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Abstract

This thesis is concerned with several topics related to concept of incompatibility of quan-

tum observables. The operational description of quantum theory is given, in which incom-

patibility is expressed in terms of joint measurability. A connection between symmetric

informationally complete positive operator-valued measures and mutually unbiased bases

is given, and examples of this connection holding based on investigations in Mathematica

are presented. An extension of the Arthurs-Kelly measurement model is then given, where

the measured observable is calculated, thereby generalising the results given previously in

the literature. It is shown that in the case of prior correlations between measurement

probes there exists the possibility that a measurement of both probes leads to marginal

observables with smaller statistical spread than if measurements are performed on the

individual probes. This concept is then highlighted by considering two probe states that

allow for this reduction in spread, and the required conditions for success are given. Fi-

nally, error-error relations for incompatible dichotomic qubit observables are considered

in the case of state-dependent and independent error measures. Quantities that arise

in the state-independent measures case, which were previously presented geometrically,

have been given operational meaning, and optimal approximating schemes in both cases

are compared. Limitations regarding the state-dependent optimal approximations, and

experimental work built upon this construction are also discussed.
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Chapter 1

Introduction

Quantum theory is, to date, one of the most successful theories ever developed, providing

us with considerable insights into the nature of that which is far too small for us to directly

access. In doing so it has improved our understanding of biology, chemistry and physics,

as well as significantly expanding our technological capabilities. Such developments are

only possible as a result of the peculiar properties of the theory that differentiate it from

the classical mechanics that preceded it, including its probabilistic and contextual nature.

Indeed, this difference has resulted in a great deal of philosophical discussion on the reality

behind the theory, with many competing interpretations arising.

We shall not focus on such discussions in this thesis. In what follows we will be consid-

ering quantum theory rather pragmatically, focussing on probability measures relating to

measurement outcomes, with the objects of the theory being expressed operationally by

way of these probabilities. This approach allows us to free ourselves from an interpretation

of the reality behind the calculations and simply focus on the results we find at face value,

much like the “shut up and calculate” approach.

This thesis shall be focussed on some topics related to another concept that distin-

guishes quantum theory from classical mechanics: the incompatibility of observables. By

this we mean the inability to jointly measure any two observables on a system arbitrarily

well. This concept is far removed from the classical situation, and presents limits on what

can be performed on quantum systems, with the standard examples being the inability to

measure the conjugate observables position and momentum without the first observable

disturbing the outcomes of the second, and similarly for the spin-1/2 observables in the x

and z direction, say. It is this concept of incompatibility that led to the introduction of

uncertainty relations within the theory: either as a preparation relation where we cannot

prepare a state arbitrarily well in order to measure two incompatible observables, or as

an error-error (error-disturbance) relation in which we cannot acquire arbitrarily accurate

measurement statistics for two incompatible observables measured jointly (sequentially).

Such relations impose restrictions upon the extent to which we can perform accurate

measurements in many different fields including, for example, quantum estimation theory

and in the measuring of gravitational waves, where the accuracy of the interferometers is

restricted by the standard quantum limit, a consequence of the preparation uncertainty

relation for position and momentum.

In what follows we shall consider problems in both the finite and infinite-dimensional
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case where the incompatibility of the observables considered plays an important part. We

begin by considering an operational link between two important tools in quantum metrol-

ogy: Symmetric Informationally Complete Positive Operator-Valued Measures (SIC-POVMs)

and Mutually Unbiased Bases (MUBs). MUBs correspond to maximally incompatible ob-

servables on a finite-dimensional quantum system, but we present a situation in which

they can be made compatible, with a SIC-POVM forming the joint observable.

Secondly, we provide an extension to the Arthurs-Kelly measurement model. This

model allows for an approximate measurement of the incompatible observables position

and momentum by way of indirect measurements using probes coupled to the system. The

extension discussed is the preparation of the probes in a completely arbitrary state, which

allows for prior coupling between the probes (a possibility not considered operationally

before).

Finally, we consider uncertainty relations for incompatible observables on two-dimensional

quantum systems—the so-called “qubit” systems—and try to reconcile error bounds ex-

pressed in terms of state-dependent error measures with those in terms of state-independent

measures. This is only possible in the case of dichotomic (two-valued) observables defined

upon qubit systems, and in doing so we provide an expression of the relations for the

state-independent measures that is independent of the representation used.

In Chapter 2 we shall cover the mathematical background that is relied upon through-

out the remainder of the thesis. This will focus predominantly on functional analysis and

Hilbert space theory, paying particular attention to certain subclasses of bounded linear

operators. We also discuss the basics of topology, finite fields and measure theory, with the

latter allowing us to introduce Positive Operator-Valued Measures (POVMs), including

the special case of Projection-Valued Measures (PVMs), which leads on to the spectral

decomposition of (not necessarily bounded) self-adjoint linear operators. We show that

certain POVMs can be constructed by smearing PVMs. We also show that with each

POVM we can associate a PVM acting on a larger Hilbert space via Naimark’s dilation

theorem.

These mathematical constructions are reconciled with the concepts within quantum

theory. By considering measurements and the probabilities associated with measurement

outcomes, we arrive at the concepts of the state of the system, observables and measure-

ments. In terms of complex Hilbert space language, states take the form of positive oper-

ators of unit trace, whilst observables correspond to POVMs whose domains correspond

to possible measurement outcomes. What we refer to as sharp observables correspond in

this language to PVMs, whilst more general POVMs correspond to observables in which

some statistical noise is present. From this, the concept of smearing makes sense as an

introduction of statistical noise to an ideal measurement, whilst the Naimark dilation al-

lows one to form a sharp observable by working in a larger Hilbert space. Note that we

do not assume the commonly assumed notion that observables correspond to self-adjoint

operators defined on a Hilbert space, but rather we define observables to be given by

POVMs, and in the case of sharp observables these correspond to the PVMs associated

with a self-adjoint operator’s spectral decomposition. Measurement models are then dis-

cussed, which highlight the idea that we measure quantum systems indirectly, and give us

11



an idea of the noise that arises within measurements of such systems. We then consider

joint and sequential measurements, which allow us to form an operational meaning of what

we mean by incompatible observables. The chapter is concluded with a discussion on two

of the more commonly used measures of error within quantum theory, which will be used

throughout: the first is a state-dependent error based on the concept of a noise operator,

whilst the second is state-independent and is based on the Wasserstein 2-distance between

probability distributions.

Chapter 3 defines and investigates an operational link between SIC-POVMs and MUBs,

the results of which were published in [5]. MUBs are associated with PVMs whose overlaps

are fixed and correspond to observables that are maximally incompatible. However, by

taking margins of a SIC-POVM corresponding to mutually orthogonal Latin squares we

are able to find instances in which the eigenvectors of distinct margin POVMs are mu-

tually unbiased, thereby deriving MUBs from a SIC-POVM. Similarly, in Hilbert spaces

of prime-power dimension, by starting with a collection of MUBs we show a construction

from which we can in some instances derive a SIC-POVM. These constructions highlight a

connection between these two constructions different from the geometric connections pre-

sented by Appleby et al., and show how these incompatible observables can be modified

in order to form compatible observables. We also provide a discussion of a construction of

Wootters that postulates a similar connection involving affine planes. In his paper, Woot-

ters mentions some issues with his construction that he was aware of, and we highlight

some further ways in which his suggestion was incomplete in light of our own findings. We

conclude the chapter with some discussion regarding investigations undertaken in Mathe-

matica in low dimensions to explicitly find examples of our construction working. Whilst

there are examples that are shown to work, we see that such examples are scarce, and as

the dimension increases, the required computational power grows rapidly.

Chapter 4 provides an extension to the Arthurs-Kelly measurement model, which was

published in [8]. The extension, suggested by Di Lorenzo in a 2013 Letter, is the inclu-

sion of initial correlations between the measurement probes. We prepare the probes in an

arbitrary state, thereby allowing for the possibility of initial correlations, and from this

calculate the observable that is measured on the considered system. The measured observ-

able is shown to be covariant under translations in phase space, with approximations of

the position and momentum observables as margins. This result extends what was already

known for probes prepared in uncorrelated states and shows this type of observable to be

the case for all probe preparations in the Arthurs-Kelly measurement model. We then

proceed to refute a claim made by Di Lorenzo that this measurement scheme, when initial

correlations between the probes are included, allows for a violation of a Heisenberg-like

error-disturbance relation. The reason for this supposed violation is shown to be the result

of an unphysical definition of disturbance. We reconcile this definition with a measure of

relative statistical spread between the margins of the observable derived from measuring

both probes and observables derived from measuring each probe individually. We show

that the presence of initial correlations between the probes can result in the marginal

observables having a smaller statistical spread than their individual probe measurement

counterparts; a phenomenon that we call focussing. The chapter is concluded with two
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examples of probe preparations that can allow for focussing to occur; the second example

shows that classical correlations (i.e., preparing the probes in a mixed state) are sufficient

to allow focussing.

In Chapter 5 we discuss error-error relations for incompatible dichotomic qubit ob-

servables when approximated by compatible observables. This scheme has been covered

in the past by Hall, and in recent years by Branciard, Yu and Oh, and Busch, Lahti and

Werner amongst others. In the case of Hall and Branciard the considerations were for

more general observables and were based on the idea that any discrete observable could

provide an approximate joint measurement of any pair of discrete observables. We re-

fute the validity of this claim, as their construction relies solely upon post-processing of

values, and therefore is little more than relabelling the scales of a measurement device.

We then consider the error measures used by Branciard and Yu and Oh, which are the

state-dependent measure and a rescaled version of the state-independent measure respec-

tively, and the optimal error bounds that they provide. Branciard’s bound holds for all

finite-dimensional systems and is based on considerations on Euclidean space, whilst Yu

and Oh base their considerations upon vectors on the Bloch sphere, and hence is exclu-

sive to the qubit case. The form given by Yu and Oh is parametric and relies heavily

on the geometry of the Bloch sphere, and so it is reformulated in terms of operational

quantities. Optimal approximating observables in terms of each bound are considered,

and it is shown that with the exception of maximally incompatible observables, we are

unable to find approximating observables that meet both optimal bounds. Given that we

are trying to optimise different bounds, this may not come as a surprise, but since they

are both used to determine what should be an optimal approximation of an observable, a

lack of agreement between them suggest that at least one measure is not doing what it is

purported to do. We also discuss experimental work by Ringbauer et al. that claims to

saturate Branciard’s bound. This work is shown to be a special case of an example given

by Branciard, and is subject to the same shortcomings as those found with Branciard and

Hall’s work.

We conclude with a brief summary of the work presented in this thesis.
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Chapter 2

Mathematical Background

2.1 Topology

In this subsection we will briefly give the definition of a topology, and some further defini-

tions that will be of use later on, in particular when mentioning operator topologies. For

the interested reader, a more in-depth introduction to this section is given in, for example,

[51]. In this section and throughout the rest of the thesis, we will make use of the standard

notation for set theory, which we shall state for reference in page 152.

Consider a set X and its power set 2X . A collection τ of subsets of X, i.e., τ ⊂ 2X , is

a topology if

1. X, ∅ ∈ τ ;

2. If O1, O2 ∈ τ , then O1 ∩O2 ∈ τ ;

3. If {Oi}i∈I is a countable set (that is, I ⊆ N) of subsets Oi ∈ τ , then
⋃
i∈I Oi ∈ τ .

In other words, τ contains both the set X and the empty set, and is closed under finite

intersections and countable unions of its elements. The pair (X, τ) is called a topological

space, and the elements of τ are called open sets. The complements of open sets are called

closed sets, and so we immediately note that X and ∅ are both open and closed (they are

“clopen”) as they are each other’s complement. Further to this, from de Morgan’s laws

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc, (2.1)

we can define τ instead in terms of closed sets.

Suppose that we possess a metric space (X, d); that is, a set X with a distance function

d : X ×X → R called a metric, which satisfies

1. d(x, y) ≥ 0 for all x, y ∈ X, with equality iff x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

In such an eventuality, we can provide a more concrete definition of the sets used to define

a topology on X:
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(i) For x ∈ X, an open ball of radius r, B(x, r) is the set {y ∈ X|d(x, y) < r};

(ii) The set O ⊂ X is open if, for all x ∈ O there exists an r > 0 such that B(x, r) ⊂ O. In

other words, O is an open set if every element of O possesses an open ball contained

entirely in O;

(iii) Let E ⊂ X. The point/element x ∈ X is a limit point of E if, for all r > 0,

B(x, r) ∩ (E\{x}) 6= ∅. In other words, x is a limit point of E if E contains points

that are arbitrarily close to x.

(iv) If E contains all of its limit points, then E is closed.

Any such topology that can be constructed in terms of a metric is said to be metrisable.

Suppose that a set E, that is a subset of some larger set S, is not closed, then we may

find its closure E by containing its limit points:

E = E ∪ {x ∈ S|x is a limit point of E}. (2.2)

A nontrivial subset M ⊂ X is dense if its closure is equal to X, i.e., M = X.

Suppose that we possess a topological space (X, τ) and we consider a subset A ⊂ X,

then we may provide this set with a topology τA by

τA = {A ∩O|O ∈ τ}. (2.3)

In other words, we essentially restrict the elements of the topology τ to A. That this is

indeed a topology follows quickly from the distributive law for the set operations:

(A ∩O1) ∪ (A ∩O2) = A ∩ (O1 ∪O2), (2.4)

etc. This topology is called the topology induced on A by τ .

Consider two topological spaces (X, τ) and (Y, σ) and a function f : X → Y . This

function is continuous if the inverse image of an open set on Y is open in X. In other

words, if O ∈ σ, then

f−1(O) = {x ∈ X|f(x) ∈ O} ∈ τ. (2.5)

This concept of continuous functions will be of considerable use later. Note that this is

an equivalent expression of continuity to that used predominantly in physics: given the

topological spaces (X, τ) and (Y, σ), where τ and σ are metrisable topologies, the function

f : X → Y is continuous iff for any ε > 0 and x ∈ X, there is a δ > 0 such that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε, (2.6)

where dX and dY are the metrics defined on X and Y , respectively. The equivalence of

these statements follows quickly from noting that Equation (2.6) is describing the existence

of open balls in these metrisable topologies.

Consider the complete1 metrisable topological space (X, τ) with a metric d. A subset

S ⊂ X is compact if every open cover; that is, a collection {Oi}i∈I of open sets Oi ∈ τ
1See Page 32
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satisfying

S ⊆
⋃
i∈I

Oi, (2.7)

admits a finite subcover. In other words, there is a subset {O1, . . . , On} such that

S ⊆
n⋃
i=1

Oi, (2.8)

for each open cover of S. In the case of a complete metric space, such as (X, d), a subset

S of X is compact iff it is closed and bounded [47, Theorem A4]. This property leads to

the following result, which we will not prove here: for a compact set S and a continuous

function f : S → R, f obtains its maximum and minimum values in S.

Assume that we possess a countable number of topological spaces {Xi, τi}i∈I with

index set I ⊂ N. We form the Cartesian product of these sets,

X :=×
i∈I

Xi, (2.9)

and define the projections pi : X → Xi. For example, if X = X1 × X2 = {(x1, x2)|x1 ∈
X1, x2 ∈ X2}, then p1(x1, x2) := x1, etc. The topology on X, called the product topology,

is the coarsest topology (that is, the one with the fewest elements) for which each projection

function is continuous.

Finally, we define a topological vector space. Consider a vector space X over R or C,

i.e., a vector space with coefficients belonging to R (resp. C). Then X is a topological

vector space if it can be given a topology τ such that

1. The map (x, y) 7→ x + y is a continuous function + : X × X → X, where X × X
possesses the product topology;

2. The map (a, x) 7→ a · x is a continuous function · : R ×X → X, where R possesses

its standard topology as given above, and R×X is the product topology.

In other words, X is a vector space for which the addition and scalar multiplication

operations are continuous.

2.2 Finite fields

Here we will give an overview of fields, in particular finite fields. This mathematical

construct provides useful results for SIC-POVMs and MUBs (see Chapter 3), and indeed

has further uses within quantum information theory. We shall only provide the results

needed for a usable knowledge of the subject for our purposes, and direct the reader to

[35] for the proofs of results given here and further discussion.

2.2.1 Rings and fields

We begin by considering an abelian group G, i.e., a set with an associative binary operation

+ : G×G → G satisfying a+ b = b = a for any a, b ∈ G, such that G is closed under +,
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has a defined identity element 0 and each element a possesses an inverse element −a. We

now allow for a second binary operation defined on this group.

Definition 2.2.1. A Ring (R,+, ·) is a set R, with two binary operations, + and ·, such

that

1. R is an abelian group with respect to +;

2. · is associative, so for all a, b, c ∈ R, (a · b) · c = a · (b · c);

3. The distributive law holds, i.e., for all a, b, c ∈ R, a ·(b+c) = a ·b+a ·c, and similarly

(b+ c) · a = b · a+ c · a.

We will denote a ring by its set, so the ring (R,+, ·) will simply be referred to as R.

In keeping with the notation of abelian groups, 0 will refer to the identity element with

respect to the operation +, and the inverse of a with respect to + will be denoted by −a
such that a + (−b) will be written as a − b. For the sake of brevity, we will concatenate

the notation a · b to ab. As a result of the distributive law, it follows that for any a, b ∈ R

ab = a(b+ 0) = ab+ a0. (2.10)

In other words, a0 = 0. Likewise,

a0 = a(b− b) = ab+ a(−b) = 0, (2.11)

so a(−b) = −ab.
This definition of a ring is quite open with regards to the second binary operation, and

so we classify different types of rings.

Definition 2.2.2. Consider a ring R.

1. A ring with identity is a ring that contains a multiplicative identity e such that

ae = ea = a for all a ∈ R;

2. A ring is commutative if · is commutative;

3. An integral domain is a commutative ring with identity (e 6= 0) in which ab = 0

implies that a = 0 or b = 0;

4. A ring is a division ring if the elements R\{0} form a group under ·.

5. A commutative division ring is a field.

In other words, a field is a ring (F,+, ·) for which F is an abelian group under the

operation + with an additive identity 0, and the set F\{0} is an abelian group under the

operation · with a multiplicative identity e (also denoted by 1). These two operations are

then linked by the distribution laws, as given above.

The condition of an integral domain—that ab = 0 implies that a = 0 or b = 0—is

alternatively expressed by saying that there are no zero divisors. Fields have no zero

divisors as a result of the group structure inherited by the operation ·. Indeed, let a and

b belong to the field F . If ab = 0 and a−1 6= 0, then b = a−10 = 0. That is not to say that

any integral domain is a field, but we have the following theorem:
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Theorem 2.2.1. Every finite integral domain is a field.

Similar to the case of groups, we define a subring of R, S, to be a subset S ⊂ R that

is closed under the additive and multiplicative operations of R, and still forms a ring.

Definition 2.2.3. A subring J of a ring R is an ideal if, for all a ∈ J and all r ∈ R, ar ∈ J
and ra ∈ J .

From this, we may define a subclass of ideals:

Definition 2.2.4. Let R be a commutative ring. Denote by (a) the smallest ideal containing

a. This ideal is of the form

(a) = {ra+ na|r ∈ R and n ∈ Z}. (2.12)

If R contains a multiplicative identity, then

(a) = {ra|r ∈ R}. (2.13)

If, for an ideal J , there exists an a such that J = (a), then J is said to be a principal ideal

generated by a.

The ideals of a ring R form subgroups of the additive group of R since J is a subring of

R. Further, since R is an abelian group under +, it follows that, for all r ∈ R, r+J = J+r,

and so J forms a normal subgroup of the additive group of R. Hence, an ideal J of R

defines a partition of R (as an additive group) into disjoint cosets, known as residue classes

modulo J . For a given element a ∈ R, this residue class of R modulo J is denoted by

[a] = a+ J . Since J forms an abelian group under the additive operation, it follows that

J + J = J , and so

[a] + [b] = (a+ J) + (b+ J) = (a+ b) + J = [a+ b]. (2.14)

Similarly, since J is closed under the multiplicative operation, JJ = J . This, along with

the definition of an ideal, leads to

[a][b] = (a+ J)(b+ J) = ab+ aJ + Jb+ JJ

= ab+ J + J + J = ab+ J

= [ab].

(2.15)

From Equations (2.14) and (2.15), we see that the residue classes of R modulo J are closed

under the additive and multiplicative operations of R, and indeed form a ring.

Definition 2.2.5. The ring of residue classes of the ringR modulo the ideal J , which satisfies

Equations (2.14) and (2.15) is called the factor ring of R modulo J , and is denoted by

R/J .

In the case of a commutative ring with identity, we can determine which ideals can lead

to factor rings that form integral domains or fields. In order to do so, we must introduce

some terminology from ring theory.

Consider a commutative ring R with identity. An element a ∈ R is a divisor of b ∈ R
if there exists an element c ∈ R such that b = ac. A unit of R is a divisor of the identity,

18



and two elements a, b ∈ R are associates if there exists a unit ε of R such that a = bε. If

an element c ∈ R is not a unit and its only divisors are the units of R and its associates,

then c is a prime element. An ideal P 6= R of R is a prime ideal if, for any a, b ∈ R,

ab ∈ P only if a ∈ P or b ∈ P . An ideal M 6= R of R is a maximal ideal of R if for any

ideal J of R, M ⊆ J implies J = R or J = M . Finally, R is a principal ideal domain if it

is an integral domain whose every ideal is principal; i.e. for every ideal J of R there is an

element a ∈ R such that J = (a) = {ra|r ∈ R}.

Theorem 2.2.2. Let R be a commutative ring with identity 1. Then

(i) An ideal M of R is a maximal ideal iff R/M is a field;

(ii) An ideal P of R is a prime ideal iff R/P is an integral domain;

(iii) Every maximal ideal of R is a prime ideal;

(iv) If R is a principle ideal domain, then R/(c) is a field iff c ∈ R is a prime element of

R.

Let us now consider the set of integers, Z. We can provide this set with the multi-

plicative and additive operation, in which case we see that it forms an integral domain

with additive identity 0 and multiplicative identity 1. That this is not a field can easily be

seen from the absence of rational numbers from Z, and so no element besides 1 possesses

a multiplicative inverse. Let us now choose an element n ∈ Z and construct its principle

ideal (n) = {zn|z ∈ Z}. We then construct the factor ring of Z modulo n, Zn = Z/(n), as

the ring of residue classes [a] = a+ (n), where 0 ≤ a < n. In other words,

Zn = {[0], [1], . . . , [n− 1]}. (2.16)

Theorem 2.2.3. Let p be a prime number, then the factor ring of Z modulo the principal

ideal of p, Zp, is a field.

A ring homomorphism ϕ is a map from the ring R to another ring S, such that for

any r, s,∈ R
ϕ(r + s) = ϕ(r) + ϕ(s), ϕ(rs) = ϕ(r)ϕ(s). (2.17)

In other words, ϕ preserves the structure of both the additive and multiplicative operations

of R. Hence, ϕ induces a homomorphism from the additive group of R to the additive

group of S. With this in mind, we define the kernel of ϕ, kerϕ, as the set

kerϕ = {a ∈ R|ϕ(a) = 0 ∈ S}; (2.18)

that is, kerϕ is the set of elements mapped to the additive identity by ϕ. Since there is no

guarantee that S, or indeed R, contains a multiplicative identity, we do not characterise a

set of elements mapped to it by ϕ. Since this is an example of a group homomorphism, kerϕ

forms a (normal) subgroup of the additive group of R. The kernel provides an important

role when considering homomorphisms, as is shown in the next theorem, known as the

first isomorphism theorem for rings (note that there is an equivalent theorem for groups).
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Theorem 2.2.4. Let R,S be rings and ϕ : R→ S a ring homomorphism. Then the image of

ϕ, im ϕ is a subring of S, the kernel of ϕ is an ideal of R, and ϕ induces the isomorphism:

R/ kerϕ ∼= im ϕ. (2.19)

By forming a map ϕ : R → S from a ring R to a set S, we are capable of providing

S with a structure that it otherwise does not possess. Suppose that ϕ is a one-to-one

mapping from the ring R onto the set S, i.e., ϕ(a) = ϕ(b) iff a = b, and for every b ∈ S
there exists an a ∈ R such that b = ϕ(a). Then, by Equation (2.17), ϕ provides S with

the structure of a ring, and in doing so makes ϕ a ring isomorphism: let s1, s2 ∈ S, and

choose r1, r2 ∈ R uniquely via s1 = ϕ(r1) and s2 = ϕ(r2). Then, we let s1 +s2 = ϕ(r1 +r2)

and s1s2 = ϕ(r1r2), and in doing so provide S with all of the necessary structure for it to

be a ring and for ϕ to be a ring homomorphism. We therefore describe this structure on

S as being induced by ϕ.

By inducing a structure via the map ϕ, we can form a more intuitive and convenient

representation of Z/(p).

Definition 2.2.6. Let p be a prime number, Fp the set {0, 1, . . . , p−1}, and ϕ : Z/(p)→ Fp
the map defined by ϕ([a]) = a for all a = 0, 1, . . . , p − 1. The set Fp, with the structure

induced by the map ϕ, forms a finite field, called the Galois field of order p.

The map ϕ : Z/(p) → Fp is clearly one-to-one, and hence a ring isomorphism with

ϕ([a] + [b]) = ϕ([a]) + ϕ([b]) and ϕ([a][b]) = ϕ([a])ϕ([b]). The structure of Fp is therefore

identical to that of Z/(p), with the additive and multiplicative identities replaced by 0 and

1, respectively. The difference is that Fp has the benefit of its operations corresponding

to regular arithmetic modulo p.

Definition 2.2.7. Consider the ring R and suppose that there exists a positive n such that,

for all r ∈ R, nr = 0. The least such n is called the characteristic of R, and R is said to

have positive characteristic n. If no such n exists, then R is said to have characteristic 0.

If we look at Fp ∼= Z/(p), we see that since this field is finite, there must exist such

a finite integer n for which na = 0 for all a ∈ Fp. Given that the elements of Fp are less

than the prime number p, and so are coprime to it, the smallest number for which na = 0

mod p, i.e., na = mp for some integer m, for all a ∈ Fp is p itself. Hence, Fp is a finite

field of characteristic p. By contrast, the ring Z of integers is of characteristic 0.

Theorem 2.2.5. A ring R 6= {0} of positive characteristic with an identity and no zero

divisors must have prime characteristic.

Corollary 2.2.6. Every finite field has prime characteristic.

The following theorem is of use in the next section:

Theorem 2.2.7. Let R be a commutative ring of characteristic p. Then, for any a, b ∈ R
and n ∈ N,

(a+ b)p
n

= ap
n

+ b p
n
, and (a− b)pn = ap

n − b pn . (2.20)
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2.2.2 Polynomials over rings

Before we continue with fields, we want to briefly discuss polynomials over rings, as these

provide assistance when finding certain results about fields, in particular regarding their

dimensionality.

Consider a ring R. A polynomial over R is an expression

f(x) =

n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n, (2.21)

with n a nonnegative integer and the coefficients ai ∈ R for 0 ≤ i ≤ n, whilst the

indeterminate over R, x, is not an element of R. Note that, for brevity’s sake, we will at

times reduce f(x) to f . Two polynomials over R

f(x) =

n∑
i=0

aix
i, g(x) =

n∑
i=0

bix
i, (2.22)

are equal iff ai = bi for all 0 ≤ i ≤ n. The sum of two polynomials over R, as above, is

given by

f(x) + g(x) =
n∑
i=0

(ai + bi)x
i, (2.23)

whilst the product of two polynomials over R

f(x) =
n∑
i=0

aix
i, g(x) =

m∑
j=0

bjx
j , (2.24)

is given by

f(x)g(x) =
m+n∑
k=0

ckx
k, where ck =

∑
i+j=k

aibj . (2.25)

Since the ai and bj are elements of R, the sum ai + bi ∈ R for all nonnegative integers i,

and similarly aibj ∈ R for all nonnegative integers i, j, hence ck ∈ R for all nonnegative

integers k. Hence, the polynomials over R themselves form a ring.

Definition 2.2.8. The ring of polynomials over R with the operations defined in Equations

(2.23) and (2.25) is called the polynomial ring over R, and is denoted by R[x].

Since R[x] is a ring, it must contain an additive identity, known as the zero polynomial

0, which has coefficients ai = 0 for all i.

Definition 2.2.9. Let f(x) =
∑n

i=0 aix
i ∈ R[x], with an 6= 0. The coefficient an is called the

leading coefficient of f(x), and n is the degree of f(x), denoted by n = deg(f(x)) = deg(f).

The coefficient a0 is called the constant term.

By convention, deg(0) = −∞, and polynomials with degrees ≤ 0 are called constant

polynomials. If 1 ∈ R, then polynomials f(x) ∈ R[x] with leading coefficients equal to 1

are called monic polynomials.

We now state some results regarding the degree of the sum and product of two poly-

nomials:
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Theorem 2.2.8. Consider two polynomials f, g ∈ R[x]. Then

deg(f + g) ≤ max(deg(f),deg(g)),

deg(fg) ≤ deg(f) + deg(g).
(2.26)

In the case of R being an integral domain,

deg(fg) = deg(f) + deg(g). (2.27)

The first of these results is fairly intuitive, with the inequality arising in the case when

f and g are of the same degree, and the leading coefficients are the additive inverse of

each other. Similarly, the inequality in the second result is needed for the case where the

product of the leading coefficients of f and g equals zero. In the third case, where R is an

integral domain and so has no zero divisors, the product of the leading coefficients must

be nonzero, and so we have equality in Equation (2.27).

We may identify the constant polynomials of R[x] with the elements of R, and so R

may be perceived as a subring of R[x]. This suggests that R[x] may inherit some features

from R, and indeed this is the case.

Theorem 2.2.9. Let R be a ring. Then

(i) R[x] is commutative iff R is commutative;

(ii) R[x] is a ring with identity iff R has an identity;

(iii) R[x] is an integral domain iff R is an integral domain.

We now work in particular with the ring of polynomials over a field F , F [x]. With this

in mind, we can apply the concept of division to the elements of F [x]: g ∈ F [x] divides

the polynomial f ∈ F [x] if there exists a polynomial h ∈ F [x] such that f = gh. In this

case, g is a divisor of f , or alternatively, f is a multiple of g and so f is divisible by g.

The units of F [x] are the divisors of the constant polynomial 1, so the units of F [x] are

the nonzero constant polynomials, i.e., the elements of F , which are all invertible.

Theorem 2.2.10. Let g ∈ F [x] be a nonzero polynomial. Then, for any f ∈ F [x] there

exist unique polynomials q, r ∈ F [x] such that

f = qg + r, where deg(r) < deg(g). (2.28)

This is called the division algorithm.

Theorem 2.2.11. F [x] is a principal ideal domain, and for every ideal J 6= (0) of F [x] there

exists a uniquely determined monic polynomial g ∈ F [x] such that J = (g).

We now classify an important type of polynomial.

Definition 2.2.10. A polynomial f ∈ F [x] is irreducible over F (or irreducible in F [x])

if f has positive degree and f = bc, with b, c ∈ F [x], implies that b or c is a constant

polynomial. Any polynomial in F [x] which is not irreducible is therefore reducible.

Theorem 2.2.12. For f ∈ F [x], the residue class ring F [x]/(f) is a field iff f is irreducible

over F .

22



As we would expect, if we take the indeterminate x in f(x) =
∑n

i=0 aix
i ∈ F [x] and

replace it with an element b ∈ F , then the result, f(b) =
∑n

i=0 aib
i will again be an element

of F . From this we consider a particular subset of elements of F :

Definition 2.2.11. Consider the polynomial f(x) ∈ F [x]. An element b of F is a root of f

if f(b) = 0.

Theorem 2.2.13. An element b ∈ F is a root of the polynomial f ∈ F [x] iff x − b is a

divisor of f(x).

Suppose that b ∈ F is a root of the polynomial f ∈ F [x]. If the function (x − b)k,
where k is a positive integer, divides f , but (x− b)k+1 does not, then k is the multiplicity

of b. If k = 1, then the root is simple, but if k ≥ 2, then it is a multiple root.

Consider a polynomial f(x) ∈ F [x] of the form f(x) = a0 + a1x + · · · + anx
n. Its

derivative f ′(x) ∈ F [x] is given by f ′(x) = a1 + 2a2x+ · · ·+ (n− 1)xn−1.

Theorem 2.2.14. An element b ∈ F is a multiple root of f(x) ∈ F [x] iff it is a root of both

f(x) and its derivative f ′(x).

2.2.3 Extensions of fields

Let us consider the field F , and a subset K ⊂ F . If K itself has the structure of a field,

then K is a subfield of F , and F is an extension field of K. In the case that K 6= F , K is

a proper subfield of F .

Suppose that K is a subfield of the Galois field Fp, where p is, by necessity, a prime

number. Since K is itself a field, it contains the additive and multiplicative identities, 0

and 1, and so by the closure of addition has to contain the remaining elements of Fp. In

other words, the Galois fields Fp for any prime p cannot contain any proper subfields.

Definition 2.2.12. A field containing no proper subfields is called a prime field.

By the above argument, Fp is prime, but that does not exhaust the set of prime fields.

For example, Q is an infinite prime field.

Suppose now that we possess a collection of subfields of a field F . The intersection

of these subfields will again be a subfield. We now extend this to the intersection of all

subfields of F , thereby producing the prime subfield of F . This is the smallest subfield

in F , since all subfields of F have already been intersected in order to produce it, and

anything smaller implies that it wasn’t included in the intersection. Therefore, the prime

subfield of F is immediately a prime field.

Theorem 2.2.15. The prime subfield of a field F is isomorphic to Fp or Q, depending on

whether F has characteristic p or 0.

Definition 2.2.13. Consider a field F , a subfield K and a subset M of F . The field K(M)

is defined as the intersection of all subfields of F containing both K and M , and hence

is the smallest such subfield. This subfield is called the extension field of K obtained

by adjoining the elements in M . In the case of a finite set, i.e., M = {θ1, . . . , θn}, then

K(M) = K(θ1, . . . , θn), and similarly in the case of a single element θ ∈ F , then L = K(θ)

is said to be a simple extension of K, and θ is called a defining element of L over K.
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Definition 2.2.14. Let K be a subfield of F , and θ ∈ F . If θ is a root of a nontrivial

polynomial f ∈ K[x], then θ is algebraic over K. An extension L of K is algebraic over

K, or an algebraic extension of K, if every element of L is algebraic over K.

Suppose that the element θ ∈ F is algebraic over K, and consider the set of polynomials

f ∈ K[x] satisfying f(θ) = 0. Since, for any h ∈ K[x], h(θ)f(θ) = f(θ)h(θ) = 0, it follows

that this set is an ideal, denoted by Jθ := {f ∈ K[x]|f(θ) = 0}. By Theorem 2.2.11, K[x]

is a principal ideal domain, and so there exists a unique monic polynomial g such that

Jθ = (g). The polynomial g is irreducible in K: firstly, because it contains θ as a root, it

is of positive degree; secondly, if g = h1h2 with 1 ≤ deg(hi) < deg(g) with i = 1, 2, then

g(θ) = h1(θ)h2(θ) = 0 and so either h1 or h2 belongs to Jθ and must therefore be divisible

by g, which contradicts the preceding argument.

Definition 2.2.15. Let θ ∈ F be algebraic over K. The uniquely determined monic polyno-

mial g ∈ K[x] generating the ideal Jθ = {f ∈ K[x]|f(θ) = 0} of K[x] is called the minimal

polynomial of θ over K[x]. The degree of θ is equal to the degree of g.

Theorem 2.2.16. Suppose θ ∈ F is algebraic over K. Then its minimal polynomial g over

K satisfies the following properties:

(i) g is irreducible in K[x];

(ii) For f ∈ K[x], f(θ) = 0 iff g divides f ;

(iii) g is the monic polynomial in K[x] of least degree having θ as a root.

Suppose that L is the extension field of K, then L may be considered as a vector space

over K: Since L is itself a field, the elements form an abelian group under addition. Further

to this, “scalar” multiplication is allowed, i.e., for any r ∈ K and α ∈ L, rα ∈ L, since it is

just multiplication of two elements of L. Similarly, r(α+β) = rα+ rβ, (r+s)α = rα+sα

by the requirement of distributivity, (rs)α = r(sα) and 1α = α for r, s ∈ K and α, β ∈ L

Definition 2.2.16. Let L be an extension field of K. When treated as a vector space over

K, if L is finite dimensional, then it is a finite extension of K. The degree of L over K,

denoted by [L : K], is then the dimension of the vector space L over K.

Theorem 2.2.17. If L is a finite extension of K and M is a finite extension of L, then M

is a finite extension of K satisfying

[M : K] = [M : L][L : K]. (2.29)

Theorem 2.2.18. Every finite extension of K is algebraic over K.

Theorem 2.2.19. Let θ ∈ F be algebraic of degree n over K, and let g be the minimal

polynomial of θ over K. Then

(i) K(θ) is isomorphic to K[x]/(g);

(ii) [K(θ) : K] = n and {1, θ, . . . , θn−1} forms a basis of K(θ) over K;

(iii) Every α ∈ K(θ) is algebraic over K and its degree over K is a divisor of n.
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From this result, we have that any element of the simple algebraic extension K(θ) can

be expressed in the form a0 + a1θ + . . . an−1θ
n−1 with the coefficients ai ∈ K.

Note that in Theorem 2.2.19 we make the prior assumption of the existence of a larger

field F containing both θ and K. However, we wish to remove this initial assumption.

Theorem 2.2.20. Let f be an irreducible polynomial in K[x]. Then there exists a simple

algebraic extension of K with a root of f as a defining element.

Theorem 2.2.21. Let α and β be two roots of the polynomial f ∈ K[x] that is irreducible in

K. The simple extensions K(α) and K(β) are isomorphic under an isomorphism mapping

α to β and keeping the elements of K fixed.

We shall now define the extension field containing all roots of a polynomial.

Definition 2.2.17. Let f ∈ K[x] be of positive degree and F an extension field of K. The

polynomial f is said to split in F if it can be expressed as a product of linear factors in

F [x], i.e., if there exist α1, α2, . . . , αn ∈ F such that

f(x) = a(x− α1)(x− α2) . . . (x− αn), (2.30)

with a being the leading coefficient of f . The field F is a splitting field of f over K if it

splits f in F and F = K(α1, α2, . . . , αn).

By use of Theorems 2.2.20 and 2.2.21 we reach the following theorem:

Theorem 2.2.22. If K is a field and f is any polynomial of positive degree in K[x], there

there exists a splitting field of f over K. Any two splitting fields of f over K are isomorphic

under an isomorphism which keeps the elements of K fixed and maps roots of f to each

other.

2.2.4 Finite fields

At this point, we wish to restrict ourselves to finite fields, as they serve the greatest purpose

to us.

Lemma 2.2.23. Let F be a finite field containing a subfield K with q elements. Then F

has qm elements, with m = [F : K].

Theorem 2.2.24. Let F be a finite field with prime subfield F ′. In which case, F has pn

elements, where p is the characteristic of the field, and n is the degree of F over its prime

subfield, i.e., n = [F : F ′].

If there exists a polynomial f ∈ Fp[x] of degree n, then we may create an extended field

with pn elements. However, we have not proven that this is possible for all primes p and

natural numbers n, and that is our next goal. We begin with the following preliminary

result:

Theorem 2.2.25. If F is a finite field with q elements, then every a ∈ F satisfies aq = a.

Lemma 2.2.26. If F is a finite field with q elements, and K is a subfield of F , then the

polynomial xq − x ∈ K[x] factors in F [x] as

xq − x =
∏
a∈F

(x− a), (2.31)
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and F is a splitting field of xq − x over K.

Theorem 2.2.27. For every prime p and every n ∈ N there exists a finite field with pn

elements. Any field with pn = q elements is isomorphic to the splitting field of xq−x over

Fp.

We may therefore consider there to be one field with q = pn elements, which is guar-

anteed to exist, and that is the Galois field Fq.
We now consider a prime field Fp and the extension to Fq with q = pn as vector spaces

over Fp. With this in mind, we define the following map from Fq to Fp.

Definition 2.2.18. For α ∈ Fq with q = pn, the absolute trace of α over the prime subfield

Fp is given by

Tr(α) = α+ αp + · · ·+ αp
n−1

. (2.32)

We can see that, for any a ∈ Fq, Tr(a) ∈ Fp: By making use of Theorem 2.2.7

inductively, we have

(Tr(a))p = (a+ ap + · · ·+ ap
n−1

)p = (a+ (ap + · · ·+ ap
n−1

))p

= ap + (ap + . . . ap
n−1

)p = ap + ap
2

+ . . . ap
n

= ap + ap
2

+ . . . a = Tr(a),

(2.33)

and Equation (2.33) can have no more than p solutions.

Since (Tr(a))p = Tr(a), it follows that Tr(a) ∈ Fp by Theorem 2.2.25. Similarly, we

can show that Tr is a linear map from the vector spaces Fq to Fp:

Theorem 2.2.28. Let Tr be the absolute trace from the finite field Fq, with q = pn to its

prime field Fp. Then, for any c, d ∈ Fp and α, β ∈ Fq,

Tr(cα+ dβ) = cTr(α) + dTr(β). (2.34)

2.2.5 Characters of finite fields

This section deals with a concept that is also heavily used when discussing group theory.

Given that a field forms an abelian group with regard to one of its binary operations,

usually denoted by “+”, this extension is natural.

Definition 2.2.19. For a finite abelian group G, a character χ is a homomorphism

χ : G→ T = {z ∈ C | |z| = 1}. (2.35)

Because χ is a homomorphism, it is required that

χ(g)χ(h) = χ(gh), g, h ∈ G, (2.36)

and so it follows that

χ(e) = χ(ee) = χ(e)2, ∴ χ(e) = 1, (2.37)

where e is the identity element of G. Further to this, because G is a finite group, it follows
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that g|G| = e for all elements g ∈ G, and so

χ(g)|G| = χ
(
g|G|

)
= χ(e) = 1 ∀ g ∈ G. (2.38)

In other words, the character χ of G is a complex |G|th root of unity for all elements of G.

If we consider Equations (2.36) and (2.37), along with the fact that g ∈ G iff g−1 ∈ G,

we see that

1 = χ(e) = χ(gg−1) = χ(g)χ(g−1), ∴ χ(g−1) = χ(g)−1 = χ(g) ∀ g ∈ G. (2.39)

For any finite group G, there exists at least one character, called the trivial character χ0,

for which χ0(g) = 1 for all g ∈ G. Assuming there exists more than one character of G,

denoted by χ1, χ2, . . . , χn, we can form the product character χ1χ2 . . . χn on G via

χ1χ2 . . . χn(g) = χ1(g)χ2(g) . . . χn(g) ∀ g ∈ G. (2.40)

With these properties, it follows that the set G∧ of characters of the finite abelian group

G is itself a group. Given that, for any g ∈ G and χi ∈ G∧, χi(g) is a |G|th root of unity,

it follows that G∧ must be a finite group. Furthermore, since the characters χi ∈ G∧ map

elements of G to values in C, it follows that G∧ must be abelian; indeed,

χiχj(g) = χi(g)χj(g) = χj(g)χi(g) = χjχi(g), ∀χi, χj ∈ G∧, g ∈ G. (2.41)

In other words, the set of characters of the finite abelian group G, G∧, is itself a finite

abelian group. The extent to which these structures are similar is increased by the following

theorems:

Theorem 2.2.29. Consider the finite abelian group G and the finite abelian group G∧ of

its characters.

a) If χ ∈ G∧ is a nontrivial character of G, then∑
g∈G

χ(g) = 0; (2.42)

b) If g ∈ G and g 6= e, then ∑
χ∈G∧

χ(g) = 0. (2.43)

Theorem 2.2.30. Let G be a finite abelian group, and G∧ its associated group of characters.

