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Abstract

In ceramic samples of the material, (BiFe1-xCoxO3)0.4-(Bi1/2K1/2TiO3)0.6 (BFC-

BKT), a new kind of nano-sized region, so called multiferroic clusters (MFC)

were found at room-temperature. These exhibit the largest reported

magnetoelectric (ME) coupling coefficient, α ≈ 1.0 x 10-5 s/m (corresponding

to a Voltage coefficient dE/dH ≈ 1300 V/(cm Oe)) for a single phase 

multiferroic so far, to the best of the author’s knowledge. Furthermore, they

are ferroelectric and ferrimagnetic at the same time, which has not yet been

observed directly in one material. Using a broad range of experimental

techniques, formation of the MFC has been understood in terms of the non-

ergodic relaxor properties and ferrimagnetism in inherent Bi(Fe,Co)O3 rich

regions. Furthermore, the presence of magnetic nanoregions (MNR) was

confirmed and their formation and role in ME coupling are discussed.

Solid solutions of the system (PbZr0.52Ti0.48O3)1-x-(PbFe2/3W1/3O3)x (PZT-

PFW) were prepared which, however, did not show ME effects.

Nevertheless, analogies to BFC-BKT concerning occurrence of

characteristic magnetic phases were established.

Since piezoresponse force microscopy (PFM) played an important role in

this study, the method was subject to detailed investigations concerning e.g.

the signal stability. Among others, it was found that it is highly beneficial to

use diamond coated tips in PFM.

In addition, a useful and easily applicable technique for distinguishable

marking of micro-sized areas has been developed.

It is expected that especially the findings on BFC-BKT will have wider

implications, as they enable an entirely new perspective for such relaxor-

type ferrimagnetic multiferroics, which were barely considered in research so

far. The relaxor properties are expected to play an important role in the

strong ME coupling. Since the MFC are well-separated and offer large ME

coupling, they are suitable to serve as bits in an electrically controlled

magnetic nanodot storage device (MERAM). Various possibilities, the for

realization of such a device are discussed.
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1 Introduction

Motivation1.1

Single-phase magnetoelectric (ME) multiferroics are materials which display

both ferroelectricity and magnetism in the same phase and exhibit coupling

between the respective order-parameters. Since their ‘birth’ in the late 19th

century, ME multiferroics have attracted scientists’ attention because of their

multiple order parameters and their ability for coupling between them.

However, these materials are not only attractive because of their rich and

complex physics but also for their prospects in sensor and memory

technology. Anticipated applications are e.g. the creation of a four-state bit

for data storage [1], magnetic sensors [2], [3], magnetoelectric memory [4],

[5] and voltage-driven magnetic tunnel-junctions [6]. After a climax in

research on multiferroics and magnetoelectrics in the 1970s followed by a

decline in the subsequent two decades, there has been a steep rise in the

number of publications in this area since 1998. It is an important area of

research with the number of publications in this field having increased

almost constantly over the past 25 years with 1496 articles published in

2014 (see Figure 1).
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Figure 1 Number of publications from 1990 until 2014 as returned for the topic
words "multiferroic" or "magnetoelectric" or equivalent words (source:
www.scopus.com).

However, despite the fact that extensive research has been carried out, no

single-phase multiferroic with both ferroelectric order and strong magnetism

at room-temperature has been reported to date. In addition single-phase

multiferroics usually only display weak ferromagnetic (WFM) behaviour at

room-temperature, which arises from antiferromagnetic order with spin-

canting that causes low magnetic susceptibility and in turn limits ME

coupling [7]. It is the aim of this thesis, to show pathways to new single-

phase multiferroics that display strong ME coupling but also to make a

contribution towards understanding of the complex underlying physics of ME

coupling mechanisms and occurrence of ferroelectricity and magnetic order

at higher temperatures.

Scope and outline of this thesis1.2

Perovskite based single-phase multiferroics displaying ME coupling at room-

temperature are the main scope of this thesis. BiFeO3 based solid solutions

have been investigated in the author's research group for many years and



- 3 -

had previously been combined in solid solutions with other ferroelectric

perovskites such as PbTiO3 or Bi1/2K1/2TiO3 to influence their properties.

Thus these and related materials are the main focus of research for this

project with the ultimate goals to find compositions with enhanced properties

and to investigate mechanisms for ME coupling on a microscopic level.

To this extent, particular emphasis lies on investigation of ME properties on

the micro- and nano-scale, using microscopy techniques such as

piezoresponse force microscopy (PFM) and magnetic force microscopy

(MFM), which are both based on atomic force microscopy (AFM). PFM and

MFM are capable of investigating a material’s dipolar electric and magnetic

structure, respectively, with high spatial resolution. When they are combined

with applied magnetic and electric fields respectively, they can be used to

study ME effects locally. It is hoped that using these local techniques,

coupling mechanisms in single-phase multiferroics, which are complex and

not well understood yet, can be elucidated. Here, PFM under in-situ

magnetic field is of particular importance, because in-situ experiments are

expected to be particularly valuable for this purpose. In this context, the

reproducibility of PFM signals is carefully investigated with the prospect of

quantification of the ME coupling coefficients on a local scale.

Of course, local measurements need to be correlated with macroscopic

properties to yield a complete picture of a material. Thus extensive studies of

the macroscopic properties such as magnetic and dielectric behaviour,

crystal structure and magnetic structure will be presented.

This thesis is organized in following chapters:

Chapter 1 outlines motivation and scope of this thesis, which is followed by

an introduction into the fields of ferroelectrics, magnetism and multiferroics.

Finally, background information regarding crystal structure and properties of

materials investigated in this thesis, are given.

Chapter 2 aims at giving a concise but complete overview to all relevant

methods and analytical techniques which are grouped into three categories:

structural or chemical, electrical and magnetic characterisation techniques.

Special emphasis lies on the technique PFM, the underlying contrast

mechanism and signal representation.
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Chapter 3 deals with statistical experiments on signal stability as well as

practical aspects and common artifacts in PFM.

Chapter 4 describes a simple and inexpensive method which was

developed in the course of this project, for marking of many individual micro-

sized areas on a sample for investigation via microscopy.

Chapter 5 presents investigations of the multiferroic properties of the

system (PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x (PZT-PFW). Special emphasis

lies on the complex magnetic structure which is studied in detail.

Chapter 6 is the most important and extensive chapter. It presents results

of detailed multiferroic investigations of the composition (BiFe1-xCoxO3)0.4-

(Bi1/2K1/2TiO3)0.6 BFC-BKT. Local investigations of ME coupling are among

the most important experiments in this chapter.

Chapter 7 gives general conclusions and summarizes most important

findings of the whole project. Furthermore, plans for the future work are

outlined.

Perovskite crystal structure1.3

Many binary transition metal-oxides exhibit similar crystal-structures as the

mineral perovskite CaTiO3 named after Russian mineralogist Lev Perovski

and are usually referred to as ‘perovskites’. This class of materials is by far

the most important class of ferroelectric and piezoelectric materials. They

have a general composition of ABX3 where A is usually a large cation

bearing a 2+ charge such as Ba2+ and Pb2+, B is a smaller 4+ charged ion

such as Ti4+ and X is O2- for the vast majority of perovskites. However,

differently charged cations such as in BiFeO3 with both A and B atoms

having a 3+ charge are also common. Recently, perovskites with A+B2+X-
3

where X is a halide ion (F-, Cl-, Br-, I-) and A being an organic alkyl

ammonium cation have attracted significant attention in solar cell research

[8]. It is also possible that one lattice site is occupied by different ions where

the average charge needs to be appropriate so that charges are balanced.

This is for example the case for PbMg1/3Nb2/3O3 where 1/3 of all the B-sites

is occupied by Mg2+-ions while 2/3 are occupied by Nb5+-ions which yields
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an average charge of 4+ for the B-site. In such a case where the

stoichiometry is fixed to certain proportion of ions defined by their charge,

the material is referred to as complex perovskite. Cations can be distributed

statistically i.e. disordered on a lattice site which often leads to so-called

relaxor properties (see Section 1.4.3) ). However, they can also occupy one

lattice site in an ordered manner which leads to superstructures.

The ideal cubic perovskite unit cell can be described as follows: A-atoms

occupy the corners of a cube which are surrounded by 12 X-atoms in the

form of a cuboctahedron. In the centre of the cube, there is a B-atom which

is coordinated octahedrally by 6 X-atoms which occupy the face centres of

the cube. Alternatively, this unit cell might be described by a face centreed

cubic (fcc or cubic close packing) lattice consisting of A- and X-atoms with

B-atoms occupying one quarter of the octahedral interstices.

The unit cell might also be chosen that B-atoms occupy the corners while

A-atoms occupy the centre of the cube. These two different unit cells are

displayed in Figure 2 with coordination spheres illustrated by red bars.

Figure 2 Schematic perosvkite unit cells with A-site, B-site and oxygen atoms in
brown, blue and red respectively. The labels give examples for common
atoms A-,B- and X-site atoms.

Often different perovskite compounds form a solid-solution which form a

homogenous compound across the whole compositional range. These are

called mixed perovskites where two different end member perovskites are

‘mixed’ which is illustrated by a hyphen between the chemical formulas of

the corresponding perosvkites. An example of such a mixed perovskite is the
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system (BiFeO3)x-(PbTiO3)1-x where the proportion of the two components is

given by x. Another prominent example is (PbZrO3)0.52-(PbTiO3)0.48 (lead

zirconate titanate, PZT) which is usually written as PbZr0.52Ti0.48O3. It is the

most important ferroelectric and piezoelectric material from an application

point of view and will be used as an exemplary material later (see Section

1.4.2).

Ferroelectrics1.4

Generally, ferroelectrics belong to the family of dielectric materials which are

insulating and can be polarized by an electric field due to spatial separation

of positive and negative charges.

Ferroelectric materials however, exhibit a spontaneous polarization without

application of an electric field below the Curie temperature TC. This

polarization is furthermore reversible by an electric field. Above TC,

ferroelectric materials lose their microscopic spontaneous polarization and

become paraelectric. Usually, ferrroelectrics also display a characteristic

hysteretic polarization vs. electric field (P-E) behaviour which is illustrated in

Figure 3.

Figure 3 Characteristic polarization vs. electric field (P-E) hysteresis-loop [9].

To reduce the overall electric field which also reduces the systems energy,

ferroelectrics form ferroelectric domains that are micro- or nanometre-sized
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regions with uniform direction of polarization. These domains are randomly

oriented if the material has not been subject to an electric field, which leaves

the material without a macroscopic net-polarization. When a sufficiently large

electric field is applied to the ferroelectric, its domains align in the direction of

the electric field which gives rise to a net-polarization until a saturation-

polarization PS is reached. Even without an external electric field, the so-

called remanent-polarization Pr remains. This polarization can be brought

back to 0 by application of an inverse field with the strength Ec which is the

coercive field. When the electric field is inverted, polarization in the opposite

direction starts to occur until negative saturation is reached. The hysteresis

loop is completed when the electric field direction is inverted once again

until positive saturation is reached (Figure 3).

Another parameter that is characteristic for a ferroelectric is permittivity

which describes a material's ability to transmit an electric field and how much

electric field or flux is generated per unit charge in that medium. The more a

material is polarizable, the higher is the electric displacement field generated

per unit charge and the higher is the permittivity. The electric flux is however

inversely proportional to permittivity. The relative permittivity r is related to

the electric susceptibility e which is the constant of proportionality between

an electric field E and induced dielectric polarization P:

ܲ = ߝ ߯ܧ

Equation 1-1

where

ߝ = ߯ + 1

Equation 1-2

with the vacuum permittivity 0 ≈ 8.854 • 10-12 F/m.

Since many ferroelectrics have a permittivity far above 100, r can often be

assumed to be e in good approximation.

The permittivity is an essential parameter, which is frequently used to

characterise phase transitions the ferroelectric to the paraeletric phase at the

Curie temperature TC (or Curie point), which is shown with r =  in Figure 4.
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Figure 4 Characteristic development of permittivity and saturation polarization PS

vs. temperature for a first and second order phase transition [10].

At the phase transition,  becomes very large, exhibits a sharp maximum

and falls off above TC according to the Curie-Weiss law:

ൌߝ ߝ +
ܥ

ܶെ ܶ
≈

ܥ

ܶെ ܶ

Equation 1-3

where C is the Curie constant and T0 is the Curie-Weiss temperature which

is smaller or equal to TC.

Generally, two kinds of phase transitions, first order and second order, are

usually distinguished. In a first order transition the order parameter which is

the polarization in this case, exhibits a discontinuity at the phase transition

while for a second order transition, the polarization changes continuously,

but its first derivative is discontinuous at the transition temperature.

Examples of ferroelectrics that display first and second order phase

transitions are BaTiO3 and LiNbO3 respectively [10].

Ferroelectric phase transitions in BaTiO31.4.1

BaTiO3 is certainly the standard model ferroelectric, since it exhibits a

number of structural phase transitions into various crystal systems typical of
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perovskite ferroelectrics, and has been intensively studied. These phase

transitions are illustrated in Figure 5.

Figure 5 Ferroelectric phase transitions in BaTiO3 [11].

Although BaTiO3 exhibits several ferroelectric phase transitions, only the

highest transition temperature where, upon cooling ferroelectricity occurs

first, is defined as the Curie temperature. This is the transition from the

paraelectric cubic phase, to the ferroelectric tetragonal phase at

approximately 130 °C. When cooling further below 0 °C, the structure

changes from a tetragonal to an orthorhombic one, until a final phase

transition to a rhombohedral crystal structure occurs at -90 °C.

Ferroelectricity in perovskites is mostly due to the off-centre position of the

B-site cation (in some cases, it is due to the movement of A-site cations). In

cases where there is a shift of the B-site cation, it is shifted towards the

<100>, <110> or <111> direction of the cubic system for tetragonal,

orthorhombic or rhombohedral crystal-classes respectively. If we consider

the B-cation relative to the surrounding oxygen octahedron, these

movements correspond to the B-cation moving closer to a corner, an edge

or a plane of the octahedron respectively. This relation illustrates the

resulting symmetry as well as the number of equivalent directions of B-cation

movement. Figure 6 shows idealized perovskite unit-cells for tetragonal,
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orthorhombic and rhombohedral symmetry and lists the corresponding

directions of B-cation displacement and the number of equivalent directions.

Figure 6 Schematic perosvkite unit cells representing the three major ferroelectric
crystal systems. The directions of polarization referenced to the cubic
prototype cell and the number of equivalent directions are given underneath.

Note that B-site ion displacements are exaggerated for clarity. The angles

between the directions of B-cation displacement define possible angles

between ferroelectric domains for different crystal systems. These angles

are 90° and 180° in case of tetragonal and 71°, 109° and 180° in case of

rhombohedral. Furthermore, the polarization direction gives the number of

equivalent directions which are 6,8 and 12 in tetragonal, orthorhombic and

rhombohedral crystal systems respectively. The number of equivalent

directions are important for poling of polycrystalline ceramics where a higher

number of equivalent directions allows for domains in a polycrystalline

ceramic to align with the field direction more effectively.

Morphotropic phase boundary1.4.2

The morphotropic phase boundary (MPB) is defined as a (nearly)

temperature independent phase boundary between differing symmetries due

to compositional change [12]. Its role will be explained by a very prominent

example, PZT, which is by far the most important piezoelectric material for

actuators and transducers and has been the subject of intense research.
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PbTiO3 is a tetragonal ferroelectric with space group P4mm and a Curie

temperature of 490°C [13] while PbZrO3 is orthorhombic and antiferroelectric

with a Curie temperature of approximately 228°C [14].

Often it is useful to write mixed perovskites in the form (PbZrO3)x-(PbTiO3)1-x

instead of PbZrxTi1-xO3, which facilitates understanding the relationship

between structure and composition, since the structure of the mixed

perovskite depends on the structure of the two (end members) perovskite

components. Usually end members with different symmetry are combined in

a mixed perovskite and the structure of the mixed perovskite usually adopts

the symmetry of the high content end member with a compositional region of

mixed symmetry between the two extremes. This behaviour can be

observed in the phase diagram of PZT shown in Figure 7.

Figure 7 Phase diagram of PZT [15].

The phase diagram shows that the mixed perovskite adopts orthorhombic

(Pbam) and tetragonal (P4mm) symmetries of the pure components PbZrO3

and PbTiO3 respectively where these are in high concentration. When going

from low to high PbTiO3 concentrations (from left to right in Figure 7), several

MPBs are crossed where the crystal structure changes from orthorhombic

(Pbam) to monoclinic (Pc) to rhombohedral (R3c). More recent
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investigations suggested the existence of a monoclinic (Cm) phase at the

important MPB at x = 0.52 which separates rhombohedral and tetragonal

structures [16], [17].

The outstanding piezoelectric properties of PZT are attributed to this MPB.

As mentioned in Section 1.4.1, a large number of equivalent directions of

polarization is beneficial for poling of polycrystalline ferroelectric ceramics.

The fact that e.g. piezoelectric coefficients usually peak at the morphotropic

phase boundary in a solid solution is explained by the large number of

equivalent directions of polarization available from two or in the case of PZT

perhaps even three crystal systems. This is illustrated in Figure 8.

Figure 8 Effect of the morphotropic phase boundary (MPB) in PZT. Dielectric
constant (= permittivity, dashed line) and electromechanical coupling
coefficient vs. mole percentage of PbZrO3 in PbZrxTi1-xO3 [18]. Both
permittivity and electromechanical coupling coefficient peak at the MPB.

It can be observed that the dielectric constant or permittivity as well as the

electromechanical coupling coefficient, which is the measure of energy

conversion between electric and acoustic energy for a piezoelectric, have a

very large and sharp maximum at the MPB.

Often rhombohedral and tetragonal end member perovskites are combined

to create an MPB as in PZT which results in 14 available polarization
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directions at the MPB in contrast to 6 and 8 available directions for pure

tetragonal and rhombohedral phases respectively.

Relaxor ferroelectrics1.4.3

There exists another type of ferroelectric material, which is known as relaxor

ferroelectric or relaxor [19]. These are characterized mainly by strong

frequency dispersion of broad relaxation peaks in permittivity vs.

temperature curves and by a lack of macroscopic symmetry breaking at the

phase transition [20]. The frequency dispersion behaviour is displayed in

Figure 9.

Figure 9 Characteristic development of permittivity and saturation polarization PS

vs. temperature of a relaxor ferroelectric [10].

It is widely assumed that this behaviour is caused by chemical disorder in

the lattice of relaxors. This gives rise to charged compositional fluctuations,

which cause quenched random electric fields (random field fluctuation [21])

promoting the freezing of polar nanoregions (PNR) [22], [23]. The

archetypical relaxor which has been studied intensively is PbMg1/3Nb2/3O3.

Relaxor ferroelectrics are commercially important mainly in the form of single

crystals such as (PbMg1/3Nb2/3O3)x-(PbTiO3)1-x (PMN-PT) or

(PbZn1/3Nb2/3O3)x-(PbTiO3)1-x (PZN-PT), which are widely used as sensors

and transducers especially in ultrasound imaging probes and sonar devices

[24]. Furthermore, lead free relaxors attract increasing attention due to



- 14 -

legislation that forbids the use of lead in products [25]. However, so far there

is still a memorandum on lead containing piezoelectric devices like PZT

since lead free cannot yet compete with conventional PZT ceramics.

Ergodic and non-ergodic relaxor ferroelectrics1.4.4

There exist relaxor ferroelectrics where PNR undergo a freezing transition

similar to disordered magnetic spin-glasses [26], [27]. Here, PNR freeze into

a dipolar cluster-glass state on cooling below the low-f peak temperature Tf

[28]. This class of relaxors is connected with the term ergodicity which was

elaborated by Boltzmann from the Greek words for work (ergon) and path

(odos) [29]. A statistical process is termed ergodic when the time average is

equal to the ensemble average. This can be best explained by giving an

example. A process would be ergodic if the average of 106 consecutive

throws of one dice (time average) would be equal to the average of 106 dice

all thrown at once [30]. This would be the case for perfect non-interacting

dice but not if the dice would interact with each other, for example if two

specific sides of the dice were magnetic and would attract or repel each

other. The same is the case for frozen PNR which begin to interact upon

cooling. Here, ergodicity is broken and the relaxor thus behaves glass-like.

Since interactions are frustrated, random polarization directions are obtained

instead of a parallel alignment as in ferroelectrics. Reasonably large external

electric fields, suffice to break the glassy disorder and to align all dipolar

moments at saturation which induces a ferroelectric state. The frozen or

static PNR (SPNR) characteristic for a non-ergodic relaxor ferroelectric differ

from regular domains. While domains are adapted to the crystal lattice via

‘ordered’ fields and covalent bonds, SPNR are stabilized by a local excess of

a certain component of random electric fields which are generated by the

inherent charge disorder of the material. This usually gives rise to irregular

shapes and fractal surfaces of the clusters, unlike for regular domains.

However, SPNR and FE domains behave similarly in that both are polarized

permanently and can be poled.
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Magnetism1.5

The field of magnetism is very broad and complex. Within the scope of this

thesis, only a brief introduction covering relevant aspects will be given.

In principle magnetism arises from two basic phenomena:

 Moving electric charges as caused by an electrical current

 Magnetic moments of elementary particles due to the intrinsic angular

momenta (‘spins’), e.g. of electrons or neutrons

For considerations related to magnetic structure which are relevant in the

context of this thesis, only the magnetic moments of electrons are important

which are also referred to as atomic moments since the magnetic moments

due to nuclei are negligible in terms of magnetization. There exist 5 basic

classes of magnetism in matter: diamagnetism, paramagnetism,

ferromagnetism, antiferromagnetism and ferrimagnetism where the three

latter classes are due to cooperating spins.

Diamagnetism and paramagnetism1.5.1

Diamagnetism is a property of all matter and is an effect of the Pauli

exclusion principle which states that one orbital can only be populated by

two electrons with opposite spins which cancel each other out. Materials

which only contain paired electrons are diamagnetic which is the case e.g.

for pyrolitic graphite or most organic compounds. These materials are

repelled by magnetic fields since they oppose an external magnetic field.

This results in a negative, albeit low magnetic susceptibility m which is the

factor of proportionality between magnetization M and magnetic field H:

ܯ ൌ ߯ Ǥܪ

Equation 1-4

This linear relation is true for diamagnetic and paramagnetic materials in low

fields. Analogously to the relative permittivity (Equation 1-2), the relative

magnetic permeability r is:

ߤ ൌ ߯ + 1.

Equation 1-5
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Paramagnetic materials are materials which contain unpaired electrons that

do not interact. Thus the associated spins, are randomized in the absence of

a magnetic field and yield no net spontaneous magnetization. However, in

an external magnetic field, the atomic dipoles align with the field as

illustrated in Figure 10.

Figure 10 Schematic illustration of paramagnetism and field aligned
paramagnetism. Atomic magnetic moments are oriented randomly in absence
of external magnetic field resulting in no permanent net magnetization. In
presence of magnetic field spins are aligned with field which induces
magnetization.

As a consequence, the material is attracted by a magnetic field and m is

positive but low. Many metals are paramagnetic as well as some organic

radicals or the O2 molecule.

However, when spins interact with each other, this leads to ordered

cooperative magnetic structures which will be treated below.

Ferromagnetism, antiferromagnetism and ferrimagnetism1.5.2

In ferro-, ferri- and antiferromagnetic materials, spins are ordered inside

magnetic domains. This behaviour is often termed magnetically coupled or

magnetically ordered. In magnetically ordered materials there exists an

interaction between the spins which leads to ordering of the otherwise

randomly oriented moments. This interaction is called exchange interaction.

Its sign determines whether moments order ferromagnetically (positive sign)

or antiferromagnetically (negative sign). The simplest type of magnetic order

is ferromagnetism where all spins are aligned parallel. Among all metals,



- 17 -

only few are ferromagnetic at room-temperature such as the well-known

elements Fe, Co and Ni but also Gd. Ferromagnetic materials exhibit

spontaneous magnetization even in absence of a magnetic field (remanent

magnetization). In analogy to ferroelectrics, they exhibit hysteresis and form

microscopic domains. In materials with antiferromagnetic order,

neighbouring moments are aligned antiparallel. Thus all atomic magnetic

moments compensate each other completely, resulting in no net

magnetization. Common antiferromagnetic materials are transition metal

oxides such as -Fe2O3 (Haematite) or Cr2O3 but also BiFeO3. Their

ordering temperature is called Néel temperature, named after the discoverer

of antiferromagnetism Louis Néel. However, there exist forms of

antiferromagnetism where spins do not compensate each other completely.

One of these is ferrimagnetism, where two sublattices are present with

unequal spins, which results in a residual net magnetization. Common

examples of ferrimagnetics are spinel type materials such as CoFe2O4

(cobalt ferrite) or Fe3O4 (Magnetite). The antiparallel spins in

antiferromagnets can also be slightly canted (non-collinear) due to

Dzyaloshinskii-Morya interactions [31] which results in a small residual

magnetization. This is called weak or parasitic ferromagnetism and is

approximately 2-3 orders of magnitude weaker than ferromagnetism.

Examples are -Fe2O3 which becomes weakly ferromagnetic at elevated

temperatures but also thin-film BiFeO3 [32]. The above described magnetic

orders are represented schematically in Figure 11.
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Figure 11 Schematic illustrations of basic magnetic orders. Ferromagnetism: Atomic
moments are aligned parallel resulting in spontaneous magnetization.
Antiferromagnetism: Atomic moments are aligned antiparallel which
compensate each other, resulting in no net magnetization. Ferrimagnetism:
Atomic moments are aligned antiparallel but the two sublattices do not
compensate each other completely, resulting in a net magnetization. Canted
antiferromagnetism: Weak ferromagnetic behaviour arises from canted spins
which do not compensate each other completely. Note that the canting angle
is exaggerated for clarity. Resulting net magnetizations are represented by
black arrows with sizes of arrows illustrating the magnitude of magnetization.

Above the Curie temperature thermal energy overcompensates the

exchange interaction and magnetic order is broken while materials become

paramagnetic.

Despite all analogies between ferroelectric and ferromagnetic materials, an

important difference is however, that while for a ferroelectric material, the

atomic structure always changes when crossing its Curie temperature, this is
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not the case for ferromagnetic materials where only the spin structure

changes.

Cycloidal spin superstructure1.5.3

Apart from the above mentioned magnetic structures, there exist more

complex ones which are not necessarily commensurate with the crystal

lattice. One example is the cycloidal spin structure encountered in bulk

BiFeO3. Below the Néel temperature of TN = 653 K it attains so-called g-type

antiferromagnetic magnetic order. However, the spins are slightly canted

which results in small uncompensated magnetic moments. However, in case

of bulk BiFeO3 this uncompensated magnetization is cancelled out by an

additional incommensurate cycloidal magnetic superstructure, which was

found to have a correlation length of approximately 64 nm [33] as illustrated

in Figure 12.

Figure 12 Cycloidal spin superstructure in bulk BiFeO3 [33].

