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Abstract 

In this project a glycerol methacrylate hydrogel surface was synthesised, which acted as a 

biomaterial. This biomaterial was used as a surface on which fibroblast and macrophage 

type cells were grown. The hydrogels were synthesised from glycerol methacrylate, a 

hydrophilic monomer, cross-linked with glycerol dimethacrylate using chiefly thermal 

polymerisation methods. The hydrogels were shown to have similar water contents of 

around 75-85% mass and similar physical structures.  Polystyrene latex particles were also 

synthesised using emulsion polymerisation. Latex particles were synthesised in 3 sizes: 100 

nm, 250 nm and 720 nm. These particles were produced easily and in large quantities in the 

three sizes and with good control. The particles were incorporated into the hydrogel 

structures to give three sets of hydrogels with surfaces of varying roughnesses but identical 

surface chemistry. The surfaces were analysed with electron microscopy and white light 

interferometry to gain an understanding of the roughness and appearance of the surfaces. 

These latex hydrogels were optimised for cell culture and shown to be non-cytotoxic by the 

culture of 3T3 fibroblast cells on their surfaces. Normal human dermal fibroblast cells were 

also grown on the hydrogels and were shown to have survived on the surface for at least 48 

hours with some evidence of proliferation. A simple staining and imaging method using 

Giemsa nuclear stain, PicoSirius red cellular collagen stain and upright inverted light 

microscopy was demonstrated. Optimisation of the hydrogels for the culture of THP-1 

macrophage like cells was demonstrated and ruled out epifluorescence imaging for these 

materials due to excessive autofluorescence generated by the hydrogels. It was shown that 

it was possible to induce differentiation of the THP-1 cells using PMA and for the cells to 

adhere to the hydrogel surface, however an experimental attempt to investigate to what 

extent the hydrogel surfaces caused an activation of the macrophages was inconclusive. 



Using ELISA it was shown that the detection of very small levels of inflammatory cytokines 

was a possible. 

Alongside these investigations, a set of water swollen core-shell particles was synthesised 

from a protected monomer in water using emulsion polymerisation. These particles were 

shown to swell with water on the removal of a protecting acetonide group. The particles 

increased in size from around 100-300 nm to 5-6 µm. This water swelling is a key indication 

of hydrogel function. The core shell particles were shown to be able to adsorb protein 

molecules (lysozyme, albumin and fibrinogen) onto their surfaces and the change of surface 

charge, measured by zeta potential was shown. Higher adsorbed protein concentration had 

a more marked effect on the elevation of charge on the particles and the particles with a 

smaller shell diameter showed the largest change in zeta potential with adsorbed proteins. 

Total protein content adsorbed to the particles was measured using the BCA assay. The 

protein adsorption showed that these particles may have potential used in a biological 

context and could be investigated further in the area of drug or biomolecule uptake and 

release. 
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1 Introduction 

1.1 Tissue engineering 

This thesis is part of an interdisciplinary project which aims to create a better understanding 

of various scientific and engineering disciplines enabling the betterment of all of these areas 

from the skills and experiences gleaned from working between them. This project 

encompasses aspects of polymer chemistry to create hydrogel materials, cell biology to 

culture cells on the polymer materials and a number of engineering techniques to analyse 

and understand the results. As such, it falls under the broad field of tissue engineering. 

Tissue engineering has been described as “An interdisciplinary field that applies the 

principles of engineering and life sciences toward the development of biological substitutes 

that restore, maintain or improve tissue function or a whole organ.” [1] This definition is 

from Langer and Vacanti, two of the pioneers of the field. The definition itself is broad, 

reflecting the very wide ranging nature of the field. Tissue engineering encompasses 

elements of a number of disciplines including engineering, physics, chemistry, biology and 

biomaterials, as well as many others, but the emphasis of tissue engineering is to work with 

the body’s own resources to help it out in times when it is injured or not functioning 

properly and of course this will require deep understanding of the science that underpins 

both cell biology and materials. This is achieved in a number of ways including the 

generation of tissue types in the lab, ex vivo, for example bone, skin and cartilage and also 

applying this knowledge to allow the re-growth and regeneration of the tissues in the body 

for example bone and tendon grafts. Ultimately this knowledge could be used to repair 

complex organs in the body, reducing the necessity for transplants.[2] Before this can 

happen, a better understanding of the mechanics, biological and chemical functions and 
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responses of the body’s tissues needs to be found. Tissue engineering presents numerous 

opportunities to model and examine various tissue systems, ranging from skin and bone to 

cartilage and even whole organs, helping to gain a better understanding into the activities 

and pathways of stem cells, expression of genes in response to stimuli or the ways in which 

body cells and tissues degrade or fail as they age. Taking skin tissue engineering as an 

example, a large number of different problems can be modelled using lab produced tissue 

engineered skin cell cultures. These include full thickness burns and skin graft 

contraction,[3],[4, 5] models of melanoma infiltration[6] or models of skin pigmentation 

disorders including psoriasis.[7] Tissue engineered skin also has produced applications in the 

clinic for the past 25 years,[3] for example in burn healing,[8] which has also led to the 

development of the commercial products such as Apligraf[9] [10], which is used in the 

treatment of burns and chronic wounds, and also in the generation and clinical replacement 

of human buccal mucosa to repair damaged urethra.[11] 

A further application of tissue engineered skin is in using in vitro cell cultures as an 

alternative for cosmetics testing. This allows a variety of cosmetic compounds to be tested 

on realistic human skin giving more accurate and representative results, without any of the 

cost or ethical issues involved in using animals for testing.[12, 13] 

1.2 Macrophages 

The main aim of the project is to gain an understanding of how macrophage and 

macrophage-like cells interact with polymer biomaterials. Macrophages are monocyte 

derived white blood cells which are part of both the non-specific, innate immunity and a 

member of the specific defence strategy employed as part of acquired immunity. Their roles 

in the immune system are to engulf (phagocytose) foreign cellular material or cellular debris 
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and break it down into harmless, or useful products and to stimulate other immune cells 

(including lymphocytes and T-cells) to help combat infections and foreign bodies. Much of 

the early understanding of macrophages and their immune activities comes from 

experiments by Mackaness and colleagues[14] in the 1960s. They investigated immunity to 

microbial infections through changes in the activity of macrophages in response to antigens. 

They found that when macrophages came in contact with pathogens, they developed 

immunity specific to the stimulus i.e. the pathogen, but not specific to antigen displayed by 

it.[15] This meant that the antimicrobial activities of the macrophages were greatly 

improved. They then surmised that this improved immunity was dependent upon an altered 

or activated state of the macrophage working with antigen and specific antibodies adsorbed 

onto the macrophage surface. It was later shown that this activation depended on the 

products of specifically activated T-helper cells (TH1) and Natural Killer (NK) cells[16]. These 

cells themselves were activated through interactions with the antigen expressed on the 

surface of the macrophages. The products included interferon γ (IFNγ) and cytokine 

networks, including interleukin-12 (IL-12) and IL-18. After this work, interest in macrophages 

appeared to wane and not much research was conducted into their activities until the 1990s 

where Mackaness’ work became known as the classical activation pathway of macrophages 

and his work helped open the door to research into the biochemistry of macrophage killing 

actions, cytokine biology and  tumour immunology.[17] 
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1.2.1 Classical activation of macrophages 

The classical activation pathway is a well-established sequence of cytokine activity which 

causes classical activation of macrophages, it is IFNγ dependent and results in the 

stimulation of T-helper type 1 immune (TH1) responses and encourages pro-inflammatory 

activity in response to infections such as those caused by mycobacterium tuberculosis or by 

the human immunodeficiency virus (HIV).[15]  

Classically activated macrophages are induced by a combination of two signals IFNγ, which 

primes the macrophage for action but does not actually activate it, and one or more of;  

tumour necrosis factors (TNF),  an inducer of TNF including the cytokines IF-12 and IF-18, 

produced by T-cells or from exposure to microbe or microbial products.[18] In mice this 

activation is easily identified as nitric oxide (NO) is produced.[19] This identification is not as 

simple in humans as we do not produce NO as part of this macrophage response. Instead 

the response is identified by a variety of biochemical and macrophage functional 

criteria,[18] including increased ability to kill intracellular pathogens and the up-regulation 

of certain proteins, such as surface major histocompatibiliy (MHC) proteins. Following 

activation, macrophages will migrate to the sites of infection, following chemotaxis, where 

they will encounter pathogens and engulf and degrade them as well as stimulating 

inflammatory responses to the infection by releasing pro-inflammatory cytokines. 

Inflammatory responses are critical for the removal of pathogens and foreign extracellular 

material. During the response large numbers of immune system components including 

macrophages and dendritic cells rush into the infected area. A swelling action brought on by 

an increase in blood vessel permeability allowing the influx of immune cells to the tissue, 

blood plasma and proteins, as well as the associated increase in temperature, all help to kill 

invading pathogens.[18] 
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The action of cytokines is not the only way in which macrophage activity is modulated. 

Contact dependent interactions between T-cells and macrophages, though poorly 

understood and defined, have been shown to alter their activity.[20],[21] Macrophages are 

also said to able to induce changes in cell adhesion, migration and the secretion of various 

proteins of a number of cells including T-cells and fibroblasts.[15],[22],[23] In certain 

immune responses, large numbers of macrophages can be seen in tissues, organised into 

groups of cells called granulomas.[18] Granulomas form around foreign intrusions into the 

body which are then encapsulated by various immune cells including macrophages and T-

cells. They form around a variety of particles which the immune system has recognised as 

foreign but is unable to degrade including; bacteria (such as mycobacterium tuberculosis 

[15]), fungi or inert non-biological material such as surgical sutures.[24] Macrophages in 

these structures are frequently surrounded by T-cells which produce a constant supply of 

activating, pro-inflammatory cytokines, lipid mediators and toxic radical molecules.[25] 

These granulomas can result in extensive tissue damage and are dangerous themselves as 

they could contain necrotic cells at their core, as is the case with some tuberculosis 

infections. Necrosis at the core is a result of the central cells being starved of nutrients by 

the surrounding cell layers, causing them to die off. Correct identification of necrotic 

granulomas is important as they often indicate that the cause of the granuloma is an 

infectious agent. 

In recent years, the concept of an alternative activation of macrophages through TH2 

cytokines has gained credibility. This alternative activation presents as a distinctive 

macrophage phenotype with activities consistent with anti-inflammatory immune responses 

and possibly wound repair.[18],[26],[27] 
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1.2.2 Alternatively activated macrophages 

The first description in the literature of an alternative method of macrophage activation, 

presented by Stein et al in 1992,[27] introduced them as ‘macrophages which, when treated 

with IL-4 assume an alternative activation.’ This was some of the first in-depth investigations 

into macrophages since Mackaness’ work in the 1960s and lead to a large volume of work 

being undertaken in the next few years, to investigate and understand this new aspect of 

macrophage activity. The proposed alternative was found to be distinct and different to the 

classically described activation and behaviour of macrophages.[27] Further study by Goerdt 

and colleagues confirmed the diverse biological and immunological roles of the alternatively 

activated macrophages (AAMs) which distinguished them from classically activated 

macrophages (CAMs).[26] In Stein’s study, the activation of murine macrophages followed 

induction with IL-4 which had previously been described as a macrophage activating 

factor.[27] [28] The activity of the macrophage was assessed by measuring the binding and 

degradation of radioactively labelled mannose serum albumin. They found that the 

macrophage mannose receptor (MMR) had been expressed ten-fold in response to IL-4 

activation and that its activity had increased 15 fold [27]. Analysis of the macrophage gene 

showed that only MMR had been up-regulated whereas the regulation of lysosome and TNF 

had remained steady. He describes how mannose surface receptors are important for 

phagocytic binding and ingestion of pathogens, enhancing their activity and increasing their 

capacity to clear mannose ligands which leads to reduced pro-inflammatory cytokine 

production. MMR is also noted as not being a marker for IFNγ macrophage phenotypes. 

Later studies would show that IFNγ phenotype is an inflammatory response phenotype and 

so due to this IL-4 induced activity suppressing the response of IFNγ, the macrophage begins 

to express an alternative activation,[15] as well as releasing anti-inflammatory cytokines.  
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Whilst inflammatory responses are critical for the removal of pathogens and foreign 

extracellular material from the site of an infection, they also have a detrimental effect on 

tissues. An influx of immune cells and activity, can prove to be very damaging to tissues, 

ultimately resulting in necrosis of the tissue.[18] Therefore the induction of pro-

inflammatory processes must be repressed to allow complete healing of the tissues. 

Experiments by Raes and colleagues[29] showed that markers for alternative expression of 

macrophages could be found on the inflammatory zone (FIZZ1) and Ym1 part of the 

macrophage gene and that they were dependent on IL-4. They also found that the 

inflammatory IFNγ antagonises the effect of IL-4 on these markers which would reduce its 

effectiveness in stimulating the markers.  

AAMs are thought to able to suppress the inflammatory effects of CAMs, especially during 

apoptosis where CAMs will endocytose the cellular debris produced in the process. The 

AAMs will express an anti-inflammatory phenotype.[30]  

Stein’s paper is not the first example in the literature of investigations into the actions of IL-

4 on macrophage activity,[28],[31] but it does present the first evidence for a definitely 

identified, distinct phenotype of macrophages with anti-inflammatory actions. This paper 

encouraged a flurry of research into the activities of these new ‘alternatively activated’ 

macrophages.[17] 

IL-4 and IL-13 are the main activators of AAMs[27] but their main sources are not 

particularly well defined, neither are the stimuli that induce their synthesis and release,[15]  

despite a large volume of papers which can be found in the literature, the activities induced 

by the cytokines IL-13 and IL-4 are less well defined than the activities brought about by 

cytokines recognised by the classically activated macrophages. Many papers report that 

cytokines are generally produced in T-helper type 2 immune (TH2) responses especially in 
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allergic cellular and humoral responses to parasitic and pathogenic infections.[15] AAMs 

which induce TH2 response is predominated by IL-4 signalling.[32] 

 The effects of IL-4 and IL-13 are virtually identical in their induction of AAMs[33] which 

include a weak proliferative effect and the inducement of macrophage cell 

fusion.[34],[35],[36]  IL-4 and IL-13 may enhance the expression of an IL-1 decoy receptor 

which would act as a signal-less trap for other inflammatory cytokines thus counteracting 

pro-inflammatory actions.[37],[35] It has been found that glycans, for example chitin, lacto-

N-fructapentose III initiate AAMs in mouse models and possibly in humans, this activation 

also increases arginase activity and promotes TH2 responses and IL-10, IL-13 and IL-4 

secretion from T-cells.[38],[39]  

IL-4 and IL-13 share many common features including biochemical structural features, for 

example both proteins belong to the same α-helix family. They are also similar on a genetic 

level, sharing approximately 30% of similar sequences.[15] They have many sources, chief 

amongst them is TH2 cells and as noted previously, their activity is nearly identical. They 

have also been reported to have immunostimulatory and immunosuppressive effects upon 

other immune cells including NK cells, neutrophils, mast cells and on smooth muscle cells, 

endothelial cells and fibroblasts.[15] 

Some sources in the literature define CAMs and AAMs as M1 and M2 macrophages 

respectively,[15],[40],[23] however this can be misleading as it implies the macrophages are 

locked in theses phenotypes. It is also worth noting that there is no straight forward 

correspondence of CAM and AAM between subpopulations of other classes of immune 

cells.[15]  There is evidence that macrophages are able to switch between the CAM and 

AAM phenotypes quickly and fully, thus inverting their phenotype. This means that the 
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same cell could initiate an inflammatory response then work to resolve this response by 

inverting to an anti-inflammatory phenotype due to appropriate stimuli.[41],[42]  

In an interestingly light-hearted article, the action of polarised macrophages are directly 

compared to the ‘light-side’ and ‘dark-side’ of ‘the force’ from the film series ‘Star 

Wars’.[23] This is an interesting analogy to make, as, in the article the inflammatory actions 

of classically activated macrophages are said to embody the evil spirit of the dark-side of the 

force, whereas the anti-inflammatory action and wound regenerative properties of 

alternatively activated macrophages act as the good, light-side of the force. Also in keeping 

with the observed activities of macrophages and with the star wars analogy, the balance of 

the force (the body in this case) is maintained by the ability of the macrophages to switch 

back and forth between the two phenotypes as required. In the article, the author Laskin 

states that M2 macrophages exert immunosuppressive activity and inhibit t-cell 

proliferation whilst down regulating pro-inflammatory M1 macrophage cells. She also states 

that M2 macrophages are capable of stimulating angiogenesis and inducing fibroblasts and 

macrophages to synthesise extra cellular matrix proteins in areas of tissue wounded by 

inflammation, thus bringing balance to the force. This article, not only served as a welcome 

break from the heavy reading usually expected when reviewing literature in most scientific 

disciplines, but also managed to succinctly describe the complex effects of macrophages in 

context with the fictitious plot elements of a film and acts as a competent review of the 

balancing act effected by macrophages as they go through their opposing inflammatory and 

anti-inflammatory actions. This article also is one of the few articles in the literature in 

general which makes reference to the wound healing abilities of which macrophages are 

thought to be capable. It even provides some detail into the signalling molecules thought to 

aid in the repair of wounds and tissues, with the example of the liver and the macrophage 
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dealing with hepatotoxins being given. These healing effects are all referred to in terms of 

‘weapons of the Jedi’, to which ancient and noble order the healing alternatively activated 

macrophages are said to belong. The article concludes by stating that the inflammatory 

responses to injuries and the anti-inflammatory, healing responses are two sides of the 

same coin with complex interrelations which rely upon one another. 

1.2.3 Alternatively activated macrophage assisted wound healing 

Alternatively activated macrophages, as they became known, were shown to be unable to 

synthesise nitrogen monoxide (NO) due to the induction of arginase and as such are much 

less able to kill intracellular microbes.[43] However if the substrate for both arginase and 

the enzyme responsible for NO production,  L-arginine, were to be added to IL-4 activated 

macrophages, after activation, NO production would be restored.[44] This reduced cytotoxic 

activity suggests a different mode of action. 

 AAMs express high levels of M2 markers Ym1 and Arginase 1 (Arg1) and on stimulation by 

IL-4 induce the production of lower levels of inflammatory cytokines.[40] AAMs produce 

several components which are known to be involved in the synthesis of the extra cellular 

matrix (ECM), suggesting that they have more of a role in the repair of tissue rather than 

microbe killing like the CAMs do.[18],[45] AAMs are not very efficient at antibody 

presentation and in many cases have been known actually to  inhibit T-cell proliferation.[18] 

This would suggest that they have a decreased role in the management of intracellular 

pathogens and recent studies on this population of macrophages have begun to focus on 

the AAMs potential not only to reduce inflammation through the release of IL-10 and IL-4 

agonists,[18] but also their potential to encourage wound healing, immunosuppression and 

tissue repair[18]  through angiogenesis and extra cellular matrix (ECM) deposition. AAMs 
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are thought to produce high levels of fibronectin and other matrix associated proteins[45] 

and also promote fibrogenesis from fibroblastiod cells.[46] Thus repairing any damaged 

tissues at the site of previous inflammation. This action seems to be the polar opposite to 

the action of CAMs which will inhibit fibrogenesis by releasing anti-fibrogenesis or fibrolytic 

factors.[46] Through the strict induction of arginase, these cells may lead to the biosynthesis 

of polyamine and proline complexes which in turn would promote cell growth and collagen 

network formation, ultimately resulting in tissue repair,[47],[48] though CAMs could 

contribute to the dissolution of fibrin fibres present from blood clotting mechanisms and 

they would also have a role in the disposal of dead cells in the wound, therefore a low 

number of CAMs would likely be found in the site of the wound. 

The alternative activation of macrophages by TH2 cytokines and glucocortids is essential for 

the correct functioning of anti-inflammatory immune reactions. [45] The induction of AAMs 

by IL-4 also causes an over expression of prototype ECM protein fibronectin. This over 

expression suggests that the macrophages do indeed have a role in tissue remodelling and 

the healing of acute and chronic inflammatory reactions and diseases. AAMs are even found 

in the healing phase of acute inflammation reactions, for example in teeth after gingival 

infections [49]. They have also been shown to be major players in type 1 autoimmune 

responses[50] in the chronic inflammatory diseases; rheumatoid arthritis [51, 52] and 

psoriasis.[53]  

Mantovani et al stated that ‘M1 and M2 polarised macrophages are extremes of a 

continuum of functional states.’ By this he was outlining the versatility of macrophages, that 

they can express different and varied functions in response to microenvrionmental 

signals.[54] This article describes how tumour and T-cell derived cytokines acquire polarised 

M2 (AAM) phenotypes which are able to act with anti-inflammatory responses as part of the 
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adaptive immunity. They are able to scavenge debris and promote angiogenesis, tissue 

remodelling and tissue repair.[40] Evidence in the literature of macrophages inducing tissue 

repair and remodelling is limited, indeed, many of the papers which make mention of the 

anti-inflammatory action of AAMs appear to be unaware of the proposed healing efforts of 

these macrophages. This could be due to a number of reasons including the obvious, that 

these healing effects are beyond the scope of investigations into the effects of cytokines on 

the macrophages, or possibly that they are difficult to detect. The papers that do make 

mention of tissue repair or remodelling effects seem to be unaware of the exact 

mechanisms at work or potential impact of these healing effects, particularly if considered 

from a tissue engineering stand-point. If these healing effects could be harnessed by 

deliberate induction of their phenotypes by a suitable biomaterial for example as suggested 

by Ratner and colleagues using patterned P(HEMA)[55], there would be the potential for a 

huge amount of research into the tissue remodelling activities of macrophages in response 

to wound stimuli or in ways to produce novel advanced forms of wound dressings which 

could directly affect curative action upon the wound, rather than merely protecting it from 

further damage and infection as many of today’s dressings do. 

1.2.4 An alternative alternative activation? 

The definition of alternatively activated macrophages broadened with the proposal of type 

two alternatively activated macrophages[32], which despite activation by pro-inflammatory 

cytokines; appear to show a preference towards anti-inflammatory actions.[41] 

Class II alternatively activated macrophages (CIIAAMs) are thought to release large amounts 

of the cytokine IL-10, which is a potent inhibitor of acute inflammatory responses to certain 
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bacterial endotoxins. This type of activation resulted from classically activating signals (IL-12, 

IL-18) in the presence of IgG immune complexes.[18],[56] 

CIIAMs, similarly to CAMs require two induction signals, the first is ligation of Fcγ-receptors 

(FcγR) by non-activating IgG complexes and then by toll-like receptors (TLRs).[18] When 

activated, CIIAMs do not induce arginase and begin to produce many of the same cytokines 

as the classically activated macrophages, with the exception of IL-12 and IL-10.[18] Large 

amounts of IL-10 are produced by CIIAMs and act as anti-inflammatory agents. This action 

was shown in experiments by Gerber and Mosser.[56] In these experiments, macrophage 

Fcγ receptors were ligated by IgG complexes following stimulation by known pro-

inflammatory agents. It was found that the ligation induced anti-inflammatory action in the 

macrophages and triggered a reduction in the amount of inflammatory cytokines, showing 

that effectively ligating the receptor with IgG could prevent inappropriate levels of 

inflammatory cytokine responses. This new kind of activity upon activation makes CIIAM 

distinct from alternatively activated macrophages and classically activated macrophages.  

The literature is sparse in details on the existence of CIIAMs and in their possible activities. 

Many papers offer small hints of their existence but group the possible activity of the 

CIIAMs in with either of the other two phenotypes of macrophage or otherwise remain 

unaware of their existence. This makes assessing the validity of the existence of CIIAMs 

difficult as there is no real firm basis of literature on which to base a judgement. The main 

papers which reported the possible existence of CIIAMs did so in the early 2000s and this 

seems to be another area of research which has fallen out of favour. The general lack of any 

identifying references to these macrophages is possibly due to the marked similarity of their 

proposed actions with those of the established classical and alternatively activated 

phenotypes. This could mean that they fail to be identified as their actions appear 
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contradictory to those expected for either CAMs or AAMs or that any activity that is 

recorded possibly falls within the bounds of experimental error and is discounted as 

legitimate activity in terms of the study. It is also worth observing that there appears to be 

no definite consensus on whether CIIAMs are a distinct phenotype or one of the other two 

phenotypes acting in a different fashion to the expected way. Further study in this area 

could clear up this mysterious behaviour and also help shed some light on whether a new 

phenotype needs to be added to the family of macrophages.  

 

1.2.5 Macrophages and hydrogels 

The first in-depth study on biomaterials was by Lentz and colleagues[57] and concerned the 

adhesion of rat peritoneal macrophages to synthetic hydrogels. In this study the authors 

assessed the ability of the macrophages to adhere to various hydrogels. A range of 

hydrogels comprising a number of different proportions of hydroxyethyl methacrylate 

(HEMA) and ethyl methacrylate (EMA) were compared to sets of copolymers made up of 

styrene (S) and parahydroxystyrene (HS) repeat units. Both groups of copolymers contained 

hydroxyl functionality but the poly(EMA-co-HEMA) materials swell in aqueous media to a 

much higher degree than poly(HS-co-S) materials, as is suggested by their capacity as a 

hydrogel. These differences in swelling directly affected the adhesion of the macrophages 

and in general the macrophages adhered more preferentially to the copolymers which had 

swelled the least,[52] indicating a preference of the cells for materials with higher moduli.   

Other factors were also likely at work, for example the hydrogels would likely have different 

charges present at their surfaces, as the phenol hydroxyl groups will be partially 

deprotonated at neutral pH. Later studies by Smetana et al[58],[59] showed that monocyte 
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adhesion to polyHEMA hydrogels could be enhanced by incorporating functional groups 

with a charge or by templating precisely sized pores into the hydrogel matrix[60]. They 

found that macrophages preferred and spread over a wider area on tertiary amine 

functionalised hydrogels compared to carboxylic acid or sulphonic acid hydrogels. This is not 

surprising as the tertiary amines present would be partially protonated and therefore 

positively charged at physiological pH, therefore presenting a more attractive surface. In his 

paper, Rimmer[52] notes that Smetana did not investigate the activation of these cells, 

merely their adhesion. These studies were concerned with the key issue of cell adhesion to 

the surface of hydrogels, for when the cells are attached, they would then be free to grow 

and proliferate on these surfaces. This rational is at the centre of designing viable tissue 

engineering biomaterial constructs. 

