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Abstract 

Protozoan parasites of the genus Leishmania cause a diverse range of tropical diseases 

referred to as Leishmaniasis that lack effective treatment or licensed vaccines. The 

hydrophilic acylated surface proteins (HASPs) are present in all human infective 

Leishmania species, are highly immunogenic and their expression is stage-regulated 

during human infection. HASPs share highly conserved N- and C-terminal domains, but 

a subset, the HASPBs, have a divergent central domain containing extensive hydrophilic 

amino acid repeats that vary in number and composition, both within and between 

Leishmania species. HASPs associate with the membrane via an N-terminal dual 

acylation motif that is myristoylated and palmitoylated. 

The focus of this project was the HASPs from Leishmania donovani. Extensive 

crystallisation screening of the proteins in combination with an array of directed 

crystallisation strategies did not produce crystals. Biochemical and biophysical 

characterisation supported bioinformatic predicted intrinsic disorder. NMR analysis of 

HASPA was performed, including resonance assignment of 94% of the backbone nuclei. 

This required implementation of unlabelling protocols to resolve problems associated 

with spectral congestion and low sequence complexity. HN, N, Cα and Cβ chemical shift 

analysis revealed that HASPA does not contain elements of structural propensity. 

Myristoylation of the HASPs is catalysed by N-Myristoyltransferase (NMT). It was shown 

for the first time that recombinant NMT is able to catalyse recombinant HASP 

myristoylation in vitro. A fluorescence based assay, where a fluorescent CPM-CoA 

adduct is formed, was implemented to establish the kinetic parameters for this reaction. 

HASPA myristoylation was also monitored by real-time NMR spectroscopy, which 

revealed that the residues proximal to the N-terminus experienced the most 

pronounced changes in chemical shift or resonance intensity. A 2.45 Å resolution crystal 

structure of Leishmania major NMT in complex with 2-oxopentadecyl-CoA was 

elucidated. The data presented here, particularly IDP classification, will contribute to 

deciphering the functional role of HASPs. 
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Chapter 1 - Introduction 

1.1. Neglected tropical diseases 

The bottom billion, a collective term given to the most impoverished and marginalised 

people in the world who typically survive as subsistence farmers, have severely limited 

financial means and are stuck in the perpetual cycle of disease, war and little or no 

education (Hotez et al. 2009). This cycle has wider consequences on socioeconomic 

advancement and development prospects, which in turn impedes the fight to address 

the core problems.  

The global disease burden is quantified and assessed by the World Health Organisation 

(WHO) by calculating deaths and disability adjusted life years or DALYs. DALYs are 

defined as ‘the sum of years of potential life lost due to premature mortality and the 

years of productive life lost due to disability’ (WHO. 2013). There are three key factors 

that perpetuate the disease burden felt by the bottom billion: failure to use current 

treatments effectively, insufficient or obsolete treatments and poor disease knowledge 

and understanding (Morel. 2003). A concerted effort is being made by the international 

community to address these concerns but disproportionate allocation of funding has 

hampered progress in many cases; it has been estimated that 10% of global health 

research and development (R&D) expenditure is devoted to diseases that account for 

90% of the global disease burden (Global Forum for Health Research, 2002 as reviewed 

by Morel. 2003). 

Neglected tropical diseases (NTDs) make up a substantial proportion of the 

communicable disease burden felt by the bottom billion (Engels and Savioli. 2006). They 

are broadly defined as a group of tropical infections that are endemic in the developing 

world affecting impoverished populations, having been largely overlooked in terms of 

treatment and control. NTDs encompass the following 17 core diseases: buruli ulcer, 

chagas disease, cysticercosis/taeniasis, dengue/severe dengue, dracunculiasis, 

echinococcosis, foodborne trematode infections, human african trypanosomiasis, 

leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, rabies, schistosomiasis, soil 

transmitted helminthiases, trachoma and yaws (WHO. 2013). Notably an extensive 

proportion of the bottom billion is infected with at least one NTD at any time (Hotez et 

al. 2009). In combination, NTDs have been shown to be the 6th leading cause of 
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premature deaths and DALYs worldwide (Hotez et al. 2007). Mass drug administration 

through preventative chemotherapy is being used to control and could feasibly 

eliminate the NTD burden; however, it is limited in its current scope as it is not effective 

in every case (Payne and Fitchett. 2010). In 2009 preventative chemotherapy reached 

705 million people for at least one NTD (WHO. 2013). Although in recent years an 

unprecedented amount of money has been pledged by many organisations, 

governmental and non-governmental, sustained commitment is required to successfully 

manage the NTD burden (Zhang et al. 2010). 

 

1.2. Introduction to Leishmaniasis 

Leishmaniasis refers to a range of tropical diseases caused by flagellated protozoan 

parasites belonging to the genus Leishmania. Leishmania parasites belong to the 

trypanosoma genus of kinetoplastid unicellular parasitic flagellate protozoa. The World 

Health Organisation (WHO) estimates that leishmaniasis threatens 350 million people 

globally with 12 million currently infected. Every year 600,000 new cases are reported 

but due to the social stigma of the disease, many do not report their illness, significantly 

underplaying the true burden estimated to be 2 million cases (WHO. 2013). Notably 

60,000 deaths occur annually due primarily to the visceral form of the disease. 

Leishmaniasis is prevalent in tropical and sub-tropical regions (shown in Figure 1-1); 

namely Africa, Central and South America, the Middle East, Central and Southern Asia 

and increasingly the Mediterranean Basin (Schonian et al. 2008). However, the threat 

posed by leishmaniasis is set to intensify as global warming increases the environmental 

range of the sandfly vector. 
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Figure 1-1: Worldwide distribution of visceral leishmaniasis (VL) in 2009 (Source WHO). VL is 
predominantly found in tropical and sub-tropical regions with 90% of cases in Bangladesh, India, Nepal, 
Brazil and Sudan. 

 

There are around 20 human infective Leishmania species causing three distinct 

groupings of leishmaniasis; cutaneous, mucocutaneous and visceral leishmaniasis. 

Cutaneous leishmaniasis (CL) is the most common form of the disease with 1.5 million 

of the aforementioned 2 million cases annually being attributed to it (WHO. 2013). Skin 

lesions are the most prominent characteristic of CL, forming on exposed areas such as 

arms, legs and the face (shown in Figure 1-2a). These lesions do heal but leave 

permanent scars and can cause disability, attracting social stigma and impeding life 

quality. Species specific immunity is induced after recovery but the parasite can lie 

dormant triggering latent infections in immunocompromised patients. Notably 90% of 

all cases occur in Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria (WHO. 2013). 

Diffuse cutaneous leishmaniasis (DCL) is characterised by chronic widely spread skin 

lesions and is commonly confused with lepromatous leprosy due to the similarity in 

clinical manifestation. Treatment is particularly problematic as relapse is common and 

species specific immunity is not observed. 
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Mucocutaneous leishmaniasis (MCL) constitutes facial lesions, leading to destruction of 

the mucous membranes of the face i.e. nostrils, throat and lips (as shown in Figure 1-2b). 

90% of all MCL cases are located in Bolivia, Brazil and Peru (WHO. 2013). Distinct strains 

of leishmaniasis cause different disease manifestations. In Central and Southern 

America, CL and MCL are caused by members of the Leishmania mexicana and 

Leishmania braziliensis species, while CL is caused by Leishmania tropica and Leishmania 

major in the Middle East and Asia. 

Visceral leishmaniasis (VL), also known as kala-azar, is the most severe form of the 

disease as the parasites are internalised into the spleen and liver, which in turn leads to 

physiological malfunctions and a mortality rate of 95% if the disease remains untreated. 

It is typified by enlargement of the spleen and liver, high fever, dramatic weight loss and 

anaemia (shown in Figure 1-2c). The main causative strain is Leishmania donovani, which 

is widespread in Bangladesh, China, Nepal and Sudan. The human infective strains 

predominant in the Mediterranean Basin and Latin America are Leishmania infantum 

and Leishmania chagasi, respectively (WHO. 2013). WHO states that 90% of VL cases are 

located in Bangladesh, India, Nepal, Brazil and Sudan (as shown in Figure 1-1). Post kala-

azar dermal leishmaniasis (PKDL) is a complication that occurs after successful 

treatment of VL. It is typified by hypopigmented skin lesions that can be macular (a rash 

typified by small, flat red spots), maculopapular (a red rash on the skin covered with 

small bumps) or nodular non-pigmented lesions that start on the face and spread to 

other body parts depending on the intensity of the infection (Zijstra et al. 2003). The 

skins lesions harbour parasites, meaning PDKL acts as a reservoir for anthroponotic 

disease transmission, where the parasite is transferred by humans to other animals. 

PKDL is primarily linked to L. donovani infection, as the majority of cases are reported in 

Sudan, Ethiopia, Kenya, India, Nepal and Bangladesh, though L. infantum has also been 

implicated in a minority of cases.  

Typically Leishmania species cause one form of the disease preferentially, but some 

species can cause distinct clinical forms of leishmaniasis depending on complex 

interactions between the parasite and the host immune response. (Cecílio et al. 2014). 

Leishmania isolates from various clinical forms were analysed in Brazil and the parasite 

species were determined. Three species were isolated from these patients, namely 

Leishmania amazonensis, Leishmania braziliensis and Leishmania chagasi. Notably, this 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cec%C3%ADlio%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25368612
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study showed that L. amazonensis was the causative agent of CL, MCL, VL and four cases 

of PKDL (Barral et al. 1991). Therefore, different Leishmania species may be associated 

with indistinguishable clinical presentations. 

 

Figure 1-2: Clinical manifestations of the three distinct forms of leishmaniasis. (a) Skin lesions typify 
cutaneous leishmaniasis (CL). (b) Mucous membrane destruction typifies mucocutaneous leishmaniasis 
(MCL). (c) Enlargement of the spleen and liver cause swelling of the abdomen typifying visceral 
leishmaniasis (VL). Taken from The Board of Trustees of the Leland Stanford Junior University. 2007. 
Extracellular vs. Intracellular Parasitic Mechanisms of Immune Evasion: Leishmania. Available at: 
http://web.stanford.edu/class/humbio153/ImmuneEvasion/. [Accessed 25 August 15]. 

 

1.2.1. Leishmaniasis and HIV/AIDS 

Strain-specific immunity prevents reinfection but latent reactivation in times of 

physiological stress or immunosuppression is a constant concern with leishmaniasis. An 

emerging epidemic is the co-infection of HIV with visceral leishmaniasis, which has not 

only medical but diagnostic and epidemiological consequences (Chappuis et al. 2007). It 

is important to note that cases of HIV co-infection with other forms of leishmaniasis 

have been reported but as HIV-VL co-infection is of most concern, it will be discussed 

here. In VL-endemic regions significant proportions of the population have an 

asymptomatic infection. Concurrent HIV infection considerably escalates the risk of 

developing active VL by between 100 and 2320 times (WHO. 2013). The two diseases 

reinforce the progression of the other in the host. Immunosuppression causes the 

patient to be particularly susceptible to severe and rapid onset VL, while VL accelerates 

the onset of AIDS by triggering further immunosuppression promoting virus replication. 

Notably co-infected patients show lessened humoral and cellular responses to 

Leishmania, resulting in a higher rate of treatment failure independent of the drug used, 
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increased probability of relapse, increased parasite load in the blood and bone marrow 

and ablated sensitivity to serological tests (Chappuis et al. 2007).   

Diagnosis of VL in HIV patients is problematic as the clinical manifestations can often be 

atypical or lacking entirely; for example splenomegaly is less frequent in co-infected 

patients but is a useful indicator of severe VL. Parasitological diagnosis employs spleen, 

bone marrow or lymph node aspirates and analyses parasitic load using microscopy or 

culture. It is considered a highly sensitive detection method but is limited as adequately 

experienced staff and equipped clinics are required. Unfortunately a spleen aspirate can 

in 0.1% of patients lead to life threatening haemorrhages so it is not suitable for highly 

recurrent relapses typical of VL-HIV co-infection (Alvar et al. 2008). Less invasive 

methods, such as blood tests, can be used in tandem with PCR. This molecular detection 

method is more sensitive than parasite visualisation techniques, enabling the user to 

determine the Leishmania species involved. PCR can also be used to monitor long term 

treatment efficacy and relapse reoccurrence. Although it is limited to a clinical setting, 

this method does prevent false positives when lower trypanosomatids display VL or CL 

like symptoms.  

Serological detection methods are relatively simple and non-invasive but in 40% of co-

infected cases there is no detectable level of Leishmania-specific antibody (Alvar et al. 

2008). To combat poor sensitivity it is standard practice to carry out two tests 

concurrently, however, false negatives and positives are associated with serological 

detection methods. In a co-infection context relapse is not detectable using serology as 

after treatment antibody levels remain elevated for several years. Antigen-based 

detection methods are more specific than antibody-based systems. A latex agglutination 

test (KAtex made by Kalon Biological) detects Leishmania specific antigen levels in the 

urine of patients with an active infection. It gives a rapid result and can be used to 

monitor relapse and treatment efficacy. Further improvement is underway as the urine 

must be boiled before testing to avoid a false positive result and there are problems 

with distinguishing a weakly positive result from a weakly negative result. 

Highly active antiretroviral therapy (HAART) is the standard treatment for HIV-positive 

patients, employing a combination of at least three drugs in order to inhibit virus 

replication and in turn disease progression (WHO. 2013). In the context of co-infected 
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patients HAART intervention reduces morbidity and mortality; whereby the number of 

new VL cases dropped by 50 to 65% in Europe after HAART introduction (Alvar et al. 

2008). HAART intervention alone is not sufficient to prevent relapse, hence a VL re-

emergence secondary prophylactic therapy is utilised (antileishmanial drugs are 

discussed in Section 1.2.3). However, all current antileishmanial regimes are less 

effective in co-infected patients, leading to high mortality rates due to progressive drug 

toxicity, complications and concurrent illness. Careful management of treatment 

(biochemical monitoring is vital) and rapid diagnosis of re-emergence are required to 

manage this emerging epidemic. 

This co-infection phenomenon is rampant in South West Europe among intravenous 

drug users, whereby 70% of all VL cases in adults are associated with HIV infection 

(WHO. 2013). It is of grave concern that the spread of HIV infection is facilitating the 

spread of VL to previously unaffected areas particularly in Southern Europe. HAART 

intervention (as previously mentioned) has shifted the focal point to where the two 

diseases cross over geographically and HAART coverage is insufficient (Alvar et al. 2008). 

In VL endemic areas the issue is particularly pronounced because of poor detection and 

underestimation of the number of cases due to a lack of facilities. Moreover, there are 

no co-ordinated detection schemes in place and treatment availability is limited. In 

Ethiopia it is currently estimated that 1.3 million people are HIV-positive but only 65,000 

of these are receiving HAART (Alvar et al. 2008). Moreover, co-infected individuals act 

as anthroponotic reservoirs perpetuating leishmaniasis in the population. 

 

1.2.2. Leishmaniasis: Control strategies 

The impact of leishmaniasis is at present being managed through transmission control 

and drug intervention. Control strategies include reservoir and vector control and early 

detection and rapid treatment of infected individuals in endemic areas. Parasite 

transmission to the female sandfly vector can be zoonotic (wild or domestic animal 

reservoirs) or anthroponotic (human reservoir) depending on the Leishmania strain 

involved. Zoonotic visceral leishmaniasis caused by L. infantum mainly affects young 

children with domestic dogs implicated as the primary parasite reservoir. Treatment of 

infected dogs is not considered effective due to the high rate of treatment failure and 
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prospect of relapse. Dog culling has been implemented, particularly in Brazil as a 

national control programme, but conflicting efficacy reports have called into question 

the effectiveness of this strategy (Ashford et al. 1998 and Dietze et al. 1997 reviewed by 

Quinnell and Courtenay. 2009). Replacement of culled dogs with uninfected susceptible 

dogs in a mean time frame of 4 months has been put forward as an explanation for the 

limited effectiveness of this strategy (Nunes et al. 2008). A more complete programme 

of dog culling focusing on entire endemic areas rather than pockets of human 

habitation, and the use of a possible future canine vaccine would offer more efficacious 

control. Moreover, better availability of more reliable and rapid diagnostic tests in the 

field would enable current control programmes to be more effective as use of slow 

diagnostic methods assures large delays between testing and culling enabling further 

disease spread. Application of topical insecticides and the use of deltamethrin 

impregnated collars have demonstrated substantial individual protection against 

Leishmania infection in Europe (Quinnell and Courtenay. 2009). Community-wide 

implementation of deltamethrin collars one year after introduction in Iran has led to a 

considerable reduction in infection rates (Gavgani et al. 2002). In a peridomestic setting, 

collar expense and loss are problematic; though mathematical modelling predicts that 

collar intervention would be effective even if a proportion of the collars were lost 

(Quinnell and Courtenay. 2009).  

Further work needs to be carried out to establish the effect of sylvatic cases, where wild 

animals are infected, on Leishmania spread; unlike infection in dogs, sylvatic infection is 

mainly asymptomatic. This makes disease detection in wild animal populations 

particularly problematic and requires the role of these cases as disease reservoirs (in 

tandem with or independently of domestic or stray dog cases) to be clarified. Infection 

rates reported in PCR studies among the red fox population in the Mediterranean were 

shown to be as high as 40-75%, highlighting the need to evaluate endemic areas as a 

whole not just the habitable pockets to manage disease transmission (Quinnell and 

Courtenay. 2009).   

Control strategies against the female phlebotomine sandfly (the transmission vector for 

leishmaniasis) include residual spraying of human dwellings and animal shelters, 

insecticide impregnated dog collars (as previously mentioned), chemical repellents and 

insecticide treated bed nets. Residual spraying schemes aim to reduce sandfly bites in 
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and around domestic and peridomestic settings through initial application of DDT 

(dichlorodiphenyltrichloroethane) and more recently synthetic pyrethroids. It is 

important to note that the aforementioned pesticides are primarily used to control the 

malaria vector but are also efficacious against sandflies. Nationwide schemes to 

eradicate malaria with DDT spraying in Italy and India have coincided with a reduction 

in VL cases, but when spraying was halted the disease re-emerged (Alexander and 

Maroli. 2003). The scope of spraying was shown to be limited in a widespread scheme 

in Brazil due to low coverage in more remote areas, people being outside in the early 

evening coinciding with the vector being active, higher concentrations of vectors outside 

of dwellings and use of synthetic pyrethroids that are short lived compared to DDT 

(Quinnell and Courtenay. 2009). Therefore, insecticide spraying is more effective in an 

urban as opposed to a rural setting because of the blanket coverage that can be achieved 

by spraying every residence and animal shelter compared to spraying dispersed 

settlements providing weak regional coverage. Fastidious reapplication of insecticide is 

a limiting factor in efficient control exacerbating the difficulties of remote rural control 

schemes. Insecticide spraying is also limited by the habits of susceptible populations. In 

East Africa, most transmission occurs outside the home as many people are subsistence 

farmers making spraying of dwellings mostly ineffectual in preventing transmission. 

Insecticide treated nets (ITNs) have been used to prevent domestic and peridomestic 

transmission of vector borne diseases such as malaria, leishmaniasis and 

Japanese encephalitis (Chappius et al. 2007). ITNs function as ‘baited traps’ whereby the 

odour of the sleeper attracts the sandfly and the impregnated insecticide kills it. The 

insecticides used also have deterrent and repellent effects so reducing the number of 

sandflies inside protected houses even affording relative protection to non-users. To 

prevent further transmission during the VL epidemic in Eastern Sudan 357,064 ITNs were 

distributed to 155 villages between May 1999 and March 2001 (Ritmeijer et al. 2007). 

This emergency intervention saw a reduction of 59% in cases 17-20 months after 

distribution and an overall drop of 27% in case numbers. Although this study does 

appear to highlight the positive impact of ITN use on transmission prevention, the 

authors are critical of the limitations of the data collected. There was much concern that 

the many variables involved in the study make it difficult to ascertain if the data obtained 

were truly representative of the situation and impact of ITNs. Original distribution data 
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showed 93.6% bednet coverage in target villages. Two years after distribution 43.7% of 

the nets were considered intact enough to afford adequate protection (Ritmeijer et al. 

2007). There were two clinics in the region involved in VL treatment so it was noted that 

reported case numbers did not accurately depict the true number of cases as expense 

of treatment and the distance to the clinic prevented some seeking medical aid. 

Concurrently health programs run at the time of the outbreak were hypothesised to 

have led to an increase in cases being reported. In more global terms the variation in 

sandfly species, habits of local populations, varied environments and type of parasite 

transmission to the sandfly (zoonotic or anthroponotic) are a few examples of why it is 

so difficult to ascertain the effectiveness of bednets (Ostyn et al. 2008). The sandfly 

vector is most active in the early evening so most transmission occurs in this period, 

rendering the protection afforded by bednets ineffective as they are not being used. 

Extending the theory of insecticide impregnated materials to curtains and wall cloths 

could be the next possible step in transmission control. Co-ordinated implementation of 

the aforementioned control strategies can, and is, being used globally in a multifaceted 

approach to reduce Leishmania transmission. 

 

1.2.3. Leishmaniasis: Treatment options  

Early diagnosis (see Section 1.2) and treatment of leishmaniasis is vital to the individual 

affected and the community at large. Untreated VL patients, when transmission is 

anthroponotic, act as disease reservoirs and require immediate treatment to control 

spread of the disease. The current therapeutic repertoire against leishmaniasis is based 

on drugs developed 70 years ago that require long treatment courses, require 

administration by injection, have varied toxic side effects leading to patients 

withdrawing from treatment, are expensive to synthesize and have varied levels of 

efficacy. The expense of a long treatment cycle has become a limiting factor in the 

patient’s ability to access medical care. Moreover, resistance is an emerging problem, 

meaning much attention is now being given to the study of Leishmania biology to enable 

more efficacious drugs to be developed.  

Pentavalent antimonials were the first class of drugs developed in the 1940s to treat 

leishmaniasis and are still a first line therapy today. Sodium stibogluconate (Pentostam) 
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and meglumine antimoniate (Glucantime), two pentavalent antimonial compounds, are 

currently available for clinical use and are manufactured by GlaxoSmithKline and Sanofi-

Aventis, respectively (Figure 1-3, compounds 2 and 7). Intravenous or intramuscular 

administration is required as no oral preparations are available with a typical treatment 

cycle lasting 28 to 30 days, involving the daily administration of 20 mg per kg of body 

weight (Alvar et al. 2008). Antimonials are toxic compounds with frequent adverse and 

in some cases lethal side effects including cardiac arrhythmia, acute pancreatitis, 

nausea, vomiting, myalgia, abdominal pain, diarrhoea, skin rashes and hepatotoxicity. 

In some cases the severity of cardiotoxicity and pancreatic inflammation leads to 

cessation of treatment. Treatment failure due to emerging resistance is rapidly 

becoming a problem with antimonials particularly in Bihar. Since the 1990s the 

aforementioned treatment cycle had a cure rate of 36 to 69% in Bihar (Olliaro et al. 

2005). 

Amphotericin B deoxycholate (Figure 1-3, compound 1) is a polyene anti-fungicide 

originally isolated from Streptomyces nodosus that exhibits anti-leishmanial activity 

(Monzote. 2009). It selectively binds ergosterol, a sterol present in the parasite cell 

membrane analogous to mammalian cholesterol. This binding alters the permeability of 

the cell membrane causing pores to form and leading to ion and intracellular component 

leakage, which ultimately results in cell death. The efficacy of amphotericin B is high and 

it is a viable option for patients who have shown resistance to antimonials although 

toxicity remains a concern. Intravenous administration is required with a standard 

regime being 1 mg per kg of body weight every other day for 15 doses over 30 days 

(Olliaro. 2010). Infusion-related side effects such as fever, chills, rigor and 

thrombophlebitis are common; however, life-threatening conditions including serious 

cardiac arrhythmias, hepatotoxicity, renal dysfunction, severe hypokalaemia and even 

death do occur. These severe side effects require a patient to be closely monitored 

throughout the treatment course, so limiting the availably of treatment to well-

equipped hospitals and clinics. The cost of a treatment cycle ($2800 per regime) and the 

length of the cycle also restrict amphotericin B usage (Chappuis et al. 2007). 

In order to reduce toxicity the deoxycholate moiety has been replaced in some 

formulations with lipids to mask amphotericin B from vulnerable tissues. This has led to 

improved efficacy and reduced toxicity. There are three commercially available 
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amphotericin B preparations namely AmBisome (Nexstar Pharmaceuticals, Inc.) a 

liposomal amphotericin B formulation, Abelcet (The Liposome Co., Inc.) an amphotericin 

B lipid complex preparation and Amphotec (Sequus Pharmaceuticals, Inc.) a colloidal 

dispersion of cholesteryl sulfate and amphotericin B. AmBisome has been studied most 

extensively and a typical course involves 5 infusions of 2 mg per kg of body weight. It 

has been shown to produce high cure rates (>90%) when trialled in conjunction with 

conventional amphotericin B deoxycholate even when a short course of 5 days is 

implemented (Sundar et al. 2004). Moreover, the World Health Organisation has worked 

in conjunction with VL endemic countries to lower the cost of a treatment course of 

AmBisome to $18 per 50 mg vial as of January 2010 in an effort to make treatment more 

accessible, equating to a price reduction of 90% (WHO. 2013). In Bihar state, an area 

where VL is endemic and poverty widespread, antimonial resistance has become an 

increasing concern and so the implementation of a short treatment course could 

alleviate much of the burden felt by medical centres, staff, patients and their families. 

Pentamidine (Sanofi-Aventis) was originally used to treat African trypanosomiasis but 

was shown to be effective against Leishmania infections (Figure 1-3, compound 4). It 

requires parenteral administration and a standard treatment regime of 4 mg per kg of 

body weight per day for 10 to 20 days with breaks between infusions (Olliaro et al. 2005). 

Low efficacy and high toxicity has led to this drug being abandoned as a viable treatment 

option. The following side effects have been observed; hypotension, pain at the site of 

injection, nausea, headache, metallic taste, myalgia, numbness and reversible 

hypoglycaemia. The latter can in turn lead to irreversible insulin dependent diabetes 

mellitus in 4 to 12% of cases and even death (Monzote. 2009). 

Miltefosine (hexadecylphosphocholine or He-PC) is an alkyl phospholipid compound 

and was initially developed to treat breast cancer and other solid tumours before it was 

shown to have anti-parasitic properties (Figure 1-3, compound 3). In vitro studies with 

L. infantum and L. donovani promastigotes produced IC50 values between 0.89 and 2.25 

μg/ml (Kuhlencord et al. 1992). The parasite load in the liver, spleen and bone marrow 

of BALB/c mice was then used to directly compare the efficacy of Miltefosine with 

Pentostam. Both drugs were equally effective at reducing the parasite load in the liver 

but Miltefosine treatment led to a reduction of parasite load in the bone marrow and 

spleen significantly greater than that observed with Pentostam.  Miltefosine was already 
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approved for human trials as an anti-cancer drug so clinical studies were set up to 

determine its efficacy against human visceral leishmaniasis. Initial trials showed it to be 

highly efficacious and relatively safe when compared with other more toxic treatments. 

When directly compared with a cure rate of 97% obtained for amphotericin B 

deoxycholate in a controlled trial Miltefosine treatment reported a cure rate of 94.3% 

in 299 patients, leading to it being registered for VL treatment (Sundar et al. 2002). 

A standard treatment regimen depends on the weight of the patient and entails a daily 

dose of 50-100 mg for 28 days (Olliaro et al. 2005). In 10 days most patients feel better 

and this has led to them halting the treatment course early because of the high cost. 

This is of particular concern in areas where transmission is anthroponotic (e.g. India) as 

it is likely to lead to drug resistance. Therefore, compliance post-improvement is vital to 

maintain the longevity of Miltefosine as a viable treatment option. Miltefosine can be 

administered orally (and topically) so eliminating the need for hospitalisation and in turn 

reducing related treatment costs. Gastrointestinal complications are the most common 

side effects with Miltefosine treatment and include vomiting, nausea and diarrhoea in 

varying degrees of severity. Reversible nephrotoxicity and hepatotoxicity are less 

common but have also been observed. It is important to note that Miltefosine is 

teratogenic and cannot be given to pregnant women or those who are about to become 

pregnant (Sundar and Olliaro. 2007).  

Paromomycin (Figure 1-3, compound 6) is an aminoglycoside antibiotic that is effective 

against a wide range of protozoa and bacteria. It was first shown to have anti-leishmanial 

activity in the 1960s (Neal. 1968). However, its efficacy against human leishmaniasis was 

not assessed until the late 1980s. When directly compared with Pentostam for treating 

VL in a randomised controlled trial in Bihar it was shown to be more efficacious at 

producing a ‘final cure’ (Jha et al. 1998). Paromomycin was tested at 12, 16 and 20 mg 

per kg of body weight for 21 days while Pentostam was trialled at 20 mg per kg of body 

weight for 30 days. Four trial groups each comprising 30 patients were treated with one 

of the aforementioned regimes. The Paromomycin treated groups observed a ‘final cure’ 

of 23, 28, and 29 patients (12, 16, and 20 mg/kg/day respectively) 180 days after 

treatment compared with 19 of the patients given antimony. Intravenous or 

intramuscular administration is required as the drug is poorly absorbed when taken 

orally. It can also be applied topically in combination with a variety of supplementary 
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compounds to treat CL. Combination with methylbenzethonium chloride has been 

shown to be most effective while urea and soft paraffin have been used in some less 

efficacious formulations (Kim et al. 2009). Pain at the site of injection, reversible 

ototoxicity and an increase in hepatic transaminase levels are associated side effects of 

Paromomycin use. The low cost of a course of treatment, which is $15 for a 21 day 

regime, makes Paromomycin a particularly appealing option (WHO. 2013). However, 

limited availability restricts widespread usage in endemic areas. 

Sitamaquine is an 8-aminoquinoline analogue developed by the Walter Reed Army 

Institute in conjunction with GlaxoSmithKline for the treatment of VL (Figure 1-3, 

compound 5). It like Miltefosine can be administered orally. Reversible 

methemoglobinemia, which causes cyanosis, is a common side effect of Sitamaquine 

treatment and biochemical monitoring is constantly required throughout a treatment 

regime. Dyspepsia, vomiting and acute nephritic syndrome (in particular glomerular 

nephritis) have also been observed after Sitamaquine treatment (Singh et al. 2012). In a 

Phase 2 trial against L. chagasi the efficacy of Sitamaquine was suboptimal after 28 days 

of treatment (Dietze et al. 2001). Final cure rates were 0%, 17%, 67%, 20% and 0% at 

doses of 1 mg, 1.5 mg, 2 mg, 2.5 mg and 3.25 mg per kg per day over 28 days 

respectively. However, efficacy and toxicity require further investigation to better 

understand how Sitamaquine can fit into the arsenal of anti-leishmanial treatments. 

Combinatorial therapy is steadily becoming standard practice to mitigate unfulfilled 

treatment needs, extend the lifetime of current drugs, reduce the overall cost and 

shorten treatment schedules. In order for co-administration to be successful, 

pharmacological and practical considerations must be taken into account. One tried and 

tested combination is Paromomycin with antimony, which has proved efficacious and 

relatively innocuous but is limited by increasing resistance to antimonials (Olliaro et al. 

2005). In Sudan between 2002 and 2005 the efficacy of Pentostam in combination with 

Paromomycin was compared with antimony alone (Melaku et al. 2007). A regime of 30 

days of Pentostam was replaced with 17 days of combination therapy. Initial cure rates 

highlighted the comparable efficacy of combination therapy (97%) with monotherapy 

(92.4%). Data collected also intimated that combination therapy led to a reduced 

instance of death when directly compared with monotherapy. In order to devise new 

antimony free combinations in vitro and in vivo studies were carried out with miltefosine 
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in combination with amphotericin B, sodium stibogluconate, paromomycin and 

sitamaquine (Seifert and Croft. 2006). Notably in vitro and in vivo techniques reported 

conflicting values; for example amphotericin B was effective in vivo but suboptimal in 

vitro whereas the converse was true for sodium stibogluconate. Induction of double 

resistance to multiple drug combinations in L. donovani emphasised the ease of double 

resistance development when treatment is not sufficiently controlled (Garcia-

Hernandez et al. 2012). This highly problematic issue could hinder two treatment 

options instead of one. Clarification of the variables that impede efficacious 

combinations, such as species specificity, is the focus of this work. 
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Figure 1-3: Current anti-leishmanial drug compounds. (1) Amphotericin B (2) Sodium stibogluconate (3) 
Miltefosine (4) Pentamidine (5) Sitamaquine (6) Paromomycin and (7) Meglumine antimoniate. 
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1.2.4. Vaccine development 

There is currently no effective vaccine licensed for the prevention of any form of 

leishmaniasis licensed for use in humans. Recovery from infection induces lifelong 

immunity in the host so development of an effective vaccine is achievable, while 

epidemiological enquiry suggest that a degree of cross-protection between Leishmania 

species is possible (Modabber. 2010). Unfortunately, progress has been limited. 

‘Leishmanization’ is the process of inoculating a patient with live virulent L. major 

causing a self-healing lesion that affords protection against further infection. However, 

this vaccination programme has been discontinued as in some cases it can cause 

persistent infection and is particularly hazardous to the health of co-infected patients 

(Khamesipour et al. 2012). 

Attempts to produce a prophylactic vaccine using inactivated parasites have garnered 

attention over the past several decades. The ease with which parasites can be grown in 

culture and the low comparative cost associated with production made this an attractive 

solution but is yet to yield an efficacious product. In Colombia randomised clinical trials 

were carried out in three doses with a monovalent L. amazonensis vaccine to establish 

safety and immunogenicity (Velez et al. 2005 as reviewed by Noazin et al. 2008). The 

vaccine was shown to be safe and immunogenic but afforded no protection against 

infection. This finding is corroborated by results from other studies reviewed by Noazin 

et al. (2008) and is consistent with an insufficient immune response produced by whole 

killed parasites in terms of duration and relevance.  

Immunochemotherapy combines chemotherapeutic treatment with vaccination to elicit 

an overall cure in the most challenging cases such as HIV co-infection and difficult to 

treat diffuse leishmaniasis. An immunochemotherapeutic regime can be used to reduce 

the dose of antimonials required for a final cure to mitigate the highly toxic side effects 

associated with treatment. In a controlled trial half the standard dose of Glucantime was 

combined with a L. amazonensis vaccine and achieved 100% cure rate after no more 

than four treatment cycles (Machado-Pinto et al. 2002). The high incidence of persistent 

post-kala-azar dermal leishmaniasis in Sudan warranted an initial trial to evaluate the 

impact of immunochemotherapy on cure rates. An L. major vaccine with the Bacille 

Calmette-Guérin (BCG) adjuvant was tested in combination with Pentostam compared 
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with an antimony only group. Notably 60 days after the start of treatment 87% of the 

immunochemotherapeutically treated patients were cured compared with 53% in the 

antimony alone group (Musa et al. 2008). 

Sequencing Leishmania genomes (L. major, L. infantum, L. braziliensis, L. mexicana and 

L. donovani genomes have been sequenced to date) and an improved understanding of 

Leishmania pathogenesis has revealed new lines of inquiry (Kumar and Engwerda. 

2014). In particular, genomic analysis has shown a large degree of sequence homology 

between species, leading to the conclusion that it may be possible to generate broadly 

effective vaccines against different forms of leishmaniasis. The genetic heterogeneity 

required to produce the various clinical manifestations is achieved by variations in 

chromosome number and increased gene expression due to chromosome amplification 

(Rogers et al. 2011). 

Numerous recombinant proteins, either alone or with adjuvant, have also been tested 

as potential vaccines in preclinical trials. HASPB, a protein from the family of hydrophilic 

acylated surface proteins that are membrane associated proteins of unknown function 

expressed at human infective extracellular (metacyclic) and intracellular (amastigote) 

stages, has been shown to be immunogenic in mice conferring considerable protection 

to VL challenge without adjuvant and leading to significant control of the parasite 

burden (70 to 90% protection was reported at day 80 post-infection) in the spleen 

(Stäger et al. 2000). This is particularly noteworthy because of the persistent nature of 

parasitic infection in the spleen even after chemotherapeutic treatment. Moreover, 

HASPB1 immunisation induces production of IL-12p40 (the 40 kDa subunit of IL-12) and 

IL-12 (heterodimeric cytokine made up of IL-12p40 and IL-12p35) by splenic dendritic 

cells, which is a key component of the early immune response to Leishmania infection 

as neutralisation of IL-12 leads to elevated parasite numbers in the spleen and liver. 

Further work by Stäger et al. (2003) showed that natural antibody recognition of HASPB1 

led to downstream regulation of complement dependent pathways that in turn lead to 

IL-4 production. This subsequent production of IL-4 led to a cytokine cascade resulting 

in CD8+ T cell priming, which is vital to the development of an efficacious Leishmania 

vaccine. The protective capacity of HASPB as a viable vaccine component was further 

investigated against canine VL (L. infantum) with and without Montanide™ ISA 720 

(SEPPIC) as an adjuvant (Moreno et al. 2007). Dogs were immunised subcutaneously 
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three times over 3 months with varied Leishmania specific antigens and then challenged 

with 108 virulent promastigotes. In the HASPB inoculated groups (either alone or in 

combination with histone H1 protein) 50% of animals immunised were protected from 

infection. HASPB1 intervention leads to a marked increase in antigen specific antibody 

production in both symptomatic and asymptomatic dogs. 

