
Variability-Aware Circuit
Performance Optimisation Through

Digital Reconfiguration

Pedro Burmester Campos

Ph.D.

University of York
Electronics

November, 2015

2

Abstract

This thesis proposes optimisation methods for improving the performance of circuits imple-

mented on a custom reconfigurable hardware platform with knowledge of intrinsic variations,

through the use of digital reconfiguration.

With the continuing trend of transistor shrinking, stochastic variations become first order

effects, posing a significant challenge for device reliability. Traditional device models tend

to be too conservative, as the margins are greatly increased to account for these variations.

Variation-aware optimisation methods are then required to reduce the performance spread

caused by these substrate variations.

The Programmable Analogue and Digital Array (PAnDA) is a reconfigurable hardware plat-

form which combines the traditional architecture of a Field Programmable Gate Array

(FPGA) with the concept of configurable transistor widths, and is used in this thesis as

a platform on which variability-aware circuits can be implemented.

A model of the PAnDA architecture is designed to allow for rapid prototyping of devices,

making the study of the effects of intrinsic variability on circuit performance – which re-

quires expensive statistical simulations – feasible. This is achieved by means of importing

statistically-enhanced transistor performance data from RandomSPICE simulations into a

model of the PAnDA architecture implemented in hardware. Digital reconfiguration is then

used to explore the hardware resources available for performance optimisation. A bio-inspired

optimisation algorithm is used to explore the large solution space more efficiently.

Results from test circuits suggest that variation-aware optimisation can provide a significant

reduction in the spread of the distribution of performance across various instances of circuits,

as well as an increase in performance for each. Even if transistor geometry flexibility is

not available, as is the case of traditional architectures, it is still possible to make use of

the substrate variations to reduce spread and increase performance by means of function

relocation.

3

4

Contents

Abstract 3

Table of Contents 5

List of Figures 9

List of Tables 21

Acknowledgments 23

Declaration 25

1 Introduction 27

1.1 Introduction . 27

1.2 The PAnDA Project . 28

1.3 Hypothesis . 29

1.4 Structure of Thesis . 30

1.5 Contributions and Novelties . 31

1.6 Publications . 32

2 Variability in CMOS Devices 33

2.1 Introduction . 33

2.2 CMOS Technology and Moore’s Law . 35

2.3 Systematic Variability . 37

2.3.1 Across-Field Variations . 37

2.3.2 Layout-Dependent Variations . 39

2.4 Intrinsic Variability . 40

2.4.1 Random Discrete Dopants . 41

2.4.2 Line-Edge Roughness . 41

2.4.3 Gate Granularity . 42

2.4.4 Oxide-Thickness Fluctuations . 43

2.4.5 Temporal Variations . 43

2.4.6 Interconnect Variability . 44

5

6 Contents

2.5 Impact of Variability . 45

2.6 Summary . 48

3 Variability Mitigation in Circuit Design 49

3.1 Introduction . 49

3.2 Pre-Fabrication Approaches . 50

3.2.1 Variability-Aware Device Modelling 50

3.2.2 Configurable Analogue Transistors . 54

3.2.3 Statistical Static Timing Analysis . 56

3.3 Manufacturing Approaches . 58

3.4 Post-Fabrication Approaches . 61

3.4.1 Adaptive Body-Bias . 61

3.4.2 3D Stacking . 62

3.4.3 Razor . 63

3.4.4 Reconfigurable Hardware Platforms 64

3.5 Summary . 83

4 PAnDA Emulator: A Tool for Accelerated Variability Characterisation 87

4.1 Introduction . 87

4.2 Configurable Transistors . 90

4.3 Configurable Analogue Blocks . 90

4.4 SPICE: A Scalability Issue . 100

4.5 Accelerating SPICE in Hardware . 101

4.5.1 Feature Block . 102

4.6 Configurable Logic Block . 106

4.7 PAnDA Emulator v1: A Sea of CLBs . 106

4.8 Configuring PAnDA . 107

4.9 Summary . 108

5 Virtual Physical Instances and Model Accuracy 111

5.1 Introduction . 111

5.2 Virtual Physical Instances . 113

5.3 Control Module . 114

5.4 Monitoring and Measuring Variability . 116

5.5 Test-Circuits . 117

5.5.1 3-Stage Ring Oscillator . 120

5.5.2 2-bit Multiplier . 120

5.6 Correlation with SPICE . 122

5.7 Inaccuracies in FPGA-Based Model . 126

5.8 Adjustments to the Model . 128

Contents 7

5.9 Summary . 133

6 Mitigating Variability With The PAnDA Emulator 135

6.1 Introduction . 135

6.2 Bio-inspired Circuit Design . 136

6.3 Mitigating Variability with Digital Reconfiguration 139

6.3.1 Functionally-Neutral Operations . 140

6.3.2 Genetic Algorithms . 142

6.3.3 Bio-Inspired Performance Optimisation on PAnDA Emulator v1 . . . 146

6.4 PAnDA Emulator v2 . 155

6.5 Mitigating Variability Across Large Numbers of VPIs 158

6.5.1 Test-Circuits . 159

6.5.2 Correlation with SPICE . 164

6.5.3 Performance Optimisation with Emulator v2 167

6.6 Summary . 171

7 Conclusions and Further Work 173

7.1 Introduction . 173

7.2 Hypothesis . 173

7.3 PAnDA & Modelling . 175

7.4 PAnDA Emulator & VPIs . 177

7.5 Exploiting variability for optimisation . 178

7.6 Future Directions . 180

Appendix A Source files 183

Bibliography 185

8 Contents

List of Figures

2.1 The evolution of the transistor count in a CPU (in brown, scale on the right)

and the size of the transistors used (in blue, scale on the left) through the

least 40 years. Figure sourced from [1]. 34

2.2 Physical structure of an n-channel MOSFET. Key physical features such as

width (W), channel length (L), and oxide thickness (Tox) are labelled in the

figure. Figure sourced from [2]. 36

2.3 Cross-section of two transistors in a CMOS gate, fabricated in a p− substrate

process. The PMOS transistor, depicted on the left, includes an n− type well.

Typically, the higher the dopant concentration, the larger the conductivity of

the material. 36

2.4 Illustration of the effect of feature scaling on a device. (a) The traditional

device, featuring continuous ionised dopant charge and smooth boundaries

and interfaces; (b) a 22nm MOSFET, featuring less than 50 silicon atoms

along the length of the channel; (c) a 10nm MOSFET set for production in

2020, with only a handful of atoms along the channel’s length. Figure sourced

from [3]. 37

2.5 The process of photolithography, where light is passed through a photomask

and a lens, and used to etch layout features on a photoresist. Figure sourced

from [4]. 38

2.6 The Well-Proximity Effect, whereby implanted ions are non-uniformly dis-

tributed along the wells in which the nMOS transistors are formed. (a) the

ion implantation and reflection mechanisms; (b) the VT variation with respect

to the distance between the well-edge and the gate-edge. Figure sourced from

[5]. 39

9

10 List of Figures

2.7 Illustration of some of the key sources of intrinsic variability on bulk MOS-

FETs. Figure sourced from [6]. 40

2.8 Illustration of two different distributions of 130 dopant atoms in the chan-

nel depletion region, resulting from a 3D atomistic simulator. (a) MOSFET

exhibiting a 0.97V threshold voltage; (b) MOSFET with 0.57V threshold volt-

age. Figure sourced from [7]. 42

2.9 Line-edge roughness (LER) caused by the discrete molecular nature of the pho-

toresist. (a) shows an illustration of LER in a photoresist, with its molecules

drawn as circles, as the developed edges drawn as red lines [6]; (b) shows an

actual picture of LER in photoresist from Sandia Labs. Figure sourced from [3]. 42

2.10 Broken Si-H bonds at the Si-SiO2 interface, resulting from stress phases. Some

H2 is generated from the generated traps, resulting in permanent changes to

the device’s threshold voltage. Figure sourced from [8]. 44

2.11 The characteristic I − V curve of transistors plotted for a large number of

modelled devices. Each of the 1000 red lines depicts the behaviour of one

transistor, and the blue line represents the average. Figure taken from [9]. . . 45

2.12 Illustration of VT variation in CMOS technology. (a) variation in a 90nm

process, with a sample of 3481 devices [10]; (b) the implications of a varying

VT for chip performance. Figure sourced from [11]. 46

2.13 Percentual reduction in static noise margin (SNM) of an SRAM cell due to

ageing, becoming more pronounced at more advanced technology nodes. Fig-

ure sourced from [12]. 46

2.14 The impact of intrinsic variability on dynamic power consumption and delay,

measured for various Monte-Carlo runs for different sigma values, using SPICE

and Static Timing Analysis (STA). Figure sourced from [13]. 47

3.1 The various approaches to process variability mitigation, applied at different

stages in the life-cycle of a design, from when it is elaborated and studied,

through its fabrication, and down to the post-fabrication adjustments that its

architecture might allow. 51

List of Figures 11

3.2 The operation of RandomSPICE: BSIM4 models are generated in with the

atomistic simulator, which are then used on a template netlist, and run using

a SPICE back-end. A database of virtually fabricated devices can then be

analysed for variability-awareness purposes. Figure sourced from [14]. 53

3.3 Schematic of a Configurable Analogue Transistor. Adding to the gate (G),

drain (D) and source (S) common terminals, a configuration word of length

n controls the number of adjustment devices connected in parallel with M0,

ultimately determining the width of the CAT. Figure sourced from [15]. . . . 55

3.4 CAT methodology used in CAT-based design. Figure sourced from [16]. . . . 56

3.5 Distribution of the drain current of 100,000 simulated 40µm wide nMOS de-

vices (a) before CAT introduction; (b) after CAT introduction with 3 adjust-

ment devices of widths of 1, 2 and 4µm. The dotted line in (b) represents the

original distribution. Figure sourced from [17]. 57

3.6 A probabilistic timing graph for a circuit, with gate (green) and interconnect

(blue) delays represented as probability distribution functions (PDF). Figure

sourced from [18]. 58

3.7 The path-based SSTA (top) and block-based (bottom). The former analyses

the n most critical paths of the circuit, whereas the latter makes extensive use

of the statistical max operation in the delay estimation to speed up compu-

tation. Figure sourced from [18] . 59

3.8 The variations in layout feature geometry introduced by photolithography

limitations (on the left) and the same variations corrected with OPC (on the

right). Figure sourced from [4]. 60

3.9 3D integration using Variation-aware Die Matching, combining slow layers

with fast ones, resulting in each 3D chip meeting performance requirements.

Figure sourced from [19]. 62

3.10 The Razor pipeline operation. (a) the internal structure of a Razor flip-flop;

(b) the error detection mechanism being activated due to a mismatch between

the outputs of the main and shadow flip-flops. Figure sourced from [20]. . . . 63

3.11 A logic cell (or slice) from the Xilinx 6-series family of FPGAs, containing

look-up tables, storage elements, multiplexers, and carry-logic. Figure sourced

from [21]. 66

12 List of Figures

3.12 The process of translating a circuit specification to a bitstream which config-

ures the FPGA. Figure sourced from [22]. 67

3.13 Top view of a standard FPGA architecture 68

3.14 Example of a delay map extracted from an Altera Cyclone III FPGA. A vari-

ation of 3.4% is observed between the measured logic cells. This information

can be fed back to place and route algorithms for variation-aware implemen-

tations. Figure sourced from [23]. 69

3.15 A simplified architecture of the Heidelberg FPTA. nMOS cells are depicted in

blue, pMOS cells in light red. Connections and transistor widths are config-

ured through SRAM. The array is 16x16 cells large. Input voltage patterns

as well as measured voltages are buffered in the represented IO cells and sub-

sequently applied to the transistor array. The figure is taken from [24]. 71

3.16 The hierarchical architecture of PAnDA, with the hierarchy being shown from

top-layer (left) to bottom-later (right). The topmost layers host the logic

functionality of a design, and the bottom layers provide the analogue flexibility

through the use of Configurable Transistors. Figure sourced from [25]. 72

3.17 Schematic of a pMOS PAnDA Configurable Transistor. The transistor sizes

used are L0...6 = 40nm and W0...6 = [120, 120, 140, 160, 180, 200, 220]nm, al-

lowing for CT widths between 120 and 1140nm. Modified image from [26]. . 74

3.18 All CT width configurations achievable with set of individual transistor width

setW0...6=[120, 120, 140, 160, 180, 200, 220]nm for transistorsM0...6 which make

up a Configurable Transistor. Figure sourced from [27]. 75

3.19 I − V characteristics for all 128 possible width configurations of a nMOS

CT (blue lines) and the corresponding effect of variability (salmon-coloured

area). The drain-source voltage (Vds) is plotted on the x-axis, the drain-source

current (Ids) is plotted on the y-axis, and the gate-source voltage (Vgs) is 1V.

The effective width of the CT corresponding to certain I−V curves are shown

on the right. Figure sourced from [25]. 76

List of Figures 13

3.20 I − V characteristics of the five different configurations for width 460 nm

of a nMOS CT (a) and the effect of stochastic variability upon each of the

five width configurations (b-f). The drain-source voltage (Vds) is plotted on

the x-axis, the drain-source current (Ids) is plotted on the y-axis, and the

gate-source voltage (Vgs) is 1V . Figure taken from [25]. 77

3.21 Schematic of a Combinational CAB. The Function Configuration Decoder

is configured through SRAM, in turn bringing the configurable interconnect

block to the appropriate configuration, routing the correct signals to the inputs

of the CTs. This is a modified version of a figure used in [28]. 78

3.22 Schematic of a Sequential CAB. A set of configurable inverters The Function

Configuration Decoder is configured through SRAM, in turn bringing the

configurable interconnect block to the appropriate configuration, routing the

correct signals to the inputs of the CTs. This is a modified version of a figure

used in [28]. 79

3.23 Schematic of the switch matrix associated with one CLB, establishing the

required connections between the CABs, as well as routing the signals which

will be propagated to other CLBs. 80

3.24 The input multiplexer and output demultiplexer connections established with

different select signals. A Z is shown when the output is in a high-impedance

state. 82

3.25 A CLB-switch-matrix pair, depicting all internal and external connections. . . 83

3.26 Breakdown of the SRAM mapping for the configuration of one CLB on PAnDA.

85 14-bit words are used to fully configure a CLB, including connectivity, func-

tionality, and CT geometry. 84

3.27 A series of 32 7-stage ring oscillators implemented on a PAnDA-DREi chip,

fabricated at 65nm. Each illustrated square represents one ring oscillator. The

ring oscillators consist of 7 inverters connected in series, with CT widths set to

275nm. The colours illustrate the relative error of the measured frequencies

with respect to the calculated average across the 32 oscillators. 85

14 List of Figures

4.1 Flow-chart depicting the ultimate goal of the modelling of PAnDA for variability-

tolerance, along with design optimisation at a post-fabrication stage per-

formed on both the fabricated device and the model, exploiting the recon-

figurable nature of the architecture. 88

4.2 A CAB structure configured as a 3-input NAND gate (a). The state of each

transistor is represented by a different block illustration, and it is this config-

uration which confers upon the CAB the desired functionality. (b) shows the

simplified equivalent circuit. 91

4.3 Waveforms for 300 RandomSPICE runs of a 3-input NAND gate implemented

using the SPICE model for a PAnDA CCAB, with nMOS transistors 240nm

wide and pMOS 480nm. The bottom waveform depicts the current behaviour

at the output of the CAB. The input pattern depicted by the top three wave-

forms was generated so as to cover every possible output transition for a

3-input NAND gate. 92

4.4 A set of 300 RandomSPICE runs of a falling (a) and rising (b) transition of a

3-input NAND gate implemented using the SPICE model of a PAnDA CAB,

with nMOS Configurable Transistors 240nm wide and pMOS 480nm. The

bottom waveform depicts the current behaviour at the output of the CAB. . 94

4.5 Rising edge propagation delay characterisation of a 3-input NAND gate imple-

mented using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS

Configurable Transistors 240nm wide and pMOS 480nm. The scatter plot

on the right expands on the left boxplot by making it possible to see the

transitions associated with every propagation delay measurement. 95

4.6 The process of extracting propagation delays from a RandomSPICE model

of a PAnDA CAB, depending on the CT sizes and mapped function, and

repeating it for different combinations of RandomSPICE transistor models.

The end result is a library of CAB Model Cards (CM Cards). 96

4.7 Rising edge propagation delay characterisation of a 3-input NAND gate imple-

mented using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS

and pMOS CTs sized according to the specified set. 97

List of Figures 15

4.8 Rising edge propagation delay characterisation of an inverter implemented

using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS and

pMOS CTs sized according to the specified set. 98

4.9 Rising edge propagation delay characterisation of a AOI21 function imple-

mented using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS

and pMOS CTs sized according to the specified set. 99

4.10 Comparison between the propagation delays of 300 RandomSPICE runs of

a CAB-based inverter using the standard and alternative configurations to

achieve the specified CT. The blue boxplots represent the standard configu-

ration, and orange represent the alternative. 100

4.11 Time required to simulate a design in SPICE with varying numbers of CABs,

with a 1ps time-step and a duration of 5ns. The slope, labelled as m, suggests

that each additional CAB represents an overhead of 358s in simulation time. 101

4.12 The basic concept behind the incorporation of RandomSPICE simulation data

into a hardware-based model of PAnDA. The outputs of a CAB are connected

to a feature block, which incorporates SPICE data stored in a block of mem-

ory. In the case of the delay characterisation used in this work, the feature

block detects any changes in its inputs and delays the process of updating the

outputs by an amount specified in memory, previously measured in simulation. 103

4.13 The finite state-machine which controls the operation of the feature block

attached to each CAB on the PAnDA Emulator. Based on input transitions

and CAB function, the value loaded to the timer will determine when the

output gets updated following from change in inputs. 104

4.14 The process of randomly choosing a CM Card from the library to be written

to the memory which is read by the digital counters in the feature blocks

associated with CABs (A and B). 105

4.15 The flip-flop based configuration-chain of the PAnDA Emulator. Multiplexers

control whether the bitstream is routed into the CLB or if it gets passed along

without configuring it. 107

16 List of Figures

4.16 Breakdown of the bitstream required to configure one CLB on the PAnDA

Emulator. 4-bit input select and 3-bit output signals are stacked, along with

output enables, for the routing bitstream. The function bitstream includes

one 3-bit select word for each CAB in the CLB. The numbers of the left

represent the number of bits of each white box included in the bitstream, and

the numbers on the right show the length increase in the bitstream as each

set of blocks is added. 109

5.1 The three different layers that make up the PAnDA Emulator. The creation

of PAnDA VPIs is done by configuring the top layer for a particular design,

and then iterating through different configurations of the middle layer, by

assigning sets of CM Cards to the feature blocks. 113

5.2 The hardware set-up for the PAnDA Emulator, with the XC6VLX760 board

displayed on the right, housing the PAnDA model, and the control module

implemented on the XUPV5 board, displayed on the left. Both are connected

through a 40-pin ribbon cable. 115

5.3 Detailed operation of Delay Mode of the implemented finite state-machine,

illustrating the output sampling, transition detection and delay storage stages

for each output on the Emulator. A RAM depth of 14 addresses is represented

instead of the actual 1024 for simplicity of representation. The outputs at

which no transition is detected are assigned a delay equivalent to the maximum

address, which is later interpreted as a non-transitioning output by the processor.118

5.4 Operation of the measurement finite state-machine, which either measures the

propagation of each output on the Emulator, or the frequency of the outputs

of ring oscillators, depending on which mode is configured by the user. 119

5.5 A series of four 3-stage ring oscillators implemented in a row on the Emula-

tor, using the inverter function of a CAB. Each CAB block is represented in

light blue. The outputs on which the individual frequencies are measured are

illustrated as red boxes. 120

5.6 The mapping of a 2-bit multiplier function on the Emulator, using two of its

rows of CLBs. It takes inputs A2, A1, B1 and B0 and outputs a four-bit

number R. The outputs of the multiplier are represented by the red boxes. . 121

List of Figures 17

5.7 The input pattern generated for the full propagation delay extraction of a

2-bit multiplier circuit. The top four waveforms represent the 2-bit inputs A

and B, and the bottom four represent the four bits of result R. All y-axes

represent voltage expressed in volts (v), and the common x-axis represents

time expressed in hundreds of nanoseconds. 122

5.8 Boxplots of the distributions of frequencies generated for each CT size. Each

boxplot contains 300 frequencies measured on the Emulator, with a sampling

clock of 1MHz. Taking into account the scaling factor of the model, these

frequencies would be multiplied by a factor of 106, moving them to the GHz

range. 123

5.9 Correlation between the frequencies generated by 300 ring oscillators imple-

mented on the Emulator and simulated in SPICE. 124

5.10 Correlation between the first (a), second(b), third (c) and fourth (d) 2-bit

multipliers instantiated on the Emulator, and their respective simulations in

RandomSPICE. The Pearson correlation is calculated for each multiplier. . . 126

5.11 The revised delay extraction set-up, with the slew-rate of the input stimulus

and the output load both being provided by CABs with CTs of the same size. 128

5.12 Characterisation of the error emerging from different combinations of CT sizes

for each of the 3-stages of the ring oscillators. The bottom right figure shows

how the graphs should be read: the top legend above each graph shows the

CT size of the second inverter stage; the x-axis on each graph shows the CT

size of the 3rd inverter stage, and the y-axis depicts the CT size of the 1st

inverter on the oscillator. The error is plotted through the use of a heat-map,

with lighter areas representing a higher error. 129

5.13 Correlation between 300 ring oscillators implemented on the Emulator and

simulated in SPICE, after corrections applied to the load and input slew rate

during the modelling stage. 131

5.14 Extraction of delays and other features of VLSI standard cells, based on input

slew rate and output capacitance, to create Liberty files which are imported

to an ECAD tool to enable the identification of timing violations. 132

5.15 Comparison between the data included in a Liberty file associated with a

NAND2 logic cell and a CAB configured as a NAND2 on the Emulator. . . . 133

18 List of Figures

6.1 Different rotations of the CABs inside a CLB, configured as a 3-stage ring-

oscillator. 141

6.2 A flowchart depicting the behaviour of a basic Genetic Algorithm. 144

6.3 The generation of an off-spring from two different parents, using the crossover

operator in (a) uniform mode and (b) n-point mode. 146

6.4 Integrating a Genetic Algorithm with the PAnDA Emulator set-up. The Con-

trol Module runs the GA and communicates the necessary data and actions

to the Emulator, which sends results back through the GPIO communication

channel. 148

6.5 Example encoding of an individual for the Genetic Algorithm running on the

PAnDA Emulator. 149

6.6 The initial circuit for the 16 ring-oscillators mapped to the Emulator (a), and

the corresponding variation in the resulting frequencies for each oscillator (b),

showing a maximum variation of around 8%. 151

6.7 The evolved solution for the 16 ring-oscillators mapped to the Emulator (a),

and the corresponding variation in the resulting frequencies for each oscillator

(b), having succesfully reduced the maximum variation with respect to the

target frequency to 1.3%. 152

6.8 Encoding of individual for the optimisation running on the PAnDA Emulator

for a series of 2-bit multipliers, including the alternative CT configuration. . . 153

6.9 The evolved circuit after 600 generations, reducing the maximum difference

in propagation delay of multipliers 1, 2 and 3 to the target from 20% to 3%.

The GA has come up with considerably different solutions for each multiplier,

making use of the local variations to find common ground between them. . . 154

6.10 With the Emulator v2, the varying CT sizes are replaced by a varying output

load. The CTs in every CAB are fixed at a size which minimises the variation

in rising- and falling-edges. 155

6.11 The duration of rising- and falling-edges of a NAND2 gate for each of the

modelled CT sizes. 156

6.12 The duration of rising- and falling-edges of a NAND2 gate for each of the

modelled CT sizes, with the addition of the 180n240p, following a CMOS

ratio of (3:4) rather than the previously used (1:2). 157

List of Figures 19

6.13 Flowchart describing the experiments carried out for this work. Described in

text. 159

6.14 The ISCAS ’87 C17 benchmark circuit, implemented with 6 NAND2 gates.

The circuit takes in five inputs, A2, A1, A0, B1 and B0, and generates two

outputs, Y 1 and Y 0. 160

6.15 A C17 design mapped to the Emulator fabric, using 2-input NAND gates. . . 160

6.16 Distribution of the worst-case propagation delay of 1000 instances of a C17

circuit, implemented on the Emulator. 161

6.17 A d-type latch circuit, designed using four NAND2 gates. 163

6.18 A d-type latch design mapped to the Emulator fabric, using 2-input NAND

gates. Two unused CLBs are represented in the figure. 163

6.19 Distribution of the worst-case propagation delay of 1000 instances of a trans-

parent latch, implemented on the Emulator. 164

6.20 Correlation between the 1007 different propagation delays measured with the

Emulator, on the y-axis, and those taken from the equivalent SPICE simula-

tion, on the x-axis. Each plotted point corresponds to a particular measured

transition of the C17 circuit. Some measurements give the same result, and

therefore appear overlapped on the graph. 165

6.21 Distribution of the relative error between measurements taken with the Emu-

lator and those taken from the equivalent SPICE simulation of a C17 circuit.

The error is plotted on the x-axis, and its percentage of occurrence on the

y-axis. 166

6.22 Comparison between the worst-case propagation delay of each of the 1000 vir-

tual transparent latch instances created on the Emulator, and those simulated

in SPICE. 167

6.23 Integrating the GA-based optimisation with the PAnDA VPI generation from

random sampling of CM Cards. The loop represented by the red arrow is

repeated once for every VPI that is instantiated. 169

20 List of Figures

6.24 Comparison between the worst-case propagation delay of C17 instances, mea-

sured before and after optimisation, along with the approximate normal dis-

tribution curve-fit parameters for each. The GA was allowed to run for a

maximum of 10 generations for each VPI, or until the worst-case propagation

delay was measured below 380ps. 170

6.25 Comparison between the worst-case propagation delay measured before and

after optimisation of 1000 instances of a C17 circuit, along with the approxi-

mate normal distribution curve-fit parameters for each. The GA was allowed

to run for the full generations for each PAnDA VPI. 171

List of Tables

3.1 Configurable CCAB Functions . 80

3.2 Configurable SCAB Functions . 81

4.1 CT sizes selected for the characterisation of variability on the PAnDA archi-

tecture. 94

4.2 A breakdown of the transistors used in the standard and alternative CT con-

figurations to achieve the set of sizes specified for the experiment. An X

denotes a used transistor, whereas an o represents a not-used transistor. . . . 98

5.1 Comparison between the means of the distributions of frequencies generated

by the 3-stage ring oscillators implemented in SPICE and on the Emulator,

for each modelled CT size. 127

5.2 Mismatch between the frequencies generated by the 3-stage ring oscillators

implemented in SPICE and on the Emulator, for each modelled CT size,

before and after the CM Cards were updated to include appropriate output

loads and input slew rates. 130

6.1 Table showing the frequencies and respective relative errors of the 16 oscilla-

tors, of both the initial and evolved solutions. The (-) and (+) signs indicate

if the frequency is below or above the target, respectively. 152

6.2 The differences in propagation delay between the target multiplier and the

other three instances, before and after running the GA. 153

6.3 Truth table for the C17 function. 162

6.4 Truth table for the d-type latch, or Transparent Latch. 164

21

22 List of Tables

Acknowledgments

There are many people who have been essential in making it possible for me to finish this

thesis.

I wish to express my gratitude to Prof. Andy Tyrrell, Dr. Martin Trefzer, Dr. James

Alfred Walker and Dr. Simon Bale for their knowledge, understanding and encouragement

throughout the duration of this work. Their exceptional advice, uncompromising patience,

and research creativity have allowed me to pursue this work with a constant sense of curiosity.

I realise I have been very fortunate for having such outstanding supervisors and colleagues.

I would also like to extend my gratitude to everyone involved in the PAnDA project, whose

vision and work, even before I became part of it, allowed me to take my research in interesting

directions.

Finally, I would like to thank my parents, my brother and my sister, for always being

supportive of my work, during the good and the less good moments in the past four years.

Without their understanding and encouragement, this work would not have been possible.

23

24

Declaration

This thesis is a presentation of my original research work. Wherever contributions of others

are involved, every effort is made to indicate this clearly, with due reference to the literature,

and acknowledgement of collaborative research and discussions.

The work was done under the guidance of Prof. Andy Tyrrell and Dr. Martin Trefzer, at

the Electronics Department of the University of York. This work has not previously been

presented for an award at this, or any other, University.

The work presented in this thesis resulted in publication in the proceedings of the 2013 IEEE

Congress of Evolutionary Computation [31], in the 2014 IEEE International Conference on

Evolvable Systems [32], in the Designing with Uncertainty workshop at DATE’15, and finally

a publication in the proceedings of the 2015 International Conference on Field Programmable

Logic and Applications (FPL) [33].

25

26

Chapter 1

Introduction

Contents

1.1 Introduction . 27

1.2 The PAnDA Project . 28

1.3 Hypothesis . 29

1.4 Structure of Thesis . 30

1.5 Contributions and Novelties . 31

1.6 Publications . 32

1.1 Introduction

Technology has become a major part of society, playing a key role in almost any activity

today. As such, electronic device performance has been relentlessly pushed forward to allow

for more complex tasks to be completed with increasingly smaller amounts of energy.

This has motivated the constant shrinking of devices, pushing both their performance and

their manufacturing to their physical limits. As transistors become only a few atoms wide,

it becomes increasingly difficult to manufacture two devices that behave exactly alike [7].

Modern day devices can be made up of billions of transistors, and therefore these variations

give rise to a dynamic fabric, with performance varying across the substrate depending on

the magnitude of these variations affecting each transistor. This poses a significant threat

for the manufacturing of reliable devices [29].

Reconfigurable hardware platforms provide flexible substrates on which to implement cir-

cuits, allowing for the same design to be implemented in different locations of the fab-

ric, effectively making use of different hardware resources. Approaches as, for instance,

27

28 1.2. The PAnDA Project

variability-aware mapping attempt to take these variations into account in the process of

mapping designs to Field-Programmable Gate Arrays (FPGA), a family of reconfigurable

hardware platforms. Combining this idea with the inevitable variability of the fabric, an

opportunity arises to explore these variations for circuit performance optimisation. The

Programmable Analogue and Digital Array (PAnDA) takes this reconfigurability one step

further by allowing for a wide range of transistor geometries, effectively altering the electric

properties of each transistor.

In this thesis, an approach is described which makes use of that variation to actually im-

prove the performance of circuits, as well as to reduce the spread that it causes, on the

custom reconfigurable hardware platform that is PAnDA. Investigating the variability mit-

igation of PAnDA across a large number of physical devices is a time-consuming process,

and also potentially not economically viable. The more economically viable option is to

run variability-aware simulations of the architecture, making use of tools such as Random-

SPICE, but this tends to be even more time-consuming than real hardware. An embedded

model is used to accelerate the performance characterisation process across a large number

of virtual physical instances (VPI) of the PAnDA architecture, making use of the inherent

parallelism of hardware to achieve the speed-up with respect to software-based simulations.

Variability-aware data is included by means of a feature block which contains data extracted

from low-level software-based simulations. The effects of variability then propagate to the

circuit-level, causing a distribution of virtual devices in terms of performance.

With the developed variability-aware fast prototyping tool, evolutionary models inspired

from Darwinian evolution are used along with digital reconfiguration to accelerate the ex-

ploration of the solution space, and to ultimately mitigate the effects of variability at the

circuit-level.

1.2 The PAnDA Project

The PAnDA project was a four-year EPSRC (EP/I005838/1) funded project, started in

October 2010, involving the Intelligent Systems Research Group at the University of York

and the Device Modelling Group at the University of Glasgow, and it is also part of a special

interest group including Imperial College London and the University of Southampton, and

Gold Standard Simulations Ltd as industrial partners.

1.3. Hypothesis 29

The project aims to tackle one of the main challenges in nano-scale electronic design: incorpo-

rating the effects of intrinsic variability – that become more pronounced as device shrinking

continues to keep up with Moore’s law – into the circuit design process, in order to achieve

functional circuit designs. Both deterministic and stochastic variability have an impact on

design, but whereas the former can be accounted for through specific design techniques, the

latter requires statistical modelling, and is therefore more challenging to address.

This research aims to develop understanding of how stochastic variability will affect circuit

design in deep sub-micron processes and to propose novel design methodologies to overcome

these intrinsic variations. The project involved the design and fabrication of a novel reconfig-

urable variability-tolerant architecture, which allows for variability-aware design and rapid

virtual physical instance creation by exploiting the configuration options of the architecture.

These are vital steps towards the next generation of FPGA architectures [30].

1.3 Hypothesis

This work aims to test the following hypothesis:

It is possible to mitigate the effects of atomistic variability on the PAnDA architecture at

the circuit-level through the use of digital reconfiguration, whilst making use of the substrate

variations to allow for circuit performance optimisation.

This can be broken down into two sub-hypotheses:

It is possible to use digital reconfiguration of the PAnDA architecture to optimise the

performance of a circuit.

It is possible to reduce the impact of variability on a circuit mapped to the PAnDA

architecture making use of its digital reconfiguration resources.

In order to address this hypothesis, the following objectives are laid out:

• Evaluate the performance of a reconfigurable architecture under the effect of intrinsic

variability (addressed in Chapter 4).

• Accelerate the circuit performance characterisation process (addressed in Chapter 5).

• Provide methodology to allow for the performance evaluation of large numbers of de-

vices (addressed in Chapter 5).

30 1.4. Structure of Thesis

• Provide an automated method for the performance optimisation process (addressed in

Chapter 6).

• Make use of both substrate variations and digital reconfiguration resources to both

improve circuit performance and to allow for standardisation across large numbers of

devices (addressed in Chapter 6).

1.4 Structure of Thesis

The thesis is organised as follows: Chapter 2 provides a detailed overview of the problem

of transistor variability in CMOS technology. First, a description of the structure of CMOS

devices is provided, and process variations affecting the manufacture of such devices are

divided into two categories: systematic (or deterministic) and intrinsic (or stochastic). The

main sources of the former are described, along with the established methods to mitigate

their effects. The main sources of the latter are then presented, along with the impact that

these can have on device performance. The chapter concludes with the fact that random

variations will become the leading cause for chip variability.

Chapter 3 then presents a survey of techniques applied at pre-fabrication, during the manu-

facturing process, and at the post-fabrication stage to mitigate the effects of random device

variations. The potential of reconfigurable hardware platforms to improve yield and relia-

bility as well as to provide methods which can be used to adapt local hardware resources to

suit the performance requirements is given special emphasis, with the PAnDA architecture

being identified as a flexible substrate on which to apply such methods.

In order to facilitate the study of the impact of variability on the PAnDA architecture across

a large number of devices, Chapter 4 describes the development of the PAnDA Emulator, a

model of the PAnDA architecture which incorporates statistically-enhanced transistor mod-

els. The model is then accelerated through the use of a hardware implementation, to allow for

the characterisation of the impact of variability at the circuit-level, which requires prohibitive

amounts of computation if done exclusively in software. The model includes custom-designed

reconfiguration resources which are used in later chapters to allow for variability-aware circuit

performance optimisation.

Chapter 5 presents the concept of using the PAnDA Emulator to generate virtual physical

instances (VPI) of circuits, where each VPI represents a fabricated instance of that circuit,

by using various combinations of transistor models with different electric properties in each.

1.5. Contributions and Novelties 31

The hardware-accelerated Emulator is able to predict the impact of variability on a design

orders of magnitude faster than a software-based simulation. This acceleration comes at the

expense of modelling accuracy, a matter which is also discussed in the chapter. Custom-

designed frequency and propagation delay hardware modules are described and included in

the design, to allow for the performance evaluation necessary for the optimisation methods.

In Chapter 6, the PAnDA Emulator is then revised to only allow for a single transistor

size, and varying input-slew rates and output loads are included in the model in an effort

to increase its accuracy with respect to a traditional software simulation. The concept of

influencing the performance of a circuit by using the reconfiguration resources of the PAnDA

architecture is then introduced, with a bio-inspired Genetic Algorithm being used to apply

functionally-neutral changes to the implemented circuit through the use of the reconfigu-

ration resources described in Chapter 4 as well as the performance evaluation hardware

modules introduced in Chapter 5. The performance of a large number of VPIs are then

improved through the use of the described methods, with the impact of variability being

successfully reduced.

Chapter 7 presents the concluding remarks and observations, and provides some insight into

future applications and extensions of the work described in this thesis.

Appendix A lists the file structure of the USB stick and CD-ROM provided, which contain

the files required to replicate the work undertaken in this thesis.

1.5 Contributions and Novelties

The main novelties presented in this thesis can be summarised as follows:

• Development of an automated method for extracting statistically-enhanced propaga-

tion delay data for architecture-specific logic functions (Chapter 4);

• Development of hardware configuration resources to allow for online reconfiguration of

PAnDA devices (Chapters 4 & 5);

• Incorporation of statistically-enhanced data into a hardware-accelerated Emulator of

the PAnDA architecture, allowing for rapid instantiation of devices (Chapter 5);

• Development of an embedded frequency and delay measurement module to characterise

circuits mapped to the Emulator (Chapter 5);

32 1.6. Publications

• Development of a bio-inspired optimisation algorithm to improve circuit performance

in the presence of fabric variations, and incorporation into the hardware-accelerated

Emulator to allow for overall performance improvement estimations across large num-

bers of VPIs (Chapter 6).

1.6 Publications

In 2013 a paper was published in the proceedings of the IEEE Congress of Evolutionary

Computation, using the initial modelling work of the PAnDA architecture to develop fault-

tolerant methods using evolution [31]. In 2014, the developed optimisation algorithm and

the digital reconfiguration resources were incorporated to allow for operation-point matching

of ring-oscillators, resulting in a paper published in proceedings of the IEEE International

Conference on Evolvable Systems [32]. In 2015, the accelerated variability characterisation

method developed in this work was presented at the Designing with Uncertainty workshop

at the Design, Automation & Test in Europe Conference & Exhibition (DATE). Also in

2015, a paper was published in the proceedings of the International Conference on Field-

programmable Logic and Applications (FPL), analysing the effects of variability on a Zynq

platform [33].

Chapter 2

Variability in CMOS Devices

Contents

2.1 Introduction . 33

2.2 CMOS Technology and Moore’s Law 35

2.3 Systematic Variability . 37

2.3.1 Across-Field Variations . 37

2.3.2 Layout-Dependent Variations . 39

2.4 Intrinsic Variability . 40

2.4.1 Random Discrete Dopants . 41

2.4.2 Line-Edge Roughness . 41

2.4.3 Gate Granularity . 42

2.4.4 Oxide-Thickness Fluctuations . 43

2.4.5 Temporal Variations . 43

2.4.6 Interconnect Variability . 44

2.5 Impact of Variability . 45

2.6 Summary . 48

2.1 Introduction

Variability has always existed in the circuit manufacturing process. Whether it is from wafer

to wafer, from die to die, or between elements in the same die (intra-die) its presence and

effects have always been recognised and integrated in the design process [34, 35, 36, 37, 38].