Having successfully adhered macrophages to hydrogel surfaces the hydrogels need to be 

assessed to see whether the macrophages can proliferate on their surfaces and that the 

hydrogels are not cytotoxic. If, on adhesion, the macrophages become activated and express 

inflammatory responses, they can sometimes form foreign body giant cells (FBGCs) in a 

sequence of events similar to that of granuloma formation[61]. The duration and magnitude 

of the inflammatory response has a direct bearing on the stability, compatibility and indeed 

the suitability of the biomaterial[62]. Macrophages can react to a huge variety of synthetic 

polymers[52], treating them as foreign objects. It therefore stands to reason that 

incorporating protein molecules into the structure could have a stabilising effect on the 

macrophages. In their study, Kao and colleagues[62] note that macrophages are able to 

recognise the protein molecules adsorbed onto the biomaterial surface and that 

macrophages can adhere to these proteins or become activated by them. They also noted 

that where FBGCs form on biomaterials, the biomaterial immediately underneath will 
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become degraded by them, meaning that this effect should be avoided where possible. A 

number of researchers have demonstrated that this is possible to grow macrophages on 

polymer surfaces without the activation of inflammatory responses, including Rimmer and 

colleagues[52], who used alkyl aminated hydrogels and found that they induced very low 

levels of pro-inflammatory cytokines and Jenny & Anderson,[63] who showed that it was 

possible to prevent FBGC formation by macrophages, by grafting polyethylene glycol (PEG) 

to amine modified glass. Ratner and colleagues has described how influencing the 

macrophage behaviour and expression by manipulating hydrogel properties is a key way to 

encourage an alternative and therefore healing activation, promoting tissue remodelling of 

implants and immune system pacification [64] [60] 

 

The literature concerning macrophages interacting with biomaterials is very varied. There is 

a lot of attention paid to the assessment of macrophage adhesion and proliferation, as, for 

the obvious reasons that it is pointless to make a biomaterial upon which macrophages 

cannot grow. There is also a lot of work done on the assessment of the cytotoxicity of 

biomaterials in question, again for obvious reasons. It is often noted throughout the 

literature that macrophages can become ‘activated’ with response to the 

biomaterial[65],[62],[66], this can be either when the biomaterial is implanted into the body, 

or when macrophage cells are introduced directly to it. The activation referred to in the 

literature is almost exclusively classical activation and research is focused on developing 

biomaterials which will interact with macrophages without activating their pro-

inflammatory responses, thus increasing the biomaterial’s biocompatibility. 

In terms of investigating macrophage interaction with polymers, specifically hydrogels, there 

is also little literature evidence. There have been studies on polymers tailored to encourage 
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cellular protein deposition and adhesion by macrophages reported by Godek et al,[67] as 

well as study into reactions of macrophages with polymer nano- and microparticles  either 

directly synthesised or as wear or breakdown debris to investigate cellular uptake and 

inflammation,[68],[69], [70, 71] particularly with regards to drug delivery,[72],[73],[74] or as 

a means to assess macrophage differentiation.[75] However there has been a great deal of 

study into how to assess the various interactions of macrophages and other immune cells 

with biomaterials used in tissue engineering by using a number of assays[76], as well as 

studies of surface reactions between polymers and macrophages,[77] but those studies 

which have looked at macrophage interactions with hydrogels have lacked an overall 

systematic approach into different methods of causing and modulating macrophage 

responses[78] 

 There is almost no mention in the literature, of inducing alternative activation of 

macrophages in relation to biomaterials, and in the rare case when it is mentioned; AAMs 

on biomaterials tend to be the aim of future research[79]. It seems that this lack of directly 

induced alternative activation by biomaterials consists as a gap in the literature. The reasons 

for pursuing it include increasing the biocompatibility of biomaterials by the encouragement 

of an anti-inflammatory phenotype and also the encouragement of wound healing and 

angiogenesis, particularly when the biomaterial in question is being used in a tissue 

engineering context. This biomaterial, along with cultured tissue would likely be implanted 

into the body wherein it would encourage the body to integrate this new part of the tissue, 

effect tissue repair, hopefully joining existing native tissue with the engineered culture and 

encouraging the growth of blood vessels into the engineered tissue implant - described by 

some tissue engineers as the ‘holy grail of tissue engineering.’ 
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1.2.6 Cell adhesion to surfaces 

When a material encounters a living system, for example a biomaterial that is implanted, 

proteins are quickly found on the surface. Proteins rapidly adsorb to most surfaces and 

quickly form a monolayer.[80] Hydrophobic materials are preferred by cells, [81] likely due 

to the proteins changing conformation and unfolding on interaction with the surface, then 

releasing water molecules which would increase the entropy present in the system, making 

this a favourable interaction. The chemistry of the surface is therefore highly important in 

controlling the degree of cell adhesion. So control of properties such as charge and water 

swelling/wettability can alter the attractiveness of the surface for adhesion. Tailoring a 

biomaterial surface to encourage specific protein adsorptions can have a profound effect on 

the types of cells which will adhere.[81] Cells adhered to these proteins signal both 

internally and externally to other cells and can be induced to behave in a particular way, 

such as undergoing a phenotypic switch, or forming a particular tissue type. [82] 

When cells arrive at the surface they interpret and recognise the surface as the protein 

monolayer therefore for successful cell adhesion, correct protein adsorption properties 

must be present. Once adhered, the cells are capable of altering their surroundings by 

depositing further proteins, proliferating on the surface and recruiting other cells. With the 

arrival of more cells, differentiation into new cell types is possible, as is the arranging into 

tissues, cells generate the extracellular matrix to aid with further adhesion and 

differentiation.[82]  

 

Cells possess receptors which specifically recognise adhesion proteins present on surfaces. 

These receptors are known as integrins. Integrins are a large family of transmembrane 

proteins which bind to specific amino acid sequences on proteins especially adhesion 
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proteins.[83] Common adhesion proteins are fibronectin and vitronectin. These proteins 

contain binding sites comprised of a three amino acid sequence arginine-glycine-aspartic 

acid (RGD)[84]. Other integrins (αmβ2) facilitate macrophage adhesion to various proteins 

including fibrinogen and immunoglobin G (IgG), this adhesion is an important factor in 

inflammatory responses. [84-86] Control of this adsorption or the deliberate presence of 

desirable amino acid sequences can lead to directly tailorable surfaces which can encourage 

cell adhesion, spreading or differentiation.[84] 

One typical role of integrin binding to adsorbed proteins is to encourage spreading out of 

the cells on the surface[87] and can be used as a key indicator of successful adhesion.  

As well as surface chemistry, another important aspect of the cell’s interaction with the 

surface is through the its response to surface topography, both at the nano- and micro-

scale.[88] It has been shown that cells can recognise shapes and align their cytoskeletal 

structures with them accordingly.[89] It is not surprising that cells respond in three 

dimensions to their surroundings, as in their native environment they are usually connected 

on all sides to other cells, ECM components and are highly hydrated, giving access to soluble 

growth factors, hormones and other signalling molecules. Simple shapes can be introduced 

to surfaces artificially by using such techniques as lithography, a type of patterning which 

uses light to fix a material into a given pattern. By tailoring the shape or adding a desired 

adhesive or non-adhesive protein to the shape, it is possible to create areas of space which 

cells will fine more or less attractive.[90, 91] In addition to increasing the likelihood of 

adhesion, it is possible to use patterned surfaces or topographical features to induce desired 

cellular behaviour such as polarisation of macrophages into a tissue regenerative 

phenotype.[92, 93] By introducing features such as 2D grooves in the surface, polarisation of 

macrophages towards M2 type phenotypes can be achieved, encouraging the macrophages 
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to elongate,[93, 94] or by allowing them to interact with 3d pores which favoured M1 

activation.[95] 

Whilst well documented, the exact roles of integrin binding in three dimensional ECM 

environments is not yet fully understood and is a thriving area of research. 
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2 Aims and objectives 

This project aims to determine and define a set of investigations into the activities of 

macrophage and macrophage-like cells. This will be achieved using synthetic hydrogels as a 

biomaterial platform. Hydrogels are a versatile material for tissue engineering purposes, 

they are also very customisable and the chemical methodology of synthesis and 

modification is well recorded in the literature and offers the potential for many variations to 

the surface, structure and properties. However, the chief advantage of using synthetic 

biomaterials such as hydrogels, over natural biomaterials is that synthetic hydrogels have 

little to no natural immunological properties.  

The hydrogel materials and handling methods will be developed and optimised to first 

encourage fibroblast cells to adhere and recognise hydrogel surfaces then to encourage 

THP-1 macrophage like cells to adhere and to attempt to cause an activation response.  

The next step would then be to introduce a surface modification which could modulate this 

activation, potentially reducing it and investigating whether the activation could be 

stimulated to change to the alternative activation, described above as a tissue remodelling 

form of macrophage cell action. 

The optimisations and modifications will be  directed at the surface of the hydrogels, as this 

is the area which native macrophages would first encounter, were the hydrogel to be 

introduced into the body, for example as a tissue construct or implant.  

 

Testing of surface properties will reveal if macrophages are influenced directly by contacting 

a surface and to what effect these surfaces have on the action and continuing life cycle of 

the macrophage. The next phase of the investigation will be to trial different combinations 

of surface modifications to build up a library of surfaces and the corresponding affects upon 



 

22 

 

macrophage activity and activation. Surface modifications will include changes to hydrogel 

stiffness and water content or incorporating particles with different characteristics such as 

hydrogel-like properties. 

The activity and activation of macrophages will be monitored and measured by analysing 

whether or not the macrophages will adhere to a surface, this can be assessed by visualising 

cells on the surfaces of hydrogels, whether adhered cells respond to the surface by 

modifying their morphology or activity. Changes in cellular activity can be measured by 

analysing the cell signalling molecules produced by the cells, these include cytokines. The 

signalling molecules can be analysed and quantified using assays such as ELISA. 
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3 Abbreviations 

2-hydroxy-2-methylpropiophenone – HMPP L-Glutamine - LG 

Analysis of variance - ANOVA Lipopolysaccharide - LPS 

Atomic force microscopy – AFM Methacrylic anhydride – MA 

Azobisisobutyronitrile - AIBN Non-serum containing media soked gels - NSER 

Benzoyl peroxide - BPO Normal human dermal fibroblasts - NHDF 

Core-Shell – CS Penicillin/streptomycin - pen/strep 

Dichloromethane – DCM Phorbol-12-myristate-13-acetate - PMA  

Dimethylaminopyridine - DMAP Phosphate buffer solution - PBS 

Dimethylsulphoxide - DMSO Poly(divinyl benzene) – PDVB 

Dulbecco’s modified Eagle’s media – DMEM Poly(glycerol monomethacrylate) – PGMMA 

Enzyme-linked immunosorbant assay - ELISA Polyethylene terephthalate – PET 

Ethylene diamine tetracetic acid – EDTA Polystyrene – PS 

Ethylene glycol dimethacrylate - (EGDMA) Polytetrafluoroethylene – PTFE 

Foetal bovine serum – FBS Potassium chloride - KCl 

Fourier transform infrared spectroscopy – FTIR Roswell Park Memorial Institute medium- RPMI 

Glycerol dimethacrylate – GDMA Scanning electron microscopy – SEM 

Glycerol methacrylate acetonide – GMAC Serum containing media soaked gels - SER 

Glycerol monomethacrylate – GMMA Sodium dodecylsulphate – SDS 

Hydrochloric acid – HCl Sodium hydroxide – NaOH 

Hydroxyethylmethacrylate - HEMA Tissue culture plastic – TCP 

Isoelectric point - pI White light interferometry - WLI 
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4  Synthesis and characterisation of polystyrene latexes 

4.1 Introduction 

Emulsion polymerisation is a form of radical polymerisation which incorporates an aqueous 

phase, a monomer phase, surfactants and a radical initiator. Emulsion polymerisations can 

be one of two types: oil-in-water or water-in-oil emulsions. 

Emulsion polymerisation was first utilised as a method of producing synthetic rubbers. This 

was due to the high demand for natural rubbers which come from Hevea Brasiliensis, or the 

Rubber Tree. Demand was particularly high during the first and second world wars. The 

first patent for synthetic rubber was submitted by Friedrich Hoffman (German Patent No. 

250690) in September 1909, while working at Bayer in Germany. 

The process and kinetics of emulsion polymerisation was first understood and developed by 

Fryling[96] in 1944, Harkins[97] in 1947 and Smith & Ewart[98],[99] in 1948. Harkins 

developed the understanding of where the loci of polymerisation were to be found, while 

Smith described the kinetics of styrene polymerisation, detailing how free radicals in 

solution migrated into monomer droplets and micelles to form small droplets of 

polystyrene. Smith, working with Ewart, then developed the mechanism in some more 

detail and described it as undergoing the following general stages, illustrated Figure 4-1 

below. 

1. A monomer droplet is dispersed in the bulk phase, typically, but not always, 

water. Surfactant molecules adsorb to the surface of the droplet. Micelles form 

in the bulk phase.  

2. Initiator molecules dissolve into the micelles and start polymerisation, these 

micelles can now be thought of as monomer swollen polymer particles. 

Polymerisation is terminated when another radical enters the micelle. 
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3. When all of the monomer droplets have disappeared and any remaining free 

monomer is located in the particles the reaction eventually terminates. The 

particles can then be considered latex particles or colloidal polymers. Additional 

monomer and initiator could be added to the system if desired to continue 

particle growth. 

Micelles, monomer droplets and empty micelles can all be found at the same time dispersed 

in the bulk phase and the numbers of which will vary as polymerisation continues. 

The final colloidal polymers can be of very high molecular weight due to the very small 

number of propagating chains present in the micelles and polymer particles. 

Latexes produced by emulsion polymerisation have a number of uses in many industries, 

including: the creation of artificial rubbers, which find uses in the automotive industry, 

amongst others; in the creation of plastics, particularly polystyrene and in situations where 

polymer dispersions are desired, such as the paints industry.  

The sizes of latex particles can very easily be tailored by altering the concentration of 

surfactant, allowing a high degree of control over the latex product. Particles can be made in 

sizes ranging from a few tens of nanometres up to the micron scale. Due to this size range, 

Monomer droplet 

Forms micelles 

Polymerisation 
propagates  

Polymer particles form 

Surfactant 
Figure 4-1 Schematic of emulsion polymerisation 

Initiator 
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latexes are finding many applications in the field of nanotechnology. 

 

One key application of nanoparticles is in drug delivery. Their ability to encapsulate drug 

molecules or have them adsorb onto their surface, make nanoscale particles an attractive 

target for a large body of research.[100],[101],[102] The small size of the particles enables 

them to penetrate deep into tissues and be transported across cell membranes as well as 

delivering drugs or active biomolecules directly to the desired site of action.[103] 

Nanoparticles can have long circulation times in the body[104] and their ability to target 

specific tissues or cells mean that  drug levels in the whole body can be reduced but 

effectiveness is potentially increased. 

In the scope of this research, latex particles are of interest in the guise of being an immune 

system agonist. The immune system protects the body against invasion from without, 

whether this is in the form of pathogens such as bacteria and viruses or as synthetic 

implants such as hip or knee replacement joints. One of the first responders to an insult to 

the immune system is the macrophage. Macrophages are monocyte derived white blood 

cells, which are part of both the non-specific, innate immunity and a member of the specific 

defence strategy employed as part of acquired immunity. Their roles in the immune system 

are to engulf (phagocytose) foreign cellular material or cellular debris and break it down into 

harmless, or useful products and to stimulate other immune cells (including lymphocytes 

and T-cells) to help combat infections and foreign bodies. 

Due to their roles as first responders in the body, macrophages usually encounter 

nanoparticles before other immune system components,[68] there can therefore be 

adverse interactions between the macrophages and the nanoparticles, caused by the body 

inadvertently identifying them as foreign, causing localised or systemic inflammation or 
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even stimulating autoimmune disorders, which could in turn increase a person’s 

susceptibility to further infection. 

 

A key location where synthetic nanoparticles are generated in the body is at the site of joint 

replacements. In these situations, age and wearing or bodily defects have necessitated a 

joint such as the knee or hip to be replaced by a synthetic analogue. These synthetic 

implants may cause an acute inflammatory response from the immune system when they 

are initially implanted but a chronic inflammatory response can be caused by debris formed 

when the implants wear. The wear is caused by moving components rubbing on one 

another creating small particulate debris with each movement. Many of these particles are 

on the nanoscale and when they are encountered by the immune system, particularly by 

macrophages, contribute to the inflammatory response, causing localised tissue damage 

and pain and discomfort to the patient.[105],[106] Gaining a better understanding of the 

cellular reaction to nanoparticles will lead to better methods of reducing inflammation and 

improving the quality of life of those patients affected by ageing joint prostheses. 
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4.2 Experimental 

4.2.1 Emulsion polymerisation of styrene 

4.2.1.1 Materials 

Styrene, sodium dodecyl sulphate (SDS), potassium persulphate and potassium dihydrogen 

phosphate were obtained from Sigma and used without further purification, distilled and 

deionised water was used throughout. 

4.2.1.2 Polymerisation 

Batch polymerisations were conducted in a 1.0L jacketed glass reaction vessel (Radleys, UK) 

which was equipped with a mechanical stirrer, a nitrogen inlet, a reflux condenser and a 

temperature probe. For typical preparation, water (600g), SDS (10g) and potassium 

dihydrogen phosphate (0.3g) were charged to the vessel. The mixture was deoxygenated by 

bubbling under nitrogen with agitation for one hour, whilst hot water was circulated 

through the jacket of the vessel to maintain the temperature of the mixture at 70°C. After 

this styrene (300g) was slowly added dropwise to the reaction, when addition was 

completed potassium persulphate (1.5g) was added in water (20 cm3) and the 

polymerisation was stirred for 4 hours. At the end of 4 hours, the temperature of the 

circulated water was increased to 80°C for 1 hour to ensure total monomer conversion. The 

latex was discharged from the vessel, allowed to cool and stored at room temperature. 
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4.2.1.3 Variations to method 

To produce larger latex particles the above formulation, formulation 1, was varied as shown: 

Formulation 2: styrene (300g), SDS (0.5g), potassium hydrogen phosphate (0.3g), water (600 

cm3), potassium persulphate (0.5g) and formulation 3: styrene (300g), SDS (0.1g), potassium 

hydrogen phosphate (0.3g), water (600g), potassium persulphate (0.5g). The polymerisation 

was followed as described above. 

4.2.1.4 Analysis of latex 

Particle size and zeta potential data were obtained using the ZetaPals zeta potential analysis 

instrument (Brookhaven Instruments Corporation) and the provided ZetaPals and light 

scattering particle size analysis software. 

The pH of the latex was obtained using a Hannah Instruments pH meter and the latex solids 

content was assessed by solvent evaporation under vacuum. 

4.2.2 Emulsion polymerisation of styrene-co-divinylbenzene 

4.2.2.1 Materials 

Styrene, sodium dodecyl sulphate (SDS), potassium persulphate and potassium dihydrogen 

phosphate were obtained from Sigma and used without further purification, distilled and 

deionised water was used throughout. Divinyl benzene (DVB) was obtained from sigma and 

cleaned as described below. Sodium hydroxide and magnesium sulphate were obtained 

from Fisher. 
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4.2.2.2 Polymerisation 

DVB was cleaned prior to polymerisation to remove the storage stabiliser, with 5% sodium 

hydroxide (NaOH) (3x100 cm3) and washed with deionised water (3x300 cm3) before drying 

over magnesium sulphate.  

20 mol % DVB was added to the latex monomer feed. 

A typical preparation was as follows:  

Water (100g), SDS (1.66g) and potassium dihydrogen carbonate (0.33g) were charged to the 

vessel. The mixture was deoxygenated by bubbling under nitrogen with vigorous stirring for 

one hour, whilst hot water was circulated through the jacket of the vessel to maintain the 

temperature of the mixture at 70°C. After this styrene (25g) and DVB (6.249g) were slowly 

added dropwise to the reaction, when addition was completed potassium persulphate 

(0.25g) was added in water (5 cm3) and the polymerisation was stirred for 4 hours. At the 

end of 4 hours, the temperature of the circulated water was increased to 80°C for 1 hour to 

ensure total monomer conversion. The latex was discharged from the vessel, allowed to 

cool and stored at room temperature. 

 

4.2.2.3 Analysis of latex 

Zeta potential and particle size analysis were performed to characterise the latex, as 

described above using the ZetaPals instruments. pH was recorded and solids contents were 

determined by solvent evaporation under vacuum. 
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4.3 Results and Discussion 

4.3.1 Emulsion polymerisations 

Latex nanoparticles were polymerised as an emulsion in order to produce a large number of 

spherical particles of a given size. Styrene was chosen as the latex particles produced in the 

polymerisation are hard spheres. This hardness is relevant to investigate whether 

macrophage cells can detect the physical shape of the particles but any difference in 

chemical composition between particles and hydrogels, and whether this difference leads to 

any differing behaviour of the macrophages. The particles are envisaged as an easily 

synthesised material which are analogous to hard wear particles in joint replacement 

environments. These particles are known to cause macrophage-related inflammation, as 

noted previously. 

4.3.2 Emulsion polymerisation of styrene 

4.3.2.1 Polymerisation 

The emulsion polymerisation of styrene produced a milky white latex suspension. This is due 

to the size of the polystyrene particles produced. Laser light scattering from the particle 

sizing apparatus gave the average particle size to be 102 ± 1.5 nm with an average 

polydispersity of 0.037. The technique of light scattering, or quasi-elastic light scattering 

(QELS), analyses the scattering of laser light caused by particles in suspension. The particles, 

which are undergoing Brownian motion scatter incoming light and create constructive or 

destructive interference patterns, depending on the distance of the light travelling to the 

detector, resulting in an average intensity of scattered light with superimposed fluctuations. 

The decay times of the fluctuations are related to the diffusion constants of the particles 
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and therefore, the sizes of the particles. The instrument and software are then able to 

interpret these fluctuations and give a measure of the particle size. 

 The pH of the latex was found to be 2.42. Following the polymerisation, no significant 

coagulum was found and the latex was stable at room temperature for a number of months. 

The charge on the particles, given by the zeta potential was -29 ± 1 mV at 25 °C. The average 

solids content of the latex was found to be around 30% Formulation 2 was found to have 

particle size of 248 ± 2 nm. The zeta potential for these particles was -29 ± 1 mV. The 

average particle size of formulation 3 was 712 ± 7 nm and the zeta potential was -28 ± 1 mV. 

The average solids content of formulations 2 and 3 was 21% and 23% respectively. The three 

formulations are distinct in size giving three different variables, yet the charge on the 

particles is very similar meaning that any effects the charge will remain constant over all of 

the sets. The zeta potential measurements all being around -30 mV which is an indicator of 

colloidal stability. The physical data is summarised in the table below 

LATEX 

FORMULATION 

PARTICLE SIZE / NM ZETA POTENTIAL / 

MV 

SOLIDS CONTENT 

1 102 ± 2 -28.9 ± 1 30 % 

2 247.5 ± 2 -29.4 ± 1 21% 

3 712.8 ± 7 -27.6 ± 2 23% 

Table 4-1 Particle size, zeta potential and solids content of the three latex formulations 

4.3.3 Emulsion polymerisation of styrene-CO-divinylbenzene 

4.3.3.1 Polymerisation 

The initial latex comprised of PS-CO-DVB was white as were previous latexes. The initial 

particle size was 75 ± 1 nm and zeta potential of -19 ± 4 mV. This particle size is significantly 

smaller than the smallest formulation of pure styrene nanoparticles but there will be a small 



 

33 

 

degree of particle cross linking due to the bifunctional nature of the DVB molecule. This will 

decrease some particle sizes in the latex, giving a broader dispersity. The inclusion of DVB 

means that a further monomer can be coupled to the surface of each particle allowing for 

the synthesis of core-shell particles. 

4.4 Conclusion 

In this chapter three formulations of polystyrene latex particles were synthesised using 

batch emulsion polymerisation. The particles were readily synthesised and with good size 

control by varying initiator and buffer concentrations. The particle sizes were approx. 100 

nm, 250 nm and 710 nm. The latexes were analysed by zeta potential measurements and 

shown to be colloidally stable, the latexes were stable at room temperature for many 

months. Also synthesised was a smaller PS-CO-DVB latex which has dual vinyl functionality. 

This latex will be investigated in later chapters for coupling to another monomer to produce 

a core-shell particle with PS-CO-DVB at the core. 
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5 Synthesis and characterisation of glycerol methacrylate hydrogels 

5.1 Introduction 

5.1.1 Biomaterials 

There is much potential for the development of biomaterials, which could influence 

macrophage phenotype activity and could possibly encourage the action of favourable, 

wound healing type macrophages. Research and development in this area would be classed 

as tissue engineering as enhancement of wound healing and regeneration may be achieved 

by considering how environments that influence macrophage differentiation could be 

produced. Promising materials for study in this field are hydrogels. [52]  

5.1.2 Hydrogels 

Hydrogels are extended three dimensional networks of polymer chains with hydrophilic and 

hydrophobic moieties, the chains are often crosslinked. The dispersion medium of the gel is 

water. The hydrophobic components of the gel comprise the bulk of the chains making the 

hydrogels insoluble in water. However, the hydrophilic components, chiefly side groups on 

the chains, attract and hold a large number of water molecules giving the overall hydrogel 

structure a high water content but the gel overall remains insoluble. The gel is given a 

permanent physical structure by incorporating crosslinking groups, usually a second, 

bifunctional monomer. It is therefore possible to tailor hydrogel rigidity by varying the 

amount of crosslinking agent. As well as providing permanent structural support, the 

crosslinks in the gel can cause it to be highly porous. The water content of a hydrogel can, in 

some cases be as high as 99% of its total weight. These structures are described as being 

‘water swollen’. Due to their high water content, swollen hydrogels can be very flexible and 

bear many similarities to tissues, in particular, hydrogels can be compared to the 
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extracellular matrix (ECM) of tissues[107]. Indeed the matrixes of soft tissues are 

bicomponent hydrogels composed predominately of crosslinked collagen fibres, with 

charged polysaccharides providing increased osmotic pressure and thus high swelling. These 

similarities to natural tissues make hydrogels excellent candidates for scaffolds and 

biomaterials in tissue engineering constructs. Another key aspect in which hydrogels mimic 

the ECM of tissues is their extended porous, three dimensional structure which has been 

shown to be beneficial to the culturing of cells on hydrogel surfaces and throughout 

hydrogel networks.[108] In order for a synthetic hydrogel to be a viable biomaterial for in-

vivo testing it must be non-cytotoxic but if the biomaterial were ever to be viable for 

implantation into the body, it must also be biocompatible. This means that it would not 

trigger an immune response in the body, chiefly an inflammatory response from 

macrophages. 