Recent development of a recombinant adenovirus based vaccine (Ad5-KH) is of 

particular interest to this project (Maroof et al. 2012). It encompasses synthetic versions 

of the Leishmania antigens hydrophilic acylated surface protein B (HASPB) and 

kinetoplastid membrane protein 11 (KMP11). Single vaccination with Ad5-KH inhibited 

splenic parasite growth by 66% compared with the control after the mice had been 

infected with L. donovani for 21 days prior to immunisation. This project is in the final 

pre-clinical stages and will be taken further.  

 

1.2.5. Life cycle of Leishmania 

The Leishmania parasite has a digenetic life cycle, colonising the female phlebotomine 

sandfly and the mammalian host (Figure 1-4). It lives extracellularly in the sandfly midgut 

as the mammalian infective metacyclic promastigote migrating to the proboscis and 

when a blood meal is taken the mammalian host is inoculated with parasite. The 

metacyclic promastigote is defined by a small cell body, a long motile flagellum and its 

resistance to complement mediated lysis. After inoculation the promastigotes are 

phagocytosed by the macrophage of the innate immune system. However, when 

internalised into the phagolysosome, instead of being destroyed, the parasite is able to 

differentiate into the non-flagellated highly replicative amastigote form and multiply 

whilst evading the immune system. The change in the extracellular environment, an 

increase in temperature from 33 to 37°C and decrease in pH to 5.5, facilitates this 

differentiation and has been shown to elicit the same response in vivo (McConville and 

Handman. 2007). Notably this intracellular differentiation step is a key stage in the life 

cycle of the parasite and is vital to establish infection in the mammalian host. These 

infected macrophages will then rupture over time, spreading the infection by releasing 

the infective parasites.  
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When a new sandfly feeds on this infected host the tissue damage associated with 

feeding allows it to ingest infected macrophages from the skin. These macrophages are 

subsequently lysed in the sandfly midgut, which releases the amastigotes that then 

transform into rapidly dividing, non-infectious stage procyclic promastigotes due to the 

ensuing change in environment (decrease in temperature and increase in pH). 

Subsequent escape from the peritrophic matrix, a semi-permeable chitin, protein and 

glycoprotein-rich protective structure that encases the blood meal in the midgut of the 

sandfly, is facilitated primarily by parasite chitinases and differentiation of the parasite 

into strongly motile long nectomonad promastigotes (Dostalova et al. 2012). The non-

infective stage promastigotes undergo a process of attachment to the midgut wall, 

release and anterior migration to the thoracic midgut and towards the stomodeal valve 

associated with their differentiation from leptomonad promastigotes into non-dividing 

metacyclic promastigotes. This process is known as metacyclogenesis. This migration 

and differentiation of the parasite means that when the next blood meal is taken the 

sandfly is primed to inoculate a new host. The parasite is able to spread from host to 

host effectively by constantly adapting to the diverse environments it encounters. 

To survive in these immensely disparate environments, the parasite has evolved a 

sophisticated array of stage-regulated membrane-bound components and secreted 

factors to aid host colonisation (Corrales et al. 2010). The dense coat of 

lipophosphoglycan (LPG) expressed on the entire surface, including the flagellum and 

known as the glycocalyx, is dynamically regulated according to the lifecycle stage. The 

modified variants of the LPG coat have been shown to confer resistance in both hosts, 

from complement mediated lysis and the sandfly immune response, while also 

facilitating vector: parasite interactions such as midgut attachment (Sacks et al. 2000). 

This survival is analogous to the parasite functioning as a biomolecular Swiss army knife 

continually adapting protein expression to face the persistent challenges of host 

establishment. It therefore seems prudent to investigate and characterize these 

membrane-bound factors to gain a greater insight into parasite infectivity, which can in 

turn inform and be used to develop more effective intervention strategies. 

Metacyclogenesis is a vital developmental process of the Leishmania parasite and is 

required to produce the mammalian infective metacyclic promastigote. Intensive study 

of this process has identified the genes of the LmcDNA16 locus (Section 1.3) as vital for 
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parasite development in the sandfly and highlighted them as potential targets to disrupt 

transmission to the mammalian host (Sadlova et al. 2010). This locus, located on 

chromosome 23, encodes five stage-regulated genes found in all human-infective 

Leishmania species. These genes encode the hydrophilic acylated surface proteins 

HASPA1, HASPA2 and HASPB and the small hydrophilic ER associated proteins SHERP1 

and SHERP2 (Flinn et al. 1992). HASPB protein expression was shown to be strongly 

upregulated in metacyclic promastigotes (Alce et al. 1999). Notably, protein expression 

varies between Leishmania species, in L. major HASPB is initially expressed in metacyclic 

promastigotes, which continues into the amastigote form. While in L. mexicana HASPB 

expression is greater in the amastigotes rather than the metacyclic promastigotes 

(Depledge et al. 2010). HASPA1 and HASPA2 expression has currently been studied and 

published at the mRNA level (Flinn et al. 1992). HASPA1 is expressed in metacyclic 

promastigotes and continues to be expressed in amastigotes like HASPB. HASPA2 is 

expressed in procyclic promastigotes after differentiation from amastigotes directly 

after sandfly uptake of the parasite. This expression continues until the parasite 

differentiates back into the amastigote form inside the mammalian host. Recent analysis 

of the stage-regulated expression of the HASPAs showed that HASPA1 expression is 

predominately observed in amastigotes, while HASPA2 is seen in promastigotes (Doehl 

et al. unpublished data). SHERP protein expression commences at the late leptomonad 

stage where the highest expression is observed in metacyclic promastigotes (Knuepfer 

et al. 2001). 
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Figure 1-4: The digenetic life cycle of the Leishmania parasite (taken from Sacks et al. 2002). When an 
infected female sandfly takes a blood meal the human host is inoculated with metacyclic promastigotes. 
Macrophage mediated phagocytosis leads to phagolysosome internalisation. This environmental changes 
induces differentiation of the parasite into the resistant non-flagellated amastigote form. Multiplication 
by binary fission follows until the host cell can no longer contain the parasitic burden and ruptures, 
releasing amastigotes capable of infecting further macrophages. A subsequent bloodmeal transfers the 
infection to another sandfly. Ingested amastigotes enter the midgut of the sandfly and differentiate into 
procyclic promastigotes. Gut wall attachment facilitates further multiplication and after 6-9 days they 
become metacyclic. The metacyclic promastigotes migrate to the pharyngeal valve and are transferred at 
the next bloodmeal. Taken from Sacks et al. (2002). 

 

1.3 The LmcDNA16 locus and the HASPs 

The HASPs, of the LmcDNA16 locus, share highly conserved N- and C-terminal regions 

(Figure 1-5); demonstrated by Alce et al. (1999) with structural alignment data. There is 

little variation in the highly related HASPAs, while the HASPBs contain a highly charged 

repeat region (Flinn et al. 1994). Repeat-containing proteins are a common theme of 

protozoan parasites and are often involved in the evasion of the host immune system or 

play a role in virulence, however, this does not imply antigenicity. The repeat region of 

HASPB, although presently functionally undefined, has been implicated as the cause of 

HASP immunogenicity (Jensen et al. 1999). The size, number and amino acid 

composition of these repeats vary between the different Leishmania species and within 
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each distinct species. Notably L. mexicana HASPB has 3.5 repeats whereas L. donovani 

HASPB1 contains 22 (McKean et al. 1997). It is of interest that during the design of the 

haspb gene used in the Ad5-KH viral vaccine 19 isolate-specific HASPB repeat region 

variants were identified from VL-causing strains highlighting inter and intra-species 

variation of the repeats (Maroof et al. 2012). 

The focus of the project is visceral leishmaniasis and therefore the L. donovani HASPs 

will be discussed here. The three HASPs are termed HASPA, HASPB1 and HASPB2 and 

have molecular weights of 9.5, 43.4 and 15.2 kDa respectively.  Alignment of these three 

proteins emphasizes the conserved nature of the N- and C-terminal domains (Figure 1-

6). HASPA contains a species non-specific (i.e. the amino acid composition is not 

conserved) linker region that connects the N- and C-terminal regions. HASPB1 contains 

22 imperfect repeats of PKEDGHTQKNDGDG that encompass some amino acids 

substitutions while HASPB2 has 2.5 repeats. The highly charged nature of these repeats 

is highlighted in the sequence alignment of the L. donovani HASPs (Figure 1-6). It is 

noteworthy that the L. donovani HASP repeats have a lower proline content than the L. 

major repeats (Alce et al. 1999). Analysis of the theoretical isoelectric point (pI) of the 

three HASPs with the ProtParam tool from ExPASy returned values between 4.7 and 4.9 

(Gasteiger et al. 2005). The charged nature of these proteins causes aberrant migration 

of the proteins on SDS-PAGE and has also been noted in regards to the L. major HASPs 

(Section 4.3.1.).  
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Figure 1-5: Domain composition of the L. donovani HASPs. The conserved N- and C-terminal regions are 
shown in green and blue respectively. The N-terminal region encompasses a dual acylation motif, whereby 
the N-terminal glycine is firstly myristoylated and then sequentially palmitoylated at the highlighted 
cysteine. This motif is vital for secretion and is found in all three HASPs. L. donovani HASPB1 contains 22 
repeats of the PKEDGHTQKNDGDG motif, represented by the striped domain, where HASPB2 contains 2 
and a half imperfect repeats. HASPA shares the first 23 amino acids with the HASPBs but the pink domain 
represents a short linker region, not found in the other HASPs. Residue numbers are included to accurately 
represent protein sizes. 
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1.3.1. The dual acylation motif and its role in alternative secretion 

The HASPs contain no signal peptides, membrane spanning domains or GPI anchor motif 

for membrane association but they are known to be membrane-associated. Denny et al. 

(2000) implemented a deletion strategy that pin-pointed the first 18 residues of HASPB 

as essential for membrane targeting. They were then able to visualise the trafficking of 

chimeric HASPB18-GFP to the plasma membrane using fluorescence microscopy of fixed 

procyclic parasites. Further investigation of the membrane association of HASPs by 

MacLean et al. (2012) demonstrated that full length endogenous HASPB in metacyclic 

parasites was able to translocate to the external surface of the plasma membrane. 

Moreover, FRAP (fluorescence recovery after photobleaching) analysis of HASP18-GFP 

highlighted the bidirectional nature of its association with the inner leaflet of the cell 

membrane and the flagellum, which is a characteristic of alternative secretion of 

trypanosomatids parasites (Field et al. 2007). Initial work by Flinn et al. (1994), 

visualising HASPB at the flagellar pocket and plasma membrane, agreeing with this 

finding. Although the exact biological function(s) of the HASPs have remained elusive 

(McKean et al. 2001), MacLean et al. (2012) visualised endogenous HASPB from 

metacyclic promastigotes throughout and immediately after phagocytosis on the 

surface of macrophages. Moreover, expression is retained in intracellular amastigotes 

and HASPB is not detected on the outer membrane of the parasite at this stage. This 

hints at a two-phase mechanism for HASP action but requires further clarification.   

Notably the N-terminal region encompasses a dual acylation motif, whereby it is firstly 

myristoylated and then palmitoylated (shown in Figure 1-5). This dual acylation of the 

motif is vital for membrane trafficking and presentation of HASPB, as the HASPs have no 

classical signal peptide that is required for Golgi-dependent secretion. An alternative 

secretory mechanism is involved in membrane presentation but the exact mechanism 

remains elusive (Nickel. 2005).  N-myristoylation of HASPB is a co-translational event 

mediated by N-myristoyltransferase (NMT) a major drug target in current research, as 

part of a processing cascade that facilitates membrane secretion. It would be of great 

biological and pharmacological interest to examine this interaction.  
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1.3.2. The HASP expression profile in relation to parasitic infectivity 

HASP expression correlates with parasite infectivity, whereby expression and 

localisation at the plasma membrane are seen in the metacyclic and amastigote life 

stages (Flinn et al. 1994). Moreover, it has recently been shown that New World L. 

(Viannia) braziliensis expresses HASP predominantly at the intracellular amastigote life 

stage (Depledge et al. 2010). This is of particular importance when you consider the 

interest in these proteins as vaccine targets because it had previously been reported 

that Leishmania (Viannia) parasites had entirely lost the HASP genes from their 

genomes. 

Sadlova et al. (2010) demonstrated that knockdown of the LmcDNA16 locus in vivo 

inhibits metacyclogenesis, the transformation of poorly infective procyclic 

promastigotes into mammalian host infective metacyclic promastigotes, hinting at the 

essential role that the HASPs play in parasite differentiation to the metacyclic 

promastigote stage in the sandfly. Colonisation of the stomodeal valve by Leishmania 

parasites is vital for efficient transmission to the mammalian host. Null and SHERP add 

back parasites were not able to colonise the stomodeal valve, a small percentage of 

+SHERP parasites were weakly attached, unlike the wild type and HASPB add back 

parasites. Null and SHERP add back parasites accumulated at the elongated nectomonad 

promastigote stage of development and had longer bodies. Wild type and HASPB add 

back lines had the largest proportion of short bodied metacyclic promastigotes. Taken 

together these data allows the parasites to be separated into two groups with wild type 

and HASPB add back lines showing classical Leishmania development while null and 

SHERP add back lines demonstrate impaired development and consequently impaired 

infectivity. Thus HASP expression is stage specific and the HASPs are a definitive marker 

for metacyclogenesis and in turn parasite infectivity. 

Treatment of BALB/c mice with HASPB without adjuvant leads to significant antibody 

production, indicating that HASPB is a potent antigen (Stäger et al. 2000 and 2003). 

Recombinant HASPB1 from L. donovani was used to diagnose VL and PKDL in Sudan 

using ELISA (enzyme-linked immunosorbent assay), which detected 92% (VL) and 93% 

(PKDL) of cases correctly (Jensen et al. 1999). These findings led to HASPB being explored 

as a potential vaccine candidate (see Section 1.2.4) and the subsequent Ad5-KH project 



40 
 

(Maroof et al. 2012). Discussion of what is known and not known about the HASPs 

highlights the importance of further characterisation to enable therapeutic work to 

progress and determine a functional role in vivo.   

 

1.4 Protein Acylation: Palmitoylation and N-Myristoylation 

Lipid modifications add a distinct layer of functionality to the proteome and facilitate a 

variety of processes including protein-protein interactions, subcellular targeting and 

membrane association. Fatty acylation can be co- or post-translational in nature and a 

wide variety of lipids can be attached through acyl linkages. Two types of acylation in 

proteins will be discussed here, namely S-palmitoylation and N-myristoylation that 

consist of the addition of palmitate and myristate, respectively. 

 

1.4.1. S-Palmitoylation 

Protein S-palmitoylation involves the thioester linkage of palmitate, a C16:0 long chain 

fatty acid, to the thiol group of a cysteine residue and is the most common eukaryotic 

protein acylation modification. Fatty acids other than palmitic acid are occasionally 

thioesterified to proteins and these can be saturated, mono- or polyunsaturated but 

must be C14 or longer. Addition of palmitate increases protein hydrophobicity, which in 

turn enhances the membrane affinity of otherwise cytosolic proteins. This post-

translational modification is used to modulate the functionality of specific proteins and 

has been implicated in protein sorting and trafficking between distinct intracellular 

compartments, protein-protein interactions, protein stability and membrane 

localisation (Smotrys and Linder. 2004). The reversibility of this process adds an 

additional layer of regulation to target proteins, enabling highly dynamic subcellular 

trafficking. The rapidity of this turnover is emphasised when you consider that the 

lifetime of a palmitoyl moiety on a protein is significantly shorter than that of the 

palmitoylated protein itself (Corvi et al. 2011). This short lifetime allows for successive 

rounds of palmitate addition and removal, facilitating the wide array of associated 

processes. 
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Palmitoylation is predominantly regulated by two groups of enzymes, termed palmitoyl 

acyltransferases (PATs) and palmitoyl acylthioesterases (see Figure 1-7). PATs catalyse 

the addition of palmitate to the substrate protein, while the palmitoyl acylthioesterases 

catalyse palmitate removal. PATs are multi-spanning membrane proteins typified by a 

conserved DHHC cysteine rich domain. Their active sites face the cytoplasm and they are 

found on various membranes, mainly the Golgi and the ER but also the plasma 

membrane, endosomes and organism-specific membrane assemblies (Frénal et al. 

2013). The integral membrane nature of the PATs has made their study challenging 

owing to the difficulties associated with membrane protein purification. Erf2 and Akr1, 

both yeast proteins, the first identified DHHC domain PATs were shown to palmitoylate 

the small GTPase Ras2 (Bartels et al. 1999; Roth et al. 2002; Lobo et al. 2002). 

Subsequently, multiple PATs were found in eukaryotes including yeast, mice, humans 

and protozoan parasites. The L. major genome encodes 20 DHHC domain PATs 

(Goldston et al. 2014). The large number of distinct PATs is due to their ability to 

selectively modify diverse targets and their diverse membrane distribution. Notably, 

PATs specifically accept unmodified or modified proteins and in the case of modified 

proteins they distinguish between different lipid modifications. 

Secreted proteins and peptides are palmitoylated by membrane-bound O-

acyltransferases (MBOATs). MBOATs are also multiple membrane-spanning proteins 

with a conserved histidine and asparagine in the active site. The histidine is surrounded 

by a patch of hydrophobic residues, while the asparagine is embedded in a hydrophilic 

region (Chang et al. 2011). The MBOAT family are categorised according to the three 

distinct functions they perform, namely protein or peptide acylation, acylation of the 

OH group of a cholesterol or diacylglycerol, and acylation of a lysophopholipid to 

produce a phospholipid (Matsuda et al. 2008). This functional diversity means that 

MBOATs are implicated in a range of biological processes, such as membrane lipid 

remodelling, neutral lipid biosynthesis and embryogenesis. Palmitoylation can also 

occur spontaneously in an enzyme independent manner. Auto-acylation has been 

reported for several mitochondrial proteins due to the high local concentration 

palmitoyl CoA in the organelle (Kostiuk et al. 2008). 
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Figure 1-7: Schematic representation of palmitoylation and myristoylation reactions. Palmitoylation: 
Palmitoyl acyltransferase (PAT) binds palmitoyl coenzyme A and the target protein (see Figure 1-8 for 
recognition sequence details). It is firstly auto-palmitoylated before transferring the palmitate to the 
substrate protein producing palmitoylated protein and coenzyme A. This reaction is reversible with 
palmitate removal catalysed by palmitoyl thioesterases. Myristoylation: N-myristoyl transferase (NMT) 
sequentially binds myristoyl coenzyme A and the substrate protein at the N-terminal glycine. Transfer of 
the myristate group to the glycine amine is catalysed leading to release of the myristoylated protein and 
coenzyme A (CoA). This process is irreversible and is typically a co-translational event but post-
translational myristoylation can occur when proteolytic processing generates a new N-terminal glycine. 

 

Protein palmitoylation targets are diverse and include peripheral and integral 

membrane proteins. The role of palmitoylation is a stabilising one for integral 

membrane proteins, where it is the prevalent lipid modification. Greater modification 

diversity is found in the peripheral membrane associated proteins, which can be either 

dual lipidated or singly palmitoylated (Nadolski and Linder. 2007). Myristoylation and 

prenylation are common modifications that precede palmitoylation. The first 

modification is always the prerequisite of appropriate palmitoylation. The addition of 

palmitate strengthens the membrane affinity of the substrate protein (Aicart-Ramos et 

al. 2011). In cases of dual lipidation, the palmitoylated cysteine is proximal to the other 
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modification site. As there is no single strict palmitoylation consensus sequence other 

than the requirement for cysteine, in silico predictions of the palmitoylome are 

unreliable. Grouping palmitoylated proteins based on the sequence context of the 

modification has assisted development of prediction algorithms (Hu et al. 2011). This 

produced three distinct palmitoylation recognition motifs, namely Type I (XCCX), Type 2 

(CXXC) and Type III (random), all with a preference for cysteine (shown in Figure 1-8). 

The highly variable context of the modification and recognition sites highlights its 

functional plasticity.  

 

1.4.2. N-Myristoylation 

N-myristoylation involves the covalent attachment of myristic acid (C14:0) via an amide 

bond to the amino-terminal glycine of a nascent eukaryotic or viral polypeptide (see 

Figure 1-7). This process is irreversible and predominantly co-translational, taking place 

while the polypeptide is still attached to the ribosome after removal of the terminal 

methionine by methionine aminopeptidase. Like palmitoylation, addition of the 

myristoyl moiety increases the hydrophobicity of the target protein facilitating 

membrane association. However, additional forces are required to facilitate effective 

membrane binding, such as palmitoylation or a sequence high in basic residues, since 

myristoylation alone is too weak to mediate irreversible binding. The comparably short 

myristate chain has a limited capacity for hydrophobic and van der Waals interactions 

giving rise to the lower membrane affinity (Goldston et al. 2014). Notably, the half-life 

of a membrane-associated myristoylated peptide is minutes while a palmitoylated 

peptide is bound for hours (Martin et al. 2011). Myristoylation is associated with diverse 

biological processes such as signal transduction, protein phosphorylation and 

dephosphorylation, oncogenesis and viral assembly. N-myristoylation is catalysed by N-

myristoyltransferase (NMT), a ubiquitous eukaryotic protein (see Section 1.5).  

It was previously thought to be exclusively a co-translational event but myristoylation 

also occurs post-translationally in apoptotic cells (Martin et al. 2011). It has been 

implicated in caspase-mediated cleavage of internal glycine residues and subsequent 

myristoylation of cryptic myristoylation consensus sites. The pro-apoptotic protein Bid 

was shown to be post-translationally myristoylated by NMT after caspase 8 cleavage and 
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trafficked to the mitochondrial membrane (Zha et al. 2000). This process was shown to 

be a vital activating step required for Bid-induced release of cytochrome c and cell death. 

Although myristoylation is irreversible, membrane association can be dynamically 

regulated in some target proteins termed ‘myristoyl switches’. These proteins are able 

to adopt two distinct conformations, one where the myristoyl moiety is buried in the 

hydrophobic core of the protein and the second where the myristate is free to interact 

with the membrane. This conformational change can be modulated by ligand binding, 

proteolysis and electrostatic interactions. Recoverin, a 23 kDa neuronal protein, is a 

myristoyl switch modulated by calcium binding. In the absence of calcium, the myristoyl 

group is buried in the hydrophobic core of the N-terminal domain. The binding of two 

calcium ions to each recoverin molecule induces a conformational change that expels 

the myristoyl moiety and exposes hydrophobic residues on the surface. NMR analysis 

highlighted three distinct conformational states and notably a short-lived intermediate 

state with one calcium ion bound was confirmed (Xu et al. 2011). The dynamic nature of 

the conformational shifts observed in myristoyl switches enables functional regulation. 
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Figure 1-8: General myristoylation and palmitoylation recognition motifs. Myristoylation: Removal of the 
N-terminal methionine by methionine aminopeptidase prior to myristoylation is required to expose the 
glycine residue at position 2. The requirements of positions 3 to 9 are indicated above where X denotes 
any amino acid. Note position 6 does have a slight preference to serine over threonine.  Palmitoylation: 
There are three distinct palmitoylation recognition motifs, Type I (XCCX), Type 2 (CXXC) and Type III 
(random), located throughout the protein sequence. X represents any amino acids but a preference of 
neutral > basic > acidic has been documented. 

 

Consensus in the literature dictates that substrate recognition by NMT is dependent on 

the first 10 residues of a peptide or protein (Figure 1-8). NMT absolutely requires an N-

terminal glycine residue for attachment of the lipid moiety. The remainder of the 

sequence motif does not have such stringent requirements but there are clear 

preferences for amino acid type. Position 3 shows a preference for small uncharged 

amino acids, while positions 4 and 5 allow any residue. Serine and to a lesser extent 

threonine are found at position 6, mediating a stabilising interaction with NMT. The 

remaining sequence displays residue type preferences but is not rigidly selective 

(Goldston et al. 2014). Global analysis of myristoylated proteins, crystallographic and 

biochemical data enabled refinement of the myristoylation motif and prediction of 

additional myristoylated proteins (Maurer-Stroh et al. 2002). Maurer-Stroh and co-

workers expanded the recognition motif to the first 17 residues split into three distinct 
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regions. Region 1 (residues 2 to 7) binds in the active site of the enzyme, region 2 

(residues 8 to 11) interacts with the surface of NMT comprising small polar residues and 

region 3 (residues 12 to 18) is a hydrophilic-rich linker region. This hydrophilic region is 

thought to obstruct N-terminal folding that would inhibit NMT recognition and 

interaction. Lastly, it is important to mention that the peptide binding site of NMT is not 

highly conserved between species. This means that recognition sequences between 

species vary and there is no strict myristoylation motif for all NMTs. 

 

1.5. N-Myristoyltransferase 

N-Myristoyltransferase (NMT) facilitates a diverse array of cellular processes through 

the transfer of myristate from myristoyl CoA to eukaryotic or viral proteins. Two distinct 

NMTs catalyse N-myristoylation in vertebrates, namely NMT1 and NMT2, while only one 

is present in lower eukaryotes. NMTs have been cloned and purified to homogeneity 

from a wide range of eukaryotic organisms. Analysis of the NCBI Gene database confirms 

that the NMT encoding gene is present in 53 organisms, including humans, kinetoplastid 

parasites, yeast and fungi (Martin et al. 2011). The most detailed characterisation has 

been carried out on Saccharomyces cerevisiae NMT and this genetic analysis highlighted 

the important role that NMT plays in cell viability (Duronio et al. 1989). This 

characteristic has been subsequently observed in other NMT-expressing organisms. 

Non-hydrolysable myristate analogue treatment, to inhibit NMT function, of L. major 

promastigotes led to significant cell death (Price et al. 2003). Additionally, NMT is 

implicated in the development and progression of a range of human diseases, including 

cancer, epilepsy and bacterial and viral infections (Selvakumar et al. 2007; Selvakumar 

et al. 2005; Maurer-Stroh and Eisenhaber. 2004). Global assessment of the human 

proteome to estimate and identify potential targets of myristoylation has highlighted 

the ubiquity of this modification and clarified its vital role in eukaryotic biology (Thinon 

et al. 2014).  

A search of the RCSB Protein Databank (PDB) reveals that the structure of NMT had been 

solved for a range of organisms, including Leishmania major, Saccharomyces cerevisiae, 

Homo sapiens, Leishmania donovani, Plasmodium vivax, Aspergillus fumigatus and 

Candida albicans. These structures show the enzyme to be monomeric with a compact 
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globular structure (Bhatnagar et al. 1998). The NMT fold is the term given to the 

common structural features of NMT. It consists of a saddle shaped β sheet spanning the 

core of the protein encircled by several α helices. The structure exhibits pseudo two fold 

symmetry. Co-crystal structures with myristoyl CoA and peptide analogues bound show 

that the N-terminal domain binds myristoyl CoA in a bent question mark conformation, 

while the C-terminal domain binds the peptide substrate (Bhatnagar et al. 1998; Farazi 

et al. 2001a). 

Biochemical and structural analysis confirmed that the myristoyl CoA binding site is 

highly conserved between species (Johnson et al. 1994; Bhatnagar et al. 1994). However, 

the peptide binding sites are divergent (see Section 1.4.2). Peptidomimetic inhibitors 

were developed to specifically target fungal NMTs over the human variants and shown 

to be particularly selective (Lodge et al. 1998). Unfortunately, the cost of development 

and the high species specificity, anti-fungal treatments require broad species specificity, 

meant this work was abandoned. However, selectivity is a desirable quality for the 

treatment of other infections and human diseases associated with NMT. Transferring 

the concept of NMT druggability to other species could produce a wealth of highly 

selective compounds for the treatment of human disease. 

 

1.5.1. The mechanism of N-Myristoyltransferase 

The catalytic cycle of NMT follows a sequential, ordered Bi-Bi mechanism (Figure 1-9). 

Myristoyl CoA binding to the apo-enzyme forms a high affinity myristoyl CoA: NMT 

complex, with a dissociation constant (Kd) of 15 nM reported for S. cerevisiae NMT 

(Bhatnagar et al. 1994). Formation of this complex induces a conformational change 

facilitating subsequent peptide binding. Incubation of S. cerevisiae NMT with S-(2-

oxo)pentadecyl-CoA, a non-hydrolysable myristoyl CoA mimetic, prevented 

myristoylation of a peptide substrate and confirmed that the peptide binds after 

myristoyl CoA binds (Rudnick et al. 1991). Formation of a ternary myristoyl CoA: NMT-

peptide complex leads to catalysis. The myristate group is transferred to the amino 

group of the peptide in a nucleophilic addition-elimination reaction. CoA is released first 

then the myristoylated peptide.  
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1.5.2. NMT of Leishmania species 

All Leishmania species have a single copy of the NMT gene that is constitutively 

expressed during the parasite lifecycle. 0.75% of L. major proteins are predicted to be 

myristoylated, in line with the predicted values of 0.5-0.8% of the proteomes of other 

eukaryotes (Mills et al. 2007). Inhibition of NMT was shown to have a detrimental effect 

on parasite viability, while overexpression induced distinct changes in parasite 

morphology associated with the subcellular accumulation of lipids that were 

consequently lethal (Price at al. 2003). Extensive proteomic profiling of the targets of L. 

donovani NMT identified numerous uncharacterized proteins, emphasising the wide 

ranging effects that NMT has on Leishmania biology (Wright et al. 2015). Combined with 

in vivo inhibition by established in vitro NMT inhibitors that led to a significant drop in 

myristoylation of target proteins, Wright and co-workers strengthened the case for the 

druggability of NMT in Leishmania. Moreover, the high sequence identity between NMT 

of different Leishmania species hints that an effective inhibitor against one NMT would 

be broadly applicable (Goldston et al. 2014). 

 

1.6 Aims of the project 

The focus of this project was the hydrophilic acylated surface proteins of Leishmania 

donovani. They have been shown to facilitate metacyclogenesis of the Leishmania 

parasite but their exact function remains unresolved. Elucidation of an X-ray 

crystallographic structure to determine function was the main aim of this project. 

Concurrent study of the HASP: NMT interaction, to contribute to the NMT drug 

development work, was also considered essential. 
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Chapter 2 - Backbone resonance assignment of HASPA 

2.1. Introduction 

2.1.1. Intrinsically disordered proteins 

The structure-function paradigm, that states a protein must have a defined 3D structure 

to elicit a specific function, has been a central tenet of biochemistry and structural 

biology. However, a class of proteins lacking clear 3D structure termed intrinsically 

disordered proteins (IDPs), are redefining this view. Intrinsic disorder in functional 

eukaryotic proteins has been shown to be more widespread than initially assumed. It 

has been estimated that 40% of the human proteome is intrinsically disordered or 

contains disordered regions of more than 50 residues (Kragelj et al. 2013). This lack of 

defined structure is thought to convey distinct functionalities over structured proteins, 

such as promiscuous protein-protein interactions, specific but low affinity binding, 

flexible linkers, ready accessibility for post-translational modifications and entropic 

chains. The hydrodynamic radius of an IDP is much larger than that of a folded protein 

of the same molecular weight giving rise to a larger surface area per amino acid for 

interactions. Moreover, disordered proteins can potentially be more readily degraded 

by proteases, meaning they can be effectively regulated by degradation. An additional 

layer of functional control is added by co- or post-translational modifications enabling 

significant functional plasticity. IDPs are found as hubs in protein-protein interaction 

networks such as the cell cycle and signal transduction pathways (Wright and Dyson. 

2015). Aberrant IDP regulation has been shown to be associated with various human 

diseases such as cancer, neurodegenerative diseases and diabetes (Babu et al. 2011). 

A rigidly structured protein is characterised by a distinct set of backbone and side chain 

atom positions. The sum of these values produces an averaged structure that is subject 

to small amplitude fluctuations about their equilibrium positions. The energy landscape 

associated with ordered proteins is assumed to be funnelled, exhibiting a kinetically 

accessible deep free energy minimum associated with a single well-defined tertiary 

structure (Figure 2-1). Intrinsically disordered proteins lack tertiary structure and exist 

as highly dynamic heterogeneous ensembles because the backbone and side chain atom 

positions and dihedral angles vary significantly over time. Their energy landscape (Figure 

2-1) is comparatively flat with a vast number of local minima, which leads to a series of 
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interconverting conformers in solution (Papoian. 2008). IDP biological partner or ligand 

binding events can funnel the free energy landscape to something more similar to an 

ordered state, producing transient or more long-lived secondary structured elements. 

Disorder is defined by the dynamic conformational properties of a protein and not 

necessarily by the presence or absence of local secondary structure.  

 

Figure 2-1: Schematic representation of the relationship between protein folding and energy landscape. 
The energy landscape of a folded protein (left) is funnelled making the stable state a thermodynamic 
minimum that is also kinetically accessible. IDPs (right) are characterised by a weakly funnelled or rugged 
landscape, meaning that no one state of order is favoured producing a population of dynamic disordered 
conformations. This image was taken from Kragelj et al. (2013). 

 

The disordered nature of IDPs is what makes them uniquely functional. Functionality can 

either be related to the structurally adaptive process of biological partner binding or 

their ability to sample highly dynamic heterogeneous ensembles alone. Structural 

plasticity means that IDPs can perform various distinct functions in vivo. For example, 

topological constraints can prevent rigidly structured proteins from forming complexes 

but IDPs are unhindered by these constraints, allowing them to bind their biological 

partners and in some cases various partners. Some IDPs are not fully disordered but 

contain elements that are predisposed to adopt local secondary structure required for 

biological partner binding, these regions are termed molecular recognition features 

(MoRFs). The disorder to order transition contains an inherent plasticity as one IDP can 

adopt multiple MoRFs, this behaviour is termed structural polymorphism. A disordered 

region at the C-terminal end of p53 can adopt four distinct MoRFs, one α helix, one β 

strand and two different coils, in order to interact with four distinct biological partners 

(Oldfield et al. 2008). Structural polymorphism highlights the exceptional plasticity that 

IDPs are able to bring to cellular processes. However, some IDPs remain disordered even 
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after target binding and form ‘fuzzy’ complexes. Sic1 is an IDP with an N-terminal 

multiple phosphorylation motif that on binding to Cdc4 regulates yeast cell cycle 

progression. Elements of disorder and transient order within Sic1 were both present 

when bound to Cdc4 (Mittag et al. 2010). 

Entropic chains are a distinct subset of IDPs that remain disordered and unbound to any 

biological partners to elicit their function (Tompa. 2005). In this case the ability of IDPs 

to fluctuate between a series of interconverting conformers is functionally vital, as one 

rigid structure could not fulfil such a role. Entropic chains are involved in modulating the 

localisation of attached domains or generating forces to elicit structural changes to a 

system. This class can be further differentiated into entropic springs, bristles (or 

spacers), linkers and clocks. The proline-rich PEVK domain of titin was shown to act as 

an entropic spring in muscle (Linke et al. 2002). The random coil properties of this 

domain produced various mechanical conformations of different flexibility when 

analysed by single atom atomic force microscopy. The projection domain of 

microtubule-associated protein 2 (MAP2) acts as an entropic bristle exerting long range 

repulsive forces that provide a mechanism for maintaining spacing in the cytoskeleton 

(Mukhopadhyay and Hoh. 2002). Entropic chains strengthen the case for revision of the 

structure-function paradigm, as both order and disorder are functional. 

The unique functionalities of IDPs have attracted attention as investigation of their 

dynamic nature could improve our understanding of biological systems and their disease 

states. Nuclear magnetic resonance (NMR) spectroscopy is a vital tool for analysing IDPs 

and can provide detailed conformational information (Konrat. 2014). Backbone 

resonance assignment of an IDP is a prerequisite for analysis of their dynamic nature 

and any residual structural elements. Specifically, an assignment is informative in cases 

of ligand or biological partner binding induced folding as residues implicated can be 

identified when they experience chemical shift and intensity changes associated with 

the binding event. However, it should be remembered that the plasticity of IDPs means 

induced folding as well as functional disorder are relevant biological states, meaning 

that a disorder to order transition will not be observed for all IDPs. 
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2.1.2. NMR background 

2.1.2.1. NMR theory 

For the sake of brevity, a detailed discussion of NMR theory is not included in this thesis 

but can be found in the following reference (Cavanagh et al. 2007). Instead, a more 

succinct discussion will be provided to ground the work presented here. NMR 

spectroscopy utilises the magnetic properties of certain atomic nuclei. Nuclei have a 

positive charge and many possess a net spin, specifically those with an uneven number 

of protons plus neutrons. This charged movement has a magnetic moment, which in 

turn produces a magnetic field. Consequently, nuclei can be thought of as a bar magnet 

that is oriented along the spin rotation axis. This feature is termed nuclear spin and can 

be aligned in any magnetic field, such as that generated by the magnet of an NMR 

spectrometer (James. 1998). The applied magnetic field means the nuclei orientation 

will no longer be random. For a nucleus with spin ½ (such as 1H) two spin states will exist 

where one aligns with the magnetic field (spin up) and the other opposes it (spin down). 

NMR spectra arise from the transitions nuclei make between these different energy 

states and can be observed for certain NMR active nuclei including 1H, 13C, 15N and 31P 

(Kwan et al. 2011). The resultant resonance differs depending on the type of nucleus 

under examination, the strength of the applied magnet field and the chemical 

environment of the nucleus. NMR is a site-resolved spectroscopic technique where the 

differences between different nuclei in the same residue of a protein are informative of 

the local environment and subsequently the structural state. 

