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Abstract 

Two estrogen receptors exist, ERα and ERβ. ERα is often over-expressed in breast 

cancers, frequently coupled with ERβ downregulation.  

The complex function of ERβ is not fully understood. There are 5 ERβ isoforms, 

ERβ1-5, and three are present in breast tissue (ERβ1, -2 and -5). Knowledge 

surrounding the role of the ERβ2 in breast cancer is limited; however its cellular 

location has been demonstrated to have predictive prognostic ability; nuclear 

expression was associated with better prognosis and cytoplasmic with poorer 

prognosis. Aside from acting as a repressor of ERα in breast cancer cells, little is 

known about the function of ERβ2.  

The aim of this thesis was to improve our understanding of ERβ2 and its potential 

role in breast cancer. ERβ2 expression was characterised in a range of breast 

cancer cell lines representative of five major molecular subgroups where it was 

expressed in both the nucleus and cytoplasm. Nuclear ERβ2 was largely expressed 

in a speckled pattern while cytoplasmic ERβ2 colocalised with mitochondria in all 

cell lines.  

ERβ nuclear speckles were explored further by immunofluorescence. ERβ2 

speckles did not colocalise with other known nuclear speckled proteins, including 

nuclear speckles, PML and cajal bodies. Speckle numbers changed in response to 

4-OHT, DPN and genistein treatment but not E2, and disappeared following 

transcriptional or translational inhibition with actinomycin D and cyclohexamide 

respectively. Numbers of ERβ2 speckles decreased during G2/M phase of the cell 

cycle. 

The physiological function of ERβ2 was explored by overexpressing ERβ2 in 

luminal and triple negative cell lines. ERβ2 overexpression resulted in suppression 

of proliferation in luminal cells whereas in triple negative cells, proliferative 

response was cell line-dependent. Cell migration was decreased in all cell lines. 

ERβ2 overexpression additionally influenced gene transcription of some nuclear 
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genes i.e. BCL-2, CDK6, S100A7 and RIP140 and also some mitochondrially 

transcribed genes i.e. ND1, ND2, CYB and ATP6. 

In summary, ERβ2 was expressed in the nucleus as speckles; dynamic structures 

which changed in number in response to external stimuli. Cytoplasmically 

expressed ERβ2 colocalised with the mitochondria may influence transcription of 

some mitochondrial genes.  
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1.0 Chapter 1: Introduction 

1.1 Normal Breast Anatomy 

The normal breast contains a series of structures that contribute to its main 

function; production and expression of milk during lactation. It is made up of a 

series of lobules and ducts, which are surrounded by connective tissue also known 

as stroma, shown in Figure 1.1. Lobules are made up of small rounded structures 

known as acini, which contain epithelial and myoepithelial cells contained within a 

basement membrane. The epithelial cells are located on the inside edge of the 

ducts and lobules and are responsible for secreting milk upon stimulation with 

hormones after giving birth. Estrogen is responsible for the growth and 

differentiation of the ducts and lobules and similarily progesterone influences the 

size of the acini (1). Both inhibit lactation until birth, when levels of estrogen and 

progesterone drop and prolactin causes epithelial cells to secrete milk (2). The 

myoepithelial cells surround the outer edge of the epithelial cells and function to 

contract in order to eject secreted milk into the ducts (3). Both cell types are 

surrounded by a protein rich basement membrane. The ducts are in continuity with 

the lobules and serve as a drainage system to the nipple. Together the smaller 

ducts and the lobule are known as terminal ductal lobular units (TDLU), considered 

the major functional structural component of the breast (4).  Other components of 

the breast include the stroma or connective tissue which also plays a functional 

role. It contains cells such as fibroblasts (which secrete collagen), endothelial cells, 

adipocytes, stem and immune cells, and serves to provide a matrix in which the 

TDLUs can grow and help create the structure of the breast (5).  
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Figure 1.1. Diagrammatic representation of breast anatomy. Taken from [3] 
with author’s permission. 
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1.2 Breast cancer 

1.2.1 Epidemiology 

Breast cancer is responsible for 23% of new cancer cases per year worldwide and 

is the most frequently diagnosed cancer in women. It is attributed to 14% of total 

cancer deaths (6) and is estimated to affect 1 in 8 females in their lifetime (7). It is 

also one of the most treatable cancers with 78% of women in England and Wales 

surviving 10 or more years after diagnosis (8). With breast cancer being so 

prevalent among the population, it is not surprising there is considerable research 

into this disease. 

1.2.2 Pathology 

In western society, breast cancer is the most common type of malignancy in 

females. Breast cancers generally arise in the epithelial cells of the ducts or lobules. 

The myoepithelial cells are thought to be tumour suppressive as it has been 

suggested they regulate the in-situ to invasive process by contributing to the control 

of epithelial cell cycle progression, invasion, migration and cell polarity (9).  

At its earliest stages carcinomas are confined to ducts or lobules, and have not 

breached the basement membrane and invaded surrounding tissue. These non-

invasive cancers are more commonly known as ductal carcinoma in situ (DCIS) or 

lobular carcinoma in situ (LCIS). Invasive carcinomas are characterised by the 

breach of the basement membrane in ducts or lobules, by the tumourous epithelial 

cells, whereby they “invade” the surrounding tissues. It is hypothesised that 

myoepithelial cells lose their tumour suppressive properties at this point allowing 

epithelial invasion and proliferation (9). The most common group of invasive breast 

cancers are infiltrating ductal carcinoma of no special type (NST), with around 75% 

of invasive breast cancers belonging to this group. Infiltrating lobular carcinomas 

account for a much lower percentage (10%) of invasive breast cancers. Other types 
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include mucinous, tubular, papillary and medullary, which are all rarer forms of the 

disease (4). Figure 1.2 illustrates the morphological differences in normal breast 

tissue, DCIS and invasive breast cancer.  
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Figure 1.2. H&E stained sections of breast tissue. 
(a) Normal benign breast tissue, low magnification. Image shows distinct organised 
structure of the lobule. Highlighted (arrow) is an individual acinus  
(b) Normal benign breast tissue, high magnification. Individual acini can be seen in 
detail, showing two cell layers. The black arrow denotes the luminal epithelial cells 
and the red arrow indicates the myoepithelial cells. These cells are encased in a 
basement membrane (blue arrow)  
(c) DCIS, high magnification. Epithelial cells have proliferated into the ductal space 
(arrow) but are still contained within the basement membrane; the tumour remains 
non-invasive. 
(d) Invasive breast carcinoma, high magnification. Illustrates disorganised 
arrangement without two organised cell layers as seen in normal breast tissue. 
Large pleomorphic nuclei are shown by the arrows. 
Images were provided by Professor A Hanby, Professor of Breast Cancer 
Pathology at the University of Leeds 
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1.2.3 Risk factors 

Risk factors associated with the development of this disease include increased age, 

obesity, familial history, environmental factors such as higher alcohol consumption 

or lack of exercise, increased duration between menarche and menopause, use of 

oral contraceptives and levels of endogenous sex hormones (10). Familial history 

predominantly refers to genetic risk factors such as the presence of mutant BRCA1 

or BRCA2 gene, which can increase the lifetime risk of developing the disease by 

45-90% (11). Other genetic variants that predispose to breast cancer have also 

been identified and include TP53 (12) and PTEN (13), which have been shown to 

significantly increase breast cancer risk. In addition CASP8 and FGFR2, to name a 

few, are demonstrated to be commonly defective in breast cancer and having a 

variant for of these genes increases the risk of breast cancer. Other rarer genetic 

variants that influence breast cancer prevalence include CHEK2, ATM, BRIP1 and 

PALB2 (12, 14-16). Still, mutations in these genes only account for around 25% of 

hereditary breast cancers. With lifestyle factors thought to cause around 27% of 

breast cancers, everyday changes to habits could reduce incidence (17). A diet low 

in saturated fat and alcohol, maintenance of a healthy weight and regular exercise 

could all contribute to lower the risks of developing breast cancer. When familial 

history pre-disposes a person to breast cancer, options such as a mastectomy or 

prophylactic tamoxifen/raloxifene, two selective estrogen receptor modulators, 

treatment could benefit the person (18). 

1.2.4 Prognosis 

Prognosis of a patient with breast cancer depends on how advanced the disease is. 

At a rudimentary level breast cancers can be categorised into early breast cancer, 

locally advanced breast cancer and secondary or metastatic breast cancer. Early 

breast cancers are still confined to the breast whereas locally advanced breast 
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cancer is characterised by a larger size and presence in lymph nodes of the armpit 

or in the skin or muscle surrounding the breast. Secondary or metastatic breast 

cancers are those that have spread to other parts of the body. A more detailed 

method used by breast pathologists during diagnosis measures the size, grade and 

stage of the tumour, often referred to as TNM (tumour, node, metastases) breast 

cancer staging. These three parameters can be utilised to determine prognosis 

using the Nottingham Histologic Score system (or Nottingham prognostic index) 

(the Elston-Ellis modification of Scarff-Bloom-Richardson grading system (19). 

Grade is derived from a composite score, summating attributes of tubule formation, 

nuclear pleomorphism and mitotic activity. Grade inversely mirrors the degree of 

differentiation seen and a number is allocated based on this. Grade 1 tumours are 

well differentiated tumours and carry a better prognosis. Grade 2 tumours are 

moderately differentiated and cells look less normal, are faster growing and are 

often varied in size and shape. Grade 3 tumours are poorly differentiated and fast 

growing and tend to have much worse prognosis. Alone, this system over-simplifies 

complex underlying taxonomy. Tumours are also defined by their stage. This refers 

to the extent of spread, invasion and metastasis of the cancer. They are defined as 

stage 1-4, each with a series of subcategories. Low stage tumours are small and 

are contained within the breast, mid stage tumours are characterised by a larger 

size and spread to local lymph nodes whereas high stage tumours are typified by 

their large size and metastatic spread to nodes and distant sites (4). In order to 

metastasise, it is thought the tumour cells undergo a process called epithelial-

mesenchymal transition (EMT). This happens when cells at the outer edge of the 

invasive tumour undergo a phenotypic change, usually characterised by loss of the 

adhesion molecule E-cadherin, which allows them to break free from the primary 

tumour and enter the lymphatic system or blood vessels (20, 21). Here, the 

circulating tumour cells (CTC) can travel to distant sites, for example breast 

tumours commonly metastasise to the bone, liver, lungs and brain, where they 
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undergo the reverse process, mesenchymal-epithelial transition, to regain epithelial 

properties and form distant tumours (22). High stage tumours tend to have the 

worst prognosis.  

 

Prognosis not only depends on morphological features of breast cancer, but also its 

biology. Tumours can be characterised by their expression of a number of 

targetable proteins which can be exploited for therapeutic purpose. Expression of 

ERα, which occurs in around 70% of breast cancers, greatly improves prognosis as 

these tumours tend to be less aggressive and can be targeted with endocrine 

therapies (23, 24). In these ER positive breast tumours survival statistics and 

prognosis are good. A large study on over 111,000 patients with ERα positive 

tumours graded 1-3 found that 90-95% of patients survived beyond 5 years (25). 

Expression of the HER2 protein, which occurs in around 15-20% of breast cancer 

cases may mean the tumour can be targeted with monoclonal antibody (e.g. 

trastuzumab) therapy targeted to the HER2 protein. This type of breast cancer is 

the second most aggressive form with poorer prognosis and survival statistics than 

ERα+ breast cancers and is correlated with more invasive tumours (26). However 

prognosis does improve if the tumour responds to trastuzumab.  Triple negative 

breast cancers (TNBC) have the worst prognosis as they tend to be highly 

aggressive invasive metastatic tumours (27-29). Around 10-17% of breast tumours 

have a triple negative phenotype (30-33). TNBCs have a much higher mortality rate 

and tumours are often of a higher grade. A study that examined 1600 women with 

breast cancer, found that triple negative patients have an increased risk of 

recurrence and death within 5 years of diagnosis (34). By definition they lack ERα, 

PR and HER2 expression and cannot therefore be treated with targeted therapies, 

which contributes to their poor prognosis, Instead these tumours are routinely 

treated with chemotherapy. Prognosis between races can also vary dramatically 

and affect survival rates. Black women have a 3 fold higher chance of developing 
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TNBC than white populations (33). Hispanic populations also have an increased 

incidence of TNBC compared to the white population (35). The knock on effect of 

this is that the rate of mortality in these populations is also increased. 

 

A lack of molecular targets for TNBCs and incidences of resistance to HER2 and 

endocrine therapy means there is still huge scope for new and improved treatment 

options that are drastically needed for the 22% of breast cancer sufferers (11,643 

people in 2012 in the UK) (8) who still die from breast cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Molecular classification of breast cancer 

Breast cancer is a multi-faceted heterogeneous disease, and to try to treat the 

disease with a ‘one size fits all’ approach would be out of place. Instead molecular 
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advances have allowed clinicians to tailor treatments based on expression of 

specific proteins. Breast cancers can be classified into groups depending on their 

gene expression profile. Originally 5 subgroups were identified and characterised; 

Luminal A, luminal B HER2, basal and normal (36). Although defined by expression 

of a number of genes, for clinical use these groups are defined by the expression of 

ER, PR and HER2. The luminal groups are defined by their expression of estrogen 

receptor alpha (ERα) and progesterone receptor (PR). HER2 breast cancers 

overexpress the membrane bound protein epidermal growth factor receptor 2 

(HER2), however luminal B tumours express HER2 as well as ER/PR. Basal types 

are usually negative for ER, PR and HER2. The normal group contained tumours 

that had variable gene expression and prognosis so could not be classified in any of 

the other groups. A claudin-low subgroup was later identified (37). This group was 

characterised by a lack of expression of HER2 and luminal markers such as ER 

and PR, along with inconsistent expression of basal keratins, and unlike basal 

tumours, low expression of the proliferation marker ki67. A more recent publication 

indicates that realistically there are probably at least 10 subcategories of breast 

cancer (38). Gene expression patterns of just under 1000 tumours were analysed 

and authors discovered that tumours clustered into 10 groups with distinct outcome. 

These clusters were based on copy number variations but researchers also 

included information about single nucleotide polymorphisms (SNPs) and gene 

expression patterns, and added independent predictive value away from size, 

grade, and nodal status. Interestingly, one of the subgroups identified was a mix of 

ERα positive and negative tumours that were grouped due to a strong immune and 

inflammatory gene signature with lymphocytic infiltration. 

In addition, to further add a layer of complexity to the heterogeneity of breast 

cancer, 6 subgroups of triple negative breast cancer have also been identified by 

cluster analysis of 587 TNBC tumours. These include 2 basal-like groups (BL1 and 
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BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL) 

and luminal androgen receptor (LAR) subtype (39). 

For the purpose of this study, the cell lines used were grouped based on 5 

subtypes; luminal A, luminal B, HER2, basal and claudin-low and Table 1.1 

summarises receptor expression and characteristics of these 5 subgroups. 
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Subgroup 
Receptor 
Expression 

Characteristics Therapy Survival 

Luminal 
A 

ER+, PR+/-, 
HER2- 

Slow growing (low 
Ki67), less aggressive 

Respond to 
endocrine 
therapy 

Longest 
overall 
survival 

Luminal 
B 

ER+, PR+/-, 
HER2+ 

Fast growing (Ki67 
high), less aggressive 

Usually respond 
to endocrine 
therapy 

Increased 
survival 

HER2 
ER-, PR-, 
HER2+ 

Fast growing (high 
Ki67), aggressive, but 
less so than TNBC. 

Trastuzumab 
and 
chemotherapy 
responsive 

Decreased 
survival 

Basal 
ER-, PR-, 
HER2- 

Fast growing (high 
Ki67), cytokeratin 
5/6+, some EGFR+ 

Often 
chemotherapy 
responsive 

Shortest 
overall 
survival 

Claudin-
low 

ER-, PR-, 
HER2- 

Slow growing (low 
ki67), aggressive, 
invasive (loss of E-
cadherin), Claudin-3, 
claudin-4 & 7 low 

Intermediate 
response to 
chemotherapy 

Decreased 
survival 

Table 1.1. Classification of 5 subgroups of breast cancer (36, 37) used in this 
study Adapted from Holliday et al 2009 (40) 
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1.4 Mechanisms of estrogen action in the breast 

ERα+ breast cancers proliferate in response to the hormone estrogen. There are 3 

major naturally occurring estrogens produced in the body; estrone (E1), estradiol 

(E2) and estriol (E3), and E2 is the most potent form requiring lower doses to 

produce an effect (41). Estrogen is predominantly synthesised and secreted by the 

ovaries upon stimulation with follicle-stimulating hormone, which is produced in the 

pituitary gland. Estrogens can also be secreted by adipose tissue (body fat) (42).  

Estrogens have numerous functions in the body and a key role is in the 

development of female sexual characteristics. They also have function in the skin, 

heart and various biochemical processes such as protein synthesis, control of 

cholesterol levels and various hormones. Estrogen has important function in the 

morphological development of the prostate, lung, brain, ovaries, uterus and breast 

(43). 

 

In the breast estrogen is essential for normal regulation of the growth and 

differentiation of breast tissue (44).  Estrogen signalling is mediated by estrogen 

receptors. There are two subtypes of estrogen receptor identified; ERα, first 

identified in rat uterus in 1966 (45) and ERβ, first described in rat prostate and 

ovary in 1996 (46). On a molecular level, estrogen receptors function as 

transcription factors when activated either in a ligand dependant, or ligand 

independent manner. Both regulate a distinct subset of genes often involved in 

proliferation and apoptosis (47). Figure 1.3 describes the different activation 

pathways of ERs, which results in target gene transcription. Simplified, ligand 

dependant activation involves the binding of a ligand to the estrogen receptor, 

which then translocates to the nucleus and dimerises with other ERs. This receptor 

dimer then recruits co-regulators that bind to the promoter region of the target gene 

where transcriptional machinery is recruited and the gene transcribed. There are a 

number of promoter regions that ERs bind to, which regulate different genes. 
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Originally it was thought that binding only to estrogen response elements (EREs) in 

the promoter region of estrogen responsive genes would initiate transcription. It is 

to these response elements that ERs bind directly. However transcription can also 

be initiated by the interaction of ER dimers with other transcription complexes which 

then target other response elements on different subsets of genes. ER interaction 

with the Fos/Jun complex regulates transcription at AP-1 promoter sites and 

interaction with SP-1 results in binding to SP-1 motifs in target gene promoters (43, 

48, 49). However, estrogen signalling in this way is more complex and target gene 

regulation depends on the type of ligand or the dimerisation combination that 

occurs. Agonists and antagonists will initiate different transcriptional responses. For 

example, agonists may result in a confirmation change in ERs that allows co-

activators to be recruited and gene transcription to be initiated. When the antagonist 

tamoxifen binds, the resultant conformational change initiates recruitment of co-

repressors, which prevents transcription (50, 51). This recruitment of co-

activators/repressors is mediated through binding to the AF-2 domain on the ER, 

contained within its ligand binding domain.  

The combination of ER dimers that form upon activation also influences response. 

ERα homodimers result in co-activator recruitment and active transcription (52). 

ERβ has much lower trans-activation ability on ERE regulated genes. When 

ERα/ERβ forms a heterodimer, suppression of ERα activated genes is observed 

due to the recruitment of co-repressors (53). Heterodimerisation is preferential 

when both receptors are present thus ERβ has a dominant effect over ERα (54). 

ERα action can also be negated by formation of ERβ homodimers, which regulates 

genes that oppose the action of ERα regulated genes. ERα or β homodimers 

regulate the majority of the same genes, involved in processes such as 

proliferation, cell cycle, apoptosis and cell motility but in a manner thought to give 

opposing action.  
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Estrogen signalling is complex, and not yet fully understood. The nature of the 

ligand, co-expression of ERs, cross talk with other signalling pathways and the 

added complexity of ERβ isoforms and their role in signalling indicates further 

scrutiny is vital. 
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Figure 1.3. Simplified diagrammatic representation of ER activation pathways. 
1) Direct activation. The ligand binds the ER, causing the receptor to dimerise and 
bind directly to the estrogen response element (ERE) on the target gene (55).  
2) Indirect activation. The ligand bound ER dimers bind to genes which do not 
contain EREs, by protein-protein interaction with other transcription factors (41).   
3) Ligand-independent regulation occurs through other signalling pathways such as 
the growth factor signalling.  Activated kinases phosphorylate the ER resulting in 
dimerisation with other ERs followed by binding to EREs in target genes regulating 
their transcription (41).  
4) Non-genomic regulation. Rapid physiological response is caused by the 
interaction of ligand bound ER with second messengers. Second messengers may 
affect ion channels or increase nitric oxide levels in the cytoplasm through 
PI3K/AKT dependent pathway activation 
GFR= Growth Factor receptor, GF= Growth Factor, SM= Second Messengers 
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1.5 Estrogen receptors 

As previously mentioned there are 2 types of estrogen receptor ERα and ERβ. 

Their genes are located on different chromosomes with ESR1 (coding for ERα) 

found on chromosome 6 at position q25.1 (56) and ESR2 (coding for ERβ) on 

chromosome 14 at position 14q22-24 (57). They are thus products of independent 

genes. They share variable homology on regions of their protein. Both ER proteins 

contain an N-terminal domain, a DNA-binding domain, a hinge region, a ligand-

binding domain and a C-terminal domain. The DNA binding domain shares 95% 

homology with ERα, which explains why the two estrogen receptors interact with 

the same response elements in target genes. However the ligand binding domain 

has only 55% homology, and as a consequence ERβ has lower affinity for its ligand 

(58).  

1.5.1 Normal breast 

In normal breast ERβ is the principally expressed isoform, while ERα is infrequently 

expressed in normal breast cells (59). Only around 10% of normal breast epithelia 

express ERα (60). This is restricted to the epithelial cells of breast and no ERα 

expression was reported in other breast cell types. ERβ is also present in these 

epithelial cells and is observed in addition within myoepithelial and some stromal 

cells (59, 61). ER levels change during the menstrual cycle as estrogen stimulates 

growth of breast ducts and lobules. Proliferation of breast epithelia is influenced by 

a fine balance between ERα and ERβ (53). During the first half of the menstrual 

cycle (day 1-14), ERα expression is observed in 31% of epithelia, whereas no 

expression of ERα is present during the second half (day 15-27) (62).  Knockout 

mouse models have demonstrated that ERβ does not appear to influence 

mammary development. Mammary gland structure develops normally and after 

pregnancy, lactation and mammary gland differentiation also appears normal (63-
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65). ERα however is essential for breast development and function. ERα knockout 

mice have a rudimentary ductal system with no epithelial branching and lobular 

development, and demonstrate a loss of lactation functionality (66). In normal 

breast it is important to note that ERs also appear in the stromal component. Both 

stromal and epithelial ERα is required for full mammary development; it was found 

that if given E2, stromal ERα was sufficient for complete development.  Without any 

ERα present only a rudimental ductal system develops (67).  

1.5.2 Breast cancer 

70% of breast cancers are diagnosed as ER positive (ER+), and this refers to the 

expression of the ERα receptor in the tumour. An ER+ breast cancer occurs when 

the balance of estrogen receptors in the breast epithelia is disrupted and ERα 

becomes overexpressed (68). ERα overexpression leads to constitutive activation 

of estrogenic responsive genes many of which result in cell growth, proliferation and 

suppression of apoptosis (69, 70). ERα overexpression is often coupled with down-

regulation of ERβ (71). Reasons for this respective up and down-regulation and the 

subsequent oncogenicity are unknown, however given that ERβ is the dominantly 

expressed ER in normal breast and ERα is rarely expressed (59), loss of ERβ may 

be as important in tumourigenesis as ERα overexpression.  
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1.6 ERβ  

Five isoforms of ERβ have been identified. Isoforms 1, 2 and 5 are present in the 

breast tissue. The isoforms are formed by alternative splicing at exon 8. (54). Figure 

1.4 depicts the ERβ gene and the resulting 5 protein isoforms. The ERβ isoforms 

only differ in their C-terminus affecting their ligand binding domains. ERβ1 is the 

ligand binding isoform. The position of helix 12 in the LBD is important for ligand 

binding. In ERβ1 it is positioned so when a ligand is bound, co factors can be 

recruited and transcription activated. In the shorter ERβ2, helix 12 is folded 

differently and the binding pocket is much smaller so binding is blocked. In ERβ5, 

the C-terminal is much shorter and no binding pocket is formed due to an absent 

helix 12 (54). The action of ERβ1 homodimers and heterodimers is described in 

section 1.4. The ERβ2 and ERβ5 isoforms cannot form homodimers and have little 

function on their own. They exert their action by heterodimerising with ERα or other 

ERβ isoforms to repress or enhance their activity (72). 
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Figure 1.4. Diagram representing the ERβ gene and the different protein 
isoforms found in breast; a consequence of alternative splicing at the last 
exon (depicted in grey). 
0k and 0N represent 2 untranslated exons at the 5’ end of the gene, exons 1-8 are 
represented by boxes and introns by lines. cx represents a 3’ exon present in the 
long form of ERβ2 protein (ERbcx). Dotted lines link areas of the ERβ gene that 
code for each protein domain. AF-1: activation function-1 (ligand independent), 
DBD: DNA binding domain, H: hinge region, LBD: ligand binding domain, AF-2: 
activation function 2 (ligand dependent).  Number of amino acids (aa) that make up 
each isoform is displayed at the ends of the proteins. Taken from Smart et al (2013) 
with author’s permission (73) 
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1.6.1 ERβ1 and breast cancer 

The most well studied ERβ isoform in breast cancer is ERβ1. ERβ1, the ligand 

binding isoform of the ERβ receptors, is widely believed to be tumour suppressive 

and its function protects against breast cancer. Numerous clinical studies have 

identified ERβ1 expression in all molecular subgroups of breast cancer. A large 

cohort of 2170 patients revealed that 72% of luminal A, 68% of luminal B, 55% of 

HER2 and 60% of basal tumours expressed ERβ1 (74). ERβ1 expression is 

demonstrated to be associated with small tumour size, negative lymph node status 

and low histological grade (75). Most studies also correlate ERβ1 expression with a 

better prognosis (76-78) and a loss of ERβ1 in the primary tumour has been 

associated with poor survival and higher grade more aggressive tumours (79). 

Investigation of ERβ1 on a functional level has been widely studied, commonly 

through overexpression of the protein. Common observations in the literature have 

determined that overexpression of the ERβ1 protein in-vitro triggered effects such 

as reduced proliferation and invasiveness and inhibition of tumour formation (80-

83). Suppression of the cell cycle may contribute to reduced proliferation as ERβ1 

overexpression has been demonstrated to cause G1 arrest as a result of cyclin D1 

down-regulation (84). High levels of ERβ in tumours have been shown to correlate 

with a better response to tamoxifen and longer overall survival time, giving evidence 

to support the theory that ERβ may act as a tumour suppressor (85, 86). 

 

There are incidences where ERβ1 has been linked to poor outcome (87, 88). One 

study correlated ERβ mRNA with poor prognosis, identifying mRNA levels as an 

independent prognostic marker in breast tumours (89). However, this study not only 

measured total ERβ (all isoforms) but also mRNA levels, which have been 

demonstrated to not always correlate with protein levels (90) add ref  88, 90, 173). 

ERβ1 has also been correlated with Ki67, a proliferation marker, in clinical tumour 
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samples (91). On a functional level, there are incidences where ERβ 

overexpression has been associated with increased proliferation. Two studies have 

associated ERβ1 expression with increased proliferation. Both have investigated 

ERβ1 overexpression in triple negative breast cancer cell lines. Tonetti et al (2003) 

(92) demonstrated increased proliferation with ERβ1 overexpression. However this 

study used a truncated shorter form on ERβ1, which may have influenced the 

outcome, as this protein lacked a complete AF-1 domain, which may have 

influenced ligand independent activation. The other study by Hou et al (2004) (93) 

used MDA-MB-435 cells which have since been identified as a melanoma cell line. 

The major ERβ1 functional studies in breast cancer cell lines are summarised in 

Table 1.2. 

1.6.2 ERβ2 and breast cancer 

Much less is known about ERβ2 in breast cancer than ERβ1. ERβ2 has been 

demonstrated to be expressed in all histological grade breast tumours (79). 

Positive expression appears to vary between studies. In a cohort of 713 patients, 

83% of tumours expressed nuclear ERβ2 (94). However in another study only 

32% of tumours expressed nuclear ERβ2 (60). This may be due to variation in 

staining techniques, sample preparation and antibodies used, illustrating a need 

for standardisation. Much of the literature agrees that ERβ2 expression is 

positively correlated with ERα (75, 94), but it is also regularly observed in ER/PR 

negative tumours (95). The clinical data pertaining to its prognostic ability is just 

as conflicting. It has been implicated in both good and poor outcome. ERβ2 

expression has been associated with low histological grade and high expression 

of both mRNA and protein correlated with better disease free and overall survival 

(75). Its presence has also been associated with better response to endocrine 

therapy (96). Low ERβ2 expression has been demonstrated to correlate with 

high Ki67 expression, a marker of proliferation (97) suggesting loss of ERβ2 may 

result in increased proliferation. However some studies also reported correlation 
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with poor overall and disease free survival and ERβ2 presence in the primary 

tumour was associated with metastasis (98). ERβ2 expression has also been 

demonstrated to increase in invasive tumours compared to adjacent ‘normal’ 

tissue possibly implicating ERβ2 in tumourigenesis (99). The varied prognostic 

ability of ERβ2 may be due by an association with ERα. Generally ERα positive 

tumours have a better outcome, and as around 70% of tumours express ERα, 

this may heavily influence ERβ2’s prognostic ability, given that ERβ2 has been 

demonstrated to be correlated with ERα. Another possible source of variation 

could be due to the location of ERβ2 within the cell. Nuclear ERβ2 is associated 

with better prognosis and overall survival and cytoplasmic ERβ2 with poor 

prognosis (94, 100), thus it may be important to distinguish the location of the 

staining before reporting on prognosis.  ERβ2 has also been shown to have a 

strong prognostic ability in other tissues. In prostate cancer ERβ2 was the 

predominantly expressed ERβ isoform and was largely expressed in the 

cytoplasm with only around 10% of cells displaying nuclear ERβ2. In this context 

nuclear ERβ2 was associated with shorter time to postoperative metastasis and 

poorer survival (101). In advanced serous ovarian cancer, cytoplasmic ERβ2 

expression was associated with significantly worse outcome and chemo-

resistance (102). The clinical data regarding opposing prognosis between 

cytoplasmic and nuclear expression may indicate ERβ2 has a separate function 

in these compartments.  

 

In terms of its function, little is known about ERβ2 in breast cancer. It is believed to 

function by forming heterodimers with ERα or ERβ1. Similarly to ERβ1, it has been 

shown to be a tumour suppressant in ERα+ cells, when dimerised with ERα (95). It 

preferentially forms a heterodimer with ERα (103). This negative effect has not 

been observed when heterodimerising with ERβ1. It has been proposed that it 

enhances the transcriptional ability of ERβ1 (54), therefore potentially co-regulating 

some of the same sets of genes. In ERα positive MCF-7 cells, ERβ2 

overexpression resulted in a reduced S-phase cell population suggesting growth 
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ability was impaired (104). This may be due to its interaction with ERα. Zhao et al 

(2007) demonstrated ERβ2  induced proteasome-dependant degradation of ERα, 

and that its expression reduced the recruitment of ERα to estrogen response 

elements (95). It appears that in the presence of ERα, ERβ2 may be tumour 

suppressive. However without ERα co-expression, the function of ERβ2 in breast 

cancer remains unclear. When overexpressed in the triple negative cell line 

HS578T, ERβ2 had no effect on growth (105). Studies examining ERβ2 

overexpression in breast cancer cell lines are summarised in Table 1.2. 

In other tumour types ERβ2 overexpression did affect proliferation. In the prostate 

cell line PC3, ERβ2 overexpression resulted in increased proliferation and 

upregulation of the proliferation marker gene c-Myc (106). They also observed an 

upregulation of RUNX2 mRNA by ERβ2 overexpression, a transcription factor 

shown to increase the metastatic potential of prostate cancer cells. Other studies in 

prostate have also demonstrated an ERβ2 mediated increase in invasive potential 

(101). These studies appear to show a distinct role for ERβ2 dependent on cellular 

context 
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1.6.3 ERβ5 and breast cancer 

Very few studies have examined ERβ5 function in normal breast and breast cancer. 

Like ERβ2, it does not bind a ligand or form homodimers, but it thought to exert its 

effect by heterodimerising with other ERs to alter their function (54).  One study, 

summarised in Table 1.2, found ERβ5 had no effect on growth of breast cancer cell 

lines but did sensitise cells to apoptosis (107).  

There is also a lack of studies examining ERβ5 expression patterns in clinical 

breast cancer samples. One major study by Shaaban et al (2008) examined ERβ5 

expression in a cohort of 757 patent tumour samples.754 of these patient tumours 

expressed nuclear ERβ5. Nuclear expression was significantly associated with 

better overall survival only when 65% positive nuclei was used as a cutoff, 

suggesting only high expression is associated with better outcome. Unlike ERβ2, 

cytoplasmic ERβ5 expression was rare (94). ERβ5 expression has also been 

investigated in other tumour types. In advanced serous ovarian cancer ERβ5 

expression was nuclear and rarely cytoplasmic (102). However in prostate tumour 

specimens, ERβ5 was primarily located in the cytoplasm and this correlated with 

short postoperative metastasis. Ectopic expression of ERβ5 in prostate cancer cells 

enhanced invasion and migration of cells (101). 
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ER 
isoform 

Cell line 
Receptor 
classification 

Observation Effect on Tumour Reference 

ERβ1 

MCF-7 ERα+ 
Growth suppression-G2 cell cycle arrest 
Prevents xenograph tumour formation 

Tumour 
suppressive 

Paruthiyil et al 2004 
(80) 

MCF-7 ERα+ 
Cell cycle arrest-CDK1 inhibition by induction of 
gadd45a and btg2 

Tumour 
suppressive 

Paruthiyil et al 2011 
(81) 

MCF-7 ERα+ Growth suppression 
Tumour 
suppressive 

Murphy et al 2005 (83) 

MCF-7 ERα+ Growth suppression 
Tumour 
suppressive 

Hodges-Gallagher 
2008 (108) 

MCF-7 ERα+ 
Reduced S-phase population resulting in growth 
suppression 

Tumour 
suppressive 

Omoto et al 2003 (104) 

MCF-7 ERα+ Growth suppression 
Tumour 
suppressive 

Treeck et al 2007 (109) 

T47D ERα+ Decreased tumour size in xenographs 
Tumour 
suppressive 

Horimoto et al 2011 
(110) 

T47D ERα+ Growth suppression 
Tumour 
suppressive 

Strom et al 2004 (82) 

SKBR3 HER2 Growth suppression 
Tumour 
suppressive 

Treeck et al 2007 (109) 

HS578T TN 
E2 stimulated growth suppression, decreased S-
phase population 

Tumour 
suppressive 

Secreto 2007 (105) 

HS578T TN E2 stimulated growth suppression 
Tumour 
suppressive 

Shanle et al 2011 (111) 

Table 1.2. ERβ overexpression cell line models in breast cancer and resultant phenotypic change. TN: triple negative 
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ER isoform Cell line 
Receptor 
classification 

Observation 
Effect on 
Tumour 

Reference 

ERβ1 

MDA-MB-231 TN Ligand independent growth inhibition 
Tumour 
suppressive 

Lazennec et al 2001 
(112) 

MDA-MB-231 TN Increased proliferation Tumourigenic Tonetti et al 2003 (92) 

MDA-MB-453 TN Increased proliferation Tumourigenic Hou et al 2004 (93) 

ERβ2 

MCF-7 ERα+ 
Induced ERα degradation and inhibited 
recruitment to ERE-Reduced growth 

Tumour 
suppressive 

Zhao et al 2007 (95) 

MCF-7 ERα+ Decreased S-phase population 
Tumour 
suppressive 

Omoto et al 2003 (104) 

HS578T TN No effect on growth None 
Secreto et al 2007 
(105) 

ERβ5 
MCF-7 
 MDA-MB-231 

ERα+ & TN 
No effect on growth, sensitised cells to 
apoptosis 

Unknown Lee et al 2013 (107) 

Table 1.2 continued. ERβ overexpression cell line models in breast cancer and resultant phenotypic change. TN: triple negative
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1.7 Sub-cellular localisation of ERβ 

As a member of the nuclear receptor super-family, most studies have generally 

focused on nuclear expression of ERβ. However reports of extra-nuclear 

expression have been published, suggesting sub-cellular location of ERs may be 

important for function. These studies show ERβ expression in the nucleus, 

cytoplasm and mitochondria (113, 114). The location of ERβ within the cell has 

been shown to affect prognosis. Nuclear expression of ERβ1 and ERβ2 is 

associated with good prognosis and cytoplasmic with a poor prognosis. This may 

infer that ERβ has an alternate function in different compartments of the cell.  

1.7.1 Nuclear ERβ 

Nuclear ERβ it widely recognised to act as a transcription factor when located in the 

nucleus of a cell and its mechanism of action is described in section 1.4.  

