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Summary 

Photosynthesis is a highly efficient and productive process that converts solar energy into 

chemical energy. Much of the visible and near-infrared radiation falling on the surface of the 

Earth is not absorbed by photosynthesising organisms, which occupy particular spectral 

niches depending on the absorption of the particular pigments they synthesise. For synthetic 

biology applications it would be worthwhile to design and construct bacteria that could utilise 

a greater range of wavelengths than naturally-evolved photosynthetic bacteria. Although the 

incorporation of synthetic chromophores to complement native light-harvesting proteins is 

promising, the approach generally involves in vitro reassembly. In order to create tailor-made 

light harvesting antennas in vivo, we must make use of the toolbox of proteins and pigments 

available in nature, or create synthetic elements that are able to be created by the host 

organism. 

To investigate the possibility of creating artificial light-harvesting antennas in vivo, the yellow 

fluorescent protein, YFP, was incorporated as a chromophore into the photosynthetic 

apparatus of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides. It is 

shown that energy absorbed by YFP can transfer to the native reaction centre and LH1 

proteins, sufficient to enhance the photosynthetic growth rate in a Rba. 

sphaeroides carotenoidless mutant. The light-driven proton pump, proteorhodopsin (PR), also 

has potential to augment the proton motive force in Rba. sphaeroides and drive downstream 

metabolism. Rba. sphaeroides was engineered to express PR and its chromophore retinal.  

The gene for a transmembrane synthetic peptide maquette was designed and expressed in 

Rba. sphaeroides. This work forms the basis of the bottom-up redesign of photosystem 

components with the aim of augmenting photosynthesis in Rba. sphaeroides and in the long 

term to create new photosynthetic complexes and membrane assemblies. In addition, the 

plasticity of the E. coli Tat pathway for the export of maquettes was investigated, as the 

quality control mechanism of the Tat transporter makes it a desirable system for efficient 

large-scale protein production to facilitate further characterisation of maquette proteins.  
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Chapter 1 

Introduction 

1.1 Photosynthesis 

Photosynthesis is the process by which light energy is captured and stored by an organism. 

This stored energy is used to drive energy-requiring cellular processes. Photosynthetic 

organisms, including plants, algae and many species of bacteria, are the primary source of 

energy for the majority of life on Earth. The overall process for photosynthesis is a redox 

reaction and can be represented by the equation:  

CO2 + 2H2A + (light) -> (C-H2O) + 2A + H2O     (van Niel, 1941) 

H2A represents electron and hydrogen ion donors, such as H2O and H2S, which are used to 

reduce CO2 to produce carbohydrate (C-H2O) and A, an oxidized electron donor. Oxygenic 

photosynthesis occurs in plants, algae and cyanobacteria, and uses water as the electron 

donor with O2 as the oxidation product. Photosynthetic bacteria, excluding cyanobacteria, 

perform anoxygenic photosynthesis, and they utilize a number of different compounds, 

including inorganic acids such as succinate and acetate yielding an oxidation product that is 

not molecular oxygen. 

Photosynthesis can be split into two main stages: the light-dependent reactions, and the 

light-independent or “dark” reactions. During the light-dependent reactions photons of solar 

energy are harvested by pigment-protein complexes and are transduced to drive proton and 

electron transfer. Ultimately, a proton gradient across the membrane is formed, facilitating 

the synthesis of ATP. During the dark reactions CO2 and water are fixed as organic 

compounds.  

1.2 Photosynthetic organisms 

1.2.1 Classification of photosynthetic organisms 

According to classification of organisms using the phylogenetic class of their small subunit 

RNA, photosynthetic organisms are found within the eukarya and bacteria domains (Figure 

1.1). No archael photosynthetic organisms have been found. The photosynthetic phyla are: 

plants (including algae), purple bacteria, green sulphur bacteria, cyanobacteria, Gram-positive 

bacteria, acidobacteria, and green non-sulphur bacteria. These organisms all perform 

chlorophyll-based photosynthesis.  
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Figure 1.1 Classification of chlorophyll-based photosynthetic organisms 

Phylogenetic classification is based on the small rRNA subunit. Phyla with photosynthetic organisms 
present are highlighted in green. 

(Adapted from Mothersole, 2013) 

 

Some organisms perform rhodopsin-based photosynthesis which is mechanistically very 

different from chlorophyll-based photosynthesis and involves the cis to trans isomerisation of 

a chromophore directly coupled to ion transport across a membrane (Lanyi, 2004). The fact 

that only two principal types of light-harvesting (chlorophyll-based and rhodopsin-based) are 

known strongly suggests that microorganisms started using solar energy for photosynthesis 

at the very beginning of biological evolution on Earth (Zubkov, 2009). 

1.2.1.1 Purple photosynthetic bacteria 

Purple photosynthetic bacteria are metabolically versatile anoxygenic phototrophs. They are 

capable of growing photoautotrophically, photoheterotrophically, aerobically, anaerobically 

and fermentatively (Imhoff, 1995). Most purple bacteria are capable of fixing molecular 

nitrogen. Unlike purple non-sulphur bacteria, purple sulphur bacteria are capable of using 

sulphur containing compounds such as H2S as an electron donor (Brune, 1995). The Calvin 

cycle fixes CO2 in all purple bacteria (Tabita, 1995). 

1.2.1.2 Green bacteria 

There are two types of green bacteria: green sulphur, which primarily use H2S as an electron 

donor, and green non-sulphur, which do not use H2S.  

Green sulphur bacteria are obligate anoxygenic phototrophs and strict anaerobes. They are 

capable of nitrogen fixation and can fix CO2 through a reverse tricarboxylic acid cycle (Sirevag, 

1995). Green sulphur bacteria are found in environments with very low light levels, such as 

below the chemocline in stratified lakes. 
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Green non-sulphur bacteria are significantly more versatile than green sulphur bacteria and 

are capable of photoautotrophy, photoheterotrophy and aerobic growth. CO2 is fixed using 

the hydroxypropionate pathway.  

1.2.1.3 Heliobacteria 

Photosynthetic heliobacteria are anoxygenic and strictly anaerobic. They are often found in 

soils and rice paddies and are capable of producing endospores. They are active nitrogen 

fixers but CO2 fixation in photosynthetic heliobacteria is not well understood. Heliobacterial 

photocomplexes contain some similar characteristics to those found in green sulphur bacteria 

and cyanobacteria. The primary pigment involved in heliobacterial photosynthesis is 

chlorophyll g, which is unique to this group. 

1.2.1.4 Cyanobacteria 

Cyanobacteria are a large and diverse oxygenic photosynthetic group, occupying a wide range 

of habitats across the Earth, including extreme environments such as hypersaline bays and 

hot springs. They are often referred to as “blue-green algae”; this is considered by some as a 

misnomer as, although the photosynthesis performed by cyanobacteria is remarkably similar 

to eukaryotic phototrophs, they are prokaryotic. Many species of cyanobacteria can fix N2 

and some are capable of using H2S as an electron donor (Padan, 1979). According to the 

endosymbiotic theory, chloroplasts found in plants and eukaryotic algae evolved from 

cyanobacterial ancestors. 

1.2.1.5 Acidobacteria 

The physiologically diverse and ubiquitous Acidobacteria have been assigned to a newly 

devised phylum, which includes the anoxygenic photoheterotroph Candidatus 

Chloracidobacterium thermophilum, discovered in 2007 in a hot spring in Yellowstone 

National Park (Bryant et al., 2007). 

1.2.1.6 Algae and plants 

One distinct phylum of the “eukarya” domain is capable of photosynthesis: the vast and 

diverse group of algae and plants. Although algae and plants are complex, the same basic 

principles of eukaryotic photosynthesis are found in oxygenic cyanobacteria.  

1.2.1.7 Rhodopsin-based photosynthesis 

Rhodopsin-based photosynthesis is mechanistically very different to the chlorophyll-based 

photosynthesis undertaken by all the above groups. Ions, either Cl- (halorhodopsins) or H+ 

(bacteriorhodopsins), are pumped across the membrane as a consequence of the action of 

light. For many years, it was assumed rhodopsin-based photosynthesis was only found in 
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extremely halophilic Archaea, however a new form of bacterial rhodopsin, known as 

proteorhodopsin, was recently discovered in marine proteobactera. Proteorhodopsin is 

discussed further in Section 1.9. (Beja et al., 2000; DeLong and Beja, 2010).  

1.2.2 Rhodobacter sphaeroides 

Rhodobacter (Rba.) sphaeroides is the best characterised purple non-sulphur bacterium. It is 

Gram-negative, rod-shaped and metabolically diverse. Its preferred growth conditions are 

anaerobic photoheterotrophy and aerobic chemoheterotrophy. It is also capable of 

dizatrophic growth and fermentation (Blankenship et al., 1995). Rba. sphaeroides is found in 

anoxic zones of water in deep lakes, soil, mud, sludge, sewage and waste lagoons (Siefert et 

al., 1978; Cooper et al., 1975).  

Rba. sphaeroides grows rapidly in liquid medium in the laboratory under both anaerobic 

photoheterotrophic and aerobic chemotrophic conditions. Because it is not dependent on 

phototophy, the genes essential for anoxygenic photosynthesis can be removed, allowing for 

in-depth study. Its genome is small, fully sequenced and well annotated, allowing for rapid 

genomic manipulation. A wealth of structural information is available for the membrane 

protein complexes involved in photosynthesis which include the light harvesting proteins, LH2 

and LH1, the reaction centre, the cytochrome bc1 complex and ATP synthase.  

1.3 Pigments in photosynthesis 

1.3.1 The role of pigments in photosynthesis 

All photosynthetic organisms require pigments to absorb light in order for energy to be 

stored. The light-harvesting complexes of Rba. sphaeroides primarily contain two types of 

pigment: bacteriochlorophyll (BChl) and carotenoids. Light-harvesting membrane proteins 

absorb photons; on absorbing light the molecule becomes excited. This electronic excitation 

energy can then be transferred to nearby BChl molecules in the peripheral complexes until it 

reaches the reaction centre (RC). BChls are also present in the RC where they participate in 

primary charge separation, in which excitation energy is transduced into electron transfer 

energy (Figure 1.2).  
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Figure 1.2 Basic concept of energy transfer from pigmented light-harvesting complexes to 
reaction centres in Rba. sphaeroides 

Photons of light are absorbed by the pigment molecules in the peripheral light-harvesting LH2 
complexes of Rba. sphaeroides (green) and create an excited state. This electronic excitation energy 
can be transferred from pigment to pigment until a reaction centre (red) is reached, via the 
surrounding LH1 complex (blue). At the reaction centre, the excitation energy is transduced to a 
photochemical charge separation, then ultimately as a quinol.  

(From Mothersole, 2013) 

 

1.3.2 Bacteriochlorophyll a biosynthesis 

Bacteriochlorophyll a (BChl a) is the primary pigment found in the light harvesting complexes 

and reaction centres of most purple bacteria, including Rba. sphaeroides. BChl molecules 

have an extensive π system of conjugated bonds, allowing them to absorb light in the visible 

range. BChl a is a planar molecule consisting of three pyrroles and one pyrroline forming a 

bacteriochlorin ring with a central Mg atom. The D ring of the macrocycle has a long, 

hydrophobic phytol tail which is important for stability and anchorage to hydrophobic 

proteins. It is also important for the correct assembly and function of the light-harvesting 

complexes (Bollivar et al., 1994; Addlesee and Hunter, 1999). 

The biosynthesis pathway of BChl a in Rba. sphaeroides starts with the formation of 5’–amino 

levulinic acid (ALA) from the condensation of succinyl CoA and glycine catalysed by the 

enzyme HemA via the Shemin pathway (Shemin, 1956; Ohhama et al., 1985). Ultimately 

protoporphyrin IX is formed, which can then follow either the BChl or haem biosynthesis 

pathway depending on whether an Mg2+ or an Fe2+ ion is chelated by either magnesium 

chelatase or ferrochelatase respectively (Figure 1.3). Once Mg2+ has been chelated into 
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protoporphyrin IX, the molecule is transformed into BChl a via a series of hydration, oxidation 

and reduction reactions (Figure 1.4). 

 

 

Figure 1.3 Tetrapyrrole biosynthesis from δ-aminolevulinic acid to protoporphyrin IX 

Detailed schematic of the tetrapyrrole biosynthesis pathway from δ-aminolevulinic acid to magnesium 
protoporphyrin IX. Modifications at each step are highlighted in pink.  

(From Mothersole, 2013) 
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Figure 1.4 Bacteriochlorophyll a biosynthesis from Mg-protoporphyrin IX 

Detailed schematic of the bacteriochlorophyll a biosynthesis pathway from magnesium protoporphyrin 
IX to bacteriochlorophyll synthase and geranylgeranyl reductase. Modifications at each step are 
highlighted in pink. 

(From Mothersole, 2013) 

 

1.3.3 Carotenoid biosynthesis 

Carotenoids are hydrophobic tetraterpenoid molecules commonly associated in membrane 

bound pigment-protein photosynthetic complexes (Cogdell and Frank, 1987). In 
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photosynthetic organisms they perform three functions: light-harvesting, photoprotection 

and the provision of structural stability. 

Carotenoids play a role in light-harvesting by absorbing light energy in the 459-570 nm range 

due to their conjugated π electron system. They can transfer excitation energy to 

neighbouring BChl a molecules, which do not absorb light energy from this range as 

efficiently (Cogdell and Frank, 1987). 

In the presence of excess light, BChl can form a triplet state (Figure 1.5 A-B) capable of 

donating its energy to O2 producing singlet oxygen (Figure 1.5 C), a powerful oxidant that can 

cause major and rapid damage to the organism. Carotenoids help prevent this photo-

oxidative damage by acting as oxygen scavengers (Figure 1.5 D), directly quenching the 

oxygen singlet state (Foote and Denny, 1968) or by performing a trapping reaction (Figure 1.5 

E). Carotenoids can also quench the BChl triplet state directly before it can interact with O2 

(Borland et al., 1989); this is the most common photoprotective function of carotenoids in 

vivo (Cogdell and Frank, 1987). This photoprotective function becomes most apparent in 

carotenoidless mutants of Rba. sphaeroides such as the mutant R-26, which are extremely 

sensitive to the presence of oxygen, leading to photo-oxidative cell death in the presence of 

light (Clayton and Smith, 1980; Cogdell and Frank, 1987). 

 

A.   BChl + hv → 1BChl*     (Singlet excited) 

B.   1BChl* + hv → 3BChl*     (Triplet excited) 

C.   3BChl* + O2 → BChl + 1ΔgO2    (Singlet oxygen) 

D.   1ΔgO2 + Carotenoid → O2 + 3Carotenoid* 

3Carotenoid*→Carotenoid + heat 

E.   3BChl* + Carotenoid → BChl + 3Carotenoid* 

  3Carotenoid* → Carotenoid + heat 

Figure 1.5 The photoprotective function of carotenoids 

In conditions of excess light, bacteriochlorophyll (BChl) can form a triplet state (A and B). This triplet 
state can interact with molecular oxygen to form singlet oxygen capable of causing major photo-
oxidative damage. Carotenoids can quench both the singlet oxygen state (D) and the triplet BChl (E) 
prior to it interacting with O2. Carotenoids return to their ground state by dissipating energy in the 
form of heat.  

(Adapted from Cogdell and Frank, 1987) 
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Carotenoids are important for the stability of the photosynthetic complexes. They are 

essential for the formation of the Rba. sphaeroides LH2 light-harvesting complex; the 

carotenoidless mutant R-26 cannot produce fully assembled LH2 complexes (Zurdo et al., 

1993; Lang et al., 1995). They also play a role in the dimerisation of the Rba. sphaeroides RC-

LH1-PufX core complex; R-26 primarily contains monomeric core complexes (Ng et al., 2011). 

The carotenoid biosynthesis pathway of Rba. sphaeroides is shown in Figure 1.6. Under 

different growth conditions different carotenoids are accumulated. Anaerobic growth results 

in the accumulation of spheroidene and hydroxyspheroidene, giving the cells a yellow-brown 

colour. Aerobic growth results in the accumulation of spheroidenone, giving the cells a red 

colour. Semi-aerobic growth results in the accumulation of hydroxyspheroidenone (Schmidt, 

1978; Lang et al., 1995). 

 

Figure 1.6 The carotenoid biosynthesis pathway of Rhodobacter sphaeroides 

Detailed schematic of the carotenoid biosynthesis pathway in Rba. sphaeroides from geranylgeranyl 
diphosphate to spheroidenone or (hydroxy)spheroidenone depending on growth conditions. 

(Modified from Mothersole, 2013) 
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1.4 Light harvesting in Rhodobacter sphaeroides 

1.4.1 The photosynthetic unit of Rhodobacter sphaeroides 

The photosynthetic unit (PSU) of purple photosynthetic bacteria is made up of a network of 

pigment–protein complexes that absorb solar energy as electronic excitation energy (Sener et 

al., 2007). PSUs are are located in specialised intracytoplasmic membranes (ICM) (also known 

as chromatophores) and are interconnected to allow excitation energy transfer to take place 

(Schachman et al., 1952). 

The light-harvesting (LH) pigment-protein complexes of Rba. sphaeroides are composed of 

highly organised and efficient structural protein, BChl a and carotenoids. There are three 

different light-harvesting complexes in Rba. sphaeroides: the peripheral light-harvesting 

complexes, LH1 and LH2, and the reaction centre (RC), which is the site of energy 

transduction from excitation to electron transfer energy. Together, the LH1 and the RC form 

the “core complex” and, in wild-type Rba. sphaeroides, are stochiometrically fixed at a 1:1 

ratio (Aagaard and Sistrom, 1972). Variation in light intensity changes the level of LH2 

complexes in relation to the core complexes within the photosynthetic membrane (Aagaard 

and Sistrom, 1972; Adams and Hunter, 2012). 

The LH2 antenna complex captures photons and transfers the resulting electronic excitation 

to LH1, which funnels it to the RC (Figure 1.2), where excitation energy is converted to a 

charge separation. Both LH complexes are made up of transmembraneous αβ-heterodimers. 

Energy migration is directed by the spatial organisation and energetic order of the pigments, 

which is determined by their binding sites within the LH complexes.  

1.4.2 The peripheral light-harvesting complex LH2   

LH2 complexes are found in many purple bacteria, with some exceptions including 

Rhodospirillum rubrum and Blastochloris viridis, the photosynthetic apparatus of which 

consists only of the RC-LH1 complex (Zuber and Brunisholz, 1991; Hawthornthwaite and 

Cogdell, 1993). 

X-ray crystal structures of the LH2 complexes of Phaeospirillum (Ph.) molischianum and 

Rhodopseudomonas (Rps.) acidophila have identified octameric and nonameric structures 

respectively (McDermott et al., 1995; Koepke et al., 1996). Atomic force microscopy (AFM) of 

Rhodospirillum (Rsp.) photometricum LH2 complexes has identified nonameric, octameric and 

decameric oligomerisation states, leading to the suggestion that LH2 complexes may be 

heterogenous (Scheuring et al., 2004).  
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A 6 Å electron microscopy projection map showed that the Rba. sphaeroides LH2 is 

nonameric (Walz et al., 1998); this was confirmed by AFM of 2D crystals (Walz et al., 1998; 

Scheuring et al., 2003). As of February 2015, no high resolution 3D crystal structure of Rba. 

sphaeroides LH2 has been obtained. Therefore the structure discussed here is that of 

Rhodopseudomonas acidophila, which on the basis of its nonameric ring and the high 

sequence homology, is thought to be similar and has been solved to 2 Å using X-ray 

crystallography (Figure 1.7) (Papiz et al., 2003).  

 

Figure 1.7 The LH2 complex of Rhodopseudomonas acidophila  

Components have been coloured as follows: LH2 α-polypeptides in green, LH2 β polypeptides in cyan, 
B850 BChl in pink, B800 BChl in red and carotenoids in yellow.  

A. Projection view from the periplasmic side of the complex.  
B. Side view with the periplasmic side uppermost.  

(Modified from Mothersole, 2013) 

 

The LH2 complex consists of two concentric cylinders, each composed of nine non-covalently 

associated single transmembrane polypeptides; the β helical subunits form the outer ring, 

while the α helical subunits form the inner ring. 27 BChl a molecules are arranged inside the 

complex in two stacked rings. Nine B800 BChl a molecules are positioned perpendicular to 

the transmembrane helix axis between the outer β helices. Eighteen B850 BChl a molecules 

form an overlapping ring sandwiched between the α and β helices. Light energy is harvested 

and the resulting electronic excitation energy is passed from the B800 ring to the B850 ring 

on a timescale of 650 fs. Excitation energy transfer within the B850 ring occurs on a timescale 

of 100 fs due to the dense packing of the BChl a molecules (Jimenez et al., 1996). Once 

excitation energy is rapidly circulating around the B850 BChls, it can hop at any stage to an 
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adjacent ring, there is no requirement for a special interaction site with a neighbouring ring 

(McDermott et al., 1995; Koepke et al., 1996).  

13-14 carotenoid molecules are present in the structure, in a ratio of 2:1 with BChl a 

(McDermott et al., 1995; Papiz et al., 2003). 9 of these carotenoids are closely associated with 

the phytyl tails of the BChl a molecules (Freer et al., 1996). In Rba. sphaeroides they are 

spheroidene or spheroidenone depending on the growth conditions (in Rps. acidophila, the 

carotenoids are rhodopin glucoside). In the absence of coloured carotenoids, the LH2 

polypeptides (α and β) are synthesised but are not stably incorporated into the membrane 

(Lang and Hunter, 1994).  

While LH2 imparts significant membrane curvature, mutants lacking LH2 produce tubular 

membranes consisting exclusively of core complex dimers (Siebert et al., 2004). 

1.4.3 The major light-harvesting complex LH1 

The Rba. sphaeroides LH1 consists of 14 αβ heterodimers forming two concentric but 

incomplete rings. In bacteria such as Rsp. rubrum and Thermochromatium tepidum there is a 

complete LH1 ring with a diameter of 116 Å, enclosing a 68 Å hole that accommodates a 

reaction centre (Karrasch et al., 1995). AFM and EM of LH1 complexes has revealed that it is 

capable of many different conformations, including open rings and polygonal rings (Jamieson 

et al., 2002; Bahatyrova et al., 2004b). AFM data of membranes from an LH1-only mutant of 

Rba. sphaeroides has led to the conclusion that cooperative association of αβ heterodimers 

with the RC drives LH1 ring assembly to completion (Olsen et al., 2014). 32 B875 BChl a 

molecules are present in an LH1 complex that overlap in a similar way to the B850 molecules 

in LH2. In vivo, LH1 is predominantly found as a component of the core complex. 

1.4.4 The reaction centre 

Excitation energy is converted to electron transfer energy at the reaction centre (RC). The RC 

from Rba. sphaeroides is composed of three protein subunits: L (light) and M (medium), each 

containing five transmembrane α-helices and related by pseudo-twofold symmetry, and the 

H (heavy) subunit which has a single transmembrane helix with the bulk of its mass forming a 

globular domain at the cytoplasmic side of the membrane (Figure 1.8). Non-covalently bound 

cofactors are associated with the RC. Two BChl a molecules form a strongly interacting dimer 

known as the ‘special pair’. Also bound are two accessory BChl a, molecules two 

bacteriopheophytins, two quinones (ubiquinone), a non-haem Fe2+ ion, and a carotenoid 

molecule. 
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Figure 1.8 The Rhodobacter sphaeroides reaction centre 

A.  Model of the reaction centre showing the L (orange), M (cyan) and H (red) subunits. Pigment 

molecules are in the same colours as B.  

B. The reaction centre pigment cofactors including the two molecules of BChl a (PA and PB) 

known as the “special pair” (blue), the two accessory molecules of BChl (BA and BB) (green), 

the two molecules of bacteriopheophytin (HA and HB) (pink), and the carotenoid (spheroidene) 

(red). Also shown are two quinones are (QA and QB) (purple), the Fe atom (orange) and two 

important aromatic amino acid side chains (yellow).  

(From Mothersole, 2013. Modified from PDB ID 3I4D file submitted by Fujii et al., 2010) 

 

High resolution X-ray crystallography structures of the RC have been obtained from 

Blastochloris (Blc.) viridis and Rba. sphaeroides. The Blc. viridis RC consists of a four-subunit 

complex (Deisenhofer et al., 1985; Deisenhofer and Michel, 1989; Deisenhofer et al., 1995). 

The Rba. sphaeroides structure was obtained and refined by numerous groups (Chang et al., 

1986; Allen et al., 1987a; Allen et al., 1987b; Chang et al., 1991; Ermler et al., 1994; McAuley 

et al., 2000; Katona et al., 2003). At present the highest available resolution structure is 2.01 

Å (Fujii et al., 2010). The Blc. viridis reaction centre has a fourth subunit, cytochrome c, which 

is replaced in Rba. sphaeroides by the soluble periplasmic protein cytochrome c2. 
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1.4.5 The core complex 

RC-LH1 complexes use harvested solar energy to power the reduction of quinone to quinol 

prior to the formation of the proton gradient that powers ATP synthesis. In Rba. sphaeroides 

the RC-LH1 complex forms dimeric S-shaped supercomplexes with the small polypeptide 

PufX; this is known as the core complex (Figure 1.9). The 3D crystal structure of the Rba. 

sphaeroides core complex has been determined to a resolution of 8 Å (Qian et al., 2013). Each 

monomer contains 14 LH1 subunits surrounding a RC in a C-shaped assembly (Qian et al., 

2005; Qian et al., 2013).  

 

Figure 1.9 The Rhodobacter sphaeroides core complex dimer 

LH1 β in blue, LH1 α in yellow, RC-H in cyan, RC-L in orange, RC-M in magenta, and PufX in red. 

A. Cytoplasmic face of the complex viewed perpendicular to the membrane.  
B. Complex viewed in the plane of the membrane  
 

(Adapted with permission from Qian et al., 2013. Copyright American Chemical Society 2013) 

 

The LH1 is prevented from fully encircling the RC through close contacts between PufX, an 

LH1 αβ subunit and the cytoplasmic domain of the RC-H subunit. This creates a channel 

connecting the RC QB site with the opening in the LH1 ring, allowing Q/QH2 exchange with the 

external quinone pool (Qian et al., 2013).  



 

15 
 

An earlier 3D model of the Rba. sphaeroides RC generated to a 25 Å resolution demonstrated 

that the two dimer halves incline towards each other at an angle of about 146°, creating a V-

shaped structure that imposes curvature on the membrane (Qian et al., 2008). PufX is 

essential to the formation of the dimeric complex. In mutants lacking PufX only monomeric 

RC-LH1 complexes are formed that exhibit large areas of hexagonically packed core 

complexes with significantly reduced membrane curvature (Francia et al., 1999; Qian et al., 

2008).  

Membranes of Rba. sphaeroides contain a mixture of monomeric and dimeric core 

complexes; the monomeric form predominates when grown under chemoheterotrophic 

conditions and the dimeric form predominates under anaerobic heterotophic growth 

(Ratcliffe et al., 2011; Crouch and Jones, 2012). Some other species of photosynthetic 

bacteria, such as Rhodopseudomonas (Rsp.) palustris, possess only monomeric core 

complexes (Roszak et al., 2003).  

1.5 Transduction of excitation energy and the formation of ATP in 

photosynthesis 

The sole purpose of the light-driven electron transfer in purple bacteria is to create a proton-

motive force across the inner membrane. Excitation energy transfer begins within and 

between the LH2 and LH1 complexes before being passed to the reaction centre (RC). 

Excitation energy is passed to the “special pair” of BChls in the RC, followed by the 

production of charge separation and the initiation of transmembrane electron transfer. 

Electrons are transferred to ubiquinone, a lipid-soluble electron carrier, which picks up 

protons from the cytoplasm. The resulting doubly reduced compound, hydroquinone, 

diffuses through the cell membrane to the cytochrome bc1 complex. Here hydroquinone 

transfers electrons to cytochrome c2, a water soluble protein, whilst protons are pumped 

across the membrane. This generates a transmembrane proton gradient. This gradient is used 

by ATP synthase to produce ATP, or used directly for example to power the flagellar motor. 

Cytochrome c2 shuttles electrons back to the RC reducing the oxidized special pair and the 

system is “reset”. (Sener et al., 2007). This overall process is illustrated in Figure 1.10. 
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Figure 1.10 Schematic overview of electron and proton flow in the photosynthetic 
membranes of Rhodobacter sphaeroides 

A schematic showing the overall process of light-harvesting and the flow of protons and electrons to 
transduce light energy into biochemical energy in the form of ATP by the pigment-protein complexes 
involved in photosynthesis in Rba. sphaeroides. 

(From Mothersole, 2013) 

 

1.5.1 Excitation energy transfer within LH1 and LH2 

After the pigment molecules absorb photons, the energy transfer dynamics within LH1 and 

LH2 are ultrafast (VanGrondelle et al., 1994). In the case of Rba. sphaeroides and Rps. 

acidophila, energy transfer between B800 and B850 within LH2 takes approximately 650-800 

fs at room temperature (Joo et al., 1996; Jimenez et al., 1996; Ma et al., 1997). Energy 

transfer time between neighbouring B800 molecules is approximately 0.7-1.25 ps, and 

between B850 molecules is approximately 110 fs, according to polarised pump-probe 

spectroscopy measurements (Monshouwer et al., 1995; Jimenez et al., 1996). Energy transfer 

between B875 molecules in Rba. sphaeroides LH1 is approximately 80-100 fs, according to 

ultrafast fluorescence depolarisation and annihilation studies (Bradforth et al., 1995). 

Energy transfer in the light harvesting complexes also occurs between carotenoid and BChl 

molecules and occurs on an ultrafast timescale of a few 100 fs (Shreve et al., 1991; Ricci et al., 

1996). 

1.5.2 Excitation energy transfer to the reaction centre 

Excitation energy is transferred between LH2 complexes, from LH2 to LH1 and finally from 

LH1 to the RC. Transfer between LH2 complexes and LH1 is approximately 3.3-4.6 ps (Hess et 

al., 1995a; Hess et al., 1995b; Nagarajan and Parson, 1997). The distance from the LH1 and 

the RC special pair is approximately 4.5 nm with an energy transfer time at 77 K of 35 ps. This 

makes it the rate limiting step in excitation trapping and reduces the probability of back 
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transfer from the RC to LH1 as the early events in charge separation occur within 1 ps at 

room temperature (Visscher et al., 1989; Beekman et al., 1994).  

1.5.3 Transduction of excitation energy transfer to electron flow in the reaction 

centre 

Upon excitation, the RC special pair (PA PB) promotes an electron to an excited state (PA PB*). 

This electron travels via the accessory BChl (BA) to reduce a bacteriopheophytin (HA), 

producing a charge separated state PAPB
+ HA

-; this process takes approximately 2.8 ps (Breton 

et al., 1986). The electron is then transferred from HA
- to the adjacent quinone, QA, forming a 

semiquinone, QA
-; this process takes approximately 220 ps (Holzapfel et al., 1990). The 

electron then moves within 100-200 µs to QB, forming the QB
- semiquinone, which is more 

stable (Gopta et al., 1999). 

The charge separated PAPB
+ state is returned to the ground state PAPB through the donation of 

an electron from the soluble periplasmic electron carrier cytochrome c2. This resets the cycle 

and the special pair is ready to receive excitation energy from LH1 again. 

The flow of a second electron to QB, initiated by the special pair being excited by a second 

photon, reduces the quinone to its quinol form by the simultaneous uptake of two protons 

from the cytoplasm, forming QBH2. QBH2 then dissociates from the reaction centre and an 

unreduced quinone from the quinone pool in the membrane enters the QB site (Deisenhofer 

and Michel, 1991). 

Electron flow in the reaction centre is reviewed in: Deisenhofer and Michel, 1991; 

Deisenhofer and Norris, 1993; Fleming and van Grondelle, 1994; Woodbury and Allen, 1995; 

Hoff and Deisenhofer, 1997; and Bixton and Jortner, 1999. 

1.5.4 Completion of electron flow at the cytochrome bc1 complex 

Electron flow is completed at the cytochrome bc1 complex, a large multisubunit integral 

membrane protein. The complex is also known as ubihydroquinone or cytochrome c 

oxidoreductase. There are three conserved subunits: cytochrome b, cytochrome c1 and the 

Rieske iron-sulphur protein (ISP) (Hunte et al., 2008). Here quinol is oxidised and protons are 

pumped from the cytoplasm to the periplasm. The cycling of electrons and protons through 

this complex is known as the Q-cycle. The X-ray crystal structure of Rba. sphaeroides 

cytochrome bc1 complex stabilised with an inhibitor has been solved to 2.6 Å (Esser et al., 

2008). The complex forms an intertwined homodimer in both Rba. sphaeroides and Rba. 

capsulatus (Berry et al., 2004; Esser et al., 2008). 
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QH2 enters the Q0 catalytic site of the cytochrome bc1 complex and forms a transient 

cytochrome b-QH2-ISP complex, releasing two electrons into two different electron transfer 

chains; in this process two protons are released. One electron is released to the Rieske iron-

sulphur cluster and the haem of cytochrome c1 before reaching the soluble electron carrier 

protein cytochrome c2. The other electron enters the Qi site via haem bL and haem bH and 

reduces a quinone molecule to a stable semiquinone. A second molecule of QH2 is oxidised to 

Q via the Q0 site and, as a result, the semiquone in the Qi site is reduced to QH2, which is then 

released back into the membrane quinone pool. Overall, during this process, four protons are 

pumped into the periplasm and two cytochrome c2 oxidases are reduced (Berry et al., 2004; 

Esser et al., 2006; Esser et al., 2008). This is shown in the equation: 

2QH2 + (2cyt c2)ox + Q + 2H+
(cytoplasm)  2Q + (2cyt c2)red + 4H+

(periplasm) + UQH2 

1.5.5 Formation of ATP by ATP synthase 

The pH gradient, formed and maintained across the photosynthetic membrane by the 

cytochrome bc1 complex, is used to drive the synthesis of adenosine triphosphate (ATP) from 

adenosine diphosphate (ADP) and inorganic phosphate by the F1F0 ATP synthase. ATP is 

universally used as the ‘energy currency’ in biological life and the ATP synthase is found in all 

known organisms, photosynthetic and non-photosynthetic.  

The structure of ATP synthase from bovine heart mitochondria was solved to 2.8 Å 

(Abrahams et al., 1994). ATP synthase is a large multi-subunit protein complex, with two 

components: the membrane-extrinsic F0 domain consists of the α3β3 subunits and it 

catalyses ATP synthesis using a rotary mechanism; the F1 part of the complex forms a 

transmembrane ring consisting of the subunits ab2c10-15 that catalyses proton translocation 

across the membrane. Proton translocation drives the rotation of the c-ring and the attached 

γ subunit rotates within the α3β3 stator. There are three active sites for substrate binding per 

complex and the rotation of the asymmetrical γ subunit changes their conformation allowing 

sequential substrate binding, catalysis and product release. Full rotation of the rotor requires 

one proton translocated per c subunit (10-15 protons per c-ring), which drives the formation 

of three ATP molecules (Feniouk and Junge, 2009). 

1.6 The genetics of Rhodobacter sphaeroides 

1.6.1 The photosynthesis gene cluster of Rhodobacter sphaeroides 

As is the case for the majority of purple bacteria, most of the photosynthesis-related genes of 

Rba. sphaeroides are located in one region of DNA, known as the photosynthesis gene cluster 
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(PGC), shown in Figure 1.11. It contains at least 38 open reading frames (ORFs), as well as five 

genes downstream of puhA which may have functions related to photosynthesis (Naylor et 

al., 1999). 50% of the ORFs in this cluster are dedicated to the later stages of BChl 

biosynthesis, 18% for carotenoid biosynthesis, 8% for the LH and RC complexes, and 10% for 

other genes essential for photosynthetic growth (Naylor et al., 1999). 

 

Figure 1.11 Overview of the photosynthesis gene cluster of Rhodobacter sphaeroides  

Genes with no assigned name have been designated with their NCBI genome sequence number 
starting RSP_. (Chromosome 1, reference NC_007493.1). Gene lengths are approximately to scale.  

(From Mothersole, 2013) 

 

The early stages of the BChl biosynthesis pathway are shared with the haem biosynthesis 

pathway and are located elsewhere in the genome. The genes associated with electron 

transport components, such as the cytochrome bc1 complex and ATP synthase are also not 

located within the cluster. Also not included in the PGC are the puc operons for encoding LH2 

and the genes for the enzymes of the Calvin cycle (Blankenship, 2002). 

The puf operon, which encodes the structural LH1 α and β polypeptides (pufA and pufB), the 

RC L and M subunits (pufL and pufM), the PufX polypeptide (pufX), the BChl regulation gene 

pufQ and the transcription regulator pufK, (Kiley et al., 1987; Lee et al., 1989; Hunter et al., 

1991) are located in the PGC (Naylor et al., 1999). The reaction centre H subunit is encoded 

by the puhA ORF, close to the 5’ end of the PGC (Donohue et al., 1986).  

The genes for the LH2 β and α polypeptides (pucB and pucA) (Ashby et al., 1987; Kiley and 

Kaplan, 1987) are located about 20 kilobases (kb) downstream of the main PGC in the pucBAC 

operon. pucC encodes the assembly factor for LH2; interruption of pucC abolishes the 

production of LH2 complexes (Tichy et al., 1989). A second pucBA operon is found 1.36 Mb 

from the pucBAC operon, but a second pucC gene is not found (Zeng et al., 2003). 30% of LH2 

complexes contain polypeptides encoded by the puc2B gene, but deletion of puc1B abolishes 
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the biosynthesis of LH2 entirely. The protein encoded by puc2A is very different to that 

encoded by puc1A and bears no resemblance beyond only 58% sequence identity in the N-

terminal 48 amino acid residues. The puc2A gene is expressed but is not located within LH2 

complexes (Zeng et al., 2003). 

1.6.2 Control of gene expression 

A 10-20 -fold molecular excess of the LH1 polypeptide transcripts over those for the RC is 

achieved by the synthesis and decay of the mRNA transcripts are. The mRNA transcript for 

the RC genes is degraded faster than that of the LH1 polypeptides (Belasco et al., 1985; Zhu 

and Kaplan, 1985). Light and oxygen intensity controls the regulation of these genes 

independently.  

The light and oxygen conditions of the environment also control the genes for LH2 (including 

puc2BA), the genes in the BChl biosynthesis pathway, and the carotenoid biosynthesis 

pathway. An increase in light intensity causes a decrease in the expression of the genes for 

LH2, LH1 and RC. The BChl biosynthesis genes are regulated in a similar way. The carotenoid 

biosynthesis genes are regulated in an opposite fashion: increased light intensity results in 

increased expression of the carotenoid biosynthesis genes, possibly due to the 

photoprotective function of carotenoids under high light intensity in the presence of O2. (Zhu 

Yu and Hearst, 1986; Zhu and Hearst, 1986; Kiley and Kaplan, 1987; Glaeser and Klug, 2005)  

1.7 The ultrastructure of the Rhodobacter sphaeroides photosynthetic 

membrane 

1.7.1 The intracytoplasmic membrane 

The photosynthetic apparatus of Rba. sphaeroides is found in invaginations of the 

cytoplasmic membrane, known as the intracytoplasmic membrane (ICM). ICM is comprised of 

vesicle-like structures 40-60 nm in diameter, packed tightly within the cell (Vatter and Wolfe, 

1958; Cohen-Bazire and Kunisawa, 1963; Peters and Cellarius, 1972). These vesicles can be 

isolated as photosynthetically competent ‘chromatophores’ following cell disruption in a 

French pressure cell. In some species of purple bacteria, including Phs. molischianum and Blc. 

viridis, the ICM are composed of stacked lamellar sheets (Drews, 1960; Miller, 1979). Certain 

Rba. sphaeroides mutants exhibit altered ICM morphology, for example LH2-deficient 

mutants produce tubular membranes (Siebert et al., 2004).   
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1.7.2 Maturation of intracytoplasmic membranes and precursor membranes. 

Separation of the membrane faction of Rba. sphaeroides on continuous rate-zonal sucrose 

density gradients by ultracentrifugation results in the formation of two discrete bands. The 

slower-migrating fraction is termed the “upper pigmented band” (UPB) (Niederman et al., 

1979); the faster moving fraction is the ICM. This difference in movement is likely to do with 

their membrane morphologies, particularly the spherical nature of the ICM. As determined 

using multiple pulse-chase radio-labelling studies with [S35] methionine, the UPB develops 

from immature membranes and the ICM from mature membranes. Ongoing protein synthesis 

is necessary for the development of the ICM from the immature UPB (Niederman et al., 1979; 

Reilly and Niederman, 1986; Inamine et al., 1984). 

Functional studies have revealed that the photosynthetic units are assembled in the following 

order: LH1 and RCs, activation of functional electron transfer, and finally the accumulation of 

LH2 (Hunter et al., 1979a; Hunter et al., 1979b; Bowyer et al., 1985; Koblizek et al., 2005) . 

New photosynthetic complexes are synthesised and assembled in the UPB; 

bacteriochlorophyll synthase is enriched here. New LH2-LH1 interactions are created as LH2 

complexes are packed in between rows of core complex dimers in the UPB. A bulk LH2-only 

pool is formed in the ICM. (Hunter et al., 2005). 