Most of these variations are deterministic in nature, and can therefore be modelled and are

typically dealt with through the inclusion of appropriate margins, in a process known as

Design for Manufacturability (DFM) [39].

As more and more complexity is demanded from devices, manufacturers have spent the last

50 years or so coming up with new ways to increase the transistor count in the same die

33

34 2.1. Introduction

0.01

0.1

1

10

1970 1980 1990 2000 2010 2020

M
ic

ro
n

s

45nm
65nm

32nmFeature Size
0.7x every 2 years

CPU Transistor Count
2x every 2 years

103

105

109

107

Figure 2.1: The evolution of the transistor count in a CPU (in brown, scale on the right)
and the size of the transistors used (in blue, scale on the left) through the least 40 years.
Figure sourced from [1].

area, mostly by reducing the size of individual transistors – also known as feature size –

so as to maximise computational density. In what became known as Moore’s Law [40], the

rate at which the number of transistors increased per area unit was observed to be roughly

2x every two years, as Figure 2.1 illustrates. Up until the beginning of the 20th century,

this transistor scaling translated to a reduction of oxide thickness, length and width of the

transistors, as well as a reduction in the power consumption of each device, in what is known

as the Dennard scaling [41]. Beyond the 130nm feature size, however, the performance of

these transistors began to degrade, and manufacturers had to resort to material enhancers

to compensate for this reduction in performance, such as silicon strain introduced to the

90nm and 65nm technology nodes [42].

As technology is scaled down in Complementary Metal-Oxide-Semiconductor (CMOS) de-

signs, intra-die variability becomes the leading factor for physical parameter variations, over-

coming the effects of inter-die, intra- and inter-wafer variations [43].

Although some of these are of deterministic nature, there is also a group of variations of

stochastic nature. These physical variations create a large difference in performance from

one transistor to another, within a die – which is characterised by a large standard deviation

2.2. CMOS Technology and Moore’s Law 35

in the statistical distribution of the manufacturing process. This in turn creates a problem for

circuit manufacturers, since the same design could have a completely different performance

when implemented on two different dies, and also a single manufacturing run could produce

a large number of non-functional circuits, which represents a drastic yield reduction. This

has a great economic impact, and therefore a minimisation of these effects is highly desirable.

Although this work does not describe an attempt to solve the issue of stochastic variability

at the transistor level, it is still important to provide some background regarding the sources

of stochastic variability in the device manufacturing process, which is the subject matter of

this chapter. Given that CMOS is the most common technology present in electronic devices

today, it is the focus of this background work.

2.2 CMOS Technology and Moore’s Law

CMOS is a technology for constructing integrated circuits (IC). They currently form the

most widely used technology across digital circuits, in part due to its exceptional power

efficiency. CMOS circuits exhibit most of their power dissipation during switching, losing

very little energy in a static state. Microprocessors, FPGAs, memory, ASICs and many

other VLSI devices rely on CMOS technology. CMOS logic consists of symmetrical pairs of

p- and n-type MOSFETs which are used to implement functions [44]. Figure 2.2 illustrates

the architecture of an n-channel MOSFET. Figure 2.3 illustrates a cross-section of a CMOS

pair of devices, fabricated with a p- substrate process.

To keep up with Moore’s Law, MOSFET manufacturers consistently reduced the physical

dimensions of the devices, typically shortening their channel length (L) and width (W),

along with reducing the thickness of the oxide insulation layer (Tox). Figure 2.3 shows a

cross-section of a CMOS gate, with a PMOS and an NMOS transistors fabricated on a p−

type substrate. This approach proved to be successful up until the 130nm technology node,

for which the scaling caused a significant reduction in performance [1]. For instance, the

reduction in gate-oxide thickness was pushed so far that some electrons in the gate began

to quantum-tunnel into the substrate, causing undesired behaviour in the transistors, and

ultimately non-functional VLSI circuits.

Sub-100nm transistor manufacturing then began including enhancers such as high-k di-

electrics instead of the typical silicon dioxide for the oxide-insulation layer, and reincor-

36 2.2. CMOS Technology and Moore’s Law

W

ox

n+ n+

Vd

Vb

Nch
Y j

z

x

y

Vs

Vg

substrate (b)p−type

L

T

Lg

Gate (g)

Source (s) Drain (d)

Figure 2.2: Physical structure of an n-channel MOSFET. Key physical features such as width
(W), channel length (L), and oxide thickness (Tox) are labelled in the figure. Figure sourced
from [2].

porating metal gates [45, 42] in order to continue making reliable devices as the scaling

progressed.

However, these new materials can only go so far. As device scaling takes us to feature sizes

of only a few nanometers, the channels become only a few handfuls of atoms long, as Figure

2.4 illustrates, and any small atomic discrepancies between devices will translate to serious

performance mismatches.

Gate
Source DrainBody

Gate
Source Drain Body

p- substrate

p+ p+n+ n+ n+ p+

PMOS

n-well

NMOS

Figure 2.3: Cross-section of two transistors in a CMOS gate, fabricated in a p− substrate
process. The PMOS transistor, depicted on the left, includes an n− type well. Typically,
the higher the dopant concentration, the larger the conductivity of the material.

2.3. Systematic Variability 37

(a) (b) (c)

Figure 2.4: Illustration of the effect of feature scaling on a device. (a) The traditional
device, featuring continuous ionised dopant charge and smooth boundaries and interfaces;
(b) a 22nm MOSFET, featuring less than 50 silicon atoms along the length of the channel;
(c) a 10nm MOSFET set for production in 2020, with only a handful of atoms along the
channel’s length. Figure sourced from [3].

2.3 Systematic Variability

As transistor scaling continued, increasingly smaller features had to be etched on a wafer,

making it increasingly difficult to maintain precision in the manufacturing process. According

to [29], systematic variations can be classified as across-field (position in photomask) and

layout dependent.

2.3.1 Across-Field Variations

Circuits are manufactured using photolithography, or optical lithography. This is a process in

many ways similar to photographic printing, where patterns that make up layers of a design

are exposed on a silicon wafer, one layer at a time. Across-field variations are caused by

precision limitations in the photolithographic etching process, such as dose, focus, exposure

variations, lens aberrations, mask errors, and variations in etch loading [46, 47]. These

variations are spatially correlated, however, and can be characterised through the use of test

structures placed at strategic points across the reticle (photomask). Figure 2.5 illustrates

how photolithography works: a photoresist layer, placed on top of the wafer, is exposed to

UV light through a photomask; the areas of the mask which allow light to shine on the

photomask will dissolve the photoresist, leaving the other areas untouched. Following from

this process, etching can take place, and the design’s features are chemically developed on the

wafer. Disturbances across the photomask and during the several photolithography stages

contribute toward across-field variations.

38 2.3. Systematic Variability

1

Patterns are projected
sequentially onto all
chip sites on the wafer.

Prepared wafer

Lens

Mask

Silicon nitride
Silicon wafer

Silicon dioxide

Photoresist

Photoresist

Illuminator

Projected light

Prepared wafer

Figure 2.5: The process of photolithography, where light is passed through a photomask and
a lens, and used to etch layout features on a photoresist. Figure sourced from [4].

2.3. Systematic Variability 39

NA

Ion implantation

(a)

log

log(VT)

0.1 µm 1 µm 10 µm

1 mV

10 mV

100 mV

(b)

Figure 2.6: The Well-Proximity Effect, whereby implanted ions are non-uniformly distributed
along the wells in which the nMOS transistors are formed. (a) the ion implantation and
reflection mechanisms; (b) the VT variation with respect to the distance between the well-
edge and the gate-edge. Figure sourced from [5].

2.3.2 Layout-Dependent Variations

Layout dependent variations stem from different layout choices, such as having vertically-

or horizontally-oriented gates, even when two different gates are placed next to each other

[48]. As in the case of across-field variations, these can also be accounted for because they

are deterministic in nature, and can be modelled as a function of layout structure and

surrounding topological environment.

One very well known source of layout-dependent variations is the Well-Proximity Effect

(WPE) [49]. In CMOS fabrication, areas where nMOS and pMOS transistors will be built

receive separate ion implants, and each is covered with photoresist when the other is being

implanted. When a transistor (either nMOS or pMOS) is located too close to the edge of

the photoresist mask, some implanted ions can be reflected and get buried into its substrate,

increasing the device’s ion density along the edges of the photoresist, as Figure 2.6(a) illus-

trates. This ultimately causes undesired behaviour of the threshold voltage of the devices

along the wafer.

Many other sources of variability, not just relating to lithography limitations but also material

stress, whereby the compression or expansion of the silicon substrate – an effect that is

influenced by the proximity of devices in the layout – causes changes in carrier mobility,

ultimately resulting in drain current variations [50].

40 2.4. Intrinsic Variability

Figure 2.7: Illustration of some of the key sources of intrinsic variability on bulk MOSFETs.
Figure sourced from [6].

2.4 Intrinsic Variability

Even though these manufacturing issues caused variations between devices, these would still

fall within known boundaries and today are taken into account during the design process.

Another set of variations, however, is not as simple to deal with. These are typically referred

to as stochastic, or random variations, and they focus on atomistic behaviours. As Figure

2.4 illustrated, the channel of a 10nm device will only be a few atoms long, and therefore

considerably more sensitive to structural variations, such as the ones described in this section.

Figure 2.7 provides an illustrated summary of the main sources of intrinsic variations.

2.4. Intrinsic Variability 41

2.4.1 Random Discrete Dopants

The creation of transistor models for performance estimation for a given technology size

relied on continuous ionised dopant charge as well as smooth boundaries and interfaces, but

as device scaling continues, the validity of these models starts to become less appropriate.

Performance models would use statistical averaging of dopant concentrations to calculate

a device’s electrical characteristics, since hundreds or thousands of dopant atoms would be

present in the channel; the difference in dopant concentration between two devices would be

negligible, and therefore the difference in their characteristics would also be negligible [43].

With only a handful of dopant atoms now present in the channel, as depicted in Figure

2.4(c), the behaviour of a device will depend upon the actual number of dopants present

[7]. Not only is the number of dopant atoms a major contributor to electrical variations on

the device, the placement of these atoms will also greatly affect its performance, as Figure

2.8 illustrates. In this case, two devices with the exact same number of dopant atoms, but

different placement of these atoms, are compared. It is found that they exhibit a difference

in threshold voltage above 20% [7], contributing toward potentially unstable and unreliable

VLSI circuits.

Random Discrete Dopants (RDD) have been shown to contribute 60-65% of the total vari-

ability in measurements of 65nm and 45nm bulk silicon devices, although some other effects

described in this section are likely to become the main sources of variability in future tech-

nology nodes [51].

2.4.2 Line-Edge Roughness

Line-edge roughness (LER) is defined as the deviation from the features outlined in the

photomask. The discrete molecular nature of the photoresist causes imperfect lines to be

etched on the wafer, resulting in a rough profile as depicted in Figure 2.9.

LER has always been a part of the manufacturing process, but has always been negligible

when compared to the width of the feature being etched. Croon [52] has shown that LER

does not significantly affect devices down to 80nm gate length, but is likely to become the

dominant cause of intrinsic variability below this size [53]. This is largely due to the fact

that almost all transistor parameters are a function of the gate length, and therefore LER

variations will have a significant impact across the operation of the transistor, most notably

in the form of threshold voltage fluctuations.

42 2.4. Intrinsic Variability

(a) (b)

Figure 2.8: Illustration of two different distributions of 130 dopant atoms in the channel
depletion region, resulting from a 3D atomistic simulator. (a) MOSFET exhibiting a 0.97V
threshold voltage; (b) MOSFET with 0.57V threshold voltage. Figure sourced from [7].

(a) (b)

Figure 2.9: Line-edge roughness (LER) caused by the discrete molecular nature of the pho-
toresist. (a) shows an illustration of LER in a photoresist, with its molecules drawn as
circles, as the developed edges drawn as red lines [6]; (b) shows an actual picture of LER in
photoresist from Sandia Labs. Figure sourced from [3].

Additionally, other novel technologies such as silicon-on-insulator (SOI) [54] and FinFET

[55] seem to also be susceptible to severe variations from LER.

2.4.3 Gate Granularity

The polycrystalline granular structure of both polysilicon and metal gates has also been

identified as an important source of intrinsic parameter fluctuations.

Enhanced diffusion along the grain boundaries and localised penetration of dopants through

the gate oxide into the channel from the high doping regions in the gate are potential sources

2.4. Intrinsic Variability 43

of variability. With the continuing scaling of the gate oxide thickness, it becomes easier for

implanted ions to tunnel through the insulation layer, depositing in the channel substrate

and forming traps which again cause fluctuations in the threshold voltage of the device [53].

2.4.4 Oxide-Thickness Fluctuations

Oxide-Thickness Fluctuations (OTF), sometimes referred to as Surface Roughness, is defined

as the deviations from the intended thickness of layers. For instance, unevenly deposited

oxide on the substrate can cause variations in the distance between the gate and the channel.

This will translate to varying parasitic capacitances along the channel, resulting in variations

in the threshold voltage of the device, not only in bulk MOSFETs but also in FinFET

technology nodes [56].

2.4.5 Temporal Variations

The variations described so far have been directly related to device manufacturing, but

they are not the only contributors to performance degradation. Another factor should be

taken into account at design-time, and it is temporal variability. This is defined as any

environmental or internal variation which can cause a device to suffer gradual performance

degradation or even total breakdown, during its operational lifetime. The three main causes

for device degradation over its lifetime are known as Negative Bias Temperature Instability

(NBTI), hot carrier injection, and electromigration [57]. Recently, as high-κ metal gates were

introduced, Positive Bias Temperature Instability (PBTI) started to have a non-negligible

effect on voltage threshold variations in nMOS devices [58].

NBTI has a larger impact on pMOS devices, due to the negative voltage usually present at

the gate, and it has the undesired effect of increasing VT of a transistor, both temporarily

and permanently [59]. This phenomenon occurs when pMOS devices are negatively gate-

biased at high temperatures (stress phase), causing hydrogen-silicon bonds to break at the

interface between the gate oxide and the substrate, as illustrated in Figure 2.10. Once the

stress is eliminated, most of the floating hydrogen bonds with the dangling silicon once

again. However, Some hydrogen bonds together to form H2, permanently breaking the pre-

existing Si-H bonds, resulting in permanent changes to the device’s threshold voltage [8].

Conversely, PBTI affects positively-biased nMOS devices in a similar fashion, but their

effect on threshold voltage variations seems to decrease as high-κ metal gate technology

scales down [60].

44 2.4. Intrinsic Variability

Silicon PolyGate oxide

H2

Si H

Si H

Si H

Si H

HSi

HSi

Figure 2.10: Broken Si-H bonds at the Si-SiO2 interface, resulting from stress phases. Some
H2 is generated from the generated traps, resulting in permanent changes to the device’s
threshold voltage. Figure sourced from [8].

Hot carrier injection happens when a carrier (electrons in the case of an nMOS, holes in

a pMOS) travels along the channel with a little more energy than usual, and escapes the

channel into the insulating oxide [61]. It then becomes trapped in this layer, and builds up

the charge in the gate, ultimately resulting in an increase in VT . This results in a permanent

change to the transistor’s performance.

Electromigration occurs when electrons knock metal atoms loose and cause them to ride

along with the electron flow, causing serious effects in unidirectional channels by means of

metal build-up in the downstream, and metal depletion in the upstream. In some critical

cases, the upstream metal connection might be severed altogether [61]. This effect occurs in

high current density channels, and is also an irreversible change.

These phenomena are the leading causes of this temporal performance variation, which is

commonly known as ageing.

2.4.6 Interconnect Variability

The complexity of the connections between elements also increases with device scaling. Many

of the sources of variability in transistor manufacturing will also affect metal interconnect,

such as LER and electromigration, introducing varying parasitic capacitances along tracks,

and ultimately resulting in random variations in timing [62].

Modelling these effects, and taking them into account in the design process is a big challenge,

due to the extreme connection density in VLSI systems and the computational cost that

comes with trying to characterise these random variations [63].

2.5. Impact of Variability 45

Figure 2.11: The characteristic I − V curve of transistors plotted for a large number of
modelled devices. Each of the 1000 red lines depicts the behaviour of one transistor, and the
blue line represents the average. Figure taken from [9].

2.5 Impact of Variability

As the previous section has shown, intrinsic variability arises from many different sources,

each providing their own contribution to the variation of the electrical characteristics of a

transistor. Figure 2.11 illustrates this point, as one the ultimate consequences of variability

is a large change in circuit behaviour.

One of the major contributors to performance variation is now the threshold voltage (VT),

mostly due to the reduction in power supply voltage brought on by the constant push to

reduce power consumption [64]. A variation in VT will translate to a variation in device delay,

since the transistor only starts conducting current between the source and drain terminals at

gate voltages larger than VT . Figure 2.12(a) illustrates this variation measured with 90nm

technology nodes. Variations in delay will then cause timing errors, and in extreme cases

can cause complete device failure. Figure 2.12(b) highlights the consequence of VT variation

at the circuit level: some chips might become too slow, and some might consume too much

static power.

46 2.5. Impact of Variability

350

300

250

200

150

100

50

0

C
ou

nt

175 200 225 250 275 300 325 350 375
Threshold voltage (mV)

No. of devices= 3,481
σVT

= 25.58 mV
L = 46 nm
W= 122 nm

(a)

Too
leaky

Too
slow

Pr
ob

ab
ili

ty

Vt

Good
chips

(b)

Figure 2.12: Illustration of VT variation in CMOS technology. (a) variation in a 90nm
process, with a sample of 3481 devices [10]; (b) the implications of a varying VT for chip
performance. Figure sourced from [11].

It will also translate to a considerable increase in leakage current [65]. For instance, a

reduction in threshold voltage of about 85mV will translate to an increase in sub-threshold

leakage current of about 10X [66]. This is undesirable behaviour, as CMOS technology is

adopted by designers largely due to its energy efficiency, since most of its power consumption

occurs at switching time.

In some cases, intrinsic variability can lead to timing skews which in turn cause circuit

failures and yield loss at low voltages [36]. In addition to this, threshold voltage variations

can also accelerate device ageing, resulting in a sizeable reduction of the mean time to failure

(MTTF) of processors [67, 68]. Figure 2.13 illustrates the impact of ageing on the static noise

0 2 4 6 8 10 12
0

10

20

30

40

50

22nm
32nm
45nm

%
 S

N
M

 d
eg

ra
da

ti
on

Time (years)

Figure 2.13: Percentual reduction in static noise margin (SNM) of an SRAM cell due to
ageing, becoming more pronounced at more advanced technology nodes. Figure sourced
from [12].

2.5. Impact of Variability 47

Figure 2.14: The impact of intrinsic variability on dynamic power consumption and delay,
measured for various Monte-Carlo runs for different sigma values, using SPICE and Static
Timing Analysis (STA). Figure sourced from [13].

margin (SNM) of an SRAM cell [13]. It is clear that the effects of circuit ageing become

more pronounced as technology scaling continues.

The impact of variability on deep sub-micron designs has been thoroughly studied mainly

in simulation, analysing its impact on both general circuit properties, such as on threshold

voltage variation [7, 36], path delay [69] and yield [70], as well as particular cases of CMOS

design, such as SRAM lifetime [71] and flip-flop timing [72]. Figure 2.14 illustrates the

impact of variability on both power and delay of a one-bit full adder, measured through full

simulations carried out for different sigma values, using Monte-Carlo SPICE simulations as

well as Monte-Carlo static timing analysis [13].

Across all studies, one conclusion is always present: on deep sub-micron designs, intra-

die physical variations become the leading cause for chip variability. Worst-case design

procedures generate circuits that do not make the most of the fabric’s features, considering

that the worst- and best-case circuits are very far apart due to the effects of variability.

48 2.6. Summary

2.6 Summary

Random, or stochastic variability is an issue that has been become increasingly significant

with the device scaling that the industry has been pushing for in the last 50 years.

Even though systematic variability has been well understood and incorporated into the design

process, intrinsic variability still poses a challenge to both designers and manufacturers.

Solving this issue at the transistor level seems to be a task which requires a breakthrough in

technology, since normal scaling of manufacturing process is almost certain to break down at

the atomistic level. Other approaches have been suggested which attempt to accept random

variations as a reality of device manufacturing, and choose to mitigate variability at the

upper abstraction layers, all the way up to system-level, such as SSTA techniques applied to

FPGAs. The next chapter will provide some examples of solutions that have been proposed

for reducing the impact of device variability.

Chapter 3

Variability Mitigation in Circuit

Design

Contents

3.1 Introduction . 49

3.2 Pre-Fabrication Approaches . 50

3.2.1 Variability-Aware Device Modelling 50

3.2.2 Configurable Analogue Transistors 54

3.2.3 Statistical Static Timing Analysis 56

3.3 Manufacturing Approaches . 58

3.4 Post-Fabrication Approaches . 61

3.4.1 Adaptive Body-Bias . 61

3.4.2 3D Stacking . 62

3.4.3 Razor . 63

3.4.4 Reconfigurable Hardware Platforms 64

FPGAs . 65

FPTAs . 70

PAnDA . 72

3.5 Summary . 83

3.1 Introduction

In order to continue progress as specified by Moore’s Law, and with the relentless technology

scaling taking manufacturing into the domain of atomistic devices, the uncertainty that is

brought on by the limitations of the fabrication process can no longer be avoided or ignored,

and make the life of a circuit designer more complex. Small atomistic variations between

devices can cause asymmetries in performance, or even a full chip-level breakdown. The

49

50 3.2. Pre-Fabrication Approaches

implications of variability are not limited to designers any more; a considerable impact on

yield now makes intrinsic variability a problem with a very real and serious economic impact

[37, 64].

Dealing with this issue at the transistor level is proving to be increasingly difficult, and the

quantum-effects that begin to surface with atomistic devices seem to be a barrier which

cannot easily be surpassed from a manufacturing point-of-view [10].

Variability-aware design has therefore become an important avenue for future technologies.

This design philosophy does away with the idea of homogeneous transistor behaviour across

a circuit, and instead attempts to characterise the variations between its basic elements,

and incorporate this variation into the design process, ultimately resulting in an increase in

circuit reliability [73, 74].

Chapter 2 introduced the effects of variability at the transistor-level, whereas this chapter will

focus mostly on how these effects can be mitigated at the circuit-level, since transistor-level

approaches face the quantum-effects barrier.

This chapter provides some examples of variability-aware methodologies along the design pro-

cess of a circuit, from pre-fabrication modelling to post-fabrication adjustments. Given their

inherent reconfigurability, and therefore hardware redundancy useful for post-fabrication de-

sign modifications, reconfigurable hardware platforms are described in detail, along with

some typical variability characterisation techniques that they allow for. The flow-chart in

Figure 3.1 illustrates the stages during which these techniques can be applied.

3.2 Pre-Fabrication Approaches

The first opportunity to tackle variability exists before the a circuit is fabricated. Some

techniques are available, as this section will show, which allow designers to evaluate their

circuits and estimate how variations can affect their performance.

3.2.1 Variability-Aware Device Modelling

In order to estimate the performance of a particular design, a model is required which

can solve the equations that describe its electrical behaviour. This section discusses circuit

modelling, the inclusion of stochastic variability effects, and the application of these models

for variability-aware design.

3.2. Pre-Fabrication Approaches 51

Pre-Fabrication
Atomistic Models

Device Sizing
Design Techniques

Manufacturing

Reticle Enhancement
Techniques

Post-Fabrication
Adaptive Body-Bias

Reconfigurable Hardware
Platforms

Circuit Design

Tapeout

Fabricated Devices

Figure 3.1: The various approaches to process variability mitigation, applied at different
stages in the life-cycle of a design, from when it is elaborated and studied, through its
fabrication, and down to the post-fabrication adjustments that its architecture might allow.

Since its release by Laurence Nagel in 1973, the Simulation Program with Integrated Circuit

Emphasis, or SPICE, has been widely used by circuit designers all over the world [75].

In its current version, the tool includes small- and large-signal models of basic electronic

components, including transistors. It takes in a text file – a netlist – which instantiates all

the components that make up a circuit, as well as their connections. Using device analytical

models, it finds the DC operating point of the circuit, and then performs a small-signal

transient evaluation which characterises deviations from the calculated operating point.

52 3.2. Pre-Fabrication Approaches

Given its special standing as the most widely used device in commercial products, the field-

effect transistor has been the subject of many modelling efforts. The first SPICE version

included the Shichman & Hodges large-signal model [76], solved using the formula shown in

Equation 3.1, where µn is the surface mobility of an n-channel device, Weff and Leff are

the effective channel width and length, respectively, and Cox is the capacitance per unit area

of the gate oxide.

iD =
µoCoxWeff

Leff
[(vGS − VT) − vDS

2
]vDS (3.1)

The small-signal model can then be derived from this equation, but it is only suitable for

long channels, i.e. Leff > 10µm [73]. As technology scaled down, the accuracy of these

models was significantly reduced, which led to the creation of another set of models by

the BSIM (Berkeley Short-channel IGFET Model) Group, taking into account narrow- and

short-channel effects, parasitic resistances, hot-electron effects, and many other physical

phenomena that were beginning to play a major part in the behaviour of sub-micron devices.

The BSIM3v3 became the first industry-wide standard of its kind, allowing for accurate

transistor modelling down to 150nm [77]. The BSIM4 model built upon the BSIM3v3, by

adding features such as more accurate intrinsic input resistance for both RF, high-frequency

analog and high-speed digital applications, a more accurate channel thermal noise model

and a noise partition model for the induced gate noise, among many others [78], making the

models suitable for transistor sizes ranging from 130nm down to 20nm. The BSIM4 models

were used for the modelling efforts described in Chapter 4.

From the many available distributions of SPICE, ngspice [79] was chosen as one of the

modelling tools used in this work due to its open-source nature and compatibility with the

atomistic variability-enhanced tool, described next in this section.

The introduction of intrinsic variability modelling to SPICE-based circuit designs has been

pioneered by the Device Modelling Group (DMG) at the University of Glasgow, who have

developed a density-gradient-enhanced 3D drift-diffusion simulator capable of generating

BSIM models which can be used by a SPICE tool to create variability-aware circuits. This

simulator creates 3D transistor models, which incorporate the effects of RDD, LER, OTF

and gate-granularity (described in Chapter 2) to generate sets of I-V curves, each with a

shape variation which reflects these effects. The group then created a spin-off company

3.2. Pre-Fabrication Approaches 53

Figure 3.2: The operation of RandomSPICE: BSIM4 models are generated in with the
atomistic simulator, which are then used on a template netlist, and run using a SPICE back-
end. A database of virtually fabricated devices can then be analysed for variability-awareness
purposes. Figure sourced from [14].

by the name of Gold Standard Simulations (GSS), which now is distributing the tool as a

commercial product [80].

The operation of the simulator is described in further detail in [81]. A set of GSS tools

have been used to generate the compact models used in this work. First of all, GARAND

is used to perform the 3D atomistic simulations which are fed to Mystic, a compact model

extraction tool, which generates a library of transistor models which include realistic effects

of variability. Finally, RandomSPICE is used to replace standard SPICE transistor models

with the GARAND+Mystic set, using Monte-Carlo sampling methods [14]. The creation of

these models was calibrated through the use of a set of 35nm Toshiba devices [82].

In a nutshell, RandomSPICE takes in a normal SPICE netlist and replaces the standard

BSIM4 models with the statistically-generated and variability-aware ones through Monte-

Carlo sampling methods, each representing a single manufactured device. This process is

repeated as many times as the user defines, generating a set of netlists, each representing a

virtually manufactured instance of the circuit defined in the original netlist. Its statistically-

54 3.2. Pre-Fabrication Approaches

enhanced features allow the user to perform rare-event simulations, useful to study manu-

facturing yield. Figure 3.2 illustrates the operation of the RandomSPICE tool.

Although the atomistic simulator uses techniques to speed up the BSIM4 model extraction

process, it still requires a large amount of computation to be performed. As an example,

the BSIM4 variability-aware libraries used for this work required a total of 60 CPU years of

computation to create [6].

This tool allows for the study of rare events that can occur from stochastic variations, and

therefore allow the manufacturer to perform high-sigma power, performance and yield analy-

sis on their technology. This ultimately led to GSS recently signing a contract with one of the

worlds largest foundries, GlobalFoundries, for its complete variability-enhanced Electronic

Design Automation (EDA) tool [83]. Variability-aware modelling is a useful tool, endorsed

by the industry, which can help study the impact of variability at a pre-manufacturing stage.

Using these libraries, a study on variability-tolerant standard cell-design was reported in [73],

and it was found that by allowing optimisation techniques such as Evolutionary Algorithms

(described in detail in Section 6.3.2) to explore different transistor sizings, variability-tolerant

libraries can be created.

As the number of components in a modern electronic device increases, so does the number

of Monte-Carlo based simulations required to ensure device reliability, in what is called high-

sigma design. As an example, achieving 6-sigma yield would mean that only 1 in 506,797,346

circuits would be allowed to fail. Determining whether or not a circuit achieves 6-sigma yield

would mean that over 500 million simulations would need to be carried out. However, efforts

have already been allocated to achieve high-sigma design with a reduction in the number

of simulations required [84, 85]. Even so, as the complexity of devices increases, so will

the required number of Monte-Carlo simulations to verify reliability, posing a considerable

challenge for software-based solutions and for pre-fabrication modelling in general.

3.2.2 Configurable Analogue Transistors

Another approach to variability-aware circuit design has been carried out by Peter Wilson

and colleagues at the University of Southampton, with the inclusion of Configurable Analogue

Transistors (CATs) at strategic points in an analogue circuit [16] so as to maximise the

reliability of the fabricated designs.

3.2. Pre-Fabrication Approaches 55

D

G

G

D

S

S

Bn

B2

B1

B1

M0 M1 M2
S1 S2 Sn

Mn

B2 Bn

Figure 3.3: Schematic of a Configurable Analogue Transistor. Adding to the gate (G), drain
(D) and source (S) common terminals, a configuration word of length n controls the number
of adjustment devices connected in parallel with M0, ultimately determining the width of
the CAT. Figure sourced from [15].

The structure of a CAT is illustrated in Figure 3.3. A CAT consists of a main device,

represented as M0, and a series of n adjustment devices. The geometry of these adjustment

devices depend on the context in which the CAT is being used, but typically they share the

length of M0 and their widths decrease incrementally by a factor of two.

Figure 3.4 illustrates the supporting methodology behind CAT-based design, and identifies

the tools that it requires. A circuit schematic is the primary input to the design flow, and

a Monte-Carlo analysis is carried out, which identifies the transistors which have a larger

impact on yield, i.e. those on which process variations translate to a larger increase in the

standard deviation of the performance of the device, and these transistors are replaced by

CATs. There is a trade-off between yield improvement and the overhead introduced by

CATs, and [16] has reported that only a small number of these need to be introduced to

provide significant yield improvement.

An algorithm, described in detail in [17] is then used to calculate the optimal sizing for

the transistors, along with the length n of the configuration word B, which controls the

switches located at the gate of each adjustment transistor Mn. This sizing algorithm takes

into account the expected process spread, and makes the number of adjustment transistors

large enough to provide granularity to tackle it. In the work reported in [17], 3 adjustment

transistors were considered.

Once the sizes of every CAT are determined, as well as the adjustment transistors for each,

the design can be sent out for fabrication. The third and final stage of this approach involves

configuring the CATs so that optimal performance is achieved. Although exhaustive search

is typically used to find the optimal configuration, more refined and efficient optimisation

algorithms can potentially be applied [16].

56 3.2. Pre-Fabrication Approaches

schematic design

critical device identificationtool

tool

tool post manufacture optimisation

layout and fabrication

optimal CAT sizing

swap for CATs

Figure 3.4: CAT methodology used in CAT-based design. Figure sourced from [16].

As an example, Figure 3.5(a) illustrates the distribution of 100,000 simulated 40µm wide

nMOS devices, reporting an average drain current (ID) of 400µA and a standard deviation

of 30µA. In order to reduce the impact of variations, as reported in [17], the standard

transistor is replaced by a CAT, and three adjustment devices are added, with widths of

1, 2 and 4µm. The flexibility introduced by these devices makes it possible to reshape the

distribution as Figure 3.5(b) illustrates, reducing the standard deviation of ID from 30µA

to 10.11µA, which can contribute toward a significant yield improvement.

Although the final CAT configuration will be applied after the device is fabricated, a consid-

erable amount of modelling effort is required at a pre-fabrication stage, hence their inclusion

at this point in the chapter. Other similar approaches, such as FPTAs and PAnDA, described

in Section 3.4, require less design-dependent modelling and are more general-purpose, and

therefore are considered to be post-fabrication approaches.

3.2.3 Statistical Static Timing Analysis

Static timing analysis is a method which allows a designer to calculate the expected tim-

ing features of a digital circuit without requiring a costly complete simulation of the design

[86, 87]. These tools allowed circuit designers to evaluate the performance of their design be-

fore manufacturing, helping to determine its maximum operating frequency, and potentially

detect timing violations.

3.2. Pre-Fabrication Approaches 57

200 300 400 500 600
0

1 103×

2 103×

3 103×

4 103×

5 103×

Drain current (uA)

O
cc

ur
an

ce
s

(a)

300 350 400 450 500
0

2 103×

4 103×

6 103×

8 103×

1 104×

Drain current (uA)

O
cc

ur
an

ce
s

(b)

Figure 3.5: Distribution of the drain current of 100,000 simulated 40µm wide nMOS devices
(a) before CAT introduction; (b) after CAT introduction with 3 adjustment devices of widths
of 1, 2 and 4µm. The dotted line in (b) represents the original distribution. Figure sourced
from [17].

As technology scaled down, STA tools began to face the challenge of variability [88, 89], with

gate and net delays being skewed from their nominal values.

In an effort to address the effects of variability on path delay, the concept of Statistical

Static Timing Analysis (SSTA) was developed, which assumed a statistical distribution

of delays for a particular gate or net, along with correlations between these [90, 91], as

Figure 3.6 illustrates. Traditional STA analyses corner cases, in which the delay of each

element in the design is assumed to be the worst-case possible. However, the likelihood of

58 3.3. Manufacturing Approaches

B

CA

D

I 1

Std. cell propagation delay PDF
Arrival time PDF

Figure 3.6: A probabilistic timing graph for a circuit, with gate (green) and interconnect
(blue) delays represented as probability distribution functions (PDF). Figure sourced from
[18].

this happening is very low, and therefore STA tools tend to generate overly conservative

designs [92]. SSTA methods can be classified as either path-based or block-based.

A path-based approach involves analysing each path individually, taking into account the

varying slew-rates along the path. Given the complexity of most modern VLSI designs,

containing a very large number of distinct paths, only a small set can effectively be anal-

ysed, since each evaluation requires a large amount of computation. This makes path-based

analysis a less popular approach for manufacturers and circuit designers [92]. After the de-

lay distribution of each path is analysed, a statistical maximum is applied to all paths to

determine the overall circuit delay distribution.

Block-based analysis assumes the worst case delay for multiple inputs of a given gate, and

computes the delay between them using statistical max operations [18, 93]. With this

method, only two delays are propagated from each gate (rise- and fall-times) making its

runtime linearly dependent of circuit size. This approach lacks the accuracy provided by

path-based analysis, but it generally speeds up the timing evaluation of a design. Figure 3.7

illustrates the operation of both of these approaches.

A full overview of the techniques used in SSTA can be found in [94].

3.3 Manufacturing Approaches

With the continuing shrinking of devices, a fundamental problem was faced by the manufac-

turing industry well before intrinsic variability became a first-order effect. As the required

feature sizes decreased, so did the wavelength of the light required to etch them. The actual

3.3. Manufacturing Approaches 59

sinksinka
b

c

g

d
e

ssoouurrccee

22

55
55

11
11

88

11

11

22

22

22

22

33

33
55

33

ssiinnkka
b

c

g

d
e

ssoouurrccee

22

55
55

11
11

88

11

11

22

22

22

22

33

33
55

33

Figure 3.7: The path-based SSTA (top) and block-based (bottom). The former analyses the
n most critical paths of the circuit, whereas the latter makes extensive use of the statistical
max operation in the delay estimation to speed up computation. Figure sourced from [18]

wavelength has been reduced from 365nm in the 1980s down to the 193nm lithography pro-

cess used today. The wavelength scaling could not continue beyond the 193nm mark without

a drastic redesign of the photolithography process, since shorter wavelengths are absorbed

by the quartz lenses used to direct the light which etched layout features on the photoresist,

as described in Section 2.3.2.

In an effort to maximise the life-cycle of the 193nm photolithography equipment used by

every manufacturer worldwide, Resolution Enhancement Technologies (RETs), were

developed.

Some of these techniques are designed to allow for smaller features to be etched on the

photoresist, even if the wavelength of the incident light is longer than the feature, such as

Phase-Shift Mask (PSM) [95] and Multi-Patterning [96]. Since they are not directly related

to variability mitigation, they are not covered here.

One RET, however, does have an effect on layout variation, and it is commonly incorporated

into most EDA tools. It attempts to deal with the distortion introduced by some of the

other RETs applied to feature sizes below the light wavelength. This is known as Optical

Proximity Correction (OPC) [97]. Due to the inherent limitations of the photolithography

process, the geometry of the features created in the layout don’t always correspond to the

etched features resulting in a manufactured device, as the left side of Figure 3.8 illustrates.

60 3.3. Manufacturing Approaches

Wafer

Focusing
lens

Light
beam

Mask (with optical
proximity correction)

Mask (without optical
proximity correction)

Desired circuit pattern

Exposed
circuit
pattern

Figure 3.8: The variations in layout feature geometry introduced by photolithography lim-
itations (on the left) and the same variations corrected with OPC (on the right). Figure
sourced from [4].

Without OPC, the projected light ends up etching a feature with geometric irregularities

with respect to the intended design, such as rounded corners or narrower trace widths [98].

This technique analyses the layout, anticipates potential light interferences, and alters the

photomask in such a way that these inconsistencies can be avoided, as the right side of Figure

3.8 shows.

Using these techniques, systematic variability can be incorporated in the EDA tool flow, and

kept within known boundaries [39]. This is typically known as Design for Manufacturability

(DFM) [99].

3.4. Post-Fabrication Approaches 61

3.4 Post-Fabrication Approaches

Up until this point, this chapter has described techniques which attempt to avoid manufac-

turing circuits with variability. This section introduces the concept of designs which embrace

the inevitability of random parameter variation in their platforms. One of the most promis-

ing avenues in variability-tolerant design is created by reconfigurable hardware platforms,

which allow for post-fabrication adjustments to the substrate and a potential compensation

for these variations.

