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Introduction. 

The theory of near-rings has arisen in a variety of ways. There 

is a natural desire to generalise the theory of rings and skew fields 

by relaxing some of their defining axioms. It has also been the hope of 

some mathematicians that certain problems in group theory, particularly 

involving permutation groups and group representations, may perhaps be 

clarified by developing a coherent algebraic theory of near-rings. 

Moreover, there is an increasing recognition by mathematicians in many 

branches of the subject, both pure and applied, of the ubiquity of 

near-ring like objects. 

The first steps in the subject were taken by Dickson and Zassenhans 

with their studies of tnear-fieldst, and by Wielandt with his- 

classi-fication of an important class of abstract near-rings. Papers by 

Frohlich, Blackett, Betsch and Laxton developed the theory considerably. 

Lately authors such as Beidleman, Ramakotaiah, Tharmanatram, Maxson, 

Malone and Clay have all added to our knowledge. 

The history of the subject has been strongly influenced by our 

knowledge of ring theory, and although this has often been beneficial 

it must not be overlooked that a number of important problems in near- 

ring theory have no real parallel in the theory of rings. It is 

probably best to try to preserve a balance, and not to endeavour 

exclusively, either to generalise theorems from ring theory irrespective 

of their usefulness, or to ignore the theory of rings and attempt to 

formulate a completely independent theory. In many cases our results 

are generalisations of theorems from ring-theory but at certain 

important junctures we will explicitly use the fact that we are dealing 
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with a near-ring which is not a ring. This is a very interesting 

development in the subject. 

We proceed, in the first chapter, with a review of the terms and 

notation that will be used in this thesis. 

Where definitions and concepts are of a specialized or technical 

nature and only used in one section, it seems more sensible to postpone 

introducing them until a more natural point in the proceedings. 

Chapter 2 gives a summary of the results on the various radicals 

corresponding to the Jacobson radical for associative rings. Most of 

these results are well known and readily available in the literature. 

We also consider near-rings with one, or more, of these radicals zero. 

We defined, in Chapter 1, three different types of primitive 

near-ring, which are all genuine generalisations of the ring theoretic 

concept. Of these three, the two most important are 2-primitive and 

0-primitive near-rings. In Chapter 3, we examine 2-primitive near-rings 

with certain natural conditions imposed on them. A theorem is obtained 

which could be considered to be the equivalent result for near-rings of 

the theorem classifying simple, artinian rings, due originally to 

Wedderburn and redeveloped by Jacobson. 

Chapters Z. and 5 deal with 0-primitive near-rings satisfying 

certain conditions. Chapter 5 is a generalisation of Chapter 1g., but we 

felt that the mathematical techniques involved would be clearer if the 

special case in Chapter 4 was expounded first. In these two chapters 

we classify a sizeable class of 0-primitive near-rings with identity. 

and descending chain condition on right ideals. 
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Several types of prime near-rings have been developed in the 

literature. In Chapter 6 we examine these and related concepts. 

In the theory of rings, Goldies' classification of prime and 

semi-prime ring with ascending chain conditions, has been of immense 

importance. Whether such a result could be obtained in the theory of 

near-rings is a matter for conjecture, at the moment. Sze have made a 

start on the problem with the construction of a class of near-rings which 

behave in a very similar way to Prime rings with the. Goldie chain 

conditions. This is the content of Chapter 7. The inspiration for its 

came mainly from the proof of Goldies' first theorem, due to C. Procesi, 

which is featured in Jacobson's book. (Jacobson E. ]). 

Chapter 8, is an attempt to initiate the development of a theory 

of vector groups and near-algebras which would play an important röle-in 

the future theory of near-rings, in a way, perhaps, similar to the Ale 

vector spaces and algebras play in ring theory. This may lead, in time, 

to results on 2-primitive near-rings with identity and a minimal right 

ideal, for example, or a Galois theory for certain 2-primitive near- 

rings. For the former problem, the experience of the semi-group theorists 

(Hoehake [1] etc. ) may prove useful. 

Finally a note on the numbering of results and definitions etc. 

If a reference is made., containing only two numbers, e. g. 1. ]12 

then this means, "item 12 of section 1 of the present chapter". If 

a reference reads: 3.1.12, then this means "item 12 of rcction 1 of 

Chapter 3. 
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CHAPTER I 

BASIC CONCEPTS OF NEAR RINGS 

Preliminary remarks 

This chapter will include all the basic definitions and notation 

which will be required throughout the thesis. 

We begin by defining what we mean by a 'near-ring'. 

Ill. Definitions of a near-ring. Examples. 

1.1. A near-ring is an algebraic system consisting of a set, N, 

and two binary operations, addition (written +) and multiplication 

(written 1 6)., such that the following requirements are satisfied: 

(a) The set N is a group under addition, (often written as N+). 

(b) The set N is a semigroup under multiplication , 
(o) If ns, nog nse N then n=. (n ¢+ ns) = n1i na+ nine 

(d) If 0 is the additive identity of N, then 

O. n = n. 0 =0 for all n eN. 

We remark that the last condition (d) is not always insisted 

upon by some authors, but in the majority of work here it is 

required, and it seems sensible to insert it at the beginning to 

avoid undue confusion. 

1.2. If G is an additive group, consider the set N of all mappings 

of G into itself which take the zero of G onto itself. We define 

addition on N by using the addition on G. Thus if n, nie N we 

define a mapping (n + n1): G -º G by (g) (n + n1) _ (g)n + (g)n3 

for all geG. 
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Multiplication on N is defined as the composition of mappings. 

This makes N into a near-ring and it is a fundamental one in the 

theory. 

1.3. A division near-ring (or a near-field) is a near-ring N 

with the extra property that the set N\ io1 (i. e. the non-zero 

elements) forms a group under multiplication. 

1. iß.. If the additive group structure of a near-ring N is abelian, 

then we call N an abelian near-ring. 

1.5. A commutative near-ring is a near-ring N which is commutative 

as a multiplicative simigroup. 

1.6. A subnear-ring S of a near-ring N will simply mean a subset 

S of N, which, under the two binary operations induced on it by N, 

is a near-ring in its own right. 

62. The right modules with respect to a near-ring, homomorphisms and 
ideals. 

2.. 1. If N is a near-ring and M arr additively written group, then 

M will be said to be a right N-module if there exists a binary 

operation MxN -º M, for short rye will write 

(m, n)) = m,. n, for ax ym eM, neN,, 

satisfy the following properties. 

(a) ml. (n 
1+ n2) = mini + mina 

(b) id. (ns na) = Cm. n1). ný 
for all meM, n 1, n2cN. 

(J right N-module will often be referred to simply as an N-module 

if no confusion arises). 
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2.2. An N-module M is unitary if the near-ring N has a multiplicative 

identity 1N, such that 

M. i=m for nil me M. 

2.3. We remark, that some authors refer to these N-modules as 

'N-groups''and reserve the title 'module' for a more specialised 

object. It should be noted that, under the operation of 

multiplication, the additive group of a near-ring N may be 

considered to be an N-module. 

2.4. Let N and N. be near-rings. Then a mapping f: N -º N1 

is called a near-ring homomorphism if for all n, n eN, 

(a) (n + nt)f = of + nif 

(b) (n. n1)f = (nf) 
. 

(n1f). 

2.5. If M and M.. are N-modules for some near-ring N, then a 

mapping 0: M .º M1 is an N-homomorphism if for all 

m$ mI eM and n BN 

(a) 
(n + mt) = n1 fm 

(b) (m. n) 0_ (m 4ý). n 

2.6. In cases 2.4. and 2.5 we will use the tgrm endomorphism if 

the domain and co-domain of the mapping are the same. 

A monomorphism is a 1-1 homomorphism, an epimorphism is a 

homomorphism which is onto and an isomorphism is both an 

epimorphism and a monomorphism. 
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2.7. We introduce ideal-type concepts by studying the kernels of 

near-ring homomorphisms. Then a subset I of a near-ring N 

is an ideal if 

(a) I is_an additive subgroup of N which is normal in N. 

(b) NICI. where NI = In. i In eN, ie I]. 

(c) (n,, + i)n2, - nn, EI for all id, ni, nA rN. 

This is exactly a kernel of some near-ring homomorphism. 

2.8. A right ideal R of N, is a set R such that., 

(a) R is an additive normal subgroup of. N. 

(b) (nz+r)nnnasR for all reR, n, naeN. 

2.9. A left ideal L of N is a set L such that 

(a) L is an additive normal subgroup of N. 

(b) NLCL. - 

2.10. The concept of a right ideal of a near-ring is rather more 

specialized than is desirable and we introduce a new object, 

which in our case, is more general. This gives us one of 

our important divergencies from ring theory, since in a ring 

both these concepts coincide. 

We define, for a near-ring N, a right N-subgroup of N+, or 

for short art. N+-subgp. to be a set K with 

(a) K an additive subgroup of N+ (not necessarily normal) 

(b) KNCK. 

Thus, for example, given any neN,, re can look at the set 

K= nN = Inns; n1 £NI and this set is easily seen to be a 

rb. N`-subgp. using the elementary fact that for any 
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n, n1c N 

-- (n n i) = n(-s) (This comes from the observation that 

ý2 = n. (n )+n. (ni) by 1.1 (c) 

giving n. (-n., ) =-( n(n i) 
I) 

This set K may not be a right ideal. Some'authors call 

these objects 'right modules'. 

2.11. We return to our right N-modules and introduce subsets of them 

that will be required. If M is art. N-module, then a subset 

K is a right N-submodule of M if 

(a) K is an additive normal subgroup of M 

(b) (m + k). n - m. neK for all m sM, keK, neN. 

Thus K is the kernel of a suitable N-homomorphism of M. 

2.12. A subset P of a rf. N-module M is a rLN-subgroup of M 

if 

(a) P is an additive subgroup of M 

(b) PN C P. 

Thus art. N-submodule is a rt. N-subgroup. 

2.13. We note that a right ideal of a near-ring N is simply a 

right N-submodale of N where N is considered as a rt. 

N-module. Also a rt. N+-subgroup is a rt. N-subgroup of the 

rt. N-module N. So a right ideal is a right N+-subgroup and 

also a right N-subgroup of N. 

2.11+. Naturally we may factor out ideals (rt. ideals and N-sub- 

are like 
modules) in the usual wait, (theseegroups with operators) 
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and we define direct sums (internal)with these objects only:; 
ý3. Special types of near-rings and modules 

3.1. We will need, later, equivalent concepts to a minimal ring 

module and we clearly have two possibilities in the near-ring 

case. An N-module M (which is non-zero) is minimal if the 

only rt. N-subgroups of M are (0) and M itself 

3.2 An N module M (4 (0)) is irreducible. if the obly rt. N-sub- 

modules of M are (0) and m itself. 

We see that a minimal N-modale is always irreducible but 

the converse is not true. 

3.3. A near-ring N (4 (0)) is simple if the only ideals of N 

are (0) and N itself. 

3.4. We introduce some notation which will be invoked in many 

places, Let r be a non-zero additive group,. Ea multi- 

plicative semigroup of ends orphisms of r; and define 

w (r) to be the set of all mappings n: F -º r 

with the properties: Or n. = Or 

(Ye) 
.n 

(Y n)e for ail ye r, eeE. 

It is easily checked that yyy E( r) is a near-ring. with 

a multiplicative identity namely the identity mapping, 

In the special case of E consisting only of the identity 

endomorphism we shall often just write 

rrrhl(r) ' yw(r)" 
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3.5" An N-module M is of type 2 if 

(a) M. N + (0) 

(b) M is a minimal N -module. 

3.6. An N-module M is of type 1 if 

(a) M. N 4 (0) 

(b) M is an irreducible N-module 

(c) mN = (0) or mN =M for all m p, M. 

3.7. An N-module M is of type 0 if 

(a) M is an irreducible N-module (and M4 (0)) 

(b) There exists an mcM, such that U=m. N. 

Betsch introduced this notation (Betsch [2]) and it is becoming 

fairly standard. 

3.8. A right ideal R of a near-ring is a 4-modular right ideal 

if (a) 9eeN such that en -n cR for all n- N. 

(b) Nom. R is a right N-module of type v. 

Sere v may take any of the values: 0, j 22. 

3.9. Let M be a rt. N-module and suppose that S is an arbitrary 

subset of M. (ºnon empty, 

The set (S) 
r= 

Inc Nj' sn = 0; Vs CS] 

is called the right annihilator of S in N. 

It is easily checked that (S)r is a right ideal of N. 

Also (S) 
r 

is an ideal of N if S. N CS. 

3.10. A near ring N is a v-primitive near-ring. Cu 

if there exists an N -module M of type v such that 

(N) 
r= 

(0) 
. 
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3.11. An ideal P of a near-ring N is ay -primitive ideal 

(v _0,1,2) if N1P is a v-primitive near-ring, (where /P /P 

is the near-ring obtained by factoring out the ideal P in the 

obvious way)* 

3.12. An element aeN is rt. quasi-regular if the smallest right 

ideal containing all elements of the form n- an, 'V ne N, 

also contains a. We usually write quasi-regular to mean 

rt. quasi-regular, and abbreviate it to just 'q. r. ' 

3.13. A non-zero rt. Nfsubgroup K of a near-ring N is nilpotent 

if there exists a positive integer q with the property that 

ki. k s .. o kq =0 for any ky, ky.. , kq c K. 

3.14. A non-zero rt. N+-subgroup L of a near-ring N is nil if there 

exists, for each non-zero element c le L., a, positive integer 

s (depending possibly on a. ) such that the product of d. with 

itself taken s times, 

ds =d... a=0 

3.15. A non-zero rt. N+-subgroup Q of a near-ring N is quasi-regular 

if every element is quasi-regular. 
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Chapter 2. Radicals and Semisimplicity 

The radicals considered in this chapter vill be generalisations 

of the Jacobson radical for rings. Because the concepts of irreducible 

and minimal IT-modules do not coincide, several generalisations of the 

Jacobson radical exist and between them they more or less satisfy all the 

properties that the Jacobson radical of a ring possesses. Betsch and 

Laxton were the first to formulate these radicals and many of the following 

results are due to them, although in Laxton's case he considered only 

special near-rings, distributively generated near-rings. 
§1. The Jacobson Radicals of a near-ring 

1.1. N is a near-ring, write E (v) for the collection of all 

IT-modules of type v. ( v=0,1,2). 

1.2. We define three radicals by 

. TU (N) _ (r) 
r'v=0,1,2 raS(v) 

with the convention that if then T, (N) = N. 

1.3" We see that Jv (N) is an ideal of N. If N is in fact a 

ring then the J. (N) all coincide and equal the Jacobson radical 

of N. 

1"ý. We may factor J. (N) out of the near-ring N. This leads us 

to the question "what is Jr (N, 
3 (N)) 7" 

B et sch ([2), 2.13) has shown that 

(N, 
(N) )= Jv (N)/JU 

(N) = (0) for v= 0p1)2. 
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1.5" If P(v) is the collection of all V -primitive ideals of N., 

then 

Jv (N) r`t P; v=0,1.2. 
PCF(u) 

(Betsch [21,2.12), (Laxton [2), 1.1). 

1.6. If K is an ideal of N and J. (NIK) = K1 ý 10)y 
K 

then Jv (N) CKM for v=0,. 1p2. 

(Betsch [2]., 2.1lß. ). 

1.7. If N is a near-ring with a multiplicative identity then 

J1 (N) = Ja (N) (Betsch [2]. 2.8). 

1.8. In an arbitrary near-ring, the following inequalities hold; 

, To (N) C J1 (N) C; (N) 
" 

Examples are known when equality does not occur. (Betsch [2]. 04). 

82. Basic Properties of the radicals. Another radical object. 

Up to this point all the three radicals To,, J3 and J. have 

exhibited similar properties, and although whenever is N we have 

Ji = Ja there is a certain conformity in the results 1.4+, 1.5,1.6. 

We now try to determine the relationship between these radicals and the 

intersection of all the u -modular right ideals. This gives trouble 

because the natural result depends heavily on the right ideals being 

maximal, or 'nearly maximal' as rt. N+-subgroups. Anyway we have the 

following result. 

2.1. Jµ (N) = Rký )R , for ýi = 1.2 

where R(µ ) is the set of all jarmodular right ideals of N. 
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This result is due to Betsoh"[2). 247", and for = 2) also 

to Laxton [2]. 1.3. 

2.2. It is not possible to prove an analogous result for µ=0 and 

we notice that the intersection of all the 0-modular right ideals 

is not necessarily an ideal. Even so, it is a very interesting 

setiand we can use it as a radical-like object to obtain some 

useful results. We make a definition. 

2.3. For any near-ring N, define 

D(N) = i) 
.R, 

fiere GZ (0) is the collection 
R e., (0) 

of 0-modular right ideals of N. 

2.1+. It has been shown by Betsch and Laxton that 

Jo (N) C D(N) 'C is. (N) 'C Ja (N).. and here again 

examples are known vhere J0(N) # D(N) and D(N) f Ji (N)., 

e. g. (Betsch [2]. 1. ). 

2.5. J. 
7 

(N) contains all the nilpotent N+-subgroups, all the 

nil N+-subgroups and all the quasi-regular N+-subgroups. 

(These results appear in Ramakotoiah [1], Th. 2.1.; 

Coro 2.3; Coro 2.4+) . 

2.6. D(N) contains all the nilpotent right ideals, all the nil 

right ideals and all the quasi-regular right ideals. 

(Ramakotaiah [1], Th. 2.2; Coro 2.5; Coro 2.6). 

2.7. Jo(N) contains all the quasi-regular ideals, all nil ideals 

and all nilpotent ideals. 

(Ramakotaiaii [i].. The 2.3; Core 2.7; Gor. 2.8). 
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2.8. So far, we have seen that, the four radicals we have defined satisfy 

many of the properties that the Jacobson radical of a ring satisfied, 

but now we encounter one of the more difficult problems. This 

concerns the possibility of the nilpotenoy of any of the radicals 

under suitable chain conditions. We have introduced quasi-regular 

elements, but unlike ring theory, it has not, so far, been possible 

to express any of our radicals directly in terms of quasi-regular 

elements. It would have been nice to show that J2, (N) consisted 

solely of quasi-regular elements, but then J. (N), being a quasi- 

regular ideal would be contained in J0(N), by 2.6, and this we 

know is not always the case. 

However, we can show that D(N) is quasi-regular, and hence so 

is Jo (N) 
. 

2.9. D(N) is a quasi-regular right ideal 

(Laxton [2], 3.2), (Ramakotaiah (i), Thm. 2.2. ). 

Finally we- note the following results. 

x. 10. An ideal P is u -primitive if and only if 

P= (L: N) = In I Nn C LI, where L is a 

y-modular right ideal of N. (Laxton [3], Prop. 2) 

(Ramakotaiah [1), Thm. 1.2. ). 

2.11. J0(N) = (D(N) : N) = Inc NI Nn C D(N) 

(Laxton (3). 3.2). (Ramakotaiah. [1), The 2.2. ). 

From this last result we may deduce that J0(N) is the 

largest ideal contained in D(N). (Ramakotaiah [1], Core 1.2. ). 



- 16 - 
93. Near-rings with descending chain conditions 

We shall summarize the results concerning near-rings with 

descending chain conditions and with one of the radicals zero. 

In the majority of cases, these results are well known and 

widely available in the literature 

3.1. There are two descending chain conditions of interest. 

(i) The descending chain condition (d. c. c. ) on right ideals 

(ii) The descending chainaondition (d. c. c. ) on rt. Nf-subgroups 

3.2. Theorem. Suppose that N has d. c. c. on rt. N+-subgroups. 

Then 

(i) J9 (N) = (0) N possesses no nilpotent, non-zero 

rt. N4-subgroups. 

(ii) D(N) = (0) 4N possesses no nilpotent, non-zero right 

ideals 

(iii) 
ZTO (N) = (0) 1y N possesses no nilpotent, non-zero ideals. 

Proof. In all the three cases follows from 2.5,2.6,2.7, 

respectively. 

(i) (Betsch (1). Th. 4.1. ) if N possesses no non-zero 

nilpotent rt. N*-subgroups, suppose J, (N) j (0). 

Hence J. (N) contains an Nt-subgroup which is minimal, 

say M. Now 0# VC J2(N) . If M. N 4 (0), then 

M is of type 2 and so M. Jn(N) = (0) ; _4 M. M = (0) 

If M. N = (0), then M. M = (0). Hence in either situation 

M is a non-zero nilpotent N+-subgroup, a contradiction. 
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(ii) 4 This follows if we can show that D(N) is a nilpotent 
rte ideal. 

(iii) 4 If D(N) is a nilpotent right ideal then J (N) is a 

nilpotent ideal and the result is immediate. 

We have thus reduoed the problem to showing that D(N) is 

nilpotent under d. c. co for rte-subgroups. 

We already know that D(N) is quasi-regular, and we can apply 

the following theorem. 

3.3. If N has d. c. c. on rt, N± subgroups, then any quasi-regular 

rt. N+-subgroups is nilpotent. (Ramakotaiah [1], Th. 5.1. )- 

3.. 4. If N has d. c. c. on rt. N+-subgroups then D(N) is nilpotent. 

3.5. The natural questions to ask now are, whether we can decompose 

a near-ring into a direct sum of right ideals under suitable 

conditions on the radicals. 

The first steps in this direction were made by Blackett; 

Lawton and Betsch have produced further results. We look at 

these now. 1 
3.6. Theeoorcm. (Betsch [2], 3.4) if N has d. c. co on right ideals and 

J9 (N) = (0), then N is a direct sum of right ideals wzich are 

N-modules of type 2. 

Proof Now Jr, (N) =nR, fiere the R's are taken over all 

the 2-modular right ideals. Because of d. c. c. on right ideals, 

we can find R1, ..., Rm amongst these R's, such that 
m 

Jl (P) =i¢ Ri and we cannot reduce the number of these 

R's further. Then 
#N 

Ry (0) 
. 



- 18 - 

Define Ki =Rs r R2 n""" n Ri-1 n Ri+1n "' 
( PM 

for each 1gicm (K1 = Ran ... 
tRm, IKm =R1n... 

n Rm-1) 

Then Ki i (0) for 1jim. 

We notice that Ki Ri = (0) for 1 i, ( m and so 

N=K. R. for JCJjm, since the Ri are 2-modular rt. ideals. 

In particular N= K1O R. 

We show by induction that N= K1 K 1ý ... K 

(R 
if)Ra 

rl ... 
n RS. ) 

for any 1, < im. This is evident for 

Assume that it is tide for i=s. 

Now Rin... (lR 
s 

R[ R 2r% ... ( Rs t"1Rs+1 

(R1 
... R 

s 
Rs+lý 

Rs+1 

from the isomorphism theorems. 

Now Rs+1 i Rf . ". 
nRs ' because of the irredundant nature 

of the R. 's. Hence 
i 

(R 
1(Tl ... 

nRs)/(R 

i em R2 (".. nR3i'Rs+l 

N as N-modules. /Rs+l 
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Now (R1 Pi R2n... nRs) n Rs+1C Rs+ 

a ... 
nRm 

= (0) 
s 

thus we have the direct sum decomposition 

R p... nRs 
= (RP.. nRs+l) G Ks+1 

Bence, as N= K1Q ... GKs (+ý} (RI n R2 ... 
ý1Rs) 

N= K1e+ ... 
,t Ks Ks+l (RilýR 

$n.. 
nR 

s+l) 

This shows the induction process, so 

N= KG K2 ... ©K +(R 1i ... lam Rm) 

= K1(D K29 ... 0 KM , as Rif'1... nRM = (0). 

Since N= Ri 131 Ki (1: c i, < m) and the Ri are 2-modular, 

then Ki =N are N-modules of type 2. (1, < iE m). /Ri 

3.7" Theorem. If N has d. c. c. on right ideals and D(N) = (o)., 

then N is a direct sum of right ideals which are type 0 as 

N-modules. 

Proof. This proof is essentially similar to the preceding one. 