Then |G| = |G∧|.

By making use of these two theorems, we can now define a function

〈·, ·〉 : G∧ ×G∧ → C, (2.44)

via

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g), (2.45)
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which can be extended to an inner product on the complex vector space spanned by G∧.

Note that, unlike the inner product 〈·|·〉 used throughout the rest of this thesis, this inner

product is linear in the first argument. This is the standard used within the field of group

theory (amongst others), and so we shall obey it for this particular inner product.

Using this new inner product we may show the orthonormality of the characters of G;

that is, for different characters ψ, χ ∈ G, 〈χ, ψ〉 = 0 and 〈ψ,ψ〉 = 〈χ, χ〉 = 1:

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g) =
1

|G|
∑
g∈G

(χψ−1)(g)

=
1

|G|
∑
g∈G

µ(g),

(2.46)

where µ = χψ−1. From part a) of Theorem 2.2.29, it follows that this sum is equal to zero

unless µ is the trivial character. In other words,

〈χ, ψ〉 =

1 if χ = ψ,

0 if χ 6= ψ.
(2.47)

Similarly, we also have

1

|G|
∑
χ∈G∧

χ(g)χ(h) =
1

|G|
∑
χ∈G∧

ĝ(χ)ĥ(χ) =
1

|G|
∑
χ∈G∧

ĝh−1(χ), (2.48)

where we define the function ĝ(χ) := χ(g) and similarly for ĥ. Again this sum is equal to

zero unless gh−1 = e, i.e.,

1

|G|
∑
χ∈G∧

χ(g)χ(h) =

1 if g = h,

0 if g 6= h.
(2.49)

We can categorise the characters of a finite field into several different types. In par-

ticular, we shall now consider additive and multiplicative characters, and Gaussian sums,

which are a class of characters used later that combine the previous two types.

2.2.5.1 Additive characters

Let us consider the finite field Fq, with q = pn. In particular, consider the additive group

of the finite field Fq with characteristic p, i.e., for all a ∈ Fq, pa = 0, where 0 is the

additive identity of the group. The prime field of Fq is Fp ∼= Z/(p). Let Tr : Fq → Fp be

the absolute trace function given in Definition 2.2.18

Tr : a 7→ a+ ap + ap
2

+ · · ·+ ap
n−1 ∈ Fp. (2.50)

Then the function

χ1(c) = e2πiTr(c)/p, c ∈ Fq, (2.51)

is a character of the additive group. Since the trace satisfies Tr(c1 + c2) = Tr(c1) + Tr(c2),

it follows that χ(c1 +c2) = χ(c1)χ(c2), as we would expect with χ1 being a homomorphism
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from the additive group of Fq to C. The character χ1 is the canonical additive character

of Fq.

Theorem 2.2.31. All additive characters of the additive group of Fq are of the form χb(c) =

χ1(bc), with b, c ∈ Fq.

2.2.5.2 Multiplicative characters

We now change our focus to the multiplicative group of Fq, F∗q = Fq\{0}.

Theorem 2.2.32. F∗q is a cyclic group.

Definition 2.2.20. A generator of F∗q is called a primitive element of Fq.

Since F∗q is a cyclic group of order q − 1, we obtain the following theorem:

Theorem 2.2.33. Let g be a fixed primitive element of Fq. For each j = 0, 1, . . . , q− 2, the

function ψj , where

ψj(g
k) = e2πijk/(q−1), k = 0, 1, . . . , q − 2, (2.52)

defines a multiplicative character of Fq, and every multiplicative character of Fq is obtained

in this way.

By making use of the orthogonality conditions of characters given in Equations (2.47)

and (2.49), we have the following properties:

Firstly, for additive characters,

(i) For two characters, χa and χb, of Fq,

∑
c∈Fq

χa(c)χb(c) =

q if a = b,

0 if a 6= b;
(2.53)

(ii) If we set b = 0 in (i), i.e., the second character is the trivial character, then∑
c∈Fq

χa(c) = 0 if a 6= 0; (2.54)

(iii) If c, d ∈ Fq, then ∑
b∈Fq

χb(c)χb(d) =

q if c = d,

0 if c 6= d.
(2.55)

Secondly, for multiplicative characters,

(iv) For two multiplicative characters, ψj and ψk, of Fq,

∑
c∈F∗q

ψj(c)ψk(c) =

q − 1 if j = k,

0 if j 6= k;
(2.56)
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(v) If we let k = 0 in (iv), then ∑
c∈F∗q

ψj(c) = 0 if j 6= 0; (2.57)

(vi) If c, d ∈ F∗q , then ∑
j∈F∗q

ψj(c)ψj(d) =

q − 1 if c = d,

0 if c 6= d.
(2.58)

2.2.5.3 Gaussian sums

Using what we have found in the past two sections, if we consider the additive and multi-

plicative characters, χ and ψ, respectively, of Fq, then we define the Gaussian sum G(ψ, χ)

by

G(ψ, χ) =
∑
c∈F∗q

ψ(c)χ(c). (2.59)

Theorem 2.2.34. Let ψ be a multiplicative character and χ an additive character of Fq.
Then the Gaussian sum G(ψ, χ) satisfies

G(ψ, χ) =


q − 1 for ψ = ψ0, χ = χ0,

0 for ψ 6= ψ0, χ = χ0,

−1 for ψ = ψ0, χ 6= χ0,

(2.60)

where ψ0 and χ0 are the trivial multiplicative and additive characters, respectively. If,

however, ψ 6= ψ0 and χ 6= χ0, then

|G(ψ, χ)| = √q. (2.61)

2.3 Functional Analysis: Hilbert spaces and operators

2.3.1 Hilbert and Banach spaces

The basic structure that we will rely on throughout is the Hilbert space. Consider a vector

space H over the complex numbers with an inner product 〈·|·〉 : H×H → C that satisfies

the following properties for any vectors ψ,ϕ, ξ ∈ H and c ∈ C :

1. 〈ξ|ψ + cϕ〉 = 〈ξ|ψ〉 + c 〈ξ|ϕ〉;

2. 〈ψ|ϕ〉 = 〈ϕ|ψ〉;

3. 〈ψ|ψ〉 > 0 for all ψ 6= 0.

In other words, the inner product is a positive-semidefinite symmetric sesquilinear form.

A vector space with such an inner product is called an inner product space. Note that

we use the physicist’s convention of linearity in the second argument. It is also follows

quickly that 〈0|ψ〉 = 〈0|ψ〉 = 0 for any vector ψ. For any two vectors ψ and ϕ that vary
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only by a complex phase, i.e., ϕ = eiθψ, θ ∈ [0, 2π), then 〈ϕ|ϕ〉 = 〈ψ|ψ〉. We may define

the equivalence relation

ψ ∼ ϕ⇔ ∃ θ ∈ [0, 2π), ϕ = eiθψ, (2.62)

and hence consider the space H/ ∼. The equivalence classes [ψ] = {eiθψ|θ ∈ [0, 2π)},
ψ ∈ H, are called rays and the space H/ ∼ is called the projective space of H.

An important result for inner product spaces is the Cauchy-Schwarz inequality:

|〈ϕ|ψ〉|2 ≤ 〈ϕ|ϕ〉 〈ψ|ψ〉 , (2.63)

with equality iff the vectors ψ,ϕ are linearly dependent, i.e., if ϕ = λψ for some λ ∈ C.

The proof of Equation (2.63) can be found, e.g., in [1].

Two inner product spaces H and H′ are isomorphic if there exists a bijective linear

map U : H → H′ satisfying

〈Uϕ|Uψ〉 = 〈ϕ|ψ〉 , (2.64)

for any ϕ,ψ ∈ H, i.e., the map U is isometric. Note that the inner product on the right

hand side is the inner product defined on H′ and so may not be the same inner product

as on the left hand side. The map U is an isomorphism from H to H′.
Two vectors, ψ,ϕ ∈ H, are orthogonal, denoted by ψ ⊥ ϕ, if their inner product is

equal to zero, i.e., 〈ψ|ϕ〉 = 0. If, for any d ∈ N, an inner product space H contains a set of

d mutually orthogonal vectors, i.e., any pair of vectors in this set are orthogonal, then H
is an infinite dimensional inner product space. Otherwise, H is a finite dimensional inner

product space, with the largest such d being the dimension of the space. Any d-dimensional

inner product space is isomorphic to Cd, the space of d-tuples {(x1, x2, . . . , xd)|xi ∈ C},
whose inner product between any two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) is

given by

〈x|y〉 =
d∑
i=1

xiyi. (2.65)

An alternative but equivalent way of defining the dimension of an inner product space, in

the finite case, is as the maximum number of linearly independent vectors that can exist

in the space; that is, the largest size of the set {ϕ1, . . . , ϕn} such that∑
i

αiϕi = 0⇒ αi = 0∀i. (2.66)

Every inner product space H defines a norm ‖·‖ on the space, with

‖ψ‖ =
√
〈ψ|ψ〉, (2.67)

thus making H a normed space. A norm is a function from H to R that satisfies the

following conditions, the first two of which are immediate consequences of the defining

properties of the inner product:

1. ‖ψ‖ ≥ 0, and ‖ψ‖ = 0 iff ψ = 0;
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2. ‖cψ‖ = |c| ‖ψ‖ for c ∈ C;

3. ‖ϕ+ ψ‖ ≤ ‖ϕ‖ + ‖ψ‖.

The third property, called the triangle inequality, is a consequence of the inner product

satisfying the Cauchy-Schwarz inequality. Note that if ϕ ⊥ ψ or their overlap is strictly

imaginary, i.e., Re(〈ϕ|ψ〉) = 0, then these vectors satisfy the Pythagorean formula

‖ϕ+ ψ‖2 = ‖ϕ‖2 + ‖ψ‖2 . (2.68)

The norm defines a metric d : H×H → R via

d(x, y) := ‖x− y‖ . (2.69)

Hence, H is also an example of a metric space with metric d.

Suppose that we possess a sequence {xi} of vectors on H. This sequence is said to

converge with respect to the metric d to the vector x ∈ H if, for every ε > 0, there exists

an N ∈ N such that

d(xn, x) < ε ∀n ≥ N. (2.70)

In what follows there will no ambiguity over the metric with which a sequence is conver-

gent, so we will simply say that the sequence {xn} converges to x, which we can denote

symbolically by xn → x, or limn→∞ xn = x, and we say that x is the limit of the sequence.

A weaker condition on the sequence is for it to be a Cauchy sequence. This means that,

for every ε > 0, there exists an N ∈ N such that

d(xm, xn) < ε ∀m,n ≥ N. (2.71)

In other words, as the sequence increases, the elements get closer together. This is a

strictly weaker condition, as convergence of a sequence implies that it is Cauchy, but there

exist metric spaces for which Cauchy sequences are not convergent. A space where any

Cauchy sequence is convergent is called a complete metric space. Any inner product space

H that is also complete is called a Hilbert space, whilst a complete normed spaced is called

a Banach space.

For a d-dimensional inner product space H, suppose that we possess a set of d or-

thonormal vectors, that is normalised vectors that are pairwise orthogonal, {ei}di=1. This

set forms a basis for H, and with this basis we can express any vector ψ ∈ H in the form

ψ =
d∑
j=1

ψjej (2.72)

where ψj ∈ C. From the orthonormality of the basis vectors, ψi = 〈ei|ψ〉 and so we may

express ψ in the following way:

ψ =

d∑
i=1

〈ei|ψ〉 ei. (2.73)
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In the case of an infinite dimensional Hilbert space H, Equation (2.72) again holds (with

the summation running to infinity), where the proof relies on the completeness of the space

and use of Bessel’s inequality:

n∑
i=1

|〈ei|ψ〉|2 ≤ ‖ψ‖2 . (2.74)

The Hilbert spaces that we will consider are separable; that is, spaces that possess a

countable dense subset. A Hilbert space is separable iff it possess a countable orthonormal

basis. A (finite) d-dimensional Hilbert space is isomorphic to Cd, whilst a countably infinite

space—a space for which we can define a bijective map f : N → H via f(n) = en ∈ H,

where en is an element of an orthonormal basis—is isomorphic to the space `2(N) of square-

summable functions f : N→ C, i.e., sequences, with the inner product on the space given

by

〈f |g〉 =
∞∑
j=0

f(j)g(j), (2.75)

and the norm ‖f‖ = (
∑∞

i=0 |f(j)|2)1/2. A function f : N → C is an element of `2(N) if

‖f‖2 < ∞. By defining the Kronecker functions δj : N → {0, 1} via δj(k) = δjk, where

δjk is the Kronecker delta, which is equal to 1 iff j = k and 0 otherwise, we have provided

the space with an orthonormal basis {δk}k∈N, and the coefficients of f ∈ `2(N) are then

fk = 〈δk|f〉.
Since all separable infinite-dimensional spaces are isomorphic, we can make use of

additional structure that presents itself in the case of certain spaces when considering

particular physical situations. The space that we will make the most use of is

L2(R) =

{
f : R→ C

∣∣∣∣∫
R
dx |f(x)|2 <∞

}
/ ∼, (2.76)

i.e., the space of complex valued square-integrable functions with respect to the Lebesgue

measure defined over the set R, with the equivalence that we take the quotient over being

f ∼ g iff the set of values x for which f(x) 6= g(x) is of Lebesgue measure zero . This

space possesses the inner product

〈f |g〉 =

∫
R
dω f(ω)g(ω), (2.77)

and the norm

‖f‖ =

(∫
R
dω |f(ω)|2

)1/2

. (2.78)

2.3.2 Bounded operators and dual spaces

2.3.2.1 Bounded operators

Consider a Hilbert space H and a linear map T : H → H, i.e., for any ψ,ϕ ∈ H and s ∈ C,

T (ψ + sϕ) = Tψ + sTϕ. (2.79)
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Such a map is called a (linear) operator on H. The operator T is bounded if there exists

a number c ≥ 0 such that

‖Tψ‖ ≤ c ‖ψ‖ ∀ψ ∈ H. (2.80)

An operator is bounded iff it is a continuous linear mapping.

In the case of a finite-dimensional Hilbert space Hd, every operator is bounded [47]

but this is not the case for infinite-dimensional spaces. For any operator T : H → H, we

define

• The kernel of T : ker(T ) = {ϕ ∈ H|Tϕ = 0};

• The range of T : ran(T ) = {ψ ∈ H|ψ = Tϕ for some ϕ};

Each of these form a linear subspace, which follows from the linearity of T , and the

dimension of ran(T ) is called the rank of T .

The set of bounded operators defined on H is a vector space, with

(S + T )ψ = Sψ + Tψ, (cT )ψ = c(Tψ), (2.81)

for all vectors ψ ∈ H and c ∈ C. The zero element is given by the null operator O for which

Oψ = 0 for all ψ ∈ H. In addition, we denote by I the identity operator for which Iψ = ψ

for all ψ ∈ H. From now on, we shall denote the vector space of bounded operators acting

on the Hilbert space H by L(H). This space is also a normed space, with the operator

norm defined as

‖T‖ := sup
‖ψ‖=1

‖Tψ‖ . (2.82)

Equation (2.80) can now be rewritten: ‖T‖ is clearly the smallest c for which ‖Tψ‖ ≤
c ‖ψ‖, and so if T ∈ L(H), then for every ψ ∈ H,

‖Tψ‖ ≤ ‖T‖ ‖ψ‖ . (2.83)

The space L(H) is complete with respect to the metric defined by the operator norm, so

L(H) is a Banach space. Furthermore, L(H) is a Banach algebra: a vector space that is

closed under multiplication of elements, and ‖ST‖ ≤ ‖S‖ ‖T‖ for any S, T ∈ L(H).

2.3.2.2 Linear functionals and dual spaces

Consider the linear continuous map f : H → C. Such a map is called a linear functional.

The space of all bounded linear functionals on H is called the dual space of H, denoted

by H∗. This space has a norm defined on it: for f ∈ H∗,

‖f‖ := sup
‖ψ‖=1

|f(ψ)| . (2.84)

By way of the inner product defined on H, each vector ϕ defines a functional fϕ via

fϕ(ψ) = 〈ϕ|ψ〉 , (2.85)
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which is bounded as a result of the Cauchy-Schwarz inequality. Indeed, it is the case that

all bounded linear functionals take this form [24, p. 13]:

Theorem 2.3.1 (Fréchet-Riesz representation theorem). Any linear function f : H → C is

bounded iff there exists a unique vector ϕ ∈ H satisfying Equation (2.85). Furthermore,

‖f‖ = ‖ϕ‖.

Theorem 2.3.1 shows us a one-to-one correspondence between H and H∗ (although

the map is conjugate linear, as cϕ is mapped to fcϕ = cfϕ). In other words, the Hilbert

space is self-dual. At this point, if there is any risk of confusion, we make use of the Dirac

convention of using kets |ψ〉 for elements of H and bras 〈ϕ| for elements of H∗.

2.3.2.3 Adjoints

For a bounded T acting on H, we would like to see if there exists a corresponding operator

acting on H∗. The following theorem claims that this operator exists, and is unique.

Theorem 2.3.2. For every bounded operator T ∈ L(H), there exists a unique bounded

operator, denoted T ∗ for which

〈ϕ|Tψ〉 = 〈T ∗ϕ|ψ〉 , (2.86)

for all ϕ,ψ ∈ H. Furthermore, ‖T ∗‖ = ‖T‖ = ‖T ∗T‖1/2.

The operator T ∗ defined by Equation (2.86) is called the adjoint operator of T . For

all S, T ∈ L(H),

(ST )∗ = T ∗S∗, (2.87a)

(S + cT )∗ = S∗ + cT ∗, (2.87b)

(T ∗)∗ = T. (2.87c)

In short, the space L(H) forms a C∗-algebra; that is,

• L(H) is a Banach space;

• L(H) forms an algebra (in particular, a Banach algebra);

• the map ∗ : T 7→ T ∗ is conjugate linear and satisfies Equation (2.86);

• the operator norm on L(H) satisfies ‖T‖ = ‖T ∗‖ for all T ∈ L(H).

Suppose that we consider a finite dimensional Hilbert space Hd of dimension d. On this

space all continuous linear operators are bounded, and so each possesses an adjoint. If we

fix a basis {ei}di=1 for Hd, then we may express T in terms of the d×d complex matrix [Tij ],

where Tij = 〈ei|Tej〉. In which case, T ∗ij = Tji. In other words, as a finite-dimensional

matrix, T ∗ is the conjugate transpose of the matrix describing T . In the case of an infinite-

dimensional Hilbert space, we may express T as an infinite-dimensional matrix, but since

not all operators in infinite-dimensional Hilbert spaces are bounded, there is some issue

with deciding whether a given matrix on such a space is bounded. For the most part it is

safer to just consider maps on these spaces.
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2.3.2.4 Self-adjoint and positive operators

A particular class of bounded operators that we wish to pay attention to are self-adjoint

operators. These are operators A ∈ L(H) for which A∗ = A. From Equation (2.87b)

we see that if we restrict to real linear combinations of self-adjoint operators, the adjoint

mapping remains linear, and so the set of self-adjoint operators, denoted by Ls(H), forms

a real vector space. However, Ls(H) does not form an algebra: if A,B ∈ Ls(H), then

(AB)∗ = B∗A∗ = BA, and so (AB)∗ 6= AB unless AB = BA; that is, unless A and B

commute (denoted [A,B] = 0). If we consider the bounded operator T ∈ L(H), we can

decompose it into the sum of two self-adjoint operators: we define TR = (T + T ∗)/2 and

TI = −i(T − T ∗)/2, which are readily verified as being self-adjoint, and from this we see

that

T = TR + iTI . (2.88)

From this, we see that another way of stating that an operator is self-adjoint is T = TR.

If an operator T ∈ Ls(H), then 〈ψ|Tψ〉 ∈ R for all ψ ∈ H. This allows us to consider a

subset of Ls(H): a self-adjoint operator A is positive if, for all ψ ∈ H, 〈ψ|Aψ〉 ≥ 0. We

denote an operator A as positive by A ≥ 0. As a simple example, consider A = aI, where

a ∈ [0,∞). Similarly, any map from L(H) to L(H) is positive if it maps positive operators

to positive operators. The concept of positivity of operators provides us with a natural

partial ordering on Ls(H), where S ≥ T iff S − T ≥ 0. This is indeed only a partial (and

not a total) ordering, as for any two operators S, T ∈ L(H) there is no guarantee that

either S ≥ T or T ≥ S. Furthermore, if R,S, T ∈ Ls(H) then from the linearity of the

inner product

• S ≥ R implies that T + S ≥ T +R;

• S ≥ R implies aS ≥ aR for any a ≥ 0.

In other words, Ls(H) forms a partially ordered vector space with regards to the relation

≥.

For any bounded operator T ∈ L(H), the product T ∗T is positive, as

〈ψ|T ∗Tψ〉 = ‖Tψ‖2 ≥ 0, (2.89)

for all ψ. Conversely, any positive operator S can be expressed in terms of a bounded

operator and its adjoint, which is an immediate consequence of the following theorem (for

a proof, see, e.g. [4, Theorem 23.2]):

Theorem 2.3.3. For every positive operator T there exists a unique positive operator T 1/2,

called the square root of T , that satisfies (T 1/2)2 = T . If an operator S ∈ L(H) commutes

with T , then it also commutes with T 1/2, and if T is invertible, then so is T 1/2 with

(T 1/2)−1 = (T−1)1/2.

For any positive operator T , its square T 2 is also positive, and if T ≤ I, then
〈
ψ
∣∣T 2ψ

〉
≤

〈ψ|Tψ〉 for all ψ ∈ H. Therefore, for any positive operator T satisfying 0 ≤ T ≤ I, its

square satisfies 0 ≤ T 2 ≤ T . We denote the space of such operators by E(H):

E(H) = {T ∈ Ls(H)|0 ≤ T ≤ I}. (2.90)
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As a consequence of Theorem 2.3.3, we have the following: if 〈ψ|Tψ〉 = 0, then Tψ = 0.

Much like how every bounded operator can be expressed as the sum of two self-adjoint

operators, it is possible to express every self-adjoint operator in terms of two positive

operators. In order to see this, we first note that for any T ∈ Ls(H), −‖T‖ I ≤ T ≤ ‖T‖ I.

With this inequality, we now define the two positive operators

T+ =
1

2
(‖T‖ I + T ), T− =

1

2
(‖T‖ I − T ), (2.91)

and so the self-adjoint operator T can be expressed as

T = T+ − T−. (2.92)

As a result of this, we can express any bounded operator in terms of 4 positive operators.

We briefly also consider unbounded self-adjoint operators. An unbounded operator A

defined on H with domain D(A) is Hermitian if 〈ϕ|Aψ〉 = 〈Aϕ|ψ〉 for all ϕ,ψ ∈ D(A),

and self-adjoint if D(A∗) = D(A) and A = A∗ on their domain. Particular examples that

we shall consider are the position and momentum operators Q and P , which satisfy

Qψ(q) = qψ(q), Pϕ(q) = −i d
dx
ϕ(q), (2.93)

for ψ ∈ D(Q), ϕ ∈ D(P ) (where we have set ~ = 1 in the definition of P , as will be the

standard later).

2.3.2.5 Unitary operators

We defined an isomorphic map U as a bilinear map between two inner product spaces that

preserves the value of the inner product of the first space, as given in Equation (2.64).

Suppose now that U is a map from a Hilbert space H to itself; in which case, Equation

(2.64) takes the form

〈Uϕ|Uψ〉 = 〈U∗Uϕ|ψ〉 = 〈ϕ|ψ〉 . (2.94)

A trivial example of an operator that satisfies this relation is the identity I, but there exist

many more. These operators satisfy the following proposition (see e.g. [29, Proposition

1.47] for the proof):

Proposition 2.3.4. Let U be a linear mapping on H, then the following are equivalent:

(i) U is an isomorphism;

(ii) U is a bijective isometry;

(iii) U ∈ L(H) and UU∗ = U∗U = I.

The operators U ∈ L(H) forming such isomorphisms are said to be unitary, and

we denote the set of unitary operators by U(H). In the finite-dimensional case, any

operator satisfying either UU∗ = I or U∗U = I is unitary: in this case det(UU∗) =

det(U) det(U∗) = det(I) = 1, and so det(U) 6= 0, which guarantees the existence of the

inverse of U . However, for infinite-dimensional spaces, one must check that both UU∗ = I

and U∗U = I hold.

37



The set U(H) forms a group under the action of multiplication:

(a) I ∈ U(H);

(b) If U, V ∈ U(H), then (UV )∗UV = V ∗U∗UV = V ∗V = I and UV (UV )∗ = UV V ∗U∗ =

UU∗ = I, so UV ∈ U(H);

(c) Since (U∗)∗ = U , if U ∈ U(H), U−1 = U∗ ∈ U(H).

There is an important link between U(H) and Ls(H): For any T ∈ L(H), the Taylor series

eT :=

∞∑
n=0

Tn

n!
, (2.95)

with T 0 = I, is known as the exponential map of T and satisfies (due to multiplication

and the adjoint map being continuous in L(H))

eaT ebT = e(a+b)T , (2.96a)(
eaT
)∗

= eaT
∗
, (2.96b)

for any T ∈ L(H) and a, b ∈ C. If we specify that T ∈ Ls(H) and a = iα, where α ∈ R,

then Equation (2.96b) is of the form

(
eiαT

)∗
= e−iαT , (2.97)

and so (
eiαT

)∗
eiαT = e−iαT eiαT = e0 = I. (2.98)

In other words, exp[iαT ] ∈ U(H) for every α ∈ R, and each T ∈ Ls(H) defines a map

α 7→ exp[iαT ] from R to U(H). The set {exp[iαT ]|α ∈ R} ⊂ U(H) is a one-parameter

unitary group, and there exists one for every self-adjoint operator T . Furthermore, a

result by Stone [50] states that there exists a one-to-one correspondence between strongly

continuous one-parameter unitary groups2 and the space Ls(H), so for every such group

α 7→ Uα where U∗α = U−α there exists a self-adjoint operator T such that Uα = exp[iαT ].

Note that the results in this section hold even if the operator we consider is unbounded,

and so we are free to consider the unitary operators exp[−iλQ], etc., although additional

machinery is needed to prove its validity, as the Taylor series will fail to converge.

2.3.2.6 The spectrum of an operator

Consider the bounded operator T ∈ L(H). A value λ ∈ C is an eigenvalue of T if there

exists a nonzero vector ψ ∈ H satisfying Tψ = λψ, in which case ψ is the eigenvector of

T with eigenvalue λ. More generally, λ is in the spectrum of T if T − λI is singular. We

denote the spectrum of T by σ(T ).

Any eigenvector of T lies in the kernel of T −λI, which means that the kernel contains

nonzero vectors. This shows that T − λI is not an injective map, and so is not invertible,

2A unitary group t 7→ Ut is strongly continuous if as t → t0, ‖(Ut − Ut0)ϕ‖ → 0 for all ϕ ∈ H and all
t0.
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hence the eigenvalues of T belong to its spectrum. Indeed, in a d-dimensional space, the

eigenvalues are the only solutions of the d-order polynomial equation det(T − λI) = 0,

and every bounded operator possesses eigenvalues. This does not hold true in an infinite-

dimensional system, but, regardless of the dimensionality of the space considered, every

bounded operator T ∈ L(H) possesses a nonzero spectrum that is bounded by ‖T‖:
suppose that ψ is an eigenvector of T with eigenvalue λ, then |λ| ≤ ‖T‖. In the case of

a self-adjoint operator T , σ(T ) ⊂ R, and for a positive operator A, the elements of its

spectrum are non-negative and no larger than ‖A‖, i.e., σ(A) ⊂ [0, ‖A‖]. For a unitary

operator U ∈ U(H), its eigenvalues λ satisfy |λ| = 1, and hence λ = eiα for some α ∈ R.

Since each self-adjoint operator generates a group of unitary operators, any eigenvector of

the self-adjoint operator is also an eigenvector of the unitary operators generated by it.

2.3.2.7 Projections

A special class of operators that we will consider often are projections. A projection P is

a self-adjoint operator that is also idempotent, i.e., P ∈ Ls(H) and P 2 = P . Furthermore,

P ≥ 0. We denote the set of projections on H by P(H), and shall consider the simplest

example of a projection, as it is of great use to us: for any normalised vector ϕ ∈ H, we

define the operator Pϕ by

Pϕψ = 〈ϕ|ψ〉 ϕ. (2.99)

This is both self-adjoint and idempotent, so indeed it is a projection. The range of Pϕ is

the subspace {cϕ|c ∈ C} = Cϕ, which is one-dimensional, and so Pϕ is a one-dimensional

projection.

Projections satisfy a series of important properties, which we shall make use of (the

proofs of these Propositions are contained in [29, Section 1.2.3]).

Proposition 2.3.5. For any projection P ∈ P(H) where 0 6= P 6= I, ‖P‖ = 1, P only has

eigenvalues 0 and 1 and any vector ψ ∈ H decomposes into the sum of two orthogonal

vectors ψ0 and ψ1 such that Pψ0 = 0, Pψ1 = ψ1.

Proposition 2.3.6. Let P ∈ P(H) and ψ ∈ H, then the following are equivalent conditions:

(i) ψ ∈ ran(P );

(ii) Pψ = ψ;

(iii) ‖Pψ‖ = ‖ψ‖.

Since P(H) ⊂ Ls(H), it inherits the partial ordering structure given by the relation

≥, which leads to the following proposition:

Proposition 2.3.7. Let P,Q ∈ P(H), then the following conditions are equivalent:

(i) P ≥ Q;

(ii) PQ = QP = Q;

(iii) P −Q is a projection.

39



For any P ∈ P(H), we define the new operator P⊥ = I − P called the complement

of P . Since P ∈ P(H) ⊂ Ls(H), it follows that P⊥ ∈ Ls(H). Furthermore, P⊥ ∈ P(H)

and (P⊥)⊥ = P . If P ≥ Q, then Q⊥ ≥ P⊥. Suppose for P,Q ∈ P(H) that P ≥ Q and

P⊥ ≥ Q, then Q = 0. In other words, if Q ∈ P(H) is ordered below the projection P and

its complement, then Q = 0, and 0 is the infimum of a projection and its complement.

With these properties the map P 7→ P⊥ on P(H) is an orthocomplementation.

For any two projections P,Q ∈ P(H), the sum P + Q ∈ P(H) iff PQ = QP = 0. In

the case of two one-dimensional projections Pϕ, Pξ ∈ P(H), PϕPξ = 0 iff ϕ ⊥ ξ.
Consider a projection P ∈ P(H) with ran(P ) of dimension r > 1. Then P can

be expressed as a sum of r one-dimensional projections: assuming that ran(P ) is finite-

dimensional, we fix an orthonormal basis {ϕi}ri=1 for ran(P ) and define the one-dimensional

projections Pi = Pϕi . If i 6= j, Pi and Pj are orthogonal and so their sum will be a

projection, namely,
∑r

i=1 Pi = P . For the infinite-dimensional case, note that if ψ ∈
ran(P ), P⊥ψ = 0, and so P⊥ is a continuous map from ran(P ) to the closed subspace

{0}. Hence, ran(P ) is a closed linear subspace of H and possesses an orthonormal basis

{ϕi}∞i=1, from which we define the rank one projections Pi = Pϕi as above, so the infinite

sum
∑∞

i=1 Pi converges to P in the weak (and strong) operator topology (which we shall

discuss in Section 2.3.2.10).

Proposition 2.3.8. Let P ∈ P(H) and T be a positive operator, then if T ≤ P , it follows

that TP = PT = T .

2.3.2.8 Rank-one operators

The one-dimensional projections that we have discussed can be expressed in the form

Pη = |η〉〈η| , (2.100)

where (|η〉〈η|)ψ = 〈η|ψ〉 η. Indeed, we define an entire class of operators of the form |ϕ〉〈η|,
where for any ψ ∈ H, (|ϕ〉〈η|)ψ = 〈η|ψ〉 ϕ. By applying the Cauchy-Schwarz inequality

we immediately see that |ϕ〉〈η| ∈ L(H), we also see that its range is the one-dimensional

subspace Cϕ = {zϕ|z ∈ C}. We describe such an operator as a rank-one operator. If we

apply the adjoint map (|ϕ〉〈η|)∗ = |η〉〈ϕ|, we see that a rank-one operator is self-adjoint iff

it is of the form R = r |η〉〈η|, with r ∈ R and η ∈ H. In other words, self-adjoint rank-one

operators are multiples of a rank-one projection.

2.3.2.9 Trace class operators

In a d-dimensional space (which is therefore isomorphic to Cd), the trace of an operator

A is given by

tr [A] =

d∑
i=1

〈ϕi|Aϕi〉 =

d∑
i=1

Aii, (2.101)

where {ϕi}di=1 is an orthonormal basis for the space and Aii = 〈ϕi|Aϕi〉. In this case, the

trace is equal to the sum of the eigenvalues of A (including any repetitions of eigenvalues
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if A possesses any degenerate eigenvalues)3. However, if we wish to define the trace for

an infinite-dimensional space we must be more careful. If we are starting with a separable

infinite-dimensional Hilbert space with an orthonormal basis {ϕi}∞i=1, then we may define

the trace for a positive operator T in an analogous way:

tr [T ] =
∞∑
i=1

〈ϕi|Tϕi〉 , (2.102)

thereby defining a sum of non-negative numbers. In the case that this sum does not

converge then we say that tr [T ] = ∞. As in the finite dimensional case, for a positive

operator T the trace tr [T ] is independent of the basis considered for the space. The map

tr [·] is map from the set of positive operators to R, and for any positive operator T and

U ∈ U(H), tr [UTU∗] = tr [T ].

In order to extend the concept of the trace to any bounded operator T ∈ L(H), we recall

that T ∗T is positive, and so possesses a unique positive square root operator. We denote

this operator by |T | := (T ∗T )1/2. With this in mind, we say that a bounded operator

T ∈ L(H) is trace class if tr [|T |] < ∞, and we denote the set of trace class operators by

T (H). This is a proper subset of L(H), as I /∈ T (H). If an operator T ∈ T (H), then the

trace given in Equation (2.102) satisfies the properties we require of it, in particular the

fact its value is independent of the basis we measure it with.

The set T (H) forms a vector space, and the map T 7→ tr [|T |] =: ‖T‖tr defines the trace

norm ‖·‖tr. Furthermore, we can define the Hilbert-Schmidt norm ‖·‖HS : L(H)→ R∪{∞}
via

‖T‖HS := (tr [T ∗T ])1/2 . (2.103)

Any operator A satisfying ‖A‖HS < ∞ is said to be a Hilbert-Schmidt operator, and

the space of Hilbert-Schmidt operators is denoted by HS(H). The space T (H) is dense

in HS(H) with respect to the metric defined by the Hilbert-Schmidt norm, and HS(H)

forms a Hilbert space with respect to the Hilbert-Schmidt inner product 〈·|·〉HS : HS(H)×
HS(H)→ C, where for any two operators T, S ∈ HS(H)

〈T |S〉HS := tr [T ∗S] . (2.104)

The space T (H) is an ideal of L(H): for any S ∈ L(H) and T ∈ T (H), the products ST

and TS are trace class, satisfy tr [ST ] = tr [TS] and

|tr [TS]| ≤ ‖T‖tr ‖S‖ . (2.105)

Any rank-one operator |ϕ〉〈ψ| is trace class, and the trace satisfies tr [|ϕ〉〈ψ|] = 〈ψ|ϕ〉.
From this we can associate the value 〈η|Aη〉 for any A ∈ L(H) with the rank-one projection

Pη ∈ P(H) via tr [PηA] = 〈η|Aη〉.
Trace class operators possess a discrete spectrum, and for a self-adjoint trace class

3Note that this also holds when A is not diagonalisable, i.e., ran(A) is a proper subset of Cd. In this case,
one may make use of the Jordan normal form J , which is an upper triangular matrix with the eigenvalues
of A on the diagonal and ones on the superdiagonal, via A = SJS−1, where S is an invertible matrix. The
operators A and J share the same eigenvalues and trace, proving the statement.
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operator T , the three norms presented can be expressed in terms of the eigenvalues {λj}
of T :

‖T‖ = max
j
|λj |, ‖T‖tr =

∑
j

|λj | , ‖T‖HS =
(∑

j

|λj |2
)1/2

, (2.106)

and so the following hierarchy exists for the norms (which also holds for non-self-adjoint

trace class operators):

‖T‖ ≤ ‖T‖HS ≤ ‖T‖tr . (2.107)

If we consider P(H), the rank-one projections are trace one. Furthermore, projections

P,Q ∈ P(H) are orthogonal iff 〈P |Q〉HS = 0.

Much like we considered the dual space of H, we also wish to consider the dual space

T (H)∗ of T (H) and in this case T (H)∗ ∼= L(H): there exists a bijective linear mapping

S 7→ fS from L(H) to T (H)∗, where fS(T ) = tr [ST ] for all T ∈ T (H), such that ‖S‖ =

‖fS‖ for every S ∈ L(H), where

‖fS‖ = sup
A∈T (H)

|fS(A)| , (2.108)

(see [25, Theorem 19.1]).

2.3.2.10 Operator topologies

There exist several topologies that we can define on L(H). The first that we have defined

is given by the operator norm ‖·‖. A sequence {Tj} ⊂ L(H) converges to an operator T

in the operator norm topology, or uniformly, if

lim
j
‖T − Tj‖ = 0. (2.109)

There exist additional topologies that we may define on L(H) that prove to be of some

use. A sequence {Tj} ⊂ L(H) converges to an operator T in the strong operator topology

if

lim
j
‖(T − Tj)ψ‖ = 0, (2.110)

for all ψ ∈ H, and converges in the weak operator topology if

lim
j

∣∣〈ϕ|(T − Tj)ψ〉∣∣ = 0, (2.111)

for all ψ,ϕ ∈ H. By application of the Cauchy-Schwarz inequality,

∣∣〈ϕ|(T − Tj)ψ〉∣∣ ≤ ‖ϕ‖ ‖ψ‖ ‖T − Tj‖ , (2.112)

and so we possess the following hierarchy:

Uniform convergence ⇒ Strong convergence ⇒ Weak convergence. (2.113)
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2.3.2.11 Tensor products

Consider two Hilbert spaces H and K. We can form a product of these two spaces, called

the tensor product of H and K that is itself a Hilbert space. For any vectors ϕ ∈ H and

ψ ∈ K, we denote the conjugate bilinear form ϕ⊗ψ that acts on the product H∗×K∗ by

(ϕ⊗ ψ)(ξ∗, η∗) = 〈ξ|ϕ〉 〈η|ψ〉 , (2.114)

for all ξ∗ ∈ H∗ and η∗ ∈ K∗. We denote by ε the space of finite linear combinations of

such linear forms and define the inner product 〈·|·〉 on ε by defining

〈ξ ⊗ η|ϕ⊗ ψ〉 = 〈ξ|ϕ〉 〈η|ψ〉 , (2.115)

and extending by linearity. The completion of ε under the inner product 〈·|·〉 is called the

tensor product of H and K, and is denoted by H⊗K. If {ϕi} forms an orthonormal basis

for H and {ψj} forms an orthonormal basis for K, then {ϕi ⊗ ψj} forms an orthonormal

basis for H⊗K.

In an analogous way, if S ∈ L(H) and T ∈ L(K), then S ⊗ T ∈ L(H ⊗ K), with

(S ⊗ T )(ψ ⊗ ϕ) = (Sψ) ⊗ (Tϕ). Note, however, that there exist operators in L(H ⊗ K)

which cannot be decomposed in such a way.

Consider the tensor product H ⊗ K and any operator T ∈ L(H ⊗ K). We define the

partial trace over H as the linear mapping

trH : T (H⊗K)→ T (K) (2.116)

which satisfies

tr [trH [T ]E] = tr [T (I ⊗ E)] , (2.117)

for any E ∈ L(K), and similarly for the partial trace over K. As one would expect, this

map corresponds to performing the trace over the one subsystem, and indeed for any state

ϕ ∈ K and orthonormal basis {ψi} for H,

〈ϕ|trH [T ]ϕ〉 =
∑
i

〈ψi ⊗ ϕ|Tψi ⊗ ϕ〉 . (2.118)

2.4 Quantum theory of measurement

In what follows we shall give an overview of the operational version of quantum physics,

in particular the act of measuring quantum systems, as described by [26, 36, 34, 11, 31].

However, we shall not discuss possible interpretations of the underlying reality of the

measurements, and instead shall only focus on quantum mechanics as a statistical theory.

Since we are considering the act of performing a measurement of a quantum system,

we have to think about what happens in this process. We can divide it into three sepa-

rate procedures: firstly, we prepare the system in such a way that we specify the initial

conditions the system possesses; secondly, we measure the system with regards to the

observable we wish to infer information about, for example, a particle’s momentum or an

electron’s spin; finally, we register the measurement outcome that occurs for our given
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system. From repeated measurements, we are able to calculate the probability of a system

prepared in a given way producing a specific outcome when we measure certain quantities.

With this procedure in mind, we shall now elaborate on the two operational constructs

that we require, namely states and observables.

2.4.1 States

The first part of the procedure of measuring that we need to consider is the preparation of

the system being measured. In doing so we specify conditions that the system must possess

no matter how many copies of it we wish to make, thereby ensuring that the statistics of

what we are measuring are accurate. We may use one of several preparations that lead

to the same initial conditions, and so they are statistically the same. We describe these

statistically equivalent preparations mathematically with the same operator, known as the

state of the system. There is the possibility that we may prepare an ensemble of systems

in a mixture of two states, denoted by ρ1 and ρ2, say. If λ ∈ [0, 1] is the probability of

preparing a system in the state ρ1, and similarly 1−λ for ρ2, then we describe the ensemble

by the mixed state λρ1 +(1−λ)ρ2. More generally, we assume σ-convexity: for a sequence

{ρj} of states and a sequence {λk} of equal length of positive numbers adding to one, then

the sum
∑

j λjρj is also a valid state. We conclude that states form a convex set with pure

states corresponding to extremal elements; that is, states for which the decomposition

λρ1 + (1− λ)ρ2 with λ ∈ [0, 1] implies that ρ1 = ρ2. Any mixed state admits uncountably

many convex decompositions, and so the pure states are the only states for which their

decomposition is unique. The preceding discussion can be extended to any finite convex

combinations of states.

In what follows, where we focus on Hilbert spaces exclusively, we denote the set of

states on H by S(H). This set is a convex subset of T (H) composed of positive operators

of unit trace:

S(H) = {ρ ∈ T (H)|ρ ≥ 0, tr [ρ] = 1}, (2.119)

and in this case σ-convexity means that the sum
∑

j λjρj converges in the trace norm

with the limit belonging to S(H). Since they are bounded operators, we will also refer to

states as density operators at times. With this structure in mind, the extremal elements

of S(H) are the rank-one projections, and we shall at times associate pure states to

normalised rays in H (although this is simply a shorthand for their corresponding rank-

one projections). This includes superpositions of pure states, too; so if ψ1, ψ2 ∈ H are

states (that is, normalised vectors), then so is (αψ1 +βψ2)/ ‖αψ1 + βψ2‖ for any α, β ∈ C
with |α|2 + |β|2 = 1 and αψ1 + βψ2 6= 0.