3.4.1 Adaptive Body-Bias

A technique which has received some attention in the past decade is called Adaptive Body

Bias (ABB), it involves employing a non-zero body-to-source bias to modulate the threshold

voltage of a transistor. There are essentially two ways of performing body-biasing: Forward

Body-Biasing (FBB) and Reverse Body-Biasing (RBB) [100]. Typically, the body terminal

of a FET device is connected to the same voltage level as the source terminal. By severing

this connection and applying an independent voltage to the body terminal, the electrical

behaviour of the transistor can be affected. Because of this property, the body terminal is

sometimes referred to as the “back-gate” of the transistor.

To explain RBB, we can take the example of an nMOS device. If a negative body-to-source

voltage is applied, then holes will start moving from the channel region toward the body

terminal, leaving behind electrons which will increase its negative charge, and ultimately

increase the threshold voltage VT . FBB is achieved by applying a positive body-to-source

voltage, which has the opposite effect of RBB, and will result in a decrease of VT .

By changing VT and keeping all other parameters equal, the performance of a circuit will

be affected. An increased VT will cause devices to take longer to switch on and to reduce

leakage power, whereas a reduction of VT will make the circuit quicker to react but with an

increase in power leakage.

The adaptive part of this method is employed when performance measurements can be taken

to decide whether a die should be Forward- or Reverse-Biased. By applying independent

body-biasing to pMOS and nMOS devices in a CMOS circuit, it becomes possible to perform

multi-objective optimisation for performance and power leakage [101]. This technique has

been demonstrated to have significant results for inter-die and even intra-die variability

62 3.4. Post-Fabrication Approaches

Figure 3.9: 3D integration using Variation-aware Die Matching, combining slow layers with
fast ones, resulting in each 3D chip meeting performance requirements. Figure sourced from
[19].

[100, 102]. Body-bias islands can also be created to provide fine-grained control of body-bias

voltage across different areas of the chip, as reported in [103].

3.4.2 3D Stacking

3D designs have become increasingly popular over the last few years, being found in some of

products such as processor stacks, phone memories, and even flash cards [104]. This design

philosophy moves away from a simple planar 2D IC to allow several of these to be stacked

in an additional manufacturing process.

What this means for the purposes of variability mitigation is that each fabrication 2D layer

can be individually evaluated, and techniques such as Variation-aware Die Matching [105]

can be applied, whereby the dies that make up a 3D stack can be combined so as to average

out the performance across 3D chips, guaranteeing that at least one of the layers operates

at the nominal frequency – assuming that each layer operates in a different clock domain –,

as Figure 3.9 illustrates.

3.4. Post-Fabrication Approaches 63

Error_L

Error
comparator

RAZOR FF

clk_del

Main
Flip-Flop

clk

Shadow
Latch

Q1D1Logic Stage

L1

0
1

Logic Stage

L2
Error_L

Error
comparator

RAZOR FF

clk_del

Main
Flip-Flop

clk

Shadow
Latch

Q1D1Logic Stage

L1

Logic Stage

L1

0
1

Logic Stage

L2

Logic Stage

L2

(a)

clock

instr 1

clock_d

D

Error

Q

instr 2

instr 1 instr 2

cycle 1 cycle 2 cycle 3 cycle 4

clock

instr 1

clock_d

D

Error

Q

instr 2

instr 1 instr 2

cycle 1 cycle 2 cycle 3 cycle 4

(b)

Figure 3.10: The Razor pipeline operation. (a) the internal structure of a Razor flip-flop;
(b) the error detection mechanism being activated due to a mismatch between the outputs
of the main and shadow flip-flops. Figure sourced from [20].

3.4.3 Razor

One of the most successful approaches to variability-aware design has been developed at the

University of Michigan, is referred to as Razor, and it involves the inclusion of a custom-

designed flip-flop in a series of logic paths in a pipelined design, which are used to detect

timing errors. This information is fed back to voltage scaling mechanisms which adjust the

power supply in an attempt to suppress these errors [20].

As mentioned in Section 2.5, one of the major effects of process variations is a shift in a

device’s threshold voltage, which in turn translates to timing variations. The Razor approach

attempts to deal with this by controlling the supply voltage as necessary to compensate for

these potentially damaging variations.

64 3.4. Post-Fabrication Approaches

Figure 3.10(a) illustrates the structure of a Razor flip-flop which is included in the design

as an additional pipeline stage, and Figure 3.10(b) shows a timing diagram of the signals

involved in this pipeline stage. The shadow latch illustrated in the structural diagram is

controlled by a clock signal which is slightly delayed with respect to the main flip-flop, and

therefore they both sample the same data with a slight timing offset. If any changes occur

during the period defined by the difference in the edges of both clocks, a comparator will

generate a flag which represents the occurrence of an error. Feeding this information back to

a voltage controller, the supply voltage can be increased until the error disappears. This also

allows for efficient power use, as the supply voltage being applied to the circuit will provide

only the power strictly necessary for the operation of that particular design.

3.4.4 Reconfigurable Hardware Platforms

Reconfigurable hardware platforms, although finding their origins in reconfigurable comput-

ing, provide another promising avenue in variability-tolerance due to their inherent flexibility.

The concept of reconfigurable computing has its origins around 1960, when Gerald Estrin first

started working on a new computer architecture which would include a standard processor

and an additional module described as reconfigurable hardware [106]. This novel architecture

aimed to make the most of the flexibility of a processor and enhance its operation speed by

offloading a particular task to a local dedicated hardware array, which can be faster than a

processor. If the task changes, the hardware array can be reconfigured to accommodate the

new task.

As Estrin put it in [107]:

“We are firmly convinced that when a special purpose configuration may be accomplished

using available facilities, a new level of inventiveness will be exercisable”.

Over the next few decades, and following from his work, architectures were designed with

the goal of providing the idealised hardware reconfigurability.

As sources of intrinsic variability take great strides toward becoming first-order effects on

the behaviour of transistors, the inherent reconfiguration abilities of these platforms could

provide designers with a powerful tool not just to fight against the variations, but to work

with them to develop better circuits. The aim of this work is to make use of reconfigurability

to mitigate device variations, making reconfigurable hardware platforms the most relevant

research avenue to explore.

3.4. Post-Fabrication Approaches 65

FPGAs

Field Programmable Gate Arrays (FPGA) are general purpose, user-programmable reconfig-

urable devices which implement logic functionality through the use of lookup-tables (LUTs),

flip-flops, multiplexers and additional control, as illustrated in Figure 3.11.

Historically, FPGAs have been known to provide slower, more power and resource consum-

ing solutions than their application-specific integrated circuit (ASIC) counterparts which are

designed for a specific use, but recent developments by FPGA manufacturers, such as the in-

clusion of “hard” multipliers and accumulators in the reconfigurable fabric, have contributed

toward the reduction of the performance gap between the two devices [108].

Although this performance gap is being addressed by the manufacturers, FPGAs are not yet

ready to completely replace ASICs in day-to-day tasks. Still, these devices are used today

in a broad range of applications, such as accelerators for video processing, ultra-sounds,

data-mining, networking and much more.

Basic logic functionality is implemented with LUTs, flip-flops and multiplexers which make

up what is typically referred to as a slice, or logic cell. Some Xilinx FPGA families also

include different types of slices.

Implementing a design on an FPGA follows the process illustrated in Figure 3.12. A Hard-

ware Description Language (HDL) such as Verilog or VHDL is used to describe the logic

behaviour of the circuit to implement. A logic synthesis tool takes this information and

translates the design into an equivalent one constructed with basic logic gates. The mapping

stage takes this set of logic gates and groups them in the best possible way to fit the hardware

resources available on the FPGA. During the placement stage, these groups are assigned to

actual hardware resources on the device, and the routing stage takes care of establishing

the connections between the gates. A Static Timing Analysis (STA) tool performs delay

calculations for every path in the design, and detects any setup- or hold-time violations,

calculating the design’s maximum operating frequency. Finally, a bitstream is generated

which contains all this information which is read by the configuration resources – typically

static-RAM (SRAM) cells – of the FPGA, implementing the design.

A Configurable Logic Block (CLB) typically contains a few slices, that have been introduced

as the main logic resource for implementing both sequential and combinatorial circuits.

At the topmost abstraction layer, an FPGA can be seen as a sea-of-CLBs connected by

routing resources (switch boxes) and I/O pads, as depicted in Figure 3.13.

66 3.4. Post-Fabrication Approaches

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE

CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE

CK

D

SR

CE

CK

D

SR

Q

CE

CK

CIN

0/1

WEN

CK

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

SR

CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

DI2

DI2

DI2

CI

BI

AI

Function multiplexers

Storage elements (flip-flop)

X-Ref Target - Figure 3

Look-Up Tables

Carry-logic

Figure 3.11: A logic cell (or slice) from the Xilinx 6-series family of FPGAs, containing
look-up tables, storage elements, multiplexers, and carry-logic. Figure sourced from [21].

3.4. Post-Fabrication Approaches 67

Static Timing Analysis

Routing

Bitstream Generation

Placement

Technology Mapping

Logic Synthesis

Figure 3.12: The process of translating a circuit specification to a bitstream which configures
the FPGA. Figure sourced from [22].

A very common approach in the implementation of a design on an FPGA is to include

a soft-microprocessor – i.e. a microprocessor that can be fully implemented using logic

synthesis – such as the MicroBlaze [109], to simplify some of the computation. Most FPGA

manufacturers also provide a software development toolkit to make full use of the soft-

processor. Combining this soft-processor with the memory and other hardware resources of

the FPGA, a standard computer architecture can be implemented.

68 3.4. Post-Fabrication Approaches

Interconnect

Configurable Logic Block

I/O Block

Switch Box

Figure 3.13: Top view of a standard FPGA architecture

Some modern FPGAs such as the Xilinx Virtex-6 contain more than 100K slices which,

depending on the architecture of the slice, means that the device can implement circuits

with several hundred thousand gates, making it possible for very complex designs to be

created, bringing the FPGA closer to the complexity of a System-on-a-Chip (SoC).

These devices provide a large amount of flexibility regarding the logic implementation of a

particular design, but their nature is digital. If one is concerned with power efficiency or

speed of a design, there is little than can be done to impact it significantly by using the

FPGA design flow, other than circuit re-mapping.

The intrinsic variability issue introduced in Chapter 2 poses a significant threat to FPGAs,

since they can cause both timing and functionality issues [110, 111, 112]. The design flow

presented in Figure 3.12 assumes a deterministic set of variations characterised at a pre-

fabrication stage.

Non-deterministic variations have to be dealt with at a post-fabrication stage through a

process called “speed-binning”, whereby devices are grouped (binned) into separate clusters

depending on the maximum speed they can achieve, which are known as speed grades in the

case of Xilinx devices. The price that the devices are sold for depends on the “bin” they’ve

been assigned to. From an economic perspective, this approach is costing the manufacturer

a great deal of money, since ideally all devices would be grouped in the top category (plus

or minus a certain tolerance in performance).

On the designers’ side, they cope with these variations by picking subsets of worst-case

conditions – i.e. variables which contribute to process variations, such as temperature,

3.4. Post-Fabrication Approaches 69

Figure 3.14: Example of a delay map extracted from an Altera Cyclone III FPGA. A variation
of 3.4% is observed between the measured logic cells. This information can be fed back to
place and route algorithms for variation-aware implementations. Figure sourced from [23].

voltage, transistor width, etc – and analysing their design under such conditions. This can

be seen as too conservative, as these worst-case scenarios may have a very small probability

of ever occurring, but it may also not be conservative enough, as more severe outliers in

these conditions can exist [113].

An extensive array of techniques have been developed for not only characterising variability

in programmable devices, but also to perform variation-aware mapping, making the most of

reconfiguration abilities of these devices.

A particularly popular technique is Razor. Although not exclusively designed for use in

FPGAs, the reconfigurable nature of these devices allow for the inclusion of these modules

at any point in a circuit, making them a useful technique in the FPGA device reliability field

[114, 115].

Making use of these timing-error detection capabilities of the Razor flip-flop on reconfigurable

hardware, research undertaken at Imperial College has focused on using this information to

allow for variation-aware circuit mapping [23]. These mechanisms make it possible to

70 3.4. Post-Fabrication Approaches

capture data such as Figure 3.14 illustrates where the impact of variability can be represented

by a figure of merit, for example circuit delay. This information can be redirected to the place

& route tools, which are then able to place timing-critical portions of the design to faster

areas of the fabric, and assign lower priority tasks to slower areas [110]. This methodology

makes it possible to push the mapped circuit beyond the operating conditions established

by the manufacturer, ultimately resulting in power-savings and performance improvement.

By performing online measurements, finding the optimal mapping for a particular design

does not require any over-conservative margins or guard-bands. Additionally, this approach

provides a suitable mechanism to detect ageing-related degradation, contributing toward the

reliability of devices [23].

Performing online measurements requires a hardware overhead, which some manufacturers

may not consider economically viable, and therefore resort to modelling. This is what Static

Timing Analysis tools have been used for in the last three decades [86, 87], and Statistical

Static Timing Analysis has included the effects of variability in its models [116, 117],

allowing for variation-aware design implementation. In the case of FPGAs, they have been

proven useful since the delay of a particular logic gate, or net of a given length, could be

modelled and would take the worst-case value extracted from the model. For a particular

circuit, these delays would be added and after a design has been placed and routed on the

FPGA, its maximum operating frequency could be calculated. For FPGAs, this information

is fed to the implementation process, which qualifies it as a post-manufacturing approach

rather as opposed to its use in traditional IC design, where it is used at a pre-manufacturing

stage.

FPTAs

In traditional circuit design, the designer creates a schematic and corresponding layout,

chooses a feature size, calculates the component values to meet the operating specifica-

tions under the specified conditions, and performs an analogue simulation of the design for

validation. As covered in Chapter 2, the circuit manufacturing process suffers from both

deterministic and stochastic variations. The former have been around for many decades,

and are fed back into the design process in the form of guard-bands.

The circuit designer then knows how much of an effect these variations can have in the

performance of their design, and usually adjusts it to accommodate these variations in order

to provide a guard-band which makes it more difficult for this to impact the functionality

3.4. Post-Fabrication Approaches 71

N

S

W E

N

S

W E

N

S

W E

N

S

W E

QD

Q

QD

Q

C
c
o
n
fig

u
ra

tio
n
/re

a
d
u
o
u
t o

f
S

R
A

M
 b

its
 in

 th
e
 a

rra
y

S&H

IO
−

c
e
lls

: w
rite

/re
a
d

to
/fro

m
 tra

n
s
is

to
r a

rra
y

0

S&H

15

S&H

IO
−

c
e
lls

:
w

ri
te

/r
e
a
d

to
/f
ro

m
 t
ra

n
s
is

to
r

a
rr

a
y

47

15

N

S

W E

N

S

W E

N

S

W E

N

S

W E

S&H

32

S
&

H

IO−cells: write/read
to/from transistor array

1
6

S
&

H

3
1

S
&

H

IO−cells: write/read
to/from transistor array

6
3

1
5

S
&

H

4
8

T−BJTBuffer T−BJT

T−BJT T−BJT

1/1 2/1
N

S

W E

3/1
N

S

W E

16/1

N

S

W E

N

S

W E

1/2 2/2 3/2

1/3 2/3 3/3

1/16 16/16

Figure 3.15: A simplified architecture of the Heidelberg FPTA. nMOS cells are depicted in
blue, pMOS cells in light red. Connections and transistor widths are configured through
SRAM. The array is 16x16 cells large. Input voltage patterns as well as measured voltages
are buffered in the represented IO cells and subsequently applied to the transistor array. The
figure is taken from [24].

of the circuit. Intrinsic variability, however, greatly increases the range of variations that a

circuit can experience, therefore potentially forcing the designer to increase their guard-bands

to a point where many resources are wasted to protect the design against variations which

have a very low – but non-negligible, due to the amount of devices comprising a modern

design – probability of occurring.

The Field-Programmable Transistor Array (FPTA) provides a post-fabrication solution for

circuits which exhibit extreme variations in performance, by allowing the user to reconfig-

ure the geometry of the transistors which make up a particular design. Much like the CATs

introduced in Section 3.2.2, configurable transistors are introduced in the place of normal de-

72 3.4. Post-Fabrication Approaches

SW

Cell

CAB

CLB

N N

N

N

N

SW

SW

Cell CLB

CLB

CAB

CAB

Cell

Cell

Cell

FPGA / Cell Level Functional Block Level
CLB & CAB

Configurable Transistor Level

MOTIF

Device Layout
Motifs

C
S

C
D

CG

B
IT

 0

B
IT

 1

B
IT

 3

B
IT

 4

B
IT

 5

B
IT

 6

CB

M0

M1

M2

M3

M4

M5

M6

B
IT

 2

S0

S1

S5

S4

S3

S2

S6

Configuration Memory (SRAM)

Switches S0..S6

Source

Drain

BulkGate

Figure 3.16: The hierarchical architecture of PAnDA, with the hierarchy being shown from
top-layer (left) to bottom-later (right). The topmost layers host the logic functionality of a
design, and the bottom layers provide the analogue flexibility through the use of Configurable
Transistors. Figure sourced from [25].

vices, but instead of inserting them in strategic locations – which depend on the design being

implemented – in FPTAs every transistor is replaced with their configurable counterpart.

The Heidelberg FPTA [118], illustrated in Figure 3.15, is a device specifically designed with

an evolutionary mindset – a topic further discussed in Chapter 6 – which aims to exploit the

device’s reconfigurable connectivity in order to construct analogue circuits which meet a set

of performance requirements, whether they are digital in nature (e.g. logic functionality) or

analogue (e.g. slew rate, output drive strength). A similar, yet smaller device was designed

at the Jet Propulsion Labs [119], which reported the design of unconventional circuits such as

combinatorial designs for fuzzy logics using aspects of evolvable hardware, a concept which

is introduced later in this thesis. A comparison of the two architectures can be found in

[120].

PAnDA

With the aim of combining the flexibility of FPGAs with the analogue access of FPTAs,

the Programmable Analogue and Digital Array (PAnDA) provides a scalable fabric which

allows the designer to map a circuit and fine-tune it to comply with a set of performance

specifications [25].

Its main advantage over FPGAs is the added analogue flexibility, and over FPTAs it is the

scalability.

PAnDA is a hierarchical architecture which resembles a traditional FPGA at its topmost

layers, and provides additional analogue flexibility through configurable transistor sizing at

its bottom layer, as illustrated in Figure 3.16.

3.4. Post-Fabrication Approaches 73

Given that it combines two architectures known for their use in the field of evolvable hard-

ware, it is also a suitable platform to evolve circuits, as well as to use the concepts of evolution

as fault-tolerance mechanisms [31].

Additionally, as this work sets out to demonstrate, the PAnDA architecture has the potential

to mitigate some of the effects of intrinsic variability.

For these reasons, PAnDA qualifies as both a pre- and post-fabrication approach, since

it includes structures specifically designed (at pre-fabrication) to mitigate variability, and it

allows for post-fabrication adjustments to be made through reconfiguration (to both analogue

and digital layers).

In a standard FPGA, the basic hardware is fixed. Although the user can configure the

logic functionality and connections inside the fabric, the performance characteristics of the

designed circuit (e.g. power consumption, speed) will remain unchanged unless the design is

re-mapped in a different way, and therefore using a different set of transistors present at a

different location on the fabric.

The Configurable Transistor aims to introduce a new degree of configuration, allowing

the user to essentially change lower-level properties of their design without the need to find

a new location on the fabric which provides the desired performance. This flexibility has

been proven useful for the purposes of reliability, as reported in [16].

Taking inspiration from the FPTA design of [26, 24], an array is constructed with 7 basic

transistors of the same channel length (L) but different widths (W0...W6) connected in par-

allel, with a common gate, source, bulk and drain. These 7 basic transistors can either all

be pMOS or all nMOS.

A set of switches is then positioned between the common gate and the gate of each individual

transistor, shown in Figure 3.17 as S0...S6. If all switches are closed, then all signals will be

common to all transistors. The resulting circuit will be equivalent to a single transistor with

channel length L, but with a width that is defined by the sum of all W s.

Additionally, a configurable clamp is attached to the common gate of each CT. This clamp

connects the gate to either Vdd or Gnd, or the input of the CT. The CT will consequently

be permanently open (off), permanently closed (on) or input-dependent, respectively. In

networks of CTs implementing a range of logic functions, these clamps are essential to ensure

the appropriate CTs are turned on or off, according to the implementation of the function.

The CTs can then be in one of the following states:

74 3.4. Post-Fabrication Approaches

C
S

C
D

CG CB

M0

M1

M2

M3

M4

M5

M6

S0

S1

S5

S4

S3

S2

S6

Vdd

Gnd

Gate Terminal
of Configurable
Transistor

Source Terminal of
Configurable Transistor

Bulk Terminal of
Configurable Transistor

Drain Terminal of
Configurable Transistor

Switches S0...S6

B
IT

 6

B
IT

 1

B
IT

 4

B
IT

 3

B
IT

 2

B
IT

 5

B
IT

 0

Configuration Memory (SRAM)

B
IT

 7

Configurable
Clamp

B
IT

 8

Figure 3.17: Schematic of a pMOS PAnDA Configurable Transistor. The transistor sizes
used are L0...6 = 40nm and W0...6 = [120, 120, 140, 160, 180, 200, 220]nm, allowing for CT
widths between 120 and 1140nm. Modified image from [26].

Enabled when the CT behaves as a single transistor, with its width configured by switching

individual transistors on and off using the first 7 bits of the configuration word. This

is achieved by using bit 7 of the configuration word to establish a connection between

the common gate of the CT and the gates of the individual transistors.

Disabled when the CT’s state is not input-dependent because the common gate has been

disconnected from the individual transistor gates through configuration bit 7. Bit 8 of

the configuration word controls whether the disabled CT is insulating or conducting.

For the former case, the CT is seen as an open connection in the CAB structure, and

in the latter it is seen as a wire.

For example, if two of these transistors, one with W
L = 120nm

40nm and another with W
L = 200nm

40nm

are connected in parallel, the resulting circuit will be equivalent to a transistor with W
L =

320nm
40nm . This resulting circuit is called a Configurable Transistor (CT).

By opening and closing the gate switches, one can effectively change the resulting width of

the CT, which – as presented in the previous chapter – has an effect on the drain current,

consequently making the transistor faster or slower.

3.4. Post-Fabrication Approaches 75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Configurable Transistor Width 1e 6

0

1

2

3

4

5

Fr
e
q
u
e
n
cy

Figure 3.18: All CT width configurations achievable with set of individual transistor width
set W0...6=[120, 120, 140, 160, 180, 200, 220]nm for transistors M0...6 which make up a Config-
urable Transistor. Figure sourced from [27].

The channel widths of the 7 transistors that make up a CT are as follows: 120 (x2), 140,

160, 180, 200 and 220nm. All 7 transistors share the same channel length of 40nm. This

set was chosen to make it possible to change the channel width of a CT in 20nm increments

(half of the channel length) between 120nm and 1140nm, allowing for a total of 128 unique

widths for a particular CT. This set of sizes provides a range of operating points (in terms of

speed and power consumption) which allow the designer to deal with variations by altering

the geometry of a given transistor to better fit the performance requirements for a particular

design. Figure 3.18 illustrates the CT channel widths that can be achieved using different

combinations of the 7 transistors. This graph also illustrates how the same geometry can be

achieved in different ways – especially for the mid-range channel widths – which makes it

possible to conserve the analogue characteristics of a particular design in the event that one

of the 7 transistors inside the CT experiences a fault. It also provides redundancy, which

can be very useful when dealing with varying characteristics between devices brought on by

stochastic variability.

Figure 3.19 shows the I−V curves associated with all the 128 CT width configurations of one

nMOS CT, and how intrinsic variability causes the curves to overlap. 100 RandomSPICE

76 3.4. Post-Fabrication Approaches

0.9 1.0

W=120nm

W=460nm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vds (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

I d
s
(
A
)

1e 4

Vgs = 1 0 V. W=1140nm

W=120nm

W=460nm

Figure 3.19: I − V characteristics for all 128 possible width configurations of a nMOS CT
(blue lines) and the corresponding effect of variability (salmon-coloured area). The drain-
source voltage (Vds) is plotted on the x-axis, the drain-source current (Ids) is plotted on the
y-axis, and the gate-source voltage (Vgs) is 1V. The effective width of the CT corresponding
to certain I − V curves are shown on the right. Figure sourced from [25].

netlists were created for each CT width configuration, so in total 12,800 SPICE simulations

were run [25]. The point illustrated by Figure 3.19 is that intrinsic variability can blur the

relationship between transistor width and I − V curve shape. With variability, it will not

necessarily be true that a wider transistor will be providing a larger amount of current for

the same gate voltage when compared to a narrower transistor. In fact, in extreme cases it

may even be the other way around. The salmon coloured areas between the variability-free

blue lines represent this blurring of performance.

Another experiment was carried out in [25] to investigate how variability affects a CT of

a particular channel width depending on which transistors are used to achieve it. Figure

3.20 illustrates the results of this experiment carried out for an nMOS CT channel width

of 460 nm achieved through the use of five different transistor combinations inside of a CT.

For each configuration, 100 RandomSPICE simulations are performed, and the performance

variations are added to the I−V curves in the form of the shadowed area. The plots suggest

that the different size configurations respond differently to variability, further validating the

advantages of the hardware redundancy provided by PAnDA.

3.4. Post-Fabrication Approaches 77

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
I d
s
(
A

)
1e 4

Vgs = 1.0 V

Configuration 0
Configuration 1
Configuration 2
Configuration 3
Configuration 4

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I d
s
(
A

)

1e 4

Vgs = 1.0 V

Configuration 0 - Variability
Configuration 0 - Average

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I d
s
(
A

)

1e 4

Vgs = 1.0 V

Configuration 1 - Variability
Configuration 1 - Average

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I d
s
(
A

)

1e 4

Vgs = 1.0 V

Configuration 2 - Variability
Configuration 2 - Average

(d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I d
s
(
A

)

1e 4

Vgs = 1.0 V

Configuration 3 - Variability
Configuration 3 - Average

(e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vds (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I d
s
(
A

)

1e 4

Vgs = 1.0 V

Configuration 4 - Variability
Configuration 4 - Average

(f)

Figure 3.20: I − V characteristics of the five different configurations for width 460 nm of a
nMOS CT (a) and the effect of stochastic variability upon each of the five width configura-
tions (b-f). The drain-source voltage (Vds) is plotted on the x-axis, the drain-source current
(Ids) is plotted on the y-axis, and the gate-source voltage (Vgs) is 1V . Figure taken from [25].

78 3.4. Post-Fabrication Approaches

N5

P1

P2 P4 P7

P3 P5 P6

N3 N6

N7N4N2

N1

PMOS CT

NMOS CT

Configurable
Interconnect

Block

Evolved
FCD

Configuration
SRAM

P1
P3
P5
P7

P2
P4
P6
N1N2

N4
N6

N3
N5
N7

Z

Z
_

Figure 3.21: Schematic of a Combinational CAB. The Function Configuration Decoder is
configured through SRAM, in turn bringing the configurable interconnect block to the appro-
priate configuration, routing the correct signals to the inputs of the CTs. This is a modified
version of a figure used in [28].

Changing the geometry of a given CT in a design will effectively change its analogue char-

acteristics, causing potential alterations to the drive current which can either increase or

decrease the output slew-rate, and will therefore have a positive or negative effect on the

overall circuit performance.

Moving up one level in the hierarchy, a number of pMOS and nMOS CTs are put together

in the form of an array to create a Configurable Analogue Block (CAB).

For the design iteration used as the subject for this modelling exercise, two types of CAB

were available: Combinational (CCAB) and Sequential (SCAB), each with their own set of

implementable functions. The former comprised 8 nMOS and 8 pMOS CTs, and the latter

10 nMOS and 10 pMOS CTs. The structures of a CCAB and of an SCAB are illustrated in

Figures 3.21 and 3.22, respectively.

Whereas the purpose of the CCAB is to implement basic combinational logic blocks which

can be implemented on an FPGA fabric, the SCAB is designed to represent pass transistor

logic blocks and basic tri-state logic blocks that can be combined to create sequential logic.

CCABs take in three inputs (A, B and C) and SCABs take in four (A, B, C and D) and

both generate two outputs, Z and Z̄. Each individual CT in the array takes in only one of

the inputs to the CAB, controlled by a Configurable Interconnect Block.

3.4. Post-Fabrication Approaches 79

P1

P2

P3

P4

P5

N3

N2

N1

N5

N4

Z

Z
_

PMOS CT

NMOS CT

Configurable
Interconnect

Block

Input A
Input B
Input C
Input D

P1 P2P3 P4P5 N1N2 N3N4 N5

Evolved
FCD

Configuration
SRAM

Configurable
Inverters

Figure 3.22: Schematic of a Sequential CAB. A set of configurable inverters The Function
Configuration Decoder is configured through SRAM, in turn bringing the configurable inter-
connect block to the appropriate configuration, routing the correct signals to the inputs of
the CTs. This is a modified version of a figure used in [28].

In order to reduce the overhead introduced by the flexibility of the PAnDA architecture, a

Function Configuration Decoder (FCD) has been evolved using Multi-Objective Cartesian

Genetic Programming [25] which controls the configurable interconnect block, effectively

controlling the function performed by the CAB.

The Configurable Interconnect Block generates the signals which control the gates of the

CTs inside a CAB. Besides establishing a path between one of those signals and a CAB

input, it can also disable or make a CT transparent, by connecting its gate to Vss or Gnd.

In [25], the FCD was designed to control up to 8 different functions for CCABs and another

8 for SCABs. Since the inverted output is also available, the number of functions they can

actually implement is 16. These function sets are described in further detail in Tables 3.1

and 3.2.

Whereas CTs can be seen as the foundations of the PAnDA architecture, CABs can be

regarded as the building blocks for the digital logic implementation.

The Configurable Logic Block (CLB) sits at the next level in the PAnDA hierarchy,

and it comprises a cluster of 4 CCABs and 4 SCABs. On a conventional FPGA, these are

typically comprised of Lookup Tables (LUT) and D-type flip-flops. The CCABs can be seen

as equivalent to a standard FPGA’s LUTs, and the sequential nature of SCABs is more

closely related to flip-flops.

80 3.4. Post-Fabrication Approaches

carry in

shift in

clock

data in <0>

data in <1>

data in <2>

data in <3>

data in <4>

data in <5>

carry out

shift out

inter <0>

inter <1>

inter <2>

inter <3>

inter <4>

inter <5>

inter <6>

data out <0>

data out <1>

CCAB
0

CCAB
2

CCAB
3

SCAB
0

SCAB
1

SCAB
2

SCAB
3

A B C Z Z
_

A B C Z Z
_

A B C Z Z
_

A B C Z Z
_

D A B C Z Z
_

D A B C Z Z
_

D A B C Z Z
_

D

enable

inter <7>

CCAB
1

A B C Z Z
_

Figure 3.23: Schematic of the switch matrix associated with one CLB, establishing the re-
quired connections between the CABs, as well as routing the signals which will be propagated
to other CLBs.

A CLB exposes all of the input and output buses of its CABs to the switch matrix associated

with it, which handles all the internal (between CABs) and external (to the rest of the fabric)

connections.

Associated with each CLB is a switch matrix. It is structured as illustrated in Figure

3.23, taking in a 6-bit wide bus as input along with carry- and shift-chain inputs and a clock

signal, and the output signals from every CAB inside of the CLB. It is essentially a crossbar

switch.

Table 3.1: Configurable CCAB Functions

Function Function
Configuration (Standard Output) (Inverted Output)

0 AND-OR-Invert AND-OR
1 Inverter Buffer
2 2-input NAND 2-input AND
3 3-input NAND 3-input AND
4 2-input NOR 2-input OR
5 3-input NOR 2-input OR
6 OR-AND-Invert OR-AND
7 Inverted Majority Majority

3.4. Post-Fabrication Approaches 81

Table 3.2: Configurable SCAB Functions

Function Function
Configuration (Standard Output) (Inverted Output)

0 Inverter Buffer
1 2-input XOR 2-input XNOR
2 2-input XNOR 2-input XOR
3 2-input multiplexer 2-input multiplexer with inverted

output
4 Tri-state inverter Tri-state inverter with inverted out-

put

5 Tri-state inverter with enable Tri-state inverter with enable and
inverted output

6 Clocked multiplexer Clocked multiplexer with inverted
output

7 Two inverters with common output Two inverters with common in-
verted output

It outputs a two-bit wide data bus and carry- and shift-chain outputs, as well as all the input

signals to every CAB inside of the CLB.

The connections between buses are made through a series of multiplexers and demultiplexers,

the select signals which are configured from memory. Each CAB also includes an output

enable signal.

The 8-bit wide interconnect bus allows the switch matrix to connect the output of one CAB

to the input of another, essential for propagating signals internally in a CLB.

Figure 3.24 lists the connections that are established for each particular value of the select

line for both the input multiplexers and the output demultiplexers that make up the switch

matrix.

Figure 3.25 presents an additional illustration of the connections between a CLB and its

associated switch matrix. Together, these two elements form the building block of the

PAnDA architecture at the topmost layer.

At the topmost abstraction layer, the PAnDA architecture can be regarded as a sea of

CLBs (with their associated switch matrices). At this level, a conventional FPGA and a

PAnDA device look very similar from a functional point-of-view.

PAnDA-EiNS, the first design iteration of PAnDA, is an 8-row by 4-column array of CLB

and switch-matrix pairs, with a fixed row-based connectivity.

82 3.4. Post-Fabrication Approaches

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

inter[0] inter[0]

inter[1] inter[1]

inter[2] inter[2]

inter[3] inter[3]

inter[4] inter[4]

inter[5] inter[5]

inter[6] inter[6]

inter[7] inter[7]
dataOut[0] dataOut[0]

dataOut[1] dataOut[1]

carryOut shiftOut

Z Z

Z Z

Z Z

Z Z

Z Z

SEL CCAB SCAB

clk clk
dataIn[0] dataIn[0]

dataIn[1] dataIn[1]
dataIn[2] dataIn[2]

dataIn[3] dataIn[3]

dataIn[4] dataIn[4]

dataIn[5] dataIn[5]

inter[0] inter[0]

inter[1] inter[1]

inter[2] inter[2]

inter[3] inter[3]

inter[4] inter[4]

inter[5] inter[5]

inter[6] inter[6]

inter[7] inter[7]
carryIn shiftIn

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

SEL CCAB SCAB

de
m

uxm
ux

Figure 3.24: The input multiplexer and output demultiplexer connections established with
different select signals. A Z is shown when the output is in a high-impedance state.

The device takes in two 8-bit inputs, represented by A0..A7 and B0..B7, and produces two

16-bit outputs, one being the concatenated outputs of the first column of CLBs and the

other the concatenated outputs of the last column of the array.

Each switch matrix propagates two output data bits to the CLBs in the two columns that

follow it, making the architecture routing row-based.

The PAnDA structure includes both carry- and shift-chains, allowing for the implemen-

tation of more efficient arithmetic functions and sequential shifters.

Each row on PAnDA-EiNS contains its own separate carry-chain, whereas a single shift-chain

spans across the entire array in a snake-like pattern, to allow for the implementation of large

shift-registers.

The configuration of routing and functionality is achieved by means of a flip-flop chain,

which shifts in a static random access memory (SRAM) address, along with 14 bits of data.

Once a write signal is issued, the data word is written to the memory block at the specified

address.

As Figure 3.26 shows, each address is directly connected to the configuration to either CT

sizes, CAB functionality, or switch matrix connections.

An initial set of experiments was carried out on a fabricated PAnDA-DREI device, the third

design iteration of the PAnDA architecture. Although not directly comparable to the results

described in this work due to the architectural differences, they still provide some insight

into how intrinsic variability manifests itself in actual fabricated hardware. A series of 32

3.5. Summary 83

SCAB 0 SCAB 1 SCAB 2 SCAB 3

Z Z
_

A B C D

Z Z
_

A B C D

Z Z
_

A B C D

Z Z
_

A B C D

CCAB 0 CCAB 2 CCAB 3

A B C

Z Z
_

A B C

Z Z
_

A B C

Z Z
_

CCAB 1

A B C

Z Z
_

Switch Matrix

dataIn dataOut6 2

clock

carryIn

shiftIn

carryOut

shiftOut

Configurable Logic Block

Routing

Figure 3.25: A CLB-switch-matrix pair, depicting all internal and external connections.

seven-stage ring oscillators were mapped to a PAnDA-DREI chip and the frequencies were

measured, with the results being illustrated in Figure 3.27. Although the plot only depicts

absolute error, some of the frequencies were below the average, and some were above.

3.5 Summary

This chapter presented a summary of some of the most popular variability mitigation tech-

niques at pre-fabrication, during manufacturing, and also at the post-fabrication stage.

The effects of atomistic variability are still on the rise, and likely to become first-order effects

in the operation of transistors, and manufacturing techniques face considerable physical

limitations on the impact they can have on the reduction of these effects.

Pre-fabrication variability mitigation techniques require a large amount of computing power

to perform, and this requirements is only likely to increase as technology continues to scale

down. For this reason, post-fabrication techniques are presented as the most promising

84 3.5. Summary

ADDR 0

ADDR 8

ADDR 17

ADDR 25

ADDR 34

ADDR 42

ADDR 51

ADDR 59

ADDR 68

BIT
0

BIT
1

BIT
2

BIT
3

BIT
4

BIT
5

BIT
6

BIT
7

BIT
8

BIT
9

BIT
10

BIT
11

BIT
12

BIT
13

ADDR 72

ADDR 81

ADDR 85
BIT
0

BIT
1

BIT
2

BIT
3

BIT
4

BIT
5

BIT
6

BIT
7

BIT
8

BIT
9

BIT
10

BIT
11

BIT
12

BIT
13

ADDR 4

ADDR 38

ADDR 46

ADDR 55

ADDR 63

ADDR 12

ADDR 21

ADDR 29

CCAB Transistor Sizes (Widths)

SCAB Transistor Sizes (Widths)

CLB Internal Routing (CCABs)

CLB Internal Routing (SCABs)

SCAB Functions

CCAB Functions

N5
P6
P7
P8

P1
P2
P3
N4

P5
N6
N7
N8

N1
N2
N3
P4

AIN
DIP
CIP
N5

P1
P2
P3
P6

N4 P4
N1
N2
N3

AIP
DIN
CIN
P5

N6

CCAB 3

CCAB 2

CCAB 1

CCAB 0

SCAB 0

SCAB 1

SCAB 2

SCAB 3

CCAB 0

CCAB 1

CCAB 2

CCAB 3

SCAB 0

SCAB 1

SCAB 2

SCAB 3

220nm
220nm
220nm
120nm
120nm
220nm
220nm
220nm

120nm
120nm
120nm
220nm
220nm
120nm
120nm
120nm

220nm
220nm
220nm
120nm
120nm
220nm
220nm
220nm

120nm
120nm
120nm
220nm
220nm
120nm
120nm
120nm

220nm

220nm
220nm

120nm

120nm
220nm
220nm

220nm

120nm

120nm
120nm

220nm

220nm
120nm
120nm
120nm

220nm

220nm
220nm

120nm

120nm
220nm
220nm
220nm

120nm

120nm
120nm

220nm

220nm
120nm
120nm
120nm

220nm
120nm 220nm 120nm

120nm 220nm 120nm 220nm

ADDR 76

LSB

LSB LSB

LSB LSB

LSB
LSB

LSB

Figure 3.26: Breakdown of the SRAM mapping for the configuration of one CLB on PAnDA.
85 14-bit words are used to fully configure a CLB, including connectivity, functionality, and
CT geometry.