This theorem may be found in Betsch [2], 3.1+ and Laxton [3], Thm. 3. 

3.8. Theoret. (Betsch [2]. 3.4) If N has d. c. c, on right ideals and 

Ji (N) = (0), then N is a direct sum of right ideals which are of 

type 1 as N-modules. 

Proof. See 3.6 also. 

3.9. The questions concerning the decomposition of these near-rings 

as direct sums of u-primitive ideals is only partially resolved 

and we must wait until we have dealt with the density theorems 

before looking at them. 
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14, Identity elements in near-rings with zero radicals. 

We ask now, whether, under suitable chain conditions, arq of the 

radicals being zero implies the existence in the near-ring of 

a multiplicative identity. We exhibit a simple example of a 

finite near-ring with all its radicals zero and with every non- 

zero element a left identity, 

4.1. Example. Let G be a non-trivial, finite additive group. 

We write N for the set of mappingspf G into itself, with 

the properties that: (i) given any n EN, then 3g eG such that 

h. n =g for all hcG with h+0. 

and (ii) ý0. n = 0. 

It is easy to verify that N is a near-ring (sometimes called 

the near-ring of constant mappings), and every non-zero element 

is a left identity. For if ni , n2 eN and n1 4 0. 

Let xn1 = gs , xn2 = g2 for all 04x cG. 

Then xnin. = ging _ ga = xn,. 

Thus nine = nQ 

If (0) 4KCN was a nilpotent N{-subgroups, then keK ýzL th 

kf0. Let neN, then k. n =ns k' and so N=K, and 

clearly N cannot be nilpotent. Thus jA (N) _ (0) 

We have shown that there exists a' finite near-ring N such that 

J'2 (N) 
= (0) and N does not possess an identity, We may 

ask now, whether all near-rings N with Ja (N) _ (0) and 

d. c. c. on rt. N+-subgroups possess a left identity? In fact, better 

results are available. The following theorem is due to Betach 

(Betsch (2], 3.4). 
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44.2. Theorem. If N has d. c. c. on right ideals and D(N) = (0), 

then N' possesses a left identity. 

Proof. Let F be a 0-modular right ideal and K any ideal 

such that there exists an heN for which n-hn eK for all 

nsN. We show that there exists an xeN with n xn e K( P 

for all neN. Suppose that KCF, then K=K and we 

just need x=h. 

However if KIF, then N=F+K as F is 0-modular. 

Let eeN such that n-ens F, for ell ne N. 

Put e_ u+ e' where ueF, e' eK 

i h= f' +v fiere veK, f' e F. 

Suppose me N, then (e' + f')m - e'm CF 
-4 iP- 

and e'm - em = (e-u)m-emeF. 

Thus (e' + f') m- em CF. say (e' + f') m- em = fd 

Now m-(e' +f')m = m-(fo+em) = m-em-fo. 

So m- (e' + f')m eF as m- em eF 

Also (e' + f')m - f'meK 

f'm - hm = (h - v)m - hm cK 

thus (e' + f')m - hmeK, say (e' +, f')m - hm = ko. 

Now m- (el +f')m = m-hm-koeK as m-hmcK. 

We have m- (et + f')m eKf11? for all m CM and 

thus x= e' + f' will be suitable. 

We can show by induction that if N has d. e. e. on rt. ideals, 
q 

D(N) = to) Pi where the Fi are O -modular right ideals, 
i=j 
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and that there is an xt cN such that 

71 for all n' sN. of - xIn' cA1 

But in our case D(N) (0) and so we have found an a' eN 

such that n' - x'n' =0 for all n'e N. 

That means that x' is a left identity for N. 

4.3. Because of the lack of adaptability of the ring theory concept 

of quasi-regularity to our cadet this proof cannot be extended 

to give us an identity in this situation, and clearly our hopes 

in this direction are dulled by the example 4.1. 

We examine now, the possibility of replaoing 1) (? 1 (0) by 

J0(N) a (0) in the hypothesis of 4+. 2. We construct the following 

example. 

4.4. Example. Let r be a finite, additive, non-zero group, and 

K, A subgroups of r such that K4 (0) 
,a# 

(0) and 

Kf1 Qw (O) and r4 pUK and t &1;, 3- 

Let N be set of all mappings of r -º r such that p -. d and 

x -. e and zero is preserved under each mapping. We is e 

near-ring. If n, ni t N, then y(n + ni) er, for all yer. 

S (n + n1) = 8n + 8n 1e e for all 6eA 

k(n + ni) a kn + kn eeA, for all keK. 

Y (n. n ) (y n n, er., ,6 
(n. n 1) 

(S n) ns e A. 

k(n. ni) e as 'C A" 

We claim that Jo(N) _ (0); in fact that N is 0-primitive. 

P is certainly a rt. N-module and ( P)r = (0). 



- 23.. - 

Let 04 Yi er and Yi 4K tJ b. We show that r=Y, j. 
N. 

Pick any ys E r., define m: r -º r by: 

m: Y1 -º Y, 

m: Y" -+ 0 for all y" cr\Iy, ý 

Cleariýr mcN and Yl m so y, N=r. We now show that 

if L is any non-zero N-submodule of r, then L=r. 

We have that for all teL, y. er, n2eN, (y2 +1)n2 - ya n2 e L. 

Suppose L4r such that aY er with L. If Y4K. 

Then define mt :r -º r by 

m' "y -º Y 

m' : y. -º0 for all y. er\ {'i 
" 

Then m' cN and for ä1 4 0, (Y + di)m' - im' _-YL, (J, EL 

a contradiction to L being an N-submodale. 

The only remaining possibility is if EK whenever L. 

Choose a ß' 4t 4J K. For any y4L, we may define r -º P 

by 

'Z =y 

y4 M=0 for all y, e r\E 

Clearly Es N and if a2 4 0, d1 L, 

(ß'+a )m - '. m = -y 4 L, a contradiction. 

Hence r is of type 0 and so It is a 0-primitive near-ring. 

In particular JO(N) C (r)r = (0) . 
Has Na left identity? Suppose there is efo such that 

em3 = n3. for all n3 t, N. 
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Then for all k' E K, k' eEa, since e£N. 

Suppose k, cK and k1 e= Sý 1 0. (S4 VA). 

Define r4. sN by n4: r-º r, 

Ys n4 = 0 Y5 er (dJ K) 

63 ny = 0V 63CA 

k1n4= 62 where 62 461 
, 62c and 62 1 0. 

k2 n4 = 0V k2e K{ kl }. 

Then kZ en4 = a1 n4 =0 

but kl n4 = 62 +0 

Thus en4 + n4 . This leaves the possibility that 

k"e =0 for all k"E K. 

Then ki en4 = 0 and kl ny = 62 4 0- 

N has therfore no left identity, yet it is finite and 0-primitive. 
A 
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95. The radicals of related near-rings. 

The final consideration of this chapter is the relationship of 

the radicals J0(N), JIt (N), and D(N) with near-rings which have 

a close connection with the original near-ring N. 

For instance, if B is an ideal of a near-ring N, then B 

is itself a near-ring. How does J' (B) relate to J. (N)? 

We need some preliminary lemmas. 

5.1" Lemma. Suppose that B is an ideal of a near-ring N. If 

a is a quasi-regular element of the near-ring B, then 

a is a quasi-regular element of the near-ring N. 

Proof. Since a is q. r. in B, then aeR=(L, 
L, 

where 2 is the set of all right ideals of B containing all the 

elements of the form b- ab, t/ bcB. 

Let T=nS, where is the set of all right ideals of N 
S C2 

containing the elements n- an, V ne N. 

For any SE rt? , then S+ is normal in N+. 

Put F=B (' S, then F+ is normal in B+. 

Also F is a right ideal, of B 

Now n- an eSVneN and so 

b- abcF d bcB. 

Thus FcI and so aeF. Thus aeT and a is q. r. in N. 

5.2. Lemma. If *: N. + N' is a epimorphism of near-rings, 

then a quasi-regular element x in N. is mapped onto a 

quasi-regular element x jr in N: 
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Proof. If x is q. ro in N, then x eT =CS, ediere 
SE jtp is the set of all right ideals of N containing the elements 

n- xn, VneN. If Se2, let 3' = S* . Since 'r is an 

epimorphism of near-rings, S' is a right ideal of N'. 

Also n -xncS so n* - (x*In')ES' YneN 

and 3' e 
it the set of all right ideals of N' containing all 

elements of the form n' - x'n' ,V n' e N1. 

Let T' ={1 -- S:. Then if 3; e qY' , then S 11 
r st ER 

corresponds to a right ideal 3, of N such that Sß'2 ker'P 

and 31 ep'. Hence if 'xCTaSpS, then x' e T' . 

That is, x' =x', is q. r, in N1. 

5.3. Lemma. If 1eN and J2 (N) = (0) 
, then for any ideal B of N, 

D(B) _ (0). 

Proof. Let ye D(B) and assume that y40. D(B) is a right 

ideal of B with all its elements quasi-regular, so. _ y is q. r. 

in B and also in N by 5.1. 

D(B). B C D(B) and so "y. B is a rt. B+-subgroup which is q. r.. 

(i. e. all its elements are q. r.. ). Clearly yB is a q. r. ý. _ ". 

rt. Nt-subgroup and so yB C-J2(N) =- (0) by 2.5. 

This holds für any 0+y, e D($) . 
Now yN. B C yB =0 for-any ye D(B). - 
Thus yN is nilpotent and. so by 2.5. 

yN C J2 (N) - (0) 

le N y. l = (0). Thus D(B) = (0). 
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5.4.... Theorem. If B is an ideal in a near-ring N with identity, 

then D(B) CBn J2(N). 

Proof. Let N=N / 
J2(N) 

then (B + J2(N)) is an ideal of N. / 
J2(N) 

Hence D(B) = (0) (by 1.4 and 5.3). 

Nov (B + J2(N)) /' ff B 
J2(N) BC J2(N) 

Then, since D(B) is quasi-regular in B, 

D(B) is quasi-regular in B/ /BfIJ2(N) 
BO MN) 

Now J2(N) = (0) and. so D( BI)_ (0) 
/Bn J2(N) 

D(B) 
B(iJ2(N) 

C, D(B/J2(N)) _ (0) 

Hence D(B) CBn J2(N) . 
5.5. Clearly D(N)n B is a right ideal of. B whose elements are q. r. 

in N: Are they q. r. in B? 

In general it is not known but by introducing the descending Chain 

condition on rt. N+-subgroups as an extra condition, we may use the 

result that tells us that a q. r. N+-subgroup is nilpotent. 

(Ramakotaiah. (i3, Thm. 5.1. ). 

5.6. Theorem. If B is an ideal of near-ring Nw th identity, 

and if N has descending chain condition on N+-subgroups, then 

D(N)fl BC D(B) C BnJ2(N). 
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Proof, D(N)fB is q. r. in N, hence D(NYB is a nilpotent 

right ideal of N, thus D(N)fB is a nilpotent right ideal 

of B. By Ramakotaiah. (1), Cor. 2.2. 

D(N)()B is q. r. in B and thus D(N)()BC D(B). 
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Chapter 3.2-primitive near-rings with identity and descending 

chain condition on right ideals. 

One of the central results in ring theory is the structure of 

simple artinian rings which then completes 'the classification of semi- 

simple artinian rings. In fact, simple artinian rings are equivalently 

primitive. artinian rings and are characterized by being rings of 

homomorphisms of vector spaces over division rings. The same problem 

in near-ring theory, i. e. the structure of 2-primitive near-rings 

with identity and d. e. c. on right ideals has also been solved and gives 

us one of the finest results in the subject. The main result was 

announced by Wielandt ([1]) but no proof has so far appeared in the 

literature. The theory for distributively generated, finite, near- 

rings was discussed by Laxton ([1]) and it is his approach that we use 

here. We will first show that, for 2-primitive'near-rings with identity 

ani d. c. c. on right ideals we can obtain a 'density theorem'. We then 

restrict the case to finite near-rings and obtain a complete classification 

of these. The density theorem has been proved for 0-primitive near- 

rings with d. a. e. on right ideals and an identity by Wielandt and 

Betach but is unpublished at the pre3ent time. These results will be 

stated at the appropriate places in this thesis. t 

§1. A Density theorem for 2-primitive near-rings with identity and- 

d. o. o. on right ideals. 

1.1. Throughout 01,, N will denote a 2-primitive near-ring with an 

identity, 1N, and d. c. c. on right ideals. r will be the faithful 

N-moBeule of type 2. Hence ( r) 
r- 

(0). 
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1.2. Lemma. (r 

, +) is abelian if and only if (N, +) is abelian. 

Proof. If ( r, +) is abelian and nj, n2c N. Let flr be 

arbitrary. 

Then -t(ni + n2 - nl - n2 = Ynl + Yn2 - (Ynl )- (Yn2) =0 

So ni + n2 - ni - n2 e( r) r= 
(0) 

So nl + n2 = n2 + nl for any nl , n2 e N. 

Now if (N, +) is abelian, supppse Yl , 12 e r, then if 

0ýYer is arbitrary, Yi = Yni for some nl eN and 

Y2 = Yn2 for some n2c N 

Then Yl + Y2 - Y1 - Y2 = Yni + Yn2 - Yni - Yn2 

= Y(ni + n2 - nl-n2) = Y. 0 =0 

Thus (r 
, +) is abelian. 

1.3" Lemma. If N is finite and (r 
, +) is nilpotent as a group, 

then (N; +) is also nilpotent as a group. 

Proof. Let N= No ) NI ) N2 > ... ' Nt = Nt+l be the 

lower central series for (N, +), terminating at Nt. We assume that 

Nt (0). Let the lower central series for r be 

r= ro >rl > r2 > ... )ra. = ra+1 

Now r= yN fb r each non-zero yer. If jjd 

r= i[[ ... Er ,r)., ... r] r]j _ 
H[ 

""" 
[Y N2Y N],..., Y N] YN]l =Y Ni for any 04Yer. 

If d. >, t then & =t as ra=Y Na = Y Nt =rt 

If d<t then YN =r = (o) N, C (r) = (0) 
a a r 

So ra 4 (0) and N ý (0) 4ä# (0) 
. t 
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This last lemma will be used in an application later. We return 

to the general case. 

1.4. Definition. (i) The centralizer of r in N; CN(r ) is the set 

of all endomorphisms ý of (r 
, +) such that 

(Yn)ý _ (Yý)n bYcr V ne N. 

(ii) We denote by AN( r) the set of all endomorphisms belonging 

to CN(T ), that are in fact, automorphisms of (I' 
, +). 

1.5. Proposition. CN(r) = MU A N(r) where 0 denotes the 

zero endomorphism of r. 

Proof. Let xC CN( r) and x#0. Clearly ker x is an N-sub- 

module of r and so ker x= (0). 

rx is an N-subgroup of r and so rx=r. Thus xe AN( T 

1.6. Proposition. If (0) 4 Yet' , then (1)r is a right ideal, 

N-T and hence is an N-module of type 2. 
Y) r 

Proof. Let N -4 r be defined by 

ný = In. 

Then i is an N-homomorphism of N onto r ." 

Hence N/er as N-modules 
ker 

i. e. N-N is a type 2. N-module. 
ker 

/ 
(Y) 

r 
This means that (Y)r is maximal as a right ideal and as an 

N+-subgroup of N. 
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1.7. Definition. We now define an equivalence relation J on the 

elements of r in the following way. 

Let, Y , Yl e r. then we say 

Yy Y1 Ft (Y )r = Yl )r 

1.8. Proposition. If y, ylcr and y40, Y1 # 0, then Y j)Y, 

if and only if 3"e CN(r. ) such that Yl = Yf 

Proof. If YnYl then (Y 
r= 

(Yl )r" 

Let "; t+r be defined by 

(Y n) 4= Yl n' IV n EN. This is well-defined, for 

Yl n _0 
44 n c(Yi' = Cr )r Yn_0 

r 

Thus 4ECN( r) and taking n= IN shows that Y 4) = Y1, . 

If 4) e CN(r) then let n'c (Y )r, 

Yln' _ ('0)n' _ (Yn')4 =. 0 so (Y)r Y1 )r* 

Y)r is maximal as a rt. N± group in N so (Y)r = (Y Or 

by 1.6. 

We can therefore consider the equivalence classes of the group r 

to consist of the zero class 101 and the classes (r') 

for suitable choices of y. There exists a 1-1 relationship between 

the non-zero classes and the right ideals which are annihilators of 

elements (non-zero) of r. If we consider the group A 
N( r) to be 

a permutation group acting on the non-zero elements of r, then we 

may regard the equivalent classes (different from zero) as being 

orbits on the non-zero elements of T. (An orbit is a minimal 

fixed block). 
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1.9. Theorem. Suppose that N is not a ring. Let A bo arvibset 

of r\ {0j such that A is the union of m different orbits of r. 

Then N is a direct sum of m copies of r and /( 
)r 

A)r C1 (y)r for any non-zero y Er \ G. 

Proof. We use induction on the number M. 

If m=1, then (A) _r b) 
r 

for any aEA. It follows 

from 1.6, that Nr as N-modules. Clearly for 
( a)r 

Y4A, Y40, we have y a, so (a) 
r 

(Y) 
r" 

It is assumed now, that the result is true for a value m=k>1 

Let d be a subset of r \t0} which is a union of k+ 1 different 

orbits, say 0(Y1), ... , 0(Yk*l) and no k orbits ; over A. 

Let A' be a subset of A, with 

k 
A' =A (ý { 

(Clearly A' is covered by the, k 

( A')r is a rt. ideal and 

hypothesis. Thus N= (A 'ýr 

0(Yi) }. 

orbits 0(Y1 ), 
... , 0( Yk)) 

T (Y 
k+l)r by the inductive 

} (Y 
k+I) r' 

Since A e* tJ 0 (Y 
k+l)' 

(, & )r (A, ) 
rn 

(Y 
k+lN 
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r k+l)r 

t)r + (Yk+l)rV 

e ')ý 
rn 

(Yk*1)r 

r 
_ (Y 

k+l) r+(, 
& 

J PY 

k+l) rn 
(a., ) 

r, 
Y k+l 

now (A +) '-' /k+1)r 
rY 

k+1)p')r 

(Yk+l)r 

(Q ý) P (Y 
k+1)r 

)r 

By the inductive hypothesis 

N is a direct sum of K copies of r. 

Or 

We have only to show now that 

N i` N ®+ NI , and the result 

(A)r 
/(Yk+1)r 

follows by induction. 

Let xE ((Yk+l)/(A 

' 

(G 
r 

1 
)rýý1 

! 
t (Y 

k+l)r 
(A ý)ri1ýYk+lýr 

then x=y+ (A, ) 
rn 

(Y 
k+l) r 

where ye (Y 
: +1) r 

x=z 4"'(d')rfl ( Yk+l)r where zc (A')r 
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and -z +ye (D 
rn 

(Yk+l)r so ye (A ')r 

ye (Y 
k+l) r so x=0. The sum is direct. 

We assume now that there is aA with (A )r (Y )r, 

and obtain a contradiction. 

Now by the inductive hypothesis, since +T D ý, (L1 ý) 
r 

(Y )r 

Then N= (y )r + (A ý)r and 

r= Yk+l*(A')r =r 

Defining :r -). r by (Y 
k+lx) ¢=Yx for all xc (A 

(If Yk+1x =0 and xC (A') 
r 

then xc (Yk+i)rn(d')r IC 

It is easy to verify that CN( r) . 
Consider the set 

T= ¬Yn 
- Yk+1 on ; ne NJ Cr. 

(0 ')r is a right ideal of N. so if he (A ')r ; n, n' e N, then 

(h + n)n' - nn' e (A 
r so 

(Y 
k+l' ý )((h + n) n' - nn') ((h + n) n' - nn') 

so ((Yk+l. ý)h + (Yk+l. +)n)n' - (Yk+l'0)(nn') 

(Y h+ Yn) n' - 
Ynn' 

now as h e(A')r ' 
(Yk+l h 

thus (Yh+ Yk+l ý n)n' - -rk+l ý nn' 1'h + Yn)n' 
- 

fnn 
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Also 'Y 0(-n +h+ n) = Y(-n +h+ n) 

so Y'k+l On +7 4h + Yk+l 15n =- Yn + iYh + Yn. 
k+l 

Rearranging gives 

(m - Yk+1 On) + 'fh _ 
Yh + (Yn - ik+1 On) (2') 

Hence (Yn - Yk+l On) e centre of r+ 
, for all nCN. 

We will shay that the subset T is in fact an N-subgroup of r 

(Yn -Y On)n' = (Yh + Yz + Yk+1 0 (n))n' where 

nh+z, h e(A') and z c(Y)r 

so (Yn - Y1 1 cßn)n' _ 
(Yh + yk+l SS (-n))n 

(Y h+ Y(-n))n' - Y(-n)n' + Yk+l O(n)' by (1) 

_ (Y h- 'Yh)n' + r(-n)(-n') -Y 0(-n) (-n I 

Yk+1 $(-n)( n') + (Y'h - Yn)n' by (2) 

Yk+1 0(n)(-n') +0 (since n=h+ z) (3) 

Hence (Yn -y On)n' ST for all n, n' EN. 

Now if n' = h' + z' with h' c (A' )r, z' e (Y)r, 

'Yn + Y4( n) + ('Yn' + yk+1(n') 

Yh' + Yn - Yk+lnO - Yk+l n' 0 by (2) 

Y(n' + n) -Y c(n' + n) s T-. 

Finally Yk+l Sin) _ Yk+l On - Yn 

_ -Y k+l 
0 (n) + Y(-n) - Yk+10 (-n) +Yk+1 c (-n) 
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Y(n) -Y k4 «(n) -£(... n)+Y S5 (-n) 

Yj1 (n) c T. 

Hence T 
. 

is an N-subgroup of r and so T= (0) or r. 

We have to consider two distinct possibilities. 

If N+ is not abelian, then I+ is not abelian and as the centre 

of r+ is a proper subset of r, T Ccentre of T= (0) " 

In the case when N+ is abelien, vn assume that T=r 

Since N is not a ring then there is n,,, n .. rt' cN such that 

(n1 + n2)n* - (nin *+n jn*) 
ý 0, and since r is faithful there 

is a y* cr such that y* t (nj + n2 )x - (n, n* + nuns )] 0" 

Put y*n1 - Yt, Y*n2 = Yg 

Let ycr so that y= Y(x + y') - Yk+l(x + y' )4, for some x F- (&)r" 

Y1 8(y k+l)r" 

Y=Y+ 'YY' - Yk+ly' '- Yk+lx'o 

= Yx - Yk+ly' 4, - Yk+lx4i 

= 'Yy' + Yx - Yx - yy' 4, as r is abelian and 

IX 
= Yk+1 Ox for x z(A' )r. 

So y= yy'. Hence r= k+l)r 

Also '= -(Yk+l S6(Y)r) " 

Let Yf* : fy where yc (Yk)r and 

)T _ -(Y k+l Oz) where zE (Y)r" 
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Then (Y1* + y2*)n* a 
[. 

Y(Y+z)-(Yk+1 4(y+Z))J n* 

YC -& +z) (-n*)) - LYk+l 4 (-(Y+z) (-n*)) 

by equation (3). 

Thus (Y1* + Y2*)n* -- {Y(-(Y+z). n* }+ Yk+l 4(-(y+z))n*. 

{-(Y(Y4z)). n*} + {-(Yk+l ý(Y+Z)} . n*. 

y1*)n*} + y2*. n*. 

Now (`Y1*) (-n*) 'ý t_ -(Y Y)J (-n*) " y-(-y) (-n*) 

Y(-y)(-n*) -Yk+l4(-Y)(-n*) 

as ye (Yk+l)r' 

So ('Y1*)(-n*) (Yy - Yk+&)n* by equation (3) 

Yyn* s yfn*. 

Thus (Yi* + Y2*)n* ° Y1*n* + Y2*n*. 

This is a contradiction to the choice of Y1*, Y2* and n*. 