 

2.1.2.2. Spectrum descriptions 

Protein NMR experiments are designed to report the chemical environment of atoms 

within the context of a protein sequence. This information can be used to determine 

structure, even that of dynamic structural elements, disorder and the content of any 

structure i.e. α helical or β sheet. An understanding of experimental features is required 

to effectively utilise any resultant data. Therefore, a brief description of the NMR 

experiments used here will follow. Figure 2-2 details the transfer of magnetisation of 

each experiment described and highlights the resonance frequencies of which atoms are 

detected. 
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A 2D 1H, 15N Heteronuclear Single Quantum Correlation (HSQC) is a versatile experiment 

for appraising a protein sample. Recording an HSQC spectrum allows confirmation that 

a protein is folded, appraisal of the suitability of a protein sample for NMR structural 

determination and detection of ligand binding or protein-protein interactions. The HSQC 

experiment involves the transfer of magnetisation from the amide proton to the 

attached nitrogen via an insensitive nuclei enhanced by a polarization transfer (INEPT) 

step. The chemical shift is evolved on the nitrogen and after a time delay (t1), the 

magnetisation is transferred back to the amide proton via a retro-INEPT step for 

detection (Figure 2-2). In theory each backbone amide group, with the exception of 

proline, should yield a peak in the HSQC spectrum (Bodenhausen and Ruben. 1980). In 

addition, a peak is observed for each indole NH of tryptophan and pairs of peaks are 

observed for the side chain amide groups of asparagine and glutamine (Kwan et al. 

2011). 

The HNCO is a 3D experiment that typically requires [U-15N, 13C] labelling of the sample 

protein. Magnetisation is passed from the amide bound proton to the 15N, as with the 

HSQC, then to the carbonyl 13C via the 15NH-13CO J-coupling (Kay et al. 1990). The 

magnetisation is transferred back via 15N to the amide proton for detection (Figure 2-2). 

The HNCO spectra is the most sensitive triple resonance experiment and correlates the 

amide group with the 13C of the carbonyl group of the preceding residue. This 

experiment also reports resonances for the side chain amides of asparagine and 

glutamine. The main purpose of the HNCO is to measure the resonance frequency of 

carbonyl atoms, so these can be correlated to the 15N amide resonances. In addition it 

is used for sequential assignment with the HN(CA)CO experiment. In this thesis, the 3D 

HNCO is used in a 2D 15N-HN plane. This appears similar to an HSQC of your target protein 

but reports amide peaks that are i+1 to the carbonyl group of the preceding residue.  

The HN(CO)CACB is a 3D experiment that requires 15N, 13C labelling of the sample 

protein. Initially, magnetisation is passed from i-1 residue 1Hα and 1Hβ to 13Cα and 13Cβ, 

respectively (Grzesiek and Bax. 1992a). Then from 13Cβ to 13Cα where it moves onto 13C 

of the carbonyl carbon. It passes to the i residue 15NH and then to 1HN for detection 

(Figure 2-2). This experiment links the Cα/β resonances of the previous residue (i-1) with 

the amide resonance of the i residue. The chemical shift is not evolved on the carbonyl 

13C. 
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The HNCACB is another 3D experiment requiring a 15N, 13C labelling pattern. 

Magnetisation is passed from 1Hα and 1Hβ to 13Cα and 13Cβ, respectively, on both the i 

and i-1 residues then from 13Cβ to 13Cα (Grzesiek and Bax. 1992b). It is transferred to 15N 

of the i residue from both 13Cα(i) and 13Cα(i-1) then to the amide proton for detection 

(Figure 2-2). So each amide group will produce four cross peaks for the two sets of Cα 

and Cβ resonances detected. 

 

 

Figure 2-2: Representation of the transfer of magnetisation and atoms detected in the HSQC, HNCO, 
HNCACB and HN(CO)CACB NMR experiments. The pink atoms are observed in the resultant spectra and 
the light blue atoms allow magnetisation to flow but are not detected. These images are taken from Dr. 
Vicky Higman. 2012. Protein NMR: A Practical Guide. Available at: http://www.protein-nmr.org.uk/. 
[Accessed 15 July 15]. 
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2.1.2.3. Triple resonance backbone assignment 

Triple resonance spectra recorded from a uniformly 15N, 13C labelled protein are the 

basis of backbone resonance assignment. These experiments consist of a 2D 1H, 15N 

plane expanded into the carbon dimension, by transferring magnetisation over the 

peptide bond. This process allows for separate spin systems to be connected through 

bonds and correlated back to their HSQC peaks. Note, in protein NMR a spin system 

refers to the group of nuclear spins associated with a single residue. A standard suite of 

3D experiments includes, HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB and 

CBCA(CO)NH. These spectra usually start and end on a proton to ensure appropriate 

sensitivity. In some cases the magnetisation is transferred back to the starting proton 

for collection and this type of experiment is termed ‘out and back’. These specific 

experiments are paired to build up this ‘logic puzzle’ of disparate resonances. However, 

the full suite of 3D experiments does not need to be collected on a sample as a full 

sequential assignment can often be completed with any two complementary spectra. 

Recording extra pairs of spectra clarifies any assignment ambiguity while adding an extra 

layer of confidence to the assignment. 

Conventional triple resonance assignment is based on pairing the HNCACB and 

CBCA(CO)NH spectra, although other pairings are available (Figure 2-3). These spectra 

correlate Cα and Cβ resonances with one amide resonance. The CBCA(CO)NH spectra, 

also termed HN(CO)CACB, relates the resonance of the i residue amide with the Cα and 

Cβ resonances of the previous residue (Grzesiek and Bax. 1992a). Two peaks 

corresponding to the Cα and Cβ are therefore visible for each residue. The HNCACB 

spectra, links the resonance of the i residue amide with the Cα and Cβ resonances of 

both the i residue and the previous (i-1) residue (Grzesiek and Bax. 1992b). Notably, the 

peaks relating to the i-1 residue are weaker. In both experiments the Cα and Cβ 

resonances are in opposite phase, meaning if one is positive then the other will be 

negative. This enables simple resolution of any Cα and Cβ ambiguity.  

To aid visualisation, the spectra are analysed as 2D strips, allowing strips from the pair 

of experiments to be correlated with resonances observed in the HSQC, compared or 

overlaid to facilitate the assignment (Figure 2-3). Four peaks are present in the strip of 

the HNCACB spectra, the Cα and Cβ resonances of the i residue and those of the i-1 
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residue, which are typically weaker in intensity. The peaks relating to the previous 

residue can be identified with the equivalent strip from the CBCA(CO)NH dataset. These 

strips of peaks can be sequentially linked to adjoining residues based on the positions of 

the Cα and Cβ resonances from both experiments. Certain residues (serine, threonine, 

glycine and alanine) have distinctive Cα and Cβ carbon chemical shifts and can be easily 

identified, which can aid the assignment process. The linked resonances can then be 

assigned to the protein sequence.  
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Figure 2-3: Schematic representation of HNCACB and CBCA(CO)NH based triple resonance assignment. 
Top) the HNCACB (blue) and CBCA(CO)NH (pink) spectra correlate Cα and Cβ resonances with the amide 
backbone allowing one amide group to be linked to another sequentially. Bottom) representation of the 
2D strips used to visualise and link the HNCACB (blue) and CBCA(CO)NH (pink) spectra. To differentiate 
the resonances of the HNCACB spectra the Cα resonances are shown in dark blue and the Cβ resonances 
in light blue. The distinctive chemical shifts observed for alanine, glycine, serine and threonine are noted 
to show how they give sequence context to an assignment. Both images are taken from Dr. Vicky Higman. 
2012. Protein NMR: A Practical Guide. Available at: http://www.protein-nmr.org.uk/. [Accessed 15 July 
15]. 
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2.1.3. Selective metabolic unlabelling 

Proton-detected 2D and 3D NMR experiments are the basis of backbone resonance 

assignment. Deconvolution of resultant data is key to effective assignment. Spectral 

congestion, and consequently signal overlap, is a problem when assigning intrinsically 

disordered proteins because of the limited dispersion of resonances in the 1H dimension, 

which is still problematic when taken into the 13C dimension. Correlating residue type 

within the context of a protein sequence with spin systems is difficult as the constant 

chemical environment gives little variation to the Cα/β chemical shifts. As already 

mentioned some residues have highly distinctive Cα and Cβ resonances, which can be 

used to link a resonance to a specific nucleus in a protein. However, in cases of low 

sequence complexity and/ or signal overlap due to disorder this information is not 

sufficient for a complete assignment. Specific metabolic precursors can be used to 

selectively unlabel certain residues in an otherwise uniformly labelled sample rendering 

them spectrally silent (Rasia et al. 2012). These precursors can be added as a supplement 

to regular M9 minimal media and combined with standard (13C, 15N) uniform labelling 

approaches. Thus, producing precise ‘NMR invisible’ residues in an otherwise uniformly 

labelled sample. Comparison of these spectra with those from uniformly labelled 

samples allows the user to assign a residue type to missing resonances. In particular, 

collection of a 1H, 15N HSQC spectrum on an unlabelled sample renders the selected 

residue ‘NMR invisible’. 2D 1H, 15N HNCO spectrum silences the i and i+1 residue, 

highlighting the amount of information that can be obtained from this method. This 

strategy allows the user to control which residues are unlabelled and gives predictable 

labelling patterns, significantly aiding the backbone assignment of challenging proteins. 

 

2.2. Experimental 

2.2.1. Circular dichroism of HASPA and HASPB1 

HASPA and HASPB1 were prepared as described in Section 4.2 and evaluated using the 

Jasco J810 CD Spectrophotometer installed at the Technology Facility, Department of 

Biology, University of York. The samples were analysed at 0.2 mg/ml in 20 mM sodium 

phosphate pH 7 with 50 mM sodium chloride in a 1 mm quartz cuvette. The buffer was 

filtered (pore size: 0.22 μm) before use. Data were collected between 195 and 260 nm. 
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2.2.2. Isotopic labelling of HASPA and HASPB2 

Minimal media were used to express 15N labelled HASPA and HASPB2 and 13C, 15N 

labelled HASPA. The M9 base solution was prepared (6 g Na2HPO4, 3 g KH2PO4, 0.5 g 

NaCl and 1 g 15NH4Cl in 1 l) and autoclaved. 15N ammonium chloride (99%) was obtained 

from Cambridge Isotope Laboratories. Kanamycin was added at a final concentration of 

50 µg/ml and the remaining media components added (see Table 2-1). The vitamin 

solution (0.22 µM filter sterilised) was obtained from Alex Heyam (University of York) 

and stored at 4˚C with protection from exposure to light. A 50 ml aliquot of the vitamins 

solution contains 625 mg of thiamine, 12.5 mg riboflavine and 125 mg of each of the 

following, pyridoxine, biotine, panthothenate, folic acid, choline chloride, and 

niacinamide. D-Glucose (U-13C6) from Cambridge Isotope Laboratories was used to 

supplement the minimal media to produce [U-15N 13C labelled HASPA]. 

Component Volume in 1 L Component Volume in 1 L 

Glucose (20% w/v) 10 ml 50 mM ZnSO4 1 ml 

1M MgSO4 1 ml 0.1 M FeCl3 0.6 ml 

0.1 M CaCl2 1 ml Vitamins 2 ml 

0.1 M MnCl2 1 ml   

Table 2-1: Components added to minimal media after base solution autoclaving. When 13C, 15N labelled 
HASPA was prepared D-Glucose (U-13C6) was used instead. 

 

The expression was carried out as follows, 10 ml aliquots of LB media supplemented 

with kanamycin were inoculated with E. coli BL21 (DE3) pET28b_haspa or 

pET28b_haspb2 glycerol stock. These cultures were grown for 8 hours at 37°C with 

shaking at 180 rpm and then the optical density at 600 nm (OD600) was measured. In 

order to inoculate the minimal media with the appropriate amount of culture, an aliquot 

was taken and centrifuged that, once resuspended, would give a starting OD600 of 0.05 

in 50 ml minimal media. The 50 ml culture was incubated overnight at 37˚C with shaking 

at 200 rpm. The OD600 was measured again to give the correct starting volume for 1 litre 

M9 media of overnight culture. The cultures were grown to OD600 of 0.8 to 1.0 at 37°C 

and 180 rpm. Protein expression was induced with addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) to 1mM and the cultures were transferred to 30°C for 6 

hours with shaking at 180 rpm. The cells were harvested by centrifugation for 15 

minutes at 5000 xg and the resulting pellets were stored at -20˚C. 
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2.2.3. Metabolic unlabelling of HASPA 

The production of the metabolic unlabelled HASPA samples was similar to 15N, 13C 

HASPA production (see Section 2.2.2) but the protocol modifications are noted here. At 

OD600 0.7 the 750 ml culture was split into three autoclaved 500 ml flasks, giving a final 

volume of 250 ml in each. At this stage the specific metabolic precursors were directly 

added to the culture in powder form and the flasks returned to 37˚C until an optical 

density of 1.0 was reached and then induced with IPTG (see Table 2-2). The three 

cultures were 1) lysine, 2) arginine and 3) isoleucine and valine unlabelled.  

Precursor Amount per litre of culture Amino acid unlabelled 

Arginine 200 mg Arginine 

Lysine 200 mg Lysine 

α-ketobutyrate 
(CAS number: 600-18-0) 

100 mg Isoleucine 

α-ketoisovalerate 
(CAS number: 3715-29-5) 

150 mg Valine 
Leucine 

Table 2-2: Metabolic precursors used to achieve amino acid specific unlabelling. 

 

2.2.4. Purification of labelled proteins 

The stored pellets were thawed and resuspended in 30 ml nickel column buffer A (50 

mM Tris pH 7.5, 500 mM sodium chloride, 20 mM imidazole) per 500 ml pellet 

supplemented with a protease inhibitor tablet (cOmplete, EDTA-free from Roche). The 

soluble cell suspension was sonicated 6 times on ice for 30 seconds with 1 minute 

intervals. Lysate clarification was achieved by centrifugation at 38000 xg for 30 minutes. 

The supernatant was loaded onto a 1 ml HisTrap FF crude column (GE Healthcare) 

equilibrated with nickel column buffer A and washed with 6 column volumes of the same 

buffer. The target protein was eluted using a gradient of 0 to 100% nickel column buffer 

B (50 mM Tris pH 7.5, 500 mM sodium chloride, 500 mM imidazole) over 20 column 

volumes. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) was 

used to identify target protein containing fractions that were concentrated (Vivaspin 

Sample Concentrator range, 3000 MWCO) to 500 µl for further purification with size 

exclusion chromatography. A Superdex 75 10/300 column (GE Healthcare) equilibrated 

with 20 mM Hepes pH 6.5, 50 mM sodium chloride was used to further purify the HASPs. 

Final sample purity was analysed with SDS PAGE. To improve the purity of HASPB2, an 

ion exchange step was introduced after the nickel affinity purification step. The HASPB2 
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sample was diluted with 20 mM Tris pH 7.5 to give a final concentration of 50 mM NaCl 

and loaded onto a 1 ml HiTrap Q HP column equilibrated with ion exchange buffer A (20 

mM Tris pH 7.5, 50 mM NaCl). HASPB2 was eluted with a gradient of 0 to 100% ion 

exchange buffer B (20 mM Tris pH 7.5, 1 M NaCl) for 20 column volumes. The entire 

purification schedule was run with the AKTA FPLC system.  

The initial 1H, 15N-HSQC experiments with 15N labelled HASPA and HASPB2 were 

recorded at a concentration of 250 µM in 20 mM sodium cacodylate pH 6.5, 120 mM 

NaCl. 3D data collection with 13C, 15N HASPA was at 900 µM in 20 mM Hepes pH 6.5, 50 

mM NaCl. Directly before data collection D2O was added to all the samples to give a final 

concentration of 10%. 

 

2.2.5. Data collection and processing 

The spectra presented in this thesis were collected by Dr. Michael Plevin at the Centre 

for Magnetic Resonance, University of York using the 700 MHz Bruker AV spectrometer 

at 298K. The preliminary 1H, 15N HSQC experiments were recorded with 15N labelled 

HASPA and HASPB2. Triple resonance experiments, namely HNCACB and HN(CO)CACB 

spectra, were collected for the backbone assignment with 13C, 15N labelled HASPA at 0.9 

mM. To compare the metabolic unlabelled samples with the uniformly labelled 13C, 15N 

HASPA two spectra were collected; 1H, 15N HSQC and 2D 1H, 15N HNCO. All NMR data 

were processed with NMRpipe by Dr. Michael Plevin. 

 

2.2.6. Backbone assignment 

The spectra were analysed with CCPN Analysis version 2.4 and the assignment was 

performed manually with this software (Vranken et al. 2005). Briefly, peaks were picked 

in the HSQC spectrum above an acceptable user defined contour threshold and amide 

side chain peaks removed. The 3D data were linked by navigating from a HSQC peak to 

the NH dimension in the HNCACB and HN(CO)CACB experiments. The Cα and Cβ carbon 

chemical shifts of the i and i-1 residues were picked apart by comparing the HNCACB 

and HN(CO)CACB spectra and linked to the HSQC. Alanine, glycine, serine and threonine 

all have distinctive Cα and Cβ carbon chemical shifts so spin systems associated with 
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these residues were noted. Arginine, lysine, isoleucine and valine residues were defined 

by the HSQC and 2D HNCO spectra from the metabolic unlabelling work. The spin 

systems were linked by matching the i Cα and Cβ peaks from the HNCACB with the i-1 

Cα and Cβ peaks from the HN(CO)CACB in the context of the HASPA sequence. Backbone 

phi and psi angles were estimated with TALOS-N to determine if the HASPA sequence 

contained any secondary structure elements (Shen and Bax. 2013). 

 

2.3. Results 

2.3.1. The HASPs are predicted to be intrinsically disordered 

Disorder prediction is the first step in defining an intrinsically disordered protein. 

Extensive analysis of ordered and disordered proteins highlighted their distinct 

sequence bias. Residues could then be classed as order-promoting, disorder-promoting 

or neutral. The order-promoting residues are C, W, Y, I, F, V, L, (to a lesser extent H, T, 

and N), the disorder-promoting residues are D, M, K, R, S, Q, P, and E, and the neutral 

residues are A and G (Radivojac et al. 2007). Unsurprisingly, hydrophobic residues were 

shown to be a consistent feature of ordered proteins due to their integral role in core 

stabilisation. The disorder promoting class of amino acids is populated by charged and 

polar residues, producing the distinctive sequence composition of IDPs. Negative 

hydropathicity is also characteristic of IDPs because of the relatively low abundance of 

hydrophobic residues in their sequences. Bioinformatic analysis to determine sequence 

motifs found in IDPs indicated a high prevalence of proline and both positive and 

negative charged motifs (Lise and Jones. 2005). Analysis of IDP sequences highlighted 

their low sequence complexity when compared with globular proteins (Rezaei-Ghaleh 

et al. 2012). This is typified by the high occurrence of tandem repeats in IDP sequences. 

Repeats were shown to be a dominant characteristic of IDPs (39% of all IDPs contain 

repeats) when compared with all Swiss-Prot (14%), yeast (18%) or human (28%) proteins 

(Tompa. 2003). Taken in combination, signifiers of disorder from a sequence level are 

the prevalence of disorder-promoting residues, tandem repeats, highly charged or 

proline-rich motifs, high hydrophilicity and low sequence complexity. 

Examination of the HASP sequences based on the described IDP features above suggests 

disorder. Analysis of the HASPB1 sequence highlights the prevalence of disorder 
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promoting residues, with charged residues and proline comprising 48% of the entire 

sequence (Figure 2-4). All three HASP sequences exhibit low sequence complexity 

indicative of disorder, this is particularly apparent with HASPB1 and HASPB2 due to their 

repetitive nature. Unsurprisingly, the HASPs are extremely hydrophilic, another feature 

common in disordered proteins. The grand average of hydropathicity (GRAVY) reported 

by ProtParam (ExPasy) for HASPB1 is -2.3, where a negative value reports a highly 

hydrophilic sequence (Gasteiger et al. 2005). More stringent analysis was required to 

more confidently predict disorder. IUPred, an IDP predictor, estimates the energy of 

pairwise interactions in a window around a residue assuming that an ordered protein is 

composed of residues that can form favourable stabilising interactions while an IDP 

cannot (Dosztányi et al. 2005). A disorder tendency score of 0 predicts a folded protein 

while a score of 1 indicates intrinsic disorder. It is clear from Figure 2-4 that when the 

HASP sequences are analysed by IUPred they are all predicted to be significantly 

disordered with no element of order observed. Confirmation of this predicted disorder 

was required to accurately classify the HASPs. 
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Figure 2-4: Sequence-based analysis of the disordered nature of the HASPs. (Top) Annotated amino acid 
sequence of HASPB1 emphasizing the prevalence of the disorder promoting proline (pink), basic (blue) 
and acidic (turquoise) residues. (Bottom) IUPRED disorder prediction of all three HASPs. The disorder 
threshold is shown in red at 0.5. Anything below this threshold is considered folded, while anything above 
is not. 

 

2.3.2. Circular Dichroism shows the HASPs are disordered 

Circular Dichroism (CD) Spectrophotometry is a technique used to quantify the 

interaction of a molecule of interest with polarised light. The chiral arrangement of 

peptides bonds in specific protein secondary structures (e.g. α helices and β sheets) 

generate characteristic spectra at defined wavelengths. This allows the user to 

potentially assign secondary structure characteristics of an unknown protein sample 

based on the spectra obtained. 
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001: GAYSTKDSAK EPQKRADNIH KTTEANHGGA TGVPPKHTGS AMNDSAPKED  

051: GHTQKNDGDG PKEDGHTQKN DGDGPKEDGH TQKNDGDGPK EDGHTQKNDG  

101: DGPKEDGHTQ KNDGDAPKED GRTQKNDGDG PKEDGHTQKN DGDAPKEDGR  

151: TQKNDGDGPK EDGHTQKNDG DGPKEDGHTQ KNDGDGPKED GRTQKNDGGG  

201: PKEDGHTQKN DGDGPKEDGH TQKNDGDGPK EDGHTQKNDG DAPKEDGRTQ  

251: KNDGDGPKED GHTQKNDGDG PKEDGHTQKN DGDAPKEDGR TQKNDGDGPK  

301: EDGHTQKNDG DGPKEDGRTQ KNDGDGPKED GHTQKNDGDG PKEDGRTQKN  

351: DGDAPKEGEN LQQNDGDAQE KNEDGHNVGD GANGNEDGND DQPKEHAAGN 
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Analysis of the amino acid composition of the HASPs in Section 2.3.1. revealed a 

propensity for disorder. However, confirmation of this predicted disorder by 

biochemical and biophysical methods was required. Circular dichroism (CD) 

spectroscopy utilises experimentally defined spectroscopic signatures from proteins 

with known three-dimensional structures to characterise the secondary structure 

content of sample proteins. To obtain a greater insight into the predicted disorder of the 

HASPs, CD spectra of HASPA and HASPB1 were collected. Both spectra are typical of 

random coil conformations with the minimum seen at 195 nm (Figure 2-5). Note data 

were collected between 195 and 260 nm. The CD signal was considered valid between 

these points, as the HT voltage was below 600 but saturated at a wavelength lower than 

195 nm. DichroWeb is a web-based server that implements different empirical 

algorithms derived from reference spectra to analyse the secondary structure content 

of input data (Whitmore and Wallace. 2008). K2d method (Andrade et al. 1993) analysis 

indicates that HASPA is 92% random coil, confirming this predicted feature. 

CD spectra of intrinsically disordered proteins are often shown to be random coil due to 

their lack of β sheet, α helix, or turn elements. However, this grouping also includes 

polyproline II (PPII) structures such as collagen. A PPII helix is typified by a high proline 

content and is defined by phi and psi angles of -75° and 150°, respectively. To distinguish 

disordered samples from PPII structures Lopes et al. (2014) compared the spectra of 

native and denatured collagen. They found that the single most characteristic 

spectroscopic feature distinguishing a (PPII) structure from a disordered structure was a 

positive peak around 220 nm in PPII samples. Interestingly, this feature is not observed 

in either HASP spectra strengthening the case for intrinsic disorder classification.  
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Figure 2-5: CD spectra of HASPB1 and HASPA. a) Example CD spectra of alpha-helical (yellow), beta-sheet 
(blue) and random coil (red). This image is taken from Dr. Ramy S. Farid. 2006. Circular Dichroism (CD) 
Spectroscopy. Available at: http://www.proteinchemist.com/cd/cdspec.html. [Accessed 12 August 15]. b) 
CD spectra of HASPB1 and HASPA. These spectra are indicative of the random coil spectral feature. c) HT 
voltage trace. 

 

2.3.3. 1H, 15N-HSQC of HASPA and HASPB2 

To confirm the predicted intrinsic disorder of the HASPs, uniformly 15N labelled HASPA 

and HASPB2 were prepared and characterised by NMR spectroscopy. The overlaid 1H, 

15N HSQC spectra highlight the limited dispersion of NMR resonances in the 1H 

dimension around 8.4 ppm (Figure 2-6). This spectral feature is indicative of highly 

disordered proteins because regions of high backbone flexibility have reduced chemical 

shift dispersion as they all share the same solvent exposed environment (Kragelj et al. 

2013). When samples contain α-helical or β-sheet elements, the peaks are much more 

widely distributed. Despite the extensive clustering of resonances in the HSQC for both 
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proteins and signal overlap the NMR resonances, are on the whole, well resolved, 

meaning that backbone assignment should be possible. Glycine has a distinctive 

nitrogen chemical shift in an HSQC experiment when compared with other residues. 

Glycine resonances are usually found in the range of 105 to 115 ppm, which occurs 

because glycine lacks a Cβ. For HASPA, a protein with 10 glycine residues, 9 candidate 

peaks are visible in the HSQC. The extreme terminal residues are not always clearly 

defined in HSQC spectra, so it is expected that the N-terminal glycine would not be 

visible.  

Direct visual analysis of the HSQC data shows that HASPA has 73 clearly defined 

resonances, while it has 78 residues that could be assigned, excluding 3 proline residues 

and the hexa-histag. This is a promising starting point for assignment. HASPB2 has 127 

residues that could be assigned but only 95 clearly defined resonances. This is likely due 

to the presence of repeats in HASPB2 combined with the limited dispersion of 

resonances in IDP samples. These residues would be experiencing the same (solvent 

exposed) chemical environment, producing overlaid but intense resonances for the 

repeated sequence motif. Therefore, it was decided that HASPA was the best candidate 

for assignment because it is smaller and the number of observed resonances was closer 

to the number of residues when compared with the data for HASPB2. Moreover, 

working with a protein without repeats removes a potential layer of convolution to the 

assignment. 
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Figure 2-6: 1H, 15N-HSQC of HASPA and HASPB2 recorded at 298K in 20 mM sodium cacodylate pH 6.5, 
120 mM sodium chloride. HASPA is shown in black and HASPB2 in red. The limited dispersion of both 
samples in the proton dimension is indicative of disorder. 
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2.3.4. Backbone assignment of HASPA 

15N, 13C uniformly labelled HASPA was prepared at 0.9 mM in 20 mM Hepes pH 6.5, 50 

mM NaCl. Initially, two 3D experimental datasets were collected, HNCACB and 

HN(CO)CACB spectra, for backbone resonance assignment. These experiments expand 

the 2D 1H, 15N HSQC into a third 13C dimension to correlate the NH plane from the HSQC 

spectra with the 13Cα and 13Cβ resonances. Specifically, the HNCACB spectrum reports 

strong chemical shifts for the Cα and Cβ of the i residue and weakly for the previous (i-

1) residue. The CBCA(CO)NH spectrum reports only the Cα and Cβ chemical shifts of the 

i-1 residue. 

 

Figure 2-7: Annotated HASPA sequence showing the combined approach implemented for backbone 
assignment. Residues with distinctive Cα/ Cβ chemical shifts (alanine, glycine, serine and threonine) and 
those chosen for metabolic unlabelling (valine, isoleucine, lysine and arginine) are highlighted in blue and 
green, respectively. 

 

To begin, the 2D 1H, 15N HSQC spectra were initialised by picking peaks and creating 

resonances that are the starting point for spin system groupings. Peaks relating to amide 

containing side chains were removed from the analysis at this point. The peak list 

generated from the HSQC spectrum was then used to navigate to 2D strips of the 3D 

experiments to link the Cα and Cβ carbon chemical shifts to the amide dimension. 

Alanine, serine, threonine and glycine have distinctive Cα and Cβ chemical shifts, 

enabling residue type information about specific spin systems to be gained. A note was 

made of i and i-1 residues that belonged to one of these residue types to give the 

assignment some sequence context later (Figure 2-7). However, due to low sequence 

complexity and the disordered nature of HASPA identifying these residues was not 

sufficient to firmly link any sequentially assigned portions to the sequence. HASPA is 
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disordered in solution, so all residues in the sequence experience the same solvent 

exposed chemical environment. This means that little variance is observed in Cα and Cβ 

resonances of the same residue type in different sequence positions and there is little 

observable difference between residues with similar Cα and Cβ resonances. The 

metabolic precursor unlabelling strategy (described in Section 2.1.3.) was implemented 

to obtain residue-specific information to deconvolute the assignment process. This 

combined approach allowed for specific residues to be identified and their context 

within the HASPA sequence enabled backbone assignment (Figure 2-7).  

A detailed description of the protocol implemented to produce various metabolic 

unlabelled 15N, 13C HASPA samples can be found in Section 2.2.3. However, it is 

important to note the simplicity of this protocol. It only requires splitting a pre-induction 

expression culture and adding the required metabolic precursors. Afterwards the 

expression protocol was continued as normal. This resulted in three metabolic 

unlabelled 15N, 13C HASPA samples that were 1) lysine, 2) arginine and 3) isoleucine and 

valine unlabelled. Isoleucine and valine were unlabelled together to streamline sample 

production. The precursors used and the labelling pattern they produce in the final 

sample are outlined in Figure 2-8. 
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Figure 2-8: Precursors used for metabolic unlabelling of HASPA. Early stage precursors of isoleucine and 
valine are α-ketobutyrate and α-ketoisovalerate, respectively. While lysine and arginine can be directly 
added to the growing cultures to unlabel these residues (Hiroaki et al. 2011). Nitrogen and carbon atoms 
coloured blue denote that these atoms are 15N or 13C labelled by the media.  

 

Lysine and arginine can be directly supplemented into 15N, 13C minimal media to unlabel 

these specific residues (Hiroaki et al. 2011). In a 2D 1H, 15N HSQC spectrum both these 

residues will be ‘NMR invisible’ in an otherwise uniformly labelled sample. Therefore, 

comparison of these spectra with a [U-15N] HASPA 1H, 15N HSQC spectrum allows the 

investigator to determine which spin systems relate to the ‘NMR invisible’ residues. 

HASPA contains 2 arginine and 6 lysine residues that were identified through this 

unlabelling approach. Moreover, collection of 2D 1H, 15N HNCO spectra on these 

unlabelled samples renders the i+1 residues ‘NMR invisible’, supplying the assignment 

with more residue specific information. Figure 2-9 highlights how the two arginine 

residues, R15 and R24, were identified when the HSQC spectra were compared. 
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Moreover, the two i+1 residues were easily distinguished based on the difference 

between the Cα/ Cβ resonances of serine (residue 25) and alanine (residue 16).  

As already mentioned, there are 6 lysine residues in the HASPA sequence. The lysine 

unlabelled 2D 1H, 15N HSQC spectrum was used to identify these lysine spin systems 

when compared with the [U-15N] HASPA 1H, 15N HSQC spectrum (Figure 2-10). Cross 

referencing the arginine unlabelled 1H, 15N HSQC with the lysine unlabelled 1H, 15N HNCO 

allowed firm identification of arginine 15, as it is the i+1 of lysine 14. This produced a 

vital starting point ‘anchor’ in the HASPA sequence from which to build the rest of the 

assignment. However, due to the highly similar Cα and Cβ resonances of aspartic acid 

and asparagine, identification of residues Asp7, Asp29 and Asn51 was more difficult. The 

sequence context of the residues was used to determine which spin systems related to 

the specific aspartic acid or asparagine residues. Glutamic acid has a more distinctive 

Cα/ Cβ resonance distribution, allowing residue 11 to be assigned directly. No 

unlabelling related to glutamic acid 74 was observed in the 1H, 15N HNCO. It appeared 

that the resonance next to Asp7 could be promising as this was unlabelled in this 

experiment, however, there was no convincing 3D data to confirm this assumption. 

Valine and isoleucine residues produced by the metabolic unlabelling strategy are visible 

in a 2D 1H, 15N HSQC spectra. Enzymatic conversion of α-ketobutyrate and α-

ketoisovalerate into isoleucine and valine, respectively, renders the α-amino group of 

both residues 15N labelled (Rasia et al. 2012; Figure 2-8). However, the remaining carbon 

atoms are 12C labelled apart from the Cβ and Cγ2 atoms in the isoleucine side chain, 

which are 13C labelled. This means the i+1 residues could be ascertained from the 

isoleucine and valine unlabelled 2D 1H, 15N HNCO spectrum when compared with the 

1H, 15N HSQC spectrum of [U-15N] HASPA (Figure 2-11). There are five residues in the 

HASPA sequence that are i+1 to either valine or isoleucine. Therefore, this double 

unlabelled sample significantly contributed to the overall assignment. The high 

occurrence of glutamines (10.1%) and aspartic acids (13.9%) in the HASPA sequence 

made assignment of these residues (D20, Q34 and Q41) extremely difficult. Three of 

these residues are i+1 to isoleucine or valine so were fixed in the sequence and removed 

from the pool of unassigned spin systems. This made it much easier to identify other 

non-associated residues and streamlined the rest of the assignment. 
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Figure 2-9: Selective arginine unlabelling of HASPA. a) Overlay of 1H, 15N HSQC of uniformly 15N-labelled 
HASPA (blue) and arginine unlabelled HASPA (green) highlighting R15 and R24. b and c) Overlay of 1H, 15N 
HSQC of uniformly labelled HASPA (blue) and 2D 1H, 15N HNCO (pink) showing both arginine residues and 
the corresponding i+1 residues. 

 



77 
 

 

Figure 2-10: Selective lysine unlabelling of HASPA. a) and b) Overlay of 1H, 15N HSQC of uniformly 15N-
labelled HASPA (blue) and lysine unlabelled HASPA (orange) highlighting the six lysine residues found in 
HASPA. c-g) Overlay of 1H, 15N HSQC of uniformly labelled HASPA (blue) and 2D 1H, 15N HNCO (green) 
showing some lysine residues and the corresponding i+1 residues. There should be 6 i+1 residues but E74 
was not assigned because no resonance was observed for this residue. 
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Figure 2-11: Selective isoleucine and valine unlabelling of HASPA. a-c) Overlay of the [U-15N] HASPA 1H, 
15N HSQC spectrum (blue) with the isoleucine and valine unlabelled 2D 1H, 15N HNCO (red) showing the 
unlabelled i+1 residues.  

 

This metabolic precursor unlabelling approach gave vital sequence based information 

on 21 residues in the HASPA sequence. Identified spin systems could be used as anchor 

points for the remaining assignment, while these spin systems were also removed from 

the pool of potential linkers in other areas of the sequence. Combining this approach 

with simply identifying residues based on their unique Cα/ Cβ resonances (8 alanine, 4 

serine, 4 threonine and 10 glycine residues) made the backbone resonance assignment 

of the HN, N, Cα and Cβ nuclei in HASPA possible (Figure 2-12). There are 78 residues in 

the HASPA sequence that could have been assigned after excluding the three proline 

residues and the hexa-histidine tag. The final assignment was of 73 residues, meaning 

that 94% of the HASPA sequence was successfully assigned, except G1, T5, E74, H75 and 

A76. 
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Figure 2-12: Full backbone assignment of HASPA. 73 residues of a possible 78 residues (excluding the 
hexa-histidine tag and proline residues) were assigned. 
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2.3.5. Backbone torsion angles of HASPA 

Elements of transient secondary structure are a common feature of intrinsically 

disordered proteins. IDPs exist as a highly dynamic structural ensemble and can in some, 

but not in all cases, form defined folds when interacting with a binding partner. As 

already mentioned in Section 2.1., these transiently structured regions are termed 

molecular recognition features (MoRFs). ANCHOR is a web-based server that predicts 

binding sites in disordered regions of protein sequence that are likely to undergo a 

disorder to order transition upon binding (Dosztányi et al. 2009). It was used to highlight 

potential transiently ordered binding sites within the disordered domain of the 

erythrocyte binding-like protein from Plasmodium falciparum that were later 

experimentally confirmed (Blanc et al. 2014). Analysis of the HASPA sequence predicts 

three potential binding sites: 1) residues 1 to 22, 2) residues 25 to 63 and 4) residues 72 

to 79 (Figure 2-13). Experimental verification is required to determine if these 

predictions have any relevance to the disordered nature of HASPA and could contribute 

to any plausible short-lived structured elements. 

 

Figure 2-13: ANCHOR and IUPred output for HASPA. ANCHOR analysis of the HASPA sequence predicts 
three potential binding regions. 
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These transient ordered states can be experimentally determined. There is an 

established relationship between chemical shift information and local protein structure. 