Nuclear expression of ERβ has been associated with better overall prognosis in 

patients with breast cancer (81-83, 94, 96). It is thought ERβ1 regulates genes in 2 

ways; either as homodimers or as a heterodimers by altering the gene regulation of 

ERα. The other ERβ isoforms can enhance ERβ1 gene regulation by forming 

heterodimers with ERβ1. It has been shown, that ERβ regulates genes in an 

opposing manner to ERα i.e. ERβ1 down-regulates genes that are upregulated by 

ERα, and vice versa. For example genes that are frequently downregulated include 

those that promote the cell cycle and are anti-apoptotic. For this reason ERβ has 

been established as tumour suppressive in ERα+ tumours. Some examples of 

these genes are listed in table 1.3. 

There have been a small number of major genome wide studies investigating ERβ 

gene regulation using ChIP-Seq (47) and RNA-Seq technology (115). Ch-IP Seq 

identified ERβ binding sites in MCF-7 cells producing a comprehensive list of genes 

that are regulated directly by ERβ. This includes genes regulated by the ERβ1 
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homodimer or the ERβ1/ERα heterodimers. It does not however give any 

information as to whether ERβ1 heterodimerised with other ERβ isoforms. The 

study identified that ERβ regulated gene expression through binding promoters 

including AP-1, ERE, SP-1 and E2F sites. They identified 9702 binding sites for 

ERβ1 and 6024 binding sites for ERα. 4506 of these overlapped and were binding 

sites for both ERα and ERβ1. The genes that were identified as being regulated by 

ERβ1 included transcription factors and key proteins involved in cell cycle 

regulation, cell survival and differentiation pathways. Examples of these genes 

include CDK6, IGFBP-4, MYC, TGFβ-2, and TGFβI. The functional effect of ERβ1 

in MCF-7 cells was also observed, and it was found that proliferation was inhibited 

by the presence of this receptor, suggesting regulation of these genes by ERβ1 

leads to tumour suppression rather than a mitogenic effect as observed with ERα 

activation (47). 

One limitation of this study is that it was performed in MCF-7 cells, which are 

positive for ERα expression, and with E2 stimulation only. It is suggested that under 

different ligand stimulation, gene targets and how they are regulated may be 

changed. There is a wealth of knowledge available pertaining to ERβ1 expression 

in ERα+ tumours but much less investigating its function in ERα- tumours. 

Another recent genome wide study aimed to investigate ERβ1 gene regulation in 

ERα negative tumours (115). A similar technique, RNA-Seq (which measures the 

transcripts rather than location of transcription factor binding), was used. ERβ1 was 

overexpressed in the MDA-MB-468 TNBC cell line and gene transcript levels 

measured. Ligand-dependent and independent target genes were identified. 

Altogether 930 genes were differentially regulated between wt-MDA-MB-468 cells 

and ERβ1 overexpressing MDA-MB-468 cells. As in ERα+ cells, these genes were 

involved in the regulation of growth and proliferation, survival, cell death and 

motility. Gene targets identified in this study also correlated with ERβ1 in a cohort of 

clinical samples, further supporting the role that ERβ1 has in TNBC. The functional 
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effect of ERβ1 expression in these cell lines was also investigated. Inhibition of 

tumour growth due to G1 cell cycle arrest, inhibition of tumour growth and formation 

in xenographs and tumour regression after stimulation with E2 were all reported.  

There are very few studies that have investigated gene regulation by other ERβ 

isoforms. A microarray study investigating a subset of genes identified that ERβ2 

regulated similar genes to those of ERβ1 in MCF-7 cells. These included IGFBP4 

(involved in cell growth control) and cathepsin D (linked to poor prognosis in breast 

cancer), which were both downregulated (104).  

 

The consensus regarding the effect of ERβ1 on gene expression in breast cancer 

seems to agree with its tumour suppressive status, with genes that suppress the 

cell cycle and promote apoptosis commonly identified. Gene regulation by ERβ2 

and ERβ5 still needs investigation to determine their function in breast cancer. 
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Target 
Genes 

Function 
Regulation by 
ERβ 

Molecular Effect Cellular Effect Reference 

GADD45A, 
BTG2 

Inhibit CDK1 cell cycle regulator upregulation G2 cell cycle arrest 
Proliferation 
inhibition 

Paruthiyil et al 2011 (81) 

c-myc, 
Cyclin D1, 
Cyclin A 

Stimulate cell cycle progression downregulation Cell cycle arrest 
Proliferation 
inhibition 

Paruthiyil et al 2004 (80) 

P21, p27 Inhibit cell cycle progression upregulation Cell cycle arrest 
Proliferation 
inhibition 

Paruthiyil et al 2004 (80) 
Lazennec et al 2001 (112) 

Integrin α1 
& β1 

cell surface receptor involved in 
adhesion and migration 

upregulation 
Enhanced adhesion to 
extracellular matrix proteins 

Decreased 
migration 

Lindberg et al 2011 (116)  

Cyclin D1 
Regulates cell cycle progression 
at G1 checkpoint 

downregulation Cell cycle arrest 
Proliferation 
inhibition 

Strom et al 2004 (82) 

TGF-β 
genes 

Growth repressor when 
stimulated with E2 

downregulation Cell cycle arrest 
Proliferation 
inhibition 

Chang et al 2006 (117) 

FOXM1 regulates cell cycle progression downregulation Cell cycle arrest 
 
Proliferation 
inhibition 

Chang et al 2006 (117) 

E2F1 regulates cell cycle progression downregulation Cell cycle arrest 
 
Proliferation 
inhibition 

Chang et al 2006 (117) 

BCL-2 Anti-apoptotic downregulation Activation of apoptosis 
Increased cell 
death 

Ruddy et al 2014 (118) 

Table 1.3. Summary of nuclear action of ERβ isoforms on gene regulation function 
(ChIP-Seq and RNA-Seq gene expression data (47, 115) not included, but described in section 1.7.1) 
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1.7.2 Cytoplasmic and mitochondrial ERβ expression 

It has been shown that prognosis varies between patients who exhibit cytoplasmic 

vs. nuclear ERα expression in breast cancer. One group were able to demonstrate 

ERβ1 nuclear expression correlated with a favourable response to endocrine 

therapy and cytoplasmic ERβ2 expression correlated with poor response to therapy 

(100). This was also demonstrated by Shaaban et al, who correlated ERβ2 

expression in the cytoplasm, either alone or in combination with nuclear expression, 

with a significantly poorer overall survival rate. Those with no nuclear ERβ2 at all 

had a much worse survival rate (119). The prognostic differences with ERβ location 

was also demonstrated in other cancers.  Cytoplasmic expression of ERβ predicts 

poor clinical outcome in advanced serous ovarian cancer (102).  

 

The differential prognostic significance of cytoplasmic or nuclear ERβ suggests it 

may have an alternative function in each compartment. It has been well reported 

that ERβ also functions in the mitochondria. Estrogen is believed to have a role in 

mitochondria possibly functioning in E2 mediated regulation of the mitochondrial 

respiratory chain (120).  Numerous studies have produced evidence for the 

localization of ERβ in mitochondria (121) (122). Upon examination using 

immunogold electron microscopy it was found to be in the mitochondrial matrix. 

With E2 stimulation the levels of ERβ in the mitochondria increased.  A later study 

discovered ERβ shifts from the nucleus to the mitochondria during tumourigenesis. 

Grober et al (47) discovered an ERβ binding site in the mtDNA, but no ERα sites 

when they analyses ERβ genome binding in MCF-7 cells by ChIP-Seq. ERβ was 

demonstrated to bind to the D-loop region on the mtDNA genome when incubated 

with E2 or DPN, which is the region that controls transcription of mitochondrially 

encoded genes. When the mitochondrial fraction of these activated cells was 

separated by fractionation, western blotting confirmed the presence of the ERβ 
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protein (47). Due to the presence of mitochondrial ERβ in normal tissues, all with 

high energy demands, it could be speculated that ERβ may be involved in 

regulation of energy production by interacting with the mitochondrial respiratory 

chain process. In agreement with this theory, the normal breast epithelial cell line 

MCF-10F demonstrated a significant increase in expression of CO1, CO2 and ND1, 

three mitochondrial DNA (mtDNA) encoded genes, upon DPN (ERβ selective 

agonist) incubation (122). This upregulation of mtDNA encoded genes was also 

seen in other tissues. In the cardiac tissue of rats following trauma, mitochondrial 

ERβ increased along with an increase in mtDNA encoded mitochondrial respiratory 

complex IV genes upon DPN administration (123).  

 

There is some evidence that ERβ may be an inhibitor of oxidative phosphorylation, 

which is contradictory to the examples above. However these papers describe 

inhibition due to regulation of nuclear encoded mitochondrial proteins. This fits with 

the observation that nuclear ERβ is a good prognostically as nuclear ERβ is 

correlated with a decrease in cellular energy. For example in malignant 

mesothelioma cells ERβ was correlated with low levels of succinate dehydrogenase 

B (SDHB). This is a protein involved in oxidative phosphorylation as part of the 

respiratory chain complex II. Activation of ERβ resulted in downregulation of 

complex II and IV and reduced ATP production and cellular energy (124). 

In cases where ERβ is within the mitochondria, the consensus is that mitochondrial 

ERβ increases cellular energy production possibly by upregulation of components 

of the mitochondrial respiratory chain.  However it is not yet clear whether this 

regulation is by ERβ alone, or mediated by nuclear regulated genes that are also 

involved in mtDNA regulation. The increase in energy production seen in some of 

these studies may be to fuel increased growth and proliferation of the cell, or to fuel 

invasion and migration processes, characteristics of a more aggressive cancer. 
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This may clarify why cytoplasmic ERβ has been commonly associated with a 

poorer prognosis. 

Mitochondrial ERβ has also been implicated in tamoxifen resistance. In tamoxifen 

resistant MCF-7 cells, tamoxifen acts as an agonist rather than an antagonist and 

thus fails to increase reactive oxygen species to cause apoptosis. The agonistic 

activity of tamoxifen on mitochondrial ERβ promotes cell survival (125). It is unclear 

why tamoxifen acts as an agonist in this setting. 

1.7.3 Membrane bound ERβ 

It is thought that ERβ located in the cell membrane of some breast cancer cells may 

contribute to ERβ signaling, activating non-genomic pathways to exert its regulatory 

effects (55). Membrane ERβ activation is a rapid (within seconds) process that 

results in activation/repression of downstream kinase signaling such as mitogen-

activated protein kinase (MAPK) pathways. Membranous ERs interact with Gα and 

Gβγ proteins resulting in calcium and cAMP generation, and the activation of 

kinases such as Src, PI3K, ERK and AKT (126). These pathways are associated 

with breast cancer cell function. At present the role of membrane ERα is well 

established. ERα has been shown to interact with IGF, resulting in MAPK activation 

(127), and with EGFR, which activated G proteins and increased ERK and 

PI3K/AKT signaling (128). These pathways all result in cellular proliferation. ERβ on 

the other hand is much less well studied at the cell membrane but it has been 

reported that E2 bound to ERβ reduced ERK activity in porcine smooth muscle cells 

(129). The ERβ-E2 complex has also been demonstrated to activate the p38 MAPK 

pathway which is known to induce apoptosis and therefore mediating its anti-

proliferative properties (130). Membrane ERα activation results in proliferative 

pathway activation (131).  
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1.8 Breast cancer treatment 

Breast cancer is one of the most treatable cancers thanks to identification of 

molecular therapeutic targets. Overall around 78% of patients diagnosed with 

breast cancer are expected to survive 10 years (8). Treatment is defined by tumour 

gene expression profiles, and expression of targetable receptors can drastically 

improve patient prognosis.  

1.8.1 Current treatments 

The inherent heterogeneity of breast cancer means treatment can be complex and 

often patients do not respond to therapy as expected. Currently expression of ERα 

or HER2 in breast cancers will determine treatment options. Breast cancers that 

express ERα are often termed ER positive (ER+). These are targetable with 

hormone therapies such as tamoxifen or aromatase inhibitors. Tamoxifen acts as 

antagonist to ERα, inhibiting estrogen binding to this receptor and preventing 

proliferative activity. As estrogen ‘feeds’ these ERα+ tumours to grow this is an 

effective treatment. Aromatase inhibitors prevent the production of estrogen by 

blocking the enzyme aromatase from converting androgen to estrogen. Luteinising 

hormone therapy can also be given to pre-menopausal women to block signalling 

from the pituitary gland to the ovaries thus preventing estrogen and progesterone 

production. Expression of HER2 in a breast tumour, also allows for targeted 

treatment in the form of a HER2 specific monoclonal antibody therapy. Commonly 

this is with the drug trastuzumab (Herceptin). This drug works in a number of ways. 

Trastuzumab blocks the HER2 receptor from dimerising, which is a requirement for 

activation of the downstream signalling of PI3K/AKT pathway. It also up-regulates 

PTEN suppressing PI3K/AKT signalling, and restores p27 levels, resulting in cell 

cycle arrest. All three of these actions result in inhibition of cell cycling and 

proliferation. Trastuzumab has also been demonstrated to trigger HER2 
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internalisation and subsequent degradation by ubiquitination. As trastuzumab is an 

antibody, when it binds to HER2 it attracts natural killer immune cells thus marking 

the tumour cells for degradation (132). It is suggested that this is the reason why 

tumours with high HER2 expression respond better to trastuzumab than low 

expressers. 

Triple negative breast cancers are often more aggressive partly due to their lack of 

expression of targetable receptors. Chemotherapy is often given in combination for 

the best outcome and includes drugs such as cyclophosphamide, fluorouracil and 

epirubucin. The drugs are cytotoxic and kill the cancer cells as well as any other 

dividing cells within the body. It is not a targeted treatment such as tamoxifen or 

trastuzumab. The effectiveness of chemotherapy depends on how advanced the 

tumour is with lower grade and stage tumours having the best prognosis. 

Radiotherapy is also used as a treatment for breast cancer, and is a common 

treatment option post-surgery. It reduces the risk of local recurrence and increases 

survival rates. 
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1.9 ERβ; is there potential as a therapeutic target? 

ERβ has been widely shown to be anti-proliferative and pro-apoptotic in breast 

cancer, and is believed to have a protective role in normal breast tissue. It has also 

been suggested it may be a strong prognostic and therapeutic response predictor, 

especially ERβ2. This coupled with the fact it is often expressed in all molecular 

subgroups means ERβ may serve as an attractive target for therapy.  

Tamoxifen therapy has been suggested for ERα negative tumours that express 

ERβ. One study demonstrated that in TNBC patients treated with adjuvant 

tamoxifen therapy, ERβ1 positivity was associated with increased DFS and OS 

(86). This finding was supported when another group found that high ERβ1 

expression correlated with tamoxifen response in ERα negative patients. These 

high expressers had better OS and relapse-free survival rates (133). Tamoxifen has 

also been proposed as a prophylaxis for BRCA1/2 mutation carriers, with a 50% 

reduction in contra-lateral breast cancer development seen if given tamoxifen 

treatment upon initial diagnosis (134). This data indicates tamoxifen treatment in 

ERα negative patients may be beneficial. This is being investigated in the ANZ 

1001 SORBET clinical trial. 

As ERβ biology is not yet fully understood there are a number of factors which may 

need consideration. Firstly it is unclear as to whether ERβ should be agonised or 

antagonised. Tamoxifen is traditionally an ER antagonist, however as ERβ is 

believed to be tumour suppressive, tamoxifen may be acting agonistically. ERβ 

activation not only suppresses ERα protein action but has also been shown to 

down-regulate ERα mRNA (135) so ERβ agonism may be effective in enhancing 

endocrine treatments. It has been documented that E2 stimulation of TNBC cell 

lines resulted in an upregulation of cell cycle suppressive genes. This was coupled 

with a decrease in cellular proliferation (112). Even without the presence of ERα in 

the tumour, E2 may also be an effective therapeutic strategy. Other ERβ agonists 

have also been developed that may prove effective. 2,3-bis(4-hydroxy-phenyl)-
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propionitrile (DPN), genistein, MF101, ERΒ-041 and WAY-202196 are just some 

ERβ agonists that have been developed. Drugs such as genistein have multiple 

functions. It is a potent ERβ agonist but can also agonise ERα. Its effectiveness 

may depend on the co-expression of ERα and ERβ. When both receptors are 

present low doses actually induce proliferation and at higher doses anti-proliferation 

and increased apoptosis is observed (136-139) . In other cancer types without the 

presence of ERα e.g. colon (140), pancreatic (141) and bladder cancer (142), 

tumour growth and metastasis is inhibited by genistein. This drug may prove more 

effective in ERα negative environments. Genistein is also a tyrosine kinase inhibitor 

and suppresses kinase signalling. Resistance to therapies is often seen due to the 

cross talk between signalling pathways (143, 144). When one pathway is 

suppressed in the cell, others may become activated. Genistein may both suppress 

ER and kinase proliferative signalling, overcoming this problem of resistance. 

Given its probable tumour suppressive nature, up-regulating or reintroducing ERβ 

in breast cancers may be an effective therapeutic strategy to regaining the sensitive 

balance between ERα and ERβ as seen in normal breast. A study investigating the 

androgen receptor (AR) in breast cancer found an androgen response element 

(ARE) in the promoter of the ERβ gene. When AR was activated with a synthetic 

ligand, ERβ mRNA and protein was increased (145). Using a combination of AR 

and ERβ agonists may be a viable way of restoring ERβ and normal ER signalling 

within the cell.  

 

There is growing knowledge surrounding ERβ, and the majority refers to ERβ1. The 

importance of considering each ERβ isoform separately is becoming apparent as it 

is emerging that they have very distinct functions. ERβ2 expression is dominant in 

normal breast tissue over other ERβ isoforms suggesting this isoform is important 

in the maintenance of a normal breast environment. Identified as a strong 

prognostic marker in breast cancer, ERβ2 certainly warrants further study 
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especially given the contradictions in the literature regarding whether this protein 

tumour suppressive or oncogenic. This study will begin to address these 

discrepancies by exploring ERβ2 expression and function in breast cancer. 
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Hypothesis and Aims 

ERβ2 has distinct function in breast cancer cells depending upon co-expression 

with ERα or its location within the cell. 

Specific aims of this project were to: 

 explore the expression patterns of ERβ2 in subcellular compartments in 

breast cancer cell lines 

 determine the presence of ERβ2 in the mitochondria and establish a role in 

mtDNA gene regulation 

 investigate and characterise the dynamic nature of ERβ2 nuclear speckles 

in breast cancer cells 

 explore the physiological effect of ERβ2 overexpression on breast cancer 

cell lines including determination of its effects on proliferation, migration and 

target gene regulation 
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2.0 Chapter 2: Methods 

This chapter outlines the common methods used throughout the project. More 

specific methods relating to a particular chapter can be found in their respective 

chapter. 

2.1 Short Tandem Repeat (STR) testing 

All cell lines were STR profiled annually to assess their authenticity. This was 

performed in-house by Dr Claire Taylor at the CRUK genomics facility, University of 

Leeds. This was performed using Powerplex-16 reagents (Promega) where PCR 

amplification of sixteen loci is performed; Penta E, D18S51, D21S11, TH01, 

D3S1358, FGA, TPOX, D8S1179, vWA, Amelogenin, Penta D, CSF1PO, D16S539, 

D7S820, D13S317 and D5S818. Data was analysed using GeneMapperR ID 

software. Profiles of each cell line were compared to the reference STR profiles 

provided on the ATCC (American Type Culture Collection) website. Cells that were 

not authentic were discarded along with all stocks and replacements were ordered 

from the ATCC. 

2.2 Cell Culture 

Eleven breast cancer cell lines were used in this study, which represent the major 

molecular subtypes of breast cancer (36). Details of these cell lines, their molecular 

profile, growth media and passage specifics are summarised in Table 2.1. Cells 

were maintained in humidified incubators at 37°C with 5% CO2, in T75 flasks 

(Corning) with vented caps. Prior to use, the foetal calf serum used to supplement 

the culture media was heat inactivated at 56oC for 30 minutes. Cells were tested 

every 6 months for mycoplasma infection in-house by Sarah Perry (Laboratory 

Manager, University of Leeds) using the MycoAlertTM Mycoplasma Detection Kit 

(Lonza). Cell lines were consistently negative for mycoplasma infection.  
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2.2.1 Cell Passage 

Cells were washed with 1x Dulbecco's phosphate-buffered saline (DPBS, Gibco). 

BT-20 and LGI1T cells required incubation with 0.1% EDTA in 1x DPBS for 3-5 

minutes at 37°C after the initial wash.  Cells were incubated for approximately 1-3 

minutes in 2ml of 1x Trypsin-EDTA (diluted from 10x stock of 0.5% trypsin EDTA, in 

DPBS, Gibco). Cells were resuspended in their appropriate media and diluted for 

passage (see weekly passage, Table 2.1). LGI1T cells were resuspended in RPMI 

1640 media containing 5% FCS to deactivate the trypsin and then centrifuged for 3 

minutes at 290 x g, after which the cell pellet was resuspended in keratinocyte 

growth media and diluted in the appropriate amount of media for passage. 

2.2.2 Cell freezing 

At least 10 vials of each cell line were frozen at the beginning of the project to allow 

return to a standard passage number if and when required. All cells were frozen in 

90% HI FCS (Biosera), and 10% sterile filtered DMSO (Sigma). Cells at 60-70% 

confluency were washed in 1x DPBS and trypsinised as previously described in 

2.2.1. Cells were resuspended in 10ml of media containing FCS, and centrifuged at 

290 x g for 3 minutes to pellet. The cell pellet was resuspended in 4ml of freeze 

media and 1ml of suspension was aliquoted into each cryovial (Nuncbrand). These 

vials were transferred to an isopropanol filled container (Mr. Frosty™ freezer 

container; Nalgene) to ensure optimal cooling rate, and stored at -80 overnight. The 

following day frozen stocks were transferred to liquid nitrogen for long term storage 

until required. 

 

 

 

 

http://www.thermoscientific.com/en/product/mr-frosty-freezing-container.html
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2.2.3 Thawing cells 

Cells in culture were discarded at a maximum of 20 passages after their first use 

and replaced with a new stock vial. When cell stocks were thawed from liquid 

nitrogen they were cultured for at least 1 passage before use in experiments. 

Frozen vials were thawed quickly by placing in a water bath at 37 C for 30 seconds. 

Cells were mixed with 9ml of their respective media and centrifuged at 290 x g for 3 

minutes to pellet. The media supernatant was removed and the cell pellet 

resuspended in 10ml of its respective media. The cell suspension was placed in a 

T75 flask and placed in an incubator. The following day cells were washed and 

media replaced to remove cell debris.
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Cell Line Classification Immuno-profile Growth Medium Weekly 

passage 
MCF-7 Luminal A ER+, PR+, HER2- RPMI 1640 + 5% FCS 1:20 

T47D Luminal A ER+, PR+, HER2- RPMI 1640 + 5% FCS 1:8 

BT-474 Luminal B ER+, PR+, HER-2+ DMEM (glutamax)+ 10% FCS 1:8 

MDA-MB-231 Claudin-Low ER-, PR-, HER2- RPMI 1640 + 5% FCS 1:12 

MDA-MB-436 Claudin-Low ER-, PR-, HER2- RPMI 1640 + 10% FCS 1:8 

MDA-MB-468 Basal ER-, PR-, HER2- RPMI 1640 + 5% FCS 1:12 

LGI1T Basal ER-, PR-, HER2- Keratinocyte + BPE + EGF 1:12 

BT-20 Basal ER-, PR-, HER2- RPMI 1640 + 10% FCS 1:8 

SK-BR-3 HER2 ER-, PR-, HER-2+ DMEM (glutamax)+ 10% FCS 1:6 

 
Table 2.1. Details of the 9 cell lines used in this study. 
Classification adapted from (146-150). Culture medium used in line with Breast Group SOPs. Culture media supplied by Gibco and FCS by 
Biosera. BPE (bovine pituitary extract) and EGF (epidermal growth factor) supplied by Gibco.
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2.3 Measurement of cell proliferation 

Proliferation of cells was analysed by performing growth curves. Growth curves 

were performed on MCF-7 wild-type cells and transduced vector control MCF-7, 

T47D, MDA-MB-231 and MDA-MB-468 cells as well as their ERβ2 overexpressing 

counterparts. The number of cells seeded per well were as follows: MCF-7; 40,000 

cells/ml, T47D; 80,000 cells/ml, MDA-MB-231; 40,000 cells/ml, MDA-MB-468; 

50,000 cells/ml. Cells were washed and trypsinised then resuspended in media up 

to 10ml. 1ml aliquots were placed onto the Vi-Cell (Beckman Coulter), an 

automated cell counter, which adds trypan blue to the aliquot and counts based on 

an exclusion method, where stained dead cells are not counted and unstained live 

cells are. The Vi-Cell performed counts on 100 images per sample, as cells were 

pumped through the flow cell and imaged at 6.75 x magnifications. Cells were 

diluted to their respective seeing densities and plated into 6 well plates using the 

following calculation; c1v1=c2v2, which translates to:  

v1= c2v2 

     c1 

Where: 

 v1= volume of undiluted cell suspension required (ml) 

c1= undiluted cell concentration (cells/ml) 

c2= final concentration of cells required (cells/ml) 

v2= final volume of diluted solution, after addition of diluted cells 

 

The total volume of media (v2) minus the amount of cell suspension required (v1) 

was added to the appropriate volume of media to make up to the total volume 

required (v2). Counts were performed in duplicate at 48, 72, 96 and 120 hours for 

each cell line, so a total of 8 wells of each cell line were plated in 6 well plates. 1ml 

of fresh media was added to each well and plates were placed in a humidified 
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incubator (37oC @ 5% CO2). Cells counts using the Vi-Cell (described above) were 

performed at each time point and total number of cells was plotted on growth 

curves. 

2.4 Migration assay 

Collagen 1 (Corning) was diluted to 50µg/ml in 0.02M acetic acid on ice, pipette 

mixed and 100µl was added to each well of a 96-well ImageLock tissue culture 

plate (Essen BioScience). This was left to set for 1 hour in a humidified cell culture 

incubator (37oC with 5% CO2). The following day the cells were rinsed with DPBS 3 

times to remove excess acid. MCF-7, T47D, MDA-MB-231 and MDA-MB-468 ERβ2 

overexpressing cells and their empty vector counterparts were counted as 

described in section 2.3 and 20,000 cells were transferred to each well. Three wells 

were used per cell line to represent technical replicates. Cells were left to adhere 

overnight. The following day using the WoundMaker™ (Essen BioScience) 

according to the manufacturer’s procedure, wounds were created in each well. 

Media was then aspirated and wells gently washed twice to remove cell debris. 

100µl of the appropriate media was then added to the wells and the plate was 

placed into the IncuCyte™ (Essen BioScience) and allowed it to equilibrate for 5 

minutes. Repeat scanning was scheduled for every 30 minutes for 72 hours, 

whereby one image per well was taken, using the IncuCyte™ software, and the 

scan type set to scratch wound. Data was analysed by the software and relative 

wound density was calculated for each scanned image, a metric used to measure 

the density of the wound region relative to the density of the cell region (%). 
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2.5 Immunofluorescence 

All incubation steps were performed at room temperature. Details of antibodies 

used, their working concentrations and diluents used are detailed in Table 2.2. Cells 

were visualised on a Nikon A1R confocal microscope at 60x magnification and 

images acquired using the accompanying NIS elements software (v4.2). Images 

were acquired within 2 weeks of staining. Slides were stored in the dark at 4oC until 

image acquisition. A negative slide where the primary antibody was omitted was 

included for every immunofluorescent experiment. These demonstrated staining for 

DAPI but did not display any signal for the protein in question. Negative controls 

were viewed prior to the samples. Images captured and presented from 

immunofluorescent experiments were representative of the whole slide. Biological 

replicates were performed for every experiment and results shown are a typical 

subset. 

2.5.1 Cell seeding and fixing 

Round coverslips (Scientific Laboratory Supplies) were sterilised with 70% ethanol 

made up in dH2O, and placed into the wells of a sterile 12 well plate (corning). Cells 

were plated onto the coverslips at around 40% confluency. Cells were allowed to 

fully adhere for 48 hours. Cells were washed twice in 1x DPBS then incubated for 

15 minutes with 4% paraformaldehyde solution (Sigma) made up in 1x PBS 

(Sigma). Cells were then gently washed twice with 1x TBS, and then incubated with 

0.2% Triton X-100 (Sigma) solution made up in 1x TBS for 10 minutes to 

permeabilise the cells. Cells were washed gently in 1x TBS twice, and stored until 

use.  
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2.5.2 Avidin/Biotin immunofluorescence  

This more sensitive immunofluorescence method was used when staining with 

ERα, ERβ1 or ERβ2 antibodies, as ERβ1 and ERβ2 protein were present at low 

levels in breast cancer cell lines. ERα was also stained in this way for consistency. 

All washes were performed using 1x TBS (Sigma). Fixed and permeabilised cells 

were washed once before incubation in an egg white block (1 egg white to 100ml 

dH20) for 20 minutes. Cells were washed again then a 0.01% biotin block solution 

(Sigma) made up in 1x TBS was applied to the cells and incubated for 15 minutes. 

The biotin block was removed; coverslips were washed twice and inverted into 

100µl of diluted primary antibody dotted onto parafilm and incubated for 1 hour. 

Coverslips were placed back into wells and gently but stringently washed (3X 5 

minute washes). 100µl of biotinylated secondary antibody was dotted onto fresh 

parafilm and coverslips inverted onto the antibody for 1 hour. Coverslips were 

washed (3X 5 minute washes) and the avidin conjugated alexa fluor 488 was 

diluted as per Table 2.2. 100µl was dotted onto fresh parafilm, and coverslips 

inverted onto the antibody and incubated for 1 hour in the dark. Coverslips were 

washed (3X 5 minute washes) and mounted onto labelled slides cell side down 

using Vectashield Mounting Media, hard set containing DAPI. Slides were then 

stored at 4°C in the dark until image capture.  

2.5.3 Dual colocalisation immunofluorescence 

Dual staining immunofluorescence was performed using known nuclear speckled 

protein antibodies; SC-35 (nuclear speckle antibody), PML (pro) and coilin (marker 

of cajal bodies), and the ERβ2 antibody. Cells were plated as described in 2.5.1 

and ERβ2 antibody staining was performed as per section 2.5.2 but coverslips were 

not mounted onto slides. Cells were then stained with either SC-35, PML or coilin 

antibodies as follows. Coverslips were blocked with 1x casein (made up in TBS) for 



49 
 

1 hour then incubated with one of the following primary antibodies; SC-35, PML or 

coilin. Antibodies were diluted as per Table 2.2 and coverslips were incubated with 

100 µl for 1 hour in the dark. Coverslips were washed (3X 5 minute washes) then 

incubated for 1 hour in the dark with the appropriate texas red secondary 

depending on antibody species. Cells were washed (3X 5 minute washes) then 

mounted onto glass slides using Vectashield mounting media containing DAPI and 

left to dry in the dark at 4oC overnight. Two control slides were obtained, omitting 

both primary antibodies individually (ERβ2 and either SC-35, PML or coilin). In the 

case of SC-35, due to both primary antibodies being mouse, an additional control 

omitting just SC-35 was obtained to check there was no unbound ERβ2, which had 

the potential to bind the texas red secondary.  

2.5.4 Mitochondrial staining for ERβ2 colocalisation investigation 

Cells were seeded at ~40% confluency in 12 well plates onto sterilised glass 

coverslips and left for 48 hours. Mitotracker dye (Invitrogen) was diluted to 500nM 

in media and incubated with the cells for 1 hour in humidified incubators at 37°C 

with 5% CO2 to allow mitochondrial labelling. Cells were fixed with 4% PFA for 15 

minutes at room temperature, and then permeabilised with 0.2% Triton x-100 for 10 

minutes both in the dark and processed for ERβ2 immunofluorescence as 

described in 2.5.2. 

Negative controls were also carried out to enable calculation of colocalisation that 

occurs by chance using cyclophilin A antibody instead of ERβ2. Cyclophilin A 

staining was performed on MCF-7 and MDA-MB-231 cells.  
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Antibody details Species Assay 
Working 

concentration 
Diluent 

ERβ2 (57/3) 
(AbD serotec, #MCA2279) 

Mouse IF 1:50 
1x 

casein 

ERβ1 (PPG10/5) 
(AbD serotec, #MCA1974GA) 

Mouse IF 1:50 
1x 

casein 

ERβ-total (14C8) 
(Abcam, #ab288) 

Mouse WB 1:50 5% milk 

ERα (1D5) 
(Dako, #M3643) 

Mouse IF 1:200 
1x 

casein 

SC-35 
(Sigma, #S4045) 

Rabbit IF 1:1000 
1x 

casein 

PML 
(Abcam, #ab53773) 

Rabbit IF 1:50 
1x 

casein 

Coilin 
(SantaCruz, #sc-32860) 

 

sc-32860 
 

Mouse IF 1:50 
1x 

casein 

Biotinylated IgG 
(Dako, #E0354) 

Goat IF 1:600 
1x 

casein 

Alexa fluor 488-avidin 
conjugated 

(ThermoFisher, #A-21370) 
n/a IF 1/1000 

1x 
casein 

Texas red 
(ThermoFisher, #T-6390) 

Goat 
anti-

mouse 

IF 1/1000 
1x 

casein 

Texas red 
(ThermoFisher #T-2767) 

Goat 
anti-

rabbit 

IF 1/1000 
1x 

casein 

Flag M2 
(Sigma, #F1804) 

Mouse WB 1:500-1:1000* 5% milk 

Tata bp 
(Proteintech, #22006-1-AP) 

Rabbit WB 1:400 5% milk 

Cytochrome C 
(Proteintech, #10993-1-AP) 

Rabbit WB 1:200 5% milk 

β-actin 
(Sigma, #A5441) 

Mouse WB 1:10000 5% milk 

Cyclophilin A 
(Abcam, #ab41684) 

Rabbit 

WB 1:10000 5% milk 

IF 1:1000 
1x 

casein 

HRP-conjugated 
(SantaCruz, #sc-2005) 

Goat anti 
mouse 

WB 1:10,000 5% milk 

HRP-conjugated 
 (SantaCruz, #sc-2030) 

Goat anti 
rabbit 

WB 1:10,000 5% milk 

Table 2.2. Antibodies and their dilution details, used throughout this project 
1x casein was made up in 1x TBS and 5% milk made up in 1x TBS-T 
*MCF-7 cells incubated with 1:500, MDA-MB-231 cells with 1:1000 o/n 
WB= western blot, IF= Immunofluorescence  
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2.6 Estrogenic ligand treatment for ERβ2 speckle analysis 

Glass coverslips were sterilised with 70% ethanol in dH2O, and placed into 12 well 

plates. MCF-7 and MDA-MB-231 cells were plated onto these coverslips at 40% 

confluency and allowed to adhere overnight. In parallel to this cells were placed in 

T25 flasks at 40% confluency and allowed to adhere overnight. All cells were then 

placed in 5% charcoal stripped foetal calf serum (CS-FCS) RPMI 1640 media for 

24hrs. This was followed by incubation for 24 hours with one of the following 

estrogenic ligands diluted in 5% CS-FCS RPMI 1640; E2-1nM, 4-OHT-50nM, DPN-

10 nM, Genistein-30 µM. Cells on coverslips were fixed and permeabilised as 

described in 2.5.1 and immunofluorescence with ERβ2 antibody performed as per 

2.5.2 and images acquired on the Nikon A1R-A1 confocal microscope at 60x 

magnification and images acquired using the accompanying NIS elements software 

(v4.2). Speckle number analysis methodology is detailed in chapter 5.3.1. The cells 

in T25 flasks were washed in DPBS, detached from the flask using 1ml of 1x trypsin 

EDTA for 1-3 minutes and centrifuged at 290 x g for 3 minutes to pellet. Cell pellets 

were used for RNA extraction, cDNA synthesis and qRT-PCR to measure ERβ2 

mRNA levels. Detailed protocols for RNA extraction, DNase treatment and cDNA 

synthesis and qRT-PCR can be found in section 2.12, 2.13 and 2.14 respectively.  
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2.7 Cell synchronisation for ERβ2 speckle analysis 

Cell synchronisation was performed on MCF-7 cells using a double thymidine block, 

then analysed for ERβ2 protein expression (immunofluorescence) and cell cycle 

distribution (flow cytometry). Incubations were performed in a humidified cell culture 

incubator at 37oC with 5% CO2. Cells were seeded to achieve around 60% 

confluency when adhered into 6 well plates and 12 well plates that contained 

sterilised (with 70% ethanol) coverslips, and allowed to adhere overnight. 

Thymidine was diluted in fresh RPMI 1640 media supplemented with 5% FCS to a 

concentration of 2mM, was added to the cells and plates were incubated for 16 

hours. Cells were then washed thoroughly three times with DPBS to remove the 

block and incubated for 10 hours in fresh media, after which media was replaced 

with fresh media containing 2mM thymidine and incubated for a further 16 hours. 

Media was removed, cells were washed three times in DPBS and fresh media was 

added. At 0, 8, 10, 12 hours post thymidine release cells in 12 well plates grown on 

coverslips were fixed, permeabilised and processed for immunofluorescence with 

ERβ2 antibody as described in section 2.5.1 and 2.5.2.  Cells in the 6 well plates 

were trypsinised at each of the time points as previously described in 2.2.1, 

resuspended in media, and centrifuged at 290 x g for 3 minutes to pellet. Pellets 

were resuspended in 300 µl of ice cold 70% ethanol, then 3ml of ice cold DPBS 

was added. The fixed cell suspension was stored at -20°C until processed for flow 

cytometric analysis. 

