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Abstract

Waveguide polaritons are the quasi-particles arising from the strong coupling of

quantum well excitons to the photonic mode of a waveguide. These are compli-

mentary to the polaritons observed in semiconductor microcavities which in the

two decades following their first observation have been a rich source of interesting

physical phenomena such as parametric scattering, condensation, superfluidity and

solitons. Whilst waveguide polaritons are a complimentary scheme they do have a

number of important advantages over microcavities, firstly the use of total internal

reflection to confine the photonic mode in principle affords lower losses whilst the

reduced mode volume increases the coupling to quantum well excitons. Additionally

the thin structure more naturally lends the system towards to fabrication of complex

polaritonic devices.

The waveguide polariton scheme was first investigated in the late 1980s and early

1990s however the lack of direct access to the dispersion hindered progress. Recently

however advancements in photonics have led to the development of integrated grating

couplers which are used in this thesis to couple light in an out of the waveguide

structure. The relationship between the emission angle from these grating couplers

and the internal wavevector is exploited in Chapter 3 to make the first unambiguous

observations of waveguide polaritons by a direct observation characteristic anti-

crossing dispersion indicative of the strong coupling regime.

In the second half of Chapter 3 the design of the waveguide device was improved

by adding further quantum wells to increase the Rabi-splitting and reduce the effect

of absorption in the tail of the exciton line. It is then shown that the strong coupling

regime is preserved in this device up to 100 K.
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In Chapter 4 it is shown that the interactions between polaritons inherited from

the exciton component leads to a optical nonlinearity which causes the defocusing

of high intensity beams travelling through the waveguide. This nonlinearity can be

described as a negative nonlinear refractive index which can support the generation

of single or pairs of dark-spatial solitons depending on the initial conditions. Finally

this nonlinearity is also shown to persist to 100 K suggesting the possibility of future

polaritonic devices operating at higher temperatures.

In Chapter 5 it is shown that the curvature of the polariton dispersion in the anti-

crossing regions gives rise to a massive group velocity dispersion which causes the

dilation of injected pulses as they propagate along the waveguide. At high particle

densities within the pulse this group velocity can be balanced against the optical

nonlinearity arising from inter-particle interactions to form bright temporal solitons.

Finally due to the comparable nonlinear-, diffractive- and dispersive-length scales it

is shown that this system support the formation of a hereto unobserved hybrid of a

spatially-dark and temporally-bright soliton.

In this thesis waveguide polaritons are reintroduced as a complimentary system

to microcavities and the first observations made of their formation and interactions.

This thesis lays the foundation for future studies into waveguide polaritons and

showcases their nonlinear properties through the study of spatio-temporal solitons.
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Chapter 1

Introduction

The consequences of light coupling to excitons in bulk semiconductors was first con-

sidered in the 1950s by S. I. Pekar. The term polariton was later coined by J. J.

Hopfield [1] to describe the “dressed photons” arising when light with a particular

wavevector inside the crystal is repeatedly and reversibly absorbed to form and exci-

ton before being re-emitted at the same wavevector. In this strong coupling regime

the wavefunction can no longer be separated into an excitonic and photonic part but

instead should be considered as a quasi-particle which possesses characteristics of

either species. Polaritons were initially investigated in systems such as bulk CuCl [2]

and CdS [3] crystals however the difficulty of optically accessing and manipulating

in three dimensions ultimately limit their usefulness.

In the 1990s the technological advancements in VCSELs (vertical cavity, surface

emitting lasers) made possible the growth of high quality semiconductor microcav-

ities. Such microcavity devices consist of two distributed Bragg-reflectors (DBR)

mirrors forming a Fabry-Pérot cavity with quantum wells (QWs) placed at the anti-

nodes of the electric field inside the cavity: this is shown schematically in Figure 1.1a

along with an example of the corresponding dispersion. For small wavenumbers the

photons within the cavity have a parabolic dispersion whilst the dispersion of the

relatively heavy excitons is approximately flat. In the strong coupling regime two

new eigenmodes appear known as the upper- and lower-polariton branches (EUP

and ELP respectively) which show a characteristic anti-crossing behaviour. The

1
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Figure 1.1: Structure and exemplar dispersion of a microcavity (a) and waveguide device (b). Here

EX is the energy of exciton transition, EC(k‖) is the photon energy, and EUP (k‖) and ELP (k‖)

are the upper and lower polariton branches.

closest approach between these modes is called the vacuum Rabi-splitting (or often

simply Rabi-splitting) in analogue to atom-cavity systems and is a measure of the

coupling strength. The polaritons formed are free to move in two dimensions paral-

lel to the growth direction and may be detected by their decay into photons which

tunnel through the mirrors.

Since the first observation by Weisbuch et al in 1992 [4] microcavity polaritons

have inspired a huge body of literature [5, 6, 7], accelerated by ground-breaking

studies of parametric scattering processes [8, 9], non-equilibrium Bose-Einstein con-

densation (BEC)1 [10, 11], vortices [12, 13] and superfluidity [14]. Recent years have

seen considerable effort towards the development of polaritonic devices such as logic

elements [15], diodes [16], transistors [17, 18] as well as LEDs [19, 20] and polariton

lasers [21].

In this work a complimentary scheme is studied in which the photonic component

is instead confined by total internal reflection (TIR) within a semiconductor slab

waveguide. This is shown schematically in Figure 1.1b along with an example of the

dispersion which illustrates the similarities shared with microcavities.

1The exact nature of polariton BECs has been the subject to much debate and is therefore often

referred to instead as a polariton condensate.
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This waveguide scheme has however several important advantages over micro-

cavities. Firstly the use of TIR can, in principle afford lower losses whilst operating

at such large wavenumbers by necessity, means that polaritons may propagate long

distances within their lifetime. Additionally the smaller photonic mode volume

yields a larger Rabi splitting through the greater overlap with the QW. This means

that fewer QWs can be used, retaining the strong polariton-polariton interactions

inherited from the exciton component which provides huge optical nonlinearities.

From a technological point of view this scheme is advantageous as the photonic

mode is certain to be in resonance with the exciton at some wavenumber - in contrast

to microcavities where this is fixed by the structure - making the scheme insensitive

to variation in growth. Additionally the large number of epitaxially grown layers in

a microcavity mean significant strain energy is accumulated which may be released

by forming dislocations that strongly modify the potential landscape. This factor

requires careful design consideration to achieve high quality devices [22, 23] whereas

in the waveguide scheme this is not such a concern. Furthermore whilst the cre-

ation of wires [24] or complex structures such as Mach-Zehnder interferometer [25]

or photonic crystals (PhCs) [26] require etching through microns of DBR mirrors

in a microcavity, control over the photonic mode can be achieved n the waveguide

scheme by etching just a few nanometers into the cladding and guide layers. The

waveguide scheme therefore naturally lends itself to the fabrication of complex in-

tegrated optical circuits, combining the established field of photonics with the large

nonlinear effects found in polariton systems.

These quantum well waveguides - hereafter polariton waveguides - were first in-

vestigated in the late 1980s and early 1990s through time of flight measurements

which showed the group velocity dispersion associated with the polariton dispersion

in AlGaAs- [27, 28] and AlGaN-based waveguides [29]. Since then there have been

demonstrations of electric field tuning [30], on-chip directional couplers and Mach-

Zehnder interferometers [31, 32] however these previous studies have failed to make

the same impact as those on microcavity devices. This may be attributed to the

success of microcavities themselves and to the difficulty of realising similar effects in
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polariton waveguides. These difficulties stem from the lack of direct optical access

to polariton dispersion and critically, a lack of the potential minimum at k‖ = 0.

However it may be possible to overcome these issues using PhCs [33, 34] or gratings

etched into the guide to engineer the dispersion. Therefore given the maturity of

the respective fields of polariton physics and photonics the time is ripe to revisit

polariton waveguides with the motivation of their potential as a platform for optical

on-chip processing. Crucially, the previous ventures into polariton waveguides have

not unambiguously demonstrated the presence of polaritons nor observed the nonlin-

ear effects associated with strong polariton-polariton interactions. In this thesis the

presence of polaritons is evidenced by direct observation of the characteristic anti-

crossing dispersion and their nonlinear properties investigated through observations

of spatial and temporal solitons.

The nonlinear properties of polaritons derive from the exciton component from

which they inherit strong repulsive inter-particle interactions leading to a strong

χ(3) -type nonlinearity. The nonlinear properties of polaritons were first investi-

gated at the turn of the millennium in seminal works in which pairs of polaritons

were resonantly excited at the magic angle (k‖ = kpump) and then scatter to the

ground (signal) state (k‖ = 0) and to an idler state (kidler = 2kpump), conserving

both energy and momentum. This scattering process can be stimulated using a

weak probe beam to establish a small population in one of the final states [8] or

spontaneously seeded by thermally excited polaritons [9]. Drawing analogues with

four-wave mixing (FWM) processes in nonlinear optics these cases were likened to

an optical parametric amplifier (OPA) or an optical parameteric oscillator (OPO)

respectively. In either case these stimulated scattering processes result in a massive,

and coherent redistribution of polaritons [35].

The repulsive interactions between particles has a dramatic effect on polariton

systems. At high density the effect of interactions result in a blueshift of the occupied

mode. Other effects are well illustrated in the OPO scheme, where interactions

dictate the temporal coherence of the OPO signal [36] by translating fluctuations in

population to fluctuations in energy; and dictate the healing length of the fluid and
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thus the physical size of features such as vortices [37].

It has recently been shown that this Kerr-like nonlinearity can be used to gener-

ated squeezed light from microcavity pillars [38] which may be useful for continuous-

variable optical information processing [39]. Additionally it has also been proposed

that given sufficient confinement the interaction-driven blueshift might be exploited

using the blockade effect to create single photon sources. In this scheme the pres-

ence of a single polariton inside the cavity shifts the system out of resonance with

a driving field, preventing a second polariton from entering [40]. To this end novel

open-cavity systems have been developed where the two DBR mirrors can be posi-

tioned individually and where hemispherical mirrors provide photonic confinement

on the micron level [41] and potentially to the sub-micron level required for the

polariton blockade effect.

These strong interactions also act between polaritons and excitons, causing a

local blueshift in the potential landscape which can be used to accelerate [42] or

create a potential barrier to a propagating condensate [43, 44]. Finally a condensate

travelling through an exciton reservoir can trigger stimulated scattering from the

reservoir to amplify the signal [45].

These previous works on microcavities stand as testament to the nonlinear optical

properties of polariton systems. A concept well-known in non-linear optics, and of

potential use for information transfer is that of a soliton. A soliton is a wave which

maintains it shape in time or space over propagation, held together by a balance of

dispersive, or diffractive effects and some nonlinearity. The first reported observation

of a soliton was famously made by a Scottish engineer called John Scott Russell. In

his Report on Waves of 1844 [46] Scott Russell describes observing a barge drawn

along by horses on the Union Canal near Edinburgh. He noted that when the barge

halted suddenly the water accumulated at the bow would continue-on as a rounded,

well-defined heap of water, maintaining its shape as it propagated several miles along

the channel whilst he pursued on horseback. Figure 1.2 shows a recreation from 1995

of Scott Russell’s observation and examples of soliton phenomena observed in other

systems. A key feature of all these soliton phenomena is that shape is preserved,
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Figure 1.2: Examples of solitons in various systems. (a) Photograph of a reconstruction of Scott

Russell’s observation of a soliton on the Union Canal near Edinburgh [48]. (b) Autocorrelation signal

of output of an optical fibre [49]. (c) Formation of a bright soliton train in a BEC of 7 Li atoms [50].

(d) Formation of a bright-temporal soliton of microcavity polaritons [51]. (e) Dark-spatial soliton

formed in a polariton superfluid encountering a defect [52].

either in time or equivalently, in space giving classes of temporal and spatial solitons.

Additionally, rather than a local increase in amplitude, as Scott Russell’s solitary

wave, a soliton can also be a local minimum on a bright background. Such dark-

solitons have recently been observed in water waves [47] nicely complimenting the

original observation by Scott Russell.

Solitonic behaviour has been observed in atomic BECs [53, 50, 54], PhCs [55,

56], semiconductor waveguides [57, 58] and in VCSELs [59]. The most notable

application however is in optical fibres - as first demonstrated by Mollenauer et al

in 1980 [49] - where they can be used to transmit data over vast distances without
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degradation, thus increasing the potential throughput of the channel by reducing

the guard-time between pulses.

Solitons have similarly proposed as information carriers for on-chip applications.

However to study, and to utilise solitons on-chip the length-, and time-scales of the

competing diffractive or dispersive and nonlinear effects must be very short. This

naturally occurs in polariton systems where the massive group velocity dispersion in

the vicinity of the anti-crossing can be balanced against the optical non-linearity aris-

ing from polariton-polariton interactions. Recently observations of bright-temporal

[51] and dark-spatial solitons [52] in microcavity systems have been the subject of

high profile papers. The study of spatio-temporal solitons is therefore of poten-

tial interest to both the nonlinear optics and polariton communities in addition to

providing an ideal showcase for the properties of waveguide polaritons as a platform.

The majority of this thesis is dedicated to the study of spatio-temporal soli-

tons in polariton waveguides. The remainder of this chapter describes the theoret-

ical background whilst the second chapter describes the experimental techniques.

The experimental work is then divided into three chapters: the first of which de-

scribes development and characterisation of polariton waveguides; the second de-

scribes continuous-wave (CW) experiments investigating the optical non-linearity

of the waveguide and observations dark-spatial solitons; and the final experimental

chapter describes time-resolved measurements of bright-temporal solitons and hy-

brid temporally-bright and spatially-dark solitons. The final chapter discusses the

future direction of this field and the conclusions of the work.

1.1 Quantum wells and excitons

In a semiconductor the regular arrangment of atoms on a lattice gives rises to the

electronic bands that give semiconductors their optical and electronic properties. A

simplified diagram of the band structure is given in Figure 1.3a, showing the valance-

(Ev ) and conduction-bands (Ec ). The valance-band is the highest occupied level

at 0 K whilst the conduction-band is the lowest energy at which electrons are free
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Figure 1.3: Schematics of the band structure in a bulk semiconductor (a) and in a quantum well

(b) illustrating the processes of absorption, relaxation and spontaneous recombination. Electrons

are depicted as solid black circles whilst holes are shown as empty circles.

to move within the crystal. The difference in energy between these two is known as

the band gap (Eg ) and is characteristic of the material.

When a photon with energy Eph ≥ Eg impinges upon the semiconductor it

may be absorbed with the result of promoting an electron to the conduction band,

leaving a hole in the valance band. These carriers relax towards the edge of their

respective bands and may recombine either non-radiatively, or radiatively to emit a

photon of energy Eg . This process of absorption, relaxation and emission, shown in

Figure 1.3a is the basis of photoluminescence (PL) experiments in which the emitted

light is collected and analysed.

Figure 1.3b shows a schematic of the band stucture of a heterostructure. Here a

layer of material with a small band gap is sandwiched between layers with a larger

band gap, forming a potential well into which carriers fall and are confined. This

can be realised in heteroepitaxial schemes such as molecular beam epitaxy (MBE)

in which layers of material are grown sequentially on top of one another. Carriers

within the well are confined in one dimension but free to move parallel to the growth

direction in the x-z plane. At typical realisation of this using III-V materials may

be an InxGa1−xAs QW in GaAs.

If the width of the potential well is comparable to the de Broglie wavelength

the confinement results in discrete subbands for the electron and hole as in the

textbook example of a particle in a box. In the example the potential is sufficiently
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shallow that only one confined state exist for the electron, and heavy- and light-hole

bands (Ee1 , Ehh1 and Elh1 respectively). An electron and hole pair confined to the

quantum well experience Coulomb attraction and may bind to form a state in which

the pair orbit each other known as an exciton. The energy of this exciton transition

(Ex ) is therefore the difference in energy between subbands, less the binding energy

of the electron-hole pair. As the transition energy of the heavy-hole exciton is less

than that of the light-hole exciton this dominates optical spectra, and hence only

the former will be considered further.

Electrons have spin Je = ±1
2 with respect to the growth axis (y) whilst heavy

holes have spin Jhh = ±3
2 . The resulting electron-hole pairs have either spin Jx =

±1 or 2. As photons have spin Jc = ±1 only the former is optically active and

is referred to as a bright-exciton whilst the later is a dark-exciton. In this work

only the bright-exciton is of consequence. In the absence of magnetic or electric

fields these spin projections are degenerate. Their large effective mass gives excitons

an approximately flat dispersion over a wide range of in-plane wavenumbers, i.e.

Ex(k‖) ≈ Ex .

In III-V materials excitons are only stable at cryogenic temperatures, where the

binding energy of the electron-hole pair is greater than the maximum energy of the

phonon bath ∼ kBT , where kB is the Boltzmann constant. Therefore all the ex-

periments in this work are performed at low temperature (4-100 K). Additionally at

high densities where the interparticle separation becomes comparable to their diam-

eter, known as the Mott density excitons can disassociate forming and electron-hole

plasma. Approaching this density results in an increase in exciton linewidth and

a reduction in oscillator strength which has consequences to subsequent polariton

effects.



10 CHAPTER 1. INTRODUCTION

Figure 1.4: Calculated dispersion of the fundamental TE and TM modes of a three-layer slab

waveguide of thickness tg formed by materials of index n1 , n2 and n3 as shown schematically

bottom left. The dispersion shown here has been calculated for a 135 nm thick GaAs slab waveguide

clad in Al0.9 Ga0.1 As and SiNx with the imaginary part of their refractive indices set to zero.

1.2 Waveguides

In the simplest case a waveguide may consist of an slab of material of thickness tg

and refractive index n2 clad in materials of lower index (n1 and n3 ). A schematic

of such a structure and an exemplar of the dispersion is shown in Figure 1.4.

