (κy − i|κz|)

×
[

1√
2x̄

iκy (βc + γc)
(

κ2y − κ2z
)

κ2z + κ2y
− i+ κ2z + κ2y

]

×eiκy

√
2x̄η̄+ix̄−(κ2

z+κ2
y)x̄,

(2.107)
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∂w̄(0)

∂η
+ |κz|

√
2x̄w̄(0) → i |κz |3 (βc + γc) e

ix̄−|κz|
√
2x̄η̄

κy − i|κz|

− 1

κ2z + κ2y
2κ2zκ

2
y (βc + γc) e

iκy

√
2x̄η̄+ix̄−(κ2

z+κ2
y)x̄,

(2.108)

τ̄ (0) = 0, (2.109)

∂p̄(0)

∂η
+ |κz |

√
2x̄p̄(0) →− iκz (βc + γc) e

ix̄−|κz|
√
2x̄η̄

2x̄ (κy − iκz)

+
κ2y (βc + γc) e

iκy

√
2x̄η̄+ix̄−x̄(κ2

z+κ2
y)

x̄
(

κ2z + κ2y
) .

(2.110)

The external vortical forcing disturbances from the outer flow are represented as

the non-zero terms on the right-hand-side of the boundary conditions.

2.4.3 Upstream behaviour of the boundary region solution

The appropriate initial conditions for the CLUBR equations (2.64)-(2.68) are

obtained by seeking the power series solutions for η = O(1) and x̄ ≪ O(1):

{ū, v̄, w̄, τ̄ , p̄} =

∞
∑

n=0

(2x̄)
n
2

×
{

2x̄Ũn(η), Ṽn(η), W̃n(η), 2x̄T̃n(η),
1√
2x̄

P̃n(η)

}

,

(2.111)

{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

=

∞
∑

n=0

(2x̄)
n
2

×
{

Un(η),
1

2x̄
Vn(η),

1√
2x̄

Wn(η), Tn(η),
1

(2x̄)
3
2

Pn(η)

}

.

(2.112)

The first two terms of the power series (2.111) are substituted into the CLUBR

equations (2.64)-(2.68), and collecting the like powers of x̄ results in two sys-

tems of ordinary differential equations, which are shown in Appendix D of Ricco

[55]. The two sets of differential equations are solved to reach their solutions,

which will be used to obtain the initial conditions of the components denoted

as {ū, v̄, w̄, τ̄ , p̄}, as x̄ ≪ 1. Similarly, to achieve the initial conditions for the

components expressed as
{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

, as x̄ ≪ 1, the power series

(2.112) is expanded and the first three terms are substituted into the CLUBR
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equations (2.64)-(2.68), and collecting like powers of x̄ results in three sets of or-

dinary differential equations included in Appendix A, together with its boundary

conditions. The additive rule is then used to construct a composite solution that

is valid for every value of η. The composite solution is achieved by adding the

first two terms of the power series (2.111) and the first three terms of the power

series (2.112) to the equations (2.91)-(2.95) and (2.96)-(2.100), respectively, and

subtracting their common parts. The initial conditions to be imposed for x̄ ≪ 1

are:

ū → 2x̄Ũ0 + (2x̄)
3
2 Ũ1, (2.113)

v̄ →Ṽ0 +
√
2x̄Ṽ1 +

i

(κy − i|κz |)
√
2x̄

[

e−(κ
2
z+κ2

y)x̄+iκy

√
2x̄η̄ − e−|κz|

√
2x̄η̄
]

−
(

3

4
β − |κz |

2
g1
√
2x̄

)

e−|κz|
√
2x̄η̄ − v̄c,

(2.114)

w̄ →W̃0 +
√
2x̄W̃1 +

1

κy − i|κz |
[

κye
−(κ2

z+κ2
y)x̄+iκy

√
2x̄η̄ − i|κz |e−|κz|

√
2x̄η̄
]

−3

4
β|κz|

√
2x̄e−|κz|

√
2x̄η̄ − w̄c,

(2.115)

τ̄ → 2x̄T̃0 + (2x̄)
3
2 T̃1, (2.116)

p̄ → P̃0√
2x̄

+ P̃1 +

(

g1 −
Vc

|κz|
√
2x̄

)

e−|κz|
√
2x̄η̄ − p̄c, (2.117)

and

ū(0) →U0 +
√
2x̄U1 + 2x̄U2

+
eix̄

κy − i|κz |
[

κye
iκyy(0)−(κ2

z+κ2
y)x̄ − i|κz|e−|κz |y(0)

]

−
[

1 +
√
2x̄ (−|κz|+ iκy) η̄ + x̄

(

i− i|κz|κy − κ2y +
(

κ2z − i|κz |κy − κ2y
)

η̄2
)

]

,

(2.118)
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v̄(0) → 1

2x̄
V0,0 +

1√
2x̄

V1 + V2

+
eix̄−|κz|y(0)

κy − i|κz |

(

−2i |κz|3 (βc + γc) +
1√
2x̄

+
βc + γc

4x̄
i|κz |

(

1 + 2|κz |y(0)
)

)

+
eix̄+iκyy(0)−(κ2

z+κ2
y)x̄

κy − i|κz |

(

κy (βc + γc)
(

κ2y − κ2z
)

2x̄
(

κ2z + κ2y
) −

1 + i
(

κ2z + κ2y
)

√
2x̄

)

+
|κz|√
2x̄

eix̄−|κz|y(0)
[

1

|κz|
√
2x̄

(

V0,0 − (βc + γc)
i |κz|3 + i|κz |κ2y + 2κ3y − 2κ2zκy

2 (κy − i|κz |)
(

κ2z + κ2y
)

)

+
g
(0)
1

|κz|
+

g
(0)
2

|κz |
√
2x̄

]

−
[

1

2x̄
V0,0 +

1√
2x̄

(

|κz| − iκy + g
(0)
1 +

(

−V0,0|κz|

−
(βc + γc)

(

κ2z − i|κz|κy − κ2y
)

|κz | − iκy

)

η̄

)

+ g
(0)
2 + V0,0

i

2

+
(βc + γc)

(

4 |κz|3 + iκ2zκy − iκ3y

)

2 (|κz|+ iκy)
+
(

−i− |κz|g(0)1 + i|κz|κy + κ2y

)

η̄

+
1

2

(

κ2zV0,0 + (βc + γc)
(

2κ2z − i|κz |κy − κ2y
))

η̄2
]

,

(2.119)

w̄(0) → 1√
2x̄

W0 +W1 +
√
2x̄W2

+
2i (βc + γc)κ

2
yκ

2
z√

2x̄
(

κ2z + κ2y
)

(κy − i|κz |)
eix̄+iκyy(0)−(κ2

z+κ2
y)x̄

+
iκ2z (βc + γc)

κy − i|κz|
eix̄−|κz|y(0)

(

1

2
√
2x̄

+
|κz|y(0)√

2x̄
− 2κ2z

√
2x̄

)

+κ2ze
ix̄−|κz|y(0)

[

1

|κz|
√
2x̄

(

V0,0 − (βc + γc)
i |κz|3 + i|κz |κ2y + 2κ3y − 2κ2zκy

2 (κy − i|κz |)
(

κ2z + κ2y
)

)

+
g
(0)
1

|κz |
+

g
(0)
2

|κz|
√
2x̄

]

−
[

1√
2x̄

(

V0,0|κz |+
(βc + γc) i|κz |κy

(|κz| − iκy)

)

+|κz|g(0)1 − κ2z (V0,0 (βc + γc)) η̄ +
√
2x̄

(

|κz|g(0)2 +
i|κz |
2

V0,0

+
(βc + γc)

2
(

κ2z + κ2y
)

(

−κ2zκy − i|κz |κ2y + 2
(

|κz|3 κ2y − iκ2zκ
3
y

)

+ 4
(

|κz|5 − iκ4zκy

))

− κ2zg
(0)
1 η̄ +





|κz |3
2

V0,0 +
(βc + γc)

(

2κ4z − 3i |κz|3 κy − 2κ2zκ
2
y

)

2 (|κz | − iκy)



 η̄2







 ,

(2.120)
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τ̄ (0) → T0 +
√
2x̄T1 + 2x̄T2, (2.121)

p̄(0) → 1

(2x̄)
3
2

P0 +
1

2x̄
P1 +

1√
2x̄

P2

+

[

− 1

|κz| (2x̄)3/2

(

V0,0 − (βc + γc)
i |κz|3 + i|κz |κ2y + 2κ3y − 2κ2zκy

2 (κy − i|κz |)
(

κ2z + κ2y
)

)

+
g
(0)
2

|κz|
√
2x̄

− i

2|κz |
√
2x̄

(

V0,0 − (βc + γc)
i |κz |3 + i|κz |κ2y + 2κ3y − 2κ2zκy

2 (κy − i|κz |)
(

κ2z + κ2y
)

)]

e−|κz|y(0)

− i (βc + γc) e
ix̄

(2x̄)
3
2 (κy − i|κz |)

[

(

1

2
+ |κz|y(0)

)

e−|κz|y(0) +
2κ2y

κ2z + κ2y
eiκyy(0)−(κ2

z+κ2
y)x̄

]

−
[

1

(2x̄)3/2

(

− 1

|κz|
V0,0 −

(βc + γc) iκy
|κz| (|κz | − iκy)

)

+
1

2x̄
((V0,0 + (βc + γc)) η̄) +

1√
2x̄

(

− i

2κz
V0,0

+
g
(0)
2

|κz|
−

(βc + γc)
(

2κ2zκ
2
y − |κz|κy − iκ2y − 2i|κz |κ3y

)

2|κz | (|κz | − iκy) (|κz |+ iκy)

−
(

|κz|
2

V0,0 +
(βc + γc)

(

2κ2z − 3i|κz |κy − 2κ2y
)

2 (|κz | − iκy)

)

η̄2

)]

,

(2.122)

where Vc, g1 along with the common parts v̄c, w̄c and p̄c are found to be (cf.

Appendix D in Ricco [55]):

Vc = − lim
η→∞

(V0 − η̄) , (2.123)

g1 =
2c1
|κz|

+ 2Vcβc + i
(

β2
c + 1

)

(

κy
|κz |

+ i

)

, (2.124)

v̄c = −η̄ − Vc +
√
2x̄

(

− i

2
(κy + i|κz|)

(

η̄2 + 1
)

+ Vc|κz|η̄ +
1

2
|κz |g1

)

, (2.125)

w̄c = 1 +
√
2x̄ (−i (κy + i|κz |) η̄ − Vc|κz| , (2.126)

p̄c =
P0√
2x̄

+ g1 + Vcη̄. (2.127)

The limit V0,0 and the constants g
(0)
1 and g

(0)
2 can be found in Appendix A.
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2.5 Numerical procedures of the boundary region equa-

tions

The Blasius mean-flow momentum equation (2.29) and energy equation (2.30) are

decomposed into five ordinary differential equations, and their solutions are sub-

sequently found using an implicit second-order finite-difference numerical scheme.

The nonlinear system is solved using the Newton-Raphson method (see Cebeci

[14]).

The CLUBR equations (2.64)-(2.68) are elliptic in the spanwise direction and

parabolic in the streamwise direction, and thus they can be marched downstream

with only having knowledge of the initial, outer and wall boundary conditions.

At the wall, the no-slip condition is used together with an adiabatic wall.

The components ū, v̄, w̄, τ̄ and p̄ are found by solving the boundary region

system (2.64)-(2.68) with the boundary conditions (2.101)-(2.105) and the initial

conditions (2.113)-(2.117). The system is solved by a second-order finite differ-

ence scheme which is central in η and backward in x̄. The stencil is illustrated

in figure 2.2. The derivatives of the velocity and temperature fluctuations are

approximated as:

∂u

∂η
≈ ui,j+1 − ui,j−1

2∆η
, (2.128)

∂2u

∂η2
≈ ui,j+1 − 2ui,j + ui,j−1

(∆η)2
, (2.129)

∂u

∂x̄
≈ aui,j + bui−1,j + cui−2,j

∆x̄
, (2.130)

∂2u

∂x̄∂η
≈ a (ui,j+1 − ui,j−1) + b (ui−1,j+1 − ui−1,j−1) + c (ui−2,j+1 − ui−2,j−1)

2∆x̄∆η
,

(2.131)

where a = 3/2, b = −2 and c = 1/2. To avoid the pressure decoupling phe-

nomenon, the pressure is calculated using a staggered grid in the η direction

with respect to the grid of the velocities and temperature. The pressure and its

derivative is approximated as:

p ≈
pi,j+1/2 + pi,j−1/2

2
, (2.132)
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∂p

∂η
≈

pi,j+1/2 − pi,j−1/2

∆η
. (2.133)

Due to the second-order numerical method used in the streamwise direction to

∆η

∆x̄

pi,j+1/2

pi,j−1/2

ui,j+1

ui,j−1

ui,j
ui−1,jui−2,j

Figure 2.2: The second-order stencil in x̄ and η used to compute the boundary

region equations.

obtain the solutions of ū, v̄, w̄, τ̄ and p̄, the initial conditions (2.113)-(2.117)

were computed at the locations x̄0 and x̄0 +∆x̄, where x̄0 = indicates the initial

location of x̄ and is prescribed as x̄0 = 10( − 9).

After performing mesh independence checks on the solutions ū, v̄, w̄, τ̄ and

p̄, the appropriate values were determined to be ∆x̄ = 0.0005 and ∆η = 0.03.

For the components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0), the boundary region equa-

tions (2.64)-(2.68) are solved with the initial conditions (2.118)-(2.122) and bound-

ary conditions (3.3)-(2.110) using a similar finite difference scheme in η but using

a third-order backwards scheme in x̄, as shown in figure 2.3. The derivatives in

x̄ are approximated as:

∂u

∂x̄
≈ a3ui,j + b3ui−1,j + c3ui−2,j + d3ui−3,j

∆x̄
, (2.134)

and

∂2u

∂x̄∂η
≈ a (ui,j+1 − ui,j−1) + b (ui−1,j+1 − ui−1,j−1)

2∆x̄∆η

+
c (ui−2,j+1 − ui−2,j−1) + d (ui−3,j+1 − ui−3,j−1)

2∆x̄∆η
,

(2.135)

where a3 = 11/6, b3 = −3, c3 = 3/2 and d3 = −1/3.
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∆η

∆x̄

pi,j+1/2

pi,j−1/2

ui,j+1

ui,j−1

ui,j
ui−1,jui−2,jui−3,j

Figure 2.3: The third-order stencil in x̄ and second-order in η used to compute

the boundary region equations.

102 103 10410-6

10-5

10-4

10-3

10-2

10-1

100

101

|R
m
a
x
|

nη

0
1
2

Figure 2.4: The plot shows the maximum residual error per number of points

used in the η direction to compute the power series solutions for M = 3, κz = 1

and κy = 1. The legend indicates the power series coefficient number for the

components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0).
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The increased order in the streamwise direction is necessary because v̄(0) and

w̄(0) are singular for x̄ ≪ 1; this can be seen in equation (2.112). In both

systems, the pressure components p̄ and p̄(0) are singular for x̄ ≪ 1, but do not

affect the marching scheme because the streamwise pressure gradient term is not

present in CLUBR equations. The third-order numerical scheme also requires

the initial conditions (2.113)-(2.117) to be computed at the locations x̄0, x̄0+∆x̄

and x̄0 + 2∆x̄. Due to the singularities as x̄ ≪ 1, the initial location is set

to x̄0 = 0.0009. In addition, the mesh independence checks revealed that the

previous value of ∆x̄ was not enough to ensure mesh independence as x̄ ≪ 1, and

thus the values ∆x̄ = 0.00005 and ∆η = 0.03 were used instead.

The power series terms (2.111) and (2.112) for the CLUBR system initial

conditions were computed using an implicit centred second-order scheme in η.

For the components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0), the error based on the absolute

residual |Rmax| is plotted with the number of points in η for a fixed maximum

η = 15, as shown in figure 2.4. All three series showed a −2 slope in the logarithm

scale, as expected by the second-order scheme. The definition of the absolute

residual |Rmax| is the absolute maximum residual for each power series equations

system, i.e. equations (A.1)-(A.5), (A.6)-(A.10) and (A.11)-(A.15).

Resolution checks were performed on all numerical schemes to ensure mesh

independence. The code was also validated by comparison with all the results

displayed in LWG [43], Ricco & Wu [58] and Ricco [56]; the results were perfectly

matched because the numerical schemes used are identical, and thus this work is

also comparable to the experiments matched in the aforementioned papers. The

numerical procedure used to find the numerical solutions of the boundary region

equations and power series terms is fully described in Cebeci [14] from pages 260-

264. Further information about the numerical simulations of the components

{ū, v̄, w̄, τ̄ , p̄} is found in Ricco [55] and in [56] for the components denoted as
{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

.
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2.6 Numerical solutions of the boundary region equa-

tions

2.6.1 Response of a two-dimensional free-stream gust

The compressible boundary layer disturbances ū(0), v̄(0), τ̄ (0) and p̄(0) induced by a

free-stream two-dimensional gust is studied to extend the incompressible results

obtained by Ricco [56]. The boundary layer response to the gust is evaluated

by considering a wall-normal wavelength comparable with the boundary-layer

thickness, i.e. κz → 0 at x̄ = O(1) or λ∗
z ≫ δ∗. Hereinafter the notation κz = 0 is

adopted to describe κz = 10−5. A value of zero cannot be assigned to κz because

it appears as a denominator in the initial conditions for the pressure component

(2.122).

The streamwise velocity |ū(0)| and temperature τ̄ (0) fluctuations for M = 3,

κz = 0 and κy = 1 are plotted in the left and right of figure 2.5, respectively. The

streamwise velocity |ū(0)| fluctuations in the free-stream decay faster downstream

than the fluctuations within the boundary layer. The peak also shifts from ap-

proximately η ≈ 3.5 at x̄ = 0.1 to η ≈ 2.5 at x̄ = 2.5. The magnitude of τ̄ (0)

decays faster close to the wall than further away from it as the flow evolves down-

stream. The amplitude of the wall-normal v̄(0) velocity fluctuations for M = 3,

κz = 0 and κy = 1 are plotted in figure 2.6. The wall-normal velocity |v̄(0)| peak

within the boundary layer shifts from the edge of the boundary layer approxim-

ately η ≈ 4.5 to the centre at η ≈ 2.5 as the flow develops downstream, and the

frequency of the peaks increases. As expected, the spanwise velocity magnitude

|w̄(0)| is very small because κz → 0.

