
- 1 - 

GENOMIC BIOMARKERS OF 

RECURRENCE 

IN STAGE I NON-SMALL CELL LUNG 

CANCER 

 

Peter Alexandrov Tcherveniakov 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Medicine 

 

The University of Leeds 

School of Medicine 

 

 

February 2015 

  



- 2 - 

 

 

 

The candidate confirms that the work submitted is his own, except where 

work which has formed part of jointly-authored publications has been 

included. The contribution of the candidate and the other authors to this work 

has been explicitly indicated below. The candidate confirms that appropriate 

credit has been given within the thesis where reference has been made to 

the work of others.   

 

“Stratifying tumour subtypes based on copy number alteration profiles using 

next-generation sequence data”. Gusnanto A, Tcherveniakov P, Shuweihdi 

F, Samman M, Rabbitts P, Wood HM. Bioinformatics. 2015 Apr 5 

“A computational index derived from whole-genome copy number analysis is 

a novel tool for prognosis in early stage lung squamous cell carcinoma. 

Belvedere O, Berri S, Chalkley R, Conway C, Barbone F, Pisa F, 

MacLennan K, Daly C, Alsop M, Morgan J, Menis J, Tcherveniakov P, 

Papagiannopoulos K, Rabbitts P, Wood HM.” Genomics. 2012 Jan;99(1):18-

24. doi: 10.1016/j.ygeno.2011.10.006. Epub 2011 Oct 25. 

The candidate confirms that he is a co-author on both of these publications 

and was responsible for gathering the clinical, pathological and survival data 

of the cases.  

 

This copy has been supplied on the understanding that it is copyright 

material and that no quotation from the thesis may be published without 

proper acknowledgement. 

 

© 2015 The University of Leeds and Peter Alexandrov Tcherveniakov 

http://www.ncbi.nlm.nih.gov/pubmed/25847006
http://www.ncbi.nlm.nih.gov/pubmed/25847006
http://www.ncbi.nlm.nih.gov/pubmed/22050995
http://www.ncbi.nlm.nih.gov/pubmed/22050995


- 3 - 

Acknowledgements 

 

I would like to thank the following people for their help and support:  

Ornella Belvedere and Phil Egan – for helping me find my way in a laboratory 

environment 

Caroline Conway and Rebecca Chalkley - for the tutoring in the methodology of 

DNA extraction, quality control and slide preparation 

Leslie Davison, Kenneth McLennan and Burcu Senguven – for marking the slides 

and determining the tumour area 

Melisa Bickerdike, Catherine Daly and Rajni Bhardwaj – for their help with the DNA 

libraries 

Henry Wood and Stefano Berri – for their work with analysing the sequencing 

results and GH index 

Arief Gusnatnto – for developing the logistic regression model 

Vlady Vladimirov – for the technical help  

Mr. Richard Milton and Mr. David Jayne – my surgical supervisors for their support 

and insight  

Prof. Pamela Rabbits – for her continued guidance, patience and support 



- 4 - 

Abstract 

Objective 

Lung cancer is the leading cause of cancer-related mortality worldwide. 

Disease stage still remains the best prognostic factor for patients with 

localized non-small cell lung cancer. The TNM staging system, however, 

does not address the heterogeneity of this disease. Sub-classification and 

identification of distinct prognostic sub-groups within each stage may allow 

the optimization of clinical trial design and potentially improve outcome. This 

is a retrospective pilot study, in which we attempt to identify genomic 

biomarkers predictive of recurrence in stage I lung cancer by analysing copy 

number (CN) data obtained by next-generation sequencing. 

Materials and Methods 

Ninety eight patients with stage I NSCLC, who underwent elective radical 

surgery were identified from a tissue bank of 323 tumour samples. Their 

demographic and surgical data, including their recurrence status were 

collected and an extensive database compiled. The cases were split into two 

cohorts depending on their histology (adenocarcinoma vs. squamous cell 

carcinoma). Formalin-fixed paraffin-embedded blocks were retrieved from 

the local pathology archive and DNA was extracted from macrodissected 

tumour tissue using the QiAmp DNA microkit. DNA libraries were prepared 

and samples were sequenced using Illumina Genome Analyzer II. The 

frequency of CN gain and loss along the entire genome was compared 

between the recurrent and non-recurrent cancers. 

Results 

Comparative whole genome maps of the recurrent and non-recurrent cohort 

did not show any significant differences. Attempts to distinguish the recurrent 

from the non-recurrent cohorts with previously published algorithms, based 

on whole genome CN variation were also unsuccessful. However, a newly 

devised logistic regression model based on pan-genomic assessment of CN 

variation was able to differentiate recurrent from non-recurrent cancers in 

both histological subtypes. 

Conclusion 

Although no single chromosomal region was associated with cancer 

recurrence, the two groups were distinguishable with an algorithm that 

assesses total genomic change. Analysis of a larger cohort will be required 

for validation. 
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Preface 

This work is a result of the extensive collaboration between the Thoracic 

Surgical Division at St. James's University Hospital, Leeds and the Pre-

Cancer Genomics group based at the Leeds Institute of Cancer and 

Pathology and attempts to take advantage of the growing understanding of 

the complex underlying biology of lung cancer and translate it into actual 

clinical benefit. It targets a specific group of patients and proposes a 

concise, practical algorithm, which could have a significant impact on their 

survival.     

 As a thoracic surgeon, initially I found myself very much out of my depth as I 

tried to grasp the sheer volume of work, which Prof. Rabbitts and her team 

had put into the genetic abnormalities of lung cancer. Luckily, I ended up 

working with a fantastic group of people, who not only showed me 

tremendous support (and vast amounts of patience), but were eager to see 

the results of their work find its way into clinical practice. I benefited greatly 

from my time spent in the lab, as I found a whole new perspective into a 

disease that had been the corner stone of my surgical training for almost a 

decade. I would like to think that I managed to reciprocate this in some way 

and provide some insight into the clinical course and practical issues 

surrounding lung cancer management, which not only led to the encouraging 

results of this study, but will hopefully be useful to my colleagues in their 

future projects.  

This thesis introduces a novel method of analysing tumour copy number 

data, obtained by next generation sequencing, which could potentially 

stratify early stage lung cancer into specific subgroups. Thus it could act as 

an aid to the current TNM staging system and help guide targeted treatment 

and surveillance for a cohort of patients, which is currently managed in a 

somewhat uniform fashion. The emergence and continuing advances in next 

generation high throughput sequencing technologies could make the 

implementing of the described methodology both technically feasible and 

affordable on a large scale.    

Such complex work can never be the result of the efforts of one person. 

Fortunately, the end product has benefited significantly from the contribution 

of numerous colleagues, friends and supervisors. A particular 

acknowledgment must be made to Prof. Pamela Rabbitts for creating the 

excellent environment in which the team worked, and for her continuing 

support and encouragement.    

Hopefully, the results presented in this thesis will act as a platform for new 

projects, which will validate the findings and ultimately lead to measurable 

clinical benefit for lung cancer patients. 
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Chapter 1 

Introduction 

1.1 Lung cancer - background 

Lung cancer is the leading cause of cancer related mortality worldwide, 

causing more than 1 million deaths annually. Despite years of research, 

numerous diagnostic and therapeutic advances and many awareness 

campaigns, the long-term prognosis of patients who are diagnosed with the 

disease is dismal, with a five-year survival rate of 14-15% (Spira et al, 2004, 

Siegel et al, 2013). This is in stark contrast to the 5-year survival rates of 

other leading causes of cancer deaths, such as colonic cancer (64%), breast 

cancer (89%) and prostate cancer (98%) (Dela Cruz et al, 2009). The 

number of newly diagnosed lung cancer cases continues to be high, with a 

rising incidence in women (Dela Cruz et al, 2009). The role of tobacco as a 

causative factor has been firmly established. Smoking can cause the entire 

spectrum of lung cancers, but is most strongly associated with SCLC and 

SCC. However, a number of other factors, such as familial predisposition, 

chronic obstructive pulmonary disease (COPD) and toxic exposure (radon) 

can also contribute to the development of lung cancer. The World Health 

Organization estimates that lung cancer deaths worldwide will continue to 

rise, mainly due to the increasing global tobacco use, especially in China 

and India (Dela Cruz et al, 2009). In the United States and the United 

Kingdom, the decline in lung cancer rates is projected to level off in two 

decades because of the slow progress in smoking cessation at present 

(Molina et al, 2008). Approximately 89% of patients who contract lung 

cancer, will die of the disease. This is largely due to the fact that the majority 

of the cases present with advanced or metastatic disease, at a stage when 

radical therapy can no longer be offered (Stiles et al, 2009). Timely detection 

of NSCLC in high-risk individuals could help lower the mortality rates by 

allowing treatment at an earlier stage. However, currently no guidelines 

which recommend mass screening exist. The results from the US National 

Lung Screening Trial, which compared CT scan with chest x-ray as a 

screening tool, demonstrated a mortality advantage of 20% to participants in 

the CT group. Despite these figures, the question remains whether sufficient 

evidence exists to implement a screening programme based on CT and its 

cost effectiveness (Field et al, 2013). A number of novel technologies have 

potential for screening application and are currently undergoing evaluation 
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(check bronchoscopy with auto fluorescence, molecular markers in sputum 

and blood samples).  Early diagnosis of lung cancer is vital, as survival of 

treated patients with stage I disease is significantly better than for those with 

stage II to IV (Mountain  and  Dresler, 1997, Spira et al, 2004). Surgery 

remains the most effective treatment for early stage NSCLC and should 

comprise an anatomical resection with lymph node dissection/sampling 

(Spira et al, 2004). This suggests that improvements in early diagnosis could 

result in improved survival. A particular focus is placed on molecular 

methods and their potential role in discovery and targeting treatment in 

NSCLC. 

Histopathological heterogeneity is a major factor in lung cancer diagnosis 

and treatment (Travis et al, 2010). Lung cancer is comprised of three 

primary histological subtypes: carcinoid, small cell, and non–small cell, 

which account for about 2%, 13%, and 85% of cases, respectively. Small 

cell lung cancer (SCLC) is the most aggressive form of lung cancer. Non– 

small cell lung cancer (NSCLC) can be further subdivided into at least three 

histologic subtypes: adenocarcinoma, squamous cell carcinoma and large 

cell carcinoma. Tumours such as adenosquamous and neuroendocrine 

carcinomas possess histological characteristics of more than one subtype, 

whereas tumours from the same histopathological subtype may have 

dissimilar clinical outcomes and biological behaviour, such as different 

response to chemotherapeutic agents. The differential histopathology 

between lung cancer subtypes is not always obvious or objective, and 

proper classification is a critical component of pre-treatment evaluation. This 

heterogeneity has motivated efforts to classify lung cancers by their 

molecular profiles (Liu et al, 2006, D'Amico 2008). 

NSCLC consists of several subtypes (adenocarcinoma, squamous cell 

cancer, large cell cancer), which share a similar clinical course (Spira et al, 

2004). The Tumour (T), lymph Node (N) and Metastasis (M) system (TNM) 

has been the standard staging system for NSCLC, and also the established 

tool for determining prognosis of the disease (Mountain, 2007) (Figure 1.1). 
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 Size (Diameter) Bronchoscopy     Invasion        Nodules 

T1 T1a < 2 cm 

T1b between 2 and 

3 cm 

   

T2 T2a between 3 and 

5 cm 

T2b between 5 and 

7 cm 

or 

Involving main 

bronchus, but >2 

cm to carina 

 

Visceral pleura 

 

T3 Larger than 7 cm  

or 

 

< 2 cm to carina 

Chest wall               

Pericardium 

Diaphragm                    

Phrenic nerve                     

Mediastinal pleura 

 

Other nodules in 

same lobe 

T4   

Tumour at carina                                

Heart and great 

vessels                             

Trachea                         

Oesophagus                  

Spine 

 

Nodules in other 

ipsilateral lobe 

 

                                                   Regional lymph nodes (N) 

N1 In ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes 

N2 In ipsilateral mediastinal and/or subcarinal lymph nodes 

N3 In contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene or 

supraclavicular lymph nodes 

 T1a T1b T2a T2b T3 T4 

N0                  IA  IB IIA IIB IIIA 

N1                  IIA       IIA IIB IIIA IIIA 

N2                 IIIA                  IIIA IIIA IIIB 

N3                 IIIB                  IIIB IIIB IIIB 

Figure 1.1. 8th edition of the TNM staging system for NSCLC. Adopted by the WHO 
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Appropriate staging is of paramount importance in patients diagnosed with 

lung cancer. It determines the treatment plan, defines prognostic groups and 

allows comparison of data from different research trials. With the emergence 

of multi-disciplinary team meetings (MDT’s), during which surgeons, 

physicians, radiologists and pathologists discuss the most appropriate 

approach for managing cases with NSCLC, the TNM staging system 

provides a common language of communication between the different 

specialties. Over the last two decades this classification has undergone 

significant changes in an attempt to minimize the variability of prognosis 

within each group and correlate different treatment strategies according to 

stage.   Mediastinal lymph node involvement in particular provides significant 

prognostic information and plays a central role in determining appropriate 

management (Little, 2009).  As a consequence, establishing the correct 

stage of the cancer prior to initiating treatment has become particularly 

relevant. Several minimally invasive techniques have developed to aid  

accurate staging by obtaining samples of lymph node tissue from the 

mediastinum including endoscopic ultrasound guided biopsy and video-

assisted mediastinoscopy.     

Despite technological advances the survival rates for NSCLC remain poor. 

With its propensity for early spread, the lack of effective tools for its 

screening and early diagnosis and the inability of systemic therapy to cure 

metastatic disease the need for new strategies in screening, early detection 

and targeted therapy in NSCLC is evident. Focus is shifting towards 

understanding the biological and molecular basis for development of lung 

cancer with the hope that they will provide new approaches and therapeutic 

insights (Bunn, 2002).  

1.2 Lung cancer – issues with surveillance and treatment 

The established standard for treatment of stage I NSCLC is surgical 

resection. Currently, it remains the most consistently successful option for 

cure of the disease. However, the recurrence rate in these patients is 

approximately 35% within the first 5 years, despite them receiving what is 

considered to be radical therapy (Hoffman et al, 2000). The survival rates 

and disease-free intervals can vary even in patients with very similar clinical 

staging and pathologic features of the tumour. This suggests that NSCLC, 

even in its early stage, is a heterogeneous disease. The TNM classification 

is not able to predict which patients are likely to have recurrence of their 

disease. This suggests that current methodology for outcome prediction is 
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inadequate and identification of markers of prognosis is required to pinpoint 

patients who might benefit from additional therapy (radio- or chemotherapy) 

or targeted follow up. TNM also fails to adequately reflect the heterogeneous 

nature of NSCLC and failure to take this into account could lead clinicians to 

offer identical management plans to subgroups with different long or even 

short term prognosis. Until recently, the different subtypes of NSCLC such 

as squamous, large cell and adenocarcinoma were treated similarly. It can 

be speculated that the poor survival and treatment response rates of NSCLC 

can partly be attributed to a unified approach in treating a heterogeneous 

disease. A major focus of lung cancer research has centred on identifying 

clinically relevant biological markers, by studying lung cancer genomes and 

plasma protein signatures, that will allow lung cancer treatment to be 

individualized (Borczuk et al, 2010, Taguchi et al, 2011).  

Currently, there is no consensus among medical professionals on what is 

the optimal surveillance for patients who undergo radical surgical resection 

for NSCLC. While all surveillance programs have the same principle at heart 

- early recognition of asymptomatic cancer recurrence, which will allow more 

effective therapy and in some cases even control of the disease, the actual 

protocols differ greatly from centre to centre, and sometimes even from 

individual to individual.  Among the most debated issues are: what routine 

examinations and clinical tests are appropriate and for how long should the 

periodic follow-up be carried out.  

In an attempt to develop an evidence-based approach to follow-up of 

patients after curative intent therapy for NSCLC, in 2007 Rubins et al 

performed a systematic literature review of guidelines on lung cancer 

diagnosis and management published between 2002 and December 2005. 

They produced the following recommendations: 

1. In lung cancer patients treated with curative intent therapy, follow-up 

for complications related to therapy should be managed by the 

appropriate specialist and should probably last at least 3 to 6 months. 

At that point, the patient should be re-evaluated by the 

multidisciplinary team for entry into an appropriate surveillance 

program for detecting recurrences and/or metachronous tumours. 

Grade of recommendation, 2C 

2. In lung cancer patients treated with curative intent therapy and those 

having adequate performance and pulmonary functions, surveillance 

with a history, physical examination and imaging study (either chest 



- 16 - 

radiograph (CXR) or computed tomography (CT) is recommended 

every 6 months for 2 years and then annually. All patients should be 

counselled on symptom recognition and be advised to contact their 

physician if worrisome symptoms are observed. Grade of 

recommendation, 1C 

3. Ideally, surveillance for recognition of a recurrence of the original lung 

cancer and/or development of a metachronous tumour should be 

coordinated through a multidisciplinary team approach. If possible, 

the physician who diagnosed the primary lung cancer and initiated the 

curative intent therapy should remain as the health-care provider 

overseeing the surveillance process. Grade of recommendation, 2C 

4. In lung cancer patients following curative intent therapy, use of blood 

tests, positron emission tomography (PET) scanning, sputum 

cytology, tumour markers, and fluorescence bronchoscopy is not 

currently recommended for surveillance. Grade of recommendation, 

2C 

5. Lung cancer patients who smoke should be strongly encouraged to 

stop smoking, and offered pharmacotherapeutic and behaviour 

therapy, including follow-up. Grade of recommendation, 1A 

These guidelines demonstrate that current methodology might be 

inadequate for optimal surveillance of patients, who have undergone radical 

treatment of stage I NSCLC for two key reasons:  

1. CT is being widely studied as a method for early detection of lung 

cancer recurrence. However, no established guidelines for 

distinguishing nonspecific post-treatment changes related to surgery, 

radiation therapy, and/or chemotherapy from a recurrence and/or 

metachronous lung cancer have been defined (Rubins et al, 2007). 

Studies report a high incidence of nodules in groups followed up with 

chest CT (Lamont et al, 2002), and the appropriate protocols for 

differentiating benign from malignant nodules without excess 

morbidity and cost from diagnostic procedures have yet to be defined.  

2. Tumour molecular heterogeneity is a major reason why NSCLC 

patients with similar clinical staging and histology can have radically 

different outcomes (Herbst et al, 2008). This is not incorporated in the 
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current staging systems and surveillance protocols. Pairolero 

(Pairolero et al 1984) implemented a more rigorous follow up protocol 

for their stage I NSCLC patients - every 4 months for the first 2 years 

and then every 4 to 6 months thereafter following curative intent 

surgery. A history, physical examination, CXR, blood tests, urine 

analysis, and pooled sputum cytology are performed at each visit. 

However, a substantial number of recurrences were detected at 

unscheduled visits (41%). Most patients with recurrences were 

symptomatic (53%), and symptom assessment was the most 

sensitive method for detecting recurrences. The blood tests, urine 

analysis, physical examination, and sputum cytology added little 

benefit to detecting recurrences. 

Currently, survival advantage and improved quality of life have not been 

clearly demonstrated with intensive surveillance programs compared to a 

less rigorous regimen. In addition the former are more expensive (Rubins et 

al, 2007).  

While CT scan undoubtedly has a role to play in this process and can be 

vital for early detection of cancer recurrence, its value as a surveillance tool 

can be greatly augmented by the emergence of biomarkers (Bigbee et al, 

2012). By identifying patients with high risk for cancer recurrence, a “tailor-

made” follow up programme can be implemented. High risk groups could 

have more frequent medical reviews with CT scans scheduled at regular 

intervals. Any abnormal findings should be treated with a greater degree of 

suspicion and investigated further. Early re-discussion at a MDT meeting 

could be beneficial.  

Anatomical surgical resection with clear margins and radical lymph node 

dissection offers the best chance of cure for stage I NSCLC. These patients 

are currently not considered for any additional therapy, such as adjuvant 

chemotherapy according to established treatment protocols. However, a 

significant number will relapse within the first five years after surgery. 

Adjuvant chemotherapy can offer a survival advantage in patients with 

radically resected lung cancer. Several trials have demonstrated that this 

can be as high as 15% at 5 years (Pignon et al, 2008, Arriagada et al, 2009, 

Douillard, 2010) and as a result adjuvant chemotherapy has become the 

standard post-operative management in cases of stage II-III NSCLC (Pisters 

et al, 2007). In a review published in 2005, Visbal et al, showed that the role 
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of adjuvant chemotherapy for the treatment of stage IA NSCLC or for other 

stages of disease has not been universally established, despite results of 

several trials suggesting that adjuvant chemotherapy is beneficial in the 

management of patients with early-stage. In their conclusion, they 

considered the role that molecularly targeted therapy may play in the future. 

There is an evolving beneficial trend in favour of platinum-based adjuvant 

chemotherapy. Some authors have recommended adjuvant chemotherapy 

for fit patients with NSCLC lung cancer in stage I (Visbal et al, 2005). 