Superparamagnetism1.5.4

Another class of magnetic materials are superparamagnetics. The word

‘super’ refers to a superstructure of spins (or spins) which as a whole act like

one macroscopic superspin. In superparamagnetic materials, although a

large number of spins couple magnetically to form one superspin, those

superspins are not coupled magnetically to each other but are randomly

oriented like spins in a paramagnet. The classical type of material, where

superparamagnetism occurs is realized by ensembles of magnetic

nanoparticles [34]–[36]. Here, the magnetization of each nanoparticle is so
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small that thermal energy above the blocking-temperature TB can flip their

magnetic moment. As an effect, the material appears to be paramagnetic if

the time constant of the measurement is much higher than the Néel

relaxation time which is the typical time between two flips. However, if

subjected to an external magnetic field, the superspins align with the field

and create the same high saturation magnetization as for a ferromagnetic

material, which is lost immediately once the magnetic field is removed again.

As a result, the magnetization vs. magnetic field behaviour resembles that of

a ferromagnetic material but without any hysteresis or coercivity as shown in

Figure 13.

Figure 13 Characteristic magnetization vs. magnetic field behaviour of
ferromagnetic (—), superparamagnetic (—) and paramagnetic materials (—).

A characteristic of superparamagnetic materials is the blocking transition

which is usually measured using Zero-field cooling (ZFC, or more correctly:

field heating after zero-field cooling, ZFC-FH) and field cooling (FC)

magnetization vs. temperature curves. The sample is cooled first at zero

field to low temperatures (approximately 5 K). During heating, the

magnetization is measured at low fields (approximately 100 Oe) so as not to

align any magnetic moments with the field. At low temperatures, the
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superparamagnetic particles are frozen, i.e. their magnetization does not flip.

However, since no field was applied during cooling, they are in random

orientation (due to high temperature relaxation) which leads to a low

magnetization. Upon heating, the superspins start to melt, and progressively

align with the field leading to higher magnetization. However, at certain

temperatures the nanoparticles also start to thermally relax again which

leads to decreased magnetization. Thus, a characteristic maximum

corresponding to TB appears in the ZFC curve which is shown in Figure 14.

Figure 14 Characteristic blocking behaviour of a superparamagnetic material as
observed with zero-field cooling (ZFC, —) and field cooling (FC, —)
magnetization vs. temperature curves. The maximum in the ZFC curve
corresponds to the blocking temperature TB.

In the subsequent field cooling measurement, the magnetization plateaux

below TB which is typically below 50-250 K for particle sizes in the range of

5-20 nm where smaller particles have lower blocking temperatures [35], [37],

[38].

It is very important to note that superparamagnetism is a dynamic process

and that TB depends strongly on the time constant of the measurement. In

case of a magnetic nanoparticle, there are usually only two stable

orientations of the magnetic moment due to the magnetic anisotropy. These

orientations are antiparallel to each other and separated by an energy

barrier. At temperatures above 0, there is a probability for the magnetic

moment to reverse its orientation. The mean time between two flips of the
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orientation is called the mean relaxation time N which is given by the

following Néel-Arrhenius term:

ே߬ = ߬exp�൬
ܸܭ

݇ܶ
൰

Equation 1-6

where 0 is the so called attempt time which is characteristic of the material

(10-9-10-10 s), K is the magnetic anisotropy and V is the volume of the

magnetic nanoparticle, while kB is the Boltzmann constant and T is

temperature.

If the magnetization of a nanoparticle is measured with different methods,

the result of the measurement will depend strongly on the measurement

times m of the method. When m is much larger than N, the magnetization

of the particle will flip several times during the measurement which results in

a 0 net magnetization and thus in superparamagnetic behaviour. In case m

is much smaller than N, the nanoparticle will appear to be blocked in its

initial state. A transition between the blocked and the superparamagnetic

state will occur at the blocking temperature TB when m N, which is given

below:

ܶ =
ܸܭ

݈݇݊ ቀ ߬

߬
ቁ

Equation 1-7

In contrast to the measurement time dependent blocking transition, a

classical Curie transition from the ferromagnetic to the paramagnetic state, is

static and thus independent of the measurement time.

1.5.4.1 Superparamagnetism in relaxor ferroelectrics

Magnetic nanoparticles are not the only materials which display

superparamagnetic behaviour. It was e.g. also found in single crystals of the

relaxor ferroelectric (BiFeO3)2/3-(BaTiO3)1/3. Here, Soda et al. found that the

magnetic and the atomic coherence length measured by neutron diffraction

and neutron diffuse scattering respectively, were very similar over a wide

temperature range [39]. These short coherence lengths were attributed to
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the presence of PNR and magnetic nanodomains and it was concluded that

the magnetic nanodomains are due to the presence of PNR which give a

spatial constraint to the magnetic nanodomains and thus induce

superparamagnetism.

Also in the relaxor ferroelectric PbFe1/2Nb1/2O3, a superparamagnetic cluster

glass state was found in single crystals below 30 K [40] while TN = 153 K

was found. Interestingly, in thin-films of the same material also exhibiting

relaxor properties, there are blocking transitions at 170 and 200 K found by

Correa et al. [41] and Peng et al. [42] respectively, and weak ferromagnetic

behaviour even above this temperature with superparamagnetic-like M-H-

loop at room-temperature, exhibiting low coercivity.

Multiferroics1.6

Now that both ferroelectricity and ferromagnetism have been introduced, we

will discuss the combination these two phenomena in multiferroics.

The subject of multiferroics is relatively old with first experiments and

prediction of the ME effect dating back to the late 19th century and further

important experiments on Cr2O3 in the late 1950s [7]. The subject gradually

attracted more attention until a climax was reached in the 1970s followed by

a decline in the subsequent two decades, which was mainly due to the low

encountered magnetoelectric coupling coefficients which made applications

elusive. However, as mentioned in the introduction (Section 1.1), the number

of publications in this area is rising steeply since the late 1990s.

Multiferroic materials combine at least two ferroic order parameters which

are polarization P, magnetization M or strain  in the case of ferrelectricity,

ferromagnetism or ferroelasticity respectively [43]. These order parameters

must be spontaneously nonzero below their respective critical termperatures

TC. However, this initial definition was softened to incorporate also

antiferromagnetic or antiferroelectric materials because of their magnetic or

electric order, repectively. Figure 15 schematically illustrates these order

parameters and how they are controlled by their respective driving forces,

viz. electric field E, magnetic field H, and mechanical stress  as well as

possible interactions among them.
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Figure 15 Schematic illustration of possible ferroic order parameters and their
respective driving forces in multiferroics. Involved coefficients are indicated by
red, while mechanisms are illustrated by green arrows (adapted from [44]).

A classic example of such coupling is e.g. electrostriction (or

piezoelectricity), where coupling is between and P in case of the direct and

between E and  for the converse effect. Analogously, coupling between H

and P is called direct while coupling between E and M is called converse ME

coupling.

In case of many multiferroics (e.g. composites) the direct mechanism

between P and M might not be available and becomes necessary as a

mediator in a stress-strain mediated coupling mechanism.

Magnetoelectric coupling1.6.1

The direct linear ME coupling-coefficient is obtained from an expansion of

the free energy density into a power series of the field component, Hj and Ej

[7], and can be represented as follows:

ߙ =
߲ ܲ

ܪ߲

Equation 1-8
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with Pi being the ith component of the electrical polarization and Hj being the

jth component of the external magnetic field, respectively [7]. In simple

words, the linear ME coefficient is the change of polarization with applied

magnetic field. However, one should note that in ferroic materials, the

resultant magnetic field or magnetic flux density B = 0H + M can differ

significantly from the external magnetic field H.

Often especially in the case of composite multiferroics, the so-called voltage

coefficient is used which relates a change of the electric field Ei to the

magnetic field Hj and is connected with ij via :

ߙ
 =

ܧ߲
ܪ߲

= .ߝߝߙ

Equation 1-9

The converse linear ME coupling-coefficient c can be expressed as follows:

ߙ
 = ߤ

ܯ߲

ܧ߲

Equation 1-10

with 0 = vacuum-permeability.

The converse ME coupling coefficient is the change of magnetization with

applied electric field. Like for the direct ME effect, in ferroic materials, also

the resultant electric field or dielectric displacement field D = 0E + P can

differ substantially from E. There exist also higher order coupling coefficients

for example the ‘paramagnetoelectric’ effect (Pi = 1/2ijkHjHk) that was found

in piezoelectric and paramagnetic NiSO4 • 6H2O where polarization depends

bilinearly on the magnetic field [45].

A fundamental limit to ME coupling is the given by electric permittivity and

magnetic permeability [7]:

ߙ
ଶ ≤ ߤߝ

Equation 1-11

This implies that only for materials with both large electric permittivity and

magnetic permeability can be large, too. Therefore, a material should be
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both ferroelectric and ferromagnetic to exhibit a large ME coupling

coefficient.

Classes of multiferroic and magnetoelectric materials1.6.2

In general today two classes of multiferroics are usually distinguished.

 Single-phase multiferroics

 Composite multiferroics

While in single-phase multiferroics the two ferroic order parameters arise

from a single-phase, this is not the case for composite multiferroics which

consist of separate ferroelectric and ferromagnetic phases which are

coupled to each other mechanically.

Single-phase multiferroics1.6.3

As was shown in Section 1.6.1 single-phase multiferroics should ideally be

both ferroelectric and ferromagnetic. However, it can be understood

relatively easily that there is a conflict at least between ferroelectric and real

ferromagnetic order not including any weaker ferromagnetic-like behaviour.

While ferroelectrics are usually metal oxides as in the case of perovskites or

at least metal non-metal compounds, true ferromagnets are usually

conducting metals or metal alloys. Here paramagnetic atoms are nearest

neighbours and the sign of the exchange interaction is positive which leads

to ferromagnetism. In metal-oxide compounds such as perovskites, the

exchange interaction is usually negative due to the superexchange

mechanism mediated by oxygen ions which enables next-to-nearest

neighbour coupling and leads to antiferromagnetic order. Although there are

cases where superexchange leads to ferromagnetic order, this is relatively

rare. A prominent example of a ferromagnetic perovskite is La0.7Sr0.3MnO3

(LSMO), where ferromagnetism is due the double-exchange mechanism

which is enabled by the presence of Mn3+ and Mn4+ ions [46]. This

mechanism is, however, also responsible for the material’s large conductivity

since charges can hop from Mn3+ to Mn4+ ions which makes it unsuitable as

a single-phase mulitferroic because a ferroelectric cannot be electrically

conductive by definition. The potential for applications of LSMO lies mainly in

the area of spintronics.
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Additionally to the above mentioned problems, it was shown by Hill (now

Spaldin) that in general, single-phase multiferroics are very rare [47]. This is

primarily due to the fact that ions with partially filled electron shells as

required for magnetism, reduce the tendency for an off-centre ferroelectric

distortion. This can be best explained by the example of BaTiO3 where Ti 3d-

O 2p hybridization is essential for stabilizing the ferroelectric distortion. For

an effective hybridization, it is important that the d states are unoccupied

while partly filled d states are often unfavourable for the emergence of

ferroelectricity, since these can for example lead to a Jahn-Teller distortion

like in LaMnO3 or YTiO3 which compete against a ferroelectric distortion [47].

Classes of single-phase multiferroics1.6.4

Smolenskii and Chupis divided single-phase multiferroics into four major

groups [48]:

1. Perovskite compounds of general formula ABO3 in which the B cation

sites are partly or fully occupied by magnetic ions possessing

unpaired electrons with A = Bi, Pb, Ba, Ca and B = Fe, Cr, Mn,

Fe1/2/Nb1/2 , Fe1/2/Ta1/2, Fe2/3/W1/3 [46], [49], [50]. It is probably the

largest group of multiferroic materials while BiFeO3 is by far the most

widely studied and perhaps the most promising single-phase

multiferroic due to its high ferroelectric and antiferromagnetic ordering

temperatures. BiFeO3 will be treated separately in more detail in

Section 1.7.1. Perovskite-like layered compounds such as referring to

Aurivilius phases with the general formula (Bi2O2)(An−1BnO3n+1) can be

also counted to this class. They have attracted increasing attention

recently [51] and might be among the most promising single-phase

multiferroics. The superparamagnetic relaxor multiferroics mentioned

in Section 1.5.4.1 also belong to this class.

2. Rare earth manganites possessing hexagonal structure [7], [46], [52]

and general composition RMnO3 where R = Y, Sc, Ho, Er, Lu, Tm and

Yb with the most studied being YMnO3. These are good ferroelectrics

at room-temperature and antiferromagnetic at low temperatures. For

a number of rare earth elements R = Dy, Tb, Nd, Pr and La the
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structure becomes orthorhombic and is not ferroelectric at room-

temperature any more since it becomes centrosymmetric.

3. Boracites with the chemical formula Me3B7O13X, where Me is a 2+

charged ion (M = Cr, Mn, Fe, Co, Cu, Ni) and X=Cl, Br, I [7], [46].

These compounds are often ferroelectrics at room-temperature and

antiferromagnetic sometimes displaying weak ferromagnetic

behaviour at temperatures below 100 K. Probably the most important

one is the nickel-iodine boracite Ni3B7O13I where magnetoelectric

switching was observed in crystals through application of magnetic

fields [53].

4. Flourides with formula BaMeF4 where Me = Mn, Fe, Co, Ni, Mg, Zn

[7], [46]. These have orthorhombic structures at higher temperatures

and display pyro- or ferroelectric properties and antiferromagnetism at

temperatures below 70 K.

As mentioned previously, truly ME multiferroics are very rare. However,

materials which exhibit ME coupling do not need to be multiferroic at the

same time and vice versa. A well-known example is Cr2O3 which is

antiferromagnetic but only electrically polarizable and not ferroelectric [54].

On the other hand there also exist materials which are multiferroic but do not

exhibit ME coupling. These circumstances can be understood by considering

Figure 16 which illustrates schematically a classification of all insulating

oxides with the subclasses of electrically and magnetically polarizable,

ferroelectric, ferro- or ferrimagnetic as well as magnetoelectric materials.
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Figure 16 Schematic illustration of the classification of electrically and magnetically
polarizable and ordered insulating oxides. ME materials overlap with
multiferroic materials but also contain materials which are not ferroic (adapted
from [55]).

Composite multiferroics1.6.5

As mentioned previously, another general class of multiferroics are

composites or heterostructures. This class of multiferroics has become

increasingly popular within the last two decades particularly in the field of

thin-films where new growth techniques have enabled substantial new

research [56]–[58].

The largest number of composites are probably sandwich-type or

multilayered heterostructures. With this class of materials, ME coupling

coefficients could be increased drastically for the first time in almost 30 years

in the beginning of the millennium [7] using laminated Terfenol-D/PZT

heterostructures [59].

Another very important example of multiferroic heterostructures, is the

system BaTiO3-CoFe2O4. Zheng et al. were able to grow epitaxial and self-

assembled hexagonal CoFe2O4 nanopillars in a matrix of BaTiO3 on a SrTiO3

substrate [60] which showed strong ME coupling.

These multiferroic heterostructures sparked significant new research

especially in application driven research, since they combine large coupling

coefficients with high ferroelectric and magnetic Curie temperatures.
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An important example of possible applications of magnetoelectric materials

are sensors of magnetic fields. For this purpose, Lage et al. developed

cantilever systems consisting of piezoelectric AlN, coated with a series of

exchanged biased magnetic layers. When these cantilevers are excited at

resonance, they are extremely sensitive to AC magnetic fields due to the

magnetostricitve layer [2].

It is also possible to form heterostructures of single-phase multiferroics and

e.g. magnetic materials. This is the case for a thin-film microstructured

system where the magnetization of a ferromagnetic layer of Co0.9Fe0.1 which

is deposited on top of an epitaxial BiFeO3 thin-film, can be switched by 180°

by reversing the polarization of the BiFeO3 film using a voltage. In this way a

voltage driven spin valve becomes possible [61], which is operated current

free and thus, is much less energy consuming than current technologies. A

patented technique for ME memory based on voltage driven switching of

magnetization in the layered MF system (Co/Pt)nCr2O3 has been already

developed which is comparable to the above system [4].

Magnitude of the magnetoelectric effect1.6.6

As mentioned in Section 1.6.3, a crucial drawback of single-phase

multiferroics is that they usually exhibit only weak magnetic properties at low

temperature. Due to the limitation set by the low magnetic permeability (see

Equation 1-11), single-phase multiferroics usually only display weak ME

coupling [7].

Coupling-coefficients reported for these materials are typically between 10-12

– 10-10 s/m [7], [58], [62]–[64], which is relatively low and in combination with

the low temperatures at which magnetism appears, seems to make them

unsuitable for practical devices.

In contrast, state of the art composite multiferroics exhibit much higher

coupling-coefficients than single-phase materials and are of the order of 10-8

– 10-6 s/m [2], [7], [65], [66] at room-temperature. However, we need to

mention that some care should be taken when comparing the linear ME

response of single-phase and composite materials. In order to permit such

an analogy the ME coupling-coefficient for composites is usually defined as

an AC effect with low AC fields and frequencies between 100 Hz and 1 MHz
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[7] in order to stay in a linear response regime. In contrast, the linear ME

response in single-phase multiferroics is usually a static effect. Historically,

for composites the ME voltage coefficient was usually measured with the so-

called direct method (see Equation 1-9).

Still, composites seem to be so far much more suitable candidates for

devices as compared to single-phase multiferroics. Nevertheless, a single-

phase material with large ME coupling at room-temperature, would be

preferable compared to ME composites for example because of the reduced

production effort.

Recently, using piezoresponse force-microscopy (PFM) in combination with

magnetic fields, it was shown that strong ME coupling can exist in single-

phase multiferroics at room-temperature in the lead containing perovskite

(PbZr0.53Ti0.47O3)0.6-(PbFe0.5Ta0.5O3)0.4 [67], [68]. This result sheds new light

on single-phase multiferroics also for applications.

Ferrimagnetic ferroelectrics1.6.7

As mentioned in Section 1.6.1 single-phase multiferroics only display low ME

coupling due to the weak magnetism. However, one possibility to overcome

this limitation e.g. in BiFeO3, is to introduce paramagnetic ions (Me) with a

different number of unpaired electrons as compared to Fe3+.

Antiferromagnetic coupling of these Men+ ions with Fe3+ results in

ferrimagnetism which is characterized by an incomplete compensation of

antiparallel magnetic spins and thus causes much larger magnetic

susceptibility than WFM (see Section 1.5.2). The largest magnetic moment

per formula unit would be achieved for the composition BiFe1/2Me1/2O3 and

for a perfect chemical order of Fe- and Me-ions so as not to create Fe-Fe or

Me-Me pairs. These ions should however, have a similar size and the same

oxidation state as Fe3+-ions in order to occupy the same lattice site as Fe3+.

Suitable candidates for this ‘ferrimagnetic strategy’ are e.g. Cr3+, Mn3+ and

Co3+-ions. BiFe1/2Cr1/2O3 has been prepared both as ceramic [69] and

epitaxial thin-film [70]–[72] where the latter showed good chemical order and

ferrimagnetism. However, these thin-films exhibit poor dielectric properties

and might not be truly ferroelectric [46]. Another compound which is
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potentially ferrimagnetic is BiFe1/2Co1/2O3. It will be discussed in greater

detail in Section 1.7.2.

For the sake of completeness it is mentioned that there also exist materials

which are ferromagnetic and ferrielectric and thus complementary to the

above. One is the recently reported DyMn2O5 [73].

Materials1.7

BiFeO31.7.1

Certainly the most intensely investigated multiferroic material is BiFeO3 [7],

[74], [75]. It has a rhombohedral structure with space group R3c at room-

temperature and has an extremely high ferroelectric Curie temperature, TC ≈ 

1100 K. Furthermore, it is weakly ferromagnetic at room-temperature in thin-

film form, whereas for bulk single crystals the weak ferromagnetism is

supressed by a cycloidal spin-superstructure [33] (see Section 1.5.3). Its

extremely high ferroelectric Curie and Néel Temperature TN ≈ 643 K make it 

an ideal multiferroic. Therefore, BiFeO3 has been the subject of extensive

research, also because it is non-toxic unlike the vast majority of lead

containing ferroelectric materials used in devices to date and because its

constituents are cheap and abundant. In recent years, tremendous effort has

been spent on enhancing its multiferroic properties by modifying it

structurally or chemically.

BiFe1-xCoxO31.7.2

So far, not much literature is available on Co-substituted BiFeO3 in literature.

However, Sosnowska et al. [76] confirmed Fe-Co ferrimagnetism in

BiFe0.8Co0.2O3 using ultra-high-resolution neutron diffraction which is in line

with other reports of greatly increased magnetization in Co substituted

BiFeO3 compounds as compared to pure BiFeO3 [77]–[79]. However, to

participate in the antiferromagnetic order the free electrons of Co3+-ions

need to be in a high-spin state since there are no unpaired electrons if Co3+

is in a low-spin state which is usually the case. However, recently it was

shown that Co3+-ions are in high-spin configuration in BiCoO3 [80], [81]

which also seems to be the case in Co substituted BiFeO3 [76], [79].
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Furthermore, dielectric properties such as resistivity are also improved by

the Co-substitution [79], [82]. Therefore this component was identified as

ideal for further investigations in this project.

Bi1/2K1/2TiO31.7.3

Bi1/2K1/2TiO3 (BKT) is a tetragonally distorted ferroelectric with space group

P4mm. For a lead-free ferroelectric it has a surprisingly high Curie

temperature. Razumovskaya et al. [83] reported a TC of 380°C for

conventionally sintered ceramics while Hiruma et al. [84] reported a TC of

437°C for hot pressed pellets. It was found, that the FE long-range order can

be reduced by adding only small amounts of LiNbO3 ((LiNbO3)x-

(Bi1/2K1/2TiO3)1-x x = 0.02) [85] to the system and the material, hence,

becomes relaxor FE due to quenched ionic charge disorder [86] similarly as,

e.g., in the archetypical relaxor PbMg1/3Nb2/3O3 [22].

(BiFeO3)x-(Bi1/2K1/2TiO3)1-x1.7.4

The system (BiFeO3)x-(Bi1/2K1/2TiO3)1-x has been the subject of extensive

investigation carried out by J. Bennett at the electroceramics group in Leeds

[87]. The main results of this work are summarized below:

A broad MPB between rhombohedral and pseudo-cubic phases was found

at x = 0.4 and supposedly an additional phase boundary between

pseudocubic and tetragonal at x = 0.1, which was, however less obvious as

the one at x = 0.4. Matsuo and Ozaki et al. also found a pseudo-cubic phase

in the BF-BKT system and proposed that it consists of a mixture of non-polar

cubic and polar rhombohedral nanoregions which they observed using TEM

[86], [88]. These nanoregions apparently yield an average pseudo-cubic

crystal structure on a macroscopic level as observed by X-ray diffraction.

The presence of PNR suggests that the material is a relaxor ferroelectric

similar to solid solutions of BKT and LiNbO3 [85]. This is supported by the

fact that a very low or no negative strain is observed for compositions with

x = 0.4 and below from strain vs. electric field (x-E) measurements in

contrast to BF richer compositions. For compositions with very high BF

content (x = 0.8 and higher) also very little negative strain was found which

is, however, attributed to high coercivity and conductivity. A low negative

strain is indicative of electrostriction dominated electromechanical response
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and therefore relaxor behaviour. In addition, a strong frequency dependence

of the x-E behaviour which is typical of relaxor FE, was found for the

pseudo-cubic compositions. Furthermore, a large discrepancy between

direct and converse piezoelectric coefficients which were measured using

Berlincourt and x-E loops respectively, was observed for pseudo-cubic

compositions. This was also attributed to the relaxor behaviour and the

presence of PNR which was further confirmed by positive-up-negative-down

(PUND) measurements which measure a material’s switchable polarization.

It was found that for the BF rich composition with x = 0.6 the switchable

polarization was comparably high as for other conventional ferroelectrics. In

contrast, for x = 0.4 a very low switchable polarization was found which was

attributed to a low FE long range order which is further indication of the

material’s relaxor behaviour. Leakage current measurements confirmed that

the low switchable polarization for x = 0.4 is not due to increased

conductivity. All investigated compositions x = 0.6, 0.5 and 0.4, have similar

low conductivity typical of good electroceramics.

The findings by Bennett et al. and other authors are summarized in Figure

17.
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Figure 17 Phase diagram of BF-BKT as found by J. Bennett illustrating the Curie
temperature, direct (low field) and converse (high field) piezoelectric
coefficients [87]. The dashed lines represent phase boundaries between
rhombohedral (R3c) and pseudo-cubic (PC) phase found by Matsuo [86]
(green), Morozov [89] (pink) and Bennett (red) while the boundary at x = 0.1
represents the boundary between PC and tetragonal (P4mm) phase found by
Bennett (red) and Kim [90] (blue).

J. Bennett also investigated BF-BKT compositions with PFM and observed a

dipolar structure, where ferroelectric clusters (SPNR) (might be also referred

to as static PNR) are distributed within a polar matrix with low piezoresponse

which presumably incorporates PNR. He found that the concentration of

SPNR decreased with increasing BKT content which is in line with the

increasing relaxor properties of BKT rich compositions. In other words, the

ergodicity (see Section 1.7.4) increases with the BKT content in the pseudo-

cubic phases while non-ergodicity increases with BF content.

Bennett et al. [91] also investigated magnetic properties of these materials

and found antiferromagnetic order using neutron diffraction at room-

temperature for compositions with x = 0.8, 0.7 and 0.6 similar as for BiFeO3.

As expected, the antiferromagnetic peak at approximately 4.6 Å decreased

in intensity with decreasing BF content.
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(PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x1.7.5

In the past few years, a number of articles were published on

magnetoelectric coupling and multiferroic behaviour in the perovskite solid

solution (PbZr0.52Ti0.48O3)1-x-(PbFe2/3W1/3O3)x (PZT-PFW) [92]–[94]. This

composition is a solid solution of the well-known PZT with strong piezo- and

ferroelectric properties, and the relaxor ferroelectric and antiferromagnetic

PFW [95]. PZT-PFW has been proposed to be a good candidate for single-

phase multiferroics [92]. Thin-film PZT-PFW, with compositions of x = 0.2,

0.3 and 0.4 were reported to have tetragonal structures with large dielectric

polarization and modest magnetization as for weak ferromagnetic materials.

For x = 0.2 Kumar et al. [96] reported switching from a ferroelectric state with

high polarization to a linear lossy dielectric with no polarization via a

magnetic field of 0.5 T and hence proposed that the material might be used

in a three state logic device with –Pr, 0, –Pr states. However, Kempa et al.

[93] could not confirm such behaviour in bulk ceramic samples with magnetic

fields up to 3.2 T while Pajic et al. [94] only found linear magnetic behaviour

without hysteresis down to 5 K for compositions x ≥ 0.25. However, they 

found a blocking behaviour and signatures of magnetic nanoregions (MNR)

for all compositions x ≤ 0.7  with strongest blocking for x = 0.63. Futhermore,

analysis of AC susceptibility measurements, indicated spin-glass behaviour

of compositions with x ≤ 0.7.  