If we consider a ray travelling along the z -direction, in order to be guided by TIR

the incidence angle formed with the cladding layers must be greater the critical angle

arising from Snell’s law. By decomposing this ray into the orthogonal components, h

and β ,2 we find that guiding occurs for in-plane wavenumbers in excess of β = kn1 .

This line defines the light cone shown in Figure 1.4 which contains all the rays which

escape the waveguide and may be detected in our experiments. A second, forbidden

region is defined by the speed of light within the guide, i.e. where β = kn2 .

From the requirement for the round trip phase to be multiples of 2π we see

that β can only take up discrete values between kn1 and kn2 , corresponding to a

particular modes of the waveguide. Formally such an optical mode is a solution to

2Hereafter β will denote the in-plane wavenumber inside the guide along the propagation direc-

tion whilst k will denote the wavenumber in free space.
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Maxwell’s wave equation in each layer:

∇2E =
ni

2

c2
∂2E

∂t2
, i = 1, 2, 3 (1.1)

For a wave polarised in x travelling along the z -direction this has solutions of the

form:

E(r, t) = Ex(y)ei(ωt−βmz) (1.2)

where βm is the wavenumber of the mth -mode. In the case where n2 > n1, n3

the electric field (Ex ) is sinusoidal within the guide and decays exponentially in

the cladding layers. By applying the condition that the electric- and magnetic

fields must be continuous across the boundaries the wave equation can be rear-

ranged to yield a trancendental equation which can be solved graphically or numer-

ically for the tranverse-electric (TE) modes, and with appropriate substitutions, for

the transverse-magnetic (TM) modes of the waveguide. Alternatively Equation 1.1

can be solved for arbitrary structures using numerical methods such as the finite-

difference time-domain (FDTD) algorithm, or the finite element method (FEM).

In this work only the fundamental modes of the waveguide will be of consequence

and so the mth -mode notation will be dropped. Figure 1.4 shows the dispersion of

these fundamental TE and TM modes calculated for a 135 nm thick GaAs slab

waveguide clad in Al0.9Ga0.1As and SiNx . Over the range energies of interest in

this work (1.45-1.48 eV) these modes are approximately linear and parallel. We may

therefore write the energy of either mode as a linear function of wavenumber:

ETEC (β) = h̄vcgβ + E0 (1.3)

ETMC (β) = h̄vcgβ + E0 + ∆TE−TM (1.4)

where vcg is the group velocity of light within the waveguide, E0 is the energy

intersect at β = 0, and ∆TE−TM is the separation between the TE and TM modes.

1.2.1 Waveguide losses

The performance of a waveguide is characterised by its losses on transmission. This

can be due scattering, absorption or radiative losses and are well described as an
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exponential decay of the form I = I0e
−αz , where I0 is the initial intensity and α is

the loss coefficient, often expressed as decibels per unit length along z (dB cm−1 ).

Scattering losses are due to the presence of defects or roughness on the surface

of the waveguide or within the crystal itself. In this work the waveguide structures

were grown by MBE which produces near perfect crystal structures of very high

purity and so losses due to scattering should be negligible.

Radiative losses occur where energy is dissipated into the substrate or cladding.

This is generally small for well-confined modes far from cut-off, however imperfec-

tions in the crystal can result in coupling to leaky higher-order modes but this is

expected to be negligible for the waveguides in this work.

Losses due to absorption can occur by inter- or intra-band transitions. In this

work the absorption due intra-band transitions should be minimal as all the devices

are undoped and were tested at low temperature (4-100 K) where the free-carrier

concentration is negligible. The former can be reduced by choosing the operating

wavelength of the waveguide such that the photon energy is well below the band gap

of the waveguide material. Here the photon energy was chosen to be 1.45-1.48 eV,

well below band edge of GaAs which is 1.519 eV at low temperature [60].

1.2.2 Coupling technology

Whilst using TIR to confine the light has the advantages mentioned previously it

does mean some additional device is required to couple light in and out of the guide.

The coupling efficiency is strongly dependent upon the modal overlap in space and

momentum. The most intuitive scheme is where light is directly injected into the

end of the waveguide by matching the input beam profile to the spatial profile of a

particular mode. This can be achieved using a optical fibre or laser diode held to the

cleaved edge of the waveguide or by focusing through a lens. The coupling efficiency

achieved here can be very high, and can improved through integrated couplers which

expand the waveguide mode to match the injected mode [61]. Such techniques are

problematic in this case however, where the mode volume is small and where sample

must be held in an optical cryostat restricting access to the cleaved edge of the



1.2. WAVEGUIDES 13

Figure 1.5: Scanning electron micrograph of a diffraction grating etched into the cladding layer of

a ridge waveguide (a). Schematic of a grating coupler illustrating the principle of operation (b).

Here the grating period (Λ) has been chosen such that 2π/Λ > β and so the emission is scattered

backwards from the grating at the angle θ .

sample.

A second method is surface-coupling: the most common of which is where a

diffraction grating is etched into or deposited onto the waveguide. Figure 1.5a shows

an scanning electron micrograph (SEM) of such a grating etched into a the cladding

layer of a ridge waveguide. This grating scheme is technologically advantageous as

it can be fabricated using conventional methods and can be incorporated into more

complex designs and, being integral to the device, is quite robust. However in order

to achieve proper mode-matching with an incoming beam the footprint can be quite

large.

The grating coupler operates by perturbing the photonic mode in the vicinity

of the grating creating spatial harmonics at multiples of ±2π/Λ, where Λ is the

grating period. The grating period can be chosen such that one of these spatial

harmonics now lies within the light cone. This is illustrated in Figure 1.4. The

emission angle (θ ) is then related to the in-plane wavenumber by:

k sin(θ) = β ± 2π/Λ (1.5)

The angular dependence of the emission therefore provides information about the

internal wavenumber; a factor which has been a considerable boon to experimen-

tal studies in microcavities. Similarly, light can be injected into the waveguide by

matching the incidence angle and energy to a particular mode and through careful

choice of the grating period it can be ensured that light only couples into the desired

forward travelling mode. However from conservation of momentum out of plane a
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large fraction of the light must also be transmitted towards the substrate as illus-

trated in Figure 1.5b. Consequently the coupling efficiency is typically only 10-30 %

[62]. Such losses may be acceptable to measure the emission but this does severely

limit the power which may be coupled into the waveguide. This source of loss may be

reduced by engineering the guide such that substrate modes destructively interfere

at the lower guide-cladding interface [63].

Consideration must also be given to the finite length of the grating: energy inside

the grating region decays exponentially on a characteristic length l , the maximum

overlap between this exponential profile and the Gaussian profile from a fibre coupler

or laser spot is 80 %. This can be improved by the use of apodized gratings in

which the period is varied such that the decay matches the input mode profile [63].

Additionally the exponential decay in the grating also results in an uncertainty

∆k = 1/l in the external wavenumber and thus emission angle.

1.3 Light-matter coupling

If we now consider the full structure where we have a QW embedded within the

slab waveguide a photon travelling along the waveguide close to resonance with the

exciton transition may be absorbed to form an exciton, before being re-emitted at

the same wavenumber. If the decay rates of the exciton and photonic modes are

sufficiently small this process occurs repeatedly in what is known as the strong-

coupling regime.

The strong coupling of the TE-mode of a slab waveguide to QW excitons was

considered by Beggs et al [64, 65] using the transfer matrix matrix method and

non-local dielectric response theory. They calculated that a single InGaAs QW

placed at the centre of a 150 nm thick GaAs slab waveguide should yield a Rabi

splitting of 6.6 meV. This Rabi splitting should be compared with 5.1 meV reported

in a semiconductor microcavities containing three InGaAs QWs [14]. The increased

coupling strength here arises from the increased overlap between the modes.

Although Beggs and Kavokin do not consider the coupling to the TM-mode in
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their work it has been shown within the transfer matrix formalism for a super-

lattice structure that the coupling reduces according to a cos2 relationship with

incidence angle [66]. This can be understood intuitively by noting that the coupling

is dependent upon the electric field amplitude at the plane of the QW which for the

TM-mode reduces with incidence angle. As a consequence only the TE-mode of the

waveguide is expect to strongly couple to quantum well excitons. Furthermore the

detuning between the TE- and TM-modes is sufficiently large that the latter may

reasonably be neglected. Hereafter only the TE-mode will be considered and ETEC

will be denoted EC .

As for a microcavity the dispersion of waveguide polaritons can be described

using a two classical coupled-oscillator model:

Ĥ =

EX + iγX h̄Ω/2

h̄Ω/2 EC(β) + iγC

 (1.6)

where Ω is the Rabi-frequency at with energy is transferred between the two modes,

and γX , γC are the linewidths of the exciton and photon modes. Equation 1.6 can

be diagonalised to give the dispersion relations of the two new eigenmodes of system

known as the upper- and lower-polariton branches (UPB and LPB respectively)

which are written as:

EUP =
1

2

(
EC(β) + EX + i(γC + γX) +

√
(h̄Ω)2 − (γC + γX)2 + ∆2

)
(1.7)

ELP =
1

2

(
EC(β) + EX + i(γC + γX)−

√
(h̄Ω)2 − (γC + γX)2 + ∆2

)
(1.8)

where ∆ is the detuning, defined as ∆ = EC(β)− EX . Figure 1.6a shows the dis-

persion of the un-coupled exciton and photon modes and of the two new eigenmodes

which demonstrate the anti-crossing behaviour indicative of the strong coupling

regime.

Subtracting Equation 1.8 from 1.7 we find that the separation of the two new

eigenmodes on resonance (∆ = 0) is given by:

h̄Ω′ =
√

(h̄Ω)2 − (γC + γX)2 (1.9)

from which arises the requirement for strong coupling that γC , γX < h̄Ω. This can

be understood as a requirement that the exciton and photon decay rates should
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Figure 1.6: Polariton dispersion predicted using the coupled-oscillator model (a) showing the anti-

crossing of the upper- and lower polariton branches separated by the Rabi-splitting (h̄Ω′) . Cor-

responding Hopfield coefficients for the lower polariton branch (b) showing the transition between

photon- and exciton-like polaritons with detuning (∆).

be sufficiently low that the energy undergoes several exchanges between the two

modes before decaying. If the linewidths are sufficiently small, the energy splitting

between the branches from Equation 1.9 reduces to the Rabi-splitting (h̄Ω′ ≈ h̄Ω).

The homogeneously broadened exciton linewidth is typically around 0.1 meV whilst

the inhomogeneously broadened linewidth is around 0.5-1 meV.

Of the two branches the LPB, being at lower energy dominates the optical spectra

and is of principle concern. The characteristics of polaritons vary continuously with

detuning (∆) according the photon- and exciton-fractions described by the Hopfield

coefficients, denoted |C|2 and |X|2 respectively which for the LPB are defined as:

|C|2 =
1

2

(
1 +

∆√
(h̄Ω)2 + ∆2

)
(1.10)

|X|2 =
1

2

(
1− ∆√

(h̄Ω)2 + ∆2

)
(1.11)

These Hopfield coefficients are shown in Figure 1.6b. For negative ∆ polaritons

are photon-like
(
|C|2 ≈ 1

)
and travel at group velocities close to that of the bare

waveguide. For positive ∆ polaritons are exciton-like
(
|X|2 ≈ 1

)
and travel at

vanishingly small group velocities but have much stronger inter-particle interactions

inherited from the exciton component. Additionally however such polaritons are

much closer to the tail of the exciton line and so suffer to greater extent from

absorption due to scattering with phonons into the exciton reservoir or with localised
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excitons which exist due to fluctuations in the QW potential.

The resulting polariton lifetime cannot be explained by coupled oscillator model

from which the lifetime is simply a weighted average of that of the two parent

species. In an experimental study of 1997 by Armitage et al [67] it was found

that the linewidth of the LPB of their microcavity reached a minimum when on

resonance. This reduction in linewidth is attributed to motional narrowing effect

whereby polaritons, having a lower effective mass, are less sensitive than excitons

to fluctuations in the potential landscape arising from variation in QW thickness or

composition [68].

It has also been suggested that the reduction in linewidth could rather be a result

of the asymmetric exciton line often found in real QWs [69]. In this explanation

components of the exciton distribution couple to the photon mode with different

strengths: those at the centre, where the density of states is greatest, couple strongly

whist the components in the tail of the exciton line may only couple weakly. On

resonance the polariton branches are sufficiently far from the exciton line that the

contributions to the resulting linewidth from components in the tail of the exciton

line are negligible. By contrast, far from resonance one of the branches will be

sufficiently close to the exciton line that the tail will contribute to the total polariton

linewidth.

1.3.1 Group velocity dispersion

Recalling the form of EC(β) for the waveguide from Equation 1.3 and taking the

derivative of Equation 1.8 with respect to β yields an expression for the group

velocity of polaritons in the LPB with detuning:

vg =
1

h̄

dELP
dβ

= |C|2vcg (1.12)

The variation in group velocity with frequency becomes important when we

consider a pulses of light propagating through the waveguide. Spectral components

of the pulse travel at different group velocities and so arrive at the end of the

waveguide at different times producing a chirp in the output pulse. This property
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of a waveguide is characterised by the group velocity dispersion (GVD) parameter

β2 , defined as the second derivative of wavenumber with respect to frequency. By

convention a negative GVD, which indicates that higher frequencies travel slower

with respect to low frequencies is referred to as normal, whilst a positive GVD is

referred to as anomalous. For the polaritons in the LPB the GVD parameter is:

β2 ≡
∂2β

∂ω2
≡ ∂

∂ω

1

vg
= − h̄

3Ω2

2vcgδ
3

(1.13)

where δ is the energy of polaritons in the LPB with respect to the exciton energy,

δ = EX − ELP which is related to the exciton-photon detuning ∆ by:

∆ = −1

δ

((
Ω

2

)2

− δ2
)

(1.14)

Taking calculated values vcg = 0.28c and Ω = 6.6 meV from the work of Beggs

et al [65], for half exciton-photon polaritons β2 is in excess of −103 ps2 m−1 .

This GVD parameter is greater than that found in optical fibres [70], fiber Bragg

gratings [71], and in photonic crystal waveguides [55] where the dispersion is been

deliberately engineered. Table 1.1 summarises the GVD found in several different

systems in which soliton effects have been experimentally demonstrated.

1.3.2 Polariton nonlinearities

Polaritons interact through Coulomb interactions inherited from the exciton com-

ponent. In semiconductor microcavities the strength of these interactions, denoted

g is still the subject of some debate but is expected to be on the order of several

µeV µm2 [14, 72]. In microcavities this is further complicated as excitons of ei-

ther spin only couple to the correspondingly circularly polarised cavity mode and so

their interactions inherit a spin dependence. The inter-particle interaction is then

given by g = α1 + α2 , where α1 and α2 are the interactions between polaritons of

opposite- and like-spins respectively and α1 ∼ −10α2 [73, 74]. At high density these

predominantly repulsive interactions results in a renormalisation (blueshift) of the

polariton dispersion proportional to the density and the exciton fraction |X|2 . The

interactions also lead to a broadening of the exciton resonance however this does not
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significantly affect the exciton oscillator strength however until the density leads to

the ionisation of excitons and thus to a quenching of the strong-coupling regime [75].

In an optical system the nonlinear response can be characterised as a change

in refractive index, n = nL + nNL(I) where nL is the linear part and nNL is the

nonlinear part of the refractive index and I is the intensity of the light. For a Kerr

medium the nonlinear part is given by nNL(I) = n2I . The nonlinear refractive

index, n2 can have either a positive or negative sign. For a beam travelling in a

material with a positive n2 the index locally increases at the centre of the beam

causing the beam to focus as if passed through a lens. A positive n2 can therefore

be described as a self-focusing nonlinearity whilst a negative n2 can be described as

a self-defocusing nonlinearity. From Equation 1.12 we can deduce that a blueshift of

the LPB driven by inter-particle interactions has the effect of reducing the effective

mode index (neff = c/vg). Therefore neglecting higher order terms, the effective

optical nonlinearity is expected to be characterised by a negative n2 .

The magnitude of this nonlinearity can be estimated by noting that the blueshift

of the polariton dispersion, which is proportional to the particle density and scales

with exciton fraction
(
∆E = |X|2gρ

)
, is equivalent to a change in wavenumber

(∆k = ∆E/h̄vg). Taking the calculated parameters from the work of Beggs et al

and assuming an interaction constant of g = 1 µeV µm2 the effective nonlinear

refractive index is expected to be on the order of 10−13 m2 W−1 , several orders

of magnitude about that found in bulk AlGaAs (10−16 m2 W−1) [76] and silicon

(6× 10−18m2 W−1) [56].

To compare the nonlinear properties of systems with different geometries it is

convenient to use the effective nonlinear parameter γ which describes the change in

wavenumber per unit power normalised to the effective mode area (Aeff ) given by:

γ =
n2k

Aeff

(
ng
n0

)2

(1.15)

Takes into account the slow-down effect found in photonic crystals and mode volume

which serve to enhance the intensity of the field inside the devices. Table 1.1 lists the

effective nonlinear parameters for several material systems in which optical solitons
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Table 1.1: Material parameters of systems with experimentally demonstrated soliton effects.

System β2 (ps2m−1) γ (W−1m−1) Ref.

Optical fibres 0.022 0.0011 [70, 49]

Fibre Bragg grating 2000 0.0094 [71]

GaInP PhC WG 1100 920 [55]

AlGaAs WG 1.05 3.0 [77]

Silicon PhC WG -4700 58 [56]

Silicon-on-insulator WG -2.15 226 [78]

have been observed from which it can be seen that it is difficult to simultaneously

obtain an large dispersive effect and nonlinearity. The waveguide polariton structure

however can be considered as a metamaterial which simultaneously exhibits a large

GVD and optical nonlinearity, making it particularly suited to the study of optical

solitons on short scale lengths and at low power.