However, the toxicity of systemic treatment for NSCLC was considered high, 

and the potential benefits were  minimal. In the last decade, clinicians have 

increased the proportion of lung cancer patients to whom they offer systemic 

therapy. Novel combinations of third-generation agents have demonstrated 

better efficacy with response rates of ≥ 30%, better tolerability, and evidence 

to support second-line and even third-line systemic treatment (ie, Docetaxel 

or Pemetrexed, then Erlotinib) to prolong survival and to improve symptoms 

and quality of life in patients with advanced NSCLC (Visbal et al, 2005).  

However, given the morbidity associated with adjuvant chemotherapy and 

the variable response rate, several authors have underlined the importance 

of accurately identifying those cases of NSCLC, who will get an optimal 

result from adjuvant treatment (Arriagada et al, 2009, Chen DT et al, 2011). 

Having the ability to identify those patients as subgroups within the 

established treatment algorithm could be enormously beneficial. Biomarkers 

could serve as prognostic tools to pinpoint those cancer cases that have a 

high probability of relapse. This can have significant implications on post-

surgical therapy and follow up of patients with Stage I NSCLC. It could lead 

to the routine implementation of adjuvant chemotherapy in such cases and 

the formulation of a more structured follow up within the first 5 years. 

1.3 Biomarkers 

Recent interest in cancer medicine has focused on identifying biomarkers 

and finding appropriate pathways for their practical application in routine 

clinical practice. All methods that can serve to quantify changes in biological 

homeostasis, thus distinguishing what is abnormal from what is normal can 

be considered biomarkers (Dalton and Friend, 2006). Biomarkers can be 

classified in numerous categories - from oncogenes, oncogenic protein 

products, growth factors, receptors, single nucleoid polymorphisms (SNP’s) 

to genomic signatures. They may provide information on many aspects of 

the malignant process including the primary cancer, lymph node 
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involvement, likelihood of recurrence, survival prognosis and can be 

beneficial when selecting therapy or predicting response. Cancer biomarkers 

may help to overcome limitations in the TNM system and avoid a somewhat 

uniform approach to the heterogeneous nature of malignant disease. The 

benefits of integrating a molecular approach into cancer medicine are 

expected to manifest in two ways (Sung and Cho 2008, Dalton and Friend 

2006, D’Amico 2008). 

1. Early detection of malignant disease. Biomarkers could help identify 

people who have a predisposition to develop cancer and also help to 

diagnose patients at an earlier stage. This could lead to more timely 

treatment and improved survival.   

2. Biomarkers can act as a guide in cancer therapy. Some biomarkers 

respond to treatment regimens with changes in their expression levels 

and thus serve as indicators for therapeutic response. Tissue derived 

biomarkers could be used for potential drug and diagnostic imaging 

targets.  

Currently, a number of cancer therapies are based on specific cancer 

biomarkers (Sung and Cho, 2008). A prime example is the use of the 

monoclonal antibody Trastuzumab in breast cancer patients positive for 

HER2/neu receptor (Arteaga et al, 2002). The HER receptors are cell 

membrane proteins, which stimulate cell proliferation. In certain types of 

breast cancer, HER2 is over-expressed, and causes cancer cells to 

reproduce uncontrollably. The combination of trastuzumab with 

chemotherapy has been shown to increase both survival and response rate, 

in comparison to trastuzumab alone in patients with breast cancer, who are 

HER2 positive (Nahta et al, 2003). 

In a review published in 2008, Sung and Cho suggest that biomarkers can 

be broadly classified in two categories – nucleic acid based and protein 

biomarkers.  

A) Nucleic acid based. Uncontrolled cell growth is derived from either 

oncogene activation or tumour suppressor gene inactivation. It is 

therefore reasonable to assume that genetic biomarkers would be 

closely related to these genes. They can be further broken down in 

several subcategories: 

1. Chromosomal changes. Inactivation of tumour suppressor genes 

during cell division is one of the key factors that drive clonal cells of 
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cancer into uncontrolled growth, migration and metastasis (Wistuba et 

al, 1997). Frequently this is induced by loss of DNA or chromosomal 

rearrangement accidentally happening during cellular division. A well-

documented and frequently occurring abnormality is deletion of the 

short arm of chromosome 3 (3p) where several tumour suppressor 

genes are present. 

2. Gene hypermethylation. Altered hypermethylation, methylation of 

the cytosine phosphate guanosine rich regions (CpG islands) of 

various promoter regions, is a representative epigenetic change in the 

cell and may cause gene silencing, particularly of tumour suppressor 

genes. 

3. Genetic change of oncogenes. In an opposite action to previous 

gene silencing, activation of genes involving growth factors, their 

receptors, their messengers or cell cycle activators by mutations also 

play key roles in carcinogenesis. Mutation of ras, a second 

messenger delivering proliferation signal to the cell nucleus, is known 

to be involved in lung cancer. Most ras mutations discovered in lung 

cancer patients appear on codon 12 of KRAS. Thus, mutations or 

alterations of protooncogenes, which cause hyperactivation of the cell 

cycle, can be good biomarkers in lung cancers. 

B) Protein biomarkers. They can be classified as serum biomarkers, 

tissue biomarkers, and sputum biomarkers (Strauss et al, 1994). 

Many protein fragments circulating in the blood stream are generated 

in the malignant tissues or originate from circulating proteins and cells 

derived from the involved tissue. Because the ultimate goal is to use 

biomarkers for specific, early and non-invasive diagnosis and post-

therapy monitoring of cancer, blood would be an extremely 

appropriate biological material.  

Lung cancer is one of the most prevalent malignant diseases worldwide, 

accounting for approximately one-quarter of all cancer deaths (Siegel et al, 

2013). This is attributed to the late stage of the establishing of the diagnosis 

of the disease. The conventionally available screening tools such as X-rays, 

CT scans, bronchoscopy have not been shown to be effective in early 

detection of NSCLC. This seems to have a profound impact on survival. The 
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5-year survival rates for patients with stage IA can be as high as 80%, 

comparing quite favourably to the 15% overall survival rates for NSCLC 

(Mulshine et al, 2005). Therefore, the discovery of novel lung cancer specific 

biomarkers, applicable to clinical practice has become an important focus for 

many researchers. 

Several potential biomarkers have been discovered in NSCLC such as 

hypermethylations of the promoters and mutations in KRAS, and p53, 

carcinoembryonic antigen and plasma kallikrein B1, but this has failed to 

translate into significant clinical benefit (Sung HJ and Cho JY 2008). The 

major obstacles for developing effective markers include tumour 

heterogeneity, the highly complex interplay between the environment and 

host and the complexity, multiplicity, and redundancy of tumour-cell 

signalling networks involving genetic, epigenetic, and microenvironmental 

effects. Emerging high-throughput techniques for assessing genomic DNA, 

messenger RNA (mRNA), microRNA, methylation, and protein or 

phosphoprotein signalling networks should help address these obstacles. 

The Cancer Genome Atlas is a large-scale project designed to provide a 

comprehensive profile of human tumours according to their gene mutations, 

alterations in gene copy number, and epigenetic changes. Lung SCC was 

one of the first tumours profiled by this atlas. 

In pulmonary AC the discovery of multiple molecular abnormalities which are 

responsible for both the initiation and progression of the disease have 

resulted in marked changed of the established treatment protocols. The 

epidermal growth factor receptor (EGFR) regulates important processes 

involved in carcinogenesis, such as proliferation, apoptosis, angiogenesis 

and invasion by activating several major downstream signalling pathways 

(Herbst et al, 2008). It is frequently overexpressed in the development and 

progression of AC (Tang et al, 2005, Sato et al, 2007, Weihua et al, 2008). 

Clinical trials have shown that Erlotinib (a tyrosine kinase inhibitor) and 

Cetuximab (a monoclonal antibody against EGFR) (Shepherd et al, 2005, 

Pirker et al, 2008) can improve survival and quality of life in selected groups 

of patients, thus allowing EGFR to be considered a molecular target for 

therapy.  

Molecular profiling of NSCLC using biomarkers could enhance the 

management of the disease in many different aspects (early diagnosis, 

surveillance, treatment). Currently, the progress made in the identification of 

markers, mutations, and genomic signatures is not reflected in the modest 
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improvement in treatments that are based on these molecular advances 

(Herbst et al, 2008).  

1.4 Lung cancer – molecular background 

The molecular origins of lung cancer lie in a series of complex interactions 

between the environment and genetic susceptibility of the host organism. 

They result in genetic and epigenetic changes, resulting in deregulated 

signalling pathways (Herbst et al, 2008). Emerging techniques for genomic, 

gene-expression, epigenetic, and proteomic profiling could revolutionize the 

clinical approach to the disease by helping to identify practical molecular 

markers of risk stratification (in pre-cancer and recurrence), early detection 

and prognosis, and treatment sensitivity. In recent years, new methods for 

high-throughput molecular analysis have been developed in an attempt to 

identify specific tumour markers. Genomic studies have provided information 

on lung cancer biology and have shown that carcinogenesis is driven by 

both genetic and epigenetic changes (Chanin et al, 2010). 

The Cancer Genome Atlas is a large-scale project designed to provide a 

comprehensive profile of human tumours according to their gene mutations, 

alterations in gene copy number and epigenetic changes. Squamous cell 

carcinoma of the lung was one of the first tumours selected to be profiled by 

this atlas (Herbst et al, 2008). Given the tremendous potential for relatively 

low-cost genomic sequencing to reveal clinically useful information, cancer 

genomes of patients could be sequenced routinely as part of their clinical 

evaluation and continuing clinical management in the not-too-distant future. 

The genomes of all cancers accumulate somatic mutations. These include 

nucleotide substitutions, small insertions and deletions, chromosomal 

rearrangements and copy number changes that can affect protein-coding or 

regulatory components of genes. In addition, cancer genomes usually 

acquire somatic epigenetic ‘marks’ compared to non-neoplastic tissues from 

the same organ. A subset of the somatic mutations in cancer cells confers 

oncogenic properties such as growth advantage, tissue invasion and 

metastasis, angiogenesis, and evasion of apoptosis. These are termed 

‘driver’ mutations. The identification of driver mutations will provide insights 

into cancer biology and highlight new drug targets and diagnostic tests. 

Knowledge of cancer mutations has already led to the development of 

specific therapies, such as Trastuzumab for HER2 (also known as NEU or 
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ERBB2)-positive  breast cancers (The Cancer Genome Atlas Network, 

2010). 

The majority of the key ‘driver’ mutations in NSCLC have so far been 

discovered in genes that encode signalling proteins, such as protein kinases 

and guanosine triphosphate (GTP)-binding proteins. Protein kinases 

regulate cellular proliferation and survival by transferring phosphate groups 

from ATP to specific target proteins, while GTP-binding proteins regulate cell 

growth, differentiation and apoptosis by interacting with multiple downstream 

effectors (Pao et al, 2011). 

Two main groups of oncogenes have been investigated in NSCLC in an 

attempt not only to unlock the mechanisms that lie behind carcinogenesis, 

but to identify potential therapeutic and screening targets: dominant 

oncogenes and tumour-suppressor genes. The former (such as the RAS and 

MYC families) exert their effect by “overriding” the normal regulatory 

mechanisms of cellular growth. The latter on the other hand play key roles in 

cellular growth control, which becomes disturbed if they are deleted or 

mutated (p53, RB, genes on chromosome 3p) (Kijima et al, 2003). They can 

be responsible for a variety of functions such as inhibition of carcinogenic 

processes or be involved in repair of damaged DNA (Fong et al, 2003).  

The ERBB family is a group of transmembrane receptor tyrosine kinases 

which are involved in cell growth regulation in NSCLC. Two members that 

have key roles in the development of lung cancer are the epidermal growth 

factor receptor (EGFR, ERBB1) and HER2/neu (ERBB2) (Fong et al, 2003). 

EGFR regulates important processes involved in carcinogenesis, including 

epithelial proliferation, apoptosis, angiogenesis and invasion, and is 

frequently overexpressed in NSCLC (Fong et al, 2003, Sato et al, 2007, 

Herbst et al, 2008).  

The RAS family of proto-oncogenes (KRAS, HRAS and NRAS) encode 21-

kDa plasma membrane–associated GTP-binding proteins that regulate key 

signal-transduction pathways involved in normal cellular differentiation, 

proliferation, and survival. Its members, particularly KRAS, can be activated 

in some lung cancers by point mutations, leading to inappropriate signalling 

for cell proliferation (Downward et al, 2003, Sato et al, 2007).  KRAS 

mutations are most commonly observed in AC (Richardson et al, 1993, Sato 

et al, 2007) and appear to be an early event in carcinogenesis, generally 

marking a poor prognosis (Herbst et al, 2008). 
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The MYC proto-oncogene family encodes nuclear products which function 

as transcription factors for genes in a variety of cellular processes, including 

cell growth, cell proliferation and apoptosis (Adhikary et al, 2005, Sato et al, 

2007). The most frequently involved family member in NSCLC, whose 

activation is usually caused by gene amplification, is c-MYC (Fong et al, 

2003). Studies have shown that c-MYC amplification is associated with the 

development of lymph node metastasis in NSCLC (Kubokura et al, 2001). 

The p53 gene is a key tumour-suppressor gene. It is located at the 

chromosome 17p13.1 and encodes a protein, which plays an important role 

in maintaining integrity when genomic DNA is damaged (e.g. radiation) 

(Fong et al, 2003). The most common genetic changes associated with 

cancer in humans involve mutations of the p53 gene (in approximately 50% 

of all cancers), which in turn cause a loss of tumour-suppression function 

and promote cellular proliferation. (Kijima et al, 2003, Sato et al, 2007). p53 

has played the role of a prototypic model for gene replacement therapy in 

NSCLC. Clinical trials of p53 gene replacement using a retrovirus p53-

expression vector in patients with NSCLC have shown evidence of 

antitumour activity, as well as the feasibility and safety of gene therapy. 

Gene replacement therapy using adenoviral p53 has emerged as a novel 

treatment option. A replication-impaired adenoviral vector, carrying the p53 

gene, has been evaluated in both preclinical and clinical trials and results 

show that it is well-tolerated and can be effective in treatment for numerous 

cancers including NSCLC, squamous cell carcinoma of the head and neck, 

hepatocellular carcinoma, glioma, and breast, prostate and colorectal 

cancers, both as monotherapy and in combination with radiation and/or 

chemotherapy agents. (Gabrilovich 2006, Senzer et al, 2009). None of the 

genes have been universally implicated in the aetiology of all lung cancer. 

Genomic studies have provided evidence that genetic and epigenetic 

alterations are driving lung cancer genesis. This strongly suggests that 

cancer genomics could help identify markers of prognosis and predictors of 

response to treatment. D’Amico and associates assessed a panel of 10 

markers associated with oncologic progression in resected stage I NSCLC, 

reflecting all phases of tumour growth and spread using 

immunohistochemical analysis (rapid, reproducible, relatively inexpensive, 

and generally available in most hospitals). A multivariate analysis showed 

that five of the markers could be independent predictors of recurrence. 

These included p53 mutation and overexpression of the proto-oncogene 

ERBB2 (D'Amico et al, 1999). Although each of the individual markers 
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carried independently significant prognostic information, patients in which 

the panel of all five was identified were shown to be at a significantly 

increased risk of cancer related death, despite receiving radical surgical 

resection for stage I disease. This model attempted to predict the course of 

the disease by focusing on the oncogenic mechanisms that define cancer 

biology. 

In another recent analysis of 672 invasion-associated genes from 125 frozen 

specimens of early-stage tumours, microarray and reverse-transcriptase–

polymerase-chain-reaction (RT-PCR) analyses identified a molecular 

signature of five genes as an independent predictor of relapse-free and 

overall survival (Chen et al, 2007). These were DUSP6, MMD, STAT1, 

ERBB3 and LCK. All of them can play important roles in the biological 

development of NSCLC. For example, ERBB3 is a member of the epidermal 

growth factor family and can lead to shortening of cell survival and is closely 

linked to metastasis in NSCLC (Muller-Tidow et al, 2005), while LCK plays 

an important role in the differentiation and activation of T cells, as well as in 

the induction of apoptosis and is expressed in many cancers (Zamoyska et 

al, 2003, Mahabeleshwar et al, 2004). The high risk gene signature 

developed by Chen et al, showed particular accuracy in predicting survival in 

patients with early NSCLC (TNM stage I and II), although the authors did not 

make a clear distinction between cancer subtypes (AC vs. SCC). This and 

similar models could prove to be extremely useful when it comes to 

identifying patients, who would benefit from adjuvant chemotherapy after 

surgical resection. However, for those benefits to be translated into clinical 

practice the methodology has to be readily reproducible and widely 

available.     

These studies have described the development of gene-expression, protein, 

and messenger RNA profiles that are associated in some cases with the 

outcome of lung cancer (D'Amico et al, 1999, Chen et al, 2007). However, 

the extent to which these profiles can be used to refine the clinical prognosis 

and the context in which improved prognostic capability could be used to 

alter a clinical treatment decision are not clear.  

1.5 Lung cancer – role of CNV and differences between 

histological subtypes 

Appropriate characterization of the complex somatic DNA changes in 

NSCLC is paramount to the development of targeted therapies. Multiple 

studies using microarray analysis of gene expression profiles have been 
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performed in an attempt to improve our understanding of the aetiology of 

NSCLC and identify prognostic gene sets that can function as biomarkers. 

Systematic understanding of the molecular basis of a particular type of 

cancer will require at least three steps: comprehensive characterization of 

recurrent genomic aberrations (including CNV, nucleotide sequence 

changes, chromosomal rearrangements and epigenetic alterations); 

determining their biological role in cancer pathogenesis; and evaluation of 

their utility for diagnostics, prognostics and therapeutics (Weir et al, 2007). 

DNA sequence copy number is the number of copies of DNA at a region of a 

genome. Cancer progression often involves structural abnormality 

alterations in DNA copy number. Newly developed microarray technologies 

enable simultaneous measurement of copy number at thousands of sites in 

a genome. CNV has played an important role in recent cancer studies, 

particularly in breast cancer (Hicks et al, 2006, Pollack et al, 2002). 

Furthermore, analyses of CNV in NSCLC has shown an association with 

both survival (Go et al, 2010) and therapeutic sensitivity (Hirsch et al, 2009). 

Numerous studies have tried to ”chart” the genomic changes in the different 

subtypes of NSCLC in an attempt to better understand the correlation with 

carcinogenesis. However, just as in clinical practice, the different subtypes of 

NSCLC have for a long time been regarded as a single biological entity in 

genomic studies (Kim et al, 2005, Chen et al, 2011). Two recent studies 

have reported the relationship between genomic changes and disease 

outcome in NSCLC. Kim et al,. have identified several chromosomal regions 

as negative independent prognostic factors (Huang et al, 2009) and Huang 

et al have discovered single nucleotide polymorphisms (SNPs) that may be 

prognostic for overall survival. However, neither of these studies 

differentiated between lung tumour histological subtypes in their analysis. In 

the last few years researchers have become increasingly aware that 

histological subtypes of NSCLC respond differently to both targeted drugs 

and newly developed chemotherapies and this is likely related to differences 

in cell derivation and pathogenetic origins (Sy et al, 2004, Mok et al, 2009, 

Broet et al, 2009, Lockwood et al, 2012). For example - studies have 

associated a higher response rate in treatment of AC with the EGFR tyrosine 

kinase inhibitors, reflecting the higher prevalence of EGFR mutations in this 

subtype (Langer et at, 2010) thus highlighting the role of histology and 

immunohistochemistry in individualizing NSCLC treatment.   

Lung cancer originates from bronchial epithelial cells. It is widely believed 

that the process of carcinogenesis from a normal cell to an invasive 
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carcinoma is a multistep process involving a number of genetic events 

including alterations of oncogenes and tumour suppressor genes and must 

have occurred before lung cancer becomes clinically evident (Panani et al, 

2006, Herbst et al, 2008).  

In contrast to many haematological malignancies, which are often 

characterized by simple and balanced chromosomal changes, epithelial 

tumours such as NSCLC have multiple complex and unbalanced 

abnormalities, which for years has complicated the identification of recurrent 

changes (Testa et al, 1997, Panani et al, 2006). Cytogenetic analysis 

demonstrated the numerous somatic genetic events that take place in the 

development of NSCLC. In 1997, Testa et al outlined the emerging patterns 

of recurrent chromosomal alteration and their biologic significance. They 

correlated the location of these changes (3p, 9p, 17p) with known tumour-

suppressor genes and speculated that their loss/inactivation may play a 

fundamental role in carcinogenesis. 

In 2001, Pei et al published the results of a comparative genomic 

hybridisation (CGH) analysis on 35 AC and 32 SCC, whose goal was to 

identify differences in the patterns of genomic imbalance between these 

histological subtypes. Many imbalances, such as gains of 1q, 5p and 8q, 

were shown to occur at a high frequency in AC as well as in SCC. However, 

several statistically significant differences were noted. The most prominent 

of them was gain of 3q, which was seen in 80% of SCC but in only 30% of 

AC. Another prominent difference was gain in 20p, which was seen in 30% 

of SCC versus 6% of AC. Furthermore, loss of 4q was seen at a significantly 

higher rate in SCC than AC while gain of 6p was more common in AC. 