Hence Tor and so Ta (0). 

Therefore in all cases T- (0). 

Then yn = Yk+10n for all nell. 

Since is N we have 

Y° Yk+l+ 

This shows that Yk+l pY that is, y and Yk+l lie in the same 

orbit. This is a contradiction to the assumption that 

Y1 b" 

Hence we have shown that (Y)r (Q)r" 
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1.10. We restate the theorem as follows. 

Theorem. Let N be a 2-primitive near-ring with an identity and 

d. c. c. on right ideals. If G is any subset of r ---{0} , which is 

the union of m distinct orbits, then either 

Er: Y40 and YfA': ý (Y) 
r! 

(a)r and N iY)r + (L )r 

or N is a ring. 

1.11. Since N has d. c. c. on right ideals, an application of 

1.10, in the case when N is not a ring, shows that yo 

induces finitely many orbits on r '{0}. 

We proceed now to the density theorem. 

1.12. Theorem. 

(The Density Theorem for 2-primitive near-rings with identity and 

d. c. c. on right ideals. ) If N is not a ring. 

Suppose that Y1, ... ' Yp are non-zero elements of r with the 

property that YipYj 5, inj for 1< i, js p. 

If Y1, ... , Yp' are arbitrary elements of r, then there 

exists ncN such that yi - Yin for 1, i. < p. 

Proof. r \{0} is the union of a finite number of orbits, 

say r {0}V(ýJ 0(yi)) where p<n, and Yp+l,..., YM 
ia1 

are representatives of the orbits of r 't{4}U/ ` 
PZ 

0(y. 

P 
We put A Vl 0 (yl) 

Then r. (o) Q4 Q(i9 +1 p (Yi)) 
. 
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P 
Let A: U 0(yj) where 1< iý r. 

1 
j #i 

From Theorem 1.11, since yi J A!, then (yi)r L' (A i)x and 

Na (yi)r + ýiýr 

Clearly (Yi)(6 i)r °r from these statements, for each 11 i gip. 

Thus yi - yfei where e. c (A ! )r and 1ip. 
1 3. 

F 
Put n 

iýI 1 

Then yin ffi y ieI + .. +y iei + .. +y iep 

But eje ('4! )r 
a 

(yk)r, 

ka1 
k¢j 

ji eje (yi)r ytej a0 for i+ j 

Thusn ' Yiii ° Yiq i Iy .""yp. 

§2. The consequences of the density theorem. 

2.1 We will be able to determine what a 2-primitive near-ring 

with identity and d. c. c. on right ideals looks like. 

2.2. Theorem. If 17 is a 2-primitive near-ring with identity 1 

and d. c. c. on right ideals, with r the faithful N-module of 

type 2, then either N: yyyCN(r)(P) or N is an artinian 

primitive ring. 
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Proof. Assume N is not a ring. Let NR be the set of right 

multiplications of elements of r by elements of N. 

i. e., xe NR 4 yyx R yn `dy cr and some* ncN. 

Clearly if xe NN then xe yyy C (r) (r) 
N 

Let 0(yi), ., 0(yp) be the orbits on r\ {0} induced by the 

equivalence relation defined by the centralizer CN(r). 

Then if y'er and y' 1 0, we can find gcCN(r) 

such that y' a yi$ for a particular i f'{1, .9 p}. 

Let xc yyy cN(r) 
(r), and pick any yfo, y er. Then we 

can find £CN(r) and ie 
ý1, 

., p} such that 

Yid so yx - Yi$x Yix4 . 

If the following are known, 

Ti x, Y2x, ", Ypx, then the mapping x is completely determined 

on r. 

Let N. -x =yi-1, ..., p. 

We can find, by the Density theorem, 1.15, an element ncN 

such that yin m yi -i - 1, ..., p., as N is not a ring. 

Consider the mapping e: r +r defined by 

Yeý yn Vy c., e£ rr. 

Then clearly 6 is equal to x, since yi4n - Yin - Yix4 - yiýx 

Hence yyyc, 
=(r) 

(r) [ N. 
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Hence 

"R ° YYYcN(r)(r), and it is an elementary matter to verify that 

N: Ng as near-rings. 

2.3 We have already seen that CN(r) - (0) l1 A. N(r) and 

it is easily seen that every autonorphisri in AN(r), besides 

the identity automorphism, is, in fact, regular (fixed-point-free). 

For suppose that aeAN(r), a41, and if 3 yer, y 40 

such that ya - y, then since 

r4 yN, let y'cr, y, a yn' some n'eN. 

Then y'a - yn'a - yan' - yn' ° y' which contradicts 

the assumption that a41. 

2.4 Summing up we have shown that a 2-primitive near-ring N 

with identity and d. c. c. on right ideals is either a ring or it 

is isomorphic to the set of mappings of an additive group into 

itself commuting with 0 and a group of regular automorphists of 

the group, Viere the additive group has a finite number of orbits 

under the automorphism group. This contrasts with the ring case 

where a primitive artinian ring is isomorphic to the set of 

homomorphisms of a vector space commuting with a division ring, 

the vector space having finite dimension over the division ring. 

Notice that instead of homomorphisrs we have mappings, 

instead of vector space we have an additive group with a 

multiplicative group rperating on it and instead of a finite 

dimensional vector space we have a group with a finite number 

of orbits. 
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Wielandt [1I first noted this result but his proof, although 

available, is unpublished. It has been noted above, that our 

proof is a generalization of Laxton's proof for finite, distributively 

generated near-rings. The next problem is to take an arbitrary additive 

group r, a group G of regular automorphisms of r, with the 

property that as a permutation group on r, G induces a finite 

number of orbits, and ask whether the near-ring yTY OUG(r) 
is 

2-primitive with d. c. c. on right ideals. The only real difficulty 

occurs in showing that we have d. c. c. on right ideals, This problem 

did not arise in Laxton's case because everything was of finite order. 

2.5 Theorem. 

If r is a finite (additive) group and 'G is a group of regular 

automrphisms of t, 
_then 

the near-ring 11 Qy G(r) 
is 

2-primitive and finite. 

Proof. Clearly IT will be finite. 

We show that r is a faithful N-iwdule of type 2. r becomes an 

N-module by constructing multiplication of ycr by neN in the 

natural way, 

ie. y. n - (y)n. 

Clearly the zero tapping, ie. 0N is the only element of (r)r 

Let 0f yer, We require yN a r. Let y' be an arbitrary element 

of r. Define a mapping, e: T -1-r as follows. 
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(yg) 6= y' g ýd gCG 

Yle -GV. Y1 er\ tyG} 

Then 8eN is easily checked. 

Thus y' - y8 eytl 

Hence r- yN 

The identity map on r is the multiplicative identity of the 

near-ring N. 

2.6 In order to complete the structure theory we now prove 

the following theorem which was communicated with its proof to us 

privately by Wielandt and Petsch. 

Theorem. 

If r is an additive group and G is a group of regular auto- 

morphisms such that G induces only a finite nymber of orbits on r. 

as a permutation group, then N- yyrG(r) is a 2-primitive near-ring 

with identity and descending chain condition on right ideals. 

Proof. By adapting the proof of Theorem 2.5 we can see that N 

is 2-primitive with identity. We just need to show that N has 

descending chain condition on right ideals. 

Let Ti, "", Yp be representatives (ie. members) of the 

orbits on 

Clearly (yi)r is a right ideal of N, lfi; p. 

and Nvr as N-modules, lisp, /(yir 
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P 
Let A, Q fl (Y, ) 

Iý -1 r 
#i J 

and N- Ai 0 (Yi)r 

these are rieht ideals of 11,1<i<p, 

r-1, ..., p. 

So Ai .r as N-modules i, i, p. 
Moreover Ai (l Al. - (0) i#k 

N- Ai 6r (Y 
i) r 

(I ( (Ak) 10 (Yk)r}] i4k 

= A. {±j Ak 
I(Yi)rf~l 

(Y1)r] 

Thus NAIA1+... ý+ AP and we have found a composition 

series for N, namely 

N °` Al Q A2 G. .I LO, AP Al A2 0 
P-1 

Al 0 A2 ýt.. 
" 

3 p-2D ... 
J A1G A2 D Ai D (0) 

The factor terms 

Al A2 ý' 
"" `ý: +' V j' as N-modules, 

Al V A2 0". 
" '+ Ak-1 

. 

i. e. they are 11-modules of type .2. 

Hence N has d. c. c. on right ideals 

2.7 We may now collect our results together in a similar form to 

the well known, corresponding theorem, in ring theory. 

Theorem. (Wielandt, Laxton). The following two statements are 

equivalent 
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(i) N is a 2-primitive near-ring with identity and d. c. c, on 

right ideals. 

(ii) N is a primitive artinian ring or N is isomorphic to 

yyy0(r) where r is an additive group, G is a group of 

regular automorphisns of r, which induce a finite number of 

orbits on r. 

Remark. 

N+ is abelian if and only if r+ is abelian, and so we know 

the abelian 2-primitive near-rings with 1 and d. c. c. on right ideals. 

2.8 A well-known theorem on finite groups gives us the following 

corollary. 

Corollary. If N is a finite 2-primitive 
^ r-ring with identity 

and if (N, +) is not nilpotent then 

N= urirr (r) . 
Proof. The centralizer of r consists of the zero endomorphisa 

and regular automorphisms. (r, +) is not nilpotent and so we apply 

the result of Thompson [i 
which tells us that only the identity 

automorphisn the zero endonorphism can be in the centralizer of C'. 

Thus Ne yyyG(r) -M (T) as G 

93. The connection with simple near-rings. 

In what way is the structure of 2-pri=itive near-rings with identity 

and d. c. c. on right ideals connected with simple near-rings? 

3.1 Theorem. A near-ring with descending chain condition on right 

N+-groups and an identity is simple iff it is 2-primitive. 
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r 
Proof. (After Laxton Cl 3). If N is simple, by the chain 

condition there is K, a non-zero N+-subgroup which has no proper 

N+-subgroups contained in it except (0). Then K is an 

N-module of type : 2. 

(T")r is an ideal and so, (K)r (0) or N. 

But lcN and K. 1 =K so (K)r' - (0). Thus N is 2-primitive. 

If N is 2-primitive, let 041?, be an ideal of N. 
p 

N Al ® A2 ®... CO AP where Ai - C' (Yj)r 
J=1 
j +i 

and the Y1ý ". ' Yp are representatives Of different orbits of T. 

Each A. t as N-nodules. 

Let 04xcT, then x= ai + a2 +. ". + ap 

(aiCAi ; lfi, <p) 

Since A. is of type 2, A. aiN lsiiEp. Assume al 0. 

Now leN so 1a el + e2 +.. + er and 

A. a eiN 1Si$p. Where eicAi (i 1, .., p) 

But eý (e'; + e2 +., + ep)e3 Pled + e2eý +. 
,+ epe. 

(direct sum) 

where eiejeAi lýi"ýQ. 

Thus eie. -0ij and eje. ej . 

Hence e1. x a elal + e1a2 +""+ elap 

now aic eiN so elai a0 if iý1, and elal - a1 



~ý 
i}Sj " 

Therefore elx w al +0+.. +0- al 4 0. Thus 

alcA1 nT as elx er. But Al AT = (0) or Al 

so Ai ryr - Ai ie. A1C T. 

Suppose (A2) 
r (0). Then A2Y ao ry o 

since A2 z r, and if p: r+ A2 is the isomorphism then 

(yy)p 
.- 

(yp)y - O, Vy c r. This contradicts (r)r c (0). 

Therefore A2A1 + (0). and B a'2cA2 such that 

a'2Al ' (0) now a'2A1 C A2 so a'2A1 m A2 

We have A1C T 

and so A2 = a'2 Al C a'2Tc'T' 

This may be repeated for A3, ..., An 

Thus Al. A2, ... 9 An are all contained in T 

Then NCT and so N is simple 

3.2 We have to restrict ourselves to near-rings with descending 

chain condition on rt. N+-groups so that we can show that a simple 

near-ring is primitive. The other way round does not need this 

restriction, only d. c. c. on right ideals. 

3.3 The questions we could now ask are ccncerned with relaxing 

conditions needed for the main theorem 2.7. Could we, for 

exarple, relax the chain condition and just insist on the existence 

of some minimal right ideal? Could we look at 0--primitive instead 

of 2-privitive near-rings? Neither of these questions have been 
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coýý rletely itvestigated, we will consider the SECCUd yiestioa 

tat--r on. 

94. The decoy+osition of a near-ring N, with J2 (N) a (n) and 

d. c. c. on right ideals 

We now use some of the results in this chapter in a more steneral 

setting. 

4.1 We remarked in 2.4.3 that the radical T (N) is the inter- 

section of the 2-primitive ideals of N. 

We notice the following result. 

4.2 Theorem. If M has d. c. c. on right ideals and an identity, 

and P is a 2-primitive ideal, then P is maximal as an ideal 

of N. 

Proof. N/P is 2-primitive and sosi. mple, thus P is a maximal 

ideal in N. 

A-3 Theorem. Let N have an identity and descending chain 

condition on right ideals. If JZ(N) _ (0), then N is a 

direct sum of 2-primitive ideals of N. 

Proof. (0) J2(N) nP where )PZ is the set of all 
PC T-2 

2-"prlmitive ideals of N. 

With d. c. c. on right ideals we can find 2-primitive ideals 

P111 """9 Pk auch that 

k 
Pi J2(N) ' (0). and no proper subset of the Pi has 

im1 

zero intersection. 
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For each 1$i, k, define Q1. a Pln ... 
f1 Pi-1 Pr. 

tai 

Then Piii Qi = (0) 
, 

lick. and Qi (0). 

Each P. is maximal as an ideal in N by 4.2. 

(0) Qi l Pi J2 (N) (0) so we see immediately that 

N Pi Q1 l i$k. 

In particular Na P1 Qi 

Also (Ni5P1) Q Qi = 
[(P2 Q Q2) n P1' (a- Q1 

(P2 i1 P1) O (Q2 n 1'1) 0 Q1 

(P2fl P1) +0 Q2 (a Ql 

Continuing N- (P3 (1P2 (\ Pi) 0+ Q1 Q+ Q2 `; ) Q3 etc* 

until Na (P1()P2 6 . 
(' P1) G+ Q1 ®+ Q2 0""Q Qk 

QI+ Q? +. + Qk since P1 n P2 t%" "n Pk = 

J2(N) _ (0). 

Nov NaQ. ® P.. Since P., is 2-primitive, 

N! is a 2-primitive near-ring so 
3 

an r? ' -module 
rl of type 2 

Pi Pi. 

F. '(1(N/ ) for all' 0 Yi£r 
P. 

i 

Let Yieti and define Yigi = y, (qi + Pier i for gitQi 

Then ri is a Qi i odule. 

rigi - (o) 4 ri(gi + pi) - (0) gisPi 4 qi = 0. 
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If 0+ yieri then y. Qi - y1 N/ )a ri 
P. 

i 

Bence Qi is 2-primitive as a near-ring. 

4.4 Theorem. If N possesses d. c. c, on right ideals and an 

iden&ity then JZ(N) _ (0) if and only if N is the direct sum 

of ideals Qi 1<i<k, which, as near-rings are of the form 

Qi ' yyy G (r 15i; k where ri is an additive group and G. 
i 

is a group of regular automorphisms of Ti, inducing finite number 

of orbits on ti(1<, i<, k). or are primitive rings. 

This is due to Wielandt; and Laxton [1) 
. 

4.5 Blackett Cl) has shown that in a near-ring N, with 

d. c. c. on rt. NN+-groups and JZ(N) -0 we have the result that 

N is A (finite) direct sum of ideals Ai which are simple as 

near-rings. We thus get the result. 

4.6 Theorem. If N has d. c. c. on right N+-groups and 

J2(N) " (0) then 11 is a direct sum of ideals Ai of the 

form Ai %10. (r where F. is an additive group and Gi 
i 

is a group of regular automorphisms inducing finitely many orbits 

on ri (l: i; k); if N has a right identity & the A. are not rings. 

We notice that Blackett's theorem, (4.5), required a stronger 

chain condition but no right identity was needed. (It automatically 

had a left identity by (2.6.11). 1 However we need a right identity in 4.6. 
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95. The 'entre of a near-ring with descending chain condition on rt, 

ideals. 

Suppose N has d. c. c. on right ideals, J2(N) m (0) and 1Er. 

Let C be the centre of N, i. e. 

C-' {ceN ne - cn 1ncN} 
. 

Clearly leC and ()EC. 

If NQ A10+ .. . 
6+ A. k where Ai are sitple near-rings and 

ideals of N. 

Let ccC then ca cl +... + ck (cicAi 1$4k. ) 

Let C. be the centre of the near-rings Ai (ISi<, k. ) 

If nEN, nc - nc1+ .. " +cltn P. nr1 ncic'i 1<iýk. 

nc %a cn a (C1+ .. +ck)fl cln+ .. +c. n (direct sum) so cin a nci 
1, zi k. VncN 

so cia1 w aici aicAi 

If xcC n Ai then x4 0+ ". +x+., +0 

and xai - aix La. xcCi , 

If ciCC. then claj -0a ajci if iýj 

nc. = alci +.. + akci - aic. e ci. n if na al+ .. +ak' 

so cicA. C C, . '. Ci - Ain C. 

We note that C and the Ci are multiplicative senigroups. 

Suppose T- C1 X C2 X... X Ck 

«c1, C2. ""9 ck); C, 
1 . cc., 1: 1: k} 
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T is a semigroup under the multiplication, 

(ci, C2, ""v ck)f(C'1, C'2, ""' c'k) (cIc'l, c2C2! '. 'CkCC, 
) 

Define C -r T by 

fpr ccC, c ýr (c1, c2, ., ck), where c- c1 + c2 +, "+ ck 

and , ci6Ai nCC. (15i<k). 

Vý is a semigroup isomorphism of C onto T. 

Now for 1<isk, each A. 
i 

has an identity and so 

Ai : YYy G 
(r .)aL. as near-rings, where 

i 

ri is an additive group and Gi a group of regular autor. wrphisns 

of ri inducing a finite number of orbits on Fi. 

Let 0+p be a mapping of 1'i "ri which commutes with every 

element of Li. i. e. p£i = tip V £icLi 

We pick 0+y. cF1, then yi and *yip lie in the same orbit, 

otherwise 3 9., icL. such that 

YiRi R0 and YiPti 45 0 (by density theorem). 

SO 0+ YiLiP °0a contradiction 

And so 3 gicGi such that Y1P ° Yigi" 

For any xicr i, 
3 bieLi such that Yibi - xi 

so x1P (Yibi)P (YiP)bi ¢ (Yigi)bi ° (Yibi)gi xgi 

and hence p: r. -). r . is simply a mapping of r obtained by 

a right multiplication by an elcmcnt of Gi. lip " xigi 
V 

xieri. 
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Now let p! ri ri be defined by xip - xigi 
V 

xisri' 

and a particular fixed gisGi. Pick any gi'eGi, xieri, 

Then (xigi')p - xigi'gi so for PF-y( 
i 

(ri) 

we oust have 

(xigi'P) ° (xipg6i) V gi'cGi, Vxieri 

i. e. xigi'gi = xipi'gi t" xier, IV Bi'eGi 

i. e. gi'gi = gi'gi i. e. gi c centre of C. 

Thus if pe centre of L. then p: ri is defined by 

v xIEris lip = xigi where gis centre of Gi. 

If p: ri ri is defined by V xieri, lip = xigi where gic Centre Gi 

then pCLi and in fact pe centre Li 

We can state the following result. 

5.2 Theorem. If 1T has identity and d. c. c. on right ideals and 

J2(N) _ (0) then if C- Centre of N and r? A, (. ". Ak 

(Ai sirple n. rings) " then C (Cl X C2 xx Cy) as 

mult. serigroups where C. - centre Ai (1<ilk) and if 

Ai YYYG, (ri) as near-rings (14i; k), 

then there is a group isomorphism between Ai - centre of Gi and 

ni Q centre of L. 

(These are ccrzutative multiplicative groups). 
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5.3 Corollary. The centre of a near-ring N with identity, d. c. c. 

on right ideals, J2(N) _ (0), is a multiplicative group. 

§6. When are two N-modules of type 2, isomorphic in a 2-primitive 

near-ring? 

6.1 Theorem. If N is a 2-primitive near-ring with identity and 

d. c. c. on right ideals then any two N-modules of type 2 are 

N-isomorphic. We need first a lemma. 

6.2. Lemma If N is as in the statement of the theorem let r and A 

be N-nodules of type 2, Then r and A are N-isomorphic, if they are 
-faithfu].. 

? roof. N= Al +... ID+ A,. where A. arg: of type 2, and 

rt. ideals so A. 
1 -c! N/ 

(Y1)r 
for some yi. cr. (1<isk. ) 

:N /(d)for sore deA. Then (6) 
r rnax. rt. ideal of N, 

Ný (6) 
r=N 

(1(6)r = pý1 fl (6) 
r 

0» 
. 

0+ 
' 

i' (8)r' 

where Ai ( (d)r = (0) or Ai, suppose (8) 
r= 

&L C+ 
s- 

GAP 
, p<k. 

Then as Ný An+1 Q). 
" 
Q,. +) Ak we must have p+l R k. 

(a)r 

Thus TI/ 
(5)r 

Ak N/ 
(Yk)r 

If (Yk)r ct (a)r then N= (ö)r + (yk)r so 

((ö)r + (yk)r) 
- 

((a)r + (yk)r) / Xa) 

r 
(ylý. )r 
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i. e. (Yk)r (a)r / 

r 
ri (Y) 

r 
(d)r o (Yk)r / (d) 

And so (Yk) 
rm 

(d)r" 

Define b: T+t by 

(Ykn)ý 6n VneNl. 

Then ykn - 0446n-0. 

Clearly i is an 14-isomorphism of A and r. 

6.3 Proof of Theorem 6.1 

Let be any N-iodule of, type 2. 

Then (A) is an ideal of N. 

N is simple and so (A) 
rn0 or N. 

lEN means that (A)r -0 

Thus Ar as 17-modules where r is any other faithful N-module 

of type 2. by lemma 6.2. 
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Chapter 4.0-primitive near-rings with identity and d. c. c. on right ideals (I) 

There exists a large class of finite near-rings which are 0-primitive 

and yet not 2-primitive, in fact the radical J2 is not only non- 

zero but contains an iderpotent (non-zero) element. Naturally this 

situation is completely alien to the ring theoretic case, but it is 

possible to weaken the hypothesis of the Density theorem in order that 

it becomes valid for arbitrary 0-primitive near-rings with identity 

and d. c. c. on right ideals. 

§1. A Density Theorem for 0-primitive near-rings. 

We let N be a 0-privitive near-ring with identity 1 and d. c. c. 

on right ideals. r is a faithful N-module of type 0. 

1.1 Definition. Ca {ycr : yN - r} i. e. the set of cyclic 

generators of r. 

6-r\C or the set of 'non-generators' of (I. 

1.2 We will use the following fundamental theoren which, like the 

rest of this section, is due to Wielandt and ßetsch, it has not, as 

yet, appeared in a published work. 

Theorem (Wielandt-Betsch) 

Let D and E be right ideals of N with the property that 

WIE C (Y)r 
.D, (Y)r0 E 1, (Y)r for some ye C 

Then N is a ring. 

1.3 Definition. G= Group of all 13-autociorphisms of r. 

1.4 Leta. (i) G acts as a fixed-point--free autom'rphism group on C 
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(iii if geG and g+ identity auotrnor-phism, then the fixed points 

of g form an n-subgroup contained in d 

Proof. (i) if YcC and yg -y then yN =r so 

yn - (yg)n - yng i. e. g is identity auotmorphism on r. 

(ii) Let gcG. g+ identity automorphism. 

Put F,, {yer I yg = Y). 

Then Y1, y2EPg » (y1 -Y2)g = y1g - Y2g = Y1 - Y2 

SO Ti - Y2£Fb. F. is an additive group 

(y, n)g = (y1g)n = y1n so Fg is an r-croup of r. 