3.5. Summary 85

Relative X location

Re
la

tiv
e

Y
lo

ca
tio

n

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

Er
ro

r r
el

at
iv

e
to

 a
ve

ra
ge

 fr
eq

ue
nc

y
(%

)

Figure 3.27: A series of 32 7-stage ring oscillators implemented on a PAnDA-DREi chip,
fabricated at 65nm. Each illustrated square represents one ring oscillator. The ring oscil-
lators consist of 7 inverters connected in series, with CT widths set to 275nm. The colours
illustrate the relative error of the measured frequencies with respect to the calculated average
across the 32 oscillators.

avenue for variability mitigation, since they can be used to perform adjustments to otherwise

failing devices, and also have the potential to allow for circuit optimisation and reliability

enhancement.

This chapter introduced the concept of reconfigurable hardware as one of the potential

platforms on which to develop variability mitigation methods, along with notable examples

such as the FPGA and the FPTA. The PAnDA architecture is then introduced as the hybrid

platform which combines features from both FPGAs and FPTAs, and is presented in full

detail. This architecture allows for the implementation of digital circuits in much the same

way as FPGAs, since at the logic block level they look similar, whilst also allowing for some of

the analogue reconfigurability introduced by FPTAs, by providing reconfiguration resources

at the transistor-level, enabling the same kind of post-fabrication adjustments made possible

with CATs.

The next chapter describes the modelling efforts that went into replicating PAnDA in a

software-hardware hybrid model, which makes use of the parallelism of hardware for simu-

lation acceleration and the software models of variability included with the GSS tools.

86 3.5. Summary

Chapter 4

PAnDA Emulator: A Tool for

Accelerated Variability

Characterisation

Contents

4.1 Introduction . 87

4.2 Configurable Transistors . 90

4.3 Configurable Analogue Blocks . 90

4.4 SPICE: A Scalability Issue . 100

4.5 Accelerating SPICE in Hardware 101

4.5.1 Feature Block . 102

4.6 Configurable Logic Block . 106

4.7 PAnDA Emulator v1: A Sea of CLBs 106

4.8 Configuring PAnDA . 107

4.9 Summary . 108

4.1 Introduction

The PAnDA architecture is the one reconfigurable hardware platform out of the candidates

presented in Chapter 3 which provides a suitable fabric for the implementation of large

circuits along with the ability to control individual transistors to alter the performance of a

particular design. In addition, all the details regarding its structure are fully available, and

for these reasons it was chosen as the platform for this work.

87

88 4.1. Introduction

PAnDA Modelling

Variability
Characterisation

Architecture
Modifications

Functional Design
Implementation

Design Performance
Optimisation

Transistor Sizing Function Mapping

Variability-Aware
Architecture

Optimised Design

Device
Fabrication

Device
Model

Figure 4.1: Flow-chart depicting the ultimate goal of the modelling of PAnDA for variability-
tolerance, along with design optimisation at a post-fabrication stage performed on both the
fabricated device and the model, exploiting the reconfigurable nature of the architecture.

As previously introduced, this hierarchical architecture carries a strong resemblance to a

standard FPGA at the logic block level, and to an FPTA at the transistor level.

In order to properly assess how variability affects this architecture (and other architectures

in general) one would require a very large number of devices – at least in the order of

hundreds of millions, for large-scale manufacturing – to give confidence in any variability

measurement. An alternative is to construct appropriate models and use these for assessing

the architecture’s performance under the effect of variability.

A model of the PAnDA architecture which incorporates the effects of variability serves as

a pre-fabrication method of mitigating against variability, as optimal design configurations

which minimise the impact of variability can be investigated. In this sense, such a model

would tackle some of the effects of variability at pre-fabrication, and the inherent recon-

figurability of the PAnDA architecture would deal with any additional issues not resolved by

4.1. Introduction 89

the model, at a post-fabrication stage. Figure 4.1 presents a flow-chart which illustrates

how the variability-aware model can enhance the variability-tolerance of the architecture,

and also how the reconfigurability of PAnDA enables further adjustments when a device is

fabricated and operating in the field.

In summary, two main investigative strands can be identified with this flow-chart. Firstly,

using variability-aware transistor libraries in SPICE to create a model of a specific design

iteration of PAnDA provides an estimate of how variability is likely to affect these devices

once they are put through fabrication. This data can be fed back into the architecture

design process, further strengthening the variability-tolerance of the design. The second

strand deals with identifying optimisation strategies on an already fabricated device, taking

advantage of the reconfiguration resources of PAnDA. Investigating these strategies on an

actual device will take longer than using the model, so these strategies can be studied on

the model and then deployed on a device.

This work puts more emphasis on the second strand, due to issues concerning the accuracy

of the model (detailed in later sections). Circuits are mapped to a model of a PAnDA device,

and reconfiguration is used to minimise the circuit’s propagation delay in the presence of

variability.

In order to accelerate the study of the impact of variability on PAnDA, a model was created

which would be used for pre-fabrication evaluation. A hierarchical SPICE netlist was built

for the Configurable Analogue Blocks, encompassing the CAB and CT layers. Intrinsic

variation was then added through the use of the RandomSPICE tool [14], which has the

feature of increasing the SPICE simulation run-time.

Chapter 2 described how one of the effects of variability involves the threshold voltage of

a transistors, which in turn can affect the time it takes for a device to be turned on or

off, ultimately resulting in variation of the device’s propagation delay. For this reason,

propagation delay was used as the figure of merit for variability.

To address the issue of the large simulation time required by a full RandomSPICE run, a

VHDL-based model of the PAnDA architecture was designed which incorporates some of the

measurements taken from the variability-enhanced SPICE simulations, providing a faster

alternative for the study of the impact of variability at the circuit-level.

This chapter provides further details regarding the hierarchical design of PAnDA, and it also

deals with the translation of the PAnDA hierarchy into both SPICE and VHDL implemen-

90 4.2. Configurable Transistors

tations, which are consequently combined to form the PAnDA Emulator, with the ultimate

goal of accelerating the characterisation of variability for the PAnDA architecture.

Given that intrinsic variability comes from the bottom layer, the modelling efforts for each

of the abstraction layers of the PAnDA architecture are introduced in a bottom-up fashion.

4.2 Configurable Transistors

The bottom layer of a hierarchical model of PAnDA will begin at the Configurable Transistor

level, and therefore a netlist describing a CT was created, comprising standard transistors

and a custom netlist (also using only standard transistors) for the configurable clamps.

With the complete model in place, the RandomSPICE tool was used to introduce variability

into the SPICE transistor models. Each time a RandomSPICE netlist is created, the BSIM

model describing each transistor is replaced by another model taken from the variability-

enhanced libraries, where some of the BSIM curve-fitting parameters have been changed to

reflect the minor variations in the I − V curve caused by variability.

The netlists designed for the work reported in [25], which resulted in Figures 3.19 and 3.20,

described in Chapter 3, were used as the building blocks for this work.

4.3 Configurable Analogue Blocks

The SPICE netlists created to model a CAB did not include the Function Decoder; the con-

figuration was hard-coded into the netlists by fixing the clamps and routing the appropriate

inputs based on the function selected, as the function-switching transients are not the focus

of this work. This resulted in a separate netlist for each function performed by the CAB. The

transistor libraries used to model the PAnDA architecture targeted devices with a channel

length of 25nm. The actual PAnDA device was designed with a 65nm process, so the created

model will most likely feature a stronger effect from variability, and the variability-tolerant

methodologies devised with the model will still be applicable to the device.

Since the CCAB and SCAB structures follow the same principle, this work focuses exclusively

on the former, under the assumption that the modelling techniques and findings will also

apply to the latter.

RandomSPICE was again used to introduce variability into the architecture through the

variability-enhanced transistor models, this time looking at its effect at the CAB-level. Eight

4.3. Configurable Analogue Blocks 91

A

C

A

B

B

A

C

A

A

A

B

C

C

B
Enabled

Conducting

Insulating

Z
Z

(a)

B

B

Z

Z

A C

A

C

pMOS CT

nMOS CT

(b)

Figure 4.2: A CAB structure configured as a 3-input NAND gate (a). The state of each
transistor is represented by a different block illustration, and it is this configuration which
confers upon the CAB the desired functionality. (b) shows the simplified equivalent circuit.

pMOS and eight nMOS CTs are instantiated, in accordance with the schematic pictured in

Figure 3.21. Simulations were run for combinations of different CT sizes and functions. As

an example, a CAB was configured as a 3-input NAND gate, with every nMOS transistor

sized at 240nm and every pMOS at 480nm, achieving a CMOS ratio of 1:2 (nMOS:pMOS),

an arbitrary approximation of the typical 2:3 ratio used in CMOS designs. Figure 4.2 depicts

the CT configuration and hard-wiring of inputs which configures the CAB structure as a 3-

input NAND gate – note that the Function Decoder has not been included in the modelled

netlist.

As previously mentioned, the propagation delay of the Circuit Under Test (CUT) has been

chosen as the figure of merit which illustrates the effects of variability. The propagation delay

for a rising-edge is defined to be the length of time measured from when a transitioning input

signal reaches 50% of its final value to when the output signal reaches 50% of its final value.

In order to fully characterise the delay of a gate, for instance, an input pattern must be

constructed which stimulates the gate in such a way that all possible output transitions are

covered. To achieve this goal, two groups were created: input combinations which result

in a logic zero at the output of the gate; input combinations which result in a logic one

92 4.3. Configurable Analogue Blocks

Figure 4.3: Waveforms for 300 RandomSPICE runs of a 3-input NAND gate implemented
using the SPICE model for a PAnDA CCAB, with nMOS transistors 240nm wide and pMOS
480nm. The bottom waveform depicts the current behaviour at the output of the CAB. The
input pattern depicted by the top three waveforms was generated so as to cover every possible
output transition for a 3-input NAND gate.

at the output. The resulting sequence must include every possible combination of items

from the two groups, and will differ according to the function implemented. Every possible

combination of inputs which causes an output transition is covered so that all dynamic

transient behaviour for each gate is extracted in the CAB characterisation process.

This input sequence computation has been applied to every function, meaning that each full

characterisation of a CAB-based function has its own separate input pattern. More complex

functions will have longer input sequences, whereas simple ones such as the inverter function

will require short input patterns.

Variability was then introduced through the use of the RandomSPICE tool, and 300 circuit

instances were created. This number of created instances is a trade-off between the simula-

tions required for a Monte-Carlo process estimation and the limited amount of computing

resources. 300 instances provides a 3-sigma process coverage, although this could potentially

be extended to a larger data set in the future. The resulting output waveforms can be seen

4.3. Configurable Analogue Blocks 93

on Figure 4.3. The CAB output voltage waveforms are oscillating because of the nature of

the input pattern, which alternates between elements of the two groups detailed previously.

To calculate an appropriate slew rate for the input stimulus, a set of 3 CABs were connected

in series – the first one providing a buffer stage for the input stimulus, and the last serving

as an output load for the middle stage. This approach is undertaken because the input

signals are assumed to originate from another CAB, and therefore their slew rate should be

as realistic as possible. An input stimulus with a slew rate of 1V/ps was applied to the first

CAB, and the worst case slew rate of the second CAB, measured at 6.25mV/ps, was taken

as the reference. This was done so that the slew-rate of the stimulus applied to each gate in

the delay extraction process is approximately equivalent to the output slew-rate of another

CAB, which would be the case on a PAnDA design.

Zooming in on some of the transitions of the full transient plot, it is possible to see more

clearly the effects that variability has on the shape of the output waveform, and consequently

on the gate’s propagation delay, as Figure 4.4 illustrates.

Due to the structure of a PAnDA CAB, different input combinations will result in different

output drive strengths. For instance, in the case of the 3-input NAND gate, when the inputs

change from [111] to [000], all three pMOS CTs (labelled as Enabled on Figure 4.2) will drive

the output from 0 to 1 in parallel. In contrast, when inputs change from [111] to [001], only

one of the pMOS CTs will be driving the output to 1, resulting in a weaker drive strength

and consequently a larger propagation delay.

This dependency between number of CTs involved in the transition and the gate’s propaga-

tion delay is clearly demonstrated in Figure 4.5, as different levels of propagation delay are

visible, according to the number of inputs that change. Transitions where only one input

changes are slower, followed by those where two inputs change, and the fastest transition oc-

curs when all inputs toggle. This can be explained by the increased drive strength resulting

from more than one CT driving the output.

In an effort to fully characterise the performance of the building blocks of the PAnDA

architecture, this methodology was applied to every CAB function, extracting propagation

delays associated with input transitions which also result in output transitions. Across the 8

functions that each CAB can be configured to perform, the total number of unique transitions

required to cover every possible transition amounts to 400. As for the CT sizes, it would not

be feasible to run simulations for all of the 128 possible size configurations. For this reason,

a smaller set of 5 sizes spanning the possible range from the minimum to the maximum

94 4.3. Configurable Analogue Blocks

(a) (b)

Figure 4.4: A set of 300 RandomSPICE runs of a falling (a) and rising (b) transition of a
3-input NAND gate implemented using the SPICE model of a PAnDA CAB, with nMOS
Configurable Transistors 240nm wide and pMOS 480nm. The bottom waveform depicts the
current behaviour at the output of the CAB.

widths was chosen, with nMOS increments equal to the minimum width achieved by a CT of

120nm and pMOS increments designed to maintain a stable CMOS ratio, as detailed in Table

4.1. This information is extracted in this characterisation process so as to inform the digital

reconfiguration resources of PAnDA to potentially allow for performance optimisation.

Table 4.1: CT sizes selected for the characterisation of variability on the PAnDA architecture.

ID
pMOS Channel nMOS Channel Channel
Width (nm) Width (nm) Length (nm)

120n240p 120 240 25
240n480p 240 480 25
360n720p 360 720 25
480n960p 480 960 25
580n1140p 580 1140 25

4.3. Configurable Analogue Blocks 95

1

2

3

4

5

Ti
m

e

1e 11

50 100 150 200 250 300
Circuit Number

1

2

3

4

5

Ti
m

e

1e 11
[111-000]
[111-001]
[111-010]
[111-011]
[111-100]
[111-101]
[111-110]

Global Rising Edge Prop Delay

Figure 4.5: Rising edge propagation delay characterisation of a 3-input NAND gate imple-
mented using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS Configurable
Transistors 240nm wide and pMOS 480nm. The scatter plot on the right expands on the
left boxplot by making it possible to see the transitions associated with every propagation
delay measurement.

Getting a sense for how variability affects the PAnDA architecture at the CAB-level can then

be done through the extraction of propagation delays. For a given function, CAB models are

created with the CTs sized according to the specified set. Using the same RandomSPICE

transistor models, delay measurements are taken for every CT size of the set, and for every

function specified in Table 3.1. This generates a matrix of measurements which fully char-

acterises an instance of a CAB in terms of delays. This is called a CAB Model Card (CM

Card). Using a different set of RandomSPICE transistor models will create another CM

Card. With the 300 RandomSPICE transistor model combinations that have been carried

out, a CM Card library is generated, populated with these 300 elements. This approach is

summarised in Figure 4.6.

With this data, it becomes possible to directly compare the performance of different CT

sizes for the same function implemented on a CAB. Taking the same example of a 3-input

NAND gate, Figure 4.7 illustrates how the propagation delay distribution is shaped across

different CT sizes. The peaks present in Figure 4.7 represent the levels first seen in Figure

96 4.3. Configurable Analogue Blocks

Choose function

C
h
o

o
se

 T
 S

iz
e

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

INV
NMOS

480nm

PMOS

960nm

NAND2
NMOS

240nm

PMOS

480nm

NOR2
NMOS

240nm

PMOS

480nm

NOR2
NMOS

480nm

PMOS

960nm

CAB

Delay Data

Up to 1000

transistor model

cards

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

Function

T
 S

iz
e

RandomSPICE
Run

0

299

0

n_sizes

7

Using Configurable

Transistors, we can model

Configurable Analogue

Blocks made up of different

sized transistors!
Function

T
 S

iz
e

x300

0 7

n_sizes

RandomSPICE
Run

Delay

extraction

CM Card

CM Library

Figure 4.6: The process of extracting propagation delays from a RandomSPICE model of a
PAnDA CAB, depending on the CT sizes and mapped function, and repeating it for different
combinations of RandomSPICE transistor models. The end result is a library of CAB Model
Cards (CM Cards).

4.3. Configurable Analogue Blocks 97

4.5, and the variations around those values are caused by variability. Without variability,

the plot would consist solely of overlapping points at the peaks.

Propagation delay

1e 11

1
2

3
4

5
6

7
8

CT siz
es

120n240p

240n480p

360n720p

480n960p

580n1140p

%
 o

f o
cc

ur
re

nc
e

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Rising edge propagation delay for NAND2

Figure 4.7: Rising edge propagation delay characterisation of a 3-input NAND gate imple-
mented using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS and pMOS
CTs sized according to the specified set.

The case of the inverter, depicted in Figure 4.8, shows this more clearly, where only one

peak is visible for the full characterisation. This is due to the fact that the implemented

inverter only uses one pMOS and one nMOS transistor on the CAB structure (this excludes

the CT-based CMOS inverter which generates the complementary output). As the CT sizes

are increased, there is a clear narrowing of the distributions, as well as a decrease in the

median due to the higher current drawn by the CTs by reason of their increased width.

Another interesting case is that of the AOI21 function, where the peaks only become visible

at larger sizes, where the effect of variability has a smaller impact. Figure 4.9, which depicts

the falling-edge propagation delay distribution for each CT size, shows that four different

peaks are visible at the larger CT sizes, corresponding to different transistors being activated.

However, as the CT size is reduced these peaks begin to blend with each other. This suggests

that the propagation delay for a transition involving only one fast CT might be similar to

that of another transition which involves two slower CTs, despite their sizes being the same.

98 4.3. Configurable Analogue Blocks

Propagation delay

1e 11

4
5

6
7

8
9

CT siz
es

120n240p

240n480p

360n720p

480n960p

580n1140p

%
 o

f o
cc

ur
re

nc
e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Rising edge propagation delay for NAND2

Figure 4.8: Rising edge propagation delay characterisation of an inverter implemented us-
ing 300 RandomSPICE simulations of a PAnDA CAB, with nMOS and pMOS CTs sized
according to the specified set.

An additional experiment has been carried out with the aim of investigating how different

combinations of transistors inside of a CT – used to achieve the same size – will behave in

the presence of variability. A set of 300 RandomSPICE runs were carried out for the inverter

Table 4.2: A breakdown of the transistors used in the standard and alternative CT con-
figurations to achieve the set of sizes specified for the experiment. An X denotes a used
transistor, whereas an o represents a not-used transistor.

nMOS Transistors used in CT (nm) pMOS Transistors used in CT (nm)

CT size 120 120 140 160 180 200 220 120 120 140 160 180 200 220

Size 0 std X o o o o o o X X o o o o o
Size 0 alt o X o o o o o X X o o o o o

Size 1 std X X o o o o o o o X X X o o
Size 1 alt X X o o o o o X o X o o o X

Size 2 std o o X o o o X X X X X X o o
Size 2 alt o o o X o X o o o X X o X X

Size 3 std X o o X o o X X X X X o X X
Size 3 alt o o X X X o o X X X X o X X

Size 4 std o o o X o X X X X X X X X X
Size 4 alt X X o X X o o X X X X X X X

4.3. Configurable Analogue Blocks 99

Propagation delay (ps)

10
20

30
40

50
60

70
80

90
100

Transist
or si

zes

120n240p

240n480p

360n720p

480n960p

580n1140p

%
 o

f o
cc

ur
re

nc
e

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Figure 4.9: Rising edge propagation delay characterisation of a AOI21 function implemented
using 300 RandomSPICE simulations of a PAnDA CAB, with nMOS and pMOS CTs sized
according to the specified set.

function implemented on a CAB across each of the five CT sizes specified in Table 4.1, this

time achieved through a different combination of transistors, as detailed in Table 4.2.

In some cases, as Figure 4.10 illustrates, the alternative size configuration outperforms the

original in average value and spread, but it underperforms in others. These results give fur-

ther substance to the argument that the redundancy provided by the individual transistors

inside of a CT can be beneficial for the mitigation of variability, but only at post-fabrication.

This means that at a post-fabrication stage, an alternative CT configuration can be at-

tempted to optimise the performance of the design, but as these results suggest, there isn’t

a significant difference between the spread in performance obtained by each of the size con-

figurations. A non-parametric Vargha-Delaney significance test was carried out on this data

set, resulting in A-values of around 0.5 with very low p-values, suggesting that the two dis-

tributions are not significantly different from each other, and therefore that the different

combination of transistors in the CT would not contribute toward a significant increase in

variability-tolerance.

100 4.4. SPICE: A Scalability Issue

60

70

80

90

Pr
op

ag
at

io
n

de
la

y
(p

s)

40

45

50

55

60

65

35

40

45

50

55

60

35

40

45

50

55

35

40

45

50

Standard configuration Alternative configuration * Average Value

120n240p 240n480p 360n720p 480n960p 580n1140p

Figure 4.10: Comparison between the propagation delays of 300 RandomSPICE runs of a
CAB-based inverter using the standard and alternative configurations to achieve the speci-
fied CT. The blue boxplots represent the standard configuration, and orange represent the
alternative.

4.4 SPICE: A Scalability Issue

As each CAB contains a total of 16 Configurable Transistors, each comprising 7 standard

transistors and a clamp to enable each, as well as a configurable clamp for the common gate,

the SPICE simulation time quickly grows as more CABs are added to the model.

Figure 4.11 depicts the increase in simulation time according to the number of CABs (con-

figured as a majority function) included in the netlist. The experiment that this plot relates

to consisted in simulating a varying number of CABs connected in a tree fashion, with a

simulation time-step of 5ps and a total run-time of 5ns.

As Figure 4.11 indicates, the simulation time increases linearly with the number of CABs

instantiated in the netlist, with each additional CAB contributing around 358s of simulation

time overhead.

However, if a netlist includes more CABs, it is also very likely that the complexity of the

circuit it implements also increases, and therefore more transitions will have to be evaluated

to get a full characterisation of the behaviour of the implemented circuit.

Investigating the effects of variability on the PAnDA architecture at the circuit level rapidly

becomes a task which requires an infeasible amount of time, and therefore a new method is

4.5. Accelerating SPICE in Hardware 101

2 4 6 8 10 12 14 16 18
Number of CABs instantiated in design

17

33

50

67

83

100

117

Si
m

ul
at

io
n

tim
e

(m
in

ut
es

)

m=357.918

Runtime 5ns

Figure 4.11: Time required to simulate a design in SPICE with varying numbers of CABs,
with a 1ps time-step and a duration of 5ns. The slope, labelled as m, suggests that each
additional CAB represents an overhead of 358s in simulation time.

required which can reduce this simulation overhead. As an example, a 5 ns simulation of a

device with 1,000 CABs (a number very shy of the typical logic cell count of a traditional

FPGA) would take just under 100 hours to run on a single processor. Simulating 300 of

these to study the impact of variability would then drive the simulation time up to 4 years.

4.5 Accelerating SPICE in Hardware

In order to address the scalability issue that a full SPICE simulation for variability char-

acterisation presents, a different approach was required which could process the simulation

data in a parallel fashion, since the root of the scalability problem lies in the sequential

evaluation of the SPICE model equations by a processor.

Hardware is inherently parallel, making it a strong candidate for the platform on which the

model can be accelerated. In addition, it can be beneficial to use a flexible type of hardware

which can be used to investigate potential architecture changes that provide benefits to

PAnDA.

102 4.5. Accelerating SPICE in Hardware

For these reasons, an FPGA-based implementation of PAnDA was the chosen approach to

accelerate the characterisation of the impact of variability on the architecture. On its own,

such a model can be used to emulate the logical behaviour of a PAnDA device, but it cannot

emulate its more analogue properties such as propagation delay and power consumption.

Moreover, it does not take into account the variations imposed by intrinsic variability, like the

variability-aware SPICE models provided by RandomSPICE. A more established approach

such as SSTA does not take into account the specialised structure of the PAnDA architecture,

which as Figure 4.7 shows, results in different delay distributions based on the transition

of inputs that is used to stimulate the different configured CABs. For the purposes of

digital reconfiguration, the properties of the transistors inside of each CAB must be retained

when switching from one function to another. Although some methods have been reported

which allow for the circuit-level estimation of the impact of variability [121, 13], they were

not designed to accommodate the reconfigurable logic features of an architecture such as

PAnDA, and the correlation between functions implemented on the same CAB. This is

desirable since in the real hardware this correlation will be present, and will therefore be key

for local optimisation.

4.5.1 Feature Block

To address these issues, the concept illustrated in Figure 4.12 was applied to the FPGA-

based model written in VHDL. The logic set of combinational functions that a PAnDA CAB

can be configured to perform, previously described in Table 3.1, are implemented natively in

VHDL, using simple logic. This provides the functionality (logic) backdrop which will then

accommodate the data extracted from the RandomSPICE simulations.

The outputs of a CAB are connected to a feature block which detects any changes in

its inputs and outputs the SPICE-extracted performance measurements relating to that

particular transition, stored in a block of memory. For this work, the features provided

by the feature block are limited to delay insertion, but this could easily be expanded to

include other performance metrics such as power consumption. The operation of the feature

block for delay insertion consists of delaying the updating of the values of the outputs by an

amount specified in memory, previously measured in simulation and relating to the transition

observed by the CAB. This delay is achieved by means of digital counters, which are loaded

with the value extracted from a RandomSPICE simulation.

4.5. Accelerating SPICE in Hardware 103

Feature
Block

IN OUT

CAB
(Logic) SPICE Data

Figure 4.12: The basic concept behind the incorporation of RandomSPICE simulation data
into a hardware-based model of PAnDA. The outputs of a CAB are connected to a feature
block, which incorporates SPICE data stored in a block of memory. In the case of the delay
characterisation used in this work, the feature block detects any changes in its inputs and
delays the process of updating the outputs by an amount specified in memory, previously
measured in simulation.

The process of characterising the propagation delay of a CAB based on the geometry of its

CTs, the function it is configured to perform, and the occurring transition, illustrated in

Figure 4.6, will generate a matrix of values which the counters can read. All of these mea-

surements are represented in picoseconds, since the delays extracted from the RandomSPICE

simulations ranged from approximately 20 to a few hundred picoseconds. The propagation

delay exhibited by a particular CAB on the FPGA-based model will be proportional to that

measured in SPICE, according to the ratio between one picosecond and the inverse of the

frequency of the clock used to operate the digital counters. For instance, if the counters are

clocked at 1MHz, then a SPICE-extracted delay of 100 picoseconds (written simply as 100

in memory, since the order of magnitude is implicitly assumed as 10−12) will be measured

as t = 100×10−12

1
106

= 10ms in the hardware model.

The feature blocks comprise a finite state-machine with a digital timer/counter. This FSM

detects a change at the inputs and fetches the delay corresponding to that particular tran-

sition from a block of memory, which contains the data extracted from RandomSPICE

simulations. This value gets loaded to a timer, which blocks the output of the CAB from

being updated until the timer elapses. This behaviour seeks to emulate the propagation

104 4.5. Accelerating SPICE in Hardware

IDLE

Input changed?

Delay BRAM

Causing transition?

Fetch Delay

Timer Active

Timer elapsed?

Update Output

0b10010110
0b10011100
0b10111110
0b00011110
0b11010110

...
0b10111110
0b10010011

read

write

Figure 4.13: The finite state-machine which controls the operation of the feature block
attached to each CAB on the PAnDA Emulator. Based on input transitions and CAB
function, the value loaded to the timer will determine when the output gets updated following
from change in inputs.

delays at the circuit-level which are also observed in SPICE. This process is summarised in

Figure 4.13.

In a similar fashion to the way the RandomSPICE tool replaces standard transistor models

in a netlist with variability-aware ones, CM Cards are chosen at random from the CM Card

library and are assigned to any CAB instantiated on the FPGA-based model through the use

of the digital counters. This is illustrated in further detail in Figure 4.14. Because the seed

used for the RandomSPICE netlist generation are the same for every function, this ensures

that the same “virtual” transistors are instantiated every time, maintaining the correlation

of performance across different functions.

This approach makes it possible to emulate the different geometries that can be achieved

with a CT, simply by loading the appropriate value to the digital counters associated with

the CABs. The outcome of this methodology is a hardware-accelerated computation of the

4.5. Accelerating SPICE in Hardware 105

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

Function

T
 S

iz
e

RandomSPICE
Run

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

CAB
Delay Data

Function

T
 S

iz
e

RandomSPICE
Run

Extract timing data for another CAB

CAB A
(Functionality)

Feature
Block

Function Configuration Chain

IN OUT

Write to memory Write to memory

Function Configuration Chain

CAB B
(Functionality)

Feature
Block

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

CAB

Delay Data

Extract timing data for one CAB

Figure 4.14: The process of randomly choosing a CM Card from the library to be written
to the memory which is read by the digital counters in the feature blocks associated with
CABs (A and B).

106 4.6. Configurable Logic Block

logic functionality accompanied by a set of data which provides a measure of variability at

the CAB-level.

4.6 Configurable Logic Block

For the hardware model, 4 CCABs and 4 SCABs are instantiated per CLB, but since only the

former have been fully characterised in SPICE, they are also the only ones which incorporate

feature blocks at their outputs, and consequently only they are used in experiments. In the

hardware description, these consist of 4 CCAB and 4 SCAB hierarchical modules, written

in VHDL.

The switch matrix is instantiated in VHDL in the form of combinatorial logic.

4.7 PAnDA Emulator v1: A Sea of CLBs

Since the hardware model written in VHDL is hierarchical and therefore modular, any N×M

array of CLB-switch-matrix pairs can be implemented on an FPGA, provided that there is

enough space available on the device.

Complying with the PAnDA-EiNS topology, an 8 × 4 array of CLB-switch-matrix pairs is

instantiated in VHDL, and the PAnDA Emulator is created. It is a modular and fully-

parametrised model of the PAnDA architecture which incorporates variability-aware timings

and which can be used to study the effects that variability has on the architecture. Different

CT sizes can be emulated by loading appropriate SPICE timings to the feature blocks.

This approach aims to model the propagation delays of PAnDA logic gates in a circuit-level

design, but it does not include delay associated with the interconnect. This is, however,

something that can be included in the model at a later stage.

This was implemented on a Xilinx Virtex-6 (XC6VLX760-FF1760) FPGA.

A model of this size takes up less than 20% of the device’s logic resources, which means

that the model can be expanded to include more CLBs. However, if the size increases, the

frequency at which it can operate will need to be reduced in order to meet design timing

requirements. This is because of interconnect delays between the different modules used to

implement the CABs, and the need for synchronisation between them. The larger the model,

the longer the distance between two CABs at the extremes of the array, and consequently

the longer it takes for a signal to be propagated between them.

4.8. Configuring PAnDA 107

DFF

DFF

DFF

DFF

DFF

DFF

Configuration Bit 0 Configuration Bit 1 Configuration Bit 2

DFF

DFF

Configuration Bit N

Skip Configuration
Read Enable

Chain Clock

Global Write

Configuration
Output

Configuration Input

Figure 4.15: The flip-flop based configuration-chain of the PAnDA Emulator. Multiplexers
control whether the bitstream is routed into the CLB or if it gets passed along without
configuring it.

The shift- and carry-chains are also instantiated in the design as a series of wires.

4.8 Configuring PAnDA

In order to allow for additional features such as partial reconfiguration, desirable for opti-

misation tasks, the configuration of the PAnDA Emulator differs slightly from the original

architecture. Although FPGA manufacturers such as Xilinx and Altera offer partial recon-

figuration facilities, these usually come in the form of reconfigurable modules which need

to be identified at a pre-synthesis stage, and their size is limited [122]. With the aim of

allowing for the maximum flexibility for reconfiguration, a flip-flop based configuration chain

is instantiated in VHDL along with the rest of the model.

The configuration chain is built in such a way that one individual CLB can be reconfigured

without affecting the rest of the design, paving the way for online partial reconfiguration.

This is achieved by means of multiplexers which can be configured to either route a config-

uration bitstream through the CLB they control or to pass it along transparently, as Figure

4.15 illustrates. A shadow-chain of flip-flops is used to shift in the configuration bits with-

out affecting the current configuration, and the output of each register in the shadow-chain

connects to the input of another register on the main chain. The bits of the configuration

bitstream which control the routing and functionality are connected to the output of these

main-chain registers. When a global write signal is active, the outputs of the shadow-chain

are latched to the output of the main-chain, effectively overwriting the configuration of the

CLB.

To further increase the flexibility of the configuration of the PAnDA Emulator, two separate

chains have been created for functionality and routing. It becomes possible to change the

108 4.9. Summary

functions performed by the CABs inside a CLB without disturbing the connections between

them, and vice-versa, leaving the possibility of evolvable hardware open.

To fully configure a CLB, comprising 4 CCABs and 4 SCABs, including the signals required

to route the inputs and outputs along with output enables, the routing bitstream is 192 bits

long. For the functionality configuration, 3 select bits are required for each of the 4 CCABs

and 4 SCABs, giving a total of 24 bits for this bitstream. In total, 216 bits fully configure a

CLB. For the case of the PAnDA Emulator, with a total of 8×4 CLBs, the full chip requires

6912 bits for a full configuration.

As previously mentioned, the CT geometry is not configured through the bitstream as in the

original PAnDA architecture, but it is instead configured through software which populates

the memory associated with the feature blocks.

A full illustration of the bitstream which configures a CLB on the PAnDA Emulator is

pictured in Figure 4.16.

4.9 Summary

This chapter introduced the constructed model of the PAnDA architecture in detail from

the bottom-level Configurable Transistors which provide the analogue flexibility, to the top-

level structure which is similar to that of a standard FPGA. The model was created in this

fashion because one of its main aims was to include intrinsic variability, which comes from

the device level. The resulting features of the model at the device level should then propagate

to upper layers. The modelling efforts for each abstraction layer are presented, along with

the challenges that each entails.

A set of variability-aware transistor models are created and included in SPICE netlists which

model the Configurable Transistors, introducing intrinsic variations. The effects of these

variations include a warping of the I − V curve for each instantiated CT, resulting in a

broad range of I − V profiles and consequently affecting their propagation delays.

Models for Configurable Analogue Blocks – which sit at the next level in the PAnDA hierarchy

– are created also in SPICE, using the CT models. These are characterised for different CT

configurations, providing various geometries and functions, and the effect of variability at

this level is evaluated. These effects are in fact visible at the CAB level, and affect CABs in

different ways, depending on the function they are configured to perform.

4.9. Summary 109

CCAB Input Select

4

0

48

112

128
CCAB Output Select

B
its

tre
a

m

4

4

B
it

s
 p

e
r

b
lo

c
k

Select A0

Select A1

Select A2

Select A3

Select C0

Select C1

Select C2

Select C3

SCAB Input Select

Select 0

Select 1

Select 2

Select 3

4

CCAB Inverted Output Select
144

4

160
SCAB Output Select

4

SCAB Inverted Output Select
176

1

180
CCAB Output Enable

1

184
CCAB Inverted Output Enable

1

SCAB Output Enable

1

SCAB Inverted Output Enable

188

192

CCAB SCAB

clk clk
dataIn[0] dataIn[0]

SEL

dataIn[1] dataIn[1]
dataIn[2] dataIn[2]

dataIn[3] dataIn[3]

dataIn[4] dataIn[4]

dataIn[5] dataIn[5]

inter[0] inter[0]

inter[1] inter[1]

inter[2] inter[2]

inter[3] inter[3]

inter[4] inter[4]

inter[5] inter[5]

inter[6] inter[6]

inter[7] inter[7]
carryIn shiftIn

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

CCAB SCABSEL

inter[0] inter[0]

inter[1] inter[1]

inter[2] inter[2]

inter[3] inter[3]

inter[4] inter[4]

inter[5] inter[5]

inter[6] inter[6]

inter[7] inter[7]
dataOut[0] dataOut[0]

dataOut[1] dataOut[1]

carryOut shiftOut

Z Z

Z Z

Z Z

Z Z

Z Z

Select A0

Select A1

Select A2

Select A3

Select D0

Select D1

Select D2

Select D3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

Select 0

Select 1

Select 2

Select 3

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Routing Bitstream

3

0

12

24

3

SCAB Function Select

CCAB Function Select

B
its

tre
a
m

B
it

s
 p

e
r

b
lo

c
k

Select F0

Select F1

Select F2

Select F3

Select F0

Select F1

Select F2

Select F3

Function Bitstream

Figure 4.16: Breakdown of the bitstream required to configure one CLB on the PAnDA
Emulator. 4-bit input select and 3-bit output signals are stacked, along with output enables,
for the routing bitstream. The function bitstream includes one 3-bit select word for each
CAB in the CLB. The numbers of the left represent the number of bits of each white box
included in the bitstream, and the numbers on the right show the length increase in the
bitstream as each set of blocks is added.

Motivated by these results, CAB-variability-enhanced netlists are instantiated as models,

and moved up to the CLB level, where traditional logic circuit design takes place. At this

CLB (or multi-CAB) level, SPICE simulation run-time begins to play a significant role, due

to the high complexity of the dynamic nature of the circuits. This is tackled by exploiting the

parallelism of hardware through the use of an FPGA-based emulator. SPICE data, taken

110 4.9. Summary

from previous modelling steps, is imported to the emulator through feature blocks which

mimic the varying CAB output delays, resulting in a dynamic model.

Additional details are provided regarding the process of writing the values extracted from the

SPICE simulations to the Emulator, through the use of counters associated with each CAB

instantiated on the model. This methodology creates a dynamic and variability-enhanced

behaviour on digital circuits, grounded on real SPICE measurements.

Finally, the configuration of PAnDA (and of the hardware model) is explained in detail.

The next chapter will focus on using the Emulator for the purposes of accelerating the

characterisation of variability in a number of implemented test-cases.