There will be instances where we are required to consider states of multiple systems, for

example in the interaction between a pair of electrons. If we are dealing with two Hilbert

spaces H1,H2 describing two systems individually, then we consider the tensor product

H1⊗H2 for their combined system. For a generic state ρ ∈ S(H1⊗H2), we may produce

reduced states by performing the partial trace on the system, i.e., ρ1 = trH2 [ρ] ∈ S(H1)

and ρ2 = trH1 [ρ] ∈ S(H2). A vector ψ ∈ H1 ⊗ H2 is separable if there exist vectors

ϕ1 ∈ H1 and ϕ2 ∈ H2 such that ψ = ϕ1⊗ϕ2. If no such vectors exist, then ψ is said to be
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entangled. In a similar fashion, a state ρ ∈ S(H1 ⊗H2) is separable if it can be expressed

as a convex combination of states of the form ρ1 ⊗ ρ2 where ρ1 ∈ S(H1) and ρ2 ∈ S(H2)

(such states are known as factorised), and is entangled if it is not separable.

2.4.2 Observables

2.4.2.1 Effects

Consider an ensemble of N systems prepared in the state ρ and we perform the measure-

ment M , which for simplicity we shall assume has a discrete number of possible measure-

ment outcomes ωi. The number of times that each outcome occurs is given by N(ωi),

and so the relative frequency of this outcome occurring after N measurements is given by

N(ωi)/N . As we let N get larger, this number is expected to tends towards p(ωi|ρ,M),

the probability of receiving outcome ωi after performing a measurement of M with state

ρ. This defines an affine functional4 E
(M)
i : ρ 7→ p(ωi|ρ,M) ∈ [0, 1] for every outcome

ωi. These functionals are called (measurement) effects, and in what follows we shall drop

the superscript M . Three examples of effects worth mentioning are the identity effect

EI(ρ) = 1 for all ρ, the null effect EO(ρ) = 0 for all ρ, and the set of trivial effects, which

for any state ρ will always produce the same value λ ∈ [0, 1] (clearly, the identity and

null effects are examples of trivial effects). The state independence of the trivial effects

simply highlights that we are gaining no information about the state by performing this

measurement; for example, if two outcomes are described by the effect Ei : ρ 7→ 1/2, then

we are simply performing a coin toss.

Similarly, we may begin with effects {E(M)
i } and then consider the probability p(ωi|ρ,M)

via the map µρ : E
(M)
i 7→ p(ωi|ρ,M) defined for ρ. This use of states to define positive

linear functionals on effects and similarly the use of effects as affine functionals on states

highlights the statistical duality between states and effects.

With the effects forming functionals on S(H) ⊂ T (H), it follows that the functionals

must belong to T (H)∗ = L(H). Indeed, for every effect E there exists a bounded operator

Ẽ such that E(ρ) = tr
[
Ẽρ
]

for all ρ ∈ S(H). With this in mind, the identity effect EI = I

and null effect EO = O. Similarly, since any trivial effect yields E(ρ) = λ for all ρ ∈ S(H),

it must take the form λI for λ ∈ [0, 1]. As we require 0 ≤ E(ρ) ≤ 1 for any ρ ∈ S(H), the

effects must satisfy O ≤ Ẽ ≤ I, and so the set of effects is E(H) = {E ∈ L(H)|O ≤ E ≤ I}
as given before. This set forms a convex space and its extremal elements coincide with

P(H). From now on, we shall remove the tilde from the effect operators and simply refer

to E(H) as the space of effects.

Much like with the idea of preparation, in which many different preparations lead to

equivalent statistics (the equivalence class being described by the state of the system),

many different measurements will lead to the same probability assignments. The effects

correspond to the equivalence class of such probability assignments. We then express the

equivalence class of statistically indistinguishable experiments; that is, experiments with

the same collection of effects, by an observable, described by the mapping i 7→ E
(M)
i . In

order to fully describe observables, we must first briefly discuss measure theory.

4By affine we mean E
(M)
i (λρ+ (1− λ)ρ′) = λE

(M)
i (ρ) + (1− λ)E

(M)
i (ρ′), λ ∈ [0, 1], for any outcome i.
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2.4.2.2 Measure theory

In order to provide a sense of what we mean by an observable of a quantum system, we

need to consider the concept of a measure (in the mathematical sense).

Consider a set Ω and its power set 2Ω. A subset Σ ⊆ 2Ω is a σ-algebra if Σ obeys the

following properties:

1. Ω, ∅ ∈ Σ;

2. If X ∈ Σ, then Xc ∈ Σ;

3. If {Xi}i∈I is a countable sequence of sets Xi ∈ Σ, then
⋃
i∈I Xi ∈ Σ.

In other words, Σ is a σ-algebra if it contains both Ω and ∅, and is closed under com-

plementation and countable unions. The pair (Ω,Σ) forms a measurable space, with the

elements of Σ called measurable sets, and upon this space we define a real-valued (positive)

measure µ as a map µ : Σ→ [0,∞] such that

1. ∀X ∈ Σ, µ(X) ≥ 0;

2. µ(∅) = 0;

3. For a countable sequence {Xi}i∈I of pairwise disjoint elements of Σ; i.e, Xi ∈ Σ for

all i ∈ I and Xi ∩Xj = ∅ for all i, j ∈ I, µ(∪i∈IXi) =
∑

i∈I µ(Xi).

The triple (Ω,Σ, µ) is called a measure space. An important point that we shall make use

of is the monotonicity of measures: if A,B ∈ Σ and B ⊆ A, then µ(B) ≤ µ(A). To prove

this, note that

A = (A ∩B) ∪ (A ∩Bc) = B ∪ (A ∩Bc), (2.120)

since B ⊆ A. These are disjoint sets, so

µ(A) = µ
(
(B) ∪ (A ∩Bc)

)
= µ(B) + µ(A ∩Bc) ≥ µ(B), (2.121)

from the positivity of the measure. Further to this, µ is subtractive: if µ(B) < ∞, then

µ(A\B) = µ(A ∩Bc) = µ(A)− µ(B).

Consider two measurable spaces (ΩA,ΣA) and (ΩB,ΣB). A function f : ΩA → ΩB

is measurable if the inverse image of a measurable set is measurable; that is, if Y ∈ ΣB,

then f−1(Y ) ∈ ΣA. Note the analogous form this has to continuous functions between

topological spaces.

The most useful (and most commonly used in what follows) example of a measurable

space is (R,B(R)), where B(R) is defined as

B(R) =
⋂
{Σ|Σ is a σ-algebra containing all intervals in R}. (2.122)

From this definition, B(R) is clearly a σ-algebra: each Σ in the intersection contains both R
and ∅, and so must B(R); if X ∈ B(R), then X belongs to each Σ in the intersection, hence

Xc ∈ Σ as they are all closed under complementation, and so Xc ∈ B(R); similarly, if a

countable sequence of sets {Xi}i∈I ∈ B(R), then {Xi}i∈I ∈ Σ for all Σ in the intersection,
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hence
⋃
i∈I Xi ∈ Σ for each Σ and so

⋃
i∈I Xi ∈ B(R). Furthermore, B(R) is the smallest

σ-algebra containing all intervals in R: if there existed a smaller such σ-algebra, then B(R)

would contain it as a subset, contradicting its construction as an intersection of all such

σ-algebras. This space is known as the Borel σ-algebra over R. Upon B(R) we use the

Lebesgue measure m, which for any interval in R the measure is equal to the difference of

the endpoints:

m([a, b]) = m((a, b)) = m((a, b]) = m([a, b)) = b− a, b < a. (2.123)

From the definition of a measure, it follows that m(∅) = 0, but the empty set is not the

only set to satisfy this property. For example, the point set {α} is contained in the open

interval (α− δ/2, α+ δ/2), which has measure

m((α− δ/2, α+ δ/2)) = (α+ δ/2)− (α− δ/2) = δ. (2.124)

If we let δ tend to zero the measure of the set tends to zero and so from the monotonicity

of the measure, µ({α}) ≤ µ((α − δ/2, α + δ/2)), hence µ({α}) = 0. Similarly, countable

unions of point sets are also measure zero, as they are disjoint and hence are equal to the

sum of measure zero sets. Any set X ∈ B(R) of measure zero is called a null set.

Suppose that we possess two measurable functions f, g mapping from R to some other

measurable space. We say that f = g almost everywhere (a.e.) if the functions are equal

excluding a null set of values with respect to the measure µ:

f = g a.e.⇔ µ
(
x ∈ R|f(x) 6= g(x)

)
= 0. (2.125)

If we possess two measures, µ, µ′ : Ω→ R, where Ω is assumed to have a defined sum

operation, then we define the convolution, denoted µ ∗ µ′, as

µ ∗ µ′(X) = (µ× µ′)({(x, x′)|x+ x′ ∈ X}), (2.126)

for any X ∈ B(R) and µ× µ′ is the product measure (see, e.g., [22, Chapter 6]).

2.4.2.3 POVMs

As was discussed in Section 2.4.2.1, if we consider the probability p(ωi|ρ,M) of acquiring

the outcome ωi in the measurement M of a system in the state ρ ∈ S(H), then this may

be expressed in terms of the effect E
(M)
i via

p(ωi|ρ,M) = E
(M)
i (ρ) = tr

[
Ẽ

(M)
i ρ

]
, (2.127)

where Ẽ
(M)
i ∈ E(H) is the unique operator corresponding to E

(M)
i . For each state ρ and

measurement M we can then define the probability measure pMρ via pMρ (ωi) = p(ωi|ρ,M),

i.e.,

pMρ (ωi) = tr
[
Ẽ

(M)
i ρ

]
. (2.128)
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If we assume that the measurement M has the measurable space (Ω,Σ), then the proba-

bility measure pMρ satisfies the following conditions:

1. 0 ≤ pMρ (X) ≤ 1 for all X ∈ Σ;

2. pMρ (Ω) = 1;

3. If {Xi}i∈I is a sequence of disjoint sets in Σ, then pMρ (∪i∈IXi) =
∑

i∈I p
M
ρ (Xi).

In the case of a probability measure, the measurable space is known as an outcome space

and the measurable sets are known as events. We noted earlier that an observable is a

map from the measurement outcomes to the effects, i.e., from Σ to E(H). If we label an

observable describing the measurement M by EM , say, then Ẽ
(M)
i =: EM (ωi). Assuming

pMρ has outcome space (Ω,Σ), Equation (2.128) can be rewritten as

pMρ (X) = tr
[
EM (X)ρ

]
, (2.129)

for any X ∈ Σ. From the requirements of the probability measure pMρ for any state

ρ ∈ S(H), we require that the map EM : Σ→ E(H) satisfies

1. EM (X) ≥ 0 for all X ∈ Σ;

2. EM (Ω) = I;

3. EM (∪i∈IXi) =
∑

i E
M (Xi) for any sequence of disjoint sets {Xi}i∈I in Σ, where the

series on the right converges in the weak operator topology.

Such a map is called a (normalised) positive operator-valued measure or POVM, and from

now on we will use the terms “POVM” and “observable” interchangeably. In particular,

instead of referring to a measurement M we will consider its POVM EM .

Assuming the measurable space (Ω,Σ), we shall cover two particular examples of ob-

servables defined on the Hilbert spaceH; namely, sharp and discrete observables. Sharp, or

spectral, observables are given by projection-valued measures (PVMs). These are POVMs

P : Σ → P(H) for which P(A)P(B) = P(A ∩ B) for A,B ∈ Σ. In other words, P maps

disjoint elements of Σ to orthogonal projections. For a spectral measure P : B(R)→ E(H),

we can make use of the measure dpϕ(λ) = d 〈ϕ|P(λ)ϕ〉 for any ϕ ∈ H to define a unique

self-adjoint operator T via

〈ϕ|Tϕ〉 =

∫
R
λ d 〈ϕ|P(λ)ϕ〉 . (2.130)

Note that T may be unbounded, in which case its domain is composed of pure states

ϕ ∈ H for which
∫
R λ

2 d 〈ϕ|P(λ)ϕ〉 < ∞. The converse of this statement is a significant

result:

Theorem 2.4.1. For a self-adjoint operator T with domain D(T ) ⊂ H, there exists a unique

spectral measure ET : B(R)→ E(H) such that

D(T ) =

{
ϕ ∈ H

∣∣∣∣∫
R
λ2 d

〈
ϕ
∣∣ET (λ)ϕ

〉
<∞

}
, (2.131)

and for any ϕ ∈ D(T ) Equation (2.130) holds.
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This result, known as the spectral decomposition of T , allows us to consider the PVM

associated with T , and express T in the form

T =

∫
R
λ dET (λ), (2.132)

where we are implicitly understanding this in terms of Equation (2.130). Furthermore, if

we suppose that f is a real-valued measurable function defined on the support of ET , then

there exists a unique self-adjoint operator f(T ) of the form

f(T ) =

∫
R
f(λ)dET (λ). (2.133)

Similar to the spectral decomposition, for a POVM E : B(R) → E(H) we can define

the Hermitian first moment operator

E[1] =

∫
R
λdE(λ). (2.134)

However, since we no longer assume that E is projection-valued, we will find that f(E[1])

is not of the form given in Equation (2.133); indeed, the kth moment operator E[k] =∫
R λ

kdE(λ) is in general not equal to E[1]k.

Finally, for an unbounded self-adjoint operator there exists a similar spectral decom-

position: for any unbounded self-adjoint operator A with domain D(A) dense in H, then

for any vector ϕ ∈ D(A) there exists a unique PVM EA for which

tr [PϕA] =

∫
R
λtr
[
PϕdE

A(λ)
]
. (2.135)

In particular, for the position and momentum operators Q and P we can define the

PVMs EQ and EP . These spectral measures correspond to the eigenbases {|q〉} and {|p〉},
respectively, but a word of warning is needed here: despite providing representations for

the Hilbert space L2(R) via ψ(q) = 〈q|ψ〉 and ψ̃(p) = 〈p|ψ〉, etc., these states do not

belong to L2(R). To see this, let ψ be an eigenvector of Q with eigenvalue x0. In which

case

x0ψ(q) = x0 〈q|ψ〉 = 〈q|Qψ〉 = 〈Qq|ψ〉 = qψ(q), (2.136)

for all q ∈ R, and so ψ(q) is proportional to δ(q − x0) /∈ L2(R). However, these pseudo-

eigenbases do serve a purpose, and we will utilise them, all the while bearing in mind their

shortcomings. In particular, they make sense when we wish to calculate the value

〈ψ|Qψ〉 =

∫
R
q |〈ψ|q〉|2 dq =

∫
R
q |ψ(q)|2 dq, (2.137)

which is a well defined quantity, known as the expectation value of Q with respect to the

state ψ. The quantity |ψ(X)|2, X ∈ B(R) is the probability pQψ (X), and so 〈ψ|Qψ〉 =∫
R qdp

Q
ψ (q) is the mean value of Q when measured in the state ψ. Note that at times

we will use the shorthand 〈A〉ψ to denote the expectation value 〈ψ|Aψ〉. Similarly to the

bounded case, we may consider f(A) for an unbounded real-valued function f , but we
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must be careful as the domain depends on f .

From any sharp observable P : B(R)→ E(H) we can form a POVM E by smearing. In

general, we would express the smearing of P into E in the form

E(X) =

∫
R
k(λ,X)dP(λ), (2.138)

where k : R×B(R)→ [0, 1], known as a Markov kernel, is such that k(λ, ·) is a probability

measure and k(·, X) is a measurable function. Conceptually, k is responsible for adding an

additional uncertainty into the measurement outcomes of E compared to the measurement

of P.

There exists another way in which we can connect POVMs and PVMs. Suppose that

P is a PVM on H′ with outcome space (Ω,Σ) and an isometry V : H → H′ with H ⊂ H′.
In which case, the map E : Σ→ E(H)

E(X) = V ∗P(X)V, (2.139)

for all X ∈ Σ, is clearly a POVM on H with outcome space (Ω,Σ). It is a result of

Naimark’s, known as Naimark’s dilation theorem, that for any POVM E : Σ → E(H),

there exists a Hilbert space H′ ⊃ H, a linear isometry V : H → H′ and a PVM P : Σ →
E(H′) satisfying Equation (2.139) [38]. A special example of a Naimark dilation is the

measurement model, which we shall discuss in Section 2.4.3.

Discrete observables are POVMs for which the set Ω is finite, i.e., Ω = {x1, . . . , xn}. In

such cases, we tend not to consider the σ-algebra and instead simply focus on the power

set 2Ω. Considering the discrete POVM E : {x1, . . . , xn} → E(H), we relabel the effects

E(xi) =: E(i), and so we have I = E(Ω) =
∑

i E(i). It is common in the literature to

denote a discrete POVM E by its range, i.e., the set {E(i)}ni=1. However, in what follows

we shall restrict ourselves to treating a POVM as a map from a σ-algebra to the set of

effects defined on the Hilbert space. In the case of a discrete spectral observable P with

range {Pi = P(i)}, we tend to express its associated self-adjoint operator A in terms of its

eigenvalues {ai}, i.e., A =
∑

i aiPi.

As we have stated above, we associate observables with POVMs. This is in contrast

with the traditional view of quantum mechanics, in which self-adjoint operators corre-

spond to observables, with measurement outcomes given by their eigenvalues, and their

associated spectral measure determining the probability of outcomes occurring. Whilst

this restriction to PVMs is already too limited, this viewpoint also possesses conceptual

difficulties. Within a given experimental setup, a single measurement provides an out-

come, and from repeated measurements we derive probability distributions allowing us to

infer the likelihood of a given outcome depending on what state we prepare the system

in. At this point what we are observing is how an input state alters the probability distri-

butions we find within this setup, with this being described mathematically by POVMs.

By comparison, what self-adjoint operators tell us is how the average of the distributions

vary with the state the system is prepared in, which does not give us the full story of what

is happening in the experiment.

Consider a measurable space (Ω,Σ) and group G with a group action α : G×Ω→ Ω,
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α(g, x) := αg(x), such that Ω is a homogeneous G-space, i.e., αgh = αgαh for any two

g, h ∈ G, αe = ιΩ where e is the identity element of G and ιΩ is the identity map on Ω, and

for any two elements ω, ω′ ∈ Ω there exists a g ∈ G such that ω′ = αg(ω). An observable

E : Σ→ E(H) is covariant with respect to the group G if there exists a pair (E, U), known

as a system of covariance, with U : G→ U(H) a unitary representation of G such that

UgE(Y )U∗g = E(α−1
g (Y )) (2.140)

for all g ∈ G and Y ∈ Σ. This action can be expressed in terms of the commutative

diagram:

Ω
αg //

E
��

Ω

E
��

E(H)
Ug
// E(H)

2.4.3 Measurement models

Measurement models provide a more in-depth mathematical description of the measure-

ment process compared to working with just a POVM. The idea behind them is that we do

not measure a quantum system directly, but rather we couple them to an apparatus, such

as a meter or dial, from which we read out a result and infer the system’s measurement

result. As an example, consider a double-slit experiment; we know the final location of

the photons or electrons being measured by their location on the detecting plate, which

we measure by direct observation.

Consider a quantum system described by the Hilbert space H, whose state is given by

the density operator ρ ∈ S(H). We then couple this system to the measuring apparatus A,

called the probe, with an associated Hilbert space HA and state σ ∈ S(HA). This coupling

is performed via a channel—that is, a linear completely positive5 trace-preserving map—

V : T (H⊗HA)→ T (H⊗HA), and the measurement on the probe is given by the observable

Z with outcome space (ΩA,ΣA). In order to accommodate the possibility that the pointer

and the system possess different “scales”, we define a pointer function f : ΩA → Ω, which

is both bijective and measurable. This measurement scheme, denoted by the quintuple

M = 〈HA, σ,V,Z, f〉, produces an observable E with outcome space (Ω,Σ) via

tr [ρE(X)] = tr
[
V(ρ⊗ σ)(I ⊗ Z(f−1(X)))

]
, (2.141)

for all ρ ∈ S(H) and X ∈ Σ. We can rearrange this to find a form for E:

tr [ρE(X)] = tr
[
V(ρ⊗ σ)(I ⊗ Z(f−1(X)))

]
= tr

[
(ρ⊗ σ)V∗((I ⊗ Z(f−1(X))))

]
= tr

[
(ρ⊗ I)(I ⊗ σ)V∗((I ⊗ Z(f−1(X))))

]
= tr

[
ρ trHA

[
(I ⊗ σ)V∗(I ⊗ Z(f−1(X)))

]]
,

(2.142)

5A map V : T (H) → T (H) is completely positive if the map V ⊗ IH′ : T (H ⊗ H′) → T (H ⊗ H′) is
positive for any finite-dimensional additional Hilbert space H′.
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where V∗ denotes the dual channel V∗ : Ls(H⊗HA)→ Ls(H⊗HA) defined by

tr [V(T )E] = tr [T V∗(E)] . (2.143)

This map is necessarily completely positive and unital, i.e., V∗(IH ⊗ IHA) = IH ⊗ IHA .

Since (V ⊗ I)∗ = V∗ ⊗ I, the complete positivity of V∗ is equivalent to the complete

positivity of V. From this consideration, we may express the observable E as:

E(·) = trHA
[
(I ⊗ σ)V∗(I ⊗ Z(f−1(·)))

]
, (2.144)

Every observable defined onH defines a class of measurement models that satisfy Equation

(2.144), and it is a result of Ozawa’s [39] that, for every observable on H, there exists

a measurement model such that σ is a pure state, V is a unitary channel and Z is a

sharp observable. In other words, for any POVM E we can find a measurement model

M = 〈HA, Pϕ, U,Z, f〉 such that

E(·) = trHA
[
(I ⊗ Pϕ)U∗(I ⊗ Z(f−1(·)))U

]
. (2.145)

With this in mind, when we come to discuss measurement models in Chapter 4, and we

encounter models where the coupling is provided by a unitary channel and the probes

are measured by sharp observables, we will not be restricting the range of measurement

models that we consider.

2.4.4 Joint and sequential measurements

As will feature often in later chapters, we may wish to measure more than a single ob-

servable in a given measurement setup. This leads to the concepts of joint and sequential

measurements. There is already extensive work on these topics in the literature [15, 11, 41],

so we shall only briefly highlight the aspects that are of use to us.

Two observables E : Σ1 → E(H) and F : Σ2 → E(H) with measurable spaces (Ω1,Σ1),

(Ω2,Σ2), respectively, are jointly measurable if there exists an observable J : Σ1 × Σ2 →
E(H) such that

E(X) = J(X × Ω2), F(Y ) = J(Ω1 × Y ), (2.146)

for any X ∈ Σ1 and Y ∈ Σ2. Such an observable J is called a joint observable of E and F,

and conversely E and F are called marginal observables (or simply margins) of J. A simple

example of a joint observable arises when E and F commute; that is, when any pair of

effects E(X) and F(Y ) satisfy [E(X),F(Y )] = 0. In this case, a valid joint observable for

E and F is

J(X × Y ) = E(X)F(Y ), (2.147)

where the commutativity is required in order to guarantee that J(X×Y ) is self-adjoint for

any X ∈ Σ1 and Y ∈ Σ2. This highlights an important point: if two observables commute,

then they are jointly measurable. Whilst this is a sufficient condition to guarantee joint

measurability, it is not necessary unless at least one of the observables considered is sharp.

As has been alluded to above, quantum mechanics allows for the existence of observ-
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ables that cannot be measured jointly, as opposed to the case in classical mechanics where

any pair of observables are jointly measurable. We call such observables incompatible, and

for two incompatible observables we are unable to build an experiment such that we can

acquire information about both arbitrarily well. An alternative way of representing this is

by showing that a sequential measurement of one observable followed by a second disturbs

the measurement statistics of the second observable.

In order to discuss sequential measurements, we must first mention instruments (see

[29, p. 226-232], [11, p. 37-39] or [26, p. 17-19] for details). Assuming that we have per-

formed a repeatable/nondestructive measurement schemeM (detecting photons on a pho-

tographic plate counts as an example of a non-repeatable measurement) associated with

an observable E, we expect that the state of the system is changed in some way depending

on the outcome of the measurement. Suppose that we have performed a measurement of

the observable E on the state ρ via the measurement scheme M = 〈HA, σ,V,Z, f〉 and

measured the outcome X ∈ Σ. By expanding Equation (2.141), we see that

tr [E(X)ρ] = tr
[
V(ρ⊗ σ)(I ⊗ Z(f−1(X)))

]
= tr

[
trHA

[
V(ρ⊗ σ)(I ⊗ Z(f−1(X)))

]
I
]

= tr
[
IMX (ρ)

]
,

(2.148)

where IMX (ρ) = trHA
[
V(ρ⊗ σ)(I ⊗ Z(f−1(X)))

]
describes the evolution of the state after

obtaining the measurement outcome X ∈ Σ. In general, we give the change of the state

of the system after a measurement described by the scheme M via the map IM : Σ →
L(T (H)), known as an instrument, with IMX := IM(X) : T (H) → T (H) for X ∈ Σ. An

instrument must satisfy the following properties:

(i) For each X ∈ Σ, IMX is linear, completely positive and trace nonincreasing;

(ii) tr
[
IMΩ (ρ)

]
= 1 and IM∅ (ρ) = O for all ρ ∈ S(H);

(iii) If {Xj} ⊂ Σ is a disjoint sequence, then for any ρ ∈ S(H)

tr
[
IM∪jXj (ρ)

]
=
∑
j

tr
[
IMXj (ρ)

]
. (2.149)

For each measurement scheme M we may define an instrument IM. Indeed, for every

instrument I there exists a measurement scheme M such that I = IM, hence there is

a correspondence between measurement schemes and instruments, which is many-to-one.

Physically, this means that there exist a number of ways of setting up a measurement that

will affect the state in the same way. If we define the dual of the instrument via

tr [IX(ρ)A] = tr [ρ I∗X(A)] (2.150)

for any ρ ∈ S(H) and A ∈ L(H), then if we set A = I then we can retrieve the observable E

using the relation I∗X(I) = E(X). Hence, each instrument defines an observable. Similarly

to the correspondence between measurement schemes and instruments, the correspondence

between instruments and observables is many to one, which expresses the idea that we can
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measure an observable in different ways, but the output state will be different depending

on which method we choose.

Since, for an instrument I we find that tr [IX(ρ)] = tr [E(X)ρ] for some observable E

and any state ρ ∈ S(H), we will often find that I maps states to subnormalised states.

With this in mind, assuming tr [E(X)ρ] 6= 0, we define the conditional state

ρ̃X =
IX(ρ)

tr [IX(ρ)]
. (2.151)

With this in mind, we can now consider a sequential measurement. Suppose that we first

perform E : Σ1 → E(H) and measure the outcome X ∈ Σ1, leaving the system in the

conditional state ρ̃X , and then measure F : Σ2 → E(H). The conditional probability that

we get the measurement outcome belonging to Y ∈ Σ2 given that we first received the

outcome belonging to X ∈ Σ1 is given by

pρ(F ∈ Y |E ∈ X) = tr [ρ̃XF(Y )] =
1

tr [IX(ρ)]
tr [IX(ρ)F(Y )] . (2.152)

By making use of the dual instrument and Bayes’ theorem, we find the joint probability

to be

pρ(F ∈ Y&E ∈ X) = pρ(F ∈ Y |E ∈ X)pρ(E ∈ X) = tr [ρ I∗X(F(Y ))] . (2.153)

In doing so, we have defined a joint observable

J(X × Y ) = I∗X(F(Y )), (2.154)

which has margins

E′(X) = J(X × Ω2) = I∗X(F(Ω2)) = I∗X(I) = E(X),

F′(Y ) = J(Ω1 × Y ) = I∗Ω1
(F(Y )).

(2.155)

In other words, if E and F are incompatible, then we can build a joint measurement such

that one can be perfectly measured, and we are left with some approximation of the

second. In this sense, we may consider sequential measurements to be a special case of

joint measurements, and in what follows we shall do as much.

2.4.5 Error measures within quantum theory

Throughout we will be addressing the problem of approximating sharp observables, com-

monly denoted by A or B, via alternative (usually unsharp) observables, denoted by C or

D. In such instances we require some means of determining how faithful an approxima-

tion C (or D) is to A (B). Such a measure should be non-negative, with a value of zero

implying that the approximating observable faithfully approximates the sharp observable

in some sense determined by the measure. There exist several such measures, which are

collectively referred to as error measures.

The two error measures that we discuss here have both been provided as extensions,
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for the case of quantum observables, to the root-mean square deviation used in statistics.

In both cases, we suppose that an observable C is being used to approximate an ideal

measurement A with associated first moment operator A = A[1].

The first measure that we discuss was introduced by Ozawa [40] and is a state-

dependent error. Suppose that our approximate measurement C : B(R) → E(H) is given

by the measurement scheme 〈K, ξ, U,Z, ι〉, where ξ ∈ K is a pure state, Z : B(R) → E(K)

is a sharp observable and the pointer function is the identity map ι : R → R, then the

error of C as an approximation of A with respect to the pure state ψ ∈ H is given by

ε(C,A, ψ)2 =
〈
ψ ⊗ ξ

∣∣(U∗(I ⊗ Z[1])U −A⊗ I)2ψ ⊗ ξ
〉
. (2.156)

Following Arthurs and Goodman [2], by defining the noise operator

NA := U∗(I ⊗ Z[1])U −A⊗ I, (2.157)

we see that ε(C,A, ψ)2 =
〈
N2
A

〉
ψ⊗ξ, and so we will henceforth refer to this measure as the

noise measure.

As may be inferred, this measure arises from considering self-adjoint operators as

observables, but we may express it more operationally (see [12, Appendix A]):

ε(C,A, ψ)2 =
〈
ψ
∣∣(C[2]− C[1]A−AC[1] +A2)ψ

〉
=
〈
ψ
∣∣(C[1]−A)2ψ

〉
+
〈
ψ
∣∣(C[2]− C[1]2)ψ

〉
.

(2.158)

The first term in this expression can be perceived as a measure of the relative noise between

C and A, whilst the second term is a measure of the intrinsic noise of C, as it is zero iff C is

a sharp observable [13]. This first term also highlights that this is an example of an error

based on value deviation between the two observables. Note that in order for C[1] − A
to possess any operational meaning we require C[1] and A to commute, otherwise we are

unable to measure them within the same measurement scheme. In the case of C[1] and A

commuting we can express ε(C,A, ψ)2 as

ε(C,A, ψ)2 =
〈
ψ
∣∣(C[2]− 2C[1]A+A2)ψ

〉
=

∫
R2

(x− y)2 〈ψ|dC(x)dA(y)ψ〉 .
(2.159)

In this form we see how ε(C, A, ψ)2 forms the mean value of the deviation of the random

variables x and y with respect to the probability bi-measure p(dx, dy) := 〈ψ|dC(x)dA(y)ψ〉.
Alternatively, if the state ψ is an eigenvector of A with eigenvalue a, then

ε(C, A, ψ) =

(∫
R

(x− a)2 〈ψ|dC(x)ψ〉
)1/2

, (2.160)

and thus ε reduces to the standard deviation from the value a with respect to the proba-

bility measure p(dx) = 〈ψ|dC(x)ψ〉, as would be classically used to determine the error of

an approximate observable. However, these two instances are rare cases, and in general

there are issues with measuring the noise error.
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The second measure, given by Busch, Lahti and Werner [16], is state-independent,

unlike Ozawa’s measure, and is based on the Wasserstein 2-distance (an extension of the

Monge-Kantorovich “earth mover’s” distance, which is discussed in detail in [53]) and in

what follows we shall refer to this as the BLW error for the sake of brevity.

For a pair of (possibly incompatible) observables C,A : B(R)→ E(H) (with C approxi-

mating A) and a state ρ ∈ S(H) we define a coupling γ : R×R→ [0, 1] to be a probability

measure such that

γ(X × R) = pCρ (X), γ(R× Y ) = pAρ (Y ). (2.161)

With this definition, the Wasserstein 2-distance ∆ρ(C,A)2 between two observables with

respect to a state ρ is given by

∆ρ(C,A)2 = inf
γ∈Γ(C,A)

∫
R2

(x− y)2dγ(x, y), (2.162)

where Γ(C,A) is the space of all couplings between pCρ and pAρ . Note that in the case that,

again, ρ is an eigenfunction of A = A[1] with eigenvalue a, then pAρ reduces to the point

measure δa, so γ = pCρ × δa, and thus

∆ρ(C,A) =

(∫
R

(x− a)2dpCρ (x)

)1/2

. (2.163)

In other words, we again arrive at the standard deviation in the case that the state we

consider is an eigenfunction of A. The state-dependent measure ∆ρ gives a distance

between the two distributions pCρ and pAρ with regards to a best case scenario, thereby

seeing what the smallest possible difference is between the two distributions while still

requiring that the distributions can be compared. It should be noted that, unlike the

noise measure, this scheme does not require that we are measuring both observables at

the same time and comparing values; rather their distributions are compared from separate

measurements, with the proviso that the distributions are still comparable. We then define

the error ∆(C,A) to be the worst case scenario over all states:

∆(C,A) := sup
ρ

∆ρ(C,A). (2.164)

In essence, this defines an upper limit on the possible error one may find whilst measuring

C as an approximation of A over all states. In other words, if someone were to perform

C as an approximation of A in any state ρ ∈ S(H), then the error in the approximation

would be no greater than ∆(C,A).
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Chapter 3

An Operational Link between

SIC-POVMs and MUBs

In recent years two classes of observables have gained significance, particularly in terms of

quantum state determination: symmetric informationally complete POVMs (SIC-POVMs)

and mutually unbiased PVMs, or alternatively mutually unbiased bases (MUBs). A family

of MUBs represents a family of observables as incompatible as is possible, and yet it is

possible to show that they can, in some instances, be related to the marginal observables of

a SIC-POVM, which are by their very definition compatible observables. In this chapter we

will present the construction that allows for this, and give examples found via Mathematica

showing how it works for low dimensions.

3.1 Preliminaries

We begin by detailing the quantum information theoretic constructs that we will be investi-

gating, namely SIC-POVMs and MUBs. We also provide an overview of the combinatorial

concept of mutually orthogonal Latin squares, which, as we will see in Section 3.2.2, are

linked to our connection between SIC-POVMs and MUBs.

3.1.1 Mutually Unbiased Bases (MUBs)

For this section we assume that we are dealing with a finite d-dimensional Hilbert space,

i.e., Hd := Cd. For such a Hilbert space, two bases {ψi}di=1 and {ϕj}dj=1 are said to be

mutually unbiased if the magnitude of the inner product between any two elements of

these bases is fixed: ∣∣〈ψi|ϕj〉∣∣2 = c ∀ i, j, (3.1)

where c is a constant. Given the normalisation of the basis vectors, we quickly determine

the value of c:

1 = |ψi|2 =
∑
j

∣∣〈ψi|ϕj〉∣∣2 = dc ⇒ c =
1

d
. (3.2)

For a Hilbert space of dimension d, there cannot exist more than d + 1 mutually

unbiased bases. This can be seen by considering the d2-dimensional state space of Hd,
S(Hd). Taking into account the unit-trace property, each state is determined by d2 − 1

57



linearly independent operators in the space of traceless self-adjoint operators. Each MUB

{ψ(m)
i } defines a collection of d − 1 linearly independent operators {P (m)

i − (1/d)I}d−1
i=0 ,

where P
(m)
i =

∣∣∣ψ(m)
i

〉〈
ψ

(m)
i

∣∣∣, which therefore span a d − 1-dimensional subspace of the

space of traceless self-adjoint operators. From the mutually unbiased condition, the d− 1-

dimensional subspaces associated with different MUBs are orthogonal, and so there can

exist at most (d2 − 1)/(d− 1) = d+ 1 MUB bases.

In the case that d is a prime-power number, i.e., d = pn for some prime number p and

natural number n, it is known that one can construct a family of d+ 1 MUBs. The proof

goes as follows [32, 56]:

1. d = 2: In the Bloch representation, the projections P(±) associated with a given

basis {ψ±} are described by their Bloch vector

P(±) = |ψ±〉〈ψ±| =
1

2
(1± r · σ), (3.3)

where r ∈ S2 = {a ∈ R3| ‖a‖ = 1}, and σ = (σx, σy, σz) is the vector whose

components are the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (3.4)

Another basis {ϕ±}, with associated projections Q(±) = 1
2(1 ± s · σ), is mutually

unbiased to {ψ±} iff

1

2
= |〈ψ±|ϕ±〉|2 = tr [P(±)Q(±)] =

1

2
(1± r · s), (3.5)

where we have used the identity (r ·σ)(s ·σ) = (r ·s)I+ i(r×s) ·σ and the traceless

property of the Pauli matrices to arrive at the final equality. Clearly, in order to

achieve equality, the vectors r and s must be orthogonal. Given the number of

mutually orthogonal vectors is bounded above by the dimension of the space they

exist in, we cannot find more than 3 such vectors. In other words, there cannot exist

more than 3 mutually unbiased bases for d = 2.

2. d an odd prime: We begin by defining a “computational basis”

v(0) =
{
v

(0)
k

}d−1

k=0
, (3.6)

where the `th component of v
(0)
k is (

v
(0)
k

)
`

= δk`. (3.7)

We now define the dth root of unity ω = e2πi/d, and the bases

v(r) =
{
v

(r)
k

}d−1

k=0
, (3.8)
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with r = 1, . . . , d via (
v(r)
a

)
`

=
1√
d
ω(r`2+a`). (3.9)

The inner product of any two of these states is of the form

∣∣∣〈v(r)
a

∣∣∣v(s)
b

〉∣∣∣ =

∣∣∣∣∣1d∑
`

ω(s−r)`2+(b−a)`

∣∣∣∣∣ . (3.10)

If r = s, then (3.10) reduces to 1
d

∑
` ω

(b−a)` = δab due to the orthogonality of the

characters of the finite field Fd, confirming that v(r) forms an orthonormal basis. If,

on the other hand, r 6= s, then we note that for any `,m ∈ Fd with ` 6= m, we may

write ` = m+ α, with α a nonzero element of Fd. With this in mind, removing the

factor of 1/d, we calculate the square of the absolute quantity in Equation (3.10):∣∣∣∣∣∑
`

ω(s−r)`2+(b−a)`

∣∣∣∣∣
2

=
∑
`,m

ω(s−r)(`2−m2)+(b−a)(`−m)

=
∑
m

ω0(s−r)+0(b−a) +
∑
m

∑
α>0

ω(s−r)(α2+2αm)+(b−a)α

= d+

(∑
α>0

ω(s−r)α2+(b−a)α

(∑
m

ω2α(s−r)m

))
.

(3.11)

Since r 6= s and α > 0, the summand over m is equal to zero, and so we are left with

just the first term. Hence, ∣∣∣∣∣∑
`

ω(s−r)`2+(b−a)`

∣∣∣∣∣ =
√
d, (3.12)

for all a, b ∈ Zd. Therefore, for r 6= s,

∣∣∣〈v(r)
a

∣∣∣v(s)
b

〉∣∣∣ =

∣∣∣∣∣1d∑
`

ω(s−r)`2+(b−a)`

∣∣∣∣∣ =
1√
d
, (3.13)

thus proving that these bases are mutually unbiased.

3. d a prime-power, i.e. d = pn: This step is of the same form as the previous case. We

start with the computational basis

v(0) =
{
v

(0)
k

}d−1

k=0
. (3.14)

We now define ω = e2πi/p, and construct the d bases

v(r) =
{
v

(r)
k

}d−1

k=0
, (3.15)

with r = 1, . . . , d via (
v(r)
a

)
`

=
1√
d
ωTr(r`2+a`), (3.16)

where Tr () denotes the absolute trace as given in Definition 2.2.18 given in Section
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2.2. From here, the proof is the same as for the previous case.

In the case of d 6= pn, the existence of a complete set of MUBs is not known. Despite both

algebraic [6] and numerical efforts [21], it has not yet been possible to construct a set of 4

MUBs for d = 6, let alone a complete set of 7. For the non-prime dimension d with prime

factorisation d = pn1
1 pn2

2 . . . pnrr , with the primes p1 . . . pr increasing in value, there is at

most a guarantee of there existing pn1
1 + 1 MUBs by step 2 given above.

3.1.2 Symmetric Informationally Complete POVMs (SIC-POVMS)

Instead of relying on several bases for Hd, we could see if there exists an observable acting

on S(Hd) that can tell any two states apart, i.e., a POVM G such that for any two states

ρ, σ ∈ S(Hd), where ρ 6= σ, there exists an effect G(k), say, where

tr [G(k)ρ] 6= tr [G(k)σ] . (3.17)

Such an observable is said to be informationally complete. In order to satisfy this condition,

we require the sample space of G to have at least d2 elements. To prove this, suppose that

G is an informationally complete observable defined on Hd with n < d2 elements in its

sample sample. The space of self-adjoint operators is d2-dimensional, so there must exist a

non-zero operator T /∈ span({G(i)}) satisfying tr [TG(i)] = 0 for all i. Since G is a POVM,∑n
i=1 G(i) = I and so tr [T ] = 0. We define the state ρ = (I + T/ ‖T‖)/d (this is indeed

both positive and of unit trace) and see that for all i, tr [ρG(i)] = tr [G(i)I/d]. In other

words, G cannot distinguish ρ from I/d, contradicting its informational completeness. For

the sake of simplicity, in what follows we restrict the sample space to exactly d2 elements.

We further demand that the effects of G are rank-one operators and so each of these

effects corresponds to a multiple of a rank-one projection, i.e., G(i) = ciPi for some rank-

one projection Pi. This restriction is again for ease of use, although there is work on

categorising generalised SIC-POVMs [42].

We now simplify this POVM by demanding symmetry between the elements; that is,

each effect has the same trace:

tr [G(i)] = ci = α ∀ i, (3.18)

and for any two effects G(i) and G(j) the overlap is fixed:

tr [G(i)G(j)] = β ∀ i, j 6= i. (3.19)

An observable whose effects satisfy these conditions is described mathematically by a

symmetric informationally complete POVM (SIC-POVM). The values α and β can be

readily calculated: Firstly, given
∑

i G(i) = I,

d = tr [I] =
∑
i

tr [G(i)] = d2 α ⇒ α =
1

d
. (3.20)
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From (3.20) we can find the value of β:

1

d
= tr [G(i)] =

∑
j

tr [G(i)G(j)] =
1

d2
+ (d2 − 1)β. (3.21)

By rearranging for β we find

β =
1

d2(d+ 1)
. (3.22)

To confirm that G is indeed informationally complete, we require it to form a basis for

S(H), that is, it must form a collection of d2 linearly independent operators. Consider the

d2 operators

Ti =
√
d(d+ 1)G(i)− 1

d3/2
(
√
d+ 1− 1)I. (3.23)

The inner product of any two of these operators is

tr [TiTj ] = d(d+ 1)tr [G(i)G(j)]−
(
d+ 1

d
−
√
d+ 1

d

)
tr [G(i) + G(j)]

+

(√
d+ 1

d3
− 1

d3/2

)2

tr [I]

=
dδij + 1

d
− 2

d2
(d+ 1−

√
d+ 1) +

1

d2
(d+ 2− 2

√
d+ 1)

= δij .