1.7.3 The arrangement of the photosynthetic membrane 

The way in which light energy is harvested through energy transfer is related to the 

arrangement and stoichiometry of the light harvesting antenna and reaction centre 

complexes in the photosynthetic membrane. Efficient light harvesting depends on the 

funnelling of energy between physically close complexes (Sener et al., 2007). Insights into 

how energy is transferred so fast and efficiently throughout the membrane are gained 

through the wealth of knowledge of the structure of the various photosynthetic complexes 

and of the geography of the chromatophore. Photosynthetic membrane topology has been 

investigated primarily by atomic force microscopy (AFM) (Bahatyrova et al., 2004a). There is 

diversity in the arrangement of the photosynthetic membrane across different species of 

purple photosynthetic bacteria. Despite differences between species, the organisation of the 

membrane complexes does not appear to be random. There is evidence for both core 

clustering and the formation of peripheral light-harvesting domains. (Sturgis and Niederman, 

2009).  
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1.8 Artificial photosynthesis 

Research over several decades has attempted to recreate photosynthetic-like light harvesting 

processes by purely chemical means. To date, these efforts have fallen far short of the 

efficiency and versatility of natural systems (Harvey, 2003; Aratani and Osuka 2010; Harvey et 

al., 2011; Lindsey et al., 2011; Jiang et al., 2014). There are several main challenges to 

overcome. First, it is a challenge how best to make use of the diverse spectral range of 

incoming solar radiation. Second, singlet excited state derived from photon absorption is 

short lived, so reactions and energy transfer processes must be fast and efficient, also 

disfavouring recombination reactions. Third, it is essential to deploy large numbers of 

chromophores over mesoscale dimensions that funnel absorbed energy for charge 

separation, while retaining stringent architectural control at the atomic and sub-nanoscale 

level. (Jiang et al., 2014).  

Ongoing research into the creation of biohybrid antennas seeks to fulfil these requirements 

through a “science of design”, producing mesoscale antennas with tailorable performance 

specifications including spectral coverage, absorbance intensity, and efficiency of excitation 

delivery and transduction (Harris et al., 2014a; Jiang et al., 2014). The biohybrid approach 

integrates the blueprint of biological photosynthesis with the malleability imparted by 

synthetic chemistry. 

Native-like bacterial photosynthetic antenna peptides have been used as a scaffold to attach 

synthetic chromophores. These biohybrid light-harvesting architectures can augment overall 

spectral coverage as molecules such as synthetic bacteriochlorins enhance capture of solar 

radiation in the near-infra red spectral region which is photon rich. (Jiang et al., 2014). These 

antennas are comprised of peptides derived from photosynthetic bacteria, or synthetic 

peptide analogs and bacteriochlorophyll a, in addition to synthetic chromophores. These 

biohybrid complexes are oligomers of α and β polypeptides that self assemble with 2 

molecules of BChl a to form a dyad. Dyads then self associate to form cyclic oligomers 

resembling the native light-harvesting antennas, LH1 and LH2. The synthetic chromophores 

are covalently attached to one or both of the peptides. The use of specifically chosen 

synthetic chromophores enables the broadening of spectral coverage of the resulting 

antenna beyond that provided by the native antenna. (Jiang et al., 2014).  

Artificial peptide maquettes (discussed in Section 1.11) have been produced with light-

harvesting and reaction centre-like properties, with the potential to replace the natural 

components of the bacterial photosynthetic pathway (Farid et al., 2013; Anderson et al., 

2014; Watkins et al., 2014). 
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Beyond recreating photosynthesis, natural photosynthetic components show promise in 

being used for a diverse range of technological applications. Reaction centres can be used in 

biohybrid devices for photovoltaics and biosensing and as nanoscale solar-powered batteries 

(Tan et al., 2013; Kamran et al., 2015). The Rba. sphaeroides reaction centre has been used as 

a biosensor for herbicides by using its photocurrent generation properties (Swainsbury et al., 

2014a).   

1.9 Proteorhodopsin 

1.9.1 The rhodopsin family 

The light-driven proton pump proteorhodopsin (PR) is a member of the rhodopsin family of 

proteins. Rhodopsins are found in all phyla of life (Foster et al., 1984; Bieszke et al., 1999; 

Beja et al., 2000; Finkel et al., 2013). The rhodopsin family has a characteristic seven-

transmembrane helix structure that forms an internal binding pocket in which a 

chromophore, retinal, is attached. Retinal is bound covalently through a Schiff base to a 

lysine residue on the seventh helix. Upon photo excitation the retinal isomerises inducing a 

conformational change and initiating a cascade of electrochemical reactions known as the 

photocycle. The primary functions of rhodopsin proteins are light-driven transport of ions in 

microorganisms and photo-induced signal transduction in higher organisms. 

The rhodopsin family can be classified into two types with similar topologies but no 

significant sequence homology. Type I comprises the microbial rhodopsins found in some 

halophilic Archaea, γ-proteobacteria, some fungi and green alga (Ruiz-Gonzalez and Marin, 

2004); they function as light driven ion transporters, such as bacteriorhodopsin (H+) and 

halorhodopsin (Cl-); phototaxis receptors, sensory rhodopsin I and II; or have unknown 

functions, such as fungal rhodopsins (Oesterhelt and Stoeckenius, 1971; Grigorieff et al., 

1996; Hoff et al., 1997; Lanyi, 1998). Type II rhodopsins comprise the visual rhodopsins found 

in higher eukaryotes that act as photosensory pigments found in the retinal layer in the eyes 

of animals and humans (Spudich et al., 2000; Beja et al., 2000). While type II rhodopsins 

belong to the G-protein-coupled receptor (GPCR) family, type I rhodopsins are not coupled to 

a G protein and share no sequence homology with GPCRs. 

1.9.2 Proteorhodopsin distribution and function 

PR is a light-driven proton pump, a homologue of the more widely studied bacteriorhodopsin 

(BR) found in some Archaea (Friedrich et al., 2002). The first PR to be discovered was isolated 

as a result of biodiversity screens from an uncultivated γ-Proteobacterium cluster “SAR 86” 
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from Monterey Bay, California (Beja et al., 2000). Since then PR has been discovered in many 

different organisms; about 13% of all phototrophic marine bacteria contain the PR gene 

(Sabehi et al., 2005). There are two variants of PR, green PR (GPR) and blue PR (BPR), 

discussed further in Section 1.9.4. PRs are not confined to a single location or taxon, and have 

been found in fresh water (Atamna-Ismaeel et al., 2008), on high mountains (Bohorquez et 

al., 2012) and in sea ice (Koh et al., 2010), to name but a few habitats. PR is largely absent 

from eukaryotes, but it has been found in the dinoflagellate, Oxyrrhis marina (Salmovits et 

al., 2011). Host organisms even include marine viruses (Yutin and Koonin, 2012). PR is 

abundant in huge numbers in the cell, occupying 20% of inner membrane surface area in 

Pelagibacter ubique, a member of the SAR11 clade and one of the most abundant bacteria in 

the world (Giovannoni et al., 2005). Because PR is distributed widely throughout the oceans 

and at different depths it is likely that this method of photosynthesis may be a hugely 

important part of solar energy utilisation, energy metabolism and carbon recycling in the sea 

(Bamann et al., 2014).  

There is no definitive natural biological function for PR. The large genetic diversity of PRs 

suggests that it could perform a range of different functions between species (Gomez-

Consarnau et al., 2010). Since PR pumps protons across a membrane it is assumed that it is 

involved in the generation of proton motive force (pmf) which can be used for propelling the 

flagella and for ATP synthesis, which has been shown to be the case for BR (Racker and 

Stoeckenius, 1974).  

It has been suggested that PR may be used as an alternative to respiration at times of 

starvation, when organic carbon is limited (DeLong and Beja, 2010). Whether cultured in a 

diurnal light regime or in the dark, there is no observed difference in growth rate or 

maximum cell yield of Pelagibacter ubique (Giovannoni et al., 2005). Light-induced survival 

fitness under conditions of starvation has been correlated to the transcription of PR in Vibrio 

sp. and Dokdonia sp. (Gomez-Consarnau et al., 2007; Gomez-Consarnau et al., 2010; Riedel et 

al., 2013). The extent to which PR can complement or substitute other means of producing 

energy in SAR11 and other bacterioplankton cells in the ocean remains to be quantified 

(Zubkov, 2009).  

There is evidence to suggest that PR performs roles other than light-induced starvation 

survival. The PR from Oxyrrhis marina has a photosensoric function to detect algal prey (Hartz 

et al., 2011), although proton pumping has been demonstrated in vitro (Janke et al., 2013). In 

some polar bacteria the expression of PR is maintained during the dark winter months, 
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suggesting its use for non ATP-generating functions, such as environmental sensing or small 

solute transport (Nguyen et al, 2015).  

To further investigate the function of PR various groups have expressed PR genes in 

Escherichia (E.) coli. When PR is expressed in E. coli along with the biosynthesis genes for 

retinal, there are significant light-induced increases in cellular ATP levels (Martinez et al., 

2007). It has been shown that the pmf created by PR is sufficient to turn the flagellar motor, 

enabling the cells to swim (Walter et al., 2007). When cellular respiration is inhibited by 

depleting oxygen or by using the respiratory poison, azide, PR can fully replace respiration as 

a cellular energy source for driving flagellar rotation and for increasing cell viability in the 

presence of respiratory poisons and oxygen depletion (Walter et al., 2007). A model by the 

same group indicated that the maximum potential that PR is capable of generating is the 

same as the potential created by normal cellular respiration. This means that PR can only 

pump protons when pmf falls below the maximum potential, such as in times of starvation 

(Walter et al., 2007).  

1.9.3 The structure and photocycle of proteorhodopsin 

The PR gene encodes a 249 residue protein with a molecular weight of 27 kDa (Beja et al., 

2000). The 3D structure of PR has been extensively studied by solid-state NMR and solution 

NMR (Pfleger et al., 2008; Hempelmann et al., 2011; Reckel et al., 2011). The 3D crystal 

structure of a BPR was resolved in 2013 (Ran et al., 2013). PR has 7 transmembrane helices 

(Figure 1.12), typical of the rhodopsin family. 

 

Figure 1.12 Toplogy plot of proteorhodopsin 

The sequence is that of green PR (GPR, UniProt: Q9F7P4). The N terminus is towards the extracellular 
side and the C terminus at the cytoplasmic side. Some key residues are highlighted in pink: the proton 
acceptor Asp97, the blue/green spectral tuning switch Leu105, the proton donor Glu108 and the lysine 
Schiff base, Lys231. Figure made with Protter (http://wlab.ethz.ch/protter/start/). 
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The amino acid residues forming the binding pocket in archael rhodopsins are conserved in 

PR. PR is a bacterial homologue of BR, although there are several pronounced differences 

including spectral tuning, the presence of a histidine residue in transmembrane helix B, and 

the absence of the BR-typical proton release group including two glutamic acids (Figure 1.13) 

(Bamann et al., 2014). 

 

 

Figure 1.13 Sequence alignment for different proteorhodopsin variants and 
bacteriorhodopsin 

ClustalWS alignment using Jalview. Uniprot sequence identifiers: Green-light absorbing 
proteorhodopsin (GPR) Q9F7P4, Blue-light absorbing proteorhodopsin (BPR) Q9AFF7 and 
bacteriorhodopsin (BR) P02945. Key residues from GPR are numbered: the proton acceptor D97, the 
spectral tuning switch L105, the proton donor E108 and the lysine Schiff base K231. 

 

The chromophore of PR is all-trans retinal which is bound to K231 to form a protonated Schiff 

base. Retinal has a large variation in its absorption spectrum depending on interactions with 

the apoprotein (Birge, 1990). In methanol, the protonated retinal Schiff base has an 

absorption maximum of 440 nm, but this shifts to a longer wavelength in a protein 

microenvironment (Yan et al., 1995). Upon light excitation, retinal undergoes ultrafast 

isomerisation from all-trans to 13-cis (Figure 1.14), triggering a series of protein 

conformational changes and several proton transfer reactions. (Spudich et al., 2000).  
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Figure 1.14 Retinal isomerisation in proteorhodopsin 

In GPR, retinal is bound to Lysine 231 to form a protonated Schiff base. Retinal undergoes an 
isomerisation from trans to cis on light excitation. This induces conformational changes in the protein 
and leads to proton transport across the protein. 

 

The pumping rhodopsins have a characteristic fast photocycle with a typical time of <30 ms 

compared to sensory rhodopsins which are slow cycling pigments with a halftime of >300 ms 

(Spudich et al., 2000; Spudich and Jung, 2005). The PR photocycle resembles that of BR in 

which protonation reactions at the Schiff base lead to proton transfer across the membrane 

(Beja et al., 2000; Dioumaev et al., 2002). The PR photocycle is characterised by different 

intermediates termed K, the product of photoisomerization, M1 and M2, the deprotonated 

Schiff base, N, the re-protonated Schiff base and PR’(O), the late intermediate (Figure 1.15) 

(Friedrich et al., 2002; Varo et al., 2003). The functionally important residues in PR include the 

proton acceptor D97, the Schiff base counter ions R94 and D227, and the internal proton 

donor E108, which reprotonates the Schiff base during M to N transition (highlighted in 

Figures 1.12 and 1.13) (Dioumaev et al., 2002; Dioumaev et al., 2003). 
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Figure 1.15 The green proteorhodopsin photocycle 

Values calculated from laser-flash induced transient absorption changes at pH 9. K to M1 transition is 
entropy driven.  

(Adapted from Mehler et al., 2013) 

 

It has been suggested that the direction of proton transfer through PR varies with pH. D97 

has an unusually high pKa of around 7.5; this is stabilised by H75 through the formation of a 

pH dependent H-bond (Hempelmann et al., 2011). H75 is a highly conserved residue not 

found in BR and keeps the proton acceptor deprotonated during the photocycle (Bergo et al., 

2009; Hempelmann et al., 2011; Balashov et al., 2012). The high pKa of D97 leads to a 

composition of initial states that are different in their protonation at physiological pH. There 

are functional differences in the proton pumping ability and the photocycles of the alkaline 

form (D97-) of GPR and acidic form (D97-H) (Bamann et al., 2014). At alkaline pH, protons are 

recruited from the cytoplasmic side of PR and are released towards to extracellular side (Beja 

et al., 2000). At acidic pH, the direction of proton transfer is inverted (Moltke and Heyn, 

1995). This inward current is highly dependent on pH and voltage; inward proton pumping 

has been observed at pH 7.5 under hyperpolarizing potentials (Friedrich et al., 2002). 

1.9.4 Spectral tuning in proteorhodopsin 

There are two main types of PR, green PR (GPR) with absorbance maximum of 525 nm and 

blue PR (BPR) with absorbance maximum of 490 nm (Man et al., 2003). This spectral tuning 

allows the optimisation of light absorption at different depths in the sea. GPRs are isolated 

from surface waters, such as Monterey Bay; BPRs are found at greater depths where blue 
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light can still penetrate but other wavelengths have been filtered out, such as the central 

North Pacific (Beja et al., 2001).  

GPRs and BPRs share >78% sequence identity, but their absorption peaks differ by 40 nm. The 

spectral properties of the chromophore are tuned by the amino acids in its direct vicinity. The 

green to blue adaption is characterised by a single amino acid substitution in the place of 

residue 105, from leucine to glutamine (Man et al., 2003). This single change causes a highly 

localised distortion of the chromophore structure and recent research has shown that the 

end of the retinal molecule is the “hot spot” for colour tuning (Mao et al., 2014). 

The photocycle of BPR is ten times slower than that of GPR. The slower photocycle reflects 

the involvement of efficient light detection and faster photocycle indicates efficient pumping 

action. This has led to the suggestion that BPR functions as a sensory rhodopsin rather than a 

proton pump. (Wang et al., 2003).  

The absorbance properties of PR have been altered through the mutation. An unexpected 20 

nm red shift of GPR has been observed through a single mutation in the EF loop, A178R, along 

with an increase in the pKa of D97 (Yoshitsugu et al., 2008). This mutation is at a site far away 

from the retinal and is highly position specific, leading to speculation that there is a long 

range “interaction channel” between the EF loop and the retinal (Yoshitsugu et al., 2009). The 

native EF loop plays a role in proton uptake from the cytoplasmic side of GPR, and could be 

used in the transmission of signals across the membrane for additional functions of GPR, such 

as sensing or signalling. Directed evolution has also been used to tune the absorption 

maximum of Gloeobacter violaceus rhodopsin, causing increased levels of fluorescence in the 

far red (McIsaac et al., 2014).  

In addition to directed evolution, retinal analogs have been used to shift the absorbance 

wavelength of PR (Jensen et al., 2013). Although they are unable to be synthesised in nature, 

this work demonstrates the great tuneability of PR. 

1.9.5 Ultrastructure of PR in the membrane 

In lipid bilayers, cryo-electron microscopy on 2D crystalline preparations, GPR forms 

doughnut-shaped complexes with a diameter of about 40 Å (Shastri et al., 2007; Klyszejko et 

al., 2008). AFM revealed that these complexes are formed by hexamers and pentamers 

(Klyszejko et al., 2008). It has been speculated that the radial arrangement of PR in these 

complexes has an advantage for light harvesting in the sea and, compared to monomers, 

results in a better quantum yield per pumped proton (Bamann et al., 2014). 
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Rhodopsins have been known to build up small antenna complexes by forming a stable entity 

with an additional chromophore factor. Xanthorhodopsin from Salinibacter ruber enlarges its 

spectral sensitivity by binding an additional carotenoid, salinixanthin (Balashov et al., 2005). It 

has been suggested that the ability to bind salinixanthin relies on a single glycine residue, 

which also exists in PR, suggesting that PR may also be able to interact with a carotenoid 

antenna (Imasheva et al., 2009). The PR from Gloeobacter violaceus can be reconstituted with 

a light harvesting carotenoid antenna (Imasheva et al., 2009). 

1.10 Yellow fluorescent protein 

1.10.1 The discovery of fluorescent proteins 

Fluorescent proteins (FPs) are a fundamental tool in biological research enabling the 

visualisation of previously invisible processes such as cell development and protein 

localisation. The most famous FP is the original green fluorescent protein (GFP) discovered in 

the early 1960s from the Aequorea victoria jellyfish. In this organism, GFP transmutes blue 

chemiluminescence from another photoprotein into green fluorescence (Shimomura et al., 

1962). The first written report of such bioluminescence was from Pliny the Elder in the first 

century AD who observed the bright glow of certain jellyfish in the bay of Naples and who 

cultivated slime from these organisms to make various articles luminescent (Cubitt et al., 

1999). The Nobel Prize for Chemistry in 2008 was awarded to Martin Chalfie, Osamu 

Shimomura and Roger Y. Tsien for their discovery and development of GFP. 

1.10.2 The function of fluorescent proteins 

Fluorescent GFP-like proteins function as secondary emitters within bioluminescent systems. 

In Aequorea, GFP partners with the blue chemiluminescent protein aequorin to control the 

colour of emission from a broad blue emission to a sharp green peak (Tsien et al., 1998; 

Shagin et al., 2004). This has been hypothesised to be an adaptation to suit the visual systems 

of potential observers, and serves to scare potential predators away (Partridge and 

Cummings, 1999).  

GFP homologues have been cloned from the Anthozoa species, which is not bioluminescent, 

indicating a function of FPs beyond bioluminescence (Matz et al., 1999). These proteins 

exhibit colour diversity that includes yellow and red fluorescent proteins (Labas et al., 2002). 

The coral Montastraea have cyan coloured GFP-like proteins with a separate evolutionary 

history, which suggests that the cyan colouration serves a specific function (Kelmanson and 

Matz, 2003). It is, as yet, unclear what role these FPs play. 
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In 1944, Kawaguti hypothesised that FPs might be photoprotective (Kawaguti, 1944). This 

theory has support in the finding of photoprotection in endosymbiotic algae. In these algae, 

the proposed mechanism of action is the dissipation of excess energy at wavelengths of low 

photosynthetic activity, and by the reflection of visible and UV light by FP chromophores 

(Salih et al., 2000). This theory remains controversial as it was found that the efficacy of the 

intrinsic photoprotection mechanisms of algae is far better than that expected of FPs 

(Gorbunov et al., 2001; Mazel et al., 2003). If the photoprotection hypothesis is true, the 

reason for the observed diversity of FP colours in Anthozoa remains a mystery. It is possible 

that FPs have functions other than photoprotection in non-bioluminescent organisms. Other 

possible functions for FPs include photosynthesis aid in which wavelength-transformation 

and back-scattering by FPs provide light enhancement for photosynthesis (Kawaguti, 1969, 

Schlichter et al., 1986; Salih et al., 2000), photoreception functions and the generation of 

colour effects aimed at the outside observer.  

Bilaterian animals have a GFP-like domain, G2FP. G2FP is clearly a homologous fold to GFP 

but there is less than 10% amino acid sequence identity (Hopf et al., 2001). Proteins with the 

G2FP fold are not coloured or fluorescent and have roles as protein binding modules during 

development (Willem et al., 2002; Tunggal et al., 2003).  

1.10.3. The structure of fluorescent proteins 

The structure of FPs consists of a rigid 11-β-sheet barrel surrounding a central α helix (Figure 

1.16) (Ormo et al., 1996). A few amino acids located near the centre of the β barrel form the 

principal chromophore. Many of the interior amino acids in FPs are charged or polar, which is 

unusual for a soluble protein. These residues bind water molecules, which locks them into 

rigid conformations within the protein. An imidazole ring with extended conjugation is 

formed as the result of a reaction occurring between key amino acids. The fluorescence of 

the protein is highly dependent on the environment surrounding the chromophore (Tsien, 

1998; Follenius-Wund et al., 2003).  

Examination of over 1000 naturally occurring variations of FP found only four absolutely 

conserved residues (Remington, 2006). Mutation of G67 obliterates chromophore formation 

as it is essential for cyclisation of the chromophore through nucleophilic attack. Y66 is also 

involved in chromophore formation and it has been hypothesised that it is responsible for 

stero-electronic steering of the maturation reaction, helping to avoid undesirable side 

reactions (Remington, 2006). R96 and E222 are essential to the maturation process and are 

catalytic residues positioned near to the chromophore. As most other residues are not 
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conserved, FPs can accommodate a high degree of modification to alter the physical 

properties of the protein (Shaner et al., 2007; Day and Davidson, 2009). 

 

 

Figure 1.16 Fluorescent protein β-barrel architecture and approximate dimensions and the 
chromophore structures of common Aequorea FP derivatives 

(1) BFP, (2) CFP, (3) EGFP, (4) YFP. Portions of the chromophores that are conjugated and give rise to 
fluorescence are shaded with colours corresponding to the emission spectral profile. The tryptophan 
residue (Trp66) in (2) is illustrated in the cis conformation as occurs for cerulean derivatives (Malo et 
al., 2007) rather than the trans isomer that is common to CFP and related variants.  

(From Shaner et al., 2007. Reproduced with permission from Journal of Cell Science.) 

 

Blue (BFP), cyan (CFP), yellow (YFP), orange and red FP variants have been discovered or 

created, these spectral shifts are generally attributed to differences in covalent structure and 

extend of the -orbital conjugation of the chromophore (Figures 1.16 and 1.17). FPs can be 

split into two major classes based on their maturation chemistry. Cyan to green emitting 

proteins have chromophores identical to GFP, but yellow to red FPs undergo an additional 

oxidation reaction, forming an acylimine within the polypeptide backbone. This additional 

oxidation step causes the conjugated portion of the chromophore to extend over the 

polypeptide backbone. The chromophore is physically larger, which leads to a longer emitted 

wavelength. (Remington, 2006).  
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1.17 Excitation and emission spectra of various fluorescent proteins 

Fluorescent proteins have been discovered or designed to cover almost the entire spectrum of visible 
light. This figure shows the excitation and emission spectra of some of the brightest FPs. 

(Adapted with permission from Journal of Cell Science. From Kremers et al., 2011) 

1.10.4. The uses of fluorescent proteins in research 

FPs have been a staple of biological research ever since the Aequorea victoria wild-type GFP 

was used to highlight sensory neurons in the nematode (Chalfie et al., 1994). Purified GFP is 

highly stable and remains fluorescent at up to 65 °C, pH 11, 1% sodium dodecyl sulphate 
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(SDS) or 6M guanidinium chloride; it resists most proteases for many hours (Bokman and 

Ward, 1981). New and improved versions have been created that are brighter, with a broader 

spectral range, enhanced photostability, reduced oligomerisation, acid resistance and faster 

maturation rates. While all FPs are large, around 25kDa in size, they have the advantage of 

being able to be “built in” using transgenic approaches and can be fused to their target 

protein in a 1:1 ratio (Patterson et al., 1997). 

Fluorescence resonance energy transfer (FRET) is a useful technique for monitoring protein-

protein interactions. It is a general, non-destructive, predictable and quantitative, 

spectroscopic method that is used to monitor the dynamic association of macromolecular 

partners in living cells (Tsien et al., 1993). The technique allows imaging in single cells with 

high temporal and spatial resolution. One protein is fused with a donor fluorophore and the 

other with an acceptor fluorophore. The donor emission spectrum must overlap significantly 

with that of the acceptor, while the overlaps between the two absorption spectra and the 

two emission spectra should each be minimized (Cubitt et al., 1999). The most common FRET 

pair is eYFP and eCFP. 

In a recent study many alternative oligomeric forms of GFP have been engineered in which 

the connection of GFP molecules is driven by specific disulphide bond formation or metal ion 

addition (Leibly et al., 2015). This has potential for use in synthetic biology for example by 

attaching together metabolically coupled enzymes or as a scaffold to bring together pairs of 

proteins in close proximity. 

1.10.5. The development of yellow fluorescent protein 

Aequorea victoria GFP has been extensively modified to improve its application as a biological 

probe. Slow maturation has been an obstacle to the use of GFP for visualisation, especially 

when expressed at 37°C and/or targeted to certain organelles. Folding of FPs in E. coli is 

inefficient and fluorescence brightness benefits from mutations that facilitate protein folding 

(Chang et al., 2005). A commonly used GFP is eGFP which has a stabilised anionic 

chromophore and enhanced folding (Tsien, 1998; Shaner et al., 2005). It has been 

advantageous to produce different coloured FPs to allow for the identification of two or more 

different proteins within a system. Protein-protein interaction studies involving fluorescence 

resonance energy transfer (FRET) require dual colour imaging. A broad range of FPs spanning 

nearly the entire visible spectrum has been created. Yellow FPs (YFPs) are among the 

brightest and most versatile of the engineered FPs (Shaner et al., 2007). 
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Wild type GFP was modified to produce YFP and the enhanced folding and stability variant 

eYFP, which have a phenolate anion with a stacked  electron system (Tsien, 1998; Cubitt et 

al., 1999). The single mutation, T203Y, is required for this shift in absorbance and was 

introduced through rational design on the basis of the crystal structure of GFP S65T (Table 

1.1) (Wachter et al., 1998). Compared to GFP, these early YFP variants were less sensitive to 

acid and, uniquely, could be quenched by the chloride ion, Cl-. YFP has often been used as an 

acceptor for FRET in combination with CFP.  

YFP Variant Mutations 

YFP T203Y 

eYFP(Q96K) S65G V68L Q69K S72A T203Y 

Venus F46L F64L S65G V68L S72A M153T V163A S175G T203Y 

SYFP2 F46L F64L S65G S72A M153T V163A S175G T203Y A206K 

 

Table 1.1 Overview of mutations in YFP variants  

Annotation based on wtGFP amino acid sequence (GenBank Accession number M62653). 

(Adapted from Kremers et al., 2006) 

 

An improved version of eYFP called “Venus” was produced that further decreased the 

sensitivity to pH and Cl-, improving FRET efficiency by enabling more reliable FRET signals 

(Table 1.1) (Nagai et al., 2002). Maturation of the eYFP chromophore is inefficient at 

temperatures above 28 °C; this is not ideal for use in for example, E. coli, which preferentially 

grows at 37 °C. The mutations F64L and F46L in Venus dramatically improve this (Cormack et 

al., 1996). Other mutations include F64L, M153T, V163A and S175G which facilitate good 

folding (Crameri et al., 1996). V163A and M153T also increase protein solubility. S65G 

increases fluorescence intensity (Cormack et al., 1996). F46L accelerates the oxidation of the 

chromophore at 37 °C, which is the rate-limiting step of maturation (Nagai et al., 2002).  

The variant SYFP2 was developed for use in FRET and is almost 2 fold brighter in bacteria than 

Venus (Table 1.1). First, the mutation A206K was introduced to create a monomeric form of 

the protein, termed mVenus. Monomeric FPs are useful when studying protein-protein 

interactions it is important that fluorescent proteins do not interact themselves (Kremers et 

al., 2006). Mutation V68L was included in Venus but eliminated in SYFP2 as, although it 

accelerated protein folding, fluorescence development in bacteria was delayed (Kremers et 

al., 2006). Table 1.1 summarises the mutations found in the various YFP variants described 

here. 
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1.11 Artificial peptide maquettes 

1.11.1 Synthetic proteins 

Synthetic proteins are man-made molecules that mimic the function and structure of natural 

proteins. Synthetic protein scaffolds can incorporate parts from natural proteins or be 

constructed through de novo design. The predictive engineering of novel proteins can further 

our understanding of how natural proteins are built and work, and potentially provide 

improved designs (Burton et al., 2013). Man-made proteins have an important role to play in 

the synthetic biology goal of constructing functional parts and devices for incorporating into 

biological or artificial organisms or systems (Channon et al., 2008). To be useful in synthetic 

biology, functional artificial proteins must interact productively with natural proteins and 

substrates, fully assemble in vivo and bind the intended cofactors in order to perform the 

desired function (Anderson et al., 2014). The challenge is that it is not easy to predict how 

changes in protein chemistry might affect the protein’s shape, stability and function (Currin et 

al., 2015). Catalytic, electron transfer, and substrate binding components have been created 

so far using natural protein scaffolds and are reviewed in Watkins et al., 2014. This work 

focuses on synthetic peptides known as maquettes.  

The complex and obscure interactions found in natural proteins have arisen through 

millennia of blind natural selection. This results in the accumulation of complexity and 

fragility, including individual amino acids becoming irreversibly dependent on each other, an 

extension of what is known as Muller’s ratchet (Figure 1.18) (Muller, 1964; Dutton and 

Moser, 2011). Because of this complexity, it is often impossible to identify the functional roles 

of any one amino acid, or to determine the identities of what amino acids support any one 

function. As a result, importing natural sequences or motifs into man-made proteins does not 

always ensure successful import of the selected function. Pioneered by Les Dutton, 

completely synthetic self-assembling peptide structures known as “maquettes” can be 

designed to eliminate this unwanted evolutionary baggage.  

A maquette is a protein or peptide that emulates the function of natural cofactor binding 

proteins whilst minimising undesirable complexity and increase engineering freedom. Each 

amino acid in the maquette sequence has been selected for a particular reason; this 

facilitates each iterative round of design and determination of the overall success of the 

design process (Lichtenstein, 2010). The original maquettes aimed to mimic and understand 

natural oxidoreductases, but it is becoming clear that they may have uses and functions that 

go beyond this. 
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Figure 1.18 Muller’s ratchet 

Muller’s ratchet is the process by which genomes acquire deleterious mutations in an irreversible 
manner. The principles behind this theory can be used to describe the irreversible complexity found in 
natural proteins. This figure illustrates how Muller’s ratchet can work. 

(Adapted from Dutton and Moser, 2011) 

 

1.11.2 Maquette design  

The origin of maquettes lies in folding studies of repeated amino acid heptads that form 4 α-

helical bundles free of intended function and so simple that the functionalities of each 

individual amino acid are few and understood (Figure 1.19) (Regan and DeGrado, 1988). A 

heptad of amino acids with high helical forming propensities, such as alanine, will form two 

turns of an alpha helix (Figure 1.19 B); a series of heptad repeats will allow alpha helices of 

differing lengths to be built. Helices are linked through loop regions containing residues with 

low helix-forming propensities, such as glycine and serine (Figure 1.19 D). A soluble protein 

has a hydrophilic exterior and hydrophobic interior, with protein folding being driven by 

packing of the hydrophobic interior; this is achieved in maquettes by carefully patterning the 

amino acids within a helix (Figure 1.19 B). 
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Figure 1.19 Maquette design 

A. The primary sequence is simple and minimalist. It is informed by reliable knowledge of natural 
proteins but there is no mimicry. The sequence is assembled from scratch, are reversibly 
iterative, flexible and robust. All amino acids are reconciled with roles. 

B. Certain amino acids have helical forming propensities. Residues are arranged in such a way 
that hydrophobic side chains are on the interior and the majority of charged side chains are 
towards the exterior.  

C. The designs allow tertiary structure NMR and X ray crystallography. 
D. Schematic representation of a maquette. The helices are linked together with loop regions. 

(Reproduced with permission from P.L. Dutton)  

 

The first de novo four-helix bundle proteins were designed by DeGrado in the late 1980s 

(Regan and DeGrado, 1988), and haem binding protein maquettes were designed by Dutton 

to emulate the arrangement and biophysical properties of the haem cofactors in natural 

proteins.  

To confer a function on a maquette, design principles have been incorporated from the 

natural oxidoreductase family of enzymes. Oxidoreductases are electron transfer enzymes 

which cover a large and diverse range of functions including the light harvesting and 

transducing capabilities of photosynthetic complexes (Barber, 2009). Rather than mimicking 
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sequence and structure of any one natural enzyme, bioengineering principles have been 

taken to create customisable and economical man-made maquettes. 

The first maquette was based on the bH and bL bis-histidine haem binding sites in the 

respiratory bc1 complex (Robertson et al., 1994). This was termed H10H24, named for the 

sites of haem-ligating histidines, and adopted a four-helix bindle structure consisting of a 

noncovalent homodimer of cystine-crosslinked monomer helices. The sequence was based 

on binary patterning of hydrophobic and hydrophilic residues around a heptad repeat. The 

haem-ligating residues are located along the hydrophobic helix interface. Early maquettes 

based around this design were capable of differentiating the redox midpoints of the bound 

haems, however they did not have a singular structure. A mutant protein created by iterative 

design, H10H24-L6I-L13F, increased the steric bulk of the interhelix volume and NMR and 

crystal structures of the apoprotein could be determined (Skalicky et al., 1999; Huang et al., 

2003). These structures revealed that the non-covalent monomers aligned in anti-topology. 

The maquette HP1 was designed to increase the likelihood of obtaining a solution structure 

of a haem-bound maquette (Figure 1.20 A), but lost the midpoint potential differentiation 

between the two anti-cooperatively binding haem sites, although haem binding affinity was 

maintained (Huang et al., 2004). HP7 has nearly identical properties to HP1 (Figure 1.20 B), 

but allows full NMR backbone assignments, and has syn-orientated helix-loop helix 

monomers created by a covalent “candelabra” geometry via disulphide bond formation 

(Koder et al., 2006; Koder et al., 2009). HP7 has a ferrous affinity for O2 over CO2 (Koder et al., 

2009). 

These early maquettes were composed of a single synthesized peptide that forms disulphide-

linked loops and self assembles into a dimeric 4-helix bundle (Rothlisberger et al., 2008). 

Recent maquette designs involve a single chain maquette assembly and remove the 

symmetry induced constraints of earlier designs (Figure 1.20 C) (Anderson et al., 2014). They 

have the advantage over the early homodimer maquettes in that they can incorporate a 

single site mutation or covalent modification, they can also be expressed in E. coli (Anderson 

et al., 2014). 
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Figure 1.20 Protein topologies of multichain haem-binding maquettes 

Schematic representation of the maquettes HP1 (A), HP7 (B), BT6 (C). Helices are coloured according to 
whether they have their N-termini (blue) or C-termini (pink) pointed towards the viewer (top) or up 
(bottom). 
The significant change in topology between HP1 and HP7 was loop rearrangement; haem binding site 
and orientation of helices did not significantly vary. Between HP7 and BT6, the major topology change 
was the construction of a cross-bundle loop between helices 2 and 3, and the elimination of the 
disulphide bridge between the loops of HP7. BT6 is shown bound with hypothetical napthoquinone 
residue. 

 (From Lichtenstein, 2010) 

 

1.11.3 Cofactor incorporation 

Function is conferred on a maquette through the incorporation of cofactor molecules, 

commonly a haem (Figure 1.21). Haem can be ligated through two histidine residues on the 

interior faces of neighbouring helices. A diagonally ligated haem confers more stability than 

haem ligated between two helices located directly next to each other. Multiple haems can be 

bound within a monomeric scaffold, with haem b redox potentials spanning hundreds of 

millivolts (Shifman et al., 2000; Farid et al., 2013).  

Early maquettes bound haem b non-covalently. A helix-loop-helix version of H10H24 was 

converted from a b-type binding maquette to a c-type by using the conserved c-type binding 

motif, CX1X2CH (Ishida et al., 2004). Despite having a completely unnatural protein sequence, 
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a synthetic c-type cytochrome can be fully assembled in E. coli. A periplasmic export tag and a 

constitutively expressed c-type maturation operon was necessary for the covalent binding of 

haem B through the haem vinyl groups and protein cysteine residues (Anderson et al., 2014). 

This c-type maquette was the first example of in vivo incorporation of a redox cofactor in a 

site specific manner. Introducing a second non-heme C binding site that self assembles with 

haem B in vitro equips the protein with an intraprotein electron transfer chain. To introduce a 

light activated function, the Fe of the original haem c can be replaced with Zn, creating a Zn-

porphyrin photocentre.  

 

Figure 1.21 Absorbance spectra of maquettes binding different forms of haem 

Left: schematic representation of a maquette with haem bound (orange). 

(Reproduced with permission from P.L. Dutton.) 

 

Maquettes are remarkably flexible and have been able to accommodate non haem cofactors 

such as flavin and quinone (Lichtenstein et al., 2012; Farid et al., 2013). Zinc porphyrins can 

be non-covalently bound, as well as chlorins and chlorophyllides, and zinc haem C (Noy et al., 

2005; Farid et al., 2013; Anderson et al., 2014). Carotenoids can enter the hydrophobic core 

of an 8-helix bundle, but they are not ligated to any of the side chains. Iron sulphur clusters 

have been supported by consensus binding motifs in the loop regions (Gibney et al., 1996). 
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Maquettes can also incorporate metal ions, quinones, synthetic chlorophylls and other 

elements (Lichtenstein et al., 2012). 

1.11.4 Maquette functions  

Maquette chassis have been proven to be remarkably diverse in terms of functional 

elements, cofactors and assembly (Figure 1.22). Simple functions conferred on the first 

maquettes using these principles include proton coupling (Shifman et al., 1998), ligand 

exchange (Anderson et al., 2014), electrochemical charge coupling (Grosset et al., 2001), and 

the incorporation of light- and redox-active cofactors for oxidation and reduction (Sharp et 

al., 1998). While these early maquettes were homodimers, the latest maquettes are 4 α-

helical monomers which exploit sequence asymmetry to confer diverse and versatile 

oxidoreductase functions which operate with activities comparable to their natural 

counterparts.  

 

 

Figure 1.22 The diversity of maquettes 

(Reproduced with permission from P.L. Dutton) 

 

Amphiphilic haem binding maquettes have been designed for membrane insertion and to 

perform transmembrane electron transfer (Noy et al., 2005; Discher et al., 2005). Amphiphilic 

maquettes expand the potential of maquettes towards emulating natural membrane 
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proteins, for example manmade terminal oxidase proteins that could create a proton motive 

force within a living organism. 

1.11.5 Expression of maquettes in vivo 

Until recently, maquettes have been synthesized and assembled in vitro, or expressed as 

apoproteins in E. coli requiring in vitro addition of the selected cofactor (Robertson et al., 

1994; Farid et al., 2013). Currently, there is no maquette expressed in E. coli that 100% binds 

haem B, despite nanomolar binding affinities in vitro, possibly due to the unfolding of the 

maquette in the crowded E. coli cytoplasm, or insufficient stimulation of the haem B 

biosynthetic pathway (Farid et al., 2013; Watkins et al., 2014). However, the c-type maquette 

(described in Section 1.11.3) can fully assemble in vivo provided the maquette is transported 

to the periplasmic space and is co-expressed with the type I c-type cytochrome maturation 

(Ccm) machinery (Anderson et al., 2014). 

1.12 The twin-arginine translocation pathway 

1.12.1 Protein translocation in cells 

Biological membranes are tightly sealed and yet must transport molecules from ions to 

proteins across them without compromising membrane integrity. The best understood 

mechanism of protein transport across the membrane is via the general secretory (Sec) 

export pathway. Sec-type export is responsible for the import of newly synthesised secretory 

proteins into the endoplasmic reticulum, the bacterial plasma membrane, and the inner and 

outer membrane allowing protein import into the mitochondria and chloroplasts.  

While many Sec pathways in mitochondria and chloroplasts are dependent on ATP hydrolysis 

some proteins, such as some subunits of the thylakoid oxygen evolving complex, require no 

nucleotide triphosphates for their transport; instead, transport is fully dependent on the pH 

gradient across the membrane via the twin-arginine translocation (Tat) pathway (Cline et al., 

1992). Proteins transported via both the Sec and Tat pathways possess a similar N-terminal 

peptide signal sequence, but Tat proteins are characterised by an essential twin-arginine 

motif.  

In contrast to Sec translocation which exports unfolded proteins, the Tat pathway exists 

primarily to transport fully- or largely-folded proteins across the plasma and thylakoid 

membranes of most free-living bacteria. While proteins being exported by the Sec pathway 

are kept unfolded as they are threaded through a pore, Tat-exported proteins can be 

transported even when internal crosslinking has been included in the protein to prevent 
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unfolding (Clark and Theg, 1997). There is evidence to suggest that correct protein folding is a 

prerequisite for Tat transport (DeLisa et al., 2003). 

1.12.2 Occurrence of the Tat pathway 

The Tat pathway is found in plants, Archaea and most bacteria including Rba. sphaeroides. 

The Tat pathway is important for many processes such as energy metabolism, biofilm 

formation and bacterial pathogenesis, as well as many more (Berks, 1996; Palmer et al., 

2005). The exact mechanism of translocation is poorly understood, in part due to the lack of 

high resolution structural information on the components of the complex. The Tat pathway 

has been the most widely studied in E. coli. 

1.12.3 Tat substrates 

It is thought that the Tat pathway evolved for the translocation of complex redox proteins 

(Berks, 1996). Many known substrates of the Tat pathway are periplasmic proteins that bind 

a range of redox cofactors, such as FeS or NiFe, that can only be inserted in the cytoplasm 

and require substantial or complete folding of the protein prior to export (Palmer et al., 

2005). This eliminates the need for cofactor export to the periplasm, and the subsequent 

catalysis of cofactor insertion in the periplasm (Berks, 1996). Cytochrome c will not be 

exported by the Tat pathway if haem has not been inserted during folding in the cytoplasm 

(Sanders et al., 2001). Thus, the Tat pathway is used when proteins must be folded in the 

cytoplasm (Halbig et al., 1999), require export in conjunction with associated subunits via a 

“hitchhiker” mechanism (Rodrigue et al., 1999), or when the protein folds too fast for the Sec 

system (Palmer and Berks, 2012).   

