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Introduction.

The theory of near-rings has arisen in a variety of ways. There
1s a natural desire to generalise the theory of rings and skew fields
by relaxing some of their defining axioms., It has also been the hope of
some mathematicians that certain problems in group theory, particularly
involving permutation groups and érwp representations, may perhaps be
clarified by developing a coherent algebraic theory of near-ringse.
Moreov;r , there 1s an increasing recognition by mathematicians in many
branches of the subject, both pure and applied, of the ubiquity of
near-ring like objects.

The first steps in the subject were taken by Dickson and Zassenhaus
with their studies of "near-fields! , and by Wielandt with his classi-
fication of an important class of abstract near-rings. Papers by
Frohlich, Biéckett, Betsch and Laxton developed the theory considerably.
Lately authors such as Beidleman, Ramakotaiah, Tharmanatram, Maxson,
Malone and Clay have all added to our knowledge.

The history of the subject has been strongly influenced by our
knowledge of ring theory, and although this has often been beneficial
it must not be overlooked that & number of important problems in near-

ring theory have no real parallel in the theory of rings. It is
probably best to try to preserve a balance, and not to endeavour

exclusively, either to generalise theorems from ring theory irrespective

of their usefulness, or to ignore the theory of rings and attempt to

formulate a completely independent theory. In many cases our results
arc generalisations of theorems from ring theory but at certain

important junctures we will explicitly use the fact that we are dealing



L el Lyl

with a near-ring which is not a ring. This is a very interesting

development in the subject,
We proceed, in the first chapter, with a review of the terms and

notation that will be used in this thesis.
Where definitions and concepts are of a specialized or technical

nature and only used in one section, it seems more sensible to postpone
introducing them until a more natural point in the proceedings.

Chapter 2 gives a summary of the results on the various radicals
corresponding to the Jacobson radical for associative rings. Most of -
these results are well known and readily available in the literature.
Ve also consider near-rings with one, or more, of these radicals zeraq.

We defined, iin Chapter 1, three different types of primitive
near-ring, which are all genuine generalisations of the ring theoretic
concept, Of these three, the two most important are 2-primitive and
O-primitive near-rings., In Chapter 3, we examine 2-primitive near-rings
with certain natural conditions imposed on them, A theorem is obtained
which could be considered to be the equivalent result for near-rings of
the theorem classifying simple, artinian rings, due originally to
Wedderburn and redeveloped by Jacobson.

Chapters 4 and 5 deal with O-primitive near-rings satisfying

certain conditions., Chapter 5 is a generalisation of Chapter 4, but we

felt that the mathematical techniques involved would be clearer if the

speclal case in Chapter 4 was expounded first. In these two chapters
we classify a sizeable class of O-primitive near-rings with identity

and descending chain condition on right ideals.
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Several types of prime near-rings have been developed in the
literature. In Chapter 6 we examine these and related concepts.

In the theory of rings, Goldies' classification of ppime and
semi-prime ring with ascending chain conditions, has been of immense
importance, Whether such a result could be obtained in the theory of
near-rings is a matter for conjecture, at the moment, Ve have made a
start on the problem with the construction of a class of near-rings which
behave in a very similar way te Prime rings with the Goldie chain
conditions, This is the content of Chapter 7. The inspiration for it,
came mainly from the proof of Goldies' first theorem, due to C. Procesi,
which is featured in Jacobson's booke (Jacobson [l]).

Chapter 8, is an attempt to initiate the development of a theory

of vector groups and near-algebras which would play an important r0le in
the future theory of near-rings, in a way, perhaps, similar to the role
~vector spaces and algébras play in ring theory. This may lead, in time,
to results on 2-primitive near-rings with identity and a minimal right
ideal, for example, or a Galois theory for certain 2-primitive near-
rings., For the former problem, the experience of the semi-group theorists
(Hoehuke [1] etc.) may prove useful.

Finally a note on the f_mmbering of results and definitions etc.

If a reference is made, containing only two numbers, e€.ge lel2
then this means y "item 12 of section 1 of the present chapter'. If

a reference reads: 341s12, then this means "item 12 of section 1 of

Chapter 3,



CHAPTER 1
BASIC CONCEPTS OF NEAR-RINGS

Preliming remarks

This chapter will include all the basic definitions and notation
which will be required throughout the thesis.

We begin by defining what we mean by a ‘near-ringt,

Bl. Definitions of a near-ring. Examples.

l.l, A near-ring is an algebraic system consisting of a set, N,
end two binary operations, addition (written +) and multiplication
(written » ), such that the following requirements are satisfied:

(a) The set N is a group under addition, (often written as N*).

(b) The set N is a semigroup under multiplication.
(c) If ng, ng, ngé N then nysf{ng + ng) = n,].na-r n,jng
(d) If 0 is the additive identity of N, then

On = n0 = 0 for all neN,

We remark that the last condition (d) is not always insisted
upon by some authors, but in the majority of work here it 1is
required, and it seems sensible to insert it at the beglinning tfo
avold undue confusion. ‘

l.2. If G is an additive group, consider the set N of all mappings
of G into itself which take the zero of G onto itself, We define
addition on N by using the addition on G. Thus if n, n;e N we

define a mapping (n + ny): G =+ G by (g8) (n+ n,) = (g)n + (g)n,
for all g eG,



Multiplication on N is defined as the composition of mappings.
This makes N into a near-ring and it is a fundamental one in the

theory.

1,3, A division near-ring (or a near-field) is a near-ring N

with the extra property that the set N_}[o} (i.e. the non-zero
elements) forms a group under multiplication.

1.4, If the additive group structure of a near-ring N is abelian,
then we call N an abelian near-ring.

1.5, A commutative near-ring is a near-ring N which is commutative

as g multiplicative simigroup.
1.6, A subnear-ring S of a near-ring N will simply mean a subset

S of N, which, under the two binary operations induced on it by N,

is a near-ring in its own right.

The right modules with respect to a near-ring, homomorphisms and
ideals.

2¢le If N is a near-ring and M any additively written group, then
M will be said to be a right N-module if there exists a binary
operation T: MxN - M, for short ve will wite

(m, n)j = mn, for any meM, nel,
satisfy the fo]_'l.c;wing properties,
() mfn_ +ny) = mm, + mn,
() m(ns\ng) = (mny).ng

.

for all mEM, ni’ Nl q GNt

(4 right N-module will often be referred to simply as an N-module
if no confusion arises).




2e2s An N-module M is unitary if the near-ring N has a multiplicative

identity 1y» such that
M e -|M = m for all meM,

ede We remark, that some authors refer to these N-modules as
'N-groups® and reserve the title 'module! for a more specialised
object, It should be noted that, under the operation of
multiplication, the additive group of a near-ring N may be
considered to be an N-module,

2els Let N and N, be near-rings. Then a mapping £ : N = N,
is called a near-ring homomorphism if' for all n, n’f eN,
(a) (n + n*)f

(b) (n.an)r = (uf), (n't).

nf + n°f

2ede If M and M, are N-modules for some near-ring N, then a
mapping ¢ : M -+ M, is en N-homomorphism if for all

m, mf el and negR

() (m+n*)¢ = m¢ +m'y
(b) (men)d = (me)en

2.6, In ceses 2.4 and 2,5 we will use the tsm endomorphism if
the domain and co-domain of the mapping are the same,
A monomorphism is a 1-1 homomorphism, an epimorphism is a
homomorphism which is onto and an isomorphism is both an

epimorphism and a monomorphism,
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2.7. We introduce ideal-type concepts by studying the kernels of

near-ring homomorphisms. Then e subset I of a near-ring N

is an ideal if

(2) I is_an additive subgroup of N which is normal in N,
(b) NICI, vhere NI = {n.i | neN, ie1}.
(¢) (n,+i)n,~-n,n_ eI for all 1€I, n,, n, &N,
This is exactly a kernel of some near-ring homomorphism.
2,8, A& right ideal R of N, is a set R such that,
(2) R is an additive normal subgroup of N,
(b) (n, + r)n_ - nn_ eR for all reR, n,, n, &N,
2.9. A left ideal L of N is a set L such that
(e) L is an additive normal subgroup of N,
(b) NLC1L,
210. The concept of a right ideal of a near-ring is rather more
specialized than :13 desirable and we introduce a new object,
which in our case, is more general, This gives us one of

our important divergencies from ring theory, since in a ring

both these concepts coincide,

We define, for a near-ring N, a right N-subgroup of N+, or

for short art.N+-s{1bQ. to be a set K with

(a) K an additive subgroup of N+ (;_1_9_1:_ necessarily normal)
(b) K NCK,

Thus, for example, given any neN, we can look at the set
K =nN = {nn,; n, 6N} and this set is easily seen to be a

rt N*-subgp. using the elementary fact that for any



- (nn 1) = n(-—ni) (This comes from the observation that
@ = n.(-n,) + n.(n,) by 1.1 (c)
giving n.(-ni) = = [ n(ns.)] )
This set X may not be a right ideal. Some authors call

these objects Tright modules? ,
2.11., We return to our right N-modules and introduce subsets of thenm
that will be requireds If M is art.N-module, then a subset

K 1s a right N-submodule of M if
(a) K is an additive normal subgroup of M
(b)) (m+X)en ~mengK for all meM, keK, neN.

Thus K 1is the kernel of a suitable N-homomorphism of M,

2012. A subset P of ar'l‘.N-modnle M is a rtoN"'SubErOEE of M
if

(a) P is an additive subgroup of M

(b) PNCP.
Thus art.N-submodule is a rt.N-subgroupe.
2¢13e Wie note that a right ideal of a near-ring N is simply a :

right N-submodule of N where N 1s considered as a rt.

N-module. Also a rt.N"’-su'bgrwp is a rt.Ne-subgroup of the

rt.N-module N, So a right ideal is a right N*-subgroup and
also a right N-subgroup of N.

2elss Naturally we may factor out ideals (rt. ideals and N-sub-

- are like

modules) in the usuzl way, (theseAgroups with operators)
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and we define direct sums (intemal)with these ohjects only.;

§5. Special types of near-rings and modules
Sl We will need, later, equivalent concepts to a minimal ring

module and we clearly have two possibilitlies in the near-ring
cases An N-module M (wh:l.ch is non-zero) is minimal if the
only rt. N-subgroups of M are (0) and M itself

3.2 An N-module M (=} (0)) is irreducible if the ohly rt.N-sub-
modules of M are (0) and M itself.

We see that a miniga.l N-module is elways irreducible but
the converse is not true.

3.3, A neer-ring N (=t (0)) is simple if the only ideals of N
are (0) and N itself,

Salre Ve introduce some notation which will be invoked in many
places, Let I' be a2 non-zero additive group, E a multi-
plicative semigroup of endcrorphisms of 1": and deflne

mE(I‘) to be the set of all mappings n ¢ I'»T
with the properties: Open = Op
(Ye)en = (yn)e for allyel, eeE.
It is easily checked that yyy E( I') is a near-ring. with
a multiplicative identity namely the identity mapping.
In the special case of E consisting only of the identity

endomorphism we shall often just write

Yy (T) = vy (T).
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3¢be An N-module M is of type 2 if

(2) M.N ¢ (0)
(b) M is & minimal N-module
3¢6¢ An N-module M is of type 1 if

(2) M.N 3 (0)
(b) M is an irreducible N-module
(c) mN = (0) or mN = M for all mgeM.
Jefe An N-module M is of type O if
(2) M is en irreducible N-module (and M 3 (0))
(b) There exists an mgl, such that M = n.N.
Betsch introduced this notation (Betsch [2]) and it is becoming
fairly standard.
3¢8. A right ideal R of a near-ring is a v-modular right ideal
if (a) 4 eeN such that en-ngR for all ngN.
(b) N'™\R is a right N-module of type ve.
Here v may take any of the values: 0,1,2.
3¢9« Let M be a rt. N-module and suppose that 8 is en arbitrary
subset of M. (non empty)
The set (S)r = fngN | 'sn = 0; ¥ sgS)
is called the right annihilator of S in N.
It is easily checked that (s)r is & right ideal of N.
Also (S), is an ideal of N if S.N CS.

J¢10. A near ring N is a v-primitive near-ring., (v=20,1.2)
if there exists an N-module M of type v such that

(M) = (o).

I
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Jelle An ideal P of a near-ring N is a yp-primitive ideal

(v =0,1,2) if N / is & y-primitive near-ring, (where N /
P

is the near-ring obtained by factoring out the ideal P in the
obvious way).

3«12, An element agN is rt.quasi-regular if the smallest right
1deal containing all elements of the form n - an, v neN,
also contains a. We usually write quasi-regular to mean
rt.quasi-regular, and abbreviate it to just 'q.r.!

3¢13. A non-zero rt.N"'subgroup K of a near-ring N is nilpotent
if there exists a positive integer q with the property that

ki'kﬂ oo kq — 0 fOI' m ki’ ka’ oe kqul

3elle A non-zero rt.N"'-mbgroup L of a near-ring N is nil if there
exists, for each non-zero element d ¢ I, & positive integer

s (depending possibly on EL) such that the product of d with
itself taken s times,

&s

d e o ¢ d 0

3¢15+ A non-zero rt.N+-subgrmp Q of a near-ring N 1is quasi-regular
if every element is quasi-regular.
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ChaEter 2e Radicals and Semisimglicij_:x

The radicals considered in this chapter will be generalisations

of' the Jacobson radical for rings. Because the concepts of irreducible

and minimal N-modules do not coincide, several generalisations of the

Jacobson radical exist and between them they more or less satisfy all the

properties that the Jacobson radical of a ring possesses. Betsch and

Laxton were the first tp formulate these radicals and many of the following

results are due to them, although in Laxton's case he considered only

special near-rings,distributively generated near-rings.,

81. The Jacobson Radicals of a near-ring

l.1.

N is a near-ring, write £ (v) for the collection of all

N-modules of type wve.( v = 0,1,2).

We dzfine three radicals by

Hh M = M
) I'ez(v)

with the convention that if 3.(y) = ¢ then J , (N) = N,

(I')r » v= 0,1,2

We see that Jy (N) is an ideal of No If N is in fact a

ring then the J, (N) allcoincide and equal the Jacobson radical

of N.