(3.24)

These d2 operators are mutually orthonormal, hence linearly independent, and so form a

basis for S(Hd). We can express the effects G(i) in terms of the Ti, i.e.,

G(i) = aTi + bI, (3.25)

where

a =
1√

d(d+ 1)
and b =

√
d+ 1− 1

d2
√
d+ 1

. (3.26)

From this, we can see that they are linearly independent: Suppose that∑
i

αiG(i) = 0, (3.27)

then by taking the trace of this we get that
∑

i αi = 0. If we expand Equation (3.27) in

terms of Equation (3.25), multiply both sides by Tj and then take the trace, we find that

0 =
∑
i

αi
(
a tr [TiTj ] + b tr [Tj ]

)
=
∑
i

αi
(
aδij + b/

√
d
)

= aαj + (b/
√
d)
∑
i

αi = aαj .
(3.28)

In other words, αj = 0, and since this is an arbitrary coefficient in the sum, it must be

that the sum equals zero iff each component is zero. The effects G(i) must therefore be a

collection of d2 linearly independent operators, and so form a (non-orthogonal) basis for

S(H), which is to say that G must be an informationally complete observable.
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It is conjectured [58] that there exists a SIC-POVM for every dimension d ≥ 2, however

currently the largest dimension shown to contain one is d = 67 (with numerical evidence

for all dimensions less than 67) [48]. The most commonly considered type of SIC-POVM,

and the type used for the investigations just discussed, are Weyl-Heisenberg covariant

SIC-POVMs: Consider the computational basis for the Hilbert Space Hd, {|n〉}d−1
n=0, and

define the shift operator X and the phase operator Z via

X |n〉 = |n⊕ 1〉 , (3.29a)

Z |n〉 = ωn |n〉 , (3.29b)

where, as before, ω = e2πi/d and ⊕ denotes addition modulo d. Note that, unlike in the

case of MUBs, we are not restricting d to being a prime power, and so the powers of ω are

not an image of the prime field Fd.
We define the set W (d) as the set of all products of the phase and shift operators with

a factor of ω:

W (d) = {ωαXβZγ |α, β, γ = 0, 1, . . . , d− 1}. (3.30)

From (3.29a) and (3.29b), we quickly see that ZX = ωXZ, and so

(ωαXpZq)
(
ωβXrZs

)
= ωα+βXpZqXrZs

= ωα+β+rqXp+rZq+s ∈W (d).
(3.31)

In other words, W (d) is closed under multiplication of its elements. Further to this, the

identity matrix I is contained in W (d) and, if we multiply an element of W (d) by its

adjoint,

ωαXβZγ(ωαXβZγ)∗ = ωαXβZγ(ω−αZ−γX−β) = I. (3.32)

In other words, the elements of W (d) are unitary, with their inverses also belonging to

W (d). Hence, W (d) forms a group under multiplication of operators, called the Weyl-

Heisenberg group, and is a subgroup of U(d), the group of d× d unitary matrices.

We now define a subset of elements of W (d): the discrete Weyl-Heisenberg operators

Wjk = ω2−1jkXjZk, (3.33)

where j, k ∈ Zd, and

2−1 =

(d+ 1)/2 if d is odd,

1/2 if d is even.
(3.34)

Note that in the case of d = 2 the term ω2−1
simply reduces to i. If we let the outcome

space of G be Zd2 , and decompose each i ∈ Zd2 as i = i1d+ i2 with i1, i2 ∈ Zd, then G is

covariant under the action of W (d) if

WqpG(i)W ∗qp = G((i1 ⊕ q)d+ (i2 ⊕ p)). (3.35)
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Given (3.35) and an extension of (3.31), namely,

WqpWjk = ω2−1qpXqZpω2−1jkXjZk = ω2−1(jk+qp+2pj)Xq+jZp+k

= ω2−1(pj−qk)ω2−1(q+j)(p+k)Xq+jZp+k

= ω2−1(pj−qk)W(q+j)(p+k),

(3.36)

it follows that the effects take the form

G(i) = G(i1d+ i2) = Wi1i2G(0)W ∗i1i2 =
1

d
Wi1i2PϕW

∗
i1i2 , (3.37)

where ϕ is known as the fiducial vector for the SIC-POVM. This vector determines the SIC-

POVM we are dealing with, and searches for SIC-POVMs in a given dimension correspond

to finding a valid fiducial vector in that dimension.

Example 3.1.1. As a simple example, in the qubit case, the four Weyl-Heisenberg operators

are simply the identity and the 3 Pauli operators, i.e.,

W00 =

(
1 0

0 1

)
, W01 =

(
1 0

0 −1

)
, W10 =

(
0 1

1 0

)
, W11 =

(
0 −i
i 0

)
. (3.38)

If we let ϕ = (a, b)T be our fiducial vector, where |a|2 + |b|2 = 1, then from the requirement

1

12
= tr

[
1

4
PϕW01PϕW

∗
01

]
=

1

4
tr

[(
|a|2 ab

ab |b|2

)(
|a|2 −ab
−ab |b|2

)]
=

1

4

(
|a|4 − 2 |a|2 |b|2 + |b|4

)
=

1

4
(|a|2 − |b|2)2

=
1

4
(2 |a|2 − 1)2,

(3.39)

we find that

(2 |a|2 − 1)2 =
1

3
; i.e., |a|2 =

3±
√

3

6
, (3.40)

and hence

|b|2 = 1− |a|2 =
3∓
√

3

6
. (3.41)

At this point, without loss of generality, we assume that a has no complex phase, and so

a =

√
3±
√

3√
6

, b = eiβ

√
3∓
√

3√
6

. (3.42)
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Figure 3.1: The location of the Projection operator Pϕ, with ϕ the fiducial vector given
in Equation (3.44), on the Bloch sphere.

In order to calculate β, we consider a second requirement, namely

tr

[
1

4
PϕW10PϕW

∗
10

]
=

1

4
tr

[(
|a|2 ab

ab |b|2

)(
|b|2 ab

ab |a|2

)]
=

1

4

(
2 |a|2 |b|2 + (ab)2 + (ab)2

)
=

1

4

(
1

18
(3±

√
3)(3∓

√
3) +

1

36
(3±

√
3)(3∓

√
3)(e−2iβ + e2iβ)

)
=

1

4

(
1

3
+

1

3
cos(2β)

)
=

1

12
(1 + cos(2β)) =

1

12
.

(3.43)

In other words, we require cos(2β) = 0 if we wish to preserve the symmetry of these

operators, and so β = π/4 or β = 3π/4. With this in mind, an example of a fiducial

vector for a qubit Weyl-Heisenberg covariant SIC-POVM would be

ϕ =
1√
6

( √
3 +
√

3

eiπ/4
√

3−
√

3

)
. (3.44)

The projection operator for this state, Pϕ, is of the form

Pϕ =
1

2

(
I +

1√
3

(σx + σy + σz)

)
, (3.45)

and its location on the Bloch sphere is show in Figure 3.1

When we start performing investigations in Mathematica, we will work exclusively

with Weyl-Heisenberg covariant SIC-POVMs.

3.1.3 Mutually Orthogonal Latin Squares (MOLS)

We now introduce the concept of a Latin square, so named in honour of Euler, who

introduced such structures, using Latin characters, in his attempts to solve what is known

as the thirty-six officers problem.

Consider a d × d array A : (i, j) 7→ Aij , where i, j = 1, . . . , d, and Aij is the symbol

that appears on the ith row and jth column. We shall restrict ourselves to symbols Aij =
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1, . . . , d.

A particular class of d× d arrays are Latin squares of order d. These are arrays where

Aij 6= Aik ∀ k 6= j, and similarly Aij 6= A`j ∀ ` 6= i. This guarantees that every symbol

appears in each and line and column of the array. An example of a Latin square of order

5 is given in Figure 3.2.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Figure 3.2: A Latin square of order 5.

We now consider two Latin squares of order d, A : (i, j) 7→ Aij and B : (i, j) 7→ Bij ,

and construct a new array of ordered pairs C : (i, j) 7→ (Aij , Bij). The Latin squares A

and B are mutually orthogonal if every pair in C is unique; that is, no ordered pair in C is

repeated. This means that every symbol in A is paired with every symbol in B somewhere

in C. An example of two mutually orthogonal Latin squares of order 5 is given in Figure

3.3, along with the array of ordered pairs formed from them.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

→

(1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
(2, 3) (3, 4) (4, 5) (5, 1) (1, 2)
(3, 5) (4, 1) (5, 2) (1, 3) (2, 4)
(4, 2) (5, 3) (1, 4) (2, 5) (3, 1)
(5, 4) (1, 5) (2, 1) (3, 2) (4, 3)

Figure 3.3: Two mutually orthogonal Latin squares of order 5. As can be checked, no
ordered pair in the rightmost array is repeated twice.

As can be seen, every pair (i, j), i, j = 1, . . . , 5 is formed in the array of ordered pairs.

There is a strict maximum on the number of possible mutually orthogonal Latin squares

of order d, as given by the following Lemma:

Lemma 3.1.1. There can be no more than d − 1 mutually orthogonal Latin squares of

order d.

Proof. Suppose that we possess n mutually orthogonal Latin squares L1, . . . , Ln, and place

the symbols 1, 2, . . . , d in the first row of each Latin square in the order given, that is, the

symbol i appears in the ith column of the first row, but all other rows are so far undecided,

like so

L1 =

1 2 . . . d

− − . . . −
...

...
...

− − . . . −

, L2 =

1 2 . . . d

− − . . . −
...

...
...

− − . . . −

, . . . , Ln =

1 2 . . . d

− − . . . −
...

...
...

− − . . . −

.
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We now decide what must be placed in the first column of the second row. Since they all

contain 1 in the first column we must choose one of the remaining d−1 symbols. Without

loss of generality we let the element in the first column of the second row of L1 contain 2:

L1 =

1 2 . . . d

2 − . . . −
...

...
...

− − . . . −

.

However, this means that the next Latin square cannot have 2 in the same location, as this

would mean that the ordered pair (2, 2) would be repeated between them, contradicting

their mutual orthogonality. Hence, L2 has one of d − 2 possible symbols to choose from.

Following this logic through to Ln, we are left with one possible symbol after d− 1 steps,

and so we conclude that there can be no more than d − 1 mutually orthogonal Latin

squares of order d.

Despite the existence of this upper bound, it is only reached for prime power values

of d. Otherwise, there are at least two mutually orthogonal Latin squares for all values of

d, with the exception of d = 1, 2 and 6, for which there exist one (this last case being a

definitive negative answer for the thirty-six officers problem of Euler) [49].

3.2 Producing MUBs from a SIC-POVM

3.2.1 Motivation: Qubit example

Before going through the construction of finding a collection of MUBs from a SIC-POVM

in a general finite-dimensional space, we will consider the case of a qubit system, where

the connection is more transparent and the construction suggests the way for higher di-

mensions.

For a qubit system, a general SIC-POVM (we are not restricting ourselves to Weyl-

Heisenberg covariant SIC-POVMs at this point) has 4 effects G(i) = 1
2Pi, i ∈ Z4, with

tr [G(i)G(j)] =
2δij + 1

12
. (3.46)

By using the Bloch representation G(i) = 1
4(I + si · σ), where ‖si‖ = 1 for all i , we can

infer a relationship between the Bloch vectors:

1

12
=

1

16
tr [(1 + si · sj)I + (si + sj + isi × sj) · σ]

=
1

8
(1 + si · sj)

⇒ si · sj = −1

3
, i 6= j.

(3.47)

The Bloch vectors correspond to the vertices of a tetrahedron embedded in the Bloch

sphere, as shown in figure 3.4. The fact that the vectors corresponding to the vertices of

a regular tetrahedron centred at the origin add to the zero vector guarantees the normal-

isation of G.
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Figure 3.4: The points associated with the Bloch vectors of a qubit SIC-POVM form the
vertices of a tetrahedron embedded in the Bloch sphere.

We can add these vectors together, leading to new operators. In particular, we define

the vectors

mi =
1

2
(s0 + si), i = 1, 2, 3, (3.48)

which satisfy the following condition:

mi ·mj =
1

4
(‖s0‖2 + s0 · (si + sj) + si · sj)

=
1

4

[
1− 2

3
+

1

3
(4δij − 1)

]
=

1

3
δij .

(3.49)

With (3.49) at hand, the associated effects

Ek(±) =
1

2
(I ±mk · σ), (3.50)

which correspond to smearings of G:

E1(+) = G(0) + G(1), E1(−) = G(2) + G(3),

E2(+) = G(0) + G(2), E2(−) = G(1) + G(3),

E3(+) = G(0) + G(3), E3(−) = G(1) + G(2),

(3.51)

can be seen to satisfy the following properties:

tr
[
Ek(±)E`(±)

]
=

1

2
(1±mk ·m`) =

1

2
, k 6= `. (3.52)

In other words, the POVMs Ek, k = 1, 2, 3 are mutually unbiased. Given the subnor-

malisation of the vectors mk, we could express them in terms of the normalised vectors
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nk =
√

3mk. Hence,

Ek(±) =
1

2

(
I ± 1√

3
nk · σ

)
=

1√
3

[
1

2
(I ± nk · σ)

]
+

√
3− 1

2
√

3
I

=

√
3 + 1

2
√

3

[
1

2
(I ± nk · σ)

]
+

√
3− 1

2
√

3

[
1

2
(I ∓ nk · σ)

]
=

√
3 + 1

2
√

3
Pk(±) +

√
3− 1

2
√

3
Pk(∓),

(3.53)

where Pk is the PVM projecting onto the eigenbasis of Ek. Given the effects Pk(±) are

determined by the Bloch vectors nk, it follows immediately that

tr
[
Pk(±)P`(∓)

]
=

1

2
, k 6= `, (3.54)

i.e., the eigenbases of the POVMs Ek, k = 1, 2, 3 are mutually unbiased, and so we have

constructed a complete set of MUBs from a SIC-POVM in the qubit case.

3.2.2 d-partitions and the one-overlap property

In order to construct MUBs from a SIC-POVM in spaces Hd, where d > 2, we must first

consider how we want to create marginal observables from our SIC-POVM G, as in the

qubit case. This corresponds to forming partitions—disjoint subsets whose union equals

the whole set—of the d2 effects of G, and with this in mind we present the following

definition:

Definition 3.2.1. For a set of d2 elements A = {a1, . . . , ad2}, a d-partition P is a partition

of A into d disjoint bins {P1, . . . ,Pd}, each containing d elements.

Further to this, we introduce the following property:

Definition 3.2.2. Two d-partitions P1, P2 of a set satisfy the one-overlap property if any

two of their bins have just one element in common, i.e., for any two bins P1
µ ∈ P1, P2

ν ∈ P2,

with µ, ν = 1, 2, . . . , d,
∣∣P1

µ ∩ P2
ν

∣∣ = 1.

As a simple example of both of these concepts, consider a set of 9 elements; we can

place these elements in a 3×3 array, and from this we immediately identify two 3-partitions

by splitting the array into its rows and columns, as shown in Figure 3.5. In general, we can

take a d2-element set A = {1, 2, . . . , d2}, and form a d× d array with the first d elements

{1, 2, . . . , d} forming the first row, etc. The corresponding row and column partitions,

denoted by PR and PC respectively, are then given via

PRµ = {(µ− 1)d+ 1, (µ− 1)d+ 2, . . . , µd}, (3.55a)

PCν = {ν, ν + d, . . . , ν + (d− 1)d}. (3.55b)

These partitions, which we shall refer to as Cartesian partitions, immediately satisfy the

one-overlap property.

Lemma 3.2.1. For a given set of d2 elements, the number of d-partitions that satisfy the

one-overlap property is at least 3 and at most d+ 1.
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Figure 3.5: The Cartesian partitions of a set of 9 elements immediately satisfy the one-
overlap property.

Proof. Suppose that there exist n partitions of a set of d2 elements {a1, a2, . . . , ad2}, and

consider the bin in each partition containing the element a1. Since each bin shares this

element, no two bins can share any other element. There exist d2 − 1 elements in the

subset {a2, a3, . . . , ad2}, and each bin contains d− 1 elements that are not repeated in any

of the other bins considered. Therefore n ≤ (d2 − 1)/(d− 1) = d+ 1.

We now express the d2 elements in a d×d array. The Cartesian partitions have already

been seen to be d-partitions that satisfy the one-overlap property, so all that we must do is

show that there exists at least one more, labelled P(3). We begin by relabelling the array

elements into matrix form, (aij). The Cartesian partitions span the rows and columns of

the array, respectively, and so each bin of P(3) can have only one element from each row

and column. The first bin is composed of the main diagonal: P(3)
1 = {a11, a22, . . . , add}.

To compose the remaining bins we consider the diagonals parallel to the main diagonal

defining P(3)
1 . We define S1,j to be the diagonal starting with the element a1j , where

j ≥ 2, and Sd+2−i,1 to be the diagonal starting with ai1 with i ≥ 2. The disjoint bins P(3)
1

and P(3)
ν = S1,ν ∪ Sν,1, ν ∈ {2, 3, . . . , d}, form a d-partition that shares the one-overlap

property with the Cartesian partitions. An example of P(3) is given for a 9-element set in

Figure 3.6, with bins P(3)
1 = {a11, a22, a33} (shown via a red line), P(3)

2 = {a12, a23, a31}
(shown via a green dashed line) and P(3)

3 = {a13, a21, a32} (unlabelled).

Whilst Lemma 3.2.1 provides an upper and lower bound for the number of possible

d-partitions that satisfy the one-overlap property, it does not give us any indication of

how many such partitions are actually obtainable. A more useful value is given via the

following proposition:

Proposition 3.2.2. There is a one-to-one correspondence between the set of d-partitions

{Pk} that satisfy the one-overlap property with respect to the Cartesian partitions and

the set of Latin squares of order d. Furthermore, two d-partitions which also satisfy the

one-overlap property with respect to each other correspond to mutually orthogonal Latin
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Figure 3.6: The partition P(3) for a 9-element set. The bins P(3)
1 and P(3)

2 , are highlighted
by red full and green dashed lines, respectively.

squares.

Proof. Consider a d2-element set A = {1, 2, . . . , d2} placed in a d× d array such that the

first d elements {1, 2, . . . , d} form the first row, etc., as above. The Cartesian partitions,

PR and PC , are therefore given via Equations (3.55a) and (3.55b). Hence, any d-partition

Pk satisfying the one-overlap property with respect to PR and PC cannot possess a bin

containing two elements of the form (µ−1)d+i with µ fixed, or two of the form ν+jd with

ν fixed. In terms of the array, a given d-partition of A acts as a collection of paths through

the array such that only one path coincides with each point on the array (due to the disjoint

nature of the bins). With this interpretation, that the partition Pk satisfies the one-overlap

property with PR and PC means that no bin Pkµ ∈ Pk can contain two elements from the

same row or column. For each point in the array (i, j), which corresponds to the element

(i−1)d+j ∈ A, we can assign to it the value µ(i,j) ∈ {1, 2, . . . , d} corresponding to the bin

Pkµ that element of A belongs to. Since no two elements of a given row or column can be

in the same bin belonging to Pk, each row and column of the array {µ(i,j)} must contain

every value in the set {1, 2, . . . , d} once. Hence, this array is a Latin square of order d.

Conversely, any Latin square of order d details a collection of d disjoint bins, each

containing d elements, that form a partition of a set of d2 elements which satisfy the

one-overlap property the Cartesian partitions.

Consider now two d-partitions of A, Pk and P`, that satisfy the one-overlap property

with respect to the Cartesian partitions (hence correspond to Latin squares of order d), and

also satisfy the one-overlap property with respect to each other. We now construct a d×d
array with each point (i, j) being assigned the ordered pair (µ(i,j), ν(i,j)) ∈ {1, 2, . . . , d} ×
{1, 2, . . . , d} corresponding to the bins Pkµ and P`ν that the value (i− 1)d+ j ∈ A belongs

to in each partition. Since these partitions satisfy the one-overlap property, any two

bins coincide only once, and hence every possible ordered pair (µ, ν) ∈ {1, 2, . . . , d} ×
{1, 2, . . . , d} appears in this array. Therefore, the Latin squares corresponding to these

partitions are mutually orthogonal.
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Corollary 3.2.3. Number of d-partitions satisfying the one-overlap property is equal to 2

plus the number of mutually orthogonal Latin squares of order d.

3.2.3 Mutually unbiased SIC-compatible observables

Suppose that we have a SIC-POVM G on Hd, with d2 effects {G(i)}d2−1
i=0 . For every

partition Pk = {Pk1 , . . . ,Pkd } of the set of effects we define the POVM Ek with effects

Ek(µ) =
∑

G(i)∈Pkµ

G(i). (3.56)

Using the defining properties of our SIC-POVM, we arrive at the following theorem

Theorem 3.2.4. For two POVMs Ek,E` arising from the d-partitions Pk and P`, respec-

tively, of the SIC-POVM G that satisfy the one-overlap property, the following conditions

are satisfied:

1.

tr
[
Ek(µ)

]
= 1 ∀µ = 1, . . . , d; (3.57)

2.

tr
[
Ek(µ)2

]
=

2

d+ 1
∀µ = 1, . . . , d; (3.58)

3.

tr
[
Ek(µ)Ek(ν)

]
=

1

d+ 1
∀µ = 1, . . . , d, ν 6= µ; (3.59)

4.

tr
[
Ek(µ)E`(ν)

]
=

1

d
∀µ, ν if k 6= `. (3.60)

Proof. We will address these results in order.

1. Property 1 is trivial: it is a sum of d operators, each of trace 1/d;

2. tr
[
Ek(µ)2

]
is composed of d terms of the form tr

[
G(i)2

]
and d(d − 1) terms of the

form tr [G(i)G(j)], where i 6= j. Therefore, using equations (3.20) and (3.22),

tr
[
Ek(µ)2

]
= d

(
1

d2

)
+ d(d− 1)

(
1

d2(d+ 1)

)
=
d+ 1 + d− 1

d(d+ 1)
=

2

d+ 1
; (3.61)

3. tr
[
Ek(µ)Ek(ν)

]
, where µ 6= ν, contains just d2 terms of the form tr [G(i)G(j)], where

i 6= j, and so from equation (3.22)

tr
[
Ek(µ)Ek(ν)

]
= d2

(
1

d2(d+ 1)

)
=

1

d+ 1
; (3.62)

4. Since the partitions Pk and P` satisfy the one-overlap property, there exists one

SIC-POVM effect G(i), say, that is shared by the effects Ek(µ) and E`(ν), whilst

the remaining SIC-POVM effects are unique to either Ek(µ) or E`(ν). Therefore,
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tr
[
Ek(µ)E`(ν)

]
contains one term of the form tr

[
G(i)2

]
and d2−1 terms of the form

tr [G(m)G(n)], where m 6= n and at most one of them is equal to i. Hence,

tr
[
Ek(µ)E`(ν)

]
=

(
1

d2

)
+ (d2 − 1)

(
1

d2(d+ 1)

)
=

1 + d− 1

d2
=

1

d
. (3.63)

This concludes the proof.

Definition 3.2.3. A collection of d-outcome POVMs are SIC-compatible if they arise as

margins of a common SIC-POVM.

Remark. From Lemma 3.2.1, we can have at least 3 and up to d + 1 SIC-compatible

observables satisfying the properties given by Equations (3.57)-(3.60). This highlights

an interesting feature of these SIC-compatible observables: For a general set of n jointly

measurable d-outcome observables, we would näıvely expect the joint observable to possess

dn outcomes, and yet here we have up to d+ 1 jointly measurable observables whose joint

observable, the SIC-POVM G possesses only d2 outcomes instead of dd+1.

We now properly label what we saw in the qubit case, and also in equation (3.60):

Definition 3.2.4. Two POVMs, Ek and E`, acting on Hd are mutually unbiased if

tr
[
Ek(i)E`(j)

]
=

1

d
∀ i, j. (3.64)

Instead of simply being sufficient, the construction of d-partitions and the one-overlap

property are necessary if we want mutually unbiased SIC-compatible POVMS:

Proposition 3.2.5. If a set of at least 3 mutually unbiased POVMs Ek are SIC-compatible,

then their associated partitions are d-partitions, Pk, that satisfy the one-overlap property.

Proof. We begin with our collection of margin POVMs Ek. We assume nothing about the

number of effects each POVM possesses, nor do we assume anything about the number of

SIC-POVM effects used to form a given effect of any of the Ek. In terms of the partitions

Pk forming each of the POVMs, this means that we assume nothing about the number of

bins each partition possesses, or the number of elements in each bin. Further to this, we

assume nothing about how much any two bins from different partitions intersect.

The first two POVMs that we consider, Ek and E`, are given by partitions Pk and

P`, which contain mk and m` bins, respectively. The number of elements in a given

bin of Pk is given by
∣∣Pkµ∣∣ = nkµ, and similarly n`ν =

∣∣P`ν∣∣. It follows immediately that∑
µ n

k
µ =

∑
ν n

`
ν = d2. We denote the overlap between two bins by ak,`µ,ν =

∣∣Pkµ ∩ P`ν∣∣.
Since every element of Pkµ belongs to a bin in P`, and similarly for the elements of P`ν in

Pk, it follows that
∑

µ a
k,`
µ,ν = n`ν and

∑
ν a

k,`
µ,ν = nkµ.

Looking at the mutual unbiasedness of these POVMs in this light, we see

1

d
= tr

[
Ek(µ)E`(ν)

]
=

1

d2
ak,`µ,ν +

1

d2(d+ 1)
(nkµn

`
ν − ak,`µ,ν)

=
1

d2(d+ 1)
(dak,`µ,ν + nkµn

`
ν).

(3.65)
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If we sum over ν:

m`

d
=
∑
ν

1

d
=

1

d2(d+ 1)
(d
∑
ν

ak,`µ,ν + nkµ
∑
ν

n`ν)

=
1

d2(d+ 1)
d(d+ 1)nkµ

=
nkµ
d
.

(3.66)

In other words, nkµ = m` for all µ, and similarly n`ν = mk for all ν. Since nkµ is fixed for all

µ, we shorten the notation to nk, and similarly we change n`ν to n`, and so we now have

nkmk = n`m` = mkm` = d2.

We now introduce the third margin Ej satisfying tr
[
Ej(σ)Ek(µ)

]
= tr

[
Ej(σ)E`(ν)

]
=

1/d for all σ, µ, ν. By repeating the preceding argument, we find that nk = n` = mj , and

so d = mk = nk, and likewise for the other partitions. In other words, mutually unbiased

SIC-compatible POVMs arise from d-partitions. Further to that, from Equation (3.65),

ak,`µ,ν = d+ 1−
nkµn

`
ν

d
= d+ 1− d = 1. (3.67)

That is, the partitions satisfy the one-overlap property, which concludes the proof.

Corollary 3.2.6. There exist at least 3 and at most d+1 mutually unbiased SIC-compatible

POVMs defined onHd. In the case of dimension 6, there cannot exist more than 3 mutually

unbiased SIC-compatible POVMs.

The first point here is a direct result of Lemma 3.2.1, whilst the second follows from

Corollary 3.2.3 and the non-existence of two mutually orthogonal Latin squares of order

6.

3.2.4 Commutative mutually unbiased SIC-compatible POVMs

We now restrict our consideration to cases where the mutually unbiased SIC-compatible

POVMs we work with are commutative. As will be highlighted in Section 3.5, this is

indeed a restriction, but it allows us to present some important results.

By commutative POVMs we mean POVMs E whose effects commute, i.e., [E(µ),E(ν)] =

0 for all µ, ν in the POVM’s outcome space. Such POVMs possess a common eigenbasis,

and can therefore be expressed in the following form

E(ν) =
∑
k

λν,kP(k), (3.68)

where P(k) is the projection onto the shared eigenstate of the effects, and the λν,k is the

respective eigenvalue, i.e. E(ν)P(k) = λν,kP(k). If we denote by P the vector of projections

P(k), i.e., P = (P(1),P(2), . . . ,P(d)), and by λν the vector of eigenvalues for the effect

E(ν), then Equation (3.68) can be rewritten in terms of the scalar product

E(ν) = λν · P. (3.69)
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Using Equation (3.68), and the linear independence of the projections P(k), the normali-

sation of E leads to

I =
∑
ν

E(ν) =
∑
ν

∑
k

λν,kP(k) =
∑
k

(∑
ν

λν,k

)
P(k). (3.70)

In other words, ∑
ν

λν,k = 1 ∀ k, or
∑
ν

λν = I, (3.71)

where I = (1, 1, . . . , 1) is the d-dimensional unit vector. If we now consider the SIC-

compatible POVMs from the preceding discussions, then, by Theorem 3.2.4, we can impose

further restrictions on the λν,k. From Equation (3.57):

1 = tr [E(ν)] =
∑
k

λν,ktr [P(k)] =
∑
k

λν,k = λν · I ∀ ν. (3.72)

In other words, the matrix Λ = [λν,k] of eigenvalues for the commutative SIC-compatible

POVM E is doubly stochastic, as well as lying on the d−1-dimensional hyperplane λ·I = 1.

Continuing with the results of Theorem 3.2.4, if we now consider Equation (3.58):

2

d+ 1
= tr

[
E(ν)2

]
=
∑
k,`

λν,kλν,` tr [P(k)P(`)] =
∑
k

λ2
ν,k = ‖λν‖2 . (3.73)

Equation (3.73) tells us that the eigenvalue vectors λν lie on the surface of a d− 1-sphere

in Rd centred at the origin with radius
√

2/(d+ 1). Given that the effects of E all have

positive eigenvalues, these vectors all lie within the positive region of Rd. Finally, from

Equation (3.59):

1

d+ 1
= tr [E(ν)E(µ)] =

∑
k,`

λν,kλµ,` tr [P(k)P(`)] =
∑
k

λν,kλµ,k = λν · λµ. (3.74)

At this point we define the vector

rν = λν −
1

d
I. (3.75)

These vectors satisfy the following two properties:

‖rν‖2 = ‖λν‖2 +
1

d2
‖I‖2 − 2

d
λν · I

=
2

d+ 1
− 1

d
=

d− 1

d(d+ 1)
, (3.76a)

rν · rµ = λν · λµ +
1

d2
‖I‖2 − 1

d
I · (λν + λµ)

=
1

d+ 1
− 1

d
= − 1

d(d+ 1)
, (3.76b)

where we have made use of Equation (3.72) in both parts, as well as the fact that ‖I‖2 = d.
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From Equation (3.76b) we have

− 1

d(d+ 1)
= rν · rµ = ‖rν‖ ‖rµ‖ cos θ =

d− 1

d(d+ 1)
cos θ. (3.77)

In other words, cos θ = −1/(d− 1) for any two r vectors defined above. This is a charac-

teristic of the vertices of a regular d-simplex, and so the eigenvalue vectors point to the

vertices of a regular d-simplex centred at the point (1/d)I. We summarise these results in

the following proposition:

Proposition 3.2.7. Consider a commutative POVM E with effects E(ν) =
∑

k λν,kP(k) =

λν · P that are of unit trace and satisfy tr [E(ν)E(µ)] = 1/(d+ 1). The eigenvalue vectors

λν ∈ Rd correspond to the vertices of a regular d − 1-simplex centred at (1/d)I that

is embedded in the intersection of the d − 1-dimensional hyperplane λ · I = 1 and the

d− 1-sphere centred at the origin with radius
√

2/(d+ 1).

It is with these geometric properties of the eigenvalue vectors that we now prove the

following theorem:

Theorem 3.2.8. Consider two commutative POVMs Ek and E`, whose effects have unit

trace and satisfy Equation (3.59). If their effects have the spectral decompositions given

by Equation (3.68), i.e.,

Ek(ν) =
∑
i

λkν,iP
k(i), E`(µ) =

∑
j

λ`µ,jP
`(j), (3.78)

then the following equivalence holds:

tr
[
Ek(ν)E`(µ)

]
=

1

d
∀ µ, ν ⇐⇒ tr

[
Pk(i)P`(j)

]
=

1

d
∀ i, j. (3.79)

Proof. The trivial part of this proof comes when we begin by assuming that tr
[
Pk(i)P`(j)

]
=

1/d for all i, j. In which case

tr
[
Ek(ν)E`(µ)

]
=
∑
i,j

λkν,iλ
`
µ,jtr

[
Pk(i)P`(j)

]
=

1

d

(∑
i

λkν,i

)∑
j

λ`µ,j

 =
1

d
. (3.80)

We now assume that tr
[
Ek(ν)E`(µ)

]
= 1/d for all ν, µ. This can be expressed differently:

1

d
= tr

[
Ek(ν)E`(µ)

]
=
∑
i,j

λkν,iλ
`
µ,jtr

[
Pk(i)P`(j)

]
=:
∑
i,j

λkν,iq
k,`
i,j λ

`
µ,j , (3.81)

where qk,`i,j = tr
[
Pk(i)P`(j)

]
. This is equivalent to

ΛkQk,`(Λ`)T =
1

d
U, (3.82)

where Λk = [λkν,i] as above, Qk,` = [qk,`i,j ] and Uij = 1 for all i, j. Because the rows of

Λk and Λ` correspond to the vertices of a regular simplex in a hyperplane not containing

the origin, they must be linearly independent, and hence both Λk and Λ` are invertible.
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Therefore there must exist two matrices, Γk and Γ`, such that

ΛkΓk = Λ`Γ` = I, (3.83)

and so

Qk,` =
1

d
ΓkU(Γ`)T . (3.84)

A matrix A has rows which add to unity iff AIT = IT , with IT = (1, 1, . . . , 1)T . This

property hence follows for matrices which are stochastic in their rows. From the row

stochasticity of Λk, it follows that

IT = IIT = (ΓkΛk)IT = ΓkIT , (3.85)

and similarly, due to the column stochasticity of Λ`, and hence the row stochasticity of

(Λ`)T ,

IT = (Γ`)T IT . (3.86)

Hence, both Γk and (Γ`)T have rows which add to unity (although they will not usually

be stochastic, as they will not be positive definite). From Equations (3.85) and (3.86) it

follows immediately that

ΓkU = U = U(Γ`)T , (3.87)

and so

Qk,` =
1

d
ΓkU(Γ`)T =

1

d
U. (3.88)

In other words,

qk,`i,j = tr
[
Pk(i)P`(j)

]
=

1

d
∀ i, j, (3.89)

which concludes the proof.

It is from this theorem that we can conclude the main result for this section of our

investigation:

Corollary 3.2.9. Assume that G is a SIC-POVM, which possesses a collection of commu-

tative margins Ek arising from d-partitions satisfying the one-overlap property, i.e., the

Ek are commutative mutually unbiased SIC-compatible POVMs. The eigenbases of the

associated margins are then mutually unbiased.

With Theorem 3.2.8 and Corollary 3.2.9 we have shown that by starting with a SIC-

POVM G and by constructing d-partitions of the effects of G, we are capable of, in some

instances, finding up to a complete set of d+ 1 MUBs. In other words, we have shown an

example of how compatible observables – the margins of G – can be intricately linked to

the most incompatible observables on the system – the set of MUBs.
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3.3 Producing a SIC-POVM from MUBs

3.3.1 Qubit example

Much like in the previous section, we will begin by considering the qubit case in order to

get an understanding for the construction that follows.

We begin with 3 MUBs Pk(±) = (1/2)(I±nk ·σ), and apply some smearing parameter

λ ∈ (0, 1) to create the mutually unbiased POVMs

Ek(±) = λPk(±) + (1− λ)
1

2
I =

1

2
(1 + λ)Pk(±) +

1

2
(1− λ)Pk(∓). (3.90)

As can be seen, the mutual unbiasedness of the Ek is independent of the value of λ, and is

a result of the effects being of unit trace and the mutual unbiasedness of the eigenbases,

as was shown in the proof of Theorem 3.2.8. Further to this, these effects satisfy

tr
[
Ek(±)2

]
= λ2tr

[
Pk(±)2

]
+ λ(1− λ)tr

[
Pk(±)

]
+ (1− λ)2 1

4
tr [I]

= λ2 + λ(1− λ) +
1

2
(1− λ)2 =

1

2
(1 + λ2), (3.91a)

tr
[
Ek(±)Ek(∓)

]
= λ2tr

[
Pk(±)Pk(∓)

]
+

1

2
λ(1− λ)tr

[
Pk(±) + Pk(∓)

]
+ (1− λ)2 1

4
tr [I]

= λ(1− λ) +
1

2
(1− λ)2 =

1

2
(1− λ2). (3.91b)

We now presuppose the existence of a set of four operators {G(i)}3i=0 such that the effects

of these mutually unbiased POVMs can be derived in the form of Equation (3.51). In such

a case, the G(i) operators would be recovered by summing over these effects and noting

that
∑3

i=0 G(i) = I:

E1(+) + E2(+) + E3(+) = 3G(0) + G(1) + G(2) + G(3) = 2G(0) + I,

E1(+) + E2(−) + E3(−) = 3G(1) + G(0) + G(2) + G(3) = 2G(1) + I,

E1(−) + E2(+) + E3(−) = 3G(2) + G(0) + G(1) + G(3) = 2G(2) + I,

E1(−) + E2(−) + E3(+) = 3G(3) + G(0) + G(1) + G(2) = 2G(3) + I.

(3.92)

In other words, the operators G(i) can be expressed in the following form:

G(0) =
1

2
(E1(+) + E2(+) + E3(+)− I),

G(1) =
1

2
(E1(+) + E2(−) + E3(−)− I),

G(2) =
1

2
(E1(−) + E2(+) + E3(−)− I),

G(3) =
1

2
(E1(−) + E2(−) + E3(+)− I).

(3.93)

Using Equation (3.90), the G(i) can be expressed in terms of the MUB projections Pk(±),
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and further to that expressed in terms of their Bloch representation:

G(i) =
1

2
(E1(±) + E2(±) + E3(±)− I)

=
1

2

(
λ(P1(±) + P2(±) + P3(±)) +

3

2
(1− λ)I − I

)
=

1

2

(
λ

(
3

2
I +

1

2
(±n1 ± n2 ± n3) · σ

)
+

1

2
(1− 3λ)I

)
=

1

4
(I + λs · σ),

(3.94)

where s = ±n1 ± n2 ± n3. Because the projections Pk(±) are mutually unbiased for

different k, it follows that their respective Bloch vectors must be perpendicular. As a

result of this, the vector s has square norm ‖s‖2 =
∑3

i=1 ‖ni‖
2 = 3. The operator G(i)

therefore has eigenvalues (1/4)(1 ±
√

3λ), and so whilst the G(i) are always self-adjoint,

they are positive iff λ ≤ 1/
√

3.

By checking Equation (3.93), we can see that

3∑
i=0

G(i) =
3∑

k=1

Ek(+) +
3∑

k=1

Ek(−)− 2I = I, (3.95)

as we expected (and, indeed, relied upon). We next note that any two of the G(i) share

just one effect, whilst the remaining effects are different. The product of any two therefore

contains one term of the form Ek(±)2, two of the form Ek(±)Ek(∓) and 6 of the form

Ek(±)E`(∓), where ` 6= k, as well as 6 instances of a product of an effect with the identity

and one of the identity with itself. Hence,

tr [G(i)G(j)] =
1

4

(
1

2
(1 + λ2) + (1− λ2) +

6

2
− 6 + 2

)
=

1

8
(1− λ2). (3.96)

From this, we see that the symmetric property tr [G(i)G(j)] = 1/12 is satisfied iff λ = 1/
√

3.

In this instance, the effects Ek(±) are positive, and so the G(i) form not only a POVM,

but a SIC-POVM.

3.3.2 An additional combinatorial construction

In order to generalise the construction used in the qubit case, we first need to consider

one further combinatorial structure.

Consider a (d+ 1)× d array of points that possesses a system of paths. Each path is

of length d+ 1—that is, each path coincides with d+ 1 points in the array—and contains

one element from each row of the array. Further to this, we assume that the paths share

an analogue of the one-overlap property: any two paths through this array intersect in

exactly one point.

Lemma 3.3.1. Let ε = {εij} be a (d + 1) × d array of points. There exist at most d2

paths pi through ε containing one point from each row such that any two paths satisfy

the one-overlap property.

Proof. Consider every path beginning at the jth point on the first row; that is, at the point
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Figure 3.7: An example of 9 possible paths that overlap once through a 4× 3 array such
that every path coincides with each row once. Note that no further path could be added
that would only overlap with each other path once.

ε1j . Each of these paths shares ε1j in common and after this these paths can no longer

intersect. In which case, these paths must coincide with different points on the second

row, of which there are d, i.e., there can be at most d paths of the type described starting

at ε. We may perform the same argument for any of the points on the first row of ε, of

which there are d, and so we must have at most d2 such paths through ε.

An example of this construction for d = 3 is given in Figure 3.7. Given the numbers

considered here, namely d(d + 1) and d2, we may suspect that there is some connection

between this array and the d × d arrays considered in Section 3.2.2. This is indeed the

case:

Proposition 3.3.2. Consider a d×d array A with a complete set of d+ 1 d-partitions {Pk}
satisfying the one-overlap property and a (d + 1) × d array ε with a complete set of d2

paths of length d + 1 that coincide with one element from each row and any two paths

overlap once. Then A and ε are equivalent, with the points and paths in A corresponding

to the paths and points in ε, respectively.

Proof. We shall start with the d × d array A = {aij} and the d + 1 d-partitions {Pk}
satisfying the one-overlap property. We construct a (d + 1) × d array ε = {εij} in the

following way: each point in ε corresponds to a bin of a partition of A and the d bins of a

given partition of A form a row of ε, i.e., the point εiµ corresponds to the bin P iµ and the

bins of the partition Pj form the jth row of ε.

Since each element aij ∈ A belongs to a bin in each partition, we may construct a path

pij connecting every bin containing aij . We denote by

rk : {1, 2, . . . , d} × {1, 2, . . . , d} → {1, 2, . . . , d}, (3.97)
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Figure 3.8: The equivalence between a d × d array A with d + 1 d-partitions satisfying
the one-overlap property and a (d+ 1)× d array ε with d2 downward paths satisfying the
one-overlap property. (a) Starting with the d×d array A, for each d-partition we associate
with each bin a point in the (d+ 1)× d array ε, with a given d-partition forming a row of
ε. For each point aij in A we then define a path pij through ε that passes through each
point corresponding to a bin containing aij . (b) If we now start with the (d+ 1)× d array
ε, we associate the path pij through ε, which is the jth path to start at the point ε1i, with
the point aij in the d × d array A. Every point εij is then associated with the jth bin of
ith d-partition of A corresponding to the paths through ε that pass through εij .

with k = 1, . . . , d+ 1, the function that performs the map for which

aij ∈ Pkrk(i,j). (3.98)

In other words, rk maps (i, j) to the bin in the kth partition that contains the element aij .

Note that, since aij can only belong in one bin per partition, due to the disjoint nature

of partitions, there is no ambiguity when we talk about the bin aij belongs to for a given

partition. With this notation, we denote the path pij through ε as follows:

pij =
{
P1
r1(i,j),P

2
r2(i,j), . . . ,P

d+1
rd+1(i,j)

}
. (3.99)

Since each element of A belongs to only one bin per partition, every path constructed

in this way coincides with each row only once. This construction is given in Figure 3.8

(a).