Thus, results in literature are therefore somewhat inconclusive regarding the

strong ME effect reported in the thin-films.

LiNbO31.7.6

LiNbO3 is another material where ferroelectricity is due to an off-centred ion.

It has the point group R3c and is related to the perovskite crystal structure

but has a considerably larger unit cell. In contrast to perovskites, polarization

can only occur along the crystallographic c-axis and can therefore only form

180° domains. It has an extremely high Curie temperature of approximately

1210°C [97] and is an important material in telecommunications (e.g. by

using ‘surface acoustic waves’), but also in non-linear optics and high

frequency or high temperature transducers. Large lithium niobate single

crystals can be grown along the crystallographic c-axis (or Z-axis) by a
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Czochralski process and cut into thin wafers. Usually crystals have c-facets

which are also often referred to as Z-facets. Especially important in non-

linear optics is periodically poled lithium niobate (PPLN) which is single

crystalline lithium niobate that is periodically poled with electrodes that are

applied by a lithography process. PPLN comprises of stripe-shaped domains

that usually have a width of 5-35 m and have polarization in +c and -c (+Z-

and –Z) direction. The d33 coefficient is parallel to the Z-direction and

orthogonal to the Z-face. PPLN is represented schematically in Figure 18.

Figure 18 Schematic representation of PPLN crystal showing crystal axes and
polarization directions.
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2 Methods

Chapter overview2.1

This chapter will give an overview of the experimental methods used for

sample preparation and characterisation. General theoretical aspects and

set-up of measurement techniques will be given. Specific experimental

procedures and experimental details of experiments will be given in separate

subsections.

Sample preparation2.2

Preparation of oxide powders2.2.1

Preparation of dielectric oxide ceramics is a complex process, which can be

extremely sensitive even to slight changes of parameters which can cause

dramatic changes of properties, e.g. due to the concentration of impurities or

vacancies. Thus a well-established process of sample preparation is highly

recommendable, where parameters are controlled adequately. Conventional

solid state reaction from binary metal oxide powders has been used for

synthesis of perovskite powders for many years in the group of Prof. Bell in

Leeds and the process is well-understood as outlined in previous work [91],

[98]–[101].

All perovskite powders for compositions investigated in this thesis were

prepared using the following procedure. As starting materials for synthesis of

(BiFe1-xCoxO3)0.4-(K1/2Bi1/2TiO3)0.6, Bi2O3 (99.9%), Fe2O3 (99+%), TiO2 (99.9%),

CoO (99+%) and K2CO3 (99+%) while additionally PbO (99.9%), WO3

(99.9%) and ZrO2 (99.9%) (Sigma Aldrich) were used for preparation of

(PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x (x = 0.8, 0.7, 0.6) samples. Powders

were first dried in an oven at 130 °C to remove any moisture in order to allow

accurate weighing. These reagent powders were then suspended in

isopropanol and (attrition) milled in a Dyno-mill KDL Type-A (Willy A.

Bachofen, Switzerland) with yttria-stabilised zirconia (YSZ) beads (Tosoh,

Japan) for 30 minutes. After milling, powders were separated from the
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solvent using distillation at low temperatures under reduced pressure. Dry

powders were sieved through a 300 μm mesh before calcination at 800°C for 

4 hours in an alumina crucible which was sealed loosely with an alumina tile.

The resultant pre-reacted perovskite powder was again sieved and attrition

milled where 1 wt% of Glascol HA-40 binder (Allied Colloids, UK) was added

to the solvent. After repeated drying, the powder was again sieved in a final

step.

Sintering of ceramics2.2.2

The pre-reacted powder was pressed into pellets using a uniaxial press

followed by cold isostatic pressing at 200 MPa for approximately 15 minutes.

For sintering, these pressed pellets were then placed in a bed of the pre-

reacted powder inside an alumina crucible closed with an alumina tile. On

one hand, the powder bed prevents contamination of pellets during sintering

but also acts as a source of volatile elements which are Bi and K in this

case. An atmosphere of these elements is created inside the closed crucible

which reduces loss of volatile elements in the pellets. Since the powder has

a much larger surface than the pellets, volatile elements mainly evaporate

from it and not from the pressed compact pellets.

Sintering was always followed the temperature program depicted in Figure

19 with the exception of the sintering temperature.

Figure 19 Temperature regime used for sintering of pellets.
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The above temperature regime was chosen to allow for slow heating of

pellets and slow burning of the binder to avoid large porosity or

decomposition of ceramic pellets due to rapid release of gaseous burning

products. Cooling is also slowed down to avoid cracking of pellets due to

mechanical tension.

BFC-BKT ceramics were sintered at a temperature of 1065 °C, while PZT-

PFW ceramics were sintered at 1200-1150 °C.

Grinding and polishing of surfaces2.2.3

Since sintered pellets always have a surface layer, which is not

representative of the bulk material, this layer needs to be removed by

grinding before any further investigations such as electrical characterisation

are carried out. For grinding, relatively coarse SiC or diamond paper was

used with grit size P 800.

Other characterisation techniques such as AFM or SEM require surfaces to

be polished for a surface roughness below 100 nm. Especially for PFM,

which is a relatively surface sensitive technique, it is important that sample

surfaces are structurally not distorted as compared to the bulk in order to

image the dipolar structure as similar as possible to the bulk structure.

Therefore, it is necessary that the sample surface is not structurally

damaged. In order to achieve this, a multi-step polishing route was used,

where the particle size of an abrasive was gradually reduced in consecutive

steps. In this way, damages induced by a previous grinding or polishing step

were removed by the consecutive, while the removed layer gets thinner at

each step. For this, various polishing-cloths (TexMet P®, TriDent®,

ChemoMet®, Buehler, Germany) were used, in combination with diamond

abrasive-liquids where the diamond particle-size was gradually reduced for

consecutive steps (9 m, 3 m, 1 m, also Buehler). Finally, in the last and

most important step, only very little material is removed which also involves

a very mild chemical etching which removes structurally distorted material

and reveals the grain structure. For this step 200 nm sized colloidal silica

particles were used.
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Structural and chemical characterisation2.3

Atomic force microscopy (AFM)2.3.1

Since its invention by Binnig, Quate and Gerber in 1986 [102], atomic force

microscopy has become an invaluable tool in today’s science due to its

extremely high resolution especially in vertical direction in combination with

exceptional versatility in probing local properties which manifests itself in a

multitude of different techniques. Many of those properties such as local

stiffness, friction, adhesion and electric conductivity can usually not be

measured with other microscopy techniques utilizing electromagnetic

radiation or particles. The underlying principle of AFM is that of a record

player, where a thin needle moves over a surface and is deflected due to the

contact to the surface. Of course there are prime differences between the

way an AFM and a record player work. First of all, the tip that is used in AFM

is extremely small due to micro processing techniques and the tip’s apex is

usually only approximately 20 nm wide. The miniature tip is attached to a

flexible beam (cantilever), which is deflected through interactions between

tip and surface, while it is scanned over the surface. The scanning is

achieved using piezoelectric actuators for the x-, y- and z-directions, which

usually have an accuracy in the range of nanometres. Here, it is irrelevant

whether the tip is scanned while the sample surface position is kept constant

or vice versa. The vertical deflection or torsional movements of the

cantilever are usually detected by a laser-beam which is reflected from the

back-side of the cantilever onto a four-quadrant photodiode. Figure 20

shows a schematic set-up of an AFM.
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Figure 20 Schematic illustration of an atomic force microscope (AFM) with
cantilever, laser diode and four-quadrant photodiode [103].

Vertical deflection of the cantilever results in vertical movement of the laser

spot on the photodiode, which is detected using the relative measured

intensities between the upper (A+B) and lower (C+D) quadrants. In this way,

a height value is obtained as a function of the lateral position on a sample.

These information are used to assemble a topographic image of the

scanned surface. Similarly, torsional movement of the cantilever results in

sideways motion of the laser spot which is detected using the relative

measured intensities between quadrants on left (A+C) and right (B+D) side.

An alternative method for measuring cantilever deflections and thus height

values is interferometry, which will not be covered in greater detail here.

There exist several different operation modes for AFM. Usually AFM is

operated in a constant-force mode which means that the force between tip

and sample are kept constant. This is achieved by a feedback loop which

actively compensates cantilever deflections by moving the tip in z-direction,

thus keeping the laser spot in the same vertical position on the photodiode.

In this way, large forces which could potentially damage tip or surface are

avoided. Furthermore, ‘crashes’ between tip and large surface features can

be prevented. For best imaging performance, it is important that the

parameters that control the sensitivity of the feedback loop are set correctly.
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In contrast, in constant-height mode cantilever deflections are not

compensated and are used as height signal. This mode is, however, not

widely used. In reality, a perfect constant force mode can never be achieved,

since cantilever deformations will always occur.

In addition to the above operation modes, AFM is usually operated in one of

the following three imaging modes:

 Contact mode: Here the tip is in permanent contact with the surface

(contact regime) and repulsive forces between tip and sample are

dominant. Lateral signals due to cantilever torsion can be detected,

e.g. to measure sample friction. However, due to permanent contact,

tip and sample are readily worn or damaged, which makes it

unsuitable for soft materials. This mode is used, e.g., in PFM.

 Non-contact mode: The cantilever is mechanically excited to oscillate

close to its resonance frequency and scanned over the surface in

close proximity. Due to long range interactions between tip and

sample, the phase of the oscillation changes, which is used as a

measure for interaction between tip and surface. This mode offers

advantages such as lower tip wear and sample damage which

comes, however, at the expense of resolution. It is also not possible

to detect a lateral or friction signal. A modified non-contact mode is

used in MFM.

 Intermittent contact: This mode is also-called ‘tapping mode’ and is

probably most widely used for imaging purposes. It is similar to non-

contact mode with the difference that the cantilever touches the

surface during oscillation. Here, the amplitude of oscillation is usually

kept constant via height adjustment. It offers high resolution and low

tip wear and surface damage.

Scanning electron microscopy with energy dispersive X-ray2.3.2

spectroscopy (SEM-EDX)

SEM is a widely used microscopy technique to obtain a high resolution

micrograph of a sample’s surface topography by scanning a focused beam

of electrons across a sample in a raster fashion.
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In general, an SEM uses electrons instead of visible light to achieve high

resolution. As known from quantum mechanics, particles have wave

character and their wavelength is connected to the particles’ momentum

according to de Broglie’s law. Accordingly, electrons with a large velocity,

e.g., due to a high acceleration voltage have very short wavelengths in the

sub nanometre range, while visible light has wavelengths in the range of

400-700 nm. According to the Rayleigh criterion the limit of lateral resolution

is approximately half of the wavelength of the electromagnetic radiation used

for imaging. Hence, it becomes obvious that high energy electrons are

suitable to achieve much higher resolution than visible light microscopy.

An SEM mainly consists of an electron emitter, electron lenses and

detectors. The electron emitter might be a tungsten filament, which

thermionically emits electrons, or a field emission gun made of LaB6 which

allows for higher resolution through smaller spot sizes. Emitted electrons are

usually accelerated by voltages in the range of 0.2-40 kV. Those electrons

are focused by one or more condenser lenses to a beam with a spot size

typically in the range of a few nanometres, which is scanned across a

sample in a raster fashion by scanning coils or deflector plates.

When the electrons interact with the sample, several processes can occur,

which include emission of high-energy electrons due to elastic scattering,

emission of secondary electrons due to inelastic scattering and emission of

electromagnetic radiation. The resulting emissions can each be detected by

specialized detectors corresponding to different imaging modes and

spectroscopy methods. The set-up of an SEM is illustrated schematically in

Figure 21.
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Figure 21 Schematic illustration of an SEM showing electron gun, condenser
lenses, deflection coils and detectors for secondary and backscattered
electrons as well as for X-rays [104].

The most common imaging mode uses the collection of secondary electrons.

The intensity of secondary electrons as a function of scanning position yields

an image, which reveals the sample’s topography. Samples should be

conductive or covered with a film of conductive material for this mode to

avoid charging effects.

Another imaging mode is the collection of high energy back scattered

electrons (BSE). Since electrons are backscattered much more effectively by

heavy elements (high atomic number) than by light elements (low atomic

number), heavy elements appear brighter in a BSE image, which results in

an atomic number-contrast (Z-contrast). Furthermore, it is much less prone

to charging and thus can be usually applied to insulating samples without

need for deposition of a conductive film.

A commonly used spectroscopy method which is used in junction with SEM

is energy dispersive X-ray spectroscopy (EDX). Here, X-rays emitted from

the sample due to inelastic scattering of electrons are detected which have

specific energies corresponding to the difference of atomic energy levels

depending on the atomic number. Hence, the energy of emitted X-rays are

element specific and can be used for compositional analysis of a sample.
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Transitions from atomic energy levels to K-shell levels result in X-rays

belonging to the K-series, whereas transitions to L-shell levels correspond to

the L-series and so on. Furthermore, X-rays which correspond to a transition

from one shell to the shell which is next lower in energy are termed ,

whereas X-rays corresponding to shells which are two levels lower are

termed  and so on. For example, a transition from L to K shell corresponds

to K, while a transition from N to L shell corresponds to L radiation.

Many EDX spectra can be obtained with relatively high lateral resolution by

scanning a small electron beam over larger areas to obtain maps of

elemental composition in order to reveal compositional inhomogeneity with

high lateral resolution (below 1 m).

Time-of-flight secondary ion mass spectrometry (TOF-SIMS)2.3.3

Secondary ion mass spectrometry (SIMS) is a technique which is effectively

similar to SEM with EDX in that it is able to spatially resolve the chemical

composition of a sample. However, there are fundamental differences

between the two techniques considering the principle. While in EDX, the

wavelength of X-rays being emitted from a sample is analysed to gain

information about its composition, in SIMS, information is obtained through

the mass of ions coming from a sample surface. Atoms are ablated from a

sample surface by ion bombardment using a pulsed ion beam. These are

partly ionized by the bombardment process and subsequently extracted and

submitted to mass analysis through a time-of-flight (TOF) mass

spectrometer via transport optics as illustrated in Figure 22.
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Figure 22 Schematic illustration of a TOF-SIMS. A focused and pulsed beam of
ions is generated from an emitter and rastered across a sample. Secondary
ions being ablated from the sample are analysed via a time-of-flight mass
spectrometer. Chemical information can be gained via the mass of ions which
can be assigned to elements via isotope patterns. Spatially resolved spectra
can be used for imaging, while recording consequent mass spectra after
sputtering steps can be used to obtain depth profile measurements [105].

Additionally, secondary electrons can be also detected for imaging

purposes. The obtained mass spectra are analysed by assigning elements

to peaks using element specific isotope patterns. Not only single ions but

cluster- or molecular-ions are detected in SIMS, which can yield additional

information. To obtain a spatial distribution map of certain peaks or

elements, many spectra are recorded in a raster fashion. The achievable

resolution depends on the diameter of the ion beam. However, it should be

noted that spatial resolution comes at the expense of mass resolution and

vice-versa, since an ion-beam with small diameter results in a longer

duration of bombardment as compared to a beam with large diameter when

the pulse duration of the beam is kept constant. The duration of

bombardment in turn is directly connected to the achievable mass resolution.

The information gained is usually very surface sensitive, since the

penetration depth of ions is only in the range of approximately 1-2 nm.

Furthermore, depth profiles can be recorded consisting of consecutive mass

spectra, being recorded each after an additional sputtering step to expose

deeper lying layers of a sample.
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The most important advantage of TOF-SIMS over other techniques like

SEM-EDX, is its extremely high sensitivity which enables detection of

elements in the ppm range and below due to the electron multiplier principle

of the detector. Furthermore, the small beam sizes of state-of-the-art

instruments, allow high lateral resolution down to approximately 50 nm. It is

widely used for the spatially resolved determination of dopant concentrations

in semiconductors. However, peaks corresponding to different elements can

usually not be correlated to each other or converted to elemental

composition, due to the different sensititivy factors of each element. These

are due to the different ionization probabilities of different elements being

mainly responsible for the large intensity differences for different elements

observed in SIMS. All alkali metals, have, for example, ionization

probabilities close to one, whereas noble elements such as Ag have a

probability which is several order of magnitude lower. Therefore, only

relative intensities for a given element can be compared e.g. for different

sample areas [106].

X-ray diffractometry (XRD)2.3.4

The most widely used technique for crystal structure determination is XRD.

As the name suggests, it is based on diffraction of X-rays by atoms of a

crystalline material. X-rays are suitable for this purpose since their

wavelength is in the same order as interatomic distances in solids given by

the size of atoms in the order of 0.1 nm. Due to constructive and destructive

interference of X-rays scattered by atoms of a crystal, a diffraction pattern

forms similar as for diffraction of visible light by an optical grating. In a

crystal, where atoms are arranged regularly, lattice planes can be defined,

which are separated by the interplanar distance d. Constructive interference

occurs which results in diffraction maxima or peaks, when X-rays fulfil the

Bragg condition which connects d with the scattering angle  and the

wavelength  of the X-rays:

ʹ݀ (ߠ)݊ݏ݅ ൌ ǡߣ݊

Equation 2-1

where n is a positive integer. When the Bragg condition is met, scattered

waves remain in phase since the path length of each wave is equal to an
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integer multiple of the wavelength which leads to constructive interference.

This principle is illustrated in Figure 23.

Figure 23 Diffraction of X-rays of given wavelength  by a crystal. An angle for
which the Bragg condition is fulfilled, results in constructive interference by
atoms belonging to two lattice planes with interplanar distance d (left). For the
angle shown in the right image, the condition is not fulfilled and interference is
destructive [107].

As a result, a crystal effectively acts as a mirror for X-rays, but only under

certain angles where the Bragg condition is met.

While diffraction on large single crystals results in diffraction patterns

with individual peaks which allow elucidation of the crystal symmetry

and structure, diffraction on polycrystalline materials, where crystallites

are oriented randomly, results in diffraction patterns consisting of

concentric rings. These patterns, which are referred to as powder

diffraction pattern, contain less information than single crystal patterns

and are usually displayed in so-called X-ray diffractograms, where

intensity is plotted vs. 2

Experimental details2.3.5

All AFM experiments were carried out on a 5420 AFM by Agilent

Technologies (now Keysight technologies, Santa Clara, California, USA)

with the MAC Mode III extension except where explicitly stated. Polished

samples (see Section 2.2.3) were used for imaging.
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Furthermore, all SEM images were recorded on an EVO MA15 by Carl Zeiss

(Oberkochen, Germany) in back-scatter electron (BSE) imaging mode with

20 kV acceleration voltage. EDX spectra were acquired using an

AZtecEnergy EDX system (Oxford Instruments, Abingdon, United Kingdom).

Polished and uncoated samples as for PFM measurements (see Section

2.2.3) were used for imaging which were attached to the sample stage using

adhesive pads. The edges and back side of ceramics were electrically

connected to the sample stage using black carbon conductive glue.

X-ray diffraction, was conducted on powder of sintered and crushed ceramic

pellets, using a PANalytical X’Pert Diffractometer (Phillips, The Netherlands)

with a theta-theta goniometer. Cu K radiation was used with a Ni foil

monochromator. Scanning times were relatively long (approximately 40

minutes) with small step size of 0.033° and scan ranges from 14° to 70°

2or larger.

Diffraction peaks were indexed using the PANalytical Highscore Plus

software. Furthermore, peaks due to Cu K radiation were removed with the

same software.

TOF-SIMS measurements were carried out on a TOF.SIMS 5 by ION-TOF

(Münster, Germany) using a beam of Bi ions in positive mode.

Dielectric characterisation2.4

Polarization vs. electric field (P-E)2.4.1

Polarization vs. electric field measurements are essential for characterisation

of ferroelectric materials to measure the hysteretic P-E behaviour, ‘P-E-loop’,

as outlined in Section 1.4. These measurements are relatively simple.

Electrodes are applied to opposite facets of a flat sample, which should be

plane parallel in order to achieve a plate-capacitor like structure allowing for

a homogeneous electric field distribution inside the sample.

A simple method to measure the P-E behaviour is to use the Sawyer-Tower

circuit as shown in Figure 24, where the capacitor-like sample at test CF is in

series with a sensing capacitor CS possessing a much larger capacitance

than CF. The voltage is cycled by the voltage generator Vi(t) which usually
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needs to be able to generate high voltages of 10 kV or higher in order to

reach electric fields necessary for saturation of ferroelectric samples which

are often in the range of 5 kV/mm or above.

Figure 24 Simple Sawyer-Tower circuit for P-E measurements [108].

Since the capacitors are in series, their charge must be the same and the

charge on the sample can be found by the capacitance C of CS and the

voltage V measured across it:

ܳ = ܥ ∙ ܸ.

Equation 2-2

By taking the sample’s area A into account, the polarization can be

calculated by:

ܲ =
ܳ

ܣ
.

Equation 2-3

P is plotted against E which is calculated from the applied voltage V and

sample thickness d:

ܧ =
ܸ

݀
.

Equation 2-4
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This method has several disadvantages such as a limited frequency window

or the back voltage of the sense capacitor causing the voltage across the

sample to be asymmetric.

A more accurate method is the direct integration of the charging current I to

yield Q, which can be done electronically:

ܳ ൌ න Ǥݐ݀�ܫ

Equation 2-5

It should be noted that parasitic effects such as leakage currents due to

conductivity can mimic ferroelectric behaviour and cause closed loops of

switched charge vs. applied voltage. However, in those cases the

‘hysteresis’ loops do not show saturation or a concave Q vs. V-region [109].

Therefore, it is important to carry out complementary investigations such as

resistivity measurements to support ferroelectric behaviour.

Permittivity vs. temperature2.4.2

As outlined in Sections 1.4 and 1.4.3 the permittivity vs. temperature

behaviour is important to determine TC of a ferroelectric or to identify relaxor

ferroelectric behaviour using frequency dependent measurements. The

sample configuration is the same as in P-E-measurements except that the

sample is situated inside a furnace with automated temperature control and

is contacted using silver or platinum wires. The permittivity is calculated

using Capacitance C, sample thickness d and area A:

ߝ =
݀�ܥ

ܣ�ߝ
.

Equation 2-6

Furthermore, the imaginary part of permittivity '' which corresponds to the

out-of-phase response is measured, too:

∗ߝ ൌ ᇱߝ ,ᇱᇱߝ݅

Equation 2-7

with the complex permittivity 



- 53 -

Piezoresponse force microscopy (PFM)2.4.3

A few years after the invention of the atomic force microscope, PFM was first

used to image and locally pole ferroelectric domains in polyvinylidene

fluoride (PVDF) by Güthner and Dransfeld [110]. Later, important

achievements, which led to more widespread use of PFM were made by

Gruverman, Kholkin and Kalinin et al. who developed new techniques and

improved microscopical understanding of ferroelectrics [111]–[119]. The

term piezoresponse force microscopy (PFM) was first coined by Lehnen and

Kleemann [120].

Nowadays, piezoresponse force-microscopy (PFM) has become the

standard tool to investigate ferroelectrics on the micro- and nanoscale, which

is confirmed by the fact that the number of publications with relation to PFM

has grown constantly over the past years.

The principle of PFM is relatively simple. The AFM based method, makes

use of the converse piezoelectric effect to induce local expansions and

contractions in a piezoelectric sample, which are detected by the AFM tip. It

requires a conductive AFM tip and a bottom electrode underneath the

sample, which are necessary to apply a voltage to the sample. However,

sample deformations due to the converse piezoelectric effect are usually

only in the range of 100 pm and it is very challenging to measure these small

height differences accurately using DC voltages. A way to increase the

signal-to-noise ratio significantly is to use an AC voltage instead and detect

the resulting movements with a lock-in-amplifier (LIA). The LIA extracts all

signals from the photodiode with the same frequency as the AC-voltage

applied to the sample. Figure 25 shows the principle of PFM schematically.
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Figure 25 Schematic principle of piezoresponse force microscopy (PFM). Without
application of voltage, there is no sample deformation (left). Upon application
of an AC voltage, the piezoelectric material underneath the tip contracts and
expands (middle and right respectively), which results in AC deflection of the
cantilever, detected by the photo diode and extracted by a lock-in-amplifier
[121].

The frequency of the AC voltage needs to be chosen sufficiently high so that

the topography feedback-loop of the AFM cannot compensate the cantilever

deformations. In practice, frequencies are typically in the range of 10 kHz up

to several MHz.

In order to increase the Q-factor and thus the signal to noise ratio, PFM can

be operated at the contact resonance frequency of the cantilever, which is

typically at approximately 300 kHz for cantilevers standardly used in PFM.

However, this usually results in strong topography cross-talk in PFM images

due to changing contact resonance, which depends on the stiffness of the

tip-surface junction. Special methods such as dual AC resonance tracking

(DART) [117] and band excitation [122] were developed, which use two

frequencies or a band of frequencies respectively, to overcome these

drawbacks by effectively tracking the change of the contact resonance.

However, conventional single frequency PFM operated away from the

contact resonance is still most widely used.

In PFM, it is not only possible to record out-of-plane or vertical PFM signals

as shown in Figure 25, but also in-plane or lateral signals, which correspond

to shear-deformations of the cantilever resulting in sideways deflection of the

laser on the photodiode. This motion can be recorded by a second LIA,

which enables simultaneous recording of the lateral PFM signal.

As mentioned above, the dominant contrast mechanism in PFM is the

converse piezoelectric effect. Electrostatic contributions or capacitive forces
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can also play a role in PFM. However, these can usually be neglected if a

sufficiently stiff cantilever in combination with relatively high contact pressure

is used [123].

For investigations of the local dipolar structure it is important to understand

how PFM signals are recorded and represented.

2.4.3.1 Signal representation

Due to the principle of the PFM experiment, signals should in theory be

always either exactly in-phase or out-of-phase with the reference-frequency

signal. This corresponds to the fact that the polarization-vector of a

ferroelectric domain can either point upward or downward relative to sample

surface. PFM signals are complex and can either be represented as sets of

X- and Y-amplitude (X and Y) or R-amplitude (R) and phase (

corresponding to Cartesian and polar coordinate systems, respectively:

ܺ = ܴ cos߆,

Equation 2-8

ܻ = ܴ sin߆.

Equation 2-9

R contains the magnitude of the converse piezoelectric response, while 

conveys whether the response is in-phase or out-of-phase with respect to

the reference-signal and thus whether the polarization points up or down.

Ideally, X contains both information, where its absolute value and sign

correspond to R and respectively. For illustration Figure 26 schematically

shows signals for R, and X that would be obtained for domain

configurations as shown on the top.
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Figure 26 Schematic illustration of theoretical signals of R-amplitude, phase and X-
amplitude that would be obtained for above domains [112].

As shown in Figure 26, ideally X might be regarded as a product of R and .

Thus, X is also often referred to as ‘mixed-signal’ in literature.

2.4.3.2 Background-signal and its consequences

Soergel et al. [112][124] reported a frequency-dependent background-signal

in PFM. They found that a PFM background-signal could be measured on

piezoelectric, but also on non-piezoelectric samples like glass or metal which

had exactly the same magnitude when using the same AFM tip and setup.

Thus, it was concluded that the background-signal is independent of the

sample and was attributed to mechanical resonances of the AFM head.