The evolution of the streamwise velocity ū(0) and temperature τ̄ (0) perturba-

tion magnitude for M = 3, κz = 0 and κy = 2 are shown in the left and right of

figure 2.7, respectively. The amplitude of the velocity ū(0) decays at a faster rate

in the free stream than within the boundary layer core. This disparity increases

with κy and additionally, the peak of the streamwise velocity ū(0) magnitude
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Figure 2.5: Amplitude of the streamwise velocity ū(0) (left) and temperature τ̄ (0)

(right) fluctuations for M = 3, κz = 0 and κy = 1 at the indicated values of x̄.
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Figure 2.6: Amplitude of the wall-normal v̄(0) velocity fluctuations for M = 3,

κz = 0 and κy = 1 at the indicated values of x̄ in figure 2.5.
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Figure 2.7: Amplitude of the streamwise velocity ū(0) (left) and temperature τ̄ (0)

(right) fluctuations for M = 3, κz = 0 and κy = 2 at the indicated values of x̄.
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Figure 2.8: Amplitude of the wall-normal v̄(0) velocity fluctuations for M = 3,

κz = 0 and κy = 2 at the indicated values of x̄ in figure 2.7.
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shifts to the wall as κy increases. At small values of x̄, i.e. x̄ ≤ 0.1 the magnitude

peak of the temperature τ̄ (0) perturbations appears at the wall or nearby. As the

flow evolves downstream, the magnitude at the wall decays faster than the rest of

the boundary layer, which leads to a peak at around η ≈ 1.5 at x̄ > 0.5. Further

downstream, the peak shifts slowly to the middle of the boundary layer. The

emerging peak decays downstream in a similar way to the streamwise velocity

ū(0). As κy increases, the rate of decaying increases due to the viscous effect.

Due to the forcing from the free-stream being of the kinematic type, there are no

temperature fluctuations outside of the boundary layer, and thus the temperat-

ure fluctuations τ̄ (0) within the boundary layer are generated by the mean-flow

shear and the kinematic disturbances.

The amplitude of the wall-normal component v̄(0) for the same conditions

M = 3, κz = 0 and κy = 2 are plotted in figure 2.8. The magnitude of v̄(0) has a

peak within the boundary layer located around the same η as the magnitude of the

streamwise velocity ū(0) at the same x̄. Consistent with the |ū(0)| behaviour, the

peak magnitude of the component v̄(0) is shifted closer to the wall as κy increases.

For small x̄ values, the magnitude of the wall-normal velocity v̄(0) uniformly

decays in the free stream and within the boundary layer. This suggests that the

mean-flow shear acts mainly on the streamwise velocity ū(0) and the temperature

τ̄ (0). Downstream of x̄ ≈ 0.1, |v̄(0)| has a wavy modulation in the free stream

with decreasing wavelength and amplitude as the flow evolves downstream.

2.6.2 Response of a three-dimensional free-stream gust: the Kle-

banoff modes

The evolution of the boundary layer disturbances generated by a three-dimensional

gust is investigated for the compressible case by presenting the full solution of

ū0, v̄0, w̄0, τ̄0 and p̄0 in (2.55). Two different cases are shown. Case 1 focuses

on conditions of κz = κy = O(1) and would ideally represent a flow at high

Reynolds number that is typical in wind tunnel supersonic flows. However, to

the best of the author’s knowledge, the ū(0) component only becomes relevant
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Figure 2.9: Amplitude of the streamwise velocity profiles |ū0| (dashed lines),

|C(0)ū(0)| (solid thicker lines) and |(kz/kx)Cū| (solid thinner lines) for cases 1-A

(left) and 1-B (right) at x̄ = 0.5, for M = 3 and κz = κy = 1.
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Figure 2.10: Amplitude of the streamwise velocity profiles |ū0| (dashed lines),

|C(0)ū(0)| (solid thicker lines) and |(kz/kx)Cū| (solid thinner lines) for cases 1-C

(left) and 1-D (right) at x̄ = 0.5, for M = 3 and κz = κy = 1.
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with respect to ū as the Reynolds number decreases. This is explained by the

condition kx ≪ kz, and kz being fixed. As kx increases, Rλ has to decrease be-

cause of κ ∼ 1 /k1 RΛ. This is demonstrated by the cases plotted in figures 2.9

and 2.10 and described in table 2.1. All cases in table 2.1 are consistent with

LWG [43] and Ricco & Wu [58] where the component ū(0) can be neglected, with

the exception of case 1-D where the component ū(0) becomes comparable with

the component ū. Therefore, for most compressible supersonic practical scenarios

with κz = κy = O(1), the component ū is sufficient to describe the flow correctly,

and with the interest of studying the physics for the cases where ū(0) becomes

important, Case 1 is taken for a relatively small Reynolds number. Case 1 focuses

Case κz kx û∞
x û∞

y Rλ

1-A 1 10−5 0.959179 0.199998 3947842

1-B 1 10−4 0.959292 0.199985 394784

1-C 1 10−3 0.960423 0.1998476 39478

1-D 1 10−2 0.971732 0.198453 3948

Table 2.1: Properties of convective gust with ky = kz = 2π, κz = κy, λ
∗
y = λ∗

z,

û∞z = −0.2 and similar conditions to case 1 shown in table 2.2.

on the high frequency part of the spectrum, and has similar gust conditions as the

three-dimensional incompressible case studied by Ricco [56], with the difference

that M = 3 is taken.

Case κz kx û∞
x û∞

y Rλ f∗(Hz) λ∗
x(m) λ∗

z(m)

1 1 0.1 1.084714 0.182736 395 68971.5 0.008874 0.000141232

2 0.027 0.4 1.459967 0.107056 135386 653.8 0.936162 0.0595979

Table 2.2: Properties of convective gust with ky = kz = 2π, κz = κy, λ
∗
y = λ∗

z,

û∞z = −0.2 and U∗
∞ ≈ 612.046 m s−1

Case 2 aims to predict the low frequency spectrum in the laboratory ex-

periments, both case 1 and 2 use the data in Graziosi & Brown [25] to ob-

tain the gust properties. The temperature of the gust is obtained by use of
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T ∗
∞ = 2T ∗

0 /
[

2 + (γ − 1)M2
]

≈ 103.571 K where T ∗
0 = 290 K. This yields

c∗∞ ≈ 204.015 m s−1 and U∗
∞ ≈ 612.046 m s−1. The kinematic viscosity ν∗ ≈

2.67907×10−4 m2 s−1 was found by interpolating the known values of the Reyn-

olds number in Graziosi & Brown [25], to obtain a value of the kinematic viscosity

at x∗ = 0.15 m. Then kx = 0.4 is set, and x∗ = 0.15 m is assumed to correspond

to x̄ = 1 m in order to calculate κz. Furthermore, κz = κy and û∞z = −0.2

are also set. The remaining values, û∞x and û∞y are calculated using the con-

tinuity equation (2.6) and
(

(û∞x )2 +
(

û∞y
)2

+ (û∞z )2
)1/2

= 1. The values of each

parameter are shown in table 2.2 for both cases.

Firstly, case 1 is analysed. The amplitude of the streamwise velocity ū0 is

plotted in figure 2.11 (left) at different values of x̄. At x̄ = 0.25, there is a

peak around η ≈ 1.5 which disappears downstream. The peak is related to the

ū which decays faster than the outer part of the boundary layer. The correctly

weighted components ū and ū(0) are displayed along with their sum, ū0, in figure

2.11 (right) to demonstrate the relevance of the component ū(0) in the core of

the boundary layer. Unlike the incompressible case studied by Ricco [56], the

weighted amplitude of ū(0) does not confine itself to the outer part of the boundary

layer, and instead is significant in describing the velocity fluctuations in the core of

the boundary layer as well as matching the free-stream velocity. The wall-normal

v̄0 and spanwise w̄0 velocity magnitudes are shown in figure 2.12 at different values

of x̄. The peak of the |v̄0| shifts slightly to the centre of the boundary layer as

the flow develops downstream, and the peak decays faster than the outer part of

the boundary layer. The term |w̄0| has a peak that shifts slightly from η ≈ 1.5 to

η ≈ 2 as the flow evolves downstream from x̄ = 0.25 to x̄ = 2 respectively. The

temperature |τ̄0| and |p̄0| profiles are plotted in figure 2.13. Both temperature

and pressure peaks shift to the centre of the boundary layer as the flow develops

downstream. The temperature fluctuations |τ̄0| display profile shapes similar

to that of the streamwise velocity fluctuations ū which are characteristic of the

thermal streaks profiles found in Ricco & Wu [58]. The pressure peak decays

faster than the pressure magnitude at the wall as the flow evolves in x̄.
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Lastly, case 2 is studied. In this case, the streamwise velocity magnitude

|ū0| is shown in figure 2.14 (left) at different x̄ locations. The term proportional

to ū grows in magnitude as the flow evolves downstream, and at x̄ ≫ 1, it

becomes noticeably larger than the term proportional to ū(0) in the inner part

of the boundary layer. In figure 2.14 (right) the different proportional terms

are presented at x̄ = 0.5. The term proportional to ū has a peak in the inner

part of the boundary layer at approximately η ≈ 1.75. Also at x̄ = 0.5, the

streamwise velocity magnitude |ū0| is close to |C(0)ū(0)| for η > 1.75. This shows

the relevance of the terms proportional to ū(0) in the core of the boundary layer.

The wall-normal |v̄0| and spanwise |w̄0| velocity profiles are plotted in figure 2.15.

In both profiles, the velocity magnitude decays faster with x̄ in the outer part

of the boundary layer than in the inner part. As the outer part of |w̄0| decays,

there is an emerging peak around η ≈ 2. The temperature τ̄0 and pressure p̄0

fluctuation amplitudes are presented in figure 2.16. The temperature |τ̄0| decays

close to the wall across x̄ for the x̄ displayed, with the peak shifting to the centre

of the boundary layer as the decay occurs. The pressure p̄0 magnitude decays

slowly compared to case 1 because κz is small.

2.6.3 Asymptotic solution

In line with LWG and page 22 of Ricco [56], the boundary region solution for the

components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0) can be expressed through an asymp-

totic solution in the limit κz → ∞ as
{

ū(0), τ̄ (0)
}

=
{

û(0), τ̂ (0)
} (

κ2zx̄, η; κy/κz
)

and
{

v̄(0), w̄(0), p̄(0)
}

= κ2z
{

v̂(0), ŵ(0), p̂(0)
} (

κ2zx̄, η; κy/κz
)

where κy/κz = O(1).

The scaled components û(0), v̂(0), ŵ(0), τ̂ (0) and p̂(0) satisfy the boundary region

equations and collapse on one another as κz grows, see figure 2.17 for Mach 3.

Similar collapsing curves were found for different Mach numbers (cf. Ricco [56]

for M = 0).
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ū
|

η

Figure 2.11: Case 1 - Amplitude of the streamwise velocity profiles ū0 at the

indicated values of x̄ (left) and the streamwise velocity profiles |ū0| (dashed lines),

|C(0)ū(0)| (solid thicker lines) and |(kz/kx)Cū| (solid thinner lines) at x̄ = 0.5

(right) for M = 3 and κz = κy = 1.
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Figure 2.12: Case 1 - Amplitude of the wall-normal v̄0 (left) and spanwise w̄0

(right) velocity profiles for M = 3 and κz = κy = 1 at the indicated values of x̄

in figure 2.11.
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Figure 2.13: Case 1 - Amplitude of the temperature τ̄0 (left) and pressure p̄0

(right) profiles for M = 3 and κz = κy = 1 at the indicated values of x̄ in figure

2.11.
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Figure 2.14: Case 2 - Amplitude of the streamwise velocity profiles ū0 at the

indicated values of x̄ (left) and the streamwise velocity profiles |ū0| (dashed lines),

|C(0)ū(0)| (solid thicker lines) and |(kz/kx)Cū| (solid thinner lines) at x̄ = 0.5

(right) for M = 3 and κz = κy = 0.027.
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Figure 2.15: Case 2 - Amplitude of the wall-normal v̄0 (left) and spanwise w̄0

(right) velocity profiles for M = 3 and κz = κy = 0.027 at the indicated values
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Figure 2.16: Case 2 - Amplitude of the temperature τ̄0 (left) and pressure p̄0

(right) profiles for M = 3 and κz = κy = 0.027 at the indicated values of x̄ in

figure 2.14.
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Figure 2.17: Asymptotic scaling for κz ≫ 1 and Mach 3 with κz/κy = 1 at

κ2zx̄ = 1. The legend indicates the values of κz.
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Figure 2.18: Amplitude of the streamwise velocity profiles |ū|max across x̄ (left)

and the streamwise velocity profiles |ū| at x̄ = 0.5 (right) for M = 0 and κz =

−κy = 1. The evolution of the exponent e−aex̄ is shown in the smaller plot (left).

The legend indicates different values of ae for all three plots.
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Figure 2.19: Amplitude of the streamwise velocity profiles |ū|max across x̄ (left)

and the streamwise velocity profiles |ū| at x̄ = 0.5 (right) for M = 0 and κz =

−κy = 0.01. The values of ae for both plots are indicated in the legend in figure

2.18.
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Figure 2.20: Amplitude of the streamwise velocity profiles |ū|max across x̄ (left)

and the streamwise velocity profiles |ū| at x̄ = 0.5 (right) for M = 0 and κz =

−κy = 1. The evolution of the function ftop is shown in the smaller plot (left).

The legend indicates different values of x̄2 for all three plots.
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Figure 2.21: Amplitude of the streamwise velocity profiles |ū|max across x̄ (left)

and the streamwise velocity profiles |ū| at x̄ = 0.5 (right) for M = 0 and κz =

−κy = 0.01. The values of x̄2 for both plots are indicated in the legend in figure

2.20.
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2.6.4 Free-stream turbulence effect

With the intention of demonstrating the importance of the free-stream turbulence

in the core of the boundary layer, the components {ū, v̄, w̄, τ̄ , p̄} are solved with

modified outer boundary conditions. The former boundary conditions (2.101)-

(2.105) were modified by multiplying the right-hand-side terms with an exponent

defined as e−aex̄. The exponent decays with x̄, and as ae increases, the decay

occurs faster. For a large value of ae, the outer boundary conditions forcing can

be neglected and the flow is solely driven by the initial conditions. The influence

of the velocity fluctuations v̄ and w̄ as η → ∞ onto the streamwise velocity

fluctuation ū within the boundary layer is shown in figures 2.18 and 2.19 for

κz = 1 and κz = 0.01, respectively.

As ae increases, the inertia from the initial conditions becomes the main

factor in generating the fluctuations, which results in much smaller magnitude of

ū for both cases. The top boundary conditions at small x̄ are more important

for κz = 1 than for κz ≪ 1; the growth of ū for κz = 0.01 does not change

significantly when ae increases. This is because the growth of ū occurs faster for

κz = O(1), and then it decays. However, for κz ≪ 1, the flow takes longer to

develop.

To investigate the effect of the initial conditions, the initial conditions (2.113)-

(2.117) are set to zero, and the right-hand-side of the boundary conditions (2.101)-

(2.105) were multiplied by a function ftop defined as

ftop =















e

e+e
x̄

x̄−x̄2
+

x̄2
x̄

if x̄ < x̄2

1 if x̄ ≥ x̄2

where x̄2 is the x̄ location where the modified outer boundary conditions match

the original ones. The maximum streamwise velocity ū magnitude and the

streamwise velocity |ū| at x̄ = 0.5 are plotted for κz = −κy = 1 and κz =

−κy = 0.01 in figures 2.20 and 2.21, respectively. The shape of the streamwise

velocity |ū| fluctuations remains similar to the different values of x̄2 considered

for both cases κz = 1 and κz = 0.01. The nullified initial conditions with x̄2 = 0
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leads to a slightly decreased magnitude peak for κz = 1 and a slightly larger

magnitude for κz = 0.01 than the original cases. The peak of |ūmax| along x̄

decreases with the increase of x̄2 for κz = 1 and increases slightly for κz = 0.01.

Therefore, both the initial conditions and outer boundary conditions are very

important to the magnitude of |ū| for κz = O(1). For κz ≪ 1, the outer bound-

ary conditions are still important, while the initial conditions do not change the

results significantly.
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Chapter 3

Wall-based feedback control

using the adjoint method

The theoretical formulation of the Klebanoff modes was derived in the previous

chapter, and thus, a control method can be selected to attenuate the Klebanoff

modes.

The control of partial differential equation systems can be complex and diffi-

cult to achieve. The two common approaches to these problems are adjoint-based

(iterative) and Riccati-based (direct) methods. A major difference between these

methods is that the Riccati approach allows for faster results, given that there is

sufficient computational power to solve the problem, while the adjoint approach

permits the solution of larger systems and is not restricted to linear problems.

In this thesis, an iterative adjoint method is used to achieve attenuation of the

Klebanoff modes.

The general adjoint theory is derived in §3.1 and is applied to the CLUBR

equations for the first time in §3.2. The numerical procedures employed to resolve

the optimisation problem is described in §3.3, and the numerical solutions in §3.4.

This develops the research on spatial control by Cathalifaud & Luchini [13] for

the incompressible steady linear boundary region equations.
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3.1 The adjoint method

The adjoint or Lagrangian multipliers method is a mathematical approach used

to determine the extrema of a function subject to constraints. The optimisation

is performed on a function that represents physical quantities or other parameters

to be controlled; in the particular case of minimisation. It is often called “cost

functional” or “objective functional”.

Consider the adjoint method for a general minimisation problem (cf. Gun-

zburger [27]; Bewley, Moin & Temam [7] and Abergel & Temam [1] for the math-

ematical proof). Let q = q(c) represent the state variables and c the control

variables, where q ∈ Cn and c ∈ Cm, and a cost functional J = J (q, c) defined

as J : Cn × Cm → J, subject to constraints F = F(q, c) as F : Cn × Cm → Cn,

where (m,n) ∈ N3.

The matrix ∂F/∂q must be nonsingular and the constraint equations are

expressed as equal to zero, i.e.:

F(q, c) = 0, (3.1)

where:

F =





Q(q)

C(c)



 .

The vectors Q and C represent the constraints related to the state and control

variables, q and c respectively (i.e. the constraint equations Q(q) = 0 and

C(c) = 0).

The optimisation problem is formally defined as the minimisation of the cost

functional J through the control variables c, while taking into account the con-

straint equations (3.1). The solution to the minimisation problem is to find the

controls c that nullify the dJ /dc, i.e.:

dJ
dc

= 0,

where

dJ
dc

=
∂J
∂q

dq

dc
+

∂J
∂c

. (3.2)
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For complex problems as the ones typically found in flow control, the term dq/dc

is difficult to compute and therefore, it becomes convenient to derive another set

of equations that avoid the computation of dq/dc instead. The derivation is

shown below in §3.1.1.

3.1.1 Derivation

The set of equations are found by rearranging equation (3.2) to write the differ-

ential of J as

dJ =
∂J
∂q

dq+
∂J
∂c

dc (3.3)

and similarly, by taking the differential of the constraint equations (3.1) as

dF =
∂F

∂q
dq+

∂F

∂c
dc.

The differential of F is dF = 0 because of the equation F = 0, which can be

expanded as

∂F

∂q
dq+

∂F

∂c
dc = 0.

Solving the differential dF for dq to get

dq = −
(

∂F

∂q

)−1 ∂F

∂c
dc. (3.4)

The term dq in equation (3.4) can then be substituted in equation (3.3) yielding

dJ = −∂J
∂q

(

∂F

∂q

)−1 ∂F

∂c
dc+

∂J
∂c

dc. (3.5)

Let r be a vector defined as

r =
∂J
∂q

(

∂F

∂q

)−1

(3.6)

and substituting equation (3.6) in equation (3.5), one finds

dJ =

(

∂J
∂c

− r
∂F

∂c

)

dc. (3.7)

The extrema of the cost functional J is found by searching dJ = 0, and thus

from equation (3.7), the optimality conditions can be written as

∂J
∂c

− r
∂F

∂c
= 0, (3.8)
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and also, the adjoint equations are obtained by rearranging equation (3.6), yield-

ing

∂J
∂q

− r
∂F

∂q
= 0, (3.9)

where r is the adjoint vector.