A given path pij on ε coincides with d+1 bins that, by way of the one-overlap property

between these bins, can only have the element aij in common. Each bin in this path hence

contains d− 1 elements of A that are distinct from aij and the elements of the other bins

in the path. As a result, the path contains (d + 1)(d − 1) + 1 = d2 distinct elements of

A, i.e., every element of A is contained within each path on ε, and for every aij ∈ A and

path pµν on ε, there is a k = 1, . . . , d+ 1 such that

aij ∈ Pkrk(µ,ν). (3.100)

Because of this, any two paths must overlap at least once: trivially, aij ∈ P`r`(i,j) for

all ` = 1, . . . , d + 1, and there must exist a k such that aij ∈ Pkrk(µ,ν) by the preceding

argument. In which case, ∣∣∣Pkrk(i,j) ∩ P
k
rk(µ,ν)

∣∣∣ 6= ∅, (3.101)

and so the sets must coincide due to the disjoint nature of partitions. Hence, the paths
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pij and pµν overlap on the kth row.

Let us now suppose that two paths, pij and pµν , overlap twice, i.e., there exist k and

` such that

Pkrk(i,j) = Pkrk(µ,ν) and P`r`(i,j) = P`r`(µ,ν). (3.102)

By the definition of these paths, this is equivalent to the existence of two elements aij , aµν ∈
A such that

aij , aµν ∈ Pkrk(i,j) and aij , aµν ∈ P`r`(i,j). (3.103)

However, this violates the one-overlap property that these bins were assumed to satisfy,

and so it cannot be that these paths pij and pµν overlap more than once. Hence, we have

constructed d2 paths of length d + 1 on ε that coincide with one element from each row

and overlap with any other path only once.

Consider now the (d + 1) × d array ε = {εij} with d2 paths as described above. We

construct a d× d array A = {aij} by associating each point aiµ with the path piµ, where

piµ corresponds to the µth path that starts at the point ε1i ∈ ε, i.e., the first row of A

corresponds to the paths that start at ε11, etc.

For each point εij ∈ ε, there are d paths that coincide with it, and none of these paths

will coincide with any other element from the ith row of ε. Using a similar notation as

before, we denote by

µk : {1, 2, . . . , d+ 1} × {1, 2, . . . , d} → {1, 2, . . . , d}, (3.104)

with k = 1, 2, . . . , d, the map for which

εij ∈ pkµk(i,j). (3.105)

That is, µk maps (i, j) to the path through ε that starts at the point ε1k and contains εij .

We therefore have associated with each point εij ∈ ε, with i 6= 1, the set

P ij = {p1µ1(i,j), . . . , pdµd(i,j)}, (3.106)

and for i = 1 we have

P1
j = {pj1, . . . , pjd}. (3.107)

These sets each contain d paths and, for a fixed i, the sets P ik and P i` are disjoint, otherwise

they would contain paths through ε which coincide with the ith row twice, which is not

possible by construction. In other words, the set {P ik}dk=1 for a fixed i forms a partition of

the paths through ε, which, by construction, correspond to the points in A, i.e., we have

constructed d-partitions of A. As a trivial example, the set {P1
k}dk=1 forms a partition of

A into horizontal bins. Given each row corresponds to a partition of A, and ε possesses

d + 1 rows, we have a set of d + 1 d-partitions of A. This process is illustrated in Figure

3.8 (b).

From the one-overlap property for paths on ε, we find a one-overlap property between

the bins of the partitions on A. Suppose that the intersection of two bins from different

partitions of A, P iµ and Pjν , contains two elements. This means that there are two paths
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through ε that share two elements in common, namely εiµ and εjν . This is, however, a

violation of the one-overlap property for these paths, and so it must be that these bins from

different partitions of A cannot share more than one element in common. If, on the other

hand, the intersection of two bins from different partitions is empty, then this corresponds

to two points in ε on different rows that are not connected by a path. However, consider

the paths that intersect at any point in ε: there are d such paths that cannot intersect

again, and so on every subsequent (and preceding) row they must be dispersed separately

amongst the d elements on each of these rows. This means that if two points in ε on

different rows are not connected by a path, then there exists a point on one of these rows

upon which two paths intersect for a second time, which we have already shown not to be

possible. Hence, the bins from these partitions must intersect once and only once, and so

we have shown that the d + 1 d-partitions of A satisfy the one-overlap property between

bins. This concludes the proof.

3.3.3 SIC systems from mutually unbiased POVMs

We now generalise the results for the qubit case, and see that further restrictions are

required in order to guarantee that what we derive is indeed a SIC-POVM.

Let us begin with an ensemble of d + 1 d-outcome POVMs Ek, k = 1, . . . , d + 1. By

denoting the µth effect of Ek by Ek(µ), we construct the (d+ 1)× d array ε = {εij} with

εkµ = Ek(µ):

ε =

E1(1) . . . E1(d)
...

. . .
...

Ed+1(1) . . . Ed+1(d)

. (3.108)

As we did in the qubit case, we presuppose that the POVMs Ek are margins of a d2-

outcome observable G = {G(i)}d2−1
i=0 such that each POVM is associated with a d-partition

of G and the partitions satisfy the one-overlap property with respect to each other. As

a result of this, no effects from the same POVM can share an operator G(i), whilst any

two effects from different POVMs must share just one. We can associate with each effect

G(i) a path pi through ε such that pi coincides with the effects that contain G(i). We

immediately have the following properties for these paths:

1. Each effect G(i) occurs in only one effect for each of these POVMs, so its associated

path must be strictly downwards, i.e., pi coincides with only one point per row in ε.

Hence, each path pi is of length d+ 1;

2. Since any two effects of these margin POVMs share only one operator G(i) in com-

mon, the paths through ε must only intersect once: suppose that the paths pi and pj

intersect twice, then there would exist two effects from different POVMs that share

two operators, namely G(i) and G(j), in common, which violates the requirements

of the construction.

This is clearly the combinatorial structure that we have just discussed, and so, by

Proposition 3.3.2, there must exist d2 downward paths of length d+ 1 in ε satisfying the

one-overlap property.
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Consider the path pi, which connects all effects in the array ε that contain the operator

G(i). We now define the operator

Ei =
∑
k

Ek(ν(i, k)), (3.109)

where, similarly to the previous section, ν(i, k) is a map such that Ek(ν(i, k)) is the effect

that contains G(i) in the kth POVM. Each effect included in the path pi has G(i) in

common, but otherwise the operators G(j), j 6= i, contained in the effects are distinct.

This path is of length d + 1 and each effect corresponds to a bin of a d-partition, so the

path must contain d − 1 operators distinct from G(i) and the operators in every other

effect in the path. Hence, we require (d+ 1)(d− 1) = d2 − 1 operators other than G(i) in

order to describe Ei. Since the POVMs Ek arise from partitions of G, it follows that

d2−1∑
i=0

G(i) =
∑
µ

Ek(µ) = I, (3.110)

for all k. Hence, the d2 − 1 operators G(j), with j 6= i, must add up to I − G(i), and so

Ei =
∑
k

Ek(ν(i, k))

= (d+ 1)G(i) +
∑
j 6=i

G(j)

= (d+ 1)G(i) + (I − G(i))

= dG(i) + I.

(3.111)

By rearranging we are led to the following proposition:

Proposition 3.3.3. Assume that a d2-outcome POVM G possesses d+ 1 margins Ek asso-

ciated with a complete system of d-partitions that satisfy the one-overlap property with

respect to each other. We may retrieve the operators G(i) from the margin POVMs via

G(i) =
1

d
(Ei − I), (3.112)

with Ei given by Equation (3.109).

Theorem 3.3.4. Consider a family of d+ 1 POVMs Ek that are mutually unbiased, i.e.,

tr
[
Ek(µ)E`(ν)

]
=

1

d
, k, ` = 1, . . . , d+ 1, µ, ν = 1, . . . , d, (3.113)

whenever k 6= `, and whose effects satisfy

tr
[
Ek(µ)Ek(ν)

]
=

1

d+ 1
, k = 1, . . . , d+ 1, ν 6= µ. (3.114)

Assume that there exist d2 sets pi, i ∈ Zd2 , each composed of d+ 1 effects with one taken

from each POVM such that the one-overlap property is satisfied. If we denote by Ei the

sum of effects in a given set, then the d2 operators G(i) := (1/d)(Ei−I) form a SIC-POVM

iff the G(i) are positive.

83



Proof. The first thing we note is that from Equations (3.113) and (3.114), we also have

that

tr
[
Ek(µ)

]
= 1, tr

[
Ek(µ)2

]
=

2

d+ 1
, (3.115)

for all k = 1, . . . , d + 1 and µ = 1, . . . , d. The first of these comes from Equation (3.113)

and the normalisation of these POVMs:

tr
[
Ek(µ)

]
= tr

[
Ek(µ)I

]
=
∑
ν

tr
[
Ek(µ)E`(ν)

]
= d · 1

d
= 1, (3.116)

meanwhile the second is a result of Equations (3.114) and (3.116):

tr
[
Ek(µ)2

]
= tr

Ek(µ)

I −∑
ν 6=µ

Ek(ν)

 = 1− d− 1

d+ 1
=

2

d+ 1
. (3.117)

As a result of Equation (3.116), the operators Ei must have trace d+ 1, and so

tr [G(i)] =
1

d
tr [Ei − I] =

1

d
(d+ 1)− 1 =

1

d
. (3.118)

Next, in calculating tr
[
G(i)2

]
we note that tr

[
E2
i

]
contains d + 1 terms of the form

tr
[
Ek(ν)2

]
= 2/(d+ 1) and d(d+ 1) of the form tr

[
Ek(µ)E`(ν)

]
= 1/d. Hence,

tr
[
G(i)2

]
=

1

d2
tr
[
E2
i − 2Ei + I

]
=

1

d2

(
2(d+ 1)

d+ 1
+
d(d+ 1)

d
− 2(d+ 1) + d

)
=

1

d2
.

(3.119)

If we now consider the product G(i)G(j), the trace of the product EiEj is only slightly

more complicated: since these operators correspond to two sets, pi and pj , which share just

one element in common, we have one term of the form tr
[
Ek(µ)2

]
= 2/(d+1) and d of the

form tr
[
Ek(µ)Ek(ν)

]
= 1/(d+ 1), followed by d(d+ 1) of the form tr

[
Ek(µ)E`(ν)

]
= 1/d,

as in the previous case. Hence,

tr [G(i)G(j)] =
1

d2
tr [EiEj − Ei − Ej + I]

=
1

d2

(
2

d+ 1
+

d

d+ 1
+
d(d+ 1)

d
− 2(d+ 1) + d

)
=

1

d2(d+ 1)
.

(3.120)

These trace conditions are exactly those found with the effects of a SIC-POVM. Further

to this, we have already shown that
∑

i G(i) = I, so the G(i) are both symmetric and, by

being d2 linearly independent operators, informationally complete. However, at no point

have we assumed positivity of these operators, nor have shown it, and so G = {G(i)} is a

SIC-POVM iff the operators G(i) are all positive.

As is concluded at the end of Theorem 3.3.4, there is no reason to assume that the
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G(i) will be positive. We therefore provide the following definition

Definition 3.3.1. Consider a set of d2 operators {G(i)} satisfying

tr [G(i)] =
1

d
, tr

[
G(i)2

]
=

1

d2
, tr [G(i)G(j)] =

1

d2(d+ 1)
, (3.121)

and
∑

i G(i) = I. Such a set of operators is called a SIC system. If positivity can be

guaranteed for all d2 operators, then the SIC system forms a SIC-POVM.

Hence, Theorem 3.3.4 tells us that from a complete set of mutually unbiased POVMs

we may always construct a SIC system.

Let us now suppose that we possess a collection of MUBs {ϕki }di=1, with k = 1, . . . , n

with associated PVMs Pk(i) =
∣∣ϕki 〉〈ϕki ∣∣. We now, for each PVM, take a stochastic matrix

Λk = [λkij ] and smear the PVMs, as in Equation (3.68), to create d-valued POVMs:

Ek(ν) =
∑
i

λkνiP
k(i). (3.122)

Proposition 3.3.5. The POVMs Ek obtained by smearing mutually unbiased PVMs via

Equation (3.68) are themselves mutually unbiased iff the effects Ek(ν) of each POVM are

unit trace (this corresponds to each of the Λk being a doubly stochastic matrix).

Proof. If we assume that the effects are unit trace, then by Theorem 3.2.8 we have that

they are also mutually unbiased.

Conversely, if the d-valued POVMs Ek and E` are mutually unbiased, then from the

normalisation of these POVMs,

tr
[
Ek(ν)

]
=
∑
µ

tr
[
Ek(ν)E`(µ)

]
=
∑
µ

1

d
= 1, (3.123)

which concludes the proof.

By making use of Proposition 3.3.5 and Theorem 3.3.4, we see that by starting with a

complete set of MUBs, we may smear them using doubly stochastic matrices so that the

resultant POVMs are mutually unbiased. If, further to this, the effects of a given POVM

satisfy Equation 3.114, then we may construct a SIC system from these mutually unbiased

POVMs, and even, in some instances, a SIC-POVM if the operators derived via Equation

(3.112) are positive.

3.4 A comparison with the work of Wootters.

As part of a 2006 Festschrift honouring Asher Peres [55], Wootters published a paper

describing a similar structure to the one presented in this chapter. We will begin here by

describing his construction and how it can relate to SIC-POVMs and MUBs. We will then

highlight where the differences lie between our constructions, and see that whilst what we

have presented here is less simple than the work of Wootters, it does not possess the same

shortcomings.
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3.4.1 From mutually unbiased striations to MUBs

The geometric construction considered by Wootters is defined as follows:

Definition 3.4.1. Consider a set A of d2 points. A striation on A is a partition of the

points into d parallel lines such that no point is contained in more than one line. Two

striations are mutually unbiased if any two lines from the different striations coincide at

only one point.

This structure is very similar in nature to the definition of d-partitions that we have

given above, and so we know that for a set A of d2 points we can construct up to d + 1

mutually unbiased striations. Further, we can place these points in an array such that we

may construct “Cartesian striations”, and so any striations that are mutually unbiased

to these will correspond to a Latin square of order d, with mutually unbiased striations

leading to mutually orthogonal Latin squares.

Where our work differs from that of Wootters is in the assignment of the points and

lines: each point α ∈ A corresponds to a self-adjoint operator Cα/d, whilst every line λ

belonging to a striation corresponds to a rank-one projection P(λ). The operators {Cα}
satisfy the following properties:

1. tr [Cα/d] = 1/d for all α ∈ A;

2. tr [(Cα/d)(Cβ/d)] = (1/d)δαβ;

3.
∑

α∈λCα/d = P(λ).

From these properties, we have that the P(λ) associated with a given striation are

normalised and mutually orthogonal, and therefore linearly independent. Since we have

d such rank-one projection operators, their associated vector states form an orthonormal

basis for Hd. Furthermore, given that any two lines, λ and µ, from different striations

coincide at just one point, the trace of their respective projections, P(λ) and P(µ), must

equal 1/d. Therefore the bases associated with mutually unbiased striations are themselves

mutually unbiased.

There are similarities between our construction and the one of Wootters. Whilst his

construction is more immediate in its derivation of MUBs—appearing as lines in mutually

unbiased striations as opposed to ours, where the bins of partitions correspond to mutually

unbiased POVM effects that lead to MUBs if the POVMs are commutative—the degree to

which the operators Cα is known beforehand is much less. Whilst he possesses some trace

properties that the operators must satisfy, there is not greater detail available from this

construction, and it is not in general obvious how the Cα are constructed. By contrast,

we know that the operators that we partition are the effects of a SIC-POVM, and so we

already have the starting operators constructed.

3.4.2 Affine planes

Before moving onto the construction for SIC-POVMs, we consider a final combinatorial

structure, of which a set of d2 points and d+1 mutually unbiased striations are an example.
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Definition 3.4.2. An affine plane of order d is a set A of d2 points and d(d+ 1) lines such

that

1. For any two points there exists exactly one line that passes through both;

2. For any point α ∈ A and line λ, there exists a single line that is parallel (non-

intersecting) to λ and coincides with α;

3. There exist three points that are non-collinear, i.e., there exist 3 points such that

there does not exist a line that is coincident with all 3.

Given the existence of complete sets of mutually unbiased striations for prime power

dimensions, we know that affine planes must exist for prime power orders. Otherwise,

there are only certain details known for non-prime power dimensions, including the lack

of existence of an affine plane of order 61.

3.4.3 Construction of a SIC-POVM

We will now try to use this construction to find a SIC-POVM G associated with a set A of

points, and lines defined on A such that the sum of the elements of a line form a rank-one

projection P(i) = dG(i), where G(i) is an effect belonging to G. At this point, we do not

know how many elements are in A, and in order to determine the number of points needed,

both belonging to a line and in A in general, Wootters made use of an idea given by Zauner

in his thesis [58]. This idea provides a bridge between the cardinality of a set of points

and the trace of the operator corresponding to that set: If M is an operator corresponding

to a subset of elements of a geometric construct, then let that subset be denoted by SM .

For example, in the case of the array given in Section 3.4.1, the set corresponding to the

operator Cα would be SCα = {α} ⊂ A. We now consider relations of the form

|SM | = k tr [M ] and |SM1 ∩ SM2 | = k tr [M1M2] , (3.124)

for some constant k. The rank-one projection P(λ) associated with the line λ must be of

unit trace, and so must contain k points within it. From the symmetry property for the

effects, G(µ) and G(ν), of a SIC-POVM, tr [P(µ)P(ν)] = 1/(d + 1) where P(µ) = dG(µ),

etc. Hence, the lines µ and ν must intersect k/(d+ 1) times, and so k must be a multiple

of d+1. We will restrict ourselves to k = d+1, and so any two lines intersect once through

this set of points. We assume that the operator associated with the entire set of points is

the identity, and that every point coincides with the same number of lines as any other.

Hence, |SA| = ktr [I] = d(d+ 1) and so every point is contained within d lines.

From this reasoning, we have seen that we require d(d + 1) points in our set, and

any two of the d2 lines must intersect at one point. If we were to relabel the points and

lines, then this construction produces an affine plane of order d. This parallelism between

the constructions of MUBs and SIC-POVMs, as presented by Wootters, is similar to that

shown for our constructions, in particular Proposition 3.3.2. However, this holds only in

1This is due to the result that there exists an affine plane of order n iff there exists n − 1 mutually
orthogonal Latin squares of order n, which we have already stated does not exist for n = 6.
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the case k = d+ 1, which was an assumption that we chose to make, but comes naturally

in the construction we presented in the preceding discussions.

Given this connection with affine planes, we are restricted in the dimensions that this

construction works. Assuming that we can indeed form an affine plane of order d, and

hence form a set of d(d + 1) points and d2 lines intersecting only once, what properties

do the associated operators Dα need to satisfy so that the lines correspond to projections

arising from SIC-POVM effects? From the trace properties of these projections, we require

that

1. tr
[
D2
α

]
= d/(d+ 1)2;

2. tr [DαDβ] = 1/d(d+ 1)2 if α 6= β and they share a line;

3. tr [DαDβ] = −1/(d+ 1)2 if α 6= β but they do not share a line.

Similar to the case for constructing MUBs from mutually unbiased striations, this

construction is more immediate in finding the effects of a SIC-POVM than the method

that we have presented in this chapter. However, there is again the issue that there is

no obvious construction for the Dα operators, with the simplest method being to start

with a SIC-POVM and work backwards. By contrast, we are aware of the operators that

we begin with, although the derivation of a SIC-POVM via downward paths requires a

greater amount of work near the end of the process.

3.5 Investigations in Mathematica

We will now address some results that have arisen from applying the constructions dis-

cussed in this chapter in Mathematica. Although this is only a preliminary investigation,

it has provided some interesting evidence for these constructions and, as has been men-

tioned at times in this chapter, while what has been presented thus far is indeed capable

of working, there exist issues, including the scarcity of positive results.

Due to their well-known structure, and their relative ease to construct, we restrict

ourselves to Weyl-Heisenberg covariant SIC-POVMs, as we introduced in Section 3.1.2.

Indeed, by defining the phase, Z, and shift, X, operators accordingly, we may construct

as many SIC-POVMs for a given dimension as there are fiducial vectors, of which there

exists an exhaustive list for dimensions up to 67 [48].

Given the comparative ease of solving it analytically, we omit the case of qubit SIC-

POVMs from these investigations.

3.5.1 d = 3

In the case of d = 3, there exists a continuous range of fiducial vectors that can be used

to produce SIC-POVMs [44]. By considering the Clifford group C(d)—the normaliser of

the Weyl-Heisenberg group W (d), i.e., C(d) is the subgroup of U(d) such that, for any

U ∈ C(d), UW (d)U∗ = W (d)—one finds that the fiducial vectors split into 13 classes of

inequivalent SIC-POVMs [52].
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In what follows, we restrict ourselves to constructing Weyl-Heisenberg covariant SIC-

POVMs using fiducial vectors according to [44]: Let r0 ∈ (1/
√

2,
√

2/3] and define

r±(r0) =
1

2
r0 ±

1

2

√
2− 3r2

0. (3.125)

The range of possible fiducial vectors, in the computations basis, are of the form
 r0

r+e
iθ1

r−e
iθ2

 and all permutations

∣∣∣∣∣∣∣θ1, θ2 ∈
{
π

3
, π,

5π

3

}
, r0 ∈

(
1√
2
,

√
2

3

]
⋃

 1/
√

2

eiθ/
√

2

0

 and all permutations

∣∣∣∣∣∣∣θ ∈ [0, 2π)

 .

(3.126)

In these preliminary investigations 5 fiducial vectors were chosen, corresponding to the

following choices of r0:

ϕ1 : r0 =

√
2

3
, ϕ2 : r0 =

4

5
, ϕ3 : r0 =

1

2

(
1√
2

+

√
2

3

)
,

ϕ4 : r0 =
3

4
, ϕ5 : r0 =

1√
2
.

(3.127)

Note that the choice of angles used in the fiducial vector does not change the SIC-POVM

found, but does change the order of the effects.

Starting with one of these fiducial vectors, now simply denoted by ϕ, the 9 effects of

the SIC-POVM {G(i, j)}3i,j=1 were placed in a 3× 3 array such that the point (i, j) of the

array corresponded to the element

G(i− 1, j − 1) =
1

3
Wi−1,j−1PϕW

∗
i−1,j−1, (3.128)

where Pϕ = |ϕ〉〈ϕ| is the projection onto ϕ. The Cartesian partitions were then con-

structed, as in Figure 3.5, and were shown for every fiducial vector to produce commuta-

tive mutually unbiased POVMs. Following this, the 3-partitions that correspond to the

mutually orthogonal Latin squares

1 2 3

2 3 1

3 1 2

and

1 2 3

3 1 2

2 3 1

, (3.129)

were created, where the label at each point corresponds to the bin that SIC-POVM effect

belongs to. We shall refer to these partitions as Latin partitions. These Latin squares are

mutually orthogonal and, for each fiducial vector, the margin POVMs corresponding to

the Latin partitions were found to be commutative. It should be noted that this is the

maximum number of mutually orthogonal Latin squares of order 3. Further to this, despite

the squares being equivalent under a permutation of the rows, doing so in this context

would also correspond to a permutation of the effects of the SIC-POVM located at each
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point in the array, thereby still forming different partitions. For almost every fiducial

vector—and hence every SIC-POVM—considered, 6 additional 3-partitions were found

that produced commutative marginal observables. These 3-partitions split into two sets of

3 partitions satisfying the one-overlap property, i.e., for each SIC-POVM there existed 2

additional sets of 3 mutually unbiased commutative margin POVMs. These partitions are

non-Latin, but they all satisfy the one-overlap property with one of the Latin partitions.

For every complete set of mutually unbiased commutative POVMs—derived from

Cartesian and Latin partitions, or otherwise—the eigenvalues of each effect were recorded.

For almost every complete set, the effects of 3 of the POVMs possessed the same spec-

trum, whilst the effects of the remaining POVM would have spectra (1/2, 1/2, 0). The

spectrum that the effects of the 3 POVMs share would depend on the value of r0 used in

the fiducial vector, but it is not obvious what function would describe this dependency.

The POVM whose effects have spectrum (1/2, 1/2, 0) corresponds to the Latin partition

that completes the 2 sets of mutually unbiased POVMs made from non-Latin partitions.

The only fiducial vector that did not produce commutative margin POVMs in the same

way as described above was ϕ5, i.e., when r0 = 1/
√

2. In this case, every possible effect

created from a 3-partition belonged to a commutative margin POVM, and so 9 complete

sets of commutative margin POVMs could be constructed for this SIC-POVM. Every

margin POVM arising from either a Cartesian or Latin partition appears in 3 different

complete sets, including the set composed solely from Cartesian and Latin partitions,

whilst every other margin POVM appears in just one complete set. It was not possible

to replicate this result for any other SIC-POVMs that were considered. Further to this,

the spectrum (1/2, 1/2, 0) was found for every effect from both the Cartesian and Latin

partitions.

For each SIC-POVM, every possible margin effect—that is, every possible bin of a

3-partition of the SIC-POVM—was calculated, of which there are
(

9
3

)
= 84, and their

spectra were calculated. For the fiducial vectors with r0 6= 1/
√

2 there existed several

different spectra, but 54 effects possessed the spectrum (0.646564, 0.275451, 0.0779852).

These effects did not belong to a commutative margin POVM, whilst any other spectrum

would lead to the discovery of a commutative margin POVM. For the ϕ5 case, as mentioned

above, the effects of the Cartesian and Latin partitions have spectra (1/2, 1/2, 0), whilst

all other possible effects possess the spectrum (0.646564, 0.275451, 0.0779852). Given that

every effect can be associated with a commutative margin POVM for this fiducial vector,

this shows a further difference from the margin POVMs associated with the other fiducial

vectors. This distribution of spectra also means that for any complete set of mutually

unbiased margin POVMs containing POVMs derived from non-Latin partitions, there will

be two different spectra appearing, and this means that these sets are inequivalent to the

complete set formed from the Cartesian and Latin partitions. The decomposition of the

spectra for the considered SIC-POVMs is given in Table 3.1.

From this work we may draw one obvious conclusion: with the exception of some

special fiducial vectors like ϕ5—and, indeed, ϕ5 may be the only exception—whilst we

may construct a complete set of mutually unbiased commutative margin POVMs from a

SIC-POVM for d = 3, the majority of margin POVMs constructed from non-Cartesian and
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r0 Cartesian & Latin
partitions

Non-Latin parti-
tions

Non-commuting
margin POVM
effects√

2
3

0.666667
0.166667
0.166667

 (9),0.5
0.5
0

 (3)

 0.588681
0.391216
0.0201025

 (18)

 0.646564
0.275451

0.00779852

 (54)

4
5

 0.64
0.293137
0.0668629

 (9),0.5
0.5
0

 (3)

 0.652227
0.257931
0.0898423

 (9), 0.51524
0.48428

0.000479605

 (9)

 0.646564
0.275451

0.00779852

 (54)

1
2

(
1√
2

+
√

2
3

)  0.580342
0.403668
0.0159904

 (9),0.5
0.5
0

 (3)

0.666425
0.177774
0.155801

 (9), 0.596651
0.37868

0.0246684

 (9)

 0.646564
0.275451

0.00779852

 (54)

3
4

 0.5625
0.428381

0.00911863

 (9),0.5
0.5
0

 (3)

0.664479
0.200777
0.134744

 (9), 0.611512
0.353291
0.0351972

 (9)

 0.646564
0.275451

0.00779852

 (54)

1√
2

0.5
0.5
0

 (12)

 0.646564
0.275451

0.00779852

 (72) (0)

Table 3.1: Spectra of all possible margin POVM effects for the 5 considered fiducial vectors,
determined by r0, sorted according to which partitions they belong to in order to form
commutative margin POVMs. The number of elements with a given spectrum is denoted
in brackets next to it.

non-Latin partitions will not be commutative. Further to this, in general the effects in a

complete set of mutually unbiased commutative margin POVMs will possess two different

spectra for d = 3.

A SIC-POVM was then constructed from a complete set of MUBs. The MUBs chosen,

with v(0) denoting the computational basis and v(i) with i = 1, 2, 3 the remaining 3 bases,

may be expressed as the following matrices, where each basis element corresponds to a
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column of the matrix:

v(0) =

1 0 0

0 1 0

0 0 1

 , v(1) =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 ,

v(2) =
1√
3

1 1 1

ω ω2 1

ω 1 ω2

 , v(3) =
1√
3

 1 1 1

ω2 ω 1

ω2 1 ω

 ,

(3.130)

with ω = exp(2πi/3).

These MUBs, as sharp observables, were then smeared, as in Equation (3.68), in order

to create mutually unbiased POVMs. The spectra by which these MUBs were smeared

correspond to the spectra found when taking the Cartesian and Latin partitions of the

SIC-POVMs just considered. These mutually unbiased POVMs were then placed in a

4 × 3 array, and the paths pi described in Section 3.3.3 were constructed. From these

paths the operators Ei given by Equation (3.109) were calculated, and from that the

operators G(i) via Equation (3.112). There exist a total of 34 = 81 paths through this

array that are strictly downward in the sense of Section 3.3.3, and the eigenvalues of each

of the corresponding G(i) were calculated. In the case that the eigenvalues for a given

operator were all non-negative, then it was considered a potential SIC-POVM effect. It

should noted that for d = 3, up to unitary equivalence, there exists only one complete set

of MUBs, and so the only things that are changed in these investigations are the spectra

used to smear the MUBs, and the number of spectra used.

Led by the investigations starting with SIC-POVMs, up to two spectra were used to

smear the MUBs at any time. If two were used, then three of the MUBs would be smeared

by one spectrum, whilst the final MUB would be smeared with the spectrum (1/2, 1/2, 0).

In both cases, of the 81 operators associated with downward paths, only 9 would be

positive operators, and their associated paths would only overlap once. As a result, by

Theorem 3.3.4, these 9 operators form a SIC-POVM for d = 3. The paths producing

SIC-POVM effects vary depending on the spectra used, and so it is not sufficient to find a

SIC-POVM with one collection of spectra, change the spectra, and then assume that the

new operators will form a SIC-POVM.

This result highlights that although a SIC-POVM can be constructed from a complete

set of smeared MUBs in the way described above, the number of possible operators that we

may construct that are positive is far outweighed by the operators that contain negative

eigenvalues. Indeed, for a given spectrum, or pair of spectra, we are able to determine a

unique SIC-POVM.
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3.5.2 d = 5

We may reproduce the method used for d = 3 for d = 5. By beginning with the fiducial

vector [48]

ϕ=



0.39104489402214774638257588694092612854

−0.28486558319586666154004262263615905414−0.64712933282796239400249892482493465752i

−0.23188384736899577826443055554623498413−0.19820390755555243362222174127453043647i

0.13193857997561206409072011157833671545−0.10939599651964327439560846264470517498i

0.43096743921096438598841830212227390108+0.19747405581954685663309013848038222203i


, (3.131)

we produce a SIC-POVM, after which we place the 25 effects in a 5 × 5 array. The

Cartesian margins were calculated and were indeed commutative. Given that there exist(
25
5

)
= 53130 possible bins corresponding to effects of margin POVMs, an extensive search

of all possible 5-partitions, and the spectra of the respective effects was not conducted,

and so we restricted to Latin partitions. The 5-partitions constructed correspond to the

following Latin squares:

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

,

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

,

1 2 3 4 5

4 5 1 2 3

2 3 4 5 1

5 1 2 3 4

3 4 5 1 2

and

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

. (3.132)

This is not an exhaustive list of Latin squares of order 5, and other Latin partitions

will exist, although they cannot be mutually orthogonal to all 4 of these Latin squares.

These Latin partitions and the Cartesian partitions therefore form a complete set of six

5-partitions satisfying the one-overlap property. These Latin partitions produce margin

POVMs that are all commutative, and the effects of these POVMs possess one of two

spectra, which appear in one of two possible orders:

1. (a) (0.152916, 0.499925, 0.0930549, 0.0293753, 0.244729);

(b) (0.152916, 0.244729, 0.0293753, 0.0930549, 0.499925);

2. (a) (0.0584088, 0235772, 0.492705, 0.0399745, 0.17314);

(b) (0.0584088, 0.0399745, 0.235772, 0.17314, 0.492705).

Spectra 1. (a) and 2. (a) were both found in two margin POVMs each, whilst 1. (b) and

2. (b) were found in one margin POVM each. By calculating the eigenvectors of these

margin POVMs, we then confirm that they form a complete set of MUBs.
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Starting now with a complete set of 6 MUBs, given by the matrices

v(0) =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , v(1) =
1√
5


1 1 1 1 1

ω ω2 ω3 ω4 1

ω4 ω ω3 1 ω2

ω4 ω2 1 ω3 ω

ω 1 ω4 ω3 ω2

 ,

v(2) =
1√
5


1 1 1 1 1

ω2 ω3 ω4 1 ω

ω3 1 ω2 ω4 ω

ω3 ω ω4 ω2 1

ω2 ω 1 ω4 ω3

 , v(3) =
1√
5


1 1 1 1 1

ω3 ω4 1 ω ω2

ω2 ω4 ω ω3 1

ω2 1 ω3 ω ω4

ω3 ω2 ω 1 ω4

 ,

v(4) =
1√
5


1 1 1 1 1

ω4 1 ω ω2 ω3

ω ω3 1 ω2 ω4

ω ω4 ω2 1 ω3

ω4 ω3 ω2 ω 1

 , v(5) =
1√
5


1 1 1 1 1

1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω1

 ,

(3.133)

and by smearing the associated sharp observables using the spectra given above, taking

note to use each one the correct number of times, we create 6 mutually unbiased com-

mutative POVMs. The effects of these POVMs were then placed in a 6 × 5 array, and

we calculated all possible operators corresponding to downward paths through the array.

The spectra of these operators were calculated, and only those that were positive were

printed. Of the 56 = 15625 possible operators, only 25 were positive, and their associated

paths overlap only once. In other words, the only positive operators form a SIC-POVM.

In the case of d = 5, the point that must be highlighted is that the ordering of the

spectra matters, which was not the case for d = 3. This is a point that must be taken into

account in higher dimensions.

3.5.3 Issues in dimensions d = 4, 7

In dimensions 4 and 7, issues arose within the investigation. In dimension 4, we worked

with the fiducial vector described as follows [44]: We define the four constants2

r0 =

√
1− 1/

√
5

2
√

2−
√

2
, r1 = (

√
2− 1)r0, r± =

1

2

√
1 + 1/

√
5±

√
1/5 + 1/

√
5, (3.134)

and the angles

a = arccos
2√

5 +
√

5
, b = arcsin

2√
5
. (3.135)

2The value for r0 given here is different to that given in [44] (the overall square root in the numerator
is missing in their version), and this is to ensure that the resultant vector is normalised and, indeed, the
fiducial vector for a SIC-POVM.
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With these values we define the set

Ω = { ((−1)m(a/2 + b/4) + π(m+ 2n+ 7j + 1)/4, π(2k + 1)/2 ,

(−1)m(−a/2 + b/4) + π(m+ 2n+ 3j + 4k + 1)/4) | j, k,m = 0, 1, n ∈ Z4},
(3.136)

and from this the fiducial vectors for our SIC-POVM, in the computational basis, are

given by


r0

r+e
iθ+

r1e
iθ1

r−e
iθ−

 ,


r0

r−e
iθ−

r1e
iθ1

r+e
iθ+

 , plus all permutations

∣∣∣∣∣∣∣∣∣∣
(θ+, θ1, θ−) ∈ Ω

 . (3.137)

Using the simplest case; i.e, j = k = m = n = 0, the SIC-POVM was constructed in

Mathematica and the Cartesian partitions were made. The corresponding margin POVMs

were found to be commutative, and so we subsequently focussed on Latin partitions.

There exist 24 inequivalent Latin squares of order 4, and the POVM corresponding to

each was tested. Unfortunately, of these 24 POVMs, only 2 were commutative, and the

corresponding Latin squares are not mutually orthogonal, so this method is not sufficient

in this case.

An alternative method to consider, as was done for d = 3, is to choose the first bin of a

partition and then exhaust all possible complementary bins with corresponding operators

that commute with the operator corresponding to the first bin. However, assuming that

we fix this first bin to contain the first element of the SIC-POVM, there exist
(

15
3

)
= 455

possible initial bins that can be considered, and subsequently
(

12
4

)
= 495 possible second

bins, so there are upwards of 225225 possible pairs of bins to check for commutativity.

This is an unfeasible number to check, and so whilst a complete set of commutative mar-

gin POVMs may exist for d = 4, we do not know of any, and subsequently any spectra

which would allow for the construction of a SIC-POVM from a complete set of MUBs.
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For dimension 7, the two fiducial vectors given in [48] were considered, namely

ϕ1 =



0.34160748940869677901847702221939960794

0.55148563849933599729808437186250132025−0.34867715271314252440447697902337375141i

−0.11648580220876396683451558464316567078−0.26166619656998671045928442919728701366i

−0.075312906581174060121443762180668824515−0.27525817515698021623612242207232334852i

−0.073257376345202406703328501070945226290−0.10603759291025605066417926940588166460i

−0.34887242536080270339160710148674089447+0.23627220962007852786364601038178637997i

−0.27916461741208963926566644470038031212−0.14844155524225577344987795977973540454i


,

ϕ2 =



0.41526356195047080423032850597006010210

−0.077886775674404707506811770772396298096−0.38900572497454333820768884319198370735i

−0.58205250739832009441182422104971379149−0.26698341367949812425899377170619235952i

0.042820132609669224418464385700890856252−0.057057027610894012260756087389883981238i

0.13748747041004807562464450190666624759−0.11091890130114900823149188171139550779i

−0.22922883526414535564906529306017970666−0.29118397371245900866263335536522313692i

0.29359695336668205329426389130467259030+0.016464927810733525581762744124000314304i


.

(3.138)

In both instances a SIC-POVM was constructed, as were the Cartesian margins, which

were found to be commutative. The 6 remaining margins correspond to the Latin squares

1 2 3 4 5 6 7

2 3 4 5 6 7 1

3 4 5 6 7 1 2

4 5 6 7 1 2 3

5 6 7 1 2 3 4

6 7 1 2 3 4 5

7 1 2 3 4 5 6

,

1 2 3 4 5 6 7

3 4 5 6 7 1 2

5 6 7 1 2 3 4

7 1 2 3 4 5 6

2 3 4 5 6 7 1

4 5 6 7 1 2 3

6 7 1 2 3 4 5

,

1 2 3 4 5 6 7

4 5 6 7 1 2 3

7 1 2 3 4 5 6

3 4 5 6 7 1 2

6 7 1 2 3 4 5

2 3 4 5 6 7 1

5 6 7 1 2 3 4

,

1 2 3 4 5 6 7

5 6 7 1 2 3 4

2 3 4 5 6 7 1

6 7 1 2 3 4 5

3 4 5 6 7 1 2

7 1 2 3 4 5 6

4 5 6 7 1 2 3

,

1 2 3 4 5 6 7

6 7 1 2 3 4 5

4 5 6 7 1 2 3

2 3 4 5 6 7 1

7 1 2 3 4 5 6

5 6 7 1 2 3 4

3 4 5 6 7 1 2

,

1 2 3 4 5 6 7

7 1 2 3 4 5 6

6 7 1 2 3 4 5

5 6 7 1 2 3 4

4 5 6 7 1 2 3

3 4 5 6 7 1 2

2 3 4 5 6 7 1

.

(3.139)

As in the case of d = 5, this does not exhaust the possible inequivalent Latin squares

of order 7, and other complete sets of partitions satisfying the one-overlap property can

be found. Again, similar to d = 5, the spectra of every possible effect were not calculated,

as there exist
(

49
7

)
= 85900584 such effects for each SIC-POVM to consider. However, the

partitions that were considered did indeed lead to commutative margin POVMs, so we

stopped our search with them.

For the constructed margin POVMs, the effects possessed the following spectra:

1. (a) (0.425712, 0.177537, 0.116696, 0.0999678, 0.0820381, 0.0814391, 0.0166106);
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(b) (0.382799, 0.217579, 0.210489, 0.0908925, 0.0419947, 0.0384167, 0.0178294);

(c) (0.0540971, 0.285421, 0.285421, 0.0298802, 0.285421, 0.0298802, 0.0298802);

(d) (0.419906, 0.150834, 0.150834, 0.0425309, 0.150834, 0.0425309, 0.0425309);

2. (a) (0.410065, 0.172444, 0.157392, 0.137334, 0.0864703, 0.0312058, 0.00508907);

(b) (0.0800943, 0.0225843, 0.0225843, 0.284051, 0.0225843, 0.284051, 0.284051);

(c) (0.445903, 0.0923495, 0.0923495, 0.0923495, 0.0923495, 0.0923495, 0.0923495).

Spectra 1. (a) and 1. (b) are both present in the effects of 3 of the margin POVMs, whilst

spectra 1. (c) and 1. (d), which contain degenerate eigenvalues, are present in just one

POVM each. This is the case for spectra 2. (b) and 2. (c) as well, with spectrum 2. (a)

appearing in the effects of 6 margin POVMs.

The presence of degenerate eigenvalues presented problems for Mathematica, as it was

unable to directly provide a shared eigenbasis for a POVM whose effects had such spectra,

despite these effects commuting and hence possessing one. This was resolved by collecting

eigenvectors that correspond to the one non-degenerate eigenvalue for each effect, and in

doing so an eigenbasis was found for each such POVM that was shown to be mutually

unbiased to the other eigenbases calculated by Mathematica.

The difficulty in resolving this issue highlights problems that occur when degenerate

eigenvalues appear in the spectra of the effects of the margin POVMs. Further to that, the

significance of the ordering of the spectra used for smearing was affirmed when attempts

to construct a SIC-POVM from a complete set of MUBs proved fruitless. It should be

possible to overcome this issue, but more work on the subject would be needed.
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Chapter 4

Generalising the Arthurs-Kelly

Measurement Model with

Correlated Probes and Focussing

The classic example of a pair of incompatible quantum observables is the position EQ and

momentum EP of a particle, expressed most succinctly by the preparation uncertainty

relation:

Var (Q,ψ) Var (P,ψ) ≥ 1

4
, (4.1)

where Var () denotes variance, ~ has been set to 1, Q = EQ[1] is the position operator and

P = EP [1] the momentum. This relation sets a limit on how precisely a state ψ can be

prepared with regards to the statistics of one of these observables, and what payoff the

statistics of the second observable faces.

An alternative means of highlighting the incompatibility of these two observables lies

in the fact that one cannot directly measure both on the same system without greatly

disturbing the statistics of one. Indeed, performing an accurate measurement of the sys-

tem’s position will lead to a highly localised state with a momentum that, if subsequently

measured, is statistically widely spread out.

A theoretical method, using additional “probe” systems, was given by Arthurs and

Kelly [3] to allow for an indirect measurement of these two observables at the expense of

statistical noise required by Equation (4.1). An extension to this model was proposed by

Di Lorenzo [27], in which initial correlations are allowed to exist between the probes. This

extension, in association with his given definition of error and disturbance, was claimed to

allow for a violation of an error-disturbance relation of a form similar to Equation (4.1).

In this chapter we shall analyse the effect these correlations have on the measured

observable, and refute the claim that any such violation of a physically relevant error-

disturbance relation occurs. We will further show how these correlations lead to the

phenomenon of focussing, which can allow for more precise measurements when using less

than ideal equipment. Note that whilst we relied on finite dimensional Hilbert spaces in

Chapter 3, we will assume the Hilbert spaces in what follows are infinite dimensional.

In particular, each system we will consider will be described by the Hilbert space L2(R),

the space of real-valued square-integrable complex functions. In other words, we will be
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considering systems with one continuous degree of freedom.