5.1.3 White light interferometry 

An interferometer is an optical device that divides a beam of light produced by a single 

source into two or more beams, then recombines them to create an interference pattern. A 

typical interferometer setup has a light beam from a source, which is split into two, one 

beam hits a sample and the other hits a reference mirror. The light beams are recombined 

and which creates an interference pattern. However if the mirror is tilted, the interference 

pattern will form in light and dark bands called fringes and as the mirror is tilted, the fringes 

will move across the sample which has been analysed. The spatial arrangement of these 

fringes can give details about the three dimensional shape of the sample for example 

arranged in parallel lines, fringes correspond to a flat surface whereas fringes which form 

concentric circles around a point indicate that the surface is curved or spherical. Minute 

variations in the fringes allow the instrument detecting them to recognise minute variation 
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in surface topography down to the tens of nanometre scale and the surface data produce 

can compare favourably with electron microscopy and atomic force microscopy.[109-111] 

White light interferometry (WLI) finds applications in a number of fields where surface 

analysis is required including polymer paints and coatings,[112] and the assessment of the 

surfaces of bioimplants.[113] 

 

5.2 Experimental 

5.2.1 Synthesis of poly(glycerol monomethacrylate) 

Poly(glycerol methacrylate) (PGMMA) hydrogels were synthesised by two methods: thermal 

and UV curing. 

5.2.1.1 Thermal curing materials 

Glycerol monomethacrylate (GMMA) was obtained from Cognis and used without further 

purification. Glycerol dimethacrylate (GDMA) was obtained from Sigma and used without 

further purification. Reagent grade ethanol was obtained from Fisher scientific. Potassium 

persulphate was obtained from Sigma. Deionised and distilled water was used throughout. 

5.2.1.1.1 Thermal polymerisation 

GMMA (4g), GDMA (0.2g) and water (4g) were mixed. Two soda glass plates were lined with 

poly(ethylene terephthalate) (PET) sheets and a poly(tetrafluoroethylene) (PTFE) spacer 

(250µm thickness) was placed between the sheets and the apparatus was held in place with 

bulldog clips. Potassium persulphate (0.06g) was added to the polymerisation mixture, 

mixed well, any bubbles were removed by brief sonication. The mixture was quickly injected 

between the sheets into the spacer. The apparatus was heated in a 70°C oven for 24 hours. 
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The resulting hydrogels were washed and stored in ethanol at room temperature in a sealed 

container. 

5.2.1.1.2 Analysis of hydrogels 

Hydrogels were characterised with FTIR using a Perkin Elmer FTIR instrument  

5.2.1.2 UV curing materials 

GMMA and GDMA were used as before with the addition of UV initiator 2-hydroxy-2-

methylpropiophenone (HMPP) which was obtained from Sigma. 

5.2.1.2.1 UV Polymerisation 

GMMA (4g), GDMA (0.2g) and water (4g) were mixed. Two quartz glass plates were lined 

with polyethylene terephthalate (PET) sheets and a polytetrafluoroethylene (PTFE) spacer 

(250µm thickness) was placed between the sheets and the apparatus was held in place with 

bulldog clips. HMPP (0.6g) was added to the polymerisation mixture and mixed well, any 

bubbles were removed by brief sonication. The mixture was quickly injected between the 

sheets into the space. The apparatus was placed in a UV oven (Dymax Corporation) for 6 

minutes, turning over at the end of each minute. The resulting hydrogels were washed and 

stored in ethanol at room temperature in a sealed container. 

5.2.1.2.2 Analysis of hydrogel 

Hydrogels were characterised with Fourier transform infrared spectroscopy (FTIR) using a 

Perkin Elmer FTIR instrument 
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5.2.2 Incorporation of latex nanoparticles to PGMMA hydrogels 

5.2.2.1 Materials 

GMMA and GDMA were used as before and PS latexes were incorporated during the 

polymerisation steps. The latexes synthesised previously had different particle diameters 

and were used to produce hydrogels with differing distributions of particles and therefore 

different surface profiles. The particles had approximate diameters of 100, 250 and 715 nm 

respectively and were incorporated to give 3 different hydrogel formulations. Formulation 1 

was 50% w/w latex: GMMA monomer, formulation 2 was 25% w/w latex: GMMA and 

formulation 3 was 1% w/w latex: GMMA 

5.2.2.2 Polymerisation 

The latex hydrogels were produced using the thermal curing method described above. 

GMMA (4g) and GDMA (0.2g) were added to the latex, amounts of which were varied 

according to the desired formulation and the remaining mass was made up with water. 50% 

w/w latex hydrogels comprised 4g of latex and no further water (Formulation 1), 25% w/w 

latex hydrogels comprised 2g latex, 2g water (Formulation 2) and 1% w/w latex hydrogels 

comprised 0.8g latex and 3.2g water (Formulation 3). The monomers and latexes (and 

water) were mixed well and potassium persulphate (0.06g) was added and mixed. Again any 

bubbles were removed by brief sonication. The polymerisation mixture was injected into the 

cavity between the glass sheets made by the spacer and cured in an oven at 70° C for 24 

hours then removed, washed and stored in ethanol in a sealed container at room 

temperature. 
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5.2.2.3 Analysis of hydrogel 

Hydrogels were characterised with Fourier transform infrared spectroscopy (FTIR) using a 

Perkin Elmer FTIR instrument, and imaged using scanning electron microscopy (SEM) and a 

Calibre atomic force microscopy (AFM) instrument. The hydrogels were imaged with SEM on 

the bulk flat surface and also as a cross-section, which was made by snapping the hydrogel. 

The cross section served to analyse whether the latex particles were incorporated 

throughout the hydrogel matrix or on the surface. 

5.2.2.4 White light interferometry 

A measure of the roughness of the hydrogel surfaces of dried samples was obtained using a 

white light interferometer instrument, made by Bruker, model NPFLEX. Dried hydrogel 

samples were analysed with the instrument and corresponding Vision 64 software. Dried 

samples were used as the interferometer makes very sensitive measurements, when the 

wetted hydrogel samples are exposed to the air, they begin to dry which changes their 

shape and causes the gels to curl. This causes difficulties with obtaining accurate 

measurements of surface profiles. 

 

5.2.3 Contact cytotoxicity testing of hydrogels with 3T3 cells 

To test whether the surfaces of the hydrogels were toxic to cells, a robust and adherent cell 

line was cultured on their surfaces. 

5.2.3.1 3T3 cell culture media materials 

RPMI 1640 media, Dulbecco’s modified Eagle’s media (DMEM), ethylene diamine tetracetic 

acid (EDTA) and trypsin solution were obtained from Sigma. FBS and L-glutamine (LG) were 

obtained from Sigma and aliquoted from stock solutions. 
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DMEM and RPMI were mixed in a Sterilin pot, to which, 1% LG and 10% FBS were added and 

were well mixed. 

5.2.3.2 Culturing 3T3 cells 

3T3 murine fibroblast cells were kindly provided by Sam Bullers (Jack Birch Unit, Dept. of 

biology, University of York) and cultured in media described above. The cells were cultured 

to confluence in 100ml Nunc brand flasks, obtained from Fisher Scientific. Cells were 

incubated at 37°C, 10% CO2. Cells were passaged when they reached confluence. 

5.2.3.3 Passaging 3T3 cells 

Cell culture media was removed and 5-10 ml EDTA was added. Flasks were then incubated 

at 37°C for 5-7 minutes (maximum). EDTA was removed and 1 ml trypsin was added to lift 

the cells from the surface of the flask. The flask was vigorously agitated to aid lifting and 

cells were washed with 5-10 ml fresh culture media. The cell solution was centrifuged at 

1400 RPM for 4 minutes and the resulting cell pellet was resuspended in 9 ml fresh media, 

from which 1ml was removed and added to a fresh Nunc flask and topped up with 14 ml 

fresh media. The flask was then returned to the incubator. 

5.2.3.4 Culturing 3T3 cells on hydrogels 

5.2.3.4.1 Materials 

Media equilibrated 50% latex hydrogel disks comprising of 100nm particles and 3T3 cell 

stocks were placed in 24 well plates (Corning® CellBIND® cell culture plates) obtained from 

Sigma. Solvent grade ethanol was obtained from Fisher and diluted to 70% with deionised 

water and was used for general disinfection, formalin 10% solution was obtained from 

Sigma and used without further dilution. Hoechst staining solution (1 in 10000 dilution) was 

kindly provided by the Southgate research group (Jack Birch Unit, Dept. of biology, 
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University of York), and was diluted with PBS where necessary. PBS and Triton-X solution 

(0.1%) were obtained from Sigma. 

5.2.3.4.2 Cell culture 

Cells were seeded onto prepared hydrogels into steel seeding rings (10ml internal diameter) 

at concentrations of 106, 105
, 104

, 103, 102 cells/ml to test optimal seeding densities. The cell 

solutions were allowed to soak into the hydrogels before the volume of media in the wells 

was raised to 200µl in the seeding rings. The plates were covered and incubated at 37°C, 

10% CO2 for 24 hours. At the end of the experiment the cell media was aspirated from the 

wells and Phosphate buffer solution (PBS) was added to wash, each well was mixed well and 

the PBS was then removed. 10% formalin was then added to each well and the plate was 

covered and left for 24 hours at room temperature. After 24 hours the formalin was 

removed and 70% ethanol was added to the wells to fix the cells. The wells were sealed and 

stored in a refrigerator.  

 

5.2.3.5 Epifluorescence imaging of 3T3 cells on hydrogel surfaces 

Following fixation, ethanol was removed from the wells containing the hydrogels and a 0.1% 

Triton-X solution in PBS was added to the wells to permeabilise the cell membranes. The 

wells were covered and placed on a rocker plate for 15 minutes. After 15 minutes, the 

solution was removed and the wells were treated with a 1 in 10000 (v/v) solution of Hoechst 

stain in PBS and placed on a rocker for 10 minutes. Following this the solution was removed 

and the gels were washed with PBS for 3x5 minutes on the rocker. After washing the gels 

were removed from the wells and mounted on glass microscope slides, antifade solution 

was added to the surfaces and a cover slip was placed on top.  
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The gels were imaged using a mercury burner lamp in the blue fluorescent channel. The 

ImagePro plus software was used to obtain images of cell nuclei on the surface of the 

hydrogel. The cells were imaged at x20 magnification using a non-oil lens. 

 

5.3 Results and discussion 

5.3.1 Hydrogel synthesis 

Hydrogels were synthesised to produce a surface upon which cells could be cultured. As 

noted previously, hydrogels bear many similarities to native tissue due to characteristics 

such as their high water content and porosity. A number of hydrogels were synthesised to 

give a range of surfaces for the cells to interact with. These surfaces possessed varying 

surface profiles from latex particles embedded in the surface. Bare hydrogels with no 

particles incorporated were synthesised as a control. Shown schematically below 
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Figure 5-1 Schematic of producing rough surfaced hydrogels 



 

43 

 

5.3.2 Synthesis of poly(glycerol monomethacrylate) 

 

The hydrogels produced by both the thermal and UV curing methods were thin, transparent 

gels. They were flexible and somewhat fragile, tearing easily when manipulated. 

The IR spectra (shown in Figure 5-2 above) showed  peaks at approximately 3380 cm-1 

(broad) representing –OH stretching vibrations, 2960 cm-1 signifying –C-H stretches, 1700 

representing C=O stretches, 1100 representing C-O stretches. 

The hydrogels were stored in ethanol, this was due to their eventual use as a biomaterial, 

the ethanol served as a disinfectant to kill any microorganisms currently present on the 

surface and stop any further infection. 

The surface of the hydrogel was imaged using SEM and found to be very flat and mostly 

featureless, any features of note were due to defects in the surface, and for example where 

Figure 5-2 FTIR spectrum of PGMMA hydrogel 
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the hydrogel had stuck to the PET sheet during curing and torn during removal or 

manipulation. The mostly featureless surface is due to the curing of the hydrogel on a flat 

PET covered glass surface and is to be expected. The following images are SEM micrographs 

of the hydrogel surface (Figure 5-3 below). 

 

5.3.3 Incorporation of latex nanoparticles to PGMMA hydrogels 

The hydrogels with incorporated PS nanoparticles were produced using thermal induced 

radical polymerisation in water. The gels produced were white and opaque. When the gels 

had finished curing they were firmer than the bare PGMMA, when dry they were very brittle 

and would tear and break easily when manipulated. Following curing the gels were 

transferred to ethanol. In general the gels containing the larger particle size latex (550 and 

715 nm, formulations 2 & 3 respectively) were tougher than the 150 nm latex gels. The 

equilibrium water contents (EWC) of the latex hydrogels are shown in the following table. 

(Table 5-1). The EWCs of the gels are all around the same value despite there being a 

relatively large volume of latex particles incorporated into the gel structure. This is possibly 

due to the low solids content of the latex solutions and increasing water contents of the 

Figure 5-3 SEM image of PGMMA hydrogel surface  
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hydrogels meaning that water swelling effects will dominate over possible reduction in 

swelling caused by hydrophobic latex particles. 

 

LATEX FORMULATION WITH % LATEX CONTENT OF 

HYDROGEL (W/W) 

% EQUILIBRIUM WATER CONTENT 

50-1 75.48 ± 3.1 

25-1 76.82 ± 3.1 

1-1 78.91 ± 2.6 

50-2 73.46 ± 3.4 

25-2 79.56 ± 5.1 

1-2 80.25 ± 3.6 

50-3 77.69 ± 3.0 

25-3 75.28 ± 3.7 

1-3 79.61 ± 3.0 

0 77.62 ± 3.4 

Table 5-1 Table of equilibrium water content of PS latex embedded hydrogels 

 The FTIR spectra (Figure 5-4 below) obtained for the 50% latex composition of formulation 

1 contained peaks at approximately 3320 cm-1 (broad) representing –OH stretching 

vibrations, 2900 cm-1 signifying –CH stretches, and C=O stretches around 1700 cm-1, 

aromatic C-C stretches around 1450 and also an increase of peaks in the fingerprint region 

representing aromatic bond stretches from the polystyrene particles present.  
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Figure 5-4 FTIR spectrum of 50% PS volume hydrogel 

The surfaces of these hydrogels were intended to be rougher than the bare PGMMA 

hydrogel and were imaged using both AFM and SEM. The following SEM micrographs 

illustrate the surface topography. Hydrogels containing all three particle sizes were imaged 

and are presented at similar scales. It is possible to discern the differences in size of the 

particles and their different surface densities. 

 

The cross sectional images show that PS nanoparticles are present throughout the hydrogel 

structure and that they are not just found on the surface of the gel. Figure 5-11 and Figure 

5-16 show the transition between the top surface and the cross sectional area and show 

that the particles continue to be distributed into the interior of the structure and that there 

is much more than a surface monolayer of PS particles.  
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5.3.4 Scanning electron microscope images of hydrogel surfaces 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 SEM image of hydrogel 50-1 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 SEM image of hydrogel 1-1,  
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Figure 5-8 SEM image of the surface of hydrogel 50-1  

Figure 5-7 SEM image of hydrogel 50-2 
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Figure 5-10 SEM image of hydrogel 1-3 

Figure 5-9 SEM of hydrogel 50-3 surface 
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The SEM images above show that the latex particles are present and visible on the surfaces 

of the hydrogels. The physical distribution of the particles does change according to the 

amount of particles present and the size of the particles. 

The 50-1 hydrogel (Figure 5-8), appears to have a somewhat even spread of PS 

nanoparticles across the surface. It is possible that the THP-1 cells, when they encounter the 

surface of this hydrogel will not be able to discern much roughness due to the small particle 

size. Cells will be around 10µm across (approximately the width of Figure 5-8). For this 

reason, it was decided to fabricate larger particles. 

The SEM of the surface of hydrogel 1-1 (Figure 5-6), appears to show a more convoluted 

surface which could be indicative of a rougher appearance than the 50% hydrogel, this is 

somewhat surprising as this hydrogel contained a lower concentration of particles. It is 

suspected that the lower concentration caused the particles to aggregate to a degree, 

creating an uneven, rougher surface with different aggregations on top of one another. This 

clustering of aggregations may be caused by the repulsion of the hydrophobic PS particles 

by the continuous water phase. The PS particles may then aggregate to lessen their overall 

surface area and these new larger colloidal particles cluster together at the surface of the 

gel producing the observed rougher surface. 

The SEMs of 50% latex content for formulations 2(Figure 5-7) also showed this crowded, 

convoluted arrangement of particles whereas when the lower proportion of particles were 

present (Figure 5-8 & Figure 5-10), they appeared to pack more closely together and give a 

smoother appearance. This is perhaps due to that as their size increased, the charge on the 

particles did not significantly change (as shown by zeta potentials, previously), therefore, 

the overall charge per unit of surface area will have decreased as size increased meaning the 

particles could pack together better giving a better arrangement at lower concentrations. At 



 

51 

 

higher concentrations, the larger number of particles in a similar area causes them to stack 

up on top of each other.  

To investigate whether the particles were present throughout the matrix of the gel or simply 

on the surface, images of cross sections of the gels were images with SEM, shown in the 

following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 

 

5.3.5 Cross section images of latex hydrogels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flat surface 

Figure 5-11 SEM image of hydrogel 50-1 cross section 

Figure 5-12 SEM image of hydrogel 50-1 cross section 
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In order to image the cross section, the hydrogels were snapped and torn lengthways 

between two pairs of forceps. The exposed surface was then examined using SEM. The 

above figures show formulation 1 hydrogels. Figure 5-11 & Figure 5-12 show SEM images of 

the 50% latex content hydrogel, Figure 5-13 shows 1% latex content. The decrease in latex 

particle density is immediately apparent. The first image shows the boundary between the 

flat surface (top left of the image) and the internal surface exposed in cross section. In the 

image, the flat surface descends into the plane of the page in the upper left hand corner of 

the image while the cross sectional surface is shown parallel to the plane of the page. 

Exposed latex particles can easily be seen on the cross section near the surface, still giving 

the appearance of roughness. The larger areas of uniform material are parts of the bulk 

hydrogel matrix. This view is consistent in the second image which was taken nearer the 

centre of the cross sectional area. Particles are shown to be present throughout the 

Figure 5-13 SEM image of hydrogel 1-1 cross section 
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structure of the hydrogel and not just clustered at the surfaces. The third image shows the 

hydrogel with the lowest distribution of particles. There are clearly fewer particles present 

which is why the appearance of the hydrogel matrix appears to dominate. 

The following images are of the other two formulations of latex particles which show similar 

distributions of particles despite increasing particle size.  
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Figure 5-14 SEM image of hydrogel 50-2 cross section 

Figure 5-15 SEM image of hydrogel 50-2, cross section 
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The above images (Figure 5-14 & Figure 5-15)  are of the formulation 2 latex particles 

present at 50% composition of the hydrogel taken from the middle of the cross sectional 

area. The second is a closer view of the first they show particles present in small clefts in the 

hydrogel matrix. This is due to the random nature of the tearing of the hydrogel. The clefts 

are areas where the matrix surrounding the particles has been torn away. Again the images 

show that the particles are present throughout the structure of the gel. The second image 

with its increased magnification shows the large distribution of particles, with many 

crowding on top of one another. This is consistent with the previous image of the surface of 

this gel, again showing that the particles are distributed throughout the gel. 

These particle characteristics are again visible in the cross section of the hydrogel containing 

50% formulation 3 latex particles (Figure 5-16 Figure 5-17below). Again the first image is 

taken at the edge of the flat portion and the cross section. The flat surface extends into the 

plane of the page and it is possible to see a great many particles clustered on the surface. 

This again agrees with the flat surface images seen previously. The following images show 

the clefs visible in previous images. Again large numbers of the particles can be seen 

clustered in these windows into the bulk hydrogel matrix (Figure 5-18). 
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Figure 5-16 SEM image of hydrogel 50-3, cross section  

Figure 5-17 SEM image of hydrogel 50-3, cross section  
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Figure 5-18 SEM image of hydrogel 50-3, cross section  
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5.3.6 Culturing 3T3 cells 

3T3 cells are a cancer cell line derived from murine fibroblasts. They are static culture cells 

and grow in a monolayer on the base surface of a culture flask. They are regarded as a hardy 

cell line and will grow on most surfaces, which was why they were used as a test to see 

whether any cells can grow on the surface of the hydrogels and whether the surfaces are 

inherently cytotoxic. 

5.3.7 Culturing 3T3 cells on hydrogels 

The cells were cultured directly onto the surface of the hydrogels in order to assess the 

possibility of the hydrogels as a biomaterial. The cells were cultured for 48 hours and then 

fixed using formalin. During the fixation, the cells were treated with Triton-X, a detergent 

which permeabilise the cellular membrane. The subsequent treatment with Hoechst stain 

then stained the nucleus of the cells allowing them to be viewed using a fluorescence 

microscope. The following images (Figure 5-19 -Figure 5-30) show the 3T3 cells, seeded at 

the various concentrations described above, on the hydrogel surfaces. The hydrogels are 

formulations 50-1, 1-1 and 0. The images show that 3T3 cells are present on the surface of 

the gels and that these surfaces have not killed the cells before the end of the 48 hour 

experiment meaning that the 3T3 cells adhered to the surface of the gels. The images are a 

qualitative assessment of viability and serve as a positive indicator for the usefulness of the 

hydrogel surfaces for further culturing of cells. 
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Figure 5-20 Fluorescent micrograph of 1x106 3T3 cells 

seeded onto hydrogel 1-1  
Figure 5-19 Fluorescent micrograph of 1x106 3T3 cells 

seeded onto hydrogel 50-1  
 

 

 

 

 

200 µm 200 µm 

Figure 5-22 Fluorescent micrograph of 1x105 3T3 cells 

seeded onto hydrogel 50-1  
Figure 5-21 Fluorescent micrograph of 1x106 3T3 cells 

seeded onto hydrogel 0  

200 µm 

Figure 5-23 Fluorescent micrograph of 1x105 3T3 cells 

seeded onto hydrogel 25-1  
Figure 5-24 Fluorescent micrograph of 1x105 3T3 cells 

seeded onto hydrogel 0  

200 µm 200 µm 

200 µm 
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Figure 5-30 Fluorescent micrograph of 1x103 3T3 cells 

seeded onto hydrogel 0  

Figure 5-27 Fluorescent micrograph of 1x104 3T3 cells 

seeded onto hydrogel 0  
Figure 5-28 Fluorescent micrograph of 1x103 3T3 cells 

seeded onto hydrogel 50-1  

200 µm 

200 µm 

Figure 5-25 Fluorescent micrograph of 1x104 3T3 cells 

seeded onto hydrogel 50-1  
Figure 5-26 Fluorescent micrograph of 1x104 3T3 cells 

seeded onto hydrogel 25-1  

Figure 5-29 Fluorescent micrograph of 1x103 3T3 cells 

seeded onto hydrogel 25-1  

200 µm 

200 µm 200 µm 

200 µm 
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The micrographs shown above show typical views of cellular placement across the surface 

of the gels, from them it can be seen that cells are present on all surfaces used in this 

experiment and all concentrations. However as the cell concentration is reduced, 

qualitatively it is seen that the number cells adhering to the surface appears to decrease. 

This is shown as a decrease in cell nucleus density and also that a higher number of cells 

may be present on the 50% PS particle surfaces. This would indicate that the cells prefer the 

surface with the higher particle density to the surface with fewer particles. This could be 

due to the hydrophobicity of the surface. As the 50% gel surface has a higher particle 

surface area and the cells will be in much more contact with more hydrophobic regions on 

this hydrogel.  It should also be noted that although the cells appeared present on the 

surface of the bare PGMMA hydrogel, there are fewer cells present than the hydrogels 

containing PS particles indicating that the surfaces of these gels may be unsuitable for the 

cells to properly adhere. Any cells that were non-adherent will have died and been washed 

off the surface during fixation. It is not known whether the cells remaining on the surface 

have also died but are still slightly adherent. A possible probe for this would be to use a 

cytoskeletal dye to highlight cell morphology or a metabolic activity indicator such as the 

AlamarBlue® assay.  

The intensity of the background indicates the amount of autofluorescence given off by the 

hydrogels, there is much less autofluorescence given off by the 1% PS hydrogel and bare 

GMMA hydrogel which makes the individual nuclei and their features easier to distinguish. 

This strong autofluorescence makes interpreting the endpoints of cell adhesion studies on 

hydrogels difficult and therefore alternate visualising methods will be utilised in further 

experiments. 
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5.3.8 White light interferometry 

White light interferometry (WLI) is a method of non-contact surface analysis and 

characterisation using light. It enables detailed three dimensional analysis of a surface giving 

measurements of surface characteristics ranging from the submicron scale to the 

centimetre scale. In this experiment, dried hydrogel samples were used because in the short 

space of time (approx. 90 seconds), that the samples were under the instrument’s light 

beam being analysed, they were beginning to dry out due to localised heating from the light 

beam. A similar problem was described when using upright microscopy to visualise hydrogel 

surfaces, described in later chapters. 

 This drying caused them to curl on one side or both and caused problems for the 

instrument as it was measuring very sensitive surface characteristics which were changing 

rapidly. As the samples were dried out, the measurements only give an indication of the 

roughness of the wetted samples which are experienced by cells during culture. Dried 

samples are slightly smaller in all dimensions, than when they are fully wetted. 

The WLI instrument measured surface topography parameters and gave a value for 

roughness, Sa, which is measured as an average of surface height deviation from an ideal 

mean. The WLI software measures Sa and other surface parameters over the whole of the 

hydrogel sample. It gave surface data and three dimensional images which illustrate this 

data. The surface data is summarised in the following table. Three individual samples were 

measured for each hydrogel and the error is reported as the standard error where n=3. 
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HYDROGEL SA / µm 

50-1 0.62±0.03 

25-1 0.40±0.08 

1-1 0.21±0.04 

50-2 0.47±0.02 

25-2 1.78±0.21 

1-2 0.73±0.04 

50-3 1.15±0.08 

25-3 1.45±0.07 

1-3 1.022±0.04 

0 0.30±0.11 

Table 5-2 A table showing the average surface roughness of the hydrogels 

 

This data is represented graphically in the following Figure 5-31 

 

 

 

*** 

* 

Figure 5-31 A graph of surface roughness for the hydrogel samples with 

statistical significance level indicated 
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From the data presented above, it is clear that the 25-2 hydrogel is an anomaly. It appears 

to be much rougher than the other hydrogel samples. The reason for this becomes clear 

when the visual representation of the samples is examined, shown below (Figure 5-32 

Figure 5-35). These 25-2 samples measured had more voids from air bubbles in the surface 

which the instrument recorded as larger variations from its average structure. This is 

understandable, however the holes themselves are sub millimetre in size. Later chapters will 

investigate cells cultured on the surfaces of hydrogels to examine whether large scale 

features like these holes and voids has an effect on cell adhesion on the gels.  