Furthermore, the authors suggested that this background should be

subtracted from PFM signals, since it is not due to the piezoelectric effect.

The same group also pointed out the different consequences of this inherent

background-signal on representation of signals as R and  or as X and Y.

Figure 27 shows phasor-diagrams illustrating these consequences.
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Figure 27 Phasor-diagrams illustrating consequences of background-signal for
recording of R-amplitude and phase or for X- and Y-amplitude. Two PFM
signals of equal magnitude, but opposite sign are illustrated which correspond
to light and dark red dots. Phasor- a and b illustrate the situation for recording
of R-amplitude and phase without and with background-signal respectively. c
and d show the same for recording of X- and Y-amplitude. Partially adapted
from [112].

Two PFM signals of equal magnitude, but opposite sign are illustrated which

correspond to light (•) and dark red (•) dots. Figure 27a and b illustrate the

case when R and  are recorded. Values for R corresponding to these PFM

signals are represented by the length of red lines R+ and R-. Without any

background-signal all PFM signals caused by the piezoelectric effect must

lie on the X-axis because they can only be in-phase or out-of-phase with

respect to the reference signal. Thus, R+ and R- have the same length and

the angle ( between the two signals is 180°. However, the situation

changes when a background-signal is measured on top of signals due to the

piezoelectric effect, which is illustrated by the magenta arrow. This

background-signal transfers the signals corresponding to up- and down-

domain off the X-axis because it is added to the other signals and is neither

in-phase nor out-of-phase with the reference-frequency. As a consequence,
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R signals for both domains are no longer equal and  is different from 180°

(Figure 27b).

When no background-signal is present, there is no large difference between

recording of X and Y or R and  (Figure 27c and a, respectively). In this

case the information of R is given by the absolute value, while is

represented by the sign of X, respectively. Y does not contain any

information in this case. However, if there is background-signal as discussed

above, both signals X+ and X- are subject to an offset which is the X-

component of the background XBg.. The important difference to recording of

R and is that although the absolute values of X+ and X- change, the

difference between the two signals which is the domain-contrast does not.

Thus, X+ and X- can be corrected by subtracting the background the XBg. and

discarding the signal in Y which only contains the corresponding component

of the background-signal YBg.. XBg. can be determined by an additional

measurement on an appropriate reference sample.

2.4.3.3 Background-signal and calibration

The PFM background-signal XBg. which can vary with frequency and

presumably depends on the condition of the tip, but is independent of the

sample, can in principle be determined in two ways. By measuring it on a

non-piezoelectric sample, which might be for example glass. The second

possibility is to use a single crystalline reference sample, containing only

ferroelectric domains with equal magnitude, but different signs of polarization

(i.e. only 180° domains). Such a material is periodically poled lithium niobate

(PPLN) (see Section 1.7.6). Since the background-signal is equal for both up

and down domain, the level of the background-signal is simply the mean of

the two signals. This is displayed in an exemplary way in Figure 28, which

shows a typical PFM image (X-amplitude) of PPLN (Figure 28a). Here, dark

and bright areas correspond to polarization facing downwards or upwards

respectively, while the magnitude of the piezoresponse is given by the

darkness or brightness of the respective colours. Figure 28b shows the

averaged cross-section and the background-signal.
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Figure 28. a, A typical vertical PFM image (X-amplitude or mixed signal) of PPLN.
b, Cross-section of image with domain contrast and background-signal.

However, PPLN cannot only be used to determine the background-signal,

but also to calibrate PFM signals at the same time. Crystals are usually cut

perpendicular to the Z-direction, so that measurements can be carried out on

the Z-face. Hence, PFM signals can be calibrated when the signal difference

for up and down domains (domain contrast) is related to twice the

macroscopic value of the d33 coefficient of PPLN which is approximately d33

= 20 pm/V [125]. This contrast is displayed in Figure 28b. Additionally, PPLN

has the advantages that it is readily available and robust to, e.g., changes in

temperature, which makes it an ideal material for calibration and

background-signal determination.

2.4.3.4 Background-signal correction

As mentioned before, the background-signal can be corrected for by

subtracting it from the PFM X-amplitude, which is displayed in Figure 29.
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Figure 29 X-, R-amplitude and phase PFM images of a PPLN sample showing the
effect of background subtraction. Images a,c and e are as recorded, while in
images b,d and f the background-signal is eliminated. Corrected R-amplitude
and phase images were generated from the corrected X-amplitude image.

Figure 29a shows an X-amplitude PFM image with a background-signal of

approximately 0.13 V (see scale bar, bright corresponds to 0.8 and dark to

0.6 V). which corresponds to approximately 8.8% of the PPLN domain

contrast. Figure 29b shows the same image with the background subtracted

and PFM signals calibrated with average PFM domain contrast

corresponding to 40 pm/V. Note that there is no change of contrast between

corrected and uncorrected X-amplitude images as discussed in Section

2.4.3.2.



- 61 -

However, many PFM users prefer data representation in R and , and

indeed it can be easier to have separate representations of the information

of piezoresponse and direction of polarization since the available image-

contrast only needs to cover half of the data-range in case of R as compared

to X. R and  (Figure 29c and e) were recorded simultaneously to X (Figure

29a). As discussed in Section 2.4.3.2 there is a contrast between the

oppositely poled domains in Figure 29c due to the background-signal,

although both domains should have equal amplitude in theory. Furthermore,

the phase difference between the two domains is not 180° across the whole

image (Figure 29e). Additionally, another problem of the phase signal the so-

called phase-wrapping occurs, which is a sudden jump to the opposite end

of the range due to the signal exceeding a limited range of ±10V or ±180°

respectively. This can be seen in the lower half of Figure 29e. The corrected

R (Figure 29d) and  (Figure 29f) images were obtained by using the

absolute value and sign respectively, of the corrected X image in Figure 29b,

thus discarding all information in Y-amplitude which only contains

background-signal. Now, R and  are displayed correctly with equal

amplitude for oppositely poled domains and phase difference of 180°.

Additionally, this procedure also eliminates the problem of phase-wrapping

visible in Figure 29e. The image correction were be done conveniently using

built in functions of the free AFM software Gwyddion [126].

Experimental details2.4.4

For electrical testing, silver electrodes were applied onto coarsely polished

samples at 550 °C using silver paint. P-E-loops and permittivity vs.

temperature measurements were carried out on a Radiant (Albuquerque,

New Mexico, USA) Precision 10kV HVI II and a HP 4284 A Precision LCR

Meter (now Keysight technologies, Santa Clara, California, USA) in

combination with a tube furnace, respectively.

PFM experiments were carried out on the AFM mentioned in Section 2.3.5

and DCP11 conductive-diamond coated tips by NT-MDT (Moscow, Russia)

were used. The tip was electrically grounded whilst a ‘bottom-electrode’

underneath the sample and in electrical contact with it, was biased. All PFM
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imaging was carried out at a frequency of 70 kHz of the AC voltage. The AC

voltage applied was usually ±10 V except where explicitly stated otherwise.

Magnetic fields for in-situ under magnetic field PFM experiments were

generated by the Magnetic Lateral Field Module 5420 by ScienTec (Les Ulis,

France) with magnetic fields of up to ±750 Oe.

Magnetic characterisation2.5

Magnetization vs. magnetic field (M-H)2.5.1

The M-H behaviour of a material is essential for characterisation of magnetic

materials as was shown in Section 1.5.4, e.g. to distinguish between

different magnetic phenomena such as ferromagnetism,

superparamagnetism or paramagnetism.

Magnetization is nowadays usually measured using vibrating sample

magnetometers (VSM). The sample is usually situated in a chamber which

allows temperature control down to the temperature of liquid helium.

Furthermore, a homogenous magnetic field which is often generated by a

superconducting magnet can be generated at the sample position. When the

sample is physically vibrated sinusoidally, typically using a piezoelectric

actuator, this causes a sinusoidally modulated magnetic flux according to

Faraday’s law of induction through a pickup coil situated close to the sample.

This modulated flux is detected by a lock-in amplifier using the piezoelectric

signal as its reference signal. Thus, only contributions due to the vibrating

sample are measured but not due to the external magnetic field. The set-up

of a VSM is schematically represented in Figure 30.
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Figure 30 Schematic set-up of vibrating sample magnetometers (VSM) with
vibrating sample inside a homogenous magnetic field and pickup coils close
to the sample [127].

The magnetic moment of the sample is proportional to the induced voltage

in the pick-up coil. By ramping the applied magnetic field, it is possible to

acquire the M-H-behaviour of a material which can be e.g. hysteretic

exhibiting the characteristics as outlined in Figure 13.

Alternatively, magnetization can be measured using a superconducting

quantum interference device, SQUID, which is able to measure extremely

small magnetic fields due to superconducting loops containing junctions

utilizing the Josephson effect. Here the sample is repeatedly moved across

a superconducting pick-up loop, which makes the measurement relatively

slow compared to VSM measurements. However, nowadays SQUID-VSMs

are available which combine the high sensitivity of SQUID and fast

measurement VSM.

Magnetization vs. temperature2.5.2

In the previous section, the principles of M-H measurements were

discussed. However, the magnetization vs. temperature behaviour of

magnetic materials is of utter importance especially when dealing with

superparamagnetic materials (ZFC-FC measurements) as discussed in

Section 1.5.4 of for determination of the magnetic TC as outlined in Section

1.5.2.
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Temperature dependent measurements are usually carried out at different

magnetic fields, since the magnetic field strength often decides which

mechanism of magnetization dominates. For superparamagnetic materials

for instance, the blocking temperature TB depends on the magnetic field [38].

Another important method is measuring of the AC susceptibility,  vs.

temperature. Here, an AC field is applied to a sample and the resulting AC

moment is measured. Those measurements deliver information about

magnetization dynamics. Both real, ', and imaginary part, '', can be

measured where the latter yields information about energy dissipation and

thus can be an indication of magnetic phase transitions.

' can be measured as a function of frequency, to characterize spin-glasses

which exhibit frequency dispersion [128] similar to relaxor ferroelectrics in

permittivity vs. temperature behaviour.

Magnetic force microscopy (MFM)2.5.3

MFM was invented in 1987 by Martin and Wickramasinghe [129] which is,

like PFM, a technique based on AFM. It has been used since to study

magnetic structures or fields with very high lateral resolution down to several

nm. It is the most widely used magnetic microscopy technique together with

other techniques like magneto-optical Kerr effect (MOKE) microscopy or X-

ray magnetic circular dichroism photoemission electron microscopy (XMCD-

PEEM).

In MFM a magnetic tip is used to detect stray fields from a sample surface,

which is usually a conventional AFM tip covered with a magnetic layer which

is magnetized in the out-of-plane direction, i.e. perpendicular to the sample

surface. MFM is a ‘dual pass’ technique, where each line is scanned in two

consecutive passes of the AFM tip across the sample surface. First, the

topography is obtained using a pass in conventional tapping mode. In the

second pass, the tip is scanned above the surface with a certain height

offset which typically lies between 20-100 nm. During the second pass, the

tip follows the topographic profile of the sample obtained during the first pass

to compensate for any interactions due to sample topography and therefore

only detects magnetic forces. The principle of MFM is depicted in Figure 31.
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Figure 31 Schematic principle of magnetic force microscopy (MFM). Topography is
obtained during first pass in tapping mode, while information about magnetic
domains or structures are acquired in the second pass, which tracks the
topography profile in a distance to the surface [130].

Magnetic stray fields are usually detected as a change of phase while the tip

is oscillated at a constant frequency close to its resonance frequency. MFM

is prone to artifacts for example due to electrostatic coulomb interactions

between sample and conducting tip. Such artifacts can be ruled out, e.g., by

repeated imaging before and after switching the tip’s magnetization in an

external magnetic field and observation of inverted image contrast.

Furthermore, MFM is only sensitive to out-of-plane stray fields, but cannot

observe in-plane and out-of-plane magnetization unlike e.g. MOKE.

Magneto-optical Kerr effect (MOKE) microscopy2.5.4

This microscopy technique makes use of the magneto-optical Kerr effect

which describes changes to polarized light reflected from a magnetic surface

due to rotation of the light’s plane of polarization. Before illuminating the

sample, the light first passes through a polarizer filter which creates linearly

polarized light. After reflection of light from the sample, its polarization is

rotated and it passes through another polarizer filter at close to 90° to the

first. An analyser converts the changes of light polarization into changes of

intensity, to make magnetic domains visible. Switching of magnetic domains

can be observed by applying a magnetic field in-situ. Different geometries of
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magnetic field to sample and differently polarized light can be realized in a

Kerr microscope, e.g., to measure in-plane or out-of-plane contributions to

the MOKE [131]. By using proper calibration procedures absolute values of

magnetization can be deduced from Kerr microscopy [132]. Even without

calibration, the (anisotropic) coercive field of selected particles or regions

can be measured.

Mössbauer spectroscopy2.5.5

Mössbauer spectroscopy is one of the most powerful tools to study

magnetism, yet it is practically limited to few elements since an isotope

needs to be Mössbauer active, i.e. an excited state with relatively low energy

and relatively long lifetime must exist. Furthermore, an appropriate emitter of

gamma rays for excitation is required. Fortunately, Fe (57Fe to be exact) as

one of the most important magnetic elements, is among those few, since it

fulfils the above criteria. A suitable emitter of gamma rays for 57Fe

Mössbauer spectroscopy is 57Co, which first decays to an excited state of

57Fe and thereafter decays to the ground state by emitting gamma rays.

Mössbauer spectroscopy which was invented by Rudolf Mössbauer in 1957

is based on recoil-free, resonant absorption of gamma rays in a solid. Since

the absorption of gamma rays in a solid occurs to a significant fraction recoil

free, the emission and absorption of gamma rays by the same isotope is

possible, since no energy is lost to recoil. In Mössbauer absorption

spectroscopy, a sample is exposed to gamma radiation which must be

emitted from a source consisting of the same isotope as the absorbing

atoms in the sample while a detector measures the transmitted radiation.

During a measurement the energy of the gamma rays is varied slightly due

to the Doppler effect by accelerating the source through a range of velocities

using a linear motor. This slight energy variation results in an extremely high

energy resolution due to the high energy and extremely narrow line widths of

gamma rays. Typical velocities which are used are ±11 mm/s which

corresponds to ± 480.075 neV. At certain energies corresponding to

resonant absorption into discrete nuclear energy states, a dip in the

recorded Mössbauer spectrum occurs. Therefore, even tiny energy changes
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can be resolved which are mainly due to three effects influencing an atom’s

hyperfine structure:

 Isomeric or chemical shift which depends on the state of oxidation

and the chemical environment of an atom.

 Quadrupole splitting due to nuclei which are non-radially symmetric

(magnetic quantum number above ½) and are subjected to an electric

field gradient as in ferroeletric materials.

 Magnetic hyperfine splitting due to the Zeeman effect conveying

information about magnetic order.

From these effects, magnetic splitting is most relevant in our case. Hence,

the other two effects will not be covered within this thesis. In magnetically

ordered materials, the strong local magnetic fields cause hyperfine splitting

of nuclear energy states into non-degenerate energy states according to the

Zeeman effect. In the case of Fe, restriction rules allow transitions between

six energy levels resulting in six absorption lines in Mössbauer spectra. This

is regardless of whether magnetic ordering is ferro-, ferri- or

antiferromagnetic. Figure 32 illustrates these facts schematically.

Figure 32 Principle of magnetic or hyperfine splitting due to the Zeeman effect in
Mössbauer absorption spectroscopy resulting in six absorption lines [133].
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Therefore, Mössbauer spectroscopy is suitable to unambiguously detect

element specific magnetic ordering via the occurrence of six absorption

lines. Through detailed analysis, much more information can be deduced

from Mössbauer spectra, such as Fe occupation of lattice sites in ferrites

(degree of inversion). However, the focus of Mössbauer spectroscopy within

this thesis lies mainly in the determination of magnetic structure. Thus, other

aspects of Mössbauer spectroscopy are not covered in greater detail but the

interested reader is referred to more comprehensive sources [134], [135].

Magnetic neutron diffraction2.5.6

Neutrons with appropriate kinetic energy have similar wavelengths as X-rays

of the order of 0.1 nm according to de Broglie’s theory. Therefore, neutrons

are suitable for diffraction experiments in crystals to reveal their structure.

But unlike X-rays, neutrons are not scattered at the electron cloud, but at the

nuclei. Furthermore, there is another fundamental difference between

neutron and X-ray diffraction: Since neutrons have a spin unlike X-rays, they

carry a magnetic moment which interacts with that of electrons. Therefore,

magnetic peaks or magnetic contributions to diffraction peaks occur in

neutron diffraction experiments of magnetically ordered materials in addition

to nuclear Bragg peaks which can be used to determine the magnetic

structure of a material [136]. In antiferromagnetic materials, additional peaks

occur as compared to X-ray diffraction pattern, which disappear above the

Néel temperature. In simple antiferromagnetic materials, magnetic peaks are

half indexed, which corresponds to a doubling of the nuclear lattice

constants. In case of ferromagnetic order, there is an additional contribution

on top of nuclear Bragg peaks since the ferromagnetic order has the same

lattice constants as the nuclear structure. These additional contributions can

be best observed with temperature dependent neutron diffraction

experiments where the additional contributions disappear above the Curie

temperature. For ferrimagnetism, a mixture of antiferromagnetic and

ferromagnetic behaviour is observed since the compensated part of spins

cause antiferromagnetic peaks, while the uncompensated moments cause

additional magnetic contributions with the same lattice constants as nuclear

Bragg peaks. These facts are schematically illustrated in Figure 33.
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Figure 33 Illustration of simple types of 1D magnetic order and corresponding
neutron diffraction pattern. Adapted from [137].

Experimental details2.5.7

For magnetic measurements, the powder of sintered and crushed pellets

was used and measurements were carried out on a SQUID-VSM MPMS 3

by Quantum Design (San Diego, California, USA). High temperature

magnetometry measurements were performed on a Quantum Design PPMS

DynaCool using the VSM oven option.

Most MFM measurements were carried out on the AFM mentioned in

Section 2.3.5 with lift heights of 70-100 nm. PPP-MFMR AFM tips by

Nanosensors (Neuchatel, Switzerland) with a magnetic coating with 300 Oe

coercivity and remanent magnetization of approximately 300 emu/cm3 were

used. Some MFM measurements were carried out on an AttoMFM I by

Attocube (Munich, Germany) which is explicitely stated in the text. All MFM

images presented in this thesis show the phase of the second pass scan

and were measured in a constant frequency mode.

Magneto-optical Kerr effect (MOKE) hysteresis loops were taken using an

Evico (Dresden, Germany) wide-field Kerr microscope, set to be sensitive to

the longitudinal Kerr effect. To take a hysteresis loop, the intensity of light

from a selected region of the microscope image was monitored, while an in-

plane magnetic field was swept.

Mössbauer spectroscopy measurements were performed using a constant

acceleration spectrometer in transmission geometry with a 57Co source (Rh-

matrix). Powder from crushed sintered pellets was mixed with chemically

inert boron nitride. Measurements below ambient temperature were
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conducted using a liquid helium bath cryostat. Spectra were analyzed using

the ‘pi’-program package .

Neutron diffraction was carried out on the D1B - High resolution neutron two-

axis powder diffractometer at the Institut Laue-Langevin (ILL) in Grenoble,

France. The schematic instrument layout is shown in Figure 34.

Figure 34 Schematic instrument layout of D1B neutron powder diffractometer at ILL
[138].

Pyrolitic graphite monochromators (002 reflection) were used for neutrons

with a wavelength of 2.52 Å. In case of BFC-BKT, ceramic pellets with 8 mm

diameter were used in a vanadium can with total sample weight of

approximately 17 g. In case of PZT-PFW, crushed ceramic pellets were filled

in a vanadium sample can with total sample weight of approximately 20 g. A

cryo-furnace sample chamber was used for temperature dependent

measurements, which allowed temperature control between 1.5 and 550 K.

The resolution function of D1B, which will be used to calculate the size of

magnetic regions, is shown in Figure 35.
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Figure 35 Resolution function of D1B measured on yttrium iron garnet with neutrons
at = 2.52 Å [139].

Further information can be obtained on the instrument’s website [138].
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3 Signal stability and calibration in piezoresponse force

microscopy

Chapter overview and motivation3.1

As mentioned in Section 2.4.3 piezoresponse force-microscopy (PFM) has

become the standard tool to investigate ferroelectrics on the micro- and

nanoscale. For the experimental work of this thesis, PFM also plays a vital

role for investigation of dipolar microstructure and also for local ME coupling

where PFM is employed under in-situ magnetic fields. Here, one of the goals

was to quantify PFM signals, in order to measure local ME coupling

coefficients locally. However, stability and reproducibility of PFM signals is

usually problematic and their quantification is challenging [140] and thus not

widely applied [112]. The possibility to reproduce PFM experiments

especially concerning the magnitude of obtained signals has been a matter

of debate.

For this reason, a statistical study on the stability of PFM signals and on the

magnitude of the background-signal is presented in this chapter, in order to

make an estimation on how reliably ME coupling coefficients could be

determined with PFM. The background-signal which is presented in Sections

2.4.3.2 to 2.4.3.4 was studied because it can have a significant influence on

PFM signals and should be corrected for. Furthermore, practical aspects

concerning PFM imaging like choice of the tip, imaging artifacts, and correct

sample preparation are presented in this chapter. Lastly, preliminary

experiments for PFM under in-situ magnetic field to investigate the influence

of the magnetic field on PFM signals are presented.

Stability of the instrument3.2

Before PFM studies were started, preliminary experiments on general

stability of the instrument were carried out. Here, the tip was approached to

the fixed and rigid sample and kept in one position for a certain time with the

feedback loop enabled. It was found that the value for topography changes
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after the tip was in contact with the sample surface, which is shown in Figure

36.

Figure 36 Topography value vs. time, shortly after the AFM tip was approached to a
rigid surface, when the laser was switched on shortly before (—) or several
hours (—) before the experiment was carried out.

In the case where the laser diode was switched on long before the

experiment, the topography value had returned to its initial value after

approximately 20 minutes. This initial change of topography seems to be an

inherent instability of the instrument, which was verified in cooperation with

technicians of the manufacturer. However, if the laser diode was switched on

shortly before the experiment (red curve), there is a constant increase of the

topography value over time in addition to the initial increase. This constant

increase is probably due to heating of the laser-diode. Laser diodes usually

increase their intensity for some time due to heating after they were switched

on. Because in contact mode the laser is not centred on the photodiode

which was also the case here, an increase of laser intensity gives rise to a

change of topography as observed here.

Nevertheless, it is possible to run PFM experiments with good stability. In

Figure 37 cross-sections of 20 consecutive images (averaged over 256

lines) are presented.
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Figure 37 Cross-sections of PFM images taken on PPLN averaged over 256 scan
lines. PFM signals remain almost stable for 20 consecutive images with only
little decrease of the PFM signal over scanning time.

After recording 20 images with 256 scan lines (10 x 10 m), there is only a

small decrease of the domain contrast of approximately 6 %, which might be

attributed to wear of the conductive layer. Furthermore, the PFM signal

changes approximately linearly with the number of images. However, it

should be noted that PFM signals can be in some cases much less stable

and can change several times during one image (see Sections 3.4 and 3.5),

which is attributed to the mechanical stability of the tip or the level of

contamination of the sample surface.

Frequency dependent background-signal3.3

First, experiments were carried out, to verify whether results by Soergel et

al. [112] regarding the background-signal could be confirmed, i.e. whether

the background-signal is dependent on the frequency of the driving voltage

and not on the sample. PFM measurements were carried out both on PPLN

and on glass.
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Figure 38 X-amplitude PFM signal vs. frequency of the driving voltage measured on
a +Z- and -Z-PPLN domains and on glass.

Figure 38 shows that even on non-piezoelectric glass, there is a PFM signal

different from 0 for frequencies above approximately 40 kHz, which shows

that there is apparently a background-signal above these frequencies.

Furthermore, the frequency dependence of PFM signals on PPLN and glass

is approximately the same which supports that the background-signal is

independent of the sample as found by Soergel et al. This becomes obvious

when looking at the difference between the signal for the +Z-PPLN domain

and glass which approximately stays constant with frequency while the value

of the difference corresponds to the piezoelectric coefficient of PPLN with

subtracted background signal.

Furthermore, in agreement with considerations in Section 2.4.3.3 the mean

value of PFM signals measured on +Z- and –Z-PPLN domains is

approximately equal to the PFM signal measured on glass, which both show

the background-signal. Thus, experiments by Soergel et al. could be

confirmed.
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Statistical assessment of signal stability and3.4

background-signal

Quantification of PFM signals using the z-piezo method3.4.1

In the scientific community, the reproducibility of PFM signals has often been

a matter of debate. Researchers who express doubts about the

reproducibility refer to PFM measurements taken on PPLN on different days,

which are shown in Figure 39 [141].

Figure 39 Piezoelectric coefficients of PPLN measured by PFM on different dates
using the z-piezo method [141].

Measured values on PPLN on different days range from 3 to 301 pm/V,

while the average deviation from the mean is 76.9%. These measurements

would in fact suggest that reproducibility of PFM measurements is hardly

possible. However, these PFM signals had been calibrated using a

technique which shall be referred to as z-piezo method henceforth. It is

proposed that the large deviation of PFM signals is, at least partly, due to the

inaccuracy of this method as will be discussed below.

The z-piezo method is currently one of the most widely used techniques of

quantification in PFM, since it is standardly implemented in AFMs by Asylum

Research® which are widely used for PFM. It involves the z-piezo element of

the AFM [142], [143]. The principle is illustrated schematically in Figure 40.
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Figure 40 Schematic illustration of the z-piezo method which involves: a calibration
of the z-piezo element and b, obtaining the inverse optical lever sensitivity
(InvOLS) by taking a force curve on a rigid surface.

Initially, this method requires calibration of the z-piezo element, e.g. by using

a height-calibration sample (Figure 40a). Afterwards, the so-called inverse

optical lever sensitivity (InvOLS) which connects cantilever deflection to a

certain height difference is obtained. This can be extracted from the slope of

the repulsive part of a force curve taken on the sample. With this method,

cantilever deflections can in principle be related to sample deformations due

to the converse piezoelectric effect and thus PFM signals can be quantified.

However, a major drawback of this method is that force curves are taken at

much lower frequencies as compared to cantilever deflections in PFM

experiments, which are in the range of several 10 kHz up to several MHz.

This discrepancy inevitably results in a calibration error, e.g. due to the

frequency dependence of electronic components of the AFM system such as

the four-quadrant photodiode or electric amplifiers. The fact that the initial

height information ultimately used for PFM signal calibration is obtained on

height-calibration samples, which are usually 2-3 orders of magnitude larger

than actual sample deformations measured in PFM, adds another factor of

uncertainty. Furthermore, height-calibration involves the use of the AFM’s

feedback loop, which is not the case in a PFM experiment.
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Quantification of PFM signals using a reference sample3.4.2

A more accurate method for quantifying PFM signals might be to use a

ferroelectric reference sample as was already discussed in Section 2.4.3.3.