Chapter 5

Virtual Physical Instances and

Model Accuracy

Contents

5.1 Introduction . 111

5.2 Virtual Physical Instances . 113

5.3 Control Module . 114

5.4 Monitoring and Measuring Variability 116

5.5 Test-Circuits . 117

5.5.1 3-Stage Ring Oscillator . 120

5.5.2 2-bit Multiplier . 120

5.6 Correlation with SPICE . 122

5.7 Inaccuracies in FPGA-Based Model 126

5.8 Adjustments to the Model . 128

5.9 Summary . 133

5.1 Introduction

Having created a model which allows for the characterisation of the effects of variability

on mapped designs on the PAnDA architecture at the circuit level, efforts were focused on

quantifying the error which arises from the simplifications that were included in the model

to allow for the hardware speed-up.

With the inclusion of the variability-aware feature blocks, the Emulator shows a dynamic

behaviour based on the measurements taken from RandomSPICE simulation runs. It is

shown that this approach greatly reduces the time it takes to get a sense of how a particular

111

112 5.1. Introduction

design will respond to the presence of variations in the CABs it comprises when compared

to a full SPICE simulation, and this difference is quantified.

The methodology described in this chapter can be classified as a pre-fabrication approach

to variability mitigation, as it enables the study of the effect of variability across the archi-

tecture for a particular technology size. Since the transistor models utilised in the Random-

SPICE runs – undertaken to create the CM Card library described in the previous chapter –

were for devices with a channel length of 25nm, the results obtained from this study will also

apply only for this technology size. Methods devised to cope with the effects of variability

will also be applicable to larger channel-length devices, although these effects are likely to

be less serious.

Two circuits are used for the experimental set-up: a 3-stage ring oscillator and a 2-bit

multiplier. The former due to its typical use in hardware variability studies, and the latter

to provide a more complex combinational design which can be instantiated several times in

a single PAnDA-EiNS model, allowing for multiple measurements in parallel.

An in-built propagation delay and frequency measurement mechanism is designed such that

these pertinent measurements can be taken for each instantiated circuit, with the purpose

of assessing the variability in performance. An input pattern is generated for the Circuit

Under Test (CUT) which stimulates it in such a way that every combination of inputs which

causes an output transition is tested. A finite state-machine (FSM) then reads the outputs

of the Emulator and determines the delay for every output. An additional mechanism is

included in the FSM which measures frequency, for the case of the ring oscillator. A number

of virtual physical instances (VPIs) of a PAnDA device are created using the Emulator, and

variations in performance are measured.

In the case of the ring oscillator, the full experiment is replicated using RandomSPICE, and

the results are compared to those obtained using the Emulator. For the 2-bit multiplier,

this is not feasible, as each individual RandomSPICE simulation takes more than 4 hours to

run, and therefore a few of the VPIs are replicated with RandomSPICE, and subsequently

a comparison is made with the Emulator delay measurements.

This comparison highlights some inaccuracies in the model which are dealt with by adjusting

the output load for the CABs during the RandomSPICE-based modelling process of extract-

ing the propagation delays. This approach provides a better match with the RandomSPICE

measurements without affecting the hardware acceleration of the Emulator.

5.2. Virtual Physical Instances 113

Physical device

Emulator fabric

Logic layer

FPGA Bitstream

CM Card Mapping

Emulator Bitstream

Figure 5.1: The three different layers that make up the PAnDA Emulator. The creation of
PAnDA VPIs is done by configuring the top layer for a particular design, and then iterating
through different configurations of the middle layer, by assigning sets of CM Cards to the
feature blocks.

This chapter introduces the concept of creating virtual physical instances and using these

for design evaluation, providing further information about how this is done on the Emulator,

along with additional implementation details of the hardware. The mapping of the test

circuits is shown, along with the operation of the FSM. Finally, the inaccuracies between the

Emulator and the RandomSPICE models are pointed out, and the adjustments performed

at the modelling stage are described.

5.2 Virtual Physical Instances

In the same way that RandomSPICE populates a netlist with transistor models taken from

a variability-aware library, the Emulator populates the CABs in the hardware model with

CM Cards taken from the library created for this purpose. In a RandomSPICE run, a set of

netlists is created containing different transistor models; in an Emulator “run”, the feature

blocks are populated with different CM Cards, as Figure 4.14 illustrated in Chapter 4. Each

Emulator “run” can be regarded as a virtual physical instance of a PAnDA chip, since

it represents a potential combination of variation profiles for the CABs inside a particular

PAnDA chip, and therefore a virtual device.

114 5.3. Control Module

Figure 5.1 illustrates the different layers that make up the Emulator. The actual FPGA

used to implement the Emulator is shown at the bottom, and it takes in a Xilinx bitstream

for configuration. Above it, the feature blocks accept a CM Card which confers upon them

the delays extracted from RandomSPICE. At the top, the logic resources on the Emulator

establish the functionality of each CAB and routing of signals, based upon a configuration

bitstream downloaded through the Emulator’s configuration port.

The total number of separate propagation delays for a CAB of a particular CT size, taking

into account every possible transition for each of the 8 functions it can be configured to

perform is 400. As previously explained, a set of 5 different CT sizes was modelled instead

of the 128, due to time constraints. This then results in a total of 2000 values for a single

CM Card.

The full CM library, consisting of 300 CM Cards, will then hold a total of 600,000 different

propagation delays. These values range from a few dozen picoseconds to just over 200, and

therefore can be encoded using just 8 bits.

Making full use of the embedded system features of an FPGA-based implementation, a

microBlaze soft-processor is included in the design for the purpose of holding the entire CM

library in the form of an array of 8-bit values.

The XC6VLX760 board used to implement the Emulator does not include sufficient BRAM

blocks or external RAM to hold the 4.8Mb required by the CM library (since most of the

BRAM resources were already being used by the feature blocks), and so an external FPGA

is added to the experimental set-up in order to store this information and also to provide

some additional features, described in the following section.

5.3 Control Module

In order to provide the external memory required by the CM library, a XUPV5-LX110T

board, hosting a Virtex-5 LX110T Xilinx FPGA is connected to the Emulator implemented

on the Virtex-6 on the XC6VLX760 board by means of a 40-pin ribbon cable, as depicted

by Figure 5.2.

This additional device stores the entire CM library in SDRAM, and communicates it to

the Emulator through two 32-bit wide channels (one for writing operations and another for

reading) connected to GPIO pins on both boards. It performs all top-level tasks such as

5.3. Control Module 115

Control Module PAnDA Model

Figure 5.2: The hardware set-up for the PAnDA Emulator, with the XC6VLX760 board
displayed on the right, housing the PAnDA model, and the control module implemented on
the XUPV5 board, displayed on the left. Both are connected through a 40-pin ribbon cable.

shifting in the configuration bitstream and writing CM Card values to the feature blocks on

the Emulator. Due to its top-level nature, it is referred to as the Control Module.

Both devices are running programs written in C through the use of an embedded microBlaze

processor, and communicate based on an established message protocol, setting fields for the

task, data and for a communication flag. This flag is simply a bit which gets toggled when a

device has a message ready to be read by the other. When either of them registers a change

in this bit, the message gets read and an acknowledgement message is sent back.

The devices operate at different frequencies, but this does not affect the communication

between them, the frequency of which is limited by the Emulator, which is run at 100MHz

as opposed to the Control Module, running at 125MHz.

As previously presented, the implemented hardware model for PAnDA is based on the

PAnDA-EiNS design iteration, consisting of an array of CLBs organised in 8 rows and 4

columns, each with 4 CCABs and 4 SCABs. Given that only the former have been mod-

elled, every time the Emulator is populated with CM Cards, 128 of these must be chosen

from the CM library containing 300 Cards. For the purposes of creating PAnDA VPIs,

116 5.4. Monitoring and Measuring Variability

the Control Module will randomly select 128 CM Cards and pass the values along to the

Emulator, each time creating a device with a unique performance.

This means that for the same configuration bitstream, a very large number of different

PAnDA VPIs can be instantiated, and the differences in propagation delays will serve as a

quantitative measure of how much that design will be affected by variability.

5.4 Monitoring and Measuring Variability

As previously pointed out, the variability-aware feature blocks on the Emulator cause a

dynamic behaviour of the outputs, which change state based on the values loaded to the

counters. This can be verified on the oscilloscope, but an internal measurement method

provides further possibilities for closed-loop operation, paving the way for on-line circuit

performance optimisation.

With this goal in mind, a finite state-machine based delay measurement module, written

in VHDL, was synthesised along with the Emulator. This module is synchronised with the

clock that is fed to the feature blocks, so it measures the Emulator’s relative time-steps

rather than an absolute delay.

For the 2-bit multiplier, one is interested in measuring propagation delay from the inputs

to the outputs of the design, whereas for the ring oscillator the pertinent measurement to

take is output frequency. For this reason, the FSM was designed to operate in two separate

modes of standard delay and frequency measurement. The two modes of operation can be

described as follows:

Delay Mode – the FSM detects a change at the input of the device, and begins writing the

values of the outputs to a RAM block, at the same rate as the feature blocks operate

at. This block is referred to as the Output Sample RAM. This block is as wide as

the number of outputs of the Emulator, and has a depth of 1024, meaning that all

outputs are recorded for a duration of 1024 time-steps. This value was chosen to be

larger than the maximum delay for a 2-bit multiplier design, ensuring no transition goes

unrecorded. The values of the outputs at the instant when the input transition occurred

are then recorded as a reference. The FSM then reads bit i of RAM containing the

sampled outputs, representing a single output, and iterates through the 1024 addresses

until it finds a change in the state of that output. The actual value of the address

at which this change is found is written to another RAM block at address i, and it

5.5. Test-Circuits 117

represents the actual propagation delay for output i. If no change is detected, the

value written is the maximum of 1023, which is interpreted later as a non-changing

output. This second RAM block is referred to as the Measured Delays RAM. The

process is repeated for every output that has been recorded, and the Output Sample

RAM is fully populated. Once this is completed, the delay values can be read by an

external source, such as the microBlaze processor. The FSM then returns to its initial

state, awaiting another input transition or a change in its mode of operation. Figure

5.3 provides an illustration of this mode of operation, pointing out a few examples for

further clarification.

Frequency Mode – in this mode, a counter is connected to every output of the Emulator.

When a rising-edge is detected, the counters are enabled, and run until the following

rising-edge. The values of the counters are then stored in registers, and they represent

the period of the output signals. The FSM then reads the registers one by one and

stores the values on the Measured Delays RAM. Once again, as in the case of the Delay

Mode, these values can be read by an external source. This process is repeated until

the mode is changed by the user. Figure 5.4 presents a flow-chart which summarises

the operation of both modes.

The FSM is written in VHDL and instantiated alongside the design of the Emulator. Many

of the steps taken by the FSM require a considerable number of clock cycles, and in order to

allow for a large enough margin so that the measurement is not affected by timing violations,

the clock which controls both the feature blocks and the output sampling is designed to work

at a frequency 100x slower than the Emulator. Since the Emulator operates at 100MHz, this

clock is set to 1MHz.

What this means is that, as explained in Section 4.5, a propagation delay on the Emulator

of 100 microseconds will represent a delay of 100 picoseconds in the device being modelled.

5.5 Test-Circuits

Two test-circuits were designed to serve as the object of the investigation, and this section

describes not only their operation but also how they were implemented on the Emulator.

118 5.5. Test-Circuits

Populate m
em

ory

Output Sample BRAM

0 1 1 01 1 0 01 0

0 1 1 01 1 0 01 0

0 1 1 01 1 0 01 0

0 1 1 01 1 1 01 0

0 1 1 01 1 1 00 0

.

.

.

.

.

0x0:

0x1:

0x2:

0x3:

0x4:

0x5:

0x6:

0x7:

0x8:

0xA:

0xB:

0xC:

0xD:

Outputs

.

.

.

Memory fully populated

Output Sample BRAM

0 1 1 01 1 0 01 0

0 1 1 01 1 0 01 0

0 1 1 01 1 0 01 0

0 1 1 01 1 1 01 0

0 1 1 01 1 1 00 0

0 1 1 00 1 1 00 0

0 1 1 01 1 1 00 0

0 1 1 01 1 1 00 0

0 1 1 01 1 1 00 0

0 1 1 01 1 1 00 0

0 1 1 00 1 1 00 0

0 1 1 00 1 1 00 0

0 1 1 00 1 1 00 0

D
etect output changes

Outputs

0x0:

0x1:

0x2:

0x3:

0x4:

0x5:

0x6:

0x7:

0x8:

0xA:

0xB:

0xC:

0xD:Measured Delays BRAM

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

0x4

0x3

0xD

0xD

0xD

0xA

0xD

0xD

0xD

0xD

R
ecord address of change

no output change = maximum address

Delay of output 0: 4 time-steps
Delay of output 4: 10 time-steps
Delay of output 6: 3 time-steps

Figure 5.3: Detailed operation of Delay Mode of the implemented finite state-machine, illus-
trating the output sampling, transition detection and delay storage stages for each output
on the Emulator. A RAM depth of 14 addresses is represented instead of the actual 1024 for
simplicity of representation. The outputs at which no transition is detected are assigned a
delay equivalent to the maximum address, which is later interpreted as a non-transitioning
output by the processor.

5.5. Test-Circuits 119

START

Delay Mode

Start Write

Write RAM

Set Baseline

RAM Full?

Measure

Write Delay

Increment Index

Limit Reached?
NoYes

No

Yes

Frequency Mode

Mode Select FrequencyDelay

Wait For
Rising Edge

Start
Counting

Wait For
Rising Edge

Write Period

Figure 5.4: Operation of the measurement finite state-machine, which either measures the
propagation of each output on the Emulator, or the frequency of the outputs of ring oscilla-
tors, depending on which mode is configured by the user.

120 5.5. Test-Circuits

CLB00 + Routing CLB10 + Routing CLB20 + Routing

Y00(1)

Y00(0)

A2
A1

Y00(1)

Y00(0)
A2

Y10(0)

Y10(1)

CLB30 + Routing

Y00(1)

Y00(0)
Y10(0)

Y10(1)

Y20(0)

Y20(1)

B2
B1

B2

A2
A1
A0

B0
B1
B0

Y30(0)

Y30(1)

Yxy(out)
y

x
CLB(xy)

INV INV INV INV INV INV INV INV INV INV INV INV

CAB

F0 F1 F2 F3

Figure 5.5: A series of four 3-stage ring oscillators implemented in a row on the Emulator,
using the inverter function of a CAB. Each CAB block is represented in light blue. The
outputs on which the individual frequencies are measured are illustrated as red boxes.

5.5.1 3-Stage Ring Oscillator

The first implemented design is a 3-stage ring oscillator based on inverters connected in

series, with the input of the first inverter being connected to the output of the last, forming

a feedback loop. This circuit (with varying numbers of stages) is widely applied for post-

fabrication variability characterisation on programmable devices, since the output frequency

they generate is a straightforward figure of merit for variations [58, 123, 124, 112]. This

frequency depends on the delay in each stage, which in turn depends on the physical char-

acteristics of the hardware implementing the function of the inverter (the CAB in the case

of PAnDA).

Each oscillator can be implemented with one CLB, and therefore a total of 32 can be im-

plemented on the Emulator. Figure 5.5 depicts a row on the Emulator with a 3-stage ring

oscillator mapped to each CLB.

An additional advantage of using this circuit is that it is just small enough that the time

required to run a series of RandomSPICE simulations becomes feasible (around 110 seconds

for each oscillator), allowing for a direct comparison between the Emulator and the full

RandomSPICE simulation.

5.5.2 2-bit Multiplier

As an example of a more traditional combinational design, a 2-bit multiplier is also used as

a test circuit in the experiments carried out for this work. It is mapped to the Emulator

using the CAB configurations and routing illustrated in Figure 5.6.

In order to provide a full characterisation of the propagation delays of a 2-bit multiplier

circuit, an input pattern was designed such that every possible input combination which

causes a change in at least one of the four outputs is applied to the circuit.

5.5. Test-Circuits 121

C
LB

00 +
 R

outing
C

LB
10 +

 R
outing

C
LB

20 +
 R

outing

A
0

A
1

A
2 =

 A
0

Y00(1)

Y00(0)

A
2

A
1

Y00(1)

Y00(0)
A

2

Y10(0)

Y10(1)

C
LB

30 +
 R

outing

Y00(1)

Y00(0)
Y10(0)

Y10(1)

Y20(0)

Y20(1)

B
2 B
1

B
2

B
0

B
1

B
2=

 B
0

Y30(0)

Y30(1)

Yxy(out)
y

x
LE(xy)

IN
V

A
N

D
2

A
N

D
3

A
N

D
3

IN
V

A
N

D
2

A
N

D
3

O
R

2
B

uffer

B
uffer

C
LB

01 +
 R

outing
C

LB
11 +

 R
outing

C
LB

21 +
 R

outing

Y01(1)

Y01(0)

A
3

A
2

Y01(1)

Y01(0)
A

3

Y11(0)

Y11(1)

C
LB

31 +
 R

outing

Y01(1)

Y01(0)
Y11(0)

Y11(1)

Y21(0)

Y21(1)

B
3 B
2

B
3

Y31(0)

Y31(1)

IN
V

IN
V

A
N

D
3

A
N

D
3

O
R

2

O
R

3

A
1

A
2 =

 A
0

A
3 =

 A
1

B
1

B
2 =

 B
0

B
3 =

 B
1

B
uffer

B
uffer

IN
V

IN
V

A
N

D
3

A
N

D
3

B
uffer

C
A

B
Input

LE O
utput

R
2

R
0

R
3

R
1

N
um

ber of C
C

A
B

s per LE: 4
N

um
ber of SC

A
B

s per LE: 4
N

um
ber of array colum

ns: 4
N

um
ber of array row

s: 2

N
um

ber of free C
C

A
B

s: 7
N

um
ber of free SC

A
B

s: 32

A
1

A
0

B
1

B
0

*
=

R
3

R
2

R
1

R
0

Figure 5.6: The mapping of a 2-bit multiplier function on the Emulator, using two of its
rows of CLBs. It takes inputs A2, A1, B1 and B0 and outputs a four-bit number R. The
outputs of the multiplier are represented by the red boxes.

122 5.6. Correlation with SPICE

0.2
0.0
0.2
0.4
0.6
0.8
1.0 v(b1)

0.2
0.0
0.2
0.4
0.6
0.8
1.0 v(b0)

0.2
0.0
0.2
0.4
0.6
0.8
1.0 v(a1)

0.2
0.0
0.2
0.4
0.6
0.8
1.0 v(a0)

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

v(y3)

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

v(y2)

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

v(y1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
1e 7

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

v(y0)

Figure 5.7: The input pattern generated for the full propagation delay extraction of a 2-bit
multiplier circuit. The top four waveforms represent the 2-bit inputs A and B, and the
bottom four represent the four bits of result R. All y-axes represent voltage expressed in
volts (v), and the common x-axis represents time expressed in hundreds of nanoseconds.

Given that some input combinations cause more than one output to change its state, some

measurements can be taken in parallel. For instance, with inputs [A1, A0, B1, B0] transi-

tioning from [0,0,0,0] to [1,1,1,1], the outputs [R3, R2, R1, R0] will change from [0,0,0,0] to

[1,0,0,1]. In this case, propagation delays for outputs R3 and R0 can be measured in parallel.

For this reason, the total number of input combinations applied to extract each of the 324

propagation delays required to fully characterise a 2-bit multiplier circuit can be reduced

down to 198. Figure 5.7 shows the SPICE voltage waveforms corresponding to the input

pattern for signals A and B, along with the outputs R3...R0. Where two transitions overlap,

the measurements can be taken in parallel.

5.6 Correlation with SPICE

With the test circuits in place, as well as the embedded variability measurement resources,

the initial set of experiments can be carried out. First, a program written in C, running

on the Control Module, randomly selects a set of 128 CM Cards and passes them along to

another program running on the microBlaze associated with the Emulator, which then writes

5.6. Correlation with SPICE 123

1.90

1.95

2.00

2.05

2.10

Fr
eq

ue
nc

y
(k

Hz
)

2.70

2.75

2.80

2.85

2.90

3.10

3.15

3.20

3.25

3.30

3.20

3.25

3.30

3.35

3.40

3.45

3.45

3.50

3.55

3.60

3.65

Emulator * Average Value

120n240p 240n480p 360n720p 480n960p 580n1140p

Figure 5.8: Boxplots of the distributions of frequencies generated for each CT size. Each
boxplot contains 300 frequencies measured on the Emulator, with a sampling clock of 1MHz.
Taking into account the scaling factor of the model, these frequencies would be multiplied
by a factor of 106, moving them to the GHz range.

the values to the memory attached to each feature block. Once this process is completed,

a PAnDA VPI has been created. At this point, the Emulator is a virtual device awaiting

functionality and routing configuration.

Following from this, a series of 32 ring oscillators are mapped to the Emulator, already

implemented in hardware. The Control Module sets the configuration bitstream for the

Emulator, which then proceeds to shift it through the configuration-chain, as described in

Chapter 4. The measurement FSM is consequently enabled, and the frequencies generated

are stored in the registers. As mentioned in Chapter 4, only the first and last columns

of CLBs have externally-readable outputs, and therefore only 16 of the 32 oscillators are

actually sampled by the FSM.

This procedure is repeated 19 times, enough to extract a total of 300 unique oscillator

frequencies, each generated by a random combination of CM Cards assigned to each inverter

in the ring oscillator design. Each of the repetitions takes about 4 seconds to run on the

Emulator.

124 5.6. Correlation with SPICE

1.2

1.4

1.6

1.8

2.0

2.2

Fr
eq

ue
nc

y
(G

Hz
)

2.0

2.2

2.4

2.6

2.8

3.0

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.0

3.1

3.2

3.3

3.4

3.5

3.2

3.3

3.4

3.5

3.6

3.7

SPICE Model Emulator * Average Value

120n240p 240n480p 360n720p 480n960p 580n1140p

Figure 5.9: Correlation between the frequencies generated by 300 ring oscillators imple-
mented on the Emulator and simulated in SPICE.

This experiment is carried out once for each CT size of the modelled set specified in Table

4.1, and Figure 5.8 illustrates the frequency distributions measured for each size. The total

run-time required for these experiments amounted to roughly 7 minutes.

Due to the small size of the 3-stage ring oscillator design, a set of similar experiments were

carried out using RandomSPICE. A hierarchical netlist comprising three CABs configured

as inverters connected in series with a feedback loop at the end was created, resulting in a

3 stage-ring oscillator. RandomSPICE was then used to create 300 netlists for this circuit,

each with a different set of transistor models, to introduce variability. Once again, this

procedure was carried out once for each CT size specified in the set. This resulted in 300

RandomSPICE runs for each of the 5 sizes, each taking roughly 1 minute and 50 seconds to

simulate, slower than the Emulator by a factor of 27x.

The CM Cards randomly selected for the Emulator experiment are not the same used for the

RandomSPICE runs, and for this reason a perfect match between the two is not expected.

The means of the distributions should, however, be similar, as well as the variances. Figure

5.9 shows the boxplots for both experiments across the set of modelled CT sizes. It is

clear from the comparison that the Emulator consistently generates frequencies which are

considerably larger than those observed in SPICE, which suggests an inaccuracy in the

5.6. Correlation with SPICE 125

modelling of CABs for the Emulator. This inconsistency is addressed in detail in Section

5.7.

The same set-up was created for the 2-bit multiplier, shifting in the appropriate bitstream,

resulting from the mapping illustrated by Figure 5.6, and setting the FSM to Delay Mode.

Because each multiplier requires two rows on the Emulator, 4 separate instances can be

mapped in parallel on the 8 rows of the Emulator, allowing for parallel evaluation and

consequently reducing the time required for variability characterisation. The set of 198

input combinations described in Section 5.5.2 is applied to the design, and 324 individual

propagation delays are extracted for each instantiated multiplier.

The evaluation of a 2-bit multiplier design takes around 8 seconds (with the sampling clock

running at 1MHz), but when using the parallel features of the Emulator this run-time allows

for the characterisation of 4 individual instances. Because this is a considerably larger design,

the comparison with RandomSPICE simulations cannot be done in the same way as for the

ring oscillators, since a single multiplier created in SPICE using the hierarchical CAB models

takes roughly 4 hours and 40 minutes to run. Therefore, the CM Cards used for the Emulator

experiments were noted down, and a separate SPICE netlist was created for each of the four

instantiated 2-bit multipliers, using the RandomSPICE transistor models associated with

the CM Cards they incorporated.

The total run-time required for the four 2-bit multipliers in SPICE amounted to about

18 hours and 30 minutes. When comparing with the 8 seconds required by the Emulator

implementation, the full SPICE simulation is almost four orders of magnitude slower.

Having extracted the propagation delays for the same input combinations, a direct compar-

ison can be made between the two implementations. Figure 5.10 illustrates a correlation

plot between the extracted propagation delays for the Emulator implementation and for a

full SPICE simulation of the same circuit. Each point shown on each graph represents a

particular propagation delay, measured on both implementations. As in the case of the ring

oscillator experiments, the measurements have been adjusted to fit the same scale. The

propagation delays were measured in microseconds on the Emulator, but they in fact repre-

sent picoseconds, as Section 4.5 explained. A point representing a perfect match should sit

on the line labelled as ideal correlation where, for instance, a 200 picosecond delay on the

Emulator would correspond to a 200 picosecond delay on the full SPICE simulation.

On every correlation plot, the points are located mainly below the ideal correlation curve,

suggesting that the design on the Emulator tends to be faster (lower propagation delays)

126 5.7. Inaccuracies in FPGA-Based Model

0 100 200 300 400 500
SPICE Delays (ps)

0

100

200

300

400

500

Em
ul

at
or

 D
el

ay
s

(p
s)

Pearson correlation: 0.789

Correlation points
Ideal correlation

(a)

0 100 200 300 400 500
SPICE Delays (ps)

0

100

200

300

400

500

Em
ul

at
or

 D
el

ay
s

(p
s)

Pearson correlation: 0.731

Ideal correlation
Correlation points

(b)

0 100 200 300 400 500
SPICE Delays (ps)

0

100

200

300

400

500

Em
ul

at
or

 D
el

ay
s

(p
s)

Pearson correlation: 0.751

Ideal correlation
Correlation points

(c)

0 100 200 300 400 500
SPICE Delays (ps)

0

100

200

300

400

500

Em
ul

at
or

 D
el

ay
s

(p
s)

Pearson correlation: 0.722

Ideal correlation
Correlation points

(d)

Figure 5.10: Correlation between the first (a), second(b), third (c) and fourth (d) 2-bit
multipliers instantiated on the Emulator, and their respective simulations in RandomSPICE.
The Pearson correlation is calculated for each multiplier.

than the SPICE simulation. As this was also the case in the ring oscillator experiments,

the evidence points towards a modelling inaccuracy which causes the Emulator to be overly

optimistic. Even with these limitations, the Pearson correlation calculated for the multipliers

is approximately 0.75 on average.

The next Section explores the causes of these mismatches, and provides details about how

these have been addressed.

5.7 Inaccuracies in FPGA-Based Model

As the previous section demonstrated, although the Emulator provides a hardware-accelerated

platform on which the study of variability can be performed without prohibitively long simu-

lation run-times, the accuracy of the obtained results is not high enough for it to be considered

a viable alternative to a full SPICE simulation of a particular design.

5.7. Inaccuracies in FPGA-Based Model 127

With respect to the ring oscillator experiment, Table 5.1 shows the difference in means

between the distributions obtained on the Emulator and SPICE, which in turn are illustrated

in Figure 5.9.

Part of this mismatch between the results has been found to exist due to the different output

load incorporation in the CAB modelling stage. In the full SPICE simulation, each CAB

configured as an inverter sees another inverter (comprising the same size CTs) at its output,

since they are instantiated side-by-side on the netlist describing the 3-stage ring oscillator.

In the CM Card extraction stage, where only one CAB is modelled at a time, a 1 femto Farad

capacitor was connected to the output, regardless of the size configured on the CTs, which

does not reflect the actual varying load that the full SPICE simulation naturally models.

The mismatch has more of an impact on the frequency generated by the oscillators using

the smaller sized CTs, suggesting that the 1 fF load was smaller than the real load seen by

each of the inverter stages in a ring oscillator configuration.

Additionally, the extraction of delays for a CAB configured as an inverter is done by applying

a set of different combinations of inputs in order to stimulate the output by using every

possible combination of transistors. This input signal had a slew rate of 6.25mV/picosecond,

which actually corresponded to the output slew rate of a 3-input NAND gate with CT sizes

set to 360nm for nMOS and 720nm for pMOS. The slew rate of the input signal to a CAB

should depend on both CT size and function of the CAB directly upstream, i.e. connecting

its output to the CAB under test. The CT size of the CAB under test should also influence

the slew rate of its inputs, as it is in fact the output load seen from the upstream CAB.

The next Section presents some of the modelling adjustments carried out in order to improve

the accuracy of the Emulator.

Table 5.1: Comparison between the means of the distributions of frequencies generated by
the 3-stage ring oscillators implemented in SPICE and on the Emulator, for each modelled
CT size.

nMOS (nm) pMOS (nm) SPICE mean (GHz) Emulator mean (GHz) difference (%)

120 240 1.31 2.01 34.76
240 480 2.07 2.78 25.47
360 720 2.8 3.19 12.48
480 960 3.10 3.34 7.07
580 1140 3.34 3.54 5.81

128 5.8. Adjustments to the Model

CAB Under Test

CT Size X

Load CAB

CT Size X

Driver CAB

CT Size X

input s
lew

output sl
ew

delay extraction

Figure 5.11: The revised delay extraction set-up, with the slew-rate of the input stimulus
and the output load both being provided by CABs with CTs of the same size.

5.8 Adjustments to the Model

Having observed a significant mismatch between the delays and frequencies generated in the

Emulator and in SPICE, a set of adjustments and subsequent experimental verification was

carried out in order to increase the accuracy of the Emulator.

The first consisted of quantifying exactly how much the mismatch between the Emulator

and SPICE is affected by varying output loads and input slew rates. To achieve this, 5

different slew rates were extracted from SPICE, each measured by instantiating two CABs

configured as inverters connected in series, comprising CTs of the same size, in a netlist. The

input of the first inverter had its inputs simulated, and the slew rates output of the second

inverter was measured. As the inverter configuration only uses two CTs in a CAB, this

set-up generates two different slew rates: one for a rising-edge and another for a falling-edge.

The resulting average of these two measurements was used as the reference slew rate for the

input stimulus of a CAB configured as an inverter.

The CAB netlist used to extract the CM Cards for each CT size was then modified in

two ways: the slew rate of the input signals was approximated to be that resulting from

another CAB configured as an inverter, using the same CT size, connected upstream; a

CAB comprising CTs of the same size was added to the output, serving as a load. The CM

Card extraction process was then repeated for these adjusted netlists. Figure 5.11 illustrates

the delay extraction process with the adjusted input slew-rate and the added CAB to serve

as a load for the CAB being characterised.

5.8. Adjustments to the Model 129

120n240p

240n480p

360n720p

480n960p

580n1140p

12
0n

24
0p

24
0n

48
0p

36
0n

72
0p

48
0n

96
0p

58
0n

11
40

p

120n240p

240n480p

360n720p

480n960p

580n1140p

12
0n

24
0p

24
0n

48
0p

36
0n

72
0p

48
0n

96
0p

58
0n

11
40

p

12
0n

24
0p

24
0n

48
0p

36
0n

72
0p

48
0n

96
0p

58
0n

11
40

p

3rd Stage CT Size

1s
t S

ta
ge

 C
T

Si
ze

0

2

4

6

8

10

12

14

16

M
is

m
at

ch
 b

et
w

ee
n

SP
IC

E
an

d
Em

ul
at

or
 fr

eq
ue

nc
ie

s
(%

)

2nd Stage CT Size

120n240p 240n480p 360n720p

480n960p 580n1140p

Mismatch
value

Figure 5.12: Characterisation of the error emerging from different combinations of CT sizes
for each of the 3-stages of the ring oscillators. The bottom right figure shows how the graphs
should be read: the top legend above each graph shows the CT size of the second inverter
stage; the x-axis on each graph shows the CT size of the 3rd inverter stage, and the y-axis
depicts the CT size of the 1st inverter on the oscillator. The error is plotted through the use
of a heat-map, with lighter areas representing a higher error.

Subsequently, a set of 3-stage ring oscillators were simulated both on the Emulator and in

SPICE, using every possible combination of CT sizes for each stage, using the CM Cards

updated to include appropriate output loads and input slew rates.

Figure 5.12 shows a heat-map of the mismatch between the generated frequencies measured

on the Emulator and in SPICE. It suggests that a very accurate match occurs when the CT

sizes of the CAB making up each stage in the oscillator are configured to be of the same

size. This is not unexpected, as the approximations used for the modelling (i.e. using the

input slew rate corresponding to an inverter of the same size at the previous stage, and an

output load corresponding to an inverter of the same size at the subsequent stage) actually

correspond to the ring oscillator configuration being modelled.

130 5.8. Adjustments to the Model

The largest mismatch occurs when there are inverters of the minimum size (120n240p) and

of the maximum size (580n1140p) included in the same ring oscillator. This is expected, as

there will be a large difference between the assumed output load used for a particular CM

Card in the propagation delay extraction stage, and the actual output load downstream. For

instance, the CM Card of a 120n240p inverter at the first stage connected to a 580n1140p

inverter at the second stage will assume a 120n240p load. Additionally, the CM Card for this

580n1140p inverter at the second stage will assume an input driver of another 580n1140p

inverter, where in fact it is minimum sized.

Table 5.2 shows the results of the experiment described in Section 5.7, where 300 instances

of 3-stage ring oscillators were simulated in SPICE and on the Emulator, repeated after the

adjustments were included. Figure 5.13 presents the distributions of the 300 ring oscillators

simulated for each of the 5 CT sizes. Although the mismatch is still present, these results

show how the modelling accuracy of ring oscillators where all stages use the same CT size is

greatly increased when comparing against the results obtained before the model adjustments.

Whereas for same-size ring oscillators the maximum mismatch observed was of about 35%,

the slew rate and load adjustments reduce the maximum mismatch to about 16% (maximum

value observed in Figure 5.12), even when mixed-size oscillators are taken into account. The

persisting error can be derived from the fact that the 1:2 CMOS ratio chosen for the CT sizes

results in a different value for rising- and falling-edges. This issue is addressed in Chapter 6.

When attempting to generalise this approach for circuits which contain CABs configured

as many different functions, approach has a few limitations. As previously mentioned, the

input slew rate used for the input signals of a given CAB X depends on several factors: the

function and CT sizes used on the CAB connected to the input of CAB X, and the function

and CT sizes of CAB X itself. The output load will depend on the function and CT sizes

on the CAB which CAB X connects to.

Table 5.2: Mismatch between the frequencies generated by the 3-stage ring oscillators im-
plemented in SPICE and on the Emulator, for each modelled CT size, before and after the
CM Cards were updated to include appropriate output loads and input slew rates.

nMOS Size (nm) pMOS Size (nm) no adjustment (%) with adjustment (%)

120 240 34.76 3.17
240 480 25.47 4.53
360 720 12.48 0.15
480 960 7.07 0.28
580 1140 5.81 1.41

5.8. Adjustments to the Model 131

1.20

1.25

1.30

1.35

1.40

1.45

Fr
eq

ue
nc

y
(G

Hz
)

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.70

2.75

2.80

2.85

2.90

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

SPICE Model Emulator * Average Value

120n240p 240n480p 360n720p 480n960p 580n1140p

Figure 5.13: Correlation between 300 ring oscillators implemented on the Emulator and
simulated in SPICE, after corrections applied to the load and input slew rate during the
modelling stage.

In the case of the ring oscillator, the inverter function is common to all CABs, and therefore

the mismatch in modelling will depend on the varying output loads and slew rates resulting

from the CT sizes in each CAB. It would then be possible to increase the accuracy of the

model by expanding each CM Card to include propagation delays measured for each com-

bination of output load and input slew rate. Adding this extra dimension would transform

the CM Card from the square represented in Figure 4.6 to a cube, and the CM Library to

a hyper-cube. The Emulator could then select the appropriate section of the CM Card for

a particular CAB, based on the connections established by the configuration bitstream, and

the CT sizes of each CAB involved in the design. This approach carries with it a significant

limitation, as when the set of CT sizes is doubled, the number of different combinations of

input slew rate and output load will quadruple, greatly expanding the size of the CM Card,

and consequently the memory resources on the FPGA which store the CM Cards will soon

be fully exhausted.

Taking into account varying input slew rates (which depend on function implemented, CT

size and fan-out of the CAB upstream) for each input, and varying output loads (which

depend on fan-out of the output line, and also function implemented and CT size of the

CAB downstream) for each output, the number of CAB Delay Data blocks (as depicted in

132 5.8. Adjustments to the Model

Slew
Output

Capacitance

Input

Data
(delay, power, timing checks)

Two dimensional Timing Model

Figure 5.14: Extraction of delays and other features of VLSI standard cells, based on input
slew rate and output capacitance, to create Liberty files which are imported to an ECAD
tool to enable the identification of timing violations.

Figure 4.6) required to fully characterise a PAnDA CAB with this new set of requirements

would very quickly grow to a combinatorial explosion.

The simplifications allowed for in the experiments presented in this chapter, such as assuming

a constant fan-out of 1 and an equal input slew rate for all inputs, keep the combinatorial

explosion contained, but the price is paid for in accuracy.

Some of these limitations are only related to PAnDA, as in a standard architecture which

cannot change the sizes the transistors which make up its logic gates, N would take the

value of 1. Further simplifications can be made if the functions are performed by hardware

Look-Up Tables, as is the case of standard FPGAs, making this approach even more viable.

In fact, techniques such as Static Timing Analysis (STA) and Statistical Static Timing Anal-

ysis (SSTA) make such simplifications to allow for a quick identification of timing violations

on FPGA designs, as described in Section 3.4.4.

In VLSI design, Liberty files are used for the characterisation of standard cells, consisting of

matrices which estimate the delay of a particular cell of a given geometry based on its input

slew rate and output capacitance, as shown in Figure 5.14.

Liberty files are incorporated into most Electronic Computer-Aided Design (ECAD) tools

to allow a designer to check for timing violations on a given circuit. Creating Liberty files

for the PAnDA architecture would be considerably more complicated, as varying transistor

geometry necessitates the addition of at least one other dimension to the two-dimensional

Timing Model illustrated in Figure 5.14. By including variability, yet another dimension

would need to be added to the model.