We may factor J, (N) out of the near-ring N. This leads us

to the question "what is J, (N/J (1)) 7
. v

Betsch ([2], 2..13) has shown that
Jl') t = Jy (N)/ = (0) for v = 0,1,2.
J'D

N/'Tu (N)) (V)
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le5« If P(yp) is the collection of all v-primitive ideals of N,

then

J, () = MP 3 v =0,1.2
PeP(v)

(Betsch [21, 2.12), (Laxton [2], 1.1).

le6s If K is an ideal of N and J, (N,) = K = 10),
/k /x

then J, (N) CK, for v = 0,1,2,
(Betsch [2], 2.14).
le7 If N is a near-ring with a nmultiplicative identity then
5, () = 5, (W) (Betsch [2]. 2.8).
l.8. In an arbitrary near-ring, the following inequalities hold;
I, N ¢ 3 () ¢ 3 (W

Examples are known when equality does not occurs. (Betsch [2]. 511-).

82. Basic Properties of the radicals. Arother radical object.

Up to this point all the three radicals J,, J, and J, have
exhibited similar properties, and although whenever 1e¢N we have
Jy, = J, , there is a certain conformity in the results 1.4, 1.5, 1.6,
We now try to determine the relationship between these radicals and the
intersection of all the v-modular right ideals. This gives trouble
because the natural result depends heavily on the right ideals being
maximal, or !nearly maximal' as rt.N"'-subgroups. Anyway we have the

following result.

7
2.1. Iy (M) = ReR(u)R » Tor B= 1.2

where R(p ) is the set of all prmodular right ideals of N.
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This result is due to Betsch - [2]. 2¢7., and for u =2, also
to Laxton [2]1 1l.3.

It is not possible 'to prove an analogous result for ,, = 0 and

we notice that the intersection of all the C-modular right ideals

18 not necessarily an ideal. Even so, it is a very interesting
setand we can use it as a radical-like object to obtain some
useful results. We meke a definitione.
For any near-ring N, define

D(N) = () R , where 52(0) is the collection

R ¢R(0)
of O-modular right ideals of N.

It has been shown by Betsch and Laxton that

Jbo(N) € p(N) c J,(N) ¢ J, (N), and here again

examples are known vhere J'O(N) + D(N) eand D(N) +J,_ (M),
e.g. (Betsch [2]., B L).

Jz (N) contains all the nilpotent N+-subgroups , all the
nil N+—subgroups and all the quasi~regular N+-subgroups.
(These results appear in Ramakotoiah [1], The 2.1,

Core 2.3; Core 2.4).

D(N) contains all the nilpotent right ideals, all the nil
right ideals and all the quasi-regular right ideals. .
(Ramakotaiah [1], The 2.2 Cor. 2.5; Cor, 2.6).

Jo(N) contains all the quasi-regular ideals, all nil ideals
and all nilpotent ideals.

(Ramakotaiah,[l], The 2¢33 Core 2+7; Core 2.8)!
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2.8, So far, we have seen that, the four radicels we have defined satisfy
many of the properties that the Jacobson radical of a ring satisfied,

but now we encounter one of the more difficult problems. This

concerns the possibility of the nilpotency of any of the radicals
under suitable chein conditions. We have introduced quasi-regular
elements, but unlike ring theory, it has not, so far, been possible
to express any of our radicals directly in terms of quasi-regular
elements. It would have been nice to show that Ja (N) consisted
solely of quasi-regular elements, but then Jg, (N)? being a quasi-
regular idesal would be contained in JQ(N) s by 2.6, and this we ,
know is not always the case.
However, we can show that D(N) is quasi-regular, and hence so
is Jo(N).

2.9. D(N) is a quasi-regular right ideal
(Laxton [2], 3.2), (Ramakotaiah [1], Thm. 2.2.).

Finally we note the following results.

2«10, An ideal P 1is v-primitive if and only if
P = (L:N) = in | Nn:g_LI, where L 1s a
v-modular right ideal of N. (Lexton [3], Prop. 2)
(Ramakotaiah [1], Thm. 1.2.).
2.11s Jo(N) = (D(N):N) = {neN | Nnc D(N)}
(Laxton [3], 3.2). (Ramakotaiah. [1], Th. 2.2.).
From this last result we may deduce that J,(N) is the

largest ide2l contained in D(N). (Ramekotaiesh [1], Cors 1.2¢)e
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52. Near-rings wvith descendigg chain conditions

We shall summarigze the results concerning near-rings with

descending chain conditions and with one of the radicals zero.
In the majority of cases, these results are well known and
widely avallable in the literature
5.1¢ There are two descending chain conditions of interes’éf
(i) The descending chein condition (d.c.c.) on right ideals
(1i) The descending chaincondition (d.c.c.) on rt.N"-subgroups
5¢2¢ Theorem, Suppose that N has d.c.c. on rt, N+-subgroups.
Then
(1) 0, () = (0) & N possesses no nilpotent, non-zero
rt.N' - subgroups.
(11) D(N) = (0) & N possesses no nilpotent, non-zero right

ldeals
(ii1) L (N) = (0) €& N possesses no nilpotent, non-zerc ideals.

Proof. In all the three cases =y follows from 2.5, 2.6, 2.7,

respectively.
(i) &= (Betsch [1]. Th. %4.1.) if N possesses no non-zero

nilpotent rt.N -subgroups, suppose J,(N) ¥ (0).
Hence J., (N) contains an N"'-subgroup which is minimal,
say Me Now O } McJ (N). If M.N # (0), then

M is of type 2 ard so M.J(N) = (0) = MM = (0)

If M.N (0), then M.M = (0). Hence in either situation

M is a non-zero nilpotent N+-subgroup s & contradiction.
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(11) & This follows if we can show that D(N) is a nilpotent
rt. ideal.

(ii1) <= 1f D(N) is a nilpotent right ideal then J (N) is a
nilpotent ideal and the result is immedlate.

We have thus reduced the problem to showing that D(N) is
nilpotent under d.c.c., for rt.N+-subgroups.
We already know that D(N) is quasi-regular, end we cen apply
the following theoreme
J¢3¢ If N has d.CecCe On rt.N+-subgroups, then arw_quasi-regular
rt N -subgroups is nilpotent. (Ramakotaiah [1], Th. 5.1.).
3elke If N has deCeCe ON r'b.N+-subgroups then D(N) is nilpotent.
3¢5« The natural questions to ask now are, whetlier we can decompose
a near-ring into a direct sum of right ideals under suitable
conditions on the radicals.

The first steps in this direction were made by Blackett.
Laxton and Betsch have produced further results. We look at
these now,
3¢6s Theorem. (Betsch [2], 3.4) if N has d.c.ce on right ideals and
Ja (N) = (0), then N is a direct sum of right ideals which are

N-modules of type 2,

Proof, Now J a (N) = nR, vhere the R's are taken over all

the 2-modular right ideals. Because of dececs on right ideals,

we can find R.y « o » , Ry amongst these R's, such that
m

J, N = Q;Ri and we cannot reduce the number of these

A Ry = '(0)-

R‘S further, Then
i i:: 4




Define K = R n R ﬁ 2o nRi_l mRi-l-lm..' ﬁRm
for each lgigm (Ki = R, A u-an; Kn = Rg_r\ '"an-—l)

Then K

; 7 (0) for lgigm.

We notice that K,/ YR, = (0) for 1¢i¢m end so

N = Ki ORi for lg ig m, since the Ri are 2-modular rt.ideals.

In particular N K, R,e

We show by induction that N = K, @ K, D ... QK@

(RAR, N ... NR,)

1
for any l<¢i<m. This is evident for i = 1.

Assume that it is time for 1 = sS.

Now Riﬁ ---nRa/

= (Rin oo ﬁRs . R3+1)/
R

8+1

from the isomorphism theorems.

Now R.s 1 R 1“... ('\RS s because of the irredundant nature

+1

of the Ri's. Hence

(R[\...f\as)/

(R, MR, ) ..f‘\RS("\de

& N as N-modules,
/Rs+l
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Now (RiﬁRsn ."ﬁRs)m RB+1nR3+am ¢ee mRm = (0),

thus we have the direct sum decomposition

Rin oo o ﬁRs = (Rin °e nRS-l-l) @ KS"I'].

Hence, as N = K, @ . @Ks @ (R, (VR 10uMR,)
N = K@ @K & K 3 @ ®RMR Y. RMe )
This shows the induction process, so
N = K, K,@ o0 OKER, Yool Ry
= K,@ K,@ ... @, as RO...O0®R, = (0).

Since N = R; € K; (l¢i<m) and the Ry are2-modular,

then K; = N/ are N-modules of type 2. (1< ig m).
Ry

3.7. Theorem. If N has d.c.c. on right ideals and D(N) = (0),
then N is & direct sum of right ideals wnich are type 0O as
N'mOdllles-

Proof, This proof is essentieally similar to the prece.ding one.

This theorem may be found in Betsch [2), 3.4 and Laxton [3], Thm. 3.
3.8+ Theorem. (Betsch [2]. 3.4) If N has d.c.ce. on right ideels and

J (¥) = (0), then N is a direct sum of right ideals which are of

type 1 eas N-modules.

Proof, See 3.6 also.

3¢9+ The questions concerning the decomposition of these near-rings
as direct sums of v-primitive ideals is only partially resolved
and we must wait until we have dealt with the density theorems

before looking at them.
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BL, Identity elements in near-rings with zero radicals.

We ask now, whether, under suitable chain conditions, any of the
radicals being zero implies the existence in the near-ring of
& multiplicative identity. We exhibit a simple example of a

finite near-ring with all its radicals zero and with every non-

zero element a left identity.
L.l. Example. Let G be a non-trivial, finite edditive group.
We write N for the set of mappings pf G into itself, with
the properties that: (i) given any n ¢N, then 4 g e such that

h.n g for all heG with h 3 O.

and (ii) ,0.n 0.

It is easy to verify that N is a near-ring (sometimes called

the near-ring of constant mappings), and every non-zero element
is a left identity, For if n, , n,eN and n, + O.

Let XN, = 8By, 9 X, = gy for all O :l: X ek

Then = n, = gn, = g, =xm,. ‘ *

Thus nn, = o,

Ir (0) + KCN was a nilpotent N+-subgroups, then 4 keK wth
k + O, Let neN, then ken = nek and so N = K, and
clearly N cannot be nilpetent. Thus J, (N) = L 0)

Wie have shown that there exists & finite near-ring N such that

o () = (0) and N does not possess an identity, Ve may

ask now, whether all near-rings N with Jy (M) = (0) end

d.c.c, On rt, N+-subgroups possess a left identity? In fact, better
results are available, The following theorem is due to Betsch

(Betsch [2], 3.4).




bele
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Theorem, If N has d.c.C. On right ideals and D(N) = (0),

then N possesses a left identitv.
Proof, Let F be a O-modular right ideal and K any ideal
such that there exists an heN for which n-hngK for all
ngN. We show thet there exists an xelN with n-xneRO\F
for all neN., Suppose that KC F, then KIW¥ = K and we
Just need x = h.
However if KqF, then N = F + K es F is O-modular,
Let eeN such that n-ene P, for @ll nel.
Put e = u o+ e' where ueblF, e'ek

‘ h = fY* + v vwhere vek, f'el.
Suppose meN, then (e' + f')m -~ e'm €F

end e'm-emn = (::‘iz)m - em EF,
Thus (e' + f')m - em €F, say (e' + f')m-em = £,
Now m -~ (e' + f')m = m=- (fo +em) = m~em -~ f,.
So m~(e' + f')meF as m - em EF
AMso (e' «+ £')mn - f'mekK
f'm=hm = (h - v)m - hmek

thus (e' + f')m - hmeK, say (e' + f')m - hm = k.
Now m -~ (e' + f')m = m=-hm -k, €KX as m -~ hneK.
We have m ~ (e' + £")m eKMYF for all meM eand

thus x = e!' + f' will be suitable.

Ve can show by induction that if N has d.c.c. on rt. ideals,

q

D(N) = N Fs where the F;, are O-modular right ideals,

=] 1

g aa - ' e e B a b . bhasdlhk wasbs ol o= Pk onlle el ek e o = @ L B _

e e 2 ar . . puam B o2y g ke el s kel o mm o e o o . om o
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and that there is an xt eN such that

nt - x'nt ¢ A F:I. for all n' eN.
i=1

But in our case D(N) = (0O) and so we have found an x! eN
such that a' « x'n' = 0 for all n'eN,
That means that x!' 1s a left identity for N.

he3. Because of the lack of adaptability of the ring theory cancept
of quasli-regularity to our cade, this proof cannot be extended
to give us an identity in this situation, and clearly our hopes
in this direction are dulled by the example &4.l.
We examine now, the possibility of replacing D(n)= (0) by
Jo(N) = (0) in the hypothesis of 4.2. Ve construct the following
example,

oo Exemple. Let T be a finite, additive, non-zero group, and
K, A subgroups of I such that X 4 (0), A $ (0) and
KNA = (0) and T4 SUK and | a] 33
Let N Ye set of all mappings of p -+ P such that 4 + A and

K-+ A and zero 1s preserved under each mapping.

This i3 &
near-ring, If n,n,e N, then y(n+n)e T, forall yel.

5(n +n,) n +5n,e A forall §eA .

k(n +n,) = kn +kn,e A , for all keK,
'r(n.n,) = (yn.)n,_e T G(n.ni) = (Sn)n,_e Ao
k(n.n*) e A n, _C_ A .

We claim that J,(N) = (0); in fact that N is O-primitive.
I 1is certainly a rt. N-module and (r),. = (0.
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Let 0 4 4, eT and ¢, § K\JA s We showthat T = ¢, N
Pick eny «t* ¢ I, define m: T - T by:

m: ¥, * T:

m: «" - 0 for all 1;"* > I‘\{'{_'}.
Clearly meN and Y, m = ¥', 80 Y, N = I' e« We now show that
if I is any non-zero N-submodule of I'y, thenlL = T. |
We have that for all £ e L, Y, el'y n, e N, (*r2 + ﬁ.)n, -4, N, € L.
Suppose L ¢ I' such that J Y € ' with ytL. If v§K
Then define nt* ¢ I'»T by

m' s ¥ Y
mt' ¢ Y, *0 for all YaeI‘ N {91,

Then m'eN and for ai 4 0, (y +&1)m' -Ym' = - ¥ EH:.,, H,‘-L)
& contradiction to L Dbeing an N-submodule.
The only remaining possibility is if Y €K whenever ¥ *:L.
Choose & f'¢ A \.J K. For any y¢ 1L, we may define m ¢ I'-': I
by

fem = y

Y, I = O forall ¥ ¢ I‘\{B.'l.
Clearly meN and if 3, § 0, d, el

(B' + aa)ﬁ - f'emn = '-y ¢ L, a contradiction.,

Hence p is of type O and so N is a O-primitive near-ring.
In particular Jo(N) € (T)y = (0).
Has N a left identity? Suppose there is e $ o such that

en3 = n, for all n3'.=_;N.
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Then for all k'K, k'e ¢ A, since e¢N,
Suppose k-.eK and k‘ e = 6‘ L o, (6, el ).
Define rh_sN by n, : I'+r,
0 Vyser ~ (aw K)
0 V63eA

§ where 6, =6 , O2€A and 6, £+ O,

0 V ke KNk L.

Then k) en, = gy ny, = O

but ky n, = 8o :l: 0

Thus en, ¢+ n, . This leaves the possibility that
k'@ = 0 for all k" K.