4.1 The Arthurs-Kelly measurement model

We take the concept of measurement models introduced in Section 2.4.3 and extend it

to include two probes, one performing a (sharp) position measurement and the second a

momentum measurement. The system we wish to measure, described by the Hilbert space

H with state ρ ∈ S(H), is coupled to two probes with associated Hilbert spaces K1, K2

and states σ1 ∈ S(K1), σ2 ∈ S(K2). The coupling is given by the interaction Hamiltonian

Hint = λQP1 − µPQ2 +
λµ

2
κP1Q2, (4.2)

where the subscript on the position and momentum operators denote which probe they

pertain to (and if there is no subscript then they pertain to the measured system)1. The

positive constants λ, µ and κ are coupling parameters between the system and the first

probe, the system and the second probe, and between the two probes, respectively. These

constants are assumed to be large enough that the free evolution of the system and two

probes may be ignored in what follows. We assume an impulsive interaction; that is, a

short-time interaction described by the unitary Uint = exp(−iHint) (we may also perform

the interaction for a time t and then have the value absorbed into the coupling parameters).

By making use of the Baker-Campbell-Hausdorff formula

exp[A+B] = exp[A] exp[B] exp

[
−1

2
[A,B]

]
, (4.3)

where A and B satisfy [A, [A,B] ] = [B, [A,B] ] = 0, thereby removing any further terms,

we may decompose Uint into three terms:

Uint = UµUλUκ

= exp(iµPQ2) exp(−iλQP1) exp

[
−iλµ

2
(κ− 1)P1Q2

]
.

(4.4)

Equation (4.4) highlights that this coupling can be perceived as a sequence of interactions

between pairs of systems. If we wish, we can also rearrange these interactions, which leads

to the same unitary, albeit with a slightly different decomposition:

Uint = UλUµU
′
κ

= exp(−iλQP1) exp(iµPQ2) exp

[
−iλµ

2
(κ+ 1)P1Q2

]
.

(4.5)

The difference is present in the form of the interaction between the two probes, but results

in the same post-coupling state.

After this coupling we perform ideal measurements on the probes. We measure the

ideal position observable EQ1 on the first probe, and measure the ideal momentum ob-

servable EP2 on the second. After the system has been coupled to a probe that probe

1In [3], Arthurs and Kelly set κ to zero, and use P2 as the shift operator on the second probe.
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Figure 4.1: The standard form of the Arthurs-Kelly measurement model. Two probes in
states σ1 and σ2 are coupled to the measured system in state ρ via the unitary U . After the
coupling, an ideal measurement of the position of the first probe is performed, and similarly
an ideal measurement of momentum for the second probe. From these measurements we
infer information about the position and momentum of the system we are interested in.

is then measured, so the decomposition given in Equation (4.4) can be perceived as a

sequential measurement of the first probe’s position followed by the second probe’s mo-

mentum, whilst the order is reversed for the decomposition given in Equation (4.5). The

decomposition given by Equation (4.4) is shown in Figure 4.1. In the case that |κ| = 1, the

coupling leads to a strictly sequential measurement (where the order of the measurements

varies depending on the sign of κ).

We shall begin by allowing the system and probes to be prepared in pure states; in

other words,

ρ = Pψ, σ1 = Pϕ1 , σ2 = Pϕ2 , (4.6)

where ψ ∈ H, ϕ1 ∈ H1 and ϕ2 ∈ H2. Preparing the probes in pure states is done for ease

of calculations, and can be readily extended to mixed states, as will be shown, due to the

convex nature of the state spaces. In order to determine the state of the system and two

probes after the coupling, we make use of the position representation ψ(q) = 〈q|ψ〉, where

|q〉 ∈ H is a position pseudo-eigenvector. We also use the identity

(e−iλxPψ)(q) =
〈
q
∣∣∣e−iλxPψ〉

=
〈
eiλxP q

∣∣∣ψ〉
=

∫
R
dp e−iλxp 〈q|p〉 〈p|ψ〉

=

∫
R
dp

1√
2π
eip(q−λx)ψ̃(p)

= ψ(q − λx),

(4.7)

where we have used the spectral decomposition of the momentum operator

P =

∫
R
dp p |p〉〈p| , (4.8)

with the pseudo eigenvectors satisfying

〈q|p〉 =
1√
2π
eiqp, (4.9)
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and the momentum representation of ψ, ψ̃(p) = 〈p|ψ〉. Using Equation (4.7), the post-

coupling state of the system and two probes is given by the state Ψ, which in the position

representation (with q1 the position coordinate for the first probe and likewise for q2) is

equal to

Ψ(q, q1, q2) = 〈q, q1, q2|Uint(ψ ⊗ ϕ1 ⊗ ϕ2)〉

=
〈
ei
λµ
2

(κ−1)P1Q2eiλQP1e−iµPq2(q, q1, q2)
∣∣∣ψ ⊗ ϕ1 ⊗ ϕ2

〉
=
〈
ei
λµ
2

(κ−1)P1Q2eiλ(q+µ q2)P1(q + µ q2, q1, q2)
∣∣∣ψ ⊗ ϕ1 ⊗ ϕ2

〉
=
〈
ei
λµ
2

(κ−1)P1q2(q + µ q2, q1 − λ(q + µ q2), q2)
∣∣∣ψ ⊗ ϕ1 ⊗ ϕ2

〉
=
〈
q + µ q2, q1 − λ

(
q + µ q2 +

µ

2
(κ− 1)q2

)
, q2

∣∣∣ψ ⊗ ϕ1 ⊗ ϕ2

〉
= ψ(q + µ q2)ϕ1

(
q1 − λ

(
q +

µ

2
(κ+ 1)q2

))
ϕ2(q2).

(4.10)

Upon the first probe we shall perform an ideal position measurement, and on the

second we perform an ideal momentum measurement. To accommodate this, we will per-

form a Fourier transformation on the final argument and thereby acquire the momentum

representation for the second probe:

Ψ(q, q1, q2) 7→ Ψ̃(q, q1, w2) =
1√
2π

∫
R
dq2 e

−iq2w2Ψ(q, q1, q2), (4.11)

where in what follows we will use wi to denote the momentum variable on the ith probe.

From this, the effective observable G measured on the system is given by

tr
[
PψG

(λ,µ)(X × Y )
]

= tr
[
PΨ

(
I ⊗ EQ1(λX)⊗ EP2(µY )

)]
, (4.12)

where X,Y ∈ B(R), λX = {λx|x ∈ X}, etc., and we have used the pointer functions

g : x 7→ λ−1x and h : y 7→ µ−1y on the first and second probe, respectively, as given in

Equation (2.141).

4.2 Extension of the Arthurs-Kelly model and derived ob-

servables

4.2.1 The effective observable derived on the system

We will now allow for the probes to be prepared in an arbitrary state, simply denoted by

ϕ ∈ H1 ⊗H2. This is shown in Figure 4.2, where the unitary channel V provides initial

correlations between the probes prior to interacting with the system.

The post-coupling state, in the position representation, is now of the form

Ψ(q, q1, q2) = 〈q, q1, q2|Uint(ψ ⊗ ϕ)〉 = ψ(q + µ q2)ϕ
(
q1 − λ

(
q +

µ

2
(κ+ 1)q2

)
, q2

)
,

(4.13)

upon which we again perform a Fourier transform on the final argument to produce the

state Ψ̃(q, q1, w2), as given in Equation (4.11). The effective observable G(λ,µ) measured

on the system is again given by Equation (4.12). As shown in Appendix A.1, G(λ,µ) takes

101



Figure 4.2: The extension of the Arthurs-Kelly model that we present here is one that
allows for arbitrary probe preparations. This is expressed here by the unitary channel V
that transforms σ1 ⊗ σ2 into the state σ12, which may be entangled or mixed.

the form

G(λ,µ)(X × Y ) =

∫
X×Y

dq dp
(
K(λ,µ)
qp

)∗
K(λ,µ)
qp , (4.14)

where K
(λ,µ)
qp has the kernel

K(λ,µ)
qp (x, x′) =

√
λ

2πµ
eip(x−x

′)ϕ

(
λ
(
q − 1

2

(
(1− κ)x+ (1 + κ)x′

))
,

1

µ
(x′ − x)

)
. (4.15)

We can rewrite K
(λ,µ)
qp in the following way:

K(λ,µ)
qp =

√
λ

2πµ

∫
R2

dx dx′ eip(x−x
′)ϕ
(
λ
(
q − 1

2

(
(1− κ)x+ (1 + κ)x′

))
, 1
µ (x′ − x)

)
|x〉〈x′|

=
√

λ
2πµ

∫
R2

dx dx′ eip(x−x
′)ϕ
(
− 1

2λ
(
(1− κ)(x− q) + (1 + κ)(x′ − q)

)
, 1
µ (x′ − x)

)
|x〉〈x′|

=
√

λ
2πµ

∫
R2

dx dx′ eip(x−x
′)ϕ
(
− 1

2λ
(
(1− κ)x+ (1 + κ)x′

)
, 1
µ (x′ − x)

)
|x+ q〉〈x′ + q|

= e−iqP
(√

λ
2πµ

∫
R2

dx dx′ eip(x−x
′)ϕ
(
− 1

2λ
(
(1− κ)x+ (1 + κ)x′

)
, 1
µ (x′ − x)

)
|x〉〈x′|

)
eiqP

= e−iqP eipQ
(√

λ
2πµ

∫
R2

dx dx′ ϕ
(
− 1

2λ
(
(1− κ)x+ (1 + κ)x′

)
, 1
µ (x′ − x)

)
|x〉〈x′|

)
e−ipQeiqP

= WqpK
(λ,µ)
00 W ∗qp, (4.16)

where the Wqp are the Weyl operators Wqp = exp[iqp/2] exp[−iqP ] exp[ipQ] that generate

shifts in phase space, and are the continuous analogue of the Weyl-Heisenberg operators

given in Equation (3.33). By making use of Equation (4.16) we see that

WqpG
(λ,µ)(X × Y )W ∗qp = Wqp

(∫
X×Y

dq′ dp′
(
K

(λ,µ)
q′p′

)∗
K

(λ,µ)
q′p′

)
W ∗qp

=

∫
X×Y

dq′ dp′
(
WqpK

(λ,µ)
q′p′ W

∗
qp

)∗
WqpK

(λ,µ)
q′p′ W

∗
qp

=

∫
(X+q)×(Y+p)

dq′ dp′
(
K

(λ,µ)
q′p′

)∗
K

(λ,µ)
q′p′

= G(λ,µ)((X + q)× (Y + p)),

(4.17)

where X + q = {x + q|x ∈ X}, etc. In other words, G(λ,µ) is a covariant phase space

observable. Furthermore, we can extend this result by initially preparing our probes in a
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mixed state, i.e., in the state σ =
∑

i piPϕi , where ϕi ∈ H1⊗H2. Each of these pure states

leads to a covariant phase space observable Gi, and so, from the linearity of the trace, the

effective observable H is of the form

H(X × Y ) =
∑
i

piGi(X × Y ), (4.18)

which satisfies

WqpH(X × Y )W ∗qp =
∑
i

piWqpGi(X × Y )W ∗qp

=
∑
i

piGi((X + q)× (Y + p))

= H((X + q)× (Y + p)).

(4.19)

That is, H is also a covariant phase space observable. We are therefore able, having already

proved it, to state the main result of this chapter:

Theorem 4.2.1. The observable G(λ,µ) measured in an Arthurs-Kelly-like measurement

scheme, where the probes are prepared in an arbitrary state, is always a covariant phase

space observable.

This theorem extends a result given in [9], where the probes were prepared in only

pure, separable states, i.e., ϕ = ϕ1 ⊗ ϕ2.

Covariant phase space observables have been studied in great depth elsewhere (see, for

example, [31, 54, 23, 33]), and it is a well known result that for any Z ⊆ R2, a covariant

phase space observable G may be expressed via

G(Z) =
1

2π

∫
Z
dq dpWqp τ W

∗
qp, (4.20)

where τ is a positive operator of unit trace. In other words, τ is mathematically a density

operator, but does not correspond to a physical state in the system. Indeed, in what

we have presented, τ = 2π(K
(λ,µ)
00 )∗K

(λ,µ)
00 , which is indeed positive and trace one. The

positivity is immediate: for any state ψ ∈ H,〈
ψ
∣∣∣(K(λ,µ)

00 )∗K
(λ,µ)
00 ψ

〉
=
∥∥∥K(λ,µ)

00 ψ
∥∥∥2
≥ 0, (4.21)

by the positivity requirement of the norm defined on H. With regards to the trace:

2π tr
[
(K

(λ,µ)
00 )∗K

(λ,µ)
00

]
= 2π

∫
R
dx
(

(K
(λ,µ)
00 )∗K

(λ,µ)
00

)
(x, x)

=
λ

µ

∫
R2

dx dx′
∣∣∣∣ϕ(−1

2
λ
(
(1− κ)x′ + (1 + κ)x

)
,

1

µ
(x− x′)

)∣∣∣∣2
=
λ

µ

∫
R2

dx dy′
∣∣∣∣ϕ(λ(1

2
(1− κ)y′ − x

)
,

1

µ
y′
)∣∣∣∣2

=
λ

µ

∫
R2

dy dy′
∣∣∣∣ϕ(λy, 1

µ
y′
)∣∣∣∣2

=

∫
R2

dy dy′ |ϕ(y, y′)|2

= 1,

(4.22)
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where in the third equality we have made the substitution y′ = x−x′ and y = 1
2((1−κ)y′−x

in the fourth.

4.2.2 The marginal observables and joint measurement error relations

So far we have found that our effective observable is a covariant phase space observable,

but our original goal was to use this measurement scheme to make (approximate) joint

measurements of the system’s position and momentum. We perform this by taking the

margins of G(λ,µ) to create the jointly measurable observables E(λ,µ) and F(λ,µ):

E(λ,µ)(X) = G(λ,µ)(X × R), F(λ,µ)(Y ) = G(λ,µ)(R× Y ). (4.23)

As is shown in Appendix A.2, these marginal observables can be expressed in the form

E(λ,µ)(X) = (χX ∗ e(λ,µ))(Q), (4.24a)

F(λ,µ)(Y ) = (χY ∗ f (λ,µ))(P ), (4.24b)

where χA is the characteristic function for the set A ⊂ B(R), and e(λ,µ) and f (λ,µ) are

probability distributions given by

e(λ,µ)(q) =
λ

µ

∫
R
dq′
∣∣∣∣ϕ(λ(1

2
(1− κ)q′ − q

)
,

1

µ
q′
)∣∣∣∣2 , (4.25a)

f (λ,µ)(p) =
λ

µ

∫
R
dp′
∣∣∣∣ϕ̃(λp′, 1

µ

(
p′

2
(κ+ 1)− p

))∣∣∣∣2 , (4.25b)

where again ϕ̃ corresponds to the momentum representation of ϕ. In other words, these

marginal observables are smeared versions of the ideal position and momentum observ-

ables with the smearing being provided by the probability distributions e(λ,µ) and f (λ,µ),

respectively. Indeed, these probability distributions correspond to the probability distri-

butions for the ideal position and momentum observables, respectively, with regards to

the state τ = 2π(K
(λ,µ)
00 )∗K

(λ,µ)
00 , as introduced in Equation (4.20):

e(λ,µ)(X) = pQτ (X) =

∫
X

tr
[
dEQ(q)τ

]
, (4.26a)

f (λ,µ)(Y ) = pPτ (Y ) =

∫
Y

tr
[
dEP (p)τ

]
. (4.26b)

Note that this is a general result for all covariant phase space observables, as can be quickly

verified.

Since we are using the observables E(λ,µ) and F(λ,µ) as approximations of position

and momentum, respectively, we would like some means of determining how accurate

an approximation each observable is. To that end we shall calculate the value of the

noise measure and BLW error, as described in Section 2.4.5, for these observables. These

measures possess several important differences, the most notable of which being the state-

dependence of the noise measure and the state-independence of the BLW error, and the

question of which corresponds to a physically valid measure of error has lead to considerable

heated debate. However, this debate is not a focus of this work, and instead we simply
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recall (see Appendix B) that in the case of dealing with the margins of covariant phase

space observables they coincide; in particular, for the two marginal observables E(λ,µ) and

F(λ,µ) their errors, according to these measures, are equal to the second moments of the

probability distributions over which they are smeared. That is,

ε(E(λ,µ),EQ, ρ)2 = ∆(E(λ,µ),EQ)2 = e(λ,µ)[2] =

∫
R
q2e(λ,µ)(q)dq,

ε(F(λ,µ),EP , ρ)2 = ∆(F(λ,µ),EP )2 = f (λ,µ)[2] =

∫
R
p2f (λ,µ)(p)dp,

(4.27)

for all ρ ∈ S(H). The second moment of this probability distribution is greater than or

equal to its variance, and so from these error measures and Equation (4.26) we are able

to provide a lower bound for these marginal observables:

∆(E(λ,µ),EQ)2∆(F(λ,µ),EP )2 ≥ Var (Q, τ) Var (P, τ) ≥ 1

4
, (4.28)

by Equation (4.1). That is, the product of the errors is bounded from below by the

preparation uncertainty relation with respect to the state τ that defines the observable

G(λ,µ). It should be noted that, since Equations (4.24) and (4.26) hold for the margins of

any covariant phase space observable, Equation (4.28) is a general result for the margins

of a covariant phase observable.

4.3 Focussing

We concluded the previous section by showing that our marginal observables E(λ,µ),F(λ,µ),

and indeed all marginal observables of a covariant phase space observable, satisfy Equation

(4.28) when using either the noise or BLW error measure. Despite this result, it was

claimed by Di Lorenzo [27] that the measurement scheme presented, when combined with

his measure of error and disturbance, could lead to a lower bound of their products that

could be made arbitrarily small or even negative. In this section, we make sense of the

definition of disturbance given by Di Lorenzo (his definition of error is of a similar form,

but not identical), and show that it in fact highlights the phenomenon of focussing. Note

that whilst Di Lorenzo focusses on sequential measurements, we express the output in

terms of joint measurements for reasons argued in Section 2.4.4.

4.3.1 Individual measurements and Di Lorenzo’s disturbance

In his paper, Di Lorenzo defines the disturbance caused by an observable in the following

way: One prepares a measurement set up as we have discussed so far, in which we couple

a system in the pure state ψ with two probes in the pure state ϕ12 (for simplicity’s sake)

via a unitary Uint. However, at this point we switch one of the coupling constants, either

λ or µ, to zero.

Suppose we set λ to zero, so the system is not directly coupled to the first probe and

the coupling unitary reduces to Uµ. We now perform the ideal momentum measurement

on the second probe, thereby leading to the effective observable F(0,µ) on the system. This

is shown schematically in Figure 4.3a. The observable F(0,µ), as shown in Appendix C.1,
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(a) The measurement scheme leading to the
effective observable F(0,µ).

(b) The measurement scheme leading to the
effective observable E(λ,0).

Figure 4.3: Single measurement schemes.

is a smearing of the ideal momentum observable:

F(0,µ)(Y ) = (χY ∗ f (0,µ))(P ), (4.29)

where the probability distribution f (0,µ) is of the form

f (0,µ)(p) =
1

µ

∫
R
dw

∣∣∣∣ϕ̃(w,− 1

µ
p
)∣∣∣∣2 . (4.30)

Similarly, we can consider the case where we let µ = 0, thereby only directly coupling the

system to the first probe via the unitary Uλ. In this case we only measure the first probe,

performing an ideal position measurement, resulting in the effective observable E(λ,0) being

measured on the system. This is presented schematically in Figure 4.3b, and it is shown

in Appendix C.2 that E(λ,0) is of the form

E(λ,0)(X) = (χX ∗ e(λ,0))(Q), (4.31)

with

e(λ,0)(q) = λ

∫
R
dq′
∣∣ϕ(−λq, q′)

∣∣2 . (4.32)

With these two single-probe measurements defined, Di Lorenzo’s definition of disturbance

η2
DL is given by the difference of the variances of one of the marginal observables and its

single-probe measurement counterpart with respect to a state ρ ∈ S(H):

ηDL(Q, ρ)2 = Var
(
E(λ,µ), ρ

)
−Var

(
E(λ,0), ρ

)
, (4.33a)

ηDL(P, ρ)2 = Var
(
F(λ,µ), ρ

)
−Var

(
F(0,µ), ρ

)
. (4.33b)

Given the form of E(λ,0) and F(0,µ), and the fact that the variance of a convolution is

equal to the sum of their variances, it follows that these disturbances are in fact state-

independent:

ηDL(Q, ρ)2 = Var
(
e(λ,µ)

)
−Var

(
e(λ,0)

)
=: ηDL(Q), (4.34a)

ηDL(P, ρ)2 = Var
(
f (λ,µ)

)
−Var

(
f (0,µ)

)
=: ηDL(P ). (4.34b)

By making use of Equations (A.16), (A.23), (C.11) and (C.17), we can express ηDL(Q)
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and ηDL(P ) in the form

ηDL(Q) =
µ2

4
(1− κ)2Var (Q2, ϕ)− µ

λ
(1− κ)Cov(Q1, Q2, ϕ), (4.35a)

ηDL(P ) =
λ2

4
(1 + κ)2Var (P1, ϕ)− λ

µ
(1 + κ)Cov(P1, P2, ϕ), (4.35b)

where Cov(Q1, Q2, ϕ) =
〈
ϕ
∣∣1

2(Q1Q2 +Q2Q1)ϕ
〉
− 〈ϕ|Q1ϕ〉 〈ϕ|Q2ϕ〉 is the covariance be-

tween Q1 and Q2 with respect to the state ϕ, etc. We can replace the pure state

ϕ ∈ H1 ⊗ H2 with the mixed state σ ∈ S(H1 ⊗ H2) for our probes and arrive at the

same form of ηDL for both Q and P .

As was noted in Di Lorenzo’s paper, these quantities can be made arbitrarily small

or even negative, and this only occurs if the probes are prepared in a non-separable or a

mixed state (so that the covariance terms do not immediately go to zero). In the paper,

a negative value of ηDL is considered to be a reduction in the uncertainty in the margin

observable compared to its single-measure counterpart. However, given that disturbance

is an absolute value (an observable or state is either disturbed or it is not), a negative

value cannot make sense. Furthermore, this definition is specific to the measurement

schemes outlined, and is therefore not extendible to additional situations. With this con-

struction, negative values are not implausible, as one begins by performing a sub-optimal

measurement, and then use the statistical spread of this measurement as a benchmark

for subsequent indirect measurements. If one had begun by performing the ideal position

measurement, say, then ηDL(Q) would reduce to the variance of e(λ,µ) and we would arrive

at a similar form of error value for E(λ,µ).

As a result, ηDL does not correspond to a physically relevant definition of disturbance,

but does highlight the phenomenon of focussing, where E(λ,µ), say, is more precise than

E(λ,0). In other words, by performing a joint/sequential measurement we have found

marginal observables that are less statistically spread out than if we had performed just

the measurements on single probes. As hinted at in the previous paragraph, this is only

possible if we allow for prior correlations between the probes; that is, if the probes are

prepared in either an entangled or mixed state.

4.3.2 Examples of focussing

We shall conclude this chapter by showing some examples of probe states that can lead to

focussing in both margins. One example will be an entangled state, whilst the other will

be a mixed state. Given that we now know ηDL does not correspond to a physically valid

disturbance measure, we shall relabel it by F .

We shall first consider the two-level Gaussian pure state

ϕ(x, y) =

(
4 detD

π2

)1/4

exp[−(x, y)D(x, y)T ] =

(
4 detD

π2

)1/4

exp[−(ax2 + 2bxy + dy2)], (4.36)

where D is the matrix

D =

(
a b

b d

)
. (4.37)
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Similarly, we can express ϕ in terms of its momentum representation

ϕ̃(w, z) =

(
1

4π2 detD

)1/4

exp

[
−1

4
(w, z)D−1(w, z)T

]
=

(
1

4π2 detD

)1/4

exp

[
− 1

4 detD
(dw2 − 2bwz + az2)

]
.

(4.38)

From these two forms one quickly verifies that

D =

( 〈
P 2

1

〉
ϕ
〈P1P2〉ϕ

〈P1P2〉ϕ
〈
P 2

2

〉
ϕ

)
= 4 detD

( 〈
Q2

2

〉
ϕ

−〈Q1Q2〉ϕ
−〈Q1Q2〉ϕ

〈
Q2

1

〉
ϕ

)
, (4.39)

where 〈P1〉ϕ = 〈ϕ|P1ϕ〉, etc. This state is unbiased, i.e., 〈Qi〉ϕ = 〈Pi〉ϕ = 0 for i = 1, 2,

and so the variances and covariances reduce, hence

D =

(
Var (P1, ϕ) Cov(P1, P2, ϕ)

Cov(P1, P2, ϕ) Var (P2, ϕ)

)
= 4 detD

(
Var (Q2, ϕ) −Cov(Q1, Q2, ϕ)

−Cov(Q1, Q2, ϕ) Var (Q1, ϕ)

)
. (4.40)

With this in mind, the expressions for F(Q) and F(P ) can be expressed in terms of a, b

and d:

F(Q) =
1

4 detD

(
µ2

4
(1− κ)2a+

µ

λ
(1− κ)b

)
, (4.41a)

F(P ) =
λ2

4
(1 + κ)2a− λ

µ
(1 + κ)b. (4.41b)

In order for both F(Q) and F(P ) to be negative we require that

−(1− κ)

λ
µb >

(1− κ)2

4
µ2a > 0, (4.42a)

(1 + κ)

µ
λb >

(1 + κ)2

4
λ2a > 0. (4.42b)

This restricts us to the case where |κ| > 1, otherwise we would require b < 0 from Equation

(4.42a) and b > 0 from Equation (4.42b), which clearly cannot be achieved simultaneously.

(Note that we have relied here on the requirement that λ, µ > 0.)

Suppose that we let κ > 1. In this case b > 0 in Equation (4.42b) and

b

a
>

(1 + κ)

4
λµ. (4.43)

Similarly, if κ < −1, then b < 0 in Equation (4.42a) and

|b|
a
>

(1− κ)

4
λµ. (4.44)

We can therefore find focussing in both margins if we prepare the probes in the two-level

Gaussian state provided |κ| > 1 and

|b|
a
>

(1 + |κ|)
4

λµ. (4.45)
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The second example that we consider is the mixed state σ = pσ1 + (1 − p)σ2, with

p ∈ (0, 1). Both states σ1 and σ2 are pure separable states composed of one-level Gaussian

states centred on the same point (xi, wi) in phase space. In other words, the state σi is of

the form

σi = P
ϕ
(1)
i ⊗ϕ

(2)
i

, (4.46)

such that 〈Q1〉σi = 〈Q2〉σi = xi and 〈P1〉σi = 〈P2〉σi = wi. Further to this, we assume that

the pure states have a fixed variance S with respect to the position operators and R with

respect to the momentum operator:

Var (Q1, σi) = Var (Q2, σi) = S, Var (P1, σi) = Var (P2, σi) = R, (4.47)

for i = 1, 2. The covariances for this state are then given by

Cov(Q1, Q2, σ) = 〈Q1Q2〉σ − 〈Q1〉σ 〈Q2〉σ
= tr [Q1Q2(pσ1 + (1− p)σ2)]

− tr [Q1(pσ1 + (1− p)σ2)] tr [Q2(pσ1 + (1− p)σ2)]

= px2
1 + (1− p)x2

2 − (px1 + (1− p)x2)2

= (p− p2)(x1 − x2)2.

(4.48)

Similarly,

Cov(P1, P2, σ) = (p− p2)(w1 − w2)2. (4.49)

In both cases the covariance is strictly non-negative, which means, by comparing with

Equation (4.35), that if we want to be able to make both F(Q) and F(P ) negative we

require |κ| < 1, thereby ensuring that both (1 + κ) and (1− κ) are positive.

We can also calculate the variance of Q2, say, with respect to σ:

Var (Q2, σ) = tr
[
(pσ1 + (1− p)σ2)Q2

2

]
− tr [(pσ1 + (1− p)σ2)Q2]2

= p(S + x2
1) + (1− p)(S + x2

2)− (px1 + (1− p)x2)2

= S + px2
1 + (1− p)x2

2 − (px1 + (1− p)x2)2

= S + Cov(Q1, Q2, σ),

(4.50)

where in the second equality we used

tr
[
σiQ

2
2

]
= Var (Q2, σi) + tr [σiQ2]2 = S + x2

i . (4.51)

Given the structure of the states we have considered, we can immediately infer that

Var (P1, σ) = R+ Cov(P1, P2, σ). (4.52)

If we position σ1 and σ2 far apart in phase space, then the covariances will keep increasing

in value, and by Equations (4.50) and (4.52) we know that the variance is guaranteed to

satisfy Var (Q1, σ) Var (Q2, σ) ≥ Cov(Q1, Q2, σ), etc., as required. We can now rewrite
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Equation (4.35) as

F(Q) =
µ2

4
(1− κ)2Var (Q2, ϕ)− µ

λ
(1− κ)Cov(Q1, Q2, ϕ)

=
µ2

4
(1− κ)2(S + Cov(Q1, Q2, σ))− µ

λ
(1− κ)Cov(Q1, Q2, ϕ)

=
µ2

4
(1− κ)2S +

µ

λ
(1− κ)Cov(Q1, Q2, σ)

(
(1− κ)

4
λµ− 1

)
,

(4.53a)

F(P ) =
λ2

4
(1 + κ)2Var (P1, ϕ)− λ

µ
(1 + κ)Cov(P1, P2, ϕ)

=
λ2

4
(1 + κ)2R+

λ

µ
(1 + κ)Cov(P1, P2, σ)

(
(1 + κ)

4
λµ− 1

)
.

(4.53b)

We can therefore see that if we prepare our probes in the mixed state σ and set |κ| < 1,

then we are capable of finding both F(Q) and F(P ) to be negative if the covariances are

sufficiently large and
(1 + |κ|)

4
λµ < 1, (4.54)

which is a requirement of a very similar form to Equation (4.45). This condition restricts

the size of the coupling parameters that we may use if we wish to witness focussing, and

so the assumption of ignoring the free evolution of the system and two probes may not be

justified.
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Chapter 5

Incompatibility and Error

Relations for Qubit Observables

Incompatibility is a ubiquitous feature of quantum theory, with even the simplest quantum

systems possessing observables that cannot be measured together. One way of mitigating

the impossibility of realising accurate joint measurements of two incompatible quantities,

denoted throughout this chapter by A and B, is to approximate them by two observables,

denoted by C and D, that are jointly measurable, as shown in Figure 5.1. The degree

to which an approximating observable is an accurate representation of the initial observ-

able, the so-called target observable, is given by a measure of error. When attempting to

approximate the two target observables, the requirement of joint measurability that we

impose on the approximating observables places constraints on the possible error values

that we may obtain. For example, performing a perfect approximation of the first target

observable prohibits performing an equally accurate approximation of the second, as these

approximating observables would be incompatible.

Suppose that we consider an (arbitrary) error measure D; for this measure we can

plot the range of possible pairs of error values (D(C,A), D(D,B)). The joint measurability

condition has the following consequence: for any value of D(C,A), say, we have a (usually

non-zero) minimum value for D(D,B) that we may obtain whilst still ensuring C and D are

jointly measurable. This error tradeoff is quantified by so-called measurement uncertainty

relations, and are dependent on the level of incompatibility between A and B. In their

most general form, measurement uncertainty relations can be expressed as

f
(
D(C,A), D(D,B)

)
≥ g(A,B), (5.1)

where f : R → R and g : Ls(H) → R are functions that describe the relation. (In the

case of state-dependent relations, for example, g often takes the form of the expectation

value of the commutator of A[1] and B[1] divided by 2i.) Any pair of error values that

satisfy Equation (5.1) are said to lie in the so-called admissible region, whilst any pair

of errors that saturate the inequality, and therefore correspond to a pair of the smallest

possible error values under the constraint of joint measurability, form the lower bound

of the admissible region. It is possible that the lower bound of an admissible region, as

described by a given uncertainty relation, cannot be reached. However, when the lower
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A B

C D
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??^^

Figure 5.1: Two incompatible observables A and B are approximated via jointly measurable
observables C and D, with joint observable J. The error measures act as a merit of how
well C (D) approximates A (B).

bound can be met, that is, an uncertainty relation can be saturated, then we refer to it as

a tight error bound.

In this chapter we discuss two reported tight error bounds for approximating two in-

compatible sharp dichotomic (two-valued) qubit observables via jointly measurable observ-

ables, as discussed above. A qualitative description of a bound for this kind of observable

has previously been given [14], with the error measure being the distance between the

observables considered, and a linear tight approximation of the bound was provided. The

first error bound that we shall discuss, given by Branciard [7], is in terms of the noise

measure introduced by Ozawa [40] and is shown to be an attainable lower bound for any

two incompatible observables in any dimension of Hilbert space considered. The second

bound, presented by Yu and Oh [57], is given strictly for dichotomic qubit observables

and is based on the error measure considered by Busch, Lahti and Werner [16]. This

bound, while again shown to be attainable, was originally given parametrically and the

operational meaning of the terms given were not immediately clear.

The original goal of the work in this chapter was to attempt to reconcile these two

bounds, such that the bound given by Yu and Oh may be extended to higher dimensional

systems. However, this task was quickly seen to be impossible, so we then focussed on a

comparison of the relative worth of each bound and which classes of observables provided

optimal approximations, that is, which observables provided error values that saturated

the bound for a given error measure. Examples of optimal approximating observables were

given in each paper.

These two papers address the problem from slightly different directions, and so we

need to reword some ideas so that they may be more easily compared. In what follows we

examine Branciard’s method of producing jointly measurable approximating observables,

which is based on the work of Hall [28] and is expressed in terms of first moment operators.

We also spell out the meaning of the terms given in Yu and Oh’s minimum error quantities

that are wrapped up in trigonometric quantities and provide a derivation of the error bound

in Appendix E, as this was not given with much detail in the original letter and allows us

to uncover and fix a shortcoming in their given argument. We then provide a comparison

of these two bounds, and show that whilst there exist certain instances where the optimal

approximators of one bound are also optimal for the other, these are indeed special cases.

Furthermore, we show that the class of observables that saturate the Branciard’s bound

for the noise measure is much greater than that for Yu and Oh’s bound for the BLW error
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measure, which suggests that the noise measure provides misleading assessments of error.

Indeed, the combination of Hall and Branciard’s joint measurement scheme and the bound

given for the noise measure lead to a questionable form of “optimal” joint measurement

of two incompatible observables.

5.1 Branciard’s joint observable construction

In order to allow for a comparison between Branciard’s work and the work of Yu and Oh, we

need to express Branciard’s construction of jointly measurable approximating observables

in terms of the language presented thus far (Yu and Oh’s work is already presented within

a compatible language).

In his paper [7], adopting the method of Hall [28], Branciard considers a Hilbert space

H and an ancillary system K in a fixed state ξ, upon which he measures the discrete

sharp observable M : {1, . . . , N} → E(H ⊗ K) associated with the self-adjoint operator

M = M[1] =
∑N

m=1mM(m) ∈ Ls(H ⊗K). It is this self-adjoint operator that Branciard

considers to be his observable, and not the PVM that describes it. As a result his discussion

on approximating two observables is in fact focussed on approximating the two self-adjoint

operators associated with two incompatible POVMs, A = A[1] and B = B[1], and not the

POVMs themselves. This approximation is performed by applying two functions, f and

g, on M such that for each eigenvalue m, f(m) approximates an eigenvalue of the first

self-adjoint operator and g(m) approximates an eigenvalue of the second. This then leads

to our two approximating self-adjoint operators

f(M) =
N∑
m=1

f(m)M(m), g(M) =
N∑
m=1

g(m)M(m). (5.2)

Since these operators share a common eigenbasis (the elements of the PVM M) they must

commute.

What is discussed above is an example of a Naimark dilation, and we define the POVM

E : {1, . . . , N} → E(H) by performing the partial trace over the ancillary system (cf.

Equation (2.145) with U = I, σ = Pξ and Z = M),

E(m) = trK [(I ⊗ Pξ)M(m)] . (5.3)

Whilst not considered in Hall and Branciard’s work, we can construct the POVMs C and

D that approximate A and B, respectively, via

C(k) =
∑

m∈f−1(k)

E(m), D(`) =
∑

m∈g−1(`)

E(m), (5.4)

where k ∈ ran(f) and ` ∈ ran(g). In other words, the functions f and g form partitions

of the set of effects of M, and C and D satisfy

〈ψ|C[1]ψ〉 = 〈ψ ⊗ ξ|f(M)ψ ⊗ ξ〉 , 〈ψ|D[1]ψ〉 = 〈ψ ⊗ ξ|g(M)ψ ⊗ ξ〉 . (5.5)
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The bins of the partitions defined by f and g will necessarily overlap to some extent and,

by including null effects when needed, we may define the joint observable J for C and D

as

J(k, `) =
∑
m

χf−1(k)∩g−1(`)(m)E(m), (5.6)

where χ denotes the characteristic function. The positivity and normalisation of these

effects is given, and we quickly see that by summing over the outcome space of D or C we

retrieve effects of C or D, respectively.

Whilst we have shown that recovering these observables as margins of J is indeed

possible, we must stress that Hall’s method of deriving a joint approximation for two self-

adjoint operators is physically lacking. This method was originally highlighted by Hall

based on the idea that “any measurement [in the sense presented above] is considered to

provide a joint measurement of any two observables” if one simply rescales the values of

the possible measurement outcomes via the functions f and g. However, as we show in

Appendix D, such functions can lead to suboptimal approximating observables possessing

noise measure values equal to zero.

5.2 Qubit error measures

We will consider the noise measure and the BLW error measure, as discussed in Sec-

tion 2.4.5. The target observables A and B are sharp qubit observables, i.e., two-valued

observables with effects of the form

A(±) =
1

2
(I ± a · σ), B =

1

2
(I ± b · σ), (5.7)

where ‖a‖ = ‖b‖ = 1. The first moment operators associated with these observables are

therefore A[1] = a ·σ and B[1] = b ·σ. The observables C and D approximating A and B,

respectively, that we will consider are also dichotomic and covariant under value swaps,

i.e., there exists a unitary operator U such that

UC(±)U∗ = C(∓), UD(±)U∗ = D(∓). (5.8)

Such observables are necessarily unbiased; that is, their effects are of the form

C(±) =
1

2
(I ± c · σ), D(±) =

1

2
(I ± d · σ), (5.9)

thereby ensuring that both effects for either observable possess the same spectrum.

The reason for this choice of approximating observables is threefold: firstly, it ensures

that the target and approximating observables possess the same value space, which is a fea-

ture of use later; secondly, there exists a simple Bloch-geometric requirement for ensuring

the joint measurability of dichotomic observables; thirdly, as we will shortly see, the noise

measure possesses an interesting property for the case of dichotomic observables covariant

under value swaps that will allow us to compare it against the BLW error measure.

The condition of covariance given in Equation (5.8) is equivalent to the Bloch vector

u satisfying U = u · σ being perpendicular to both c and d. (In the case that c ⊥ d, U
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amounts to a Heisenberg-Weyl shift operator.) The first moment operators of C and D

are of the form

C[1] = c · σ, D[1] = d · σ, (5.10)

whilst the second moment for both observables is the identity. The squares of the first

moment operators are equal to the identity times the squared norm of their respective

Bloch vectors, i.e., C[1]2 = ‖c‖2 I, etc. Using Equation (2.158) we can readily calculate

ε(C,A, ψ)2 and ε(D,B, ψ)2:

ε(C,A, ψ)2 =
〈
ψ
∣∣(C[1]− A[1])2ψ

〉
+
〈
ψ
∣∣(C[2]− C[1]2)ψ

〉
=
〈
ψ
∣∣[(a− c) · σ]2ψ

〉
+
〈
ψ
∣∣∣(1− ‖c‖2)Iψ

〉
= ‖a− c‖2 + 1− ‖c‖2 ,

(5.11)

where we have made use of the identity (a ·σ)(b ·σ) = (a ·b)I+ i(a×b) ·σ, and similarly,

ε(D,B, ψ)2 = ‖b− d‖2 + 1− ‖d‖2 . (5.12)

A point of note is that both of these quantities are independent of the state considered,

and that this is a consequence of considering covariant approximating observables. Given

that the noise measure is state-independent in the case of these observables, we shall use

the shorthands εA := ε(C,A, ψ) and εB := ε(D,B, ψ) in what follows.

We now briefly calculate the values ∆(C,A)2 and ∆(D,B)2 using equations (2.162) and

(2.164), following the method given in [18]. Supposing that we possess a system in a state

ρ = (I + r · σ)/2, a general coupling γ that we can use for the probability distributions

pAρ and pCρ is of the form

γ(+,+) = α, γ(−,+) = pAρ (+)− α,

γ(+,−) = pCρ (+)− α, γ(−,−) = 1− pCρ (+)− pAρ (+) + α.
(5.13)

Using this coupling in Equation (2.162) gives us

∆ρ(C,A)2 =
∑

x∈{−1,1}

∑
y∈{−1,1}

(x− y)2 γ(x, y)

= 4
(
γ(+,−) + γ(−,+)

)
= 4(pCρ (+) + pAρ (+)− 2α).

(5.14)

In order to minimise this quantity, whilst still ensuring its positivity, we require that

α = min{pCρ (+), pAρ (+)}, and so

∆ρ(C,A)2 = 4
∣∣∣pCρ (+)− pAρ (+)

∣∣∣
= 2 |(c− a) · r| .

(5.15)

The quantity ∆(C,A)2 is found by taking the supremum over all states, which in this

case comes from choosing the Bloch vector r parallel to c− a, i.e., r = (c− a)/ ‖c− a‖.
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Hence,

∆(C,A)2 = 2 ‖a− c‖ , (5.16)

and, similarly,

∆(D,B)2 = 2 ‖b− d‖ . (5.17)

By introducing the unsharpness U(C)2 of the observable C

U(C)2 = 1− ‖c‖2 , (5.18)

and likewise for U(D)2, we can rewrite ε2
A and ε2

B in the case of covariant dichotomic

observables as

ε2
A =

1

4
∆(C,A)4 + U(C)2,

ε2
B =

1

4
∆(D,B)4 + U(D)2.

(5.19)

Further to this, in the special case that C is derived from A via a trivial smearing, i.e.,

c = γa where 0 < γ < 1, the quantity ε2
A reduces:

ε2
A = 1 +

(
(1− γ)2 − γ2

)
‖a‖2

= 2(1− γ) = 2(1− γ) ‖a‖

= 2 ‖a− c‖

= ∆(C,A)2.

(5.20)

These quantities can also be compared to the probabilistic distance D introduced in [14],

D(C,A) = max
X

sup
ρ∈S(H)

|tr [ρA(X)]− tr [ρC(X)]| = max
X
‖A(X)− C(X)‖ , (5.21)

where we have assumed that A and C possess the same outcome space and X ∈ ΩA. For

our dichotomic observables this difference of effects is of the form

A(±)− C(±) = ±1

2
(a− c) · σ, (5.22)

and so the probabilistic distance between C and A is

D(C,A) =
1

2
‖a− c‖ =

1

4
∆(C,A)2. (5.23)

If we then compare this to the noise measure we see that

ε2
A = 4D(C,A)2 + U(C)2. (5.24)

In the next section we shall see how these errors lead to bounds on how well two

incompatible observables can be approximated in a joint measurement scheme.
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5.3 The error bounds

The motivations leading to the minimum error bounds will be given here. Given that the

details for the derivation of Yu and Oh’s bound were omitted in the original paper, we shall

include them here in Appendix E. The bounds presented here describe the smallest possible

errors that may be obtained during a joint measurement of C and D when approximating

A and B, respectively, with respect to their given measure of error.