1.4 Solitons in nonlinear optics

Solitons arise from the balance between dispersive or diffractive effect and some

nonlinearity. Formally the term soliton is restricted to solutions of nonlinear partial

differential equations such as the Korteweg-de Vries equation for water waves, or

Maxwell’s equations for light travelling through a Kerr medium, which have the

special property of being shape-invariant in time or space, and on collision of other

solitons. The term is often used however to describe solutions of non-integrable

systems that display some of the properties of solitons.

For TE-polarised wave travelling in a slab waveguide along the z-direction the

electric field is defined in the x-direction by the particular mode, we can therefore

write E(r) = Ex(y)A(x, z)e−iβz where A(x, z) describes the envelope of the beam.

Thus the optical intensity which might be recorded experimentally is proportional to

|A|2 . Substituting E(r) into Maxwell’s wave equation (Equation 1.1) and assuming

a Kerr-type nonlinearity and making use of the paraxial approximation, that second



1.4. SOLITONS IN NONLINEAR OPTICS 21

derivative with respect to y and z is negligible, yields:

i
∂U

∂Z
+

1

2

∂2U

∂X2
± |U |2U = 0 (1.16)

This is referred to as the (1+1)D nonlinear Schrödinger equation (NLSE) in reference

to that found in quantum mechanics. The (1+1)D refers to one transverse direction,

in this case x and the propagation direction, z . Here the following substitutions

have been made to give the NLSE in dimensionless units:

X = x/w0, Z = z/LDF , U = A
√
k|n2|LDF (1.17)

where w0 is related to the beam waist of the input beam and LDF is the diffraction

length which is the characteristic distance over which the cross section of the beam

doubles, for a Gaussian beam LDF = βw2
0 . Again β is the wavenumber inside the

guide whilst k is that in free space and n2 is the nonlinear part of the refractive

index.

In certain cases the NSLE can be solved to obtain bright and dark soliton solu-

tions, depending upon the sign of nonlinearity. Additionally because of the equiv-

alence between propagation in space and in time the NLSE can be rewritten to

describe temporal solitons.

1.4.1 Spatial solitons

Spatial solitons maintain their shape through the balance between diffraction and an

optical nonlinearity. In the case of a self-focusing nonlinearity the refractive index

in the region of high intensity effectively forms a waveguide which confines the light

[79]. Such self-trapping was first observed for light passing through a sodium-vapour

cell [80]. In this case the soliton was stabilised by the nature of the nonlinearity

whereas in Kerr media such two-dimensional solitons are generally unstable; the

beam undergoing a catastrophic collapse [81] or fragmentation into filaments [82].

In 1972 it was shown by Zakharov and Shabat that the (1+1)D NLSE was integrable

for a Kerr media using the inverse scattering method [83], giving rise to a solitonic

solution of the form:

U(X,Z) = U0 sech(U0X) eiU
2
0 z/2 (1.18)
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Figure 1.7: Intensity (|U |2) and phase (θ) profiles of the bright, dark and grey-soliton solutions of

the nonlinear Schrödinger equation (a, b and c respectively) at Z = 0.

where U0 is the peak amplitude of soliton in the dimensionless units.

It is clear from Equation 1.18 that intensity (|U |2) has a characteristic sech2()

which does not change as it propagates in the z -direction and so can properly be

regarded as solitonic. As the solution consists of a local maximum in space on an

otherwise dark background this is known as a bright spatial soliton. The calculated

intensity and phase profile of the bright spatial soliton is shown in Figure 1.7a.

From the substitutions made to render the NLSE into dimensionless units in

Equation 1.17 the size of the bright soliton is dictated by the dispersion length, the

strength of the nonlinearity and the amplitude of the optical intensity. Therefore

increasing the power of the beam entering the nonlinear medium should cause the

size of the soliton to reduce as the diffractive effects are counteracted by the nonlinear

effects to a greater extent.

By contrast to self-focussing media, a plane wave in a self-defocussing nonlinear

medium is always stable. Shortly after the discovery of bright solitons it was shown

that self-defocussing media could support a soliton solution consisting of a dip in

intensity coinciding with a phase jump, on a bright background extending out to

infinity in either direction [84]. This solution which has the form:

U(X,Z) = U0 (cosφ tanh(U0 cosφ(X − vZ)) + i sinφ) e−iU
2
0 z (1.19)

where π− 2φ is the total phase-shift in radians across the dark notch and is related

to the transverse velocity v . For the special case where 2φ = π then Equation 1.19

reduces to that of an ideal dark soliton with a characteristic tanh2() shape and an
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instantaneous phase jump shown in Figure 1.7b. When total phase-shift is less than

π the change in phase is more gradual and the minimum intensity of the notch no

longer reaches zero. The soliton then travels transverse to the wavefront at some

velocity (v) and is referred to as a grey soliton. Such a grey soliton is shown in

Figure 1.7c for φ = π/4. The blackness of a grey soliton can be characterised by

the size of the dip in intensity relative to the background:

Blackness ≡ |Umax|
2 − |Umin|2

|Umax|2
(1.20)

For the soliton given in Equation 1.19 |Umin|2 = |U(0, 0)|2 and |Umax|2 = |U(±∞, 0)| .

Substituting into Equation 1.20 the blackness of the grey soliton is cos2(φ).

Experimentally, dark solitons have been observed by imprinting either the char-

acteristic phase-jump or intensity dip onto the pump before passing through a non-

linear medium. In the latter case this produces pairs of dark solitons with opposite

phase that propagate away from one another at some transverse velocity determined

by the width of the dark notch at the input. Whilst mathematically dark solitons oc-

cur on an infinite bright background - which implies infinite power - in practice they

can be observed with a finite width, though the trajectory of soliton pairs is limited

to within the pump spot. Such dark solitons were first observed around 1990 in bulk

nonlinear media [85, 86] and in nonlinear glass waveguides [87], and subsequently in

a range of systems including photovoltaic- [88, 89] photorefractive-crystals [90].

An important potential application of dark solitons arises from the fact that the

refractive index is locally lower inside the dark notch than in the surrounding region,

effectively forming a waveguide written by the pump beam. Dark solitons have

therefore been proposed for use as re-configurable waveguides [91, 92], y-splitters

[93] and multiport routers [94].

1.4.2 Temporal solitons

Temporal solitons are formed in the balance of some nonlinearity against the dis-

persive effects of the channel. Again these solitons are solutions to the NLSE which



24 CHAPTER 1. INTRODUCTION

after rewriting as a functions of time reads:

i
∂U

∂Z
+

1

2

∂2U

∂τ2
± |U |2U = 0 (1.21)

where the following substitutions have been made:

τ = (t− Z/vg), Z = z/LD, U = A
√
|γ|LD (1.22)

Here T0 is the duration of the input pulse and LDS = T 2
0 /|β2| is the dispersion

length, which is the characteristic length over which a Gaussian pulse propagates

before increasing in duration by a factor of
√

2 due to GVD.

The NLSE from Equation 1.21 has a solitonic solution of the form:

U(0, τ) = Nsech(τ) (1.23)

which corresponds to a bright temporal soliton travelling in the z -direction. The

parameter N here describes the order of the soliton:

N2 =
γP0T

2
0

|β2|
(1.24)

where P0 is the peak power of the pulse. For N = 1 a pulse with sech2() envelope

does not change as it propagates and so is referred to as the fundamental soliton. For

integer values N > 1 the pulse follows a periodic pattern in z . From Equation 1.24

the condition N = 1 for the fundamental soliton can be understood as a requirement

that the dispersion length must be equal to the nonlinear length LNL = 1/γP0 which

is the characteristic length required to develop a phase change 2π .

Considering a pulse of duration T0 = 0.5 ps and using the estimate of β2 from

Section 1.3.1 LDS = 250 µm. Equating this to LNL and assuming an effective mode

volume Aeff = 10 µm2 yields a peak power of P0 = 50 mW corresponding to pulse

energies of femto-Joules, orders of magnitude below that observed in comparable

systems presented in Table 1.1.

In a system with loss the pulse decays as it propagates; eventually the intensity

becomes so small that the nonlinear effect can no longer compensate for the disper-

sion. At this point the soliton decays and propagates as a dispersing wavepacket.

However if the characteristic soliton formation length LDS ≈ LNL < Lloss then the
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soliton adiabatically accommodates the loss by adjusting its temporal width thus

maintaining the same soliton number until such point as LDS > LNL .

1.5 Solitons in atomic systems

Solitonic phenomena have also been have also been observed in atomic BECs. For a

dilute gas of weakly interacting particles at zero temperature the behaviour is well

described by the Gross-Pitaevskii equation (GPE) [95]:(
− h̄∇

2

2m
+ Vext + g|ψ|2

)
ψ = Eψ (1.25)

where the ψ is the order parameter or wavefunction describing the condensate, Vext

is the external potential, m is the mass of the particles and g describes the strength

of their interactions.

The GPE has a similar form to the NLSE given in Equation 1.16 - where the

interaction strength between particles now plays the role of the nonlinearity - and

similarly, if the interactions between particles are repulsive (g < 0) has the solution:

ψ(x, t) = ψ0

(
cosφ tanh

(
cosφ

x− vt
ξ
√

2

)
+ i sinφ

)
(1.26)

corresponding to a dark soliton in the x-direction where π − 2φ is the total phase-

shift in radians across the dark notch and |ψ0|2 is the background particle density.

Here ξ = h̄/
√

2mg|ψ0|2 is the healing length of the fluid which is the characteristic

length scale of modulations in the density. For the case where 2φ = π Equation 1.26

reduces to a fundamental dark soliton. For 2φ < π the density and the centre of

the dark notch no longer reaches zero and so corresponds to a grey soliton which

propagates with velocity v = cs sinφ , where cs =
√
g|ψ|2 is the speed of sound in

the fluid.

Such dark solitons are unstable with respect to density fluctuations in the re-

maining (y and z) dimensions but have been observed experimentally by confining

the condensate through the external potential [54, 96].

From Equation 1.26 the size of the dark soliton in a BEC is dictated by strength

of the interactions and the particle density in much the same way as the size of an
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optical dark soliton is dictated by the strength of the nonlinearity and the intensity

of the optical field. Furthermore the blackness and velocity of the soliton is once

again dictated by the total phase change across its centre.

Finally, if the interactions between particles are attractive (g > 0) the GPE also

has a solution:

ψ(x) = ψ0
1

cosh
(
x/ξ
√

2
) (1.27)

corresponding to a bright soliton in the x-direction where once again the size of

the soliton is dictated by the healing length, and therefore by the density of the

fluid and the strength of the particle interactions. This bright soliton solution is

also unstable but has been observed experimentally with tight radial confinement

through an external potential [50, 53].

1.6 Solitons in polariton systems

Recently a number of soliton-like phenomena have been observed semiconductor mi-

crocavities, the underlying physics is similar to that that introduced in Section 1.5.

Unlike atomic condensates however where the particle number is conserved, in semi-

conductor microcavites polaritons decay either by non-radiative recombination of

the exciton or by photons tunnelling through the DBR mirrors. Microcavity po-

laritons typically have a lifetime on the order of 10s ps [97, 98] and up to 100 ps

in ultra-high-Q devices [99]. Polariton phenomena are therefore intrinsically out of

equilibrium and require some external feed of polaritons to be sustained. In the work

of Sich et al [51] they realised bright polariton solitons in a semiconductor microcav-

ity as proposed by Egorov et al [100, 101]. The feeding was achieved using a linearly

polarised CW pump to create a low density population at the inflection point of the

polariton dispersion where the effective mass is negative. A cross-polarised pulsed

writing beam was then used to locally trigger a high density wavepacket utilising the

polariton bistability. The initial self-focusing of the wavepacket due to the negative

effective mass is then balanced against the repulsive polariton-polariton interactions.

They subsequently showed that linearly polarised solitons are unstable due to po-
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larisation multistability [102] whilst circularly polarised solitons are stabilised by a

synchronisation between the non-degenerate TE- and TM-modes of the cavity [103].

Recently the group at the University of Sheffield have also shown that by altering

the geometry of the writing beam they can excite trains or arrays of bright solitons

[104]. Importantly due to the losses in the system which necessitate the use of CW

pump to replenish the population these are termed dissipative solitons to distinguish

them from conservative solitons where the particle number is maintained as in water

waves or atomic BECs.

In a study of polariton superfluidity by Amo et al the feeding of polaritons was

achieved using a triggered-OPO (TOPO) scheme [105]. A CW pump was used to

create a polariton population below the threshold for condensation at some finite

in-plane wavenumber. A pulsed idler beam with large in-plane momentum was then

used to locally trigger the scattering polaritons into a lower-momentum signal state.

Using angle resolved spectroscopy they noted a linearised Bogoliubov dispersion

indicative of the superfluid regime [106]. The excited droplet therefore did not

disperse as it propagates but cannot be considered as solitonic as the polariton-

polariton interactions serve to stimulate scattering into the signal state, replenishing

the population in the droplet rather than stabilising the wavepacket.

Subsequently Amo et al observed the formation of dark soliton pairs in the

subsonic superfluid flow nucleated by a natural defect in the microcavity [52]. These

solitons propagate with a transverse velocity dictated by the velocity of the flow

relative to the speed of sound in the fluid which, in turn is dictated by the polariton

density and their interactions. Using interference measurements they observed the

characteristic phase jump approaching π coinciding with the dip to zero intensity

which is clear evidence of a dark soliton.

In conclusion waveguide polaritons are a revived scheme which is expected to

simultaneously display both large GVD and highly nonlinear properties arising

from polariton-polariton interactions. This makes waveguide polaritons particularly

suited for the study of solitonic effects which will be the subject of this thesis.
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Chapter 2

Experimental methods

This chapter reviews the key techniques and procedures used in this body of work.

All experiments were performed at low temperature (5 K) in optical cryostats of

either of a cold-finger or vapour-flow type. In the former the sample is mounted in an

evacuated chamber (10−5 mBar) on a copper finger attached to a heat exchanger.

Liquid helium is drawn by vacuum from a dewar through a capillary in the heat

exchanger, cooling the copper cold-finger and sample. In the vapour-flow cryostat

the helium is drawn through the sample chamber, cooling the sample directly. In

this case the cryostat has an insulating high-vacuum jacket.

In temperature dependence measurements the temperature was monitored us-

ing a factory-fitted and -calibrated sensor mounted on the heat exchanger of the

cold-finger cryostat. The temperature was adjusted through the helium flow rate

and stabilised using a resistive heater-coil inside the cryostat connected to a PID

(proportional-integral-derivative) controller.

The sample under test was excited using laser focused through a lens - often a

microscope objective - to a spot on the sample surface. The resulting PL emission

was collected through this same lens and imaged onto the entrance slit of a spectrom-

eter. The spectra was collected using either a HORIBA TRIAXTM 550- or 350-series

single-grating spectrometer equipped with Princeton Instruments PIXISTM1024 ×

1024 pixel CCD (charge coupled device) cameras with a pixel size of 13 µm affording

a spectral resolution of 0.2-0.3 Å.

29
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Figure 2.1: Schematic of the experimental setup used in angle-resolved spectroscopy measurements

consisting of three lens labelled L1-L3 here which the focal length f1-f3. Here the orange rays

leave the sample parallel to the optical axis and normal to the surface whilst the red rays leave at

an angle θ .

2.1 Angle-resolved spectroscopy

Angle-resolved spectroscopic measurements were made by imaging the Fourier trans-

form of the PL emission onto the entrance slit of the spectrometer. Figure 2.1 il-

lustrates the principle of this technique. Parallel rays leaving the sample surface

pass through the same point in the plane one focal length behind the imaging lens.

The angular dependence (θ ) of the emission at the sample surface is therefore trans-

formed into a spatial dependence (d) in the Fourier plane given by:

d = f1 sin(θ) (2.1)

where f1 is the focal length of the objective lens (L1). This plane is then imaged

onto the entrance slit of the spectrometer and dispersed onto the CCD camera. The

vertical axis of the resulting two-dimensional spectrum can then be rescaled to give

the angular dependence of the emission.

2.2 Continuous-wave experiments

In Chapters 3 and 4 polaritons were excited using CW excitation. Figure 2.2

shows a schematic of the experimental setup. Excitation was provided by either

a Ti:Sapphire laser which could be tuned continuously from 790-850 nm, or by a

diode laser emitting at 685 nm. The position of the pump spot could be changed

by slightly tilting M3 whilst the angle of incidence can be adjusted by moving M3
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Figure 2.2: Schematic of the micro-photoluminescence setup used in the continuous-wave experi-

ments consisting of lenses L1-L5, mirrors M1-M3, a 50:50 beam splitter (BS) and aperture stop

(A.S.).

on a translational stage.

An image of the sample surface is formed at the aperture stop (A.S.). This was

positioned to ensure that only emission from the output grating was collected. This

spatially filtered image was then projected onto the entrance slit of the spectrom-

eter. Alternatively, elements L3 and A.S. could be removed to record the angular

dependence of the emission as described in Section 2.1.

In Chapter 4 amplitude- or phase-masks were placed in the pump beam in order

to excite dark solitons. The phase mask consisted of a film of silicon nitride deposited

on a microscope cover slide which introduced a π -phase delay to a portion of the

beam. The amplitude mask consisted of a wire approximately 100 µm in diameter

introduced into the beam. L5 was used in conjunction with the objective lens, L1

to project an image of this mask onto the sample surface.