Then k, en, = 0 and k, n, =48, = O.

N has the:?'fore no left identity, yet it is finite and O-primitive,
A
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55. The radicals of related near-rings.

Hele

De2s

The final consideration of this chapter is the relationship of
the radicels Jo(N), J_(N), and D(N) with near-rings which have
& close comnection with the original near-ring N,

For instance, if B is an ideal of a near-ring N, then B
is itself a near-ring. How does J, (B) relate to J, (N)?

We need some preliminery lemmas.
Lemma, Suppose that B 1is an ideal of a near-ring N. If

& is a quasi-regular element of the near-ring B, then

g 1s a quasi-regular element of the near-ring N.

Proof, Since & is qe.r. in B, then a&R = ‘A

L
Lef

where of is the set of all right ideals of B containing all the

elements of the form b - ab, V¥V bgeB.

Let T = () S, where F is the set of all right ideals of N
Sed

containing the elements n - an, V neN.
For any Sc¢g o y then s* is normal in N,
Put F = Bf)S, then F' is normal in B,
Also F is a right idegl, of B
Now n -aneS V¥V neN and so
b-abeF ¥ beB.
Thus Fe & end so 2ePF. Thus ecT and a is g.re in N,
Lemma, If ¢y: N-+ N' is a epimorphism of near-rings,
then a quasi-regular element x in N, is mapped onto a

quasi-regular element x¢ in i\l'.'.
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Proof. If x 1s gqer. in N, then xeT = )\ B,Vhereg
is the+ set of all right ideals of N containing e’:chiaielements-
n-xn,VneN, If Sec o, let 8" = Sy . Since y 4is an
epimorphism of near-rings, S' is a right ideal of N'.

Also n~-xneS so nyY = (xﬂll’nw}cS' VneN

and S' e J ' the set of all z;;!.ght ideals of N' containing all

elements of the form n' - x'n' ,V n' eNt,

Let T' = nf' - 8!« Then if 8ic 9.?' s then 3
3,' €,

corpesponds to & right ideal S, of N smch that 8,2 ker ¥

and S. e;ﬁ. Hence if xET = Sf:)) 3, "I:hen xt ¢T'.

That is, x' = x¢y 4is gqers in N'.

5.3 Lemma. If 1leN and JH(N) = (0), then for any ideal B of N,
D(B) = (0). |
Proof. Let y eD(B) and assume that ¥ § 0. D(B) is a right
ideal of B with all its elements quasi-regular, so. y is q.r.
in B and also in N by 5.1.
D(B).B € D(B) end so y.B is a rt.BY-subgroup which is qer..
(i.e. 21l its elements are QeTe)e Clearly yB is & qers ..
rt. N+-subgroup end 80 yBG~ -Tz(N) =-.(0) by 2.5, ..
This holds for any O $% y ¢ D(B).
Now yN.BC yB = 0 for -any -ye D(B).
Thus yN is nilpotent and so by 2.5,
YNC J(N) = (0)

le N ﬁ vyl = (0). Thus D(B) = (0).
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5:4e . Theorem. If B is an ideal in a near-ring N with identity,
then D(B)C B /M J,(N).

Proofe Let N = N
' / PGV
then B = (B + Jy(N)) is an ideal of N,
J2(N)

Hence D(B) = (0) (by 1.4 and 5.3).

Now | - /s ‘
(B + JZ(N))/ 7,(N) o /Bﬂ J2(N)

Then, since D(B) is quasi-regular in B,

D(B)  is quesi-regular in B / o (5.2).

Jz(N_)

o 50+ @) wise 3/ L G

B _
D(B)/ Ba,m = D( / JOPRCOURR

Hence D(B) & B () J,(N).

5.5 Clesrly D(NW VB is a right ideai of B whose elements are q.r.
in N, Are they q.r. in B?
In general it is not known but by iﬁtroducing the descending Chain
condition on rt.N+-subgroups as an extra condition, we may use the
result that tells us tilat & QeTe N+-subgroup is nilpotent., L
(Ramakotaiah. [1], Thm. 5.1.). |

5.6, Theorem. If B 4is an ideal of near-ring N w th identity,

and if N has descending chain condition on ﬁ+-subgroups s then
DN B C pB) C BO\J,(N). |




- 28 - | ‘ %
Proof. D(N){?B 4is gq.r. in N, hence D(NY YB is a nilpotent
right ideal of N, thus D(N) B is a nilpotent right ideal

of B. By Ramakotaish. [1], Cor. 2.2.
D(NWIB is q.r. in B and thus D(NYBC D(B).
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Chapter 3, 2-primitive near-rings with identity and descending
chain condition on right ideals.

One of the central results in ring theory is the structure of
simple artinian rings which then completes ‘the classification of semi-

simple artinian rings, In fact, simple artinian rings are equivalently
primitive artinian rings and are characterized by being ﬂngs of
homomorphisms of vector spaces over division rings. The same problem

in near-ring theory, i.e. the structure of 2-primitive near-rings

with identity end d.c.c. on rigizt 1deals has also been solved and gives
us one of the finest results in the subject. The main result was
announced by Wielandt ({1]) but no proof has so far appeared in the
literature, The theory for distributively generated, finite, near-
rings was discussed by Laxton ([1]) and it is his approach that we use
here. We will first show that, for 2-primitive near-rings with identity

and d.c.c, on right ideals we can obtain a 'denaitf theorem'. We then
restrict the cass to finite near-rings and obtain a complete classification

of these. The density theorem has been proved for O-primitive near-
rings with d.c.c. on right ideals and an identity by Wielandt and

Betsch but is unpublished at the precent time. These results will be

stated at the appropriate places in this thesis.

Bi. A Density theorem for 2-primitive near-rings with identity and -

d.C.C. ON right ideals.
l.1. Throughout Bl, N will denote a 2-primitive near-ring with an

identity, lN’ end d.c.c. on right ideals, I' will be the faithful

N-module of type 2. Hence ( l‘)r = (0)"




1.2, Lemma. (r , +) is abelien if and only if (N, +) is sbelien.

Proofe If (I, +) is abelian and nj, nmpe N. Let YET Ve

arbitrm-

Then ‘((n]_ + 1 -1 -3 ) Yny + n - ( Ynl ) = (Yn ) =0

2

S0 n, 4+ n, - n - ne (I‘)r = (0)
So n; + n, = N, + N for any n; , np € N

Now if (N, +) is abelian, supppse Y; , Y2 €T , then if

O £# yer is erbitrary, Y1 = ¥Yn; for some n, ¢ N and
Y, = Yn, for some nje N
Then Y1+ Y2 -~ Y1 - Y2= "ny + Yn, = VYo = Tn

= y(n; + ny, - nyn, ) = v0 =0

Thus (r , +) is abelian.

1.3, Iemma, If N is finite end (r , +) is nilpotent as a group,

then (N3;+) is also nilpotent as a group.
Proof. Let N = N, D N, > Ny Deee DNy = Ni3 be the
lower central series for (N, +), terminating at Ny. We assume that

N¢ =lp (0). Let the lower central series for T be
' = I'o >r1 > r2 > oo )Fa- = I'a+1
Now TI'= YN fHr each non-zero Y €Tl, If 1% JQEL

r. = {f[ ... [r,r]), ... ,r 1T} =

J
{[[ ®ee [Y N,Y N],-:.,Y N] YN]] - YNJ for any O # Y € ro
- r - . - 1
If d2 t then 4 = t eas 3 _YNH. _'YNt ¢
< _T - C (Ty .
If 2t then YN, 5 (0) = N, & (7)) (0)

So 1:1 + (0) end N, ¢ (0) = L 4 (0).
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This last lemma will be used in an application later. We return

to the general case.

leie Definition. (i) The centralizer of I' in N; CN(I') is the set

of all endomorphisms ¢ of (I', +) such that

(vyn)é¢ = (v¢)n V¥ yel ,V nel.
(i1) We denote hy AN(I‘) the set of ell endomorphisms belonging

to CN(I‘ ), that are in fact, automorphisms of (I' ,+).

1.5. Proposition. CN(P) = (0)\J AN(P ) where 0 denotes the

zero endomorphism of T,
Proof. Let xe¢ CN(I') and x % 0. Clearly ker x is an N-sub-

module of T and so kerx = (0).

I'x is an N-subgroup of T andso T'x = T. Thus xeAN(I')-
1.6. Proposition. If (0) # veI , then (1Y), is a right ideal,

N = T and hence is an N-module of type 2.
(Y),.

Proofs Let ¢ : N= I be defined by
ntp - Yn-
Then  1is an N-homomorphism of N onto T -

Hence N / 2« 1 as N-modules
ker

l.e. N/ = N is a type 2, N-module.
ker Y (Y)r

This means that (7Y), is maximal as a right ideal and as an

N+-subgroup of N.



le7/e Definition. Ve now define an equivalence relation }-‘! on the
elements of T in the following way.

Let Y, v; € T, then we say
Y}’Yl é:# (Y )I‘ = (Yl )I'

1.8. Proposition. If »y1e'  and vy$ 0, Yy $# O, then Y_PY.

I

if and only if 3 ¢ € cN(I‘.) such that Yy Y$ o

Proof. If Y@, then (v). = (v ).
Let ¢ ¢ T'+>T be defined by

(Y n) ¢ = Y1 n, V n €N. This it well-defined, for
Y1n=0(::,‘*' nc(Yl)I':(Y)r[‘:)—"an-o

Thus ¢ € C.(T) end taking n = 1y shows that v ¢ = v,
If ¢ C(T) thenlet wme(y).,

Yyn' = (y¢)n = (') = 0 so (Y)r C (Yl )r'

(Y)r is maximal as a rt. N+-group in N so ( Y)r = Yl)r
by 1.6,

F -

We can therefore consider the equivalence classes of ‘the group T

to consist of the zero class {0} and the classes ,Y"AN(P*)

for suitable choices of y . There exists & 1-1 relationship between
the non-zero classes and the right ideals which aré annihilators of
elements (non-zero) of T If we consider the group AN( I‘) to be
a permutation group acting on the non-zero elements of I, then we
mey regard the equivalent classes (different from zero) as being

orbits on the non~zero elements of I's (4n orbit is a minimal
fixed block).
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Theorem. Suppose that N is not a ring. Let A %to amibset

of I'\{O] such that A is the union of m different orbits of I,

Then N/( \ is a direct sum of m copies of T and
A
r

(A)r an (y)r for any non-zero Y &€l \d.

Proof. We use induction on the number m.

If nm

1, then (8)_ = (6), for any 6 ¢ &4, It follows
from 106’ that N

(),

Y%A,Y 40, we have Yfﬁ, SO (5)1‘@ (Y)r-

' as N-modules. Clearly for

It is assumed now, that the result is true for a value m = k »1

Let A be a subset of T \{0} which is a union of K+ 1 different

orbits, say O Yy)s eoe s O(Yk-u-l) and no k orbits cover A.
Let A' be a subset of 4, with

k
YN AFRY, O(Xi) } e

i=l
(Clearly A' is covered by the k orbits O0(Y17), .o , o( Yk)).

( ﬁ')r is a rt. ideal and (A')r d (v kai'L)r by the inductive

hypothesis. Thus N = (A ')r + (v k+1)r'

Since A =: At UO(Y k+l)’ (A )r = ( A')rn (Y k-i-l)



now (A ')r/
SPTINAIC I

(Yk_,,l)I/ =
CRNAICN

By the inductive hypothesis

N/ is a direct sum of X coples of T .
|
(a "),

We have only to show now that

N # N / @ N/ , and the result
/(A)I‘ | /(ﬁ')r /(Yk_l_l)r .

follows by induction.

Let x e((Ylﬁl)r ) n((ﬁ ')r '
/(A ')rﬂ (‘Y k+1)r (A ')In(Tkﬂ.)r'

then

X

X

y+ (80 (VY (v q);
z + (4 ')I‘ﬁ (Yk-l'l)l;

vhere y € (¥ 1:+1)r

where z € (& ')r

)
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- |
ard =z +y e (2 ") NV (v, ;).., so ye(a'),
. ' . _ .
ye (A )rn (Yk-i-l)r sO X = 0. The sum is direct
We assume now that there is a ¢ ¢ A with (A )rg_ (y )r’

and obtain a contradiction.

Now by the inductive hypothesis, since 'y * a'y, (A ')r Q; (v )r

Then N = (;)r + (A ')r and

'

Yl(A ‘)r - Yk'l-l‘(A ')r = T °
Defining ¢ : T' =T by (Yk+lx)¢ = yx for all xe (A ')r.
(If v, 42X = 0 and xe(A')_ then xe (Y ) V(8 C(Y)...)

It is easy to verify that ¢c¢ CN( r).
Consider the set
T = [:('n -Yk_'_lq;n s ﬁnengl‘.

(a ')r is a right ideal of N.so if he (A ')r s n,n'eN, then

(h + n)n' - nn'e (A ')r SO
(Yk+l'¢ J(h + n)nt «nn') = T ((h + n)n' - m?)
S0 [(Yk+1.¢)h + (Yk+l.¢)n]n' - (Yk+1.¢)(nn') =

(7h o+ '.Y-n)n‘ - Ymn!

novw as he(.‘h')r $)h = 7Th,

» (Yyn

thus ( Yh +Yk+1¢n)n' -"l’k+1¢nn' = ( Yh + "Y-n)n' - Ton! (1)
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Also ﬂ’m¢(-ﬂ+h+n)='}(-n+h+n)

-¥n +Yh 4+ ¥n.

50 =Yy 4 ¢n 4+ Y1 dh 4 M1 én

Rearranging gives

(fn-v %) + Th = ™+ (=¥, ) (2)

Fence\ (Yn - ¢n) € centre of IT, for all né€N.