1.12.4 Properties of the Tat signal peptide.  

Proteins translocated by both the Sec and the Tat pathways have N-terminal signal sequence 

consisting of three major regions: a charged amino-terminal region, a hydrophobic region 

and, on the carboxy-terminal end of the sequence, a signal peptide cleavage site. In most 

cases the signal sequence is cleaved from the precursor protein during or immediately after 

translocation, liberating the mature protein. In the case of the E. coli TorA signal peptide 

(Figure 1.23), four amino acid residues from the sequence are conserved in the mature 

protein after translocation. 

The key feature of the Tat signal sequence is a twin arginine motif, with the majority of 

instances in E. coli occurring: S/T-R-R-x-F-L-K, where x is any polar amino acid. The twin-

arginine motif is essential for Tat translocation in the chloroplast (Chaddock et al., 1995). In 

bacteria, Tat translocation does not always require the presence of the consensus RR 
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dipeptide in the conserved sequence motif, a basic side chain such as R or K is required at the 

first position, and the second position can accept Q or N as well as basic amino acids (DeLisa 

et al., 2002). Mutation of RR to KK prevents Tat export of many proteins, and is therefore 

often used as a control when exporting foreign proteins (Buchanan et al., 2001). Other 

mutations that hinder Tat export include the substitution of the R at the second position with 

K, resulting in the protein to be translocated getting stuck in the membrane and the Tat signal 

peptide unable to be cleaved (Ren et al., 2013). 

 

Figure 1.23 The Tat signal peptide 

The Tat signal peptide is located at the N-terminus of the substrate protein and is composed of a polar 
amino domain (N- region), a hydrophobic core (H- region) and a polar carboxyl domain (C- region). TAT 
signal peptides are, on average, less hydrophobic than Sec signal peptides and are longer (38 
compared to 24 amino acids). Tat signal peptides have a characteristic twin-arginine motif in the N- 
region and an A-x-A motif in the C- terminal region for removal of the signal peptide by signal 
peptidase. 

(Adapted from Patel, 2014) 

 

The twin-arginine motif alone is not sufficient to prevent mistargetting to the Sec pathway. 

Tat signal peptides are less hydrophobic than Sec signal peptides (Sanders et al., 2001). The C- 

region of a Sec signal peptide does not usually contain basic residues, but Tat signal peptides 

often contain these which hinder engagement with Sec machinery (Bogsch et al., 1997). 

1.12.5 The Tat subunits 

In E. coli, the minimum set of components for Tat translocase assembly is TatA, TatB and 

TatC. These proteins are all integral membrane proteins and reside in the cytoplasmic 

membrane as a Tat(A)BC substrate binding complex with a separate TatA complex (Patel et 

al., 2014).  

TatA, a 9.6 kDa protein, consists of a short periplasmic N-teminal region and a 

transmembrane helix linked to an amphipathic helix which lies along the surface of the 

membrane on the cytoplasmic side. The C-terminal region is highly unstructured (White et al., 

2010; Lange et al., 2007). TatB, 18.5 kDa, shares 20% sequence similarity with TatA and has a 
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very similar predicted secondary structure, however TatA and TatB carry out different 

functions within the Tat translocase (Sargent et al., 1999).  

TatC has a molecular mass of 28.9 kDa and has six transmembrane helices (Punginelli et al., 

2007). TatC has a major role in protein translocation playing a role in substrate recognition 

and binding and recruitment of other Tat components (Schreiber et al., 2006). 

1.12.6 The mechanism of Tat protein export 

The exact mechanism of how the Tat system transports folded globular proteins without 

compromising membrane integrity remains a mystery. The sequences of the Tat transport 

proteins bear no resemblance to other protein translocating subunits (Robinson and Bolhuis, 

2001). The general consensus is that the substrate binds initially to TatBC, independent of 

other Tat components (Mori and Cline, 2002). The TatA complex then associates with the 

TatBC complex in the presence of a pH gradient across the membrane (Cline and Mori, 2001).  

Other than cross linking studies, the active translocon has never been captured so our 

understanding of the translocation process is still vague. There are currently two models for 

the mechanism of translocation: the translocation pore, or trap door, model and the 

membrane destabilisation model (Figure 1.24) (Hauer et al., 2013).  

The trapdoor mechanism is based on the theory that TatA can flip its amphipathic helix from 

its resting position along the cytoplasmic face of the membrane to within the membrane 

(Figure 1.24 A). TatA can form complexes of variable size in E. coli and is highly abundant 

relative to TatB and TatC, suggesting a role as a pore (De Leeuw et al., 2001; Oates et al., 

2005). A 3D model constructed by single particle electron microscopy showed that TatA 

forms a cupped pore-like structure with a range of complex sizes (Oates et al., 2005; Gohlke 

et al., 2005; Beck et al., 2013). TatA uses complementary charge interactions to form a 

hairpin fold between the amphipathic helix and the C-terminus (Walther et al., 2013). This 

would provide an internal hydrophilic coating to the pore.  

Further evidence to support the trapdoor model is the finding that the Tat substrate itself 

carries a motif that is capable of interacting with TatA (Maurer et al., 2010). The binding 

conformation is what would be expected if TatA surrounds the substrate as if it were a pore. 

It has been suggested that the interaction of TatA with the substrate leads to a seeding of 

monomeric TatA to form a pore (Froebel et al., 2012).  

If the pore theory is correct, the pore must be able to become very big. The Tat-substrate, 

TMAO reductase, is (at its smallest) 5 nm in diameter when folded and is too large to be fully 

enclosed within the membrane, protruding above and below the membrane (Robinson and 
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Bolhuis, 2001). The membrane shows no loss of permeability when operating at maximal Tat-

export capacity; how this is achieved is a mystery (Teter and Theg, 1998). To maintain 

membrane integrity, the pore must be able to adjust to the size of the substrate, perhaps 

varying numbers of subunits are required to create the channel, effectively coating the 

protein. 

 

Figure 1.24 Models for the mechanism of Tat translocation 

A substrate featuring a twin-arginine signal peptide is recognised by the TatBC complex in the 
membrane. This figure shows two proposed models for the subsequent translocation event involving 
the TatA complex.  

A. The trap-door model. Prior to substrate recognition, the amphipathic helix (APH) lies along 
the cytoplasmic face of the membrane. Upon substrate recognition the APH flips into the 
bilayer. This provides a regulated pore for the translocation of the substrate in the presence 
of a membrane potential.  

B. The membrane-weakening model. The APH of TatA aligns parallel to the cytoplasmic 
membrane. Recognition of a substrate induces a topological change in the APH so that it 
partially perturbs the lipid bilayer. This leads to the destabilisation of the lipid bilayer. 
Subsequently, this permits the translocation of the substrate in a less regulated manner. 

(Adapted from Patel et al., 2014) 

 

Bruser and Sanders have hypothesized that TatA does not form a pore but aggregates in an 

unordered manner, resulting in Tat complexes large enough to destabilise the membrane 

(Figure 1.24 B) (Bruser and Sanders, 2003). Tha4 is a TatA orthologue found in the membrane 

of the chloroplast; it has a relatively low abundance compared to the excessive level found in 

E. coli. This leads to the conclusion that Tha4 is less capable of binding a substrate and rapidly 

forming a membrane-inserting structure around it. Recent studies have indicated that the 

topology of TatA is not as flexible as has been previously thought, and is only partially 
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incorporated into the membrane. This would imply a “lipid disrupting” property. (Walther et 

al., 2010).  

Structural characterization of the TatAd complex from Bacillus subtilis suggests that the pore 

may not be able to accommodate substrate (Beck et al., 2013). This suggests that the TatA 

assembly is not a pore but instead functions to destabilize the membrane or to stabilize the 

translocon after it has been recruited to the substrate-bound complex (Froebel et al., 2011).  

The flaw of the membrane destablisation model is that it compromises the specificity of 

substrate transport. There, therefore, must be a stabilisation system to counteract the 

destablisation and to prevent the leakage of ions across the membrane. It has been proposed 

that the phage shock protein, PspA in E. coli and it chloroplast homolog, VIPPI mediates this 

(DeLisa et al., 2004; Lo and Theg, 2012). There is evidence of phylogenetic conservation and 

proof of the ability of TatA to interact with PspA that makes this hypothesis a possibility 

(Kudva et al., 2013). 

1.12.7 Translocation of non-native Tat substrates 

The abilities and mechanism of the Tat system have attracted much interest as the 

translocase can transport fully folded globular proteins. Many studies have involved exploring 

the potential of non-native Tat substrates for translocation via the Tat pathway; some of 

these are reviewed in Robinson and Bolhuis, 2001. 

Wild type GFP cannot fold correctly in the periplasm and so cannot be exported by the Sec 

system in an active form (Feilmeier et al., 2000). Fully active GFP has been observed in the 

periplasm when a Tat-specific target signal was fused to it (Thomas et al., 2001). Human 

immunoglobulin heavy chain variable domains (VH) are promising scaffolds for antigen 

binging, however it is an unstable and aggregation-prone protein. The Tat system has been 

used for protein folding quality control step to aid directed evolution of this protein (Kim et 

al., 2014). Tat signal peptides have also been used to export polymer-based drug delivery 

vehicles (Nori et al., 2003).  

1.13 Aims of this work 

Existing approaches to create artificial photosynthesis, such as biohybrid architectures, have 

great potential in vitro. However, replicating this in vivo is a challenge, in part due to the 

inability of the bacterium to produce the designer chromophores. To create tailor-made light 

harvesting antennas in vivo, we must use the existing toolbox of proteins and pigments 

available in nature, or create synthetic elements that the host organism is capable of 
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creating. The aim of the work in this thesis is to use a variety of synthetic biology approaches 

to begin to expand the range of possibilities for bacterial photosynthesis. These include: 

1. Expanding the range of light absorbers for photosynthesis, by attaching an extra 

chromophore (YFP) to a photosystem component, in this case the reaction centre.  

2. The assembly of proteorhodopsin in Rba. sphaeroides intracytoplasmic membranes 

with the eventual aim of augmenting the proton motive force that drives 

downstream metabolism. 

3. The expression of genes encoding maquettes in Rba. sphaeroides to form the basis 

for a bottom-up redesign of photosystem components. 

4. An investigation of the plasticity of bacterial protein export pathways for synthetic 

biology purposes, initially challenging the Tat export pathway of E. coli to export 

maquettes for the first time. 
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Chapter 2 

Materials and Methods 

2.1 Standard buffers, reagents and media 

Unless otherwise stated, all buffers and culture media were prepared as in (Sambrook et al., 

1989). All media and solutions were prepared using distilled water purified using the Milli-Q 

system from Millipore. Growth media were made following the manufacturer’s instructions, 

using distilled water and sterilised by autoclaving for at least 20 minutes at 15 psi. All other 

solutions were sterilised by filtration through 0.2 µm filters. Heat labile solutions, such as 

vitamins and antibiotics, were added to culture medium only after they had cooled to 50 °C 

or below. 

2.2 Nucleic acid manipulation 

2.2.1 Small-scale preparation of plasmid DNA (mini-prep) 

Small quantities of plasmid DNA were prepared using a Sigma mini-plasmid purification kit, 

according to the manufacturer’s instructions. Transformed E. coli cultures were grown in 

sterile 25 ml universal tubes containing 5 ml of LB medium with the appropriate antibiotic. 

Cultures were grown overnight at 37 °C and shaken at 300 rpm. DNA was eluted from the 

columns using 50 µl warm QH2O and stored at -20 °C. 

2.2.2 Polymerase chain reaction (PCR) 

DNA amplification by polymerase chain reaction (PCR) was performed using either 

ACCUZYMETM or MyTaqTM (Bioline). Primers were produced by Sigma-Aldrich and 

resuspended to 100 µl with QH2O. All primers used in this work are shown in Table 2.3. 

ACCUZYMETM reactions were performed in a total volume of 50 µl containing a final 

concentration of 200 nM of each primer, 25 µl of 2 x reaction mix (2.5 units ACCUZYMETM, 2 

mM dNTPs, 4 mM MgCl2), 1 µl DMSO, and 10 ng of template DNA. ACCUZYMETM was used for 

amplification of DNA destined for vectors or sequencing due to its low error rate of 1.6 x 10-6 

errors/base (Lundberg et al., 1991). 

MyTaqTM reactions were performed in a total volume of 20 µl containing a final concentration 

of 200 nM of each primer, 4 µl 5x MyTaq reaction buffer, 1 µl MyTaq DNA polymerase, and 
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10 ng of template DNA. MyTaq was developed for colony screening reactions and has 

tolerance for a wide range of common PCR inhibitors. 

Reactions were carried out using conditions appropriate to the Tm of the primers and the 

length of the fragment to be amplified. Primers were denatured for 3 min at 95 C followed 

by 30 cycles of amplification. For ACCUZYMETM reactions, the denaturation step was 96 C for 

30 seconds, the annealing step was 58 - 62 C for 30 seconds, and the extension time was 0.5 

kb per minute at 72C. There was a final extension for 10 minute at 72 C. For MyTaq 

reactions, the denaturation step was 95 C for 15 seconds, the annealing step was 57 - 58 C 

for 15 seconds, and the extension time was 1 kb per 15 seconds at 72C. There was a final 

extension for 1 minute at 72 C. 

Reactions were subsequently cleaned up via gel purification or using a Sigma-Aldrich 

GenEluteTM PCR Clean-Up Kit. 

2.2.3 Restriction enzyme digestions 

Restriction enzymes were purchased from Promega and New England Biolabs. Digests were 

performed according the suppliers’ directions, in a total volume of 20-25 µl. The samples 

were incubated at 37 °C for 1-2 hours. Following digestion plasmid DNA, or DNA produced 

from the digestion of a plasmid, was gel purified. Linear DNA produced by PCR was cleaned 

up using a Sigma-Aldrich GenEluteTM PCR Clean-Up Kit. 

2.2.4 Agarose gel electrophoresis of DNA 

Restriction digests and PCR products were analysed by electrophoresis using a 1 % agarose 

gel containing 0.5 µg ml-1 ethidium bromide in TAE running buffer (40 mM Tris-acetate, 1 mM 

EDTA) running buffer (Sambrook et al., 1989). Samples were mixed with 5X DNA loading 

buffer (Bioline) prior to loading onto the gel. Typically, 10-550 ng of DNA was loaded per lane. 

5 µl of DNA marker Hyperladder 1 kb (Bioline) was run alongside the samples in order to 

estimate the sizes of DNA fragments. The samples were run at 80 V for 1 hour. DNA was 

visualised under 254 nm UV light. 

2.2.5 Recovery of DNA from agarose gels 

DNA was excised from agarose gels using the GenEluteTM Gel Extraction Kit (Sigma-Aldrich) 

as per the manufacturer’s instructions. DNA was eluted from the columns using 50 µl warm 

QH2O. 
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2.2.6 Ligation of DNA fragments 

Typically, 10-50 ng of vector DNA and varying molar equivalents of the desired insert 

fragment were ligated in a final volume of 10-20 µl. The reaction included 10x T4 ligation 

buffer and 1 unit T4 DNA ligase (New England Biolabs). Ligations were left at room 

temperature overnight before transformation into chemically competent E. coli JM109 cells. 

2.2.7 QuikChange mutagenesis 

Point mutations, for the replacement of amino acids or the deletion or insertion of single or 

multiple adjacent amino acids, were introduced to plasmid DNA using the QuikChange II Site 

Directed Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions. 

Primers containing the required mutation complementary to opposite strands of the vector 

were designed using the QuikChange Primer Design tool 

(http://www.genomics.agilent.com/primerDesignProgram.jsp).  

2.3 DNA sequencing 

Plasmid DNA was prepared by mini-prep (Section 2.2.1) or by PCR amplification (Section 

2.2.2), purified by gel extraction and were diluted to a concentration of 100 ng ul-1 in a 30 µl 

volume. Samples were sent to GATC Biotech for sequencing. Results were analysed by 

CodonCode Aligner v3.7.1. 

2.4 Preparation of Rhodobacter sphaeroides genomic DNA 

1 ml cells were spun down at 2, 100 x g for 25 minutes and resuspended in 500 µl TE buffer 

(10 mM Tris pH 8, 1 mM EDTA). 50 µl SDS was added and the sample was heated at 70 °C for 

15 minutes in order to denature protein. 50 µl phenol:chloroform:isoamyl alcohol (25:24:1) 

was added and the sample was vortexed; the sample should go white. The sample was 

centrifuged at 7,400 x g for 10 minutes. The top layer containing the DNA was taken without 

disturbing the interface. 1 volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added 

to 1 volume sample. The sample was centrifuged at 7,400 x g for 10 minutes and the top 

layer containing the DNA taken. DNA was precipitated using 25 µl 3 M sodium acetate and 

500 µl cold 100% ethanol. The sample was vortexed and the DNA appeared as a stringy white 

substance. In order to maximise yield of DNA, the sample was incubated at -20 °C for 1 hour. 

To pellet the DNA, the sample was centrifuged at 12,500 x g for 10 minutes. The pellet was 

washed with 200 µl cold 70% ethanol and centrifuged at 12,500 x g for 10 minutes. The DNA 

pellet was dried by a flame until it went clear, and was then resuspended in 50 µl QH2O. 10 µl 

DNA solution (diluted up to 1 ml) was put in a UV cuvette and absorbance readings taken at 
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260 and 280 nm. For the concentration of DNA in µg, multiply A260 by 5. The ratio of 

A260:A280 should be greater than 1.4. The DNA was diluted to 100 ng per µl and aliquotted 

into 50 µl samples. 

2.5 Escherichia coli strains and plasmids 

Three E. coli strains were primarily used for this work: S17, JM109 and BL21(DE3). Chemically 

competent S17-1 cells (Simon et al., 1983) were used for plasmid transfer to Rba. 

sphaeroides. JM109 chemical competent cells were obtained from Invitrogen and stored as 

25 µl aliquots at -80°C. 

All E. coli plasmids used in this work are listed in Table 2.1. Unless otherwise stated, E. coli 

strains were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37 °C and agitated 

at 300 rpm. Where required, antibiotics were added at the following concentrations: 25 µg 

ml-1 kanamycin, 200 µg ml-1 ampicillin.  

2.6 Production of chemically competent Escherichia coli cells 

1 ml of an overnight starter was used to inoculate a 500 ml flask containing 50 ml LB. The 

cells were grown to an OD600 of 0.4-0.6 then cooled on ice. The cells were centrifuged at 

2,100 x g for 10 minutes and resuspended in 20 ml cold 0.1 M MgCl2. The cells were 

centrifuged again and the pellet was resuspended in 20 ml cold 0.1 M CaCl2. After further 

centrifugation, the cells were resuspended in 1 ml 0.1 M CaCl2 10% glycerol and aliquotted. 

The cells were flash frozen and stored at – 80 °C. 

2.7 Chemical transformation of competent Escherichia coli cells 

An aliquot of chemically competent E. coli cells was thawed on ice. 10-15 ng of plasmid DNA 

in QH2O (or 2 µl ligation mixture) was added to 20 µl of cells. The mixture was incubated on 

ice for 20 min before a heat shock at 42 °C for 40 seconds. The mixture was returned to ice 

for 2 minutes. 750 µl LB medium was added and the cells were incubated at 37 °C for an 

hour. Cells were pelleted by centrifugation, resuspended in 50 µl LB medium and plated onto 

LB agar containing the appropriate antibiotic. Plates were incubated overnight at 37 °C to 

allow colonies to grow. 
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2.8 Plasmid induction in Escherichia coli 

Overnight culture was used to inoculate the required volume of LB and induced with the 

appropriate inducer at an OD600 of 0.6 – 0.8. Cells were induced for 1-48 hours at 15 – 37 °C 

depending on the required conditions, and shaken at 300 rpm unless otherwise specified. 

2.9 Preparation of Escherichia coli whole cell fractions 

Whole cell fractions were prepared by harvesting 1 ml of culture and resuspending in 100 µl 

SDS PAGE sample buffer, Samples were incubated at 50 °C for 10 min and analysed by SDS 

PAGE. 

2.10 Fractionation of Escherichia coli cells 

Cells were separated into periplasmic, cytoplasmic and membrane fractions using a 

procedure based on the EDTA/lysozyme/osmotic shock method (Randall and Hardy, 1986). 

Cells were harvested and resuspended in 1 ml chilled buffer 1 (100 mM Tris-acetate pH 8.2, 

0.5 M sucrose, 5 mM EDTA) followed by the addition of 40 μl of 2 mg ml-1 lysozyme. 500 μl of 

chilled QH2O was added before incubation on ice for 5 min followed by the addition of 20 µl 

MgSO4. The spheroplasts were pelleted by centrifugation at 16,600 x g in a cooled 

microcentrifuge and the supernatant was collected as the periplasmic fraction. Spheroplasts 

were washed in 1 ml chilled buffer 2 (50 mM Tris-acetate pH 8.2, 0.25 mM sucrose, 10 mM 

MgSo4) and pelleted by centrifugation at 4 °C. The supernatant was discarded and the 

spheroplasts were resuspended in 1 ml chilled buffer 3 (50 mM Tris-acetate pH 8.2, 2.5 mM 

EDTA). Spheroplasts were lysed by sonication and membranes were separated from the 

cytoplasmic fraction by centrifugation at 336,140 x g (avg) for 30 min at 4 °C. The membranes 

formed a pellet and the supernatant was collected as the cytoplasmic fraction. Membranes 

were then resuspended in 500 μl of detergent-containing buffer (20 mM Tris-HCl pH 8, 10% 

v/v glycerol, 50 mM NaCl and 1 % SDS).  

2.11 Membrane preparation from Escherichia coli 

Pelleted cells were resuspended in 20 mM Tris, 5 mM EDTA, pH 8. The cells were French 

pressed 3 times at 18,000 psi. The cells were kept on ice throughout. Unbroken cells were 

removed by centrifugation at 6,794 x g (avg) at 4 °C for 20 minutes. The supernatant was 

loaded onto a discontinuous sucrose gradient of 55 – 30 % (w/w) sucrose with 4.5 ml steps of 

5%. The gradients were centrifuged at 30,000 rpm (110,527 x g (avg)) for 18 hours in a 

Beckman SW 32 Ti rotor. The bands were harvested. The upper band is the inner membrane 
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and the lower band is the outer membrane. Membranes were harvested from the gradients, 

pooled and pelleted by centrifugation at 125,000 x g for 2 hours. Membranes were 

resuspended in binding buffer (20 mM Tris, 0.5 mM EDTA, 500 mM NaCl and 5 mM imidazole, 

pH 7.4) and solubilised in 0.1 % triton X and 0.5 % LDAO for 16 hours. 

2.12 Rhodobacter sphaeroides strains and growth 

2.12.1 Rhodobacter sphaeroides strains 

All Rba. sphaeroides strains used and created for this work are listed in Table 2.2. 

Rhodobacter sphaeroides or Rba. sphaeroides refers to wild type Rhodobacter sphaeroides 

strain 2.4.1. Strains were grown in M22 medium (See Appendix) (Hunter and Turner, 1988) 

and supplemented with 10,000 X vitamins (0.08 M nicotinic acid, 0.01 M thiamine, 7.3 mM 4-

aminobenzoic acid, 0.4 mM d-biotin), to a final concentration of 1 X, at 24°C. 0.1% casamino 

acids was used to supplement liquid cultures (See Appendix). Where relevant, kanamycin was 

added to a final concentration of 25 µg ml-1. Stocks of strains were maintained in LB medium 

containing 50% glycerol (v/v) and stored at -70 C. 

2.12.2 Growth on agar plates 

Cells were streaked out from glycerol stocks or conjugation plates onto M22 agar (see 

Appendix). Culture was serially diluted onto sucrose selection plates and subsequently replica 

plated onto M22 agar.  

2.12.3 Semi-aerobic growth 

Liquid cultures were grown semi-aerobically at 34 C. Cultures were shaken continuously at 

250 rpm in an orbital shaker. These conditions induced the biosynthesis of pigments and 

photosystems (Niederman et al., 1976). Single colonies were inoculated in 10 ml of M22 

medium and grown for 48 hours. Subsequently, a 125 ml conical flask containing 80 ml of 

M22 medium was inoculated with the entire 10 ml culture and grown under the same 

conditions overnight. These cultures were then either used for experimental work or grown 

further in 1.5 L of M22 medium in a 2 L conical flask or transferred into an appropriate vessel 

for photosynthetic (Section 2.12.4) or high oxygen growth (Section 2.12.5). 

2.12.4 Photosynthetic growth 

Anaerobic cultures were grown under photosynthetic conditions and exposed to 20 W 

MEGAMAN® CFL bulbs, or 116 W Osram Halogen Eco Pro bulbs to achieve the desired light 

intensity. Light intensity was measured in µmol photons s-1 m-2 using a LI-250A Light Meter 

equipped with a LI-190 Quantum Sensor (LI-COR Biosciences). A full 30 ml universal of M22 
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medium was inoculated with 1 ml of semi-aerobic culture and a small magnetic stir bar. The 

culture was incubated with gentle agitation and the desired light intensity overnight. This 

culture was used to inoculate either a 500 ml medical flat or a 1.2 L roux bottle filled to the 

top with M22 medium and capped with a rubber bung, and with a stir bar for gentle 

agitation. The terms “high light” and “low light” are used throughout this thesis, where “high 

light” is approximately 100 µmol photons s-1 m-2 and “low light” is approximately 10 µmol 

photons s-1 m-2. 

2.12.5 High oxygen growth 

1 ml of semi-aerobic culture was used to inoculate 200 ml M22 medium in a highly baffled 2 L 

flask. This was incubated at 30 C for 16 hours in an orbital shaker at 250-300 rpm to permit 

maximum aeration. Cells grown in this way lacked the B800, B850 and B875 absorbance 

peaks associated with the reaction centre, LH1 and LH2 complexes. 

2.13 Conjugative transfer of plasmid DNA from Escherichia coli S17-1 to 

Rhodobacter sphaeroides 

A modified version of the method of Hunter and Turner, 1988 was used to transfer pBBRBB, 

pIND4 and pK18mobsacB constructs from E. coli strain S17 to the desired Rba. sphaeroides 

strain. Rba. sphaeroides cells were grown in 80 ml M22 medium for 24 hours under semi-

aerobic conditions, then pelleted and resuspended in 100 µl LB medium. Freshly transformed 

E. coli S17 colonies containing plasmid DNA were resuspended in 20 µl LB medium. 150 µl of 

resuspended Rba. sphaeroides cells was added to the resuspended E. coli. The mixture was 

pipetted as three drops onto a dried LB agar plate and incubated at 34 °C for less than 16 

hours. The cells were scraped off the plate and streaked onto M22 agar containing the 

appropriate antibiotic and incubated at 34 °C. Transconjugant Rba. sphaeroides colonies 

appeared after 4-6 days. 

2.14 Selection of Rhodobacter sphaeroides mutants on sucrose 

Transconjugant Rba. sphaeroides colonies from a conjugative transfer of pK18mobsacB 

plasmid from E. coli were selected for on M22 agar plates with 25 µg ml-1 kanamycin. Single 

colonies were grown and scaled up to an 80 ml semi aerobic culture. The cells were serially 

diluted 10-2, 10-3 and 10-4 onto M22 agar containing 1 % (w/v) sucrose and incubated until 

single colonies appeared after 4-6 days. Single colonies were replica plated onto M22 sucrose 

plates, with and without 25 µg ml-1 kanamycin. Colonies that grew on the antibiotic-free plate 

but not on the kanamycin plate were analysed by PCR. Successful mutants were streaked out 
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and grown up for further analysis and storage. Further detail on use of the pK18mobsacB 

suicide vector used to produce mutants is available in Sections 3.3.1-2.  

2.15 Membrane preparation from Rhodobacter sphaeroides 

2.15.1 Cell harvesting and breakage 

Cells were pelleted at 4,000 x g for 30 minutes at 4 °C. Cell pellets were resuspended in the 

appropriate buffer for downstream analysis. Approximately 5 g of cells were used per 10 ml 

of buffer.  

Lysozyme was added to the cell sample to a final concentration of 0.5 mg ml-1 and incubated 

at 25 °C for 30 min in the dark. A small spatula of deoxyribonuclease 1 from bovine pancreas 

(Sigma) was added to the cells. The cells were French pressed 3 times at 18,000 psi. The cells 

were kept on ice throughout. Unbroken cells were removed by centrifugation at 33, 000 x g 

at 4 °C for 25 minutes. The supernatant was transferred to a clean tube prior to loading onto 

a sucrose gradient. 

2.15.2 Standard preparation of mixed intracytoplasmic membranes 

High concentrations of intracytoplasmic membranes (ICM) were prepared using a 15/40 % 

(w/w) discontinuous sucrose gradient. 5-10 ml of broken cells (Section 2.15.1) were layered 

on top of the 15% sucrose band using a pipette. The gradients were kept on ice throughout. 

Gradients were centrifuged at 27, 000 rpm (65,000 x g) in a Beckman Type 45 Ti rotor at 4 °C 

for 16 hours. A pigmented band of ICM formed at the 15/40 % interface and was collected 

using a peristaltic pump. 20 ml of membrane sample and 70 ml of the desired buffer was 

placed into each of 6 centrifuge tubes. The samples were spun at 40,000 rpm (125,171 x g) in 

a Beckman Type 45 Ti rotor for 2 hours at 4 °C in order to pellet the membrane. The 

supernatant was discarded. The pellets were homogenised in approximately 3 ml of the 

desired buffer. 

2.15.3 Solubilisation of ICM 

Membranes harvested from discontinuous sucrose gradients (Section 2.15.2) were solubilised 

in 3 % β-DDM at 4 °C for 1 hour with continuous stirring in the dark, unless otherwise stated. 

The sample was centrifuged for 1 hour in a Beckman Ti 70.1 rotor at 48,000 rpm (160,000 x g 

avg) 4 °C to remove unsolubilised material. The supernatant was collected. 
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2.15.4 Fractionation of LH1-RC core complexes present in ICM membranes  

Solubilised membranes (see Section 2.15.3) were layered on top of discontinuous sucrose 

gradients containing 20 %, 21.25 %, 22.5 %, 23.75 %, 25 % and 50 % sucrose in 20 mM HEPES, 

5 mM EDTA and 0.03 % β-DDM. Gradients were centrifuged in a Beckman SW32 Ti rotor at 

27,000 rpm (90,000 x g avg) at 4 °C for 40 hours. Pigmented bands were harvested for 

downstream processing. 

2.16 Synechocystis strains, growth and fractionation 

A glucose tolerant strain of Synechocystis sp. PCC6803 was obtained from Professor Wim 

Vermass (Arizona State University) (Williams, 1988). Strains were grown in BG11 media 

supplemented with glucose and TES KOH pH 8.2 (See Appendix) and grown under medium 

(40 µmol photons s-1 m-2) or low light conditions (4 µmol photons s-1 m-2) with agitation at 150 

rpm at 30 °C.  

2.16.1 Transformation of Synechocystis sp. PCC6803 

Synechocystis was grown in 100 ml of liquid medium until an OD750 of 0.6 – 0.7 was reached. 

1 ml of cell culture was taken and pelleted by centrifugation at 2,656 x g for 5 minutes. 900 µl 

of the supernatant was removed followed by the addition of add 5 µl of miniprep DNA (10 – 

50 ng of plasmid or linear DNA). The cells were gently resuspended followed by incubation for 

30 min under medium light conditions at 30 °C. The cells were transferred to a small BG11 

agar plate and the suspension was allowed to dry. Cells were incubated in medium light at 30 

°C for 24 hours. Initial selection was performed by transferring the cells to a BG11 plate 

containing 5 µg ml-1 kanamycin. Plates were incubated under low light at 30 μmol photons s-1 

m-2 at 30 °C until colonies appeared (8 – 12 days). Colonies were transferred to a new agar 

plate containing double the concentration of antibiotic. This process was repeated with 

increasing amounts of antibiotic until a fully segregated mutant was obtained, as verified by 

colony PCR using ACCUZYMETM. 

Synechocystis contains many copies of its genomic DNA (~ 60 copies per cell). It is therefore 

vital to ensure the foreign DNA is introduced into every copy of the genome to avoid 

reversion on removal of antibiotic selection. 

2.16.2 Breakage of Synechocystis by bead beating 

Cultures of Synechocystis were harvested by centrifugation at 15,000 x g for 10 min. The 

pellet was resuspended in three volumes of FLAG buffer (25 mM sodium phosphate buffer, 

10 mM MgCl2, 10 % glycerol (w/v), 0.05 M NaCl, pH 7.4) containing lysozyme and DNAse. 10 
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µl of EDTA-free protease inhibitor (BioCompare) was added (1ml to 1 tablet). All subsequent 

steps were performed in the dark or under a dim green light. The cells were disrupted in a 

bead beater using 0.1 mm glass beads in a 1:1 ratio of cell suspension to glass beads. 6 X 15 

second bead beating cycles were used with 3 min on ice between each cycle. Glass beads 

were removed from the cell lysate by washing with 2 volumes of FLAG buffer, and unbroken 

cells were removed by centrifugation for 15 min at 8,000 x g.  

2.16.3 Separation of thylakoid membrane and soluble cell fractions 

Bead beaten cells were centrifuged at 64,000 x g for 45 min to separate the insoluble fraction 

(thylakoid membrane). The supernatant (blue) was removed as the soluble fraction. The 

thylakoid membrane pellet was resuspended in the minimum volume of FLAG buffer 

containing EDTA-free protease inhibitor (BioCompare). The membranes were solubilised with 

β-DDM to a final concentration of 1 % for 1 hour in the dark at 4 °C with gentle stirring. 

Unsolubilised material was removed by centrifugation at 30,000 x g for 30 min. The resulting 

solubilised material was either loaded onto a FLAG-affinity column or flash frozen in liquid 

nitrogen and stored at – 80 °C. 

2.17 Protein manipulation 

2.17.1 Quantification of protein concentration 

To measure the total protein concentration, a BCA Protein assay kit (Thermo Scientific) or a 

Bradford Protein assay (Bio-Rad) was used according to the manufacturers’ instructions. To 

quickly estimate protein concentration, the absorbance at 280 nm was used and the protein 

concentration in mg ml-1 was determined using the following equation: 

 𝐴280 𝑎𝑡 1 𝑚𝑔 𝑚𝑙−1 = (5960𝑛𝑇𝑟𝑝 + 1280𝑛𝑇𝑦𝑟 + 120𝑛𝐶𝑦𝑠) ÷ 𝑀𝑟 

Where nTrp, nTyr and nCys are the numbers of tryptophan, tyrosine and cysteine residues in the 

protein, and Mr is the predicted molecular weight of the protein (Gill and Vonhippel, 1989). 

For relative LH2 and core complex concentrations the 850 nm and 875 nm absorbance peaks 

were used respectively. 

2.17.2 SDS-polyacrylamide gel electrophoresis 

Protein samples were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) using 

12% Bis-Tris NuPAGETM pre-cast polyacrylamide gels (Invitrogen). Samples were diluted 1 in 4 

with loading buffer (to make 1 ml: 50 µl beta mercaptoethanol, 950 µl Nu PAGE running 

buffer). Prior to loading, samples were heated at 100 oC for 10 minutes or, for membrane 
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samples, 37 °C for 30 minutes, followed by centrifugation at 16,600 x g in a bench top 

microcentrifuge for 2 minutes. 5 μl of Precision Plus Protein Dual Colour Standards (Bio-Rad) 

was added to the gel as a size marker. For gels destined for western blotting, pre-stained 

markers were used. Protein bands were visualised by staining gels with Coomassie Brilliant 

Blue R250. 

2.17.3 Western blot analysis of proteins 

Protein samples were separated by SDS-PAGE as described in Section 2.17.2. After 

electrophoresis, a sandwich was assembled as follows: a porous sponge pad, 2 sheets of 

Whatman 3MM paper, the gel, nitrocellulose transfer membrane (Hybond ECL, Amersham), 2 

sheets of 3MM paper and a porous sponge pad. This was arranged in a Bio-Rad blotting 

cassette after saturation in transfer buffer (190 mM glycine, 24 mM Tris, 20 % methanol). The 

gel was in direct contact with the nitrocellulose transfer membrane. The gel was closer to the 

cathode (black) and the membrane closer to the anode (red). The transfer was done for 1 

hour at 350 mA at 4 °C in a blotting tank (Bio-Rad) submerged completely in transfer buffer. 

After transfer, the membrane was removed from the cassette and washed in wash buffer (18 

mM Tris-HCl pH 7.6, 68 mM NaCl, 0.05 % Tween). 

Following transfer, the membrane was blocked for at least 45 minutes in blocking buffer (5 % 

Marvel Milk Powder, 18 mM Tris-HCl pH 7.6, 68 mM NaCl). The membrane was incubated in 

primary antibody at the appropriate concentration in wash buffer for 3 - 16 hours at 4 °C. The 

membrane was then rinsed in 3 quick washes of wash buffer followed by three 5 min 20 ml 

washes. Secondary antibody at the appropriate concentration in wash buffer was added to 

the membrane and incubated at room temperature for 1 hour. The membrane was then 

rinsed in 3 quick washes of wash buffer followed by three 10 min 20 ml washes. 

Immunodetection was performed using AmershamTM ECLTM Western blotting analysis system 

(GE Healthcare Life Sciences) according to the manufacturer’s instructions.  

2.17.4 Purification of His-tagged proteins 

His-tagged proteins were purified on a column packed with chelating Sepharose fast-flow 

resin (GE Healthcare). The column was run on a bench top using gravity. The column was first 

washed with 20 ml QH2O in order to wash away the ethanol that the column was stored in. It 

was then washed with 20 ml charging buffer (70 mM NiSO4, 50 mM sodium acetate, pH 4.5) 

followed by 20 ml binding buffer (20 mM Tris pH 7.4, 500 mM NaCl, 10 mM imidazole). The 

sample (often in the form of membranes prepared as in Section 2.15.2) was added to the top 

of the column. The column was then washed with 20 ml binding buffer, followed by 20 ml 

binding buffer with 50 mM imidazole, then 20 ml binding buffer with 100 mM imidazole. To 
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elute protein, the column was washed with 20 ml binding buffer containing 400 mM 

imidazole. Where required, all buffers contained 0.04 % β-DDM, unless otherwise stated. 1.5 

ml fractions were taken. Protein content was analysed spectroscopically and using Bradford 

assay (Section 2.17.1). 

2.17.5 Purification of FLAG tagged proteins 

All purification buffers contained 0.04 % β-DDM and the purification was done in the dark. 

Anti-FLAG-M2-Agarose from mouse (Sigma) was flow packed in a Poly-Prep gravity flow 

column (BioRad) to the desired bed volume (100 – 300 µl) with 1 ml QH2O. The resin was 

equilibrated with 5 ml FLAG buffer (25 mM sodium phosphate buffer, 10 mM MgCl2, 10 % 

glycerol (w/v), 0.05 M NaCl, pH 7.4) containing EDTA-free protease inhibitor (BioCompare). 

The sample was loaded onto the column and the flow-through was re-applied once. The 

column was washed with 10 x 1 ml applications of FLAG buffer. Following washing, the anti-

FLAG resin was resuspended in 300 µl wash buffer (containing 150 µg ml-1 FLAG peptide 

(sequence: DTKDDDDKDTKDDDDKDTKDDDDK) (Invitrogen)) followed by incubation on a 

rocker for 1 hour at 4 °C. The eluate was separated from the FLAG resin by passage through a 

Costar Spin-X column containing a 0.22 µm cellulose acetate membrane. 

2.18 Carotenoid extraction and analysis 

2.18.1 Carotenoid extraction from Rhodobacter sphaeroides 

80 ml of semi-aerobic Rba. sphaeroides culture were pelleted by centrifugation and 

resuspended a minimum volume of 20 mM HEPES pH 7.4. 100 µl of the cell suspension was 

pelleted by centrifugation and 500 µl of acetone:methanol (7:2 v/v) was used to resuspend 

the pellet. The sample was centrifuged at 16,600 x g in a microcentrifuge at 4°C for 1 min. 

The supernatant was taken and 200 µl of hexane was added and the tube was inverted to 

mix. 100 µl of QH20 was added and the tube was inverted to mix. The sample was centrifuged 

at 16,600 x g in a microcentrifuge at 4°C for 1 min. The top, coloured, layer containing the 

carotenoids was taken and centrifuged at 16,600 x g at 4°C for 5 min to remove any debris 

and the supernatant was transferred to a glass HPLC sample vial.  

Alternatively, the carotenoid sample was dried with nitrogen on ice. The dried samples were 

sealed with parafilm and frozen at -20 °C overnight. The dried pigment was resuspended in a 

minimum volume of 80 µl of acetonitrile:H2O (1:6 v/v), centrifuged at 16,600 x g at 4 °C for 1 

min to remove any debris and the supernatant was transferred to a glass HPLC sample vial. 
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2.18.2 Carotenoid extraction from Escherichia coli 

E. coli cells were harvested by centrifugation and resuspended in a minimum volume of 20 

mM HEPES. The culture was sonicated and 0.5 ml of culture was transferred to an Eppendorf. 

1 ml of acetone:methanol (7:2 v/v) was added and the sample was centrifuged at 16,600 x g 

for 5 min at 4 °C. The supernatant was taken. The pellet was resuspended in 1 ml acetone: 

methanol 7:2 and the centrifugation step was repeated. The supernatant was pooled and 1 or 

2 ml of hexane was added. The top layer containing the carotenoid pigments was taken and 

dried on ice with nitrogen. The dried samples were sealed with parafilm and frozen at -20 °C 

overnight. The dried pigment was resuspended in a minimum volume of 80 µl of 

acetonitrile:H2O (1:6 v/v), centrifuged at 16,600 x g at 4 °C for 5 min to remove any debris 

and the supernatant was transferred to a glass HPLC sample vial. 

