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Abstract

Mesh adaptation techniques are commonly coupled with the numerical schemes in

an attempt to improve the modelling efficiency and capturing of the different physi-

cal scales which are involved in the shallow water flow problems. This work designs

an adaptive technique that avails from the wavelets theory for transforming the

local single resolution information into multiresolution information in which these

data information became accessible. The adaptivity of wavelets was first com-

prehensively tested via using an arbitrary function in which the spatial resolution

adaptivity was achieved from the local solution itself and it was based on a single

user-prescribed parameter. Secondly, the adaptive technique was combined with

two standard numerical modelling schemes (i.e. finite volume and discontinuous

Galerkin schemes) to produce two wavelet-based adaptive schemes. These schemes

are designed for modelling one dimensional shallow water flows and are referred to

the Haar wavelets finite volume (HWFV) and multiwavelet discontinuous Galerkin

(MWDG) schemes. Both adaptive schemes were systematically tested using hy-

draulic test cases. The results demonstrated that the proposed adaptive technique

could serve as lucid foundation on which to construct holistic and smart adaptive

schemes for simulating real shallow water flow.
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Chapter 1

Introduction

1.1 Motivation

Numerical models based on the shallow water flow have become an important

part of management and planning for water resources projects. It is considered

a valuable tool for hydraulic engineers in particular, due to their use in provid-

ing real-time predictions about the specific conditions of the flow in watercourses

without the need for field measurements. In many cases, field measurements can

be expensive and time-consuming.

These numerical models often use classical space discretisation techniques, such

as the finite difference method (FDM), the finite volume method (FVM) or the

finite element method. However, nowadays the common numerical strategies for

approximating the system of shallow water flow are based on finite volume meth-

ods, in particular the modern class of shock capturing methods, which is also

known as the Godunov-type approach because of their conservation properties.

However, the conceptual framework of this approach is restricted to first-order

accuracy and generally needs a dense mesh to solve on. To retain the accuracy

order with fewer cells for the same underlying problem, the adaptive techniques

have been used. However, there are some problems with this technique such as

error-sensors, multiple user-chosen parameters and data transfer/recovery between

different inner resolution scales.

High order finite volume methods are based on performing reconstruction pro-

cedures to recover point values from the cell average, which might lose the advan-

1



Chapter 1. Introduction

tage of locality. Thus, the Discontinuous Galerkin (DG) methods become good

alternative tools, because their conceptual framework allowing for high order ac-

curacy within a well-founded Godunov-type formulation, as well as retaining lo-

cality and conservation properties. However, these methods still suffer from high

computational cost because the CFL condition is very restrictive. Thus, the adap-

tive techniques (i.e., considering h-adaptation or p-adaptation or both) are useful

options when it comes to maintaining the efficiency. However, since the Godunov-

type methods are sometimes problematic new adaptive multiresolution schemes,

that can partially or fully address these issues, motivate this work. This is achieved

by incorporating the Haar wavelets and their generalisation, called multiwavelets,

into the conceptual design of Godunov-type and Discontinuous Galerkin methods

respectively.

1.2 Background

There are a large number of numerical schemes that have been developed to solve

fluid dynamics equations. This section presents a review of several works related

to FVM and the DG method in the modelling of shallow flows, followed by a

summary of previous works related to wavelets and multiwavelets in the context

of numerical modelling.

1.2.1 Finite Volume Method

There are an enormous number of studies covering modelling shallow water flow

in one and two dimensions using FVM. The better known studies are dependent

upon the Godunov method because it is a conservative scheme with local flexibil-

ity for any chosen grid mesh, e.g., structural or non-structural meshes (Guinot,

2003). Moreover, one of the most important issues in the modelling of the SWE

system is bore formation and, for capturing such phenomena, Godunov methods

are a great option. This is because Godunov-type methods include the commu-

nication of the discontinuous flow across cell interfaces via incorporating the lo-

cal approximate solution within the discretisation process (Delis and Kampanis,

2009). The majority of Godunov-type numerical solvers were first developed in

2



Chapter 1. Introduction

the context of the homogeneous system of equations (Glaister, 1988). But for the

practical engineering applications where the steep slope, roughness and changes in

topography exist, the proper integration of source term within the Godunov-type

solution should be carefully handled. For this purpose, Bermudez and Vazquez

(Bermudez and Vazquez, 1994a) proposed an upwind treatment of the source term

in 1D SWE using different types of flux-splitting techniques. However, the results

were unable to satisfy the well-balanced property (i.e.“numerical balance between

the momentum flux and source term”, (Caleffi and Valiani, 2009)) in the most

considered test cases. To ensure this well-balanced property whilst also consider-

ing irregular geometries of mesh, this scheme was improved by Vázquez-Cendón

(Vázquez-Cendón, 1999) in which the source terms were upwinded in the same way

as the numerical flux. In the same area of research, this idea has been explored

in (Garcia-Navarro and Vazquez-Cendon, 2000; Brufau et al., 2002, 2004; Murillo

and Garca-Navarro, 2010). Moreover, this improvement has since been used to

increase the accuracy of the numerical schemes to a high order. High order finite

volume methods such as WENO (Liu et al., 1994; Caleffi et al., 2006) and MUSCL

(Alcrudo and Garcia-Navarro, 1993; Murillo et al., 2007; Hou et al., 2013) are based

on performing reconstruction procedures to recover point values from the cell aver-

age, in which the monotonicity should be preserved. This might lead to losing the

advantage of locality when comparing with the original FV method (Zhou et al.,

2001; Kesserwani and Wang, 2014) whereas, in the DG method (Section 1.2.2), the

numerical solution over each element is not reconstructed artificially by extrapo-

lating from neighbouring elements for obtaining a high order accurate solution, as

the approximate solution is associated with a polynomial order (see Figure 1.1).

Therefore, the DG method has a good advantage in terms of accuracy compared

with FVM when the same order of accuracy and the same number of cells are con-

sidered (Shelton, 2009). Following decades of research, FV Godunov-type methods

have become widely applied to simulate real-scale flooding and have been adopted

into commercial hydraulic modelling software packages such as TUFLOW-FV and

RiverFlow2D PLUS. Nevertheless, real large-scale shallow flows have complex flow

features such as shocks, contact discontinuities and a wide range of spatial scales.

Typically, the computational domain is discretised uniformly using a large number

of cells, given that the position of flow features is usually unknown. Capturing

3



Chapter 1. Introduction

certain small scales within a coarse mesh simulation maybe difficult without caus-

ing computational cost trade-off. Therefore, automated mesh adaptation comes

in handy to improve modelling efficiency and capture the various physical scales

involved in shallow water flows.

Various adaptive techniques have been developed within the FV framework in-

tended to solve shallow water equations (SWE).These include moving mesh meth-

ods (Skoula et al., 2006) or static grids with local refinement methods (Nikolos

and Delis, 2009; Caviedes-Voullième et al., 2012). However, most of the present

techniques to date are achieved over patch of grid, in a decoupled manner, which

controversially gives rise to many problematic effects (Nemec and Aftosmis, 2007).

For instance, they require error-sensors and multiple user-chosen parameters (e.g.

for setting up grid resolution coarsening vs. refinement), which introduce sensitiv-

ity (e.g. can lead to inadequate or excessive resolution), inflexibility and problem-

dependency (e.g. due to the need to tune many parameters for each simulation

problem). They also lack a rigorous strategy to accommodate flow data transfer

and recovery between various inner resolution scales (given the changing nature

of the mesh). Therefore, improving the conceptual design of the FVM to allow

scaling in spatial-resolution should be considered and this motivates the current

research.

Figure 1.1: Contrasting 1D high-order spatial approximations; left: extrinsic (non-

local) finite volume polynomial estimates built from the original (local) piecewise-

constant evolution data; right: discontinuous Galerkin (local) evolution data defin-

ing intrinsic piecewise-polynomials, (Shelton, 2009).
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1.2.2 Discontinuous Galerkin method

In the 1970 s, the DG method was introduced by Reed and Hill (Reed and Hill,

1973) to improve the solution of steady-state neutron transport equation in which

the approximate solutions were computed cell by cell and the sequence of cells

was based on the characteristic direction. This is due to the neutron equation

that is known as a time independent linear hyperbolic equation. Later many

studies were conducted on the DG method with the intention of proving the mesh

convergence of order k, such as Lesaint and Raviart (Lesaint and Raviart, 1974)

who conducted a study choosing two types of meshes. The results showed that

the convergence rate was (∆x)k for triangular mesh, while for Cartesian mesh the

rate of convergence was (∆x)k+1. Furthermore, Johson and Pitkäranta (Johnson

and Pitkäranta, 1986) confirmed that the optimal converge rate was equivalent

to (∆x)k+1/2 for general meshes, and this was confirmed by Peterson (Peterson,

1991).

Early application of the DG method for solving 1D nonlinear scalar conserva-

tion laws was performed by Chavent and Salzano (Chavent and Salzano, 1982).

They applied piecewise linear elements in DG space and the forward Euler ap-

proach for time step. The scheme was unconditionally unstable except if imposing

a very restrictive time step. To solve this problem, a total variation diminishing

means scheme (TVDM) and total variation bounded scheme (TVB) were intro-

duced by Chavent and Cockburn (Chavent and Cockburn, 1987). In these schemes,

the requirement of the Courant-Friedrichs-Lewy (CFL) number should be equal

to or less than 1/2 for ensuring stability condition. However, they were first-order

accurate in time and the slope limiter was activated globally. Thus, the qual-

ity of the solution was affected in the region where the solution was smooth. To

overcome this problem, the Rung-Kutta discontinuous Galerkin method was intro-

duced by Cockburn (Cockburn, 1987). They merged an improved version of Shu

(Shu, 1987) slope limiter with the second-order total variation diminishing (TVD)

of the Runge-Kutta Discontinuous Galerkin method. The resulting scheme showed

a stability for (CFL < 1/3) and can preserve formal accuracy in the smooth re-

gion as well as ensuring sharp shock resolution without oscillations. Extending the

RKDG method to high-order with a general slope limiter for the scalar conserva-
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tion law was performed by Cockburn and Shu (Cockburn and Shu, 1989). Later,

the integral framework of the RKDG method for convection-dominated problems

was demonstrated by Cockburn et al. (Cockburn and Shu, 2001), which became

the cornerstone in this field.

The RKDG method combines the finite volume method and finite element

method. Therefore, it contains the advantageous aspects of both methods. Firstly,

it can handle the boundary conditions and complex geometries. Secondly, it pro-

vides a high-order approximation by using the high-order interpolating functions.

Thirdly, it has a local formulation. Therefore, application of the global assem-

bly matrix is not required, which makes the method highly parallelisable and the

implementation of the hp− adaptive mesh refinements is straightforward.

For solving the conservation law of SWEs, the earliest implementation of the

RKDG method was performed by Schwanenberg and Köngeter (Schwanenberg and

Köngeter, 2000) with application to simulate shock wave problems including dam

break flows and hydraulic jumps. Many others investigators applied the RKDG

method on 1D and 2D to verify its accuracy, stability and convergence on 1D and

2D meshes, considering different types of test cases of various complexity (see,

among others, (Tassi and Vionnet, 2003; Schwanenberg and Harms, 2004)). The

most relevant works that contributed to the development of the RKDG to water

flow modelling were focused on: i. the well-balanced property that introduced by

Bermudez and Vezquez (Bermudez and Vazquez, 1994a) in which the numerical

scheme was able to properly preserve a quiescent flow (e.g., see among others,

(Audusse et al., 2004; Kesserwani and Liang, 2012b; Caleffi and Valiani, 2012));

ii. introducing local slope limiting to improve the conservation property (e.g., see

among others, (Krivodonova et al., 2004; Qiu and Shu, 2005; Kesserwani and Liang,

2012b)); iii. the treatment of wet/dry interfaces in which a several techniques have

been introduced,for instance, Bokhove (Bokhove, 2005) used a 1D moving mesh

method to determine the wet/dry interfaces, Bunya et al. (Bunya et al., 2009)

used the fixed mesh approach using the traditional thin water layer with applying a

special treatments in the numerical flux and iv. gathering all these advanced topics

(i.e., i, ii and iii) in a unified RKDG-scheme for realistic simulations. For instance,

a new RKDG algorithm was presented by Kesserwani and Liang (Kesserwani and

Liang, 2010a) to solve 2D SWE considering the bed and friction source terms.
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Despite the progress that has been made in developing the RKDG methods,

the issue of high computational cost associated with these methods is still ob-

structing their widespread application (Kesserwani and Liang, 2012a). Therefore,

current attempts to improve RKDG shallow water solvers are mostly focused on

reducing the computational cost. To this effects, introducing spatial resolution

adaptivity (or h-adaptation) has commonly occupied researchers in the last decade

affected by the locality property. This property further allows researchers to lo-

cally scale in the accuracy-order (or p-adaptivity). For instance, Kubatko et al.

(Kubatko et al., 2006) compared global p-adaptation versus global h-adaptation

in an RKDG method in terms of the computational efficiency for solving the SWE

on unstructured triangular grids. The authors clearly concluded that the utilise of

the p-adaptation is more efficient than the utilise of h-adaptation even in regions

where the solution is highly non-linear. The reason was associated with the fact

that p-adaptation works within the natural formulation of the RKDG method,

whereas the h-adaptation is performed in a decoupled manner dictated by the

external mesh. Therefore, Kubatko et al. (Kubatko et al., 2009) installed solely

the dynamic p-adaptation in the RKDG for solving 2D SWE which, in terms of

run-time efficiency, they found to be better than both the global h-adaptation and

the global p-adaptation.

Concerning the local dynamic h-adaptation, Remacle et al. (Remacle et al.,

2006) first investigated it in the high-order RKDG solution to the SWE. Bader et

al. (Bader et al., 2010) reported a new dynamic h-adaptation mesh-generator in

the context of a RKDG shallow flow solver, with a particular focus on minimiz-

ing memory demand. Both papers considered 2D triangular meshes, but do not

provide information on the associated computational saving or the error generated

due to the instalment of the dynamic h-adaptation process. Kubatko (Kubatko

et al., 2009) coupled dynamic h-adaptation on quadrilateral meshes with an RKDG

numerical solver for 2D SWE with an application to reproduce real-scale flood sim-

ulations. Based on a qualitative and quantitative analyses the use of h-adaptation

in the RKDG numerical solver has shown a tendency to introduce uncertainties

in the modelling. In addition, it has been found to compromise the design of an

error-sensor and the quality of the initial mesh. Therefore, improving the concep-

tual design of the RKDG method to allow not only scaling in accuracy-order but
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also scaling in spatial-resolution is a complementary way forward.

1.2.3 The wavelets and multiwavelets introduced with nu-

merical modelling

In the 1980s, wavelets became a topic of interest in many areas of science and

engineering, for instance in signal processing, image compression, statistical anal-

ysis, speech recognition and other fields (Grossmann and Morlet, 1984). The first

researcher who used the term wavelet (Ondelette) was Jean Morlet, while working

on the analysis of seismic returns for Elf Aquitaine Oil company (Gargour et al.,

2009). In fluid mechanics, wavelets were used at first to analyse turbulent flow.

Later, much attractive work has been done using wavelet methods to simulate

coherent vortices in 2D and 3D flow (Schneider et al., 1997; Farge and Schneider,

2001; Yoshimatsu et al., 2013). The principal idea of these methods is to apply

wavelet decomposition to a turbulent flow so as to resolve the energetic eddies.

Mehra and Kevlahan (Mehra and Kevlahan, 2008) used the wavelet adaptive col-

location method for solving the partial differential equations (PDE) on a sphere

with application to simulate geophysical flows. The first attempt to use multires-

olution (MR) approach for hyperbolic conservation laws was performed by Harten

(Harten, 1995). The main idea behind this method was to conceptualise data

in a hierarchical form and use the multiscale wavelet basis as the approximation

space. The author employed the MR approach to transform the cell average arrays

associated with the FVM into a various form that reveals insight into the local

approximate solution. The cell averages on the given highest resolution level were

represented as cell averages on some coarse level where the fine scale information

is encoded in arrays of detail coefficients of promoting resolution. By using the

MR approach the computation is accelerated while controlling the flux evolution

in regions where the solution is smooth, and the solution remains at the same

level of accuracy as in the FVM. This method has been successfully implemented

for 2D Cartesian meshes, Bihari and Harten (1995), curvilinear meshes, Dahmen

et al. (2001) and unstructured meshes, Abgrall (1998). Following Harten’s origi-

nal ideas, Müller and Stiriba (Müller and Stiriba, 2007) and Cohen et al. (Cohen

et al., 2003) have further improved the approach to minimize the computational
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cost while preserving the accuracy of solution as FVM. To increase the accuracy of

the solution and in the meantime control the adaptive resolution of discontinuities,

a more comprehensive multi-scale framework needs to be designed. Therefore, in

2008, Shelton illustrated the utility of merging the multiwavelets (MW) method

with the DG method for unsteady compressible flow problems. The author suc-

cessfully utilised multiwavelets to refine the basis of the approximation space of

the local polynomial solution used in DG structure. Therefore, the MW basis is

able to enhance the computational solution by zooming across the different scales

within the computational solution framework (see Figure 1.2). In particular, in

an area where further detail is not necessary (Shelton, 2009). This is a new con-

cept that is only supported by some basic investigations and more investigation is

needed. According to the current literature, apart from the recent papers by the

team of Kesserwani and Müller (Kesserwani et al., 2014, 2015; Haleem et al., 2015),

the implementation and implication of this idea in addressing practical aspects of

shallow water flow simulation have not yet been fully explored.

Figure 1.2: Illustrates the comparison of the computation of the weak derivative

operation in traditional local refinement and multi-resolution setting, (Shelton,

2009).
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1.3 Objectives

The research formulates new HWFV and MWDG numerical solvers for simulation

of one dimensional shallow water. These schemes are capable of achieving the

dynamic adaptation from the solution itself and it is based on a single threshold

value only. The adaptive HWFV formulation combines the Haar wavelets within

the finite volume formulation, while the adaptive MWDG formulation combines

the generalisation of Haar wavelets, called multiwavelets within the Discontinuous

Galerkin formulation.

1.4 Outline of thesis

The next chapter presents an overview of the shallow water model in one di-

mensional flow. In Chapter 3, the multiresolution analysis and its mathematical

properties are introduced, with particular focus on our choice of basis function,

namely Haar wavelets and multiwavelts of (Alpert, 1993; Alpert et al., 2002) that

are used to drive to two types of filters that used for performing the transforma-

tion for any two sequences of resolution levels. Moreover, an example of sin(2x)

is presented to prove the feasibility of using these filter coefficients within the

framework of FV and DG methods. Chapter 4 consists of two parts: the first

part presents the standard FV and DG method, which helps to understand their

mathematical conception and the conceptual design of these methods related to

hydrodynamic modelling. The second part, based on the multiscale decomposition

of the Legendre polynomial basis of DG, the merge of the MW and DG frame-

work is reconstructed to provide complete solution of a hierarchy that can scale

in both resolution and local scales. This is followed by presenting the HWFV

formulation that can scale in resolution. In Chapter 5, the performance of these

models is tested, analysed and discussed. Chapter 6 presents the conclusions and

recommendations for future works.

10



Chapter 2

Shallow Water Equations

2.1 Introduction

The water over the Earth’s surface includes overland run off in both natural (river,

stream, oceans) and man-made environments (open channels, canals). They rely

on gravitational acceleration force, so their movement is referred to as “free sur-

face gravity flow ” and their physics is usually represented by the mass (continuity

equation) and momentum (dynamic equation) conservation in three space dimen-

sions.

When modelling free surface flow, the shallow water equations (Saint Venant

equations) are often considered the governing equations for the mathematical

model. Here the term “shallow” refers to the depth of the water, which is usually

much less than the horizontal scale of the flow length. This equation can be ob-

tained by depth-averaging the Navier-Stokes equations based on the assumption

that the vertical variation of the water is restricted via considering its importance

only for the dynamic flow (Tan, 1992).

The objective of this chapter is to explicitly present one-dimensional shallow

water equations. Firstly, the underlying assumptions of shallow water equations

is presented below. Secondly the derivation of the shallow water is illustrated.

Finally, we present the conservative form of the shallow water equations in which

is often considered as the basis of numerical models.
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2.2 The underlying assumptions of the shallow

water equations

The hypothesis states that the shallow water is conceived between two interfaces

and can be considered as boundary conditions for deducing the result of the shal-

low water equations. The fluid-fluid boundary (free surface) is denoted by z =

η(x, y, t), while the solid-fluid boundary (bottom) is denoted by z = −h+ zb(x, y),

Figure 2.1 illustrates these conditions, where h is the water depth, zb represents the

height of bottom variation, and the interface variation is η. Once the 3D free sur-

face flow equations are determined, the derivation of 3D shallow water equations

can be obtained via studying the characteristics scales of the problem. A number

of fundamental assumptions should be defined to simplify the problem. These

assumptions are inherent within the model and can be summarised as follows:

1. The distribution of the pressure with water depth is hydrostatics, i.e. the

vertical component of the water acceleration is negligible.