Yk-|.l
We will shov that the subset T is in fact an N=subgroup of T ,

€ Yeafon' = (e ¥2 + 7 4 9(n))n' where

n = hs4z, he(d') and za(?)r

Ir
so (Yn -1 ;¢n)n' = (Yh 4 Y1 ¢ (-n))n!
= (Yh + Y(-n))n' = ¥(-n)n' + Vi1 ¢(-n)a' by (1)

= (Yh - ¥a)n' + y(-n)(-n') =~ Yy ¢(-n)(-n')

W-n)(-n') = %y ¢(-n)(-n') + (P - Fn' by (2)

— ?(_n)(_nl) - Yk-l.l ¢(-n)(-n') + O (since n = h+ Z) (5)

Hence (yn - 'rm ¢én)n' €T for all n,n'eN,
Now if n' = h' 4+ z' with h'e(&'),, z'e(¥),
[ -'fh + Ym(‘n) ¢] + [ m' & qu.l(_n') ¢]
= ;l-'h' + ':{-'n - Tk+ln¢ - Yk+1 n'd by (2)
= ¥(n' +n) - Y1 ¢(n' +n) € T,
Finally ~(Mm - ¥, .1 %) = Yy,q 90 - Yn
= -Yk+1¢("n) + :i:("n) - YIC-|-1¢(-n) +Yk+l¢(-n)



Hence T  is an Ne-subgroup of I' andso T = (0) or T,

We have to consider two distinct possibilities.

If N* is not abelian, then I'¥ is not abelian and as the centre

of I" is a proper subset of T, T Ccentre of I* = T = (0).
In the case when NV is sbelisn, we assume that T = I .

Since N 1is not a ring then there is n, , ng, m eN such that
(ny + ng)nt - (n,.n ¢ 4 n,n*) £ 0, and since I is faithful there

is a %€l such that Y*[(n,_ + Ny JEF - (n,.n* + nan*)] { o.

Put Y™n, = ¥, ¥*'n, = Y%
let ?er so that vz ¥(x +y') - ch.l.l(x +Y' ) for somc :c_S (A')rq
t e .

y'elr )

r

Y= qx"'-fy' -Yk{-ly' ‘p -Yk+1x¢>

= L
Yx Yk+1y ¢ Yk+1x¢

= Yy' + Yx - ¥x -me'¢ as I 1is abelian end

Y = Y, ¢x for x s(A')r.

S0 yY=yy'e Hence I = ?'(Yk.l.l)r

Mso T= =(v) 5 $(Y)..)e

Let ¥ = %Yy where Y€ (Yk...l)r and
¥ = -(qu?)z) where zc(‘?)r-
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Then (y;* + yo*)n* =[i?(y+2)—(vk+1 ¢(y+2))] n*
=y [-ty +z) (-n*)J - [Yk-rl ¢ (=(y+z) (-n*)]

by equabion (3).

Thus (v * + yp*)nk = - {y(-(y+z)n* } + v, . ¢(~(y+z))n*,

£ - {“(;(Y"Z))-n*} + {-(Yk"']. ¢(Y"’Z)} %,
= =~ {(= v1¥)n*} <+ yr*.n¥,
Now (=y1#)(-n*) = [ =(¥ )] (-0%) = J(=9) (0%
= Y(=y)(-n%) -y, 16 (=y) (-n¥)
a3 ye(Yk+1)r"‘
So (=71*)(-n*) = (yy = v, ¢y)n* by equabion (3)
= ;yn* = Yfﬂ*l
Thus (Y1% + v2#%)n* = «yi*n* + ya%*n%,

This is a contradiction to the choice of y;*,ys* and n*,
Hence T # ' andso T = (0),
Therefore in all cases T = (0).
Then ;n = Yk+1¢n for all neN,

Since le N we have
Y = Y af
This shows that Yy PY that 18, vy and Yy41 lie in the same

orbit., This is a contradiction to the assumption that

Y ¢ A

H \ ¥
ence we have shown that ('r)r P (A)rc



1.10, We restate the theorem as follows.

Theorem. Let N be a 2-primitive near-ring with an identity and

dec.cs on right ideals., If A 1is any subset of T' ™ {0} , which is

the union of m distinct orbits, then either

Yel, v+ 0 and vy ¢ &% (f)ré (A)r and N = ('y')r + (A)r

or N 1s a ring.

1.11. Since ¥ has d.c.c, on right ideals, an application cf
1.10, in the case when N is not a ring, shows that AN(I')
induces finitely many orbits cn I \{0}.

We proceed now to the density theorem,

1 -12- Theoren.

(The Density Theorer for 2-primitive near-rings with identity and
d.c.c. on right ideals.,) If N 1s not a ring,

Suppose that Yi, see Y, are non-zero elements of I' with the

property that Yipyj > inj for 1l¢ i, j< p.

If vi, ... ,YP' are arbitrary elements of TI', then there

exists neN such that T;. = Y.n fer 1< ig p.

Proof,I'\ {0} 1is the unicn of a finite number of orbits,

- n
say I = {o}'z.,j(;.:“f1 O(y;)) where pg¢m, and Vospoeees T
i P
are representatives of the orbits of T "‘[{O}U(ll;’l O(Y,ﬂ
1

D
We put A = 531 O(Yi)'

L1
Then T = {0} V aV(; N, ofyp)).



P
2 U O(Y.) where 1'5 is Do
l==1 J
J
jri

From Theorem 1.11, since vy, ¢ Asy then (y,)_ P (a;)  and

o= Gy v G)),

-,

Clearly (yi)(Ai)r = I from these statements, for each 1l¢ i ¢p.

Thus y; = y.e, where ec(@f). and 1<i ¢p,

P
Put n = E e
i=] 1

A | 11 D
! P
But eJE “j)r = n (‘Yk)ri
k=]
k#3
j=i = eje(-r.)r ;ﬁ Ylej =0 for i % j

82. The consequences of the detmitz theorem,

2.1 We will be able to determine what a 2-primitive near-ring
with identity and d.c.c. on right ideals looks like,

2.2, Theorem. If N 1is a 2-primitive near-ring with identity 1
and d.c.c. on right ideals, with p the faithful ¥N-module of

type 2, then either N &= \2a/s (r) (T or N is an artinian
N

primitive ring.
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Proof. Assume N 1is not a ring. Let N, be the set of right

- — R

multiplications of elements of I by elements of N,

l.ee;, Xe Ny & yYx=yn VyeT and some  neN,

Clearly if xeNy, then xe vyy CN(P) (T)

Let O(yy), . , O(Yp) be the orbits on T \ {0} induced by the

equivalence relation defined by the centralizer CN(P).

Then if y'el and y' § O, we can find ¢eC (T)
such that y' = Yi¢ for a particular i ¢ {1, . , p},

Let x ¢ ch(I‘) ('), and pick any ¥ =I= O, vy eI'y Then we

can find ¢ ECN(I‘) and 1 e{l, . 3 P} such that

Y " ‘Yi¢ SO YX = Yi¢x = Yix¢'

If the following are known,
Y1 Xy3Y2Xs o ypx, then the mapping x is completely determined

on T,

Let %X =y 1=1, . « « 5 Po

We can find, by the Density theorem, 1,15, an element neN

such that y.n = Y{ i=1, « + » , Pey, @8 N 1is not a ring,

Consider the rmapping 6 : TI' +T defined by

Y8&=yn Vyel .,08¢ N,

Then clearly 6 1is equal* to x, since Yitpn = Y-in¢ = YiX¢ = ‘Yi¢x

Hence

ry P C N,

ey,



llence

NR = YYYCN (I,)(I‘), and it is an elementary matter to verify that

N

mn

NR. as near-rings.

2.3 Ve have already seen that CN(I') - (0) U Ag(T) and

it is easily seen that every automorphism.ink.AN(P), besides

the identity automorphism, is, in fact, regular (fixéd-point-free).

For suppose that aeAN(I'), a -I- 1, and if 375?.7 :}- O

such that vya = y, then since

' yN, 1let y'el', ¥' = yn' some n'eN,

Then y'a = yn'a = yan' = yn' = y' which contradicts

the assumption that a % 1,

2.4 Summing up we have shown that a 2-prinitive near-ring WU

with identity and d.c.c. on right ideals is eithef a ring or it

is isomorphic to the set of mappings of an additive groun into

itself commuting with O and a group of regular automorphisms of

the group, where the additive group has a finite nurmber of orbits

under the automerphisnm group, This contrasts with the ring case

vhere a primitive artinian ring is isomorphic to the set of

homomerphisms of a vector space commuting with a division ring,

the vector space having finite dimensicn over the division ring,
Notice that instead of hormomorphisms we havenﬁppings,

instead of vector space we have en sdditive group with a

multiplicative group eperating on it and instead of a finite

dimensional vector space we have a group with a finite nurber

of orbits,
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Wielandt Y1) first noted this result but his procf, although .
available, is unpublished. It has been ncted above, that our
prcof is a generalization of Laxton's proof for finite, distributively
generated near-rings. The next problem is to take an arbitrary additive
group I' , a group G of regular automorphisms of T, with the
property that as a permutaticn group cn I', G induces a finite
number of orbits, and ask whether the near-ring yyy OUG(I‘) 13
2-primitive with d.c.c. on right ideals. The only real difficulty
occurs in showing that we have d.c.c. on right ideals, This problen

did not arise in Laxton's casc because everything was of finite order,

2.5 Theoren.

If T is a finite (additive) group and G 1is a group of regular
automorphisms of T, then the near-ring N = mG(I‘) 18
2-primitive and finite,

Proof, Clearly M will be finite,

Ve show that I' 1is a faithful N-bodule of type 2, TI' becomes en
N~module by constructing rultiplication of yeI' by neN in the

natural way,

1e. vY.n = (y)n.

Clearly the zero rmapping, ic, 0, is the only element of (T) "

Let O f vel', We require YN =T. Let y' be an arbitrary element

cf I'. Define a mapping, 6 : T =T as fcllows,



(yg)o - v'g . V eeG

v1e = 0 V. y; el \ {yG)

Then €eN 1is easily checked.

Thus y' = yfBeyN

Hence I' = yN

The identity map on I' is the multiplicative identity of the
near-ring N.

T
-

2,6 1In order to complete the structure theory we now prove

the following theorem which was communicated with its proof to us

privately by Wielandt and Retsch,

Theorem.,

e

If T 1is an additive group and G 1is a group of regular auto-
morphisms such that G induces only a finite nwymber of orbits on T,
as a permutation group, then N = mG(I‘) is a 2-primitive near-ring
with identity and descending chain condition on right ideals,

Proof. By adapting the proof of Theorem 2,5 we can see that N

is 2-primitive with identity. We just need to show that N hes
descending chain condition on right ideals,

Let Yis o o o Yn be representatives (ie, members) of the

orbits on T \{o}.

Clearly (Yi)r is a right ideal of N, 1lgi<p,

and N $# T as N-modules, 1lgisp,
(Yi)r
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P

Let A, = () (Yj)r s these are ripght ideals of N, lgigp,
=l
j#i

and N = Ai @(Yi)r r"l,..-.P-
So Ai ' as N~modules 1lgig¢p.
Moreover A, () A = (0) i #k

N = Ai @ [(Yi)r n {(Ak) @ (Yk)r]’J i +k

- 4 @ 58 lop,Map,]
Thus N= A &2, ... & A, and we have found a corposition

series for N, namely

N=A1® A ., & APDAI @ Ar @ 'o &p_llelG-') AZQ"'
#H Ap_zj “oe :)Al@ AzD A4 D[O)

The factor terms

A

IS O NV O ®A‘K/ JS[' as N-modules,
RO XORRS Aee1

i.e, they are N-modules of type 2.

Hence N has d.c.c. on right ideals

2.7 VYe may now collect our results together in a similar form to
the well known, corresponding theorem, in ring theory.

Theorem., (Wielandt, Laxton), The following two statements are

equivalent
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4

(i) N is a 2-primitive near-ring with identity and d,c.c, on

right ideals,

(ii1) N is a primitive artinian ring or N is isomorphic to

YYYo(T) where T is an additive group, G 1is a group of

regular automorphisms of T, which induce a finite number of

orbits on T.

Remark,

N' is abelian if and only if I‘+ is abelian, ard so we kn>w

the abelian 2-primitive near-rings with 1 and d.c.c. on right ideals,
2.8 A well-known theorem on finite groups gives us the following
corollary.

Corocllary. If N is a finite 2-primitive niﬁr-ring with identity

and if (N,+) is not nilpotent then

N =z yyy(r).

Proof. The centralizer of T consists of the zero endomorphism

and regular autcmorphisms., (r,+) is not nilpotent and so we apply
the result of Thompson [l] which tells us that only the identity

automrphisn?:the zero endomorphism can be in the centralizer of .

Thus N

314

TWG(P) . ‘Y’Y‘Y(T) as G = {0,1}.

83. The connection with simple near-rings.

In what way is the structure of 2-primitive near-rings with identity

and d.c.c. on right ideals connected with simple near-rings?

3.1 Theorem. A near-ring with descending chain condition on right

+ & 9 e
N =groups and an identity is simple iffit is 2-primitive,
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o
Proof. (After Laxton El ]). If N 1s simple, by the chain

condition there isK,a non-zero M -subgroup which has no proper
+ .
N -subgroups contained in it except (0). Then K is an

N-module of type 2.

(H)r 18 an ideal and so (K)r = (0) or N,

But 1eN and K.l = K so (K)f = (0), Thus N 1is 2-primitive,

If N is 2-primitive, let O % 'T', be an ideal of N,

No= 4 @ A & ... 8 A whe?re A, = J(;} (v5),
il

and the vy, « . , Yp are representatives 6f different orbits of

Fach Ai = I' as N-modules,

let O # XeT, then x = a; + ap +....'.-l-ap

(aieAi s  lgigp)

Since ‘Ai is of type 2, Ai = a,N 1l¢i<p., Assume a) + 0,

Now 1leNso 1 = e} + ey +,  + ep and

A, = e,N 1¢<i<p. Where e,cA, (1=1, . + , D)

But e, = e. +er +, ,tede. = er1e., +ere, t, ,t+ e e,
] (e} 2 0?83 155 7 %253 70 07 553

(direct sum)
where eiejeAi 1<1<p.

i
Thus e.e, = 0 i ] and e.e. = e,,
ig LrJ and egeq 3

Hence ej.x = ejay) + eyjay; + . , + elap

now ae eiN so eja, = 0 if 1 % 1 and eja; = ay

T
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Therefore ejx = a; +0+ , , +0 = a ¥ 0, Thus

a1eA)\'T as e1x €T, But A AT = (0) or 4

80 A1\T = Ay 1ie. AIC_T.
Suppose (Az)r t+ (0). Then Ay = 0 =Ty = O
since Ay 8T, and if p: I' Ay, 1is the isomorphism then

(ywdo = (yp)y = O,Y'r e '« This contradicts (I‘)r « (0).