This specifically relates to the dihedral angles of the protein backbone and their 

relationship to defined structural motifs. Three dihedral backbone angles restrain 

protein structures, namely phi (φ), psi (ψ) and omega (ω). Phi and psi relate to the 

backbone atoms C'-N-Cα-C' and N-Cα-C'-N, respectively. They share an inherent 

flexibility, which is dependent on the sequence context and local secondary structure. 

Omega describes the N-C’ bond geometry and is around 180˚ or 0° in the case of cis-

proline. Thus, φ controls the C'-C' distance, ψ controls the N-N distance and ω controls 

the Cα-Cα distance. The advantage of chemical shifts as structural probes is that they 

allow sequence specific mapping of transient structural elements of IDPs (Kragelj et al. 

2013). 

TALOS-N, an artificial neural network (ANN) based hybrid system, takes NMR-derived 

chemical shift information (Cα, Cβ, C’, Hα, HN and N) related to the sequence of the 

target protein to make quantitative predictions for the protein backbone angles φ/ψ 

(Shen and Bax. 2013). It also provides a measure of the reliability of these predictions 

and predicts any secondary structure elements. It has been outlined in Section 2.3.3. 

that HASPA is predominantly intrinsically disordered but identification of any transient 

secondary structured elements would be interesting and perhaps inform on any 

unknown functionality. Therefore, the chemical shift information (Cα, Cβ, HN and N) 

obtained from the backbone assignment of HASPA was analysed with TALOS-N. It 

showed the entire assignment to be highly dynamic with no elements of secondary 

structure predicted. This result suggests that the HASPs do not contain any preformed 

secondary structure elements that could form the basis of molecular recognition motifs 

seen in IDPs. 
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Figure 2-14: TALOS-N output highlighting the dynamic nature of HASPA. This sequence window displays 
the classification of each residue in the target protein sequence. The residues are classed as dynamic 
(blue), ambiguous (yellow), not classified (grey) and a good prediction (green). The majority of the HASPA 
sequence is considered dynamic. Note residues G1, T5, E74, H75 and A76 were not assigned. 

 

Further analysis of the chemical shift data to define any propensity for transient 

structural elements within HASPA was performed with ncSPC (neighbour corrected 

structural propensity calculator). The ncSPC program compares chemical shift data with 

a chemical shift library of disordered proteins (Tamiola et al. 2010). Deviation from the 

random coil chemical shift library in the query can indicate the presence of structure. In 

addition ncSPC can differentiate between global structure and weak sequence specific 

transient structural elements. It is important to note that the program takes sequence 

into account as the reference random coil library was generated for every nucleus of 

each amino acid from the reference IDPs used. Moreover, chemical shifts of specific 

nuclei have varying reliabilities in reporting certain structured elements. There is a 

known relationship between 13Cα chemical shifts and reliable α-helical content 

prediction and 13Cβ chemical shifts with β-sheet content (Weinstock et al. 2008). The 

contributions of different chemical shifts are weighted by their sensitivity to α-helical or 

β-sheet structure (Tamiola and Mulder. 2012).  

Analysis with ncSPC shows that HASPA has no global defined structure and is consistent 

with the TALOS-N output (Figure 2-15). It was of particular interest that ncSPC reports 

structure propensity plots for two slightly different methods, SSP (secondary structure 

prediction) and ncSPC. The SSP method on which ncSPC is based differs as it uses 

chemical shifts from known structured elements as a standard to measure structural 

propensity against (Marsh et al. 2006). However, the graphical output of both methods 
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is the same, enabling direct comparison of the resultant predictions. Scores of 1 and −1 

reflect fully formed α helical or β sheet structure, respectively, while a score of 0.5 

suggests that 50% of the conformers in the ensemble are α helical at that position. The 

SSP method detects areas of enhanced β sheet propensity of around 50% in short 

interspersed regions of HASPA (Figure 2-15a). However, this finding should be treated 

with caution as its significance would need to be experimentally confirmed before 

drawing any firm conclusions. While the ncSPC method shows that the propensity falls 

within the range of the IDP reference set and no structural propensity is observed 

(Figure 2-15b). In the current literature ncSPC is considered a refinement of SSP because 

of the use of the IDP random coil reference set (Tamiola and Mulder. 2012). This 

improved reliability of structure propensity calculations was tested with two 

experimentally defined systems, namely α synuclein under native and membrane-

mimicking conditions and the structural transition of the bacterial PYP (photoactive 

yellow protein) upon light excitation. In both cases ncSPC was able to detect 

conformational shifts and highlight known structural propensity. Due to this finding the 

ncSPC result was taken as the significant output. However, the resultant variance of 

these methods highlights the importance of experimentally defining any calculated 

structure propensity.  
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Figure 2-15: Secondary structure propensity plots of HASPA based on the SSP and ncSPC methods. A score 
of +1 predicts α helical content while -1 predicts β-sheet. a) SSP structural propensity prediction plot 
shows areas of enhanced β propensity in short interspersed regions of HASPA (denoted by the stars). b) 
ncSPC structural propensity prediction plot shows that the HASPA chemical shifts adhere closely to those 
of known IDPs (yellow band) with no elements of predicted structure observed. 
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2.4. Discussion 

2.4.1. The HASPs are intrinsically disordered 

Analysis of the HASPs, from their sequence to biophysical characterisation has shown 

them to be intrinsically disordered. The high occurrence of disorder promoting residues, 

high hydrophilicity and the low sequence complexity found in all three HASPs was the 

first indication of disorder. This predicted disorder was supported by CD spectroscopy 

of both HASPA and HASPB1. Analysis of the raw data with DichroWeb predicted that 

HASPA is 92% random coil. However, CD is limited when addressing IDPs as it is unable 

to detect secondary structure elements that are short lived, weakly populated and 

confined locally within the protein sequence (Rezaei-Ghaleh et al. 2012). Further 

examination of the dynamic nature and the inherent flexibility of the HASPs was 

required. 

NMR spectroscopy is unique in its capacity to study the dynamic nature of intrinsically 

disordered proteins in solution (Dyson and Wright. 2004). Backbone assignment with 2D 

and 3D NMR spectra is the first step in this process and a prerequisite for further study 

of transient structural elements, biological partner interactions and IDP dynamics. Initial 

2D 1H, 15N HSQC spectra of [15N] labelled HASPA and HASPB2 revealed limited resonance 

dispersion in the proton dimension, a spectral feature indicative of highly disordered 

proteins. However, the resonances were well resolved suggesting that backbone 

assignment would be possible. HASPA was chosen as the best candidate because it is 

the smallest HASP and lacks the repeats seen in the HASPBs.  

3D HNCACB and HN(CO)CACB  spectra were collected and used to correlate the amide 

resonances from the 2D 1H, 15N HSQC spectrum to the Cα and Cβ resonances. Spectral 

congestion can be a severe issue when assigning an IDP because all residues are solvent 

exposed. This means that there is little dispersion of Cα and Cβ resonances regardless 

of sequence context. To deconvolute this spectral congestion a metabolic precursor 

unlabelling strategy (described in Section 2.1.3.) was implemented. This protocol 

renders specific residues ‘NMR invisible’ in an otherwise uniformly labelled protein 

sample and can also be used to gain information of residues precede unlabelled 

residues. Three unlabelled versions of HASPA were produced that silenced 1) lysine, 2) 

arginine and 3) valine and isoleucine. This generated additional sequence specific 
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information and considerably aided the backbone assignment of HASPA. In the final 

assignment 94% of all possible residues were assigned. The completed assignment is the 

first step in any future studies of HASP dynamics and residual structure. 

 

2.4.2. HASPA does not contain any elements of structural propensity  

IDPs sample a diverse array of interconverting conformers in their ‘native' state. This 

conformational heterogeneity means they cannot be limited to any single averaged 

structure but are represented as an ensemble (Gibbs and Showalter. 2015). NMR 

spectroscopy is a vital tool to produce the experimentally derived parameters required 

for IDP ensemble generation. Information obtained from these ensembles can be used 

to understand how IDPs carry out their functions, through analysis and comparison of 

their structural dynamics alone or in complex with biological binding partners. It is an 

established concept in the IDP field that some proteins undergo disorder to order 

transitions on biological partner binding, facilitated in most cases by preformed 

elements of local transient secondary structure that lower the entropic cost of more 

global folding. Solution state NMR spectroscopy can be used to investigate these local 

transient states and relate them back to biological function or aggregation behaviour. 

Elements of short-lived secondary structure can be predicted and confirmed with 

experimentally defined parameters. In particular, 13C chemical shifts are highly sensitive 

to backbone conformation and can inform on short-lived structured states in IDPs, 

hence their use to determine IDP structural propensity. Chemical shifts obtained from 

the backbone assignment of a protein can inform on the dihedral (phi and psi) angles. 

Certain dihedral angles are found in to specific secondary structure elements and can 

define the random coil state. This makes IDP backbone chemical shifts powerful 

descriptors of local transient deviations from the random coil state. These deviations 

can be connected to functional or dysfunctional protein states, involved in adaptive 

molecular recognition or protein aggregation. The advantage of chemical shifts as 

structural probes is that they are rooted in the protein sequence and therefore allow 

transient structural elements to be mapped onto IDPs (Kragelj et al. 2013). 
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It was shown that conformational ensembles of IDPs derived from chemical shifts alone 

are consistent with ensembles derived from other NMR experimental parameters such 

as residual dipolar couplings (Jensen et al. 2010). Therefore, the lack of structural 

propensity seen in HASPA from chemical shift analysis with TALOS-N and ncSPC can be 

considered a significant finding. This would suggest that HASPA contains no preformed 

MoRFs in its ‘native’ state indicating that it does not function as an interaction hub. 

However, the relationship between intrinsic conformational propensity and the 

structure adopted by the protein in its bound form remains poorly understood. Notably, 

the concept that preformed structure is required for continued coupled folding and 

biological partner binding is not always applicable. Disruption of residual helical 

structure in PUMA, an IDP of the BCL-2 apoptotic family of proteins, did not inhibit 

binding to MCL-1 (Rogers et al. 2014). It was previously established that in the unbound 

form, PUMA has helical propensity of 20% and when bound forms a single continuous 

α-helix in a surface groove on MCL-1. The helical content of the unbound form of PUMA 

was reduced by site directed mutagenesis to the helix breaker proline and confirmed by 

CD. Interestingly, this reduced preformed helical content did not affect MCL-1 binding 

affinity. The conclusion of this study is that an IDP does not necessarily need to display 

residual structure resembling the bound form for partner binding to occur. Potentially, 

the established MoRF view detracts from the functional and structural plasticity that 

IDPs can adopt. Studying one transient structured state and interaction in isolation does 

not represent IDPs as multi-layered interaction hubs. Could this be the case for the 

HASPs? 

The lack of structural propensity observed in HASPA suggests entropic chain 

classification. This grouping of IDPs remain disordered to elicit their functions, extending 

the structure function paradigm to include functional disorder (van der Lee et al. 2014). 

Elastin, the main component of elastic fibres and an integral component of the 

extracellular matrix, is an entropic spring. It is vital for tissue elasticity, providing the 

distinctive repetitive stretch and elastic recoil properties of vertebrate tissues. Like the 

HASPs, it is an extracellular intrinsically disordered protein but unlike most IDPs contains 

a significant number of hydrophobic residues. The high proline and glycine content 

(42%) of elastin is thought to be the main contributor to disorder (Miao et al. 2003). The 

specific residue prevalence limits the formation of extended secondary structure, 
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preventing collapse of the hydrophobic sequence into a compact globular structure 

(Rauscher et al. 2006). This allows the monomer to remain disordered, providing the 

functionally required conformational flexibility through transiently populated local 

structural elements. Therefore, elastin can be thought of as a functionally relevant 

heterogeneous disordered ensemble, where conformational disorder is crucial for 

driving extensibility and elastic recoil (Muiznieks et al. 2010). 

The examples considered throughout this chapter have highlighted the diverse functions 

that IDPs form over folded proteins. Although the biological function of the HASPs is 

unknown, intrinsic disorder classification is informative when you consider the 

characteristic traits of IDPs. Conformational freedom, particularly observed in entropic 

chains, is highly advantageous and facilitates an array of functions. This can include long 

range entropic exclusion of other proteins, spacer functions (MAP2) and dynamic 

springs (elastin and titin). The extended nature of IDPs means they are able to elicit 

repulsive forces or make longer ranging contacts than globular proteins of the same 

molecular weight. Reconsidering the functional state of the HASPs as disordered should 

inform any subsequent biological investigation and help to reframe their potential role. 

The lack of defined binding partners, other than NMT, could suggest a repulsive type of 

functionality for the HASPs. 

 

2.5. Summary and future work  

The predicted and experimental work presented in this chapter confirm that the HASPs 

are intrinsically disordered. NMR spectroscopy is a comprehensive source of 

experimentally derived information on IDPs and was applied to this study. A backbone 

assignment of HASPA was performed as a starting point for analysis of secondary 

structure propensity and future study of protein dynamics. Due to the low sequence 

complexity and disorder of HASPA the assignment was hampered by spectral 

congestion. Residue-specific metabolic unlabelling was implemented to obtain spin 

system information that could be directly related to the HASPA sequence. This protocol 

aided the final 94% backbone resonance assignment of HN, N, Cα and Cβ in HASPA. NMR-

derived chemical shift information from the backbone assignment was used to 

investigate HASPA structural propensity. There were no regions of deviation from 
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random coil Cα and Cβ chemical shifts, which is consistent with a lack of transient 

secondary structure. This means that the HASPs do not possess a feature that is common 

in IDPS that function as interaction hubs, namely MoRFs. Therefore, the HASPs are more 

similar to IDPs that function as entropic chain, where their lack of order is what makes 

them functional, such as titin and elastin. 

HASPA was studied, therefore, here no inference can be drawn about the presence of 

MoRFs in the repeats of the HASPBs. However, the sequence similarity in the N- and C-

terminal domains of all three HASPs means that findings presented here are transferable 

to the HASPBs. It would be interesting, although very challenging, to assign HASPB2 to 

determine if the repeats contained any structural propensity. Moreover, preformed 

structural elements are not always required for biological partner interaction. However, 

the current lack of identified biologically relevant HASP binding partners does make the 

entropic chain classification an interesting concept. 

Further experimental validation would be useful to confirm the chemical shift 

determined lack of transient structure within HASPA. Long range and local structural 

features of IDPs in solution can be determined with paramagnetic relaxation 

enhancements, residual dipolar couplings, relaxation studies and nuclear Overhauser 

enhancement (Salmon et al. 2010). A combination of the aforementioned methods 

would define and confirm any transient structured states of HASPA. Any information 

obtained could address any functionally relevant structural organisation.  
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Chapter 3 - Investigation of the HASP: NMT interaction 

3.1. Introduction 

The N-terminal 18 residues of L. major HASPB were shown to be essential for membrane 

targeting (Denny et al. 2000). This region comprises a dual acylation motif, where the 

protein is myristoylated and then sequentially palmitoylated for correct membrane 

association. The first lipidation step, myristate addition, is catalysed by N-

myristoyltransferase (NMT) and is a co-translational event in vivo. NMT can myristoylate 

peptides in vitro, requiring an N-terminal glycine residue for modification (Goncalves et 

al. 2012). However, the catalytic activity of NMT on full length protein substrates has 

not been established in vitro. In order to address this, NMT catalysed myristoylation of 

the HASPs was investigated in vitro. The work presented in this chapter aims to establish 

if NMT could myristoylated full length protein substrates in vitro and define the kinetic 

parameters of this activity. Moreover, having defined the HASPs as disordered, 

investigation of the effect and potential structural impact of myristoylation could be 

functionally relevant. 

 

3.2. Experimental 

3.2.1. Leishmania major NMT expression and purification 

Briefly, aliquots of LB media (5 ml) containing ampicillin and chloramphenicol, at 100 

and 30 µg/ml, respectively, were inoculated with a glycerol stock of E. coli 

Rosetta2/plysS with the pET15-MHL plasmid, which was obtained from Dr James 

Brannigan, and grown overnight at 37°C with shaking at 180 rpm (see Appendix A.1.). It 

is important to note that pET15-MHL vector is isopropyl β-D-1-thiogalactopyranoside 

(IPTG) inducible, ampicillin resistant and contains a TEV cleavable N-terminal hexa-

histidine tag. LmNMT was expressed with the typical autoinduction cell growth protocol 

(Studier. 2005). 

Each 5 ml aliquot was used to inoculate 20 ml LB media supplemented with the same 

antibiotics and incubated at 37˚C for an hour with shaking at 180 rpm. The base of the 

autoinduction protocol is ZY media, which was prepared by adding 10 g tryptone, 5 g 

yeast extract and 937 ml H2O per litre required. A 50x stock of 5052 was prepared in a 
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final volume of 100 ml by adding 25 g glycerol, 73 ml dH2O, 2.5 g glucose and 10 g α-

lactose. A 25x M stock was prepared in a final volume of 200 ml by sequentially 

dissolving 3.6 g Na2SO4, 13.4 g NH4Cl, 17 g KH2PO4 and 17.7 g Na2HPO4 (all anhydrous) 

into dH2O. A 1 M stock of MgSO4 was also prepared and all these components were 

autoclaved before use. The autoinduction media was assembled according to the ratios 

outlined in Table 3-1 and also incubated at 37˚C to pre-warm it. After this incubation 

each 25 ml aliquot was added to 500 ml autoinduction media and returned to 37˚C for 

6 hours with shaking at 180 rpm. The cells were then transferred to 18˚C with shaking 

at 200 rpm overnight (typically between 16 to 18 hours). The cells were harvested by 

centrifugation for 15 minutes at 5000 xg and the resulting pellets stored at -20˚C. 

Component Volume in 10 ml Volume in 1 l 

1 M MgSO4 10 µl 1 ml 

50x 5052 200 µl 20 ml 

25x M 400 µl 40 ml 

ZY media 9.37 ml 937 ml 

Table 3-1: Components required for autoinduction media. 

 

Once thawed, the pellets were resuspended in 30 ml nickel column buffer A (50 mM 

HEPES pH 7.5, 500 mM NaCl, 5 mM imidazole, 5 % glycerol) per 500 ml pellet 

supplemented with 0.1 % Triton X-100, 10 mM MgCl2 , DNase and a protease inhibitor 

tablet (cOmplete, EDTA-free from Roche). The soluble cell suspension was sonicated 6 

times on ice for 30 seconds with 1 minute intervals. There was no lysate clarification 

step as the lysate was loaded directly onto a 1 ml HisTrap FF crude column (GE 

Healthcare) pre-equilibrated with nickel column buffer A. Ten column volumes of nickel 

column buffer A washed the column before 100% nickel column buffer B (50 mM HEPES 

pH 7.5, 500 mM NaCl, 250 mM imidazole, 5 % glycerol) was implemented for fifteen 

column volumes to elute the target protein. SDS-PAGE was used to identify target 

protein containing fractions that were pooled and diluted at least 20-fold with 20 mM 

HEPES pH 7.5 containing 1 mM DTT to give a final NaCl concentration of 20 mM. A 1 ml 

HiTrap Q HP column equilibrated with ion exchange buffer A (20 mM HEPES pH 7.5, 20 

mM NaCl, 1 mM DTT) was loaded with the pooled sample and washed for 10 column 

volumes. Elution was achieved with a gradient of 0 to 100% ion exchange buffer B (20 

mM HEPES pH 7.5, 500 mM NaCl, 1 mM DTT) for 20 column volumes. The NMT 

containing fractions were then concentrated (Vivaspin Sample Concentrator range, 



92 
 

10000 MWCO) to 0.5 ml for size exclusion purification. A Superdex 75 10/300 column 

(GE Healthcare) equilibrated with 10 mM HEPES pH 7.5, 500 mM NaCl, 0.5 mM DTT and 

used to further purify NMT. Fractions were then analysed with SDS-PAGE to assess final 

sample purity. All purification columns were run with the AKTA FPLC system. 

Subsequently, the hexa-histidine tag was removed by TEV protease (Invitrogen) 

digestion (1:50 ratio of protease to protein) overnight at 4˚C while the sample was 

dialysed into 50 mM HEPES pH 7.5, 500 mM NaCl, 5 mM imidazole, 5 % glycerol, 1 mM 

DTT. The nickel purification step was repeated but the cleaved samples eluted in the 

nickel column buffer A wash step. No further purification was required but the size 

exclusion step was run again to ensure the protein was in the correct final buffer. 

Myristoyl CoA or non-hydrolysable myristoyl CoA analogue were added directly to NMT 

after size exclusion purification. The co-factor was chosen based on the downstream 

application of the protein and was added in 1.5 molar excess of the protein 

concentration. Myristoyl CoA (CAS Number 3130-72-1) was obtained from Sigma Aldrich 

and prepared as a 10 mM stock in 50% (v/v) DMSO. The non-hydrolysable myristoyl CoA 

analogue (PDB code: NHM), 2-oxopentadecyl-CoA, was prepared as a 10 mM stock in 

50% DMSO. This compound was obtained from Dr. James Brannigan as it is not 

commercially available. The synthesis is detailed in the supplementary information of 

the following paper (Brannigan et al. 2010). 

 

3.2.2. In vitro myristoylation of HASPA by NMT 

In order to determine if the HASPs could be myristoylated in vitro NMT was incubated 

with a positive control peptide based on the N-terminus of L. donovani HASPB2 

(GSSSTKD), which is known to be myristoylated in vitro or HASPA, as prepared according 

to the schedule in Section 4.2.1. The reactions were set up in a final volume of 100 µl 

with NMT size exclusion buffer (10 mM HEPES pH 7.5, 500 mM NaCl, 0.5 mM DTT) as 

the diluent. A 10 mM stock of the peptide was prepared in the same buffer. For the 

reaction, 5 µM NMT (complexed with myristoyl CoA) was added to 50 µM HASPA or 

peptide with 100 µM myristoyl CoA and incubated at 37˚C for 30 minutes. Electrospray 

ionisation mass spectrometry (ESI-MS) was used to determine the mass of the major 
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components of each sample. The data were collected with an ABI Qstar tandem mass 

spectrometer. 10 µl of each reaction mix was supplied for analysis, while the peptide 

was supplied at 1 mM and HASPA at 2 mg/ml in 20 mM sodium cacodylate pH 6.5, 120 

mM NaCl for the negative controls. Sample desalting was achieved by ZipTip (Merck 

Millipore) purification before data were collected. 

 

3.2.3. Kinetic analysis of HASP myristoylation 

Kinetics parameters of HASP myristoylation by NMT were obtained using a continuously 

observed coupled fluorometric assay, termed here the CPM assay, discussed further in 

Section 3.3.3. 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM) was 

obtained from Sigma Aldrich (CAS number: 76877-33-3) and prepared as a 10 mM stock 

in 100% DMSO. A 4x stock of CPM assay buffer was prepared with 2.5 g KH2PO4 and 

19.79 g Na2HPO4, 8 ml 0.5 M EDTA and 800 µl Triton X-100 in a final volume of 2 litres 

and adjusted to pH 7.9. All stocks were made in 1x CPM assay buffer (20 mM Na/ K 

phosphate pH 7.90, 0.5 mM EDTA, 0.1% Triton X-100) supplemented with 2% DMSO, 

except the CPM stock which had a final concentration of 5% DMSO (Table 3-2). Note, 

the reagents solutions were prepared directly before the assay was performed. 

The assay was carried out in 96-well black polypropylene microplates (Thermo 

Scientific). Fluorescence readings were performed on a BMG Labtech POLARstar 

OPTIMA plate reader set at 25˚C. Excitation was set at 405 nm and emission at 460 nm. 

Each condition was recorded in triplicate with three wells setup per condition. The 

reagents were prepared and added to the plate as detailed in Table 3-2, except for the 

NMT stock. This was added to the plate with the syringe pump in the plate reader to 

start the reaction. The resultant fluorescence intensity was monitored for 2 hours, with 

a reading every 5 min. All three HASPs were tested between 100 µM to 26 nM. NMT was 

prepared with histidine tag was removed, as this improved background fluorescence.  

Component Stock concentration Final concentration Volume added (µl) 

NMT 200 nM 20 nM 10 

CPM 32 µM 8 µM 25 

Peptide/ HASP 400 µM to 104 nM 100 µM to 26 nM 25 

Myristoyl CoA 16 µM 4 µM 25 

Buffer - - 10 

Table 3-2: Scheme for the preparation of the CPM assay. 
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The Vmax and Km were determined using GraphPad Prism version 6.05 for Windows, 

GraphPad Software, La Jolla California USA. The negative control excluded NMT and the 

positive control was a saturating concentration of HASP or peptide. CoA (CAS number: 

55672-92-9) was titrated, between 5 µM to 5 nM, with CPM to produce a plot that 

related product formation in µM to fluorescence. The fluorescence values obtained for 

the HASPs and peptide were was divided by slope from the CoA titration. The normalised 

values were re-plotted with the rate now expressed in µM s-1. 

 

3.2.4. Real-time observation of HASPA myristoylation 

Uniformly 15N labelled HASPA was prepared as described in Section 2.2.2. and was 

incubated with unlabelled NMT at a ratio of 100:1. In the final sample, HASPA was at 

200 µM and NMT at 2 µM in NMT size exclusion buffer (10 mM HEPES pH 7.5, 500 mM 

NaCl, 0.5 mM DTT). The real-time NMR experiment was run overnight at 298K with 2 

fold molar excess of myristoyl CoA (400 µM). A 2D (H,N) HSQC spectrum was recorded 

with 2 scans/increment and a matrix size of 2048 * 64 points (real and imaginary). 

Spectral widths of 16 and 32 ppm in 1H and 15N dimensions were used. 71 complete 2D 

experiments were recorded in total. Directly before data collection D2O was added to all 

the samples to give a final concentration of 10% (v/v). 

The spectra were collected using the 700 MHz Bruker AV spectrometer at 298K. Raw 

NMR data were processed with NMRpipe and the processed 2D spectra were analysed 

with CCPN Analysis (Vranken et al. 2005). Resonances assignments were transferred 

from the backbone resonance assignment of HASPA presented in Chapter 2. It should 

be noted that the different buffer conditions meant only a portion of resonance 

assignments could be transferred with confidence. The subsequent analysis only 

concerns those peaks that could be confidently assigned from the backbone assignment. 

Deviations in peak intensity between t=0 and t=175 minutes were calculated with the 

following equation, ΔI = (I0 - IMyr)/ I0 (Mulder et al. 1999). I0 represents the initial peak 

intensity at t=0 and IMyr denotes the peak intensity at t=175. Chemical shift changes (Δδ), 

expressed in ppm, of the individual amide pairs, 1H - 15N, between t=0 and t=175 were 

calculated with Δδ = [Δδ2
H + (ΔδN/Rscale)2]½. A chemical shift scaling factor, Rscale, of 6.5 
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was used. This Rscale value was determined from the ratio of the average variances of 

backbone nitrogen and proton chemical shifts from residues in proteins deposited with 

the BioMagResBank (Mulder et al. 1999). ΔδH and ΔδN represent the changes in chemical 

shift for 1H and 15N, respectively. 

 

3.2.5. NMT: HASPA co-crystallisation 

HASPA and NMT were dialysed into 20 mM Hepes pH 7.8, 50 mM NaCl before being 

combined at either 2:1 (475.2 µM HASPA: 237.6 µM NMT) or 5:1 (1.2 mM HASPA: 237.6 

µM NMT). NMT was kept constant at 237.6 µM and the hexa-histidine tag was removed 

before combination. It is also important to note that NMT was complexed with non-

hydrolysable myristoyl CoA analogue. The complexes were screened in a 96 well sitting 

drop vapour diffusion format with drops of 150 nl complex plus 150 nl well solution 

pipetted by a Mosquito robot (TTP Labtech Ltd). One screen, CSS I+II with 0.1 M Tris pH 

7.8, was setup with both complexes (Brzozowski and Walton. 2001). Initial optimisation 

of promising conditions from the CSS screen focused on testing varied buffer conditions. 

The crystal shower formed in 0.1 M sodium acetate pH 4.5, 25% polyethylene glycol 

monomethyl ether 2,000 (PEG 2000 mme) and 200 mM calcium acetate with the 5:1 

complex. Refinement of this condition produced single crystals in 0.1 M sodium acetate 

pH 4.5, 20% PEG 2000 mme and 50 mM calcium acetate. Crystals were retrieved from 

the drop, vitrified directly in liquid nitrogen and sent for data collection at the Diamond 

Light Source (DLS). 

The CCP4 software suite was used to complete macromolecular structure determination 

from the NMT X -ray crystallographic data (Winn et al. 2011). The data were processed 

and scaled by Xia (XDS) and Aimless (Kabsch. 2010; Evans and Murshudov. 2013). The 

structure was solved by molecular replacement using Molrep (Vagin and Teplyakov. 

1997) with 4CGP, Leishmania major NMT with myristoyl CoA bound, as the model.  

Model building, ligand replacement and manual fitting of the electron density map were 

performed in COOT (Emsley et al. 2010). REFMAC5 was used to carry out refinement of 

the structural data (Murshudov et al. 2011). All representations of the structure were 

generated with CCP4mg (McNicholas et al. 2011). It is important to note that at the date 

of submission this work is still in progress. However, as only minor refinement 
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procedures remains (e.g. solvent modelling, occupancies of some disordered side-

chains) the overall quality of the protein model will not change significantly. 

 

3.3. Results 

3.3.1. Leishmania major NMT expression and purification 

It should be noted that although this thesis has examined the HASPs of L. donovani, the 

L. major NMT (LmNMT) was used for the myristoylation work presented in this Chapter. 

The L. major protein was preferred because previous experience within YSBL has shown 

it is readily crystallisable in comparison to L. donovani NMT (LdNMT), despite both 

structures being deposited in the PDB. In addition the final yield from purification is 

significantly improved over L. donovani NMT, an important consideration when carrying 

out biochemical studies. Clustal Omega sequence alignment of these proteins showed 

them to be 97.8% identical (Sievers et al. 2011). Lastly, the overall fold and secondary 

structures of these proteins are highly similar, when superimposed by secondary 

structure matching they have a Cα RMSD of 0.81 Å, highlighting the lack of any distinct 

structural features between these two proteins (see Section 3.3.5.). 

It is the high sequence similarity between NMTs of different Leishmania species that led 

to the prediction that an efficacious inhibitor against one Leishmania NMT could be 

effective against all (Price et al. 2003). This is pertinent when you consider that analysis 

and comparison of human and fungal NMTs showed the myristoyl CoA binding site to 

be highly conserved but that the peptide binding sites had divergent species-specific 

specificities (Johnson et al. 1994). Moreover, recent analysis of the diverse modes of 

binding of inhibitors against L. donovani NMT were impeded when crystals could not be 

produced. Notably, the IC50 values obtained for LmNMT with the LdNMT inhibitors were 

comparable. Therefore, the study was continued with L. major NMT as a structural 

model, enabling the desired binding mode assessment of the various inhibitors 

(Brannigan et al. 2014). This study demonstrates the viability of LmNMT as a structural 

surrogate for the present work.  
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Figure 3-1: Chromatography traces and SDS PAGE analysis of the three step LmNMT purification. a) 1ml 
HisTrap FF crude column chromatography trace. The UV trace (280 nm) is shown in blue and percentage 
buffer B (where 100% equates to 250 mM imidazole) is in green. b) 12% SDS PAGE analysis of resultant 
fractions from (a). The gel shows resultant fractions (1 to 5). c) 1 ml HiTrapQ chromatography trace. The 
UV trace (280 nm) is shown in blue and percentage buffer B (where 100% equates to 500 mM NaCl) is in 
green. d) 12% SDS PAGE analysis of resultant fractions from (c). The gel shows load (1) and resultant 
fractions from peak 1 (2 to 6). e) Chromatography trace of Superdex 75 10/300 purification of NMT with 
fractions from (f) labelled. f) 12% SDS PAGE analysis of (e). The gel shows load (1) and resultant fractions 
(2 to 4). The molar mass of the NMT construct is 50.5 kDa.  

 

Leishmania major NMT was overexpressed in E. coli using the autoinduction method 

(Studier. 2005). The protein was purified in a three step procedure, encompassing nickel 

affinity, ion exchange and size exclusion purification (Figure 3-1). The nickel affinity 
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purification step produced NMT in a highly heterogeneous mixture (Figure 3-1a and b). 

These fractions were pooled and ion exchange purified to enhance contaminant 

separation (Figure 3-1c and d). NMT containing fractions, identified by SDS-PAGE, were 

concentrated for size exclusion purification. Adequate separation from remaining 

contaminants was achieved and confirmed by SDS-PAGE (Figure 3-1e and f). At this stage 

myristoyl CoA or non-hydrolysable myristoyl CoA analogue was added in a 1.5 molar 

excess of the protein concentration, depending on the downstream usage of NMT. It 

should be noted that NMT requires co-factor stabilisation before being concentrated for 

crystallisation (personal communication Dr James Brannigan). To enhance the final 

sample purity the N-terminal hexa-histidine tag was removed by TEV digestion. Although 

this step was optimised, it was only 50% efficient when considering tag removal but did 

significantly improve sample purity for crystallisation (Figure 3-2). The typical yield was 

1 mg of protein per litre of culture after TEV digestion. 

 

 

Figure 3-2: SDS-PAGE assessment of TEV digestion of LmNMT. The gels show load (1), hexa-histidine 
cleaved samples (2 to 5) and hexa-histidine tagged (6 to 8). The gels highlight how TEV digestion enhanced 
the purity of LmNMT. 

 

3.3.2. In vitro myristoylation of HASPA by NMT 

N-myristoylation is a co-translational event that occurs as the nascent polypeptide chain 

emerges from the ribosome, following removal of the N-terminal methionine by a 

methionine aminopeptidase (Wilcox et al. 1987). N-myristoyltransferase catalyses this 

covalent attachment of myristate to the now N-terminal glycine via an amide bond. 

More recently, it has been shown to occur post-translationally in apoptotic cells when 

caspase mediated proteolytic cleavage exposes an N-terminal glycine (Zha et al. 2000). 
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In both co- and post-translation myristoylation events NMT accepts a short peptide as 

the myristoylation substrate. Therefore, it was unclear if full length proteins could be 

effectively myristoylated by NMT in vitro because of its substrate specificity in vivo. The 

HASPs are a known substrate of NMT in vivo but it remained to be seen if they could be 

myristoylated in vitro (Denny et al. 2000). 

NMT was incubated with a known peptide substrate based on the N-terminus of L. 

donovani HASPB2 (GSSSTKD) with an excess of myristoyl CoA, as a positive control. 

Electrospray ionisation mass spectrometry (ESI-MS) of the untreated peptide confirmed 

the expected mass was 681.3 Da (Figure 3-3). Incubation with NMT produced a 210 Da 

mass increase, consistent with addition of the myristate group (Table 3-3). The 

molecular weight of HASPA was recorded to confirm N-terminal methionine removal. 

The expected N-terminal methionine cleaved molecular weight of 9445.6 Da obtained 

from ProtParam was in line with the ESI-MS reported value of 9445.1 Da (Gasteiger et 

al. 2005). It should be noted that the data for unmodified HASPA appears quite 

heterogeneous because it was not desalted before the data were recorded due to time 

constraints. Incubation of HASPA with NMT with an excess of myristoyl CoA also 

produced the expected 210 Da increase indicative of myristate addition (Table 3-3). The 

result demonstrated for the first time that NMT can myristoylate full length HASPA in 

vitro and meant further analysis of this modification and the NMT-HASPA interaction 

could be undertaken. 
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Figure 3-3: Electrospray ionisation mass spectrometry (ESI-MS) traces of untreated and NMT treated 
peptide and HASPA. a) ESI-MS trace of GSSSTKD peptide. b) ESI-MS trace of NMT treated GSSSTKD peptide. 
c) ESI-MS trace of N-terminal methionine cleaved HASPA. d) ESI-MS trace of NMT treated HASPA. Note 
masses do not directly match those reported as this data was scaled after collection giving the values in 
Table 3-3. 
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ESI-MS sample Reported MW (Da) Theoretical MW (Da) 

GSSSTKD HASPB2 based peptide 681.3 680.6 

Peptide incubated with NMT 891.5 690.6 

HASPA 9445.1 9445.6 

HASPA incubated with NMT 9656.1 9645.6 

Table 3-3: ESI-MS reported molecular weights of untreated and NMT treated peptide and HASPA with 
theoretical molecular weights of each species. 

 

3.3.3. Establishing the kinetic parameters of NMT catalysed HASP myristoylation 

NMT catalyses the transfer of a myristate from myristoyl CoA to the N-terminal glycine 

of a substrate peptide. A myristoylated peptide and co-enzyme A are produced from this 

reaction. Co-enzyme A production can be monitored in real time with the thiol reactive 

probe, 7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin (CPM). This 

coumarin derivative contains a thiol-reactive maleimide that quenches coumarin 

fluorescence in its free form, following reaction with a thiol group the quenching is 

diminished and coumarin fluorescence can be measured (Chung et al. 2008). This 

reaction can be coupled to co-enzyme A production during myristoylation (Figure 3-4). 