5.9. Summary 133

Slew
Output

Capacitance

Input

Data
(delay, power, timing checks)

Liberty File for
NAND2 gate

(delay)

Emulator NAND2
CharacterisationData

CM Card ID
(variability)

CT Size

Figure 5.15: Comparison between the data included in a Liberty file associated with a
NAND2 logic cell and a CAB configured as a NAND2 on the Emulator.

Figure 5.15 illustrates how the data generated for a particular function in the version of the

Emulator designed for the experiments described in this chapter (a NAND2 is used as an

example) is similar to a standard Liberty file, where output capacitance and input slew rate

are replaced by CM Card ID (or variability run) and CT size used.

Enhancing the accuracy of the model would necessitate the inclusion of varying input slew

rates and output loads, as the ring oscillator experiments suggest, which would present a

new set of technical challenges regarding the memory utilisation on the hardware model.

This technical limitation of memory justify the creation of a second version of the Emulator

which replaces the CT size variation with fan-out modelling, allowing for increased fidelity

to the full SPICE simulation. This second version of the Emulator is described in detail in

the next chapter, along with the experiments carried out with it.

5.9 Summary

After the modelling stage which resulted in the generation of the CM library, the model of

the PAnDA architecture is implemented in hardware, named PAnDA Emulator, along with

in-built measuring methods and processor-based control and configuration.

134 5.9. Summary

A 3-stage ring oscillator and 2-bit multiplier designs are used as testbenches on which the

characterisation of the effects of variability on circuit propagation delay is carried out. A

measurement finite state-machine capable of extracting both delay and frequency measure-

ments is included in the design.

A considerable speed-up is achieved for these two designs, of about one order of magni-

tude for the 3-stage ring oscillator and three orders of magnitude for the 2-bit multiplier.

This speed-up is directly proportional to the complexity of the design, providing further

justification for the inclusion of hardware acceleration in the model.

A number of PAnDA VPIs are created, utilising different combinations of CM Cards on

CABs instantiated on the mapped designs, and feature extraction is carried out. Equivalent

experiments are run in RandomSPICE, and the results are compared. Mismatches between

the Emulator and the equivalent RandomSPICE simulation are identified and investigated,

and subsequently a set of adjustments are made to the model in order to incorporate more

appropriate input slew rates and output loads at the CM Card generation stage, only con-

cerning the ring oscillator experiment due to its reduced size. Although the results suggest

an increased fidelity to the full SPICE simulation when the adjustments are in place, these

require an infeasible amount of memory resources to be added to the hardware currently

available.

The next chapter deals with the further enhancement of the accuracy of the model with

respect to SPICE by adjusting the model to include a varying load. Furthermore, it describes

the methodology used for circuit performance optimisation, a post-fabrication technique,

in this variability-aware model.

Chapter 6

Mitigating Variability With The

PAnDA Emulator

Contents

6.1 Introduction . 135

6.2 Bio-inspired Circuit Design . 136

6.3 Mitigating Variability with Digital Reconfiguration 139

6.3.1 Functionally-Neutral Operations . 140

6.3.2 Genetic Algorithms . 142

6.3.3 Bio-Inspired Performance Optimisation on PAnDA Emulator v1 . . 146

Individual Representation . 147

Genotype-Phenotype Mapping . 147

Fitness Evaluation . 149

Selection & Reproduction . 149

Experiments & Results . 150

6.4 PAnDA Emulator v2 . 155

6.5 Mitigating Variability Across Large Numbers of VPIs 158

6.5.1 Test-Circuits . 159

ISCAS C17 Benchmark . 160

D-Type Latch . 162

6.5.2 Correlation with SPICE . 164

6.5.3 Performance Optimisation with Emulator v2 167

6.6 Summary . 171

6.1 Introduction

This chapter deals with the application of a bio-inspired algorithm to optimise circuit per-

formance using the Emulator. This is done in terms of operation-point matching, where 2-bit

135

136 6.2. Bio-inspired Circuit Design

multipliers and ring-oscillators are used as the designs of choice, and more general minimi-

sation of propagation delays of d-type latches and C17 benchmark circuits. The former is

a simplification of the scenario in which multiple chips are fabricated on the same die, and

their performance is expected to be standardised. The latter is a classic optimisation case,

where each “virtually fabricated” instance of a circuit is optimised so as to deliver the best

possible performance.

The first set of experiments is concerned only with a single instance of a PAnDA VPI, where

the performance of all circuits on it are standardised. The second set deals with large number

of VPIs, and performance optimisation across the entire distribution of virtual devices.

For each of the test-circuits on the second set of experiments, 1000 PAnDA VPIs are created

and their performance is evaluated. Due to the reduced size of the d-type latch circuit, the

same number of netlists were created with RandomSPICE and subsequently simulated in

full2, with the intention of verifying the accuracy of the results obtained with the PAnDA

Emulator v2. Although the correlation with SPICE is considerably increased with respect to

the results described in Chapter 5, modelling inaccuracies are still present, due to different

input combinations resulting in the activation of a different number of CTs in a CAB, causing

a rise- and fall-time variations which is not taken into account during the modelling stage.

A discussion is presented in this Chapter regarding this topic, and future adjustments are

suggested which can further bridge the gap between the Emulator and SPICE.

In an effort to demonstrate the post-fabrication circuit performance optimisation abilities

of the PAnDA architecture, a Genetic Algorithm (GA) is used to minimise the worst-case

propagation delay of both test-circuits, by finding an optimal CAB placement for the cells

used in the designs. Despite the modelling inaccuracies, the GA will improve the performance

of a design implemented in the PAnDA architecture, given that variations are present and

measurable.

6.2 Bio-inspired Circuit Design

A conventional engineering task consists in receiving the specifications and designing a device

or method which provides a satisfactory solution to a problem. But what if the specifications

aren’t completely detailed? What if the environment changes abruptly, resulting in a new set

of specifications? And even if the environment doesn’t change, how optimal is the devised

solution?

6.2. Bio-inspired Circuit Design 137

These questions become increasingly relevant as the effects of intrinsic variability begin to

have a significant impact on the performance of electronic designs, as Chapter 2 demon-

strated. Nature appears to have solved this issues over time, ensuring the survival of organ-

isms through the process of adaptation [125].

Bio-inspired hardware [126, 127, 128] provides a promising solution for these emerging prob-

lems. It takes inspiration from Evolutionary Algorithms and applies those principles to

create electronic circuits. In a purely analytic problem tackled by an EA, each solution is a

set of parameters; with this approach, each potential solution is an actual circuit.

To evaluate the fitness of each solution, two methods can be used:

Extrinsic evolution – the fitness is extracted from a simulation of the candidate;

Intrinsic evolution – candidate solutions are actually implemented in hardware, and their

fitness extracted through actual physical measurements.

Bio-inspired algorithms have even influenced the design of antennas, leading to high-performing

devices being sent to space [129, 130, 131]. Taking inspiration from the swarm behaviour

of organisms such as bees and ants, the heuristics which govern these swarms have been in-

terpreted and applied to antenna design, resulting in high-performance devices which would

not likely be explored by a human designer [132, 133].

Bio-inspired hardware presents a promising approach to dealing with the issue of getting

electronics to work in a dynamic environment. It necessitates two key elements: a reconfig-

urable substrate where solutions can be tested, and an Evolutionary Algorithm to provide

the test solutions. Not only does it aim to provide a configuration which provides optimal

performance for a particular environment, but it is also capable of evolving circuits which fit

a particular task. Field-programmable devices are usually the preferred substrate candidates,

and an Evolutionary Algorithm can be used as the solution generator.

This concept gained a lot of attention in 1996 when Adrian Thompson evolved a tone dis-

criminator on an FPGA using fewer than 40 logic gates, which is a very low number for

such a circuit [134]. Using a Xilinx XC6216, Thompson allowed for “unconstrained intrinsic

hardware evolution”, whereby a Genetic Algorithm was used to create a circuit which deter-

mined whether the frequency of an input signal is either 1kHz or 10kHz. The evolved design

was very unconventional but compact, with a particular set of cells not connected to the

output. It was found that removing this set would actually impair the functionality of the

138 6.2. Bio-inspired Circuit Design

circuit, suggesting that although not directly connected to the output, this set of cells was

actually playing a part in the physical dynamics inside the device. Once the same bitstream

was loaded to another FPGA, the circuit did not work. These results made it clear that

human design expertise alone does not cover the entire solution-space of a circuit design

task, potentially leaving out local solutions as the one uncovered by this experiment.

In summary, circuits can be evolved in two different ways:

Circuit Topology – a task is specified, the logic building blocks (e.g. logic gates) are

listed, and different combinations of these elements are evolved to find the solution

which satisfies the termination condition.

Performance Optimisation – the topology of the circuit is known, but the object of

evolution is the circuit parameters such as transistor size and drive strength, in an

attempt to find the optimal configuration of these parameters which results in the

circuit with the best performance.

Regarding circuit topology evolution, one of the most popular algorithms used is a graph-

based extension of GP, Cartesian Genetic Programming (CGP), developed by Julian Miller [135].

This approach takes a digital circuit and translates functions, inputs, outputs and internal

connections into integers. Each building block of a given circuit will have an integer for

the function it performs, one for each input and another for each output. The full design

can then be described by a genotype made up of these integers. With this representation,

it becomes straightforward to evolve circuits, simply by manipulating the genotype. As an

example, this technique managed to come up with a design for a 3-bit multiplier which uses

20% fewer gates than the best known human design [136].

Lukáš Sekanina has also reported the use of genetic programming to globally optimise the

number of gates in circuits which have already been synthesised using common methods

[137]. Similar bio-inspired approaches have been undertaken to evolve IP cores on FPGAs

[138], with some of these targeting the recent Zynq System-on-Chip platform [139, 140],

developed by Xilinx. Improvements to CGP runtime have also been reported in [141].

A more analogue approach has been undertaken by Martin Trefzer [120], who used the

Field-Programmable Transistor Array (FPTA) – described in detail in Chapter 3 – as well

as Adrian Stoica who worked on the JPL FPTA at the same time [142], to evolve logic gates

and comparators with a finer-grained control over a solution’s analogue properties, paving

the way for hybrid architectures such as PAnDA. This approach evolves not only the circuit

6.3. Mitigating Variability with Digital Reconfiguration 139

topology, i.e. the connections between transistors to match a particular logic behaviour, but

also figures of merit such as drive strength, speed, and power consumption.

James Walker [143, 144, 145, 9] and James Hilder [73, 146] have worked on evolving digital

circuit topologies with standard cell optimisation for variability. The Multi-Objective Toolkit

for Intrinsic Variability Aware Transistor-Level Evolutionary Design (MOTIVATED) was

created, which aimed to evolve circuit topologies through the use of CGP, and then optimise

the design for variability tolerance by testing out combinations of BSIM transistor models for

each of the gates that are part of the evolved design. The variability in each gate is modelled

with RandomSPICE, described in detail in Chapter 2. This approach allowed them to have

a system which can potentially be incorporated with the standard EDA flow to find the

design implementation which matches the given specification with the highest tolerance to

substrate variations.

Overall, the concept of bio-inspired design methods can provide two major contributions to

the hardware design community:

Design beyond human limitations – as Thompson’s tone-discriminator and Miller’s 3-

bit multiplier examples show, design in bio-inspired hardware can sometimes outper-

form a trained specialist.

Adaptation and fault-tolerance – when Evolution is allowed to perform online moni-

toring and parameter optimisation, it can explore the hardware to find an alternative

implementation of a particular function, once events such as faults or changes in the

environment cause obstructions to its operations [31].

6.3 Mitigating Variability with Digital Reconfiguration

The work described in this chapter aims to apply the concepts of bio-inspired design to

variability-aware performance optimisation, through the use of a hardware model which

includes statistically-aware performance data of the lower-layer of the modelled architecture.

One of the novelties of the Emulator consists in allowing analogue performance data to be

included in a hardware-based model, and this chapter focuses on making use of that substrate,

the modelled architecture’s reconfiguration resources, and optimisation algorithms to reduce

the spread in performance caused by intrinsic variability.

140 6.3. Mitigating Variability with Digital Reconfiguration

Although there are still differences in the results obtained from the Emulator when compared

to a full SPICE simulation, as discussed in Chapter 5, these are issues that could be addressed

in the future. When the model is refined, performance variations of some magnitude will

most likely still be present. The mismatch between the Emulator and SPICE will make

it more difficult to investigate alterations that could be made to the architecture since the

model does not fully represent it. This has an impact on the initial ambition of building

a model which can perform pre-fabrication optimisation, by methods such as identifying

crucial CTs in the architecture, or even a more optimised set of transistor sizes. With the

inaccuracies present in the current version of the model, this task becomes less feasible.

However, variations between virtual instances are still present in the model. These variations

will depend, on a first instance, on the CM Cards used to create PAnDA VPI. Secondly,

they will depend on the mapping of the design to the Emulator’s logic resources, i.e. which

logic functions are used. Thirdly, the size of the CTs used in the CABs that take part in

the active logic of the design will also cause variations in the performance of the circuit.

And finally, empty CABs inside a CLB can be configured to replace another active CAB,

most likely utilising a different CM Card and consequently causing further variation in the

circuit’s performance. This section deals with finding an optimised mapping and sizing for a

particular virtual instance of a circuit. That is to say, once a PAnDA VPI has been created,

how can the reconfiguration resources of PAnDA contribute toward finding an alternative

implementation of a given circuit which improves its performance on the device?

This section provides details on how these reconfiguration resources can be exploited par-

ticularly to improve the performance of a given circuit, and also generally to shape the

performance curves created by variability.

6.3.1 Functionally-Neutral Operations

It should be made clear that this work does not focus on logic synthesis efforts, which

would explore alternative implementations of a given circuit through the use of different

gate combinations. Instead, efforts are concentrated on the series of changes that can be

made to a synthesised logic circuit on the Emulator, without affecting the functionality. It

is assumed that an already mapped circuit is available, as illustrated in Figures 5.6, 5.5,

6.15 and 6.18, and any optimisation which takes place on the Emulator does not affect this

mapping. The Emulator can make use of two major operations for its circuit performance

optimisation efforts:

6.3. Mitigating Variability with Digital Reconfiguration 141

CAB0 CAB1 CAB3

Empty

CAB2

4

CAB0 CAB1 CAB3CAB2

Empty3

CAB0 CAB1 CAB2

Empty

CAB3

2

CAB0 CAB1 CAB2 CAB3

Empty1

Figure 6.1: Different rotations of the CABs inside a CLB, configured as a 3-stage ring-
oscillator.

• Configurable CT Size – select any one of the modelled CT sizes for the geometry

of every CT inside a given CAB;

• CAB Permutations – inside each given CLB, up to four CABs can be configured

to perform any particular function for the PAnDA function set. These functions are

transferable between the CLB’s CABs, preserving the CLB’s functionality but changing

the CABs that perform a given function. Figure 6.1 illustrates a particular type of

permutation, where the empty CAB in a CLB configured as the familiar 3-stage ring-

oscillator circuit is rotated among the four CABs. Each permutation will result in a

different oscillating frequency, since a different combination of CABs is used each time.

Since each active CAB is configured as an inverter, swapping functions between them

has no effect on the performance of the circuit. Once all functions are different, more

options would be available for meaningful permutations. With four different functions

available to implement on the four CABs in a CLB, there are a total of 4! = 24 different

function-to-CAB assignments.

142 6.3. Mitigating Variability with Digital Reconfiguration

These two operations are considered functionally-neutral, as they do not affect the logic

(or functionality) of the circuit. As will be made clearer in this chapter, exploring these two

operations is key for the purposes of circuit performance optimisation.

6.3.2 Genetic Algorithms

The search space for the optimal CT sizing and CAB permutation for a particular circuit is

large, and it grows with both the size of the Emulator and the complexity of the circuit. For

instance, take a generic circuit which fully occupies each CLB in a row on the Emulator. For

each CAB being used, there are five different CT sizes it can take (as specified in Table 4.1).

For a single CLB, this represents a total of 625 different combinations of CAB CT sizes. In

the best possible scenario, every function in the CLB’s CABs is the same, and therefore CAB

permutations have no effect on the performance of the design. With the number of CLBs

(nr) in a row equal to 4, there are 625nr , (roughly over 100 billion) candidate solutions. Once

different functions in a CLB are allowed, the search space becomes even larger. Any feasible

optimisation algorithm applied to this problem needs to be efficient in its exploration of the

search-space.

Evolutionary Algorithms (EAs) are part of bio-inspired computing, a broader field of study

which aims to both study living phenomena with the aid of computers, and to capture some of

the aspects of nature and apply them to computer architectures and algorithms. A particular

type of EAs, mostly applied to optimisation problems, is called a Genetic Algorithm

(GA). GAs are adaptive heuristic search algorithms which take inspiration from the process

of biological evolution, finding an optimal solution though the course of “generations” of

candidate solutions, and essentially mimicking the Darwinian principle of survival of the

fittest [125, 147]. Their exploration of the solution-space is random in nature, but they are

also efficient at identifying peaks and troughs, making them an appropriate choice for the

optimisation problem presented by the Emulator.

To understand Genetic Algorithms (and EAs in general), one must first understand that

most of an individual’s physical traits are specified at the gene level, i.e. in their DNA. This

information is passed on from an individual to their offspring, with some modifications. As

such, an individual’s ability to thrive in its environment will be in part determined by its

genetic heritage. Those individuals who possess traits which increase their ability to survive

in their environment will have a larger probability of passing their genetic heritage to their

off-spring, i.e. to reproduce. This is the core idea of Darwin’s theory of evolution.

6.3. Mitigating Variability with Digital Reconfiguration 143

An individual’s genetic information is defined as its genotype. The physical expression of

this genetic information is called the phenotype, which is the individual itself. In most GA

applications, there is a one-to-one genotype-to-phenotype mapping, where the two represen-

tations might even be interchangeable. The biological process of translating an organism’s

genetic information to the physical and morphological features of the organism is called

ontogenesis. This process actually experiences random variations, which results in a one-to-

many genotype to phenotype mapping. In Evolutionary Algorithms, ontogenesis is usually

assumed to be deterministic, so that a particular genotype will always generate the same

phenotype.

The genotype of an individual organism is defined as its genetic constitution, i.e. its entire set

of genes. These genes comprise segments of DNA, which in turn are made up of combinations

of nitrogenous bases – adenine, thymine, guanine and cytosine – sugar and phosphate. The

study of molecular genetics – or how these genetic building blocks are combined to generate

strands of DNA – is outside of the scope of typical Evolutionary Algorithms.

To solve a problem with a GA, the parameters which describe it must first be expressed in

terms of genes, typically in numeric form, such as real numbers, binary bit-strings, or floating

point numbers. A candidate solution for the problem will then be a combination of values

for these parameters. This is the definition of a genotype for Evolutionary Computation.

To pass on its genetic information, an individual must engage in the process of reproduction,

sexual or asexual. In the latter case, the individual creates copies of itself, subject to errors

in the copying process, usually referred to as mutations. In the former case, a new individual

is created which combines the genotypes of its two parents, in a process called crossover.

The process of sexual reproduction is also open to the occurrence of mutation.

These errors can give rise to novel features in the off-spring, which can potentially increase or

decrease its adaptability to its environment. For instance, take the example of a population

of brown bears living in the Arctic. A baby bear is born from two brown parents, but due

to a mutation in its genotype, it is born with white fur. This feature will provide the new

individual with an advantage when it goes on a hunt, since its fur will blend it with the

predominantly white landscape. This individual will be more likely to be successful in its

hunting endeavours, increasing its likelihood of survival, and therefore, reproduction. This

individual and its off-spring have an advantage over the rest of the brown bear population,

which have a hard time competing for resources and may perish. Several generations later,

144 6.3. Mitigating Variability with Digital Reconfiguration

Initialise population

Evaluate fitness
Replace least-fit
individuals with
off-spring

Select best
individuals for
reproduction

Perform crossover
and mutation

Exit loop if
termination

condition satisfied

Map Genotype to
Phenotype

Figure 6.2: A flowchart depicting the behaviour of a basic Genetic Algorithm.

one might find that white-fur bears dominate the environment completely, all stemming from

a single mutation.

For GAs, mutation represents a change to one or more of these parameters. In the case

of a binary representation of the genotype, this would be a bit-flip. Crossover is usually

represented as an exchange of a given set of parameters between two parents.

A GA will take advantage of these features of evolution, by exploring the search-space in a

creative way, allowing for mutations which can an off-spring to a point that is far from its

parent. These constant mutations, along with the different combinations of genetic material

from two separate individuals, decrease the likelihood of the algorithm getting stuck at a

local optimum.

The operation of a basic Genetic Algorithm is depicted in Figure 6.2, and can be summarised

as follows:

Initialise population – A set of initial candidate solutions – or individuals – is created,

with gene values usually assigned at random.

Genotype-to-phenotype mapping – The parameters are applied to the problem, i.e.

the solution described by the encoding of an individual (genotype) is realised to a

phenotype.

6.3. Mitigating Variability with Digital Reconfiguration 145

Evaluate fitness – For each generated phenotype, a metric of how well they solve the

problem must be available. If the problem is balancing a pendulum, for instance, this

metric might be how long the pendulum is balanced for.

Select best individuals – The candidate solutions are ranked with respect to their evalu-

ation metric, or fitness.

Perform crossover and mutation – The new population is created by picking two par-

ents from the pool of the best individuals of the previous generation. Their genetic

information is combined, mutations are carried out, and an off-spring is created. Figure

6.3 illustrates the behaviour of the crossover operator.

Replace population – A new population is created by replacing the least-fit individuals

by the newly generated off-spring. The genotype-to-phenotype stage is carried out,

and the cycle repeats until the termination condition is satisfied.

Termination condition – The algorithm terminates when at least one of two conditions

is satisfied: a solution is found which solves the problem, or the algorithm reached its

maximum number of generations, specified at the start.

This brief introduction to Genetic Algorithms presents all the principles that were used for

this work. There is a plethora of other applications of GAs, as well as a very broad selection

of other Evolutionary Algorithms, which were not addressed in this section since this work

does not focus on the optimal/more efficient optimisation algorithm that can be applied to

the Emulator. The purpose of this chapter is to demonstrate that at least one optimisation

algorithm can provide benefits to PAnDA in the presence of variability.

Genetic Algorithms do not require any knowledge of internal mechanisms of the architecture,

and in that sense they are generic. Any changes to the CT size set, for instance, or even

changes to the number of rows and columns of the Emulator, would require no changes to

the algorithm. Additionally, if more accurate CM Cards are created as part of future work,

an implemented GA will still find an optimal configuration for performance. In other words,

a GA will optimise a circuit on the Emulator regardless of the values used on the CM Cards,

provided that there is variation in them.

146 6.3. Mitigating Variability with Digital Reconfiguration

1 1 1 1 0 0 0 1 1 0 1 0 1 1

1 0 1 0 0 1 1 1 0 1 1 0 1 1

Parent A

Parent B

1 1 1 0 0 1 1 1 1 0 1 0 1 1
Off-spring

(a) For uniform crossover, each gene is treated separately, with a given probability of taking genetic
information from Parents A or B for each particular gene.

1 1 1 1 0 0 0 1 1 0 1 0 1 1

1 0 1 0 0 1 1 1 0 1 1 0 1 1

Parent A

Parent B

1 1 1 1 0 1 1 1 0 0 1 0 1 1
Off-spring

Crossover points

(b) For n=2, two crossover points are chosen, and the off-spring will inherit Parent B’s genetic
information located between the points. The rest of the genotype is copied from Parent A.

Figure 6.3: The generation of an off-spring from two different parents, using the crossover
operator in (a) uniform mode and (b) n-point mode.

6.3.3 Bio-Inspired Performance Optimisation on PAnDA Emulator v1

A batch of optimisation experiments were carried out for the first version of the PAnDA

Emulator, using the 3-stage ring-oscillator and the 2-bit multiplier as the subjects. These

experiments were based upon the concept of operation-point matching, whereby multiple

instances of the same circuit mapped to the same PAnDA VPI were pushed to have the

same propagation delays across every transition. One of the instances is defined as the

target, and the others are modified so as to minimise the difference between propagation

delays to those of the target. This experiment is an attempt at homogenising the behaviour

of circuits which, due to intra-device variability, behave heterogeneously, as the studies on

the effects of variability on worst-case propagation delay from Chapter 5 have suggested.

Figure 6.4 summarises the operation of the optimisation loop being run for the experiments

described in this section. As a first step, the digital circuit is implemented on the Emulator

through the use of its Logic layer, by shifting in a configuration bitstream. As the opti-

misation experiments carried out in this section involve operation-point matching, several

instances of the circuit under evaluation (2-bit multipliers for one set of experiments, ring-

oscillators for another) are created on the Emulator. Once this process is completed, the

6.3. Mitigating Variability with Digital Reconfiguration 147

Control Module selects CM Cards at random and passes them along to the Emulator, which

writes the values to the feature blocks associated with each CAB through the use of the CM

Card layer. This creates a virtual instance of a PAnDA device, or PAnDA VPI. At this

point, multiple instances of the circuit under evaluation are implemented on the Emulator,

each with a different set of performance characteristics, stemming from the use of different

CM Cards, since they are located on different parts of the virtual hardware. Next, one of the

instances is chosen as the “target”, and the optimisation goal is to minimise the difference in

performance between every instance of the circuit. The GA is responsible for manipulating

the bitstream in a way which causes the difference in performance of the multiple circuit

instances on the Emulator to be minimised.

Individual Representation

First of all, the problem must be encoded into a format which can be used by the Genetic

Algorithm. As defined in Section 6.3, two functionally-neutral operations can be applied on

the Emulator, to change the performance of a given circuit in terms of propagation delay:

CAB permutations and CT sizing. These are applied at the CLB level, and so each CLB

encoding is called a slice, as depicted in Figure 6.5. The GA will then attempt to find the

combination of these operators which provides the best optimal performance characteristics

as defined for the experiment.

Genotype-Phenotype Mapping

Each genotype will have two effects on the phenotype: the permutations will change the

PAnDA configuration bitstream that is shifted-in by the Emulator, and the CT sizing will

load the corresponding values from the CM Card associated with each CAB. The resulting

bitstream and CM Card size selection will represent the phenotype.

In the experiments carried out for this work, the genotype always defines the permutations

and CT sizes of the entire PAnDA VPI, i.e. 32 slices, 1 for each CLB instantiated in the

8-row by 4-column Emulator. In that sense, each genotype corresponds to the configuration

of an entire VPI. Since each slice contains one permutation gene and four CT sizing genes,

the full genotype consists of 160 genes.

148 6.3. Mitigating Variability with Digital Reconfiguration

Download Bitstream

Download Emulator
Configuration

Select CM Cards
Randomly

Download CM Cards

Control Module PAnDA Emulator

Initialise Population

Select Individual

Generate Emulator
Configuration

Download Emulator
Configuration

Apply
input stimuli

Await Measurement

Population
Evaluated?

NO

Rank Individuals

Selection

Termination
Condition

Met?

NO

Crossover &
Mutation

Generate Population

Optimisation
Complete

Download Bitstream

Await Configuration

Shift-In Emulator
Configuration

Write CM Cards

G
PI

O
 C

om
m

un
ic

at
io

n

Idle

Shift-In Emulator
Configuration

Write Inputs

Take Measurements
& Send

Config
Request?

NO

YES

YES

YES

Figure 6.4: Integrating a Genetic Algorithm with the PAnDA Emulator set-up. The Control
Module runs the GA and communicates the necessary data and actions to the Emulator,
which sends results back through the GPIO communication channel.

6.3. Mitigating Variability with Digital Reconfiguration 149

1 0 2 1 2 4 2 0 0 2 2 1 1 0 2

Sizes{

Permutations
{Single CLB (slice)

Sizes:
0
1
2

nMOS = 120nm
nMOS = 240nm
nMOS = 360nm

pMOS = 240nm
pMOS = 480nm
pMOS = 720nm

nMOS = 480nm
nMOS = 580nm

pMOS = 960nm
pMOS = 1140nm

3
4

Permutations:

0 ... 24

Figure 6.5: Example encoding of an individual for the Genetic Algorithm running on the
PAnDA Emulator.

The initial population is created by initialising the genotypes with random values, kept within

the scale for each gene type. The phenotype is then created by applying the permutations

and CT sizes specified in the genotype to the Emulator configuration bitstream.

Fitness Evaluation

Each individual is then evaluated separately, by first shifting-in the Emulator bitstream

through the Emulator’s configuration-chain, and then loading the correct CM Card values to

the memory blocks associated with each CAB. The input stimulus required to fully evaluate

the performance of a design is applied to the Emulator’s inputs, and the PAnDA FSM

extracts the associated propagation delays, communicating them to the Control Module.

The fitness of each individual is calculated according to the specifications of each experi-

ment, and will be quantified later in this section. After every individual in the populated is

evaluated, they are ranked according to their fitness value.

Selection & Reproduction

Selection is done by picking out the T individuals in the population with the best fit-

ness. Again, the value of T is specified for each experiment. Having selected this group of

individuals, reproduction can take place to generate the subsequent population.

For the process of reproduction, the implemented GA takes two individuals at random

and performs two-point crossover, selecting two random points in the genotype of these

two individuals, swapping the genes within those two points between them. This process

150 6.3. Mitigating Variability with Digital Reconfiguration

generates two new individuals. The mutation operator will then change any of the genes

in the genotypes of the two new individuals to a random number (keeping within the scale

for that particular gene). The mutation probability is defined as follows: a random number

generator is used to output a value between 0 and 4; this value determines the number of

mutations that will be applied to the entire genotype. The genes that will be the target of

this genetic operator are then chosen at random. This means that there is a 20% chance

that no mutations will take place anywhere in the genotype. Also, depending on the size

of the circuit mapped to the Emulator, there exists the possibility that the mutated genes

have no effect on it. As an example, take the C17 circuit, which actively uses 3 CLBs on the

Emulator. The likelihood of selecting one of those slices for mutation is 3
32 , and therefore the

probability of at least one mutation targeting one of those slices is 0.8 × 3
32 = 7.5%. For the

transparent latch, actively using only two CLBs, this probability drops to 5%. This dynamic

mutation rate provides some of the benefits of having a high mutation rate at the initial

stage of the experiments, without sacrificing solution convergence in later generations.

After this process is completed, the two new individuals are added to the population. This

process is repeated until the population is the same size as the previous generation. Im-

plementing what is known as elitism, the GA transfers the T fittest individuals from the

previous generation to the subsequent one. This helps to push the optimisation to further

“climb up” good areas in the search-space.

Experiments & Results

The first experiment consisted on mapping a series of 16 ring-oscillators to the Emulator

fabric, using the first and last columns of CLBs. One of the instances was chosen as the

target, and the GA was deployed to minimise the difference in the resulting oscillating

frequencies. For this experiment, an individual consisted of one slice for each of the CLBs

on the Emulator, and therefore its genotype is 32 slices long.

Figure 6.6 illustrates the difference in frequency of all other 15 ROs with respect to the target,

chosen as oscillator 13. It should be noted that each CLB, configured as an oscillator, was

using the exact same CT size and CAB permutation as the target. That is to say, each

slice in the initial genotype was exactly the same, as illustrated by Figure 6.7(a). Although

the genotype is 32 slices long, only the active 16 are shown in the image, as the remaining

16 did not actively take effect the oscillators under measurement. As this experiment was

carried out in the early stages of this work, only three of the CT sizes had been modelled

6.3. Mitigating Variability with Digital Reconfiguration 151

Size 1

Size 2

Size 3

Empty

0 1

2 3

CAB index

(a)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

Target

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Er
ro

r r
el

at
iv

e
to

 ta
rg

et
 fr

eq
ue

nc
y

(%
)

(b)

Figure 6.6: The initial circuit for the 16 ring-oscillators mapped to the Emulator (a), and
the corresponding variation in the resulting frequencies for each oscillator (b), showing a
maximum variation of around 8%.

(Size1 = 240n480p, Size2 = 360n720p, Size3 = 480n960p), and therefore only those are

used.

The GA was allowed to run for a maximum of 50 generations, with a population of 100

individuals, with the top 20 of each generation being used for selection (T = 20) and carried

on to the subsequent generation. The evolved genotype and the resulting frequencies for the

oscillators are illustrated in Figure 6.7 and detailed in Table 6.1. It is clear to see that almost

every slice on the evolved genotype is different, suggesting that the algorithm found solutions

which dealt with the variations locally, without any explicit knowledge of how fitness can be

increased or decreased. The algorithm managed to reduce the difference between frequencies

from 8% to 1.3%. These results were published in [32].

If this experiment were to be carried out using RandomSPICE, each individual would require

675 seconds to simulate. With the Emulator, each individual is evaluated in around 8 seconds.

The entire optimisation took just over 11 hours on the Emulator, but it would have taken

more than 930 hours to run with RandomSPICE.

A second experiment was carried out, this time using a 2-bit multiplier as the target for

optimisation. This time, the full set of modelled CT sizes was used, as well as the alternative

CT configuration mentioned in Section 4.3. This alternative configuration, although having

been proven not to provide any global benefit over the standard one, as Figure 4.10, might

provide a benefit to the solution on that particular CT. This meant that a new gene needed

to be added to the genotype for each CAB, resulting in the individual encoding illustrated

in Figure 6.8.

152 6.3. Mitigating Variability with Digital Reconfiguration

Size 1

Size 2

Size 3

Empty

0 1

2 3

CAB index

(a)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Er
ro

r r
el

at
iv

e
to

 ta
rg

et
 fr

eq
ue

nc
y

(%
)

(b)

Figure 6.7: The evolved solution for the 16 ring-oscillators mapped to the Emulator (a),
and the corresponding variation in the resulting frequencies for each oscillator (b), having
succesfully reduced the maximum variation with respect to the target frequency to 1.3%.

Given that each multiplier takes two Emulator rows, as illustrated in Figure 5.6, four in-

stances were mapped to a single PAnDA VPI. The CT sizes for each CAB on the device

were then initialised with random numbers. One of the instances was then defined as the

target and evaluated, extracting all 324 propagation delays – necessary to fully characterise

the multiplier design – setting the performance benchmark for the other 3 instances. It then

became the GA’s goal to minimise the difference between each of the 324 propagation delays

Table 6.1: Table showing the frequencies and respective relative errors of the 16 oscillators,
of both the initial and evolved solutions. The (-) and (+) signs indicate if the frequency is
below or above the target, respectively.

Oscillator #
Initial Evolved

f(GHz) Rel. Error(%) f(GHz) Rel. Error(%)

1 3.40 6.7(+) 3.14 1(-)
2 3.15 0.6(-) 3.13 1.3(-)
3 2.94 7.9(-) 3.17 0
4 3.16 0.3(-) 3.20 1(+)
5 3.10 2.2(-) 3.18 0.3(+)
6 3.20 1(+) 3.19 0.6(+)
7 2.96 7.3(-) 3.14 1(-)
8 2.98 6.3(-) 3.17 0
9 3.13 1.3(-) 3.17 0
10 3.41 7(+) 3.17 0
11 3.46 8.2(+) 3.17 0
12 3.44 7.6(+) 3.18 0.3(+)
13 3.17 0 3.17 0
14 3.40 6.7(+) 3.15 0.6(-)
15 3.18 0.3(+) 3.17 0
16 3.01 5.4(-) 3.16 0.3(-)

6.3. Mitigating Variability with Digital Reconfiguration 153

1 3 0 2 0

CT SizesPermutations

{ Single CLB (slice)

Sizes:
0
1
2

nMOS = 120nm
nMOS = 240nm
nMOS = 360nm

pMOS = 240nm
pMOS = 480nm
pMOS = 720nm

nMOS = 480nm
nMOS = 580nm

pMOS = 960nm
pMOS = 1140nm

3
4

Permutations:

0 ... 24
CT Configuration

0
1

Standard
Alternative

1 4 1 4 1 0 0 2 11 0 2 1

CT Configuration

Figure 6.8: Encoding of individual for the optimisation running on the PAnDA Emulator
for a series of 2-bit multipliers, including the alternative CT configuration.

of the 3 multipliers with respect to the target, in another operation-point matching exercise.

As the topmost instance of the multiplier represented the target, it would not be included in

the optimisation efforts. With 9 genes per slice, and each multiplier actively using 8 slices,

the genotype was 216 genes long.

The population was then initialised at random, and the GA was allowed to run for 600

generations, a larger number than the previous experiment due to the increased complexity

of the multiplier circuit. The fitness for this experiment was set to be the maximum difference

between any two equivalent propagation delays (equivalent here meaning that they correspond

to the same transition) of any of the multiplier instances with respect to the target. This way,

the GA will force each of the circuit instances to “mimic” the target’s behaviour.

Figure 6.9 illustrates the evolved circuit of the 3 multipliers along with the topmost “target”

one, and Table 6.2 details the maximum differences in propagation delay with respect to the

target before and after the optimisation, for each multiplier. It is clear to see that although

the end result is similar in terms of fitness, the CT sizes and permutations used in each

multiplier are considerably different, suggesting that the GA is exploiting local variations to

Table 6.2: The differences in propagation delay between the target multiplier and the other
three instances, before and after running the GA.

Maximum delay difference to the target

Initial Evolved

Absolute (ps) Relative (%) Absolute (ps) Relative (%)

Multiplier 1 65 19.5 8 3.2
Multiplier 2 61 18.5 8 3.2
Multiplier 3 66 19.7 8 3.2

154 6.3. Mitigating Variability with Digital Reconfiguration

IN
V

A
N

D
3

A
N

D
2

A
N

D
3

IN
V

A
N

D
3

O
R

2
A

N
D

2
B

U
F

B
U

F
B

U
F

B
U

F

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

O
R

2
O

R
3

B
U

F

R
2_0

R
0_0

R
1_0

R
3_0

Target M
ultiplier

A
N

D
3

A
N

D
2

IN
V

A
N

D
3

IN
V

A
N

D
3

O
R

2
A

N
D

2
B

U
F

IN
V

A
N

D
3

IN
V

A
N

D
3

A
N

D
3

IN
V

IN
V

A
N

D
3

O
R

2
O

R
3

R
2_1

R
0_1

R
1_1

R
3_1

B
U

F
B

U
F

B
U

F

B
U

F

M
ultiplier #

1

*
*

*
*

*
*

*
*

*
*

IN
V

A
N

D
3

A
N

D
2

A
N

D
3

IN
V

A
N

D
3

O
R

2
A

N
D

2
B

U
F

B
U

F

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

O
R

3

R
2_2

R
0_2

R
1_2

R
3_2

B
U

F
B

U
F

O
R

2
B

U
F

M
ultiplier #

2

*
*

*
*

*
*

*

*
*

*

IN
V

A
N

D
3

A
N

D
2

A
N

D
3

IN
V

A
N

D
3

O
R

2
A

N
D

2
B

U
F

B
U

F
B

U
F

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

IN
V

A
N

D
3

O
R

2

R
2_3

R
0_3

R
1_3

R
3_3

B
U

F

O
R

3
B

U
F

M
ultiplier #

3

*
*

*
*

*
*

*
*

*
*

FX
X

FX
X

*

LEG
EN

D

FX
X

C
A

B
 w

ith function X
X

Em
pty C

A
B

M
oved function to

another C
A

B

A
lternative size

configuration

C
T Size 0

C
T Size 4

C
T Size 3

C
T Size 2

C
T Size 1

Figure 6.9: The evolved circuit after 600 generations, reducing the maximum difference in
propagation delay of multipliers 1, 2 and 3 to the target from 20% to 3%. The GA has
come up with considerably different solutions for each multiplier, making use of the local
variations to find common ground between them.