2.18.3 HPLC analysis of extracted carotenoids 

HPLC analysis of pigments was performed on an Agilent 1200 high-performance liquid 

chromatograph using a Phenomenex Aqua C18 reverse phase column (5 μm particle size, 125 

Å pore size, 250 x 4.6 mm). The column was washed with 50% each of acetonitrile:H2O (1:6 

v/v) and ethyl acetate. The column was equilibrated in acetonitrile:H2O (1:6 v/v). The method 

used was a modified version of that in Garcia-Asua et al., 2002 in which a gradient to 100 % 

ethyl acetate was run over 25 minutes. The pigment sample injection volume was 50 µl. 

Pigments were eluted at 1 ml min-1, elution of carotenoid species was monitored by scanning 

from 220 to 950 nm. Pigment elution was detected using a multichannel diode array detector 

(DAD) (Agilent) set to record absorbance at 442 nm. Pigment retention times were not 

significantly varied when loaded in either acetonitrile:H2O (1:6 v/v) or hexane. 

2.19 Spectroscopy 

2.19.1 Room temperature absorbance spectra 

Room temperature Spectra were taken using Cary UV/vis spectrophotometer at wavelengths 

950 nm – 260 nm in an ultra violet (UV) cuvette with a 1 cm path length. Dilutions were done 

using the appropriate buffer or growth medium.  

2.19.2 Low temperature absorbance spectra 

Absorbance spectra were recorded using a Cary 500 UV/vis spectrophotometer at 

wavelengths 950- 260 nm in a UV cuvette with a 1 cm path length. Samples were cooled to 77 

K in an Optistat DN-V optical cryostat manufactured by Oxford Instruments. Samples were 

suspended in a cryo-stable buffer consisting of 20 mM Tris-HCl, 80 % glycerol (v/v). 
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2.19.4 Low temperature fluorescence spectroscopy 

All emission and excitation fluorescence spectra were recorded in a cryo-stable buffer 

consisting of 20 mM HEPES, 80% glycerol. Samples were cooled to 77 K in an Optistat DN-V 

optical cryostat manufactured by Oxford Instruments. Measurements were recorded on a 

SPEX FluoroLog spectrofluorimeter (SPEX Industries Inc.). Excitation was provided from a 

tungsten light source in the visible-IR region of the spectrum. Fluorescence excitation spectra 

were recorded from 400 nm to 910 nm with an emission of 915 nm. Fluorescence emission 

spectra were recorded using an excitation wavelength of 590 nm with 5 nm slit widths and 

emission slit widths of 2.5 mm. An average of 10 individual scans was used to measure 

excitation and emission spectra.  

2.19.5 Fluorescence imaging of Rhodobacter sphaeroides cells containing YFP 

Cells were washed three times in QH2O then suspended in QH2O. 15 µl of cell suspension was 

dropped on 30 µl of 1.5% agar film on a glass slide and sealed with DPX mountant 

(Sigma−Aldrich) between the glass slide and a coverslip. 

Fluorescence images were taken with an inverted fluorescence microscope 

(AxioObserverA1m, Zeiss) equipped with a Hal 100 halogen lamp, a high intensity HBO 100 

mercury lamp and an ORCA-ER camera (HAMAMATSU). Excitation light was first filtered by a 

470/40 nm bandpass filter, then reflected by a 495 nm dichroic beam splitter to the sample 

through an objective (Plan-Apochromat 63x/1.40 oil objective, Zeiss). Fluorescence emission 

was filtered by a 520/40 nm bandpass filter before detection by the camera. Each 

fluorescence image was taken with a 0.1 s exposure time and 50 electron multiplication gain.  

2.19.6 Fluorescence spectra and lifetime measurements of Rhodobacter 

sphaeroides cells containing YFP 

The fluorescence emission properties of YFP in whole cells were measured on a home-built 

time-resolved fluorescence microscope. The inverted microscope is equipped with a 

spectrometer (Acton SP2558, Princeton Instruments), an electron-multiplying charge-coupled 

device (EMCCD) camera (ProEM 512, Princeton Instruments) and a Hybrid Detector (HPM-

100-50, Becker & Hickl). Excitation light source was from a pulse supercontinuum white light 

laser (SC 480-10, Fianium) with a repetition rate of 40 MHz. The laser beam was focused on 

the sample surface illuminating a diffraction limited spot using 100 × (PF, NA = 1.4, oil 

immersion, Olympus). The resulting fluorescence spectral emission was detected through the 

spectrometer onto the EMCCD camera and the resulting fluorescence lifetime was detected 

through the spectrometer onto the Hybrid Detector. 
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During fluorescence spectral and lifetime measurements, the excitation light was filtered by a 

472/30 nm bandpass filter, then reflected by a 495 nm dichroic beamsplitter to the sample. 

The resulting fluorescence emission was filtered by a 596 nm long-pass filter before being 

detected by the cameras. The fluorescence emission was captured with a slit width of 1500 

μm and a grating of 150 line/mm working at a central wavelength of 550 nm in the 

spectrometer. Multiple measurements were performed on 8 different cells on each sample. 

Each fluorescence spectrum was detected by EMCCD at an average of 3 frames with a 1 s 

exposure time and an electron multiplication gain of 80. Analysis was done with OriginPro. 

For fluorescence lifetime measurements, the modulation of the laser was synchronized with a 

time-correlated single-photon counting (TCSPC) module (SPC-150, Becker & Hickl). 

Fluorescence lifetimes were recorded by parking the focused laser spot over one single cell, 

selecting a central wavelength of 550nm by use of the monochromator and detected by the 

Hybrid Detector. SPCM software (Becker&Hickl) was used for the data acquisition. The 

families of decay curves were analysed with OriginPro and TRI2 software packages by fitting 

multiexponential decay function: 

 

𝐼(𝑡) = ∑ 𝐴𝑖𝑒𝑥𝑝 (
−𝑡

𝜏𝑖
) + 𝐵

𝑛

𝑖=1

 

where τi is the fluorescence lifetime, Ai is the fractional amplitude contribution of the ith 

decay component, and B is the background. The quality of fit was judged on the basis of the 

reduced χ2 statistic:  

χ2
red =  

∑
[I(tk) − Ic(tk)]2

I(tk)
n
k=1

n − p
=  

χ2

n − p
 

where I(tk) is the data at time point k, Ic(tk) is the fit at time point k, n is the number of data 

points and p is the number of variable fit parameters (n — p = degrees of freedom). 

The instrument response (IRF) of the system, measured using a mirror, was 

approximately 0.18 ns, and the convolution of the decay curves with the IRF was taken into 

account when the fitting was performed.  

2.19.7 Extended timescale ultrafast transient absorption measurements 

The transient-absorption (TA) studies of the samples (RC and YFP concentrations of ~10-15 

μM) utilized an amplified Ti:Sapphire laser system (Spectra Physics) and a Helios or Eos 
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spectrometer (Ultrafast Systems) with 515 nm, ~0.5 J, ~100 fs excitation pulses (at 1 KHz) 

focused to 1 mm diameter. For these TA studies, any samples containing the RC were spun in 

a 3-ml, home-built spinning cell at 300-600 rpm (required to prevent re-excitation of P+); the 

YFP-only samples used traditional stir bar-containing, 2 mm cells (~500 ul). 

Table 2.1 Plasmids 

Table 2.1.1 Empty vectors 

Plasmid Resistance Induction Source/Reference 

pK18mobsacB KmR SucS  N/A Professor J. Armitage, 

University of Oxford  

pIND4 KmR IPTG Ind et al., 2009 

pJEXPRESS 414 AmpR IPTG DNA 2.0 

pBAD colA KmR Arabinose Dr. D. Canniffe, 

University of Sheffield 

pBBRBB-Ppuf 843-1200 KmR Constitutive Tikh et al., 2014 

pBBRBB-Ppuf 1-1200 KmR Low oxygen Tikh et al., 2014 

pET9a KmR IPTG Novagen 

pEXT22 KmR IPTG Dykxhoorn et al., 1996 

pFLAG AmpR KmR N/A Dr P. Davison and Dr 

D. Canniffe, University 

of Sheffield 

 

Table 2.1.2 Plasmids used in Chapter 3 

Plasmid Properties Source/Reference 
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pK18mobsacB-crtBKO ΔcrtB construct containing 

upstream and downstream 

sequences ligated in frame.  

This study 

pK18mobsacB-puhA-

syfp2 

C-terminus SYFP2 fusion 

containing upstream, syfp2, and 

downstream sequences of puhA 

ligated in frame.  

E. Martin, University of 

Sheffield 

pBBRBB 843-1200 – syfp2 Containing syfp2.  This study 

 

Table 2.1.3 Plasmids used in Chapter 4 

Plasmid Properties Source/Reference 

pK18mobsacB-

ΔpucBA 

Construct containing upstream and 

downstream sequences of puc1BA to 

produce a knockout of this gene.  

E. Martin, University of 
Sheffield 

pK18mobsacB-PR Construct containing upstream and 

downstream sequences of puc1BA 

with the PR gene, ligated in frame.  

This study 

pK18mobsacB-

crtIcrtYblh 

Construct containing upstream and 

downstream sequences of crtI. These 

sequences flank the crtI and crtY 

genes from Erwinia herbicola and a 

codon optimised version of blh from 

uncultured marine bacterium.  

This study 

pK18mobsacB-

crtYIblh2 

As above but with the ribosome 

binding site from pIND4. 

This study 

pIND4-PR Containing the PR gene This study 

PBBRBB 843 - 1200 - PR Containing the PR gene This study 
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pIND4-blh Containing a codon optimised version 

of blh from uncultured marine 

bacterium. 

This study 

pORANGE Containing crt E, B, I, Y from Erwinia 

herbicola. Arabinose. CmR.  

 Von Lintig and Vogt, 2000 

pKJ900 Containing MBP, and mouse β-diox. 

Containing lacUV5 promoter for MBP, 

and AraC for β-diox. AmpR. 

 Kim et al., 2008 

pK18mobsacB-ΔccoP Construct for the knockout of Rba. 

sphaeroides ccoP gene containing 

upstream and downstream 

sequences of ccoP. 

E. Martin, University of 

Sheffield 

 

Table 2.1.4 Plasmids used in Chapter 5 

Plasmid Properties Source/Reference 

pK18mobsacB-TM Δ1BA Construct containing 

upstream and downstream 

sequences of puc1BA with 

the TM gene, ligated in 

frame. 

This study 

pIND4-TM-FLAG Containing TM with an N-

terminal FLAG tag and a C-

terminal His tag. 

This study 

PIND4-TM Containing TM with a C-

terminal His tag. 

This study 

pBBRBB 843 - 1200 TM Containing TM with a C-

terminal His tag. 

This study 

pET9a-TM TM with a C-terminal His tag. This study 
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Table 2.1.5 Plasmids used in Chapter 6 

Plasmid Properties Source/Reference 

pJEXPRESS414-BT6-GK N terminal His tag G. Kodali, University of 

Pennsylvania 

pJEXPRESS414-BT6 C terminal His tag This study 

pJEXPRESS414-BT6M-GK N terminal His tag G. Kodali, University of 

Pennsylvania 

pJEXPRESS414-BT6M C terminal His tag This study 

pJEXPRESS414-TorA-BT6 BT6 with a TorA signal 

peptide on the N-terminus, 

and a C-terminal His tag. 

This study 

pJEXPRESS414-TorA-BT6M BT6M with a TorA signal 

peptide on the N-terminus, 

and a C-terminal His tag. 

This study 

pJEXPRESS414-TorA-KR-BT6 BT6-KR with a TorA signal 

peptide on the N-terminus, 

and a C-terminal His tag. 

This study 

pJEXPRESS414-TorA- KK-BT6  BT6-KK with a TorA signal 

peptide on the N-terminus, 

and a C-terminal His tag. 

This study 

pJEXPRESS414-TorA-BT6-

H53A  

BT6-H53A with a TorA signal 

peptide on the N-terminus, 

and a C-terminal His tag. 

This study 

pEXT22-BT6 As above This study; A. Jones, 

University of Kent 

pEXT22-TorA-BT6 As above This study; A. Jones, 

University of Kent 
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pEXT22-BT6M As above This study; A. Jones, 

University of Kent 

pEXT22-TorA-BT6M As above This study; A. Jones, 

University of Kent 

pEXT22-TorA-KR-BT6 As above This study; A. Jones, 

University of Kent 

pEXT22-TorA-KK-BT6 As above This study; A. Jones, 

University of Kent 

Table 2.2 Rhodobacter sphaeroides strains 

Table 2.2.1 Rba. sphaeroides strains used in multiple chapters 

Strain Properties Source/reference 

2.4.1 Wild type S. Kaplan, University of 

Texas 

Δpuc1BA In frame genomic deletion of 

pucBA operon. 

E. Martin, University of 

Sheffield 

Δpuc1BA ΔpufX In frame genomic deletion of 

pucBA and pufX. 

E. Martin, University of 

Sheffield 

ΔpufX In frame genomic deletion of 

pufX. 

E. Martin, University of 

Sheffield 

ΔcrtB In frame genomic deletion of 

crtB. 

This study 

 

Table 2.2.2 Rba. sphaeroides strains used in Chapter 3 

Strain Properties Source/reference 

WT puhA-syfp2 

(WT RCH-YFP) 

In frame genomic fusion of 

puhA and C-terminus syfp2 

E. Martin, University of 

Sheffield 
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ΔcrtB puhA-syfp2 

(ΔcrtB RCH-YFP) 

In frame genomic deletion of 

crtB. In frame genomic fusion 

of puhA and C-terminus syfp2 

E. Martin, University of 

Sheffield 

WT pBBRBB 843-1,200 YFP Constitutive expression of 

syfp2 

This study 

ΔcrtB pBBRBB 843-1,200 YFP Constitutive expression of 

syfp2 

This study 

 

Table 2.2.3 Rba. sphaeroides strains used in Chapter 4 

Strain Properties Source/reference 

ΔcrtC In frame genomic deletion of 

crtC 

E. Martin, University of 

Sheffield 

ΔcrtC ΔcrtI:: crtI crtY In frame genomic deletion of 

crtC. Pantoea agglomerans 

crtI and crtY replace the 

native crtI. 

S. Chi, University of 

Sheffield 

ΔcrtC ΔcrtI:: crtI crtY blh 

(crtIYblh) 

In frame genomic deletion of 

crtC. Pantoea agglomerans 

crtI and crtY and a codon 

optimise variant of blh from 

uncultured marine bacterium 

replace the native crtI. 

This study 

ΔcrtC ΔcrtI:: crtI crtY blh 2 

(crtIYblh2) 

As above but using the 

ribosome binding site from 

pIND4 

This study 

ΔpucBA ΔcrtC ΔcrtI:: crtI 
crtY blh 

(crtIYblh2 Δ1BA) 

As above. In-frame deletion 

of the puc1BA genes.  

This study 

ΔpucBA ΔcrtC ΔcrtI:: crtI 
crtY blh PR 

(crtIYblh2 Δ1BA::PR) 

As above. The gene for PR in 

place of the puc1BA genes. 

This study 
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ΔpucBA ΔcrtC ΔcrtI ΔccoP:: 
crtI crtY blh 

(crtIYblh2 Δ1BA ΔccoP) 

As previously. In-frame 

deletion of the ccoP gene. 

This study; E. Martin, 

University of Sheffield 

ΔpucBA ΔcrtC ΔcrtI Δccop:: 

crtI crtY blh PR 

As above. The gene for PR in 

place of the puc1BA genes. 

This study 

 

Table 2.2.4 Rba. sphaeroides strains used in Chapter 5 

Strain Properties Source 

ΔbchCFX In frame deletion of the 

bchCFX genes. 

J. Chidgey, University of 

Sheffield 

 

Table 2.3 Primers 

The primers were synthesised by Sigma. Primer DNA was diluted to a concentration of 125 ng 

µl-1. 

Table 2.3.1 Primers used in Chapter 3 

Name Sequence Cleavage Site 

crtBKOUF CCGGAATTCCACATCACCATCACCACGGCG 

 

EcoRI  

crtBKOUR GCGCTCTAGAGATCTAGGTTCTCATGAAGGTATACC

G 

XbaI 

crtBKODF GCGCTCTAGAGGCAATCATTCCGCGGCAAGC XbaI 

crtBKODR CCCCGCATGCGGCTGTGGCCGAGCCCTA SphI 

crtBseqF CCCGCAGGCCCGCCCCTC N/A 

crtBseqR TCGTCAATGCGCCGCGCT N/A 

puhAYFPUF CCGGAATTCTCGGCCGGCAAGAACCCGATCGG EcoRI 

puhAYFPUR GCTCCTCGCCCTTGCTCACCATGGCGTATTCGGCCAGC

ATCGCCG 

N/A 

puhAYFPDF GCGCTCTAGATCCCCGCATGGCGCGGCCC XbaI 

puhAYFPDR CCCCAAGCTTTAGGGCACCGCATAGGCCACCGC HindIII 

puhAYFPFor CGGCGATGCTGGCCGAATACGCCATGGTGAGCAAGGG

CGAGGAGCTGTTCAC 

N/A 
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puhAYFPRev GCGCTCTAGATCATTACTTGTACAGCTCGTCCATGCC

GAGAGTGAT 

XbaI 

puhAYFPseqF GAAGCAGCACGACTTCTTCAAGTC N/A 

puhAYFPseqR CCACGATCTATTCGATCACCACAGC N/A 

pBBRBB syfp2 F GCGCAGATCTATGGTGAGCAAGGGCGAG BglII 

pBBRBB syfp2 R GCGCGGCGGCCGCTTACTTGTACAGCTCGTCCATG NotI 

 

Table 2.3.2 Primers used in Chapter 4 

Name Sequence Cleavage Site 

crtYI F GCGCTCTAGAATGAGGGATCTGATTTTAGTCGG XbaI 

crtYI R GCCGTCGACTCATTGCAGATCCTCAATCA SalI 

Blh F GGCGCCCATGGATATGGGCCTCATGCTCAT NcoI 

Blh R CGCCGAAGCTTTCAGTTCTTGATCTTGATGCG HindIII 

Blh F rbs GCGGCGGTCGACGAGGAGAAATTAACCATGGGCCT

CATGCTCATCG 

SalI 

Blh R NdeI GCGGCGCATATGGCGGCAAGCCTTTC NdeI 

PR OE F GTTGGGAGACGACACAATGGGTAAATTATTACTGAT

ATTAGGTAGTG 

N/A 

PR OE R GCGCCTTGCGCAGCATCAGTGGTGGTGATGGTG  N/A 

PucBA KO F SalI CCGGTCGACGCCAAGCCATCCTGAAATCTCG  SalI 

PR up OE R CAGTAATAATTTACCCATTGTGTCGTCTCCCAACT N/A 

PR down OE F CATCACCACCACTGATGCTGCGCAAGGCG N/A 

PucBA KO DR CCCCAAGCTTGTGTCGGACTTGAACCCGATCAG  N/A 

PucBA KO check F CACGGCCATGTGCTGAAGATC N/A 

PucBA KO check R CACCGTCTGGATCGTGTGCAC N/A 

PR F FLAG AAGGAAAAAAGCGGCCGCAGGTAAATTATTACTGA

TATTAGG 

NotI 

PR R BglII ATAGATCTTCAACCGGTACGCGTAGAATCGAGACC BglII 

FLAG check F CTCTCATTAATCCTTTAGAC  N/A 

FLAG check R GCATTACGCTGACTTGACGG  N/A 

 

Table 2.3.3 Primers used in Chapter 5 

Name  Sequence Cleavage site 
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TM no FLAG F GGCGCCCATGGGATCCGGCCAGATTTGG NcoI 

TM R HindIII CGCCGAAGCTTTCAATGATGATGGTGGTGATG HindIII 

TM F pET9a GGCCTCTAGAATGGGATCCGGGCAGATTTG XbaI 

TM R pET9a GGCCGGATCCTCAATGATGATGGTGGTGATGG BamHI 

TM OE F GTTGGGAGACGACACAATGGGATCCGGGCAG N/A 

TM OE R GCGCCTTGCGCAGCATCAATGATGATGGTGGTGAT

G 

N/A 

PucBA KO F EcoRI CCGGAATTCGCCAAGCCATCCTGAAATCTCG EcoRI 

TM up OE R CTGCCCGGATCCCATTGTGTCGTCTCCCAACT N/A 

TM down OE F CACCATCATCATTGATGCTGCGCAAGGCG N/A 

PucBA KO DR CCCCAAGCTTGTGTCGGACTTGAACCCGATCAG HindIII 

 

Table 2.3.4 Primers used in Chapter 6 

Name  Sequence Cleavage site 

TorA F GGAATTCCATATGAACAATAACGATCTCTTTCAGG NdeI 

TorA-BT6 Rev OE 

 

CTCGCCGTCGCCGCCCGCCGCTTGCGCCGCAGTCGC

AC 

N/A 

TorA-BT6 For OE GCGGCGCAAGCGGCGGGCGGCGACGGCGAGAATC

TG 

N/A 

BT6 his R 

 

CTGGCTCGAGTTAATGGTGGTGATGATGGTGCAATT

GCTTCAGATCTTCAAATTGG 

XhoI 

BT6 F GGAATTCCATATGGGC GGC GAC GGC GAG AAT C NdeI 

TorA KR QC AS TGTGCCAGAAAACGCCGCTTTGATGCCTGAAAGAG

ATCGTTATTG 

N/A 

TorA KR QC S CAATAACGATCTCTTTCAGGCATCAAAGCGGCGTTT

TCTGGCACA 

N/A 

TorA KK QC S GATCTCTTTCAGGCATCAAAGAAGCGTTTTCTGGCA

CAACTC 

N/A 

TorA KK QC AS GAGTTGTGCCAGAAAACGCTTCTTTGATGCCTGAAA

GAGATC 

N/A 

TorA-BT6M Rev OE TTCGCCGTCGCCGCCCGCCGCTTGCGCCGCAGTCGC

AC  

 

N/A 

TorA-BT6M For OE GCGGCGCAAGCGGCGGGCGGCGACGGCGAAAACC N/A 
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TC 

BT6M his R CTGGCTCGAGTTAATGGTGGTGATGATGGTGCAGC

TGTTTCAGATCCTCAAACTGA 

N/A 

BT6M F GGAATTCCATATGGGCGGCGACGGCGAAAAC NdeI 

BT6 H53A QC S TGCAGCGCATCCTCGGCCTGCTTCCAGATCTC N/A 

BT6 H53A QC AS GAGATCTGGAAGCAGGCCGAGGATGCGCTGCA N/A 
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Chapter 3 

Expanding the range of light absorbers for bacterial 
photosynthesis: YFP-enhanced charge separation at 
the Rhodobacter sphaeroides reaction centre 

3.1 Summary 

Much of the visible and near-infrared radiation falling on the surface of the Earth is not 

absorbed by photosynthesising organisms, which occupy particular spectral niches depending 

on the absorption of the particular pigments they synthesise. While organisms are able to 

harvest sufficient light for sustenance, for human solar energy needs it is desirable to utilise 

light across the entire spectrum. Although the incorporation of synthetic chromophores to 

complement native light-harvesting proteins is promising, the approach generally involves in 

vitro reassembly. Fluorescent proteins such as the Aequorea victoria green fluorescent 

protein (GFP) and its derivatives offer the advantage in that they are well studied and 

genetically programmable.  

In this study, a translational fusion of the Rhodobacter sphaeroides reaction centre (RC) H 

subunit and a yellow variant of GFP, SYFP2, was constructed in Rba. sphaeroides wild type 

and carotenoidless (ΔcrtB) backgrounds. An increase in the rate of photosynthetic growth 

was observed in ΔcrtB RCH-YFP compared to ΔcrtB. This increased growth rate is due to the 

transfer of energy from YFP to the Rba. sphaeroides LH1 and/or the RC proteins. 

The spectral overlap between the emission of YFP and the visible-region (QX) absorption 

bands of the RC allows for energy transfer from YFP to the RC via a Förster mechanism. A 

number of static and ultrafast time-resolved techniques were used to show that the energy 

transfer yield from YFP to the RC was 40 ± 10%. This is sufficient to enhance the 

photosynthetic growth rate in the Rba. sphaeroides carotenoidless mutant. This work 

demonstrates the viability of incorporating new genetically encoded chromophores into 

existing systems to create new photosynthetic pathways for the augmentation of 

photosynthesis. 
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3.2 Introduction 

Much of the visible and near-infrared radiation falling on the surface of the Earth is not 

absorbed by photosynthesising organisms, which occupy particular spectral niches depending 

on the absorption of the particular chlorophyll, carotenoid, phycobilin and other pigments 

they synthesise (Blankenship et al., 2011; Slouf et al., 2012). While organisms are able to 

harvest sufficient light for sustenance, for human solar energy needs it is desirable to utilise 

light across the entire spectrum, from the near-UV through to the NIR region. For synthetic 

biology applications it would be worthwhile to design and construct bacteria for light-

powered bioreactors that could utilise a greater range of wavelengths then naturally-evolved 

photosynthetic bacteria. Thus arises the challenge of constructing antennas that can make 

use of such a wide range of wavelengths. The light-harvesting antennas found in 

photosynthetic organisms are flexible and diverse, providing a basis for the design of artificial 

light-harvesting constructs with a broad spectral coverage and the ability to transfer the 

resulting energy to a RC-like site with high efficiency.  

Challenges arise when creating artificial light-harvesting antenna systems. The designs must 

emulate the well-defined 3D architecture of natural light-harvesting proteins which contain a 

large number of pigments and feature rapid, efficient and multistep energy transfer along a 

“spectroscopic gradient” of a series of pigments. 

An emerging platform technology for the creation of artificial antennas is the biohybrid 

approach, which combines parts of native antennas with synthetic chromophores. Three key 

design features have been identified that these biohybrid constructs must incorporate: 1, The 

synthetic and natural chromophores must complement each other to provide pan-chromatic 

absorption throughout the visible and NIR regions of the spectrum. 2, It must be possible to 

create a high density of synthetic chromophores within the constructs to maximise 

absorption. 3, Appropriate energy levels much be achieved in order to funnel the captured 

light energy in a directional and efficient manner to the downstream chemical processing 

sites. (Harris et al., 2014b) 

A combination of proteins analogous to the Rba. sphaeroides LH1 complex with a toolbox of 

bioconjugatable chromophores have been developed. Truncated forms of the Rba. 

sphaeroides LH1 β-polypeptides have been engineered to covalently bind synthetic 

chromophores that can efficiently transfer energy to the BChl a site (Meadows et al., 1995; 

Meadows et al., 1998; Kehoe et al., 1998; Springer et al., 2012; Harris et al., 2013; Harris et 

al., 2014a). These short β-peptides bind two BChl a molecules each and form homodimeric 

ββ-dyads. They can also associate to form β-oligomers. Wavelength tuneable bioconjugatable 
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synthetic bacteriochlorins have been developed that can attach to the peptides to form βn-

oligomers which combine a strong NIR absorption with around 90% energy transfer efficiency 

(Reddy et al., 2013).  

More recently, native-length bacterial light-harvesting peptides with covalently attached 

designer chromophores have been created (Harris et al., 2013; Harris et al., 2014a; Harris et 

al., 2014b). These self-assemble with native BChl a to create stable antennas. These 

structures oligomerize to form biohybrid analogues of the LH1 complex. The designs possess 

45 to 60 pigments providing enhanced spectral coverage, and can accommodate pigments at 

remote sites that contribute to solar light harvesting via an energy transfer cascade. The 

efficiencies of energy transfer to the BChl a target is comparable with native antennas. Free 

accessory chromophores have been successfully used in these systems within detergent 

micelles, providing another route to enhance light-harvesting capability. (Harris et al., 2014a; 

Harris et al., 2014b).  

These biohybrid antennas combine designer chromophores with native scaffolding and are 

flexible, versatile and tailorable, providing the potential to extend solar coverage beyond 

natural systems. The absorbed solar energy could then be used for a variety of uses such as 

charge separation, photocurrent generation or fuel production. Other energy transfer 

systems have been created that contain diverse pigments and have been used in solar cells 

(Hardin et al., 2009; Bozdemir et al., 2011; Ichikawa et al., 2013; Botta et al., 2013), for 

clinical diagnostic assays (Algar et al., 2012; Fabian et al., 2013), and structural probes 

(Watrob et al., 2003; Gehne et al., 2012).   

There has been much interest in decorating different native light-harvesting and 

photosynthesis complexes with extra chromophores. However, while biohybrid architectures 

have great potential for producing artificial light-harvesting architectures in vitro, because 

they utilise synthetic chemistry they are unable to be replicated in vivo due to the inability of 

the bacterium to produce the designer chromophores. In order to create tailor-made light 

harvesting antennas in vivo, we must make use of the toolbox of proteins and pigments 

available in nature, or create synthetic elements that are able to be created by the host 

organism. 

In Rba. sphaeroides light is harvested by the LH2 and LH1 antenna complexes and the 

resulting excitation energy is used to power the reduction of quinone to quinol prior to the 

formation of a proton gradient that powers ATP synthesis. Rba. sphaeroides transfers the 

energy from light absorbed by B875 bacteriochlorophylls (BChls) in LH1 and B850 BChls in 

LH2 to the reaction centre (RC) with near 100% quantum efficiency (Sener et al., 2007; Sener 
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et al., 2009; Sener and Schulten, 2009). The Rba. sphaeroides RC is the point at which charge 

separation takes place when the excitation energy of pigments is converted into biochemical 

energy. To maximise the efficiency of energy capture the RC was chosen as an attachment 

point for an additional light-harvesting component. The distance between the donor 

chromophore and the RC BChl a “special pair” is very important for the efficiency of Forster 

resonance energy transfer (FRET); the efficiency of energy transfer is inversely proportional 

to the sixth power of distance between donor and acceptor (Piston and Kremers, 2007). 

As a pilot study to investigate the possibility of creating artificial light-harvesting antennas in 

vivo, this work investigates the effects of incorporating yellow fluorescent protein, YFP, as a 

chromophore into the photosynthesis apparatus of Rba. sphaeroides. YFP is a well-studied 

protein and is genetically programmable and has a good spectral overlap with the Qx bands of 

the Rba. sphaeroides RC (Figure 3.1). Like all fluorescent proteins, YFP absorbs light in a 

defined range of wavelengths (absorption maximum at 517 nm) and emits it at another 

wavelength (525 nm). The YFP variant used in this study, SYFP2, exhibits photostability, a high 

fluorescence quantum yield (~ 70 %) and a large extinction coefficient (~ 100,000 M-1 cm-1 at 

515 nm) (Kremers et al., 2006). This study aims to investigate whether the photons that 

would otherwise be emitted by YFP could instead be funnelled as useful energy and augment 

the Rba. sphaeroides photosynthesis process. 

 

Figure 3.1 The spectral overlap between the Rba. sphaeroides reaction centre and SYFP2 

Spectral overlap of the normalised YFP energy donor emission (red, solid line) and the RC energy 
acceptor absorbance (blue, short dashed line). Spectra are taken from the purified protein in Sections 
3.3.7 and 3.3.8. 

(Figure reproduced with permission from Kaitlyn Faries) 

The native absorption spectrum of WT Rba. sphaeroides has a large gap between 550-750 

nm, with the small Qx transition at 590 nm the only feature. YFP cannot contribute usefully to 

the native absorption, because carotenoid pigments of the light-harvesting complexes absorb 
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in the 400-550 nm range. Accordingly, a carotenoidless mutant of Rba. sphaeroides was 

constructed in order to create a baseline strain to observe the effect of the addition of YFP.  

Rba. sphaeroides strains that posess mutations in the crtB gene, encoding phytoene synthase, 

have been important in showing the importance of the role of carotenoids in photosynthetic 

bacteria. The mutants UV33 and R-26 of Rba. sphaeroides are blue-green in colour (Sistrom et 

al., 1956; Clayton and Smith, 1960; Ng et al., 2011). crtB mutants produce the carotenoid 

precursor molecule, phytoene, and do not synthesise coloured carotenoids (Clayton, 1962; 

Lang and Hunter, 1994). They cannot assemble LH2 and are therefore photosynthetically 

compromised. They are also sensitive to photoxidative damage due to the lack of carotenoids 

which provide photoprotection (Cogdell and Frank, 1987). These mutants, particularly R-26, 

have been extremely useful for the study of photosynthesis. However, UV33 and R-26 are 

prone to reversion and thus the restoration of the production of coloured carotenoids. For 

this reason the creation of a clean and complete knockout of the crtB gene was necessary for 

this work. 

In this chapter, the gene encoding the yellow fluorescent protein (YFP) variant, SYFP2 

(Kremers et al., 2006), was fused to the 3’ end of puhA, which encodes the reaction centre H 

subunit (H). The effects on photosynthetic growth rate in both the wild type and a ΔcrtB 

mutant were characterised. A number of static and ultrafast time-resolved techniques were 

used to characterise the energy transfer processes within the new complex. This project 

forms the basis of future studies involving the creation of artificial light-harvesting antenna 

for the increased spectral coverage of in vivo photosynthesis.  

3.3 Results 

3.3.1 Construction of the ΔcrtB deletion strain 

To create a baseline strain for the expression of YFP a crtB knockout strain was created in 

order to remove all carotenoids whose absorbance wavelengths overlap with that of YFP. 

To delete the crtB ORF a construct containing the upstream and downstream flanking regions 

of the gene was created. Using the primers “crtBKOUF” and “crtBKOUR” (designed by David 

Mothersole) a fragment of 361 bp (EcoRI and XbaI ended) upstream of the crtB ORF was 

amplified, which also included 7 bp of the crtB gene. A second fragment of 363 bp (XbaI and 

SphI ended) was amplified using the primers “crtBKODF” and “crtBKODR”. This produced the 

downstream flanking fragment which included 9 bp of the crtB gene. Following digestion, the 

fragments were ligated into the suicide vector pK18mobsacB. 
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The resulting plasmid was transformed into E. coli S17 cells and transferred Rba. sphaeroides 

WT via conjugation. The mutant was produced using the method detailed in Section 2.13-14. 

The recombination events involved are illustrated in Figure 3.2 B. 

 

 

 

Figure 3.2 Deletion of crtB using pK18mobsacB 

A. Schematic demonstrating the new DNA sequence of the crtB deletion strain. 
B. The crtB gene was deleted using the suicide vector pK18mobsacB without the insertion of a 

resistance cassette. Following conjugation between Rba. sphaeroides and E. coli S17 cells 
containing the plasmid construct, a double homologous recombination event occurs. The first 
event occurs when the plasmid containing the upstream and downstream fragments of the 
target gene integrates into the genome. When the strain is grown in the presence of sucrose 
the second event occurs, causing the plasmid to be looped back out. There are two outcomes: 
either wild type or mutant Rba. sphaeroides. Black lines indicate a crossover event. Inserts are 
shown in blue and yellow. Area of genome corresponding to the DNA to be excised is 
indicated in red. The sacB gene confers sensitivity to sucrose. The kmR gene confers resistance 
to kanamycin. 

(B: Figure reproduced from Mothersole, 2013) 

A 

B 
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Colonies that grew on a plate containing no antibiotic but failed to grow on the plate 

containing kanamycin were analysed by colony PCR to detect the deletion of crtB using the 

primers “crtBseqF” and “crtBseqR” designed to specifically amplify a genomic fragment. 

Sequencing of the fragment confirmed that crtB had been successfully and cleanly deleted 

(Figure 3.2 A).  

The theoretical probability of obtaining a deletion strain of crtB, or reversal to the original WT 

strain was 50%. In reality the actual probability of successful mutation was much lower.  

3.3.2 Construction of the RCH-YFP fusion strain 

The gene encoding the yellow fluorescent protein (YFP) variant, SYFP2 (Kremers et al., 2006), 

was fused to the 3’ end of puhA, which encodes the reaction centre H subunit (H). This results 

in a fusion protein with YFP on the C-terminus of H, the cytoplasmic side of the complex. The 

placement of YFP on the N-terminus of H was ruled out as, although it would bring the YFP 

within closer distance of the RC special pair and the LH1 BChls, it would have likely blocked 

the cytochrome c2 docking site. Hereafter the puhA-syfp2 mutant is termed RCH-YFP and was 

constructed by Elizabeth Martin and Sarah Burgess. Primers were designed by David 

Mothersole. 

To create the C-terminal YFP fusion, an upstream fragment was created using the primers 

“puhAYFPUF” (EcoRI) and “puhAYFPUR” (an overlap extension primer). This fragment 

contained the last 354 bp of the puhA ORF excluding the stop codon. A third fragment 

containing the syfp2 ORF was amplified using the primers “puhAYFPFor” (an overlap 

extension primer) and “puhAYFPRev” (XbaI). The upstream and YFP fragments were ligated 

together using overlap extension PCR. A downstream fragment was created using the primers 

“puhAYFPDF” and “puhAYFPDR” (XbaI and HindIII ended). This fragment contained 354 bp of 

the DNA immediately downstream of the puhA stop codon. Following digestion, the 

downstream fragment was ligated into the suicide vector pK18mobsacB first as after ligation 

the upstream XbaI site is dam methylated and can no longer be cut by XbaI. Both fragments 

(1428 bp in total) were ligated into pK18mobsacB.  

The resulting plasmid was transformed into E. coli S17 cells and transferred Rba. sphaeroides 

WT and ΔcrtB. The mutant was produced using the method detailed in Sections 2.13-14. The 

recombination events involved are illustrated in Figure 3.3. Colonies that grew on a plate 

containing no antibiotic but failed to grow on the plate containing kanamycin were analysed 

by colony PCR to detect the fusion of puhA and syfp2 using the primers “puhAYFPSeqF” and 

“puhAYFPSeqF” designed to specifically amplify a genomic fragment. Sequencing of the 

fragment confirmed that the fusion had been successfully created.  
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As in Section 3.3.1 the theoretical probability of obtaining a mutant strain, or reversal to the 

original WT or ΔcrtB strain was 50%. In reality the actual probability of successful mutation 

was much lower.  

 

Figure 3.3 Creation of the Rba. sphaeroides RCH-YFP fusion strain 

Using the suicide vector pK18mobsacB the puhA gene was fused on the C-terminal end with the 
fluorescent protein gene, syfp2. This was performed by a double homologous recombination event. 
The first event involves the plasmid containing the upstream and downstream fragments of the target 
gene integrating into the genome. The second event occurs when the strain is grown in the presence 
of sucrose causing the plasmid to be excised. This results in two outcomes: either the formation of a 
mutant or reversion to wild type. 

(Modified from Mothersole, 2013) 

 

3.3.3 Biochemical and spectroscopic analysis of the RCH-YFP strains 

All strains were grown photosynthetically and membranes were prepared from the WT RCH-

YFP and ΔcrtB RCH-YFP strains as described in Section 2.15. Immunoblotting with antibodies 

specific to the RC H subunit and, separately, YFP showed the presence of a signal at 54.9 kDa 

corresponding to the size of a RCH-YFP fusion (Figure 3.4 E). Absorbance spectra of WT RCH-

YFP membranes were recorded at room temperature show no isolated YFP peak due to 

overlap with the 514 nm spheroidenone carotenoid peak (Figure 3.4 B). Room temperature 

absorbance spectra of ΔcrtB RCH-YFP membranes show the YFP peak at 517 nm; this peak is 

shifted to 519 nm at 77 K (Figure 3.4 A, C). Room temperature fluorescence excitation and 
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emission spectra of ΔcrtB RCH-YFP whole cells confirm the presence of functional YFP (Figure 

3.4 D). 

 

Figure 3.4 Spectroscopic and biochemical analysis of the RCH-YFP fusion 

A. Room temperature absorbance spectra of membranes from ΔcrtB (blue) and ΔcrtB RCH-YFP 
(orange) normalised to 870 nm. ΔcrtB RCH-YFP has a peak at 517 nm corresponding to YFP.  

B. Room temperature absorbance spectra of membranes from WT (red) and WT RCH-YFP 
(purple) normalised to 590 nm.  

C. 77 K absorbance spectra of membranes from ΔcrtB (blue) and ΔcrtB RCH-YFP (orange) 
normalised to 880 nm. The region 625 nm – 700 nm is an instrument artefact, spectra in this 
region should appear as in A. 

D. Room temperature fluorescence excitation (ex) and emission (em) spectra of ΔcrtB (ex: black; 
em: grey) and ΔcrtB RCH-YFP (ex: orange; em: light orange) whole cells to check for the 
presence of functional YFP. 

E. Immunoblotting to monitor for the presence of a RCH-YFP fusion.  
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Absorbance spectra (Figure 3.4 B) of ICM prepared from the WT RCH-YFP strain showed a 

slight decrease in the LH2 800 and 850 nm absorbance peaks when compared with WT 

membranes. The ΔcrtB background produces no LH2; core complex levels remain consistent 

(Figure 3.4 A and C).  

 

 
Figure 3.5 Spectroscopic properties of ΔcrtB RCH-YFP at 77 K 

A. Fluorescence excitation spectra. Fluorescence emission was monitored at 910 nm. Excitation 
and emission slit widths of 5 nm were used. Normalised to 1 AU at 591 nm. Data subject to 2nd 
order smoothing with 5 neighbours. 

B. Fluorescence emission spectra. Samples were normalised to an absorbance of 1.0 at 881 nm 
and excited at 590 nm. Excitation slit widths of 10 nm and emission slit widths of 5 nm were 
used. The fluorescence λmax is 905 nm. 

All spectra were measured at 77 K and are an average of 10 individual scans. 
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Fluorescence excitation and emission spectra of ICM prepared from ΔcrtB RCH-YFP were 

recorded at 77 K (Figure 3.5 A). Each spectrum presented is an average of 10 individual scans. 

There is an excitation peak at 519 nm corresponding to YFP. Emission was monitored at 910 

nm between excitation wavelengths of 400-910 nm. The BChl a Qx fluorescence peak occurs 

at 591 nm. The LH1 B875 excitation peak occurs at 886 nm. Compared to the Qx fluorescence 

peak at 591 nm, the LH1 B875 peak at 886 nm is higher in ΔcrtB RCH-YFP compared to ΔcrtB.  

To record emission spectra, the sample was excited at a wavelength of 590 nm and emission 

recorded between 850 and 950 nm using an average of 10 scans (Figure 3.5 B). The 

fluorescence λmax was 905 nm in both cases.  