Reaction of the maleimide with the CoA thiol generates a fluorescent adduct. The CPM 

assay is a robust fluorescence based system for continuous reaction monitoring of NMT 

activity and end-point assays (Goncalves et al. 2012). 
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Figure 3-4: The CPM based fluorescence assay used to study the enzymatic activity of NMT. Myristate is 
transferred from myristoyl CoA by NMT to a free N-terminal glycine residue of a peptide substrate. Co-
enzyme A and an N-myristoylated peptide are the products of this reaction. CPM is a thiol-selective dye 
used to monitor the formation of co-enzyme A via fluorescent adduct production. 

 

The assay was initially tested with the L. donovani HASPB2 based peptide GSSSTKD, the 

positive control for the previous in vitro myristoylation work. The CPM setup reported 

the Michaelis-Menten (Km) constant as 229.4± 15.3 µM and a Vmax of 4.67E-04 µM s-1 for 

the peptide (Figure 3-5  and Table 3-4). This Km value was within the expected µM range 

for NMTs of Leishmania (Brannigan et al. 2010). LdNMT has a Km value of 31.6 ± 1.0 µM 

with GSNKSKPK in an excess (4 µM) of myristoyl CoA (personal communication with Dr. 

Victor Goncalves). This peptide is derived from the N-terminal sequence of the proto-

oncogene tyrosine kinase pp60src, a substrate of the NMTs from Homo sapiens (Lacal et 

al. 1988). The data obtained indicated that the assay was robust and could be expanded 

to define the kinetics of the HASP: NMT interaction.  

The Michaelis-Menten (Km) constant values obtained for all three HASPs were as follows, 

HASPA = 5.8 ± 0.6 µM, HASPB1 = 16.7± 0.3 µM and HASPB2 = 16.1± 0.7 µM. These values 

are in agreement with one another and within the µM range expected for NMT 

(Bhatnagar et al. 1994). The Michaelis-Menten (Km) constant refers to a molar 

concentration of substrate at which the enzyme is half saturated under steady state 
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conditions (Copeland. 2013). HASPA reports the lowest Km value, suggesting that the 

smallest HASP is the ‘best’ substrate for LmNMT as it is more efficiently converted to 

product. The Vmax is the maximum velocity for an enzyme where the substrate 

concentration is not limited (Copeland. 2013). The Vmax values reported for all three 

HASPs are between 1 to 2 nM s-1, meaning NMT is catalytically more efficient with the 

HASPs as substrates than the peptide (Table 3-4). The catalytic constant kcat refers to the 

maximum rate of product formation for an enzyme when it is saturated with substrate. 

The kcat values reported here for the HASPs are in the order of magnitude 10-2 s-1, 

meaning NMT exhibits a lower than average kcat of 10 s-1 for the HASPs (Bar-Even et al. 

2011). 

The second order rate constant kcat/ Km relates to the kinetic capacity of an enzyme and 

is limited to a maximum between 108 and 109 s−1 M−1, equal to the rate of substrate 

diffusion. It is a particularly effective measure of catalytic capacity because it links 

substrate affinity to the rate of substrate turnover. Global analysis of the kinetic 

parameters of thousands of enzymes showed the median kcat/ Km was in the order of 105 

s−1 M−1 (Bar-Even et al. 2011). The kcat/ Km reported for the HASPs between 103 and 104 

s−1 M−1, meaning this reaction has a moderate catalytic efficiency (Table 3-4). Moreover, 

these values are in line with those reported for Saccharomyces cerevisiae NMT (Farazi 

et al. 2000). Taken together, these kinetic parameters suggest that NMT exhibits 

moderate catalytic efficiency for the HASPs and are consistent with data reported in the 

literature for Leishmania donovani NMT (Brannigan et al. 2010). 
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Figure 3-5: Michaelis-Menten plots derived from the CPM assay. The substrate concentration in µM is 
plotted against the normalised velocity in µM s-1. Michaelis-Menten plot of GSSSTKD peptide (a), HASPA 
(b), HASPB1 (c) and HASPB2 (d). 

 

  GSSSTKD HASPA HASPB1 HASPB2 

Km (µM) 229.4± 15.3 5.8 ± 0.6 16.7± 0.3 16.1± 0.7 

Normalised Vmax (µM s-1) 4.67E-04 1.16E-03 1.77E-03 2.25E-03 

kcat (s-1) 2.34E-02 5.80E-02 8.86E-02 1.13E-01 

kcat/ Km (s-1 M‐1) 1.02E+02 1.84E+04 5.32E+03 7.00E+03 

Table 3-4: Michaelis-Menten parameters derived from the CPM assay for the L. donovani HASPs and 
GSSSTKD peptide. 

 

3.3.4. Real-time monitoring of HASPA myristoylation by NMR spectroscopy 

Real-time NMR spectroscopy has been used to study the effect and structural impact of 

post translational modifications on proteins as they occur. A recent study involved the 

complicated phosphorylation and dephosphorylation processes that modify multiple 

sites within the intrinsically disordered domain of c-Src (Amata et al. 2013). The effects 

of various kinases and phosphatases were characterised, allowing certain enzymes to be 

implicated in the modification of specific residues. This study highlights the role that 
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real-time NMR spectroscopy can play in assessing the structural impact of a modification 

on a protein and how it can be related back to biological relevance. 

Real-time NMR monitoring was used to monitor NMT mediated HASP myristoylation 

and evaluated any changes or potential structural impact. This entailed recording 

successive 1H 15N HSQC spectra of [U-15N] HASPA incubated with unlabelled NMT at a 

molar ratio of 100:1 (HASPA:NMT). Spectra were recorded every 5 minutes and the 

experiment was run overnight at 298K with a 2 fold molar excess of myristoyl CoA, 

relative to the concentration of HASPA. To ensure that any spectral changes observed 

were due to myristate addition the NMR sample was subject to ESI-MS analysis after 

NMT incubation. The expected molecular weight of [U- 15N] HASPA was determined to 

be 9574.7 Da using PROTEIN CALCULATOR v3.4, an online server available at 

http://protcalc.sourceforge.net/cgi-bin/protcalc. The major peak relating to HASPA 

after NMT incubation was at 9782.0 Da, in line with the 210 Da mass increase consistent 

with addition of the myristate group (Figure 3-6). 

 

Figure 3-6: ESI-MS of [U-15N] HASPA after NMT incubation. 

 

 

http://protcalc.sourceforge.net/cgi-bin/protcalc
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50 of the 73 resonances (69%) that were previously assigned could be confidently 

transferred onto the t=0 spectrum (Figure 3-7). This partial resonance transfer is due to 

the difference in the buffer conditions between the two experiments. The assignment 

was carried out at pH 6.5, while the real-time myristoylation was performed at pH 7.5 

to ensure NMT stability. The transfer of assignments between two different buffer 

conditions means that this data is of limited use, particularly when you consider the 

limited dispersion of resonances in IDP spectra, and will be treated as such. To achieve 

a fully comprehensive view of the impact of myristoylation on HASPA it would be 

beneficial to titrate from pH 7.5 to pH 6.5 to ensure confident assignment transfer or 

conduct the backbone assignment at pH 7.5.  
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Figure 3-7: Overlay of 1H 15N HSQC spectra of HASPA from backbone resonance assignment and t=0. a) 
The 1H 15N HSQC spectra from the backbone resonance assignment (blue) with assignments and t=0 
(orange) are shown. 50 of the 73 resonances (69%) that were previously assigned could be confidently 
transferred onto the t=0 spectrum. b) The final resonance transfer onto the t=0 spectrum (orange) 
showing resonances that could be confidently transferred and those that remained unassigned. 

 

Well-resolved spectra were obtained at each time point and myristoylation was 

considered complete at 2.5 hours, as determined by the absence of further spectral 
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changes. No detectable secondary structure was induced by NMT-mediated 

myristoylation of HASPA (Figure 3-8). The 1H 15N HSQC spectrum of [U-15N] HASPA 

remains indicative of a disordered protein with limited dispersion of resonances in the 

proton dimension. The peaks relating to residues in the N-terminal domain of HASPA, 

proximal to the N-terminal glycine and site of myristoylation, experienced the most 

pronounced chemical shift perturbations (Δδ) and intensity (ΔI) changes (Figure 3-8a). 

For example, the peak relating to serine 8 is observed at t=0 minutes but disappears at 

t=50 minutes (Figure 3-8b) and the peak assigned to lysine 10 gradually disappears 

between t=0 minutes and t=150 minutes (Figure 3-8c).  

Determination of the magnitude of the chemical shift and intensity changes between 

t=0 minutes and t=175 minutes associated with myristate addition was required for 

more comprehensive analysis of the system. Notably, chemical shift and intensity 

changes were only calculated for peaks that could be confidently transferred from the 

original backbone assignment. The chemical shift changes for the main chain nitrogen 

and proton resonances between t=0 minutes and t=175 minutes were calculated with 

Δδ = [Δδ2
H + (ΔδN/Rscale)2]½ to pin-point the impact of myristate addition (Mulder et al. 

1999). The first 30 residues, closest to the site of myristoylation, experienced the largest 

changes in chemical shift (Figure 3-9). The intensity change was calculated with ΔI = (I0 - 

IMyr)/ I0 (Mulder et al. 1999). Similarly to the chemical shift changes, the intensity 

changes were most pronounced in first 20 residues of the N-terminal domain of HASPA 

(Figure 3-9). The peak for serine 8 disappears entirely over the time course experiment 

and therefore produces the largest change in intensity of 1, where ΔIaverage = 0.07. The 

data presented here shows that myristate addition to HASPA does not induce any global 

structural changes indicative of a myristoyl switch mechanism. There are very few 

changes observed in peak position and intensity, indicating that myristate addition has 

a minor impact on HASPA. The peaks that do experience notable chemical shift or 

intensity changes are localised to the N-terminus. The small overall chemical shift 

change indicates that myristoylation has not affected the structure of HASPA. However, 

comparison of Cα, Cβ and CO chemical shifts would strengthen this conclusion. 
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Figure 3-8: Myristoylation of HASPA monitored by real-time NMR spectroscopy. a) Overlay of 2D 1H 15N 
HSQC spectra of HASPA at 0 (black) and 150 (red) minutes post NMT addition. b) A peak relating to serine 
8 is observed at t=0 (black) but is no longer present at t=50 (blue). c) A peak relating to lysine 10 is 
observed at t=0 (black) but disappears from t= 50 (blue) to t=150 (red). Note, t=100 is shown in purple. 
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Figure 3-9: Analysis of the peak intensity and chemical shift changes between t=0 and t=175 spectra. Top) 
Intensity changes between t=0 and t=175 spectra, where ΔIaverage = 0.07 and is shown in red. The most 
prominent intensity change is observed in the first 20 residues, particularly as the peak for S8 disappears. 
Bottom) Chemical shift changes between t=0 and t=175 spectra, where Δδaverage = 0.005 ppm and is shown 
in green. The most pronounced area of chemical shift change is the N-terminal domain of HASPA. S8 
disappears entirely so was not included in this analysis. Note to residues that do not have data are 
included but shown in red (-0.005 ppm) to frame the available data better. 

 

3.3.5. NMT: HASPA co-crystallisation 

Once in vitro HASP myristoylation had been established it was decided that co-

crystallisation would be explored. There is limited structural data concerned with 

peptide binding to NMT (Bhatnagar et al. 1998; Farazi et al. 2001a). Therefore, 

determination of a HASPA: NMT complex would be of great benefit to the field. NMT 
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was prepared for crystallisation with the hexa-histidine tag removed and complexed 

with non-hydrolysable myristoyl CoA analogue. The proteins were dialysed into 20 mM 

Hepes pH 7.8, 50 mM NaCl and mixed at 2:1 or 5:1 molar ratios (HASPA: NMT). One 

crystallisation screen, the CSSI+II screen supplemented with 0.1 M Tris pH 7.8, was 

prepared with both complexes (Brzozowski and Walton. 2001). The crystal shower 

shown in Figure 3-10a was obtained from initial buffer optimisation of promising CSS I+II 

screen conditions. It was further optimised into a cluster of crystals shown in Figure 

3-10b. A fragment taken from the cluster diffracted to 2.45 Å, when sent for data 

collection at the Diamond Light Source.  

 

Figure 3-10: Crystals obtained from NMT: HASPA co-crystallisation work. a) Crystal shower from 0.1 M 
sodium acetate pH 4.5, 25% (w/v) PEG 2000 mme and 200 mM Ca(C₂H₃O₂)₂ with the 5:1 complex (HASPA: 
NMT). b) Optimised crystal (from condition in a) used for structure determination of apo LmNMT. This 
condition was 0.1 M sodium acetate pH 4.5, 20% (w/v) PEG 2000 mme and 50 mM Ca(C₂H₃O₂)₂. 

 

The data were integrated to 2.45 Å and all the related statistics are outlined in Table 3-5. 

The structure was solved by molecular replacement using 4CGP, Leishmania major NMT 

with myristoyl CoA bound, as the search model (Brannigan et al. 2014). It was clear after 

molecular replacement that NMT had been crystallised with the non-hydrolysable 

myristoyl CoA analogue bound but without HASPA bound. There were two NMT 

molecules in the P1 unit cell and therefore the asymmetric unit, which represents a new 

crystal form for LmNMT. Both chains were well defined in the electron density map, 

which allowed efficient model building to be undertaken. The density was poorly 

defined for residues 83 and 84, 239 to 242 and 334 to 337. They were assumed to be 

disordered and they were removed from the model. Myristoyl CoA (PDB code: MYR) was 

replaced with 2-oxopentadecyl-CoA (PDB code: NHM) to complete the structure. It is 
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important to note that at the time of submission work on this structure is still in 

progress, hence the presence of Ramachandran outliers (Table 3-5). The current 

Rwork/Rfree are 0.23/0.31, respectively. 

 NMT crystal data 

Data collection  

X-ray source DLS beamline I02 

Detector Pilatus 

Temperature 100 K 

Cryoprotectant none 

Wavelength (nm)           0.97949 

Space group        P1 

  

Cell dimensions  

a, b, c (Å) 53.18 61.47 75.12 

α, β, γ ()  85.6 80.0 78.5 

Resolution (Å) 38.4 – 2.45(2.51-2.45) 

Rsym 0.139(0.822) 

<I / σ(I)> 5.0(1.2) 

Completeness (%) 95.7(95.6) 

Wilson B Factor (A2) 28.1 

  

Refinement  

Resolution (Å) 38.4 – 2.45 

No. reflections 28676 

Rwork / Rfree 0.23/0.31 

R.m.s. deviations  

    Bond lengths (Å) 0.020 

    Bond angles () 2.044 

B-factors  

    Protein 28.3 

    Ligand/ion 29.8 

    Water 31.2 

  

Ramachandran plot  

Preferred 91 

Allowed 6.2 

Outliers 2.8 

Table 3-5: Data collection and refinement statistics of LmNMT crystal. All X-ray diffraction data were 
collected on one crystal only. Values in parentheses relate to the highest-resolution shell. 

 

3.3.6. Structure of Leishmania major NMT 

A search of the RCSB Protein Databank (PDB) reveals that the structure of NMT has been 

solved from the following organisms, Leishmania major, Saccharomyces cerevisiae, 

Homo sapiens, Leishmanai danavani, Plasmodium vivax, Aspergillus fumigatus and 

Candida albicans. In all of these structures NMT is either complexed with myristoyl CoA 

(PDB code: MYR) or the non-hydrolysable myristoyl CoA analogue 2-oxopentadecyl-CoA 
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(PDB code: NHM) and in some cases a peptidomimetic inhibitor. These structures show 

the enzyme to be monomeric with a compact globular structure (Wright et al. 2010). 

The NMT fold, the term given to the common structural features of NMT, consists of a 

saddle shaped β-sheet spanning the core of the protein encircled by three α-helices. This 

fold encloses the C-terminal portion of the protein chain, meaning the α-carboxylate of 

the C-terminal leucine residue is at the centre of the protein (Figure 3-11a). The protein 

has two distinct lobes that display a pseudo two fold symmetry and bind each substrate 

separately. Co-crystal structures with myristoyl CoA and peptide analogues bound show 

that the N-terminal domain binds myristoyl CoA in a bent question mark conformation 

(Figure 3-11a left hand domain), while the C-terminal domain binds the peptide 

substrate (Figure 3-11a right hand domain) (Bhatnagar et al. 1998; Farazi et al. 2001a). 

The asymmetric unit contained two independent NMT molecules with well-defined 

density in each case. The two chains are highly similar with an RMSD on all Cα positions 

of 0.44 Å (Figure 3-11b). Chain A is used in the rest of this discussion (Figure 3-11a). This 

structure of LmNMT in complex with 2-oxopentadecyl-CoA is highly similar to LmNMT 

in complex with myristoyl CoA (PDB code: 4CGP), reporting RMSD on all Cα positions of 

0.91 Å (Brannigan et al. 2014). These differences are due to minor loop movements 

required to accommodate the different ligands (Figure 3-11c). Overlay of the structure 

with LdNMT in complex with 2-oxopentadecyl-CoA (PDB code: 2WUU), highlights the 

high structural similarity between the two species especially when complexed with the 

same ligand (Brannigan et al. 2010). The RMSD on all Cα positions between the 

structures is 0.81 Å (Figure 3-11d). 

2-oxopentadecyl-CoA (NHM) is a potent inhibitor of N-myristoyltransferase and a non-

hydrolysable analogue of myristoyl CoA (Paige et al. 1989). NHM differs from myristoyl 

CoA as it contains an extra methylene group between the CoA sulphur and the thioester 

carbonyl of myristoyl CoA (Figure 3-12). NHM and myristoyl CoA bind in the N-terminus 

containing lobe of NMT in a groove that allows the long aliphatic chain of the myristate 

to be accommodated by a deep hydrophobic cavity in the protein. While the CoA moiety, 

the portion of NHM upstream of the sulphur, is more exposed on the surface (Figure 

3-12). The moiety folds around its adenine base, giving rise to the distinctive ‘bent 

question mark’ shape observed in NMT bound forms (Bhatnagar et al. 1998). 
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The residues implicated in NHM binding in LmNMT are analogous to those involved in 

the LdNMT structure (Brannigan et al. 2010). The terminal phosphate group of CoA 

interacts with the side chain of histidine 12 and arginine 179, while also being stabilised 

by the backbone amides phenylalanine 14 and tryptophan 15 (Figure 3-12). The 

diphosphate group interacts with the backbone amides of arginine 179, leucine 180 and 

alanine 181. The carbonyl group of leucine 169 and side chain of arginine 176 contribute 

to further stabilising interactions with the ligand. NHM is bound in the NMT distinctive 

‘bent question mark’ conformation, where the moiety folds around the adenine base of 

CoA. Superposition of NHM from this structure and the LdNMT structure highlight this 

feature (Figure 3-12). 
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Figure 3-11: Structure of Leishmania major NMT in complex with 2-oxopentadecyl-CoA. a) LmNMT (cyan) 
in complex with 2-oxopentadecyl-CoA (grey), with the N- and C-terminal residues labelled as N and C. b) 
Overlay of the two molecules of LmNMT from the asymmetric unit in cyan and light green. The RMSD on 
Cα positions between these two molecules is 0.44 Å. c) Overlay of (a) with LmNMT complexed with 
myristoyl CoA (PDB code: 4CGP) in green. The RMSD on Cα positions between these two molecules is 0.92 
Å. d) Overlay of (a) with LdNMT complexed with 2-oxopentadecyl-CoA (PDB code: 2WUU) in purple. The 
RMSD on Cα positions between these two molecules is 0.81 Å. This figure and subsequent structures were 
prepared with CCP4mg (McNicholas et al. 2011). 
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Figure 3-12: Residues implicated in 2-oxopentadecyl-CoA bound to LmNMT. Top) 2-oxopentadecyl-CoA 
bound to LmNMT, highlighting residues implicated in the interaction. The backbone of the protein is 
shown in cyan and the carbon atoms of 2-oxopentadecyl-CoA is in grey. The remaining atoms are shown 
in red (oxygen), blue (nitrogen), yellow (sulphur) and magenta (phosphorus). Polar interactions between 
the protein and 2-oxopentadecyl-CoA are indicated by dashed lines. Bottom) Overlay of 2-oxopentadecyl-
CoA (NHM) bound to NMT in the bent question mark conformation. The carbon atoms are coloured 
according to the structure; LdNMT (cyan) and LmNMT (grey). 2-oxopentadecyl-CoA (NHM) differs from 
myristoyl CoA as it contains an extra methylene group between the CoA sulphur and the thioester 
carbonyl of myristoyl CoA. 
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3.4. Discussion 

The results presented in this Chapter have shown for the first time that NMT is able to 

catalyse HASPA myristoylation in vitro. This was initially verified by directly incubating 

NMT with HASPA or a known peptide substrate with an excess of myristoyl CoA. ESI-MS 

showed that both substrates experienced a 210 Da mass increase, indicative of 

myristate addition, after NMT incubation. The next step to defining this reaction was to 

obtain kinetic parameters for myristoylation. The CPM assay, a fluorescence based assay 

where fluorescence is linked to CoA production, was implemented to define the reaction 

(Goncalves et al. 2012). NMT reported Km values between 5.8 and 16.7 µM for the three 

full length HASPs, in line with µM values reported for NMT with various peptide 

substrates with this method (personal communication with Dr. Victor Goncalves). 

HASPA, as the smallest HASP, reported the lowest Km value suggesting that it is the ‘best’ 

substrate for LmNMT as it is more efficiently converted to product. All further work to 

define this interaction used HASPA as the model for all HASPs. 

Real-time NMR spectroscopy was used to monitor the effect and potential structural 

impact of NMT catalysed myristoylation on HASPA. In some cases myristate addition 

elicits a structural change in the myristoylated protein to protect the hydrophobic 

moiety from the hydrophilic environment. This is termed a myristoyl switch mechanism 

and is typified by a dynamic shuttling between myristate exposed and buried forms. This 

conformational change can be modulated by ligand binding, proteolysis and 

electrostatic interactions. Recoverin, a 23 kDa neuronal protein, is a myristoyl switch 

modulated by calcium binding (Ames et al. 1996). The binding of two calcium ions to 

recoverin induces a conformational change that expels the myristate moiety, exposing 

the hydrophobic amino acids onto the surface. Recent NMR analysis highlighted three 

distinct conformational states, notably a short lived intermediate state with one calcium 

ion bound was confirmed (Xu et al. 2011). The dynamic nature of the conformal shifts 

observed in myristoyl switches enables functional regulation. Successive 1H 15N HSQC 

spectra of [U-15N] HASPA incubated with unlabelled NMT showed that the effect of 

myristate addition, determined by chemical shift and intensity changes of peaks, was 

localised to residues close to the N-terminal glycine and site of myristoylation. 

Moreover, addition of myristate did not induce any secondary structure in HASPA that 

would suggest a myristoyl switch mechanism. 
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Lastly, attempts to crystallise the HASP: NMT complex produced an apo structure of 

LmNMT in complex with 2-oxopentadecyl-CoA (NHM) at 2.45 Å. The RCSB Protein 

Databank (PDB) does not contain a structure of Leishmania major NMT in complex with 

NHM alone, so this represents a unique structure of this protein. The binding of NHM is 

analogous to that observed in a previously published LdNMT structure (Brannigan et al. 

2010). To date there is limited structural information on NMT complexed with peptides 

(Bhatnagar et al. 1998; Farazi et al. 2001). Therefore, attempting co-crystallisation of the 

HASP: NMT complex was a viable strategy to enhance our understanding of protein 

substrate binding to NMT. This is particularly important when you consider that NMT 

has been explored as a potential drug target against leishmaniasis and enhanced 

understanding of substrate would further this work (Price et al. 2003; Brannigan et al. 

2014). It should be noted that there are published examples of structures obtained by 

NMR and X-ray crystallography of IDP: binding partner complexes, such as the extended 

helix formed by PUMA when bound to MCL-1 (Rogers et al. 2014). 

 

3.5. Summary and future work 

The work presented in this Chapter has confirmed that the HASPs can be myristoylated 

by NMT in vitro. Kinetic parameters established with the fluorescence based CPM assay 

were in line with those reported for peptide substrates of Leishmania donovani NMT 

and within the expected µM range (Goncalves et al. 2012). Real-time NMR spectroscopy 

was used to monitor the effect of myristoylation on HASPA in solution. Successive 1H 15N 

HSQC spectra of [U-15N] HASPA showed that myristate addition did not induce any 

secondary structure. The impact was modest and localised to residues proximal to the 

N-terminal glycine and site of myristoylation. Detailed analysis of the effect of 

myristoylation on assigned peaks was calculated by chemical shift and intensity changes, 

confirmed the impact on the N-terminal domain. Co-crystallisation efforts with the 

HASPA: NMT complex produced an apo structure of LmNMT in complex with 2-

oxopentadecyl-CoA (NHM) at 2.45 Å. 

To continue examination of the HASP: NMT interaction a peptidomimetic substrate 

based on the HASP N-terminal domain with enhanced binding properties could be 

designed. This would be an effective strategy to improve co-crystallisation efforts with 
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NMT and if successful would inform on substrate binding. The work presented here has 

shown that myristoylated HASPA can be produced. Myristoylation alone is too weak to 

mediate irreversible membrane binding, hence this modification is usually in found in 

combination with other stronger mediators of membrane binding (Goldston et al. 2014). 

However, it would be interesting to explore how myristoylated HASPA interacts with a 

biological membrane mimetic using NMR spectroscopy. Does it shuttle between bound 

and unbound as expected? This could be achieved by comparing the diffusion co-

efficient of myristoylated HASPA with and without membrane mimetic using diffusion-

ordered spectroscopy (DOSY). 
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Chapter 4 - Crystallisation of the HASPs 

4.1. Introduction 

This project was conceived as an X-ray crystallography study to decipher functionality 

from resulting HASP structural data. Various non-standard crystallisation schemes were 

implemented to induce crystal formation before intrinsic disorder was firmly 

established. These strategies are outlined here and in Chapter 5. Although unsuccessful, 

discussion of protein engineering to enhance crystallisability and improve crystal 

properties is constructive, particularly when you consider the challenging structures still 

to be solved by X-ray crystallography such as integral membrane proteins, multi-protein 

assemblies and transient conformational states. 

 

4.1.1. Fab antibody fragments as a non-covalent crystallisation chaperone 

Crystallisation is the major rate-limiting step in X-ray crystallographic studies of proteins, 

with a wide array of strategies in place to circumvent this issue (Derewenda. 2010). In 

particular, chaperone-assisted crystallography is becoming an increasingly efficacious 

and versatile approach. The chaperone reduces the conformational freedom of the 

target protein, stabilising it and increasing likelihood of crystal growth by reducing the 

entropic cost of lattice formation. Moreover, chaperone-assisted crystallography has led 

to improvements in diffraction quality, producing higher resolution structures. This 

strategy also facilitates the stabilisation of alternative but functionally relevant 

conformations of proteins to be fixed, contributing to a deeper understanding of protein 

function (Bukowska and Grütter. 2013). 

The Fab (fragment antigen binding) fragment of an antibody is a widely used non-

covalent crystallisation chaperone that has led to a number of crystal structures, 

particularly of membrane proteins (Lieberman et al. 2011). A recent example of the 

scope of Fab mediated crystallisation involves LeuT, a model system for 

neurotransmitter sodium symporter research, that was crystallised in a range of 

conformational forms (Krishnamurthy and Gouaux. 2012). LeuT mutants were 

generated to induce an apo state in the protein, which were used to raise apo state 

specific antibodies. The Fab-stabilised LeuT mutants were crystallised and revealed two 
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new conformational forms, namely substrate free outward open and inward open 

forms. This new structural information, taken together with the already determined 

occluded form, was used to enhance the mechanistic understanding of LeuT mediated 

transport. 

The inherent conformational heterogeneity of IDPs represents a significant challenge for 

structure determination. However, the Fab co-crystallisation strategy has been 

successfully implemented to obtain IDP structures, as they are able to capture structural 

and functionally relevant snapshots of these dynamic proteins. Tau is an intrinsically 

disordered microtubule-associated neuronal protein that, when misfolded, is implicated 

in Alzheimer’s disease. It is the main component of the paired helical filaments (PHFs), 

a defining pathological feature of Alzheimer’s disease (Mudher and Lovestone. 2002). A 

combined X-ray crystallography and NMR spectroscopy approach did not yield any 

structural information on the isolated form of tau. This is unsurprising when you 

consider that tau is an IDP, so exhibits high conformational heterogeneity in solution. 

Moreover, the PHF form is insoluble. Conformation dependent antibodies that stabilise 

distinct structural states of tau were generated from native source derived protein 

(Wischik et al. 1988). Complex formation of the PHF core C-terminal tail of tau with the 

specific MN423 Fab fragment produced crystals that were used to solve the structure 

(Sevcik et al. 2007). The MN423 Fab fragment acts as a ‘molecular scaffold’, inducing a 

folding on binding mechanism on tau and imposing a pre-selected native conformation 

(Skrabana et al. 2010). 

Another example of Fab induced stabilisation and crystallisation of an IDP is the HIV-1 

transcriptional activator protein and potential vaccine candidate Tat. It is vital for viral 

replication and disease pathogenesis. Tat is an IDP that functions as an interaction hub, 

as it is able to interact with cellular and viral binding partners in both the intracellular 

and extracellular environments (Foucault et al. 2010). NMR spectroscopy was used to 

confirm the intrinsic disorder of Tat but also established elements of structural 

propensity that contribute to the folding on binding required for its wide range of 

interactions (Shojania and O'Neil. 2006). Monoclonal antibodies were raised against the 

N-terminal domain of Tat, implicated in viral replication, and used to crystallise two 

peptides based on this domain (Serrière et al. 2011). Fab’ fragments, generated by 

pepsin digestion and reduction with 2-mercaptoethanol, were produced from the 
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monoclonal antibodies for complex formation. Direct comparison of the Fab’ co-crystal 

structures with the Tat: p-TEFb complex shows the N-terminal domain binds in an 

extended conformation with the conserved and functionally important tryptophan at 

position 11 exposed (Tahirov et al. 2010). Both structures show that when bound Tat 

adopts a type I β turn conformation (Figure 4-1). However, the difference in the position 

of histidine 13 means that Tat is able to form an α helix in the p-TEFb structure but not 

in the Fab’ bound form. This work highlights the structural plasticity of Tat that enables 

it to bind to various biological partners by adopting different structural conformations. 

 

Figure 4-1: Overlay of Tat structures from complexes with p-TEFb and Fab’. The structure of the peptide 
based on the N-terminal domain of Tat in complex with specific Fab’ (blue) is overlaid with the same 
residues from the Tat: p-TEFb complex (red). The hydrogen bond, between glutamic acid 9 and lysine 12, 
required for the β-turn conformation of both peptides is shown by the dashed blue line. The position of 
the histidine 13 side chain is the major difference between these two structures and is highlighted by blue 
(Fab’: Tat peptide) and red (Tat: p-TEFb) arrows. This figure was taken from (Serrière et al. 2011). 

 

4.2. Experimental 

4.2.1. Expression and purification of the HASPs 

Aliquots of LB media (10ml) containing kanamycin and chloramphenicol, at 50 and 30 

µg/ml, respectively, were inoculated with glycerol stocks of E. coli BL21 (DE3) cells 

transformed with either pET28b_haspa, pET28b_haspb1 or pET28b_haspb2. Briefly, the 

pET28b plasmid is isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible, kanamycin 

resistant and contains a non-cleavable C-terminal hexa-histidine tag. The cells were 

grown overnight at 37°C with shaking at 180 rpm and each 10 ml aliquot was used to 
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inoculate 500 ml LB media. These cultures were grown to an OD600 of 0.8 at 37°C with 

shaking at 180 rpm. Protein expression was induced with addition of IPTG to 1 mM and 

the cultures were transferred to 30°C for 4 hours with shaking at 180 rpm. The cells were 

harvested by centrifugation for 15 minutes at 5000 xg and the resulting pellets stored at 

-20˚C. Once thawed, the pellets were resuspended in 30 ml nickel column buffer A (50 

mM Tris pH 7.5, 500 mM sodium chloride, 20 mM imidazole) per 500 ml pellet 

supplemented with a protease inhibitor tablet (cOmplete, EDTA-free from Roche). The 

soluble cell suspension was sonicated 6 times on ice for 30 seconds with 1 minute 

intervals. Lysate clarification was achieved by centrifugation at 38000 xg for 30 minutes. 

The supernatant was loaded onto a 1 ml HisTrap FF crude column (GE Healthcare) pre-

equilibrated with nickel column buffer A. Five column volumes of nickel column buffer 

A washed the column before a gradient of 0 to 100% nickel column buffer B (50 mM Tris 

pH 7.5, 500 mM sodium chloride, 500 mM imidazole) was implemented for 20 column 

volumes to elute the target protein. SDS-PAGE was used to identify target protein 

containing fractions that were concentrated (Vivaspin Sample Concentrator range, 

10000 MWCO for HASPB1 and 3000 MWCO for HASPA and HASPB2) to 2 ml for size 

exclusion purification. A Superdex 75 16/60 column (GE Healthcare) equilibrated with 

20 mM sodium cacodylate pH 6.5, 120 mM sodium chloride and used to further purify 

the HASPs. Fractions were then analysed with SDS-PAGE to assess final sample purity. 

To enhance sample purity HASPB1 and HASPB2 were subject to an ion exchange step 

after nickel affinity purification. The HASPB samples were diluted with 20 mM Tris pH 

7.5 to give a final concentration of 50 mM NaCl and loaded onto a 1 ml HiTrap Q HP 

column equilibrated with ion exchange buffer A (20 mM Tris pH 7.5, 50 mM NaCl). 

Elution was achieved with a gradient of 0 to 100% ion exchange buffer B (20 mM Tris pH 

7.5, 1 M NaCl) for 20 column volumes. All purification columns were carried out with the 

AKTA FPLC system. 

ESI-MS was used to confirm the mass of each full length HASP. This in-house service was 

run by Dr. Andrew Leech with the proteins supplied at 2 mg/ml in 20 mM sodium acetate 

pH 5.5, 15 mM sodium chloride. Data was collected with an ABI Qstar tandem mass 

spectrometer. The polydispersity and batch consistency of each HASP was analysed with 

dynamic light scattering (DLS). Measurements were carried out at 20˚C with the protein 
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at 1 mg/ml in size exclusion buffer with the DynaPro Dynamic Light Scattering system 

(Protein Solutions). 

 

4.2.2. OPA concentration determination 

Phthaldialdehyde reagent (OPA) was obtained from Sigma Aldrich (CAS Number 643-79-

8). It is important to note that before readings can be taken all reagents and samples 

must be equilibrated to room temperature. Moreover, the OPA stock must be activated 

with 2.5 μl β-mercaptoethanol per ml of reagent used. The working range of the assay 

is a protein concentration of 10 to 500 μg/ml. Bovine serum albumin (BSA) standards 

were prepared from a 2 mg/ml bought standard stock (Pierce) in this range in the HASP 

size exclusion buffer (20 mM sodium cacodylate pH 6.5, 120 mM sodium chloride). Serial 

dilutions of the sample to be tested are made as follows; 1:10, 1:100 and 1:1000 

(sample: buffer). This enabled a wide range of possible concentrations to be covered. 

The standard protocol uses a ratio of 1:10 sample to reagent, so in the 96 well format 

200 μl reagent is added to 20 μl sample. To streamline OPA dispensing, a multi-channel 

pipette was used to add the reagent to the plate and incubated for 1 minute and 30 

seconds before the reading was taken. Excitation was set at 355 nm and emission at 460 

nm. The 96 well format mean that each reading was taken in quadruplicate to ensure 

the statistical validity of the setup. The readings were averaged and normalised by a 

blank reading. Normalised fluorescence of the standards was plotted against 

concentration and this standard curve was used to determine the unknown sample 

concentration. 

 

4.2.3. Expression and purification of HASPB1 fragments 

The HASPB1 fragments were cloned into the pET-YSBLIC3C vector using ligation 

independent cloning (Bonsor et al. 2006). This work was outlined in his undergraduate 

thesis and should be referred to for a detailed description. Four constructs were 

produced pET-YSBLIC3C_Nt, pET-YSBLIC3C_Ntr, pET-YSBLIC3C_Ct and pET-

YSBLIC3C_Ctr. Only two of these constructs (pET-YSBLIC3C_Nt and pET-YSBLIC3C_Ntr) 

expressed soluble protein when transformed into E. coli. This vector contains an N-
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terminal hexa-histidine tag connected via a HRV 3C protease recognition site for 

subsequent removal and is kanamycin-resistant. 

The expression and purification of the HASPB1 fragments was similar to the full length 

HASPs (outlined in Section 4.2.1.). However, methodological variations will be 

mentioned here. Firstly, after IPTG induction the cultures were transferred to 16°C for 

18 hours with shaking at 180 rpm. Moreover, the hexa-histidine tag was removed by 3C 

protease digestion (1:50 ratio of protease to protein) overnight while the sample was 

dialysed into 50 mM Tris pH 7.5, 500 mM sodium chloride, 20 mM imidazole, 1 mM 

dithiothreitol (DTT). The nickel purification step was repeated but the cleaved samples 

eluted in the nickel column buffer A wash step. The ion exchange purification step was 

not required as everything that bound in the first nickel step bound again, making hexa-

histidine tag removal an efficient purification step. 

 

4.2.4. SEC-MALLS analysis of the HASPs and HASPB1 fragments 

All experiments were conducted at room temperature on a system comprising a Wyatt 

HELEOS-II multi-angle light scattering detector and a Wyatt rEX refractive index detector 

installed at the Technology Facility, Department of Biology, University of York. The size 

exclusion column attached to the system was a Superdex 75 10/300 GL (G.E. 

