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Abstract 

Firstly, a new synthesis method for the generation of the generalized Chebyshev 

characteristic polynomials has been presented. The general characteristic function 

is generated by a linear combination of Chebyshev basis characteristic functions. 

The basis functions for different filtering functions may easily be determined based 

on the number and position of reflection and transmission zeros. These basis 

functions enable direct synthesis of both lumped and distributed filter networks. 

Different filter functions including but not limited to low-pass, bandpass and dual 

bandpass filters, have been synthesised to demonstrate the general application of 

the synthesis method. 

Secondly, a new method for the design of a new class of distributed low-pass filter 

has been presented that enables exact realisation of the series short circuited 

transmission lines which are normally approximated via unit elements in other filter 

realisations. The filters are based on parallel coupled high impedance transmission 

lines which are terminated at one end in open-circuited stubs. The approach 

enables realisation of both finite and quarter-wave frequency transmission zeros 

hence giving improved stopband performance. A complete design is presented and 

the fabricated low-pass filter demonstrates excellent performance in good 

agreement with theory. 

Finally, design techniques for microwave bandpass filters using re-entrant 

resonators are presented. The key feature is that each re-entrant resonator in the 

filter generates a passband resonance and a finite frequency transmission zero, 

above the passband. Thus an Nth degree filter can have N finite frequency 

transmission zeros with a simple physical realization. A new synthesis technique 

for pseudo-elliptic low-pass filters suitable for designing re-entrant bandpass filter 

has also been show-cased. A physically symmetrical 5 pole re-entrant bandpass 

prototype filter with 5 transmission zeros above the passband was designed and 

fabricated. Measured results showed good correspondence with theories. 
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Motivation 

In wireless cellular systems, the communication between the mobile station (MS) 

and a base transceiver station (BTS) is made possible by electromagnetic (EM) 

waves propagating in air, through physical structures such as walls and other 

media at a particular frequency or wavelength. Mobile networks are allocated 

particular frequencies according to the standard employed. Usually a frequency 

range, called bandwidth, is allocated from the available EM spectrum for a 

particular use. Fig I shows the frequency bandwidths allocations (lower microwave 

frequency range) for different applications including military, aeronautical, 

broadcasting, terrestrial and satellite communication, to mention just a few [1].  

 
 

Fig. I  Spectrum allocations in UK for 2010 (source [1]) 

Because the EM spectrum is a finite resource, the amount of bandwidth available 

for cellular systems is limited. This in turn limits capacity of the mobile networks 

and the data rates that may be supported. With more and more digital devices 

communicating wirelessly now than ever before, the demand for high data rates 

and subsequently the need for more bandwidth have increased. This means the 

use of high frequency is preferred to increase the capacity to carry information. 

Additionally, the high demand for spectrum has led to the proliferation of frequency 

bands leading to an overcrowded microwave spectrum. Because the microwave 

spectrum is divided and shared between different users and applications, 

microwave filters must be employed to efficiently manage this finite and important 

resource. 

Radio Frequency (RF) and Microwave filters are an important integral part of 

modern digital wireless communication systems. Typically, these electrical filters 

are designed to allow certain frequency band(s) of signal to pass through and to 
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reject others. In general, they are primarily used to limit noise bandwidth and 

maximise the suppression of the unwanted signals in both transmitter and receiver 

architectures. Then also, various propagation effects degrade communication 

signals because of the unforgiving wireless environment. Thus transmitter and 

receiver front end RF and microwave filters must also have low loss to balance the 

system’s power budget. The filter size (volume, weight and hence the cost) is 

another major driving variable with emphasis placed on reducing space that the 

filter take up in RF and microwave circuits. BTS filters have to meet with even more 

stringent performance requirement. 

 
Fig. II  Typical duplexer architecture for cellular base station with two MIMO paths – 

Courtesy of Radio Design Limited   

Fig. II shows a typical duplexer used in a BTS with a 2X2 MIMO (multiple input and 

multiple output) for diversity. Each duplexer consists of transmitter and receiver 

channel filters that are connected at the common port which in turn is connected to 

the antenna.  As well as cleaning up on unwanted signals generated by non-linear 

power amplifier in transmitters, there are strict guidelines to control the amount of 

spurious power emitted by transmitters. This means the transmitter filter must have 

a high rejection in the receiver band.  Conversely, receiver filters must be designed 

not only to reject strong interference signals from external sources but also to 

reject strong transmitter signal that could potentially desensitise the receiver (self-
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interference). Table I shows the typical specifications of GSM 900 and GSM 1800 

base station filters. To achieve a high rejection of 90 dB of the transmitter band 

over the receiver band and vice versa in the duplexer, requires asymmetrical filters 

in which transmission zeros are placed on one side of the passband to increase 

rejection in transmitter or receiver filter [2]. In addition, there are other rejection 

requirements in the stopbands of each individual transmitter and receiver filter, 

such as 60 dB rejection in other cellular bands such as 800 band (791-821 MHz 

and 832-862 MHz) as well as the 2100 band (1920-1980 MHz and 2110-2170 

MHz). 

Table I  Typical Specifications of GSM 900 and 1800 Base Station Filters 

Passband 

GSM 900 
Receiver 880-915 MHz 

Transmitter 925-960 MHz 

GSM 1800 
Receiver 1710-1785 MHz 

Transmitter 1805-1880 MHz 

Maximum Passband Insertion Loss 1 dB 

Mininimum Passband Return Loss 20 dB 

Isolation between Transmitter and Receiver ports for duplexer 90 dB 

System Impedance 50 Ω 
 

To meet all the above stringent requirements, means that active research in 

microwave filters is required. Addressing most of these challenges is at the root of 

filter design – synthesis. Practical microwave filters can only be approximately 

designed.  Circuit models are designed to approximate the real physical filter under 

various simplifications. This is because physical electrical filters (or EM models) do 

have second order effects. The extent to which the approximation satisfies the 

specifications depends on how well the circuit model synthesis and EM modelling 

is performed, and the material properties and tolerances required. The synthesis is 

thus as important as the EM modelling of microwave filters. 

The past few decades has seen significant re-engineering to communication 

architectures and hardware. This has subsequently brought with it new and 
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evolving design methods for electrical filters to meet up with the dynamic system 

requirements. New novel techniques are needed beyond the established norms 

and often on the edge of physical practicality. Along with filter network synthesis, 

this thesis was an attempt to research new microwave base station filter design 

techniques that are capable of meeting various stringent requirements. The 

meander-like low-pass filter and re-entrant bandpass filter in Chapter 3 and 

Chapter 4 respectively are results of this driving factor. Numerous miniaturisation 

implementation techniques are used but effective filter design is primarily 

addressed by synthesis of suitable circuit networks.  

Improvement in the transmitter and receiver architectures requires the use of multi-

band filters. Available methods for multi-band filters do not enable exact synthesis 

of some of the desired transfer functions for arbitrary pass bands and separation 

bandwidths. A new synthesis method was therefore developed to provide a general 

solution to the exact synthesis of dual bandpass filters, with two alternative 

physical realisations. 

In addition, most of the fundamental design of microwave filters has not changed 

over many decades now. While other technologies are keeping up with Moore’s 

law, the improvement in base station filter design technology seems to have 

dwindled. It could even be argued that the design of microwave filters seems to 

have reached its fundamental physical performance limit. To rejuvenate the 

retarded growth, entails new synthesis and modelling techniques as well as new 

technologies in terms of materials used in the realisation of microwave filter to push 

the limit further.  

It is believed that the synthesis techniques and novel physical realisations 

presented in this thesis will contribute to improving electrical filter synthesis and 

design to meet the challenges of the dynamic wireless communication systems. 
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Thesis Organisation 

The first two Chapters cover a complete and systematic synthesis procedure for 

microwave filters employing Chebyshev characteristic functions. Chapter 1 

highlights the basic theory on filter network synthesis and analysis upon which 

modern microwave filter designs are based. Using conventional synthesis 

approaches, it presents thorough prerequisite material on the novel synthesis 

technique used throughout the entire thesis. The procedure is presented in a clear 

and concise way suitable for direct application in computer aided designs. 

MATLAB programming was used for many of the filter synthesis and design 

algorithms developed throughout this thesis. The established methods have also 

been modified in line with the new synthesis technique to be presented in later 

Chapters. The material presented is both suitable for the synthesis of both lumped 

and distributed microwave filters. It includes a review of the coupling matrix for low-

pass and bandpass filters. A brief description on microwave filter realisations is 

also given.   

In Chapter 2, a concept of Chebyshev basis functions is introduced for the first time 

to show how this simplifies the synthesis of most microwave filters. This allows 

designers to synthesise Chebyshev filters in both lumped and distributed form 

without the need for frequency variable transformations. The Chapter shows by 

means of relevant filtering functions how the basis functions are determined and 

how they are applied in filter synthesis. This Chapter forms the foundation of 

synthesis of filters presented in the rest of the Chapters. As well as complementing 

the synthesis principles in Chapter 1, Chapter 2 presents a general recursive 

algorithm based on basis functions for computing the Chebyshev characteristic 

polynomials required in microwave filter synthesis.  

Chapter 3 describes the novel synthesis technique of a new class of distributed 

low-pass filter that enables exact realisation of the distributed low-pass filter 

network. Starting with the canonical transfer functions, it is shown how different 

low-pass filter networks are transformed to more suitable networks for physical 
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realisation. A complete synthesis procedure is included together with a designed 

and fabricated low-pass prototype filter. 

Chapter 4 presents another novel concept in which a re-entrant transmission line is 

used to provide for both resonance and transmission zeros. A new method of 

synthesising a pseudo-elliptic low-pass filter that enables realisation of re-entrant 

bandpass filters is also given. A thorough design description and analysis are given 

and validated with a design example. 

The synthesis methods given in Chapter 1 and Chapter 2 were applied to single 

and dual bandpass filters in Chapter 5. It is shown how practical single bandpass 

filters may be directly synthesised using the proposed synthesis method. A narrow 

band approach to synthesis of dual bandpass filter is also demonstrated. Several 

detailed examples were used to demonstrate the new concepts introduced. 

Finally, Chapter 6 presents the exact synthesis method for dual bandpass filter 

using the novel synthesis technique of Chapter 2. Two practical realisations of dual 

bandpass filters are highlighted including the decomposition into parallel connected 

bandpass filter networks. Design illustrative examples are given with typical and 

real specifications to authenticate the given methods. 

A conclusion and suggestion for some future work are given in Chapter 7. Below is 

a list of publications the author has written and made contributions to. 
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Chapter 1 Microwave Filters – Fundamentals 

1.1 Microwave Filter Networks – Analysis and Synthesis 

An electrical filter is a fundamental component in microwave signal processing. It is 

a frequency selective device that allows only a band(s) of frequency of interest to 

pass through and attenuates any signal power out of this band(s). The design of 

electrical filters follows a well-established process as depicted in Fig. 1-1. The 

different facets of the design stages will be discussed in this Chapter. Firstly, the 

filter transfer function for either symmetrical or asymmetrical response is generated 

to satisfy the given attenuation levels in the filter specifications. Filter network 

synthesis involves determining a rational function based on the characteristic 

polynomials from which lumped or distributed parameter circuit models of the filter 

network can be realised. The circuit models are frequency mapped and element 

values may be scaled to suit the technology of implementation. EM modelling 

techniques allows the final circuit models to be approximated to the physical 

models (EM models). Finally, EM models are fine-tuned across a range of 

frequency to best match the circuit models before fabrication. 

 

 

  

   

 

Fig. 1-1  Filter Synthesis and Design Process 

The synthesis process is introduced in this Chapter and it forms the foundation for 

the work presented in the rest of the Chapters. The microwave filter network 

analysis and synthesis discussed here are based on well-known and exhausted 
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theories [3-6], and a revision of the underlying principles is given in the context of 

this work. 

1.1.1 Filter Transfer Function, Characteristic Function and 

Characteristic Polynomials 

1.1.1.1 Polynomial Definitions 

It is assumed throughout this work that the filter network is a two port passive 

lossless network. This means that any signal incident at the source port of the 

network is either transmitted to the load port (S21(𝑝)) or reflected back at the 

source port (S11(𝑝)) as depicted in Fig. 1-2 and that the filter is realised with 

passive reactive elements. The input reflection (𝑆11) and forward transmission (𝑆21) 

coefficients of the S-parameters will be discussed in section 1.1.2.1. The 

characteristic polynomials are derived from the amplitude-squared filter network 

power transfer function defined as [3] 

|𝑆21(𝜔)|
2 =

1

1 + [𝑇𝑁(𝜔)]2
 (1.1) 

where 𝑇𝑁(𝜔) is a rational polynomial called the characteristic function [7, 8]. 

Furthermore, the characteristic function is defined as 

𝑇𝑁(𝜔) = 𝑘
𝐹(𝜔)

𝑃(𝜔)
 (1.2) 

where 𝑘 is a constant and 𝐹(𝜔) and 𝑃(𝜔) are monic reflection and transmission 

characteristic polynomial respectively, all dependent on the radian frequency 

variable 𝜔 rad/s. The variable 𝜔 here is assumed without loss of generality 

although more general use would require the complex frequency variable 𝑝 where 

𝑝 = 𝑗𝜔. (1.3) 

For synthesis of distributed filters, a real distributed variable 𝑡 will be used instead 

where 

𝑡 = 𝑡𝑎𝑛 𝜃 (1.4) 

and its corresponding complex variable 𝜌 also known as Richard’s variable [9] 

defined as 
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𝜌 = 𝑡𝑎𝑛ℎ(𝑗𝜃) = 𝑗 𝑡𝑎𝑛 𝜃 = 𝑗𝑡 (1.5) 

where the variable 𝜃 is the electrical length in radians. In addition 𝜃 is related to the 

more familiar radian frequency variable 𝜔 as 

𝜃 = 𝑎𝜔 (1.6) 

The constant 𝑎 is evaluated as  

𝑎 =
𝜃𝑜
𝜔𝑜

 (1.7) 

where 𝜃𝑜 is the electrical length at some frequency point 𝜔𝑜 normally taken to be 

the centre (or cutoff) frequency. With these simple variable changes, all the 

principles and techniques described in this Chapter apply to direct synthesis of 

distributed filter networks as well. Note that the variable 𝜔 (or 𝑡 in distributed 

domain) is considered to be in a 𝜔 – plane (or 𝑡 - plane) so that the characteristic 

polynomials may have complex singularities in 𝜔 (or 𝑡). Hence the singularities for 

the characteristic polynomials may be determined in the 𝜔 – plane (or 𝑡 – plane) 

and using (1.3) (or (1.5)) converted to the conventional complex 𝑝 - plane (or 𝜌 – 

plane) singularities. 

 

Fig. 1-2  Scattering parameters for a two port filter network 

Because of the restrictions imposed on the physical realisation using lumped or 

distributed transmission line type elements, synthesis of transfer characteristic 

function are restricted to only certain transfer functions. This implies restrictions on 

the nature of the zeros and poles of characteristic function. 

The zeros of the characteristic function 𝑇𝑁(𝜔) are also the zeros of the reflection 

characteristic polynomial 𝐹(𝜔) and are called the reflections zeros which are 



 
 

4 

 

frequency points of maximum power transfer. At these frequency points, all the 

power incident at the source is transferred to the load and the filter loss is zero. 

The degree of 𝐹(𝜔) is normally equal to the degree of the filter network, 𝑁. The 

poles of the characteristic function 𝑇𝑁(𝜔) are also the zeros of the transmission 

characteristic polynomial 𝑃(𝜔). These are called transmission zeros and 

represents frequency points of maximum reflection of energy. Thus no energy is 

transferred to the load port. At these points, all the signal power is attenuated and 

are thus also points of maximum attenuation. Normally the number and position of 

these zeros are controlled or prescribed so that desired attenuation occurs at some 

specific out-of-band frequencies. For convenient physical realisability, the degree 

of 𝑃(𝜔), 𝑁𝑇𝑍 is chosen such that 𝑁𝑇𝑍 ≤ 𝑁. The goal of polynomial synthesis is to 

find the desired minimum degree characteristic function 𝑇𝑁(𝜔) which minimises 

filter losses in the passband and maximises attenuation in the stopband. 

The characteristic polynomials are the starting point in the synthesis process. In 

fact all microwave prototype filters are characterised by the characteristic 

polynomials. The nature of their zeros define a particular prototype filter response, 

such as Butterworth, Chebyshev, Elliptic etc. The characteristic polynomials may 

be completely prescribed as is the case with Butterworth filter response (all 

reflection zeros are coincident at the origin and all the transmission zeros are at 

infinity), but as will be evident later on, only the transmission characteristic 

polynomial may be prescribed in the case of Chebyshev filter response. The 

reflection characteristic polynomial for Chebyshev response may be obtained from 

a recursive algorithm that ensures equal passband return loss ripples response. 

This algorithm will be discussed in Chapter 2. The Chebyshev response gives a 

good compromise between in band return loss and out-of-band rejection and is 

relatively not very sensitive to element value tolerance [10]. For this reason, they 

were used in this work.  

There is one more polynomial used in filter synthesis, and thus it will be more 

instructive to define it now as it may be derived from the two characteristic 

polynomials described above. However, the reflection and transmission 

characteristic polynomials completely characterises any two port passive lossless 
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filter network. The third polynomial arises from the following definition of the input 

reflection (𝑆11) and forward transmission (𝑆21) coefficients of the S parameters: 

𝑆11(𝜔) =
𝐹(𝜔)/𝜇

𝐸(𝜔)
 (1.8) 

and 

𝑆21(𝜔) =
𝑃(𝜔)/𝜀

𝐸(𝜔)
 (1.9) 

respectively, where in both cases the denominator polynomial 𝐸(𝜔) is the Hurwitz 

polynomial [3]. All the zeros of the Hurwitz polynomial  𝐸(𝜔) are in the left half-

plane of the complex 𝑝 plane. At this point all the polynomials 𝐹(𝜔), 𝑃(𝜔) and 

𝐸(𝜔) are assumed to be monic polynomials (i.e. the coefficient of the highest 

power term is unity). For the numerator polynomials 𝐹(𝜔) and 𝑃(𝜔), 𝜇 and 𝜀 

respectively are normalising parameters discussed in the next section. The degree 

of 𝐸(𝜔) is equal to the degree of the filter network, 𝑁. The Hurwitz polynomial 𝐸(𝜔) 

is normally found from alternating pole technique [11] when both 𝐹(𝜔) and 𝑃(𝜔) 

are known. In general, any one of the polynomials may be found given any two of 

the other polynomials. The technique used to find 𝐸(𝜔) polynomial in this work will 

be outlined in section 1.1.2. 

1.1.1.2 Polynomial Normalisation 

As mentioned in the previous section, it is assumed that the characteristic 

polynomials 𝐹(𝜔) and 𝑃(𝜔) and the Hurwitz polynomial 𝐸(𝜔) are monic. 

Consequently (1.1) is re-written as 

|𝑆21(𝜔)|
2 =

1

1 + [𝑇𝑁(𝜔)]2
=

1

1 + (𝑘
𝐹(𝜔)
𝑃(𝜔)

)
2 =

1

1 + (
𝐹(𝜔)/𝜇
𝑃(𝜔)/𝜀

)
2 

(1.10) 

where the substitution  𝑘 = 𝜀/𝜇 was made. In Chebyshev filter response, the scalar 

𝑘 is chosen to control the passband return loss ripple level. For monic polynomials 

𝐹(𝜔) and 𝑃(𝜔) their normalizing parameter 𝜇 and 𝜀 respectively are computed at 

points in 𝜔 - plane (or 𝜃 – plane) where both 𝑆11(𝜔) and   𝑆21(𝜔) are known (e.g. 

𝜔 = 1 rad/s) so that the unitary condition [4]  
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|𝑆21(𝜔)|
2 + |𝑆11(𝜔)|

2 = 1 (1.11) 

and the prescribed passband return loss level are satisfied. Using (1.10) and 

(1.11), 𝑆11(𝜔) may be expressed as, 

|𝑆11(𝜔)|
2 =

(
𝐹(𝜔)/𝜇
𝑃(𝜔)/𝜀

)
2

1 + (
𝐹(𝜔)/𝜇
𝑃(𝜔)/𝜀

)
2 (1.12) 

Also by definition the passband return loss (𝑅𝐿) evaluated at 𝜔 = 𝜔𝑐 (where 𝜔𝑐 

may be equal to any of the known cutoff points) is given by 

𝑅𝐿 = −10𝑙𝑜𝑔|𝑆11(𝜔)|
2|𝜔=𝜔𝑐  𝑑𝐵 (1.13) 

By solving (1.12) and (1.13) simultaneously at any of the cutoff points, the constant 

𝑘 = 𝜀/𝜇 may be computed as  

𝑘 =
𝜀

𝜇
=

1

√10(𝑅𝐿/10) − 1
|
𝐹(𝜔)

𝑃(𝜔)
||

𝜔=𝜔𝑐

 (1.14) 

It also follows using (1.8) and (1.9), and the unitary condition (1.11) that, 

|
𝐹(𝜔)/𝜇

𝐸(𝜔)
|

2

+ |
𝑃(𝜔)/𝜀 

𝐸(𝜔) 
|
2

= 1 (1.15) 

Recall that the polynomials 𝐹(𝜔) and 𝐸(𝜔) are of degree 𝑁 and the degree of 𝑃(𝜔) 

is 𝑁𝑇𝑍, then computing the limit of (1.15) as 𝜔 → ∞ yields 

𝜇 = ±1 for 𝑁𝑇𝑍 < 𝑁 

1

𝜇2
+
1

𝜀2
= 1 for 𝑁𝑇𝑍 = 𝑁 

(1.16) 

Solving (1.14) and (1.16) simultaneously gives the two normalizing parameters. 

For 𝑁𝑇𝑍 < 𝑁 
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𝜀 = ±
1

√10(𝑅𝐿/10) − 1
|
𝑃(𝜔)

𝐹(𝜔)
||

𝜔=𝜔𝑐

 

𝜇 = ±1 

(1.17) 

and for 𝑁𝑇𝑍 = 𝑁  

𝜀 = ±√1 + 𝑘2 = ±√1 + (
1

√10(𝑅𝐿/10) − 1
|
𝑃(𝜔)

𝐹(𝜔)
||

𝜔=𝜔𝑐

)

2

 

𝜇 = ±
𝜀

𝑘
= ±

𝜀

√𝜀2 − 1
 

(1.18) 

Note that the positive and negative sign on 𝜇 gives the dual network realisation [4]. 

Recall also that the above formulae apply for distributed filter networks as well with 

appropriate variable substitution. In some distributed filter networks, however, the 

degree of the polynomial 𝐹(𝑡) is less than the degree of the filter network 𝑁. If the 

degree of 𝐸(𝑡) is 𝑁 and the degree of 𝑃(𝑡) is 𝑁𝑇𝑍 such that 𝑁 = 𝑁𝑇𝑍 then it follows 

using the above derivation that the normalising parameters take the following form, 

𝜀 = ±1  

𝜇 = ±
𝜀

𝑘
= ±

1

1

√10(𝑅𝐿/10) − 1
|
𝐹(𝑡)
𝑃(𝑡)

||

𝑡=𝑡𝑐

 
(1.19) 

where 𝑡𝑐 = 𝑡𝑎𝑛 𝜃𝑐 is the cutoff point. 

One more important filter characterisation not discussed in great detail is the 

transmission group delay (𝜏) obtained from the transmission coefficient as 

𝜏 = −
𝑑∅21
𝑑𝜔

 (1.20) 

where ∅21 is the phase of the transmission coefficient 𝑆21. The group delay shows 

how different frequent signal components are delayed as they travel through the 
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filter network. In some applications it becomes important to have at least constant 

passband group delay to minimise signal distortion. 

1.1.2 S-Parameters, ABCD Matrix and Y Admittance Matrix 

1.1.2.1 S-Parameters 

S-parameters or scattering parameters are a useful way to characterise a 

microwave filter network and may be defined conventionally as rational 

polynomials as follows 

𝑆11(𝑝) =
𝐹11
𝐸𝑠
        𝑆12(𝑝) =

𝑃12
𝐸𝑠
        𝑆21(𝑝) =

𝑃21
𝐸𝑠
        𝑆22(𝑝) =

𝐹22
𝐸𝑠

 (1.21) 

where 𝑆11(𝑝), 𝑆12(𝑝), 𝑆21(𝑝) and 𝑆22(𝑝) are the input reflection, reverse 

transmission, forward transmission and output reflection coefficients as depicted in 

Fig. 1-2. The polynomials 𝐹11(and 𝐹22), 𝑃12 (and 𝑃21) and 𝐸𝑠 are functions of the 

complex frequency variable 𝑝 corresponding to the reflection characteristic 

polynomial 𝐹(𝜔), transmission characteristic polynomial 𝑃(𝜔) and Hurwitz 

polynomial 𝐸(𝜔) defined in the 𝜔 – plane as in section 1.1.1.1. They are related by 

𝑃21 = 𝑃21(𝑝)  = (𝑗)𝑁𝑇𝑍𝑃(−𝑗𝑝) 

𝐹11 = 𝐹11(𝑝) = (𝑗)𝑁𝐹(−𝑗𝑝) 

𝐸𝑠 = 𝐸𝑠(𝑝)  = (𝑗)
𝑁𝐸 (−𝑗𝑝) 

(1.22) 

Note here that, the complex frequency variable 𝑝 is used without loss of generality. 

The formulae in this section apply to the distributed filter synthesis as well where 

the variable 𝜌 would be used instead of 𝑝. For this reason, the polynomials would 

be written without the variable dependence indicated e.g. 𝑃21 to mean 𝑃21(𝑝) or 

𝑃21(𝜌). Additionally, from the orthogonality unitary condition [3],  

𝑃21 = (𝑗)𝑚𝑜𝑑(
𝑁−𝑁𝑇𝑍+1

2
)𝑃21 (1.23) 

The modulo operation (mod) simply corresponds to multiplication of the 

transmission polynomial 𝑃21 by a 𝑗 to normalise the phase relationship for the s-

parameters when 𝑁 − 𝑁𝑇𝑍 is even. For a lossless passive reciprocal filter network it 

is assumed that, 
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𝐹11 = 𝐹22 = (−1)
𝑁𝐹11

∗ (1.24) 

i.e. all reflection zeros are on the imaginary axis and 

𝑃12 = 𝑃21 = (−1)
𝑁𝑇𝑍𝑃21

∗ (1.25) 

i.e. all transmission zeros must exist on the imaginary axis or as complex 

paraconjugated pairs (i.e. 𝑝𝑧 = ±𝜎 + 𝑗𝜔) to ensure physical realisability. The 

asterisks * is a paraconjugation operation (the reflection of a function symmetrically 

on the imaginary axis. For example, 𝐹(𝑝)∗ = 𝐹∗(−𝑝) = 𝑎0
∗ × (−𝑝)𝑁 + 𝑎1

∗ ×

(−𝑝)𝑁−1 +⋯+ 𝑎𝑁−1
∗ × (−𝑝)1 + 𝑎𝑁

∗ × (−𝑝)0, where 𝑎𝑟
∗ is the normal conjugate 

operation or reflection about the real axis). Hence for a two port lossless passive 

and reciprocal filter network, the complete s-parameters matrix may be written as, 

[𝑆] = [
𝑆11 𝑆12
𝑆21 𝑆22

] =
1

𝐸𝑠
[
𝐹11 𝑃12
𝑃21 𝐹22

] =
1

𝐸𝑠
[
𝐹11 𝑃21
𝑃21 𝐹11

] (1.26) 

1.1.2.2 S-parameter to ABCD-parameters 

Utilising standard S-parameters to ABCD-parameters transformation in [6], 

𝐴 =
(1 + 𝑆11)(1 − 𝑆22) + 𝑆12𝑆21

2𝑆21
 

𝐵 =
(1 + 𝑆11)(1 + 𝑆22) − 𝑆12𝑆21

2𝑆21
 

𝐶 =
(1 − 𝑆11)(1 − 𝑆22) − 𝑆12𝑆21

2𝑆21
 

𝐷 =
(1 − 𝑆11)(1 + 𝑆22) + 𝑆12𝑆21

2𝑆21
 

(1.27) 

Substituting (1.21) in (1.27) and re-writing yields 

𝐴 =
𝐸𝑠 + 𝐹11 − 𝐹22 −

𝐹11𝐹22 − 𝑃12𝑃21
𝐸𝑠

2𝑃21
 

𝐵 =
𝐸𝑠 + 𝐹11 + 𝐹22 +

𝐹11𝐹22 − 𝑃12𝑃21
𝐸𝑠

2𝑃21
 

𝐶 =
𝐸𝑠 − 𝐹11 − 𝐹22 +

𝐹11𝐹22 − 𝑃12𝑃21
𝐸𝑠

2𝑃21
 

(1.28) 
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𝐷 =
𝐸𝑠 − 𝐹11 + 𝐹22 −

𝐹11𝐹22 − 𝑃12𝑃21
𝐸𝑠

2𝑃21
 

Since the ABCD polynomials must be rational polynomials with the degree of at 

most 𝑁, then it can be inferred from (1.28) that there exist a polynomial 𝐸𝑥 such 

that 

𝐸𝑠𝐸𝑥 = 𝐹11𝐹22 − 𝑃12𝑃21. (1.29) 

This is a general equation of conservation of energy [12]. It may be reduced to a 

more familiar unitary condition for a passive lossless filter network namely,  

𝐸𝑠𝐸𝑠
∗ = 𝐹11𝐹11

∗ + 𝑃21𝑃21
∗ (1.30) 

By substituting (1.24) and (1.25) into (1.30) yields, 

𝐸𝑠𝐸𝑠
∗ =

𝐹11𝐹22
(−1)𝑁

+
𝑃12𝑃21
(−1)𝑁𝑇𝑍

 

𝐸𝑠(−1)
𝑁𝐸𝑠

∗
= 𝐹11𝐹22 − (−1)

𝑁−𝑁𝑇𝑍−1𝑃12𝑃21 

(1.31) 

which is equivalent to (1.29) if and only if two conditions are met, 

𝑃21 = 𝑃12 = (𝑗)
𝑚𝑜𝑑(

𝑁−𝑁𝑇𝑍+1
2

)𝑃21 

𝐸𝑥 = (−1)
𝑁𝐸𝑠

∗
 

(1.32) 

(1.32) explains why the orthogonality condition is used in (1.23) before application 

of (1.29). If the transfer function has a half transmission zero as is the case with 

distributed filter networks such that 

𝑃21 = √1 − 𝜌2𝑃𝑥   (1.33) 

where 𝑃𝑥 contains all non-half transmission zeros. This requires slight modification 

to the equation of conservation of energy (1.29).This is achieved by re-writing 

(1.25) as 

𝑃12 = 𝑃21 = (−1)
𝑁𝑇𝑍−1𝑃21

∗ = (√1 − 𝜌2) (−1)𝑁𝑇𝑍−1𝑃𝑥
∗
 (1.34) 

Then substituting (1.24) and (1.34) into (1.30) gives 
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𝐸𝑠𝐸𝑠
∗ =

𝐹11𝐹22
(−1)𝑁

+
𝑃12𝑃21

(−1)𝑁𝑇𝑍−1
 

𝐸𝑠(−1)
𝑁𝐸𝑠

∗
= 𝐹11𝐹22 − (−1)

𝑁−𝑁𝑇𝑍𝑃12𝑃21 

(1.35) 

By substituting (1.33) into (1.35), it may be re-written as,  

𝐸𝑠(−1)
𝑁𝐸𝑠

∗
= 𝐹11𝐹22 − (−1)

𝑁−𝑁𝑇𝑍(1 − 𝜌2)𝑃𝑥𝑃𝑥 (1.36) 

which again is equivalent to (1.29) if and only if 

𝑃21 = 𝑃12 = (𝑗)𝑚𝑜𝑑(
𝑁−𝑁𝑇𝑍

2
)𝑃21 = (𝑗)

𝑚𝑜𝑑(
𝑁−𝑁𝑇𝑍

2
) (√1 − 𝜌2) 𝑃𝑥 

𝐸𝑥 = (−1)
𝑁𝐸𝑠

∗
 

(1.37) 

Therefore this is equivalent to multiplication of the transmission polynomial 𝑃21 (or 

𝑃𝑥) by a 𝑗 when 𝑁 − 𝑁𝑇𝑍 is odd. Thus a similar conservation of energy formula may 

be written for the distributed filter network with a single half transmission zero pair 

from (1.36) as 

𝐸𝑠𝐸𝑥 = 𝐹11𝐹22 − (1 − 𝜌
2)𝑃𝑥𝑃𝑥 (1.38) 

The poles or roots of 𝐸𝑠 and 𝐸𝑥 may easily be determined from (1.29) or (1.38) by 

root assignment. Note that in application of (1.29) or (1.38), the 𝑃21 polynomial or 

the 𝑃𝑥 polynomial is multiplied by a 𝑗 when when 𝑁 − 𝑁𝑇𝑍 is even and when 

𝑁 − 𝑁𝑇𝑍 is odd respectively to satisfy the orthogonality condition. For example, 

using (1.29) and for a two port passive lossless filter network, for which (1.24) and 

(1.25) apply then 

        𝐸𝑠𝐸𝑥 = 𝐹11𝐹22 − 𝑃12𝑃21 

𝐸𝑠𝐸𝑥 = 𝐹11
2 − 𝑃21

2 

                    𝐸𝑠𝐸𝑥 = (𝐹11 − 𝑃21)(𝐹11 + 𝑃21) 

(1.39) 

𝐸𝑠 is the Hurwitz polynomial and hence may be formed from the left half plane 

(LHP) zeros of 𝐹11 − 𝑃21 and 𝐹11 + 𝑃21, while 𝐸𝑥 may be formed from the right half 

plane (RHP) zeros of 𝐹11 − 𝑃21 and 𝐹11 + 𝑃21. Having determined the required 

polynomials 𝐸𝑠, 𝐸𝑥, 𝐹11 and 𝑃21 the complete ABCD parameters may now be 

determined. From (1.28) it is evident that the four ABCD polynomials share the 

same denominator 𝑃21 and their numerator polynomials are given by 
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𝐴𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥 + 𝐹11 − 𝐹22] 

𝐵𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22] 

𝐶𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 − 𝐹11 − 𝐹22] 

𝐷𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥 − 𝐹11 + 𝐹22] 

(1.40) 

which for a two port lossless reciprocal and symmetrical filter network, simplifies to 

𝐴𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥] 

             𝐵𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 + 2𝐹11] 

             𝐶𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 − 2𝐹11] 

𝐷𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥] 

(1.41) 

Clearly 𝐴𝑛 = 𝐷𝑛 and the complete ABCD matrix may be written as 

[𝐴𝐵𝐶𝐷] =
1

𝑃21
[
𝐴𝑛 𝐵𝑛
𝐶𝑛 𝐷𝑛

] (1.42) 

1.1.2.3 S-parameters to Y-parameters 

Utilising standard S-parameters to Y-parameters conversion formulae [6] in a 

similarly way as in section 1.1.2.2 and the equation of conservation of energy 

(1.29) gives 

𝑌11 =
(1 − 𝑆11)(1 + 𝑆22) + 𝑆12𝑆21
(1 + 𝑆11)(1 + 𝑆22) − 𝑆12𝑆21

=
𝐸𝑠 − 𝐸𝑥 − 𝐹11 + 𝐹22
𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22

 

𝑌12 =
−2𝑆12

(1 + 𝑆11)(1 + 𝑆22) − 𝑆12𝑆21
=

−2𝑃12
𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22

 

𝑌21 =
−2𝑆21

(1 + 𝑆11)(1 + 𝑆22) − 𝑆12𝑆21
=

−2𝑃21
𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22

 

𝑌22 =
(1 + 𝑆11)(1 − 𝑆22) + 𝑆12𝑆21
(1 + 𝑆11)(1 + 𝑆22) − 𝑆12𝑆21

=
𝐸𝑠 − 𝐸𝑥 + 𝐹11 − 𝐹22
𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22

 

(1.43) 

Hence in general the numerator polynomials of the 𝑌-parameters are 
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                                 𝑌11𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥 − 𝐹11 + 𝐹22] 

𝑌12𝑛 = −𝑃12 

𝑌21𝑛 = −𝑃21 

                                  𝑌22𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥 + 𝐹11 − 𝐹22] 

(1.44) 

and they all share the same denominator polynomial defined by, 

                                  𝑌𝑑𝑒𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 + 𝐹11 + 𝐹22] (1.45) 

Which for a two port lossless reciprocal and symmetrical filter network simplifies to 

          𝑌11𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥] 

𝑌12𝑛 = −𝑃12 

𝑌21𝑛 = −𝑃21 

            𝑌22𝑛 =
1

2
[𝐸𝑠 − 𝐸𝑥] 

                          𝑌𝑑𝑒𝑛 =
1

2
[𝐸𝑠 + 𝐸𝑥 + 2𝐹11] 

(1.46) 

Cleary 𝑌11𝑛 = 𝑌22𝑛 and the complete 𝑌-parameters matrix is given by 

[𝑌] =
1

𝑌𝑑𝑒𝑛
[
𝑌11𝑛 𝑌12𝑛
𝑌21𝑛 𝑌22𝑛

] (1.47) 

The S-parameters, ABCD parameters and 𝑌-parameters are used extensively in 

modern analysis and synthesis of microwave filter networks. They thus form the 

basis of the synthesis methods described in the next two sections. 

1.1.3 Coupling Matrix Synthesis Method 

Among the modern filter synthesis methods, the Coupling Matrix (CM) method has 

been increasing in popularity ever since its introduction in the 1970’s [13, 14]. With 

modern advances in computer aided design, designers often utilize software such 

as CMS [15] which computes the CM elements for a configurations suitable for a 

given application. Because the CM technique is amenable to computer 

manipulations, it allows designers to implement the filter in the topology of choice. 

Additionally, the CM technique offers a good relationship between the elements of 
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the physical network and the elements of the CM. In section 1.1.3.1, the CM for 

lowpass prototype filters is briefly reviewed. Detailed analysis and synthesis are 

well presented by Cameron in his papers [16, 17]. In section 1.1.3.2, the 

formulation of the CM for direct synthesis of single (or dual) bandpass filter used in 

Chapter 5 and Chapter 6 is derived.  

Although it is possible to express any given filter circuit network (such as those 

obtained from section 1.1.3.3) in form of the CM, it is however, possible and often 

convenient to synthesise the CM directly from the 𝑌 matrix polynomials obtained in 

section 1.1.2.3. The concept is based on the transversal array network and the two 

methods are now examined. 

1.1.3.1 Ideal Lowpass Prototype Filter Coupling Matrix 

Any realisable lowpass filter network may be expressed in terms of the transversal 

array as shown in Fig. 1-3. Recall from (1.47) that the overall 𝑌 matrix for the 

lowpass prototype filter may be expressed as 

[𝑌] =
1

𝑌𝑑𝑒𝑛
[
𝑌11𝑛 𝑌12𝑛
𝑌21𝑛 𝑌22𝑛

]. (1.48) 

This may be expressed in terms of residues and poles 𝑎𝑖 , 𝑧𝑖 and 𝑝𝑖 respectively as 

[𝑌] =

[
 
 
 
 
 

∑
𝑎𝑖

𝑝 − 𝑝𝑖

𝑁

𝑖=1

𝑗𝑧0 +∑
𝑧𝑖

𝑝 − 𝑝𝑖

𝑁

𝑖=1

𝑗𝑧0 +∑
𝑧𝑖

𝑝 − 𝑝𝑖

𝑁

𝑖=1

∑
𝑎𝑖

𝑝 − 𝑝𝑖

𝑁

𝑖=1 ]
 
 
 
 
 

 (1.49) 

It may be seen from the parallel-connected transversal array that the total 

admittance matrix is just the sum of the 𝑁 array networks and the direct source-

load coupling 𝑀𝑠𝑙, where 𝑁 is the degree of the lowpass filter network. Thus to 

obtain the elements of the 𝑁 + 2 transversal CM, only the residues and poles are 

needed. Now, the total admittance 𝑌 matrix of the transversal array is 
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[𝑌] =

[
 
 
 
 
 

∑
𝑀2

𝑠𝑖

𝑐𝑖𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

𝑗𝑀𝑠𝑙 +∑
𝑀𝑠𝑖𝑀𝑖𝑙

𝑐𝑖𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

𝑗𝑀𝑠𝑙 +∑
𝑀𝑠𝑖𝑀𝑖𝑙

𝑐𝑖𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

∑
𝑀2

𝑖𝑙

𝑐𝑖𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1 ]
 
 
 
 
 

, 

[𝑌] =

[
 
 
 
 
 

∑
𝑀2

𝑠𝑖

𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

𝑗𝑀𝑠𝑙 +∑
𝑀𝑠𝑖𝑀𝑖𝑙

𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

𝑗𝑀𝑠𝑙 +∑
𝑀𝑠𝑖𝑀𝑖𝑙

𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1

∑
𝑀2

𝑖𝑙

𝑝 + 𝑗𝑏𝑖

𝑁

𝑖=1 ]
 
 
 
 
 

, 

(1.50) 

where all the capacitor values in (1.50) have been normalised to unity. Comparing 

the two matrices in (1.49) and (1.50) yields the desired result for the transversal 

array CM values as 

 

Fig. 1-3  Transversal array lowpass filter network 

 

𝑀𝑠𝑙 = 𝑧0 

𝑀𝑖𝑙 = √𝑎𝑖 

𝑀𝑠𝑖 =
𝑧𝑖
𝑀𝑖𝑙

 

𝑀𝑖𝑖 = 𝑏𝑖 = −
𝑝𝑖
𝑗

 

(1.51) 
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And using these values the 𝑁 + 2 fully canonical CM for the transversal array is 

formed as 

 

 

 

 

          𝑀 = 

 𝑆 1 2 … 𝑘 … 𝑁 𝐿 

𝑆  𝑀𝑠1 𝑀𝑠2 … 𝑀𝑠𝑖 … 𝑀𝑠𝑁 𝑀𝑠𝑙 

1 𝑀𝑠1 𝑀11      𝑀1𝑙 

2 𝑀𝑠2  𝑀22     𝑀2𝑙 

⋮ ⋮   ⋱    ⋮ 

𝑘 𝑀𝑠𝑖    𝑀𝑖𝑖   𝑀𝑖𝑙 

⋮ ⋮     ⋱  ⋮ 

𝑁 𝑀𝑠𝑁      𝑀𝑁𝑁 𝑀𝑁𝑙 

𝐿 𝑀𝑠𝑙 𝑀1𝑙 𝑀2𝑙 … 𝑀𝑖𝑙 … 𝑀𝑁𝑙  

(1.52) 

where all other matrix entries for the above are zero. The leading diagonal 

elements, 𝑀𝑖𝑖,  are zero for symmetrical filter transfer function and if the number of 

transmission zeros is less than the degree of the network, then 𝑀𝑠𝑙 is zero. The 𝑀𝑖𝑖 

elements represent frequency offsets from the centre frequency of individual 

resonators in the bandpass filter and define asymmetrical filter transfer functions 

[18]. 

1.1.3.1.1 Reconfiguration of the Lowpass Prototype Filter Transverse Coupling Matrix 

The CM for the transversal array may be reduced to any desirable configuration or 

topology by performing some sequence of similarity transformations or rotations 

[14] that preserves the eigenvalues and eigenvectors of the original transversal 

array CM [17, 19]. The effect is to annihilate some undesired couplings and 

subsequently create new couplings forming different network configuration or 

topology which have exactly the same filter response of the origin filter network. Let 

the initial transverse coupling matrix 𝑀 be written as 

𝑀 = 𝑀𝑇 + 𝑝𝐼 + 𝑗𝑀𝐾 (1.53) 

where 𝐼 is an (𝑁 + 2) by (𝑁 + 2) matrix with all its initial elements zero except 

diagonal elements, 𝐼(𝑖, 𝑖) = 1, 𝑖 = 2, 3, 4, …𝑁 + 1, 
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𝐼 =

[
 
 
 
 
 
 
 
 
0 0 0 0 … 0 0 0 0
0 1 0 0 … 0 0 0 0
0 0 1 0 … 0 0 0 0
0 0 0 ⋱ … 0 0 0 0
⋮ ⋮ ⋮ ⋮ 1 ⋮ ⋮ ⋮ ⋮
0 0 0 0 … ⋱ 0 0 0
0 0 0 0 … 0 1 0 0
0 0 0 0 … 0 0 1 0
0 0 0 0 … 0 0 0 0]

 
 
 
 
 
 
 
 

 (1.54) 

𝑀𝑇 is an (𝑁 + 2) by (𝑁 + 2) matrix with all its initial elements zero except the first 

row and column and last row and column containing the transverse CM element 

values as defined below, 

𝑀𝑇 =

[
 
 
 
 
 
 

0 𝑀𝑠,1 𝑀𝑠,2 … 𝑀𝑠,𝑁−1 𝑀𝑠,𝑁 𝑀𝑠,𝑙

𝑀𝑠,1 0 0 … 0 0 𝑀1,𝑙

𝑀𝑠,2 0 0 … 0 0 𝑀2,𝑙

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑀𝑠,𝑁−1 0 0 … 0 0 𝑀𝑁−1,𝑙
𝑀𝑠,𝑁 0 0 … 0 0 𝑀𝑁,𝑙
𝑀𝑠,𝑙 𝑀1,𝑙 𝑀2,𝑙 … 𝑀𝑁−1,𝑙 𝑀𝑁,𝑙 0 ]

 
 
 
 
 
 

 (1.55) 

𝑀𝐾 is an (𝑁 + 2) by (𝑁 + 2) matrix containing frequency offsets with all its initial 

elements zero except diagonal elements, 𝑀𝐾(𝑖, 𝑖) = 𝑀𝑖𝑖 , 𝑖 = 2, 3, 4, …𝑁 + 1, 

𝑀𝐾 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 … 0 0 0 0
0 𝑀11 0 0 … 0 0 0 0

0 0 𝑀22 0 … 0 0 0 0
0 0 0 ⋱ … 0 0 0 0
⋮ ⋮ ⋮ ⋮ 𝑀𝑖𝑖 ⋮ ⋮ ⋮ ⋮
0 0 0 0 … ⋱ 0 0 0
0 0 0 0 … 0 𝑀𝑁−1,𝑁−1 0 0

0 0 0 0 … 0 0 𝑀𝑁,𝑁 0

0 0 0 0 … 0 0 0 0]
 
 
 
 
 
 
 
 
 

 (1.56) 

The matrix 𝑀 may be reconfigured to a folded form in the conventional way 

described in [16] or an Arrow (Wheel) coupling matrix [20, 21] by a series of 

rotations. The rotations are performed such that the coupling matrix 𝑀′ at the end 

of a single rotation is 

𝑀′ = 𝑅𝑀𝑅𝑇 = 𝑅𝑀𝑇𝑅
𝑇 + 𝑝𝐼 + 𝑗𝑅𝑀𝐾𝑅

𝑇 (1.57) 

where 𝑅 is a rotation matrix with its transpose matrix 𝑅𝑇. Note that 𝐼 matrix is 

unaffected by the subsequent rotations where 𝑀𝑇 and 𝑀𝐾 matrices change 

accordingly as (1.57). Firstly, all couplings in 𝑀𝑇 are reduced to zero except source 

to first resonator coupling (𝑀𝑇(1,2)) and last resonator to load coupling (𝑀𝑇(𝑁 +

1, 𝑁 + 2)). Then some couplings in 𝑀𝐾 are reduced to zero to give a canonical 
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folded topology or any other desired topology. A comprehensive description of 

coupling matrix reconfiguration is given in [3]. The final coupling matrix (𝑌) in 

canonical folded or arrow form may be expressed as 

𝑌 = 𝑀𝑇 + 𝑝𝐼 + 𝑗𝑀𝐾  (1.58) 

1.1.3.2 Single (or Dual) Bandpass Filter Coupling Matrix 

The existing method for obtaining the CM for bandpass filters uses the N by N 

coupling matrix constructed using the Gram-Schmidt orthornomalisation process or 

similar techniques [22, 23]. In this section a method for generating the transverse 

network coupling matrix for directly synthesised single or dual bandpass filter is 

now presented. The transverse network for directly synthesised single (or dual) 

bandpass filter is the same as that of Fig. 1-3 except that in each branch the shunt 

capacitor and frequency invariant reactance are replaced by a parallel LC 

resonator as shown in Fig. 1-4. Consider a single filter 𝑟, regardless of whether it is 

a single- or multi-bandpass filter, with the degree 𝑁𝑟 and with highest degree of the 

filter characteristic polynomials being 𝑁 (𝑁 = 2𝑁𝑟). Note that the degree of the filter 

characteristic polynomials, 𝑁 is always even and here it is assumed that the 

number of transmission zeros (𝑁𝑍𝑟) is less than the degree of the filter 

characteristic polynomials (𝑁𝑍𝑟 < 𝑁) throughout this work. This implies that the 

filter has no direct source-load coupling as is often the practical case. Again here, 

the 𝑌 matrix is obtained using the methods developed in sections 1.1.1 and 1.1.2 

and may be expressed in terms of residues 𝑎𝑖, 𝑧𝑖 and poles 𝑝𝑖 as follows, 

[𝑌]𝑟 =

[
 
 
 
 
 
∑

𝑎𝑖𝑝

𝑝2 − 𝑝𝑖2

 𝑁𝑟

𝑖=1

∑
𝑧𝑖𝑝

𝑝2 − 𝑝𝑖2

 𝑁𝑟

𝑖=1

∑
𝑧𝑖𝑝

𝑝2 − 𝑝𝑖2

𝑁𝑟

𝑖=1

∑
𝑎𝑖𝑝

𝑝2 − 𝑝𝑖2

 𝑁𝑟

𝑖=1 ]
 
 
 
 
 

. (1.59) 

Note that the poles are purely imaginary and always occur in symmetrical pairs 

(𝑝 = ±𝑝𝑖) for directly realised bandpass filters. Thus two conjugate pairs are 

grouped together in the above formulation.  Now consider an 𝑖𝑡ℎ branch of a 

transverse network between the source and load as shown in Fig. 1-4. As it was 



 
 

19 

 

done for the lowpass prototype filter network CM, the capacitance of the parallel 

LC resonant circuit is scaled to unity.  

 
Fig. 1-4  An 𝑖𝑡ℎ branch of a transverse network 

The 𝐴𝐵𝐶𝐷 matrix may easily be computed as follows: 

[𝐴𝐵𝐶𝐷]𝑖 = [
  0 𝑗/𝑀𝑠𝑖

𝑗𝑀𝑠𝑖   0
] [
1 0
𝑌𝑖  1

] [
  0 𝑗/𝑀𝑖𝑙

𝑗𝑀𝑖𝑙   0
] 

[𝐴𝐵𝐶𝐷]𝑖 = [
 −𝑀𝑖𝑙/𝑀𝑠𝑖 −𝑌𝑖/(𝑀𝑠𝑖𝑀𝑖𝑙)

0  −𝑀𝑠𝑖/𝑀𝑖𝑙
] 

(1.60) 

where 

𝑌𝑖 = 𝑝 +
1

𝐿𝑖𝑝
=
𝑝2 + 1/𝐿𝑖

𝑝
 (1.61) 

(1.60) may be converted to the admittance 𝑌 matrix as  

[𝑌]𝑖 =
1

𝑌𝑖
[
𝑀𝑠𝑖

2 𝑀𝑠𝑖𝑀𝑖𝑙

𝑀𝑠𝑖𝑀𝑖𝑙  𝑀𝑖𝑙
2 ] (1.62) 

Hence the total admittance 𝑌 matrix for 𝑁𝑟 branches of Fig. 1-4 is 

[𝑌]𝑟 =∑[𝑌]𝑖

𝑁𝑟

𝑖=1

=

[
 
 
 
 
 
∑

𝑀𝑠𝑖
2𝑝

𝑝2 + 1/𝐿𝑖

𝑁𝑟

𝑖=1

∑
𝑀𝑠𝑖𝑀𝑖𝑙𝑝

𝑝2 + 1/𝐿𝑖

 𝑁𝑟

𝑖=1

∑
𝑀𝑠𝑖𝑀𝑖𝑙𝑝

𝑝2 + 1/𝐿𝑖

𝑁𝑟

𝑖=1

∑
𝑀𝑖𝑙

2𝑝

𝑝2 + 1/𝐿𝑖

 𝑁𝑟

𝑖=1 ]
 
 
 
 
 

 (1.63) 

Comparing (1.59) and (1.63) yields, 

𝑀𝑖𝑙
2 = 𝑎𝑖 

𝑀𝑠𝑖𝑀𝑖𝑙 = 𝑧𝑖 

1/𝐿𝑖 = −𝑝𝑖
2 

(1.64) 
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Thus the coupling elements of the transverse network consisting of 𝑁𝑟 branches 

between source and load of Fig. 1-4 may be determined as 

𝑀𝑖𝑙 = √𝑎𝑖 

𝑀𝑠𝑖 = 𝑧𝑖/√𝑎𝑖 

1/𝐿𝑖 = −𝑝𝑖
2 

(1.65) 

1.1.3.2.1 Re-configuration of the Bandpass Filter Transverse Coupling Matrix 

The transverse coupling matrix obtained using the previous description is not 

normally suitable for direct realisation of bandpass filters. Using similar technique 

as was done for lowpass prototype filter CM, a series of matrix rotations that 

preserves the frequency response may be used to convert the transverse CM to 

topological forms that are more suitable for implementation. Let the initial 

transverse coupling matrix 𝑀 be written as 

𝑀 = 𝑀𝑇 + 𝑝𝐼 +
1

𝑝
𝑀𝐿 (1.66) 

where 𝐼 is an (𝑁𝑟 + 2) by (𝑁𝑟 + 2) matrix with all its initial elements zero except 

diagonal elements, 𝐼(𝑖, 𝑖) = 1, 𝑖 = 2, 3, 4, …𝑁𝑟 + 1, 

𝐼 =

[
 
 
 
 
 
 
 
 
0 0 0 0 … 0 0 0 0
0 1 0 0 … 0 0 0 0
0 0 1 0 … 0 0 0 0
0 0 0 ⋱ … 0 0 0 0
⋮ ⋮ ⋮ ⋮ 1 ⋮ ⋮ ⋮ ⋮
0 0 0 0 … ⋱ 0 0 0
0 0 0 0 … 0 1 0 0
0 0 0 0 … 0 0 1 0
0 0 0 0 … 0 0 0 0]

 
 
 
 
 
 
 
 

 (1.67) 

 𝑀𝑇 is an (𝑁𝑟 + 2) by (𝑁𝑟 + 2) matrix with all its initial elements zero except the first 

row and column and last row and column elements obtained from the transverse 

coupling matrix elements defined as, 

𝑀𝑇 =

[
 
 
 
 
 
 

0 𝑀𝑠,1 𝑀𝑠,2 … 𝑀𝑠,𝑁𝑟−1 𝑀𝑠,𝑁𝑟 0

𝑀𝑠,1 0 0 … 0 0 𝑀1,𝑙

𝑀𝑠,2 0 0 … 0 0 𝑀2,𝑙

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑀𝑠,𝑁𝑟−1 0 0 … 0 0 𝑀𝑁𝑟−1,𝑙
𝑀𝑠,𝑁𝑟 0 0 … 0 0 𝑀𝑁𝑟,𝑙
0 𝑀1,𝑙 𝑀2,𝑙 … 𝑀𝑁𝑟−1,𝑙 𝑀𝑁𝑟,𝑙 0 ]

 
 
 
 
 
 

 (1.68) 
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𝑀𝐿 is an (𝑁𝑟 + 2) by (𝑁𝑟 + 2) all inductive matrix with all its initial elements zero 

except diagonal elements, 𝑀𝐿(𝑖, 𝑖) = 1/𝐿𝑖 , 𝑖 = 2, 3, 4, …𝑁𝑟 + 1, 

𝑀𝐿 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 … 0 0 0 0
0 1/𝐿1 0 0 … 0 0 0 0

0 0 1/𝐿2 0 … 0 0 0 0
0 0 0 ⋱ … 0 0 0 0
⋮ ⋮ ⋮ ⋮ 1/𝐿𝑖 ⋮ ⋮ ⋮ ⋮

0 0 0 0 … ⋱ 0 0 0
0 0 0 0 … 0 1/𝐿𝑁𝑟−1 0 0

0 0 0 0 … 0 0 1/𝐿𝑁𝑟 0

0 0 0 0 … 0 0 0 0]
 
 
 
 
 
 
 
 
 

 (1.69) 

Notice the subtle differences in the decomposition between the CM for lowpass 

and bandpass filters. Similarity transformations may be applied as described in 

section 1.1.3.1.1 to reduce the transverse coupling matrix to either folded or arrow 

canonical forms, 

𝑀 = 𝑀𝑇 + 𝑝𝐼 +
1

𝑝
𝑀𝐿 . (1.70) 

The arrow coupling matrix may further be converted to cascaded n-tuplets or other 

in-line practical topologies. Since the rotation angles for reconfigurations of arrow 

matrix to cascaded n-tuplets are known for lowpass prototype filter CM [21], a 

similar approach is used to calculate the analytic formulae for the rotation angles 

required to convert the arrow matrix to cascaded n-tuplets topology for direct 

synthesised CM for bandpass filters. Consider a trisection for bandpass filter 

centred at node 𝑘 in Fig. 1-5. 