The similarity of the optimality conditions and the adjoint equations suggest

that the optimisation problem can be written in terms of a Lagrangian functional,

and thus the adjoint framework or Lagrangian multipliers method is derived below

for a Lagrangian functional.

Let a Lagrangian functional be defined as:

L(q, c, r) = J (q, c) − 〈r,F(q, c)〉, (3.10)

where r is a vector of adjoint variables or Lagrange multipliers (in optimal control

theory, it is called costate vector) defined as:

r =





rq

rc



 ,

and 〈·, ·〉 denotes an inner product between the space of the adjoint variables

{rq, rc} and the constraints {Q,C}. The adjoint vectors rq and rc have the same

dimensions as Q and C respectively (i.e. there are as many adjoint variables as

there are constraints). There is freedom to define the inner product because of

equation (3.1). See equations (3.60) for the inner product definition used in the

CLUBR system optimisation problem.

Equation (3.1) implies that the Lagrangian functional (3.10) can be written

as:

L(q, c, r) = J (q, c),

and its gradient can be expressed as:

dJ
dc

=
dL
dc

.

The optimisation problem then, can be seen as finding the minima of the Lag-

rangian functional with respect to the control variables, i.e.:

dL
dc

= 0, (3.11)
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where

dL
dc

=
∂L
∂c

+
∂L
∂q

dq

dc
+

∂L
∂r

dr

dc
. (3.12)

The equation (3.12) can then be rearranged to give the differential of the Lag-

rangian functional L as

dL =
∂L
∂c

dc+
∂L
∂q

dq+
∂L
∂r

dr, (3.13)

where equation (3.11) implies

dL = 0. (3.14)

Using the procedure to find (3.8) (3.9) and from equations (3.13) and (3.14), it

is clear that the solution for the optimisation problem is found by seeking c, q

and r, such that the Lagrangian functional L(c,q, r) is stationary, i.e.:

∂L
∂c

= 0 ⇒ optimality conditions ⇒ ∂J
∂c

−
〈

r,
∂F

∂c

〉

= 0, (3.15a)

∂L
∂q

= 0 ⇒ adjoint equations ⇒ ∂J
∂q

−
〈

r,
∂F

∂q

〉

= 0, (3.15b)

∂L
∂r

= 0 ⇒ constraint equations ⇒ F = 0. (3.15c)

These equations constitute an optimality system which can be used to determine

the optimal controls and states to the optimisation problem. From equations (3.7)

and (3.8) it was also shown that solving the optimality conditions is equivalent to

solving dJ /dc = 0. In the following section, this formulation will be applied to

the CLUBR equations with the aim of reducing the magnitude of the Klebanoff

modes. To give some physical insight to the application of this general formulation

to a flow control problem, it is important to understand that taking the Fréchet

differential of the Lagrangian (3.10) to obtain (3.1.1) can be physically interpreted

as linearising the Lagrangian in the direction of an arbitrary control perturbation

c′. Thus, substituting c = c + c′ and q + q′ as q = q(c) in the Lagrangian

(3.10) and collecting the terms with respect to c′ and q′ leads to an equivalent

formulation. In the equivalent formulation, q′ denotes the change or perturbation

of the state vector q to an arbitrary change of the controls c in the direction

c′. This alternative formulation will be used throughout the next section to
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make evident the physical meaning of the cost functional and CLUBR system

differentials.

3.2 Compressible linear unsteady boundary region ad-

joint

The CLUBR equations (2.64)-(2.68) that describe the pressure, velocities and

temperature fluctuations within the Blasius boundary layer are expressed in the

form of an operator for the components {p̄, ū, v̄, w̄, τ̄} and for the components
{

p̄(0), ū(0), v̄(0), w̄(0), τ̄ (0)
}

as

Q̄ (q̄) = 0 (3.16)

and

Q̄
(

q̄(0)
)

= 0 (3.17)

respectively. The vectors q̄ and q̄(0) are the state vectors expressed as

q̄ =

























p̄

ū

v̄

w̄

τ̄

























and

q̄(0) =

























p̄(0)

ū(0)

v̄(0)

w̄(0)

τ̄ (0)

























respectively.

For the present problem, wall-normal blowing and suction, also known as

wall-normal transpiration, is chosen as the actuation method and thus, it needs

to be included in the formulation. The former boundary conditions (2.69) are
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modified to

v̄ = v̄w at η = 0, (3.18)

v̄(0) = v̄(0)w at η = 0, (3.19)

and

ū = w̄ = ū(0) = w̄(0) = 0 η = 0, (3.20)

to include the actuation. The remaining boundary conditions (2.70), (2.101)-

(2.110) and initial conditions (2.113)-(2.122) for both systems remain unchanged.

The actuation optimisation problem is therefore defined as the minimisation

of the cost functional J through the control variables v̄w(x) or v̄
(0)
w (x), while

taking into account the CLUBR equations as constraints. The solution to this

problem is obtained by finding the controls v̄w(x) and v̄
(0)
w (x) that nullify dJ /dv̄w

and dJ (0)/dv̄
(0)
w respectively.

Due to the linearity of the components {ū, v̄, w̄, τ̄ , p̄} and the components
{

ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)
}

, both control problems are solved independently and

their solutions summed as a linear solution in the end. This may not be accept-

able in terms of measuring the kinetic energy in the system, but it is accepted

in terms of the minimisation problem at hand because attenuating both systems

independently and then summing their solution leads to the same result as at-

tenuating both systems simultaneously.

With the objective of measuring the Klebanoff modes, the kinetic energy of

the streamwise velocity fluctuations is chosen as the parameter to be measured in

the cost functionals. In addition, the temperature fluctuations can be measured

to attenuate the thermal modes for M > 0. The cost functionals are defined as:

J = α1J1 + α2J2 + α3J3 + α4J4 +
θ2v
2

∫ x̄f

x̄i

(

v̄Hw Qvv̄w
)

dx̄ (3.21)

and

J (0) = α
(0)
2 J (0)

2 + α
(0)
4 J (0)

4 +
θ
(0)2
v

2

∫ x̄f

x̄i

(

v̄(0)Hw Q
(0)
v v̄(0)w

)

dx̄, (3.22)

where

J1 =
1

2

∫ ∞

0

(

ūHQ1ū
)

x̄=x̄f
dη, (3.23)
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J2 =
1

2

∫ x̄f

x̄i

∫ ∞

0

(

ūHQ2ū
)

dηdx̄, (3.24)

J3 =
1

2

∫ ∞

0

(

τ̄HQ3τ̄
)

x̄=x̄f
dη, (3.25)

J4 =
1

2

∫ x̄f

x̄i

∫ ∞

0

(

τ̄HQ4τ̄
)

dηdx̄, (3.26)

J (0)
2 =

1

2

∫ x̄f

x̄i

∫ ∞

0

(

ū(0)HQ
(0)
2 ū(0)

)

dηdx̄, (3.27)

J (0)
4 =

1

2

∫ x̄f

x̄i

∫ ∞

0

(

τ̄ (0)HQ
(0)
4 τ̄ (0)

)

dηdx̄, (3.28)

and the terms Q1, Q2, Q3, Q4, Qv, Q
(0)
2 , Q

(0)
4 , Q

(0)
v are weighing Hermitian

matrices that satisfy Q1 ≥ 0, Q2 ≥ 0, Q3 ≥ 0, Q4 ≥ 0, Qv > 0, Q
(0)
2 ≥ 0,

Q
(0)
4 ≥ 0, Q

(0)
v > 0. The coefficients α1, α2, α3, α4 and α

(0)
2 , α

(0)
4 satisfy the

equations

α1 + α2 + α3 + α4 = 1, α1, α2, α3, α4 ∈ R
+
0

and

α
(0)
2 + α

(0)
4 = 1, α

(0)
2 , α

(0)
4 ∈ R

+
0

respectively, and are used to select which cost functionals are used. The coeffi-

cients θv and θ
(0)
v define the weight of the cost of actuation. The cost of actuation

is measured by the kinetic energy of the input variables v̄w and v̄w(0). The su-

perscript (·)H denotes the conjugate transpose.

The cost functional J1 measures the terminal kinetic energy of the streamwise

velocity ū, while J2 and J (0)
2 measure the kinetic energy along the interval [x̄i, x̄f ]

of the streamwise velocities ū and ū(0) respectively. The temperature fluctuations

τ̄ are measured by the cost functional J3 at the terminal distance x̄f , and cost

functionals J4 and J (0)
4 measure the temperature fluctuations τ̄ and τ̄ (0) along

the interval [x̄i, x̄f ]. The terminal kinetic energies of the components ū(0) and τ̄ (0)

are not considered within the cost functional as these terms are not of leading

order close the wall, where the actuators are implemented.

The cost functionals (3.21) and (3.22) may be rewritten as a sum of inner

products as follows

J =
α1

2
〈ū, ū〉Q1

+
α2

2
〈ū, ū〉Q2

+
α3

2
〈τ̄ , τ̄〉Q3

+
α4

2
〈τ̄ , τ̄ 〉Q4

+
θ2v
2
〈v̄w, v̄w〉Qv

(3.29)
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and

J (0) =
α
(0)
2

2

〈

ū(0), ū(0)
〉

Q
(0)
2

+
α
(0)
4

2

〈

τ̄ (0), τ̄ (0)
〉

Q
(0)
4

+
θ
(0)
v 2

2

〈

v̄(0)w , v̄(0)w

〉

Q
(0)
v

(3.30)

where 〈·, ·〉M denotes an inner product with a generic Hermitian weighting matrix

M, defined as

〈q̄, q̄〉M =

∫ x̄f

x̄i

∫ ∞

0
q̄HMq̄dηdx̄, (3.31)

when the weighting matrices Q2, Q4, Q
(0)
2 and Q

(0)
4 are present. The inner

product for the weighting matrices Q1 and Q3 is defined as

〈q̄, q̄〉M =

∫ ∞

0

[

q̄HMq̄
]

x̄=x̄f
dη, (3.32)

and for the control weighting matrices Qv and Q
(0)
v as

〈v̄w, v̄w〉M =

∫ x̄f

x̄i

v̄H
wMv̄wdx̄. (3.33)

The cost functionals expressed as the sum of the inner products makes them

easier to be differentiated as the inner product properties can be used.

With the actuator and the cost functionals defined, the next step towards the

solution of the minimisation problem is to find the gradients of the cost functionals

J and J (0) with respect to the control variables v̄w and v̄
(0)
w respectively, that

are equal to zero, i.e:

dJ
dv̄w

= 0 (3.34)

and

dJ (0)

dv̄
(0)
w

= 0. (3.35)

These equations were described in the previous section as the optimality con-

ditions. The solution of these gradients leads to minima or maximum points,

depending on the problem. In this thesis, the focus is on attenuating the Kle-

banoff modes and finding the minima points of the cost functionals.

The problem can also be posed as Lagragian functionals defined as

L(q̄, v̄w, r̄) = J (q̄, v̄w)− 〈r̄, Q̄ (q̄)〉M

71



and

L(0)(q̄(0), v̄(0)w , r̄) = J (0)(q̄(0), v̄(0)w )− 〈r̄, Q̄
(

q̄(0)
)

〉M,

where r̄ is an adjoint vector defined further on in the formulation, along with th

inner products.

In order to determine the sensitivity of the cost functionals J and J (0)

to small modifications of the control v̄w and v̄
(0)
w respectively, the approach of

Abergel & Temam [1] and Bewley, Moin & Temam [7] which is valid for nonlin-

ear and linear systems is closely followed.

Let J ′ be the perturbation to the cost functional J that results from the

perturbation v̄w in an arbitrary direction v̄′w, where J ′ is the Fréchet differential

[66] of the cost functional J , defined as

J ′ ≡ lim
h→0

J (v̄w + hv̄′w)− J (v̄w)

h
. (3.36)

The definition of the functional differential, called Fréchet differential because the

space of the functions is a Banach space, can also be written using the gradient

dJ /dv̄w as

J ′ ≡
〈

dJ (v̄w)

dv̄w
, v̄′w

〉

I

≡
∫ x̄f

x̄i

(

dJ (v̄w)

dv̄w

)H

Iv̄′wdx̄,

(3.37)

where I represents the identity matrix. It is important to mention that the gradi-

ents could be preconditioned using a weighting matrix other than the identity

matrix I (e.g. [40]).

The formulation can be used in an analogous way to define the perturbation

of the cost functional J (0) to the perturbation v̄
(0)
w in the arbitrary direction v̄

(0)
w

′

and its gradient dJ (0)/dv̄
(0)
w as

J (0)′ ≡ lim
h→0

J (0)
(

v̄
(0)
w + hv̄

(0)
w

′
)

−J (0)
(

v̄
(0)
w

)

h
(3.38)

72



and

J (0)′ ≡
〈

dJ (0)
(

v̄
(0)
w

)

dv̄
(0)
w

, v̄(0)w
′
〉

I

≡
∫ x̄f

x̄i





dJ (0)
(

v̄
(0)
w

)

dv̄
(0)
w





H

Iv̄(0)w
′dx̄

(3.39)

respectively. The cost functionals perturbations J ′ and J (0)′ can be expressed

from (3.29) and (3.30) using the definitions (3.36)-(3.37) and (3.38)-(3.39) re-

spectively, and applying the chain rule (3.2). For instance, the inner product

〈v̄w, v̄w〉Qv
can be differentiated as 〈v̄w, v̄w〉Qv

= 〈v̄w, v̄′w〉Qv
+ 〈v̄′w, v̄w〉Qv

=

2 〈v̄w, v̄′w〉Qv
, and thus the cost functionals perturbations J ′ and J (0)′ are written

as

J ′ = α1

〈

ū, ū′
〉

Q1

+ α2

〈

ū, ū′
〉

Q2

+ α3

〈

τ̄ , τ̄ ′
〉

Q3

+ α4

〈

τ̄ , τ̄ ′
〉

Q4

+ θ2v
〈

v̄w, v̄
′
w

〉

Qv

and

J (0)′ = α
(0)
2

〈

ū(0), ū(0)′
〉

Q
(0)
2

+ α
(0)
4

〈

τ̄ (0), τ̄ (0)′
〉

Q
(0)
4

+ θ(0)v 2
〈

v̄(0)w , v̄(0)w
′
〉

Q
(0)
v

,

or in the expanded form as

J ′ = α1J ′
1 + α2J ′

2 + α3J ′
3 + α4J ′

4 + θ2v

∫ x̄f

x̄i

(

v̄Hw Qvv̄
′
w

)

dx̄ (3.40)

and

J (0)′ = α
(0)
2 J (0)

2
′ + α

(0)
4 J (0)

4
′ + θ(0)2v

∫ x̄f

x̄i

(

v̄(0)Hw Q
(0)
v v̄(0)w

′
)

dx̄, (3.41)

where

J ′
1 =

∫ ∞

0

(

ūHQ1ū
′)

x̄=x̄f
dη, (3.42)

J ′
2 =

∫ x̄f

x̄i

∫ ∞

0

(

ūHQ2ū
′) dηdx̄, (3.43)

J ′
3 =

∫ ∞

0

(

τ̄HQ3τ̄
′)

x̄=x̄f
dη, (3.44)

J ′
4 =

∫ x̄f

x̄i

∫ ∞

0

(

τ̄HQ4τ̄
′) dηdx̄, (3.45)
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J (0)
2

′ =
∫ x̄f

x̄i

∫ ∞

0

(

ū(0)HQ
(0)
2 ū(0)′

)

dηdx̄, (3.46)

J (0)
4

′ =
∫ x̄f

x̄i

∫ ∞

0

(

τ̄ (0)HQ
(0)
4 τ̄ (0)′

)

dηdx̄, (3.47)

where the linear perturbations q̄′ and q̄(0)′ to the solutions q̄ and q̄(0) that arise

from the variations v̄′w and v̄
(0)
w

′ to the controls v̄w and v̄
(0)
w are defined in a similar

way to the perturbations of the cost functional J ′ and J (0)′, and are given by

the definition of the Fréchet differential as

q̄′ ≡ lim
h→0

q̄ (v̄w + hv̄′w)− q̄ (v̄w)

h
(3.48)

and

q̄(0)′ ≡ lim
h→0

q̄(0)
(

v̄
(0)
w + hv̄

(0)
w

′
)

− q̄(0)
(

v̄
(0)
w

)

h
, (3.49)

and expressed as

q̄′ =

























p̄′

ū′

v̄′

w̄′

τ̄ ′

























(3.50)

and

q̄(0)′ =

























p̄(0)′

ū(0)′

v̄(0)′

w̄(0)′

τ̄ (0)′

























, (3.51)

respectively. To obtain the system of equations that describe the vectors q̄′ and

q̄(0)′ to the control variations v̄′w and v̄
(0)
w

′ respectively, the Fréchet differential

of the CLUBR equations (3.16) and (3.17) and its respective boundary condi-

tions (2.70), (3.18)-(3.20), (2.91)-(2.100) and initial conditions (2.113)-(2.122)

are taken. This leads to

Q̄
(

q̄′) = 0 (3.52)
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and

Q̄
(

q̄(0)′
)

= 0. (3.53)

This means that the CLUBR equations (2.64)-(2.68) because of linearity are

equally valid for the state vectors q̄ and q̄(0) as well as their linear perturbations

q̄′ and q̄(0)′. The boundary conditions for the latter are expressed as

v̄′ = v̄′w at η = 0, (3.54)

v̄(0)′ = v̄(0)w
′ at η = 0, (3.55)

ū′ = w̄′ =
∂τ̄ ′

∂η
= ū(0)′ = w̄(0)′ =

∂τ̄ (0)′

∂η
= 0 at η = 0, (3.56)

p̄′ = ū′ = v̄′ = w̄′ = τ̄ ′ = p̄(0)′ = ū(0)′

= v̄(0)′ = w̄(0)′ = τ̄ (0)′ = 0 at η → ∞,

(3.57)

and initial conditions

p̄′ = ū′ = v̄′ = w̄′ = τ̄ ′ = p̄(0)′ = ū(0)′ = v̄(0)′ = w̄(0)′ = τ̄ (0)′ = 0 as x̄ → 0.