The power of the out-coupled light from the waveguide was measured using a

commercially available silicon photodiode-based power meter placed directly behind

the A.S. The power meter was factory-calibrated and was compensated for its wave-

length dependence. Losses due to the optics in the apparatus was accounted for by

measuring the transmitted power through each element in isolation.
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2.3 Interferometry

In Chapter 4 interference measurements were used in the CW experiments to recover

the phase of the emission at the output of the waveguide. This section details the

experimental setup and the techniques used in processing the interference patterns

to retrieve phase maps. A good text is on this subject is Holographic Interferometry

by P. K. Rastogi (editor) [107].

2.3.1 Off-axis holography

Off-axis holography is a technique in which a signal with an unknown phase is

combined with reference resulting in interference fringes, the distribution of which

is a function of the angle between the two beams and their relative phases. Analysis

of these fringes therefore allows access to the underlying phase of the signal.

A schematic of the experimental setup used is shown in Figure 2.3. In the

setup a portion of the pump beam is combined with the emission signal at the

aperture stop of the spatial filter. The addition of lens L6 in combination of L2

provides an additional magnification of the reference beam affording approximately

constant intensity across the aperture stop. The resulting interference pattern at the

aperture stop is then imaged onto the entrance slit of a single-grating spectrometer

and recorded on a CCD camera.

The origin of the intensity fringes can be illustrated by writing the signal as:

s(x, z) = |s(x, z)|e−iφ(x,z) (2.2)

where |s(x, z)| describes the spatial variation in intensity of the signal and φ(x, z)

describes the variation in phase. Again we follow the convention that the direction

of propagation is along the z -direction. The reference beam is then assumed to have

a constant intensity and a variation in phase given by the angle of the beam:

r(x, z) = rei2πξz (2.3)

in which ξ = sin(θ)/λ , where θ is the angle between the beams in the y -z -plane
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Figure 2.3: Schematic of the experimental setup used for the interferometric measurements consist-

ing of lenses L1-L6, mirrors M1-M4, beam splitters (BS) and an aperture stop (A.S.).

and λ is the wavelength. The resulting intensity at the image plane is then:

I(x, z) = |r(x, z) + s(x, z)|2

= |rei2πξz + |s(x, z)|e−iφ(x,z)|2

= |r2 + |s(x, z)|2 + r|s(x, z)|e−i2πξze−iφ(x,z) + r|s(x, z)|ei2πξzeiφ(x,z) (2.4)

= r2 + |s(x, z)|2 + 2r|s(x, z)|cos(2πξz + φ(x, z)) (2.5)

From Equation 2.5 we see that the intensity at the image plane varies cosinu-

soidally along the z -direction with a period dictated by the angle of reference beam,

modulated by the phase of the signal. An example of such an interferogram is shown

in Figure 2.4a. The phase of the signal processes rapidly as polaritons propagate

along the waveguide. Consequently the angle (θ ) formed by the signal and reference

beams only needs to be 1-2◦ to achieve a good contrast on the CCD camera.

2.3.2 Fourier-transform evaluation of interferograms

Fourier-transform evaluation using spatial heterodyning is a method which allows

the evaluation of a single interferogram to recover the underlying phase of the signal.

The technique can be illustrated first rewriting Equation 2.4 as:

I(x, z) = a(x, z) + c(x, z)ei2πξx + c∗(x, z)e−i2πξx (2.6)
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Figure 2.4: Evaluation of a two-dimensional interferogram. The recorded interferogram (a) is

transformed using the fast Fourier transform algorithm and filtered (b). The inverse transform

then yields a complex image with phase modulo 2π (c) which is then ’unwrapped’ to recover the

underlying signal phase (d).

where a(x, z) = r2 + |s(x, z)|2 , c(x, z) = 1
2r|s(x, z)|e

iφ(x,z) and c∗(x, z) denotes its

complex conjugate. Performing the Fourier transform then yields:

I(v) = A(u, v) + C(u, v)δ(u− 2πξ, v) + C∗(u, v)δ(u+ 2πξ, v) (2.7)

where u and v is the spatial frequency in x and z , and A and C are the Fourier

transforms of the functions of a and c respectively. In practice this is done by

performing the fast-Fourier transform (FFT) algorithm on a computer. An example

of the transformed interferogram is shown in Figure 2.4b.

From Equation 2.7 is clear that the Fourier transform of the interference pattern

has a near zero-frequency component and terms at ±2πξ which contain all the

information of the signal. By filtering out all but one of these high frequency terms

and taking the inverse Fourier transform we obtain the complex function c(z). The

phase of the signal is then:

φ(x, z) = tan−1
(
Im c(x, z)

Re c(x, z)

)
(2.8)

The recovered phase of the interferogram is shown in Figure 2.4c which shows

the precession in phase as polaritons travel along the waveguide.
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2.3.3 Phase unwrapping

The phase obtained from Equation 2.8 is modulo 2π . A final problem therefore

remains to add or subtract multiples of 2π in order to obtain a smooth phase map.

This phase unwrapping can be achieved by following rows of pixels through the image

and correcting the phase at the discontinuities where the phase difference between

adjacent pixels is approximately 2π . However this tends to propagate errors in the

phase throughout the image as the phase is unwrapped. More complicated path-

independent algorithms exist which can be guided by the quality of the phase map

achieved. The implementation of such an algorithm is beyond the scope of this work

and therefore a freely distributed MATLAB R© realisation1 by Bruce Spottiswoode

was used. The performance of this script was verified by comparing against the

phase maps produced by unwrapping in a simple raster scan. Figure 2.4d shows the

unwapped phase map recovered from the interferogram.

2.4 Time-resolved experiments

The experimental setup for the time resolved experiments in Chapter 5 is shown

in Figure 2.5. Excitation was provided by a tuneable pulsed Ti:Sapphire (Spectra

Physics Tsunami R©) laser producing ∼100 fs duration pulses at a repetition rate

of 82 MHz. This was used in conjunction with pulse shaping optics to control the

spectral-width and center wavelength of the pulses. The output power from the

waveguide was again measured using a power meter place directly behind A.S and

accounting for losses on the intermediate optics. The emission projected onto the

entrance slit of the spectrometer was either dispersed onto a CCD camera or directed

onto the entrance slit of a streak camera.

The operating principle of the streak camera is illustrated in Figure 2.6. Photons

incident on the entrance slit are focused onto the photocathode where they are con-

verted into electrons which are accelerated through the streak tube. These electrons

1http://www.mathworks.co.uk/matlabcentral/fileexchange/22504-2d-phase-unwrapping-

algorithms
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Figure 2.5: Schematic of the micro-photoluminescence setup used in the time-resolved experiments.

In the pulse-shaping optics the ∼100 fs pulses from the laser were dispersed using a diffraction

grating (G1) and filtered before being recombined on a second grating (G2). Here the different

colours represent different wavelengths.

are accelerated towards the micro-channel plate which multiplies their number be-

fore bombarding a phosphor screen whereupon they are converted back to photons

and detected on a CCD camera. The voltage across the sweep electrode is swept

such that the electrons corresponding to successive photons are deflected by different

amounts, resulting in a two dimensional streak image in which the vertical axis gives

to the time of arrival. The voltage sweep is synchronised with the repetition rate of

the laser so that the image may be integrated over many pulses.

The polariton time of flight was measured by projecting the Fourier transform

of the emission onto the entrance slit of the streak camera. The horizontal entrance

slit therefore selects a particular emission angle, corresponding to a particular in-

plane wavenumbers along the z -direction. By displacing the lens in front of the

spectrometer the wavenumber projected onto the entrance slit may be scanned. The

time of flight is then the time between the laser reflection from the sample surface

and the polariton emission from the output.
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Figure 2.6: Operating principle of the streak camera tube. Taken from Guide to Streak Cameras,

Hamamatsu
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Chapter 3

Strong coupling in

semiconductor waveguides

This chapter describes the first direct observation of strong coupling in semiconduc-

tor waveguides, the optimisation of the waveguide guide device used in the following

chapters and the observation of the strong coupling regime up to 100 K. The results

of Section 3.1 were reported in Applied Physics Letters in 2013 [108].

3.1 Waveguide polaritons

The device under test consisted of a 135 nm thick GaAs-based waveguide clad in

Al0.9Ga0.1As and SiNx containing a single 10 nm In0.04Ga0.96As QW. Several

iterations of growth and PL characterisation were conducted to optimise the exciton

linewidth of the QWs. Figure 3.1a shows a schematic of the waveguide device. The

device was grown by MBE at the University of Cambridge and capped with a 200 nm

thick layer of polycrysaline SiNx grown by chemical vapour deposition (CVD). The

MBE grown structure is as follows: 500 nm cladding layer of Al0.9Ga0.1As; 45 nm

of GaAs; a 10 nm thick In0.04Ga0.96As QW; 57 nm of GaAs; a 3 nm Al0.9Ga0.1As

etch stop layer and a final 20 nm GaAs cap. 100 × 100 µm grating couplers were

etched to a depth of 160 nm into the SiNx layer using electron beam lithography

and reactive ion etching. The 250 nm grating period was chosen to scatter light in

39
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Figure 3.1: Schematic of waveguide device under test (a) not shown to scale. Angle-resolved

spectrum of PL emission collected from grating (b). Here the exciton line has been subtracted in

post-processing. Power dependence of the Rabi splitting between the upper and lower polariton

branches (c) and angle-resolved spectrum at high power (inset). Panels (b) and (c) taken from

Walker et al, 2013 [108].

vicinity of the anti-crossing out of the waveguide at θ = ±9◦ .

The sample was placed in an optical cryostat held at 5 K. Excitation was provided

by a tunable CW Ti:Sapphire laser emitting at 780 nm - well above the GaAs band

gap - focused to a 60 µm diameter spot FWHM. The emission was collected from

the grating etched into the SiNx cladding layer and the Fourier transform imaged

onto the entrance slit of the spectrometer. Figure 3.1b shows the angle-resolved PL

emission spectrum from the waveguide at low excitation power (250 µW) showing

the clear anti-crossing behaviour of the upper- and lower-polariton branches indica-

tive of the strong-coupling regime. The dispersion shown in Figure 3.1b is mirrored

around θ = 0◦ , either arm corresponding to polaritons travelling in either direction

parallel to the z -axis. In the image the background exciton line was subtracted in

post-processing, the energy of which is indicated in the spectrum by a dashed line.

With increasing excitation power the observed Rabi splitting reduces, as shown

inset in Figure 3.1c where at high power the anti-crossing behaviour is greatly di-

minished. This dependence of the Rabi splitting with power was extracted by fitting

a two-coupled oscillator model to the observed dispersion. (The details of this fitting

procedure are described in Appendix A). The extracted Rabi splitting versus excita-

tion power is shown in Figure 3.1c. This reduction in Rabi splitting with excitation

power is due to the reduction in exciton oscillator strength as a result of screening
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by the increasing number of free carriers created at the pump spot [109].

Figure 3.2a shows the polariton dispersion with the pump spot 480 µm away

from the grating coupler. Here the UPB, and polaritons in the LPB within 2.5 meV

below the exciton line are strongly attenuated due to absorption by the exciton. In

this case only the arm of the LPB at negative emission angles is present. Similarly

when the pump spot was positioned on the opposite side of the grating only the

arm of the LPB at positive angle was present. This confirms that polaritons are

travelling from the pump spot to the grating whereupon they are detected, rather

than excitons diffusing from the pump spot before recombining which would emit

into all wavenumbers and populate the polariton branch at positive emission angles.

In the case where the pump spot and detection grating are spatially separate

the effect of free-carrier screening and the subsequent reduction in Rabi splitting is

negated. From fitting the Rabi-splitting was found to be 5.9± 0.6 meV which com-

pares favourably with 5 meV reported in a semiconductor microcavities containing

three QWs of similar composition [14]. The group velocity of the bare photon mode

was found to be 48 ± 2 µm ps−1 . On resonance (∆ = 0) this yields a polariton

group velocity of 26± 2 µm ps−1 which is an order of magnitude greater than that

found in microcavities [97, 105].

As the finite size of the grating coupler introduces uncertainty in the measure-

ment of both momentum and energy of the LPB it is not possible to directly measure

the linewidth in order to determine the polariton lifetime. Instead by moving the

pump spot relative to grating the decay in intensity can be extracted from the LPB

as shown in Figure 3.2b-c. From this propagation length the lifetime can be deduced

using the group velocity determined from the dispersion. The deduced lifetime is

shown in Figure 3.2d. At large detuning the lifetime of the predominantly photon-

like polaritons is 8.5 ps. The lifetime increases near resonance to 11.4 s before

reaching tail of the exciton line where the lifetime is reduced due to absorption. An

exponential decay of 11.4 ps corresponds to a Lorentzian line shape with a FWHM

of 115 µeV. Whilst this lifetime is comparable to that in microcavities it should be

noted that because of the much larger group velocity waveguide polaritons propa-
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Figure 3.2: Angle-resolved PL spectrum after propagation plotted on a logarithmic grey scale (a).

Extracted intensity versus position of the pump spot (b) for several photon energies showing fitted

exponential decay. Polariton propagation length versus photon energy (c) and deduced lifetime (d).

Images taken from Walker et al, 2013 [108].

gate much further within their lifetime. This makes them potentially more suited

to applications involving the transmission of information.

Such an increase in polariton lifetime close to resonance has also been observed

in microcavities and is attributed to a motional narrowing effect where the increased

size of the polariton wavefunction results in a greater spatial averaging of the QW

potential arising from fluctuation in alloy or layer thickness. This effect was not

predicted in the work of Beggs et al [65] where the linewidth was calculated to vary

between that of the uncoupled exciton and photon modes. Their approach however

was based classical approach using non-local dielectric response theory which cannot

reproduce this quantum mechanical effect.

3.2 Waveguide optimisation

In Section 3.1 it was shown that polaritons decay exponentially during propagation.

For small ∆ where polaritons are predominantly exciton-like (|X|2 ∼ 1) this occurs
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Table 3.1: Summary of second generation waveguide devices detailing the number and composition

of the QWs and the fraction of Al in the guide layer. All devices consisted of an AlxGa1−xAs-based

waveguide containing one or more 10 nm InyGa1−yAs QWs

Device No. Wafer No. No. QWs In Frac. (%) Al Frac. (%)

1 W0888 1 3.75 0

2 W0889 1 6 0

3 W0890 3 3.75 0

4 W0891 1 3.75 10

due to the increased absorption in the tail of the exciton line, and potentially by

impurities close to the GaAs band edge. Whilst for large ∆ where (|C|2 ∼ 1)

this occurs due to photonic losses such as those attributed to roughness within the

guide, or coupling to leaky waveguide modes. For future experiments and potential

applications in this waveguide scheme it is important that the dominant source of

these losses is identified and reduced as far as possible. To this end four different

designs of waveguide were compared under the same conditions; the details of which

are summarised in Table 3.1.

Nominally Sample 1 is a repeat growth of that used in Section 3.1; sample 2 has

an increased fraction of indium in the QW which shifts the exciton line, and thus

operating point to lower energy; sample 3 contains three QWs and thus is expected to

show an increased coupling between the exciton and photon; and finally aluminium

has been added to the guide layer of sample 4 to closer match the lattice constant of

the cladding and reduce strain. For each device the period of the grating couplers

was adjusted to ensure that the both arms of the LPB lay within the detectable

range of angle of the system.

3.2.1 Polariton dispersion

Optical characterisation of the waveguide devices was performed at 5 K in an optical

cryostat with CW non-resonant excitation provided by a laser diode emitting at

685 nm focused to a 50 µm diameter spot FWHM. The pump power was adjusted

such that the power density (∼ 0.1 kW cm−2 ) was sufficiently low as to avoid
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Figure 3.3: Angle-resolved spectra of the TE-polarised PL emission from each waveguide design

showing fitted polariton dispersion and deduced uncoupled exciton and photon modes. All panels

have been normalised individually and share a colour scale.

broadening of the exciton line and thus any reduction in the Rabi splitting. A

Glan-Thompson linear polariser was use to select the TE-polarised PL emission

from 1 mm gratings etched into the surface of the waveguide device. The exciton

emission, being unpolarised is therefore suppressed relative to the strongly polarised

polariton mode yielding an increased signal to noise ratio. The Fourier transform of

the emission was then imaged on the entrance slit of the spectrometer to yield an

angle-resolved spectrum.

Figure 3.3 shows angle-resolved spectra of the TE-polarised PL emission from

each waveguide design. For each waveguide design a clear anti-crossing behaviour

of the LPB with the exciton- and photon-modes can be seen indicating the strong-

coupling regime. The characteristic waveguide parameters were obtained by ex-

tracting the position of the LPB in energy-momentum space and fitting to a two

coupled-oscillator model (see Appendix A). The fitted model is shown overlaid in
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Table 3.2: Summary of parameters extracted from fitting to a two coupled-oscillator mode detailing

the exciton energy (Ex ) the Rabi splitting (Ω) and group velocity of the bare photonic mode (vcg ).

Device No. Wafer No. Ex (eV) Ω (meV) vcg (µm ps−1)

1 W0888 1.4782 5.3± 0.3 57.4± 0.8

2 W0889 1.4548 5.39± 0.07 62.4± 0.3

3 W0890 1.4768 9.37± 0.09 57.7± 0.7

4 W0891 1.4908 4.4± 0.1 61.5± 0.4

each panels and the parameters summarised in Table 3.2.

Samples 1 and 3 contain nominally identical 3.75 % InxGa1−xAs QWs. From

the fitted parameters the increase in Rabi splitting with the number of QWs is in

agreement with the relationship Ω ∝
√
NQW as observed in semiconductor micro-

cavities [110].