 
Fig. 1-5  A bandpass trisection with all inductive couplings centred at node 𝑘  
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Furthermore, consider two paths with 𝐴𝐵𝐶𝐷 matrix as follows; 

[𝐴𝐵𝐶𝐷]1 = [

  0 𝐿𝑘−1,𝑘𝑝

−
1

𝐿𝑘−1,𝑘𝑝
  0

] [
1 0
𝑌𝑘  1

] [

  0 𝐿𝑘,𝑘+1𝑝

−
1

𝐿𝑘,𝑘+1𝑝
  0

] 

=

[
 
 
 
  −

𝐿𝑘−1,𝑘
𝐿𝑘,𝑘+1𝑝

𝐿𝑘−1,𝑘𝐿𝑘,𝑘+1𝑝
2𝑌𝑘

0  −
𝐿𝑘−1,𝑘
𝐿𝑘,𝑘+1𝑝 ]

 
 
 
 

 

(1.71) 

where 

𝑌𝑘 = 𝑝 +
1

𝐿𝑘,𝑘𝑝
= 𝑝 +

𝑀𝑘,𝑘

𝑝
=
1

𝑝
(𝑝2 +𝑀𝑘,𝑘) (1.72) 

And for the second path, 

[𝐴𝐵𝐶𝐷]2 = [

  0 𝐿𝑘−1,𝑘+1𝑝

−
1

𝐿𝑘−1,𝑘+1𝑝
  0

]. (1.73) 

Converting the 𝐴𝐵𝐶𝐷 matrices for the two paths to 𝑌 matrices and adding them 

yields, 

[𝑌]1 =

[
 
 
 
  

1

𝐿𝑘,𝑘+1
2𝑝2𝑌𝑘

−
1

𝐿𝑘−1,𝑘𝐿𝑘,𝑘+1𝑝2𝑌𝑘

−
1

𝐿𝑘−1,𝑘𝐿𝑘,𝑘+1𝑝2𝑌𝑘
 

1

𝐿𝑘−1,𝑘
2𝑝2𝑌𝑘 ]

 
 
 
 

 

=

[
 
 
 
  

𝑀𝑘,𝑘+1
2

𝑝2𝑌𝑘
−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝2𝑌𝑘

−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝2𝑌𝑘
 
𝑀𝑘−1,𝑘

2

𝑝2𝑌𝑘 ]
 
 
 
 

, 

(1.74) 

and 

[𝑌]2 =

[
 
 
 
  0 −

1

𝐿𝑘−1,𝑘+1𝑝

−
1

𝐿𝑘−1,𝑘+1𝑝
 0

]
 
 
 
 

=

[
 
 
  0

𝑀𝑘−1,𝑘+1

𝑝
𝑀𝑘−1,𝑘+1

𝑝
 0

]
 
 
 

. (1.75) 

Hence, 

[𝑌]𝑇 = [𝑌]1 + [𝑌]2 (1.76) 
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[𝑌]𝑇 =

[
 
 
 
  

𝑀𝑘,𝑘+1
2

𝑝2𝑌𝑘

𝑀𝑘−1,𝑘+1

𝑝
−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝2𝑌𝑘
𝑀𝑘−1,𝑘+1

𝑝
−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝2𝑌𝑘
 
𝑀𝑘−1,𝑘

2

𝑝2𝑌𝑘 ]
 
 
 
 

 

From (1.76) it is clear that the transmission zeros occur when  

𝑀𝑘−1,𝑘+1

𝑝
−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝2𝑌𝑘
|
𝑝=𝑗𝜔𝑧

= 0 
(1.77) 

Substituting for 𝑌𝑘 yields, 

𝑀𝑘−1,𝑘+1

𝑝
−
𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1

𝑝(𝑝2 +𝑀𝑘,𝑘)
|
𝑝=𝑗𝜔𝑧

= 0 
(1.78) 

By ignoring the transmission zero at infinite (𝑝 = ∞) (1.78) can be alternatively 

expressed as, 

(−𝜔𝑧
2 +𝑀𝑘,𝑘)𝑀𝑘−1,𝑘+1 −𝑀𝑘−1,𝑘𝑀𝑘,𝑘+1 = 0 

𝑑𝑒𝑡 |
𝑀𝑘−1,𝑘 𝑀𝑘−1,𝑘+1

−𝜔𝑧
2 +𝑀𝑘,𝑘 𝑀𝑘,𝑘+1

| = 0 
(1.79) 

(1.79) is true whenever a trisection centred at node 𝑘 (in the coupling matrix) with a 

pair of symmetrical transmission zeros at 𝑝 = ±𝑗𝜔𝑧 exists. Therefore, to create a 

trisection centred at node 𝑘, a rotation is performed pivoted at [𝑘, 𝑘 + 1] and the 

condition (1.79) is imposed forcing a trisection with a pair of transmission zeros at 

𝑝 = ±𝑗𝜔𝑧. The element values [3] after this rotation are 

𝑀𝑘,𝑘
′ = 𝑀𝑘,𝑘cos

2 𝜃 − 2𝑀𝑘,𝑘+1sin 𝜃 cos 𝜃 + 𝑀𝑘+1,𝑘+1sin
2 𝜃 

𝑀𝑘−1,𝑘+1
′ = 𝑀𝑘−1,𝑘sin 𝜃 + 𝑀𝑘−1,𝑘+1cos 𝜃 = 𝑀𝑘−1,𝑘 sin 𝜃 

𝑀𝑘−1,𝑘
′ = 𝑀𝑘−1,𝑘cos 𝜃 − 𝑀𝑘−1,𝑘+1 sin 𝜃 = 𝑀𝑘−1,𝑘 cos 𝜃 

𝑀𝑘,𝑘+1
′ = (cos2 𝜃 − sin2 𝜃)𝑀𝑘,𝑘+1 + sin 𝜃 cos 𝜃 (𝑀𝑘,𝑘 −𝑀𝑘+1,𝑘+1) 

(1.80) 

where 𝜃 is the rotation angle. Notice that 𝑀𝑘−1,𝑘+1 is assumed to be zero prior to 

the rotation. It is desired from (1.79) that 

(−𝜔𝑧
2 +𝑀𝑘,𝑘

′ )𝑀𝑘−1,𝑘+1
′ −𝑀𝑘−1,𝑘

′ 𝑀𝑘,𝑘+1
′ = 0 (1.81) 

Substituting (1.80) in (1.81) yields, 
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(−𝜔𝑧
2 +𝑀𝑘,𝑘 cos

2 𝜃 − 2𝑀𝑘,𝑘+1sin 𝜃 cos 𝜃 +𝑀𝑘+1,𝑘+1 sin
2 𝜃)𝑀𝑘−1,𝑘sin 𝜃 = 

𝑀𝑘−1,𝑘 cos 𝜃 [𝑀𝑘,𝑘+1(cos
2 𝜃 − sin2 𝜃) + (𝑀𝑘,𝑘 −𝑀𝑘+1,𝑘+1) sin 𝜃 cos 𝜃] 

(1.82) 

This simplifies to, 

−𝜔𝑧
2 +𝑀𝑘+1,𝑘+1 = 𝑀𝑘,𝑘+1cot 𝜃 (1.83) 

From which the required rotation angle for bandpass filter trisection may be 

obtained as 

𝜃 = cot−1 (
𝑀𝑘,𝑘+1

−𝜔𝑧2 +𝑀𝑘+1,𝑘+1
) (1.84) 

This is similar to the rotation angle used for lowpass prototype filter CM as [21] 

𝜃 = cot−1 (
𝑀𝑘,𝑘+1

𝜔𝑧 +𝑀𝑘+1,𝑘+1
) (1.85) 

The arrow coupling matrix may be reconfigured to cascaded trisections by first 

forming a first trisection centred at 𝑘 = 𝑁𝑟 − 1, with the first rotation pivoted at 

[𝑁𝑟 − 1, 𝑁𝑟], and then moving this trisection to the required position towards the 

source. This is repeated for all the trisections. Then some trisections may be 

combined together to form higher order n-tuplets. Again well detailed analysis is 

given in [3]. 

1.1.3.2.2 Introduction of capacitive couplings in trisections and quadruplets 

After reconfiguration the overall coupling matrix may still be expressed as in (1.70) 

with the definition given in section 1.1.3.2.1. This formulation assumes that the filter 

network has no capacitive coupling and as such all inter-resonator couplings are 

inductive. For some transfer functions, some of the element values in the inductive 

coupling matrix 𝑀𝐿 may be negative. For narrow bandpass filters this does not 

present a challenge as the negative inductor may be replaced by a capacitor. For 

wideband filters, this will results in erroneous response. To avoid this, capacitive 

couplings may be incorporated in the formulation (1.70) by re-writing as 

𝑀 = 𝑀𝑇 + 𝑝𝑀𝐶 +
1

𝑝
𝑀𝐿 (1.86) 
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Where 𝑀𝐶 is an (𝑁𝑟 + 2) by (𝑁𝑟 + 2) all capacitve coupling matrix with all its initial 

elements zero except diagonal elements, 𝑀𝐶(𝑖, 𝑖) = 𝐶𝑖 = 1, 𝑖 = 2, 3, 4, …𝑁𝑟 + 1, 

defined as, 

𝑀𝐶 =

[
 
 
 
 
 
 
 
 
0 0 0 0 … 0 0 0 0
0 1 0 0 … 0 0 0 0
0 0 1 0 … 0 0 0 0
0 0 0 ⋱ … 0 0 0 0
⋮ ⋮ ⋮ ⋮ 1 ⋮ ⋮ ⋮ ⋮
0 0 0 0 … ⋱ 0 0 0
0 0 0 0 … 0 1 0 0
0 0 0 0 … 0 0 1 0
0 0 0 0 … 0 0 0 0]

 
 
 
 
 
 
 
 

 (1.87) 

Now, consider again the trisection in Fig. 1-5 centred at 𝑘 and thus with index 𝑘. If 

any one of the three couplings is negative, a number of matrix operations are 

performed to introduce a capacitive coupling in its place. Let 𝑛 and 𝑚 be some 

indices for the row and column of the coupling matrix 𝑀. To eliminate the element 

𝑀𝐿(𝑘 − 1, 𝑘) (where 𝑛 = 𝑘 − 1,𝑚 = 𝑘) or 𝑀𝐿(𝑘, 𝑘 + 1)  (where 𝑛 = 𝑘,𝑚 = 𝑘 + 1), 

the following steps are carried out: 

Step 1: Compute 

𝛼 = −
𝑀𝐿(𝑛,𝑚)

𝑀𝐿(𝑚,𝑚)
 (1.88) 

Step 2: Compute new 𝑛𝑡ℎ row and column of 𝑀 as 

𝑛𝑡ℎ row(column) of 𝑀 = 𝑛𝑡ℎ row(column) of 𝑀 + 𝛼[𝑚𝑡ℎ row(column) of 𝑀] (1.89) 

This eliminates the 𝑀𝐿(𝑛,𝑚) coupling element and introduces 𝑀𝐶(𝑛,𝑚) coupling 

element. 

Step 3: Compute the parameter, 

𝛽 = −
1

√𝑀𝐶(𝑛, 𝑛)
 

(1.90) 

Step 4: Scale the 𝑛𝑡ℎ row and column of 𝑀 as  

𝑛𝑡ℎ  row (column) of 𝑀 = 𝛽[𝑛𝑡ℎ row (𝑐𝑜𝑙𝑢𝑚𝑛) of 𝑀] 
(1.91) 

This normalises the matrix 𝑀𝐶   with all non-zero diagonal elements equal to unity 

and completes the procedure. 
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(a) 

 

(b) 

Fig. 1-6  Alternative forms of a quadruplet with all inductive couplings 

If the element 𝑀𝐿(𝑘 − 1, 𝑘 + 1) is negative, it cannot be changed to capacitive 

coupling using this method and thus rescaling by a negative (-1) is necessary to 

make either 𝑀𝐿(𝑘 − 1, 𝑘) or 𝑀𝐿(𝑘, 𝑘 + 1) negative so that the above routine can be 

carried out to introduce a capacitive coupling. The above routine (1.88)-(1.91) may 

be applied to a quadruplet except that 𝑛 and 𝑚 take on different values as 

illustrated in Table 1-1. Here the index 𝑘 is the first node in the quadruplet as 

depicted in Fig. 1-6. To enable elimination of two or more negative couplings 

elements in 𝑀𝐿 in a quadruplet requires solving simultaneous equations for the 

scaling factors. 

Table 1-1 Values of 𝑛 and 𝑚 for a Quadruplet  

Element to Eliminate 

(Fig. 1-6 (a)) 
𝑛 𝑚 

Element to Eliminate 

(Fig. 1-6 (b)) 
𝑛 𝑚 

𝑀𝐿(𝑘 + 1, 𝑘 + 2) 𝑘 + 1 𝑘 + 2 𝑀𝐿(𝑘, 𝑘 + 1) 𝑘 𝑘 + 1 

𝑀𝐿(𝑘 + 2, 𝑘 + 3) 𝑘 + 3 𝑘 + 2 𝑀𝐿(𝑘 + 1, 𝑘 + 2) 𝑘 + 2 𝑘 + 1 

𝑀𝐿(𝑘 + 1, 𝑘 + 3) 𝑘 + 3 𝑘 + 1 𝑀𝐿(𝑘, 𝑘 + 2) 𝑘 𝑘 + 2 
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1.1.3.3 Coupling Matrix Analysis 

Since most of the lowpass and bandpass filter sub-coupling matrices have 

elements in the first and last rows and columns equal to zero, then the 𝑁𝑟 + 2 ×

𝑁𝑟 + 2 final coupling matrix for lowpass filter and bandpass filter synthesis may be 

expressed in terms of 𝑁𝑟 ×𝑁𝑟 coupling matrix which is represented as follows: 

𝑌𝐿𝑃 = 𝑀𝑇𝑠 + 𝑝𝐼 + 𝑗𝑀𝐾𝑠 (1.92) 

for lowpass prototype filters and, 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝑝𝑀𝐶𝑠 +
1

𝑝
𝑀𝐿𝑠 (1.93) 

for single(multi) bandpass filters where 𝐼 is an 𝑁𝑟 by 𝑁𝑟 identity matrix, 𝑀𝐾𝑠 matrix 

is the remnant 𝑁𝑟 × 𝑁𝑟 coupling matrix with all possible coupling elements, 𝑀𝐿𝑠 

matrix is the remnant 𝑁𝑟 × 𝑁𝑟 inductive coupling matrix and 𝑀𝐶𝑠 is the remnant 

normalised 𝑁𝑟 × 𝑁𝑟 capacitive coupling matrix with unit diagonal nodal elements. 

𝑀𝑇𝑠 is a 𝑁𝑟 × 𝑁𝑟 matrix with all its elements zero except 𝑀𝑇𝑠(1,1) and 𝑀𝑇𝑠(𝑁𝑟 , 𝑁𝑟) 

which are given by 

𝑀𝑇𝑠(1,1) = 𝐺1 

𝑀𝑇𝑠(𝑁𝑟 , 𝑁𝑟) = 𝐺𝑁𝑟  
(1.94) 

where, 

𝐺1 = (𝑀𝑇(1,2))
2
 

𝐺𝑁𝑟 = (𝑀𝑇(𝑁𝑟 + 1,𝑁𝑟 + 2))
2
 

(1.95) 

Finally the following analysis may be made to obtain the filter magnitude response 

𝑆11 = 1 − 2 ∗ 𝐺1[𝑌𝐿𝑃
−1]

11
 

𝑆21 = 2√𝐺1𝐺𝑁𝑟[𝑌𝐿𝑃
−1]

𝑁𝑟,1
 

(1.96) 

for lowpass filter and 

𝑆11 = 1 − 2 ∗ 𝐺1[𝑌𝐵𝑃
−1]

11
 

𝑆21 = 2√𝐺1𝐺𝑁𝑟[𝑌𝐵𝑃
−1]

𝑁𝑟,1
 

(1.97) 
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for single(multi) bandpass filters [5]. Note that the dimension of the coupling matrix 

𝑁𝑟 is related to the degree of the filter’s characteristic function 𝑁(highest degree of 

the characteristic polynomials) by, 

𝑁𝑟 = 𝑁 Lowpass Prototype Filter 

𝑁𝑟 = 𝑁/2 Single(Multi) Bandpass Filter 
(1.98) 

The short hand representation of filter network elements shown in Fig. 1-7 to Fig. 

1-9 will be adopted to show network topology derived from the CM. Each node of 

the form in Fig. 1-7 will be represented by a circle with an index inside of Fig. 1-8. 

The admittance inverters will be shown using the short hand representation shown 

in Fig. 1-9. The negative elements are usually absorbed at the surrounding nodes. 

 
(a) Lumped Lowpass Resonator 

 

 
(b) Lumped Bandpass Resonator 

 

 
(c) Distributed Bandpass Resonator 

 

 
(d) Mixed Lumped-Distributed Resonator 

 

Fig. 1-7  Resonators 
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Resonator Node Source Port (Node) Load Port (Node) 

 

Fig. 1-8  Nodal representation of filter networks 

 

 
⟹ 

 
(a) Ideal Admittance Inverters (𝑀𝐾(𝑟, 𝑟 + 1) = 𝐾𝑟,𝑟+1) 

 

 
⟹ 

 
(b) Lumped Inductive Coupling Element (𝑀𝐿(𝑟, 𝑟 + 1) = 1/𝐿𝑟,𝑟+1) 

 

 
⟹ 

 
(c) Lumped Capacitive Coupling Element (𝑀𝐶(𝑟, 𝑟 + 1) = 𝐶𝑟,𝑟+1) 

 

 

⟹ 

 
(d) Distributed Inductive Coupling Element (𝑀𝐿(𝑟, 𝑟 + 1) = 𝑌𝑟,𝑟+1)) 
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⟹ 

 
(e) Distributed Capacitive Coupling Element (𝑀𝐶(𝑟, 𝑟 + 1) = 𝑌𝑟,𝑟+1) 

 

Fig. 1-9  Short hand representation of coupling elements between node 𝑟 and 𝑟 + 1 

 

1.1.4 Cascaded Synthesis Method 

Most microwave filter networks are made up of cascaded elements in shunt and or 

series combinations. Sometimes, however, the cascaded network forms are 

impractical and some circuit transformations are then used to convert the cascaded 

network to a more practical network in which non-adjacent elements may interact 

in the so-called cross coupled networks [24]. Although somewhat becoming 

historical method, it is nonetheless a very suitable form of synthesis method at 

least for some microwave filter networks. Distributed low-pass filter synthesised 

using cascaded circuit synthesis is one such good example.  

In this section, it is shown starting from the overall filter ABCD matrix, how the 

method may be used to extract the filter network elements through some matrix 

reduction or extraction procedures. From either source port or load port, the 

network elements are extracted one after another each time reducing the order of 

the ABCD matrix polynomials [3]. A similar technique may be applied using the 

driving point impedance [4]. In this work, however, the ABCD matrix method will be 

used which is more amenable to computer manipulations.  

Sometimes this synthesis method does fail especially with high order networks or 

where the reflection zeros are clustered together as is the case in very narrow 

bandpass filters. In other words there are errors that are carried forward at each 

step of the process such that the polynomials do not retain their standard forms 

and extraction of correct and real valued elements becomes impossible. In such 

cases, appropriate scaling such as Norton transformation [25] at some stages 

during the synthesis process usually solves the problem. In [3], it is suggested to 
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extract elements alternatively from source and load. For most useful filter networks, 

this circuit approach works well as it will be seen in Chapter 3 and Chapter 4.  

Furthermore, as will be evident later, this method presents advantages in filter 

networks where the use of the coupling matrix synthesis method (discussed in 

section 1.1.3) becomes an insurmountable task. Extraction procedures for some 

common elements pertinent to the research were derived and summarised in Table 

1-2. The circuit synthesis approach is done by extraction of the individual elements 

that make up the filter network by reduction of the original ABCD matrix. The 

individual elements themselves are represented in matrix form and matrix inversion 

allows the elements to be extracted. The remainder of the ABCD matrix contains 

reduced order of some of the ABCD polynomials. The evaluation of the element 

value is done under certain conditions. Thus in the synthesis of the filter topologies 

such as trisection [26] or extracted pole [27, 28], the filter elements have to be 

extracted in a certain order  that preserves the network behaviour and that the 

overall ABCD matrix reduces after each stage until all the polynomials are reduced 

to either zero or constants.  

For example, suppose the origin ABCD matrix is denoted by T, and after extraction 

of a capacitor (c) with ABCD matrix, TC, the overall ABCD matrix reduces to Tr, 

then 

𝑇𝐶𝑇𝑟 = 𝑇 

1

𝑃𝑟
[
1 0
𝑝𝑐 1

] [
𝐴𝑟 𝐵𝑟
𝐶𝑟 𝐷𝑟

] =
1

𝑃
[
𝐴 𝐵
𝐶 𝐷

] 
(1.99) 

Multiplying by the inverse of 𝑇𝐶 on both sides yields, 

𝑇𝑟 = [𝑇𝐶]
−1𝑇 

𝑇𝑟 =
1

𝑃𝑟
[
𝐴𝑟 𝐵𝑟
𝐶𝑟 𝐷𝑟

] =
1

𝑃
[
1 0
−𝑐𝑝 1

] [
𝐴 𝐵
𝐶 𝐷

] =
1

𝑃
[

𝐴 𝐵
𝐶 − 𝑐𝑝𝐴 𝐷 − 𝑐𝑝𝐵

] 
(1.100) 

𝑐 may then be evaluated so that 𝐷𝑟𝑒𝑚(𝑝 = 𝑗∞) = 0 

𝑐 =  
𝐷(𝑝)

𝑝𝐵(𝑝)
|
𝑝=𝑗∞

 
(1.101) 
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This is illustrated in Table 1-2. The only exception is for parallel connected 

networks. For example to extract a parallel inverter 𝑀𝑖𝑗 between two nodes (node 𝑖 

and 𝑗) the short-circuit admittance matrix parameters are used. For an inverter, the 

[𝑌] matrix is 

[
0 𝑗𝑀𝑖𝑗

𝑗𝑀𝑖𝑗 0
]. (1.102) 

And for the remainder of the network after extraction of the parallel inverter, may 

be expressed as 

[𝐴𝐵𝐶𝐷]𝑟 =
1

𝑃𝑟(𝑝)
[
𝐴𝑟(𝑝) 𝐵𝑟(𝑝)

𝐶𝑟(𝑝) 𝐷𝑟(𝑝)
], (1.103) 

and its [𝑌] matrix is 

[𝑌]𝑟 =
1

𝐵𝑟(𝑝)
[
−𝐷𝑟(𝑝) −𝑃𝑟(𝑝)

−𝑃𝑟(𝑝) −𝐴𝑟(𝑝)
]. (1.104) 

The overall admittance for the original network is simply the addition of the two [𝑌] 

matrices as, 

[𝑌] =
1

𝐵𝑟(𝑝)
[

−𝐷𝑟(𝑝) −𝑃𝑟(𝑝) + 𝑗𝑀𝑖𝑗𝐵𝑟(𝑝)

−𝑃𝑟(𝑝) + 𝑗𝑀𝑖𝑗𝐵𝑟(𝑝) −𝐴𝑟(𝑝)
]. (1.105) 

Converting this to the ABCD matrix yields, 

[𝐴𝐵𝐶𝐷] =
1

𝑃(𝑝)
[
𝐴(𝑝) 𝐵(𝑝)

𝐶(𝑝) 𝐷(𝑝)
] 

=
1

𝑃𝑟(𝑝) − 𝑗𝑀𝑖𝑗𝐵𝑟(𝑝)
[

𝐴𝑟(𝑝) 𝐵𝑟(𝑝)

𝐶𝑟(𝑝) + 𝑗2𝑀𝑖𝑗𝑃𝑟(𝑝) − 𝑀𝑖𝑗
2𝐵𝑟(𝑝) 𝐷𝑟(𝑝)

] 

(1.106) 

Hence the polynomials 𝐴(𝑝), 𝐵(𝑝) and 𝐷(𝑝) remain unchanged after the extraction 

while 𝐶(𝑝) and 𝑃(𝑝) are reduced by 1 degree to 

𝑃𝑟(𝑝) = 𝑃(𝑝) + 𝑗𝑀𝑖𝑗𝐵𝑟(𝑝) = 𝑃(𝑝) + 𝑗𝑀𝑖𝑗𝐵(𝑝) 

𝐶𝑟(𝑝) = 𝐶(𝑝) − 𝑗2𝑀𝑖𝑗𝑃𝑟(𝑝) + 𝑀𝑖𝑗
2𝐵𝑟(𝑝) = 𝐶(𝑝) − 𝑗2𝑀𝑖𝑗𝑃(𝑝) − 𝑀𝑖𝑗

2𝐵(𝑝) 
(1.107) 

Where 𝑀𝑖𝑗 is computed from equation (1.107) (a) as 

𝑀𝑖𝑗 = −
𝑃(𝑝)

𝑗𝐵(𝑝)
|
𝑝=𝑗∞

 
(1.108) 
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Table 1-2 Cascaded Synthesis Using ABCD Matrices Extraction for Commonly Used Elements 

Network Element Element [𝐴𝐵𝐶𝐷 ] matrix Reduced [𝐴𝐵𝐶𝐷] matrix 

Shunt Capacitor (𝑐) 

𝑐 =  
𝐷(𝑝)

𝑝𝐵(𝑝)
|
𝑝=𝑗∞

 

 

[
1 0
𝑐𝑝 1

] 

 

1

𝑃(𝑝)
[

𝐴(𝑝) 𝐵(𝑝)
𝐶(𝑝) − 𝑐𝑝𝐴(𝑝) 𝐷(𝑝) − 𝑐𝑝𝐵(𝑝)

] 

Condition for Extraction: Degree of 𝐷(𝑝) = Degree of 𝐵(𝑝) + 1 

Shunt Inductor (𝑙) 

𝑙 =  
(
𝐵(𝑝)
𝑝 )

𝐷(𝑝)
|

𝑝=0

 

 

[

1 0
1

𝑙𝑝
1] 

 

1

𝑃(𝑝)
[

𝐴(𝑝) 𝐵(𝑝)

𝐶(𝑝) −
(
𝐴(𝑝)
𝑝 )

𝑙
𝐷(𝑝) −

(
𝐵(𝑝)
𝑝 )

𝑙

] 

Condition for Extraction: 𝐴(𝑝) and 𝐵(𝑝) must be divisible by 𝑝  

Series Capacitor (𝑐) 

𝑐 =  
(
𝐷(𝑝)
𝑝 )

𝐵(𝑝)
|

𝑝=0

 

 

[
1

1

𝑐𝑝
0 1

] 

 

1

𝑃(𝑝)
[𝐴(𝑝) −

(
𝐶(𝑝)
𝑝 )

𝑐
𝐵(𝑝) −

(
𝐷(𝑝)
𝑝 )

𝑐
𝐶(𝑝) 𝐷(𝑝)

] 

Condition for Extraction: 𝐶(𝑝) and 𝐷(𝑝) must be divisible by 𝑝 
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Series Inductor (𝑙) 

𝑙 =  
𝐵(𝑝)

𝑝𝐷(𝑝)
|
𝑝=𝑗∞

 

 

[
1 𝑙𝑝
0 1

] 

 

1

𝑃(𝑝)
[
𝐴(𝑝) − 𝑙𝑝𝐶(𝑝) 𝐵(𝑝) − 𝑙𝑝𝐷(𝑝)

𝐶(𝑝) 𝐷(𝑝)
] 

Condition for Extraction: Degree of 𝐵(𝑝) = Degree of 𝐷(𝑝) + 1 

Unit Phase Shifter (𝜃) 

𝜃 =  𝑎𝑡𝑎𝑛 (
𝐷(𝑝)

𝐵(𝑝)
)|
𝑝=𝑗𝜔𝑧

 

 

[
𝑐𝑜𝑠 (𝜃) 𝑗𝑠𝑖𝑛 (𝜃)

𝑗𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃)
] 

 

1

𝑃(𝑝)
[
𝐴(𝑝) 𝑐𝑜𝑠(𝜃) − 𝑗𝐶(𝑝)𝑠𝑖𝑛 (𝜃) 𝐵(𝑝) 𝑐𝑜𝑠(𝜃) − 𝑗𝐷(𝑝)𝑠𝑖𝑛 (𝜃)

𝐶(𝑝)𝑐𝑜𝑠 (𝜃) − 𝑗𝐴(𝑝)𝑗𝑠𝑖𝑛 (𝜃) 𝐷(𝑝)𝑐𝑜𝑠 (𝜃) − 𝑗𝐵(𝑝)𝑠𝑖𝑛 (𝜃)
] 

Series unit inverter (𝐽) 

𝐽 = 1 

 

[
0 𝑗
𝑗 0

] 

 

1

𝑃(𝑝)
[
−𝑗𝐶(𝑝) −𝑗𝐷(𝑝)
−𝑗𝐴(𝑝) −𝑗𝐵(𝑝)

] 

Shunt FIR (𝑏) 

𝑏 =
𝐷(𝑝)

𝑗𝐵(𝑝)
|
𝑝=𝑗∞

 

 

[
1 0
𝑗𝑏 1

] 

 

1

𝑃(𝑝)
[

𝐴(𝑝) 𝐵(𝑝)
𝐶(𝑝) − 𝑗𝑏𝐴(𝑝) 𝐷(𝑝) − 𝑗𝑏𝐵(𝑝)

] 

Condition for Extraction: Degree of 𝐷(𝑝)= Degree of 𝐵(𝑝) 

Series FIR (𝑥) 

𝑥 =
𝐵(𝑝)

𝑗𝐷(𝑝)
|
𝑝=𝑗𝜔𝑧

 

 

[
1 𝑗𝑥
0 1

] 

 

1

𝑃(𝑝)
[
𝐴(𝑝) − 𝑗𝑥𝐶(𝑝) 𝐵(𝑝) − 𝑗𝑥𝐷(𝑝)

𝐶(𝑝) 𝐷(𝑝)
] 

Condition for Extraction: Degree of 𝐷(𝑝)= Degree of 𝐵(𝑝) 
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Shunt Series of Inductor and 

FIR (
𝑏𝑜

𝑝−𝑗𝜔𝑧
) 

𝑏𝑜 =
𝐷(𝑝)

[𝐵(𝑝)/(𝑝 − 𝑗𝜔𝑧)]
|
𝑝=𝑗𝜔𝑧

 

 

[

1 0
𝑏𝑜

𝑝 − 𝑗𝜔𝑧
1] 

 

1

𝑃(𝑝)
[

𝐴(𝑝) 𝐵(𝑝)

𝐶(𝑝) −
𝑏𝑜

𝑝 − 𝑗𝜔𝑧
𝐴(𝑝) 𝐷(𝑝) −

𝑏𝑜
𝑝 − 𝑗𝜔𝑧

𝐵(𝑝)
] 

Condition for Extraction: Polynomials 𝐴(𝑝) and 𝐵(𝑝) have to be divisible by 𝑝 − 𝑗𝜔z or that one of the roots of 𝐴(𝑝) and 𝐵(𝑝) 

must be 𝑝 = 𝑗𝜔z where 𝜔z is the transmission zero 

Parallel connected inverter 

(𝑀𝑖𝑗) 

𝑀𝑖𝑗 =
𝑗𝑃(𝑝)

𝐵(𝑝)
|
𝑝=𝑗∞

 

 

[
0 𝑗/𝑀𝑖𝑗

𝑗𝑀𝑖𝑗 0
] 

 

1

𝑃(𝑝) + 𝑗𝑀𝑖𝑗𝐵(𝑝)
[

𝐴(𝑝) 𝐵(𝑝)

𝐶(𝑝) + 𝑗2𝑀𝑖𝑗𝑃(𝑝) − 𝑀𝑖𝑗
2𝐵(𝑝) 𝐷(𝑝)

] 

Condition for Extraction: Degree of 𝑃(𝑝)= Degree of 𝐵(𝑝) 

Shunt Open Circuited Stub 

(𝑍𝑜𝑐) 

𝑍𝑜𝑐 = 
𝜌𝐵(𝜌)

𝐷(𝜌)
|
𝜌=𝑗𝑡𝑧

 

 

[
1 0
𝜌

𝑍𝑜𝑐
1] 

 

1

𝑃(𝜌)
[

𝐴(𝜌) 𝐵(𝜌)

𝐶(𝜌) −
𝜌𝐴(𝜌)

𝑍𝑜𝑐
𝐷(𝜌) −

𝜌𝐵(𝜌)

𝑍𝑜𝑐

] 

Condition for Extraction: Degree of 𝐷(𝜌) = Degree of 𝐵(𝜌) + 1 
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Series Short Circuited Stub 

(𝑍𝑠𝑐) 

𝑍𝑠𝑐 =  
𝐵(𝜌)

𝜌𝐷(𝜌)
|
𝜌=𝑗𝑡𝑧

 

 

[
1 𝑍𝑠𝑐𝜌
0 1

] 

 

1

𝑃(𝑝)
[
𝐴(𝑝) − 𝑍𝑠𝑐𝜌𝐶(𝑝) 𝐵(𝑝) − 𝑍𝑠𝑐𝜌𝐷(𝑝)

𝐶(𝑝) 𝐷(𝑝)
] 

Condition for Extraction: Degree of 𝐵(𝜌) = Degree of 𝐷(𝜌) + 1 

Shunt Series of Short 

Circuited Stub (𝑍𝑠𝑐) and 

Open Circuited Stub (𝑍𝑜𝑐) 

𝑍𝑠𝑐 =  
𝜌 (

𝐵(𝜌)
𝜌2 − 𝜌𝑧

2)

𝐷(𝜌)
|

𝜌=𝜌𝑧

 

𝑍𝑜𝑐 = − 
𝜌3 (

𝐵(𝜌)
𝜌2 − 𝜌𝑧

2)

𝐷(𝜌)
|

𝜌=𝜌𝑧

 

 

 

 

[

1 0
𝜌

𝑍𝑠𝑐 (𝜌2 +
𝑍𝑜𝑐
𝑍𝑠𝑐

)
1] 

where 𝜌𝑧
2 = −𝑡𝑧

2 = −
𝑍𝑜𝑐

𝑍𝑠𝑐
 

 

 

1

(
𝑃(𝜌)

𝜌2 − 𝜌𝑧2
)

[
 
 
 
 
 
 
 

𝐴(𝜌)

𝜌2 − 𝜌𝑧2
𝐵(𝜌)

𝜌2 − 𝜌𝑧2

(𝐶(𝜌) −
𝜌 (

𝐴(𝜌)
𝜌2 − 𝜌𝑧2

)

𝑍𝑠𝑐
)

𝜌2 − 𝜌𝑧2

(𝐷(𝜌) −
𝜌 (

𝐵(𝜌)
𝜌2 − 𝜌𝑧2

)

𝑍𝑠𝑐
)

𝜌2 − 𝜌𝑧2 ]
 
 
 
 
 
 
 

 

Condition for Extraction: 𝑃(𝜌), 𝐴(𝑝) and 𝐵(𝑝) must be divisible by 𝜌2 − 𝜌𝑧
2 
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Unit Element (𝑍𝑡𝑥) 

𝑍𝑡𝑥 =  
𝐵(𝜌)

𝐷(𝜌)
|
𝜌=𝑗𝑡=1

 

 

1

√1 − 𝜌2
[

1 𝑍𝑡𝑥𝜌
𝜌

𝑍𝑡𝑥
1 ] 

1

(
𝑃(𝜌)
1 − 𝜌2

)

[
 
 
 
 
𝐴(𝜌) − 𝑍𝑡𝑥𝜌𝐶(𝜌) 

1 − 𝜌2
𝐵(𝜌) − 𝑍𝑡𝑥𝜌𝐷(𝜌)

1 − 𝜌2

𝐶(𝜌) − (
𝜌𝐴(𝜌)
𝑍𝑡𝑥

)

1 − 𝜌2

𝐷(𝜌) − (
𝜌𝐵(𝜌)
𝑍𝑡𝑥

)

1 − 𝜌2 ]
 
 
 
 

 

Condition for Extraction: Degree of 𝐵(𝜌) = Degree of 𝐷(𝜌) 

Double Unit Element (𝑍𝑡𝑥) 

𝑍𝑡𝑥 =  
𝐵(𝜌)

𝐷(𝜌)
|
𝜌=𝑗𝑡=1

 

 

1

√1 − 𝜌2
[

1 + 𝜌2 2𝑍𝑡𝑥𝜌
2𝜌

𝑍𝑡𝑥
1 + 𝜌2

] 

1

(
𝑃(𝜌)

(1 − 𝜌2)2
)

[
 
 
 
 
 
(1 + 𝜌2)𝐴(𝜌) − 2𝑍𝑡𝑥𝜌𝐶(𝜌) 

(1 − 𝜌2)2
(1 + 𝜌2)𝐵(𝜌) − 2𝑍𝑡𝑥𝜌𝐷(𝜌)

(1 − 𝜌2)2

(1 + 𝜌2)𝐶(𝜌) − (
2𝜌𝐴(𝜌)
𝑍𝑡𝑥

)

(1 − 𝜌2)2

(1 + 𝜌2)𝐷(𝜌) − (
2𝜌𝐵(𝜌)
𝑍𝑡𝑥

)

(1 − 𝜌2)2 ]
 
 
 
 
 

 

Condition for Extraction: Degree of 𝐵(𝜌) = Degree of 𝐷(𝜌) 
 

Note that the above formulae apply both in lumped and distributed element filter networks with an appropriate change of 

variable. For example, the variable 𝑝 = 𝑗𝜔 in lumped element filters may be substituted by the variable 𝜌 = 𝑗𝑡 = 𝑗𝑡𝑎𝑛(𝜃) for 

distributed filter networks. Consequently, the transmission zeros at the origin in lumped 𝑝-plane are mapped to the origin of the 

distributed 𝜌-plane and any of the transmission zeros at infinity (𝑝 = ±∞) in lumped 𝑝-plane are mapped to 𝜃 = ±90𝑜 of the 

distributed 𝜌-plane. The frequency invariant reactance (FIR) is a frequency independent ideal reactive component used solely 

for mathematical convenience.  



 

38 

 

1.2 Design of Microwave Filters 

1.2.1 Lumped Lowpass Prototype Filters  

Narrow and moderate bandwidth bandpass filters approximate synthesis is 

achieved by first synthesising a suitable lowpass prototype filter and then 

transforming  the network to a bandpass domain by means of a simple frequency 

transformation [5]. Lowpass prototype filters are based on ideal immittance inverter 

models. The ideal immittance inverters are only fictitious elements. They are 

approximated in practice by real frequency dependent elements. Because of this, 

the designs using these prototypes are generally applicable for narrow band filters 

where the coupling element values are approximately constant over a narrow band 

of frequencies. However, it is this very fact that has allowed the development of 

simplified design techniques for many microwave filters [10]. Therefore many 

practical filter response such as bandpass and bandstop may be designed by 

means of the reactance/susceptance slope parameter approximation method [29].  

Lumped lowpass prototype filters may be synthesised using either CM or cascaded 

synthesis method in lumped element domain. Frequency and element 

transformations are performed to convert to other filter network forms such as 

bandpass filters or distributed lowpass filters which are suitable for direct physical 

realisation. 

In contrast, an alternative direct synthesis method as presented in this thesis both 

eliminates the need for such transformations and provides a direct and intuitive 

synthesis approach, based on reflection and transmission zero prescription on the 

basis function of Chebyshev characteristic functions. As a consequence, the 

immittance inverters associated with direct synthesised filter network are frequency 

dependant. This is the reason why this particular synthesis approach is valid for 

arbitrary filter bandwidths. It also provides better approximation to practical filter 

components which are frequency dependent. 

No significant advantage is attained from using the lumped lowpass prototype 

filters apart from the benefit of using well established conventional techniques. 
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However, it will be clear in this thesis work that some directly synthesised filter 

transfer functions have no lumped lowpass filter equivalent. Thus transfer functions 

and resulting topologies from lumped lowpass prototype filters may not be realised 

by using the direct synthesis approach.  

1.2.2 Frequency Transformation and Impedance Scaling  

The process of synthesising filters from lumped lowpass prototype filters employs 

frequency transformations. Frequency mapping transforms a given lowpass 

prototype filter network to a form that enables practical realisation of microwave 

filters. Because the transformation is frequency dependent, it only changes 

reactive elements. Both the source (and load) resistive terminations and FIR 

elements for which ideal inverters are realised remain invariant under the 

transformation. The rudiments of various transformations have been covered in 

most important text books on filters [3-6].  

The lowpass prototype filters have normalised element values so that both the 

cutoff frequency and the source resistance or conductance are normalised to unity 

(i.e. 𝑅𝑠 = 1 Ω and 𝜔𝑐 = 1 rad/s). After the network synthesis, the element values 

are re-normalised to the system impedance (normally 50 Ω) and the required cutoff 

frequencies. More often than not, the lowpass prototype filters obtained via 

coupling matrix or cascaded synthesis has impedance level unsuitable for direct 

physical realisation. Thus it may be necessary to scale the network to adjust 

element values to be within realisable values. 

1.2.3 Distributed Elements Filters 

Practical microwave filters are realised using distributed components. These are 

often made up components that are modelled as transmission line type 

components. At lower microwave frequency band (300 MHz to about 30 GHz with 

wavelength of 1 m to 10 mm), microwave filters are often realised using microstrip, 

striplines and coaxial cavity while at most of the upper (30 GHz to about 300 GHz 

with wavelength of 10 mm to 1 mm) microwave frequency band utilizes dielectric 

and waveguide resonators because of diminished waveguide dimensions at these 

frequencies. However, other factors such as unloaded quality factors, filter size and 
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power handling are important consideration in the choice of the technology of 

implementation [3]. Most of the filters discussed in this thesis were implemented in 

stripline or coaxial cavity realisation because of good compromise between size 

(loss) and power handling that they provide as well as the flexibility to realise 

different topologies. 

Because microwave filters are primarily realised using transmission line type 

components, the direct synthesis in distributed domain has also been developed in 

this work. Even though, sometimes the use of lumped element synthesis simplifies 

the synthesis process, it has been shown throughout this thesis how lumped 

converts to the distributed network for practical realisations. 

1.2.4 Numerical EM Techniques 

It must be mentioned that to achieve equiripple Chebyshev response in the 

passband does require fractional adjustments in the physical dimensions. It is 

common to have up to a thousandth of a millimetre  accuracy (0.0001 mm)  on the 

tuning screws [30]! The time required to perform a full wave EM optimisation even 

on low degree cavity filters for example, is prohibitive. The solution is to use 

accurate EM based design techniques together with fast circuit simulation to 

reduce design time. Numerous methods are used today in the design and tuning of 

microwave filters and notably the paper by Ness [31] presented a useful method of 

tuning filter using reflected group delay for narrow bandpass filters. 

Various pertinent techniques for physical dimensioning for microwave resonator 

filters are considered in this section. In conjunction with the coupling matrix 

synthesis method, it is shown first on how the initial course dimensions are 

obtained for the filter and how the needed fine tuning is achieved by means of 

space mapping techniques. The Cauchy method and the concept of EM port tuning 

are also reviewed as an alternative means of obtaining the fine-tuned dimensions 

required for equiripple tuned Chebyshev microwave filters.  

1.2.4.1 Physical Dimensions  

There are many physical realisations for microwave filters such as microstrip, 

stripe-lines, coaxial, waveguide and dielectric filters. The underlying synthesis, 
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however, is the same for all these filter realisations. There are many different ways 

of determining physical dimension for microwave filters. The mathematical models 

obtained through synthesis are only approximations of the full wave EM behaviour 

of distributed microwave circuits. Accurate dimensions are obtained through 

numerical EM techniques which take into account second order effects such as 

undesired couplings and high order waveguide modes. This requires reasonable 

appreciation of material properties and EM behaviour of microwave devices. 

For simple physical structures like parallel coupled transmission lines, there exists 

empirical data that give very good approximation. For example in [4, 32] it is 

explained on how physical dimension for parallel coupled networks may be 

obtained under the assumption that the dominant propagation mode is the 

transverse electromagnetic (TEM) based on the data from Getsinger and Crystal 

[33, 34]. Rhodes [35] devised a technique that could be used for designing equal 

diameter rod bandpass filters under the TEM assumption. However, even in these 

evanescence mode filter designs, there is a need to account for parasitic couplings 

as well as high order non TEM waveguide modes that may exist in the structure 

especially for relatively large ground plane spacing for accurate physical 

dimensions.  

Lumped element models based on lumped lowpass prototype filter circuit models 

do exist [3, 6] that could be used to determine the input (output) couplings as well 

inter-resonator couplings physical dimensions. The most comprehensive treatment 

of the calculation of the initial physical dimensions is made in [6] where formulae 

are presented for the lumped element models. These are more useful for 

narrowband filters.  

A more accurate initial approximation is obtained by using mixed lumped-

distributed models. In the following sections explicit formulae have been derived for 

computation of coupling coefficients required for determining the initial physical 

dimensions for lumped-distributed resonator models for microwave filters similar to 

the lumped resonator models presented in [36]. The measurements are obtained 

with the help of EM simulators which are mapped to the theoretical results enabling 
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the initial physical dimensions to be obtained. Fine tuning for equiripple response is 

achieved by applying the methods in sections 1.2.4.2 to 1.2.4.4. 

1.2.4.1.1 Input (Output) 3 dB Coupling Bandwidth 

Consider the circuit of Fig. 1-10 of the first (last) resonator connected to source or 

load by input coupling 𝐾𝑠 and 𝐾 is the loose coupling for the sniffer port to provide 

the transmission measurement. The EM model is set up as shown in Fig. 1-10 (a) 

The ABCD matrix of the equivalent circuit in Fig. 1-10 (b) may be computed as 

[𝐴𝐵𝐶𝐷] = [
0 𝑗/𝐾𝑠
𝑗𝐾𝑠 0

] [
1 0
𝑌𝑟𝑒𝑠 1

] [
0 𝑗/𝐾
𝑗𝐾 0

] 

= [
−𝐾/𝐾𝑠 −𝑌𝑟𝑒𝑠/(𝐾𝐾𝑠)

0 −𝐾𝑠/𝐾
] 

(1.109) 

where 

𝑌𝑟𝑒𝑠 = 𝑗
𝐶1𝜔 tan𝜃 − 𝑌1

tan 𝜃
 (1.110) 

 

 
(a) EM model 

 

(b) Equivalent Circuit 

Fig. 1-10  An example of 3D EM resonator model and its equivalent circuit for determining 
the input coupling 3 dB Bandwidth  



 

43 

 

 

Now the 𝑆21 may be obtained from the ABCD matrix elements as 

𝑆21 =
2

−
𝐾
𝐾𝑠
−
𝐾𝑠
𝐾 −

𝑌𝑟𝑒𝑠
𝐾𝐾𝑠

 

𝑆21 =
2𝐾𝐾𝑠 tan 𝜃

−(𝐾2 + 𝐾𝑠
2) tan 𝜃 − 𝑗(𝐶1𝜔 tan 𝜃 − 𝑌1)

 

(1.111) 

Thus, 

|𝑆21| =
2𝐾𝐾𝑠|tan 𝜃|

√(𝐾2 + 𝐾𝑠
2)
2
tan2 𝜃 + (𝐶1𝜔 tan𝜃 − 𝑌1)2

 
(1.112) 

Now at the 3 dB frequency points, 𝜔3 𝑑𝐵, 

|𝑆21(𝜔3 𝑑𝐵)| =
1

√2
|𝑆21(𝜔𝑜)| =

2𝐾𝐾𝑠

√2(𝐾2 + 𝐾𝑠
2)
2
 

(1.113) 

where 𝜔𝑜 is the resonance frequency. Note that 

𝐶1𝜔𝑜 tan 𝜃𝑜 − 𝑌1 = 0 (1.114) 

Hence from (1.113), 

2𝐾𝐾𝑠

√2(𝐾2 + 𝐾𝑠
2)
2
=

2𝐾𝐾𝑠|tan 𝜃3 𝑑𝐵|

√(𝐾2 + 𝐾𝑠
2)
2
tan2 𝜃3 𝑑𝐵 + (𝐶1𝜔3 𝑑𝐵 tan 𝜃3 𝑑𝐵 − 𝑌1)2

 
(1.115) 

which simplifies to 

(𝐾2 +𝐾𝑠
2)
2
tan2 𝜃3 𝑑𝐵 − (𝐶1𝜔3 𝑑𝐵 tan 𝜃3 𝑑𝐵 − 𝑌1)

2 = 0 (1.116) 

It is assumed here that the sniffer port only provides loose couplings, 

𝐾 ≪ 𝐾𝑠 (1.117) 

so that, 

𝐾2 + 𝐾𝑠
2 ≅ 𝐾𝑠

2 (1.118) 

Hence (1.116) becomes 

𝐾𝑠
4 tan2 𝜃3 𝑑𝐵 − (𝐶1𝜔3 𝑑𝐵 tan 𝜃3 𝑑𝐵 − 𝑌1)

2 = 0 (1.119) 
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Solving (1.119) yields two solutions for the lower (𝜔3 𝑑𝐵𝑙) and upper (𝜔3 𝑑𝐵𝑢) 3 dB 

frequency point 

𝐾𝑠
2 tan 𝜃3 𝑑𝐵𝑙 − (𝐶1𝜔3 𝑑𝐵𝑙 tan 𝜃3 𝑑𝐵𝑙 − 𝑌1) = 0 

𝐾𝑠
2 tan 𝜃3 𝑑𝐵𝑢 + (𝐶1𝜔3 𝑑𝐵𝑢 tan 𝜃3 𝑑𝐵𝑢 − 𝑌1) = 0 

(1.120) 

(1.120) may be solved iteratively using Newton – Raphson’s method. The input 

(output) coupling may be determined from measurement data using 

𝐾𝑠 = ±√
𝐶1𝜔3 𝑑𝐵𝑙 tan 𝜃3 𝑑𝐵𝑙 − 𝑌1

tan 𝜃3 𝑑𝐵𝑙
= ±√𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑌𝑟𝑒𝑠(𝜔3 𝑑𝐵𝑙) 

𝐾𝑠 = ±√
𝐶1𝜔3 𝑑𝐵𝑢 tan 𝜃3 𝑑𝐵𝑢 − 𝑌1

tan 𝜃3 𝑑𝐵𝑢
= ±√−𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑌𝑟𝑒𝑠(𝜔3 𝑑𝐵𝑢) 

(1.121) 

The theoretical or experimental 3 dB bandwidth is calculated from 

𝑓3 𝑑𝐵 =
𝜔3 𝑑𝐵𝑢 − 𝜔3 𝑑𝐵𝑙

2𝜋
, 𝐻𝑧 (1.122) 

The measurement is done with an EM simulator as follows: 

1. Set up the model as in Fig. 1-10 in an EM simulator. Choose a suitable initial 

tapping height for the input probe such as the middle of the inner conductor. 

The sniffer port should be set up so that the peak of |𝑆21| in dB is at least below 

30 dB. 

2. Adjust the resonator tuning screw so that the required resonance frequency is 

attained. Note that the peak of  |𝑆21| occurs at the resonance frequency. 

3. Measure the 3 dB bandwidth from the |𝑆21| plot by measuring the frequency 

points where the peak drops to 3 dB. The 3 dB points may also be easily 

determined from the peaks of the real and imaginary of the 𝑆11 measurements. 

4. Compare the measured 3 dB bandwidth to the theoretical one. If 

(𝑓3 𝑑𝐵)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ≠ (𝑓3 𝑑𝐵)𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , then change the tapping height to a new 

position.  

5. Repeat the experimental procedure so that the correct resonance frequency 

and 3 dB bandwidth are attained. Alternatively the results for each tapping 

position and 3 dB bandwidth may be tabulated and plotted so that a good 

estimate of the tapping position and resonator tuning screw position are 

obtained by reading the graph. 

1.2.4.1.2 Inter-resonator Coupling Coefficient – Magnetic Coupling 
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Here a two combline resonator model is used as in Fig. 1-11. The electric field is at 

its maximum near the open end top of the resonators and conversely the magnetic 

field is at its maximum near the bottom short circuited end of the resonators. It is 

assumed the magnetic coupling is a dominant form of coupling in the configuration 

shown in Fig. 1-11. Thus the equivalent circuit may be modelled as shown in Fig. 