2.7.1 Cell cycle distribution measurement by flow cytometry 

Samples were removed from -20°C storage and centrifuged at 290 x g for 3 

minutes to pellet the cells. Cell pellets were resuspended in 400µl PBS and passed 

through a cell strainer into to a 5ml round bottom falcon tube (both BD Biosciences) 

for flow cytometry. Propidium iodide (PI) staining solution was made up by addition 
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of 250 µl PI stain stock solution at 50 µg/ml (Sigma), 700µl 0.5% Triton X-100 

(Sigma) and 50µl RNAse at 100 µg/ml (Sigma) to a 1.5ml microcentrifuge tube 

(kept in the dark). 150µl of this staining solution was added to the resuspended 

cells, pipette mixed and incubated in the dark for 30 minutes at room temperature. 

Samples were then run on the LSRII flow cytometer using the blue laser at an 

excitation of 488 nm. 10,000 events were counted from each sample. Data was 

analysed using Modfit software and parameter set using a ‘normally distributed’ 

unsynchronised sample from the same cell line. Peaks representing G1 and G2 

were identified on the histogram generated. S-phase was identified as the area 

between these two peaks. The percentage of cells in each phase was generated 

from the area under the peaks. An example histogram is displayed in figure 2.1. 
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Figure 2.1. Cell cycle distribution analysis using ModFit software 
Thymidine treated MCF-7 cells was analysed by flow cytometry and output data 
was examined using ModFit software. The proportion of cells in G1/0, S and G2/M 
were calculated as the area under each section of graph, and are labelled on the 
Figure.  
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2.8 Actinomycin D (ActD) and Cyclohexamide (CHX) treatment 

MCF-7 vector control and ERβ2 overexpressing cells were plated at 40% 

confluency out onto sterile glass coverslips (pre-soaked in 70% ethanol) in 12 well 

plates and allowed to adhere for 48 hours. Cells were also placed into T25 flasks 

and T75 flasks for RNA and protein extraction respectively and allowed to adhere.  

At 60% confluency all cells were incubated with ActD (5µg/ml) or CHX (20µg/ml). At 

30 minutes, 1,2,4,8,16 and 24 hours after initial incubation, cells on coverslips were 

fixed and permeabilised as described and processed for ERβ2 

immunofluorescence analysis (2 wells per time point) described in 2.5.1 and 2.5.2. 

Cells in T25 flasks were pelleted, as previously described, at these time points for 

RNA extraction, cDNA synthesis and qRT-PCR for ERβ2 mRNA quantification, 

protocols for which are detailed in 2.12, 2.13 and 2.14. Cells in T75 flasks were 

used for protein extraction and subsequent western blot, protocol details of which 

are described in 2.9 and 2.10. Western blots were done using the FLAG M2 

antibody (Sigma) to detect ERβ2 and both protein extraction and western blot was 

performed on ERβ2 overexpressing MCF-7 cells only. All other assays in this 

experiment were performed on both vector control and ERβ2 overexpressing MCF-

7 cells. 

2.9 Protein extraction and quantification 

Cells for protein extraction were grown in either T75 or T150 vented cap cell culture 

flasks (Corning) depending on the concentration of protein required. Protein was 

extracted from cells when they were ~60% confluent using a lysis buffer containing 

a 1:1 ratio of 1x RIPA buffer (300nM NaCl, 4nM EDTA, 2% NP40, 0.5% Na 

deoxycholate (all Sigma) and 1x protease inhibitor mini protease cocktail EDTA free 

tablets (Roche). Briefly, cells were washed once with ice cold DPBS, then ice cold 

lysis buffer was added (T75 flask; 500µl lysis buffer, T150 flask; 1000µl lysis buffer). 

This was placed on ice for 2 minutes ensuring the buffer covered the cells. Using a 
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cell scraper, cells were removed from the flask and transferred to a sterile pre-

chilled 1.5ml microcentrifuge tube (Starstedt). This was placed on a rocker at 4oC 

for 10 minutes. The protein extract was then centrifuged at 16100 x g for 10 

minutes at 4oC until a cell debris pellet formed. The supernatant (protein) was 

removed and placed into a new pre-chilled sterile 1.5ml microcentrifuge tube and 

either used fresh or aliquoted and stored at -80 C until required. 

Protein concentration was determined using the DC protein assay (Biorad) as per 

the manufacturer’s instructions. Briefly, 5µl of the protein standard samples of 

known concentration (0.1875mg/ml, 0.5mg/ml, 1mg/ml, 2mg/ml) and the samples to 

be quantified were added to separate wells of a flat bottom 96 well microtitre plate 

(Corning). 25µl of reagent A + S (alkaline copper tartrate solution) was added to 

these wells followed by 200µl of reagent B (Folin reagent). The plate was incubated 

at room temperature in the dark to allow colour change then analysed at a 

wavelength of 750nm on a Berthold Mithras LB94 plate reader. A standard 

concentration curve was generated using the readings from the standards to 

determine sample protein concentrations. Protein samples were diluted to the same 

concentration in deionised water before western blot.  

2.10 Western blot 

22.5µl of diluted protein extract was added to 7.5µl of 4x SDS buffer (sodium 

dodecyl sulphate, Novex) containing 0.5% β-mercaptoethanol (Sigma), into a fresh 

pre-chilled 1.5ml microcentrifuge tube and pipette mixed. Protein samples were 

boiled to 105oC for 5 minutes, vortexed and briefly centrifuged then cooled on ice. 

25µl of each sample along with 7µl of dual colour protein plus standard (Biorad) 

was loaded on a precast NuPAGE® Novex® 4-12% Bis-Tris Protein Gels (1.0 mm, 

10 well) used with Xcell Surelock Mini-Cell apparatus submerged in 1x NuPAGE 

MOPS SDS Running Buffer (all Invitrgen). Electrophoriesis was performed at 120v 

for 1-1.5 hours. Protein was transferred to a Hybond-P PVDF protein transfer 
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membrane (Amersham). Before use the membrane was pre-activated by soaking 

for 20 seconds in methanol then soaked in 1x NuPAGE Transfer buffer diluted in 

dH2O with 10% methanol. Protein samples were then transferred using the Xcell II 

Blot Module SureLockTM in transfer buffer at 30 volts for 2 hours. The membrane 

was then blocked with 5% milk made in TBS-T (10mM Tris-HCl, pH 8.5, 150mM 

NaCl, 0.1% Tween-20) for 1 hour at room temperature. The primary antibody 

(dilution details in Table 2.2) was incubated with the membrane overnight at 4oC, 

followed by washing (3 x 10 minutes) with TBS-T, then incubation with a HRP-

conjugated secondary antibody for 1 hour at room temperature (dilution details in 

Table 2.2). The membrane was washed 3 x 10 minutes with TBS-T then developed 

using SuperSignal West Pico Chemiluminescent Substrate (ThermoScientific) and 

visualised using a BioRad Universal Hood II ChemiDoc® MP imaging system. The 

membrane was then washed with TBS-T (3 x 10 minutes) and re-blocked in 5%milk 

in TBS-T for 1 hour. The membrane was incubated with the relevant loading control 

antibody (details in Table 2.2) overnight at 4oC, followed by washes in TBS-T (3 x 

10 minutes) and incubated with the relevant secondary HRP conjugated antibody 

for 1 hour at room temperature. The membrane was washed (3X for 10 minutes) in 

TBS-T and developed using SuperSignal West Pico Chemiluminescent Substrate 

(ThermoScientific) and visualised using a BioRad Universal Hood II ChemiDoc® MP 

imaging system  
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2.11 Subcellular fractionation 

MCF-7 and MDA-MB-231 ERβ2 overexpressing cells were trypsinised and counted 

using the ViCell automated system as described in section 2.3. 6.6x106 cells were 

pelleted by centrifugation at 290 x g for 3 minutes. A Cell Fractionation Kit – 

Standard kit (Abcam) was used for protein extraction from the cells. 2X buffer A 

was diluted to 1X by addition of dH2O. The cell pellet was resuspended in 150 µl of 

1X Buffer A. Buffer B was prepared by diluting detergent I 150-fold in 1X buffer A. 

150 µl of buffer B was added to the resuspended cell pellet incubated on a rotator 

for 7 minutes at room temperature to lyse and break down the cell membrane. 

Samples were then centrifuged at 10,000 x g for 1 minute at 4oC and supernatant 

removed. This was centrifuged at 10,000 x g for 1 minute at 4oC and transfer to a 

new tube. This was the cytoplasmic fraction. The pellet was resuspended in 150µl 

of 1X Buffer A. Buffer C was prepared by dilution of detergent II 25 fold in 1x buffer 

A.150µl of Buffer C was added to the resuspended cell pellet to lyse the 

mitochondrial membranes and incubated on a rotator for 10 minutes at room 

temperature, followed by centrifugation at 5000 x g for 1 minute at 4oC. The 

supernatant was removed and put into a new clean 1.5ml microcentrifuge tube, 

while the pellet was put on ice. The supernatant was re-centrifuged at 10000 x g for 

1 minute at 4oC, and the supernatant was transferred to a new microcentrifuge 

tube. This was the mitochondrial fraction. The cell pellet was resuspended in 300µl 

of 1x buffer A and centrifuged at 5000 x g to wash the pellet. The supernatant was 

discarded and the pellet was resuspended in 300µl of 1x buffer A. This was the 

unlysed nuclear fraction. The cytoplasmic, mitochondrial and nuclear protein 

fractions were then processed by western blotting for protein detection as described 

in 2.10.  
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2.12 RNA extraction 

RNA extraction was performed using a RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Briefly, cells were trypsinised as previously detailed and 

centrifuged at 290 x g for 3 minutes to pellet. Buffer RTL (lysis buffer) was added to 

the pellet and pipette mixed. The cell suspension was homogenised by 

centrifugation of the sample through a Qiashredder column for 2 minutes for 16000 

x g at room temperature. 70% EtOH was added to the sample, pipette mixed and 

placed in an RNeasy spin column and centrifuged for 15 seconds at 8000 x g. The 

column was then washed firstly by addition of RW1 buffer followed by centrifugation 

for 15 seconds at 8000 x g, then twice with RPE buffer for 15 seconds at 8000 x g. 

RNA was eluted by addition of 50µl RNase-free water to the column membrane, 

placed in a new clean 1.5ml microcentrifuge tube, and centrifuged for 1 minute at 

8000 x g. RNA samples were then DNAse treated as described in 2.13. 

2.13 DNase treatment and cDNA synthesis 

To remove any residual DNA that may be present, RNA samples were treated with 

DNase using a TURBO DNase kit (Ambion). Briefly, 5µl of 10x Turbo DNase Buffer 

was added to 50µl of RNA sample followed by addition of 1 µl of Turbo DNase 1, 

and incubated at 37oC for 30mins. 5µl of DNase Inactivating Agent was then added 

to the sample and incubated for 2 minutes at room temperature, flicking after a 

minute to ensure mixing. Samples were centrifuged for 1.5 minutes at 8000 x g. 

The supernatant was transferred to a clean 1.5ml microcentrifuge tube ready for 

further processing.  

DNase treated RNA samples were quantified on a Nanodrop ND-1000 

spectophotometer. RNA samples were diluted to the same known concentration in 

Ambion® Nuclease-Free Water (Life technologies). The following was prepared on 

ice in a microcentrifuge tube; 10µl RNA sample, 1µl of random hexamers at 50µM 

(Invitrogen) and 1µl of 10nM dNTP (Promega), and incubated at 65oC for 5 minutes 
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then placed on ice to cool for 2 minutes. The following were then added to the 

sample; 4µl 5x First Strand Buffer, 2µl 0.1M DTT, 1µl RNase OUT (all Invitrogen), 

and incubated at 42oC for 2mins. 1µl of Superscript II enzyme (Invitrogen) was then 

added to the samples and incubated at 42oC for 50 minutes, followed by 70oC for 

15 minutes. Samples were then stored at -20oC until use. 

2.14 qRT-PCR with TaqMan® gene expression assays 

cDNA samples were diluted to 10ng/µl as recommended by the manufacturer in 

Ambion® Nuclease-Free Water (Life Technologies). Samples were run in triplicate 

for each TaqMan® probe used. RPLP0 was used as a reference gene and was 

also run in triplicate with each sample. Reactions were set up in a UV sterilised 

hood. Each reaction was 20 µl total volume made up of 9µl cDNA sample (diluted to 

10 ng/µl), 1 µl TaqMan® probe, 10 µl gene expression master mix and was 

transferred to a MicroAmp® optical 96 well plate then sealed with optical sealing 

tape (all Applied Biosystems). All samples were run in triplicate and a no RT control 

(one prepared per cDNA synthesis experiment) and no cDNA control were 

processed with each gene expression assay. Amplification was performed on an 

ABI 7500 real-time PCR system with the following cycling parameters; 2 minutes @ 

50oC, 10 minutes @ 95oC, then 40 cycles of 15 seconds @95oC and 1 min @ 60oC. 

After amplification, ct values were obtained using a threshold line placed through 

the exponential area of the curve and data exported to an excel sheet. Relative 

expression; 2(-∆∆Ct) (151) or fold change compared to the relevant control sample 

were calculated.  
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2.15 ERβ2 Molecular Cloning 

To enable the creation of ERβ2 over expressing cell lines, cloning of ERβ2 into a 

retroviral vector using PCR and recombination techniques cloning along with 

retroviral transduction were used to generate stable transfected cell lines that 

overexpress ERβ2.  

2.15.1 Amplification of ERβ2 fragment 

PCR reactions to amplify the ERβ2 coding sequence were performed using a 

pCDNA3 plasmid containing the coding sequence for the ERβ2 protein, a gift from 

Professor Eric Lam, Imperial College London. The primers were designed to create 

ends complementary to the pFB-NeoFLAG3 when cut with EcoR1 and BamH1 

restriction enzymes (New England Biosciences) and the primer sequences are 

detailed in Table 2.3.  The PCR reaction was carried out in 0.2ml PCR tubes 

(Axygen), and the reagents added are detailed in Table 2.4. 
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Primer Name Primer sequence 

ERβ2 Exon1 F 5’-TAAAGCTAGCGAATTCATGGATATAAAAAACTCACC-3’ 

ERβ2 Exon 8 R 5’-GCCGCTCGAGGATCCTCACTGCTCCATCGTTGCTTC-3’ 

Table 2.3. Primer sequences for amplification of the ERβ2 fragment 
Primers were designed in-house and supplied by Sigma Aldrich. Upon receipt, 
primers were resuspended according to the manufacturers accompanying data 
sheet. 
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PCR Master Mix 
Component 

Volume per 
reaction (µL) 

Thermal Cycling Conditions 

Stage 
Temperature 

(oC) 
Time 

(mm:ss) 

dH20 10.5 

Hold 98 0:30 

Buffer GC 4 

dNTP (10mM) 1 

Cycle- 
(30 

Cycles) 

98 0:15 

ERβ2 Exon1 F primer 1 

ERβ2 Exon 8 R 
primer 

1 

63 0:30 

Phusion Taq 0.5 

pcDNA ERβ2  
plasmid template 

2 Elongation 72 2:00 

 
Table 2.4. Reaction details for amplification of the ERβ2 fragment from 
pCDNA3 ERβ2 plasmid. 
Total reaction volume was 20µl. 
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2.15.2 Recombination  

The amplified ERβ2 fragment was cloned into a pFB-NeoFLAG3 vector. This vector 

was a gift from Professor Maggie Knowles of The Molecular Biology of Urothelial 

Cancers group in Leeds. The original pFB-Neo vector was supplied by Agilent 

Technologies. A map of the vector is shown in Figure 2.2. Briefly, the pFB-

NeoFLAG3 vector was digested using the restriction enzymes EcoR1 and BamH1 

by addition of the following in order to a microcentrifuge tube; 10 µl pFB-NeoFLAG3 

vector, 15.7 µl dH20, 3 µl Buffer 3, 1 µl EcoR1, 1 µl BAMH1 (all New England 

Biosciences). The amplified ERβ2 fragment and digested vector were then 

recombined using the In-Fusion HD Cloning Kit (Clontech). The following reagents 

were placed into a microcentrifuge tube followed by incubation at 50°C for 15 

minutes; 2µl dH20, 1 µl of vector, 1µl ERβ2 DNA and 1µl In-phusion enzyme.  A 

negative vector only control was also prepared, with dH20 substituting for ERβ2 

DNA. 

 

 

 

 

 

 

 

 

http://www.google.co.uk/url?sa=t&rct=j&q=infusion%20clontech&source=web&cd=2&ved=0CFMQFjAB&url=http%3A%2F%2Fwww.clontech.com%2Fxxclt_ibcGetAttachment.jsp%3FcItemId%3D17497&ei=X6oNUN-1HOeT0QXt2MHDCg&usg=AFQjCNGe_-AepCmzhyeXCW5GPhd5TDa3og
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Figure 2.2. Map of the pFB-NeoFLAG3 vector used for recombination of ERβ2 
into the multiple cloning site (MCS). 
Features of the vector are labelled and include a neomycin resistance gene for 
selection purposes. Adapted from Agilent Technologies pFB-neo retroviral vector 
instruction manual 
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2.15.3 Transformation 

Competent DH5α E. coli were used for transformation of the recombined ERβ2 

pFB-NeoFLAG3 plasmids. 1µl of ERβ2 vector or negative control was added to 

50µl DH5α E. coli and incubated on ice for 30 minutes. Following heat shock (90 

seconds at 42°C), they were returned to ice for a further 2 minutes then smeared  

on sterile LB (lysogeny broth) agar plates containing 100 µg/ml ampicillin.  Plates 

were incubated overnight at 37°C, where positive recombination clones would 

produce colonies on the agar plate.  

2.15.4 Positive clones 

Colonies from the positive plates were picked, and bacteria grown in 5ml of sterile 

LB (made up in dH2O, Sigma) containing 0.1% ampicillin overnight in a shaking 

incubator at 37°C. The following day 750µl of bacterial suspension was added to 

250 µl of 80% glycerol, and stored at -80. These would be used if clones were 

demonstrated to be positive for ERβ2 incorporation. 1.5ml of bacterial suspension 

was aliquoted into a microcentrifuge tube and centrifuged for 5 minutes at 2300 x g, 

then the supernatant discarded and the pellet DNA purified using a QIAprep Spin 

MiniPrep Kit (Qiagen), following the manufactures instructions. Briefly, bacterial cell 

pellets were resuspended in Buffer P1. Pellets were lysed by addition of 250 µl of 

buffer P2 and 350µl buffer N3 followed by centrifugation at 16100 x g. The 

supernatant was removed and added to a QIAprep spin column and centrifuged at 

16100 x g for 1 minute to bind the DNA. The column was washed by addition of 

750µl buffer PE and centrifuged at 16100 x g for 1 minute. The column was then 

placed in a new sterile microcentrifuge tube and DNA eluted by addition of 50µl 

buffer EB and centrifugation at 16100 x g for a further minute.  The purified DNA 

from the minipreps was digested with EcoR1 by addition of the following in order to 

a microcentrifuge tube; 10µl miniprep DNA, 11.5µl dH2O, 2.5µl NEB Buffer 4, 1µl 
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EcoR1 enzyme. The samples were digested at 37°C for 3 hours, and then loaded 

onto a 1% agarose gel containing ethidium bromide for visualisation and 

electrophoresis was performed. Positive clones were identifiable by bands of sizes 

of 6.8kb and 1.1kb. Clones with 2 bands of the above sizes were digested further 

with EcoRV by addition of the following in order to a microcentrifuge tube; 10µl 

miniprep DNA, 11.5µl dH2O, 2.5µl NEW Buffer 4, 1µl EcoRV enzyme and 

incubated at 37oC for 3 hours. Samples were loaded onto a 1% agarose gel 

containing ethidium bromide for visualisation and electrophoresis was performed. 

Positive clones presented bands of 80bp, 2150bp, 2800bp and 3050bp. Using the 

glycerol stocks previously made, samples deemed positive from both digests were 

grown up in 50ml Lysogeny broth (made up in dH2O,Sigma), containing 0.1% 

ampicillin, overnight in a shaking incubator at 37°C.  

The DNA was purified using the NucleoBond Xtra Midi kit (Macherey Nagel) 

according to the manufactures instructions. Briefly; bacterial cells from the LB broth 

were pelleted by centrifugation at 5000 x g for 10 minutes at 4oC. The pellet was 

resuspended in 8ml of Buffer RES then lysed by addition of 8ml of Buffer LYS. 12ml 

of buffer EQU was added to the NucleoBond® Xtra Column together with the 

inserted column filter and allowed to empty by gravity.  8ml of Buffer NEU was 

added to the sample then this was applied to the NucleoBond® Xtra Column filter, 

which was allowed to empty by gravity. The column was then washed by addition of 

5ml of Buffer EQU followed by 8ml of Buffer WASH and allowed to drain after 

addition of each. Plasmid DNA was eluted into a 15ml ultracentrifuge tube (Corning) 

by addition of 5ml of Buffer ELU to the column. The eluate was precipitated by 

addition of 3.5ml of isopropanol and centrifuged at 4500 x g for 15 minutes. The 

supernatant was discarded and 2ml of 70% ethanol was then added followed by 

centrifugation at 15000 x g for 5 minutes. The supernatant was removed and the 

pellet allowed to air dry, after which the pellet was dissolved in dH2O. 
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To ensure that our ERβ2 gene coding sequence was recombined into the pFB-

NeoFLAG3 vector and to verify it was in frame with the start codon, the two positive 

clones identified and purified were sequenced in house by Dr Euan Baxter on an 

ABI 3130xl Genetic Analyzer using a BigDye® Terminator v3.1 Cycle Sequencing 

Kit with 200ng starting material. Sequencing primers were designed to cover the 

whole ERβ2 coding sequence, the FLAG3 sequence and multiple cloning site, and 

their primer sequences are displayed in Table 2.5. Sequencing data was analysed 

using ABI Seq Scanner 2 software and readouts were aligned to the reference 

genome by performing a BLAST search (appendix 7.1). 
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Primer Name Primer sequence 5’-3’ 

pFB-Neo FWD GGCTGCCGACCCCGGGGGTGG 

pFB-Neo RVS GCCAGGTTTCCGGGCCCTCAC 

F1 TCCAGCTACAAATCAGTGTAC 

F2 CTGGAAATCTTTGACATGCTCC 

F3 GATGGAGGTGTTAATGATGGG 

R1 GTACACTGATTTGTAGCTGG 

R2 GGAGCATGTCAAAGATTTCCAG 

Table 2.5. Details of the sequencing primers used to confirm the in frame 
presence of ERβ2 gene sequence in pFB-NeoFLAG3 vector. 
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2.15.5 Transfection of pFB-NeoFLAG3 ERβ2 Vector into viral packaging cells 

for virus particle production 

All transfection and transduction work was carried out in a GM Class 2 facility with 

approved risk assessments specific to this project in place. A T75 flask containing 

Phoenix Ampho (phoenix A) retrovirus producer cell lines grown to around 60% 

confluency in DMEM Glutamax media supplemented with 10% FCS was 

transfected with the pFB-NeoFLAG3-ERβ2 construct. Another T75 flask of Phoenix 

A cells was prepared and transfected with the empty vector (pFB-NeoFLAG3), to be 

utilised as the control cell counterpart for downstream experiments. Briefly, 24µl of 

Lipofectamine 2000 reagent® (Invitrogen) was added to 1600µl of serum free 

DMEM glutamax media (Gibco) in a sterile universal tube. 50µl (containing 8µg total 

DNA) of plasmid DNA was added, gently mixed by flicking the tube and incubated 

at room temperature for 20 minutes.  The solution was then added to 10ml of 

DMEM Glutamax in a universal tube, and used to replace the media on the Phoenix 

A cells. Cells were incubated overnight at 37oC in a humidified incubator with 5% 

CO2. The day after, media was removed and 10ml of fresh media applied to the 

cells for 24 hours after which an additional 10ml media change was performed the 

following day. The day after the media was removed (viral supernatant) and syringe 

filtered through a Millex® 0.45µm syringe filter (Millipore) and stored at -80oC.  

2.15.6 Transduction of viral particles into breast cancer cell lines 

MCF-7, T47D, MDA-MB-231 and MDA-MB-468 cells were seeded into T25 flasks 

and allowed adhere and reach 40% confluency. Two flasks were seeded per cell 

line, one to be transduced with the empty vector (pFB-NeoFLAG3) and the other 

with the pFB-NeoFLAG3-ERβ2 construct. Polybrene stock (@ 80mg/ml) was 

diluted to 8µg/ml by addition of 1µl to 10ml of DMEM glutamax media 

supplemented with 10% FCS. Polybrene solution was added to the cells at 1µg/ml; 
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so for each flask of cells, 250µl of polybrene solution was added to 1750µl of viral 

supernatant. This viral solution (2ml) was then added to the flasks of cells after 

media aspiration, and incubated overnight at 37oC in a humidified incubator with 5% 

CO2. The following day fresh media was applied and the cells were left for 48 hours 

before selection with geneticin, detailed in 2.15.7. 

2.15.7 Selection of positively transduced cell lines 

To select the effective dose to cause cell death wild type cell lines used for 

transduction, a geneticin (G418) kill assay was performed prior to selection. Each 

wilt type cell line, MCF-7, T47D, MDA-MB-231 and MDA-MB-468, was seeded into 

five T25 flasks at around 30-40% confluency and allowed to adhere overnight. 

Geneticin was diluted in the appropriate media to the following concentrations; 100, 

200, 400, 800 and 1000µg/ml and each dose was applied to a flask of every cell 

line. Cells were observed under the microscope and photos taken during a period of 

10 days. At the end of the selection period the lowest dose of geneticin, specific to 

each cell line, which resulted in complete cell death, was used to select for 

successfully transduced cell lines.  

Geneticin was diluted in the appropriate media for each cell line to a concentration 

demonstrated to result in cell death after 10 days in wild type cells (detailed in 

chapter 4.3.2) as follows; 500µg/ml for MCF-7, T47D and MDA-MB-231 cells, 

200µg/ml for MDA-MB-468 cells. Retrovirally transduced cell lines were incubated 

with their cell specific dose of genistein for a period of 10 days (@37oC with 5% 

CO2) to select for positively transduced cells. After 4 days the media was replaced 

with fresh media containing the appropriate doses of geneticin. After the 10 day 

section period cells were washed in DPBS and media was replaced. Cells were 

grown up and stocks made for long term storage (10 vials each) at low passage. 

Cells were then used for downstream experiments detailed in chapter 4. 
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3.0 Chapter 3: Examination of ER expression in a range of 

breast cancer cell lines representing 5 major molecular 

subgroups 

3.1 Introduction 

3.1.1 ER expression in breast cancer cells 

ERα expression is only present in luminal A and B tumours whereas ERβ is 

expressed across all molecular subtypes. The expression patterns of ERβ1 was 

established in a large cohort of 2170 breast cancer patient samples, where 

immunohistochemistry analysis revealed that 72% of luminal A, 68% of luminal B, 

55% of HER2 overexpressing and 60% of basal breast cancers expressed ERβ1 

(74). ERβ1 expression has been widely associated with a better prognosis and DFS 

regardless of molecular subtype (75, 77, 86). Only a handful of studies have 

contradicted this and described a correlation with poor outcome (87, 88). Studies 

have identified ERβ2 expression in breast tumours and have reported that around 

half express this protein (76, 91, 98, 152). ERβ2 has repeatedly been positively 

correlated with ERα expression (75, 90) however expression has also been 

observed in 57% of ERα negative tumours (91). The implication of ERβ2 

expression on prognosis and survival is far more complex and contradictory than for 

ERβ1. Some associate ERβ2 protein expression with a better prognosis (75, 90, 

96), while others with a poorer prognosis (98, 152). Other than potential differences 

in IHC (immunohistochemistry) staining protocol, sample handling, tissue fixation 

methodology and antibodies used, there is another factor that may explain these 

differences. The location of the ERβ2 protein within the cell appears to affect 

prognosis. In a study of 757 invasive breast cancer samples, nuclear ERβ2 

expression resulted in a good prognosis whereas cytoplasmic ERβ2 was a poor 



73 
 

prognostic marker (94). This observation has been corroborated by Yan et al, 2011 

(100) in a cohort of 123 breast cancer samples.  

Expression of ERβ1 and ERβ2 has been observed in breast tumours of all 

molecular subtypes; however the implication on prognosis does appear to vary and 

the location of the protein within the cell may not have been considered in the vast 

majority of studies. The purpose of this chapter was to explore expression patterns 

of estrogen receptors in breast cancer cell lines of differing molecular subgroups. 

This was done using immunofluorescence, allowing precise analysis of expression 

patterns in cellular compartments including nucleus, cytoplasmic and mitochondria. 

There are various technical considerations which need to be addressed during such 

analysis, and these are described in detail below. 

3.1.2 ER antibody specificity 

Much of this project relied upon the use of antibodies, specifically the ERβ2 57/3 

clone (Serotec); therefore it was important that this antibody was demonstrated as 

reliable in the literature. There are relatively few studies that have used this 

antibody; however it has been validated in the literature as specific for the ERβ2 

isoform in a number of cases. Peptide pre-absorption has been performed prior to 

the antibody use and no signal was detected upon ERβ2 immunohistochemistry 

(94, 153) or western blot (154). However one study did demonstrate that the ERβ2 

antibody was not specific, as the use of siRNAs to ERβ2 failed to negate signal 

when ERβ2 antibody was applied (155). However details of the siRNA knockdown 

efficiencies were not given. There is much variability in the efficiency of knockdown 

using siRNAs (156). As siRNAs target the mRNA, the incubation time used in this 

study (24 hours) will only silence newly synthesised ERβ2 and could provide a 

possible reason for lack of signal negation. This method of antibody specificity 

validation may not be suitable for already synthesised longer lasting proteins, as 

siRNAs cannot silence proteins whereas peptide pre-absorption can. 
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3.1.3 Immunofluorescence and confocal microscopy 

In this study we required a technique that could allow us to observe subcellular 

compartments and expression pattern in detail. Confocal immunofluorescence 

microscopy allows detailed observation of cellular proteins at high resolution and 

provides the means to view cells in 3D by creating z-stacked images, or allowing 

analysis of an individual slice from the stack. It was deemed the most appropriate 

and flexible practice for our study. This technique also allows for protein 

colocalisation experiments and subsequent quantification using sophisticated 

software. 

3.1.4 Colocalisation  

Colocalisation immunofluorescence describes the spatial overlap of signals at a 

pixel location from two or more different fluorophores. These fluorophores are 

attached to antibodies which bind to specific proteins of interest, and provides 

information as to whether two targets are located in the same cellular space (157). 

Colocalisation doesn’t directly prove that two proteins are interacting, but it does 

provide valuable information about their characteristics. This technique is most 

often used to determine whether proteins are associated with cellular structures e.g. 

those located to endosomes, mitochondria etc., or those located to specific nuclear 

structures such as the nucleolus or in nuclear speckles, or to suggest interaction 

between two proteins. Colocalisation describes co-occurrence of signal in the same 

pixel location and their correlation. It is common in the literature, for colocalisation 

studies to investigate the overlap of two entities labelled with red and green 

fluorophores and identify yellow colocalised areas without any further analysis. 

Although appropriate for some incidences for example when the colocalisation is 

obvious to the eye, when colocalisation is more subtle or when one entity is stained 

more intensely and masks the other, the use of an automated method with the 
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ability to quantify colocalisation may be appropriate. This has the added advantage 

of not being subjective or misleading, and results in consistency in analysis 

between images. Provided images are uniform in their acquisition or the 

colocalisation calculation used eliminates any potential human variation, accurate 

quantification of colocalisation can be obtained. Special attention must be paid to 

ensure: 

 Z-stacks are acquired and analysis is performed on a slice of the image 

 pixels are not saturated (by lowering the gain) 

 background is greatly reduced 

 chromatic aberration (when the lens distorts and fails to focus the colours on 

the same point) is avoided or corrected. 

3.1.5 Colocalisation coefficients 

There are two metrics typically used in quantifying protein colocalisation; the 

Pearson’s correlation coefficient and the Mander’s overlap coefficient. These are 

used to quantify the degree of colocalisation between fluorophores by correlation, 

and the two calculations possess subtle differences in how they are measured. The 

Pearson’s correlation coefficient (158) is robust and well characterised method 

widely used to measure correlations, but its use in fluorescence is a relatively 

recent occurrence (159). It measures the linear correlation between two 

variables and generates a value of between +1 and -1, where +1 signifies total 

correlation, 0; no correlation and -1; total negative correlation. In the context of 

immunofluorescent colocalisation, it measures the level of colocalisation between 

two colour channels based on the intensity distribution between them. It is 

determined using the following calculation (157), which assumes the two channels 

are red and green:  
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Ri refers to the intensity of the red channel in each pixel and likewise Gi represents 

intensity of the green channel in each pixel. R and G (with a horizontal line above) 

refer to the mean intensities of the red and green channels respectively across the 

whole defined region of interest (ROI). As this coefficient subtracts the mean 

intensity from pixel intensity, it is not influenced by signal levels and background 

(offset) (160). This makes it a preferable method for colocalisation when 

comparisons between images are being made, as it is not affected by differences in 

image acquisition or processing (changes in gain and offset) and free from user 

bias. Its disadvantage however is that the data must follow a linear relationship in 

order to gain meaningful information from this coefficient. For example if red pixel 

intensity is increased, so is green pixel intensity. Generation of a simple scatterplot 

of red vs. green pixel intensity in the region of interest (ROI) on an image will 

determine linearity and the appropriateness of this calculation (157). The Mander’s 

coefficient is similar to the Pearson’s correlation coefficient and is calculated using 

the equation below (161): 

 

Again Ri and Gi represent red and green pixel intensity respectively. It was 

developed specifically for use in immunofluorescence to address the deficiencies of 

using the Pearson’s correlation, and eliminates the process of subtracting the 

average intensity values for the ROI from each pixel intensity value (160). This 

removed potential for negative values to arise, which are often confusing to 

interpret. Rather than basing the calculation on departure from the mean intensity, it 
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is a measure of absolute intensity. It is a more complex interpretation of 

colocalisation but is useful for data that does not follow a linear distribution. It is 

insensitive to variations such as efficiency of antibody binding, sample photo-

bleaching or microscope differences. It also excludes areas where both probes are 

absent, so defining regions of interest would not be necessary, provided 

background is eliminated. However alteration of the offset (background) does 

heavily influence the values. An accurate Mander’s coefficient would depend upon 

the user reliably and consistently eliminating all background. Manually interpreting 

what is or isn’t background could prove erratic especially when dealing with multiple 

images. 
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3.2 Aims 

To investigate ER protein expression in a range of breast cancer cell lines 

representing five major molecular groups by: 

 establishing the expression patterns and cellular location of ERα, ERβ1 and 

ERβ2 protein using confocal immunofluorescence  

 ascertaining whether cytoplasmic ERβ2 colocalises with mitochondria and 

quantifying levels of colocalisation in this organelle 
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3.3 Methods 

The following describes the analysis performed to determine ERβ2 and 

mitochondrial colocalisation. All other methods are described in chapter 2. 

3.3.1 Colocalisation analysis 

Colocalisation levels in each cell line were analysed as follows. An image slice from 

around the centre of the z-stack was selected. The cytoplasm of each cell was 

specified by manually drawing around the cytoplasmic region of each cell as 

depicted in Figure 3.1a. A scatter plot was created for each image to ensure the 

intensity distribution was linear, an example of this is illustrated in Figure 3.1b .A 

Pearson's correlation coefficient (PCC) was generated for each cell in the image 

and values were exported to an excel spreadsheet. Values from individual cells 

were plotted on a frequency distribution histogram, one for each cell line, using 

GraphPad Prism 6 software. This experiment was repeated at least three times and 

until a minimum of 30 cells from each cell line were analysed. This number proved 

sufficient as cumulative data analysis of colocalisation values for MDA-MB-231 was 

performed, whereby 30 cells was sufficient to result in stabilisation of histogram 

shape (appendix 7.4). 
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Figure 3.1. Quantification analysis of ERβ2 and mitochondria colocalisation 
a) The cytoplasmic region was selected in each cell (MDA-MB-231 cells shown) by 
manually drawing around the cytoplasm, illustrated by the white arrow, using the 
region of interest (ROI) drawing tool in the Nikon A1R confocal elements software 
v3.2. Scale bar = 50µm 
b) A red/green pixel intensity scatterplot was generated for each cell and a 
Pearson’s colocalisation coefficient value calculated by the software. Each dot on 
the plot represents a pixel with red and green staining. The yellow dotted line shows 
the linear relationship of pixel intensities. 
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3.4 Results 

3.4.1 Immunofluorescent analysis of ERα ERβ1 and ERβ2 expression in 

breast cancer cell lines 

Expression of ERα, ERβ1 and ERβ2 was investigated in a range breast cancer cell 

lines representing 5 major molecular subgroups to explore its localisation in cellular 

compartments. This was done by immunofluorescence analysis and evaluation of 

expression patterns using confocal microscopy. 

3.4.1.1 Luminal A cell lines 

Figure 3.2 illustrates expression patterns of ERα, ERβ1 and ERβ2 in MCF-7 cells. 

ERα expression in MCF-7 cells (b) was localised to the nucleus indicated by the 

white arrow. Staining intensity varied between cells, suggesting levels of ERα 

protein differed from cell to cell. Intensity of ERβ1 expression (e) also varied 

between cells, with some cells displaying stronger nuclear expression than others.  