2. The friction losses in unsteady flow are represented using the same empirical

equations that used for steady flow, i.e. Manning’s equation.

3. The bed slope is small so the tangent of the angle can be computed by the

angle between the bed level and the horizontal plane.

4. The water has no viscosity and has a constant density (ρ), i.e. the tempera-

ture of water is constant during the flow of water.

2.3 The derivation of the shallow water equa-

tions

The shallow water equations have appeared in literature in many forms and can

be written as a set of differential or integral relations. The following derivation

considers the integral form which can be found in a book written by Cunge (Cunge

et al., 1980) and applies to an arbitrary shaped channel such as that shown in

Figure 2.2. Suppose that a control volume of water in the (x,t) plane is bounded
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Figure 2.1: Schematic for the system of the shallow water equations.

between two sections x = x1, x = x2 and t = t1, t = t2 such as shown in Figure

2.3. By considering all assumptions listed in Section 2.2 and noting that there is

no lateral inflow into the control volume, and by assuming that the velocity (u) in

x-direction is constant over a cross-sectional area (A), then the change of mass in

the control volume can be determined via computing the difference between the

inflow mass at x1 and outflow mass at x2 and then performing the time integration

between t1 and t2 which gives:∫ t2

t1

[(ρuA)x1 − (ρuA)x2 ]dt (2.1)

Due to mass conservation, the net inflow obtains from equation 2.1 is equivalent

to the change of water volume between x1 and x2 during the time interval which

is given by:

∫ x2

x1

[(ρA)t2 − (ρA)t1 ]dx (2.2)

By substituting the discharge Q = Au into the equations 2.1 and 2.2 gives the

integral relation of the mass continuity for a channel has an arbitrary cross section.∫ x2

x1

[(A)t2 − (A)t1 ]dx+

∫ t2

t1

[(Q)x2 + (Q)x1 ]dt = 0 (2.3)

For the dynamic equation, we apply Newton’s second law to the control vol-

ume that states, the change of momentum in the control volume from t1 to t2 is

equivalent to the net inflow of the momentum within the control volume plus the

integral of the external forces which cause the acceleration in the control volume
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with respect to the same internal time. Hence, momentum and momentum flux

through cross section can be defined as

Momentum = ρA× u (2.4)

Momentumflux = Momentum× u = ρu2A (2.5)

The difference of the momentum flux that is entered through the section x1

and leaving through the section x2 with respect to the time interval t1 and t2 can

be given as follows:

Mf =

∫ t2

t1

[
(
ρu2A

)
x1
−
(
ρu2A

)
x2

]dt (2.6)

At a particular time, we can define the net momentum in the control volume

as ∫ x2

x1

ρuAdx (2.7)

and it is increased (∆M) over the time interval, which gives

∆M =

∫ x2

x1

[(ρuA)t2 − (ρuA)t1 ]dx (2.8)

It can be seen from the Figures 2.3 and 2.4 that only three important forces

are acting on the control volume in x-direction. The first force is the pressure

force (Fp1) that is produced from the change in static pressure at boundaries in

which the pressure force F ∗p1 acts at section x1 can be defined using equation 2.9.

Furthermore, the pressure force acts at section x2 is defined using F ∗∗p1 .

F ∗p1 = g

∫ h(x)

0

ρ[h(x)− η]σ(x, η)dη (2.9)

where η = depth integration variable; h(x, t) = water depth and (x, η) = width

of the cross section at a depth η such that σ(x, h) = B(x) at the free surface width.

So the time integral of the net pressure force Fp1 can be expressed as follows:

∫ t2

t1

Fp1dt =

∫ t2

t1

(F ∗p1 − F
∗∗
p1

)dt = g

∫ t2

t1

[(ρI1)x1 − (ρI1)x2)]dt (2.10)

where

I1 =

∫ h(x)

0

= [h(x)− η]σ(x, η)dη (2.11)

Consider the short length of channel dx. The pressure force is increased as

the width of the corresponding wetted area (dσ · dη) increases for constant water
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depth h = h0 and then multiplying its centroid by the distance from the free

surface h(x)− η gives:

ρg

[(
∂σ

∂x

)
dx · dη

]
h=h0

[h(x)− η] (2.12)

To compute all forces acting upon the control volume that is given between

the section x1 and the section x2, this force is to be integrated between η = 0 and

η = h(x):

Fp2 =

∫ x2

x1

ρg

∫ h(x)

0

[h(x)− η]

[
∂σ(x, η)

∂x

]
h0

dη dx (2.13)

and also Fp2 is integrated over the time interval and it can be written as:

∫ t2

t1

Fp2dt = g

∫ t2

t1

∫ x2

x1

ρ I2 dx dt (2.14)

where

I2 =

∫ h(x)

0

(h− η)

[
∂σ

∂x

]
h=h0

∂η (2.15)

Since the slope of the bed channel has been assumed to be small (see Sec-

tion 2.2), and can be obtained from equation 2.17, the total contribution of the

gravitational force Fg, with respecting the time interval, can be expressed as

∫ t2

t1

Fg dt =

∫ t2

t1

∫ x2

x1

ρ g AS0 dx dt (2.16)

S0 = −∂zb
∂x

= tan θ ≈ sin θ (2.17)

The frictional resistance force Ff is obtained due to the existence of shear force

along the channel bed and banks. In most instances, it is expressed by following

the expression of Ven Te Chow (Te Chow, 1959) which states that the energy

gradient force is equivalent to the friction resistance force when flow is steady.

The shear force per unit length ρgASf , where Sf is the friction slope, is to be

integrated over time interval to compute the total contribution of friction force

applied to the control volume.

∫ t2

t1

Ff dt =

∫ t2

t1

∫ x2

x1

ρ g ASf dx dt (2.18)
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Consider the momentum conservation law, which indicates that the change in

momentum ∆M , is equivalent to the sum of external force and the resultant of

momentum Mf , thus:

∆M = Mf +

∫ t2

t1

Fp1 dt+

∫ t2

t1

Fp2 dt+

∫ t2

t1

Fg dt−
∫ t2

t1

Ff dt (2.19)

Due to the consistent density of water and taking into account all equations

from 2.6 to 2.19, the general integral form of momentum equation becomes∫ x2

x1

[(uA)t2 − (uA)t1 ] dx =

∫ t2

t1

[(u2A)x1 − (u2A)x2 ] dt+ g

∫ t2

t1

[(I1)x1 − (I1)x2 ] dt

−g
∫ t2

t1

∫ x2

x1

ρ I2 dx dt+ g

∫ t2

t1

∫ x2

x1

A(S0 − Sf ) dx dt

(2.20)

Alternatively, the equation 2.20 can be rewriting using A and Q, then∫ x2

x1

[(Q)t2 − (Q)t1 ] dx =

∫ t2

t1

[(
Q2

A

)
x1

−
(
Q2

A

)
x2

]
︸ ︷︷ ︸

A©

dt+ g

∫ t2

t1

(I1)x1 − (I1)x2 ]︸ ︷︷ ︸
B©

dt

−g
∫ t2

t1

∫ x2

x1

ρ I2 dx dt+ g

∫ t2

t1

∫ x2

x1

A(S0 − Sf ) dx dt

(2.21)

Suppose that the distance between x2 and x1 becomes very small and also

assume that the flow variables are differential and continuous. The Tayor series

expansion can then be applied to Q and A at t2, so

(Q)t2 = (Q)t1 +
∂ Q

∂t
∆t+

∂2Q

∂t2
∆t2

2
+ ... (2.22a)

(A)t2 = (A)t1 +
∂ A

∂t
∆t+

∂2A

∂t2
∆t2

2
+ ... (2.22b)

By ignoring all terms in equation 2.22 that are greater than the first-order

derivative term and performing the limit as ∆x and ∆t trend to zero, the continuity

equation can be rewritten as:∫ x2

x1

∫ t2

t1

[
∂A

∂t
+
∂Q

∂x

]
dt dx = 0 (2.23)

Applying the Taylor series to the terms A© and B© in equation 2.21 gives(
Q2

A

)
x2

−
(
Q2

A

)
x1

=
∂ (Q2/A)

∂x
∆x+

∂2 (Q2/A)

∂x2

∆x2

2
+ ... (2.24a)

(I1)x2 − (I1)x1 =
∂ (I1)

∂x
∆x+

∂2 (I1)

∂x2

∆x2

2
+ ... (2.24b)
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Figure 2.2: The cross section area of the non-prismatic open channel, (Cunge et al.,

1980).

By considering only the first-order term in equations 2.24 and allowing that

the limit of ∆x and ∆t goes to zero, the equation 2.21 can then be written as∫ x2

x1

∫ t2

t1

[
∂Q

∂t
+

(∂(Q2/A)

∂x

]
dt dx = −g

∫ x2

x1

∫ t2

t1

[
∂I1

∂x
− I2 − A(S0 − Sf )

]
dt dx

(2.25)

The equations 2.23 and 2.25 must be performed for throughout the region.

They can therefore be written in term of differential equation, thus:

∂A

∂t
+
∂Q

∂x
= 0 (2.26a)

∂Q

∂t
+

∂

∂x

(
Q2

A
+ gI1

)
= gA(S0 − Sf ) + gI2 (2.26b)

This form of the equation 2.26 is called the ”divergent form” and it represents

the system of conservation laws based on the de St Venant hypothesis.

A prismatic rectangular channel has been considered in this thesis in which the

I1 term can be simplified to I1 = A2/2B and the I2 becomes zero. In addition,

it assumes that the flow parameters at a given instance in time are varied only in

(x, t) plane, so the equation 2.26 becomes:

∂h

∂t
+
∂q

∂x
= 0 (2.27)

∂h

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2

)
= gh(S0 − Sf ) (2.28)

It may be more convenient to write the equations 2.27 and 2.28 in vector form

as
∂U

∂t
+
∂F

∂x
= S (2.29)
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Figure 2.3: The section view of the control volume, (Cunge et al., 1980).

Figure 2.4: The distribution of pressure forces, plan view, (Cunge et al., 1980).

where

U = [h, q]T F(U) =
[
q, gh2/2 + q2/h

]T
S(U) = [ 0, gh(S0 − Sf )]T
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Chapter 3

Wavelets and Multiwavelets

3.1 Introduction

The theory of wavelets is vast and it is being widely used in many disciplinary

applications, ranging from signal processing and denoising to the fast solution of

partial differential equations, since the theory allowed for the effective approxima-

tion of a large class of functions, including those with discontinuities and sharp

spikes. However, it is considered a relatively new topic in the field of computational

fluid dynamics and only appeared in the literature a few decades ago in relation

to the analysis of turbulent flow (Schneider and Vasilyev, 2010). This is due to

the sophistication of the theory and that the majority of available studies about

wavelets was written by mathematicians at such level that is difficult for anyone

to avail of them (Soman et al., 2010). Thus, in this chapter our goal is to describe

the whole theory of discrete wavelets and multiwavelets in details and how they

are construed within the target of integrating them into the framework of FV and

DG. To do so, we will start with describing the concept of multiresolution analysis

and along with how it can be exploited to construct the multiwavelets, and then

we come to the end of the chapter by giving an example of representing function

f in different resolutions.
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3.2 Multiresolution Analysis

The multiresolution analysis concept (MRA) plays an important role in the context

of wavelets and multiwavelets theory because it gives one the ability to drive their

own families of wavelet bases (i.e. self-similar functions) without any restriction.

For instance, obtaining the refinement equations that links the basis functions on

one resolution level to their scaled version on higher resolution levels (Gargour

et al., 2009). This allows one to access the finer details of the approximated

function and manipulating them can be used to promote the representation of the

function to higher resolution or demoted it to a lower resolution.

In fact, this idea was first proposed by Mallat (1989) and it was called mul-

tiresolution approximation. But in this thesis, the multiresolution analysis term

is used to be consistent with the literature. More detail about MRA can be found

in book written by Keinert (2003). Here we present the Alpert multiresolution

analysis (Alpert, 1993) using the standard notation of wavelets and multiwavelets

with the difference that our discussion is limited to the interval [−1, 1] instead of

the real line to be consistent with the compact-support of Legendre polynomial

basis. Therefore, the first principle is to suppose that the MRA of L2([−1, 1]) is

orthogonal and has an infinite nested sequence of sub-spaces.

V 0
k ⊂ V 1

k ⊂ V 2
k ⊂ . . . V n

k ⊂ . . . ⊂ L2 ([−1, 1]) (3.1)

with the following properties:

1. closL2 (
⋃∞
n=0 V n

k )=L2([−1, 1]).

2.
⋂∞
n=0 V

n
k = {0}.

3. f(x) ∈ V n
k ⇐⇒ f(2x) ∈ V n+1

k ,∀n ∈ N.

4. f(x) ∈ V n
k ⇐⇒ f(x− 2−nj) ∈ V n

k , ∀n ∈ N, 0 ≤ j ≤ 2n − 1.

5. There exists a vector function Φ ∈ L2([−1, 1]) of length k + 1 such that the

vector components φi form an orthogonal basis of V 0
k .

This means that if we can construct a basis functions of V 0
k , which consists of

k + 1 functions, the basis functions of any space V n
k can be obtained via applying

dilation (compression by a factor 2n, property 3), and translation ( to all shifting
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points at level n, property 4), on the original k + 1 functions. Consider equation

3.1, the basis functions of space V n
k can be expanded in V n+1

k space as follows:

φni,j(x) = 2n/2φi(2
n(x+ 1)− 2j − 1) (j = 0, 1, .., 2n − 1) (3.2)

and the orthogonality condition of MRA is valid if

〈φni,j, φnl,m〉 = δi,l δj,m (3.3)

where δ is the delta function, j,m are the location index and i, l are the poly-

nomial order. It means that the basis functions on one level are orthogonal both

within one function vector and through all possible translation, but not through

the different levels. This has an advantage of constructing the filter matrices that

explained in the Subsection 3.3.4.

By considering the concept of nested sequence of sub-spaces, as in property 1,

and they are non-overlapping, as in property 2, an orthogonal complement sub-

space called wavelets space (W n
k ) can be defined between any two sequences of

sub-spaces V n−1
k and V n

k that is

V n+1
k = V n

k ⊕ W n
k (3.4)

where the W n
k spaces inherit the MRA properties from the space V n

k . Thus

given any vector basis functions Φ in V n
k , there is another vector Ψ that contains

basis function of the length of k + 1 called wavelets. Similarly to equation 3.2, its

translation and dilation at level n form a basis functions for W n
k .

ψni,j(x) = 2n/2ψi(2
n(x+ 1)− 2j − 1) (j = 0, 1, .., 2n − 1) (3.5)

By considering the orthogonality condition of the MRA, the bases ψ fulfil the

same orthogonal condition as in equation 3.3, and if we merge equation 3.1 and

equation 3.4, they must be also orthogonal with respect to the different resolution

levels. This is an important property of wavelet basis because of two reasons;

first the wavelets transformation will be straightforward; second, the information

captured by one wavelet basis ψ is completely independent from the information

captured by another basis (Soman et al., 2010).

〈ψni,j, ψn
′

l,m〉 = δi,l δj,m δn,n′ (3.6)
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Figure 3.1: Decomposition of spaces V n
k into the complement spaces W n

k .

By applying equation 3.4 recursively, this yields an important relation (see

Figure 3.1) that has the advantage of decomposing any space V n
k as the sum of a

single space V 0
k along with a sequence of wavelet spaces W n−1

k :

V n
k = V 0

k ⊕ W 0
k ⊕ W 1

k ⊕ · · · ⊕ W n−1
k (3.7)

The concept in equation 3.7 is considered as a keystone of constructing the

multiwavelets. The choice of multiwavelets as a tool for numerical purposes is due

to two main reasons. First, they are sharing the same compact support. Thus, for

a high order of approximation, the compact support length of these basis functions

is not need to be increased. This aids to preserve the orthogonality condition which

has an advantage in adaptive solvers of PDEs. Second, they are discontinuous and

can be used for representing the integral operators of PDEs (Alpert et al., 2002).

3.3 Multiwavelets

Many approaches have been described for choosing the basis functions φ and ψ that

are used to span the spaces V n
k and W n

k respectively. This leads to obtain different

wavelet families such as Daubenchies’s family in which the φ and ψ are compactly

supported and constructed by using specific designed filter matrices (Daubechies

et al., 1988). In contrast to the Alpert’s family, where the basis functions φ and

ψ are defined via applying the Alpert algorithms on the legendre polynomial basis

functions. This leads to notation of multiwavelets.
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Here, we define the scaling space V n
k as a space of piecewise polynomial func-

tions

V n
k = {f : is a polynomials of degree ≤ k

on supportof, (−1 + 2−n+1j,−1 + 2−n+1(j + 1))

for j = 0, 1, .., 2n − 1 and vanishes elsewhere}

(3.8)

and the equation 3.8 fulfils all conditions of MRA, provided the scaling basis

functions φ are chosen to be orthogonal.

3.3.1 Scaling basis functions

The simplest way of constructing the scaling basis is to start with the standard

k + 1 polynomial functions {1, x, x2, ..., xk} spanning the space of polynomial of

degree 6 k and then considering the orthogonality and normality conditions of the

MRA with respect to the L2[−1, 1] interval.∫ 1

−1

Pl(x)Pi(x) dx = 0, l 6= i (3.9)

Here, {Pl(x)}l=0,1,··· ,p∈N are the well-known legendre polynomials of order p

shown in Figure 3.2 , and their orthogonality property is given in equation 3.9. In

addition, they are satisfied by the following recursive formula:

P0(x) = 1 (3.10)

P1(x) = x (3.11)

Pl+1(x) =
2l + 1

l + 1
xPl(x)− l

l + 1
Pl−1(x) (3.12)

The Legendre multi-scaling bases φnl,j are obtained by dilation and translation

to the interval [−1, 1], followed by L2[−1, 1] normalization.

φnl,j(x) = 2
n
2

√
2l + 1

2
Pl (2

n(x+ 1)− 2j − 1), x ∈ [−1, 1] (3.13)

In Table 3.1 the scaling bases are explicitly given for p = 0, 1, 2 in spaces V 0
2 and

V 1
2 and then they are plotted in Figure 3.3.

23



Chapter 3. Wavelets and Multiwavelets

Figure 3.2: Basis of Legendre polynomial functions for V 0
2 .

Table 3.1: Scaling bases for p = 0, 1, 2 in spaces V 0
2 and V 1

2 on [−1, 1].

.

p V 0
2 V 1

2

x ∈ (−1, 1) x ∈ (−1, 0) x ∈ (0, 1)

j = 0 j = 0 j = 1

0
√

1/2 1 1

1
√

3/2x
√

3 (2x+ 1)
√

3 (2x− 1)

2
√

5/8 (3x2 − 1)
√

5 (6x2 + 6x+ 1)
√

5 (6x2 − 6x+ 1)

3.3.2 Basis of wavelets

The wavelet basis functions of spanning W n
k are defined to be the polynomial of

degree k − 1 on each of the two intervals at level n + 1 that non-overlaps with

discontinuities in the merging point. However, when k = 1 the Haar orthonormal

wavelet family for x ∈ [−1, 1] can be defined as follows:

ψn0 (x) =


2

n
2

√
1
2
, x ∈ [ξ1, ξ2),

−2
n
2

√
1
2
, x ∈ [ξ2, ξ3),

0 elsewhere,

(3.14)

where

ξ1 = −1 + 2−n+1j, ξ2 = −1 + 2−n+1(j + 1
2
), ξ3 = −1 + 2−n+1(j + 1)

The multiwavelet idea arises from the generalisation of Haar wavelets. Instead

of single scaling and single wavelet function, several scaling and wavelet functions
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(a) V 0
2

(b) V 1
2

Figure 3.3: The scaling bases of order p = 0, 1, 2 ; a) resolution level (n = 0); b)

resolution level (n = 1).

.
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are used. This leads to more degrees of freedom in the construction of multi-

wavelets conversely to Haar wavelets. Therefore, the properties such as high order

of vanishing moments, compact support, and the orthogonality can be obtained

simultaneously in multiwavelets. On the other hand, coupling multiwavelets sys-

tem with high-resolution and high-accuracy approximation retains the locality of

wavelet bases with discontinuous nature.