Clearly Ft "C =4 by (i). 

1.5. We can define an equivalence relation N on the elements of 

C. If y, Y1cC then 

Y ti Y1 ) Y1 ° yg for some gcG. 

1.6 Proposition. y 'L Y1b(Y)r (Y 
r 

(for y, ylcC). 

Proof If Y1 - Yg then 

(yln) 0 ýD (yr)n R0 4tV yng 0. yn 0 

If (Y)r (Yl)r define r: r-*r by 

VncN, (yn)g - yIni pcG and so lcV gives yg "Y 
1" 

1.7. Proposition. If yeC then (y) 
r 

is a right ideal of p1, 

maximal as a right ideal. 

Proof rsN/ as as N-modules, and r is of type 0 

and so possesses no proper 17-subrodules, except (0). 
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1.3 Theorem Density theorem for 0-primitive near-rings with 

identity (Wielandt-Betsch). Suppose N is not a ring. 

Let y1, .., ykEC such that yitiyj i-j 

If yo ., YI are arbitrary elements of r, then there exists 

an neN such that öi YI n 

Frf . By ýI'heýrem I. 2. 
§2. The theory for the generators of r 

From this last theorem it is clear that we are in a position to find 

out what happens to elements of C, but since the theorem 

tells us nothing about the behaviour of elements of A we are very 

severely restricted. Thus it is in e, the set of non-generators, 

that we have to make added assumptions. In general it is not 

obvious that A has any algebraic structure-; it might not always 

be closed under addition for example. We rake the following assumptions. 

2.1 Assumptions In this section N will denote a near-ring 

with identity and d. c. c. on right ideals such that 

a) N is not a ring 

b) N is 0-primitive and not 2-primitive 

c) If r is the faithful N-module of type 0, and t-T %c, 

the set of non-generators of t, then A is an N-module of type 2. 

2.2 Proposition If YEC then (0)r * (Y)r 

Proof If (A) 
rC 

(Y)r then 

T(A)r m YN. (A) 
r'Y; 

(A) 
r since (A) 

r 
is an ideal. as d is an 

N-module. 
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Thus r. (A)r (0) contradicting (A) 
r+ 

(0) 

since if (A) -r (0) then N would he 2-primitive. 

2.3 Proposition. If ye C then Na (y) 
r+ 

(p)r. 

Proof By 2.2 and 1.7 

2.4 Theorem. If Y1, .., y cC and y yý 

let Y1' ,"", yn' £I'" Then 3 xE (e)r such that 

Yi' - yix ; 1<i, n. 

Proof. We proceed by induction on n. 

If n-1. Y1cC and (e)r t (Y1)r so 

Y1" (1)r + (C), but Y1. (d)r is an N-submdule of r anil so 

Y1-(A)r =ri. e. Y1' -yIx for some xe(d)r. 

Assume the result is true for n= k-1 ( k>1). 

Let yl, y2, .' Yk-l' Y1cC' Yi'ý'Yj J 

By the inductive hypothesis, if yk 4' 0, 

3 xe(A)r such that 

0= ylx = Y2X = Yk 
-p7 

and Ykx '" Yk, f 0" 

Then [(A)rn(Yl)rA (Y2)rt' .. n (Yk_2)r] I (Yk)r 

Also (Yk-1)r !L (Yk)r as Yk-1 '' Yk and both 

(Yk-l)r and (yk)r are maximal as right ideals of N. 

We now apply Theeren 1.2, with the result that, a3 N is not 

a ring, 
ý(A)rn 

(Y1)r rl ... n (Yk_2)r n(Yk-1)r1 ¢ (Yk)r. 



-b1- 

Hence J X1C1(A)r ) (Y1)r ý1" .. /1(Yk 2) /1(Yk_1)r] and Yltxl t 0. 

Now Yk [ (e)r n (Y 
1)r r« "n (Yk-2) 

r I(Yk-i)r] r 

and so Yk' ® Ykt for some t eýA)r n(Y1)r' n (Yk-1)rr 

Also by the inductive hypothesis 3 x' such that 

Yix' _ yi' for ia1, .., k-1 and x'E(A)r 

Also Ykx' - kt' for some t'E4(A)rn (Y1)r A (Yk-2)r^ 
r-3 

Put x- x'-t'+t. Then xc(tt)r. 

yiX s yiX' - yit' + ylt . yi' -0+0- yi'. 15ilk-1 

YO - Ykx' -. Ykt' + Ykt - Ykt' - Yk, t' + Yet' . 

Hence y. x - yj' for 1<jlk. 

The theoreri follows by the principle of induction. 

2.5 We may turn Q into a 11 -trodule in the following way. ý (fi)r 
Let n+ (A) eN and del 

If we define 5(n+ (A)r) = dn, then d is a Al ' (fi)r 
-module of type 2. 

Clearly A is faithful with respect to the near-ring DI/ 

Thus NI (A) is a 2-primitive near-ring. It is quite possible 
r 

that NI (A) is in fact a ring and we will have to consider this 
r 

possibility separately. 
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Let CeG - Aut, l(F). Thep. Agj; A and if we denote by gA 

the reap g restricted to the gr. -up 6, we see that the elements of 

A which remain fixed under the action of gA tust form an 1N-subgroup 

of A. (Prop. 1.4) 

Thus N-subgroup must be (0) or A. Thus for each geG, gA acts 

identically on b or is regular on A. Thus g acts regularly 

on r, or regularly on C and identically on A. 

2.6. We now introduce a compatibility criterion connecting the 

. groups r, A and G which is necessarily satisfied in our present 

situation. Since r has no N-subrodules except (0) and r itself, in 

particular A is not an V-sub Aule of r. Thus either 

(A, +) is not normal in (r, +) or 

3 d¬A, ycr, neN st. (y+ d)n - yn L1. 

Suppose that \tycC, and V6eA -ie can find a gc(, such that 

Y+ö- yg then 
, 
if. given a gcG, such that Y+ö ýº Yg for 'some 

yeC and Sch, Ip - YEA for all ycC, we see immediately that 

(Y + On - Yn - ygn - yn a (yn)g -yneA. 

This gives rise to the following definition. 

2,7 Definition. Let A be an additive group, Ba ncn-erºpty 

subset of A, and Ha group of autonorphisws of A. such that 

for each hei?, bcB 

bhcB. 

Then {A, B, H} satisfy the ccnpatihility criterion (or are conmatihle) 

if and only if: - 
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not all the followinC conditions are satisfied, 

(i) B is a normal additive subgroup of (A, +) 

(ii) Given any xcA ' B, any yeB, there is an hc1 

(where h depends on x and y), such that x+y- xh. 

(iii) If h'dH' {hcI Ix+y- xh for some xcA 'B and ycB) 

then x'. h' - x'cB for all x'cA - B. 

2.8 Proposition. In the situation of this section, {r, A, G} 

satisfies the corpatahility criterion. 

S3. The case when N is not a ring. /(A)r 

N/ has an identity and d. c. c. on right ideals and is 
(o)r 

2-primitive. We can use the theory of Chapter 3. 

Keeping the same notation and assumptions as section 2 we consider 

now the case when N is not a ring /(e)r 

We introduce an equivalence relation on A. 

3.1 refinitions if 6,52cA then we define 

n, *S2 a2 a1 

for some c Autt1(Q)r (G) G 

If See then we define 

(d)r* a '{RcN/(A) I di - o}. 

Clearly (d)*r is a right ideal of ? 41 Mr and %, * is an 

equivalence relation on A since G is a group of regular 

automorphisms of A. 
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In fact if geG then g 
cG for gA is an automorphism of A and 

if 6ct, n+ (A)rEN/(A)r then 

d(n + (A)r)gA ° (dn)gA = ögAn a (dgn)(n + (A) 
r) 

3.2 Proposition If dl, 62CL then d1, v*62 (S 
r 

)r* 

3.3 Theorem If ö1, .., 6mcA such that 6 iti*S. i-j 

and ö1', . d'mc , then 3 YCN/ (Q) such that di' = dill`s lti$m 

If y-y+ (A) 
r' 

(yeti), then 6'i - aiy, (lecilcm) 

Proof This is a straightforward application of the Density theorem 

for 2-primitive near-rings ( Theorem 3.1.15) 

3.4 Let Mo - yyy G(r) 

Let M- {mcMMo I AmsA, and dti7g aöm, V5cA, V FEG}. 

If m1, c2eli then 5(ti - M2) = dril - 61112 ed y deli . 

6(ni - ln2)' s 6r-q, F. - &a2g a dg(til - r. 2) *'d 
BcLý , 'dPeG. 

6t"1 2 CAvV6CA. 6(n1r12)g m (1)2 @ Rri1r2 
,V 

SsA, V Tc6. 

Thus M is a subnear-mng of 110. 

If NR is the set of right multiplications of r by elements of N 

then N= Np as near-rings. If n'CNR then yn' e yn for some 

neN, V -ycl. Gn' C A, (dg)n' 6 En Q ög(n + (A)r 

- 6(n + (A)r)p - $ng _ Sn'p Thus NF C it, 

3.5 Since we have d. c. c. on right ideals both in N and NI(t) by 1.2, 
r 

we see that there must be a finite number of equivalence classes on C 

with respect to ti and on Q W1k 
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respect to The non-zero equivalence classes will be referred 

to respectively as the orbits induced on C by G and on 6 by 

If there are h orbits on C induced by G and t orbits 

on A induced by we will find representatives of each orbit. 

Let these be Y1, .., yh on C and öi, .996t on A. 

ht 
Thus C yiG and e=I öýG 

ht 
Thus r= {0} U( Vyr. ) V( i SG). 

If mcM, then pick any 04 ycr . Either ycC or ycA and so 

either y- yig for some geG and is Cl, .., h} 

or y= djg for some gcG and je t} 

Then ym equals yimg or 6j a7g and consequently if we know the 

values of y1m, .;, Ihm, d 1m, Se, .., 5tm, we can then 

determine the value of yr for an arbitrary y er. 

(O. rt e 0). 

3.6 Theorem. NM as near--rings. 

Proof. We already know that P. _= NF CM 

Let r e*_i, put yit s yl' .l 
i$h and 

8n°6. ' 
t 1<j<t. 

Fron theorem 3.3.9 ycNJ s. t. djy 82 dj' Zcj<t, 

Let yiy w Yi" for 1fi$h. 
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By theorem 2.4 
3 

xc(A) r such that 

Ylx = Ti, - Ti" 
' 

4i<h. 

Put n x+y 

then yin = y1x + y1y = yi' = yi" +yi'' + Yi" = Yi' 1; i<h 

and SJn=dJx+ SJ, y R0+ SJ .'1; j<t 

Thus the right rultiplication by n of elerents of r is equivalent 

as a capping to m. 

Thus n- n' where n' t r-ºr defined by 

Yn' - yn .V ycr . n'ely 

Thus MC NR and so N- NR = N. 

3.7 To summarize, if .N is a 0-primitive and not 2-primitive 

near-ring with identity and d. c. c. on right ideals such that the set 

d of ncn-generators of r is an NI-module of type 2, and T1 lý4ýr 

is not a ring then 14 is (isomorphic to) the near-ring, of all 

mappings of r into itself; ccz outing with all the N-autonorphisms 

of t; which take the group A into itself and corrute with the 

centralizer in N of G. / (n)r 

Naturally it is quite possible that in a finite near-rinp both these 

centralizers are just the zero endomorphism. Then the near-ring is the 

set of all zero-preserving maps of r into itself that take G 

into itself. 
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Obviously IT will be a subnear-ring of the near-ring of mappings 

of r into itself coiimuting with the centralizer in N of r. 

64.. E The case when N/is a ring. 

In this section PI/('ý)r will be assumed to be a ring; ir. particular 

it is a primitive, artinian ring. It has a faithful, (ring) 

N/W -mdule A, which rust therefore be an abelian additive group 
r 

4.1 Proposition. C (A) is a division ring, and A is a rý(A)r 

finite dimensional vector space over C (A) aD tlfl) 
r 

(Jacobson 11J. Chapter 2. ) 

4.2 Theorem. If dl, ö2, .. 6 c^ and cre linearly independent 

with respect to S), and 61 1962 ',,., dam' EL1 

Then 3 yell/ (1ý such that 
r 

d. ' e d. 
ly 

If y-y+ (4)r for some ycN, then 

dig diY di(Y + (fi)r) d1Y 

Proof. This is an application of the density theorem for rings 

(Jacobson t1, ) 
. P. 20) 

4.3 Let Mo Mr Yc(r) 

If H-* {r. Of I An C. A, drd - ddm, V 6eA, V dcD and 

(d'+ 6")n s die + d"r, V d", 6" CAI 

then M is a subnear-ring of Mo 
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If Np is set of right vultiplications of r by e1events of IT 

NRC It if we can show that (d + 6')n - ön + d'n 
. 

Vne21, Va, a'c . 
Now if ne(A) r 

then (d + d')n - do + d'n. 

If n4(A)r, put n-n+ (A)r. 

Then (d + 8')(n + (6)r) - d(n + (A)r) +6' (ni + (A)r) since 

A is a ring module with respect to P! /(A)r. 

thus (d + S')n a 6n + S'n. 

Hence NR C N. 

4.4 We have d. c. c. on right ideals of N and of 2]/(A) 

Hence we have a finite nur±er of equivalence classes on C and 

A is a finite dimensional vector space over D. Suppose we have h 

equivalence classes on C and the dimension of A with respect to 

D is t. 

Then Ca %h yG and A= (±ý S. D. 
i=1 j al 

i 

for suitable orbit representatives yi of C and fl-basis dj 

of A. Clearly if w. 1i then whEn yIm, , yhm, d1m, .. , dtm 

are known, then the action of m on an arbitrary element of r is 

determined. 

4.5 Theorem. N _w M as near-rings. 

Proof. We show that if C N1,. 

Let ircM and put ö S, m 1<j 9t 
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and yi' - yim , 
1<i<h. 

Clearly by what has preceeded we can find an ncN such that 

Yi' ° Yi. n = Yim lsi, h 

and aj' - djn öm 15j<t 
J 

Hence MC 'Ig so M NR. 

4.6 If N is a 0-primitive, 'and not 2-primitive, near-ring with 

identity and d. c. c. on right ideals such that the set A of 

non-generators of r is an N-nodule of type 2 and N/(") 
r 

is a ring, then N is (isoriorphic to) the near-ring of all mappings 

of r into itself commuting with all the N-autororphisrs of r; 

which take the group A into itself and are hor.. ororphisms on A 

costing with the centralizer of A inN/(A) . 
r 

Here again N is a suhnear--ring of 140 6 YyYG(T) 

where G- AutN(r) 

§5. The converse and final classification 

If we denote by rid the restriction of the map ri : r-'r to the 

subset A we can rewrite the results of the previous two sections. 

5.1 Thoeren If N is 4-prititive, but not 2-priritive, with 

identity and d. c. c. on right ideals, satisfies 2.1, 

then N= {mCYYYG(r) rA eyyya(A)} 

if N/(A) is not a ring. 
r 
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N= {n yy - (r) nie R r) (t } 

of N/(I)r is a ring. 

Mere G- Aut N 
(r) 

,G- Aut (L) and D- (0) U G. 
týýý. )r 

We now investigate the validity of the converse. 

5.2 Theorem. If r is an cdlitive group and (0) }Aa subgroup 

of r. Suppose F is a group of regular autciorphisns of d which 

induce a finite number of orbits on Q, and (, is a group 

of autoiaorphistis of r such that 

(i) {T 
, A, GI are ccrpatible. 

(ii) each element of G is regular on r\Q 

(iii) G induces a finite number of orbits on r\A 

(iv) the restricticn r, 
A 

of any geG, to i, is in 

Then the near-ring 

N- {EEmrc(r) IM Em-ý, (a)) 

is 0-prinitive, is not 2-primitive, has an identity and d. c. c. on 

right ideals. 

Proof. If Q is not normal in r then n is not an 11-suhr+odule 

of r. 

If :i yeC -rn, sEA, such that y+ +0, then 

if y+ Scyö -, here y3G rl YG = 4, core Ybe(r \o. 

define neN by (y + d)gn a (y + 6)g 

'y'n -0 all y'er (Y + d)G 
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then yn -0 since 
[(y 

+ ö)GJ'() yG 

so (y+6)n-yn - y+ö jA 

If A is normal in r and (yI + 61)CYj. G 

where yi is any element of C and dl is any element of A, 

suppose 
3 

Y'eC such that 

Y'¬' - y'j A for sore g'cG' (see 2.7 (iii)) 

then j Y2CC, d20, such that Y2 + 62 ° Y2¬ 

Define n2eN by n2: Y2¬ -*'Y'g 
V ¬e(; 

nee yo -+ 0 'IV, yoer\y2G 

then (y2 + 62)n2 - y2n - y2g'n2-- y2n2 " y2n2¬`-y21P'¬' -- y' S 

Hence if * {I', A, GI is compatible A is not an N-subriodule of r. 

If y3cC and y3'er then define 

n3 : Y3 ¬4ytp `Qf gcG 

n3: yo 01 `J yocr "" y3 01 

Then y3n3 = y'3 and so y3N I'. 

if 0 4r d4CA and 6'4CA, define 

n4: d4 -º 6'g gCG 

n+: y1 -, 0 '1 y4cr d4 

Then n4ieN and 64n4 - ö'4 so Ad4 tI 

Thus A is an N-module of type 2, and r is an N-module of type 0, 

Hence N is 0-primitive, we show that N has d. c. c. on right ideals. 
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17 +N (as N-nodules) 

(Y1)r /'2r 

suppose xNn 11 then xE(Y1r 

(Y1)r (Y 
2)r (Ya)rn (Y2)r 

fl (Y2)r /(Y 

Or(Y2)r 

so x= Cr + (y 1)r n (Y2)r where (Is(Y1)r 

=B+ (Y1)rf '(Y2)r where Be(Y2)r 

so a-$ e (yj)r (Y2)r. then a-ßc(y1)r so se(Y1)r 

hence ßC(Y1)rn (Y2)r and x=0. 

Thus N-- N t1 /- 

G) C (Y2) (Y) (Y ) 1rr 
(Yd 

rý2r 

In the natural way we can show ly induction that 

N IT TT 

(C)r 

/Gi)rn.. 

. 
ý1 (Yh)r 

/Gi)r 
/hr 

= 
k. 

as 1,7-modules and so Each N /Gi)r 

h 

N0 (C) 
r i=l i' 

r+ 
(0) since we may define n6cN as follows. (0) 

Y1"n6 °0li, h 

6J . n6 - 6j 'lj ! 5t Then n6 40 and n6 e (C) 
r 
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-module N(4) 

r 

is 2-primitive since b is a faithful N/ 

(A)r ! 

If 66eý and (66 
r 

(xCP1/ (t) 85x - 0) 

then (66)r (66)rJ is a right ideal of V/ 

e) 
(Q)r 

maximal as an (UI/(e)) -subgroup. 
r 

If E. (dýc)*r then (öj)r* fl E. 
k-i 

kfj 

and so NI (A) _ (dj)r* Ej 
r 

and clearly in a similar manner to 3.2.6 

rJ °l 

and each - E. L as N/ (A) -modules. 
r 

Thus we* have'a composition series for 171(A) 
r. 

r 
E1 G E2 D E1 p". 

If E1 (. 
.. 

(+ Ej = Lj 1<jst 

then L /L 6 as 2T/ _modules. .j ý -. l i7 (A)r 

Each Li is a right ideal of NI 

/ (4)r 
! (A)r 

If 66eý'and (66)*r (XCITI(A) 66x = O} 

then (66)r (66)rJ is a right ideal of V/ 

(e) 
/(Q)r 

r 

maximal as an (UI/(e) -subgroup. 
r 

If Ej (dýc)*r then (öj)r* fl E. 
k-i 

kfj 

and so NI (A) _ (dj)r* Ej 
r 

and clearly in a similar manner to 3.2.6 

r 
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NI is 2-primitive since p is a faithful N/ -module 
4)r / (')r 

If 86ee and (66)*r s {xetl/(L) ý 6sx - 0) 
r 

then (ds)r* (a6)r/ is a right ideal of Ix/ 
(fi)r 

(e)r 

maximal as an (n/ 
(0) -subgroup. 

r 
t 

If E. (dlc)*r then (dj)r* (2 Ej p. 

h-l 
kfj 

and so N/(6) (öj)r* Ej 
r 

and clearly in a similar manner to 3.2.6 

NI(t) 
r 3=1 3 

and each -Ej L+ as N/ (Q) -modules. 

Thus we have'a composition series for 171(A) 
r 

tJ! (0) m E1 (+ 
."0 Et: l E1(+ .. e) E 

_1 
'".. 

r 

El 0 E2DE1:: )0. - 

If E1 Ej Lj 1<jst 

then L. IL. 
1zL as rT/(Q) --modules. 

r 

Each Lj is a right ideal of N/(Q) 
r 

/ (4)r l (A)r 

If 86CA and (d6)*r {xetl/(6) ý 66x - 0) 

then (66)r* (a6)r/ is a right ideal of IT/ 
(fi)r 

(e) 

maximal 
, 
as an OT/ 

(0) -subgroup. 
r 

If E. (alc)*r then (d3)r* (2 Ej p. 

h-l 
kfj 

and so N/(6) (öý)r* Ej 

and clearly in a similar manner to 3.2.6 

NI(t) 
r 3=1 3 
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So let L. for 1. <jst, Y. is a right ideal of 
/ (L1) 

r 

N containing (4) 
r. 

A simple verification shows that K. ý /A as N-modules 

Kj-1 

Then 

N? Kt: ) Ktglý... D K2-) K1 (A)r: )Q2 +. _.. 
O+ CkhD"3+ý.. 

5(: 
2 

h 

h-l h 

is a composition series for N, for 

filý =A as Pf-nodules 

(n)r 

r as IT--modules 
ORA 

for i h-1 and hr' as N-modules. 

(G)r '(fl)r 

This completes the proof of the theerPm 

The corresponding theorem for the other case is as follo'"rs. 

5.3 Theorem Let r be an additive group, A an abelian subgroup 

of r. Suppose A is a vector space of finite dimension over 

`a division ring D. Let G be a group of automorphisrrs of r, 

regular on r A, with restriction Gt, . {gd I geG} c no 

, and such that 
_G4 

induces a finite number of orbits on r 
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If (r, At r-1 is compatible, then the near-ring 

N in 
cy (r),..: ýn EEomp(D) } 

is 0-primitive and not 2-primitive and has an identity and 

d. c. c. on right ideals. Also N is a ring. ýý)r 

5.4. If a near-ring N is of the form indicated in the hypothesis of 

Theorem 5.2 and is not of the form indicated in Theorem 5.3, then we 

can say that N is not a ring. The confusion arises here in the f(o)r 

fairly trivial cases of A being a 1-dimensional vector space over a 

division ring D where D'4+ {0 }-G. 

5.5. We have completed the classification of this class of 

0-primitive near-rings. 

5.6. Finally we calculate the radical J2(N) of near-rings of 

this type (see 2.1). 

Notice that 11 - Al ®... Cý Ah 110 P1 D... ý� Bt 

where' A. =r as N-modules Ui: h 

and B. A as N-nodules lCYt. ' 

Recall that J2(N) -( (of all 2-nodular right ideals of N. ) 

And a right ideal K of a near-ring 11 with identity 

is 2-modular if N, is an N-nodule of type 2. " 
'ý ht 

We notice that if K. ( $) Ai) ( Bý) lcj<t 
L ýl ý'sl 

t hi#3 
then Ki is 2-'modular. Hence J2(rt) (1Kj C 63Ai = (A )r* 

j=I i=I 
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Thus r. 72 (N) C° (p) ". ., . 1- , ̀ " f -, .=y 
r 

Let K be a 2-rndular right ideal 

K Nr-jK (ý1nK) (t ... ( (Ahn K) Ci (B nF') ""a (Fn7) 

Then Ai K (0) or , 
Ai 1, i<h 

.. 
B ^K (0) or B 1fj<t. j . ý 

Suppose Ain K - (0) for some 1ci$h, 

then KQA. -N and then t1 type , 
2, T and r is not . e£ 

. R 

'so we have a contradiction. 