Again expression was localised to the nucleus signified by the white arrow in image 

(f). ERβ2 expression was both nuclear and cytoplasmic. Staining intensity was even 

between cellular compartments. Nuclear staining is indicated by the white arrow in 

Figure 3.2h, and cytoplasmic by the red arrow in figure 3.2i. Distinct nuclear ERβ2 

expression patterns were also observed as speckles in the cell nucleus of around 

half the cells examined indicated on Figure 3.2i by the yellow arrow.  
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In T47D cells displayed in Figure 3.3, expression or ERα was nuclear (white arrow, 

c). This nuclear expression varied in intensity between cells with some cell 

displaying much stronger staining (white arrow, image b). ERβ1 expression in T47D 

cell was uniformly nuclear indicated by the white arrow in image (f). Intensity was 

consistent between cells. Unlike MCF-7 cells there was weak cytoplasmic 

expression of ERβ2, in T47D cells ERβ2expression was predominantly nuclear. 

T47D cells also had a nuclear speckled pattern of ERβ2 expression signified by the 

yellow arrow in image (i). These were in every cell and are much greater in number 

than in MCF-7 cells. Speckles varied in number and size, with some cells having up 

to 10 well defined speckles (red arrow).  
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Figure 3.2. Immunofluorescence images of ERα, ERβ1 and ERβ2 expression 
patterns in the luminal A cell line MCF-7 
(a, d, g) Cell nuclei were labelled with DAPI (blue), (b, e, h) ER proteins are 
visualised in green (FITC), (c, f, i) Merge image; DAPI and FITC overlaid 
ERα expression was present in the nucleus of MCF-7 cells (white arrow, c) 
ERβ1 expression was present in MCF-7 cells and was nuclear (white arrow, f) 
ERβ2 expression in MCF-7 cells was present in both the cytoplasm (red arrow, i) 
and in the nucleus. Nuclear ERβ2 expression was also present as speckles (yellow 
arrow, i).  
60 x magnification. Scale bars =50µm. 
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Figure 3.3. Immunofluorescence images of ERα, ERβ1 and ERβ2 expression 
patterns in the luminal A cell line T47D 
(a, d, g) Cell nuclei were labelled with DAPI (blue), (b, e, h) ER proteins are 
visualised in green (FITC), (c, f, i) Merge image; DAPI and FITC overlaid 
ERα expression was present in the nucleus of T47D cells (white arrow, b, c) 
ERβ1 expression was present in T47D cells and was nuclear (white arrow, f) 
ERβ2 expression in T47D cells was present in both the cytoplasm (red arrow, i) and 
in the nucleus. Nuclear ERβ2 expression was also present as speckles (yellow 
arrow, i). 
60 x magnification. Scale bars =50µm. 
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3.4.1.2 Luminal B Cell Line 

The only cell line representative of luminal B phenotype used in this study was 

BT474. Figure 3.4 demonstrates the expression patterns of ERα, ERβ1 and ERβ2. 

ERα expression (b) was variable with more intense staining observed in some cells 

than others, signified by the while arrow in image (b). ERβ1 expression in BT474 

cells (e) was present in the nucleus and cytoplasm. The intensity of staining was 

relatively even between cytoplasm and nucleus. The cytoplasmic stain was only 

observed within the cluster of cells (white arrow, f), with no expression observed 

around the periphery of the cluster. ERβ2 expression (h) was predominantly 

nuclear in these cells signified by white arrow in image (h). ERβ2 speckles were 

also detected in the nucleus of the majority of these cells (yellow arrow, i). 

Cytoplasmic staining was observed in between cells (red arrow, i) but this was 

much fainter than nuclear staining. 
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Figure 3.4. Immunofluorescence images of ERα, ERβ1 and ERβ2 expression 
patterns in the luminal B cell line BT474 
(a, d, g) Cell nuclei were labelled with DAPI (blue), (b, e, h) ER proteins are 
visualised in green (FITC), (c, f, i) Merge image; DAPI and FITC overlaid 
 
ERα expression was present in the nucleus of BT474 cells (white arrow, c) 
ERβ1 expression was present in BT474 cells and was nuclear (white arrow, f) and 
cytoplasmic (yellow arrow, f) 
ERβ2 expression in BT474 cells was present in both the cytoplasm (red arrow, i) 
and in the nucleus (white arrow, h). Nuclear ERβ2 expression was also present as 
speckles (yellow arrow, i). 
60 x magnification. Scale bars =50µm. 
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3.4.1.3 HER2 Over-expressing Cell Lines 

The SKBR3 cell line is representative of HER2 overexpressing breast cancers. 

Figure 3.5 demonstrates ERβ1 and ERβ2 expression patterns in these cells. All cell 

lines were negative for ERα staining (data not shown).  

 ERβ1 staining (b) was nuclear, with intense staining in most cells. Cytoplasmic 

staining was only visible in the cell undergoing mitosis signified by the white arrow 

in image (c). In this case cytoplasmic ERβ1 would be expected due to the 

breakdown of the nuclear membrane. ERβ2 expression (e) was both nuclear and 

cytoplasmic. Nuclear staining varied in intensity and was stronger in some cells 

signified by the white arrow in image (e). ERβ2 speckles were also seen in the 

nucleus of these cells and similar to the other cell types, varied in size, number and 

intensity (yellow arrow). Cytoplasmic staining was present in all cells analysed 

shown by the red arrow on image (f).  
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Figure 3.5. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the HER2 cell line SKBR3 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1 expression in SKBR3 cells was entirely nuclear located (white arrow, c). 
ERβ2 expression in SKBR3 cells was present in both the cytoplasm (red arrow, f) 
and in the nucleus, which was also expressed as ERβ2 nuclear speckles (yellow 
arrow, f).  
60 x magnification. Scale bars =50µm.  
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3.4.1.4 Basal Cell Lines 

Staining for ERβ1 and ERβ2 expression in the basal phenotype cell lines LGI1T, 

BT-20 and MDA-MB-468 are shown in Figures 3.6, 3.7 and 3.8. All cell lines were 

negative for ERα staining (data not shown).  

Figure 3.6 displays ERβ1 and ERβ2 expression in LGI1T cells. ERβ1 expression in 

LGI1T cells (b) was nuclear and intense staining can be seen in all cells (yellow 

arrow, c). There was no evidence of cytoplasmic staining apart from in the cell 

marked with a white arrow in image (c). This cell is characteristically undergoing 

mitosis with a rounded overall appearance, unique nuclear shape as a result of the 

condensed chromatin and has cytoplasmic ERβ1 expression due to a breakdown of 

the nuclear membrane. This cell line exhibits both nuclear (white arrow, e) and 

cytoplasmic ERβ2 expression (red arrow, f), and nuclear expression appeared 

greater indicated by the stronger staining present in the nucleus. Although one or 

two very small nuclear ERβ2 speckles can be observed in the merge image (f) 

indicated by the yellow arrow, they were absent from most cells. 

ER staining of BT-20 cells is visualised in Figure 3.7. Images b and c illustrate 

ERβ1 expression in BT-20 cells. Expression was predominantly nuclear indicated 

by the white arrow in image (c). ERβ2 expression in BT20 cells was both nuclear 

and cytoplasmic, and the staining intensity was uniform between both 

compartments, suggesting similar protein levels. The merged image (f) shows very 

strong cytoplasmic staining which was present in the majority of the cells (red 

arrow). Nuclear expression was seen in all cells at an even intensity. Nuclear ERβ2 

speckles were present in the majority of cells at variable number indicated by the 

yellow arrow in image (f).  

Expression of ERs in MDA-MB-468 cells is illustrated in Figure 3.8. ERβ1 

expression demonstrated a nuclear staining pattern indicated by the white arrow in 

image (c). The intensity of staining was similar between individual cells. MDA-MB-

468 cells exhibited cytoplasmic expression of ERβ2, in only a few cells. Cells with 
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and without cytoplasmic expression are indicated by the red arrows in image (f).  

ERβ2 nuclear speckles were sparse in MDA-MB-468 cells; however some were still 

present as indicated by the yellow arrow in image (f).  
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Figure 3.6. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the basal cell line LGI1T 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1 expression in LGI1T cells was located to the nucleus (yellow arrow, c), 
except in the cell undergoing mitosis (white arrow, c).  
ERβ2 expression in LGI1T cells was present in both the cytoplasm (red arrow, f) 
and in the nucleus, which was also expressed as ERβ2 nuclear speckles (yellow 
arrow, f).  
60 x magnification. Scale bars =50µm. 
 

 

 



92 
 

 

Figure 3.7. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the basal cell line BT20 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1 expression in BT-20 cells was entirely located to the nucleus (white arrow, c). 
ERβ2 expression in BT-20 cells was present in both the cytoplasm (red arrow, f) 
and in the nucleus, which was also expressed as ERβ2 nuclear speckles (yellow 
arrow, f).  
60 x magnification. Scale bars =50µm.  
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Figure 3.8. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the basal cell line MDA-MB-468 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1 expression in MDA-MB-468 cells was entirely located to the nucleus (white 
arrow, c). ERβ2 expression in MDA-MB-468 cells was present in both the 
cytoplasm (red arrow, f) and in the nucleus, which was also expressed as ERβ2 
nuclear speckles (yellow arrow, f).  
60x magnification. Scale bars =50µm.  
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3.4.1.5 Claudin-Low Cell Lines 

Figure 3.9 and 3.10 illustrate the ERβ1 and ERβ2 expression patterns in MDA-MB-

231 and MDA-MB-436 cells representing Claudin-low subtypes. All cell lines were 

negative for ERα staining (data not shown).  

Expression patterns of ERβ1 and ERβ2 in MDA-MB-231 cells is displayed in Figure 

3.9.  ERβ1 expression was both nuclear and cytoplasmic. The staining intensity 

appeared weaker in the cytoplasmic compartment. Image (c) illustrates this with 

cytoplasmic staining indicated by the red arrow and nuclear by the yellow arrow. 

Cytoplasmic expression was polar. Nuclear expression was stronger than 

cytoplasmic and was regular in intensity between individual cells. MDA-MB-231 

cells had comparable amounts of ERβ2 in both the nucleus and cytoplasm, 

demonstrated by the equal staining intensities. Again as with ERβ1, cytoplasmic 

ERβ2 seemed to localise to one side of the cell, indicated by the red arrow in image 

(f). This phenomenon was not been seen in any other cell type. ERβ2 nuclear 

speckles were present in around half of the cells (yellow arrow, f). 

Figure 3.10 displays expression patterns of ERβ1and ERβ2 in MDA-MB-436 cells. 

ERβ1 expression was entirely nuclear indicated by the white arrow in the merge 

image (c).ERβ2 expression was both nuclear and cytoplasmic. Cytoplasmic 

staining was slightly weaker than in the nucleus pointed out on the merge image (f) 

by the red arrow, and was present in all cells. Nuclear staining was stronger 

indicating increased expression in this compartment. ERβ2 nuclear speckles were 

very few in number and were only present in a small amount of the cells indicated 

by the yellow arrow on merge image (f). 
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Figure 3.9. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the basal cell line MDA-MB-231 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1expression in MDA-MB-231 cells was present in the nucleus (yellow arrow, c) 
and cytoplasm (red arrow, c).  
ERβ2 expression in MDA-MB-231 cells was present in the cytoplasm (red arrow, f) 
and in the nucleus, which was also expressed as ERβ2 nuclear speckles (yellow 
arrow, f).  
60x magnification. Scale bars =50µm.  



96 
 

 

Figure 3.10. Immunofluorescence images of ERβ1 and ERβ2 expression 
patterns in the basal cell line MDA-MB-436 
(a & d) Cell nuclei were labelled with DAPI (blue), (b & e) ER proteins are visualised 
in green (FITC), (c & f) Merge image; DAPI and FITC overlaid 
ERβ1expression in MDA-MB-436 cells was entirely nuclear located (white arrow, c). 
ERβ2 expression in MDA-MB-436 cells was present in both the cytoplasm (red 
arrow, f) and in the nucleus, which was also expressed as ERβ2 nuclear speckles 
(yellow arrow, f).  
60 x magnification. Scale bars =50µm. 
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To summarise the above data, ERα and ERβ1 expression was nuclear except in 

BT474 and MDA-MB-231 cells where ERβ1 was also detected in the cytoplasm. 

ERβ2 expression was detected in both the nucleus and cytoplasm in all cell lines. 

All cell lines exhibited ERβ2 nuclear speckles, however these varied in number and 

size with the greatest number consistently identified in T47D cells. 
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3.4.2 Quantification of mRNA expression of ERα, ERβ1 and ERβ2 in breast 

cancer cell lines 

The relative mRNA expression levels of ERα, ERβ1 and ERβ2 were investigated in 

all 9 cell lines used in this study, and results are presented in Figure 3.11. The aim 

was to assess the relative amounts of each receptor between the different cell lines, 

in order to provide more comprehensive information on ER expression patterns in 

each molecular subgroup.  Expression was normalised to the RPLP0 reference 

gene, which has been validated as a suitable reference gene in breast cancer 

samples as expression remains stable (162). 

As expected from Luminal cell lines, which are inherently defined by their 

expression of ERα, MCF-7, T47D and BT474 cells all expressed ERα at high levels 

(Figure 3.11 a). Relative expression levels of ERα in MCF-7 cells were comparable 

to those of the reference gene RPLP0.  

ERβ1 mRNA expression was low across all cell lines. ERβ2 mRNA expression 

levels was also low, but varied between cell lines. Lowest levels were present in the 

HER2, Basal and claudin-low cell lines. ERβ2 mRNA levels were greater in the 

luminal cell lines.  
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Figure 3.11. mRNA relative expression data of ERs in 9 breast cancer cell 
lines 
Relative mRNA amounts normalised to the mRNA levels in the reference gene 
RPLP0, which was given the value 1 
Relative mRNA expression of (a) ERα, (b) ERβ1 and (c) ERβ2, in breast cancer cell 
lines 
  

ERα 

ERβ1 

ERβ2 
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3.4.3 Colocalisation of mitochondria and ERβ2 protein in breast cancer cells 

lines 

As cytoplasmic ERβ2 expression was demonstrated in all cells lines examined 

except T47D, co-labelling of mitochondria (mitotracker dye) and ERβ2 protein 

(immunofluorescence) was performed, to determine whether there was any 

potential colocalisation.  All cell lines examined demonstrated colocalisation of the 

mitochondria and ERβ2 protein.  This was quantified in each cell as the degree of 

red/green channel overlap in the cytoplasm of each cell using Pearson’s correlation 

coefficient which was generated for every cell analysed. Control samples were run 

by calculating colocalisation of the cytoplasmic protein cyclophilin A with 

mitochondria to test the robustness of our analysis. 

 

The control antibody cyclophilin A, a protein specifically located in the cytoplasm, 

was used to determine the levels of colocalisation that would occur by chance. This 

protein is highly abundant and ubiquitously expressed in the cytoplasm of all cells 

but importantly not within the mitochondria. Colocalisation values obtained using 

cyclophilin A antibody likely represent colocalisation by chance and can suggest a 

cut-off value for true colocalisation allowing better interpretation of results. Figure 

3.12 displays the colocalisation results for the controls. The merge images for MCF-

7 illustrates no visible signs of yellow staining which suggests there is no 

colocalisation of cyclophilin A and the mitochondria. This is confirmed when 

examining the frequency distribution graph, where the graph is skewed to the left 

and the Pearson’s values are low ranging from 0 to 0.3. In MDA-MB-231 cells there 

initially appears to be some colocalisation of cyclophilin A and mitochondria as 

parts of the cytoplasm appear yellow in the merge image signified by the white 

arrow. However upon quantification analysis, it is clear this is not the case, with 

Pearson’s values ranging from 0.1-0.3 shown on the frequency distribution graph. 
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This further emphasises the importance of eliminating subjectivity and analysing 

images with a robust and accurate technique to determine true colocalisation. 

These figures for colocalisation suggest that 0.3 or lower may represent the 

colocalisation that occurs by chance, where pixels just happen to overlap in an 

unrelated manner.  

The results obtained from the control samples indicated that the observations made 

in this experiment are robust and that colocalisation of ERβ2 with the mitochondria 

is occurring, at varying levels, in all cell lines suggesting the protein’s presence 

within this organelle. 

 

The luminal cell lines, MCF-7 (row a) and BT474 (row b), demonstrated some ERβ2 

and mitochondrial colocalisation (Figure 3.13, white arrows). These yellow regions 

are more obvious in BT474 cells possibly due to more intense cytoplasmic ERβ2 

staining observed in the FITC image. The quantity of colocalisation for these cell 

lines is shown in the frequency distribution graphs displaying the Pearson’s 

correlation coefficient values for each cell analysed. The values indicate 

colocalisation between ERβ2 and mitochondria, which supports the observations 

made in the image interpretation. The values are skewed to the right in both cell 

lines, more so in BT474 cells, indicating greater colocalisation as the values 

increase. The spread of data is greater in BT474 cells with values ranging from 0.1-

0.8 whereas values of 0.3-0.8 are observed in MCF-7 cells. This illustrates 

variability in the extent of colocalisation between individual cells.   

In SKBR3 cells, colocalisation of ERβ2 and mitochondria seems apparent in the 

merged image (Figure 3.14). The white arrows indicate possible colocalisation. 

Upon quantification, Pearson’s correlation coefficient values displayed in the 

frequency distribution graph indicate true colocalisation, ranging from 0.3-0.8, with a 

median value of 0.59. As before, this indicates a high degree of variability in the 

amount of colocalisation between individual cells. 
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In the basal cell lines illustrated in Figure 3.15, BT20 (row a), LGI1T (row b) and 

MDAMB-468 (row c) all appeared to display areas of colocalisation (white arrows). 

This is particularly obvious visually in some MDA-MB-468 cells (row c), where areas 

of ERβ2 (blue arrow) are also strongly stained with mitotracker dye (yellow arrow), 

resulting in an intense yellow area on the merged image (white arrow). Although 

again, the frequency distribution graphs were skewed to the right indicating 

colocalisation, this was much more apparent for MDA-MB-468 cells, which 

displayed higher values (0.5 to 0.9), than LGI1T (0.3 to 0.7) and BT20 (0.3 to 0.8). 

The median Pearson’s correlation coefficient values were 0.59 and 0.63 for BT20 

and LGI1T respectively, however this average was higher for MDAMB468 at 0.67.  

MDA-MB-468 cells produced correlation values of 0.5 or above, suggesting these 

cells displayed some level of colocalisation of mitochondria and ERβ2. 

The claudin low cell lines demonstrated the highest levels of colocalisation among 

all cell lines examined, with the exception of MDA-MB-468 cells. Figure 3.16 

illustrates ERβ2 and mitochondria staining in MDA-MB-231 cells (row a) and MDA-

MB-436 cells (row b). Both demonstrate very strong areas of yellow staining which 

are obvious to the eye on the merge (white arrows). As in MDA-MB-468 cells, MDA-

MB-436 cells show very intense staining in identical areas on the FITC and 

Mitotracker image (blue arrows), which when observed in the merged image 

appears considerably yellow (white arrows). Observations from both merged 

images suggest a large amount of colocalisation in these cell lines. The frequency 

distribution graphs confirm this as both are skewed to the right indicating 

colocalisation, with MDA-MB-436 values ranging from 0.6-0.9, the highest values 

observed for all cell lines. This also illustrates every cell analysed exhibits 

colocalisation of ERβ2 and the mitochondria. In MDAMB231 cells the values 

ranged from 0.2-0.9, which unlike MDAMB436, indicates that not every cell 

displayed colocalisation of ERβ2 with the mitochondria. The median Pearson’s 

value for MDA-MB-231 and MDA-MB-436 cells was 0.68 and 0.74 respectively. 
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These are among the highest values demonstrated for all cell lines examined, along 

those for MDA-MB-468 cells. Median Pearson’s values for each cell line is 

summarised in Table 3.1. 
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Cell Line 
Molecular 
subgroup 

Median colocalisation 
Pearson’s value 

MCF-7 Luminal A 0.55 

BT474 Luminal B 0.54 

SKBR3 HER2 0.59 

BT20 Basal 0.59 

LGI1T Basal 0.63 

MDA-MB-468 Basal 0.67 

MDA-MB-231 Claudin-low 0.68 

MDA-MB-436 Claudin-low 0.74 

Table 3.1. Summary of the median Pearson’s correlation coefficient values for 
each cell line as a measure of colocalisation quantity, and its relation to 
molecular subtype. 
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Figure 3.12. Analysis of colocalisation in controls using immunofluorescence of cyclophilin A with the mitochondria in MCF-7 and MDA-
MB-231 cell lines, and subsequent generation of colocalisation coefficients for quantification 
(a) MCF-7 (b) MDA-MB-231 cells stained with; Cyclophilin A antibody (FITC, green), fluorescent mitotracker® dye (Texas Red, red), and DAPI 
nuclear stain (blue). A Merge image (overlapped red and green channels) was generated for colocalisation quantification analysis. Areas of visible 
colocalisation are indicated by the white arrows. Colocalisation was quantified by generation of Pearson’s value for each cell and plotted Values 
plotted on the frequency distribution graph. Pearson’s values range from 0, which represents no colocalisation, to 1, complete colocalisation. 
Images acquired at 60x magnification. Scale bars= 50µm. 
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Figure 3.13. Analysis of colocalisation using immunofluorescence of ERβ2 with the mitochondria in Luminal cell lines, and subsequent 
generation of colocalisation coefficients for quantification 
(a) MCF-7 (b) BT474 cells stained with; ERβ2 antibody (FITC, green), fluorescent mitotracker® dye (Texas Red, red), and DAPI nuclear stain 
(blue). A Merge image (overlapped red and green channels) was generated for colocalisation quantification analysis. Areas of visible 
colocalisation are indicated by the white arrows. Colocalisation was quantified by generation of Pearson’s value for each cell and plotted Values 
plotted on the frequency distribution graph. Pearson’s values range from 0, which represents no colocalisation, to 1, complete colocalisation. 
Images acquired at 60x magnification. Scale bars= 50µm. 
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Figure 3.14. Analysis of colocalisation using immunofluorescence of ERβ2 with the mitochondria in a HER2+ cell line, and subsequent 
generation of colocalisation coefficients for quantification 
SKBR3 cells stained with; ERβ2 antibody (FITC, green), fluorescent mitotracker® dye (Texas Red, red), and DAPI nuclear stain (blue). A Merge 
image (overlapped red and green channels) was generated for colocalisation quantification analysis. Areas of visible colocalisation are indicated 
by the white arrows. Colocalisation was quantified by generation of Pearson’s value for each cell and plotted Values plotted on the frequency 
distribution graph. Pearson’s values range from 0, which represents no colocalisation, to 1, complete colocalisation.  
Images acquired at 60x magnification. Scale bars= 50µm. 
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Figure 3.15. Analysis of colocalisation using immunofluorescence of ERβ2 with the mitochondria in basal cell lines, and subsequent 
generation of colocalisation coefficients for quantification 
(a) BT-20 (b) LGI1T (c) MDA-MB-468 cells stained with; ERβ2 antibody (FITC, green), fluorescent mitotracker® dye (Texas Red, red), and 
DAPI nuclear stain (blue). A Merge image (overlapped red and green channels) was generated for colocalisation quantification analysis. Areas 
of visible colocalisation are indicated by the white arrows. Colocalisation was quantified by generation of Pearson’s value for each cell and 
plotted Values plotted on the frequency distribution graph. Pearson’s values range from 0, which represents no colocalisation, to 1, complete 
colocalisation. 
Images acquired at 60x magnification. Scale bars= 50µm. 
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Figure 3.16. Analysis of colocalisation using immunofluorescence of ERβ2 with the mitochondria in claudin-low cell lines, and 
subsequent generation of colocalisation coefficients for quantification 
(a) MDA-MB-231 (b) MDA-MB-436 cells stained with; ERβ2 antibody (FITC, green), fluorescent mitotracker® dye (Texas Red, red), and DAPI 
nuclear stain (blue). A Merge image (overlapped red and green channels) was generated for colocalisation quantification analysis. Areas of 
visible colocalisation are indicated by the white arrows. Colocalisation was quantified by generation of Pearson’s value for each cell and plotted 
Values plotted on the frequency distribution graph. Pearson’s values range from 0, which represents no colocalisation, to 1, complete 
colocalisation.  
Images acquired at 60x magnification. Scale bars= 50µm.
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3.5 Discussion 

The results from this chapter have illustrated that ERβ2 is present in both the 

nucleus and cytoplasm of breast cancer cell lines, whereas ERα and ERβ1 are 

predominantly expressed in the nucleus. Cytoplasmic ERβ2 colocalised with the 

mitochondria, suggesting it may be present in this compartment. Nuclear ERβ2 is 

predominantly expressed as punctate speckled structures. 

It is recognised that inactivated ERs reside in the cytoplasm of cells. Ligand 

activation or trans-activation signalling from other pathways results in activation of 

the ERs, translocation to the nucleus and dimerisation with other activated ERs to 

control gene regulation. This would imply nuclear ER is activated whereas 

cytoplasmic ER is inactive. However, ERs may also have an alternative function in 

the cytoplasm. ERβ has been implicated in cytoplasmic signalling pathways e.g. 

p38 MAPK and PI3K/AKT (163-166). ERβ has been identified in the mitochondria of 

breast cancer cells with levels increasing under E2 stimulation (122) and it is 

hypothesised that ERβ may contribute to mtDNA gene transcription (122, 123). This 

suggests ER can be active in the nucleus, cytoplasm and mitochondria, and 

therefore its presence in each of these compartments may indicate a function. It 

may therefore be important to examine the subcellular location of ERs in order to 

determine its function and potential influence on prognosis. We examined ER 

expression patterns in breast cancer cells and identified their presence in these 

compartments. 

3.5.1 ERβ2 was detected in the nucleus and cytoplasm of breast cancer cell 

lines 

Immunofluorescent examination of the nine cell lines used in this study, which are 

representative of five major molecular subgroups (36) with the addition of the 

claudin-low group (37), revealed expression of ERα was observed only in the 
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luminal A cells, MCF-7 and T47D, and luminal B cells, BT474. The luminal breast 

cancers are partly defined by their expression of ERα so these results were as 

expected. Expression of ERβ1 protein was present in all cell lines, and similarly in 

the literature ERβ1 is present across all molecular subgroups (74, 87). Expression 

was predominantly confined to the nucleus and again this was also reflected in the 

literature (75, 86, 87). This suggests the cell lines used are representative of the 

ERβ1 expression patterns seen in patient tumours (74, 94).  

 

ERβ2 exhibited both nuclear and cytoplasmic staining in all cell lines. Expression in 

both cellular compartments has also been reported in the literature, and location is 

demonstrated to affect prognosis. Nuclear ERβ2 is associated with good prognosis 

and overall survival whereas cytoplasmic is poor prognostically (94, 100). The same 

prognostic capacity has been observed in ovarian cancer, with cytoplasmic 

expression correlated with a poor prognosis (102). In addition cytoplasmic ERβ2 

expression has been demonstrated to correlate with poor response to 

chemotherapy compared to nuclear ERβ2 (167). These prognostic differences 

suggest this receptor may have alternate function depending upon its location in the 

cell. This potential double edged functionality may explain some of the controversy 

in the literature regarding whether ERβ2 is ‘good or bad’. Some studies report 

ERβ2 presence to be associated with a good clinical outcome (75, 90, 96), whereas 

others report ERβ2 presence is associated with poor outcome (152). There are also 

studies that have made no correlation between ERβ2 presence and clinical 

outcome (91, 99, 168). It is only when its subcellular location is examined that these 

controversies may become resolved. My results also reveal that ERβ2 expression 

was observed across all molecular subgroups and in both the cytoplasm and 

nucleus. Expression in both compartments may suggest a function for ERβ2 in 

each. In T47D cells cytoplasmic staining was weaker. This may be due to the high 
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intensity of nuclear staining, specifically the speckles, and therefore requiring the 

images for this cell line to be acquired at lower gain settings.  

An interesting observation was made concerning ERβ2 and ERβ1 expression 

patterns in MDA-MB-231 cells. Cytoplasmic expression appeared to be located on 

one side of the cell nucleus in the majority of cells, and when we stained the 

mitochondria, they too were observed on the same side of the cell nucleus. MDA-

MB-231 is an aggressive cell line known for its invasive capacity (169). It has been 

described in the literature that the mitochondria regulate invasion and migration in 

breast cancer cells (170). A correlation has been observed between mitochondria 

localisation to the anterior leading edge of the cell and faster migration (171). We 

have observed that, not only do the mitochondria localise to one side in some MDA-

MB-231 cells, but this colocalises with ERβ2, also on the same side of the cell. This 

may suggest that ERβ2 is involved in migration/invasion processes when located in 

the mitochondria.  

3.5.2 ERβ2 nuclear speckles were detected in the nucleus of breast cancer 

cell lines 

All cell lines exhibited a speckled pattern of ERβ2 expression in the cell nucleus, 

which was not observed when cells were stained using ERα or ERβ1 antibodies. 

These speckles varied in number and size. T47D cells demonstrated the most and 

largest ERβ2 speckles, present in every cell. Some cell line such as MDA-MB-436, 

MDA-MB-468 and LGI1T had very few speckles and not every cell possessed 

them. Speckles were also entirely nuclear located. Z-stack images for each cell line 

were done and a 3D reconstruction of the cells performed. This 3D reconstruction 

could be manoeuvred in the Elements software in order to inspect each cell in 

detail, and we found that no speckles were located outside the blue DAPI stained 

nucleus (data not shown). No correlations have been made between speckle 

numbers and molecular subgroup; however it did appear that there may be fewer 
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ERβ2 nuclear speckles in triple negative cell lines compared to ERα or HER2 

positive cells.  

Nuclear ERβ2 is suggested to be good prognostically (94, 100), however it is 

unknown whether presence of ERβ2 nuclear speckles is also indicative of good 

clinical outcome. Reduction in nuclear ERβ2 speckles in TNBC cells could indicate 

poorer outcome which correlates with the more aggressive nature of this molecular 

group. 

ERβ2 nuclear speckles are an observation made in this study and in previous work 

within the Breast Research Group at Leeds. In a related study by our group nuclear 

speckles were also observed using an antibody that detects ERβ1 phosphorylated 

at serine 105. These correlated with better survival and with ERβ1 and ERβ2 

expression (172). ERβ2 speckles will be further investigated in chapter 5. 

3.5.3 mRNA expression of estrogen receptors in breast cancer cell lines 

As immunofluorescence does not give an accurate measure of relative expression, 

we were unable to compare the levels of ERs between cell lines, only its presence 

and location within the cell. We performed qRT-PCR analysis of ERα, ERβ1 and 

ERβ2 expression levels (Figure 3.11) to quantify the amount of ER transcripts in 

each cell line. This is not a measure of protein expression but it does give an 

indication of what it may be if mRNA is translated. Although there are some 

incidences where mRNA does not correlate with protein (88, 90, 173) likely due to 

post-transcriptional regulation, in most cases positive correlation is observed. 

Investigation of ERβ1 and ERβ2 protein and mRNA levels in 150 breast tumours, 

found protein levels significantly correlated with mRNA levels (75). Only the luminal 

cell lines, MCF-7, T47D and BT474 expressed ERα mRNA. ERβ2 mRNA 

expression was greatest in these three cell lines suggesting the two receptors may 

correlate. Other studies have described a significant correlation between protein 

levels of ERβ2 compared to ERα (75, 94), which corroborates out data. The HER2, 



115 
 

Basal and claudin-low cell lines all demonstrated lower levels of ERβ2 expression 

with only small variation between cell lines, but at these very low endogenous levels 

these changes are difficult to interpret. ERβ1 mRNA expression levels were 

variable across all cell lines with no apparent association with molecular subgroup. 

This is comparable with data presented in the literature, which examined ERβ1 

protein expression between molecular groups (74, 87).  

3.5.4 ERβ2 colocalised with the mitochondria in breast cancer cell lines 

It has been established in the literature that ERβ does have a presence and 

potential function in the mitochondria (121, 122, 174). Currently, only ERβ1 or total 

ERβ, where specific isoform involvement was not specified, has been studied in 

relation to a potential activity within mitochondria. As we observed that ERβ1 was 

not expressed in the cytoplasm of most of our cell lines, but ERβ2 was, we wanted 

to investigate if this cytoplasmically located ERβ2 colocalised with the mitochondria 

and if there was an association between the amount of colocalisation and the 

molecular subgroup. This not only indicated ERβ2 was present in the mitochondria, 

but may suggest ERβ2 has a potential function within this organelle. 

All cell lines examined displayed some ERβ2 and mitochondria colocalisation. This 

was more obvious in some cell lines where regions of yellow could be visualised on 

the merge immunofluorescent images. In some cases however, colocalisation was 

only identified after automated quantification such as in LGI1T where a yellow 

colour in the merge image was less visible.  The median values of colocalisation for 

each cell line summarised in Table 3.1, demonstrates that the basal cell lines 

display the highest levels of colocalisation with MDA-MB-436 displaying the highest 

level.  

The triple negative phenotype is generally representative of a more aggressive 

breast cancer cell with a poorer prognosis and outcome (27-29). Cytoplasmic ERβ2 



116 
 

has also been linked to poorer prognosis and outcome (100, 102). This may 

suggest mitochondrial ERβ2 is implicated in these poorer outcome tumours. 

3.5.5 Interpretation of colocalisation 

One major pitfall of colocalisation experiments is the interpretation of colocalisation 

itself. Most studies rely on interpretation of this by eye as yellow regions (if proteins 

are labelled with green and red fluorophores). However this is extremely subjective 

and consistency between images is not guaranteed. Misinterpretation of 

colocalisation or subjective inaccuracies adds to the importance of automated 

quantification. 

As already mentioned in 3.1.4, colocalisation described the spatial overlap of the 

signal of two labelled proteins (157), and does not provide proof that the two 

interact. However by taking into consideration of colocalisation that occurs by 

chance, whereby pixel signal overlaps without there being a true relationship 

between the two, we can say interaction is likely. Interpretation of our results relied 

on taking this into account, and by generating Pearson’s values, which can describe 

the degree of correlation between the two proteins. Our measure of colocalisation 

by chance by staining cyclophilin A and mitochondria did not exceed a value of 0.3, 

suggesting little correlation. This validated our method for calculating colocalisation 

by chance and strengthens our true colocalisation data, as median values for each 

cell line ranged from 0.54-0.74, suggesting spatial overlap was more than by 

chance occurrence and suggesting possible interaction between ERβ2 and the 

mitochondria. Another more complex method described in the literature to take into 

account the occurrence of colocalisation by chance during colocalisation 

experiments is referred to the Costes method (175) . This method is a complex but 

very accurate way to eliminate by chance colocalisation for each individual image or 

even cell negating the need to run separate control samples. Images are divided 

into small squares them randomly scrambled and colocalisation measured. This is 
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done numerous times and images ‘pass’ if 90% of the Pearson’s values are lower in 

the scrambled images than the real image. As each image is its own control it also 

improves accuracy. Other methods aside from image scrambling include one 

described by Babbey et al (2006) (176). The method involves acquiring the image 

and then rotating either the green or red image 90 degrees. This leads to random 

placement of the pixels from one channel on top of the other and then enables 

generation of a colocalisation by chance value for that particular image. Ideally 

image scrambling methods could have been employed in this study as they are 

widely regarded as efficient ways of measuring true colocalisation; however the 

resources and technology to carry this out were not available to us. The large 

number of cells analysed demonstrating reproducibility and the use of our two 

unrelated probes to measure colocalisation by chance does provide an accurate 

alternative approach to these methods. 

3.5.6 Coefficient selection 

For this experiment, where the red/green pixel intensity data was demonstrated to 

be linear, the Pearson’s coefficient correlation was deemed the most suitable metric 

to use to measure colocalisation.  The robust nature and simplicity of the Pearson’s 

correlation coefficient and its negation of user bias and image pre-processing and 

differences in acquisition settings as experiments were performed at different times, 

meant it was the more appropriate coefficient to use. For this experiment the 

information gained from generation of Pearson’s values enabled us to ascertain that 

a true interaction between ERβ2 and mitochondria was likely.  