1-12. Resonance occurs when 

𝑍𝐿 + 𝑍𝑅 = 0 (1.123) 

 

 
(a) Side view 

 

 

(b) Isometric view 

Fig. 1-11  An example of a two resonator EM model used to compute magnetic inter-
resonator couplings 

Hence, 

𝜌

2𝑌12
+

1

𝑌1 − 𝑌12
𝜌 + 𝐶1𝑝

+
𝜌

2𝑌12
+

1

𝑌2 − 𝑌12
𝜌 + 𝐶2𝑝

= 0 
(1.124) 

or 
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tan 𝜃

𝑌12
+

tan𝜃

𝑌1 − 𝑌12 −𝜔𝐶1 tan 𝜃
+

tan𝜃

𝑌2 − 𝑌12 − 𝜔𝐶2 tan 𝜃
= 0 (1.125) 

which simplifies to 

(𝜔 tan 𝜃)2 − (
𝑌1
𝐶1
+
𝑌2
𝐶2
)𝜔 tan 𝜃 +

𝑌1𝑌2
𝐶1𝐶2

−
𝑌12

2

𝐶1𝐶2
= 0 (1.126) 

 

 
Fig. 1-12  Equivalent circuit of a two combline resonator EM model for computing magnetic 

inter-resonator couplings 

Now for each resonator, resonance (𝜔1 and 𝜔2) occurs when  

𝑌1
𝐶1
= 𝜔1 tan 𝜃1 

𝑌2
𝐶2
= 𝜔2 tan 𝜃2 

(1.127) 

Define a new magnetic coupling coefficient 𝐾𝑚 as 

𝐾𝑚
2 =

𝑌12
2

𝐶1𝐶2
 (1.128) 

Such that the theoretical magnetic coupling coefficient is determined from 

𝑑𝜔𝑚 = 𝐾𝑚 =
𝑌12

√𝐶1𝐶2
 𝑟𝑎𝑑/𝑠 

(1.129) 

or 

𝑑𝑓𝑚 =
𝑌12

2𝜋√𝐶1𝐶2
 𝐻𝑧. 

(1.130) 

Hence (1.126) becomes, 



 

47 

 

(𝜔 tan 𝜃)2 − (𝜔1 tan 𝜃1 +𝜔2 tan 𝜃2)𝜔 tan 𝜃 + 𝜔1𝜔2tan 𝜃1 tan 𝜃2 − 𝐾𝑚
2 = 0 (1.131) 

which may be re-written as, 

2𝜔 tan 𝜃 =𝜔1 tan 𝜃1 + 𝜔2 tan 𝜃2 ±√(𝜔2 tan 𝜃2 −𝜔1 tan 𝜃1)2 + 4𝐾𝑚
2 (1.132) 

Define the even mode resonant frequency 𝜔𝑒𝑣 as 

2𝜔𝑒𝑣  tan 𝜃𝑒𝑣  =𝜔1 tan 𝜃1 + 𝜔2 tan 𝜃2 −√(𝜔2 tan 𝜃2 −𝜔1 tan 𝜃1)2 + 4𝐾𝑚
2 (1.133) 

And the odd mode resonant frequency 𝜔𝑜𝑑 as, 

2𝜔𝑜𝑑  tan 𝜃𝑜𝑑  =𝜔1 tan 𝜃1 + 𝜔2 tan 𝜃2 +√(𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)2 + 4𝐾𝑚
2 (1.134) 

Thus, subtracting (1.133) from (1.134) yields 

(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 −𝜔𝑒𝑣  tan 𝜃𝑒𝑣 )
2 = (𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)

2 + 4𝐾𝑚
2 (1.135) 

This may be solved for 𝐾𝑚 as, 

𝐾𝑚 = ±
1

2
√(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 − 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 )

2 − (𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)
2 (1.136) 

Therefore the inter-resonator magnetic coupling coefficient is computed as 

𝑑𝜔𝑚 = 𝐾𝑚 = ±
1

2
√(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 − 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 )2 − (𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)2 (1.137) 

This coupling coefficient may be converted to more familiar frequency units as 

𝑑𝑓𝑚 =
𝑑𝜔𝑚
2𝜋

=
𝐾𝑚
2𝜋

 𝐻𝑧 (1.138) 

so that the experimental coupling coefficient may be computed using 

𝑑𝑓𝑚 = ±
1

4𝜋
√(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 − 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 )2 − (𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)2 𝐻𝑧. (1.139) 

For synchronously tuned resonators, where 𝜔1 = 𝜔2 (1.139) simplifies to 

𝑑𝑓𝑚 = ±
𝜔𝑜𝑑  tan 𝜃𝑜𝑑 − 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 

4𝜋
 𝐻𝑧. (1.140) 

After computing the required theoretical inter-resonator coupling bandwidths using 

(1.138), the following experiment procedure is carried out with an EM simulator 

with eigenvalue capability: 

1. Set up the model as in Fig. 1-11 using an EM simulator 
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2. Tune each individual resonator to the required resonant frequency 

3. For a range of inter-resonator spacings or aperture widths perform the eigen 

mode parametric analysis and obtain even mode resonant frequency 

𝑓𝑒𝑣(magnitude(Mode(1)) and odd mode resonant frequency 

𝑓𝑜𝑑(magnitude(Mode(2)) for each parameter sweep 

4. Obtain the experimental coupling bandwidth from (1.139) 

5. Plot the graph of spacing/aperture width against (𝑑𝑓𝑚)𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 

6. Obtain the required inter-resonator spacing/aperture width from the graph. 

 
(a) Side view 

 

 

(b) Isometric view 

Fig. 1-13  An example of a two resonator EM model used to compute electric inter-
resonator couplings   

1.2.4.1.3 Inter-resonator Coupling Coefficient – Electric Coupling 

A similar analysis may be performed for electrical couplings which are modelled 

similar to magnetic couplings but with open circuited stubs for the coupling 

admittances. Fig. 1-13 shows the two resonator model for determining the electric 
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coupling dimensions in an EM simulator. Electric coupling is achieved by an 

aperture near the top of the resonator open ends where electric field is dominant 

and may be amplified by means of a suspended metal rod placed between the two 

resonators. Using Fig. 1-14, the electric coupling coefficient is defined just as for 

the magnetic coupling coefficient as 

𝑑𝜔𝑒 = 𝐾𝑒 =
𝑌12

√𝐶1𝐶2
 𝑟𝑎𝑑/𝑠 

𝑑𝑓𝑚 =
𝑌12

2𝜋√𝐶1𝐶2
 𝐻𝑧 

(1.141) 

except in this case 𝑌12 is the capacitive coupling admittance of the open circuited 

stub. The even mode resonant frequency 𝜔𝑒𝑣 is obtained from the solution of,  

2𝜔𝑒𝑣tan 𝜃𝑒𝑣  =𝜔1 tan 𝜃1 + 𝜔2 tan 𝜃2

−√(𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)2 + 4𝐾𝑒
2(tan𝜃𝑒𝑣)4 

(1.142) 

and the odd mode resonant frequency 𝜔𝑜𝑑 is obtained from the solution of, 

2𝜔𝑜𝑑  tan 𝜃𝑜𝑑  =𝜔1 tan 𝜃1 + 𝜔2 tan 𝜃2

+√(𝜔2 tan 𝜃2 − 𝜔1 tan 𝜃1)2 + 4𝐾𝑒
2(tan𝜃𝑒𝑣)4 (1.143) 

 

 
Fig. 1-14  Equivalent circuit of a two combline resonator EM model for computing electric 

inter-resonator couplings 

Thus, 𝐾𝑒 is determined by solving (1.142) and (1.143) simultaneously, 

𝑑𝜔𝑒 = 𝐾𝑒 𝑟𝑎𝑑/𝑠 (1.144) 
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𝑑𝜔𝑒 = ±√
(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 − 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 )(𝜔𝑜𝑑  tan 𝜃𝑜𝑑 + 𝜔𝑒𝑣  tan 𝜃𝑒𝑣 − 𝜔1 tan 𝜃1 − 𝜔2 tan 𝜃2)

(( tan 𝜃𝑜𝑑)4 − ( tan 𝜃𝑒𝑣 )4)
 

This coupling coefficient may be converted to more familiar frequency units as 

𝑑𝑓𝑒 =
𝑑𝜔𝑒
2𝜋

=
𝐾𝑒
2𝜋
 𝐻𝑧 (1.145) 

Similar numerical technique as for magnetic coupling may be performed so that the 

even mode and odd mode resonance frequencies are obtained. The parametric 

analysis can be performed using an EM simulator with Eigen mode capability. 

Then experimental coupling coefficients may be computed using (1.144) and 

(1.145) which must be compared and made equal to the theoretical ones computed 

using (1.141) by varying some physical dimensions (usually the suspended 

coupling rod length or its capacitive disk or both for cavity resonator filters). 

1.2.4.2 Space Mapping Technique 

This is a technique used to reduce CPU time for computer aided designs. Bandler 

et el [37-42] were among the first pioneers in EM modelling techniques employing 

space mapping as applied to microwave filter design. The technique uses two 

models called (i) the fine model which is an accurate EM model and (ii) the coarse 

model which is a circuit simulator based model. Because the circuit model is fast, 

optimisation may quickly be made and results implemented in an accurate but time 

demanding EM simulator. The desired parameter mapping between the two 

parameter spaces, namely the coarse model space and fine model space, is 

achieved by means of the space mapping technique. Two corresponding 

parameter sets are defined for both the coarse model and fine model. The fine 

model parameters are used to obtain the full wave EM filter response. Then the 

coarse model parameters are found by optimisation techniques that make the 

coarse model response to be equal to the EM response. The resulting coarse 

model parameters are then compared to the ideal circuit model parameters so that 

the error magnitude and direction are established. The mapping is done to find the 

corresponding change in the fine model parameters space by using either the 

linear mapping called Space Mapping (SM) [43] or general non-linear mapping 

called Aggressive Space Mapping (ASM) [39, 40]. As a consequence of the 
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iterative application of SM or ASM accurate physical dimensions in the fine model 

are obtained. Sometimes the space mapping technique may be used together with 

Cauchy or EM port tuning methods briefly described in the next sections [44]. 

1.2.4.3 Cauchy Method 

The Cauchy method is the curve fitting method of determining an approximate 

rational model from filter’s response obtained from measurement or EM simulation 

[45-47]. The s-parameters are extracted from measurement or EM simulation at 

some sampled frequency points from which characteristic polynomials are 

determined by solving a determined or overdetermined linear system of equations 

[48]. The phase shift due to the input and output connections are removed by 

rationalisation. The characteristic polynomials are calculated from which the 

extracted coupling matrix may then be determined using the methods described 

above. The extracted CM can be compared to the synthesised (ideal) CM. The 

required fractional changes can then be applied to the EM model or physical filter 

to correct the filter response. Sometimes, parasitic couplings may be accounted for 

in the EM model by appropriate modelling of the transmission polynomial. When 

used in conjunction with the ASM, the Cauchy method is a useful method in 

designing and tuning of microwave filters [49].    

1.2.4.4 EM Port Tuning Technique 

This is a simple technique for fine tuning microwave filters that eliminates the need 

to fabricate and tune the physical filter hardware [50, 51]. The technique is 

achieved by adding internal ports called lumped ports between the open ends of 

each of resonator and top cover in the case of cavity filters. Then the complete EM 

model with extra lumped ports may be exported to the circuit simulator. In the 

circuit simulator, lumped capacitors are added to terminate the internal ports. Inter-

resonator couplings may also be tuned by placing series capacitors or short 

circuited stubs between the internal ports. Because circuit simulators have much 

more efficient computation time as compared to EM simulators, the model may 

easily be optimised in the circuit simulator to fine tune it to the required filter 

response. After optimisation or manual tuning, the value of the capacitors (positive 

or negative) represents the magnitude and direction of the error vectors that must 
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be corrected in the EM model. By using EM port tuning in conjunction with space 

mapping techniques, a simple mapping between the lumped capacitors in the 

circuit simulator and the corresponding physical dimension (e.g. tuning screw 

position) may be established [44]. 

1.2.5 Other Design Considerations 

Many of the important facets of filter designs have been highlighted in the previous 

sections. Synthesis method demonstrated in this thesis assumes a lossless filter 

network (i.e. infinite unloaded quality factor). However, practical microwave filters 

have finite unloaded quality factors. This means that they have at least some finite 

amount of dissipative losses.  

Table 1-3 Summary of Synthesis and Design of Microwave Filters 

1. Desired Filter Transfer Response  

The filter specifications are the driving factor in determining the desired 

minimum degree transfer function.  

2. Lossless Synthesis of Characteristic Polynomials 

The characteristic function is obtained from the required reflection and 

transmission characteristic. Synthesis may be done in lumped or distributed 

domain. 

3. Network Elements Synthesis  

Coupling matrix or cascaded synthesis is used to obtain the filter network 

element values in the desired circuital topology. Lumped or distributed filter 

circuits. 

4. Frequency Mapping, Frequency and Impedance Scaling 

A vital step in ensuring physical realisability. 

5. Physical Dimensions and EM Modelling 

Initial physical dimensions obtained through use of empirical data or numerical 

EM techniques. Loss analysis and spurious control are important 

consideration at this point. 

6. Fine Tuning, Fabrication and Testing 

Use of both circuit and EM simulators is a cost effective way to achieve filter 

tuning before fabrication. 
 

The approach is to synthesis a lossless filter network and depending on the 

required filter loss from the specifications, analyse the effect of losses via circuit or 

EM simulators. The filter is then dimensioned and materials (technology of 
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implementation) chosen to minimise the filter’s passband loss. The effect of adding 

lossy components is degraded filter response. If relatively high unloaded quality 

factor is achieved, the overall filter response is only slightly perturbed (e.g. 

rounding of passband edges). It must be mentioned here that the quality factor 

requirement is the main criterion in deciding the technology of implementation [3]. 

This is also the limiting factor in terms of filter physical size (volume and weight) 

and cost as high unloaded quality factor generally requires large 3 dimensional 

filters size with high conductivity materials. The requirement to meet the unloaded 

quality factor by having large filter size is limited by the need to control out-of-band 

spurious resonances that are a direct result of the periodic nature of distributed 

elements and waveguide modes. This is because the filter dimensions become 

progressively cut-on at such frequencies with increased filter dimensions.  

The important steps in conventional filter synthesis and design are summarised in 

Table 1-3. The bulk of the work done was concentrated on aspects of steps 1 to 4 

of the synthesis and design procedure. However, in Chapter 3 to Chapter 6 various 

aspects of step 5 and 6 are considered with some measurement results shown 

from some fabricated filters. 

1.3 Conclusion 

In this chapter, a review of filter synthesis and design fundamentals has been 

made. The two methods normally used in filter synthesis have been described. 

However, a method of computing the characteristic polynomials used in the filter 

synthesis were not given. The next Chapter presents a method of generating the 

generalised Chebyshev characteristic function. 
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Chapter 2 Method for Generating Generalised Chebyshev 

Polynomials 

2.1 Introduction 

In this Chapter, an alternative method to synthesise different classes of Chebyshev 

microwave filters is presented. The principles and theories explained apply to a 

wide range of filter applications as will be evident later on. In particular, the general 

method for the generation of general Chebyshev polynomials is explained [52, 53]. 

A number of filter types including low-pass, bandpass and dual band filters are 

used to show the direct application of the synthesis method. The method is directly 

applicable for the synthesis of lumped and distributed filters. As alluded to in 

Chapter 1, Chebyshev filtering characteristic functions are used in most filter 

designs because they represent an optimum comprise between in-band return loss 

and out-of-band rejection. It will now be shown how this type of transfer 

characteristic function may generally be generated. 

2.2 Generalised Chebyshev Characteristic Function  

The characteristic function was defined in Chapter 1 as a rational function 

consisting of the reflection and transmission characteristic polynomials. For 

Chebyshev characteristic functions, it may be shown that the filter’s overall 

characteristic function may be obtained from a linear combination of hyperbolic 

cosine of the sum of inverse hyperbolic cosines of low degree basis transfer 

functions defined by, 

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ {∑[𝛼𝑟 𝑎𝑐𝑜𝑠ℎ{𝑋𝑟(𝜔)}]

𝑚

𝑟=1

} (2.1) 

where 𝛼𝑟 (integer) is the corresponding weighting number to the basis 

characteristic function 𝑋𝑟(𝜔). Without loss of generality, the 𝜔-plane variable is 

used for the lumped domain synthesis. However, the method described here is 



 

55 

 

applicable to distributed generalised Chebyshev filters were the variable 𝑡 would be 

used instead. The proof (2.1) easily follows from solution of Chebyshev differential 

equations with appropriate boundary conditions as section 2.4 will show. 𝑋𝑟(𝜔) is a 

rational function expressed in terms of two polynomials 𝑈𝑟(𝜔) and 𝑃𝑟(𝜔) as 

𝑋𝑟(𝜔) =
𝑈𝑟(𝜔)

𝑃𝑟(𝜔)
 (2.2) 

Thus the problem of determining the higher degree rational polynomial 𝑇𝑁(𝜔) is 

reduced to determining some unique lower degree basis characteristic functions  

𝑋𝑟(𝜔) which act as basic building blocks for higher degree polynomials. Each of 

the basis function is defined by the number and positions of both reflection and 

transmission zeros. The overall characteristic function given by (2.1) may further 

be expanded and after a bit of mathematical manipulations the final expression is 

presented below. 

𝑇𝑁(𝜔) =
1

2
{∏[𝑋𝑟(𝜔) + √𝑋𝑟

2(𝜔) − 1]

𝛼𝑟𝑚

𝑟=1

+∏[𝑋𝑟(𝜔) − √𝑋𝑟
2(𝜔) − 1]

𝛼𝑟𝑚

𝑟=1

} (2.3) 

 

Table 2-1  Examples of Cutoff Polynomial V 

Lumped Domain 𝑉(𝜔) 

Cutoff Points 𝑉 Polynomial Application 

±𝛿 (𝜔2 − 𝛿2) Low-pass Filter 

𝛼, 𝛽, ±𝛿 (𝜔 − 𝛼)(𝜔 − 𝛽)(𝜔2 − 𝛿2) 
Bandpass/Dual Band Low-

pass Filter 

±𝛼,± 𝛽, ±𝛾,±𝛿 (𝜔2 − 𝛼2)(𝜔2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 𝛿2) Dual Bandpass Filter 

Distributed Domain 𝑉(𝑡) 

Cutoff Points 𝑉 Polynomial Application 

±𝑡𝑐 (𝑡2 − 𝑡𝑐
2) Low-pass Filter 

± 𝑡1, ±𝑡2 (𝑡2 − 𝑡1
2)(𝑡2 − 𝑡2

2) Bandpass Filter 

± 𝑡1, ±𝑡2 ± 𝑡3, ±𝑡4 (𝑡2 − 𝑡1
2)(𝑡2 − 𝑡2

2)(𝑡2 − 𝑡3
2)(𝑡2 − 𝑡4

2) Dual bandpass Filter 
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Now the zeros of (𝑋𝑟
2(𝜔) − 1) are simply the zeros of (𝑈𝑟

2 − 𝑃𝑟
2) which are simply 

the tuning points and the bandedge points. Thus write 

𝑈𝑟
2 − 𝑃𝑟

2 = 𝜖2𝑉𝑇𝑉 (2.4) 

where 𝜖 is a constant, the polynomial 𝑉𝑇 contains 𝑇 number of in-band tuning 

points expressed as, 

𝑉𝑇(𝜔) =∏(𝜔2 − 𝜔𝑡
2)2

𝑇

𝑡=1

 (2.5) 

where 𝜔𝑡 is the radian frequency at the turning point. The monic polynomial 𝑉 

contains the cutoff (bandedge) frequency points is prescribed as depicted in Table 

2-1. The numerator of √𝑋𝑟
2(𝜔) − 1 in (2.3) may be written as 

Numerator of (√ 𝑋𝑟
2(𝜔) − 1) = √𝑈𝑟

2 − 𝑃𝑟
2 = 𝜖√𝑉𝑇√𝑉 (2.6) 

Furthermore, define a new polynomial 𝑊𝑟 as, 

𝑊𝑟 = 𝜖√𝑉𝑇 = 𝜖∏(𝜔2 − 𝜔𝑡
2)

𝑇

𝑡=1

 (2.7) 

Note that for lowest degree, (i.e. 𝑁 = 1, for low-pass, 𝑁 = 2 for bandpass and 

𝑁 = 4, for dual bandpass) where no tuning point exist, 𝑉𝑇(𝜔) = 1 and thus 𝑊𝑟 = 𝜖. 

In general the polynomial 𝑊𝑟 may easily be found from the factorisation, 

𝑊𝑟 =
√𝑈𝑟

2 − 𝑃𝑟
2

√𝑉
 (2.8) 

Hence the following term in (2.3) is conveniently re-written as  

𝑋𝑟(𝜔) ± √𝑋𝑟
2(𝜔) − 1 =

𝑈𝑟
𝑃𝑟
±√

𝑈𝑟
2 − 𝑃𝑟

2

𝑃𝑟
2 =

𝑈𝑟 ±𝑊𝑟√𝑉

𝑃𝑟(𝜔)
 (2.9) 

Finally substituting (2.9) in (2.3) yields the final form of the characteristic function 

as 
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𝑇𝑁(𝜔) = 𝑘
𝐹(𝜔)

𝑃(𝜔)
=

∏[𝑈𝑟 +𝑊𝑟√𝑉]
𝛼𝑟

𝑚

𝑟=1

+∏[𝑈𝑟 −𝑊𝑟√𝑉]
𝛼𝑟

𝑚

𝑟=1

2∏[𝑃𝑟]
𝛼𝑟

𝑚

𝑟=1

 (2.10) 

The polynomials 𝑈𝑟, 𝑃𝑟, 𝑊𝑟 and 𝑉 will be considered as the canonical form of the 

basis function in any given Chebyshev characteristic function defined by (2.10). 

The numerator and denominator of the basis function given by (2.2) gives the 

polynomials 𝑈𝑟 and 𝑃𝑟 respectively. The polynomial 𝑊𝑟 is given by (2.8) and the 

cutoff polynomial 𝑉 is defined for a particular filter as given in Table 2-1. These 

polynomials completely characterises each of the basis functions. The next section 

shows how the characteristic polynomials 𝐹(𝜔) and 𝑃(𝜔) may be determined from 

(2.10). 

2.3 General Recursive Technique - Determining the characteristic 

polynomials 

Once the basis functions are determined, the computation of the overall 

characteristic function is fairly straight forward from (2.10). The weighting integer 

numbers 𝛼𝑟 is the designer’s choice depending on the number and positions of 

reflection and transmission zeros required from a given basis function. By 

expanding each of the numerator term in (2.10), two polynomial terms are 

obtained. The first polynomial 𝑋𝑁 is independent of the radical polynomial √𝑉, 

where the second polynomial  𝑌𝑁 contains the factor √𝑉. At the end of the 

expansion, the term containing the radical term, 𝑌𝑁 is cancelled out so that the 

numerator term only contains 𝑋𝑁. Indeed that must be the case since the 

numerator contains the reflection zeros which must be real. Whereas the 

polynomial 𝑋𝑁 contains the in-band reflection zeros, the polynomial 𝑌𝑁 contains the 

in-band turning points of the characteristic function. This is similar to conventional 

recursive technique as defined in [3].  
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The characteristic polynomials are computed by successive application of the 

general recursive technique with initial conditions 𝑋0 = 1 , 𝑌0 = 0 and 𝑃0 = 1 and 

defined by  

𝑋𝑁 = 𝑈𝑟𝑋𝑁−1 + (𝑊𝑟𝑉)𝑌𝑁−1 

𝑌𝑁 = 𝑊𝑟𝑋𝑁−1 + 𝑈𝑟𝑌𝑁−1 

𝑃𝑁 = 𝑃𝑟𝑃𝑁−1 

(2.11) 

where all the parameters are as defined above. (2.11) is used for 𝑚 basis function 

and repeated 𝛼𝑟 times for each basis function, each time using the previous results 

to compute the 𝑁𝑡ℎ polynomials in (2.11). As before, it does not matter whether the 

polynomials are in 𝜔-plane or 𝑡-plane, the formulae apply. The particular 

formulation used here takes into account of (2.10) and the canonical representation 

of the basis functions in terms of the four polynomials 𝑈𝑟, 𝑃𝑟, 𝑊𝑟 and 𝑉. It is written 

in a simple form using the already described nomenclature for computer aided 

synthesis.  Finally  

𝐹(𝜔) = 𝑋𝑁 

𝑃(𝜔) = 𝑃𝑁 
(2.12) 

The polynomials 𝐹(𝜔) and 𝑃(𝜔), are made monic by dividing each coefficient by 

the highest coefficient term. The normalisation is performed according to Chapter 

1. From this point the conventional filter synthesis is performed as was described in 

Chapter 1. It is now left to determine the basis functions needed in the application 

of (2.11). The next section will show how the basis functions may be determined 

for different Chebyshev filtering functions. 

2.4 Basis Characteristic Functions 

It has been stated in section 2.2 that Chebyshev characteristic functions may be 

decomposed into their basis function using (2.1). Each basis function is unique and 

gives the number and position of the reflection and transmission zeros. Even 

though not all Chebyshev functions may be expressed in terms of elementary 

functions, for the most part synthesis of most single and multi-band filters is 
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simplified by using the suggested technique in which the filter is built up using 

basis functions. Most type of filters considered in this section may be decomposed 

into basis functions by solving a differential equation describing a particular 

characteristic function. However, it is often easier and more convenient to obtain 

the basis functions by solving a set of 𝑁 non-linear simultaneous equations based 

on its known values at the critical points as, 

𝑋𝑟
2 − 1 = 0 (2.13) 

This imply that,  

𝑈𝑟 + 𝑃𝑟 = 0 
𝑈𝑟 − 𝑃𝑟 = 0 

|
𝜔=𝑐𝑢𝑡𝑜𝑓𝑓 𝑎𝑛𝑑 𝑇𝑢𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠

 
(2.14) 

resulting in 𝑁 non-linear systems of equations with 𝑁 unknowns. For simple 

functions with no in-band turning points (i.e. 𝑉𝑇 = 1), the numerator or the reflection 

function of the basis function may be obtained by completing the square (from 

(2.6)) as,  

𝑈𝑟 = √𝜖2𝑉𝑇𝑉 + 𝑃𝑟
2, (2.15) 

assuming the transmission polynomial (𝑃𝑟) is prescribed and 𝜖 is found so that 

(2.15) is a perfect square. The later method of determining the basis functions by 

solving a non-linear system of equation is completely general as long as the nature 

of each basis function is known. Since each basis function describes the number 

and position of transmission zeros, the basis function may be correctly modelled 

and solved for all possible transmission zeros. The following sections exemplify 

these two methods of determining the basis functions for Chebyshev characteristic 

functions in lumped and distributed domain. 

Unless otherwise stated in this work, the nomenclature 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 is adopted to 

depict an 𝑁𝑡ℎ degree characteristic function with 𝑁𝐹𝑇𝑍 transmission zeros at some 

general complex frequencies, including purely real and imaginary (real frequency), 

and 𝑁𝑂𝑇𝑍 number of transmission zeros at the origin for transfer function in lumped 

domain. The remainder of the total number of transmission zeros, that is 𝑁 −

𝑁𝐹𝑇𝑍 −𝑁𝑂𝑇𝑍, is assumed to be at infinity on the imaginary complex plane. A similar 

nomenclature is used for distributed low-pass filters where the function will be 
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designated as 𝑁-𝑁𝐹𝑇𝑍-𝑁90𝑜. In this case 𝑁 and 𝑁𝐹𝑇𝑍 assumes the previous 

meaning and 𝑁90𝑜 is the number of transmission zeros at quarter-wave frequency 

(i.e. 𝜃𝑧 = ±90
𝑜) and 𝑁 − 𝑁𝐹𝑇𝑍 − 𝑁90𝑜 is the number of real axis half transmission 

zero pair at infinity (i.e. 𝜃𝑧 = ±𝑗∞). Where 𝑁𝐹𝑇𝑍 exists, these transmission zeros 

may either be symmetrically pure imaginary frequency pairs (i.e. 𝜃𝑧 = ±𝜃𝑡),  or in 

general paraconjugated pairs on the complex 𝜌-plane (i.e. 𝜃𝑧 = 𝜃𝑡 ± 𝑗𝜃𝜎), such that 

𝑁𝐹𝑇𝑍 is always even.  

It is imperative to point out some advantages of using basis functions that it is 

possible to define any arbitrary transfer function based on transmission zeros and 

reflection zeros that satisfies Chebyshev characteristic. For example the 

transmission zeros at the origin or infinity may arbitrary be chosen corresponding 

to different coupling elements (electrical, magnetic couplings or both) by 

appropriate choice of the basis functions to give the required number of 

transmission zeros at the origin in 𝜔 domain (or at 𝜃 = 0𝑜 in 𝑡 domain). 

2.4.1 Lumped Generalised Chebyshev Low-pass Filters  

Consider the differential equation for Chebyshev low-pass filter in lumped domain 

defined as 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=

𝐶𝑛∏(𝜔𝑟𝜔 − 1)

𝑇

𝑟=1

√𝑇𝑁
2(𝜔) − 1

∏(1 − 𝜔/𝜔𝑛)

𝑁

𝑛=1

√𝜔2 − 1

, 𝑇 < 𝑁 (2.16) 

The term 𝜔𝑟𝜔 − 1 accounts for possible 𝑇 out-of-band turning points. The other 

turning points are provided by the term  √𝑇𝑁
2(𝜔) − 1 and the extra points provided 

by this expression are just the normalised cut-off points i.e. 𝜔 = −1 and 1, which 

are cancelled out by the denominator term √𝜔2 − 1. 𝐶𝑛 is a possible constant and 

𝜔𝑛 is general position for the transmission zero. (2.16) may be re-written as 
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𝑑𝑇𝑁(𝜔)

√𝑇𝑁
2(𝜔) − 1

=

𝐶𝑛∏(𝜔𝑟𝜔 − 1)

𝑇

𝑟=1

𝑑𝜔

∏(1 −𝜔/𝜔𝑛)

𝑁

𝑛=1

√𝜔2 − 1

 (2.17) 

Then using partial fraction expansion on the right hand side,  

𝑑𝑇𝑁(𝜔)

√𝑇𝑁
2(𝜔) − 1

= ∑
𝐴𝑛𝑑𝜔

(1 − 𝜔/𝜔𝑛)√𝜔2 − 1

𝑁

𝑛=1

 (2.18) 

where, 

𝐴𝑛 =

(

 

𝐶𝑛(1 − 𝜔/𝜔𝑛)

∏(1 − 𝜔/𝜔𝑛)

𝑁

𝑛=1 )

 ||

𝜔=𝜔𝑛

 
(2.19) 

Integrating both sides of (2.18), 

∫
𝑑𝑇𝑁(𝜔)

√𝑇𝑁
2(𝜔) − 1

= ∑∫
𝐴𝑛𝑑𝜔

(1 − 𝜔/𝜔𝑛)√𝜔2 − 1

𝑁

𝑛=1

 

𝑎𝑐𝑜𝑠ℎ[𝑇𝑁(𝜔)] = ∑∫
𝐴𝑛𝑑𝜔

(1 − 𝜔/𝜔𝑛)√𝜔2 − 1

𝑁

𝑛=1

 

(2.20) 

This right hand side integral may be solved by appropriate change of variable. Now 

let 

𝑋 =
𝜔 − 1/𝜔𝑛
1 − 𝜔/𝜔𝑛

 (2.21) 

where 𝑋 is the new variable dependant on 𝜔 so that, 

𝜔 =
𝑋 + 1/𝜔𝑛
1 + 𝑋/𝜔𝑛

 (2.22) 

Hence, 

𝑑𝑋

𝑑𝜔
=

1 − 1/𝜔𝑛
2

(1 − 𝜔/𝜔𝑛)2
 

𝑑𝑋 (
1 − 𝜔/𝜔𝑛
1 − 1/𝜔𝑛2

) =
𝑑𝜔

1 − 𝜔/𝜔𝑛
 

(2.23) 

By substituting (2.22) in (2.23), (2.23) may be reduced to, 
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𝑑𝑋

1 + 𝑋/𝜔𝑛
=

𝑑𝜔

1 − 𝜔/𝜔𝑛
 (2.24) 

Substituting (2.22) and (2.24) in the right hand term of the integral (2.20) above 

yields, 

𝑎𝑐𝑜𝑠ℎ[𝑇𝑁(𝜔)] = ∑∫

𝐴𝑛𝑑𝑋

(1 + 𝑋/𝜔𝑛)√(
𝑋 + 1/𝜔𝑛
1 + 𝑋/𝜔𝑛

)
2

− 1

𝑁

𝑛=1

 

𝑎𝑐𝑜𝑠ℎ[𝑇𝑁(𝜔)] = ∑∫
𝐴𝑛𝑑𝑋

√(𝑋 + 1/𝜔𝑛)2 − (1 + 𝑋/𝜔𝑛)2

𝑁

𝑛=1

 

𝑎𝑐𝑜𝑠ℎ[𝑇𝑁(𝜔)] = ∑
𝐴𝑛

√1 − 1/𝜔𝑛2
∫

𝑑𝑋

√𝑋2 − 1

𝑁

𝑛=1

 

(2.25) 

Solving the right hand side integral of (2.25) yields, 

𝑎𝑐𝑜𝑠ℎ[𝑇𝑁(𝜔)] = ∑
𝐴𝑛

√1 − 1/𝜔𝑛
2
𝑎𝑐𝑜𝑠ℎ[𝑋]

𝑁

𝑛=1

+ 𝐴𝑜 (2.26) 

Hence the overall characteristic function may be expressed as, 

𝑇𝑁(𝜔) = cosh {∑
𝐴𝑛

√1 − 1/𝜔𝑛2
𝑎𝑐𝑜𝑠ℎ[𝑋]

𝑁

𝑛=1

+ 𝐴𝑜} (2.27) 

Now, 𝐴𝑛 may be chosen so that 
𝐴𝑛

√1 − 1/𝜔𝑛2
𝑎𝑐𝑜𝑠ℎ[𝑋] is a rational polynomial with 

highest degree 1. Hence  

𝐴𝑛

√1 − 1/𝜔𝑛2
= 1 

𝐴𝑛 = √1 − 1/𝜔𝑛2 

(2.28) 

Also since at the cutoff frequency point 𝜔 = 1, 𝑇𝑁(1) = 1, then from (2.27), 

𝐴𝑜 = 0 (2.29) 

Thus the final form for the characteristic function is 
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𝑇𝑁(𝜔) = cosh {∑𝑎𝑐𝑜𝑠ℎ[𝑋]

𝑁

𝑛=1

} (2.30) 

The proof of (2.1) is clearly evident from (2.30) with,  

𝑋(𝜔) = 𝑋1−1−0(𝜔) =
𝜔 − 1/𝜔𝑛
1 − 𝜔/𝜔𝑛

 (2.31) 

as the basis function. Note that this happens to be the substitution (2.21) required 

to solve the differential equation (2.16). A special class of Chebyshev low-pass 

filter is obtained if all the transmission zeros are at infinity (i.e. 𝜔𝑛 = ∞), then the 

basis function becomes, 

𝑋(𝜔) = 𝑋1−0−0(𝜔) = 𝜔 (2.32) 

Thus the differential equation (2.16) yields a solution, 

𝑇𝑁(𝜔) = cosh {∑𝑎𝑐𝑜𝑠ℎ[𝑋]

𝑁

𝑛=1

} = cosh{𝑁𝑎𝑐𝑜𝑠ℎ(𝜔)} (2.33) 

This is called all pole Chebyshev low-pass filter transfer function [4]. The two basis 

functions (2.31) and (2.32) may easily be obtained using the second method by 

formulating a rational function (2.13) such that,  

𝑋(𝜔) = 𝑘𝑜
𝜔 + 𝑎0
1 − 𝜔/𝜔𝑛

 (2.34) 

And since the values at the cutoff are known as 𝑋(1) = 1 and 𝑋(−1) = −1  then 

the constants, 𝑘𝑜 and 𝑎0 can easily be determined simultaneously as, 

𝑘𝑜 = −1/𝜔𝑛 𝑎𝑛𝑑 𝑎0 = −𝜔𝑛 (2.35) 

Thus as before the two basis functions are, 

𝑋1−0−0(𝜔) = 𝜔 

𝑋1−1−0(𝜔) =
𝜔 − 1/𝜔𝑛
1 − 𝜔/𝜔𝑛

 
(2.36) 

Note that each basis function has a particular position for the transmission zero. As 

pointed out earlier, to generate an overall transfer function using (2.1), appropriate 

weighting integers are used which indicate how many of those transmission zeros 

in each basis function are used and where they are located. This will be made 

much clearer with an example. A more general Chebyshev low-pass filter transfer 
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function may also include half transmission zero pair (or simply ‘half-zero’). One 

way of obtaining the required basis functions is by solving the differential equation 

below. 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=

𝐶𝑛∏(𝜔𝑟𝜔 − 1)

𝑇

𝑟=1

√𝑇𝑁
2(𝜔) − 1

∏ √𝜔𝑛2 −𝜔2

𝑁𝐻𝑎𝑙𝑓

ℎ=1

∏(1− 𝜔/𝜔𝑛)

𝑁𝐹𝑇𝑍

𝑛=1

√𝜔2 − 1

, 𝑇 < 𝑁 (2.37) 

where 𝑁𝐻𝑎𝑙𝑓 is the number of half transmission zero pairs and 𝑁𝐹𝑇𝑍 is the number 

of the non-half-zero transmission zeros. However, using the theory developed 

above, only one more basis function is required in addition to the two already found 

for Chebyshev low-pass filters (2.36)  to completely characterise such a transfer 

function using (2.1). The required basis function may be modelled as 

𝑋1−1/2−0(𝜔) = 𝑘𝑜
𝜔 + 𝑎0

√𝜔𝑛2 − 𝜔2
 

(2.38) 

Using the boundary conditions, 𝑋(±1) = ±1, yields, 

𝑋1−1/2−0(𝜔) =
𝜔√𝜔𝑛2 − 1

√𝜔𝑛2 − 𝜔2
 (2.39) 

Now, the solution to generalised Chebyshev low-pass filter characteristic function 

may be written as 

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ {

   𝛼1 𝑎𝑐𝑜𝑠ℎ{𝑋1−0−0(𝜔)}

   +𝛼2 𝑎𝑐𝑜𝑠ℎ{𝑋1−1/2−0(𝜔)}

+𝛼3 𝑎𝑐𝑜𝑠ℎ{𝑋1−1−0(𝜔)}

} (2.40) 

The Chebyshev characteristic functions with at least a pair of half transmission 

zero are called Chebyshev of second kind [54, 55]. In order to generate the 

characteristic polynomials, the three basis function are expressed in their canonical 

form using polynomials described in section 2.2 as shown in Table 2-2. Calculating 

the characteristic polynomials is fairly straight forward using generalised recursive 

technique described in section 2.3. 
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Table 2-2: Normalised Basis Function Polynomials for Synthesis of Common 

Chebyshev Low-pass Filters 

𝑉(𝜔) = 𝜔2 − 1 

𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 𝑈𝑟(𝜔) 𝑊𝑟(𝜔) 𝑃𝑟(𝜔) 

1 − 0 − 0 𝜔 1 1 

1 − 1/2 − 0 𝜔√𝜔𝑛2 − 1 𝜔𝑛 √𝜔𝑛2 − 𝜔2 

1 − 1 − 0 −𝜔𝑛𝜔 + 1 √𝜔𝑛2 − 1 𝜔 − 𝜔𝑛 
 

2.4.2 Distributed Generalised Chebyshev Low-pass Filters 

Similar basis functions for direct synthesis of distributed low-pass filters may be 

derived. Although differential equations may be written in distributed domain and 

the characteristic function decomposed into its basis functions, it is intuitive and 

easier to simply mathematically model the basis function based on different 

transmission zero positions as was done for the lumped domain.  

Table 2-3 Basis Function Polynomials for Synthesis of Distributed Chebyshev Low-

pass Filters 

𝑉(𝑡) = 𝑡2 − 𝑡𝑐
2       𝑡 = 𝑡𝑎𝑛 𝜃          𝑡𝑐 = 𝑡𝑎𝑛 𝜃𝑐         𝑡𝑧 = 𝑡𝑎𝑛 𝜃𝑧 

𝑁-𝑁𝐹𝑇𝑍-𝑁90𝑜 𝑈𝑟(𝑡) 𝑊𝑟(𝑡) 𝑃𝑟(𝑡) 

1 − 0 − 0∗ (√1 + 𝑡𝑐
2) 𝑡 1 𝑡𝑐√1 + 𝑡2 

1 − 0 − 1 𝑡 1 𝑡𝑐 

2 − 2 − 0 (𝑡𝑐
2 − 2𝑡𝑧

2)𝑡2 + 𝑡𝑐
2𝑡𝑧

2 2𝑡𝑧 (√𝑡𝑧
2 − 𝑡𝑐

2) 𝑡 𝑡𝑐
2(𝑡2 − 𝑡𝑧

2) 

* A pair of half transmission zeros at infinity on the real axis of the 𝜌 complex plane 

(i.e. 𝜃𝑧 = ±𝑗∞) ) 

The advantage of using the proposed synthesis technique is that arbitrary low-pass 

transfer functions may be synthesised as opposed to only those which may be 

derived from lumped element prototype filters by lumped to distributed 

transformations such as Richard’s transformation [9]. The synthesis is carried out 

directly in the distributed domain without any reference to the lumped domain. The 
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synthesis of meander-like distributed low-pass filters in Chapter 3 is one example 

where it was not possible to synthesise certain transfer functions from a lumped 

domain via some forms of lumped to distributed transformations. This is because, 

inherently, the unity element of a transmission line does not have a lumped 

element equivalent [4]. However, it is hereby shown in this case that the 

generalised synthesis method outline in this Chapter is applicable.  

Three different basis functions were determined which may be used to design any 

distributed low-pass filters with unit length transmission line elements. 

The first basis function in Table 2-3 is a 𝑋1−0−0(𝑡) distributed basis function with a 

single real axis half transmission zero pair at infinity (𝜃𝑧 = ±𝑗∞) on the complex 𝜌 

plane. This is realised using a series connected unit element (transmission line).  

The second basis function in Table 2-3 is a 𝑋1−0−1(𝑡) distributed basis function with 

a single transmission zero at 𝜃𝑧 = ±90𝑜 on the complex 𝜌 plane. This is referred to 

as a quarter-wave frequency transmission zero. Hence, it is realised either as a 

shunt open-circuited stub or series short circuited stub.  

The third basis function in Table 2-3 is a 𝑋2−2−0(𝑡) distributed basis function with a 

symmetrical pair of transmission zeros.  These transmission zeros could be any 

symmetrical pairs on the real or imaginary axis of the complex 𝜌 plane or exist as 

complex paraconjugated pairs (i.e. 𝜃𝑧 = ±𝜃𝜏 + 𝑗𝜃𝑡) to ensure physical realisability. 

This basis function is realised using shunt series 𝐿𝐶 or series shunt 𝐿𝐶 foster 

realisation in case of a pair of imaginary axis transmission zeros. 

The general recursive technique is then applied to generate the overall distributed 

Chebyshev low-pass filter characteristic function as outlined in section 2.3. The 

distributed low-pass filters described in Chapter 3 employ these basis functions.  

2.4.3 Lumped Generalised Chebyshev Bandpass Filters 

Direct synthesis of lumped bandpass filter requires the use of bandpass basis 

functions. The analysis begins with a consideration of a minimum phase lumped 

bandpass filter network where all the transmission zeros are either at infinity or at 
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the origin.  The characteristic function satisfies the general differential equation of 

the form, 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=
𝐶𝑛(𝜔

2 + 𝜔𝑚
2)√𝑇𝑁

2(𝜔) − 1

𝜔√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2
 (2.41) 

 

 

Fig. 2-1  Normalised minimum phase bandpass network characteristic function plot for 
𝑁 = 6 and 𝜔𝑐 = 0.5 

The term 𝜔2 + 𝜔𝑚
2 accounts for a pair of imaginary turning points. The other 

turning points are provided by the term  √𝑇𝑁
2(𝜔) − 1 and the extra points provided 

by this expression are just the normalised cut-off points i.e. 𝜔 = −1,−𝜔𝑐, 𝜔𝑐, and 1, 

which are cancelled out by the denominator term √𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2. 𝐶𝑛 is a 

possible constant. Fig. 2-1 shows the example plot of 𝑇𝑁(𝜔) for 𝑁 = 6 and 𝜔𝑐 =

0.5.  By solving this differential equation, the general solution of the characteristic 

function for minimum phase filter networks is obtained. Re-writing (2.41) as, 

𝑑𝑇𝑁(𝜔)

√𝑇𝑁
2(𝜔) − 1

=
𝐶𝑛(𝜔

2 + 𝜔𝑚
2)𝑑𝜔

𝜔√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2
 (2.42) 

and integrating both side for |𝜔| > 1 and 𝑎𝑐𝑜𝑠ℎ (𝑇𝑁(𝜔)) > 0 yields, 
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∫
𝑑𝑇𝑁(𝜔)

√𝑇𝑁
2(𝜔) − 1

= ∫
𝐶𝑛(𝜔

2 + 𝜔𝑚
2)𝑑𝜔

𝜔√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2
 (2.43) 

where the left integral in (2.43) is known and the right integral may be expanded 

as,  

acosh 𝑇𝑁(𝜔) =𝐶𝑛∫
𝜔𝑑𝜔

√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2
  

                   +𝐶𝑛𝜔𝑚
2∫

𝑑𝜔

𝜔√𝜔4 − (1 + 𝜔𝑐
2)𝜔2 + 𝜔𝑐

2
 

(2.44) 

The right integral may be integrated using change of variable. Let 

𝑢 = 𝜔2 (2.45) 

Then, 

𝑑𝑢

2
= 𝜔𝑑𝜔 and 

𝑑𝑢

2𝑢
=
𝑑𝜔

𝜔
 (2.46) 

Changing the variable to 𝑢, integrating [56] and substituting back for 𝑢 gives, 

acosh 𝑇𝑁(𝜔) =
𝐶𝑛
2
∫

𝑑𝑢

√𝑢2 − (1 + 𝜔𝑐2)𝑢2 + 𝜔𝑐2

+
𝐶𝑛𝜔𝑚

2

2𝜔𝑐
∫

𝑑𝑢

𝑢√𝑢2 − (1 + 𝜔𝑐2)𝑢2 + 𝜔𝑐2
 

(2.47) 

acosh𝑇𝑁(𝜔) =
𝐶𝑛
2
𝑙𝑜𝑔(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)

−
𝐶𝑛𝜔𝑚

2

2𝜔𝑐
𝑙𝑜𝑔 (

−(1 + 𝜔𝑐
2)𝜔2 + 2𝜔𝑐

2 + 2𝜔𝑐√𝑉

𝜔2
) + 𝐶 

(2.48) 

where 

𝑉 = 𝜔4 − (1 + 𝜔𝑐
2)𝜔2 + 𝜔𝑐

2 (2.49) 

is the cutoff polynomial and 𝐶 is the constant of integration. Let 𝑚 =
𝜔𝑚

2

𝜔𝑐
> 0. (2.48) 

may further be expressed as, 

acosh𝑇𝑁(𝜔) = 𝑙𝑜𝑔

{
 

 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐2)𝜔2 − 2𝜔𝑐

2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2
}
 

 

+ 𝐶 

(2.50) 
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Since 𝑇𝑁(1) = 1, then the constant 𝐶 may be evaluated as 

𝑙𝑜𝑔

{
 

 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐2)𝜔2 − 2𝜔𝑐

2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2
}
 

 

||

𝜔=1

+ 𝐶 = 0 
(2.51) 

yielding 

𝑙𝑜𝑔 {
(1 − 𝜔𝑐

2)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 ( 1 − 𝜔𝑐2)

𝐶𝑛𝑚
2

} + 𝐶 = 0 (2.52) 

C = −𝑙𝑜𝑔 {
(1 − 𝜔𝑐

2)
𝐶𝑛
2
(1−𝑚)

( −1)
𝐶𝑛𝑚
2

} = 𝑙𝑜𝑔 {
( −1)

𝐶𝑛𝑚
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)

} (2.53) 

Substituting this into (12) yields, 

acosh𝑇𝑁(𝜔) = 𝑙𝑜𝑔

{
 

 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2
}
 

 

+ 𝑙𝑜𝑔 {
( −1)

𝐶𝑛𝑚
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)

} 

(2.54) 

which may be written as, 

acosh𝑇𝑁(𝜔) = 𝑙𝑜𝑔

{
 
 

 
 

(2𝜔2 − (1 + 𝜔𝑐
2) + 2√𝑉)

𝐶𝑛
2

(1 − 𝜔𝑐
2)
𝐶𝑛
2
(1−𝑚)𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2

}
 
 

 
 

 (2.55) 

Now write, 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
𝑅
𝐶𝑛
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)𝜔−𝐶𝑛𝑚( 𝑆∗)

𝐶𝑛𝑚
2

} (2.56) 

So that, 
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𝑅 = 2𝜔2 − (1 + 𝜔𝑐
2) + 2√𝑉 

𝑆 = (1 + 𝜔𝑐
2)𝜔2 − 2𝜔𝑐

2 + 2𝜔𝑐√𝑉 

𝑆∗ = (1 + 𝜔𝑐
2)𝜔2 − 2𝜔𝑐

2 − 2𝜔𝑐√𝑉 

(2.57) 

(2.56) may therefore be re-written by multiplying both the numerator and 

denominator of the argument of the natural logarithm function by 𝑆
𝐶𝑛𝑚

2  as 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
𝑅
𝐶𝑛
2 ( 𝑆)

𝐶𝑛𝑚
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)𝜔−𝐶𝑛𝑚( 𝑆∗)

𝐶𝑛𝑚
2 ( 𝑆)

𝐶𝑛𝑚
2

} (2.58) 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
𝑅
𝐶𝑛
2 ( 𝑆)

𝐶𝑛𝑚
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)𝜔−𝐶𝑛𝑚( 𝑆𝑆∗)

𝐶𝑛𝑚
2

} (2.59) 

Furthermore, introduce new indices in (2.59) and re-write as, 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
𝑅𝛼(𝑅𝑆)

𝛽
2( 𝑆)𝛾

(1 − 𝜔𝑐2)𝛼−𝛾𝜔−
(𝛽+2𝛾)( 𝑆𝑆∗)

𝛽
2
+𝛾
} (2.60) 

such that from (2.59) and (2.60) the index of polynomial 𝑅 is, 

𝐶𝑛
2
= 𝛼 +

𝛽

2
 (2.61) 

and also from (2.59) and (2.60) the index of polynomial 𝑆 is,  

𝐶𝑛𝑚

2
=
𝛽

2
+ 𝛾 (2.62) 

where 𝛼, 𝛽 and 𝛾 are scalars related to 𝐶𝑛 and 𝑚 by (2.61) and (2.62). Now, the 

following identities hold for 𝑅 and 𝑆: 

𝑅𝑆 = (1 + 𝜔𝑐)
2(𝜔2 − 𝜔𝑐 + √𝑉)

2
 (2.63) 

and 

𝑆𝑆∗ = (1 − 𝜔𝑐
2)2𝜔4 (2.64) 
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At this point 𝑅 and 𝑆 may be substituted back into (2.60) and using identity (2.63)-(2.64) to substitute for 𝑅𝑆 and 𝑆𝑆∗ into (2.60) 

yields, 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔

{
 
 

 
 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝛼
((1 + 𝜔𝑐)

2(𝜔2 − 𝜔𝑐 + √𝑉)
2
)

𝛽
2
( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 + 2𝜔𝑐√𝑉)

𝛾

(1 − 𝜔𝑐2)𝛼−𝛾𝜔−
(𝛽+2𝛾)( (1 − 𝜔𝑐2)2𝜔4)

𝛽
2
+𝛾

}
 
 

 
 

 (2.65) 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝛼
(𝜔2 − 𝜔𝑐 + √𝑉)

𝛽
( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 + 2𝜔𝑐√𝑉)

𝛾

(1 + 𝜔𝑐)−𝛽(1 − 𝜔𝑐2)𝛼+𝛽+𝛾𝜔𝛽+2𝛾
} (2.66) 

acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝛼
(𝜔2 − 𝜔𝑐 + √𝑉)

𝛽
( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 + 2𝜔𝑐√𝑉)

𝛾

(1 − 𝜔𝑐)𝛽(1 − 𝜔𝑐2)𝛼+𝛾𝜔𝛽+2𝛾
} (2.67) 

With further algebra, (2.67) may be expanded as follows: 

acosh𝑇𝑁(𝜔) = 𝑙𝑜𝑔 {(
2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉

(1 − 𝜔𝑐2)
)

𝛼

(
𝜔2 − 𝜔𝑐 + √𝑉

(1 − 𝜔𝑐)𝜔
)

𝛽

(
(1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 + 2𝜔𝑐√𝑉

(1 − 𝜔𝑐2)𝜔2
)

𝛾

} (2.68) 

acosh 𝑇𝑁(𝜔) = 𝛼𝑙𝑜𝑔 (
2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉

(1 − 𝜔𝑐2)
) +𝛽𝑙𝑜𝑔 (

𝜔2 − 𝜔𝑐 + √𝑉

(1 − 𝜔𝑐)𝜔
) + 𝛾𝑙𝑜𝑔 (

(1 + 𝜔𝑐
2)𝜔2 − 2𝜔𝑐

2 + 2𝜔𝑐√𝑉

(1 − 𝜔𝑐2)𝜔2
) (2.69) 

After further decomposition, (2.69) becomes, 
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      acosh 𝑇𝑁(𝜔) = 𝛼𝑙𝑜𝑔(
2𝜔2 − (1 + 𝜔𝑐

2)

(1 − 𝜔𝑐2)
+ √(

2𝜔2 − (1 + 𝜔𝑐2)

(1 − 𝜔𝑐2)
)

2

− 1) + 𝛽𝑙𝑜𝑔(
𝜔2 −𝜔𝑐
(1 − 𝜔𝑐)𝜔

+ √(
𝜔2 − 𝜔𝑐
(1 − 𝜔𝑐)𝜔

)

2

− 1)

+ 𝛾𝑙𝑜𝑔(
(1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2

(1 − 𝜔𝑐2)𝜔2
+√(

(1 + 𝜔𝑐2)𝜔2 − 2𝜔𝑐
2

(1 − 𝜔𝑐2)𝜔2
)

2

− 1) 

(2.70) 

Now, let 

𝑋2−0−0(𝜔) =
2𝜔2 − (1 + 𝜔𝑐

2)

(1 − 𝜔𝑐2)
, (2.71) 

𝑋2−0−1(𝜔) =
𝜔2 − 𝜔𝑐
(1 − 𝜔𝑐)𝜔

 (2.72) 

and 

𝑋2−0−2(𝜔) =
(1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2

(1 − 𝜔𝑐2)𝜔2
. (2.73) 

Substituting (2.71)-(2.73) into (2.70) gives, 

acosh 𝑇𝑁(𝜔) = 𝛼𝑙𝑜𝑔 (𝑋2−0−0 + √𝑋2−0−0
2 − 1) + 𝛽𝑙𝑜𝑔 (𝑋2−0−1 +√𝑋2−0−1

2 − 1) + 𝛾𝑙𝑜𝑔 (𝑋2−0−2 +√𝑋2−0−2
2 − 1) (2.74) 

Using the identity:  

acosh𝑋𝑛(𝜔) = 𝑙𝑜𝑔 (𝑋𝑛(𝜔) + √𝑋𝑛
2(𝜔) − 1) (2.75) 

 and substituting in (2.74) yields, 
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acosh 𝑇𝑁(𝜔) = 𝛼 acosh{𝑋2−0−0} + 𝛽 acosh{𝑋2−0−1} + 𝛾 acosh{𝑋2−0−2} (2.76) 

Finally, the general solution to the differential equation (2.41) may be written as, 

𝑇𝑁(𝜔) = cosh{𝛼 acosh{𝑋2−0−0} + 𝛽 acosh{𝑋2−0−1} + 𝛾 acosh{𝑋2−0−2}} (2.77) 

Clearly then, 𝑋2−0−0(𝜔) is a basis function with two transmission zeros at infinity, 

𝑋2−0−1(𝜔) is a basis function with a single transmission zero at infinity and a single 

transmission zero at the origin, and 𝑋2−0−2(𝜔) is a basis function with all two 

transmission zeros at the origin. The following observations are made from 

equation (2.68) and (2.77). From (2.77) for 𝑇𝑁(𝜔) to be an even 𝑁th degree rational 

polynomial in 𝜔, 2𝛼 + 2𝛽 + 2𝛾 = 𝑁 i.e. 