3.3.3 Construction of MW from scaling functions

Alpert’s algorithm has been used for the construction of one dimensional bases

ψ1, ψ2, .., ψk as it appears in references (Alpert, 1993; Alpert et al., 1992) and

(Shelton, 2009).

First, define the k functions g1 , g2 , gk from R to R, they support the interval

[−1, 1], and also satisfying the following properties:

1. The restriction of function gi on the interval (0, 1) is a polynomial of degree

less than k.

2. The function gi is extended to the interval (−1, 0) as an odd or even function

considering the following formula:

gi(x) = (−1)i+k−1gi(−x) (3.15)

in which the function gi(x) is zero outside the interval (−1, 1).

3. The functions g1 , g2 , gk have the following orthogonality and normality con-

ditions:∫ 1

−1

gi(x)gm(x) dx ≡ 〈 gi, gm〉 = δi,m, i,m = 0, 1, ..., k − 1 (3.16)

4. The function gi has the following vanishing moments:∫ 1

−1

gi(x)φm(x) dx = 0, m = 0, 1, .., i+ k − 2 (3.17)

Second, suppose we have 2k functions which span the space of polynomials of

degree (k − 1) on the intervals (0, 1) and (−1, 0). Then, we first orthogonalise k
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of them to the functions φ0, φ1, ... , φk−1, then to the functions φk, φk+1, ... , φ2k−1

and finally among themselves. The function g1
i can be defined as follows:

g1
i (x) =


φi(2x− 1), x ∈ (0, 1)

−φi(2x+ 1), x ∈ (−1, 0)

0 otherwise

(3.18)

Note that the 2k function φ0, φ1 , ... , φk−1, g
1
0 , g

1
2 , ... , g

1
k−1 are linearly inde-

pendent. Thus, they span the space of functions, which are polynomial of degree

less than k on the intervals (0, 1) and (−1, 0). Then:

1. By the Gram-Schmidt process we orthogonalise g1
i with taking into account

the sequence φ0, φ1, , , , , φk−1, to obtain g2
i for i = 1, .., k. This orthogo-

nality is retained by keeping orthogonalizations, which only produce linear

combinations of g2
i .

2. By considering the following steps, k−1 functions orthogonal to the φ0, φ1, ... , φk−1

can be obtained. In which k − 2 functions are orthogonal to φk+1, and so

forth, down to one function that is orthogonal to φ2k−2.

(i) First step, if at least one of the function g2
i is not orthogonal to φk, we have

to reorder the function so that it appears first,〈φk, g2
0〉 6= 0.

(ii) Define g3
i = g2

i − ai g
2
0, where ai is chosen so 〈φk, g3

i 〉 = 0 for i = 1, .. , k−1,

satisfying the desired orthogonality to φk.

(iii) In the same way, orthogonalise to φk+1, ... , φ2k−2, each in turn, to obtain

g2
0, g

3
1, ... , g

k+1
k−1 such that 〈φm, gi+2

i 〉 = 0 for m 6 i+ k − 1.

3. Final step, perform Gram-Schmidt orthogonalisation on gk+1
k−1, gkk−2, ... , g2

0, in

that order, and normalize to obtain ψk−1, ψk−2, ..., ψ0.

In Table 3.2, an example of multiwavelet bases are explicitly given for k = 1, 2, 3

in space W 0
k and plotted in Figure 3.4.
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(a) p = 0 (b) p = 1

(c) p = 2

Figure 3.4: Multiwavelet bases of order p : p = k − 1; black, red and green lines

represent the ψ0,ψ1 and ψ2 for j = 0, 1 respectively.
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Table 3.2: Wavelets for p = 0, 1, 2 in space W 0
k on [−1, 1]

.

p x ∈ (−1, 0) x ∈ (0, 1)

0 −
√

1
2

√
1
2

1 −
√

3
2
(2x+ 1)

√
3
2
(2x− 1)√

1
2
(3x+ 2)

√
1
2
(3x− 2)

2 −1
3

√
1
2
(30x2 + 24x+ 1) 1

3

√
1
2
(30x2 − 24x+ 1)

1
2

√
3
2
(15x2 + 16x+ 3) 1

2

√
3
2
(15x2 − 16x+ 3)

−1
3

√
5
2
(12x2 + 15x+ 4) 1

3

√
5
2
(12x2 − 15x+ 4)

3.3.4 Filter matrices relations

With the multiscaling and multiwavelet bases defined, we can construct the filter

matrices that achieve the transformation between any two sequence of resolution

levels. The locality of this transformation is important for numerical implementa-

tion, as it leads to efficient algorithms. Basically, four type of matrices with size

(p + 1) × (p + 1) are considered: two of them, H0 and H1, are driven from the

scaling bases and called here ”lowpass filter” matrices. While the other two matri-

ces G0 and G1 are driven from inner product between the scaling and multiwavlet

bases and are called ” highpass filter” matrices.

3.3.4.1 Lowpass filter matrices

Let the vector scaling bases Φ0
l,j ∈ V 0

p are given, where l ∈ {0, 1, .., p}. Note the

nested sequence of spaces V 0
p and V 1

p , so Φ0
l,j ∈ V 1

p . This means that the bases

vector at resolution level n = 0 will overlap with two basis vectors at resolution

level n = 1, therefore it is possible to write φl as follows:

φl(x) =

p∑
r=0

〈φl, φ1
r,0〉︸ ︷︷ ︸

A©
φ1
r,0(x) +

p∑
r=0

〈φl, φ1
r,1〉︸ ︷︷ ︸

B©
φ1
r,1(x) (3.19)
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By using the equation 3.2, φ1
r,0 and φ1

r,1 become

φ1
r,0(x) =

√
2φr(2

1(x+ 1)− 0− 1) (3.20a)

φ1
r,0(x) =

√
2φr(2x+ 1) (3.20b)

φ1
r,1(x) =

√
2φr(2

1(x+ 1)− 2− 1) (3.21a)

φ1
r,1(x) =

√
2φr(2x− 1) (3.21b)

Also, the inner product terms A© and B© in equation 3.19 form the so-called

lowpass filer coefficients when j = 0, 1; {l, r} ∈ {0, 1, .., p}, and can be computed

as follows

h
(j)
l,r = 〈φl, φ1

r,0〉 (j = 0); (3.22a)

=

∫ 0

−1

φl(x)
√

2φr(2x+ 1) dx (3.22b)

h
(j)
l,r = 〈φl, φ1

r,1〉 (j = 1); (3.23a)

=

∫ 1

0

φl(x)
√

2φr(2x− 1) dx (3.23b)

Consider p = 0, 1, 2 ; j = 0, 1, then by gathering all coefficients that obtained

from equation 3.22, the H(j) matrices that associated with the chosen Legendre

polynomial order are given as follows:

For l = 0 and r = 0;

H0 =
(
〈φ0

0,0, φ
1
0,0〉

)
=
( √

2
2

)
H1 =

(
〈φ0

0,0, φ
1
0,1〉

)
=
( √

2
2

)
For l = 1 and r = 1;

H0 =

〈φ0
0,0, φ

1
0,0〉 〈φ0

0,0, φ
1
1,0〉

〈φ0
1,0, φ

1
0,0〉 〈φ0

1,0, φ
1
1,0〉

 =

 √
2

2
0

−
√

6
4

√
2

4



H1 =

〈φ0
0,0, φ

1
0,1〉 〈φ0

0,0, φ
1
1,1〉

〈φ0
1,0, φ

1
0,1〉 〈φ0

1,0, φ
1
1,1〉

 =

√2
2

0
√

6
4

√
2

4


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For l = 2 and r = 2;

H0 =


〈φ0

0,0, φ
1
0,0〉 〈φ0

0,0, φ
1
1,0〉 〈φ0

0,0, φ
1
2,0〉

〈φ0
1,0, φ

1
0,0〉 〈φ0

1,0, φ
1
1,0〉 〈φ0

1,0, φ
1
2,0〉

〈φ0
2,0, φ

1
0,0〉 〈φ0

2,0, φ
1
1,0〉 〈φ0

2,0, φ
1
2,0〉

 =


√

2
2

0 0

−
√

6
4

√
2

4
0

0 −
√

30
8

√
2

8



H1 =


〈φ0

0,0, φ
1
0,1〉 〈φ0

0,0, φ
1
1,1〉 〈φ0

0,0, φ
1
2,1〉

〈φ0
1,0, φ

1
0,1〉 〈φ0

1,0, φ
1
1,1〉 〈φ0

1,0, φ
1
2,1〉

〈φ0
2,0, φ

1
0,1〉 〈φ0

2,0, φ
1
1,1〉 〈φ0

2,0, φ
1
2,1〉

 =


√

2
2

0 0
√

6
4

√
2

4
0

0
√

30
8

√
2

8


By considering all definitions given above, equation 3.19 can be generalised

to obtain any scaling basis functions of V n
P from their basis functions which are

expanded in V n+1
p

φnl,j(x) =
2n−1∑
m=0

p∑
r=0

H
(m)
l,r φn+1

r,m (x) (3.24)

3.3.4.2 Highpass filter matrices

The same approach has been considered for multiwavelets bases with respect to

W 0
p . Let Ψ0

l,j ∈ W 0
p are given, l ∈ {0, 1, .., p}. Since W 0

p ∈ V 1
p ( see equation 3.7)

so ψl(x) can be represented as follows:

ψl(x) =

p∑
r=0

〈ψl, φ1
r,0〉︸ ︷︷ ︸

C©
φ1
r,0(x) +

p∑
r=0

〈ψl, φ1
r,1〉︸ ︷︷ ︸

D©
φ1
r,1(x) (3.25)

Also, the inner product terms C© and D© in equation 3.25 form the so-called

highpass filer coefficients when j = 0, 1; {l, r} ∈ {0, 1, .., p}, and can be computed

as follows:

g
(j)
l,r = 〈ψl, φ1

r,0〉 (j = 0); (3.26a)

=

∫ 0

−1

φ1
l,j(x)

√
2ψr(2x+ 1) dx (3.26b)

g
(j)
l,r = 〈ψl, φ1

r,1〉 (j = 1); (3.27a)

=

∫ 1

0

φ1
l,j(x)

√
2ψr(2x− 1) dx (3.27b)

Consider p = 0, 1, 2 ; j = 0, 1, then by gathering all coefficients that obtained

from equation 3.26. The G(j) matrices that associated with the chosen Legendre
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polynomial order, are given as follows:

For l = 0 and r = 0;

G0 =
(
〈ψ1

0,0, φ
1
0,0〉

)
=
( √

2
2

)
G1 =

(
〈ψ1

0,0, φ
1
0,1〉

)
=
(
−
√

2
2

)
For l = 1 and r = 1;

G0 =

〈ψ1
0,0, φ

1
0,0〉 〈ψ1

0,0, φ
1
1,0〉

〈ψ1
1,0, φ

1
0,0〉 〈ψ1

1,0, φ
1
1,0〉

 =

 0 −
√

2
2

√
2

4

√
6

4



G1 =

〈ψ1
0,1, φ

1
0,1〉 〈ψ1

0,1, φ
1
1,1〉

〈ψ1
1,1, φ

1
0,1〉 〈ψ1

1,1, φ
1
1,1〉

 =

 0
√

2
2

−
√

2
4

√
6

4


For l = 2 and r = 2;

G0 =


〈ψ1

0,0, φ
1
0,0〉 〈ψ1

0,0, φ
1
1,0〉 〈ψ1

0,0, φ
1
2,0〉

〈ψ1
1,0, φ

1
0,0〉 〈ψ1

1,0, φ
1
1,0〉 〈ψ1

1,0, φ
1
2,0〉

〈ψ1
2,0, φ

1
0,0〉 〈ψ1

2,0, φ
1
1,0〉 〈ψ1

2,0, φ
1
2,0〉

 =


√

2
6

√
6

6
−
√

10
6

0
√

2
8

√
30
8

−
√

10
12
−
√

30
12

−
√

2
3



G1 =


〈ψ1

0,1, φ
1
0,1〉 〈ψ1

0,1, φ
1
1,1〉 〈ψ1

0,1, φ
1
2,1〉

〈ψ1
1,1, φ

1
0,1〉 〈ψ1

1,1, φ
1
1,1〉 〈ψ1

1,1, φ
1
2,1〉

〈ψ1
2,1, φ

1
0,1〉 〈ψ1

2,1, φ
1
1,1〉 〈ψ1

2,1, φ
1
2,1〉

 =


−
√

2
6

√
6

6

√
10
6

0 −
√

2
8

√
30
8

√
10

12
−
√

30
12

√
2

3


By considering all definitions given above and analogously to equation 3.24,

the multiwavelet bases vector can be expanded in basis of space V n+1
p

ψnl,j(x) =
2n−1∑
m=0

p∑
r=0

G
(m)
l,r φn+1

r,m (x) (3.28)

3.3.4.3 The combination of High-Low pass filter matrices

With the filter matrices defined, we can perform the two-scale transformation,

which is local and important for numerical implementation; as it leads to efficient

algorithms. Here, some important properties of filter matrices are given after col-

lecting the both types of filters to obtain a matrix transformation (U), which is

orthogonal and can describe a linear unitary transformation between the two sets

of bases.

U =

H0 H1

G0 G1

 (3.29)
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Since UUT = I, where I is the identity matrix and T is the transpose matrix

index. we can satisfy UT = U−1. This condition introduces an additional set of

relations (Alpert et al., 2002):

H0H0T +H1H1T = I, (3.30a)

G0G0T +G1G1T = I, (3.30b)

H0G0T +H1G1T = 0, (3.30c)

G0H0T +G1H1T = 0, (3.30d)

Consequently, equations 3.24 and 3.28 can be reduced toφnl,j
ψnl,j

 =

H0 H1

G0 G1

 φn+1
l,2j

φn+1
l,2j+1

 (3.31)

The transformation in equation 3.31 is called bases decomposition, while its

inverse is called the ’bases reconstruction’.

3.4 Function representation

The multiwavelets formalism presented in section 3.3 gives prospects of efficient

representation of any arbitrary function, and in this section we describe how this is

achieved in practice by considering an example function such as f(x) = sin(2πx);

x ∈ (−1, 1).

3.4.1 Single scale representation

The orthogonal projection of function Pn
p f(x) = f(x) in V n

p with respect to the

scaling bases {φnl,j} is given by:

P n
p f(x) =

2n−1∑
j=0

p∑
l=0

snl,j φ
n
l,j(x) (3.32)

where the expansion coefficients snl,j indicate the location of f(x) at which reso-

lution level, the so-called ”scaling coefficients”. It can be computed (or initialised)

as:

snl,j(i) = 〈f, φnl,j〉 =

∫ −1+2−n+1(j+1)

−1+2−n+1(j)

f(x)φnl,j(x) dx (3.33a)

= 2
n
2

∫ −1+2−n+1(j+1)

−1+2−n+1(j)

f(x)φl(2
n(x+ 1)− 2j − 1) dx (3.33b)
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To apply the standard Gauss-Legendre quadrature integration (see appendix

A), the integration limitations in equation 3.33 are replaced by (-1,1) using the

equation 3.34. Therefore, the ith Gauss points ξgi , the root of Legendre polynomial

order, and its weight ωgi can be straightforwardly used.

ξ = 2n(x+ 1)− 2j − 1, (3.34a)

x = 2−n(ξ + 2j + 1)− 1, (3.34b)

dx = 2−n ξ dξ (3.34c)

By substituting equation 3.34 in equation 3.33 with consideration for the Gauss

points, their weighted functions yield

snl,j(i) = 2−
n
2

∫ 1

−1

f(2−n(ξ + 2j + 1)− 1)φnl,j(ξ) dξ (3.35a)

snl,j(i) = 2−
n
2

p∑
l=0

ωglif(2−n(ξgli + 2j + 1)− 1)φl(ξgli) dξ (3.35b)

where the index i indicates to the local cell within the discrete domain [−1, 1].

The accuracy of this approximation is dependent on to which resolution level the

projection is performed, and to the order p of polynomial basis.

3.4.2 Multi-scale representation

The function f(x) also has the projection operator Qn
p that projects in W n

p with

respect to the multiwavelet bases {ψnl,j}.

Qn
p f(x) =

2n−1∑
j=0

p∑
l=0

dnl,j ψ
n
l,j(x) (3.36)

For which the detail coefficients are given as

dnl,j =

∫ −1+2−n+1(j+1)

−1+2−n+1(j)

f(x)ψnl,j(x) dx (3.37)

According to equation 3.4 the following relation can be obtained between the

projection operators

Pn+1
p f(x) = Pn

pf(x) + Qn
pf(x) (3.38)

which means that the multiwavelets projection should not be considered as an

approximation of the function f(x), but only the difference between two approxi-

mations.

Qn
pf(x) = (Pn+1

p −Pn
p )f(x) = f(x)n+1 − f(x)n (3.39)
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This means that the multiwavelets projection can be used as a measure of the

accuracy of projection fn(x) at level n. It holds an individual fluctuation of the

solution, which allows the escalation of f(x) to the level n + 1 of resolution once

it’s added to the projection function at level n (Gerhard et al., 2015). By applying

the equation 3.39 recursively, an approximation of fN(x) in the finest level (N)

can be expressed as the approximation solution on the coarsest level (i.e. n = 0)

with a number of encoded detail information.

PN
p f(x) = P0

p f(x) +
N−1∑
n=0

Qn
pf(x) (3.40a)

=

p∑
l=0

s0
l,0φ

0
l,0 +

N−1∑
n=0

2n−1∑
j=0

p∑
l=0

dnl,j ψ
n
l,j(x) (3.40b)

Usually we need all the entries of s0
l,0 and dnl,j to obtain an accurate representa-

tion of fN . However, many entries of dnl,j are small and replacing them with zero

will not directly affect the approximating solution. Also the function still permits

a sufficient accuracy. Therefore, to take advantage of both representations, we

need an algorithm to convert one method into another and this is achieved by

using the high and low pass filter matrices.

3.4.3 Application for a function sin(2πx)

In this section, an example u(x) =sin(2πx); x ∈ (−1, 1) is presented to prove how

it is straightforward to decompose and reconstruct u(x) across different resolution

levels. The domain [−1, 1] is divided into 8 uniform and non-overlapping cells.

The cell size at resolution n = 0 is 0.25.

In the algorithm 1, the decomposition of u(x) over each cell is presented. Lines

2 and 3 of Algorithm 1 give the single scale projection at the highest levels (here

chosen to be n = 2) with considering the Legendre polynomial p = 2. The ap-

proximate solutions over each cell projected into V 2
p (algorithm 1, line 4) has been

shown in Figure 3.5, in which the accuracy of the approximation decreases as the

scaling coefficients associated with the polynomial order are excluded from the

construction of the solution. In Figure 3.6, the projection of u(x) into V 0
p is given,

in which its scaling coefficients are obtained from the algorithm 1, line 13. It is
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noted that the accuracy of the solution is locally preserved and transmitted from

level n = 2 to level n = 0 with considering the associated p value that is consid-

ered in building the local approximate solution at level n = 2. Furthermore, the

flow information between the resolution levels are accessible, one can manipulate

them to change the accuracy of approximate solution and the resolution level in-

dependently over each cell, as shown in Figure 3.7 as well as the projection that

each cell belonged is given in Table 3.3. On the other hand, by following steps in

the algorithm 2, the function u(x) can be reconstructed along with preserving the

initial accuracy of function.

It can be concluded from the presented example, that the local solution-based

criterion can be established by omitting the details coefficient from the construc-

tion of local solution. This concept gives an optimistic mechanism to be employed

within the numerical scheme to introduce an adaptive scheme. Hence, this will be

our aim to incorporate this technique within the FV Godunove and DG formula-

tion. More details will be given in the following chapters.

Table 3.3: The projection of sin(2πx) over each cell

.

cell space (V n
p ) cell space (V n

p )

1 V 0
0 5 V 0

1

2 V 1
1 6 V 2

0

3 V 2
2 7 V 2

1

4 V 2
0 8 V 1

2
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Algorithm 1 Decomposition of sin(2πx), into V 0
2

1: for all Cells do

2: Use Eq. 3.2 to obtain the scaling bases φ2
0,j,φ

2
1,j,φ

2
2,j in V 2

2 from the scaling

bases in V 0
2 given in table 3.1.

3: Compute s2
0,j, s

2
1,j, s

2
2,j; j = 0, 1, 2, 3, from Eq. 3.33.

4: Perform the projection of u(x) in V 2
2 using the Eq. 3.32.

5: Use transformation matrix 3.29 to decompose s2
0,j, s

2
1,j, s

2
2,j into s1

0,j, s
1
1,j,

s1
2,j and d1

0,j, d
1
1,j, d

1
2,j.

6: Encode the detail coefficients d1
0,j, d

1
1,j, d

1
2,j.