The roughness measurements were analysed with one-way analysis of variance (ANOVA) 

and Dunnett’s multiple comparison test using the GraphPad Prism programme which 

compared the average roughness values of the latex hydrogels against the values for the 

bare PGMMA gel. It found that gels 25-2, 1-2, 50-3, 25-3 and 1-3 were significantly rougher 

than the bare hydrogel, the level of statistical significance is indicated on the graph above. 

This is understandable as these gels contain larger particles which increase in roughness. 

The relatively smoother value for the formulation 1 hydrogels which had the smallest 

diameter particles, appears to tally well with the visual information available from SEMs 

taken of the gels shown above. There is a relatively large error value associated with the 

bare PGMMA hydrogel, this is because the surface of this hydrogel is quite smooth and 

featureless and any small surface deviations such as those caused by cracks or debris too 

small to be seen with the human eye can cause a large degree of variation across the whole 

hydrogel surface 
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.Repeated measurements of a larger sample of gels would give a more complete picture 

with less error in the samples. Unfortunately time constraints prevented a repeat of this 

experiment. 

The following figures are a selection of the three dimensional representations of the 

hydrogel surfaces generated by the WLI software. 

 

 

 

 

Figure 5-33 3D image of the surface topography of hydrogel 25-2 generated by the WLI software 

Figure 5-32 3D image of the surface topography of hydrogel 1-2 generated by the WLI software 
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Figure 5-35 3D image of the surface topography of hydrogel 0 generated by the WLI software 

Figure 5-34 3D image of the surface topography of hydrogel 50-2 generated by the WLI software 
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The images above show the 3D representations of the hydrogels taken from the WLI 

software. Figure 5-32 3D image of the surface topography of hydrogel 1-2 generated by the 

WLI softwareshows a red colour around the edges of the gel and blue in the middle which 

that the hydrogel is slightly curved and concave in shape with the centre being the lowest 

point. Figure 5-33 shows the many holes that feature in the hydrogel surfaces as well as a 

rippling effect across the surface which is likely caused when the gel dried and contracted. 

These holes are a large feature that skews the measured value for roughness but due to 

their size in comparison to cells which will likely occupy the surfaces during culturing 

experiments, cells are unlikely to interact directly with the holes and their overall effect 

could be reduced, if not discarded especially when considering that aside from the holes in 

the surface, the bulk surface colour contours change little overall. Figure 5-34 shows a crack 

in the surface running along the length of the gel. Cracks like these occur during the 

polymerisation of the hydrogels and are random and unavoidable. Later chapters will 

investigate how these cracks will affect cell behaviour. Finally figure 5-35 shows the surface 

of the bare PGMMA gel. The image shows little colour variation which indicates that the gel 

is very flat and mostly featureless. The prominent features seen on the gel are deviations 

from the average surface of approximately 5-10 µm which is a very small value. The crater 

like feature in the centre is likely a bubble, which formed during polymerisation and 

deformed the surface while the other bright features are likely debris these debris and 

surface deviations had a large effect on the average roughness and may have skewed the 

reading. 

Generally speaking the surface roughness data of the dried samples shows that the three 

sets of hydrogels with increasing particle size increase in roughness, the aberrant nature of 
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25-2 makes this hard to see but the general trend is one of increasing roughness with 

particle size. 

5.4 Conclusion 

In this chapter the synthesis of a set of glycerol methacrylate hydrogel materials is 

presented. These hydrogels are able to be synthesised quickly and easily and it is possible to 

synthesise them in large quantities. The gels show easy incorporation of latex particles into 

the hydrogel matrix which give surfaces of different apparent roughness but identical 

chemistry. Physical roughness is caused by the embedded polystyrene particles and 

deviations in surface topography.  

It has been shown that these gels are non-cytotoxic from the culture of 3T3 cells on their 

surfaces for 24 hours. This shows that these hydrogels have potential as a biomaterial. 
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6 Synthesis and analysis of Core-Shell particles 

6.1 Introduction 

Core-Shell (CS) particles are particulate materials with layered multi-domain morphologies 

in which the layers have different compositions.  Particles of this type have found a large 

number of uses and uses in a wide variety of applications including in the biomedical field: 

such as for drug and growth factor delivery, as biomechanical implants, as biomaterials and 

in tissue engineering [114-125]. Core-shell particles also find broad application in other 

areas such as catalysis [126, 127], imaging [128-130] and in paints and coatings [131-133]. 

One key benefit of creating CS particles over other ways of combining polymer mixtures, 

such as polymer blends, are their increased physical and chemical properties [134, 135]. 

There are large numbers of examples in the literature that highlight the usefulness of 

exploiting magnetic properties of some types of particles, for example as a means of virus-

free gene delivery[136], or targeted drug delivery [137] or as a way of easily separating and 

collecting the particles when their intended role had been completed, such as when used as 

a catalyst[138]  

 

However, the synthesis of particles with aqueous swollen shells (hydrogel shells) and 

hydrophobic cores is very difficult if water soluble monomers are used. [139] The difficulty 

arises because the hydrophilic monomers tend to polymerise in the aqueous phase and do 

not form the shell on existent core particles instead forming a macrogel in the bulk solvent. 

One strategy is to polymerise with amphiphilic macromonomers at the shell stage[140] or 

by adsorbing shell monomers with opposite charge onto the cores and polymerising in-situ 

[141] or by simply encapsulating a porous core in the shell [142]. Another possibility is to 

use hydrophilic macro-initiator and macro-transfer agents [143-145]  Our quest to prepare 
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hydrogels with differing degrees of surface roughness used embedded particles as the 

source of the roughness and this strategy involved introduction of another variable: the 

hydrophobicity/hydrophilicity of the particle surface. In order to account for the current and 

future biological studies we prepared both hydrophobic poly(styrene-co-divinyl benzene) 

particles and core-shell particles with hydrogel shells composed of poly(1,2-propandiol-3-

monomethacrylate-co-ethandiol dimethacrylate) (poly(GMMA-co-EGDMA). In order to 

achieve the core-hydrogel shell particles an alternative strategy was used. This involved the 

copolymerisation of hydrophobic derivative of GMA, which can be polymerised successfully 

using conventional emulsion polymerisation.  By incorporating a comonomer with multi-

functionality cross-linked shells can be prepared. Then removal of the hydrophobic 

(acetonide) group provides a cross-linked hydrogel shell that swells in water. [146]  

6.2 Experimental 

6.2.1 Synthesis of dihydroxypropan-1-methacrylate acetonide (glycerol methacrylate 

acetonide, GMAC) 

Figure 6-1 A reaction scheme for the synthesis of GMAC 
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6.2.1.1 Materials 

The dry solvents dichloromethane (DCM) and toluene were obtained from Grubbs dry 

solvent system and used as received, dry pyridine, methacrylic anhydride (MA) solketal and 

Amberlite 402 resin were obtained from Sigma. Deionised and distilled water was used 

throughout. 

6.2.1.2 Method 

The core-shell particles were prepared by a two stage emulsion polymerisation as follows; 

Solketal (66.08g) was dried by azeotropic distillation with dry toluene at 70°C using a rotary 

evaporator. 

Dry solketal, dry pyridine (63.28g) and dry DCM (500ml) were mixed in a 3 necked round 

bottom flask in an ice bath with a stirrer bar, nitrogen inlet and reflux condenser. DMAP 

(6.08g, 0.05 mol) was added to the reaction vessel and dissolved with stirring, MA (92.49g) 

was added dropwise under nitrogen. When addition was completed, reaction was raised to 

room temperature and stirred for typically 24 hours. Finally water (250 cm3) was added to 

quench the reaction. The organic phase was washed with water (3x300 cm3) and 

concentrated using a rotary evaporator.  

A gel-type basic anion exchange resin was used to remove the by-product acrylic acid from 

the concentrated liquid. The Amberlite IRA 402 resin was activated by treating with 1.0 M 

NaOH for 2-4 hours then repeatedly washed with water and then acetone and was finally 

added to the concentrated crude liquid GMAC. The mixture was shaken gently for 2-4 hours, 

or overnight before being filtered and fresh activated resin was added, again for 2-4 hours 
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or overnight. When completed the liquid was distilled and collected at 60-70° C under 

reduced pressure of approximately 1mm Hg. Yield 66.09g, 66.01% based on solketal. 

6.2.1.3 Analysis and characterisation 

Analytical data for GMAC 1H NMR (d6 DMSO): δ= 1.35, 1.40 (2x s, 1), 1.85 (s 5), 3.75 (m, 2), 

4.05 (m, 3), 4.20 (m, 4), 5.70 (d, 6), 6.05 (s 7)   

 

 

 

Figure 6-2 Labelled structure of GMAC 
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6.2.2 Creating a core-shell particle latex by coupling GMAC with PS-CO-PDVB 

 

Figure 6-3 A reaction scheme showing the polymerisation of GMAC and EGDMA 

6.2.2.1 Materials 

Styrene, potassium carbonate, potassium persulphate, SDS, and ethylene glycol 

dimethacrylate (EGDMA) were obtained from Sigma and used without further purification. 

DVB was obtained from Sigma and washed as described previously. Distilled and deionised 

water was used throughout. 

6.2.2.2 Polymerisation 

Batch polymerisations were conducted in a 1.0L jacketed glass reaction vessel (Radleys, UK) 

which was equipped with a mechanical stirrer, a nitrogen inlet, a reflux condenser and a 

temperature probe. To produce the cores, a typical reaction was as follows: water (100g), 
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SDS (1.6g) and potassium carbonate (0.33g) were charged to the vessel. The mixture was 

deoxygenated by bubbling under nitrogen with agitation for one hour, whilst hot water was 

circulated through the jacket of the vessel to maintain the temperature of the mixture at 

70°C. After this styrene (25g) and DVB (18.5g) were slowly added dropwise to the reaction. 

When addition was completed potassium persulphate (0.25g) was added in water (5 cm3) 

and the mixture was stirred for 3 hours.  

Five formulations were devised for the shells. The quantities represent 5, 10 & 15 mol% of 

GMAC with respect to the molar quantity of styrene, to produce 3 particles with varying 

shell monomer concentrations and 5, 10 & 15 mol% EGDMA with respect to the molar 

quantity of GMAC, to produce particles with varying shell cross-link density. Preparations 

with increasing shell monomer concentration had the same cross-link density (5%). As the 

shell cross-link density was increased, the amount of monomer in the stage 2 feed was 

maintained at 5%. 

The preparations were as follows: 

LABEL GMAC MASS / G EGDMA MASS / G 

1A 2.402 0.1189 

2A 4.8055 0.1189 

3A 7.2083 0.1189 

1B 2.402 0.2379 

1C 2.402 0.3569 

Table 6-1 A table showing the GMAC and EGDMA contents for the CS particle formulations 

The GMAC and EDGMA were mixed and added dropwise to the reaction and the mixture 

was stirred for a further 3 hours. At the end of 3 hours, the temperature was raised to 80°C 
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for 1 hour to ensure total monomer conversion. The latex was discharged from the vessel 

and stored at room temperature. 

 

6.2.2.3 Analysis of latex 

As described previously; the particle sizes and zeta potentials of the latexes were obtained 

using the Brookhaven instrument.  

6.2.2.4 Deprotection of shell molecules 

 A sample of the core-shell (CS) latex particles was taken (25 cm3), added to 1.0 M 

hydrochloric acid (HCl) (100 ml) and heated to 60°C in a water bath for 4-8 hours. 

6.2.2.5 Analysis of deprotection 

Particle size data was obtained with the Brookhaven instrument as described previously. 

6.2.3 Protein adsorption of Core-Shell particles 

As a means of analysing the surfaces and properties of the CS particles, samples of the 

particles were introduced to protein solutions to assess and analyse how their properties 

changed with proteins adsorbed onto the surface. 

 

6.2.3.1 Materials 

CS particles were deprotected as above and further purified as follows. The proteins 

lysozyme, fibrinogen and albumin were obtained from Sigma and used without further 

purification. Ultrapure water was obtained using Millipore Direct Q ultrapurification system, 

water purity was given as 18 Ω. Potassium chloride (KCl) was obtained from Sigma. 
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Servapore dialysis tubing was obtained from Fisher Scientific and had a mol wt. cut off of 

12000-14000, The Pierce BCA assay was also obtained from Fisher Scientific. 

 

6.2.3.2 Purification of latexes 

The deprotected latexes were centrifuged and resuspended in KCl to wash out the acid used 

for the deprotection. Multiple washes were required (3-5) to fully wash out all of the acid 

and to reach the pH of KCl (approx. 7.4). When the particles were washed, they were stirred 

with activated Amberlite 402 resin to remove surfactant molecules bound to the surface 

from the emulsion polymerisation steps. Again multiple interactions with the resin were 

required and the latex solutions were stirred for approximately 4 hours to overnight at each 

wash. Following the washing with the resin, the particles were filtered to remove the resin 

and again washed with KCl. The latexes were then dialysed in ultrapure water to remove any 

remaining surfactant. The dialysis took place over 3-5 days with the water changed daily. 

Successful removal is confirmed by Zeta potential measurements. 

 

6.2.3.3 Protein adsorption 

The protein solutions were made up in the following quantities: 50, 25, 10, 5, 1 mg/ml in 

ultrapure water. 

Following the successful washing and removal of surfactant, the bulk solids contents of the 

latexes were determined by solvent evaporation and the latex concentration was adjusted 

to give 10 mg/ml. 1ml samples of latex were taken and pipetted into ependorf tubes then 

centrifuged to remove the bulk water. The protein solutions were then added and the 

solutions were incubated at 37°C for 24 hours. At the end of 24 hours, the latex solutions 
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were centrifuged, the protein solutions removed and the latexes washed twice with KCl. The 

adsorbed proteins on the particle surface were then analysed with by Zeta potential 

measurements.  

6.2.3.4 BCA assay 

The total protein content adsorbed to the surface of the particles was analysed using the 

BCA assay. Following the washing stage the protein was extracted from the surface of the CS 

particles using a solution of 50:49.8:0.2 water: acetonitrile: trifluoroacetic acid (TFA). 1 cm-3 

of the extraction solution was added to the samples and incubated for 1 hour. At the end of 

an hour, the extraction solution was removed and analysed using the bicinchoninic acid 

(BCA) assay. 

The assay is supplied with a ‘working reagent’ comprised of 50 parts of solution A to 1 part 

of solution B. 100 µl of the working reagent was added to a well in a 96 well plate and 5µl of 

sample was well mixed. The solution was incubated at 37°C for 30 min then cooled to room 

temperature. Protein content is assessed against a standard containing known amounts. 

The colour change of this solution was measured using absorbance at 562 nm. 
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6.3 Results and discussion 

6.3.1 Synthesis of dihydroxypropan-1-methacrylate acetonide (glycerol methacrylate 

acetonide, GMAC) 

Acrylic acid was produced as a by-product of this reaction, as an impurity, it interfered with 

the overall quality of the final GMAC product which made it more difficult to distil and 

further purify GMAC, also since acrylic acid is capable of polymerisation, the presence of this 

impurity would continue into the later steps of the intended polymerisation of the GMAC. 

Acrylic acid was removed using the ion exchange resin Amberlite 402, as described above. 

Multiple washes with the resin were required to fully remove all of the acrylic acid and any 

residual pyridine which also lowered purity. The resulting crude GMAC solution was distilled 

twice to purify further. A good vacuum is required to achieve the distillation (around 1mm 

Hg). If it was not possible to distil the crude GMAC, further ion exchange was required to 

remove impurities. The pure GMAC appeared as a clear, slightly viscous liquid. 

The NMR data showed that GMAC had been successfully produced, shown by key peaks at 

δ= 1.35, 1.40 corresponding to the acetonide group and at δ=5.70 & 6.05 corresponding to 

the terminal carbons of the methacrylate group. 

6.3.2 Creating a core-shell particle latex by coupling GMAC with PS-CO-PDVB 

The latex was produced from the emulsion polymerisation of styrene and DVB to produce 

the cores, as described previously. This latex was white and opaque and was composed of 

particles of average diameters of 75 ± 1.0 nm and a zeta potential of -46 ± 2 mV. These 

particles are referred to as the cores. 
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When the cores were coupled with GMAC and EGDMA the latex remained white but the 

particle sizes and zeta potentials of the particles changed. The results are summarised in the 

following table. 

LATEX PARTICLE SIZE / NM ZETA POTENTIAL / MV 

CORES 70 ±1 -47±2.8 

1A 97±3 -44±1.5 

2A 215±2 -40±0.5 

3A 333±41 -38±0.9 

1B 223±14 -39±0.3 

1C 289±5 -41±0.2 

Table 6-2 A table showing the particle size and zeta potentials of protected GMAC CS particles 

Following coupling, all of the particles had increased in size, relative to the cores as 

expected. An aspect to always consider in core-shell emulsion polymerisation is the 

possibility of the production of new smaller particles at the second stage monomer feed as a 

result of polymerisation at secondary nucleation points. This produces a reduction in 

average size and bimodality in the particle size distributions but in this process neither of 

these effects were observed. It appears that as the shell monomer concentration increased, 

the particle size also increases by a significant degree. However, as cross-link monomer 

concentration increases, the overall increase of particle size is less pronounced: increased 

cross-linker tends to increase the volume shrinkage observed on polymerisation. Each of 

these observations were expected and tend to, at least indirectly, confirm the presence of 

the second stage polymer as a shell on the core particles. 

The zeta potentials of the particles became less negative upon the coupling with the shells 

compared to the bare cores. However, the change in zeta potential on producing core-shell 
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particles from the cores is quite small and the change is likely to have little effect on 

colloidal stability The particles at this stage of the process are still protected and the charges 

present on the surfaces are due to the surfactant molecules used in the emulsion 

polymerisation so it is unsurprising that the zeta potential would be dominated by the 

adsorbed surfactant. The concentration of the surfactant should not have changed the 

surface area over which they are spread has increased thus slightly reducing the overall 

charge felt across the whole surface. The zeta potential values of all of the particles are 

shown to be over -30 mV, which is a key indicator that all of the latexes are colloidally 

stable. 

 

The acetonide protecting group was removed upon reacting with HCl and heating. Following 

this hydrolytic deprotection, the particle sizes of the latexes increased. This is shown in the 

table below and repeated in graphical format in figures 3 & 4 below The error bars present 

on the graphs and the errors reported in the tables below and those that follow show the 

standard error (n=3 for the following particle size data) . 
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LATEX PARTICLE SIZE / NM 

CORES 270±10 

1A 4800±350 

2A 5900±600 

3A 6000±500 

1B 4000±200 

1C 2500±100 

                                 Table 6-3 A table showing particle size for the deprotected GMAC CS particles 

 All of the particles have increased in size, indicating that the deprotection had been 

successful. This size increase is due to the GMAC molecules present on the surface losing 

the hydrophobic acetonide group and exposing hydrophilic glyceryl groups. As they became 

Figure 6-4 A graph showing increasing particle size of CS 

latexes on deprotection as shell monomer concentration 

increases 

Figure 6-5 A graph showing increasing particle size of 

CS latexes on deprotection as shell cross-link 

concentration increases 
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hydrophilic the molecules swelled with water. Therefore, this increase in size is a useful 

indication of the success of the deprotection. It is also worth noting that the core particles 

have also increased in size. This is likely due to these particles losing some of the surfactant 

molecules present on their surfaces during deprotection. The reduced number of surfactant 

molecules can be observed as a decrease in colloidal stability of all of the particles following 

deprotection. When left in sealed containers at room temperature, the latex particles will 

slowly begin to settle out of solution within one day. This instability most likely has two 

sources. Firstly, the increased swelling produces a more hydrophilic interface, which will 

result in surfactant desorption and a decreased electrostatic component to the stability. 

This is shown in Table 6-4 A table showing the change in zeta potential of the GMAC CS 

particles before and after deprotection and removal of surfactant. Secondly, a substantial 

increase in particle size will also decreases particle Brownian velocity at constant 

momentum so that gravitational sedimentation forces become more significant.    

After deprotection, the particles have all dramatically increased in size (shown in Table 6-3), 

as core monomer concentration increased, the size of the deprotected particles increased. 

This is due to the higher concentration of hydrophilic groups now available to swell with 

solvent. The inverse is observed as shell cross-link concentration is increased. As crosslink 

density is increased, the deprotected particles decrease in size. This is because the increased 

number of crosslinks in the shell chains increases the mechanical stress developed on 

swelling, so that at equilibrium reduced swelling is observed. 

It is possible that the large increase in the particles sizes was caused by hydrolysis of the 

ester bond in the crosslink molecule EGDMA. The conditions of the hydrolysis could have 

caused this further breakdown which would have led to more hydrophilic OH groups being 

present and contributing to a greater degree of solvent swelling than would expected with 



 

84 

 

merely the acetonide hydrolysis. The decrease in particle size observed as the cross-link 

density was increased would suggest that the hydrolysis of the cross-link agent is not the 

dominant effect on the increase of particle size. If this were the case, the particle sizes 

would be expected to increase as cross-link concentration increase. This is not observed.  

Further investigation is required to determine the extent of this effect. 

 

6.3.3 Protein adsorption on Core-Shell particles 

The particle performance in contact with proteins was examined using a model set of blood 

derived proteins. The rationale for the design these experiments was as follows: 

i. Lysozyme-A medium molar mass (~40 kDa) highly charged (+ve) proteins 

ii. Fibrinogen-A high molar mass (~340 kDa) protein, adsorption of which is one of 

the first events in the thrombus formation. 

iii. Albumin-A medium molar (~66 kDa) mass protein that is in high concentration in 

many biofluids. Adsorption of albumen can often pacify the immune response.  

 

During the washing, deprotection and surfactant removal steps in preparation for 

introducing the particles to the protein solutions, the particles appeared to become less 

colloidally stable and would settle out in the order of hours rather than days, forming flocs. 

This was most apparent in the purified core samples, in which the flocs of particles could 

reach approximately 5mm across. However, the flocs could be redispersed if the samples 

were vigorously shaken, showing that removal of surfactant, whilst reducing colloidal 

stability did not induce coagulum formation. 

The bulk deprotected particles solutions appeared grainier looking and settled out much 

more readily than samples containing surfactant. The cleaned samples also did not produce 
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soap bubbles when shaken unlike samples prior to purification. However the ultimate 

success of removing the surfactant was determined by zeta potential. The following table 

summarises the results of the zeta potential analysis of the particles after multiple washes 

with the resin and dialysis. The errors reported below are the standard error, where n=6 

sample repeats, each comprising of 5 runs as measured by the zeta potential machine. 

LATEX ZETA POTENTIAL BEFORE 

DEPROTECTION / MV 

ZETA POTENTIAL AFTER 

DEPROTECTION /MV 

CORE -47±2.8 -23±1.6 

1A -44±1.5 -28±1.8 

2A -40±0.5 -26±1.4 

3A -38±0.9 -29±0.7 

1B -39±0.3 -23±1.2 

1C -41±0.2 -23±2.0 

Table 6-4 A table showing the change in zeta potential of the GMAC CS particles before and after deprotection and 

removal of surfactant 

From the above table it can be seen that the zeta potential is significantly reduced by the 

deprotection and removal of surfactant. Analysis of variance (ANOVA) showed no 

significance between the samples and cores when grouped by increasing shell monomer 

concentration (p=0.1110) and increasing shell cross-link concentration (p=2.112). The zeta 

potential values for the particles following deprotection could be due in part, to the 

presence of an increased number of hydrophilic groups caused by the hydrolysis of the 

cross-link molecules, however this would not seem to be the dominant effect as there is no 

significant difference between any of the zeta potentials of the particles, particularly those 

where the concentration of cross-links was increased.  
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Following incubation with protein solutions of varying concentrations the zeta potential (in 

mV) of the particles were again analysed. This is summarised in the following tables. It is 

worth considering that as zeta potential becomes less negative and values approach 0 mV, 

electrophoretic mobility is decreased and the particles are becoming less stable, 

sedimentation effects may begin to predominate. This gives purely qualitative information 

on the effects of protein adsorption on the surfaces of the particles. 
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Lysozyme Protein concentration / mg/ml 

 

 

 

Latex 

 50 25 10 5 1 0 

Core 2±0.9 -2±1.5 -14±1.4 -15±2.3 -15±1.6 -23±1.7 

1A -8±1.6 -11±1.4 -20±1.4 -20±2.0 -26±2.3 -28±2.2 

2A -14±1.4 -24±3.0 -22±2.3 -23±1.5 -21±0.9 -25±2.1 

3A -24±0.6 -18±2.2 -27±1.3 -25±1.5 -25±2.6 -29±0.7 

1B -5±1.0 -13±0.6 -15±1.7 -20±1.2 -21±0.8 -23±1.2 

1C -6±0.4 -13±1.7 -19±1.3 -17±2.1 -23±2.1 -24±2.0 

Table 6-5 A table of zeta potentials of the CS particles as lysozyme concentration is increased 

Fibrinogen Protein concentration / mg/ml 

 

 

 

Latex 

 

 50 25 10 5 1 0 

Core -9±1.0 -3±2.1 -3±1.3 -5±1.5 -12±1.9 -23±1.7 

1A -11±1.2 -4±3.1 -6±2.3 -7±1.5 -22±1.6 -28±2.2 

2A -11±1.2 -8±2.6 -12±2.1 -13±1.0 -17±1.5 -25±2.1 

3A -16±1.1 -14±1.4 -14±1.3 -16±1.3 -20±1.3 -29±0.7 

1B -9±0.6 -9±0.6 -6±1.8 -7±1.4 -12±1.3 -23±1.2 

1C -11±1.6 -8±1.5 -5±1.4 -9±1.3 -15±1.8 -24±2.0 

Table 6-6 A table of zeta potentials of the CS particles as fibrinogen concentration is increased 
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Albumin Protein concentration / mg/ml 

 

 

 

Latex 

 50 25 10 5 1 0 

Cores -18±2.8 -22±1.7 -19±3.8 -16±1.4 -20±0.8 -23±1.7 

1A -24±2.2 -25±1.8 -27±2.0 -23±1.7 -26±2.1 -28±2.2 

2A -24±1.2 -22±2.0 -26±2.4 -24±1.8 -23±1.8 -25±2.1 

3A -23±3.7 -18±2.1 -22±1.2 -28±1.3 -24±2.9 -29±0.7 

1B -19±0.6 -22±1.4 -20±0.9 -19±1.9 -18±5.0 -23±1.2 

1C -18±2.4 -20±2.0 -18±1.5 -23±0.7 -20±1.7 -24±2.0 

Table 6-7  A table of zeta potentials of the CS particles as albumin concentration is increased 

The zeta potential data presented above is presented graphically in the following figures 

which highlight the zeta potentials as trends of increasing shell monomer concentration and 

increasing shell cross-link concentration.  
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Figure 6-6 A graph showing the zeta potentials of latex particles with increasing shell monomer concentration, as 

adsorbed lysozyme increases with the statistical significance level indicated 
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Figure 6-7 A graph showing the zeta potentials of latex particles with increasing shell cross-link concentration, 

as adsorbed lysozyme increases with the statistical significance level indicated 
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Figure 6-9 A graph showing the zeta potentials of latex particles as adsorbed fibrinogen increases, as shell cross-link 

concentration is increased with the statistical significance level indicated 

Figure 6-10 A graph showing the zeta potentials of latex particles as adsorbed albumin increases, as shell monomer 

concentration is increased with the statistical significance level indicated 
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The above graphs show that for lysozyme and fibrinogen, adsorption of protein from higher 

concentrations of protein solution has caused a marked change in zeta potential with the 

charge presented by the particle becoming much less negative. Varying the concentration of 

the albumin solution had little significant effect on the zeta potential of the core-shell latex 

particles when compared to the bare cores. This is due to the charge on the individual 

protein molecules at the pH of the experiment (approx. 7.2) Lysozyme has an isoelectric 

point (pI) pH 10-11, fibrinogen has pI pH of approx. 5.5 and albumin approx. 4.9. This means 

that the individual protein molecules of lysozyme should be positively charged and would 

reduce the negative charge shown by the particles. Albumin and fibrinogen would be 

slightly negatively charged and should therefore reduce the negative charge on the particles 

but by a lesser degree. This observation is seen in the trends of the particles. Higher 

concentrations of protein solution have a larger effect on the change of the charge seen on 

0 1 5
1
0

2
5

5
0

-4 0

-3 0

-2 0

-1 0

0

In c r e a s in g  s h e ll  c r o s s -l in k  c o n c e n tra t io n

A lb u m in  c o n c e n tra t io n  / m g /m l

Z
e

ta
 p

o
te

n
ti

a
l 

/ 
m

V

C o re s

1 A

1 B

1 C

* 

Figure 6-11 A graph showing the zeta potentials of latex particles as adsorbed albumin increases, as shell cross-link 

concentration is increased with the statistical significance level indicated 
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the particles. This is due to the availability of more protein molecules to adsorb onto the 

surface of the particles. These effects are highlighted in the following table of the zeta 

potentials (in mV) of the stock protein solutions. 