Thus Ain K A. lsi<h 

i. e. ' 'A.. a+ Ah 
.Ki. e. (6) 

r 
C. ' K. 

Hence J2 (11) (A) 
r 

The J2 radical is sirnnly the annihilator of the N-subgroup Q, 

the set of non-generators of r. 

Clearly J2 (N) ray contain iderrotent, elenents for example the r3arping 

e which is the identity on CarA, but which annihilates A. 

"Then e2 = ee(6) '- J2(t1). 

5.7. Renark t 
-(6) (4)r (A) 

r" 

for if xe(A)r then ex xe(6). (A)r. 
, ......, 

and thus (A) G (e) 
r' 

(A) . rr,, 
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,. = a4. 
Chapter 5.0-primitive near-rintrs with identity and d. c. c. on right ideal. s(II). 

This chapter will generalize considerably the results of the previous 

chapter. We will=still make ass rptions on the nature of A, the 

set of non-generators of the faithful, type 0,11-module, Instead of 

considering the case when A is an N--nodule of type 2, ore will deal 

with a more general situation, when, A is a union of a firite number 

of N-nodules of type 2 having only zero in caroon... If there is only 

one of these U-nodules, of type 2. then we have the situation in chapter 4. 

1. The general situation. 

We assume that 11 is 0-primitive, with identity, 1, d. c. c. on right 

ideals and J2 (U) + (0) 

If r is a faithful NN-nodule, put ArC where "ye .r FYN r}. 

A is the set of non-generators of T. 

We suppose that -A A; where Aw-. Au - (0) for 
A -1 

A*. u; and each tj is a, N-module 
, 
(A "r 1, .'. , p), of type 2. 

Clearly (A)r (A_x and for each 6 sA with dX +0 
Al 

N/( )r = Gl as N=-modules (a ° 1, .., p). 

1.1 Proposition If yeCý then (Al)r ý (Y)r, 
., 

l%: l<p. 

Proof Assume (AA)r: ; (Y)r, then T= yl; ' " and F(AX)r YrT(A Or CY(AX)ra(0) 

Hence (6A)r L (r)r, 
, -, 

(0) which implies that A is a faithful 

N-nodule of type 2, i. e. 11 is 2-primitive and so J2(N) (0) 

which is a contradiction. This holds for all lcAcp. 
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1.2 Proposition. If yeC then for 1<nip (A, )r\ "-"f (dn)r (Y)r 

Proof. We proceed by induction on n. 

If n1 then fron 1.1 (Ai)_ (Y)r 

Assure it is trrae for n=k. so (A, ) 
rn " () (dk)r $ (Y)r 

Also (A 
+l)r 

4 (Y)r by 

hence (t11)rn " ." (Ak)rf1(6k+l)r 
, 

(Y) 
r 

by 4.1.2 

since N is not a ring. The induction follows. 

(Clearly it does not matter what order we take the &i in. ) 

1.3 Corollary. 
ti 

(A) 
r+ 

(0). an4 (0) 
r$ 

(Y)r for any yeC 
._., - .. 

1.4. Proposition If (di)r C (A. )r for some ij then 

(A)',. 
-- , 

(Ai)r = jr' 

� ".. Proof. N/ is a. 2-primitive near-ring, for 

r 

A. is an N, -module in the usual way and is faithful and type 2. 

.- (Ai)r 

Thus N/(A is sizple (1'3.3.1 we do not need d. c. c. on 
i)r 

rl / (Ai)) 
+-stbgroups for this part). 

' 
Hence , (ýj) = (0) or 11 /. 

The latter is it ossible 
r / 

(A Or 
R- 

(di)r 

and so (A . 
)r °. (A . )r" 

4.5. It nay ba that there exists A. and 4j such that 

(Q. ) 
ir 

(Aj)r ' 
t' 

( i'' j) Clearly N ='" N /(A1)r /(A )r 
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and we put a relation on the set of indices 

I= {1,2, 
.., p} of the A's. 

1.6 Definition. Let i, jel then we define the relation R 

by iRj (Ai)r j)r" 

Clearly this is an equivalence relation and we partition I into 

the equivalence classes, 

I¢( Pa) V( `J P'ß) 

MCA ßcB 

in such a way that the subsets {P'ß; BEB} consist of only one 

element each. (A and B are subsets of, 1) Naturally either 

A or B may be empty. 

1.7 Let V be a set con3isting of a representative fron each 

equivalence class on I. , Then if i, jel', i+ j' (1i)r + (Qj)r 

1.9 Definition. Put G AutN(T) 

AutN (A. ) 
ý(A. )r 

As automorphism groups, the Ci are regular on Ai' 1<i<p; and 

G is regular on rsC. 

Put relations on C, ti 1<i'p as follows. 

If y, yleC then y -- Y'i ( Y'1 , YS 

for some geG. 

Sit6i'cAi then öiRid'i d-. => di' - Si`gi fcr sours 

gicEi 
v where 1<ifp 

, 

,; 
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It may be easily checked that these p+1 relations are all 

equivalence relaticns on their respective sets. 

1.10. Proposition If y, y'c" then 'My' (Y)r (Y1)r 

If di, atiedi then 

6iRi6i (gi)r/' w (sit)r 1<icp 

(Ai)r / (ni)r 

1.11 Proposition If (Ai) 
r+ 

(A) Jr' then for all 53 eAj, 6i +0 

(Ai)r 'I (ai)r. 

Proof. If (Ai)r C (6j)r then, "5. (A. )r s0 

Now eý - r' 

so (ei)r 6.61IT. (Ai)r as (Ai) 
r 

i. e. (Ai)r C (DJ)r (a. )r °0 j)r by 1.4. 

1.12 Proposition If iEI' 
, 

and J is any subset of I' 1 {i} 

then J (A ) Ct (S ) for any 0f dieAi. ý 
" 

r r , 

Proof Suppose that 3 (0 4) 6 cA 

and /1 (fl .)S (d Then (d (0) 
jej ýr-it jeJ 1r 

Q. ((ý (h. )r) aS. N 
1 jcJ 

Thus n (Aj)r C (Ai)r 
jcJ 

(("i (A )r) C di(jeJ (A )r) ° (0) 
jCj 

,ý 



- 82 - 

Hence R (A. ) C_ (1 (A") C (A") 
jcJ 

rj .r 
j£J .rr 

Thus (Ai) 1 jn J 
(Ai )r (0) 

and this can only ir+ply, that A i., 
(A 

j) r 
(0) for some j eJ 

for otherwise Ai(A. )r A. 

(We are really just using the fact that (Ai)r is a 2=primitive 

ideal). 

Thus (A. ) Cr (A . )r for some ý-i 

and this is a contradiction by 1.11. 

r 
1.13. Theorem. Let icI', 'and suppose N1(A is not a ring 

and d 1, .., 
ýsik cA. such that, 6. R. 

in 
R= ^+. 

If Sil1, d: 
1 are arbitrary elcnents of A. then 

ik 1. 

x. C /ý"., (A. ) = Xi,,, v, ýhere J. = I' ." {i}. 
1 jeJi 3ri 

and such that' bit xi = Stit for all z 1, .., ke 

Proof. Since N/is 2-primitive, yieýTI(A such that ý4i)r 
r 

6ilyl for RQ1, .., k. by 3.1.12. 

Now X. uý (A. ) and so X+(! ý) mN ((Ai) is maxireal as 
z it iitt 

an ideal. ) Let y. = t. + (A. )- 
zr 

then, ti = x. + si for sore 'sie(Ai)r" xisXi 

Then d' d. 
it yi=d it 

(x 
i. 

+sx+ (A 
i) t)ad iRxý.. ' R-1, .. k. 

iR = 
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Theorem 1.14 If idI' and , 
N, is a,. ring and dil, , dikCAi 

(ei)r 

are linearly independent over Gi. Let d'i1,61i, 
tCAi 

be arbitrary. 

Then 3 xieXi (ar, where J. 
jEJi J 

such that 61 it = 6itx. 

Proof. This issitnilar to 1.13, and uses the density theorem fcr 

primitive rings. 

1.15 Theorem Let Y1, .., yq CC such that yk , y, =ý It = j. 

If y1',.,., y1 are arbitrary in r, there is, 

xe(6)r 1-\ (A )r Q 
0. (L . )r ieI iEI 

such that yk'" YO for k-1, .., q. 

Proof. We have that (6) 
r4 

(y)r for any YEC. ry induction on q. 

If q-1. r- yl(t)r and yl y1X for sorge xeW r 
Assume the result is true for q' s>l 

Then (Y2)rr ... n (Ya)rn (A)r. (ys+l)r 

since we can put Y'2 = ... Ys' 0 and Y's+l +0 and use 

the inductive hypothesis. 

Clearly (Y1 
r 

(YS+1)r and since N is not a rinn by A. 1.2. 

(Y 
1)r (1 (YZ)rri "". ý1 (Ysrý (fi)r (Ys+l)r. 
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By the inductive hypothesis' 3 XWOr such that 

YIxIs Y1 I' '.. -. 9 Ysx' ° YS'. 

a YE(Y1)rA (Y2)rn . -. ". -I 
(Ys)r (! 1)r s. t. 

Ys+ly Y's+l - Ys+lxt 

Then put xy+ x'c(A) r 

then y1x - Yly + Ylx` - Y1' (by definition of x) 

Y2x YZ 

Ysx Ys ,, 

Ys+lx a ; YtS+1ý,. 

1.16. Now we look at the relation between di and A. when 

i, jeI and (dijr = (Qj)r" 

Then N` N, is a 2-primitive near-ring, 
(di)r (A. )r 

A. and a- are faithful N, -modules of type 2. Ry Theoren 3.6.1, 
(e. ) 

since N, is 2-primitive .r with identity and d. c. c. on" " 
(ei)r 

right ideals A. as N ---nodules. 1' (Ai)r 

Let Ai -º A. be this isor7orphism.. 

If 6icA., neN then 

n)* & (n + (A 
. 

)r)* 

(6i P) (n + (di)r) 

(ai4')(n + (A. )r) as (Ai)r (A . )r 
.,. 

djn where 6j did 
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Hence (8 
2. n)4 (diw)n 

and A. = A. as 11-nodules. 

Theorem If (Di)r = (A 
. 
)r then Ai A3 as 11--modules, 

1.17 Definition If ieI put C1 -r-, (Ai) 

Since A, A. 
i are not Td-suh odules of r,, (iei), we have. 

1.18 Theorem If N is of the type described at the beginning of §1 

then {r, A, G} is compatible in the sense of 4.2.7. and 

{r, Ai, G} is compatible for all idI = '{l, 
.. , p} (see 4.2.7 also). 

1.19 Put I' U 
SZ 

where ic idI' and N is not a ring. 
(Ai)r 

ic 
2 and N is a rit8, 

(di)r 

If jeI I' then keI' such that 

Aj = Ak as N-modules, so i is an N-isomorphism kj: 
Ak -º A., 

This is true for each jdI --, I', and we will, in future, assure, whenever 

jsI *ýI', knowledge of. Ak and ýkje 

Define Mo as being the near-ring rryG(r). 

Put M= {mcM IQ, e Mai(Ai) for all ic 

mC I1otr (Ai) for all ie S 2; 
1 

and for jeI -I' , 63M = aj*kj-1MIPII j, NCAj where keI' } 
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Put 11 -. {t»f0 I Yr. - in' VYc-r, neN} 

so Nr is the near-ring of 'rift: t rultiplications by elements of Yj 

on r. We will show that NC It. 

Let, nRCNR so that nz,:. T -> t defined by 

YnR - Yn, vi er, for sore neN. 

Let, ie S1 and die& Then 

se a=Ön c' ainR: i ainSi ai(n + (Ai) i)'i igi l 
g, 

i i 
Thus nR 

ee 
YYYG. (Aii " ._ 

i1 

If ie s2 
and Si, S'ie! ii then 

(Si + S. ')nr _ (Si + Si')(n + (di)r) = din + Si'n and so 

A f- llorl- (6 

If jeI - I', then S. S*n *ö nay ̀ . '=S . 
ýl. ný Ir. kj j ý'=] kJ 1--i 

where keI and aý ak4kj; S. ct. and Skc6k. 

Thus cM i. e. NcM. 

1.20. N has d. c. c. on right ideals and so the groups Ai, ie S 
1, 

have only a finite number of equivalence classes under the G., Let these 
i 

have representatives öil, ', dik, O, respectively. The groups 

di, i c2 are finite dirensional Givector spaces. Lot their bases 

be dil, 6ik respectively. 
1 

C has a finite number of crbits under G and we will denote their 

representatives by Y19 .. 0 YQCC. 
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If meM then the action of m on the whole of r is completely deter- 

mined by a knowledge of the action of m on the various orbit repre- 

sentatives, 

Y1' '' 'Yq ail' ., diki, idI' 

So m is determined by a knowledge of a finite number of elements 

of r. 

We willýnow'proceed to show that M IC Na 

1.21. If (Ai)r = (Aj) 
r 

then U. =P. Gi*lj 

where ij 
is the N-isomorphism 4'1: A1 -} A. 

Proof If gjs Gj = AutNý (A. ) 
(di)r 

then a= jgj. ý, ij Ai + Ai and is a group homomorphism 

aia =0 öiýijgj*j =0 öi =0 then a is 1-1. 

a is clearly onto and 

öi(n + (Ai)r) a= öina = din*ijgjij iijgj. Vý iý. n 

= 6ia(n + (Ai)r) 

Thus acG. and so gj c ý-1Gij 
ij 

If SOiý Gig ij then ºGi j BVýiý E Gi, 

and a similar process reveals that ße Gj 

Clearly the two multiplicative groups Gi and are isomorphic 

as groups. 

Also Gi ='Vij"Gj"ý'ij 



- öö 

1.22 Proposition Let Al and A2 be N-modules such that there is 

an N-isomorphism *12: Al -º A2. If Gl and G2 are 

AutN, 
((A1), 

AutNI 
(A 

2)r 

(d2) respectively, and if 
dl) 

r 
Y 

iK k2 ýIc el `a 51X7 
.' 

Q2 =üi 6211 G2 where Lei = L1 \ {o}L 1=1,21, 

a ý: 7ý at dix 
1 an G1 

6 
2UG2 n 6211, G2 

then, k1 k2 . 

Proof We can assume that k2 < kl 

Then if vcCl, .., k2} 

62 
u 

a1Ag1 12 for some ae {1, .., kll, -le G1. 

If k2 < kl then X'c{1, .., k1} 

such that 62uý611, G1*12 fcr any ue{l, .., k2} 

Now d1X'*12s42 so 

1A'*12 =d 2u, g2 for some 11'c{l, .., k2} 
, 

gZ 

now 621, = lag1*12 for some Xc(l, ..., k1) , 
g1e G1 

so a1X *12 = d1Ag1*12g2 

i. e. dW = 61AT1'12g2ý 12 

now g2 = x'12 g1412 for some gl c Gl 

thus dla, 6 glgl 

which contradicts the hypothesis. 

Thus kl = k2 
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1.23 Let mzM. We then, by 1.13 and 1.14, can find an xcN such 

that 

six=aiJ mV j=1, ... ki, t'iez+. 

By 1.15 3 
ye (A) 

r such that 

it y= YRm --y zx 
Wß=1, 

..., q. 

Put n=y+x. Then ntN 

andyn=YRm-YRx+ytx=YLm. ß=1, ... s9. 

diJn =6 .Jmj=1, ..., ki, idI'. 

If tel'I', then 3 sc It such that 

At T As as N-modules under the isomorphism 

ist ' As At 

If atCAt then 

m=ö* -lmg 
tt st st 

Now at4stl"m=SOstlan 

so dtm = at4st l. 
n 1P 

st tn. 
'st 14, 

t = ötn 

Thus m acts on the group i in exactly the same way as the right 

multiplication mapping nN. Put ., }: 
N = {nR : ncN}. 

Theu NR =M 

1.21& The choice of I' was not unique, necessarily, and we now show 

that, choosing different representatives of the equivalence classes 

on I under the relation R, gives us the same near-ring as 1.23. 

We choose a particular I', then I=j 1V ý`j 2-(? -It). Let us 
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choose Ii as follows. Pick any icr, 
l such that 

(Ai) = (a. ) for some jc I'I'. (If this is not possible we can 

choose an is j2 and proceed similarly). 

Now put Ii = (I'"{i}) v {j} 

Then I= iV S2V 
(I`II)where 

4c" 
t= (^5l, {i}) v {j}. 

Put N=M as defined in 1.19. 

Put N1 = {msM0I mjý cryr-G (Ap) for all pE5l 
IPP 

; MIA cHoin (A ) for all pe t 
3 

pjP P 

for acIvI t 
1' dam = Yký l. 

aýka'VIS cA ' where kcIi} 

Let mzM = N. 

We must show that 

n1e em (Aj) 
Gi 

and dim = 6i4ji l. 
mVji N dieti. 

We already know that 

mlA. cyyy 
_ 

(di) and dim = 6iIPi irup . 
-1 from the definition 

of N. 

Clearly m: Aý -* Ai 
, 

Let & cA , gjc Gý then 

öjmgj =ö ýýji, *ji 
l. 

gj. Now gj = Pjigi ýyji 
1 

for some gieGi 

Thus djmgj = Yjim9i4ji 1 

-1 dj*jigi m. *ji 

-1 (6 
jgjl, jim. *ji = )m. 
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Thus m 

J J. 

Now for any 6icAi, 3 6iCAi s. t. 6i = 6iýji 

so di*ji lm ýji = di 4jl 

a P'jimIji 
1 

ji 

=a 
Thus mdN1. N'S Ni . 

And symmetry proves that N=N1. 

It is clear similar processes will show that whatever the choice 

of I', the near-ring obtained in 1.23 will not differ. 

1.25 Theorem Let N be 0-primitive with identity and d. c. c. on 

right ideals and J2(N) + (0). If r is the faithful N-module of 

type 0 and the set A of non-generators of r, is the union of a 

finite number of N-modules is., (iFI), of type 2 such that 

Al (ti dj = (0) for i#j. 

Then if It is chosen with respect to the relation R of 1.6, and 
ý- -gis 

It = F% 1u 
(S 

2 as in 1.19, then 
w nº+ 

1J C{ me rrr (r) I m) E 1YYjj (0. ) all ie,; mý c Hom- (A. ) all 
4 

G A. Gi Ai Gi i2 

and for jEI'I', any 6ieAj, Bim - 6j*kj-l. m*kj for d keI'} 

as near-rings: where G= AutN(r), Gi = AutN/ (Ai) 
, 
ieI'. 

(Ai)r 

*: Ak + Ai is an N-isomorphism. 
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§2 The converse and final classification 

We now try and build up from suitable systems of groups and 

their mappings, all 0-primitive near-rings, of the form studied in 

R. 

, /y NN 

2.1 Given three mutually disjoint finite sets, l2' 3 of 

positive integers, suppose f is an additive group and di; ic( 1 

a finite collection of subgroups, and Di; ica finite collection 

of abelian subgroups, and Ai; is 
3a finite collection of subgroups, 

each isomorphic to one of the ti, ie. 5 i ýý 
rt 2, and such that 

Ai (0) for i+j'i, jc j1v, c2'. ß 
, 
43 =I. 

I'll Suppose for each ie , 
1; Gi represents a group of regular automor- 

phisms of d and for each ic2; Gi represents a divisioning over 

which A. is a vector space. 

Suppose G is a group of automorphisms which are regular on 

C= rte-( U (ei)} and such that if geG then gIA. cG., 
iCI 

all ie 
lv2 

If{r ABG} is compatible, whereA =VA, and 
idI 1 

{r, Ai, G}are compatible for idI 

then the near-ring 
AI 

N= {me y-9 (r)l mi. 
ieyG. 

(A ) for ieýl; 

mi. 
ic 

Honig (Ai) for ier 
2 

for j e5 3,6 j CA then 6 
.m=6j o*kj-l. m-ý kj 

where is is the isomcrphism from Ak to Aý for a kc 51j 
2. 

} 
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is 0-primitive, such that Ai are N-modules of type 2 for idI. 

o., If N/f0. ) is not a ring for is , N/(,. ) is a ring for ieý2 
-i-r - 3. -r 

and if js 
3 then (ek)r = (s. )r( where kc 12 and Ak v Ai as 

groups. ) and Ak and Aj are in fact isomorphic N-modules. N has 

an identity. 

2.2 Let the group G induce a finite number of orbits on C, and 

the groups Gi ; ie induce a finite number of orbits on Ai ; and , vj 

the vector spaces A., is , have finite G. - dimension. Then N has 
11 

d. c. c. on right ideals. 

Proof We note first that if j E: ' and feý1 such that ý, :Af -*A 

is an isomorphism, then if Af =Ü dfk Gf U {O} 
k=1 

ny =\1 (a 
fk 

i* 1Gf, y fy u{o} 
k=1 

i. e. Ay has a finite number of orbits induced by the automorphism 

group Gy=V'f1Gi*fy 

If of -ý A and fe y then 

t_ 

f= 0 dfk af 
k=1 

t__ 
and Ai =k1 (öfk Vfy )Vfy Gfiyfy , 

i. e. Ay is (ýfy 1. Gf. ýr finite 

dimensional. 

Now let I= (l, ..., p}, and define for any AeI`(r1 L', 2) 

G8 = ý'k6r1GR* ; where Et 
Nlý"j 2 

For each isl, let dil' ' 
basis with respect to the Gi, icI, 

Let S1V 
2 

{1, 
, q} 

be orbit representatives or 
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Define Elj = () (Sly ýr 

1Z=1 

ýO1) 

I 

for all jc{l, ..., k: 1} 

k 

w- 

2 

E9 i (ö2ý)r n (dl)r for all je{l, .... 12} 
-J 

1M 

4j r 

1)r 
(A2)r 

1k 
E =(Q ((5 )r ) (dl)r(1(A2)rC C. n(Aqýl)r) 

t 4j 
j =j 

(Ol)r iS 

The E.. are all right ideels of the near-rings N 

'-'Jal)r Jý 'n (Di)r 

and each Eid corresponds to a right ideal of the near. -ring 11 lying 

between (A1)r, E ... ri(Ai)r and (dl)r r" ()(Ai-1 )r for i41 

and the Eid corresponds to one lying between (A1)r and X. 

Clearly T1 `, 
1(ai'ýr7 

(el)rr'i 
. (1 irt' \' (ol)r1 ... 

n (di)r 

IT 3 Ai as Td-modules 
salb ýr 

We can find an elemant xcEij such that 6 
ijx4 0 for j=1, ..., ki, 

Thus Eij (6.. )r for j=1, ..., k.. i 1, ..., q. :A3. j 

Thus did Eid = Di in the obvious way. 

And so Eid = Di as an N module and in fact as 
/{dl)r Ct (Ai)r 
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an 11-module, with the natural definition of 

e, j n= eiJ .. 
(u + (A 

1)rn. .. 
11 (0 

i 
)r ) all e ij E EiJ., ncN. iý 

])rrý .. n i-1r ti (ai. )r + (a )rý1 ... n (oi-ir 
Now = a na (I ... 

n(ä: a.. 
iJ r1r i-l r 1J r 

_N=ß as ICI-modules, 

1 (aij)r 

gor clearly (A1)r 
""" 

(ai-1)r (dij)r all j= 19 .. 1 ki and ia1, 

.... , 
q. 

Thus (aij)r (el)r (ei-1)r is a max. right ideal of the 

near-ring (el)r r1 """ 
rý 

i-1)r 

so 
(aij 

r 
rl (e1)1,1 

... n (ei-1)r 
+ E.. 

(el)r ... 
fl (ei-1)r 

(el)r r... ýý (ei)r 1ý el 
rn ... lýý ei 

r 

and in fact the sum is direct. 