Five genes are known to be mutated at high frequency in lung 

adenocarcinoma—TP53, KRAS, STK11, EGFR and CDKN2A—as well as 

several known genes with lower mutation frequencies—PTEN, NRAS, 

ERBB2, BRAF and PIK3CA (Weir et al, 2007).  A study by Weir et al,, in 

which 623 genes from a cohort of 188 tumours were sequenced, identified 

further significantly mutated genes, more than doubling the list. The newly 

identified genes included tumour suppressor genes (NF1, RB1, ATM and 

APC) along with tyrosine kinase genes (ephrin receptor genes, ERBB4, 

KDR, FGFR4 and NTRK genes) that could function as proto-oncogenes. 

They demonstrated that many of these genes were also targeted by copy 

number variations and/or gene expression changes. However, few genes 

have shown to consistently have mutations in AC. The incidence of the most 

frequent mutation (TP53) is around 35% (Ding et al, 2008). This lack of a 
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universal mutation pattern suggests that the molecular pathogenesis in the 

development of lung adenocarcinoma is quite variable and different 

subtypes probably exist. 

In an analysis of aCGH data, Chitale et al showed that lung 

adenocarcinomas display non-random patterns of co-occurring gains and 

losses, one of which is characterized by 7p gains (including the EGFR locus) 

and 8p losses. Previous studies also noted 8p losses, but also failed to 

narrow the target region (Weir et al, 2007). Allelic losses on 8p are well 

described in other cancers, including breast, prostate, and bladder, with 

most studies finding a complex pattern that cannot be reduced to a single 

minimally deleted region (Chitale et al, 2007). 

Previously, aCGH based studies reported common aberrations in SCC 

including gains of chromosomal arms 3q, 5p and 8q and losses of 3p, 5q 

and 8p (Sy et al, 2004, Yakut et al, 2006, Tai et al, 2004, Pei et al, 2001, 

Chujo et al, 2002). Several common high copy number amplifications are 

2p15-p16, 3q24-q29, 8p11-p12, 8q23-q24, and 12p12 (Pei et al, 2001, 

Boelens et al, 2009). Studies have identified candidate (onco) genes located 

on these sites. They include BCL11A (2p), REL (2p), epithelial cell 

transforming sequence 2 oncogene (ECT2) (3q), PIK3CA (3q), ADAM9 (8p), 

MYC (8q), and KRAS (12p) (Boelens et al, 2009). Gains on 7q have been 

previously described and associated to positive lymph nodes in NSCLC in 

general and gain of 7q and loss of 4q have been reported to be related to 

general metastatic behaviour of SCC (Pei et al, 2001, Yan et al, 2005). 

Gains on 8q have been described in several cancer types in relation to 

metastasis, progression, poor prognosis, or survival and have been 

identified in SCC (Boelens et al, 2009). In 2009, Bass et al, showed that a 

peak of genomic amplification on chromosome 3q26.33, found in lung and 

oesophageal SCC, contains the transcription factor gene SOX2. SOX2 

expression is required for proliferation and anchorage-independent growth of 

lung and oesophageal cell lines and was identified as a lineage survival 

oncogene in lung and oesophageal SCC. 

In May 2012 Lockwood et al published a large-scale analysis of 261 primary 

NSCLC tumours (making a clear distinction between SCC and AC), 

integrating genome-wide DNA copy number, methylation and gene 

expression profiles in an attempt to identify subtype-specific molecular 

alterations relevant to new agent design and choice of therapy. Comparison 

of AC and SCC genomic and epigenomic landscapes revealed 778 altered 

genes with corresponding expression changes.  The study identified key 

oncogenic pathways disrupted in each subtype that are likely to serve as the 
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basis for their differential tumour biology and clinical outcomes. 

Downregulation of HNF4a target genes was the most common pathway 

specific to AC, while SCC demonstrated disruption of numerous histone 

modifying enzymes as well as the transcription factor E2F1. Overall, the 

findings of the study suggested that AC and SCC develop through distinct 

pathogenetic pathways that should have significant implication in the 

approach to the clinical management of NSCLC (Lockwood et al, 2012). 

In 2013 Staff et al published their results of an extensive analysis and 

comparison of the different features of genomic alteration in lung cancer 

including alteration frequency and amplification patterns aiming to identify 

important CNV in lung cancer, both NSCLC (SCC, AC and LCC) and SCLC. 

They analysed 2141 lung cancers and cell lines and observed 89 regions of 

CNV (55 gains and 34 losses) distributed across all autosomes and an 

analysis of a random subset of 1606 cancers showed that 62% and 80% of 

the 89 regions were detected in >90% or >70% of permutations, 

respectively. They came to the conclusion that AC exhibits a generally lower 

frequency of CNV compared to other histology’s, while several CNV are 

markedly shared between different histology’s. As an example, characteristic 

CNV in AC (with frequency of occurrence of 40% or higher) were 

amplification in 1q, 5p, 7p and deletions in 8p, 9p, 13q, 17p, 18q and 19p. 

Similarly for SCC their findings were amplification in 1q, 3q, 5p, 7p, 7q, 8p, 

8q, 12p and deletions in 1p, 3p, 4p, 4q, 5q, 8p, 9p, 10q, 13q, 17p, 18q, and 

21q. 

Their analysis, perhaps surprisingly, concluded that genomic instability 

affects AC to a lesser extent compared to other histology groups and 

speculated that the observed heterogeneity of genomic abnormalities in the 

different histological groups of lung cancer supports the existence of further 

molecular subtypes, which might have clinical relevance, such as targeted 

therapy. 

Whilst the vast majority of copy number studies have examined cancer 

genomes in a locus by locus manner, one study by Hicks et al correlated 

survival in patients with breast cancer not to individual loci but to a pan-

genomic index that measured the type and extent of genomic damage. The 

group examined 243 breast tumours and identified three distinct patterns of 

genomic CNV, naming them according to the appearance of their 

karyograms (graphical representation of the chromosomes in a karyotype). 

They observed an association between certain types of karyograms and 

disease aggressiveness and speculated that CN profiling might provide 

useful information in guiding clinical decisions (Hicks et al, 2006). 

The results from the aforementioned studies clearly show that CNV analysis,  

on its own or as part of an integrated approach, can be used to great effect 
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not only in the genomic studies of NSCLC, but also to differentiate the 

specific genetic changes responsible for the process of carcinogenesis in the 

different histological subtypes (AC and SCC). 

1.6 Next generation sequencing 

In 1977, Sanger and associates published an article describing a new 

approach for determining nucleotide sequences in DNA. It was based on 

using chain-terminating dideoxynucleotide analogs that caused base-specific 

termination of primed DNA synthesis and utilizing gel electrophoresis to 

separate the products of the reaction. This method, after some additional 

refinement, became the main tool of the research community in the attempt 

to decipher the code of human DNA and translate those findings into clinical 

practice. 

The first complete sequencing of a human genome (as part of the Human 

Genome Project) was accomplished in 2003, using a modified version of the 

platform developed by Sanger et al,. This undertaking took 13 years and 

cost an estimated $2.7 billion (Voelkerding et al, 2009). In 2008, Wheeler 

and associates published their findings, after sequencing a complete 

individual human genome by using massive parallel DNA sequencing. Their 

project took approximately 5 months and cost around $1.5 million (Wheeler 

et al, 2008) and demonstrated the advantages of the “next-generation” 

sequencing platforms, which have emerged in the last 10 years.  

The NG-seq approach offers a number of advantages over traditional 

methods, including the ability to fully sequence large numbers of genes 

(hundreds to thousands) in a single test run and simultaneously detect 

deletions, insertions, CNV and translocations in cancer genomes (Ross et al, 

2011). 

All NG-seq platforms perform massively parallel sequencing of clonally 

amplified or single DNA molecules that are spatially separated in a flow cell 

(Voelkerding et al,. 2009). This is in contrast with the traditional Sanger 

sequencing, which is based on the electrophoretic separation of chain-

termination products produced in individual sequencing reactions (Sanger et 

al,, 1977). As a massively parallel process, NG-seq generates hundreds of 

megabases to gigabases of nucleotide-sequence output in a single 

instrument run, depending on the platform (Voelkerding et al,. 2009). Several 

platforms are commercially available. The Illumina platform was utilized in 

this study, as it was already in use in the facility and experience with its 

performance and analyzing the data was readily available.     
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The Illumina platform utilizes a sequencing-by-synthesis approach coupled 

with bridge amplification on the surface of a flow cell. Each flow cell is 

divided into eight separate lanes. The interior surfaces of the flow cells have 

covalently attached oligos complementary to specific adapters that are 

ligated onto the library fragments. DNA fragment-to-oligo hybridization on 

the flow cell occurs by active heating and cooling steps. This is followed by a 

subsequent incubation with the amplification reactants and an isothermal 

polymerase that generates millions of clusters of the library fragments. In the 

sequencing step, each cluster is supplied with polymerase and four 

differentially labelled fluorescent nucleotides that have their 3-OH chemically 

inactivated. This blocking modification ensures that only a single base will be 

incorporated per flow cycle. After each nucleotide is incorporated, an 

excitation followed by an imaging step takes place to identify the 

incorporated nucleotide in each cluster. A chemical deblocking treatment 

removes the fluorescent group and allows the incorporation of the following 

nucleotide during the next flow cycle (Shokralla et al, 2012). The sequence 

of each cluster is computed and subjected to quality filtering to eliminate low-

quality reads (Shendure et al, 2008).  

The production of large numbers of low-cost reads makes the NG-seq 

platforms useful for many applications. Furthermore, in comparison to 

automated Sanger sequencing they have dramatically increased throughput 

and lowered expenditure. This has provided a challenge to the existing IT 

facilities in terms of data storage and computational analysis to align read 

data (Metzker 2010).    

A useful utilization of NG-seq in clinical practice will place significant 

demands on laboratory infrastructure, will require extensive computational 

resources and a thorough knowledge of cancer medicine and biology. It is 

anticipated that continuing advances in this technology will lower the overall 

cost, speed the turnaround time, increase the breadth of genome 

sequencing, detect epigenetic markers and other important genomic 

parameters, and become applicable to smaller and smaller specimens. 

(Ross et al, 2011). 

1.7 Choice of methodology 

The majority of the discovery efforts are based on the collection, storage and 

processing of tissue specimens obtained at the time of surgery, 

bronchoscopy or other diagnostic procedures. After informed consent, all 

biological specimens need to be collected under a standard operating 
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procedure and quality control must be in place to guarantee adequacy of the 

samples. This requires a concerted effort between clinicians, pathologists 

and researchers. Whilst profiling using high-throughput technologies is best 

served by the use of fresh frozen materials, and tumour-derived markers are 

likely to be present at lower levels in blood and other biological specimens, 

for the purpose of this study we have used formalin-fixed, paraffin-

embedded tissue. This has several advantages. It allows the use of large 

collections of available tissue, which are appropriately catalogued and easier 

to handle. Information on long-term survival, natural history and cancer 

recurrence can be obtained from medical or pathologist databases. Methods 

of extraction allow the recovery of usable DNA and RNA for high-throughput 

discovery and validation strategies. Promising single-molecule sequencing 

and high-throughput oncogene mutation profiling represent strategies that 

may be applicable to small clinical samples in the future to address 

personalized medicine. However, before the next generation of sequencing 

enters clinical use, issues of cost, data analysis and interpretation will have 

to be resolved (Ocak et al, 2009). 

The ability to detect CNV of cancer cells is a crucial step to access the 

severity of chromosomal rearrangements and to find chromosomal regions 

where breakpoints are located. Furthermore, comparison of CNV across 

tumours from different patients makes it possible to find regions commonly 

duplicated or lost, which highlights the locations of cancer-related genes. 

Several methodologies are available to detect CNV, such as Comparative 

Genomic Hybridization, array CGH, single nucleotide polymorphism array 

(SNP arrays) and, more recently, a new generation of sequencing machines 

enabled massively parallel sequencing (Roche 454, Illumina GAII, HiSeq, 

MiSeq, ABI SOLiD, Ion Torrent PGM), making it possible to sequence full 

genomes at affordable cost. 

NG-seq is one of the most significant recent technological advances in 

cancer research and could potentially bridge the gap between the scientific 

and clinical setting. This is largely defined by its ability to analyze entire 

human genomes in a matter of days, while at the same time allowing for 

massive parallel sequencing of multiple DNA samples. The rapid 

development in informational technologies and bioinformatics has allowed 

for the generation of large amounts of cheap data and, perhaps more 

importantly - its analysis (Ulahannan et al, 2013). Technological 

advancement of sequencing platforms has improved not only data quality 

and throughput, but has led to a decrease in cost, with the price of 
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sequencing of a whole genome estimated to be around 1000 USD (Meldrum 

et al, 2011). 

With the Illumina NG-seq platform, genomic DNA is sheared (either 

mechanically or using enzymes) into fragments of 75–150 base pairs. 

Adapters are ligated to the fragments and bind them to the surface of a flow 

cell channel. The fragments are then amplified and sequencing commences 

by adding four labelled reversible terminating nucleotides. The fluorescent 

signal, which is emitted after the addition of the terminating nucleotide is 

captured and denotes the type of base incorporated in the sequence. The 

cycle is repeated one base at a time generating a series of images with each 

image representing a single base in the priming sequence (Ulahannan et al, 

2013). 

It has been shown how it is possible to multiplex several samples in one 

Illumina GAII lane making copy number analysis by sequencing affordable 

and competitive with aCGH or SNP arrays (Wood et al, 2010). As we expect 

sequencing technologies to become more widespread, affordable and 

accurate, copy number analysis by low coverage sequencing will become 

even more convenient and informative. Furthermore sequencing is possible 

even with low amounts of DNA extracted from formalin-fixed paraffin-

embedded specimens (Wood et al, 2010). 

1.8 Study design  

This is a retrospective pilot study, the aim of which is to identify genomic 

patterns of recurrence in patients with stage I NSCLC using CNV analysis of 

cancer DNA from FFPE, obtained by Ng-seq. While several studies have 

already identified molecular profiles, which are associated with poor 

outcomes and higher risk of recurrence, their discoveries have failed to 

influence established clinical practice. The reasons for this are complex. 

They range from complicated methodology, which is not easily reproducible 

in routine clinical practice and/or time consuming to lack of adequate 

validation studies. Thomas D’Amico and associates presented their 

biological risk model for NSCLC as far back as 1998, using 

immunohistochemical analysis of molecular markers associated with 

different oncogenic pathways (D’Amico et al, 1998). Despite convincing 

results and large number of patients, this study has had very limited clinical 

impact. Chen et al, published in 2007 in the NEJM a reverse-transcriptase 

PCR–based five gene signature, the presence of which was associated with 

an increased risk of recurrence and decreased overall survival (Chen et al, 
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2007). The results of this study, which involved a Chinese patient population, 

were also validated with the use of a set of published NSCLC microarray 

data from patients from a Western population. The authors strongly felt that 

their model could successfully be used to guide post-operative management 

in patients with stage I NSCLC, by further sub-stratifying them according to 

risk. However, the methodology that they used is somewhat time consuming 

and difficult to apply on a large scale. With the recent advances of high-

throughput genotyping, screening for specific disease loci on a genome-wide 

scale is now becoming not only possible, but ever more practical and 

affordable. In 2004, Paris et al published a study, which looked into the 

relationship between CNV and recurrence in prostate cancer. In a cohort of 

64 patients, their analysis revealed numerous recurrent copy number 

aberrations. The authors noted that gain at 11q13.1 seemed to be predictive 

of postoperative recurrence, independent of stage and grade and suggested 

this could be an important finding on the road to developing personalized 

care for patients with prostate cancer.   

The findings of the above-mentioned studies suggest that what is currently 

defined as stage I NSCLC is in fact a heterogeneous disease group, to 

which currently there is a unified therapeutic approach.    

In an article published in the Lancet in August 2013, Rossel et al discussed 

the current role of genetics and biomarkers in the personalisation of 

treatment of NSCLC. They commented on the growing evidence for 

substantial genetic heterogeneity among individual non-small cell lung 

cancers and underlined how this phenomenon is likely to be responsible for 

cancer resistance to chemotherapeutic agents (Rossel et al, 2013). The 

group concluded that the key to developing effective targeted therapy would 

require an unbiased, systematic, and genome-wide analysis of individual 

tumours in every patient undergoing treatment for NSCLC. 

The aim of this project is to determine if there are detectable differences 

between the genomic signatures of recurrent and non-recurrent stage I 

NSCLC, by using a methodology that can be implemented in routine clinical 

practice. By taking advantage of the increasing availability of high throughput 

sequencing technologies, which allow multiple samples to be processed 

simultaneously, the discovery and validation of such signatures could readily 

be implemented into the clinical practice. A tumour sample, obtained at the 

time of surgery could be sequenced and analysed whilst the patient is 

recovering in the early post-operative period. Multiple samples could be 

processed at the same time and their genomic signatures made available for 

the initial patient follow up appointment and/or multi-disciplinary team (MDT) 

discussion. If a high-risk profile is discovered, the patient could be offered 

adjuvant chemotherapy and/or a specific surveillance program aimed at 
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detecting early recurrence. This would offer a “tailored” approach to patient 

care.  

1.9 Hypothesis and Objectives 

1.9.1 Hypothesis 

The hypothesis of this thesis is that patients with stage I NSCLC can be 

further stratified into clinically significant subgroups, based on their likelihood 

of recurrence after radical surgery and that these subgroups can be 

identified by genomic signatures based on CNV data obtained by Ng-seq. 

1.9.2 Objectives 

The main objectives of the thesis are: 

1. To differentiate the genomic signatures of recurrent vs. non recurrent 

stage I NSCLC tumour samples, who underwent radical surgery using 

CNV analysis of Ng-seq data 

2. To develop a practical algorithm for this, which could be introduced 

into clinical practice. 

3. To suggest a specific role for this algorithm in clinical practice, which 

would improve patient care. 
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Chapter 2 

Materials and Methods 

2.1 Sample collection  

A cohort of 323 formalin fixed paraffin embedded (FFPE) wax blocks of 

tumour samples, stored in metal containers at room temperature in a 

dedicated area, was available in our laboratory. They were obtained from 

patients who underwent elective surgery for NSCLC over a 5-year period 

(1997-2002) in the Thoracic Surgery Department at Leeds Teaching 

Hospitals NHS Trust. They were previously acquired from the archives of the 

Department of Pathology in the Leeds General Infirmary. All of the tumours 

had undergone routine histological evaluation postoperatively and had been 

confirmed primary lung cancers. One hundred and seventy two were SCC 

and 151 were AC. Due to the nature of disease progression in NSCLC and 

the extent of radical surgery (complete excision with clear resection 

margins), the size of the tumour blocks allowed for multiple sampling. 

2.2 Study criteria 

The criteria for inclusion in the study were: 

1. Stage I cancers according to the 8th edition of the TNM classification 

2. Sample recovered from patients who underwent radical surgery 

(lobectomy or pneumonectomy) 

3. Patients who had not received any adjuvant or neo-adjuvant 

treatment (chemotherapy or radiotherapy) 

4. Confirmed evidence of recurrence (either local or systemic) or 

confirmed disease-free 5- year survival.  

The following exclusion criteria were defined: 

1. Cases of early peri-operative death (within 3 months from surgery). 

2. Patients with history of another cancer. 

3. Patients who underwent sublobar resections (wedge, 

segmentectomy) and patients with positive resection margins who 

required post-operative radio and/or chemotherapy. 

4. Patients with insufficient lymph node sampling to obtain a formal TNM 

stage. 
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2.3 Data gathering 

Ethics approval for the project had already obtained by the department 

(reference number 07/Q1206/30). Its conditions were revised in order to 

ensure that the study was compliant. No conflicting issues were identified. 