 PROTEIN CONCENTRATION (MG/ML) 

 

 

PROTEIN 

 1 5 10 25 50 

Lysozyme 1±0.3 2±1 5±0.5 11±1 14±1 

Fibrinogen -10±0.3 -12±0.3 -10±0.7 -5±1 -5±0.7 

Albumin -22±2 -15±1 -12±1 -14±0.7 -12±1 

Table 6-8 A table of zeta potential for the stock protein solutions 

In order to assess the significance of the trends, the above data was analysed using two-way 

ANOVA and the significance of the change in charge of the core-shell particles, relative to 

the bare cores is presented on the graphs with stars (**) according to the level of 

significance. 

The data presented above figures shows the statistical significance of the zeta potential 

readings recorded for the core-shell particles with adsorbed lysozyme. Particles with no 

protein adsorbed to the surface show no significant difference in zeta potential when 

compared to the core particles. The above shows that at high concentrations of lysozyme 

(50 – 25 mg/ml) there is a significant difference in the zeta potentials of the core-shell 

particles, compared to the bare cores. This is due to the higher number of positive lysozyme 

molecules adsorbed to the surface of the shells. This has raised the zeta potential. From 

Figure 6-6 A graph showing the zeta potentials of latex particles with increasing shell 

monomer concentration, as adsorbed lysozyme increases with the statistical significance level 

indicated above, it can be seen that the highest increase of zeta potential was felt by the 

core particle which actually became positively charged. This is likely due to its smaller 
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surface volume compared to the CS particles, which means that the same volume of protein 

interacted with a smaller surface giving a higher apparent charge. This large increase in zeta 

potential remains higher at 25 mg/ml lysozyme concentration but the effect is not as strong. 

As the protein concentration is decreased, the zeta potential then reaches a consistent level 

of around -15 mV. This could indicate an equilibrium adsorption level at lower 

concentrations. The CS particles observe a similar behaviour, there is little significance 

across the increasing shell monomer concentration set at lower protein concentrations, 

with some increase in zeta potential but at the higher concentrations, the relative increase 

is more pronounced. However, this increase is significantly less than is seen on the cores. 

This is perhaps due to the larger surface areas which the CS particles have, meaning that the 

charged protein molecules are able to distribute over a larger area. Figure 6-6 also shows 

that for most of the protein concentrations, the zeta potential increase effect decreases as 

shell monomer increases, particularly at the highest concentration. This effect is likely down 

to the particles increasing in size as the monomer concentration increases, meaning that 

charged proteins are distributed over a greater surface area.  

Similar effects are seen as shell cross-link concentration is increased, however the zeta 

potential values for this set of particles are more positive than for the increasing shell 

monomer concentration set. This is again likely down to these particles being smaller than 

the particles with more shell monomer which gives them larger shells. This means that the 

protein molecules are spread over a smaller area, giving a higher overall charge. At all 

protein concentrations, there is little if any significant difference in zeta potential as cross-

link concentration increases indicating that protein adsorption is independent of the 

stiffness or the shell and that shell size is the predominant factor. 
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When fibrinogen is adsorbed to the surface of the CS particles, zeta potential is increased, 

this is again particularly apparent at higher concentrations. At the highest concentration of 

fibrinogen, the change in zeta potential is less than the next highest concentration. This is 

different to what is seen for lysozyme. This is probably due to the fact that fibrinogen is a 

much larger protein. Lysozyme is approximately 14 kDa whereas fibrinogen is 340 kDa. This 

suggests that for relatively smaller particles such as the cores or 1A particles there could be 

some steric interference occurring between adsorbed protein molecules, meaning that a 

maximum concentration of particles on the surfaces had been reached. This would be 

between 25 and 50 mg/ml. 

Again there is little to no significant difference between the effect of the protein on 

increasing zeta potential and the increasing shell cross-link concentration but all 

concentrations of protein increased zeta potential more for the more crosslinked particles 

than it did for the particles with larger shells. As shell size is increased, the increase in zeta 

potential becomes less, this effect is seen across all concentrations of protein and suggests 

again that the dominant effect is one of protein charge: adsorption area ratio. The increase 

in zeta potential of fibrinogen on the core molecules is less than for lysozyme. This could be 

due to the larger proteins trying to fit around the cores or possibly due to the fact that 

fibrinogen has a more negative charge. The particles with no proteins are negatively 

charged and therefore there could be a degree of repulsion between the particles and the 

proteins as well as some steric hindrance. Also the magnitude of the charge of the 

fibrinogen is less than lysozyme which gives a lower cumulative effect on the overall zeta 

potential. 

Across the whole data set, there is little if any difference in zeta potential for CS particles 

with adsorbed albumin. This is likely due to the zeta potential of free albumin in solution 
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being close to the zeta potential of the unadsorbed particles as shown in Table 6-8. This 

means that the degree of adsorption cannot be readily determined by zeta potential. 

Different methods would be required to quantify the protein adsorbed to these particles, 

such as direct visualisation of the particles with electron microscopy. 

6.3.4 BCA assay 

The BCA assay measures total protein content in the samples, serving as a comparison to 

the effect on surface charge caused by protein adsorption shown in the zeta potential 

experiment above. The following figures show the total amounts of protein which were 

adsorbed onto the CS particle surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12 A graph of total measured lysozyme adsorbed to the surface of CS particles as shell 

monomer concentration increases 
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Figure 6-13 A graph of total measured lysozyme adsorbed to the surface of CS particles as cross-link 

concentration increases 

Figure 6-14 A graph of total measured fibrinogen adsorbed to the surface of CS particles as shell 

monomer concentration increases 
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Figure 6-15 A graph of total measured fibrinogen adsorbed to the surface of CS particles as cross-link 

concentration increases 

Figure 6-16 A graph of total measured albumin adsorbed to the surface of CS particles as shell 

monomer increases 
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The above graphs show the results of the total protein analysis of the core shell particles. 

The levels of significance as calculated via two-way ANOVA by the programme GraphPad 

Prism are indicated on the graphs using stars (**).  

Particles with adsorbed lysozyme (figs 12-13) showed the highest amount of protein was 

adsorbed onto the cores at all concentrations of applied protein, with the exception of 1 

mg/ml. The total amounts adsorbed onto the particles were small – all less than 1 mg/ml in 

total. This shows that the charges of the proteins were having a larger effect on the particles 

than the amounts adsorbed. Increasing shell monomer concentration reduced the total 

amount of protein adsorbed to the particles, falling to the lowest levels for particles 2A. The 

difference of these levels were highly significant as indicated on the graphs.  This matches 

well with the zeta potential data which shows the adsorbed protein had the highest effect 

Figure 6-17 A graph of total measured lysozyme adsorbed to the surface of CS particles as cross-link 

concentration increases 
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on the bare core particles and that increasing the shell size reduces this effect. All of the CS 

particles showed protein adsorbed onto their surfaces. But the amounts adsorbed do not 

link directly with the results of the zeta potential experiment which indicates that the size of 

the particles is the dominant effect and small amounts of adsorbed protein can have a large 

effect on the electrophoretic mobility of these particles.  

Overall, a larger amount of fibrinogen adsorbed onto the CS particles and cores than did 

lysozyme or albumin, but the effect on zeta potential was less than for lysozyme this is due 

to the reduced charge of the protein compared to lysozyme.  

Again a larger volume of protein adsorbed to the cores than for the particles with shells and 

there appeared to be little significant difference as the cross-link concentration increased. 

At concentrations higher than 1mg/ml the amount of protein adsorbed to the particles 

remains roughly the same but significantly less fibrinogen again adsorbed onto the 2A 

particles. 

Albumin adsorbed onto the particles in roughly similar amounts compared to lysozyme but 

had less of an effect on the zeta potential as mentioned previously. The BCA assay has 

confirmed that the protein is present on the particle surfaces on all particles and all 

concentrations, this shows that the largest effect that the protein has on the particles is to 

alter their charge show in the differences of zeta potential. Again the 2A particles adsorbed 

significantly less protein than the other particles. For the set of particles with increasing 

cross-link concentration in the shells, as the amount of protein adsorbed increased as the 

concentration of the protein solution increased slightly whereas the amounts of protein 

adsorbed to the particles with increasing shell monomer concentration remained roughly 

the same. At higher concentrations, above 5 mg/ml the amounts of albumin adsorbed onto 

the particles were not significantly different from the amounts adsorbed onto the cores, 
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indicating that the size and crosslink concentration has little effect on the ability to adsorb 

protein and also that very small differences in adsorbed protein amount can have large 

effects on zeta potential. 

6.4 Conclusion 

In this chapter the synthesis and analysis of some of the properties of core-shell particles 

has been described. The cores were synthesised using common emulsion polymerisation 

techniques and a protected shell monomer, previously synthesised in-house was grafted to 

the core. 

The resulting core-shell particles showed increased particle size upon deprotection due to 

the exposure of hydrophilic moieties on the particle surfaces swelling with solvent. This is a 

key property of a hydrogel so these CS particles could be thought of as being nanoscale 

particle hydrogels.  

The deprotected particles were shown to adsorb protein molecules to their surface which 

was shown by a change in the zeta potential – the charge on the surface of a particle. A 

larger overall effect was seen when adsorbing the positive protein lysozyme compared to a 

more negatively charged protein fibrinogen. The effects of the protein albumin were 

inconclusive due to the similar zeta potential of the protein and particles. The BCA assay 

showed that protein was adsorbed onto the surface of the particles and that it is directly 

measurable. The assay also shows that relatively small amounts of protein can have large 

effects on changing the zeta potential of the particles. 

Protein adsorption is a useful characteristic to analyse as it gives an indication that these 

particles can have biological activity. When encountering a biological system, materials 

frequently become protein fouled. This can be from a variety of sources which include 

immune responses. Materials which show little or no protein adsorption can have very little 
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effect on a biological system. CS particles have shown to have use in drug delivery and in 

controlled release of bioactive molecules and these particles could show promise in this 

area. Further work could look towards investigating the size: adsorption ratio and whether 

this would have a link to a release pattern for a bioactive molecule. 
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7 Culturing fibroblasts on hydrogel surfaces 

7.1 Introduction 

7.1.1 Fibroblasts 

Fibroblasts are a cell type found throughout the body of animals. They are responsible for 

synthesising components of the extracellular matrix (ECM) including collagens. They have an 

important role in wound healing, both in initial ECM repair and in the remodelling of 

damaged tissues, often contributing towards scar formation. [147, 148] Fibroblasts are the 

most common form of cell comprising connective tissues in animals and along with 

keratinocytes, make up some of the key cell types responsible for generating healthy skin in 

humans they are usually to be found in the basement membrane of skin. They are bi-or 

multipolar cells and grow in an elongated morphology. In cell culture they are adherent 

 Figure 7-1 A light micrograph of NHDF cells grown on TCP stained with PicoSirius red 
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cells. The image below is of fibroblasts grown on tissue culture plastic (TCP) under normal 

conditions in our lab.  

The cells have been stained with PicoSirius red, a stain which highlights collagen fibres 

present in the cell cytoskeleton. Also noticeable is the prominent cell nucleus, roughly 

central in the cells. Previous work in the group has shown that PGMMA hydrogels produced 

in previous chapters are not cytotoxic to normal human dermal fibroblasts (NHDF). [149] 

7.1.2 Alamar Blue assay 

The Alamar blue assay is a viability assay used in in vitro cell culture. There are a number of 

advantages to its use, the first being that it is toxic to the cells and the user, it is added 

directly to the culture medium towards the end of the incubation period and requires no 

additional reagents. It comprises no radioactive materials, such as some other assays used 

for viability or proliferation, for example [3H] thymidine and so requires no special handling 

or disposal methods. Finally, it can be used over long culture times (up to 72 hours). All of 

these advantages make it an inexpensive assay with wide application, whether it is for small 

or large scale. [150-153] During active metabolism, cells take up the blue coloured resazurin 

molecule, reducing it to the red-pink coloured resorufin, which is also fluorescently 

Figure 7-2 Chemical structures of resazurin and resorufin 
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active.[154] This reaction is easily observed visually or measured using absorbance or 

fluorescence. 

 

7.1.3 Polymerisation using benzoyl peroxide and dimethylaminopyridine 

A different method of radical polymerisation was used in this chapter to produce new forms 

of the bare, latex particle free PGMMA hydrogel used as a control.  This new polymerisation 

uses benzoyl peroxide (BPO) as the radical initiator and dimethylaminopyridine (DMAP). The 

polymerisation reaction can be conducted at the lower temperature of 30°C and  

BPO/DMAP acts as a redox initiator system. This initiator system has been used previously in 

our group in the synthesis of silyl enol ethers.[155] 

 

 

 

 

 

 

Figure 7-3 Chemical structures of BPO and DMAP 
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7.2 Experimental 

7.2.1 Hydrogels 

The hydrogel materials used were those described previously; formulations 1 (100 nm 

particles), 2 (250 nm particles) and 3 (720 nm particles). Each formulation comprising of gels 

with 50%, 25% & 1% w/w latex: GMMA for a total of 9 gels. As a control bare PGMMA 

hydrogels were also used. In addition to the bare PGMMA gels produced previously, two 

new formulations of bare gels were produced to examine whether any chemical effects 

resulting from the use of the potassium persulphate initiator, had any effect on cell 

adhesion. The new formulations were as follows. 

7.2.1.1 Alternative PGMMA formulations 

7.2.1.1.1 Materials 

GMMA was obtained from Cognis and used without further purification. GDMA was 

obtained from sigma and used without further purification. Reagent grade ethanol and 

isopropyl alcohol (IPA) was obtained from Fisher scientific. Benzoyl peroxide (BPO), 

dimethylaminopyridine (DMAP), azobisisobutyronitrile (AIBN) and dimethyl sulphoxide 

(DMSO) were obtained from Sigma and used without further purification. 

7.2.1.1.2 Thermal polymerisation 

GMMA (4g) and GDMA (0.2g) were mixed in ethanol or DMSO, Two soda glass plates were 

lined with PET sheets and a PTFE spacer (250µm thickness) was placed between the sheets, 

the apparatus was held in place with bulldog clips. BPO (0.133g) and DMAP (0.133g) were 

mixed then added to the polymerisation mixture which was mixed well. As mentioned 

previously, any bubbles that appeared were removed by brief sonication. The 

polymerisation mixture was injected between the sheets and cured at 30°C for 16- 24 hours. 
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The resulting gels were removed from the sheets, washed and stored in ethanol. The 

ethanol in the DMSO gel was replaced several times over the course of a week in order to 

displace and remove any residual DMSO left in the gel as this would be particularly toxic to 

cells. 

As well as the preparations described above, alternative formulations with differing ratios of 

BPO/DMAP initiator (100:1, 30:1 GMMA:BPO/DMAP), different initiators (AIBN), or different 

solvents (IPA) were tested but these formulations either failed to cure fully (lower 

BPO/DMAP ratios) or phase separated during curing (AIBN, IPA) and these gels were 

discontinued. 

 

7.2.1.2 Preparation of hydrogels 

All of the latex hydrogels and the bare PGMMA gels had been disinfected by storage in 

ethanol, they were removed from the ethanol under sterile conditions, allowed to dry 

slightly and cut into disks approximately 4.5mm in diameter, using a borer for the seeding 

experiment. The disks were then equilibrated with Dulbecco’s modified Eagle’s media 

(DMEM) containing 10% FBS and 1% penicillin/streptomycin (pen-strep) and media with 1% 

pen-strep and no serum.  

This produced two sets of gels: serum (SER) and non-serum (NSER). The two sets served as a 

way of investigating whether serum proteins became deposited on the hydrogel surfaces 

during the equilibration process and aided in cell adhesion. 

To equilibrate the gels, they were washed with media, agitated in the media and allowed to 

sit for 30 minutes then the media was replaced. This was repeated every 30 minutes for 4 

hours. When not used, the gels were sealed in sterile sample tubes and stored in the fridge. 
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When the hydrogels were required for cell seeding experiments, they were removed from 

their media, blotted dry on sterile filter paper and placed in to low adherent 48 well plates 

(ProCell Falcon, 48 well plates, non- tissue culture treated), in triplicate, they were then 

allowed to air dry in the flow cabinet in order to dry them slightly for approximately 1 hour, 

during this time, the well plates were loosely covered to prevent infection. This made it 

easier for the cells to adhere to the surface when added during the experiment. 

 

7.2.2 Normal human dermal fibroblast cell culture 

7.2.2.1 Cell culture media materials 

Dulbecco’s modified Eagle’s media (DMEM), foetal bovine serum (FBS), pen-strep ethylene 

diamine tetracetic acid (EDTA) and trypsin solution were obtained from Sigma, used without 

further purification and handled under aseptic conditions.  Complete cell culture media 

(10% FBS, 1% pen-strep) was stored in the fridge until needed and warmed to 37°C when 

required.  

7.2.2.2 Culturing NHDF cells 

Normal human dermal fibroblast (NHDF) cells were obtained from ProCell and were 

cultured to confluence in 100ml Nunc brand flasks, obtained from Fisher Scientific. Cells 

were incubated at 37°C, 5% CO2. Cells were cultured lying flat in 20ml complete DMEM 

media, described above. Media was changed every 3-4 days. Cells were passaged when they 

reached approximately 90% confluence, which was roughly every 7 days. 
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7.2.2.3 Passaging NHDF cells 

When they became approximately 90% confluent the NHDFs were passaged. To achieve 

this, the media in the flasks was aspirated off and 5 ml trypsin/EDTA solution was added to 

the flask and the cells were left for 5 minutes to detach from the base of the flask. After 5, 

the flask was tapped vigorously to remove any remaining cells and the resulting solution 

was centrifuged at approx. 2000 RPM for 6 minutes to form a pellet. When this was 

complete the supernatant was quickly removed and depending on the next process for the 

cells, media was replaced. If the cells were returning to culture and increase in number in 

the incubator, the cell pellet was resuspended in media and split between the desired 

number of flasks, usually 4, and the total media volume was made up to 20 ml. If the cells 

were being used for seeding as part of the experiment, they were counted using a 

haemocytometer, adjusted to the appropriate concentration using further media and 

seeded as required. 

 

7.2.3 Culturing NHDFs on hydrogels 

The cells were lifted from the flasks as described above and counted using a 

haemocytometer, the cell concentration was adjusted to 2.5 x105 cells/ml with fresh media 

and the cells were concentrated and seeded at a total cell number of 1.25 x104 cells, in 25 µl 

on each gel. This small volume of more concentrated cells was based on seeding 50 µl of 2.5 

x105 cells/ml NHDF but it was found that 50 µl was slightly too much liquid and it didn’t all 

absorb into the gel resulting in some of the cells being washed off the gels when more 

media was added. The cell solution was allowed to soak into the gels for an hour before 300 

µl of fresh media (containing serum) was added to each well and the well plates were 
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covered and placed in the incubator for 48 hours. The same volume of cells was also seeded 

on to tissue culture plastic (TCP) and topped up with 300 µl media 

After 36 hours, the plates were removed from the incubator and the gels were carefully 

removed from their wells and added to fresh wells in new plates, 300 µl fresh media was 

added to each well. 30.3 µl of Alamar blue solution was added at this point and the new 

wells were returned to the incubator.  

This removal of the gels to fresh plates was to use the Alamar blue assay to count only the 

cells growing on the gel surfaces and not any that had migrated or been washed off the gels 

and adhered to the well plate surface. 

7.2.3.1 Assessing cell number using the Alamar blue assay 

The Alamar blue assay is a means of assessing cell number by the metabolic activity of the 

cells, the blue dye Resazurin is reduced by the cells to a red dye, the resulting change in the 

absorption peak, read by a plate reader can be calibrated to give an accurate number of 

active cells present in a sample. 

7.2.3.1.1 Materials 

Resazurin dye was obtained from sigma as a powder and diluted 1mg/ml in sterile 

phosphate buffered saline (PBS) also obtained from sigma. The resulting solution known as 

Alamar blue solution was stored in the fridge in the dark and used as required. 

7.2.3.1.2 Alamar blue assay 

At the required time, the plates were removed from the incubator, 10% volume of Alamar 

blue solution was added (32.5 µl) and the solution was gently mixed with the media and the 

plates were returned to the incubator for a further 12 hours. At the same time known 

concentrations of cells were seeded on to TCP in wells in a 96 well plate to construct a 
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standard curve. The volumes were 3 x105, 2.5 x105, 1 x105, 5 x104, 1 x104, 5 x103 cells/ml, in 

triplicate, concentrated in 25 µl as mentioned previously. 25 µl of media was also added to a 

separate well as a blank. After an hour the wells were topped up with 300 µl fresh, warmed 

media. The well plates were returned to the incubator for 11 hours. 

At the end of the experiment, 100 µl of Alamar blue containing media was removed to a 

fresh 96 well plate and its absorbance was read at 570 and 600 nm using a BioTech ELx800 

plate reader. 

 

7.2.3.2 Fixation of cells 

At the end of the experiment, the media was aspirated from each of the wells and 10% 

formalin (Sigma) was added to fix the cells, the wells were covered and left for 24 hours. At 

the end of 24 hours, the formalin solution was removed and the cells were stained. 

7.2.3.3 Staining and imaging of cells 

The nuclei of the NHDF cells were stained with Giemsa stain and collagen in the 

cytoskeleton was stained with PicoSirius red 

7.2.3.3.1 Materials 

Giemsa stain was obtained from Sigma and used as supplied. Sirius red stain was obtained 

from Sigma (supplied as Direct Red 80), and diluted in saturated aqueous picric acid solution 

(Sigma) to make a 0.1% solution. Care must be taken with picric acid that it doesn’t dry out 

as dry picric acid is a high explosive. Glacial acetic acid was obtained from Sigma and diluted 

5 ml in 1L of deionised water, this acidified water was stored and used as required. 
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7.2.3.3.2 Staining method and imaging. 

Giemsa stain was added in a few drops onto the hydrogels in each well as well as the wells 

in the TCP control. The wells were left for approximately 10-15 minutes before being 

washed well with water. Care must be taken not to wash the hydrogels too vigorously or 

they will break or cells may be washed from their surface. Care must also be taken 

throughout the fixing, staining, washing and imaging steps that the gels do not dry out fully 

as they will shrink and cause the cells on their surfaces (if any) to distort or lift off 

completely. 

After washing, thoroughly PicoSirius red was added and left to stain for one hour before 

being removed and the wells washed twice with acidified water. Most of the water was 

removed and the gels were placed on a glass slide and imaged using an Olympus upright 

microscope. The TCP wells were imaged using an Olympus inverted microscope with phase 

contrast. The microscope images were recorded using CellB software. The best images were 

obtained from the gels if they were blotted dry with filter paper but not allowed to dry out 

fully as they then begin to curl making imaging very difficult. 

7.3 Results and discussion 

7.3.1 Hydrogels 

The new gels made with BPO/DMAP and DMSO or Ethanol (written following as 0-DM or 0-

ET) appeared visually similar to the hydrogels produced previously and both were clear, 

flexible gels. The DMSO hydrogel had a slightly brown tinge to it which did not wash out 

over time but appeared to have no notable effect on the gel properties, this is likely from 

incorporation of DMAP into the gel structure. The DMSO gel was also stickier than any of 

the other gels, requiring washing with ethanol to remove it from the PET films onto which it 
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had polymerised during the curing. This gel was also slightly stickier than any of the other 

gels following washing, but to a much lesser degree than when it was drier, and stuck more 

strongly to the forceps used to manipulate the gels and the well plates into which it was 

placed, requiring slightly more force to manipulate it. The initial stickiness may be explained 

by the presence of diols not involved in hydrogen bonding with the solvent. Following 

multiple washes, the gels became less sticky and tended more to adhere well to surfaces 

when slightly drier. When swollen with ethanol or media it behaved as the other gels do 

with no noticeable differences.  

The ethanol BPO/DMAP gel appeared visually and functionally the same as the gels made 

previously using potassium persulphate. 