High light photosynthetic growth curves of ΔcrtB RCH-YFP showed an increased growth rate 

when compared to ΔcrtB (Figure 3.6). High light photosynthetic growth curves of WT RCH-YFP 

showed no increase in growth rate when compared to WT (Figure 3.7).   

 

Figure 3.6 Photosynthetic growth of ΔcrtB RCH-YFP 

Photosynthetic growth curves of ΔcrtB RCH-YFP and ΔcrtB. Data was obtained in triplicate. Light was 
provided using Megaman CFL bulbs at an intensity of 100 μmol photons s-1 m-2.  
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Figure 3.7 Photosynthetic growth of WT RCH-YFP 

Photosynthetic growth curves of WT and WT RCH-YFP. Data was obtained in triplicate. Light was 
provided using Osram Halogen Eco Po bulbs at an intensity of 100 μmol photons s-1 m-2. 
 

3.3.4 Analysis of the potential photoprotective effect of YFP 

It has been suggested that fluorescent proteins can provide a photoprotective role (Kawaguti, 

1944; Salih et al., 2000). To investigate how much of a contribution the photoprotective 

effect has on the increased growth rate seen in ΔcrtB RCH-YFP, YFP was expressed from the 

expression plasmid pBBRBB-Ppuf843-1200-YFP in ΔcrtB. High light photosynthetic growth curves 

show that the expression of YFP from pBBRBB-YFP does not increase the photosynthetic 

growth rate above that of ΔcrtB (Figure 3.8). 

 

Figure 3.8 Photosynthetic growth curve to investigate the photoprotective effect of YFP 

Photosynthetic growth curves of ΔcrtB pBBRBB-YFP, ΔcrtB RCH-YFP and ΔcrtB. Data was obtained in 
triplicate. Light was provided using Osram Halogen Eco Po bulbs at an intensity of 100 μmol photons s-1 
m-2. 
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3.3.5 Fluorescence lifetime measurements of YFP in ΔcrtB RCH-YFP whole cells 

To study the fluorescence lifetime of YFP in ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP, cells were 

grown in 10 ml semi-aerobic cultures and fluorescence imaging and lifetime data were 

obtained by Xia Huang (University of Sheffield). The cells were prepared and data was 

obtained as described in Section 2.19.6. Images of the cells showed emission from YFP in 

ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP but not ΔcrtB, as expected (Figure 3.9 C).  

 

 

Figure 3.9 YFP lifetimes measured in ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP whole cells 

A. Fluorescence emission spectra of ΔcrtB, ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP cells when 
excited at 495 nm. The spectra are an average of 3 frames with a 1 s exposure time and an 
electron multiplication gain of 80.  

B. Fluorescence lifetime decay curve recorded at a central wavelength of 550 nm. The best fits 
were achieved using a double-exponent decay function. The measured instrument response 
(IRF) of the system was approximately 0.18 ns and this was taken in to account during fitting. 

C. Images of cells from ΔcrtB, ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP with white light (top) and 
monitoring YFP emission (bottom).  

(Data was obtained by Xia Huang.) 
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Fluorescence spectra of YFP emission were obtained and showed stronger YFP emission from 

ΔcrtB pBBRBB-YFP (Figure 3.9 A). The fluorescence lifetimes of YFP in the whole cell samples 

were measured; decay curves are shown in Figure 3.9 B. The fluorescence decay curves 

feature a long-lived and a short-lived component, a common feature to fluorescent proteins, 

each with an associated amplitude contribution (A1 and A2 respectively) and a lifetime (τ1 and 

τ2 respectively) (Table 3.1). The ΔcrtB RCH-YFP cells clearly show a bi-exponential decay 

(Figure 3.9 B, red trace) in which the lifetimes of both the short- and long-lived components 

are significantly decreased when compared to ΔcrtB pBBRBB-YFP.  

 

Sample A1 τ1 [ns] A2 τ 2 [ns] τav [ns] 

ΔcrtB  

RCH-YFP 

0.49 ± 0.18 1.76 ± 0.28 0.51 ± 0.18  0.57 ± 0.26 1.21 

ΔcrtB  

pBBRBB-YFP 

0.65 ± 0.14 3.15 ± 0.39 0.35 ± 0.14 0.83 ± 0.16 2.32 

 

Table 3.1 YFP lifetimes measured in ΔcrtB RCH-YFP and ΔcrtB pBBRBB-YFP whole cells 

The fluorescence decay curve shown in Figure 3.8 B was analysed using OriginPro and TRI2 software 
packages. A1 and A2 are the amplitude contributions of the long- and short-lived components and τ1 

and τ2 are the lifetimes of each component. The average of these values was taken to give τav.  

 

Assuming the decrease in YFP fluorescence lifetime in ΔcrtB RCH-YFP when compared to 

ΔcrtB pBBRBB-YFP was due to energy transfer between YFP and the RC-LH1 complex, the 

average lifetimes (Table 3.1) and Equation 1 were used to calculate an energy transfer yield 

(φEET) of ~ 47.8 %.  

Equation 1.  ΦEET = 1 − 
τ𝑌𝐹𝑃−𝑅𝐶

τ𝑌𝐹𝑃
 

3.3.6 Purification and structural analysis of carotenoidless RCH-YFP-LH1 complexes 

Cells were grown photosynthetically as described in Section 2.12.14 to an absorbance of 3 at 

680 nm. Intra-cytoplasmic membrane (ICM) preparation was carried out as described in 

Section 2.15. 224 absorbance units of ICM were solubilised with 3 % β-DDM and the core 

complexes were fractionated as described in Section 2.15.4. After centrifugation at 27,000 

rpm in a SW32 rotor (Beckman Coulter), two bands formed in the gradients (Figure 3.10). The 

top band consisted of free LH1 subunits and a cytochrome, and the bottom band consisted of 

monomeric core complexes (ΔcrtB does not produce dimeric core complexes). The lower 

band was harvested and loaded on to a DEAE Sepharose column equilibrated with 20 mM 
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HEPES, 0.03 % β-DDM, pH 7.8 (buffer A) at a flow rate of 0.8 ml min-1. The column was 

washed with 5 step washes of 50 mM, 100 mM, 150 mM, 200 mM and 250 mM NaCl in 20 

mM HEPES, 0.03 % β-DDM, pH 7.8 (buffer B) for 10 minutes each. A gradient of 250 mM NaCl 

to 400 mM NaCl in buffer B was run over 40 min. The core complex eluted from the column 

at a concentration of 250 mM NaCl. Fraction sizes of 2 ml were collected and their 

absorbance spectra recorded to determine their level of purity. 

 

Figure 3.10 Separation of core complexes using discontinuous sucrose gradients 

A. Discontinuous sucrose gradient of solubilised ΔcrtB RCH-YFP ICM 
B. Absorbance spectra of the protein harvested from the respective bands in A. 

 

The 875 nm to 280 nm ratio of absorbance of the purified sample provides an indication of 

the amount of LH1-RC-YFP compared to bulk protein. The absorbance value at 280 nm gives a 

measure of absolute absorbance by the aromatic residues of all the proteins in the sample. 

The 875 nm absorbance is specific to LH1 B875 BChl(s). This ratio allows an approximate 

estimate of the purity of the sample, throughout the various stages of purification. Fractions 

with an 875:280 nm ratio of 1.7 and above were pooled and concentrated using a Centriprep 

(Amicon) spin concentrator to a final maximum volume of 1 ml.  

The concentrated protein was loaded onto a Superdex 200 (GE Healthcare) gel filtration 

column equilibrated with 10 mM NaCl in buffer B at a flow rate of 0.4 ml min-1. 1 ml fractions 



 

90 
 

were collected and analysed spectroscopically to determine purity. Fractions were chosen 

based on their position within the elution profile, of which those with an 875:280 nm ratio of 

1.9 or above were pooled. 

An increase in the 875:280 nm ratio from 1 of the starting ICM to 1.92 of the final protein was 

observed. Absorbance spectra of the pooled fractions from each stage of purification are 

shown in Figure 3.11 A. SDS-PAGE analysis of the final protein showing the YFP-H, L, and M 

subunits of the RC, and the α- and β- polypeptides of the LH1 complex is shown in Figure 3.11 

B. Single particle electron micrographs of the purified sample were obtained courtesy of Dr. 

Pu Qian (Figure 3.11 C).  

 

Figure 3.11 Purification of LH1-RC-YFP complexes from Rba. sphaeroides ΔcrtB RCH-YFP 

A. Absorbance spectra of stages in purification 
Purple  ICM        (1) 
Green  Core complexes harvested from multistep sucrose gradients  (1.63) 
Red  Sample after DEAE Sepharose purification    (1.73) 
Blue  Sample after gel filtration     (1.92) 
875:280 nm ratios are indicated in brackets alongside each sample 

B. SDS-PAGE analysis of purified sample after gel filtration. Molecular weight in kDa is shown. 
C. Electron micrographs of purified sample. YFP can be seen extending outside the LH1 ring. 
D. Model of the LH1-RC-YFP complex viewed from the top. Model was made by Dr. Pu Qian and 

is a low-resolution reconstruction of negatively stained single particles.  
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A model of the LH1-RC-YFP complex was created by 3D single particle reconstruction of 

negatively stained electron microscopy of the purified complex at ~25 Å resolution 

(unpublished data, Dr. Pu Qian) (Figures 3.11 C and D, 3.12). This model is based on an 

existing structure of the core complex (unpublished data, Dr. Pu Qian). The electron density 

clearly shows the YFP protruding from the side of the complex, (Figures 3.11 D and 3.12); the 

distance between the YFP chromophore and the RC special pair BChls was calculated to be ~ 

77 Å and to the nearest LH1 B875 BChl was ~ 51 Å.  

 

 

 

Figure 3.12 Model of LH1-RC-YFP complex from Rba. sphaeroides ΔcrtB RCH-YFP 

Model of the LH1-RC-YFP complex created by 3D single particle reconstruction of negatively stained 
electron microscope images of the purified complex at ~25 Å resolution (unpublished data, Dr. Pu 
Qian). Showing electron density (blue), LH1 subunits (green), YFP (yellow), RC M (magenta), RC H 
(cyan) and RC L (orange). 

A. Cytoplasmic face. 
B. Side view. 
C. Periplasmic face showing YFP and pigments of the core complex. Approximate distance 

between the YFP chromophore and the “special pair” BChls is 77 Å and between YFP 
chromophore and the nearest B875 BChl is 50.5 Å. 

D.  Same as C showing electron density and the LH1 and RC subunits. 
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3.3.7 Purification and spectroscopic analysis of carotenoidless RC-YFP complexes 

For experiments to investigate the transfer of energy from YFP to the RC special pair BChls, a 

purified carotenoidless RC sample without LH1 was required. Reaction centre-YFP complexes 

were purified from Rba. sphaeroides ΔcrtB RCH-YFP.  

ΔcrtB RCH-YFP cells were grown photosynthetically as specified in Section 2.12.4 to an 

absorbance of 3 at 680 nm. ICM preparation was carried out as described in Section 2.15. ICM 

was solublised with 1% LDAO and loaded on to a DEAE Sepharose column equilibrated with 

20 mM Tris-HCl, 0.1 % LDAO, pH 7.8 (buffer A) at a flow rate of 1.5 ml min-1. The column was 

washed with 1 column volume (cv) of buffer A. The column was washed with 2 step washes 

of 50 mM NaCl for 2 cv and 100 mM NaCl for 5 cv in 20 mM Tris-HCl, 0.1 % LDAO, pH 7.8 

(buffer B). RC-YFP was eluted with 200 mM NaCl in buffer B. Fraction sizes of 10 ml were 

collected and their absorbance spectra recorded to determine their level of purity. Fractions 

with an 803:280 nm ratio of 0.5 and above were pooled and concentrated using a Centriprep 

(Amicon) spin concentrator to a final volume of 6 ml maximum.  

The concentrated protein was diluted to 50 ml with buffer A to decrease the salt 

concentration then loaded on to a Q Sepharose (HiTrap QFF) column equilibrated in buffer A 

at 3 ml min-1. A gradient from 0 mM NaCl to 400 mM NaCl was run over 20 cv and collected in 

1.5 ml fractions. RC-YFP was eluted at 300 mM NaCl. Fractions with an 803:280 nm ratio of 

0.62 and above were pooled and concentrated using a Centriprep (Amicon) spin concentrator 

to a final volume of 2 ml maximum. 

The concentrated protein was loaded onto a Superdex 200 (GE Healthcare) gel filtration 

column equilibrated with 10 mM NaCl in buffer B at a flow rate of 0.25 ml min-1. 1 ml 

fractions were collected and analysed spectroscopically to determine purity. Fractions were 

chosen based on their position within the elution profile, of which those with an 803:280 nm 

ratio of 0.73 or above were pooled. 

An increase in the 875:280 nm ratio from 0.24 of the starting ICM to 0.73 of the final protein 

was observed. SDS-PAGE analysis of the pooled fractions from each purification step are 

shown in Figure 3.13 along with the corresponding absorbance spectra. The YFP-H, L, and M 

subunits of the RC and the α- and β- polypeptides of the LH1 complex can be seen on the SDS 

gel and are labelled.  
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Figure 3.13 Purification of RC-YFP complexes from Rba. sphaeroides ΔcrtB RCH-YFP 

A. Absorbance spectra of stages in purification 
Purple  ICM        (0.24) 
Green  LDAO Solubilised complexes     (0.28) 
Red  Sample after DEAE Sepharose purification    (0.57) 
Orange Sample after Q Sepharose purification   (0.64) 
Blue  Sample after gel filtration     (0.73) 
803:280 nm ratios are indicated in brackets alongside each sample 
Data normalised to 803 nm 

B. SDS-PAGE analysis of stages in purification 
Lane 1 ICM 
Lane 2 LDAO solubilised complexes 
Lane 3 Sample after DEAE Sepharose purification 
Lane 4 Sample after Q Sepharose purification 
Lane 5 Sample after gel filtration 
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Reaction centre complexes were purified from Rba. sphaeroides ΔcrtB to act as a control for 

further analysis of the RC-YFP complexes purified above. Membranes were prepared, 

solubilised and two DEAE columns were run as above. The purest fractions were pooled for 

downstream analysis. Figure 3.14 shows a comparison between the purified RCs from ΔcrtB 

and ΔcrtB RCH-YFP. A model of the purified complex was produced with thanks to Dr. Pu Qian 

(Figure 3.14). From this model, the distance between the YFP chromophore and the RC 

special pair BChls could be as short as 40 Å. 

 

 

Figure 3.14 Comparison of purified RC from ΔcrtB and ΔcrtB RCH-YFP 

A. Absorbance spectra of RCs purified from ΔcrtB and ΔcrtB RCH-YFP. The peak corresponding to 
YFP at 517 nm can be seen in the ΔcrtB RCH-YFP sample. Spectra are normalised to 800 nm.  

B. The model was produced in collaboration with Dr. Pu Qian and is based on the LH1-RC-YFP 
model shown in Figure 3.12. Showing YFP (yellow), RC H (cyan), RC M (magenta), RC L 
(orange), RC pigments are in blue and the special pair BChls in red. The approximate distance 
between the YFP chromophore and the RC special pair BChls is shown. 

 

3.3.8 Purification and spectroscopic analysis of YFP from Rba. sphaeroides ΔcrtB 

A sample of pure YFP was required to use as a comparison against purified LH1-RC-YFP and 

RC-YFP. 

YFP was expressed from pBBRBB-YFP in Rba. sphaeroides ΔcrtB. Cells were grown semi-

aerobically as specified in Section 2.12.3 to an absorbance of 3 at 680 nm. Cells were 

disrupted by French press as described in Section 2.15.1. The sample was centrifuged at 8200 

x g (average) for 20 minutes to remove unbroken cells. To remove membranes from the 

soluble fraction, cells were spun at 125,100 x g (average) in a Beckman Type Ti 45 rotor for 2 

hours. The supernatant was collected as the soluble fraction, a peak at 515 nm corresponding 

to YFP was clearly visible (Figure 3.15 A). The sample was loaded on to a DEAE Sepharose 
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column equilibrated with 20 mM HEPES, pH 7.8 (buffer A) at a flow rate of 0.8 ml min-1. A 

gradient of 0 mM NaCl to 400 mM NaCl (buffer B) was run over 150 ml. YFP eluted from the 

column at a concentration of 180 mM NaCl. Fraction sizes of 3 ml were collected and their 

absorbance spectra recorded to determine their level of purity. 

 

 

Figure 3.15 Purification of YFP from Rba. sphaeroides ΔcrtB pBBRBB-YFP 

A. Absorbance spectra of stages in purification 
Purple  Broken cells        
Green  Soluble fraction    

B. SDS-PAGE analysis of stages in purification 
Lane 1 Sample after DEAE Sepharose purification 
Lane 2 Sample after Q Sepharose purification 
Lane 3 Sample after Gel Filtration purification 
Lane 4 Final sample 

C. Room temperature absorbance spectrum of purified YFP 
D. Room temperature (approximately 299 K) and 77 k absorbance spectra of purified YFP 

 

Yellow fractions were pooled and concentrated using a Centriprep (Amicon) spin 

concentrator to a final volume of 3 ml maximum. The concentrated protein was diluted to 12 

ml with buffer A to decrease the salt concentration then loaded on to a Q Sepharose (HiTrap 
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QFF) column equilibrated in buffer A 3 ml min-1. A gradient from 0 mM NaCl to 400 mM NaCl 

was run over 20 cv and collected in 1.5 ml fractions. YFP was eluted at 225 mM NaCl. 

Fractions were pooled and concentrated using a Centriprep (Amicon) spin concentrator to a 

final volume of 1 ml maximum. 

The concentrated protein was loaded onto a Superdex 200 (GE Healthcare) gel filtration 

column equilibrated with 1 M NaCl in buffer B at a flow rate of 0.25 ml min-1. 1.5 ml fractions 

were collected and analysed using SDS PAGE. The most pure fractions were concentrated to 1 

ml and were loaded onto a gel filtration column equilibrated with 1 M NaCl in buffer B at a 

flow rate of 0.25 ml min-1. 0.5 ml fractions were collected and analysed using SDS PAGE. 

Figure 3.15 shows SDS PAGE and absorbance spectra of various stages in the purification. 77 

K absorbance spectra show that the YFP peak maximum shifts from 517 nm at room 

temperature to 519 nm at 77 K (Figure 3.15 D). 

3.3.9 Transient absorbance measurements on RC-YFP complexes 

To measure the excitation energy transfer from YFP to the RC special pair BChls (hereafter 

denoted “P”), ultrafast transient absorbance (TA) measurements were performed on 

carotenoidless RC-YFP complexes, purified as in Section 3.3.7. The carotenoidless RC 

complexes purified in Section 3.3.7 were used as the control. The measurements were 

obtained as described in Section 2.19.7. The data were obtained by Kaitlyn Faries and Dr 

Christine Kirmaier at the University of Washington in St Louis.  

The sample was excited at 515 nm (corresponding to the excitation of YFP) and the change in 

absorbance was monitored between 830 - 915 nm corresponding to the absorbance of the P 

BChls. The TA spectra are made up of two components: P-bleaching in the ~ 850 nm region 

and stimulated emission in the ~ 910 nm region (Figure 3.16 A; see Section 3.4.5). The change 

in absorbance over time in the 850 nm region was used to produce kinetic fits from which the 

lifetime of the excited state(s) of RC and RC-YFP could be determined (Figure 3.16 C). These 

lifetimes are shown in Table 3.2. The state diagrams in Figure 3.16 B show the processes 

which give rise to the P-bleaching and stimulated emission observed. 

Carotenoidless RC complexes show normal charge separation dynamics in which the RC is 

excited directly at 515 nm (Table 3.2, row 4; Figure 3.16 B, top). Data obtained from the 

carotenoidless RC-YFP complexes feature the expected charge separation dynamics as for the 

RC-only sample, but there is an additional component featuring a 1.75 ns increase in 

bleaching at 850 nm corresponding to the YFP transferring energy to the RC (Table 3.2, row 5; 

Figure 3.16 B, top and bottom). The excited state of YFP alone was measured as 3.4 ns (Table 

3.2, row 3) and the average lifetime of the excited state of RC-YFP is 2.2 ns (Table 3.2, row 5). 



 

97 
 

 

Figure 3.16 Ultrafast transient absorbance measurements on RC-YFP complexes 

A. Transient absorption (TA) spectra of P-bleaching (~850 nm region) and stimulated emission 
(~910 nm region) for the RC-only (top panel) and YFP-RC samples (bottom panel). The dashed 
lines indicate the P-bleaching and stimulated emission in a portion of RCs in which P* (and 
subsequently P+) is formed from direct excitation (515 nm) of RC pigments.  

B. State diagrams illustrating the process(es) that give rise to the P-bleaching and stimulated 
emission in the RC-only and RC-YFP samples.  

C. Kinetic fits of the 850 nm region of the YFP-RC (black, filled circles) and RC-only (blue, open 
triangles) samples. The YFP-RC data was fit to three exponentials plus a constant (gray, solid 
line) and the RC-only data to two exponentials plus a constant (green, solid line). Data were 
normalized to the absorbance of P867.  

(Data obtained and figures produced by Kaitlyn Faries.) 
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Sample Transient absorption 

Detection 560 nm 850 nm 910 nm Average 

YFP 3.40 n/a n/a 3.40 

RC n/a (4.2 ps) 

(300 ps fixed) 

(3.6 ps) 

(312 ps) 

(3.9 ps) 

(306 ps) 

RC-YFP 2.42 1.75 

(6.9 ps) 

(300 ps fixed) 

2.10 

(3.6 ps) 

(362 ps) 

2.20 

(5.3 ps) 

(331 ps) 

 

Table 3.2 Lifetime (in ns) of the excited state(s) of YFP, RC and RC-YFP complexes as 
measured by transient absorption 

The 850 and 910 nm TA kinetic fits are combined Helios and Eos datasets. Only the Eos was used for 
the 560 nm wavelength. The RC kinetic data was fit (with the 100-fs excitation pulse) to two 
exponentials plus a constant; the YFP-RC data was fit (with the pulse) to three exponentials plus a 
constant. Values in parenthesis with time constants in ps reflect normal charge separation dynamics 
from P* to BPha (~4 ps) and BPha to QA (~300 ps) in the RC, occurring in a small fraction in which the RC 
was excited directly and in the major fraction following energy transfer from excited YFP.  

 

Equation 1 was used to calculate the efficiency of energy transfer from YFP to the RC P BChls. 

EET is the yield of electronic excitation energy transfer,  is the lifetime of the excited state 

of the relevant chromophore. The efficiency of energy transfer was determined to be 35 %. 

3.4 Discussion 

3.4.1 A RCH-YFP fusion been genomically expressed in Rba. sphaeroides  

A genomic fusion of puhA and syfp2 was successfully created in WT and ΔcrtB backgrounds. 

The resulting gene fusion produced a 54.9 kDa RC H subunit-YFP (RCH-YFP) fusion protein 

(Figure 3.4 E). The YFP is attached to the C terminus of RC H, at the cytoplasmic side of the RC 

complex.  

The YFP is on the opposite side of the complex from the “special pair” BChls PA and PB 

(hereafter denoted “P”) and the LH1 B875 BChls. The distance between YFP and P and the 

B875 BChls affects the efficiency of Forster resonance energy transfer (FRET) as the efficiency 

of energy transfer is inversely proportional to the sixth power of distance between donor and 

acceptor (Piston and Kremers, 2007). However, it was unfeasible to place the YFP on the 

periplasmic side as this would risk interference with or blocking of the cytochrome c2 docking 

site.  
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A model of the LH1-RC-YFP complex showed that the distance between the YFP chromophore 

and the RC special pair is approximately 77 Å (Figure 3.12 C). The nearest LH1 B875 BChl is 

approximately 51 Å (Figure 3.12 C). Both values are within FRET distance and that the 

majority of useful energy transfer from the YFP within native Rba. sphaeroides membranes is 

likely to be to LH1. The region connecting the YFP and RC is flexible, which may allow the YFP 

to move within closer distance of P and B875 to allow for more efficient energy transfer. 

Levels of LH2 and core complexes remained unchanged in RCH-YFP when compared to WT 

and ΔcrtB, indicating that YFP does not put significant strain on production of the 

photosynthetic complexes and does not interfere with complex assembly (Figure 3.4 A - C). 

YFP is able to fold properly and function as normal, with an absorbance peak visible at 527 

nm in ΔcrtB RCH-YFP ICM (Figure 3.4 A, C), and maintains its typical fluorescence properties 

(Figure 3.4 D). The peak for YFP is not visible in absorbance spectrum of ICM from WT due to 

its overlap with the 514 nm spheroidenone carotenoid peak (Figure 3.4 B).  

3.4.2 The RCH-YFP fusion results in an increased photosynthetic growth rate in a 

carotenoidless background 

Photosynthetic growth curve analysis of the ΔcrtB RCH-YFP mutant showed a marked 

increase in growth rate when compared to ΔcrtB (Figures 3.6 and 3.8). Under Megaman CFL 

bulbs, ΔcrtB RCH-YFP took 100 hours to reach an OD680 of 2 while ΔcrtB which took 175 hours 

to reach an OD680 of 1.5 and could not grow to a higher cell density (Figure 3.6). ΔcrtB RCH-

YFP took 75 hours to reach OD680 of 1.5. Under halogen bulbs, ΔcrtB RCH-YFP took 

approximately 30 hours to reach an OD680 of 1.75 while ΔcrtB which took 60 hours to reach 

an OD680 of 1.75 (Figure 3.8).  

The photosynthetic growth rate of ΔcrtB RCH-YFP is slower than that of WT which typically 

takes 17 hours to reach an OD680 of 2 (Figure 3.7). The photosynthetic growth rate of ΔcrtB is 

much slower than that of WT. WT RCH-YFP did not grow faster than WT. This indicates that 

any energy transfer from YFP to LH1 or RC is negligible in terms of the total energy yield of 

WT. It is possible that Rba. sphaeroides works at maximum photosynthetic capacity under 

high light conditions and that processes downstream of light harvesting are a limiting factor 

to photosynthetic growth rate. The addition of a chromophore whose absorbance 

wavelengths fill a gap in the absorbance spectrum of WT Rba. sphaeroides could provide 

further insight.  
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These results indicate that the fusion of YFP to the RC in a ΔcrtB background causes increased 

photosynthetic function and suggest that YFP can transfer useful energy to the 

photosynthesis pathway, most likely to either LH1 or the RC.  

3.4.3 YFP does not increase the photosynthetic growth rate through a 

photoprotective mechanism  

It has been previously reported that fluorescent proteins may have a photoprotective 

function (Kawaguti, 1944; Salih et al., 2000). It is known that the carotenoids provide a 

photoprotective role in Rba. sphaeroides and that carotenoidless mutants are susceptible to 

photo oxidative damage, participating in the decreased photosynthetic ability of crtB mutants 

(Clayton and Smith, 1960; Cogdell and Frank, 1987). To rule out the possibility that the 

increase in photosynthetic growth rate was purely due to a photoprotective effect, YFP was 

expressed from the constitutive expression plasmid pBBRBB in ΔcrtB. The YFP expressed from 

pBBRBB was free and unattached to the RC; it would most likely not associate with the 

photosynthetic membrane and thus could not play a role in light harvesting. The 

photosynthetic growth rate was compared to that of ΔcrtB and ΔcrtB RCH-YFP (Figure 3.8). 

ΔcrtB pBBRBB-YFP did not grow significantly faster than ΔcrtB. This indicates that any 

photoprotective role YFP plays is not significant, and that the majority of the effect of 

increased photosynthetic growth rate is due to other mechanisms. 

3.4.4 YFP transfers energy to LH1 and/or the RC in whole cells and native 

membranes 

77 K fluorescence spectra of ICM from ΔcrtB RCH-YFP and ΔcrtB were measured. Excitation of 

the BChl Qx transition at 590 nm produces an emission maximum at 905 nm in both cases 

(Figures 3.5 B). This result is comparable to previous studies on the carotenoidless mutant, R-

26 (Ng et al., 2011). Fluorescence excitation spectra of ΔcrtB RCH-YFP showed an excitation 

maximum at 519 nm corresponding to YFP (Figure 3.5 A). This indicates that YFP contributes 

to emission at 910 nm and therefore can transfer energy to LH1. 

The fluorescence lifetime of YFP was measured in ΔcrtB RCH-YFP whole cells and was found 

to be 1.11 ns shorter than the lifetime in ΔcrtB pBBRBB-YFP (free YFP) (Figure 3.9, Table 3.1). 

This indicates that YFP can transfer energy to the RC-LH1 complex via a Förster resonance 

energy transfer (FRET) mechanism, leading to the quenching of the YFP chromophore and 

thus a shorter lifetime. The efficiency of energy transfer was calculated to be ~ 47.8 %. These 

results account for the increased photosynthetic growth rate of ΔcrtB RCH-YFP compared to 

ΔcrtB and ΔcrtB pBBRBB-YFP (Figures 3.6 and 3.8). 
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3.4.5 YFP transfers energy to the RC in purified RC-YFP complexes 

Carotenoidless RC-YFP, RC alone, and YFP alone were purified from Rba. sphaeroides and 

subject to fluorescence lifetime and kinetic measurements to investigate the transfer of 

energy from YFP to the RC special pair BChls, denoted “P”. A model of the RC-YFP complex 

calculated the distance from the YFP chromophore to P to be ~ 40 Å, within FRET distance. 

Ultrafast transient absorbance (TA) measurements on purified carotenoidless RC-YFP 

complexes probed the formation and decay of the excited special pair BChls, P*. The TA 

spectra feature two components: P-bleaching at ~ 850 nm and stimulated emission at ~ 910 

nm. As the ground state (P) is depleted the excited state is populated (P*); when an incoming 

photon interacts with an excited molecule, instead of being absorbed it generates another 

photon through stimulated emission. At a population of 50% ground state and 50% excited 

state equilibrium is reached in which the amount of absorbed light is equal to the amount of 

light being produced by stimulated emission. As the ground state is depleted and the excited 

state is populated the detected amount of absorbed light decreases. In these circumstances it 

appears that the medium does not absorb light, or absorbs less light, and this feature is 

termed “bleaching”. It is for this reason that the change in absorbance observed during the 

experiment is negative (Figure 3.16 A and C). 

RC-YFP features a ~ 4 ps bleach at 850 nm, which is consistent with that that seen for the RC 

alone sample (Table 3.2, Figure 3.16). This bleach corresponds to the ground state P dimer 

absorbing light at ~ 865 nm, forming P* and then bleaching as an electron is donated to the 

bacteriopheophytin HA, forming P+ (Figure 3.16 B). In RC-alone this bleaching feature decays 

as P+ returns to the ground state, P (Figure 3.16 A and B). The measurements for the RC-YFP 

complexes feature a ~ 1.75 ns additional component to the 850 nm bleach not seen in RC-

only (Table 3.2). The 850 nm bleaching feature increases as more P* is formed as the YFP 

transfers energy to the RC special pair BChls (Figure 3.16).  

TA data from the purified YFP sample give a fluorescence lifetime of 3.4 ns, whereas the 

average lifetime of the excited state of RC-YFP is 2.2 ns (Table 3.2). This reflects the 

quenching of the YFP chromophore and thus a shorter lifetime in the RC-YFP sample.  

The efficiency of energy transfer from YFP to the RC in purified RC-YFP complexes was 

calculated to be ~ 35 %. Additional stroboscopic and time-correlated single photon counting 

(TCSPC) florescence decay data obtained by Kaitlyn Faries revised this value to 40 + 10%. This 

value is comparable to that determined from whole cells, ~ 47.8 % (Section 3.3.5). 
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3.4.6 Additional work 

This work demonstrates that YFP has a positive effect on photosynthetic growth rate in a 

carotenoidless mutant of Rba. sphaeroides. This result paves the way for the use of 

chromophores that absorb light of wavelengths that Rba. sphaeroides WT does not absorb, 

between 640 nm and 750 nm. Possible candidates are the fluorescent proteins mApple, 

mCherry and mKate2 (Figure 1.17) (Shaner et al., 2004; Shaner et al., 2008; Shcherbo et al., 

2009). 

3.4.7 Conclusion 

A genomic fusion of puhA, encoding the RC H subunit and syfp2, encoding the YFP variant 

SYFP2, was successfully created in WT and ΔcrtB Rba. sphaeroides backgrounds to produce a 

RCH-YFP fusion protein. Photosynthetic growth analysis, fluorescence spectroscopy, 

fluorescence lifetime studies, and ultrafast TA measurements have indicated that YFP can 

pass energy to the Rba. sphaeroides LH1 and RC complexes and increase photosynthetic 

growth rate in a carotenoidless background. This opens up new possibilities for the creation 

of new photosynthetic pathways by expanding the range of light absorbers for the 

augmentation of photosynthesis.  
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Chapter 4 

The assembly of proteorhodopsin and the 
biosynthesis of its chromophore retinal in 
Rhodobacter sphaeroides 

4.1 Summary 

Proteorhodopsin (PR) is a light-driven proton pump found in marine bacterioplankton. PR has 

potential as an additional component for insertion into the photosynthetic pathways of Rba. 

sphaeroides to convert light into a proton gradient to drive downstream metabolism. This 

chapter details the expression and assembly of PR in the photosynthetic membrane of Rba. 

sphaeroides. 

PR requires the pigment all-trans retinal for complete folding and full functionality. In this 

study, the carotenoid biosynthesis pathway of Rba. sphaeroides was engineered through the 

introduction of three foreign genes for the biosynthesis of retinal. Small amounts of retinal 

were produced in Rba. sphaeroides and several strategies were used to attempt to increase 

the retinal yield. Data presented in this chapter indicate that sufficient retinal is produced for 

the assembly of a small amount of PR, although higher levels of expression are achieved 

through the addition of retinal to the growth medium. PR was expressed in the 

cyanobacterium Synechocystis, which is naturally capable of retinal biosynthesis. Only a very 

small amount of PR could be purified from membranes obtained from this strain, and it is 

likely that natural retinal biosynthesis capability of Synechocystis is too low for the complete 

assembly of useful amounts of PR.  

Retinal-bound PR is able to assemble in the membrane of Rba. sphaeroides, and work done in 

this study demonstrates that PR prefers to sit in a more planar membrane environment. 

However, further work is required to improve expression levels of PR and the biosynthesis of 

retinal. Ultimately, PR could be used to augment the proton motive force that drives 

downstream metabolism.  
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4.2 Introduction 

The assembly of artificial photosynthetic pathways through the use of diverse pigments and 

proteins to expand spectral coverage is an emerging field (see Sections 1.8 and 3.2). A pilot 

study to explore the challenge of creating new light-harvesting pathways in Rba. sphaeroides 

is detailed in Chapter 3; the yellow fluorescent protein (YFP) can pass energy to the reaction 

centre in amounts sufficient to increase the photosynthetic growth rate in a carotenoidless 

background. The work presented in this chapter explores the potential to assemble another 

foreign light-harvesting protein, proteorhodopsin, in the Rba. sphaeroides photosynthetic 

membrane. 

Proteorhodopsin (PR) is a light-driven proton pump found in marine bacterioplankton. PR is a 

transmembrane protein and in its functional form it is complexed with an all-trans retinal 

pigment molecule (for further reading, see Section 1.9). Due to its simplicity PR has potential 

as an additional component for insertion into existing photosynthetic pathways to convert 

light into a proton gradient to drive downstream metabolism.  

Rba. sphaeroides has two light-harvesting proteins, LH1 and LH2, which transfer electronic 

excitation energy to the reaction centre where charge separation takes place. This initiates 

electron transfer which ultimately leads to pumping of proteins across the photosynthetic 

membrane by the cytochrome bc1 complex. The resulting proton gradient is used to drive the 

ATP synthase to produce ATP. While the harvesting of light to form a transmembrane proton 

gradient in Rba. sphaeroides is highly productive and efficient, organisms containing PR are 

able to harvest light and produce a proton gradient using this single protein.  

There has been debate as to whether PR alone is sufficient to enable cells to survive 

photosynthetically (see Section 1.9.2) however studies expressing PR in E. coli have shown 

that PR is capable of having a significant impact on cellular energy production. PR has been 

found to embed in the E. coli cell membrane and function as a proton pump to drive ATP 

synthesis (Beja et al., 2000; Martinez et al., 2007). PR has also been used in E. coli as the sole 

cellular energy source for flagellar rotation (Walter et al., 2007). PR therefore has the 

potential to augment photosynthesis by contributing to the production of the 

transmembrane proton gradient along with the native cytochrome bc1 complex.  

Functional PR requires the pigment all-trans retinal. Retinal is bound to PR via a lysine residue 

to form a protonated Schiff base. On excitation with light retinal undergoes an isomerisation 

from all-trans to 13-cis which triggers conformational changes in PR leading to proton 

transfer across the protein (see Section 1.9.3). Previous studies of the expression of PR in E. 
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coli have involved the supplementation of the growth medium with retinal or the expression 

of genes necessary for the biosynthesis of retinal, and its precursor beta-carotene (Beja et al., 

2000; Martinez et al., 2007). There has been interest in producing retinal and other retinoids 

in E. coli as they are an important active ingredient in many cosmetics and pharmaceuticals 

(Jang et al., 2011). 

Previous studies have made modifications to the Rba. sphaeroides carotenoid biosynthesis 

pathway to produce foreign pigments. The crtI, crtY, crtB and crtZ genes from Pantoea (P.) 

agglomerans (previously known as Erwinia herbicola) have been expressed from a plasmid to 

produce lycopene, beta-carotene, beta-cryptoxanthin, zeaxanthin and zeaxanthin glucoside. 

Some of these carotenoids were able to be incorporated into the photosynthetic complexes 

and are able to transfer energy to the BChl molecules within the light harvesting complexes 

(Hunter et al., 1994). The biosynthesis of 2,2’ diketospirilloxanthin in Rba. sphaeroides was 

achieved with the expression of the four-step phytoene desaturase crtI gene from P. 

agglomerans (Garcia-Asua et al., 2002; Chi et al., 2015). When the native crtC gene was 

deleted in this strain the spirilloxanthin pathway was truncated resulting in the accumulation 

of lycopene.  

Retinal can be produced from beta-carotene by the enzyme beta-carotene-15’,15’ 

mono(di)oxygenase (BCM(D)O). The gene encoding this protein is found in many species 

including mouse, fruit fly, and humans and is involved in vitamin A biosynthesis. Several 

studies have used various BCM(D)O genes to produce retinal in E. coli (von Lintig and Vogt, 

2000; Kim et al., 2008; Jang et al., 2011). The blh gene used in this study is from the 

uncultured marine bacterium 66A03 and produces BCDO (Sabehi et al., 2005; Kim et al., 

2009). A codon optimised version of blh has previously been used to produce retinal in E. coli 

and was found to have high beta-carotene cleavage activity (Jang et al., 2011). 

In a recent study by Tikh et al PR was produced in Rba. sphaeroides from an expression 

vector, and the growth medium was supplemented with retinal. Just under 1 mg ml-1 of 

retinal-bound PR was purified from wild type (WT) Rba. sphaeroides whole cell lysate, and 3 

mg ml-1 from a Rba. sphaeroides mutant lacking the reaction centre (Tikh et al., 2014). The 

aim of the work presented in this chapter was to produce a Rba. sphaeroides strain with the 

genes for PR and the biosynthesis of all-trans retinal incorporated into the genome to 

determine whether functional PR is able to assemble in the Rba. sphaeroides photosynthetic 

membrane.  

In this chapter the native carotenoid biosynthesis pathway of Rba. sphaeroides was modified 

through the addition of three foreign genes: crtI and crtY from P. agglomerans and blh from 
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uncultured marine bacterium 66A03 to produce all-trans retinal (Figure 4.1). The pigment 

content of this mutant strain was characterised and different strategies were attempted with 

the aim to improve the retinal yield. The gene for PR was expressed in Rba. sphaeroides and 

membranes were analysed to detect the presence of functional PR. The effect of membrane 

curvature on PR incorporation was studied. This work forms the basis of future studies 

involving the creation of artificial light-harvesting antenna in vivo using non-native proteins 

and pigments for increased spectral coverage and augmentation of photosynthesis. 

 

Figure 4.1 Carotenoid biosynthesis pathways of Rba. sphaeroides 

A. Overview of the carotenoid biosynthesis pathways of Rba. sphaeroides and the modifications 
required to make retinal. 

B. Overview of the spheroidenone biosynthesis pathway consisting of photographs of cell 
cultures. 

C. Overview of the retinal biosynthesis pathway consisting of photographs of cell cultures. 

(Figure modified from an earlier version by Dr D. Mothersole.) 
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4.3 Results 

4.3.1 Production of retinal in Rba. sphaeroides 

Proteorhodopsin requires the pigment all-trans retinal to fully assemble. Rba. sphaeroides 

does not naturally produce retinal so three foreign genes were used to modify the existing 

carotenoid biosynthesis pathway (Figures 4.1 and 4.2 A). The genes were crtI and crtY from P. 

agglomerans and blh from uncultured marine bacterium 66A03. blh encodes 

bacteriorhodopsin-related protein-like homolog protein, a beta-carotene 15,15'-dioxygenase 

(BCDO) and produces retinal from beta-carotene (Kim et al., 2009). The blh gene encoding 

BCDO was chosen as it cleaves beta-carotene to produce retinal with a high efficiency (Jang et 

al., 2011). 

 

Figure 4.2 Construction of Rba. sphaeroides crtIYblh  

A. Part of the native Rba. sphaeroides carotenoid biosynthesis pathway is shown in black, with 
the genes that encode the enzymes performing each step indicated. The three new genes that 
have been introduced to produce retinal are shown in red.  

B. The pK18mobsacB construct created to replace the native 3-step phytoene desaturase crtI 
gene with the 4 step crtI and crtY from P. agglomerans and blh from uncultured marine 
bacterium 66A03. 

C. The Rba. sphaeroides carotenoid gene cluster before and after the gene substitutions. These 
genes were introduced into a crtC knockout strain to direct pigment biosynthesis down the 
new pathway. The grey arrows indicate the direction of transcription. 