An anonymized, secure database was compiled, including relevant 

demographics, clinical and outcome data (donor’s age at diagnosis, gender, 

histology report, stage of disease, type of surgical procedure and recurrence 

details). Due to the fact that most of the cases underwent surgery more than 

a decade prior to the commencement of this study, I used several sources to 

obtain the relevant data, in particular the outcome and long-term survival 

data. All cases, for which survival and recurrence status could not be 

conclusively verified, were excluded from the study. The Patient Pathway 

Management (PPM) database, PACS radiology system and histopathology 

database (Co-path) used in the Leeds Teaching Hospitals Trust as well as 

the Yorkshire Cancer Registry were utilized. PPM incorporates a large 

amount of data, including pathology reports, survival, clinician letters, data 

on trial participation, additional operations and procedures (cancer related or 

not). The PACS system contains images and reports from radiology studies 

performed in Leeds Teaching Hospitals. The Yorkshire cancer registry was 

referred to for outcome data, in particular, cause of death. This was 

necessitated by the fact that a few of the patients were referred from outside 

of the Leeds area and the data on PPM was incomplete. Several cases 

required additional discussion with a consultant pathologist in order to 

confirm the definitive staging of the cancer. The cases that complied to the 

selection criteria were grouped into two cohorts as per the study design – A) 

Patients who underwent radical surgery for stage I NSCLC and had 

recurrent cancer within the first five years from the operation and B) Patients 

who underwent radical surgery for stage I NSCLC and did not have recurrent 

cancer within the first five years from the operation. Recurrence was 

confirmed by radiological findings (CT scan) (Figure 2.1. Breakdown of 

sample cohort by histology and recurrence statusFigure ).  
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Figure 2.1. Breakdown of sample cohort by histology and recurrence status  

2.4 FFPE tumour block sectioning 

The FFPE tumour blocks were cut into sections using a microtome. From 

each sample, deemed suitable for the study, seven consecutive 7-m-thick 

sections were cut and mounted on a slide, which was labelled with the 

relevant coded number. A further 4m-thick section was cut from each block 

and stained with haematoxylin and eosin (H&E). An independent pathologist, 

blind to patient identity and diagnosis, reviewed all of the H&E stained slides 

in order to (i) confirm the diagnosis and histology reported in the original 

pathology report; (ii) mark the most representative tumour areas in each 

slide using a fine-tipped permanent marker and (iii) evaluate the percentage 

of tumour cells in the marked area, corresponding to the macrodissected 

tissue used for DNA extraction. The data was then entered into the secure 

database.  

2.5 DNA isolation  

Tumour genomic DNA from macrodissected FFPE tissue was extracted 

using a commercially available QIAmp DNA mini kit (Qiagen, Crawley, West 

Sussex, UK). The slides, corresponding to the actual tumour block were 

initially heated on a hot plate at 65°C for 3 min. Following this, the slides 

were loaded onto racks and de-waxed and rehydrated by immersion into 

glass baths in the following succession: xylene for 5 min, 100% ethanol for 3 

min, 90% ethanol for 3 min, 70% ethanol for 3 min and finally ddH2O, where 

they remained until further processing. Sections were then immediately 

323 Lung cancer 
samples 

172 Squamous cell 
cancer 

49 stage I  

(T1/2 N0 M0) 

24 recurrent 25 non-recurrent 

151 
Adenocarcinoma 

49 stage I 

(T1/2 N0 M0) 

24 recurrent 25 non-recurrent 
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macrodissected using sterile disposable scalpels (Swann-Morton Ltd, 

Sheffield, England) to harvest the tumour tissue; the corresponding H&E-

stained and marked-by-pathologist slide was used as a guide (Figure 2). All 

seven slides containing the 7-m-thick sections from each tumour block 

were macrodissected for every case. DNA extraction was performed using 

the QIAamp DNA Mini Kit according to the manufacturer’s instructions 

(Qiagen). All the macrodissected tissue from each case was placed in a 

separate microfuge tube, labelled with the unique patient study ID. Following 

this, 180-μl of Buffer ATL and 20-μl of Proteinase K were added to the tube. 

The samples were mixed by pulse-vortexing for 10 s. and placed in a water 

bath for incubation at 56 ⁰C for 48 hours to obtain complete lysis of the 

tissue. They were reviewed after 24 hours and an additional 20 l of 

Proteinase K was added to those samples that still had free-floating tissue. 

The tubes were vortexed daily for 15-s to enable mixing. After 48 hours the 

samples were removed from the water bath and 200 l of Buffer AL was 

added and mixed by pulse-vortexing for 15-s The samples were then 

incubated at 70 C for 10 minutes and briefly centrifuged after cooling down. 

200 l of 100% ethanol were added to each tube as a next step. The 

samples were pulse-vortexed for 10-s and left to incubate at room 

temperature for 5 minutes. The mixture was then carefully transferred to a 

spin column, using a pipette, and centrifuged at 8000 rpm for 1 minute. The 

spin column was transferred to a clean centrifuge tube and the tube 

containing the filtrate was discarded. 500-l of buffer AW1 was added to 

each tube and the samples were centrifuged again at the same speed. The 

spin column was transferred to a clean centrifuge tube and the tube 

containing the filtrate was discarded. 500-l of buffer AW2 were added to 

each tube and the samples were centrifuged at 14 000 rpm for 3 minutes. 

The spin column was placed in a clean 1.5 ml tube, labelled with the 

corresponding study ID. The remaining filtrate was discarded. 100-l of 

buffer AE added to each column and the samples were incubated for 5 min 

at room temperature. Following this, they were centrifuged at 8000 rpm for 1 

minute. The filtrate was clearly labelled as Elution 1. The spin columns were 

placed in clean tubes (clearly labelled as Elution 2) and buffer AE was added 

to obtain a second sample from each block. The final result was two DNA 

elutions of each sample, prepared in 100-μl of buffer and stored at 4 C. 
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Figure 2.2. FFPE tumour tissue was macro-dissected (top) using an H&E slide, 

previously marked by a pathologist (bottom). 

2.6 Quality control  

Quality control of the samples, assessing DNA concentration and purity was 

performed using both spectrophotometry (Nanodrop-8000) (Figure 2.3) and 

fluorescent nucleic acid staining (Quant-iT PicoGreen dsDNA BR assay, 

Invitrogen, Paisley, UK).  

2.6.1 Spectrophotometry with Nanodrop 

The Nanodrop is a cuvette-free full spectrum (220-750 nm) 

spectrophotometer. It can measure samples of just 1-l with high accuracy 

and reproducibility and is accurate for concentrations from 5-ng/μl up to 

3,000-ng/μl. It measures DNA, RNA and protein concentration.   

The concentration and quality of DNA were measure using a ND- 1000 

spectrophotometer (NanoDrop, Wilmington, DE, USA). The procedure was 

performed immediately after extraction. The nanodrop was first normalised 

with 1l of diH2O and then blanked with 1l buffer AE (the elutant in all 

samples). The sensor of the ND-1000 was wiped dry with a clean tissue 

before adding 1l of the selected DNA sample. Measurement of the 

concentration by UV spectrophotometry was initiated using the associated 

software package (NanoDrop 1000 v3.7.1). The nucleic acid concentration in 

ng/l was calculated and recorded automatically by the software in a 
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spreadsheet along with 260/280nm (DNA). The samples were processed in 

batches of three, thus allowing for two measurements of each elution.  After 

each run, the sensor was wiped dry again with a clean tissue and 

measurement of the next batch took place. All data from the programme 

spreadsheet were then exported into Microsoft ExcelTM and saved for future 

reference. 

 

Figure 2.3. Example of Nanodrop run. Measured nucleic acid concentrations are 

highlighted in green.  

2.6.2 PicoGreen  

Picogreen is an ultra-sensitive fluorescent nucleic acid stain for quantifying 

double-stranded DNA. The major disadvantage of the spectrophotometry is 

the contribution of nucleotides, single-stranded nucleic acids and proteins to 

the signal, the interference caused by contaminants commonly found in 

nucleic acid preparations and the inability to distinguish between DNA and 

RNA.  

The Quant-iT™ dsDNA Broad-Range Assay Kit was used for DNA 

quantification. 

The kit provides a concentrated assay reagent, dilution buffer, and pre-

diluted DNA standards. 

The assay is highly selective for double-stranded DNA over RNA, and in the 

range of 2–1000 ng the fluorescence signal is linear with DNA. The assay is 

performed at room temperature. Common contaminants, such as salts, 

solvents, detergents, or protein are well tolerated in the assay. 
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A working solution was prepared by diluting Quant-iT™ dsDNA BR reagent 

1:200 in Quant-iT™ dsDNA BR buffer. 200 μl of the working solution were 

loaded into each microplate well. 10 μl of each DNA standard were added to 

separate wells and mixed. 10 μl of each investigated DNA sample were 

added to separate wells and mixed. The plate was loaded in a reader and 

the fluorescence was measured. A standard curve was used to determine 

the DNA amounts.  

2.7 DNA library preparation 

The principle underpinning Ng-seq is the use of small fragments of DNA, the 

base sequence of which are sequentially identified from emitted auto 

fluorescent signals as each fragment is re-synthesized from a DNA template 

strand. The sample DNA is first fragmented into numerous small segments 

(using enzymatic or mechanical shearing), which are “sequenced” in millions 

of parallel reactions. The small segments (or strings) of DNA are tagged with 

known adapters and are called reads. The position of each read is 

established by aligning them to a known reference genome 

DNA libraries were prepared and sequenced using methods previously 

described by our group [Wood et al, 2010].  

1. DNA was first sheared into a random library of 100-300 base-pair 

long fragments. This was performed on a Covaris S2 Sample 

Preparation System (Covaris Inc., Woburn, MA, USA) and checked 

for appropriate size distribution on an Agilent Bioanalyser DNA 1000 

LabChip (Figure 2.4).   

2. After fragmentation the ends of the DNA-fragments were repaired. 

End repair was performed by using the End-It DNA End Repair Kit 

(Epicentre Biotechnologies, Madison, WI, USA). 

3. A-Addition. An A-overhang was added at the 3'-end of each strand 

using Klenow DNA polymerase.  

4. Ligation. DNA ligases catalyze the formation of a phosphodiester 

bond between the 3' hydroxyl and 5' phosphate of adjacent DNA 

residues. This reaction is used to add bar-coded adapters to 

fragmented DNA. Adaptors, which are necessary for amplification and 

sequencing, are ligated to both ends of the DNA-fragments. Libraries 

were prepared for sequencing with a unique 6bp adapter ligated to 

enable multiplexing. 
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5. Enrichment. PCR was used to enrich/amplify final adapter modified 

fragment sample to increase the overall amount of library prep. A 15 

cycle enrichment regime was used for all samples. 

6. Quality control. DNA quantification was performed using PicoGreen 

as well as microchip electrophoresis using Agilent Bioanalyser 

analysis. An example is shown in Figure 2.5. 

 

Figure 2.4. Example of quality control of library preparation using Agilent 

Bioanalyser. The two tall, narrow peaks represent size selection markers. The 

tented curve shows the amount of DNA in the prep. 

Twenty samples were pooled per lane on an Illumina GAII sequencer for 76 

cycles of single end sequencing resulting in 70bp of genomic sequence and 

6bp of adapter. Files were split according to adapter sequence and the 

remaining 70bp fragments were “mapped” to a  known human genome 

(USCS hg19) using the Burrows-Wheeler Alignment tool (BWA), thus 

determining their genomic site (Li and Durbin, 2009). A key advantage of 

Burrows–Wheeler algorithm-based software programs is their relatively low 

memory requirement. The process of mapping generates a BAM file, in 

which the reads from the sequencing have been assigned a position relative 

to the reference genome while retaining information regarding unmapped 

reads. In this study sequences were aligned using a bwa suite (version 

0.5.9-r16). A software package written in R, called CNAnorm (Gusnanto et 

al, 2012) and designed at the University of Leeds was used to normalize the 

data. CNAnorm has been used to analyse Ng-seq data in several previous 

projects (Wood et al, 2010, Belevedere et al, 2011) and one of its main 

advantages is normalization of sequencing data obtained using low 

coverage (one read every 100-10,000 bp). It provides an algorithm that 

corrects sample contamination with normal cells and adjusts for genomes of 
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different sizes so that the actual copy number of each region can be 

estimated. Copy number was calculated by splitting the genome into 

windows averaging 300 tumour reads per window. The windows were then 

aligned to a control sample in order to determine the copy number 

variations. The control sample was constructed from a pool of 20 normal 

British individuals downloaded from the 1000 genomes project (Durbit et al, 

2010). The ratio for number of tumour and normal reads in each window was 

calculated. 

Copy number karyograms were generated for each sample using the 

CNAnorm software package.   

A statistical analysis was then undertaken using the Bioconductor package 

KC-SMARTR (Venkatraman et al, 2007, Clijn et al, 2007), which can detect 

significantly altered regions and compare two groups of samples. The latter 

is the major advantage of this particular software package and was the main 

reason it was chosen over other similar packages. 

2.8 Models of global genomic patterns associated with 

recurrence 

 2.8.1 Genomic signature based on karyogram patterns  

In 2006 Hicks et al examined 243 breast tumours and identified three distinct 

patterns of genomic CN variation, naming them according to the appearance 

of their karyograms: ‘simplex’ - few aberrations, mostly involving whole 

chromosome arms, ‘sawtooth’ - many aberrations spread throughout the 

genome and ‘firestorm’ - like simplex, with local regions of complex damage. 

They observed an association between “firestorm” and disease 

aggressiveness and speculated that CN profiling might provide information 

useful in making clinical decisions. The approach of Hicks et al. was adapted 

and applied to the investigated cohort in an attempt to identify an association 

between a specific global pattern of CNV and cancer recurrence.  

 2.8.2 Pangenomic index (GH) 

The method of generating a novel pangenomic index was developed by our 

group as a part of a larger project looking into SCC, and has been published 

in 2011 (Belvedere et al, 2011). As a first step to calculating the GH index 

the distribution of copy number along the entire genome is calculated and 

presented in density plots. The density plots are generated after the copy 

number data from the sequencing is smoothed using the CNAnorm software 
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package. The areas where the CNV most commonly occur along the 

genome are represented as “peaks” on the plot and the three most 

prominent are labelled A, B and C (figure 6). The “highest” peak represents 

the most common copy number state in that particular sequenced genome. 

In an attempt to quantify and compare global patterns of copy number 

change three mathematical measures, namely G-stat, H-stat and the 

combined GH index are introduced. The G-stat and H-stat are calculated 

from the relative heights and positions of the peaks.  

G represents the part of the cancer genome that sits below the baseline, and 

is essentially a measure of genomic loss. Intuitively, high G values should be 

associated with worse prognosis. Higher peaks indicate occurrence of more 

genomic loss and this could be associated with more significant loss of 

tumour suppressor genes and therefore their role in inhibiting 

carcinogenesis. However, G on its own can’t be considered as an adequate 

prediction tool as it fails to incorporate a number of events along the 

genome, which could be critical to the biological behaviour of the cancers. 

To address this issue the H stat was introduced. It serves to reflect the 

complexity of copy number changes along the entire genome and attempts 

to quantify tumour homo/heterogeneity. It is calculated from the relative 

heights of the two tallest peaks on the density plots. The height of the 

second tallest peak is divided by the height of the tallest peak to give its 

numerical value. Therefore genomes with one prominent peak and several 

smaller ones on the density plot will have a low absolute value of H, while 

smaller height differences between the peaks with yield a higher H value. 

From a biological point of view, tumours which are more heterogeneous 

(lower H values) are likely to carry greater malignant potential i.e. be more 

likely to recur or metastasize. Heterogenous tumours tend to have multiple 

loci with intermediate CNV, which on a density plot will be represented by 

one prominent peak and multiple lower ones. 

The GH index attempts to combine the two stats and provide a more precise 

account of the copy number variations occurring in the cancer genome and 

correlate them with clinical features. This is a novel index, which has so far 

been applied in a very limited setting. However, our previous study 

(Belvedere et al, 2011) showed that combining the G and H stat in the GH 

index [G x (1-H)], led to an improved p-value in predicting survival in SCC 

(p=0.003), significantly exceeding that of G (p=0.18) and H (p=0.09) on their 

own.   
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Figure 2.5. Defining G-stat and H-stat based on patterns of genomic gain and loss. For each 

genome, a density plot was drawn and peaks, reflecting the level of activity (gain and/or 

loss) along the genome were identified. To calculate the G-stat, the proportion of the 

genome with copy number less than the highest peak was measured. It corresponds to the 

number of dots that fall to the left of the red dotted line (density plots) as a fraction of the 

total. To measure the H-stat, the ratio of the heights of the two highest peaks (second over 

first) was calculated. For sample TMA-41 G = 0.30, H = 0.35. GH = G(1 − H) = 0.195. 
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2.8.3 Logistic regression model 

For the purpose of this study we wanted to model an essentially binary 

outcome (recurrent versus non-recurrent cancer) as a function of an 

independent variable, namely the genomic signature of the cancer, based on 

its CNV. Regression is a statistical method for analysing a dataset in which 

there are one or more independent variables that determine an outcome. 

The outcome is measured with a dichotomous variable (in which there are 

only two possible outcomes). Logistic regression models the relationship 

between a dependent and one or more independent variables, and the 

significance of the relationships (between dependent and independent 

variables) that are modelled. Logistic regression estimates the probability of 

an event occurring (for the purposes of this study - the probability of stage I 

NSCLC recurring within 5 years from radical surgery). The aim is to predict 

from a knowledge of relevant independent variables the probability (p) that it 

is 1 (event occurring) rather than 0 (event not occurring). The binary 

response for this study was defined as: Recurrent (value=1) and Non-

recurrent (value=0). The relationship between the dependent and the 

independent variables is non-linear. The aim of this analysis in the context of 

the study is to predict whether a tumour will recur or not, based on the 

patients’ CNV profiles and/or their clinical characteristics (Age and Gender). 

The probability (p) estimates the likelihood of tumour recurrence AND non-

recurrence at the same time. For example, if the probability of recurrence for 

a tumour based on its CNV is 0.7, then the probability for it not to recur is 

just 0.3. 

Following the alignment, an average window size of 150 kbp was selected. 

After excluding the X and Y chromosomes and the centromere regions, we 

ended up with approximately 17 000 windows per sample. The windows 

were aligned with a common control (16 normal genomes from the 100 

genome project: 8 male and 8 female) and to identify the copy number a 

ratio of the number of reads (between cancer reads and control reads) is 

calculated for each window. 

Determining the size of the window has been a somewhat arbitrary issue in 

the past. If a window is too small (e.g. 1-5 reads), a significant number  of 

genomic regions will have a “zero” read count, while a larger window will 

have the tendency to “smooth out” discrete pattern of alterations, which 

could be significant (Gusnanto et al, 2012). However in a recent analysis 

Gusnanto et al, 2014) identified an algorithm for determining an optimal 

window size for CNV analysis of data from high-throughput sequencing. This 
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is done with a specifically designed software package, written in R, which 

was used in this study. 

Each window was incorporated as a separate variable in the analysis of the 

data. 

The sequence data from all of the samples could not be compared directly. 

The reason for this was the varying degree of “contamination” of each 

tumour with normal cells. To tackle this issue the CNV profile for each 

tumour sample was calculated using CNAnorm and the data was then 

normalized using two different forms of segmentation. Segmentation is a 

process of determining the positions in the cancer genome, where the copy 

number jumps from one value to another. It splits the genome into different 

segments where the CNV are distinctly different from its neighbours. It 

essentially serves to resolve the problem of the background “noise” created 

by sample contamination and provide a way to normalize and provide a 

graphic representation of the vast amount of sequencing data. The two 

different types of segmentation utilized were smooth segmentation and 

circular binary segmentation.  

1. Smooth segmentation – CNV were estimated as a smooth segmented 

line, which follows the jumps (amplifications) and drops (deletions) in 

copy number profile 

 

2. DNAcopy – CNV were estimated as circular binary segmented lines. 

The distinguishing feature of this method is the formation of relatively 

long, constant segments.  
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Segmentation allows for the data to be visualized in a graphic manner. The 

calculated lines serve to identify significant “clusters” of genomic changes, 

essentially allowing us to “connect the dots” in a way thatgives us an image. 

In this analysis, the logistic regression model was fit to the SCC and AC 

data. Two covariates in the data (age and gender) were taken into account 

in the analysis.  

The analyses of the CNV estimates across 17,571 genomic windows were 

as follows: 

1. Regressing the Recurrence status (Recurrent or Non-Recurrent) as a 

function of the (fixed) covariates, i.e. Age and Gender only. 

2. Regressing the Recurrence status as a function of the CNV profiles of 

the patients, excluding the fixed covariates (Age and Gender). 

3. Regressing the Recurrence status as a function of the fixed 

covariates and the copy number profiles. 

To obtain the prediction of probability of recurrence in this cohort, based on 

the CNV profiles, a cross validation was performed. The data was randomly 

split into an estimation set and validation set. Half of the observations 

(recurrence vs non-recurrence) for each cohort were included in the 

estimation set and the other half in the validation set. The process of cross 

validation was performed 100 times with different random selection of 

samples from the estimation and validation sets. 

For a validation of the results of the logistic regression analysis the model 

was tested in two ways: 

1. On tumour data from Ng-seq of 76 patients with NSCLC. Out of them 

38 were patients with SCC and 38 with AC. The logistic regression 

model was used to differentiate histological subtypes (SCC from AC) 

based on their CN profiles.   

2. Each sample of the study was randomly assigned a consecutive 

number (1-38 for the SCC and 1-48 for the AC cohort). The logistic 

regression model was fitted in an attempt to differentiate samples with 

odd numbers from samples with even numbers based on their CN 

profiles. 

Several statistical methods were considered before settling on logistic 

regression, namely diagonal quadratic discriminant analysis, diagonal linear 

discriminant analysis and parietal least squares analysis. The data was 
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tested in both histological cohorts (AC and SCC) with both modes of 

segmentation (smooth and DNAcopy). The logistic regression model showed 

best “fit” with most homogenous data distribution in virtually all of the 

combinations. 