The equilibrium water content for these gels were as follows: 0-DM 80.21 ± 3.3% 0-ET 78.00 

± 4.1% which is very similar to the EWC reported previously for the potassium persulphate 

gels 

When all of the hydrogels were equilibrated in the media they took on the purplish pink 

tinge of the media showing that they had absorbed the media into their structure. Full 

equilibration with media, as well as washing away any possible residual cytotoxic chemicals 

left over from the polymerisation steps, also acts as a useful indicator of the sterility of the 

hydrogel samples. The indicator present in the media will turn yellow if bacterial or fungal 

cells are present and metabolising and therefore producing acidic metabolites. Whilst the 

polymerisation of the hydrogels is conducted with rather toxic organic chemicals and often 

at high temperatures, as well as the gels being stored in ethanol which not only allows them 

to maintain a degree of swelling, but also acts as a disinfectant, there are a number of 

possible points at which an opportunistic pathogen may infect the gels. The gels were 
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handled according to aseptic technique and stored in sterile sample tubes, the media in 

which they were equilibrated and stored retained its pink-purple colouring indicating that 

they remained free from infection. 

When the gels were ready to be used for a cell seeding experiment, they were dried slightly, 

this decision was made following preliminary experiments which showed that gels fully 

hydrated with media prior to addition of media containing cells did not absorb any more 

media meaning that any cells contained in this new media often washed off the surface 

when moved or when new media was added, giving an unclear indication of the ability of 

the fibroblasts to adhere to the hydrogels. Following partial drying and then rehydration 

with the media containing the cells, many more cells were seen on the surface of the gels, 

some did still get washed off when fresh media was added or migrated on their own to the 

surface of the well plates but a large number of cells remained on the gels. The readiness of 

the cells to be washed from the surfaces of the gels suggests initially poor adhesion to the 

gels. Stronger adhesion sites on the substrates would have made washing the cells from the 

surfaces more difficult. When the gels were moved to fresh wells, very few cells, if any were 

then washed off or migrated, indicating better adhesion to the gels at later stages. 

 

7.3.2 NHDF cell culture 

NHDF cells grew well in culture and multiplied relatively quickly, reaching confluence 

following passaging in roughly a week. A T75 flask of cells would yield roughly 1 x105 cells/ml 

in 10 ml of media. The cells remained viable until roughly passage 12-14, wherein they 

began to senesce, stopped proliferating and began to die off. 
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When the cells were cultured on the hydrogels, they appeared to adhere well and remain 

viable which was indicated by the Alamar blue assay, data of which follows. Towards the 

end of the experiment when the gels were transferred to fresh plates, much care was 

needed as the gels were fragile and prone to snapping when manipulated out of the narrow 

wells. For the most part the gels survived intact and any that did break did not appear to 

lose any significant number of adhered cells. The decision to transfer the gels was made due 

to the observation of fibroblasts adhering to the bases of the wells they had either migrated 

there or been washed off the hydrogel surfaces during the initial stages of the experiment. 

This is despite the plates being advertised as low adherence plates, which stands as an 

indication of the adherent ability of these cells. 

 

 

 

 

 

 

 

 

 

 



 

115 

 

7.3.3 Assessing cell number using the Alamar blue assay 

The Alamar blue assay gave a clear and quantifiable representation of the viability and the 

number of cells present in the wells. When first added the media was dyed dark blue and 

over time turned pink so at a glance, it is easy to assess the relative success or failure of an 

experiment. The assay is affected by the metabolic activity of bacteria so care must be taken 

to ensure sterility throughout the experiment so as to only measure the activity of the 

desired cells. The assay gives a linear relationship between cell number and observed optical 

density as is shown, as an example, in the calibration curve below. Errors in the optical 

density readings can come from a variety of sources such as differing cell metabolic activity 

between wells or bubbles appearing or disappearing as a result of the mechanical shaking of 

the plate whilst it is in the reader. This is particularly troublesome as there is little that can 

be done to stop this once the plate has gone into the machine. Also minute differences in 

the volumes of media extracts used in the assay can have a pronounced effect on the optical 

density reading given, this differences are imperceptible to the human eye but can be a 

considerable source of error in the readings. 

y = 5E-05x + 1.8683
R² = 0.9958
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Figure 7-4 A calibration curve of cell number vs optical density given by the Alamar blue assay 
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As can be seen in the above graph, the assay is not very accurate in the lower end of the 

curve, corresponding to low cell numbers this is because, the assay measures the metabolic 

activity of all of the cells present so lower cell numbers have a lower overall total metabolic 

activity and therefore give a reduction in the observed colour change. 

Using the assay and the above calibration, it was possible to calculate the number of 

metabolically active cells present on the surface of the gel after 48 hours. The following 

figures show a graphical representation of the number of cells on each of the gels, 

presented as an average of three gels, the error bars are the standard error where n=3 
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Figure 7-6 A graph of the number of cells recorded 

by the Alamar blue assay on the surface of SER 

hydrogels after 48 hours 

Figure 7-7 A combined graph of the number of cells 

recorded by the Alamar blue assay on the surface of 

NSER and SER hydrogels after 48 hours 

 

Figure 7-5 A graph of the number of cells recorded by the 

Alamar blue assay on the surface of NSER hydrogels after 

48 hours  
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The above graphs show a representation of the number of cells present on the surface of 

the hydrogels at the end of the experiment, the first graph, Figure 7-5 shows the cell counts 

for the NSER hydrogels and Figure 7-6 for SER hydrogels. The third graph Figure 7-7 is the 

previous two combined for clarity where the left hand bar in each set is the NSER gels and 

the right is SER. The cell numbers have also been presented in the following table. 

 NUMBER OF CELLS 

HYDROGEL NSER SER 

50-1 19000 ± 150 16700 ± 1730 

25-1 15300 ± 970 12400 ± 640 

1-1 19600 ± 1650 9000 ± 620 

50-2 12000 ± 4890 14600 ± 1290 

25-2 19700 ± 2030 14200 ± 2580 

1-2 16100 ± 1740 17600 ± 1500 

50-3 22600 ± 33 21600 ± 460 

25-3 18900 ± 1070 20100 ± 2090 

1-3 22600 ± 0 16000 ± 1400 

0 19700 ± 1540 15500 ± 1000 

0-ET 19400 ± 1740 15100 ± 4990 

0-DM 15900 ± 3470 11300 ± 2400 

TCP 16600 ± 1230 

Table 7-1 A table of the number of cells recorded by the Alamar blue assay on the NSER and SER hydrogels 

The data presented above (Table 7-1 A table of the number of cells recorded by the Alamar 

blue assay on the NSER and SER hydrogels shows that in almost all cases the number of 

cells present on the gels at the end of 48 hours incubation has increased from the number 
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of cells seeded at the start of the experiment (12500 cells). This number is only the cells that 

remained on the gels and does not include any cells that were washed off or migrated off 

the gels over the course of the 48 hour incubation. Where the cell number is below this 

count, a larger number of the original cells seeded must have been washed off the gels 

leaving the remaining number to continue on the gel.  

As the cell numbers have increased, this suggests that the cells are able not only to adhere 

to the hydrogels but also to proliferate on the hydrogel surface which shows that the 

hydrogels are not only non-cytotoxic but also are a suitable surface for the growth of cells. 

Statistical analysis of the cell numbers using ANOVA showed that there was no significance 

between the number of cells present on any of the gels of the NSER hydrogels (p=0.0623). 

For the SER hydrogels, ANOVA showed that there was a statistical significance between the 

number of cells on the hydrogel over all (p=0.0159) but when analysed with Sidak’s multiple 

comparison test, as calculated by the Graphpad Prism statistical software, the only 

significance was found between the 1-1 gel and 50-3. The number of cells found on the 1-1 

gel appears to be anomalously low and this significance could therefore be discounted. The 

low number of cells could be contributed to cells being washed off the surface during the 

experiment or by being physically knocked off the surface by the mechanical handling of the 

gel during the transfer to a fresh plate. The images in the following section show that cells 

are indeed present on the surface of the gel. 

Figure 7-7 above, showing the combined graphs, shows that for nearly all of the gels, the 

number of cells counted on the surface of the gels suggests that more cells are present on 

the surface of the gels which were equilibrated in media that did not contain FBS. However 

when analysed using ANOVA, there is no statistical significance between any of the gels, 
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apart from the 1-1 gels but this is the result of the anomalous reduced cell number observed 

on the 1-1 SER gel which is explained above. This indicates that the cells deposit sufficient 

proteins to enable adhesion to the gels and that these proteins do not deposit from the cell 

culture media. Whilst statistically insignificant, there is a slight trend for some of the gels 

particularly those containing few or no particles to have larger numbers of cells present on 

the surfaces. This could be an indication that serum proteins contained in the media used to 

swell the gels may have an effect on the swelling properties of the gel. This would need to 

be investigated further. 

The above data also shows that the cells grew on the hydrogels in similar numbers to those 

which grew on the tissue culture plastic in the controls indicating that under these 

conditions, the hydrogels perform at least as well as the well-established TCP as a cell 

culturing platform. 

7.3.4 Imaging cells 

Following fixation and staining, the cells were imaged using reflected light on an upright 

microscope. This microscope setup was used due to the hydrogels being opaque meaning 

that the more commonly used set up of an inverted microscope could not be used. The 

hydrogels themselves presented challenges to image for a number of reasons. Hydrogels 

swell differently in different liquids e.g. water and ethanol and it is thought also between 

formalin solution and PBS which are used in the washing and fixing steps, as well as the 

various dyes and washes used in the staining steps. Formalin used in fixation may also 

increase the number of cross-links present in the gels. Slight changes in hydrogel size could 

result in cells lifting from the surface of the hydrogel which would give a lower appreciation 

of number of cells that were present on the surfaces during the cell culturing experiments. 
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Another problem with imaging hydrogels is the actual liquid content of the hydrogel. Whilst 

culturing with cells, this property is indispensable, when it comes to imaging, highly swollen 

hydrogels present a challenge. Hydrogels that are too wetted retain a small film of water on 

the surface which is observed to be above any attached cells or hydrogel surface features, 

which obscures the visual identification of any cells or features. Using a glass coverslip 

presents a similar problem as it seems to obscure any visual information and any residual 

liquid on the gel surface pools between the contours on the gel and the cover slip, further 

obscuring the imaging. Mountants such as glycerol/PBS when used with coverslips also 

show this problem as well as beginning to lift the cells off the surface after relatively short 

contact times. Fully drying out the hydrogels after dehydrating with ethanol did allow for a 

somewhat effective imaging method, if they hydrogels dried flat. Curved or slanting 

hydrogels led to differing focal points when examined using the microscope, making actually 

taking acceptable images much more challenging. The main problem with the dehydration 

and drying method was that the gels shrank considerably from their size during culture and 

some cells were sloughed off the surface, while patches of cells would appear buckled and 

irregular. 

The usual protocol for imaging the cells was to remove most of the liquid that the gel had 

been stored in, usually PBS, blot dry on both sides using filter paper then carefully place the 

gel onto a microscope slide and image. When imaging it was desirable to be quick as the 

hydrogels quickly begin to dry out, and as they dry they begin to curve which changes the 

overall plane of focus making for partly blurry images. The drying problem was compounded 

by the microscope itself which, due to its setup, shines the illumination required to see the 

analysed sample, down the objective lens. Therefore for higher magnifications, this light 

spot is more highly focused and magnified which creates local heating points, drying out the 
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gel and causing it to change shape. Higher light intensities caused rapid drying and curling of 

the gels as well as a large amount of glare in the image, making viewing difficult whereas at 

lower light intensities, details were difficult to identify.  A balance was therefore struck 

which was towards the lower light intensity end of the scale allowing slightly longer time to 

image a sample before it inevitably dried out.  The following figures are of the hydrogels 

with adhered NHDF cells. 

LABEL 

GEL 

A,B 50-1 

C,D 25-1 

E,F 1-1 

G,H 50-2 

I,J 25-2 

K,L 1-2 

M,N 50-3 

O,P 25-3 

Q,R 1-3 

S,T 0 

U,V 0-ET 

W,X 0-DM 

Figure 7-9 A-X Light micrographs of NSER hydrogels with adhered cells 

Figure 7-8 A-X Light micrographs of SER hydrogels with adhered cells 
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Figure 7-10 A-F Light micrographs of TCP controls with adhered 

cells 
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From the images above it is possible to see that NHDF cells have adhered to all of the 

hydrogel surfaces, including the PGMMA surfaces of the 0- series hydrogel. This could be 

seen as surprising as previously shown results with 3T3 cells and work in our group had 

shown that similar PGMMA hydrogels were essentially non cell adhesive with the same cell 

type. [149] This is possibly due to the partially dried hydrogels presenting a better surface 

for cells to initially encounter and enabling a better profile for the deposition of proteins 

onto which the cells can adhere. As with the cell number data calculated using the Alamar 

blue assay, it is not possible to determine visually whether the cells show a preference for a 

particular hydrogel and relying on manually counting cells imaged on the surfaces would 

lead to inaccuracies due to the tendencies of the cells to lift from the hydrogels or otherwise 

be washed off during the processing steps required to stain them, as has been discussed 

previously. This is highlighted in the apparently few cells observed on hydrogels 25%-2 

(Figure 7-8 I&J, Figure 7-9 I&J) for both the NSER and SER groups. The Alamar blue assay 

recorded relatively high cell numbers on both of these gels. On most of the gels imaged, the 

cells appeared spread over most of the surface with some clustering in one area. This is 

likely the spot onto which they were first added as part of the droplet pipetted at the start 

of the experiments. This effect is highlighted in the following figures (Figure 7-11 Figure 

7-12) which are composite images of SER 1%-1 and 0-1 made from recreations of the images 

shown above and from two other microscope images taken at the same time. These two 

images highlight that although the fibroblasts have adhered to the surfaces, they have not 

spread across the entire hydrogel surface available. Perhaps, given enough culture time, 

they would spread and proliferate over the entire surface. 
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Figure 7-11 A composite of three 

light micrographs of SER hydrogel 

1-1 illustrating fibroblast coverage 

x4 magnification 

Figure 7-12 A composite 

of three light 

micrographs of SER 

hydrogel 1-1 illustrating 

fibroblast coverage x4 

magnification 
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Many of the images presented above show that where the NHDF cells are present in higher 

densities, they appear to be growing in confluence with one another which is an indicator of 

the cells acceptance of the surface on which they are adhered. Indeed the images above 

that show individual cells or cells in lower densities, are flattened looking and have spread 

out projections onto the surface which enables them to grip onto the surface and is a key 

visual indicator of adherence. Examples of this can be seen in the images for NSER hydrogel 

images of 50-1 & 1-2 (Figure 7-8 I&K) SER hydrogels 50-1, 25-3 (Figures 7-9 L & P) and 

particularly the 0 gels from both sets. 

The TCP controls show similar numbers of cells adhered to the base of 96 well plate wells 

but these cells appear to be less densely packed than for the hydrogels shown above. This is 

likely due to the fibroblasts in the controls enjoying slightly longer adherence times. The 

cells which were transported on to the hydrogels were contained in a small drop of media, 

this drop was then absorbed into the hydrogel matrix which aided greatly in the cells’ over 

all adherence. It may also have meant that as the cells fell under gravity to the surface of 

the gel, the volume of available media was decreasing so they had to attach where they 

landed. For the cells in the controls, this small drop was not constrained and the cells would 

have been free to adhere to a surface then migrate to a new location if they required. When 

the remainder of the media required for the experiment was added after an hour, any non-

adhered cells would have been washed from the surface of the hydrogel, perhaps to fall on 

another part of the gel or on the base of the well but the observed cell densities which are 

higher in some areas of the hydrogels than others suggest that once this new media was 

added, the cells were already established and were neither washed off or felt the need to 

migrate significant distances. 
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The cells visible in the TCP controls (Figures 7-10 A&F) also show much better staining than 

those seen on the hydrogels. The red colouration is stained collagen in the fibroblasts’ 

cytoplasm and the darker circles are the cell nuclei. Much of this colouration is not seen on 

the hydrogel samples due to the hydrogels themselves absorbing much of the colour from 

the staining solutions. The gels themselves were then stained a dark colour, which appears 

blueish under the microscope. This due to the Giemsa and PicoSirius red stains used. This 

can make initial identification of cells difficult when looking down the microscope but the 

cells themselves have absorbed enough stain to be seen in contrast to the hydrogel’s 

darkened backgrounds. The stain in the gels can be removed with exhaustive washing but 

the repeated handing of the gels or the turbulence caused by the washing steps can run the 

risk of breaking up the hydrogels as they are rather fragile when wet, or washing any 

adhered cells from the surface of the gels. The hardest gels to image were the 50% 3 

hydrogels which, before staining were the most opaque. These gels had the highest 

concentration of the largest particles and when the gels had absorbed the stains, made for 

particularly dark looking images. The cells present on these gels, however, appeared to 

reflect some light slightly which made them easier to identify. 

The large dark circles and black lines seen in some of the images above for example 

hydrogels NSER 50-1 (Figure 7-8Error! Reference source not found. A) and SER 25-1 (Figure 

7-9 C) are features left by air bubbles and cracks in the hydrogels. The circular holes are 

caused when air bubbles are formed during the curing process of the hydrogels and the 

cracks form as part of the hydrogel sheets dry or are moved. Both of these features are 

random and unavoidable despite steps taken to reduce their incidence. These features 

however, appear to have little impact on the NHDF cells interaction with the hydrogels apart 

from representing a physical barrier. In some cases, highlighted with a red box in Figures 7-8 
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B&K, 7-9 B&C (representing hydrogels NSER 50-1, 1-2 and SER 50-1, 25-1) cells can be seen 

bridging these small gaps. This shows that the cells are moving around their environment 

and growing and proliferating on the surfaces. 

7.4 Conclusion 

In this chapter, it has been shown that all of the hydrogels produced previously are 

potentially suitable biomaterials for adherent cells to grow on their surfaces. They are non-

cytotoxic to human fibroblast cells on contact and the cells themselves appear able to 

survive and proliferate on the surface of the gels for at least 48 hours. At the end of 48 

hours, all of the cells were still viable, as measured using the Alamar blue assay. 

It was not possible to gain a statistically significant understanding of which, if any of the 

hydrogels were a better surface for cell adhesion and growth, in part due to the assay used. 

Future experiments could look to using different assays such as CyQuant or PicoGreen which 

measure DNA content of the cells. These assays are independent of the measurement of 

metabolic activity of the cells and give direct correlation to the proliferative ability of the 

cells. The Alamar blue assay relies on the metabolism of a dye molecule, which changes 

colour. The metabolism of the cells is not a guaranteed constant across the lifetime of the 

cells or even the length of the experiment for example as a response to the stress of simply 

moving the cells. 

Work in this chapter also showed that direct imaging of adhered cells on the hydrogels was 

possible using an upright microscope with reflected light. A number of potential pitfalls 

were discovered and made known such as the tendency of the hydrogels to curl under 

drying or heating conditions caused by the microscopy. Better images could be obtained by 

using phase contrast on the microscope, or by using a different microscope set up such as 
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confocal microscopy which would enable better resolution and an understanding of the 

interaction between the cells and the three dimensional structure of the hydrogels. 
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8 Culturing THP-1 macrophage-like cells on hydrogel surfaces 

8.1 Introduction 

8.1.1 THP-1 cells 

THP-1 cells were established in 1980 by Tsuchiya and colleagues from the blood of a young 

boy with monocytic leukaemia.[156] The cells were found to be very similar to primary 

monocyte cells and  were able to undergo differentiation to become a macrophage like 

cell.[157] When the cells are treated with phorbol-12-myristate-13-acetate (PMA), a phorbal 

ester, first isolated from plants, they differentiate to a macrophage like phenotype with 

many similarities in appearance, markers and function to primary macrophages. This has 

made them a very valuable tool for studying macrophage responses and interactions. [158] 

THP-1 cells are a suspension culture cell type, meaning that they float freely in the cell 

media and are non-adherent. This is due to the cells being monocyte-derived and so in their 

natural environment, the blood, they are freely floating. THP-1 cells will eventually settle to 

the bottom of the culture flask but do not adhere. They are easily resuspended with only 

slight agitation. This culture method differs to static culture, which is more common, seen in 

a variety of cell types including fibroblasts and keratinocytes. Cells in suspension culture, in 

some ways are easier to maintain than static culture, particularly when passaging or splitting 

cells into new cultures, they can be directly removed from the flask and split without the 

need to use EDTA which stresses and can damage cells over subsequent passages. This 

means that these cells can reach quite high passage numbers (approximately p25) and 

remain viable. One key disadvantage of suspension culture is encountered when the 

cultures require fresh media. In static culture, such as is used with NHDF cells, the used 

media is simply aspirated away and fresh media is added directly. Suspension culture 



 

137 

 

requires the cells to be centrifuged into a pellet and resuspended into fresh media, which 

can cause stress to the cells. THP-1 cells grow best when cultured in a reasonably small 

environment and in densities between 1x105 and 1x106 cells/ml. This is achieved by 

supporting the cell culture flask on an angle allowing the cells to grow in a corner of the 

flask, close to one another. If cultured at densities below 1x105 cells/ml they will not grow 

very well and are very slow to propagate, whereas if grown about 1x106 cells/ml THP-1 cells 

will start to senesce and die off. 

When viewed under the microscope, undifferentiated THP-1 cells in culture appear round 

with a large nucleus taking up most of the cell. The following image shows non-adherent, 

undifferentiated THP-1 cells which resemble monocyte cells in human blood. (Figure 

8-1Error! Reference source not found.) 

When treated with PMA, the cells become more polarised and become to adhere to surfaces. 

Figure 8-1 A light micrograph of THP-1 cells in normal suspension culture 

500 µm 
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8.1.2 Culturing THP-1 cells on hydrogels 

The first aspect of this experiment is to try to make a hydrogel surface for THP-1 cells to 

grow on, then to assess whether the THP-1 cells have become activated by the hydrogel and 

express this by the release of inflammatory cytokines. The cytokines will be collected from 

culture media extracts and the presence, and levels of the cytokines TNFα and IL-6 will be 

examined over the course of an experiment using the highly sensitive enzyme-linked 

immunosorbent assay (ELISA). It has been shown previously that THP-1 cells are capable of 

expressing these cytokines [159] 

 

8.2 Experimental 

8.2.1 THP-1 cell culture 

All cell procedures and media manipulations were carried out using aseptic techniques in a 

type II flow cabinet 

8.2.1.1 Preparation of THP-1 cell culture media 

RPMI 1640 media and 2-mercaptoethanol, foetal bovine serum (FBS) and L-glutamine (LG) 

were obtained from Sigma 

Heat inactivated FBS (10%) was added to stock solution bottle and mixed well. 10µl 2-

mercaptoethanol was added to 1ml stock solution and mixed well using a Vortex Genie 2 

instrument. 10µl of this solution was added to 10 ml of stock solution and filter sterilised 

back into the stock solution bottle, using Acrodisc syringe filters (0.2µm pore size). Stock 

solution was then sealed and refrigerated, to be used within one month. Remaining 

solutions and extractions were discarded.  
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8.2.1.2 Preparation of THP-1 differentiating solutions 

Phorbol-12-myristate-13-acetate (PMA), lipopolysaccharide (LPS) were obtained from 

Sigma. PMA was dissolved in DMSO to give a stock solution of concentration 20 µM, LPS was 

obtained as a solid and was diluted as required, in cell culture media to give a concentration 

of 500 ng/ml. PMA was diluted further in cell culture media make 100 nM solutions of PMA. 

8.2.1.3 Culturing THP-1 cells 

THP-1 human monocyte carcinoma cells were kindly provided by Sam Bullers & Prof. Jenny 

Southgate (Jack Birch Unit, Dept. of biology, University of York) and cultured in the RPMI 

media described above. They were grown in suspension culture, upright, or tilted on an 

angle, at an initial concentration of 1x105 cells/ml in 100ml capacity Nunc brand flasks, 

obtained from Fisher Scientific. Cells were incubated at 37°C, 5% CO2. Cell stocks were split 

or passaged when total concentration reached around 9x105 - 1x106 cells/ml. Cell stocks 

were typically 25 or 50 ml total volume. Cells were counted using a haemocytometer. 

8.2.2 Compatibility testing of hydrogels for THP-1 cells 

Initial experiments were undertaken to see whether the hydrogels produced previously 

would be a suitable material for THP-1 culture and experimentation. A THP-1 adherence 

experiment was conducted and the cells and gels were stained and mounted in paraffin, 

following commonly used histological protocols which are described below. 

8.2.2.1 Preparation of hydrogels for cell culturing 

50-1, 1-1 and 0 hydrogels were chosen for initial testing. When required, the hydrogels were 

allowed to air dry slightly and were cut into discs of sizes approximately 14mm in diameter. 

Discs were immersed in the cell culture media described above in sterile sample tubes. The 

discs equilibrated for 30 minutes, at this point, the media was then removed and replaced 
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with fresh media. This was repeated for 4 hours, washing with fresh media every 30 

minutes. The disks were equilibrated to wash out any residual ethanol that they may have 

absorbed from their washing and storage, which would kill cells cultured on the gel surfaces. 

The gels took on the pink colour of the culture media signifying that they had taken up the 

media. 

 

The media equilibrated hydrogel disks were placed in 24 well plates (Corning® CellBIND® cell 

culture plates) obtained from Sigma. 

In initial experiments, THP-1 cells were seeded directly onto the hydrogels surface at a 

concentration of 2.5x105 cell/ml and were treated with 100 nm solutions of the 

differentiating mixtures. LPS was mixed with a separate PMA solution to act as a positive 

control against PMA on its own. Cell culture media was used as a negative control against 

the differentiating solutions. Bare tissue culture plastic (TCP) was used as a positive control 

against the hydrogels. 

500µl of cell solution was added to each well and 500µl differentiating solution or cell 

culture media was then added, giving a total volume of 1ml. The well plate was covered and 

placed in an incubator for 48 hours. 

8.2.2.2 Fixing cells  

At the end of the experiment the cell media was aspirated from all the wells and 500 µl 

Phosphate buffer solution (PBS) was added, each well was mixed well and the PBS was again 

aspirated off. 1 ml of 10% formalin was then added to each well and the plate was covered 

and left for 24 hours at room temperature. After 24 hours the formalin was removed and 

the wells were topped up with 70% ethanol. The wells were sealed and stored in a 

refrigerator.  



 

141 

 

8.2.2.3 Staining and imaging cells 

Following fixation ethanol was removed from the wells and haematoxylin (obtained from 

Sigma) was added to each well and left for approximately two minutes and rinsed well with 

tap water. Stained cells were imaged with a dissection microscope. 