6.4. PAnDA Emulator v2 155

(delay)

Emulator v2.0 NAND2
CharacterisationData

CM Card ID
(variability)

Output Load

Figure 6.10: With the Emulator v2, the varying CT sizes are replaced by a varying output
load. The CTs in every CAB are fixed at a size which minimises the variation in rising- and
falling-edges.

achieve the same end result, which is what this experiment had as an initial goal: to create

homogeneity from heterogeneity.

6.4 PAnDA Emulator v2

As Chapter 5 demonstrated, the behaviour of the circuits modelled using the Emulator and a

full SPICE simulation was not in agreement, and Figure 5.10 illustrated this point by directly

comparing measurements taken from the Emulator with the same measurements that would

be generated in SPICE and showing that, using the Pearson correlation as a measure of fit,

a value of around 75% was the average across a few instances of a 2-bit multiplier.

Figure 5.12 further stressed this point by showing how the largest mismatch between the

Emulator and SPICE in a 3-stage ring-oscillator circuit occurs when the CABs in each stage

comprise very different CT sizes.

In an attempt to reduce the impact of this mismatch, a revision of the Emulator was cre-

ated, replacing the modelling of varying CT sizes with varying loads resulting from different

numbers of CABs connected to the output of any given CAB, as illustrated in Figure 6.10.

This revision of the Emulator aims to model the load seen by each CAB more accurately, so

that post-fabrication optimisation efforts can be applied to the model with a more meaningful

connection with SPICE, and ultimately with the actual PAnDA device.

Previously unaccounted-for varying output loads are not the sole contributors to the mis-

match verified in previous experiments, however. As mentioned in Section 4.3, the propa-

156 6.4. PAnDA Emulator v2

12
0n

24
0p

24
0n

48
0p

36
0n

72
0p

48
0n

96
0p

58
0n

11
40

p

CT Sizes

100

150

200

250

300

Ed
ge

 d
ur

at
io

n
(p

s)

120n240p rise
120n240p fall
240n480p rise
240n480p fall
360n720p rise
360n720p fall
480n960p rise
480n960p fall
580n1140p rise
580n1140p fall

Figure 6.11: The duration of rising- and falling-edges of a NAND2 gate for each of the
modelled CT sizes.

gation delay extraction for a particular CAB was done by applying a set of varying input

combinations, designed to cause every possible transition pertaining to the function being

characterised. The slew rate of the stimulating inputs was generated by connecting 3 CABs

in series, stimulating the first stage with a random input pattern, and taking the worst-case

slew rate of the middle stage. As explained in Chapter 5, the function and CT size of the

CABs involved in this chain will clearly affect the load seen by the two first stages. In ad-

dition to this, it has been made clear by Figure 4.5 that, depending on the function being

performed by a given CAB, different transitions will use a different set of CTs, which in turn

will not only cause a different propagation delay, but also a different slew rate of the output

signal.

Figure 6.11 illustrates the variation in rising-edge and falling-edge durations measured on a

CAB configured as a two-input NAND gate, for each of the modelled CT sizes, suggesting

that the variation between the duration of these edges becomes more substantial as CT sizes

are decreased. As discussed in Section 4.3, a constant value of 6.25mV/ps – which translates

to an edge duration of 160ps – was taken as the reference slew rate for the stimulating inputs

used in the CM Card-generation modelling stage. Based on the values plotted in Figure 6.11,

6.4. PAnDA Emulator v2 157

12
0n

24
0p

18
0n

24
0p

24
0n

48
0p

36
0n

72
0p

48
0n

96
0p

58
0n

11
40

p

CT Sizes

100

150

200

250

300

E
d
g
e
 d

u
ra

ti
o
n
 (

p
s)

120n240p rise

120n240p fall

180n240p rise

180n240p fall

240n480p rise

240n480p fall

360n720p rise

360n720p fall

480n960p rise

480n960p fall

580n1140p rise

580n1140p fall

Figure 6.12: The duration of rising- and falling-edges of a NAND2 gate for each of the
modelled CT sizes, with the addition of the 180n240p, following a CMOS ratio of (3:4)
rather than the previously used (1:2).

it is possible to see that this will be a considerable over-estimation for most of the CT sizes

in the case of the two-input NAND gate.

In summary, the slew rate of the input signals used in the CM Card generation should, if

the model is to be as accurate as possible, take into account not only the function being

implemented by the CAB which would generate that signal, but also the sizes of the CTs it

comprises and the number of CTs driving its output. Adding these new dimensions to the

already large measurement space of the CM Cards would not be feasible, as it would require

too much memory space to store these values. For these reasons, an approximate slew rate

will be used even though it is understood that is will introduce a mismatch between the

Emulator and SPICE.

This mismatch can be minimised, however, by choosing a CMOS ratio which reduces the gap

between the varying slew rates associated with different transitions. The CT size that will

be used in this revision of the Emulator was chosen by selecting the smallest size previously

modelled (120n240p) and increasing the size of the nMOS CTs such that the variance between

the edge durations would be reduced. Figure 6.12 illustrates the varying CT sizes previously

modelled, highlighting the reduced variance of the falling- and rising-edge durations of the

158 6.5. Mitigating Variability Across Large Numbers of VPIs

CT size chosen for the Emulator v2 with respect to the smallest size modelled for the first

revision.

By using this CT size, the PAnDA Emulator v2 makes use of a large intrinsic variation

in propagation delay inherent to reduced size CTs (as illustrated in Figures 4.7, 4.8, and

4.9) whilst reducing the difference between rising- and falling-edge durations through the

adjustment of the CMOS ratio.

6.5 Mitigating Variability Across Large Numbers of VPIs

In an attempt to illustrate how the Emulator could be used to investigate optimisation

mechanisms for a particular circuit, a large set of VPIs are instantiated, and then a Genetic

Algorithm is run on each instance in an attempt to find a configuration which minimises its

worst-case propagation delay, thus minimising the impact that variability has on a particular

design.

The input sequence required to stimulate each test-circuit was constructed and stored in an

array in the C program implemented on the microBlaze processor included in the Control

Module, previously described in Section 5.3. Along with this array, another was created

that indicated which outputs of the Emulator should be targeted for the measurement of a

propagation delay of a given transition. This array would specify which addresses should be

read in the memory populated by the FSM, as described in Section 5.4.

Figure 6.13 summarises the procedure carried out in each experiment. Initially, both the

Emulator and the Control Module are configured via JTAG, and then the latter relays

the PAnDA bitstream through the GPIO port to the Emulator. The Emulator reads this

configuration and passes it along to to its configuration-chain.

According to the mapped design, the Control Module then applies an input stimulus to the

Emulator through the GPIO port, which the Emulator then passes along to its A and B

inputs. This causes the FSM to be triggered, and after the FSM memory is fully populated,

the Emulator sends the measurements back to the Control Module, which writes these to a

file stored on a PC through a serial connection.

The virtual device creation and subsequent measurement extraction loop is repeated ndevices

times. For the experiments carried out in this section, this number was set to 1000, which

was large enough to provide a wide variation in the performance of the virtual devices to give

6.5. Mitigating Variability Across Large Numbers of VPIs 159

Download Bitstream

Download Emulator
Configuration

Select CM Cards
Randomly

Shift-In Emulator
Configuration

Download CM Cards

Apply Input Stimulus

Await Measurement

Download Bitstream

Await Configuration

Await CM Cards

Write Inputs

Take Measurements
& Send

G
PI

O
 C

om
m

un
ic

at
io

n

Control Module PAnDA Emulator

Figure 6.13: Flowchart describing the experiments carried out for this work. Described in
text.

room for optimisation, whilst at the same time being small enough to allow for a parallel

SPICE simulation of the transparent latches.

6.5.1 Test-Circuits

A few additional test-circuits were designed with varying degrees of complexity to serve as

the object of the investigation on the effects of variability on the PAnDA architecture, and

160 6.5. Mitigating Variability Across Large Numbers of VPIs

A0

A2

Y0

Y1
B0

A1

B1

Figure 6.14: The ISCAS ’87 C17 benchmark circuit, implemented with 6 NAND2 gates. The
circuit takes in five inputs, A2, A1, A0, B1 and B0, and generates two outputs, Y 1 and Y 0.

CLB00 + Routing CLB10 + Routing CLB20 + Routing

Y00(1)

Y00(0)

A2
A1

Y00(1)

Y00(0)
A2

Y10(0)

Y10(1)

CLB30 + Routing

Y00(1)

Y00(0)
Y10(0)

Y10(1)

Y20(0)

Y20(1)

B2
B1

B2

A2
A1
A0

B0
B1
B0

Y30(0)

Y30(1)

Yxy(out)
y

x
CLB(xy)

NAND2 Y1

Y0
NAND2

NAND2

NAND2

NAND2

NAND2

Figure 6.15: A C17 design mapped to the Emulator fabric, using 2-input NAND gates.

this Section describes not only their operation but also how they were implemented on the

Emulator.

ISCAS C17 Benchmark

In order to further reduce the mismatch between the PAnDA Emulator and an equivalent

RandomSPICE simulation whilst allowing for the study of the effects of variability and how

these can be mitigated against, a test circuit was implemented on the Emulator consisting

only of 2-input NAND gates. This circuit is part of the ISCAS ’85 benchmark set, as

is known as C17. The homogeneity in the function used across the CABs will provide

a lower mismatch with the SPICE simulation in terms of signal slew-rates between them,

improving the accuracy of the Emulator with respect to SPICE. It comprises 5 inputs and

2 outputs, connected through a network of NAND2 gates, as Figure 6.14 illustrates. A

similar experiment has been carried out in [27], using only RandomSPICE simulations with

a reduced set of input stimuli. The implementation of the design on the PAnDA Emulator

is illustrated in Figure 6.15.

In this circuit there are two types of NAND2 CABs: those with a fan-out of 1, and those

with a fan-out of 2. To account for this varying load – and further increase the accuracy

6.5. Mitigating Variability Across Large Numbers of VPIs 161

340 350 360 370 380 390 400 410
Time (ps)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

%
 o

f o
cc

ur
re

nc
e

Figure 6.16: Distribution of the worst-case propagation delay of 1000 instances of a C17
circuit, implemented on the Emulator.

of the Emulator with respect to SPICE – two sets of CM Cards were created, taking into

account this load variation. When the design is mapped to the Emulator, it will take this

into account and load the appropriate CM Card to each CAB, depending on its fan-out.

To fully characterise the circuit, as in every previous experiment, every transition of each

output must be accounted for in the input stimulus. In total, 1007 output transitions need

to be measured for this circuit.

Table 6.3 presents the truth table for the C17 circuit. For each output, every transition (either

from a logic one to a logic zero or vice-versa) and the corresponding input combination must

be included in the input stimulus. Since some of the input combination sequences will cause

transitions on both outputs, they can be measured in parallel, reducing the length of the

input stimulus from 1007 to 727 input combinations.

As previously mentioned, a total of 1007 measurements were taken from each Emulator run

of a virtual instance of a C17 circuit. Figure 6.16 illustrates the variation in worst-case

propagation delay for a set of 1000 virtual instances. It should be pointed out that each

Emulator run takes roughly 7 seconds to run, whereas a full SPICE simulation takes just

162 6.5. Mitigating Variability Across Large Numbers of VPIs

Table 6.3: Truth table for the C17 function.

Inputs Outputs
A2 A1 A0 B1 B0 Y1 Y0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 0 1 1 1 0
0 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 0 1 1 1 1 0
0 1 0 0 0 1 1
0 1 0 0 1 1 1
0 1 0 1 0 1 1
0 1 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 0 1 1 1
0 1 1 1 0 1 1
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 1 0 1
1 0 0 1 0 1 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 0 1 0 1
1 0 1 1 0 1 1
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 0 1 0 0
1 1 0 1 0 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 1 0 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1

under 4 hours. The total run-time for this experiment in characterising variability on a C17

circuit using the Emulator was just under 30 minutes, whereas it would take a full SPICE

simulation a total of 3806 hours to complete the same task, representing a speed-up of almost

four orders of magnitude.

D-Type Latch

With the aim of highlighting the ability of the Emulator to also model circuits of a sequential

nature, a NAND2-based d-type latch circuit was mapped to the fabric, as illustrated in Figure

6.5. Mitigating Variability Across Large Numbers of VPIs 163

D

Enable

Q

Q

Figure 6.17: A d-type latch circuit, designed using four NAND2 gates.

CLB00 + Routing CLB10 + Routing CLB20 + Routing

Y00(1)

Y00(0)

A2
A1

Y00(1)

Y00(0)
A2

Y10(0)

Y10(1)

CLB30 + Routing

Y00(1)

Y00(0)
Y10(0)

Y10(1)

Y20(0)

Y20(1)

B2
B1

B2

Enable

D
Y30(0)

Y30(1)

Yxy(out)
y

x
CLB(xy)

NAND2 Q

NAND2

NAND2

NAND2

Q

Figure 6.18: A d-type latch design mapped to the Emulator fabric, using 2-input NAND
gates. Two unused CLBs are represented in the figure.

6.18. The use of the same function across the design is, as in the case of the C17, useful to

reduce the mismatch between the Emulator and SPICE.

Since it is a much simpler circuit than the C17, it requires only 12 measurements for a full

circuit characterisation. As with the C17 circuit, a fan-out of one or two is observed in this

design, and the Emulator will load the appropriate CM Card based on the fan-out of each

CAB.

The C17 will serve as a larger, more complex circuit, and the d-type latch will serve as a

smaller circuit which can be simulated in SPICE in parallel with the Emulator experiments

due to its size (and therefore simulation feasibility). This smaller circuit will then be useful

to measure the accuracy of the revised Emulator model with respect to SPICE.

The d-type latch, often referred to as transparent latch, loads the value of D to its output

Q – and its complementary to Q̄ – when the enable signal is high. Otherwise, it holds the

previous value of its outputs, Q and Q̄, as detailed in Table 6.4.

The same experiment was carried out on the transparent latch, again creating 300 virtual

instances of this circuit and extracting the worst-case propagation delay. The result of this

experiment is illustrated in Figure 6.19.

The speed-up achieved in this case with respect to SPICE is much less significant, mostly

due to the small size of the circuit. Each instantiated PAnDA VPI can simulate four latches

164 6.5. Mitigating Variability Across Large Numbers of VPIs

340 350 360 370 380 390 400
Time (ps)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

%
 o

f o
cc

ur
re

nc
e

Figure 6.19: Distribution of the worst-case propagation delay of 1000 instances of a trans-
parent latch, implemented on the Emulator.

in parallel, evaluating them in just under 2 seconds. Therefore, 1000 latches were evaluated

in just over 8 minutes. In SPICE, each simulation takes 144 seconds, meaning that the simu-

lating 1000 devices (using a single thread) took 40 hours of computational time, representing

a speed-up of two orders of magnitude of the Emulator approach over SPICE.

6.5.2 Correlation with SPICE

As with previous experiments, the simulation speed-up will come at the expense of accuracy,

but the latter is expected to increase with the refined load modelling. The issue of varying

slew-rates was still left unresolved, and therefore a mismatch is still expected.

Table 6.4: Truth table for the d-type latch, or Transparent Latch.

Inputs Outputs
D Enable Q Q̄

0 0 Qprev Q̄prev

0 1 0 1
1 0 Qprev Q̄prev

1 1 1 0

6.5. Mitigating Variability Across Large Numbers of VPIs 165

100 150 200 250 300 350
SPICE Delays (ps)

100

150

200

250

300

350

Em
ul

at
or

 D
el

ay
s

(p
s)

Pearson correlation: 0.946

Correlation between SPICE and Emulator delays of C17

Correlation points
Ideal correlation

Figure 6.20: Correlation between the 1007 different propagation delays measured with the
Emulator, on the y-axis, and those taken from the equivalent SPICE simulation, on the x-
axis. Each plotted point corresponds to a particular measured transition of the C17 circuit.
Some measurements give the same result, and therefore appear overlapped on the graph.

As an initial comparison, the worst-performing virtual instance of a C17 circuit was used as

the subject of a full SPICE simulation. The CM Cards which were used in its mapping were

extracted and compiled into a single netlist. This netlist was run in SPICE, and the same

1007 measurements extracted.

Having mapped both the C17 and transparent latch to the PAnDA Emulator, the number

of instances that could be implemented on one device were maximised, so as to allow for

parallel measurements. Using the 8-row by 4-column Emulator, 4 instances of a C17 could be

implemented in parallel, as well as 4 instances of a transparent latch. Although both designs

only occupy one row, the arrangement of the inputs A and B on the Emulator required each

instance to be separated by two rows. This parallelism allows for a further speed-up over

the SPICE implementation.

As in the case of the 2-bit multiplier, the Emulator and SPICE measurements were plotted

against each other to analyse the correlation between them, as Figure 6.20 illustrates. The

calculated Pearson correlation of 0.95 is found to be considerably higher than the average

of 0.75 observed in the 2-bit multiplier mapped on the first version of the Emulator. The

166 6.5. Mitigating Variability Across Large Numbers of VPIs

0 10 20 30 40 50 60 70
Relative error (%)

0.0

2.0

4.0

6.0

8.0

10.0

%
 o

f o
cc

ur
re

nc
e

Figure 6.21: Distribution of the relative error between measurements taken with the Emu-
lator and those taken from the equivalent SPICE simulation of a C17 circuit. The error is
plotted on the x-axis, and its percentage of occurrence on the y-axis.

Emulator v2 is still overestimating its propagation delays, as most of the correlated points

sit above the ideal correlation line. This high correlation value suggests that the Emulator

is correctly capturing the analogue behaviour of the circuit, but with modelling inaccuracies

and approximations that drive it away from the ideal curve.

Figure 6.21 illustrates how the relative error between the Emulator and SPICE measurements

is distributed. A large majority is focused below the 20% mark, but in some instances it can

go up to 80%, meaning that overall the Emulator comes relatively close to what a SPICE

simulation would yield, but is considerably wrong in a small set of cases.

It should be noted that when the CM Cards were created for the Emulator v2, the input slew-

rate was approximated to be constant, and set to 5mV/ps. In the more dynamic environment

that is a full SPICE simulation, the slew-rates will not be static. This will have a direct

effect on the propagation delay measured, since a faster-rising signal will cause a lower delay.

Although the revised version of the Emulator captures the varying load more accurately, it

does not incorporate a changing slew-rate into the model. This is one of the possible causes

for the persisting mismatch between the two implementations.

6.5. Mitigating Variability Across Large Numbers of VPIs 167

330 340 350 360 370 380 390 400 410
Time (ps)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

%
 o

f o
cc

ur
re

nc
e

SPICE
Emulator

Figure 6.22: Comparison between the worst-case propagation delay of each of the 1000
virtual transparent latch instances created on the Emulator, and those simulated in SPICE.

Figure 6.22 illustrates the comparison made between the worst-case propagation delay of

each of the 1000 virtual instances of a transparent latch created on the Emulator and those

instantiated in SPICE.

The similarity between the distributions seems to suggest that with the appropriate con-

straints added to the model, such as the more accurate load modelling on the Emulator v2,

this approach can provide a good performance estimation for some designs across a number

of virtual devices along with a considerable run-time acceleration provided by the hardware.

6.5.3 Performance Optimisation with Emulator v2

As Figures 6.16 and 6.19 illustrated, the worst-case propagation delay for the evaluated

circuits suffers from a variation of around ±5%. In the test circuits used for the first version

of the Emulator, the multiplier and the ring-oscillator, the magnitude of the variations

in performance were quite similar. The former presented a maximum variation between

equivalent propagation delays on four different virtual instances of around 20%, and the

latter showed a maximum variation of around 8% between oscillators.

168 6.5. Mitigating Variability Across Large Numbers of VPIs

Although the Emulator does not quite simulate each virtual instance as accurately as SPICE,

Figures 6.20 and 6.22 showed that it comes quite close and also that, more importantly, it

introduces variability to the performance of the virtual instances. As previously stated,

Genetic Algorithms are heavily based on random search methods, but they add bio-inspired

concepts which influence the direction of the search. Where there is no variation, evolution

can not happen, and therefore neither can optimisation.

Having verified the existence of variability between each of the modelled test-circuits, optimi-

sation was allowed to take place on each version of the Emulator. For this set of experiments,

optimisation takes place after a PAnDA VPI is created, by applying functionally-neutral op-

erations to the mapped design.

This set of experiments aimed to recreate the scenario in which a particular user – company,

university, or an individual – acquires a batch of 1000 PAnDA devices, and maps their design

of choice to each. Intrinsic variability then causes variations in their performance, such as

the worst-case propagation delay.Given that for both of the testbenches implemented on this

version were made up exclusively from NAND2 gates, and only one CT size was modelled,

the optimisation efforts in this case were focused on the CAB permutations.

If the user is aware of the performance requirements for their design, they can then establish

a maximum value for the propagation delays of their circuit. An experiment was carried out

on the C17 benchmark, taking the delay distribution illustrated in Figure 6.16 as reference.

An arbitrary value of 380 was chosen as the maximum value for any propagation delay of

one of the generated virtual devices. Figure 6.23 illustrates the operation of this experiment,

building upon the set-up described in Figure 6.4 by closing the outer loop which concerns

the creation of virtual devices with the Emulator.

As only one CT size was being used, and no alternative CT configurations were included, each

individual in the GA was made up of the permutations in each CLB, considerably reducing

the size of the search-space with respect to the experiments carried out for the Emulator v1.

Each genotype was only 3 genes long, one for each CAB permutation associated with the 3

CLBs that the design uses, as illustrated in Figure 6.15. For each created PAnDA VPI, the

GA was allowed to run for a maximum of 10 generations, each comprising a population of

10 individuals.

Figure 6.24 illustrates the optimised distribution on worst-case propagation delays plotted

against the original distribution. The algorithm succesfully explored the local variations of

the CABs to minimise the propagation delay of the C17 instance mapped to each VPI.

6.5. Mitigating Variability Across Large Numbers of VPIs 169

Download Bitstream

Download Emulator
Configuration

Select CM Cards
Randomly

Download CM Cards

Control Module PAnDA Emulator

Initialise Population

Select Individual

Generate Emulator
Configuration

Download Emulator
Configuration

Apply
input stimuli

Await Measurement

Population
Evaluated?

NO

Rank Individuals

Selection

Termination
Condition

Met?

NO

Crossover &
Mutation

Generate Population

Optimisation
Complete

Download Bitstream

Await Configuration

Shift-In Emulator
Configuration

Write CM Cards

D
esign optim

ised on virtual device

G
PI

O
 C

om
m

un
ic

at
io

n
Idle

Shift-In Emulator
Configuration

Write Inputs

Take Measurements
& Send

Config
Request?

NO

YES

YES

YES

Figure 6.23: Integrating the GA-based optimisation with the PAnDA VPI generation from
random sampling of CM Cards. The loop represented by the red arrow is repeated once for
every VPI that is instantiated.

170 6.5. Mitigating Variability Across Large Numbers of VPIs

340 350 360 370 380 390 400 410
Time (ps)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

%
 o

f o
cc

ur
re

nc
e

Non-optimised
Optimised

Figure 6.24: Comparison between the worst-case propagation delay of C17 instances, mea-
sured before and after optimisation, along with the approximate normal distribution curve-fit
parameters for each. The GA was allowed to run for a maximum of 10 generations for each
VPI, or until the worst-case propagation delay was measured below 380ps.

To further illustrate the optimising algorithm’s ability to explore the local timing variations

to minimise overall circuit propagation delay, another experiment was carried out which did

not set a particular optimisation limit. Instead of exiting the optimisation loop once the

propagation delay has been reduced below the user-defined figure, each optimisation run

would be allowed the full 10 generations before being terminated.

Figure 6.25 illustrates the results of the experiment, plotting the optimised distribution of

propagation delays next to the original distribution. The maximum observed delay has

been reduced from 395ps to 379ps, representing a 4% improvement over the original case.

Although the worst-case delay is almost exactly the same as the previous experiment where

the user was allowed to set a particular value as the objective, the distribution of the values

is entirely different. Allowing the GA to run for the full 10 generations without interruption

seems to give it enough space to shift the (approximate) mean of the distribution by 2.6%,

whilst at the same time reducing the (approximate) standard deviation by almost 50%, as

well as the coefficient of variation σ/µ. In other words, the GA finds a way to minimise the

6.6. Summary 171

340 350 360 370 380 390 400 410
Time (ps)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0
%

 o
f o

cc
ur

re
nc

e

mu: 374.667, sigma= 5.650

mu: 365.213, sigma= 2.997

Non-optimised
Optimised

Figure 6.25: Comparison between the worst-case propagation delay measured before and
after optimisation of 1000 instances of a C17 circuit, along with the approximate normal
distribution curve-fit parameters for each. The GA was allowed to run for the full generations
for each PAnDA VPI.

variation in worst-case delay on the C17 circuit, and to reduce both the average measured

value and the maximum worst-case delay. A Vargha-Delaney [148] non-parametric test,

typically used to compare the effect size of a particular solution, was carried out to calculate

the effect size of the optimisation with regard to the non-optimised distribution, resulting in a

A-value of 0.936. This value indicates that around 93% of the time, a given optimised circuit

will outperform a non-optimised one. It should be noted that these results were achieved by

only investigating different CAB permutations. Once varying CT sizes are introduced, the

variations will become much greater, and so will the impact of optimisation.

6.6 Summary

This chapter focused on using a bio-inspired algorithm to achieve performance optimisation

on circuits mapped to the Emulator, in two different shapes: performance standardisation

and overall performance maximisation. It also focused on the Emulator’s ability to quickly

172 6.6. Summary

generate and evaluate a very large number of PAnDA VPIs, along with the evolutionary

optimisation that can be applied to each of these in order to mitigate the effects of variability.

The Genetic Algorithm implemented on the Emulator is used to do operation-point matching

on two circuits: a 2-bit multiplier and a 3-stage ring oscillator.

In the case of the ring-oscillators, the frequency variation between a set of 16 is reduced

from 8% to around 1.5%. The maximum propagation delay difference between four 2-bit

multipliers is reduced from just below 20% to around 3%. In the presence of variability, the

optimisation algorithm is able to quickly explore the search-space provided by the reconfig-

uration options of PAnDA to find a better solution for that particular VPI.

A second version of the Emulator is then introduced, which discards different CT sizes and

alternative CT configurations to free-up memory and to give way to more accurate load

modelling. The Emulator is then used to evaluate the performance of 1000 VPIs of D-type

latches and C17 benchmark circuits. The changes applied to this revision of the Emulator

prove to be beneficial toward increasing the accuracy of the circuits simulated on the Emula-

tor with respect to their SPICE equivalents. The worst-case propagation delay distribution

of a transparent latch is used to compare the two implementations, and distributions show

a great deal of similarity.

Additionally, a final experiment is carried out which tightens the distribution of the worst-

case propagation delay of 1000 PAnDA VPIs. The reduction in both mean value and width of

the optimised distribution suggests that not only is it possible to optimise the performance of

a particular circuit mapped to a VPI, but also that the spread induced by intrinsic variability

can be reduced, increasing the reliability of a design mapped to the architecture.

Chapter 7

Conclusions and Further Work

Contents

7.1 Introduction . 173

7.2 Hypothesis . 173

7.3 PAnDA & Modelling . 175

7.4 PAnDA Emulator & VPIs . 177

7.5 Exploiting variability for optimisation 178

7.6 Future Directions . 180

7.1 Introduction

This thesis focuses on circuit performance optimisation in the presence of process and sub-

strate variations. The modelling efforts that have been described are used to predict the

impact of variability on the PAnDA architecture, and optimisation techniques have been de-

veloped which can make use of the reconfiguration resources of the architecture to improve

circuit performance by making use of the existing variations.

7.2 Hypothesis

The first sub-hypothesis outlined in Chapter 1 read:

It is possible to use digital reconfiguration of the PAnDA architecture to optimise the

performance of a circuit.

The second outlined hypothesis stated that:

173

174 7.2. Hypothesis

It is possible to reduce the impact of variability on a circuit mapped to the PAnDA

architecture making use of its digital reconfiguration resources.

The first sub-hypothesis has been confirmed through the use of the PAnDA Emulator, al-

though the modelling inaccuracies are a limiting factor in the fidelity of the obtained results

with respect to a physical device. The experiments carried out in Chapter 5 and the first half

of Chapter 6, concerning the performance standardisation and reduction of worst-case prop-

agation delay of different test circuits, have shown that the implemented Genetic Algorithm

can make use of digital reconfiguration to optimise the performance of a design.

The second sub-hypothesis has also been confirmed, although with the same limitations as

the first. Based on the developed model, the methodology described in the second half

of Chapter 6 allows for the evaluation and subsequent optimisation of a large number of

physical instances of a design mapped to a PAnDA device. By making use of the optimisation

methodology developed for the first sub-hypothesis, the spread in circuit performance can

be reduced, consequently reducing the impact of variability on the design.

The hypothesis outlined in Chapter 1 read:

It is possible to mitigate the effects of atomistic variability on the PAnDA architecture at

the circuit-level through the use of digital reconfiguration, whilst making use of the substrate

variations to allow for circuit performance optimisation.

This work has shown, through the use of a model which combines hardware acceleration and

statistically-enhanced performance data, that digital reconfiguration can in fact be used to

minimise the impact of intrinsic variability, as well as to improve the performance of a given

design by making use of variations present in the fabric.

The developed embedded model includes a feature block, which contains information about

a logic block’s performance, characterised with statistically-enhanced tools. Although the

work described in this thesis only focuses on delay information, this could be expanded to

include other circuit performance features, such as power consumption. This model was then

used to generate large numbers of virtual physical instances of particular circuits mapped

to the architecture, and the impact of variability was observed and subsequently reduced

through the use of a bio-inspired optimisation algorithm.

7.3. PAnDA & Modelling 175

In this chapter, each of the major themes in the thesis is analysed and summarised, identifying

the main contributions and the main limitations in each theme. A connection is also made

to each of the objectives outlined in Chapter 1.

7.3 PAnDA & Modelling

As atomistic variability is certain to increase with future technology nodes, even in the case

of beyond CMOS technology such as plastic electronics and carbon nano-tubes, it appears as

though both designers and manufacturers will have to accept it as part of the manufacturing

process, and will need to take it into account for the design of reliable devices and systems.

With the continuing increase in transistor count of modern electronic devices, even small

percentages of faulty transistors due to both process and environment variations can repre-

sent a large enough number to cause critical sections to fail. Chapter 2 introduces the main

sources of intrinsic variability and how it can affect the performance of circuit, as well as

overall device yield. Small random variations in the number of dopant atoms in a transistor’s

channel, and other inaccuracies in the manufacturing process lead to significant variations

in threshold voltage and leakage current, causing timing and power consumption violations

which can result in critical device failure. The models used for this work take these variations

into account to produce accurate random device behaviour. Chapter 3 presents a range of

approaches to tackle variability at different stages in the design cycle of VLSI devices, from

pre-fabrication modelling, through manufacturing approaches, and up to post-fabrication

adaptive strategies such as reconfigurable hardware platforms. One of the identified plat-

forms, the PAnDA architecture, comprises transistors of configurable width, which allow for

the adjustment of performance that is necessary in the face of variability.

The PAnDA architecture provides a promising platform not only to study the effects of

variability in deep sub-micron processes, but also to tackle those effects at a post-fabrication

stage. Its low-level analogue reconfiguration resources are designed to also enable it to cope

with environmental (or temporal) variations which can be critically damaging for a design.

These resources also allow for a fine-grained control over transistor properties which is not

achievable through standard digital circuit design. By allowing the control over transistor

geometry, this architecture bridges the gap between digital and analogue circuit design.

In order to allow for the characterisation of the impact of variability on PAnDA devices,

statistically-enhanced models of the architecture are created through the use of the Random-

176 7.3. PAnDA & Modelling

SPICE tool. Chapter 4 describes the PAnDA hierarchical architecture from the transistor- to

the chip-level, along with the hierarchical models that are created for each abstraction layer.

As the complexity of the model grows, so does the computation required to extract perfor-

mance metrics from it. To bring the effects of variability on transistor performance to the

chip-level, a novel approach is described in which the upper-level layers (chip-, CLB-levels,

along with reconfiguration resources) are modelled in VHDL and implemented on an FPGA,

and variability-aware data from low-level layers (CAB-, CT-layers) are then incorporated

into the model through the use of digital timing control mechanisms. The variability-aware

data is generated for a set of Configurable Transistor sizes across the function-set offered by

the PAnDA architecture at the Configurable Analogue Block level, resulting in a library of

CM Cards which can be invoked by the top-level model to generate virtual physical instances

of a PAnDA device. The model which includes both the top-layers implemented in VHDL

and bottom-layer variability-aware data is called the PAnDA Emulator v1.

The creation of CM Cards is in some respects analogous to BSIM models generated by the

GSS toolkit, in that the latter creates transistor models through different combinations of

values of device parameters, and the former creates more abstract CAB models through

different combinations of RandomSPICE-generated transistors. The use of the same seed

for every RandomSPICE run ensures that the same “virtual transistors” are used for every

function in a CM Card, making digital reconfiguration a more meaningful mechanism. When

a purely statistical approach is taken to delay extraction, such as SSTA, the correlation

between functions is not necessarily maintained when it is applied to reconfigurable fabrics,

and would require additional efforts to design mechanisms to preserve it.

The modelling efforts described in this work were mainly focused on providing a platform

which emulated both the functionality of a PAnDA device and also the variations in per-

formance that are caused by random parameter fluctuation. Limiting factors in the imple-

mentation of the PAnDA Emulator – most importantly the limited memory resources on

the Virtex-5 serving as the Control Module – made it necessary to include modelling simpli-

fications which contributed toward an inaccuracy with respect to a full SPICE simulation.

There is, however, a decoupling between the feature extraction stage and the FPGA-based

Emulator. More sophisticated methods can be applied to the former to increase the accu-

racy of the extracted values, which might include varying slew-rates and a wider range of

load capacitances. These modelling upgrades carry with them an increase in memory re-

quirements, which can be fulfilled by including external dedicated hardware in the design of

7.4. PAnDA Emulator & VPIs 177

the Emulator. Another approach to increasing the dimensionality of the model would be to

reduce the function set currently implemented by each CAB, since at the present version of

the model each function requires approximately 1/8 of the memory used by each CM Card.

7.4 PAnDA Emulator & VPIs

In a novel approach, Chapter 5 takes the developed platform, the PAnDA Emulator v1,

and describes how it can be used to create virtual physical instances of circuits, making

use of hardware parallelism to allow for faster assessment of the impact of variability. A

3-stage ring oscillator and a 2-bit multiplier are mapped to the Emulator, and variations in

performance due to intrinsic variability are observed through the use of a custom designed

hardware module, embedded in the Emulator v1, which extracts frequency and propagation

delay measurements for the mapped circuits. This module consists of a finite-state machine

which makes use of the artificial time created by the Emulator v1, as part of the novelty of

the approach. A study on the frequency variation observed in ring oscillators constructed

using different-sized CTs is carried out, and wider CTs show a larger variation than smaller

ones, as expected. Four multipliers are also evaluated, with input vectors applied which

activate every possible path in the circuit. These performance metrics are extracted for

the emulated circuits, and equivalent simulations are carried out in SPICE, for modelling

validation. Inaccuracies are identified due to modelling simplifications such as uniform input

slew-rate and output load. In the case of the ring oscillator, modelling adjustments are

included which correct the input slew-rate and output load to account for varying CT sizes

in each stage of the oscillator. These adjustments prove to reduce the inaccuracy of the

measured frequencies with respect to SPICE from a worst-case of 34.76% error down to

3.17%.

Coming back to the objectives outlined in Chapter 1, the inclusion of statistically-enhanced

models in a reconfigurable model of the PAnDA architecture have allowed for the evaluation

of the performance of the PAnDA architecture under the effect of intrinsic variability, the

first objective on the list. The limitation of this approach is that generic varying fan-out and

fan-in models for each function have not been completed, and is within the scope of future

work.

178 7.5. Exploiting variability for optimisation

The second objective on the list concerned the acceleration of the performance characterisa-

tion process, something which is achieved through the parallel nature of the hardware side

of the PAnDA model, implemented in VHDL, and therefore this objective is also met.

The third objective on the list, and the last which concerns the development of the platform

on which optimisation mechanisms can be explored, required that methodology which allows

for the performance evaluation of large numbers of devices be available. This objective

is also met, given that VPIs can be created on the Emulator simply by loading different

CM cards when instantiating a device. Characterising the performance of each device is a

matter of loading the appropriate input stimulus and using the output logging mechanisms

of the Emulator to extract the required measurements. These measurements are currently

limited to either propagation delay or oscillating frequency (if applicable), but could easily

be expanded to include other performance features such as power consumption, paving the

way for multi-objective optimisation mechanisms to also be implemented.

7.5 Exploiting variability for optimisation

With limited memory resources, a version of the Emulator is created which replaces the

varying CT sizes with varying input-slew rates and output loads, to increase modelling

accuracy with respect to SPICE, referred to as PAnDA Emulator v2. Chapter 6 starts by

introducing this updated platform, and describes how the digital reconfiguration resources

of the Emulator can be used for performance optimisation. A new set of test-circuits, the

ISCAS’87 C17 benchmark and a transparent latch are then implemented on the Emulator

v2. Experiments are carried out which demonstrate the increase in modelling accuracy with

respect to SPICE, at the expense of non-varying CT sizes. These experiments also show

how large numbers of virtual devices can be created in a significantly shorter runtime than

full RandomSPICE simulations, as part of the novelty of the approach. Having verified the

impact of variability on the distribution of performance metrics on the designs mapped to

both version of the PAnDA Emulator, the digital reconfiguration operations which can be

applied to the platform are then introduced, making use of two flip-flop chains with custom

control circuitry, also part of the novelty of this work. The Emulator v1 can make use of

both varying CT sizes and function permutations, whereas the Emulator v2, with fixed CT

sizes, can only make use of function permutations.

7.5. Exploiting variability for optimisation 179

Genetic Algorithms, which take inspiration from the biological process of evolution, are

then presented as an efficient optimisation approach, which make as few assumptions about

the implemented circuits as possible. These take in performance measurements and make

use of bio-inspired mechanisms to generate bitstreams which are used to reconfigure the

Emulator. Much of the novelty of this work comes from the application of these algorithms

to create bitstreams which cannot damage the device, and perform only functionally-neutral

operations.