In sample 2 the increased indium fraction in the QW has resulted in shifting the

exciton line to a lower energy whilst maintaining a similar Rabi splitting to that in

sample 1. Similarly the addition of aluminium to the guide layer in sample 4 has

shifted the exciton line to a slightly higher energy whilst maintaining a similar Rabi

splitting. However the exciton lineshape in this sample is strongly asymmetric with

a long tail at the low energy side resulting in strong absorption which limits the

approach of the LPB towards the exciton line in Figure 3.3d.

3.2.2 Propagation length

The propagation length for each device was measured by moving the pump spot

relative to one 150 × 200 µm grating etched into the surface of the waveguide and

using spatial filtering to ensure only the emission from this grating was collected.

An angle-resolved spectrum was recorded at each pump spot position and the in-

tensity extracted as a function of detuning. An exponential function was then fitted

to the decay in emission intensity with distance at each detuning to obtain the

characteristic propagation length.

Figure 3.4 shows the measured propagation length of polaritons in the LPB for
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Figure 3.4: Decay length of polaritons (a) and deduced polariton lifetime (b) versus detuning

(δ)relative to exciton line for each waveguide design.

each waveguide device plotted against the detuning (δ) from the exciton and the

lifetime deduced from the group velocity extracted in Section 3.2.1. For each sample

the propagation length is approximately constant at large δ and reduces towards zero

with proximity to the exciton line. At large δ polaritons are predominantly photonic

and the propagation length reduces to that of the bare waveguide. Samples 1, 3 and

4 contain similar x = 3.75% InxGa1−xAs QWs and have operating wavelengths and

thus similar propagation lengths of approximately 450 µm for photon-like polaritons,

whilst the increased indium content of the QW in sample 2 shifts the operating point

further away from the cut-off and thus increasing the propagation length of the bare

waveguide to approximately 800 µm.

For small δ polaritons are exciton-like and travel at vanishingly small group

velocities. Such polaritons therefore travel shorter distances within their lifetime.

This effect is compounded by the increased absorption in the tail of the exciton line.

From Figure 3.4 increased absorption near the exciton line due to the addition of

aluminium to the guide layer in sample 4 as observed in the PL spectrum is born

out in the reduced propagation length.

Noting the intensity of transmitted light falls-off exponentially the intensity at
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the output is approximately constant in photon-like region where the propagation

length is constant. Using this as a baseline, the usable bandwidth can be defined by

the point at which the propagation length is such that the intensity at the end of the

600 µm waveguide is halved. For samples 1, 2 and 3 this occurs at the point where

δmin ≈ 2.5 meV, and δmin ≈ 5 meV for sample 4. This minimum accessible detuning

corresponds to the maximum exciton fraction (|X|2) as given by Equation 1.11. For

samples 1 and 2 the maximum accessible exciton fraction is |X|2 ≈0.53 and 0.54

respectively whilst in sample 3 the increased Rabi splitting increases the accessible

exciton fraction to |X|2 = 0.78. Finally the increased absorption near the exciton

line in sample 4 reduces the accessible exciton fraction to |X|2 = 0.16.

By this metric sample 3 is the most suitable of this second generation of de-

vices for soliton studies. The increased Rabi splitting affords a greater GVD (from

Equation 1.13) and allows access to greater exciton fractions and thus to greater

nonlinearities. Furthermore this increased exciton fraction at a particular detun-

ing implies a lower group velocity (from Equation 1.12) and therefore an increased

polariton lifetime, born out in the deduced polariton lifetime in Figure 3.4b.

Notably whilst the exciton fraction for a given detuning is greater - and thus

the group velocity lower - in sample 3 than sample 1 the roll-off in propagation

length is similar. This suggests that absorption in the exciton tail, even in these

state-of-the-art QWs, is the dominant effect limiting the propagation length at small

detunings.

3.3 Temperature dependence of polaritons

Shortly after the first observation of polartons in microcavities it was shown by

Houdré et al [111] using an AlGaAs/GaAs-based microcavity device containing

In0.13Ga0.87As QWs that the strong coupling regime can persist up to room temper-

ature. Recently nonlinear polariton phenomena have been observed in GaN-based

devices at room temperature [112, 20]. Technologically this is an important point

as even using liquid nitrogen (77 K) as a coolant instead of liquid helium (4.2 K)
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Figure 3.5: Temperature dependence of the exciton PL emission. Exciton spectra at temperatures

between 4 and 100 K at low excitation power (a) and extracted central energy and linewidth versus

temperature (b).

significantly reduces the cost of operating the device potentially allowing for wider

adoption.

For the purpose of this demonstration sample 3 was chosen as from Equa-

tion 1.9 the larger the Rabi-splitting at low temperature means that a larger exciton

linewidth can be tolerated before quenching of the strong coupling regime. The

sample was once again placed in a helium-flow cold-finger cryostat. The sample

temperature was raised up from the base temperature of the cryostat by control

of the helium flow-rate and was stabilised to within one degree using a PID con-

troller. Non-resonant excitation was provided by a tunable Ti:Sapphire laser tuned

to 40 meV above the GaAs band edge. The laser was focused to a 30 µm spot on the

sample surface and the power density (0.3 W cm−2 ) was chosen to be sufficiently

low as to avoid broadening of the exciton line.

Figure 3.5 shows the excitonic PL emission observed away from the grating region

at low excitation power and the extracted central energy and linewidth at various

temperatures. With increasing temperature the central energy of the emission shifts

towards lower energy, broadens and reduces in intensity, becoming 200 times weaker

by 100 K than at 4 K.
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Figure 3.6: Angle-resolved spectrum of PL emission at 100 K (a) and plot of calculated Rabi

splitting versus temperature and that extracted from spectra.

The dependence of the central energy and linewidth of the emission was extracted

by fitting of a single Gaussian distribution to the PL spectrum. Following the

approach of Gammon et al [113] the temperature dependence of the exciton linewidth

γX was then fitted using the formula:

γX(T ) = γinh + γACT +
γLO

eELO/kBT − 1
(3.1)

where γinh is the inhomogeneous homogeneous linewidth; γAC describes the depen-

dence due to coupling to acoustic phonons; kB is the Boltzmann constant; ELO is

the energy of longitudinal optic (LO) phonons. As the QW contains only a small

fraction of indium and is surrounded by a GaAs matrix the LO phonon energy was

taken as 35 meV as used by Gammon et al for GaAs QWs [113]. From fitting

γinh = 1.15 meV, γAC = 3.9 µeV and γLO = 41 meV.

Figure 3.6 shows angle-resolved spectrum of the emission collected from a 1 mm

long grating on the sample at 100 K and the dependence of the Rabi splitting on

temperature. In spectrum there is a clear anti-crossing behaviour indicative of the

strong coupling regime. From the fitting proceedure using a two-coupled oscillator

model (shown in white overlaid in Figure 3.6a) the Rabi splitting was found to be

9.90± 0.09 meV, equal to that observed at 4 K.

The dependence of the Rabi splitting can be predicted from Equation 1.9 by

substitution in of Equation 3.1. The photon linewidth was calculated from the decay

length ld = 500 µm and group velocity vcg = 57.7 ± 0.7 µm ps−1 by τ = ld/v
c
g .
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This yields τ = 8.6 ps, corresponding to Lorentzian 153 µeV FWHM. Figure 3.6b

shows Ω(T ) =
√

Ω(4 K)2 + (γX(T ) + γC)2 using the exciton linewidth from fitting

in Figure 3.5b.

From the expression relating the Rabi splitting to the exciton linewidth the

strong coupling regime is expected to be fully quenched at room temperature. How-

ever the intensity of the emission is already several orders of magnitude lower at

100 K than at 4 K which may make the integration times required to obtained a

reasonable signal to noise ratio prohibitively long at higher temperatures.

3.4 Conclusion

In this chapter the first direct observation of polaritons in semiconductor waveguide

was made by direct imaging of the characteristic anti-crossing in the dispersion. At

low power the increased coupling between exciton and photon modes over micro-

cavity structures was demonstrated. At high excitation powers it was shown that

this anti-crossing behaviour can be quenched as a result of reduction in oscillator

strength due to screening by free carriers created at the pump spot. By extracting

the propagation length and group velocity of polaritons in the LPB a clear increase

in lifetime near resonance was found attributed a motional narrowing effect.

By comparing four different sample designs it was found that moving the op-

erating point of the device to longer wavelengths, away from cut-off increases the

propagation length for photon-like polaritons. It was also found that increasing the

number of QWs serves to increase the Rabi splitting as for microcavities. This effec-

tively pushes the LPB further from the exciton line allowing access to the more exci-

tonic part of the LPB where nonlinear effects are expected to be more pronounced.

Future designs may therefore contain a greater number of QWs containing a greater

indium fraction to exploit these findings.

Finally it was shown that in these devices the strong coupling regime can persist

up to 100 K. This could potentially be exploited in future III-V polaritonic devices

operating at liquid nitrogen temperatures or alternatively the scheme could be re-



3.4. CONCLUSION 51

produced in nitride-based or organic material systems for devices operating room

temperature.



52CHAPTER 3. STRONG COUPLING IN SEMICONDUCTOR WAVEGUIDES



Chapter 4

CW experiments and dark

spatial solitons

This chapter describes the results of continuous-wave (CW) measurements on waveg-

uide polaritons. The first section describes the observation of a self-defocusing non-

linearity arising from polariton-polaritons interactions inherited from the exciton

component which is then shown support the formation dark spatial solitons. Finally

the nonlinear effects arising from polaritons are shown to persist up to 100 K.

4.1 Introduction

Dark solitons are solutions to the NLSE which, in the ideal case consists of dip in

intensity on an bright background extending out to infinity. At the point of the dip

in intensity, which will be referred to hereafter as a dark notch, the wavefunction

of this ideal dark soliton undergoes an instantaneous phase jump of π . For a grey

soliton the phase jump is less than π radians and is more gradual. Experimentally

dark solitons can be excited by imprinting either this phase jump or the dip in

intensity onto the input beam. In the absence of an optical nonlinearity or at low

intensity the input beam simply diffracts. However in the soliton regime the shape

of the dark notch does not change as it propagates and its size is dictated by the

optical intensity and the strength of the nonlinearity.

53
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Due to the equivalence in the NLSE dark solitons can be formed in either space

or time. Spatially-dark solitons have been observed in a range of nonlinear systems

such as photovoltaic- [88, 89] and photorefractive-crystals [90] and more recently in

the superfluid flow inside a semiconductor microcavities [52].

As dark spatial solitons are supported in materials with negative nonlinear re-

fractive indices the index within the dark notch is locally higher than in surrounding

regions. Dark solitons have therefore been proposed as reconfigurable waveguides

[91, 92], y-splitters [93] and multiport routers [94] which can be written by imprinting

either a phase jump or dip in intensity onto a pump beam.

The aim of this chapter is to investigate the nonlinear properties of the waveg-

uide polariton device, building upon the first observations of strong coupling in

the previous chapter. To this end the formation of dark spatial solitons is used as a

demonstrator of the hereto unobserved nonlinear properties of waveguide polaritons.

4.2 Resonant injection and self-defocusing

Sample 3 from Chapter 3 was placed in a continuous-flow helium cold-finger cryostat

held at approximately 5 K, monitored using a factory-fitted and -calibrated sensor.

The temperature could be raised above this base level through control of the helium

flow and was stabilised by a heater attached to the cold-finger connected to a PID

controller.

CW excitation was provided by a tunable Ti:Sapphire laser focused through

a microscope objective to spot approximately 10 µm in diameter on the sample

surface with angular spread of ∆k⊥ = 0.5 µm−1 . Polaritons were excited in the

waveguide by tuning the laser wavelength and incidence angle to be in resonance

with part of the lower polariton branch. This is illustrated in Figure 4.1 which

shows an angle-resolved PL spectrum collected under non-resonant excitation and

tomographic image extracted at δ = −3.8 meV indicating the size of the pump spot

in momentum space.

Figure 4.2 shows real-space images of the pump spot and output beam at low
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Figure 4.1: Angle-resolved PL spectrum of emission from a 1 mm long grating on the sample

surface with non-resonant excitation showing the energy of the laser excitation (solid white line).

Tomographic image of dispersion at δ = −3.8 meV relative to the exciton line showing size of pump

spot (red) in momentum space.

and high power. The pump spot was positioned at the edge of the grating to avoid

polaritons leaking out before reaching the waveguide. Care was taken to ensure that

the transverse component of the injected beam was negligible (kx = 0) by adjusting

the incidence angle such that the output beam arrived at the centre of the output

grating at x = 0. The laser was tuned to δ = −5.6 meV relative to the exciton

line and the incidence angle fine-tuned to maximise the output signal. At low power

the input beam diffracts, slightly increasing in width. At high power this natural

diffraction is enhanced resulting in a dramatic increase in the width of the beam.

This behaviour was characterised by extracting the full width one-third of the

maximum intensity (FWTM). This definition of beam width was used to avoid

difficulty in extracting the width due to modulation in the beam profile. Figure 4.2d

shows the extracted beam width versus incident power on the sample surface. At low

power the beam width is approximately constant, the input beam (11.7± 0.06 µm

FWTM1) diffracts to approximately 15 µm before increasing significantly above

1 mW of incident power.

Intuitively this nonlinearity can be explained as being the result of repulsive inter-

particle interactions which tend to deflect polaritons from their trajectory along the

1For a Gaussian distribution FWTM =
√

log2 3FWHM.
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Figure 4.2: Psuedo-colour real-space images of the pump spot reflection at the input grating (a) and

of the emission from the output grating at low (b) and high power (c). The approximate position

of the edge of the diffraction gratings is indicated by dashed white lines. Extracted beam width at

the output grating versus pump power (d).
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Figure 4.3: Extracted beam width (a) and decay length of PL emission at the output grating versus

exciton fraction at low and high power (b). Panels share the same legend.
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waveguide resulting in a spreading of the beam. As the particle density increases the

effect of the interactions becomes more prominent. Equivalently however this can

be described from a nonlinear optics perspective as a negative nonlinear refractive

index.

To verify that this effect derives from the polariton-polariton interactions and

not simply a nonlinear response of the waveguide itself, the size of the defocusing was

extracted as a function of exciton fraction. Here the pump spot was 16.19±0.06 µm

FWTM in diameter. Figure 4.3 shows the beam width and decay length in the

grating region at low and high power versus exciton fraction. At each detuning the

incident power was kept constant and the coupling fine-tuned to maximising the

emission intensity at the output. The scatter in the data here can be attributed to

variations in the coupling efficiency which could be eliminated by instead comparing

the spreading at the same output power.

At low power, where the particle density is sufficiently low that the effect of

inter-particle interactions are negligible, the width of output beam is 26.8± 0.6 µm

independent of photon fraction whilst at high power the output beam width de-

creases near-linearly with photon fraction. The increase in beam width at low power

from Figure 4.2 is in approximate agreement with increase in diameter of the pump

spot.

The linear dependence of beam width at high power can be understood by not-

ing that the polariton interactions are inherited from the exciton parent species: the

greater the exciton fraction, the larger the interaction strength and thus the larger

the defocusing effect observed at the output. From Figure 4.3a this effect becomes

negligible for exciton fractions below |X|2 = 0.2 where the interactions between par-

ticles are too weak to produce a defocusing effect for this particle density. Similarly

it can be expected that the defocusing effect is diminished at large exciton fractions

where particle density is reduced due to the increased absorption .

A dependence of the output emission on the exciton fraction is also born-out in

the decay length in the grating region. Figure 4.3b shows the decay length extracted

by fitting an exponential function to the emission intensity at low and high excitation
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power for various exciton fractions. By contrast to that observed in Section 3.2.2

the decay length in the grating region is significantly shorter than in the waveguide

(approximately 460 µm) and decreases near linearly with exciton fraction over the

range investigated.

The decay length is a product of the lifetime and group velocity. As the decay

length is so dramatically foreshortened in the grating region and only the photonic

part experiences the effect of the grating it is reasonable to neglect other contribu-

tions to the lifetime. Therefore in the grating region it should be expected that the

decay length is the product of polariton group velocity (vg = vcg|C|2 from Equa-

tion 1.12) and the bare photon lifetime (τc ) scaled by the photon fraction, i.e.

ld ≈ vcg|C|2 × τc/|C|2 . For the range of exciton fractions here, where motional nar-

rowing and excitonic absorption are not expected to play a roll, it should be expected

that the decay length is constant.

The cause for the dependence of the decay length in the grating region on the

exciton fraction remains unclear. However it may be that the coupling strength

of the grating - and therefore the photon lifetime in the grating region - is itself

dependent on the photon fraction.

Taking the linear fit to the data shown in Figure 4.3 as a guide for eye the decay

length is slightly longer at high power. Assuming that the photon lifetime is constant

for a given exciton fraction this implies that the group index is reduced at high power

which supports the description of the nonlinearity as a negative nonlinear refractive

index.

4.3 Dark spatial solitons at 4 K

After verifying the existence of an optical nonlinearity deriving from polariton-

polariton interactions attention is now turned to examining if this nonlinearity sup-

port the formation dark spatial solitons. In the experiment the laser was passed

through either a phase or amplitude mask before being focused to a 30 µm diam-

eter spot (FWHM) on the sample surface. The mask was imaged onto the sample
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surface, producing either a 6 µm dark notch or π -phase jump to the centre of the

beam. The laser was tuned to δ = −3.8 meV corresponding to |X|2 = 0.60. The

power output of the waveguide was measured by focusing the emission from the

output grating onto a commercially available photodiode-based power meter.

4.3.1 Generation of single dark solitons

Figure 4.4 shows pseudo-colour real-space images of the pump spot at the input

grating and of the emission from the output grating at low and high pump power.