Therefore A;A; # (0). and 3 a';eA; such tha
a'zAl + (0) now a'2A1 E Az S0 a'2A1 = Az
We have A T

and so Ay = a's A;;C 2'7CT

This may be repeated for Az, « « « , AP

Thus A1, A2, o « o Ap are all contained in T

Then NC™T and so N is siuple

3.2 Ve have to restrict ourselves to near-rings with descending

chain condition on rt.1~T+-—groups so that we can sheow that a simple

near-ring is primitive. The other way round does not need this

restriction,only d.c.c., on right ideals,

3.3 The questions we could now ask are cencerned with relaxing
conditions needed for the main theorem 2.7. 1Cou1d we, for

exarple, relax the chain conditicn and just insist on the existence

of some minimal right ideal? Could we look at O-primitive instead

of 2-primitive near-rings? Neither of these questicns have been
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complately investigeted, we will cousider the seccnd ynastion

lat2r on.

B4. The decorposition ¢f a near-ring N, with Jo (N) = (0) and
dec.c. on right ideals

We now use some of the results in this chanter in a twore general
setting.

4.1 Ve remarked in 2.4.,3 thet the radical J2(N) is ths inter-
section of the 2-primitive ideals of N,

We notice the following result.

4.2 Theorems If M has d.c.c. ON rightﬂ ideals and an identity,

and P is a 2-primitive ideal, then P is maximal as an ideal
cf N

Proof. N/ is 2-primitive and sosimple, thus P 1is 2 maximsl
P

ideal in N.

4.3 Thecrem. Let N have an identity and descending chain
condition on right ideals. If J,(N) = (0), then N is a
direct sum of #2-primitive ideals of N,

Pronf., (0) = J2(N) = n P where }’2 is the set of all
Pe JF2

2~pr.mitive ideals of N,

With d.c.c. on right ideals we can find 2-primitive ideals
Prly o 0o o, Pk Juch that

k

g:& P, = Jo(N) = (0), and no proper subset of the P, has

Zero intersection.
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For each 1lgigk, define Qi = Plﬁ e o o) Pi-l npwn « o npn
Then Pif\ Q = (0) . 1lsi¢k., and Q. E(0).

Each Pi is maximal as an ideal in N by 4,2,

0) * 0, C P, = J, () # (0) so we see immediately that

In particular ¥ = Py () @

Also . = (NfiPy) @ Q = [(Pz @ Q2) Pl] @ Q1

= (NP @ @Q@Ne) & ©

= (P,MYP)) B0, O
Continuing N = (P3P, M\ Py) @ Q @ 0 () Q3 etc,
until N (pyM\Py, .ﬁPk) Ou®ee®.. ® Qy

= Q1 (O Q £+ .‘ . + Qk since Py A P2 A .ﬁPk =
Jo(N) = (0).
New N = Q, @ P;. Since P; is 2-primitive,
N /P. is a 2-primitive near-ring so 3 an N /P.-—module T‘i of type 2
wul:h (M), =(0, ”

L, = A, (N 7, ) for all 0 & Y;el,

i
Let y,el, and define vy.,q, =1v;(q; + P)el . for q;EQ;

Then Pi 1s a Qi-module.

xe = - . Y . = o
rja; = (0 Tyla; +By) = (0) 3 qyePy gy = O
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) N

Hence Q; is 2-primitive as a near-ring.

4.4 Theorem, If N possesses d.c.c, on right ideals and an
idenkity then Jo(N) = (0) if and cnly if N is the direct sum

of ideals Q, 1<i<k, which, as near-rings are of the form

Q; svry, (T;) 1g¢igk where I'; is an additive group and G,

i

is a group of repular automorphisms of Fes inducing finite number
of orbits on I‘i(lsigk). or are primitive rings.

This is due to Wielandt; and Laxton [1} N

4.5 Blackett Ll] has shown that in a near-ring N, with
d.c.c. On rt, I"'-groups and J,(N) = O we have the result that

N i3 & (finite) direct sum of ideals Ai. which are simple as
near-rings., We thus get the result,

4.6 Theorem, If N has d.c.c. on right N+-groups and

Jo(N) = (0) then M is a direct sum of ideals A, of the

form Ai g (I'.) where I‘i ig an additive group and Gi
. ¢
1

is a group of regular sutomorphisms inducing finitely many orbits

on I'. (lsigk); if N has a right identity & the A. are not rings.

We notice that Blackett's theorem, (4,5), required a stronger

chain condition but no right identity was needed, (It automatically

had a left identity by (2.6.11).) However we need a right identity in 4.6,



§5. The centre of a near-ring with descending chain condition on rt,

ideals.

Suppose N has d.c.c. on right ideals, J,(N) = (0) and 1l&N,
Let C be the centre of N, i.e,

C = {ceN | nc = cn VneN},
Clearly 1¢C and OcC.

If N = A1® N O l\k where Ai are sirple near-rings and

ideals of N,
Let ceC then ¢ = ¢ +. .. +0¢ (CieAi 1cick,)

Let Ci be the centre of the near-rings Ai (1<1isk,)

If neN, nc = ne,+ o 4 o +cy D and ncig..‘li lcigk,

ne = cn (¢1+ .o +ck)ﬁ = ¢ynt ., tC.n (direct sum) so c.n = nc,

3 i
1sisk , VneN
S0 cqa; = aje;  lgigk, Voageh;
If xeC nAi then x = 0+ s o TXt, n+0

and xal = & 1 $ &
: alx 1L xt::C1 .

1 . 2., = = . 1 1 j
f cleCi then cla.J 0 aJci 1f 1 + ]

nc, = a1¢, + . , + . = 3.0, = - + +
: 1¢; akc:1 ; C;on if n = a1+ . a

so c.eA.¥ \ o . = Af\c,
cleAl C,. Cl Al C

We note that C and the C. are multiplicative semigroups.,

Suppose T = C; X C X.. .X Ck e

{leyy c25 o 0y )5 o, £Cy, lsisk)

i 1’
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T 1s a semigroup under the nultiplication,
(cl, Cop o o Ck)!-(c'l’ C'Z’ " s+ C‘I’C) = (CIC'li CZCi’ . ’Ckck')
Define y: C > T by :

fpr CEC, | C '\U = (cl’ Coy o C.k), wbere C = Cy + Cy + 4 0 ¥ ck
aD.J ‘ ° ¢ RS . ‘ .S ®
clsAlmC Cl (1<1<k)

Y 1is a semigroup isomorphism of C onto T,
Now for 1lgigk, each Ai has an identity and so

Ai ¥ YYY G(l"i) = Li as near-rings, where

. is an additive group and G, a group of regular automorphisms

of Pi inducing a finite number of orbits on Tso

Let O % p be a mapping of l"i--.vI‘i wvhich comrutes with every

e coe 1.0, . = L. 2.eL.
lement of Ll 1,0 pﬂ,l !Llp Y/ leLl
We pick O % YiET'i, then Ys and ;P lie in the same orbit,

otherwise Eg EieLi such that

Yigi = 0 and 'ripﬂ,i :]=0 (by density thecrem),

so O + Yiﬂ'ip = . J g contradiction
and so 3 giEGi such that Yip = Yigi.
For any x;%T;, = b.eL; such that y;b, = x,

s0 x;p = (v;b,)p = (v,p)b; = (v,g;)b; = (v;b;)g, = xe,

and hence p: I'.»T

7T, is sirply a mapping of T obtained by

a # 4 g g -
right multiplication by an element of Gi' X;Pp = Xo8s V xieI‘i.
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N . . . L » V -E ¢ @
ow let ot I'»T, be defined by x,p = x;g; ¥V x,<T;

-. : '
and a particular fixed gieGi. Pick any B eGi, xieI‘i,

T ' = L .' L &
Then (xigi )p X:8: s SO for peYTVGi(FI)

we tust aave
' = * ' ] L
(x;8;'0) = (x;p8°;) 'V g;'eGy W/ x;ely

1 ' = ' :' *

F

jdeo
u<

pde
9

! - '
i.e. f; '8; = 8; '8 1.e, g; € centre of G,
Thus 1f pe centre of Li then p: F{+Pi 18 defined by
inel‘i, x;p = x;g, where g;¢ centre of G,.

If p: T.»T., is defined by inel‘i, ¥:p = X,g, where g,€ Centre Gy

then m:Li and in fact pe centre Li

We can state the following result.

5.2 Theorem. If ¥ has identity and d,c.c. on right ideals and
Jo(N) = (0) then if C = Centrecf N and M = A @ . o e & Ak
(Ai sirple n.rings) then C =z (C;f xCy x4+ o o ¥ Ck) as

mult.semigroups where Ci = centre Ai . (1<isk) and if

Ay = Yrv, (F;) as near-rings (1¢isgk)
i

then there is a grour isomorphis: between A ; = centre of G, and

i

Di = centre of L.
1

(These are ccrrmtative multiplicative groups),



5.3 Corollary. The centre of a near-ring N with identity, d.c.c.

on right ideals, J,(N) = (0), is a multiplicative group,

86, When are two N-modules of type 2, isornorphic in a 2-primitive

near-ring?

6.1 Theorem. If N is a 2-primitive near-ring with identity and
de.c.c. on right ideals then any two N-modules of type 2 are
N-isomorphic. We need first a lerma,

6.2, Lerma If N 1is as in the statement of the theorem let I' and A

be N-modules of itype 2, Then T and A are N-isomorphic,if they are
“faithful.
roof, N=4; ®. . . @& A, where A, ara of type 2, and

rt.ideals so A, =

: N/ for sone YieI‘. (1<i<k,)
(Yi)r

A for some 8ecA, Then (&)r max.rt,ideal of N .

2 N
o8

N+ Q) =@ = 5N ®. . O A NG,
where éim(ﬁ)r = (0) or Ai . Suppose (1'5)r e A‘@. .@Ap, p<k.

Then as N

"

Ly * Aoe ®. () A ve nust have p+l = k,
T

then N = (5)r + (ch)r SO

(&), + (v),) / e (), + (1))
(8)

/
r / (Yl'-:)r

-l
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ilei (Tk)r (G)r / |
_Aa)rn (Yk)r / (G)rﬁ (Yk)r

And so T(Yk)r = (ﬁ)r-

Define ¢: I'+A by

(Ykn)lb = §n W neN,

Then o = 0 & én =0,

Clearly ¢  is an N-isomorphism of A and T,

6.3 Proof of Thecrem 6.1

Let A be any N=module of type 2.

Then (8)_  is an ideal of N.

N 1s simple and so (A)r = 0 or N,

leN means that (4), = O

Thes A ¢ T as MN-modules where T 1is any other faithful N-module

of type 2. by lemma 6.2,
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Chapter 4. O-primitive near-rings with identity and d.c.c. on right ideals (I)

There exists a large class of finite near-rings which are O-primitive
and yet not 2-prinitive, in fact the radical J, 1is not only non-

zero but contains an iderpotent (non-zero) elerent, HNaturally this
situation is completely alien to the ring theoretic case, but it 1is
possible to weaken the hypcthesis of the Density theorem in order that

it becomes valid for arhitrary O-primitive near-rings with identity

and d.c.c. on right ideals.

81. A Density Theoren for O-Erimitive near—rings.

We let N be a O-primitive near-ring with identity 1 and d.c.c.
cn right ideals. T is a faithful N-module of type O,

1.1 Definition. C = {yel' : yN =T} i.e. the set of cyclic

generators of T,
A =T"\C or the set of 'non-generators' of (7,

1.2 We will use the following fundamental theorem which, like the

rest of this section, is due to Wielandt and Betsch, it has not, as

yet, appeared in a published work,

Theorem (Wielandt-Retsch)

Let D and E be right ideals of N with the property that

DNE g_ (Y)r s D Q (y)r, E g_ (Y)r for some ye C
Then N 1s a ring.
1.3 Definition. G = Group of all N-automorphisms of T,

1.4 Lemma. (i) G acts as a fixed-point-free automorphism group on

- i

il

m wma e vk mm am am 1 e - plrnn! P
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(11} if geC and g % identity auotmorphism, then the fixed points
of g form an N-subgroup contained in 4 .,

Proof. (1) if «yeC and yg = y then N =T so

YyYn = (yg)n =yng i.e. g 1is identity auvotmorphism on T.
(ii) Let geG. g % identity automorphism,

Put Fo = Ayer | vg = vl

Then vy,yv2¢¥g,=> (Y1 "Yz)ﬂ Y18 T Y8 T Y1 T Y2

80 y; - Yzng- Fg is an additive graup

(v n)g = (v;e)n = Y,n 80 FQ is an N-eroup of T.
Clearly FonC =¢ by (i).

l.5. We can define an equivalence relation ~ on the elements of

C. If Y,ylec then
YVvyYy & Yy = yg for some geG.,

1.6 Proposition. y ~ y1& (Y)r = (Yl)r (for Y.‘YIGC)-

Proof 1If y, = yg then

(Yln) = 0 & (YE)nIO ¢ yng = 049711 s
If (Y)r = (Yl)r define g : I'»T by
VoeN, (yn)g = Y, N reG and so leM gives yp = Yl'
1.7. Proposition. If <vyeC then (Y)r is a right ideal of M,
maximal as a right ideal,

Proof T as N~mcdules, and T' 18 of type O

= N
'ty

and so possesses no proper !N-submodules, except (0).
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1.8 Theorem Density thecrem for O-primitive near-rings with
identity (Wielandt-Betsch). Suppose N 1is not a ring,

Let vy, ¢ « Ykec such that yimyj = 1 = 3

If Y{: ¢ o y'k are arbitrary clements c¢f T, then there exists
an neN such that i * ;o oy 1€ick

_I_’_r_:_é_r.;f'.By‘ Theécrem I.2.

82. The theory for the generaters of I.

From this last thecrem it 1is clear that we are in a position to find
out what happens to elements of C, but since the theoren

tells us nothing about the behaviour cf elements of A we are very
severely restricted, Thus it is in A, the set of non-generators,
that wve have to make added assurptions. In general it is not
cbvious that A has any algebraic structure; it might not always

be closed under addition for example. We nzke the following assumptions,

il

2.1 Assurptions In this secticn N will denote a near-ring

with identity and d.c.c. on right ideals such that

a) N is not a ring
b) N is O-prinitive and not 2-primitive
¢c) If T is the faithful N-module of type O, and A = T \C,

the set of non-generators of T, then 4 1is an N-module of type 2,

2.2 Proposition If vYeC then (ﬁ)r $ '(Y)r

Proof 1If (A)r C. (y), then

P(ﬁ)r = YN.(ﬁ)r C Y;(A)r since (A)r is an ideal as A 1is an

N-mﬂdUIE .
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Thus I'.(A)r = (0) contradicting (b)r £ (0)
since if (b)r = (0) then N would be 2-prinmitive,

2.3 Proposition. If ye C then 11 = (y)r + (A)r.

Proof By 2.2 and 1.7

2.4 Theorem, 1If Yl, s e Yg'-ec and Yiij '."'? 1 =3,

let v,", « ., v "¢T, Then 3 x€(8) . such that

Yi' = Yix : 1$i$n.