𝛼 + 𝛽 + 𝛾 = 𝑁/2 (2.78) 

Thus 𝛼, 𝛽 and γ must be either zero or positive integers. From (2.68), the number 

of transmission zeros at the origin for 𝑇𝑁(𝜔) is 

𝑁𝑇𝑍 = 𝛽 + 2𝛾 (2.79) 

By assigning different integer values including zero to 𝛼, 𝛽 and γ, different linear 

combinations of functions in 𝑋2−0−0(𝜔) , 𝑋2−0−1(𝜔)  and 𝑋2−0−2(𝜔) in (2.77) may 

be obtained as unique solutions to the differential equation (2.41). 𝑇𝑁(𝜔) given by 

(2.77) is thus the general solution to the differential equation defined by (2.41). 

There are only two equations in 𝛼, 𝛽 and γ i.e. (2.78) and (2.79). Thus one of the 

three scalars may be chosen and the other two may be determined from (2.78) and 

(2.79). One suitable choice is as follows: For 𝑁𝑂𝑇𝑍 ≤ 𝑁/2, choose 𝛾 = 0, then from 

(2.78) and (2.79),  

𝛼 = 𝑁/2 − 𝑁𝑂𝑇𝑍 (2.80) 

𝛽 = 𝑁𝑂𝑇𝑍 (2.81) 

For 𝑁𝑂𝑇𝑍 ≥ 𝑁/2, choose 𝛼 = 0, then (2.78) and (2.79) becomes, 

𝛽 + 𝛾 = 𝑁/2 (2.82) 

𝛽 + 2𝛾 = 𝑁𝑂𝑇𝑍 (2.83) 

Solving (2.82) and (2.83) simultaneously yields, 

𝛽 = 𝑁 − 𝑁𝑂𝑇𝑍 (2.84) 

𝛾 = 𝑁𝑂𝑇𝑍 − 𝑁/2 (2.85) 
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Table 2-4 Possible Values for Weighting Numbers 𝛼, 𝛽 and 𝛾 

Condition 𝛼 𝛽 𝛾 

𝑁𝑂𝑇𝑍 ≤ 𝑁/2 𝑁/2 − 𝑁𝑂𝑇𝑍 𝑁𝑂𝑇𝑍 0 

𝑁𝑂𝑇𝑍 ≥ 𝑁/2 0 𝑁 −𝑁𝑂𝑇𝑍 𝑁𝑂𝑇𝑍 − 𝑁/2 
 

Table 2-5 Minimum Phase Bandpass Filter Family of Solutions 

 (𝑁 − 0 − 𝑁𝑂𝑇𝑍) 𝛼 𝛽 𝛾 

𝑁 − 0 − 0 𝑁/2 0 0 

𝑁 − 0 − 1 𝑁/2 − 1 1 0 

𝑁 − 0 − 2 𝑁/2 − 2 2 0 

…
 

…
 

…
 

…
 

𝑁 − 0 − (𝑁/2 − 1) 1 𝑁/2 − 1 0 

𝑁 − 𝑁/2 0 𝑁/2 0 

𝑁 − 0 − (𝑁/2 − 1) 0 𝑁/2 − 1 1 

…
 

…
 

…
 

…
 

𝑁 − 0 − (𝑁 − 2) 0 2 𝑁/2 − 2 

𝑁 − 0 − (𝑁 − 1) 0 1 𝑁/2 − 1 

𝑁 − 0 − 𝑁 0 0 𝑁/2 
 

The different weighting numbers are summarized in Table 2-4. This yields a family 

of solutions based on the number of transmission zeros at the origin (𝑁𝑂𝑇𝑍) as 

illustrated in Table 2-5. It is interesting to note from Table 2-5 that the first family of 

solution (𝑁-0-0) are simply the even degree Achieser-Zolotarev characteristic 

function [29]. These are characterised by (2.71). The well-known even degree 

Chebyshev low-pass characteristic functions as discussed in section 2.4.1 may be 

obtained from this class by simply setting the parameter 𝜔𝑐 = 0. Also 𝑁-0-𝑁/2 

family in the middle of Table 2-5 characterised by a characteristic function defined 

by (2.72) is a well-known function in the design of dual passband filters e.g. used in 

[2] or as a transform from low-pass to bandpass filter [4]. Therefore, Table 2-5 

gives all possible transmission zeros at the origin (𝑁𝑂𝑇𝑍) for any given minimum 

phase bandpass filter degree (𝑁).  
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Fig. 2-2  Lumped element low-pass prototype filter used for design of bandpass filters with  

𝑁𝑇𝑍 = 𝑁 − 1 

As an illustrative example, Fig. 2-2 shows the realisation of a bandpass filter 

characterised by an 𝑁-0-(𝑁 − 1) transfer function. The filter network contains 

𝑁 − 1 transmission zeros at the origin which are the result of the series capacitors 

and shunt inductors as in Fig. 2-2. Table 2-5 above shows that the weighting 

numbers for each of the basis function are 𝛼 = 0, 𝛽 = 1 and 𝛾 = 𝑁/2 − 1 in order 

to provide the required transmission zeros at the origin. 

The basis functions derived above may be used in the direct synthesis of other 

bandpass filters. For example distributed combline bandpass filters may be 

synthesised using the 𝑁-0-1 family of solutions, with 𝑁𝑇𝑍 = 1 transmission zeros at 

the origin in Table 2-5 by means of a suitable lumped to distributed transformation. 

This will be considered in detail in Chapter 5. With the known required number of 

transmission zeros at the origin corresponding to weighting numbers 𝛼, 𝛽 and 𝛾 as 

in Table 2-5, other types of bandpass filters may easily be synthesised. 

A more complete general solution for lumped bandpass filters include arbitrary 

placed transmission zeros on the complex plane. This might be achieved by 

solving a differential equation of the form 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=

𝐶𝑛∏(𝜔2 − 𝜔𝑟
2
)

𝑇

𝑟=1

√𝑇𝑁
2(𝜔) − 1

𝜔𝑞 ∏(𝜔2 − 𝜔𝑛2)

𝑁𝐹𝑇𝑍

𝑛=1

√𝜔4 − (1 + 𝜔𝑐2)𝜔2 + 𝜔𝑐2

 (2.86) 

All terms are defined as before. Note that the T out-of-band turning point may be 

complex in nature. However, to avoid elaborate mathematical manipulations as 

was the case for a simple minimum phase network, it is intuitive to realise that (2.1) 

is true for this case and that the basis function may be independently determined 
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by mathematically modelling simple lowest degree characteristic functions based 

on the number and position of the transmission zeros. The second method for 

determining the basis function becomes handy in this case. Now since the three 

basis functions already give the different combinations of transmission zeros, the 

only required basis function is the one with arbitrary placed symmetrical pairs of 

transmission zeros. This symmetrical basis function may be computed by solving a 

set of two non-linear simultaneous equations based on its known values at the 

critical points, (i.e. ±𝛼,± 𝛽 for bandpass filter) as depicted in Fig. 2-3. Using (2.13) 

and the known values at the cutoff points, the basis function with a symmetrical 

pair of transmission zeros prescribed at ±𝜔𝑛 and unknown coefficients 𝑝, 𝑞 and 𝑑 

may be determined as,  

𝑋2−2−0(𝜔) =
𝑈𝑟(𝜔)

𝑃𝑟(𝜔)
=

𝑝𝜔2 + 𝑞

𝑑(𝜔2 − 𝜔𝑛2)
= 

𝑋2−2−0(𝜔) = ±
(2𝜔𝑛

2 − 1 − 𝜔𝑐
2)𝜔2 + 2𝜔𝑐

2 − 𝜔𝑛
2(1 + 𝜔𝑐

2)

(1 − 𝜔𝑐2)(𝜔2 − 𝜔𝑛2)
. 

(2.87) 

 

 
Fig. 2-3  Example of a plot of normalised (with 𝛿 = 1) 𝑋2−2−0(𝜔) basis characteristic 

function 

Additionally, 𝜔𝑛 is in general the position of any arbitrary located complex 

transmission zero. In fact all the other three basis functions above may be found in 

this way. For symmetrical networks, all the cutoff points are symmetrical (i.e. 

𝛽 = −𝛼 = 𝜔𝑐).  
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Table 2-6 Basis Functions for Direct Synthesis of Lumped Bandpass Filters or 

Symmetrical Low-pass Prototype Filter for Dual Bandpass Filter  

𝑉(𝜔) = (𝜔2 − 𝛽2)(𝜔2 − 𝛿2) 

2 − 0 − 0 

𝑈𝑟(𝜔) = ±(2𝜔2 − 𝛼2 − 𝛿2) 

𝑊𝑟(𝜔) = 2 

𝑃𝑟(𝜔) = 𝛼2 − 𝛿2 

2 − 0 − 1 

𝑈𝑟(𝜔) = ±(𝜔2 − 𝛼𝛿) 

𝑊𝑟(𝜔) = 1 

𝑃𝑟(𝜔) = (𝛼 − 𝛿)𝜔 

2 − 0 − 2 

𝑈𝑟(𝜔) = ±((𝛼
2 + 𝛿2)𝜔2 − 2𝛼2𝛿2) 

𝑊𝑟(𝜔) = 2𝛼𝛿 

𝑃𝑟(𝜔) = (𝛼
2 − 𝛿2)𝜔2 

2 − 2 − 0 

𝑈𝑟(𝜔) = ±{(2𝜔𝑛
2 − 𝛼2 − 𝛿2)𝜔2 + 2𝛼2𝛿2 − 𝜔𝑛

2(𝛼2 + 𝛿2)} 

𝑊𝑟(𝜔) = {
+2√(𝜔𝑛2 − 𝛼2)(𝜔𝑛2 − 𝛿2), for  |𝜔𝑛| > 𝛿

−2√(𝜔𝑛2 − 𝛼2)(𝜔𝑛2 − 𝛿2), for 𝛼 < 𝜔𝑛 < 𝛽 
 

𝑃𝑟(𝜔) = (𝛼2 − 𝛿2)(𝜔2 − 𝜔𝑛
2) 

 

Now the general solution to the differential equation (2.86) may be written as, 

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ

{
 

 
    𝛼1 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−0(𝜔)}

+𝛼2 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−1(𝜔)}

+𝛼3 𝑎𝑐𝑜𝑠ℎ{𝑋2−0−2(𝜔)}

+𝛼4 𝑎𝑐𝑜𝑠ℎ{𝑋2−2−0(𝜔)}}
 

 
 (2.88) 

where, 

𝑋2−0−0(𝜔) =
2𝜔2 − (1 + 𝜔𝑐

2)

(1 − 𝜔𝑐2)
 

𝑋2−0−1(𝜔) =
𝜔2 − 𝜔𝑐
(1 − 𝜔𝑐)𝜔

 

(2.89) 
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𝑋2−0−2(𝜔) =
(1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2

(1 − 𝜔𝑐2)𝜔2
 

𝑋2−2−0(𝜔) =
(2𝜔𝑛

2 − 1 − 𝜔𝑐
2)𝜔2 + 2𝜔𝑐

2 − 𝜔𝑛
2(1 + 𝜔𝑐

2)

(1 − 𝜔𝑐2)(𝜔2 − 𝜔𝑛2)
 

and 𝛼1, 𝛼2, 𝛼3 and 𝛼4 are integer scalars which determine the number of the 

transmission zeros that each basis function provide. The four (4) basis functions 

above completely characterises any bandpass filter network. 

Not only are these basis functions used for direct synthesis of bandpass filters but 

they may also be used for synthesis of symmetrical narrow dual bandpass filters. 

All the computed basis functions were expressed in terms of the required 

polynomials and are tabulated in Table 2-6. Notice that the inner cutoff points 

𝛽 = −𝛼 and the outer cutoff points ±𝛿 in Table 2-6 may be arbitrarily chosen and 

have been denormalised (i.e. 𝛿 ≠ 1). These basis function are completely identical 

to the normalised form in (2.89) when 𝛽 = −𝛼 = 𝜔𝑐 and 𝛿 = 1. For the 𝑋2−2−0(𝜔) 

basis function calculated above, 𝑊𝑟 > 0 for |𝜔𝑛| > 𝛿 and 𝑊𝑟 < 0 for 𝛼 < 𝜔𝑛 < 𝛽. 

2.4.4 Lumped Chebyshev Low-pass Prototype Filter for Interdigital 

Bandpass Filter  

An approach to the exact synthesis of interdigital bandpass filters is now examined. 

Fig. 2-4 shows the realisation of an interdigital bandpass filter consisting of shunt 

short circuited stubs separated by unit length transmission lines. The goal is now to 

obtain characteristic polynomials which may be used to exactly synthesise the 

network of Fig. 2-4. It is clear from Fig. 2-4 that even degree interdigital bandpass 

filters have a single pair of half transmission zeros at infinity on the real 𝜌 complex 

plane due to an old number of unit elements. Old degree interdigital bandpass 

filters on the other hand have an even number of unit elements. Firstly, synthesis 

of even degree case will be outlined as these are directly obtained from the basis 

functions of section 2.4.3.  

 
Fig. 2-4  General distributed equivalent circuit for interdigital bandpass filter 
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2.4.4.1 Even degree Interdigital bandpass filter characteristic polynomials 

Even degree interdigital bandpass filters may be synthesised using the basis 

function in Table 2-5 corresponding to the second family of solution, 𝑁-0-1, with 

𝛼 = 𝑁/2 − 1, 𝛽 = 1 and 𝛾 = 0. For this family, the lumped domain s-parameters 

take the following form: 

𝑆11(𝜔) =
𝐹(𝜔)/𝜇 

𝐸(𝜔) 
,   𝑆21(𝜔) =

𝜔/𝜀 

𝐸(𝜔) 
 (2.90) 

This characteristic function has a single transmission zero at the origin, i.e. 𝑁𝑇𝑍 =

1. Using the above weighting numbers and the general recursive technique, the 

bandpass filter characteristic polynomials are first obtained in the lumped domain. 

Then using the following lumped-to-distributed transformation,   

𝑝 =
𝜌

√1 − 𝜌2
 or 𝜔 =

𝑡

√1 + 𝑡2
 

(2.91) 

and its inverse transform defined by  

𝜌 =
±𝑝

√1 + 𝑝2
 𝑜𝑟 𝑡 =

±𝜔

√1 − 𝜔2
, 

(2.92) 

the distributed characteristic polynomials are obtained. The critical points are 

mapped from the 𝜔 – plane to  𝜃 – plane as follows: 

0 → 0 

𝜔𝑐 → 𝜃1 

1 → 900(= 𝜃𝑜) 

(2.93) 

where 𝜃1and 𝜃𝑜 are the electrical lengths at the lower bandedge and centre 

frequency in degrees of the bandpass filter respectively. In fact the transformation 

maps a portion −1 ≤ 𝜔 ≤ 1 in 𝜔 – plane to the fundamental period −90𝑜 ≤ 𝜃 ≤ 90𝑜 

in 𝜃 – plane (or −∞ ≤ 𝑡 ≤ ∞ in 𝑡 plane) which is concatenated throughout the 

entire 𝜃 axis. Thus the s-parameters of (2.90) becomes 

𝑆11(𝑡) =
𝐹(𝑡)/𝜇′

𝐸(𝑡)
, 

(2.94) 
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   𝑆21(𝑡) =
𝑃(𝑡)/𝜀′ 

𝐸(𝑡) 
=
𝑡(1 + 𝑡2)

𝑁−1
2 /𝜀′ 

𝐸(𝑡) 
 

The transmission polynomial 𝑃(𝑡) is known following through the transformation. 

The network is fully canonical since   𝑆21(𝑡) has 𝑁 transmission zeros i.e. a single 

transmission zero at the origin and 𝑁 − 1 pairs of transmission half-zeros at infinity 

on the real 𝜌 complex plane (i.e. 𝑡 = ±1). The polynomials 𝐹(𝑡) and 𝐸(𝑡) may be 

obtained from 𝐹(𝜔) and 𝐸(𝜔) by transforming the singularities of 𝐹(𝜔) and 𝐸(𝜔) 

using (2.92). The normalising parameters 𝜇′ and 𝜀′ are computed at points in the 

𝑡 − domain where both 𝑆11(𝑡) and 𝑆21(𝑡) are known (e.g. 𝑡 = 𝑡𝑐) so that the unitary 

condition and the prescribed return loss level are satisfied as explained in Chapter 

1. Because all the polynomials 𝑃(𝑡), 𝐹(𝑡) and 𝐸(𝑡) are assumed to be monic and 

of degree 𝑁 (𝑁 even), then appropriate formulae for the normalising parameters 𝜀′ 

and 𝜇′ must be used. Here negative signs are taken for both 𝜀′ and 𝜇′. 

2.4.4.2 Odd degree Interdigital bandpass filter characteristic polynomial 

For odd degree interdigital bandpass filters the lumped low-pass characteristic 

function in ω domain has the form 

𝑇𝑁(𝜔) =
𝑑𝑛
𝜔
(√1 − 𝜔2)∏(𝜔2 − 𝜔𝑛

2)

𝑁−1

𝑛=1

 

𝑇𝑁(𝜔) =
𝑑𝑛
𝜔
(√1 − 𝜔2)𝐻(𝜔) 

(2.95) 

where 𝜔𝑛 is the 𝑛𝑡ℎ reflection zero position and 𝑑𝑛 is a constant. The function is 

characterised by a symmetrical pair of reflection half-zero at 𝜔 = ±1 with the 

polynomial 𝐻(𝜔) containing the remaining 𝑁 − 1 reflection zeros. The 

characteristic polynomial satisfies the differential equation of the form, 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=
𝐶𝑛(𝜔

2 + 𝜔𝑚
2)√𝑇𝑁

2(𝜔) − 1

𝜔√1 − 𝜔2√𝜔2 − 𝜔𝑐2
 (2.96) 

with all the parameters as defined above in (2.41). The solution takes the same 

form as in (2.50) where, 
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acosh 𝑇𝑁(𝜔) = 𝑙𝑜𝑔

{
 

 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐2)𝜔2 − 2𝜔𝑐

2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2
}
 

 

||

𝜔=1

+ 𝐶𝑜 , 

(2.97) 

except that the constant of integration 𝐶𝑜 is computed for  𝑇𝑁(𝜔 = 1) = 0 as follows 

acosh(0)= 𝑙𝑜𝑔

{
 

 
(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)
𝐶𝑛
2

( −1)
𝐶𝑛𝑚
2 𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2
}
 

 

||

𝜔=1

+ 𝐶𝑜 

(2.98) 

yielding 

𝐶𝑜 = 𝑙𝑜𝑔 {
𝑗( −1)

𝐶𝑛𝑚
2

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)

}. (2.99) 

Substituting this into (2.97) yields,  

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ

[
 
 
 
 

𝑙𝑜𝑔

{
 
 

 
 

𝑗(2𝜔2 − (1 + 𝜔𝑐
2) + 2√𝑉)

𝐶𝑛
2

(1 − 𝜔𝑐
2)
𝐶𝑛
2
(1−𝑚)𝜔−𝐶𝑛𝑚( (1 + 𝜔𝑐

2)𝜔2 − 2𝜔𝑐
2 − 2𝜔𝑐√𝑉)

𝐶𝑛𝑚
2

}
 
 

 
 

]
 
 
 
 

 (2.100) 

By multiplying the numerator and denominator of the natural logarithm argument by 

(𝜔2 − 1)
𝐶𝑛𝑚

2  and using the identities 

(𝜔2 − 1)( (1 + 𝜔𝑐
2)𝜔2 − 2𝜔𝑐

2 − 2𝜔𝑐√𝑉) = ( 𝜔𝑐𝜔
2 −𝜔𝑐 − √𝑉) 

(𝜔𝑐𝜔
2 − 𝜔𝑐 + √𝑉)( 𝜔𝑐𝜔

2 − 𝜔𝑐 − √𝑉) = ( 𝜔𝑐
2 − 1)( 𝜔2 − 1)𝜔2 

(2.101) 

The solution may be shown to be 

𝑇𝑁(𝜔) = 

𝑐𝑜𝑠ℎ

[
 
 
 

𝑙𝑜𝑔

{
 

 
𝑗(𝜔2 − 1)

𝐶𝑛𝑚
2 (2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)

𝐶𝑛
2
( 𝜔𝑐𝜔

2 − 𝜔𝑐 + √𝑉)
𝐶𝑛𝑚

(1 − 𝜔𝑐2)
𝐶𝑛
2
(1−𝑚)𝜔𝐶𝑛𝑚( ( 𝜔𝑐2 − 1)( 𝜔2 − 1))

𝐶𝑛𝑚

}
 

 

]
 
 
 

 
(2.102) 

Clearly, for a single transmission zero at the origin, 

𝐶𝑛𝑚 = 1 (2.103) 
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and for 𝑁th degree characteristic polynomial,  

𝐶𝑛 = 𝑁 − 1 (2.104) 

Thus, 𝐶𝑛𝑚  and 𝐶𝑛 may be substituted for in (2.102) and the solution becomes, 

𝑇𝑁(𝜔) = 𝑐𝑜𝑠ℎ

[
 
 
 
 

𝑙𝑜𝑔

{
 
 

 
 
𝑗(𝜔2 − 1)

1
2(2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉)

𝑁−1
2
( 𝜔𝑐𝜔

2 −𝜔𝑐 + √𝑉)

(1 − 𝜔𝑐
2)(𝑁−2)/2𝜔( 𝜔𝑐

2 − 1)( 𝜔2 − 1)

}
 
 

 
 

]
 
 
 
 

 (2.105) 

With little manipulation, this equation may be expressed in its final form as, 

𝑇𝑁(𝜔) = 

𝑐𝑜𝑠ℎ [𝑙𝑜𝑔 {(
√1 − 𝜔2

1 − 𝜔2
)(
2𝜔2 − (1 + 𝜔𝑐

2) + 2√𝑉

1 − 𝜔𝑐2
)

𝑁−1
2

( 
𝜔𝑐𝜔

2 − 𝜔𝑐 + √𝑉

( 1 − 𝜔𝑐
2)𝜔

)}] 
(2.106) 

As before, the general recursive technique may be applied to obtain 𝐹(𝜔). Writing, 

𝐹(𝜔)

√1 − 𝜔2
= 𝐻(𝜔) =

𝑋𝑁
𝜔2 − 1

 (2.107) 

The polynomial 𝑋𝑁 is obtained by applying the general recursive technique defined 

in section 2.3 with initial conditions 

𝑋0 = 𝜔𝑐𝜔
2 − 𝜔𝑐 and 𝑌0 = 1 (2.108) 

and using the following basis function  

𝑈𝑛 = 2𝜔
2 − (1 + 𝜔𝑐

2) 

𝑊𝑛 = 2 

𝑉 = (𝜔2 − 1)(𝜔2 − 𝜔𝑐) 

(2.109) 

where the weighting number is 

𝛼 = (𝑁 − 1)/2  (2.110) 

At the end of the routine, the (𝑁 − 1)th degree polynomial 𝐻(𝜔) and hence 𝐹(𝜔) is 

determined from (2.107). The transformation (2.91)-(2.92) may then be applied as 

for the even degree case. The monic transmission polynomial 𝑃(𝜔) is directly 

obtained from (2.106) as, 

𝑃(𝜔) = 𝜔 (2.111) 
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It follows therefore, directly from the transformation that the transmission 

polynomial 𝑃(𝑡), takes the same form as for the even degree case as 

𝑃(𝑡)/𝜀′ = 𝑡(1 + 𝑡2)
𝑁−1
2 /𝜀′ (2.112) 

The 𝑁 − 1 reflection zeros of 𝐻(𝜔) in 𝜔 − domain are then transformed to 𝑡 − 

domain by application of (2.92) to give the zeros of 𝐹(𝑡). Notice that the radical 

sign on the reflection polynomial (2.107) disappears after the transformation. 

Appropriate formulae in section 1.1.1.2 of Chapter 1 must be used for the 

normalizing parameters 𝜇′ and 𝜀′ since in this case, the polynomials 𝑃(𝑡) and 𝐸(𝑡) 

are both of degree 𝑁  except for  𝐹(𝑡) which is of degree 𝑁 − 1. Note too that the 

radical on the 𝑃(𝑡) polynomial disappears after the transformation as 𝑁 is odd. 

Therefore the more accurate method of determining polynomial 𝐸(𝑡) as described 

in Chapter 1 is used. The rest of the synthesis process is as described in Chapter 

1. 

The question is whether it would be possible to synthesise combline and interdigital 

bandpass filters directly in the distributed domain without using the lumped to 

distributed transformation? It will be reviewed in section 2.4.5 that the basis 

functions may directly be obtained in the distributed domain enabling direct 

synthesis of generalised distributed bandpass filters. 

2.4.5 Distributed Generalised Chebyshev Bandpass Filters 

Since most bandpass filters are implemented using distributed elements it is often 

convenient to directly synthesise the filter in the distributed domain. Therefore, for 

direct synthesis of distributed bandpass filters, the basis functions were also 

determined and are shown in Table 2-7. These basis functions are the distributed 

domain equivalence of the lumped basis function computed in Table 2-6. Note that 

the first basis function 2-0-0 has two quarter-wave frequency transmission zeros 

(𝜃𝑧 = 90
𝑜). The 2-0-1 basis function has a single quarter-wave frequency 

transmission zero (𝜃𝑧 = 90𝑜) and a single transmission zero at the origin (𝜃𝑧 = 0𝑜). 

The 2-0-2 basis function has all its transmission zeros at the origin (𝜃𝑧 = 0
𝑜) and 

finally the 2-2-0 basis function provides a pair of generally located transmissions 

zeros on the complex 𝜌 plane (𝜃𝑧 = 𝜃𝜔 ± 𝑗𝜃𝛿). Note that the fundamental period is 
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0𝑜 ≤ 𝜃 ≤ 90𝑜 which is concatenated throughout the entire 𝜃-plane due to the 

periodic nature of the tangent function. 

Table 2-7 Basis Functions for Direct Synthesis of Distributed Bandpass Filters or 

Symmetrical Low-pass Prototype Filter for Dual Bandpass Filter (𝑁-𝑁𝐹𝑇𝑍-𝑁0𝑜) 

𝑉(𝑡) = (𝑡2 − 𝑡1
2)(𝑡2 − 𝑡2

2)       𝑡 = 𝑡𝑎𝑛 𝜃 

Cutoff points 𝜃1 and 𝜃2 𝑟𝑎𝑑/𝑠 (𝑡1 = 𝑡𝑎𝑛 𝜃1  and   𝑡2 = 𝑡𝑎𝑛 𝜃2) 

Transmission zero position 𝜃𝑧 𝑟𝑎𝑑/𝑠 (𝑡𝑧 = 𝑡𝑎𝑛 𝜃𝑧) 

2 − 0 − 0 

𝑈𝑟(𝑡) = ±(2𝑡
2 − 𝑡2

2 − 𝑡1
2) 

𝑊𝑟(𝑡) = 2 

𝑃𝑟(𝑡) = 𝑡2
2
− 𝑡1

2 

2 − 0 − 1 

𝑈𝑟(𝑡) = ±(𝑡
2 − 𝑡1𝑡2) 

𝑊𝑟(𝑡) = 1 

𝑃𝑟(𝑡) = (𝑡2 − 𝑡1)𝑡 

2 − 0 − 2 

𝑈𝑟(𝑡) = ± ((𝑡1
2 + 𝑡2

2)𝑡2 − 2𝑡1
2𝑡2

2) 

𝑊𝑟(𝑡) = 2𝑡1𝑡2 

𝑃𝑟(𝑡) = (𝑡2
2 − 𝑡1

2)𝑡2 

2 − 2 − 0 

𝑈𝑟(𝑡) = ±{(𝑡1
2 + 𝑡2

2 − 2𝑡𝑧
2)𝑡2 + 𝑡𝑧

2(𝑡1
2 + 𝑡2

2) − 2𝑡1
2
𝑡2
2} 

𝑊𝑟(𝑡) =

{
 

 2√(𝑡𝑧
2 − 𝑡1

2)(𝑡𝑧
2 − 𝑡2

2), for  |𝜃𝑧| > 𝜃2

−2√(𝑡𝑧
2 − 𝑡1

2)(𝑡𝑧
2 − 𝑡2

2), for −𝜃1 < 𝜃𝑧 < 𝜃1 

 

𝑃𝑟(𝑡) = (𝑡2
2 − 𝑡1

2)(𝑡2 − 𝑡𝑧
2) 

 

Another class of distributed bandpass filter may be defined which is made up of 

unit length of transmission lines of quarter-wave electrical length at the centre 

frequency. Classical interdigital bandpass filter falls in this category. This class of 
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filters may also be synthesised using the synthesis technique developed thus far 

by directly determining the basis functions. In section 2.4.4, the interdigital 

bandpass filter is synthesised from the lumped domain by making use of lumped 

distributed transformation (2.91) or (2.92). To demonstrate the power of this 

technique, the same transfer function may be obtained using direct quarter 

wavelength bandpass filter basis functions. Without solving any differential 

equation, these basis functions are given in Table 2-8.  

Table 2-8  Quarter-wavelength Bandpass Filter Basis Functions (𝑁-𝑁𝐹𝑇𝑍-𝑁0𝑜) 

𝑉(𝑡) = (𝑡2 − 𝑡1
2)       𝑡 = 𝑡𝑎𝑛 𝜃 

Cutoff points 𝜃1 and 𝜃2 𝑟𝑎𝑑/𝑠 (𝑡1 = 𝑡𝑎𝑛 𝜃1  and   𝑡2 = 𝑡𝑎𝑛 𝜃2 = −𝑡𝑎𝑛 𝜃1) 

𝑁-𝑁𝐹𝑇𝑍-𝑁0𝑜 𝑈𝑟(𝑡) 𝑊𝑟(𝑡) 𝑃𝑟(𝑡) 

1 − 0 − 0∗ ±√1 + 𝑡1
2 𝑗 √1 + 𝑡2 

1 − 0 − 1 ±𝑡1 𝑗 𝑡 

2 − 2 − 0 ±(𝑡2 + 𝑡z
2 − 2𝑡1

2) 2√𝑡z
2 − 𝑡1

2 𝑡2 − 𝑡z
2 

* A pair of half transmission zeros at infinity on the real axis of the 𝜌 complex plane 

(i.e. 𝜃𝑧 = ±𝑗∞) 

In general interdigital bandpass filters of this form have the weighting numbers 

𝛼1−0−0 = 𝑁 − 1,  𝛼1−0−1 = 1 and 𝛼2−2−0 = 0 (since no finite frequency transmission 

zeros) for the basis functions in Table 2-8. They are characterised by 𝑁 − 1 half 

transmission zeros pairs at infinity on the real axis of the 𝜌 complex plane and a 

single transmission zero at  𝜃𝑧 = 0
𝑜 (and 𝜃𝑧 = 180𝑜). As opposed to the earlier 

method of section 2.4.4, it is clear, using direct distributed basis functions, on the 

transmission zeros that each basis function provides and how the entire 

characteristic function is built up. It will be proved in Chapter 5 that these basis 

functions yields the same transfer functions. Because this is a quarter wavelength 

bandpass filter, it is centred around  𝜃𝑜 = 90
𝑜 and the bandedge is chosen such 

that 𝜃1 < 𝜃𝑜. Sometimes there might be a requirement to increase selectivity by 
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finite transmission zeros placement and the 2-2-0 basis function provides a 

symmetrical pair of transmission zeros. Note that for this basis function the finite 

frequency transmission zeros must be in the region 0 < 𝜃𝑧 < 𝜃1.  

Other distributed bandpass filters utilizing cascades of unit length transmission 

lines may easily be synthesised using the 1-0-0 basis function in Table 2-8. This is 

especially true of microwave filters implemented using waveguides. 

2.4.6 Lumped Chebyshev Narrow Dual Bandpass Filters 

To synthesise symmetrical narrow band dual bandpass filters in the lumped 

domain, the same basis functions as for direct synthesis of bandpass filters in 

Table 2-6 may be used. Asymmetrical functions require different basis function and 

these may be determined in similar ways as demonstrated above. For these basis 

functions, 𝛼 ≠ −𝛽. Because of the asymmetric nature of these functions, some of 

the transmission zeros of the basis function may be dependent so that the function 

is constrained to pass through all its cutoff points. Even though these transmission 

zeros are not controlled, the basis function may be mathematically modelled such 

that these transmission zeros occur in the specified stopband regions. For this 

lumped prototype filter, there are three stopband regions namely, lower stopband 

(LSB), inner stopband (ISB) and upper stopband (USB). Ideally this further entails 

that frequency invariant reactances are used in the lumped element synthesis and 

because the filter is assumed to be narrow band, these fictitious elements may be 

approximated by real elements using reactance slope approximation [29]. Some of 

the low ordered basis functions were calculated and are shown in Table 2-9 in 

terms of the required polynomials. 
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Table 2-9 Asymmetrical Narrow Dual Bandpass Prototype Filter Basis Functions 

𝑉 = (𝜔2 − 1)(𝜔 − 𝛼)(𝜔 − 𝛽) 

Basis Function (𝑁 -𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍) and Position of Dependent Transmission 
Zero (𝜔𝑧) 

𝐼𝑆𝐵 = Inner Stopband, 𝐿𝑆𝐵 = Lower Stopband, 𝑈𝑆𝐵 = Upper Stopband 

2 − 2 − 0 (𝜔𝑧 − 𝜔𝑛  ⇒ 𝐿𝑆𝐵 − 𝐼𝑆𝐵 or 𝐼𝑆𝐵 − 𝑈𝑆𝐵) 
𝜔𝑧 = [(2𝛼𝛽 + 𝛽 − 𝛼)/𝜔𝑛 − 𝛼 − 𝛽]/[(𝛼 + 𝛽)/𝜔𝑛 − 𝛼 + 𝛽 − 2] 

𝜀 = (𝛼 + 1)/[(𝜔𝑧 − 𝛼)/𝜔𝑛 + 𝜔𝑧 + 1] 
𝑈𝑟(𝜔) = 𝜔

2 − 𝜀(𝜔𝑧 + 1/𝜔𝑛)𝜔 + 𝜀(1 + 𝜔𝑧/𝜔𝑛) − 1 

𝑃𝑟(𝜔) = 𝜀((𝜔𝑧/𝜔𝑛)𝜔
2 − (𝜔𝑧 + 1/𝜔𝑛)𝜔 − 𝜔𝑧) 

𝑊𝑟(𝜔) = 1 if 𝜔𝑛 is infinite 

𝑊𝑟(𝜔) = √1 − 𝜀2 if 𝜔𝑛 is finite 

2 − 2 − 0 (𝜔𝑧 − 𝜔𝑛  ⇒  𝐿𝑆𝐵 − 𝑈𝑆𝐵 or 𝐼𝑆𝐵 − 𝐼𝑆𝐵) 
𝜀 = [𝛼𝛽 + 1 − (𝛼 + 𝛽)𝜔𝑛]/[1 − 𝛼𝛽 + (𝑎 + 𝑏 − 2𝜔𝑛)𝜔𝑛] 

𝜔𝑧 = (𝛼𝛽 + 1 + (𝛼𝛽 − 1)𝜀)/(2𝜀𝜔𝑛) 
𝑈𝑟(𝜔) = 𝜔

2 − (1 + 𝜀)(𝛼 + 𝛽)𝜔/2 + (𝛼𝛽 − 1)/2 + 𝜀(𝛼𝛽 + 1)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔2 − (𝜔𝑧 + 𝜔𝑛)𝜔 + 𝜔𝑧𝜔𝑛) 

𝑊𝑟(𝜔) = √1 − 𝜀2 
3 − 1 − 0 (1 − 𝛽 > 𝛼 + 1) (𝜔𝑧 𝐼𝑆𝐵) 

𝜔𝑚 = (𝛼 + 𝛽 + 2)/2 

𝜀 = (𝜔𝑚
2 − 2𝜔𝑚 − 𝛼 − 𝛽 − 𝛼𝛽)/2 

𝜔𝑧 = −(𝜔𝑚
2 + 𝛼𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 − 2𝜔𝑚 + 𝛼 + 𝛽 + 𝛼𝛽)𝜔/2

+ (𝜔𝑚
2 − 𝛼𝛽)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

3 − 1 − 0 (1 − 𝛽 > 𝛼 + 1) (𝜔𝑧 − 𝜔𝑛  ⇒  𝐿𝑆𝐵 or 𝑈𝑆𝐵) 
𝜔𝑚 = (𝛽 − 𝛼)/2 

𝜀 = (𝜔𝑚
2 + 2𝛼𝜔𝑚 + 1)/2 

𝜔𝑧 = (𝛼𝜔𝑚
2 + 𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 + 2𝛼𝜔𝑚 − 1)𝜔/2

+ (−𝛼𝜔𝑚
2 + 𝛽)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

3 − 1 − 0 (1 − 𝛽 < 𝛼 + 1) (𝜔𝑧 𝐼𝑆𝐵) 
𝜔𝑚 = (𝛼 + 𝛽 − 2)/2 

𝜀 = −(𝜔𝑚
2 + 2𝜔𝑚 + 𝛼 + 𝛽 − 𝛼𝛽)/2 

𝜔𝑧 = −(𝜔𝑚
2 + 𝛼𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 + 2𝜔𝑚 − 𝛼 − 𝛽 + 𝛼𝛽)𝜔/2

+ (−𝜔𝑚
2 + 𝛼𝛽)/2 
𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 
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3 − 1 − 0 (1 − 𝛽 > 𝛼 + 1) (𝜔𝑧 𝐼𝑆𝐵) 
𝜔𝑚 = (𝛼 + 𝛽 + 2)/2 

𝜀 = (𝜔𝑚
2 − 2𝜔𝑚 − 𝛼 − 𝛽 − 𝛼𝛽)/2 

𝜔𝑧 = −(𝜔𝑚
2 + 𝛼𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 − 2𝜔𝑚 + 𝛼 + 𝛽 + 𝛼𝛽)𝜔/2

+ (𝜔𝑚
2 − 𝛼𝛽)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

3 − 1 − 0 (1 − 𝛽 > 𝛼 + 1) (𝜔𝑧 − 𝜔𝑛  ⇒  𝐿𝑆𝐵 or 𝑈𝑆𝐵) 
𝜔𝑚 = (𝛽 − 𝛼)/2 

𝜀 = (𝜔𝑚
2 + 2𝛼𝜔𝑚 + 1)/2 

𝜔𝑧 = (𝛼𝜔𝑚
2 + 𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 + 2𝛼𝜔𝑚 − 1)𝜔/2

+ (−𝛼𝜔𝑚
2 + 𝛽)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

3 − 1 − 0 (1 − 𝛽 < 𝛼 + 1) (𝜔𝑧 𝐼𝑆𝐵) 
𝜔𝑚 = (𝛼 + 𝛽 − 2)/2 

𝜀 = −(𝜔𝑚
2 + 2𝜔𝑚 + 𝛼 + 𝛽 − 𝛼𝛽)/2 

𝜔𝑧 = −(𝜔𝑚
2 + 𝛼𝛽)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔

2/2 + (𝜔𝑚
2 + 2𝜔𝑚 − 𝛼 − 𝛽 + 𝛼𝛽)𝜔/2

+ (−𝜔𝑚
2 + 𝛼𝛽)/2 
𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

 

3 − 1 − 0 (1 − 𝛽 < 𝛼 + 1) (𝜔𝑧 𝐿𝑆𝐵 or 𝑈𝑆𝐵) 
𝜔𝑚 = (𝛼 − 𝛽)/2 

𝜀 = (𝜔𝑚
2 + 2𝛽𝜔𝑚 + 1)/2 

𝜔𝑧 = (𝛽𝜔𝑚
2 + 𝛼)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔3 − (2𝜔𝑚 + 𝛼 + 𝛽)𝜔
2/2 + (𝜔𝑚

2 + 2𝛽𝜔𝑚 − 1)𝜔/2
+ (−𝛽𝜔𝑚

2 + 𝛼)/2 
𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
𝑊𝑟(𝜔) = 𝜔 − 𝜔𝑚 

4 − 1 − 0 (𝜔𝑧 𝐼𝑆𝐵) 
𝑝 = (−𝛼 + 𝛽 + 2)/2 

𝜔𝑚1 = [𝛼 + 𝛽 − 𝑝2 − 2𝑝(𝛼 − 1)]/[2(𝛼 − 𝛽 + 𝑝 − 2)] 
𝜔𝑚2 = 𝜔𝑚1 + 𝑝 

𝜀 = (2𝛽𝜔𝑚1 + 2𝛼𝜔𝑚2 + (𝛽 + 1)𝜔𝑚1
2 − (𝛼 − 1)𝜔𝑚2

2)/2 

𝜔𝑧 = (𝛽𝜔𝑚1
2 + 𝛼𝜔𝑚2

2)/(2𝜀) 

𝑈𝑟(𝜔) = 𝜔
4 − (2𝜔𝑚1 + 2𝜔𝑚2 + 𝛼 + 𝛽)𝜔

3/2 + 
(𝜔𝑚1

2 + 𝜔𝑚2
2 + 2(𝛽 + 1)𝜔𝑚1 + 2(𝛼 − 1)𝜔𝑚2 − 𝛼 + 𝛽)𝜔

2/2 − 

((𝛽 + 1)𝜔𝑚1
2
+ (𝛼 − 1)𝜔𝑚2

2
+ 2𝛽𝜔𝑚1 − 2𝛼𝜔𝑚2)𝜔/2 + 

(𝛽𝜔𝑚1
2 − 𝛼𝜔𝑚2

2)/2 

𝑃𝑟(𝜔) = 𝜀(𝜔 − 𝜔𝑧) 
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𝑊𝑟(𝜔) = 𝜔
2 − (𝜔𝑚1 + 𝜔𝑚2)𝜔 + 𝜔𝑚1𝜔𝑚2 

 

2.4.7 Lumped Generalised Chebyshev Dual Bandpass Filters 

For direct synthesis of dual bandpass, the same method is used in computing the 

basis functions. The differential equation may take up the following form with 

normalised cutoff frequency points at ±𝛼, ±𝛽, ±𝛾 and ±1(𝛿), 

𝑑𝑇𝑁(𝜔)

𝑑𝜔
=

𝐶𝑛∏(𝜔2 − 𝜔𝑟
2)

𝑇

𝑟=1

√𝑇𝑁
2(𝜔) − 1

𝜔𝑂𝑇𝑍(𝜔2 − 𝜔𝑧
2) ∏(𝜔2 − 𝜔𝑛

2)

𝑁𝐹𝑇𝑍

𝑛=1

√(𝜔2 − 𝛼2)(𝜔2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 1)

 (2.113) 

with the usual variable definitions as given above. The characteristic function has 

prescribed transmission zeros 𝜔𝑛 as other functions considered thus far. 

Unfortunately, for direct dual bandpass synthesis some transmission zeros, 𝜔𝑧, are 

inevitably and inherently dependent due to the very nature of the mathematical 

function. Because the number of passbands and stopband regions are increased in 

the dual bandpass, there is also increased permutation for the reflection and 

transmission zeros. The trade-off for this is the decreased freedom for transmission 

zeros placement. Even though, from a mathematical point of view, all the 

prescribed transmission zeros may be arbitrarily placed in any of the stopband 

regions, in reality the transmission zeros are constrained in certain stopband 

regions for certain dual bandpass characteristic functions. It is important to note 

that the degree of the cutoff polynomial, 𝑉 is now increased to 8th degree. The 

dependent transmission zeros are also unknown prior to solving the problem 

(2.113). Furthermore, because there are four passbands including the ones at 

negative frequencies, the number of reflection zeros in each band must be 

specified.  

All the above factors make the differential equation (2.113) harder to solve. 

Fortunately the method described in sections 2.2 to 2.3 may be applied to solving 

this problem by only solving for low degree basis functions based on different 

transmission zeros permutations. It can be observed in section 2.4 that increasing 

the number of stopbands also increases the permutation of transmission zeros for 

the basis functions and hence increases the number of basis functions. To 
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completely characterise any dual bandpass filter requires basis functions to 

incorporate all different possible positions of transmission zeros and the number of 

reflection zeros in each band of the dual bandpass filter. The most useful lowest 

order basis functions are shown in the Table 2-10, Table 2-11 and Table 2-12. In 

Table 2-10 and Table 2-11, the possible region of stopband for the dependent 

transmission zero position is indicated. 

Because the function is broken down into discrete independent basis functions, it 

follows that any given 𝑁𝑡ℎ basis characteristic function would have at least a 

symmetrical pair of dependent transmission zero. Using individual basis functions 

as explained in this work to build the overall characteristic function means that the 

number of the dependent transmission zeros are increased each time a given 

basis function is used. Fortunately, these dependent transmission zeros normally 

depend on the relative bandwidths and position of the prescribed transmission 

zeros so that they appear to be in synchronously controlled positions and often 

close to the band-edges. As explained above for asymmetrical narrow dual 

passband low-pass basis functions, the dependent transmission zeros may be 

constrained to be in a particular stopband region.  

 

 

 

 

 

 

 

 

 

Table 2-10 Normalized 4th Degree Basis Functions for Direct Synthesis of Dual 
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Bandpass Filters  

𝑉(𝜔) = (𝜔2 − 𝛼2)(𝜔2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 1) 

Basis Function 

(𝑁 − 𝑁𝐹𝑇𝑍 − 𝑁𝑂𝑇𝑍) 
Parametric Equations 

4 − 0 − 1 

𝑁1 = 2, 𝑁2 = 2 

Symmetrical 

i.e. 𝛼 − 𝛽 − 𝛾 + 1 = 0 

𝑝 = −1 − 𝛼𝛽 − 𝛼𝛾 + 𝛽𝛾 

𝑞 = 𝛼𝛽𝛾 

𝜀𝑟 = 𝛼𝛽𝛾 − 𝛼𝛽 − 𝛼𝛾 + 𝛽𝛾 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟 𝜔 

𝑊𝑟(𝜔) = 1 

4 − 2 − 0 

𝑁1 = 2, 𝑁2 = 2 

±𝜔z ISB Dependent 

Transmission Zeros 

𝑘 = 𝛼2 + 𝛽2 + 𝛾2 + 1 

𝑙 = 𝛼2 − 𝛽2 + 𝛾2 − 1 

𝑚 = 𝛼2𝛾2 + 𝛽2 

𝑛 = 𝛼2𝛾2 − 𝛽2 

𝑝 = −𝑘/2 

𝑞 = 𝑚/2 

𝜀𝑟 = −𝑙/2 

𝜔𝑧 = √𝑛/𝑙 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 1 

4 − 2 − 0 

𝑁1 = 2,  𝑁2 = 2 

±𝜔𝑧 

LSB/Imaginary/USB 

Dependent 

Transmission Zeros 

𝑘 = 𝛼2 + 𝛽2 + 𝛾2 + 1 

𝑙 = 𝛼2 − 𝛽2 − 𝛾2 + 1 

𝑚 = 𝛼2 + 𝛽2𝛾2 

𝑛 = 𝛼2 − 𝛽2𝛾2 

𝑝 = −𝑘/𝑙 

𝑞 = 𝑚/2 

𝜀𝑟 = 𝑙/2 

𝜔𝑧 = √
𝑛

𝑙
 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 1 
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Table 2-10 (Continued.) 

4 − 2 − 1 

𝑁1 = 2,  𝑁2 = 2 

±𝜔z ISB Dependent 

Transmission Zeros 

𝑝 = −𝛼 + 𝛽 − 𝛾 − 𝛼𝛽 + 𝛼𝛾 − 𝛽𝛾 

𝑞 = 𝛼𝛽𝛾 

𝜀𝑟 = −𝛼 + 𝛽 − 𝛾 + 1 

𝜔𝑧 = √
𝛼𝛽 − 𝛼𝛾 + 𝛽𝛾 − 𝛼𝛽𝛾

𝜀𝑟
 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟𝜔(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 1 

4 − 4 − 0 

𝑁1 = 2,  𝑁2 = 2 

±𝜔z ISB Dependent 

Transmission Zeros 

±𝜔𝑟 Prescribed 

LSB/USB 

Transmission Zeros 

𝑘 = 𝛼2 + 𝛽2 + 𝛾2 + 1 

𝑙 = 𝛼2 − 𝛽2 + 𝛾2 − 1 

𝑚 = 𝛼2𝛾2 + 𝛽2 

𝑛 = 𝛼2𝛾2 − 𝛽2 

𝜀𝑟 =
𝜔𝑟

2𝑙 − 𝑛

2𝜔𝑟4 − 𝑘𝜔𝑟2 +𝑚
 

𝑝 = −(𝑘 + 𝜀𝑟𝑙)/2 

𝑞 = (𝑚 + 𝜀𝑟𝑛)/2 

𝜔𝑧 = √
𝑛 + 𝜀𝑟𝑚

2𝜀𝑟𝜔𝑟2
 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)(𝜔2 − 𝜔𝑟
2) 

𝑊𝑟(𝜔) = √1 − 𝜀𝑟2 

4 − 4 − 0 

𝑁1 = 2,  𝑁2 = 2 

±𝜔z ISB (LSB) 

Dependent 

Transmission zeros 

±𝜔𝑟 ISB (LSB) 

Prescribed 

Transmission Zeros 

𝑘 = 𝛼2 + 𝛽2 + 𝛾2 + 1 

𝑙 = 𝛼2 − 𝛽2 − 𝛾2 + 1 

𝑚 = 𝛼2 + 𝛽2𝛾2 

𝑛 = 𝛼2 − 𝛽2𝛾2 

𝜀𝑟 =
𝑛 − 𝜔𝑟

2𝑙

2𝜔𝑟
4 − 𝑘𝜔𝑟

2 +𝑚
 

𝑝 = −(𝑘 − 𝜀𝑟𝑙)/2 

𝑞 = (𝑚 − 𝜀𝑟𝑛)/2 

𝜔𝑧 = √−
𝑛 − 𝜀𝑟𝑚

2𝜀𝑟𝜔𝑟2
 

𝑈𝑟(𝜔) = 𝜔
4 + 𝑝𝜔2 + 𝑞 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)(𝜔2 − 𝜔𝑟
2) 

𝑊𝑟(𝜔) = √1 − 𝜀𝑟2 
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Table 2-11  Normalized 6th Degree Basis Functions for Direct Synthesis of Dual 

Bandpass Filters  

𝑉(𝜔) = (ω2 − α2)(ω2 − β2)(ω2 − γ2)(ω2 − 1) 

Basis Function 

(N − NFTZ − NOTZ) 
Parametric Equations 

6 − 2 − 0 

𝑁1 = 2, 𝑁2 = 4 

1 − 𝛾 > 𝛽 − 𝛼 

±𝜔z ISB 

Dependent 

Transmission 

zeros 

𝑘 = −(𝛼2 + 𝛾2 + 1) 

𝑙 = 𝛼2𝛾2 + 𝛼2 + 𝛾2 

𝑚 = −𝛼2𝛾2 

𝜔𝑚 = √
−𝛽2 − 𝑝

2
 

𝑝 = 𝑘 

𝑞 =
𝜔𝑚

4 + 2𝛽2𝜔𝑚
2
+ 𝑙

2
 

𝑟 =
𝑚 − 𝛽2𝜔𝑚

4

2
 

𝜀𝑟 =
𝜔𝑚

4 + 2𝛽2𝜔𝑚
2
− 𝑙

2
 

𝜔𝑧 = √
𝑚 + 𝛽2𝜔𝑚

4

2𝜀𝑟
 

𝑈𝑟(𝜔) = 𝜔
6 + 𝑝𝜔4 + 𝑞𝜔2 + 𝑟 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 𝜔
2 − 𝜔𝑚

2 

6 − 2 − 0 

𝑁1 = 4, 𝑁2 = 2 

𝛽 − 𝛼 > 1 − 𝛾 

±𝜔z ISB 

Dependent 

Transmission 

Zeros 

𝑙 = 𝛼2𝛽2 + 𝛼2 + 𝛽2 

𝑚 = −𝛼2𝛽2 

𝑝 = −(𝛼2 + 𝛽2 + 1) 

𝜔𝑚 = √
−𝛾2 − 𝑝

2
 

𝑞 =
𝜔𝑚

4 + 2𝛾2𝜔𝑚
2
+ 𝑙

2
 

𝑟 =
𝑚 − 𝛾2𝜔𝑚

4

2
 

𝜀𝑟 =
𝜔𝑚

4 + 2𝛾2𝜔𝑚
2
− 𝑙

2
 

𝜔𝑧 = √
𝑚 + 𝛾2𝜔𝑚

4

2𝜀𝑟
 

𝑈𝑟(𝜔) = 𝜔
6 + 𝑝𝜔4 + 𝑞𝜔2 + 𝑟 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 𝜔
2 − 𝜔𝑚

2 
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Table 2-11 (Continued.) 