The pump spot has an approximately Gaussian distribution with an intensity mini-

mum at the point of the π -phase jump introduced by the mask (see Figure 4.4d). At

all powers investigated the output beam has a characteristic shape consisting of two

bright lobes with a dark notch at the centre. At low power the output beam width

is comparable to that at the input whilst the dark notch is considerably wider. At

high power the notch is only slightly wider than at the input whereas the full beam

width is considerably larger.

This behaviour was characterised by extracting the output beam parameters

versus pump power. The full beam beam width was once again defined by the full

width at one-third of the maximum intensity. The notch width was defined as the

full width between the half maximum points relative to the minimum intensity of

the notch, i.e. by the points I = (Imax + Inotch)/2. The blackness of the soliton was

defined as the depth of the dark notch relative to the lobes, i.e. (Imax−Inotch)/Imax .

Figure 4.5 shows the extracted beam parameters at the output versus pump power.

The error bars here are comparable to the size of the markers and have been omitted.

At low power the beam width and blackness of the dark notch are defined by the

input profile and are approximately constant. With increasing power above 10 mW

the beam width increases by 60 % whilst the dark notch narrows by 50 % relative to

low power. Simultaneously the blackness of the soliton decreases from that dictated

by the phase mask at the input (> 0.9) to that of the soliton (approximately 0.85

at saturation). From Equation 1.19 and 1.20 the blackness of a grey soliton on an

infinite background is equal to cos2(φ) where π − 2φ is the total phase shift across
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Figure 4.4: Pseudo-colour real-space image of the pump spot on the input grating (a) and emission

from output grating at low (b) and high pump power (c). Panels a, b and c share the same colour

scale. The edge of the input and output grating is indicated by a dashed white line. Interferogram

of the mask placed in the pump beam showing π -phase jump (d). Extracted cross sections of the

input and output beam taken from panels a to c showing defition of the full beam width and notch

width (e).
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Figure 4.5: Characteristic widths of the beam at the output grating with phase mask versus pump

power (a) showing full width (left) and notch width (right). Blackness of the dark notch (b) and

output power versus input power (c).
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the soliton. Given the observed blackness of 0.85 the total phase shift at the output

is expected to be 0.75π radians.

In Figure 4.5c it can be seen that above 10 mW the output power saturates

at 188 µW. Multiplying this output power by a factor of 4 determined by FDTD

simulations to account for the power lost into the substrate yields the power inside

the wavegude at the output grating. Taking the decay length at this detuning to be

460 µm from Section 3.2.2 the power at the input of the 600 µm-long waveguide

can be estimated by further multiplying by exp(600/460) yielding an input power

of 2.77 mW. Given this power and the photon energy (1.473 eV) at this detuning

the exciton density at the input to the waveguide can be estimated from:

ρ =
P

Eph

|X|2

NQW

1

∆xvg
(4.1)

where NQW is the number of QWs, ∆x = 30 µm is the FWHM of the beam and

vg = 22.9± 0.5 µm ps−1 is the group velocity at this detuning. An input power of

2.77 mW therefore corresponds to an exciton density of ρ = (3.4.± 0.1)× 108 cm−2

per QW, several orders of magnitude below the Mott density reported for similar

QWs of between 1010 and 1011 cm−2 [114]. This suggests that the system remains in

the strong coupling regime at high power and therefore the resulting nonlinearities

are derived from the presence of polaritons. The saturation in the output power

versus input power may instead be attributed to heating of the sample which results

in a broadening of the exciton line and increased absorption.

Drawing an analogy with the solitons found in superfluids the healing length

(ξ) can be related to the size of the soliton from Equation 1.26 by FWHM=

2
√

2 tanh−1
(√

1/2
)
ξ . At saturation the FWHM of the soliton is 8 µm corre-

sponding to a healing length of the fluid of ξ = 3.2 µm.

The healing length of the fluid is given by ξ = h̄/
√

2mg|ψ0|2 where |ψ0|2 = ρ0

is background particle density, m is the particle mass and g is the strength of their

interactions. Assuming that the background density is approximately equal to the

mean density inside the waveguide and making use of Equation 4.1 the particle

density at the output of the waveguide is ρ0 = (9.3± 0.3)× 107 cm−2 . Expanding
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the polariton disperision in the transverse direction about kx = 0 using Taylor series

the effective mass is m = h̄β/vg . Using the expressions introduced in Section 1.3

the wavenumber can be deduced from the detuning to obtain β = 23.4± 0.8 µm−1 .

Substituting the resulting mass back into the expression and rearranging for the

interaction strength yields g = 34± 3 µeV µm2 .

This estimation of the interaction strength is an order of magnitude greater than

has been observed between polaritons in microcavities [14, 72]. The discrepancy can

be attributed to interaction of polaritons with an exciton reservoir consisting of

dark, localised and high-momentum exciton states which is constantly replenished

by the scattering of polaritons into these states as has been observed in microcavities

[115, 116]. As the repulsive interactions between polaritons are inherited from the

exciton component the presence of this reservoir results in additional blueshift of

the LPB which is manifested as an increased optical nonlinearity. Therefore the

interaction strength extracted here contains a component relating to the interaction

with the exciton reservoir in addition to the interactions between polaritons. The

creation of this background reservoir could be avoided to measure the interaction

strength between polaritons alone using pulsed excitation, provided that the time

between pulses is longer than the lifetime of the exciton reservoir which is on the

order of 50 ps [117].

4.3.2 Generation of dark soliton pairs

The phase mask used in the previous section was replaced by a 100 µm diameter

wire imaged onto the sample surface to produce a dark notch in intensity of 6 µm

at FHWM on the sample surface. Figure 4.6 shows pseudo-colour real-space images

of the pump spot on the input grating and emission from the output grating. At

low power the well-defined dark notch is washed-out, leaving an increase in intensity

at the centre analogous to Arago’s spot arising from Fresnel diffraction around an

obstacle [118]. Once again at high power the total beam width increases but the

single dark notch at the input now forms two at the output.

This behaviour was characterised by extracting beam parameters versus pump



64 CHAPTER 4. CW EXPERIMENTS AND DARK SPATIAL SOLITONS

Figure 4.6: Pseudo-colour images of the pump spot on the input grating (a) and emission from the

output grating at low (b) and high pump power (c). The edge of the grating couplers are indicated

by a dashed white line. All panels share a colour scale.
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Figure 4.7: Characteristic widths of the beam at the output grating with amplitude mask versus

pump power (a) showing full width (left) and notch width (right). Width of the LHS and RHS

notch is shown in closed and open markers respectively. Blackness of the notches on the LHS and

RHS (b) and output power versus input power (c).
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power using the same definitions described in Section 4.3.1. Figure 4.7 shows the

extracted beam widths and blackness of either soliton, and the total output power

versus pump power. At low excitation powers the profile of the beam at the output

is approximately constant and the full width comparable to that at the input. Above

a threshold of 10 mW the total beam width increases by 50 % whilst the width of

notches reduces by 40 %, both notches reproducing the behaviour observed of single

dark solitons in Section 4.3.1. The blackness of these dark notches increases by a

third at high power approaching a value of 0.8, approximately equal to that for the

single dark soliton before the linearity between input and output power saturates.

This behaviour is therefore indicative of the formation of a pair of dark spatial

solitons.

4.3.3 Interference measurements

From its mathematical definition, the smoking gun of a dark soliton formation can be

considered as the development of a phase shift across the dark notch in intensity. To

observe this a Mach-Zehnder interferometer was constructed to interfere the output

of the waveguide with a small portion of the pump beam to produce an interference

pattern on the entrance slit of the spectrometer. (See Section 2.3.) The underlying

phase of the emission was recovered from the interference pattern using Fourier

transform interferometry.

Figure 4.8 shows real-space images of the PL emission intensity and recovered

phase from interference patterns recorded at low and high power when using the

π -phase mask to excite a single dark soliton. From Figure 4.8c the phase precesses

linearly as polaritons propagate along the z -axis. This linear dependence was sub-

tracted from the images (panels b and e) to highlight the change in phase in the

transverse direction near x = 0. In both cases there is a phase change approaching

π/2 at the point of the intensity minimum suggesting a grey soliton.

From the linear fit to the data shown in Figure 4.8c the phase extracted from

the intensity precesses at 0.170 µm−1 in the z -direction. As both the signal and

reference beams which interfere at the image plane are nearly parallel, this precession
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Figure 4.8: Real-space images of intensity and recovered phase of the output beam at low and high

power (a-b and d-e respectively) with a phase mask imprinted on the pump beam. The precession

of phase along the z-direction - shown in panel c - has been subtracted from the recovered phase to

highlight the discontinuity in the transverse direction.
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is largely due to the propagation of polaritons. The phase of polaritons therefore

precesses at 0.085 µm−1 - noting that there are two intensity fringes per cycle.

Given the emission wavelength of 0.841 µm this precession suggests a group index

of 14, in approximate agreement with 14.9 predicted from the dispersion using group

velocity at this detuning from Equation 1.12 and neff = c/vg .

Figure 4.9 shows cross sections of intensity and phase taken at x = 626 µm

from which the increase in full width and narrowing of dark notch can be seen

clearly. This dark notch can be seen to coincide with a phase jump approaching

π/2. Additionally it can be seen that the phase decreases away from x = 0. At

low power this can be attributed a geometrical effect as off-axis components travel

slightly further and therefore acquire a phase lag relative to those travelling along

the z -axis. From Figure 4.9b this curvature is enhanced at high power where the

reduction in effective index near the centre of the beam - where the density is

greatest - serves to reduce the optical path length for those travelling along the

z -axis increasing the relative phase lag of the off-axis components.

The phase mask was swapped for a 100 µm wire. Figure 4.10 shows real-space

images of the of the emission and the recovered phase at the output grating. Once

again the linear dependence of phase as polaritons travel along the z -direction has

been subtracted. The phase precession was found to be the same as that with the

phase mask. And again the off-axis components lag those travelling along the z -

direction producing a curvature in the wavefront. This effect is enhanced a high

power due to the local reduction in effective index at the centre of the beam.

At low power the dark notch in intensity is washed out and the phase varies

smoothly in the transverse direction. By contrast at high power two dark notches

in intensity form with a corresponding phase jump. This can be seen clearly in the

cross sections presented in Figure 4.11 from which it the phase changes abruptly at

the point of the dip intensity. Furthermore it can be seen that the jumps in phase

are approximately equal and opposite in sign thus conserving the total phase across

the whole beam.

This spontaneous development of a phase jump coinciding with a dip in intensity
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Figure 4.10: Real-space images of intensity and recovered phase of the output beam at low and

high power (a-b and d-e respectively) with an amplitude mask imprinted on the pump beam. The

precession of phase along the z -direction has been subtracted from the recovered phase to highlight

the discontinuity in the transverse direction.
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Figure 4.11: Amplitude (a) and phase (b) profiles of PL emission at low and high power with

amplitude mask imprinted on pump beam. Both panels share a legend.
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is clear evidence of the formation of a pair of dark spatial solitons arising from the

nonlinear properties of the waveguide which in-turn derive from polariton-polariton

interactions.

4.4 Generation of single dark solitons at 100 K

In Section 3.3 it was shown that the strong coupling regime in this polaritons waveg-

uide device persists up to at least 100 K. From a technological point of view this is

potentially a useful fact, allowing for a future waveguide polariton device to oper-

ate using liquid nitrogen, rather than liquid helium, as a coolant, greatly reducing

the cost to run. However this promise of a III-V based polariton waveguide device

operating at elevated temperatures is of course dependent on the accompanying non-

linearities also persisting to high temperatures. In this final section the nonlinear

properties of the waveguide device at 100 K are investigated.

The pump beam was once again passed through a phase mask imaged onto the

sample surface focused to a 30 µm spot. To avoid excessive absorption and heating

the sample the laser was tuned to 8.4 meV below the exciton line and a mechanical

shutter was employed to chop the pump beam, producing pulses of 0.1 s duration

with a small duty cycle. The incident power on the sample surface was determined

by measuring the power before the mechanical shutter and compensating for the

losses in the subsequent optics. The average output power could not be measured

reliably as the response of the photodiode-based power meter was too slow. However

in future the output power could be measured using a fast photodiode calibrated

against the power meter and synchronised with the chopping frequency of the input

beam.

Figure 4.12 shows the power dependence of the beam width and blackness of

the dark notch versus pump power. Above 1 mW the width of the beam and of

the dark notch increases. Simultaneously the blackness of the dark notch increases

slightly from its low power value. Above 10 mW the dark notch narrows once again

to below its width at low power.
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Figure 4.12: Characteristic widths of the beam at the output grating with the phase mask versus

pump power (a) showing full width of the beam (left) and of the dark notch (b). Blackness of the

dark notch versus pump power (b).

At intermediate powers the whole beam undergoes diffraction, simultaneously

increasing the beam- and notch-width. This non-monotonic behaviour is attributed

to pre-soliton dynamics which are highly sensitive to the exact input conditions.

In any case the dependence of the characteristic widths on pump power illustrates

that the nonlinear properties of the waveguide persist up to 100 K. Furthermore

on comparing the characteristic widths at low- and high-power the behaviour is

qualitatively similar to that observed at 4 K suggesting the formation of a dark

spatial soliton.

4.5 Conclusion

In this chapter it was shown repulsive polariton-polariton interactions result in an

optical nonlinearity analogous to a negative nonlinear refractive index which scales

with the exciton fraction. This nonlinearity was shown to result in the defocusing



4.5. CONCLUSION 71

of a beam travelling through the waveguide.

By imprinting either a phase jump or a dip in intensity onto the injected beam

single or pairs of dark solitons can be generated. The presence of dark solitons was

evidenced by the spreading of the beam and narrowing of the dark notch, approach-

ing the ideal case of a dip in intensity on an infinitely wide background. This was

further supported by interference measurements which showed that a phase jump

was developed at high excitation powers.

By measurement of the threshold powers and comparison with solitons in su-

perfluids the interaction strength between particles was estimated to be some three

orders of magnitude greater than that expect between polaritons. This was at-

tributed to the creation of an exciton reservoir under CW conditions populated

by the scattering of polaritons into dark-, localised- and high-momentum -exciton

states. Using pulsed excitation on the order of several pico-seconds it should be

possible to avoid this and measure the interactions between polaritons alone.

Finally it was shown that the nonlinear properties of the waveguide persist up to

100 K potentially allowing for rewritable waveguides and y-splitters devices based

upon dark solitons operating at liquid nitrogen temperatures.
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Chapter 5

Spatio-temporal solitons

This chapter describes the findings of time-resolved measurements of polaritons in

semiconductor waveguides including solitonic effects. The results of this work were

reported at the International Conference on the Physics of Semiconductors and

at UK Semiconductors in 2014. At the time of writing a manuscript has been

uploaded to the arXiv repository [119] and has been accepted for publication in

Nature Communications.

5.1 Introduction

Temporal-solitons are shape-preserving excitations which form in the balance be-

tween dispersive and nonlinear effects. Temporal solitons have been proposed for

[70], and demonstrated in long-haul communication systems [49] and more recently

in micro- and nano-scale devices suitable for on-chip information processing and

routing [56, 55, 78].

To achieve soliton formation on the short time- and length-scales suitable for

on-chip applications requires a system with large dispersive- and nonlinear-effects.

In the previous chapter it was established that the effect of polariton-polariton in-

teractions in the waveguide manifests as a giant optical nonlinearity supporting

the formation of dark-spatial solitons. The subject of this chapter is to investigate

whether this same nonlinearity can be used to balance the GVD in the LPB arising

73
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from the strong-coupling to form bright temporal solitons.

Bright temporal solitons have been observed in semiconductor microcavities, bal-

ancing repulsive polariton-polariton interactions against negative effective mass [51].

This waveguide scheme has several important advantages over traditional microcav-

ities for the investigation of solitons however. Firstly the group velocity is an order

of magnitude larger than in microcavities, meaning fast in-plane propagation. The

use of TIR rather than DBR mirrors to confine the photonic mode mean that the

losses are smaller and consequently an external pump is not required to replenish

the polariton population. Finally the simple structure more naturally lends itself

to create complex nonlinear photonic circuits with applications as novel polaritonic

devices [15, 16, 18].

In this chapter experimental evidence is presented for the formation of bright

picosecond temporal polaritons solitons at pulse energies less than 0.5 pJ. From this

threshold and from the blueshift of the polariton dispersion the size of the exciton-

exciton interaction constant and thus optical nonlinearity is deduced. Finally the

unique properties of the system, namely the comparable dispersive, diffractive and

nonlinear lengths are exploited to demonstrate hybrid spatially-dark and temporally-

bright solitons.

5.1.1 Theoretical description

The experimental results presented here are complimented by the results of numer-

ical calculations performed by Dr. Dimity Skryabin of the University of Bath, and

Dr. Alexei Yulin of ITMO University, St. Petersberg. The interaction between the

photonic mode and QW excitons was described using the Maxwell-Lorentz system.

Within the spectral range of interest any GVD arising from the waveguide itself

is negligible as are nonlinear effects at the excitation powers considered here. The

set equations accounting for the dominant nonlinearity arising from exciton-exciton
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interaction is:

2iβ
(
∂z + v−1g ∂t + γC

)
A+ ∂2xA = −k2Xψ (5.1a)

−2i (∂t + γX)ψ = κA− g|ψ|2ψ (5.1b)

where z and x are the coordinates along and transverse to the direction of travel

and t is time. A is the amplitude of the photonic mode and ψ is the excitonic

polarisation scaled to be in the same units. β and vg is the propagation constant

of the uncoupled photon mode at the exciton frequency ωX and kX = ωX/c . κ is

the rate of light-matter coupling and g is the exciton-exciton interaction constant.