7: Determine φ1
0,j, φ

1
1,j, φ

1
2,j and ψ1

0,j,ψ
1
1,j,ψ

1
2,j using Eq. 3.31.

8: Encode ψ1
0,j, ψ

1
1,j, ψ

1
2,j.

9: Re-use transformation matrix 3.29 to decompose s1
0,j, s

1
1,j, s

1
2,j into s0

0,j, s
0
1,j,

s0
2,j and d0

0,j, d
0
1,j, d

0
2,j.

10: Encode the detail coefficients d0
0,j, d

0
1,j, d

0
2,j.

11: Determine φ0
0,j, φ

0
1,j, φ

0
2,j and ψ0

0,j, ψ
0
1,j, ψ

0
2,j using Eq. 3.31..

12: Encode ψ0
0,j, ψ

0
1,j, ψ

0
2,j.

13: Perform the projection of u(x) in V 0
2 using s0

0,j, s
0
1,j, s

0
2,j and the scaling

bases in V 0
2 see table 3.1; then substitute them in Eq. 3.32.

14: end for

Algorithm 2 Reconstruction of sin(2πx), upto V 2
2

1: for all Cells do

2: Use the inverse of transformation matrix 3.29 to construct s1
0,j, s

1
1,j, s

1
2,j

from s0
0,j, s

0
1,j, s

0
2,j and d0

0,j, d
0
1,j, d

0
2,j ( Algorithm 1,line 9).

3: Perform the inverse of Eq.3.31 to obtain φ1
0,j, φ

1
1,j, φ

1
2,j from the bases in

Algorithm 1,line 11.

4: Re-Use the inverse of transformation matrix 3.29 to construct s2
0,j, s

2
1,j,

s2
2,j from s1

0,j, s
1
1,j, s

1
2,j and d1

0,j, d
1
1,j, d

1
2,j ( Algorithm 1, line 5).

5: Perform the inverse of Eq. 3.31 to obtain φ2
0,j, φ

2
1,j, φ

2
2,j from the bases in

Algorithm 1, line 7.

6: Perform the projection of u(x) in V 2
2 from lines 4 and 5 using Eq. 3.32.

7: end for
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(a) sin(2πx) (b) p = 0

(c) p = 1 (d) p = 2

Figure 3.5: The approximation of u(x) =sin(2πx) into V 2
p .
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(a) p = 0 (b) p = 1

(c) p = 2

Figure 3.6: The approximation of u(x) = sin(2πx) into V 0
p .

Figure 3.7: The approximate solution of sin(2πx) considering different resolution

levels and accuracy orders compared with the exact solution.
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Chapter 4

Numerical Methods

This chapter consists of two parts. In the first part, the general procedures of the

finite volume method and the discontinuous Galerkin method for the SWE are

presented. Before delving into these methods, a brief review of the mathematical

model of shallow water flow is given and how its principles can be interpreted within

the context of open channel flow. The second part presents how we can exploit

the useful features of Haar wavelets and multiwavelets when they are incorporated

into the aforementioned numerical schemes to obtain an adaptive version of these

methods. The presentation and discussion herein is based on the following sources

(Henderson, 1966; Cunge et al., 1980; Roe and Pike, 1985; Toro, 2001, 2009, 2012;

Glaister, 1988; Cockburn and Shu, 2001, 1998; Cockburn, 1998, 1999; Osher, 1984;

Quirk, 1994; Kesserwani and Liang, 2012b; Kesserwani, 2013; Hirsch, 2002; Roe,

1981; Hovhannisyan et al., 2014; Kesserwani et al., 2015)

Part I: Non-adaptive numerical schemes

4.1 Mathematical model

A number of mathematical models for describing the shallow water flow have been

developed, In the case of one dimensional flow, the Saint Venant equations that

given in chapter is the most commonly used for solving open channel low problems.

By gathering equations 2.27 and 2.28, the conservation matrix form for 1D SWE

40



Chapter 4. Numerical Methods

can be obtained as
∂U

∂t
+
∂F

∂x
= S (4.1)

U =

h
q

 F =

 q

gh2/2 + q2/h

 S =

 0

−gh(S0 − Sf )

 (4.2)

where t is the time (s), x is space (m) and U, F and S are the vectors containing

the conserved variables, the fluxes and the bed source terms, respectively, in which

h is the water depth (m), q is the flow rate per unit width (m3/s.m),g is the

acceleration gravity (m/s2) and z is the bed elevation (m). For a rectangular

channel, Sf , in terms of Manning’s equations and S0 have the following expressions:

Sf =
n2|q|q
h2R4/3

(4.3)

S0 = ∂xz (4.4)

4.2 Finite volume framework

The finite volume methods are based on writing equation 4.1 in integral form. By

considering the homogeneous scalar conservation law that is valid for any arbitrary

closed volume on the Cartesian mesh, the equation 4.1 can be represented by∫
Ω

∂U

∂t
dΩ +

∫
Ω

∂F

∂x
dΩ = 0 (4.5)

In order to obtain a numerical solution, each of the closed volume is represented

by a cell i of the mesh, which used for the discretisation of simulated domain, see

Figure 4.1. Thus Ωi = [xi−1/2, xi+1/2] of size ∆x. Integrating 4.5 over a control

volume [xi−1/2, xi+1/2] × [tn, tn+1] where tn+1 = tn + ∆x. It yields the following

equation. ∫ xi+1/2

xi−1/2

U(x, tn+1)dx−
∫ xi+1/2

xi−1/2

U(x, tn)dx+∫ tn+1

tn
F[U(xi+1/2, t)]dt−

∫ tn+1

tn
F[U(xi+1/2, t)]dt = 0

(4.6)

This form ensures that the approximate solution of the finite volume is conser-

vative within each cell which is important when attempting to accurately resolve

the shock waves.
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Here, the discrete values of U are taken to be the cell average value at time tn,

defined as

Un
i =

1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx (4.7)

Similarly, at the time tn+1

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

U(x, tn+1)dx (4.8)

Also, the time average fluxes F[U(x, t)] across the cell interfaces x = xi∓1/2

can by defined as

Fn
i∓1/2 =

1

∆x

∫ tn+1

tn
F[U(xi∓1/2, t)]dt (4.9)

Consequently, the explicit numerical algorithm of 4.5 for the updating of a

single cell i from tn to tn+1 can be written generally by means of

Utn+1

i = Utn

i +
∆t

∆x
[F̃i+1/2 − F̃i−1/2] (4.10)

where F̃i∓1/2 are numerical fluxes, which represent the numerical approximation

of the exact flux integral that across the cell interfaces. However, at the interfaces,

the discrete values of Ui manifest a jump, therefore a sequence of Riemann prob-

lems is generated and their construction solution leads to several expressions for

numerical fluxes. Substituting these fluxes in equation 4.10 will lead to different

numerical methods, which are described in the literature.

In this thesis, a Godunov-type method is reformulated to create an adaptive

multiresolution scheme therefore our discussion employs a Godunov-type method

in general form, and its reformulation is given in Part II.

A Godunov-type method is a first order upwind method that provides a best

solution to the discontinuity problem. It satisfies the entropy conditions, which

means all shock waves are physically correct. The term upwind refers to the flow

direction in which the upstream values is used to evaluate the property on the cell

interfaces and then use the evaluation values to compute the value at the centre

of the cell. The origin Godunov method can be generalized in three steps. The

first step is to assume that the numerical solution (Un
i ) of the dependent variables

within each cell i is piece-wise constant, instead of considering Un
i as a set of point

values (see Figure 4.2). Therefore, if the averages of the equations 4.7 and 4.9 hold;

the Un
i satisfies the integral form of the conservation law 4.6 exactly. The second
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step is to compute the numerical fluxes F̃i∓1/2 via using the exact solution of local

Riemann problems at the cell interfaces (see Figure 4.3). A Riemann problem

consists of solving the system of SWE 4.1 (regardless the source term vector) for

a single jump discontinuity, such as at xi+1/2, together with piecewise initial data

state that has the following form:

U(x, tn) =

Un
i x < xi+1/2

Un
i+1 x > xi+1/2

(4.11)

The Riemann solution with the right data state Un
i+1 and the left data state Un

i

is denoted by Un
i+1/2. Similarly the Un

i−1/2 is computed from the right data state Un
i

and the left data state Un
i−1 at point xi−1/2. The last step is linking these Riemann

solutions together on such a way that the waves belong to the neighbouring cells

are not interacting.To achieve this, for any ∆x one has to keep the time step

∆t within bounds, usually achieved by imposing the Courant-Friedrichs-Lewys

(CFL) criterion (0 <CFL≤ 1.0). By performing the equation 4.10 , the updated

numerical solution values over cell i is obtained.

For the system of SWE, solving the Riemann problem exactly often requires

extensive computational time. Therefore the exact solution of the Riemann prob-

lems can be replaced by the approximate Riemann solvers with no significant effect

in practice. This is due to the third step in which the information that is driven

from the exact solution is partially lost. Generally, two approaches are used for

the approximation of Riemann solvers. The first approach is to approximate the

Riemann state and apply the physical flux, while the second approach is to directly

approximate the numerical flux. In this thesis, we will use the Roe Riemann solver

as a numerical flux function.

4.2.1 Roe Riemann solver

In this subsection, the presentation of the Roe Riemann solver for the Euler equa-

tions is given together with the details of the application method to open channel

flow. The Roe solver is considered one of the simplest and most used Riemann

solvers because it employs a local linearisation of the system of conservation law

written in quasi-liner form.
∂U

∂t
+ J

∂U

∂x
= 0 (4.12)
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Figure 4.1: The control volume of cell i with associated interface fluxes.

.

Figure 4.2: The piecewise constant representation of data at tn.

44



Chapter 4. Numerical Methods

Figure 4.3: The sequence of Riemann problems and their averaging.

where J is the Jacobian matrix given by

J =
∂F

∂U
=

 0 1

gh− q2/h2 2q/h

 =

 0 1

c2 − u2 2u

 (4.13)

and u = q/h is the average water velocity within the cross-sectional area of the

channel and c =
√
gh is the celerity of the small amplitude water surface wave.

Roe’s technique linearises the system 4.12 by replacing the Jacobian matrix in

each interval such as (xi, xi+1), which represents the original Riemann problems,

with a matrix J̃ = J̃(Ui,Ui+1) that represents an approximate Riemann problem

with initial data state. Thus, for any two neighboring states UL and UR, the

matrix J̃ = J̃(UL,UR) should satisfy the following properties:

i. J̃(UL,UR) is diagonalisable with real eigenvalues (Hyperbolicity).

ii. J̃(UL,UR) =⇒ J(U) smoothly as UL, UR =⇒ U (Consistency).

iii. J̃(UL,UR) (UR −UL) = F(UR) - F(UL) = ∆F (Conservation).

The first and second conditions are achieved, if J̃ is chosen to be the Jacobian

evaluated at an averaged state (Ũ),i.e. J̃(UL,UR) = J̃(Ũ). However, an average

value is generally unable to meet the last condition. Therefore a specific kind of

geometric average is used to satisfy this condition and it is also demonstrated by

Roe for Euler equations which reconstructs J̃ , such that

J̃ ∆U = ∆ F (4.14)
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where

∆U =
∑

α̃k ẽk (4.15)

and

∆F =
∑

λ̃k α̃k ẽk (4.16)

where α̃k corresponds to the strength of the kth wave in the Riemann solution

that transmits with speed λ̃k. The ẽk are the right eigenvetors of the matrix J̃

with associated eigenvalues λ̃k. By obtaining the approximated quantities, the

numerical flux at the cell interface can be defined as:

F̃(UL,UR) =
1

2
(FL + FR) − 1

2

∑
|λ̃k| α̃k ẽk (4.17)

Thus, the Roe flux function for 1-d Saint Venant equation in a rectangular

channel is given by 4.18 using the definitions

U =

 h

q

 and F =

 q

q2/h+ gh2/2



F̃
Roe

i+1/2(UL
i+1/2,U

R
i+1/2) =

1

2
(FL

i+1/2 + FR
1+1/2) − 1

2

2∑
k=1

|λ̃ki+1/2| α̃ki+1/2 ẽki+1/2 (4.18)

From this, the approximate eigenvalues and eigenvectors of Jacobian J̃ for the

homogeneous Saint Venant equation at xi+1/2 are defined as

λ̃ki+1/2 = ũi+1/2 ± c̃i+1/2 and ẽki+1/2 =

 1

ũi+1/2 ± c̃i+1/2


The variables used in the equation 4.18 are given by equations 4.19 to 4.22 that

satisfy all of the aforementioned conditions.

λ̃1
i+1/2 =

(c̃i+1/2 − ũi+1/2)∆hi+1/2 + ∆qi+1/2

2c̃i+1/2

λ̃2
i+1/2 =

(c̃i+1/2 + ũi+1/2)∆hi+1/2 −∆qi+1/2

2c̃i+1/2

(4.19)

ũi+1/2 =
uRi+1/2

√
hRi+1/2 + uLi+1/2

√
hLi+1/2√

hRi+1/2 +
√
hLi+1/2

(4.20)

c̃i+1/2 =

√
g(hRi+1/2 + hLi+1/2)

2
(4.21)
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∆hi+1/2 = hRi+1/2 − hLi+1/2

∆qi+1/2 = qRi+1/2 − qLi+1/2

(4.22)

The Roe expression in the form 4.18 under certain conditions leads to entropy

violating the solution. Therefore a number of entropy fixes (to ensure capturing

of transcritical flows) have been introduced to fix this problem and these are often

based to modify the |λ̃ki+1/2| term in the equation 4.18. The following modification

has been used throughout this work

|λ̃ki+1/2|∗ =

|λ̃
k
i+1/2| if |λ̃ki+1/2| ≥ εki+1/2

(λ̃ki+1/2)2/2εk + εk/2 if |λ̃ki+1/2| < εki+1/2

(4.23)

where

εki+1/2 = min[c̃i+1/2, max [0, 2(λk,Li+1/2, λ
k,R
i+1/2)]]

4.2.2 Source terms

Discretisation of the source terms creates some well-known problems in the context

of shallow water modelling. Firstly, the issue of well-balancing between the con-

vective terms and the bed source term. Secondly, the existence of wet/dry fronts

when the bed source term is non-zero. As a consequence, the numerical scheme

needs to resolve these issues in order to avoid any non-physical solution.

The simplest and most common way of incorporating the source terms within

the Godunov-type schemes for Saint Venant equations is a cell average value that

satisfies the following relationship

Si =
1

∆x

∫ xi+1/2

xi−1/2

S(x,Ui) dx (4.24)

Thus, the explicit expression 4.10 becomes

Utn+1

i = Utn

i +
∆t

∆x
[F̃i+1/2 − F̃i−1/2] + ∆tSt

n

i (4.25)

By following the same way in which the numerical flux functions are defined,

a source function S is obtained, which depends on the local variables such that

St
n

i = S(xi−1, xi, xi+1,U
tn

i−1,U
tn

i ,U
tn

i+1)︸ ︷︷ ︸
A©

(4.26)
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where the term A© can be written in term of left and right form to give

S(xi−1, xi, xi+1,U
tn

i−1,U
tn

i ,U
tnni+1) = SL(xi−1, xi,U

tn

i−1,U
tn

i )+SR(xi, xi+1,U
tn

i ,U
tn

i+1)

(4.27)

The definition of SL and SR depend on the numerical method being used.

Hence, the upwind decomposition approach that is developed by Bermudez (Bermudez

and Vazquez, 1994b) depended on this work in which the source term vector S

decompose into the characteristic basis using the parameters involved within the

Roe flux, such that

Si =
1

2

[
(I + |J̃i−1/2| J̃ −1

i−1/2) Si−1/2 + (I − |J̃i+1/2| J̃ −1
i+1/2) Si+1/2

]
(4.28)

where the variables used in the equation 4.28 are given as follows:

J̃i±1/2 = Ri±1/2

λ̃1
i+1/2 0

0 λ̃2
i+1/2

R−1
i±1/2

Ri±1/2 =
(
ẽ1
i+1/2, ẽ

2
i+1/2

)
=

 1 1

λ̃1
i+1/2 λ̃2

i+1/2


Si−1/2 =

 0

−g
[
hi+hi−1

2

] [
zi−zi−1

∆xi

]
Si+1/2 =

 0

−g
[
hi+hi+1

2

] [
zi+1−zi

∆xi

]
4.2.3 Wet/Dry bed treatment

As already mentioned, the existence of the bed implies the possibility of having the

wetting and drying fronts with the evolution of flow over non-flat beds. Hence, the

positivity of water depth is needed within a Godunov-type scheme for solving the

expression 4.1. Typically, the Roe solver works well in wet/wet front problems, but

in wet/dry front problems, it may produce a negative water depths due to wrong

estimation of the source quantity, and this usually leads to crash the computation.

In this thesis, the positivity of water depth is achieved by following the strategy of

Liang (Liang, 2010), which is illustrated in Appendix B. The strategy is based to

reconstruct the free-surface water (η) from the Riemann state before computing the

numerical flux, so that the physical representation of the topography is guaranteed

and accounts for wet/dry front.
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4.2.4 Friction source term

The friction source term (Sf ) is discretised following the finite volume pointwise

approach which is widely applied in numerical models because of its simplicity. It

is locally evaluated as the same way of evaluating the conserved variables and it

is integrated explicit with time.

4.2.5 Initial and boundary conditions

The initial and boundary conditions play an important role for the solution of

SWE. The flow conditions at the beginning of the computation are referred to as

initial conditions, while the boundary conditions govern the flow conditions at the

boundaries of the computational domain. These conditions are associated with

the characteristics directions of the flow which can be mathematically described

by two real eigenvalues, λ1 = u − c and λ2 = u + c. They provide the flow

information to every point inside the domain of the solution of h and q in the

(x, t) plane shown in Figure 4.4. However, at the boundaries of a flow domain, the

information about the characteristics may be unknown. Thus, for the solution of

1D SWE, two physical boundary conditions need to be defined independently from

the governing equations such as h and q or h and u and also should be independent

of each other (see Table 4.1).

(a) Subcritical Flow (b) Supercritical Flow

Figure 4.4: Characteristics at boundaries for flow regime (Khan and Lai, 2014).
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Table 4.1: Boundary Conditions needed for modeling the 1D SWE.

Flow Type Initial Condition Inflow Boundary Outflow Boundary

Critical 2 1 0

Subcritical 2 1 1

Supercritical 2 2 0

4.3 Discontinuous Galerkin method

The original Godunov-type method is conceptually limited to the first-order of

accuracy in space as presented in the previous section. But with the appearance

of the discontinuous Galerkin method, it has been possible to extend the Godunov-

based finite volume method to a higher order of accuracy. It merges the properties

of both the finite element method and the finite volume method. It exploits the

weak formation of the finite element method to shape a local polynomial solution,

which is stored and evolved locally over a cell via a finite element coefficient. In

the meantime, it maintains the conservative and stabilising properties that feature

the finite volume method, particularly the conservative flux communication across

inter-cells.

4.3.1 Discontinuous Galerkin framework

In this section, the DG method for numerically solving the one dimensional shallow

water equations is presented. The basic idea is to multiply the system 4.1 by a

test function, which is chosen to be a polynomial of degree p within each cell (Ii),

and by performing the integration by parts over the domain Ωi = [xi−1/2, xi+1/2]

of size ∆i, also removing the flux derivative term from the system often performed

in the conventional finite element method. In this way the weak formulation form

is obtained:

∫
Ii

∂Ũ(x, t)

∂t
φi,k(x) dx−

∫
Ii

F(Ũ(x, t))

x
∂xφi,k(x) dx

+
[
F(Ũ(xi+1/2, t))φi,k(xi+1/2)− F(Ũ(xi−1/2, t))φi,k(xi−1/2)

]
=

∫
Ii

∂S(Ũ(x, t))

∂x
φi,k(x) dx

(4.29)
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The DG approximate solution Ũ is sought in the space (Vp) of polynomials of

degree ≤ p on Ii and can be locally expanded using finite element coefficients, i.e.

Ũ(x, t)|Ii =

p∑
k=0

Ui,k(t)φi,k(x) (4.30)

where φi,k are the polynomial basis function locally supported on cell i, with

polynomial degree 0 ≤ k ≤ p, and {Ui,k}0≤ k≤ p are unknown coefficients associ-

ated with the local polynomial degree in cell i and can be described as degree of

freedom (Cockburn and Shu, 1998). These coefficients can be initialised as

Ui,k(x, 0) =
1

ai,j

∫
Ii

U0φi,k(x) dx (4.31)

where ai,k is the dot product coefficient and can be obtained as follow

ai,j =

∫
Ii

φi,kφi,kdx (4.32)

The approximation in equation 4.30 has an order of accuracy k + 1. Thus,

if the basis function (k = 0) is used, the first order accuracy is achieved, and in

consequence the scheme can be referred to as Godunov-type scheme, while when

the linear basis functions (k = 1) are used, the second order accuracy is achieved.