6 − 2 − 1 

𝑁1 = 2, 𝑁2 = 4 

1 − 𝛾 > 𝛽 − 𝛼 

±𝜔z ISB Dependent 

Transmission Zeros 

𝑘 = −𝛼 + 𝛽 − 𝛾 − 1 

𝑙 = 𝛼 − 𝛽 + 𝛾 − 𝛼𝛽 + 𝛼𝛾

− 𝛽𝛾 

𝑚 = 𝛼𝛽𝛾 + 𝛼𝛽 − 𝛼𝛾

+ 𝛽𝛾 

𝑛 = −𝛼𝛽𝛾 

𝜔𝑚 = −𝑘/2 

𝑝 = 𝜔𝑚
2 + 2𝑘𝜔𝑚 + 𝑙 

𝑞 = 𝑙𝜔𝑚
2 + 2𝑚𝜔𝑚 + 𝑛 

𝑟 = 𝑛𝜔𝑚
2 

𝜀𝑟 = −(𝑘𝜔𝑚
2 + 2𝑙𝜔𝑚 +𝑚) 

𝜔𝑧 = √
𝑚𝜔𝑚2 + 2𝑛𝜔𝑚

𝜀𝑟
 

𝑈𝑟(𝜔) = 𝜔6 + 𝑝𝜔4 + 𝑞𝜔2 + 𝑟 

𝑃𝑟(𝜔) = 𝜀𝑟𝜔(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 𝜔2 − 𝜔𝑚
2 

6 − 2 − 1 

𝑁1 = 4,𝑁2 = 2 

𝛽 − 𝛼 > 1 − 𝛾 

±𝜔z ISB Dependent 

Transmission Zeros 

𝑘 = −𝛼 − 𝛽 + 𝛾 − 1 

𝑙 = 𝛼 + 𝛽 − 𝛾 + 𝛼𝛽 − 𝛼𝛾

− 𝛽𝛾 

𝑚 = 𝛼𝛽𝛾 + 𝛼𝛽 − 𝛼𝛾

+ 𝛽𝛾 

𝑛 = −𝛼𝛽𝛾 

𝜔𝑚 = −𝑘/2 

𝑝 = 𝜔𝑚
2 + 2𝑘𝜔𝑚 + 𝑙 

𝑞 = 𝑙𝜔𝑚
2 + 2𝑚𝜔𝑚 + 𝑛 

𝑟 = 𝑛𝜔𝑚
2 

𝜀𝑟 = −(𝑘𝜔𝑚
2 + 2𝑙𝜔𝑚 +𝑚) 

𝜔𝑧 = √
𝑚𝜔𝑚2 + 2𝑛𝜔𝑚

𝜀𝑟
 

𝑈𝑟(𝜔) = 𝜔6 + 𝑝𝜔4 + 𝑞𝜔2 + 𝑟 

𝑃𝑟(𝜔) = 𝜀𝑟𝜔(𝜔
2 − 𝜔𝑧

2) 

𝑊𝑟(𝜔) = 𝜔2 − 𝜔𝑚
2 
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Table 2-11 (Continued.) 

6 − 6 − 0 

𝑁1 = 2, 𝑁2 = 4 

1 − 𝛾 > 𝛽 − 𝛼 

±𝜔z ISB Dependent 

Transmission Zeros 

±𝜔𝑟1, ±𝜔𝑟2, 

Prescribed 

LSB(USB)/USB(LSB) 

Transmission Zeros 

𝑃𝑟𝑒𝑚(𝜔) = (𝜔2 − 𝜔𝑟1
2)(𝜔2 −𝜔𝑟2

2) 

𝑝 =
𝛼2 − 𝛽2

2𝑃𝑟𝑒𝑚(𝛼)
 

𝑞 =
(𝛽2 − 𝛼2)(𝛽2 − 𝛾2)(𝛽2 − 1)

2𝑃𝑟𝑒𝑚(𝛽)

2

 

𝑟 =
𝛾2 − 𝛽2

2𝑃𝑟𝑒𝑚(𝛾)
 

𝑠 =
1 − 𝛽2

2𝑃𝑟𝑒𝑚(1)
 

𝑚 = 0,𝑁𝑇𝑍 < 6 else 𝑚 = 1,𝑁𝑇𝑍 = 6 

𝐴 = (𝛼2 − 𝛽2 + 2𝑞𝑚)(𝑠 − 𝑟) + 𝑝(𝛾2 − 1) 

𝐵 = 2(𝛼2 − 𝛽2 + 2𝑞𝑚)(𝑟𝛾2 − 𝑠) − 2𝛼2𝑝(𝛾2 − 1) 

𝐶 = (𝛼2 − 𝛽2 + 2𝑞𝑚)(𝑠 − 𝑟𝛾4) + (𝛾2 − 1)(𝑞 + 𝑝𝛼4) 

𝜔𝑚 = √−𝐶/𝐵,  𝑃𝑟𝑒𝑚(𝜔) = 1 

𝜔𝑚 = √−𝐵 + √𝐵
2 − 4𝐴𝐶

2𝐴
,𝜔𝑟1, 𝜔𝑟2 > 1 

In general 

𝜔𝑚 = √−𝐵±√𝐵
2−4𝐴𝐶

2𝐴
, where, 𝛾 < 𝜔𝑚 < 1 

𝜀𝑟 =
𝑞 + 𝑝(𝛼2 − 𝜔𝑚

2)2

𝛼2 − 𝛽2 + 𝑞𝑚 − 𝑝𝑚(𝛼2 − 𝜔𝑚2)2
 

𝜔𝑧 = √𝛽2 + 𝑞(1/𝜀𝑟 −𝑚) 

𝑉1(𝜔) = (1/𝜀𝑟 −𝑚)(𝜔
2 − 𝛼2)(𝜔2 − 𝛾2)(𝜔2 − 1) 

𝑉−1(𝜔) = (1/𝜀𝑟 +𝑚)(𝜔
2 − 𝛽2)(𝜔2 − 𝜔𝑚

2)2 

𝑈𝑟(𝜔) =
𝜀𝑟
2
[𝑉1(𝜔) + 𝑉−1(𝜔)] 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = 𝜔
2 −𝜔𝑚

2, 𝑁𝑇𝑍 < 6 

𝑊𝑟(𝜔) = √1 − 𝜀𝑟2(𝜔
2 − 𝜔𝑚

2),𝑁𝑇𝑍 = 6 
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Table 2-11 (Continued.) 

6 − 6 − 0 

𝑁1 = 2, 𝑁2 = 4 

1 − 𝛾 > 𝛽 − 𝛼 

±𝜔z ISB Dependent 

Transmission Zeros 

±𝜔𝑟1, ±𝜔𝑟2, 

Prescribed ISB 

Transmission Zeros 

𝑃𝑟𝑒𝑚(𝜔) = (𝜔2 − 𝜔𝑟1
2)(𝜔2 −𝜔𝑟2

2) 

𝑝 =
(𝛼2 − 𝛽2)(𝛼2 − 𝛾2)(𝛼2 − 1)

2𝑃𝑟𝑒𝑚(𝛼)
 

𝑞 =
𝛽2 − 𝛼2

2𝑃𝑟𝑒𝑚(𝛽)
 

𝑟 =
𝛾2 − 𝛼2

2𝑃𝑟𝑒𝑚(𝛾)
 

𝑠 =
1 − 𝛼2

2𝑃𝑟𝑒𝑚(1)
 

𝑚 = 0,𝑁𝑇𝑍 < 6 else 𝑚 = 1,𝑁𝑇𝑍 = 6 

𝐴 = (𝛽2 − 𝛼2 + 2𝑝𝑚)(𝑠 − 𝑟) + 𝑞(𝛾2 − 1) 

𝐵 = 2(𝛽2 − 𝛼2 + 2𝑝𝑚)(𝑟𝛾2 − 𝑠) − 2𝛽2𝑞(𝛾2 − 1) 

𝐶 = (𝛽2 − 𝛼2 + 2𝑝𝑚)(𝑠 − 𝑟𝛾4) + (𝛾2 − 1)(𝑝 + 𝑞𝛽4) 

𝜔𝑚 = √−𝐶/𝐵,  𝑃𝑟𝑒𝑚(𝜔) = 1 

𝜔𝑚 = √−𝐵 + √𝐵
2 − 4𝐴𝐶

2𝐴
, 𝛽 < 𝜔𝑟1, 𝜔𝑟2 < 𝛾 

In general 

𝜔𝑚 = √−𝐵±√𝐵
2−4𝐴𝐶

2𝐴
, where, 𝛾 < 𝜔𝑚 < 1 

𝜀𝑟 =
𝑝 + 𝑞(𝛽2 − 𝜔𝑚

2)2

𝛽2 − 𝛼2 + 𝑝𝑚 − 𝑞𝑚(𝛽2 − 𝜔𝑚2)2
 

𝜔𝑧 = √𝛼2 + 𝑝(1/𝜀𝑟 −𝑚) 

𝑉1(𝜔) = (1/𝜀𝑟 −𝑚)(𝜔
2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 1) 

𝑉−1(𝜔) = (1/𝜀𝑟 +𝑚)(𝜔
2 − 𝛼2)(𝜔2 − 𝜔𝑚

2)2 

𝑈𝑟(𝜔) =
𝜀𝑟
2
[𝑉1(𝜔) + 𝑉−1(𝜔)] 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = 𝜔
2 −𝜔𝑚

2, 𝑁𝑇𝑍 < 6 

𝑊𝑟(𝜔) = √1 − 𝜀𝑟2(𝜔
2 − 𝜔𝑚

2),𝑁𝑇𝑍 = 6 
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Table 2-12  Normalized 8th Degree Basis Functions for Direct Synthesis of Dual 

Bandpass Filters 

𝑉(𝜔) = (𝜔2 − 𝛼2)(𝜔2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 1) 

Basis Function 

(N − NFTZ − NOTZ) 
Parametric Equations 

8 − NFTZ − 0 

𝑁1 = 4, 𝑁2 = 4 

max-min tuning points 

single dependent 

transmission zeros 

±𝜔z 

m general prescribed 

transmission zeros 

±𝜔𝑛 

If 𝜔𝑛 = ∞ ∀ 𝑛  

𝑃𝑟𝑒𝑚(𝜔) = 1 

else 

𝑃𝑟𝑒𝑚(𝜔) =∏(𝜔2 − 𝜔𝑛
2)

𝑚

𝑛=1

 

𝑝 =
(𝜔2 − 𝛾2)(𝜔2 − 12)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛼

 

𝑞 =
(𝜔2 − 𝛾2)(𝜔2 − 12)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛽

 

𝑠 =
(𝜔2 − 𝛼2)(𝜔2 − 𝛽2)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛾

 

𝑡 =
(𝜔2 − 𝛼2)(𝜔2 − 𝛽2)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=1

 

𝑝 (
1

𝜀𝑟
− 1) (𝛼2 − 𝜔1

2)2 + 𝛼2 − 𝜔𝑧
2 = 0 

𝑞 (
1

𝜀𝑟
− 1) (𝛽2 − 𝜔1

2)2 + 𝛽2 − 𝜔𝑧
2 = 0 

𝑠 (
1

𝜀𝑟
+ 1) (𝛾2 − 𝜔2

2)2 − 𝛾2 + 𝜔𝑧
2 = 0 

𝑡 (
1

𝜀𝑟
+ 1) (12 − 𝜔2

2)2 − 12 + 𝜔𝑧
2 = 0 

𝑈𝑟(𝜔) =
1

2
(1 − 𝜀𝑟)(𝜔

2 − 𝜔1
2)(𝜔2 − 𝜔1

2)(𝜔2 − 𝛾2)(𝜔2 − 12)

+
1

2
(1 + 𝜀𝑟)(𝜔

2 −𝜔2
2)(𝜔2 − 𝜔2

2)(𝜔2 − 𝛼2)(𝜔2 − 𝛽2) 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = (𝜔
2 − 𝜔1

2)(𝜔2 − 𝜔2
2) 
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Table 2-12  (Continued.) 

Basis Function 

(N − NFTZ − NOTZ) 
Parametric Equations 

8 − NFTZ − 0 

𝑁1 = 4, 𝑁2 = 4 

min-min tuning points 

single dependent 

transmission zeros 

±𝜔z 

m general prescribed 

transmission zeros 

±𝜔𝑛 

If 𝜔𝑛 = ∞ ∀ 𝑛  

𝑃𝑟𝑒𝑚(𝜔) = 1 

else 

𝑃𝑟𝑒𝑚(𝜔) =∏(𝜔2 − 𝜔𝑛
2)

𝑚

𝑛=1

 

𝑝 =
1

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛼

 

𝑞 =
1

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛽

 

𝑠 =
1

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛾

 

𝑡 =
1

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=1

 

𝑝 (
1

𝜀𝑟
+ 1) (𝛼2 − 𝜔1

2)2(𝛼2 − 𝜔2
2)2 − 𝛼2 + 𝜔𝑧

2 = 0 

𝑞 (
1

𝜀𝑟
+ 1) (𝛽2 − 𝜔1

2)2(𝛽2 − 𝜔2
2)2 − 𝛽2 + 𝜔𝑧

2 = 0 

𝑠 (
1

𝜀𝑟
+ 1) (𝛾2 − 𝜔1

2)2(𝛾2 − 𝜔2
2)2 − 𝛾2 + 𝜔𝑧

2 = 0 

𝑡 (
1

𝜀𝑟
+ 1) (12 − 𝜔1

2)2(12 − 𝜔2
2)2 − 12 + 𝜔𝑧

2 = 0 

𝑈𝑟(𝜔) =
1

2
(1 − 𝜀𝑟)(𝜔

2 − 𝛼2)(𝜔2 − 𝛽2)(𝜔2 − 𝛾2)(𝜔2 − 12)

+
1

2
(1 + 𝜀𝑟)(𝜔

2 − 𝜔1
2)(𝜔2 − 𝜔1

2)(𝜔2 − 𝜔2
2)(𝜔2 − 𝜔2

2) 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = (𝜔
2 − 𝜔1

2)(𝜔2 − 𝜔2
2) 
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Table 2-12  (Continued.) 

Basis Function 

(N − NFTZ − NOTZ) 
Parametric Equations 

8 − NFTZ − 1 

𝑁1 = 4, 𝑁2 = 4 

max-min tuning points 

single dependent 

transmission zeros 

±𝜔z 

m general prescribed 

transmission zeros 

±𝜔𝑛 

If 𝜔𝑛 = ∞ ∀ 𝑛  

𝑃𝑟𝑒𝑚(𝜔) = 1 

else 

𝑃𝑟𝑒𝑚(𝜔) =∏(𝜔2 − 𝜔𝑛
2)

𝑚

𝑛=1

 

𝑝 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 − 𝛾)(𝜔 − 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛼

 

𝑞 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 − 𝛾)(𝜔 − 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛽

 

𝑠 =
(𝜔 − 𝛼)(𝜔 − 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛾

 

𝑡 =
(𝜔 − 𝛼)(𝜔 − 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=1

 

𝑝(𝛼 − 𝜔1)
2(𝛼 + 𝜔2)

2 + 𝛼𝜀𝑟(𝛼
2 − 𝜔𝑧

2) = 0 

𝑞(𝛽 − 𝜔1)
2(𝛽 + 𝜔2)

2 + 𝛽𝜀𝑟(𝛽
2 − 𝜔𝑧

2) = 0 

𝑠(𝛾 + 𝜔1)
2(𝛾 − 𝜔2)

2 − 𝛾𝜀𝑟(𝛾
2 − 𝜔𝑧

2) = 0 

𝑡(1 + 𝜔1)
2(1 − 𝜔2)

2 − 𝜀𝑟(1
2 − 𝜔𝑧

2) = 0 

𝑈𝑟(𝜔) =
1

2
(𝜔 − 𝛼)(𝜔 − 𝛽)(𝜔 + 𝛾)(𝜔 + 1)(𝜔 + 𝜔1)

2(𝜔 − 𝜔2)
2

+
1

2
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 − 𝛾)(𝜔 − 1)(𝜔 − 𝜔1)

2(𝜔 + 𝜔2)
2 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = (𝜔
2 − 𝜔1

2)(𝜔2 − 𝜔2
2) 
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Table 2-12  (Continued.) 

Basis Function 

(N − NFTZ − NOTZ) 
Parametric Equations 

8 − NFTZ − 1 

𝑁1 = 4, 𝑁2 = 4 

min-min tuning points 

single dependent 

transmission zeros 

±𝜔z 

m general prescribed 

transmission zeros 

±𝜔𝑛 

If 𝜔𝑛 = ∞ ∀ 𝑛  

𝑃𝑟𝑒𝑚(𝜔) = 1 

else 

𝑃𝑟𝑒𝑚(𝜔) =∏(𝜔2 − 𝜔𝑛
2)

𝑚

𝑛=1

 

𝑝 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛼

 

𝑞 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛽

 

𝑠 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=𝛾

 

𝑡 =
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 + 𝛾)(𝜔 + 1)

2𝑃𝑟𝑒𝑚(𝜔)
|
𝜔=1

 

𝑝(𝛼 − 𝜔1)
2(𝛼 − 𝜔2)

2 − 𝛼𝜀𝑟(𝛼
2 − 𝜔𝑧

2) = 0 

𝑞(𝛽 − 𝜔1)
2(𝛽 − 𝜔2)

2 − 𝛽𝜀𝑟(𝛽
2 − 𝜔𝑧

2) = 0 

𝑠(𝛾 − 𝜔1)
2(𝛾 − 𝜔2)

2 − 𝛾𝜀𝑟(𝛾
2 − 𝜔𝑧

2) = 0 

𝑡(1 − 𝜔1)
2(1 − 𝜔2)

2 − 𝜀𝑟(1
2 − 𝜔𝑧

2) = 0 

𝑈𝑟(𝜔) =
1

2
(𝜔 − 𝛼)(𝜔 − 𝛽)(𝜔 − 𝛾)(𝜔 − 1)(𝜔 + 𝜔1)

2(𝜔 + 𝜔2)
2

+
1

2
(𝜔 + 𝛼)(𝜔 + 𝛽)(𝜔 + 𝛾)(𝜔 + 1)(𝜔 − 𝜔1)

2(𝜔 − 𝜔2)
2 

𝑃𝑟(𝜔) = 𝜀𝑟(𝜔
2 − 𝜔𝑧

2)𝑃𝑟𝑒𝑚(𝜔) 

𝑊𝑟(𝜔) = (𝜔
2 − 𝜔1

2)(𝜔2 − 𝜔2
2) 

 

The requirement to have at least a single pair of dependent transmission zeros is 

evident when a lowest degree basis function is considered. A 4th degree general 

(symmetric/asymmetric) basis function can only be constrained to pass through all 

the prescribed cutoff points (±𝛼, ±𝛽, ±𝛾 and ±1(𝛿)) if and only if there is a single 
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pair of symmetrical transmission zeros for real reflection zeros. In general this 

applies to all the basis functions. The only exception to this is in the case of some 

symmetrical basis functions, only because symmetry provides some redundancy 

as the 4-0-1 basis function shows in Table 2-10. 

2.5 Procedure for Generating the Filter Characteristic 

Polynomials  

The following procedure may be adopted for computing Chebyshev characteristic 

functions for microwave filter synthesis. 

1. Pre-Calculated Basis Functions  

Use the calculated basis functions as tabulated in section 2.4.1 to 2.4.7 

2. Desired Transfer Function 

Given the filter specifications and required topology, determine the basis 

functions required and their weighting integers based on the number and 

position of reflection and transmission zeros. 

3. Characteristic Polynomials  

Apply general recursive technique of section 2.3 to determine the characteristic 

polynomials  𝐹 and 𝑃. Use suitable 𝑉 polynomial for each filtering function. 

4. CM Synthesis or Cascaded Synthesis 

Proceed with filter synthesis as described in Chapter 1 

The whole procedure can easily be programmed using MATLAB or any similar 

software. The examples in the next section will illustrate this procedure and show 

how the principles described earlier may be applied for different filtering functions. 

Further applied examples are given in Chapter 3 to Chapter 6. 

2.6 Examples 

Two examples are given to demonstrate the synthesis method presented above. 

The first one is on direct synthesis of a distributed Chebyshev low-pass filter and 

the second one is direct synthesis of a distributed bandpass filter. The same 

principles apply to other filtering functions as will be demonstrated in later 

Chapters. 
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2.6.1 Direct Synthesis of Generalised Distributed Chebyshev Low-pass 

Filter 

Consider a distributed low-pass filter with the specification as shown in Table 2-13 

below. In order to achieve the above specifications a single real axis half 

transmission zero pair at infinity (𝜃𝑧 = ±𝑗∞), six transmission zeros at quarter-

wave frequency (𝜃𝑧 = ±90
𝑜) and a pair of symmetrical transmission zeros where 

placed at 𝜃𝑧 = ±58.23
𝑜 to yield a 9th degree distributed low-pass filter as shown in 

Fig. 2-5. The basis functions choice is shown in Table 2-14. This gives an overall 

9-2-6 characteristic function. A real axis half transmission zero pair at infinity was 

included to enable realisation in a meander-like circuit topology explained in 

Chapter 3. 

Table 2-13 Specification for a Distributed Low-pass Filter Example 2.6.1  

Cutoff frequency (𝑓𝑐) 1 GHz 

Electrical Length at Cutoff Frequency (𝜃𝑐) ±45𝑜 

Passband Return Loss (𝑅𝐿) 20 dB 

Stopband Insertion loss (𝐼𝐿𝑠) at 1.3 𝐺𝐻𝑧 70 dB 
 

 

 
Fig. 2-5  Simulated response of design example 2.6.1 
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The characteristic polynomials were then computed using the general recursive 

technique of section 2.3 with the basis functions of Table 2-14. The ABCD matrix 

polynomials may be obtained as described in Chapter 1. Table 2-15 gives the 

characteristic polynomials and ABCD matrix polynomials. Synthesis of network 

elements easily follows from the ABCD matrix using cascaded synthesis described 

in Chapter 1. 

Table 2-14 Basis Functions for a Distributed Chebyshev Low-pass Filter 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁90𝑜 Purpose 

1 1 − 0 − 0 
Provide a single real axis half transmission zero pair at 

infinity (𝜃𝑧 = ±𝑗∞) 

6 1 − 0 − 1 
Provide six transmission zeros at quarter-wave frequency 

(𝜃𝑧 = ±90
𝑜) 

1 2 − 2 − 0 
Provide a pair of symmetrical transmission zeros at 

𝜃𝑧 = ±58.23𝑜 (1.294 GHz) 
 

 

Table 2-15  9 − 2 − 6 Distributed Low-pass Filter Polynomials 

Characteristic Polynomials 

(𝜀 = 64.5141, 𝜇 = 1) 

𝑃(𝜌) = (𝜌2 + 2.6073)√1 − 𝜌2 

𝐹(𝜌) = 𝜌9 + 2.2673𝜌7 + 1.7161𝜌5 + 0.4817𝜌3 + 0.0365𝜌 

𝐸(𝜌) = 𝜌9 + 1.9478𝜌8 + 4.1643𝜌7 + 4.9683𝜌6 + 5.2931𝜌5 + 3.9665𝜌4

+ 2.3988𝜌3 + 1.0161𝜌2 + 0.2896𝜌 + 0.0404 

 

ABCD Matrix Polynomials 

𝐴(𝜌) = 1.9478𝜌8 + 4.9683𝜌6 + 3.9665𝜌4 + 1.0161𝜌2 + 0.0404 

𝐵(𝜌) = 2𝜌9 + 6.4316𝜌7 + 7.0091𝜌5 + 2.8806𝜌3 + 0.3260𝜌 

𝐶(𝜌) = 1.8971𝜌7 + 3.5770𝜌5 + 1.9171𝜌3 + 0.2531𝜌 

𝐷(𝜌) = 1.9478𝜌8 + 4.9683𝜌6 + 3.9665𝜌4 + 1.0161𝜌2 + 0.0404 
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2.6.2 Direct Synthesis of Generalised Distributed Bandpass Filter 

In this example, a distributed bandpass filter is considered with specifications as 

shown in Table 2-16. A six degree (𝑁𝑟 = 𝑁/2 = 6) bandpass filter was synthesised 

by placing transmission zeros according to the basis functions in Table 2-17. For 

realisation using combline bandpass filter resonators, a single transmission zero at 

the origin (𝜃𝑧 = 0𝑜) is required which is provided for by the 2-0-1 basis function. 

Two transmission zeros were placed at finite frequencies to increase close-to-band 

rejection and the rest of the transmission zeros were placed at a quarter-wave 

frequency (𝜃𝑧 = 90
𝑜).  Because transmission zeros are asymmetrically located at 

𝜃𝑧 = 0𝑜 and 𝜃𝑧 = 90𝑜, the distributed bandpass filter is asymmetrical in nature with 

more selectivity on the upper stopband.  

Table 2-16 Distributed Bandpass Filter Specifications 

Centre frequency (𝑓𝑜) 2 GHz 

Electrical Length at Centre Frequency (𝜃𝑜) 45𝑜 

Filter Bandwidth 50 MHz 

Passband Return Loss (𝑅𝐿) ≥ 20 𝑑𝐵 

Stopband Insertion loss (𝐼𝐿𝑠) 𝐷𝐶 − 1.964 𝐺𝐻𝑧 and 2.036 − 3 𝐺𝐻𝑧 ≥ 40 𝑑𝐵 
 

Table 2-17  Basis Functions for a Distributed Chebyshev Bandpass Filter 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁0𝑜 Purpose 

3 2 − 0 − 0 
Provide six quarter-wave frequency transmission zeros 

(𝜃𝑧 = 90
𝑜) 

1 2 − 0 − 1 

Provide a single quarter-wave frequency transmission zero 

(𝜃𝑧 = 90
𝑜) and a single transmission zero at the origin 

(𝜃𝑧 = 0
𝑜) 

2 2 − 2 − 0 
Provide two pairs of symmetrical transmission zeros at 

𝜃𝑧 = ±44.155𝑜 and ±45.825𝑜 
 

As before, once the basis functions are determined the characteristic polynomials 

are determined using the general recursive technique of section 2.3. Table 2-18 
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shows the characteristic polynomials and the 𝑌 matrix polynomials. Using the 

methods described in Chapter 1, the transverse coupling matrix is obtained from 

the 𝑌 matrix polynomials of Table 2-18 and first converted to an arrow coupling 

matrix and then to two cascaded trisections. Table 2-19 shows a 𝑁𝑟 ×𝑁𝑟 final 

coupling matrix in distributed domain. 

Table 2-18  12-4-1 Distributed Bandpass Filter Polynomials 

Characteristic Polynomials 

 (𝜀 = 2.2487 × 106, 𝜇 = 1) 

𝑃(𝜌) = 𝜌5 + 2.0020𝜌3 + 0.9986𝜌 

𝐹(𝜌) = 𝜌12 + 6.0041𝜌10 + 15.0180𝜌8 + 20.0311𝜌6 + 15.0262𝜌4 + 6.0107𝜌2

+ 1.0017 

𝐸(𝜌) = 𝜌12 + 0.0779𝜌11 + 6.0071𝜌10 + 0.3899𝜌9 + 15.0301𝜌8 + 0.7802𝜌7

+ 20.0493𝜌6 + 0.7805𝜌5 + 15.0384𝜌4 + 0.3903𝜌3 + 6.0137𝜌2

+ 0.0780𝜌 + 1.0017 

𝑌 Matrix Polynomials 

𝑌11𝑛(𝜌) = 0.0779𝜌11 + 0.3899𝜌9 + 0.7802𝜌7 + 0.7805𝜌5 + 0.3903𝜌3 + 0.0780𝜌

= 𝑌22𝑛(𝜌) 

𝑌21𝑛(𝜌) = 𝑌12𝑛(𝜌) = −(𝜌5 + 2.0020𝜌3 + 0.9986𝜌)/𝜀 

𝑌𝑑𝑒𝑛(𝜌) = 2𝜌12 + 12.0112𝜌10 + 30.0481𝜌8 + 40.0804𝜌6 + 30.0646𝜌4

+ 12.0244𝜌2 + 2.0033 
 

An approximation method by Wenzel [57] was used to convert the distributed 

bandpass filter network with coupling matrix given in Table 2-19 to a capacitively 

loaded combline distributed bandpass filter. The resulting filter topology is shown in 

Fig. 2-6. The final scaled bandpass filter circuit elements in 50 Ohm system are 

shown in Table 2-20. The circuit elements in Table 2-20 were simulated in circuit 

simulator as shown in Fig. 2-7. To complete the filter design requires the 

computation of the coupling bandwidths, resonance frequencies of each resonator 

as well as the external quality factor and from these the physical dimensions may 

be determined using experimental EM modelling and simulations techniques as 

described in Chapter 1. 
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Table 2-19 𝑁𝑟 × 𝑁𝑟 Coupling Matrix of a 12-4-1 Distributed Bandpass Filter 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝜌𝑀𝐿𝑠 +
1

𝜌
𝑀𝐿𝑠, 𝜌 = 𝑗𝑡 = 𝑗𝑡𝑎𝑛(𝑎𝜔), 𝑎 =

𝑇𝑜
𝜔𝑜

 

𝑀𝑇𝑠 =

[
 
 
 
 
 
0.0389 0 0 0 0 0
0 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0.0000 0
0 0 0 0 0 0.0389]

 
 
 
 
 

 

𝑀𝐶𝑠 =

[
 
 
 
 
 

1 −0.0292 0 0 0 0
−0.0292 1   0.0000 0 0 0

0  0.0000 1  0.0000 0 0
0 0  0.0000 1  0.0000 0
0 0 0  0.0000 1  0.0000
0 0 0 0  0.0000 1 ]

 
 
 
 
 

 

𝑀𝐿𝑠 =

[
 
 
 
 
 
+0.9993  0.0000 −0.0153 0 0 0
 0.0000 +0.9784 −0.0199 0 0 0
−0.0153 −0.0199 +1.0026 −0.0228 0 0

0 0 −0.0228 +0.9991 −0.0198 −0.0157
0 0 0 −0.0198 +1.0234 −0.0286
0 0 0 −0.0157 −0.0286 +1.0010]

 
 
 
 
 

 

 

 
Fig. 2-6  Illustration of a 6th degree bandpass filter example 2.6.2 implemented using two 

cascaded trisections showing inductively and capacitively coupled shunt LC resonator 
nodes (circled) 

2.7 Conclusion 

Chapter 2 has demonstrated a method of generating the generalised Chebyshev 

characteristic function. This method was described in section 2.2, from which an 

algorithm for computing the overall characteristic function may be determined as it 
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was described in section 2.3. The basis functions for different filtering functions 

may be determined as was explained in section 2.4. Tables of these basis 

functions for typical filtering functions were also given. Two illustrative examples 

were then given in section 2.6 to demonstrate the synthesis technique. In Chapters 

3 to 6, numerous other synthesis examples are given using this synthesis 

approach. In Chapter 3, a new class of low-pass filter realisation is explained.    

Table 2-20  Final Element Values of a Capacitively Loaded Distributed Bandpass 

Filter 

Capacitors 
Inductive Inter-resonator  Short-Circuited Stubs Impedance  

Coupling Impedances  𝑍𝑟 = 75 Ω 

𝐶1 = 1.0618 𝑝𝐹 𝑍13 = 5995.0 Ω Input/Output Coupling 

𝐶2 = 1.0803 𝑝𝐹 𝑍23 = 4574.2 Ω Impedance (Ω) 

𝐶3 = 1.0589 𝑝𝐹 𝑍34 = 4019.2 Ω 𝐾𝑖𝑛𝑝𝑢𝑡 = 343.0421  

𝐶4 = 1.0620 𝑝𝐹 𝑍45 = 4679.9 Ω 𝐾𝑜𝑢𝑡𝑝𝑢𝑡 = 343.1379 

𝐶5 = 1.0413 𝑝𝐹 𝑍46 = 5820.8 Ω Capacitive Inter-resonator  

𝐶6 = 1.0604 𝑝𝐹 𝑍56 = 3234.8 Ω Coupling Impedance 𝑍12 = 3114.9 Ω 
 

 

 
Fig. 2-7  Simulated response of the distributed bandpass example 2.6.2 
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Chapter 3 Synthesis and Realisation of a New Class of Distributed 

Low-pass Filters 

3.1 Introduction 

Low-pass filters are often needed in microwave systems to ‘clean up’ spurious 

responses in the stopband of coaxial and dielectric resonator filters. The most 

important driving factors in their design are compact size, sharp roll-off and wide 

stopband. Some of the recent works have addressed some of these problems [58, 

59]. Although it is relatively easy to obtain theoretical circuit models, the challenge 

in practical low-pass filters lies in achieving good approximation using real 

transmission line components. 

There exist many realisations for low-pass filters. One popular type is the stepped 

impedance low-pass filter consisting of interconnections of commensurate lengths 

of transmission lines of alternating low and high impedance [4]. This type of filter 

has low selectivity for a given network order because the transmission zeros are all 

at infinity on the real axis in the complex plane. 

In order to increase selectivity, transmission zeros may be placed at finite 

frequencies using distributed generalised Chebyshev low-pass prototype filters 

[11]. The problem is that there is no direct realisation of the series short circuited 

stubs associated with this low-pass prototype filter. In the existing physical 

realisation [60] the series short circuited stubs are approximated by short lengths of 

high impedance transmission line (forcing those transmission zeros at a quarter-

wave frequency to move to infinity on the real axis), while the shunt series foster is 

realised exactly as an open circuited stub of double unit length. The approximation 

involved results in relatively poor stopband rejection.  

This Chapter presents two original solutions [61, 62] in which the series short 

circuited stubs are exactly realised within the equivalent circuit of the low-pass 

filter. In section 3.2, the synthesis technique for the two physical realisations has 
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been developed. Furthermore, the synthesis for the general realisation for the 

proposed structure is developed and presented together with the required 

canonical low-pass circuit forms and corresponding transmission zeros that the 

transfer functions may realise. The procedure for different low-pass filter degrees is 

included with the required circuit transformations. Design examples are included to 

illustrate the synthesis and design technique. Analytical comparisons with state-of-

the-art were also given in section 3.2.3.  

 
(a) 

 

(b) 

Fig. 3-1  Proposed layout of meander-like low-pass filter (a) composed of a section of high 
impedance parallel coupled lines short circuited by a low impedance open circuited stub at 

alternate ends (b) graphical line equivalent circuit 

3.2 Design Theory 

In Fig. 3-1, the general physical layout is given for the proposed method. The 

structure consists of a middle section of high impedance coupled transmission 

lines terminated at every alternate end in a low impedance open-circuit stub 

forming a ‘meander-like’ structure as in Fig. 3-1. All the transmission lines are of 
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commensurate length. Grounded decoupling walls must be utilised to eliminate 

coupling between the open-circuited stubs. 

In this work it is shown how a general Chebyshev transfer function may be used to 

implement two alternative realisations arising from Fig. 3-1 via a series of derived 

circuit transformations and one of the earlier transformation derived by Sato in 

Table I of [63]. The synthesis of distributed low-pass filter networks is based on 

work done in [52, 53]. Fig. 3-2 shows the derived equivalent circuit transformations 

and the required admittance relationships.  

Transformation I 

𝑦0 = 𝑦2(𝑦1 + 𝑦3 + 𝑦4) + 𝑦3(𝑦1 + 𝑦4) 

𝑦𝑎 =
𝑦1𝑦2𝑦3
𝑦0

 

𝑦𝑏 =
𝑦3

2(𝑦1 + 𝑦2 + 𝑦4)

𝑦0
 

𝑦𝑐 =
𝑦2𝑦3𝑦4
𝑦0

 

𝑦𝑎𝑏 =
𝑦1𝑦4(𝑦2 + 𝑦3)

𝑦0
 

 

Transformation II 

𝑦0 = 𝑦1 + 𝑦2 + 𝑦3 

𝑦𝑎 =
𝑦1𝑦2
𝑦0

 

𝑦𝑐 =
𝑦2𝑦3
𝑦0

 

𝑦𝑏 =
𝑦2

2

𝑦0
 

𝑦𝑎𝑏 =
𝑦1𝑦3
𝑦0

 
 

Fig. 3-2  Derived equivalent circuit transformations (*May be a hanging node) 
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Transformation III 

Choose 𝑦b 

𝑦𝑎 = 𝑦1 + 𝑦2 − 𝑦b 

𝑦𝑎𝑏 =
𝑦a(𝑦2 − 𝑦b)

𝑦1
 

 

 

Transformation IV 

𝐴 =
4𝑦1

2𝑦4(𝑦3 + 𝑦4 + 𝑦5)

𝑦22𝑦3𝑦5
 

𝐵 =
4𝑦1𝑦4(2𝑦3𝑦5 + 2𝑦4𝑦5 + 𝑦5

2)

𝑦2𝑦3𝑦5
 

𝐶 =
𝑦5(𝑦3

2 + 4𝑦4
2 + 4𝑦3𝑦4)

𝑦3
 

𝑦𝑎 =
−𝐵 ± √𝐵 − 4𝐴𝐶

2𝐴
 

𝑦𝑏 = √𝑦𝑎 (𝑦5 −
𝑦𝑎𝑦1
𝑦2

) 

𝑦𝑐 =
𝑦3𝑦5𝑦𝑎
2𝑦4𝑦𝑏

 

 

Transformation V 

𝑦𝑎𝑏 = 𝑦𝑏𝑐 

𝑦𝑏 = 𝑦2 + 2√𝑦2𝑦12 

𝑦𝑎𝑏 = 2𝑦12 +√𝑦2𝑦12 

𝑦𝑜 = 𝑦𝑏 + 2𝑦𝑎𝑏 

𝑦𝑎 = 𝑦1 −
𝑦𝑏𝑦𝑎𝑏
𝑦𝑜

 

𝑦𝑐 = 𝑦3 −
𝑦𝑏𝑦𝑎𝑏
𝑦𝑜

  

Fig. 3-2  (Continued.) Derived equivalent circuit transformations (*May be a hanging node) 
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Fig. 3-3  Generalised Chebyshev distributed low-pass prototype filter 

 

 
Fig. 3-4  Graphical representation of the equivalent circuit of Fig. 3-3 after transformation of 

the 3rd degree basic sections 

The next two sections describe how these transformations were used to derive the 

equivalent circuit for the two possible physical realisations from their canonical low-

pass filter derivatives. 

Physical Realisation I 

The first physical realisation realises the equivalent circuit for the general 

Chebyshev distributed network given in Fig. 3-3. By using the synthesis technique 

given in Chapter 1 and Chapter 2, the network of Fig. 3-3 may be synthesized 

directly in distributed domain from an 𝑁𝑡ℎ (𝑁 odd)  degree Chebyshev transfer 

function with (𝑁 − 1)/2 pairs of symmetrically located transmission zeros (±𝜃𝑧) 

and a single transmission zero at a quarter-wave frequency (𝜃𝑧 = ±90𝑜). In 

general, therefore, the distributed network of Fig. 3-3 is of the form 𝑁-(𝑁 − 1)/2-1. 

Using circuit transformation I on each of the 3rd degree section, Fig. 3-3 may be 

transformed into Fig. 3-4. It is then clear from Fig. 3-4 that each of the 3rd degree 

sections is just the equivalent circuit of a pair of two parallel coupled lines with one 

end terminated in an open circuited stub as depicted in Fig. 3-5. The overall 

network after the transformation is illustrated in Fig. 3-6. This is equivalent to Fig. 

3-1 but with every second coupling between the parallel coupled lines section 
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removed (i.e. couplings 𝑍35, 𝑍79, … removed in Fig. 3-1(b)), such that the structure 

is composed of cascaded 3rd degree basic sections of Fig. 3-5 as shown in Fig. 

3-6. 

 
Fig. 3-5  A basic section containing a pair of coupled line and a stub and its equivalent 

circuits 
 

 
 

Fig. 3-6  Physical layout for generalised Chebyshev distributed low-pass filter 
 

3.2.1.1 Design Example 

To demonstrate the physical realisation I, a 7th degree low-pass filter was designed 

using the techniques described above with cutoff frequency at 1 GHz, 20 dB 

minimum passband return loss with pairs of finite transmission zeros at 𝜃𝑧 =

±54.44𝑜 , ±43.00𝑜 and ±54.44𝑜 (2.18, 1.72 and 2.18 GHz) and a single quarter-

wave transmission zero (𝜃𝑧 = ±90𝑜) and electrical length at the cutoff frequency, 

𝜃𝑐 = 25𝑜.The element values are shown in Table 3-1 corresponding to the circuit of 

Fig. 3-3  Generalised Chebyshev distributed low-pass prototype filter where 

symmetry is assumed for the element values. Using the circuit transformation I, the 

circuit was transformed to the final form of Fig. 3-4 with the element values shown 
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in Table 3-2. All the element values are clearly realizable. Fig. 3-7 shows the circuit 

simulation of the design example. 

Table 3-1  7th Degree Low-pass Filter Synthesised Admittance Values (℧) 

Section I Section II Section III 

𝑦1 = 0.4983 𝑦5 = 0.5830 𝑦9 = 0.4983 

𝑦2 = 5.5807 𝑦6 = 2.5671 𝑦10 = 5.5807 

𝑦3 = 2.8517 𝑦7 = 2.9514 𝑦11 = 2.8517 

𝑦4 = 0.4983 𝑦8 = 0.5830 𝑦12 = 0.4983 
 

 

Table 3-2  7th Degree Low-pass Filter Impedance Values (Ω) After Transformation 

II (A)-(C) in 50 Ω system 

Section I Section II Section III 

𝑍1 = 153.3 𝑍4 = 158.6 𝑍7 = 153.3 

𝑍2 = 22.73 𝑍5 = 21.54 𝑍8 = 22.73 

𝑍3 = 153.3 𝑍6 = 158.6 𝑍9 = 153.3 

𝑍13 = 580.7 𝑍46 = 373.5 𝑍79 = 580.7 
 

 

 
 

Fig. 3-7  Circuit and HFSS simulation response for design example 3.2.1.1 
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In this realisation I, 𝜃𝑐 = 25
𝑜 is approaching the practical limits for realisable 

element values. Reducing the electrical length at the cutoff frequency further 

causes the impedance values of the high and low impedance lines to become 

unrealisably high and low respectively. However, in reality the practical stopband 

bandwidth is perturbed due to high order modes and spurious couplings between 

the basic sections as shown by the HFSS simulation in Fig. 3-7 with small 

resonance peaks around 𝜃 = 90𝑜. The decoupling walls do not give exact circuit 

realisation for realisation I. In the second physical realisation, however, some of the 

couplings are allowed between the basic sections.  

3.2.2 Physical Realisation II – ‘Meander-like’ Low-pass Filter 

A more general realisation is achieved by using the layout of Fig. 3-1. The only 

difference with the previous physical realisation I is that, in the general case 

(physical realisation II) all the couplings between high impedance coupled lines of 

Fig. 3-1 are allowed. The structure is built from the basic 3rd degree section of Fig. 

3-5 by adding a parallel line to the parallel coupled lines section and an open 

circuited stub at one end to form an interconnect each time to increase the network 

degree by 2.  

The stripline layout for physical realisation II is given in Fig. 3-8 and its derived 

equivalent circuit is shown below in Fig. 3-9 with the unit element impedance 

values named sequentially from input to output. This realisation is optimal since an 

𝑁𝑡ℎ degree filter requires 𝑁 commensurate length transmission lines. At the 

quarter-wave frequency, all the series short circuited stubs become open circuited 

while all the open circuited stubs become short circuited so that the alternate ends 

of the parallel coupled lines are shorted to ground. Thus the meander-like low-pass 

filter of Fig. 3-8 has at least one transmission zero at the quarter-wave frequency. 

The other transmission zero pairs may exist at infinity on the real axis or as 

symmetrical pure imaginary frequency pair or in general as paraconjugated pairs 

on the complex plane due to multipath in the structure.  

It is now shown how the meander-like low-pass filter network of Fig. 3-8 and Fig. 

3-9 may be synthesized from suitable low-pass filter networks and then using 
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appropriate circuit transformation to transform the canonical low-pass filter network 

forms to a meander-like low-pass filter. The canonical low-pass filter network forms 

were obtained by the synthesis method in Chapter 1 and Chapter 2 and then 

applying cascaded synthesis. The 3rd, 5th, 7th and 9th degree meander-like low-pass 

filter are examined next as depicted in Fig. 3-10. 

 
Fig. 3-8  Physical layout of the striplines for the general meander-like low-pass filter 

 

 
Fig. 3-9  Graphical representation of the equivalent circuit of Fig. 3-8 for a meander-like 

low-pass filter 

The 3rd degree filter is simply a trivial case corresponding to circuit transformation I 

as shown in Fig. 3-10(I). In this case a 3-0-3 or 3-2-1 low-pass filter may be 

realised. 

There are two possible cases for 5th degree filter, namely 5-0-4 and 5-2-2 low-pass 

filters. For the first case of Fig. 3-10 (II), a 5-0-4 low-pass filter has a single real axis 

half transmission zero pair at infinity (𝜃𝑧 = ±𝑗∞) and four transmission zeros are at 

a quarter-wave frequency (𝜃𝑧 = ±90𝑜). Beginning with the canonical network form, 

step 1 is to split the transmission lines into two equal parts between port 2 and 4. In 

step 2, transformation III is carried out on each of the branch 3,2,4 and 2,4,5 

respectively. Finally in step 3, two separate transformations II are carried out on 

each of the three port subnetworks of 1,3,5 and 3,5,6 to derive the final equivalent 

circuit as illustrated in Fig. 3-10 (II). 
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Transformation I 

N=3 (3-2-1) 

 

Transformation II 

N=5 (5-0-4) 

 

 

Transformation III 

N=5 (5-2-2) 

Asymmetrical 

 

Fig. 3-10  Derived network transformation for 𝑁 = 3,5,7 and 9 meander-like low-pass 

filters 
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Transformation IV 

N=5 (5-2-2) 

Symmetrical 

 

 

Transformation V 

N=7 (7-2-5) 

 

Fig. 3-10  (Continued.) Derived network transformation for 𝑁 = 3,5,7 and 9 meander-like 

low-pass filters 
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Transformation VI 

N=9 (9-0-8) 

 

 

 

 

Fig. 3-10  (Continued.) Derived network transformation for 𝑁 = 3,5,7 and 9 meander-like 

low-pass filters 
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Transformation VII 

N=9 (9-2-6) 

 

 
 

Fig. 3-10  (Continued.) Derived network transformation for 𝑁 = 3,5,7 and 9 meander-like 
low-pass filters 

The second meander-like low-pass filters, the 5-2-2 low-pass filter in Fig. 3-10 (III 

and IV), have a single pair of symmetrical finite frequency transmission zeros 

(𝜃𝑧 = ±𝜃𝜔), a single real axis half transmission zero pair at infinity (𝜃𝑧 = ±𝑗∞) and 

two transmission zeros at the quarter-wave frequency (𝜃𝑧 = ±90
𝑜). For an 

asymmetrical 5-2-2 case of Fig. 3-10 (III), step 1 utilises Sato’s transformation 

(Table I of [63]) to eliminate branch 1,2 and in turn creates branch 1,3 and 1,5. In 

Step 2, Sato’s transformation is used again to eliminate branch 2,3 and creates 

branch 3,5. In step 3, transformation III is applied on branch 1,5,6 and two 

sequential transformations III are applied on branch 1,3,5. The final equivalent 

circuit is obtained by application of transformation II on a three port subnetwork of 

4,6,7 as illustrated in Fig. 3-10 (III). 

For the symmetrical 5-2-2 low-pass filter of Fig. 3-10 (IV), step 1 splits the series 

short circuited stub between node 5 and 7 such that the admittances of the 

outermost series short circuited stubs in branch 1,2 and 7,8 are identical. In step 2, 
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transformation IV is carried out on the two port network between node 2 and 7 and 

finally two separate transformations II are carried out on three port subnetworks 

1,9,10 and 9,8,10 respectively to obtain the final symmetrical form as illustrated in 

Fig. 3-10 (IV). Note that a negative sign on 𝑦𝑎 in transformation IV should be taken 

for realizable impedance values. 

For a 7th degree filter, one possible realisation derived is a 7-2-5 low-pass filter of 

Fig. 3-10 (V) with a single pair of symmetrical finite frequency transmission zero pair 

(𝜃𝑧 = ±𝜃𝜔) and all the remaining five transmission zeros at the quarter-wave 

frequency (𝜃𝑧 = ±90
𝑜) which is now illustrated.  From the canonical low-pass filter 

form, transformation I is applied on the two port network between node 2 and 7 in 

step 1. This is followed by transformation V again on the same two port network 

between nodes 2 and 7 in step 2. Then in step 3, two separate transformations III 

are applied on branch 3,2,6 and 8,7,9 and finally, in step 4, three separate 

transformation II are applied on the three port subnetworks of 1,3,5, 3,5,8 and 5,8,9 

respectively to obtain the final form of the meander-like low-pass filter of Fig. 3-10 

(V). 

For a 9th degree filter, two derivative low-pass filter networks were examined 

whose core subnetworks were derived from a 5th degree network discussed above.  

The first one is a 9-0-8 filter, with a single real axis half transmission zero pair at 

infinity (𝜃𝑧 = ±𝑗∞) and all remaining eight transmission zeros at a quarter-

wavelength frequency (𝜃𝑧 = ±90𝑜). Beginning with the canonical low-pass filter in 

Fig. 3-10 (VI) in step 1, a two port network between node 2 and 8 is replaced by a 

derived circuit for a 5-0-4 circuit as explained above (Fig. 3-10 (II)). Then in step 2, 

two separate transformations III are applied to branch 3,2,7 and 5,8,9. This is 

followed by two separate transformations II which are applied on three port 

subnetworks of 1,3,5 and 7,9,10 respectively to give the final equivalent circuit as 

illustrated in Fig. 3-10 (VI). 

The second 9th degree low-pass filter is a 9-2-6 low-pass filter with a single 

symmetrical pair of finite frequency transmission zeros (𝜃𝑧 = ±𝜃𝜔), a single real 

axis half transmission zero pair at infinity (𝜃𝑧 = ±𝑗∞) and all remaining six 
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transmission zeros at a quarter-wave frequency (𝜃𝑧 = ±90
𝑜). Beginning with the 

canonical low-pass filter form in Fig. 3-10 (VII) in step 1, a two port network 

between node 2 and 9 is replaced by a derived circuit for a 5-2-2 circuit as 

explained above (Fig. 3-10 (III or IV)). Then in step 2, two separate transformations 

III are applied to branch 3,2,6 and 8,9,10 respectively. This is followed by two 

separate transformations II which are applied on three port subnetworks of 1,3,8 

and 6,10,11 respectively to give the final equivalent circuit shown in Fig. 3-10 (VII). 

Note that a positive sign on 𝑦𝑎 in transformation IV should be taken for realisable 

impedance values. 

Multiple solutions do exist depending on the transformations used. Impedance 

levels are within positive realisable values as long as the electrical length at the 

cutoff is chosen to be around 𝜃𝑐 = ±45𝑜 as the two examples will show. Moving 

further away from 𝜃𝑐 = ±45𝑜 in either direction tends to lead to extreme element 

impedance values some of which may assume negative values arising from the 

formulae used in some of the cases of Fig. 3-2. As its canonical circuit form, the 

meander-like low-pass filter is relatively unaffected by small changes in the 

impedances values because it requires an optimal number of elements (𝑁). Thus a 

small mismatch in the impedance values only slightly degrades the passband 

return loss. 

Table 3-3  7th Degree Canonical Low-pass Filter Impedance Values (Ω) 

𝑍1 = 60.2932 𝑍2 = 29.1279 𝑍3 = 110.2028 𝑍4 = 6.2196 𝑍5 = 28.6033 
 

 

Table 3-4  7th Degree Meander-Like Low-pass Filter Impedance Values (Ω) 

𝑍1 𝑍2 𝑍3 𝑍4 𝑍13 𝑍35 

108.2319 53.7139 215.9667 25.8734 362.2136 44439.57 
 

 

3.2.2.1 Design Example I 

A 7th degree (7-2-5) meander-like low-pass was designed with a symmetrical pair 

of finite frequency transmission zeros at 𝜃𝑧 = ±65𝑜(1.625 GHz) and five 
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transmission zeros at a quarter-wave frequency (𝜃𝑍 = ±90
𝑜), 20 dB minimum 

passband return loss and electrical length of 𝜃𝑐 = ±40
𝑜at cutoff frequency of 1 

GHz. The synthesised element values for the canonical low-pass filter is shown in 

Table 3-3  (assuming symmetry with impedance values assigned sequentially from 

left to right of Fig. 3-10 (V)). Then using the technique as explained in section 3.2.2 

and Fig. 3-10 (V) by a sequence of circuit transformations, the meander-like 

element values were obtained as shown in Table 3-4. The circuit simulation shown 

in Fig. 3-11 validates the synthesis process. 

 
Fig. 3-11  Circuit simulation of a 7-2-5 meander-like low-pass filter in example 0 

 

3.2.2.2 Design Example II 

An experimental 9th degree meander-like low-pass filter was designed with cutoff 

frequency at 1 GHz, 20 dB minimum return loss and 𝜃𝑐 = ±45𝑜. The stopband 

insertion loss was defined to be above 70 𝑑𝐵 between 1.3 𝐺𝐻𝑧 and 2.7 𝐺𝐻𝑧 and 

this was achieved by placing a symmetrical transmission zero pair at 𝜃𝑧 =

±58.23𝑜(1.294 GHz), a single real axis half transmission zero pair at infinity 

(𝜃𝑧 = ±𝑗∞) and six transmission zeros at quarter-wave frequency (𝜃𝑧 = ±90𝑜) 

yielding a 9-2-6 low-pass filter of Fig. 3-10 (VII). The characteristic polynomials and 

ABCD matrix polynomials were synthesised in section 2.6.1 (Chapter 2). Using 

cascaded synthesis, the synthesised element values for the canonical 9th degree 
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low-pass filter are shown in Table 3-5. These values were transformed to the 

meander-like circuit with the element values shown in Table 3-6. 