(3.58)

The solutions of the perturbations q̄′ and q̄(0)′ represent the effects of the control

perturbations v̄′w and v̄
(0)
w

′ respectively, within the boundary layer. However, it

is difficult to directly derive the gradients dJ /dv̄w and dJ (0)/dv̄
(0)
w from these

perturbations, defined implicitly in (3.37) and (3.39) respectively, as the linear

relationships q̄′ = q̄′ (v̄′w) and q̄(0)′ = q̄(0)′
(

v̄
(0)
w

′
)

are implicit. Therefore, the

adjoint identity is introduced and defined as

〈

r̄, Q̄
(

q̄′)〉
M

=
〈

R̄ (r̄) , q̄′〉
M

+ b, (3.59)

where 〈·, ·〉 denotes an inner product between the perturbed state vector q̄′ and

the adjoint vector r̄ or Lagrange multipliers (in optimal control theory, it is also

called costate vector), defined as:

〈

r̄, Q̄
(

q̄′)〉
M

=

∫ x̄f

x̄i

∫ ∞

0
r̄HMQ̄

(

q̄′) dηdx̄, (3.60)
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where

r̄ =

























r̄c

r̄x

r̄y

r̄z

r̄e

























and R̄ (·) represents the adjoint operator that can be used to nullify the gradients

of the cost functionals with respect to the control variables. The boundary terms

b are used to obtain the boundary conditions and initial conditions of the adjoint

equations. Due to the nature of the adjoint system, the initial conditions are in

fact terminal conditions since the system is marched backwards from x̄f to x̄i.

The expansion adjoint identity (3.59) and the method to obtain the adjoint

equation systems is shown in Appendix B with a Hermitian weight matrix M

defined as the identity matrix. The equations (B.13) and (B.20) are used to

rewrite the gradients (3.34) and (3.35) using the definitions (3.37) and (3.39) to

yield

dJ
dv̄w

=

[

1

T
r̄c + θ2vQvv̄w

]

η=0

(3.61)

and

dJ (0)

dv̄
(0)
w

=

[

1

T
r̄c + θ(0)2v Q

(0)
v v̄(0)w

]

η=0

(3.62)

respectively. For the gradient (3.61), r̄c is obtained from solving the adjoint

equations (B.5), expanded as

− 1

2x̄

∂r̄y
∂η

− κ2zT r̄z = 0; (3.63)
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1

2x̄
r̄c −

∂r̄c
∂x̄

+
ηc
2x̄

∂r̄c
∂η

+

(

i+ κ2zµT +
F ′

2x̄
− ηcF

′′

2x̄

)

r̄x − F ′∂r̄x
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄x
∂η

− 1

2x̄

µ

T

∂2r̄x
∂η2

+
1

(2x̄)2
(

TF + 2µ′T ′ − ηcTF
′ + ηcT

′F − η2cTF
′′) r̄y −

µ′T ′

2x̄

∂r̄y
∂x̄

− µ

6x̄

∂

∂x̄

(

∂r̄y
∂η

)

+
1

(2x̄)2

(

µ− ηcµT
′

3T
+

ηcµ
′T ′

3

)

∂r̄y
∂η

+
ηcµ

12x̄2
∂2r̄y
∂η2

+
1

6x̄

(

κ2zµT − 3ηcκ
2
zµ

′TT ′) r̄z −
1

3
κ2zµT

∂r̄z
∂x̄

+
ηcκ

2
zµT

6x̄

∂r̄z
∂η

+

(

−ηcT
′

2x̄
+

1

x̄
(γ − 1)M2

[

µF ′′′

T
− µT ′F ′′

T 2
+

µ′T ′F ′′

T

])

r̄e

+
1

x̄
(γ − 1)M2µF

′′

T

∂r̄e
∂η

= α2Q2ū;

(3.64)

− 1

T

∂r̄c
∂η

+
F ′′

T
r̄x +

(

i+ κ2zµT +
1

2x̄

[

2F ′ − T ′F
T

+ ηcF
′′
])

r̄y

−F ′∂r̄y
∂x̄

+

(

F

2x̄
+

2

3x̄

[

µT ′

T 2
− µ′T ′

T

])

∂r̄y
∂η

− 2

3x̄

µ

T

∂2r̄y
∂η2

+
2

3
κ2zµ

′T ′r̄z −
1

3
κ2zµ

∂r̄z
∂η

+
T ′

T
r̄e = 0;

(3.65)

r̄c +
µ′T ′

2x̄
r̄y +

µ

6x̄

∂r̄y
∂η

+

(

i+
4

3
κ2zµT +

F ′

2x̄

)

r̄z − F ′∂r̄z
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄z
∂η

− 1

2x̄

µ

T

∂2r̄z
∂η2

= 0;

(3.66)

(

− i

T 2
− 1

2x̄

F ′

T

)

r̄c +
F ′

T

∂r̄c
∂x̄

− 1

2x̄

F

T

∂r̄c
∂η

+
1

2x̄

FF ′′

T
r̄x

+
1

2x̄

µ′F ′′

T

∂r̄x
∂η

+

(

−FF ′ + ηc(F
′)2 − T ′F 2

T
+ ηcFF ′′ − µ′F ′′

2x̄2

)

r̄y

+
µ′F ′′

2x̄

∂r̄y
∂x̄

+

(

− 1

3x̄2
µ′T ′F
T

+
ηcµ

′F ′′

4x̄2

)

∂r̄y
∂η

+
κ2zµ

′T ′F
3x̄

r̄z

+

(

i+
κ2zµT

Pr
+

1

2x̄

[

F ′ +
T ′F
T

− (γ − 1)M2µ
′(F ′′)2

T

])

r̄e

−F ′∂r̄e
∂x̄

+
1

2x̄

(

F +
µT ′

PrT 2

)

∂r̄e
∂η

− 1

2x̄

µ

PrT

∂2r̄e
∂η2

= α4Q4τ̄ ,

(3.67)

with boundary conditions (B.7) and (B.8), and terminal conditions (B.9)-(B.11).

Likewise, for the gradient (3.62), r̄c is obtained from solving the adjoint equa-

tions (B.14), expanded as follows

− 1

2x̄

∂r̄y
∂η

− κ2zT r̄z = 0; (3.68)
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1

2x̄
r̄c −

∂r̄c
∂x̄

+
ηc
2x̄

∂r̄c
∂η

+

(

i+ κ2zµT +
F ′

2x̄
− ηcF

′′

2x̄

)

r̄x − F ′∂r̄x
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄x
∂η

− 1

2x̄

µ

T

∂2r̄x
∂η2

+
1

(2x̄)2
(

TF + 2µ′T ′ − ηcTF
′ + ηcT

′F − η2cTF
′′) r̄y −

µ′T ′

2x̄

∂r̄y
∂x̄

− µ

6x̄

∂

∂x̄

(

∂r̄y
∂η

)

+
1

(2x̄)2

(

µ− ηcµT
′

3T
+

ηcµ
′T ′

3

)

∂r̄y
∂η

+
ηcµ

12x̄2
∂2r̄y
∂η2

+
1

6x̄

(

κ2zµT − 3ηcκ
2
zµ

′TT ′) r̄z −
1

3
κ2zµT

∂r̄z
∂x̄

+
ηcκ

2
zµT

6x̄

∂r̄z
∂η

+

(

−ηcT
′

2x̄
+

1

x̄
(γ − 1)M2

[

µF ′′′

T
− µT ′F ′′

T 2
+

µ′T ′F ′′

T

])

r̄e

+
1

x̄
(γ − 1)M2µF

′′

T

∂r̄e
∂η

= α
(0)
2 Q

(0)
2 ū(0);

(3.69)

− 1

T

∂r̄c
∂η

+
F ′′

T
r̄x +

(

i+ κ2zµT +
1

2x̄

[

2F ′ − T ′F
T

+ ηcF
′′
])

r̄y

−F ′∂r̄y
∂x̄

+

(

F

2x̄
+

2

3x̄

[

µT ′

T 2
− µ′T ′

T

])

∂r̄y
∂η

− 2

3x̄

µ

T

∂2r̄y
∂η2

+
2

3
κ2zµ

′T ′r̄z −
1

3
κ2zµ

∂r̄z
∂η

+
T ′

T
r̄e = 0;

(3.70)

r̄c +
µ′T ′

2x̄
r̄y +

µ

6x̄

∂r̄y
∂η

+

(

i+
4

3
κ2zµT +

F ′

2x̄

)

r̄z − F ′∂r̄z
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄z
∂η

− 1

2x̄

µ

T

∂2r̄z
∂η2

= 0;

(3.71)

(

− i

T 2
− 1

2x̄

F ′

T

)

r̄c +
F ′

T

∂r̄c
∂x̄

− 1

2x̄

F

T

∂r̄c
∂η

+
1

2x̄

FF ′′

T
r̄x

+
1

2x̄

µ′F ′′

T

∂r̄x
∂η

+

(

−FF ′ + ηc(F
′)2 − T ′F 2

T
+ ηcFF ′′ − µ′F ′′

2x̄2

)

r̄y

+
µ′F ′′

2x̄

∂r̄y
∂x̄

+

(

− 1

3x̄2
µ′T ′F
T

+
ηcµ

′F ′′

4x̄2

)

∂r̄y
∂η

+
κ2zµ

′T ′F
3x̄

r̄z

+

(

i+
κ2zµT

Pr
+

1

2x̄

[

F ′ +
T ′F
T

− (γ − 1)M2µ
′(F ′′)2

T

])

r̄e

−F ′∂r̄e
∂x̄

+
1

2x̄

(

F +
µT ′

PrT 2

)

∂r̄e
∂η

− 1

2x̄

µ

PrT

∂2r̄e
∂η2

= α
(0)
4 Q

(0)
4 τ̄ .

(3.72)

with boundary conditions (B.15) and (B.16), and terminal conditions (B.17)-

(B.19).

The controls v̄w and v̄
(0)
w are obtained independently as shown, and then

summed using the decomposition (2.55) as

v̄0 = C(0)v̄(0)w + C
ikz
kx

v̄w at η = 0.
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The formulation of this optimisation problem for the particular case of the

incompressible LUBR equations is provided in Appendix C.

3.3 Numerical procedures for the control theory

The strategy to numerically implement the control theory for the minimisation of

the cost functionals J defined in (3.21) and J (0) defined in (3.22) is identical in

both cases. The adjoint components r̄x, r̄y, r̄z, r̄e and r̄c are obtained by solving

the systems of adjoint equations described in the previous section. The adjoint

equations (3.63)-(3.67) and (3.68)-(3.72) are solved using a backwards march, i.e.

from x̄f to x̄i, as opposed to the forward march for the solution of the numerical

boundary region equations. This is the natural direction for the solution of the

adjoint equations (e.g. Bewley [8]). Both adjoint equation systems are solved

using a second-order finite difference scheme which is central in η and backward

in x̄. The stencil is shown in figure 3.1. The derivatives of the adjoint components

r̄x, r̄z and r̄e are approximated as:

∂rx
∂η

≈ (rx)i,j+1 − (rx)i,j−1

2∆η
, (3.73)

∂2rx
∂η2

≈ (rx)i,j+1 − 2(rx)i,j + (rx)i,j−1

(∆η)2
, (3.74)

∂rx
∂x̄

≈ a(rx)i,j + b(rx)i+1,j + c(rx)i+2,j

∆x̄
, (3.75)

where a = 3/2, b = −2 and c = 1/2. In order to avoid the equivalent of the

pressure decoupling phenomenon, the components r̄y and r̄c are computed using

a staggered grid in the η direction with respect to the grid of the remaining

components r̄x, r̄z and r̄e. The components r̄y and r̄c and their derivatives are

approximated as:

rc ≈
(rc)i,j+1/2 + (rc)i,j−1/2

2
, (3.76)

∂rc
∂η

≈
(rc)i,j+1/2 − (rc)i,j−1/2

∆η
, (3.77)

∂2rc
∂η2

≈
(rc)i,j+3/2 − 2(rc)i,j+1/2 + (rc)i,j−1/2

(∆η)2
, (3.78)
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∂rc
∂x

≈
a
(

(rc)i,j+1/2 + (rc)i,j−1/2

)

+ b
(

(rc)i+1,j+1/2 + (rc)i+1,j−1/2

)

2∆x̄

+
c
(

(rc)i+2,j+1/2 + (rc)i+2,j−1/2

)

2∆x̄
,

(3.79)

∂2rc
∂x̄∂η

≈
a
(

(rc)i,j+1/2 − (rc)i,j−1/2

)

+ b
(

(rc)i+1,j+1/2 − (rc)i+1,j−1/2

)

∆x̄∆η

+
c
(

(rc)i+2,j+1/2 − (rc)i+2,j−1/2

)

∆x̄∆η
.

(3.80)

With regard to the implementation of the terminal conditions (B.9)-(B.11),

∆η

∆x̄

(rc)i,j+3/2

(rc)i,j+1/2

(rc)i,j−1/2

(rx)i,j+2

(rx)i,j+1

(rx)i,j−1

(rx)i,j
(rx)i+1,j (rx)i+2,j

Figure 3.1: The second-order stencil in x̄ and η used to compute the adjoint

equations.

(B.17)-(B.19), a second-order method in x̄ is replaced by a first-order scheme

for the first backwards iteration, and this is done by setting a = 1, b = −1 and

c = 0.

Due to the boundary condition being different from zero as η → ∞, the matrix

Q
(0)
2 is defined as a diagonal matrix with the function

e−beη

at each entry, and with be = 1. This ensures that the integrals of the cost

functional (3.22) converge independently of the simulation size. In addition,

the right-hand-side forcing of the adjoint equation (3.69) can be expressed as
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α
(0)
2 e−beηū(0). The remaining Hermitian matrices Q1, Q2, Q4, Qv, Q

(0)
3 , Q

(0)
4

and Q
(0)
v were defined as identity matrices for all simulations in this thesis.

The [x̄i, x̄f ] domain for the actuation varied with the simulation. The initial

x̄ location was set to x̄i = 10−9 and x̄i = 0.0009 for the solution of the cost func-

tionals J (3.21) and J (0) (3.22) respectively. The final location of x̄ was defined

according to the value of κz as shown in table 3.1, unless otherwise specified.

κz x̄f

0 50

0.027 50

0.5 20

1 5

1.5 5

2 5

Table 3.1: The list of streamwise final locations of the actuation x̄f according to

the value of κz used in the simulation.

Numerical checks were conducted using the right-hand-side forcing described

in the previous section to ensure mesh independence. Further checks were done

using the equation (4.13) in LWG, as the predefined values of ū = 1
2 x̄ηF

′′ in

equation (3.64). This extra check was performed to study the robustness of

the numerical method in solving the adjoint equations, in such a way that the

numerical error is independent of the boundary region numerical solutions.

As in the boundary region numerical procedures, extra information for the

solution of the adjoint equations can be found in Cebeci [14] from pages 260-264.

In the numerical search for the gradients (3.61) and (3.62) that minimise the

optimisation problem, the steepest descent method was implemented to update

the wall-boundary conditions (3.18) and (3.19) in each iteration. The steepest

descent was implemented as

v̄N+1
w = v̄Nw − αN dJN

dv̄w
(3.81)
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Start

κz, κy, M , ∆x, ∆η, x̄i, x̄f , α1, α2, α3, α4, α
(0)
1 , α

(0)
2 , α

(0)
3 , α

(0)
4 , θv, θ

(0)
v , α0

v̄w(x̄), v̄
(0)
w (x̄) = 0 for iteration N = 0

Determine the initial conditions (2.113)-(2.122)

J or

J (0)?

Compute q̄

from x̄i to x̄f

at iteration N

Compute q̄(0)

from x̄i to x̄f

at iteration N

Measure J at

iteration N

Measure J (0)

at iteration N

Calculate v̄w (3.81) and v̄
(0)
w (3.82)

from x̄i to x̄f for iteration N + 1

Compute r̄ from x̄f to x̄i at iteration N

Determine r̄ at x̄f

Converged?

Stop

J J (0)

Yes

no

Figure 3.2: Flowchart of the algorithm employed to minimise the cost functionals.
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and

v̄(0)N+1
w = v̄(0)Nw − αN dJ (0)N

dv̄w
(3.82)

from x̄i to x̄f , where N indicates the number of iterations and αN is a parameter

that controls how large the “step” is given in the gradient direction. A value of

αN = ±2048 was used to start all simulations, and in each iteration the value

is corrected to ensure minimisation of the cost functionals J and J (0). In each

iteration, the steepest descent method updates the actuators in the direction

which maximises the cost functionals J and J (0) with respect to v̄w and v̄
(0)
w

respectively. If a sufficiently large value of iterations is considered, i.e. k → ∞,

the algorithm should find a local minimum of the system. Due to the nature

of the cost functionals J (3.21), J (0) (3.22), and the CLUBR equations, the

solutions should approximate the global minimum.

In addition, the following convergence criteria:

JN − JN−1

J N−1
< ǫc, (3.83)

was put into effect to detect the convergence of the steepest descent method,

where ǫc is a convergence parameter set to 10−7 in all simulations. When the

JN − J N−1/J N−1 becomes smaller than the parameter ǫc, it is assumed that

the method converged, and thus the iterative procedure stops.

The full algorithm for the optimisation strategy is illustrated in figure 3.2 and

is described briefly in the following steps:

1. The unperturbed flow equations (2.29) and (2.30) are solved.

2. The power-series (2.111) and (2.112) are obtained.

3. The control actuators v̄w or v̄
(0)
w , implemented by the boundary conditions

(3.18) and (3.19) respectively, are initiated as zero across x̄ for iteration

N = 0.

4. The initial conditions (2.113)-(2.122) are determined and stored to initiate

every forward march.
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5. The CLUBR equations (2.64)-(2.68) are solved using the modified wall

boundary condition (3.18) or (3.19), in a forward march from x̄i to x̄f .

6. The cost functionals J (3.21) or J (0) (3.22) are computed for iteration N .

7. If N > 0, the convergence criteria (3.83) is checked. If it is satisfied, the

simulation stops, otherwise it continues.

8. The terminal conditions (B.9)-(B.11) or (B.17)-(B.19) are calculated.

9. The adjoint equations (3.63)-(3.67) or (3.68)-(3.72) are computed from x̄f

to x̄i in a backwards march.

10. The control actuators v̄w or v̄
(0)
w are updated for iteration N + 1 using the

steepest descent method (3.81) or (3.82).

11. The process iterates from step 4.

It is important to mention that in our simulations, we have full information

of our system and thus the control is robust. This was further verfied from the

numerous simulations performed, where a smooth convergence was obtained to a

minimum value of the cost functionals.

If the knowledge of the flow had been partial, some noise should be added in

the input loop to ensure the controller is robust and that the optimal wall profiles

resultant from the in-house code would perform well for a disturbed flow model.

The code was verified several times and compared to the independent in-house

code of Dr. Liang and Dr. Papadakis from Imperial College London, which

solves an incompressible Blasius boundary layer using a Riccati framework. The

magnitude of the uncontrolled and controlled velocity and pressure perturbations

can be seen in figures 3.3 and 3.4 for κz = −κy = 1 and M = 0, where the delta

and circle symbols represent the uncontrolled and controlled profiles, respectively,

of the Imperial College London in-house code.
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Figure 3.3: The magnitude of the streamwise velocity |ū| (left) and wall-normal

velocity |v̄| (right) fluctuations along η at x̄ = 0.5 of the uncontrolled profiles

(thinner solid lines and delta symbols) versus the optimal controlled profiles

(thicker solid lines and circle symbols) for M = 0, α1 = α3 = α4 = 0, α2 = 1,

θ2v = 10−3, κz = 1 and κy = −1.
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Figure 3.4: The magnitude of the spanwise velocity |w̄| (left) and pressure |p̄|

(right) fluctuations along η at x̄ = 0.5 of the uncontrolled profiles (thinner solid

lines and delta symbols) versus the optimal controlled profiles (thicker solid lines

and circle symbols) for M = 0, α1 = α3 = α4 = 0, α2 = 1, κz = 1, θ2v = 10−3 and

κy = −1.
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3.4 Controlled numerical results

3.4.1 Attenuation parametric study and cost of actuation

The wall-normal blowing and suction actuators are enabled at this point in an

attempt to attenuate the Klebanoff modes.