D. Semi-aerobically grown cultures of ΔcrtC (top) and crtIYblh (bottom) strains. The orange 
colour is due to the presence of beta-carotene. 
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The blh gene was codon optimised for expression in Rba. sphaeroides. A DNA fragment was 

synthesised containing: the first 348 bp of the native crtA gene plus the next 146 bp, an XbaI 

site and a SalI site, a predicted ribosome binding site for the native crtI gene, the codon 

optimised blh, 17 bp upstream of the native crtB gene and 483 bp of the native crtB gene. 

The fragment was flanked by the restriction sites HindIII and EcoRI. The fragment was cut 

with HindIII and EcoRI and ligated into the plasmid pK18mobsacB. CrtI and crtY were 

amplified from the Rba. sphaeroides strain DM21 containing the plasmid pERWIY 

(unpublished data) using the primers “crtYI F” and “crtYI R”. The crtI and crtY fragment was 

digested with XbaI and SalI and ligated into pK18mobsacB-blh to create the construct 

pK18mobsacB-crtYIblh (Figure 4.2 B). 

The crtI, crtY and blh genes were integrated into the Rba. sphaeroides genome using the 

pK18mobsacB system of homologous recombination, as described previously in Sections 

2.13-14 and 3.3.2. The genes were integrated into a crtC deletion mutant of Rba. sphaeroides 

to direct pigment production down the new pathway. The genes were integrated into the 

carotenoid biosynthesis gene cluster between crtA and crtB, replacing the native crtI (Figure 

4.2 C). The resulting strain, Rba. sphaeroides ΔcrtC ΔcrtI::crtIPa crtYPa blh, hereafter termed 

crtIYblh, is orange in colour (Figure 4.1 D) 

4.3.2 Extraction and HPLC analysis of the pigments produced by crtIYblh 

The cellular pigments produced by Rba. sphaeroides crtIYblh were extracted with 

acetone:methanol (7:1 v/v) according to the method described in Section 2.18.1 and analysed 

using HPLC. A Phenomenex C18 column was used to separate the extracted pigments using a 

method described in Section 2.18.3. The DAD absorbance spectra were recorded and elution 

was monitored at 442 nm, corresponding to the absorbance of carotenoids (Figure 4.3). Cell 

pigment extracts from both ΔcrtC and crtIYblh strains contain a peak at 13.7 minutes 

corresponding to neurosporene, which is produced by the Rba. sphaeroides 3-step phytoene 

desaturase (crtI) and as an intermediate by the P. agglomerans 4-step phytoene desaturase. 

crtIYblh contains an additional peak at 15.8 minutes which corresponds to beta-carotene. No 

lycopene is observed in crtIYblh possibly indicating that the enzyme encoded by crtY, 

lycopene cyclase, (lycopene to beta-carotene) is very efficient. No retinal was observed in 

crtIYblh.  
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Figure 4.3 HPLC analysis of crtIYblh 

Pigments were extracted from Rba. sphaeroides ΔcrtC and ΔcrtC ΔcrtI::crtIPa
 crtYPa

 blh (crtIYblh) using 
acetone:methanol (7:2) and analysed on a Phenomenex C18 column. Beta-carotene and retinal 
pigment standards were used as a comparison. Separation of pigments was detected by a diode array 
detector (DAD) set to 442 nm, spectra are normalised according to the highest peak. The large 
negative peak contributed by bacteriochlorophyll which occurs at a retention time of between 7 and 9 
minutes has been removed for clarity. The observed pigments and retention times are (1) retinal 6 
min, (2) neurosporene, 13.7 min, and (3) beta-carotene, 15.8 min. The respective absorbance spectra 
are shown. Other peaks are thought to be pigment degradation products. 

 

The absence of retinal observed in crtIYblh indicates either a problem with the blh gene, the 

environmental conditions affecting the functionality of the BCDO protein, the degradation of 

retinal, or the availability of beta-carotene for conversion to retinal. 

To investigate the possibility that the blh gene is not being expressed from the genome, it 

was overexpressed from the plasmid pIND4. The blh gene was amplified using the primers 

“Blh F” and “Blh R”, digested with NcoI and HindIII and ligated into pIND4 to produce pIND4-

blh. pIND4-blh was transferred via conjugation to a beta-carotene producing strain, Rba. 

sphaeroides ΔcrtC crtIPa
 crtYPa made by Shuang Chi. 1.5 L of semi-aerobic culture was grown 

and protein expression was induced at an OD680 of 0.8 with 1 mM IPTG and grown for 7 

hours. Pigments were extracted and HPLC analysis was performed, but no retinal was 
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observed (data not shown). Retinal biosynthesis requires oxygen as a substrate for the Blh 

monooxygenase; accordingly the cells were grown under oxygenated conditions, 500 ml M22 

medium in a 2 L flask shaken at 300 rpm, but no retinal was observed (data not shown). 

4.3.3 Production of retinal in E. coli 

Retinal has been previously produced in E. coli (Kim et al., 2008; Jang et al., 2011). To test the 

functionality of the codon optimised blh gene used in this study, it was expressed from 

pIND4-blh in E. coli JM109. The equivalent gene from mouse, β-diox, was expressed from 

pKJ900 (Kim et al., 2008). The genes for the biosynthesis of beta-carotene were also 

expressed from the plasmid pORANGE: P. agglomerans crtE, crtB, crtI and crtY (von Lintig and 

Vogt, 2000). Cells were grown and protein expression was induced. Pigments were extracted 

and HPLC analysis was performed as described in Sections 2.18.2-3. Retinal was seen in both 

cases; BCDO (blh) is more efficient at converting beta-carotene to retinal than β-diox (Figure 

4.4). These results are consistent with the findings of Jang et al., 2011. 

 

 

Figure 4.4 Production of retinal in E. coli 

E. coli JM109 cells containing the plasmids pORANGE to produce beta-carotene (2) and either pKJ900 
(βdiox; blue traces) or pIND4-blh (black traces) to produce retinal (1). 20 ml of overnight culture was 
used to inoculate 500 ml of LB containing the appropriate antibiotics. Cells were grown and induced 
with 0.2% L-arabinose at an OD600 of 0.4 (pORANGE and pKJ900) and 1 mM IPTG at an OD600 of 0.8 
(pIND4-blh). After induction the cells were grown for 24 hours at 20 °C. Cellular pigments were 
extracted and separated on a Phenomenex C18 column using HPLC. Separation of pigments was 
detected by a diode array detector (DAD) set to 442 nm. Spectra are normalised according to the 
highest peak. Traces are shown with and without induction of the retinal producing genes. Other 
observed peaks are thought to be degradation products. 
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While retinal was the major peak seen at the retention time of 6 minutes, many smaller 

peaks were seen at a similar retention time. These peaks correspond to various degradation 

products of retinal. This raises the possibility of retinal degradation in Rba. sphaeroides. 

4.3.4 Improved expression of blh in Rba. sphaeroides 

To improve expression of blh, a new ribosome binding site (RBS) was introduced before the 

blh gene. The previously used RBS was the predicted site for the Rba. sphaeroides crtI gene 

(GAGTTCGC); instead the RBS from the pIND4 vector was used (Ind et al., 2009). The new RBS 

was incorporated into the primer “Blh F rbs”, which was used to amplify blh from 

pK18mobsacB-crtYIblh with the reverse primer “Blh R NdeI”. Both the resulting DNA fragment 

and pK18mobsacB-crtYIblh were digested with SalI and NdeI. Digested pK18mobsacB-crtYIblh 

was run on an agarose gel and the cut plasmid was gel extracted to remove the original blh 

insert. The two fragments were ligated together to produce pK18mobsacB-crtYIblh2. The 

genes were re-integrated into Rba. sphaeroides ΔcrtC as described previously to produce a 

strain termed crtYIblh2. Pigment extraction and HPLC analysis was performed as before and a 

small amount of retinal was observed (Figure 4.5).  

 

Figure 4.5 HPLC analysis of pigments produced by Rba. sphaeroides crtIYblh2 

Pigments were extracted from Rba. sphaeroides crtIYblh2 using acetone:methanol (7:2) and analysed 
on a Phenomenex C18 column. Separation of pigments was detected by a diode array detector (DAD) 
set to 442 nm. The large negative peak contributed by bacteriochlorophyll which occurs at a retention 
time of between 7 and 9 minutes has been removed for clarity. The unlabelled peaks are thought to be 
degradation products. 
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4.3.5 The deletion of LH2 in Rba. sphaeroides crtIYblh 

BCDO, encoded by blh, is hydrophobic and likely an intrinsic membrane protein (Figure 4.6) 

(Kim et al., 2009). It is possible that the crowded membrane environment of Rba. sphaeroides 

cannot accommodate BCDO. To free up membrane space, LH2 was removed through the 

knockout of the puc1BA (hereafter referred to as 1BA) genes in crtIYblh2. It is known that 

neurosporene can be incorporated into the light harvesting complexes of Rba. sphaeroides, 

but beta-carotene can not (Garcia-Asua 1999; Garcia-Asua et al., 2002). This deletion also 

aimed to increase the availability of neurosporene for conversion into beta-carotene by 

preventing it being sequestered by LH2. The puc1BA genes were knocked out using the 

plasmid pK18mobsacB-ΔpucBA constructed by E. Martin following the protocol described 

previously.  

 

Figure 4.6 Membrane topology prediction for BCDO encoded by blh 

The amino acid sequence of BCDO encoded by blh from uncultured marine bacterium 66A03 was 
analysed using the transmembrane topology prediction software MEMSAT3 and MEMSAT-SVM. 

A. MEMSAT-SVM representation of the predicted 9 transmembrane helices of BCDO. The N-
terminus is predicted to be extracellular (or periplasmic), and the C-terminus is predicted to 
be cytoplasmic. 

B. Schematic of the transmembrane model predicted by both MEMSAT-SVM and MEMSAT3. 
Kyte-Doolittle hydropathy plot demonstrating the presence of regions of high hydrophobicity. 
Nine transmembrane helices are observed, the final one of which is predicted to be a pore-
lining helix. 

C. Amino acid sequence of BCDO showing the presence of the transmembrane helices and 
location of the inter-helix loops. The pore lining helix is highlighted in blue.  
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Semi-aerobically grown cells of crtIYblh2 Δ1BA are more yellow than crtIYblh (Figure 4.7 A). 

This could be due to the balance of neurosporene (yellow) and beta-carotene (orange) 

compared to bacteriochlorophyll (blue) and/or could indicate the presence of retinal, which is 

yellow. Figure 4.7 B shows absorbance spectra of intracytoplasmic membranes (ICM) from 

ΔcrtC, ΔcrtC ΔcrtI::crtIPa and crtIYblh2 Δ1BA. Neurosporene is the major carotenoid of ΔcrtC 

with the absorbance peaks at 430, 457 and 490 nm. A strain containing the P. agglomerans 

crtI gene (ΔcrtC ΔcrtI::crtIPa created by Shuang Chi) accumulates lycopene with absorbance 

maxima at 459, 490 and 523 nm.  

As with crtIYblh and crtIYblh2, crtIYblh2 Δ1BA contains no lycopene, indicating efficient 

conversion into beta-carotene by the crtY gene product, lycopene cyclase (Figure 4.7 C). Small 

amounts of retinal were observed in crtIYblh2 Δ1BA but the amount was 10 fold lower than 

seen for crtIYblh2. A much higher proportion of beta-carotene compared to neurosporene 

was observed in this strain - 2.5:1 compared to 1.3:1 in crtIYblh2 (Figures 4.5 and 4.7 C). The 

retention times of the pigments are different than recorded previously, likely due to the use 

of a brand new Phenomenex C18 column; the retention times of pigments varies with the age 

of the column. 
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Figure 4.7 Analysis of pigments produced by Rba. sphaeroides crtIYblh2 Δ1BA 

Semi-aerobically grown cells of the strains ΔcrtC, ΔcrtC ΔcrtI::crtIPa, ΔcrtC ΔcrtI::crtIPa crtY blh (crtIYblh), 
ΔcrtC ΔcrtI::crtIPa crtY blh Δpuc1BA (crtIYblh2 Δ1BA) were analysed. 

A. Photographs of cell cultures from ΔcrtC (neurosporene), IYblh (beta-carotene), and crtIYblh2 
Δ1BA. 

B. Absorbance spectra of ICM of ΔcrtC, ΔcrtC ΔcrtI::crtIPa (strain production and spectrum 
collection by Shuang Chi) and crtIYblh2 Δ1BA. 

C. HPLC analysis of crtIYblh2 Δ1BA. Pigments were extracted using acetone:methanol (7:2) and 
analysed on a Phenomenex C18 column. Separation of pigments was detected by a diode 
array detector (DAD) set to 442 nm. The large negative peak contributed by 
bacteriochlorophyll which occurs at a retention time of between 18 and 19 minutes has been 
removed for clarity. The unlabelled peaks are thought to be degradation products. 
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4.3.6 Increasing the intracellular molecular oxygen levels in crtIYblh2 and crtIYblh2 

Δ1BA 

BCDO requires molecular oxygen for the conversion of beta-carotene to retinal (Kim et al., 

2009). As the intracellular environment of Rba. sphaeroides is largely anaerobic there may 

not be sufficient oxygen for the BCDO reaction. crtIYblh2 was grown under different oxygen 

conditions. This was achieved by varying the total culture volume in 125 ml flasks: 20, 40, 50, 

60 and 80 ml. No improvement in the retinal yield was observed (data not shown).  

The Rba. sphaeroides cbb3 oxidase participates in keeping the intracellular environment 

anaerobic by reducing oxygen to water. By deleting a subunit of the cbb3 oxidase, encoded by 

the ccoP gene, cellular levels of oxygen are increased. The ccoP gene was knocked out of 

crtIYblh2 Δ1BA by E. Martin to produce crtIYblh2 Δ1BA ΔccoP. The crtIYblh2 Δ1BA strain was 

chosen as a higher proportion of beta-carotene is accumulated in comparison to 

neurosporene. 

Cells of crtIYblh2 Δ1BA ΔccoP appeared green on the plate and yellow in semi-aerobic culture. 

Figure 4.8 A shows the absorbance spectra of ICM from crtIYblh2 Δ1BA and crtIYblh2 Δ1BA 

ΔccoP. Significantly reduced amounts of LH1 and RC are seen and the BChl Soret band at 370 

nm is absent. A peak at 632 nm is observed that is not normally seen in WT Rba. sphaeroides. 

No retinal was observed by HPLC analysis of this strain (Figure 4.8 B). 
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Figure 4.8 Analysis of Rba. sphaeroides crtIYblh2 Δ1BA ΔccoP 

A. Absorbance spectra of crtIYblh2 Δ1BA (black) and crtIYblh2 Δ1BA ΔccoP (red). Peak maxima 
are labelled. 

B. HPLC pigment analysis of crtIYblh2 Δ1BA ΔccoP. Pigments were extracted using 
acetone:methanol (7:2) and analysed on a Phenomenex C18 column. Separation of pigments 
was detected by a diode array detector (DAD) set to 442 nm. The large negative peak 
contributed by bacteriochlorophyll which occurs at a retention time of between 18 and 19 
minutes has been removed for clarity.  
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4.3.7 Production of proteorhodopsin in Rba. sphaeroides 

The gene for proteorhodopsin (PR) was introduced in the genome of crtIYblh2 in place of the 

puc1BA genes encoding the LH2 complex subunits. The PR variant used is the SAR86 γ-

proteobacterial PR variant (Geneart, Toronto, ON, Canada). A pK18mobsacB construct was 

created containing a 1740 bp fragment containing the region upstream of the puc1BA genes, 

the PR gene and the region downstream of the puc1BA genes. These fragments were fused 

together using overlap extension PCR. PR, along with a C-terminal His tag, was amplified from 

the plasmid pFLAG-PR (Section 4.3.10) using the primers “PR OE F” and “PR OE R” to create a 

904 bp fragment. A 404 bp region of DNA upstream of the puc1BA genes was amplified using 

the primers “PucBA KO F SalI” and “PR up OE R”. A 463 bp region of DNA downstream of the 

puc1BA genes was amplified using the primers “PR down OE F” and “PucBA KO DR”. The 

fragment was cut with SalI and HindIII and ligated into pK18mobsacB to create the plasmid 

pk18mobsacB-PR. The plasmid was transferred to crtIYblh2 and the mutant crtIYblh2 

Δ1BA::PR was produced using the method as described previously. 

crtIYblh2 Δ1BA::PR was grown in 1 L semi-aerobic cultures in 2 L flasks with and without 

supplementation with 10 µM retinal. ICM were prepared according to the method described 

in Section 2.15.2. No difference was observed in the colour of the membranes with and 

without retinal and the absorbance spectra were very similar (Figure 4.9 A). There was a 

shoulder in the absorbance spectrum of both at 520 nm, which is more pronounced with 

retinal supplementation. This feature does not appear in the absorbance spectrum of ICM 

from crtIYblh2 Δ1BA, so it is likely that this corresponds to PR which absorbs at 520 nm.  

Western blot analysis showed that proteorhodopsin is present in the membrane but that 

there is more proteorhodopsin present in membranes when retinal is added to the media 

(Figure 4.9 B). As has been seen in previous studies, the actual molecular weight of PR is 27 

kDa but it runs at 22 kDa (Tikh et al., 2014).  
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Figure 4.9 Proteorhodopsin in membranes of Rba. sphaeroides crtIYblh2 Δ1BA::PR 

Cells were grown semi-aerobically with and without supplemented 10 µM retinal. ICM was prepared 
by French pressing the cells followed by centrifugation on a 15% 40% sucrose step gradient. 

A. Room temperature absorbance spectra of ICM. 

B. Western blot of ICM. The membrane was immunoblotted with an anti-His antibody. 

 

PR was expressed from the plasmid pBBRBB-Ppuf843-1200-PR, a plasmid that has been 

previously shown to produce large amounts of PR in Rba. sphaeroides (Tikh et al., 2014). 

pBBRBB-Ppuf843-1200-PR contains a truncated version of the Rba. sphaeroides puf promoter 

and protein expression is constitutive. Cells were grown and membranes prepared as 

described above. The membranes appeared redder when retinal was supplemented (Figure 

4.10 B). There is a clear peak at 520 nm in the ICM absorbance spectrum of membranes both 

with and without supplemented retinal (Figure 4.10 A). These peaks are more pronounced 

than when PR is expressed from the genome (Figure 4.9 A), likely due to the increased 

expression of PR. The 520 nm peak is larger when retinal is supplemented. Western blot 

analysis showed large amount of PR in the membranes with and without supplementation 

with retinal (Figure 4.10 C). 
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Figure 4.10 Proteorhodopsin in membranes of Rba. sphaeroides crtIYblh2 Δ1BA pBBRBB-
Ppuf843-1200-PR 

Cells were grown semi-aerobically with and without supplemented 10 µM retinal. ICM was prepared 
by French pressing the cells and centrifugation on a 15% 40% sucrose step gradient. PB-PR refers to 
pBBRBB-843-1200-PR. 

A. Room temperature absorbance spectra of ICM. 

B. 15/40% sucrose gradients with and without supplemented retinal. 

C. Western blot of ICM. The membrane was immunoblotted with an anti-His antibody. 

 

PR was expressed from pBBRBB-Ppuf843-1200-PR in Rba. sphaeroides crtIYblh2 Δ1BA ΔccoP (see 

Section 4.3.6). The cells were grown semi-aerobically in 750 ml LB in 2 L flasks for 32 hours at 

30 ⁰C. 10 µM retinal was added to the growth medium. The cells were spun down and ICM 

was prepared as described previously. The ICM appeared greener than ICM prepared from 

the same strain without the pBBRBB-Ppuf843-1200-PR and grown in 1.5 L M22 medium in a 2 L 

flask, conditions of lower aeration (Figure 4.11 A). Although PR was expressed in this strain 

and under these conditions, there was no peak in the ICM absorbance spectrum at 520 nm 

corresponding to the absorbance of PR (Figure 4.11 B and C). This indicates that PR is able to 

associate or assemble into the ICM without bound retinal. Lower levels of photosynthetic 
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complexes were seen and the carotenoid portion of the absorbance spectrum appeared 

significantly changed. 

 

 

Figure 4.11 Production of proteorhodopsin in Rba. sphaeroides crtIYblh2 Δ1BA ΔccoP 

crtIYblh2 Δ1BA ΔccoP and crtIYblh2 Δ1BA ΔccoP pBBRBB-Ppuf843-1200-PR were grown in 750 ml of LB in 2 
L flasks supplemented with 10 µM retinal, according to the protocol for expression of high levels of PR 
detailed in Tikh et al., 2014. 

A. Cells were French pressed then applied to sucrose gradients. The dark band is the membrane 
fraction at the 40 % / 15 % w/w sucrose boundary. 

B. Western blot of membranes isolated from sucrose gradients immunoblotted with an anti-His 
antibody. 

C. Absorbance spectra of ICM from both strains.  

 

4.3.8 The effect of membrane curvature on proteorhodopsin expression 

The photosynthetic membrane (ICM) of wild type (WT) Rba. sphaeroides is highly curved. The 

photosynthetic protein complexes induce curvature and are shaped in such a way as to best 

fit this environment (Figure 4.12 A and B). AFM of PR arrays in E coli membranes shows that 

they have only a small degree of curvature (Dr. Michael Cartron, unpublished data) which is 

consistent with the shape of PR (Figure 4.12 C). Previous studies have indicated that the 
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knockout of various photosynthetic complexes, including LH2, results in higher expression of 

foreign membrane proteins (Laible et al., 2009; Tikh et al., 2014). To test the hypothesis that 

PR prefers to sit in flatter membranes, it was expressed in different Rba. sphaeroides mutants 

with varying levels of curvature.  

 

Figure 4.12 Expression of proteorhodopsin in membranes of varying curvature 

A. Model of the Rba. sphaeroides photosynthetic chromatophore vesicle featuring highly curved 
membrane. Figure reproduced with permission from Elsevier from Cartron et al., 2014. 

B. Side view of the dimeric Rba. sphaeroides core complex, shaped to induce membrane 
curvature. Figure reproduced with permission from Qian et al., 2013. Copyright 2013 
American Chemical Society. 

C. Structure of PR, figure from the pdb file of the NMR solution structure of green PR submitted 
by Reckel et al., 2011.  

D. PR was expressed from pIND4-PR in Rba. sphaeroides mutants of varying membrane 
curvature. Equal amounts of whole cell extract were subject to Western blotting using an anti-
His antibody to the C-terminal His tag on PR. 

 

PR was expressed from pIND4-PR (construct made by Dr. Michael Cartron). pIND4-PR was 

transferred via conjugation to the Rba. sphaeroides strains: WT, Δ1BA, ΔpufX, and Δ1BA 

ΔpufX. Rba. sphaeroides mutants lacking LH2 as a result of the knockout of the puc1BA genes 

feature tubular membranes (Hunter et al., 1988; Golecki et al., 1991). The dimeric core 

complex induces membrane curvature due to its shape (Figure 4.12 B). When the pufX gene is 

knocked out the core complexes become monomeric. In ΔpufX mutants the ICM is larger and 

less curved, resulting in slower LH2 assembly (Adams et al., 2011). The membranes of Δ1BA 
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ΔpufX are flattened sheets (Siebert et al., 2004). The cells were grown in 80 ml semi-aerobic 

cultures. Protein expression was induced at an OD680 of 0.6 for 16 hours. Cells were spun 

down and an equal amount of cells standardised by OD680 was analysed using western blot 

(Figure 4.12 D). PR was expressed in higher levels in ΔpufX and Δ1BA ΔpufX than in WT and 

Δ1BA. 

4.3.9 Purification of proteorhodopsin from Rba. sphaeroides Δpufx 

The results presented in Section 4.3.8 indicate that expression of plasmid-borne PR genes in a 

Rba. sphaeroides strain with less curved ICM yields higher levels of the PR protein. Next, the 

gene encoding PR was introduced into the genome of Rba. sphaeroides ΔpufX according to 

the same method as described in Sections 4.3.1 and 4.3.5.  

The resulting strain, ΔpufX Δ1BA::PR was grown photosynthetically in a 1.5 L culture with and 

without supplemented retinal. ICM was prepared and solubilised as described in Sections 

2.15.1-3. Spectra of the solubilised ICM (Figure 4.13 A) do not show a peak for PR, as the 

carotenoid absorbance bands are in the 520 nm region. The solubilised membranes were 

applied to a Ni NTA column equilibrated in 20 mM Tris pH 7.4 and 0.04 % β-DDM. After wash 

steps of 10 and 20 mM imidazole, protein was eluted with 400 mM imidazole. The fractions 

were not coloured, so the elution fractions were analysed using western blot. PR was not 

visible on a Coomassie stained SDS gel. A band at 22 kDa was observed for both with and 

without supplanted retinal, corresponding to the expected observed size of PR (Figure 4.13 

B). The same band was observed for a purification performed on cells that did not have 

retinal supplemented. This indicates that PR is able to associate with the membrane even 

without retinal bound.  
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Figure 4.13 Purification of proteorhodopsin from Rba. sphaeroides ΔpufX Δ1BA::PR 

Cells were grown photosynthetically with and without supplementation with 10 μM retinal. Cells were 
spun down and resuspended in membrane buffer (20 mM HEPES, 5 mM EDTA pH 7.4), French pressed 
and the ICM was isolated on 15/40% sucrose step gradients. The membranes were solubilised in 3 % β-
DDM for 1 hour at 4 °C followed by centrifugation at 48,000 rpm (158, 054 x g) in a Beckman Ti 70.1 
rotor for 1 hour to remove unsolubilised material. 

A. Absorbance spectra of ICM solubilised with 3 % β-DDM.  
B. Western blot analysis of the various stages in purification using an anti-His antibody to the C-

terminal His tag on PR. The bands are at 22 kDa, the expected running size of PR. Membranes 
were harvested from sucrose gradients and solubilised with 3 % β-DDM (β-DDM ICM). 
Solubilised membranes were applied to a Ni NTA column, which was washed with 20 mM 
imidazole. Protein was eluted with 400 mM imidazole. 

 

4.3.10 Production and purification of proteorhodopsin from Synechocystis PCC6803 

Synechocystis PCC6803 is a cyanobacterium that is able to biosynthesise retinal. 

Synechocystis is naturally transformable and can integrate foreign plasmid and linear DNA 

into its genome by homologous recombination allowing targeted gene replacement. 

Synechocystis contains approximately 10 genome copies per cell (Herdman et al., 1979), 

therefore to avoid the reversion of a mutant back to a base strain genotype, a fully-

segregated mutant must be isolated. 
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A plasmid was constructed for the introduction of PR into the genome of Synechocystis at the 

slr1311 (psbAII) locus. The photosystem II D1 protein of Synechocystis is encoded by three 

genes, psbAI, psbAII and psbAIII. Expression of these genes is enhanced under high light 

conditions (Hihara et al., 2001) and the deletion of the psbAII gene (slr1311) does not result 

in a mutant phenotype (Dr. Roman Sobotka, personal communication). It is therefore a good 

location for the introduction of the gene encoding PR. The plasmid pFLAG was created by Dr. 

Daniel Canniffe (University of Sheffield) and contains the sequence for a 5’ 3X FLAG tag 

flanked by the sequences found up- and downstream of slr1311. The gene for PR was 

amplified from pBAD-PR (created by Dr. M. Cartron) using the primers “PR F FLAG” and “PR R 

BglII”. The resulting fragment was digested using NotI and BglII and ligated into pFLAG to 

create the plasmid pFLAG-PR.  

Synechocystis was transformed with pFLAG-PR according to the method described in Section 

2.16.1. To identify fully segregated mutant strains, colony PCR was carried out using the 

primers “FLAG Check F” and “FLAG Check R”, designed by Dr. D. Canniffe to amplify the ORF 

slr1311 (Figure 4.14 A). Replacement of slr1311 with the PR gene in mutant colonies was 

confirmed by DNA sequencing.  

 

Figure 4.14 Production of proteorhodopsin in Synechocystis PCC6803 

A. Agarose gel showing the products of colony PCR of Synechocystis WT (lane 2) and 
Δslr1311::PR (lane 3). The analytical PCR was carried out using primers designed to amplify 
the slr1311 locus. 

B. Western blot analysis of WT and Δslr1311::PR insoluble (membrane) and soluble fractions. 
Using anti-FLAG antibody to the N-terminal FLAG tag on PR. 

C. Western blot analysis of purification of PR from Δslr1311::PR using anti-FLAG antibody to the 
N-terminal FLAG tag on PR. 
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To determine whether PR was expressed and assembled in the membrane fraction, a 100 ml 

liquid culture was grown without retinal supplementation and separated into the insoluble 

(membrane) and soluble fractions as described in Section 2.16.3. PR ran on the gel at 

approximately 29 kDa, the expected running size of PR with an N-terminal FLAG tag. PR was 

observed in both the soluble and insoluble (membrane) fractions (Figure 4.14 B).  

An 8 L culture of Synechocystis Δslr1311::PR was grown up as described in Section 2.16. PR 

was purified according to the method described in Section 2.17.5. The growth medium was 

supplemented with retinal to maximise the yield of fully-assembled PR. A very small amount 

of PR was purified, but the concentration was so low that it could not be seen on a silver 

stained gel and could only be detected by western blot (Figure 4.14 C).  

4.4 Discussion 

4.4.1 Small amounts of retinal are produced in Rba. sphaeroides 

Functional proteorhodopsin requires the pigment all-trans retinal. Three foreign genes, crtI 

and crtY from P. agglomerans and blh from uncultured marine bacterium 66A03, were 

introduced into the carotenoid gene cluster of Rba. sphaeroides replacing the native crtI gene 

(Figures 4.1 and 4.2). These genes were introduced into a crtC knockout strain to direct 

pigment biosynthesis down the new pathway; the strain was termed crtIYblh. The P. 

agglomerans crtI gene encodes a 4-step phytoene desaturase which produces lycopene from 

phytoene. The P. agglomerans crtY gene encodes lycopene cyclase and produces beta-

carotene from lycopene. P. agglomerans crtI and crtY have both been previously expressed 

from an expression vector in Rba. sphaeroides to produce large amounts of beta-carotene 

(Hunter et al., 1994). This work demonstrates that these genes are capable of producing 

beta-carotene when expressed from the Rba. sphaeroides genome (Figure 4.3). No lycopene 

is observed in any of the strains expressing crtY in this work indicating efficient conversion 

into beta-carotene. 

The gene used in this study to convert beta-carotene to all-trans retinal was the blh gene 

from the uncultured marine bacterium 66A03 as it has been found to convert beta-carotene 

to retinal with a high efficiency in E. coli (Jang et al., 2011). blh encodes a beta-carotene 15, 

15’ dioxygenase (BCDO) which cleaves beta-carotene at its central double bond to produce 

retinal; this reaction requires molecular oxygen (Kim et al., 2009). blh was codon optimised 

for Rba. sphaeroides. Initially, no retinal was observed in the crtIYblh strain (Figure 4.3).  
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To test that the blh gene with codons optimised for Rba. sphaeroides was functional it was 

expressed in E. coli along with the genes from P. agglomerans to produce beta-carotene. The 

efficiency of retinal production was compared to a strain with the β-diox gene from mouse. 

BCDO expressed from the codon optimised blh was found to convert beta-carotene to retinal 

with a higher efficiency than β-diox (Figure 4.4). These results are consistent with the findings 

of Jang et al., 2011. This result eliminates the possibility that the codon optimised gene 

cannot produce a functional BCDO. 

The predicted RBS for the native crtI gene was placed before the blh gene in crtIYblh. The 

introduction of the RBS from the pIND4 expression vector before the blh gene in Rba. 

sphaeroides crtIYblh enabled the production of small amounts of retinal in the strain crtIYblh2 

(Figure 4.5). The new RBS contains a GGAGA sequence 8 base pairs prior to the ATG start 

codon of blh, in line with the optimal RBS position for prokaryotic protein expression (Isaacs 

et al., 2004; Pfleger et al., 2006; Salis et al., 2009). It can therefore be concluded that the 

predicted crtI RBS was either wrong or insufficient for blh expression. Several strategies were 

used to attempt to improve the retinal yield of the crtIYblh2 strain without success, detailed 

below. 

4.4.2 Genetic removal of the LH2 antenna does not result in increased retinal 

biosynthesis 

BCDO, encoded by blh, is a putative membrane protein (Figure 4.6). The puc1BA genes were 

knocked out in crtIYblh2 to abolish LH2 expression. The knockout of LH2 may provide more 

space in the photosynthetic membrane for BCDO to sit, and Δ1BA mutants are known to 

result in higher expression of membrane proteins (Laible et al., 2009). However, no increase 

in retinal levels was observed (Figure 4.7 C). Beta-carotene is not soluble in an aqueous 

environment; it is not freely diffusible in vivo and associates with lipophilic structures such as 

membranes or binding proteins. Although it is incapable of being assembled into the light 

harvesting complexes, it is possible that beta-carotene associates with another protein which 

protects it from degradation or conversion to retinal (Garcia-Asua, 1999). 

4.4.3 Increasing the level of intracellular oxygen does not increase retinal 

biosynthesis 

BCDO requires molecular oxygen to produce retinal from beta-carotene, however the interior 

of Rba. sphaeroides cells is a low oxygen environment. The native carotenoid spheroidenone 

is produced from spheroidene, a reaction that requires molecular oxygen (Shneour, 1962). 

Small amounts of spheroidenone are found when Rba. sphaeroides is grown under anaerobic 

conditions but significantly higher levels are produced when Rba. sphaeroides is grown in the 
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presence of oxygen (Shneour, 1962). To investigate the possibility that retinal biosynthesis 

requires an increased amount of available molecular oxygen crtIYblh2 Δ1BA cells were grown 

in conditions of high aeration, but no retinal was observed.  

The ccoP gene encodes a subunit of the Rba. sphaeroides cbb3 oxidase, the deletion of which 

results in higher levels of oxygen within the cell (Ogara and Kaplan, 1997). The cbb3 oxidase 

catalyses the reduction of O2 to H2O and uses the liberated free energy to pump protons 

across the periplasmic membrane (Pitcher and Watmough, 2004). The strain crtIYblh2 Δ1BA 

ΔccoP was produced but, although increased levels of beta-carotene were observed in 

comparison to neurosporene, no retinal was observed (Figure 4.8 B). It is possible that retinal 

is degraded by the increased levels of oxygen within the cells.  

The knockout of ccoP in wild type Rba. sphaeroides results in the de-repression of the puc 

and puf operons under high oxygen conditions (Ogara and Kaplan, 1997). The biosynthesis of 

BChl is repressed by high oxygen conditions but the knockout of ccoP does not result in 

increased BChl production (Ogara and Kaplan, 1997). However, in the crtIYblh2 Δ1BA ΔccoP 

background significantly reduced amounts of LH1 and RC are seen and the 370 nm BChl Soret 

peak is not resolvable in the ICM absorbance spectrum (Figure 4.8 A). A peak at 632 nm that 

is not present in wild type ICM is observed in the ΔccoP strain (Figure 4.8 A), this may 

correspond to a BChl biosynthetic intermediate such as protochlorophyllide. It is therefore 

possible that the growth conditions used in this study result in high enough oxygen tension to 

significantly repress BChl synthesis and therefore the assembly of the reaction centre and LH1 

complexes. The reduced level of LH1 may account for the decreased amount of neurosporene 

seen in this strain; if neurosporene is not sequestered by LH1 it becomes available for 

conversion into beta-carotene.  

4.4.4 Retinal is sensitive to degradation 

The native crtI/crtB operon of Rba. sphaeroides is repressed by oxygen, which may explain 

the lack of observed retinal under increased oxygen conditions. Retinoids, such as retinal, are 

readily degraded and isomerised by heat, oxygen, light and biological degradation via retinoic 

acid (Jang et al., 2011). This effect can be seen in the HPLC analysis of pigments produced in 

E. coli in which many smaller peaks are observed around the retinal peak; these peaks 

correspond to various degradation species of retinal (Figure 4.4). In an attempt to find the 

balance between sufficient oxygen for retinal production but not retinal degradation 

crtIYblh2 Δ1BA was grown under varying oxygen conditions, but no improvement in retinal 

yield was seen.  
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Retinal is degraded to retinoic acid by retinal dehydrogenase. Salmonella enterica has a 

retinal dehydrogenase (Accession No. CBY96723), a possible homologue of which is found in 

E. coli (Jang et al., 2011). A blastp search found no homologues of the S. enterica retinal 

dehydrogenase in Rba. sphaeroides, although it shares 26 % sequence identity with an 

aldehyde dehydrogenase (Accession No. WP_011339575) which could participate in the 

degradation of retinal.  

4.4.5 Proteorhodopsin assembles in the membrane of Rba. sphaeroides 

The gene for the SAR86 γ-proteobacterial PR variant (a green PR) was introduced to the 

genome of Rba. sphaeroides crtIYblh2 Δ1BA in place of the puc1BA genes encoding the LH2 

subunits. This location was chosen as the knockout of LH2 results in increased expression of 

foreign membrane proteins, possibly due to increasing the space in the photosynthetic 

membrane for new complexes to sit (Laible et al., 2009). The puc promoter is strong and 

inducible by light and decreased oxygen (Kiley and Kaplan, 1987), although good expression 

occurs when the cells are grown semi-aerobically. crtIYblh2 Δ1BA::PR was grown semi-

aerobically to reduce the possibility of light- and oxygen- induced degradation of retinal, and 

to ensure that there was enough molecular oxygen present for the conversion of beta-

carotene into retinal by BCDO. A peak at 520 nm corresponding to the absorbance maximum 

of PR is visible in the absorbance spectrum of ICM prepared from these cells (Figure 4.9 A). 

This peak becomes more pronounced on supplementation of the growth medium with 

retinal. Western blot analysis confirmed that PR is present in the ICM and in larger quantities 

when retinal is added to the growth medium (Figure 4.9 B). These data suggest that PR is able 

to assemble into the photosynthetic membrane of Rba. sphaeroides and that the small 

amount of retinal produced by crtIYblh2 Δ1BA is sufficient for the expression of some PR, 

although supplementation is required to produce increased amounts of this protein. 

To increase the amount of PR in the membrane, it was produced in the crtIYblh2 Δ1BA strain 

through expression from the plasmid pBBRBB-Ppuf843-1200-PR. This plasmid has been 

previously used to produce large amounts of PR in a Rba. sphaeroides ΔRCLH (reaction centre 

minus) background (Tikh et al., 2014). A peak at 520 nm is observed in the absorbance 

spectrum of ICM isolated from this strain (Figure 4.10 A) and is more pronounced than when 

PR is expressed genomically. This peak is increased when the cells were supplemented with 

retinal, and ICM appeared redder in colour (Figure 4.10 B). Western blot analysis of ICM 

showed the presence of PR in membranes both with and without supplementation with 

retinal (Figure 4.10 C). The same result was observed in the crtIYblh2 Δ1BA ΔccoP background 

in which no retinal is present (Figure 4.11), which indicates that PR is able to assemble into 
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the ICM in the absence of retinal. Studies on the folding of bacteriorhodopsin show that 

retinal binds at a late stage in the folding process (Booth, 2000). Therefore, it is possible that 

the same is the case for PR and that it is able to associate or assemble in the membrane 

without bound retinal. 

4.4.6 Decreased membrane curvature results in increased expression of 

proteorhodopsin 

The photosynthetic complexes of Rba. sphaeroides are shaped in such a way as to induce 

membrane curvature of the photosynthetic membrane (Figure 4.12 A and B). Membrane 

proteins from other organisms may be shaped to fit into flatter membranes and the highly 

curved membrane environment of Rba. sphaeroides may not favour the expression of these 

proteins. Previous studies have shown that the knockout of various photosynthetic 

complexes results in increased expression of foreign membrane proteins in Rba. sphaeroides 

(Laible et al., 2009; Tikh et al., 2014), although this was suggested to arise from making more 

membrane area available rather than making the membrane more planar. To test the 

curvature hypothesis, PR was expressed in different Rba. sphaeroides backgrounds. Increased 

PR expression was seen in ΔpufX and ΔpufX Δ1BA backgrounds when compared to WT 

(spherical ICM) and Δ1BA (tubular membranes) (Figure 4.12 D). A ΔpufX Δ1BA background 

was therefore used for the expression of PR with the aim to purify the protein. However, 

while PR was found in the membrane fraction of these cells, the amount of purified 

proteorhodopsin was too low to obtain an absorbance spectrum to confirm full assembly 

(Figure 4.13). 

4.4.7 Low amounts of proteorhodopsin can be purified from Synechocystis PCC6803 

The cyanobacterium Synechocystis PCC6803 is able to synthesise retinal. The gene for PR was 

therefore introduced onto the genome of this strain to determine whether it is able to 

assemble functional PR. PR was detected in both the soluble and insoluble (membrane) 

fractions of this strain (Figure 4.14 B). Only a very small amount of PR could be purified from 

this strain, and there was evidence of protein degradation (Figure 4.14 C). The appearance of 

PR in the soluble fraction indicates that a very large amount of PR is produced or that PR 

cannot fully insert into the membrane, possibly due to incomplete binding of retinal. It is 

possible that PR requires a specific leader sequence for correct insertion into the thylakoid 

membrane.  

Synechocystis does not encode a polypeptide with homology to a known opsin, therefore the 

retinal it produces may have a role in signalling or regulation (Ruch et al., 2005). As a result, 

only very low amounts may be synthesised and found within the cell. In organisms that 
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produce PR, the genes necessary for the biosynthesis of retinal are often found downstream 

of the PR gene indicating that for functional relevance, the target cell should have the desired 

capability of retinal production (McCarren and DeLong, 2007). 

The gene for proteorhodopsin was positioned under the light-driven slr1311 (psbAII) locus. 

There are two possible explanations associated with this gene placement for the low amount 

of PR that could be purified. Firstly, as the cell culture grows, self-shading prevents optimal 

transcription form the light-driven promoter. Secondly, the proteorhodopsin-producing 

mutant appeared to be light sensitive as cells grown in high light levels did not grow or died. 