In the same way as 4.5.2. 

el)r (ei-1)r lti 

eý n... ýn ý 
j=1 1j 

Put Fit 4 E1. for Z 1, ..., ki 
j=1 

then Fil Fi2 S Fi3 I.. c Fikl and each Fit is a rt. ideal of 

Iw, ,.., 

-- tnl)r ... (ai)r 

Thus suppose �that 
for, &=1, ... , ki 

Fib = H. . Then the Hi& are right ideals of 

1rit.. .. n 
of N and, 

(e 
1)r n NA 

i 
)t Hil? ^ H 

i2 
C ... GH 

ik . 
(e 

1)rn... 
ný) 

i-1 r 

all i=1, ... , q. 



ITow HiQ}1 Ai as N-modules 1'< I<q-1. 

iQ q 
Put (")r = fl (Ai)r and for 1<t<k 

i=1 
k 

define Pt = t"l (ys)r r) (a) 
r 

where k is the number of orbits induced 

s+t 
s=1 

on C by G. 

In a similar way to 4.5.2. 

Nk 

.P;,.. . 
r t=1 t 

We now have a composition series for IT, 

AT*; ̀ Hll2 H12 ='... ýH1 H21 .'... ý> g2k 
2 II31 ... H ... 

Ry 
Hqk '-: > Q1. =s ... :: >Qk Z>0 where Q. S Pt9 

q t=1 

In this series each factor group is an N-module of type 0. ", 

Thus N-possesses d. c. c. on right ideals. 

4 

§3. An Example 

3.1 rle give a typical example of the type of near-ring that arises. 

For convenience, ve restrict ourselves to the finite case. 

Let r be any group and el and A2 subgroups such that A1 ti A2 

as`groups. Let 03 be an- abelian-subgroup of prime power order, " 

such that -dl n "A '=An A3 "'A1 rA= (0). In our notation, 

{1}, 
, 
s2 

= {3}. ý12 is the isomorphism fron Al to &2. Let I All >2. 
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Put N= {mcyyyo (r) I mIA1 EYyyo(a1); mla3EHoMZ 
p 

(03); 

, 
for dee, 

_dm=d 2'12-1 222 m`l'12' } 

where p"= 1A31 and Zp = the field of p elements. 

, Then N is_a_near-ring of the type considered in section 2. 

It, is, 0-primitive with pl V 02V A3 the set of non-generat: 'ors of 

r, and N/ not a ring, and IT is ar ing. 
ýA 

l)r 3)r 

We can illustrate the near-ring as follows, where m is a typical element 

101" 

\ 
V- 

\% 

The mappings of R take all elements of r (A1 A2U A3) 

into r,, all elements of Al into Al9 'N2 into A2, A14 into 03 satis- 

fying the provisos of the definition. 

If 111 a {mEYYy0(r) I 
-lA c YYY0(Ai); i=1,2,31 

1 

then NS 11 1¬yYY 0 
(r) . 
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Clearly 111 is 0-primitive but 11 is not a ring unless 

(Q3)r 

JA31 = 2, and dl and d2 are not isomorphic Ni modules. yo(r) is 

2-primitive. All these near-rings have identities. 

1, The radical J2(N) 

The radical J2(11) of a near-ring of the type discussed in this 

chapter is an ideal of the near-ring different from zero. 

In a similar day to section 4.5.6. we can show that 
i 

2 
(Pi) _ in n f1 (6.. ) 

r idI j=1 

Thus J2(N) = (A)r 

Here again J2(N) will possess an idempotent element different from zero 

and J2(N). J2(N) - J2(N). 

Since J2(N) = (A )r and J2( N/J (N) ) =(0) 

by 2.1.4, we see that J2(N/(d) )_ (0). 

N/(0) has d. c. c. on right ideals and an identity. 

NI(4) = N/(1(, A )r=® N/ýýl)r 

r iEI' 
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and the NI (A )r are 2-primitive near-rings (some may be rings), 
i -1 

which illustrates Thm. 3.4.4. 
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Chapter 6. Prime Ideals 
,I "I 

We have already introduced the idea of primitive. ideals and ye 

shall now-study the possibilities of generalisations of the concept of 

a prime ideal. 

§l. Preliminary results 

1.1 Proposition (ßetsch) An ideal, P of a near-ring N is a v-primitive ideal 

if and only: if there, is. an 11-module M of type v with 

(M)r = P. Here v= , 
0, .1 or 

.2 . 

Proof If H is an N-module of type, v and P= (M)ý, then 14 is an 

N/P module and is faithful, as such. Thus N/P is v-primitive, hence P 

is, v-primitive. Tf P is. v-primitive, then there is a faithful N/P-module 

M. If ncN, define 
. 

m. n = m(n + P), EM. ý. _ 

Thus M is a N-module of type v and 

(M) = {neN Na = 0} = {neIT Ir(n +P) - 0} 

= p.., 

1.2 Definitions 

An ideal Pof a near-ring N (+ N) is 2-prime if for any Ni sub- 

groups Kl, K2; Kl K2, P t5 ", C17-= P or K2c: P. An ideal P (+ N) is 

1-prime if for any right ideals R1, R2; R1R24 P R1 .P or R2 Sr P. 

An ideal P (+ N) is 0-prime if for any ideals 

C. 12; I1I2C. P I1 S' P or 1,4 P. 

A right ideal S(4 N) is a 1-prime right ideal if for any right ideals 

R1, R2; R1R2 *-ý. S -' Rl S or R2 CS. 
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1.3 Remark It is clear that a 2-prime ideal is 1-prime and 0-prime and 

a 1-prime ideal is 0-prime. However a 0-prime ideal need not be a 

1-prime as we shall see shortly. (3.8). 

1.4 Proposition The following statements are equivalent. 

(i) P is a 2-prime ideal of N 

(ii) If KI is an I± subgroup sind S is an ideal of N then 

K1 S19 P=-ilX1SF P or SS, P. 

Proof (ii). S is an Ntsubgroup and so this is straightforward. 

Let Ki, K2 be N±subgroups and K1, K25ý P. 

Assume K1$ P, then K2'ß (P: K1) - {marl ý K1 n= P} a R, say 

Then R is an ideal of N. for if 

reR, nl, ne 11, then V k. cKl, 

k1(-n +r+ n) = -kln + klr + kln eP as P is an ideal 

klL(n + r) nl -nnlJ (k1n + k1r) n1 - k1n. n1 e P. Also Klnr 5 K1r. P. 

Thus KR S P, Kl cit- P4R"P. 

Hence K2 SE SP. 

1.5 Proposition The following. statements, are equivalent ,.. _ 
(i), P, is an 0-prime ideal 

l of PI 

(ii) If I1 is an ideal, Ra rieht ideal, then 

I1R'F P41 
1S 

P or R`= P. 

Proof We'need only remark that 

(P: II) =, {ncN° Iln P} is an ideal. 
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i. 6 Proposition Suppose'P'is a 2-prime ideal and X1, ..., Xn are N±sub- 

groups. 

Then X1 ... Xn SP4 X3. Er P for some ie{1, ..., n}. 

Proof Let X1 ... XP and XlcEý P. Then 

X2 .. Xn S tP: X1) which is an ideal. 

Now X1. (P: X1) EP so (P: X1) !" Pas P is 2-prime and using 1.4. 

Thus X2 ... Xn1- P. We repeat the procedure if X2'_P, and even- 

tually x.. P for some ie {1, 
..., n}. 1 

1.7 Proposition If P is a 1-prime ideal and X1, ..., Xn are rt, ideals 

then X1 ... Xn Si P, Xi SP for some ie {1, ..., n} 

1.8 Proposition If P is a 0-prime ideal and Xl, ..., Xn are all ideals, 

then, Xl ... Xn sP Xi !P for some ic {1, ..., n}. 

1.9 Proposition If Rl is a 1-prime right ideal and 

X1 ... , Xn are right ideals, then 

Xl ".. Xnc R1 X1'ß- R, for some ic {i, 
... n} . 

1.10 Clearly we now have the situation where a 2-prime ideal will con- 

tain all the nilpotent r? tgroups, a 1-prime ideal will contain all the 

nilpotent right ideals, m 0-prime ideal will contain all the nilpotent 

ideals of N. 

2. The relation between'v-prime and v-primitive ideals`' 

2.1 Proposition A v-primitive ideal is v-prime (v = 0,1,2). 

Proof v 2. If Pis a 2-primitive ideal, then 

? ii, an N-module of type 2 with (11) 
r=P. 
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Let Kl, K2 be Ntgroups and K1K2 P. 

Then MK1K2 00 

Assume Kl +P then flK1 t0 so 2"IILl = M. But 

MIIt1K2 = 11K2 =04 K2 (11) 
r=P. -. 

v=1 If P is a 1-primitive ideal and P= (1-1) 
r where PS is an N-module 

of type 1. 

Clearly if R1, R2 are rt. ideals with R1R2 cP and R1 4P 

Then flhI1R2 = P"'R2 01 R2 S' P 

v=0 If P is a 0-primitive ideal and P (M)r for an P1-module 

N of type 0. Then if Il, 12 are ideals with I1I2c P but Ilct P. 

Then 1111 $0 so for some men., M= mN .0f ! III = mN1I1 ̀= mIl. Thus 

mIl is an P1-submodule of M and non-zero. mI1 = M. But mI1I2 =0 MI2 

Thus I2 S P. 

2.2 We nov study near-rings 11 with descending chain condition cn it. Nisub- 

groups. 

2.3 Proposition If 11 has d. c. c. on it 11±subdroups then a 2-prime ideal P 

is 2-primitive. 

Proof Pass to 11 = Nlpe This has d. c. c. on it: II± subgroups. 

Choose a minimal one 14 + (0) 

Then if (ri)p is the rt-annihilator of U in r1, 

11. (4)O = (p)# tai = (p) cr (M)r = (p) slice (0) is a 2-prime ideal of 

Pi. Thus P is a 2-primitive ideal since T1 is a 2-primitive near-ring. 

2.4 Proposition (Laxton, Ramakotaiah). If IT has d. c. c. on it. IN±subgroups 

then a 0-prime ideal P is 0-primitive. 
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Proof Pass to FT = ! T/P. 7T possesses no non-zero nilpotent ideals, 

and so i(IT) _ (0). 

By 2.5.10. Jo(rr) _ (D(-N): "5) Pin S D(A1)}= (0) 

If has no 0-modular right ideals, then D(N) =N and this 

contradicts (D(T): N) (0). (0) = Jo(N) = 
n(T)r for all N-modules 

r of type 0. J0(N) (I'i)r for some finite subset of the set of 

_ 
i=1 

all N-modules of type 0.. 

Now (rl)r" (r2)r 
..,. (I' 

p)rf- 
Jo(N) _ (0) 

so (Pi)r = (Ö) for some N-modules T.. of type 0. 

Thus AT is 0-primitive and hence P is, a 0-primitive ideal. 

2.5 Remark It is-not known whether a 1-prime ideal is 1-primitive under 

suitable chain conditions. 

§3 -prime near-rins 

Elementwise characterizations of V-prime ideals are not very 

satisfactory. We exhibit one result. 

3.1 Proposition Let N be a near-ring with a right identity e. 

Then P is a 2-prime ideal a. Nb 'g P aeP or bcP. 

Proof .P is 2-prime. Then aIQb cP =ý 

aNbN `ý EP so all E P' or bN SP 

i. e. ae = aeP or beP. ` 

(ii) : Let X1. X2 P; X1, X2 rt, N+-subgroups. 
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Suppose X2 t P. x2EX2 s. t. x2 Pt 

now x 
"Nx2 

! X1X2 £P' `ý x1c X1 

Thus xl SP. Hence X1 IS P 

3.2 Remarks It is interesting to study near-rings which are rime 

(v = 0,. 1,2) -vrhere a u-prime near-ring is simply a near-ring such that 

the zero ideal is a u-prime ideal. Recall that a famous theorem due 

to Goldie in ring theory gives necessary and sufficient conditions 

for a prime ring to have an artinian primitive classical ring of 

quotients. We could ask now, whether a u-prime near-ring may have a 

v-primitive near-ring with d. c. c. on right ideals, as a nn;, ring of 

quotients. This sews a difficult problem and first we mudt establish 

that non-trivial 2-prime near-rings exist, for clearly the first case 

to look, at is when u= 2. 

3.3 Example_ Let (Z, +) be the additive group of integers. 

Put (St) the multiplicative semigroup of non-negative integers. Thus 

S= (0) V P, P the positive integers. 

Put N= yyys(Z). 

Then Z- (0) U 1. P V (-1). P 

Clearly each napping n of N is determined when we know 

1. n and (-1)n. 

Suppose n1IJn2 = (0) and nl + 0,, n 2+0. 

If 1nl40, ln2+0, f. ])nl+0, (412+0 

then 1(nln2) = (lnl)n2 ý 0. 



If 1n2 =0 and 1n1= z1 40ý -ln2 
40 

then if zl >0 put nIN where n: 1 -ý - 1, n: - l'-o. 1 

then ln1nn2 = z1nn2 =- zlnLY _ (-1)n2. z1 ý 0. 

If zl c0 put dell where n= identity. 

Then (1) nln2, = zln2 = (. -ln2) zl t0. 

Similarly if (-i)n2 = 0, and if (1)nl 0 then --1n1 j0 

and io (--1) (n1Nn2) 0 for all non-zero n2cN. 

Thus for any nl, n2eIT 

n1U1n2 =0 =ý nx =0 or n2 = 0. 

Thus IT is a 2-prime near-ring, and*we shall see later that 

N possesses a near-ring of right quotients in a natural way. 

3.4+ ' We"finally define a near-ring to be u-semi-prime (u ='09 19 2) 

if Pu = (0) Where 
Pu is the set of all u-prime i deals. 

p CPU ,. _' ,.,,,. A';, -, Pxaz le Let 11 be a u-prime near-ring and Ra prime ring 

then IT IM is a u-semi-prine near-ring Cu = 0,1,2) 

For 00 is' a. u-prirme ideal and also 11 ®0 is a u-prime ideal and 

thus (0) =0®0= (N00)ri(0®'R). 

3.5 Proposition I f'I1'is u--semi-prime then 1Jrpossesses no non-zero 

nilpotent: ideals (for o= 0) { 

rt. ideals`(for'u - 1) 

: rt. IT± subgroups (for u= 2) 

Proof Any nilpotent'ideal'is`contained in every 0-prime idea -and 

thus in the intersection' of' ill ofthese, i. e. the zero ideal. 

Similarly for cases u=1, u=2 
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3.6 Theorem If N has d. c. c. on rt. Nt subgroups then N is 

u-semi-grime if and only if Ju(N) = (0) for u=0,2. 

N is 1-semiprime D(N) _ (0). 

of Je(N) = (0) 4N contains no non-zero nilpotent ideals for 

u=0 and Nt ups. for u=2. D(N) = (0) 0N contains no non-zero 

nilpotent right ideals. J2(N) = (0) * (0) = %1P20 where P2 is taken over 

all the 2-primitive ideals of N. These are 2-prime, so 

J2(N) = (0) 4N is 2-semi-prime. 

Also J1(N) = (0) N is. 1-semi-prime 

J0(N) = (0) )N is 0-semi-prime. 

3.7 Theorem If N has d. c. c. on rt. Ni subgroups then 

D(N) = (0)Hr, n RI = (0) where R1 is taken over all the 1-prime right ideals. 

Proof Clearly if '1 R1 = (0) then N has no non-zero nilpotent right 

ideals and so D(N) = (0) . Let D(N) = (0). We show that a 0-modular 

right ideal is a 1-prime rinnt ideal. 

Let R be a 0-modular right ideal and eel; s. t. en - ncR, VncN. 

r, N}'R is an N-rnodiL1e of ty]]e 0 and e i" tt ir; an NN-generator for r. 

i. e. (e + R)N = r. If Ö is the zero of 11 +R. 

Suppose X1, X2 are right ideals with X1X2 CR but Xl R. 

Then (e + R)X1X2 =0 and (e + R)xl Ö some x1EX1. 

Thus (e + R)X1 =r and so (e + R)X1X2 rx2 = 612"25111 

3.8 We give an example of a near-ring No which is 0-prime but not 1-prime. 

Let N be a near-ring of she form examined in 4 
. 5.2. 

Keeping the same notation. 
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Let X= (C)r. (A)+. 

suppose xcX and x=y. z ,, here yc(C)r, zs(t)r. 

hen for any ycC, 

yx yyz -- O. z=0. 

and for any 6 cA, 

6,:: = aYZCez =0 
Thus x=0 and hence '. _ (0) 

T'e have (C)r. (A)r = (0), *. rh, ýre the (C), and (A) 
r are two right ic? eals 

4rýica are non-zero. 

Thus 1 is not 1-prime. HooTever IT is 0-priiuitive and so is 0-prime. 
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Chanter 7. Right Orders in 2-primitive near-rings frith identity and 

d. c. c. on ri;; it ideals 

Ne renarked in the previous chapter that is may be possible 

to find necessary and sufficient conEitions for a u-prime near-ring 

to have a near-ring of right quotients irhich is a v-primitive near- 

ring with ic? entity and d. c. c. on right ideals. iTe will consider an 

example in this chapter ¶rhic4h indicates that the case for u=2 may 

prove fruitful. 

gl Right orders in a near-rind 

1.1 Definitions 

(a) An element x of a near-ring 1 is called a regular element of 

:7 if for nl, n2, n3, n4c? T 

nix = n2x nl == n2 

and 3= : cn4 y n3 nb. 

(b) A recular element x in a near-rind; F with identity 1, is 

invertible if there exists a ye: 7 such that 

xy = yx = 1. Clearly y must be regular and invertible. We will 

denote y, when it exists by x 1. 

(c) A near-ring IT Zias a near-ring of ri lit quotients q 

if 

(i) 11 EQ and C0, has an identity. 

(ii) if x is a regular element of 11 then 

ye(? s. t. : fir = ; fit = 1Q. We irrite y= :c1. 

(iii) If qc then n, =nx1 where ncIT and :c is a re ular element 

of N. 

(d) A near-ring :' is a it. order in a near-ring C, il. Q is a near- 

ring of right quotients of II. 
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1.2 Rerax'_; If 'ýi is art". order in (, then I satisfies the fo11o ring 

property: 

' Let nl, xle?, with x1 regular, then -1 n2, x2ciT, zrith x2 rer; -f. cr , 

such' that ;: 1n2 = n1; The proof is identical to the ecuivalen_t .. 2 

state5äent in ring theory. 

HoTrever 
. 
it is not L cwn tr ietaer ire ney conclude that the converse 

is true. 

1.3 Examples. 

(1)' Clearly if F is a near-field then F is its own near-ring of 

right quotients. 

(2) If R is a rinc *'iich-is a rt. order in a ring S, and F is a 

near-field, then it =R0F is a rt. order in the near-rind; 

E; LZ S'a F. 

1.4 ' T1e' could define equally well a near-rin of left" quotients of a 

near-ring ?!. This is done in ü, n: mitr. iogous" xIanner. 'Ue choose -co 

wor? c "-*it'_i it quotient necx-rinjs because the structure of 2-primitive 

near=rings is on the right. ? 'othin? is' ;, not: n, ' yet, about 'left- 

primitivo near-rings', or simple near-rings frith' left-sided chain 

conditions. 

§2 The construction`öf sn eranmle of a right order in a 2-nrindtive near-- 

ring 

Ve introduce a class of exa: nles which iri11 prove interesting. 
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2.1 Let S be a multiplicative semigroup. 

S is left cancellative if ss1 = ss2 sl = S2 

for s, s1, s2eS. S is right cancellative if 

s1 s= s2s. 4 s1 s2 for s, sl, s2cBe 

S is left reversible if sl Sn s2 S#c, Vsl, s2eS. 

S is right reversible if Ss1 n Ss2 # 4, Ys1, s2eS. 

2.2 Theorem If S is a left and right cancellative semigroap and S 

is right reversible then S may be embedded in a {roue G of left 

quotients. 

Then YscS, s-1 exists in G and V geG, 

g= s1 -1 s for suitable sl, scS. 

2.3 This is a well known theorem in semigroup theory, anc the reader 

is invited to compare this frith the similar theorem in ring theory 

concerning integral domains being left orders in division rings under 

a similar condition to the right reversibility condition. 

2.1E Theorem Suppose r is an additive group, and S is a multiplicative 

semigroup of endomorphisr, of (r, +), 'which includes the identity 

endonmorphism, but not the zero endoiorphism. Suppose that ü is left 

and right cancellative, left and right reversible, and, when seS, 

andys =0then y =0. 

Then S has a group G of left quotients, and G acts as a group of 

automorphisms on an additive group A. 
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Proof 'Ne consider the cartesian product'r x S. 

Let (y, s), (y1, s1) crxS, and define P. relation ti by 

(Y, S) ti (y1 s1)4=t3a,, b1cS sucli that 

sbl si a1 and yb1 = yla1 

To shoo that this is well defined ozic; an equivalence : elation *. re 
4v 

proceed as follows. 

Suppose sb2 = slat for a2, b2 c S. 

Then 9 xl, yc S s. t, alx1 = ay1 21 

'sorsblxl =. sla1xl s, ayl = sb2y1ý b2y1 = blxl 

'dien Y] a2y1 = Yblx1 - yb2y1 = Yla7.: 
1 

This (yb2 -+y1a2)y1 0 

giving yb2 = y1a2. 

In the usual way ire shots that '++ is an equivalence relation. 

For example, if (Yý.: ) ti , 
(Yl, sl) and (Yl, sl) ti (Y2' s2) 

. re have aj, bl, a2, b2 sucii that- 

sb1 = slat, Ybl = Yla1, s? 2 = s2a`, YZb2 = Y2a2" 

31owa there are x, yeS such that 

. aly = b2x. Put a3 = a2x, b3 = blv. 

Than sb3 = sb1y = slaty slb2x = s2a2x = s2a3 

and ~bä Yb1yYla y ý'. Ylý2x = y2a2x = Y2a3 1 

Thus (yes) ti (y2, s2 and ti is an equivalence relation on the 

set, rxS. 

We partition rxS into equivalence classes. 

If (Yjs) e E, an equivalence class of rxs, 

j7e write Y/S 
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Put p= (y/S (y1s) are representatives of the equivalence classes 

on rxS under ti'). 

We dente the group of left quotients-of the semigroup S by G. 

t'e shall shoir that A is an additive group and G acts ono as a 

group of automorphisms. 

Let Y/S, yl/ST c G, and define 

Y/S + YT/4; 1 ° (ya + Y'b)/r, 

where m= s'b = sa for a, beü. 

This operation is well defined. 

For suppose (Y1', s' ) ti (Y', s') 
1 

and (Y1, sl) ti (Y's) 

/, Let as ß ES st. Consider Yl/s1 + Y' s ll 

sa = s1ß and 1"a = Y1ß 

If A, icS s. t. s'X = s'1 and Y'A = Y'lu 

then Y/S + Yf/S, - (ya + Y'b)/Sa s sa = s'b 

Yl/51 + Ytl/stl ^ (Ylx + y'ly) /S1X 'irhere x, ycS such that 

slx R stlf. 

Choose e, f eS with slx. = sae 

Then sae = s'be, slxf =s tgf 

. '. sfbe - s'lyf 

P1otr 3 k, h cSs. t. ael: = ah 

saek = sah - s1ßh = s1xfk 

thus Oh = xfk 
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aek = yah = yl$h = y3. xfk 

then (yae - y1xf)k =0 yae = y1xf 

Also y'beL = y'Am zrhere P., r. zS such that 

bet = am 

how s'bet = saet = sl'yf'. = s'An 

sl'yf£ = slum y ft = um 

And 'bet = y' Am = y'JIM = y' yft 

giving y'be = y1tyf. 

As e and f are endomorphisms of r. 