The loss rates h̄γC = 44.3 µeV and h̄γX = 7.5 µeV were chosen to fit with the

measured frequency dependence of the propagation length from Chapter 3. The

input parameters to the simulation were those used in the experiment.

Neglecting losses and assuming plane wave solutions (A,ψ) ∝ eiQz−iδt the loss-

less dispersion law is Q = v−1g

√
δ − Ω2

R/δ . Here δ is a frequency offset of the polari-

ton branch from ωX , Q is the offset in wavenumber from β and 2ΩR = kX
√
κvg/β

is the vacuum Rabi-splitting, which from sample characterisation is approximately

9 meV. This model reproduces the two-coupled oscillator model used previously and

again can be differentiated to yield the GVD parameter β2 for pulse propagation

in the system given by Equation 1.13. For the range of detuning (δc)of the LPB

relative to the exciton line β2 varies between 400 and 1000 ps2 m−1 .

5.1.2 Experimental methods

Sample 3 from Chapter 3 was placed in a continuous-flow cold-finger cryostat held at

approximately 5 K. Excitation was provided by a tunable pulsed Ti:Sapphire laser

producing 100 fs duration pulses at a repetition rate of 82 MHz. These pulses were

passed through a dispersion-free diffraction pulse-shaper allowing the spectral width

and central wavelength of the pulse to be controlled. As a consequence of the square

aperture used in the pulse-shaper the resulting pulses have a top-hat spectrum.

The beam was focused to a 20 µm spot on the sample surface giving an angular

spread of approximately 0.5 µm−1 . The pulse was injected into the waveguide



76 CHAPTER 5. SPATIO-TEMPORAL SOLITONS

through a grating coupler by matching the energy and incidence angle to a part of

LPB. The PL emission from a second grating coupler 600 µm away was imaged onto

the entrance slit of a single grating spectrometer and either dispersed onto the CCD

or directed to a streak camera.

The streak camera had a resolution of 2 ps as measured from the response to the

reflected laser pulse of duration 350 fs (deduced from the Fourier transform of the

corresponding spectrum). The entrance to the streak camera has a 60 µm entrance

slit which corresponds to 6 µm on the sample surface. Integrating over such a small

area avoids the problem of uncertainty due to the finite polariton lifetime on the

grating.

5.2 Time-resolved measurements

Figure 5.1 shows the streak camera images and corresponding angle-resolved spec-

trum of the PL emission from the output grating. At low excitation power the 350 fs

duration pulse is dilated to 4 ps on propagation whilst at high power the pulse is

much shorter in time, close to the resolution limit of the streak camera, and appears

to be symmetrical in time. Simultaneously the pulse undergoes a lateral spreading

in real space. Such lateral spreading was observed in the CW experiments presented

in Chapter 4 attributed to a defocusing non-linearity where polariton-polariton in-

teractions deflect polaritons away from their direction of travel.

At low power the output spectrum follows the LPB as only the portion of the

input pulse - which has a finite range of energies and wavenumbers - coinciding

with the LPB can propagate in the waveguide. Therefore polaritons in different

parts of LPB can be injected by adjusting the central energy and incidence angle

of the input pulse. At high power the spectrum undergoes a significant narrowing,

typically towards the central energy of the input pulse.

The temporal profile was taken from the centre of the soliton and the spectrum

extracted along the LPB. Figure 5.2 shows these cross sections for a number of

excitation powers relative to that required for soliton formation. At low power the
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Figure 5.1: Time-resolved real-space images of PL emission from output grating at low (a) and high

(b) excitation power and angle-resolved PL spectra at similar powers (c and d respectively). The

pulse energy at the output is indicated in each panel. Panels a and b, and c and d share a colour

scales.

Figure 5.2: Temporal-profiles (a) for various excitation powers relative to that required for soliton

formation (Pth) and the corresponding spectrum extracted along the lower polariton branch (b).

The spectrum of the input pulse is shown in grey overlaid on the output spectrum at low power.
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wavepacket has a characteristic shape with a sharp leading edge and long tail. This

sharp turn-on corresponds to polaritons in the photonic part of the LPB which travel

with the greatest group velocity and thus arrive at the output grating first. The

long tail corresponds to progressively excitonic polaritons which travel at smaller

group velocities. At low power the corresponding spectrum has a top-hat shape

approximately equal to that at the input. The modification to the spectrum can

be attributed to the angle- and energy-dependence of the coupling efficiency and

absorption in the waveguide.

With increasing excitation power the wavepacket becomes increasingly narrow

and symmetrical in time, the duration approaching the resolution of the streak cam-

era. Simultaneously the spectrum narrows into a central soliton energy. Above the

threshold power for soliton formation the spectrum becomes increasing modulated

with appearance of the spectral side-bands to the central soliton energy. This mod-

ulation in the frequency-domain suggests similar modulation in the time-domain

on the order of 650 fs. This is far below the resolution of the setup and only oc-

curs at the highest pump powers available. Assuming that this second point can

be addressed the structure in the time-domain could be investigated further using

ultra-fast techniques such as autocorrelation [55], frequency-resolved optical gating

(FROG) [120] or frequency-resolved electrical gating (FREG) [56].

5.2.1 Power and detuning dependence

The temporal- and spectral-narrowing effect with increasing excitation power was

investigated by extracting the duration and spectral-width for a range of detuning

(δc) of the central energy of the input pulse relative to the exciton line. The pulse

duration was defined as the full-width at half-maximum (FWHM) whilst the spectral

width was defined as the full-width at one-third maximum to avoid difficulties due to

modulation in the spectrum. The spectral- and temporal-width versus pulse energy

at the end of the waveguide is shown in Figure 5.3. The pulse energy was determined

by focusing the emission from the output grating onto a photodiode-based power

meter and dividing by the repetition rate of the laser (82 MHz). A further factor
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of 4 was included to account for the fraction of power scattered into the substrate,

determined by FDTD simulation to obtain the pulse energy before out-coupling.

At low power the spectral width at the output is constant and approximately

equal to that at the input (5.5 meV) whilst the 350 fs pulse injected into the

waveguide is dilated to several picoseconds. The time-bandwidth product of the

wavepacket at the output is therefore well above the Fourier transform limit. Above

a threshold of 100 fJ there is a significant spectral and temporal narrowing. This

reduction in time-bandwidth product towards the Fourier limit is indicative of the

reduction in GVD-induced chirp and is clear evidence for solitonic behaviour. This

is well reproduced by the extracted duration and spectral width of the pulse from

numerically calculated solutions of Equations 5.1. Here the results of the numerical

calculations have been convolved with a Gaussian of 2 ps FWHM to account for the

effect of the streak camera resolution.

The reduction in bandwidth above threshold here is a consequence of losses

in the system. The soliton is initially formed with the temporal- and spectral-

width close to that of the input pulse. As the soliton loses energy the effect of the

nonlinearity reduces and so can only partially compensate the GVD. The soliton

then adiabatically increases its temporal-width so that the nonlinearity once again

compensates GVD. However in order to maintain the same time-bandwidth product

- defined by the Fourier transform of the characteristic sech2 -shape - the soliton

must also reduce its spectral-width. Indeed from Figure 5.3 the spectral narrowing,

like the propagation length measured in Chapter 3 from which it is derived, is not

strongly dependent on detuning over the range investigated.

The formation of a soliton requires that the characteristic nonlinear length (LNL)

is equal to the dispersion length (LDS). Noting that the characteristic loss length

of the sample for this range of detuning is approximately 400 µm, the input pulse

energy at threshold is E = 0.45 pJ. Setting LNL = LDS we obtain γ = T/(ELDS) ≈

−18, 000 W−1m−1 . This nonlinear parameter can then be related to the nonlinear

refractive index by Equation 1.15. The effective mode volume of the waveguide is

Aeff = 6.6 µm2 . Rearranging the expression γ yields n2 = −1.6× 10−14 m2W−1 .
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Figure 5.3: Power dependence of pulse duration (a) and spectral width (b) at the output of the

waveguide for a range of detuning of the central pulse energy relative to the exciton transition

energy (δc) . Calculated duration and spectral width for each δc is shown by solid lines of the

corresponding colour.
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A key characteristic of solitonic behaviour is that the shape is invariant during

propagation. This could be observed directly using multiple gratings etched into the

waveguide at various positions, or equivalently, by varying the characteristic lengths

LNL and LDS and keeping the physical length fixed. Therefore by changing δc

between -7.6 meV and -10.4 meV the scale is varied between 5.5 and 13.6 dispersion

lengths at each of which there is clear temporal narrowing from the low power case

indicative of soliton formation.

Finally it is important to note that the pulse energy at the output is directly

proportional the input power: the exact ratio is dependent on the exact experimental

conditions such as incidence angle and central energy of the pulse. This indicates

that polaritons are not lost from the system but rather transferred to different

states. This rules-out a nonlinear absorption mechanism where it might be imagined

that polaritons away from the central energy are simply filtered-out. The resulting

spectrally-narrow pulse would then experience little GVD as it propagated and so

would give the appearance of narrowing with increasing power but would have a sub-

linear input-output power dependence. Additionally the lack of nonlinear absorption

suggests that even at high power the Mott-density has not been reached and that

the system therefore remains in the strong-coupling regime.

5.2.2 Spectral properties

At high power the repulsive interactions between polaritons in the soliton results in

a renormalisation of the dispersion shown in the line cuts taken from angle-resolved

spectra at the central soliton wavenumber in Figure 5.4a. This dependence was

extracted by fitting a Gaussian distribution to line-cuts at each power and detuning.

Figure 5.4b shows the extracted energy shift relative to that at low power from which

there is a clear blueshift with increasing power which saturates above the threshold

for soliton formation (100 fJ). This behaviour is strongest for small δc where |X|2

and thus polariton-polariton interactions are stronger.

Crucially the maximum blueshift at saturation is orders of magnitude smaller

than half the Rabi-splitting (4.5 meV) and decreases with δc and thus exciton frac-
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Figure 5.4: Line cuts taken from angle-resolved spectra at the central soliton wavenumber (a) for a

detuning of δc = −7.6 meV between the central pulse energy relative to the exciton line. Shift in

energy versus power for various δ extracted by fitting a Gaussian distribution to the

tion. This indicates that the strong-coupling regime has not been quenched which

would cause a collapse of the Rabi-splitting and should be insensitive to exciton frac-

tion. Additionally the linearity in input-output power suggests that above threshold,

at which the blueshift saturates, polaritons are not lost or absorbed but rather trans-

ferred from the soliton to different states, serving to reduce the peak density within

the soliton and thus the interaction-driven blueshift.

From the pulse-energy the particle density within the soliton, and thus interac-

tion strength producing the observed blueshift, can be evaluated. For a detuning of

δc = −7.6 meV, |X|2 = 26% and vg = 43 µm ps−1 . Taking the transverse width

of the soliton ∆x = 20 µm and duration T = 1.5 ps the particle density is:

Nx =
|X|2

NQW

E

h̄ω

1

vgT∆x
(5.2)

where E is the pulse energy, h̄ω is the central soliton energy and NQW is the

number of QWs between which the exciton population is distributed. For a pulse

energy of E = 0.1 pJ this gives an exciton density of Nx = 28.5 µm−2 per QW, well

below the Mott density observed in similar QWs (NMott = 100−1600 µm−2) [114].

From Figure 5.4 this exciton density results in an energy shift of ∆E = 100 µeV

giving an interaction constant of g = ∆E/Nx = 3.5 µeV µm2 in good agreement

the theoretical estimate g = 3a2bEx = 3 µeV µm2 where ab and Ex is the exciton

Bohr radius and binding energy respectively [72].
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The interaction constant deduced here is an order of magnitude below that ob-

tained in Chapter 4. This is because under CW the background reservoir of dark-,

localised- and high-momentum exciton states is constantly replenished by the scat-

tering of polaritons into these states. Polaritons then interacted with this reservoir

in addition to each other resulting in an increased optical nonlinearity. In contrast,

the pulses used here are sufficiently short and separated in time (19.2 ps) relative

to the exciton lifetime (> 1 ps [115]) that these exciton states are not effectively

populated. Therefore the value calculated here represents the interaction strength

between polaritons alone.

From Equation 1.12 the shift in energy is equivalent to a change in wavenumber

(∆k) which can be related to the nonlinear length by LNL = 1/∆k . Substituting

in Equation 5.2 then yields an expression for the nonlinear parameter:

γ =
(g/h̄)|X|2

h̄ωNQW∆xv2g
(5.3)

For g = 3.5 µm2 this yields a nonlinear parameter γ = −52800 W−1m−1 and

subsequently n2 = −4.7× 10−14m2W−1 in close agreement with the estimate from

the soliton threshold pulse energy determined in Section 5.2.1.

From Figure 5.4a the blueshift of the dispersion is accompanied by a reduc-

tion in linewidth from 1.07 ± 0.02 to 0.93 ± 0.01 meV, towards the lower limit of

0.84± 0.02 meV imposed by the finite lifetime in the grating region. This linewidth

narrowing behaviour was observed at all detuning and suggests an increase in co-

herence in the soliton regime which can be attributed to the coherent redistribution

of polaritons via stimulated scattering processes [35] into this central state. Whilst

there is insufficient data here to drawing meaningful conclusions it does hint at the

possibility of observing soliton squeezing effects [121, 122] in this waveguide system.

5.3 Polariton time of flight

An important evidence for solitonic propagation is the cancellation of GVD such

that all spectral components travel with the same group velocity. This can observed

directly by measuring the time of flight (ToF) though the waveguide. The polariton
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ToF was measured by projecting the Fourier transform of the PL emission at the

output of the waveguide onto the entrance of the entrance-slit of the streak camera

which selects a particular in-plane wavenumber. As demonstrated in the angle-

resolved PL spectra there is a one-to-one correspondence between wavenumber and

energy of polaritons in the LPB. Therefore by extracting the ToF versus wavenumber

we obtain the dependence on energy.

Figure 5.5a shows the signal from the streak camera observed just above thresh-

old from which two main features can be seen, corresponding to the laser reflection

and emission from the output of the waveguide. The PL emission consists of two

components: a solitonic component for which the ToF is independent of wavenumber

and a weaker, background component which has some dependence on wavenumber.

With increasing power this non-solitonic background becomes weaker relative to the

soliton intensity and can no longer be discerned at the highest powers. The time of

arrival was extracted by fitting a Gaussian distribution to each peak (shown by the

coloured areas under the streak camera signal). The ToF is then the delay between

the laser reflection and PL emission from the output of the waveguide.

The raw ToF at low power is approximately 2 ps shorter than that predicted

from the polariton dispersion. This however corresponds to a path difference of

just 600 µm between the laser reflection and PL emission that can reasonably be

attributed to path differences through the optics in the experiment. To account

for this a constant offset was added to the ToF at all powers. This offset is the

weighted-average discrepancy between the measured ToF at low power and that

predicted from the observed polariton dispersion.

Figure 5.5b shows the extracted ToF versus wavenumber at low power and just

above threshold. At low power the change in group velocity predicted from the

polariton dispersion is reproduced in the ToF. At high power the wavenumber-

dependent background components also follow this dispersion. The significance of

this co-propagating non-solitonic background polaritons is that it demonstrates that

the strong coupling regime still holds even above the threshold for soliton formation.

By contrast, all the components of the soliton arrive within > 1 ps. With this
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Figure 5.5: Streak camera signal extracted at various in-plane wavenumbers just above soliton

formation threshold (a) showing laser reflection (pink), the soliton components (blue) and non-

solitonic background (green). Extracted time of flight versus in-plane wavenumber at low and high

power (b) showing soliton components and non-solitonic background. Here the central energy of

the pulse was 8.0 meV below the exciton-line.

technique the soliton duration can therefore be measured with an accuracy greater

precision than the resolution of the streak camera.

The polariton ToF was measured for different detuning between the central pulse

energy and the exciton line. The same input power was used at each detuning.

Figure 5.6 shows the dependence of polariton ToF at low power and above threshold

for soliton formation. Again at low power the polariton ToF follows that predicted

from the dispersion whilst above threshold ToF for all spectral components of the

soliton is, within experimental error, independent of wavenumber and is consistently

shorter than at low power. The independence of the ToF with wavenumber indicates

cancellation of GVD which is clear evidence of soliton behaviour.

The linear soliton dispersion further discounts a nonlinear-absorption explana-

tion of the spectral-narrowing as a such a pulse would still experience some disper-

sion. Additionally the dependence of soliton ToF on δc suggests that the observed

effects derive from the presence of polaritons and that the system therefore remains

in the strong-coupling regime. Furthermore the soliton ToF is consistently longer
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Figure 5.6: Extracted time of flight (left) versus wavenumber at low power and for soliton compo-

nents well above threshold with detuning between the central pulse energy and exciton transition

energy (δc) .
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than that expected for the bare waveguide (10.3 ps) as might be expected if the

strong-coupling regime had simply been quenched.

5.4 Temporally-bright and spatially-dark solitons

In this section the conditions where diffraction in the transverse direction is im-

portant are considered. The unique combination of properties in this system - the

comparable dispersive, diffractive and nonlinear length scales - allow for solitonic

behaviour to be supported in both space and time. This section considers the hy-

bridisation of the dark-spatial solitons from Chapter 4 with the bright-temporal

solitons of this chapter.

As in Chapter 4 the pump beam was passed through a mask which introduces a

π -phase jump to half of the beam. This produces a characteristic two-lobed pump

spot with an intensity minimum at the point of the phase jump. An interferogram of

the phase mask used and the resulting intensity distribution are shown in Figure 5.7

in addition to the streak camera images of the output wavepacket. The input pulse

had a bandwidth of 9.4 meV was tuned to -7.5 meV below the exciton line.