8.2.2.4 Embedding, sectioning and mounting hydrogel samples 

The resolution available on the dissection microscope was insufficient to resolve any cellular 

details so the hydrogels were processed for histological sectioning. 

Following fixation the cells were placed in 70% ethanol for 2 hours and then cut in half. This 

was so they had a flat surface on which to stand. Each half was then placed in a cassette and 

incubated in fresh 100% ethanol for 2 hours at room temperature. They were then washed 

with fresh 100% ethanol for 10 minutes. Cassettes were then placed in a warmed polyester 

wax, ethanol mixture (1:1, warmed at 37° overnight), for 1 hour. Following this, the 

cassettes were placed in two warmed beakers of a decreasing ratio of ethanol to wax for 30 

and 15 minutes respectively and finally in a warmed beaker of pure wax for 15 minutes. The 

cassettes finally emptied of wax and a small amount of fresh wax was added to help secure 

the hydrogel halves in the correct orientation (flat side down). The cassettes were placed on 

a cold stone to speed up setting and then topped up with more fresh wax. A lid was placed 

on top and they were allowed to set at room temperature for 24 hours. 

The wax blocks were sectioned with a microtome instrument using a diamond tipped 7µm 

blade and the sections were placed on glass slides for imaging, staining and dewaxing. 
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8.2.3 Culturing and fluorescent imaging of THP-1 cells on hydrogels 

In order to determine the correct concentration of phalloidin dye to be used to view 

cytoskeletal structures, titrations of various concentrations were performed using a 

Cytospin instrument. 

8.2.3.1 Materials 

THP-1 cells in culture media were used in 150µl aliquots. The Cytospin divider cassette 

containing glass slides were assembled according to instructions. Texas Red-X Phalloidin was 

obtained from Invitrogen and was subsequently diluted with lab grade PBS. Cells were fixed 

with formalin and permeabilised with Triton-X solution as described above. 

Following initial experimentation with THP-1 and 3T3 cells described previously, the 

following procedure was developed to culture and fluorescently image THP-1 cells on 

hydrogels. 

50% and 1% hydrogels of all three latex formulations and PGMMA hydrogels prepared 

previously. These gels were chosen to represent the extremes in concentration of particles 

in the gels. The hydrogels were equilibrated in media and placed into wells of a 24 well 

plate. Steel seeding rings were placed into the individual wells, on top of the gels. TCP was 

used as a control. The hydrogel set up was duplicated so one set could be treated with PMA 

and one with just cell culture media to test whether the surface of the hydrogel surfaces 

themselves encouraged differentiation and activation of the THP-1 cells.  

8.2.3.2 Cell culture 

THP-1 cells were seeded at a density of 5x105 cells/ml and a volume of 200µl into each 

seeding ring in each well. The rings were either topped up with 200µl of 100nM PMA 



 

143 

 

treatment or 200µl culture media. The plate was then covered and incubated for 48 hours. 

At the end of 48 hours, the cells were fixed with formalin as before. 

8.2.3.3 Epifluorescent imaging of THP-1 cells on hydrogel surface 

The protocol for staining the THP-1 cells was the same as that for the 3T3 cells described 

previously. The protocol is repeated below. 

Following fixation the gels in the wells were treated with a 0.1% Triton-X solution in PBS. 

The Triton-X solution was used to permeabilise the cell membranes allowing Hoechst to 

enter and stain the nuclei. The wells were covered and placed on a rocker plate for 15 

minutes. After 15 minutes, the solution was removed and the wells were treated with a 1 in 

10000 (v/v) solution of Hoechst stain in PBS and placed on a rocker for 10 minutes. 

Following this the solution was removed and the gels were washed with PBS and again 

placed for 3x5 minutes on the rocker. After washing the gels were removed from the wells 

and mounted on glass microscope slides, a few drops of an antifade solution and a cover slip 

was placed on top.  

The gels were imaged using a mercury burner lamp in the blue fluorescent channel using an 

upright microscope. The ImagePro plus software was used to obtain images of cell nuclei on 

the surface of the hydrogel. The cells were imaged using a non-oil lens. 

8.2.3.4 Assessing required phalloidin concentration using the Cytospinning Method 

In order to gain images of the shape of the cells adhered to the hydrogels, a fluorescent 

cytoskeletal dye was selected. In order to determine the correct concentration of phalloidin 

to be used a titration was done against THP-1 cells. The Cytospin 4 instrument (Thermo 

Scientific) was used to form a thin layer of THP-1 cells on a glass slide. 
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150µl aliquots of cell solution were added to the dividing lanes in Cytospin cassettes, four of 

these cassettes, each containing three aliquots were placed in the Cytospin centrifuge 

device and run at 1300 RPM for 4 minutes. After three minutes the cassettes were 

dismantled, excess liquid was removed and the cells now affixed to the surface of the glass 

slide were fixed using formalin (5ml per well) for 10 minutes before being washed well with 

PBS. The slides were dried well and each cell containing lane was bordered with 

hydrophobic ink lines drawn using a PAP pen. Phalloidin was titrated into concentrations of 

1:25, 1:50, 1:100, 1:250, 1:500, 1:1000, and 1:10000 v/v in PBS respectively. These 

concentrations of phalloidin were added to the Hoechst solution during the 

permeabilisation stage described in the previous section and the cells were treated as 

described above. The slides were imaged using a mercury burner lamp in the blue 

fluorescent channel using an upright microscope. The ImagePro plus software was used to 

obtain images of cell nuclei on the slides. 

8.2.3.5 Epifluorescent imaging of cytoskeletal features of THP-1 cells on hydrogels. 

Following the determination of the appropriate phalloidin concentration (1in 500 v/v in 

PBS), the cell culturing experiment was repeated. Following fixation of the cells, the 

phalloidin solution was added with the Triton-X and PBS solution and the remainder of the 

fluorescent staining protocol was followed, as described in the previous section. 

 

8.2.4 THP-1 adherence on hydrogels 

Epifluorescence imaging was found to be unsuitable for these hydrogel materials so the 

protocol was altered as follows. At the end of the experiment, an assessment of the cells’ 
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activation and or their expression of the inflammatory cytokines TNF-α, IL1-β and IL-6 will be 

conducted by use of ELISA on extracts from the culture media. 

8.2.4.1 Materials 

Hydrogels 50-, 25-&1- from all three formulations were used in this experiment, as well as 

the original bare PGMMA hydrogel as a control. A further material control was used, discs 

cut from the PET sheet used to cover the glass sheets used in the polymerisation, described 

in previous chapters was also used. This PET sheet was cut, washed in ethanol, dried well 

and added to the wells used for this experiment. The hydrogels were cut into smaller sizes 

of approx. 4.5 ml diameter and equilibrated in culture media as before.  

 

Differentiating media was produced for the cells in 500 ml stock bottles as described 

previously. Solutions used were PMA (200 nM), PMA & LPS (200 nmol & 500 ng/ml 

respectively) and normal cell culture media was used as a control. 

Alamar blue solution was made up as 1mg/ml resazurin (Sigma) in sterile PBS and was 

stored in a sealed sample tube, in the refrigerator, in the dark. 10% formalin solution was 

obtained from Sigma and used without further dilution. Mini ELISA kits containing 

antibodies specific for TNF-α and IL-6 were obtained from Peprotech. 

8.2.4.2 Method 

The hydrogels were cut into approx. 4.5 mm diameter discs using a borer and blotted dry 

using sterile filter paper. The gels were then placed into wells of a 48 well plate (ProCell 

Falcon plates, 48 well, non TC treated), in triplicate, one plate for each time point (0, 4, 8, 

12, 24 hours). This was one set of plates. Each differentiating mixture, described in the 
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previous section was given its own set of plates for a total of 15 plates. The sets were 

labelled PMA, LPS and MED. 

The gels were loosely covered and allowed to air dry in the laminar flow hood for 1 hour. 

When the THP-1 cells were ready to be seeded, they were removed from their culture 

flasks, centrifuged to remove old media and fresh media was added. The cells were counted 

using a haemocytometer and their viability was assessed using the Trypan blue exclusion 

assay. The cell concentration was adjusted to 5 x105 cells/ml with fresh media and the cells 

were concentrated and seeded at a total cell number of 2.5x104 cells, in 25 µl on each gel. 

This small volume of more concentrated cells was based on seeding 50 µl of 5x105 cells/ml 

but from preliminary experiments, it was found that 50 µl was slightly too much liquid and it 

didn’t all absorb into the gel resulting in some of the cells likely being washed off the gels 

when fresh media was added. The cell solution was allowed to soak into the gels for an hour 

before 500 µl of fresh media, containing the relevant differentiating solution, was added to 

each well and the well plates were covered and placed in the incubator for 48 hours. The 

same volume of cells was also seeded on to tissue culture plastic (TCP) and topped up with 

300 µl media. 

After 40 hours had been completed, the plates used for time point T0 (one for each of PMA, 

LPS & MED) were removed from the incubator, 50.3 µl of Alamar blue solution was added at 

this point, mixed gently and the plates were returned to the incubator.  

After a further 8 hours, all of the plates were removed from the incubator, the media for the 

plates used for T0 was aspirated off and stored in Ependorf tubes, in the freezer for ELISA.  

100 µl of media was transferred to a fresh 96 well plate for Alamar blue analysis. The 

hydrogels and cells at T0 were then fixed with 10% formalin solution for one hour then 

formalin was removed and PBS was added to the wells. The media in the remaining plates 
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was removed and discarded and fresh media of the corresponding type was then added 

(PMA, LPS, MED) and the plates were returned to the incubator. This time point was 

recorded as T0, following this, at time points corresponding to hours elapsed from T0, (T4, T8, 

T12, T24) one plate for each of PMA, LPS and MED was removed, media extracted and stored 

in Ependorf tubes, 100 µl of media was transferred to 96 well plates for Alamar blue analysis 

using a plate reader (BioTech ELx800). When the media had been removed, the cells were 

fixed with formalin, as before for 1 hour then wells were topped up with PBS. Cells grown at 

the same densities on tissue culture plastic were used as controls at the same time points. 

Hydrogels were stored in PBS and imaged using an Olympus upright microscope using 

reflected light. 

8.2.4.3 Alamar blue analysis 

The media extracts were analysed with the Alamar blue assay against cells seeded at 

densities of 6x105, 5x105, 2 x105, 1 x105, 5 x104, 1 x104, 5 x103 and media. These cells were 

seeded on to tissue culture plastic and removed at the same time points as the hydrogels. 

The plates were read using a BioTech ELx800 plate reader. 

8.2.4.4 Imaging of cells on hydrogels 

The hydrogels were imaged using an Olympus upright microscope. The cells were not 

stained due to time constraints and were imaged directly on the hydrogels. 

8.2.4.5 Enzyme-Linked Immunosorbent Assay of cytokines 

The cytokine contents of media extracts were analysed using mini enzyme-linked 

immunosorbent assay (ELISA) development kits according to the protocols provided. ELISA 

microplates were prepared with capture antibody (100µl per well). The wells were sealed 

and incubated at room temperature overnight. The wells were then aspirated and washed 
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4x using wash buffer (0.005% Tween-20 in PBS) and blotted on paper towels. 300 µl block 

buffer (1% BSA in PBS) was then added to each well. This was incubated for at least 1 hour. 

A standard curve was generated from provided standards, concentrations ranged from 2 ng 

to zero. 100µl of each sample and standard were added to wells and incubated at room 

temperature for 2 hours. The wells were washed 4x and detection antibody was added (100 

µl per well). The wells were sealed and incubated for 2 hours. Following this, the wells were 

washed 4x and an Avidin-Horseradish peroxidase (HRP) conjugate was added (1:2000 

dilution, total volume 11 ml). 100µg was added to each well and incubated at room 

temperature for 30 minutes. The wells were 4x washed and ABTS substrate (100 µg per 

well) was added to indicate colour change. The plates were read using a plate reader at 405 

nm with correction set at 650 nm. 
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8.3 Results and discussion 

8.3.1 Compatibility testing of hydrogels and THP-1 cells 

THP-1 cells were cultured on the surface of the hydrogels for 48 hours and treated with 

PMA, PMA & LPS and media.  

LPS is a lipopolysaccharide, usually found on the surface of bacterial capsules, they are 

highly conserved in bacteria in nature and are one of the immune system’s chief means of 

recognising bacterial infection. Therefore when encountered by immune cells, the cells 

become activated and seek to quickly remove the source of the LPS, in macrophages, this is 

represented by an inflammatory response. 

 TCP and cell culture media were used as positive and negative controls. At the end of the 

experiment, the cells and hydrogels were fixed with formalin. This kills the cells, stopping all 

cellular metabolism and activity, freezing them at that point. It also cross links the cells to 

the hydrogel. Any cells that are dead are therefore not adhered and at the point of fixation 

are not cross-linked to the surface. They are subsequently washed off the surface.  

Following fixation the cells were stained with hematoxylin, a common histological stain used 

to highlight cellular components.  Due to the opacity of the hydrogels, the usual microscope 

imaging technique, as would be used on cells cultured on TCP, was ineffective as the cells 

were unable to be seen through the surface of the gel, using the usual inverted microscope. 

Therefore the gels were then imaged using a dissection microscope. Unfortunately the 

resolution available was insufficient to resolve any cellular detail so the gels were processed 

for histological sectioning. Following the mounting process described above the gels were 

cut into thin sections using a microtome. These thin sections were hoped to contain many 

slices of the hydrogel and the cells on them. This is a common technique used often in tissue 

engineering, particularly when analysing how cells have grown on a biomaterial. When the 
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waxed samples were sectioned the gels splintered or shattered, leaving small voids where 

they hydrogels had been in the wax. This method of analysis was deemed unsuitable for 

these materials and was discontinued. These histological shortcomings suggested that direct 

imaging was preferable, and so epifluorecence was investigated as an alternative. This 

method of visual analysis enables direct, non-destructive imaging of the cells on the surface 

of the hydrogels. The hydrogel samples used in this experiment were destroyed and the 

experiment was repeated with alterations to the method. 

The following images show THP-1 cells in their ordinary state and the TCP controls. The first 

image Figure 8-2 shows the cells in their ordinary state in suspension culture, in media 

without any treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-2 A light micrograph of THP-1 cells in ordinary suspension culture 

500 µm 
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200 µm 

200 µm 

Figure 8-3 Light micrograph of THP-1 cells on TCP treated with PMA 

Figure 8-4 A light micrograph of THP-1 cells on TCP treated with PMA & LPS 
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Figure 8-3 above, shows THP-1 cells which were treated with PMA. They are more 

irregularly shaped than cells observed in their normal state in suspension culture. This 

indicates that the cells have differentiated into a macrophage-like cell and begun to adhere 

to the surface of the TCP using cytoplasmic projections  

Figure 8-4 above shows the THP-1 cells treated with PMA & LPS. The combination of 

differentiation inducing PMA and the immuno-activating molecule LPS has caused a full 

differentiation and activation of the macrophage-like phase of these cells. In the blood this 

would be represented by an inflammatory response. The micrographs show that the cells 

have become much more irregularly shaped with longer projections as they become more 

activated to inflammatory signals. 

8.3.1.1 Staining and imaging cells 

Staining with hematoxylin caused the hydrogels to be stained purple, as has been 

mentioned before but repeated washing removed a good deal of this colouration. When the 

gels were imaged under the low magnification dissection microscope, it was just possible to 

make out purple stained dots on the hydrogels which were the stained cells. However due 

to the resolution available, it was impossible to determine any features of the cells. This was 

the reason for attempting to embed the gels in paraffin wax. 

8.3.1.2 Embedding, sectioning and mounting hydrogel samples. 

Following staining with hematoxylin, the hydrogels were split in two. This gave the gels a flat 

surface, on which to stand whilst they were immersed in paraffin wax which then set 

around them. The hydrogels, when hydrated, break under the mild force applied by forceps 

and so are easily bisected with a scalpel. Following the protocol described above, the gels, 

secured in cassettes, were immersed in solutions of increasing paraffin wax concentration 
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until they were embedded in pure paraffin. When set around them, the paraffin was cut 

into 7 µm thick slices using a cryotome with a diamond tipped blade and the slices placed on 

a microscope slide. When these slices were examined under a microscope, there were holes 

in the surrounding paraffin where the hydrogel slice had been. This was present in all of the 

slices examined. The hydrogels had snapped and shattered, leaving nothing to examine 

using this technique so it was discontinued. 

8.3.2 Culturing and fluorescent imaging of THP-1 cells on hydrogels 

The culture of THP-1 cells on the hydrogels was repeated using the new procedure 

described in the experimental section. Steel seeding rings were used to confine the cells and 

differentiating media into a smaller, definite area. This was adopted to stop the cells 

spreading and leaking across the whole surface of the hydrogel or spreading to TCP base of 

the culture well. The TCP is likely to be more favourable for the cells to adhere than the 

hydrogel surface and were the cells able to reach the TCP it is thought that they would 

preferentially migrate to and bind to the TCP. The seeding rings were ineffective at stopping 

the cells and media leaking out of and off of the hydrogels and were not used in further 

experiments. It appeared that the seeding rings did not form a good seal with the hydrogel 

possibly from the uneven surface of the hydrogels themselves or from tiny bits of debris 

trapped under them. 

Following 48 hours culture, the cells were fixed and permeabilized and stained, then imaged 

using the fluorescent microscope. The cells were cultured separately with PMA and without 

in order to determine whether the surface of the hydrogel had an activating effect on the 

THP-1 cells The following images (Figure 8-5 &Figure 8-6) show the presence of THP-1 

nuclei on the surface of the hydrogels. There is strong background autofluorescence from 

the embedded PS particles. 
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The images show that the cells are present the surfaces of the hydrogels but do not give an 

indication of whether the cells are activated as the Hoechst stain used is a nuclear stain and 

does not give an indication as to the general morphology of the cells. A cytoskeletal stain 

would give this indication. The cytoskeletal dye phalloidin, which binds to and fluorescently 

labels actin filaments in cells was originally a green stain, however the colour of the dye and 

the features that it highlighted was found to be completely swamped by the natural 

autofluorescence of the PS nanoparticles embedded in the structure of the hydrogel so 

Texas red-X phalloidin which operates at a different, less autofluorescence dominated 

wavelength was chosen for the following experiment. 

The following are micrographs of hydrogel surfaces with nuclear stained THP-1 cells present.  

There seems to be no discernible difference in the adherence of THP-1 cells to the surface of 

the PGMMA hydrogel, shown below. This could indicates that the surface of the gel itself 

causes a differentiation from the monocyte-like cell phase to the macrophage-like cell phase 

enabling adherence to the surface. But it unclear whether the cells have properly adhered 

to the surface of the gel or are rounded up cells, loosely bound to the surface on fixing. 

The above micrographs show that there is no discernible difference between the adherence 

of the THP-1 cells on the surface of the bare PGMMA hydrogel, with or without treatment 

with PMA. There are few cells observable and these micrographs are a typical 

Figure 8-6 A fluorescent light micrograph of stained THP-

1 nuclei on hydrogel 0 treated with media 
Figure 8-5 A fluorescent light micrograph of stained THP-

1 nuclei on hydrogel 0 treated with PMA 

500 µm 500 µm 
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representation of the cellular presence on the surface of the gels. The number of THP-1 cells 

seen is much lower than the 3T3 cells used previously, which were cultured and imaged 

under similar conditions. This suggests that the THP1 cells are much less adherent than 3T3 

cells, which was expected, but the fact that there are cells present means that it is possible 

for the cells to adhere to the hydrogel surface.  

 

 

 

 

 

Figure 8-8 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-1 treated with media 
Figure 8-7 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-1 treated with PMA 

Figure 8-9 A fluorescent light micrograph of stained THP-

1 nuclei on hydrogel 1-1 treated with PMA  

500 µm 
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Very few cells were observed on the 50% and 1% PS hydrogels and those that were, were 

very sparsely populated across the surface. No cells were observed on the 1% gels treated 

without PMA. IT is possible that during the processing for fluorescence, the cells were 

washed off the surface or perhaps the THP-1 cells failed to fully differentiate into an 

adherent cell type during culture. 

Again the above images show very few cells, sparsely populated across the surface of the 

gel. This could indicate that the make-up of the particles, both individually and as a surface 

may be having an effect on the adherent properties of the THP-1 cells or that the entire 

culture batch simply did not respond strongly to the PMA and did not differentiate much. 

The gel which was not treated with PMA appears to have cells only in the holes in the gels. 

These holes are from bubbles that appeared randomly in the liquid monomer during curing. 

The cells appear to prefer these defects to the bulk surface of the gel. As these bubbles 

were stabilised in the hydrogel during polymerisation, it is likely that they presented a more 

hydrophobic environment. It is possible that these holes would have a higher concentration 

of particles in them, this more hydrophobic environment may present a better site for 

protein adsorption and therefore may allow for better cell adherence. The bubbles do not 

penetrate all the way through the surface of the gel as these cells would have remained on 

Figure 8-10 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-2 treated with PMA  
Figure 8-11 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-2 treated with media 

500 µm 500 µm 
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the bottom of the culture well following fixation and the removal of the gels from the well 

or they provided protection for the cells when the rest of the cells cultured on the gel were 

washed off at the end of the experiment. There were no cells found on this sample of the 1-

2 gel. 

 

The adherence of THP-1 cells to hydrogels containing particles from formulation 3 (approx. 

750 nm) appear to be higher than those observed with smaller particle sizes. This could be 

due to the cells more strongly recognising the surface of individual particles due to their 

larger sizes or are finding the clefts in between individual particles useful for anchoring 

Figure 8-14 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 1-3 treated with PMA  

Figure 8-13 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-3 treated with media 
Figure 8-12 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 50-3 treated with PMA  

500 µm 500 µm 

500 µm 500 µm 

Figure 8-15 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 1-3 treated with media 
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points for adherence. Again there appears to be no discernible differences in the number of 

cells present on the surfaces treated with PMA and those that were not treated. 

All of the above images do show cells on the surface of the hydrogels, however it is not 

possible to determine whether the cells are activated and adhered or just loosely attached. 

Nor is it possible to conclude if individual gels have any different differentiating or activating 

inducing properties. Noteworthy of all the micrographs is the low number of cells 

observable. Similar concentrations of cells were seeded onto the surface in preliminary 3T3 

experiments, shown previously, yet far fewer cells are observable on the surfaces of the gels 

used in the THP-1 experiments. Some of this difference will be due to the differing adherent 

properties of THP-1 and 3T3 cells but many THP-1 cells are simply not adhering. 

A drawback of this analysis method is the inability to see cell morphology and so assess how 

well the cells are adhering, whether they are truly sticking down by sending out cytoplasm 

projections to grip the surface of the hydrogels, or if they are rounded up, dead or dying, or 

in a state of dormancy, loosely attached to the surface.  

8.3.3 Cytospinning THP-1 cells for phalloidin titration 

The cells fixed to the surface of the glass sides by the Cytospin instrument, were stained 

using Hoechst (nuclear stain) and phalloidin, a cytoskeleton stain which binds to actin 

filaments. Texas Red phalloidin was used as it was found that the PS latex embedded 

hydrogels gave off a strong autofluorescence in the yellow channel used by the fluorescence 

microscope but less autofluorescence in the red channel. This meant that any cells imaged 

in this channel were less likely to be swamped by background autofluorescence. The 

following images show the titrations of phalloidin concentration. The Hoechst nuclear stain 

and the exposure time of the images recorded by the software are constant throughout.  

Figure 8-16 A fluorescent light micrograph of stained 

THP-1 nuclei on hydrogel 1-3 treated with media x10 

magnification 
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Figure 8-18  A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:50 phalloidin 

concentration  

Figure 8-17 A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:25 phalloidin 

concentration  

Figure 8-21 A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:500 phalloidin 

concentration  

Figure 8-22 A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:1000 phalloidin 

concentration  

Figure 8-20 A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:250 phalloidin 

concentration  

Figure 8-19  A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:100 phalloidin 

concentration  

500 µm 

500 µm 

500 µm 500 µm 

500 µm 

500 µm 
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The concentration of 1 in 500 v/v phalloidin in PBS was found to give the bests feature 

resolution at the lowest concentration and was chosen to be used in future experiments. 

The concentration of the nuclear stain was maintained throughout the experiment and the 

phalloidin concentration decreased incrementally. The images presented above are overlaid 

images taken in the blue and red channels of the fluorescence microscope and show the 

blue dyed nucleus of the THP-1 cells and the red dyed actin filaments in the cytoskeleton. All 

of these cells appear rounded because they were forced onto the surface of the glass slides 

very quickly by centrifugation, rather than being allowed to adhere naturally during culture. 

Nevertheless it is possible to see this rounded shape and distinguish it from the background 

and the colouring of the nucleus. As the phalloidin concentration decreases it becomes 

harder to discern morphological features of cells, particularly in the 1 in 1000 and 1 in 10000 

dilutions, Figure 8-22 Figure 8-23. It was therefore concluded that the 1 in 500 dilution 

(Figure 8-21) was the optimal balance of possible resolution of cellular features, lowest 

background interference and least volume of phalloidin used. 

 

 

Figure 8-23 A composite red and blue fluorescence light 

micrograph of stained THP-1 nuclei 1:10000 phalloidin 

concentration  

500 µm 
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8.3.4 Epifluorescence imaging of cytoskeletal features of THP-1 cells on hydrogels 

The cell culturing procedure was repeated, following this, the hydrogels were imaged using 

the cytoskeletal dye. From the resulting images, it was found that there was a very large 

degree of autofluorescence in the red channel which caused the cell structure, as shown by 

the phalloidin, to be much obscured or completely swamped by background 

autofluorescence. This is likely due to the gel becoming saturated with low levels of 

phalloidin dye binding non-specifically to the gel and the combined autofluorescence 

swamping the fluorescence caused by the dye binding specifically to the actin filaments in 

the cell cytoskeleton. Washing the gel in PBS for a long period of time (up to two weeks) 

showed a reduced autofluorescence but any cells present on the surface of the gel were 

either washed off the surface or, during this time, had naturally lost the fluorescence 

conferred from the dyes present. The following figure is an image of THP-1 cells on a PS 

latex embedded hydrogel, stained with phalloidin and imaged at the same magnification 

and exposure time as the above micrographs used for the phalloidin titrations.  Careful 

examination of the image reveals that cellular features can be discerned (some are ringed) 

however it is very difficult to make out anything other than their presence from this image, 

it is harder still when using the microscope in the initial analysis as the autofluorescence is 

very intense. Due to this inability to discern any details of the THP-1 cell features, the 

epifluorescence aspect of the project was discontinued 

Figure 8-24 A composite red and blue 

fluorescence light micrograph of 

stained THP-1 cells on hydrogel 50-1 

1:500 phalloidin concentration  
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8.3.5 THP-1 adherence on hydrogels 

The THP-1 cells were seeded onto the hydrogels in a small concentrated volume as this was 

found, in previous experiments to give a good chance for the cells to adhere to the surface 

of the hydrogels, instead of being washed off the surface immediately, which could be an 

explanation for the low observed number of cells present on the hydrogels described in the 

results of the preliminary experiments in this chapter. Smaller hydrogels were also used, this 

was partly to save materials and also to allow more experiments to be run in parallel more 

efficiently using fewer well plates. The gels were cut to the same size as the hydrogels used 

for the fibroblasts experiments. This size was chosen as it is approximately the same size as 

the base of a 96 well plate well. 