Operating-point matching experiments are then carried out on the Emulator v1, using the

ring oscillator and 2-bit multiplier circuits. In each experiment, multiple instances of each

circuit are mapped to the Emulator, with randomly assigned CT sizes. One instance is then

randomly chosen as the target for performance, and digital reconfiguration is used on the

others in order to minimise the differences in frequency for the ring oscillator, and propaga-

tion delay for the multiplier. In the case of the ring oscillator, the maximum difference in

frequency is reduced from 8.2% down to 1.3%. For the multiplier, the maximum difference in

propagation delay is reduced from 19.5% down to 3.2%. If a given manufactured circuit faces

timing violations due to intrinsic variability, having the ability to alter its characteristics in

order to eliminate these violations can provide a significant increase in device yield.

Worst-case propagation delay minimisation of a C17 circuit is then carried out on the Em-

ulator v2, making use of the function permutations exclusively. Each of the 1000 instances

previously characterised is optimised, with the maximum propagation delay observed being

reduced by 4%. The coefficient of variation (σ/µ) is also reduced by around 50%, sug-

gesting that not only can performance be improved by variation-aware reconfiguration, but

variability can indeed be reduced by making use of these resources.

Although more configuration flexibility – resulting from control over the sizes of Configurable

Transistors on PAnDA – is likely to make performance optimisation even more effective,

standard function permutations which are applicable to more traditional FPGA architectures

can provide significant benefits for variability-tolerance, as this thesis has demonstrated.

The fourth item on the list of objectives outlined in Chapter 1 described the need for an

automated method for the performance optimisation process. This has been achieved by

means of the algorithm implemented on the Control Module which performs optimisation

across large numbers of virtual physical instances, as described in Figure 6.23.

The final item on the list of objectives required that substrate variations and digital recon-

figuration resources should be used to both improve circuit performance and to allow for

180 7.6. Future Directions

performance standardisation across large numbers of devices. The GA applied to the test

circuits on the Emulator v1 has shown that performance standardisation can be achieved,

but the limitations of the approach should again be considered: as the resulting optimised

circuits exhibit some disagreement with full SPICE simulations, the models would need re-

finement before the findings can be translated to actual hardware performance predictions.

An initial effort in model refinement is undertaken out for the experiments carried out on

the Emulator v2, which narrows the gap between the model’s predictions and a full SPICE

simulation. Although this gap was not completely eliminated, it is still possible to say

that circuit performance optimisation across large numbers of devices has been achieved, as

demonstrated by the optimisation experiments carried out on the C17 and transparent latch

test-circuits.

7.6 Future Directions

As a continuation of the modelling work undertaken for the Emulator, efforts can be allocated

towards increasing the accuracy of the model, by extracting performance characteristics (i.e.

delay, power) for various input slew-rates and output loads. With the proposed approach,

an increase in accuracy will likely always be supported by an equivalent increase in data col-

lected, and therefore also an increase in the amount of memory required to store a CM Card.

This issue could be relaxed by including large buffers outside of each CAB to standardise

output load, although this introduces a potentially unwanted hardware overhead.

Assuming an increase in modelling accuracy, CT configurations which can potentially min-

imise the impact of variability can be studied, e.g. combinations of large and small versus

combinations of medium-sized transistors. An increase in accuracy is necessary also to allow

for the study of potential updates to the architecture.

Another future direction which can be identified is the development of automatic mapping

tools for both the Emulator and PAnDA, as the configuration bitstream is still done by hand,

and it can become a very time-consuming process for the implementation of complex designs

on both platforms. Since the Emulator mimics the functionality of the PAnDA architecture,

it can also be used for bitstream validation, protecting the PAnDA devices from potentially

damaging configurations.

Given that the first fully functional version of the PAnDA architecture has recently been

made available, the performance optimisation methods developed in this work are currently

7.6. Future Directions 181

being exported so that similar experiments can be carried out in hardware, and the results

can be compared with the those described in this work.

Overall, variability is a growing concern among both designers and manufacturers, and

PAnDA provides a substrate on which reliable circuits can be implemented. The experi-

ments described in this work aimed to improve the performance of circuits mapped to the

PAnDA architecture, which has been achieved through the use of an Emulator.

With more variability-aware mapping techniques currently being developed by the both

academia and industry, it is likely that these efforts can be expanded in the next decade to

allow for online performance characterisation and dynamic reconfiguration to manipulate the

behaviour of implemented circuits. As programmable devices such as FPGAs begin to close

the performance gap with ASICs, digital reconfiguration is likely to become a major area of

interest in the field of embedded systems, as inevitable device variations make it possible to

constantly explore the fabric to find better implementations of a given design.

182 7.6. Future Directions

Appendix A

Source files

The USB drive and CD-ROM included with the thesis contain the relevant files necessary

to implement the Control Module on a Virtex-5 LX110T FPGA, and the PAnDA Emulator

on a Virtex-6 XC6VLX760.

The folders are organised as follows:

• Control Module (Virtex5)

– Hardware – Various files necessary to rebuild the Control Module hardware

project.

– Software

∗ control.c – This source file contains the data extracted from RandomSPICE

simulations, the functions used in the Genetic Algorithm, and the communi-

cations protocol for data exchange with the PAnDA Emulator;

∗ control.h – Header file for control.c;

∗ panda control.c – Source file containing main function.

• PAnDA Emulator (Virtex6)

– Hardware

∗ Various files necessary to rebuild the PAnDA Emulator hardware project;

∗ Emulator IP Core – Files which generate the hierarchical design of the

Emulator, written in VHDL;

– Software

183

184

∗ panda eins functions.c – Source file containing the functions used for Em-

ulator reconfiguration, as well as communications protocol for data exchange

with the Control Module;

∗ panda eins functions.h – Header file for panda eins functions.c;

∗ panda eins.c – Source file containing the main function.

• Thesis.pdf – A digital copy of this thesis.

Bibliography

[1] K. J. Kuhn, “Moore’s Law Past 32nm: Future Challenges in Device Scaling,” in 2009

13th International Workshop on Computational Electronics. IEEE, may 2009, pp.

1–6.

[2] R. Jaramillo-Ramirez, J. Jaffari, and M. Anis, “Variability-aware design of subthresh-

old devices,” Proceedings - IEEE International Symposium on Circuits and Systems,

pp. 1196–1199, 2008.

[3] A. Asenov, A. R. Brown, G. Roy, B. Cheng, C. Alexander, C. Riddet, U. Kovac,

A. Martinez, N. Seoane, and S. Roy, “Simulation of statistical variability in nano-

CMOS transistors using drift-diffusion, Monte Carlo and non-equilibrium Greens func-

tion techniques,” Journal of Computational Electronics, vol. 8, no. 3-4, pp. 349–373,

sep 2009.

[4] F. Schellenberg, “A little light magic,” IEEE Spectrum, vol. 40, no. 9, pp. 34–39, sep

2003.

[5] Y. Tsividis and C. McAndrew, “Proximity Effect Modeling,” in Operation and Model-

ing of the MOS Transistor, 3rd ed. Oxford University Press, 2011, ch. 9.

[6] D. T. Reid, “Large-scale simulations of intrinsic parameter fluctuations in nano-scale

MOSFETs,” Ph.D. dissertation, University of Glasgow, 2010.

[7] A. Asenov, “Random Dopant Induced Threshold Voltage Lowering and Fluctuations

in Sub 50 nm MOSFETs: a Statistical 3D ’Atomistic’ Simulation Study,” Nanotech-

nology, vol. 10, no. 2, pp. 153–158, jun 1999.

[8] S. M. M. A. Alam, “A comprehensive model of PMOS NBTI degradation,” Microelec-

tronics Reliability, vol. 47, no. 6, pp. 853–862, 2007.

185

186 Bibliography

[9] J. A. Walker, M. A. Trefzer, and A. M. Tyrrell, “A Reconfigurable Architecture for

Current and Future Challenges in Electronic Design and Technology,” in Workshop

on Variability modelling and mitigation techniques in current and future technologies

(VAMM) DATE 2012, 2012.

[10] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J.

Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance CMOS variability in the

65-nm regime and beyond,” IBM Journal of Research and Development, vol. 50, no.

4.5, pp. 433–449, jul 2006.

[11] Gilson Wirth, “Reliability and Yield of MOS Devices and Circuits,” 2011.

[12] S. Kothawade, K. Chakraborty, and S. Roy, “Analysis and mitigation of NBTI aging

in register file: An end-to-end approach,” in 12th International Symposium on Quality

Electronic Design. IEEE, mar 2011, pp. 1–7.

[13] M. Merrett, P. Asenov, M. Zwolinski, D. Reid, C. Millar, S. Roy, S. Furber, and

A. Asenov, “Modelling circuit performance variations due to statistical variability:

Monte Carlo static timing analysis,” in Design, Automation & Test in Europe. IEEE,

mar 2011, pp. 1–4.

[14] G. S. Simulations, “RandomSPICE,” 2015. [Online]. Avail-

able: http://www.goldstandardsimulations.com/services/service-simulations/circuit-

simulation/random-spice/

[15] R. Rudolf, R. Wilcock, and P. R. Wilson, “Reliability improvement and online cali-

bration of ICs using configurable analogue transistors,” in 2012 IEEE Aerospace Con-

ference. IEEE, mar 2012, pp. 1–8.

[16] P. Wilson and R. Wilcock, “Yield improvement using configurable analogue transis-

tors,” Electronics Letters, vol. 44, no. 19, p. 1132, 2008.

[17] ——, “Optimal sizing of configurable devices to reduce variability in integrated cir-

cuits,” in 2009 Design, Automation & Test in Europe Conference & Exhibition. IEEE,

apr 2009, pp. 1385–1390.

[18] C. Forzan and D. Pandini, “Statistical static timing analysis: A survey,” Integration,

the VLSI Journal, vol. 42, no. 3, pp. 409–435, jun 2009.

Bibliography 187

[19] S. Garg and D. Marculescu, “Impact of manufacturing process variations on perfor-

mance and thermal characteristics of 3D ICs: Emerging challenges and new solutions,”

in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013). IEEE,

may 2013, pp. 541–544.

[20] D. Ernst, N. S. K. N. S. Kim, S. Das, S. Pant, R. Rao, T. P. T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power pipeline

based on circuit-level timing speculation,” Proceedings. 36th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, 2003. MICRO-36., 2003.

[21] Xilinx, “Xilinx UG364 - Virtex-6 FPGA Configurable Logic Block User Guide,” 2012.

[22] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and Practice of

FPGA-Based Computation. Morgan Kaufmann Publishers Inc., nov 2007.

[23] E. Stott, Z. Guan, J. M. Levine, J. S. J. Wong, and P. Y. K. Cheung, “Variation and

Reliability in FPGAs,” IEEE Design & Test, vol. 30, no. 6, pp. 50–59, dec 2013.

[24] J. Langeheine, J. Becker, S. Folling, K. Meier, and J. Schemmel, “A CMOS FPTA

chip for intrinsic hardware evolution of analog electronic circuits,” in Proceedings Third

NASA/DoD Workshop on Evolvable Hardware. EH-2001. IEEE Comput. Soc, 2001,

pp. 172–175.

[25] J. A. Walker, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “PAnDA: A reconfig-

urable architecture that adapts to physical substrate variations,” IEEE Transactions

on Computers, vol. 62, no. 8, pp. 1584–1596, 2013.

[26] M. A. Trefzer, J. A. Walker, and A. M. Tyrrell, “A Programmable Analogue and

Digital Array for Bio-inspired Electronic Design Optimization at Nano-scale Silicon

Technology Nodes,” in 45th Asilomar Conference on Signals, Systems and Computers

(ASILOMAR), 2011, pp. 1537–1541.

[27] J. A. Walker, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “Exploiting the reconfigura-

bility of the PAnDA architecture to overcome physical substrate variations,” in 2013

IEEE International Conference on Evolvable Systems (ICES). IEEE, apr 2013, pp.

37–42.

[28] M. Trefzer, A. Tyrrell, and J. Walker, “Field-programmable gate array,” sep 2013.

[Online]. Available: http://www.google.com.ar/patents/WO2013064839A3

188 Bibliography

[29] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer CMOS,”

Proceedings - Design Automation Conference, pp. 396–399, 2007.

[30] M. A. Trefzer, “PAnDA Homepage,” 2015. [Online]. Available:

http://www.panda.ac.uk/index.html

[31] P. B. Campos, D. M. R. Lawson, S. J. Bale, J. A. Walker, M. a. Trefzer, and A. M.

Tyrrell, “Overcoming Faults using Evolution on the PAnDA Architecture,” in 2013

IEEE Congress on Evolutionary Computation. Ieee, jun 2013, pp. 613–620.

[32] P. B. Campos, M. A. Trefzer, J. A. Walker, S. J. Bale, and A. M. Tyrrell, “Optimising

ring oscillator frequency on a novel FPGA device via partial reconfiguration,” in 2014

IEEE International Conference on Evolvable Systems. IEEE, dec 2014, pp. 93–100.

[33] N. Dahir, P. B. Campos, G. Tempesti, M. A. Trefzer, and A. M. Tyrrell, “Characteri-

sation of Feasibility Regions in FPGAs under Adaptive DVFS,” in IEEE International

Conference on Field-programmable Logic and Applications (FPL). IEEE, 2015.

[34] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu, “Impact of spatial intrachip

gate length variability on the performance of high-speed digital circuits,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 5,

pp. 544–553, 2002.

[35] Y. Cao and L. T. Clark, “Mapping Statistical Process Variations Toward Circuit

Performance Variability: An Analytical Modeling Approach,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 10, pp. 1866–

1873, oct 2007.

[36] X. Zhang and X. Bai, “Process variability-induced timing failures A challenge in

nanometer CMOS low-power design,” 2008 IEEE International Conference on Inte-

grated Circuit Design and Technology and Tutorial, pp. 159–162, jun 2008.

[37] S. Chandra, “Variability-Aware System-Level Design and Analysis,” Ph.D. disserta-

tion, University of California, San Diego, 2009.

[38] S. Nassif, “Within-chip variability analysis,” International Electron Devices Meeting

1998. Technical Digest, pp. 283–286, 1998.

Bibliography 189

[39] D. Sylvester, K. Agarwal, and S. Shah, “Variability in nanometer CMOS: Impact,

analysis, and minimization,” Integration, the VLSI Journal, vol. 41, no. 3, pp. 319–

339, may 2008.

[40] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,

vol. 38, no. 8, 1965.

[41] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-

implanted MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-

State Circuits, vol. 9, no. 5, pp. 256–268, oct 1974.

[42] S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea,

T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma,

B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivaku-

mar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm

Logic Technology Featuring Strained-Silicon,” IEEE Transactions on Electron Devices,

vol. 51, no. 11, pp. 1790–1797, nov 2004.

[43] A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in

sub-0.1 µm MOSFET’s: A 3-D ”atomistic” simulation study,” IEEE Transactions on

Electron Devices, vol. 45, no. 12, pp. 2505–2513, 1998.

[44] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design (The Oxford Series in

Electrical and Computer Engineering). Oxford University Press, 1987.

[45] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier,

M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani,

R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. In-

gerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu,

J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad,

L. Pipes, M. Prince, P. Rarade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian,

J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vander-

voorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal

Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning,

and 100% Pb-free Packaging,” in 2007 IEEE International Electron Devices Meeting.

IEEE, 2007, pp. 247–250.

190 Bibliography

[46] A. Wong, R. Ferguson, and S. Mansfield, “The mask error factor in optical lithogra-

phy,” IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 2, pp. 235–242,

may 2000.

[47] T. A. Brunner, “Impact of lens aberrations on optical lithography,” IBM Journal of

Research and Development, vol. 41, no. 1.2, pp. 57–67, jan 1997.

[48] J. Watts, N. Lu, C. Bittner, S. Grundon, and J. Oppold, “Compact Modeling Modeling

FET Variation within a chip as a Function of Circuit Design and Layout Choices,” in

Technical Proceedings of the 2005 Workshop on Compact Modeling, 2005.

[49] T. Hook, J. Brown, P. Cottrell, E. Adler, D. Hoyniak, J. Johnson, and R. Mann, “Lat-

eral ion implant straggle and mask proximity effect,” IEEE Transactions on Electron

Devices, vol. 50, no. 9, pp. 1946–1951, sep 2003.

[50] J. V. Faricelli, “Layout-dependent proximity effects in deep nanoscale CMOS,” in IEEE

Custom Integrated Circuits Conference 2010. IEEE, sep 2010, pp. 1–8.

[51] K. J. Kuhn, “Reducing Variation in Advanced Logic Technologies: Approaches to

Process and Design for Manufacturability of Nanoscale CMOS,” in 2007 IEEE Inter-

national Electron Devices Meeting. IEEE, 2007, pp. 471–474.

[52] J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen,

and H. Maes, “Line edge roughness: characterization, modeling and impact on device

behavior,” in Digest. International Electron Devices Meeting,. IEEE, 2002, pp. 307–

310.

[53] A. R. Brown, G. Roy, and A. Asenov, “Poly-Si-Gate-Related Variability in De-

cananometer MOSFETs With Conventional Architecture,” IEEE Transactions on

Electron Devices, vol. 54, no. 11, pp. 3056–3063, nov 2007.

[54] T. Herrmann, W. Klix, R. Stenzel, S. Duenkel, R. Illgen, J. Hoentschel, T. Feudel,

and M. Horstmann, “Line Edge and Gate Interface Roughness Simulations of Ad-

vanced VLSI SOI-MOSFETs,” in Simulation of Semiconductor Processes and Devices.

Springer Vienna, 2007, pp. 101–104.

[55] E. Baravelli, M. Jurczak, N. Speciale, K. De Meyer, and A. Dixit, “Impact of LER and

Random Dopant Fluctuations on FinFET Matching Performance,” IEEE Transactions

on Nanotechnology, vol. 7, no. 3, pp. 291–298, may 2008.

Bibliography 191

[56] X. Wang, B. Cheng, A. R. Brown, C. Millar, J. B. Kuang, S. Nassif, and A. Asenov,

“Impact of statistical variability and charge trapping on 14 nm SOI FinFET SRAM cell

stability,” in 2013 Proceedings of the European Solid-State Device Research Conference

(ESSDERC). IEEE, sep 2013, pp. 234–237.

[57] L. Mark, “ECE 612 Lecture 19: Device Variability,” nov 2008. [Online]. Available:

https://nanohub.org/resources/5856

[58] J. J. Kim, R. Rao, S. Mukhopadhyay, and C. T. Chuang, “Ring oscillator circuit

structures for measurement of isolated NBTI/PBTI effects,” Proceedings - 2008 IEEE

International Conference on Integrated Circuit Design and Technology, ICICDT, pp.

163–166, jun 2008.

[59] A. Bansal, R. Rao, J. J. Kim, S. Zafar, J. H. Stathis, and C. T. Chuang, “Im-

pact of NBTI and PBTI in SRAM Bit-cells: Relative Sensitivities and Guidelines

for Application-Specific Target Stability/Performance,” IEEE International Reliabil-

ity Physics Symposium Proceedings, pp. 745–749, 2009.

[60] S. Mahapatra, Fundamentals of Bias Temperature Instability in MOS Transistors,

S. Mahapatra, Ed. Springer India, 2016.

[61] J. Keane and C. H. Kim, “Transistor Aging,” IEEE Spectrum, 2011. [Online].

Available: http://spectrum.ieee.org/semiconductors/processors/transistor-aging

[62] W. Dai, “Timing analysis taking into account interconnect process variation,” in 6th

International Workshop on Statistical Methodology. IEEE, 2001, pp. 51–53.

[63] F. Liu, L. Pileggi, and S. Nassif, “Modeling Interconnect Variability Using Efficient

Parametric Model Order Reduction,” in Design, Automation and Test in Europe.

IEEE, 2005, pp. 958–963.

[64] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter

variations and impact on circuits and microarchitecture,” in Proceedings 2003. Design

Automation Conference (IEEE Cat. No.03CH37451). IEEE, 2003, pp. 338–342.

[65] Y. Wang, M. Zwolinski, A. Appleby, M. Scoones, S. Caldwell, T. Azam, P. Hurat,

and C. Pitchford, “Analysis, quantification, and mitigation of electrical variability due

to layout dependent effects in SOC designs,” in SPIE Advanced Lithography, M. E.

Mason, Ed. International Society for Optics and Photonics, mar 2012.

192 Bibliography

[66] S. G. Narendra, “Effect of MOSFET threshold voltage variation on high-performance

circuits,” Ph.D. dissertation, Massachusetts Institute of Technology, 2002.

[67] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of technology scaling on

lifetime reliability,” in International Conference on Dependable Systems and Networks,

2004. IEEE, 2004, pp. 177–186.

[68] B. Greskamp, S. R. Sarangi, and J. Torrellas, “Threshold Voltage Variation Effects

on Aging-Related Hard Failure Rates,” in IEEE International Symposium on Circuits

and Systems. IEEE, may 2007, pp. 1261–1264.

[69] M. Eisele, J. Berthold, D. Schmitt-Landsiedel, and R. Mahnkopf, “The impact of

intra-die device parameter variations on path delays and on the design for yield of low

voltage digital circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 5, no. 4, pp. 360–368, 1997.

[70] R. Wang, P. Friedberg, A. Vladimirescu, and J. Rabaey, “Yield optimization with

energy-delay constraints in low-power digital circuits,” 2003 IEEE Conference on Elec-

tron Devices and Solid-State Circuits, pp. 285–288, 2003.

[71] P. Pouyan, E. Amat, and A. Rubio, “Process variability-aware proactive reconfigura-

tion technique for mitigating aging effects in nano scale SRAM lifetime,” Proceedings

of the IEEE VLSI Test Symposium, pp. 240–245, apr 2012.

[72] B. Rebaud, M. Belleville, C. Bernard, M. Robert, P. Maurine, and N. Azemard, “A

comparative study of variability impact on static flip-flop timing characteristics,” Pro-

ceedings - 2008 IEEE International Conference on Integrated Circuit Design and Tech-

nology, ICICDT, pp. 167–170, jun 2008.

[73] J. A. Hilder, “Evolving Variability Tolerant Logic,” Ph.D. dissertation, University of

York, 2010.

[74] B. Harish, N. Bhat, and M. B. Patil, “Bridging technology-CAD and design-CAD for

variability aware Nano-CMOS circuits,” in IEEE International Symposium on Circuits

and Systems. IEEE, may 2009, pp. 2309–2312.

[75] L. W. Nagel and D. Pederson, “SPICE (Simulation Program with Integrated Circuit

Emphasis),” EECS Department, University of California, Berkeley, Tech. Rep., 1973.

Bibliography 193

[76] H. Shichman and D. Hodges, “Modeling and simulation of insulated-gate field-effect

transistor switching circuits,” IEEE Journal of Solid-State Circuits, vol. 3, no. 3, pp.

285–289, sep 1968.

[77] D. P. Foty, MOSFET modeling with SPICE: principles and practice. Prentice-Hall,

Inc., jan 1997.

[78] N. Paydavosi, T. H. Morshed, D. D. Lu, W. M. Yang, M. V. Dunga, X. J. Xi, J. He,

W. Liu, M. C. Kanyu, X. Jin, J. J. Ou, M. Chan, A. M. Niknejad, and C. Hu,

“BSIM4v4.8.0 MOSFET Model - User’s Manual,” 2013.

[79] P. Nenzi and H. Vogt, “Ngspice User Manual, version 25,” 2013.

[80] G. S. Simulations, “Gold Standard Simulations - News.”

[81] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation Study of

Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional

Nano-MOSFETs,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 3063–

3070, dec 2006.

[82] D. Reid, C. Millar, S. Roy, G. Roy, R. Sinnott, G. Stewart, G. Stewart, and A. Asenov,

“Enabling cutting-edge semiconductor simulation through grid technology.” Philosoph-

ical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 367,

no. 1897, pp. 2573–84, jun 2009.

[83] G. Pitcher, “GSS makes multimillion dollar sale to GlobalFoundries,” NewElectronics,

jul 2014.

[84] M. A. Trefzer, A. Tyrrell, S. J. Bale, and J. A. Walker, “High-Sigma Performance

Analysis using Multi-Objective Evolutionary Algorithms,” in Design Automation Con-

ference, 2015.

[85] Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo, and Ben Gu, “Fast Statis-

tical Analysis of Rare Circuit Failure Events via Scaled-Sigma Sampling for High-

Dimensional Variation Space,” IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 34, no. 7, pp. 1096–1109, jul 2015.

[86] T. McWilliams, “Verification of Timing Constraints on Large Digital Systems,” pp.

139–147, 1980.

194 Bibliography

[87] A. Dunlop, V. Agrawal, D. Deutsch, M. Jukl, P. Kozak, and M. Wiesel, “Chip Layout

Optimization Using Critical Path Weighting,” in 21st Design Automation Conference

Proceedings. IEEE, 1984, pp. 133–136.

[88] K. Butler, “Deep submicron: is test up to the challenge?” in Proceedings of 1995 IEEE

International Test Conference (ITC). Int. Test Conference, 1995, p. 923.

[89] M. Escalante and N. Dimopoulos, “A probabilistic timing analysis for synthesis in mi-

croprocessor interface design,” in IEEE Pacific Rim Conference on Communications,

Computers, and Signal Processing. Proceedings. IEEE, 1995, pp. 277–280.

[90] S. Tsukiyama, M. Tanaka, and M. Fukui, “A statistical static timing analysis consid-

ering correlations between delays,” in Proceedings of the ASP-DAC 2001. Asia and

South Pacific Design Automation Conference 2001 (Cat. No.01EX455). IEEE, 2001,

pp. 353–358.

[91] S. Tsukiyama, “Toward stochastic design for digital circuits - statistical static timing

analysis,” in ASP-DAC 2004: Asia and South Pacific Design Automation Conference

2004 (IEEE Cat. No.04EX753). IEEE, 2004, pp. 762–767.

[92] I. Nitta, T. Shibuya, and K. Homma, “Statistical Static Timing Analysis Technology,”

FUJITSU Scientific & Technical Journal, vol. 43, no. 4, pp. 516–523, 2007.

[93] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, S. Narayan, D. Be, J. Piaget,

N. Venkateswaran, and J. Hemmett, “First-Order Incremental Block-Based Statisti-

cal Timing Analysis,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, no. 10, pp. 2170–2180, oct 2006.

[94] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical Timing Analysis:

From Basic Principles to State of the Art,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 589–607, apr 2008.

[95] M. Kwak and L. Guo, “Phase-Shift Lithography,” in Encyclopedia of Microfluidics and

Nanofluidics SE - 1729-4, D. Li, Ed. Springer US, 2014, pp. 1–10.

[96] B. J. Lin, “Lithography till the end of Moore’s law,” in Proceedings of the 2012 ACM

international symposium on International Symposium on Physical Design - ISPD ’12.

New York, New York, USA: ACM Press, mar 2012, p. 1.

Bibliography 195

[97] Y. Cai, Q. Zhou, X. Hong, R. Shi, and Y. Wang, “Application of optical proximity

correction technology,” Science in China Series F: Information Sciences, vol. 51, no. 2,

pp. 213–224, feb 2008.

[98] H. Zhang, “Reduction of CD variance by using optical proximity correction for pat-

terning with DUV phase shift mask,” Microelectronic Engineering, vol. 30, no. 1-4, pp.

119–122, jan 1996.

[99] B. Yu and D. Z. Pan, Design for Manufacturability with Advanced Lithography.

Springer International Publishing, 2016.

[100] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. a. Antoniadis, A. P. Chan-

drakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and

within-die parameter variations on microprocessor frequency and leakage,” IEEE Jour-

nal of Solid-State Circuits, vol. 37, no. 11, pp. 1396–1402, 2002.

[101] S. Narang and A. P. Srivastava, “NBTI detection methodology for building tolerance

with respect to NBTI effects employing adaptive body bias,” in 2015 International

Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. IEEE,

mar 2015, pp. 1–7.

[102] T. Chen and S. Naffziger, “Comparison of adaptive body bias (ABB) and adaptive

supply voltage (ASV) for improving delay and leakage under the presence of pro-

cess variation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 11, no. 5, pp. 888–899, oct 2003.

[103] S. Garg and D. Marculescu, “System-Level Leakage Variability Mitigation for MPSoC

Platforms Using Body-Bias Islands,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 20, no. 12, pp. 2289–2301, dec 2012.

[104] W. Davis, J. Wilson, S. Mick, C. Mineo, A. Sule, M. Steer, and P. Franzon, “De-

mystifying 3D ICs: The Pros and Cons of Going Vertical,” IEEE Design and Test of

Computers, vol. 22, no. 6, pp. 498–510, jun 2005.

[105] S. Garg and D. Marculescu, “System-level process variability analysis and mitigation

for 3D MPSoCs,” in 2009 Design, Automation & Test in Europe Conference & Exhi-

bition. IEEE, apr 2009, pp. 604–609.

196 Bibliography

[106] G. Estrin, “Reconfigurable computer origins: The UCLA fixed-plus-variable (F+V)

structure computer,” IEEE Annals of the History of Computing, vol. 24, no. 4, pp.

3–9, oct 2002.

[107] ——, “Organization of computer systems,” in Papers presented at the May 3-5, 1960,

western joint IRE-AIEE-ACM computer conference on - IRE-AIEE-ACM ’60 (West-

ern). New York, New York, USA: ACM Press, may 1960, p. 33.

[108] I. Kuon and J. Rose, “Quantifying and exploring the gap between FPGAs and ASICs:

Measuring and exploring,” in Quantifying and Exploring the Gap Between FPGAs and

ASICs: Measuring and Exploring. New York, New York, USA: ACM Press, feb 2010,

pp. 1–180.

[109] Xilinx Inc., “MicroBlaze Soft Processor Core,” 2015. [Online]. Available:

http://www.xilinx.com/tools/microblaze.htm

[110] Z. Guan, “Variation-aware and adaptive timing optimisation methods in Field Pro-

grammable Gate Arrays,” Ph.D. dissertation, Imperial College London of Science,

Technology and Medicine, 2013.

[111] P. Sedcole and P. Y. K. Cheung, “Parametric yield in FPGAs due to within-die delay

variations,” in Proceedings of the 2007 ACM/SIGDA 15th international symposium on

Field programmable gate arrays - FPGA ’07. New York, New York, USA: ACM Press,

feb 2007, p. 178.

[112] H. Yu, Q. Xu, and P. H. W. Leong, “Fine-grained characterization of process variation

in FPGAs,” in Proceedings - 2010 International Conference on Field-Programmable

Technology, FPT’10. IEEE, dec 2010, pp. 138–145.

[113] L. Scheffer, “Explicit computation of performance as a function of process variation,”

in Proceedings of the 8th ACM/IEEE international workshop on Timing issues in the

specification and synthesis of digital systems - TAU ’02. New York, New York, USA:

ACM Press, dec 2002, p. 1.

[114] E. Stott, J. M. Levine, P. Y. Cheung, and N. Kapre, “Timing Fault Detection in

FPGA-Based Circuits,” in 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines. IEEE, may 2014, pp. 96–99.

Bibliography 197

[115] N. Julai, A. Yakovlev, and A. Bystrov, “Error detection and correction of single event

upset (SEU) tolerant latch,” in 2012 IEEE 18th International On-Line Testing Sym-

posium (IOLTS). IEEE, jun 2012, pp. 1–6.

[116] G. Lucas, C. Dong, and D. Chen, “Variation-Aware Placement With Multi-Cycle Sta-

tistical Timing Analysis for FPGAs,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1818–1822, nov 2010.

[117] C. Dong, S. Chilstedt, and D. Chen, “Variation Aware Routing for Three-Dimensional

FPGAs,” in 2009 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2009,

pp. 298–303.

[118] J. Langeheine, S. Fölling, K. Meier, and J. Schemmel, “Towards a Silicon Primordial

Soup: A Fast Approach to Hardware Evolution with a VLSI Transistor Array,” in

Evolvable Systems: From Biology to Hardware, Third International Conference, ICES

2000, 2000, pp. 123–132.

[119] A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, Y. Klimeck, R. Tawel,

and V. Duong, “Evolution of analog circuits on field programmable transistor arrays,”

in Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware. IEEE

Comput. Soc, 2000, pp. 99–108.

[120] Martin Albrecht Trefzer, “Evolution of Transistor Circuits,” Ph.D. dissertation, Ru-

pertus Carola University of Heidelberg, Seminarstrasse 2, 69120 Heidelberg, dec 2006.

[121] M. Merrett, Y. Wang, M. Zwolinski, K. Maharatna, and M. Alioto, “Design metrics

for RTL level estimation of delay variability due to intradie (random) variations,” in

Proceedings of 2010 IEEE International Symposium on Circuits and Systems. IEEE,

may 2010, pp. 2498–2501.

[122] Xilinx, “Xilinx UG702 - Partial Reconfiguration User Guide,” 2012.

[123] A. Bassi, A. Veggetti, L. Croce, and A. Bogliolo, “Measuring the effects of process

variations on circuit performance by means of digitally-controllable ring oscillators,”

IEEE International Conference on Microelectronic Test Structures, pp. 214–217, 2003.

[124] R. Rao, K. A. Jenkins, and J. J. Kim, “Completely digital on-chip circuit for local-

random-variability measurement,” in Digest of Technical Papers - IEEE International

Solid-State Circuits Conference, vol. 51, 2008, pp. 412–414.

198 Bibliography

[125] C. Darwin, On The Origin Of Species By Means of Natural Selection, or the Preser-

vation of Favoured Races in the Struggle for Life. John Murray, 1859.

[126] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao, M. Murakawa,

S. Yoshizawa, and T. Furuya, “Evolvable hardware with genetic learning,” in 1996

IEEE International Symposium on Circuits and Systems. Circuits and Systems Con-

necting the World. ISCAS 96, vol. 4. IEEE, 1996, pp. 29–32.

[127] H. de Garis, “Evolvable Hardware: Genetic Programming of a Darwin Machine,” in

Artificial Neural Nets and Genetic Algorithms. Springer Vienna, 1993, pp. 441–449.

[128] A. Tyrrell and G. Greenwood, Introduction to Evolvable Hardware: A Practical Guide

for Designing Self-Adaptive Systems, Wiley-IEEE Press, Ed. Wiley-IEEE Press, 2006.

[129] J. Johnson and Y. Rahmat-samii, “Genetic algorithm optimization and its application

to antenna design,” in Proceedings of IEEE Antennas and Propagation Society Inter-

national Symposium and URSI National Radio Science Meeting, vol. 1. IEEE, 1994,

pp. 326–329.

[130] D. Linden, “Using a real chromosome in a genetic algorithm for wire antenna opti-

mization,” in IEEE Antennas and Propagation Society International Symposium 1997.

Digest, vol. 3. IEEE, 1997, pp. 1704–1707.

[131] J. Lohn, D. Linden, G. Hornby, and W. Kraus, “Evolutionary design of an X-band

antenna for NASA’s Space Technology 5 mission,” in IEEE Antennas and Propagation

Society Symposium, 2004., vol. 3. IEEE, 2004, pp. 2313–2316 Vol.3.

[132] J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnet-

ics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, feb

2004.

[133] Y. Yang, S. Yan, J. Liu, and J. Liang, “Genetic-Ant Colony Optimization algorithm

and its application to design of antenna,” in 2014 10th International Conference on

Natural Computation (ICNC). IEEE, aug 2014, pp. 611–616.

[134] a. Thompson, “On the Automatic Design of Robust Electronics Through Artificial

Evolution,” International Conference on Evolvable Systems: from Biology to Hardware,

pp. 13–24, sep 1998.

Bibliography 199

[135] J. F. Miller and P. Thomson, Genetic Programming, ser. Lecture Notes in Computer

Science, R. Poli, W. Banzhaf, W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, vol. 1802.

[136] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the Evolutionary Design of

Digital Circuits - Part I,” Genetic Programming and Evolvable Machines, vol. 1, no.

1-2, pp. 7–35, 2000.

[137] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization method for combi-

national circuits,” in 2011 Design, Automation & Test in Europe. IEEE, mar 2011,

pp. 1–4.

[138] L. Sekanina, “Towards evolvable IP cores for FPGAs,” in NASA/DoD Conference on

Evolvable Hardware, 2003. Proceedings. IEEE Comput. Soc, 2003, pp. 145–154.

[139] R. Dobai and L. Sekanina, “Towards evolvable systems based on the Xilinx Zynq plat-

form,” in 2013 IEEE International Conference on Evolvable Systems (ICES). IEEE,

apr 2013, pp. 89–95.

[140] ——, “Image filter evolution on the Xilinx Zynq Platform,” in 2013 NASA/ESA Con-

ference on Adaptive Hardware and Systems (AHS-2013). IEEE, jun 2013, pp. 164–171.

[141] M. Sikulova, G. Komjathy, and L. Sekanina, “Towards compositional coevolution in

evolutionary circuit design,” in 2014 IEEE International Conference on Evolvable Sys-

tems. IEEE, dec 2014, pp. 157–164.

[142] A. Stoica, “Toward evolvable hardware chips: Experiments with a programmable tran-

sistor array,” in Proceedings of the Seventh International Conference on Microelec-

tronics for Neural, Fuzzy and Bio-Inspired Systems. IEEE Comput. Soc, 1999, pp.

156–162.

[143] J. Walker and J. Miller, “The Automatic Acquisition, Evolution and Reuse of Modules

in Cartesian Genetic Programming,” IEEE Transactions on Evolutionary Computa-

tion, vol. 12, no. 4, pp. 397–417, aug 2008.

[144] J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller, “Parallel evolution using multi-

chromosome cartesian genetic programming,” Genetic Programming and Evolvable Ma-

chines, vol. 10, no. 4, pp. 417–445, oct 2009.

200 Bibliography

[145] J. A. Walker, R. Sinnott, G. Stewart, J. A. Hilder, and A. M. Tyrrell, “Optimizing elec-

tronic standard cell libraries for variability tolerance through the nano-CMOS grid,”

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,

vol. 368, no. 1925, pp. 3967–81, aug 2010.

[146] J. A. Walker, J. A. Hilder, D. Reid, A. Asenov, S. Roy, C. Millar, and A. M. Tyrrell,

“The evolution of standard cell libraries for future technology nodes,” Genetic Pro-

gramming and Evolvable Machines, vol. 12, no. 3, pp. 235–256, apr 2011.

[147] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and artificial intelligence. University of Michigan

Press, 1975.

[148] A. V. Delaney and H. D., “A Critique and Improvement of the ”CL” Common Lan-

guage Effect Size Statistics of McGraw and Wong,” Journal of Educational and Be-

havioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