Table 3-5  Synthesised 9th Degree Canonical Low-pass Filter Impedance Values  

𝑍1 = 51.3388 Ω 𝑍6 = 114.8003 Ω 

𝑍2 = 34.1469 Ω 𝑍7 = 30.5252 Ω 

𝑍3 = 86.4301 Ω 𝑍8 = 99.4671 Ω 

𝑍4 = 15.2258 Ω 𝑍9 = 34.1469 Ω 

𝑍5 = 39.6987 Ω 𝑍10 = 51.3388 Ω 
 

 

Table 3-6  Synthesised 9th Degree Meander-Like Low-pass Filter Impedance 

Values  

𝑍1 = 101.2065 Ω 𝑍13 = 317.8744 Ω 

𝑍2 = 66.08394 Ω 𝑍35 = 1798.938 Ω 

𝑍3 = 207.5597 Ω  

𝑍4 = 34.02597 Ω  

𝑍5 = 147.2685 Ω  
 

 

Table 3-7  9th Degree Low-pass Filter optimised Dimensions (mm) 

𝑤1 = 9.04 𝑠𝑤1 = 12.5 𝑠12 = 6.75 𝑑𝐿1 = 2.5 

𝑤2 = 1.85 𝑠𝑤2 = 3.00 𝑠23 = 23.25 𝑑𝐿2 = 8.5 

𝑤3 = 2.33 𝑠𝑤3 = 7.25 𝑏 = 25 𝑑𝐿3 = 6.5 

𝑤4 = 17.64 𝑠𝑤4 = 3.00 𝑡 = 5 𝑤𝑡 = 13.0 

𝑤5 = 27.44  𝐿 =37.5  
 

 

The low-pass filter is then realised using rectangular bars or striplines. The 

technique by Getsinger [32, 33] was used to determine the initial physical 

dimensions. The final optimised dimensions are given in Table 3-7. The 

nomenclature used in Table 3-7 corresponds to Fig. 3-12 and Fig. 3-13. The filter 



 

125 

 

measurements were performed with an Agilent Technologies E5071C ENA series 

network analyser. Fig. 3-14 shows good correspondence between the measured 

and theoretical simulation using HFSS. 

 
Fig. 3-12  Diagram showing the layout of the fabricated 9th degree meander-like low-pass 

filter. Dimensions shown are as given in Table 3-7 

 

 
Fig. 3-13  Physical hardware of the fabricated 9th degree ‘meander-like’ low-pass Filter 

(top cover removed) 
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Fig. 3-14  Comparison of simulated response of the synthesized, HFSS and measurement 
of meander-like low-pass filter 

The overall length of the low-pass filter realisation is three times the electrical 

length at the cutoff frequency. High order modes do exist in the structure that 

potentially could worsen the stopband response especially with relatively larger 

ground plane spacing. The effect is to shorten the effective stopband frequency 

window as the design example shows in Fig. 3-14. The choice of the ground plane 

spacing affects the spurious resonances within the filter structure which in this case 

appeared above 2.6 𝐺𝐻𝑧. Since the low-pass filter is implemented using high Q 

stripline with individual theoretical Q factor of transmission lines ranging from about 

1200 – 3300 (ground plane spacing of 25 mm). Thus the insertion loss is fairly low 

across the passband with a peak at 0.3476 dB at the cutoff frequency in the 

measured response as depicted in Fig. 3-15. The slight discrepancy in the insertion 

loss between the simulated and measurement results in Fig. 3-15 is due to slight 

mismatched response as evident from the return loss plot in Fig. 3-14 and Fig. 

3-16. 

Improvement in the stopband response may be achieved by reducing the ground 

plane spacing from 25 mm to 15 mm at expense of slightly increased insertion loss 
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(Fig. 3-15). Fig. 3-16 shows HFSS simulations for different ground plane spacing 

versus the ideal circuit response. Clearly the stopband performance matches very 

well with the prediction for 𝑏 = 15 mm. Table 3-8 shows the corresponding 

optimized physical dimensions. Notice that much smaller ground plane spacing is 

limited by realisability of the physical dimensions as the dimensions of the low-pass 

filter are proportional to the ground plane spacing. 

 
Fig. 3-15  Comparison of insertion losses between HFSS simulations for b=15 mm and 

b=25 mm and measured response with b=25 mm 

 

 
Fig. 3-16  Comparison of optimised equivalent circuit simulation and HFSS simulations of 

meander-like low-pass filter with ground plane spacing of 15 mm and 25 mm 
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Another way to improve the stopband width could be achieved by shortening the 

open circuited stubs length and capacitively loading the ends of the open circuited 

stubs. This is illustrated in Fig. 3-17. The stub length (𝐿𝑠) may be fixed and the 

lumped capacitor (𝐶𝑠) for loading the ends may be theoretically calculated from 

𝐶𝑠 =
𝑡𝑎𝑛(𝜃𝑐 − 𝜃𝑠)

𝑍𝑠𝜔𝑐
 (3.1) 

where 𝜃𝑠 is the new electrical length of the shortened stub at the cutoff frequency 

point 𝜔𝑐  and  𝑍𝑠 is the characteristic impedance of the stub. Using the previous 

example and choosing 𝜃𝑠 = 5
𝑜 then 𝐶2 = 2.0209 𝑝𝐹 and 𝐶4 = 3.9249 𝑝𝐹  can be 

calculated from (3.1). At least on the circuit level, improved stopband is clearly 

evident from the circuit simulation in Fig. 3-18. 

Table 3-8  Improved 9th Degree Low-pass Filter optimised Dimensions (mm) 

𝑤1 = 5.42 𝑠𝑤1 = 7.5 𝑠12 = 4.80 𝑑𝐿1 = 3 

𝑤2 = 1.11 𝑠𝑤2 = 1.8 𝑠23 = 13.95 𝑑𝐿2 = 5.1 

𝑤3 = 1.40 𝑠𝑤3 = 7.5 𝑏 = 15 𝑑𝐿3 = 3.9 

𝑤4 = 11.33 𝑠𝑤4 = 1.8 𝑡 = 3 𝑤𝑡 = 4.65 

𝑤5 = 16.46  𝐿 =37.5  
 

 

 

 

Fig. 3-17  Modified Meander-like structure obtained from Fig. 3-12 by shortening the open 
ends of the open circuited stubs 
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Fig. 3-18  Improvement in stopband performance of the meander-like low-pass filter by 
shortening the open ends of the open circuited stubs 

 

3.2.3 Comparison based on theory and simulations 

A 9th degree meander-like low-pass filter was compared to other low-pass filter 

realisations. To achieve the same selectivity, a 9th degree generalised Chebyshev 

low-pass filter would be required while a 15th degree stepped impedance low-pass 

filter would be required as depicted in Fig. 3-19 with 𝜋/4 electrical length at the 

cutoff frequency of 1 GHz. Thus for the same selectivity, the proposed structure 

requires a much lower filter elements than the stepped impedance low-pass filter. 

Although the generalised Chebyshev low-pass  filter may be designed with the 

same degree as the meander-like low-pass filter, its stopband performance is 

much poorer in its physical realisation as shown in Fig. 3-19 because the series 

short circuited stubs are approximated by high impedance transmission lines [4]. 

Furthermore, both the generalised Chebyshev and stepped impedance low-pass 

filters’ effective stopband response is much worse in practice because it is difficult 

to realise ideal commensurate transmission line elements and often discontinuities, 

high order modes and mode conversion occur within the filter structure [3]. These 
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reduce the effective stopband width of practical low-pass filters to as much as half 

of the predicted width! Even though effective stopband width may be widened by 

using a lower electrical length at cutoff frequency, it is often limited by element 

realisation as the variations in element values tend to be extreme.  By utilizing 

relatively smaller ground plane spacing as described in section 0 the proposed low-

pass structure offers superior stopband performance. 

 
 

Fig. 3-19  Circuit simulation comparison of 9th degree meander-like low-pass filter with a 
9th degree generalised Chebyshev low-pass filter and 15th degree stepped impedance 

low-pass filter 
 

 
 

Fig. 3-20  Circuit insertion loss simulation comparison of 9th degree meander-like low-
pass filter with a 9th degree generalised Chebyshev low-pass filter and 15th degree 

stepped impedance low-pass filter 
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Fig. 3-20 shows the circuit level insertion loss analysis of the three low-pass filters 

being compared above with the same ground plane spacing of 25 mm assuming 

copper conductors in air. It is quite obvious the stepped impedance low-pass filter 

fairs worse because of the high number of unit elements required to achieve the 

selectivity. The generalised Chebyshev low-pass filter passband insertion 

compares well with the proposed meander-like low-pass filter with the losses 

increasing towards the cutoff frequency. The proposed structure has an optimal 

number of unit elements equal to the degree of the network regardless of the 

number of finite frequency transmission zeros. The generalised Chebyshev low-

pass filter on the other hand requires 12 unit elements to achieve the selectivity 

requirements. Thus the proposed meander-like low-pass filter is much more 

compact with lower insertion loss than the other two low-pass filters. The meander-

like low-pass filter has a high achievable roll-off rate  of 246.7 dB/GHz with an 

achievable relative stopband bandwidth of 0.883 [64] and could be advantageous 

where a much deeper out-of-band rejection is required. 

3.3 Conclusion 

A new class of low-pass filter realisation called the meander-like low-pass filter has 

been demonstrated. The design theory was given in section 3.2 with the two 

proposed physical realisation distinguished. These physical realisations enable 

exact realisation of the generalised Chebyshev low-pass filter. The required 

transfer functions as well as the necessary circuit transformations were given 

together with a complete design procedure. Both of these low-pass filter 

realisations have relatively higher roll-off rate and a deeper effective stopband. In 

the next Chapter, a method of achieving finite frequency transmission using re-

entrant resonators is presented. 
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Chapter 4 Synthesis and Design of Bandpass Filters with 

‘Integrated’ Transmission Zeros Using Re-entrant 

Transmission Lines 

4.1 Introduction 

In this Chapter, the re-entrant line is used in the design of small percentage 

bandwidth bandpass filters to create a bandpass resonance with an integrated 

finite frequency transmission zero thus realizing finite frequency transmission zeros 

without the need for complicated cross couplings [65]. A re-entrant bandpass filter 

with transmission zeros above the passband is demonstrated. Transmission zeros 

below the passband are also theoretically possible using this approach but 

impractical to realize in real systems.  

The proposed design offers a simple and easy implementation for pseudo-elliptic 

filters where a higher level of attenuation is required on the high side of the 

passband than can be provided by conventional coaxial filters. This type of filter is 

useful for interference rejection in cellular base stations.  

At the outset, the available methods of generating transmission zeros are 

described in section 4.2. The re-entrant bandpass filter is designed from pseudo-

elliptic lowpass prototype filter whose synthesis is presented in section 4.3.  The 

concept of a re-entrant line resonator is developed in section 4.4, while in section 

4.5, development of the design technique for bandpass filters with transmission 

zeros above the passband is presented. Comparisons of the re-entrant resonator 

to the coaxial resonator and their merits in terms of size, loss and stopband 

responses are also discussed. Some design examples are given in section 4.6 and 

a prototype re-entrant bandpass filter was built and laboratory tested as discussed 

in section 4.7. 
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4.2 Transmission Zeros Generation Methods 

Finite transmission zeros are routinely used to increase the selectivity of bandpass 

filters. There are two known basic methods for generating transmission zeros in the 

filter network [66].  

The first one uses multi-paths in the filter structure to produce destructive 

interference at the desired transmission zero frequencies [67, 68]. The well-known 

cross-coupled resonator cavity filters typically employ this method. Transmission 

zeros are introduced in the filter network by means of some cross-coupling 

between non-adjacent nodes in the network with suitable positive (magnetic) or 

negative (electric) couplings. Cross-coupling produces alternative signal paths 

resulting in multipath signal propagation between the input and the output or 

between two nodes in the filter network. Understanding the phase changes that a 

signal undergoes as it travel through these multipath is key to grasping how these 

transmission zeros are generated. In fact in [68], the formulation of transmission 

zeros by different coupling positions and coupling elements is well explained. 

However, these methods often lead to bulky filters due to high number of elements 

required and sometimes inconvenient topologies. 

The second method involves the use of transmission zero generating elements [27, 

28]. The filter may be designed entirely of these elements [27, 69] or it may be 

mixed with the non-transmission zero generating elements or ordinary resonators 

[66, 70]. In fact the use of non-resonating nodes as a realisation for pseudo-elliptic 

filters has been gaining ground in fairly recent research [66, 71, 72]. The design of 

bandpass filters using re-entrant transmission lines described in this Chapter 

utilises this later method of generating transmission zeros and will be dealt with in 

more details in later sections. The next section describes a method for synthesising 

a lowpass prototype filter suitable for re-entrant bandpass filters. 
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4.3 Lowpass Prototype Filter Circuits for Pseudo-elliptic Bandpass 

Filters 

Different synthesis methods exist for a lowpass prototype filter used in design of 

the so called elliptic in-line topologies [27, 70, 73, 74]. The limitations on some of 

them is that only one or two transmission zeros may be extracted. The other 

existing methods employ extracted pole techniques then followed by circuital 

transformation.  In this section, two novel, unique and simple synthesis techniques 

are introduced.  

The first one employs an asymmetrical frequency transformation on a well-known 

all pole Chebyshev transfer function. While this provides a simplified method of 

design, it is limited by the fact that it realises all finite frequency transmission zeros 

at a single frequency. It is also fully asymmetric meaning that the transmission 

zeros position can only be on one side of the passband.  

The second method allows arbitrary transmission zero placements and thus 

represents the most general pseudo-elliptic lowpass prototype filter. In both 

synthesis methods, the lowpass prototype use frequency-invariant-reactance (FIR) 

elements (here generalised as FIR but may also be frequency-invariant-

susceptance) [18] which may physically be realised as non-resonating-nodes 

(NRN) [69]. Because the transfer function is asymmetric, all the resonator nodes 

are asynchronously tuned by the presence of FIR elements. The application of 

these lowpass prototype filters to bandpass filters design is outlined in section 4.5. 

4.3.1 Asymmetrical-Frequency-Transformed Pseudo-elliptic Lowpass 

Prototype Filter 

Consider a well-known traditional Chebyshev with all its transmission zeros at 

infinity. From Chapter 2, it is evident that the general Chebyshev characteristic 

function may be expressed as, 

𝑇𝑁 = 𝑐𝑜𝑠ℎ∑𝑐𝑜𝑠ℎ−1
𝑁

𝑛=1

(𝑥𝑛) (4.1) 

where the basis function is given by, 
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𝑥𝑛 =
1 − 𝜔𝑛𝜔

𝜔 − 𝜔𝑛
 (4.2) 

Alternatively, 

𝑥𝑛 =
1/𝜔𝑛 − 𝜔

𝜔/𝜔𝑛 − 1
 (4.3) 

to accommodate 𝜔𝑛 = ∞ where 𝜔𝑛 is the location of the 𝑛𝑡ℎ transmission zero. 

Now consider what happens when a frequency transformation of the form of (4.4) 

is used in the transfer function. The transformation is defined from (4.2) as  

𝜔 →
1 − 𝜔𝑜𝜔

𝜔 −𝜔𝑜
 (4.4) 

where 𝜔𝑜 is the location of the new transmission zeros. Substituting the 

transformation (4.4) into (4.3) yields 

𝑥𝑛 =
1 − (

1 + 𝜔𝑜𝜔𝑛
𝜔𝑜 + 𝜔𝑛

)𝜔

𝜔 − (
1 + 𝜔𝑜𝜔𝑛
𝜔𝑜 + 𝜔𝑛

)
=
1 − 𝜔𝑛

′𝜔

𝜔 − 𝜔𝑛′
 (4.5) 

where, 

𝜔𝑛
′ =

1 + 𝜔𝑜𝜔𝑛
𝜔𝑜 + 𝜔𝑛

=
1/𝜔𝑛 + 𝜔𝑜
1 + 𝜔𝑜/𝜔𝑛

 (4.6) 

 

 
(a) 

 

(b) 

Fig. 4-1  Asymmetrical-frequency-transformed elliptic lowpass prototype filter (a) all-pole 
Chebyshev lowpass prototype filter (b) asymmetrical-frequency-transformed pseudo 

elliptical lowpass prototype filter where 𝑌𝑟 = 𝑗 (
1−𝜔𝑜𝜔

𝜔−𝜔𝑜
)𝐶𝑟, 𝑟 = 1,2, … ,𝑁                                     

Thus if all the transmission zeros are placed at a single frequency 𝜔𝑜, it is possible 

to transform the well-known all-pole ladder network for which 𝜔𝑛 = ∞ by 
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application of a simple transformation defined by (4.4) above. All the transmission 

zeros at infinity (𝜔𝑛 = ∞) are transformed to a single finite frequency (𝜔𝑜), i.e. ∞ →

𝜔𝑜. The circuit is transformed as in Fig. 4-1. 

It can be concluded from the foregoing proof that the transformation given in (4.4) 

transforms a traditional Chebyshev lowpass prototype filter with all its transmission 

zeros at infinity to a pseudo-elliptic lowpass filter response where all the 

transmission zeros are at a single finite frequency 𝜔𝑜. The position of the 

transmission zeros can either be below or above the passband and remains purely 

a designer’s choice by taking appropriate sign of 𝜔𝑜. Fig. 4-1  above illustrates this 

transformation. The ideal admittance inverters remain invariant under this 

transformation. Since all transmission zeros are at a single frequency 𝜔𝑜, then 𝑆21 

is finite at infinity. Let  

|𝑆21( ∞)|
𝑇 = 𝐼𝐿𝑜 (4.7) 

be defined as the rejection level (in 𝑑𝐵) in the stopband after the transformation. 

Thus for the transformed filter network, 𝐼𝐿𝑜 is obtained from  

|𝑆21(±𝜔𝑜)| = 𝐼𝐿𝑜 (4.8) 

Thus 𝐼𝐿𝑜 is the horizontal asymptote for the insertion loss function. As 𝜔𝑜 tends to 

±1 rad/s, |𝑆21(±𝜔𝑜)| tends to 0 𝑑𝐵 at infinity. This intuitively leads to a fundamental 

behaviour of filter networks which means that as the selectivity increases, the 

overall rejection reduces. In practice though it is imperative that the transmission 

zeros be distributed over some range of frequency to improve the overall rejection 

as opposed to being on a single frequency. Despite this drawback, this class of 

lowpass filter offers a basic synthesis procedure for pseudo-elliptic lowpass filters 

synthesis from which a more general synthesis procedure may be built. The 

synthesis is fairly straight forward. The single frequency transmission zero 𝜔𝑜 

needs to be determined from the required rejection level (𝐼𝐿𝑜). Since for an all pole 

transfer function, i.e. 𝜔𝑛 = ∞, (4.1) the denormalised characteristic function 

becomes, 
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𝑇𝑁
𝑘
= 𝑐𝑜𝑠ℎ∑ 𝑐𝑜𝑠ℎ−1

𝑁

𝑛=1

(𝑥𝑛) = cosh[𝑁𝑐𝑜𝑠ℎ−1(𝜔)]. (4.9) 

Conversely,  

𝜔 = cosh [
𝑐𝑜𝑠ℎ−1 (

𝑇𝑁
𝑘
)

𝑁
]. (4.10) 

Also from Chapter 1, 

|𝑆21(𝜔)|
2 =

1

1 + (𝑇𝑁)2
=

1

1 + (
𝐹(𝜔)/𝜇
𝑃(𝜔)/𝜀

)
2 

𝐼𝐿𝑜 = −10 log10|𝑆21(𝜔𝑜)|
2 = −10 log10

[
 
 
 

1

1 + (
𝐹(𝜔)/𝜇
𝑃(𝜔)/𝜀

)
2

]
 
 
 

 

(4.11) 

where for the un-normalised characteristic function, 

𝜀 = 𝑘 = ±
1

√10(𝑅𝐿/10) − 1
|
𝑃(𝜔)

𝐹(𝜔)
||

𝜔=±1

= ±
1

√10(𝑅𝐿/10) − 1
 

𝜇 = ±1 

(4.12) 

is the specified ripple level in the passband for a given return loss (𝑅𝐿). Note also 

that |
𝑃(𝜔)

𝐹(𝜔)
||
𝜔=±1

= 1 for all-pole Chebyshev transfer function. Hence (4.11) 

becomes, 

𝑇𝑁(𝜔𝑜)

𝑘
=
√10(𝐼𝐿𝑜/10) − 1

𝑘
=
√10(𝐼𝐿𝑜/10) − 1

1

√10(𝑅𝐿/10) − 1

 

𝑇𝑁(𝜔𝑜)

𝑘
= √10((𝑅𝐿+𝐼𝐿𝑜)/10) − 10(𝐼𝐿𝑜/10) − 10(𝑅𝐿/10) + 1 

(4.13) 

From substituting (4.13) in (4.10) becomes, 
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𝜔𝑜 = cosh [
𝑐𝑜𝑠ℎ−1 (

𝑇𝑁(𝜔𝑜)
𝑘

)

𝑁
] 

𝜔𝑜 = cosh [
𝑐𝑜𝑠ℎ−1 (√10((𝑅𝐿+𝐼𝐿𝑜)/10) − 10(𝐼𝐿𝑜/10) − 10(𝑅𝐿/10) + 1)

𝑁
] 

(4.14) 

For example if 𝑅𝐿 = 20 𝑑𝐵, 𝐼𝐿𝑜 = 20 𝑑𝐵, and 𝑁 = 4 then 𝜔𝑜 may be determined 

from equation (4.14) as 𝜔𝑜 ≅ 2.  Alternatively 𝑁 may be determined for a given 𝜔𝑜. 

First using an all-pole transfer function, a Chebyshev lowpass prototype is 

synthesised. Then each capacitor (or inductor) is transformed according to 

equation (4.4) as,  

𝑌(𝑗𝜔) = 𝑗𝜔𝐶 = 𝑗 (
1 − 𝜔𝑜𝜔

𝜔 − 𝜔𝑜
) 𝐶 

𝑌(𝑗𝜔) = −𝑗𝜔𝑜𝐶 +
1

𝑗𝜔 (
1

𝐶(𝜔𝑜2 − 1)
) + 𝑗 (

−𝜔𝑜
𝐶(𝜔𝑜2 − 1)

)
= 𝑗𝐵 +

1

𝑗𝜔𝐿 + 𝑗𝑋
 

(4.15) 

where, 

𝐵 = −𝜔𝑜𝐶 

𝐿 =
1

𝐶(𝜔𝑜2 − 1)
 

𝑋 = −
𝜔𝑜

𝐶(𝜔𝑜2 − 1)
 

(4.16) 

The elements values may be obtained from (4.16).  Similar equations may be 

obtained in the case of an inductor as depicted in Fig. 4-2 (b). At this point the 

common physical filter realisation using coaxial cavity or waveguide filter may 

apply. The only exception is FIR elements which may be approximated by non-

resonating-nodes (NRN). The advantage of this method is that because it is 

derived from the all pole transfer function which is a symmetrical function, the 

resulting transformed circuit has also symmetrical element values for the otherwise 

asymmetrical transfer characteristic they represent. This is ideal because the 

physical structure will also be symmetrical about the physical centre and only half 
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of the values are required to completely characterise and design the filter.  

Although the transformation offers a simplified synthesis approach for elliptic 

lowpass filters, its limitation lies in the fact that only finite single frequency 

transmission zeros can be realised. A more general method where the 

transmission zeros are distributed in the stopband is required. 

 

 

Fig. 4-2  The dual circuit transformation of a capacitor (a) and an inductor (b) 

 

 
Fig. 4-3  TZG element 

 

4.3.2 General Synthesis for Pseudo-elliptic Lowpass Prototype Filter 

In this section a general synthesis method that involves arbitrary placed 

transmission zeros is presented. The synthesis begins by extracting transmission-

zero-generating (TZG) elements as shown in Fig. 4-3. It is assumed that the filter 

network is of order 𝑁 and has 𝑁 transmission zeros. Thus 𝑁 TZG’s are extracted 

that are separated by admittance inverters. A section of TZG consists of a series 
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FIR, a shunt series of inductor with an FIR, a shunt FIR and a series FIR as is 

shown in Fig. 4-3. 

The element values were extracted as described in Chapter 1 and given in Table 

1-2 from the synthesised lowpass filter ABCD matrix given as 

𝐴𝐵𝐶𝐷 =
1

𝑃(𝑝)
[
𝐴(𝑝) 𝐵(𝑝)
𝐶(𝑝) 𝐷(𝑝)

] (4.17) 

Firstly two elements are extracted that make 𝐴(𝑝) and 𝐵(𝑝) polynomials have a 

zero at 𝑝 = 𝑗𝜔1, where 𝜔1 is the first transmission zero. And since 𝑃(𝑝) already 

contain a zero at 𝑝 = 𝑗𝜔1, then the transmission zero is completely extracted from 

the network by dividing all the polynomials by  𝑝 − 𝑗𝜔1 after extraction of these first 

two elements. Thus the series frequency invariant reactance (FIR), 

𝑍 = 𝑗𝑘1, (4.18) 

is extracted first so that the remaining polynomials, 

𝐴𝑟(𝑝) = 𝐴(𝑝) − 𝑗𝑘1𝐶(𝑝) 

𝐵𝑟(𝑝) = 𝐵(𝑝) − 𝑗𝑘1𝐷(𝑝) 
(4.19) 

both possess a transmission zero at 𝑝 = 𝑗𝜔1. The element value 𝑘1 is computed 

(Table 1-2) as 

𝑘1 =
𝐵(𝑝)

𝑗𝐷(𝑝)
|
𝑝=𝑗𝜔1

. 
(4.20) 

Secondly, the residue 𝑏𝑜 is found so that the transmission zero generating shunt 

admittance 

𝑌1 =
𝑏1

𝑝 − 𝑗𝜔1
, (4.21) 

is extracted to make the remaining two polynomials, 𝐶𝑟(𝑝) and 𝐷𝑟(𝑝), have a zero 

at 𝑝 = 𝑗𝜔1. This is realised as a shunt series of inductor, with value 𝐿 = 1/𝑏1, and 

FIR with value 𝑥 = −𝜔1/𝑏1 .The value of the residue is obtained from 

𝑏1 =
𝐷(𝑝)

[𝐵(𝑝)/(𝑝 − 𝑗𝜔1)]
|
𝑝=𝑗𝜔1

, 
(4.22) 

so that the new polynomials,  
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𝐶𝑟(𝑝) = 𝐶(𝑝) − 𝑌1𝐴(𝑝) 

𝐷𝑟(𝑝) = 𝐷(𝑝) − 𝑌1𝐵(𝑝) 
(4.23) 

have a zero at 𝑝 = 𝑗𝜔1. Since all the new ABCD polynomials are zero at 𝑝 = 𝑗𝜔1. 

Then they can be divided by 𝑝 − 𝑗𝜔1 to effectively remove the transmission zero so 

that all the ABCD polynomials including 𝑃(𝑝) reduces by 1 degree. To complete 

the synthesis cycle two other elements are extracted i.e. a shunt FIR of value 

𝑌 = −
1

𝑗𝑘1
, (4.24) 

is extracted followed by a series FIR of value, 

𝑍 = 𝑗𝑘1. (4.25) 

A unit inverter is then extracted and the whole process is repeated until all 

transmission zeros are extracted. To avoid extreme values for the residues, the 

TGZ elements are extracted alternatively from the input and output of the network 

until all the transmission zeros have been extracted. To do this the network is 

turned after extraction of the first TZG element. This is achieved by swapping the 

two leading diagonal polynomials i.e. 𝐴(𝑝) and 𝐷(𝑝). The other polynomials remain 

unchanged. The last TZG is extracted and the network is turned back to the input 

so that extraction of a unit inverter followed by second TZG element is done from 

the input side. The network is turned again so that extraction continues from the 

output side. A unit inverter is extracted followed by second from last TZG. The 

network is again turned back to the input and the whole process is repeated until 

the last TZG element is extracted. Finally, a parallel connected inverter is extracted 

between the last two TZG’s in the middle of the network. The formulae for the 

element extraction were given in Chapter 1(Table 1-2). The initial circuit then 

undergoes three more circuit transformations to produce the ultimate circuit form. 

Fig. 4-4 to Fig. 4-6 below shows the circuit transformations and the associated 

transformation formulae. 

4.3.2.1 Circuit Transformations 

1st circuit transformation (Fig. 4-4): Series FIR and inverters 
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𝑁𝑖𝑗 =
𝑀𝑖𝑗

1 − 𝑘𝑖𝑘𝑗𝑀𝑖𝑗
2 (4.26) 

𝑘𝑖
𝑖𝑗
=

𝑘𝑗𝑀𝑖𝑗
2

1 − 𝑘𝑖𝑘𝑗𝑀𝑖𝑗
2 (4.27) 

𝑘𝑗
𝑖𝑗
=

𝑘𝑖𝑀𝑖𝑗
2

1 − 𝑘𝑖𝑘𝑗𝑀𝑖𝑗
2 (4.28) 

where 𝑗 = 𝑖 + 1. 

 
Fig. 4-4  Circuit transformation for the series FIRs and inverters 

2nd circuit transformation (Fig. 4-5): 

For the input (or output), the series FIR (𝑗𝑘1) and Shunt FIR (−
1

𝑗𝑘1
) are transformed 

to a shunt FIR followed by an inverter of values 

𝑌 =
1

𝑗𝑘1
 (4.29) 

𝑀01 =
1

𝑘1
 (4.30) 

 

 

Fig. 4-5  Circuit transformation for the input series FIRs 

3rd circuit transformation (Fig. 4-6): 
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The shunt FIR followed by an inverter at the input of the network from the second 

circuit transformation are then transformed further into series circuit of a unit phase 

shifter, an inverter and shunt FIR in that order with the values 

𝜃01 = 𝑎𝑐𝑜𝑠

(

 
1

√(1 + 𝑘1
2))

  (4.31) 

𝑁01 =
1

√(1 + 𝑘1
2)

 
(4.32) 

𝑘1
01 =

1

𝑘1(1 + 𝑘1
2)

 (4.33) 

The output part undergoes similar transformations. The final circuit element may 

then be computed as follows 

 
Fig. 4-6  Further circuit transformation at the input (output) of the network 

Input: 

𝜃01 = 𝑎𝑐𝑜𝑠

(

 
𝑘1

√1 + 𝑘1
2

)

  (4.34) 

𝑁01 =
1

√1 + 𝑘1
2

 
(4.35) 

1𝑠𝑡 node: 

𝑌1 = 𝑗𝑁𝑅𝑁1 +
𝑏1

𝑝 − 𝑗𝜔1
 (4.36) 

where 

𝑁𝑅𝑁1 = 𝑘1
01 + 𝑘1

12 =
1

𝑘1(1 + 𝑘1
2)
+

𝑘2𝑀12
2

1 − 𝑘1𝑘2𝑀12
2 (4.37) 

𝑖𝑡ℎ node: 
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𝑁𝑖𝑗 =
𝑀𝑖𝑗

1 − 𝑘𝑖𝑘𝑗𝑀𝑖𝑗
2 (4.38) 

𝑌𝑖 = 𝑗𝑁𝑅𝑁𝑖 +
𝑏𝑖

𝑝 − 𝑗𝜔𝑖
 (4.39) 

where 

𝑁𝑅𝑁𝑖 = 𝑘𝑖
𝑖−1,𝑖 +

1

𝑘𝑖
+ 𝑘𝑖

𝑖,𝑖+1 =
𝑘𝑖−1𝑀𝑖−1,𝑖

2

1 − 𝑘𝑖−1𝑘𝑖𝑀𝑖−1,𝑖
2 +

1

𝑘𝑖
+

𝑘𝑖+1𝑀𝑖,𝑖+1
2

1 − 𝑘𝑖𝑘𝑖+1𝑀𝑖,𝑖+1
2 (4.40) 

𝑁𝑡ℎ node: 

𝑌𝑁 = 𝑗𝑁𝑅𝑁𝑁 +
𝑏𝑁

𝑝 − 𝑗𝜔𝑁
 (4.41) 

where 

𝑁𝑅𝑁𝑁 = 𝑘𝑁
𝑁−1,𝑁 + 𝑘𝑁

𝑁,𝑁+1 =
𝑘𝑁−1𝑀𝑁−1,𝑁

2

1 − 𝑘𝑁−1𝑘𝑁𝑀𝑁−1,𝑁
2 +

1

𝑘𝑁(1 + 𝑘𝑁
2)

 (4.42) 

And the output would be: 

𝑁𝑁,𝑁+1 =
1

√(1 + 𝑘𝑁
2)

 
(4.43) 

𝜃𝑁,𝑁+1 = 𝑎𝑐𝑜𝑠

(

 
1

√(1 + 𝑘𝑁
2))

  (4.44) 

This concept is best illustrated using the example shown in the next section.  

Table 4-1 ABCD Polynomials Of The Synthesis Example 0 

Term 𝐴(𝑠) 𝐵(𝑠) 𝐶(𝑠) 𝐷(𝑠) 𝑃(𝑠) 

3  1.9933 0.0067  −0.1154 

2 2.7036 −1.2428𝑖 −0.1161𝑖 2.7036 1.0388𝑖 

1 −2.9389𝑖 4.0578 2.8368 −2.9389𝑖 3.0009 

0 0.3553 −3.0087𝑖 −2.5085𝑖 0.3553 −2.7701𝑖 
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4.3.3 Synthesis Illustrative Example 

To demonstrate the general synthesis technique for pseudo-elliptic lowpass 

prototype filter, a hypothetical 3𝑟𝑑 degree elliptic lowpass filter with transmission 

zeros at 𝜔 = 2, 3, 4 𝑟𝑎𝑑/𝑠 and 20 dB return loss is synthesised. The Chebyshev 

lowpass prototype filter ABCD matrix polynomials are derived using the methods 

described in Chapter 1 and Chapter 2 as shown in Table 4-1 below. 

The TZG elements are then extracted as shown below. For the first TZG element 

with a transmission zero, 𝑝 = 𝑗2 is extracted to give 

𝑘1 = 1.2810 

𝑏1 = 0.9539 
(4.45) 

 

Table 4-2  Element Values Of The General Pseudo-elliptic Lowpass Prototype 

Filter 

Input Coupling 
𝜃01 = 37.9771

𝑜 

𝑁01 = 0.6153 

TZG 1 

𝑁𝑅𝑁1 = −0.6102 

𝑌1 = −𝑗0.6102 +
0.9539

𝑝 − 𝑗2
 

Inter Resonator Coupling 𝑁12 = 0.1603 

TZG 2 

𝑁𝑅𝑁2 = −0.2238 

𝑌2 = −𝑗0.2238 +
0.5973

𝑝 − 𝑗3
 

Inter Resonator Coupling 𝑁23 = 0.0819 

TZG 3 

𝑁𝑅𝑁3 = −0.3317 

𝑌3 = −𝑗0.3317 +
1.2461

𝑝 − 𝑗4
 

Output Coupling 
𝑁34 = 0.3131 

𝜃34 = 18.2479
𝑜 

 

The network is turned to start the extraction from the output and the last TZG 

element with a transmission zero at  𝑝 = 𝑗4 is extracted to give, 
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𝑘3 = 3.0330 

𝑏3 = 1.2461 
(4.46) 

The network is turned back and a unit inverter is extracted  

𝑀12 = 1 
(4.47) 

Then the middle TZG element is extracted with a transmission zero at 𝑝 = 𝑗3 to 

give 

𝑘2 = 5.6508 

𝑏2 = 0.5973 
(4.48) 

Finally the last element to be extracted is parallel connected inverter with a value 

𝑀23 = 0.7866 
(4.49) 

The next step is to transform the network to the desired form of Fig. 4-8. Applying 

the formulae above, the circuit transformations were done. The final element 

values after the transformation are shown below in Table 4-2. The circuit simulation 

response is shown in Fig. 4-7. 

 

Fig. 4-7  Simulated response of the 3rd degree general elliptic lowpass prototype filter 
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Fig. 4-8 General pseudo-elliptic lowpass prototype filter circuit after the 3 circuit 
transformations  

Finally, the unity phase shifters at the input and output of the network only alter the 

phase response of the filter network and may thus be removed from the network to 

produce the final circuit form as in Fig. 4-9. 

 
Fig. 4-9  General pseudo-elliptic lowpass prototype filter in its final circuit form 

Filters with NRN represent the modern filter methods and the techniques to find the 

coupling coefficients for physical realisation have been a focal point in fairly recent 

research [71, 72]. With modern accuracy in computers, the accuracy lost in 

performing the transformations in a moderate order filters is negligible. Thus the 

foregoing synthesis method of elliptic lowpass prototype filters could prove a very 

useful arsenal in modern filter synthesis providing a starting point for physical 

realisation of pseudo-elliptic filter in the desirable technology of implementation 

such as coaxial cavity or waveguide filters. 

4.4 Re-entrant Resonators 

The concept of the re-entrant line was first introduced by Cohn in the design of 

couplers [75] and similar configurations were further applied in [76] for the design 

of wide bandpass and bandstop filters. The re-entrant cross section has also been 

used in [77] where the dual resonance and finite frequency transmission zero 

produced by a single resonator was exploited for dual bandpass applications.   

The basic concept of a re-entrant transmission line is that it is a form of triaxial 

transmission line with three concentric conductors, one of which is grounded. Fig. 
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4-10 shows an example of an air filled re-entrant resonator. Because the inner 

conductor has zero admittance to ground, a re-entrant transmission line makes for 

practical and convenient realization as a microwave filter element. In fact this 

unique property alone makes the re-entrant line very useful as opposed to 

conventional two conductor transmission lines.  

 
Fig. 4-10 A physical re-entrant transmission line: (a) top and cross section view (b) 

isometric view 

 

 
Fig. 4-11  A re-entrant line equivalent circuit (a) Physical transmission line (b) Graph 

representation (c) two series-connected transmission lines 
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Although, the conductors used in Fig. 4-10 are of cylindrical profile, other profiles 

such as square or rectangular coaxial may be employed where convenient. 

Furthermore, Fig. 4-10 also shows that a basic re-entrant transmission line is a four 

port transmission line. It is also readily seen from Fig. 4-10 that the equivalent 

circuit for the re-entrant line is a two series connected transmission line networks of 

commensurate length (𝜃) as depicted in Fig. 4-11. Here 𝑌𝑟 is the admittance to 

ground of the middle conductor, 𝑌𝑟𝑖 is the admittance between the middle 

conductor and the inner center conductor and 𝑟 indicates 𝑟𝑡ℎ resonator in the filter. 

This equivalent circuit may be used to derive useful filtering elements by 

appropriately terminating two of the four ports in either short or open circuits. The 

choice of the termination depends on the physical realisability and required 

transmission and reflection characteristics. 

A more useful and convenient equivalent circuit is obtained from Sato’s two-wire 

equivalent circuit of coupled-lines [78] consisting of short circuited series stubs and 

transmission lines as depicted in Fig. 4-12. The four port numbers in [78] are 

replaced by variables (i.e. 𝑟, 𝑖, 𝑟′ and 𝑖′ as in Fig. 4-11). In this case, the only 

condition imposed on the inner conductor is that it has no admittance to ground i.e. 

𝑌𝑖𝑖 = 𝑌𝑟𝑖. 

 
Fig. 4-12  Graph representation of the equivalent circuit of re-entrant line using Sato’s 

equivalent circuit of two coupled lines 

To realise useful filtering function for the re-entrant line, several equivalent circuits 

have been derived from the re-entrant line with their corresponding termination at 

two of the four ports. Clearly, there are 24 such permutations of a two port network 
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that may be derived from a four port network with appropriate short and open 

circuit termination at the two ports – since if any two ports are randomly picked, 

then there are 4 different possible ways of terminating the other two ports with 

either a short or open circuit and there are 6 unique combinations ((
4
2
) = 6 ) for 

each choice of any two terminals. Some of the equivalents circuits were listed in 

Table 4-3. However, not all of those equivalent circuit and termination in Table 4-3 

are realisable for generating transmission zeros. The next section considers in 

detail three possible candidate solutions for producing transmission zeros in filter 

networks.  

Table 4-3  Equivalent Circuits Under Different Terminations Of Re-Entrant 

Transmission Line 

 Re-entrant Line  Equivalent circuit 

1 

 

≡ 

 
    

2 

 

≡ 

 
    

3 

 

≡ 
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4 

 

≡ 

 

5 

 

≡ 

 
    

6 

 

≡ 

 
    

7 

 

≡ 

 
    

8 

 

≡ 
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4.4.1 Re-entrant Resonator producing a transmission zero above the 

passband 

To realize a transmission zero above the passband, two convenient re-entrant 

structures may be used. For case 1, the two ports on one end of the re-entrant line 

in Fig. 4-12 i.e. port 𝑟′ and 𝑖′, are short-circuited to the ground yielding the 

equivalent circuit as shown in Fig. 4-13(a) consisting of short-circuited stubs. This 

can be verified by inspection of the equivalent circuit shown in Fig. 4-11(c). 

Resonance is achieved by capacitively loading port 𝑖 as shown in Fig. 4-13(b) and 

Fig. 4-14.  

 
Fig. 4-13 Case 1 - Re-entrant resonator realizing a transmission zero above the passband 

(a) derivation of the equivalent circuit (b) resonance circuit.  
 

 
Fig. 4-14  Cross section of a physical realization of circuit of Fig. 4-13(b) 

The input impedance of circuit of Fig. 4-13(b) may be computed as 
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𝑍𝑖𝑛(𝑗𝜔) = 𝑗
𝑍𝑟 tan(𝑎𝜔) (𝜔𝐶𝑟𝑍𝑟𝑖 tan(𝑎𝜔) − 1)

1 − 𝜔𝐶𝑟(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔)
 (4.50) 

where 

𝑎 =
𝜃𝑜
𝜔𝑜

 (4.51) 

and  

𝐶𝑟 =
1

𝜔𝑧𝑍𝑟𝑖 𝑡𝑎𝑛(𝑎𝜔𝑧)
 

𝑍𝑟 = 𝑍𝑟𝑖 (
𝜔𝑜 𝑡𝑎𝑛(𝑎𝜔𝑜)

𝜔𝑧 𝑡𝑎𝑛(𝑎𝜔𝑧)
− 1) 

(4.52) 

 

 
 

Fig. 4-15  Reactance function 𝑋𝑖𝑛(𝜔) plot corresponding to circuit of Fig. 4-13 

Where, 𝜔𝑜 = 2𝜋𝑓𝑜, 𝜔𝑧 = 2𝜋𝑓𝑧, and 𝜃𝑜 are the centre frequency, the position of the 

transmission  zero frequency and the electrical length at the centre frequency 

respectively. Circuit element values are obtained for example if 𝑓𝑜 = 2 𝐺𝐻𝑧, 

𝑓𝑧 = 2.2 𝐺𝐻𝑧, 𝜃𝑜 = 𝜋/6  𝑟𝑎𝑑, and 𝑍𝑟𝑖 = 77 𝛺, then using (4.51) - (4.52), 𝐶𝑖 = 1.45 𝑝𝐹 

and 𝑍𝑟 = 18.27 𝛺. A plot of a reactance 𝑋𝑖𝑛(𝜔) of 𝑍𝑖𝑛(𝑗𝜔) against frequency is 

shown in Fig. 4-15. The presence of the parasitic capacitance in Fig. 4-14 results in 

the second passband very close to the first passband.  

Although case 1 offers the easiest form of realization, it does present a challenge 

in the filter to control the lumped capacitance at port 𝑖 as well as the shortening of 
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the open-circuit end of port 𝑟 (parasitic capacitance). This may easily be solved in 

case 2 by short-circuiting the alternate ends of the inner and middle conductor of 

Fig. 4-11 i.e. port 𝑟′ and 𝑖. The equivalent circuit for case 2 is found from the two-

wire admittance matrix for coupled lines as [4],  

[

𝐼𝑟
𝐼𝑖
𝐼𝑟′
𝐼𝑖′

] =
1

𝑡

[
 
 
 
 
   𝑌𝑟𝑟 −𝑌𝑟𝑖    𝑌𝑟𝑟

′ −𝑌𝑟𝑖
′

−𝑌𝑖𝑟   𝑌𝑖𝑖 −𝑌𝑖𝑟
′    𝑌𝑖𝑖

′

 𝑌𝑟𝑟
′

−𝑌𝑖𝑟
′

 −𝑌𝑟𝑖
′

𝑌𝑖𝑖
′

 𝑌𝑟𝑟  −𝑌𝑟𝑖
−𝑌𝑖𝑟   𝑌𝑖𝑖 ]

 
 
 
 

[

𝑉𝑟
𝑉𝑖
𝑉𝑟′
𝑉𝑖′

], (4.53) 

where,    

𝑌𝑛𝑚
′ = −(√1 − 𝑡2)𝑌𝑛𝑚, 𝑛 and 𝑚 are indices as in [4] (4.54) 

𝑡 = 𝑗𝑡𝑎𝑛ℎ(𝑎𝑝), 𝑝 is the complex frequency variable, and 𝐼 and 𝑉 are port current 

and voltage. Now, for case 2 port 𝑟′and 𝑖 are short-circuited to ground so that 

𝑉𝑖 = 𝑉𝑟′ = 0 in (4.53). Thus (4.53) may be re-written for a two-port as 

[
𝐼𝑟
𝐼𝑖′
] =

[
 
 
 
 𝑌𝑟 + 𝑌𝑟𝑖

𝑡
 

(√1 − 𝑡2)𝑌𝑟𝑖
𝑡

(√1 − 𝑡2)𝑌𝑟𝑖
𝑡

𝑌𝑟𝑖
𝑡
 ]

 
 
 
 

[
𝑉𝑟
𝑉𝑖′
]. (4.55) 

Where the substitution  

 𝑌𝑟𝑟 =  𝑌𝑟 +  𝑌𝑟𝑖 

 𝑌𝑖𝑖 =  𝑌𝑟𝑖 

 𝑌𝑟𝑖 =  𝑌𝑖𝑟 

(4.56) 

was made to arrive at (4.55). The two-port admittance matrix between port 𝑟 and 𝑖′ 

from (4.55) is 

[𝑌] =

[
 
 
 
 𝑌𝑟 + 𝑌𝑟𝑖

𝑡
 

(√1 − 𝑡2)𝑌𝑟𝑖
𝑡

(√1 − 𝑡2)𝑌𝑟𝑖
𝑡

𝑌𝑟𝑖
𝑡
 ]

 
 
 
 

. (4.57) 

This may be converted to ABCD matrix as 
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[𝐴𝐵𝐶𝐷] =
1

√1 − 𝑡2

[
 
 
 −1 −

𝑡

𝑌𝑟𝑖

−(
 𝑌𝑟
𝑡
+ 𝑌𝑟𝑖𝑡) − (

 𝑌𝑟
𝑌𝑟𝑖
+ 1)

]
 
 
 

. (4.58) 

This may further be decomposed into 

[𝐴𝐵𝐶𝐷] = [
1 0
 𝑌𝑟
𝑡

1
] [
−1 0
0 −1

]
1

√1 − 𝑡2
[
1 

𝑡

𝑌𝑟𝑖
𝑌𝑟𝑖𝑡 1

]. (4.59) 

This ABCD matrix represents the series connection of a shunt short-circuited stub 

of characteristic admittance 𝑌𝑟, a unit admittance 180𝑜 phase shifter and a 

transmission line of characteristic admittance 𝑌𝑟𝑖. Thus the equivalent circuit of 

case 2 is as shown in Fig. 4-16(a). Resonance is achieved at node 𝑟 by 

capacitively loading port 𝑖′ as shown in Fig. 4-16(b) and Fig. 4-17. This is a 

convenient form of realization because the lumped fringing capacitance at the 

bottom end of the inner line (port 𝑖′) and the open-circuit end of the middle line 

(port 𝑟) may be independently controlled allowing independent tuning of the 

resonant frequency and the transmission zero location associated with each 

resonator. The input impedance of circuit of Fig. 4-16(b) may be computed as 

𝑍𝑖𝑛(𝑗𝜔) = 𝑗
𝑍𝑟𝑍𝑟𝑖(𝜔𝐶𝑟𝑍𝑟𝑖 tan(𝑎𝜔) − 1) tan(𝑎𝜔)

𝑍𝑟 tan2(𝑎𝜔) − 𝑍𝑟𝑖 + 𝜔𝐶𝑟𝑍𝑟𝑖(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔)
 (4.60) 

where 

𝑎 =
𝜃𝑜
𝜔𝑜

 (4.61) 

and 

𝐶𝑟 =
1

𝜔𝑧𝑍𝑟𝑖 𝑡𝑎𝑛(𝑎𝜔𝑧)
 

𝑍𝑟 =
𝑍𝑟𝑖(1 − 𝜔𝑜𝐶𝑟𝑍𝑟𝑖 tan(𝑎𝜔))

𝑡𝑎𝑛(𝑎𝜔𝑜) (𝑡𝑎𝑛(𝑎𝜔𝑜) + 𝜔𝑜𝐶𝑟𝑍𝑟𝑖)
 

(4.62) 

Similarly, circuit element values are obtained for example if 𝑓𝑜 = 2 𝐺𝐻𝑧, 𝑓𝑧 =

2.2 𝐺𝐻𝑧, 𝜃𝑜 = 𝜋/6  𝑟𝑎𝑑, and 𝑍𝑟𝑖 = 77 𝛺, then using (4.61) - (4.62), 𝐶𝑟 = 1.45 𝑝𝐹 and 

𝑍𝑟 = 12.94  𝛺. The plot of the reactance function 𝑋𝑖𝑛(𝜔) of 𝑍𝑖𝑛(𝑗𝜔) against 

frequency is shown in Fig. 4-18 for the above example. 
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Fig. 4-16  Case 2 - Re-entrant resonator circuit realizing a transmission zero above 

passband (a) equivalent circuit (b) resonance circuit 
 

 
Fig. 4-17  Cross section of a physical realization of circuit of Fig. 4-16(b) 

 

 
Fig. 4-18  Reactance function 𝑋𝑖𝑛(𝜔) plot corresponding to circuit of Fig. 4-16(b) 
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4.4.2 Re-entrant Resonator producing a transmission zero below the 

passband 

A transmission zero below the passband may be achieved by terminating port 𝑟′ 

and port 𝑖′ of the re-entrant line in Fig. 4-11 with an open-circuit and short-circuit 

respectively. The equivalent circuit of the resulting two port network is found by 

reducing the four port admittance matrix of the re-entrant line to a two-port 

admittance matrix as was done for case 2 of section 0. The equivalent circuit 

between port 𝑟 and 𝑖 may then be obtained directly from the 2-port admittance 

matrix or conversion into ABCD matrix as shown in Fig. 4-19(a). Capacitively 

loading port 𝑖 produces the resonant circuit as shown in Fig. 4-19(b) and Fig. 4-20. 

The input impedance of circuit of Fig. 4-19(b) may be computed as 

𝑍𝑖𝑛(𝑗𝜔) = 𝑗
𝑍𝑟𝑍𝑟𝑖 − 𝑍𝑟

2 tan2(𝑎𝜔) − 𝜔𝑍𝑟𝑍𝑟𝑖𝐶𝑖(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔)

(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔) (𝜔𝐶𝑖(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔) − 1)
 (4.63) 

Where 

𝑎 =
𝜃𝑜
𝜔𝑜

 (4.64) 

and 

𝑍𝑟 =
(𝜔𝑜 tan(𝑎𝜔𝑜) − 𝜔𝑧 tan(𝑎𝜔𝑧))

𝜔𝑜 tan(𝑎𝜔𝑜) 𝑡𝑎𝑛2(𝑎𝜔𝑧)
𝑍𝑟𝑖 

𝐶𝑖 =
1

𝜔𝑜(𝑍𝑟 + 𝑍𝑟𝑖) tan(𝑎𝜔𝑜)
 

(4.65) 

Circuit element values are obtained for example if 𝑓𝑜 = 2 𝐺𝐻𝑧, 𝑓𝑧 = 1.95 𝐺𝐻𝑧, 

𝜃𝑜 = 𝜋/6  𝑟𝑎𝑑, and 𝑍𝑟𝑖 = 77 𝛺, then using (15) - (16), 𝑍𝑟 = 13.32 𝛺 and 𝐶𝑖 =

1.53  𝑝𝐹. Finally, the plot of the reactance function 𝑋𝑖𝑛(𝜔) of 𝑍𝑖𝑛(𝑗𝜔) against 

frequency is shown in Fig. 4-21. Though, it is theoretically possible to realize 

transmission zeros below the passband using the re-entrant structure of Fig. 4-20, 

its physical construction is impractical for real applications as it requires the 

suspension of the middle conductor. For this reason, design theory has only been 

fully developed for case 2 of section II (A) for re-entrant bandpass filters with 

transmission zeroes above the passband. 
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Fig. 4-19  Re-entrant resonator circuit that realizes transmission zero below the passband 

(a) equivalent circuit (b) resonance circuit 
 

 
Fig. 4-20  Cross section of a physical realization of circuit of Fig. 4-19(b) 

 

 
 

Fig. 4-21  Reactance function 𝑋𝑖𝑛(𝜔) plot corresponding to circuit of Fig. 4-19 (b) 
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4.5 Design Theory for Re-entrant Bandpass Filter 

Having obtained the equivalent circuit of a re-entrant resonator, design theory to 

obtain the re-entrant line element values for bandpass filter design is now derived.  

4.5.1 Re-entrant Bandpass Filter Equivalent Circuit 

The equivalent circuit of two coupled nodes in the re-entrant bandpass filter with 

case 2 resonators may easily be obtained from [78] by considering two middle 

transmission lines of the re-entrant  resonators, short-circuited at one end and then 

superimposing the equivalent circuit towards the inner transmission lines at node 𝑟 

and  𝑟 + 1. This is similar to a combline bandpass filter except for the inner 

transmission lines. Therefore, the equivalent circuit of the 𝑁𝑡ℎ re-entrant bandpass 

filter is simply the interconnection of 𝑁 re-entrant resonator circuits of Fig. 4-16(b) 

in section 0 by coupling series short-circuited stubs.  

Fig. 4-22 shows the equivalent circuit of the 𝑁𝑡ℎ degree re-entrant bandpass filter. 

Note that the 180𝑜 phase shifters in Fig. 4-16(b) may be ignored as they only 

account for the phase and have no effect on the magnitude response. Admittance 

inverters may be formed by adding shunt short-circuited stubs at 𝑟𝑡ℎ and (𝑟 + 1)𝑡ℎ 

nodes as in Fig. 4-23 where,     

𝐾𝑟,𝑟+1 =
𝑌𝑟,𝑟+1
tan (𝜃)

. (4.66) 

The positive shunt short-circuited stub admittances in circuit of Fig. 4-23 are 

absorbed at the surrounding nodes leading to the final equivalent circuit as shown 

in Fig. 4-24 where, 

𝑌11 = 𝑌1 + 𝑌12 

𝑌𝑟𝑟 = 𝑌𝑟 + 𝑌𝑟−1,𝑟 + 𝑌𝑟,𝑟+1 

𝑌𝑁𝑁 = 𝑌𝑁 + 𝑌𝑁−1,𝑁 

(4.67) 
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It is now left to derive the frequency transformation from a pseudo-elliptic lowpass 

prototype filter of section 4.3 that preserves the frequency response so that the 

bandpass elements in (4.66) and (4.67) may be determined. 