 

3.6 Summary 

Immunofluorescent analysis has demonstrated that ERs are differentially expressed 

across molecular subgroups of breast cancer cells. ERα is expressed 
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predominantly in the nucleus of luminal cell lines. ERβ1 is expressed in cells across 

all molecular subgroups and is generally located in the nucleus; however some cell 

lines do demonstrate weak cytoplasmic staining. ERβ2 has been observed in both 

the nucleus and cytoplasm of all cell lines examined. Intensity of staining varies in 

both compartments, but generally stronger cytoplasmic expression was observed in 

the triple negative cell lines. Increased expression of ERβ2 in the cytoplasm in the 

more aggressive triple negative cell lines, correlates with the observation that 

cytoplasmic ERβ2 is a poor prognostic marker, as triple negative cancers usually 

have the worst prognosis. Colocalisation immunofluorescence studies have also 

identified that cytoplasmic ERβ2 does colocalise with the mitochondria, with the 

highest levels correlated with the triple negative phenotype. This may point towards 

a function for cytoplasmic ERβ2 within the mitochondria. The mitochondria are the 

powerhouse of cells and a large number of processes are associated with this 

organelle e.g. migration, proliferation, apoptosis. The suggestion of a functional role 

for ERβ2 in the mitochondria certainly deserves further study. A speckled pattern of 

nuclear ERβ2 expression was observed in all cell lines. These speckles varied in 

number and size; the luminal A cell line T47D contained the most, whereas the 

fewest were detected in triple negative cell lines. The significance of these speckles 

is as yet unknown, but will be further investigated in chapter 5. 
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4.0 Chapter 4: Generation of ERβ2 overexpressing cell 

lines for functional analysis of ERβ2 in breast cancer 

4.1 Introduction 

4.1.1 ERβ2 overexpression studies 

Only a handful of studies have examined the functional effect of ERβ2 by 

overexpression in breast cancer. Omoto et al (2003) (104) stably expressed ERβ2 

in MCF-7 cells. They examined the effect on growth using serum starvation to 

initiate G1/0 arrest and analysed the cell cycle distribution. ERβ2 overexpression 

resulted in a reduced S-phase population. Also to assess growth, an anchorage-

independent colony formation assay was performed. Fewer colonies were formed 

under E2 exposure and none formed without E2 in the ERβ2 overexpressing cells, 

compared with control cell lines where colonies formed in both, suggesting ERβ2 

impairs growth in MCF-7 cells. They also reported that ERβ2 oppositely regulated a 

subset of genes compared to ERβ1. This suggests ERβ2 has a distinct function 

from ERβ1 in MCF-7 cells. Zhao et al, 2007 (95) stably overexpressed ERβ2 using 

an inducible expression system where ERβ2 was overexpressed in MCF-7 cells 

upon doxycycline treatment. The authors reported that ERβ2 induced proteasome-

dependent degradation of ERα by forming a heterodimer with ERα. They also noted 

that expression of ERβ2 inhibited recruitment of ERα to the ERE’s, resulting in 

suppression of ERα-regulated genes.  

Despite this suggested tumour suppressive nature of ERβ2, studies examining the 

effect of ERβ2 over-expression on ERα negative cell lines in breast are lacking. The 

function of ERβ2 has been investigated in prostate cancer cell lines, which are 

inherently ERα negative. In this setting ERβ2 increased proliferation and was 

demonstrated to upregulate c-myc, which promotes proliferation. It was also 
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revealed to upregulate factors involved in bone metastasis (106). This data 

suggests that ERβ2 may be oncogenic in prostate cancer. 

4.1.2 ERβ2 target genes 

Very few ERβ2 target genes have been identified partly due to the lack of ERβ2 

functional studies. ChIP-Seq and RNA-Seq studies have identified ERβ1 gene 

targets. ERβ2 regulates nuclear genes by heterodimerisation with ERβ1 or ERα; 

consequently many of these genes identified may also be regulated by ERβ2. 

However it is unclear what affect ERβ2 has on gene targets when dimerisation 

occurs especially with ERβ1. Omoto et al (2003) (104) performed microarray 

analysis on a subset of genes and compared their regulation in ERβ2 

overexpressing cells to ERβ1 overexpressing cells and wild-type cells. They 

discovered that there were a number of genes that were differentially regulated 

when ERβ2 was overexpressed compared to ERβ1 overexpressing cells and wild 

type cells. These included some that were down-regulated such as histone 

deacetylase 6 (HDAC6), cell division cycle 6 homolog (CDC6) and retinoblastoma 

binding protein 8 (RBBP8), and some genes that were up-regulated e.g. ERα and 

aconitase 2 mitochondrial (ACO2). The regulation of these genes by ERβ2 could 

indicate tumourigenic or tumour suppressive effects on the cells, indicating the 

complexity of ERβ2 and its function in breast cancer cells. In addition, ERβ2 

differentially regulates c-myc and cyclin E in prostate cancer cells (106) compared 

to ERβ1 overexpressing cells. It therefore appears ERβ2 may oppose the action of 

ERβ1. 
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4.1.3 Mitochondrially transcribed genes and ERβ 

Mitochondria contain small circular genomes containing genetic information for 

components involved in oxidative phosphorylation. This mitochondrial DNA 

(mtDNA) is around 16500 base pairs in size and encodes 13 protein coding genes, 

22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes (177) and a more 

recently identified peptide coding gene humanin (178). The proteins coded for by 

mtDNA are all involved oxidative phosphorylation, a process whereby the cell can 

produce ATP or energy. mtDNA has a D-loop region, which contains the promoters 

for gene transcription and also controls mtDNA copy number. As previously 

identified in chapter 3, ERβ2 localises to the mitochondria. This suggests that ERβ2 

may have a function within this organelle. As discussed in chapter 1, an ERβ 

binding site has been identified in the D-loop of mtDNA by Grober et al (2007) (47); 

suggesting ERβ may be involved in the regulation of mtDNA gene transcription. 

However ChIP-Seq analysis of ERα binding sites did not identify one in the mtDNA 

suggesting ER mediated mtDNA transcription is regulated by ERβ isoforms only. A 

study in normal breast epithelial cells revealed the expression of the mtDNA 

transcribed genes CO1, CO2 and ND1 increased upon ERβ1 activation, suggesting 

ERβ1 has a role in regulation of some mtDNA genes (122). Similarity, upregulation 

of mitochondrial respiratory complex IV genes was reported in cardiac tissue of rats 

following trauma when mitochondrial ERβ levels rose (123). None of these studies 

have investigated ERβ2’s role in the mitochondria. However, in ovarian cancer 

ERβ2 has been demonstrated to locate to the mitochondria where it interacts with 

BAD, resulting in inhibition of BAX oligomerization and subsequent apoptosis 

inhibition (153). This demonstrates one role for ERβ2 in the mitochondria, but its 

involvement in mtDNA gene transcription is as yet unknown. 
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4.2 Aims 

This chapter aimed to investigate the functional role of ERβ2 in ERα positive and 

negative breast cancer cell lines by examination of: 

 the effect of ERβ2 overexpression on cell growth, cell cycle distribution and 

migration 

 expression levels of potential nuclear target genes that may be regulated by 

ERβ2 

 expression levels of mitochondrially transcribed genes involved in the 

electron transport chain in ERβ2 overexpressing cells 

 the effect of estrogenic ligands on ERβ2 protein levels in the cytoplasm, 

nucleus and mitochondria 
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4.3 Results 

The protein coding sequence for ERβ2 was cloned into a retroviral overexpression 

vector and four breast cancer cell lines were transduced to overexpress ERβ2 

using this vector. These cell lines were examined for functional changes compared 

to control cell counterparts, to investigate the role ERβ2 plays in breast 

tumourigenesis. 

4.3.1 Generation of ERβ2 overexpressing cell lines 

Although the cloning and transfection/transduction processes were part of the 

methodology to generate ERβ2 overexpressing cells, which are detailed in section 

2.15, the results from each step are described below. 

4.3.1.1 Recombination cloning  

ERβ2 fragments were amplified from a pcDNA-ERβ2 vector from 4 PCR reactions 

each using different annealing temperatures in order to obtain optimal amplified 

fragment yield, and the PCR products were visualised on an agarose gel displayed 

in Figure 4.1a. All reactions produced a clean band at an expected 1.5kb, so were 

combined, purified and used in the recombination reaction. Fragments were 

inserted into the cut pFB-NeoFLAG3 vector, and transformed into DHα E. coli. 

Sixteen positive colonies were picked and grown up in LB broth containing 

ampicillin, purified and digested with EcoR1. Figure 4.1c1 illustrates the EcoR1 

sites in the construct. Figure 4.1b represents the 16 digested colonies run on an 

agarose gel labelled 1-8 and 10-17, with a 10kb ladder for size reference. Samples 

9 and 18 were the original pCDNA3-ERβ2 vector also cut with EcoR1 for 

comparison. This vector is smaller so leftover template DNA from the reaction that 

may have been taken up by the competent DHα E coli produced bands of 

approximately 1.1kb and 6kb. Clones positive for ERβ2 incorporation into the vector 

produced 2 bands, one at ~7kb and another at 1.1kb. Clones displaying a smaller 
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molecular weight first band of ~6kb were potentially template DNA. Potential 

positive clones were identified (8 and 11) and together with a possible template 

DNA clone (5) were diluted and run out on agarose again to produce clearer bands 

in order to determine the molecular weight more accurately, illustrated in Figure 

4.1c2. Sample 5 was discarded as a potential pCDNA3 ERβ2 template clone as the 

largest band was smaller at around 6kb. Samples 8 and 11 were believed to be 

possible positive pFB-NeoFLAG3-ERβ2 clones. To further confirm positive clones, 

a digest using EcoRV was performed and Figure 4.1d1 depicts where the cutting 

sites are in the construct. Three bands were visualised when the samples were run 

on agarose for both clones at the predicted sizes of 2150bp, 2800bp and 3050bp 

displayed in Figure 4.1d2, suggesting the ERβ2 coding sequence had been 

successfully incorporated into the retroviral vector. DNA from clones 8 and 11 was 

purified and sequenced to confirm the presence of ERβ2 coding region in the pFB-

NeoFLAG3 vector. Alignment of the sequence from the clones to the ERβ2 coding 

sequence from the BLAST database confirmed 100% similarity and confirmed the 

insertion was in frame after the FLAG epitope. Clone 8 was used in this study. The 

DNA was transfected in phoenix A packaging cell lines, which produced virus 

particles containing the vector DNA. These viral particles once harvested, were 

transduced into MCF-7, T47D, MDA-MB-231 and MDA-MB-468 cells. Separate 

‘negative’ counterparts were also made using the pFB-NeoFLAG3 vector only 

transduced into these 4 cell lines in the same way, which did not express ERβ2. 

Selection based on antibiotic resistance for cells that had successfully incorporated 

the pFB-NeoFLAG3-ERβ2 DNA or the vector only (pFB-NeoFLAG3) into their 

genome was performed using geneticin (G418). 
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Figure 4.1. Amplification and recombination of an ERβ2 fragment into the 
retroviral vector pFB-NeoFLAG3, and subsequent restriction digests for 
confirmation of successful recombination. 
(a) Four amplified ERβ2 fragments produced at 4 annealing temperatures 
containing homologous ends to the cut pFB-NeoFLAG3 vector. 1- 53°C, 2- 58°C, 3-
63°C, 4- 68°C.  
(b) DNA from sixteen colonies picked from the ERβ2 “positive” plate. 1-8, 10-17; 
EcoR1 digested DNA from 16 ERβ2 “positive” colonies. 9, 18; pcDNA3 ERβ2 
vector. Expected band sizes: ~7 kb and ~1.1kb.  
(c1) schematic on the pRBneoFLAG3 ERβ2 recombined plasmid showing position 
of EcoR1 cutting site 
(c2) Three potential positive clones, 5, 8 and 11 
(d1) schematic on the pRBneoFLAG3 ERβ2 recombined plasmid showing position 
of EcoRV cutting sites 
(d2) EcoRV digests of the two samples from colonies 8 and 11. Expected band 
sizes 3050bp, 2800bp, and 2150bp. 
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4.3.2 Geneticin (G418) dose optimisation 

Geneticin (G418) is a commonly utilised antibiotic used to select for cells which 

have taken up recombinant DNA plasmid containing a neomycin resistance gene. 

To choose the correct dose of geneticin to select for cells transduced with the ERβ2 

vector, an antibiotic kill assay was performed on wild type cells. MCF-7, T47D, 

MDA-MB-468 and MDA-MB-231 cells were exposed to varying doses of geneticin 

over 10 days. Figure 4.2 illustrates images of the cells incubated with the lowest 

dose of geneticin needed to kill all cells by the end of the selection period. MCF-7, 

T47D and MDA-MB-231 cells required a geneticin dose of 500µg/ml and MDA-MB-

468 cells required a dose of 200µg/ml in order to kill all cells during selection. By 

day 9 of selection no viable cells were present, only cell debris. These doses were 

used under the same experimental conditions to select cells transduced with the 

pFB-neoFLAG3 ERβ2 vector or the empty vector control cells containing pFB-

NeoFLAG3 vector. Cells that survived after 10 days of selection were considered 

positive for the recombinant DNA vector or empty vector.  
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Figure 4.2. Geneticin dose optimisation for the selection of pFB-NeoFLAG3-
ERβ2 positive clones.  
MCF-7, T47D, and MDA-MB-231 cell selected with 500 μg/ml of geneticin, MDA-
MB-468 selected with 200 μg/ml. Images presented taken on day1, 4 and 9 of 
selection. Images taken at 4x magnification 
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4.3.3 Confirmation of ERβ2 overexpression expression in cell lines 

Once ERβ2 overexpressing cell lines had been established, ERβ2 expression was 

confirmed by measuring both mRNA and protein levels compared to the vector only 

control cell lines and wild type cell lines. qRT-PCR data for quantification of ERβ2 

mRNA in wild type, empty vector control and ERβ2 overexpressing cells is 

summarised in Figure 4.3. MCF-7, T47D, MDA-MB-231 and MDA-MB-468 cells all 

demonstrated a statistically significant increase in ERβ2 mRNA levels compared to 

both wild type and empty vector control counterparts. MCF-7 overexpressing cells 

displayed around a 1000 fold increased in ERβ2 expression compared to the empty 

vector transduced control MCF-7 cells. T47D ERβ2 overexpressing cells exhibited 

the lowest expression fold increase of all the cell lines with around a 140 fold 

increase in ERβ2 mRNA compared to the control cells. Over a 2200 fold increase in 

ERβ2 mRNA was seen in MDA-MB-231ERβ2 overexpressing cells compared to the 

empty vector control cells. This was the highest fold increase observed over all the 

cell lines. MDA-MKB-468 ERβ2 overexpressing cells exhibited a1500 fold increase 

in ERβ2 mRNA compared to the control cells. 
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Figure 4.3. qRT-PCR quantification of ERβ2 mRNA in wild type (WT), vector 
control and ERβ2 overexpressing cell lines 
mRNA levels of ERβ2 expressed as a fold difference normalised to the vector 
control cells with a value of 1.  
Error bars represent ± SEM for n=3 (technical replicates). Statistically significant 
fold changes between vector control cells and ERβ2 overexpressing cells (*) and p-
values, measured using a student’s t-test, are displayed. 
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ERβ2 overexpression was also confirmed at the protein level, as mRNA levels do 

not always correlate with protein levels (90). Western blot was used for 

quantification of ERβ2 protein in the transduced cell lines, using an antibody to the 

FLAG epitope attached to the N-terminus of the protein. Quantification of total ERβ 

protein using an ERβ antibody that measures all isoforms was performed on MDA-

MB-231 cells only. This data is summarised in Figure 4.4. Figure 4.4a illustrates the 

ERβ2 protein levels, characterised using the FLAG M2 antibody, in wild type (WT), 

empty vector control (V) and ERβ2 overexpressing (ERβ2) cell lines. Bands 

representing protein levels were present only in the ERβ2 overexpressing cells. 

MDA-MB-231 cells appeared to contain the largest amount of ERβ2 protein 

withT47D containing the least. These bands were all detected at the expected size 

of 58kDa, slightly larger than native ERβ2 at 55.5Kda due to the presence of the 

FLAG3 tag (~2.5kDa). No bands were present in the wild-type or empty vector 

controls. β-actin was used as a loading control, and was consistent between 

samples. Figure 4.4b represents total ERβ (all isoforms) levels in MDA-MB-231 

cells. This antibody was used to detect ERβ2 overexpression only in MDA-MB-231 

cells as these had the highest level of overexpression. Expression levels in the 

other cell lines were not high enough to be detected. A band was present only in 

the overexpressing cell lines at the expected size of around 58kDa. Absence of a 

band in wild type and control vector only cells suggests that ERβ2 protein is being 

detected, not other isoforms. Endogenous protein would be identified in all samples 

if levels were high enough for detection. Again, β-actin was used as a loading 

control. 
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Figure 4.4. Western blot for ERβ2 detection in cell lines; wild type, pFB-
NeoFLAG3 and pFB-NeoFLAG3-ERβ2 transduced cells using FLAG M2 or 
ERβ (14C8) antibodies. 
a) FLAG M2 antibody was used to detect ERβ2 protein in MCF-7, T47D, MDA-MB-
231 and MDA-MB-468 ERβ2 overexpressing cells. Wildtype and empty vector cells 
were also analysed to show specificity for FLAG epitope. bands of 58kDa were 
detected in all ERβ2 overexpressing cells. Β-actin antibody was used as a loading 
control and bands were observed at 42kDa 
b) Total ERβ antibody (14C8) was used to detect ERβ protein in MDA-MB-231 
ERβ2 overexpressing cells, where a band was observed at 59kDa. No ERβ protein 
was detected in wild type and vector only control cells. Β-actin antibody was used 
as a loading control and bands were observed at 42kDa 
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Results suggest that ERβ2 was successfully overexpressed in the 4 cell lines, 

MCF-7, T47D, MDA-MB-231 and MDA-MB-468. qRT-PCR data, measuring 

specifically ERβ2 mRNA and western blot data measuring protein using the FLAG 

M2 antibody to the N terminal epitope attached to the recombinant ERβ2 protein, 

show increased ERβ2 expression only in the pFB-NeoFLAG3-ERβ2 vector 

transduced cell lines. Band intensity differences in protein are correlated with the 

differences in mRNA. MDA-MB-231 cells demonstrate the highest expression fold 

increase in ERβ2 mRNA levels and also demonstrate the most intense band on the 

western blot, potentially signifying increased protein levels. T47D cells displayed 

the lowest expression fold increase in ERβ2 mRNA compared to its control. They 

also exhibited the faintest band on the western blot, indicating the least protein. As 

exposure times were kept constant between cell lines, experimental conditions 

were identical as samples were all assayed together and loading controls appear 

even, we were confident that the differences in band intensity correlated with their 

protein levels. Expression of ERβ2 between wild-type cells and empty vector 

control cells was comparable with very little, but nevertheless analogous, mRNA 

signal detected by qRT-PCR and no protein detected by western blot. In 

forthcoming experiments the empty vector control cells were used to represent the 

control cell line as an equivalent to wild-type cells. 
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4.3.4 Investigating the effect of ERβ2 overexpression on cellular 

proliferation 

Cell proliferation was measured between the empty vector control cells and the 

ERβ2 overexpressing cells to investigate whether ERβ2 affects cell growth. Cell 

counts were performed over a 120 hour period, with both ERβ2 overexpressing and 

empty vector control cells counted at 48, 72, 96 and 120 hours after seeding. Figure 

4.5 illustrates the growth curve data. MCF-7 and T47D cell lines are categorised as 

luminal A, and express ERα. ERβ2 overexpression in both of these cell lines 

resulted in a decrease in cellular proliferation rate indicated by consistently reduced 

cell numbers, signifying ERβ2 induced growth suppression. In T47D cells, 

increased separation of the lines indicates the suppressive effect of ERβ2 was 

greater than in MCF-7 cells. By 120 hours cell numbers in the empty vector control 

cell line was around 1.5 million whereas in the ERβ2 overexpressing cell line it was 

only around 320,000. MDA-MB-231 cells and MDA-MB-468 cell lines have a triple 

negative phenotype. In MDA-MB-231 cells, ERβ2 overexpression resulted in an 

increase in proliferation, and by 120 hour average cell numbers reached 830,000 

compared with 650,000 in the control cells, suggesting ERβ2 promotes growth in 

this cell line. Conversely, ERβ2 overexpression decreased cellular proliferation in 

MDA-MB-468 cells, suggesting ERβ2 differentially regulates growth in these cell 

lines.
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Figure 4.5. Proliferation analysis of ERβ2 overexpressing versus vector control MCF-7, T47D, MDA-MB-231 and MDA-MB-468 cells. 
ERβ2 overexpression (red line) resulted in growth suppression in MCF-7, T47D and MDA-MB-468 cells, and growth promotion is MDA-MB-231 
cells, compared to their vector control counterparts (blue line). Error bars represent ± SEM for n=2 (technical replicates). Statistically significant 
changes in cell number (*) and p-values, measured using a multiple student’s t-tests with Holm-Sidak correction, are displayed.
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4.3.5 Cell cycle distribution 

Vector control cells and ERβ2 overexpressing cells were analysed using flow 

cytometry to determine whether the overexpression of ERβ2 protein affected their 

cell cycle distribution. Figure 4.6 illustrates the cell cycle distribution in MCF-7 and 

MDA-MB-231 vector control and ERβ2 overexpressing cells. These histograms 

show the percentage of cells in a population that are in G1/0, S or G2/M phase. 

There was no notable difference in cell cycle distribution between both MCF-7 and 

MDA-MB-231 control cells and their ERβ2 overexpressing counterparts, suggesting 

ERβ2 overexpression does not affect the percentage of cells in each phase of the 

cell cycle. This data suggests cell cycle distribution was unaffected by an increase 

in ERβ2 protein and the changes observed in proliferation rate may not be due to 

cell cycle regulation. 
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Figure 4.6. Cell cycle distribution of MDA-MB-231 and MCF-7 ERβ2 
overexpressing compared and vector control cells  
Cells were incubated with the fluorescent dye propidium iodide (PI) and analysed 
by flow cytometry. The average percentage of cells in G1/0, S and G2/M phase is 
shown above their respective peaks on the graphs.  
a) MDA-MB-231 vector control cell cycle distribution 
b) MDA-MB-231 ERβ2 overexpressing cell cycle distribution 
c) MCF-7 vector control cell cycle distribution 
d) MCF-7 ERβ2 overexpressing cell cycle distribution 
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4.3.6 Cell migration 

Cell migration was measured in ERβ2 overexpressing MCF-7, T47D, MDA-MB-231 

and MDA-MB-468 cells and their respective control cell lines to investigate whether 

overexpression of ERβ2 protein affected cell migration rates. Data from one 

representative replicate is displayed in Figure 4.7. The graphs display the relative 

wound density (RWD), a metric that measures cell density in the wound area 

expressed relative to the cell density outside of the wound area. This allows a more 

accurate calculation of migration as it normalises for changes in cell density in the 

wound caused by proliferation. All cell lines overexpressing ERβ2 demonstrated a 

decrease in migration. MCF-7 and MDA-MB-468 ERβ2 overexpressing cells had a 

RWD of around 10% less than the control cells at 20 and 60 hours post wounding 

respectively, illustrated by the dotted black lines in Figure 4.7 a and d. MDA-MB-

468 cells did not to completely fill the wound over the course of the experiment, and 

by 140 hours, the RWD was only around 40%, suggesting these cells are not 

inherently migratory. In MDA-MB-231 cells the RWD was around 12% less in the 

ERβ2 overexpressing cells than the control cells at 10 hours depicted by the black 

dotted line in Figure 4.7c. T47D ERβ2 overexpressing cells had a RWD of around 

12% less than in the control cells by 100 hours, illustrated by the dotted line in 

Figure 4.7b.  
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Figure 4.7. Migration wound healing assay performed on ERβ2 
overexpressing cells. 
Migration is measured as the relative wound density (RWD) % over time. Migration 
was decreased in all ERβ2 overexpressing cells (red line) compared to their control 
counterparts (blue line), illustrated by the dotted lines indicating different RWDs at a 
single time point. a) MCF-7 cells, b) T47D cells, c) MDA-MB-231 cells, d) MDA-MB-
468 cells. Significance was not tested as only one replicate was performed. 
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4.3.7 Target gene validation 

Four genes were selected for ERβ2 target gene qRT-PCR validation, all of which 

had been demonstrated to be regulated by ERβ. Candidates CDK6, BCL-2 and 

RIP140 were identified from a list of genes demonstrated to be directly regulated by 

ERβ from ChIP-Seq analysis of ERβ binding sites (47). S100A7 was demonstrated 

to be a target for ERβ1 in the triple negative cell line MDA-MB-468, and was 

upregulated by E2 treatment in ERβ overexpressing cells (115), and was found to 

be associated with ERβ2 by the Breast Research Group in Leeds (179). The mRNA 

levels of these genes were examined in empty vector control and ERβ2 

overexpressing cells and were either untreated or treated with E2 (ERα and ERβ 

agonist) or DPN (ERβ agonist). The mRNA levels of the target genes were 

measured with the aim to elucidate whether the ERβ2 isoform had involvement in 

their transcriptional regulation. Results are illustrated in Figure 4.8 (MCF-7 cells) 

and 4.9 (MDA-MB-231 cells) where the black bars represent the vector control cells 

and the red bars represent the ERβ2 overexpressing cells. 

 

qRT-PCR expression data from each gene investigated was normalised to the 

vector control cells for each treatment, which was given an expression fold change 

of 1 i.e. E2 treated ERβ2 overexpressing cells were normalised to E2 treated vector 

control cells. This was done to concentrate the findings on the effect of ERβ2 

overexpression and not the effect of the ligands alone. However the ligands did 

alter gene expression in just the control vector cells, so mRNA expression that has 

been normalised to only the untreated control is displayed in appendix 7.5  
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ERβ2 overexpression and subsequent ligand treatment had little effect on BCL-2 or 

CDK6 mRNA expression in MCF-7 cells, (Figure 4.8a and 4.8b respectively). The 

minor increases in expression observed with DPN treatment are beyond the 

sensitivity of the assay and therefore cannot be interpreted as a real fold change. 

S100A7 expression was upregulated in MCF-7 cells, which overexpressed ERβ2 

(Figure 4.8c). In the untreated cells more than a 2 fold increase in S100A7 mRNA 

was observed, and this increased to around 5 fold when cells were treated with E2 

and DPN. Although RIP140 mRNA expression marginally decreased in untreated 

ERβ2 overexpressing cells (Figure 4.8d), this was negated when cells were treated 

with E2 and DPN. 
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Figure 4.8. qRT-PCR quantification of the mRNA expression levels of BCL-2 
CDK6, S100A7 and RIP140 in ERβ2 overexpressing and vector control MCF-7 
cells treated with E2 (1nM) or DPN (10nM) for 24 hours 
mRNA is expressed as a relative fold difference normalised to the vector control cell 
expression, which was given a value of 1. Relative fold expression difference of 
BCL-2 (a), CDK6 (b), S100A7 (c), and RIP140 (d) 
Error bars represent ± SEM for n=3 (technical replicates). Statistically significant 
fold changes (*) and p-values, measured using a student’s t-test, are displayed. 
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Contrary to MCF-7 cells, ERβ2 overexpression influenced BCL-2 expression in 

MDA-MB-231 cells (Figure 4.9a). In untreated MDA-MB-231 cells, BCL-2 mRNA 

was downregulated approximately 1.7 fold in ERβ2 overexpressing cells compared 

to the control cells. However when treated with E2 or DPN, BCL-2 expression was 

increased, suggesting opposing regulation with and without ligand presence. A 

similar finding was observed with CDK6 mRNA expression (Figure 4.9b). In 

untreated cells CDK6 expression was marginally reduced, however upon E2 and 

DPN treatment expression of CDK6 was increased up to 2.5 fold compared to 

control cells. S100A7 mRNA expression is illustrated in Figure 4.9c. Expression 

remained unchanged in the absence of ligand treatment, however in the presence 

of E2 and DPN, expression increased by approximately 2 fold, however this was 

less pronounced than the increase observed in MCF-7 ERβ2 overexpressing cells. 

RIP140 mRNA expression is illustrated in Figure 4.9d. Expression decreased in 

ERβ2 overexpressing MDA-MB-231 cells with a decrease of over 2 fold in 

untreated and DPN treated cells and approximately 1.7 fold in E2 treated cells. 
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Figure 4.9. qRT-PCR quantification of the mRNA expression levels of BCL-2 
CDK6, S100A7 and RIP140 in ERβ2 overexpressing and vector control MDA-
MB-231 cells treated with E2 (1nM) or DPN (10nM) for 24 hours 
mRNA is expressed as a relative fold difference normalised to the vector control cell 
expression, which was given a value of 1. Relative fold expression difference of 
BCL-2 (a), CDK6 (b), S100A7 (c), and RIP140 (d) 
Error bars represent ± SEM for n=3 (technical replicates). Statistically significant 
fold changes (*) and p-values, measured using a student’s t-test, are displayed. 
  



144 
 

4.3.8 Mitochondrially transcribed genes 

A number of mtDNA transcribed genes were also investigated with respect to ERβ2 

overexpression, as ERβ2 was found to colocalise with the mitochondria, detailed in 

chapter 3.5. ND1, ND2, ATP6 and CYB mRNA expression was investigated in 

MCF-7 and MDA-MB-231 cells, both in ERβ2 overexpressing cells and their empty 

vector control counterparts. Again, qRT-PCR expression data from each gene 

investigated was normalised to the vector control cells (given an expression fold 

change of 1) for each treatment, Results are shown in Figure 4.10 (MCF-7 cells) 

and 4.11 (MDA-MB-231 cells) where the black bars represent the vector control 

cells and the red bars represent the ERβ2 overexpressing cells. Gene expression 

normalised to the untreated empty vector control cells only are displayed in 

appendix 7.6, to illustrate gene expression changes as a result of ligand treatment 

only. 

 

mtDNA gene expression data for MCF-7 cells are displayed in Figure 4.10. ERβ2 

overexpression had no effect on ND1 expression levels without ligand treatment, or 

with DPN treatment. However, upon incubation with E2, expression of ND1 

decreased 2 fold compared to the control cells (Figure 4.10a). ND2 mRNA levels 

were again unaffected by ERβ2 overexpression without the presence of a ligand, 

whereas E2 treatment decreased ND2 levels by around 1.8 fold and DPN treatment 

only marginally increased expression by approximately 1.3 fold (Figure 4.10b). In 

ERβ2 overexpressing cells without treatment ATP6 and CYB levels were both 

increased 1.4 fold illustrated in Figure 4.10c and 4.10d respectively. E2 had little 

effect on expression levels of ATP6 and CYB and DPN treatment only marginally 

increased their expression.  
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Figure 4.10. qRT-PCR quantification of the mRNA expression levels of ND1, 
ND2, ATP6 and CYB in ERβ2 overexpressing MCF-7cells treated with E2 
(1nM) or DPN (10nM) for 24 hours 
mRNA is expressed as a relative fold difference normalised to the vector control cell 
expression, which was given a value of 1. Relative fold expression difference of 
ND1 (a), ND2 (b), ATP6 (c), CYB (d) 
Error bars represent ± SEM for n=3 (technical replicates). Statistically significant 
fold changes (*) and p-values, measured using a student’s t-test, are displayed. 
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In contrast to MCF-7 cells, ERβ2 overexpression in MDA-MB-231 cells had a more 

pronounced effect on gene transcription of mtDNA transcribed genes, when 

exposed to E2 and DPN. ND1 expression levels in ERβ2 overexpressing cells were 

unchanged with no ligand treatment compared to the vector control cells (Figure 

4.11a); however upon E2 and DPN treatment, mRNA expression increased 2 fold 

and 1.5 fold respectively in the ERβ2 overexpressing cells compared to their control 

counterparts. ND2 mRNA expression increased 1.5 fold in untreated ERβ2 

overexpressing cells (Figure 4.11b). E2 treatment resulted in almost a 4 fold 

increase in ND2 mRNA levels in ERβ2 overexpressing cells, whereas ND2 mRNA 

levels only marginally increased with DPN treatment. Figure 4.11c illustrates ATP6 

mRNA levels in response to ERβ2 overexpression. No ligand treatment resulted in 

a marginal increase in APT6 mRNA. E2 treatment produced a more marked 2 fold 

increase in ATP6 expression whereas in response to DPN treatment only a slight 

increase in mRNA levels was observed. ERβ2 overexpression resulted in a 2 fold 

increase in CYB mRNA compared to control cells and as with the other mtDNA 

genes, DPN treatment only marginally increased mRNA levels. ERβ2 

overexpression with no ligand treatment did not affect CYB mRNA expression 

(Figure 4.11d). 
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Figure 4.11. qRT-PCR quantification of the mRNA expression levels of ND1, 
ND2, ATP6 and CYB in ERβ2 overexpressing MDA-MB-231cells treated with 
E2 (1nM) or DPN (10nM) for 24 hours 
mRNA is expressed as a relative fold difference normalised to the vector control cell 
expression, which was given a value of 1. Relative fold expression difference of 
ND1 (a), ND2 (b), ATP6 (c), CYB (d) 
Error bars represent ± SEM for n=3 (technical replicates). Statistically significant 
fold changes (*) and p-values, measured using a student’s t-test, are displayed. 
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4.3.9 Subcellular fractionation 

As demonstrated in section 3.2, it was possible to detect ERβ2 at the protein level 

in the transduced cell lines using the FLAG M2 antibody raised to the 5’ epitope of 

the ERβ2 protein. Subcellular fractionation allowed us to examine ERβ2 protein 

levels in the different cellular compartments; the nucleus, mitochondria and 

cytoplasm. Cells were then stimulated with various estrogenic ligands targeted to 

ERα and ERβ1, in order to study how these drugs may affect ERβ2 cellular 

distribution. Information gathered from this experiment could suggest where in the 

cell ERβ2 may be most functional, and whether estrogenic ligands effect this 

distribution. Figure 4.12 illustrates the distribution of ERβ2 protein in subcellular 

compartments (Nuclear, cytoplasmic and mitochondrial) in ERβ2 overexpressing 

MCF-7 and MDA-MB-231 cells. Different loading controls were used for the nuclear, 

cytoplasmic and mitochondrial fractions; TATA binding protein, cyclophilin A and 

cytochrome C respectively. These antibodies were applied to each fraction to check 

enrichment as indicated by the red arrows in Figure 4.12. 

 

In MDA-MB-231 cells almost all ERβ2 protein was observed in the cytoplasmic and 

mitochondrial fractions. Lower levels of ERβ2 in comparison were detected in the 

nuclear fraction as only a very faint band was observed. The nuclear fraction was 

enriched as a band was only observed with the nuclear marker (TATA-BP). 

Likewise the cytoplasmic fraction was also enriched as only a band appeared with 

cyclophilin A incubation. Some contamination of the mitochondrial fraction with 

cytoplasm was observed as a band was detected on the blot with cyclophilin A 

incubation; however a more robust band was present under cytochrome C 

incubation demonstrating the fraction was likely enriched for mitochondria.  

In MCF-7 cells, ERβ2 was present at increased levels in the mitochondria and 

lower levels were detected in the cytoplasmic demonstrated by a fainter band in this 
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fraction. No protein was detected in the nuclear fraction and the absence of a band 

may be due to low undetectable protein levels. Again fractions were examined for 

enrichment. The nuclear fraction was enriched demonstrated by the band present 

under TATA BP incubation. Some contamination with cytoplasmic proteins was also 

detected in this fraction; however the band was fainter, indicating the fraction was 

likely to be predominantly nuclear enriched. The mitochondrial fraction 

demonstrated enrichment, but with a small amount of nuclear protein present in this 

fraction indicated by a faint band when probed with TATA-BP antibody. The 

cytoplasmic fraction was enriched, with a band present under cyclophilin A 

incubation, and no nuclear or mitochondrial cross contamination was observed. All 

fractions demonstrated enrichment, and thus the method was deemed suitable and 

robust for the fractionation of subcellular compartments. 
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Figure 4.12. Western blot of ERβ2 in nuclear, cytoplasmic and mitochondrial 
compartments in pFB-NeoFLAG3-ERβ2 transduced cell lines. 
FLAG M2 antibody was used to detect ERβ2 protein in nuclear cytoplasmic and 
mitochondrial cellular fractions. Bands were detected in all fractions in MDA-MB-
231 cells and in the mitochondrial and cytoplasmic fractions of MCF-7 cells at 
58kDa. TATA-BP, Cyclophilin A and cytochrome C were used as markers for the 
nucleus, cytoplasmic and mitochondria respectively to show enrichment and purity 
of each fraction (red arrows). 
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MCF-7 and MDA-MB-231 ERβ2 overexpressing cells were incubated with E2, 4-

OHT, DPN or genistein to investigate whether these ligands would alter the cellular 

distribution of ERβ2 between the subcellular compartments. ERβ2 protein was 

detected using the FLAG M2 antibody. Whole protein extracts were also prepared 

to evaluate the effect of the ligands on total cellular ERβ2 protein levels. We used 

TATA-BP, cyclophilin A and cytochrome C as controls for equal loading for the 

nuclear, cytoplasmic and mitochondrial fractions respectively in the following 

experiment, rather than to demonstrate enrichment. 

 

Figure 4.13a illustrates levels of ERβ2 in whole cell extracts of MCF-7 cells in 

response to estrogenic ligands or no ligand stimulation (control). In the presence of 

E2, DPN and genistein, ERβ2 protein levels appeared reduced, indicated by the 

fainter bands compared to the untreated controls. Genistein treatment resulted in 

no detectable ERβ2 protein. The β-actin loading control for the genistein treated 

sample indicated less total protein was loaded, which may have contributed to this 

lack of detection. The effect of the ligands on mitochondrial ERβ2 (Figure 4.13b) 

mirrored whole cell ERβ2 levels. E2, DPN and genistein treatment resulted in 

decreased ERβ2 protein levels demonstrated by the fainter bands compared to the 

untreated control, whereas 4-OHT treatment produced no apparent change in 

ERβ2 protein levels. In the cytoplasmic fractions (Figure 4.13c), E2 genistein and 4-

OHT resulted in reduction of ERβ2 protein in the cytoplasm and this was more 

pronounced in response to E2 and genistein. Again this reduction is similar to that 

seen in the whole cell extracts. When comparing ERβ2 levels in the cytoplasm 

upon DPN treatment to untreated cells, protein levels appear unchanged. However 

ERβ2 protein appears to be reduced in whole cell extracts upon DPN treatment 

suggesting ERβ2 levels are actually increased in the cytoplasm as a result of DPN 

stimulation. Nuclear ERβ2 (Figure 4.13d) mirrored whole cell ERβ2 protein levels. 