Here the scheme is referred to as DG2.

The test function are taken to be the same as the basis functions, i.e. v(x) =

{φi,k}pk=0 and we particularly select the Legendre polynomial due to their orthog-

onality property and also due to the multiwavelets which use the same basis func-

tions, as given in Chapter two.∫ 1

−1

φm(ξ)φk(ξ) dx =
2

2k + 1
δmk (4.33)

where

ξ =
2(x− xi)

∆xi
δmk =

1, m = k,

0, elsewhere,

By invoking the orthogonality property of the Legendre’s polynomial, the weak
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formulation 4.29 simplifies to

d

dt
Ui,k(t) =− 2

∆xi

(2k + 1)

2

{[
F̃i+1/2 − (−1)k F̃i−1/2

]
︸ ︷︷ ︸

Mi,k

− ∆xi
2

∫ +1

−1

F
(
Ũ(xi +

∆x

2
ξ, t)

)dφik
dξ

(ξ)dξ︸ ︷︷ ︸
Ki,k

− ∆xi
2

∫ +1

−1

S
(
Ũ(xi +

∆x

2
ξ, t)

)
φik(ξ)dξ︸ ︷︷ ︸

Si,k

}
(4.34)

In equation 4.34, the local integral term Ki,k is computed by the Gauss-

Legendre rule with (p + 1) quadrature points (see Appendix A). Numerical flux

F̃i±1/2 is obtained by approximately Roe Riemann solver. The approximate source

term requires the existence of bed z projected onto the orthogonal basis (i.e. onto

Vk). The construction of this function is to ensure the well-balancing and wet/dry,

and is discussed in the next section.

Integration in time is performed by the strong stability preserving Runge-Kutta

procedure with (k+ 1) stage to solve the Ordinary Differential Equations in equa-

tion 4.34 with a CFL number less than 1/(2k + 1).

U(1) = Utn + ∆t L(Utn)

U(2) =
3

4
Utn +

1

4

(
U(1) + ∆t L(U(1))

)
Utn+1

=
1

3
Utn +

2

3

(
U(2) + ∆t L(U(2))

) (4.35)

4.3.2 Well-balancing treatment and wet/dry front

In the DG context, several strategies have been proposed for discretising the bed

source term S in a well-balanced way, most of which have risen from the finite

volume context. The issue of well-balancing arises from approximating the numer-

ical flux F̃ at the cell interfaces. This is because the approximate Riemann solver

assumes that the source term does not exist, i.e. S = 0 but in fact that is not true,

i.e. S 6= 0.

In this work, well-balancing is achieved by following the strategy of Kesserwani

and Liang (Kesserwani and Liang, 2010b). This strategy can be generalised in two
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steps. The first step is to project the bed function into the same space of the local

polynomial function (i.e. the space of conserved variables). The second step is to

ensure that the projected bed function is continuous across the cell interface. Here

the setting for DG2 can be given as:

z̃(x)
∣∣
Ii

= z0,i + z1,i

(x− xi
∆x/2

)
(∀x ∈ Ii) (4.36)

where

z0,i =

∫ xi+1/2

xi−1/2

z(x) dx ≈
z(xi+1/2) + z(xi−1/2)

2

and

z1,i =

∫ xi+1/2

xi−1/2

(x− xi
∆x/2

)
z(x) dx ≈

z(xi+1/2)− z(xi−1/2)

2

With this representation of the bed, the local gradient of bed becomes

∂xz̃(x)
∣∣
Ii

= ∂x

[
z0,i + z1,i

(x− xi
∆x/2

)]

=

[
z(xi+1/2)− z(xi−1/2)

]
/2

∆x/2

=

[
z(xi+1/2)− z(xi−1/2)

]
∆x

(4.37)

and also the continuity step is obtained at interface, such as at xi+1/2, which

can be given as

z̃(xLi+1/2)
∣∣
Ii

= z0,i + z1,i = z0,i − z1,i = z̃(xRi+1/2)
∣∣
Ii+1

(4.38)

To cope with the issue of wetting and drying fronts, the strategy presented by

Kesserwani (Kesserwani and Liang, 2012b) (see Appendix C) is used in this thesis.

It is based on the continuous bed well balancing strategy described in equation

4.38, and also it enforces that the numerical solution must remain positive in the

entire cell. This implies with DG2 context it would be enough to check the cell

interfaces. If the value of water depth at the interface is smaller than a chosen

dry-threshold value εdry, the slope coefficient of the projected depth h1,i is modified

to ensure positivity. Accordingly, the momentum at the interface is also modified.

The descretisation of friction source term in DG is obtained via generalising

the approach described in Subsection 4.2.4 in which the friction value is evaluated

at each Gaussian quadrature point and then integrating it explicitly in time.
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4.3.3 Slope limiter

The high-order schemes provided by RKDG need slope limiters to be activated at

the discontinuities to maintain stability and avoid spurious oscillations. But per-

haps the accuracy of the reference scheme is not preserved at the such portion of

the computational domain where the slope limiter is activated. Limiting technique

affects on the data as the scale difference of the point value at the cell boundary

and the mean value of the cell (see Figure 4.5). In this work, the strategy sug-

gested by Kesserwani (Kesserwani and Liang, 2011) is used which is based on the

idea of Krivodonova (Krivodonova et al., 2004) applied to the numerical solution

of the homogeneous Euler equations. It uses the generalised TVD-minmod and

applied to the coefficients Ui,k(t
n) at time (tn). Since it is not robust tool to

use in detecting the troubled-cells or troubled slope a user depending parameter is

used for detection process. The variation of the local kth-order slope coefficients

(Ûi,k) is reconstructed from k− 1th-order coefficients of local slope, upstream and

downstream gradients, i.e.

Ûi,k =
1

(2k − 1)
minmod

[
(2k−1)Ui,k,Ui+1,k−1−Ui,k−1,Ui,k−1−Ui−1,k−1

]
(4.39)

The discontinuity detector for DG2 can be performed by first computing the

following expression

DSLi+1/2 =

∣∣UR
i+1/2 −UL

i+1/2

∣∣
|∆x

2
|max

{∣∣U0,i −U1,i

∣∣, ∣∣U0,i + U1,i

∣∣} (4.40)

in which

UL
i+1/2 =Ũ(xLi+1/2, t) = U0,i + U1,i

UR
i+1/2 =Ũ(xRi+1/2, t) = U0,i+1 + U1,i+1

(4.41)

And second, comparing the DSLi+1/2 with the unity value, when DSLi+1/2 → 0,

the DG solution is smooth and no need to activate the slope limiter whereas the

DG solution must be limited when DSLi+1/2 → ∞. In the same way, the DSRi−1/2

can be evaluated by using these coefficients U0,i,U1,i,U0,i−1 and U1,i−1 in equation

4.40. Ultimately, the slope coefficient Ui,1 at cell Ii is limited once a discontinuity

is detected at xi+1/2 or xi−1/2.
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Figure 4.5: Illustration of limiter on point value at cell boundary, (Hovhannisyan

et al., 2014).
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Part II: Adaptive numerical schemes

4.4 Introduction

In the context of shallow water flow, the real large-scale flows usually have complex

features such as shocks, contact discontinuities and a wide range of spatial scales.

Typically, the computational domain is uniformly discretised using a large number

of cells, given that the position of flow features is usually unknown and capturing

certain small scales within a coarse mesh simulation may be difficult without a

trade-off of computational cost. Therefore, the mesh adaptation technique comes

into play to improve modelling efficiency and capture the various physical scales

involved in shallow water flows.

From our discussion in chapter 3 and previous sections, it should now be clear

that the theory of discrete wavelets offer a good mechanism for transformation

of single-resolution local basis into multiresolution and can be incorporated into

the DG and FV Godunov-type methods, since their conceptual frameworks are

based on using the same Legendre polynomial bases. The adaptivity strategy

here depends on exploiting the information embedded within the local solution of

both aforementioned numerical methods and performing a multiresolution anal-

ysis, which decomposes the local solution into a set of coarse information and

details information at a different resolution level. The details may be negligible in

smooth regions of the solution, while they may be very significant in non-smooth

regions of the solution. Hence, the adaptive solution can be established to trigger

adaptivity according to the magnitude of such details (Alpert et al., 2002). In case

of using the Haar wavelet bases to reformulate a FV Godunov-type method, the

new adaptive Haar wavelet FV scheme (HWFV) is obtained, while the adaptive

multiwavelets DG scheme (MWDG) is obtained when incorporating multiwavelets

into the DG method.
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4.5 The DG discretisation with multiresolution-

based mesh adaptivity

As previously stated, we seek to speed up the convergence of a reference FV

Godunov-type and the DG schemes on a uniform mesh by utilising the adaptive

mesh. In the following we start to reformulate the original DG scheme. The

reformulation of FV Godunov-type is straightforward, and only needs to reduce

the local accuracy of the adaptive DG scheme to the first-order accurate solution.

The equation 4.34 represents a single resolution approximation of DG in level

n = 0 . To introduce the muliresolution transformation of the DG approximation,

we have to assume that the cell exists within the hierarchy of meshes, therefore,

Ini,j =
[
xi + ∆x/2

(
1 + 2−n+1j

)
, xi + ∆x/2

(
1 + 2−n+1(j + 1)

)]
⊂ Ii of a sub-cell

centre spatial resolution xni j = xi−1/2 + 2−n∆x(j + 1/2) (see Figure 4.6), and the

local approximation Ũ, is sought into a space of polynomial of degree at most k.i.e.

Ũ ⊂ V n
k , which is locally expanded via using all orthonormal Legendre polynomial

basis functions that are scaled and translated on cell Ini . Consequently, the local

DG approximation given in equation 4.30 becomes

Ũ(x, t)
∣∣
Ini

=
N∑
n=0

2n−1∑
j=0

p∑
k=0

Un
ijk(t)φ

n
ijk

( 2

∆x
(x− xi)

) (
x ∈ Ii

)
= 2n/2

N∑
n=0

2n−1∑
j=0

p∑
k=0

Un
ijk(t)φik

(
2n
( 2

∆x
(x− xi) + 1

)
− 2j − 1

)
(4.42)

where Un
ijk is an approximate coefficients and can be initialized as

Un
ijk(0) = 〈U, φnijk〉 =

∫ +1

−1

U
(
xi +

∆x

2
ξ
)
φijk(ξ) dξ

=2n/2
∫ −1+2−n+1(j+1)

−1+2−n+1(j)

U(xi +
∆x

2
ξ)φik

(
2n(ξ + 1)− 2j − 1

)
dξ

(4.43)

It can simplify the limits of integration in equation 4.43 to support [−1,+1]

instead of [−1+2−n+1j,−1+2−n+1(j+1)] by substituting the following expressions

into 4.43, such that

σ = 2n(ξ + 1)− 2j − 1 σ ∈ [−1,+1]

ξ = = 2−n(σ + 2j + 1)− 1

dξ = 2−ndσ

(4.44)
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Thus, equation 4.43 becomes

Un
ijk = 2−n/2

∫ +1

−1

U
(
xi +

∆x

2

(
2−n(σ + 2j + 1)− 1

))
φik(σ) d σ (4.45)

Now, we can use the Gauss Legendre points χ0, · · · , χg and their associated

weights ω0, · · · , ωg to approximate Un
ijk

Un
ijk ≈ 2−n/2

g∑
r=0

ωrU
(
xi +

∆x

2

(
2−n(χr + 2j + 1)− 1

))
φik(χr) (4.46)

By considering the relation 3.7, an equivalent expression of projection of Ũ

into space V n
k exists by means of using the multiwavelets that described in section

3.3, such that

Ũ(x, t)
∣∣
Ini

=

p∑
k=0

Uik φik

( 2

∆x
(x− xi)

)
+

N−1∑
n=1

2n−1∑
j=0

p∑
k=0

Dn
ijk ψ

n
ijk

( 2

∆x
(x− xi)

)
(4.47)

where Dn
ijk represent the detail coefficients that hold all the multiscale infor-

mation across the mesh hierarchy up to level n− 1. This means if we add them to

the lowest-resolution information such as at level n, the local approximate solution

will promote to level n+ 1, see Figure 4.7. However, for practical reasons and for

computational efficiency, the expression 4.47 is not applied directly, since what is

of interest is to demote and promote the coefficients, and not the solution itself.

Thus, the filter matrices relations described in subsection 3.3.4 can be used to

achieve this. To better clarify the promotion and demotion transformation of the

coefficients across resolution levels, two successive resolution levels such as n = 0

and n = 1 are chosen. The first step is to decompose the coefficients at the finest

level and here is level one (referred to as demoting):

U0
i 0 k =

√
1/2

(
H0 U1

i0k + H1 U1
i1k

)
(4.48a)

D0
i 0 k =

√
1/2

(
G0 U1

i0k + G1 U1
i1k

)
(4.48b)

Combined use of both filters
(
i.e.H0,1 and G0,1

)
allows us to compute {U1

i j k}j=0,1

from U0
i0k and heir (stored) complementary detail coefficients D0

i0k (referred to as

promoting):

U1
i0k =

√
2
(
H0T U0

i0k + G0T D0
i0k

)
(4.49a)

U1
i1k =

√
2
(
H1T U0

i0k + G1T D0
i0k

)
(4.49b)
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Figure 4.6: Nested mesh hierarchy up to level n = 2.

.

Figure 4.7: Two scale transformation (Hovhannisyan et al., 2014)

.

By recursive application of the two-scale transform equations, the expansion of

scaling coefficients describing a local solution can be demoted or promoted across

different resolutions (see Figure 4.8). These transformations have very appealing

and convenient property that allow us to conserve the accuracy of the solution

when cycling over the transformation. This is proven in the example given in

chapter two.

4.5.1 The DG multisclae formulation

The equation 4.29 can be reworked by considering these equations 4.42, 4.43 and

4.45. Furthermore, by using the orthonormal basis functions along with reworking,

the following scale-dependent semi-discrete local DG operators are obtained:
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Figure 4.8: The promoting and demoting of the scaling coefficients numerical

solution across different resolutions.

d

dt
Uni
ijk(t) =− 2ni+1

∆xnij

{
2ni/2

√
2k + 1

2

[
F̃
ni

j+1/2 − (−1)k F̃
ni

j−1/2

]
︸ ︷︷ ︸

Mi,k

− 2−ni/2

√
2k + 1

2

∆xni
ij

2

∫ +1

−1

F

(
Ũ
(
xi +

∆x

2

(
2−ni(ξ + 2j + 1)− 1, t

)))dφik
dξ

(ξ)dξ︸ ︷︷ ︸
Ki j k

− 2−ni/2

√
2k + 1

2

∆xni
ij

2

∫ +1

−1

S

(
Ũ
(
xi +

∆x

2

(
2−ni(ξ + 2j + 1)− 1, t

)))
φik(ξ)dξ︸ ︷︷ ︸

Si j k

}

(4.50)

In equation 4.50, the local integral term Ki j k is computed by the Gauss-

Legendre rule with (p + 1) quadrature points. The approximate source term re-

quires the existence of bed z projected onto the orthonormal basis functions (i.e.

onto V n
k ) and its integral term Si j k is computed in the same way of term Ki j k.

Numerical flux term Mi j k through the boundaries is obtained by approximately

Roe Riemann solver. To ensure the well-balancing and wet/dry, the same strategy

described for DG has been applied to the multiscale version because the locality

of solution is preserved. Integration in time is performed by using Runge-Kutta

procedure with (k + 1) stage to solve the ordinary differential equations in 4.50

with a CFL number less than 1/(2k + 1).
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4.5.2 The FV Godunov-type multiscale formulation

The adaptive version of FV Godunov-type can be obtained via omitting the flux

term (i.e. Ki j k) from the expression 4.50 ( ∵ dφi
dξ

(ξ)dξ = 0) and also put k = 0.

This yields:

d

dt
Uni
ij (t) =− 2ni+1

∆xnij

{
2ni/2

√
1

2

[
F̃
ni

j+1/2 − F̃
ni

j−1/2

]
︸ ︷︷ ︸

Mij

− 2−ni/2

√
1

2

∆xni
ij

2

∫ +1

−1

S

(
Ũ
(
xi +

∆x

2

(
2−ni(ξ + 2j + 1)− 1, t

)))
φi(ξ)dξ︸ ︷︷ ︸

Si j

}

(4.51)

In equation 4.51, the local integration terms Mij and Si j follows the same

strategy that is described for Godunove-type methods in Part I Section 4.2.

4.6 Adaptivity process

One of the most important issues in the adaptive numerical schemes is to design

robust criteria that identify which regions have solutions that need further mesh

refinement because of their spatial variability. The adaptive strategy here is based

on measuring the magnitude of detail coefficients according to prescribed threshold

value and this is the only value that must be selected by user to control the

adaptivity of mesh.

In general, the adaptive version of Godunov-type FV and DG used here mainly

consist of three key steps. In the first, prediction is needed for refinement. In

this context, the refinement means to promote the local solution to the higher

resolution. The second step is performing the multi-scale FV/DG update on the

predicted mesh. Finally, hard thresholding is performed.

4.6.1 Prediction step for mesh refinement

Since the flow field is evolving in time, the prediction step must be performed after

each time step to refine the mesh and guarantee no significant (future) features of

the numerical solution are omitted in the next time step. The prediction strategy

is only based on the information available at the current time level (Müller, 2003;
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Müller and Stiriba, 2007). Generally, the detail coefficients of predicted cells are

not available. Thus, the local solution over the predicted cells is promoted by

simply setting zero detail coefficients (Harten, 1995). To do this, Algorithm 3 is

used to identify those neighbourhood cells that needs to be further refined:

Algorithm 3 Predictions for mesh refinement

for every Time steps do

1: Compute the local solution of the conserved variables at n = 0.

2: Use Eq. 4.52 to compute the normalized gradient τ between the

local cell and its neighbor cell.

3: Introduce two indicators to compare values and decide the resolution

levels of neighboring cells that may have significant information.

4: Choose τ = 0.1 and τ = 0.05 as indicators for all numerical test cases.

5: The decision for the local refinement mesh will take the following

if τ ≥ 0.1 then

The adaptive mesh is in as Figure 4.9

else if 0.1 > τ ≥ 0.05 then

The adaptive mesh is in as Figure 4.10

else

The adaptive mesh is in as Figure 4.11

end if

end for

τ =

∣∣∣Ũ|I0i − Ũ|I0i+1

∣∣∣
max

(
1,
∣∣∣Ũ|I0i ∣∣∣) (4.52)

4.6.2 Multi-scale update

After the prediction step, The RKDG evolution and FV are performed as a single

time step using equation 4.50 and 4.51 respectively accounting different resolution

levels that are taking over each cell (i.e.ni). In this work, the both adaptive for-

mulation are applied in conjunction with a proper discretisation of the topography

source term ( more details will be given in the following subsection ), slope limiter

and a Roe Riemann solver. Algorithm 4 summarises the entire adaptive solution

process for the MWDG and HWFV schemes.
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4.6.2.1 Adaptivity of topography

The topography is projected into the highest resolution in the same way as the

conserved variables. Thus the compressed data set of bed information over each

cell is obtained. Finally, the adaptive bed mesh is obtained by applying the thresh-

olding step. However, the topography adaptation is performed once (i.e., initially

when t = 0) and remains constant throughout the simulation time. To ensure the

preservation of an accurate water surface elevation and mass conservation across

levels, the bed mesh should be considered as a reference; this means that the

adaptive schemes do not allow demoting the local numerical solution to coarsen

the mesh to a resolution level lower than the topography refinement, even if the

local numerical solution allows for a lower refinement level.

4.6.3 Hard thresholding

Hard thresholding is applied on the detail coefficients after each update to decom-

press the mesh. The values of detail coefficients (Dn
i j k) become small when the nu-

merical solution is smooth. Therefore, they can be cancelled without substantially

affecting the accuracy of the numerical solution. To do so, all detail coefficients

that their absolute values are below a normalised level-dependent threshold value

are discarded, i.e. if they satisfy

Ď
n

i j k =


Dn
i j k if max

r∈U

( ∣∣(Dn
i j k r

)∣∣
max

(
max

i

(∣∣U0
i 0 0 r

∣∣,1))
)
> εn

0, otherwise

(4.53)

where U0
i 0 0 r is the cell average of rth conserved variable in cell I0

i k (i.e. index

r spans the components of the conserved variables ), Ď
n

i j k is the significant details

coefficients in which their components are associated with the components of the

conserved variables in Un
ijk. The εn is a level-dependent threshold value defined as

εn = ε 2n−N (4.54)

where ε is the prescribed threshold value for adaptivity and this is the only value

that must be defined by the user in order to control the adaptivity process. In

real computations, it is impossible to know the optimal threshold value. But a
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range of options is feasible (Hovhannisyan et al., 2014; Gerhard et al., 2015) as

choosing it in such way that can retain the same quality of solution as the reference

fine uniform mesh provided. This strategy is investigated in the numerical results

chapter. In this work, the threshold value (at the coarsest level) is set to ε = 0.01

and the reference uniform mesh can be expressed in a single scale expansion at the

highest resolution level.