Healthcare). For HASPA and HASPB1 the buffer was 40 mM sodium phosphate pH 7.5, 

120 mM NaCl and the proteins were supplied at 1 mg/ml. The HASPB1 fragments were 

analysed in 20 mM Tris pH 7.5, 120 mM sodium chloride and were supplied at 

approximately 3 mg/ml and encompassed NtR with his-tag, NtR without his-tag, Nt with 

his-tag and Nt without his-tag. All samples were 0.22 μM filtered before use. 

 

4.2.5. Circular dichroism of Nt fragment 

The HASPB1 Nt fragment (without hexa-histidine tag) was evaluated with the Jasco J810 

CD Spectrophotometer installed at the Technology Facility, Department of Biology, 

University of York. The sample was analysed at 0.2 mg/ml in 20 mM sodium phosphate 

pH 7 with 50 mM sodium chloride in a 1 mm quartz cuvette. The buffer was 0.22 μm 

filtered before use. Data were collected between 195 and 260 nm. The CD signal was 
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considered valid between these points, as the HT voltage was below 600 but saturated 

at a wavelength lower than 195 nm. 

 

4.2.6. Fab preparation and purification 

5 mg of rabbit polyclonal anti-HASPB1 IgG (a gift from Mike Hodgkinson) was dialysed 

into 20 mM sodium phosphate pH 7, 10 mM EDTA. This sample was concentrated to 20 

mg/ml and then diluted to 10 mg/ml with digestion buffer (sample buffer plus 20 mM 

cysteine. HCl). Immobilised papain (Thermo Scientific) was used to generate Fab 

fragments. The papain is supplied as a 50% slurry and was equilibrated with digestion 

buffer 3 times before use. Between wash steps the buffer was removed by 

centrifugation at 1200 xg for 5 minutes. For the digestion, an enzyme to substrate ratio 

of 1:10 was used, so an appropriate volume of immobilised papain was prepared. The 

concentration of the settled slurry is 250 μg/ml. The reaction was then incubated for 4 

hours at 37°C at 750 rpm then stopped by centrifugation and removal of the 

supernatant.  

Fab purification was carried out using Protein A HP column affinity purification. The 

sample was loaded onto a 1 ml HiTrap Protein A HP column (GE Healthcare) pre-

equilibrated with buffer A (20 mM sodium phosphate pH 7). The loaded column was 

washed with 10 column volumes buffer A and the bound sample was eluted with 5 

column volumes buffer B (0.1 M citric acid pH 3). The column was eluted at 0.5 ml per 

minute and 0.5 ml fractions were collected. To neutralise the eluted fractions, 200 μl 1 

M Tris pH 8.8 was added. 

 

4.2.7. HASPB1: Fab complex purification and crystallisation 

Due to the polyclonal nature of the Fab sample further purification of the complex was 

necessary. The samples were complexed at a ratio of 1:10 (with Fab in excess) and left 

to incubate on ice for 30 minutes. Then loaded onto a Superdex 200 16/60 size exclusion 

column (GE Healthcare) and purified into 20 mM sodium cacodylate pH 6.5, 120 mM 

sodium chloride. To ensure high resolution chromatography was carried out at 0.5 ml 

per minute. 
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The complexes were screened (CSS I+II with 0.1 M Bis Tris pH 6.5 and Hampton I+II) at 5 

mg/ml in 20 mM sodium cacodylate pH 6.5 at 20˚C. Protein desalting was carried out by 

repeated washing and concentrating of the protein with 20 mM sodium cacodylate pH 

6.5 using Vivaspin 500 sample concentrators (10000 MWCO). Screening was in a 96 well 

sitting drop vapour diffusion format with drops of 100 nl complex plus 100 nl well 

solution pipetted by a Mosquito robot (TTP Labtech Ltd). 

 

4.3. Results 

4.3.1. Purification and characterisation of the HASPs 

A two-step purification procedure was optimised for maximal yield and sample purity of 

the HASPs, the details of which can be found in Section 4.2.1. To enhance the purity of 

the HASPBs, an extra ion exchange was introduced after nickel affinity purification. 

Figure 4-2 highlights the purification schedule with HASPA as an example. Firstly, the 

nickel affinity purification step produced considerably pure eluted sample for this initial 

step, especially in the case of HASPA (Figure 4-2a and b). These fractions were pooled 

and concentrated for size exclusion purification. Adequate separation from remaining 

contaminants was achieved, observed by SDS-PAGE, to allow for sample 

characterisation (Figure 4-2c and d).  

The homogeneity was then assessed by dynamic light scattering (DLS) and ESI-MS for all 

three HASPs. DLS reported a polydispersity of 19% indicative of a highly monodisperse 

sample, a feature of a readily crystallisable construct (Figure 4-2e). The molecular weight 

(MW) obtained by ESI-MS was 9445.1 Daltons (Figure 4-2f), in line with the expected N-

terminal methionine cleaved molecular weight of 9445.6 Daltons obtained from 

ProtParam (Gasteiger et al. 2005). Moreover, no major adducts were noted in this 

preparation. These positive characterisation results meant that crystallisation trials 

were started and continued with no modification of the purification schedule. Figure 4-3 

shows the SDS-PAGE analysis of the HASPBs post size exclusion purification to emphasise 

the final sample purity achieved for each protein. 
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Figure 4-2: Chromatography traces and SDS PAGE analysis of the two step HASPA purification. a) 1ml 
HisTrap FF crude column chromatography trace. The UV trace (280 nm) is shown in blue and percentage 
buffer B (where 100% equates to 500 mM imidazole) is in green. b) 12% SDS PAGE analysis of load and 
resultant fractions from (a). The gel shows cell lysate load (1), column flow through (2), and resultant 
fractions (3 to 9). c) Chromatography trace of Superdex 75 16/60 purification of HASPA. d) 12% SDS PAGE 
analysis of (c). The gel shows load (1) and resultant fractions (2 to 8). The HASPA construct is 9.5 kDa. e) 
DLS regularisation histogram of an HASPB1, note percentage intensity is plotted against hydrodynamic 
radius (RH). The polydispersity (Pd) recorded was 19%. f) Electrospray ionisation mass spectrometry (ESI-
MS) result of HASPA reporting the expected N-terminal methionine cleaved molecular weight of 9445.1 
Da. 

 

HASPA (9.5 kDa), HASPB2 (15.2 kDa) and HASPB1 (43.4 kDa) all run much higher than 

expected for their respective molecular weights (Figure 4-2 and Figure 4-3). The HASPs 

migrate aberrantly on SDS-PAGE because of their lack of hydrophobic residues, a feature 

that has been observed previously (McKean et al. 1997). The molecular weight of each 

protein was confirmed by ESI-MS to ensure that this migration pattern was not due to 

unexpected post-translational modifications. 
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Figure 4-3: 12% SDS-PAGE of the L. donovani HASPBs size exclusion fractions, highlighting the 
homogeneity of the samples produced. The gels show column load (1) and resultant fractions (2 to 8). 

 

4.3.2. Reproducible concentration determination of the HASPs 

Accurate and reproducible concentration determination of a protein sample in solution 

is imperative to facilitate downstream biochemical and biophysical characterisation. 

Standard concentration determination utilises aromatic amino acid absorbance at 280 

nm, resulting in a protein-specific extinction co efficient. Proteins lacking aromatic 

residues usually contain an acceptable number of hydrophobic residues to be reactive 

with the Bradford reagent, allowing the concentration to be determined with this 

method. However, the HASPs only contain one aromatic residue (tyrosine), contributing 

to a low extinction co-efficient that would produce inaccurate results at 280 nm. They 

are also highly hydrophilic and had been shown to lack reactivity with Bradford reagent 

(personal communication with Dr. James Brannigan). Therefore, a reliable and 

reproducible concentration method was required for atypical sample concentration 

determination.  
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Figure 4-4: OPA concentration determination assay. Top) Reaction of OPA and primary amino groups. O-
Phthaldialdehyde, in the presence of reduced sulfhydryl groups, reacts with the primary amino groups to 
produce a fluorescent adduct. Bottom) An example calibration curve produced with OPA reagent using 
BSA standards of known concentration. This was used to determine the concentration of the HASPs 
samples based to the fluorescence readings taken. 

 

OPA is a primary amine-reactive fluorescent detection reagent that can be used as for 

protein concentration determination or as a post-column detection reagent for amino 

acid analysis with high-performance liquid chromatography (HPLC). In the presence of 

2-mercaptoethanol, OPA reacts with primary amines to form a highly fluorescent 

product (Benson and Hare. 1975). This reactions yields linear results over a wide range 

of concentrations (10 to 500 μg/ml) and can be used to generate a standard calibration 

curve (Figure 4-4). Notably, OPA assay accuracy was consistently determined to be ≥ 

85% within 25 to 400 µg/ml (Zhu et al. 2009). A fluorescence based assay using OPA was 

optimised in a 96 well format, with BSA as the protein standard of known concentration. 

Buffers with low pH or high molarity can cause decreased fluorescence. Moreover, 
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primary amine containing buffers such as Tris or glycine will react with OPA so should 

be avoided.  

The choice of an appropriate standard is key and can limit the effectiveness of this 

technique. BSA, obtained as a prepared stock solution at 2 mg/ml from Pierce, has a 

lysine content of 9.9%, while HASPA, HASPB1 and HASPB2 have lysine contents of 6.9%, 

12.7% and 9.2%, respectively. BSA was an appropriate standard for HASPB2 due to their 

similar lysine contents but led to overestimation of HASPA concentration and 

underestimation of HASPB1 concentration. The Nt-T4L construct (see Chapter 5) has a 

lysine content of 8.2% and was used as a more appropriate standard for HASPA 

concentration determination. Although this technique has limitations it was vital for 

downstream biochemical and biophysical analysis of the HASPs. 

 

4.3.3. Oligomeric state of the HASPs in solution 

Multi-angle laser light scattering (MALLS) is a technique for determining the absolute 

molar mass and the average molecular weight of particles in solution by detecting how 

they scatter light (Oliva et al. 2001). Therefore, measuring the scattering and 

concentration of a sample allows the molecular weight to be calculated. It is coupled 

with size exclusion chromatography (SEC) to define separate species within a sample. 

The main advantage of SEC-MALLS over analytical SEC is that the experimentally 

determined molecular weight is independent of elution order (Ye. 2006). This prevents 

elution order being used to attribute oligomeric states that are not present. This 

misleading elution order can be due to the protein interacting with the matrix of the 

column or a large hydrodynamic radius affecting migration. This technique was applied 

to the HASPs, HASPA and HASPB1, to analyse their oligomeric state in solution.  

It was vital to determine the oligomeric state and propensity to aggregate of the HASPs, 

particularly to determine the presence of any heterogeneous mixtures that would 

impede crystallisation. HASPA and HASPB1 were analysed to compare and contrast the 

role of the repeats on any oligomerisation or aggregation. Both proteins produced well 

defined single peaks when analysed, indicating that the samples are in one homogenous 

state in solution (Figure 4-5). Moreover, the reported molecular weight values obtained 
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are close to the expected monomeric values (Table 4-1). Notably, a well resolved peak 

will report a molecular weight with a ± 10% error, based on empirical analysis of the 

system by Dr. Andrew Leech. This accounts for the slight difference between the 

reported and expected values for HASPA. However, the smaller than expected molecular 

weight value obtained for HASPB1 is most likely due to some sample degradation. 

Moreover, the HASPB1 is slightly asymmetric compared to the HASPA peak, which would 

contribute to the slight variance in the reported molecular weight. 

 

Figure 4-5: SEC-MALLS molecular mass vs volume plot for HASPA and HASPB1. The solid lines report the 
differential refractive index of HASPA (green) and HASPB1 (blue) against elution volume. The molecular 
weights were calculated from the dashed peaks (same colours as differential refractive index trace), which 
correspond to the area of the peak used for this calculation. These plots show the homogeneity of the 
monomeric forms of both proteins in solution. 

 

Sample Elution volume (ml) Expected MW (kDa) Reported MW (kDa) 

HASPA 11.7   9.5 9.4 

HASPB1 8.6 43.4 37.1 

Table 4-1: SEC-MALLS derived parameters for HASPA and HASPB1. 

 

4.3.4. Crystallisation of the HASPs 

Extensive crystallisation screening of all three full length HASPs was carried out before 

IDP classification and Figure 4-6 shows some typical drops. It would be unnecessary to 

report an exhaustive list of conditions tested as no crystals were produced. However, 

the multifaceted approach to crystallise the HASPs encompassed a vast array of non-
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typical reagents that would be interesting to mention. The HASPs favoured low pH 

buffers, in particular sodium acetate pH 4.5 was a recurrent theme in initial screening 

and later work. Cationic detergents, e.g. choline chloride, dodeyltrimethylammonium 

chloride/ bromide and Girard’s reagent T, were tested as additives. It was thought that 

these positively charged detergents would mimic the membrane environment and 

stabilise the net negative charge of the HASPs. A further membrane mimetic POC (10 

mM 1,2 didodecanoyl-sn-glycero-3-phosphatidylcholine in 20 mM taurodeoxycholic 

acid) was added directly to the protein before screening. Neither of these approaches 

produced crystals but did yield interesting semi crystalline material (Figure 4-6). HASPA 

primarily produced this semi crystalline material, highlighting that the protein was 

capable of 2D order but this was impossible to tune into 3D order required for proper 

lattice formation. It was clear that a new strategy was required to coerce the HASPs to 

crystallise. 

 

Figure 4-6: Examples of HASP crystallisation screening. All drops relate to HASPA. a) 5 mM 
dodeyltrimethylammonium bromide, 20% PEG 3350, 0.1 M sodium acetate pH 4.5. b) as (a) but 10 mM 
dodeyltrimethylammonium bromide. c) 30% ethanol, 0.1 M sodium acetate pH 4.5. d) 50 mM choline 
chloride, 20% PEG 3350, 0.1M sodium acetate pH 4.5. 
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4.3.5. Purification and characterisation of the HASPB1 fragments 

Truncations of HASPB1 were designed to cover the N- and C-terminal domains and 

repeats. The amino acid composition of these constructs is shown in Figure 4-7. It should 

be noted that the cloning procedure will not be discussed here because it was carried 

out by James Chamberlin as part of his undergraduate studies and was submitted for 

examination in his thesis. It is important to note that the expression of the Ct and CtR 

constructs was problematic. No soluble protein was obtained for either construct, as the 

proteins were degraded while they were expressed. Therefore, all the work outlined 

here relates to the Nt and NtR constructs. 

 

 

Figure 4-7: Amino acid composition of the HASPB1 fragment constructs. The Nt construct encompasses 
the N-terminal domain of HASPB1 (blue). The NtR construct is the same as the Nt but with one repeat 
from HASPB1 (red). The Ct construct comprises the C-terminal domain of HASPB1 (green). The CtR 
construct is the same with one repeat from HASPB1 (purple). 
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The two step HASP purification procedure, outlined in Section 4.3.1., was applied to the 

HASPB1 fragments. Sufficient yield and sample purity of both Nt and NtR was achieved 

with this protocol, meaning that it was used in all subsequent purifications of these 

constructs (Figure 4-8). The nickel affinity purification step yielded moderately pure 

protein (Figure 4-8a to c). The fractions were pooled and concentrated for size exclusion 

purification. Adequate separation from remaining containments was achieved, 

observed by SDS-PAGE, to allow for sample characterisation (Figure 4-8 d to f). It is 

notable that the Nt and NtR fragments also migrated aberrantly on SDS-PAGE like the 

full length HASPs. ESI-MS was used to confirm the molecular weights of the constructs, 

which were in line with the expected molecular weights detailed in Table 4-2. However, 

for brevity this data is not included here. The purified Nt and NtR constructs were taken 

for biochemical characterisation.  

Construct Description Molecular weight (Da) pI 

Nt N-terminal domain of HASPB1 5222.7 8.4 

NtR Nt construct plus one repeat 6702.2 6.4 

Ct N-terminal domain of HASPB1 3689.6 4.2 

CtR Ct construct plus one repeat 5186.1 4.1 

Table 4-2: Descriptions and biochemical features of the HASPB1 fragments. The molecular weight and pI 
values were obtained from ProParam (ExPAsy). 

 

It is interesting to note that the NtR construct degraded rapidly when purified. The bands 

present underneath the NtR band in Figure 4-8c could be removed by size exclusion 

purification but were present after storage at 4˚C for 24 hours. It was hypothesised that 

the exposure of the repeat made the NtR construct sensitive to degradation. Treatment 

with the serine protease inhibitor PMSF (phenylmethanesulfonyl fluoride) did not 

prevent degradation. This would lead to an unpredictably heterogeneous sample that 

would be unlikely to crystallise. Therefore, all crystallisation screening was carried out 

with the Nt construct with removed hexa-histidine tag but as no crystals were produced 

so this work will not be discussed here. 
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Figure 4-8: Chromatography traces and SDS PAGE analysis of the two step HASPB1 fragment purification. 
a) 1ml HisTrap FF crude column chromatography trace of the Nt construct. The UV trace (280 nm) is shown 
in blue and percentage buffer B (where 100% equates to 500 mM imidazole) is in green. b) 12% SDS PAGE 
analysis of load and resultant fractions from (a). The gel shows cell lysate load (1), column flow through 
(2), and resultant fractions (3 to 7). c) same as (b) but for NtR construct. d) Chromatography trace of 
Superdex 75 16/60 purification of the Nt (blue) and NtR (green) fragments. e) 12% SDS PAGE analysis of 
Nt size exclusion purification. The gel shows load (1) and resultant fractions (2 to 4). f) same as (e) but for 
NtR construct.  
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4.3.6. SEC-MALLS of Nt and NtR fragments 

In order to investigate the oligomeric state of the HASPB1 Nt and Ntr fragments in vitro 

SEC-MALLS was carried out. The strength of the light scattering signal produced by a 

sample is proportional to its molecular weight and concentration (Ye. 2006). Therefore, 

low molecular weight samples, where the MW is 5000 Da or less, require high 

concentrations to produce acceptable data. This meant all the HASPB1 fragments were 

analysed at 3 mg/ml to produce adequate light scattering. As with the full length HASP 

samples no oligomerisation was observed. The Nt construct generated a symmetrical 

peak in both untagged and tagged forms, indicating high homogeneity in the sample 

(Figure 4-9). The reported molecular weight value for the HASPB1 Nt non his-tagged 

sample is 5070 Da, which relates well with the expected value of 5091.5 Da and is within 

the 10% error of the system (Section 4.3.3.). Moreover, this slight variance in molecular 

weight can be attributed to the size of the constructs, because they are the at lower 

detection limit of the apparatus. This correlation between expected and reported 

molecular weight is also observed for the Nt his-tagged sample. 

However, the NtR construct, in both tagged and untagged forms, produces a broader 

slightly asymmetric peak, indicative of sample heterogeneity. Considering the sample 

degradation issues outlined in Section 4.3.5., this is unsurprising. This feature is 

particularly prominent in the NtR his-tagged sample, where the peak broadens towards 

later elution time and does not return sharply to the baseline (Figure 4-9 blue peak). The 

reported molecular weight of this sample is higher than the expected value, which could 

be due to impurities affecting the estimate (Table 4-3). This could also be attributed to 

the asymmetric peak producing an inaccurate molecular weight as the peak composition 

differs from start to end. The sharpness of the peak was improved after his-tag cleavage, 

highlighting the importance of this step in sample preparation. The molecular weight 

reported for NtR non-tagged sample was 6610 Da, which was within the acceptable 10% 

error of the expected 6571 Da.  
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Figure 4-9: SEC-MALLS molecular mass vs elution volume plot generated for the Nt and NtR constructs. 
Note all the peaks are scaled to the same height to aid comparison. The solid lines report the differential 
refractive index of Nt plus his-tag (blue), NtR plus his-tag (grey), Nt no his-tag (red) and NtR no his-tag 
(green) against elution volume. The molecular weights were calculated from the dashed peaks (same 
colours as differential refractive index trace), which correspond to the area of the peak used for this 
calculation. These plots show the homogeneity of the monomeric forms of both proteins in solution. 

 

Sample Elution time (min) Expected MW (Da) Reported MW (Da) 

NtR plus his-tag 24.9 8717.3 9410 

Nt plus his-tag 26.4 7237.8 7773 

NtR no tag 25.4 6702.2 6610 

Nt no tag 27.0 5091.5 5070 

Table 4-3: SEC-MALLS derived parameters of the HASPB1 fragments compared with expected molecular 
weights. 

 

4.3.7. Circular dichroism of HASPB1 Nt fragment 

Circular Dichroism (CD) Spectrophotometry is a technique used to quantify the 

interaction of a molecule of interest with polarised light. The chiral arrangement of 

peptides bonds in specific protein secondary structures (e.g. α helices and β sheets) 

generate characteristic spectra at defined wavelengths. This allows the user to 

potentially assign secondary structure characteristics of an unknown protein sample 

based on the spectra obtained. 

Data were collected between 195 and 260 nm. The CD signal was considered valid 

between these points, as the HT voltage was below 600 but saturated at a wavelength 

lower than 195 nm (Figure 4-10c). It is clear that the Nt construct spectrum is that of a 
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random coil, when compared with a standard set of spectra (Figure 4-10). A typical 

random coil spectral feature is a negative peak at 195 nm, which is seen here. However, 

the positive peak around 220 nm usually observed for random coil samples is not 

observed. There is no positive peak observed in the CD spectra of HASPA and HASPB1 

(discussed in Section 2.3.2.), yet these spectra are defined as random coil. This 

classification means that the Nt fragment lacks discernible secondary structure. Based 

on this result it was decided that crystallisation trials should be halted with this 

construct. The result galvanises the narrative of the unstructured nature of the HASPs, 

especially when taken with the CD spectra of HASPA and HASPB1 presented in Section 

2.3.2.  

 

 

Figure 4-10: CD spectrum of HASPB1 Nt fragment. a) Example CD spectra of alpha-helical (yellow), beta-
sheet (blue) and random coil (red). This image is taken from Dr. Ramy S. Farid. 2006. Circular Dichroism 
(CD) Spectroscopy. Available at: http://www.proteinchemist.com/cd/cdspec.html. [Accessed 12 August 
15]. b) CD spectra for the HASPB1 Nt fragment exhibiting the random coil spectral feature. c) HT voltage 
trace. 
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4.3.8. Preparation of Fab fragments 

In order to stabilise the flexible structure of HASPB1 for crystallisation the idea of 

complexing the protein with specific antibody was explored. HASPB1 specific rabbit 

polyclonal antibodies were prepared by Mike Hodgkinson. Preliminary work showed 

that the HASPB1: antibody complex was too large to enter a native electrophoresis gel, 

not a good starting point for crystallisation. It was decided that Fab fragments should be 

prepared from the antibody stock and used for complex formation with HASPB1 as this 

has shown to be a successful approach for crystallising membrane proteins (Hunte and 

Michel. 2002). Moreover, removal of the Fc (fragment crystallisable) region in this 

polyclonal sample would also remove some of the heterogeneity that could impede 

crystallisation. 

Papain, a non-specific thiol-endopeptidase, digestion of Immunoglobulin G (IgG) 

generates two antigen binding Fab fragments and one Fc fragment. Papain (Thermo 

Scientific) was obtained immobilised on an agarose resin, enabling greater control of the 

digestion process and easier removal of the enzyme. Digestion was firstly optimised on 

a small scale with the immobilised papain. It was found that a ratio of 1:10 (enzyme: 

substrate) was the most effective protocol for Fab production; note this is also the 

recommended ratio for effective rabbit IgG digestion (Coulter and Harris. 1983). The 

experiment was also carried out over a time course (Figure 4-11) with optimal digestion 

seen after 4 hours at 37°C with shaking at 750 rpm.  

Interpretation of the resultant SDS-PAGE gel from IgG digestion can be more complex 

than initially assumed. IgG and antibody fragments have different migration patterns 

depending on the pre-treatment of the sample because of the disulphide bonds. Under 

non-reducing conditions the Fab and Fc fragments migrate to a molecular weight of 45 

to 50 kDa. Fab fragments migrate to around 25 kDa and Fc fragments to around 30 kDa 

with reducing SDS-PAGE. Undigested IgG also has different migration patterns under 

reducing (heavy chain at 50 kDa and light chain around 25 to 30 kDa) and non-reducing 

conditions (≥ 100 kDa). Figure 4-11 has been annotated to clarify the bands for future 

reference. 
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Figure 4-11: Papain digestion of IgG. 10% SDS-PAGE gel showing a time course of 1:10 enzyme to substrate 
digestion. Lanes 1-4 are under reducing and lanes 5-8 non-reducing conditions. The gels shows undigested 
IgG (1 and 5), two hours of digestion (2 and 6), three hours of digestion (3 and 7) and four hours of 
digestion (4 and 8). 

 

Separation of the digested Fab fragments from the undigested IgG and Fc fragments was 

the vital next step in the preparation procedure. Protein A, derived from Staphylococcus 

aureus, is used for IgG affinity purification because it binds the Fc region of IgG with high 

specificity and strength (Goding et al. 1978). It can be obtained as a 1 ml or 5 ml HiTrap 

Protein A HP column (GE healthcare), where protein A is coupled to Sepharose so that 

the IgG binding regions are free. Notably, one molecule of coupled protein A can bind 5 

molecules of IgG. The purification schedule produced the expected two distinct peaks in 

the resulting chromatograph (Figure 4-12c). SDS-PAGE analysis was used to determine 

the composition of the peaks and it was shown that the first peak contained purified Fab 

and the remaining peak undigested IgG and Fc (Figure 4-12). The Fab fractions could 

then be pooled and dialysed ready for complex formation with HASPB1. 
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Figure 4-12: Protein A purification of digested antibody sample. SDS-PAGE analysis of Protein A 
purification, where all lanes are under reducing conditions. a) The gel shows undigested sample (1) and 
peak 1 fractions lanes (2 to 6). (b) The gel shows undigested sample (1) and peak 2 fractions (2 and 3). c) 
1 ml HiTrap Protein A HP column (GE Healthcare) chromatography trace. The UV trace (280 nm) is shown 
in blue and percentage buffer B (where 100% equates to 0.1 M citric acid pH 3) is in green. 

 

The samples were complexed at a ratio of 1:10 with Fab in excess but needed to be 

purified to remove any unbound Fab present. This was achieved by size exclusion 

purification (Superdex 200 16/60 column) and the resultant chromatograms showed 

two peaks (Figure 4-13a). It was hypothesised that these peaks could relate to two or 

more separate complexed species, due to the polyclonal nature of the antibody sample, 

or one complex with the second peak due to Fab or unbound HASPB1. SDS-PAGE analysis 

was carried out to determine peak composition. Figure 4-13 highlights that each peak 

does contain both proteins; however, in order to determine complex formation it was 

necessary to test the samples on a native gel. It is clear when analysing the native gel 

data (Figure 4-13c) that neither lane contains any unbound HASPB1. It was concluded 

that both peaks contained complexes with differing stoichiometries or Fab fragments 
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with different molecular weights. Therefore, both peaks were pooled separately and 

concentrated for use in crystallisation attempts. 

However, due to the extremely small amount of complex produced biochemical 

characterisation was not possible. SEC-MALS is used to analyse the molecular weight 

and stoichiometry of a complex but requires at least 200 µl at 2 mg/ml, consuming the 

entire sample. Native (non-denaturing) mass spectrometry was considered as it requires 

much less sample and reports the composition, topological arrangements, dynamics, 

and structural properties of protein complexes (Lorenzen and Duijn. 2001). However, it 

still requires at least 20 µl and it was decided that this was too sample expensive. 

 

Figure 4-13: Size exclusion purification of the HASPB1: Fab complex. a) Superdex 200 16/60 
chromatography trace for the purification of the HASPB1: Fab complex. The UV trace (280 nm) is shown 
in blue and the peaks taken for SDS-PAGE analysis are numbered. b) SDS-PAGE analysis of size exclusion 
peaks observed in (a). All lanes are under reducing conditions. The gels shows loaded sample (1), peak 1 
fractions (2 to 4) and peak 2 fractions (5 to 7). c) Native interaction gel comparing peaks seen in 
purification. The gel shows purified HASPB1 (1), loaded complexed sample (2 to 3), peak 1 sample (4) and 
peak 2 sample (5). 
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4.3.9. Crystallisation attempts of the HASPB1: Fab complex 

After Fab generation and purification the yield of HASPB1: Fab complex was extremely 

low, approximately 60 μl of the peak 1 complex at 5 mg/ml was obtained from 5 mg 

starting material. Therefore, two screens were setup; CSS I+II with 0.1 M Bis Tris pH 6.5 

and Hampton I+II. Seemingly promising hits were obtained with the peak 1 complex 

from the Hampton screen then optimised (Figure 4-14). Further improvement of these 

conditions was unsuccessful and the remaining sample was used. This work was 

discontinued in favour of other lines of enquiry. 

 

Figure 4-14: Example preciptate obtained from the Hampton I+II screen of the HASPB1: Fab complex. a) 
Condition D4; 30% PEG 4000, 0.1 M Tris HCl pH 8.5, 0.2 M sodium acetate. b) Condition G2; 1.4 M sodium 
citrate, 0.1 M sodium Hepes pH 7.5 

 

4.4. Discussion 

Protein engineering, including the removal of post translational modifications, ligand or 

partner protein binding, surface entropy reduction, covalent and non-covalent 

crystallisation chaperones, truncations and flexible domain removal, has been 

repeatedly implemented to enhance the crystallisability of proteins (Derewenda. 2010). 

A multidimensional strategy was devised and implemented, presented here and in 

Chapter 5, to coerce HASP crystallisation but was ultimately unsuccessful. In light of 

intrinsic disorder classification of the HASPs it is unsurprising that crystallisation 

attempts did not yield any crystals. The conformational heterogeneity of all IDPs 

impedes crystal formation and is discussed in more detail in Section 5.4.1. 
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4.5. Summary and future work 

A purification schedule was optimised for maximal yield and sample purity of the HASPs, 

confirmed by dynamic light scattering and electrospray mass spectrometry. Additional 

biochemical characterisation with SEC-MALLS showed that the HASPs were monomeric 

in solution. These favourable biochemical properties meant that crystallisation 

screening could begin. However, screening of all three full length HASPS showed them 

to be recalcitrant to crystallisation. It was clear that stabilisation of a single conformation 

was required to modulate HASP crystallisability. Challenging crystallisation targets often 

require a multifaceted approach to produce structural data. In this chapter, Fab 

fragment stabilisation, HASPB1 truncations and additive based stabilisation, were 

implemented to coerce HASP crystallisation. Unfortunately no crystals were produced 

during the course of this project. Once intrinsic disorder classification was established 

(see Chapter 2) it was clear it that the inherent conformational heterogeneity of the 

HASPs would always impede crystallisation. This classification was further bolstered by 

circular dichroism of the HASPB1 N-terminal domain construct that showed it to be 

disordered. Refocussing the project with IDP classification in mind enabled study of the 

dynamic nature of the HASPs (Chapter 2) and the NMT: HASP interaction (Chapter 3). 

It would be beneficial to analyse the HASPB1: Fab complexes with NMR, to monitor any 

chemical shift or intensity changes indicative of protein-protein interactions. 

Comparative HSQC spectra of 15N labelled HASPB1 with the two HASPB1: Fab complexes, 

where HASPB1 was 15N labelled while Fab remained unlabelled, would allow 

identification of any conformational changes in HASPB1. Change in chemical 

environment, mediated by Fab binding, would be manifested as changes in peak 

position and/ or intensity (Bieri et al. 2011). Moreover, this technique would also inform 

on the scale of any conformational changes based on the region affected by Fab binding. 

Lastly, all the published structures of Fab stabilised structures are generated with Fab 

fragments from monoclonal antibodies. If this work was continued then it would be 

beneficial to work with monoclonal antibodies, reducing the heterogeneity of the 

system. 
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Chapter 5 - T4 Lysozyme as a crystallisation chaperone 

5.1. Introduction 

5.1.1. T4 lysozyme fusion as a crystallisation strategy 

Integral membrane proteins are predicted to represent around 30% of known proteins 

and are involved in many critical biological processes (Wallin and Von Heijne. 1998). It is 

notable that 40% of all current drug targets are membrane proteins but structure based 

drug discovery is limited by the lack of available structures (Carpenter et al. 2008). 

Currently, the Protein Data Bank contains in excess of 100,000 protein structures, 350 

of those are unique membrane proteins (Moraes et al. 2014). The problematic nature of 

membrane protein expression, purification and crystallisation clearly has limited 

progress but a multifaceted approach to improve their crystallisability is turning the tide. 

Detergent improvements for purification and crystallisation, application of lipidic cubic 

phase, stabilisation via ligand binding and covalent or non-covalent fusion to a 

crystallisation chaperone are strategies that have been successfully implemented 

(Lieberman et al. 2011). The interest of this chapter is the chimeric covalent fusion 

strategy, whereby the gene for a chaperone with an intrinsic high propensity to 

crystallise is inserted into the membrane protein construct. The readily crystallisable 

protein chosen should also be structurally rigid thus reducing local flexibility of the 

target protein while increasing the polar surface needed for crystal contacts. Removal 

of an area of high conformational heterogeneity in the target further improves chimera 

stability. However, careful construct design is key to success with this strategy but is of 

course limited when there is no starting structure. Published examples that implement 

this method successfully are the best starting point to a more comprehensive 

understanding of its potential and limits.  

Heterotrimeric guanine nucleotide binding protein (G protein) coupled receptors 

(GPCRs) are an extensive and versatile family of transmembrane signalling proteins that 

are implicated in a wide spectrum of diseases (Pierce et al. 2002). The external stimuli 

recognised by family members include hormones, neurotransmitters, chemokines, 

calcium ions, odorants and light. Crystallisation of the GPCRs has been problematic 

because of their low natural abundance, instability and dynamic nature. The difficulty of 

GPCR crystallisation is apparent when you consider that rhodopsin is the only wild type 
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receptor to have been crystallised (Palczewski et al. 2000). Point mutations, truncations 

and the application of fusion partners have been used to circumvent these issues. In 

particular, fusion with bacteriophage T4 lysozyme (T4L) has enabled the crystallisation 

of adenosine receptor A2a (Jaakola et al. 2008; Xu et al. 2011), chemokine CXCR4 

receptor (Wu et al. 2010), dopamine D3 receptor (Chien et al. 2010), histamine H1 

receptor (Shimamura et al. 2011), sphingosine phosphate S1P1 receptor (Hanson et al. 

2012), muscarinic acetylcholine M2 (Haga et al. 2012) and M3 (Kruse et al. 2012) 

receptors, µ-opioid receptor (Manglik et al. 2012), δ-opioid receptor (Granier et al. 

2012), κ-opioid receptor (Wu et al. 2012) and the β2 adrenergic receptor (β2AR) 

(Cherezov et al. 2007; Rosenbaum et al. 2007; Rasmussen et al. 2011; Zou et al. 2012). 

The β2 adrenergic receptor (β2AR), involved in the regulation of cardiovascular and 

pulmonary function by the sympathetic nervous system through adrenalin and 

noradrenalin recognition, was the starting point for this T4 lysozyme fusion approach 

(Rosenbaum et al. 2007; Cherezov et al. 2007). It was determined that the highly 

dynamic and poorly structured third intracellular loop (ICL3), which links the cytoplasmic 

ends of transmembrane domains 5 and 6, was the main contributor to structural 

instability (Kobilka and Schertler. 2008). The conformational heterogeneity of ICL3, 

though vital for its functions of G protein activation and interaction, enabled 

unobstructed movement of the transmembrane domains. ICL3 was removed and 

replaced by T4 lysozyme, restricting domain movement and increasing the polar 

contacts required for crystal growth. This allowed diffraction quality crystals to be grown 

and the structure of this chimeric protein to be solved (see Figure 5-1).  
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Figure 5-1: Structure of the β2 adrenergic receptor (β2AR): T4 lysozyme fusion protein (taken from 
Rosenbaum et al. 2007). Removal of the unstructured third intracellular loop (ICL3) and replacement with 
T4 lysozyme at the cytoplasmic face of transmembrane domains 5 and 6 enabled crystallisation. 

 

The HASPs are not integral membrane proteins but via the N-terminal dual acylation 

motif they are membrane associated. Moreover, the seemingly promising crystallisation 

work done in Chapter 4 focused on tailoring the surrounding chemical environment to 

closely mimic the plasma membrane, a strategy of membrane protein crystallisation. 

Implementation of a chaperone as a rigid scaffold for crystallisation that masks areas of 

conformational heterogeneity while promoting lattice formation are attractive qualities 

lacking in the HASPs. This combination of factors merits the chimera approach as a 

potential reinvigoration of crystallisation attempts.  

 

5.1.2. Construct design of HASP chimeras 

Construct design began with an appraisal of various published examples of effective 

chaperone proteins (see Table 5-1). The plethora of potential fusions meant this analysis 

was limited to chimeras with associated structural data to filter out poorly crystallisable 
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chaperones. T4 lysozyme was chosen as the crystallisation scaffold due to the high 

success rate of this approach, highlighted by the extensive list of published examples 

(see Section 5.1.1 and Table 5-1). Moreover, T4 lysozyme fusion is not limited in scope 

to ICL3 replacement but N-terminal fusion enabled crystallisation of a more functionally 

active form of the β2 adrenergic receptor (Zhou et al. 2012). This functional plasticity 

adds to the apparent efficacy of this chaperone. 