4-OHT treatment resulted in unchanged ERβ2 protein levels and DPN treatment 
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reduced ERβ2 nuclear protein compared to untreated cells. Upon E2 and genistein 

treatment we were unable to detect any ERβ2 protein in the nuclear fraction, 

possibly due to protein levels being out of the range of detection for this assay.
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Figure 4.13. Western blot of ERβ2 in whole cells, nuclear, cytoplasmic and mitochondrial fractions in MCF-7 ERβ2 overexpressing cells 
treated with E2, 4-OHT, DPN or genistein. 
FLAG M2 antibody was used to detect ERβ2 in nuclear cytoplasmic and mitochondrial cellular fractions. Bands were present at 58kDa. 
β-actin (42kDa), TATA-BP (42kDa), Cyclophilin A (18kDa) and cytochrome C (15kDa) were used as loading controls for the whole cell fraction, 
nucleus, cytoplasm and mitochondria respectively.

[Type a quote from the document or the summary of 
an interesting point. You can position the text box 
anywhere in the document. Use the Text Box Tools tab 
to change the formatting of the pull quote text box.] 

a) b) a) 

c) d) 
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Figure 4.14 illustrates the effect of E2, 4-OHT, DPN and genistein on ERβ2 protein 

distribution between cellular compartments in MDA-MB-231 cells. Whole cell ERβ2 

levels were measured and displayed in Figure 4.14a. ERβ2 protein levels were 

unchanged by treatment with E2, 4-OHT and DPN treatment. Genistein treatment 

resulted in a reduction of ERβ2 protein in MDA-MB-231 cells.  In the mitochondrial 

fractions, ERβ2 protein levels were unchanged upon E2 and 4-OHT treatment 

(Figure 4.14b). Due to the fainter band in the loading control, DPN treatment may 

reduce ERβ2 protein levels in this fraction, despite no apparent change observed 

with FLAG M2 incubation. ERβ2 protein levels were increased in the mitochondria 

upon genistein treatment. Figure 4.14c demonstrates estrogenic ligand treatment 

effects on ERβ2 levels in the cytoplasm. With the exception of DPN, none of the 

ligands changed ERβ2 protein levels in the cytoplasmic compartment. As in MCF-7 

cells, ERβ2 protein levels in the cytoplasm are increased in response to DPN 

treatment.  In the nuclear fractions ERβ2 protein levels were decreased in response 

to DPN treatment (Figure 4.14d). The loading control band is also fainter 

suggesting less cellular protein was loaded in this sample which may mean ERβ2 

protein levels are lower.  

. 
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Figure 4.14. Western blot of ERβ2 in whole cells, nuclear, cytoplasmic and mitochondrial fractions in MDA-MB-231 ERβ2 overexpressing 
cells treated with E2, 4-OHT, DPN or genistein. 
FLAG M2 antibody was used to detect ERβ2 in nuclear cytoplasmic and mitochondrial cellular fractions. Bands were present at 58kDa. 
β-actin (42kDa), TATA-BP (42kDa), Cyclophilin A (18kDa) and cytochrome C (15kDa) were used as loading controls for the whole cell fraction, 
nucleus, cytoplasm and mitochondria respectively.

a) b) 

d) c) 
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4.4 Discussion 

There is limited literature regarding the function of ERβ2 in breast cancer especially 

outside of the ERα positive setting. To address this, ERβ2 protein was 

overexpressed in ERα positive MCF-7 and T47D cells and ERα negative MDA-MB-

231 and MDA-MB-468 cells to begin to explore the function of ERβ2. 

4.4.1 A need for the FLAG epitope on the ERβ2 protein 

There is only one commercially available ERβ2 antibody, the 57/3 clone, produced 

by Serotec. It has been validated for use in IHC, however other applications have 

been either untested or the antibody is considered unsuitable. The antibody’s 

specificity has been validated and confirmed in the literature using peptide blocking 

assays (94, 153). 

We have used it successfully for immunofluorescence in this project; however other 

antibody based assays have been difficult. The antibody has repeatedly failed to 

detect endogenous ERβ2 on western blot. Studies concerning the detection of 

ERβ2 protein by western blot in cell line overexpression experiments have all either 

used an in-house antibody (61, 101), which lacks external validation, a protein tag 

to demonstrate protein quantification (95), or used antibodies to detect total ERβ 

and determined ERβ2 expression based on molecular weight  (146, 180). None 

have used the 57/3 ERβ2 antibody. This antibody was however capable of 

detecting ERβ2 by western blot in lysed tissue samples (94). It is yet to successfully 

detect ERβ2 protein by western blot in cell line lysates. To overcome this obstacle, 

we used a FLAG-tag attached to the N-terminus of the ERβ2 protein. The flag 

epitope should not interfere with protein function and provides a target for an 

antibody. The FLAG M2 antibody used in this study has been well validated in over-

expression studies (181-184) and has been used to specifically detect ERβ over-

expression (47, 95, 184, 185).  The FLAG epitope allowed us to confirm ERβ2 
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overexpression in our engineered cell lines and to perform functional assays, which 

would otherwise be problematic, in order to study ERβ2. 

4.4.2 Confirmation of ERβ2 overexpression 

Overexpression of ERβ2 mRNA and protein was demonstrated in the cell lines 

transduced with the ERβ2 overexpression vector. Overexpression was confirmed at 

both the mRNA and protein levels as post-transcriptional modifications can alter 

expression of a protein by processes such as mRNA degradation or silencing. This 

can lead to discordant levels of mRNA and protein, as mRNA is not always 

translated into protein. This has specifically been reported for ERβ isoforms in 

breast (88, 90, 186). The absence of UTRs in the mRNA from the overexpressed 

ERβ2, as only the coding sequence was present in the overexpression vector, 

would mean it would be unlikely that mRNA and protein levels would not be 

concordant; however both qRT-PCR and western blots were performed to confirm 

this. qRT-PCR indicated that wild type and the vector only transduced control cell 

lines expressed comparable levels of ERβ2 mRNA. Our results did show that there 

was variability between the levels of ERβ2 expressed between cell lines. This may 

be explained partly by transduction efficiency. Often it is assumed that during 

transduction cells will incorporate one retroviral vector containing the gene of 

interest into their genome; however in practice some cells will incorporate 

numerous vectors, leading to variability in overexpression levels. Cells with higher 

transduction efficiency will often incorporate increased copy numbers of vector DNA 

into their genome leading to increased expression of the protein (187). The 

transduction efficiency between different breast cancer cell lines has been explored 

by Hines et al, 2015 (188). They determined that luminal breast cancer cell lines 

had much lower transductional efficiencies than basal cell lines, with MCF-7 and 

T47D cells demonstrating lower levels of transduction and MDA-MB-231 and MDA-

MB-468 cell lines demonstrating the highest transduction efficiency. This was 
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explained by the capability of the cell to bind the virus, with luminal cells more 

deficient in binding capacity, which was suggested to be due to the expression of 

glycans on the outside of these cells. These can function to protect cells from 

infection (189), thus resulting in increased resistance of luminal cells to viral 

transduction.  

To support ERβ2 overexpression detected by the FLAG M2 antibody, a total ERβ 

antibody, 14C8, was used to detect ERβ in MDA-MB-231 cells, which expressed 

the highest levels of ERβ2. Skliris et al, 2002 reviewed 7 ERβ antibodies for various 

protocols specifically for breast tissue (190). Of these, D7N and 8D5 produced the 

strongest and most specific bands (specificity determined by expected band size), 

while 14C8 produced weaker bands at the expected size. We used D7N initially to 

validate ERβ2 overexpression in the cell lines. However, this antibody detected 

ERβ protein in the wild type, vector control and ERβ2 overexpressing cells at equal 

levels indicated by bands of similar intensity, despite ERβ2 being overexpressed up 

to 2200 fold at the mRNA level. This antibody was therefore discarded due to 

concerns about specificity. The 14C8 antibody, although signal detection was 

weaker, had been well validated by others (100, 191, 192). ERβ expression was 

confirmed in the ERβ2 overexpressing MDA-MB-231 cells but not in the wild type or 

vector only control cells, suggesting the antibody is detecting the high levels of 

ERβ2 rather than any low levels of endogenous ERβ. The antibody was only 

capable of detecting ERβ2 in the MDA-MB-231 cells, suggesting this antibody is 

only capable of detecting high levels of ERβ. This is recognised in the literature with 

its use in ERβ overexpression studies but not to detect endogenous ERβ in breast. 
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4.4.3 The physiological effect of ERβ2 overexpression on breast cancer cell 

lines 

ERβ2 overexpression studies in breast have only been performed in MCF-7 cells. 

These give a limited view on the function of ERβ2 in breast cancer and convey its 

function only in the presence of ERα. We know from the literature that ERβ2 

represses the function of ERα (95). This was confirmed with our growth curve data 

where ERβ2 overexpression caused growth suppression in ERα positive MCF-7 

and T47D cells. This is likely due to prevention of ERα binding to EREs and 

increased degradation of ERα protein described previously, resulting in a reduction 

in transcription of ERα regulated genes, which have been shown to promote 

proliferation. 

 

In ERα negative cells lines, the growth suppression mechanism previously 

described by Zhao et al, 2007 (95) is unfeasible. The effect of overexpression of 

ERβ2 in triple negative cell lines on growth was more complex not only in our cell 

lines but also in the literature. In the MDA-MB-231 cells proliferation rate increased, 

however in MDA-MB-468 cells, also a triple negative phenotype, cell proliferation 

decreased. In the literature, overexpression of ERβ2 in the triple negative cell line 

HS578T had no effect on growth (105) and observations made by Murphy et a 

(193) found no effect on growth in ERβ2 overexpressing MDA-MB-231 cells. In 

prostate cancer cells, which are ERα negative, ERβ2 overexpression resulted in 

increased expression of proliferative genes such as c-myc and downregulation of 

the cell cycle inhibitor p21, leading to an increase in proliferation (106). This was 

opposite to the effect that ERβ1 had on the cells. Variability of the effect of ERβ2 on 

proliferation in the literature and in our cell lines demonstrates the complexity of 

ERβ2’s action. 
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Surprisingly cell cycle distribution was unchanged upon ERβ2 overexpression in 

our cell lines. The overexpression of ERβ2 protein appears to alter proliferation of 

cells without altering their cell cycle distribution. Others have also reported that 

ERβ2 overexpression also resulted in proliferation but with no change in the cell 

cycle distribution (194).This may suggest ERβ2 controls proliferation by 

mechanisms other than regulation of various cell cycle proteins.  

A possible mechanism, by which ERβ2 may affect proliferation or changes in cell 

number, could be by an increase/decrease in cell death. ERβ2 has also been 

implicated in apoptosis in ovarian cancer. ERβ2 expression correlated with 

apoptosis, and inhibited BAX oligomerisation and cytochrome C release, which 

ultimately inhibited apoptosis (153). A decrease in apoptosis could explain 

increased cell numbers in ERβ2 overexpressing MDA-MB-231 cells. An effect on 

apoptosis is supported by our gene expression data. BCL-2 expression was 

increased in this cell line when ERβ2 was overexpressed. BCL-2 is an anti-

apoptotic protein therefore increased levels could inhibit apoptosis, leading to 

increased cell numbers. This effect on apoptosis could explain why no change in 

cell cycle distribution is seen in MCF-7 and MDA-MB-231 cells. Although ERβ1 

appears to inhibit proliferation by inducing G2/M arrest by downregulation of cyclin 

D1, cyclin A, CDK1 and c-myc and the upregulation of p21 and p27 (80, 81), ERβ2 

may not affect proliferation in this way via the direct regulation of cell cycle proteins. 

 

It is unclear why the two cell lines, both triple negative phenotypes, may behave in 

opposite ways in terms of growth. Both cell lines have similar expression patterns of 

marker proteins; both are negative for expression of ERα, PR and HER2 and 

positive for expression of AR, Ki67, and low levels of HER3, however, these cell 

lines differ in their expression of EGFR (195). MDA-MB-468 cells express very high 

levels of EGFR, however MDA-MB-231 cells express only faint, barely perceptible 

levels of EGFR, which was deemed negative when analysed using the HER2 
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scoring system. The growth suppression seen in MDA-MB-468 cells may be 

explained by ERβ2 interference with EGFR signalling. There is evidence for 

crosstalk between ER and EGFR signalling (165, 196). Overexpression of ERβ1 in 

triple negative breast cancer cell lines is demonstrated to cause an increase in 

ubiquitinated EGFR, thus increasing EGFR degradation, and inhibiting downstream 

proliferative signalling. As it has been hypothesised that ERβ2 can enhance the 

transactivation of ERβ1, overexpression of ERβ2 may enhance ERβ1’s inhibitory 

action on EGFR resulting in a decrease in cellular proliferation due to suppression 

of downstream signalling e.g. PI3K/AKT and MAPK/ERK pathway (196). Inhibition 

of EGFR has also been demonstrated to increase apoptosis (197), which could also 

contribute to reduced cell numbers. Interaction with EGFR could explain the 

differences in proliferation between MDA-MB-231 and MDA-MB-468 cells, as only 

MDA-MB-468 express EGFR at high levels. Use of siRNAs or shRNAs to silence 

the expression of EGFR in MDA-MB-468 cells could be performed to confirm this 

potential involvement of EFGR. Measurement of a downstream gene target of 

EGFR could also be compared between the control and ERβ2 overexpressing cells 

to examine whether EGFR signalling pathways are inhibited in ERβ2 

overexpressing cells.  

Despite variation in proliferation regulation, the effect of ERβ2 overexpression on 

migration was consistent, decreasing it across all cell lines. Proliferation and 

migration often positively correlate, despite both being mutually exclusive. The ‘go 

or grow’ theory (198) suggests while a cell is moving or migrating it is not dividing. 

In wound healing experiments, proliferation may also affect the wound closure and 

be misinterpreted as migration. In MCF-7, T47D and MDA-MB-468 cells the 

decrease in migration rate could be due to the decrease in proliferation rates. 

However the RWD metric takes into consideration proliferation by calculating the 

density of cells inside and outside the wound. To confirm that proliferation has no 

influence on migration, inhibition of proliferation during wound healing with 
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chemicals such as actinomycin D or mitomycin C, could be employed. In MDA-MB-

231 cells proliferation and migration were inversely correlated, suggesting for these 

cells both biological processes are independent of each other. The effect of ERβ2 

on migration, invasion and metastasis has not been widely studied in breast but has 

been explored in other cancers. Clinical data suggests ERβ2 is inversely correlated 

with invasion and metastasis in breast cancer, which supports our data (94). This is 

also the case in lung cancer where ERβ2 expression correlated with interleukin-12 

receptorβ2 (IL-12Rβ2). ERβ2 was demonstrated to upregulate IL-12Rβ2 via 

interaction with p38MAPK resulting in a decrease in cellular invasion (199), 

suggesting a possible mechanism by which ERβ2 can regulate invasion. Although 

not all studies are in breast cancer, IL-12 has been demonstrated to induce 

interferon gamma (IFN-γ) production triggering the production of anti-angiogenic 

chemokines (200). Inhibition of angiogenesis is one mechanism proposed to reduce 

cell migration and invasion. Expression levels of IL-12Rβ2 could be investigated in 

our ERβ2 overexpressing versus the control cells in order to examine whether this 

effect is also seen in breast. Contrary to these studies, in prostate cancer ERβ2 

expression was associated with increased invasion, but with no effect on migration 

(101). Given the differing results linking ERβ2 to migration and invasion between 

cancer types, cellular context appears to be important when considering the role of 

ERβ2 on cell migration and invasion. The effect of ERβ1 overexpression on 

migration has been investigated in more detail in breast cancer, and may suggest 

ways in which ERβ2 can affect cellular migration. Phosphorylation of ERβ1 has 

been linked to migration regulation. A number of residues mostly in the AF-1 

domain of the ERβ protein have been identified as sites of phosphorylation by 

intracellular kinases (201). EGF and Ras are both able to phosphorylate and 

activate ERβ by MAPK activation. EGF treatment in cells overexpressing ERβ 

resulted in a decrease in migration; suggesting phosphorylation of ERβ and 

subsequent regulation of target genes may regulate migration. It has been 

demonstrated that phosphorylation of serine 105 on ERβ results in migration 

inhibition (202). ERβ2 only varies from ERβ1 in its AF-2 domain, and has the same 

AF-1 domain as ERβ. As the majority of phosphorylation sites are contained within 
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the AF-1 domain on ERβ1, it is possible ERβ2 is also capable of being 

phosphorylated in the same way, potentially contributing to regulation of migration. 

This could account for the decrease in migration observed with overexpression of 

ERβ2 as with ERβ1.  

4.4.4 The effect of ERβ2 overexpression on nuclear gene transcription 

Expression of possible ERβ2 target genes was investigated in ERβ2 

overexpressing and control cells. A lack of literature regarding ERβ2’s function in 

TNBC, meant it was important to investigate target gene regulation in both ERα 

positive (MCF-7) and ERα negative (MDA-MB-231) cells. As it is demonstrated that 

ERβ2 functions by heterodimerising with ERα or ERβ1, ligands targeted to both of 

these receptors were used to gain insight into which receptor mediates ERβ2 

function. 

 

ERβ2 overexpression had very little effect on BCL-2 and CDK6 levels in MCF-7. 

Although ERβ2 decreased proliferation in MCF-7 cells demonstrated in section 3.6, 

it is likely this is through suppression of ERα signalling rather than regulation of cell 

cycle proteins, supported by our finding that no change in CDK6 expression or cell 

cycle distribution was observed. It is common that with direct regulation of cell cycle 

proteins, the cell cycle will arrest and this has been observed with ERβ1 

overexpression (80, 84). It is not known whether ERβ2 regulates other cell cycle 

proteins e.g. c-Myc (106) or apoptotic proteins (153) as is the case in other cancers, 

therefore regulation of the cell cycle or apoptosis via other proteins cannot be ruled 

out. S100A7 mRNA levels were dramatically increased in MCF-7 cells 

overexpressing ERβ2, with the greatest increase in S100A7 levels observed with 

ligand treatment. S100A7 is thought to be tumourigenic when expressed in ERα 

negative breast .It is associated with poorer outcome in these ERα negative 

tumours (203). Its function in ERα positive tumours is relatively unknown. Both E2 
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and DPN upregulated S100A7 to similar levels in the ERβ2 overexpressing MCF-7 

cells suggesting the effect is mediated through interaction with ERβ1. Others have 

reported that ERβ specifically, but not ERα regulates S100A7 expression (204), 

which supports this observation.  Although linked to a more invasive phenotype, its 

overexpression in MCF-7 cells has been demonstrated to reduce proliferation and 

migration, suggesting it could also function as a tumour suppressor. Specifically, 

S100A7 overexpression in MCF-7 and T47D cells downregulated β-catenin, cyclin 

D1, and c-myc, which code for proteins involved in cell adhesion and proliferation 

respectively (205). Upregulation of S100A7 by ERβ2 could contribute to the 

reduced proliferation and migration seen in our ERβ2 overexpressing MCF-7 and 

T47D cells by regulating these downstream genes.  

 

As with MCF-7 cells very little change in gene expression was observed with no 

treatment between MDA-MB-231 control and ERβ2 overexpressing cells. 

Expression levels of BCL-2 in the ERβ2 overexpressing cells increased upon ligand 

treatment compared to their respective control cells. This suggests a possible anti-

apoptotic role for ERβ2 in this ERα negative cell line. As previously discussed the 

increase in proliferation in these cells may be due to a decrease in apoptosis. 

Increasing BCL-2 levels supports this theory. In order to confirm a physiological 

effect on apoptosis, flow cytometry could be utilised to measure the level of cell 

death in our ERβ2 overexpressing cells versus the control cell lines, using annexin 

V stain, which detects the externalization of phosphatidylserine from the cell 

membrane (206). In the literature ERβ has been described as a protective protein, 

reducing apoptosis to preserve the cell. In the brain tissue ERβ enhanced BCL-2 

expression upon DPN stimulation resulting in neuroprotection (207).  Similar finding 

was observed in cardiac tissue (208). By upregulation of BCL-2, ERβ2 may also 

adopt a cell protective role; however this may only be applicable in an ERα negative 

setting upon stimulation with a ligand. In MDA-MB-231 cells, CDK6 mRNA 
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expression increased with ligand treatment, suggesting ERβ2 may further enhance 

cell proliferation in MDA-MB-231 cells by promoting G1 to S phase transition. 

Analysis of cell cycle distribution and proliferation upon ligand treatment could 

confirm whether this was the case as we currently only investigated these without 

ligand treatment. As CDK6 was unaltered without treatment yet proliferation was 

still increased, ERβ2 may act both ligand dependently and independently to 

regulate proliferation in this cell line. When analysed by Grober et al (47), ERβ1 

was demonstrated to downregulate CDK6 around 2 fold. As ERβ2 appears to have 

the opposite effect on both CDK6 expression and proliferation in this cell line, ERβ2 

may act to dominantly repress the transcriptional action of ERβ1 in a ligand-

dependant manner.  ERβ2 could also influence CDK6 expression from a 

cytoplasmic location. AKT/PI3K activation is known to upregulate CDK6 expression 

(209). ERβ1 has been reported to increase activation of the AKT/PI3K pathway in 

cardiac tissue (208). However in breast, ERβ1 has been demonstrated to suppress 

this pathway in ERα positive MCF-7 and T47D cells (116). Whether this 

suppression extends to ERα negative cells remains to be seen. S100A7 mRNA 

expression was upregulated by ERβ2 overexpression in MDA-MB-231 cells with 

ligand treatment, but to a lesser extent than in MCF-7 cells. As previously 

discussed, S100A7 upregulation may contribute to the reduced migration observed 

in this cell line, however other factors such as upregulation of cell cycle proteins 

e.g. CDK6, may also contribute. In MDA-MB-231 cells RIP140 was downregulated 

with and without ligand stimulation, suggesting ERβ2 may regulate its expression 

ligand independently. RIP140 is a co regulator of ERs (210). It is required for the 

downregulation of a number of target genes by ERα and ERβ, and functions as a 

co-repressor of both receptors (211). As these receptors have been implicated in 

tumourigenesis and tumour suppression respectively, it is unclear whether RIP140 

expression is favourable or unfavourable in breast cancer. In a recent study, 

knockdown of RIP140 prevented an E2 mediated increase in proliferation and G2/M 
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population in MCF-7 cells. In ERβ overexpressing MCF-7 cells RIP140 knockdown 

increased the number of cells in S-phase (212). This suggests RIP140 can 

modulate both tumourigenic and tumour suppressive effects depending on ER 

status.  

4.4.5 The effect of ERβ2 overexpression on mitochondrial gene 

transcription 

With cytoplasmic ERβ2, potentially encompassing mitochondrial ERβ2, established 

as a marker for poor prognosis (94, 100, 102), the function of ERβ2 in this cellular 

compartment may be tumourigenic. Mitochondrial genes code for proteins involved 

in oxidative phosphorylation, which make up the various components of this 

pathway required to produce ATP molecules. ATP is used by the cell as energy for 

numerous processes such as protein or RNA/DNA synthesis, active transport, 

structural regulation (assembly/disassembly of the cytoskeleton) and cell 

movement/migration. Despite some studies demonstrating a decrease in oxidative 

phosphorylation in cancers due to the reliance on glycolysis for energy (Warburg 

effect) (213), there are others that have established cancers can increase oxidative 

phosphorylation and ATP production, during tumourigenesis (214, 215). As ERβ2 

was demonstrated to colocalise with the mitochondria in this study, suggesting it 

may be localised to this compartment, it’s potential as a transcriptional regulator of 

mtDNA coded genes was investigated. 

 

In MCF-7 cells, ERβ2 overexpression resulted in a decrease in expression of ND1 

and ND2 upon E2 treatment, suggesting regulation is ligand dependent in this cell 

line. Only a small downregulation of ATP6 and CYB was observed. DPN treatment 

had little effect on mtDNA gene regulation, suggesting changes observed result 

from an interaction with ERα and not ERβ1. As no binding site was detected for 

ERα in the mitochondrial genome in previous studies (47), it is possible E2 
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treatment results in heterodimerisation of ERα/ ERβ2, and directs its function 

outside of the mitochondria.  ERα has been reported to regulate nuclear transcribed 

genes involved in mtDNA transcription. Upregulation of NRF-1 and subsequent 

upregulation of TFAM by ERα upon E2 treatment from its nuclear location has been 

reported in MCF-7 cells (216-218). TFAM is required for mtDNA transcription, and 

functions as a key activator of mitochondrial transcription. Its upregulation was 

followed by an increase in COX1 and ND1 transcription, two mtDNA transcribed 

genes. This indirect regulation of mtDNA encoded genes could explain the 

decrease in mtDNA transcription of the genes examined in this study. As ERβ2 is 

known to inhibit the action of ERα (95), it is possible ERβ2 may suppress 

transcription of NRF-1 and TFAM by heterodimerisation with ERα upon E2 

activation, thus suppressing mtDNA gene transcription. To confirm this hypothesis, 

mRNA and protein levels of both TFAM and NRF-1 could be investigated by qRT-

PCR and western blot in ERβ2 overexpressing cells compared to the control cells.  

 

In MDA-MB-231 cells, ERβ2 overexpression caused increased mtDNA gene 

transcription for all genes investigated upon ligand treatment, opposite to the effect 

observed in MCF-7 cells. The effect was more pronounced upon E2 stimulation 

than DPN. E2 is a more potent ligand with a lower EC50 (219) value and a higher 

ligand binding affinity (5.5 fold higher) for ERβ than DPN (220), which may explain 

why the effect in response to E2 is more discernible. In MDA-MB-231 mtDNA gene 

regulation by ERβ2 appears to be ligand dependent, as little change was observed 

without treatment. ChIP-Seq analysis has identified an ERβ1 binding site in the D-

loop region of the mitochondrial genome, the region that controls mtDNA gene 

transcription (47), suggesting a function for ERβ in the regulation of mtDNA coded 

genes. In the absence of ERα in this cell line, gene transcription is likely mediated 

through ERβ2/ERβ1 heterodimers, and is likely to be as a result of direct regulation 

on mtDNA. This direct regulation of mtDNA coded genes has been described in the 
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literature for ERβ. It was demonstrated to be localised to the mitochondria, and 

upon E2 stimulation, it drove the transcription of some mtDNA encoded genes, for 

example in breast, COX1, COXII and ND1 were all upregulated upon DPN (ERβ 

agonist) treatment (122).  Similarly, in cardiac tissue ERβ caused up-regulation of 

proteins making up complex IV, the last enzyme in the respiratory electron transport 

chain, following tissue trauma. This was coupled with an increase in ATP 

production and apoptosis suppression, suggesting a cardio protective role for ERβ 

in the mitochondria (123). As ERβ2 overexpression resulted in increased 

expression of components of the respiratory chain complex, which would 

presumably drive oxidative phosphorylation, an increase in ATP synthesis may 

ensue. Driving proliferation and cell growth may provide a possible explanation for 

upregulation of mtDNA transcribed genes. Cellular ATP production can be 

measured by way of a colorimetric micro-plate assay, where conversion of ATP to 

ADP by ATP synthase can be measured in both the control and ERβ2 

overexpressing cells, and would give an indication as to the downstream 

physiological effect of increased mtDNA gene transcription. In contrast to this there 

is literature that implicates ERβ1 in the suppression of oxidative phosphorylation 

(124). However, it is important to note that this is through the regulation of nuclear 

encoded genes that are involved in oxidative phosphorylation e.g. inhibition of 

succinate dehydrogenase B transcription, a protein involved in oxidative 

phosphorylation. The subsequent reduced ATP production and cellular proliferation 

is not mediated through mitochondrial ERβ. In contrast, ERβ2 may be acting from a 

mitochondrial location, which appears to result in the opposite effect potentially 

resulting in tumourigenesis. This would strengthen the link between cytoplasmic 

ERβ and poorer prognosis especially if a downstream increase in cellular energy 

production and suppression of apoptosis, characteristic of tumourigenesis, is 

observed as in cardiac tissue (123). 
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4.4.6 Subcellular fractionation 

In chapter 3, ERβ2 expression in the nucleus, cytoplasm and the mitochondria was 

identified by immunofluorescence. We sought to demonstrate this ERβ2 protein 

expression in each of these compartments, and investigate whether various 

estrogenic ligands would affect ERβ2 cellular distribution. Western blot analysis of 

ERβ2 protein distribution established that the highest levels of ERβ2 protein were 

detected in the mitochondria of MCF-7 cells and in the cytoplasm and mitochondria 

of MDA-MB-231 cells. This suggests a function for ERβ2 in these compartments 

which is contrasting to its suggested function as a nuclear transcription factor. 

 

Mitochondrial ERβ has been described in the literature in various tissues including 

breast, uterine and cardiac (121, 123, 221). We have demonstrated ERβ2 

colocalisation and now presence of the protein in the mitochondria of breast cancer 

cells. As previously discussed in section 4.4.5, some mtDNA genes have been 

demonstrated to be regulated by ERβ and we demonstrated  that ERβ2 

overexpression both upregulated and downregulated some mtDNA genes, 

suggesting it functions as a transcription factor within the mitochondria, and may 

have a role in oxidative phosphorylation. Others have identified ERβ1 to be anti-

apoptotic when located within the mitochondria, due to upregulation of manganese 

superoxide dismutase, preventing reactive oxygen species forming (124). This has 

also been observed in prostate, where ERβ activation by E2 causes a decrease in 

ROS (222). Aside from a possible involvement of ERβ2 in oxidative 

phosphorylation, ERβ2 may also have involvement in apoptosis. When located in 

the mitochondria of ovarian cancer tissue interaction of ERβ2 with the pro-apoptotic 

protein BAD has been identified, which occurred ligand independently. The study 

went on to demonstrate that in the cells with the BAD/ERβ2 complexes, Bcl-xL/BAX 

complexes were also evident which led to the inhibition of the release of 
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cytochrome C from the mitochondria, a phenomenon preceding apoptosis (153). 

The abundance of ERβ2 in the mitochondria of MDA-MB-231 and MCF-7 cells may 

function in a similar manner. As in this study, using a proximity ligation assay, 

protein-protein interaction between ERβ2 and BAD could be investigated in breast 

cancer cells. We have already identified BCL-2 upregulation by ERβ2 in MDA-MB-

231 cells and other apoptotic proteins could also be investigated in the same way to 

further confirm involvement. 

 

The presence of ERβ2 in the cytoplasm is often associated with inactivity prior to 

activation and phosphorylation with a ligand. However there is evidence for a non-

genomic role for ERβ suggesting a function for ERβ in the cytoplasm. Cytoplasmic 

ERβ signalling has been demonstrated to activate AP-1 sites in target gene 

promotes. When MAPK was inhibited, AP-1 was not activated, suggesting promoter 

activation occurs via the MAPK pathway (223). In lung cancer cells, where ERβ 

expression was cytoplasmic, activation with estrogen caused activation of cAMP, 

Akt and MAPK signalling, without translocation of ERβ to the nucleus suggesting, in 

these cells, ERβ functions to regulate target genes cytoplasmically (166). This in 

turn may actually increase proliferation, which is contrary to the tumour suppressive 

role ERβ is described as having. Clearly there is evidence for a cytoplasmic 

function of ERβ, but whether this extends to ERβ2 remains to be seen. Measuring 

downstream target gene levels known to be regulated by MAPK signalling or 

measurement of phosphorylated (activated) MAPK pathway components in cells 

overexpressing ERβ2 versus control cells would enable us to determine whether 

ERβ2 has any involvement in the activation/inhibition of this pathway. 
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4.4.6.1 The effect of ligands on ERβ2 subcellular localisation 

ERβ functions both ligand-dependently and ligand-independently. The effect of 

various estrogenic ligands on distribution of ERβ2 within each cellular compartment 

was examined, to observe whether ligands influence the cellular localisation of 

ERβ2. In MCF-7 cells, with the exception of DPN treatment, ERβ2 protein levels 

mirrored those in the whole cell extracts 

These data suggests the ligands do not influence mitochondrial or nuclear ERβ2 

levels and the changes seen are attributed to whole cell changes possibly caused 

by up or down-regulation of the protein.  In both MCF-7 and MDA-MB-231 cells 

DPN treatment resulted in increased cytoplasmic ERβ2 compared to the untreated 

cells. DPN is an ERβ agonist, targeting the only ligand binding isoform, ERβ1. A 

potential role for ERβ has been suggested in section 4.6, where regulation of MAPK 

signalling has been evidenced. In addition, DPN has been reported to decrease 

MAKP phosphorylation levels in breast tumours (224). An association with MAPK 

signalling has also been reported in lung cancer cells, where a 3.7 fold increase of 

MAPK phosphorylation was observed upon DPN treatment (166). These effects are 

likely mediated through ERβ1 as DPN is its agonist. This literature indicates 

evidence for a non-genomic role for ligand activated cytoplasmic ERβ in cancer, 

where ERβ2 may also have some involvement in kinase signalling pathways in 

view of the increased cytoplasmic ERβ2 levels stimulated by DPN. Whether the 

effect is stimulatory or inhibitory would require further study; however measurement 

of either MAPK target genes, phosphorylated MAPK signalling components or use 

of a MAPK reporter assay could indicate signalling activation in ERβ2 

overexpressing cells compared to control cells upon DPN treatment. 

Genistein treatment resulted in increased mitochondrial ERβ2 in both cell lines 

compared to untreated control cells. Genistein is also an ERβ1 agonist but can act 

as a weaker agonist of ERα (225). 
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A potential role for ERβ2 in the mitochondria has been suggested and discussed 

previously in section 4.5. We have demonstrated that ERβ2 overexpression results 

in changes in mitochondrial respiratory chain proteins upon ligand treatment. It is 

possible genistein may also regulate ERβ2 mediated mitochondrial gene 

transcription through activation of ERβ1. As genistein had a more profound effect 

on ERβ2 mitochondrial localisation, regulation of mtDNA transcribed genes by 

ERβ2 demonstrated in 4.3.8, may be further enhanced by genistein treatment 

therefore re-analysis of mtDNA transcribed genes upon genistein treatment could 

address this speculation. 
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4.5 Summary 

The series of experiments performed in this chapter portray ERβ2 as both 

tumourigenic and tumour suppressive. ERβ2 overexpression both suppresses and 

promotes proliferation in different cell lines. Interestingly in two different cell lines 

with the triple negative phenotype, ERβ2 overexpression has opposing effects on 

proliferation. Consideration of potential crosstalk with other cytoplasmic signalling 

pathways may explain this effect. ERβ2 also reduces cell migration in all cell lines 

studied; however it is unclear how ERβ2 influences this process. Examination of the 

proteins involved in migration and invasion that have been linked to ERβ in the 

literature could however give an indication. 

ERβ2 appears to suppress and enhance mitochondrial DNA gene transcription in 

ERα positive and negative cells respectively, suggesting opposing functions on 

cellular energy production dependant on ERα status. Similarly ERβ2 appears to 

differentially regulate some of its target genes between different cell lines 

suggesting more than one mechanism for target regulation. ERβ2 may regulate 

target genes non-genomically via crosstalk with other signalling pathways e.g. 

MAPK/ERK, PI3K/AKT. In prostate cancer cells, ERβ2 has opposing actions to 

ERβ1, thought to be mediated by its effect on cytoplasmic signalling pathways. 

Multiple potential mechanisms for target gene regulation could explain the 

differential physiological effects ERβ2 has on different cell types. In MDA-MB-231 

cells, ERβ2 regulated target genes in a way that may promote tumourigenesis, with 

upregulation of BCL-2, CDK6 and mitochondrially transcribed genes potentially 

promoting cellular energy production, possibly explaining the increased proliferation 

observed in these cell lines with ERβ2 overexpression. This is very different to the 

role it has in ERα positive cells, where ERβ2 is seen to be tumour suppressive. As 

these target genes were differentially regulated only upon ligand treatment, it would 

be interesting to re-consider proliferation and cell cycle distribution upon ligand 

treatment. Upregulation of BCL-2 and CDK6 in MDA-MB-231 ERβ2 overexpressing 
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cells upon treatment could mean these processes will be further enhanced and 

changes in cell cycle distribution may occur. 

The identification that most ERβ2 is expressed in the cytoplasm of MDA-MB-231 

cells in the fractionation experiments gives weight to the observation that 

cytoplasmic ERβ2 is a poor prognostic marker in various cancers including ovarian, 

prostate and breast. As two opposing roles for ERβ2 are emerging, it is clear further 

investigation needs to be done taking into consideration multiple signalling 

pathways other than estrogen signalling. These results underline the complexity of 

ERβ2 functionality. 
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5.0 Chapter 5: Characterisation of ERβ2 nuclear speckles 

in breast cancer cell lines 

5.1 Introduction 

In Chapter 3 the observation was made that ERβ2 was expressed as speckles in 

the nucleus of all breast cancer cell lines examined. To understand the potential 

function of these speckles we must first consider the function of nucleus itself and 

some of its similarly speckled proteins. 

5.1.1 The cell nucleus 

The cell nucleus is a membrane enclosed organelle found within eukaryote cells. 