Such an approach has the advantage that conditions during calibration

(frequency, magnitude of deformation) are very similar as during the actual

measurement, which would eliminate several errors with respect to the z-

piezo method. However, due to the inherent background-signal in PFM a

single crystalline reference sample, containing only ferroelectric domains

with equal magnitude, but different sign of polarization (i.e. only 180°

domains), should be used to calibrate PFM signals and measure the

background-signal at the same time. Since the background-signal is equal

for both up and down domains (see Section 3.3), the level of the

background-signal is simply the mean of the two signals. One material that

fulfils those requirements is PPLN (see Section 1.7.6 and 2.4.3.3). In order

to assess the stability of PFM signals, the statistical deviation of PFM signals

was measured on PPLN randomly on different days analogously to

measurements presented in Figure 39. Furthermore, the background-signal

was determined at the same time to assess its magnitude and influence on

PFM signals. These results are important to answer the question, to what

extent PFM signals are reproducible at all. But it is also important for the

prospect of using PPLN as a reference sample to get an estimate on the

stability of calibration over a certain time.

Two different types of AFM tips were used: NCP-14 Ti/Pt by Mikromasch®

with a conductive layer of Pt on top of a Ti layer and DCP 11 by NT-MDT®,

which were coated with a conductive layer of nitrogen doped diamond. Both

types of cantilevers are made of doped silicon with typical force constants of

approximately 5 N/m. As reference signal, the difference of X-amplitude

PFM signals between +Z and –Z domain (up and down domain) of PPLN

was used, which was usually averaged over 256 lines of the PFM image. A

contrast in the Y-amplitude between +Z and –Z domain was usually

minimized by adding a phase-shift to the LIA signal with respect to the drive

signal. However, the contrast in the Y-amplitude was always small compared

to the contrast in X-amplitude as expected in PFM due to the fact that
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signals should in principle be always in-phase or 180° out of phase with

respect to the driving frequency [124]. PFM measurements were carried out

using the parameters as listed in Section 2.4.4.

All values presented here were taken on different days and no specific

condition of the tip was maintained e.g. values were not necessarily

recorded with a new or sharp tip. Tips might have been new, but also heavily

used or blunt. Usually values would stay relatively constant during the same

day when multiple measurements were carried out on that day (see Section

3.2). Only one value was picked for a single day to assess the variation of

PFM signals over longer timescales more realistically. PPLN results for

conductive diamond and Pt coated tips are illustrated in Figure 41a, c, e and

Figure 41b, d, f respectively.
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Figure 41 Vertical PFM contrast of +Z to –Z domains of PPLN measured with a
conductive diamond coated tip a and a Pt coated tip b. PFM background-
signal divided by average +Z to –Z PPLN domain contrast (PPLNAvg.) for
conductive diamond coated tip c,e and Pt coated tip d,f.

Overall, signals varied between 0.26 V and 2.40 V (Output voltage of LIA)

with average deviations of 38.3% and 48.8% of the mean for diamond

coated and for Pt coated tips respectively. For both tips, similar signals for

the domain contrast (close to 1 V) were measured, which indicates that the

magnitude of the piezoresponse is similar for both tips. It is important to note

that the spread of values for diamond and Pt coated tips differ signicantly

(Figure 41a and b). In case of diamond coated tips, the spread of values is

rather uniform, whereas for Pt coated tips, there are few very high values

and the majority of values being in the range between 10-50% of the highest

(see histograms in Figure 41c and d respectively). It is assumed that the
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large values correspond to an intact conductive layer while the lower ones

correspond to worn tips with degraded conducting layer. Since both new and

used tips were used randomly for both tip types, it seems that Pt coated tips

degrade much faster which results in the majority of measurements having

low values, while diamond coated tips seem to always remain very stable.

This is in line with the observation, that the resolution of new Pt coated PFM

tips decreased very rapidly (approximately a few scans with 5 x 5 m scan

size and 256 lines) during imaging, whereas this is not the case for diamond

coated tips. Of course, this is expected from the mechanical properties of the

two film materials. Fast degradation of the Pt layer is probably due to

scanning in contact mode and the relatively stiff cantilevers used for PFM.

This diminishes the advantage of lower tip diameter of Pt coated tips

(approximately 25 nm) in comparison to diamond coated tips (approximately

100 nm). Figure 41f and e show that the background-signal can vary

strongly from -218.9% up to 102.5% of the average PPLN domain contrast

for the platinum coated tip while for the diamond coating the range lies only

between -35.8% and 49.9%. While the average background signal over

many measurements is close to 0 for both tips, the average deviation from 0

per measurement are 11.6% and 24.0% of the mean PPLN domain contrast

for diamond and Pt coated tips respectively. Thus the background-signal

should not be neglected for samples with a similar piezoresponse as PPLN,

which is the case for many ferroelectric samples. If the background-signal is

not corrected, it distorts PFM signals (especially R-amplitude and phase) as

shown in Section 2.4.3.2 and should be corrected by determining the

background-signal and subtracting it from X-amplitude data as shown in

Section 2.4.3.4.

The above results are summarized in Table 1.
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Technique PPLN z-Piezo[141]

Tip Cond.

Diamond

Pt on Ti -

Min, Max value for PPLN contrast 0.266, 1.62 V 0.345,

2.47 V

3.00,

301 pm/V

Mean value 0.971 V 1.03 V 105 pm/V

Average dev. of mean 38.3% 48.8% 73.1%

Min, Max value of background/PPLNAvg. -35.8%,

49.9%

-219%,

103%

-

Mean value of background/PPLNAvg. -2.91% -7.01% -

Average dev. of background from

0/PPLNAvg.

10.5% 26.0% -

Table 1 Comparison of results of PFM signal stability and background for different
conditions.

The results indicate that PFM data are reproducible to a certain extent

although signal variation is relatively high. However, taking in mind that PFM

is a technique based on scanning probe microscopy, which is usually very

sensitive to the state of the tip (e.g. contaminations, electric field distribution

at the tip apex), the relatively large deviation is not surprising. Tips coated

with conductive diamond exhibit better signal stability and lower background-

signals as compared to Pt coated tips.

Furthermore, the results indicate that the poor reproducibility found by

Gruverman et al. [141] is at least partly due to the z-piezo calibration

method, which adds another factor of uncertainty to the experiment.

Imaging artifacts3.5

As discussed previously, PFM is a technique which depends strongly on the

state of the tip and is relatively prone to imaging artifacts. Figure 42 shows

an artifact which is frequently encountered in PFM.
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Figure 42 Common artifact in PFM. ‘Skips’ occur in (vertical) PFM (X-amplitude or
mixed signal) image a and topography b in the same line (indicated by red

arrows).

Here (vertical) PFM signals (X-amplitude) decrease gradually while scanning

(direction of scanning is up) until a ‘skip’ in the signal occurs (Figure 42a,

marked by red arrows). These sudden changes are often accompanied also

by a skip in the absolute values for topography, which is visible in the

unflattened topography image (Figure 42b). It was found that these skips are

associated to the PFM experiment, because they occurred almost only when

an AC voltage was applied. The skips are attributed to a sudden change of

the conductive layer of the tip or to a sudden release of contaminants on the

tip-apex which both result in a sudden change of PFM signals due to a

sudden change of the electric field distribution at the tip-apex. Furthermore,

these skips occurred much more frequently in case Pt coated tips were

used, as compared to diamond coated tips. This is in line with the above

explanation of the skips because the much improved stability of the

conductive layer as compared to Pt will reduce sudden damages to the

conductive layer of the tip. This is in line with the above findings of lower

signal spread for diamond coated tips. Therefore, the use of diamond coated

tips is strongly recommended for PFM.

Influence of sample preparation3.6

As mentioned in Section 2.3.1, AFM requires very flat sample surfaces with

sample roughness below 1 m.
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Figure 43 shows the influence of appropriate sample polishing on PFM

signals.

Figure 43 Influence of polishing on PFM signals. Images a-d were all obtained on
the same material (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 which has a relatively
low d33 coefficient. Images a and b were obtained on a sample that was not
sufficiently polished, while images c and d were obtained on a well polished
sample. PFM images e and f were taken on a (BiFeO3)0.65-(PbTiO3)0.35

ceramic with relatively high d33 coefficient. Here PFM signals are strong, even
though the sample is not perfectly polished.

Figure 43a,b and Figure 43c,d show (vertical) PFM images (X-amplitude)

and topography for an insufficiently and for a well-polished sample of the
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same composition, respectively. Note that while in Figure 43b scratches are

visible in topography, this is not the case for Figure 43d, where no scratches

are visible and the grain structure is revealed through appropriate polishing.

The corresponding PFM images differ largely. While the PFM image

corresponding to the insufficiently polished sample (Figure 43a) is very

noisy and barely exhibits any PFM contrast, the image corresponding to the

well-polished sample (Figure 43c) exhibits strong signals and a clear

ferroelectric pattern. Those images were all recorded on perovskite ceramic

samples of the material (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6, which has a low

d33 coefficient of approximately 16 pm/V.

All ceramics shown in Figure 43 were polished using a multistep polishing

route presented in Section 2.2.3 except that the last polishing step involving

200 nm sized colloidal silica particles was only carried out on the sample

corresponding to Figure 43c,d. It is obvious that this step is particularly

important and is mainly responsible for the difference between samples

shown in Figure 43d and Figure 43b,f.

For ceramics of (BiFeO3)0.65-(PbTiO3)0.35, which exhibit higher piezoelectric

coefficients, this does not seem to be the case. Here, strong PFM signals

and a clear FE pattern are obtained, although the sample surface exhibits

scratches (see Figure 43e,f). It is concluded that PFM signals strongly

depend on the quality of polishing for materials with low piezoelectric

coefficients, whereas for samples with higher coefficients, this does not

seem to be the case. Although, a perfect polish does not seem to be very

important for highly piezoelectric samples, it is always beneficial to measure

on well-polished ceramic samples in order to be able to correlate the true

microstructure as visible in Figure 43d with the dielectric structure from PFM.

Influence of in-situ magnetic field on PFM signals and3.7

drift

ME coupling coefficients especially for single-phase multiferroics are often

small. Thus it is very important for local ME coupling investigations that the

magnetic field does not cause a change of PFM signals itself without the

presence of any ME effect. To this end, the influence of the magnetic field on
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PFM signals was investigated. PPLN was used again as a non-magnetic

and ferroelectric reference sample. Figure 44 shows investigations of the

magnetic field influence on the PFM signal.

Figure 44 Influence of magnetic field on PFM signal. a High resolution PFM (X-
amplitude) image of PPLN. b Cross-section corresponding to a. Positions of
the AFM tip for measurements shown in c and d are marked by blue and red
marks respectively in a and b.

Figure 44c shows a PFM signal vs. magnetic field measurement carried out

in the centre of the dark ferroelectric domain as indicated by blue marks in

Figure 44a and b. The data points are scattered almost randomly while the

slight slope of the linear fit through the data points is attributed to a slight

relative movement between sample and tip due to the magnetic field. This

slight movement is confirmed by the measurement presented in Figure 44d,

which was recorded at the domain boundary as indicated by red marks in

Figure 44a and b. It is obvious that the relative movement has a much larger

influence on the PFM signal at this position due to the much higher slope as

shown in Figure 44b. The same measurement carried out on the other

domain boundary visible in the left half of Figure 44a yielded the same result

but with inverted slope as expected. The relative movement between sample
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and tip is estimated to be less than 10 nm by relating minimum and

maximum PFM signals in Figure 44d to corresponding X-coordinates in

Figure 44b. However, it was observed that relative sample to tip movements

increased for longer duration of magnetic field activation. It is possible that

the small relative displacements are due to parts, in the tip and sample

environment e.g. in the nose cone holding the AFM cantilever, which are

slightly magnetic. However close to tip and sample only non-magnetic parts

were used where possible. For example aluminium was used as bottom

electrode underneath the sample, which reduced sample drift dramatically

as compared e.g. to brass which was found to be slightly magnetic probably

due to iron impurities.

Additionally, the slight relative movement might be also due to thermal drift

caused by the electromagnetic field generator. However, the temperature

change at the sample position due to the electromagnet was small. At

operation in full power over several hours the temperature change at the

sample position was approximately 2°C.

However, due to the drift during magnetic field operation, it is advisable to

carry out ME investigations not only in one sample position, but to record

consecutive images at certain magnetic fields to ensure that changes of

PFM signals are not due to the drift, especially when magnetic fields are

applied over longer times.

Conclusions3.8

In this chapter, investigations on signal stability and background-signal in

PFM and related topics were presented.

Preliminary studies of the instrument’s stability were followed by general

investigations of PFM signal stability and background-signal. It could be

shown that it is possible to acquire PFM signals stable over longer times of

scanning and over many images with a large number of scan lines. Previous

results by Soergel et al. [112] about the frequency dependent, but sample

independent background-signal in PFM could be confirmed. A statistical

assessment of the long term reproducibility of PFM signals and of the

magnitude of the background-signal revealed that PFM signals recorded on
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one particular sample independently on different days are reproducible to a

certain extent, although signal variation is relatively high. This is in contrast

to data from literature [141], which suggested no appreciable reproducibility

of PFM signals. The average deviation of the mean PFM signal for the PPLN

domain contrast is 38.3% and 48.8% for tips coated with conductive

diamond and platinum respectively. The background-signal which was

obtained as the mean value of the PFM signal on +Z and -Z PPLN domains

could in extreme cases be higher than the PPLN domain contrast for single

measurements. The average deviation of the background-signal from 0 per

measurement was 10.5% and 26.0% of the average PPLN domain contrast

for diamond and platinum coated tips respectively. Thus, the background-

signal cannot be neglected and should be corrected for as presented in

Section 2.4.3.4.

The better reproducibility of diamond coated tips is also supported by the

observation that typical PFM artifacts such as sudden changes of PFM

signals (see Figure 42), which occur much less frequently for these tips as

compared to Pt coated tips. Based on these findings, it is strongly

recommended to use tips coated with conductive diamond for PFM.

Furthermore, it was shown that appropriate polishing of samples has a

crucial influence on PFM signals especially for samples with low

piezoelectric coefficient. Therefore, a multistep polishing route involving

200 nm sized colloidal silica particles as the last step of polishing is

recommended. For samples with higher piezoelectric coefficient, the

influence of surface treatment does not seem to be as important. However, it

is advisable in any case to polish the sample surface appropriately in order

to reveal e.g. the grain structure of a material, which remains concealed

without the use of e.g. colloidal silica particles or similar agents.

Finally, it was shown that there is no intrinsic influence of the in-situ

magnetic field on PFM signals. Changes of PFM signals are probably only

due to a slight relative tip-to-sample movement which is in the order of

10 nm. However, especially when magnetic fields are applied for longer

times, the drift can be larger. Thus, complete images should be acquired at
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different magnetic fields instead of recording PFM vs. magnetic field only in

a single point.
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4 Marking of distinguishable micro-areas for microscopy

using TEM grids

Chapter overview and motivation4.1

This chapter will introduce a method that was developed during the project

to mark individual micron sized areas in order to study the very same area

with different microscopy techniques. Since the main topic of this thesis are

single-phase multiferroics, it is obvious that a combination of different

microscopy techniques is desired to study local dielectric and magnetic

structures. However, this approach is not only important for multiferroic

materials, but also for a large number of today’s (nano)-functional materials,

usually exhibiting complex physical properties and require local investigation

with different microscopy techniques covering different physical aspects.

Material classes which belong to this group are for example functional

oxides, semiconductors or biomaterials. In modern materials science, a

general tendency is the progressive miniaturization of feature or device sizes

[144]. At the same time, multifunctionality becomes more and more

important, thus material properties become more and more complex.

Therefore, it becomes necessary to study their multiple properties with

different microscopy techniques suitable for investigating different properties.

These can provide information on, for example, local composition, crystal

structure, mechanical properties, magnetic and dipolar order [115]. Areas of

materials research where it is important to acquire these information locally,

are in multiferroics, Li-ion battery, fuel cell materials and graphene [7], [145],

[146]. As has been discussed in Chapter 2, there exist numerous

microscopy techniques today which are able to measure different properties

with high spatial resolution. Among those certainly are AFM with related

techniques PFM and MFM (see Sections, 2.3.1, 2.4.3, 2.5.3 respectively) as

well as electron microscopy (see Section 2.3.2) or confocal laser scanning

microscopy [147] for all of which, numerous sub-techniques have been

developed. However, it is often necessary to use these different techniques

on the very same sample area in order to truly correlate the corresponding
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properties with each other. This can be challenging if not impossible without

marking techniques, given the fact that the local information are obtained on

areas that are often not larger than 10x10 m.

PFM and SEM with EDX spectroscopy were chosen to demonstrate how the

marking technique can be used to combine different microscopy techniques,

and thus acquire information of local dipolar order and chemical composition

on selected areas. Results of these investigations will be given in

subsequent sections.

Marking process4.2

Commercial copper grids as used in transmission electron microscopy

(TEM) for sample support (without a support film) in combination with thin-

film deposition were used for marking. In this way, more than 500 areas on a

sample can be marked at one time.

First a TEM grid is put on top of the samples surface to act as a shadow

mask for a metal thin-film which leaves open areas on the sample surface

that are connected in a cross shape manner, and coated square shaped

areas. The uncoated areas which usually have sizes of approximately 15x15

m can be used for imaging. Figure 45a-c illustrates the principle of this

method schematically.
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Figure 45 Schematic illustration of the principle of the marking technique. The
marking technique involves three steps: a, Applying TEM grid to flat sample
surface. b, Deposition of thin-film. c, Lift-off of TEM grid from sample surface,
leaving uncoated sample area in shape of the TEM grid. e, Light microscopy
image showing finder structure on glass slide (note colours are false due to
differential interference contrast DIC used for imaging). d, Magnification of
cross shaped uncoated area. Imaging can be carried out e.g. in the centre of
the cross shaped open sample areas. These can be made distinguishable by
using an appropriate TEM grid with finder structure (i.e. letters).

TEM grids with appropriate finder structure (letters) enable discrimination of

different sample areas e.g. using a conventional light microscopy (see

Figure 45d,e). These grids are inexpensive and can be bought in large

quantities, which allows single use of each TEM grid. Figure 45e shows a

cross-shaped uncoated area in high magnification suitable for imaging.

Experimental procedure4.3

Polycrystalline bismuth ferrite based ferroelectric ceramics with polished

surfaces as prepared according to Section 2.2, were used for PFM and SEM

investigations. The TEM grid (Maxtaform Reference Finder Grids, Style H7,

400 mesh, Copper, Ted Pella, California, USA) was clamped on the surface

of each sample which were then attached to a sample holder. For thin-film

deposition, the whole assembly was loaded into the process chamber of an

electron beam evaporator Leybold Univex 350 system (Oerlikon Leybold
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Vacuum, Cologne, Germany) with sample to source distance 375 mm.

Electron beam evaporation of aluminium was carried out under a vacuum of

below 1×10-6 mbar. Thin-film deposition and thickness were controlled by an

automated shutter system in combination with a quartz crystal microbalance.

The film thickness was approximately 50 nm.

AFM/PFM investigation4.4

Fig. 2 shows how the technique is employed to image a specific sample area

with AFM and PFM.

Figure 46 Finding specific sample area with AFM/PFM. a, Micrograph taken with
the light microscope integrated in the AFM. The cantilever with laser spot
reflected from the back side is visible at the top middle, with the AFM tip
situated underneath the bottom end of the cantilever. b, Cross-section
through topography according to red dashed line in c. The width of the film
edge is approximately 2.3 m. c,d, Topography and corresponding PFM
image (X-channel or mixed signal) of cross shaped uncoated area
respectively. Note that PFM contrast is only seen in the uncoated areas.
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Figure 46a shows how the finder structure can be used to move the AFM tip

to the desired free sample area, using an integrated light microscope with

low magnification. A simple X-Y-stage which was operated manually using

two screws to move the sample relative to the tip was used in this case.

Figure 46c and d show topography and PFM images (X-channel or mixed

signal) respectively of a cross shaped open sample area. Note that in coated

areas (bright in topography) there is no PFM signal, whereas in the uncoated

area, the ferroelectric domain pattern of the sample is visible. The low width

of the thin-film edge (2.3 m) visible in the topography cross-section (Figure

46b) according to the red dashed line in Figure 46c, allows accurate

localisation of sample areas.

SEM-EDX investigation4.5

The same localization procedure was also tested for SEM with EDX

spectroscopy, which is shown in Figure 47.
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Figure 47 Finding specific sample area with SEM and EDX. a, SEM backscattered
electron (BSE) image of larger area showing the finder structure on the
sample surface. b, Zoomed SEM BSE image of an area suitable for imaging.
c. Map of EDX Al-K series of the same area as in b showing the elemental
distribution of aluminium in this area. As expected, aluminium is found only in
coated areas.

Figure 47a shows how coated and uncoated area can be easily

distinguished by SEM using backscattered electron (BSE) imaging mode

which has an atomic number contrast (z-contrast). Note that in conventional

secondary electron imaging, a thin-film would usually not be visible.

Furthermore, the BSE mode has the advantage that it causes much less

charging on insulating samples, which is the case here. The finder structure

(letters) can be used to find exactly the same area as in scanning probe

microscopy and vice versa. Figure 47b and c show SEM image and EDX

aluminium K series map respectively of a similar area as in Fig. 2c and d.

Figure 47c clearly shows that aluminium is restricted only to coated areas.

EDX mapping can be also used to distinguish between the coated and

uncoated areas in case the average atomic number of film and sample is too

similar for discrimination via BSE imaging. Note that bright features in Figure
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47b correspond to ferroelectric domains, which are visible in certain cases in

SEM BSE imaging.

Parameters of thin-film deposition4.6

Two different deposition techniques, electron-beam evaporation and sputter-

coating with argon plasma, were tested. As expected, it was found that

edges were narrower for electron-beam evaporation due to the deposition

being almost exclusively in line-of-sight. In contrast, sputter-coating causes

more diffuse deposition and thus edges become broader and blurry,

although marking is still possible.

Furthermore, several thin-film materials were tested and the best results, in

terms of mechanical stability, were achieved for aluminium films. In case of a

softer gold film, problems were encountered for AFM imaging. In contact

imaging mode which is used for PFM, the film was damaged, while the tip

was scanned across it. This resulted in stripe-like imaging artifacts

presumably due to the ‘smearing’ of gold particles across the surface during

scanning. However, this was not the case for the aluminium film presumably

due to the much harder aluminium oxide layer on the surface.

For deposition of the film, it was found that a flat sample surface is very

important to ensure that gaps between grid and sample surface are

minimized. If the grid does not lie flat, but in some distance away from the

surface, this results in formation of a shadow from the aluminium source to

the sample surface. As a result, there exists a grey area between the fully

exposed and fully obscured area. This leads to undefined and broad edges

between coated and uncoated areas, which is undesirable.

Conclusions4.7

A simple and inexpensive method for marking individual and distinguishable

areas on a sample, using TEM grids in combination with thin-film deposition

was successfully implemented. Furthermore, it was shown that it can easily

be used to combine microscopy techniques like AFM/PFM, SEM-EDX and

light microscopy. Main advantages of the technique are that it is convenient,
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inexpensive and that many areas (several hundred, approximately 15x15 m

large) can be marked at the same time on several samples with one thin-film

deposition, which makes it suitable for high throughput or batch processing.

These features distinguish the technique from other marking techniques like

using a focused ion-beam (FIB) [148] which is time consuming and

expensive. Nevertheless, the technique could be particularly valuable, when

used in junction with e.g. FIB sectioning to obtain a thin lamella of a

particular pre-selected area.

In principle, this marking technique can be used for many other microscopy

techniques like confocal Raman microscopy or X-ray tomography with the

only requirement that coated and uncoated areas need to be distinguishable.

Marking of sample areas is especially important on samples, which lack

prominent surface features, which might be used for orientation. A finder

structure engraved in the TEM grid enables easy distinguishing of individual

areas, while the size of marked areas can be varied by choosing a TEM grid

with appropriate bar width.

Best results in terms of sharp edges between coated and uncoated areas

and mechanical stability of the thin-film were achieved, for an aluminium

thin-film (thickness approximately 50 nm) deposited via electron-beam

evaporation. This ensured good line-of-sight deposition, while the relatively

long sample to source distance presumably is also beneficial. Furthermore, it

is important to have a flat sample surface with a close contact between TEM

grid and surface to avoid blurry undefined film edges. The film material

should be relatively hard which avoids problems with sample handling and

imaging artifacts in AFM. In this case, aluminium proved well suitable for this

purpose in contrast to gold.
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5 (PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x solid solution ceramics

Chapter overview and motivation5.1

As outlined in Section 1.7.5, the system PZT-PFW was reported to show

large ME coupling effects, which could however not be reproduced by other

groups. Therefore, this system was selected, to further investigate its

multiferroic properties. Especially, magnetoelectric coupling should be

investigated using PFM under in-situ magnetic field.

Structural characterisation5.2

Three different compositions, x = 0.8, 0.7 and 0.6, of the system

(PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x (PZT-PFW) were prepared using the

procedure as outlined in Section 2.2. X-ray diffraction confirmed formation of

perovskite phases with only very minor peaks not belonging to the main

perovskite phase as illustrated in Figure 48. However, no impurity phase

could be assigned to those minor peaks.

Figure 48 X-ray diffraction pattern (Cu K logarithmic intensity scale) of PZT-PFW
ceramics for compositions x = 0.8, 0.7, 0.6. Lattice constants decrease
gradually for increasing PFW content. Splitting of (200) peak family indicates
tetragonal distortion (see inset, linear intensity scale) for all compositions with
less pronounced splitting for increasing PFW content as expected from
increasing relaxor properties. No major peaks not belonging to the main
phase were found.
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Since the perovskite crystal structures are not largely distorted from the ideal

cubic structure, peaks belonging to the same family e.g. (100) and (001) will

be collectively referred to as (100) peak henceforth. For x = 0.8 a tetragonal

distortion is clearly evident by the splitting of the (200) peak family which is

less pronounced in the PFW richer compositions, as expected from the fact

that pure PFW exhibits a pseudo-cubic crystal structure. This is in

agreement with findings on thin-films by Kumar et al. [96] at least for x = 0.8,

but not with the rhombohedral structure found by Pajic et al. [94] for x = 0.8,

0.7 and 0.6. However, different distortions for nominally same compositions

are not surprising, since PZT is at an MPB, where the structure is very

sensitive to slight changes in composition.

Neutron diffraction was carried out for x = 0.6 in the temperature range

between 1.5-550 K. Two structural transitions were observed which are

shown in Figure 49.

Figure 49 Neutron powder diffraction pattern of PZT-PFW ceramics (x = 0.6) as
function of temperature ( = 2.52 Å, logarithmic intensity scale). Inset shows
the (100) peak family. Changes in peak height and widths indicate structural
phase transitions.