While the author acknowledges that sample size determination is an 

important aspect in the design of a research study and a major step in 

defining the statistical power, it was felt that it is not appropriate for this work. 

This main reason for this decision was the limited sample cohort. Three 

hundred and twenty three tumour samples were available and the original 

surgery was performed in the same department by a particular group of 

surgeons, conforming to a certain clinical pathway. A significant amount of 

time had passed from the time of the original operations, which was 

invaluable in accurately determining recurrence status, but made it difficult to 

add new samples to the cohort. After several consultations with a statistician 

and bio-informatician a decision was reached that a power calculation would 

not be suitable due to the fact that regardless of the result all samples, which 

were identified as suitable for the study, would be used in the data analysis. 

This is essentially a pilot retrospective study, designed to serve a platform 

for future work. Working within the confines of available resources made it 

prudent to use all possible samples within the investigated cohort. 
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Chapter 3 

Data collection and DNA extraction 

3.1 Assembling patient cohort  

Multiple databases were used to obtain complete clinical data and outcome 

information for the cases. This was necessitated by the retrospective nature 

of the study and the relatively long time that had passed since the original 

operation. The patients, from whom the samples were obtained, underwent 

the primary surgery for NSCLC between 1999 and 2003. Whilst this allowed 

adequate amount of time to have passed since the initial treatment to assess 

survival and recurrence, it created difficulties with data gathering. Currently, 

the PACS radiology system and histopathology database (Co-path) used in 

the Leeds Teaching Hospitals Trust are synchronized with the Patient 

Pathway Management (PPM) database to facilitate the management of 

cancer patients. This is valid for all data accumulated after 2009 and will 

likely prove very valuable for future studies by greatly facilitating access to a 

wide array of data. For the purpose of this study PPM was used to obtain 

survival data and evidence of recurrence. The latter was confirmed by 

gathering information from the PACS system (radiological evidence for 

recurrence) and Yorkshire Cancer Registry (cause of death). The original 

histology reports were carefully examined on Co-path to ensure that an 

adequate number of lymph nodes was submitted to allow for precise staging. 

Samples without submitted N2 nodes, despite being considered as stage I, 

were excluded from the study. The information was compiled in a detailed 

database including date and type of surgery, histological staging, evidence 

of recurrence, concomitant cancer treatments and survival data. The cases 

suitable for the study were then identified with the defined criteria. 

Data summarizing the demographics of the two cohorts and the type of 

surgical procedures performed, is presented in table 3.1. 
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Demographical and clinical characteristics of patients in SCC cohort  

Parameter n % 

 

Age at surgery, years 

    Median 

    Range 

 

 

67.63 

40 – 79 

 

Gender 

    Male 

    Female 

 

 

21 

17 

 

 

52.63 

47.37 

Type of surgery 

    Lobectomy/bilobectomy 

    Pneumonectomy 

 

32 

6 

 

84.21 

15.79 

Demographical and clinical characteristics of patients in AC cohort  

Parameter n % 

 

Age at surgery, years 

    Median 

    Range 

 

 

68.94 

52 – 83 

 

Gender 

    Male 

    Female 

 

 

19 

29 

 

 

39.58 

60.42 

Type of surgery 

    Lobectomy/bilobectomy 

    Pneumonectomy 

 

45 

3 

 

93.75 

6.25 

Table 3.1. Demographical and clinical characteristics of the patients   
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3.2 Squamous cell cohort   

3.2.1 Sample selection and demographics 

Out of the cohort of 172 squamous cell cancers, 77 samples were classified 

as stage I. However, only 49 (28.48%) were identified as suitable for the 

study after applying the entry criteria. In some cases a significant amount of 

time had passed from the original surgery and discrepancies were noted in 

the clinical data in different databases. All such samples, for which staging, 

surgery and/or survival data could be deemed uncertain, were excluded from 

the study. For example two cases were initially staged as T1N0, although 

the final histology report mentioned direct invasion by proximity of the 

tumour into an adjacent N1 lymph node. The reports were discussed with 

two independent pathologists, who both considered that the staging should 

be upgraded to T1N1, making the cancers stage II. The two samples were 

excluded from the study, despite clearing all of the entry criteria on the initial 

screening. Another case showed a suspected recurrence more than 5 years 

from the original surgery. It was also excluded from the study, due to the fact 

that no histological confirmation was obtained and the “recurrence” could be 

an independent new primary. One case, which underwent the initial lung 

resection in 1999 was classified in the final pathology report as 

adenosquamous and was also deemed unsuitable for inclusion. Four of the 

patients, whose samples were classified as stage I had undergone sublobar 

resections (wedge resection) and were excluded.    

Out of the remaining 49 stage I squamous cell lung samples, 24 were cases 

of recurrent cancer and 25 of non-recurrent. Tumour DNA was successfully 

sequenced in 38 (77.56%) of the cases. Eighteen were in the recurrent arm 

(12 male, 6 female mean age 75.06 years) and 20 in the non-recurrent arm 

(9 male, 11 female, mean age 64.55 years). The cancer recurrence occurred 

at a mean time of 16.33 (6 - 39) months from the date of surgery. In 10 of 

the cases the recurrence was local, while in the remaining 8 it presented as 

metastasis in more distant locations such as bone (4 cases), brain (1 case), 

liver (1 case) and abdominal wall (1 case). The 11 cases that failed the 

sequencing process had passed the quality control with Nanodrop and 

Picogreen, but failed to produce usable libraries. A repeat DNA extraction 

was performed, although this did not yield a different outcome. 
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3.2.2 Tumour area and tumour cell content 

The mean tumour cell area was estimated at 62.63% (20-80%). The mean 

tumour cell content of the samples was 69.73% (30-90%). Two of the 

samples had sizable zones of inflammation and five of extensive cell 

necrosis within or adjacent to the tumour area. These were also marked out 

to facilitate the dissection of the actual cancer cells.   

3.2.3 Quality control  

Prior to preparation of DNA libraries from the samples, quality control was 

performed with Nanodrop and Picogreen to confirm the extraction. The 

Nanodrop analysis was performed immediately upon completion of the DNA 

extraction (Figure 2.3) via the Qiagen protocol, whilst the Picogreen was 

carried out upon the completion of DNA extraction of the entire cohort, due 

to the nature of the technique. 

Two measurements for each sample were made using the Nanodrop. 

None of the samples in either SCC or AC cohort were excluded based on 

their Nanodrop or Picogreen readings. 

 

Figure 3.1. Example of Nanodrop run in the SCC cohort. The nucleic acid 

concentration in each sample is highlighted in green (far right). The graphs 

representing the 260/280 ratio can be seen next to the sample number and are 

clearly demonstrating a peak at the appropriate wavelength.  
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Figure 3.2. Example of Picogreen run in the AC cohort. The straight line represents 

the established standard and the black dots are the investigated samples. The 

closer they are to the standard, the more pure is the DNA in the sample. 

 

A summary of the quality control of the cohort is presented in Table 3.2.  

The mean value for nucleic acid content measured by Nanodrop in elution 1 

in the SCC cohort was 435.73-ng/l (112.65 - 814.4-ng/l). The 260/280 

ratio was also calculated for the samples. DNA and RNA absorb at 260nm, 

while proteins absorb at 280nm and the ratio can be used as a measure of 

purity. The 260/280 ratio was 1.98 for elution 1 and 1.92 for elution 2.  

The mean value for nucleic acid content measured by Picogreen in elution 1 

in the SCC cohort was 87.53-ng/l (18.62 – 149.18-ng/l). 
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Patient 

Id 

Tumour 

Area 

(%) 

Tumour 

cell 

content 

(%) 

Nanodrop 

elution 1 

concentration 

ng/l  - read 1 

Nanodrop 

elution 1 

concentration 

ng/l  - read 2 

Mean elution 

1 (ng/l) 

Picogreen 

elution 1  

ng/l 

Picogreen 

standard 

deviation 

LS4 60 70 391.6 441.8 416.7 39.63 0.73 

LS6 90 95 184 189.6 186.8 18.61 11.03 

LS34 40 50 505.2 419.9 462.55 98.85 0.41 

LS39 70 80 382.5 346.8 364.65 61.68 0.67 

LS60 50 60 521.8 634.4 578.1 102.69 1.03 

LS64 20 30 304.9 312.9 308.9 57.14 4.51 

LS80 75 80 719.3 743.8 731.6 102.47 0.88 

LS88 40 60 533.2 581.7 557.5 98.09 0.15 

LS91 40 60 638.5 631.0 634.8 149.18 1.33 

LS95 80 90 362.7 472.0 417.4 98.83 3.93 

LS97 65 70 282.5 286.3 284.4 114.33 2.77 

LS98 50 60 361.9 486.2 424.1 81.11 1.57 

LS113 80 70 265.9 298.2 282.1 77.16 3.25 

LS121 50 70 369.3 458.6 414.0 93.89 1.74 

LS127 70 85 315.1 315.3 315.2 85.67 3.71 

LS129 75 85 541.3 545.6 543.5 77.86 7.44 

LS130 75 85 309.0 220.0 264.5 38.82 3.17 

LS143 70 70 553.0 482.4 517.7 54.27 1.92 

LS146 85 80 243.6 124.0 183.8 60.00 9.40 

LS147 80 90 357.0 355.0 356.0 73.83 0.69 

LS20 70 80 248.8 199.1 223.95 68.00 0.98 

LS25 50 50 808.4 779.8 794.1 69.89 0.61 

LS37 80 70 112.6 112.7 112.65 78.51 0.62 

LS61 80 90 824.4 804.4 814.4 128.85 10.19 

LS63 40 50 659.3 639.3 649.3 131.28 5.99 
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Table 3.2 Summary of tumour area, Nanodrop and Picogreen values for the SCC 

samples. The tumour cell area and cell content were determined by a pathologist 

3.3 Adenocarcinoma cohort (151) 

3.3.1 Sample selection and demographics 

Out of the cohort of 151 lung adenocarcinomas, 50 (33.11%) were identified 

as suitable for the study after applying the criteria. An occasional non-

conformity between the databases as observed in the squamous cell cohort 

was noted in this group as well. Five samples had to be excluded because, 

although initially classified as adenocarcinomas (by pre-operative biopsy), 

the final histology report classified them as squamous cell (2 cases), large 

cell (2 cases) and NSCLC (1 case). The final histology of another interesting 

case, originally operated on in 1999, showed two independent small 

adenocarcinomas in the removed lobe, both staged at T1N0. This sample 

was also excluded from the final cohorts as it can no longer be considered 

stage I with the current edition of the TNM system. A further sample had to 

excluded, because the patient from whom it was obtained died very close to 

the five year margin and the cause of death was too ambiguous (pneumonia 

unspecified). 

Out of the remaining 50 stage I lung adenocarcinomas, 25 were cases of 

recurrent cancer and 25 of non-recurrent. The cancer recurrence occurred at 

LS86 70 80 364.9 345.4 355.2 98.69 3.98 

LS93 80 80 436.5 431.3 433.9 113.97 2.25 

LS96 65 70 550.0 559.9 555.0 103.31 0.81 

LS122 60 70 513.4 484.4 498.9 53.39 0.89 

LS162 40 55 270.4 382.1 326.3 94.40 0.15 

LS171 65 85 422.4 466.2 444.3 76.84 22.06 

LS40 85 95 466.7 373.5 420.1 130.15 0.56 

LS41 70 85 643.8 632.7 638.25 97.59 4.75 

LS74 60 60 512.1 495.3 503.7 98.54 1.54 

LS160 50 30 159.4 249.1 204.3 57.89 0.99 

LS172 40 30 420.6 426.7 423.7 80.04 4.65 

LS33 60 70 485.1 484.4 484.75 150.95 4.46 

LS84 50 60 402.2 459.1 430.7 109.79 1.66 
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a mean time of 26.16 (4 - 58) months from the date of surgery. Tumour DNA 

was successfully sequenced in 48 (31.79 %) of the cases. Twenty three of 

them were in the recurrent arm (9 male, 14 female mean age 68.61 years) 

and twenty five in the non-recurrent arm (10 male, 15 female, mean age 

69.24 years). In 17 of the cases the recurrence was local, while in the 

remaining 6 it presented as metastasis in more distant locations such as 

brain (3 cases), contralateral lung (2 cases) and spine (1 case). Initially 11 

cases (22%) failed the sequencing process, despite passing the quality 

control. A repeat DNA extraction was undertaken and out of the 11 only two 

failed to produce libraries.  

3.3.2 Tumour area and tumour cell content 

The mean tumour cell area was estimated at 65% (25-95%). The mean 

tumour cell content of the samples was 63.51% (20-90%). Areas of chronic 

inflammation were more common in this group (in 11 of the cases). Zones of 

extensive necrosis were present in 2 of the samples.  

3.3.3 Quality control  

Two measurements for each sample were made using the Nanodrop. Four 

samples in the AC cohort showed significant discrepancies between their 

two respective readings and an extremely abnormal appearance of the 

graph representing the 260/280 ratio. A repeat DNA extraction was 

performed from the four tumour blocks and the Nanodrop was repeated. 

Readings uniform with the values obtained in the rest of the cohort were 

recorded. The aberrant results were attributed to a technical error in the 

sequence of buffer application in the Qiagen protocol.  

A summary of the quality control of the cohort is presented in Table 3.3.  

The mean value for nucleic acid content measured by Nanodrop in elution 1 

in the AC cohort was 212.12-ng/l (32.08 – 571.06-ng/l). This was 

significantly lower than the SCC cohort. The 260/280 ratio was also 

calculated for the samples.  

The mean value for nucleic acid content measured by Picogreen in elution 1 

in the SCC cohort was 36.9-ng/l (2.7 – 134-ng/l). 
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Patient 

Id 

 

 

Tumour 

Area 

(%) 

Tumour 

cell 

content 

(%) 

Nanodrop 

elution 1 

concentration 

ng/l - read 1 

Nanodrop 

elution 1 

concentration 

ng/l - read 2 

Mean 

elution 1 

(ng/l) 

Picogreen 

elution 1  

ng/l 

LA 170 30 60 32.51 32.08 32.295 17.5 

LA 87  85 75 126.11 128.24 127.175 19 

LA 95 60 45 100.8 102.88 101.84 20 

LA 134 40 50 121.59 122.33 121.96 24 

LA 99 70 60 54.16 56.55 55.355 2.5 

LA 81 70 70 140.42 95.81 118.115 2.7 

LA 172 90 80 491.88 571.06 531.47 127 

LA 50 60 70 142.55 142.9 142.725 19 

LA 84 25 80 126.54 188.7 157.62 17 

LA 78  60 65 28.31 32.54 30.425 5 

LA 158 60 70 251.83 254.04 252.935 43 

LA 115 85 40 202.39 196.19 199.29 53 

LA 11 80 75 335.23 370.2 352.715 105.5 

LA 137 80 50 109.24 105.11 107.175 31 

LA 25 50 50 65.88 65.7 65.79 5.4 

LA 28 80 70 188.9 184.18 186.54 33 

LA 1 85 60 141.63 142.01 141.82 15 

LA 65 100 60 46.97 46.94 46.955 4 

LA 3 25 50 49.08 46.66 47.87 5.8 

LA 80 90 70 366.11 358.56 362.335 34 

LA 14 95 80 884.06 302.65 593.355 73 

LA 59 90 60 336.39 396.17 366.28 68 

LA 178 70 85 159.09 156.41 157.75 43 

LA 169 70 50 243.24 239.82 241.53 53 

LA 5  75 70 465.71 452.18 458.945 46 



- 60 - 

LA 4 40 80 192.94 186.5 189.72 33 

LA 10 45 80 114.24 113.25 113.745 16 

LA 146 70 70 420.08 415.15 417.615 55 

LA 135 75 60 461.64 484.29 472.965 62 

LA 34 40 20 186.59 191.41 189 28 

LA 33 75 90 247.26 248.64 247.95 65 

LA 37 30 60 60.59 57 58.795 7.3 

LA 74 95 75 213.66 212.11 212.885 46 

LA 68 50 70 383.42 363.39 373.405 44 

LA 61 45 40 23.49 25.12 24.305 4.5 

LA 83 95 65 437.94 467.92 452.93 81 

LA 56 70 30 255.74 Error 255.74 55 

LA 57 50 40 209.59 209.46 209.525 134 

LA 127 40 80 66.5 61.28 63.89 10 

LA 104 40 70 106.64 101.95 104.295 15 

LA 121 85 60 121.57 120.7 121.135 34 

LA 122 45 60 99.45 94.7 97.075 31 

LA 149 70 80 165.4 161.81 163.605 23 

LA 152 20 50 139.27 132.86 136.065 19 

LA 153 65 50 218.31 217.54 217.925 41 

LA 160 75 80 323.31 317.94 320.625 35 

LA 69 80 70 534.56 536.27 535.415 19 

LA 73 90 75 216.86 197.63 207.245 47 

Table 3.3 Summary of tumour area, Nanodrop and Picogreen values for the AC 

samples. The tumour cell area and cell content were determined by a pathologist 
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3.4 DNA Library preparation 

Libraries were prepared and no samples were discarded from sequencing 

based on their Nanodrop or Picogreen results.  

Between 200-ng and 1-μg genomic DNA were used to prepare the DNA 

libraries for sequencing. 

A total of 15 DNA samples failed the library prep (13 SCC and 2 AC) and 

were not sequenced, as they did not show enough library between 150-

350bp as measured on an Agilent bioanalyser. In the past experience of our 

group, it was a common finding for samples, which failed their library prep to 

have more than sufficient amount of DNA according to Nanodrop and 

Picogreen readings. We believe that the failure of such samples to generate 

libraries is due to DNA damage caused by the fixing procedure i.e. the DNA 

has either physical or chemical damage which stops the various reagents 

from binding/annealing/ligating. In effect the DNA in the sample is simply not 

available.  

CNV maps were generated for each sample. There was no significant 

change in preparation protocols between the two cohorts (AC and SCC) and 

no obvious reason for the disproportionally high failure rate to generate DNA 

libraries in the SCC group was established, such as longer time elapsed 

from the original surgery, higher necrosis area or lower tumour cell content. 

Three of the failed samples in the SCC cohort were deemed to have 

extensive areas of necrosis/haemorrhage by the pathologist. However, 

several samples in both cohorts with similar pathological findings went on to 

generate DNA libraries, which did not have any distinguishable features. 

Several of the failed samples were obtained prior to the year 2000, 

suggesting DNA degradation over time, but once again this was not a single 

distinguishing feature.     
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3.5 Discussion 

One of the most difficult obstacles encountered during this project was 

collecting the appropriate clinical information for the samples and compiling 

a credible database. Whilst the results of this study are encouraging, their 

validation in a larger, independent cohort will be necessary before a real 

impact on clinical practice can be made. Obtaining such a cohort, comprising  

a large number of early stage NSCLC, with adequate representation of the 

major histological subtypes (AC, SCC, LCC) and reliable survival data might 

prove to be beyond the capabilities of a single thoracic surgery unit. Ideally, 

any validation of the results of this thesis should be performed in a 

multicentre setting in an aim to minimize bias. This is largely necessitated  

by two major factors: 

Firstly - the nature of cancer recurrence. A retrospective review focusing on 

the subject requires a suitably long follow up period, during which a number 

of significant events relating to the patients’ health can occur. The follow up 

has to be regular and well documented in order to be able to establish an 

adequate disease timeline. The absence of a unified approach to 

surveillance of NSCLC and the concerns stemming from this have already 

been discussed in this manuscript. As a result, studies can lose a significant 

number of otherwise suitable candidates to a wide range of issues – from 

inability to establish the time frame of the actual recurrence to “blank” gaps 

in the follow up (patients failing to attend, permanently moving address etc.). 

Co-morbidities and/or other malignancies can have a significant impact on 

survival and make subjects unsuitable for such a specific study, making 

recruitment of large numbers difficult. An additional issue is obtaining the 

definitive diagnosis of a recurrence. Histological confirmation is not always 

possible. Frequently, obtaining a tissue sample can be difficult and the final 

result can be ambiguous. For example, in a patient undergoing fine needle 

aspiration biopsy of a suspected tumour recurrence, if the histological result 

reveals adenocarcinoma, due to the small sample size differentiation 

between breast, colonic and lung origin can be difficult. If the past medical 

history includes more than one of these malignancies, such data might be 

insufficient. Invasive procedures in patients with limited life expectancy can 

be difficult to justify, particularly if little clinical benefit can be achieved.  

Secondly – absence of a unified database. As the tumour samples, 

investigated in the study, were obtained more than 10 years ago (original 

operations were performed between 1999 and 2003) no universal record of 

all the relevant information exists. The final histology, cause of death, extent 
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of the operation, administration of adjuvant therapy, participation in trials 

were gathered from different sources. Radiology, pathology, oncology and 

surgery departments in the Leeds Teaching Hospitals at the time had 

completely separate databases. Since 2009 the Patient Pathway Manager 

(PPM) system has been installed as the default database in the Trust. It 

combines many key elements of other databases such as clinician letters, 

histology reports, radiology reports, surgery records, adjuvant therapy 

protocols, participation in clinical trials etc. A lot of information has been 

uploaded retrospectively, such as clinician letters from the late 90’s. PPM 

and similar databases aim to improve cancer care by acting as a 

comprehensive repository of the diverse information, that accumulates 

prospectively. Whilst the system had still not reached its full potential for the 

purpose of this study, it promises to significantly decrease the workload for 

future researchers and data collectors, whilst at the same time providing 

very accurate information on disease progression and survival.  