Each cell contains around 2 meters of DNA, which comprises the entire organism’s 

genetic material, excluding the small number of genes (38) contained in the 

mitochondrial genome. This is tightly wrapped around proteins, primarily histones, 

to form chromatin. Chromatin is organised into euchromatin; a relaxed structure 

allowing transcription, and heterochromatin, a tightly compacted transcriptionally 

inactive complex. Euchromatin contains the genes that are frequently expressed 

and therefore regularly transcribed in that particular cell. Chromatin is further 

packaged and condensed forming chromosomes, which reside in specific regions of 

the cell nucleus. The major function of the cell nucleus is to regulate gene 

transcription and mediate DNA replication during the cell cycle. Additional nuclear 

structures aid transcription by harbouring proteins such as splicing factors or those 

involved in transcription. 
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5.1.2 Nuclear structures 

There are a number of bodies within the nucleus containing proteins that function to 

aid in transcription and post-transcriptional modifications. They are observed as 

speckled structures containing defining sets of marker proteins.  

They include promyelocytic leukemia (PML) nuclear bodies, nuclear speckles, 

paraspeckles, cajal bodies and nucleoli. A diagram of the cell nucleus containing 

these nuclear structures is displayed in Figure 5.1.It is also suggested that 

transcription occurs at specific sites in the nucleus rather than homogenously, 

which have been termed transcription factories (226). 

5.1.2.1 Nucleolus 

The nucleolus is made up of three components; the granular component (GC), the 

dense fibrillar component (DFC) and the fibrillar centre (FC). Pre-RNA synthesis 

and early rRNA processing occurs within the DFC while late rRNA processing 

events and assembly of ribosomal proteins occurs in the GC. Nucleoli function as 

the site for ribosome synthesis and assembly. They contain the genes required for 

biogenesis of ribosomal RNA (rRNA) and the 40S and 60S ribosomal subunits. 

Transcription of rRNA requires both RNA pol I and III (227). 

5.1.2.2 PML bodies 

PML bodies are around 0.1-1 µm in diameter and are found in the nucleus of higher 

eukaryotes. They are named after their major component, PML. PML bodies were 

first identified at the site of a translocation associated with promyelocytic leukemia 

where the PML gene becomes fused in a chromosomal translocation with the 

retinoic acid receptor alpha (RARα) on chromosome 17 resulting in the creation of 

an oncogene. PML bodies associate with the nuclear matrix, a dynamic network of 

fibres that play a role in anchorage and regulation of many nuclear functions e.g. 

DNA replication, gene silencing and transcription (228). They recruit numerous 
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proteins and are proposed to facilitate their posttranslational modifications (namely 

sumoylation), then sequester, modify or degrade these proteins (229). The PML 

protein itself has been associated with DNA repair and apoptosis control (230, 231). 

5.1.2.3  Cajal bodies 

Cajal bodies are another nuclear sub-domain that forms speckled structures of 

around 0.1-2.0 µm. They are found in the nuclei of proliferating cells and are 

commonly observed in tumour cells. A major component of cajal bodies is the 

protein coilin, which anchors them to the nucleolus, and coilin P-80 is a widely used 

marker for these structures (232). Their number and size varies during progression 

of the cell cycle with the most found at G1 phase and fewer larger bodies observed 

in G2. They are believed to function as posttranscriptional modifiers and contain 

large amounts of splicing small nuclear ribonucleoproteins (snRNPs)(233, 234) 

5.1.2.4 Nuclear speckles 

Nuclear speckles are interchromatin granule clusters enriched in pre-mRNA splicing 

factors. These are dynamic structures of variable shape and size, which act as 

storage/assembly compartments that can supply splicing factors to active 

transcription sites. Pre-mRNA structures are often located on the periphery of 

nuclear speckles. Nuclear speckles have been observed to increase in size upon 

transcriptional inhibition (234, 235) suggesting speckles are not the direct site of 

splicing but are involved in storage, assembly or modification of splicing factors. 

5.1.2.5 Paraspeckles 

Paraspeckles, like nuclear speckles, are found in the interchromatin space and are 

around 0.5-1µm in diameter (236). They are widespread within mammalian cells. 

Their name comes from the fact that they are located in parallel or adjacent to 

nuclear speckles. Their function is currently speculative; however they are believed 

to contribute to transcriptional regulation by nuclear retention of RNA (237). 
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Figure 5.1. The structure of a nucleus depicting the sub-nuclear structures 
present in eukaryote cells.  
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5.1.3 Nuclear structures and cancer 

Some of the nuclear sub-domains mentioned above have been linked to cancer. 

PML is believed to be tumour suppressive due to its function in mediating cell 

death. Reduced PML levels are observed in solid tumours compared to normal 

tissue. PML bodies have been associated with cell cycle regulation, by interaction 

with p53 and the Bloom syndrome protein (BLM), DNA damage (238), apoptosis 

(239) and senescence (240). 

The nucleolus has been linked to tumourigenesis as proliferating cancer cells often 

have increased demand for ribosome biogenesis. Loss of function of the tumour 

suppressive proteins pRB and p53 cause an up-regulation of ribosome biogenesis 

in cancer tissues (241). The nucleolus contains a number of proteins implicated in 

cancer. Nucleostemin can both activate and suppress p53 as can nucleophosmin 

(242-245). Nucleolin can also be tumour suppressive or oncogenic through its 

association with RNA I and II polymerase and by telomere association. It can also 

activate p53 tumour suppressor by preventing its ubiquitination and therefore 

degradation (246). 

5.1.4 Nuclear speckled ER  

ERβ2 has been identified by a previous PhD student in the Breast Research Group 

at Leeds to be expressed in distinct speckle like structures in the cell nucleus in 

MCF-7 cells and primary breast cancer tissue samples (C.A. Green, unpublished 

observation). A similar expression pattern has been identified when examining the 

expression of ERβ phosphorylated at serine-105 (172). Expression of this speckled 

activated ERβ protein was associated with higher grade tumours in a cohort of 108 

tamoxifen-resistant and 351 tamoxifen-sensitive breast cancer cases that were 

examined. Speckles were also observed in MCF-7 cells and upon E2 and DPN 

treatment, numbers significantly increased. In addition to ERβ, ERα has also been 
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observed as speckled nuclear structures when phosphorylated at ser118 upon co-

expression with SOX2, a transcriptional regulator (247). 

Our previous observations detailed in chapter 3, have established that ERβ2 is 

expressed as distinct speckles localised in the nucleus of 9 breast cancer cell lines. 

It is unclear as to their function and whether they are associated with other nuclear 

proteins and therefore warrants further investigation 
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5.2 Aims 

The aims of this chapter were to examine the function and characteristics of ERβ2 

nuclear speckles by investigating:  

 if ERβ2 speckles colocalise with other nuclear proteins expressed as 

speckled structures 

 ERβ2 speckle dynamics in response to estrogenic ligands 

 whether speckles are associated with phases of the cell cycle 

 whether speckles are influenced by transcriptional or translational inhibition 
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5.3 Methods 

This section outlines the development, optimisation and validation of the ERβ2 

speckle counting method used in the experiments presented in this chapter. The 

optimised parameters were then applied to all images where counting of ERβ2 

speckles was required. This allowed increased accuracy and reproducibility of 

results when comparing different images, and dismissed any user bias in the 

counting process. 

5.3.1 Development of ERβ2 speckle analysis methodology 

ERβ2 speckles are easily identifiable on the confocal microscope looking down the 

eyepiece, but the resolution of the images acquired means identifying them by eye 

from these images becomes more difficult. Looking down the microscope for long 

periods of time in an attempt to count the speckles manually is not feasible as the 

constant excitation of the fluorophores attached to the protein of interest leads to 

bleaching. To overcome these difficulties an automated method for speckle 

counting was developed. Image (1) in Figure 5.2 represents the stages of image 

processing in order to ultimately count ‘objects’ (speckles) within the cells. Briefly 

the cell nucleus was identified (a) and a DAPI mask was overlaid (b). Each nucleus 

was converted to an ROI (region of interest) and numbered by the software shown 

in image (c). Objects were counted in each ROI using a FITC intensity threshold 

and pixel exclusion to isolate speckles based on intensity and size respectively, and 

the software counted these objects. The white arrows in Figure 5.2d point to objects 

counted as speckles highlighted in pink. 
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5.3.2 Validation of ERβ2 speckle analysis methodology 

MCF-7 cells stained with ERβ2 antibody were used for validation purposes of the 

automated speckle counting protocol. ERβ2 speckles were only present in a 

proportion of the cells, and those without speckles were easily identified by eye and 

marked for analysis on the image acquired. Six images from six separate slides 

were examined using the above methodology (examples in appendix 7.2). To 

determine the minimum size that a speckle would be to be counted as such, a size 

exclusion method was adopted. This excluded objects based on the number of 

pixels that made them up. In the subset of negative images, where no visible 

speckles were present, analysis was performed for ≤ 1, ≤ 2, ≤ 3 then ≤ 4 pixel 

exclusion, using the FITC intensity threshold of 1200. Only upon 4 or fewer pixel 

exclusion were no objects recorded in the ‘negative’ images, and therefore we were 

satisfied that the algorithm would not detect smaller intensely stained ‘objects’ that 

were not considered speckles when visualised down the eyepiece of the 

microscope. The object counts for the pixel exclusion settings can be found in 

appendix 7.3. The principle of this pixel exclusion is illustrated in Figure 5.3, where 

without size thresholding single pixels would be counted as objects (a), but with 

pixel exclusion applied only objects or 5 pixels or more are counted (b).  

The optimised final settings; 1200 FITC threshold with 4 pixels or less exclusion, 

were used to analyse all images which required ERβ2 speckle counting.  
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Figure 5.2. Images representing the steps required for speckle counting 
a) The cell nucleus was identified 
b) A DAPI mask was overlaid 
c) The DAPI mask was converted to ROIs (regions of interest), one for each nuclei, 
and numbered 
d) FITC thresholding of 1200 was applied and speckles of 5 pixels or more were 
highlighted in pink, indicated by the white arrows 
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Figure 5.3. Illustration of the principle of size thresholding for identification of 
ERβ2 nuclear speckles. 
a) No pixel exclusion applied to size thresholding. Single pixels are recognised by 
the software as objects or ‘speckles’, highlighted in red 
b) 4 pixel or less exclusion applied to size thresholding. Only objects of 5 pixels or 
more, highlighted in red, or more are recognised as an object or ‘speckle’. 
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5.4 Results 

5.4.1 Colocalisation investigation of ERβ2 with other known nuclear 

speckled proteins 

An interesting observation made in chapter 3 was that ERβ2 is often expressed as 

speckles in the nucleus of breast cancer cell lines. In order to elucidate their 

potential function, colocalisation of ERβ2 speckles with other nuclear speckled 

proteins was considered using immunofluorescence. ERβ2 was labelled along with 

co-staining with coilin (a marker for cajal bodies), PML, or SC-35 (a marker for 

nuclear speckles) antibodies (Figure 5.4). The top row represents ERβ2 (green) 

and coilin (red) staining. On the merged image ERβ2 speckles are indicated by the 

white arrow and coilin staining cajal bodies by the yellow arrows. The magnified cell 

on the bottom right corner of this image shows the location of the some of the 

speckles more clearly. There was no overlap (colocalisation) of coilin (thus cajal 

bodies) with ERβ2 speckles. In the middle row colocalisation of ERβ2 (green) with 

PML (red) was investigated. Speckled expression of both proteins is shown in the 

merged image with ERβ2 indicated by the white arrow and PML with the yellow 

arrow. No colocalisation was observed with ERβ2 and PML staining and the 

magnified cell in the merged image illustrated this in an individual cell. The bottom 

row demonstrated dual staining with ERβ2 and SC-35 antibodies. In the merged 

image, ERβ2 speckles (green) and nuclear speckles (red) can be seen. Again there 

was little overlap in their staining and the two appear not to colocalise. However, 

ERβ2 speckles did often appear adjacent to SC-35 nuclear speckles. An example 

of this is shown clearly in the magnified cell at the bottom right of the merged image 

with ERβ2 speckles pointed out by the white arrow and nuclear speckles denoted 

by the yellow arrow. 

 



187 
 

 

Figure 5.4. Co-staining of MCF-7 cells with ERβ2 and other nuclear speckled 
proteins. 
ERβ2 stained images are presented on the left and Coilin, PML and SC-35 staining 
are displayed in the middle column. Merged image indicates green (ERβ2) and red 
(coilin, PML, SC-35) co-staining. 
The yellow arrow on the magnified cells indicates coilin, PML or SC-35 speckles 
and the white arrow ERβ2 speckles.  
Images acquired at 60x magnification and scale bars represent 50µm. 
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Colocalisation with the nucleolus was also considered, results of which are 

presented in Figure 5.5. Two slides of MCF-7 cells were analysed and presented at 

60x magnification (left). A group of cells from each image were enlarged to illustrate 

features in the nucleus, presented on the right. Due to the detailed resolution of the 

images gained using the Nikon A1R confocal microscope, the nucleolus can be 

seen without using an antibody. These are pointed out as dark spots, unstained by 

DAPI, by the red arrows in the magnified images. ERβ2 speckles are indicated by 

the white arrows in these images, and no overlap between the two was observed, 

signifying no colocalisation. ERβ2 speckles were consistently absent from the 

nucleolus throughout this project. 
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Figure 5.5. MCF-7 cells illustrating the location of the nucleolus and ERβ2 
nuclear speckles. 
Two examples of ERβ2 staining (green) and nuclear DAPI staining (blue) illustrating 
the location of ERβ2 speckles in relation to the nucleoli. Circled are groups of cells 
magnified on the right hand images, which illustrate the nucleolus, indicated by the 
red arrows, and ERβ2 speckles, by the white arrows. Scale bars represent 
50µ.Images on the left were taken at 60x magnification. 
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5.4.2 Examination of ERβ2 nuclear speckle number in response to 

estrogenic ligand treatment 

ERβ2 is not known to function as a homodimer, and is instead thought to exert its 

effects by heterodimerisation with other ERs. As it is a non-ligand binding isoform, 

its ligand dependent transcriptional effects are mediated by binding to either ERα or 

ERβ1. Estrogenic ligands targeted to ERα and/or ERβ1 were used to investigate 

whether ERβ2 speckle numbers would change in response to ligand activation, 

which may suggest involvement in ER transcription. MCF-7 and MDA-MB-231 cells 

were incubated with E2 (ERα/β agonist), 4-OHT (ERα/β antagonist), DPN (ERβ 

agonist) and genistein (ERβ > ERα agonist) and ERβ2 immunofluorescence was 

performed then ERβ2 speckles counted. Cell proliferation and ERβ2 mRNA levels 

were also measured in parallel. In order to establish an effective working 

concentration that stimulated a physiological effect, cell proliferation dose response 

assays were initially performed on MCF-7 cells while incubated with the various 

ligands (appendix 7.7).  

 

Figure 5.6 displays MCF-7 growth curves using the effective ligand concentrations 

previously determined, and cell numbers measured every 24 hours from 48 hours 

to 120 hours. As expected 1nM E2 increased growth of MCF-7 cells (a), while 4-

OHT at 50nM (b), DPN at 10nM (c) and genistein at 30µM (d) all resulted in growth 

suppression.
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Figure 5.6. MCF-7 growth curves in response to estrogenic ligands. 
Cell counts were performed at 48, 72, 96 and 120 hours and cell number plotted. a) E2 (1nM), red line), b) 4-OHT (50nM), blue line, c) DPN 
(10nM), yellow line, d) genistein (30uM), green line. The black lines on all graphs represent untreated control cells. Error bars represent ± SEM for 
n=2 (technical replicates). Statistically significant changes in cell number (*) and p-values, measured using a multiple student’s t-tests with Holm-
Sidak correction, are displayed.
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Figure 5.7 demonstrates the ERβ2 nuclear speckle patterns seen in MCF-7 cells 

after incubation with estrogenic ligands. The red arrows point to visible speckles on 

the images. There is an increase in the number of speckles after incubation with 4-

OHT and genistein.  

Figure 5.8a illustrates the results of the automated counting of the ERβ2 speckles. 

The difference between the control cells and those treated with E2 was not 

statistically significant suggesting E2 does not affect ERβ2 speckle number. 

However 4-OHT, DPN and genistein all resulted in a significant increase in ERβ2 

speckles.  

Figure 5.8b illustrates the levels of total cellular ERβ2 mRNA in the cells in 

response to the same ligands. This data demonstrated that exposure to E2 resulted 

in a decrease in ERβ2 mRNA, however speckle number remained unchanged. 4-

OHT caused an increase in ERβ2 mRNA, which was mirrored in the increase in 

ERβ2 speckle number. mRNA levels in response to DPN remained unchanged. 

Interestingly, despite genistein causing a significant increase in ERβ2 speckles, a 

significant decrease of ERβ2 mRNA was observed. 
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Figure 5.7. Immunofluorescence analysis of ERβ2 speckle expression pattern 
in MCF-7 cells in response to the estrogenic ligands E2, 4-OHT, DPN and 
genistein. 
The control image represents untreated cells. The red arrows indicate ERβ2 
nuclear speckles. Images taken at 60x magnification and scale bars represent 
50µm. 
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Figure 5.8. Analysis of ERβ2 nuclear speckle number and mRNA levels in 
MCF-7 cells in response to estrogenic ligands. 
a) Box and Whiskers plot displaying the average ERβ2 speckle number per cell in 
response to E2, 4-OHT, DPN and genistein. The box represents the interquartile 
range (50% of the data) and whiskers are the upper and lower quartiles (25% of 
data each) extending to the extreme values. Absence of a lower whisker indicates 
lower quartile is equal to the minimum value. Statistically significant speckle number 
changes compared to control untreated cells(*) and p-values, measured using a 
student’s t-test are displayed. 
b) ERβ2 mRNA levels in response to E2, 4-OHT, DPN and genistein. Error bars 
represent ± SEM for n=3 (technical replicates). Statistically significant fold changes 
compared to control untreated cells (*) and p-values, measured using a multiple 
student’s t-tests with Holm-Sidak correction, are displayed. 



195 
 

Growth curves of MDA-MB-231 in response to the various estrogenic ligands are 

displayed in Figure 5.9, which was again performed to check the concentration has 

a physiological effect on the cells. The black line on each of the graphs represents 

the control ‘untreated’ cells, which were grown and counted in parallel to the treated 

cells. The growth of E2 (red line), 4-OHT (blue line), DPN (yellow line) and genistein 

(green line) treated MDA-MB-231 cells are displayed in Figure 5.9. Both E2 (a) and 

4-OHT (b) treatment had little effect on growth compared to the control cells. 

However DPN treatment (c) resulted in a marked increase in cell growth displayed 

by the separation of the yellow and black (untreated cells) lines of the graph. 

Genistein treatment resulted in a more pronounced suppression of cell growth and 

at 72 hours cell numbers began to decrease suggesting induction of cell death.
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Figure 5.9. MDA-MB-231 growth curves in response to estrogenic ligands. 
Cell counts were performed at 48, 72, 96 and 120 hours and cell number plotted. a) E2 (1nM), red line), b) 4-OHT (50nM), blue line, c) DPN 

(10nM), yellow line, d) genistein (30uM), green line. The black lines on all graphs represent untreated control cells. Error bars represent ± SEM 
for n=2 (technical replicates). Statistically significant changes in cell number (*) and p-values, measured using a multiple student’s t-
tests with Holm-Sidak correction, are displayed.
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Figure 5.10 represents expression patterns of ERβ2 by immunofluorescence after 

MDA-MB-231 cells were treated with E2, 4-OHT, DPN or genistein. An untreated 

control image is also presented. The red arrows indicate visible ERβ2 speckles. 

Visual examination of the images revealed no obvious difference in ERβ2 speckle 

number compared to the control image when cells were treated with E2, 4-OHT and 

DPN. However, upon genistein treatment ERβ2 speckles appeared to increase 

noticeably in number compared to the control. 

When ERβ2 speckles were counted using the automated method, this observation 

was confirmed and only genistein resulted in a statistically significant increase in 

average number of ERβ2 speckles in each cell. This is illustrated in Figure 5.11a. 

As previously described, genistein was the only ligand from the panel that resulted 

in anti-proliferation. When examining the mRNA data illustrated in Figure 5.11b, E2, 

4-OHT and DPN treatment, did not affect overall ERβ2 mRNA levels in the cells. As 

observed in MCF-7 cells, genistein did result in a significant decrease in ERβ2 

mRNA, despite causing an increase in the number of ERβ2 speckles. 
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Figure 5.10. Immunofluorescence analysis of ERβ2 speckle expression 
pattern in MDA-MB-231 cells in response to the estrogenic ligands E2, 4-OHT, 
DPN and genistein. 
The control image represents untreated cells. The red arrows indicate ERβ2 
nuclear speckles. Images taken at 60x magnification and scale bars represent 
50µm. 
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Figure 5.11. Analysis of ERβ2 nuclear speckle number and mRNA levels in 
MDA-MB-231 cells in response to estrogenic ligands. 
a) Box and Whiskers plot displaying the average ERβ2 speckle number per cell in 
response to E2, 4-OHT, DPN and genistein. The box represents the interquartile 
range (50% of the data) and whiskers are the upper and lower quartiles (25% of 
data each) extending to the extreme values. Absence of a lower whisker indicates 
lower quartile is equal to the minimum value. Statistically significant speckle number 
changes compared to control untreated cells(*) and p-values, measured using a 
student’s t-test are displayed. 
b) ERβ2 mRNA levels in response to E2, 4-OHT, DPN and genistein. Error bars 

represent ± SEM for n=3 (technical replicates). Statistically significant fold changes 
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compared to control untreated cells (*) and p-values, measured using a multiple 

student’s t-tests with Holm-Sidak correction, are displayed. 

5.4.3 An investigation of the cell cycle distribution of ERβ2 nuclear speckles 

Work up to this point suggests that ERβ2 speckles are rarely present in every cell. 

They have been demonstrated to be dynamic and more abundant when 

proliferation is suppressed in response to estrogenic ligands. This led to the 

hypothesis that ERβ2 speckles could be related to specific phases of the cell cycle. 

To investigate this further we examined ERβ2 speckles in relation to stages of the 

cell cycle. The doubling time of MCF-7 cells was initially determined by measuring 

proliferation, and the growth curve is displayed in Figure 5.12. Doubling time was 

calculated to be 19.7 hours using the following doubling time equation where Td= 

Doubling time, t= time, q= cell number (248): 

 

Time point 24 and 48 were used as this represented linear exponential part of the 

curve (T1=48, T2= 24, q1= 296,800, q2= 690,000). Doubling time was rounded up 

to 20 hours for the purpose of this experiment, and estimation of time spent in each 

portion of the cell cycle is displayed in Figure 5.13.  
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Figure 5.12. Log transformed growth curve for wild type MCF-7 cells for 
calculation of doubling time 
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Figure 5.13. A Diagrammatic representation of the length of time MCF-7 cells 
remains in each phase of the cell cycle. 
MCF-7 cells were calculated to have a doubling time of 19 hours and this was used 
to calculate time spent in each cell cycle phase. The point at which thymidine 
blocks cell cycle progression is indicated at the G1-S-phase border. 
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MCF-7 cells were synchronised using a double thymidine block then released and 

ERβ2 speckle number measured at 0, 8, 10 and 12 hours post release. In parallel 

flow cytometric analysis at each time point allowed determination of the percentage 

of cells in each phase of the cell cycle. These time points were determined using 

the doubling time and estimated time spent in each cell cycle phase, calculated 

previously. 

Figure 5.14 illustrates ERβ2 expression patterns in synchronised MCF-7 cells 

analysed after 0, 8, 10 and 12 hours after thymidine release. A control image was 

also acquired from unsynchronised untreated MCF-7 cells.  The red arrows on the 

images indicate visible ERβ2 nuclear speckles. These were present in the control, 0 

and 8 hours post thymidine release cells, but disappeared completely at 10 and 12 

hours after thymidine release.  
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Figure 5.14. Immunofluorescence analysis of ERβ2 speckle expression 
pattern in MCF-7 cells at 0, 8, 10 and 12 hours after release of a thymidine 
block. 
The control image represents untreated cells. The red arrows indicate ERβ2 
nuclear speckles. Images taken at 60x magnification and scale bars represent 
50µm. 
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Pie charts in Figure 5.15a illustrate the cell cycle distribution at each time point, and 

results demonstrate that synchronisation was achieved and enrichment of cells at 

S-phase was observed. 77% of the cell population was in S-phase before release of 

the thymidine block. Upon release, cells appeared to move into G2/M and G1 

phase verified by the increased percentage of cells in G2/M and G1 phases at 8 

and 10 hours post release. By 12 hours the majority of cells were still in G2/M 

phase with G1 percentage only increasing to 31%. A large proportion of cells 

remained in S-phase, suggesting cells were moving through the cell cycle at a 

slower rate than expected. The automated speckle counts confirmed the 

observation made from images, that a reduction in speckle number was observed 

at 8, 10 and 12 hours post release, displayed in the graph in Figure 5.15a. Upon 

comparison to the cell cycle distribution, it appears there was a decrease in 

speckles when the majority of cells are in G2/M-phase at time points 8, 10 and 12.  

At 10 and 12 hours this reduction of speckle number was deemed statistically 

significant.  

Figure 5.15b illustrates ERβ2 mRNA expression levels at each time point post 

thymidine release, normalised to the control (=1). At time point 8 and 10 mRNA was 

significantly decreased. The majority of ERβ2 mRNA levels did not appear to 

correlate with speckle number changes, however at time point 10 mRNA was 

significantly decreased, as was speckle number.  
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Figure 5.15. Analysis of ERβ2 speckle number after S-phase cell 
synchronisation in MCF-7 cells 

a) Pie charts represent cell cycle distribution 0,8,10 and 12 hours after removal of 

S-phase blockade (green= G2/M phase, red= S-phase, blue= G1/0 phase). Graph 
displays ERβ2 speckle number 0,8,10 and 12 hours after removal of S-phase 
blockade. Control represents unsynchronised untreated cells.  
b) ERβ2 mRNA levels at each time point post thymidine release, normalised to the 
control sample.  
Student’s t-tests were performed and p-values are displayed on statistically 
significant changes (*) compared to controls. 
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5.4.4 Investigation of transcriptional and translational inhibition on ERβ2 

nuclear speckles 

Previous experiments have demonstrated ERβ2 nuclear speckles to be dynamic 

structures, their numbers being changeable dependent on cell type or external 

stimulus and potentially inversely related to the G2/M phase of the cell cycle. The 

principle of ER signalling maintains that upon activation ERs travel from the 

cytoplasm to the nucleus when they exert transcriptional effects. As these speckles 

were dynamic and had a nuclear location we hypothesised that ERβ2 speckles may 

be involved in transcription or translation, with speckles representing areas of active 

transcription. MCF-7 cells were incubated with a transcriptional inhibitor 

actinomycin D (ActD) or with cyclohexamide (CHX) to investigate whether the 

number of speckles would change upon transcriptional or translational inhibition 

respectively. As ERβ2 protein was only detectable on a western blot while using the 

FLAG M2 antibody (illustrated in chapter 4.3.3) we used MCF-7 ERβ2 

overexpressing cells to enable us to confirm inhibition of transcription and 

translation using qRT-PCR and western blot techniques. To confirm that the effect 

of these compounds on ERβ2 speckle number was also applicable to endogenous 

ERβ2 protein levels, ERβ2 immunofluorescence and qRT-PCR assays were also 

performed on the empty vector control MCF-7 cells. Expression patterns of ERβ2 

were comparable in both cell lines upon ActD and CHX treatment. 

 

The effect of ActD treatment for 30 minutes, 1, 2, 4, and 24 hours on ERβ2 speckle 

expression is shown in Figure 5.16a. The red arrows indicate visible ERβ2 

speckles. These speckles are present in the cells of the control sample and after 30 

minutes and 1 hour of treatment (red arrows). After 2 hours post ActD treatment 

speckles became difficult to distinguish with notably fewer present in the image. 

Using the automated speckle counting methodology described in 5.3.1, speckles 
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were counted and average number of speckles per cell is displayed in Figure 5.16b. 

As ActD treatment time increased, fewer ERβ2 speckles were present in the cells. 

After 2 hours nearly all ERβ2 speckles had been eliminated and at 4 hours, no 

speckles were present suggesting complete inhibition of ERβ2 speckle 

transcription. Despite the disappearance of ERβ2 speckles at 4 hours of 

transcriptional inhibition, homogenously expressed ERβ2 in the cytoplasm was still 

present and expression appeared unaffected by the transcriptional inhibition, 

illustrated by the white arrows, suggesting cytoplasmic ERβ2 protein may not be a 

result of active transcription. 
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Figure 5.16. Analysis of ERβ2 speckles in response to actinomycin (ActD) in 
MCF-7 cells. 
a) Immunofluorescence analysis of ERβ2 speckle expression after 0.5, 1, 2, 4 and 
24 hours of ActD treatment. Red arrows indicate visible ERβ2 speckles. White 
arrows indicate cytoplasmic ERβ2. 
b) Average number of ERβ2 speckles per cell after 0.5, 1, 2, 4 and 24 hours of 
ActD treatment 
Images acquired at 60x magnification and scale bars represent 50µm. Control 
represents untreated cells.  
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Cells were then treated with CHX for 30minutes, 1, 2, 4, and 24 hours and ERβ2 

speckles analysed. Visible ERβ2 speckles were present in the cells up to 2 hours of 

CHX treatment indicated by the red arrows in Figure 5.17a. At 2 hours however, 

speckles reduced in number and by 4 hours of treatment, no speckles were visible. 

ERβ2 nuclear speckle numbers were counted from two biological replicates and 

average speckle numbers plotted on the graph shown in Figure 5.17b. Again this 

demonstrated concordance with the visual results; fewer speckles were observed 

with 2 hours of CHX treatment and complete disappearance of the ERβ2 nuclear 

speckles was observed at four hours of treatment. As with ActD, CHX treatment did 

not seem to affect expression patterns of homogenously expressed ERβ2 in the 

nucleus or cytoplasm (indicated by the white arrows in Figure 5.17a), with 

expression remaining unchanged after translational inhibition. 
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Figure 5.17. Analysis of ERβ2 speckles in response to cyclohexamide (CHX) 
treatment in MCF-7 cells. 
a) Immunofluorescence analysis of ERβ2 speckle expression after 0.5, 1, 2, 4 and 
24 hours of CHX treatment. Red arrows indicate visible ERβ2 speckles. White 
arrows indicate cytoplasmic ERβ2. 
b) Average number of ERβ2 speckles per cell after 0.5, 1, 2, 4 and 24 hours of CHX 
treatment 
Images acquired at 60x magnification and scale bars represent 50µm. Control 
represents untreated cells.  
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Despite the fact that ActD and CHX are known inhibitors of transcription and 

translation respectively, we wanted to be able to prove this inhibition with the 

concentration used in this experiment. In parallel to immunofluorescence, flasks of 

MCF-7 cells were treated with ActD and CHX for 30 minutes, 1, 2, 4 and 24 hours 

and cells were harvested for RNA (ActD) or protein (CHX) extraction. 

Transcriptional inhibition was measured by calculating ERβ2 mRNA levels and 

translational inhibition was measured by western blot of ERβ2 protein. Figure 5.18a 

depicts ERβ2 mRNA levels upon ActD treatment for 30 minutes, 1, 2, 4, 8 and 24 

hours. Levels were normalised to the no treatment control (=1). The graph 

demonstrated a decrease in ERβ2 mRNA as time increased; confirming ERβ2 

transcription was inhibited by the concentration used. Figure 5.18b depicts the 

protein levels of ERβ2 upon CHX treatment for 30 minutes, 1,2,4,8 and 24 hours. 

ERβ2 was measured using the FLAG M2 antibody directed towards the FLAG3 

epitope on the aberrantly expressed ERβ2 protein and β-actin was used as a 

control for equal loading. The level of ERβ2 protein decreased as treatment time 

increases, and protein became undetectable at 24 hours. This confirmed inhibition 

of protein synthesis occurred at the CHX concentration used for this experiment. 
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Figure 5.18. ERβ2 mRNA and protein expression in ERβ2 overexpressing 
MCF-7 cells after ActD and CHX treatment respectively. 
a) ERβ2 mRNA quantification demonstrated by qRT-PCR at 0.5, 1, 2, 4, 8 and 24 
hours after ActD treatment, normalised to the untreated control. 
b) ERβ2 protein quantification demonstrated by western blot using FLAG M2 
antibody, at 0.5, 1, 2, 4, 8 and 24 hours CHX treatment. Untreated control sample 
also analysed. β-actin was used as a control for equal loading. 
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5.5 Discussion 

ERβ2 speckles had been identified in chapter 3 when ERβ2 expression patterns 

were examined in nine breast cancer cell lines. This speckled expression was 

unique to ERβ2 and was not observed with ERα or ERβ1. This finding led to the 

implication that these speckles may have alternative function to homogenously 

expressed ERβ2. This chapter intended to discover more about these speckles and 

their possible function. 

5.5.1 Automation of ERβ2 speckle counting 

In order to accurately investigate ERβ2 speckles an automated speckle counting 

method was required for both consistency and to eliminate the subjectivity that 

manual counting might generate. ERβ2 speckles were defined as consistently 

distinct, intense areas of ERβ2 expression located in the nucleus and fluorescence 

was frequently saturated. For this reason they could be distinguished by the 

software by intensity thresholding.  A threshold of 1200 in the FITC channel (used 

to detect ERβ2 expression) excluded pixels with an intensity of below that value, 

which omitted most homogenously expressed ERβ2 from being analysed. 

However, using FITC thresholding alone did not eliminate all staining that was not 

ERβ2 speckles. To discriminate between single or small clusters of intensely 

stained pixels and ERβ2 speckles, exclusion based on the size was also employed 

along with FITC thresholding, with objects larger than 4 pixels defined as a speckle. 

Attempting this manually, by assessing the size of the speckles by eye, could be 

problematic with the major pitfall being subjectivity. Automation reduced error and 

enabled accurate comparisons between images. 
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5.5.2 ERβ2 does not colocalise with other known nuclear speckled proteins 

Many nuclear proteins are expressed in a speckled pattern in the cell nucleus and 

have been demonstrated to have a distinct function. Many of these e.g. PML bodies 

and nuclear speckles, function in pre-mRNA splicing or other post-transcriptional 

modifications (228, 235). As ERβ2 is expressed in the nucleus of breast cancer 

cells in a similar pattern, we investigated whether ERβ2 speckles colocalised with 

these other speckled proteins. This may indicate a similar role for ERβ2 speckles 

and potential involvement in transcriptional regulation. Interestingly, ERβ2 nuclear 

speckles did not colocalise with coilin (a marker of cajal bodies), PML or nuclear 

speckles, neither did they localise to the nucleoli. However, ERβ2 speckles 

appeared to be located adjacent to nuclear speckles labelled with SC-35 antibody. 

It has been reported that rather than being sites of active transcription, nuclear 

speckles, which contain splicing factors required for mRNA processing, are located 

adjacent to areas of active transcription (235). Subunits of RNA pol II have been 

also associated with nuclear speckles (249, 250).This could indicate ERβ2 speckles 

may also localise close to areas of active transcription. This observation was made 

for expression of the androgen receptor (AR), another member of the nuclear 

receptor superfamily  The group measured BrUTP incorporation by 

immunofluorescence, which marked sites of active transcription in cells expressing 

GFR-AR. AR speckles only partially overlapped with active sites of transcription but 

was observed to be adjacent to nuclear speckles (251). 

Performing colocalisation experiments of ERβ2 speckles with RNA pol II by 

immunofluorescence could be performed, potentially indicating the involvement of 

ERβ2 speckles in transcription if they are found to be located at active sites. 

Alternatively BrUTP incorporation could be measured as performed by Royan et al 

(2007) (251). 

5.5.3 ERβ2 speckles dynamically respond to external stimuli 
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The mechanism of action for ERβ2 proposes that upon activation it translocates to 

the nucleus and dimerises with other ERs. This ER complex then recruits co-

regulators and controls gene transcription (49). ERβ2 is not capable of effectively 

binding a ligand due to differences in protein folding compared with other ERs, 

which results in a smaller ligand binding pocket. Its activation therefore depends on 

dimerisation with other ligand binding ERs (ERα and ERβ1) (146). We examined 

the effect of various estrogenic ligands targeted to ERα and/or ERβ1 on the number 

of ERβ2 nuclear speckles present in MCF-7 (ERα positive, ERβ1 positive) and 

MDA-MB-231 (ERα negative, ERβ1 positive) cells. In MCF-7 cells 4-OHT, DPN and 

genistein treatment resulted in a significant increase in speckle numbers. In MDA-

MB-231 cell only genistein resulted in a significant increase in ERβ2 speckles. 

Hamilton-Burke et al (172) demonstrated E2 and DPN increased speckle number 

and size detected by ERβ phosphorylated at ser105, supporting our observation 

that stimulation with particular ligands resulted in increased numbers of ERβ2 

speckles. Interestingly ligands that triggered anti-proliferation in MCF-7 and MDA-

MB-231 cells were also those that resulted in a significant increase in ERβ2 speckle 

number. This may signify that speckles are involved in suppression of the cell cycle, 

and if they are transcriptionally active, may enhance the transcription of genes that 

suppress the cell cycle e.g. p21,p27 or repress those that drive proliferation. In the 

overexpression experiments detailed in chapter 4.3.4, ERβ2 resulted in an increase 

in proliferation in MDA-MB-231 cells, whereas ERβ2 speckles in this cell line are 

associated with anti-proliferation. This could indicate distinct function for ERβ2 

speckles, and deserves further exploration. 