As temperature increases, a number of peaks decrease considerably ((100),

(210), (211)) while other peaks become sharper and more intense ((111),

(200), (220)). It should be noted, that the decrease of peak width is not due

to thermal strain relief, since this process was reversible under heating and
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cooling. It is particularly noteworthy, how the intensity of the (100) peak

becomes almost 0 (see inset), while the peak position shifts from lower to

higher angles, corresponding to a contraction of the lattice, contrary to what

would be usually expected for increasing temperatures. Similar trends were

found for other peaks. These facts are emphasized in Figure 50.

Figure 50 Temperature dependence of the (100) peak family by neutron powder
diffraction. a, Colour map showing temperature evolution vs. bragg angle with
intensity represented by colours from red to blue. b, Integrated intensity vs.
temperature. A slower decrease up to approximately 300 K is followed by a
more rapid decrease until peak disappears almost completely. The transition
at approximately 300 K is also reflected in peak width (c) while position of the
peak centre increases for higher temperatures and follows a polynomial law
(d).

Figure 50a displays a false colour map for the temperature dependence of

the (100) peak where the temperature is plotted vs. the bragg angle and

intensity is displayed as colours with decreasing intensity from

red>yellow>green>blue. The peak centre vs. temperature curve follows a

polynomial law.

At 460±5 K there is a structural phase transition which is the Curie transition

from ferroelectric to paraelectric, which becomes evident when observing the

(200) peak as function of temperature as illustrated in Figure 51.
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Figure 51 Temperature dependence of the (200) peak family by neutron powder
diffraction. a, Colour map showing temperature evolution vs. bragg angle with
intensity represented by colours from red to blue. b, 3D representation of (a).
c, Integrated intensity of the two peaks stays relatively constant, until both
peaks merge at approximately 460 K, leading to a collapse of the two-peak
fitting. d, Peak merging is also reflected in the widths of the two peaks.

It becomes clear from observing the temperature evolution in Figure 51a and

b that the (200) is split into two peaks at low temperatures which merge at TC

≈ 460±5 K. Figure 51c shows the fitted intensities of the two peaks which 

become equal at TC, while the two peak fitting becomes unstable above this

temperature. The transition can be also clearly observed when looking at the

peaks’ widths (Figure 51d). TC ≈ 460±5 K is in good agreement with values 

reported in literature for similar compositions (x = 0.8, 0.7; 525, 485 K

respectively) [93].

Electrical characterisation5.3

All compositions did show ferroelectric pattern in PFM images as illustrated

in Figure 52.
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Figure 52 PFM investigation of PZT-PFW ceramics. Topography, vertical PFM
(VPFM) and lateral PFM (LPFM) images are shown according to column
labels while compositions is according to row labels. x = 0.8 and x = 0.7
display more pronounced FE domains as x = 0.6, which is in line with
expectations of more pronounced relaxor properties with increasing PFW
content. Stripe-shaped FE domains are found in x = 0.6 as indicated by red
arrows.

x = 0.7 and 0.8 both exhibit relatively similar disordered FE domain patterns.

In agreement with our expectations and with X-ray diffraction, their domain

patterns are very pronounced as expected for proper ferroelectrics. In

contrast, PFM images recorded on x = 0.6 exhibit patches of high

piezoactivity often located at the edges of grains, which are separated by

relatively large areas showing a low and uniform PFM signal (brown areas).

This is in line with the fact that x = 0.6 is expected to be more relaxor like as
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compared to x = 0.7 and 0.8. Nevertheless, very small stripe-like 180°

domains can be observed in certain grains, as indicated by red arrows. Note

that the contrast was enhanced to make these domains better visible.

Furthermore, a number of PFM under in-situ magnetic field experiments

were carried out on all compositions. However, no signs of local ME coupling

using PFM under in-situ magnetic field could be found unlike in the related

PZT-PFT [67].

Magnetic characterisation5.4

All investigated compositions, x = 0.8, 0.7 and 0.6 did show non-linear

hysteretic magnetic behaviour as illustrated in Figure 53.

Figure 53 Magnetization vs. magnetic field (M-H) loops for all compositions at room
temperature. All compositions show non-linear and hysteretic behaviour,
although much stronger for x = 0.6 and 0.7 as for 0.8.

As expected, compositions with higher content of Fe exhibit larger

spontaneous magnetization.

However, MFM and SEM-EDX investigations of x = 0.6 revealed the

presence of a magnetic impurity phase in the material with low content as

illustrated in Figure 54.
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Figure 54 MFM and SEM-EDX images of a typical Fe3O4 impurity phase particle.
a,b Topography and MFM (phase) image of an Fe3O4 particle exhibiting
magnetic stray fields. c, SEM micrograph (backscattering detection).
Secondary phase particle is easily identified by SEM due to atomic number
contrast. d, EDX maps showing elemental distribution according to labels.
Elemental distribution indicates that the particle has the chemical composition:
Fe3O4

EDX maps indicate an approximate composition Fe3O4 (Magnetite). It is not

unlikely, that small amounts of Fe3O4 form in the present system, since

unreacted -Fe2O3 used as starting material, which is antiferromagnetic itself

decomposes at temperatures around 1200°C to form Fe3O4. Such high

temperatures were reached during sintering. It is also possible that the

particles consist of ferrimagnetic -Fe2O3. The calculated atomic ratio of Fe
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to O from EDX spectra is not accurate enough to be able to draw a

conclusion on the exact composition of the secondary phase, since signals

from other elements than Fe and O were relatively large, meaning that not

only the impurity phase particle was probed. Judging from XRD, SEM-EDX

maps and the relatively low magnetization of PZT-PFW samples, the

maximum content of Fe3O4 is estimated to be below 1%. Given the fact that

Pajic et al. [94] did not observe ferromagnetic behaviour for the above

compositions, this might be due to the impurity phase. It is important to note,

that these impurity phases are not easily detected using SEM-EDX. They

could only be detected using EDX on well-polished samples. When the last

polishing step involving colloidal silica had been left out, they were not

detectable using EDX (compare Section 3.6).

A technique which is not sensitive to magnetic impurity phases with low

content is 57Fe Mössbauer spectroscopy, since signals from all Fe atoms in

the sample are obtained which are predominantly not contained within the

impurity phase. In fact, in this particular case, where samples have a large

concentration of strongly X-ray absorbing elements (i.e. Pb), the contribution

of Fe atoms from Fe3O4 is certainly below the noise level, due to relatively

low signal to noise ratio. Spectra at different temperatures for all

compositions are shown in Figure 55.
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Figure 55 57Fe Mössbauer transmission spectra at various temperatures for
(PbZr0.52Ti0.48O3)x-(PbFe2/3W1/3O3)1-x for x = 0.6, 0.7 and 0.8 according to
labels with: fit to data (—), sextet contribution (—) and doublet contribution (—
). Only x = 0.6 exhibits blocked magnetic order at low temperatures. Red
arrows indicate signs of sextet contributions for x = 0.7 which could, however,
not be fitted satisfactorily.

Only for x = 0.6, there are sextet contributions clearly visible at low

temperatures, whereas for x = 0.7 there is hardly any sextet contribution

present even at 5 K (red arrows indicate signs of sextet contributions for x =

0.7 which can, however, not be fitted satisfactorily). For x = 0.6 there is a

broad sextet and a small doublet contribution present at 5 K. The sextet

corresponds to blocked (antiferro)magnetic order of Fe atoms, while the

doublet either corresponds to paramagnetic Fe atoms, or to thermally

relaxing magnetic regions whose magnetization vector fluctuates faster than
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the Larmor period of 5 x 10-9 s for 57Fe nuclei. The fact that sextet and

doublet contributions coexist in a certain temperature range up to

approximately 80 K, might indicate a blocking process and thus the

presence of nanosized magnetic regions. Pajic et al. reported a blocking

transition for the same composition but at lower temperature (approximately

8 K) [94]. AC susceptibility vs. temperature measurements also exhibit an

anomaly at low temperatures as illustrated in Figure 56.

Figure 56 Temperature dependent susceptometry and magnetometry of PZT-PFW
ceramics, x = 0.6. a, Real (') and imaginary part of AC susceptibility ('') vs.
temperature measured at HAC = 10 Oe, f = 20 Hz with a DC offset H = 20 Oe.
b, Zero-field cooling (ZFC) and field cooling (FC) magnetization vs.
temperature curves measured at H = 200 Oe. Direction of measurement is
indicated by red arrows.

The features observed in AC magnetometry (Figure 56 a) are not expected

to be due to Fe3O4 particles which do not exhibit transitions in this

temperature range, except for the slight maximum in '' above 100 K, which

might be attributed to the Verwey transition of Fe3O4 [149]. Although the

maxima close to T* ≈ 50 K in the real and imaginary part of the AC 

susceptibility might indicate a blocking process, this seems unlikely, due to

the significantly different transition temperature observed in Mössbauer

spectroscopy. In Mössbauer spectroscopy, the transition from sextet to

doublet (equivalent areas for both contributions) takes place approximately

at 10 K (see also Section 6.7). Since superparamagnetic blocking is a

dynamic process which is strongly dependent on the time constant of the

used method, a much higher blocking temperature would be expected for

Mössbauer spectroscopy as compared to AC magnetometry. This is,
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however, not the case. Therefore, it is more likely that this transition is static

and thus, is independent of the measurement time constant.

PZT-PFW has a perovskite crystal structure, where Fe atoms are linked by

O atoms in a network or clusters fashion, which are interrupted by

diamagnetic ions following percolation statistics similar as in the well-studied

PbFe1/2Nb1/2O3 (PFN) [40]. These clusters, should exhibit a broad

distribution of Néel temperatures, depending on their size, which might

explain the Mössbauer spectroscopy and AC magnetometry data between 5

and 80 K.

It is interesting to note that no anomaly around 50 K is visible in the ZFC-FC

curves in Figure 56b. This would rather indicate a frequency dependent

process. The observed irreversibility (difference between curves), might be

attributed to a defreezing process of the magnetization of Fe3O4 particles.

The ZFC curve contains another feature. A kink close to 250 K might

indicate a Néel transition and is supported by a maximum in '' at the same

temperature. Strangely, this kink is not present when cooling down from

higher temperatures in the FC curve. This might be connected to the fact

that there is also irreversibility i.e. a difference between ZFC and FC curves.

A transition at approximately 250 K is not only found in magnetometry, but

also in Neutron diffraction where an antiferromagnetic peak with low

intensity, corresponding to a (½½½) peak disappears also at approximately

250 K as illustrated in Figure 57.
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Figure 57 Temperature dependence of the AFM (½½½) peak by neutron powder
diffraction. a, Colour map showing temperature evolution vs. bragg angle with
intensity represented by colours from red to blue. Note that apparently there is
a weak nuclear bragg peak superimposed with the AFM peak. b, Integrated
intensity vs. temperature showing a decrease to almost 0 at approximately
250 K. This transition is also reflected in peak width (c) and position of peak
centre (d). e, Comparison of neutron diffraction with XRD pattern, supports
AFM peak (see inset).

In neutron diffraction, there is an additional peak present at low

temperatures, with a d-spacing of approximately 4.64 Å corresponding to a

doubled d-spacing as compared to the (111) peak at approximately 2.32 Å

as visible in Figure 57e. Furthermore, the AFM peak is not present in XRD

data. The intensity of the AFM peak drops approximately to 0 around 250 K.

Note that there is a very weak nuclear peak superimposed to the AFM peak

(see Figure 57a) which is responsible for the non-zero peak intensity above
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250 K (see Figure 57b), and the abrupt changes in peak width and centre

position as visible in Figure 57c and d. Since the AFM peak belongs to the

main perovskite phase, it is not influenced by the magnetic impurity phase.

Thus, it is expected that the kink observed in the ZFC curve also stems from

the main phase. The Néel transition at 250 K might indicate that there are

larger magnetic regions present corresponding to the AFM peak. However,

these regions could only contain a small part of the total Fe, since they are

not visible in Mössbauer spectra. When considering the overall amount of Fe

in the material, a low TN around 50 K could be expected. However, in order

to have a TN ≈ 250±10 K these regions should have an increased local 

concentration of Fe corresponding to a composition close to x = 0.15

according to Pajic et al. [94]. Furthermore, a blocking transition around 50 K

is not supported by neutron diffraction, since an additional broad AFM peak

would be expected at low temperatures, corresponding to blocked magnetic

nanoregions. Therefore, diluted clusters with a broad distribution of Néel

temperatures are the most likely reason for the observed anomaly at around

50 K.

Conclusions5.5

Three different compositions of PZT-PFW with x = 0.8, 0.7 and 0.6 were

successfully prepared and characterized structurally, electrically and

magnetically. x = 0.6 was characterized in more detail by neutron diffraction

as a function of temperature. The ferroelectric Curie transition is at 460 K,

there seems to be another structural phase transition at approximately 300 K

as reflected in decreasing intensities of certain peaks (e.g. (100)). This might

be due to a change of the symmetry.

All compositions showed FE domain pattern. However, PFM images for x =

0.6 indicates partial relaxor properties in contrast to x = 0.8 and 0.7 as

expected from increased PFW content. No local ME coupling effects could

be observed using PFM under in-situ magnetic field.

Although all compositions exhibited weak ferromagnetic behaviour in M-H-

loops, this might be actually due to Fe3O4 secondary phases as observed by

SEM-EDX and MFM. It is important to note, that these secondary phase
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particles were difficult to detect. They were not revealed in XRD

measurements and also not in SEM-EDX measurements carried out on

samples with incomplete polish. Only after carrying out a final polishing step

involving colloidal silica nanoparticles (see Section 2.2.3 and 3.6) was it

possible to detect them. The last step is very important since the sample

surface is slightly etched at this stage, which results in a pronounced height

difference between impurity phase and the rest of the sample, if mechanical

and chemical stability towards the alkaline environment are sufficiently

different for the two phases, which was the case in this example (a further

example will be given later, see Section 6.4.2). When this is the case, the

particles can be easily identified via SEM, AFM or even light microscopy.

Therefore, the importance of the last polishing step, also in terms of image

quality in PFM (see Section 3.6), cannot be overstated.

Of all investigated compositions, only x = 0.6 seemed to show inherent

magnetic properties. Two different characteristic magnetic species seem to

be present. There exist network like magnetic cluster of Fe atoms sharing an

O neighbour atom which follow percolation statistics. They are characterized

by a gradual transition observed in Mössbauer spectroscopy and peaks in

AC susceptibility around 50 K. This temperature is in good agreement to the

expected TN according to the relatively low overall Fe concentration of the

sample. A blocking transition in this temperature range as found by Pajic et

al. could not be confirmed [94].

The second magnetic species is characterized by a kink in the ZFC curve

together with a weak AFM peak observed in temperature dependent neutron

diffraction. These presumably correspond to regions of higher Fe

concentration with approximately composition x = 0.15 corresponding to their

high TN ≈ 250±10 K [94]. However, these regions seem to contain only a

small amount of the total Fe, since they are not visible in Mössbauer spectra,

which is in line with the low intensity of the AFM peak.

Further experiments are necessary to support the above conclusions.

Measurements should be repeated on exactly the same samples e.g. for

Mössbauer spectroscopy and magnetometry, to exclude any influence from

slight variations in sample preparation e.g. during sintering. Furthermore,
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Frequency dependent at different DC fields AC susceptibility measurements

should be carried out to try to investigate especially the differences between

DC magnetometry and AC susceptometry while differential scanning

calorimetry (DSC) could further support magnetic transitions.
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6 (BiFe1-xCoxO3)0.4-(Bi1/2K1/2TiO3)0.6 solid solution ceramics

Chapter overview and motivation6.1

This chapter contains the main experimental results regarding ME coupling

and deals with the system (BiFe1-xCoxO3)0.4-(Bi1/2K1/2TiO3)0.6. The system

(BiFeO3)1-x-(Bi1/2K1/2TiO3)x had been previously studied by Bennett et al. as

outlined in Section 1.7.4. It was found that the composition with x = 0.4 lies

approximately on a morphotropic phase boundary which results in highest

values for the (converse) piezoelectric coefficient and saturation polarization

compared to other compositions [87]. Doping with Co was first carried out to

enhance ferroelectric long-range order. However, it was also expected that

Co doped compositions would be multiferroic, due to the similarity to

multiferroic BiFe1-xCoxO3 (BFC) (see Section 1.7.2).

Almost all experiments presented in this chapter were carried out on the

composition (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 (except where stated

otherwise) which for simplicity shall be referred to as BFC-BKT, while

(BiFeO3)0.4-(Bi1/2K1/2TiO3)0.6 will be referred to as BF-BKT henceforth.

This chapter will start with investigations of the material’s macroscopic

crystal structure and electrical properties, followed by a detailed investigation

of its magnetic structure and of small multiferroic clusters (MFC) found in

BFC-BKT. Subsequently, experiments on local ME coupling will be

presented, before concluding the chapter with investigations of magnetic

nanoregions (MNR).

Structural characterisation6.2

Structural characterisation of BFC-BKT ceramics is presented in Figure 58.
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Figure 58 Structural characterisation of BFC-BKT ceramics. a, Powder X-ray (Cu
Klogarithmic intensity scale) diffraction pattern indicates a single-phase
material. Diffraction peaks due to Cu K radiation were removed
electronically. b, SEM images of fractured pellets with magnifications of 10000
(top) and 30000 (bottom).

A powder X-ray diffractogram taken from a sintered and crushed pellet

(Figure 58a) reveals a pseudo-cubic macroscopic crystal structure as for

(BiFeO3)1-x-(Bi1/2K1/2TiO3)x (see Section 1.7.4). Only very minor diffraction

peaks not belonging to the perovskite structure are visible, which could not

be attributed to a certain crystallographic phase. Thus the material consists

almost exclusively of one crystallographic phase with very minor impurity

phases.

SEM images of a fractured ceramic pellet in Figure 58b show the grain

structure with grain sizes varying between 0.8 - 4 m and an average grain

size of 1.81 m, which was determined by a linear intercept method. This is

a normal grain size for a ferroelectric ceramic. Ceramic samples were dense

with an average geometrical density is 6.519 g/cm3 which is slightly lower

(approximately 2%) than that of BF-BKT. Consistently, SEM images indicate

relatively low porosity as expected for a dense ceramic.

Electrical characterisation6.3

Characterisation of electrical properties is essential for a multiferroic. Results

are presented in Figure 59.
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Figure 59 Electrical characterisation of BFC-BKT ceramics. a, Polarization vs.
electric field loop at 1 Hz and room-temperature. b, Permittivity vs.
temperature curves at logarithmically equidistant frequencies ranging from
1 kHz to 1 MHz. Frequency dispersion indicates relaxor ferroelectric
properties. The inset shows an analogous plot of the imaginary part of the
permittivity.

The polarization vs. electric field loop in Figure 59a proves ferroelectricity at

room-temperature. Although the loop is not completely saturated, values for

remanent and saturation polarizations are 19.9±0.05 and 33.9±0.05 C/cm2,

respectively, with a coercive-field of 22.4±0.05 kV/cm. Permittivity vs.

temperature curves taken at various frequencies (Figure 59b) reveal a

relaxor behaviour with frequency dispersion on the left side of the relaxation

peak between 350 to 400 °C. Non convergent curves on the right hand side

of the peak from 400 to 500 °C, are attributed to conductivity effects due to a

relatively high conductivity in this temperature range which is indicated by

relatively high imaginary part of permittivity '' in the inset of Figure 59b.

As outlined in Section 1.4.3, it is assumed that random electric-fields in

charge-disordered BFC-BKT give rise to PNR, which freeze into a dipolar

cluster glass state exhibiting SPNR as introduced in Section 1.4.4 on cooling

to below the low-f peak temperature, T  300°C. Above an external electric

field, |E| > 20 kV/cm (Figure 59a), the glassy disorder is broken while all

dipolar moments are aligned at saturation. This picture is supported by PFM

investigations as shown in Figure 60.
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Figure 60 PFM investigation of BFC-BKT ceramics. Topography, vertical PFM
(VPFM) and lateral PFM (LPFM) images are shown according to column
labels. Images in the bottom row (d,e,f) are zoomed from top row images
(a,b,c) according to red dashed rectangle in a. A non-ergodic relaxor state is
confirmed due to the presence of SPNR which occur as bright and dark spots
in VPFM and LPFM images. These are presumably surrounded by a dipolar
matrix containing PNR.

PFM images reveal the dielectric structure where distinct boundaries are

clearly visible at grain boundaries as can be seen by comparing VPFM

images with the grain structure from topography images. The dark lines

along grain boundaries visible in VPFM, correspond to a higher

piezoresponse with polarization facing downwards while brown areas inside

grains correspond to areas with low piezoresponse. Often, dark areas are

found in the centre of grains which can be best seen in the zoomed image in

Figure 60e. These areas correspond to SPNR. The areas exhibiting low

piezoresponse presumably contain dynamic PNR which fluctuate fast at

measurement conditions and thus do not result in a net polarization. Some

of the SPNR also exhibit a large in-plane polarization component as visible

in LPFM images (Figure 60c and f). It is striking that the region in the bottom

right corner of Figure 60b has much higher positive piezoresponse than
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other regions. However, it is not yet clear what might be the reason for this

behaviour.

Magnetic characterisation6.4

Multiferroic clusters6.4.1

Beside dielectric properties, another key aspect of multiferroics are their

magnetic properties which are characterized subsequently. For better

understanding, microscopic results will be presented first.

MFM measurements were carried out to investigate the microscopic

magnetic structure of BFC-BKT. Isolated magnetic features were found

which are displayed in Figure 61. The MFM images presented in Figure 61b

was recorded using an AFM by Attocube (see Section 2.5.7.

Figure 61 MFM investigation of BFC-BKT ceramics. Magnetic features are visible in
the MFM phase image (b). No particles are associated to these features (see
a). Stripe features in topography are due to contamination of the surface.

These magnetic clusters exhibit strong stray fields visible in MFM so it is

assumed that they correspond to ferrimagnetic regions due to Fe-Co

ferrimagnetism. A weak ferromagnetic behaviour would for instance not

result in such strong MFM signals. As outlined in Section 2.5.3 it is essential

in MFM to exclude possible artifacts e.g. due to surface charges. For this

purpose, one cluster was switched using an external magnetic field which

was applied ex-situ (not during measurement and away from the tip) so that

the tips magnetization would remain unchanged. This is shown in Figure 62.
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Figure 62 Switching of magnetic cluster. a,b,c, MFM images of the same magnetic
cluster, before (a) and after ex-situ switching with out-of-plane magnetic fields
of ±0.48 T (b,c) as indicated by blue arrows. Symbol above images, represent
single magnetic domains according to the dipolar magnetic MFM response. g,
Topography showing a flat sample surface in the relevant area.

Figure 62a shows a magnetic dipolar response as for a single domain

particle, with magnetization along an in-plane orientation as illustrated above

the image. As can be seen in Figure 62b and c, the MC was switched by

out-of-plane magnetic fields ±0.48 T. Thus it was proven that the feature is in

fact magnetic. Furthermore, there is no strong topography feature

associated to the cluster as illustrated in Figure 62d.

The area of the magnetic cluster shown in Figure 62 was also investigated

using PFM which revealed the presence of an SPNR with similar size and

shape being congruent to the MC which is illustrated by MFM and PFM

images in Figure 63.
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Figure 63 Multiferroic cluster in BFC-BKT ceramics. a, MFM images of the same
MC as in Figure 62 with congruent SPNR shown in b. Note that bright
features at the right and bottom edge of a are artifacts due to topography
features (see c).

This means that the feature does not only exhibit strong magnetization but is

also ferroelectric. It was found that this is the case for every magnetic cluster

that was investigated and we will thus refer to them as multiferroic clusters

(MFC) henceforth. This discovery is very important, since a single-phase

material being ferroelectric and ferrimagnetic, has not yet been directly

observed to the best of the author’s knowledge. It is all the more interesting,

since the multiferroic cluster exists at room-temperature.

But what might be the origin of the MFC? It is suspected that the

ferrimagnetic order originates from a higher local concentration of Co and Fe

in BFC rich chemical clusters in the BFC-BKT ceramic system. Due to the

higher concentration of BFC, an SPNR presumably forms in the same region

as an ‘island’ of long range ferroelectric order within a matrix of disordered

PNR, since the BFC component is the one which tends to establish long

range ferroelectric order. In contrast, the BKT component induces relaxor

properties which was observed in the system (BiFeO3)x-(Bi1/2K1/2TiO3)1-x

where the BKT richer compositions exhibit pseudo-cubic structures and

pronounced relaxor ferroelectric properties (see Section 1.7.4). Therefore, a

higher concentration of BKT is expected in the matrix surrounding the MFC.

An idealized crystal structure as expected for the MFC is illustrated in Figure

64b, which shows ferrimagnetic order of Fe3+- and Co3+- ions with net

magnetic moment  and polarization P due to off-centred B-site ions.
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Figure 64 Proposed structure of MFC. a, 3D representation of the same MFC as in
Figure 63. MFM image (bottom) overlaid with the PFM image of the exact
same sample area. b, Idealized crystal structure of the ‘multiferroic’ cluster
schematically illustrating the ferrimagnetic order of Fe3+ and Co3+- Ions with
net magnetization  and polarization P along the (111) direction.

Note that the above crystal structure representation does not display reality

truthfully but is idealized to illustrate the aforementioned facts more clearly.

Microanalysis of magnetic phases6.4.2

Beside MFC, another magnetic phase with a low content was found using

MFM in the form of micrometer-sized particles. Later, it will be shown that

these are CoFe2O4 particles (Figure 66). A typical particle is shown in the top

row images of Figure 65.
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Figure 65 MFM and PFM images of a CoFe2O4 impurity phase particle (top) and of
an MFC (bottom). a, MFM (phase) image of a typical CoFe2O4 particle
showing magnetic structure. b, PFM image indicates that the particle is not
FE. It can be clearly distinguished from the main perovskite phase in
topography (c). For comparison, the same images as in Figure 63 are shown.
MFC can be easily distinguished from CoFe2O4 particles, since they are
smaller, ferroelectric and are level with the rest of the sample in contrast to
CoFe2O4 particles.

The MFM image (Figure 65a) reveals that the particle has a magnetic

structure, while it is clearly not FE since it lacks any PFM contrast (Figure

65b). In contrast, the surrounding matrix is FE but not magnetic whereas the

MFC is both ferroelectric and magnetic. Furthermore, the CoFe2O4 particle

can be clearly distinguished from the matrix by topography since it ‘sticks

out’ of the sample by a few hundred nanometres, presumably due to larger

mechanical hardness as compared to the matrix which results in a lower

polishing rate during sample preparation. This was observed for all

investigated CoFe2O4 particles. In contrast, the MFC, cannot be

distinguished from the rest of the material by topography as previously

mentioned and thus must have very similar mechanical properties.

Therefore, the MFC presumably has a similar perovskite-type crystal

structure as the main perovskite phase. Of course, due to the fact that it is

FE, we also expect a perovskite structure for the MFC. Nevertheless, we will
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refer to the relaxor ferroelectric material that surrounds the MFC as ‘matrix’,

although it is expected to have a very similar crystal structure as the MFC.

The same particle as in Figure 65 was investigated using SEM-EDX as

illustrated in Figure 66.