Perhaps there is a case to be made for a unified national cancer database, 

which will gather accurate information on extent of disease, staging and 

adjuvant therapy. Whilst for larger countries with more diverse healthcare 

systems such as the USA and China a task of this calibre can seem 

daunting, bearing in mind the significant advances in IT technology, such a 

project could be conceivable for the UK. This would allow researchers to 

increase the power of their work by providing access to larger study groups 

and significantly facilitating the identification of independent cohorts for result 

validation. 
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Chapter 4 

Results: Comparative copy number maps and GH index 

4.1 Models of global genomic patterns associated with 

recurrence 

DNA sequence was obtained from 38 SCC and 48 AC. The demographics 

and surgical procedures are shown in Table 3. The mean read number was 

1,030,660 per sample, ranging from 200,000 to 3,000,000. Using 300 reads 

per window for copy number analysis provided a resolution of approximately 

900Kb. The number of breakpoints per sample ranged from 4 to 205. 

Karyograms showing regions of gain and loss along the whole genome were 

generated for each sample. Karyograms exhibited several different types of 

copy number patterns, in terms of both the proportion of the genomes 

involved and the complexity of the damage. This ranged from whole 

chromosome gain and loss to very small but highly amplified regions (Figure 

4.1, Appendix B).  
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Figure 4.1. Karyograms showing copy number gain (red) and loss (blue) along the 

genome. 3q amplification is well demonstrated in samples TMA-20 and TMA-61. 

Samples are from the SCC cohort 

4.1.1 Comparative CN maps 

The frequency of CN gain and loss along the entire genome was compared 

between the non-recurrent and recurrent cancers using comparative CNV 

maps generated by CNAnorm. 

4.1.1.1 Squamous cell cancer (figure 4.2)  

The KC-SMARTR algorithm showed that no regions were significantly 

different for any comparison made. Most aCGH and NG seq analyses are 

performed on samples derived from tissue that contains sub-populations of 

different cells. This implies that an aCGH measurement will measure the 

average of CNV of different sub-populations within the sample. KC-SMARTR 

makes use of the continuous signal to preserve all the information contained 

in the data. It not only demonstrates aberrant areas along the genome, but it 

can identify abnormalities that are specific to subgroups within an 

investigated cohort (de Ronde et al, 2010). This made it particularly suitable 

to the purpose of this study. 
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Figure 4.2. Comparative CN maps of the non-recurrent and recurrent cohort in the 

SCC group 

 

 

4.1.1.2 Adenocarcinoma cohort (figure 4.3)  

The comparative CN maps of the two cohorts were once again very similar. 

The only difference between the two sets was on the short arm of 

chromosome 6, where 1/3 of the non-recurrent had a gain but none of the 

recurrent had CN gain. Taken by itself this would have a significant p value 

of 0.02, but considering that the analysis comprised around 6000 data points 

along the genome, finding 120 points that are significantly altered (120/6000 

= 0.02) could easily be attributed to random chance. When put through the 

KC-SMARTR program algorithm, no regions showed statistically significant 

difference in CNV between the recurrent and non-recurrent cohort.  
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Figure 4.3. Comparative CN maps of the non-recurrent and recurrent cohort in the 

AC group. 

4.1.2 CN patterns along the entire genome 

In view of our inability to identify copy number changes at individual genomic 

loci associated with recurrence, I decided to apply the approach of Hicks et 

al and look for global patterns of copy number variation that might be 

associated with recurrence. This approach classified breast cancer genomes 

by patterns of damage named ‘simplex’ (few aberrations, mostly involving 

whole chromosome arms), ‘sawtooth’ (many aberrations spread throughout 

the genome) and ‘firestorm’ (local regions of intense, complex damage), and 

generated an algorithm for calculating an index of genomic damage, named 

F-stat, which was associated with survival in breast cancer. The cancers 

from our series did not easily fit into the Hicks method of classification, 

mostly being in a continuous spectrum of genomic damage somewhere 

between the simplex and sawtooth (Figure 4.4). However, there was no 

correlation between the CNV patterns and cancer recurrence in the 

investigated cohorts. 
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Figure 4.4. Hicks method of classification of genomic signature. Showing “flat” 

variant (TMA 63), “sawtooth” (TMA 127) and “firestorm” (TMA  25) 

4.1.3 Pangenomic index (GH) 

The GH index was developed as part of a parallel project questioning 

whether there is a correlation between CNV in SCC and survival (Belvedere 

et al, 2012). It was devised as an attempt to avoid the constraints of a 

difficult question – what exactly is the normal state for a cancer genome. The 

group considered that the traditional approach of regarding the median copy 

number ratio as ‘normal’ was not necessarily the most appropriate, as it 

assumes that each cancer has precisely the same amount of gain and loss. 

Density plots were drawn for the copy number distributions of each sample, 

with the relative heights of each peak representing the proportion of the 

genome at that copy number state (Figure 2.5 in Materials and Methods). 

The three mathematical measures, which had previously been used by our 

group to develop a prediction model for survival in SCC (Belvedere et al, 

2011) were calculated for each sample (Table 4.1 and 4.2). An example of 
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the derivation of the GH index for an individual SCC case is shown in Figure 

2.5 (Chapter 2 - Materials and Methods). 

Study number Recurrence 
status 

G stat H stat GH index 

LS4 R 0.71083071 0.50589573 0.35122449 

LS6 N 0.24766098 0.97019642 0.00738118 

LS20 R 0.24482925 0.73961243 0.06375049 

LS25 R 0.51706308 0.98169198 0.0094664 

LS34 R 0.57573943 0.61162551 0.22360251 

LS37 R 0.50363714 0.69039788 0.15592713 

LS39 R 0.57428571 0.50918262 0.28186941 

LS40 R 0.63365222 0.6545467 0.21889725 

LS41 N 0.30330189 0.35040911 0.19702214 

LS60 N 0.35525071 0.67711092 0.11470658 

LS61 R 0.31716418 0.31296719 0.2179022 

LS63 R 0.29966076 0.5241449 0.1425951 

LS64 N 0.70962099 0.98190515 0.01284049 

LS74 N 0.57587391 0.84036645 0.0919288 

LS80 R 0.51923077 0.95680084 0.02243033 

LS84 R 0.62354189 0.68308377 0.19761055 

LS86 N 0.6151743 0.4393707 0.34488474 

LS88 R 0.5511811 0.05484348 0.52095241 

LS91 N 0.24220167 0.97334977 0.00645473 

LS93 R 0.6113114 0.80101635 0.12164097 

LS95 N 0.60273973 0.58597544 0.24954905 

LS96 N 0.54691689 0.96669411 0.01821555 

LS97 N 0.65127701 0.9477977 0.03399816 

LS98 R 0.38738128 0.52180489 0.18524383 

LS113 N 0.47318148 0.08195194 0.43440334 

LS121 N 0.22264265 0.79951929 0.04463556 

LS122 N 0.51978573 0.85532959 0.07519762 

LS127 R 0.20044114 0.93743444 0.01254071 

LS129 N 0.24874698 0.89128248 0.02704316 

LS130 N 0.20997709 0.83535179 0.03457235 

LS143 N 0.47017319 0.96463618 0.01662712 

LS146 N 0.22379644 0.7606187 0.05357268 

LS147 N 0.50419776 0.8882907 0.05632358 

LS160 N 0.32041999 0.96195226 0.01219126 

LS162 R 0.61835245 0.99836312 0.00101217 

LS171 R 0.38965517 0.39308955 0.2364858 

LS172 N 0.41659312 0.19960276 0.33343998 

Table 4.1. G-stat, H-stat and GH index values for SCC cohort 
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Study number Recurrence 
status 

G-stat H-stat GH index 

LA 1 N 0.2691 0.6153 0.1035 

LA 3 N 0.523346 0.13497 0.45271 

LA 4 N 0.389552 0.187567 0.316485 

LA 5 N 0.481481 0.580918 0.20178 

LA 11 N 0.159197 0.975981 0.003824 

LA 14 N 0.585366 0.227811 0.452013 

LA 28 N 0.226863 0.406685 0.134602 

LA 33 N 0.348148 0.023127 0.340097 

LA 34 R 0.318445 0.956051 0.013995 

LA 37 R 0.510345 0.103673 0.457436 

LA 56 N 0.462598 0.84724 0.070666 

LA 57 N 0.482645 0.664825 0.16177 

LA 59 R 0.430776 0.739001 0.112432 

LA 61 N 0.537375 0.086478 0.490904 

LA 65 N 0.361337 0.133182 0.313213 

LA 68 R 0.526112 0.158084 0.442942 

LA 73 N 0.546914 0.791156 0.11422 

LA 74 N 0.328652 0.1007 0.295556 

LA 78 R 0.342501 0.891011 0.037329 

LA 80 N 0.20403 0.896907 0.021034 

LA 83 N 0.597855 0.845031 0.092649 

LA 84 R 0.230961 0.972744 0.006295 

LA 87 R 0.2584 0.1229 0.2266 

LA 95 R 0.386915 0.111646 0.343717 

LA 99 R 0.581197 0.958276 0.02425 

LA 104 R 0.270566 0.960498 0.010688 

LA 115 N 0.2366 0.7586 0.05712 

LA 121 R 0.430343 0.264972 0.316314 

LA 122 R 0.496228 0.98713 0.006386 

LA 127 N 0.342367 0.781828 0.074695 

LA 135 R 0.5489 0.9996 0.000238 

LA 137 N 0.4992 0.9264 0.03673 

LA 146 R 0.551819 0.826366 0.095815 

LA 149 R 0.429405 0.264923 0.315646 

LA 152 R 0.3811 0.3146 0.2612 

LA 153 N 0.55814 0.884736 0.064334 

LA 158 N 0.246243 0.227499 0.190223 

LA 160 R 0.541126 0.101062 0.486438 

LA 169 N 0.338575 0.130718 0.294317 

LA 170 R 0.529412 0.106123 0.473229 

LA 172 R 0.590847 0.785761 0.126583 

Table 4.2. G-stat, H-stat and GH index values for AC cohort 
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In the SCC cohort, based on the computational index [G x (1-H)] the 

scattering of the two groups demonstrated an association between genomic 

signature and cancer recurrence (p=0.07 Chi-squared test) (4.5). Thirteen 

cases from the recurrent arm (18 cases) lie below the curved line, which 

represents the median GH value for all samples and 5 lie above it. In the 

non-recurrent arm 14 samples are scattered above the curved line and 6 

below it. A high computational index, determined by a greater value of the H-

stat seems to suggest that a cancer is less likely to recur. A higher absolute 

value of the G-stat in cases with similar values of the GH index hints at an 

increased recurrence risk. These results further suggest that patients who 

undergo radical surgery for stage I SCC could potentially be sub-stratified 

further, based on the CN variation along the entire genome, rather than in a 

single locus. Due to the fact that recurrence of the cancer in this particular 

patient group can differ significantly from the overall survival (several of the 

cases survived for more than two years after the original relapse) a survival 

analysis with Kaplan-Meier curves was deemed of little benefit to this 

particular study and was not performed. 

In the AC cohort any obvious tendency towards clustering of the samples  

was not observed. The scattering, according to the values of the GH index 

seems random and not following any obvious pattern. Samples from both 

arms (recurrent vs. non-recurrent) were scattered virtually evenly above and 

below the curved line with a Chi-squared test for association between 

genomic signature and cancer recurrence 0.91.   These findings support the 

concept that in lung cancer AC and SCC are in fact two very different 

biological entities, each with their own sets of genomic changes. The 

difference between the scatter graphs of the two histological subtypes 

highlights the difference of their genomic signatures and suggests that 

clinical differentiation in the management of these cancers could be 

important. 
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 Figure 4.5. Scattering of recurrent (blue) and non-recurrent (red) cancers based on 

novel pangenomic computational index in the SCC cohort. The vertical line 

represents the median value for the G-stat and the horizontal for the H-stat. The 

curve represents the median value for the GH index. The non-recurrent tumours 

display a tendency to group above the curve, while the recurrent tend to group 

below the curve.   
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Figure 4.6. Scattering of recurrent (red) and non-recurrent (black) cancers base on 

novel pangenomic computational index in the AC cohort. There seems to be no 

obvious clustering according to recurrence based on the GH index. 

4.2 Discussion 

Over the past few years we have witnessed significant advances in the 

understanding of cancer genetics and genome biology. This has coincided 

with a revolution in sequencing technologies, which have become widely 

implemented in research settings.  

The introduction of NG-seq has helped overcome the inherent deficiencies 

of Sanger-based sequencing platforms such as low throughput, speed and 

resolution, while at the same time improving cost-effectiveness. Whilst in 

principle the concept of the two platforms is very similar (the bases of small 

fragments of DNA are sequentially identified from emitted signals and each 

fragment is re-synthesized), NG-seq extends this process into millions of 
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massively parallel reactions, rather than being limited to a small number of 

DNA fragments. From a clinical perspective there is great potential for NGS 

in the management and treatment of human health and particularly cancer 

(Meldrum et al, 2011). Perhaps in the not too distant future all patients 

undergoing cancer treatment with have tumour genomes sequenced in order 

to individualize therapy and surveillance. 

CNV, a form of structural variation, are alterations of the DNA of a genome 

that results in the cell having an abnormal or, for certain genes, a normal 

variation in the number of copies of one or more sections of the DNA.  

CNVs can be caused by structural rearrangements of the genome such as 

deletions, duplications, inversions, and translocations. While a lot of CNV 

occur naturally in the genome as part of the genetic heritage and are 

naturally stable, they can also arise de novo at various stages of the 

development. Since CNV can correspond with gene expression changes, 

they may have important roles both in cancer development and drug 

response. NG-seq has further enabled the identification of CNV in a large 

scale, cost effective fashion. Several recent studies have shown that 

genome abnormalities in CN are likely to exert an influence in determining 

patient prognosis in NSCLC (Broet et al, 2009, Staaf et al, 2012). Broet et al 

described an integrative genomic prediction model for survival in stage IB 

NSCLC strategy by combining information about recurrent CNV with genes 

exhibiting copy number–dependent expression. These reports and previous 

prediction models for recurrence based on gene expression (D’Amico et al, 

1999, Chen et al, 2007) strongly suggest that patients with stage I NSCLC 

can be further sub-stratified in prognostic and/or therapeutic groups based 

on the likelihood of recurrence. Based on these results, this study attempted 

to produce a model capable of differentiating between the genomic 

signatures of recurrent and non-recurrent stage I NSCLC, focusing on the 

two most common histological subtypes, AC and SCC.    

Initially, high-resolution karyograms showing the CNV along the entire 

genome of each tumour sample were generated. By drawing on previous 

experience with gene expressions models, we speculated that by creating a 

“cumulative” karyogram for the recurrent and non-recurrent cohorts, 

individual regional differences along the genome would be exposed, thus 

allowing a correlation with recurrence. However, no single such region of 

genomic change was identified in either the AC or the SCC cohort. The 

reason for this initial failure probably lies in the complex nature of cancer 

recurrence and this could well explain why previously suggested prediction 

models have failed to make an impact on clinical practice. Based on the ever 

increasing insight into cancer genomics, it is reasonable to assume that 
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recurrence is defined by numerous genetic events, which occur along the 

entire genome (activation of proto-oncogenes and/or inactivation of tumour-

suppressor genes) in different combinations. A single event (gain or loss) is 

not enough to trigger recurrence and perhaps every cancer recurs in a 

unique way, activating a number of possible pathological pathways in no 

predefined order. These genomic changes could occur at different levels, 

from mutations in single or multiple nucleotides to gains or losses of entire 

chromosomes. With this in mind, adopting a pan-genome approach seemed 

like a sensible next step. Applying a technique, recently described by Hicks 

et al, whole genome analysis, which associated specific appearance of the 

karyograms with survival in breast cancer, also failed to produce a 

differentiation between the recurrent and non-recurrent cancers.  As a next 

step, an algorithm that relates to total genomic damage and specifically the 

relative ratios of CN states across the genome, previously presented by our 

group (Belvedere et al, 2011) was applied. This algorithm generated two 

variables,  G stat, which is a measure of genomic loss and H stat, which is a 

measure of relative homogeneity and complexity of genomic damage. 

Combining these variables, a novel index was derived (GH), which was 

demonstrated to be an independent prognostic indicator for survival in early 

stage SCC. One of the problems that CNV analysis in cancers presents is 

how to establish a “normal” baseline, according to which the genomic 

changes (both gain and loss) will be evaluated. As seen on the karyograms 

produced for the samples in this study, there is a significant number of copy 

number abnormalities occurring in multiple places along the entire genome. 

Deviations from the “baseline”, which is traditionally established by 

calculating the median copy number for the genome, occur so frequently 

they put into doubt its significance as a reference point. This issue is made 

more complicated by the fact that taking a median value as a standard for 

CNV can only be truly justified if genomic gain and loss occur in equal 

measure. Bearing in mind the complex nature of cancer biology this is 

unlikely. 

The GH index was developed as an attempt to resolve these problems. Its 

aim was to break away from the concept of a baseline derived from a 

median value and take into consideration the fact that there could be little 

balance between gain and loss in a cancer genome. In fact, one of them 

could prevail and that could be related to its malignancy, e.g. more gain 

could be associated with greater amplification of proto-oncogenes.  Applying 

this algorithm to the sequencing data did not yield convincing results. 

Although the scatter graph for the SCC cohort hinted at a possible 

differentiation between recurrent and non-recurrent tumours, the results in 

the ACC cohort showed a virtually random distribution.  
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Perhaps, the failure of the Hicks and GH algorithms to clearly differentiate 

between recurrent and non-recurrent tumours suggests that a difference 

must be made between cancer recurrence and survival. This study targeted 

specifically early stage NSCLC due to its potential as a specific therapeutic 

group, while the GH index showed predictive value when applied on tumour 

samples with different TNM stages.  
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Chapter 5 

Logistic regression model 

For the purpose of this study there were only two possible clinical outcomes 

of interest for each sample. The cancer either recurred within the first five 

years after radical surgery or there was no recurrence. However, due to the 

significant number of CNV in the genomes of the investigated samples, an 

assumption was made that the changes in each genomic window (either 

gain or loss) could be considered as independent variables, which may 

determine one of the outcomes. To test this hypothesis, a logistic regression 

model was fitted on the sequencing data from the SCC and AC cohorts. The 

events in each genomic window (copy number gain and/or loss) for each 

tumour sample were considered an independent variable in the analysis. 

Essentially each genomic window was given a “score”, which was 

determined by how closely the CNV occurring in that window was associated 

with the investigated clinical outcome – recurrence vs. non-recurrence. For 

example, if copy number gain (amplification), which was observed in a 

particular window and was present only in recurrent cancer cases, that 

window would register a very high score for predicting recurrence. If the 

events of this window were only seen in half of the cases with recurrence, 

then its score would be high to moderate, while if they also occurred in a 

number of the non-recurrent cases, then its score would be low.  Two 

covariates in the data (Age and Gender) were also taken into account. 

Logistic regression was used to examine whether a correlation between 

cancer recurrence and the observed characteristics (variables) existed in the 

dataset. Several analyses were performed in order to test the model with 

other independent variables (Age and Gender) and minimize bias. The 

analyses that were carried out were as follows: 

1. Regressing the Recurrence status (Recurrent vs. Non-Recurrent) as 

a function of the covariates Age and Gender only. 

2. Regressing the Recurrence status as a function of the copy number 

alteration profiles of the patients, excluding the fixed covariates (Age 

and Sex) 

3. Regressing the Recurrence status as a function of the fixed 

covariates and the copy number profiles. 
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Each of those analyses were carried out separately for both the SCC and 

AC data. 

The CNV profiles were estimated using two different segmentation methods: 

smooth segmentation and discrete segmentation (DNAcopy). Segmentation 

was used to analyse CNV data by breaking up the windows into separate 

“segments” that differ from their neighbours based on the distribution of 

CNV. The sequencing data was analysed using each of the segmentation 

methods. 

5.1 Regressing the Recurrence status (Recurrent vs. Non-

Recurrent) as a function of the covariates Age and Gender 

only. 