5.3.1 Branciard’s bound

Branciard’s bound, which is based on the noise measure ε and was originally given for

any finite-dimensional system, is derived by first considering the following pure states on

H⊗K:

α =
A⊗ I − 〈A〉ψ

∆(A)
ψ ⊗ ξ, β =

B ⊗ I − 〈B〉ψ
∆(B)

ψ ⊗ ξ,

γ =
f(M)− 〈A〉ψ

∆(A)
ψ ⊗ ξ, δ =

g(M)− 〈B〉ψ
∆(B)

ψ ⊗ ξ,
(5.25)

where the standard deviations

∆(A) =
√
〈A2〉ψ − 〈A〉

2
ψ, ∆(B) =

√
〈B2〉ψ − 〈B〉

2
ψ, (5.26)

are assumed to be nonzero. Indeed, Branciard at this point considers the case where

〈A〉ψ = 〈B〉ψ = 0 and A2 = B2 = I, leading to ∆(A) = ∆(B) = 1, and thereby reducing

the above vectors to

α = A⊗ I(ψ ⊗ ξ), β = B ⊗ I(ψ ⊗ ξ),

γ = f(M)(ψ ⊗ ξ), δ = g(M)(ψ ⊗ ξ).
(5.27)

A further assumption made by Branciard is that the approximating observables possess

the same spectrum as the observables that they are approximating, i.e., C and D are also

dichotomic observables, and therefore f(M)2 = g(M)2 = I. This, along with the condition

A2 = B2 = I given above, ensures that the four vectors above are normalised. From here,

by decomposing the previous states in terms of any orthonormal basis {ϕj}dj=1 for H⊗K,

where d = dim(H⊗K), the following vectors are given on the Euclidean space R2d:

e =

(
Re(α)

Im(α)

)
, f =

(
Im(β)

−Re(β)

)
,

g =

(
Re(γ)

Im(γ)

)
, h =

(
Im(δ)

−Re(δ)

)
.

(5.28)

In other words, if we consider the jth component of α, for example, then we can express

it in terms of the components of e via

αj = 〈ϕj |α〉 = ej + i ej+d. (5.29)
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The normalisation of the states given in Equation (5.27) guarantees the vectors in Equation

(5.28) are also normalised. We see that

‖e− g‖2 = ‖(A⊗ I − f(M))ψ ⊗ ξ‖2 = ε(C,A, ψ)2, (5.30)

where we have made use of the form of the noise measure given in Equation (2.156),

and associated it with the observable C via Equation (5.5). Note that in this situation

we are dealing with generic observables and so the noise measure is still assumed to be

state-dependent. Similarly, we also have

‖f − h‖2 = ε(D,B, ψ)2. (5.31)

If we take the scalar product of the two vectors g and h:

g · h = Re(γ)T Im(δ)− Im(γ)TRe(δ), (5.32)

and compare it to the inner product of γ and δ:

〈γ|δ〉 =
(
Re(γ) + i Im(γ)

)∗(
Re(δ) + i Im(δ)

)
=
(
Re(γ)TRe(δ) + Im(γ)T Im(δ)

)
+ i
(
Re(γ)T Im(δ)− Im(γ)TRe(δ)

)
,

(5.33)

we see that

g · h = Im(〈γ|δ〉) =
1

2i
(〈γ|δ〉 − 〈δ|γ〉) =

1

2i
〈ψ ⊗ ξ|[f(M), g(M)]ψ ⊗ ξ〉 = 0. (5.34)

Similarly,

e · f = Im(〈α|β〉) =
1

2i
〈ψ|[A,B]ψ〉 =: CAB, (5.35)

which is the measure of incompatibility of the two sharp observables that is used in the

paper (and, as we shall see, reduces to the measure used by Yu and Oh). Finally, Branciard

defines two further scalar quantities

e2
⊥ := 1− (e · g)2 = ‖e− g‖2

(
1−
‖e− g‖2

4

)
,

f2
⊥ := 1− (f · h)2 = ‖f − h‖2

(
1−
‖f − h‖2

4

)
,

(5.36)

which, by comparing with Equations (5.30) and (5.31), we see can be rewritten as

e2
⊥ = ε(C,A, ψ)2

(
1− ε(C,A, ψ)2

4

)
, f2

⊥ = ε(D,B, ψ)2

(
1− ε(D,B, ψ)2

4

)
. (5.37)

By direct application of a geometric inequality defined on a Euclidean space, as shown in

[7], where we require the vectors e and f to be normalised and g and h to be orthonormal:

e2
⊥ + f2

⊥ + 2
√

1− (e · f)2 e⊥f⊥ ≥ (e · f)2, (5.38)
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we arrive at the Branciard inequality for the noise measure:

ε(C,A, ψ)2

(
1− ε(C,A, ψ)2

4

)
+ ε(D,B, ψ)2

(
1− ε(D,B, ψ)2

4

)
+ 2ε(C,A, ψ)ε(D,B, ψ)

√
1− C2

AB

√(
1− ε(C,A, ψ)2

4

)(
1− ε(D,B, ψ)2

4

)
≥ C2

AB .

(5.39)

As has been stated before, this inequality holds for any finite-dimensional system, and is

trivially satisfied when CAB = 0, but we can give a more useful form for a qubit system.

In this case, the first moments of A and B are described by the Bloch vectors a and b, i.e.,

A = a ·σ and B = b ·σ. Given that we have assumed that A2 = B2 = I, we require that

the Bloch vectors a and b are normalised, and, in order for the state ψ of the system to

satisfy the conditions 〈A〉ψ = 〈B〉ψ = 0, we require that the Bloch vector r that describes

the pure state ψ—that is, Pψ = (I + r · σ)/2—must be orthogonal to both a and b.

Assuming that [A,B] 6= 0, hence b 6= ±a, the vector r is of the form r = a × b/ sin θ,

where sin θ = ‖a× b‖. We assume that θ ∈ (0, π/2], as for any angle θ ∈ (π/2, π) we could

replace the Bloch vector b, say, with −b. This would result in a value-swapped version of

the observable B′(±) = B(∓), but would otherwise lead to the same problem being solved,

with the angle π − θ ∈ (0, π/2) between the Bloch vectors. Furthermore, if we consider

any angle θ ∈ [π, 2π] then we would find sin θ ≤ 0, contradicting our initial definition of

sin θ.

In this case the quantity CAB takes the form

CAB =
1

2i
〈ψ|[A,B]ψ〉 = (r · σ)

(
(a× b) · σ

)
=
‖a× b‖2

sin θ
= sin θ. (5.40)

Using the unbiased dichotomic approximating observables C,D, so that the noise measure

becomes state-independent, we can express Equation (5.39) as

ε2
A

(
1−

ε2
A

4

)
+ ε2

B

(
1−

ε2
B

4

)
+ 2εAεB cos θ

√(
1−

ε2
A

4

)(
1−

ε2
B

4

)
≥ sin2 θ, (5.41)

where the positivity of cos θ comes from the restriction of θ ∈ (0, π/2]. If we consider the

non-negative quantities x, y, where

x2 := ε2
A

(
1−

ε2
A

4

)
, y2 := ε2

B

(
1−

ε2
B

4

)
, (5.42)

then we see that the lower bound for Equation (5.41) describes an ellipse centred at the

origin:

x2 + y2 + 2xy cos θ = sin2 θ. (5.43)

As we vary the level of incompatibility between A and B—done here by changing θ—

we change the shape of the ellipse: As we approach θ = 0, Equation (5.43) reduces to

(x + y)2 = 0. If we considered the full range of possible values of x and y we would

find that this defines a line running from (−1, 1) to (1,−1), but since we are considering

positive quantities the only point on the line we would consider is (0, 0). This corresponds

to the admissible region becoming larger until any pair of approximating observables are
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Figure 5.2: A plot of Equation (5.43) for θ = π/6, π/4 and π/2.

possible. As we increase θ the length of the semi-major axis reduces, whilst the semi-

minor axis increases, until we reach the angle θ = π/2, where Equation(5.43) reduces to

x2 + y2 = 1, describing a circle of radius one centred at the origin. A plot of Equation

(5.43) for θ = π/6, π/4 and π/2 is given in Figure 5.2.

For any given value of θ, we can quickly see from Equation (5.43) that if either x2 or

y2 equals 0, then y2 or x2 becomes equal to sin2 θ, respectively. Given the forms of x2 and

y2 in Equation (5.42), the outcome x2 = 0, say, can occur in two possible ways: either

ε2
A = 0 or ε2

A = 4. By expressing (5.11) in a different way:

ε2
A = ‖a− c‖2 + 1− ‖c‖2 = 2(1− a · c), (5.44)

where we have made use of the normalisation of a, we can express the quantity ε2
A(1−ε2

A/4)

in a much simpler form:

ε2
A

(
1−

ε2
A

4

)
= 2(1− a · c)

(
1 + a · c

2

)
= 1− (a · c)2, (5.45)

and similarly for ε2
B(1−ε2

B/4). With these in mind, we can alternatively express Equation

(5.41) as

2− (a · c)2 − (b · d)2 + 2 cos θ
√(

1− (a · c)2
)(

1− (b · d)2
)
≥ sin2 θ. (5.46)

5.3.2 Yu and Oh’s bound

The full derivation of Yu and Oh’s bound is given in Appendix E, so we shall only give a

brief overview in this section.

The paper deals with a rescaled version of the BLW error measure given in Equation

(5.16):

D(C,A) = 2D(C,A) =
1

2
∆(C,A)2 = ‖a− c‖ , (5.47)

and similarly for D(D,B). It is assumed from the outset that the approximating observ-

ables possess the smallest possible values for D(C,A) and D(D,B), subject to the condition

that they are jointly measurable. Since these observables are covariant, this condition is
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equivalent [10] to their Bloch vectors c and d satisfying the condition

‖c+ d‖ + ‖c− d‖ ≤ 2. (5.48)

Geometrically, if we fix the vector d, say, then we are attempting to find the smallest circle

of radius D(C,A) centred at a that will intersect with the ellipsoid defined by Equation

(5.48). By minimising D(C,A) and D(D,B) subject to Equation (5.48) we find a minimum

error bound given by the quantities

D(C,A) =
sinϕ+ sin θ cosϕ√

1 + sin θ sin 2ϕ
− sinϕ,

D(D,B) =
cosϕ+ sin θ sinϕ√

1 + sin θ sin 2ϕ
− cosϕ,

(5.49)

where sin θ = ‖a× b‖ (=
∥∥ 1

2i [A,B]
∥∥) as in the case of Branciard’s bound, and ϕ is defined

via

sinϕ =

√
1− ‖d‖2

1− (c · d)2
. (5.50)

Unfortunately, given that the bound described in Equation (5.49) is expressed in terms

of the angle ϕ, it is in a form that is dependent upon the Bloch representation, and not

expressed in terms of quantities with immediate operational meaning. However, this can

be rectified.

First, by comparing with Equation (5.18), we see that the numerator in Equation

(5.50) is the square root of the unsharpness of the observable D, U(D). Secondly, we note

that, as is shown in Appendix E, the above bound is found by making the Bloch vectors

c and d saturate the inequality (5.48). This condition—as is seen by squaring both sides,

rearranging and then squaring again—is equivalent to

‖c‖2 + ‖d‖2 = 1 + (c · d)2. (5.51)

By making use of Equation (5.51) we can rewrite the denominator of Equation (5.50) as

1− (c · d)2 = 2− ‖c‖2 − ‖d‖2 = U(C)2 + U(D)2. (5.52)

Hence, we can express sinϕ solely in terms of the unsharpness of the two approximating

observables:

sinϕ =
U(D)√

U(C)2 + U(D)2
, (5.53)

and similarly,

cosϕ =
U(C)√

U(C)2 + U(D)2
. (5.54)

These quantities are positive, and so ϕ ∈ [0, π/2]. By combining these two together, we

can also express sin 2ϕ in terms of U(C) and U(D):

sin 2ϕ = 2 sinϕ cosϕ =
2U(C)U(D)

U(C)2 + U(D)2
. (5.55)
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Figure 5.3: A comparison of Yu and Oh’s minimum error bound (blue line) with the circle
(x− sin θ)2 + (y − sin θ)2 = sin2 θ (red dashed line) for the angles θ = π/6, π/4 and π/2.

Using these identities in Equation (5.49) we can express the bounds in terms of the un-

sharpness of C and D:

D(C,A) =
U(D) + U(C) sin θ√

(U(D) + U(C) sin θ)2 + U(C)2 cos2 θ
− U(D)√

U(C)2 + U(D)2
,

D(D,B) =
U(C) + U(D) sin θ√

(U(C) + U(D) sin θ)2 + U(D)2 cos2 θ
− U(C)√

U(C)2 + U(D)2
.

(5.56)

Note that for the work we present here we will interchange between the forms given in

Equation (5.49) and (5.56), depending on which form is of greater use at the time.

Much like the case of Branciard’s bound, the shape of the bound described by Equation

(5.49) is determined by the angle θ that quantifies the incompatibility between A and B.

In the case of compatible observables (θ = 0), the optimal errors are both zero, as is

expected, and when we consider maximally incompatible observables (θ = π/2) we arrive

at the form

D(C,A) = 1− sinϕ, D(D,B) = 1− cosϕ, (5.57)

which for the domain that we are considering, ϕ ∈ [0, π/2], defines the lower left quadrant

of a unit circle centred at (1, 1). For all other values of θ, this bound defines a curve that

lies slightly above a circle of radius sin θ centred at (sin θ, sin θ). A comparison of these

curves is shown in Figure 5.3 for θ = π/6, π/4 and π/2.. If we let ϕ = 0 in Equation (5.49)

we see that D(C,A) = sin θ and D(D,B) = 0, whilst if ϕ = π/2 we find D(C,A) = 0 and

D(D,B) = sin θ.

5.4 A comparison of optimal approximators

In their respective papers, Branciard and Yu and Oh provide examples of approximating

observables C and D that saturate their given bounds. In this section we shall compare

these optimal approximators and show that, whilst they saturate their respective bound,

they do not in general saturate the other’s.

We will also discuss the experimental work by Ringbauer et al. [45], who have con-

structed jointly measurable approximators of the sharp observables associated with the

Pauli operators σx and σz via photon polarisation measurements. Using the noise measure,
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their approximators near the bound given in Equation (5.41). Their paper discusses two

methods of measurement, the so-called three-state measurement and weak measurement

methods. The conceptual shortcomings of the three-state method have been discussed

elsewhere [18, 19], and so we restrict ourselves here to the discussion on the weak mea-

surement method presented. As will be shown, the method used by Ringbauer et al. is

very similar in nature to that presented by Branciard in [7], and as a result whilst their

approximators approach the bound in Equation (5.41), they do not near the bound in

Equation (5.49). This is in contrast with the experiment of Rozema et al. [46], which (as

is shown in the supplemental material of [20]) does lead to the optimal bound for D(C,A)

and D(D,B) when A and B are maximally incompatible.

5.4.1 Branciard’s optimal approximators

We shall begin with the optimal approximators given by Branciard. The sharp observables

that Branciard wishes to approximate are represented by Bloch unit vectors a and b that

lie within the x–y plane of the Bloch sphere, and are characterised by the angles φa and

φb, respectively:

A := A[1] = cosφa σx + sinφa σy, B := B[1] = cosφb σx + sinφb σy, (5.58)

where it is assumed that φa ≤ φb. By identifying the angle θ := φb − φa we see that the

commutator of these two operators is [A,B] = 2i sin θ σz, and so for these two observables

CAB is equal to (cf. Equation (5.35))

CAB = sin θ 〈σz〉ψ , (5.59)

with ψ denoting the state of the system we are interested in. Since we are interested

in saturating the bound in Equation (5.41), we require that the state ψ satisfies 〈A〉ψ =

〈B〉ψ = 0, and so ψ must be an eigenstate of σz. Given the eigenvalues of σz are ±1, it

follows that the degree of incompatibility between A and B is

C2
AB = sin2 θ. (5.60)

The observables A and B are approximated via an indirect measurement scheme: The

system of interest is coupled to an ancillary qubit system described by the Hilbert space

K = C2 and prepared in a state ξ ∈ K via a unitary transformation U , after which the an-

cillary system is measured via a sharp dichotomic observable M, thereby approximating A,

and subsequently we directly measure B. The self-adjoint operator M := M[1] associated

with the observable M is of the form

M = cosϕσx + sinϕσy = m · σ, (5.61)

where ϕ ∈ [φa, φb], whilst the coupling unitary U is of the form

U = (UR ⊗ I)Ucopy. (5.62)
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The operator UR is a rotation operator around the z axis,

UR = exp

[
−iφb − ϕ

2
σz

]
= cos

(
φb − ϕ

2

)
I − i sin

(
φb − ϕ

2

)
σz, (5.63)

whilst Ucopy maps the state of the ancillary system to one of the eigenvectors of M ,

Ucopy(M(±)⊗ Pξ)U∗copy = M(±)⊗M(±). (5.64)

The joint observable for this measurement scheme is given by J : {±1} × {±1} → E(C2)

via

tr [PψJ(k, `)] = tr [U(Pψ⊗ξ)U
∗B(k)⊗M(`)] , (5.65)

where k, ` = ±1. In other words, the observable J is given by

J(k, `) = trK
[
Ucopy(I ⊗ Pξ)U∗copy(U∗R B(k)UR)⊗M(`)

]
. (5.66)

By decomposing the identity into a sum of the effects of M, we see that

Ucopy(I ⊗ Pξ)U∗copy = M(+)⊗M(+) + M(−)⊗M(−), (5.67)

whilst the second quantity contained within the trace, U∗RB(k)UR ⊗M(`), is resolved by

first noting that

U∗RBUR =

(
cos

(
φb − ϕ

2

)
I + i sin

(
φb − ϕ

2

)
σz

)
(cosφb σx + sinφb σy)

×
(

cos

(
φb − ϕ

2

)
I − i sin

(
φb − ϕ

2

)
σz

)
=

(
cos2

(
φb − ϕ

2

)
− sin2

(
φb − ϕ

2

))
(cosφb σx + sinφb σy)

+ 2 sin

(
φb − ϕ

2

)
cos

(
φb − ϕ

2

)
(sinφb σx − cosφb σy)

= (cos(φb − ϕ) cosφb + sin(φb − ϕ) sinφb)σx

+ (cos(φb − ϕ) sinφb − sin(φb − ϕ) cosφb)σy

= cosϕσx + sinϕσy = M,

(5.68)

and so we can immediately see that U∗RB(k)UR = M(k). By combining these results we

can find the joint observable that is measured:

J(k, `) = trK
[(
M(+)⊗M(+) + M(−)⊗M(−)

)
(M(k)⊗M(`))

]
= M(k)M(`).

(5.69)

Clearly, this is a trivial example of a joint observable where both margins are the same

observable; that is, C = D = M. Conceptually, what is being measured here is a single

sharp observable as an approximator for both A and B, with its respective Bloch vector

m lying somewhere in between a and b on the circumference of the circle in the plane

spanned by a and b. In the language of Branciard and Hall’s joint measurement scheme,
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Figure 5.4: An example of Branciard’s optimal approximating observable M, characterised
by the angle ϕ ∈ [φa, φb]. The Bloch vector m characterising M is normalised, and so
ε2
A = ‖a−m‖, etc. Any normalised Bloch vector lying between a and b provides an

optimal approximating observable with respect to the noise measure.

this is done by setting f(m) = g(m) = m for all m within the spectrum of M . The value

of the noise measures ε2
A and ε2

B are found via Equation (5.11):

ε2
A = ‖a−m‖2 = 2(1− a ·m) = 2(1− cos(ϕ− φa)) = 4 sin2

(
ϕ− φa

2

)
,

ε2
B = ‖b−m‖2 = 4 sin2

(
φb − ϕ

2

)
.

(5.70)

From this the expression ε2
A(1− ε2

A/4) can be readily found,

ε2
A

(
1−

ε2
A

4

)
= 4 sin2

(
ϕ− φa

2

)(
1− sin2

(
ϕ− φa

2

))
= 4 sin2

(
ϕ− φa

2

)
cos2

(
ϕ− φa

2

)
= sin2(ϕ− φa),

(5.71)

and similarly for ε2
B(1− ε2

B/4). Making use of the value of C2
AB given in Equation (5.60),

the left hand side of Equation (5.41), with the above values ε2
A(1−ε2

A/4) and ε2
B(1−ε2

B/4),

is now equal to

sin2(ϕ− φa) + sin2(φb − ϕ) + 2 cos θ sin(ϕ− φa) sin(φb − ϕ). (5.72)

At this point we make use of the identity φb = φa + θ, from which it follows that

sin2(ϕ− φa) + sin2(φb − ϕ) + 2 cos θ sin(ϕ− φa) sin(φb − ϕ) = sin2 θ. (5.73)

In other words, for any value of φa and φb, where φa ≤ φb, and any ϕ ∈ [φa, φb], the

measurement scheme outlined here produces approximating observables that saturate the

bound given in Equation (5.41), i.e., this bound is saturated by any sharp observable whose

Bloch unit vector lies in between a and b in the plane spanned by them (see Figure 5.4).

Furthermore, suppose that we consider the unit vector m, and then define the vectors

c = (a ·m)a and λ = λ c + (1 − λ)m, where λ ∈ [0, 2] so that ‖λ‖ ≤ 1. In this case

125



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5.5: A comparison of the D values for the approximating observables that arise from
Branciard’s measurement scheme (red curve) against the optimal curve given in Equation
(5.49) (blue curve) for several values of θ, which determines the level of incompatibility
of the observables A and B. In the case of small θ the limits of these curves are close to
coinciding, but for all other points—corresponding to values of the angle ϕ not equal to
φa or φb—there is a notable disparity between Branciard’s approximators and the optimal
case, and indeed for larger values of θ even the limit cases vary greatly from the optimal
situation.

any dichotomic observable approximating A described by the Bloch vector λ satisfies (cf.

Equation (5.44))

ε2
A = 2(1− a · λ) = 2(1− a ·m). (5.74)

In other words, for any vector on the line segment between m and c, we find that the noise

error is fixed, although the level to which these vectors approximate A varies. Indeed, in

the case of maximum incompatibility, when φb − φa = π/2, if we let ϕ = φa + π/4, then

any vector on the line segment between m and c = a/
√

2 will have the same noise error.

However, as we shall discuss in Section 5.4.3, in the case of the D and BLW error measures,

only the Bloch vector c corresponds to an optimal approximating observable in the case

of maximal incompatibility.

If we now use the vector-norm measure D on this approximation scheme, we find that

it is suboptimal. Indeed, using Equations (5.47) and (5.70), we see that

D(C,A) = ‖a−m‖ = 2 sin

(
ϕ− φa

2

)
,

D(D,B) = 2 sin

(
φb − ϕ

2

)
= 2 sin

(
θ

2

)
cos

(
ϕ− φa

2

)
− 2 cos

(
θ

2

)
sin

(
ϕ− φa

2

)
.

(5.75)

At the limit ϕ = φa we see that D(C,A) = 0 and D(D,B) = 2 sin(θ/2), and vice versa

when ϕ = φb. By comparison, the values at the limit for the optimal case, as shown in

Section 5.3.2 are (0, sin θ) and (sin θ, 0). Since sin θ = 2 sin(θ/2) cos(θ/2) ≤ 2 sin(θ/2) for

θ ∈ [0, π/2], it follows that the limiting values given by Branciard’s scheme are greater

than the optimal values for all cases except θ = 0. Indeed, by plotting the curve given

by Equation (5.75) against the optimal bound given by Equation (5.49) (see Figure 5.5)

we see that, when using the vector-norm measure D as the measure of error, Branciard’s

scheme for approximating A and B is clearly suboptimal.
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5.4.2 Ringbauer et al.’s experiment

Following on from the work presented by Branciard, Ringbauer et al. [45] performed an

experimental verification of a measurement scheme which nears the bound (5.41). Based

on the discussion presented in Branciard’s paper, they work towards this bound by means

of two separate methods: the three-state method and the weak measurement approach.

As stated above, we shall not dwell on the three-state method1 and instead focus on the

weak measurement scheme.

The reason for using this method stems from expanding the general form of the noise

measure ε(C,A, ψ)2:

ε(C,A, ψ)2 =
〈
ψ
∣∣(C[1]− A[1])2ψ

〉
+
〈
ψ
∣∣(C[2]− C[1]2)ψ

〉
=
〈
ψ
∣∣(A[1]2 + C[2])ψ

〉
− 〈ψ|(C[1]A[1] + A[1]C[1])ψ〉

=
〈
ψ
∣∣(A[1]2 + C[2])ψ

〉
− 2Re 〈ψ|C[1]A[1]ψ〉 .

(5.76)

In our particular case, both A[1]2 and C[2] are equal to the identity, and so ε(C,A, ψ)2 =

2(1− Re 〈ψ|C[1]A[1]ψ〉). In most instances it is assumed that the first moment operators

A[1] and C[1] do not commute, and so strictly taking the real part of the expectation

value is a necessity here. Following the work of Lund and Wiseman [37], Ringbauer et al.

identify the quantity Re 〈ψ|C[1]A[1]ψ〉 as the expectation value of a joint quasi-probability

distribution pwA(k, `) = Re 〈ψ|C(k)A(`)ψ〉. However, whilst the setup of Lund and Wiseman

was designed to measure both error and disturbance within a sequential measurement

scheme—utilising two probe systems in the process—Ringbauer et al. consider a scheme

using a single probe and instead simply calculate the error in approximating either A or

B.

In their experimental setup, the incompatible observables being approximated are A =

X and B = Z, the PVMs associated with the Pauli operators σx and σz, respectively, and

the observable being used to approximate them is the sharp observable M with associated

self-adjoint operator M = cosϕσz + sinϕσx = m · σ. Within the context of the paper, a

weak measurement of A is performed, followed by a measurement of M, thereby allowing

them to calculate the quasi-probability distribution pwA and hence the value of the noise

measure for approximating A via M (and similarly in the case of B).

However, this method is not necessary for our analysis. The weak measurement is solely

there to aid in the calculation of the value of the noise measure from the measurement

statistics, and does not alter the statistics of the observable M that is being used to

approximate A and B. The observable M is of the same form as that used by Branciard

in his paper [7], and thus follows the same analysis as presented in the preceding section.

Indeed, this experiment is centred on a much simpler version of the case given above, and

1The basis of the argument against the three-state method is that, in general, the quantity ε(C,A, ψ)2

is designed to not only be state-dependent, but is also based on a value comparison of measurement
outcomes. Given the probabilistic nature of measurements in quantum mechanics, a direct comparison of
the measurement outcomes of three systems prepared in different states is not possible. As a result, the
three-state method does not correspond to a “direct test” as given in [20].
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the value of the noise measure for M approximating A and B is equal to

ε(M,A, ψ)2 = ‖a−m‖2 = 2(1− sinϕ) = 4 sin2

(
π/2− ϕ

2

)
,

ε(M,B, ψ)2 = ‖b−m‖2 = 2(1− cosϕ) = 4 sin2
(ϕ

2

)
.

(5.77)

Given that these are just a special case of Equation (5.70), where φa = π/2 and φb = 0, we

can immediately infer that this scheme saturates the bound in Equation (5.41). Similarly,

we immediately see that

D(M,A) = 2 sin

(
π/2− ϕ

2

)
,

D(M,B) = 2 sin
(ϕ

2

)
.

(5.78)

Since we are considering a case where A and B are maximally incompatible, we must have

sin θ = ‖a× b‖ = 1 and so the optimal bound for D is given by Equation (5.57),

D(C,A) = 1− sinϕ,

D(D,B) = 1− cosϕ.
(5.57)

In the two limiting cases (ϕ = 0 and ϕ = π/2) we see that D(M,A) > D(C,A) and

D(M,B) > D(D,B), and indeed in general the values of D(M,A) and D(M,B) follow the

pattern shown in the rightmost plot in Figure 5.5.

5.4.3 Yu and Oh’s optimal approximators

The optimal approximators given by Yu and Oh arise naturally within the derivation of

their optimal bound (see Appendix E), and so we shall simply state them in this section.

The joint observable that provides the optimal approximating observables as margins

is of the form

J(k, `) =
(1 + k`M)I + (kc+ `d) · σ

4
, (5.79)

with k, ` = ±1 and

M =
cos θ√

1 + sin θ sin 2ϕ
. (5.80)

The marginal observables C and D are hence of the form

C(±) =
I ± c · σ

2
,

D(±) =
I ± d · σ

2
,

(5.81)

where the Bloch vectors are of the form

c =
(D(D,B) + (1−M2) cosϕ) sinϕa+MD(C,A) cosϕ b

sin θ
,

d =
(D(C,A) + (1−M2) sinϕ) cosϕ b+MD(D,B) sinϕa

sin θ
.

(5.82)

Due to their reliance on the angle ϕ it is not very clear what the form of these vectors
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Figure 5.6: A plot of the left-hand side of Equation (5.46) in the case of Yu and Oh’s
optimal approximating observables for various values of ϕ ∈ [0, π/2], shown by a blue
curve, compared against the lower bound (sin2 θ), which is the red line. With the exception
of θ = π/2 the blue curve is always a greater value than the red line, highlighting that Yu
and Oh’s optimal approximators are suboptimal in terms of the noise measure (excluding
the maximally incompatible case).

is, but it is instructive to see that in the case θ = π/2, where A and B are maximally

incompatible and the quantity M is equal to zero, c and d reduce to

c = (D(D,B) + cosϕ) sinϕa = sinϕa,

d = (D(C,A) + sinϕ) cosϕ b = cosϕ b,
(5.83)

where we have made use of Equation (5.57). In other words, the observables C and D

are smeared versions of the sharp observables A and B, respectively, which coincides with

what we would expect for maximally incompatible observables when we use the BLW error

measure [18]. Furthermore, we see that ε2
A = 2(1−a·c) = 2(1−sinϕ) and ε2

B = 2(1−cosϕ)

for θ = π/2, and so by making use of these values in the left hand side of Equation (5.41),

where now C2
AB = sin2 θ = 1, we see immediately that this case optimises the bound given

by Branciard.

However, these approximators only saturate the bound in the case θ = π/2. If we

plot the left-hand side of Equation (5.46), using the Bloch vectors in Equation (5.82),

against the right-hand side for different values of θ—see Figure 5.6—then we see that

these observables are suboptimal with the exception of θ = π/2.

5.5 Different measures lead to different optimisers

As we have shown in the preceding section, the particular choice of measure we use to

quantify error leads to a different set of optimising observables. From a purely mathemat-

ical perspective this should not come as a surprise: we are trying to optimise over two

different functionals, and so we would not in general expect to arrive at the same optimal

observables. However, given that both measures are intended to lead us to an optimal

joint measurement for two incompatible observables, we must concede that they are not

equally good at this task. This brings us to the question: Which of these measures (and

therefore bounds) is more reliable for leading us to good approximating observables?

Whilst the bound given by Branciard is certainly well-defined, the noise measure is

misleading. As we have shown, in the case of maximally incompatible observables both

the optimal approximators for Yu and Oh and the PVMs whose normalised Bloch vectors
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lie between a and b have noise values that saturate the bound of Equation (5.41). Indeed,

as was shown in Section 5.4.1, for any convex combination of one such normalised Bloch

vector m and the vector (m ·a)a the noise measure is fixed at 2(1−m ·a) when treating

it as an approximate measurement of A. However, in no way are all observables within

this continuous range equally good approximations of A, and by comparison if we consider

the BLW or D measure we see that the POVM characterised by (m · a)a is a better

approximation than the PVM described by the vector m. A second issue arising from

this scheme is Hall and Branciard’s method of joint measurement, which is little more

than the relabelling of scales in order to best suit the noise measure. However, as high-

lighted in Appendix D, we can fix an appropriately poor approximation of an observable

to have a zero noise measure by this method, despite having very different characteristics

to the observable it is approximating. That such a construction is possible makes this a

questionable method of approximating.

Despite its (initial) lack of operational meaning, we believe that the optimal bound

presented by Yu and Oh is a more significant lower bound for approximating observables.

This is because it is based upon a measure that does not fall prey to the shortcomings

presented by the noise measure, in particular with regards to the number of observables

that optimise it, as expressed above. Furthermore, unlike the noise measure, the measure

D (and similarly the BLW error measure) does not require a direct value comparison, so

joint measurability of the sharp observables and the observables that are approximating

them is not needed. Such a requirement is highly restrictive, and in the qubit case means

that the approximating observables must be smeared versions of the sharp observables

they are approximating, which is only optimal when A and B are maximally incompatible.

That methods such as the three-state and weak measurement schemes have been used as

means of circumventing this problem highlights the limitations that joint measurability

imposes on the experimental testing of the noise measure. By comparison, for the D or

BLW error measure, only distributions are compared, and as a result the approximators

do not need to be jointly measurable with the sharp observables, which allows for a much

greater class of approximating observables to be considered.
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Chapter 6

Summary

We shall now briefly summarise the main results presented in the thesis. In the first

part, motivated by the qubit case, we discussed the connection between SIC-POVMs and

MUBs. For a given SIC-POVM we are able to construct d-partitions, each forming a

margin observable of the SIC-POVM. If we restrict the d-partitions to satisfy the one-

overlap property, i.e., any two bins from different partitions share just one element in

common, then these margin POVMs are mutually unbiased. A collection of d-partitions

satisfying the one-overlap property with respect to each other and the so-called Cartesian

partitions was shown to be equivalent to a collection of mutually orthogonal Latin squares.

As a result, it was shown that the maximum number of such d-partitions was equal to

two plus the maximum number of mutually orthogonal Latin squares of order d. For

any two mutually unbiased POVMs, if they were also commutative, then the common

eigenbases were also mutually unbiased, in which case MUBs were found from the margins

of a SIC-POVM. In Mathematica, complete sets of MUBs were derived from SIC-POVMs

for dimensions 3 and 5, but in dimension 4 the only two Latin squares that were found to

produce commutative POVMs were not mutually orthogonal. Meanwhile, in dimension 7

Mathematica struggled to produce eigenbases when forced to deal with effects possessing

degenerate eigenvalues.

Starting then from a complete set of MUBs, we showed that by smearing in order to

create mutually unbiased POVMs, placing the effects in a d+1×d array and then forming

downward paths of length d+ 1 satisfying a one-overlap property, we could reconstruct d2

operators that satisfied the trace properties required of SIC-POVM effects and would also

sum to the identity. In other words, we were capable of constructing a SIC system. The

only issue that needed careful consideration in order to find a SIC-POVM was ensuring

positivity, which depended on the ordering of the spectra whilst smearing and on the paths

taken through the d + 1 × d array. The requirement of a complete set of MUBs meant

that we could only currently perform this in prime-power dimensions, as complete sets of

MUBs in other dimensions are yet to have been found. This construction was performed

in Mathematica and SIC-POVMs were constructed in dimensions 3 and 5, where it was

found that of all possible paths through the array, the only ones corresponding to positive

operators were indeed SIC-POVM effects, highlighting how scarce these positive results

are.

In the second part of the thesis we calculated the observable associated with the
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Arthurs-Kelly measurement model in the case of arbitrary (possibly correlated) probe

preparation and showed it to be covariant under phase space translations. Its margins are

approximate position and momentum observables that are known to satisfy a Heisenberg-

like error-disturbance relationship, in conflict with Di Lorenzo’s claims to the contrary.

His definition of disturbance is shown to in fact be a measure of relative statistical spread

between the marginal observables and the observables measured on the individual probes,

and it is shown that by allowing for correlations between the probes one can make this

value negative, in which case the joint measurement is a focussing of the individual probe

measurements. This is a result which is not possible in the case where the probes are

prepared in a separable pure state. Following on from this, we showed two examples,

one based on the probes being prepared in an entangled state and the other in a mixed

state, where focussing could possibly occur and provide conditions required for this to hap-

pen. The mixed state example answers the question asked by Di Lorenzo in his Letter of

whether classical correlations would be sufficient to demonstrate what we have presented

here as focussing, thereby extending his discussion.

In the final part of the thesis we considered the error-error relations for incompatible

observables when approximated by jointly measurable observables in the case of dichotomic

qubit observables. We highlighted the flaws in the scheme considered separately by Hall

and Branciard, who claim that any discrete observable can act as a joint of any two

discrete observables, where one simply post-processes the spectrum of the joint observable

for each margin, and use this post-processing to find optimal approximations with respect

to the noise measure. This post-processing is simply a relabelling of the gauges used

whilst measuring, and so nothing different is actually being measured. Further to this,

we presented an example of a suboptimal approximating observable that could be made

to give a zero noise measure value via their optimising method. We discussed the optimal

bound found by Branciard for the noise measure, and the optimal bound given by Yu

and Oh for their rescaled version of the BLW error. Given that Yu and Oh’s bound is

expressed in terms of trigonometric functions defined on the Bloch sphere, we rewrote

them in terms of operational quantities, namely the unsharpness of the approximating

observables. Following this, we presented optimal approximating observables for both

bounds. In the case of the Branciard bound, we found that any normalised Bloch vector

that lay between the two vectors describing the incompatible observables corresponds

to an optimal approximating observable for the two, although in the case of the BLW

measure this corresponds to a suboptimal approximation scheme. This result was also

extended to the experimental work of Ringbauer et al., who provided an example of a setup

that neared Branciard’s optimal bound. We also showed that the optimal approximating

observables for Yu and Oh’s bound, with the exception of the maximally incompatible

case, are suboptimal in terms of Branciard’s bound. Given that we are considering two

bounds that optimise different functionals, this should perhaps not come as a surprise, but

given their mutual goal of finding optimal approximators for incompatible observables, the

discrepancy highlights that these are not equally good measures, with the exception of the

maximally incompatible case.
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Appendices

A The measured effective observable

A.1 Derivation of G(λ,µ)

We begin with the probes prepared in the arbitrary state ϕ ∈ H1 ⊗ H2 that, after per-

forming the coupling unitary Uint with the state of the measured system, give the state Ψ

with the position representation given by Equation (4.13):

Ψ(q, q1, q2) = ψ(q + µ q2)ϕ
(
q1 − λ

(
q +

µ

2
(κ+ 1)q2

)
, q2

)
.

With this state, we find the effective observable G(λ,µ) via Equation (4.12):

tr
[
PψG

(λ,µ)(X × Y )
]

= tr
[
PΨ

(
I ⊗ EQ1(λX)⊗ EP2(µY )

)]
, (A.1)

where we apply a Fourier transform on the final probe state

Ψ̃(q, q1, p2) =
1√
2π

∫
R
dq2e

−iq2p2Ψ(q, q1, q2).

Expanding Equation (4.12):

tr
[
G(λ,µ)(X × Y )Pψ

]
=

1

2π

∫
R8

dq dq′ dq1 dq
′
1 dq2 dq

′
2 dp2 dp

′
2 e

i(p′2q
′
2−p2q2)

× ψ(q′ + µq′2)ϕ(q′1 − λq′ −
λµ
2 (κ+ 1)q′2, q

′
2)

× ψ(q + µq2)ϕ(q1 − λq − λµ
2 (κ+ 1)q2, q2)

×
〈
q′
∣∣q〉 〈q′1∣∣EQ1(λX)q1

〉 〈
p′2
∣∣EP2(µY )p2

〉
.

(A.2)

After expressing EQ1(λX) and EP2(µY ) in terms of pseudo-eigenvectors of Q1 and P2,

respectively

EQ1(λX) =

∫
λX

dq1 |q1〉〈q1| = λ

∫
X
dq1 |λq1〉〈λq1| , (A.3a)

EP2(µY ) =

∫
µY
dp2 |p2〉〈p2| = µ

∫
Y
dp2 |µp2〉〈µp2| , (A.3b)
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the right hand side of (A.2) reduces to

tr
[
G(λ,µ)(X × Y )Pψ

]
=
λµ

2π

∫
X×Y

dq1 dp2

∫
R4

dq dq′ dq2 dq
′
2 e
−iµp2(q2−q′2)

× ψ(q′ + µq′2)ϕ(λ(q1 − q′ − µ
2 (κ+ 1)q′2), q′2)

× ψ(q + µq2)ϕ(λ(q1 − q − µ
2 (κ+ 1)q2), q2) 〈q′|q〉

=

∫
X×Y

dq1 dp2

×

(√
λµ

2π

∫
R2

dq dq2 e
−iµp2q2ψ(q + µq2)ϕ(λ(q1 − q − µ

2 (κ+ 1)q2), q2) |q〉

)∗

×
√
λµ

2π

∫
R2

dq dq2 e
−iµp2q2ψ(q + µq2)ϕ(λ(q1 − q − µ

2 (κ+ 1)q2), q2) |q〉 .

(A.4)

We define q′ = q + µ q2, so q2 = 1
µ(q′ − q), dq2 = 1

µdq
′ and q + µ

2 (κ+ 1)q2 = 1
2

(
(1− κ)q +

(1 + κ)q′
)
. Therefore

tr
[
G(λ,µ)(X × Y )Pψ

]
=

∫
X×Y

dq1 dp2

×

(√
λ

2πµ

∫
R2

dq dq′ eip2(q−q′)ψ(q′)

× ϕ
(
λ
(
q1 − 1

2

(
(1− κ)q + (1 + κ)q′

))
, 1
µ (q′ − q)

)
|q〉
)∗

×

√
λ

2πµ

∫
R2

dq dq′ eip2(q−q′)ψ(q′)

× ϕ
(
λ
(
q1 − 1

2

(
(1− κ)q + (1 + κ)q′

))
, 1
µ (q′ − q)

)
|q〉

=

∫
X×Y

dq1 dp2

(∫
R2

dq dq′Kq1p2(q, q′)ψ(q′) |q〉
)∗

×
∫
R2

dq dq′Kq1p2(q, q′)ψ(q′) |q〉

=

〈
ψ

∣∣∣∣(∫
X×Y

dq1 dp2K
∗
q1p2Kq1p2

)
ψ

〉
.

(A.5)

We have therefore found our effective observable:

G(λ,µ)(X × Y ) =

∫
X×Y

dq dpK∗qpKqp, (A.6)

where Kqp has the kernel

Kqp(x, x
′) =

√
λ

2πµ
eip(x−x

′)ϕ
(
λ
(
q − 1

2

(
(1− κ)x+ (1 + κ)x′

))
, 1
µ(x′ − x)

)
, (A.7)

as given in Equation (4.15). As was shown in Section 4.2.1, the Kqp satisfy Kqp =

WqpK00W
∗
qp, with Wqp = exp[iqp/2] exp[−iqP ] exp[ipQ] being the generators of shifts in

phase space, and so the effective observable G(λ,µ) found by preparing the probes in an

arbitrary pure state is covariant under phase space translations.