In order to investigate which modes κz, κy can be attenuated, a parametric

mapping is carried out for the energy reduction of J , with α1 = α3 = α4 = 0,

α2 = 1 and the cost of actuation neglected as θ2v → 0. The energy reduction is

calculated as

Energy reduction = 1− JN

J 0
,

and the cost functional J (0) is not considered at this stage. This is because

the actuation is implemented at the wall, where the components p̄(0), ū(0), v̄(0),

w̄(0) and τ̄ (0) are typically of second order, as shown in the previous chapter.

These components will be attenuated further into the study, once the possibility

of attenuating the modes κz, κy is confirmed.

The results of the parametric mapping are shown in figure 3.5, where energy

reduction was achieved for all modes in the study. The grey region denominated

as TS waves in the figure also includes a region of large-λz Klebanoff modes from

κz = 0 to κz = 10−3. Further details are found in Ricco & Wu [58]. The grey

zone was avoided in the parametric mapping as the target of the control are the

Klebanoff modes.

In order to investigate the effects of the actuation cost, κz and κy are set

to recreate cases 1, 1-A to 1-D, i.e. with κz = κy = 1. From the parametric

study, it is already known that the actuation is viable, and thus the simulations

are performed with similar conditions to the parametric study but with different

values of θv.

The energy reduction obtained for different values of θv is shown in table 3.2,

and as predicted, there is an insignificant energy reduction for large values of

θ2v > 10−2. Additionally, the theoretical maximum energy reduction is achieved

for values of θ2v < 10−7.
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Figure 3.5: The mapping shows the energy reduction of J achieved for different

values of κz and κy for M = 3, α1 = α3 = α4 = 0, α2 = 1 and θ2v → 0. The

grey area indicates the region where TS-waves develop early along x̄ as shown in

Ricco & Wu [58].
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Figure 3.6: Amplitude of the streamwise velocity |ū|max (left) and temperature

|τ̄ |max (right) fluctuations for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = 1 and

κy = 1. The legend indicates the different weights θ2v used, and θ2v = ∞ designates

the uncontrolled case.

10-3 10-2 10-1 100 10110-5

10-4

10-3

10-2

10-1

100

101

102

|v̄
w
|

x̄
100 101 102 1030

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J
N
/
J

0

N
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cost functional J N/J 0 per iteration N (right) for M = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 1 and κy = 1 with the indicated values of θ2v in figure 3.6.
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κz κy θ2v Energy reduction

1 1 100 0.00

1 1 10−1 0.00

1 1 10−2 0.02

1 1 10−3 0.16

1 1 10−4 0.46

1 1 10−5 0.57

1 1 10−6 0.59

1 1 10−7 0.60

1 1 10−8 0.61

Table 3.2: The list of energy reductions achieved for M = 3, α1 = α3 = α4 = 0

and α2 = 1 according to the value of θ2v used in the simulation.

The analysis shows that the appropriate values of θ2v to be used are between

10−2 and 10−6, and the maximum amplitude of the streamwise velocity ū and

temperature τ̄ along x̄ are plotted in figure 3.6 for such values. The respective

optimal actuation |v̄w| profiles and the normalised cost functionals for each case

are shown in figure 3.7. In cases with θ2v = 10−2 and θ2v = 10−3, the curves of

the streamwise velocity |ū|max and temperature |τ̄ |max have a similar shape to

the uncontrolled case, and showing that the physics remains similar with small

reductions, as is verified in table 3.2. The results of θ2v = 10−4 illustrate a strong

attenuation and a fast convergence of the algorithm. The cases with θ2v = 10−5

and θ2v = 10−6 are nearly identical and reveal the limits of optimal attenuation of

the Klebanoff modes. Due to the faster convergence, the value of θ2v = 10−5 will

be used to further investigate the physics involved in the optimal attenuation of

the Klebanoff modes.

The extreme cases of the parametric study are then examined and the energy

reductions obtained are shown in table 3.3. The cases with κz = 2 have displayed

a higher sensitivity to the actuation cost parameters as the energy reduction was

slightly less than the cases with θ2v → 0. Further investigation is conducted by

studying their velocity and temperature profiles.

89



0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

|ū
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Figure 3.8: The maximum magnitude of the streamwise velocity |ū|max (left) and

temperature |τ̄ |max (right) fluctuations along the streamwise direction x̄ of the

uncontrolled profiles (solid lines) versus the optimal controlled profiles (dashed

lines) for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = 0.5 and κy → 0.
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Figure 3.9: The magnitude of the streamwise velocity |ū| (left) and temperature

|τ̄ | (right) fluctuations along η at x̄ = 1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 0.5 and κy → 0.
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Figure 3.10: The magnitude of the wall-normal |v̄| (left) and spanwise |w̄| (right)

velocity fluctuations along η at x̄ = 1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 0.5 and κy → 0.
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Figure 3.11: The maximum magnitude of the streamwise velocity |ū|max (left) and

temperature |τ̄ |max (right) fluctuations along the streamwise direction x̄ of the

uncontrolled profiles (solid lines) versus the optimal controlled profiles (dashed

lines) for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = 0.5 and κy = 2.

91



0 1 2 3 4 5 6
0

0.01

0.02

0.03

|ū
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Figure 3.12: The magnitude of the streamwise velocity |ū| (left) and temperature

|τ̄ | (right) fluctuations along η at x̄ = 0.5 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 0.5 and κy = 2.
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Figure 3.13: The magnitude of the wall-normal |v̄| (left) and spanwise |w̄| (right)

velocity fluctuations along η at x̄ = 0.5 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 0.5 and κy = 2.
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Figure 3.14: The maximum magnitude of the streamwise velocity |ū|max (left) and

temperature |τ̄ |max (right) fluctuations along the streamwise direction x̄ of the

uncontrolled profiles (solid lines) versus the optimal controlled profiles (dashed

lines) for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = 2 and κy → 0.
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Figure 3.15: The magnitude of the streamwise velocity |ū| (left) and temperature

|τ̄ | (right) fluctuations along η at x̄ = 0.1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 2 and κy → 0.
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Figure 3.16: The magnitude of the wall-normal |v̄| (left) and spanwise |w̄| (right)

velocity fluctuations along η at x̄ = 0.1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1, κz = 2 and κy → 0.
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Figure 3.17: The maximum magnitude of the streamwise velocity |ū|max (left) and

temperature |τ̄ |max (right) fluctuations along the streamwise direction x̄ of the

uncontrolled profiles (solid lines) versus the optimal controlled profiles (dashed

lines) for M = 3, α1 = α3 = α4 = 0, α2 = 1 and κz = κy = 2.
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Figure 3.18: The magnitude of the streamwise velocity |ū| (left) and temperature

|τ̄ | (right) fluctuations along η at x̄ = 0.1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1 and κz = κy = 2.
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Figure 3.19: The magnitude of the wall-normal |v̄| (left) and spanwise |w̄| (right)

velocity fluctuations along η at x̄ = 0.1 of the uncontrolled profiles (solid lines)

versus the optimal controlled profiles (dashed lines) forM = 3, α1 = α3 = α4 = 0,

α2 = 1 and κz = κy = 2.
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κz κy Energy reduction Figures

0.5 0 0.48 3.8-3.10

0.5 2 0.86 3.11-3.13

2 0 0.34 3.14-3.16

2 2 0.39 3.17-3.19

Table 3.3: The list of the energy reductions achieved for M = 3, α1 = α3 = α4 =

0, α2 = 1 using θ2v = 10−5.

The maximum magnitude of the velocities and temperature fluctuations along

x̄ are plotted in figures 3.8 and 3.11 for the two extreme cases with κz = 0.5.

For the case with κz = 0.5 and κy → 0, the velocity and temperature profiles

at x̄ = 1 are shown in figures 3.9 and 3.10, while for the case with κz = 0.5

and κy = 2, the velocity and temperature profiles are displayed at x̄ = 0.5 in

figures 3.12 and 3.13. The x̄ locations were chosen to approximate the peak of

the Klebanoff modes along the streamwise direction x̄. Both cases demonstrate

that when the actuators are active, the otherwise solo peak in the streamwise

velocity fluctuations ū is greatly attenuated around η = 1.25, resulting in two

smaller magnitude peaks. This is consistent with the reduction of the temperature

streaks, where a similar reduction is found around η = 1.25. The wall-normal

velocity v̄ increases close to the wall due to the introduction of the actuators, but

it then decreases around η = 1.25, which corresponds to the resulting reductions

in the laminar and thermal streaks.

For the cases with κz = 2, the maximum magnitude of the velocity and

temperature fluctuations along x̄ are displayed in figures 3.14 and 3.17, and the

velocity and temperature profiles at x̄ = 0.1 are plotted in figures 3.15 and 3.16

for the case with κz = 2 and κy → 0, and in figures 3.18 and 3.19 for the case

with κz = κy = 2. The maximum streamwise velocity magnitude occurs around

x̄ = 0.1 in these two extreme cases. Similar to the two extreme cases with

κz = 0.5, there is an increase of the wall-normal velocity fluctuations near the

wall due to the actuation. This results in a sudden drop around η = 1, which
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is connected to the local minima in the streamwise velocity and temperature

profiles. The main difference to the previous cases is that the unattenuated

streamwise velocity peak leads to a smaller magnitude peak close to the wall with

the addition of actuation, and a medium magnitude peak in the outer portion of

the boundary layer. With the extrema of the parametric study analysed, case 1

is investigated.

3.4.2 Optimal wall-based feedback actuation of case 1

The cases 1, 1-A to 1-D from tables 2.1 and 2.2 fall within the controllable domain

as shown by the parametric study, and were chosen to investigate the physics

involved in the control. The magnitude of the unattenuated and attenuated

profiles of the streamwise and wall normal velocity fluctuations are plotted in

figures 3.20 and 3.21 for cases 1-A to 1-D. In these cases, the ū(0) components are

of second order throughout and thus only the component ū is shown. The plots

reveal that the initial peak in the centre of the boundary layer is successfully

attenuated to two smaller peaks. The increase of the wall-normal velocity |v̄|

at the wall results in a decrease of wall-normal velocity at the same η location.

This is connected to the local minimum value of the streamwise velocity |ū|. The

resulting peaks of the attenuated streamwise velocity behave differently. The

outer peak remains around x̄ ≈ 1.4 and the peak closer to the wall moves slightly

closer to the wall as the flow evolves downstream. This is the opposite of the

uncontrolled case which shifts slightly towards the outer part from the inner

boundary layer. It is clearly shown by these plots that the lift up mechanism is

attenuated by the optimal actuation.

Furthermore, the unattenuated and attenuated profiles of the spanwise velo-

city |w̄| and temperature |τ̄ | are plotted in figures 3.22 and 3.23, where a slight

increase of the spanwise velocity occurs close to the wall. The temperature fluc-

tuations follow the streamwise velocity fluctuations closely, exhibiting a solo peak

for the uncontrolled case to two smaller peaks about the minimum wall-normal

velocity around η ≈ 1.1. This shows that both the Klebanoff modes and thermal

97



0 1 2 3 4 5 6
0

0.004

0.008

0.012

|ū
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Figure 3.20: Amplitude of the uncontrolled (left) and controlled (right) stream-

wise velocity profiles |ū| for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = κy = 1 at

the indicated values of x̄.
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Figure 3.21: Amplitude of the uncontrolled (left) and controlled (right) wall-

normal velocity profiles |v̄| for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = κy = 1 at

the indicated values of x̄ in figure 3.20.
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Figure 3.22: Amplitude of the uncontrolled (left) and controlled (right) spanwise

velocity profiles |w̄| for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = κy = 1 at the

indicated values of x̄ in figure 3.20.
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Figure 3.23: Amplitude of the uncontrolled (left) and controlled (right) temper-

ature profiles |τ̄ | for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = κy = 1 at the

indicated values of x̄ in figure 3.20.
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Figure 3.24: Amplitude of the uncontrolled (left) and controlled (right) pressure

profiles |p̄| for M = 3, α1 = α3 = α4 = 0, α2 = 1, κz = κy = 1 at the indicated

values of x̄ in figure 3.20.

streaks attenuation is caused by disrupting the lift up mechanism that generates

the Klebanoff modes. The profiles of uncontrolled and controlled pressure are

displayed in figure 3.24, where an expected increase of pressure in the actuated

profiles occurs close to the wall; it is related to the introduction of the wall-normal

blowing and suction.

Case 1 can be now solved by taking into account the linearity of the problem,

i.e. the control of ū and ū(0) can be solved independently and summed in the

end. The results are shown in figures 3.25 and 3.26 at x̄ = 0.5. Results for Case 1

are similar to the cases 1-A to 1-D; the streamwise velocity fluctuations are also

attenuated up to η = 4 which indicates that blowing and suction actuation can

successfully be used, even when the component ū(0) is of the first order within

the boundary layer.

3.4.3 The effects of the measuring parameters

Throughout this paper, the regulation of the kinetic energy along x̄ of ū and ū(0)

was considered. The inclusion of the other control parameters such as terminal

kinetic energy and the evaluation of the thermal streaks were tested during the
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Figure 3.25: Magnitude of the streamwise ū0 (left) and wall-normal v̄0 (right)

velocity fluctuations along η at x̄ = 0.5 of the unattenuated profiles (solid lines)

versus the optimal attenuation profiles (dashed lines), for M = 3, α1 = α3 =

α4 = 0, α2 = 1, κz = 1 and κy = 1.
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Figure 3.26: Magnitude of the spanwise velocity w̄0 (left) and temperature τ̄0

(right) fluctuations along η at x̄ = 0.5 of the unattenuated profiles (solid lines)

versus the optimal attenuation profiles (dashed lines), for M = 3, α1 = α3 =

α4 = 0, α2 = 1, κz = 1 and κy = 1.
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development of this thesis and resulted in a significant increase of magnitude of

the streamwise velocity fluctuations upstream of the value of x̄ being measured.

The increase could result in upstream transition to turbulence, and due to the

linear equations being used, it would be impossible to evaluate that. Thus the

focus will be on measuring the energy along the entire domain for both the

Klebanoff and thermal streaks.

α2 α4 θ2v JN
2 /J 0

2 JN
4 /J 0

4 Jv Energy reduction

1 0 10−5 0.411359 0.480876 8.62379 × 10−7 0.57

0.5 0.5 10−5 0.608223 0.349213 2.08074 × 10−6 0.60

0 1 10−5 0.962108 0.324683 2.86460 × 10−6 0.67

Table 3.4: The list of energy reductions achieved while measuring the energy

reduction according to the values of α2 and α4 used in each case, for M = 3,

κz = κy = 1, and α1 = α3 = 0.

To ensure local minimisation, all cases were performed with small steps of

optimisation, i.e. considering the regulation of the kinetic energy for ū and α2 =

1, and with x̄i and x̄f = x̄i+dx̄ being evaluated as it marches downstream along

the whole domain.

Unlike the previous simulations that focused on measuring the Klebanoff

modes to achieve their attenuation, the thermal streaks will also be measured by

using a value of θτ other than zero. Table 3.4 displays combinations of measur-

ing Klebanoff modes and thermal streaks and their energy reduction for different

normalised cost functionals. It is clear from the results that the Klebanoff modes

benefit more from being measured by the energy of the streamwise velocity fluc-

tuations, i.e. JN
2 /J 0

2 , than the thermal streaks benefit from being measured by

the energy of the temperature fluctuations, i.e. JN
4 /J 0

4 . Moreover, in order to

achieve optimal actuation when the cost functional measures the thermal streaks

energy, an increased in the cost of actuation is incurred. Therefore, setting α2 = 1

and α1 = α3 = α4 = 0 is an appropriate way to attenuate both the Klebanoff

and thermal streaks by disrupting the lift up mechanism that generates them.
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The formulation for the extension of this work to multiple actuation directions

is initialised and verified to be a viable option in Appendix D. The preliminary

results shown in the section below reveals that the wall-normal and spanwise

directions are optimal to attenuate Klebanoff modes, but even fast fluctuations

of the temperature at the wall can attenuate Klebanoff modes

3.5 Alternative controlled numerical results

κz κy ū2
w v̄2w w̄2

w τ̄ 2
w Energy reduction

1 1 1 0 0 0 0.31

1 1 0 1 0 0 0.58

1 1 0 0 1 0 0.67

1 1 0 0 0 1 0.27

1 1 1/
√
2 1/

√
2 0 0 0.31

1 1 −1/
√
2 1/

√
2 0 0 0.32

1 1 0 1/
√
2 1/

√
2 0 0.25

1 1 0 1/
√
2 −1/

√
2 0 0.63

1 1 1/
√
2 0 1/

√
2 0 0.32

1 1 1/
√
2 0 −1/

√
2 0 0.31

Table 3.5: The list of energy reductions achieved for different combinations of

actuators for M = 3, α1 = α3 = α4 = 0, α2 = 1 and θ2v → 0.

The formulation described is now used to perform a parametric study on the

possible actuators to attenuate the Klebanoff modes. The study is performed by

taking into account the knowledge gained in chapter 3, i.e. measuring energy

from the Klebanoff modes instead of the energy from the thermal streaks, and

focusing on the ū component.

The combination of actuators tested are described in table 3.5 without con-

sidering the actuation cost, to explore the theoretical maximum attenuation. The

results reveal that wall-normal blowing and suction is an excellent direction to

attenuate the Klebanoff modes. It was only surpassed by the spanwise blowing

and suction at the wall or a combination of wall-normal and spanwise blowing
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and suction. This is consistent with the work of Hicks & Ricco [33] who obtained

up to 90% laminar streaks energy reduction.

An investigation of the actuation weights for the spanwise direction actuators

revealed results similar to those found for the wall-normal direction actuators.

The spanwise actuators also displayed the same physical effects as the wall-normal

actuators, i.e. the introduction of a spanwise velocity w̄ at the wall induced an

increase of the amplitude wall-normal velocity v̄ near the wall, followed by a

reduction with a minimum located at η ≈ 1.3. The reduction is consistent with

figures 3.20-3.21 and results in a minimum peak of the amplitude of streamwise

velocity ū around η ≈ 1.3.

This analysis has proven the possibility for the theoretical attenuation of

the Klebanoff modes and thermal streaks via other directions of actuation, even

though the spanwise direction for blowing and suction would be immensely diffi-

cult to implement in a laboratory. The current formulation for multiple actuators

does not set a static orientation between wall-normal and spanwise, instead it at-

tempts to optimise two actuators working simultaneously, i.e. wall-normal and

spanwise actuators.

It is important in future work, to find a healthy relationship between the

chosen actuators and combine them using an equation or in a predetermined

direction. This would allow for a smoother and easier practical implementation.