This necessitated the use of low light levels for cell growth. The light-sensitivity of this strain 

raises the possibility that the proton pumping ability of PR could have been damaging to the 

cells. PR is able to vary the direction in which it pumps protons depending on the pH of the 

environment. Depending on the orientation in which PR is inserted into the membrane and 

the pH of its surroundings, it may deplete the transmembrane proton gradient used to drive 

ATP synthesis. 

4.4.8 Additional work 

Native operons feature the genes necessary for retinal biosynthesis in reverse order. The 

placement of blh as the first of the three added genes in Rba. sphaeroides may result in 

increased retinal production. It may also be necessary to place these genes under the same 

promoter as PR. 

Further purification strategies must be attempted to verify the correct assembly of PR in Rba. 

sphaeroides. This includes the purification of PR from crtIYblh2 Δ1BA::PR. The use of pBBRBB-

Ppuf843-1200-PR in this strain will result in increased yields to facilitate purification.  

To further probe the effect of membrane curvature on the expression of PR, membranes 

should be prepared to discount any signal contribution from PR that had not assembled in 

the membrane. There is currently little research on the distribution of PR in native 

membranes. AFM and EM could be performed on Rba. sphaeroides chromatophores vesicles 

to determine the arrangement of the protein in this system.  

Photosynthetic growth curve analysis of crtIYblh2 Δ1BA::PR will determine whether PR has 

the potential to augment photosynthesis. In this strain, the cytochrome bc1 complex could be 

deleted or inhibited to determine whether the PR can replace its proton-pumping abilities. 

Ultimately a membrane packed with PR could replace the light-harvesting, reaction centre 

and cytochrome bc1 complexes. It may be possible to enhance the performance of this new 
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photosynthetic unit by creating an artificial antenna system for the PR in place of the Rba. 

sphaeroides LH1 and LH2 molecules. 

If PR it is to be useful for photosynthesis in Synechocystis, it must be located in the thylakoid 

membrane and in the correct orientation. This could be achieved by attaching a signal 

sequence to PR, for example the Tat signal sequence which targets the petC1 and petC2 

proteins to the thylakoid membrane (Aldridge et al., 2008). 

4.4.9 Conclusion 

The aim of this work was to explore the potential for the introduction of foreign pigments 

and proteins into the photosynthetic membrane of Rba. sphaeroides with the eventual aim of 

augmenting photosynthesis. This work has established the principle that the native 

carotenoid biosynthesis pathway can be engineered through the inclusion of three foreign 

genes to produce small amounts of retinal. Proteorhodopsin has been successfully expressed 

in the photosynthetic membrane, but the levels of this protein may have to be increased 

significantly before it will be possible to augment photosynthesis by contributing to the 

transmembrane proton gradient used to drive the ATP synthase. 
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Chapter 5 

Design and expression of a transmembrane maquette 

5.1 Summary 

This chapter explores the potential for the use of synthetic peptide maquettes as additional 

photosystem components in Rhodobacter sphaeroides. The gene for a transmembrane 

maquette (TM) was designed using design principles from natural membrane proteins and is 

based on existing amphiphilic maquettes. The maquette features a hydrophilic, cytoplasmic, 

domain and a hydrophobic membrane-spanning domain. Incorporated into the design are six 

histidine residues which are capable of non-covalently binding three haem molecules.  

The TM is able to assemble in to the intracytoplasmic membrane of Rba. sphaeroides and the 

membranes of Escherichia coli. The net charge of the cytoplasmic N-terminus was shown to 

be important for expression of the TM, with the introduction of negatively charged residues 

leading to decreased expression. It was determined that the extent of membrane curvature is 

important for TM expression in Rba. sphaeroides; decreased membrane curvature resulted in 

increased expression of TM.  

Strategies used to determine the pigment binding properties of TM included the stimulation 

of haem production in E. coli and introduction of the maquette into a Rba. sphaeroides 

mutant that accumulates bacteriochlorophyll precursors. The data in this chapter provide 

evidence for pigment-binding by the maquette although further work is required to explore 

this. This work forms the basis of the bottom-up redesign of photosystem components with 

the eventual aim to augment photosynthesis in Rba. sphaeroides and create new 

photosynthetic pathways. 
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5.2 Introduction 

At the turn of the 20th century Emil Fischer “foresaw a time in which physiological chemistry 

will not only make greater use of natural enzymes but will actually resort to creating synthetic 

ones” (Fischer, 1902, 1905). Recently, the field of de novo protein design has expanded 

rapidly. However, translating any particular protein function into a successful synthetic 

protein remains a challenge, even more so to express function synthetic protein in vivo. One 

approach pioneered by the laboratory of Professor Les Dutton at the University of 

Pennsylvania is to create synthetic self-assembling peptide structures known as maquettes. 

Maquettes aim to emulate the function of natural oxidoreductases whilst avoiding the 

complexity of natural proteins arising from Darwin’s principle of multiple-utility (Darwin, 

1862). Maquettes are reviewed in Section 1.11. The ‘bottom-up’ design of maquettes 

provides a simple, modular approach for tailoring the structure and function of components 

that transfer excitation energy and electrons in photosynthetic systems.  

The key structural characteristics and functional elements of natural membrane proteins 

have been reproduced in artificial peptide maquettes. If a maquette is to replicate the 

function of, or become, a photosystem component it must be not only membrane-bound but 

have a vectorial orientation (Discher et al., 2003). This vectorial character was conferred on 

early hydrophilic maquettes through the addition of palmitoylates or cholesterols to the loop 

regions of the 4-helix bundles; these were able to form stable oriented Langmuir monolayer 

films (Chen, 1999; Chen et al., 1998). More recently, amphiphilic α-helical bundles have been 

formed which are a fusion of sequences from previously designed hydrophilic and lipophilic 

maquettes and incorporate lipophilic domains from natural proteins (Discher et al., 2005). 

These amphiphilic (AP) maquettes consist of two distinct continuous hydrophilic and 

lipophilic domains. Figure 5.1 shows the evolution of AP maquettes from an original 

hydrophilic maquette. 

The original AP maquette is designated AP0, the structure of which is shown in Figure 5.1 B. 

The hydrophilic domain of AP0 consists of 4-α-helices which are patterned with polar and non 

polar amino acid residues which assemble in such a way as to present a hydrophilic face to 

the exterior and a hydrophobic face to the interior of the maquette (Ye et al., 2004). The α-

helices of the lipophilic domain are extensions of the hydrophilic helices and are patterned in 

the opposite way. AP0 has haem-binding histidine residues on the interior of the hydrophilic 

domain. 
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Figure 5.1 Schematic drawings of amphiphilic maquettes 

De novo designed maquettes are built from α-helices. In all cases except B, positive residues are 
coloured blue, negative are red, polar uncharged are yellow and nonpolar residues are purple. In B, 
hydrophobic regions are coloured purple and hydrophilic regions are white. The positions of haem-
ligating histidines are shown in green and the redox-coupled glutamates are shown in red. AP 
maquettes readily co-assemble with detergents to form micelles or with lipids to form membranes (C 
and D, top).  

A. The hydrophilic domains of the amphiphilic (AP) maquettes are based on the hydrophilic 
maquette, HP1, which consists of two antiparallel dihelices; each dihelix is connected by a 
disulphide bond. 

B. The original AP maquette, AP0. 
C. The lipophilic and hydrophilic domains of AP1 are connected by a flexible linker.  
D. The lipophilic and hydrophilic domains of AP3 are connected directly.  

 
(Figure adapted with permission from Discher et al., 2005 and from Ye et al., 2004.  

Copyright American Chemical Society, 2004 and 2005) 
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There are now several members of the AP maquette family (see Figure 5.1). In the latest 

designs, porphyrin and chlorin cofactors are able to bind in either the hydrophilic or lipophilic 

domains (Discher et al., 2005; Noy et al., 2005). In order to ligate highly hydrophobic metal 

porphyrins such chlorins within the lipophilic domain, it was necessary to provide a 

hydrophobic environment around the cofactor binding site. Chlorophylls and 

bacteriochlorophylls (BChls) (and their metal-substituted analogues) are unable to bind 

hydrophilic maquettes due to the tendency of these pigments to aggregate or precipitate in 

aqueous or polar solvents (Noy et al., 2005). Haem, and Zn- and Ni- bacteriochlorophylls have 

been bound within the liphilic domains of AP maquettes, although the binding affinities for 

BChls are much lower than for haem, which is in the nanomolar range (Noy et al., 2005). 

More recently, the maquette AP6 was designed to emulate the proton and electron transfer 

reactions of the Rba. sphaeroides cytochrome bc1 complex (Chobot et al., 2010; Hokanson, 

2010; Fry et al., 2011). AP6 combines the engineering principles learned from previous 

maquettes to perform quinol-cytochrome c oxidoreductase activity with a near natural 

turnover rate.  

There are various design features included in AP family maquettes that facilitate folding, 

membrane insertion and cofactor binding. Asparagine confers stability when placed at the 

membrane-solvent interface (Lear et al., 2003). Hydrophobic mismatch between the 

membrane interface and the maquettes can be overcome through the use of charged 

residues with long and/or aromatic side chains such as lysine or phenylalanine (Strandberg 

and Killian, 2003). In addition phenylalanine residues are often found near haem binding sites 

in natural proteins (Koder et al., 2009) and lysines are often found in cytoplasmic loops due to 

their positive charge (von Heijne, 1986). Residues such as lysine, with straight (unbranched) 

side chains, have high α-helix forming propensities (Chou and Fasman, 1978). Glycine has 

high conformational flexibility and therefore has a very low helix forming propensity, as such 

glycine residues are found in the loops connecting the maquette α-helices. Tryptophan 

residues are incorporated to facilitate optical detection using UV-visible spectroscopy. 

AP maquettes have been designed for membrane insertion and to perform transmembrane 

electron transfer (Noy et al., 2005; Discher et al., 2005). Amphiphilic maquettes expand the 

potential of maquettes towards emulating natural membrane proteins, for example man-

made terminal oxidase proteins that could create a proton motive force within a living 

organism. The majority of the published research involving AP maquettes has involved their 

synthesis and assembly with cofactors in vitro. The single chain amphiphilic maquette, AM1 

has been expressed in E. coli in inclusion bodies, and refolding is necessary after purification 
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(Bohdana Discher, personal communication). The work performed in this chapter used a 

modified version of AM1 and aimed to determine how bacteria respond when these 

synthetic proteins are expressed and whether they can assemble in the native lipid bilayer 

membrane. This study forms the basis of exploring the possibility of building maquettes into 

the photosynthetic machinery of Rba. sphaeroides as a working component. 

5.3 Results 

5.3.1 Design of the maquette 

The amphiphilic haem-binding maquette (denoted TM) used in this study was based on the 

single-chain amphiphilic maquette, AM1. AM1 was designed through many iterations by the 

group of Bodhana Discher and Les Dutton; TM was produced by modifying the net charges of 

the loops of AM1. Membrane proteins typically feature positively charged cytoplasmic loops 

and negatively charged periplasmic or extracellular loops and TM was designed by Neil 

Hunter to satisfy these principles (Figure 5.2 A) (von Heijne, 1986). The differences in 

sequence between TM and AM1 are shown in Figure 5.2 D. TM is a 21 kDa protein and 

features a C-terminal His-tag for immunodetection and purification. As with the AP-family 

maquettes, TM features distinct continuous hydrophilic and lipophilic domains (Figure 5.2 B 

and C). TM is a 21 kDa protein. The sequence was analysed using the transmembrane 

topology prediction software MEMSAT3 and MEMSAT-SVM to confirm that the maquette is 

likely to feature four transmembrane helices (Figure 5.3). 
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Figure 5.2 The sequence of TM  

A. The amino acid sequence of TM with predicted secondary and tertiary structure indicated. 
Negatively charged residues are in red, positive in blue and the histidines are in green. 

B. The amino acid sequence of TM was analysed using the topology prediction software 
MEMSAT3 and DISOPRED. 

C. Schematic of TM showing alpha-helical and membrane (beige) regions with net charges on 
the periplasmic and cytoplasmic regions. Haem binding histidine residues are highlighted in 
green.  

D. ClustalW2 alignment of TM with AM1. Positively charged residues are in blue, negative in red. 
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Figure 5.3 Membrane topology prediction for TM 

The amino acid sequence of TM was analysed using the transmembrane topology prediction software 
MEMSAT3 and MEMSAT-SVM. 

A. MEMSAT-SVM representation of the predicted 4 transmembrane helices of TM. Both the N- 
and C-termini are predicted to be cytoplasmic. 

B. Schematic of the transmembrane model predicted by both MEMSAT-SVM and MEMSAT3. 
Kyte-Doolittle hydropathy plot demonstrating the presence of regions of high hydrophobicity. 
Four transmembrane helices are observed. 

C. Amino acid sequence of TM showing the presence of the transmembrane helices and location 
of the inter-helix loops.  

 

The gene for the expression of TM was designed with codons optimised for expression in Rba. 

sphaeroides. However, due to constraints imposed by the DNA synthesis company, Bio Basic 
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Inc., compromises had to be made to lower the GC content and repetition of the gene. This 

was not anticipated to be a problem as Rba. sphaeroides is reasonably tolerant of rare codons 

(Laible et al., 2009). 

5.3.2 Expression of TM in Rba. sphaeroides membranes 

To determine to what extent the charge of the cytoplasmic loops affects expression of TM, 

two variants were expressed in Rba. sphaeroides. The first variant contained only a C-

terminal His tag and the second variant, denoted TM-FLAG, also contained an N-terminal 

FLAG tag. The FLAG tag conferred a significant negative charge onto the cytoplasmic N-

terminus of the protein (Figure 5.4). 

 

Figure 5.4 The sequence of TM with an N-terminal FLAG tag 

The amino acid sequence of TM with predicted secondary and tertiary structure is indicated. 
Negatively charged residues are in red, positive in blue and the histidines are in green. 

 

The synthesised DNA contained the TM gene including a region encoding an N-terminal FLAG 

tag and was cut with NcoI and HindIII. The DNA fragment was ligated into pIND4 to produce 

pIND4-TM-FLAG. The plasmid was transferred to Rba. sphaeroides Δpuc1BA ΔpufX via 

conjugation. This strain was chosen due to the findings of Chapter 4 (Section 4.3.8) in which 

proteorhodopsin expressed best in this strain. The expression of pIND4-TM-FLAG in Rba. 
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sphaeroides yielded only low levels of protein (Figure 5.5, pIND4-TM FLAG). The FLAG tag was 

removed by amplifying TM from pIND4-TM-FLAG using the primers “TM no FLAG F” and “TM 

R HindIII” to create pIND4-TM. It was found that expression of TM was increased when the 

FLAG tag was removed (Figure 5.5). 

 

Figure 5.5 Expression of TM with and without the N-terminal FLAG tag 

A 10 ml starter culture of each was grown for 2 days and used to inoculate 80 ml of M22 in a 120 ml 
flask. The 80 ml cultures were grown semi-aerobically for 6 hours at 34 °C before induction with 1 mM 
IPTG for 16 hours. Equal amounts of whole cells were separated by SDS-PAGE followed by transfer to a 
nitrocellulose membrane. Immunoblotting was performed using an anti-His antibody to detect the C-
terminal His tag found on both TM versions. 

 

5.3.3 Expression of TM in E. coli 

Prior to further expression and analysis in Rba. sphaeroides, TM was expressed in E. coli to 

ensure that the gene product assembled in the membrane with haem bound as designed. 

E. coli BL21(DE3 ) pLysS cells were transformed with pIND4-TM and induced with 1 mM IPTG, 

but only very low levels of TM were detected by western blot (Figure 5.6). However, good 

levels of TM expression were achieved through growth in autoinduction media (Figure 5.6).  

 

 

Figure 5.6 Expression of TM in E. coli BL21 

E. coli BL21 cells were transformed with pIND4-TM. 20 ml of overnight starter culture were used to 
inoculate 500 ml of LB or autoinduction media in a 1.5 L flask. Cells were grown at 37 °C and agitated at 
250 rpm for 1 hour followed by the addition of 1 mM IPTG where relevant and growth at 20 °C with 
shaking at 150 rpm for 16 hours. Cells were pelleted by centrifugation and resuspended in 20 mM Tris, 
0.5 mM EDTA, pH 7.4. Equal amounts of whole cells were separated by SDS page, transferred to a 
nitrocellulose membrane and immunoblotted using an anti-His antibody to detect the His tag on TM. 

 

5.3.4 Purification of TM from E. coli membranes 

To determine whether the maquette was located in the membrane fraction, membranes 

were prepared from E. coli cells producing TM using sucrose gradients according to the 
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method detailed in Section 2.11 (Figure 5.7 B). Western blot analysis of the membrane 

fractions showed a stronger signal corresponding to TM in the outer membrane fraction 

(Figure 5.7 A). This is an unexpected result and it is likely that the outer membrane fraction is 

contaminated with inner membrane. 

To maximise TM yield during purification the inner and outer membranes were pooled, 

pelleted and solubilised according to the method described in Section 2.11. The clarified 

membrane sample was loaded onto an Ni NTA column, washed to remove any contaminating 

proteins and eluted with 400 mM imidazole. All purification buffers contained 0.1 % LDAO. 

The elution fractions were analysed using SDS-PAGE with the gel stained with Coomassie; a 

band corresponding in size to TM was observed (Figure 5.7 C). The elution fractions were 

pooled and concentrated but the sample was not coloured indicating that TM did not have 

any pigment bound. 

 

 

Figure 5.7 Purification of TM from E. coli membranes 

E. coli BL21(DE3) pLysS cells were transformed with pIND4-TM. Protein expression was induced 
through the use of autoinduction media at 20 °C with shaking at 150 rpm for 16 hours. Membranes 
were prepared on a 55-30% sucrose step gradient. TM was purified using an Ni-NTA affinity column. 

A. Western blot analysis of total membranes purified from BL21(DE3) pLysS and inner and outer 
membranes purified from BL21(DE3) pLysS expressing TM. Equal amounts of protein were 
loaded onto each. 

B. Sucrose gradient separation of E. coli inner and outer membranes. 
C. SDS-PAGE analysis of material that did not bind to the Ni-NTA column and elution fractions 1-

7, showing the maquette at 21 kDa. 
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5.3.5 Supplementation of E. coli with ALA and iron 

To increase the amount of haem available in the cell for TM to bind, E. coli cells were 

supplemented with 500 µM D-aminolevulinic acid (ALA, a precursor in the haem biosynthesis 

pathway) and 50 µM ferrous chloride. To achieve higher expression levels of TM, the gene 

was amplified using the primers “TM F pET9a” and “TM R pET9a” and ligated into pET9a to 

create pET9a-TM. pET9a-TM was used to transform E. coli BL21(DE3) cells. The cells were 

grown, harvested and membranes were prepared as described in Section 2.11. As a control 

BL21(DE3) cells were grown without pET9a-TM, with and without supplementation with ALA 

and iron.  

Whole cells expressing TM appear slightly pink, and when ALA and Fe are supplemented the 

cells appear dark red (Figure 5.8 A, bottom panels). Cells not expressing TM appear a similar 

colour with and without supplementation. The outer membranes were darker in the 

supplemented cells, and free haem was present at the top of the sucrose gradient in both 

cases (Figure 5.8 A).  

The absorbance spectra of membranes obtained from cells without TM are very similar and 

feature absorbance maxima between 415-422 nm in all cases (Figure 5.8 B). The absorbance 

spectrum of the inner membrane from cells expressing TM shows peaks characteristic of free 

haem (Figure 5.8 D). Spectra of the outer membrane fraction appear similar in all cases 

(Figure 5.8 B-D). Western blot analysis of the membrane fractions showed that TM is present 

only in the outer membrane fraction of cells both with and without supplementation (Figure 

5.8 C and D, inset). 

After harvesting, the membranes collected from cells expressing TM and supplemented with 

ALA and iron were pelleted by centrifugation at 40,000 rpm for 2.5 hours in a Beckman Ti 45 

rotor. The inner membrane pellet was very small with weak colouration, indicating that the 

majority of the red colour came from free haem. The outer membrane pellet was larger and 

dark brown (data not shown). 
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Figure 5.8 Expression of TM in E. coli supplemented with ALA and iron 

TM was expressed from pET9a-TM in BL21(DE3). 5 ml of an overnight starter culture was used to 
inoculate 500 ml of LB. Cells were induced with 1 mM IPTG for 48 hours at 30 °C with shaking at 250 
rpm. Where indicated, cells were supplemented with 500 µM D-aminolevulinic acid (ALA) and 50 µM 
ferrous chloride. 

A. Photographs of whole cells, and sucrose gradients onto which the broken cell material was 
loaded. The locations of the inner and outer membrane fractions are indicated. 

B. Absorbance spectra of the inner and outer membranes prepared from E. coli not expressing 
TM. Without supplementation, and (inset) with ALA and iron. 

C. E. coli membranes expressing TM without supplementation. The inset shows western blot 
analysis of membrane fractions, immunoblotted with an anti-His primary antibody. 

D. E. coli membranes expressing TM with supplementation with ALA and iron. The inset shows 
western blot analysis of membrane fractions, immunoblotted with an anti-His primary 
antibody. 

 

5.3.6 Expression in Rba. sphaeroides strains that contain membranes of varying 

curvature  

Previous studies have found that Rba. sphaeroides strains unable to assemble various 

photosynthetic complexes expressed higher levels of foreign membrane proteins (Laible et 

al., 2009; Tikh et al., 2014). The data obtained in Chapter 4 regarding the expression of 

proteorhodopsin (Section 4.3.8) supported these findings and indicated that a more planar 
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membrane environment facilitated protein expression. TM, being made up of only of 4 

transmembrane α-helices, may also prefer to sit in flat membranes. TM was expressed from 

pIND4-TM in various Rba. sphaeroides backgrounds with differing membrane morphologies. 

Expression was significantly better in a ΔpufX background (Figure 5.9).  

 

Figure 5.9 Expression of TM in Rba. sphaeroides strains with membranes of varying 
curvature 

A 10 ml starter culture of each strain was grown for 2 days and used to inoculate 80 ml of M22 in a 120 
ml flask. The 80 ml cultures were grown semi-aerobically for 6 hours at 34 °C before induction with 
1mM IPTG for 16 hours. Equal amounts of whole cells were separated by SDS-PAGE, blotted onto a 
nitrocellulose membrane and immunoblotted with an anti-His antibody to detect the C-terminal His 
tag on TM. 

 

5.3.7 Expression of TM from the genome of Rba. sphaeroides 

The results presented in Section 5.3.6 indicate that the expression of the plasmid-borne TM 

gene yields higher levels of TM protein in a Rba. sphaeroides ΔpufX strain that makes larger, 

less curved membranes. In order to investigate whether genomic integration of the TM gene 

could improve expression levels, TM was introduced into the Rba. sphaeroides ΔpufX genome 

in place of the puc1BA genes, encoding the LH2 subunits. Despite the fact that TM appeared 

to express from pIND4-TM at lower levels in Δ1BA ΔpufX compared to ΔpufX, the placement 

of TM at the puc1BA locus was chosen as it has a strong promoter.  

A pK18mobsacB construct was created containing a 1527 bp fragment containing the region 

upstream of the puc1BA genes, the TM gene and the region downstream of the puc1BA 

genes. These fragments were fused together using overlap extension PCR. TM, along with a 

C-terminal his tag, was amplified from the plasmid pIND4-TM using the primers “TM OE F” 

and “TM OE R” to create a 619 bp fragment. A 410 bp region of DNA upstream of the puc1BA 

genes was amplified using the primers “PucBA KO F EcoRI” and “TM up OE R”. A 469 bp 

region of DNA downstream of the puc1BA genes was amplified using the primers “TM down 

OE F” and “PucBA KO DR”. The fragment was cut with EcoRI and HindIII and ligated into 

pK18mobsacB to create the plasmid pK18mobsacB-TM. The plasmid was transferred to Rba. 

sphaeroides ΔpufX via conjugation and the mutant Rba. sphaeroides ΔpufX Δ1BA::TM was 

created according to the method described in Sections 2.13-14 and 3.3.2. 
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Figure 5.10 Purification of TM from ΔpufX Δ1BA::TM 

A. Absorbance spectra of ICM purified from ΔpufX Δ1BA and ΔpufX Δ1BA::TM 
B. Absorbance spectra of various stages of the purification process. 

Purple - Solubilised ICM 
Green - Flow through 
Red - 200 mM imidazole wash 
Blue - 500 mM imidazole elution 

C. Western blot analysis of the stages in the purification process.  
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An 8 L photosynthetic culture of Rba. sphaeroides ΔpufX Δ1BA::TM was grown, pelletted and 

French pressed. The membranes were prepared as described in Section 2.15 and 

resuspended in 20 mM HEPES pH 7.4. Other than differences in the 450-500 nm region, the 

absorbance spectrum of ICM prepared from ΔpufX Δ1BA::TM contains no peaks that are not 

seen in ICM prepared from ΔpufX Δ1BA (Figure 5.10 A). The membranes were solubilised as in 

Section 2.15.3. The solubilised membranes were applied to a Ni NTA column, which was 

washed to remove any contaminating proteins and eluted with 500 mM imidazole. The 

elution fractions were concentrated but appeared colourless, but a peak at 420 nm was 

enriched in the 200 mM wash (Figure 5.10 B). Western blot analysis showed that TM was 

present in all fractions including a wash with 200 mM imidazole prior to elution (Figure 5.10 

C). Protein levels were too low to be seen on a Coomassie stained SDS-PAGE gel (data not 

shown). 

5.3.8 Expression of TM in a Rba. sphaeroides strain that accumulates 

bacteriochlorophyll precursors 

TM may be able to bind porphyrins other than haem. To test this hypothesis, TM was 

expressed in Rba. sphaeroides ΔbchCFX (ΔCFX) which accumulates the BChl precursors Mg-

monovinyl protochlorophyllide a and chlorophyllide a (see Section 1.3.2). ΔCFX cannot grow 

photosynthetically as it lacks BChl and cannot produce the LH1, LH2 or RC complexes.  

The TM gene was placed onto the genome of this strain according to the method described 

previously to produce ΔCFX Δ1BA::TM. This strain was grown semi-aerobically and ICM was 

prepared on sucrose gradients as described previously in buffer containing 20 mM Tris, 500 

mM NaCl, 20 mM imidazole. The membranes from ΔCFX Δ1BA::TM appeared more 

red/orange than those from ΔCFX, the membranes also appeared aggregated (Figure 5.11 A). 

A peak appeared in the absorbance spectrum at 388 nm that is absent in the absorbance 

spectrum of ICM from ΔCFX (Figure 5.11 B).  
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Figure 5.11 ICM prepared from ΔCFX and ΔCFX Δ1BA::TM 

A. Sucrose gradients to isolate ICM from ΔCFX and ΔCFX Δ1BA:TM grown semi-aerobically. 
B. Absorbance spectra of ICM purified from ΔCFX (black) and ΔCFX Δ1BA:TM (red). Peak maxima 

in nm are indicated. 

 

Membranes were solubilised as described in Section 2.15.3. The solubilised membranes were 

applied to a Ni NTA column which was washed with increasing concentrations of imidazole to 

remove any contaminating proteins and protein eluted with 500 mM imidazole. On 

solubilisation, the peak that was not observed in ΔCFX ICM at 388 nm shifted to 384 nm 

(Figure 5.12 A). This peak was present in the flow through fraction that did not bind to the 

column (Figure 5.12 A); western blot with an anti-His antibody did not show a signal in this 

fraction, suggesting that the 384 nm peak does not correspond to TM (Figure 5.12 B). A peak 

at 414 nm was seen in the elution fraction, and western blot analysis confirmed that TM was 

present in this fraction (Figure 5.12). 



 

148 
 

 

Figure 5.12 Purification of TM from ΔCFX Δ1BA::TM 

ICM was prepared from semi-aerobically grown cells, solubilised in 3 % β-DDM and applied to an Ni 
NTA column.  

A. Absorbance spectra of the various stages of purification 
B. Western blot analysis of the flow through and elution fractions using an anti-His antibody. 

 

5.4 Discussion 

5.4.1 Charge patterning across the maquette is important for insertion into 

membranes 

The design for TM incorporates many of the design principles found in natural membrane 

proteins. One of the most important of these features is that for correct insertion and 

orientation in the membrane, any cytoplasmic portions must be predominantly positively 

charged and any periplasmic or extracellular regions must be negatively charged (von Heijne, 

1986). The introduction of an N-terminal FLAG tag to TM violated this rule and introduced a 

large negative charge to the cytoplasmic N-terminus. On removal of the FLAG tag, maquette 

expression levels in Rba. sphaeroides increased (Figure 5.5). It is possible that any maquette 

that did not sit in the membrane properly was degraded, resulting in the decreased 

appearance of TM when expressed from pIND4-TM-FLAG. 
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5.4.2 TM sits in the membrane of E. coli 

TM was found predominantly in the outer membrane fraction of E. coli (Figures 5.7 A and 5.8 

C and D, inset). This was unexpected as the maquette has no targeting sequence to the outer 

membrane. It is possible that the band harvested as the outer membrane also contained 

unseparated cell envelope material (Spencer and Guest, 1974), or was contaminated with 

inner membrane. To test this, future work should involve western blotting of each membrane 

fraction with an antibody to a protein unique to the inner or outer membrane. TM was 

purified from the pooled membranes, however it appeared that no pigment was bound 

(Figure 5.7). It is likely that the pigment was lost during purification as haem B is ligated non-

covalently. Until recently, maquettes have been synthesized and assembled in vitro, or 

expressed as apoproteins in E. coli requiring in vitro addition of the selected cofactor 

(Robertson et al., 1994; Farid et al., 2013). Currently, there is no maquette expressed in E. coli 

that 100% binds haem B, despite nanomolar binding affinities in vitro. This is possibly due to 

the unfolding of the maquette in the crowded E. coli cytoplasm, or insufficient stimulation of 

the haem B biosynthetic pathway (Farid et al., 2013; Watkins et al., 2014). With the 

supplementation of the growth medium with ALA and iron to stimulate the haem 

biosynthesis pathway it is possible to purify soluble maquettes with some haem bound 

although much haem is lost during the purification process and it is necessary to reconstitute 

the protein by adding haem in vitro (data not shown, and Goutham Kodali, personal 

communication).  

It was not possible to definitively conclude that membrane-bound TM binds pigment in E. coil 

as absorbance spectra of the inner and outer membranes feature a peak possibly 

corresponding to a native cytochrome in the region that haem-bound TM would be expected 

to appear (Figures 5.8 B-D and 5.13). The red colour of cells expressing TM, particularly when 

supplemented with ALA and Fe, is evidence to suggest that TM can bind haem (Figure 5.8 A, 

bottom panels). 
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Figure 5.13 Absorbance spectra of the amphiphilic maquette AP0 

Titration of hemin into a 1.0 µM solution of AP0 recorded in a 1 cm path length cuvette. The spectra 
shown contain increasing amounts of added hemin. The vertical line at peak 412 nm indicates the blue 
shift of the peak, due to contribution of free haem (400 nm) in the solution. 

(Figure reproduced with permission from Ye et al., 2004. Copyright American Chemical Society, 2004.) 

 

5.4.3 TM prefers to insert into a flatter membrane environment 

The photosynthetic membrane of Rba. sphaeroides is highly curved, and although the LH2 

complex preferentially inserts into this membrane (Adams et al., 2011) this environment may 

not favour the expression of foreign membrane proteins with no intrinsic curvature. There is 

also the issue of crowding to consider; membrane vesicles from wild-type cells appear to 

have no empty areas to accommodate foreign membrane proteins (Cartron et al., 2014). 

Previous studies have shown that foreign membrane protein expression is improved with the 

knockout of various native complexes (Laible et al, 2009; Tikh et al., 2014). This was also 

found to be the case in Chapter 4 in which proteorhodopsin expressed in greater amounts in 

ΔpufX Δ1BA and ΔpufX backgrounds (Section 4.3.8). Figure 5.9 shows evidence for increased 

TM expression in a ΔpufX background which features large, flat membranes (Siebert et al., 

2004), although the absence of LH2 complexes appeared to have no beneficial effect. One 

explanation could arise from the work of Adams et al., 2011; the absence of PufX already 

lowers LH2 levels because of the more planar membranes are unfavourable for LH2 insertion, 

so there is ample room for inserting TM, especially given the low expression levels. Creating 

even more membrane area by removing LH2 altogether would not improve TM levels. 
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5.4.4 TM is found in the ICM of Rba. sphaeroides 

TM was successfully expressed from the genome of Rba. sphaeroides ΔpufX Δ1BA::TM (Figure 

5.10). Overlap between the expected absorbance of haem-bound TM (Figure 5.13) and the 

BChl Soret absorbance peak obscures differences in the absorbance spectrum of ICM with 

and without TM, but they can be seen in 400-500 nm region in Figure 5.10 A. TM was found 

in the membrane fraction of these cells (Figure 5.10 C). The 200 mM elution fraction was 

contaminated with native Rba. sphaeroides proteins and pigments, making it difficult to 

assign a peak to TM (Figure 5.10 B), but the strong peak at ~420 nm is similar to that seen in 

the E. coli experiment in Figure 5.8 D. TM was present in the 500 mM elution fraction and the 

absorbance spectrum revealed that it was free of contaminants, however no peak was 

observed that was likely to correspond to pigment-bound maquette (Figure 5.10 B and C). 

Possibly, the very high concentration of imidazole used for elution displaced haems from 

their binding sites within TM. 

5.4.5 TM pigment binding in Rba. sphaeroides 

The fact that TM could not be purified with bound pigment could either indicate that any 

bound pigment is lost during the purification process or that the maquette was unable to 

bind pigment. As well as haem, amphiphilic maquettes have been shown to be able to bind 

Zn- and Ni- BChls (Discher et al., 2005; Noy et al., 2005). The central ion of BChl is a 

coordinately unsaturated Mg2+. Chlorophyll-binding proteins use a polar protein side chain, 

often from histidine, to provide an extra ligand to coordinate the Mg2+, making it penta-

coordinate (although hexa-coordinate pigments have also been observed) (Haehnel et al., 

2009). Therefore, it is possible that TM may be able to bind this pigment via its histidine 

residues. However, there is evidence to suggest that chlorophyll requires a specific sequence 

motif in order to bind a maquette (Eggink and Hoober, 2000).  

WT Rba. sphaeroides may not accumulate sufficient BChl for TM to bind, and there could be 

complications arising from the presence of the long phytyl tail, so TM was introduced into a 

strain with a truncated chlorophyll biosynthesis pathway. The ΔbchCFX mutant accumulates 

the BChl precursors Mg-monovinyl protochlorophyllide a and chlorophyllide a. The ICM 

prepared from ΔCFX Δ1BA::TM was significantly redder in colour than ΔCFX, which provides 

compelling evidence for TM expression and pigment binding (Figure 5.11 A). The ICM fraction 

on the sucrose gradient appeared aggregated, which could indicate contamination with other 

cell debris, or it could be that TM caused membrane stacking due to interaction between the 

positively charged cytoplasmic regions and negatively charged periplasmic regions. A peak in 

the ICM absorbance spectrum of ΔCFX Δ1BA::TM at 388 nm was not visible in ICM prepared 
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from ΔCFX (Figure 5.11 B). However, data from an attempted purification of the maquette 

suggested that the 388 nm peak was not TM (Figure 5.12). It is possible that any bound 

pigment is lost during the purification process, or that the maquette absorbance spectrum 

overlaps with the native 412 nm peak.  

5.4.6 Additional work 

It has not been possible to definitively determine whether TM is able to bind pigment in vivo. 

Native gel analysis of membranes prepared from strains expressing TM may provide an 

answer to this. Titration of hemin into the purified maquette may determine whether haem is 

able to bind. Future purification protocols should involve gentle washes and elution with a 

gradient of increasing imidazole concentration.  

For increased understanding of the effect of membrane curvature and the negative charge 

introduced by the FLAG tag on the expression of TM, membranes should be prepared to 

discount any signal contribution from apo-maquette that had not assembled in the 

membrane. 

The original TM design features extensions of the transmembrane helices into the aqueous 

phase, into the cytoplasmic side of the membrane. This domain is hydrophilic and is a feature 

common to the AP family of maquettes. This hydrophilic domain provided an amphiphilic 

character to the maquettes which was important for vectorial orientation of the maquette 

within a membrane. This domain also features a third haem binding site, designed to 

participate in electron transfer across the membrane; it is also important for stability and 

assembly (Bodhana Discher, personal communication). This hydrophilic domain has been 

removed from TM (with thanks to Andrew Hitchcock). Future work involves investigating 

whether the charges on the periplasmic and cytoplasmic regions of the maquette would be 

sufficient for membrane insertion in the correct orientation.  

Ultimately, the design of TM could be modified to replicate light harvesting and electron 

transfer roles in vivo.  

5.4.7 Conclusion 

The gene for an amphiphilic transmembrane maquette (TM) was designed and expressed in 

E. coli and Rba. sphaeroides. The data presented in this chapter show that TM is able to 

assemble in to the membrane fraction of both organisms. The design of the maquette takes 

into consideration the design principles of natural membrane proteins and demonstrates that 

the charge on the cytoplasmic N-terminus is very important for protein expression. There is 

evidence to suggest that TM is able to bind pigment although, when expressed in Rba. 
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sphaeroides, it was not possible to determine whether the maquette bound haem or a 

chlorophyll precursor. Further work is required to investigate the pigment-binding properties 

of the maquette. This work forms the basis of the bottom-up redesign of photosystem 

components which could be used to replace existing proteins in vivo or emulate their 

function in artificial membrane systems. 
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Chapter 6 

Tat-mediated recognition of the folded state of a 
wholly synthetic protein and its export by the 
Escherichia coli Tat transporter 

6.1 Summary 

The twin arginine translocation (Tat) system will only export fully, or largely, folded proteins 

from the cytoplasm to the periplasm. It is currently unclear how the quality control 

mechanism of the Tat pathway works. The plasticity of the Escherichia coli Tat system was 

investigated through the use of synthetic protein maquettes. A Tat signal peptide, TorA, was 

fused to the N-terminus of the soluble bis-haem binding maquette, BT6. The Tat system 

recognises and exports BT6 to the periplasm, during translocation the TorA signal peptide is 

cleaved.  

Maquette residues were selectively mutated to modify the cofactor binding, and thus the 

folding properties, of the maquette to test the Tat quality control system. The Tat system will 

not export the maquette without the haem cofactors bound, likely due to loss of ordered 

tertiary structure. This work demonstrates that the Tat system is able to export wholly 

synthetic proteins never seen before by nature. The quality control property of the Tat 

pathway makes it a desirable system for efficient large-scale protein production. Ultimately, 

maquettes could be exported into the growth medium, facilitating purification. This strategy 

offers the potential of maximising protein yield as build-up of protein and possible 

degradation inside the cell are avoided.  
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6.2 Introduction 

The transport of proteins across membranes is one of the great challenges faced by the cell. 

In prokaryotes, two major pathways are used to achieve protein translocation across the 

cytoplasmic (inner) membrane: the secretory (Sec) pathway and the twin-arginine 

translocation (Tat) pathway. The Sec pathway transports proteins in an unfolded 

configuration using energy provided by ATP hydrolysis and the transmembrane proton 

gradient. In contrast, the Tat pathway transports fully folded proteins using only the 

transmembrane proton gradient. The Tat pathway is found in bacteria, archaea and plant 

chloroplasts.  

A range of proteins are transported by the Tat pathway, including those that fold too quickly 

for Sec transport (Palmer and Berks, 2012), those that assemble into oligomeric complexes 

(Rodrigue et al., 1999), and those that bind a series of redox cofactors in the cytoplasm (Berks 

1996). The final group, proteins containing redox cofactors, constitute the majority of Tat 

substrates. Any pathway involved in aerobic respiration or photosynthesis which involves the 

cytochrome bc1 complex (the b6f complex in plastids) is dependent on the Tat system to 

export the cofactor-containing Rieske subunit (Molik et al., 2001; Bachmann et al., 2006; De 

Buck et al., 2007). Cytoplasmic enzymes insert a variety of cofactors into these complex 

proteins which then need to be transported in a folded or largely folded form. How the Tat 

pathway knows whether substrates are folded correctly prior to export is currently not well 

understood. 

Proteins translocated by the Tat pathway have an N-terminal signal sequence characterised 

by a twin arginine motif. The signal sequence is cleaved from the precursor protein during or 

immediately after translocation, liberating the mature protein into the periplasm. One of the 

most commonly used Tat signal peptides for investigating the Tat transporter is that of 

trimethylamine N-oxide reductase (TorA) from E. coli. Use of the TorA signal peptide often 

results in high efficiency of export of its substrate (Matos et al., 2012).   

In E. coli the minimum set of components for Tat translocase assembly comprises TatA, TatB 

and TatC. The general consensus is that the substrate binds initially to TatBC, independent of 

other Tat components (Mori and Cline, 2002). The TatA complex then associates with the 

TatBC-substrate complex in the presence of a pH gradient across the membrane (Cline and 

Mori, 2001). There are two current models for the mechanism of translocation: the 

translocation pore, or trap door, model and the membrane destabilisation model; these are 

discussed further in Section 1.12.6 (Hauer et al., 2013).  
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The ability of the Tat system to transport fully folded proteins raises the question of whether 

a quality control or proofreading mechanism exists to prevent futile export of misfolded or 

misassembled proteins. Many studies have tried to address this question. DeLisa et al. have 

shown that several proteins that feature disulphide bonds in their native state are not 

exported by Tat in the absence of cytoplasmic disulphide bond formation (DeLisa et al., 

2003). E. coli strains, termed CyDisCo, that oxidise disulphide bonds in the cytoplasm permit 

the Tat export of disulphide-bond containing proteins (Matos et al., 2014). In contrast, it has 

been found that some proteins that acquire their disulphide bonds in the periplasm can be 

exported via Tat, suggesting that the system can export reduced or unfolded proteins if they 

adopt near-native structures (Alanen et al., 2015). Richter et al. found that the presence of 

hydrophobic surface patches aborts transport (Richter et al., 2007). Various studies have 

shown that there are chaperone or binding molecules that prevent export of a protein until 

cofactor binding has taken place (Oresnik et al., 2001; Ray et al., 2003; Jack et al., 2004). Even 

though advances have been made in understanding the quality control mechanism of the Tat 

system, it is not currently clear how this mechanism would work. 