64



Chapter 4. Numerical Methods

Algorithm 4 Full adaptive solution for the HWFV and MWDG schemes

for Initial condition do

1: Initial projection of the solution and the bed source term at highest

resolution level following Eq. 4.45 considering the associated

basis functions.

2: Use Eq. 4.48 to demote the initial projection from step (1)

to coarse level n = 0, considering the associated filter matrices

3: Initial thresholding of topography and the solution to obtain adaptive

mesh.

4: Use Eq. 4.49 to obtain an adaptive mesh.

end for

for all Time steps in simulation do.

5: Use Eq. 4.48 to see the details coefficients.

6: Perform the Prediction (Algorithm 3).

7: Find and flag significant details.

8: Use Eq. 4.49 to get the adaptive mesh.

procedure Update(MWDG)

for Runge-Kutta stages do

9: Impose boundary conditions

10: Perform limiting and ensure depth-positivity at edges of the

cells (Appendix C).

11: Perform Eq. 4.50 to update the operators.

end for

end procedure

end for

Continue
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for all Time steps in simulation do.

procedure Update(HWFV)

for Euler stage do

9: Impose boundary conditions

10: ensure depth-positivity at edges of the

cells (Appendix B).

11: Perform Eq. 4.51 to update the operators.

end for

end procedure

procedure Hard thresholding

12: Perform Eq. 4.53 on DN−1
ijk obtained from Eq. 4.48).

13: Find the non-significant detail coefficients and flag the significant

detail coefficients.

14: Zeroing All Non-significant detail coefficients

end procedure

end for
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Figure 4.9: Mesh prediction τ < 0.05.

.

Figure 4.10: Mesh prediction 0.1 ≥ τ ≥ 0.05.

.

(a) Highest resolution level (n = 2).

(b) Highest resolution level (n = 3).

Figure 4.11: Mesh prediction when τ ≥ 0.1.

.
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Numerical results

5.1 Introduction

In this chapter different test cases are used to assess the wavelet-based adaptivity

with two different schemes ( i.e., HWFV and MWDG2 ). The aim is to verify

the capability of these two schemes in performing simulation of flow problems

with fewer cells when compared to the standard FV and DG2 ( i.e., non-adaptive

schemes ). In addition, the numerical test cases reported herein, seek to study the

impact of the adaptivity on the resolution accuracy, the conservation of mass in the

system, show the properties of well-balancing, and the positivity of the water depth

are transferable into the adaptivity. The quantitative analyses are also computed

in some test cases via calculating the Root Mean Square Error (RMSE ), Relative

Mean Error (RM E), maximum error, mean and the Standard Deviation (SD) for

both the water depth and flow rate to confirm the numerical results. It is worth

mentioning that the adaptivity process is not seeking to improve the modelling

over the uniform FV and DG schemes, but it seeks to conserve the properties of

the reference schemes at the same quality as they are delivered on the uniform

counterpart schemes.

The benchmark hydraulic tests are divided into two parts, part I contains test

cases for investigating key issues, which are identified for the relevance to wavelet-

based adaptivity. In part II, more validations and comparisons of both adaptive

schemes are performed using popular hydraulic benchmark test cases.

In general, the results of the adaptive and non-adaptive schemes are computed
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using the strategies that were detailed in Chapter 4 for well-balancing, wetting and

drying and friction discretization. In Table 5.1, several standard parameters are

listed which are used in all numerical computations. If any of them are changed,

it will be stated in the test case.

Table 5.1: Input parameters used in the adaptive schemes and their counterpart

non-adaptive schemes.

Parameters HWFV and FV MWDG2 and DG2

CFL condition in fully wet domain 0.98 0.33

CFL condition in wet/dry domain 0.5 0.28

The dry threshold parameter (εdry) 1× 10−5 1× 10−5

The local limiter detection parameter No need 1.0

The adaptive threshold parameter (ε) 0.01 0.01

Part I- Key issues relevant to both schemes

This part presents two test cases to address two detected issues that are relevant

to both adaptive schemes. The first issue is to explore an optimal choice of the

adaptive threshold value so as to conserve the quality of the numerical solution. For

this purpose, the oscillatory flow in a parabolic bowl test case is considered using

only the adaptive HWFV scheme rather than the adaptive MWDG2 scheme. This

choice is associated with the importance of maintaining the average coefficients

as compared to the slope coefficients. This due to the fact that the adaptivity

should be based on the average coefficients, because of their responsibility for the

conservative behavior of the solution. Therefore, an optimal threshold value that

can preserve the significant average detail coefficients, would be assumed to be

sufficient for also dealing with slope detail coefficients that are further involved in

the MWDG2 scheme. Based on this, the same threshold value will be used in both

adaptive schemes.

The second issue addresses the effect of machine precision ( i.e., truncating num-

ber of digits from right side of the decimal point) on the adaptivity process. The

machine precision generally plays an important role in the computer systems and
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for many numerical schemes. This is due to the accuracy of computation results

that are obtained via using different types of floating-points precision (Goldberg,

1991). Every computer language has a specific representation of the floating-point

precision. For example, MATLAB language ( all codes here are written in MAT-

LAB ) provides several fundamental data types according to the types of numbers

( e.g., irrational numbers or rational numbers ) that are involved in computations

(Moler, 2008).

Since the filter coefficients ( used in the multiscale transformation processes )

are irrational numbers, the precision digits for the irrational numbers are known as

the single and double precisions. These precision digits will affect the conservation

of the adaptivity information due to the repetitive use of filter matrices ( equations

4.47 and 4.48) to achieve the adaptive solution. Thus this effect will be presented

here in terms of the mass conservation in a closed system. For this purpose, a test

case that has a dam-break over a triangular hump is used.

5.2 Oscillatory flow in a parabolic bowl

This case is well known and recognized as a challenging test case for numerical

models because it involves both moving wet/dry interfaces and it has an uneven

topography. It has been extensively used for benchmarking hydraulic models (see,

among others, (Kesserwani and Liang, 2012b; Liang and Borthwick, 2009; Xing

et al., 2010)). Thus, it is also selected here with aiming to obtain an optimal

threshold value in which the adaptive solution can track accurately the transient

flow conditions in a system. In addition, there is another reason for choosing

this test case over others. This is because the transient flow does not create any

significant shock wave throughout the entire simulation, instead of generating the

series of the tiny waves at the wet/dry fronts with high velocities. Therefore, any

threshold value that is sensitive to those tiny waves will certainly be sensitive to

shock waves in a test case generating shock waves throughout the simulation. This

test also studies the resolution accuracy and the mesh convergence abilities of the

adaptive HWFV scheme.

The test consists of an oscillatory flow taking place inside a parabolic bowl.

The transient analytical solution was proposed by Thacker (1981) and can be

70



Chapter 5. Numerical results

computed using equations 5.1 to 5.4. The frictionless bed is described by z(x)

given in equation 5.5 with constants h0 = 10 and a = 3000.

η (x, t) = h0 −
B2

4g
cos (2S t)− x

g
B s cos (S t) (5.1)

u (x, t) = B sin (2S t ) (5.2)

where B = 5 is a constant value and S is the frequency that defined as

S =
1

2 a

√
8 g h0 (5.3)

and the position of the wet/dry front face (xwd) is given by

xwd = −B S a2

2 gh0

cos(S t)∓ a (5.4)

z(x) = h0

(x
a

)2

(5.5)

Under these conditions, the oscillation period is T = 1345.94 s. The case is

simulated on the domain [−5000m, 5000m] using different computational mesh

cells at coarse level (N0). Simulations are run up to 1.5T . Boundary conditions

are irrelevant because the flow never reaches the boundaries. They are set as

transmissive boundaries.

5.2.1 Threshold sensitivity

To understand the effect of the threshold value parameter on the adaptivity pro-

cess, a baseline mesh with N0 = 40 cells is fixed, while considering the following

threshold values ε = 0.0, 0.001, 0.01, 0.1 and 1.0. In Figure 5.1, the numerical

water surface profiles at t = 275 s (T/5) and t = 2020 s (1.5T ) are compared

with the analytical solution. As seen in Figure 5.1, the HWFV scheme refines

in the region where the wet/dry interface is moving through. Meanwhile, other

parts of the domain stay at the coarsest and the intermediate levels of refinement.

Furthermore, it can be seen that varying the threshold value leads to different

refinement patterns. In particular, it is shown that, as ε increases fewer cells are

refined to higher levels during the simulation, since smaller detail coefficients are

selectively omitted. In Figure 5.1a, it is clear that the adaptive HWFV scheme
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activates all the detail coefficients when ε = 0.0 and all the computational cells

go to the highest level, thus resulting in a uniform mesh. Figure 5.1b shows an

almost uniform mesh prediction when ε = 0.001. Hence, it is not reasonable, in

terms of efficiency, to use a threshold value ε < 0.001. A sensible refinement is

obtained with ε = 0.01 (Figure 5.1c). For ε = 0.1 and ε = 1.0 (shown in Figure

5.1d and 5.1e respectively) poor predictions at wet/dry interfaces appear which

may be caused by the fact that a large threshold value leads to omitting some small

detail coefficients, relevant to the wet/dry front, during the promotion process.

5.2.2 Baseline meshes

The choice of a baseline mesh with N0 = 40 is rather arbitrary, and it might be

already too fine, or on the contrary, never allow for a fine enough mesh for this

test case. This may affect the performance of the adaptivity process. Therefore,

the influence of the baseline mesh should be studied. Several baseline meshes at

coarse level N0 = 20, 40, 80, 160 and 320 are introduced to address this. The same

settings of the threshold value as reported in Figure 5.1 are used. The evolution of

the number of active cells is presented in Figure 5.2. The results confirm that all

considered combinations of N0 and ε are able to perform the adaptive solutions.

Moreover, when refining the baseline mesh, the HWFV requires a reduction of the

threshold value to better perform adaptivity process. This is due to the fact that

most of the flow region results in rather smooth solutions; therefore the value of

the detail coefficients is small.

In Figure 5.2, N/N0 reduces as the baseline mesh is refined regardless of the

varying threshold value. However, in Figure 5.2d and 5.2e for ε = 0.1 and ε = 1.0,

the magnitude of N/N0 is relatively the same and with values bounded between 1.0

and around 2.5. These values are less when compared to other threshold values,

but they strongly influence the quality of the numerical solution. Notably, with

ε = 0.01, regardless of N0, seems to obtain optimal results, in comparison to other

threshold values. The value of N/N0 is bounded between around 1 to 4. This case

shows a particular trend of how the pattern of active cells varies with N0. This

trend indicates that ε = 0.01 is the most sensitive to N0. Owing to this sensitivity,

this threshold value allows for a wide, automatic response of the adaptive process
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(a) ε= 0.0 (b) ε= 0.001

(c) ε= 0.01 (d) ε= 0.1

(e) ε= 1.0

Figure 5.1: Numerical solution against the analytical solution in parabolic bowl

flow (N0 = 40), considering different threshold values.
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(contrary to, for example ε = 0.1) and therefore is likely to be the best to perform

adaptivity in a prompt way. It is clear that an inefficient adaptive process is

obtained with ε = 0.001 except in Figure 5.2e, when a very fine baseline mesh is

used.

5.2.3 Mesh convergence

Mesh convergence is also studied in terms of the L1-norm as defined in equation.

5.6. Simulations are performed up to 2020 s and for analysis the t = 270 s (T/5)

and t = 2020 s (1.5T ) are selected. Several baseline meshes at coarse level N0 =

10, 20, 30, 40, 80, 160 and 320 are introduced with using the same threshold values

as defined previously. It can be seen in Figure 5.3 that the behavior of the L1-norm

is asymptotic regardless of N0 and ε. The uniform mesh (ε = 0.0 ) is taken as a

reference curve for comparison. Each point within a curve is associated with each

baseline mesh. The difference between the convergence curve for ε = 0.001 and,

the reference is relatively small. For ε = 0.01, the convergence is slightly better

than all as shown in Figure 5.3a and 5.3b. The large error obtained with ε = 1.0

and N0 = 20, 30 cells and this is due to too few cells being activated during the

adaptivity process (over-filtering). Thus, the quality of the numerical solution is

affected. Nevertheless, the magnitude of the error becomes smaller as N0 increases

but still remains larger than the error of the reference curve. Furthermore, the

better results are obtained for ε = 0.1 but with sensible differences compared to

ε = 1.0. The magnitude of the L1-norm is increased from Figures 5.3a to 5.3b.

This is merely because of the numerical diffusion which is an anticipated issue for

finite volume first-order schemes.

In Figure 5.4, the same analysis, as the one reported in Figure 5.3, is considered

to illustrate the relative performance of CPU time (RPCPU). Figure 5.4a shows

the ratio of the CPU times of the adaptive schemes to the CPU time obtained

from the associated fine uniform reference schemes (i.e., ε = 0.0); while Figure

5.4b further describes the normalized CPU times, which are obtained by dividing

all CPU time by the maximum one (i.e., N0 = 320, ε = 0.0). The results show

clearly that when ε > 0.0, less time is required for achieving a simulation as the

baseline mesh N0 density increases. They also show that the efficiency of the
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(a) N0 = 20 (b) N0 = 40

(c) N0 = 80 (d) N0 = 160

(e) N0 = 320

Figure 5.2: Time evolution of active cells for various baseline meshes in parabolic

bowl flow.
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adaptive HWFV schemes is near their equivalent uniform mesh FV schemes when

the baseline mesh has a size N0 ≤ 40 and despite the choice of ε.

For ε = 0.001, the RPCPU and normalized CPU time are noted to be inefficient

despite the choice of the baseline mesh N0. In contrast, for ε= 0.01, 0.1 and 1.0

they start to significantly decrease in proportion with an increase in the density

of the baseline mesh N0. However, for ε = 0.1 and 1.0, the RPCPU tend to

remain close for N0 ≥ 40; whereas, with ε = 0.01 the RPCPU shows consistent

decrease in line with the refinement of the baseline mesh N0; this suggests that

a threshold value of ε = 0.01 enables best selection among the magnitude of the

detail coefficients, and so allows optimal efficiency and accuracy in the context of

the proposed HWFV scheme for a baseline mesh around 40-100 cells.

L1 − norm =

N0∑
i= 1

nl∑
n= 0

2n−1∑
j= 0

|dxni,j(hni,j − ĥni,j)| (5.6)

Based on the aforementioned conclusions in the previous sections, and also for

comparison purpose, the ε = 0.01 is used as a default value in all test cases belong

to both proposed adaptive schemes.
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(a) t = 270 s

(b) t = 2020 s

Figure 5.3: Comparisons of L1-norm for parabolic bowl. Each highlight point is

associated with the initial cell number at coarse level.
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(a)

(b)

Figure 5.4: Comparisons of the relative CPU time for parabolic bowl.

78



Chapter 5. Numerical results

5.3 Effect of machines precision on the adaptive

schemes output

This test case studies how the two chosen precisions for the filter coefficients affect

the adaptive scheme output, in terms of conserving the total numerical mass in a

closed system. Therefore, a hypothetical dam-break over a triangular hump is set

up, as shown in Figure 5.5. The length of the horizontal flume and the location

of the dam from the upstream end are 38m and 15.5m, respectively. A reservoir

with a water surface elevation of 0.75m is located upstream from the dam and

the rest of the domain is assumed to be dry. Mesh resolution at the coarse level is

consisted of 13 cells for both adaptive schemes. Wall boundary conditions are set

at both ends of the channel to conserve the total mass in the system. The dam is

assumed to fail at t = 0 s, causing violent wave preparations; namely, the wetting

front rushes into the floodplain, over-tops and interacts with the obstacle creating

a reflected wave that will be reflected again by the boundary walls. During the

simulation, the total mass of water at time t (Mt) is computed and compared

with the real physical mass (MR) which is considered as a reference mass for all

computations.

Figure 5.5: Dam-break over a triangular hump.

The adaptive computations are performed with n = 3 and the simulation

time is set to 300 s. The relative mass error is computed by invoking equation

5.7 and used twice independently, for each of the adaptive schemes (i.e., HWFV

and MWDG2 ). In the first adaptive computations, the single precision for the

filter coefficients ( associated with each adaptive schemes ) is fixed. While, in the

second adaptive computations, the double precision is fixed throughout the entire
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simulations.

RME =
|MR −Mt |

MR

(5.7)

Figure 5.6 shows the results of the RME profiles. Note that both double

precision simulations provide relatively better preserving of the real physical mass

compared to the counterpart single precision. This implies that the computed

values of the conservative variables involved in the multiscale transformation (i.e.,

equations 4.47 and 4.48) are affected by the precision of the filter coefficients.

Irrespective to the accuracy of both schemes in reproducing the real mass (i.e., the

magnitude value of RMEs). The difference between the RME profiles obtained

from the single and double precision for the MWDG2 and the HWFV schemes are

(1.099×10−3) and (2.299×10−4), respectively. It is clear that the difference in the

MWDG2 computation is significantly bigger by approximately fivefold than the

difference in the HWFV computation. This is reasonable due to the bigger size

of the filter matrices that are used in the multiscale transformation. In addition,

the results suggest greater concern regarding the precision of filter coefficients

when the adaptive formulation seeks a higher order of accuracy. This is because

more irrational filter coefficients will be involved in the adaptivity process (see

Subsections 3.3.4). Thus, to minimize this effect, it is suggested to perform the

initial projection of the conserved variable solutions with fewer cells ( i.e., choose

coarse baseline mesh as much as possible ). This is attributed to decreasing the

total number of calls of the multiscale transformations which results to reduce the

involvement of filter coefficients in computations. Arguably, this is a reasonable

suggestion and it is acceptable with the conceptual framework of the adaptive

formulation. Because the adaptive formulation is fully local and the increasing

of the accuracy order is associated with the number of degrees of freedom over

the computational cell. For example, the HWFV formulation needs one degree

of freedom per cell, while the MWDG2 formulation needs two degrees of freedom

per cell. Therefore, the initial projection will not be affected by following the

aforementioned suggestion.

Based on the RMSEs results, the multiscale transformations must be per-

formed by choosing filter coefficients with a minimum setting to the double preci-
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sion.

Figure 5.6: Evolution of the RME in the dam-break over the triangular hump

test case considering the single and double-precision floating point arithmetic.
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Part II- Validations and comparisons of the adap-

tive schemes

This part presents six well-known benchmark test cases for validations and com-

parisons of both adaptive schemes. Two of the test cases are idealized dam-break

cases over frictionless beds (regular and irregular) and the third test case considers

the quiescent flow over an irregular bed. The forth and fifth test cases consider

steady flow over a hump (transcritical flow with shock and supercritical flow per-

formed only for the HWFV scheme) and the last test case is a steady hydraulic

jump with friction in a rectangular channel.

In the aforementioned test cases, two principles are made for the discretisation

of the baseline mesh for the computational domains of both adaptive schemes.

These principles are based on the main scope of test cases :

1. when the test case seeks to show the quantitative comparisons, the mesh

resolutions is taken to have the same number of cells. This principle will be

used in test cases that are given in Sections 5.4 and 5.6.

2. when the qualitative comparisons are sought in the test cases, it is interesting

to have the same degrees of freedom for both adaptive schemes at the highest

resolution level. This principle will be used in test cases that are given in

Sections 5.5, 5.7 and 5.9.

5.4 Idealized Dam-break

The purpose of this case is to test the capability of the HWFV and the MWDG2

schemes to efficiently and accurately solve the homogeneous shallow water equa-

tions with discontinuities including a shock. The solutions are compared with the

exact solution, using the RMSE and maximum error metrics. A 1D channel with

a horizontal frictionless bed is considered. The length of the channel is 2000m

and an imaginary dam is located at 1000m from the upstream end. Initially, the

upstream water level is 20m whereas at the downstream end, the water level is

5.0m. The initial discharge is set to zero in every cell. Boundary conditions,

although set to be numerically transmissive, are effectively irrelevant in this test
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case as the propagating wave does not reach the boundary.