At low power the two-lobed shape is retained at the output but the width of the

distribution is slightly altered by diffraction in the waveguide. In the time-domain

either lobe is dispersed as in Section 5.2 and has the characteristic sharp leading edge

and long tail arising from the GVD. At high power both lobes undergo a narrowing in

time as observed for the bright-temporal soliton. Simultaneously both lobes spread

laterally, increasing the total width whilst decreasing the width of the notch. This

is illustrated by the cross sections taken through the streak camera images shown

in Figure 5.7e and f.

This behaviour was characterised by extracting the characteristic width and

duration of the wavepacket at various pump powers. The total width was defined by

the points at one-third of the maximum intensity for either lobe. The width of the

notch was defined by the half-maximum points relative to the maximum intensity

of the lobe and to that in the notch, i.e. I = (Imax + Inotch)/2. The duration was
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Figure 5.7: Interferogram of phase mask (a) and resulting intensity distribution of input pulse (b).

Streak camera traces of the output pulse of the waveguide at low (c) and high power (d). Cross

sections of the output pulse at low and high power in the transverse direction (e) and in time (f).

Panels b, c and d share a colour scale and are plotted on the same vertical scale.
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Figure 5.8: Extracted full width in transverse direction and width of the dark notch (a. left and

right), duration of the left- and right-hand side (LHS and RHS) lobe (b) and spectral width (c)

versus pulse energy. Results of numerical simulations shown in solid lines of the same colour.

again defined as the FWHM whilst the spectral width was defined as the full-width

at one-third maximum. Figure 5.8 shows the extracted parameters versus pulse

energy. The maximum pulse energy here is slightly less than that in the previous

section due to the additional optics required.

With increasing power above 10 fJ the total width of the distribution increases

by 10 % whilst the dark notch decrease in width by 30 %. In the ideal case the

dark soliton is a dip in intensity on a bright background extending to infinity at

either side. The width of the dark notch is then set by the balance of nonlinear

and diffractive phases. The observed behaviour therefore represents the distribution

moving towards that of a dark-soliton as observed in Chapter 4.
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At low power either lobe is dispersed in time to approximately 4.5 ps whilst the

output spectrum has a top-hat shape and a bandwidth of 5.5 meV, similar to that

observed for the temporal soliton at this detuning in Section 5.2. The reduction in

bandwidth here with respect to the input is due to the finite range of wavenumbers

of the pump and thus the limited coupling efficiency, and to absorption near the

exciton line.

At high power both lobes of the wavepacket undergo a temporal narrowing of

20 % accompanied by a reduction in spectral width of 30 %. In Section 5.2 it was

shown that such a reduction in the time-bandwidth product was indicative of the

formation of a bright-temporal soliton.

The wavepacket therefore simultaneously demonstrates properties of both dark-

and bright-solitons and can be described intuitively as a dark-spatial soliton form

between two bright-temporal solitons. Whilst a similar hybrid has been predicted

[123] this is the first time that this particular flavour of spatio-temporal soliton has

been observed and is only made possible by the properties of the system. This

behaviour is qualitatively reproduced by the results of numerical calculations.

5.5 Discussion and conclusion

In this chapter the experimental evidence for solitonic propagation in polariton

waveguides was presented; the foremost of which is the significant temporal nar-

rowing above a threshold energy and the independence of ToF on wavenumber.

This soliton behaviour is ascribed to the strong-coupling in the system which is

evidenced by the linearity of input versus output power, the strong dependence on

detuning, and the presence of co-propagating, non-solitonic background.

This experimental evidence is supported by numerical solution of Equations 5.1

shown overlaid in Figures 5.3 and 5.8 with which there is semiquantitative agreement.

The results of the numerical calculations are summarised in Figure 5.9. At low

power the wavepacket has the characteristic temporal profile with a sharp leading

edge and long tail in both the lossless and lossy cases. With increasing power
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Figure 5.9: Numerically calculated time- and frequency profile at the end of the waveguide for the

lossless (a, b) and lossy (c, d) cases. Evolution of the pulse at different points along the waveguide

including loss below (e) and above (f) the soliton formation energy. The analytical solution for the

lossless case is shown in red in panel f.

the wavepacket becomes increasingly short and symmetrical in time reproducing

the behaviour observed in the experiment. Whilst the behaviour in each case is

qualitatively similar it is clear that the introduction of losses in the system limits

the temporal compression at the end of the waveguide.

In the frequency domain however these two cases differ significantly. In the

lossless case the pulse initially undergoes spectral narrowing before increasing as

extra harmonics are generated through self-phase modulation, whilst in the lossy case

the pulse undergoes a spectral narrowing into a central soliton energy as observed

experimentally. In the later, the simultaneous narrowing in time and frequency

serves to maintain the same time-bandwidth product given by the transform-limit

of the soliton envelope.

In the experiment it was not possible to observe the same soliton at several

physical positions. It is therefore instructive to examine the pulse shape of the
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numerically calculated pulse as it propagates along the waveguide. The calculated

profile of the wavepacket at low and high power along the waveguide is shown in

Figure 5.9e and f. At low power the sub-picosecond pulse injected to the waveguide

disperses as it travels, acquiring the characteristic shape indicative of the GVD-

induced chirp and increasing in duration. This similar to the dependence on detuning

- and thus position in terms of dispersion length - observed experimentally. At high

power however the wavepacket maintains the same shape but increases it duration

as it propagates, thereby adiabatically accommodating the losses.

This dilation of the soliton to accommodate loss is further supported by com-

parison with an analytical solution to Equation 5.1 which can be obtained in the

absence of loss and neglecting the transverse direction (see Appendix B). This ana-

lytical solution is shown overlaid in Figure 5.9f. The agreement between this ideal,

analytical soliton solution and the numerically calculated profile illustrates that at

each point along the waveguide the wavepacket is solitonic and that between each

point the soliton looses energy and must adjust its size correspondingly.

In Section 5.2.1 the threshold power for soliton formation was used to deduce

the nonlinear parameters of the waveguide, γ = 18000 W−1m−1 and n2 = −1.6×

10−14 m2W−1 . It should be noted that this is an effective nonlinear refractive

index used to allow a comparison between bulk media and this system in which

the physics behind the nonlinear effects are derived is very different. It is clear

however that the nonlinearity here is more than three orders of magnitude larger

than 6× 10−18m2W−1 found in silicon [56, 78] and InGaP [55] which have recently

been used in a suspended PhC waveguide geometry. In those systems solitons were

formed at pulse energies of 12 pJ for InGaP and 9 pJ for silicon, well above the

0.45 pJ deduced at the input grating in this system. Furthermore the effective mode

areas are smaller (∼ 0.5 µm2) and the physical lengths much longer (3.6 and 1 mm

respectively) than in the waveguide polariton system, both of which serve to reduce

the threshold power and the latter at the expense of increased circuit size.

It is also important to compare this nonlinearity to III-V waveguides in the weak

coupling regime. In the 1997 work of Bélanger et al [124] soliton-like pulses were
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generated in a 2.5 mm long AlGaAs waveguide at pulse energies of 40 pJ from which

a nonlinear parameter of γ ∼ 20 W−1m−1 may be inferred. This agrees with their

quoted nonlinear refractive index n2 = −1.82 × 10−17 m2W−1 given the effective

area 5 µm2 and wavelength 820 nm. The utilisation of strong coupling therefore

affords an increase of nearly three orders of magnitude in the nonlinearity.

Finally it is worthwhile to consider how the soliton velocity, which would govern

data transmission rates, compares with other systems suitable for on-chip soliton

devices. In Section 5.3 it was shown that the soliton velocity strong depends on

detuning from the exciton line and varies between 32 and 49 µm ps−1 corresponding

to a group index between 6.2 and 9.4. This is comparable to a group index of 8 and

30 quoted in Refs. [55] and [56] respectively and is only a factor ∼ 2 higher than

3.477 for bulk silicon at 1550 nm which may be considered as the upper limit on the

speed of light for on-chip semiconductor photonic devices.

In conclusion the strong-coupling between the photon and exciton modes of the

waveguide provides a massive group velocity dispersion of 400-1000 ps2m−1 which

can be balanced against the effective nonlinearity of γ = 18000 W−1m−1 that

arises from inter-particle interactions inherited from the exciton component to form

solitons at record breaking low-power and short formation lengths. Whilst this

GaAs-based systems operates a 5 K it has been demonstrated that polariton and

their nonlinearities can persist up to room temperature in wide bandgap materials

such as GaN [112] and ZnO [125]. It can therefore be envisaged that such effects

could be realised at high temperature and indeed it has been demonstrated that

long-range propagation in the linear regime is possible in GaN waveguides [29].
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Chapter 6

Future plans and conclusions

Polaritons in semiconductors waveguide were first investigated in the late 1980s

and early 1990s but failed to make the same impact as semiconductor microcavi-

ties which during the two decades following their first observation have been shown

to be rich vein of interesting physics. The lack of progress made with waveguide

scheme may be attributed in part to the lack of direct access to the polariton dis-

persion which was a boon to studies in microcavities. However the last twenty years

has also seen considerable advances in photonics which allow the dispersion of light

to be engineered through the creation of photonic crystals and integrated grating

couplers. Through the use of such integrated grating couplers in Chapter 3 the for-

mation polaritons in a semiconductor waveguide was unambiguously demonstrated

by the direct observation of the characteristic anti-crossing behaviour indicative of

the strong coupling regime between the exciton and photon modes. This represents

a significant advancement on previous studies where the presence of polaritons could

only be inferred [27, 28, 29].

In Chapter 4 it was shown that the repulsive interactions between polaritons,

inherited from exciton parent species manifest in the optical properties as a giant

nonlinearity akin to a Kerr material. The negative sign of the nonlinear refractive

index results in the defocussing of a high intensity beam travelling through the

waveguide. This optical nonlinearity was then shown to support the formation of

dark spatial solitions. By imprinting either a phase jump or a dip in intensity either

95
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a single dark soliton, or pair of soltions could be generated. As the refractive index

is reduced in the high intensity regions, the dark notch of the soliton has a higher

index it was suggested that this could be used to create re-writeable waveguide or

y-splitter router in a future polaritonic device.

In Chapter 5 it was shown that the anti-crossing region of the polariton disper-

sion gives rise to a massive GVD. This was shown to cause a dilation of a 100 fs

duration pulses injected into the waveguide to several picoseconds. At high power,

and thus high particle densities the nonlinear effect from polariton-polariton inter-

actions cancels this GVD to form a bright temporal soliton. This was evidenced

by both a narrowing in duration relative to the linear case and by observation of a

linearisation of the dispersion for the soliton through time of flight measurements.

By virtue of the comparable formation-length and loss-lengths it was found that in

the presence of loss the soliton adiabatically adjust its duration and spectral width

in order to maintain its time-bandwidth product. Finally due to the comparable

nonlinear-, dispersive- and diffractive-lengths the waveguide polariton system was

shown to simultaneously support the formation of dark-spatial solitons and bright

temporal solitons form a previously unobserved variety of spatio-temporal soliton.

Future work on waveguide polaritons should be directed towards the creation

of circuit elements and interconnects using ridge waveguides or photonic crystals

to exploit the advances in photonics and nonlinear properties of polaritons. By

reducing the dimensionality to a wire the interactions between polaritons should

play a greater role, reducing the threshold powers for the onset of the nonlinear

effects such as temporal solitons observed in this thesis. The squeezing of light in

these temporal solitons could be investigated using an Sagnac interferometer [122]

fabricate on-chip using ridge waveguides.

Preliminary work has already been conducted on ridge waveguide and has sug-

gested that the transmission of a resonantly injected beam through the waveguide

can be reduced by establishing a exciton reservoir using a non-resonant beam some-

where along its length. Alternatively with higher non-resonant excitation where

exciton reservoir begins to dissociate the transmission through the waveguide could
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actually be increased above that expected for pure photons which suggests the ampli-

fication of the polariton signal. A question for the future is whether the attenuation

of the transmitted signal is due to interaction with the exciton reservoir which es-

tablishes a potential barrier as seen in microcavities [43] or if this is due to increased

absorption by the broadened exciton line. This should be investigated using weak

grating couplers along the length of the waveguide to observe the blueshift, if any,

of the resonant beam. In either case the exciton reservoir could equally be created

by electrical injection allowing for electrical control over the transmission. A fur-

ther question is whether at high power the quenching of the strong coupling regime

simply suppress losses in the waveguide or if the increase in transmission is actually

an amplification by stimulated emission of radiation.

Finally it was also found that by changing duty period the grating couplers could

be made to act as second order DBR mirrors forming a Fabry-Pérot cavity along the

length of the wire. The spacing between these modes observed in the PL emission

was found to change with the length of the wire. At high power where excitons in the

reservoir begin to dissociate it was found that one of these modes would blueshift and

increase nonlinearly in intensity. This too poses a question for the future, as whether

this nonlinear increase in emission is due to the lasing which could be investigated

through the coherence properties of the emission. In any case the leaked emission

through the DBR mirrors formed by the grating could be fed into another waveguide

where the strong-coupling regime is regained. The free carriers here could also be

electrically injected to create an electrically controlled source of polaritons on-chip.

In conclusion the work described in this thesis lays the foundation for further

studies into waveguide polaritons. It re-establishes the waveguide polaritons as an

alternative to microcavities and highlights their specific advantages for the creation

of polaritonic devices and to all-optical information processing.
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Appendix A

Fitting the polariton dispersion

Characteristic information about the polariton dispersion can be extracted from

angle-resolved PL spectra by fitting to a two coupled-oscillator model. This appendix

describes how this was achieved.

Angle-resolved spectra were first rescaled into energy-momentum space. The

position of the LPB was then extracted from the spectrum by fitting a Lorentzian

function to cross sections taken at a particular energy. In order to achieve a robust

fit the two coupled-oscillator model must first be rearranged. Recalling Equation 1.8

and neglecting the contributions of the photon and exciton linewidths the energy of

the LPB is:

ELP (β) =
1

2

(
EC(β) + EX −

√
(h̄Ω)2 + ∆2

)
(A.1)

where ∆ = Ec(β)−Ex . Denoting δ = ELP (β)−EX Equation A.1 can be rearranged

to give: (
Ω

2

)2

= δ2 + δ∆ (A.2)

Within the narrow range of energies spanning the anti-crossing region the pho-

tonic waveguide mode can be approximated as a linear function of wavenumber as

in Equation 1.3. Substituting into Equation A.2 yields:(
Ω

2

)2

= δ2 + δ
(
h̄vcgβ + E0 − EX

)
(A.3)

Plotting δβ versus δ yields a 2nd order polynomial in δ which can be fitted using

the least squares method to obtain the Rabi splitting and group velocity of the bare
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Figure A.1: Detuning of the LPB multiplied by the external in-plane wavenumber plotted against

the detuning showing the result of a least squares fit (a). Extracted dispersion and fitted dispersion

using coefficients from least squares fit (b).

waveguide. As the effect of the diffraction grating coupler is to shift the disper-

sion in momentum space by ±Λ this can further be simplified using the external

wavenumber kz by instead plotting δkz versus δ .

Figure A.1a shows the extracted position of LPB in this rearranged parameter

space and the result of a least squares polynomial fit. The coefficients were then

rearranged to give the device parameters and used to calculate the dispersion shown

in Figure A.1b.



Appendix B

Analytical soliton solution

The set of equations describing the exciton-photon coupling accounting for the dom-

inant nonlinearity arising from two-body interactions between excitons is given by

Equations 5.1. Neglecting loss (γC = γX = 0) and disregarding diffraction trans-

verse to the direction of travel (∂2xA = 0) this reduces to:

2iβ
(
∂z + v−1g ∂t

)
A = −k2Xψ (B.1a)

−2i∂tψ = κA− g|ψ|2ψ (B.1b)

The conservative solitonic solutions are parameterised by the soliton frequency δs

and velocity vs and can be sought in the form:

ψ = ρψe
iδsτ+iθψ (B.2a)

Ai = ρAe
iδsτ+iθA (B.2b)

where ρψ, ρA, θψ and ρA are all real functions of τ = t − zvs . Substituting the

anzats from Equations B.2 we obtain expression for the amplitudes ρψ and ρA of

the field:

ρ2ψ =
1

gµ

4σ(1− σ2µ2δ2s)
cosh(σµ

√
1− σ2µ2δ2sτ) + σµδs

(B.3a)

ρA = σρψ (B.3b)

where σ2 − vs
vs−vg and µ2 = β

κvgk2
.
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The expression for the phases θψ and θA of the fields are given by the integrals:

θψ =
1

2
σ2δsτ −

3g

8
−
∫ τ

−∞
ρ2ψdτ

′ (B.4a)

θA =
1

2
σ2δsτ −

g

8
−
∫ τ

−∞
ρ2Adτ

′ (B.4b)
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and E. Giacobino, “Parametric Polariton Amplification in Semiconductor Mi-

crocavities,” Physical Review Letters, vol. 87, p. 127403, Aug. 2001.

[36] D. N. Krizhanovskii, D. Sanvitto, A. P. D. Love, M. S. Skolnick, D. M. Whit-

taker, and J. S. Roberts, “Dominant effect of polariton-polariton interactions

on the coherence of the microcavity optical parametric oscillator,” Physical

Review Letters, vol. 97, no. Sept. , pp. 1–4, 2006.

[37] D. N. Krizhanovskii, D. M. Whittaker, R. A. Bradley, K. Guda, D. Sarkar,

D. Sanvitto, L. Vina, E. Cerda, P. Santos, K. Biermann, R. Hey, and M. S.

Skolnick, “Effect of Interactions on Vortices in a Nonequilibrium Polariton

Condensate,” Physical Review Letters, vol. 104, pp. 1–4, Mar. 2010.

[38] T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemâıtre, E. Galopin,
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