 
Fig. 4-22  Equivalent circuit of an 𝑁𝑡ℎ degree re-entrant bandpass filter 

 

 
Fig. 4-23  Formation of admittance inverters between node  𝑟 and 𝑟 + 1 

 

 
Fig. 4-24  Final equivalent circuit of an 𝑁𝑡ℎ degree re-entrant bandpass filter with 

admittance inverters 

4.5.2 Pseudo-elliptic Lowpass Prototype filter to Bandpass filter 

Frequency Transformation 

In section 4.3 a suitable lowpass prototype filter was derived as shown in Fig. 4-25 

consisting of a shunt frequency invariant reactance (𝐵𝑟) in parallel with a shunt 

series of an inductor (1/𝑏𝑟) with frequency invariant reactance (−𝜔𝑟/𝑏𝑟) separated 

by frequency invariant admittance inverters 𝐾′𝑟−1,𝑟 and 𝐾′𝑟,𝑟+1. Thus at each 

network node 𝑟, the 𝑟𝑡ℎ input admittance may be expressed as, 

𝑌′𝑖𝑛(𝑗𝜔) = 𝑗𝐵𝑟 +
𝑏𝑟

𝑝 − 𝑗𝜔𝑟
= 𝑗 (

1 − 𝜔𝑟𝜔

𝜔 − 𝜔𝑟
)𝐶𝑟 . (4.68) 
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Fig. 4-25  𝑁𝑡ℎ degree all-pole pseudo-elliptic lowpass prototype filter with admittance 

inverters (input and output inverters not shown) 

Recall that for the first lowpass filter of section 4.3.1 where all the transmission 

zeros are at a single finite frequency 𝜔𝑟 rad/s (𝜔𝑟 = 𝜔0, 𝑟 = 1,2, … ,𝑁) in the 

lowpass domain, an all-pole Chebyshev lowpass filter network shown in Fig. 4-26  

needs to be synthesised first. 

 
Fig. 4-26  𝑁𝑡ℎ degree all-pole Chebyshev lowpass filter  

Then using transformation (4.4), the all-pole Chebyshev lowpass filter network of 

shunt capacitors 𝐶𝑟 separated by admittance inverters 𝐾′𝑟,𝑟+1 may be transformed 

to the required lowpass prototype filter of  Fig. 4-25 as  

𝑌′𝑖𝑛(𝑗𝜔) = 𝑗𝜔𝐶𝑟 = 𝑗 (
1 − 𝜔𝑟𝜔

𝜔 − 𝜔𝑟
)𝐶𝑟 . (4.69) 

Which may be re-written as in (4.68) as, 

𝑌′𝑖𝑛(𝑗𝜔) = −𝑗𝜔𝑟𝐶𝑟 +
𝐶𝑟(𝜔𝑟

2 − 1)

𝑗𝜔 − 𝑗𝜔𝑟
= 𝑗𝐵𝑟 +

𝑏𝑟
𝑠 − 𝑗𝜔𝑟

. (4.70) 

Where, 

𝐵𝑟 = −𝜔𝑟𝐶𝑟 

𝑏𝑟 = 𝐶𝑟(𝜔𝑟
2 − 1) 

(4.71) 

Again the frequency invariant admittance inverters 𝐾′𝑟,𝑟+1 between the nodes in 

the all-pole Chebyshev lowpass prototype filter remain unchanged by this 

transformation. In order to make the admittance inverters frequency invariant in the 

re-entrant bandpass equivalent circuit, the admittance of the entire network is 
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scaled by 𝑡𝑎𝑛(𝜃)/𝑡𝑎𝑛(𝜃𝑜), where 𝜃𝑜 is the electrical length of the re-entrant 

resonator at the center frequency. The source and load admittances are also 

scaled by 𝑡𝑎𝑛(𝜃)/𝑡𝑎𝑛(𝜃𝑜) but the variations of 𝑡𝑎𝑛(𝜃)/𝑡𝑎𝑛(𝜃𝑜) is small for narrow 

bandwidth filters. Thus the frequency invariant admittance inverters are mapped as 

𝐾𝑟,𝑟+1 =
𝑌𝑟,𝑟+1
𝑡𝑎𝑛(𝜃𝑜)

= 𝐾′𝑟,𝑟+1. (4.72) 

Hence, 

𝑌𝑟,𝑟+1 = 𝐾
′
𝑟,𝑟+1𝑡𝑎𝑛(𝜃𝑜). (4.73) 

Furthermore, the frequency variant admittance at 𝑟𝑡ℎ node of the re-entrant 

bandpass, (4.60), maps onto the admittance at 𝑟𝑡ℎ node of the lowpass. For 

example utilising the lowpass prototype filter from section 4.3.1, the mapping may 

be achieved as follows:  

(
1 − 𝜔𝑟𝜔

𝜔 − 𝜔𝑟
)𝐶𝑟 ⇒ 

𝛼𝑟 − 𝛼𝑟𝛽𝑟𝜔 tan(𝜃) − tan
2(𝜃) − 𝛽𝑟𝜔tan (𝜃)

𝛾𝑟 tan(𝜃𝑜) ∗ [𝛽𝑟𝜔 tan(𝜃) − 1]
 

(4.74) 

where, 

𝛼𝑟 =
𝑌𝑟𝑟

𝑌𝑟𝑖
, 𝛽𝑟 =

𝐶𝑟

𝑌𝑟𝑖
 and  𝛾𝑟 =

1

𝑌𝑟𝑖
 (4.75) 

Fig. 4-27 illustrates the frequency mapping defined using (4.74) above. The 

parameters 𝛼𝑟, 𝛽𝑟 and 𝛾𝑟 may be determined by mapping the centre frequency,  

ω = 0 and the two bandedge frequencies at ω = ±1 of the lowpass prototype onto 

the centre frequency ωo, lower cut-off frequency ω1 and upper cut-off frequency ω2 

respectively of the re-entrant bandpass filter using (4.74) and solving the resulting 

non-linear equations for the variables 𝛼𝑟, 𝛽𝑟 and 𝛾𝑟 at each node 𝑟. The re-entrant 

bandpass element values are then obtained as follows: 

𝑌𝑟𝑖 =
1

𝛾𝑟
 , 𝑌𝑟 =

𝛼𝑟

𝛾𝑟
  and 𝐶𝑟 =

𝛽𝑟

𝛾𝑟
 (4.76) 

The same mapping may be achieved for the general pseudo-elliptic lowpass filter 

as demonstrated above. Finally the entire network nodal admittance matrix may be 

scaled at the nodes to yield realisable impedance values. The input and output 
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connections are made by direct tap onto the first and last middle conductors. 

Redundant coupled lines at the input and output may also be added if desired. 

 
Fig. 4-27  Frequency mapping of the admittances at  𝑟𝑡ℎ node 

4.5.3 Close-to-Band Transmission Zeroes 

In this section, the limitation of the transmission zero locations is discussed with 

respect to the element realisations. For example for the transmission zero above 

the passband re-entrant structure of Fig. 4-17, consider a single resonator where 

the bandwidth is controlled by the input and output couplings, then using (4.62) of 

section 0 for 𝑓𝑜 = 1 𝐺𝐻𝑧 and 𝑍𝑟𝑖 = 77 𝛺, the ratio of 𝑍𝑟𝑖/𝑍𝑟 and 𝐶𝑟 were plotted 

against the transmission zero locations as depicted in Fig. 4-28. It is clear from Fig. 

4-28 that the ratio 𝑍𝑟𝑖/𝑍𝑟 increases as the transmission zero location gets closer to 

the upper passband edge. As the transmission zeros get very close to the 

passband, clearly 𝑍𝑟 becomes unrealisably small. Increasing 𝜃𝑜 from 𝜃𝑜 = 30
𝑜 in 

Fig. 4-28(a) to 𝜃𝑜 = 45𝑜 in Fig. 4-28(b) increases the ratio 𝑍𝑟𝑖/𝑍𝑟 while the 

capacitance loading 𝐶𝑟 decreases. This means  𝑍𝑟 decreases for a fixed 𝑍𝑟𝑖.  By 

using a different 𝜃𝑜 a similar analysis may be done to determine the location of the 

transmission zeros that will give realizable 𝑍𝑟 given 𝑍𝑟𝑖.  For a given bandwidth and 

centre frequency, the closest transmission zero to the passband the structure can 

support would be determined by the realisability of 𝑍𝑟 for a fixed 𝑍𝑟𝑖 by using an 

appropriate electrical length (𝜃𝑜). Thus the structure can realize transmission zeros 

as close as one passband bandwidth away from the passband edge. More specific 

design examples and impedance levels for the elements will be given later. 
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(a) 

 

(b) 

Fig. 4-28  (a) Element values vs transmission zero positions 𝑓𝑜 = 1 𝐺𝐻𝑧, and 𝜃𝑜 = 30
𝑜and 

𝑍𝑟𝑖 = 77 Ω  (b) Element values vs transmission zero positions 𝑓𝑜 = 1 𝐺𝐻𝑧, and 𝜃𝑜 = 45
𝑜and 

𝑍𝑟𝑖 = 77 Ω 

4.5.4 Physical dimensions 

With the element values known, calculation of the physical dimensions is fairly 

straight-forward using established methods already used for combline and 

interdigital bandpass filters as explained in [4, 5, 32]. The inner transmission lines 

are realized as circular coaxial lines which are easy to machine. One end of the 

inner re-entrant line is fixed to the upper metallic wall (cover) by screwing it into the 

wall. Metallic discs may be fitted to the other end of the inner re-entrant line to 

achieve the required capacitive loading. The middle transmission lines may be 

realized with circular or rectangular rods. The ground spacing is chosen to achieve 

the given unloaded Quality factor, 𝑄𝑢 and that there is sufficient space for the inner 

re-entrant conductor. 
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Fig. 4-29  Re-entrant resonator cross section corresponding to Fig. 4-17 structure of 

section 0 case 2 with square outer conductor and circular middle and inner conductors and 
height H (not shown) 

 

Table 4-4  Re-entrant Resonator vs Coaxial Resonator 

Air-Filled Re-entrant Resonator With 

𝑏 = 35 𝑚𝑚, 𝑏𝑟𝑖 = 18 𝑚𝑚,𝐷𝑟𝑖 = 4.99 𝑚𝑚, 𝐻 = 25 𝑚𝑚 

Middle 

Conductor 

 𝐷𝑟 (mm) 

Resonant 

Frequency(𝐺𝐻𝑧) 

First 

Spurious 

(𝐺𝐻𝑧) 

Unloaded𝑄𝑢 

𝑄𝑢 per 

Volume 

(𝑚𝑚−3) 

32.14 1.02 2.82 1805 0.055 

24.43 1.01 2.76 2226 0.067 

Air-Filled Coaxial Resonator With 

𝑏 = 35 𝑚𝑚,𝐻 = 25 𝑚𝑚 

Inner 

Conductor 

 𝐷𝑟 (mm) 

Resonant 

Frequency(𝐺𝐻𝑧) 

First 

Spurious 

(𝐺𝐻𝑧) 

Unloaded𝑄𝑢 

𝑄𝑢 per 

Volume 

(𝑚𝑚−3) 

13.89 1.00 6.16 3386 0.111 
 

It is quite obvious that the advantages of the re-entrant resonator of having close-

to-band transmission zeros creating high stopband rejection and simple in-line 

structure do have trade-offs.  The theoretical spurious resonance is three times the 

centre frequency for 𝜃𝑜 = 30
𝑜. However, because of the presence of the parasitic 

capacitance on one end of the middle conductor, the spurious resonances actually 

appear closer to the first passband. Furthermore, choosing relatively large ground 

spacing pushes these farther down in frequency. Table 4-4 shows the unloaded 𝑄𝑢 

and spurious performance for a re-entrant resonator compared to the normal 

coaxial resonator of comparative size using HFSS assuming silver plated 
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conductors. Following up from section 4.5.3, it may be seen that for fixed inner 

conductor dimensions, the transmission zero is controlled by the middle conductor 

dimension, i.e. 𝐷𝑟 as shown in Fig. 4-29. Therefore, for a fixed ground plane 

spacing (𝑏) and as the position of the transmission zero gets closer to the 

passband, 𝐷𝑟 increases. The middle conductor dimension in Table 4-4 

corresponds to a transmission zero position at 1.075 GHz (32.14 mm) and 1.2 GHz 

(24.43 mm) respectively. It is clear from Table 4-4 that the unloaded 𝑄𝑢 is lower in 

re-entrant resonator and further degrades for much closer-to-band transmission 

zeros above the passband.  

The requirement to physically incorporate two conductors within the same physical 

structure and to improve the unloaded 𝑄𝑢 does mean that the re-entrant filter would 

require relatively large resonator size. However, in certain cellular applications 

where deep stopband rejections are required on the upper side of the passband, 

the re-entrant resonator bandpass filter would provide a good alternative solution. 

4.6 Design Examples 

4.6.1 Design Example I 

A 5 pole re-entrant bandpass filter with centre frequency at 1 GHz, 50 MHz 

bandwidth and 20 dB return loss was designed. The filter was designed with the 

following arbitrary located transmission zeros as: 

𝜔𝑟 = [7.1616, 3.4, 3, 3.2, 4.44,7.1404] 𝑟𝑎𝑑/𝑠 

corresponding to microwave frequencies: 

𝑓𝑟 = [1.147, 1.077, 1.068, 1.098, 1.147] 𝐺𝐻𝑧. 

Firstly, the pseudo-elliptic prototype lowpass filter with arbitrary transmission zeros 

was synthesised corresponding to the circuit of Fig. 4-26 above. The obtained 

element values are shown in Table 4-5 below. The bandpass element values are 

obtained as described in section 4.5.2. The electrical length at the centre frequency 

was chosen to be 𝜃𝑜 = 30
𝑜. After the bandpass frequency transformation and 

scaling so that the inner re-entrant lines are identical for all resonators (i.e. 
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𝑍𝑟𝑖 = 77 Ω), the element values were determined as shown in Table 4-6 in a 50 Ω 

system. 

Table 4-5  Elliptic Lowpass Filter Element Values 

𝐵𝑟 𝑏𝑟 𝐾𝑖𝑗
′ 

−7.0647 48.8958 0.2192 

−0.2262 0.6968 0.0440 

−0.2158 0.5744 0.0331 

−0.1693 0.7069 0.1658 

−6.9901 48.6018  
 

Table 4-6  Re-entrant Bandpass Filter Element Values  

𝑍𝑟𝑖 = 77 Ω 

Middle 

Conductors 
Capacitors 

Coupling 

admittances 

Input and 

Output 

Coupling 

𝑍1 = 27.5963 Ω 𝐶1 = 2.6265 𝑝𝐹 𝑍12 = 53.9827 Ω 𝑍𝑠1 = 50 Ω 

𝑍2 = 15.2545 Ω 𝐶2 = 3.0335 𝑝𝐹 𝑍23 = 33.9059 Ω 𝑍7𝑙 = 50 Ω 

𝑍3 = 12.8267 Ω 𝐶3 = 3.0868 𝑝𝐹 𝑍34 = 43.6124 Ω  

𝑍4 = 20.7958 Ω 𝐶4 = 2.9050 𝑝𝐹 𝑍45 = 69.1771 Ω  

𝑍5 = 25.1697 Ω 𝐶5 = 2.6271 𝑝𝐹   
 

The circuit simulation is shown in Fig. 4-30. All the element values shown are 

realisable with the middle conductors realised in rectangular coaxial profile, while 

the inner transmission lines are realised with circular coaxial and are identical. The 

input and output feed is implemented by means of a tap near the top of the first 

and last resonators. The close to band transmission zero at 1.068 GHz is created 

by the centre resonator as evidenced by the smallest characteristic impedance 

(𝑍4 = 12.8267 Ω). This impedance may easily be scaled up if necessary. The 

outermost transmission zeros at 1.145 GHz are created by the the first and last 

resonators. Deep stopband rejection of about 120 dB is achieved around the 

transmission zeros positions. 
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Fig. 4-30  Circuit simulation of the 5th degree re-entrant bandpass filter of example 4.6.2 

 

4.6.2 Design Example II 

A 5 pole re-entrant bandpass filter with centre frequency at 1 GHz, 85 MHz 

bandwidth, 20 dB return loss and 1 dB maximum insertion loss across ripple 

bandwidth was designed. A lowpass filter was first designed with all the 

transmission zeroes placed at 𝜔𝑟 = 5.5 𝑟𝑎𝑑/𝑠, corresponding to a microwave 

frequency of 1.1466 𝐺𝐻𝑧.  

The Chebyshev lowpass filter with 20 𝑑𝐵 return loss was synthesized with 

elements values 𝐶𝑟 and 𝐾′𝑟,𝑟+1 obtained. Then (4.15)-(4.16) was used to obtain the 

element values of the pseudo-elliptic lowpass prototype filter required for the 

design of the re-entrant bandpass filter. The bandpass element values are 

obtained by application of (4.73)-(4.76) and (4.67) as described in section 4.5.2. 

The electrical length at the centre frequency was chosen to be 𝜃𝑜 = 30
𝑜. After the 

bandpass frequency transformation and scaling so that the inner re-entrant lines 

are identical for all resonators, the element values in a 50 Ω system were 

determined as shown in Table 4-7. The circuit simulation is shown in Fig. 4-31 

below. 
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Table 4-7  Re-entrant Bandpass Filter Element Values 

Inner conductors Middle Conductors Coupling admittances 

𝑍𝑟𝑖 = 77.1598 Ω 𝑍1 = 𝑍5 = 32.9867 Ω 𝑍12 = 𝑍45 = 102.84 Ω 

𝐶𝑟 = 2.3658 𝑝𝐹 𝑍2 = 𝑍4 = 43.1568 Ω 𝑍23 = 𝑍34 = 139.98 Ω 

 𝑍3 = 38.8326 Ω  
 

 

Table 4-8  Filter Theoretical (Calculated) Physical Dimensions (mm) 

𝐷𝑟𝑖 = 1.97 𝑏 = 40 𝑠𝑤1 = 20 𝑤1 = 12.88 

𝐷𝑟 = 7.14 𝐻 = 25 𝑠12 = 8 𝑤2 = 11.14 

𝑡 = 32.00 ℎ = 4.2 𝑠23 = 10.4 𝑤3 = 12.52 
 

 

Table 4-9  Filter Physical Dimensions after Optimization (mm) 

𝐷𝑟𝑖 = 5.02 𝑏 = 40 𝑠𝑤1 = 20 𝑤1 = 23.63 

𝐷𝑟 = 17.88 𝐻 = 25 𝑠12 = 7.8 𝑤2 = 21.88 

𝑡 = 32.00 ℎ = 4.2 𝑠23 = 10.4 𝑤3 = 23.27 
 

 

The physical dimensions were determined as described in section 4.5.4 and using 

[32] as shown in Table 4-8. A ground spacing of 40 mm was used in the design. 

The physical structure was simulated using HFSS and optimized. Note as always 

[79], the theoretical design underestimate the actual bandwidth in combline filter 

design using [32]. The optimised physical dimensions are given in Table 4-9 and 

depicted in Fig. 4-32. Note also that the inner conductor dimensions were not 

optimized but were proportionally increased so that the characteristic impedance 

(𝑍𝑟𝑖 = 77.1598 Ω) is maintained. The overall filter cavity dimensions were 40 mm 

wide, 190.69 mm in length and 29.2 mm in height. The filter was fabricated using 

Aluminium with the above physical dimensions. 
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Fig. 4-31 Circuit simulation of the 5th degree re-entrant bandpass filter example 4.6.2 vs 

HFSS simulation  

 

 

 

 
Fig. 4-32  Diagram showing the layout of the re-entrant resonators in the design example 

4.6.2: (a) Top view (b) Cross section of side view - dimensions shown are as given in 
Table 4-9  
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4.7 Discussion 

Fig. 4-33 shows a comparison between the measured frequency response and the 

HFSS (lossless) simulation whereas Fig. 4-34 shows the same simulation on a 

broader frequency scale. Measurements were performed on an Agilent 

Technologies E5071C ENA series network analyser. In the re-entrant bandpass 

filter, the coupling admittances are considerably smaller than in normal combline 

bandpass filter of comparable bandwidths. This means that the inter-resonator 

spacings are relatively small. Thus significant fringing capacitance between non-

adjacent resonators does exist and potentially leading to the method in [32] for 

obtaining physical dimensions being inaccurate. Thus the bandwidth is 

considerably broader with initial values obtained using [8]. However, this bandwidth 

change also occurs in conventional combline filters. As noted in [79], the problem 

may be solved by utilizing full EM simulators or alternatively using bandwidth 

correction factors may be less time consuming. Further adjustment may be 

achieved by mechanical tuning using tuning screws in the fabricated filter. The 

fabricated filter is shown in Fig. 4-35. 

 
Fig. 4-33  Measured vs HFSS frequency response of the fabricated re-entrant bandpass 

filter 
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Fig. 4-34  Measured versus HFSS simulation of the fabricated re-entrant bandpass filter 

 

4.7.1 High Selectivity 

The re-entrant bandpass can realise a maximum of 𝑁 transmission zeroes 

equivalent to the filter order making it a relatively a very selective filter compared to 

conventional filters. Additionally, the design presented above provides for flexibility 

in position of the transmission zeroes. The transmission zeros above the passband 

may be located as near as one passband away from the bandedge. The 

fundamental limit to the placement of transmission zeroes is that as the 

transmission zeroes become much closer to the passband edge the impedance 

levels are unrealizably small or large.  

4.7.2 Symmetrical Design 

The re-entrant bandpass may be realized using physically symmetrical or 

asymmetrical in-line structures depending on transmission zero placements. 

Physically symmetrical design may be achieved by placing transmission zeroes so 

that each node from the two opposite ends have the same transmission zero. For 

example for a 5 pole and 5 transmission zeroes filter, the lowpass transmission 
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zero distribution may be chosen as 𝜔 = 2,3,4,3,2 𝑟𝑎𝑑/𝑠 or 𝜔 = 5,10,10,10,5 𝑟𝑎𝑑/𝑠 - 

all produce physically symmetrical designs. Alternatively, all the transmission 

zeroes may be placed at a single frequency. Although this does not improve the 

overall stopband rejection, it does simplify the synthesis, design and tuning of the 

filter. Physically symmetrical structures make for easy tuning of the filter after 

fabrication and as well as cut down design time when optimizing using time 

consuming EM software such as HFSS. 

4.7.3 Tunability 

The filter tuning is achieved by screws that control the lumped capacitance on the 

inner transmission lines of the re-entrant resonators. The tuning of the lumped 

capacitance controls both the resonant frequency and the transmission zero 

location. Additional tuning screws may be inserted on top of the filter to control the 

resonance frequency by slight adjustment of the capacitance at the open-circuited 

end of the middle conductors. Coupling screws may also be inserted between the 

nodes to control the couplings. The fabricated filter was easy to tune as all the 

inner conductors’ dimensions were identical, requiring identical turns in the tuning 

screws. 

4.7.4 Compact In-Line Filter Structure 

In the re-entrant bandpass filter design presented in section 4.6.2, the resonator 

lengths at the centre frequency may be made considerably short e.g. 𝜃𝑜 = 30
𝑜. 

The re-entrant resonators also require strong couplings for very close-to-band 

transmission zeroes resulting in smaller inter-resonator spacing. Thus the filter may 

be considerably reduced in size. However, the requirement to have an inner 

conductor inside the middle conductor does limit the choice of the ground spacing. 

In addition, the in-line filter topology makes an ideal realization for base station 

filters.  

The highly selective re-entrant resonators may also be mixed with normal combline 

resonators with much wider spurious free frequency window to exploit the best 

attributes of each resonator. Furthermore, the re-entrant bandpass filter is easy to 

fabricate, similar to combline bandpass filters, as all the middle transmission lines 
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are fixed and short-circuited at one end whereas the inner transmission lines may 

be fabricated separately and fixed to the filter cover by screwing them into the 

cover as depicted in the fabricated filter photos in Fig. 4-35. The tuning screws 

located on the same side of the filter bottom wall make for easy of tuning. 

(a) 

 

 

(b) 

 

Fig. 4-35  Photo showing a fabricated re-entrant bandpass filter (a) filter with top cover 
removed (b) assembled filter with input and output connectors 

4.8 Conclusion 

In this Chapter, a re-entrant transmission line was exploited to provide both a 

resonance frequency and a finite frequency transmission zero. A complete design 

procedure was given starting from a pseudo-elliptic low-pass prototype. A 

prototype bandpass filter was designed and fabricated. Measurement results 

showed good correspondence with theory. The re-entrant bandpass filter with 

transmission zeros above the passband is well suited for base station receive 

filters where a high rejection is required in the transmit frequency band. The 

following Chapter gives an application of the synthesis method of Chapter 2 to 

synthesis of single and narrow dual bandpass filters. 
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Chapter 5 Synthesis Methods for Single Bandpass and (Narrow) 

Dual Bandpass Filters   

5.1 Introduction 

In this Chapter, an application of the methods of Chapter 1 and Chapter 2 are 

applied to the direct synthesis of bandpass and narrow dual bandpass filters. To 

prove the success of the proposed synthesis technique, synthesis and design 

procedures for combline and interdigital bandpass filters are given in section 5.2. 

Synthesis and design examples are given to validate the proposed synthesis 

technique and to demonstrate the practical realisation. Finally in section 5.3, it is 

shown through an example how a narrow dual bandpass filter may be synthesised 

from a suitable lowpass prototype filter using the proposed synthesis technique.  

5.2 Direct synthesis of bandpass filters 

The general Chebyshev characteristic function for direct bandpass filter synthesis 

was derived in Chapter 2. Each unique solution may be obtained corresponding to 

a linear combination of basis functions depending on the number and position of 

transmission zeros. The transmission zeros are required not only to increase 

rejection in the stopband but also for physical realisation. It will be shown how the 

synthesis method is both applicable in the lumped and distributed domain. This will 

be exemplified by the design of pseudo-combline and interdigital bandpass filters in 

the next sections. 

5.2.1 Pseudo-combline Bandpass Filter Design 

Pseudo-combline bandpass filter may be realised from lumped element network 

shown in Fig. 5-1. This bandpass filter is characterised by a 𝑁-0-1 transfer function 

and contains only a single pair of transmission zero at the origin and the rest are at 

infinity on the imaginary  𝑝 complex plain. It may look like each shunt inductor in 

Fig. 5-1 provides a single transmission zero at the origin and thus the inductors 
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provides 𝑁/2 number of transmission zeros. In fact all the shunt inductors 

contribute to only a single transmission zero at the origin. Similarly, Table 2-5 in 

Chapter 2 shows the weighting numbers for each of the basis function required.  

This bandpass filter may be used to design pseudo-combline bandpass filters by 

transforming the lumped bandpass filter network of Fig. 5-1 into a distributed 

network. 

 
Fig. 5-1  Lumped element bandpass prototype filter used for design of pseudo-combline 

bandpass filter with 𝑁𝑇𝑍 = 1 
 

5.2.1.1 Network Synthesis  

The characteristic function for the bandpass prototype filter to be used for the 

design of pseudo-combline bandpass is the unique solution to the general solution 

discussed in Method for Generating Generalised Chebyshev Polynomials  

corresponding to the second family 𝑁-0-(𝑁 − 1) of solution in Table 2-5 and with 

weighting numbers 𝛼, 𝛽 and 𝛾 as  

𝛼 = 𝑁/2 − 1,  𝛽 = 1 and 𝛾 = 0 (5.1) 

The element values for the bandpass prototype filter shown in Fig. 5-1 may be 

obtained through network synthesis using the 𝐴𝐵𝐶𝐷 matrix cascaded synthesis 

approach as described in Chapter 1. The following is the procedure for the network 

synthesis for element by element extraction from the 𝐴𝐵𝐶𝐷 matrix. For 𝑁 ≥ 6 

(𝑁 = 2 and 4, are trivial cases and may easily be found by inspection of the 

𝐴𝐵𝐶𝐷 matrix).  

Step 1: Extract shunt capacitor with value  

𝐶1 =
𝐷

𝑝𝐵
|
𝑝→∞

 
(5.2) 

The remainder 𝐴𝐵𝐶𝐷 is computed as 
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𝐴𝐵𝐶𝐷𝑟𝑒𝑚 =
1

𝑃
[

𝐴 𝐵
𝐶 − (𝐶1𝑝)𝐴 𝐷 − (𝐶1𝑝)𝐵

] (5.3) 

The remainder C and D polynomials are now less by 1 degree 

Step 2: Extract Γ section:  

 
Fig. 5-2  Extraction of  Γ section from the filter network 

 

From Fig. 5-2 

𝐴𝐵𝐶𝐷Γ = [

1 𝐿12𝑝
1

𝐿1𝑝
1 +

𝐿12
𝐿1

] (5.4) 

The input impedance to the remainder of the network is,  

𝑍in =
𝐴Γ𝑍rem + 𝐵Γ
𝐶Γ𝑍rem + 𝐷Γ

=
𝐴𝑍L + 𝐵

𝐶𝑍L + 𝐷
 (5.5) 

and if  𝑍L = ∞, and substituting for 𝐴𝐵𝐶𝐷Γ elements, then the open-circuit 

impedance is, 

𝑍in =
𝑍rem + 𝐿12𝑝

1
𝐿1𝑝

𝑍rem + 1 +
𝐿12
𝐿1

=
𝐴

𝐶
 

𝐿1𝑍rem
𝑝 + 𝐿1𝐿12

𝑍rem
𝑝 + 𝐿1 + 𝐿12

=
𝐴

𝑝𝐶
 

(5.6) 

Hence define the sum from (5.6), 

𝑠𝑢𝑚 =
1

𝐿1
+

1

𝐿12
=
𝑝𝐶

𝐴
|
𝑝→∞

 (5.7) 

The value of 𝐿12 may be chosen so that both 𝐿1 and the remainder polynomials are 

positive real functions. e.g. 𝐿12 = 1. Appropriate choice of 𝐿12 ensures the 
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remainder of the network is well scaled to avoid extreme element values. Thus 𝐿1 

is determined from, 

𝐿1 =
1

𝑠𝑢𝑚 −
1
𝐿12

 
(5.8) 

The remainder ABCD is computed as, 

𝐴𝐵𝐶𝐷𝑟𝑒𝑚 =
1

𝑃

[
 
 
 (1 +

𝐿12
𝐿1
) 𝐴 − (𝐿12𝑝)𝐶 (1 +

𝐿12
𝐿1
)𝐵 − (𝐿12𝑝)𝐷

𝐶 −
𝐴

𝐿1𝑝
𝐷 −

𝐵

𝐿1𝑝 ]
 
 
 

 (5.9) 

Note that all the remainder ABCD polynomials are now 1 degree less except for 

the 𝑃 polynomial. 

Step 3: Repeat step 1 and 2 up to 𝑁/2 − 1 times. Note also that, because of 

symmetry, when the synthesis process is performed past the centre of the network, 

the other values of the coupling inductors must be assigned such that, 

𝐿12 = 𝐿𝑁−1,𝑁 

𝐿23 = 𝐿𝑁−2,𝑁−1, … 
(5.10) 

Step 4: Finally, the last element to be extracted is a shunt 𝐿𝐶 resonator. 𝑃 = 𝑝/𝜀 is 

divided throughout the 𝐴𝐵𝐶𝐷 polynomials so that 𝐴, 𝐷 and 𝑃 are unity,  𝐵 is zero 

and 𝐶 polynomial takes the form 

𝐶 = 𝑐0𝑝 +
𝑐1
𝑝

 (5.11) 

Hence 

𝐶𝑁 = 𝑐0 

𝐿𝑁 =
1

𝑐1
 

(5.12) 

This completes the synthesis process to yield the circuit in form of Fig. 5-1. Notice 

that in this example, the classical cascaded synthesis was applied. A more efficient 

method involves the use of CM synthesis method as the example in section 5.2.3.2 

will show. 
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5.2.1.2 Lumped-to-distributed circuit Transformation  

The bandpass filter circuit is obtained by transforming the lumped bandpass filter 

circuit of Fig. 5-1 to a distributed bandpass filter by means of Richard’s lowpass 

transformation [9] defined parametrically as  

𝑝 = 𝑎𝜌, 𝜌 = 𝑗𝑡 = 𝑗𝑡𝑎𝑛(𝜃)      

  𝑎 =
1

𝑡𝑎𝑛(𝜃2)
=  

1

𝑡2
  

 𝜔 =
𝑡𝑎𝑛(𝜃)

𝑡𝑎𝑛(𝜃2)
=
𝑡

𝑡2
 

(5.13) 

where 𝜃2 is the electrical length at 𝜔2, the upper bandedge frequency point. Thus 

the lumped capacitors become open circuited stubs and the lumped inductors 

become short circuited stubs as shown in Fig. 5-3. Redundant input and output unit 

phase shifters of Fig. 5-4 may be added to the network and admittance inverters 

may also be formed as in Fig. 5-5 to realise the circuit of Fig. 5-6. It is often the 

case with narrow bandpass filters that the short circuited characteristic impedance 

are unrealisable and thus scaling of internal nodes is required. The network of Fig. 

5-6 is scaled at every internal node such that the shunt short circuited stubs 

characteristic admittances are unity. After scaling, the internal inverters are 

removed and phase shifters are formed at the input and output yielding the final 

realisable circuit of Fig. 5-7. The final circuit element values are given by the 

formulae below.  

The scaling factors at nodes 1, 2, 3, …N/2 are: 

n1 =
√a

√
1
L1
+

1
L12

+ a

 

n2 =
√a

√
1
L1
+

1
L12

+
1
L23

 

⋮ 

(5.14) 
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nr =
√a

√
1
Lr
+

1
Lr−1,r

+
1

Lr,r+1

 

⋮ 

nN/2−1 = n2 

nN/2 = n1 

Characteristic admittances for the coupling admittances, 

𝑌01 = 𝑛1 

𝑌12 =
𝑛1𝑛2
𝑎𝐿12

 

⋮ 

𝑌𝑟,𝑟+1 =
𝑛𝑟𝑛𝑟+1
𝑎𝐿𝑟,𝑟+1

 

⋮ 

𝑌𝑁/2−2,𝑁/2−1 = 𝑌12 

𝑌𝑁/2−1,𝑁/2 = 𝑌01 

(5.15) 

Characteristic admittances for the short circuited stubs, 

𝑌0 = 1 − 𝑛1 

𝑌1 = 1 − 𝑛1 −
𝑛1𝑛2
𝑎𝐿12

 

⋮ 

𝑌𝑟 = 1 −
𝑛𝑟−1𝑛𝑟
𝑎𝐿𝑟−1,𝑟

−
𝑛𝑟𝑛𝑟+1
𝑎𝐿𝑟,𝑟+1

 

⋮ 

𝑌𝑁/2 = 𝑌1 

𝑌𝑁/2+1 = 𝑌0 

(5.16) 
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Characteristic admittances for the open circuited stubs 

𝑌𝑜𝑠1 = 𝑎𝐶1𝑛1
2 =

𝑎2𝐶1
1
𝐿1
+

1
𝐿12

+ 𝑎
 

𝑌𝑜𝑠2 = 𝑎𝐶2𝑛2
2 =

𝑎2𝐶2
1
𝐿2
+

1
𝐿12

+
1
𝐿23

 

⋮ 

𝑌𝑜𝑠𝑟 = 𝑎𝐶𝑟𝑛𝑟
2 =

𝑎2𝐶𝑟
1
𝐿𝑟
+

1
𝐿𝑟−1,𝑟

+
1

𝐿𝑟,𝑟+1

 

⋮ 

𝑌𝑜𝑠𝑁/2−1 = 𝑌𝑜𝑠2 

𝑌𝑜𝑠𝑁/2 = 𝑌𝑜𝑠1 

(5.17) 

Note that the mapping produced by transformation (5.13) is such that  

𝜔𝑐 → 𝜃1 

1 → 𝜃2 
(5.18) 

where 𝜃1 and 𝜃2 are the two bandedges in degrees of the bandpass filter in the 𝜃-

plane. In the design of filters, the specifications are given in terms of the bandwidth 

(𝑏𝑤) and the centre frequency 𝑓𝑜. The designer chooses the appropriate electrical 

length at the centre frequency 𝜃𝑜. Thus the bandwidth in degree (𝜃-plane) is 

𝑑𝜃 =
𝑏𝑤𝜃𝑜
𝑓𝑜

 (5.19) 

Hence the two bandedges are defined as 

𝜃1 = 𝜃𝑜 − 𝑑𝜃/2 

𝜃2 = 𝜃𝑜 + 𝑑𝜃/2 
(5.20) 

From which the lumped bandpass filter cutoff frequency in radians is computed 

from (5.13) as 

𝜔𝑐 =
𝑡𝑎𝑛(𝜃1)

𝑡𝑎𝑛(𝜃2)
 (5.21) 

Recall that, this is the inner cutoff frequency used in the generation of the 

characteristic polynomials.   
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Fig. 5-3  Distributed circuit for pseudo-combline bandpass filter 

 

 
Fig. 5-4  A unit length (UE) phase shifter and its equivalent circuit consisting of an inverter 

between short circuited shunt stubs 
 

 
Fig. 5-5  Formulation of an inverter in the distributed pseudo-combline bandpass filter 

between node 𝑟 and 𝑟 + 1 
 

 
Fig. 5-6  Distributed pseudo-combline bandpass filter circuit after introduction of unit phase 

shifter at input/output and admittance inverters  
 

 
Fig. 5-7  Final distributed circuit for pseudo-combline bandpass filter after scaling internal 

nodes  
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5.2.1.3 Synthesis Illustrative Example  

Firstly, an experimental pseudo-combline bandpass filter prototypes was designed 

using the above procedure with the specifications given in Table 5-1. 

Table 5-1 Pseudo-combline Bandpass Filter Specifications 

Centre frequency (𝑓𝑜) 1 GHz 

Bandwidth (𝑏𝑤) 50 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 

Stopband Insertion loss (𝐼𝐿𝑠) at 1.05 𝐺𝐻𝑧 50 dB 
 

It was established that a lumped bandpass prototype filter with 𝑁 = 10 would meet 

the above specifications. Choosing 𝜃𝑜 = 45
𝑜, and from (5.20) 𝜃2 = 46.125𝑜. Then 

(5.21) was used to compute 𝜔𝑐 = 0.9244. Note that a 10th degree characteristic 

function (𝑁 = 10) corresponds to a 5th degree bandpass filter.  

Table 5-2  5th Degree Lumped Bandpass Filter Characteristic Polynomials 

𝜇 = 1             𝜀 = 761953 

Zeros of 𝑃(𝑝) Zeros of 𝐹(𝑝) Zeros of 𝐸(𝑝) [Poles] 

0 ±0.9982𝑗 −0.0072 ± 1.0047𝑗 

 ±0.9847𝑗 −0.0191 ± 0.9889𝑗 

 ±0.9627𝑗 −0.0076 ± 0.9196𝑗 

 ±0.9403𝑗 −0.0240 ± 0.9628𝑗 

 ±0.9263𝑗 −0.0197 ± 0.9363𝑗 
 

 

 

Table 5-3  5th Degree Lumped Bandpass Filter Synthesized Element Values 

𝐶1 = 12.8805 𝐹 𝐿1 = 0.0913 𝐻 𝐿12 = 1 𝐻 

𝐶2 = 19.6088 𝐹 𝐿2 = 0.0617 𝐻 𝐿23 = 1 𝐻 

𝐶3 = 23.8887 𝐹 𝐿3 = 0.0496 𝐻  
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Table 5-4  5th Degree Pseudo-combline Bandpass Filter Impedance Values (Ω) 

𝑍0 = 68.7583 𝑍𝑜𝑠1 = 54.2450 𝑍01 = 183.2742 

𝑍1 = 75.5313 𝑍𝑜𝑠2 = 50.2159 𝑍12 = 766.7849 

𝑍2 = 56.4968 𝑍𝑜𝑠3 = 50.1736 𝑍23 = 1004.3 

𝑍3 = 55.5292   
 

 

Table 5-5  5th degree Pseudo-combline Bandpass Filter Dimensions (mm) 

𝑤0 = 8.400 𝑠𝑤0 = 10.0 𝐷1 = 19.77 𝑡 = 8.00 𝑑𝐻1 = 1.84 

𝑤1 = 8.720 𝑠01 = 4.70 𝐷2 = 18.49 𝑏 = 20.0 𝑑𝐻2 = 5.00 

𝑤2 = 11.42 𝑠12 = 12.5 𝐷3 = 18.47 𝐻 = 37.5  

𝑤3 = 11.59 𝑠23 = 14.0    

 

Table 5-5 (Continued) Tune screw (∅ 3 mm) Height (mm) 

Resonator 1 Tuning Screw Height 2 

Resonator 2 Tuning Screw Height 1 

Resonator 3 Tuning Screw Height 1 
 

The characteristic polynomials are generated as described in Chapter 2 and their 

singularities are tabulated in Table 5-2. The 𝐴𝐵𝐶𝐷 polynomials computation easily 

follows as presented in Chapter 1 and network synthesis explained in section 

5.2.1.1 then follows to yield lumped elements of Table 5-3. Because of symmetry 

only half of the values are given in Table 5-3. 

Using formulae (5.14)-(5.17) and the element values in Table 5-3, the bandpass 

distributed circuit elements are computed and tabulated in Table 5-4. The circuit of 

Fig. 5-7 may be realized in two parts - the upper part of the filter consisting of the 

open circuited stubs may be implemented using open circuited circular coaxial 

transmission lines and the all-stop network, bottom part, consisting of an array of 

coupled short circuited lines may be implemented using the canonical combline 

realization. More compact combline bandpass filter may be obtained by replacing 

the open circuited stubs with lumped capacitors which are realised by capacitively 
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loading the short circuited stubs with the top filter cover (and screw) as the 

example in section 5.2.3 shows. Having the required bandpass filter circuit, the 

physical dimensions for the bottom part are computed using Getsinger [33]  

method utilizing  rectangular striplines [32].  

Table 5-5 shows the physical dimensions for the pseudo-combline bandpass filter 

dimensions as depicted in Fig. 5-8. The ground plane spacing (𝑏) and striplines 

thickness (𝑡) were chosen to 𝑏 = 20 𝑚𝑚 and 𝑡 = 8 𝑚𝑚 respectively and length 

𝐻 = 37.5 𝑚𝑚 were calculated corresponding to 𝜃𝑜 = 45
𝑜 at the centre frequency 

𝑓𝑜 = 1 𝐺𝐻𝑧.  The inner diameters of the upper open circuited lines were chosen to 

be 𝑡. The high frequency structure simulator (HFSS) physical model shown in Fig. 

5-9 was EM simulated with the result of the simulation shown in Fig. 5-10 and Fig. 

5-11 below.  

 
Fig. 5-8  Physical layout of the hardware for 5th degree pseudo-combline bandpass filter 

(a) top view (b) side view 
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(a) 

 

(b) 

Fig. 5-9  HFSS physical model of the 5th degree pseudo-combline bandpass filter (a) side 
view (b) perspective view 

 

The slightly wide bandwidth above is due to the method used to obtain physical 

dimension of the parallel coupled short circuited stubs. In fact this issue of 

bandwidth discrepancy, or indeed bandwidth expansion is a well-known problem in 

the history of microwave filters with design made utilizing TEM capacitance matrix 

in determining the physical dimensions of combline bandpass and has caused 

much debate even in the recent past [79, 80]. In fact it also occurs in interdigital 

bandpass filters although to a much lesser extent than it occurs in combline 

bandpass filters. The problem also tends to be worse in capacitively loaded 

bandpass filters than the exact realisation of a distributed TEM bandpass filter as 



 

187 

 

this example shows. To accurately determine physical dimensions, therefore, 

would require some EM techniques or alternatively, the problem may be solved by 

using appropriate bandwidth correction factors such as those proposed in [80]. 

Analysis showed that the pseudo-combline bandpass filter is not very sensitive to 

the tuning states as it requires only coarse adjustments on the shortened open 

circuited stubs (see tuning screw position in Table 5-5). In comparison, a 

capacitively loaded combline bandpass filter is very sensitive to tuning state as it 

would require a high level of accuracy for the tuning screw positions often to a 

thousandth of a millimetre accuracy to achieve equal ripple passband return loss 

as demonstrated in section 5.2.3.2! With the advent of efficient computer 

simulation software tools, this could easily be achieved, but would obviously be 

time consuming. Further improvements in the passband return loss may be 

achieved by EM fine tuning techniques such as space mapping. 

 
Fig. 5-10  HFSS simulated passband response of 5th degree pseudo-combline bandpass 

filter 
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Fig. 5-11  HFSS vs synthesis wide band response of the pseudo-combline bandpass filter 

 

5.2.2 Synthesis of the interdigital bandpass filter 

An approach to the exact synthesis and design for interdigital bandpass filter will 

be explained. Fig. 2-4 shows an equivalent circuit used in the implementation of an 

interdigital bandpass filter, consisting of shunt short circuited stubs separated by 

unit length transmission lines. The goal now is to obtain characteristic polynomials 

which may be used to exactly synthesise the network of Fig. 2-4.  

 
Fig. 5-12  General distributed equivalent circuit for interdigital bandpass filter 

 

5.2.2.1 Network Synthesis  

The characteristic polynomials are obtained as described in Chapter 2 section 

2.4.4. Similar to the pseudo-combline bandpass, the interdigital bandwidth in 

degree is   
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𝑑𝜃 =
𝑏𝑤𝜃𝑜
𝑓𝑜

 (5.22) 

and 

𝜃1 = 𝜃𝑜 − 𝑑𝜃/2 (5.23) 

From which the normalised cutoff parameter 𝜔𝑐 in 𝑟𝑎𝑑/𝑠 is computed from section 

2.4.4.1 (Chapter 2) as 

𝜔𝑐 =
𝑡𝑎𝑛(𝜃1)

√1 + 𝑡𝑎𝑛2(𝜃1)
 

(5.24) 

This enables the computation of the characteristic polynomials as explained in 

section 2.4.4 of Chapter 2. Using cascaded synthesis, the synthesis to obtain the 

element values of Fig. 2-4 is achieved by exploiting some features of the network 

in Fig. 2-4. The first feature may be analysed by assuming that the internal nodes 

may be scaled so that 𝑧𝑖𝑗 = 𝐾 for all 𝑖 and 𝑗 in Fig. 2-4. At a quarter-wave 

frequency, 𝜃 = 90𝑜 corresponding to 𝑡 = ∞. Then all the shunt short circuited stubs 

become open circuited and the 𝑁 − 1 transmission lines becomes impedance 

inverters with characteristic impedance 𝐾. Therefore for 𝑁 even, the overall 𝐴𝐵𝐶𝐷 

matrix becomes, 

𝐴𝐵𝐶𝐷𝑡→∞ = [

0 𝑗𝐾
𝑗

𝐾
0
]

𝑁−1

= 𝑗𝑁−1 [
0 𝐾
1

𝐾
0
] (5.25) 

For 𝑁 odd,   

𝐴𝐵𝐶𝐷𝑡→∞ = [

0 𝑗𝐾
𝑗

𝐾
0
]

𝑁−1

= 𝑗𝑁−1 [
1 0
0 1

] (5.26) 

Thus for odd degree case, 𝐾 may take any arbitrary value. For even degree, 

however, the magnitude of the reflection parameter, 𝑆11(𝜌) may be written as, 

|𝑆11(∞)| = |
𝐹(𝜌)/𝜇′

𝐸(𝜌)
||

𝜌→∞

=
1

|𝜇′|
= |
𝐾 −

1
𝐾

𝐾 +
1
𝐾

| (5.27) 

(5.27) may be solved for 𝐾 as, 
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𝐾 = √
𝜇′ + 1

𝜇′ − 1
,𝑁 even (5.28) 

Using this feature, the following procedure may be adopted for the synthesis cycle: 

Step 1: Extract a Γ section of Fig. 5-13 

𝐴𝐵𝐶𝐷Γ =
1

√1 − 𝜌2
[

1 𝐾𝜌
1

𝑧1𝜌
+
𝜌

𝐾
1 +

𝐾

𝑧1

] (5.29) 

 

 
Fig. 5-13  Extraction of the Γ section 

 

The second feature lies in the fact that the open-circuited input admittance of the 

entire network may be expressed as, 

1

𝑧1𝜌
|
𝜌=1

+
𝐷𝑟𝑒𝑚
𝐵𝑟𝑒𝑚

|
𝜌=1

=
𝐷

𝐵
|
𝜌=1

= 𝑠𝑢𝑚 
(5.30) 

where 𝐵𝑟𝑒𝑚 and 𝐷𝑟𝑒𝑚 are the remainder 𝐵 and 𝐷 polynomials after extraction of the 

first shunt open circuited stub. But the input characteristic admittance after 

extraction of the first open circuited stub is given by, 

1

𝑧12
=
1

𝐾
=
𝐷𝑟𝑒𝑚
𝐵𝑟𝑒𝑚

|
𝜌=1

 
(5.31) 

Hence by substituting (5.31) in (5.30) and solving for 𝑧1, 

𝑧1 =
1

𝑠𝑢𝑚 − 1/𝑧12
 (5.32) 

Or a rather more general expression 

𝑧𝑟 =
1

𝑠𝑢𝑚 − 1/𝐾
. (5.33) 
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The 𝑠𝑢𝑚 is calculated from (5.30) and for even degree, the characteristic 

impedance for all the transmission lines 𝐾, is computed from (5.28). For odd 

degree, any appropriate value of 𝐾 may be used. For example, 𝐾 = 1 works for 

most synthesis. Once the element values of the Γ section are known, they may be 

removed and the remainder ABCD becomes,  

𝐴𝐵𝐶𝐷𝑟𝑒𝑚 =
1

(√1 − 𝜌2)𝑃
[
 
 
 (1 +

𝐾

𝑧1
)𝐴 − 𝐾𝐶𝜌 (1 +

𝐾

𝑧1
)𝐵 − 𝐾𝐷𝜌

𝐶 −
𝐴

𝑧1𝜌
−
𝐴𝜌

𝐾
𝐷 −

𝐵

𝑧1𝜌
−
𝐵𝜌

𝐾 ]
 
 
 

 (5.34) 

All polynomials must then be divided by 1 − 𝜌2 to complete the extraction process.  

Step 2: Repeat step 1 𝑁 − 1 times. 

Step 3: The last element to be extracted is a shunt short circuited stub. 𝐴, 𝐷 and 𝑃 

polynomials are all unity, 𝐵 is zero and 𝐶 is a constant 𝑐𝑜. Hence 

𝑧𝑁 =
1

𝑐𝑜
 (5.35) 

Scaling of internal nodes may be performed were necessary by using the 

equivalent circuit of the 𝑈𝐸 shown in Fig. 5-4 and by introducing redundant unit 

phase shifters at the input and output, the network internal nodes may be scaled as 

depicted in Fig. 5-14 in a similar way as was done for the pseudo-combline 

bandpass filter. Finally the circuit of Fig. 5-15 may directly be realized for relatively 

broad bandwidths or using array of alternatively short circuited coupled lines for 

narrow bandwidths. The following are the formulae for the scaled final element 

values corresponding to Fig. 5-15:  

Scaling factors at nodes 1, 2, 3, …𝑁 are 

𝑛1 =
1

√𝑦1 + 𝑦12 + 1
 

𝑛2 =
1

√𝑦2 + 𝑦12 + 𝑦23
 

⋮ 

(5.36) 
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𝑛𝑟 =
1

√𝑦𝑟 + 𝑦𝑟−1,𝑟 + 𝑦𝑟,𝑟+1
 

⋮ 

𝑛𝑁−1 = 𝑛2 

𝑛𝑁 = 𝑛1 

Characteristic admittances for the coupling admittances, 

𝑌01 = 𝑛1 

𝑌12 = 𝑛1𝑛2𝑦12 

⋮ 

𝑌𝑟,𝑟+1 = 𝑛𝑟𝑛𝑟+1𝑦𝑟,𝑟+1 

⋮ 

𝑌𝑁−1,𝑁 = 𝑌12 

𝑌𝑁,𝑁+1 = 𝑌01 

(5.37) 

Characteristic admittances for the short circuited stubs, 

𝑌0 = 1 − 𝑛1 

𝑌1 = 1 − 𝑛1 − 𝑛1𝑛2𝑦12 

⋮ 

𝑌𝑟 = 1 − 𝑛𝑟−1𝑛𝑟𝑦𝑟−1,𝑟 − 𝑛𝑟𝑛𝑟+1𝑦𝑟,𝑟+1 

⋮ 

𝑌𝑁/2 = 𝑌1 

𝑌𝑁/2+1 = 𝑌0 

(5.38) 

 
Fig. 5-14  Interdigital bandpass filter equivalent circuit after introduction of redundant unity 

phase shifters at input/output and formation of admittance inverters 
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Fig. 5-15  Final interdigital bandpass filter equivalent circuit after scaling of internal nodes 

A synthesis example is now used to validate the design theories in the next 

section. 

5.2.2.2 Synthesis Illustrative Example 

A 4th degree interdigital bandpass filter was designed with specifications as given 

in Table 5-6. 

Table 5-6  4th degree interdigital bandpass specifications: 

Centre frequency (𝑓𝑜) 1 GHz 

Bandwidth (𝑏𝑤) 50 MHz 

Return Loss (𝑅𝐿) 20 dB 
 

Table 5-7  4th Degree Lumped Bandpass Filter Characteristic Polynomials 

𝜇 = −1             𝜀 = 338308 

Zeros of 𝐹(𝑝) Zeros of 𝐸(𝑝) [Poles] 

±0.9999𝑗 −0.0006 ± 1.0003𝑗 

±0.9993𝑗 −0.0006 ± 0.9990𝑗 
 

Since this is an even degree filter, a 4th degree lumped bandpass filter is required. 