(ya + y'b)e = yae + y'be 

= :. xf + 11'yf = (Yi: + YZ'y)f 

But sae = s1xf 

Hence (Ya +Y'b, sa) ti (Ylx +Ylly, slx). 
Yl 

Let d (Yx + Yly) where dy = bx 
cry 

Y 
and b+ä (yx' + Y37 ' ), where dy' - bxt 

dzy 

we must shotr that the two expressions are equivalent. 

Choose p and qcS s. t. dyq'= dy'p then yq = y'p 

dy'p = bx'p = bxq and 

x'p = xq. 

Thus (yx + y1y)q ='yxq +ylyq-.. = yx'p + Yly'F (YX' +y y')p 

so ('nc +Yly, dy) ti (Yx' + Yly', dy' ) 

Addition in 
,, 

% is well defined. 

It is easily verified that d is an additive group using sirlilar 

techniques. 
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I 

If y/se As geG we define 

(y/s )g ° 
Yul/s 

b where g= r/s 
111 

and u,, tb1 
S are such that sut = rb. 

This is also a well-defined operation. We show that g is an automorphism 

of (A, +). 

Let y/ss Yt/s' c d, g= r/s 

,. 
1 

. 
then (y/s + y'/s, )(r/sl).. = ((ya + Y'b)/sa)(r/s where sa = s'b. 

so (Y/s + Y'/s, ) (r/s (ya + y'b)ul/ 
1 slbl 

(yau1 + y'bul)/s b where sauf = rb1 
1I 

Now (Y/s)(r/s )= yu2/- where su2 = rb2 
slb2 

and (y' 
, 

)(r )= you /s /si. 3/s1b3 
where s'u3 = rb3 

then (y/s)(r/s1 + 
l) 

= (Yu2C + Y'u3d)/slb2C 

where slb2c = slb3d. i. e. b2c - bad. 

Choose x, yeS s. t. slb2cx s1bly 

Then b2cx = bly = b3dx 

and su2cx rb2cx = rb3dk = rbly = sauly 

thus u2cx = auly 

hence yu2cx = yauly. 

Also s'u3dx = rb3dx = s'buly so 

u3dx = buly and 

Y'u3dx = Y'buly 
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Then (yau1 + y'bu1)y = Yauly + y'buly = (Yu2c" Y'u3d)x 

i. e. (Paul + -? bul, slbl) - (yu2c + ytu3d, slb2c) 

Thus G is a group of endomorphisms on A. 

Suppose now that 
,- 

(Y 
A) (r/s 0 for y/s e A, r/s eG 

11 

then yr12/s1b2 =0 where su2 = rb2 

i. e, yu2 =0 which implies 
.y=0. 

Then r, s 1 
is a monomorphism. 

Let y/s c S, r, 
1cG, 

we will find ybc 

such that y/s = (Y/b)(r/s ), 
1 

, _.. .,. 

Pick v1, wl cSs. t. sv1. = slwl,, 

Put y= Yl, 'ý = rwl 

then (v, ) (r/ill (v-/ 
1 

r/Sl; 

Yv1a1/, 
1c 1 

where rw1a1 = rc1 

i. e. wlal = cl., - so 

(�) (r, 
5) = wlal/slwlal yv1al/sv1al Y/s 

end (Yvla, 
' sv1a1) - (y, s) 

Thus G is a group of automorp1isms of A. 

We have thus obtained from an additive group r with a semigro. -. p S of 

endomorphisms of r, satisfying certain conditions, a 'larger' additive 

group A and a group G. of. automorphisus of A which contains a '-copy°of S. 
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We now ask what conditions make all elements of G. regular automorphisms 

on A. This is answered in our next Lemma. 

2.5 Lemma In the terminology of 2.4, G is a group cf regular automorphisms 

of A if and only if for ev... ry 0+YEr, 

Ysl =YS= sl = s2. (sl, s2ES) 

Proof. Suppose G is a group of regular autos. 

Let ycr; a, s2 eS and Ys = Y:; 2 with s+ s2. 

Then (Y1l)( sjs2) _ 1a's2b 

where l. a = sb so 

ý Y/l)( s/s2) = ysb/s2u = ys2b/s2b = Y. 

s/s eG and we have found an element yeeand s/se G such that 
22 

(Y)(s/s )= 
2Y 

thus y=0 must follow, since s/s is regular. 
2 

Conversely suppose y/s e e, r! s eG and y+0 and 
1 

(y/s)(r/s y/s 

Then Y/s yul/s1b1 where rb1 = sul 

3 u2 b2 eSs. t. 

Yu2 Yu1b2 

and su2 = s1b1b2 since 

(y, s) " (; u1, slbl). 

Nowu2u1b2asY #0 

so su2 sulb2 = slblb2 sul = slbl = rbl 

and thus sl =r 
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This means that r/s 
1 

is the identity automorphism of A. 

T'hus G is a group of regular automorphisms of A 

2.6 Lemma With the same notation as 2.4 and 2.5, 
P 

If r= {p} u {U YiS} for suitable Ti, .. PeP , 
1=1 

with y. S n YjS =" for i+j 

then A has p orbits under the action of G. 

Proof Let 0+ 6CA. Then 

and y= Yisi for some sip 

a= (Yiei)/8 = Yi"(sl js) 

ö= y/s for some Ytr, seS 

: Sandi<i<P 
p 

c .J YiG 
iýl 

P 
Thus 0= {U y. G} tj {o} 

i=1 

Suppose 6' +0s. t. ö' syiG A yjG vhera i j. 

let 6' = yi (r/s )=yj (y/ü) where r, s, y, zcS. 

3a, ß eSs. t. sa = zß =n (say) 

dý _ (Yr)ýs _ (Yjy),. 

Vin = 

Yirul/b 
Z 

where u1, b1ES and 

mb1 = sul 

i. e. sabl = sul so uý - ab, 

S'm = (Yirabl)/. 
1 

= Yirct 

a'm = 'j'2/b2 where u2, b2cS and 

mb2 = zu2 i. e. 

zßb2 = zu2 3o ßb2 = u2 
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dlm = yjySb2/b2 = Yjyo 

Thus ö'm c Y. S 0 Y. S which is a contradiction. 

2.7 Theorem Let N= YYY$ (r) 

and Q= YYYG (A) 

P 
there r_ {0}V {V' y. 3} 

i=1 

{o} LJ { 4J YIG } 
i=1 

Where r, S, G, A satisfy all the requirements of 2.4,2.5,2.6. 

Then we can embed N in Q as near-rings. 

Proof If neN and if the yin ,i1, ..., P 

are known, then Yn is known for all ycr. 

For if y40, then Y=Y. s for some sCS and is{1, ..., P} and 

Yu = Yisn = (fin)s. 

If nEN, define u: A -- e by 

CYi(r/S)1n 
= (yln)(r/s) 

where ie{1, ..., p}, and O. n = 0. 

Let dcG, c/d cG then 

(d. (cýd))n = E(Yi)"(a/b). 
(2/d), n 

Where Y. (a/b) =d for some is {l, 
. . P} and a, bc3. 

Put elf = (a/b)(c/d). 

Then ('g)n = (Y1(e/i))n Where g= cl3 
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= (Yin)(e/f) 

= (Yn)(a(cýd) 

[yi (a/bn (c/d) 

an (C/d) 
And thus neQ. 

We embei N in A in the natural way, 

let ON ;Q be defined by 

nE =n Vr. FN. Let n, n1cN 

Then (n + n1)E =n+ n1 

and 6(n + n1; = (71(6/v)) l'a + nl) 

[Yi(n + n1)j (alb) 

_ &in + Yiala (a/b) 

= Yin(a/b) + Y.; il(a/b) 

=Sn+dn 

='(n+nl) 

Thus (n + n1) = nt + n1t 

(nnl) nn1 

so a (nil) = (Y1(a/b)) ( 
1. 

) 

where 0; 6= Yi(aýb) eO 

((a/b) is auto. ) 

yinnl. (a/b ). Let ylrui, = Yjrle Je{l, ..., p}, r1CS 

(Y, rl)(e', b) 

an. nl lýi(aý)J rý. nl Ci'in. (a/b)] El 

CY 
P 2(a', b)J nl where yin - Yk72 

and ke(i, .. , P} , r2tS. 

Hence tn. nl [Yk(r2a/)j nl yku1(r2aý) " 

Let yknl = y., rj for some tell, .., p! r3eS. 
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Theli Yinnl (, rl. r2)rl .y 3r2 

and a(rýnl) =r r3r2(a/b) _ Yirl(a%o) ýni}, 
Thus (nnl)F, 3 nnl ill (nr)(n1 ), and is a near-ring homomorphism" 

If nc ker C, i. e. rý =O-n, 

then An = 0. 

So VSC ý 
ön =EY i(alb = (Yin)(a/b -0 

In particular Yin=0%V is{1, ..., P} 

and n is the zero ampping on r. 

Thus n-0. 

C is a. monomorphism and we cwi embed N in Q. In future we wiLL assume 

that NSQ. 

2.8 Remark Q is a 2-primitive near--ring with identity and d. c. c. on right 

ideals by constix)cti' n (Ch. 3). 

2.9 Definition. With he above notction, let I= {1, 
.. %p} 

: suppose n is any element o: N. 

For any kt x, define 

T(n) = {i eZI yin c YS I 

It is clear that Y"kin) may be empty and that if I eI and k L, then 

] (n) p It(n) 

2.10 Lemma If n is a regular e1ea1, er. L of N. then the set {I. 
k(n); ke7} is a 

permutation of I. 
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Proof Suppose keI and Ik (n) =$ 

Define nl such that y, nl = yi . -*LEI, i4k 
.. 

Yklt1. =0 

Then yinl yinnl i4k 

y nl =Yj s= YJ an d= Yknn kl 

where Ykn = Yjs some jE I- {k'} and aE3. 

Thus nl = TU.. = nl =1a contradiction. 

Thus Ih(n) 4' for all I. 

Since I is a finite set, the set {ik(n); kcI} is a permutation of the 

set {1,2, 
.. . 12} =I 

(identifying singleton sets and their elements). 

2.11 Theorem If n : is a re-gutex elemeut of N. then n is invert kkie in Q, 

i. e. qeQ s. t. 

nq=qn=1Q. 

Proof Let Yin = Yjs si , 
jicI, Si ES, for i=1, 

..., P 
1 

Then {jl, 
.. .9 jP} is a rerm tation of {1, 

..., P} =I 

Let this perxºu . ticn be r, i. e. 

ji = 7r(i). , isl. (n is 1"-1 and onto). 

Each eIement sit icl, ha3 an inverse in G, let it be si 

Define q: D -%- 0 by 

( Oq=0, 
( -1 
( (Yn(i) gi)q = Y. si 31 for iel, gieG. 

Let G"Q, g. G, cud 6= ; r(1) gl some id , g1EG. 
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Then (g)q - (YiC; 
)gg)q 

= Yisil (g1g) 

° (Yisi lgl)g 

(Y, 
r(i)gl)q"g 

= aqg 
Thus qeQ. 

Let 0ý d'eA, and d' = Yigi = Yi(ri/t. 
1 

where idI and ri, ti c S. 

Then d'n q= (Y1(riit. ))nq = (y. n)(r. /t)q 3.1 

= (", 
T( ) si)(riit_ )q 

J 

(Ylsl-ls. )(ri, 
tl) Yiri/tl = d' 

Thus nq = 1Q 

d'qn _ (Y1(ri/tI))gn = (Yr(K)(ri/tl))gn 

for some KeI, n(K) -= i. 

a'qu - (YKsK 1(ri/t. ))n = (Ye sK 
1)(ri/t. ) 

Now yin = Yu(K)8K and thus 

S'qu= (Y, 
r(K) FKsK1 )(ri/t 

= l(ri/tl) = at 

This means that qn 31= rq. 

Thus we can 'invert' all the regular elements of N. in Q. We will 

new investigate the form an arbitrary element of Q takes. This gives us: - 

2.12 Theorem If x is an arbitrary non-zero element of Q then there is 

0, n1EN with 0 regular in N such that 

x= n10+1, where 0-1 is the inverse in Q of the element 0. 
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We first need the following Lexnma. 

2.13 Lemma Let r. ,..., ra, t1, ..., taeS 

then 3 mcS, hl, ..., ha cS such that 

mri hit. for i=1, ..., a. 

Proof We proceed by induction on d. 

The case a=1, clearly 3 m, hl cS such that 

mrl - h1t1. 

We assume the truth of the lemma for sets of t elements of S 

where 1< T< 0-. 1 

So given r1, ..., rT, t1, ..., tT S S, 

3m', h'1, ..., h'Tc S 

s. t. m'ri = h'i ti for j=1, ..., T 

B at+l' 8T+1 eSs. t. 

ai+l rr+l ßT+ltr+l 

3z, wr cSs. t. zml = I, ra 

Putting m= zm', hT+l = wßi+l' hj = zh'jtj = 1, ..., T, 

mr. = zm'r. = zh. t = h. t for j=1, .. T, 
JJJJJJ 

T+1 - zn'rT+l wcT+lrT+l_ vßT+l tT+l = hT+1tT+1 

"". mr, = hKtK for all K=1, ..., T+1. 

The principle of induction gives the result 

Proof of 2.12. Let xcQ, x+0. Put X =fac Il Yax = 01 

Suppose x: y. + yýigi, idI X, jitI, gIZG 

x: Ya 90 for acX. 
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For any KcI; put 

1K(x) cII yixcyKG} we have II, (x) consisting of RK 

elements viz:, I (x) pK. ,... pK} or 
p*KJ 

zK. 

I=X{Q IK (x)} 
IL=1 

Assume pý eIK(x), for some keI 

then ypK. x = ylý. gpk (YK) (rpK%(t 
K) ýa IN pa 

from the lemma 

'3 mK hpK I1 
GK eSs. t. 

1 RK 

0, P 
for Q!.! A 1,.... , RK (mK)(rPK) _ (hpK). K 

We define a mapping nI: r -+r by 

(YP). n 1= 1K. (hpK) JI = 1, ..., z It, k=1, .. ,p 

O, nl =0 

Y,. nl 0 for ccX. 

It may be seen easily that n1 E N. 

Lei I" = {jcI I yixeyjG for some ielf. 

Thus I" is the set of indices whose asonciated orbits appear in the 

image of x in A. 

befire oa i' -r by 

Yt0 Ytnt dtci" 

Yi0 = Yi ViII", (ieI) 

0.0 - 0. 

ON and 0 is a regular element of N and so 0-1 exists in Q, from its 

construction 

3-1: ytg 7tmt^lg for tei" (The mt are defined above) 

0-1: yg '' yig for icI''I'l 
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T. tty_no1 

for icIK (x), yiy `, Yinl0-1 (yKhi)o-1 y -1hi 

a3 i eI°t. 

:? ow maxi ti and so in G 

ri ,. = mtý i 

Thus y, y = ykriti-l L yix 

If jeX, then y`yr = yjnp-1 =0 

as yj x0, 

f= n, 10-1 x10te alar in N 

Thus Q is a near-ring of right quotients of N. 

We su! n-, ýrize in the following theore? 11" 

"14 Theorem Let r be an additive group and S a, ult'P 
"CatiVL `eM'9 OUP, 

with identity, of monomorphisms of (r, +) -> (r, +), satisfying sM 

(i) S is left and right cancellative 

(ii) S is lcft and right r°vei Bible 

(iii) 1 henev -! r 01 y£T, thea ySl = y52 4 S. L L o2, (S 
l' 

S2eS ) 

(iv) r= {0}t" yiS for some yl, ..., yper, such that 

i-Z 
"; 

7iS fý -y = '" if iLJ 

Tler tb nee., -ring IT = rry8(r) has a nea: -ring of right quotients Q, 

which ib 2-. primitive with identity and has d. c. c. on right ideals. 

In other *rcrd IT is a right o7, -der in q. 

2.15 Pi"cpc: ' , -- "Pl is a 2-prime r_:: ar-ring, rliere b is as studied in 2.14+. 

Proof Assume that k, ktCN snL kRki -0 with ký0 and k' ý0. 
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i, jeI s. t. yik = yes for some scS. 

t, rcl s. t. ytk' __" yrs' for some s'ES. 

Let ncN be defined by 

n: yj -* yt 

n Yý 0 `-i Lcz, A". 
4j. 

Then fib f (tyjn)s)k' _ (Yt£)k' -c (Ytk')r 

= -Y Sts +0 

This is clearly a contradiction, and so either k or k' =0. 

We will see- in the next section that N also possesses certain finiteness 

conditions. Unlike the last proposition, however, the proof of these does 

not depend on the spocial construction of this section and are valid for 

arbitrary right orders in 2-primitive near-rings with d. c. c. on right ideals 

and identity. We shall study these in section 3. 

We uok introduce specific examples of the above construction. 

2.16 Ex: 'p-les 

(i) Put r_": Z, + >, the additive group of integers. 

S- . iemi(; roup of positive integers under multiplication 

Then 2 z- {0} U 1. S V (-1). S 

S has & group of quotiento G, the group of rational positive numbers 

ualer rultiplication. The conditions of Theorem 2.14+ are satisfied 

and the near-ring 

:ý= rrrs(Z+) is a right order in the near-ring 
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yYyG(A) which is 2-primitive, has identity and d. c. c. on 

right ideals. 

Here A is the additive group of rcticnal nin1bers, and clearly 

A_ {0} u l. G j (-1). G 

(ii) Jet r be the field of real numbers. Put R=F[xj, the polynomials 

in x. Write F' _ {feF `f> 01. 

Put S= {set of all reR such that the leading term of r is in F'} 

S is left and right cancellative and left and right reversible 

(in fact commutative). The eierects of S act as endomorphisms on 

F ? c]] and are in fact ieonoriorphicros. 

rsl =rs2 sI r F2 if 0 rcR and sl, s2ES. 

R= {0} U (1)ä lý (-I)3. 

Thus ire can apply Theorem 2.14. 

3 Arbitrary right orders in near-ring s with d. e. c. on right ideals and an 

idea 4 y. 

Here N is a right order in Qa near--ring with identity and d. c. c. on right 

ideals. Thus every regular element ol" N has an inverse in Q and qcQ then 

q= nr-l where r is regular in N and n. rcN. 

3.1 Proposition If Q has d. c. c. on right annihilators, then so does N. (A 

right annihilator is a right ideal of Q which annibilates some non-zero 

subset of Q on the right) 

Proof Suppose (Z1)r, W; (Z2)r C, "" is a chain of right annihilators 

in N (Zi are subsets of N) 
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Put (Zi)r = X. Then clearly 

ZiXQ =0 ýXQ S right annihilator of Zi in Q. 

Let Ziq =01, qcQ 

then q= nr"l , n, rcN, r regular in N. 

so Zinr-1 =04 Zin =0 =4 nC(Zi)r = X. 

Thus qe XQ. 

Then the right annibilator of Zi in Q is XQ. 

Thus (z ) 
rQ 

c (Z2) 
rQ .... 

is a chain of right annibilators in Q. and must terminate`3 K s. t 

Let hs(ZK+l)r, 

x. lc(ZK) 

co x= tnr 1 
some tc (ZIC)r, nj rCPN, r regular. 

ZKx = ZKtnr l=0 

xe(ZK)r 

Thus (ZK+l)r (ZK)r for some integer k. 

3.2 Proposition If J2(Q) = (0) and Q has 1 and d. c. c. on right ideals, then 

every right ideal E of N with the property: that if I is a right 

ideal of N, then ErIý (0) (I t 0), pcssesses a regular element. 

Proof Q= a1QG ... . @atQ (**) by 2.3.6. 

where the aiQ are right ideals of Q and Q-modules of type 2. 

Now 0 aicQ so ai = nir. 
1, 

rig nicN, ri regular, (i = 1, ..., t) 

thus n. = n. r. 
1ri 

= air. eN if) aiQ 

which shows that N fti a. Q 4 (0) i=1, ..., t. 
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aiQ is a right -deal of N, and we have 

E 11 (; c j a,; h) ý1 (0) 

--Let xi 4 0, xi eE Fl Nt a1Q, xi = airy for it 

.. ' 
Put L. ý"n 1ý "'" x1Q +"""+ xý Q 

... t; ý'JýQ . "ý- aqQ "" Q (as a1c. 1Q 
+ (0) ) 

Thus 1= Ylnlcl 
1 

4" """+ xrntct"1 for nl, "", ntEN, c1, ., cteN 

and the ct, """, ct are regular. 

We narr show that c regular in N, n11, ", nftel such 

that . ̂. = c. n' fvr z 1, "", to 

We prn"ad by 1n. Iitr: ticou on the ti a. ue of to 

As N r; gnt order iii Q, if n, acN with a regular, then 

3 b.., ell with h. : 'º)g7i4 such that 

Case t-13 nt, bell s"t. car :. cl b vi th b: egu33Y' 

since cl aLtl b are i ogular, so is clb, 
(for Clbx rw clby -) bx = try 

, -apere x, yEN 

xclb ° yclb xc1 = yc2- x=f where x, YEN) 

Thus clb = elm for £ome reN. 

A30= e the induction hypothesis is true for t=K. 

S-e cca find c' regular in N, MI, ,..., P'K e rl 

such that cz U c. m. i=1, ..., K 

x. v eNi with x regular such that 

c'x u cY. }ly cis regular 

PL. t n' i= nix for i 1, ..., K 

t nY+l=y 
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Th IL crýý "" e, -: 1, ,K+1. This prove3 the stctement. 

T? 1. ýý, we can find nh.,,.. s at,. Ec rep-dar in N with 

ýv i xlnlr_1 c1+ 

saq r-4 ra1'ýýi ": rLa4n, 7t0 

and ý-- a1g11. Lni' "s +a gntn. as (**) is a direct sum. 

x3niu1++. . , +: '-tntnt' cE 

i: Eýce E pos:. u; e", s a regu1: s clzneno. 

3.3 f=O)2C: nT Lion. 1 i'. l. G to s. ? 'tg"". 1. ft`_' crt N, the a tile. rieht N± sub roux 

r: b' ba.: the protc"it"y th4t if B is aiur rt. N± group 

then vii C1 Y. ý CCii J) 8- (t'; . 

Frof)f Q 6" y3uca 1. = Coe e CQ. 

Suppcsc. ' c)! hBL, (0) for sore rt. N± group B. 

Let xsca rl Bid, then if x+0, 

-=C r--. -l = ji ý . rhe e jF;;, r, rI cr° irgular in N. 
1 

r2, nl, n2 E ;:?, r2 reguiei, such that 

n r. 

Then x- cnnlr? ýl = in r,, -' so *! ý. = era, = on, 

8310 7-r. C C: 1 1: V. Thus Yr` 0'-7 x"0 6L5 x'2 

is rq r3. ax. Thu3 cQfr- (0) 

i.. '!. Q f1 ; CQ i0) 

1. C. PQ to) 

z. e. R, i0) 
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Ia ýJc[1, ..., K 

ýY 
t Tý 

.awai 

so 1> A er = (c1) 7ý - C? ) 

hence: A- ia1, 
,"Ks id t'ie resury. t follcws. 
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Vector Groups end Near Algebras 

Chapter 8 

In the development of the theory of rings, the concept of a 

vector space over a division ring plays an important part. 

Many primitive rings can be described as subrings of the ring 

of linear transformations of a vector space. In this sit- 

uation a vector space is simply a unital module over the 

division ring. To a limited extent the picture is similar 

in the theory of semigroups although this time we are concerned 

with sets of transformations of what are termed 'vector sets' 

over a multiplicative group (with zero adjoined in some cases). 

Near-rings are basically of an asymetric nature and bear the 

influence of both the above mentioned theories. 

Semroup Operands 

An operand with respect to a se=group is a natural 

analogue of a module over a ring. We take our definition 

from Clifford & Preston, Algebraic theory of semigroups, 

Vol. Ii (Clifford & Preston [i]) 

1.1 Let S be a semigroup (written multiplicatively). Then a 

rt. operand M over S (or a rt. S-system) is simply a set M 

together with a mapping (m, s) -> ms of MxS into M such 

that m(s. s1) - (m. s)si y sal cs 'icM. 