The same framework could be easily extended to consider speakers, which would

be adequate actuators in attaining frequencies involved in optimal control of the

compressible boundary layers.
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Chapter 4

Summary and future work

The work of LWG [43], Ricco [55][56] and Ricco & Wu [58] on the theoretical

formulation of the compressible boundary layer subjected to free-stream small

vortical disturbances was described and expanded. The incompressible framework

by Ricco [56] was extended to the compressible case for the first time, namely,

the inclusion of the components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0).

The components ū(0), v̄(0), w̄(0), τ̄ (0) and p̄(0) should allow the formulation

to match the experiments in the outer layer of the boundary layer such as with

previous theoretical results for the incompressible case [56]. Thus far, to the best

of the author’s knowledge, existing compressible experimental measurements lack

the data to match the theoretical results obtained when the components were

included.

Numerical results for the components {ū(0), v̄(0), w̄(0), τ̄ (0), p̄(0)} were obtained

for the compressible case for the first time. The results showed that for κy = κz =

O(1), this component only becomes significant at low Reynolds numbers, more

common at lower speeds than M = 3.

The importance of the initial and top boundary conditions was also invest-

igated, and it was subsequently demonstrated that the framework designed by

LWG [43] to obtain the initial and boundary conditions greatly affects the results.

The general adjoint theory was derived and applied to the CLUBR equations

for the first time, with the objective of attenuating the laminar flow. A spatial
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controller was specifically designed to attenuate the Klebanoff modes and the

thermal streaks. In addition, it should also work with other instabilities such as

TS waves.

The controller designed focuses on the minimisation of the streamwise velo-

city fluctuations and temperature fluctuations. These are measured within the

boundary layer over an interval and at a specific cross section at x̄f . The ac-

tuation method used was wall-blowing and suction. The results revealed that

an increase of wall-normal velocity fluctuations close to the wall is followed by

a decrease in local minimum around η ≈ 1.1, and that resulted in a local min-

imum of the streamwise velocity fluctuations around the same value of η. The

optimal wall-normal blowing and suction proved that it is possible to successfully

attenuate the Klebanoff modes and the thermal streaks by disrupting the lift up

mechanism.

Further investigations were carried out to study combinations of two differ-

ent types of wall actuators, namely, heat transfer and blowing and suction. All

of the combinations were able to attenuate the Klebanoff modes, but only the

wall-normal and spanwise directions of blowing and suction indicated major at-

tenuation, which was consistent with the studies of Hack & Zaki [28] and Hicks &

Ricco [33] that used spanwise wall oscillation to attenuate the Klebanoff modes,

although in the work of Hicks & Ricco [33] the actuator was on the base flow.

4.1 Future work

This work has accurately described the compressible and incompressible flows and

has successfully attenuated laminar and thermal streaks. This sets the ground

for future research to explore other controllers and actuators with the purpose

of widening its industrial applications. A summary is provided below on some of

the potential methods to test other controllers:

• Add constraints to the combination of wall-normal and spanwise blowing

and suction method to normalise both components, i.e. restrict the angle
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of attack along x̄ to a constant.

• Explore the control of TS waves.

• Experiment with other cost functionals and different actuators to compare

their effectiveness. For instance:

– Regulation of the dissipation energy

J (q̄, c̄) =
1

2

∫ x̄fin

x̄in

∫ ∞

0

∣

∣

∣

∣

∂ū (x̄, η)

∂η

∣

∣

∣

∣

2

dηdx̄ (4.1)

– Terminal control of the dissipation energy

J (q̄, c̄) =
1

2

∫ ∞

0

∣

∣

∣

∣

∂ū (x̄f , η)

∂η

∣

∣

∣

∣

2

dη (4.2)

– Regulation of the wall-normal velocity fluctuations energy

J (q̄, c̄) =
1

2

∫ x̄fin

x̄in

∫ ∞

0
|v̄ (x̄, η)|2 dηdx̄ (4.3)

– Terminal control of the wall-normal velocity fluctuations energy

J (q̄, c̄) =
1

2

∫ ∞

0
|v̄ (x̄f , η)|2 dη (4.4)

• Noise can be added to the outer flow to simulate the uncertainties originated

in the free-stream turbulence; this leads to a Gaussian 3D function of κ and

κ2. The spectrum of solutions can be summed to obtain the response of

the system for the full spectrum of κ and κ2, while taking the noise into

account.

• The cost functional can be modified to include only information at the wall,

which is used to recreate data measured through sensors. This would verify

the effectiveness of the method when applied to limited information such

as:

– Regulation along the wall of the wall-normal gradient of the streamwise

velocity fluctuations

J (q̄, c̄) =
1

2

∫ x̄fin

x̄in

∣

∣

∣

∣

∂ū (x̄, 0)

∂η

∣

∣

∣

∣

2

dx̄ (4.5)
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– Regulation along the wall of the wall-normal gradient of the wall-

normal velocity fluctuations

J (q̄, c̄) =
1

2

∫ x̄fin

x̄in

∣

∣

∣

∣

∂v̄ (x̄, 0)

∂η

∣

∣

∣

∣

2

dx̄ (4.6)

– Regulation along the wall pressure fluctuations

J (q̄, c̄) =
1

2

∫ x̄fin

x̄in

|p̄ (x̄, 0)|2 dx̄ (4.7)
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Appendix A

Power series solution of the

CLUBR equations

In LWG and Ricco & Wu [58], the collection of two terms of the power series

(2.111) is sufficient. Ricco [56] required three terms to resolve the no-slip con-

dition at the wall for the components denoted as v̄(0) and w̄(0). In the present

work, three terms were also sufficient in the solution of the power series terms

(2.112). The equations of the first three terms of the power series (2.112) are

ηc
T ′

T
U0 − ηcU

′
0 −

T ′

T 2
V0 +

1

T
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0 −
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T 2

T0 +
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− (γ − 1)M2µ

′(F ′′)2

T
+ F ′

)

T1

+

(

−F − 2
1

Pr

µ′T ′

T
+

1

Pr

µT ′

T 2

)

T ′
1 −

1

Pr

µ

T
T ′′
1 = 0, (A.10)

and

(

ηc
T ′

T
+ 2

)

U2 − ηcU
′
2 −

T ′

T 2
V2 +

1

T
V ′
2 +W1

+
i

T 2
T0 +

(

−T ′F
T 2

− 2
F ′

T

)

T2 +
F

T
T ′
2 = 0, (A.11)

(

−i+ κ2zµT
)

U0 +
(

−ηcF
′′ + 2F ′)U2 +

(

µT ′

T 2
− F − µ′T ′

T

)

U ′
2 −

µ

T
U ′′
2

+
F ′′

T
V2 +

(

FF ′′

T
− µ′F ′′′

T
− µ′′T ′F ′′

T
+

µ′T ′F ′′

T 2

)

T2 −
µ′F ′′

T
T ′
2 = 0, (A.12)
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(

TF − ηcTF
′ + ηcT

′F − ηc
2TF ′′ +

2

3
µ′T ′

)

U1

+
1

3

(

−µ+ ηcµ
′T ′ − ηc

µT ′

T
+ µ

)

U ′
1 +

ηc
3
µU ′′

1 +

(

ηcF
′′ − T ′F

T

)

V1

+

(

−F − 4

3

µ′T ′

T
+

4

3

µT ′

T 2

)

V ′
1 −

4

3

µ

T
V ′′
1 +

2

3
µ′T ′W0 −

1

3
µW ′

0

+

(

4

3

µ′T ′′F
T

− 4

3

µ′(T ′)2F
T 2

+
4

3

µ′′(T ′)2F
T

+
4

3

µ′T ′F ′

T
+ ηc

µ′T ′F ′′

T

−2µ′F ′′ − ηcµ
′′T ′F ′′ − ηcµ

′F ′′′)T1 +

(

−ηcµ
′F ′′ +

4

3

µ′T ′F
T

)

T ′
1 + P ′

2 = 0,

(A.13)

(

−ηcκ
2
zµ

′TT ′ +
1

3
κ2zµT

)

U1 −
ηc
3
κ2zµTU

′
1 + κ2zµ

′T ′V1 +
1

3
κ2zµV

′
1

+

(

4

3
κ2zµT − i

)

W0 + F ′W2 +

(

µT ′

T 2
− µ′T ′

T
− F

)

W ′
2 −

µ

T
W ′′

2

+
2

3
κ2zµ

′T ′FT1 − κ2zTP2 = 0, (A.14)

−ηcT
′U2 − (γ − 1)M22

µF ′′

T
U ′
2 +

T ′

T
V2 − iT0

+

(

T ′F
T

− 1

Pr

µ′′(T ′)2

T
− 1

Pr

µ′T ′′

T
+

1

Pr

µ′(T ′)2

T 2
+ 2F ′

)

T2

+

(

−F − 2
1

Pr

µ′T ′

T
+

1

Pr

µT ′

T 2

)

T ′
2 −

1

Pr

µ

T
T ′′
2 = 0. (A.15)

The equations (A.1)-(A.15) satisfy the following boundary conditions at the wall:

ū(0) = v̄(0) = w̄(0) =
∂τ̄ (0)

∂η
= 0 at η = 0. (A.16)

The boundary conditions for the power series ū(0) as η → ∞ are found by match-

ing the first, second and third term of the power series with the leading order,

second-order and third-order of the Frobenius series of the large-η solution (2.96)

as x̄ ≪ 1 respectively, to yield:

U0 = 1, U1 = (−|κz |+ iκy) η̄ as η → ∞

U2 =
1

2

[

i− i|κz |κy − κ2y +
(

κ2z − i|κz |κy − κ2y
)

η̄2
]

as η → ∞.

Matching the large-η solution (2.99) with the power series expansion for τ̄ (0) gives

T0 = T1 = T2 = 0 as η → ∞.
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The equations (A.1), (A.2) and (A.5) are decoupled from (A.3) and (A.4). They

can be solved to numerically obtain the outer boundary condition for V0 as η →

∞, defined as

V0,0 = lim
η→∞

V0.

Matching the power series terms as η → ∞, namely V0, V1 and V2 with the

leading order, second-order and third order terms respectively, in the expansion

of (2.97) for x̄ ≪ 1 leads to

∫ x̄

0
g(0) (x̂) e−ix̂dx̂ =

1

|κz|
√
2x̄

[

V0,0 − (βc + γc)
i
∣

∣κz|3 + i
∣

∣ κz|κ2y + 2κ3y − 2κ2zκy

2 (κy − i|κz |)
(

κ2z + κ2y
)

]

+
g
(0)
1

|κz|
+

g
(0)
2

|κz|
√
2x̄,

where the constants g
(0)
1 and g

(0)
2 are (cf. Appendix A in [56] for the incompress-

ible case)

g
(0)
1 = V1,0 − |κz |+ iκy + βc

[

−|κz |V0,0 −
κ2z (βc + γc)

|κz | − iκy
+ i (βc + γc) κy

]

,

g
(0)
2 = V2,0 −

i

2
V0,0 −

(βc + γc)
(

4 |κz|3 + iκ2zκy − iκ3y

)

2 (|κz |+ iκy)

+ βc

(

−i− |κz |g(0)1 + i|κz |κy + κ2y

)

− 1

2
β2
c

[

κ2zV0,0 + (βc + γc)
(

2κ2z − i|κz|κy − κ2y
)]

,

where:

V1,0 = lim
η→∞

[

V1 +

(

|κz|V0 +
κ2z (βc + γc)

|κz| − iκy
− i (βc + γc)κy

)

η

]

,

V2,0 = lim
η→∞

(

V2 − V2,1η − V2,2η
2
)

,

V2,1 = −i− |κz|g(0)1 + i|κz |κy + κ2y − 2βcV2,2,

V2,2 =
1

2

[

κ2zV0,0 + (βc + γc)
(

2κ2z − i|κz |κy − κ2y
)]

.

Analogous to (A.16), the terms in the power series of w̄(0) and p̄(0) are matched

with the expansion of the large-η solution (2.98) and (2.100) respectively, as

x̄ ≪ 1, to give

W0 = V0,0|κz|+
(βc + γc) i|κz |κy

|κz | − iκy
, W1 = |κz |g(0)1 − κ2z [V0,0 + (βc + γc)] η̄ as η → ∞,
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W2 = |κz |g(0)2 +
i|κz |
2

V0,0 +
(βc + γc)

2
(

κ2z + κ2y
)

[

−κ2zκy − i|κz |κ2y + 2
(∣

∣κz |3κ2y − iκ2zκ
3
y

)

+4
(∣

∣κz |5 − iκ4zκy
)]

− κ2zg
(0)
1 η̄

+

(

|κz|3
2

V0,0 +
(βc + γc)

(

2κ4z − 3i|κz |3κy − 2κ2zκ
2
y

)

2 (|κz | − iκy)

)

η̄2 as η → ∞,

and

P0 = − 1

|κz|
V0,0 −

(βc + γc) iκy
|κz | (|κz| − iκy)

, P1 = [V0,0 + (βc + γc)] η̄ as η → ∞,

P2 =
g
(0)
2

|κz|
−

(βc + γc)
(

4κ2zκ
2
y + 4κ4y − iκ2z − 5iκ2y

)

4 (|κz| − iκy) (|κz |+ iκy) 2

−
[

|κz|
2

V0,0 +
(βc + γc)

(

2κ2z − 3iκzκy − 2κ2y
)

2 (|κz | − iκy)

]

η̄2 as η → ∞.
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Appendix B

Expansion of adjoint identity

In order to obtain the CLUBR adjoint equations, the adjoint identity (3.59) needs

to be expanded. The necessary steps and details are described in this Appendix.

The expansion of the adjoint identity is valid for the components {p̄′, ū′, v̄′, w̄′, τ̄ ′}

and
{

p̄(0)′, ū(0)′, v̄(0)′, w̄(0)′, τ̄ (0)′
}

. The left-hand-side expansion of the adjoint

identity (3.59) is shown for the former components:
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〈

r̄,Q
(

q̄′)〉
I
=

∫ x̄f

x̄i

∫ ∞

0
r̄Hc

[

ηc
2x̄

T ′

T
ū′ +

∂ū′

∂x̄
− ηc

2x̄

∂ū′

∂η
− T ′

T 2
v̄′ +

1

T

∂v̄′

∂η

+w̄′ +

(

i

T 2
− 1

2x̄

T ′F
T 2

)

τ̄ ′ − F ′

T

∂τ̄ ′

∂x̄
+

1

2x̄

F

T

∂τ̄ ′

∂η

]

+ r̄Hx

[

(

−i− ηc
2x̄

F ′′ + κ2zµT
)

ū′ + F ′∂ū
′

∂x̄
+

(

1

2x̄

µT ′

T 2
− 1

2x̄
F

− 1

2x̄

µ′T ′

T

)

∂ū′

∂η
− 1

2x̄

µ

T

∂2ū′

∂η2
+

F ′′

T
v̄′ +

(

1

2x̄

FF ′′

T
− 1

2x̄

µ′F ′′′

T

− 1

2x̄

µ′′T ′F ′′

T
+

1

2x̄

µ′T ′F ′′

T 2

)

τ̄ ′ − 1

2x̄

µ′F ′′

T

∂τ̄ ′

∂η

]

+ r̄Hy

[

1

(2x̄)2
(

TF − ηcTF
′ + ηcT

′F − ηc
2TF ′′) ū′ +

1

3x̄
µ′T ′∂ū

′

∂x̄

− 1

6x̄
µ

∂

∂x̄

(

∂ū′

∂η

)

+

(

ηc
12x̄2

µ′T ′ − ηc
12x̄2

µT ′

T
+

1

12x̄2
µ

)

∂ū′

∂η

+
ηc

12x̄2
µ
∂2ū′

∂η2
+

(

−i+
ηc
2x̄

F ′′ − 1

2x̄

T ′F
T

+
1

2x̄
F ′ + κ2zµT

)

v̄′

+F ′∂v̄
′

∂x̄
+

(

− 1

2x̄
F − 2

3x̄

µ′T ′

T
+

2

3x̄

µT ′

T 2

)

∂v̄′

∂η
− 4

3

1

2x̄

µ

T

∂2v̄′

∂η2

+
2

3

1

2x̄
µ′T ′w̄′ − 1

3

1

2x̄
µ
∂w̄′

∂η
+

(

−FF ′ + ηc(F
′)2 − T ′F 2

T
+ ηcFF ′′

+
1

3x̄2
µ′T ′′F

T
− 1

3x̄2
µ′(T ′)2F

T 2
+

1

3x̄2
µ′′(T ′)2F

T
+

1

3x̄2
µ′T ′F ′

T

+
ηc
4x̄2

µ′T ′F ′′

T
− 1

4x̄2
µ′F ′′ − ηc

4x̄2
µ′′T ′F ′′ − ηc

4x̄2
µ′F ′′′

)

τ̄ ′ − 1

2x̄
µ′F ′′∂τ̄

′

∂x̄

+

(

− ηc
4x̄2

µ′F ′′ +
1

3x̄2
µ′T ′F
T

)

∂τ̄ ′

∂η
+

1

2x̄

∂p̄′

∂η

]

+ r̄Hz

[

− ηc
2x̄

κ2zµ
′TT ′ū′ +

1

3
κ2zµT

∂ū′

∂x̄
− ηc

6x̄
κ2zµT

∂ū′

∂η
+ κ2zµ

′T ′v̄′

+
1

3
κ2zµ

∂v̄′

∂η
+

(

4

3
κ2zµT − i

)

w̄′ + F ′∂w̄
′

∂x̄
+

(

1

2x̄

µT ′

T 2
− 1

2x̄

µ′T ′

T

− 1

2x̄
F

)

∂w̄′

∂η
− 1

2x̄

µ

T

∂2w̄′

∂η2
+

1

3x̄
κ2zµ

′T ′F τ̄ ′ − κ2zT p̄
′
]

+ r̄He

[

− ηc
2x̄

T ′ū′ − (γ − 1)M2 1

x̄

µF ′′

T

∂ū′

∂η
+

T ′

T
v̄′ +

(

−i+
1

2x̄

T ′F
T

− 1

2x̄

1

Pr

µ′′(T ′)2

T
− 1

2x̄

1

Pr

µ′T ′′

T
+

1

2x̄

1

Pr

µ′(T ′)2

T 2
+

1

Pr
κ2zµT

−(γ − 1)M2 1

2x̄

µ′(F ′′)2

T

)

τ̄ ′ + F ′∂τ̄
′

∂x̄
+

(

− 1

2x̄
F − 1

x̄

1

Pr

µ′T ′

T

+
1

2x̄

1

Pr

µT ′

T 2

)

∂τ̄ ′

∂η
− 1

2x̄

1

Pr

µ

T

∂2τ̄ ′

∂η2

]

dηdx̄.
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Rearranging the terms and changing the order of integration accordingly leads

to:

〈

r̄,Q
(

q̄′)〉
I
=

∫ x̄f

x̄i

∫ ∞

0
−r̄Hz κ2zT p̄

′ +

[

r̄Hc
ηc
2x̄

T ′

T
+ r̄Hx

(

−i− ηc
2x̄

F ′′ + κ2zµT
)

+r̄Hy
1

(2x̄)2
(

TF − ηcTF
′ + ηcT

′F − ηc
2TF ′′)− r̄Hz

ηc
2x̄

κ2zµ
′TT ′ − r̄He

ηc
2x̄

T ′
]