THP-1 cells were introduced to the surfaces of the hydrogel materials, allowed time to settle 

on the surface and treated with differentiating media. The cells were then left to 

differentiate for 48 hours and their ability to adhere to the surfaces was investigated. 

Whether there was any resulting activation of the cells caused by the hydrogel surface or to 

what extent this activation was displayed was investigated. After 48 hours the media was 

changed and the replacement media was extracted from the gels at time points of 4, 8, 12 

and 24 hours. The media extracted after 48 hours culturing time was recorded as time point 

0. Media was then stored and to be analysed for cytokines produced by the cells using the 

enzyme linked immunoabsorbant assay (ELISA). 

Preliminary experiments found that it took the THP-1 cells around 36-48 hours to fully 

differentiate into a macrophage-like cell type and fully adhere to a surface. This was why 48 

hours was chosen as time point T0. However when the well plates were removed from the 

incubator, the wells which had been treated with Alamar blue solution all remained blue 

instead of the expected pink-red colour. This was an indicator that the cells had either died 
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off or had become dormant and were undergoing little cellular metabolism. The following 

images are of the TCP control wells which were treated with PMA, onto which, the cells 

should have adhered the best. 

 

 

 

 

 

 

 

 

 

Figure 8-25  A light micrograph of THP-1 cells on TCP at T0 treated with PMA  
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Figure 8-25 above shows the cells in the TCP wells, at first glance many of them look to be 

irregularly shaped which would be a good indicator of THP-1 activation and adherence. 

However, higher magnification (Figure 8-26) revealed that most, if not all of the cells had a 

number of round features inside them. These are likely cell blebs which indicates that the 

cells are undergoing apoptosis, a form of programmed cell death and are therefore dead or 

dying. This could be confirmed immunohistochemically by using apoptosis markers such as 

cytochrome C or caspases. 

It was not possible to form a calibration curve from the Alamar blue data at any of the time 

points as the optical density readings for each well that was analysed using Alamar blue was 

too similar. Even where differing numbers of cells had been seeded into the wells. At later 

time points, the optical densities did increase slightly compared to T0, suggesting that there 

were a few cells present that were metabolising but it was still not possible to draw a 

calibration curve to assess these numbers.  

Figure 8-26 A light micrograph of THP-1 cells on TCP at T0 treated with PMA  
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The following images show the cells that 

were found on the hydrogels at T0. 

 

LABEL GEL 

A,B 50-1 

C,D 25-1 

E,F 1-1 

G,H 50-2 

I,J 25-2 

K,L 1-2 

M,N 50-3 

O,P 25-3 

Q,R 1-3 

S,T 0 

U,V PET 

Figure 8-27A-V light micrographs of THP-1 cells on 

hydrogels treated with PMA 
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The above images are all from the PMA treated set of hydrogels. The sets treated with LPS 

and MED look very similar, with many cells present but rounded and not very healthy 

looking. These images have not been presented. 

The cells present on the gels are almost all rounded looking and many look unhealthy, 

particularly in Figure 8-27 RError! Reference source not found. of hydrogel 1-3. This coupled 

with the lack of indication of any significant cellular metabolism from the cells according to 

the Alamar blue assay leads to the conclusion that this experiment was not successful. The 

cells could be either dead, dying or are in a state of low metabolic dormancy and it is 

therefore not possible to conclude whether they have reacted to the hydrogel surfaces and 

give no indication of activation.  

The images shown in Figure 8-27 U&V above, of the PET disks are somewhat interesting. It 

was not thought that cells would be able attach to these surfaces at all. However there 

appears to be a large number of cells present on this plastic disk. Unfortunately the cells 

themselves, whilst present are mostly rounded looking and unhealthy and so again, a 

conclusion cannot be drawn to ascertain whether the THP-1 cells would be responding to 

this surface in an inflammatory manner or if they found favourable conditions on which to 

settle during the initial part of the experiment. A future experiment could look to this case 

and assess whether THP-1 cells are capable or even willing to adhere to this surface. 
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Figure 8-28 A light micrograph of THP-1 cells on 

hydrogel 0 treated with PMA  
Figure 8-29A light micrograph of THP-1 cells on hydrogel 

1-1 treated with PMA  

Figure 8-31 A light micrograph of THP-1 cells on 

hydrogel 50-3 treated with PMA x10 magnification 
Figure 8-30 A light micrograph of THP-1 cells on 

hydrogel 25-2 treated with PMA x10 magnification 

Figure 8-32 A light micrograph of Giemsa stained THP-1 cells on TCP treated with PMA 
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Smaller scale preliminary experiments prior to this experiment did show that it was possible 

to culture THP-1 cells on hydrogel surfaces and visual analysis appears to show that these 

cultured cells were adhered to the surface due to their spreading appearance, shown above 

in Figure 8-28 - Figure 8-32. Numbers of adhered cells were unable to be quantified by this 

experiment.  

The above images, Figure 8-28 - Figure 8-32 illustrate the visual appearance of THP-1 cells 

adhered to examples of the gels used in this experiment.  

8.3.6  Enzyme-linked Immunosorbent Assay of cytokines 

  

 

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

5 0 -1

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

5 0 -2

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

5 0 -3

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

2 5 -1

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l



 

172 

 

 

 

 

 

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

2 5 -2

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

2 5 -3

T im e /h o u rs
C

y
to

k
in

e
 m

a
s

s
 /

 p
g

/m
l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

1 -1

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

1 -2

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

1 -3

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l

0 1 0 2 0 3 0

0

5 0 0

1 0 0 0

1 5 0 0

0

T im e /h o u rs

C
y

to
k

in
e

 m
a

s
s

 /
 p

g
/m

l



 

173 

 

 

 

Figure 8-33 Graphs of observed cytokine mass vs experimental time points 

 

 

 

 

The amounts of cytokines measured using the ELISA are presented above in figure 8-33.  

They were produced using GraphPad Prism. The error bars are the standard error where 

n=3. Tables of statistical significance for each graph comparing each of the points within 

data sets is included in the appendix. The significance was computed using ANOVA and 

Tukey’s multiple comparison test.  

A general trend across all data sets is that the very low levels of cytokines released, typically 

less than 1000 pg/ml of either cytokine. IL-6 appears to have been released in greater 

quantities than TNF-α. Cytokine production, particularly IL-6 appears to peak at 4 hours 

after the start of the experiment. Production then decreases to low levels and rises again at 
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the final time point but to levels lower than that seen at 4 hours. These trends appear to be 

consistent as particle size and particle concentration are increased. 

There is little significance between the cells treated with LPS with PMA, compared to those 

treated with PMA in isolation. It was expected that the cells treated with PMA & LPS would 

have produced much higher levels of inflammatory cytokines, but this may be an indication 

of the low level of success in differentiating the cells using PMA. Indeed most of the samples 

do not show any significant difference between those cells treated with PMA which should 

have caused a differentiation to an inflammatory phenotype, and those which were treated 

with media and acted as a control. 

The fact that there is measurable cytokine production in the samples indicates that the cells 

are capable of producing cytokines and do, however the very low levels, varied data and 

lack of any particular statistical significance makes it difficult to ascertain if the cytokines 

produced are a result of the differentiating solution, LPS or the gel surfaces causing an 

inflammatory response. 

Comparing the rough surface gels to the surface of TCP which was shown in preliminary 

experiments to be a suitable and favourable surface for the THP-1 cells to adhere to, seems 

to show little difference at the 4 hour time point, however there is no indication of a 

cytokine response across any of the treatments as the time points progress. This would 

suggest that the THP-1 cells may have become settled on the surface of the TCP and after an 

initial inflammatory response have ceased to be inflamed. On the rough surfaced gels, most 

of the samples show an upsurge of cytokine production at 24 hours, this shows that after an 

initial inflammatory response, the cells settled for approximately 20 hours then once again 

become inflamed. This could possibly indicate that the THP-1 cells were not completely 
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settled on the gel surfaces but instead were merely resting there later detaching and 

resettling then becoming inflamed again. 

The THP-1 cells should not have proliferated in this time as differentiated cells of this type 

do not proliferate. The results of the AlamarBlue assays presented previously show no 

measurable difference between the numbers of cells at each of the time points which 

indicated very low levels of cellular activity, if any, this would support the low levels of 

cytokines produced across all of the samples. This however does not allow a conclusion 

regarding the successful differentiation of the THP-1 cells by PMA as there is no significance 

between the numbers of active cells and the amounts of cytokines produced when the 

treated cells are compared to the media controls. 

The PET control showed very little response by the THP-1 cells apart from a small increase in 

cytokine production at 4 hours and a much larger production of IL-6 at 24 hours. The 

aberrant nature of this response compared to all others and the huge degree of error 

(approx. ±20000 pg/ml) indicate that this is an erroneous result and should be discarded. 

The lack of any noticeable difference between cells treated with PMA and LPS indicates that 

the cells were sparingly differentiated by PMA or that they were inactive throughout. 

50-1 

For the 50-1 gels the largest degree of significant difference in cytokine productions is found 

on the cells treated with PMA. There were much higher amounts of IL-6 released after 24 

hours and no significant difference at earlier time points. This production indicates that the 

cells required 24 hours post treatment in order to become inflamed by their surfaces. The 

lack of activity prior to this matches the AlamarBlue data which showed little overall cell 

activity so the sudden jump at T24 is surprising.  It is likely due to the cells in this sample 

slowly settling to; then acclimatising to their surface and only becoming active when this 
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had completed. The same cells showed a spike of TNF-α after 4 hours which would show 

that the cells were settled sooner and became inflamed quickly then either detached from 

the surface for approx. 20 hours before settling again and releasing il-6 or became dormant 

on the surface for this time. 

The cells treated with LPS showed little difference across the time points but spiked slightly 

at T8 with IL-6, then died off again. There was no appreciable difference in TNF-α release 

across the time points. This could show that these cells became settled and differentiated 

some time before 8 hours and then were initially inflamed but then this response died off 

over the remaining 16 hours of the experiment. There should have been a larger response 

from the cells treated with LPS as it is a known inflammatory agent so this low activity 

agrees with the AlamarBlue data and likely shows that the cells failed to fully differentiate. 

There is no appreciable difference in the release of IL-6 from the cells treated with cell 

culture media which is to be expected as these cells should not have differentiated. 

However there is some increase in production of TNF-α from 8-24 hours which could show 

that after this time, the cells settled on the gels via gravity then differentiated themselves 

and became inflamed slightly by the rough surfaces. 

50-2 

For the 50-2 gel, the only significant change in cytokine production is seen in the cells 

treated with PMA, these cells released IL-6 after approx. 24 hours. The cells showed little 

other cytokine production apart from a small amount of TNFα being produced by the LPS 

and PMA treated cells at 4 hours. This TNF α production was not significant. The low overall 

production is likely a result of these cells failing to differentiate during the experiment and 

remaining in a dormant state throughout as indicated by the AlamarBlue results. The error 

bar for PMA IL-6 is clipped at the axis limit. 
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50-3 

Both groups of cells treated with PMA and LPS showed an increase of production of TNFα 

after 4 hours indicating that the cells had differentiated somewhat and adhered to the 

surface of these larger particles and the surrounding gels. This adhesion had led to an in 

initial increase in TNF α production. The only IL-6 production at significant levels was at T24. 

This matches with some of the previous experiments indicating that the cells release TNF-α 

as an early indication of inflammation then IL-6 as an indicator of more prolonged 

inflammation. 

25-1 

The information shown above indicates that as the particle size increased the amount of 

cytokines produced slightly increased. The levels produced by the now less concentrated 

particles appears to be at approximately the same level as the amounts recorded produced 

by cells on the largest particles. This perhaps shows that fewer particles have a more 

pronounced effect on the inflammatory response of the cells. 

Again the production of TNF-α appears to quickly spike after 4 hours then tail off, in both 

cells treated with LPS and PMA. This is followed by an increase of IL-6 towards 24 hours. This 

again shows that some of the cells may have differentiated and are being irritated by the 

surfaces but appear to have a period of lesser activity after approx. 4 hours where they lie 

dormant and are either not activated by the surface or are inactive all together as is 

suggested by AlamarBlue. 

25-2 

The profile for these large particles is the same as those shown in the previous data set. 

With very similar levels of IL—6 released. TNF levels are lower however. Also for the media 

controls, the cytokine production shows an increase as time elapses, further showing that 
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the cells may be differentiating on the surfaces of the gels and becoming increasingly 

inflamed. 

25-3 

The largest particles show the same activation profile as the previous particle size indicating 

there is little difference to the cells from smaller to larger particle sizes. The amounts of 

cytokines released appear relatively similar also. There is little production of IL-6 which 

shows that the cells were probably inactive. 

1-1 

The profiles of cytokine release for the most dilute particle gels are similar to those shown 

previously however a large degree of variance in the data means that these profiles are not 

significant. This is due to the cells not showing any noticeable differentiation or activity 

during the experiments. 

1-2 

Again there is little significance in the IL-6 results due to the variability of the data. The very 

small amounts of cytokines released mean that small fluctuations have a pronounced affect. 

The PMA and LPS treated cells do show some increase in TNF-α production at T4 as has 

been shown previously but at similar to lower levels, possibly due to less inflammation 

being induced by a less rough surface. 

1-3 

Again for this gel set, the variability of the data has led to little meaningful conclusions. This 

is due to the lack of success with differentiating the cells and their inactivity. 
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0 – bare hydrogel 

The bare gels with no particles show very similar cytokine release profiles to those seen 

previously. This is surprising as these gels should have caused low levels of inflammation 

compared to those containing particles. This shows that the cells are becoming inflamed 

independent of the surface roughness modification or that the low levels of cytokine release 

are independent of surface differences possibly due to the low levels of activity of the cells 

or the lack of success of the experiment. 

TCP 

The TCP controls showed that the cells were somewhat inflamed by the TCP surface, this is 

surprising as the material itself is designed to be attractive to cells and would as such should 

not elicit an inflammatory response. The lack of difference between the cells treated with 

PMA and LPS suggest that at these low levels, the cells are not responding to external 

inflammatory agents and are likely functioning in a very low activity state. 

An interesting observation is that most of the groups of cells showed a higher that 

previously seen initial activation at T0. This is possibly due to the cells being disturbed by the 

change in conditions of the experiment. Possibly having being settled on the well surface 

previously and then being lifted and quickly resettling. 

The lack of any significant difference between this control and the other experiments again 

shows that the whole experiment was rather unsuccessful. 

PET 

The PET samples acted as a material control and were not supposed to be a particularly 

attractive surface for which the cells could adhere. This is supported by the very low levels 

of cytokine production across all of the samples and treatments. The only significance in this 

data comes from two results from T24 IL-6. As mentioned previously, it is fair to assume that 
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these points are erroneous and can be disregarded. They are more likely to be the result of 

an error or contamination of the ELISA measurement procedure than a particularly strong 

inflammatory response to the surfaces. 

The lack of cytokine activity on these samples could indicate that this surface is indeed a 

poor surface for THP-1 cells to adhere to, but due to the overall low activity of cells in all 

experiments, It would be difficult to say for sure that the low activity was caused by the 

surface or the temperamental nature of the cells across the whole experiment. 

 

8.4 Conclusion 

Unfortunately, this experiment was unable to be repeated due to time constraints and the 

exhaustion of funding and hydrogel materials, however it has been shown in this chapter 

that it is possible to culture THP-1 macrophage like cells on hydrogel materials. The cells 

have been shown to be adhered to all forms of the hydrogels, under some conditions, more 

than others. In this chapter, various methods of preparing and optimising the hydrogels 

were examined and the useful aspects of these protocols were maintained. It was 

discovered that the hydrogels are not suitable materials for typical histological processing 

and analysis due to their tendency to snap or shatter when cut with a microtome blade. The 

hydrogels are also unsuitable for microscopy using fluorescent stains as they have a 

tendency to absorb the fluid containing the stain, undergoing non-specific binding with the 

stain and producing strong autofluorescence which swamps any legitimate observations 

that could be made. On a more positive note, it has been found that the hydrogels can be 

easily imaged using an upright microscope using reflected light to yield very reasonable 

pictures without using phase contrast or staining the cells. 
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ELISA demonstrated that the cells were producing very low levels of cytokines, which were 

measurable. However no particular meaningful trends between differing hydrogel types 

could be determined. The cytokine data further agreed with the Alamar blue data and visual 

examination of the cells indicating that they were in a very low activity state or otherwise 

non-active. 

Future work in this area could look towards building upon the areas optimised in this 

chapter and assessing what the THP-1 cell response is to the hydrogel surface by cytokine 

analysis. With this data, it would be possible to see if any responses could be moderated by 

changing certain aspects of the hydrogels such as altering physical characteristics such as 

the flexibility of the hydrogel, by changing the cross-link density of the gels or changing a 

chemical functionality such as incorporating peptides into the hydrogel structure which 

could increase cell adhesion properties. 
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9 Conclusions and further work 

In this thesis it was demonstrated that hydrogel biomaterials made from glycerol 

methacrylate could be easily synthesised and in potentially large quantities. These hydrogels 

were shown to have good water contents, of 75-80%. Polystyrene latex particles were 

synthesised using emulsion polymerisation with good control of particle size. It was also 

shown that it was relatively simple to incorporate these particles into the structure and 

surface of the hydrogels to give hydrogel materials with rough surfaces but identical 

chemistry. The latex hydrogels were also shown to be non-cytotoxic and could act as viable 

biomaterials. 3T3 fibroblast cancer cells were shown to adhere to the surfaces and it normal 

human dermal fibroblast cells were shown to be able to proliferate on the hydrogels. THP-1 

macrophage like cells were shown to be able to adhere to the surface but quantification of 

this and an investigation to the cell’s reaction to the surface using cytokine analysis was 

unsuccessful.  

While the hydrogels do act as functioning biomaterials, their innate fragility when wetted 

meant that they were difficult to work with. A future experiment could look to curing the 

hydrogels directly into the wells of the cell culture plates which would eliminate many of the 

problems faced when handling the gels. Also it would remove the need to transplant the 

hydrogels from one plate to another as seen in the NHDF chapter. It was required to move 

the gels in this instance because the fibroblast cells used showed either a willingness to 

migrate off the hydrogel surfaces on which they had been placed, or that they were washed 

off during an earlier stage of culturing. If the gels were adhered to the bottom of a culture 

well, there would be no room for cells to get around or underneath the gels and easy 

quantification of the cell numbers could be accomplished. It was shown that the benzoyl 

peroxide/ dimethylaminopyridine polymerisation method produced equivalent PGMMA 
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hydrogels to those made using potassium persulphate as an initiator. This polymerisation, 

however was accomplished at a lower temperature which would be advantageous if curing 

hydrogels directly into a well plate as there would be less potential thermal damage done to 

the plates. 

The latex hydrogels showed good abilities to absorb liquids which is a key hydrogel feature 

but they also showed an interesting property where droplets of liquids placed on the 

surface would remain in droplet form for some time and is illustrated in the following 

image. The hydrogel on the left of the image is 50-1 and the right is bare PGMMA. The 

image was taken on the bench in our lab. The red liquid is distilled water containing a red 

dye  

 

 This property was exploited when seeding cells in small volumes of media onto the 

hydrogels as the droplet was contained on the surface of the gel until it had time to soak 

into the hydrogel, which typically took less than an hour. Future experiments could look to 

quantifying this property as a function of contact angle of the applied drop. Preliminary 

contact angle studies were not very successful as when dried the hydrogels absorbed the 

drop too quickly for accurate measurements to be taken. A future experiment could look to 

Figure 9-1 A photograph of water droplets on the surface of hydrogels 50-1 and 0 



 

184 

 

using the technique of captured bubble contact angle measurement which is conducted 

under water with an air bubble. This technique was not available to me during the course of 

this project and time was exhausted before further investigations could be made. 

THP-1 culture was very variable and the cells quite temperamental, processes that worked 

one day, when repeated in exactly the same way two days later would have no effect. In the 

final experiment presented, the THP-1 cells all appeared either dead or inactive on the 

surfaces of the hydrogels and controls. For this to happen to every single well or sample 

analysed there must have been an environment wide issue befall them. This could have 

been over stressing of the cells when setting up and conducting the experiment but this is 

unlikely as there would surely be one or two wells which behaved as expected. One possible 

cause is a problem with the incubator, a minor fault with CO2 regulation overnight for 

example might have been enough to kill or inactivate the cells or a loss of incubator 

moisture may have had a similar effect. A future experiment could look to repeating my 

experimental set up successfully and assessing the cell’s responses to the surfaces by 

looking at the cytokines they produced over the course of the experiment. This was the key 

aim of the project which was sadly not met. Another possible experiment would be to look 

at cell surface markers present on the THP-1 cells, which are expressed upon adhesion. 

Using immunohistochemistry, it would be possible to definitively show that they THP-1 cells 

had properly adhered to the surfaces of the hydrogels. 

Some of the most promising work in this project was the core-shell work. In this chapter, 

protected CS particles were produced simply in water using emulsion polymerisation. They 

were easily washed and purified, then deprotected. The particles then swelled with water to 

far greater particle diameters than they had shown previously. This was a key indicator of 

hydrogel functionality, so the particles could be thought of as microgel particles. The CS 
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particles showed that they could adsorb protein molecules and therefore show promise as a 

potential carrier for biologically active molecules. Future experiments could look at their 

encapsulation and release of biologically active molecules, or possibly at their incorporation 

into hydrogels in a similar manner to the latex particles and see if this presented a different 

sort of hydrogel surface, onto which a cell could adhere. If the particles are shown to have 

good release profiles, then hydrogels containing particles or immobilised particles could find 

application in advanced wound dressings. 
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10 Appendix 

Tables of significance showing the results of Tukey’s multiple comparison tests on cytokine 

data. Significance levels are denoted by stars (**). No significance by NS. 

50-1 PMA IL-6  

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

4 **** **** ****  

50-1 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  * 

24 NS NS *  

 

50-1 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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50-1 PMA TNF 

Time 0 4 8 24 

0  ** NS NS 

4 **  ** ** 

8 NS **  NS 

24 NS ** NS  

50-1 LPS TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

50-1 MED TNF 

Time 0 4 8 24 

0  NS NS * 

4 NS  NS ** 

8 NS NS  NS 

24 * ** NS  

 

50-2 PMA IL-6 

Time 0 4 8 24 

0  NS NS ** 

4 NS  NS ** 

8 NS NS  ** 

24 ** ** **  
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50-2LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

50-2 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

50-2 PMA TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

50-2 LPS TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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50-2 MED TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

50-3 PMA IL-6 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  

50-3 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

50-3 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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50-3 PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

 

50-3 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

50-3 MED TNF 

Time 0 4 8 24 

0  NS NS ** 

4 NS  NS ** 

8 NS NS  NS 

24 ** ** NS  

25-1 PMA IL-6 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  
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25-1 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

25-1 MED IL-6 

Time 0 4 8 24 

0  NS NS * 

4 NS  NS ** 

8 NS NS  * 

24 * ** *  

 

25-1 PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

25-1 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  
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25-1 MED TNF 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  ** 

24 **** **** **  

25-2 PMA IL-6 

Time 0 4 8 24 

0  NS NS * 

4 NS  NS NS 

8 NS NS  NS 

24 * NS NS  

25-2 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

25-2 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS * 

8 NS NS  NS 

24 NS * NS  
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25-2 PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

25-2 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

 

25-2 MED TNF 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  

25-3 PMA IL-6 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS ** 

8 NS NS  *** 

24 **** ** ***  



 

194 

 

25-3 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

25-3 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

25-3 PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

25-3 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  
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25-3 MED TNF 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  

1-1 PMA IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  * 

24 NS NS *  

1-1 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

1-1 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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1-1 PMA TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

1-1 LPS TNF 

Time 0 4 8 24 

0  * NS NS 

4 *  NS * 

8 NS NS  NS 

24 NS * NS  

 

1-1 MED TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

1-2 PMA IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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1-2 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

1-2 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

1-2 PMA TNF 

Time 0 4 8 24 

0  *** NS NS 

4 ***  *** *** 

8 NS ***  NS 

24 NS *** NS  

 

1-2 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  
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1-2 MED TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS * 

8 NS NS  NS 

24 NS * NS  

1-3 PMA IL-6 

Time 0 4 8 24 

0  NS NS * 

4 NS  NS * 

8 NS NS  * 

24 * * *  

1-3 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

1-3 MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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1-3 PMA TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

1-3 LPS TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

1-3 MED TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS * 

8 NS NS  NS 

24 NS * NS  

0 PMA IL-6 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  
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0 LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

0MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

0 PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

0 LPS TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  
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0 MED TNF 

Time 0 4 8 24 

0  NS NS **** 

4 NS  NS **** 

8 NS NS  **** 

24 **** **** ****  

TCP PMA IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

TCP LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

TCP MED IL-6 

Time 0 4 8 24 

0  **** **** *** 

4 ****  NS NS 

8 **** NS  NS 

24 *** NS NS  
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TCP PMA TNF 

Time 0 4 8 24 

0  **** NS NS 

4 ****  **** **** 

8 NS ****  NS 

24 NS **** NS  

TCP LPS TNF 

Time 0 4 8 24 

0  **** **** **** 

4 ****  **** **** 

8 **** ****  NS 

24 **** **** NS  

 

TCP MED TNF 

Time 0 4 8 24 

0  **** **** **** 

4 ****  NS NS 

8 **** NS  NS 

24 **** NS NS  

PET PMA IL-6 

Time 0 4 8 24 

0  NS NS ** 

4 NS  NS ** 

8 NS NS  ** 

24 ** ** **  
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PET LPS IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

 

PET MED IL-6 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

PET PMA TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  

PET LPS TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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PET MED TNF 

Time 0 4 8 24 

0  NS NS NS 

4 NS  NS NS 

8 NS NS  NS 

24 NS NS NS  
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