 

mRNA levels only partially correlated with speckle number. In MCF-7 cells only 4-

OHT resulted in a concomitant increase in speckles and mRNA. With all other 

ligands no correlations were observed. Surprisingly genistein treatment resulted in 

a significant decrease in ERβ2 mRNA levels in both MCF-7 and MDA-MB-231cells, 
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but speckle number significantly increased. This may suggest an increase in 

speckle numbers could be independent from ERβ2 transcription. This contradicts 

our findings that a reduction in ERβ2 mRNA by transcriptional inhibition resulted in 

the disappearance of speckles, suggesting they are actively synthesised. If 

formation of speckles in this case is not a direct result of increased transcription, it 

could be possible that some of ligands may stimulate the formation of speckles from 

ERβ2 protein already residing in the cell. 

 

Ligand activation of ERs results in downstream dimerisation and gene regulation. 

Increased speckle number in response to ligands may suggest they are 

transcriptionally active. To investigate the possibility that ERβ2 speckles may be 

associated with transcription, Act D and CHX was used to inhibit transcription and 

translation respectively and the effect on speckle number was assessed. 

Actinomycin D is an antibiotic and chemotherapy medication often used to as a 

useful tool in molecular biology to inhibit transcription. It acts by binding DNA at the 

transcription initiation complex forming a stable complex that inhibits RNA synthesis 

(252). Cyclohexamide is an antibiotic agent that prevents protein synthesis 

occurring within cells. It is believed to prevent the translation elongation step in 

protein synthesis through binding to the E-site of the 60S ribosomal unit and blocks 

tRNA translocation (253). Both compounds resulted in the disappearance of ERβ2 

nuclear speckles. The disappearance with both transcription and protein synthesis 

inhibition suggests the turnover of ERβ2 in the speckles is faster than 

homogenously expressed ERβ2, which was still present in the cells after all 

speckles had disappeared, and therefore may represent an active pool of ERβ2 

protein. ERβ2 speckle protein appears to be actively transcribed and translated in 

the cell. Speckle turnover appears to be around 2-4 hours, as by this point they 

disappear under transcriptional/translational inhibition. Either ERβ2 speckle 

formation is dependent on high turnover proteins, which when their transcription is 
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halted by ActD and CHX, transcription of ERβ2 also stops, or speckles themselves 

have a rapid turnover and inhibition of ERβ2 transcription and translation results in 

speckle disappearance. 

 

Speckled expression of ERs has been described in the literature. ERα has 

demonstrated a speckled pattern of expression, when SOX2 was overexpressed. 

SOX2 is a protein that functions as an activator or suppressor of gene transcription 

and has been associated with the initial stages of tumourigenesis in breast. Authors 

reported that ERα phosphorylated at ser118 was elevated and expressed as 

numerous speckles in the nucleus upon SOX2 overexpression. This suggests 

SOX2 has some involvement in formation of ERα speckles possibly co-regulating 

transcription within these sites (247). As discussed earlier ERβ phosphorylated at 

ser105 formed speckles in the nucleus of MCF-7 cells (172). Phosphorylated ERβ 

is characteristic of activated ERβ, potentially regulating transcription of its target 

genes. We have established in our cell lines that some estrogenic ligands resulted 

in an increase in ERβ2 speckle number a similar finding to the results in the 

phospho-ERβ study. Using colocalisation immunofluorescence with a phospho-ERβ 

and ERβ2 antibody may indicate whether ERβ2 is likely phosphorylated at these 

sites. Phospho-ERβ antibodies are not isoform specific as many of the 

phosphorylation sites identified on the ERβ protein are within the AF-1 domain 

(165, 254, 255) therefore they may detect phosphorylation sites in all ERβ isoforms 

as this domain is homologous to all. If colocalisation reveals overlap of phospho-

ERβ speckles and ERβ2 speckles, it could be that, due to the commonality of 

phosphorylation sites between ERβ isoforms, it is ERβ2 that becomes activated, 

which may suggest ERβ2 speckles are transcriptionally active. There are additional 

phospho-ERβ antibodies targeted to phosphorylation sites other than the ser105 

antibody described by  Hamilton-Burke et al (172), for example phospho-ERβ at 

ser87, which may also need careful consideration. Evidence from the literature 
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regarding speckled expression of ERs, suggests ERα and phospho- ERβ speckles 

are areas of transcriptionally active protein and may function to regulate target 

genes. This may suggest ERβ2 speckles are similar in function, but whether they 

regulate transcription themselves remains to be seen.  

5.5.4 ERβ2 speckles and the cell cycle 

The correlation of ERβ2 speckles with anti-proliferation may indicate an association 

with the cell cycle. MCF-7 cells were synchronised at the G1/0 to S-phase 

checkpoint then allowed to move through the cell cycle as a synchronous 

population. Speckle numbers were examined as cells moved through each phase. 

Cell synchronisation is an effective way of studying protein expression at various 

stages of the cell cycle, as well as investigation of cell cycle events. Theoretically 

once synchronised, cells should move through stages of cell cycle homogenously, 

however they may only remain synchronised for a short period of time often for only 

one or two rounds of cell division. However in fast proliferating cancer cells it is 

likely to be less. As cell progress to G1, due to the high degree of variability in time 

spent in this phase, cells can quickly become unsynchronised. Here MCF-7 cells 

were synchronised at the boundary between G1 and S-phase. MCF-7 cells have a 

short doubling time. In the literature this varies, but is thought to be around 24 hours 

(256), but when growth curve analysis was performed on our MCF-7 cells, doubling 

time was around 20 hours. Time points for speckle number analysis were based on 

a doubling time of 20 hours. As the length of time spent in S, G2 and M phase 

rarely change at around 6, 3-4 hours and 1 hour respectively (257), the variable G1 

phase length was then calculated to be around 9 hours. Our results did not suggest 

speckles were associated with a particular phase of the cell cycle as they were 

present throughout. However there did appear to be a trend where speckle number 

was decreased in G2/M phase. Although previous experiments suggested ERβ2 

speckles may be associated with anti-proliferation, the lack of association with a 
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particular phase of the cell cycle may indicate growth suppression is not mediated 

via cell cycle proteins. The decrease in speckle number at G2/M phase may be 

explained by the increased proportion of cells undergoing mitosis. In mitosis the 

nuclear membrane breaks down and nuclear proteins are released into the cytosol. 

Nuclear transcription is repressed during this time (258, 259) and no ERβ2 

speckles were visible. This observation was confirmed when cells were 

synchronised with nocodazole, an M-phase blocker, in preliminary work (data not 

shown). No ERβ2 speckles were visible in any cells during M-phase. Therefore in 

G2/M phase, the proportion of cells undergoing mitosis would be increased, 

reducing the number of ERβ2 speckles in the cell population. 

 

Although cells were successfully synchronised at the start of S-phase they quickly 

lost synchrony and did not always move through homogenously. This appears to be 

a pitfall of using chemical synchronisation in fast proliferating cancer cell lines. 

Preliminary experiments using nocodazole for synchronisation of cells in M-phase 

proved difficult, as not only did cells fail to move through the cell cycle 

synchronously, high doses of the chemical proved toxic, something that has been 

described in the literature (260). An effective dose for synchronisation also 

appeared to damage some of the cells so recovery time from synchronisation was 

varied in the cell population. This ultimately led to non-synchronous movement 

through the cell cycle as some cells took longer to recover.  

Alternative methods to analyse ERβ2 speckles in relation to the cell cycle may 

prove more effective, and could resolve some of the pitfalls of this experiment. 

The use of markers for cell cycle phases may be more applicable. Co-staining cells 

for ERβ2 and cell cycle proteins specific to each phase could be achieved by 

immunofluorescence, enabling correlations to be made between the two. This still 

poses problems, as the most obvious cell cycle phase markers are the cyclins. 

However their expression crosses over into multiple phases so using these for 
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immunofluorescence analysis is not ideal. Anti-BrdU antibodies may be more 

suitable for successfully marking S-phase, however finding markers for other 

phases may be more challenging. An alternative approach involving more 

sophisticated technology could greatly improve this experiment. The ImageStreamX 

imaging flow cytometer (Merck Millipore) combines immunofluorescent imaging with 

flow cytometry, the two major aspects of this assay. This platform would negate the 

need for cell synchronisation as cell phase would be detected during processing. In 

parallel with the determination of cell cycle phase, immunofluorescent imaging on 

the cell could detect ERβ2 speckles and using the IDEAS® software and quantify 

speckle numbers for each cell cycle phase. This technology has the capacity to 

analyse thousands of cells, generating multiple experimental replicates in a short 

space of time and would increase the reliability, accuracy and reproducibility of 

results. 

 

 

 

 

 

 

 

 

 

5.5.5 Summary 

Experiments in this chapter have identified ERβ2 nuclear speckles may be 

 associated with anti-proliferation 

 sites of active gene expression 
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 representative of a pool of differentially regulated ERβ2 when compared to 

homogenously expressed ERβ2. 

 adjacent to sites of post-transcriptional modification 

As ERβ2 speckles are actively transcribed and translated and upon specific ligand 

activation they increase in number, they may represent a pool of ERβ2 involved in 

transcriptional regulation. The association with anti-proliferation may suggest 

regulation of target genes that are involved in suppression of cell proliferation; 

however this may not be due to suppression of specific cell cycle proteins that 

govern progression through each phase as ERβ2 speckle appeared to be 

constrictively expressed in all phases of the cell cycle. The link to anti-proliferation 

may suggest presence of speckles is associated with tumour suppression, even in 

cells (MDA-MB-231) where ERβ2 overexpression appeared to result in 

tumourigenesis. This may indicate ERβ2 speckles have alternate function to 

homogenously expressed ERβ2. 

 

 

 

 

 

 

 

 

 

6.0 Final Discussion 

There is currently a lack of knowledge regarding ERβ2 and its role in both normal 

breast tissue and breast cancer. Clinical data has suggested ERβ2 presence can 
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be both good and bad prognostically. This mixed prognostic ability may be due to 

the fact that ERβ2 differs in cellular location between studies. When both nuclear 

and cytoplasmic expression has been examined, cytoplasmic expression was 

linked to poor prognosis and poor survival and nuclear expression had been linked 

with a better outcome (94, 100). This differential prognostic ability dependent on 

subcellular location has also been reported in other cancer types such as ovarian 

(102) and prostate cancers (101). Building on this observation, it is possible that 

ERβ2 could have differing functions dependent upon where it is located in the cell, 

which may account for the varied prognosis.  

 

We hypothesised that ERβ2 may have alternate functions when expressed with or 

without ERα. This appeared to be the case as ERβ2 overexpression resulted in 

suppression of proliferation in MCF-7 cells, in concordance with the literature (95, 

104), but increased proliferation in triple negative MDA-MB-231 cells. In MDA-MB-

468 cells, also triple negative, proliferation decreased. Clearly the action of ERβ2 is 

far more complex than just its interaction with ERα. To our knowledge only one 

study has investigated the function of ERβ2 outside of an ERα positive environment 

in breast where its expression in the triple negative cell line HS578T revealed no 

effect on proliferation (105). In other cancers such as prostate and ovarian, which 

do not express ERα, an association with tumourigenesis has emerged (106, 153). 

However in lung cancer ERβ2 appears to be tumour suppressive (199). These 

contradictory findings may be due to the cellular location of ERβ2.  

 

We proposed ERβ2 has a different function when located in the cytoplasm 

compared to its function in the nucleus as a transcription factor. This hypothesis 

was based on the different prognostic ability of ERβ2 in the nucleus, as a marker of 

good prognosis, and the cytoplasm, as a marker of poor prognosis. We investigated 

the presence of ERβ2 protein in the nucleus, cytoplasm and mitochondria, and 



224 
 

explored a possible function in these compartments. Nuclear ERβ2 expression was 

observed predominantly as ‘nuclear speckles’ in all breast cancer cell lines 

examined.  These presented as intense areas of ERβ2 staining under 

immunofluorescence analysis confined to dots or speckles in the cell nucleus 

varying in number and size between cell lines. It was revealed speckles were 

actively synthesised as inhibition of transcription and translation resulted in their 

disappearance, suggesting ERβ2 speckles are areas of unstable ERβ2. They were 

also associated with anti-proliferation regardless of cell type. As ERβ2 speckles in 

MDA-MB-231 cells were associated with anti-proliferation, however ERβ2 

overexpression was associated with proliferation; it appears ERβ2 may have 

multiple functions. ERβ2 may be both tumourigenic and tumour suppressive in the 

same cell line depending on its cellular location. Others who have investigated 

overexpression of ERβ2 have suggested its oncogenic role may be due to 

regulation of cytoplasmic signalling pathways (106). In addition we have uncovered 

a potentially tumourigenic role for ERβ2 in the mitochondria of MDA-MB-231 cells, 

via upregulation of genes associated with oxidative phosphorylation. Upregulation 

of mtDNA encoded genes and subsequent activation of oxidative phosphorylation 

may result in increased energy production which could drive cell growth. Although it 

is proposed cancer cells switch to glycolysis as a preferred source of energy, 

oxidative phosphorylation still provides most of the cell’s ATP (261) , and remains 

vital as a source of energy. Mitochondrial ERβ2 has also been linked to 

suppression of apoptosis (153), contributing to an overall tumourigenic effect. 

 
The link to tumourigenesis and poor prognosis doesn’t stop at the ERβ2 isoform. 

Despite its widely accepted tumour suppressor function, ERβ1 has been associated 

with tumourigenesis when it is located in the cytoplasm. Cytoplasmic ERβ1 

expression is rare in the literature, but has been located in the cytoplasm of ovarian 

(262), vulval (263) and lung (166) cancers. Here it appears to be a poor prognostic 

factor; a contradiction to its reported tumour suppressive function. Mitochondrially 
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located ERβ1 has been associated with cell survival. This provides substantiation 

that ERβ1 may have opposing functions when located in the nucleus as opposed to 

the cytoplasm.  

This evidence suggests that a tumourigenic function for ERβ2 and ERβ1 may be 

due to a cytoplasmic location. Nuclear located ERβ2 in the form of speckles may be 

tumour suppressive, similarly to the nuclear function of ERβ1. This finding 

correlates with the clinical observation that nuclear ERβ2 is a marker of good 

prognosis whereas cytoplasmic expression is associated with poor prognosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Limitations and Solutions 

One major challenge encountered during this project stemmed from the ERβ2 

protein itself. This is a less well studied isoform of ERβ and as such, one way in 

which our work became limited was in terms of antibodies available. Only one 
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commercially available antibody exists, which has been successfully used for 

immunofluorescence throughout this project. It was however unsuitable for protein 

detection via western blot despite numerous attempts. Endogenous levels of ERβ2 

in breast cancer cell lines were low as demonstrated by qRT-PCR in chapter 3. This 

presented a challenge to the project as endogenous ERβ2 protein was 

undetectable by western blot, a useful and crucial tool in protein expression studies. 

However, the use of overexpression vectors and protein tags enabled us to 

investigate a functional aspect of ERβ2 action. The FLAG M2 antibody permitted us 

to use western blots for confirmation of ERβ2 overexpression and investigation of 

ERβ2 protein distribution in cellular compartments, the basis of the subcellular 

fractionation experiments. 

Another limitation regarding the detection of ERβ2 was the examination of ERβ2 

speckles. This was limited to immunofluorescence as speckles were a visual 

phenomenon and appeared to be a separate entity from homogenously expressed 

ERβ2. The use of confocal microscopy allowed us to scrutinize these speckles in 

detail to accurately measure changes in size and number in response to external 

stimuli as well as utilising colocalisation immunofluorescence to study possible 

interactions. Other groups that have undertaken investigation of speckled structures 

have also focused experimental attention towards immunofluorescence. A study 

that investigated the speckled expression of S1-1 nuclear domains performed 

similar experiments to this study.  S1-1 speckles were found to be dynamic and 

upon transcriptional inhibition speckles decreased in number (264). ERβ2 speckle 

behaved in the same way. The authors proposed that these S1-1 speckles are sites 

of active gene expression, something we have alluded to but not confirmed. 

Similarly to our results, they also found that S1-1 speckles were located adjacent to 

nuclear speckles. It appears immunofluorescent based experiments are common 

when investigating speckle like structures in cells, and much information can be 

gained from them. However another study used whole genome screening 
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techniques to identify proteins that localise to nuclear bodies, something that could 

be applied to ERβ2 speckle investigations to glean more information about these 

structures. Currently it is unknown if ERβ2 speckles interact with other proteins and 

although we performed colocalisation with PML, nuclear speckles and cajal bodies, 

there are numerous other proteins that form or interact with speckle structures in 

the nucleus. This study identified 325 proteins that localise to distinct nuclear 

bodies (265). A similar approach could identify ERβ2 speckle interactions and 

enhance our current knowledge. 

 

One issue encountered during the subcellular fractionation experiments was that 

despite clear differences observed in ERβ2 expression in different cell 

compartments, upon ligand treatment the changes were more subtle. This 

experiment may have therefore benefitted from quantification to detect differences 

in ERβ2 protein levels between compartments. 

Licor offer an alternative to traditional western blots with their In-Cell Western™, 

which measures cellular protein in an automated quantitative approach using 

fluorescence measurement, thus reducing potential experimental human error. With 

the ability to measure protein in-situ, this technique may be able to detect ERβ2 

protein in each cellular compartment. With this assay based on 

immunofluorescence, we could use the ERβ2 antibody and measure endogenous 

ERβ2 rather than only detecting overexpressed FLAG tagged ERβ2. 

 

   

Another potential issue with the fractionation westerns was the loading controls 

used. Each fraction required a different loading control, a protein located only in that 

particular compartment. However the use of cytochrome C as a marker for the 

mitochondria could prove unreliable if any of the ligands tested caused changes in 

apoptosis. The release of cytochrome C from the mitochondria to the cytoplasm is a 
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significant step in the induction of apoptosis. We did not measure apoptosis in 

response to estrogenic ligands used in this study or in ERβ2 overexpressing cells. 

This could be done in future work to confirm whether apoptosis is affected and 

outline the suitability of cytochrome C as a loading control. Genistein has also been 

shown to induce ROS in the literature (266). ROS generation results in cytochrome 

C release from the mitochondria and ultimately apoptosis. If densitometry was used 

to normalise the band intensities to the loading control in the mitochondrial 

fractions, results could therefore be skewed. Use of another mitochondrial marker 

i.e. for proteins involvement in oxidative phosphorylation e.g. COX IV could 

overcome this, however given that we have shown ERβ2 interferes with mtDNA 

transcription this may not be plausible. The use of the Licor technology would 

negate the need for specific cellular compartment loading controls and ultimately 

may be a better alternative if quantification of ERβ2 is required. 

 

 

 

 

 

 

 

 

 

 

6.2 Future work 

The work carried out in this project has begun to clarify the function of ERβ2 and its 

potential implications in breast cancer. We suggest multiple functions for ERβ2 

which may depend on cellular location.  
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To build on the ERβ2 speckle work, it would be useful to investigate speckles as 

sites of active transcription. Although speckles responded to transcriptional and 

translational inhibition, it is unclear if they are transcriptionally active. Moving 

forward it would be useful to perform further colocalisation analysis using 

techniques already been established in chapter 3, with a further subset of proteins. 

The techniques used by Fong et al, 2013 (265) could be applied to ERβ2 speckles. 

Authors sub-cloned the Human ORFeome v5.1 Library containing open reading 

frames of over 12,700 genes into a Flag tagged vector then transfected into HeLa 

cells. Proteins were detected by immunofluorescence and those that formed 

nuclear foci were investigated by colocalisation with distinct nuclear bodies. 

The same techniques could be applied to ERβ2 speckles to identify possible protein 

interactions with ERβ2 speckles. In addition colocalisation of ERβ2 speckles with 

RNA Polymerase II may indicate if these speckles are at sites of active 

transcription. It would also be interesting to investigate whether the phospho-ERβ 

speckles described in the literature (172) colocalise with ERβ2 speckles, which may 

also indicate ERβ2 speckle as active. If transcriptionally active, speckles could 

represent an important pool of ERβ2 which regardless of the molecular phenotype 

of the cell could indicate a tumour suppressive function through target gene 

regulation, at least in terms of cellular proliferation. One important consideration in 

the speckle work is whether other ERs play a role in speckle formation and activity. 

As ERβ2 is believed to have little function alone, but  instead exerts its action 

through ERβ1 or ERα heterodimerisation (54) it is feasible that ERβ2 speckles 

formation may rely on interaction with other ERs. By using siRNAs or shRNAs to 

knockdown the expression of ERα or ERβ1 could suggest whether these proteins 

are required for speckle formation. This knockdown could also be of use in other 

assays. Measurement of proliferation and migration under knockdown conditions 
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could suggest whether these other ER’s are involved in mediating ERβ2’s effects 

on these processes. 

 

We hypothesised that ERβ2’s cytoplasmic function may mediate tumourigenesis as 

demonstrated by its effects on gene expression and proliferation in ERβ2 

overexpressing MDA-MB-231 cells. As already discussed in previous chapters, 

examination of downstream target genes to cytoplasmic kinase signalling pathways 

or kinase signalling reporter assays in the ERβ2 overexpressing cells could verify 

whether cytoplasmic ERβ2 plays a role in the regulation of these pathways. The 

use of phospho-kinase antibody arrays to measure activated components of kinase 

signalling could be useful to indicate whether these pathways are activated.  We 

have alluded to a possible function in the mitochondria in regulation of mtDNA 

transcribed genes which code for proteins involved in oxidative phosphorylation. To 

further support this observation; firstly all 13 mtDNA coded genes could be 

investigated by qRT-PCR in the overexpressing ERβ2 cells to complete the panel 

of mtDNA protein coding genes. It may also be advantageous to confirm protein 

expression of these genes too. Leading on from this, oxidative phosphorylation in 

the ERβ2 overexpressing cell lines and ATP levels could be measured to confirm 

whether upregulation of mtDNA genes does lead to increased cellular energy 

production. In addition, as others have suggested ERβ2 may be involved in 

apoptosis regulation (153), measurement of apoptosis could be carried out in ERβ2 

overexpressing cells. If apoptosis is affected, interaction of ERβ2 with the proteins 

involved could be measured for example BAX, as ERβ2 has been demonstrated to 

interact with this protein in ovarian cancer.  

In this project we briefly investigated some potential ERβ2 target genes in chapter 

3. We found differential gene expression between ERα positive and ERα negative 

cell lines suggesting differential gene expression dependent on molecular profile of 

the tumour. Global analysis of gene regulation has been performed for ERβ1 (47) 
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using ChIP-Seq technology to identify DNA binding sites on ERβ1 target gene 

promoters in MCF-7 (ERα positive) cells, and genes identified were involved in 

processes such as cell cycle progression, apoptosis and adhesion. 

RNA-Seq is a similar technique but measures RNA transcripts, and has been 

utilised to detect ERβ gene targets in the triple negative breast cancer cell line 

MDA-MB-468 (115). Again gene ontology analysis revealed genes regulated were 

involved in cell proliferation, differentiation and cell cycle. RNA-Seq gives the added 

advantage of quantification, so up or down-regulation of the target genes can be 

measured. Both of these techniques would be a useful tool to investigate ERβ2 

target genes and would give a much more comprehensive view of the genes 

regulated by ERβ2. These experiments are complex however, and require a great 

deal of expertise, time and financial support so this type of technique may be more 

applicable to post-doctoral study. These experiments would however be the first 

genome wide study of ERβ2 target genes and greatly improve our understanding of 

this protein, potentially providing answers as to how ERβ2 mediates proliferation 

and migration, demonstrated in chapter 4. 

Despite the evidence around the role of ERβ in breast cancer since its discovery in 

1996 and the initial excitement in the scientific community as to its potential as a 

therapeutic target, almost 20 years later its function still remains unclear. The 

contradictory data around its role in breast cancer means targeting ERβ 

therapeutically is not yet viable. Many factors would need consideration before ERβ 

could be used clinically. A suitable ERβ antibody for clinical use may be difficult to 

select, since many are demonstrated to be ineffective or non-specific. Further 

complexity is brought about by the presence of 3 ERβ isoforms in breast tissue, 

ERβ1, ERβ2 and ERβ5. Many studies focus on ERβ1 expression and function but 

ERβ2 has also been shown to be a strong prognostic marker. Just focussing on 

one or not distinguishing between isoforms may hinder potential treatment, 

especially as only ERβ1 is the ligand binding isoform and therefore a potential 
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direct target for therapy. Another consideration would be the location of ERβ within 

the cell. It has become apparent that ERβ may have alternative function outside the 

nucleus. Targeting ERβ with therapy agonistically when it is cytoplasmically located 

may be worse for the patient, especially when mitochondrially localised and this 

may drive cellular energy production promoting growth and migration. Because the 

nature of ERβ action is so complex, it might be some time before this receptor is 

utilised therapeutically.
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7.0 Appendix 

7.1 Blast data from pFB-NeoFLAG3-ERβ2 vector 

 
Homo sapiens estrogen nuclear receptor beta variant b (NR3A2) mRNA, complete 
cds 
 
ID: gb|HQ692821.1|Length: 1488Number of Matches: 1 

Related 
Information 

Gene-associated gene details 
UniGene-clustered expressed sequence tags 
Map Viewer-aligned genomic context 
Range 1: 1 to 1488GenBankGraphics 
 
 
 
 
Query  1     ATGGATATAAAAAACTCACCATCTAGCCTTAATTCTCCTTCCTCCTACAACTGCAGTCAA  60 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1     ATGGATATAAAAAACTCACCATCTAGCCTTAATTCTCCTTCCTCCTACAACTGCAGTCAA  60 
Query  61    TCCATCTTACCCCTGGAGCACGGCTCCATATACATACCTTCCTCCTATGTAGACAGCCAC  120 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  61    TCCATCTTACCCCTGGAGCACGGCTCCATATACATACCTTCCTCCTATGTAGACAGCCAC  120 
Query  121   CATGAATATCCAGCCATGACATTCTATAGCCCTGCTGTGATGAATTACAGCATTCCCAGC  180 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  121   CATGAATATCCAGCCATGACATTCTATAGCCCTGCTGTGATGAATTACAGCATTCCCAGC  180 
Query  181   AATGTCACTAACTTGGAAGGTGGGCCTGGTCGGCAGACCACAAGCCCAAATGTGTTGTGG  240 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  181   AATGTCACTAACTTGGAAGGTGGGCCTGGTCGGCAGACCACAAGCCCAAATGTGTTGTGG  240 
Query  241   CCAACACCTGGGCACCTTTCTCCTTTAGTGGTCCATCGCCAGTTATCACATCTGTATGCG  300 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  241   CCAACACCTGGGCACCTTTCTCCTTTAGTGGTCCATCGCCAGTTATCACATCTGTATGCG  300 
Query  301   GAACCTCAAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGAACACACCTTACCTGTAAAC  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  301   GAACCTCAAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGAACACACCTTACCTGTAAAC  360 
Query  361   AGAGAGACACTGAAAAGGAAGGTTAGTGGGAACCGTTGCGCCAGCCCTGTTACTGGTCCA  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  361   AGAGAGACACTGAAAAGGAAGGTTAGTGGGAACCGTTGCGCCAGCCCTGTTACTGGTCCA  420 
Query  421   GGTTCAAAGAGGGATGCTCACTTCTGCGCTGTCTGCAGCGATTACGCATCGGGATATCAC  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  421   GGTTCAAAGAGGGATGCTCACTTCTGCGCTGTCTGCAGCGATTACGCATCGGGATATCAC  480 
Query  481   TATGGAGTCTGGTCGTGTGAAGGATGTAAGGCCTTTTTTAAAAGAAGCATTCAAGGACAT  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  481   TATGGAGTCTGGTCGTGTGAAGGATGTAAGGCCTTTTTTAAAAGAAGCATTCAAGGACAT  540 
Query  541   AATGATTATATTTGTCCAGCTACAAATCAGTGTACAATCGATAAAAACCGGCGCAAGAGC  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  541   AATGATTATATTTGTCCAGCTACAAATCAGTGTACAATCGATAAAAACCGGCGCAAGAGC  600 
Query  601   TGCCAGGCCTGCCGACTTCGGAAGTGTTACGAAGTGGGAATGGTGAAGTGTGGCTCCCGG  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  601   TGCCAGGCCTGCCGACTTCGGAAGTGTTACGAAGTGGGAATGGTGAAGTGTGGCTCCCGG  660 
Query  661   AGAGAGAGATGTGGGTACCGCCTTGTGCGGAGACAGAGAAGTGCCGACGAGCAGCTGCAC  720 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  661   AGAGAGAGATGTGGGTACCGCCTTGTGCGGAGACAGAGAAGTGCCGACGAGCAGCTGCAC  720 
 
Query  721   TGTGCCGGCAAGGCCAAGAGAAGTGGCGGCCACGCGCCCCGAGTGCGGGAGCTGCTGCTG  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  721   TGTGCCGGCAAGGCCAAGAGAAGTGGCGGCCACGCGCCCCGAGTGCGGGAGCTGCTGCTG  780 
Query  781   GACGCCCTGAGCCCCGAGCAGCTAGTGCTCACCCTCCTGGAGGCTGAGCCGCCCCATGTG  840 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  781   GACGCCCTGAGCCCCGAGCAGCTAGTGCTCACCCTCCTGGAGGCTGAGCCGCCCCATGTG  840 
Query  841   CTGATCAGCCGCCCCAGTGCGCCCTTCACCGAGGCCTCCATGATGATGTCCCTGACCAAG  900 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  841   CTGATCAGCCGCCCCAGTGCGCCCTTCACCGAGGCCTCCATGATGATGTCCCTGACCAAG  900 
Query  901   TTGGCCGACAAGGAGTTGGTACACATGATCAGCTGGGCCAAGAAGATTCCCGGCTTTGTG  960 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  901   TTGGCCGACAAGGAGTTGGTACACATGATCAGCTGGGCCAAGAAGATTCCCGGCTTTGTG  960 
Query  961   GAGCTCAGCCTGTTCGACCAAGTGCGGCTCTTGGAGAGCTGTTGGATGGAGGTGTTAATG  1020 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Score Expect Identities Gaps Strand 

2748 bits(1488) 0.0 1488/1488(100%) 0/1488(0%) Plus/Plus 

http://www.ncbi.nlm.nih.gov/nucleotide/325495452?report=genbank&log$=nuclalign&blast_rank=2&RID=4SHGT00901R
http://www.ncbi.nlm.nih.gov/gene?term=325495452%5bNUID%5d&RID=4SHGT00901R&log$=genealign&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=Display&dopt=nucleotide_unigene&from_uid=325495452&RID=4SHGT00901R&log$=unigenealign&blast_rank=2
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?direct=on&gbgi=325495452&THE_BLAST_RID=4SHGT00901R&log$=mapalign&blast_rank=2
http://www.ncbi.nlm.nih.gov/nucleotide/325495452?report=genbank&log$=nuclalign&blast_rank=2&RID=4SHGT00901R&from=1&to=1488
http://www.ncbi.nlm.nih.gov/nucleotide/325495452?report=genbank&log$=nuclalign&blast_rank=2&RID=4SHGT00901R&from=1&to=1488
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Sbjct  961   GAGCTCAGCCTGTTCGACCAAGTGCGGCTCTTGGAGAGCTGTTGGATGGAGGTGTTAATG  1020 
Query  1021  ATGGGGCTGATGTGGCGCTCAATTGACCACCCCGGCAAGCTCATCTTTGCTCCAGATCTT  1080 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1021  ATGGGGCTGATGTGGCGCTCAATTGACCACCCCGGCAAGCTCATCTTTGCTCCAGATCTT  1080 
Query  1081  GTTCTGGACAGGGATGAGGGGAAATGCGTAGAAGGAATTCTGGAAATCTTTGACATGCTC  1140 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1081  GTTCTGGACAGGGATGAGGGGAAATGCGTAGAAGGAATTCTGGAAATCTTTGACATGCTC  1140 
Query  1141  CTGGCAACTACTTCAAGGTTTCGAGAGTTAAAACTCCAACACAAAGAATATCTCTGTGTC  1200 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1141  CTGGCAACTACTTCAAGGTTTCGAGAGTTAAAACTCCAACACAAAGAATATCTCTGTGTC  1200 
Query  1201  AAGGCCATGATCCTGCTCAATTCCAGTATGTACCCTCTGGTCACAGCGACCCAGGATGCT  1260 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1201  AAGGCCATGATCCTGCTCAATTCCAGTATGTACCCTCTGGTCACAGCGACCCAGGATGCT  1260 
Query  1261  GACAGCAGCCGGAAGCTGGCTCACTTGCTGAACGCCGTGACCGATGCTTTGGTTTGGGTG  1320 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1261  GACAGCAGCCGGAAGCTGGCTCACTTGCTGAACGCCGTGACCGATGCTTTGGTTTGGGTG  1320 
Query  1321  ATTGCCAAGAGCGGCATCTCCTCCCAGCAGCAATCCATGCGCCTGGCTAACCTCCTGATG  1380 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1321  ATTGCCAAGAGCGGCATCTCCTCCCAGCAGCAATCCATGCGCCTGGCTAACCTCCTGATG  1380 
Query  1381  CTCCTGTCCCACGTCAGGCATGCGAGGGCAGAAAAGGCCTCTCAAACACTCACCTCATTT  1440 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1381  CTCCTGTCCCACGTCAGGCATGCGAGGGCAGAAAAGGCCTCTCAAACACTCACCTCATTT  1440 
Query  1441  GGAATGAAGATGGAGACTCTTTTGCCTGAAGCAACGATGGAGCAGTGA  1488 
             |||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1441  GGAATGAAGATGGAGACTCTTTTGCCTGAAGCAACGATGGAGCAGTGA  1488 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2  Images used for speckle algorithm validation 
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MCF-7 cells stained with ERβ2 antibody (green) and the nuclear DAPI stain 
(blue) were used for validation of speckle counting algorithm.  
a-b) No speckles were identified in whole images so all cells were used for the 
algorithm validation c-f) Cells without speckles were identified down the eyepiece of 
the microscope and marked for use in the algorithm validation. 
 

7.3 Speckle number data after pixel exclusion from images used for 

speckle algorithm validation 
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Validation image 

Number of speckles 

No pixel 
exclusion 

≤ 1 pixel 
exclusion 

≤ 2 pixel  
exclusion 

≤ 3 pixel 
exclusion 

≤ 4 pixel  
exclusion 

Negative validation_1 62 20 6 3 0 

Negative validation_2 42 6 0 0 0 

Negative validation_3 19 3 0 0 0 

Negative validation_4 73 18 3 1 0 

Negative validation_5 103 28 6 2 0 

Negative validation_6 25 3 0 0 0 

 
Pixel exclusion data upon analysis of negative images displayed in 7.2. The number 
of speckles were counted after exclusion based on the number of pixels that made 
up the speckle.  
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7.4 Cumulative analysis of cells analysed for ERβ2 and 

mitochodnronda colocalisation to determine the number required 

to stabilise the histogram shape  

 

 
 
Cumulative analysis of the colocalisation of ERβ2 and mitochondria in MDA-
MB-231 cells  
a) 5 cells analysed b) 10 cells analysed c) 15 cells analysed d) 20 cells analysed e) 
25 cells analysed f) 30 cells analysed g) 35 cells analysed 
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7.5 Nuclear target gene expression in ERβ2 overexpressing cells 

compared to control 

 
 
qRT-PCR quantification of the mRNA expression levels of BCL-2 CDK6, 
S100A7 and RIP140 in ERβ2 overexpressing and vector control MCF-7 cells 
treated with E2 (1nM) or DPN (10nM) for 24 hours  
Red bars represent ERβ2 overexpressing cells. Black bars represent the empty 
vector control cells. Expression is normalised to the untreated empty vector control 
for each gene analysed, which was given the value of 1. 
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qRT-PCR quantification of the mRNA expression levels of BCL-2 CDK6, 
S100A7 and RIP140 in ERβ2 overexpressing and vector control MDA-MB-231 
cells treated with E2 (1nM) or DPN (10nM) for 24 hours 
Red bars represent ERβ2 overexpressing cells. Black bars represent the empty 
vector control cells. Expression is normalised to the untreated empty vector control 
for each gene analysed, which was given the value of 1. 
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7.6 Mitochondrial target gene expression in ERβ2 overexpressing 

cells compared to controls 

 

qRT-PCR quantification of the mRNA expression levels of ND1, ND2, ATP6 
and CYB in ERβ2 overexpressing and vector control MCF-7cells treated with 
E2 (1nM) or DPN (10nM) for 24 hours 
Red bars represent ERβ2 overexpressing cells. Black bars represent the empty 
vector control cells. Expression is normalised to the untreated empty vector control 
for each gene analysed, which was given the value of 1. 
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qRT-PCR quantification of the mRNA expression levels of ND1, ND2, ATP6 
and CYB in ERβ2 overexpressing and vector control MDA-MB-231 cells 
treated with E2 (1nM) or DPN (10nM) for 24 hours 
Red bars represent ERβ2 overexpressing cells. Black bars represent the empty 
vector control cells. Expression is normalised to the untreated empty vector control 
for each gene analysed, which was given the value of 1. 
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7.7 Estrogenic ligand dose response curves in MCF-7 cells  

 

Dose response curves of MCF-7 cell proliferation in response to different 
doses of E2, 4-OHT, DPN and genistein 
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