1.2 Given a right S-operand M we' define the set of üxcsd elewr 

of r4, F(M) = {xl xcM, xs =x VsES). 

This is the set of all the elements of M. which remain fixed 

under the action of all the elements of 5, and usually this 
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? -%i'7Z. rial set . cugiSt1li,.; o'_eIIlen't" :. ilE ºS. 

Invest ßý oui SG'"^j. s'yý. "G :. r:. ̂  r'! 'i:.. r. j), J, 'se: i A., za. o vs. i 
da u'. iLty 

element, we usiuail- insist that our operands also possess 

P. unique invax laut z1F-nent, usuei?. y written as 0M. Then 

if 6 is the zero of the seriigroup S, we have 

m. 0 =0M, V meM. 

Clearly 0ý1 e F(M) and in fact we usual]y have F(M) _ {0M}. 

If we have a semigroup S and adjoin a zero to it, we -will 

indicate it by S V`{p}. 

1.3 If M, M are two rt. S-operands then we define an S- 

mappiný-M into M, to be a map ýý N -> MI such that 

(m. +)s. vme ri, seS. 

1.4 An S-operand M is totally irreducible if 

(i) M. S - {m. s; mcM, scS} 4 FM. 

(ii) Any S-crapping of M into another S-operand M' is 

either one-one or the set M' has one element only. 

1.5 Let S be a seiigroup with a zero element 0. 

A monomial_(row -matrix A over S is a matrix with elements 

in S and such that each row contains at most one non-zero 

element of S. (Clifford & Preston t_1; Vol. I, 53.1). 

1.6 If M is any S-operand then the semigroup S1 of the right 

multiplications of M by elements of S is called the 

representation of S generated by the S-operand M. (Hoehnke, 

rl] §1). 

1.7 By analogy with Schtr's Emma the set of S-mappings of a 

tot%l3. y irreducible S-operand M. if S and M have zcro 
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-I35-o:. = nts, will take the form of a multiplicative group and 

a zero element. This suggests that the idea of an operand 

over a group with zero nay be fruitful. In fact Hoehnke [1] 

and `hilly [1] hr. ve introduced them. Following Hoehnke we 

call them vector sets. 

1.8 4 vaetor set over a multiplicative group G with a zero 

ad oined, (GL{}) is a set M, such that there is a mapping 

(m, Y) -> ; ny of X (GL: {o}) -->M such that 

(i) m(YýY21 = (mY1)Y2 VmEM, YlýY2cGU{o} 11 
(ii) m. ]. mV meld. 

(i, i) If' j? (M) (mcMI)ay 4mVy G`-a{o}} 

then IF(M) I =. 1 or F(M) -- M 

(iv) F(M) =M 

(v) F(M) ýM -> [(M F(M)) (G V {o} )a nF(M) 
(vi) 6, yeG'J {o}, if mzM 

then my n mS ->y =6 ormEF(M). 

Mote that if ýj F(M) #M then IF(M)I= 1, F(M) u M. 5. 

1.9 ' Rieeren. (Hoehni. e i1 t) . Let M be an S-operand. and also a 

vector cet over the group vith zero Gt'{o}, such that 

(eas)y = (m')s V mcM, seS, ? G{}. 

Le; s Fs(M) . {xIxeM, xs = x, V seS}. 

FG(M) = {xIxc: M, xy = s., We GVG}}. 

Then if FG(M)"- F. (M) and IM! > IFG(M)I =1 

then the representation, S,, of S generated by the S-system 

M can be interpreted as a semigroup of monomial matrices 

over GO, {o} 

We now consider the natural corresponding concept in 
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' 2. Vector. Geouris 

A 2"-prinitive near-ring with d. c. c. on right ideals 

and an identity is the set of all mappings of an additive 

group r, which cc=, rte with a group of regular automorphis; as, 

G, where G induces a fi:. to number of orbitson r. This is 

the motivation for the fnllo*. rinc definition. 

2.1 A Vector group over a multiplicative group G i"rith a zero 

adjoined, is an additive group V and a mapping (v, y)--' vy 

of Vx (G%,,,; {o}) ----) V such that 

(1) v. (g1 ý2) (v. g1). g2 

(ii) v. 0 - Ov 

iii) (v + v1) + 

(iv) v. 1 = V. 

V vcV, C19 32 EG V {o}. 

V v, v1CV. , Pc G 

(v) v. g v v= 0 or e= 1 

We will sometimes cal. these G--vector Groups for short. 

2.2 If Vl and V2 are both G-vector Üroupa then a G-transformation 

of VI into V2 is a mappinc tb : V1__ V2 with the propert;; r that 

(v1Y)V, ' (v1V)Y 
.V vleV1, YEG {o}. 

A G-homomorpnisn of V1 into V2 is a G-transforration of V1 

into V2 which is also a Group hoL1omorphism of Vl into V2. 

2.3 The set of G-transfoi tions of a vector group V over G 

into itself is a 2-yrimi`ive near-rin- with identity. 

2.4+ If gsG then V= Vg any. the elements of G are aatororphisms of 

the additive group V, end in fact G acts as a regular permut- 

ation g o%. p on the elements of V. 
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2.5 A vector sur roj, ý, of a veei oý gcotip over G L' {e} is a 

subset which ia a. -so a vector `scup o. 'ýIr G in its on right. 

2b If vg = vgl for .; omP v 0, C;, geG, then v= vglg 91 g 

We can define can equivalence xe]. rýtio"ý P on V tos follow3. 

v1PV2 rv= vi; for cc, nc geG. If 're assemble . repres- 

entP: tives of these: rPc aivvlc'! ce cy, ssses we obtain a decom- 

position oil V ci follows: 

V ý`vý£ý, v. G) J {o} where the set W is a set 

o. ° representatives of the aon-zero classes of V. Each 

element, of V hG. s a un'. que -I epres ntat: ion In the respect 

that if v? 0, tiieu v=v. g for sox:: view and gcG and has 

no other raijr-E:: ien ation in terns of the particular repre3- 

ents, tives : gin qu_? tio;.. 

2.7 Lei. V, V' be any vector groups over GJ (n} then the set 

Tr - yyyG(V, Y' ), i. e. the set of C-transforriations of 

V --i V' , is a vector group over GU (o 
. 

Pr'af. We define (v) (W + 4'2 )w (Ir)V1 + (v)' 2 for 1'1,2 e. 2 

aufl v(aiy) _= [(v)4, ly for y Gx J {ö} 

The conditions of 2.1 axe : gat Vicd. 

2.8 For any two vector trxouas V, V' over GV; o) , the set 

H= iiouu(V, V') the set of G-homomorph i sins of V --- . V' 

is a vector get over G :, 'to) 

Proof. F(II) _ {h XIt y= h +ycC (.! {o} I 

Suppose 4 gsG with g01. Then for any he}(H), EV; 

(vh)g va but V' is a vector group ead so vh L0 for el' 

vs d. This h is the zero mapping. (F(II) ý 1. If G {1} 
, 

than h. o "" k -ý h-0 anal so F(*I) = 0H as before. 
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No'; \-re nýýº;; to check that 

`(li"' off}}(G LOil" r rv. 

Iii fact the lu'versecti. cn ý. c clearly equal -'. o {0 
H 

Also, if h, 3 -- ; gZ : 'c: t s. me 9, F., E. G and. hell then h0 for 

cLn vev 

{tnýg _ {"3: ý}ý, "- ýý . If lix - hog = 011 

2.9 Pcoýýosition. A sector proup is a. 'vector set. 

Proof . If V is a vector group over G then 

F(IT) wad s t) IF (V) 
ýUco. {fV 

. F(V! ) (G F(V) {Uv} 

F13as"lf :- vy -. rd Y, Se GV 

Let; Y 0 G, then 7=rlYý-ý- "=0or6 -Y. 

x'P Y0 then v5 "0 so either ö= n 

orv=-7653'=0. d-1 0 

A1? the Condit ons in 3. Q r. e satisfied. 

ti 'e finally. me .,; to a rer u1t on the Linea oA 1.9. 

2.10 s'heore-W. Lot II be a 2°; ý-ýizný. ti4e near-rin with identity and 

c?.::. c. on right ideals. I. f V is P. faithi z'. N-module of type 2, 

than each e1emF. nt of N may be represented by a. monomial matrix 

vLth elements In Z- Ho, r a %t .. 

Zach Mtrix will be in x n. a*here m is the mtnber of orbits 

irluced or, V by the grc: wp (0'vi0} 

Pt oc,: i. i: r rL (0) U y1G 4; 
... 

t1. -y C, 

ithere (', ath yam, .$. Yý are orbit representati-cr. in r. 

? ach F ; -e nent rr_ri iý determined (r-. s a right multiplication of r), 
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by its action on the elements 

Y1 ..., Ym. 

Let ncN and suppose 

yin = ii Zi i=1, .., m, zicZ, jie(1,.., m}. 

We would then have, corresponding to n, the matrix with 

zero's everywhere except at the (i, ji)-th entries where we would 

have zi respectively. This is for i=1, .., m. 

2.11 Example. If n=6, let ncN such that 

Y1n=Y3G Y2n=0, Y3n=y 721, Yon=0, 

Y5n= y1 Y6n = Y6" The matrix would be written as: - 

00g000 

000000 

000 gl 00; 

000000 
10o0001 

000001i 

Tfliereas this set of monomial matrices may be anti- 

isomorphic as a semigroup under multiplication to the 

multiplicative senigroup of the near-ring, N, it ': *ould require a 

Good knowledge of the waif the orbits on r behave 7drith respect to 

the additive structure of that set before ire irould be in a 

position to Go any further in the direction of monomial repres- 

entation of near-rings. 

13 Isomorphism Theorems 

We are looking at the uniqueness of the representation of 
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11+0-a nea-l-ring as the near-ring of mappings of a vector group 

commuting with the group of automorphisms. 

Following Jacobson [l1 
, 

3.1 Definition. Let V be a vector group over a multiplicative group 

with an edjoined zero GU {0}, and V1 a vector group over G1 L' {Ö} 

(G1 is a mult,, gp., 0 an c. &joined zero). A mapping S of V into 

V1 is a semi-transformation if and only if there exists an iso- 

morphism a of G, onto G2 such that for all veV and gcG, 
J. 

(vg) S= (v6)(ga), and also if S is such that Ov. S 0 
v1. 

The isomorphism a will be called the 'isomorphism associated 

with S: 

3.2 Definition. A semi linear transformation of a vector group V 

over G t., U{Ö} into a vector group V1 over G1UU 10}, is a cemi- 

transformation which is at the same time a homomorphism of (V, +) 

into (V94). 

3.3 ProP o sition. Let N be a 2-primitive near-ring with identity 

and with right ideals which are 11-modules of type 2. Then any 

two faithful N-modules of typa 2 are isomorphic. 

Proof. Let F be a right ideal which is r;? type 2 as an N -module, 

Put r as any faithful N-iodule of type 2. There is -(cJ with 

r= yF. The meppinc ¢: F -4 r, where f1 L yf is an epi- 

morphism of Il--modules. Clearly ker 0_ (y)r 11 F= (0). 

Thus 4 is an isomorphism. Hence every faithful N-module of 

type 2 is isomorphic to F. 
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3.4 Lemma. Let r be a vector group over a multiplicative group 

with zero adjoined. G V{0}, where G induces a finite number 

of orbits on r. Pv: b N- yy-(G(I'). Then the only endomor- 

phisms of (r, +) which commute with the elements of N are 

elements of GU . gyp} 

Proof. Let H be the set ndN(T). 

Clearly GQH. Pick IicH, hV0. 

Let Ysrwith y¢0. Then we assume that Y and yh belong to 

different orbits of r. We choose an nerd such that yn =0 

and (Yh)n 0 0. 

Then (Yh)n = (Yn)h =0 produces a contradiction. 

Thus Yand Yh belong toi the same orbit. 

Therefore Yh = Yg for some gCG. 

YIEf , Now r= YN and so for any 

Y lh =Y nih =Y hnl =Y gn1 =Y ulg =Y lg where y1=Y nl 

for a suitable n1C N. 

Thus h and g are the same mapping. 

3.5 Theorpi. Let Ni, i=1,2, be the near-r'. ng T G. 
(T 

i) where 

ri is a vector group over Gi U {O-) and Gi induces a finite number 

of orbits on r i. (. = 1,2) . 
Then s is an isomorphism of N1 onto N2 if and only if there 

exists a 1-1 ce&i-linear transformation S of r1 onto r2 such 

that nls =S 
1n1S 

for all of Nl. 
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Proof. Let S be a 1-1 semi-linear transformation of r 

onto r2. If nleN1 then S-1n1S ; r2 --ý r2. 

(Y2g21S-11"IS = (Y2S 1Sg2)S-1n1S 
(g2EG2) 

_ (Y2S-1S)(gla)S-1n1S where g2 = gltl. (gl£G1) 

(Y2S-1g1)SS-1n1S = (Y28-1gl)nIS 

_ (Y25-2 g1)S (Y2S 1n1S)(g1a) 

_ (y2'5 11 s)g 

-1 
Thus s-1nS t N2 Also Sn2` CN, r'2cN2 " 

We show that n1-- g 1nlg is an isomorphism of near-rings' 

nl+ni 3g 1(nl+nl)S 

now Yl S-1(n + nl)S = YZS-1 1S + y1S lnl S 

= yl (S-In +S 
n2 S) 

and Y1S 
1(nl. 

nn)s = Y1(s 
lnýs)ls 1 

nj, S1 

Thus Nl 2. N2, 

Conversely we assume that Nl, ' N2 under the dapping s. 

Let N be an abstract near-ring with the isomorphism n -P1 nt 

of N onto N1. 

Then the r pping n. -%#* nts is an isomorphism of N onto N2, i. e. 

Nt -- , NZ 

s 
is + W 

N2 commutes. 

r1 and T2 are N- modules, and in fact are of type 2 and 

faithful. N has right ideals of type 2 since Nl has. Thus 

by 3.3 rl and r2 are isomorphic N -modules. 
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Let S be the isomorphism of the IT-module r1 onto the Id-Module 

r2 Then 

(yin 
I)S = (yl,: t))S = (y13)nts = (Yls)(nls) 

For all Ylerl and n, cill. 

Thus if yl = i2S+1 ire have 

Y2S-1n1S = y2S 
1Snls 

= y2nls 

hence on F2, nls = 8-1 n1S, 

Let GzsGl then S 1e1S 
: r2 -- y r2 and is a houoraorphism. 

Also y2(S 
1nS )(S 1g SS= y1n1318 = ylg1n1S 

= Y2(, S-]'a! S) (S 1n1S) v n,. £'-T, 

Then by 3.4+ S 1CZS 
E G2. 

Put a: Gl----> G, where GV =S clS for all cleG1. 

Then (ý1G1)Q = 
lý1giS =S ülS. S 1G1S 

= GZvGlQ. gljnlEGl 

Let r, 2EG2 then by 3. we may consider the mappinG S 2-S 
1 to 

be an element of Gl. 

Then Sgt' S1=1 for some ýl Gl and 2-S1 15 which 

implies t'.: t a is one too. 

Now 5(91"') = S. S 1vZS 
= GJS we have (Y1L; 1)S = (Y15) (g a) . 

Hence S is a semi-linear trer_iiormation with associated isomor- 

phism ct. 

3.6 Theorem. Let i'1 and r2 be vector Groups over G1%J {p} and 

G2V {0} respectively, and let ni be the number of orbits 

induced in ri by G., and suppose rsi <-, i=1,2. 

If there exists a semi-linear transformation Ü of T1 onto r2 

irhich is also 1: 1 then Gl G2 and ral = m2. 
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t1 

Proof Clearly C1 ti G2. 

Let y11 Y12., ..., Y1m S be orbit representatives for 

r1 over Gl. We nor show that i S, Y12S, ..., y1S are orbit 

Thus Y2 = (Y1jg)S = (Y1jS)(ga) (a the associated isomorphism) 

representatives for r2 over G2. 

Let y2EI'2 t`_ >3t y2 = yj5 for some yler+. 

Let yl = ylig with gcGI. 

Then y2 belongs to the orbit generated by yIj S and G2. 

Hence r2 {os} ii 
5(Y1jS)G2. 

(Where 0 is the zero of T1. ) j=j 

Suppose now that y2 e (yl, S)G2f (yikS)G2 

say y2 = (Yljs)8` _ (YAs)gL. 

Then g2 glv sx. 3 g2 = glo for some gl, gi c Gl 

Thus (Ylj S)(g1Q) = (Y S)(g1Q) i. e. (Yljgl)S = (Ylkgi)S 

Applying S-1 to both sides give us Y and so ljgl = Yikl 

Yij and 'ylk belong to the same orbit of r1. That is j=k. 
m 

Hence r {Os} V Q- (y S jG 
2 

and Yljc t y. S if j0k. 

Hence I'2 has ml orbits induced on it by G2. 

Near Algebras 

Some authors have introduced near-algebras as being near- 

rings and at the sale time vector spaces over division rings 

(with a rule for tying, in the two operations) 

See Brown , 
t., 

_] and Yea-amvro (_i] 
. 

From our development we are led to an alternative defin- 

ition partly because, vbereas in ring theory the division rings 
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that appear in algebras often arise naturally from the 

original ring, for example in the, form of the centre or a 

centralizer of some module, in near-rings these corresponding 

objects rarely have any additive structure. We usually find 

ourselves with a multiplicative semigroup. 

4.1 Definition. If A is a near-ring and GU {0} a multiplicative 

group with a zero adjoined, then we call A a(right) G-near- 

algebra if the following conditions hold: 

(i) (A, +) is a G-vector group 

(i1) V al, a2£ A, Ye GV {p}, 

lal. a2)"Y - al(a2Y) = (a. 
iY). a2. 

4+. 2 Let N be any near-ring with identity and let C= (xeNj = nx VnCN) 

If G is any group contained in Gr, {0}, then we can make N into 

a G-near-algebra if and only if, vhenever n00, ncN, then 

ng =n:? g = 1. (This restriction is unnecessary if G is a 

field, for then if g 1, then g-1 has an inverse and so 

whenever ng = n, then n(g - 1) = 0, and so 

0 a(g-1) =n(g-1)(g-1)-1=n-0. ) 

However-perhaps the most important example of a G-near-algebra 

is-the following: - 

Let N be a 2-primitive near-ring with identity and d. c. c. 

on right ideals. Then N ti M G(r) 
gor suitable groups r and G. 

Then N is a G-near-algebra. (see 2.7) 
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4.3 Definitions Let A be a G-near-algebra. 

(i) A (G3A)--module, M. is an A-module (in the near- 

ring sense), M is also a G-vector group and 

(ma)a - m(aa) = (ma)a Vcm M, aeA, aeG A. '{o1. 

(ii) A SG. A) subbToup of a (G, A) -module M, is an A- 

subgroup Mt, of M. which is also a (G, A) module 

(ill) AG A)-submodu]. e of M is an A-submodule, M", 

which is also a (G, A)-module 

(iv) A (G, A)-module M is of type 2 if M contains no non- 

trivial (GA)-subgroups and t1A * {0}. 

(v) A (G, A)-nnodule M is of type 0 if M contains no non- 

trivial (G, A)-subnodules and meM, in 0 0, such that 

11 =mA. 

(vi) A ght ideal of a G-near-algebra A (as a near- 

algebra : t. ideal) is a (G, A)-submodule 

of the (G, A)-module A. 

(vii) A v--modular-right ideal of a G--near-algebra A is a 

right ideal R of A (as a G-near-algebra) such that 
A/R 

is a (G, A)-module of type v, where v=0,2. 

4.4 Proposition. If A is a G-near-algebra, then the set of all 

2-modular right ideals of A as a near-ringt is contained in 

the set of all 2-modular right ideals of A as a G-near-algebra. 

Proof. Let F be a 2-modular right ideal in A as a near-ring. 

We have an ecA such that 

ea - acF for all aeA. 

We have to show that Fa QF for all ae G &j{0}. 



If ac G Q{5} then Fa is a rt. A tgroup of the near- 

ring A. If Fa F then A=F+ Fa :: o let e= bl + b2a 

for bl, b2eF. 

e2 - (b + b, a)e = b3 + (b2a)e for some b3cF ns F is 

a right ideal of A. e2 = b3 + b2 (ea) eF. 

Novr e- e2cF and hence eeF t=A which is a contra- 

diction. Hence Fa' F Vae{0} Q G. 

Thus F is a (G; A)-submodule of the (G, A)-module A. 

Irene 
A/F is a (G, A)-module of type 2. 

I. 5 Suppose now that F is a 0--modular right ideal of A at a G- 

near-algebra, then A/F is a (GA)-module of type 0. F is a 

proper modular right ideal of A as a near-ring. F can be 

P. mbedded in K, a 0--nodular right idea? of the near-ring A. 

Now a 0-modular right ideal of the near-ring A is a 0-modular 

light ideal of the G-r. eüx-algebra A. The proof of this 

statement is identical to 'E. 4 except that we notice the fact 

that the set Fa is a right ideal of A, where F is the 0- 

modular right ideal of A as a near-rin.. If x= (a + fa)a1 - aa 1 

then a#0, (Note F. 0 = OA) 

1w( -'- .- f)sl - (aa-1)alcF. Hence xcFa. 

Thus we rave 

1mcsition. The set 0-modular G-nea-"'algebra right 

ic'. cals coincides with the set of 0-modular near-ring right 

ide-ls (Note that if K an both are 0-modular G-near- 

algebra rt. ideals, then IC - F). 
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4.6 Coro11ar_y. D(A) =DG (A) 

where D (A) jtall the 0-modular G-near-algebra right G= 

ideals (if non, exist we put D(A) = A). G 

We need not, now, distinguish between the D-radica] -f A as 

a near-ring or aa u--near-algebra. 

LT Preposition. Suppose that A is a G-near-algebra and A has 

rn identity. Every (G, A)nodule of type 2 is an A -module 

of type 2. Any A-module of type 2 can be regarded in one 

v. nd only one way as a (G, A)-Tn. odule of type 2. 

Proof. If M i3 a (G, A)-nodule of type 2 then M00 and 
for any 0 54 Hlylvt, mA 

_= 
M. 

Hence M is an A-module of type 2. 

If M is an A- module of type 20 choose 04 mcM. Then M= mA. 

If ae GU {0} define (m. )a = m(aa) V aeA. 

This is well defined for if mb = 0, bcA, then bc(m)r, now 

(m)r is a 2-modular right ideal of A as a near-ring and so 

(m)r. a C (m) 
rV aEG J {o} by 4.4. 

Thus ul(ba) -- (irb)a = 0. 

M is a (G, A)-module of type 2 defined in a unique way. 

4.8 Corollary. Every A- . odule of type 0 is (G, A)-module of 

type 0. 

4+. 9 Definition. For any G hear-algebra A we define 

JG(A) 
(4 

Cr) 0,2 
v I'e r 

whe: e is the set o... ' all (G, A)-modules of type v=0,2. 

If i: _ we define JG(A) A. 
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4.10 Theoreri. For any G-near-algebra A, 

(i) J2(A) = J2(A), if A has an identity. 

(ii) J0(A) = 30(A) 

(iii) D(A) = DG(A). 

Proof. This consists only of proving the converse to 

corollary 4.8. Let M be a (GOA)-module of type 0. Then 

M= mA for some a0 lacM. 

(m)r is a right ideal of A as a G-near-algebra and 

Mq A/(m)r 
as (GOA)-modules. Thus (m) 

r 
is a 0-modular 

right ideal of A as a ('x--near-algebra. From 4.5 (m)r is 

a 0-modular right . deal of A as a near-ring. Hence A/(m)r 

is of type 0 as an A-module. But M' N/(m)r 
as A-modules 

and so M is an A -module of type 0. 

This proves J0(ß') JO(B) 

4.11 In theorem 4.10 the existence of an identity in A is only 

required for statement (i). ZTichout this restriction we 

would only know that J2(A) J2(A). 
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