In order to help clarify the function of the Tat translocase in proofreading of its substrates in 

this study the export of a synthetic protein maquette was investigated. While it is known that 

the E. coli Tat machinery can process foreign proteins, such as GFP (Thomas et al., 2001), it is 

a new challenge to investigate whether the system will export synthetic proteins never 

before seen by nature.   

Maquettes are man-made proteins designed from the bottom up while avoiding natural 

amino acid sequences or motifs. Undesirable complexity is minimised to increase engineering 

freedom; their simplicity facilitates the easy modification of residues to confer new 

properties or function. Maquettes are discussed further in Section 1.11. Maquettes have 

been engineered to bind a wide range of redox-active cofactors. The maquette used in this 

work is termed BT6 (Figure 6.1). BT6 is a bundle of 4 α-helices and binds two haem b 

molecules, each coordinated by two histidine residues within the helices. BT6 can be 

expressed in E. coli; expression can be boosted through the addition of 5-aminolevulinic acid 

(ALA) and iron to increase haem production, although without supplementation the majority 

of expressed maquette is able to scavenge enough haem to bind at both sites (G. Kodali, 

personal communication). Like many Tat substrates, maquettes must assemble in the 

cytoplasm with the cofactor and be exported without the loss of the bound cofactor. 
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Figure 6.1 The structure of BT6 

Model of BT6 based molecular dynamics trajectory simulation, provided by Bryan Fry, University of 
Pennsylvania. 

A. Side view showing protein backbone in yellow with the haem coordinating histidines shown. 
The two haems are in orange. 

B. Top view. 
C. Surface hydrophobicity plots determined using the Kyte-Doolittle scale (blue – most 

hydrophilic, red – most hydrophobic). 

 

As well as the opportunity to gain new insights into the Tat system, the ability to export 

maquettes has advantages for purification and downstream study. Export of recombinant 

protein to the growth medium outside the cell would simplify purification. The quality control 

property of the Tat pathway makes it a desirable system for efficient large-scale protein 

production. Maquette export into the growth medium offers the potential of maximising 

protein yield as build-up of protein and possible degradation inside the cell is avoided. Export 

of the maquette to the periplasm is the first step to achieving this goal.  

In this chapter, the E. coli Tat export machinery was challenged to process the completely 

synthetic protein maquette, BT6. The TorA signal peptide was fused to the N-terminus of BT6 

and expressed in E. coli BL21(DE3) cells. The TorA signal peptide was also fused to the N-
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terminus of a BT6 variant that cannot bind haem in order to determine the fate of Tat 

substrate molecules that are unable to assemble the cofactor correctly. 

6.3 Results 

6.3.1 Construction of the TorA-BT6 strain and expression in E. coli 

The Tat signal sequence peptide from the E. coli trimethylamine N-oxide reductase protein 

(this signal sequence is hereafter referred to as TorA) was fused to the N-terminus of the 

haem-binding maquette, BT6 (Figure 6.2 A). The primers “TorA F” and “TorA-BT6 Rev OE” 

were used to amplify the TorA sequence from E. coli genomic DNA. The primers “TorA-BT6 

For OE” and “BT6 his R” were used to amplify BT6 from the plasmid pJExpress414-BT6 

(provided by G. Kodali, University of Pennsylvania). The primer “BT6 his R” introduced a C-

terminal His tag for immunodetection on Western blots. The two fragments were fused by 

overlap extension PCR. The fragment was cloned into the expression plasmid pJExpress414 

using the restriction sites NdeI and XhoI. As a control, BT6 was amplified without the TorA 

signal sequence using the primers “BT6 F” and “BT6 his R” and cloned into pJExpress414 to 

produce the plasmids pJExpress414-BT62 and pJExpress414-TorA-BT6 (Figure 6.2 A). The 

constructs were transformed into E. coli BL21 (DE3) cells. 

Cells were grown and protein expression was induced with 0.5 mM IPTG for 5 hours. Total 

cell samples were collected and subjected to SDS-PAGE and subsequent western blot analysis 

using anti-His antibodies (Figure 6.2 B).  

In the absence of IPTG, no signal is seen on the western blot. For the TorA-BT6 sample there 

is a signal at 23 kDa corresponding in size to precursor (pre) TorA-BT6 and a signal at 17 kDa, 

corresponding to mature (mat) BT6. This suggests the processing of TorA-BT6 through the Tat 

system and the cleavage of the TorA signal peptide. The band seen at 20 kDa is likely a 

degradation product, additional bands such as this are routinely seen in Tat assays with 

diverse Tat substrates (personal communication, Colin Robinson). For BT6 with no signal 

sequence, only a band at 17 kDa is observed, corresponding to the molecular weight of BT6.  
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Figure 6.2 TorA-BT6 can be processed by the Tat system 

Single colonies were used to inoculate 5 ml LB with 100 μg ml-1 ampicillin and grown overnight at 37 
⁰C. 0.5 ml of the overnight culture was transferred to 9.5 ml LB plus ampicillin in a 50 ml Falcon tube. 
Expression of protein was induced with 0.5 mM IPTG and the cells were grown for 5 hours at 37 ⁰C. 

A. Schematic representation of the IPTG-inducible constructs, TorA-BT6 and BT6. 
B. Western blot analysis of E. coli BL21 (DE3) whole cells expressing BT6 and TorA-BT6. 
C. Schematic of processing of TorA-BT6 through the Tat system. Figure adapted from an earlier 

version by Les Dutton. 
 

 
To further establish that TorA-BT6 is processed by the Tat system, two commonly used 

control mutations of the TorA signal peptide were fused to the N terminus of BT6. The 

mutation of the first arginine of the twin arginine motif to a lysine (KR) allows the normal 

export of the Tat substrate (Figure 6.3 C, left). The mutation of both arginines to lysines (KK) 

prevents the export of many proteins (Figure 6.3 C, right) (Cristobal et al., 1999; Stanley et al., 

2000).  
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pJExpress414-TorA-KR-BT6 was produced using QuikChange mutagenesis (Section 2.2.7) of 

the plasmid pJExpress414-TorA-BT6 using the primers “TorA KR QC AS” and “TorA KR QC S”. 

pJExpress414-TorA-KK-BT6 was produced using QuikChange mutagenesis of the plasmid 

pJExpress414-TorA-KR-BT6 using the primers “TorA KK QC AS” and “TorA KK QC S”. After 

transformation into BL21 (DE3) cells followed by protein induction, whole cell extracts were 

analysed. The 17 kDa signal corresponding to mat-BT6 is seen for KR but only a faint signal for 

KK is seen, possibly corresponding to a degradation product.  

 

 

Figure 6.3 Expression of TorA-BT6 using KR and KK mutants of the TorA signal peptide 

Single colonies were used to inoculate 5 ml LB with 100 μg ml-1 ampicillin and grown overnight at 37 
⁰C. 0.5 ml of the overnight culture was transferred to 9.5 ml LB plus ampicillin in a 50 ml Falcon tube. 
Expression of protein was induced with 0.5 mM IPTG and the cells were grown for 5 hours at 37 ⁰C. 

A. Schematic representation of the IPTG-inducible constructs, TorA-KR-BT6 and TorA-KK-BT6. 
B. Western blot analysis of whole cells E. coli BL21 (DE3) expressing TorA-KR-BT6 and TorA-KK-

BT6. 
C. Schematic of processing of TorA-KR-BT6 (left) and TorA-KK-BT6 (right) through the Tat system. 

Figure adapted from an earlier version by Les Dutton. 
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6.3.2 Sub-cellular fractionation of cells expressing TorA-BT6 

Cells were grown as before and the media was supplemented with 200 µM FeSO4 and 200 µM 

5-aminolevulinic acid (ALA – a precursor in the haem biosynthesis pathway) to stimulate 

haem biosynthesis. In order to confirm that the processed mat-BT6 is localised to the 

periplasm, a sub-cellular fractionation was carried out according to the method described in 

Section 2.10, followed by immunoblotting (Figure 6.4). A signal at 17 kDa corresponding to 

mat- BT6 was found only in the periplasmic fraction. No mat-BT6 was detected in the 

membrane or cytoplasmic fractions, where only the 23 kDa pre-BT6 is visible. This indicates 

that processing, likely in the form of cleavage of the signal peptide, occurs exclusively in the 

periplasm. The same result was observed for the TorA-KR mutant. As expected, no mat-BT6 

was visible in the periplasm for the TorA-KK mutant.  

 

 

Figure 6.4 Tat export of BT6 

Expression was induced with 0.5 mM IPTG in the presence of 200 µM FeSO4 and 200 µM ALA for 2 
hours at 37°C. Cells were fractionated into cytoplasmic (C), membrane (M) and periplasmic (P) 
samples. Samples were immunoblotted using antibodies to the C-terminal 6-His tag on BT6. Pre-BT6 
(23 kDa) appears to be exported to the periplasm where the TorA signal sequence is cleaved, 
producing mat-BT6 (17 kDa). TorA-KR-BT6 exports to the periplasm; TorA-KK-BT6 does not. 
Contamination of the periplasmic fraction by the precursor form is observed in all cases. 
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In samples expressing BT6 alone, a 17 kDa signal was seen in all fractions. In the case of the 

TorA-BT6 samples, Pre-BT6 at 23 kDa is observed in all fractions. This “contamination” could 

be due to issue with the fractionation procedure or leakage from the cytoplasm to the 

periplasm. BT6 overexpresses from pJExpress414 extremely well (Figure 6.5) which could 

cause some membrane destabilisation. The leakage of precursor protein to the periplasm has 

been observed in previous studies when large amounts of the protein, often GFP, are 

produced and saturate the Tat machinery (Barrett et al., 2003) (Alex Jones, personal 

communication).  

 

Figure 6.5 Relative expression levels of BT6 and BT6M 

Expression was induced with 0.5 mM IPTG for 3 hours at 30 ⁰C. Cells were fractionated into 
spheroplast (S) and periplasmic (P) samples. Samples were standardised to OD600 and the same 
amount of material loaded into each lane. The band at 17 kDa is native to E. coli but the presence of 
BT6, mat-BT6 and BT6M causes this band to become more intense. Higher expression levels were 
found for TorA-BT6M relative to TorA-BT6, as evidenced by the stronger band at 23 kDa. 

 

To attempt to reduce the amount of BT6 produced by the cells, a shorter induction time of 1 

hour was used but this did not decrease leakage of pre-BT6 from the cytoplasm to the 

periplasm. Decreasing the IPTG concentration to 0.1 mM did not improve the situation 

(personal communication, Alex Jones, University of Kent).  

6.3.3 Analysis of growth medium 

To determine whether BT6 is present in the growth medium, which could indicate outer 

membrane destabilisation, the medium was tested for presence of maquette. Cells were 

induced with 0.5 mM IPTG at 30° C for 3 hours in the presence 50 μM FeSO4 and 500 μM ALA. 

The cells were spun down, and separated into spheroplast and periplasm fractions followed 

by immunoblotting (Figure 6.6). No signal was observed in the medium fraction, indicating 

that BT6 is not exported and does not leak outside the cell. The decrease in induction 

temperature did not prevent leakage of pre-BT6 to the periplasm. The presence of a signal 

corresponding in size to mat-BT6 in the spheroplast fraction is either a degradation product, 
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mat-BT6 in the membrane prior to release in the periplasm, or indicative of inefficient 

fractionation.  

 

Figure 6.6 BT6 is not present in the growth medium 

Expression was induced with 0.5 mM IPTG in the presence of 50 µM FeSO4 and 500 µM ALA for 3 hours 
at 30°C. Cells were fractionated into spheroplast (S) and periplasmic (P) samples. The growth medium 
was also analysed (Md). Samples were immunoblotted using antibodies to the C-terminal 6-His tag on 
BT6. No signal is seen for the medium fraction. 

 

6.3.4 An alternate protocol for sub-cellular fractionation of E. coli 

It is possible that the expression of BT6 disrupts the inner membrane. A more gentle 

fractionation procedure was used in the hope of minimising the leakage of BT6 and TorA-BT6 

(pre-BT6) into the periplasm. The procedure used was developed by Quan et al. in which the 

release of envelope proteins occurs in the presence of sucrose and EDTA (Quan et al., 2013).   

After induction with 0.5 mM IPTG for 1 hour, 10 ml of cells were pelleted by centrifugation at 

3,000 rpm for 10 min at 4 °C. The supernatant was discarded and the pellet gently 

resuspended with a wire loop in 100 µl cold TSE buffer (20 mM Tris-HCl pH8, 0.5 M sucrose, 1 

mM EDTA, 1 EDTA-free protease inhibitor tablet per 100 ml buffer). The cells were incubated 

on ice for 30 minutes followed by centrifugation at 16, 000 x g in a microcentrifuge at 4 °C for 

30 minutes. The supernatant was carefully removed and designated as the periplasmic 

fraction. The spheroplast pellet was resuspended in lysis buffer (50 mM Tris-HCl pH8, 0.1 mg 

ml-1 lysozyme, 20 µg ml-1 DNase). The samples were analysed by western blot (Figure 6.7). 
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Figure 6.7 Fractionation of E. coli expressing BT6 using a more gentle procedure 

Expression was induced with 0.5 mM IPTG for 1 hour. Cells were fractionated into spheroplast (S) and 
periplasmic (P) samples using the method developed by Quan et al. Samples were immunoblotted 
using antibodies to the C-terminal 6-His tag on BT6. The contamination of Pre-BT6 (23 kDa) in the 
periplasm appears to be decreased in all TorA-BT6 cases. BT6 leaks into the periplasm even using this 
more gentle fractionation technique. 

 

In the case of TorA-BT6, and largely TorA-KR-BT6 and TorA-KK-BT6, this method proved 

successful in eliminating pre-BT6 from the periplasmic fraction. However fractionation was 

inefficient and some periplasmic contents remained in the spheroplast fraction (as indicated 

by a signal at 17 kDa). When expressed without the signal peptide, BT6 was seen in both the 

periplasmic and spheroplast fractions. BT6 expresses more than TorA-BT6 under the same 

induction conditions (Figure 6.5) and therefore may have more potential to disrupt the 

membrane. 

6.3.5 The effect of the addition of ALA and iron on BT6 export 

The addition of ALA and iron boosts haem production and increases the expression of BT6. To 

determine whether the addition of ALA and Fe increases export and/or the periplasmic 

contamination of pre-BT6, TorA-BT6 expressing cells were induced with and without the 

addition of 50 µM FeCl2 and 500 µM ALA. The cells were induced for 16 hours to allow the 

haem biosynthesis pathway to be sufficiently stimulated. The cells that had been 
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supplemented were a reddish/brown colour (Figure 6.8). The cells were standardised to the 

same OD600 and fractionated into spheroplast and periplasm samples using the method 

developed by Quan et al. The samples were analysed by western blot (Figure 6.8). The 

presence of ALA and iron did not appear to increase TorA-BT6 export. Periplasmic 

contamination was observed in both cases. 

  

Figure 6.8 The effect of the addition of ALA and iron on TorA-BT6 export 

Expression was induced with 0.5 mM IPTG in the presence of 50 µM FeCl2 and 500 µM ALA for 16 hours 
at 37°C. Cell pellets are shown. Cells were fractionated using the method developed by Quan et al into 
spheroplast (S) and periplasmic (P) samples. Samples were immunoblotted using antibodies to the C-
terminal 6-His tag on BT6. Contamination of the periplasmic fraction by pre-BT6 is observed. No 
difference in the level of contamination is seen with and without supplementation with ALA and iron. 
Supplementation does not improve efficiency of BT6 export.  

 

6.3.6 Induction of TorA-BT6 from pEXT22 

It is possible that the high expression level of BT6 disrupts the inner membrane and causes 

contamination of the periplasm with pre-BT6. The BT6 and TorA-BT6 variants were cloned 

into pEXT22 by Alex Jones (University of Kent), an expression plasmid that produces lower 

levels of the maquette. The constructs were transformed into E. coli W3110 cells and induced 

with 0.5 mM IPTG for 3 hours at 30 °C. The cells were fractionated according to the original 

protocol (Section 2.10) and analysed by western blot (Figure 6.9). No leakage of the 

cytoplasmic precursor to the periplasmic fraction was observed. The signal for pre-BT6 is 

either faint or non-existent in the cytoplasmic and membrane fractions indicating 
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degradation. A band at 17 kDa in the periplasmic fraction corresponding to mat-BT6 is 

observed for the TorA-BT6 and TorA-KR-BT6 variants. 

 

Figure 6.9 Expression of BT6 from pEXT22 

Expression was induced with 0.5 mM IPTG for 3 hours at 30 ⁰C. Cells were fractionated into 
cytoplasmic (C), membrane (M) and periplasmic (P) samples. Samples were immunoblotted using 
antibodies to the C-terminal 6-His tag on BT6.  

 

6.3.7 Export of maquette with 1 haem bound 

A mutant version of BT6 with one of its haem-binding histidine residues mutated to an 

alanine was created using QuikChange mutagenesis on the plasmid pJExpress414-TorA-BT6 

using the primers “BT6 H53A QC S” and “BT6 H53A QC AS”. The resulting maquette is only 

capable of binding one haem but remains largely structured (Farid et al., 2013; and Figure 

6.12 B). The construct, termed pJExpress414-TorA-BT6 H53A was transformed into E. coli 

BL21 (DE3) cells and induced with 0.5 mM IPTG for 3 hours at 30 °C. The cells were 

fractionated according to the original protocol (Section 2.10) and analysed by western blot 

(Figure 6.10). The one-haem binding maquette was exported to the periplasm, but in lower 

amounts than BT6. TorA-BT6 H53A appears to have leaked from the spheroplasts into the 

apparent periplasmic fraction. 
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Figure 6.10 Export of 1 haem bound maquette 

A. Schematic representation of the IPTG-inducible construct, TorA-BT6 H53A. 
B. Model of BT6 H53A based on the structure shown in Figure 6.1. 
C. Western blot analysis of fractionated E. coli BL21 (DE3) expressing TorA- BT6 and TorA-BT6 

H53A. Expression was induced with 0.5 mM IPTG for 1 hour. Cells were fractionated into 
spheroplast (S) and periplasm (P) fractions using the protocol described in Section 2.10. 

 

6.3.8 Expression of a BT6 mutant incapable of binding haem 

The Tat pathway exports only fully folded proteins, and many Tat substrates contain a 

cofactor. A mutant version of BT6, BT6M, was constructed in which two of its haem-binding 

histidine residues were mutated to alanines, preventing haem binding. As a result, BT6M is 

significantly less structured in comparison to BT6 (Farid et al., 2013; and Figure 6.13). To 

analyse the relationship between haem incorporation (and thus extent of maquette folding) 

and protein export via the Tat pathway, the TorA signal sequence was fused to the N 

terminus of BT6M (Figure 6.11 B i). This was done as in Section 6.3.1 using the primers “TorA 

F”, “TorA-BT6M rev OE”, “TorA-BT6M For OE” and “BT6M his R”. BT6M was amplified from 

pJExpress414-BT6M (G. Kodali, University of Pennsylvania). The resulting construct was 

termed pJExpress414-TorABT6M. A C-terminal His tag was included for immunodetection. As 

a control, BT6M with no signal peptide and a C-terminal His tag was amplified using the 

primers “BT6M F” and “BT6M his R” and was cloned into pJExpress414 to create 

pJExpress414-BT6M2 (Figure 6.11 A i). TorA-BT6M and BT6M were cloned into pEXT22 by 

Alex Jones, University of Kent. 
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Figure 6.11 Expression of BT6M and TorA-BT6M 

A.      i) Schematic representation of IPTG-inducible BT6M. 
ii) Western blot analysis of fractionated E. coli expressing BT6M. Cells were fractionated into 
spheroplast (S), periplasm (P), membrane (M) and cytoplasm (C) fractions. 

B.      i) Schematic representation of the IPTG-inducible TorA-BT6M construct.  
ii) Western blot analysis of fractionated E. coli expressing BT6M. Top panels – TorA-BT6M 
expressed from pJExpress414; bottom panels – TorA-BT6M and TorA-BT6 expressed from 
pEXT22. Cells were fractionated into spheroplast (S), periplasm (P), membrane (M) and 
cytoplasm (C) fractions. Fractionation method 1 is that detailed in Section 2.10. Method 2 is 
the more gentle technique developed by Quan et al (Section 6.3.4).  
iii) The export of TorA-BT6M is blocked by the Tat system. Figure adapted from an earlier 
version by Les Dutton. 

 

Protein expression was induced and the cells fractionated and analysed by western blot as 

described previously. When expressed from pJExpress414 and fractionated using the gentle 

method of Quan et al, BT6M is seen in both the spheroplast and periplasmic fractions (Figure 

6.11 A ii, left panel). BT6M expresses more than BT6, and possibly causes membrane 

destabilisation to a greater extent. No protein expression of BT6M is observed when 

expressed from pEXT22 (Figure 6.11 A ii, right panel).  
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Neither pre-BT6M nor mat-BT6M is observed on the western blot of the fractions when TorA-

BT6M is expressed from pEXT22 (Figure 6.11 B ii, bottom left). For both fractionation 

techniques, contamination of the periplasm of pre-BT6M is seen when TorA-BT6M is 

expressed from pJExpress414 (Figure 6.11 B ii, top panels).  

The loss of the ability to bind haem has a dramatic inhibitory effect on export of TorA-BT6M; 

no mat-BT6M is seen in the periplasmic fraction (Figure 6.11 B ii, top panels). These data 

provide strong evidence that the Tat pathway efficiently assesses the folding state of BT6 and 

completely blocks the export of non haem binding forms.  

A 17 kDa band corresponding in size to mat-BT6M can be seen in the membrane fraction 

when TorA-BT6M is expressed from pJExpress414 (Figure 6.11 B ii, top left), which could 

indicate that TorA-BT6M is recognised by the Tat apparatus but is not released into the 

periplasm.  

6.4 Discussion 

6.4.1 The E. coli Tat system can process the synthetic protein maquette, BT6 

The gene sequence encoding the TorA signal peptide for export through the Tat pathway was 

fused to the start of the gene for the maquette BT6 and cloned into the expression plasmid 

pJExpress414. The resulting construct was expressed in E. coli BL21(DE3) to produce a TorA-

BT6 fusion (Figure 6.2 A).   

Western blot analysis of whole cells showed two signals at 23 kDa and 17 kDa, corresponding 

respectively in size to precursor TorA-BT6 and mat-BT6 with the TorA signal peptide cleaved 

(Figure 6.2 B). The result shown in Figure 6.2 B alone is inconclusive so to test if there is any 

genuine Tat export, further experiments involved the mutation of the TorA signal peptide.  

The TorA signal sequence contains a characteristic twin arginine motif, RR. When the first 

arginine is mutated to a lysine, KR, the protein is targeted to the Tat machinery and exported 

(Figure 6.3). When both arginines are mutated to lysines, KK, the Tat apparatus will not 

process the protein (Figure 6.3). TorA-KR-BT6 featured a 23 kDa and 17 kDa bands indicating 

processing by the Tat machinery. TorA-KK-BT6 only featured the 23 kDa band, indicating that 

processing by the Tat machinery was unable to take place and the signal sequence was 

cleaved. These results show that a functional TorA sequence is required for processing of pre-

BT6 to the mature form, mat-BT6. The decrease in molecular weight of the observed signals 

from 23 kDa to 17 kDa is most likely due to the cleavage of the TorA signal sequence 
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occurring during translocation of the Tat machinery and release of mat-BT6 into the 

periplasm. 

6.4.2 Tat-processed BT6 is released to the periplasm 

The Tat pathway releases processed proteins to the periplasm. To confirm that the mature 

form of BT6 is localised to the periplasm, the cells were fractionated into cytoplasmic, 

membrane and periplasmic fractions. Western blot results showed the presence of a 17 kDa 

mature protein in the periplasm for TorA-BT6 and TorA-KR-BT6, but not for TorA-KK-BT6 

(Figure 6.4). This indicates that processing, likely in the form of cleavage of the signal peptide, 

occurs causes the release of BT6 into the periplasm. 

6.4.3 Expression of BT6 causes periplasmic contamination of the precursor form 

For BT6 lacking TorA, a 17 kDa signal was seen in all fractions. In the case of the TorA-BT6 

samples, pre-BT6 at 23 kDa is observed in all fractions (Figure 6.4). This indicates 

contamination due either to an issue with the fractionation procedure or leakage from the 

cytoplasm to the periplasm. BT6 overexpresses from pJExpress414 extremely well which 

could cause some membrane destabilisation and lack of inner membrane integrity (Figure 

6.5; personal communication, Colin Robinson, University of Kent). This leakage of precursor 

protein to the periplasm has been observed in previous studies when large amounts of the 

protein, often GFP, are produced and saturate the Tat machinery (Barrett et al., 2003; Alex 

Jones, personal communication). The maquette is not exported to the growth medium, 

indicating that outer membrane integrity is maintained (Figure 6.6). 

Shorter induction times and lack of supplementation of ALA and iron to the medium did not 

decrease the appearance of pre-BT6 in the periplasm (Figures 6.8 and 6.10). When a more 

gentle fractionation technique was used to minimise this contamination the situation was 

improved but not eliminated (Figure 6.7). Expression of BT6 without the TorA signal sequence 

continued to give large amounts of contamination of the periplasmic fraction with the 

protein; export of BT6 alone to the periplasm should be impossible as there is no signal 

sequence. This indicates that the maquette itself is disrupting the inner membrane, rather 

than the maquette having an effect on the Tat machinery during export and allowing leakage.  

The TorA-BT6 variants and BT6 were cloned into a vector, pEXT22, which produces lower 

expression levels. Almost no signal was seen in any fraction, other than a strong signal at 17 

kDa in the periplasmic fractions of TorA-BT6 and TorA-KR-BT6 (Figure 6.9). These results 

indicate cytoplasmic degradation of the maquette when expressed at low levels and it is not 
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exported (Alex Jones, personal communication). This result also indicates that it is the high 

expression of BT6 that causes leakage of the precursor form into the periplasm. 

6.4.4 BT6 must bind haem for transport through the Tat pathway 

A version of BT6 that could only bind one haem (BT6 H53A) was found to export through the 

Tat pathway (Figure 6.10), although to a lesser extent than BT6. A previous study has shown 

that on binding only one haem, BT6 is relatively structured (Figure 6.12) (Farid et al., 2013), 

sufficient to avoid rejection by the Tat quality control mechanism. The low export efficiency 

could indicate that BT6 H53A is a dynamic structure that does not always appear sufficiently 

folded, perhaps revealing its hydrophobic interior causing rejection by the Tat pathway.   

 

 

Figure 6.12 NMR spectral dispersion of BT6 

750 MHz 15N-HSQC showing NMR spectral dispersion. In the absence of haem, NMR 
resonances of BT6 are relatively undispersed indicating the absence of unique tertiary 
structure (A). On the addition of one equivalent of haem resonances of BT6 become partially 
dispersed indicating stable structure (B). Addition of a second equivalent of haem induces 
further structuring (C). 

(Figure adapted with permission from Macmillan Publishers Ltd, Nature, Farid et al 2013, 
Copyright 2013) 

 

The TorA signal peptide was attached to a variant of BT6, termed BT6M. BT6M has two of its 

histidines mutated to alanines and cannot bind any haem. As a result, BT6M is unstructured 

compared to haem-bound BT6. A previous study has shown this lack of structure using NMR 

(Figure 6.13) (Farid et al., 2013).  

 



 

172 
 

 

Figure 6.13 NMR spectral dispersion of BT6 and BT6M in the presence of haem 

750 MHz 15N-HSQC showing NMR spectral dispersion. NMR resonances of BT6M are 
relatively undispersed indicating the absence of unique tertiary structure. Resonances of BT6 
relatively dispersed indicating stable structure.  

(Figure adapted with permission from Macmillan Publishers Ltd, Nature, Farid et al 2013, 
Copyright 2013) 

 

TorA-BT6M is not processed by the Tat apparatus with no 17 kDa mature protein seen in the 

periplasm when expressed from either pJExpress414 or pEXT22 (Figure 6.11 B ii, top panels, 

bottom left). These data provide strong evidence that the Tat pathway efficiently assesses 

the folding state of BT6 and completely blocks the export of non haem binding forms. This 

could be because the hydrophobic maquette interior becomes concealed on haem binding. 

A 17 kDa band corresponding in size to mat-BT6M has been observed in the membrane 

fraction for the pJExpress414 experiment (Figure 6.11 B ii; top left panel). This could indicate 

that TorA-BT6M is recognised by the Tat apparatus but is not released into the periplasm. 

This provides a possible location for the quality control step.  

6.4.5 Increased haem biosynthesis does not increase Tat export efficiency of TorA-

BT6 

The supplementation of the growth medium with ALA and iron increases maquette 

expression and the proportion of maquette with two haems bound (G. Kodali, University of 

Pennsylvania, personal communication). Supplementation with ALA and iron does not 

increase the efficiency of export of BT6 (Figure 6.8). This suggests that BT6 can scavenge 

enough haem to stabilise its tertiary structure sufficient for Tat export and that the Tat 

apparatus exports BT6 to the optimum efficiency without the need for supplementation. 
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6.4.6 Additional work 

Initial experiments have involved the export of maquettes to the periplasm, but ultimately 

they could be exported outside the cell to the growth medium, simplifying purification. 

Maquette export into the medium offers the potential of maximising protein yield as build-up 

of protein and possible degradation inside the cell are avoided. 

Due to the easy mutation of the maquette sequence, more subtle mutations to perturb 

folding or introduce hydrophobic patches on the surface of the maquette could be 

introduced to determine the “tipping point” between acceptance and rejection by the Tat 

quality control apparatus. Maquettes with other cofactors such as zinc porphyrins could be 

tested. 

6.4.7 Conclusion 

The Tat system, which exports fully or largely folded proteins, recognises and exports the 

completely man-designed haem-binding synthetic protein maquette BT6. On selective 

mutation of the maquette to prevent cofactor binding, and thus the folding properties, the 

Tat apparatus will not export the maquette. 
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7. Concluding remarks 

Attempts to recreate photosynthesis-like light-harvesting processes using purely chemical 

means have fallen far short of the efficiency and versatility of natural systems (Harvey, 2003; 

Aratani and Osuka 2010; Harvey et al., 2011; Lindsey et al., 2011; Jiang et al., 2014). A major 

challenge is to make use of the diverse spectral range of incoming solar radiation.  

Ongoing biohybrid antenna research has integrated elements found in natural photosynthetic 

pathways with components produced by synthetic chemistry. Native-like bacterial 

photosynthetic antenna peptides have been used as a scaffold to attach synthetic 

chromophores. The use of synthetic chromophores enables the broadening of spectral 

coverage of the resulting antenna beyond that provided by native antennas. (Harris et al., 

2014a; Jiang et al., 2014). However while these biohybrid antennas show great promise in 

vitro to augment photosynthesis in vivo we must make use of the proteins and pigments that 

are available in nature. Thus arises the challenge of creating bacteria with new 

photosynthetic pathways to utilise a greater range of wavelengths than naturally-evolved 

photosynthesis. 

Chapter 3 details a pilot study to explore the potential of using new light harvesters to 

augment bacterial photosynthesis. YFP was fused to the reaction centre of the purple 

photosynthetic bacterium Rhodobacter sphaeroides. YFP was able to funnel sufficient energy 

to the native photosynthesis pathway to increase the photosynthetic growth rate in a 

carotenoidless background.  

Future work following on from this should explore new chromophores that can absorb light 

of wavelengths that wild type Rba. sphaeroides does not absorb (between 640 nm and 750 

nm). Possible candidates include orange and red fluorescent proteins such as mApple, 

mCherry or mKate2 (Shaner et al., 2004; Shaner et al., 2008; Shcherbo et al., 2009). Another 

possible candidate is the Cyanobacterial CpcA protein. CpcA is a fluorescent phycobiliprotein 

with potential as a biological label. CpcA can be expressed in E. coli along with genes 

encoding enzymes to modify the native haem biosynthesis pathway to produce various bilin 

chromophores (Alvey et al., 2011).  

Additional chromophores need not be confined to one per native complex. A ring of multiple 

chromophores around the reaction centre may be achieved through the fusion of the gene(s) 

for a native LH1 subunit with the gene for a new chromophore. The use of two different FRET 

partner fluorescent proteins expressed on the LH1 protein and the RC would enhance charge 

separation by funnelling additional energy.  
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Chapter 4 explored the potential of proteorhodopsin (PR) as an additional photosystem 

component. PR is a light-driven proton pump and may be able to augment the Rba. 

sphaeroides transmembrane proton gradient used to drive the ATP synthase. PR is an 

attractive candidate as, in contrast to Rba. sphaeroides, it performs light harvesting and 

proton pumping roles in a single protein. Although PR has been successfully expressed, the 

challenge of assembling sufficient functional protein in the photosynthetic membrane to 

augment photosynthesis is one that is yet to be overcome. Organisms that natively express 

proteorhodopsin typically fill the membrane with many copies of the protein, and there is 

debate as to whether PR alone is sufficient to power metabolism with light in a heterotroph 

(see Section 1.9.2). 

The biosynthesis of the PR chromophore, retinal, proved challenging. Large-scale production 

of this pigment may be lucrative as retinal and its derivatives are high value components of 

various beauty products. However, only very small amounts of retinal were made and this 

research highlighted various hurdles that may arise when trying to biosynthesise foreign 

pigments. It is likely that striking the balance between the availability of sufficient oxygen for 

retinal production without risking degradation is difficult in Rba. sphaeroides. In addition, it is 

possible that Rba. sphaeroides possesses unknown or poorly characterised proteins that are 

able to degrade retinal.  

The results presented in this thesis confirmed the findings of previous studies that the 

deletion of photosystem components improved the expression of foreign membrane proteins 

(Labile et al., 2009; Tikh et al., 2014). Furthermore, the results indicated that a more planar 

membrane environment aided the expression of proteorhodopsin and a transmembrane 

maquette. For future studies involving the expression of foreign membrane proteins a ΔpufX 

mutant of Rba. sphaeroides may therefore provide good yields. 

Beyond the use of foreign proteins to augment photosynthesis, completely synthetic proteins 

such as maquettes have potential for the creation of custom photosynthetic pathways due to 

their stability and versatility. Artificial peptide maquettes can have diverse functions 

conferred on them, such as light-harvesting and reaction centre-like properties, and may be 

capable of replacing the native components of bacterial photosynthetic pathways (Farid et 

al., 2013; Anderson et al., 2014; Watkins et al., 2014). The work presented in Chapter 5 forms 

the basis of the bottom-up redesign of photosystem components which could be used to 

replace or augment existing proteins in vivo or emulate their function in artificial membrane 

systems.  
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This study involved the design and expression of a gene for a transmembrane maquette. The 

amino acid sequence of the maquette made use of the design principles of natural 

membrane proteins in which the cytoplasmic regions are positively charged and the 

periplasmic or extracellular regions are negatively charged. The results of this study 

highlighted the importance of correct charge patterning, as the introduction of a negatively 

charged FLAG tag to the cytoplasmic N terminus of the maquette significantly decreased 

expression.  

While the transmembrane maquette was found to sit in the membrane of E. coli and Rba. 

sphaeroides, purification and characterisation was difficult. This was in part due to the low 

amounts of protein that were able to be purified and difficulty in obtaining purified maquette 

with pigment bound. Future purification strategies may include a more gentle elution 

gradient when using nickel affinity columns. Instead of solubilisation with a traditional 

detergent which may disrupt cofactor binding, styrene maleic acid (SMA) has potential for the 

purification of maquettes. SMA has been used for the purification of Rba. sphaeroides 

reaction centres and acts as a “cookie cutter” to remove proteins from the membrane with a 

ring of native lipids around them (Swainsbury et al., 2014b). In this way the functional 

properties of the native membrane are maintained and facilitate stability of the isolated 

protein. Another strategy that may be useful for the purification of transmembrane 

maquettes is GraDeR, a method which results in mono-disperse and stable complexes that 

facilitate structural characterisation such as single-particle electron microscopy (Hauer et al., 

2015).  

Accelerated evolution in a photosynthetically compromised mutant of Rba. sphaeroides may 

result in the maquette acquiring a functional role, such as a light harvester. Alternatively, the 

maquette may play an electron transfer role. Recent work in the lab of Les Dutton has 

involved the attachment of CpcA to soluble maquettes to act as a light harvester. Artificial 

bilin attachment sites have been conferred on maquettes to make them photoactivatable 

(Les Dutton, personal communication).  

Beyond transmembrane maquettes, a soluble c-type maquette has been designed which is 

capable of electron transfer and oxygen transport (Anderson et al., 2014). If the redox 

potential of this maquette is tailored it may replace the function of the Rba. sphaeroides 

native cytochrome c2 protein. To do this the maquette must be transported to the 

photosynthetic membrane vesicles, either through the Tat or Sec systems. As shown in 

Chapter 6, export of maquettes has been successful in E. coli and this is something that may 

be transferable to Rba. sphaeroides.  
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Appendix 

Growth medium for Rhodobacter sphaeroides 

M22 10 x Stock (4 L) 

Potassium dihydrogen orthophosphate KH2PO4 122.4 g 

Dipotassium hydrogen orthophosphate K2HPO4 120.0 g 

DL – Lactic acid (fridge) Na lactate solution 100.0 g 

Ammonium sulphate (NH4)2SO4 20 g 

Sodium chloride NaCl 20 g 

Sodium succinate  173.7 g 

Sodium glutamate L – Glutamic acid 10.8 g 

Aspartic acid DL – Aspartic acid 1.6 g 

Solution C  800ml 

Make up with QH2O to 2-3 L, pH to 6.8 and top up to 4 L 

Solution C (4 L) 

Nitrilotriacetic acid (NTA)  40 g 

Magnesium chloride MgCl2 96 g 

Calcium chloride CaCl2 13.36 g 

EDTA  0.5 g 

Zinc chloride ZnCl2 1.044 g 

Ferrous chloride FeCl2 1.0 g 

Manganese chloride MnCl2 0.36 g 

Ammonium heptamolybdate (NH4)6Mo7O24(H2O)4 0.037 g 

Cupric chloride CuCl2 0.031 g 
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Cobaltous nitrate Co(NO3)2 0.0496 g 

Boric acid (orthoboric acid)  0.0228 g 

Do not autoclave. Freeze at -20 oC in 800 ml aliquots 

1 x M22 (4 L) 

10 x M22 stock  400 ml 

5 % CAA  80 ml 

water  3520 ml 

1 x M22 Agar (200 ml) 

1 x M22  200 ml 

Bacto Agar  3 g 

1 x M22 10 % Sucrose Agar (200 ml) 

1 x M22  180 ml 

Sucrose  20 g 

Bacto Agar  3 g 

Ensure sucrose is dissolved prior to autoclaving, sucrose can be dissolved in batch but  

Bacto Agar must be added to Durans individually. CAA is not included in M22 agar. 

Vitamins (10 K Vits) 10 000 x 

Nicotinic acid (poison) 1 g 

Thiamine (poison) 0.5 g  

pABA (4-aminobenzoic acid) (fridge) 0.1 g 

Biotin (d-Biotin) (fridge) 10 mg 

water 100 ml 
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Growth media for Escherichia coli 

LB/ LB agar and autoinduction LB 

LB/ LB agar Ready mixed LB media from FORMEDIUM 

prepared following the manufacturer’s 

instructions. 

Autoinduction LB Ready mixed LB media from FORMEDIUM 

prepared following the manufacturer’s 

instructions. 

Grows IPTG-inducible expression strains 

without induction to a high cell density, 

and induces production of the target 

protein automatically. Inclusion of a small 

amount of glucose and lactose in the 

media regulates expression from IPTG 

inducible promoters. 

 

Terrific broth (1 L) 

Tryptone 12 g 

Yeast extract 24 g 

Glycerol 4 ml 

Make up to 900 ml with QH2O, autoclave then add 100 ml sterile phosphate solution. 

Phosphate solution for terrific broth (250 ml) 

KH2PO4 5.78 g 

K2HPO4 31.35 g 

Top up to 250 ml with QH2O. Filter sterilise. 
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Growth medium for Synechocystis 

Trace minerals (1 L) 

Boric acid H3BO3 2.86 g 

Manganese chloride MnCl2 1.81 g 

Zinc sulphate ZnSO4 0.22 g 

Sodium molybdate Na2MoO4·2H2O 0.39 g 

Copper sulphate Cu2SO4 0.079 g 

Cobaltous nitrate Co(NO3)2·6H2O 100 ml 

Make up to 1 L with QH2O. Autoclave  

BG11 100 X stock (1 L) 

Sodium nitrate NaNO3 149.6 g 

Manganese sulphate MnSO4(H2O) 7.49 g 

Calcium chloride CaCl2 3.60 g 

Citric acid  0.60 g 

EDTA (disodium salt)  0.10 g 

Trace minerals  100 ml 

 

1000 X Iron stock (1 L) 

Ferric ammonium citrate  6 g 

Make up to 1 L with QH2O. Filter sterilise.  

1000 X Phosphate stock (1 L) 

Dipotassium hydrophosphate KH2PO4 30.5 g 

Make up to 1 L with QH2O. Filter sterilise.  
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1000 X Carbonate stock (1 L) 

Sodium carbonate Na2CO3 20 g 

Make up to 1 L with QH2O. Filter sterilise.  

1 M glucose stock (1 L) 

Glucose  180 g 

Make up to 1 L with QH2O. Dissolve in water bath. Filter sterilise. 

1 M TES stock (1 L) 

TES C6H15NO6S 229.2 g 

Make up to 1 L with QH2O. pH to 8.2 with KOH. Filter sterilise. 

1 X BG11 (1 L) 

100 X BG11 10 ml 

1000 X Iron 1 ml 

1000 X Phosphate 1 ml 

1000 X Carbonate 1 ml 

Autoclave. Before use add TES to a final concentration of 10 mM and 1 M glucose to a final 
concentration of 5 mM 
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