 

 

Figure 5-2: Schematic representation of the domain composition of HASP: T4 lysozyme fusion proteins 
with domain boundaries and residue numbers. 

 

GCPR chimeric constructs sample various domain fusion sites and truncations en route 

to the final crystallisable chimera (Chun et al. 2012). Consideration of this statement in 

relation to the HASP sequences led to the design of three constructs that encompass 

their distinct sequence units (see Section 1.3.). Figure 5-2 shows a schematic 

representation of the planned constructs; 1) N-terminal domain of HASPB1, 2) N-

terminal domain of HASPB1 plus one repeat unit and 3) HASPA (HASP N- and C-terminal 

domains) all C-terminally fused to T4 lysozyme. To circumvent the inherent flexibility of 

a two domain fusion protein, which would be highly detrimental to crystallisation 



152 
 

attempts, a short linker is used in the literature to maintain structural rigidity throughout 

the chimera (see Table 5-1). Informed by this literature review I decided to opt for a 

minimal linker of two alanine residues between the chimeric units. 

Chimera Linker PDB code Reference 

T4 lysozyme: N-terminus of β2 adrenergic 
receptor 

AA 4GBR Zou et al 
2012 

MBP: gp21 AAA 1MG1 Kobe et al 
1999 

MBP: SarR AAAEF 1P4X Liu et al 
2001 

MBP: MATa1 AAAAA 1MH3 
1MH4 

Ke and 
Wolberger 
2003 

T4 lysozyme: Human histamine H1 receptor No linker 3RZE Shimamura 
et al 2011 

T4 lysozyme: human CXCR4 chemokine 
receptor 

GS at both N- and 
C- terminal ends of 
T4 

3ODU Wu et al 
2010 

T4 lysozyme: human β2 adrenergic receptor No linker at either 
end 

2RH1 Cherezov et 
al 2007 + 
Rosenbaum 
et al 2007 

T4 lysozyme: Adenosine receptor A2a No linker at either 
end 

3QAK 
 

Xu et al 2011 

T4 lysozyme: Adenosine receptor A2a No linker at either 
end 

3EML Jaakola et al 
2008 

T4 lysozyme: human dopamine D3 receptor No linker at either 
end 

3PBL Chien et al 
2010 

T4 lysozyme: human β2 adrenergic receptor: 
Nanobody 

AA 3SN6 Rasmussen 
et al 2011 

T4 lysozyme: E. coli lactose permease S (short linker) or 
SGGSG/GSGGS 
(longer linker) 

No structure Engel et al 
2002 

MBP: Islet Amyloid Polypeptide (IAPP or 
amylin) full length and residues 1 to 22 

AAA 3G7V  
3G7W  

Wiltzius et al 
2009 

MBP: ZP-N domain of ZP3 (3 crystal forms) AAA 3D4C  
3D4G 
3EF7 

Monné et al 
2008 

T4 lysozyme: sphingosine phosphate S1P1 
receptor 

No linker 3V2W 
3V3Y 

Hanson et al 
2012 

T4 lysozyme: human M2 muscarinic 
acetylcholine receptor 

No linker 3UON Haga et al 
2012 

T4 lysozyme: rat M3 muscarinic acetylcholine 
receptor 

No linker 4DAJ Kruse et al 
2012 

T4 lysozyme: µ-opioid receptor No linker 4DKL Manglik et al 
2012 

T4 lysozyme: δ-opioid receptor  No linker 4EJ4 Granier et al 
2012 

T4 lysozyme: κ-opioid receptor No linker 4DJH Wu et al 
2012 

Table 5-1: Summary of published crystallisation chaperones in relation to linker composition and length. 
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5.2. Experimental 

5.2.1. SLIC cloning of fusion constructs 

SLIC, or sequence and ligase independent cloning does not utilise restriction enzymes or 

ligases (Li and Elledge. 2007). Primers for the amplification of the destination vector and 

desired insert are designed to have overlapping homology of around 15 base pairs. 

Separate treatment of the DNA fragments with T4 polymerase in the absence of dNTPs 

facilitates 3’ exonuclease activity and generates single stranded overhangs (Figure 5-3). 

When sufficient complementary single stranded 5' overhangs are exposed, 

approximately 15 base pairs, the reaction can be halted by addition of dCTP. This reverts 

the activity of T4 polymerase but the limited nucleotide provision maintains the 

overhangs. The destination vector and PCR product with compatible single strand 

overlapping ends are mixed together and anneal. Gaps are subsequently repaired upon 

transformation. 

 

Figure 5-3: Schematic representation of SLIC cloning. Primers are designed to amplify the destination 
vector and insert (pink) with overlapping homology (shown in blue and purple). T4 polymerase without 
dNTPs acts as a 3’ exonuclease and generates single stranded overhangs of these homologous regions. 
Addition of dCTP stops the reaction and when mixed the fragments self-anneal. Transformation into E. 
coli repairs the gaps producing the final recombinant plasmid. 
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The pHS1403 vector, encoding T4 Lysozyme C54S C97A, was a gift from Brian Matthews 

(Addgene plasmid # 18355), while the destination vectors were pET28b_haspb1 and 

pET28b_haspa (see Section 4.2.1. and Appendix A.1.). Primers were designed in 

accordance with the SLIC procedure, the sequences of which are in the Appendix A.1. 

Tables 3-2 and 3-3 outline reaction conditions and temperature cycles used. PCR 

products were analysed by agarose gel electrophoresis and treated with 20 U of DpnI 

(NEB) per 100 µl then incubated at 37°C for 1 hour. The QIAquick PCR Purification Kit 

(Qiagen) was used for sample purification. 

Reagent Final concentration Final volume in 20 µl 

ddH2O  11.8 µl 

5x Phusion buffer 1x 4 µl 

dNTPs (10 mM stock) 200 µM each 0.4 µl 

Forward primer (10 µM stock) 0.5 µM 1 µl 

Reverse primer (10 µM stock) 0.5 µM 1 µl 

Template DNA (50 ng/ µl) 50 ng 1 µl 

DMSO 3% 0.6 µl 

Phusion DNA Polymerase (2U/ µl) 0.4 U 0.2 µl 

Table 5-2: PCR master mix for SLIC cloning. 

Step Temperature (˚C) Time (s) No. of cycles 

Initial denaturation 98 120 1 

Denaturation 98 20  
25 Annealing 55 20 

Extension 72 20/ 165* 

Final extension 72 420 1 

Table 5-3: SLIC PCR temperature profile. *Extension time differences are due to varied PCR product 
lengths, 20 seconds for the insert and 165 seconds for the destination vector. 

 

Single strand overhang generation was carried out as follows. 1 μg of the vector and 1 

μg of the insert were treated separately with 0.75 U of T4 DNA polymerase (NEB) in NEB 

buffer 2 plus BSA (see Table 5-4). The reaction mix was incubated at room temperature 

for 30 minutes. Addition of 1/10 volume of 10 mM dCTP stopped the reaction and the 

samples were transferred to ice. 

Reagent Final concentration Final volume in 30 µl 

NEB T4 DNA polymerase (3U/ µl) 0.75 U 0.25 µl 

BSA (10 mg/ml) 50 µg 0.15 µl 

NEB buffer 2 (10x) 1x 3 µl 

Sample DNA 1 µg X µl (to give 1 µg) 

ddH2O To give a final volume of 30 µl 

Table 5-4: Reaction mix for T4 polymerase mediated single strand overhang generation.  
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The annealing reaction was set up with a 1:1 molar ratio of vector to insert, using 0.07 

pmol of both components. 1 µl 10x T4 DNA Ligase Reaction Buffer (NEB) was added to 

the reaction and the volume was made up to 10 µl with ddH2O. The reaction was 

incubated at 37˚C for 30 minutes. Electro-competent E. coli XL-10 were transformed 

with 5 µl of the desalted annealed product and plated out on LB agar plates containing 

kanamycin at 50 µg/ ml. Following overnight incubation at 37˚C colonies were picked, 

grown in 5 ml kanamycin supplemented LB media overnight at 37˚C with shaking at 180 

rpm and plasmid DNA purified with the QIAprep Spin Miniprep Kit (Qiagen). Positive 

clones were identified by EcoRV/ EcoRI double digestion, exploiting a unique EcoRV site 

in the T4 lysozyme gene. The reaction was set up according to the schedule in Table 5-5 

and incubated for 1 hour at 37˚C. A 1% DNA agarose gel was then used to analyse the 

fragments produced by the double digestion and identify positive clones, which were 

verified by sequencing. 

Reagent Final concentration Final volume in 50 µl 

Test DNA 0.5 µg X µl (to give 0.5 µg) 

10x NEBuffer EcoRI 1x 5 µl 

NEB EcoRI (10 U/µl) 5 U 0.5 µl 

NEB EcoRV (20 U/µl) 10 U 0.5 µl 

BSA (10 mg/ml) 5 µg 0.5 µl 

ddH2O To give a final volume of 50 µl 

Table 5-5: EcoRI/ EcoRV double digestion reaction conditions. 

 

5.2.2. Expression of Nt-T4L   

Electro-competent E. coli BL21 gold (DE3) were transformed with pET28b_NtB1_T4L and 

plated out on LB agar plates containing kanamycin at 50 µg/ml. After overnight 

incubation at 37˚C colonies were picked, plasmid DNA purified with the QIAprep Spin 

Miniprep Kit (Qiagen) and digested with EcoRV and EcoRI to ensure positive clone 

selection (see Section 5.2.1). A glycerol stock was prepared with a positively transformed 

clone. Small scale expression tests were carried out to optimise expression conditions. 

5ml LB media supplemented with kanamycin was inoculated with the glycerol stock and 

grown overnight at 37˚C and 180 rpm. This was used as a starter culture to inoculate 

(2% of the final volume) fresh 5 ml kanamycin supplemented LB media aliquots grown 

at 37˚C at 180 rpm. Expression was either induced with 0.5 mM or 1 mM isopropyl β-D-

1-thiogalactopyranoside (IPTG) at OD600 0.6 or OD600 of either 0.5 or 1.0 with 1 mM IPTG. 
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Expression temperature was also a considered factor with cultures grown at 37˚C for 4 

hours or 16˚C overnight at 180 rpm in both cases. 

Small scale optimisation allowed for streamlined large scale expression. Aliquots of LB 

media (10ml) containing kanamycin at 50 µg/ ml were inoculated with the E. coli BL21 

(DE3) pET28b_NtB1_T4L glycerol stock. These cultures were grown overnight at 37°C at 

180 rpm and then used to inoculate 500 ml LB media each. The 500 ml cultures were 

grown to an OD600 of 0.8 to 1.0 at 37°C at 180 rpm. Protein expression was induced with 

1mM IPTG and the cultures were transferred to 30°C for 4 hours with shaking at 180 

rpm. The cells were harvested by centrifugation for 15 minutes at 5000 xg and the 

resulting pellets were stored at -20˚C. 

 

5.2.3. Purification of Nt-T4L 

Pellets were thawed on ice and re-suspended in 30 ml nickel column buffer A (50 mM 

Tris pH 7.5, 500 mM sodium chloride, 20 mM imidazole) per 500 ml pellet supplemented 

with a protease inhibitor tablet (cOmplete, EDTA-free from Roche). The cell suspension 

was sonicated on ice for 30 seconds 6 times with 1 minute intervals. Lysate clarification 

was achieved by centrifugation at 38000 xg for 30 minutes. The supernatant was loaded 

onto a pre-equilibrated 1ml HisTrap FF crude column (GE Healthcare) and washed with 

six column volumes of nickel column buffer A. The target protein was eluted using a 

gradient of 0 to 100% nickel column buffer B (50 mM Tris pH 7.5, 500 mM sodium 

chloride, 500 mM imidazole) for 20 column volumes. SDS-PAGE was used to identify 

target protein containing fractions that were concentrated (Vivaspin Sample 

Concentrator range, 5000 MWCO) to 2 ml for further purification with size exclusion 

chromatography. A Superdex 75 16/60 column (GE Healthcare) equilibrated in 20 mM 

sodium acetate pH 5.5, 300 mM sodium chloride was used to further purify Nt-T4L. Final 

sample purity was analysed with SDS PAGE. The purification schedule was run with the 

AKTA FPLC system.  

ESI-MS was used to confirm the mass of Nt-T4L. This in house service was run by Dr. 

Andrew Leech with the protein supplied at 2 mg/ml in 20 mM sodium acetate pH 5.5, 

15 mM sodium chloride. Data were collected with an ABI Qstar tandem mass 
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spectrometer. The polydispersity and batch consistency of Nt-T4L was analysed with 

dynamic light scattering (DLS). Measurements were carried out at 20˚C with the protein 

at 1 mg/ml in 20 mM sodium acetate pH 5.5, 300 mM sodium chloride with the DynaPro 

Dynamic Light Scattering system (Protein Solutions). 

 

5.2.4. Crystallisation trials with Nt-T4L 

Extensive crystallisation screening and optimisation was carried out with the Nt-T4L 

construct (Table 5-6). Initially the protein was screened at 12 mg/ml (later 25, 38 and 

41.5 mg/ml) in 20 mM sodium acetate pH 5.5 at 20˚C. Protein desalting was carried out 

by repeated washing and concentrating of the protein with 20 mM sodium acetate pH 

5.5 using Vivaspin 500 sample concentrators (5000 MWCO). Screening was in a 96 well 

sitting drop vapour diffusion format with drops of 150 nl protein plus 150 nl well solution 

pipetted by a Mosquito robot (TTP Labtech Ltd). Optimisation trays were set up in either 

a 48 or 24 well hanging drop vapour diffusion format with 1 µl protein plus 1 µl well 

solution. 
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[Protein] (mg/ml) Tray composition 

12  Hampton I+II and Index screens 

12  Variations of the ‘best’ lysozyme condition 
30% PEG 5000 MME, 1.0 M Sodium chloride, 0.1 M Sodium acetate pH 4.6 

25 Hampton I+II, Index, Pact and CSS I+II at pH 4.5 and 6.5 

25 Dilution and pH screen (pH 4.5, 6.5 and 8.5) of ‘best’ conditions from original 
Hampton screen 

 30% PEG 400, 0.2 M CaCl2, 0.1 M Hepes pH 7.5 

 30% PEG 8000, 0.2 M Na acetate, 0.1 M Na cacodylate pH 6.5 

25 Optimisation of hits from screening. 2x24 well trays.  

 Various salts were trialled with PEG 400 and butandiol. 

 All small PEGs were used to expand the 30% PEG 400, 0.2 M CaCl2, 0.1 M 
Hepes pH 6.5 ‘best’ condition. 

25 The best condition of 30% PEG 400, 0.2 M CaCl2, 0.1 M Hepes pH 6.5 with 
additives and cationic detergents. 

 TMAO, SB12, LDAO, βOG, NDSB 201, Isopropanol, DMF, Dioxane, DMSO 

 Choline chloride, Girard’s reagent T, Dodecyltrimethylammonium 
bromide and chloride. 

 Note a crystal was tested from the LDAO condition but was found to be 
salt. 

25 The best condition of 30% PEG 400, 0.2 M CaCl2, 0.1 M Hepes pH 6.5 with 
sugars. 

 Glucose, lactose, maltose and xylitol. 

25 Best condition with varied MPD concentration in place of PEG 400 and different 
buffers at pH 6.5 were tested. 

25 Set up at 4°C. Best condition with 10 mM LDAO at pH 6.5 using both Hepes and 
Bis Tris propane as buffers. 

25 Further MPD screening and exploration of LDAO as an additive. 

25 Screening of best condition with various polyoxyethlene ethers. 

38 JCSG screen 

38 Optimisation of JCSG best conditions at a pH range between 4 and 8.5 (0.5 
gaps). 

 20% Peg 8000, 0.1 M Tris pH 8.5. 

 0.1 M KSCN, 30% PEG 2000 MME. 

38 Optimisation of precipitant concentrations (25 to 100 mM NaCl and KSCN) of 
JCSG best conditions at best pHs 4.5, 8.5 and 9.5. 

38 Optimisation of buffer for both JCSG best conditions from pH 7.5 to 9.3 (0.2 
gaps). 

38 Screen of published conditions for monoclinic and triclinic lysozyme 
crystallisation. 

41.5 Extensive screening of the best PACT conditions 

 0.2 M NaF/ NaBr/ NaNO3, 20% PEG 3350 

41.5 Rescreening of Pact with 2.5 mM chitobiose or 0.2 M maltose to stabilise T4 
lysozyme 

41.5 Variations of best condition; 30% PEG 2000 mme, 0.1 M citric acid pH 5.5, 0.2 M 
sodium fluoride 

Table 5-6: Summary of crystallisation attempts with Nt-T4L. 
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5.2.5. Cross seeding with Hen egg white lysozyme 

Crystals of hen egg white lysozyme (HEWL), obtained as a lyophilised powder from 

Sigma, were grown at 100 mg/ml in 20 mM sodium acetate pH 4.6 in a 24 well hanging 

drop vapour diffusion format with 1 µl protein plus 1 µl well solution at 20˚C. The well 

solution was 30% (w/v) polyethylene glycol monomethyl ether 5000, 1 M sodium 

chloride and 0.1 M sodium acetate pH 4.6. A seed stock was created with the subsequent 

crystal growth using the Seed Bead Kit (Hampton) as instructed. This stock was used for 

cross seeding of the Nt-T4L crystallisation attempts (Obmolova et al. 2010). A JCSG 

(Molecular Dimensions) screen was prepared in a 96 well sitting drop vapour diffusion 

format with drops of 150 nl protein, 100 nl well solution and 50 nl seed stock pipetted 

by a Mosquito robot (TTP Labtech Ltd). Nt-T4L was used at 25 mg/ml in 20 mM sodium 

acetate pH 5.5 and the seed stock was used in two dilutions; the original seed stock and 

a 1/100 dilution with mother liquor. 

The ’rational poisoning’ experiments were set up at molar ratios of 1:1 and 1:10 (HEWL: 

Nt-T4L) with the fusion protein kept constant at 1.6 mM in 20 mM sodium acetate pH 

5.5. Pact (Molecular Dimensions) and Index (Hampton) screens were prepared with the 

above ratios in a 96 well sitting drop vapour diffusion format with drops of 150 nl protein 

mixture and 150 nl well solution pipetted by a Mosquito robot (TTP Labtech Ltd). Crystals 

were obtained in various drops and vitrified without cryo-protectant before house 

testing. Those with unit cell parameters matching known HEWL crystal forms were 

discarded. One promising crystal grown in 0.2 M sodium malonate pH 7, 20% (w/v) 

polyethylene glycol (PEG) 3350 at a ratio of 1:1 was sent for data collection at the 

Diamond Light Source (DLS). As a control, all three samples (1:1, 1:10 and HEWL alone) 

were set up in a 24 well hanging drop vapour diffusion format (1µl plus 1µl) with the 

standard HEWL crystal condition described above. No crystal growth was observed in 

either mixed sample. 
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5.3. Results 

5.3.1. SLIC cloning  

The HASPB1 N-terminal domain fused to T4 lysozyme construct was produced according 

to the schedule in Section 5.2.1. The vector (5373 bps) and insert (495 bps) were 

amplified and the product sizes were assessed by agarose gel electrophoresis (Figure 5-4 

lanes 2 and 3). To identify positive clones an analytical EcoRV/ EcoRI double digest 

utilised the unique EcoRV site in the T4 lysozyme gene and the one EcoRI site in the 

pet28b vector. This method gave a clear distinction between positive (two cuts produce 

two bands) and negative (one cut produces one band) samples (Figure 5-4 lanes 4 and 

5). The samples that gave the correct bands were then sent for sequencing, which 

showed correct incorporation of the lysozyme gene and alanine linker. The final plasmid 

was termed pET28b_NtB1_T4L and contains a C-terminal non-cleavable his-tag. 

 

 

Figure 5-4: 1% agarose gel of SLIC products and final plasmid. 1 kb 
ladder (lane 1) pET28b_haspb1 - 5373 bps (lane 2), T4 lysozyme 
insert - 495 bps (lane 3), EcoRI/EcoRV double digestion of 
pET28b_NtB1_T4L (lane 4), EcoRI/EcoRV double digestion of 
pET28b_haspb1 (lane 5). 

 

 

 

The cloning of the HASPB1 N-terminal domain plus one repeat: T4 lysozyme chimera 

(NtR-T4L) was much more problematic. The samples that gave the correct bands from 

the EcoRV/ EcoRI double digest, but the sequencing data revealed a highly variable 

number of repeats between samples due to mispriming. To prevent this a new 

procedure was developed to build the repeat back in, eliminating the need for direct 

amplification from pET28b_haspb1, circumventing the repeat sequence (Figure 5-5). A 

forward primer was designed to build in the missing element of the repeat fragment and 

a portion of the N-terminal domain at the 5’ end of the lysozyme insert already produced 

for the N-terminal domain plus one repeat cloning schedule (see Appendix A.1.). A 45 
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base pair size difference between these two fragments meant that they could be 

separated on a 2% agarose DNA gel and standard gel purification carried out. The SLIC 

protocol was run with the already positively sequenced pet28b N-terminal domain 

empty vector, the starting point for pET28b_NtB1_T4L production, and the compatible 

end product of the two PCR steps. Unfortunately after extensive rounds of this 

procedure no positive clones were identified. 

 

 

Figure 5-5: Cloning schedule to produce the HASPB1 N-terminal domain plus repeat lysozyme construct. 
The lysozyme insert with a 5’ portion of the repeat of HASPB1, used in the previous round of SLIC cloning, 
was the starting point for this procedure. A standard PCR amplification of the lysozyme fragment with the 
redesigned primer and reverse SLIC primer produced the fragment seen on the right. This fragment is 
compatible with the empty N-terminal pet28b linearised vector used in the successful pET28b_NtB1_T4L 
cloning work. The SLIC products can then be annealed and transformed, enabling correct incorporation 
of the HASPB1 repeat without mispriming issues. 

 

The pET28b HASPA: T4 lysozyme construct was not produced although the procedure 

was run through multiple times and subjected to extensive troubleshooting. The use of 

the same vector as a PCR template and final destination vector meant an excessive 

amount of false positives were seen when double digesting transformed plasmid DNA. I 

decided to focus my efforts on the Nt-T4L construct and return to the cloning of the 

remaining constructs if time allowed. 
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5.3.2. Expression of Nt-T4L 

The pET28b_NtB1_T4L plasmid was transformed into BL21 Gold (DE3) cells. To ensure 

optimal protein production small scale expression tests were carried out to explore the 

yield of various conditions. The concentration of IPTG (0.5 or 1 mM IPTG), temperature 

(37˚C or 16˚C), expression time (4 hours or overnight) and point of induction (optical 

density of 0.5, 0.6 or 1.0) were all varied. Figure 5-6 shows the resultant SDS PAGE 

analysis of the expression conditions. Lane 5, induction at an optical density of 1.0 with 

1 mM IPTG then 37˚C for 4 hours, exhibited the most pronounced expression level. This 

condition was used for large scale expression, with a slight temperature modification 

(30˚C instead of 37˚C) to ensure protein stability. It is important to note that some ‘leaky’ 

expression was observed in the uninduced negative control sample but this didn’t 

impede cell growth so it was deemed acceptable.  

 

 

Figure 5-6: Comparison of soluble fractions frim various expression conditions tested for Nt-T4L on 12% 
SDS PAGE. The gel shows uninduced control (1), induction with 5 mM IPTG (2+6), or with 10 mM IPTG 
(3+7) at OD 0.6, OD 0.5 (4+8) or OD 1.0 (5+9) induction with 1 mM IPTG. Samples were then incubated at 
37˚C for 4 hours (2 to 5) or 16˚C overnight (6 to 9) at 180 rpm. Nt-T4L is 24.5 kDa. 

 

 

 

 

 

 



163 
 

5.3.3. Purification of Nt-T4L 

A two-step purification procedure was optimised for maximal yield and sample purity, 

the details of which can be found in Section 5.2.3. The first step was nickel affinity 

purification, giving a considerably pure eluted sample for this initial step (see Figure 5-7a 

and b). These fractions were pooled and concentrated for size exclusion purification (see 

Figure 5-7c and d). Adequate separation from remaining containments was achieved, 

observed by SDS PAGE, to allow sample characterisation. The homogeneity and intensity 

was then assessed by DLS and ESI-MS. DLS reported a polydispersity of 12% indicative 

of a highly monodisperse sample, a feature of a readily crystallisable construct (Figure 

5-7e). The molecular weight obtained by ESI-MS was 24380 Daltons (Figure 5-7f), which 

was in line with the N-terminal methionine cleaved weight of 24380.5 Daltons obtained 

from ProtParam (Gasteiger et al. 2005). Moreover, no major adducts were noted in this 

preparation. These positive characterisation results meant that crystallisation trials 

were started and continued with no modification of the purification schedule. 
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Figure 5-7: Chromatography traces and SDS PAGE analysis of the two step Nt-T4L purification. a) 1ml 
HisTrap FF crude column chromatography trace. The UV trace (280 nm) is shown in blue and percentage 
buffer B (where 100% equates to 500 mM imidazole) is in green. b) 12% SDS PAGE analysis of load and 
resultant fractions from (a). The gel shows low molecular weight ladder (1), cell lysate load (2), column 
flow through (3) and resultant fractions (4 to 10). c) Chromatography trace of 16/60 Superdex 75 
purification of Nt-T4L. d) 12% SDS PAGE analysis of the size exclusion purification of Nt-T4L. The gel shows 
low molecular weight ladder (1), load (2) and resultant fractions (3 to 10). The Nt-T4L construct is 24.5 
kDa. e) DLS regularisation histogram of an Nt-T4L sample, note percentage intensity is plotted against 
hydrodynamic radius (RH). The polydispersity (Pd) recorded was 12%. f) Electrospray ionisation mass 
spectrometry (ESI-MS) result of Nt-T4L reporting the expected molecular weight for this sample of 24380 
Da.  
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5.3.4. Crystallisation trials with Nt-T4L 

Classical intensive screening and optimisation at various protein concentrations 

produced no usable crystals of Nt-T4L. Application of the cross seeding strategy, 

originally developed to produce crystals of mouse, human and affinity matured Fab: 

antigen complexes with a seed stock created from the human Fab: antigen complex 

(Obmolova et al. 2010), was the next step to try to circumvent this barrier. Ideally T4 

lysozyme crystals would be the best starting point owing to the high sequence similarity 

with Nt-T4L. However, the crystallisability and abundance of hen egg white lysozyme 

(HEWL) as a lyophilised powder, meant this approach could be trialled without further 

protein production. Screening with the HEWL seed stock at various dilutions produced 

no workable hits even after considerable optimisation. 

A radical approach was taken. The two proteins, Nt-T4L and HEWL, were mixed in two 

different molar ratios (1:1 and 1:10 HEWL: NT-T4L) and screened as a mixture. The 

thought process behind this ‘rational poisoning’ strategy (named by Professor Marek 

Brzozowski) was that as a HEWL crystal began to form in the drop it would be an anchor 

for Nt-T4L inclusion. Screening with Pact (Molecular Dimensions) and Index (Hampton) 

produced a multitude of crystals. These were fished and then tested with those 

displaying unit cell parameters of known HEWL crystal forms discarded. One crystal 

exhibited unit cell parameters that were not known for HEWL and data were collected 

at the Diamond Light Source (DLS) (Table 5-7). The crystal diffracted to 1.25 Å (Figure 

5-8) and the data belongs to either P41 21 2 or P 43 21 2. Unfortunately, molecular 

replacement using either HEWL or T4 lysozyme as the model did not facilitate data 

deconvolution. It was decided that this data could not be taken any further and 

crystallisation attempts of Nt-T4L were halted. 
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 Nt-T4L: HEWL 

Data collection  

Diffraction Source DLS beamline IO4-1 

Wavelength (Å) 0.92 

Temperature (K) 100 

Detector Pilatus 2M 

Rotation range per image (°) 0.1 

Total rotation range (°) 180 

  

Crystal data  

Space group P41 21 2 or P 43 21 2 

a, b, c (Å) 78.44  78.44 114.50 

α, β, γ ()  90.00  90.00  90.00 

Resolution (Å) 27.35 - 1.25 (1.25) 

Total reflections 1283555 (59229) 

Unique reflections 99094 (4851) 

Completeness (%) 100 (100) 

Redundancy 13.0 (12.2) 

Rmerge 0.06 (1.37) 

Rpim 0.03 (0.6) 

CC 1/2 0.99 (0.69) 

I / σI 19.4 (1.9) 

Table 5-7: Crystallographic data table for the HEWL: Nt-T4L crystal. Values in parentheses relate to the 
highest-resolution shell. 

 

 

Figure 5-8: Diffraction pattern of the HEWL: Nt-T4L crystal. 
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5.4. Discussion 

5.4.1. Covalent attachment of HASP impedes T4 lysozyme crystallisation 

Due to advances in data collection and processing crystallisation has become the rate 

limiting step in crystallographic studies of proteins and other biological macromolecules. 

After comprehensive database analysis Price et al. (2009) reported that 35% of all 

proteins worked on by structural genomics consortia form crystals, while only 12% form 

crystals of sufficient quality for data collection. Complex and diverse protein targets, 

such as membrane proteins, intrinsically disordered proteins, transient biological 

assemblies, highly unstable oligomerisation intermediates and short lived functionally 

relevant conformations, add a distinct layer of complexity as they are not generally 

amenable to traditional crystallisation screening. These varied biological systems all 

share intrinsic structural heterogeneity, which facilitates functional plasticity in vivo, 

inhibiting their propensity to crystallise (Bukowska and Grütter. 2013). Incorporation of 

highly heterogeneous elements, such as flexible domains or loops or bulky side chains, 

into a growing crystal greatly increases the entropic cost of the system (Derewenda. 

2010). This in turn hinders the formation of the required crystal contacts, making the 

generation of X-ray diffraction quality crystals a herculean task. Modulating protein 

crystallisability in a rational manner, via techniques that include removal of post 

translational modifications, surface entropy reduction, covalent and non-covalent 

crystallisation chaperones, truncations and flexible domain removal, ligand or partner 

protein binding, is increasingly used to coerce challenging targets. Stabilisation of a 

single conformation, enabling crystal growth, is the end goal of these approaches with 

implementation of a multidimensional strategy prevalent. 

In Chapter 4, I focused on Fab fragment stabilisation, truncations and additive based 

stabilisation of the HASPs, covering some elements of the conformation stabilisation 

scheme. However, no X-ray diffraction quality crystals were produced, requiring a fresh 

approach. Exploration of the successful use of T4 lysozyme as a covalent crystallisation 

chaperone for various GPCRs (see Section 5.1.) led to the idea of adapting this method 

for the HASPs. In the case of membrane protein attachment, T4 lysozyme not only adds 

rigidity to the overall structure but increases the hydrophilic surface area necessary for 

crystal contacts to form. Hydrophilicity is not limited in the hydrophilic acylated surface 

proteins (HASPs), but the structural rigidity of T4 lysozyme was appealing. 
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The amino acid sequences of HASPB1 and Nt-T4L were analysed with the disorder 

prediction server IUPred to assess the stabilising influence of T4 lysozyme attachment 

(Figure 5-9). IUPred predicts disordered regions of proteins by estimating the capacity 

of polypeptides to form stabilizing contacts, based on the assumption that globular 

proteins are stabilised by extensive inter-residue interactions while IDPs are not 

(Dosztányi et al. 2005). Comparison of the resultant disorder tendency plots emphasises 

the disordered nature of the native HASP sequence, with the entirety of HASPB1 

predicted to be disordered (Figure 5-9). Conversely, the Nt-T4L sequence is 

predominantly predicted to be ordered, although unsurprisingly the element of disorder 

observed is due to the N-terminal domain of HASPB1 (the first 50 residues of the 

chimera). This vast improvement in the predicted disorder of Nt-T4L over native HASPB1 

was the underlying idea of this approach. However, the addition of the HASP element 

prevented T4 lysozyme, a protein chosen as a scaffold because of its ability to crystallise, 

from forming crystals. 

 

 

Figure 5-9: IUPred generated disorder tendency plots for (a) HASPB1 and (b) Nt-T4L. The disorder 
threshold is shown in red at 0.5. Anything below this threshold is considered globular, while anything 
above is not. The yellow star in plot b at around residue 50 denotes the end of the N-terminal HASB1 
domain. 

 

The success of the T4 fusion approach has been to fix already structured elements in 

one conformation and concurrently remove highly flexible loops that impede 

crystallisation. This approach relies on the target protein containing some structured 

domains or being induced into a fixed conformer by ligand/ partner protein binding. 
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However, this chapter and the previous one have shown that the HASPs do not satisfy 

the criteria for successful fusion as they do not contain any stable structural elements. 

Inducing structural rigidity was the preferred outcome for this work but now appears an 

unlikely goal. Reclassification of the HASPs, in the confines of this project and potentially 

beyond, as intrinsically disordered seems a pragmatic approach to gain an insight into 

their nature. 

 

5.5. Summary and future work 

T4 lysozyme has been used repeatedly as an effective crystallisation chaperone for many 

challenging GPCR structures, owing to its inherent structural rigidity and crystallisability. 

The disrupting influence elicited by the N-terminal domain of HASPB1 on readily 

crystallisable T4 lysozyme strengthens the case for IDP classification. In isolation this 

result does not have the same resonance, as challenging crystallisation targets often 

require multiple approaches to obtain elusive structural data. When taken in 

combination with the work done in Chapter 5 it is clear that classing the HASPs as 

intrinsically disordered means that continuation of crystallisation attempts without a 

proven stabilisation method, such as biological binding partner to trap an expected 

conformation, is inappropriate. Refocusing the project to biophysically characterise the 

structural heterogeneity of the HASPs and investigate their interaction with N-

myristoyltransferase appeared to be the way forward. 
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Chapter 6 - Discussion 

6.1. Thesis discussion 

Protozoan parasites of the genus Leishmania cause a wide range of tropical diseases 

referred to as Leishmaniasis. To date there is no licensed vaccine against any form of 

Leishmaniasis and the treatment options available are expensive and largely ineffective. 

The hydrophilic acylated surface proteins (HASPs) are found in all human infective 

Leishmania species, where their expression correlates with parasite infectivity (Alce et 

al. 1999). The HASPs share highly conserved N- and C- terminal domains, but a subset, 

the HASPBs, have a divergent central domain containing extensive hydrophilic amino 

acid repeats that vary in size and composition within and between species (McKean et 

al. 1997). The N-terminal region encompasses a dual acylation motif that is required to 

target the protein to the parasite plasma membrane (Denny et al. 2000). This region is 

myristoylated and then palmitoylated for correct membrane association. While the 

HASPBs have been shown to be antigenic in the host and can induce a protective 

immune response without adjuvant, the biological function of these proteins is still 

unclear. 

This project was conceived as an X-ray crystallographic study to decipher functionality 

from resulting structural data of the HASPs from Leishmania donovani. Extensive 

crystallisation screening of the three full length HASPs did not produce any crystals. 

Therefore, a wide range of strategies to coerce HASP crystallisation were implemented, 

namely Fab co-crystallisation, use of cationic detergents and membrane mimetics for 

stabilisation, generation of HASPB1 fragments and recombinant lysozyme fusion. 

However, these non-standard crystallisation schemes did not produce crystals of the 

HASPs. Biochemical and biophysical characterisation experimentally validated predicted 

intrinsic disorder, meaning continuation of crystallisation screening without a 

mechanism to induce protein folding in a biologically relevant manner was inadvisable. 

The project was refocused to biophysically characterise the structural heterogeneity of 

the HASPs and investigate their interaction with N-myristoyltransferase. 

Nuclear magnetic resonance (NMR) spectroscopy is unique in its capacity to study the 

structural biology of intrinsically disordered proteins in solution (Dyson and Wright. 

2004). 1H, 15N-HSQC spectra of HASPA and HASPB2 revealed limited dispersion of 



171 
 

resonances in the amide proton dimension, which is a feature indicative of disorder. 

Although this limited dispersion caused spectral congestion the majority of resonances 

were well defined, suggesting that backbone resonance assignment would be possible. 

HASPA, the smallest HASP at 9.5 kDa, was chosen for assignment as it lacks the repeats 

found in HASPB2 and HASPB1. The disordered nature of HASPA and low sequence 

complexity required implementation of metabolic precursor unlabelling to deconvolute 

the assignment process. Specific metabolic precursors can be used to selectively unlabel 

certain residues in an otherwise uniformly-labelled sample rendering them ‘NMR 

invisible’ (Rasia et al. 2012). This strategy enabled a near complete backbone resonance 

assignment of the HN, N, Cα and Cβ nuclei in HASPA. NMR derived chemical shift 

information was used to determine if HASPA contained any elements of structural 

propensity that could be functionally relevant. This analysis showed that it does not 

contain elements of structural propensity, suggesting that preformed structure is not 

functionally required. 

N-myristoyltransferase (NMT) catalyses the addition of myristate to the HASPs in vivo. 