Proof. We proceed by induction on n.

1

If n=1., y,eC and (A)r ¢ (Yl)r 80
Yl.(A)r £ (0), but Yl.(ﬂ)r is an N-subtmcdule of T and so

Yl.(ﬁ)r =T i.e. v,' = Y, X for some xe(A)r.

Assume the result is true for n = k=1 ( k>1),

Let Yis Yo o « Yim1? Ykec: Yiwj = 1 = 3

By the inductive hypothesis, if ;k * 0,

3 xe (A)r such that

0 = Y)X =y,Xx = ... =y _,Xx and Yk§*:fkt|-0.
Then [(A)r(\(n)rn (Yz)r/\ ¢ o+ N (Yk-z)r] i (ch)r

Mso (v,_,). ¢ (r)_ as v, by, andboth

(Yy—q), and (v,), are maximal as right ideals of N,

We now apply Thecren 1,2, with the result that, a3 N 1is not

a ring,

[(A)rf\ (Yl)rﬁ * o o A(YIC"Z)rn(Yk"l)r] _¢|_ (Yk)rn



- 61 =~

Hence 3 xlg[(ﬁ)r(‘\ (Yl)rf\- s h(Yk_z) f\(Yk_l)r] and kal + O,
Now Yy [(A)rr\ (Yl)rf’\' ' N (Yk-z)r “(Yk—i)r:) =t
and so Yk' = Yt for some ¢t cEA)rn(Yl)rf\ ¢ o n("'fk---l)r]'

Also by the inductive hypothesis Jx' such that

YiX' 3 Yi' for i = 1, * ¢ k"l md x'E(ﬁ)r

Also ka' - 1{t:" for some t'E((A)rn (Tl)r Ne o« N (Yk-Z)r"‘r(Yk-l)r}

Put x = x'-t'+t. Then xe(A)r.

Hence Y;x = vj' for 1gjsk.

¢ "
The theoren follows by the principle of induction,

L

2,5 We may turn A into a N -rodule in the following vway.

/),
Let n + (A)reN/( ), and Sen
A

) o

If we define §(n+ (A)r) = §n, then A 1is a N -module of type 2,

/ (8

r

Clearly A is faithful with respect to the near-ring N/ (8)
) 8

Thus N,(A) is a 2=-primitive near-ring. It is quite nossible
r

thatN/(A) is in fact a ring and we will have to consider this
r

possibility separately,
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et geG = Autn(l"). Then AggA and if we denote by g‘ﬁ
the map g restricted to the group A . we see that the elements of
& which remain fixed under the action of gA rmust form an N-suhgroup
of A. (Prop. 1.4)
Thus N-subgroup must be (0) er A, Thus for cach geG, gA acts
identically on A or is regular on A, Thus g acts regularly
cn T | or regularly on C and identically on A,
2.6, We now introduce a2 compatibility criterion connecting the
groups T, A and G which 13 necessarily satisfied in our praesent
situation. Since T has no N-subrcdules except (0) and I' itself, in
particular A is not an M-subtmodule of T. Thus either
(A,+) is not normal in (I',+) or
38ed, yel', neM st. (y+ 8)n — yn ¢4,
Suppose that V yeC, and V8eA we can find a geG such that
Y+ 8 = yg then if given a geG, such that ¥ + § = yz for Bome
vye€C and SeA, ;g - §e£ for all ;ec,'we see immediately that
(y +8)n-yn =yem - yn = (yn)g -ynel.
This gives rise tc the following definitionm,
2,7 Definition. Let A be an additive group, B a ncn-erpty
subset of A, and H a group of automorphisms of A, such that
for each heB, beR

theB,

Then  {A,B,H} satisfy the ccrpatibility criterion (or are commatible)

N R

if and only ifs~-
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not all the following conditions are satisfied,
(1) B 1is a normal additive subproup of (A,+)
(ii) Given any xcANR, any yeB, there is an heF
(where h depends on x and vy), such that x + y = xh,
(iii) If h'eH' = {(heBE | x+y = xh for some xeA<B and yeB}
then x'.h' - x'eB for all x'eA -~ B,
2,6 Proposition. In the situation of this section, {I', A, G}

satisfies the corpatahility criterion,

S3. The case when N

ey,

N, has an identity and d.c.c. on right ideals and is

(3)

is not a ring..

2-primitive. We can use the theory of Chapter 3,
Keeping the same notation and assumptions as section 2 we consider

now the case when M is not a ring

JOR
Ve introduce an equivalence relation on A,

3.1 Nefinitions If 8,5 6,4 then we define

Uk S
Glm 62'¢ﬁ> 62 éln

for some E € Aut (2) - G
‘ H(A) ’
o

If &8cA then we define

(8)_* = {xeN/ | 6x = o0},

(A)

T

Clearly (8)*_  is a right ideal of N/ and A% 18 an
o (8)y

-

equivalence relation on A since G 1is a group of regular

automorphisms of A,
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In fact if geG then gﬁea for gA is an automorphism of A and

1f ded, n + (A)rEN/(A)r then
S+ ()" = (g’ = s'n = (5@ + (@)
s _ 0 ;. = oo
3.2 Proposition If &;, 8yeb then &;a%8,  (4,) * (5.)
3.3 Theorem If &, « . , Gmeﬁ such that 5i"'*5j =>i=]
and 8;', . ,8' €A, then P ien/(&)r such that §,' = 8.9 1cism .

If y=y + (A)r,I (yeN), then G'i o tSiy’ (1<ism)

Proof This is a straightforward application of the Density theorem

for 2-primitive near-rings ( Theorem 3,1,15)
3.4 Let M, = mG(I‘) *

Let M = '{meMo | Am{A, and dnmz = dgm, \8ed, VW geCl.
If ), nyeM then §(my - my) = Sy = Smy €A | VW Ged .
6(n; - m,)E = ém, £~ m,g = (S'g'(ml - mz)‘ v Ser , YBeG.
Smym, €A Véed, 8(mymy)E = (5my)Em, = 8Fmm, ,V 8eb, V FeG,
Thus M is a subnear-ring of M.

1f Np is the set of right multiplications of T by elements of VY

then N

R

N,, as near-rings, If n'eN_, then yn' = yn for scrme

R R
neN, V yer. an' C4A, ($8)n' = 6&gn = &g(n + (A)r)
= §(n + (ﬁ)r)'g' = dng = 6n'§ Thus NF _C_H.
3.5 Since we have d.c,c, on right ideals both in N and N/(A) by 1.2,
r

we sece that there rust be a finite number of equivalence classes on €

with respect to ~ and on A with
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respect to V&, The non-zero equivalence classes will be referred

to respectively as the orbits induced on C bty 6 and on O by
G. If there are h orbits on C induced by G and t orbits

on A induced by G, we will find representatives of each orbit,

Let these be Yl, ] ® 9 Yh 01’1 C and 61’ % & | 6 On AO

t
h N _
Thus C = j=1 Y36 and A = =1 GjG
. \1:, C, -
Thus I' = {0} U (.7, v;6) \J ( jmp 8:6).

If meM, then pick any O % yel' , Either ye€C or yeA and so
either y = Y;¢ for some geG and ie {1, , , , h}

or Y = GJ.'g' for some geG and je {1, . . , t}

Then yn equals y.,mg or Gij and consequently if we know the

values of yym, « + v , YT 6,m, Glm’ ¢ ,6tm, we can then

determine the value of ym for an arbitrarv vy €rl.
(OC.n = 0),

3.6 Theoreme N & M as near--rings.,

Procof. We already know that N = NB C M

Let ne, put y,o = Yi' . 1lg¢i<h and

S.m = 6.' | 1¢j<t,
j j 356

From theorerm 3.3, < yell s.t. 553' = Gj' N £ 3 £3

Let Yy = Yi“ for 1<i<h,
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By theorem 2.4 3 xe (A) " such that

Thus the right rultiplication by n of elerents of T 1is equivalent

as a papping to n,

Thus n = n' where n' ¢« I'»T defined by

Yyn' = yn 4 Yel . n'eNR

N.

Mne

Thus MO N, and so M = W,
3.7 To summarize, if I is a O-primitive and not 2-primitive
near-ring with identity and d.c.c. on right ideals such that the set

A of ncn-generators of T 1is an MN-module cf type 2, and N/ (A)
A
r

i

is not a ring then M is (isomerphic to) the near-ring of all
mappings cf T into itself; cormuting with all the N-automorphisms
of TI'; which take the group A into itself and cormute with the

centralizer in N / of A,

(8)

Naturally it is quite possible that in a finite near-ring both these

centralizers are just the zero endomorphism. Then the near-ring is the

set of all zero~preserving maps of T into itself that take A

into itself.



Obvicusly M will be a subnear-ring of the near-ring of rappings

of T 1into itself cormmuting with the centralizer in ¥ of T,

§4i The case when N/(A) is a ring.
r

4

In this secticn N/(A) vill be assumed to be a ring; ir particular

r
it 1s a prinitive, artinian ring. It has a faithful, (rinp)

N/ (2) -module A, which rust therefere be an abelian additive group
T

4,1 Propesition. C (A) 1is a division ring, and A 1is a

0

) 9

finite dimensicnal vector space over (A) = D

C
M
(O
(Jacobson Elj . Chapter 4.)

4.2 Theorem, If 61, S0y o o Gme&. and ere linearly independent

with respect to N, and 6;,62', . e ,Gm'eﬁ

Then A veN/ (A) such that
r

§.' =38,y o 1<isnm,
If vy = y+ (A)r for some yeN, then

8, = ai; = Gi(y + (8)) =6,y  lsism,

1

Proof, This is an application of the density theorem for rings

(Yacobson [13 . P. 20)

4.3 Let Mo = mG(I‘)

If M = {oeM | 2nCA, drd = 8dn, V 8c4, V deD  and

'+ &")n = Gh+ &np, ¥ &, §eA}

then M is a subnear-ring of M,



- 60

If N, 15 set of right rultiplications cf T by elements of 1T

NRQM if wve can show that (6 + 8")n = &n + 6'n . Vnell,V46,8"el,
Now Lf ne(A)r then (§ + 6")n = &n + §'n,
1f n{;(&)r, put n = n+ (ﬂ)r.

Then (§ + 6 )(n + (t‘.)r) = S(n + (ﬁs)r) + 6'(d + (A)r) since

A 1is a ring module with respect to 1/ ) °
r

thus (6 + §')n = &n + 6'n.
Hence NRg_ .

4.4 VUe have d.c.c. on right ideals of N and of H/(aﬁ) ‘
r

lence we have a finite nurber of equivalence classes on € and
A is a finite dirensicnal vector space over D, Supnose we have h

equivalence classes on C and the dirmension of A with respect to

D i.s t.
h 5
Then C = v/ v;6 and A = (f) D
i=1 1 jer 3

for suitable orbit representatives Y; of C and D-basis Gj

of A, Clearly if mreM then when Y@y o o thm"slm’ ¢ "(Stm

are known, then the action of m on an arbitrary element of [T 1is

determined.

4.5 Thegrem. N = M as near-rings.

Proof. We show that MC HP.

Let meM and put 6]' . = 6_jm, 1¢jst
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and yi! = y.m 1<i<h,

Clearly by what has preceeded we can find an neN such that
L s 1
Y4 ‘Yin Y;m v 1€1gh

and §.'" = 8&.n = &m  1gjsgt
J ] h

Hence Mg_ NF so M = N
4,6 If N is a O-primitive, and not 2-primitive, near-ring with
identity and d.c.c. on right ideals such that the set A of

non~generators of ' 1is an N-module of type 2 and N/(A)
r

is a ring, then N 1is (isomorphic to) the near-ring of all mappings
of T into itself corrmuting with all the N-autororphisrs of T

which take the group A into itself and are horormorphisms on 4

cormuting with the centralizer of A inN/ (1) °
r

Here again N is a subnear-ring of M = yyy ()
where G = AutN(I‘)

85. The converse and final classificatien
If we denote by o the restriction of the map n ¢ #T to the
subset A we can rewrite the recsults of the previous two sections,

5.1 Thoeren If N 1is O-priritive, but not 2-primitive, with

identity and d.c.c. on right ideals satisfies 2,1,

then N = '{mcmG(I') | mA E'Y'Y'Y"G'(ﬂ)}

if N/(A) is not a ring,
r




-1 0.

N & {meyyr, (T) | e Homy ()

&
of N/(A) is a ring.
r

Where G = Autu(l‘) , G m Aut:N () and D = (0)U G,
AL)..

We now investigate the validity of the converse,

5.2 Theorem, If T 1is an additive grcup and (0) + A a subgroup
of T'. Suppose G 1is a group of rogular autcrerphisms of A which
induce a finite nucber of orbits on A, and G 1is a proup

of automorphisms of T such that

(i) {r , A, ¢} are ccrpatible,

(i1) each elepent of G 1is regular on ' \ A

(iii) ¢ induces a finite number of crbits on I'\ A

(iv) the restricticen gA of any geG, to A, is in G.

Then the near-ring

N = {mevyy (T) | mﬁema(ﬁ)}

is O-priritive, is not 2-primitive, has an identity and d.c.c. On
right ideals,

Preof. If A isnot normal in T then A 1s not an M=subrodule

of T,

If = yeC = T\ A,8eA, such that v + S¢yG, then

if v + Sey,G where yéG.’\ yG = ¢, sore 'rbe(l"\ A),

define neN bty (y + 8)gn = (y + §8)g

vyin = 0 all v'el N~ (y + §)¢

Wiy A R L gege, T raday saliages ey iiren o ey, _—

v W™ gy gl el Taley Smmem vl e i ———twr
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then yn = O since [(7 + G)G)”ﬂ YG
so (y+68)n~yn =y +38¢ 4

If A is normal in T and (yl + §,)eY3G
vhere vy; is any element ¢f C and §,
suppose 3 vy'€C such that

Y'e' = y'¢ A for some g'eG' (see 2,7 (

- ¢

is any element of A ,

iii))

then "3 Y2eC, 06,80 such that v, + 52 = ng'.