Figure 66 SEM-EDX investigation of magnetic secondary phase particle. a, SEM
micrograph (backscattering detection). Secondary phase particle is easily
identified by SEM due to atomic number contrast. b, EDX maps showing
elemental distribution according to labels. Elemental distribution indicates that
the particle has the chemical composition: CoFe2O4.

The particle can be easily distinguished from the matrix due to the atomic

number contrast of the BSE detection mode (see Section 2.3.2) and due to

the higher concentration of O, Fe and Co and the lack of Bi, Ti and K. This

suggests a rough chemical composition of CoFe2O4. From larger EDX-maps

the volume content of the CoFe2O4 particles was estimated to be below 1%.

Since the MFC are expected to have a different chemical composition as the

matrix, it was also tried to resolve these differences using SEM-EDX. Figure

67 shows SEM-EDX maps region containing the MFC as presented in

Figure 63.
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Figure 67 SEM-EDX investigation of an MFC. a, SEM micrograph (backscattering
detection). Area which contains MFC is marked by dashed rectangle which
can be identified by comparison of features in b and a (marked by black
circles). For identification of MFC area, b and c can be compared. d, EDX
maps showing elemental distribution according to labels. No chemical
inhomogeneity is found for the area of the MFC.

The MFC is contained in the region which is marked by the dashed

rectangles which can be identified by comparing features in AFM topography

images Figure 67b and c to features in Figure 67a. The MFC is not

distinguishable from the rest of the material by EDX which means that both

must have a very similar chemical composition. The fact that the MFC could

not be resolved by SEM-EDX is attributed to a lack of sensitivity and spatial

resolution. Therefore, time-of-flight secondary ion mass spectrometry (TOF-

SIMS) was employed, which combines an extremely high elemental

sensitivity (in the range of ppm and below) with high lateral resolution as

outlined in Section 2.3.3.

Results of SIMS mapping with Bi ion bombardment and positive secondary

ions, are presented in Figure 68.
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Figure 68 Secondary ion mass spectrometry (SIMS). a, Maps of elemental
distribution according to labels showing multiferroic cluster (MFC, 1), CoFe2O4

secondary phase particle (2) and matrix (3). Note that Bi signals could not be
analysed since a Bi-ion beam was used as probe. Shape and size of the MFC
are in good agreement with MFM and PFM measurements. b, Radar chart
illustrating relative elemental intensities of the three areas according to mass
spectra shown in c. c, Mass spectra of the three areas showing all relevant
mass peaks for the displayed elements. Elements could be assigned to mass
peaks due to isotope pattern. As expected, the MFC has an increased Fe and
Co content as compared to the matrix but lower K and Ti content. In
comparison, the CoFe2O4 particle has a much higher Fe and Co content than
the MFC.

All relevant elements could be identified without problem according to their

isotope pattern (see Figure 68c). Maps of elemental composition confirm the

existence of Co and Fe rich regions as proposed above.

The maps (Figure 68a) show an area which contains an MFC (marked by

green arrow, 1) and a CoFe2O4 secondary phase particle (2). As expected,

the MFC exhibits a higher concentration of Co and Fe, and lower

concentration of K and Ti than the surrounding matrix as visible by bright

and dark spots in the respective elemental maps. Note that dark spots

occurring in all images (e.g. top right corner) correspond to pores. The size

of approximately 1 m and the oval shape of the MFC are in good
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agreement with MFM and PFM measurements. The large feature marked by

2 is identified as a CoFe2O4 particle by the very high content of Co and Fe

as compared to K and Ti and its much larger size of approximately 5 m

typical for these particles (see Figure 2). Note that Bi is not displayed in

Figure 68, since a beam of Bi ions was used to analyse the sample surface

which resulted in a homogeneous distribution of Bi across the whole area.

Using the Bi ion beam was, however, necessary to achieve the necessary

resolution. The radar chart in Figure 68b shows relative elemental intensities

of Fe, Co, K and Ti for MFC, CoFe2O4 particle and matrix according to mass

spectra shown in Figure 68c. To obtain these spectra, regions-of-interest

representing the three aforementioned entities were selected. The intensities

of mass spectra according to these regions, were normalized by the sizes of

the selected regions. From Figure 68b it becomes obvious that the CoFe2O4

particle almost exclusively contains Fe and Co, whereas the matrix contains

mostly K and Ti. In contrast, the MFC contains all elements in medium

concentration. This is in agreement with our expectations, since it was

expected that ferrimagnetism arises from higher local concentration of Fe

and Co as compared to the matrix, but lower as compared to CoFe2O4.

It is important to note, that for CoFe2O4 the intensities of Fe and Co have

approximately the correct ratio of 2:1 (measured 2.23:1) as expected from

chemical composition. In SIMS, intensities for different elements usually

cannot be directly related to elemental composition due to their different

ionization probabilities causing different sensitivity factors for different

elements. K as an alkali metal, has for example much higher intensities than

other elements. Therefore, only relative intensities for a given element can

be compared for the different areas. However, in case of Fe and Co which

have very similar ionization energies (762.5 and 760.4 kJ/mol respectively

[150]) and relative sensitivity factors in mass spectrometry [106], peak

intensities can be related to each other. In case of the MFC, the measured

ratio of Fe to Co signals is 2.5:1 which is close to the ratio as in CoFe2O4.

Therefore, taking into account the lower K and Ti concentration as compared

to the matrix, it is expected that the composition of the MFC is approximately

(BiFe0.7Co0.3O3)0.6-0.8-(Bi1/2K1/2TiO3)0.4-0.2.
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SIMS experiments furthermore exclude, that the MFC as imaged by MFM

are due to deeper lying magnetic particles, since SIMS is very surface

sensitive (1-2 nm penetration depth).

Macroscopic magnetic characterisation6.4.3

After the two different magnetic phases had been characterized on a

microscopic level, it was tried to distinguish them with macroscopic methods

as well. To this end, magnetic properties as function of temperature were

carefully analysed as illustrated in Figure 69.

Figure 69 Magnetic characterisation of BFC-BKT ceramics. a, Magnetization vs.
magnetic field (M-H) loops T = 300, 600 and 800 K. b, The spontaneous
magnetization, MS  ≈ 2 M(25 kOe)-M(50 kOe) vs. T (—) is best-fitted by
Equation 6-1 between 250 and 680 K (—). Imaginary part of AC susceptibility
(″) vs.T (—, HAC = 10 Oe, f = 23 Hz) reveals two peaks at 471.8 and 673.7 K
which are correlated with the Curie temperatures of two different magnetic
components, MFC and CoFe2O4.

The magnetization vs. magnetic field (M-H) loop at room temperature

(Figure 69a) displays non-linear magnetic behaviour, with low coercivity and

a saturation magnetization of approximately 12.3 emu/cm3. The

magnetization decreases at higher temperatures until the material becomes

paramagnetic (800 K). For analysis of magnetic contributions, the

spontaneous magnetization, MS ≈ 2M(25 kOe)-M(50 kOe) vs. T (Figure 69b)

was recorded. Since paramagnetic contributions to the magnetization are

relatively large in studied BFC-BKT material, the MS vs. T curve presented in

Figure 69b, was obtained by measuring two magnetization vs. temperature

(M vs. T) curves, one at 25 and another one at 50 kOe. Measuring at such
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high fields ensures that the sample is in saturation at all temperatures which

was verified by M-H measurements at low temperatures. By subtracting M

measured at 50 kOe from two times M measured at 25 kOe, all

paramagnetic contributions are subtracted and only MS is obtained, since

paramagnetic contributions are expected to be linearly proportional to

magnetic field. MS, decreases above approximately 200 K, follows the best-

fitted Equation 6-1 between 250 and 680 K, and shows a Curie transition to

a paramagnetic state at TC ≈ 704±1 K. The imaginary part of the AC-

susceptibility (″) is sensitive to magnetic energy dissipation and thus phase 

transitions. It exhibits two distinctly different peaks (Figure 69b) and thus

indicates two magnetic contributions as expected from previous

experiments. The broad peak with centre at 471.8 K has a signature that

differs significantly from the sharp peak at 673.7 K indicating two magnetic

contributions as expected. Hence, the MS vs. T curve was fitted by a function

containing two Bloch’s Law terms (see Figure 69b):

ܯ (ܶ) = ଵ(0)ቌ1ܯ − ቆ
ܶ

ܶ,ଵ
ቇ

ଷ
ଶ

ቍ

ఉభ

+ ଶ(0)ቌ1ܯ − ቆ
ܶ

ܶ,ଶ
ቇ

ଷ
ଶ

ቍ

ఉమ

Equation 6-1

with i(0) = volume-magnetization of contribution i at 0 K, i= critical

exponent of contribution i

The best-fit parameters are listed in Table 2:
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Parameter Multiferroic clusters CoFe2O4

MS(0) (emu cm-3) 1.52±0.03 14.1±0.1

Critical exponent  0.79±0.02 0.51±0.01

TC (K) 478±2 688±1

Peak temperature of

″(K)  

472±1 674±1

Quality of fit Reduced = 0.00175, Adj. R2 = 0.99981

Table 2 Fitting parameters of Bloch’s law fit according to Equation 6-1. Curie
temperatures of the fits are in relatively good agreement to the measured
centres of peaks in imaginary AC susceptibility ’’ within the expected
inaccuracy of the measurements.

The above function fits the MS vs. T curve very well and Curie temperatures

obtained from fitting are in good agreement with maxima of peaks in ″ 

(471.8 K vs. 478.3 K and 673.7 K vs. 687.7 K) taking into account the

expected inaccuracies of the measurements. These temperatures might be

interpreted as average Curie temperatures of a given magnetic phase. The

relatively small discrepancies in measured and fitted Curie temperatures can

be readily explained by different temperature sweep rates used in DC and

AC measurements (i.e. sample’s temperature lagging the sensor) and/or the

field dependence of TC (MS measured at 25 and 50 kOe while ″ at 10 Oe).

We attribute the contribution with TC around 680 K to the CoFe2O4

secondary phase which, as a classical magnetic material, is expected to

exhibit a sharp peak in ″ at the Curie transition. Although the Curie 

temperature of pure CoFe2O4, 793 K [151], is higher, this might be explained

by doping with ‘diluent’ diamagnetic ions (dilution in terms of magnetic order)

such as Ti4+, as measured by SIMS (see Figure 68). The broad peak around

475 K on the other hand, is attributed to the MFC. A lower TC for the MFC as

compared to pure BiFeO3 with its Néel temperature of 650 K due to doping

with diamagnetic K+ and Ti4+ ions is also expected in this case. Since the

MFC presumably have a perovskite crystal structure which is diluted with

diamagnetic ions especially at the edges (see Figure 68), they should at
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least partly consist of a network of magnetic ions, following percolation

statistics similar as in the well-studied PbFe1/2Nb1/2O3 (PFN) [40]. Such

clusters are expected to exhibit a broad distribution of Curie temperatures as

evident from the broad peak in ″ vs. T due to statistics. This rather unusual

cluster nature of the MFC might also explain the relatively large critical

exponent  ≈ 0.79 for the MFC, leading to a quite linear MS vs. T curve. The

other magnetic component however, displays a classical transition in Landau

theory with a critical exponent close to 0.5 which suggests that this

component is due to CoFe2O4.

Although, the macroscopic MS of the sample is dominated by the CoFe2O4

phase, the contribution of the MFC (approximately 10%) cannot be

neglected, since the MS vs. T curve is fitted much less accurately by just one

Bloch’s law term. However, it will be shown in the following paragraphs, that

the MFC show strong local ME coupling, which is not influenced by the

secondary phase. An in-situ PFM under magnetic field experiment, similar to

the one presented in Section 6.6.2 was carried out close to a CoFe2O4

particle. Here, no ME coupling effect could be observed.

Local hysteresis measurements6.5

Using magneto-optic Kerr effect (MOKE) under magnetic field

measurements, carried out selectively on CoFe2O4 particles, it was found

that they have a coercivity of Hc = 1100 ± 200 Oe as shown in Figure 70.
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Figure 70 MOKE microscopy on magnetic secondary phase particles. a, Image
showing a particle viewed through the Kerr microscope. b, MOKE signal vs.
magnetic field according to area marked by red dashed rectangle in a. Data
points are averages over nine adjacent points and the error bars are standard
errors of the mean values. Applied field direction and Kerr (in-plane)
sensitivity is indicated by blue arrow.

It is surprising that, on a macroscopic scale, BFC-BKT samples have much

lower coercivities, Hc ≈ 100-200 Oe, since the influence of CoFe2O4 on

macroscopic magnetic behaviour is expected to be very large. This

difference might be explained by magnetic anisotropy, which can have an

influence on the MOKE signal which is measured in-plane (as illustrated by

blue arrow in Figure 70). However, this is not the case for macroscopic

magnetization, which is measured over randomly oriented grains.

Local magnetoelectric coupling6.6

Converse coupling via MFM in combination with tip-induced6.6.1

electric field poling

The MFC presented in Figure 63 was further investigated for local ME

coupling with MFM and PFM as illustrated in Figure 71.
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Figure 71 MFM and PFM measurements in combination with electric field poling. a,
MFM image of the same magnetic cluster as in Figure 71c, after ex-situ
switching with an out-of-plane magnetic field of +0.48 T. Symbol above
images, represent single magnetic domains according to the magnetic MFM
response. d,e, PFM images of congruent FE cluster recorded after ex-situ
magnetic switching, before (d) and after (e) electric poling by scanning a
rectangular area as indicated by red dashed rectangle while applying a DC
bias to the tip. Configurations of the MFC’s polarization are illustrated by
symbols below PFM images. b, MFM image after electric field poling, showing
ME switching from out-of-plane to partly in-plane orientation. c, MFM phase
cross-sections of MFC before and after ME switching across the blue and red
dashed lines in a and b respectively.

After the MFC’s magnetization had been switched to an out-of-plane

direction as visible in Figure 71c (see also Figure 62c), it was poled, by

scanning a rectangular area around it, as indicated by the red dashed

rectangle in Figure 71d, while applying a DC voltage of 20 V. For imaging,

an AC voltage of 2 V was applied so as not to induce any poling due to the

probing voltage. After electric poling, the polarization of the MFC was

inverted (Figure 71e) and at the same time, the magnetization was switched

from a complete out-of-plane (Figure 71a) to a partly in-plane (Figure 71b)

orientation as indicated by symbols. This is also clearly visible when

considering the MFM cross sections through the MFC (Figure 71c). It is

worthwhile mentioning, that this experiment could be reproduced very

accurately. The converse switching will be analysed in more detail in Section
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6.6.3. However, not only converse, but also direct ME coupling was

investigated locally.

Direct coupling via PFM under in-situ magnetic field6.6.2

As mentioned previously, one of the goals of this project was to investigate

also the direct local ME coupling using in-situ PFM under magnetic field

which was also carried out on BFC-BKT ceramics. Results of these

experiments are illustrated in Figure 72 which shows selected out-of-plane

in-situ PFM images under magnetic field.
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Figure 72 In-situ PFM under magnetic field experiments. a,b Selected out-of-plane
PFM images from a magnetic-field loop series consisting of 21 images.
Magnetic field strength is according to labels and direction is according to blue
arrows. Change of piezoactivity is evident e.g. in regions marked by blue and
red rectangles. c, Polarization vs. magnetic field data referring to the region
marked by the red rectangle in PFM images. Dashed lines are spline-fits of
data points (•) to indicate the direction of the magnetic field. A strong sporadic
switching event is marked by (•). Inset shows linear fit to data points from the
orange line. d, AFM topography corresponding to b row images.

In total, 21 PFM images constituting a complete magnetic field loop with 0,

±375 and 75 Oe as starting-point, magnetic field range and step-size

respectively, were recorded. Images in row a clearly display a magnetic

field-induced change of an MFC’s polarization, in the top right corner of
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images. The direction of magnetic field, relative to the sample surface is

indicated by blue arrows beside PFM images. By taking the average PFM

signal of a highly ME active region marked by red rectangles in row b, the

change of out-of-plane polarization of this area as a function of magnetic

field can be obtained which is shown in Figure 72c (for calculation of P/PS

from PFM signals see below). This plot reveals a large change of

polarization over a relatively small magnetic field range. The curve exhibits a

V-like shape, where the polarization varies roughly linearly with magnetic

field but, regardless of its direction. Thus the ME mechanism is not simply

linear.

A stress-strain mediated ME coupling mechanism, might explain the shape

of the curve by coupling via magnetostriction and piezoelectricity. Many

magnetostrictive materials such as ferrite spinels or metal alloys exhibit such

a V-shape magnetostriction curve. The resultant magnetostrictive strain in

turn is coupled to polarization linearly via the piezoelectric effect and thus

would explain the observed shape of the curve. Above the red dashed

rectangle in Figure 72a and b there is a region which exhibits an inverted

switching behaviour as the region inside the rectangle, where a bright region

at low field becomes dark at ±375 Oe. Below the region of the red rectangle,

the same can be observed although less pronounced. This behaviour can be

understood when considering that the MFC inside the red rectangle applies

a longitudinal magnetostrictive stress within this region, and a transversal

stress with opposite sign onto the regions above and below.

Furthermore, strong sporadic switching events (see green dot in Figure 72c),

as well as an ageing effect were observed. This behaviour was also reported

by Evans et al., who observed domain-switching by PFM with ex-situ

magnetic fields in multiferroic (PbZr0.53Ti0.47O3)0.6–(PbFe0.5Ta0.5O3)0.4. The

authors attributed this behaviour to sudden releases of elastic energy. This

indicates that clamping of the MFC by the surrounding material might play a

role and that switching events take place after a certain threshold-field is

achieved.
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Quantification of local magnetoelectric coupling6.6.3

Since the ME response appears to be roughly linear within the experiment’s

uncertainty in a small range of magnetic fields and for the sake of quantifying

the effect in a comparable way, the linear ME coupling-coefficient for a

limited range of magnetic fields will be estimated, although the coupling is

clearly non-linear over the whole range of magnetic fields tested in this

experiment. As outlined in Section 6.6, the direct linear ME coupling-

coefficient can be expressed as:

ߙ =
߲ ܲ

ܪ߲

Equation 6-2

with Pi being the ith component of the electrical polarization and Hj being the

jth component of the external magnetic field, respectively (see

Section 1.6.1). To estimate the change of polarization over a range of

magnetic fields, PFM signals need to be quantified which was done using a

standard calibration sample, periodically poled lithium niobate (PPLN) as

described in Section 3.4.2. A calibration factor KPPLN is obtained by dividing

the d33 coefficient (approximately d33,A = 20 pm/V), by the average PFM

signal difference between 180° domains of PPLN per Volt (PFMPPLN) of the

AC driving voltage.

ேܭ =
ଷ݀ଷǡ

ேܯܨܲ

Equation 6-3

PFMPPLN (0.97 V) was obtained from measurements presented in Section

3.4.2 (diamond coated tip). To ensure a more reliable calibration, the same

AC frequency, voltage and AFM tip model was used for calibration

measurements and for PFM under in-situ magnetic field. The macroscopic

d33 coefficient of BFC-BKT d33,B = 16 pm/V (obtained from Berlincourt

measurements) multiplied by the AC driving voltage VAC and divided by

KPPLN, yields another calibration factor KBFC for PFM signals that

corresponds to a polarization change of 180° for BFC-BKT.
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ிܭ =
ଷ݀ଷ, ∙ ܸ

ேܭ

Equation 6-4

KBFC can be used to estimate the ME coupling-coefficient as follows:

ߙ =
2 ௦ܲ ∙ ݉

ிܭ

Equation 6-5

where Ps is 33.9 C/cm2 which is obtained from a macroscopic P-E-loop

(see Figure 59a) measurement and m/KBFC = 0.123 %/Oe is the slope of the

linear fit to the orange data points in Figure 72c (inset) and corresponds to

the change of polarization with magnetic field. Thus an effective coefficient


eff = 1.0 x 10-5 s/m is estimated which is, to the best of our knowledge, the

highest coupling coefficient reported for a single-phase multiferroic yet. It is

roughly two orders of magnitude larger, than the local coupling coefficient

estimated by Evans et al. [67] and five orders larger than that obtained on

(BiFeO3)0.6–(Na0.5Bi0.5TiO3)0.4 [152]. Nevertheless, we want to stress that the

calculated value is an estimate of the order of magnitude rather than an

exact determination of the ME coefficient. It is, however, intuitive that the

coefficient should be large, since relatively small magnetic fields (375 Oe at

most) result in considerable switching of the MFC, which should be due to

an extremely large ME coupling coefficient.

The strong ME coupling correlates well with the fact that MFC exhibit both

ferroelectric and presumably ferrimagnetic order. Another reason for the

exceptionally large ME coupling, might be the dielectrically flexible matrix,

surrounding the MFC. The dynamic and flexible PNR might facilitate ME

reorientation of the MFC’s polarization by accommodating strain due to the

reorientation process, which effectively reduces clamping of the MFC. In

case of a large scale single domain multiferroic material, this might not be

possible.

Subsequently, the converse ME coefficient from the experiment presented in

Figure 71 will be compared to the direct one. As introduced in Section 1.6.1,

the converse linear ME coupling-coefficient c can be expressed as

following:
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ǡߙ ൌ ߤ
ܯ߲

ܧ߲

Equation 6-6

with 0 = vacuum-permeability, Mi = volume-magnetization, and Ej = electric

field components.

We can expect high numerical values with similar magnitude both for 0M

and P for the MFC from Figure 71 and Figure 72 respectively when

converted to SI units, since both show large magnetization and polarization

judging from the magnitude of MFM and PFM signals respectively.

Unfortunately, the electric field used for poling as illustrated in Figure 71d

and e is unknown due to the non-uniform field underneath the tip. However,

we can expect a large ME coupling coefficient due to the large reorientation

of approximately 46.8% of the MC upon application of electric field. The

reorientation can be estimated from the MFM cross-section through the MFC

(Figure 71c) by comparing the relative heights of signals corresponding to

bright and dark areas. This reorientation is almost identical as compared to

that of the polarization displayed in Figure 71c over a change of magnetic

field of 375 Oe. Therefore a similar order of magnitude for the direct and

converse ME coupling coefficients is expected.

Discussion of possible artifacts in PFM6.6.4

In case of the direct ME switching, various possible artifacts for the observed

magnetoelectric switching were considered:

One could imagine, that the switching of the MFC’s polarization was not due

to the magnetic field, but due to poling by the AC electric field used for PFM

imaging. However, several PFM images of the same region were recorded

prior to PFM under magnetic field loops. These images recorded prior to

magnetic field application were all very similar and exhibited the same

pattern. Thus, it is concluded that the dielectric structure of the MFC was

stable before application of the magnetic field. The fact that the polarization

of the MFC was reversible with magnetic field furthermore supports that the

observed effect is actually due to ME interaction.
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It can be excluded, that changes of polarization as shown in Figure 72c are

due to sample drift. Areas of PFM images to obtain the respective data were

chosen very carefully and a small sample drift was corrected for.

Contamination or wear of the tip can lead to change of PFM signals.

However, these effects usually result in a change of absolute PFM signals

and resolution of PFM images and topography, however they would not

result in inversion of PFM contrast. Furthermore, for all PFM images related

to the magnetic field loop in Figure 72c, the resolution of images and

absolute PFM signals stayed very similar.

We do not expect surface charges to have had a significant influence on

PFM signals since a sufficiently stiff cantilever in combination with relatively

high contact pressure was used. For these conditions, any influence of

surface charges on PFM signals should be suppressed [123].

Discussion of possible artifacts in MFM6.6.5

One could imagine that the switching of the MC upon application of electric

field (Figure 71e and f) is not actually due to the electric field, but due to

back-switching over time. However, out-of-plane configurations (Figure 71d

and e) were stable for at least 12 hours, whereas switching between the

states shown in Figure 71e and f was recorded in less than 1 hour. Also,

continuous recording of MFM images did not result in a change of any of the

configurations shown in Figure 71 due to the magnetic moment of the MFM

tip. We can thus conclude that MC configurations are sufficiently stable and

that the observed magnetoelectric switching was due to the application of

electric field.

Magnetic nanoregions6.7

The material was furthermore investigated using ZFC-FC curves as outlined

in Section 1.5.4 which is illustrated in Figure 73.
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Figure 73 Zero-field cooling (ZFC) and field cooling (FC) magnetization vs.
temperature curves measured at H = 100 Oe. A blocking transition is
indicated by black arrow. Direction of measurement is indicated by red
arrows. Inset shows imaginary part of AC susceptibility ('') vs. temperature
measured at HAC = 20 Oe, f = 20 Hz with a DC offset H = 10 Oe.

Both for the ZFC and the FC curve, an increasing magnetization above

approximately 130 K and a large difference between the two curves can be

observed. Both facts are attributed to a magnetic melting of CoFe2O4

particles and MFC which progressively align with the field above 130 K due

to thermal activation. The fact that also the FC curve decreases upon

cooling from room-temperature to 130 K, might be attributed to

antiferromagnetically coupled Fe atoms. However, this tendency is less

pronounced when measuring at higher fields, where the ferrimagnetic

components become more dominating. A small maximum in the ZFC curve

at approximately 13 K is attributed to blocking of (superpara)magnetic

nanoregions (MNR) which are sufficiently small that thermal energy above

the blocking-temperature TB can flip their magnetic moment (see Section

1.5.4). These MNR are presumably due to the presence of PNR which are

connected to the relaxor nature of the system and give a spatial constraint to

MNR as outlined in Section 1.5.4.1. A maximum at the same temperature as

the TB in the imaginary part of the AC susceptibility (’’, inset of Figure 73b)

is further indication of this blocking process.

To support the superparamagnetic state and presence of MNR, Mössbauer

spectra were recorded as presented in Figure 74.
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Figure 74 Comparison of 57Fe Mössbauer transmission spectra at various
temperatures for BFC-BKT and (BiFeO3)0.4-(Bi1/2K1/2TiO3)0.6 (BF-BKT)
according to labels with: fit to data (—), sextet contribution (—) and doublet
contribution (—).

The Mössbauer spectra for BFC-BKT show a temperature-evolution which is

characteristic for superparamagnetism. At 5 K, the MNR are blocked which

results in a sextet (six line signal). At this temperature, all Fe atoms are

antiferromagnetically ordered (or in ferrimagnetic order with Co atoms). As

temperature increases, the sextet-area gradually decreases and is replaced

by a gradually growing doublet over a relatively wide range of temperatures.

The doublet corresponds to thermal relaxation or ‘unblocked’

superparagmagnetic MNR whose magnetization fluctuates faster than the

Larmor period of 5 x 10-9 s for 57Fe nuclei. These effectively appear to be

paramagnetic in Mössbauer spectroscopy and thus cause a doublet. In
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comparison, for a classical Curie or Néel transition, there would be no

coexisting sextet and doublet signals at one temperature or only over very a

narrow temperature range. The fact that a doublet and not a singlet occurs is

due to quadrupole splitting which indicates that the Fe atoms are not in a

centrosymetric environment, which is expected due to the ferroelectric

nature of the material which requires a non-centrosymmetruc structure.