ū′

+

[

−r̄Hc
T ′

T 2
+ r̄Hx

F ′′

T
+ r̄Hy

(

−i+
ηc
2x̄

F ′′ − 1

2x̄

T ′F
T

+
1

2x̄
F ′ + κ2zµT

)

+r̄Hz κ2zµ
′T ′ + r̄He

T ′

T

]

v̄′ +

[

r̄Hc + r̄Hy
2

3

1

2x̄
µ′T ′ + r̄Hz

(

4

3
κ2zµT − i

)]

w̄′

+

[

r̄Hc

(

i

T 2
− 1

2x̄

T ′F
T 2

)

+ r̄Hx

(

1

2x̄

FF ′′

T
− 1

2x̄

µ′F ′′′

T
− 1

2x̄

µ′′T ′F ′′

T

+
1

2x̄

µ′T ′F ′′

T 2

)

+ r̄Hy

(

−T ′F 2

T
+ ηc(F

′)2 − FF ′ + ηcFF ′′ +
1

3x̄2
µ′T ′′F

T

− 1

3x̄2
µ′(T ′)2F

T 2
+

1

3x̄2
µ′′(T ′)2F

T
+

1

3x̄2
µ′T ′F ′

T
+

ηc
4x̄2

µ′T ′F ′′

T

− 1

4x̄2
µ′F ′′ − ηc

4x̄2
µ′′T ′F ′′ − ηc

4x̄2
µ′F ′′′

)

+ r̄Hz
1

3x̄
κ2zµ

′T ′F

+r̄He

(

−i+
1

2x̄

T ′F
T

− 1

2x̄

1

Pr

µ′′(T ′)2

T
− 1

2x̄

1

Pr

µ′T ′′

T

+
1

2x̄

1

Pr

µ′(T ′)2

T 2
+

1

Pr
κ2zµT − (γ − 1)M2 1

2x̄

µ′(F ′′)2

T

)]

τ̄ ′dηdx̄

+

∫ ∞

0

∫ x̄f

x̄i

[

r̄Hc + r̄Hx F ′ + r̄Hy
1

3x̄
µ′T ′ + r̄Hz

1

3
κ2zµT

]

∂ū′

∂x̄
+ r̄Hy F ′∂v̄

′

∂x̄

+ r̄Hz F ′∂w̄
′

∂x̄
+

[

−r̄Hc
F ′

T
− r̄Hy

1

2x̄
µ′F ′′ + r̄He F ′

]

∂τ̄ ′

∂x̄
dx̄dη

+

∫ x̄f

x̄i

∫ ∞

0
−r̄Hy

1

6x̄
µ
∂

∂η

(

∂ū′

∂x̄

)

dηdx̄+

∫ x̄f

x̄i

∫ ∞

0
r̄Hy

1

2x̄

∂p̄′

∂η
+
[

−r̄Hc
ηc
2x̄

+r̄Hx

(

1

2x̄

µT ′

T 2
− 1

2x̄
F − 1

2x̄

µ′T ′

T

)

+ r̄Hy

(

ηc
12x̄2

µ′T ′ − ηc
12x̄2

µT ′

T

+
1

12x̄2
µ

)

− r̄Hz
ηc
6x̄

κ2zµT − r̄He (γ − 1)M2 1

x̄

µF ′′

T

]

∂ū′

∂η
+

[

r̄Hc
1

T

+r̄Hy

(

− 1

2x̄
F − 2

3x̄

µ′T ′

T
+

2

3x̄

µT ′

T 2

)

+ r̄Hz
1

3
κ2zµ

]

∂v̄′

∂η
+

[

−r̄Hy
1

3

1

2x̄
µ

+r̄Hz

(

1

2x̄

µT ′

T 2
− 1

2x̄

µ′T ′

T
− 1

2x̄
F

)]

∂w̄′

∂η
+

[

r̄Hc
1

2x̄

F

T
− r̄Hx

1

2x̄

µ′F ′′

T

+r̄Hy

(

− ηc
4x̄2

µ′F ′′ +
1

3x̄2
µ′T ′F
T

)

+ r̄He

(

− 1

2x̄
F − 1

x̄

1

Pr

µ′T ′

T

+
1

2x̄

1

Pr

µT ′

T 2

)]

∂τ̄ ′

∂η
dηdx̄+

∫ x̄f

x̄i

∫ ∞

0

[

−r̄Hx
1

2x̄

µ

T
+ r̄Hy

ηc
12x̄2

µ

]

∂2ū′

∂η2

− r̄Hy
4

3

1

2x̄

µ

T

∂2v̄′

∂η2
− r̄Hz

1

2x̄

µ

T

∂2w̄′

∂η2
− r̄He

1

2x̄

1

Pr

µ

T

∂2τ̄ ′

∂η2
dηdx̄.
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The last step is to integrate by parts as many times as needed to move the

partial derivatives from the state variables perturbations (i.e.: p̄′, ū′, v̄′, w̄′ and

τ̄ ′) to the adjoint variables (i.e.: r̄c, r̄x, r̄y, r̄z and r̄e). Applying integration by

parts twice and rearranging the terms yields the right-hand-side of the adjoint

identity (3.59):

〈

R̄ (r̄) , q̄′〉
I
=

∫ x̄f

x̄i

∫ ∞

0

[

− 1

2x̄

∂r̄y
∂η

− κ2zT r̄z

]H

p̄′ +

[

1

2x̄
r̄c −

∂r̄c
∂x̄

+
ηc
2x̄

∂r̄c
∂η

+

(

i+ κ2zµT +
F ′

2x̄
− ηcF

′′

2x̄

)

r̄x − F ′∂r̄x
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄x
∂η

− 1

2x̄

µ

T

∂2r̄x
∂η2

+
1

(2x̄)2
(

TF + 2µ′T ′ − ηcTF
′ + ηcT

′F − ηc
2TF ′′) r̄y −

µ′T ′

2x̄

∂r̄y
∂x̄

− µ

6x̄

∂

∂x̄

(

∂r̄y
∂η

)

+
1

(2x̄)2

(

µ− ηcµT
′

3T
+

ηcµ
′T ′

3

)

∂r̄y
∂η

+
ηcµ

12x̄2
∂2r̄y
∂η2

+
1

6x̄

(

κ2zµT − 3ηcκ
2
zµ

′TT ′) r̄z −
1

3
κ2zµT

∂r̄z
∂x̄

+
ηcκ

2
zµT

6x̄

∂r̄z
∂η

+

(

−ηcT
′

2x̄
+

1

x̄
(γ − 1)M2

(

µF ′′′

T
− µT ′F ′′

T 2
+

µ′T ′F ′′

T

))

r̄e

+
1

x̄
(γ − 1)M2µF

′′

T

∂r̄e
∂η

]H

ū′ +

[

− 1

T

∂r̄c
∂η

+
F ′′

T
r̄x +

(

i+ κ2zµT

+
1

2x̄

(

2F ′ − T ′F
T

+ ηcF
′′
))

r̄y − F ′ ∂r̄y
∂x̄

+

(

F

2x̄
+

2

3x̄

(

µT ′

T 2

−µ′T ′

T

))

∂r̄y
∂η

− 2

3x̄

µ

T

∂2r̄y
∂η2

+
2

3
κ2zµ

′T ′r̄z −
1

3
κ2zµ

∂r̄z
∂η

+
T ′

T
r̄e

]H

v̄′

+

[

r̄c +
µ′T ′

2x̄
r̄y +

µ

6x̄

∂r̄y
∂η

+

(

i+
4

3
κ2zµT +

F ′

2x̄

)

r̄z − F ′∂r̄z
∂x̄

+
1

2x̄

(

F +
µT ′

T 2
− µ′T ′

T

)

∂r̄z
∂η

− 1

2x̄

µ

T

∂2r̄z
∂η2

]H

w̄′ +

[(

− i

T 2

− 1

2x̄

F ′

T

)

r̄c +
F ′

T

∂r̄c
∂x̄

− 1

2x̄

F

T

∂r̄c
∂η

+
1

2x̄

FF ′′

T
r̄x +

1

2x̄

µ′F ′′

T

∂r̄x
∂η

+

(

−FF ′ + ηc(F
′)2 − T ′F 2

T
+ ηcFF ′′ − µ′F ′′

2x̄2

)

r̄y

+
µ′F ′′

2x̄

∂r̄y
∂x̄

+

(

− 1

3x̄2
µ′T ′F
T

+
ηcµ

′F ′′

4x̄2

)

∂r̄y
∂η

+
κ2zµ

′T ′F
3x̄

r̄z

+

(

i+
κ2zµT

Pr
+

1

2x̄

(

F ′ +
T ′F
T

− (γ − 1)M2µ
′(F ′′)2

T

))

r̄e

−F ′∂r̄e
∂x̄

+
1

2x̄

(

F +
µT ′

PrT 2

)

∂r̄e
∂η

− 1

2x̄

µ

PrT

∂2r̄e
∂η2

]H

τ̄ ′dηdx̄,

(B.1)
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and

b =

∫ ∞

0

[

(

r̄c + F ′r̄x +
µ′T ′

2x̄
r̄y +

µ

6x̄

∂r̄y
∂η

+
1

3
κ2zµT r̄z

)H

ū′ + F ′r̄Hy v̄′

+F ′r̄Hz w̄′ +

(

−F ′

T
r̄c −

µ′F ′′

2x̄
r̄y + F ′r̄e

)H

τ̄ ′
]x̄f

x̄i

dη

+

∫ x̄f

x̄i

[

1

2x̄
r̄Hy p̄′ +

(

− ηc
2x̄

r̄c −
1

2x̄
F r̄x +

1

2x̄

µ

T

∂r̄x
∂η

− ηcµ

12x̄2
∂r̄y
∂η

−ηcκ
2
zµT

6x̄
r̄z −

1

x̄
(γ − 1)M2µF

′′

T
r̄e

)H

ū′ − µ

6x̄
r̄Hy

∂ū′

∂x̄

+

(

− 1

2x̄

µ

T
r̄x +

ηcµ

12x̄2
r̄y

)H ∂ū′

∂η
+

(

1

T
r̄c −

F

2x̄
r̄y +

2

3x̄

µ

T

∂r̄y
∂η

+
1

3
κ2zµr̄z

)H

v̄′ − 2

3x̄

µ

T
r̄Hy

∂v̄′

∂η
+

(

− µ

6x̄
r̄y −

F

2x̄
r̄z +

1

2x̄

µ

T

∂r̄z
∂η

)H

w̄′

− 1

2x̄

µ

T
r̄Hz

∂w̄′

∂η
+

(

1

2x̄

F

T
r̄c −

1

2x̄

µ′F ′′

T
r̄x +

(

1

3x̄2
µ′T ′F
T

− ηcµ
′F ′′

4x̄2

)

r̄y

+
1

2x̄

(

−F − µ′T ′

PrT

)

r̄e +
1

2x̄

µ

PrT

∂r̄e
∂η

)H

τ̄ ′ − 1

2x̄

µ

PrT
r̄He

∂τ̄ ′

∂η

]∞

0

dx̄.

(B.2)

The adjoint equations can be directly obtained from equation (B.1) by extracting

the term R̄ (r̄). However, the reader is reminded that the intended use of the

dual space is to find a simpler expression for the gradient of the cost functional

J with respect to the control variable v̄w. Therefore, the judicious choice of

boundary conditions, terminal conditions and forcing terms is essential. Thus,

the perturbed cost functional J ′ terms that do not include the control variable

v̄′w are added to both sides of
〈

R̄ (r̄) , q̄′〉
I
+ b = 0:

α1J ′
1+α2J ′

2+α3J ′
3+α4J ′

4 = α1J ′
1+α2J ′

2+α3J ′
3+α4J ′

4−
〈

R̄ (r̄) , q̄′〉
I
−b. (B.3)

Then the right-hand-side of the equation (B.3) is used to obtain the adjoint

equation system. Set

α2J ′
2 + α4J ′

4 =
〈

R̄ (r̄) , q̄′〉
I
, (B.4)
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to extract the adjoint equations forcing, which can be written as

R̄ (r̄) =

























0

α2Q2ū

0

0

α4Q4τ̄

























. (B.5)

The equation (B.5) turns out to be the previously derived adjoint equation

(3.15b). Substituting equation (B.4) into the right-hand-side of equation (B.3)

leads to

α1J ′
1 + α2J ′

2 + α3J ′
3 + α4J ′

4 = α1J ′
1 + α3J ′

3 − b. (B.6)

In a similar way, the boundary conditions and terminal conditions can be extrac-

ted from the right-hand-side of equation (B.6) while considering the boundary

and initial conditions (3.54)-(3.58), to yield the boundary conditions

r̄x = r̄y = r̄z =
∂r̄e
∂η

= 0 at η = 0, (B.7)

r̄c = r̄x = r̄y = r̄z = r̄e = 0 as η → ∞, (B.8)

and terminal conditions

r̄c = r̄y = r̄z = 0 at x̄ = x̄f , (B.9)

r̄x = α1
Q1ū

F ′ at x̄ = x̄f , (B.10)

r̄e = α3
Q3τ̄

F ′ at x̄ = x̄f . (B.11)

Then, the equation (B.6) is further simplified by the substitution of the boundary

and terminal conditions (B.7)-(B.11) of the adjoint system. The remainder terms

yield:

α1J ′
1 + α2J ′

2 + α3J ′
3 + α4J ′

4 =

∫ x̄f

x̄i

[

1

T
r̄c

]H

η=0

v̄′wdx̄. (B.12)

Equation (B.12) can then be substituted into the cost functional perturbation J ′

(3.40), to simplify it as

J ′ =
∫ x̄f

x̄i

[

1

T
r̄c + θ2vQvv̄w

]H

η=0

v̄′wdx̄. (B.13)
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In an analogous way, an expression for the cost functional perturbation J (0)′

(3.41) can be found from solving the adjoint equations:

R̄ (r̄) =

























0

α
(0)
2 Q

(0)
2 ū(0)

0

0

α
(0)
4 Q

(0)
4 τ̄ (0)

























. (B.14)

with boundary conditions

r̄x = r̄y = r̄z =
∂r̄e
∂η

= 0 at η = 0, (B.15)

r̄c = r̄x = r̄y = r̄z = r̄e = 0 as η → ∞, (B.16)

and terminal conditions

r̄c = r̄y = r̄z = 0 at x̄ = x̄f , (B.17)

r̄x = 0 at x̄ = x̄f , (B.18)

r̄e = 0 at x̄ = x̄f . (B.19)

This leads to

J (0)′ =
∫ x̄f

x̄i

[

1

T
r̄c + θ(0)2v Q

(0)
v v̄(0)w

]H

η=0

v̄(0)w
′dx̄. (B.20)
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Appendix C

Incompressible LUBR adjoint

The adjoint system was derived from the CLUBR equations in section §3.2, and

just like the CLUBR equations, it is valid up to Mach 4. Similarly, an adjoint

system can be derived for the particular case whenM = 0 from the incompressible

LUBR equations (5.2)-(5.5) in LWG [43]:

continuity equation

∂ū

∂x̄
− η

2x̄

∂ū

∂η
+

∂v̄

∂η
+ w̄ = 0; (C.1)

x-momentum equation

−iū+ F ′∂ū
∂x̄

− F

2x̄

∂ū

∂η
− ηF ′′

2x̄
ū+ F ′′v̄ − 1

2x̄

∂2ū

∂η2
+ κ2zū = 0; (C.2)

y-momentum equation

−iv̄ + F ′ ∂v̄
∂x̄

− F

2x̄

∂v̄

∂η
− 1

(2x̄)2
[η(ηF ′)′ − F ]ū

+
(ηF ′)′

2x̄
v̄ +

1

2x̄

∂p̄

∂η
− 1

2x̄

∂2v̄

∂η2
+ κ2z v̄ = 0;

(C.3)

z-momentum equation

−iw̄ + F ′ ∂w̄
∂x̄

− F

2x̄

∂w̄

∂η
− κ2z p̄−

1

2x̄

∂2w̄

∂η2
+ κ2zw̄ = 0; (C.4)

with boundary conditions at the wall defined as

ū = w̄ at η = 0, (C.5)
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and control wall-normal transpiration imposed by

v̄ = v̄w at η = 0. (C.6)

A cost functional to measure the kinetic energy of the Klebanoff modes is defined

as

J =
1

2

∫ x̄f

x̄i

∫ ∞

0

(

ūHQ2ū
)

dηdx̄+
θ2v
2

∫ x̄f

x̄i

(

v̄HwQvv̄w
)

dx̄, (C.7)

with weighing Hermitian matrices Q2 ≥ 0, Qv ≥ 0. The coefficients θv define

the weight of the cost of actuation.

The optimisation problem is thus defined as the minimisation of the cost

functional J through the control variable v̄w(x), while taking into account the

LUBR equations (C.1)-(C.4) as constraints. The solution to this problem can be

obtained by searching for

dJ
dv̄w

= 0. (C.8)

In order to find a simpler expression for this gradient, the use of the adjoint

identity (3.59) and the inner product defined as (3.60) are used to find an explicit

expression of the gradient that only depends on the control v̄w and the adjoint

variables.

Similar to the compressible case, the left-hand-side of the adjoint identity

(3.59) is expanded as

〈

r̄,Q
(

q̄′)〉
I
=

∫ x̄f

x̄i

∫ ∞

0
r̄Hc

[

∂ū′

∂x̄
− η

2x̄

∂ū′

∂η
+

∂v̄′

∂η
+ w̄′

]

+ r̄Hx

[

−iū′ + F ′ ∂ū
′

∂x̄
− F

2x̄

∂ū′

∂η
− ηF ′′

2x̄
ū′ − 1

2x̄

∂2ū′

∂η2
+ κ2zū

′ + F ′′v̄′
]

+ r̄Hy

[

1

2x̄

∂p̄′

∂η
− 1

(2x̄)2
[η(ηF ′)′ − F ]ū′ − iv̄′ + F ′∂v̄

′

∂x̄
− F

2x̄

∂v̄′

∂η

+
(ηF ′)′

2x̄
v̄′ − 1

2x̄

∂2v̄′

∂η2
+ κ2z v̄

′
]

+ r̄Hz

[

−κ2z p̄
′ − iw̄′ + F ′ ∂w̄

′

∂x̄
− F

2x̄

∂w̄′

∂η
− 1

2x̄

∂2w̄′

∂η2
+ κ2zw̄

′
]

dηdx̄.
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The terms are rearranged, and the order of integration is changed as follows

〈

r̄,Q
(

q̄′)〉
I
=

∫ x̄f

x̄i

∫ ∞

0
−r̄Hz κ2z p̄

′

+

[

−r̄Hx i− r̄Hx
ηF ′′

2x̄
+ r̄Hx κ2z − r̄Hy

1

(2x̄)2
[η(ηF ′)′ − F ]

]

ū′

+

[

r̄Hx F ′′ − r̄Hy i+ r̄Hy
(ηF ′)′

2x̄
+ r̄Hy κ2z

]

v̄′

+
[

r̄Hc − r̄Hz i+ r̄Hz κ2z
]

w̄′dηdx̄

+

∫ ∞

0

∫ x̄f

x̄i

[

r̄Hc + r̄Hx F ′] ∂ū
′

∂x̄
+ F ′ ∂v̄

′

∂x̄
+ r̄Hz F ′ ∂w̄

′

∂x̄
dx̄dη

+

∫ x̄f

x̄i

∫ ∞

0
r̄Hy

1

2x̄

∂p̄′

∂η
+

[

−r̄Hc
η

2x̄
− r̄Hx

F

2x̄

]

∂ū′

∂η

+

[

r̄Hc − r̄Hy
F

2x̄

]

∂v̄′

∂η
− r̄Hz

F

2x̄

∂w̄′

∂η
dηdx̄

+

∫ x̄f

x̄i

∫ ∞

0
−r̄Hx

1

2x̄

∂2ū′

∂η2
− r̄Hy

1

2x̄

∂2v̄′

∂η2
− r̄Hz

1

2x̄

∂2w̄′

∂η2
dηdx̄.