At the instant of dam failure, water is released producing a shock wave trav-

elling downstream meanwhile a rarefaction wave is formed and propagating up-

stream. The computational domain of the adaptive schemes at the coarse level

(n = 0) is discretised to 71 uniform cells and the computational models are run

up to 40 s after the dam break. Since both adaptive schemes allow for up to three

levels of mesh refinement ( i.e., n = 3 ), the size of the reference fine uniform mesh

is 568 cells.

5.4.1 HWFV solution

The numerical results are illustrated in Figure 5.7 and they give a satisfactory

solution compared with the analytical solution. The highest level of resolution

is noted to be reached at the shock wave and the kink at the tail of rarefaction

wave. The other zones of the rarefaction wave are achieved with the intermediate

resolution of level 1 and level 2. Meanwhile, the rest of the domain, where the

solution is smooth, the HWFV scheme has retained the baseline coarse level. In

this test case, the adaptive solution required a maximum of 124 cells (22 % of the

reference mesh).

Further quantitative analysis is performed via calculating the RMSE for both

the water surface and the flow rate,i.e.,

RMSEh =

√√√√√√

∑N0

i=1

∑nl

n=0

∑2n−1
j=0

(
hni,j − ĥni,j

)2

N

 (5.8)

RMSEq =

√√√√(∑N0

i=1

∑nl

n=0

∑2n−1
j=0

(
qni,j − q̂ni,j

)2

N

)
(5.9)

In which N is the total number of active cells forming the adaptive mesh, hni,j

and qni,j are the numerical results and ĥni,j and q̂ni,j are the reference data (from the

analytical solution).

Figure 5.8 compares the RMSE of the water depth and the flow rate for differ-

ent resolution levels throughout the simulation time. The RMSEs for each resolu-

tion show high fluctuation which decreases in error magnitude with an increasing
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(a) water depth

(b) flow rate

(c) levels

Figure 5.7: HWFV adaptive numerical solution for the idealized dam-break flow.

84



Chapter 5. Numerical results

in baseline mesh resolution. They also show a periodic pattern. The RMSE pro-

files resulting from the HWFV scheme are bounded between the coarse and fine

uniform solution which means that the model is not introducing additional errors

to the numerical solution during the adaptivity process. Furthermore, the fluctu-

ation of the RMSE profile of the adaptive level n = 3 is less fluctuating compared

with the others, which is expected due to grid convergence proprieties. To con-

firm that the obtained RMSEs are meaningful in terms of comparison, another

quantitative analysis is considered via calculating the maximum depth error which

is governed by the highest resolution level (due to the presence of shock). These

error trends (see Figure 5.11) are more logical in this sense, as it can be seen that:

i) any of the adaptive models at resolution n = 1 and 2 show comparable error

range to the reference uniform counterpart and ii) the variation of the adaptive

errors are consistent level-wise.

5.4.2 MWDG2 solution

The setting used for the HWFV scheme is also considered in MWDG2 scheme.

This is for the sake of the comparisons between the quantitative results which are

computed for both adaptive schemes. It can be seen in Figure 5.9 that the most of

the domain is retaining the intermediate resolution of level 1 and level 2. Whereas

the highest level of resolution n = 3 is noted to be reached at the shock wave and

the kink at the tail of rarefaction wave. This peak in resolution is noted to track

the evolution of shock wave and relatively coarse level of resolution elsewhere.

Which is expected due to the slow dynamics of the flow rate. In Figure 5.9a,

there are some variations trailing the shock. These variations are not generated

by the adaptive scheme because they had been observed in the computations of

non-adaptive schemes. These are due to chosen limiting strategy ( see Subsection

4.3.3) that allows very small variations around the shock to avoid unnecessary

limiting in smooth regions. The adaptive solution required a maximum of 119

cells which represents only 20.9 % of the highest resolution uniform mesh.

In Figure 5.10, the RMSEs for both the water surface and the flow rate are

presented to identify that the extent to which the adaptive process are preserving

the accuracy of the associated uniform mesh model. Note that the t-axis is limited
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(a) water depth

(b) flow rate

Figure 5.8: RMSE evolution for idealized dam-break test case using HWFV

scheme.
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between 0 s to 15 s for clarity purpose. Generally speaking, the behavior of the

RMSEs have the same fluctuation and the adaptive RMSE profiles are bounded

between the coarse and fine uniform solution which confirms that the adaptive

scheme is not introducing any error into the numerical solution. It is obvious that

the maximum magnitude of the error is obtained at the shock. Therefore, it is

necessary to consider also the maximum error of water depth (infinity norm) to

understand more the logical sense of this errors. In Figure 5.12, the maximum

water depth error shows that the variation of any adaptive errors n are consistent

with the reference uniform counterpart. This is reasonable, since the adaptive

technique is deliberately designed to more accurately track shocks.
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(a) water depth

(b) flow rate

(c) levels

Figure 5.9: MWDG2 adaptive numerical solution for the idealized dam-break flow.
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(a) water depth

(b) flow rate

Figure 5.10: RMSE evolution for idealized dam-break test case using MWDG2

scheme.

.
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Figure 5.11: HWFV max water depth error evolution for the dam-break case.

Figure 5.12: MWDG2 max water depth error evolution for the dam-break case.
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5.4.3 Comparisons

The numerical results in both schemes generally show a good agreement with

the analytical solution. In particular, in the case of MWDG2 scheme which the

shock and the tail of the flow rate are well captured compared to the HWFV

scheme ( see Figures 5.7 and 5.9 ). Moreover, the new schemes are able to obtain

the level of resolution according to the dynamic of the flow while significantly

reducing the number of cells and therefore the computational effort is reduced.

As for the calculated error (i.e. RMSE and maximum depth error), they are

much smaller for MWDG2 scheme than the error of HWFV scheme. However, the

adaptive RMSE profiles in both schemes have the same patterns in terms of their

variations between the coarse and fine uniform solutions. But such variations are

obtained from the adaptive RMSE profiles which is expected because an adaptive

schemes at level n is set to further allow lower resolution down to the baseline

resolution n = 0. To figure out more the behavior of the computed errors, another

quantitative analysis is considered via tabulating the mean and standard deviation

of the RMSEs and the maximum depth error (see tables 5.2 , 5.3 and 5.4). These

results show decreasing trend for the means accompanied by a faster reduction in

their SDs with more profound refinement levels in adaptive schemes. Importantly,

this reduction is consistent in which the mean values of the adaptive schemes at

level (n) are somewhere in between the mean values of the uniform schemes at

level (n− 1) and level (n).

Based on the results, the MWDG2 scheme shows better performance in this test

case in terms of reducing the magnitude of errors. The both adaptive frameworks

perform the adapivity process without introducing any additional errors to the

numerical solutions and they are able to sensibly decide resolution level for highly

dynamic break flow.
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Table 5.2: RMSE for Dam-break test case - water depth.

FV DG2

mean SD mean SD

Uni. mesh (n = 0) 0.497 0.141 0.441 0.135

Uni. mesh (n = 1) 0.381 0.096 0.205 0.061

Uni. mesh (n = 2) 0.249 0.058 0.152 0.054

Uni. mesh (n = 3) 0.157 0.032 0.111 0.033

Adpt. mesh (n = 1) 0.389 0.100 0.209 0.066

Adpt. mesh (n = 2) 0.362 0.074 0.173 0.058

Adpt. mesh (n = 3) 0.251 0.043 0.158 0.055

Table 5.3: RMSE for Dam-break test case-flow rate.

FV DG2

mean SD mean SD

Uni. mesh (n = 0) 6.588 1.952 4.899 1.992

Uni. mesh (n = 1) 4.731 1.326 2.191 0.739

Uni. mesh (n = 2) 3.524 0.822 1.773 0.587

Uni. mesh (n = 3) 1.617 0.351 0.945 0.424

Adpt. mesh (n = 1) 4.539 1.434 2.770 1.040

Adpt. mesh (n = 2) 4.531 0.902 2.159 0.569

Adpt. mesh (n = 3) 3.770 0.659 1.538 0.577

92



Chapter 5. Numerical results

Table 5.4: Maximum error for Dam-break test case-water depth.

FV DG2

mean SD mean SD

Uni. mesh (n = 0) 87.874 35.612 76.366 32.261

Uni. mesh (n = 1) 29.621 9.176 22.678 10.741

Uni. mesh (n = 2) 14.480 4.366 11.826 5.569

Uni. mesh (n = 3) 6.552 2.333 5.364 2.818

Adpt. mesh (n = 1) 29.87 9.74 22.300 10.341

Adpt. mesh (n = 2) 15.901 5.698 14.840 5.199

Adpt. mesh (n = 3) 5.752 3.022 5.491 3.875

93



Chapter 5. Numerical results

5.5 Quiescent flow over an irregular bed

The quiescent flow ( well-balancing ) property was introduced first by Bermudez

and Vazquez (1994b) and has been broadly used by numerical scheme developers

( see, among others, (Rogers et al., 2003; Aureli et al., 2008) and (Caleffi and

Valiani, 2012)). Therefore a test case which takes into consideration a differentiable

and non-differentiable topography, defined by the equation 5.10 and shown in

Figure 5.13a, is introduced to achieve the well-balancing property for both the

adaptive schemes.

In addition, the adaptive schemes are devoted to resolve complicated flows

over topography through considering three different cases: (i) wet/dry fronts case

(i.e. at both sides of the piecewise constant elevation); (ii) critical wet case ( i.e.

h = 0m at the peak of a bump ) and (iii) fully wet (i.e. the computational domain

is wet apart from regions (i) and (ii)).

z(x) =



0.2
(
0.05 (x− 10)2

)
if 8 < x < 12

0.05x− 1.1 if 22 ≤ x < 25

−0.05x+ 1.4 if 25 ≤ x ≤ 28

0.3 if 39 < x < 46

0 otherwise

(5.10)

The computational domains at the coarse level for the HWFV and MWDG2

schemes is comprised of 50 cells and 25 cells, receptively. The computational

models are run up to 1000 s with n = 3. An upstream boundary condition is

imposed by zeroing flow rate whereas a downstream boundary condition is set to

0.2m. These imposed conditions are also used to initialize the simulation.

Figures 5.13 and 5.14 show the numerical results of the adaptive scheme re-

spectively, considering the full solution of the FV and DG. The resolution level

throughout the domain in both adaptive schemes is almost the same in the wet/dry

fronts case, see Figures 5.13c and 5.14c. Whereas at the triangular hump, the

HWFV scheme retains the resolution level at 2, but the resolution level is varied

between n = 2 and n = 3 in the MWDG2 scheme. This is expected to be caused

by the extra slope coefficient values that are more sensitive and are therefore ac-
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tivated by the adaptive scheme, see Figure 5.14b. The adaptive schemes succeed

in capturing, the critical wet region at the peak of the bump, but the MWDG2

scheme refines more cells to the highest resolution level. This is attributed to the

involvement of the slope details coefficients in the adaptive solutions.

The full adaptive solutions of the free surface elevation preserve the motionless

steady state throughout the simulations (see Figures 5.13a and 5.14a) and, the

zero flow rate in both adaptive computations is accurately replicated within the

range of machine precision (1× 10−16) (see Figures 5.13b and 5.14b).
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(a) water surface elevation

(b) flow rate

(c) level

Figure 5.13: Quiescent flow with wet/dry fronts for HWFV scheme.
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(a) water surface elevation

(b) flow rate

(c) level

Figure 5.14: Quiescent flow with wet/dry fronts for MWDG2 scheme.
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5.6 Dam-break over a triangular hump

This test case is employed to verify the capability of both adaptive schemes in

retaining numerically the total mass in the system. This justifies that the adap-

tivity process does not introduce or lose the numerical mass even in the presence

of moving shocks and wet/dry fronts. The description of the test case, includ-

ing the initial and boundary conditions was given in section 5.3. For adaptive

schemes, the mesh resolution at the coarse level is consisted of 13 cells. The adap-

tive computations are performed with n = 3 and, the simulation time is set to

1000 s.

Since the system is closed, the initial mass water should be conserved. During

the simulation, the total mass of water at time t (Mt) is computed and compared

with the total initial discrete mass (M0) according to the RME below:

RME =
|Mt −M0 |

M0

(5.11)

The results in Figure 5.15 show that both adaptive schemes conserve the ini-

tial total mass in the closed system and the magnitude of the RMEs are within

the range of machine precision (10−15) throughout the entire computational time.

However, since in both adaptive schemes the mesh resolutions are not fixed, the

real physical mass (MR) is also used, as a reference similar to the test 5.3, to show

the ability of these schemes to preserve the same amount of mass as compared

to the equivalent uniform high resolution level (i.e., n = 3); this is performed

via invoking the equation 5.7. In Figure 5.16, the results show that the RME

profiles for both the adaptive mesh levels and their counterparts uniform levels

are the same. This implies that both schemes are not introducing any additional

mass error beyond the capability of the discretization relative to the fine reference

uniform scheme.
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Figure 5.15: RME evolution for dam-break over a triangular hump (compared

with the projected mass t = 0 s)

Figure 5.16: RME evolution for dam-break over a triangular hump (compared

with the physical real mass).
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5.7 Transcritical steady flow over a hump

This case is employed to test the performance of both adaptive schemes in repro-

ducing a steady transcritical flow over non-uniform topography in a frictionless

rectangular channel 1 m wide and a 25m long. The bed is defined by

z(x) =

0.2− 0.05(x− 10)2 if 8 ≤ x ≤ 12

0 otherwise

(5.12)

The analytical solution was supplied by SWASHES (2014). The initial water sur-

face and flow rate per unit width were set to h+z = 0.33 m and q = 0.18 m3/(s.m),

respectively. Physical boundary conditions consisted of the steady discharge at in-

flow and the initial water level at outflow. The adaptive computations for both

schemes were performed with n = 2 levels.

5.7.1 HWFV solution

The computational domain at the coarse level comprised of 50 uniform cells. The

solution converges to the steady state of the transcritical flow at t = 170 s. Figure

5.17 presents the numerical results of the adaptive scheme compared with the

analytical solution. The numerical water surface profile shows a good agreement

with the analytical solution. Furthermore, the flow rate stays constant apart from

small variations caused by the presence of the hydraulic jump. Arguably, this is

a known deficiency in the standard finite volume schemes which was reported by

Garcia-Navarro and Vazquez-Cendon (2000); Toro and Garcia-Navarro (2007) and

thus these variations are not related to the proposed wavelet-based adaptivity . In

this test case, the majority of the domain features required the coarse resolution

level mesh except at the hump, which dictated local level 1 of refinement from the

onset and at discontinuities (i.e., starting kink of the transcritical transition and

shock) where level is refined to highest resolution.
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(a) water depth (b) levels

(c) flow rate

Figure 5.17: HWFV adaptive numerical solution for the steady transcritical flow

over a hump.

101



Chapter 5. Numerical results

5.7.2 MWDG2 solution

Since the DG2 formulation provides two stencils (degree of freedoms) in every

cell and for the comparison purpose with HWFV simulation, the computational

domain at the coarse level is discretised to 25 cells, which results 100 cells in finest

resolution. The solution converges to the steady state at t = 200 s. Figure 5.18

presents the numerical results of the adaptive scheme as compared to the analytical

solutions. The numerical water surface profile shows a very good agreement with

the analytical solution. Furthermore, the flow rate stays constant as it featured

by the DG2 scheme, and as previously reported by Kesserwani and Liang (2012b).

Most of the domain features require the coarse resolution level except the region

where the presence of a hump which the peak of the resolution mesh is noted to

track the sub-super critical flow and near the hydraulic jump as required.

5.7.3 Comparisons

The two schemes show generally a good performance in reproducing transcritical

water depth over hump. But in terms of discharge, the MWDG2 scheme can trans-

fer and preserve better than HWFV scheme and this is featured as an advantage of

the DG2 method over FV method especially in prediction of steady discharge when

the mesh is coarse. In both test cases, the maximum resolution is obtained mainly

in the region where the hump exists in order to track and capture the varied steady

flow. Furthermore, irrespective to the baseline mesh size, the adaptive solutions

required almost the same proportion of the associated fine reference meshes. This

is due to fixing the initial degrees of freedom for both adaptive schemes. These

proportions are 34% and 33% for the HWFV and MWDG2 schemes, respectively

which results a reduction in computation efforts compared to associated uniform

schemes.
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(a) water depth (b) levels

(c) flow rate

Figure 5.18: MWDG2 adaptive numerical solution for the steady transcritical flow

over a hump.
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5.8 Supercritical flow over a hump

The supercritical flow over hump is considered using only the HWFV scheme to

ensure that the disturbances observed in the discharge in the transcritical flow

test case (see Figure 5.17c) are not induced by the adaptivity over the local cells.

Channel geometry and bed topography are identical to the previous test case, but

the unit inflow rate and the elevation water surface at the upstream of the channel

are set to q = 25.0567m3/(s.m) and h + z = 2.0m, respectively. Herein, both of

these physical values are used as steady state inflow boundary conditions; whereas

a free outlet is numerically set. The simulation time is set to t = 20 s and 50 cells

are chosen for the baseline coarse mesh.

The results are shown in Figure 5.19. The constant flow rate and surface water

profile compared with the analytical solution, from SWASHES (2014), are well

captured. Again, the mesh refinement is obtained only in the regions where both

the bed elevation and the flow are varying. However, no artifact are noted in

the prediction of the discharge discreization (see Figure 5.19b). Consequently, the

HWFV scheme demonstrates a good performance of the adaptive shallow water

flow model in reproducing well-balance steady flows over topography, and in per-

forming a selection of resolution levels relevance with the flow and topographic

region.
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(a) water depth (b) flow rate

(c) levels

Figure 5.19: HWFV adaptive numerical solution for the steady supercritical flow

over a hump.
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5.9 Steady hydraulic jump with friction in a rect-

angular channel

The purpose of this test case is to illustrate the behavior of both schemes in

performing the adaptivity process considering the bed-friction with the source

term. This test case is based on the setup proposed by MacDonald (1996). A

hydraulic jump is assumed to be formed in a prismatic rectangular channel which

has 1000m long and 20m width. The Manning’s roughness coefficient is set to

0.02 and the bed slope is spatially varied. The initial flow rate and the water

depth are set to 20m3/s and 1.334899m in every cell respectively. Boundary

conditions at the upstream are set to q = Q/B = 2m2/s and h = 0.543853m to

obtain a supercritical flow and the flow condition changes via a hydraulic jump

to be a subcritical flow at the mid of the channel. The flow remains subcritical

until the end of the channel, therefore the boundary condition at the down stream

requires only one physical condition to be specified. Here, the water depth is set to

1.334899m and for the flow rate, it is proceed by a numerical boundary condition.

5.9.1 HWFV solution

The baseline mesh has 30 cells, which results 120 cells at the highest level (i.e.

n = 2). The non-adaptive computation is performed using the same number of

cells that the adaptive solution is needed to converge the steady hydraulic jump.

the convergence of the adaptive solution is achieved with 46 cells. This is per-

formed for the purpose of comparison. The simulations are noted to converge at

around T = 600 s. Figure 5.20 shows the results of the adaptive and uniform con-

ditions, together with the exact solution. Generally, the numerical solutions match

together with the analytical solution and they overlap almost fully. However, some

differences exist, particularly in the flow rate solutions, see Figure 5.20b, and that

due to the chosen discretisation of the friction source term, as previously reported

by Burguete Tolosa et al. (2008). Clearly, the adaptive solution has more cells

for capturing the hydraulic jump compared to the uniform schemes solution and,

at the subcritical region, the uniform solution is slightly less accurate, see Figures

5.20a. Based on this, the adaptive scheme can refine more cells through promoting

106



Chapter 5. Numerical results

the local solution (n = 2 at the hydraulic jump region and n = 1 at the subcritical

region, see Figure 5.20c), to minimize errors at the same computational cost.

5.9.2 MWDG2 solution

The domain of the computation at n = 0 is divided into 15 cells and the adaptive

computation is performed with n = 2 levels, which results in 60 cells. This dis-

cretization of the domain provides 120 degrees of freedom. Thus, the performance

of the comparisons between the adaptive results obtained from both schemes (i.e.,

HWFV and MWDG) become reasonable.

The adaptive solution converges with a maximum of 25 cells and this number

of cells is used to run the non-adaptive computation. This is performed to compare

its results with the adaptive solution results. The convergence of the solutions are

achieved at around T = 530 s which is less compared with the HWFV scheme and

this is due to the advantage of the DG2 over FV schemes. Figure 5.21 presents the

results for both the adaptive and uniform conditions, together with the analytical

solution. The numerical solutions of both schemes have a good agreement with the

analytical solution and they generally overlap throughout the domain with some

difference in terms of the distribution of cells in the domain, see Figure 5.21a.