Mössbauer spectra recorded on (BiFeO3)0.4-(Bi1/2K1/2TiO3)0.6 (BF-BKT) also

exhibit superparamagnetic behaviour. However, here the transition occurs at

much higher temperatures, which also results in a higher blocking

temperature TB. The large difference between TB for BFC-BKT and BF-BKT

emphasizes the influence that Co has on the magnetic properties of the

system. An explanation for the difference will be given below.

Because the blocking of MNR is a dynamic process, the blocking transition

in Mössbauer spectroscopy occurs at higher temperatures than in

magnetometry, due to much shorter time constants of the former method

compared to the latter. A comparison between magnetometry and

Mössbauer spectroscopy blocking temperature is shown in Figure 75.

Figure 75 a, Magnification of maximum in ZFC curve from Figure 73 with 57Fe
Mössbauer spectra measured at equivalent temperatures as indicated by
points on ZFC curve. Curves in Mössbauer spectra are: fit to data (—), sextet
contribution (—), doublet contribution (—). b, Temperature evolution of the
doublet fraction in Mössbauer spectra for BFC-BKT (•) and BF-BKT (•).
Temperature corresponds to a converted temperature using a factor of 1/5
and not the actual temperature of measurements.

In order to better compare the blocking temperatures obtained in

magnetometry and Mössbauer spectroscopy, the measurement
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temperatures from the latter are converted to temperatures as for a static

technique like DC magnetometry. A rough conversion factor between

temperatures in Mössbauer spectroscopy and magnetometry is 5:1. We will

call these converted temperatures as equivalent temperatures (ET, see

Figure 75b). In case of the Mössbauer blocking-temperature TB,Mö which is

defined as the temperature where the areas of sextet and doublet signals

are equal, only a temperature range can be estimated (see TB in Figure 75b)

due to few measurements points in the temperature range close to TB,Mö.

This range is 4-15 K which is in agreement with TB = 13 K from

magnetometry within the uncertainty of the experiment and temperature

conversion. Thus the majority of Fe-atoms are within these MNR, since far

above TB at ET 26 K (see Figure 75b), the sextet area is below the noise

level which means that approximately more than 90% of Fe-atoms are

contained within MNR. Furthermore, we expect that MNR display only weak-

ferromagnetic behaviour or uncompensated spins at interfaces [153], since

their contribution to magnetism, which corresponds to the small maximum in

the ZFC curve is small compared to the major magnetic contribution

characterized by the defreezing process, although they contain the majority

of the Fe-atoms. Thus they should contain no or very little Co, since this

should lead to ferrimagnetism and thus larger magnetization. This is in line

with SIMS measurements. The CoFe2O4 phase does not contribute to

Mössbauer spectra in this case, since only phases with a content of

approximately 10% are above the noise level in this case.

The significantly different blocking temperatures observed for BFC-BKT and

BF-BKT of approximately 43 K as illustrated in Figure 75, might be attributed

to a change of size of MNR by several nm. We have already seen that the

addition of Co causes formation of large BFC rich clusters, which might lead

to an increased concentration of the BKT component in the rest of the

material which contains most of the Fe-atoms and thus dominates

Mössbauer spectra. However, a higher concentration of the charge

disordering BKT-component in the BFC-BKT matrix as compared to pure

BF-BKT, might lead to a reduced size of PNR, which would presumably also

cause a reduction of MNR size and thus a decreased TB for the Co

containing material.
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Magnetic neutron diffraction6.8

As introduced in Section 2.5.6 neutron diffraction is probably the most

powerful tool to study the magnetic structure of a material. Therefore,

neutron diffraction was carried out as function of temperature on ceramic

BFC-BKT samples.

Figure 76 Neutron diffractogram (—) of BFC-BKT at temperatures below 30 K ( =
2.52 Å, logarithmic intensity scale). Inset (linear intensity scale) shows
magnification showing antiferromagnetic (½½½) peak with twice the d-
spacing as compared to (111) peak. X-ray diffractogram (—) exhibits no peak
at the same position, indicating that the peak is due to antiferromagnetic
order.

Figure 76 shows neutron and X-ray diffractograms (see labels) of BFC-BKT

where intensity is plotted vs. D-spacing with pseudo-cubic indexing as

presented in Figure 58. Similar to related (BiFeO3)x-(Bi1/2K1/2TiO3)1-x (x = 0.6,

0.7, 0.8) compounds [91], Neutron diffraction reveals an antiferromagnetic

(AFM) (½½½) peak at 4.58 Å which is twice the d-spacing of the

pseudocubic (111) nuclear peak at approximately 2.29 Å. This corresponds

to 31.9° in 2 for a wavelength of 2.52 Å of the used neutrons. The absence

of this peak in the X-ray diffractogram confirms that it is an AFM peak (see

inset).

Temperature dependent measurements did not indicate a structural phase

transition in the material between 1.5 and 550 K. However, as expected the

AFM peak changes as function of temperature as illustrated in Figure 77.
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Figure 77 Temperature dependence of antiferromagnetic (½½½) Peak. a, Colour
map showing temperature evolution vs. bragg angle with intensity represented
by colours from red to blue. The peak is broad up to temperatures of
approximately 100 K which is attributed to blocked magnetic nanoregions.
Note that the temperature scale is not linear to emphasize temperature
evolution at low temperatures. b, Integrated intensity of AFM peak vs.
temperature showing a rapid decrease of intensity up to approximately 100 K
which is followed by a slower decrease at higher temperatures.

Figure 77a shows a false colour map for the temperature dependence of the

AFM peak where the temperature is plotted vs. the bragg angle and intensity

is displayed as colours with decreasing intensity from

red>yellow>green>blue. Note that the temperature scale is not linear to

emphasize temperature evolution at low temperatures. While the AFM peak

is broad up to approximately 100 K, it gets significantly narrower above this

temperature and continues to decrease in intensity up to the highest

temperature, 550 K. However, the AFM peak is still present at this

temperature, although with low intensity. This is in agreement with the AC

susceptibilty as illustrated in Figure 69b, which suggests that the MFC lose

their magnetic order above the broad peak ranging approximately from 320

to 600 K. The temperature evolution of the AFM peak is also reflected in

Figure 78b which shows the integrated intensity of the fitted AFM peak vs.

temperature. Here, the intensity decreases rapidly until approximately 100 K,

whereas above this temperature, it decreases more slowly. The temperature

dependence of the AFM peak is more closely analysed in Figure 78.
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Figure 78 Temperature dependence and fitting of antiferromagnetic (½½½) peak. a,
Antiferromagnetic peak at temperatures from 1.5-30 K (—), 71-95 K (—),150-
200 K (—) and at 550 K (—). b, The difference of diffractograms from 1.5-
30 K and 150-200 K reveals a Lorentzian contribution to AFM peak at low
temperatures which is attributed to blocked MNR. Inset shows the same
difference for a nuclear bragg peak (111) which has a ‘zig-zag’ shape due to
thermal expansion of the crystal lattice.

Figure 78a shows the AFM peak averaged over certain temperature ranges

as indicated by the legend. As shown above, the peak is broad between 1.5-

30 K (Peak 1) with pronounced ‘shoulders’ to the sides of the central peak.

The broad peak shape is attributed to a superposition of a Gaussian and a

Lorentzian peak. The intensity of the shoulders starts to decrease above

30 K until approximately 100 K which becomes obvious when considering

the peak from 71-95 K (—, Peak 2). The peak in the temperature range

between 150-200 K (—, Peak 3) does not exhibit shoulders and is best fitted

by a Gaussian. Its intensity stays relatively constant over this temperature

range. At higher temperatures, the intensity of the Gaussian peak decreases

but it is still present at 550 K (—, Peak 4) which was the maximum

temperature that was reached during the experiment. It is assumed that

Peak 1 has a Lorentzian and Gaussian contribution whereas Peak 3

represents purely the Gaussian contribution. Thus the difference between

Peak 1 and 3 which is shown in Figure 78b should yield approximately only

the Lorentzian contribution. In fact, the difference peak clearly has a broad

Lorentzian shape as is typical e.g. for nanoparticles [38]. Accordingly, the

peak can best be fitted by a Lorentzian (dashed line in Figure 78b).

Furthermore, the form of the difference peak as illustrated in Figure 78b is

further confirmation that it is in fact an AFM peak which is due to the fact that
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AFM peaks decrease with temperature. In contrast, the inset shows the

same difference diffractogram for a nuclear bragg peak (111) which has a

‘zig-zag’ shape due to the thermal expansion of the materials lattice

parameters.

As mentioned above, the Lorentzian shape is indicative of a small crystallite

or feature size related to the peak. Peaks corresponding to crystallite sizes

much larger than 100 nm, would in theory result in a very sharp and narrow

diffraction peak which usually cannot be resolved by the instrument. Instead

those peaks have a Gaussian shape and are considerably broader than

expected by theory. Other factors than crystallite size such as

inhomogeneous strain, chemical heterogeneities or crystal lattice

imperfections [154] can also cause broad diffraction peaks. However,

because the broad AFM peak is only present at low temperatures, it is

attributed to blocked MNR which were also found by ZFC-FC curves and

Mössbauer spectroscopy in the same temperature range, when taking the

time constants related to the different methods into account (see Section

6.4). As for Mössbauer spectroscopy, the time constant for neutron

diffraction, which is related to the spin-spin interaction of neutron and

electron, is considerably smaller than for magnetometry. At low

temperatures, the MNR are blocked and cause coherent scattering of

neutrons, resulting in the broad Lorentzian AFM peak. As temperature

increases, MNR start to thermally relax. When the relaxation time of the

MNR is shorter than the time constant of neutron diffraction, the MNR cause

non-coherent scattering of neutrons, which in turn decreases the associated

diffraction peak. The blocking temperature for neutron scattering which is the

temperature where the peak related to blocked MNR is approximately at half

of its initial intensity, is estimated to be TB,N ≈ 70 K from Figure 77b. This is 

based on the assumption that only the Lorentzian contribution associated to

blocked MNR decreases at temperatures below 100 K and that furthermore,

MNR are completely blocked at temperatures below 30 K and completely

thermally relaxing at 100 K. As expected, the blocking temperature for

neutron diffraction is much higher than for magnetometry (TB ≈ 13 K) and 

slightly higher than for Mössbauer spectroscopy (T’B,Mö ≈ 50 K, non 

converted temperature), due to the shorter time-scale 10-9-10-12 s [155] for
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neutron diffraction as compared to the Larmor period of 5 x 10-9 s for 57Fe

relevant for Mössbauer spectroscopy.

The Gaussian AFM peak above 100 K is attributed to the larger MFC with

sizes above approximately 500 nm, which is too large to cause peak

broadening. As shown in Section 2.5.6, ferrimagnetism also results in

magnetic half indexed bragg peaks. The ferromagnetic moment due to

ferrimagnetic order of Fe and Co atoms, which results in a magnetic

contribution on top of the nuclear (111) peak, could not be observed as in

temperature dependent measurements, presumably due to the small amount

of ferrimagnetic regions. These results are in agreement with previous

results confirming the presence of both small dynamic MNR and larger static

MFC. As expected from AC magnetometry, there exist MFC which are still

magnetically ordered above 550 K.

Size determination of magnetic nanoregions6.8.1

The mean thickness  of the MNR can be calculated using the Scherrer

equation [156]:

߬ൌ
ߣܭ

ߚ ߠݏܿ

Equation 6-7

With:

ߚ ൌ ටܹܨ ெܯܪ
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ଶ

Equation 6-8

K = shape factor ≈ 0.9, = 2.52 Å, FWHMM and FWHMS = full width at half

maximum of the magnetic peak (2.03°) and of a standard (0.19°, see Figure

35) respectively. The full width at half maximum is taken from the fitted

Lorentzian presented in Figure 78b. With these values, the average size of

MNR is approximately 13.6 nm which is a realistic value for a magnetic

region exhibiting superparamagnetic behaviour. However, the MNR do not

seem to behave like classical magnetic nanoparticles, which usually have
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much higher blocking temperatures (80-200 K) for particle sizes smaller than

13.6 nm [35], [37], [38]. It is not clear yet, why this is the case.

Conclusions6.9

Ceramics of the composition (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 have been

intensively studied for their multiferroic and ME properties. It was found that

the material is a non-ergodic relaxor ferroelectric, exhibiting both small

dynamic polar nanoregions (PNR) and larger static ferroelectric clusters

(SPNR) as shown by P-E-measurements, permittivity vs. temperature and

PFM investigations. The magnetic structure mirrors the dielectric one to a

certain extent with superparamagnetic magnetic nanoregions (MNR) and

large static but rare ferrimagnetic regions, as found by MFM. It is assumed

that ferrimagnetic order is established in those regions due to higher

concentration of Fe and Co as confirmed by SIMS. Due to the specific non-

ergodic relaxor properties of the material, these regions always exhibit FE

order at the same time, due to the lower concentration of the charge disorder

inducing BKT component. Thus, the term multiferroic clusters (MFC) has

been coined for these regions. The presence of MNR was confirmed on the

other hand by ZFC-FC curves, Mössbauer spectroscopy and neutron

diffraction. Blocking temperatures from the three techniques are in good

agreement while their size is estimated to be 13.6 nm from the broad shape

of the antiferromagnetic peak occurring at low temperatures in neutron

diffraction. The MNR contain the majority of Fe atoms and exhibit

antiferromagnetic order only with weak ferromagnetic behaviour unlike the

Co containing MFC, as evidenced by Mössbauer spectroscopy and

magnetometry. MNR presumably exist due to PNR, which give a spatial

constraint to the magnetic correlation length and thus give rise to the MNR

as introduced in Section 1.5.4.1. The above facts are emphasized in Figure

79 which schematically illustrates the material’s partial dielectric and

magnetic structures, as well as the combined multiferroic one.
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Figure 79 Schematic illustration of dielectric, magnetic and combined multiferroic
microstructure of BFC-BKT. The dielectric structure is characterized by larger
static polar nanoregions (SPNR), which are relatively numerous within a
matrix containing dynamic polar nanoregions (PNR). The magnetic structure
is similar to the dielectric one, since large static ‘magnetic clusters’ and
dynamic magnetic nanoregions (MNR) are present. However, the rare
magnetic clusters only exist in regions of higher BFC concentration where
congruent SPNR occur simultaneously since a higher BFC concentration also
enables long range FE order. Therefore, all magnetic clusters are actually
multiferroic clusters (MFC). A combination of the two substructures yields the
multiferroic structure which comprises many SPNR and only few MFC as well
as congruent PNR and MNR. The latter supposedly form due to the spatial
constraint imposed on them by the PNR.

It becomes clear that every ferrimagnetic region is an MFC at the same time,

which is not the case for every SPNR. In essence, formation of MFC is

governed by the interplay of the BFC component being responsible for

ferrimagnetism and long range FE order, and the relaxor-state inducing BKT

component which presumably also improves the overall dielectric properties

of the solid solution.

The MFC exhibit an exceptionally large direct ME coupling, α ≈ 1.0 x 10-5

s/m (corresponds to a Voltage coefficient dE/dH ≈ 1.3 kV/(cm Oe)) effect 

which was found locally, using in-situ PFM under magnetic field. This is the

largest ME coupling coefficient found for a single-phase multiferroic thus far,

to the best of the author’s knowledge (see Section 1.6.6 for comparison).

Moreover, converse ME coupling was also observed presumably with similar

magnitude. The P vs. H curve as observed in in-situ PFM under magnetic

field measurements shows a linear field dependence, which is however,

independent of field’s direction and results approximately in a V-shape of the
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curve. The shape might be explained by a linear intrinsic mechanism

together with a low magnetic coercivity of the MFC. A stress-strain mediated

mechanism via coupling of piezoelectricity and magnetostriction is also

possible. Furthermore, PNR might play an essential role in the strong ME

coupling since they represent an electrically and mechanically flexible

environment, able to accommodate strain from rotation of the MFC’s

polarization. Such an effect would effectively reduce clamping of the MFC

and thus lead to an increased ME coupling coefficient. Another possible

explanation for the extremely large observed ME coupling, might be the

presence of the PNR and MNR. It had been previously proposed, that the

congruence of PNR and MNR might lead to an ideal stress-strain mediated

‘interface’ coupling resulting in large ME coupling [39], [96]. Furthermore, for

5 nm large magnetic nanoparticles, giant magnetostriction of 4%

dimensional change has been reported [157]. A similar effect might apply to

MNR in this system which could also explain the observed large ME

coupling.

Although XRD measurements did not indicate the presence of a secondary

phase, magnetic CoFe2O4 particles were found in BFC-BKT samples using

SEM-EDX and MFM. Using a combination of temperature dependent DC

and AC magnetometry measurements, contributions of MFC and CoFe2O4 to

the overall magnetization could be distinguished. It was found that CoFe2O4

has a low content of approximately below 1%, but account for approximately

90% of the material’s magnetization as confirmed by fitting of the

spontaneous magnetization vs. temperature curve using a Bloch’s law

function. Nonetheless, CoFe2O4 is not critical in terms of local ME coupling

and MFC. Using SIMS, it could be shown that MFC are chemically different

from CoFe2O4 particles as evident by the concentration of Co, Fe, K and Ti.

It can be further excluded that CoFe2O4 particles were mistaken for MFC,

since the former are certainly not FE as evidenced by PFM, and display very

different mechanical properties and sizes than MFC. Furthermore, no ME

coupling was observed in the vicinity of CoFe2O4 using PFM under magnetic

field. Thus it is concluded that CoFe2O4 particles do not interfere with the

strong local coupling effects, although they are problematic for magnetic

characterisation of BFC-BKT and should be eliminated in future work.
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The discovery of the MFC exhibiting exceptionally large ME coupling is

important, especially since it could be shown that the relaxor properties

enable their formation which opens a new perspective for this class of

ferroelectrics. Relaxor ferroelectrics had so far barely been considered for

single-phase multiferroics. Furthermore, for the first time ferroelectricity and

ferrimagnetism could be directly observed to occur in one material to the

best of the author’s knowledge.

If these MFC could be engineered to form an ordered array in a thin-film,

they might be used as carriers of information in a memory device. One could

imagine that epitaxial thin-films or single crystals might be engineered to

contain an array of self-assembled MFC. Compositions closer to the one

estimated for the MFC, (BiFe0.7Co0.3O3)0.6-0.8-(Bi1/2K1/2TiO3)0.4-0.2, might be

ideal starting points for such experiments. Another possibility might be

doping of selected regions in an epitaxial BF-BKT thin-film via ion-

implantation of Co, or using molecular beam epitaxy in junction with shadow

masks, to create islands of Co on top of a BF-BKT thin-film, followed by an

annealing step to create the MFC. Since the ME coupling is restricted to

well-separated magnetic regions, applications of electrically addressable

magnetic MFC might be envisaged for future ME random access memory

devices (MERAM) [4], thus making use of the converse ME effect. Such a

memory is schematically illustrated with two possible designs in Figure 80.
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Figure 80 Schematic illustration of a possible ME memory device. An epitaxial BFC-
BKT thin-film might be engineered to contain an array of multiferroic clusters
within a relaxor ferroelectric matrix. Information is stored in an electrically
controlled magnetic bit, adressable e.g. via a cross-bar architecture (a) or
cantilever-type probes in a microelectromechanical systems (MEMS) device
(b).

It is one of the main goals of research on ME and multiferroic materials,

since it would considerably reduce energy consumption of usual magnetic

memory, by enabling switching of magnetic bits without using electrical

current [158].
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7 Conclusions and future work

In this chapter, the most important findings of this thesis project are briefly

summarized, before outlining planned future work. More detailed

conclusions can be found at the end of each chapter.

Overall conclusions7.1

Certainly, the most important findings of the project were obtained on the

material (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 (BFC-BKT). Here, main goals of

the project could be achieved in studying ME coupling on a local scale in a

single phase multiferroic. What’s more, a new type of multiferroic region

called multiferroic clusters (MFC) exhibiting exceptionally large ME coupling

was discovered and their formation was understood in terms of the non-

ergodic relaxor nature of BFC-BKT, enabling the formation of long range FE

order in intrinsic ferrimagnetic BFC rich regions. Figure 81 summarizes key

results characterizing multiferroic properties of BFC-BKT and the MFC.
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Figure 81 Main electrical and magnetic measurements characterizing BFC-BKT and
the MFC. a, Polarization vs. electric field (P-E) loop at 1 Hz and room-
temperature. b, Permittivity vs. temperature curves at logarithmically
equidistant frequencies ranging from 1 kHz to 1 MHz. Measurements indicate
relaxor FE properties. c, 3D representation of MFM image (bottom) overlaid
with a PFM image of the exact same sample area showing the MFC. d,
Idealized crystal structure of the MFC, schematically illustrating ferrimagnetic
order of Fe3+ and Co3+- Ions with net magnetization  and polarization P. e,
Magnetization vs. magnetic field (M-H) loops at T = 300, 600 and 800 K. b,
The spontaneous magnetization, MS  ≈ 2 M(25 kOe)-M(50 kOe) vs. T (—) is
best-fitted by Equation 6-1 between 250 and 680 K (—). Imaginary part of AC
susceptibility (″) vs. T (—, HAC = 10 Oe, f = 23 Hz) reveals two peaks at
471.8 and 673.7 K which are correlated with the Curie temperatures of two
different magnetic phases, MFC and CoFe2O4.

Great potential in applications is expected for these newly discovered MFC,

since they exhibit exceptionally high ME coupling coefficients both for the

direct and the converse effect. A potential ME memory device, which is one

of the prime goals for research on multiferroics is outlined in Figure 80 and

utilizes the MFC as electrically addressable magnetic bits. Possible routes to

obtain such an ordered MERAM thin-film device, such as selective ion

implantation of Co into an epitaxial BF-BKT or similar BiFeO3 based relaxor-

type thin-film, are discussed.
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Another important consequence of the findings in Chapter 6 is the role of the

relaxor ferroelectric state. It does not only enable formation of MFC, but

presumably also plays an important role in the strong ME coupling, by

supplying an electrically and mechanically flexible environment for the MFC,

which effectively reduces their clamping and thus enhances ME coupling.

This opens a complete new perspective for multiferroic relaxor ferroelectrics,

which had so far barely been considered in research on single phase

multiferroics. Furthermore, the existence of magnetic nanoregions (MNR)

was confirmed by temperature dependent magnetometry, Mössbauer

spectroscopy and neutron diffraction. They might also be important for the

strong ME coupling and are presumably due to the presence of PNR.

The system PZT-PFW on the other hand, did not show local ME coupling

effects or magnetic regions visible with MFM, congruent with our findings

that ferrimagnetic MFC are necessary for the ME coupling, which are

enabled by the presence of Co in the BFC-BKT system. However, similar

trends are noticeable in both systems. That is, the existence of two

characteristic magnetic species. While in PZT-PFW there exist networks of

Fe atoms in the crystal lattice, apparently showing a broad Néel temperature

distribution, in BFC-BKT these regions presumably are smaller (MNR) and

thus show blocking behaviour. This can be explained by the existence of

polar nanoregions (PNR) in the relaxor ferroelectric BFC-BKT, in contrast to

PZT-PFW exhibiting macroscopic peak splitting in XRD, indicating more

pronounced classical ferroelectric properties.

On the other hand, in both systems, regions with increased concentration of

the magnetic three valent ions (Me3+) exist, exhibiting significantly increased

magnetic transition temperatures than expected from the average Me3+

content. These regions are, however, relatively rare and contain only small

amounts of all Me3+-ions in a sample. There seems to be a driving force,

causing the formation of those Me3+-ions rich regions, presumably during

sintering via solid state diffusion. This mechanism might be utilized, by

adjusting sintering parameters e.g. to increase the number of magnetic

regions and adjust their size, in order to engineer a material suitable for

applications.
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The detection of magnetic impurity phases such as ferrimagnetic spinels

Fe3O4 or CoFe2O4 is not trivial. In both systems, very small amounts of one

of those phases were present, but not detectable in XRD. However, they

influence the macroscopic magnetic behaviour significantly, since both

perovskite materials possess weak intrinsic magnetization with the exception

of the MFC. Both examples stress that simple M-H-loop measurements at

room temperature in combination with absence of clear secondary phase

peaks in XRD, are clearly not sufficient to justify weak ferromagnetic

behaviour in any related single phase multiferroic. For detection of

secondary phase particles, SEM-EDX elemental mapping is recommended.

However, an appropriate sample surface polishing is strictly necessary. In

case of BFC-BKT, AC susceptometry and DC magnetometry were employed

over a wide temperature range, to distinguish between inherent and

secondary phase magnetic contributions, which could be also applied to

many other single phase multiferroics.

Another important aspect of the project, was piezoresponse force

microscopy (PFM) to investigate local ME coupling. Factors such as signal

stability, background signal and imaging artifacts were statistically

investigated. Most important conclusions from these studies are that using

tips coated with conductive diamond, offers several advantages and that the

influence of correct sample polishing is very important in PFM. In addition, a

method has been developed, to mark many micro areas on several samples

for microscopy purposes at one time. It could be particularly useful in batch

processing or for preselecting specific sample areas for further processing

e.g. via focused ion beam (FIB).

Future Work7.2

A proposal for a postdoc project based on the results of this project has

been submitted to the DFG (German research association) end of February

2015. If successful, work on BFC-BKT and related materials will be

continued, with a more general approach to systematically study

ferrimagnetism in ferroelectrics especially in Co substituted BiFeO3.
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Following is a summary of the planned work that was grouped into three

objectives:

I. Investigation of the exact structure of MFC in BFC-BKT
II. Investigation of mechanisms of strong magnetoelectric coupling in

BFC-KBT
III. Systematic investigation of the systems (BiFexCo1-xO3)y-

(K1/2Bi1/2TiO3)1-y and BiFexCo1-xO3 also as thin-film materials

Objective I. will primarily deal with further characterizing the MFC to better

understand their structure and composition with methods such as

transmission electron-microscopy (TEM). A thin lamella will be cut

selectively out of an interface area between an MFC and the surrounding

matrix via focused ion beam (FIB) to study the chemical composition and

structure via EDX and selected area electron diffraction (SAED).

Furthermore, X-ray magnetic circular dichroism (XMCD) in combination with

photoemission electron microscopy (PEEM) experiments are planned at

synchrotron sources, to study the magnetism with element specific

information.

Objective II. is focussed on investigation of the underlying mechanisms

involved in ME coupling of the MFC. Here, more detailed PFM under

magnetic field in combination with electron backscattering diffraction (EBSD)

experiments are planned, to gain information on the local crystallographic

and polar orientation of MFC. Intrinsic ME coupling for example, is only

allowed for certain crystal symmetries. Therefore, these experiments could

give insight into the mechanisms of ME coupling.

In Objective III., additional compositions will be prepared and multiferroic

properties investigated. It is planned that further ceramics will be prepared.

Additionally, it is planned to prepare BFC-BKT thin-films via pulsed laser

deposition (PLD) in close collaboration with the University of Leeds. Here, a

hierarchical system will be employed where only necessary measurements

such as magnetometry will be carried out on all samples, whereas more

detailed and time consuming investigations are carried out only on the most

promising compositions to reduce unnecessary efforts.
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