It was shown for the first time that recombinant Leishmania major NMT is able to 

catalyse recombinant HASP myristoylation in vitro. A fluorescence assay, where a 

fluorescent CPM-CoA adduct is formed on myristoylation, was implemented to establish 

the kinetic parameters for this reaction (Goncalves et al. 2012). Km values between 5.8 

and 16.7 µM were reported for the three full length HASPs, in line with values reported 

for Leishmania donovani NMT with various peptide substrates using this method 

(personal communication with Dr. Victor Goncalves). Real-time NMR spectroscopy was 

used to monitor the effect and any potential structural impact of NMT-catalysed 

myristoylation on HASPA. Successive 1H, 15N HSQC spectra were recorded, which 

showed that there were no global conformational changes to HASPA in solution, with 

limited changes in peak position and intensity observed. The residues proximal to the N-

terminal glycine and site of myristate addition experienced the most pronounced 

changes in chemical shift or resonance intensity. A novel 2.45 Å resolution crystal 

structure of Leishmania major NMT in complex with 2-oxopentadecyl-CoA (NHM) was 

elucidated. 

The data presented in this thesis have shown the HASPs to be intrinsically disordered, 

which should lead to a reframing of the biological questions asked about their function. 
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The IDP field has shown that disorder as much as order is functionally relevant, 

particularly when you consider the entropic chains elastin and titin (discussed in Chapter 

2). These proteins remain disordered to elicit their functions. Some IDPs are not fully 

disordered but contain elements that are predisposed to adopt local secondary 

structure required for biological partner binding termed molecular recognition features 

(MoRFs). Chemical shift analysis showed that HASPA does not contain elements of 

transient structure. This means the HASPs do not possess the MoRFs commonly 

associated with IDPs that function as interaction hubs. This leads to the conclusion that 

the HASPs could function as entropic chains and that the persistent disorder observed 

is functionally vital. 

The functions revealed for IDPs are increasingly diverse and in some cases unexpected. 

Recently, the intrinsically disordered domains of the endocytic adaptor proteins Epsin 1 

and AP180 were shown to be potent drivers of membrane curvature (Busch et al. 2015). 

This was unexpected as the prevailing view was that proteins containing distinctive 

membrane curvature promoting structural motifs were required to direct this process. 

Busch et al. (2015) went on to decipher how these intrinsically disordered regions (IDRs) 

facilitate membrane bending. Firstly, they showed that the IDRs crowd membrane 

surfaces and exert steric pressure that drives membrane curvature. The advantage of 

IDRs over folded proteins of the same molecular weight is that they have a larger 

hydrodynamic radius, meaning they are able to exert steric pressure over a larger 

volume than folded proteins of the same size. This also means that membrane crowding 

can be achieved with less protein. The IDRs of Epsin 1 and AP180 fulfil their functional 

role while membrane associated and disordered, exactly like the HASPs. It would be 

interesting to pursue functional determination of the HASPs with this example in mind.  

 

6.2. Future perspectives and further work 

6.2.1. Membrane association of the HASPs 

The small hydrophilic endoplasmic reticulum associated protein (SHERP) is found on the 

same locus as the HASPs (LmcDNA16) and its expression is stage regulated (Knuepfer et 

al. 2001). SHERP is highly disordered in solution with an acidic pI similar to the HASPs. 

Synchrotron radiation CD was used to show addition of anionic lipids induced predicted 



173 
 

helicity of this known membrane associated protein (Moore et al. 2011). This led to 

elucidation of an NMR structure of SHERP in the presence of 50 mM SDS. The functional 

implications of this structure and the observation that SHERP associates with V-ATPase 

in vivo, suggests a role in the acidification process vital for parasite development. 

Acidification is required for parasite development and has been shown to induce 

development of metacyclic parasite in vitro (Bates. 2008). This example highlights the 

vital importance of emulating in vivo conditions, in particular the use of membrane 

mimetics, to understand the structure and functional role of a protein. 

SHERP interacts with the head groups of the membrane to function and fold, whereas 

the HASPs associate with the membrane via the dual acylation motif. The work 

presented in this thesis has shown that recombinant HASPs can be myristoylated by 

NMT in vitro. However, myristoylation alone is too weak to mediate irreversible binding, 

which is why it is usually found in the context of another modification. The comparably 

short myristate chain has a limited capacity for hydrophobic and van der Waals 

interactions, giving rise to the lower membrane affinity (Goldston et al. 2014). NMR 

spectroscopy could be used to determine the transient nature of the interaction 

between a membrane mimetic and myristoylated HASPA. Does it shuttle between 

bound and unbound as expected? Comparison of the diffusion co-efficient of 

myristoylated HASPA with and without membrane mimetic using diffusion-ordered 

spectroscopy (DOSY) would begin to answer this question. The observation that 

myristoylated HASPA could interact with a membrane mimetic would lead to the next 

question. Does membrane association induce any conformational changes in HASPA? 

1H, 15N HSQC spectra could then be recorded with the myristoylated protein with and 

without membrane mimetic to answer this question. Any spectral changes could be 

linked back to the backbone resonance assignment of HASPA to decipher the impact of 

membrane association. However, it would also be interesting to establish if HASPA 

association induced any changes in the membrane, such as those observed for the IDRs 

of Epsin 1 and AP180. (Busch et al. 2015).  

This series of experiments is reliant on a long lasting association between the membrane 

and myristoylated HASPA, which is limited by the membrane binding affinity of 

myristate. Production of a dual acylated protein could be key to defining the HASP: 

membrane interaction. However, the palmitoyl acyl transferase (PAT) that catalyses 
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HASP palmitoylation in vivo is undefined. This is unsurprising when you consider that the 

L. major genome encodes 20 different DHHC domain PATs and that the study of PATs is 

still in its infancy (Goldston et al. 2014). PATs accept unmodified or modified proteins 

and in the case of modified proteins they distinguish between different lipid 

modifications. A well characterised PAT from a different species, such as Erf2 or Akr1 

from yeast, would not be an effective substitute because of this highly discriminant 

substrate recognition. Therefore, an in vitro based method could be implemented to 

produce the dual acylated sample. A method was developed to covalently link saturated 

C16 alkyl groups to cysteine in peptides based on a known palmitoylated protein via a 

disulphide linkage, mimicking the palmitoylated state of the protein. (Wilkinson et al. 

2000). It was shown that C16 alkyl group addition to the test peptide enabled membrane 

association analogous to that observed in vivo. Initially, it would be beneficial to 

determine if full length HASPA could be palmitoylated with this method after NMT 

mediated myristoylation. Alternatively, if the full length HASPs were destabilised by this 

method, production of a HASP based peptide that could be myristoylated and then 

chemically palmitoylated could be required. 

 

6.2.2. Further NMR studies of the HASPs 

NMR derived chemical shifts are highly sensitive probes of local protein conformation 

and have been used in some cases as the sole constraint to determine the structure of 

proteins (Shen et al. 2008). The relationship between these chemical shifts and the 

dihedral angles phi and psi is the basis of structural propensity prediction. Analysis of 

NMR derived chemical shift information for HASPA showed that the protein does not 

contain any elements of structural propensity. Transient structural elements termed 

molecular recognition features (MoRFs) are a distinctive characteristic of some IDPs that 

function as interaction hubs. The absence of transient structural elements in HASPA 

suggests that it does not function as an interaction hub, leading to the conclusion that 

the HASPs could function as entropic chains where the persistent disorder observed is 

functionally vital. It should be noted that preformed structural elements are not always 

required for biological partner binding. Disruption of residual helical structure in PUMA, 
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an IDP of the BCL-2 apoptotic family of proteins, did not inhibit binding to its biological 

partner MCL-1 (Rogers et al. 2014), as detailed in Chapter 2. 

To confirm entropic chain classification it would be useful to further experimentally 

validate the lack of transient structure within HASPA. Chemical shifts report local 

structure and other methods are required to establish long range contacts in an IDP.  

The current backbone assignment covers the Cα, Cβ, N and HN nuclei of HASPA. To 

produce more comprehensive chemical shift analysis it would be beneficial to record 

HNCO and HN(CA)CO experiments, in order to assign the carbonyl 13C’ and include 

these chemical shifts in the analysis. Long range and local structural features of IDPs in 

solution can be determined by measuring paramagnetic relaxation enhancement, 

residual dipolar couplings, NMR relaxation parameters and nuclear Overhauser effect, 

in particular homonuclear proton NOEs (Salmon et al. 2010). A combination of these 

methods would define and confirm any transient structured states of HASPA.  

In particular, residual dipolar couplings (RDCs) provide structural propensity information 

in the context of the protein sequence (Mohana-Borges et al. 2004). In a published 

example the disordered C-terminus of nucleoprotein from Sendai virus that displays 

helical propensity was examined with this method (Jensen et al. 2008). Analysis of 

backbone RDCs showed that the protein populates three defined helical conformers, 

despite its conformational heterogeneity. It was then shown that conformational 

ensembles of the same protein derived from chemical shifts alone were consistent when 

cross validated with ensembles derived from RDCs (Jensen et al. 2010). 

The NMR analysis conducted here examined HASPA and therefore no conclusions can 

be drawn on the presence of MoRFs in the repeats found in HASPB1 and HASPB2. It 

would be interesting to perform a similar NMR analysis of HASPB2 to determine if these 

repeats contained any structural propensity.  

 

6.3. Concluding remarks 

This thesis details the first in-depth characterisation of the intrinsically disordered 

nature of the HASPs from Leishmania donovani. Transient secondary structural 

elements are a common feature of IDPs, where transient order is a prerequisite of 
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biological partner binding that resembles the final bound form. Analysis of NMR derived 

chemical shift information showed that they do not contain these short-lived structural 

elements, hinting that their inherent disorder has a functional role. Moreover, as the 

HASPs conserved in all human infective Leishmania species the role they perform must 

be significant. This finding should help to refocus efforts to define the biological role of 

the HASPs, away from identification of biological partner binding and towards a function 

enabled by disorder. The backbone resonance assignment of HASPA elucidated in this 

thesis lays the foundation for further in-depth biophysical studies of HASP disorder. 

Lastly, production of myristoylated HASPA is the first step to studying the membrane 

associated form of the HASPs, in either the myristoylated or dual acylated form.   
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Appendix 

A.1. DNA sequences and plasmid maps 

The sequences and plasmids are listed that relate to the lysozyme fusion work and 

constructs used in this thesis. 

 

>T4 Lysozyme C54S C97A 

TTATAGATTTTTATACGCGTCCCAAGTGCCAGTTCTAAACGTTGTAATGACTCGTTTTGCGCGA

TTAGGTGTTTGATTATACCATCTACTTTTAGCTAAGTTAACTGCTGCTTCATCCCAGCGTTTTTG

TTGAAGCATACGTAAAGAGTTAGTAAATCCTGCCACACCGGTTTCTCCCATTTGGAAAACCATA

TTAATCAATGCAGCGCGACGAACCGCATCAAGAGAATCATAAACCGGTTTTAATTTAGCATTTC

TCAGAATTCCGCGAACAGCAGCATCAACATCCTGATTAAAGAGTTTTTCAGCCTCATCTTTTGT

AATTACACCATTACTATTACGCCCAATAGCTTTATCTAATTCAGATTTAGCAGCATTAAGTGATG

GACTTTTTGTAAGCAAATGACCGATGCCAATAGTGTAATAGCCTTCTGTGTCTTTATAGATTTT

AAGTCTAAGACCTTCATCTATACGTAACATTTCAAATATATTCAT 

 

> HASPA 

CCATGGGAGCCTACTCTACGAAGGACTCCGCAAAGGAGCCCCAGAAGCGTGCTGATAACATC

GATACGACCACTCGAAGCGATGAGAAGGACGGCATCCATGTCCAGGAGAGCGCCGGTCCTGT

GCAGGAGAACTTTGGGGATGCGCAGGAGAAGAACGAAGATGGACACAACGTGGGGGATGG

AGCTAACGGCAATGAGGATGGTAACGATGATCAGCCGAAGGAGCACGCTGCCGGCAACCTC

GAGCACCACCACCACCACCACTGA 

 

>HASPB1 

CCATGGGAGCCTACTCTACGAAGGACTCCGCAAAGGAGCCCCAGAAGCGTGCTGATAACATC

CATAAAACCACTGAGGCCAATCACGGAGGCGCCACTGGTGTGCCCCCGAAGCACACCGGCAG

TGCGATGAACGACTCTGCCCCGAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGGC

CCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGGCCCGAAGGAGGACGGCCATA

CACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGA

TGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGCCCCTAAGGAGGACGGC
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CGTACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACG

GCGATGCCCCTAAGGAGGACGGCCGTACACAGAAAAATGACGGCGATGGCCCTAAGGAGGA

CGGCCATACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAAAAAT

GACGGCGATGGCCCTAAGGAGGACGGCCGTACACAGAAAAATGACGGCGGTGGCCCTAAGG

AGGACGGCCATACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAA

AAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGCCCCT

AAGGAGGACGGCCGTACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACAC

AGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGC

CCCTAAGGAGGACGGCCGTACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCAT

ACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGGCCGTACACAGAAAAATGACGGCG

ATGGCCCTAAGGAGGACGGCCATACACAGAAAAATGACGGCGATGGCCCTAAGGAGGACGG

CCGTACACAGAAAAATGACGGCGATGCCCCTAAGGAGGGTGAGAATCTGCAGCAAAACGAG

GGGATGCGCAGGAGAAGAACGAAGATGGACACAACGTGGGGGATGGAGCTAACGGCAATG

AGGATGGTAACGATGATCAGCCGAAGGAGCACGCTGCCGGCAACCTCGAGCACCACCACCAC

CACCACTGAG 

 

>LmNMT 

ATGTCTCGCAATCCATCGAACTCCGACGCTGCGCATGCGTTCTGGAGCACACAGCCCGTACCG
CAGACGGAAGATGAGACGGAGAAAATTGTGTTCGCTGGTCCGATGGACGAGCCAAAGACGG
TAGCCGATATTCCTGAGGAGCCGTACCCGATCGCCAGCACATTTGAGTGGTGGACGCCGAAC
ATGGAGGCGGCCGACGACATTCACGCAATTTACGAGCTTCTTCGGGATAACTACGTCGAAGAC
GACGACAGCATGTTTCGTTTCAACTACTCCGAGGAGTTTCTTCAGTGGGCACTATGCCCACCG
AACTACATCCCGGACTGGCACGTTGCAGTTCGCCGAAAGGCGGATAAGAAGCTGCTGGCCTT
CATTGCCGGCGTTCCCGTGACGTTGCGCATGGGCACTCCCAAGTACATGAAGGTGAAAGCAC
AGGAAAAGGGCGAAGGGGAGGAGGCGGCCAAGTATGATGAACCCCGTCACATCTGCGAAAT
CAACTTTCTCTGTGTCCACAAGCAACTCCGGGAGAAGCGGCTTGCCCCGATTTTGATCAAAGA 
GGCGACGCGCCGCGTGAACCGCACCAACGTGTGGCAGGCGGTGTACACGGCTGGGGTGCTG
CTACCCACTCCGTATGCATCAGGGCAGTACTTCCACCGCAGCCTGAACCCCGAGAAGCTTGTG
GAGATCCGCTTCAGCGGCATTCCAGCACAGTACCAAAAGTTTCAGAACCCAATGGCGATGCTG
AAGCGCAACTACCAGCTGCCAAGCGCGCCGAAGAACTCTGGTCTTCGTGAAATGAAGCCGTCT
GACGTTCCGCAGGTGCGGCGGATTCTCATGAACTACCTGGACAGCTTCGATGTAGGTCCCGTC
TTTAGCGATGCCGAGATCAGCCACTACCTCCTTCCACGCGACGGTGTGGTCTTCACCTACGTG
GTGGAAAACGACAAGAAGGTGACCGACTTCTTTTCCTTCTATCGAATTCCGTCGACTGTGATT
GGGAACAGCAATTACAACCTTCTGAACGCAGCTTACGTTCACTACTATGCCGCGACGAGTATA
CCTTTGCATCAACTCATTCTCGACCTTTTGATCGTGGCGCATTCACGCGGCTTCGACGTGTGCA
ATATGGTAGAGATCCTCGACAACCGGTCTTTCGTTGAGCAGCTCAAGTTTGGCGCCGGCGACG
GTCATCTTCGATATTACTTCTACAACTGGGCGTATCCAAAGATCAAGCCTTCTCAGGTTGCCTT
GGTGATGCTGTAG 
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Name Primer sequence 5’ to 3’ Template DNA 

T4L-A-F GCCGGCAACGCCGCCAATATATTTGAAATGTTACGTATAGATGAA
GGTCTTAG 

pHS1403 

T4L-A-R GTGGTGGTGCTCGAGTAGATTTTTATACGCGTCCCAAGTGCC pHS1403 

HASPA-F  CTCGAGCACCACCACCACCACCACTG pET28b_haspa/ 

pET28b_haspb1 

HASPA-R GGCGGCGTTGCCGGCAGCGTGC pET28b_haspa 

T4L-Nt-F GACTCTGCCGCCGCCAATATATTTGAAATGTTACGTATAGATGAA
GGTCTTAG 

pHS1403 

Ntr-R GGCGGCGGCAGAGTCGTTCATCGCAC pET28b_haspb1 

T4L-Ntr-F GACGGCGATGGCGCCGCCAATATATTTGAAATGTTACGTATAGAT
GAAGGTCTTAG 

pHS1403 

Ntr-R  GCCATCGCCGTCATTTTTCTGTGTATGGCCGTCCTCCTTCGGGGCA
GAGTC 

pET28b_haspb1 

Ntr-R-2 GAACGACTCTGCCCCGAAGGAGGACGGCCATACACAGAAAAATG
ACGGCGATGGCGCCG 

pET28b_NtB1_T4L 

Table A-1: List of primers for SLIC cloning of lysozyme fusion constructs. 

 

Plasmid name Protein Affinity tag 
Antibiotic 
resistance 

Induction 

pET28b_haspa HASPA C-terminal his-tag Kanamycin IPTG 

pET28b_haspb1 HASPB1 C-terminal his-tag Kanamycin IPTG 

pET28b_haspb2 HASPB2 C-terminal his-tag Kanamycin IPTG 

pET-YSBLIC3C_Nt 
HASPB1 N-terminal 
domain 

3C cleavable N-terminal 
his-tag 

Kanamycin IPTG 

pET-YSBLIC3C_Ntr 
HASPB1 N-terminal 
domain plus repeat 

3C cleavable N-terminal 
his-tag 

Kanamycin IPTG 

pET-YSBLIC3C_Ct 
HASPB1 C-terminal 
domain 

3C cleavable N-terminal 
his-tag 

Kanamycin IPTG 

pET-YSBLIC3C_Ctr 
HASPB1 C-terminal 
domain plus repeat 

3C cleavable N-terminal 
his-tag 

Kanamycin IPTG 

pET15-MHL LmNMT 
TEV cleavable N-
terminal his-tag 

Ampicillin IPTG 

pHS1403 
T4 lysozyme C54S 
C97A 

No tag Ampicillin - 

pET28b_NtB1_T4L Nt T4L C-terminal his-tag Kanamycin IPTG 

Table A-2: List of vectors. 
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Figure A-1: Plasmid map of pET28b_NtB1_T4L. 
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A.2. Protein sequences 

Full length protein sequences of constructs used during this project. In each case the 

hexa-histidine tag is underlined including any additional residues incorporated due to 

the vector. 

 

>HASPA 

(M)GAYSTKDSAKEPQKRADNIDTTTRSDEKDGIHVQESAGPVQENFGDAQEKNEDGHNVGDGA

NGNEDGNDDQPKEHAAGNLEHHHHHH 

 

>HASPB1 

(M)GAYSTKDSAKEPQKRADNIHKTTEANHGGATGVPPKHTGSAMNDSAPKEDGHTQKNDGDG

PKEDGHTQKNDGDGPKEDGHTQKNDGDGPKEDGHTQKNDGDGPKEDGHTQKNDGDAPKED

GRTQKNDGDGPKEDGHTQKNDGDAPKEDGRTQKNDGDGPKEDGHTQKNDGDGPKEDGHTQ

KNDGDGPKEDGRTQKNDGGGPKEDGHTQKNDGDGPKEDGHTQKNDGDGPKEDGHTQKNDG

DAPKEDGRTQKNDGDGPKEDGHTQKNDGDGPKEDGHTQKNDGDAPKEDGRTQKNDGDGPKE

DGHTQKNDGDGPKEDGRTQKNDGDGPKEDGHTQKNDGDGPKEDGRTQKNDGDAPKEGENL

QQNDGDAQEKNEDGHNVGDGANGNEDGNDDQPKEHAAGNLEHHHHHH 

 

>HASPB2 

(M)GAYSTKDSAKEPQKRADNIHKTTEANHRGAAGVPPKHAGGAMNDSAPKEDGHTQKNDGD

GPKEDDHTQKNDGDGPKEDDHAHNDGGGPKEDENLQQNDGDAQEKNEDGHNVGDGANDNE

DGNDDQPKEHAAGNLEHHHHHH 

 

> HASPB1 N-terminal fragment 

MGSSHHHHHHSSGLEVLFQ/GPAMGAYSTKDSAKEPQKRADNIHKTTEANHGGATGVPPKHTG

SAMNDSA 
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>HASPB1 N-terminal fragment plus one repeat 

MGSSHHHHHHSSGLEVLFQ/GPAMGAYSTKDSAKEPQKRADNIHKTTEANHGGATGVPPKHTG

SAMNDSAPKEDGHTQKNDGDG 

 

>Nt-T4L 

(M)GAYSTKDSAKEPQKRADNIHKTTEANHGGATGVPPKHTGSAMNDSAAANIFEMLRIDEGLRL

KIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNSNGVITKDEAEKLFNQDVDAAVRGILRNAK

LKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNR

AKRVITTFRTGTWDAYKNLLEHHHHHH 

 

>T4 lysozyme C54S C97A 

MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNSNGVITKDEAEKLFNQ

DVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAV

NLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL 

 

>LmNMT 

MGSSHHHHHHSSGRENLYFQ/GPSNSDAAHAFWSTQPVPQTEDETEKIVFAGPMDEPKTVADIP

EEPYPIASTFEWWTPNMEAADDIHAIYELLRDNYVEDDDSMFRFNYSEEFLQWALCPPNYIPDW

HVAVRRKADKKLLAFIAGVPVTLRMGTPKYMKVKAQEKGEGEEAAKYDEPRHICEINFLCVHKQL

REKRLAPILIKEATRRVNRTNVWQAVYTAGVLLPTPYASGQYFHRSLNPEKLVEIRFSGIPAQYQKF

QNPMAMLKRNYQLPSAPKNSGLREMKPSDVPQVRRILMNYLDSFDVGPVFSDAEISHYLLPRDG

VVFTYVVENDKKVTDFFSFYRIPSTVIGNSNYNLLNAAYVHYYAATSIPLHQLILDLLIVAHSRGFDVC

NMVEILDNRSFVEQLKFGAGDGHLRYYFYNWAYPKIKPSQVALVML 
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Protein/ construct ProtParam parameters 

HASPB1 with C-terminal his-tag Number of amino acids: 409 

Molecular weight: 43437.1 

Theoretical pI: 4.78 

HASPB2 with C-terminal his-tag Number of amino acids: 142 

Molecular weight: 15215.5 

Theoretical pI: 4.96 

HASPA with C-terminal his-tag Number of amino acids: 88 

Molecular weight: 9576.8 

Theoretical pI: 4.91 

HASPB1 Nt fragment no his-tag Number of amino acids: 50 

Molecular weight: 5091.5 

Theoretical pI: 8.36 

HASPB1 Ntr fragment no his-tag Number of amino acids: 64 

Molecular weight: 6571.0 

Theoretical pI: 6.44 

HASPB1 Nt fragment plus his-tag Number of amino acids: 69 

Molecular weight: 7237.8 

Theoretical pI: 7.14 

HASPB1 Ntr fragment plus his-tag Number of amino acids: 83 

Molecular weight: 8717.3 

Theoretical pI: 6.53 

HASPB1 Ctr fragment plus his-tag Number of amino acids: 69 

Molecular weight: 7332.5 

Theoretical pI: 4.77 

HASPB1 Ctr fragment no his-tag Number of amino acids: 50 

Molecular weight: 5186.1 

Theoretical pI: 4.05 

Nt-T4L fusion Number of amino acids: 220 

Molecular weight: 24511.6 

Theoretical pI: 9.59 

Leishmania major NMT Number of amino acids: 438 

Molecular weight: 50450.4 

Theoretical pI: 6.28 

Table A-3: ProtParam generated biochemical parameters for each construct used in this project (Gasteiger 
et al. 2005). The molecular weight of each construct is reported in Daltons (Da). 
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A.3. NMR constraints  

The following chemical shifts for HN, N, Cα and Cβ nuclei were obtained from the 

assignment of HASPA. 

Residue HN (ppm) N (ppm) Cα (ppm) Cβ (ppm) 

1Gly None None None None 

2Ala 8.26 123.65 52.6 19.12 

3Tyr 8.17 118.98 57.75 38.64 

4Ser 8.15 117.25 None None 

5Thr None None None None 

6Lys 8.31 123.16 56.8 32.91 

7Asp 8.32 121.32 54.63 41.22 

8Ser 8.22 116.6 58.79 63.79 

9Ala 8.27 125.46 52.76 19.17 

10Lys 8.12 119.91 56.09 33.14 

11Glu 8.27 122.93 54.49 29.69 

12Pro None None None None 

13Gln 8.5 120.59 55.89 29.54 

14Lys 8.38 123.38 56.22 33.13 

15Arg 8.44 123.44 55.7 31.16 

16Ala 8.49 125.86 52.59 19.34 

17Asp 8.3 119.07 54.32 41.15 

18Asn 8.31 118.25 53.35 38.89 

19Ile 8.06 120.68 61.29 38.54 

20Asp 8.46 124.32 54.26 41.21 

21Thr 8.26 114.94 62.05 69.36 

22Thr 8.31 116.24 62.71 69.75 

23Thr 8.17 117.05 62.13 69.29 

24Arg 8.42 124.13 56 31.05 

25Ser 8.51 117.7 58.5 63.85 

26Asp 8.48 122.34 54.45 41.14 

27Glu 8.31 121.04 57.05 30.09 

28Lys 8.36 121.62 56.69 32.82 

29Asp 8.32 120.58 54.71 41.21 

30Gly 8.24 108.67 45.46 None 

31Ile 7.92 119.67 61.19 38.56 

32His 8.6 123.46 55.4 29.49 

33Val 8.21 122.7 62.39 32.85 

34Gln 8.52 124.42 55.87 29.52 

35Glu 8.59 123.46 56.77 30.36 

36Ser 8.41 117.04 58.25 63.91 

37Ala 8.42 126.41 52.51 19.53 

38Gly 8.18 108.38 44.45 None 

39Pro None None None None 

40Val 8.3 120.87 62.43 32.72 
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41Gln 8.48 124.7 55.65 29.63 

42Glu 8.48 123.05 56.57 30.5 

43Asn 8.42 119.7 52.98 39.07 

44Phe 8.36 121.46 58.02 39.54 

45Gly 8.38 110.24 45.43 None 

46Asp 8.2 120.69 54.42 41.32 

47Ala 8.28 124.19 52.82 19.12 

48Gln 8.32 119.14 56.03 29.47 

49Glu 8.41 122.11 56.79 30.14 

50Lys 8.37 122.37 56.14 33.14 

51Asn 8.51 120.45 53.29 39.12 

52Glu 8.57 121.87 56.69 30.2 

53Asp 8.36 121.03 54.54 41.23 

54Gly 8.46 109.49 45.57 None 

55His 8.29 118.3 55.69 29.25 

56Asn 8.58 120.55 53.3 38.97 

57Val 8.22 120.29 62.66 32.58 

58Gly 8.49 112.14 45.34 None 

59Asp 8.25 120.7 54.51 41.23 

60Gly 8.33 109.11 45.57 None 

61Ala 8.18 123.7 52.67 19.21 

62Asn 8.49 117.77 53.35 39.04 

63Gly 8.4 109.25 45.56 None 

64Asn 8.36 118.66 53.32 39.07 

65Glu 8.59 121.43 56.98 29.99 

66Asp 8.37 120.82 54.61 41.2 

67Gly 8.35 108.98 45.61 None 

68Asn 8.31 118.65 53.34 39.23 

69Asp 8.42 120.85 54.56 41.11 

70Asp 8.31 120.22 54.09 40.62 

71Gln 8.12 120.68 53.86 28.89 

72Pro None None None None 

73Lys 8.48 121.82 56.42 33.06 

74Glu None None None None 

75His None None None None 

76Ala None None None None 

77Ala 8.36 123.35 None None 

78Gly 8.35 107.73 45.45 None 

79Asn 8.27 118.58 53.38 38.8 

80Leu 8.26 122.26 55.49 42.13 

81Glu 8.28 120.58 56.85 30.04 

82His None None None None 

83His None None None None 

84His None None None None 

85His None None None None 

86His None None None None 



186 
 

87His None None None None 

Table A-4: Chemical shift data for assigned resonances in HASPA. 

 

The following values were used to calculate the intensity and chemical shift changes on 

HASPA myristoylation by NMT. 

Peak I0 (height) Imyr ΔI ΔH (ppm) ΔN (ppm) Δδ (ppm) 

6LysH 743849 386643 0.480213 0.000102 0.000115 0.014732 

8SerH 618530 0 1 67.46963 321.1428  

9AlaH 754817 688238 0.088205 1.07E-05 5.04E-05 0.007815 

10LysH 1030150 606489 0.411261 4E-06 1.12E-05 0.003898 

11GluH 1169800 970650 0.170243 7.69E-05 0.000173 0.015816 

14LysH 929337 976994 -0.05128 8.28E-07 0.000151 0.012335 

15ArgH 644528 574654 0.108411 1.86E-05 8.42E-05 0.010137 

16AlaH 873003 1022250 -0.17096 1.06E-06 2.18E-05 0.004786 

17AspH 731349 783779 -0.07169 7.02E-06 4.19E-06 0.003348 

19IleH 1227560 1119100 0.088354 2.4E-05 1.19E-05 0.005991 

20AspH 1119640 1483890 -0.32533 1.07E-05 6.67E-05 0.008795 

21ThrH 851778 938530 -0.10185 5.66E-06 5.17E-06 0.003292 

22ThrH 865065 789377 0.087494 1.87E-05 8.12E-06 0.005175 

23ThrH 817048 741406 0.09258 2.52E-05 5.59E-05 0.009007 

24ArgH 596510 644781 -0.08092 1.79E-05 8.51E-05 0.010148 

25SerH 430485 492278 -0.14354 2.76E-06 2.62E-06 0.002318 

26AspH 914488 670280 0.267043 7.67E-06 7.23E-06 0.003861 

27GluH 1029400 902156 0.12361 5.2E-06 7.86E-06 0.003613 

28LysH 923335 777601 0.157834 6.25E-06 4.18E-09 0.002501 

29AspH 807472 766854 0.050303 4.84E-08 7.73E-05 0.008797 

31IleH 1525160 1395370 0.085099 1.08E-05 7.32E-06 0.00426 

34GlnH 1271140 1291570 -0.01607 3.8E-06 3E-06 0.002608 

35GluH 1194960 1086710 0.090589 5.52E-06 1.16E-07 0.002374 

36SerH 844014 801367 0.050529 5.11E-06 8.81E-06 0.00373 

37AlaH 1198100 1173440 0.020583 3.6E-07 2.96E-06 0.001823 

40ValH 1508560 1350420 0.104828 7.29E-08 1.76E-07 0.000499 

41GlnH 1435900 1185200 0.174594 1.16E-05 3.81E-06 0.00392 

42GluH 1129700 947310 0.16145 1.52E-07 1.99E-06 0.001464 

43AsnH 548549 568389 -0.03617 6.05E-06 7.36E-06 0.003662 

44PheH 1038120 700622 0.325105 2.4E-07 4.06E-08 0.00053 
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46AspH 1197550 1076350 0.101207 1.19E-05 3.59E-05 0.006913 

47AlaH 1394010 1440220 -0.03315 3.6E-07 4.4E-06 0.002181 

48GlnH 1521570 1497320 0.015937 3.18E-05 1.38E-05 0.006751 

49GluH 1309310 1342600 -0.02543 3.6E-07 2.97E-05 0.005487 

50LysH 1552800 1088760 0.298841 8.41E-08 9.72E-06 0.00313 

52GluH 712732 839873 -0.17839 2.12E-07 4.67E-06 0.002208 

53AspH 1150850 1139740 0.009654 0 7.74E-06 0.002782 

57ValH 1605070 1473790 0.081791 1.19E-06 7.39E-05 0.008663 

59AspH 1205190 1229190 -0.01991 2.12E-07 8.18E-07 0.001015 

61AlaH 1402050 1168810 0.166356 3.17E-06 1.49E-06 0.002158 

62AsnH 743728 916064 -0.23172 2.5E-06 6.05E-06 0.002924 

64AsnH 829973 797962 0.038569 1.79E-05 2.21E-06 0.004483 

65GluH 961287 803333 0.164315 1.61E-06 5.27E-06 0.002623 

66AspH 1104530 1124520 -0.0181 8.18E-06 3.45E-06 0.00341 

68AsnH 796276 866312 -0.08795 2.89E-08 1.95E-07 0.000473 

69AspH 601870 789606 -0.31192 6.08E-07 4.35E-06 0.002227 

70AspH 779051 899242 -0.15428 1.3E-07 2.55E-06 0.001635 

71GlnH 1330830 1302230 0.02149 1.25E-06 5.23E-07 0.001333 

73LysH 1145900 1078350 0.058949 4.1E-07 1.11E-06 0.001233 

80LeuH 951004 856848 0.099007 1E-08 1.08E-06 0.001042 

Table A-5: Table of values used for chemical shift and intensity change calculations in Chapter 3. 
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Abbreviations 

AIDs Acquired Immunodeficiency Syndrome 

BSA Bovine Serum Albumin 

CD Circular Dichroism  

CL Cutaneous Leishmaniasis  

CoA Co-Enzyme A 

CPM 7-Diethylamino-3-(4-Maleimidophenyl)-4-Methylcoumarin 

Da Dalton 

DALYs Disability Adjusted Life Years 

DCL Diffuse Cutaneous Leishmaniasis  

DDT Dichlorodiphenyltrichloroethane 

DLS Dynamic Light Scattering  

DMSO Dimethyl Sulfoxide 

DOSY Diffusion-Ordered Spectroscopy 

DTT Dithiothreitol 

E. coli Escherichia Coli 

ER Endoplasmic Reticulum 

ESI-MS Electrospray Ionisation Mass Spectrometry  

Fab Fragment Antigen-Binding 

Fc Fragment Crystallisable 

G protein Heterotrimeric Guanine Nucleotide Binding Protein  

GPCR G Protein Coupled Receptor 

GRAVY Grand Average Of Hydropathicity  

HAART Highly Active Antiretroviral Therapy  

HASP Hydrophilic Acylated Surface Protein 

HEWL Hen Egg White Lysozyme 

HIV Human Immunodeficiency Virus 

HPLC High-Performance Liquid Chromatography  

HSQC Heteronuclear Single Quantum Correlation  

IC50 Half Maximal Inhibitory Concentration 

ICL3 Third Intracellular Loop  

IDR Intrinsically Disordered Region 

IgG Immunoglobulin G 

INEPT Insensitive Nuclei Enhanced By Polarization Transfer 

IPTG Isopropyl β-D-1-Thiogalactopyranoside  

ITN Insecticide Treated Net 

L. braziliensis Leishmania Braziliensis 

L. chagasi  Leishmania Chagasi  

L. donovani Leishmania Donovani 

L. infantum Leishmania Infantum 

L. major Leishmania Major 

L. mexicana Leishmania Mexicana 

L. tropica Leishmania Tropica 

LB Lysogeny Broth 

LdNMT Leishmania Donovani NMT 

LmNMT Leishmania Major NMT 
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LPG Lipophosphoglycan 

MBCL Methylbenzethonium Chloride 

MBOAT Membrane Bound O-Acyltransferase 

MBP Maltose Binding Protein 

MCL Mucocutaneous Leishmaniasis  

MME Monomethyl Ether  

MoRF Molecular Recognition Feature 

MW Molecular Weight 

MWCO Molecular Weight Cut-Off 

NCBI National Centre For Biotechnology Information 

ncSPC  Neighbour Corrected Structural Propensity Calculator 

NEB New England Bioscience 

NMT N-Myristoyltransferase 

NMW 2-Oxopentadecyl-CoA  

Nt T4L HASPB1 N-Terminal Domain: T4 Lysozyme Chimera 

NTDs Neglected Tropical Diseases 

OD Optical Density 

OD600 Optical Density at 600 nm 

OPA o-Phthaldialdehyde  

PAT Palmitoyl Acyltransferases  

PCR Polymerase Chain Reaction 

PEG Polyethylene Glycol  

PHF Paired Helical Filament 

pI Isoelectric Point  

PKDL Post Kala-Azar Dermal Leishmaniasis  

PMSF Phenylmethanesulfonyl Fluoride 

PPII Polyproline II 

PYP Photoactive Yellow Protein 

R&D Research and Development  

RDC Residual Dipolar Coupling 

RMSD Root Mean Squared Deviation 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEC-MALLS Size Exclusion Chromatography Multi-Angle Laser Light Scatter 

SLIC Sequence And Ligation Independent Cloning 

SSP Secondary Structure Prediction 

SV Stomodeal Valve 

T4L T4 Lysozyme 

VL Visceral Leishmaniasis  

WHO World Health Organisation 

β2AR β2 Adrenergic Receptor 
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