Cancer recurrence was analysed with the logistic regression model with 

recurrence status considered as a function of the variables Age and Gender 

(with no interaction between the two) (figure 5.1). There was no correlation 

between the two variables and the recurrence status. In Figure 5.1 each 

investigated cancer sample is represented by a single dot. The recurrent 

samples are given a value of 1 and the non-recurrent are given a value of 

zero. The vertical dotted line down the centre represents the probability of 

recurrence. Therefore, an optimal “fit” for the model would be a grouping of 

all dots with a value of 1 as far right of the dotted line as possible and all the 

dots with a value of 0 as far left as possible. The model showed no evidence 

of correlation between age and gender and cancer recurrence. There was 

no distinct pattern of grouping for the recurrent and non-recurrent cancers in 

each of the two investigated cohorts (SCC and AC). These findings point to 

the conclusion that age and gender as variables are unsuitable predictors of 

recurrence in NSCLC. 
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Figure 5.1. Classification of the patients’ recurrence status when the variables Age 

and Gender are used as predictors. The horizontal axis demonstrates the estimated 

recurrence status, while the vertical – the actual observed recurrence status 

(1=recurrent, 0=non recurrent). The vertical dotted line represents a 50% probability 

of recurrence.   

5.2 Regressing the Recurrence status as a function of the 

copy number variation profiles of the patients, excluding the 

fixed covariates (Age and Gender) 

5.2.1 CNV profiles based on Smooth Segmentation 

In this analysis, the recurrence status was analysed using CNV profiles only. 

Using the smooth segmentation, the fitted recurrence status is given in the 

following figure. 

 

Figure 5.2. Classification for SCC and AC based on the CNV profiles only, using the 

smooth segmentation data 
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Figure 5.2 shows clearly that by fitting the logistic regression model to this 

data, recurrent and non-recurrent cancers can be separated in both cohorts. 

The recurrent cancers grouped to the right of the probability line, while the 

non-recurrent to the left. This was particularly obvious in the SCC cohort. 

The left graph shows a very distinct separation of the recurrent and non-

recurrent cancers based on their CNV profiles. The distinction is perhaps 

less striking in the AC cohort, with only one recurrence status obviously 

misclassified. A single recurrent cancer is deemed non-recurrent according 

to the logistic regression model (it is sitting to the left of the probability line).  

. 

5.2.2 CNA Profiles based on discrete segmentation (DNACopy) 

When the logistic regression model was fitted on the CNV data normalized 

by discrete segmentation, the following picture was obtained (Figure 5.3). 

 

Figure 5.3. Classification for SCC and AC recurrence status, based on the CNV 

profiles only, obtained using the discrete segmentation. (DNACopy) 

The model fit is even more striking when discrete segmentation is used to 

visualize the CNV in the sequencing data. Both cohorts show no cases of 

misclassification – all recurrent cancers sit on the right of the probability line, 

whilst all non-recurrent are grouped to the left.    
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5.4 Regressing the Recurrence status as a function of the 

fixed covariates and the copy number profiles 

In this analysis, both the covariates and the sequencing CNV data were 

used in the logistic regression analysis. The classification figures for 

sequence data using the smooth segmentation in both cohorts (SCC and 

AC) is given in Figure 5.4, while discrete segmentation/DNAcopy was used 

im Figure 5.5. Both show no sample misclassification.  

 

Figure 5.4. Classification for SCC and AC recurrence status based on the variables 

(Age and Gender) and CNV profiles, using the sequencing data obtained after 

smooth segmentation.

 

Figure 5.5. Classification for SCC and AC recurrence status based on the variables 

(Age and Gender) and CNV profiles, using sequencing data after discrete 

segmentation (DNACopy). 
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The above analyses show an excellent fit of a logistic regression model, 

when the CNV data from NG-seq is used. With the clinical data on 

recurrence already available for the analysed tumour samples, the fitted 

model was able to differentiate between the investigated clinical 

characteristic (recurrence) in the two cohorts and classify them correctly, 

based on their CNV profiles. Only one sample from the AC cohort was 

misclassified as a non-recurrent, when smooth rather than discrete 

segmentation was used in the analysis of the sequencing data. At the same 

time, when age and gender were used as independent variables in the 

model, the results were significantly more random, with no obvious pattern 

observed. These results strongly suggest that the genomic profiles based on 

CNV in recurrent and non-recurrent stage I NCSLCs are significantly 

different. This was observed in both of the histological subgroups.  

In order to test the model, it was applied to a larger group of cancers 

(approximately 80 cases of AC and SCC) and used to predict their 

histological subtype. The fitted model once again showed excellent 

distribution with no samples misclassified (Figure 5.6).  

  

Figure 5.6. Classification for SCC and AC histological subtype based on CNV 

profiles, using sequencing data after discrete segmentation. The binary response is 

0 for AC and 1 for SCC. There is no misclassification.  

A further test of the model was performed by randomly assigning a 

consecutive number (1-38 for the SCC and 1-48 for the AC cohort) to each 

sample in the study. The logistic regression model was fitted in an attempt to 

differentiate samples with odd from samples with even numbers based on 

their CN profiles. In this case the model failed to differentiate odd from even 

numbered samples in both cohorts. 
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5.5 Discussion 

The main objective of this study was to develop a prediction model for 

recurrence of early stage NSCLC by analysing multiple samples and 

stratifying them based on their CNV signatures. The initial attempt to look for 

single regions of the genome where the recurrent and non-recurrent cohorts 

showed markedly different CNV did not yield convincing results. This led to a 

change of mind-set and the focus shifted from looking for specific regions to 

developing a model that can separate recurrent from non-recurrent cancers 

by incorporating the CNV patterns that occur along the entire genome (their 

genomic signatures). By separating the genome into numerous windows 

(just over 17 000 for each sample in this study), and considering the CNV for 

each window as an independent variable, we aimed to take into account the 

genetic events that occur globally along the genome and their significance 

when trying to differentiate the stage I cancers into clinically significant 

subtypes. This approach reflects the complex nature of cancer recurrence, 

which was perhaps simplified in our initial approach of looking for a single or 

small number of significantly different regions. The underlying biology of lung 

cancer recurrence is unclear. It is very likely that the alteration of several 

genes and multiple drivers are required for cancer progression. The 

mechanisms involved in cancer recurrence most likely require a combination 

of inactivation (genomic loss) of tumour suppressor genes and amplification 

(genomic gain) of proto-onco genes. Recurrence, either local or distant, 

could be determined and/or facilitated by more than one pathway. 

Depending on the changes in the cancer genome, these pathways could 

occur simultaneously. The genomic changes (amplifications and deletions) 

can lead to activation of aberrant pathways of different cellular functions 

such as neo-angiogenesis, invasion and metastasis. They can occur in 

different loci along the entire genome, which is probably the reason why the 

logistic regression model demonstrated such a good fit when differentiating 

recurrent from non-recurrent cancers.     

The logistic regression model, which utilizes the changes occurring in each 

genomic window as an independent variable is a novel approach to CNV 

analysis, which might address issues with normalization and reproducibility 

of such data. One of the most challenging aspects of Ng-seq is the huge 

amount of raw information generated. Normalisation of this data has proven 

a significant challenge, with most study groups developing their own 

technique and thus making results hard to reproduce by other groups. To 

deal with this problem, we performed a normalisation using the CNAnorm 



- 84 - 

package (Gusnanto et al, 2012). CNAnorm is a Bioconductor (open source 

software for bioinformatics) package, used to estimate CNV in cancer 

samples. CNAnorm performs ratio, GC content correction and normalization 

of data obtained using very low coverage (one read every 100 - 10,000 bp) 

high throughput sequencing. CNAnorm is readily available for download as 

freeware. Having a single software package, which can perform multiple 

steps of data preparation makes future validation of these results in an 

independent cohort seem encouragingly straightforward. 

This logistic regression model could help researchers cope with several 

established challenges. It aims to make a “prediction” (is the cancer likely to 

recur) with low classification error, whilst having minimum dependency on 

the different preparation steps, required in CNV analysis (e.g. optimal 

window estimation, normalisation due to sample contamination, mapping to 

a reference genome). By incorporating each genomic window as 

independent variables other cancer characteristics and their relationship to 

CNV could be investigated, such as the likelihood of metastasis or even 

response to adjuvant therapy.  

In this study, we have investigated the use of logistic regression to model the 

likelihood of recurrence of early stage lung cancer in patients, who 

underwent radical surgery. The model enables the inclusion of clinical 

characteristics (such as age and gender) as fixed covariates and CNV 

profiles as random predictors in a single modelling framework. The model 

exhibits a good fit and, whilst in a cross-validation, shows minimal 

classification error it is not without its shortcomings. It remains a model fit, 

which is able to separate the investigated samples in two cohorts, but with 

limited usefulness in making an accurate predication of whether an 

independent sample is likely to recur or not. Essentially it demonstrates that 

recurrent cancers differ significantly from non-recurrent cancers by their 

copy number signatures. This difference is determined by multiple events of 

gain and/or loss, which occur along the entire genome. The model 

essentially determines the “score” of each window by judging how often the 

CNV are associated with the investigated feature (recurrence vs. non-

recurrence) (figure 5.7) and uses cross validation to determine the 

classification of each sample. 

http://www.bioconductor.org/
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Figure 5.7. Scoring system. The red dots represent the CNV (gain or loss) in non-

recurrent samples and the blue in recurrent. The more distinct the grouping is – the 

higher the “score” for the respective genomic window.  

However, its actual predictive power in its current form is limited. It was 

unable to convincingly predict the recurrence likelihood of any samples, 

which were not used in the development of the original model. For example, 

when a random sample was excluded from the cross-validation and creation 

of the model and then the model was used to predict the likelihood of its 

recurrence the success rate was approximately 60%. This was in stark 

contrast with the “model fit”, which showed no case misclassification based 

on the recurrence status. In order to test the model, it was applied to a larger 

group of cancers (approximately 80 cases of AC and SCC) and used to 

predict their histological subtype. The fitted model once again showed 

excellent distribution with no samples misclassified, whilst the actual 

accuracy of prediction whether an “independent” sample is AC or SCC 

based on their CNV profile was just over 90%.  The reason for this difference 

in performance of the logistic regression model is unclear, but could very 

likely be related to relatively low number of cases used when focusing on 

recurrence. Perhaps, with larger cohorts, derived from different 

subpopulations, its predictive power will increase. In order to discover the 

true potential of the logistic regression model and whether it can truly be 

integrated successfully into clinical practice, its validation in a larger, 

independent cohort will be necessary. While it is clearly able to differentiate 

the genomic signatures of recurrent from non-recurrent stage I NSCLC, this 

will allow a more precise evaluation of its actual predictive power. 
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Chapter 6 

Conclusion 

6.1 Relevance of study 

NSCLC, which comprises 85% of all lung cancer cases, is the leading cause 

of cancer mortality worldwide. In the last decade only minor improvements in 

the clinical outcome have been achieved. This does not adequately reflect 

the significant research, which has gone into deciphering the genetic 

abnormalities that drive the process of carcinogenesis. Whilst numerous 

discoveries of structural abnormalities and functional alterations have been 

made, using a variety of different methodologies, these have not translated 

well into everyday clinical medicine. The reasons for this are complex. 

Histopathological heterogeneity of NSCLC, complicated and expensive 

methodology and uncertainty in how to identify statistically significant 

recurrent genetic alterations, when samples vary substantially in their 

characteristics are just some of the key issues, that have proved difficult to 

surmount.  

Despite this histopathological heterogeneity, all subgroups of NSCLC were 

treated, until recently, in a similar fashion. The prospect that poor five-year 

survival and poor response rates to treatment are in part due to a 

homogenous response to a heterogeneous disease (Borczuk et al, 2010) 

should be strongly considered. Traditionally, NSCLC subtypes (AC, SCC) 

have been treated as the same biological entity and the treatment strategies 

have been guided predominantly by their stage based on the TNM system. 

However, there is growing evidence that histological subtypes in NSCLC 

respond differently to targeted therapies. Two of the most prominent 

examples are the superior efficacy of the folate antimetabolite Pemetrexed in 

patients with non-SCC (presumably due to the higher expression of 

thymidylate synthase in SCC) (Scagliotti et al, 2009) and a higher response 

rate upon treatment of AC with the EGFR tyrosine kinase inhibitors Gefitinib 

and Erlotinib, reflecting the higher prevalence of EGFR mutations in this 

subtype (Mok et al, 2009, Langer et al, 2010). Furthermore, histological 

subtyping might play an important role in explaining why previous studies, 

aiming to identify genetic models predicting recurrence in stage I NSCLC 

have failed to deliver a clinical impact. In 2009 Broet et al used high-

resolution microarrays to generate tandem DNA copy number and gene 
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expression profiles for 85 stage IB lung adenocarcinomas/large cell 

carcinomas. The group identified specific CNV linked to relapse-free survival 

and selected genes within these regions exhibiting copy number– driven 

expression to construct a novel integrated signature (IS) capable of 

predicting clinical outcome. They noted that failure to incorporate histological 

subtype might reduce model robustness and predictive accuracy. Using two 

previously published pure gene expression–based models, the 5- and 16-

gene signatures from Chen et al, in 2007 and a 50-gene prognostic 

signature from Beer et al, in 2002, they were not able to significantly 

discriminate between low-risk and high-risk patients in their own cohort 

(Beer et al, 2002, Chen et al, 2007).   

For patients with early-stage disease, the 5-year survival rates after surgery 

are as low as 40% to 55% (Mountain CF, 1997, Adebonojo SA, 1999). This 

makes the issue of accurately identifying subgroups, which might benefit 

from adjuvant chemotherapy very important (Wakeleea H, 2007). The role of 

adjuvant chemotherapy for stage IB tumours, however, remains 

controversial. Preliminary results of the CALGB 9633 trial suggest a potential 

survival benefit for adjuvant chemotherapy in stage IB disease, but updated 

results from the same trial show no benefit in overall survival. However, 

recent clinical trials have shown that adjuvant therapy following resection of 

lung tumours can lead to improved survival in early-stage NSCLC. In 2004, 

Kato et al, showed that adjuvant chemotherapy with uracil-tegafur improved 

survival among patients with completely resected pathologic stage I lung 

ACC (T1N0M0 or T2N0M0) whilst in 2005 Winton et al found that early-

stage patients who received a combination of Vinorelbine and cisplatin after 

surgery had an improved overall survival in those patients who did not 

receive the adjuvant therapy (94 months compared with 73 months) (Winton 

et al, 2005). This suggests that patients with stage I NSCLC represent an 

excellent opportunity for applying genomic strategies, which will stratify 

patients into cohorts with low and high risks of recurrence. Currently, there is 

no established pathway to identify those patients with surgically treated early 

stage NSCLC that have high risk of cancer recurrence. The ability to identify 

such high risk cases, particularly in the early post-operative period will allow 

stratification for additional surveillance or adjuvant therapy. This could lead 

to an improved survival in these patients. I strongly feel that this work deals 

with a very specific subgroup of patients with NSCLC, in which cancer 

recurrence and overall survival can differ significantly and a clear distinction 

between the two needs to be made. Several of the cases in this study, from 

both histological cohorts, survived for more than two years after the original 
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tumour relapse. In fact, one patient was treated for two separate disease 

recurrences, which occurred more than 24 months from each other. This 

data made a survival analysis unsuitable to the aims of this particular study 

and was not performed. 

 In an editorial for the Annals of Thoracic surgery titled “Molecular biological 

staging of lung cancer” (published in 2008) Thomas D’Amico suggested that 

the current staging system (TNM) may have outgrown its usefulness as far 

as predicting outcomes is concerned, and outlined the necessary 

characteristics for an optimal cancer staging system (D’Amico, 2008). It must 

achieve accurate assessment of extent of disease, effective prognostic 

stratification, and appropriate selection of therapy (D’Amico, 2008). The 

current TNM system does not differentiate between the subtypes of NSCLC. 

Patients with identical TNM and histological features show significant 

differences in the further development of their disease, despite receiving 

identical treatments. Molecular methods may have a significant role in 

helping to sub-stratify patients with NSCLC in prognostic groups who might 

benefit from additional treatment or more aggressive follow up.  

To select a subgroup of patients with stage I disease that might benefit from 

adjuvant therapy, investigators have attempted to identify factors that predict 

poor prognosis. Recent interest has focused on the identification of biologic 

markers that predict early recurrence and death in patients with NSCLC. 

This has been necessitated by the desire for an individualized therapeutic 

approach, which in light of recent technological advances and improved 

understanding of tumour genomes seems somewhat generic. Tumour 

markers may serve to support the current TNM system in improving risk 

stratification. D’Amico refers to this as biologic cancer staging and suggests 

its targets - oncogenes, oncogenic protein products, growth factors and/or 

receptors (D’Amico, 2008).  

This study aimed to take these issues into consideration, while targeting an 

area of lung cancer genomics with potentially very practical applications. 

Three key aspects were considered in the design of this study: 

 

1. Identifying a biomarker that would have translatable therapeutic 

implications. The focus fell on recurrence in cases of stage I NSCLC, 

that had undergone radical surgical therapy. The high recurrence 

rates (Hoffman et al, 2000) and poor 5-year survival post-surgery (40-

50%) (Mountain et al, 1997, Adebonojo et al, 1999), combined with 
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the absence of guidelines for adjuvant chemotherapy or specific 

surveillance were the key features that defined the suitability of the 

cohort.    

2. Utilizing a methodology, which could be reproduced reliably on a 

large scale and thus integrated into routine clinical practice. 

3. Making a clear differentiation between the subtypes of NSCLC (AC 

and SCC) and treating them as separate biological entities.     

6.2 Impact on surveillance and therapy 

In the last few years, numerous studies have delved into the lung cancer 

genome in an attempt to decipher the pathological processes that dictate 

carcinogenesis. While many significant discoveries have been made, the 

actual impact of molecular approaches to NSCLC in everyday clinical 

practice has not been proportional. Numerous obstacles have to be 

overcome before molecular discoveries are successfully translated into 

clinical benefit, such as complex data analysis and its integration (Ocak et al, 

2009), protocols for preserving and handling of fresh tissues and complex 

validation of results with large multicentre randomized control trials 

(D’Amico, 2008). 

This study attempted to take these difficulties into account and consider 

possible clinical applications, including the management and surveillance of 

stage I NSCLC.  

 6.2.1 Adjuvant chemotherapy in stage I NSCLC 

Current treatment protocols do not routinely offer adjuvant chemotherapy to 

patients with radically resected stage I NSCLC (Pisters al, 2007), despite the 

high recurrence rate (compared to other leading cancers) and the benefit 

suggested by some studies. This largely reflects the difficulty in identifying 

which patients might benefit from additional therapy when weighed against 

its side effects and complications. By using molecular biomarkers of 

recurrence this issue may be overcome. Logistic regression modelling for 

predicting recurrence in stage I NSCLC following radical surgery based on 

CNV could have greatest impact in the postoperative management. It can be 

applied to sequencing data of tumour samples obtained after the surgical 

resection of any stage I NSCLC. There would be no major time constraints 

and the treatment process would not be hindered or slowed down, as this 

would be done during the standard convalescence period after lung cancer 
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surgery. In Leeds Teaching Hospitals, patients are routinely reviewed 

approximately 8 weeks following the operation. Usually, at that point they 

have recovered sufficiently to be considered for additional therapy. If at this 

stage prediction data is available to the MDT and it suggests a high 

probability of recurrence, then the patient can be offered adjuvant 

chemotherapy and proceed with the treatment. With the emergence of 

massive parallel sequencing platforms, which allow simultaneous processing 

of multiple samples, DNA from all stage I NSCLC operated in a unit over a 

period of time (e.g. 2 weeks) could be sequenced together, thus streamlining 

the process further and justifying a regular departmental “slot” for using a 

sequencer.  

 6.2.2 Surveillance of stage I NSCLC following radical 

resection  

The issue of surveillance of patients with NSCLC following radical resection 

is one of the most controversial in the field. No universal guidelines exist and 

the practices vary greatly from unit to unit and often physician to physician. 

At the time of writing, there are five practicing consultant thoracic surgeons 

in the Leeds Teaching Hospitals Trust, who work in collaboration with a Lung 

Cancer MDT. The surveillance protocols following surgery differ from 

surgeon to surgeon (depending on individual preferences) in several 

aspects, such as timing of appointments, obtaining routine CXR and 

involvement of other relevant specialties (respiratory physicians, oncologist). 

The routine place of a CT scan in this process is also not clearly established. 

This snapshot is likely representative of the practices in most large thoracic 

centres.   

In a study, focusing on the postoperative surveillance of a large cohort (346 

cases) of stage I NSCLC, which underwent radical surgical resection 

Pairolero made several important findings (Pairolero et al, 2004). They 

observed that most of the recurrences recorded in the study occurred within 

the first 2 years after surgery. They also noted that only 53% of patients with 

recurrent disease were symptomatic and more than half of the patients with 

symptomatic recurrence presented and were diagnosed after non-scheduled 

examinations.  

A logistic regression prediction model could potentially prove to be extremely 

useful when addressing the issues of timely surveillance of radically 

resected stage I NSCLC. By helping to identify at an early stage which 

patients are more likely to experience a recurrence, it could allow physicians 
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to tailor a more rigorous surveillance regime, especially in the first 12-24 

months. If a patient’s genomic profile is found to have a high risk of future 

recurrence the awareness of medical staff can be raised and a CT 

surveillance routinely performed at regular intervals (e.g. at 3, 6, 12 and 24 

months) post-surgery. This could lead to early detection of both local and 

distant cancer recurrence and allow for timely therapeutic intervention. This 

benefit could be achieved without any additional discomfort for the patient, 

as calculation is based on sequencing data from extracted DNA from a 

cancer sample obtained post-surgery, thus alleviating the need for any extra 

clinical appointments or invasive tests.        