Define n,eN by Ny3  Y,8 ~»'g V £EG

. A4
nyt Y, + 0 X YoeI‘\YZG

Hence if {r, A, G} is compatible A is

If y,eC and 73'eP then define

Nyt Y,2 * Y48,V geG

n3: YO - 0 ,‘d YOeI‘ Y 3 Ge
Then Yan, = ', and so YN = T.

If O + GueA and 6'ue&, define

n,t 8,8 *8,'8 WV geC

Ne: Y, -+ OIVyueP\GL} G.

Then nueN and Syny = 6%, s0 A =

Thus A 1is an N-module of type 2, and T is an N-module ef type O,

Hence N is O-primitive, we show that N has d,c.c. cn right ideals,

not an N-submodule of T.

3 hH

T e A e g, b

i v UL i i e i i o

e [ ]
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e N + N (as N-modules)
suppose XN AT then xe(¥,)_
) / 4, / (3,), / CANPENCAN

m (;z)r

(Yl)r{'\ (Yz)r
0 X = o + Gl)r N (:7'2)'1_' where ae(ifl)r
= Bi"' (?l)rn(ﬁ)r where Be(?z)r

go a-f € (71)1.(\(?2)1., then a-Be(:fl)r 80 Be(?l)r

hence Be(y,) (M (y,)). and x = O,

Thus N. / u - H/ @ SV
\ /(-\:l)rn (;2)1_ , (:Y-l)r / (:Y-z)r

In the natural way we can show By induction that

o~

® 7 e N ‘ ~ T &.. @0 /
/ ©. /G'l)rﬁL. AR / (¥, /G

Each H/ o E@. as N-modules and so
(

3 50 1<jst . Then ng + O and nse((‘.)r
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N is 2-primitive since A is a faithful N / | -ﬁodule ]
(3), / (A)y_

A = | -
If Sged and (§)* {xeN/(A)r | §cx = 0}

T .
&y P
b1 r.* 1:‘: ,—Ls.:? . v

Teay

then (Gs)r* - (Ss)r/ is a right ideal of ¥
r
(A)r

maximal as an (N/ (2) ) ~subgroup,
o .

t - o -
. - 8- Y% h LY % = 0
If By = (M (% then (§) % (M E, = D
k=1
k+j L.

and so N/(ﬁ)r - (ﬁj)i.* @ Ej

and clearly in a similar manner to 3,2.6

N/(A)r = 'Sé By **“’ |

=1

"

and each- Ej A as N/ (A) -modules.

r

. N o % o o o -
Thus we have a composition series for M/

(8),°

r .

Wy, = B @ SRS RICIN A DR
gy (& E2 2E; <0,

1If E P. . . @Ej = Ly, le]st
.[/L. = A as 1
then rLJ -[LJ"'I ) - /(6)rj"modules.

, 1s a rieght ideal of N
Fach LJ g /(A)

r
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N is 2-primitive since A is a faithful M / -module .
(), / (A)

I \ an * = | =
f 6ged and  (8g)* (xell/ (s | 8gx = 0]

E
w oy ; W .

oY

(4)

then (65)1_* e (‘56)1-/ is a right ideal of B, .
r
(8)

maximal as an (%/ (2) ) -subgroup,
- .

If E - 3 | §.) * () 5)
, = X . —_—
B, ('"\ (:Sk) . then (GJ)r , EJ * 0
=]
k3

and SO‘ N/(A)r - (‘Sj)i,* @) Ej

and clearly in a similar manner to 3,2,6

Ny, " Beoo 7

and h~ E. A
eac 3 as N/(&)

-modules .
r

"n

Thus we have a composition series for 1/

).

r

N/(A) = E], @f -@ Et:)E]'@ N -@Et__lbt ’ l)
4

E1 (&) Ep» 2By 0.

If E @. . . @ E =1 1<jst

j b

then L,/L, z A M -

1 } . 9 & L
Fach LJ 1s a right ideal of N,(A)

r
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So let Lj = K.j for l<jct, Kj is a right ideal of
7 8)

N containing (&)r.

A simple verification shows that K, / A as lY-modules

14

h . ¥
2 1

Then ’7

NDKtDKt"lj ¢ 0 j K23K13 (A)rjaz @ ® -9 G’)&hD 0\‘3 G‘)u u@ah)t

.....:}(;lhwa<:)<3211f:iE;:)13

is A composition series for N, for

K1/ A as 1T-rodules

-/ () .
(Q i . ... lE h / ¢ I' as N-modules
o /(i @ . . @(P\,h
fori=1,..,h1 aid R, % T as N-modules.

N =« (€, & ()

r r

This completes the proof of the thecrem

The c;.orreSponding theorem for the other case is as follows.

5.3 Theorem Let I be an additive group, A an abelian subgroup
of T. Suppose A 1is a vector space of finite dimension over
‘a division ring D, Let G be a group of automorphisms of T,

A A l

regular on T ~4, with restriction G = {g geGl ¢ D,

-and such.that . G, induces a finite number of orbits on I' ~ 4,
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If {r,A, G} is compatible, then the near-ring
N = fn;%(r)vvf | nAeHomD(A) }
is O-primitive and not 2-prinitive and has an identity and

d.c.c. on right ideals, Also N is a ring,

/

“ M),
5.4, If a near-ring N is of the form indicated in the hypothesis of
Theorem 5.2 and is not of the form indicated in Theorem 5,3, then we

can say that N is not a ring. The confusion arises here in the

/@),
fairly trivial cases of A being a l-direensional vector space over a
division ring D where DN{0} = G,

2.5, We have completed the classificaticn of this class of
O-primitive near-rings.

5,6, Finally we calculate the radical J2(N) of near-rings of

this type (see 2.1).. - e S

Notice that N = A &, , . @Ah ® P @&, ., & @ B,

where A, ¥ T as N-rodules 1<ish,
and Bj ¢ 8 as N-modules 1€j35¢t, J

Recall that J2(N) = M (of all 2-modular right ideals of MN,)

And a right ideal K of a near-ring Il with identity

18 2-riodular if N / is an N-module of type 2,-

X
h t
Ve motice that if X, = ( @ 4) & ( & 3By  1lejse
1 =1 5.1
2
t n'

then Kj is 2-modular. Hence J2(I~I) _(_:.f"\Kj C GBAi = (A)r-
J=1 i=]
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) - T * ¥ i r ' A !
ST ThUS Y J N):- C A Vo A SV wo g S SRR S
’ - 2 | . y ) R
L § L » r 1 . I

Let K be a 2-rpdular right ideal

4!’&

S , 3 N Y e : > gl or e
R = NAK = (AnK) @ ... @ (4nK) & (B1aF) @.., 0 (B.AK)

T e
KA

1
L Mo w g
! " X

;

Then Aiﬂl{ = (0) or. Ai . 1<ich -
o h}3Ei ~ K !I'f_ i(‘]ﬂ) 5 or IB:i - ]L1Eai'$:t:ll : . S Lo -
~ Suppose A:nK = (0) for some  1lsish, P TR R

i ™

~then K @& A, = N and then N, s I and T 1is not of type 2,

- "é 2
T - v ] 1 1~ .ﬂ"; "f’ ; - ) - - { - }‘tﬁ ]
1

so we have a contradicticen.

Thus AihK = A, , 1lgi<h

1
:ar. F o o . . . | R T . J"*”!qu‘ - W ¥
ie. A @...® A C K ie. (&) C. 'K,

Hence J2(I7) = (&)r.

The Jz radical is simply the arnihilator of the N-subgreup A,
the set of non-generators of T, . e

Clearly J(N) ray contain idempctent elements for example the papping

e which is the identity en C = T ~A, btut which annihilates A,

“Then e% = ee(&)r‘ = Jo (). * N

, v, ? | L F Eﬁl \ A %Eﬁ " j‘ 8 - T

5.7. Remark (b')r'(ﬁ)r (A)r
-t e e F*? v %, :—" , ot é“ ™4
for if xe(A) then ex = x() .(0)
- ,r ' IR . *{r o r-, Iy il 1

a-rld thus A C. A & A » - - Iy

w_ e W_.®W_. ..
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Chapter 5. O-primitive near-rings with identity and d.c.c. on right ideals(II).

This chapter will generalize considerably the recsults of the previous

chapter., We will.still make assurptions on the nature of A, the ;

set of non-generators cf the faithful, type 0, N-module, Instead of

,fﬁ.l

ccnsidering the case when A is an N-mwdule cf type 2, we will deal

~ g -

with a more general situation, when A .1is a unicn of a finite number
of N-nodules of type 2 having only zero in cormon,. If there is cnly

one of these MN-modules of type 2. then we have the situatien in chapter 4,

e ' e
a

l. The peneral situatien, | | : -

We assumc that N is O-primitive, with ilentity, 1, d,c.c. on right

Y

1deals and Jz (1) + (0)

e ¥ s -'#. g

If [ 1is a fa1thfu1 H-module, put A= I‘\C where C=={yeI‘ |yN = T},

A is the set of nen-penerators of T,

= * - h "
5 =t % T = ‘L p 2 ¥ * ey o Wy L - ™
. P . &

We suppese that - A = \5 &X s where ﬁ;\p bu = (0) fer oL
A % .u; and each- A I:-l is a N-module (A '=.1, .’ .-,p), of type 2.
Clearly (4)_ ‘= ;f51 (7? ord for cach §,cA, with &, & 0

N/(&)r = ﬁA“ ““ as N-modules (A = 1, .' e » D)o

1.1 Proposition If veC  then (&l)r é (Y)r, .1€A<p..

= IH"'F

P | Y S T e C - =
roof Assume (4,) .C (v),., thenT = N -and T(3,) = yN(Z,)_ Cr(4,) =(0)

Hence (4,). & (I)_..= (0) which implies that A

r is a faithful

A
M-module of type 2, i.e. N is 2--pr1mit1ve and so Jz(N) = (0)

»

which is a contradicfion. Thls holds for a11 1:7«<p.

4n >
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1.2 Proposition, If yeC then for lensp (A)) .../ (8)) & (¥)

- £ * - TR M IR 1

Proof. We proceed by 1nduct10n on n.

If n= 1 then fron 1.1 (E ¢ (Y)

[ \.
} - i ) F ¥ " R M

Assume it is trme for n = k, 80 (61) Ne o) ‘i; ().

Also (8,,,), & (-r) hy 1.1 ) st pt

hence (Al) (Yoos (\(61') (\(Akﬂ) $ (Y) by 4,1,2

since N is not a ring., The induction follows,
(Clearly it does not matter what order wé take the ﬁi in,)

o . €
1.3 Corollary. (&), $ (0. and () ¢ () for any yeC
1.4, Propcsition If (Ai)r - ,(ﬁj)r for sore .,i .|=J ﬁ then

A,) = "(Aj)r'

i‘r
Proof. N / . is a .2-primitive near-ring, for .. -. ..

(@r
ai is an M / -rodule in the usual way and is faithful and type 2,

f (8;),
Thus N, is simple (In3.3.1 we do not need d,c.c. On
(A;)
i‘r

N +-stbgroups for this part).
( /(A.) 3 ¥ i a \ b
i

Hence , (Aj) f = (0) or M The latter is impossible

r / ’
/(A-)

r -~ | o N (ai)r

and so - (ﬁj)r . = (ﬁi)rt -

1.5. It may be that there exists Ai and aj such that

(8) = (aj)r“" (i#%j) Clearly n/(&.) " - H/(b.)
i‘r i'r
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and we put a relation on the set of indices
I = {1, 2, .., p} of the A's,

, 1.6 Definition. Let i, jel then we define the relation R

rl-

by iRj é) (Ai)hr = (Aj)r-

Clearly this is an equivalence relation and we partition I into

*
f
At T ¥ -

the equivalence classes,

I = ( \U PV( . \u P’
aEch ., .Bed

‘:'h - !‘1 - v .'I_" i 4 h .i‘
J \ P

1‘-Illl
I-i-r

in such a way that the subsets {P';; BeB} consist of only one

element each, (A and B are subsets of 1I) MNaturally either

Af or B may be erpty.

l.7 Let I' be a set consisting of a representative from each

equivalence class on I. Then if 1i,jeI', i % j, (Ai)r * (&j)r

1.3 Definition. Put G“'=i AﬁtN(r)

E. =, Aut
. s .

i . ! PN

As gutomorphism groups, the Ei are regular on A 1<i<p: and

il
G 1is regular on T~ A = C,
Put relations en C,A; 1<isp as follows.,

If vy,y'eC then y ~v v", & Y'l = Y8

for some geG.

' ¢ . = — ~

wvhere 1<isp
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It may be easily checked that these p + 1 relatiens are all
equivalence relaticns on their respective sets,

1.10. Propositicen If vy,y'eS then yw' & (v)_ = (v")_

St ———

'
If Gi,é ieﬂ.i then

' = ¢ :
6iRi5i & (Gi)r/ - (Gi )r ; - 1<i<p

(A.) (.«1\5.;)1r

1T
1.11 Proposition ;f (2;)_ i (Aj)r, then for all .eh, 8 o
) g (fsj)r.

X

) 9

Now A, = §.N 5
J J

= ;Gj(ﬁi)r =0

1 T

1.e. (A.)

P € G = G = (0, by 1.4,

1.12 Proposition If ieI' and J is any subset of I' {i}

~
then 5eJ (Aj)r ¢ ~(5i)r | for!any 0 1|= cSieAi.

Proof Suppose that J(o =H Gieéi

and /) (a) € (&;), Then ai((\J(Ai)f) =, (0) " .
jeJ

Ai( N (A) ) = &M (M (A

l) * -
5eJ j°r 1'3ed 3°r




Proof.

| Thus (ﬁj)r - (Ai)

HS ince IN / |
| (4;)

| 1'r
L ! | »
| Gizy. ﬁi 2 for 2 =1, . . , k. 'by 3.,1.12.

-8 -

Thus  (4,) . | .0y (4))

T a?ﬁ :t' < T ) ' i

. and this can only irply that A,.(4;) = (0) for scme ieJ ,

I'r

for otherwise Aiiaj)r = Ai

(We are really just using the fact that (Ai)r is a 2°primitive

‘ : - R P
. o Y ’ : *
¥
ideal).
L .

. for scme JEJ,

¥

and this is a contradicticn by 1l.ll.