Then, integration by parts is used as many times as needed to move all the

derivative operators from the state variables perturbations p̄′, ū′, v̄′ and w̄′ to the

adjoint variables r̄c, r̄x, r̄y, r̄z. The result of these operations are the right-hand-

side terms of the adjoint identity (3.59):

〈

R̄ (r̄) , q̄′〉
I
=

∫ x̄f

x̄i

∫ ∞

0

[

−∂r̄y
∂η

1

2x̄
− r̄zκ

2
z

]H

p̄′

[

1

2x̄
r̄c −

∂r̄c
∂x̄

+
η

2x̄

∂r̄c
∂η

+

(

i+ κ2z +
F ′

2x̄
− ηF ′′

2x̄

)

r̄x

−F ′∂r̄x
∂x̄

+
F

2x̄

∂r̄x
∂η

− 1

2x̄

∂2r̄x
∂η2

− 1

(2x̄)2
[η(ηF ′)′ − F ]r̄y

]H

ū′

[

−∂r̄c
∂η

+ F ′′r̄x +

(

i+ κ2z +
F ′

2x̄
+

(ηF ′)′

2x̄

)

r̄y

−F ′∂r̄y
∂x̄

+
F

2x̄

∂r̄y
∂η

− 1

2x̄

∂2r̄y
∂η2

]H

v̄′

[

r̄c +

(

i+ κ2z +
F ′

2x̄

)

r̄z

−F ′∂r̄z
∂x̄

+
F

2x̄

∂r̄z
∂η

− 1

2x̄

∂2r̄z
∂η2

]H

w̄′dηdx̄,

(C.9)
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and

b =

∫ ∞

0

[

(

r̄c + F ′r̄x
)H

ū′ + F ′r̄Hy v̄′ + F ′r̄Hz w̄′
]x̄f

x̄i

dη

+

∫ x̄f

x̄i

[

1

2x̄
r̄Hy p̄′ +

(

− η

2x̄
r̄c −

F

2x̄
r̄x +

1

2x̄

∂r̄x
∂η

)H

ū′ − 1

2x̄
r̄Hx

∂ū′

∂η

+

(

r̄c −
F

2x̄
r̄y +

1

2x̄

∂r̄y
∂η

)H

v̄′ − 1

2x̄
r̄Hy

∂v̄′

∂η

+

(

− F

2x̄
r̄z +

1

2x̄

∂r̄z
∂η

)H

w̄′ − 1

2x̄
r̄Hz

∂w̄′

∂η

]∞

0

dx̄

. (C.10)

The adjoint equations can be written from equation (C.9) by taking into account

the cost functional (C.7). Thus the adjoint equations are written in a reduced

form as

R̄ (r̄) =



















0

Q2ū

0

0



















. (C.11)

In a similar way, the boundary conditions and terminal conditions for the adjoint

system (C.11) can be found from the terms (C.10) and the boundary conditions

(C.5)-(C.6), and written as

r̄x = r̄y = r̄z = 0 at η = 0, (C.12)

r̄c = r̄x = r̄y = r̄z = 0 as η → ∞, (C.13)

and

r̄c = r̄x = r̄y = r̄z = 0 at x̄ = x̄f . (C.14)

With the adjoint system fully defined, a new expression for the optimality con-

dition (C.8) can be written as

dJ
dv̄w

=
[

r̄c + θ2vQvv̄w
]

η=0
, (C.15)

where the solution of r̄c is given by the adjoint equations:

− 1

2x̄

∂r̄y
∂η

− κ2z r̄z = 0;
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1

2x̄
r̄c −

∂r̄c
∂x̄

+
η

2x̄

∂r̄c
∂η

+

(

i+ κ2z +
F ′

2x̄
− ηF”

2x̄

)

r̄x − F ′∂r̄x
∂x̄

+
F

2x̄

∂r̄x
∂η

− 1

2x̄

∂2r̄x
∂η2

− 1

(2x̄)2
[η(ηF ′)′ − F ]r̄y = 0;

−∂r̄c
∂η

+ F”r̄x +

(

i+ κ2z +
F ′

2x̄
+

(ηF ′)′

2x̄

)

r̄y − F ′∂r̄y
∂x̄

+
F

2x̄

∂r̄y
∂η

− 1

2x̄

∂2r̄y
∂η2

= 0;

r̄c +

(

i+ κ2z +
F ′

2x̄

)

r̄z − F ′ ∂r̄z
∂x̄

+
F

2x̄

∂r̄z
∂η

− 1

2x̄

∂2r̄z
∂η2

= 0.
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Appendix D

Alternative actuators for

wall-based feedback control

In chapter 3, the chosen method of actuation was blowing and suction imple-

mented at the wall with wall-normal velocity, i.e. with an angle of attack of

π/2.

Throughout this chapter, heat transfer actuators and blowing and suction

along the streamwise and spanwise direction are also considered. The adjoint

formulation is extended in §D.1 and the numerical findings in §3.5.

D.1 Implementation of the alternative actuators

The wall-normal transpiration implemented in the previous chapter was successful

in attenuating the Klebanoff modes. In this chapter, a combination of actuators

is explored. The alternative actuators include heat transfer, and blowing and

suction with a direction other than wall-normal. Of the combinations considered,

not all can be directly implemented in a physical experiment. However, they are

still considered for the control and physical insight.

The formulation used closely follows the one described in §3.2. The inclusion

of the streamwise and spanwise wall transpiration is carried out by modifying the
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boundary conditions (3.18)-(3.20) defined in the previous section to

ū = αuūw at η = 0, (D.1)

ū(0) = αuū
(0)
w at η = 0, (D.2)

v̄ = αv v̄w at η = 0, (D.3)

v̄(0) = αv v̄
(0)
w at η = 0, (D.4)

and

w̄ = αww̄w at η = 0, (D.5)

w̄(0) = αww̄
(0)
w at η = 0. (D.6)

The variables ūw, ū
(0)
w , w̄

(0)
w and w̄

(0)
w represent the modified velocities on the wall

in their respective directions as v̄w, v̄
(0)
w . Furthermore, the heat transfer actuator

is added by modifying the boundary condition (2.70) as

∂τ̄

∂η
= ατ τ̄w at η = 0, (D.7)

∂τ̄ (0)

∂η
= ατ τ̄

(0)
w at η = 0, (D.8)

where τ̄w and τ̄
(0)
w represent values of heat transference induced at the wall across

x̄. The coefficients αu, αv, αw and ατ are used to select the actuator or the

combination of actuators that are active during the simulation, and they satisfy

the equation:

αu + αv + αw + ατ ≤ 4, αu, αv , αw, ατ ∈ {0, 1}.

The cost of the combination of actuators, is added to the cost functionals as:

J = α1J1 + α2J2 + α3J3 + α4J4 + Ju + Jv + Jw + Jτ (D.9)

and

J (0) = α
(0)
2 J (0)

2 + α
(0)
4 J (0)

4

+ J (0)
u + J (0)

v + J (0)
w + J (0)

τ ,

(D.10)
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where

Ju =
θ2u
2

∫ x̄f

x̄i

(

ūHwQuūw
)

dx̄,

Jv =
θ2v
2

∫ x̄f

x̄i

(

v̄HwQvv̄w
)

dx̄,

Jw =
θ2w
2

∫ x̄f

x̄i

(

w̄H
wQww̄w

)

dx̄,

Jτ =
θ2τ
2

∫ x̄f

x̄i

(

τ̄Hw Qτ τ̄w
)

dx̄,

J (0)
u =

θ
(0)2
u

2

∫ x̄f

x̄i

(

ū(0)Hw Q
(0)
u ū(0)w

)

dx̄,

J (0)
v =

θ
(0)2
v

2

∫ x̄f

x̄i

(

v̄(0)Hw Q
(0)
v v̄(0)w

)

dx̄,

J (0)
w =

θ
(0)2
w

2

∫ x̄f

x̄i

(

w̄(0)H
w Q

(0)
w w̄(0)

w

)

dx̄,

J (0)
τ =

θ
(0)2
τ

2

∫ x̄f

x̄i

(

τ̄ (0)Hw Q(0)
τ τ̄ (0)w

)

dx̄,

and J1, J2, J3, J4, J (0)
2 , J (0)

4 are defined as in the last chapter in equations

(3.23)-(3.28). The terms Qu, Qv, Qw, Qτ , Q
(0)
u , Q

(0)
v , Q

(0)
w and Q

(0)
τ , are

weighing Hermitian matrices that satisfy the equations Qu > 0, Qv > 0, Qw > 0,

Qτ > 0, Q
(0)
u > 0, Q

(0)
v > 0, Q

(0)
w > 0 and Q

(0)
τ > 0. The coefficients θu, θv, θw,

θτ , θ
(0)
u , θ

(0)
v , θ

(0)
w and θ

(0)
τ are weights that account for the cost of actuation, as

in the last chapter.

To simplify the notation, the control variables c̄w(x̄) are used to represent

the combination of the other actuators as

c̄w =



















αuūw

αv v̄w

αww̄w

ατ τ̄w


















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and c̄
(0)
w (x̄) to the remaining actuators as

c̄
(0)
w =



















αuū
(0)
w

αv v̄
(0)
w

αww̄
(0)
w

ατ τ̄
(0)
w



















.

The optimisation problem can now be defined as the search of the controls

c̄w(x̄) and c̄
(0)
w (x̄) that minimise J and J (0). Therefore, the optimality conditions

dJ
dc̄w

= 0, (D.11)

and

dJ (0)

dc̄
(0)
w

= 0. (D.12)

are the solution for the optimisation problem.

The Fréchet differentials of the cost functionals J ′ (D.9) and J (0) (D.10) are

now defined as

J ′ ≡ lim
h→0

J (c̄w + hc̄′w)− J (c̄w)

h

≡
∫ x̄f

x̄i

(

dJ (c̄w)

dc̄w

)H

Ic̄′wdx̄

and

J (0)′ ≡ lim
h→0

J (0)
(

c̄
(0)
w + hc̄

(0)
w

′
)

− J (0)
(

c̄
(0)
w

)

h

≡
∫ x̄f

x̄i





dJ (0)
(

c̄
(0)
w

)

dc̄
(0)
w





H

Ic̄
(0)
w

′dx̄

respectively. Similarly, equation (3.48) is rewritten as

q̄′ ≡ lim
h→0

q̄ (c̄w + hc̄′w)− q̄ (c̄w)

h
,

and equation (3.49) as

q̄(0)′ ≡ lim
h→0

q̄(0)
(

c̄
(0)
w + hc̄

(0)
w

′
)

− q̄(0)
(

c̄
(0)
w

)

h
.
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The cost functionals perturbations J ′ and J (0)′ can be expressed from (D.9)

and (D.10) as

J ′ = α1J ′
1 + α2J ′

2 + α3J ′
3 + α4J ′

4 + J ′
u + J ′

v + J ′
w + J ′

τ (D.13)

and

J (0)′ = α
(0)
2 J (0)

2
′ + α

(0)
4 J (0)

4
′

+ J (0)
u

′ + J (0)
v

′ + J (0)
w

′ + J (0)
τ

′,
(D.14)

where

J ′
u = θ2u

∫ x̄f

x̄i

(

ūHwQuū
′
w

)

dx̄,

J ′
v = θ2v

∫ x̄f

x̄i

(

v̄HwQvv̄
′
w

)

dx̄,

J ′
w = θ2w

∫ x̄f

x̄i

(

w̄H
wQww̄

′
w

)

dx̄,

J ′
τ = θ2τ

∫ x̄f

x̄i

(

τ̄Hw Qτ τ̄
′
w

)

dx̄,

J (0)
u

′ = θ(0)2u

∫ x̄f

x̄i

(

ū(0)Hw Q
(0)
u ū(0)w

′
)

dx̄,

J (0)
v

′ = θ(0)2v

∫ x̄f

x̄i

(

v̄(0)Hw Q
(0)
v v̄(0)w

′
)

dx̄,

J (0)
w

′ = θ(0)2w

∫ x̄f

x̄i

(

w̄(0)H
w Q

(0)
w w̄(0)

w
′
)

dx̄,

J (0)
τ

′ = θ(0)2τ

∫ x̄f

x̄i

(

τ̄ (0)Hw Q(0)
τ τ̄ (0)w

′
)

dx̄,

and the terms J ′
1, J ′

2, J ′
3, J ′

4, J
(0)
2

′, J (0)
4

′ are obtained from equations (3.42)-

(3.47).

The solution of the vectors q̄′ (3.50) and q̄(0)′ (3.51) can be obtained from

the CLUBR equations (2.64)-(2.68), as it was described by equations (3.52) and

(3.53) in the previous chapter, with boundary conditions (3.57) as η → ∞ and

initial conditions (3.58). The wall boundary conditions necessary to solve the

system of equations differs for each vector. For the vector q̄′, the equations

(3.54) and (3.56) are modified as shown below

ū′ = αuū
′
w at η = 0,
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v̄′ = αv v̄
′
w at η = 0,

w̄′ = αww̄
′
w at η = 0,

∂τ̄ ′

∂η
= ατ τ̄

′
w at η = 0.

Similarly, the vector q̄(0)′ is obtained by modifying equations (3.55) and (3.56),

as follows

ū(0)′ = αuū
(0)
w

′ at η = 0,

v̄(0)′ = αv v̄
(0)
w

′ at η = 0,

w̄(0)′ = αww̄
(0)
w

′ at η = 0,

∂τ̄ (0)′

∂η
= ατ τ̄

0
w
′ at η = 0.

As shown in the previous chapter, the adjoint identity (3.59) is crucial in

obtaining a system of adjoint equations that can be used to rewrite the gradients

(D.11) and (D.12) to simpler expressions. The expansion of the adjoint iden-

tity (3.59) and the method to obtain the adjoint equation systems is shown in

Appendix B.

The procedure is identical and thus, the cost functional perturbation J ′

(D.13) is obtained from the b terms (B.2) while considering the boundary condi-

tions (3.54), (3.57), (D.1)-(D.1) and initial conditions (3.58), and also the adjoint

boundary (B.7)-(B.8) and terminal (B.9)-(B.11) conditions. This leads to

J ′ =
∫ x̄f

x̄i

[

αu

(

1

2x̄

µ

T

∂r̄x
∂η

− 1

x̄
(γ − 1)M2µF

′′

T
r̄e + θ2uQuūw

)H

ū′w

+αv

(

1

T
r̄c + θ2vQvv̄w

)H

v̄′w + αw

(

1

2x̄

µ

T

∂r̄z
∂η

+ θ2wQww̄w

)H

w̄′
w

+ατ

(

− 1

2x̄

µ

PrT
r̄e + θ2τQτ τ̄w

)H

τ̄ ′w

]

η=0

dx̄.

(D.15)

Additionally, the cost functional perturbation J (0)′ (D.14) can be expressed from

the boundary (3.55), (3.57), (D.1)-(D.1) and initial conditions (3.58), together

with the adjoint boundary (B.15)-(B.16) and terminal (B.17)-(B.19) conditions,
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yielding

J (0)′ =
∫ x̄f

x̄i

[

αu

(

1

2x̄

µ

T

∂r̄x
∂η

− 1

x̄
(γ − 1)M2µF

′′

T
r̄e

+θ(0)2u Q
(0)
u ū(0)w

)H
ū(0)w

′

+αv

(

1

T
r̄c + θ(0)2v Q

(0)
v v̄(0)w

)H

v̄(0)w
′

+αw

(

1

2x̄

µ

T

∂r̄z
∂η

+ θ(0)2w Q
(0)
w w̄(0)

w

)H

w̄(0)
w

′

+ατ

(

− 1

2x̄

µ

PrT
r̄e + θ(0)2τ Q(0)

τ τ̄ (0)w

)H

τ̄ (0)w
′
]

η=0

dx̄.

(D.16)

The Fréchet differential definition (D.1) is used to extract the gradient (D.11)

from the cost functional perturbation J ′ (D.15), as follows

dJ
dc̄w

=





















αu

[

1
2x̄

µ
T

∂r̄x
∂η − 1

x̄(γ − 1)M2 µF ′′

T r̄e + θ2uQuūw

]

η=0

αv

[

1
T r̄c + θ2vQvv̄w

]

η=0

αw

[

1
2x̄

µ
T

∂r̄z
∂η + θ2wQww̄w

]

η=0

ατ

[

− 1
2x̄

µ
PrT r̄e + θ2τQτ τ̄w

]

η=0





















T

. (D.17)

The solutions of r̄c, r̄x, r̄z and r̄e are obtained from solving the adjoint equations

(3.64)-(3.67) with boundary conditions (B.7) and (B.8), and terminal conditions

(B.9)-(B.11).

Correspondingly, the gradient (D.12) is extracted from the cost functional

perturbation J (0)′ (D.16) using the definition (D.1), resulting in

dJ (0)

dc̄
(0)
w

=























αu

[

1
2x̄

µ
T

∂r̄x
∂η − 1

x̄(γ − 1)M2 µF ′′

T r̄e + θ
(0)2
u Q

(0)
u ū

(0)
w

]

η=0

αv

[

1
T r̄c + θ

(0)2
v Q

(0)
v v̄

(0)
w

]

η=0

αw

[

1
2x̄

µ
T

∂r̄z
∂η + θ

(0)2
w Q

(0)
w w̄

(0)
w

]

η=0

ατ

[

− 1
2x̄

µ
Pr T r̄e + θ

(0)2
τ Q

(0)
τ τ̄

(0)
w

]

η=0























T

. (D.18)

For the gradient (D.18), the solutions r̄c, r̄x, r̄z and r̄e are derived from the

adjoint equations (3.68)-(3.72) with boundary conditions (B.15) and (B.16), and

terminal conditions (B.17)-(B.19).
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As in the previous chapter, the controls c̄w and c̄
(0)
w are obtained independ-

ently, and can be summed using the decomposition (2.55), such that



















ū0

v̄0

w̄0

∂τ̄0
∂η



















= C(0)



















αuū
(0)
w

αv v̄
(0)
w

−αw
ikx
kz

w̄
(0)
w

ατ τ̄
(0)
w



















+ C



















αu
ikz
kx

ūw

αv
ikz
kx

v̄w

αww̄w

ατ
ikz
kx

τ̄w



















at η = 0.
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