While this study has shown promising results, it does have its limitations. 

The small sample size, combined with a “model fit”, based on cross 

validation could be responsible for the clear distinction, which was achieved 

between recurrent and non-recurrent tumours. These factors could be 

masking a convenient sample distribution. Although testing the model with 

histological subgroups and cohorts with randomly assigned numbers 

suggests otherwise, this remains a possibility. Due to its retrospective 

character, this study relied heavily on gathering information from different 

sources, which were not specifically designed for this particular purpose. 

Although great care was taken to obtain precise data for the tumour 

samples, small inaccuracies could have subtly influenced the results. Using 

CNV data has certain shortcomings, which could affect the future of this 

study. Differences in CN are a naturally occurring phenomenon and are not 

always associated with abnormal activation and/or inactivation of genes. 

While using NG-seq of DNA allows the “charting” of these events it does not 

truly “interrogate” the genome about their precise nature and the molecular 

pathways they unlock. Finally, although NG-seq is rapidly becoming more 

affordable and widespread, the cost of whole genome sequencing remains 

relatively high and could hinder its routine introduction in clinical practice.      

6.3 Conclusion 

Lung cancer is a spectrum of diseases with numerous alterations in 

expression patterns resulting from acquired genetic and epigenetic 

mechanisms (Varella-Garcia, 2010). While numerous genomic changes in 

individual specimens have been discovered, few of these are recurrent 

among large numbers of tumours. This has proven to be a major obstacle to 

forming a precise and universally accepted definition of molecular subtypes 



- 92 - 

in NSCLC and hinders the formation of algorithms for individualized 

treatment. 

The role of molecular methods in the management of NSCLC is slowly 

increasing. This pilot study attempted to define a genomic pattern associated 

with recurrence in radically treated stage I NSCLC using CNV and suggest a 

feasible application for such an algorithm in clinical practice. The results 

show that no single area of the genome can be identified as “governing” the 

process of cancer recurrence, which is likely a result of multiple complex 

events involving inhibition of tumour suppressor genes, activation of 

oncogenes, mutations etc. By using a novel prediction model, which takes 

into consideration abnormal gain or loss of material along the entire genome, 

this study has shown CNV could be used to differentiate recurrent from non-

recurrent stage I NSCLC and guide its further management. Before any 

practical application of the logistic regression model can be considered, a 

further validation of the model in a larger cohort of radically treated cases of 

stage I NSCLC must be performed. The advances in software and 

processing power have determined the emergence of extensive databases, 

containing vast amounts of cancer data such as details on surgical 

procedures, adjuvant and neo-adjuvant therapy, concomitant diseases 

(benign or malignant), survival and recurrence data. This will greatly facilitate 

the identification of such a cohort, although collaboration between several 

institutions, perhaps in the form of a trial, might be necessary in order to 

achieve truly substantial number of cases.  



- 93 - 

Appendix A 

Laboratory protocols 

 

DNA extraction with macrodissection  

Performed using the QIAamp DNA micro kit (Qiagen, Sussex, UK) according 

to the manufacturer’s instructions: 

DNA extraction protocol from FFPE tissue blocks (targeted at obtaining at 

least 70% of cell content): 

Preparation:  - Each new HE slide was reviewed by a pathologist and the 

tumour area was marked. The pathologist also commented on the size of the 

tumour area and the tumour cell content.    

 Between seven and ten slides were sectioned (7 microns in 

thickness) 

Procedure 

1. Adequate preparation surface of the working area (70% Ethanol used 

to clean the surface). 

2. Five glass baths filled with solvents: 

 xylene 

 100% ethanol 

 90% ethanol 

 70% ethanol 

 diH20 

3. Dewaxed sections placed on a rack and submerged for: 

 5 minutes in the xylene 

 3 minutes in each ethanol containing bath 

 Left in diH20 until microdissection commences 
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4. The tissue is scraped from the desired area of each tumour slide and 

placed in a 1.5 ml labelled centrifuge tube. 

5. 180 l of Buffer ATL and 20 l of proteinase K were added. 

6. The samples were mixed by pulse-vortexing for 10 s.  

7. The samples were placed in water bath for incubation at 56 degrees 

for 48 hours. 

 Samples can be reviewed after 24 hours and additional 20 l of 

proteinase K can be added if necessary 

8. The samples were removed from water bath. 200 l of Buffer AL 

added and mixed by pulse-vortexing for 15 s. 

9. The samples incubated at 70 C for 10 minutes and briefly centrifuged 

after cooling down. 

10. 200 l of 100% ethanol added. The samples were pulse-vortexed for 

10s and left to incubate at room temperature for 5 minutes. 

11. The mixture is transferred to a spin column and centrifuged at 8000 

rpm for 1 minute. 

12. The spin column was transferred to a clean centrifuge tube and the 

tube containing the filtrate was discarded. 

13. 500 l of Buffer AW1 added and the samples were centrifuged again 

at the same speed. 

14. The spin column was transferred to a clean centrifuge tube and the 

tube containing the filtrate was discarded. 

15. 500 l of Buffer AW2 added and the samples were centrifuged at 14 

000 rpm for 3 minutes. 

16. Spin column placed in a clean labelled 1.5 ml tube. Filtrate discarded. 

17. 100 l of Buffer AE added. 

18. Samples incubated for 5 min at room temperature and centrifuged at 

8000 rpm for 1 minute. 

19. Spin column placed in a clean tube (clearly labelled as Elution 2) and 

steps 17. and 18. were repeated. The filtrate was clearly labelled as 

Elution 1. 

20. Samples were stored at 4 C 
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Nanodrop 

 

1. An initiation cycle was performed at the start of each measurement 

with 2uL of dH2O  

2. A blanking cycle was performed before each set of measurements 

with 2 uL of buffer AE 

3. DNA samples pulse-vortexed for 10 s. prior to measurement 

4. 2 uL of DNA samples used for measurement 

5. Two measurements taken for each sample 
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Pico green quality assay 

 

1. Working solution was prepared by diluting Quant-iT™ dsDNA BR 

reagent 1:200 in Quant-iT™ 

dsDNA BR buffer.. 

2. 200 μL of the working solution were loaded into each microplate well.  

3. 10 μL of each DNA standard were added to separate wells and mixed 

4. 10 μL of each investigated DNA sample were added to separate wells 

and mixed 

5. The plate was loaded in a reader and the fluorescence was measured 

6. A standard curve was used to determine the DNA amounts.  
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Next generation sequencing 

The steps involved in using a next-generation sequencing platform are: (1) 

DNA library preparation (including shearing the DNA to desired size, end-

polishing, adaptor ligation, nick-translation- amplification, and gel purification 

of libraries); (2) quantification of the product from step one; (3) emulsion 

PCR; (4) depositing templated beads onto the instrument for sequencing. 

End repair was performed by using the End-It DNA End Repair Kit 

(Epicentre Biotechnologies, Madison, WI, USA) 

DNA libraries were prepared for the samples.  

1. DNA was first sheared into a random library of 100-300 base-pair 

long fragments. This was performed on a Covaris S2 Sample 

Preparation System (Covaris Inc., Woburn, MA, USA) and checked 

for appropriate size distribution on an Agilent Bioanalyser DNA 1000 

LabChip.   

2. After fragmentation the ends of the obtained DNA-fragments are 

repaired. End repair was performed by using the End-It DNA End 

Repair Kit (Epicentre Biotechnologies, Madison, WI, USA) 

3. A-Addition. An A-overhang is added at the 3'-end of each strand using 

Klenow DNA polymerase.  

4. Adaptors which are necessary for amplification and sequencing are 

ligated to both ends of the DNA-fragments. 

5.  These fragments are then size selected and purified using a 2% high 

purity agarose gel.  
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Samples were enriched using a 12-cycle enrichment PCR. For low 

concentration DNA samples, an 18-cycle enrichment PCR was performed 

before the gel cut stage rather than afterwards. Libraries were then 

examined using an Agilent Bioanalyser DNA 1000 LabChip and Invitrogen’s 

Quant-iT Picogreen dsDNA BR assay kit to assess for DNA quality and 

concentration, respectively. This information was used to pool equal 

amounts of each sample library for cluster amplification and either 51 or 76 

cycles of Illumina sequencing by synthesis, resulting in 45/70 bp of genomic 

DNA sequence and 6 bp of tagged adapter. Sequencing was initially done 

with 51-bp reads but the move was made to 76-bp reads as machine and 

analysis package upgrades resulted in better base calling for longer 

 

Cluster Generation 

The Cluster Generation is performed on the Illumina Cluster Station. Single 

DNA-fragments are attached to the flow cell by hybridizing to oligos on its 

surface that are complementary to the ligated adaptors. The DNA-molecules 

are then amplified by a so called bridge amplification which results in a 

hundred of millions of unique clusters. Finally, the reverse strands are 

cleaved and washed away and the sequencing primer is hybridized to the 

DNA-templates. 
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Illumina’s sequencing by synthesis technology is the most successful and 

widely-adopted next-generation sequencing platform worldwide. It supports 

supports massively parallel sequencing using a proprietary reversible 

terminator-based method that enables detection of single bases as they are 

incorporated into growing DNA strands. A fluorescently-labeled terminator is 

imaged as each dNTP is added and then cleaved to allow incorporation of 

the next base. Since all four reversible terminator-bound dNTPs are present 

during each sequencing cycle, natural competition minimizes incorporation 

bias. The end result is true base-by-base sequencing that obtains accurate 

data for a broad range of applications. 

During sequencing the huge amount of generated clusters are sequenced 

simultaneously. The DNA-templates are copied base by base using the four 

nucleotides (ACGT) which are fluorescently-labeled and reversibly 

terminated. After each synthesis step, the clusters are excited by a laser 

which causes fluorescence of the last incorporated base. After that, the 

fluorescence label and the blocking group are removed allowing the addition 

of the next base. The fluorescence signal after each incorporation step is 

captured by a built-in camera, producing images of the flow cell. 
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Pre-Cancer Genomics Group Library Prep Protocol – Copy 

Number Assay using NEBNext DNA Library Prep Master mix 

with NEB adaptors and primers. 

200ng of DNA is the standard amount for the CNV assay using this protocol. 

If the DNA has a concentration of more than 200ng/μL, dilute an aliquot to a 

concentration of 200ng/μL. This will reduce the chance of pipetting errors, 

which can be a problem for volumes less than 1ul. The concentration must 

be determined using a fluorescence assay (e.g. Pico Green), as this 

measures the amount of double stranded DNA. 

 

A) SHEARING 

Dilute DNA in TE buffer, making the final volume 250ul. Add sample to a 

shearing tube, and clip on lid. If using crimped lids – use crimping tool. 

Using Covaris S2 system. 

Make sure fresh distilled water is used in the Covaris tank each time.  Also 

check level of water bath and top up if required.   

Turn on water bath and Covaris before opening SonoLite software.  

Degassing pump should start automatically – this needs to run for at least 30 

minutes before use.  Water bath temperature should be set to 20 degrees. 

Covaris settings: 

The only parameter that needs changing is the ‘cycle repeat’ number in the 

‘Batch’ Tab.  Everything else is pre-programmed. 

Settings for DNA shearing in ‘Run’ Tab (don’t change): 

 Duty Cycle Intensity Cycles/burst 

1000bp 19.9% 9.9 1000 

500cpb 15% 8 500 

Batch: 500cpb 

 1000bp 

Cycles = 25 

Once sample is sheared, remove the lid (if a crimped lid was used, use the 

de-crimping tool). Pipette out the sample using long tips, and process the 
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solution through a MinElute column according to the Qiagen protocol.  Elute 

in 11μL. 

Check 2μL of each sheared sample on the Agilent Tapestation D1K High 

Sensitivity Screentape (see Agilent protocol). The trace of the shear should 

look like this. 

 

Switch off Covaris and water bath.  Empty Covaris tank. 

Resulting DNA can be stored at -20C until required for next step. 

B) End-Repair of Fragmented DNA 

 Volume x1 

NEBNext End repair reaction buffer (x10) 5 

NEBNext End repair enzyme mix 2.5 

dH20 33.5 

Make up master mix using the volumes in the table above. Add 41μL master 

mix to each sample to the 9μLof DNA from previous step. 

Incubate at 20C for 30min. 

Clean up using a QiaQuick Column, following Qiagen Bench Protocol. 

Elute in 21μL EB Buffer 

C) dA-Tailing of End Repaired DNA 
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 Volume x1 

NEBNext dA-Tailing Reaction Buffer 2.5 

Klenow (3’>5’ exo) 1.5 

Make up master mix using the volumes in the table above. Add 4ul master 

mix to 21μL of DNA from previous step. 

Incubate at 37deg for 30min. 

Clean up with a MinElute column (Qiagen Bench protocol), eluting in 12.5μL 

EB buffer. 

Resulting DNA can be stored at -20C until required for next step. 

D) Adaptor Ligation of dA-Tailed DNA 

 Volume X1 

Quick Ligation Reaction Buffer (x5) 5 

NEBNext Adaptor 2.5 

Quick T4 Ligase 2.5 

dH2O 2.5 

Make up master mix using the volumes in the table above and add 12.5μLof 

master mix to the 12.5μL of dA-tailed DNA from the previous step. Incubate 

at 20C for 15min. 

Add 3μL of USER enzyme mix by pipetting up and down. Incubate at 37C for 

15min. 

Clean up using a QiaQuick Column, (Qiagen Bench Protocol). 

Elute in 50μL EB Buffer 

E) Size Select Adaptor Ligated DNA Using Ampure XP Beads 

1. Add 40ul (0.8x concentration) suspended AMPure XP beads to 50μL 

of DNA solution. Mix well by pipetting up and down 10 times. Incubate 

for 5 minutes at room temperature 

2. Place the tube into the magnetic stand to separate the beads from the 

supernatant.  

3. After the solution is clear (approx. 5 min) carefully transfer the 

supernatant to a new tube (do not discard) Discard the beads that 

contain the larger fragments. 
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4. Add 10μL (0.2x concentration of original volume of 50μL) re-

suspended AMPure XP beads the supernatant. Mix well by pipetting 

up and down 10 times and incubate for 10 min at room temperature. 

5. Place the tube into the magnetic stand to separate the beads from the 

supernatant. After the solution is clear (approx.. 5 min) carefully 

remove and discard the supernatant. Be careful not to disturb the 

beads as they contain DNA targets. 

6. Add 200 μL of freshly prepared 80% ethanol to the tube. Incubate at 

room temperature for 30 seconds, and carefully remove and discard 

the supernatant. 

7. Repeat step 6 once. 

8. Air dry beads for 10 min. Tube must be free of ethanol before 

proceeding to next step, as ethanol can inhibit downstream 

applications. 

9. Elute DNA in 22 μL EB buffer, pipetting up and down 10 times.  

10. Without disturbing the bead pellet, carefully transfer 20 μL of the 

supernatant to a clean PCR tube and proceed to enrichment. 

F) PCR Enrichment Adaptor Ligated DNA 

 Volume 

NEB High Fidelity 2x PCR master mix 12.5 

Universal PCR Primer (25uM) 1.25 

Make up PCR master mix using the volumes in the table above.  

Add 13.5 μL master mix to 10 μL of DNA from previous step. 

Add 1.25 μL of Indexed primer. Mix thoroughly using pipetting and spin 

dpown. Make a note of which indexed primer is used for each library. 

Use PCR program ‘Enrich12’ If DNA is from a fresh source material (cell 

line, Fresh frozen etc) 

Use PCR program ‘Enrich 15’ If DNA is from FFPE DNA 

PCR Program Enrich 12/15 

     30 seconds at 98°C 

 

  12/15 cycles of:  10 seconds at 98°C  
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     30 seconds at 65°C  

     30 seconds at 72°C  

 

      5 minutes at 72°C  

 

     Hold at 4°C 

Clean-up with an Ampure bead purification using a 1x concentration (see 

appendix)  

Elute in 40  μL of EB Buffer, as previously described. 

LIBRARY QC 

Proceed to DNA quantification (using PicoGreen) and Agilent Bioanalyser 

analysis of each library. 

The Tapestation 1DK High Sensitivity trace should look this: 

 

Please refer to Appendix B if your library is contaminated with adaptor peaks 

around the 115bp region 

APPENDIX 

A) Standard Bead Cleaning Protocol 

1. Vortex AMPure XP beads to re-suspend 

2. Add nX (n being the concentration specified in each step of the 

protocol) re-suspended AMPure XP beads to reaction mixture. Mix 
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well by pipetting up and down 10 times. Incubate for 5 minutes at 

room temperature 

3. Place the tube into the magnetic stand to separate the beads from the 

supernatant. After the solution is clear (approx.. 5 min) carefully 

remove and discard the supernatant. Be careful not to disturb the 

beads as they contain DNA targets. 

4. Add 200 μL of freshly prepared 80% ethanol to the tube. Incubate at 

room temperature for 30 seconds, and carefully remove and discard 

the supernatant. 

5. Repeat step 6 once more. 

6. Air-dry beads for 10 min. Tube must be free of ethanol before 

proceeding to next step, as ethanol can inhibit downstream 

applications. 

7. Elute DNA in the volume of EB buffer specified for that stage of the 

protocol, pipetting up and down 10 times.  

8. Without disturbing the bead pellet, carefully transfer the supernatant 

to a clean tube. 

B) Adaptor Contamination 

If the final library trace shows adaptor contamination around the 115bps it 

means that there was too much adaptor to bind to the available DNA (see 

below).  
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This contamination can create problems when analysing Illumina 

sequencing data. If the ratio of the adaptor concentration vs library 

concentration (values provided by Tapestation output) is < or = to 10 the 

library is satisfactory and can be submitted for Illumina Sequencing. If this 

ratio is >10 (the example above has a ratio of 13.9), it is recommended that 

you perform an additional clean-up step to the remaining 10 μL of adaptor 

ligated DNA. Use standard bead cleaning protocol (see appendix) using the 

beads at a concentration of 1.8x and elute in 21 μL EB buffer.  

Perform enrichment PCR as described below 

 Volume 

NEB High Fidelity 2x PCR master mix 25 

Universal PCR Primer (25uM) 2.5 

Make up PCR master mix using the volumes in the table above.  

Add 27.5 μL master mix to 20 μL of DNA from previous step. 

Add 2.5 of Indexed primer. Make a note of which indexed primer is used for 

each library. 

Use PCR program ‘Enrich18’  

 

PCR Program Enrich18  30 seconds at 98°C 

  18 cycles of:   10 seconds at 98°C  

     30 seconds at 65°C  

     30 seconds at 72°C  

     5 minutes at 72°C  

     Hold at 4°C 

 

Clean-up with an Ampure bead purification using Standard Bead Cleaning 

Protocol at a 1x concentration. 

Elute in 40 μL of EB Buffer, as previously described and perform library QC 

step. 
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Appendix B 

Karyograms 
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Appendix C 

Publications 

“Stratifying tumour subtypes based on copy number alteration profiles using next-

generation sequence data”. Gusnanto A, Tcherveniakov P, Shuweihdi F, Samman 

M, Rabbitts P, Wood HM. Bioinformatics. 2015 Apr 5 

“A computational index derived from whole-genome copy number analysis is a 

novel tool for prognosis in early stage lung squamous cell carcinoma. Belvedere O, 

Berri S, Chalkley R, Conway C, Barbone F, Pisa F, MacLennan K, Daly C, Alsop M, 

Morgan J, Menis J, Tcherveniakov P, Papagiannopoulos K, Rabbitts P, Wood HM.” 

Genomics. 2012 Jan;99(1):18-24. doi: 10.1016/j.ygeno.2011.10.006. Epub 2011 

Oct 25. 

 

Presentations 

“Discovering genomic biomarkers of progression in stage I NSCLC”.  Poster 

presentation. Presented at the Royal College of Surgeons (En). June 2010 

“Genomic biomarkers of recurrence in stage I non-small cell lung cancer" presented 

at the annual ESTS meeting in Marseille, France. June 2011 

“Genomic biomarkers and their potential role in management of non-small cell lung 

cancer”. West Yorkshire Deanery regional teaching of lung cancer. Leeds, July 

2011. 

“My life in research. A surgical perspective”. Oral presentation. March 2012. 

Departmental audit meeting of the thoracic unit in St, James’s Hospital, Leeds. 

November 2011 

“A logistic regression model for predicting recurrence in stage I non-small cell lung 

cancer based on copy number variation”. Oral presentation at the 29th EACTS 

Annual Meeting. Amsterdam. 6 October 2015. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/25847006
http://www.ncbi.nlm.nih.gov/pubmed/25847006
http://www.ncbi.nlm.nih.gov/pubmed/22050995
http://www.ncbi.nlm.nih.gov/pubmed/22050995
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