1.13, Theorem. Let iel', ‘and suppose N?(A:) is not a ring
17y

5, =y 1 = m,
in

4
q
e

;. - are arbitrary elerents of Ai then

dx.¢e [\ (4,). = X,  wvhere J, = I'~{i}
b jed, I'r o 1
i

& . -

-

and such that  §,, x. = l‘S'. for all L = 1) l;i ’ kt'
14 1 12

B | *:J- . | l# N t

] is 2-primitive, 3 ys€N fop y  such that

k
W el .
i . g

. A, 2= . .) . 18 rmaxi s
). and sc X, ¢+ (&1) N ((61)r is maximal a

X

. . p ; P + ﬁ. - J’?_ - o - v anes t‘*’%.' i;r f}h
an 1deal.) Let y, = to ( 1)r : 1

then' t, = x, + 8, for scre “s.é(é.)  X.eX,.:
1 | ) § 1 1 X 1 1

Then é'i s §, v.

2 $0¥3 = Giﬂ(xi + 8, + (Ai)r) 2 &, %, 2 = 1, I

p §




L o h
o v e - . N
L U - J’-¥83 - b » g ® o

Theoren 1,14 If 1ieI' and N

are linearly independent over Ei' Let 8§':9y & , 6,68, Do arbitrary,

” * _ & . - T'e{$
Then 3 X, eX, N\ (Aj)r, where Ji I'--{1}

jeds
' - = Y.
S'LlCh that 6 iﬁ, Giﬂ,xi R’ 1 P & 9 ¢ -

Proof. This issimilar to 1.13, and uses the density theoren fer

primitive rings,

1.15 Theoren " Let y,, . « , Y_€C such that Yl,‘wj = k = j,

q

If v,', .+, v, arearbitrary in T, there is

q
xe(&)r - f‘\- i‘(ai); - f‘ ' (Ai)r
1el 1€l )
such that Yk" * Y X . for L= 1, o o 5 Qo
Proof., We have th.;; (/_;); f]f_: (Y)r for any YE(::.‘ Iy induction on q'ﬂ ‘

-~ = ' = | -
If q=1. T yl(a)r and v, le for some xe(/_\.)r.
Assume the result is true for q= s>l

Then ('rz)r."\ or o (Ys)rn (&)r EE (Ys+1)r

ﬁ*l

3ince we ¢can pUt Y'z B see = YS' = 0 and Y'S'"']. + O and use

the inductive h&poihegis.
N ? & & ] {'. .
Clearly (Yl)r $ (Ys+1)r md since ¥ 1is not a ring by 4,1,2,

() () Ao n () A 4 (v, .

L
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il

By the inductive hypothesis "=l x'e(8) . such that
Y . ' o !
le Yl » 'F s 0 st YS L
:I ye(Yl)rﬂ(Yz)rﬂ'“"' 11 (Ys)rﬂ (A)r B't'

- '
Ys41V = Y g41 " Yg41¥

Then put x = y + x'e(d)

then Ylbx = Y,y + le' = v,' (by definiticn of x)

"t"'f.'-
- i

s+].

1,16, Now we lcok at the relation between A ; gand‘_:Aj vhen

1,j¢I and (ﬁi)r .= (Aj)r.
Then N, = N / is a 2-prirmitive near-ring,
61 and - ﬁJ are faithful N/ "=rodules of type 2, Ry Theoren 3.6,1,
(A.) | L .
since N / is 2-primitive * © with identity and d.c.c. on -
(a3 r
rigjit ideals A, # A, as N ; ” ~modules.,
Lt J K (5i)r

Let ¢ -Ai -+ AJ. . be this isororphisn.,.

If &.eA., neN then
1 1

(Gin)lb = Gi(n + (Ai)r)w .
= (‘Silb) (n +H(5i)r) | | ) o
- (Gitb) (n + (ﬁj)r) as (Ai)r = (Aj)r

= g, y . = 4.
Jn where 3 Y
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Hence (8;n)y "‘(6i¢)n

and A.
1

J P4

AJ. as N-rodules.

i4) = o
Theorem If (Ai)r (Aj)r then ﬁi * A, as N-modules,

]

1.17 Definition If 1iecl put Ci = T\(ﬁi)

Since A,b, are not N-submodules of T, (1el), we have.
1.18 Theorem If N is of the type described at the beginning of §1
then {T, A, G} 1is corpatible in the sense of 4,2,7, and
{r, A, s G} is corpatible for all iel = {1, , . ,p} (sece 4,2,7 also).
L | ' - - <
1,19 Put I S U 52

o
where ie '51 &~ ieI' and N is not a ring.

/
(65_)1_
ie 52 > ieI' and N / is a ring,
(4.)
1
If jeINI' then 3 kel' such that
fé- = W = 1S L-.# -' hi o s X
3 A~ as N-rodules, so -1 is an N-iscrorphisn tpk] A, L\J

This is true for each jeI ~I', and we will, in future, assure, wvhenever

. '
jJelI~1", knowledoe of Ak and wkj'

Define M_  as being the near-ring Y‘WG(I‘).

Put M = {met | = lé; > mai(ﬁi) for all e ARE

m l Ai € Hor:Ei(Ai) for all 1552;

and for jeI~I', S.nn = -1

. ,.
3 (Sjwkj mwkj, \'fﬁjeﬁj wvhere kel' }
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Put Np = {eM, | ym = yn' Yy e T, neN}

so N, is the near~ring of right rultiplications by elements of N,

on I's We will show that NP g M.

Let. n.ReNR so that N, ' + T defined by
yn, = yn, X/ y eI’y for some neN, . ..
Let. 1ie ,Sl and Gieﬁi. Then

Sty = SmE; = S;(n v (A)F; = B,V

If  ic$ '.eh, th
1852 afzd Gi,G ieﬁi then

* ' - ' - '
(61 + 8, )nR (éi + 8, ) (n + (Ai)r) ;n+ 6. 'n and so

nR I Hom- . ”

» ’ - - g ’ v 1 gm -:1
1f JEI L R then Gjnn thpkjn 5!':n¢1£j 5j‘pkj .n‘ij

where kel and ch = kakj.; cheé.j and erﬁk. |

3 } |
Thus nReM 1.C. LR C . M.
1.20 N has d.c.c. on right ideals and so the groups Ai, i€ §1.

have only & finite number of equivalence classes under the Ge Let these

have representatives Gil’ . s ,*Gik,o,reSpectively. The grouns
1

Ai,i € ,Sz are finite dirensicnal Ei vecter spaces, Let their hases
be sil’ ¢ o o 9 6ik. respectively.

. 1 1 |
C has a finite number of crbits under G and we will denote their

representatives by Yys o o » YQEC.
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If meM then the action of m on the whole of T is completely deter-
mined by a knowledge of the action of m on the various orbit repre-

sentatives,

Sik., ieI?

Yl’ s o ,Yq; Gil, ¢ o 9 3

So m is determined by a knowledge of a finite number of elements

of T.

We will now proceed to show that M € Ny
- I -
1.21. If (ai)r = (Aj)r then Gj = P,... GV

vwhere !bi 3 iz the N-isomorphism WV, J:A + 4

i )
Proof If g.c G = Aut A.
| | —— -l . .
= s » * @ . ® : & Ai
then a (llegJ \le) A, + A, and is a group homomorphism
G a - . = o ; o °
0 2 6, q’lsg.]wl.] > 61 10‘ then; 1s 1 -1

¢ is clearly onto and

Gi(n + (Ai)r) G = 6in3'= 61 ¢ngJ¢IJ = allegJ w

= Gia(n + (ﬁi)r)

Thus aeG. and so E € tb"l.E .tb. 5
i J
ij
If Bey.t G.V.. then v..80°T ¢ G.
i 1 J i’

and a similar process reveals that 8 € G

Clearly the two multiplicative groups Ei and _j are isomorphic

88 groups.

= _ - ]
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1.22 Proposition Let Al and 62 be N-modules such that there is

an N~isomorphism lplzz Al -+ 62. If El and -62 are

Aut (62) respectively, and if

Ay = d § -61 . A; = }‘E; S, G ?here A’{ =A.N fob, (1=1,2),

-

Proof Ve can assume that k2 < kl

Then if ue{l, « . , ka}

'

——

621.: = ‘51131"’12 ‘for some e {1, . ¢ s kl}, g€ Gl_'.

If k., < k., then Ale{l, . ., ]-.::l}

2 1

such that 62u¢511'61¢12 fcr any pe{l, . ., k2}

Now 611.¢12€b2 80

611""12 =4 2H'EE for some u'e{l, . . , 1:2} \ gz s,(:-1

novw 62 = 6121;1"'12 for some Ae{l, « o o , kl} > EIS .61

u'

. . - — _— -l

1e€e Ogy0 = 61Ag1¢1252¢12
— ""1 — . ~
now g, = 1[:12 gllpla | for some gl € Gl
= | > o *'
thus &)1 = 81y 818

vhich contradicts the hypothesis.

Thus kl = k2 .
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1.23 Let meM. We then, by 1.13 and 1l.14, can find an xeN such
that -

S m Y J=1l, ¢ ¢« , k., % icl’.

X = 0s s i

i3
By 1.15 3 yE (a‘.\)r such that

YL3=Y£m-Y£x v£'=l""tq.'

Put n = y + x, Then neN

and Y,n = Yy m = YpX + Y,X = Y,m « =1, « « ¢ 4, ¢
_ - .. ieI'.
Gijn = Gijm , I =1y ¢ o o kl, 1el

If teIM!', then Slse I' such that

d, 2 &_ as N-modules under the isomorphism

- - -1 -
SO 6tm = st'wst o wst -*‘th.wst 'wst th :
Thus m acts on the group I' in exactly the same way as the right

= ‘.'.'

multiplication mapving npe Put ., ;Np = {nR ¢ neN} .

Then NR = M

1.2k The choice of I' was not unique, necessarily, and we now show
that, choosing different representatives of the equivalence classes

on I under the relation R, gives us the same near-ring as 1.23.

P o

We choose a particular I', then I = h_'; v 5 .u (T~I'). Let us
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choose I, as follows. Pick any 1€ :_, , such that

(4,) = (aj) for some je IMNI'. (If this is not possible we can

choose an ief)z and proceed similarly).

Now put I]'_ = (I'\{i}) v {J}

[ i .
r -

Then 1 =6 U S,V (IUwnere §1 = (§MD) v (3.

Put N = M as defined in 1l.19.

Put N, = {maM0| m‘A EYYY= (Ap) for all 06:5";

G
p -
m Hom A for all é'- :
IADS _’i ( p) P '523
0
for oeIMN! -]

—_— r |
10 6. m JAN .mwkc,%cebc , wWhere keIl}

Let meM = N,

We must show that

nys, EYYY (a;)

d o J
G.
J J
&nd 5-111 s Gii‘p-l-liml:) ® vs EA ®
1 1 "J1 Ji

We already know that

l » > &
ml A EYYY _ (Ai) and Gjm 5. walmlpa from the definition

Gs
of N.

Clearl ¢ A. + A. . Let 6.eA., 2.€ G. then
ym:lby>dy. et osels, gie U

gy = 8g0ggmy g Tow B = wygE; vy
for some Eie'(-}-i :
Thus & mg 659 mE R -1
J Ji
639518y mebss
-1 . (§.5.)m
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Thus mIA.e m?.'(ﬁj)'

Now for any ‘55_555_: 355555 S.t. Gi B Gj'pji

-] .
O™ Vi
=5 .m
1
C
Thus meNl. N L N1 .

And symmetry proves that N=N1.

It 1s clear similar processes will show that whatever the choice

¢f I', the near-ring obtained in 1.23 will not differ.

1.25 Theorem Let N be O-primitive with identity and d.c.c. on
right ideals and J,(N) § (0). If I is the faithful N-module of
type O and the set A of nonegenerators of I' , is the union of =
finite number of N-modules A, (ieI), of type 2 such that

Ai £y Aj = (0) for i # j.

Then if I' is chosen with respect to the relation R of 1.6, and

S

"3
It =='=‘,Slu ‘32 as in 1.19, then

N «{ me mG(I‘) l mlﬁie WTEi (Ai) all ie,hl; mlﬁie Homai(di) all ie..s‘2

and for jeIM', any &.ed., 8.m = 8.9 . Y.my. . forakel’
J ’ \ 4 3 J! 3 kaJ ‘ka or A Ke }
as near-rings: where G = AutN(I‘), G, = AutN/ (Ai) ielt.
(4,) -
i‘r

‘ij= A+ Aj is an N-isomorphism.
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§2 The converse and final classification
We now try and build up from suitable systems of groups and

their mappings, all O-primitive near-rings, of the form studied in

§1.

2.1 Given three mutually disjoint finite sets, 5: R S . S of
1 2 3

positive integers, suppose [is an additive group and Ai; ie::gl

F"‘l"
»

a finite collection of subgroups, and As3 ie 92 a finite collection

of abelian subgroups, and A i€ C a finite collection of subgroups,

~3
each isomorphic to one of the A, 39 1e§lu Hz. and such that
> ’
Alf‘\ J (0) for 1 +J ,1,‘]3’)1\)“’;21_; ’53=I_

_:I"‘"

Suppose for each 1ie ,:;-l, : represents a group of regular sutomor-

l"-' — P
phisms of A., and for each ie § sy G represents a divisioning over
A

which Ai 1s a vector space.

Suppose G i1s a group of automorphisms which are regular on

c =~ U(a,)} and such that if geG then glﬁ
iel '

all ie © Sq WV <'2

If{l' ,A,G} is compatible, whered = \/A, ;» end
1eI
{P,ﬁi,G}are compatible for iel

then the near-ring

N = {me mG(I‘)I mlA.e YTYE_(bi) for iESl;
i 1

mIA € Homa (Ai) for ie .{2 :

1 1 -
. &~ -1

for e 9 GlEA- th 5.m e @ @ » a
J€ 32 03804 them O4m = Osevy g emedy;

wh . 1 1 1 . < 'E: .
ere \ka 1s the isomcrphism from Ak to AJ for a ke ’Slu hY: }
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is O-primitive, such that A, are N-modules of type 2 for iel,
N/(A ) is not & ring for 16‘51, N/(A ) is & ring for 1352

and it ,]€§ then (8,). = (4,)f where ke,,lt, C,end & ¥ A; as

~r P J

groups.} and A,_ and A; are in fact isomorphic N-modules. N has

k

an identity.
2.2 Let the group G induce a finite number of orbits on C, and

the groups G. ; iegi induce & finite number of orbits on 4, ; and

the vector spaces Ai, ie:g, have finite Ei" dimension. Then N has

d.c.c. on right ideals.

# LY
.F-» l'.,

Proof We note first that if yer,3 and fe 051 such that q;fy.a +A

y

1S an isomorphism, then if Ao = \J sfk v {0}
k=1

t o e
A = }
y 7o Cadey)ley Cetey v 10