At the hydraulic jump and subcritical regions the adaptive scheme has refined

more cells in contrast with the supercritical region, in which the adaptive scheme

retains coarse level. This implies that the MWDG2 scheme responses to the flow

conditions in an optimal way compared to DG2 scheme.

It is clear that the adaptive MWDG2 scheme has transferred successfully the

feature of the standard DG2 of preserving the constant discharge. In addition,

the adaptive scheme also offers more cells where the hydraulic jump occurs which

leads to capturing it better when compared to the uniform numerical solution

results. Furthermore, at the smooth region, particularly in the supercritical flow

region, the MWDG2 scheme allows for coarser cells which result in a reduction of

computational cost when compared to the uniform computation.
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(a) water surface elevation (b) flow rate

(c) level

Figure 5.20: The results of HWFV scheme for Steady hydraulic jump in a prismatic

rectangular channel.
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(a) water surface elevation (b) flow rate

(c) level

Figure 5.21: The results of MWDG2 scheme for Steady hydraulic jump in a pris-

matic rectangular channel.
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5.9.3 Comparisons

In comparing of the two schemes, the MWDG2 scheme is generally better in cap-

turing the steady discharge solution throughout the domain. The both schemes

have an advantage over the uniform scheme (i.e., FV and DG2) in terms of re-

sponding to the flow condition feature, which they refine more cells where the

hydraulic jump occurs. Irrespective of the baseline mesh size, the HWFV and

the MWDG2 schemes require around 38 % and 42 % respectively, less in compu-

tational efforts, than the simulation on the associated fine uniform mesh. These

percentages are reasonable because their degrees of freedom are set to be same

at t = 0 s. However, these percentages change with time. In Figure 5.22, which

shows the evolution of the number of active cells and their variance with N2. At

around t = 80 s, too many cells are being activated by the MWDG2 scheme which

is around 75 % of the equivalent uniform scheme. While in the HWFV scheme, the

adaptive solution require a maximum of 51 % of the counterpart uniform mesh.

The magnitude of N/Nn for both adaptive schemes is relatively the same when

200 s ≤ t ≤ 300 s and it becomes almost constant with t ≥ 400 s.

It is clear that an efficient adaptive processes are obtained with the selected

baseline meshes in both adaptive schemes and also the active cell profiles of both

schemes have almost the same response to the flow conditions regardless how many

cells are being activated during the simulation. Furthermore, the possibility of

coarsening baseline mesh for both adaptive schemes is feasible, since both adaptive

schemes are not activating all accessible cells during the simulation.
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Figure 5.22: The active cells evolution of the adaptive schemes for the steady

hydraulic jump with friction bed in the rectangular channel.
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Conclusions and

recommendations

6.1 Conclusions

In this work, by combining wavelet-based scaling functions with the design of

both standard shallow water flow modelling schemes (i.e. FV and DG), two new

adaptive schemes (i.e. HWFV and MWDG2) have been obtained. In these new

schemes, the spatial resolution adaptivity is achieved from the local solution itself

and it is based on a single user-prescribed parameter. From the analysis of the

performance of the test cases in Chapter 5, the following conclusions can be drawn:

1. The precision digits of the filter coefficients were noted to affect the conser-

vation of adaptivity in terms of truncation error of precision digits (Section

5.3). Their effect became greater as more filter coefficients were involved in

the computations (i.e. increasing the order of accuracy). It can be, there-

fore, concluded that the filter coefficients, regardless of the accuracy of the

adaptive solution, must be set with a minimum of double precision digits to

reduce the loss of conservation due to the truncation error. Based on the

behaviour of the identified errors, it is important to consider the trade-off

between the baseline mesh resolution and the accuracy of the adaptive so-

lution. This means when the adaptive scheme seeks for high order-accurate

solution, the baseline mesh should be coarsened as much as possible in an

attempt to reduce the calls of filter coefficients in computations which results
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to preserve the precision digits of the conserved variables.

2. The selected threshold value (i.e. ξ = 0.01 obtained from Section 5.2 and

used for both adaptive schemes) has clearly shown its capability to control

a solution-driven mesh adaptation process, in which the quality of the nu-

merical solution is conserved and the adaptive solution errors do not exceed

the discretisation-errors of the counterpart uniform schemes. Furthermore,

by using this threshold value, the adaptive schemes offered a significant re-

duction in the computational efforts compared to the associated uniform

schemes on the highest resolution level. For instance, the reduction of the

HWFV scheme varied between 62 % to 78 % while for the MWDG2 scheme,

the reduction varied between 40 % to 79 %.

3. The quantitative analysis considering three levels of resolutions showed that

the adaptive schemes can conserve sharp shock wave which is known as one

of the main sources of error. This was demonstrated by the maximum error

(infinity norm) in which these errors were bounded by the uniform meshes’

counterparts at different resolutions (Section 5.4) and the trend errors of both

the adaptive and counterpart uniform schemes at resolution n have shown

the asymptotic pattern. In addition, the magnitude of mean and standard

deviation values for the adaptive error at resolution n are somewhere between

the values of uniform counterpart schemes at the resolution level n and n−1.

These findings signal that for shock-free shallow water flow simulations, the

adaptive schemes predictions trend to asymptotically converge to the quality

of the highest resolution available.

4. The adaptive schemes was able to retain all properties from the reference uni-

form counterpart schemes such as the mass conservation, shock capturing,

well-balancing, moving wet/dry fronts and slope limiter properties (Sections

5.5, 5.7 and 5.8). This means if any property is valid or improved for the ref-

erence uniform schemes, it will be transferable into the adaptive counterparts

schemes.

5. Response of the accuracy to the adaptivity process via fixing the degrees

of freedom (DOF) in both adaptive schemes (when t = 0 s ) was shown
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a good performance in terms of providing almost the same computational

efforts when the adaptive solutions converged (Section 5.9). In addition,

the adaptive schemes delivered better-resolved capture of the flow condi-

tions than the counterpart uniform schemes. In particular, the MWDG2

scheme offered coarser-mesh predictions at supercritical region compared to

the HWFV results and counterpart uniform results. This means at the same

level of DOF, the adaptive MWDG2 scheme offers better accuracy, conser-

vativity and coarse (efficiency) performance than the HWFV scheme. This

clearly lays out to benefit in further from the mutiwavelets scalability for

increasing the accuracy of the adaptive solution along with coarsening the

baseline meshes.

Altogether, the results in Chapter 5 demonstrated that the multiwavelets adap-

tive technique has successfully merged into the FV and DG2 frameworks. The

results are also encouraging and suggesting that the adaptive schemes can provide

a rigorous, robust and efficient solution to the multiscale problems arise in shallow

water modelling.

6.2 Recommendations for future work

The following future work will consist of considering the different aspects of hy-

draulic engineering problems to bring these adaptive schemes into the mainstream

as the approaches of demanding shallow water flow simulations:

1. Conducting more test cases to show the capability of these schemes in repro-

ducing experimental reference data.

2. Increasing the accuracy of the adaptive solution. This will encourage to

perform hp-adaptation.

3. Increasing the refinement levels of both schemes in such a way that the local

solution can promote to any resolution level. This will offer a significant gain

in reducing the computational efforts.

4. Investigating the trade-off between coarsening the baseline mesh and increas-

ing the number of resolution levels. This will give insight as the best choice
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Chapter 6. Conclusions and recommendations

of resolution level that can be used with simulating the realistic applications

of shallow water flow.

5. Extending these schemes to simulate 2D shallow flows considering all quan-

titative and qualitative assessments that are performed for 1D to ensure

the possibility of using these adaptive schemes in modelling the real shallow

water flow problems.

.
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Johnson, C. and Pitkäranta, J. (1986). An analysis of the discontinuous

Galerkin method for a scalar hyperbolic equation. Mathematics of computa-

tion, 46(173):1–26.

Keinert, F. (2003). Wavelets and Multiwavelets. CRC Press.

120



Bibliography

Kesserwani, G. (2013). Topography discretization techniques for Godunov-type

shallow water numerical models: a comparative study. Journal of Hydraulic

Research, 51(4):351–367.

Kesserwani, G., Caviedes-Voullíıa, D., Gerhard, N., and Muller, S. (2015). Multi-

wavelet discontinuous Galerkin -adaptive shallow water model. Computer Meth-

ods in Applied Mechanics and Engineering, 294:56 – 71.

Kesserwani, G., Gerhard, N., Caviedes-Voullime, D., Haleem, D. A., and Mller, S.

(2014). A multi-resolution discontinuous Galerkin method for one dimensional

shallow water flow modelling. the 3rd IAHR Europe Congress with the theme

Water Engineering and Research. Porto, Portugal.

Kesserwani, G. and Liang, Q. (2010a). A discontinuous Galerkin algorithm for

the two-dimensional shallow water equations. Computer Methods in Applied

Mechanics and Engineering, 199(4952):3356 – 3368.

Kesserwani, G. and Liang, Q. (2010b). Well-balanced RKDG2 solutions to the

shallow water equations over irregular domains with wetting and drying. Com-

puters and Fluids, 39(10):2040 – 2050.

Kesserwani, G. and Liang, Q. (2011). A conservative high-order discontinuous

Galerkin method for the shallow water equations with arbitrary topography.

International journal for numerical methods in engineering, 86(1):47–69.

Kesserwani, G. and Liang, Q. (2012a). Dynamically adaptive grid based discon-

tinuous galerkin shallow water model. Advances in Water Resources, 37:23–39.

Kesserwani, G. and Liang, Q. (2012b). Locally limited and fully conserved RKDG2

shallow water solutions with wetting and drying. Journal of scientific computing,

50(1):120–144.

Kesserwani, G. and Wang, Y. (2014). Discontinuous Galerkin flood model formu-

lation: Luxury or necessity ? Water Resources Research, 50(8):6522–6541.

Khan, A. A. and Lai, W. (2014). Modeling Shallow Water Flows Using the Dis-

continuous Galerkin Method. CRC Press.

121



Bibliography

Krivodonova, L., Xin, J., Remacle, J., Chevaugeon, N., and Flaherty, J. E. (2004).

Shock detection and limiting with discontinuous Galerkin methods for hyper-

bolic conservation laws. Applied Numerical Mathematics, 48(3):323–338.

Kubatko, E. J., Bunya, S., Dawson, C., and Westerink, J. J. (2009). Dy-

namic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow

water equations. Computer Methods in Applied Mechanics and Engineering,

198(21):1766–1774.

Kubatko, E. J., Westerink, J. J., and Dawson, C. (2006). hp discontinuous Galerkin

methods for advection dominated problems in shallow water flow. Computer

Methods in Applied Mechanics and Engineering, 196(13):437 – 451.

Lesaint, P. and Raviart, P.-A. (1974). On a finite element method for solving the

neutron transport equation. Mathematical aspects of finite elements in partial

differential equations, (33):89–123.

Liang, Q. (2010). Flood simulation using a well-balanced shallow flow model.

Journal of Hydraulic Engineering, 136(9):669–675.

Liang, Q. and Borthwick, A. G. (2009). Adaptive quadtree simulation of shallow

flows with wet dry fronts over complex topography. Computers and Fluids,

38(2):221 – 234.

Liu, X.-D., Osher, S., and Chan, T. (1994). Weighted Essentially Non-oscillatory

Schemes. Journal of Computational Physics, 115(1):200 – 212.

MacDonald, I. (1996). Analysis and computation of steady open channel flow.

PhD. Thesis. University of Reading.

Mallat, S. G. (1989). Multiresolution approximations and wavelet orthonormal

bases of L2(R). Transactions of the American Mathematical Society, 315(1):69–

87.

Mehra, M. and Kevlahan, N. K.-R. (2008). An adaptive wavelet collocation method

for the solution of partial differential equations on the sphere. Journal of Com-

putational Physics, 227(11):5610–5632.

122



Bibliography

Moler, C. B. (2008). Numerical Computing with MATLAB: Revised Reprint. Siam.

Müller, S. (2003). Adaptive multiscale schemes for conservation laws, volume 27.

Springer.

Müller, S. and Stiriba, Y. (2007). Fully adaptive multiscale schemes for con-

servation laws employing locally varying time stepping. Journal of scientific

computing, 30(3):493–531.

Murillo, J. and Garca-Navarro, P. (2010). Weak solutions for partial differen-

tial equations with source terms: Application to the shallow water equations.

Journal of Computational Physics, 229(11):4327 – 4368.
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Appendix A

One-dimensional Gauss

integration

Gauss integration is explained for the one-dimensional case without resorting to the

concept of Legendre polynomials. The trade-off is that symmetry of the integration

point positions must be assumed. In what follows, an integration domain of the

interval x ∈ [−1
2
L, 1

2
L] is assumed.

linear function: A constant function is written as y = a + bx and its integral

can be elaborated as aL. For a one-point Gauss integration the weight is

necessarily unity, and the position x1 of the integration point is found via

(a+ bx1)L = aL (A.1)

which leads to x1 = 0, i.e. the integration point is positioned in the centre

of the interval.

quadratic function: A quadratic function is written as y = a+ bx+ cx2 and its

integral equals aL+ 1
12
cL3. A single integration point would be placed in the

centre, and is not sufficient to account for arbitrary a and c. Therefore, two

integration points are needed. It should then hold that∑
i

yiwiL = aL+
1

12
cL3 i = 1, 2 (A.2)

Comparing the coefficients of a, b and c separately yields

aL (w1 + w2) = aL (A.3a)
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Appendix A. One-dimensional Gauss integration

bL (x1w2 + x2w2) = 0 (A.3b)

cL
(
x2

1w1 + x2
2w2

)
=

1

12
cL3 (A.3c)

These are three equations with four unknowns. Additional equations are

generated by requiring that the integration rule is objective with respect to

the orientation of the x-axis, i.e. x1 = −x2 and w1 = w2. Equation (A.3a)

then yields w1 = w2 = 1
2

and Equation (A.3b) is satisfied automatically.

Equation (A.3c) results in x1 = −1
6
L
√

3 and x2 = 1
6
L
√

3.

cubic function: A cubic function is written as y = a + bx + cx2 + dx3 and its

integral is aL+ 1
12
cL3. The form of integral is identical to that of a quadratic

function, therefore the same integration rule can be applied.

quartic function: A quartic function is written as y = a+ bx+ cx2 + dx3 + ex4

and its integral equals aL + 1
12
cL3 + 1

80
eL5. Two integration points are

not sufficient for arbitrary a, c and e, therefore three integration points are

needed. It is required that∑
i

yiwiL = aL+
1

12
cL3 +

1

80
eL5 i = 1, 2, 3 (A.4)

Comparing the coefficients of a, b, c, d and e separately yields

aL (w1 + w2 + w3) = aL (A.5a)

bL (x1w1 + x2w2 + x3w3) = 0 (A.5b)

cL
(
x2

1w1 + x2
2w2 + x2

3w3

)
=

1

12
cL3 (A.5c)

dL
(
x3

1w1 + x3
2w2 + x3

3w3

)
= 0 (A.5d)

eL
(
x4

1w1 + x4
2w2 + x4

3w3

)
=

1

80
eL5 (A.5e)

These are six equations with five unknowns. Additionally, symmetry of the

integration point locations is required, that is x1 = −x3 and x2 = 0 and for

the weights it holds w1 = w3. Equations (A.5b) and (A.5d) are then fulfilled

automatically.

Substituting these values into Equations (A.5c) and (A.5e) leads to

2x2
1w1 =

1

12
L2 ⇒ x4

1 =
1

576w2
1

L4 (A.6a)
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2x4
1w1 =

1

80
L4 ⇒ x4

1 =
1

160w1

L4 (A.6b)

which yields w1 = 5
18

. Equation (A.5a) then results in w2 = 4
9
. Finally, it is

found that x1 = − 1
10
L
√

15 and x3 = 1
10
L
√

15.

quintic function: A quintic function is written as y = a+bx+cx2+dx3+ex4+fx5

and its integral equals aL + 1
12
cL3 + 1

80
eL5. Therefore the same integration

rule applies as for the quartic function.
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Appendix B

The algorithm of the dry bed

treatment HWFV

Algorithm 5 Dry bed treatment based on the work of Liang (2010)

1: Construct the water surface elevation (ηi = hi + zi)

and (ηi+1 = hi+1 + zi+1).

2: Record the velocities at cells Ii and Ii+1, i.e.,ui = qi/hi ;ui+1 = qi+1/hi+1.

(Audusse et al., 2004)

3: Impose the continuity of the topography at interfaces, such that

z∗i+1/2 = max (zi, zi+1). This step facilitates the wetting and drying front,

∆ηi+1/2 = max
[
0,−(ηi − z∗i+1/2)

]
.

4: Reconstruct depths involved in the hydrostatic term h∗i = ηi − z∗i+1/2 and

h∗i+1 = ηi+1 − z∗i+1/2.

5: Compute the discharge terms, q∗i = h∗i ui ; q
∗
i+1 = h∗i+1 ui+1.

6: The bed topography discretization at interfaces with wet/dry front needs

further steps

130



Appendix B. The algorithm of the dry bed treatment HWFV

for each dry cell do

a. Construct the new surface gradients η∗i = h∗i + z∗i+1/2. ;

η∗i+1 = h∗i+1 + z∗i+1/2.

b. Ensure that the actual water level of wet/dry interface is preserved i.e,

when ∆ηi+1/2 > 0 an extra modification is performed to

revise variables; η∗i,i+1 ←− η∗i,i+1 −∆ηi+1/2 ; z∗i+1/2 ←− z∗i+1/2 −∆ηi+1/2.

c. Bring back the water depth h∗i,i+1 = η∗i,i+1 − z∗i+1/2 and then use

UL
i+1/2 = [h∗i , q

∗
i ]
T and UR

i+1/2 = [h∗i+1, q
∗
i+1]T in equation 4.18 to evaluate

the flux.

end for

7: Likewise for evaluating flux F̃i−1/2 at interface xi−1/2, repeat the steps

(1) to (6).

8: Set h̃ = (hL,∗i+1/2 + hR,∗i−1/2)/2 and ∂xz̃ = (zL,∗i+1/2 + zR,∗i−1/2)/∆x and use them to

evaluate Sni in expression 4.25.
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The algorithm of the dry bed

treatment MWDG

Algorithm 6 Dry bed treatment based on Kesserwani and Liang (2012b) work

1: Construct the water surface elevation (η = h+ z) at cell boundary xi+1/2.

2: Record velocities at xi+1/2 obtained from the original topography

discretization, i.e. zLi+1/2 = zi = zRi+1/2 = zi+1.

3: Perform hKi+1/2 = ηKi+1/2 − zKi+1/2 where K=Ror L.

4: The bed topography discretization at interface xi+1/2 has wet/dry front will

be

for each dry cell do

a. Re-define numerically zK,∗i+1/2 = ηKi+1/2 − hKi+1/2.

b. Check if (hKi+1/2 < εdry) then uKi+1/2 = 0 end if

c. Set a single z-value defined by the maximum value,i.e.

zR,L,∗i+1/2 = max(zL,∗i+1/2, z
R,∗
i+1/2). Only to ensure nothing

omitted in step (a.).

d. Preserve positivity of water depth, i.e. hK,∗i+1/2 =

max(0, ηKi+1/2 − z
L,R,∗
i+1/2).

e. Compute the discharge incorporating from the original velocities,i.e.

qK,∗i+1/2 = hK,∗i+1/2 u
K
i+1/2 and the free-surface elevation, ηK,∗i+1/2

= hK,∗i+1/2+ zL,R,∗i+1/2, correlated with the positivity-preserving water depth

and single value of topography bed.

132



Appendix C. The algorithm of the dry bed treatment MWDG

f. Ensure that the step (4) is preserving the actual water level at

wet/dry front, this achieves by imposing the extra steps of Liang (2010):

i. Find ∆ηi+1/2 = max
[
(0,−(ηki+1/2 − z

L,R,∗
i+1/2)

]
.

ii. Adjust ηK,∗i+1/2 ←− ηK,∗i+1/2− ∆ηi+1/2 and zL,R,∗i+1/2 ←− zL,R,∗i+1/2− ∆ηi+1/2.

end for

5: Find the flux F̃i+1/2 using hK,∗i+1/2 = ηK,∗i+1/2 − z
L,R,∗
i+1/2 and uKi+1/2 = qK,∗i+1/2/h

K,∗
i+1/2.

6: Likewise for evaluating flux F̃i−1/2 at interface xi−1/2, repeat the steps

(1) to (5).

7: Set h̃ = (hL,∗i+1/2 + hR,∗i−1/2)/2 and ∂xz = (zL,∗i+1/2 + zR,∗i−1/2)/∆x and use them to

evaluate the integral term Si,k in expression 4.34.
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