Next, we consider the case of mixed states σ =
∑

i piσi, where the σi are arbitrary

pure states. The post-coupling state is now given by U(Pψ ⊗ σ)U∗ =
∑

i piU(Pψ ⊗ σi)U∗,
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and the effective observable is now found as follows:

tr
[
H(λ,µ)(X × Y )Pψ

]
= tr

[
U(Pψ ⊗ σ)U∗(I ⊗ EQ1(λX)⊗ EP2(µY ))

]
=
∑
i

pi tr
[
U(Pψ ⊗ σi)U∗(I ⊗ EQ1(λX)⊗ EP2(µY ))

]
= tr

[(∑
i

piG
(λ,µ)
i (X × Y )

)
Pψ

]
,

(A.8)

where G
(λ,µ)
i is the covariant phase space observable associated with the probes prepared in

the pure state σi. Since this holds for any state ρ ∈ S(H) in place of Pψ, by the convexity

of S(H), we have the linearity condition

H(λ,µ)(X × Y ) =
∑
i

piG
(λ,µ)
i (X × Y ), (A.9)

which we used in Section 4.12 to show that any state preparation of the probes leads to a

covariant phase space observable being measured on our considered system.

A.2 Marginal observables of G(λ,µ)

We find the margins of the observable G(λ,µ), E(λ,µ) and F(λ,µ), by integrating over the out-

come space of the other variable (this may be seen as projecting down to a one-dimensional

subspace of phase space):

E(λ,µ)(X) = G(λ,µ)(X × R), (A.10a)

F(λ,µ)(Y ) = G(λ,µ)(R× Y ). (A.10b)

Considering the case where the probes are prepared in the pure state ϕ ∈ H1 ⊗ H2, we

first calculate E(λ,µ):

E(λ,µ)(X) =

∫
X×R

dq dpK∗qpKqp

=
λ

µ

∫
X

dq

∫
R3

dx dx′ dy′
(

1

2π

∫
R
dp eip(y

′−x′)

)
× ϕ(λ(q − 1

2 ((1− κ)x+ (1 + κ)y′)), 1
µ (y′ − x))

× ϕ(λ(q − 1
2 ((1− κ)x+ (1 + κ)x′)), 1

µ (x′ − x)) |y′〉〈x′| .

=
λ

µ

∫
X

dq

∫
R2

dx dx′
∣∣∣ϕ(λ(q − 1

2 ((1− κ)x+ (1 + κ)x′)), 1
µ (x′ − x))

∣∣∣2 |x′〉〈x′| ,

(A.11)

where we have used the identity
∫
R dk exp(ikx) = 2πδ(x). We define q′ = x′ − x, so

x = x′ − q′, dx = −dq′ and (1 − κ)x + (1 + κ)x′ = 2x′ − (1 − κ)q′. E(λ,µ) then takes the
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form:

E(λ,µ)(X) =
λ

µ

∫
X
dq

∫
R2

dq′ dx′
∣∣∣ϕ(λ(1

2(1− κ)q′ − (x′ − q)), 1
µq
′)
∣∣∣2 ∣∣x′〉〈x′∣∣

=

∫
X
dq

∫
R
dx′e(λ,µ)(x′ − q)

∣∣x′〉〈x′∣∣
=

∫
R
dq χX(q)e(λ,µ)(Q− q)

= (χX ∗ e(λ,µ))(Q),

(A.12)

as is given in Equation (4.24a). The probability distribution e(λ,µ), which characterizes

the noise in the measurement of E(λ,µ), is of the form

e(λ,µ)(q) =
λ

µ

∫
R
dq′

∣∣∣ϕ(λ(1
2(1− κ)q′ − q), 1

µq
′)
∣∣∣2 , (A.13)

with first and second moments

e(λ,µ)[1] =

∫
R
dq q e(λ,µ)(q)

=
1

µ

∫
R2

dq dq′(1
2(1− κ)q′ − 1

λq)
∣∣∣ϕ(q, 1

µq
′)∣∣∣2

=

∫
R2

dq dq′(µ2 (1− κ)q′ − 1
λq)

∣∣ϕ(q, q′)
∣∣2

=
µ

2
(1− κ) 〈Q2〉ϕ −

1

λ
〈Q1〉ϕ ,

(A.14)

e(λ,µ)[2] =

∫
R
dq q2 e(λ,µ)(q)

=

∫
R2

dq dq′(µ2 (1− κ)q′ − 1
λq)

2
∣∣ϕ(q, q′)

∣∣2
=
µ2

4
(1− κ)2

〈
Q2

2

〉
ϕ

+
1

λ2

〈
Q2

1

〉
ϕ
− µ

λ
(1− κ) 〈Q1Q2〉ϕ ,

(A.15)

where 〈Q1〉ϕ = tr [Q1Pϕ], etc. Using (A.14) and (A.15), the variance of e(λ,µ) is

Var
(
e(λ,µ)

)
=

1

λ2
Var (Q1, ϕ) +

µ2

4
(1− κ)2Var (Q2, ϕ)− µ

λ
(1− κ)Cov(Q1, Q2, ϕ), (A.16)

where Cov(Q1, Q2, ϕ) = 〈Q1Q2〉ϕ − 〈Q1〉ϕ 〈Q2〉ϕ is the covariance of Q1 and Q2 with

respect to ϕ. In a similar fashion, we derive an explicit form for F(λ,µ), the first step of

which is to perform a Fourier transform on ϕ:

ϕ(λ(q − 1
2 ((1− κ)x+ (1 + κ)x′)), 1

µ (x′ − x)) =
µ

2πλ

∫
R2

dw dz eiw(q− 1
2 ((1−κ)x+(1+κ)x′))

× eiz(x
′−x)ϕ̃(wλ , µz),

(A.17a)

ϕ(λ(q − 1
2 ((1− κ)x+ (1 + κ)y′)), 1

µ (y′ − x)) =
µ

2πλ

∫
R2

dw′ dz′ e−iw
′(q− 1

2 ((1−κ)x+(1+κ)y′))

× e−iz
′(y′−x)ϕ̃(w

′

λ , µz
′),

(A.17b)
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and so we find

F(λ,µ)(Y ) =
µ

2πλ

∫
R×Y

dq dp

∫
R3

dx dx′ dy′ eip(y
′−x′)

∫
R4

dw dw′ dz dz′

4π2
eiq(w−w

′)e−
iw
2 ((1−κ)x+(1+κ)x′)

× e
iw′

2 ((1−κ)x+(1+κ)y′)eix(z′−z)eizx
′
e−iz

′y′ ϕ̃(wλ , µz)ϕ̃(w
′

λ , µz
′) |y′〉〈x′|

=
µ

2πλ

∫
Y

dp

∫
R3

dx dx′ dy′ eip(y
′−x′)

∫
R4

dw dw′ dz dz′

2π

(
1

2π

∫
R
dq eiq(w−w

′)

)
× e−

iw
2 ((1−κ)x+(1+κ)x′)e

iw′

2 ((1−κ)x+(1+κ)y′)eix(z′−z)eizx
′
e−iz

′y′

× ϕ̃(wλ , µz)ϕ̃(w
′

λ , µz
′) |y′〉〈x′|

=
µ

2πλ

∫
Y

dp

∫
R3

dw dz dz′
∫
R2

dx′ dy′ ei(p+
w
2 (1+κ))(y′−x′)

(
1

2π

∫
R
dx eix(z′−z)

)
× eizx

′
e−iz

′y′ ϕ̃(wλ , µz)ϕ̃(wλ , µz
′) |y′〉〈x′|

=
µ

2πλ

∫
Y

dp

∫
R2

dx′ dy′
∫
R2

dw dz ei(p+
w
2 (1+κ)−z)(y′−x′)

∣∣ϕ̃(wλ , µz)
∣∣2 |y′〉〈x′|

=
µ

λ

∫
Y

dp

∫
R2

dw dz
∣∣ϕ̃(wλ , µz)

∣∣2( 1√
2π

∫
R
dy′ eiy

′(p+
w
2 (κ+1)−z) |y′〉

)
×
(

1√
2π

∫
R
dx′ eix

′(p+
w
2 (κ+1)−z) |x′〉

)∗
=
µ

λ

∫
Y

dp

∫
R2

dw dz
∣∣ϕ̃(wλ , µz)

∣∣2 ∣∣p+ w
2 (κ+ 1)− z

〉〈
p+ w

2 (κ+ 1)− z
∣∣ .

(A.18)

Defining p′ = p+ w
2 (κ+ 1)− z, so z = p− p′ + w

2 (κ+ 1) and dz = −dp′, F(λ,µ) takes the

form

F(λ,µ)(Y ) =
µ

λ

∫
Y
dp

∫
R2

dw dp′
∣∣ϕ̃(wλ , µ(p− p′ + w

2 (κ+ 1))
)∣∣2 ∣∣p′〉〈p′∣∣

=

∫
Y
dp

∫
R
dp′ f (λ,µ)(p′ − p)

∣∣p′〉〈p′∣∣
=

∫
R
dpχY (p)f (λ,µ)(P − p)

= (χY ∗ f (λ,µ))(P ),

(A.19)

as is given in Equation (4.24b). The probability distribution f (λ,µ) is of the form

f (λ,µ)(p) =
µ

λ

∫
R
dw

∣∣ϕ̃(wλ , µ(w2 (κ+ 1)− p)
)∣∣2 . (A.20)

Following the same method used to derive (A.14) and (A.15), we find the first and second

moments of f (λ,µ):

f (λ,µ)[1] =
λ

2
(1 + κ) 〈P1〉ϕ −

1

µ
〈P2〉ϕ , (A.21)

f (λ,µ)[2] =
λ2

4
(1 + κ)2

〈
P 2

1

〉
ϕ

+
1

µ2

〈
P 2

2

〉
ϕ
− λ

µ
(1 + κ) 〈P1P2〉ϕ . (A.22)

From these, the variance of f (λ,µ) is given by

Var
(
f (λ,µ)

)
=
λ2

4
(1 + κ)2Var (P1, ϕ) +

1

µ2
Var (P2, ϕ)− λ

µ
(1 + κ)Cov(P1, P2, ϕ). (A.23)
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Note that it is now clear why we use the scaled sets λX and µY in Equation (4.12):

the scaling is such that the marginal observables E(λ,µ) and F(λ,µ) are direct smearings of

position and momentum, rather than of scaled versions.

We will now return to the case of the mixed state σ =
∑

i piσi, where σi = Pϕi are

arbitrary pure states. The margins of the effective observable H(λ,µ) are now given in terms

of the margins of the effective observables derived from the σi:

E(λ,µ)(X) = H(λ,µ)(X × R) =
∑
i

piG
(λ,µ)
i (X × R) =

∑
i

piM
(λ,µ)
i (X)

=
∑
i

pi(χX ∗m(λ,µ)
i )(Q) = (χX ∗ e(λ,µ))(Q),

(A.24a)

F(λ,µ)(Y ) = H(λ,µ)(R× Y ) =
∑
i

piG
(λ,µ)
i (R× Y ) =

∑
i

piN
(λ,µ)
i (Y )

=
∑
i

pi(χY ∗ n(λ,µ)
i )(P ) = (χY ∗ f (λ,µ))(P ).

(A.24b)

As we see, these margins again have the form as given in Equations (4.24a) and (4.24b),

with the probability distributions

e(λ,µ)(q) =
∑
i

pim
(λ,µ)
i (q) =

λ

µ

∑
i

pi

∫
R
dq′

∣∣∣ϕi(λ(1
2(1− κ)q′ − q), 1

µq
′)
∣∣∣2 , (A.25a)

f (λ,µ)(p) =
∑
i

pin
(λ,µ)
i (p) =

µ

λ

∑
i

pi

∫
R
dw

∣∣ϕ̃i(wλ , µ(w2 (κ+ 1)− p)
)∣∣2 . (A.25b)

From here, and by using equations (A.14), (A.15), (A.21), (A.22), the first and second

moments of these distributions can be readily calculated:

e(λ,µ)[1] =

∫
R
dq q e(λ,µ) =

∑
i

pi

∫
R
dq q m

(λ,µ)
i (q) =

∑
i

pim
(λ,µ)[1]

=
∑
i

pi

(
µ

2
(1− κ) 〈Q2〉ϕi −

1

λ
〈Q1〉ϕi

)
=
µ

2
(1− κ) 〈Q2〉σ −

1

λ
〈Q1〉σ ,

(A.26)

e(λ,µ)[2] =
µ2

4
(1− κ)2

〈
Q2

2

〉
σ

+
1

λ2

〈
Q2

1

〉
σ
− µ

λ
〈Q1Q2〉σ , (A.27)

f (λ,µ)[1] =
λ

2
(1 + κ) 〈P1〉σ −

1

µ
〈P2〉σ , (A.28)

f (λ,µ)[2] =
λ2

4
(1 + κ)2

〈
P 2

1

〉
σ

+
1

µ2

〈
P 2

2

〉
σ
− λ

µ
(1 + κ) 〈P1P2〉σ , (A.29)

and so these probability distributions have variances of the form given in (A.16) and (A.23)

Var
(
e(λ,µ)

)
=

1

λ2
Var (Q1, σ) +

µ2

4
(1− κ)2Var (Q2, σ)− µ

λ
(1− κ)Cov(Q1, Q2, σ), (A.30)

Var
(
f (λ,µ)

)
=
λ2

4
(1 + κ)2Var (P1, σ) +

1

µ2
Var (P2, σ)− λ

µ
(1 + κ)Cov(P1, P2, σ). (A.31)

Note that even if we had specified that the pure states σi were product states, we would

still find the covariance terms appearing as a result of the classical correlations between

them.
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B Error values for the margins of covariant phase space

observables

In this appendix we shall consider the noise and Wasserstein 2-distance measures covered

in Section 2.4.5 and apply them to the margins of covariant phase space observables. In

doing so, we will show that for this type of observable the value of the measures coincide,

and are equal to the value given in Equation (4.27).

As was shown in Appendix A.2, both margins take the form of a convolution of a sharp

observable with a probability distribution. We shall therefore consider the general case of

such an observable, denoted here by Qν = ν ∗ Q. This form coincides with E(λ,µ) if we

make the identities Q = EQ and ν(x) = e(λ,µ)(−x).

We begin by considering the noise measure, in particular in the form given by Equation

(2.158). The first moment operator Qν [1] can be readily calculated:

Qν [1] =

∫
R
x(ν ∗ Q)(dx)

=

∫
R2

dx dy x ν(y)Q(x− y)

=

∫
R2

dx dy (x+ y)ν(y)Q(x)

= Q[1] + ν[1],

(B.1)

and similarly

Qν [2] = Q[2] + ν[2] + 2Q[1]ν[1]. (B.2)

Since Q is sharp, Q[2] = Q[1]2 and so

Qν [2]− Qν [1]2 = ν[2]− ν[1]2 = Var (ν) . (B.3)

The value of the noise measure for Qν as an approximation of Q with respect to the state

ψ is therefore

ε(Qν ,Q, ψ)2 =
〈
ψ
∣∣(Qν [1]− Q[1])2ψ

〉
+
〈
ψ
∣∣(Qν [2]− Qν [1]2)ψ

〉
= ν[1]2 + Var (ν) = ν[2].

(B.4)

We have shown the first part of Equation (4.27) as well as the fact that for any observable

that arises as a convolution of a sharp observable the value of noise measure is state-

independent when it is seen as an approximation of that sharp observable.

The proof of the case for the BLW error is given in Lemma 7 of [17], where instead

of restricting to the Wasserstein 2-distance, the authors consider the α-distance with

α ∈ [1,∞], and denote the distance Dα. By setting α = 2 we obtain the intended result

∆(ν ∗ Q,Q)2 = ∆(ν, δ0)2 = ν[2].
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C Derivation of E(λ,0) and F(0,µ)

We begin as we did in Appendix A.1 with the system in the pure state ψ ∈ H and the

probes in the arbitrary pure state ϕ ∈ H1 ⊗H2. However, we now set one of the coupling

constants λ or µ to zero.

C.1 Setting λ = 0

If we first set λ to zero, then our coupling unitary Uint reduces to Uµ = exp[iµPQ2], and

our post-coupling state is

Ψµ(q, q1, q2) := Uµ(ψ ⊗ ϕ)(q, q1, q2) = ψ(q + µq2)ϕ(q1, q2). (C.1)

We perform the ideal momentum measurement on the second probe (with the associated

pointer function h : y 7→ µ−1y as before), and again perform a Fourier transform on the

final argument of Ψµ:

Ψµ(q, q1, q2) 7→ Ψ̃µ(q, q1, w2) =
1√
2π

∫
R
dq2 e

−iw2q2Ψµ(q, q1, q2). (C.2)

From this we derive the effective observable F(0,µ) measured on the system:〈
F(0,µ)(Y )

〉
ψ

=
〈
EP2(µY )

〉
Ψµ

=
1

2π

∫
R8

dq dq′ dq1 dq
′
1 dq2 dq

′
2 dw2 dw

′
2 e
−iw2q2eiw

′
2q

′
2ψ(q + µq2)ϕ(q1, q2)

× ψ(q′ + µq′2)ϕ(q′1, q
′
2) 〈q′, q′1|q, q1〉

∫
µY

dw 〈w′2|w〉 〈w|w2〉

=
µ

2π

∫
Y

dw

∫
R5

dq dq′ dq1 dq2 dq
′
2 e
−iµw(q2−q′2)ψ(q + µq2)ϕ(q1, q2)

× ψ(q′ + µq′2)ϕ(q1, q′2) 〈q′|q〉

=

∫
Y

dw

∫
R
dq1

(√
µ

2π

∫
R2

dq2 dq e
−iµwq2ψ(q + µq2)ϕ(q1, q2) |q〉

)∗
×
(√

µ

2π

∫
R2

dq2 dq e
−iµwq2ψ(q + µq2)ϕ(q1, q2) |q〉

)
.

(C.3)

We now let q′ = q + µq2, so q2 = 1
µ(q′ − q) and dq2 = − 1

µdq
′. Hence,

〈
F(0,µ)(Y )

〉
ψ

=

∫
Y

dw

∫
R
dq1

(√
1

2πµ

∫
R2

dq dq′ eiw(q−q′)ψ(q′)ϕ(q1,
1
µ (q′ − q)) |q〉

)∗
×
(√

1

2πµ

∫
R2

dq dq′ eiw(q−q′)ψ(q′)ϕ(q1,
1
µ (q′ − q)) |q〉

)
=

∫
Y

dw

∫
R
dq1

(∫
R2

dq dq′Kq1w(q, q′)ψ(q′) |q〉
)∗

×
(∫

R2

dq dq′Kq1w(q, q′)ψ(q′) |q〉
)

=

〈(∫
R×Y

dq1 dwK
∗
q1wKq1w

)〉
ψ

.

(C.4)
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That is,

F(0,µ)(Y ) =

∫
R×Y

dq dpK∗qpKqp, (C.5)

where

Kqp(x, x
′) =

√
1

2πµ
eip(x−x

′)ϕ(q, 1
µ(x′ − x)). (C.6)

We can explicitly expand to find the form of F(0,µ):

F(0,µ)(Y ) =
1

2πµ

∫
R×Y

dq dp

∫
R4

dx dx′ dy dy′ e−ip(x−x
′)eip(y−y

′)ϕ(q, 1
µ (x′ − x))

× ϕ(q, 1
µ (y′ − y)) |x′〉 〈x|y〉 〈y′|

=
1

2πµ

∫
R×Y

dq dp

∫
R3

dx dx′ dy′ eip(x
′−y′)ϕ(q, 1

µ (x′ − x))ϕ(q, 1
µ (y′ − x)) |x′〉〈y′|

=
µ

2π

∫
R×Y

dq dp

∫
R3

dx dx′ dy′ eip(x
′−y′)

×
∫
R4

dw dw′ dz dz′

4π2
e−iq(w

′−w)eix(z′−z)eizy
′
e−iz

′x′
ϕ̃(w′, µz′)ϕ̃(w, µz) |x′〉〈y′|

=
µ

2π

∫
Y

dp

∫
R3

dx dx′ dy′ eip(x
′−y′)

×
∫
R3

dw dz dz′

2π
eix(z′−z)ei(zy

′−z′x′)ϕ̃(w, µz′)ϕ̃(w, µz) |x′〉〈y′|

=
µ

2π

∫
Y

dp

∫
R2

dx′ dy′ ei(p−z)(x
′−y′)

∫
R2

dw dz |ϕ̃(w, µz)|2 |x′〉〈y′|

=µ

∫
Y

dp

∫
R2

dw dz |ϕ̃(w, µz)|2
(

1√
2π

∫
R
dx′eix

′(p−z)|x′〉
)(

1√
2π

∫
R
dy′eiy

′(p−z)|y′〉
)∗

=µ

∫
Y

dp

∫
R2

dw dz |ϕ̃(w, µz)|2 |p− z〉〈p− z| .

(C.7)

We let p′ = p− z, so z = p− p′ and dz = −dp′. Therefore,

F(0,µ)(Y ) =µ

∫
Y
dp

∫
R2

dw dp′
∣∣ϕ̃(w, µ(p− p′))

∣∣2 ∣∣p′〉〈p′∣∣
=

∫
Y
dp

∫
R
dp′ f (0,µ)(p′ − p)

∣∣p′〉〈p′∣∣
=

∫
R
dpχY (p)f (0,µ)(P − p)

=(χY ∗ f (0,µ))(P ).

(C.8)

In other words, F(0,µ) is a smearing of the ideal momentum observable, with the probability

distribution f (0,µ) of the from

f (0,µ)(p) = µ

∫
R
dw |ϕ̃(w,−µp)|2 . (C.9)

The first and second moments of f (0,µ) are of the form

f (0,µ)[1] = µ

∫
R2

dp dw p |ϕ̃(w,−µp)|2 =
1

µ

∫
R2

dp dw p |ϕ̃(w, p)|2 =
1

µ
〈P2〉ϕ , (C.10a)

f (0,µ)[2] = µ

∫
R2

dp dw p2 |ϕ̃(w,−µp)|2 =
1

µ2

∫
R2

dp dw p2 |ϕ̃(w, p)|2 =
1

µ2

〈
P 2

2

〉
ϕ
, (C.10b)
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and so f (0,µ) has variance

Var
(
f (0,µ)

)
= f (0,µ)[2]− f (0,µ)[1]2 =

1

µ2
Var (P2, ϕ) . (C.11)

C.2 Setting µ = 0

We shall now consider the case where we set µ to zero. In this case Uint = Uλ, and we

express the coupled state Ψλ := Uλ(ψ ⊗ ϕ) as

Ψλ = Uλ(ψ ⊗ ϕ) =

∫
R
dEQ(q)ψ ⊗ e−iλqP1ϕ =

∫
R
dEQ(q)ψ ⊗ ϕλq, (C.12)

where we have expanded Uλ = exp[−iλQP1] =
∫
R dE

Q(q)⊗ exp[−iλqP1] and defined the

state ϕλq(q1, q2) = ϕ(q1 − λq, q2). We now perform an ideal position measurement on the

first probe, using the pointer function g : x 7→ λ−1x, in order to derive the observable

E(λ,0) measured on the system:〈
E(λ,0)(X)

〉
ψ

=
〈
EQ1(λX)

〉
Ψλ

=

∫
R2

〈
dEQ(q)dEQ(q′)

〉
ψ

∫
λX

〈
dEQ1(x)

〉
ϕλq

=λ

∫
R

〈
dEQ(q)

〉
ψ

∫
X

〈
dEQ1(λx)

〉
ϕλq

=λ

∫
R

〈
dEQ(q)

〉
ψ

∫
R4

dq1 dq
′
1 dq2 dq

′
2

× ϕ(q1 − λq, q2)ϕ(q′1 − λq, q2) 〈q′2|q2〉
∫
X

〈
q′1
∣∣dEQ1(λx)q1

〉
=

∫
X

dx

∫
R2

dq2 λ |ϕ(−λ(q − x), q2)|2
〈
dEQ(q)

〉
ψ

=

∫
X

dx

∫
R
e(λ,0)(q − x)

〈
dEQ(q)

〉
ψ

=
〈

(χX ∗ e(λ,0))(Q)
〉
ψ
.

(C.13)

In other words,

E(λ,0)(X) = (χX ∗ e(λ,0))(Q), (C.14)

so E(λ,0) is a smeared version of the ideal position observable, much like F(0,µ) was with

momentum, where

e(λ,0)(q) = λ

∫
R
dq′
∣∣ϕ(−λq, q′)

∣∣2 . (C.15)

We can again quickly find the first and second moments of the probability distribution

e(λ,0):

e(λ,0)[1] = λ

∫
R2

dq dq′q
∣∣ϕ(−λq, q′)

∣∣2 =
1

λ

∫
R2

dq dq′q
∣∣ϕ(q, q′)

∣∣2 =
1

λ
〈Q1〉ϕ , (C.16a)

e(λ,0)[2] = λ

∫
R2

dq dq′q2
∣∣ϕ(−λq, q′)

∣∣2 =
1

λ2

∫
R2

dq dq′q2
∣∣ϕ(q, q′)

∣∣2 =
1

λ2

〈
Q2

1

〉
ϕ
, (C.16b)

and so e(λ,0) has variance

Var
(
e(λ,0)

)
=

1

λ2
Var (Q1, ϕ) . (C.17)
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Finally, it should be noted that for both E(λ,0) and F(0,µ), we can prepare the probes in

a mixed state σ ∈ S(H1 ⊗H2) and, much like in Appendix A.2, the resultant observables

would be the same form, as would the variances, with ϕ replaced by σ.
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D Hall’s optimisation and suboptimal approximations with

zero noise measure value

Within his paper [28] Hall derives the optimal post-selection functions f and g needed for

his observable M, with first moment operator M[1] =: M , to minimise the noise measure

when approximating A = A[1] and B = B[1] via f(M) and g(M), respectively. Note that,

unlike Branciard [7], Hall does not assume an ancillary system in his construction, hence

the approximating observable C is of the form

C(k) =
∑

m∈f−1(k)

M(m), (D.1)

where one assumes M to be unsharp in general. The nth moment operator C[n] is then

given by

C[n] =
∑
k

knC(k) =
∑
m

f(m)nM(m). (D.2)

By expanding the form of the noise measure given in Equation (2.158), where ψ has been

replaced by the density operator ρ, we find

ε(C,A, ρ)2 = tr
[
(C[2]− C[1]A−AC[1] +A2)ρ

]
=
∑
k

k2 tr [C(k)ρ]−
∑
k

k tr [(C(k)A+AC(k))ρ] + tr
[
A2ρ

]
=
∑
m

f(m)2 tr [M(m)ρ]−
∑
m

f(m) tr [(M(m)A+AM(m))ρ] + tr
[
A2ρ

]
=
∑
m

tr [M(m)ρ]

(
f(m)− tr [(M(m)A+AM(m))ρ]

2 tr [M(m)ρ]

)2

−
∑
m

tr [(M(m)A+AM(m))ρ]2

4 tr [M(m)ρ]
+ tr

[
A2ρ

]
.

(D.3)

The first term is non-negative and the last two terms are independent of f(m). Therefore,

the noise measure is minimised by setting

f(m) =
tr [(M(m)A+AM(m))ρ]

2 tr [M(m)ρ]
. (D.4)

However, just because a minimising function f can be found, this does not mean

that the observable C defined by it is accurately approximating the observable A. As an

example, consider the observable A associated with the self-adjoint operator

A = A[1] =
γ

2
(σx − σy), (D.5)

where σx and σy denote the regular Pauli matrices, and γ = 2 −
√

2. We note here

the useful identity γ =
√

2(1 − γ). The observable M that we shall measure, and whose

144



outcomes we shall post-process to approximate A, is a 3-outcome observable with effects

M(1) =
γ

2
(I + σx),

M(2) =
γ

2
(I + σy),

M(3) = 2(1− γ)
1

2

(
I − 1√

2
(σx + σy)

)
.

(D.6)

These are all positive rank-one operators, and M(1) + M(2) + M(3) = I. Given that this

observable is not dichotomic the noise measure retains its state-dependence, and so we

choose to measure in the state

ρ =
1

2

(
I − 1√

2
(σx + σy)

)
. (D.7)

With this choice of state we find the optimal post-selection function to be of the form

f(1) =
tr [(M(1)A+AM(1))ρ]

2 tr [M(1)ρ]
= 1,

f(2) = −1,

f(3) = 0.

(D.8)

With these values, as shown in [19], we find that the approximating observable C defined

in Equation (D.1) satisfies

C[1] =
∑
m

f(m)M(m) = M(1)−M(2) = A,

C[1]2 = A2 =
γ2

2
I,

C[2] = M(1) + M(2) = I −M(3),

C[2]− C[1]2 = 2(1− γ)
1

2

(
I +

1√
2

(σx + σy)

)
.

(D.9)

Hence, the noise measure is equal to ε(C,A, ρ)2 = 0, but in no way does C provide an

accurate approximation of A, with the probability distributions pAρ and pCρ being very

different:

pAρ (±) =
1

2
, pCρ (±) =

γ2

4
, pCρ (0) = 2(1− γ). (D.10)
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E Derivation of Yu and Oh’s minimum error curves

E.1 The error curves

In this appendix we derive the minimum error curve given by Yu and Oh. The curves

arise from a geometric consideration of the quantities ∆(C,A)2 and ∆(D,B)2 on the Bloch

sphere, with the proviso that C and D are on the boundary of being jointly measurable. For

ease of notation, in what follows we will consider the quantities D(C,A) = 1
2∆(C,A)2 =

‖a− c‖, etc..

We begin by assuming the optimal case: the approximating observables C and D

considered possess values D(C,A) and D(D,B) that are as small as possible. By demanding

these observables be jointly measurable we require that their Bloch vectors satisfy

‖c+ d‖ + ‖c− d‖ ≤ 2. (E.1)

This may be expressed equivalently by saying that the vector d lies within the area enclosed

by the ellipsoid

Ec = {d | ‖c+ d‖ + ‖c− d‖ = 2}, (E.2)

and similarly c lies within the area enclosed by the ellipsoid

Ed = {c | ‖c+ d‖ + ‖c− d‖ = 2}. (E.3)

Since we have assumed that D(C,A) and D(D,B) are at their smallest possible values,

this would mean the distance between c and a (resp. d and b) are as small as possible

whilst still requiring c (d) lies within the area enclosed by Ed (Ec). By making use of the

concept of Lagrange multipliers, we find that c lies on the ellipsoid Ed; in other words,

‖c+ d‖ + ‖c− d‖ = 2, (E.4)

and the vector a− c is parallel to the gradient of Ed, and similarly for b− d:

a− c ∝ ∇c(‖c+ d‖ + ‖c− d‖) =
c+ d

‖c+ d‖
+

c− d
‖c− d‖

,

b− d ∝ ∇d(‖c+ d‖ + ‖c− d‖) =
c+ d

‖c+ d‖
− c− d
‖c− d‖

.

(E.5)

The next step is to find a and b in terms of c and d. We begin by first making use of

D(C,A) = ‖a− c‖ and D(D,B) = ‖b− d‖.
Since Equation (E.4) holds, we may make use of an equivalent expression, which comes

from expanding it twice:

‖c‖2 + ‖d‖2 = 1 + (c · d)2 = 1 +M2, (E.6)
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where we have introduced the term M = c · d. As a result,

‖c± d‖ =
(
‖c‖2 + ‖d‖2 ± 2M

)1/2

=
(
1 +M2 ± 2M

)1/2
= 1±M,

(E.7)

where the positivity of the final term is guaranteed by |c · d| ≤ 1. With this identity at

our disposal, we may simplify the norms of the expressions in Equation (E.5):

D(C,A)2 = ‖a− c‖2 ∝ 2

(
1 +

(c+ d) · (c− d)

1−M2

)
= 2

(
1−M2 + ‖c‖2 − ‖d‖2

1−M2

)

= 4
1− ‖d‖2

1−M2
.

(E.8)

Since 0 ≤ ‖d‖2 ≤ 1, and similarly for c, it follows that M2 = (c · d)2 ≤ ‖d‖2 via the

Cauchy-Schwarz inequality, and so 1 − ‖d‖2 ≤ 1 −M2. We now introduce the angle ϕ

satisfying

sinϕ =

√
1− ‖d‖2

1−M2
, (E.9)

and therefore

cosϕ =

√
1−

1− ‖d‖2

1−M2
=

√
‖d‖2 −M2

1−M2
=

√
1− ‖c‖2

1−M2
. (E.10)

As a result, we have

‖a− c‖ = D(C,A) ∝ 2 sinϕ, (E.11)

and so

a− c =
µD(C,A)

2 sinϕ

(
c+ d

‖c+ d‖
+

c− d
‖c− d‖

)
=

µD(C,A)

2(1−M2) sinϕ
((1−M)(c+ d) + (1 +M)(c− d))

=
µD(C,A)(c−Md)

(1−M2) sinϕ
.

(E.12)

where µ = ±1. In other words,

a = c+
µD(C,A)(c−Md)

(1−M2) sinϕ
, (E.13)

and, by a very similar calculation,

b = d+
νD(D,B)(d−Mc)

(1−M2) cosϕ
, (E.14)

where ν = ±1. Note that since ‖a− c‖ = D(C,A), it follows that (1 − M2) sinϕ =
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‖c−Md‖, and similarly (1−M2) cosϕ = ‖d−Mc‖.
In order to calculate the minimum values D(C,A) and D(D,B) we utilise the normality

of the vectors a and b.

1 = ‖a‖2 = ‖c‖2 +D(C,A)2 + 2µD(C,A)
‖c‖2 −M2

(1−M2) sinϕ

= ‖c‖2 +D(C,A)2 + 2µD(C,A)
1− ‖d‖2

(1−M2) sinϕ

= ‖c‖2 +D(C,A)2 + 2µD(C,A) sinϕ

= (D(C,A) + µ sinϕ)2 + ‖c‖2 − sin2 ϕ

= (D(C,A) + µ sinϕ)2 +
‖c‖2 (1−M2)− 1 + ‖d‖2

1−M2

= (D(C,A) + µ sinϕ)2 +M2 1− ‖c‖2

1−M2

= (D(C,A) + µ sinϕ)2 +M2 cos2 ϕ.

(E.15)

In other words,

(D(C,A) + µ sinϕ)2 = 1−M2 cos2 ϕ ≥ sin2 ϕ, (E.16)

where the last inequality arises from M2 ≤ 1. Since we require a positive value for D(C,A),

we must take the positive root of the above expression, and so

D(C,A) =
√

1−M2 cos2 ϕ− µ sinϕ. (E.17)

In the exact same way, by starting with ‖b‖2 = 1, we arrive at the expression

D(D,B) =

√
1−M2 sin2 ϕ− ν cosϕ. (E.18)

All that remains is to find an expression for M , which we derive by considering a·b = cos θ,

where θ is the angle between the vectors a and b. In order to simplify our calculation, we

first note that

(c−Md) · (d−Mc) = (1− ‖c‖2 − ‖d‖2 +M2) = 0, (E.19)

hence

cos θ = a · b =

(
c+

µD(C,A)(c−Md)

(1−M2) sinϕ

)
·
(
d+

νD(D,B)(d−Mc)
(1−M2) cosϕ

)
= M

(
1 +

µD(C,A)(1− ‖d‖2)

(1−M2) sinϕ
+
νD(D,B)(1− ‖c‖2)

(1−M2) cosϕ

)
= M (1 + µD(C,A) sinϕ+ νD(D,B) cosϕ) .

(E.20)

Making use of Equations (E.17) and (E.18), and recalling that µ2 = ν2 = 1, Equation
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(E.20) takes the form

cos θ = M(1 + µ sinϕ
√

1−M2 cos2 ϕ− sin2 ϕ+ ν cosϕ

√
1−M2 sin2 ϕ− cos2 ϕ)

= M(µ sinϕ
√

1−M2 cos2 ϕ+ ν cosϕ

√
1−M2 sin2 ϕ).

(E.21)

Squaring both sides we find

cos2 θ = M2

(
1− 1

2M
2 sin2 2ϕ+ µν sin 2ϕ

√
1−M2 + 1

4M
4 sin2 2ϕ

)
, (E.22)

which by rearranging and squaring both sides again we find(
cos2 θ + 1

2M
4 sin2 2ϕ−M2

)2
= cos4 θ + 1

4M
8 sin4 2ϕ+M4(1 + cos2 θ sin2 2ϕ)

− 2M2 cos2 θ −M6 sin2 2ϕ

= M4 sin2 2ϕ (1−M2 + 1
4M

4 sin2 2ϕ)

= M4 sin2 2ϕ−M6 sin2 2ϕ+ 1
4M

8 sin4 2ϕ.

(E.23)

The terms on both sides of order M6 and higher cancel, and so we rearrange to find

0 = cos4 θ − 2M2 cos2 θ +M4(1− sin2 θ sin2 2ϕ)

= (1− sin2 θ sin2 2ϕ)

(
M2 − cos2 θ

1− sin2 θ sin2 2ϕ

)2

+ cos4 θ

(
1− 1

1− sin2 θ sin2 2ϕ

)
= (1− sin2 θ sin2 2ϕ)

(
M2 − cos2 θ

1− sin2 θ sin2 2ϕ

)2

− cos4 θ sin2 θ sin2 2ϕ

1− sin2 θ sin2 2ϕ
.

(E.24)

At this point we move the second term over, divide through on both sides by 1−sin2 θ sin2 2ϕ

and then take the square root, which leads to

M2 =
cos2 θ

1− sin2 θ sin2 2ϕ
(1± sin θ sin 2ϕ) . (E.25)

Introducing the quantity κ = ±1, we find the final expression for M2:

M2 =
cos2 θ

1 + κ sin θ sin 2ϕ
. (E.26)

It should be noted that in the paper by Yu and Oh κ is given as µν, which leads them

to quickly assume that the minimum errors are given when µ = ν = 1. However, here we

do not see this immediate necessity, and some further analysis is required to reach this

conclusion. Leaving κ as undecided for the moment, if we now put the expression for M2
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into Equation (E.17) we find

D(C,A) =

√
1− cos2 θ cos2 ϕ

1 + κ sin θ sin 2ϕ
− µ sinϕ

=

√
1 + κ sin θ sin 2ϕ− cos2 θ cos2 ϕ

1 + κ sin θ sin 2ϕ
− µ sinϕ

=

√
sin2 ϕ+ sin2 θ cos2 ϕ+ 2κ sin θ sinϕ cosϕ

1 + κ sin θ sin 2ϕ
− µ sinϕ

= ±sinϕ+ κ sin θ cosϕ√
1 + κ sin θ sin 2ϕ

− µ sinϕ,

(E.27)

where we have made use of the identity 1 = sin2 ϕ + cos2 ϕ(cos2 θ + sin2 θ). By a similar

method we find that Equation (E.18) can be rewritten as

D(D,B) = ±cosϕ+ κ sin θ sinϕ√
1 + κ sin θ sin 2ϕ

− ν cosϕ. (E.28)

In the case that κ = −1, the first term of D(C,A) and D(D,B) can go negative and so we

must use the absolute values. However, in the case of κ = −1, if we let µ or ν be equal to

1 then we can again get a negative value, and if we let µ or ν equal to -1, then the value is

greater than the case of κ = µ = ν = +1, which is also smaller than κ = −µ = −ν = 1. As

a result, we conclude that the minimum possible values, whilst still being positive, occurs

when κ = µ = ν = +1, and so the minimum error bound is given by

D(C,A) =
sinϕ+ sin θ cosϕ√

1 + sin θ sin 2ϕ
− sinϕ,

D(D,B) =
cosϕ+ sin θ sinϕ√

1 + sin θ sin 2ϕ
− cosϕ.

(E.29)

E.2 The optimal approximating observables

We are also able to derive the Bloch vectors of the optimal approximating observables

from what we have covered in this Section. The derivations of c and d follow identical

steps, and so we shall just focus on the derivation of c here.

We begin by first introducing the shorthands

γ =
D(C,A)

(1−M2) sinϕ
, δ =

D(D,B)

(1−M2) cosϕ
, (E.30)

thereby allowing us to rewrite Equation (E.13) and (E.14) in the simpler forms

a = c+ γ(c−Md), (E.13’)

b = d+ δ(d−Mc). (E.14’)

By rearranging Equation (E.14’) we can express d in terms of b and c:

d =
b+ δMc

1 + δ
, (E.31)
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which we may use in Equation (E.13’),

a =
[1 + γ + δ + γδ(1−M2)]c− γMb

1 + δ
. (E.32)

By rearranging, we arrive at an expression for c in terms of a and b:

c =
(1 + δ)a+ γMb

1 + γ + δ + γδ(1−M2)
. (E.33)

In order to evaluate the denominator, we note that, using Equations (E.13’) and (E.14’),

‖a× b‖ = ‖c× d‖
(
1 + γ + δ + γδ(1−M2)

)
, (E.34)

and so

1 + γ + δ + γδ(1−M2) =
‖a× b‖
‖c× d‖

=
sin θ

‖c× d‖
. (E.35)

The quantity ‖c× d‖ =
√
‖c‖2 ‖d‖2 −M2 can be resolved by noting, via Equations (E.9)

and (E.10), that

‖c‖2 = 1− (1−M2) cos2 ϕ, ‖d‖2 = 1− (1−M2) sin2 ϕ, (E.36)

from which it follows that

‖c× d‖ =

√
(1− (1−M2) cos2 ϕ)(1− (1−M2) sin2 ϕ)−M2

= (1−M2) sinϕ cosϕ,
(E.37)

where positivity is guaranteed from ϕ ∈ [0, π/2]. Hence,

1 + γ + δ + γδ(1−M2) =
sin θ

(1−M2) sinϕ cosϕ
. (E.38)

Making use of this quantity in Equation (E.33) we find that the observable C that minimises

the error D(C,A) has the Bloch vector

c =
(1−M2) sinϕ cosϕ

sin θ

(
(1−M2) cosϕ+D(D,B)

(1−M2) cosϕ
a+

MD(C,A)

(1−M2) sinϕ
b

)
=

(D(D,B) + (1−M2) cosϕ) sinϕa+MD(C,A) cosϕ b

sin θ
,

(E.39)

and, similarly,

d =
(D(C,A) + (1−M2) sinϕ) cosϕ b+MD(D,B) sinϕa

sin θ
. (E.40)
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Table of commonly used notation

“x belongs to the set A” x ∈ A
“x does not belong to A” x /∈ A
“B is a subset of A” B ⊂ A
“C is a set of elements that satisfy

property p”

C = {x|x = p}

The empty set ∅ = {}
The complement of subset B of A B\A or Bc = {x ∈ A|x /∈ B}
Power set of A 2A = {B ⊂ A}
Union A ∪B = {x|x ∈ A or x ∈ B}
Intersection A ∩B = {x|x ∈ A and x ∈ B}
Cartesian product of C and D C ×D = {(x, y)|x ∈ C, y ∈ D}
“There exists” ∃
“For all” ∀
A function f from A to B f : A→ B

“Maps to” 7→
Domain of a function f : A→ B Df = {a ∈ A|∃b ∈ B, b = f(a)}
Range of a function f : A→ B Rf = {b ∈ B|∃a ∈ A, b = f(a)}
Inverse image of a set Y ⊂ B with

respect to f

f−1(Y ) = {a ∈ A|f(a) ∈ Y }

Composition of functions f : A→ B

and g : B → C

g◦f : A→ C, (g◦f)(x) = g(f(x))

Characteristic function for a set A χA, χA(x) = 1 if x ∈ A and 0

otherwise

Hilbert Spaces H or K
Vector states in the Hilbert Space H ψ, ξ ∈ H
Self-adjoint operators on H A,B ∈ Ls(H)

Density operators on H ρ, σ ∈ S(H)

Unitary operators on H U, V ∈ U(H)

POVMs A,B
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