The lumped bandpass filter characteristic polynomials 𝐹(𝜔) and 𝐸(𝜔)  were 

obtained as described in section 2.4.4.1 of Chapter 2 using 𝜔𝑐 = 0.9992 computed 

from (5.24) and the corresponding 𝜌-plane cutoff, 𝜌𝑐 = 25.4517𝑗.  The singularities 

of 𝐹(𝜔) and 𝐸(𝜔)  are shown in Table 5-7. Then by applying the lumped to 

distributed transformation, those singularities are transferred to the 𝜌-plane to 

obtain singularities for 𝐹(𝜌) and 𝐸(𝜌) as shown in Table 5-8.  Using direct 

distributed domain synthesis described in section 2.4.5, the same characteristic 

polynomials of Table 5-8 are obtained. The synthesis procedure is performed 

according to section 5.2.2.1 to obtain the element values as depicted in Table 5-9.  
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Table 5-8  4th Degree Distributed Interdigital Bandpass Filter Characteristic 

Polynomials 

𝜇′ = −10             𝜀′ = −1.0050 

Zeros of 𝐹(𝜌) Zeros of 𝐸(𝜌) [Poles] 

±66.5413𝑗 −23.5699 ± 15.3811𝑗 

±27.5511𝑗 −5.2417 ± 19.9204𝑗 
 

Table 5-9  4th Degree Interdigital Bandpass Filter Synthesised Impedances (Ω) 

𝐾 = 0.9045 

𝑧1 = 0.0441 𝑧2 = 0.0263 𝑧3 = 0.0263 𝑧4 = 0.0441 
 

Table 5-10  4th Degree Interdigital Bandpass Filter Final Impedance Values (Ω) 

𝑍0 = 62.5699 𝑍1 = 65.4362 𝑍2 = 53.3314 

𝑍01 = 248.89 𝑍12 = 1428.4 𝑍23 = 1820.7 
 

The above synthesis procedure starts to be inaccurate for very small percentage 

bandwidths (e.g. less than 5%) where 𝜔𝑐 becomes closer to unity, but increases in 

accuracy for all the impedance values for moderate to broad bandwidths even for 

higher order interdigital filters. Where accuracy is lost, better results are achieved 

by using the first half of the impedance values. 

In this example, it is necessary to scale the network as the short circuited stubs 

may be directly unrealizable. Therefore, unity phase shifters are introduced at the 

input and output according to Fig. 5-14 and admittance inverters are formed from 

the 𝑈𝐸 using the equivalent circuit in Fig. 5-4. The entire network is then scaled as 

described in section 5.2.2.1. Using formulae (5.36)-(5.38), the final elements in 50 

ohms system are shown in Table 5-10 corresponding to the circuit in Fig. 5-15. 

Note only half of the values are shown in Table 5-10 because of symmetry. 

5.2.3 Direct Synthesis for Combline Bandpass Filter 

5.2.3.1 Network Synthesis  

The pseudo-combline bandpass filter of section 5.2.1 may easily be synthesised 

using direct distributed bandpass filter basis functions. The basis functions are 
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chosen according to Table 5-11 and the general recursive technique may be 

applied according to the methods in Chapter 2 to obtain the characteristic 

polynomials. Then methods in Chapter 1 are applied to determine the coupling 

matrix in distributed domain.  

Table 5-11 Basis Functions Selection for Combline Bandpass Filters 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

𝑁𝑟 − 1 2 − 0 − 0 Provide 2(𝑁𝑟 − 1) transmission zeros at infinity 

1 2 − 0 − 1 
Provide a single transmission zeros at the origin 

and a single transmission zero at infinity 

Note: 𝑁𝑟 = 𝑁/2 is the degree of the bandpass filter network 

5.2.3.2 Synthesis Illustrative Example 

A 5th degree (𝑁 = 2𝑁𝑟 = 10) purely distributed bandpass was designed with the 

specifications given in Table 5-12. 

Table 5-12  Specification for Combline Bandpass Filter Synthesis Example 5.2.3.2 

Centre frequency (𝑓𝑜) 1 GHz 

Bandwidth (𝑏𝑤) 150 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 
 

Using Table 5-11, the basis functions were used to yield a 10-0-1 characteristic 

function corresponding to a 5th degree bandpass filter. After the formation of the 

transverse coupling matrix, it was reconfigured to a canonical form and the 

remnant 𝑁𝑟 × 𝑁𝑟 matrices, 𝑀𝑇𝑠 𝑀𝐶𝑠 and 𝑀𝐿𝑠 are shown in Table 5-13.  

To enable realisation as capacitively loaded bandpass filters, the technique by 

Wenzel [57] may be used to eliminate the shunt open circuited stubs. The value of 

the short circuited stub admittance (𝑌𝑟) and capacitors (𝐶𝑟) are computed from the 

short circuited admittance (𝑌𝑠𝑐) and open circuited admittance (𝑌𝑜𝑐) at the two 

bandedges frequencies (𝜔1 and 𝜔2) as 
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𝐶𝑟 =
𝑌𝑜𝑐(𝑡𝑎𝑛

2(𝑎𝜔2) − 𝑡𝑎𝑛
2(𝑎𝜔1))

𝜔2𝑡𝑎𝑛(𝑎𝜔2) − 𝜔1𝑡𝑎𝑛(𝑎𝜔1)
 

𝑌𝑟 = 𝑌𝑠𝑐 − 𝑌𝑜𝑐𝑡𝑎𝑛
2(𝑎𝜔1) + 𝜔1𝐶𝑟𝑡𝑎𝑛(𝑎𝜔1) 

(5.39) 

 

Table 5-13  Final Coupling Matrix for Distributed Bandpass Filter in 1 Ohm System 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝜌𝑀𝐶𝑠 +
1

𝜌
𝑀𝐿𝑠, 𝜌 = 𝑗𝑡 = 𝑗𝑡𝑎𝑛(𝑎𝜔), 𝑎 =

𝑇𝑜
𝜔𝑜

 

𝑀𝑇𝑠 =

[
 
 
 
 
0.2433 0 0 0 0
0 0.0000 0 0 0
0 0 0.0000 0 0
0 0 0 0.0000 0
0 0 0 0 0.2433]

 
 
 
 

 

𝑀𝐶𝑠 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 

𝑀𝐿𝑠 =

[
 
 
 
 
+1.0377 −0.2067 0 0 0
−0.2067 +1.0392 −0.1512 0 0

0 −0.1512 +1.0316 −0.1512 0
0 0 −0.1512 +1.0392 −0.2067
0 0 0 −0.2067 +1.0377]

 
 
 
 

 

Using this technique, the purely distributed network with coupling matrix of Table 

5-13 is converted to a capacitively loaded combline bandpass filter as illustrated in 

Fig. 5-16. The final scaled circuit elements in 50 Ohm system are shown as in 

Table 5-14. By using the theory developed in Chapter 1, the resonant frequencies, 

inter-resonator coupling and the 3 dB bandwidths for the input and output 

couplings may be computed as shown in Table 5-15 to Table 5-17. 

Initial physical dimensions were obtained as explained in Chapter 1. Fine tuning is 

necessary to achieve equal ripple Chebyshev response and aggressive space 

mapping techniques were applied. After 11 iterations the final screw positions were 

obtained and the final dimensions are shown in Table 5-18. Fig. 5-18 shows the 

simulated HFSS simulation after fine tuning using space mapping techniques. 
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Table 5-14  Final Combline Bandpass Filter Element Values 

Inter-resonator Coupling 

Impedances (Ω) 
Capacitors 

Short-Circuited Stubs 

Impedance (Ω) 

Input/Output 𝐾 = 139.2719 𝐶1 = 2.0729 𝑝𝐹  

𝑍12 = 456.9484 𝐶2 = 2.0705 𝑝𝐹 𝑍𝑟 = 75 

𝑍23 = 623.2374 𝐶3 = 2.0830 𝑝𝐹  
 

Table 5-15 10-0-1 Combline Bandpass Filter Resonance Frequencies 

All combline Resonators 75 Ω 

Physical length 𝜆/8 long at 𝑓𝑜 = 1 𝐺𝐻𝑧 

Resonator Frequency (𝐺𝐻𝑧) 

1 1.0091 

2 1.0096 

3 1.0072 

4 1.0096 

5 1.0091 
 

Table 5-16  10-0-1 Combline Bandpass Filter Inter-resonator Couplings using two 

combline resonators model 

Coupling 
Coefficient 𝐾𝑚 

(GHz) 

𝑓𝑒𝑣 

(𝑀𝐻𝑧) 

𝑓𝑜𝑑 

(𝑀𝐻𝑧) 

Coupling Bandwidth 

(𝑀𝐻𝑧) 

1-2 0.1681 940.4 1069.3 128.8914 

2-3 0.1230 958.9 1053.1 94.2419 

3-4 0.1230 958.9 1053.1 94.2419 

4-5 0.1681 940.4 1069.3 128.8914 
 

Table 5-17  10-0-1 Combline Bandpass Filter Input/Output Couplings  

Resonator Frequency (𝑀𝐻𝑧) 

𝑓3𝑑𝐵𝑢𝑝𝑝𝑒𝑟 1088.5 

𝑓3𝑑𝐵𝑙𝑜𝑤𝑒𝑟 935.4 

𝑓3𝑑𝐵 153.0729 
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(a) Combline bandpass filter circuit realisation 

 
≡ 

 

⇒ 

 

(b) Distributed resonator and conversion to combline resonator 

Fig. 5-16  Topology of the 5th degree combline bandpass filter 

 

Table 5-18  Physical Dimensions (mm) 

Ground plane spacing 25 

Resonators’ Height 37.5 

Resonator diameters 7.73 

Tuning screw diameter 3 

Capacitive loading gap on resonators 2 

Re-entrant depth and diameter 4 × 10 

Resonator 1 tuning screw height  9.9636 

Resonator 2 tuning screw height  7.7316 

Resonator 3 tuning screw height  7.6106 

inter-resonator tuning screw heights 1-2 5.6913 

inter-resonator tuning screw heights 2-3 7.1800 

Wall to first/last resonator centre spacing  12.5 

Centre-to-centre inter-resonator spacing 1-2  17.7004 

Centre-to-centre inter-resonator spacing 2-3 20.6385 
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Fig. 5-17  HFSS modelling of the combline bandpass filter in example 5.2.3.2 

 

 
Fig. 5-18  Comparison between synthesised and HFSS fine-tuned simulation for combline 

bandpass filter response 

5.3 Synthesis of Narrow Dual Bandpass Filters   

A more complete coverage of dual bandpass filters is given in Chapter 6. In this 

section, it is demonstrated how dual bandpass filters may be synthesised from 

suitable lowpass prototype filters. Because the transformation used from lowpass 
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to bandpass filter is valid only for narrow band filters, the technique in this section 

is more suitable for narrow (less than 20% fractional bandwidth) dual bandpass 

filters. The basis functions for synthesis of narrow dual bandpass filters were 

derived in section 0 of Chapter 2.  

The synthesis is fairly straight forward. Using the basis functions for asymmetrical 

or symmetrical dual bandpass filter, the characteristic polynomials are obtained 

based on the transmission zero positions to meet a given filter specifications as 

described in Chapter 1 and Chapter 2. Because the filter is first synthesised in 

lowpass domain, the lowpass coupling matrix is used as opposed to bandpass 

coupling matrix. An illustrative example is given in the next section. 

5.3.1 Synthesis Illustrative Example  

A dual passband filter with cut-offs at 1710-1785 MHz and 1920-1995 MHz and 20 

dB passband return loss was designed. The normalised cutoffs are at 𝛼 =

−0.5025, 𝛽 = 0.5025, and 𝛿 = 1 (corresponding to 𝜔𝑐 = 0.5025). Five transmission 

zeros were prescribed at 𝜔𝑧 = ±0.25,0, ±1.75.  

Table 5-19  Basis Functions Selection for a Dual Band Lowpass Characteristic 

Function 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

2 2 − 0 − 0 Provide four transmission zeros at infinity 

1 2 − 0 − 1 
Provide a single transmission zero at the origin 

and a single transmission zero at infinity 

2 2 − 2 − 0 
Provide two symmetrical pairs of transmission 

zeros at 𝜔𝑧 = ±0.25,±1.75 
 

Since the dual band is symmetrical, the following lowpass prototypes were linearly 

combined according to the method described in Chapter 2 based on the basis 

functions as follows: 2-0-0, 2-0-1 and 2-2-0 basis function with weighting numbers 

𝛼1 = 2, 𝛼2 = 1 and 𝛼3 = 2 respectively. The first basis function only provides 

transmission zeros at infinity, the second provides the required single transmission 

zero at the origin and the last basis function provides the two pairs of symmetrical 
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transmission zeros. Table 5-19 shows the summary of the basis functions chosen 

and the transmission zeros they provide. This gives an overall 10-4-1 lowpass 

characteristic function corresponding to a 10th degree dual bandpass filter. Using 

the general recursive formulae algorithm of Chapter 2 the characteristic 

polynomials were determined as in Table 5-20 in complex variable 𝑝 (= 𝑗𝜔). Then 

cascaded synthesis was used to extract the element values and the coupling 

matrix generated is as shown below in Table 5-21. The dual bandpass filter 

topology is shown in Fig. 5-19 and the circuit simulation is shown in Fig. 5-20. 

Table 5-20  10-4-1 Lowpass Filter Prototype Characteristic Polynomials  

(𝜇 = −1 and 𝜀 = 197.6872) 

𝑃(𝑝) = 𝑝5 + 3.1250𝑝3 + 0.1914𝑝 

𝐹(𝑝) = 𝑝10 + 2.9564𝑝8 + 3.3175𝑝6 + 1.7564𝑝4 + 0.4373𝑝2 + 0.0410 

𝐸(𝑝) = 𝑝10 + 1.0152𝑝9 + 3.4717𝑝8 + 2.5759𝑝7 + 4.2763𝑝6 + 2.2206𝑝5

+ 2.2900𝑝4 + 0.7535𝑝3 + 0.5238𝑝2 + 0.0842𝑝 + 0.0410 
 

 

Table 5-21  10-4-1 Lowpass Filter Prototype Coupling Matrix  

𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 

0 0.7124 0 0 0 0 0 0 0 0 0 0
0.7124 0 0.6601 0 −0.4907 0 0 0 0 0 0 0
0 0.6601 0 0.0643 0 0 0 0 0 0 0 0
0 0 0.0643 0 0.6752 0 0 0 0 0 0 0
0 −0.4907 0 0.6752 0 0.3150 0 0 0 0 0 0
0 0 0 0 0.3150 0 0.6816 0.3276 0 0 0 0
0 0 0 0 0 0.6816 0 0 0 0 0 0
0 0 0 0 0 0.3276 0 0 0.7038 0 −0.0984 0
0 0 0 0 0 0 0 0.7038 0 0.4841 0 0
0 0 0 0 0 0 0 0 0.4841 0 0.8167 0
0 0 0 0 0 0 0 −0.0984 0 0.8167 0 0.7124
0 0 0 0 0 0 0 0 0 0 0.7124 0 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 5-19  10th Degree Dual Bandpass Filter Topology  

 



 

202 

 

 
Fig. 5-20  10th Degree Dual Bandpass Filter Simulated Frequency Response 

5.4 Conclusion 

The method of direct synthesis of bandpass filters and narrow band dual bandpass 

filters has been presented. Synthesis and design of interdigital and combline 

bandpass were given in section 5.2. Then in section 5.3, synthesis of narrow dual 

bandpass filter was given based on the basis functions computed in Chapter 2. 

Chapter 5 highlighted the different applications of the method of generating 

Chebyshev characteristic function as presented in Chapter 2. The next Chapter 

makes the final application of the synthesis technique of Chapter 2 to the direct 

synthesis of dual bandpass filters of arbitrary bandwidth and separation. 
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Chapter 6 Direct Synthesis and Design for Dual Band Filters 

6.1 Introduction 

In the past decade, there has been increasing interest in the area of multi-

passband filters. In particular dual passband filters offer flexibility as well as 

efficiency in the utilization of communication resources. The efficiency comes in 

terms of simplified circuit networks thereby reducing mass and volume of filters and 

hence the cost of the filters. Many important contributions have been made to the 

methods of designing dual passband filters. 

In this work, methods for the direct generation of general Chebyshev transfer 

functions for dual passband filters will be explained. The method outlined offers a 

simple and intuitive approach to the synthesis of symmetrical and asymmetrical 

dual band filter networks by linearly combining simple elementary characteristic 

functions given in Chapter 2, where the dual bandpass behaviour is achieved by 

carefully placed reflection and transmission zeros. 

Two different physical realisations are examined. The first one consists of 

cascaded n-tuplets sections. The dual bandpass may be synthesised in the same 

way as was done for a single bandpass filter, except that some transmission zeros 

are placed in-band to separate the two bands.  

In the second physical realisation, the dual bandpass filter is synthesised in the 

same way as for cascaded n-tuplets realisation but decomposed into two separate 

parallel connected bandpass filters by adding extra complex transmission zeros. 

The extra complex transmission zeros enables physical separation of the two 

constituent bandpass filters. The two parallel connected filters interact in a 

complicated way that produces these extra transmission zeros. Understanding the 

complex interaction between the two parallel connected bandpass filters is key to 

determining how the separation is achieved. This realisation offers advantages 

over the former because coupling bandwidths are confined to each individual 

bandpass filter as opposed to wide coupling bandwidths in the cascaded n-tuplets 
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realisation in which some couplings may be difficult to realise especially for wide 

dual bandpass filters. The disadvantage is that extra transmission zeros are 

required to achieve the decomposition which limits the stopband attenuation as 

these transmission zeros are at complex frequencies. 

6.2 Existing Methods for Dual Bandpass Synthesis 

There are a number of narrow band approximations to the synthesis of dual 

bandpass filters. The simplest dual bandpass characteristic may be obtained from 

Zolotarev lowpass transfer function approximation [81-83]. This class is 

characterised by a dip in between the two passband as all the transmission zeros 

are at the origin or infinity frequencies. Thus there is no control over the attenuation 

between the two passbands. The attenuation produced by the dip depends on the 

network order and the relative bandwidths between the two bands. 

Advanced optimisation techniques may also be employed to synthesise dual 

bandpass filters [84-86]. The number of poles and zeros of the characteristic 

function may be imposed and determined through optimisation. However, the 

convergence of such numerical optimization techniques is not always guaranteed 

and this may compromise their usefulness.  

Another way of designing dual passband filter is cascading a wide passband filter 

and a narrow stopband filter. There is no better control over the rejection levels in 

the stopbands and because there are two separate filters, this requires matching to 

enable integration into a single unit. Alternatively a single wide bandpass may be 

designed and the attenuation poles added in-between the passband to create the 

required passband separation [87]. Unfortunately, these techniques also require 

optimisations to yield the required response. 

However, the most common design method makes use of frequency 

transformations. The methods outlined in [88, 89] involve some form of frequency 

transformations to generate a lowpass prototype filter transfer function suitable for 

dual band filters. Symmetrical lowpass prototype filters for dual band filters may be 

designed using change of variable based on classical work in [90]. The general 
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asymmetrical lowpass prototype filter, however, may also be synthesised using the 

proposed method utilising basis functions as demonstrated in Chapter 1 and 

Chapter 5. Since the design of such lowpass prototype filters with attenuation poles 

in-band is easily achieved [91, 92], frequency transformation to bandpass domain 

of the lowpass prototype filter produces the desired separation between the two 

passbands of interest. As alluded to earlier, the frequency transformation is only 

suitable for narrow bandpass filters because of the dispersive nature of the 

coupling elements. The synthesis example of Chapter 5 is one such good example. 

For wide dual bandpass filters (usually higher than 20% overall fractional 

bandwidth, considering the outer cutoff frequencies), direct synthesis provides a 

better approximation since the coupling elements are frequency variant. Xiao in 

[93] proposes a superposition approach. The synthesis here is achieved by directly 

synthesising two separate bandpass filters, one for each band, with allocated finite 

frequency transmission zeros in the vicinity of each band and then the overall 

characteristic function is obtained by inverse combination of the individual 

characteristic functions. This means the two filters maintain their reflections zeros 

in the overall filter, but the transmission zeros are changed, and additional 

transmission zeros are added in the process. Unless the required transmission 

zeros are known initially, there is no direct control on the position of the 

transmission zeros. The synthesis is therefore more useful for transverse network 

realisations.  

The next section shows how the proposed method enables control over the 

reflection zeros and transmission zeros in the passbands and stopbands 

respectively using the basis functions derived in Chapter 2. 

6.3 Cascaded quadruplets (CQ) Dual Bandpass Filters 

In this proposed method it is shown by means of examples how the direct 

synthesis of dual bandpass filter may be achieved. This section also shows how 

transfer functions of a dual bandpass filter with the two bands which are 

symmetrical and asymmetrical are generated and realised using cascaded 

quadruplet (CQ) sections. In general cascaded n-tuplets sections may be used, for 
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illustrative purposes, however, only CQ sections are used in the following 

examples. 

6.3.1 Symmetric Dual Bandpass Filter Example 

In this illustrative example, consider an 8th degree (𝑁 = 16) symmetrical dual 

bandpass filter with each band of degree 𝑁1 = 𝑁2 = 𝑁/2 = 8, with the 

specifications as in Table 6-1. The normalized cutoff points may easily computed 

as 𝛼 = 0.8680, 𝛽 = 0.8934, 𝛾 = 0.9746 and 𝛿 = 1. Two symmetrical pairs of 

transmission zeros were prescribed at 𝜔𝑟1 = ±1.01 and 𝜔𝑟2 = ±0.9546, a single 

transmission zero at the origin and seven transmission zeros at infinity. 

Table 6-1  Symmetrical Dual Bandpass Filter Specifications 

Passband 1 1710-1760 MHz 

Passband 2 1920-1970 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 
 

 

Table 6-2  Basis Functions Selection 16-8-1 Direct Synthesised Dual Bandpass 

Filter  

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 4 − 0 − 1 
Provide a single transmission zero at the origin and 3 

transmission zeros at infinity 

1 4 − 4 − 0 

Provide a pair of prescribed symmetrical transmission 

zeros at 𝜔𝑟1 = ±1.01 and a pair of dependent 

symmetrical transmission zeros at  𝜔z1 = ±0.8580 

1 8 − 4 − 0 

Provide a pair of prescribed symmetrical transmission 

zeros at 𝜔𝑟2 = ±0.9546, a pair of dependent 

symmetrical transmission zeros at  𝜔z2 = ±0.9111 and 

four transmission zeros at infinity 
 

Since this is a symmetrical transfer function (𝛿 − 1 = 𝛽 − 𝛼), the other dependent 

pairs (±𝜔𝑧𝑟) of symmetrical transmission zeros generated are approximately 
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symmetrically located in the lower and upper stopbands and inner stopband with 

the use of appropriate basis functions.  

Working out the required basis functions from the tables of Chapter 2 (Table 2-10 

to Table 2-12) the following basis functions may be used: 4-0-1, 4-4-0 and 8-4-0 

with weighting numbers 𝛼1 = 1, 𝛼2 = 1 and 𝛼3 = 1 respectively. This gives an 

overall 16-8-1 dual bandpass characteristic function. Table 6-2 shows the summary 

of the basis functions chosen and the transmission zeros they provide. The rest of 

synthesis procedure is done as described in Chapter 2. The characteristic 

polynomials obtained after application of general recursive technique are shown in 

Table 6-3.  

Table 6-3  16-8-2 Dual Bandpass Filter Characteristic Polynomials  

(𝜇 = ±1 and 𝜀 = 1.1127 × 105) 

𝑃(𝑝) = 𝑝9 + 3.4977𝑝7 + 4.5659𝑝5 + 2.6364𝑝3 + 0.5681𝑝 

𝐹(𝑝) = 𝑝16 + 7.0037𝑝14 + 21.4185𝑝12 + 37.3561𝑝10 + 40.6406𝑝8 + 28.2412𝑝6

+ 12.2414𝑝4 + 3.0262𝑝2 + 0.3266 

𝐸(𝑝) = 𝑝16 + 0.1070𝑝13 + 7.0094𝑝14 + 0.6560𝑝13 + 21.4486𝑝12 + 1.7200𝑝11

+ 37.4218𝑝10 + 2.5000𝑝9 + 40.7170𝑝8 + 2.1757𝑝7 + 28.2911𝑝6

+ 1.1337𝑝5 + 12.2588𝑝4 + 0.3275𝑝3 + 3.0287𝑝2 + 0.0405𝑝

+ 0.3266 

𝑌 Matrix Polynomials 

𝑌11𝑛(𝑝) = 0.1070𝑝
15 + 0.6560𝑝13 + 1.7200𝑝11 + 2.5000𝑝9 + 2.1757𝑝7

+ 1.1337𝑝5 + 0.3275𝑝3 + 0.0405𝑝 = 𝑌22𝑛(𝑝) 

𝑌21𝑛(𝑝) = 𝑌12𝑛(𝑝) = −(𝑝9 + 3.4977𝑝7 + 4.5659𝑝5 + 2.6364𝑝3 + 0.5681𝑝)/𝜀 

𝑌𝑑𝑒𝑛(𝑝) = 2𝑝
16 + 14.0132𝑝14 + 42.8671𝑝12 + 74.7779𝑝10 + 81.3576𝑝8

+ 56.5323𝑝6 + 24.5002𝑝4 + 6.0548𝑝2 + 0.6533 
 

This filter may easily be realized with two cascaded quadruplets. The transverse 

coupling matrix is generated from the 𝑌 matrix polynomials of Table 6-3 from which 

the coupling matrix of two cascaded quadruplets may be obtained as described in 
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Chapter 1. The final coupling matrix is shown in Table 6-4 corresponding to the 

topology as illustrated in Fig. 6-1. Negative inductive coupling elements may be 

replaced by capacitive couplings elements if required. The simulated magnitude 

response is shown in Fig. 6-2.  

Table 6-4  𝑁𝑟 × 𝑁𝑟 Normalised Coupling Matrix of a  Symmetrical 16-8-1 Dual 

Bandpass Filter 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝑝𝑀𝐶𝑠 +
1

𝑝
𝑀𝐿𝑠 

𝑀𝑇𝑠 =

[
 
 
 
 
 
 
 
0.0535 0 0 0 0 0 0 0
0 0.0000 0 0 0 0 0 0
0 0 0.0000 0 0 0 0 0
0 0 0 0.0000 0 0 0 0
0 0 0 0 0.0000 0 0 0
0 0 0 0 0 0.0000 0 0
0 0 0 0 0 0 0.0000 0
0 0 0 0 0 0 0 0.0535]

 
 
 
 
 
 
 

 

𝑀𝐶𝑠 =

[
 
 
 
 
 
 
 

1 0.0000 0 0 0 0 0 0
0.0000 1 0.0000 0 0 0 0 0
0 0.0000 1 0.0000 0 0 0 0
0 0 0.0000 1 0.0000 0 0 0
0 0 0 0.0000 1 0.0000 0 0
0 0 0 0 0.0000 1 0.0000 0
0 0 0 0 0 0.0000 1 0.0000
0 0 0 0 0 0 0.0000 1 ]

 
 
 
 
 
 
 

 

𝑀𝐿𝑠 =

[
 
 
 
 
 
 
 
+0.8763 −0.0938 0 −0.0454 0 0 0 0
−0.0938 +0.8787 +0.0809 −0.0018 0 0 0 0

0 +0.0809 +0.8740 −0.0812 0 0 0 0
−0.0454 −0.0018 −0.0812 +0.8758 −0.0353 0 0 0

0 0 0 −0.0353 +0.8861 −0.0891 −0.0011 −0.0523
0 0 0 0 −0.0891 +0.8646 +0.0099 0
0 0 0 0 −0.0011 +0.0099 +0.8749 −0.0901
0 0 0 0 −0.0523 0 −0.0901 +0.8763]

 
 
 
 
 
 
 

 

 

 

Fig. 6-1  Symmetrical 16-8-1 dual bandpass filter topology 
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Fig. 6-2  Simulated magnitude response for 16-8-2 symmetric dual bandpass filter 

 

6.3.2 Asymmetric Dual Bandpass Filter Example 

Consider a dual bandpass filter with the specifications shown in Table 6-5. This 

example will be synthesised in the lumped domain but realised using distributed 

elements. To enable this requires the use of the following normalised lumped to 

distributed transformation, 

Table 6-5 Asymmetrical Dual Bandpass Filter Specifications 

Passband 1 1700-1770 MHz 

Passband 2 1900-1960 MHz 

Stopband Insertion Loss 𝐼𝐿 ≥ 40 dB 1800-1850 MHz 

Stopband Insertion Loss 𝐼𝐿 ≥ 80 dB 2100-2160 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 

Electrical length at Centre Frequency 45o 
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𝜔 =
tan(𝑎𝜔)

tan(𝑎𝜔𝑢2)
=

𝑡

𝑡𝑢2
 (6.1) 

where 

𝜔𝑢2 = 2𝜋𝑓𝑢2 (6.2) 

is the upper most cutoff frequency (𝑓𝑢2) of the dual bandpass filter. Using the (6.1), 

the normalised cutoff points in the lumped domain may be calculated as 𝛼 =

0.7996, 𝛽 = 0.8493, 𝛾 = 0.9496 and 𝛿 = 1. To meet the specifications an 8th 

degree (𝑁 = 16) asymmetrical dual bandpass filter with each band of degree 

𝑁1 = 𝑁2 = 𝑁/2 = 8 and a single prescribed transmission zero at 𝜔𝑟1 = ±1.142 is 

synthesised. The following basis functions were used: 4-2-1, 4-4-0 and 8-2-0 with 

weighting numbers 𝛼1 = 1, 𝛼2 = 1 and 𝛼3 = 1 respectively as shown in Table 6-6. 

The other finite transmission zero pairs are dependent transmission zeros that 

result from the basis functions used. This yielded a 16-8-1 characteristic function 

which meets the filters specifications. As before the overall characteristic function 

was obtained by application of general recursive technique. The filter polynomials 

are shown in Table 6-7. 

Table 6-6  Basis Functions Selection 16-8-1 Direct Synthesised Asymmetrical Dual 

Bandpass Filter 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 4 − 2 − 1 

Provide a single transmission zero at the origin, a 

single transmission zero at infinity and a dependent 

finite frequency transmission zero pair at 𝜔z1 =

±0.9019 

1 4 − 4 − 0 

Provide a prescribed single pair of symmetrical 

transmission zero at 𝜔𝑟1 = ±1.142 and a pair of 

dependent symmetrical transmission zeros at  𝜔z1 =

±0.8782 

1 8 − 2 − 0 

Provide a dependent pair of symmetrical transmission 

zeros at 𝜔𝑟2 = ±0.8903 and six transmission zeros at 

infinity 
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Table 6-7  16-8-1 Dual Bandpass Filter Polynomials 

Characteristic Polynomials 

 (𝜀 = 3.5444 × 104, 𝜇 = 1) 

𝑃(𝑝) = 𝑝9 + 3.6814𝑝7 + 4.9837𝑝5 + 2.9535𝑝3 + 0.6485𝑝 

𝐹(𝑝) = 𝑝16 + 6.5343𝑝14 + 18.6048𝑝12 + 30.1464𝑝10 + 30.4045𝑝8 + 19.5446𝑝6

+ 7.8199𝑝4 + 1.7806𝑝2 + 0.1767 

𝐸(𝑝) = 𝑝16 + 0.2133𝑝15 + 6.5571𝑝14 + 1.2216𝑝13 + 18.7165𝑝12 + 2.9851𝑝11

+ 30.3738𝑝10 + 4.0344𝑝9 + 30.6507𝑝8 + 3.2568𝑝7 + 19.6939𝑝6

+ 1.5704𝑝5 + 7.8680𝑝4 + 0.4188𝑝3 + 1.7870𝑝2 + 0.0476𝑝

+ 0.1767 

𝑌 Matrix Polynomials 

𝑌11𝑛(𝑝) = 0.2133𝑝
15 + 1.2216𝑝13 + 2.9851𝑝11 + 4.0344𝑝9 + 3.2568𝑝7

+ 1.5704𝑝5 + 0.4188𝑝3 + 0.0476𝑝 = 𝑌22𝑛(𝑝) 

𝑌21𝑛(𝑝) = 𝑌12𝑛(𝑝) = −(𝑝9 + 3.6814𝑝7 + 4.9837𝑝5 + 2.9535𝑝3 + 0.6485𝑝)/𝜀 

𝑌𝑑𝑒𝑛(𝑝) = 2𝑝
16 + 13.0914𝑝14 + 37.3212𝑝12 + 60.5202𝑝10 + 61.0552𝑝8

+ 39.2385𝑝6 + 15.6880𝑝4 + 3.5675𝑝2 + 0.3533 
 

This filter may also be easily realized with two cascaded quadruplets as the 

coupling matrix in Table 6-8 and topology as in Fig. 6-3 shows. The filter elements 

are re-normalised to distributed domain by dividing by tan(𝑎𝜔𝑢2). The final 

elements are shown in Table 6-9 for realisation as capacitively loaded dual 

bandpass filter. Fig. 6-4 shows the simulated circuit response of the synthesised 

16-8-1 dual bandpass filter. Empirical EM based techniques may then be applied to 

obtain the filter’s physical dimensions. 

 

 

 



 

212 

 

Table 6-8  𝑁𝑟 × 𝑁𝑟 Coupling Matrix of an Asymmetrical 16-8-1 Dual Bandpass 

Filter 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝑝𝑀𝐶𝑠 +
1

𝑝
𝑀𝐿𝑠 

𝑀𝑇𝑠 =

[
 
 
 
 
 
 
 
0.1067 0 0 0 0 0 0 0
0 0.0000 0 0 0 0 0 0
0 0 0.0000 0 0 0 0 0
0 0 0 0.0000 0 0 0 0
0 0 0 0 0.0000 0 0 0
0 0 0 0 0 0.0000 0 0
0 0 0 0 0 0 0.0000 0
0 0 0 0 0 0 0 0.1067]

 
 
 
 
 
 
 

 

𝑀𝐶𝑠 =

[
 
 
 
 
 
 
 

1 0.0000 0 0 0 0 0 0
0.0000 1 0.0000 0 0 0 0 0
0 0.0000 1 0.0000 0 0 0 0
0 0 0.0000 1 0.0000 0 0 0
0 0 0 0.0000 1 −0.1056 0 0
0 0 0 0 −0.1056 1 0.0000 0
0 0 0 0 0 0.0000 1 0.0000
0 0 0 0 0 0 0.0000 1 ]

 
 
 
 
 
 
 

 

𝑀𝐿𝑠 =

[
 
 
 
 
 
 
 
+0.8188 −0.1306 0 −0.0747 0 0 0 0
−0.1306 +0.8093 −0.0168 −0.0119 0 0 0 0

0 −0.0168 +0.7337 −0.0848 0 0 0 0
−0.0747 −0.0119 −0.0848 +0.8953 −0.0799 0 0 0

0 0 0 −0.0799 +0.7304 0 −0.0538 −0.0219
0 0 0 0 0 +0.8821 −0.0429 0
0 0 0 0 −0.0538 −0.0429 +0.8391 −0.1488
0 0 0 0 −0.0219 0 −0.1488 +0.8188]

 
 
 
 
 
 
 

 

 

 
Fig. 6-3  Asymmetrical 16-8-1 dual bandpass filter topology 
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Table 6-9  Final Element Values of a Capacitively Loaded Dual Bandpass Filter 

Inductive Inter-resonator 

Coupling Impedances (Ω) 
Capacitors 

Short-Circuited Stubs 

Impedance (Ω) 

𝑍12 = 569.10 𝐶1 = 1.1444 𝑝𝐹 𝑍𝑟 = 75 

𝑍14 = 1037.8 𝐶2 = 1.1554 𝑝𝐹 Input/Output Coupling  

Impedance (Ω) 𝑍23 = 4235.5 𝐶3 = 1.2513 𝑝𝐹 

𝑍24 = 6463.2 𝐶4 = 1.0627 𝑝𝐹 𝐾𝑜𝑢𝑡𝑝𝑢𝑡 = 197.8455 

𝑍34 = 873.70 𝐶5 = 1.2559 𝑝𝐹 𝐾𝑖𝑛𝑝𝑢𝑡 = 197.8454  

𝑍45 = 925.30 𝐶6 = 1.0759 𝑝𝐹 Capacitive Inter-resonator 

Coupling Impedance (Ω) 𝑍57 = 1337.2 𝐶7 = 1.1214 𝑝𝐹 

𝑍58 = 3252.3 𝐶8 = 1.1444 𝑝𝐹 𝑍56 = 870.3142 

𝑍67 = 1812.4   

𝑍78 = 507.00   
 

 
 

 
Fig. 6-4  Simulated magnitude response for 16-8-1 asymmetric dual bandpass filter   
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6.4 Decomposition into Parallel Connected Filters 

In the foregoing section, it was demonstrated using linear combination of low 

degree elementary functions how direct synthesis of dual bandpass filter may be 

achieved. The dual bandpass filter illustrative examples were realised using CQ 

sections. In general cascaded n-tuplets dual bandpass filter networks present two 

challenges: (1) The coupling values tend to be unrealizably strong especially for 

widely separated dual bandpass filters [94, 95]. (2) Changes in every resonator 

and coupling element values have strong effect on frequency response of the two 

bands especially for relatively narrow dual bandpass filters. The two problems 

above may be mitigated by having two bandpass filters, one for each band, 

connected in parallel so that the resultant filter produces the desired dual bandpass 

frequency response. Using a technique similar to the one used in [94], it is now 

shown how an overall dual bandpass filter synthesized using the novel direct 

synthesis method may be separated into two bandpass filters - one filter for each 

band with prescribed number of reflection and transmission zeros.  

6.4.1 Dual Bandpass Filter Analysis 

It is assumed that the synthesis of the required characteristic polynomials has been 

done. Let the overall filter [𝐴𝐵𝐶𝐷]𝑇 matrix be 

[𝐴𝐵𝐶𝐷]𝑇 =
1

𝑃𝑇
[
𝐴𝑇 𝐵𝑇
𝐶𝑇 𝐷𝑇

] (6.3) 

It is evident from direct dual bandpass synthesis that both polynomials 𝐵𝑇 and 𝐶𝑇 

are both even, while the polynomials 𝐴𝑇 and 𝐷𝑇 are both old. All the transmission 

zeros 𝑃𝑇 are all symmetrical except the transmission zeros at the origin. Now for 

symmetrical and reciprocal filter networks, the following properties of [𝐴𝐵𝐶𝐷]𝑇 

matrix holds true: 

𝐴𝑇 = 𝐷𝑇 

𝐴𝑇
2 − 𝐵𝑇𝐶𝑇 = 𝑃𝑇

2 
(6.4) 

The overall filter [𝐴𝐵𝐶𝐷]𝑇 matrix in (6.3) is converted to admittance matrix [𝑌]𝑇 as 

follows: 
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[𝑌]𝑇 =

[
 
 
 
𝐴𝑇
𝐵𝑇

−
𝑃𝑇
𝐵𝑇

−
𝑃𝑇
𝐵𝑇

𝐴𝑇
𝐵𝑇 ]

 
 
 

 (6.5) 

Let  

𝐵𝑇 = 2𝐵1𝐵2 (6.6) 

where the polynomials 𝐵1 and 𝐵2 are all monic polynomials with indices 1 and 2 

referring to lower and upper band filter 1 and 2 respectively. 𝐵1 is associated with 

the lower band filter 1 and 𝐵2 is associated with the upper band filter 2. It is 

assumed (when the total number of transmission zeros are less than the degree of 

the network), as is normally the case, that the coefficient of the highest term in 𝐵𝑇 

is 2. 𝐵1 and 𝐵2 are found by simply sorting the zeros of 𝐵𝑇 in ascending order and 

assigning lower values (around filter 1 band ±𝛼 → ±𝛽 ) to 𝐵1 and upper values 

(around filter 2 band ±𝛾 → ±1 ) to 𝐵2. Substituting (6.6) into (6.5) yields, 

[𝑌]𝑇 =

[
 
 
    

𝐴𝑇
2𝐵1𝐵2

−
𝑃𝑇

2𝐵1𝐵2

−
𝑃𝑇

2𝐵1𝐵2
   

𝐴𝑇
2𝐵1𝐵2 ]

 
 
 

 (6.7) 

Then polynomials in (6.7) may be separated by grouping the residues and poles of 

rational polynomials in (6.7) as 

[𝑌]𝑇 =
1

2

[
 
 
     

𝐴1
𝐵1
+
𝐴2
𝐵2

−(
𝑃1
𝐵1
+
𝑃2
𝐵2
)

−(
𝑃1
𝐵1
+
𝑃2
𝐵2
)     

𝐴1
𝐵1
+
𝐴2
𝐵2 ]

 
 
 

 (6.8) 

Where 𝐴1 and 𝑃1 are associated to filter 1 and 𝐴2 and 𝑃2 are associated to filter 2. 

Furthermore (6.8) may be decomposed into two separate filters by re-writing as 

[𝑌]𝑇 =
1

2𝐵1
[
   𝐴1 −𝑃1
−𝑃1    𝐴1

] +
1

2𝐵2
[
  𝐴2 −𝑃2
−𝑃2    𝐴2

] = [𝑌]1 + [𝑌]2 (6.9) 

so that,   
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[𝑌]1 =
1

2𝐵1
[
  𝐴1 −𝑃1
−𝑃1    𝐴1

] 

[𝑌]2 =
1

2𝐵2
[
   𝐴2 −𝑃2
−𝑃2    𝐴2

] 
(6.10) 

Comparing (6.7) and (6.8), for the total transmission zeros yields, 

𝑃1𝐵2 + 𝑃2𝐵1 = 𝑃𝑇  (6.11) 

Since (6.11) holds true for any given dual bandpass filter, then the dual bandpass 

filter is separable into filter 1 and filter 2 represented by (6.10). Unfortunately, there 

is no control on the number of transmission zeros of filter 1 (𝑃1)  and filter 2 (𝑃2)  

and in general these are equivalent to or a degree less than the degree of each 

filter so that their realization is impractical [96]. By allowing certain complex 

transmission zeros in 𝑃𝑇 to exist, the number of transmission zeros of filter 1 (𝑃1)  

and filter 2 (𝑃2) may be controlled according to (6.11). By imposing the number of 

transmission zeros in each filter, it is now shown how to determine the unique 

complex transmission zeros that would satisfy the relationship in (6.11). 

6.4.2 Parallel Connected Bandpass Filters 

To achieve the separation and find a unique set of complex transmission zeros to 

satisfy (6.11), first recognize that to achieve certain selectivity requirements or 

group delay equalization there is need to specify at least some of the transmission 

zeros of the overall filter at some finite frequency or in general complex frequency. 

To do this, (6.11) is re-written as 

𝑃1𝐵2 + 𝑃2𝐵1 = 𝑃𝑇 = (1/𝜀)𝑃𝑈𝑃𝐾 (6.12) 

where the monic polynomial 𝑃𝑈 contains all the unknown complex transmission 

zeros and the monic polynomial 𝑃𝐾 contains all the known transmission zeros and 

1/𝜀 is the coefficient of the highest term in 𝑃𝑇. In fact the transmission zeros in 𝑃𝑈 

occurs in complex conjugate pairs in the complex plane. The polynomials 𝐵1 and 

𝐵2 for each individual filter are determined as in section 6.4.1 by simple root 

assignment. Note that for direct synthesis of dual bandpass filters, the polynomials 

𝐵1, 𝐵2 and 𝑃𝑈 are all even polynomials. It is now necessarily to define the following 

integers.  



 

217 

 

𝑁1 is the degree of filter 1 (degree of 𝐵1) 

𝑁2 is the degree of filter 2 (degree of 𝐵2) 

𝑁𝑍1 is the degree of 𝑃1 less 1 

𝑁𝑍2 is the degree of 𝑃2 less 1 

𝑁𝑍𝑈 is the degree of 𝑃𝑈  

𝑁𝑍𝐾 is the degree of 𝑃𝐾  less 1 

𝑁 = 𝑁1 + 𝑁2 is the degree of the overall filter characteristic function 

𝑁𝑇𝑍 = 𝑁𝑍𝐾 + 𝑁𝑍𝑈 + 1  is the overall filter total number of transmission zeros 

(6.13) 

Also let  

1/𝜀1 be the coefficient of the highest term in 𝑃1 

1/𝜀2 be the coefficient of the highest term in 𝑃2 
(6.14) 

It is assumed for simplicity and for physical realisability that the overall filter and 

hence filter 1 and filter 2 have a single transmission zero at the origin. When 𝑁1 

and 𝑁2 are given, 𝑁𝑍1 and 𝑁𝑍2 may be imposed on each of the sub-filters. Thus the 

following relationships may be used:  

1. Equal Partition (𝑁1 = 𝑁2 = 𝑁/2  and 𝑁𝑍1 = 𝑁𝑍2)  

𝑁𝑍𝑈 =
𝑁

2
− 𝑁𝑍1 =

𝑁

2
− 𝑁𝑍2 

1

𝜀1
=
1

𝜀2
=
1

2𝜀
 

(6.15) 

2. Unequal Partition (𝑁1 ≠ 𝑁2  and 𝑁𝑍1 ≠ 𝑁𝑍2) 

𝑁𝑍𝑈 = max(𝑁𝑍1 + 𝑁2, 𝑁𝑍2 + 𝑁1) − 𝑁𝑍𝐾 

1/𝜀1 = 1/𝜀2 = 1/(2𝜀)  , for 𝑁𝑍1 + 𝑁2 = 𝑁𝑍2 + 𝑁1 

1/𝜀1 = 1/𝜀2 = 1/𝜀, for 𝑁𝑍1 + 𝑁2 ≠ 𝑁𝑍2 + 𝑁1 

(6.16) 

In both cases above, it is assumed that 

𝑁𝑍𝐾 = 𝑁𝑍1 + 𝑁𝑍2 (6.17) 

With (6.15) - (6.17) in view, (6.12) is now simply (𝑁𝑍𝐾 + 𝑁𝑍𝑈)/2  system of linear 

equations in (𝑁𝑍𝐾 + 𝑁𝑍𝑈)/2  unknown variables with conditions in (6.15) - (6.17) 
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imposed. The unknown transmission zeros in 𝑃1, 𝑃2 and 𝑃𝑈 required for the 

separation using (6.12) are found using an iterative approach.  

First starting with 𝑃𝑈 = 1, then 𝐵1 and 𝐵2 may be obtained as describe in 6.4.1 with 

𝑃𝐾 containing the prescribed 𝑁𝑍𝐾/2 pairs of symmetrical transmission zeros and a 

single transmission zero at the origin. The linear system (6.12) is then solved for 

the (𝑁𝑍𝐾 + 𝑁𝑍𝑈)/2  unknowns from which 𝑃1, 𝑃2 and 𝑃𝑈 are obtained. Using these 

known transmission zeros in 𝑃𝐾 and 𝑃𝑈, the synthesis is repeated so that again 

new 𝐵1 and 𝐵2 are determined. The linear system in (6.12) is evaluated again and 

𝑃𝑈 formed. This is performed iteratively until (6.12) converges. The technique is 

proved with some illustrative examples for equal and unequal number of reflection 

zeros (equal and unequal partition) in each band of the dual bandpass filter. The 

procedure normally takes a few iterations to converge although this largely 

depends on the relative bandwidths and separation of the two bands as well as the 

level of accuracy required in the polynomial coefficients. 

6.4.3 Parallel Connected Dual Bandpass Filter Example 1 

Consider a dual bandpass filter with specifications as shown in Table 6-10. 

Because the synthesis is done in lumped domain (6.1) apply so that the normalised 

cutoff points in lumped domain are calculated as 𝛼 = 0.7508, 𝛽 = 0.7940, 𝛾 =

0.9532 and 𝛿 = 1. 

Table 6-10 Parallel Connected Dual Bandpass Filter Example 1 Specifications 

Passband 1 1800-1870 MHz 

Passband 2 2100-2160 MHz 

Stopband Insertion Loss 𝐼𝐿 ≥ 40 dB 1700-1755 MHz 

Stopband Insertion Loss 𝐼𝐿 ≥ 40 dB 1940-2000 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 

Electrical length at Centre Frequency 45o 

 

To meet the specifications an 8th degree (𝑁 = 16) dual bandpass filter with equal 

partition assumed (𝑁1 = 𝑁2 = 𝑁/2 = 8) is used. The initial prescribed transmission 

zeros and two basis functions used are shown in Table 6-11. The other two pairs of 
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symmetrical transmission zeros are dependent and are assigned to the inner 

stopband. This yields an initial 16-8-1 transfer function that may even be realised 

using two cascaded quadruplets (CQ) as was illustrated in the examples given in 

section 6.2. 

Now, 𝑁𝑍1 = 4 and 𝑁𝑍2 = 4 is imposed so that from (6.17) 𝑁𝑍𝐾 = 8. Furthermore, 

according to (6.15) the number of transmission zeros required for the 

decomposition into parallel connected bandpass filter networks is 𝑁𝑍𝑈 = 4. By 

solving the linear system (6.12) for six unknowns, the initial positions of the 

complex transmission zeros were determined as 𝜔𝑟3 = ±(0.9128 + 𝑗0.1771) and 

𝜔𝑟4 = ±(0.9128 − 𝑗0.1771). These transmission zeros were used as the starting 

point to the iterative procedure described in section 6.4.2. The initial 8-2-0 basis 

function was replaced by 8-6-0 to accommodate for the extra complex quadruplet 

of transmission zeros. The iteration was initiated and after 17 iterations with 

absolute error on the coefficients of (6.12) defined to be less than 1e-11 so that 

(6.12) converges. The final complex quadruplet transmission zeros location were 

𝜔𝑟3 = ±(0.9127 + 𝑗0.1764) and 𝜔𝑟4 = ±(0.9127 − 𝑗0.1764) . Notice the small 

change in the position of the dependent transmission zero in Fig. 6-5. The 

positions of the prescribed transmission zeros are maintained and it is clear from 

Fig. 6-5 that the stopband rejection levels are slightly worse for the parallel filter 

network configurations because of the introduction of the complex quadruplet 

transmission zeros required for the dual bandpass filter separation. 

Once the dual bandpass filter has been decomposed into parallel connected filter 

networks, the rest of the synthesis process is fairly straight forward as it has been 

demonstrated in many examples before. Table 6-12 shows the filter’s polynomials. 

The coupling matrices for each individual parallel path network may be computed 

as shown in Table 6-13 using (6.10) and polynomials in Table 6-12. Notice that in 

the parallel connected dual bandpass filter, the element values are localised to 

each filter band as opposed to the CQ realisation. Fig. 6-7 shows the individual 

frequency magnitude response for each parallel filter path. The transmission zeros 

positions for each individual filter are only slightly altered in the final dual band 
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response shown in Fig. 6-8. As before, conventional numerical EM techniques may 

then be applied to obtain the filter’s physical dimensions starting from the element 

values given in Table 6-14. 

Table 6-11  16-12-1 Parallel Connected Dual Bandpass Filter Basis Functions  

(a) Initial Basis Functions (16-8-1) 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 8 − 6 − 1 

Provide a single transmission zero at the origin, a two 

pairs of symmetrical prescribed transmission zero at 

𝜔𝑟1 = ±0.7208 and 𝜔𝑟2 = ±0.9040, a dependent pair 

of symmetrical transmission zero at 𝜔z1 = ±0.9176 

and a single transmission zero at infinity 

1 8 − 2 − 0 

Provide a dependent pair of symmetrical transmission 

zeros at 𝜔𝑧2 = ±0.8500 and six transmission zeros at 

infinity 

(b) Final Basis Functions Used in the Iterative Procedure (16-12-1) 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 8 − 6 − 1 

Provide a single transmission zero at the origin, a two 

pairs of symmetrical prescribed transmission zero at 

𝜔𝑟1 = ±0.7208 and 𝜔𝑟2 = ±0.9040, a dependent pair 

of symmetrical transmission zero at 𝜔z1 = ±0.9176 

and a single transmission zero at infinity 

1 8 − 6 − 0 

Provide two pairs of symmetrical prescribed 

transmission zero at 𝜔𝑟3 = ±(0.9127 + 𝑗0.1764) and 

𝜔𝑟4 = ±(0.9127 − 𝑗0.1764), a pair of symmetrical 

dependent transmission zero at 𝜔z2 = ±0.8435 and 

two transmission zeros at infinity 
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Fig. 6-5 Simulated magnitude response of a dual bandpass filter before and after 

decomposition into parallel connected filter networks  

 

Table 6-12 16-12-1 Parallel Connected Dual Bandpass Filter Polynomials 

Filter 1 

 (𝜀 = 4.2637 × 103, 𝜇 = 1) 

𝑃1(𝑝) = 𝑝
5 + 1.2308𝑝3 + 0.3695𝑝 

𝐴1(𝑝) = 0.0908𝑝
7 + 0.1622𝑝5 + 0.0964𝑝3 + 0.0191𝑝 

𝐵1(𝑝) = 𝑝
8 + 2.3797𝑝6 + 2.1213𝑝4 + 0.8395𝑝2 + 0.1245 

Filter 2 

 (𝜀 = 4.2637 × 103, 𝜇 = 1) 

𝑃2(𝑝) = 𝑝5 + 1.5611𝑝3 + 0.6042𝑝 

𝐴2(𝑝) = 0.1012𝑝7 + 0.2887𝑝5 + 0.2742𝑝3 + 0.0868𝑝 

𝐵2(𝑝) = 𝑝8 + 3.8164𝑝6 + 5.4572𝑝4 + 3.4653𝑝2 + 0.8245 
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Table 6-13  𝑁𝑟 + 2 × 𝑁𝑟 + 2 Coupling Matrix of a 16-12-1 Dual Bandpass Filter 

𝑀 = 𝑀𝑇 + 𝑝𝑀𝐶 +
1

𝑝
𝑀𝐿 

𝑀𝑇1 =

[
 
 
 
 
 
0.0000 0.2131 0 0 0 0
0.2131 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0.0000 0.2131
0 0 0 0 0.2131 0.0000]

 
 
 
 
 

 

𝑀𝑇2 =

[
 
 
 
 
 
0.0000 0.2249 0 0 0 0
0.2249 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0.0000 0.2249
0 0 0 0 0.2249 0.0000]

 
 
 
 
 

 

𝑀𝐶1 = 𝑀𝐶2 =

[
 
 
 
 
 
0.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 0.0000]

 
 
 
 
 

 

𝑀𝐿1 =

[
 
 
 
 
 
+0.0000 0 0 0 0 0

0 +0.5940 −0.0295 0 −0.0026 0
0 −0.0295 +0.5986 −0.0242 −0.0034 0
0 0 −0.0242 +0.5930 +0.0293 0
0 −0.0026 −0.0034 +0.0293 +0.5940 0
0 0 0 0 0 +0.0000]

 
 
 
 
 

 

𝑀𝐿2 =

[
 
 
 
 
 
+0.0000 0 0 0 0 0

0 +0.9634 −0.0418 0 −0.0023 0
0 −0.0418 +0.9581 −0.0273 +0.0182 0
0 0 −0.0273 +0.9315 −0.0376 0
0 −0.0023 +0.0182 −0.0376 +0.9634 0
0 0 0 0 0 +0.0000]
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Fig. 6-6  16-12-1 Parallel Connected dual bandpass filter topology 

Table 6-14  Final Element Values of a Capacitively Loaded Parallel Connected 

Dual Bandpass Filter 

Filter 1 (Lower) 

Inductive Inter-resonator 

Coupling Impedances (Ω) 
Capacitors 

Short-Circuited Stubs 

Impedance (Ω) 

𝑍12 = 1799.0 𝐶1 = 1.3022 𝑝𝐹 𝑍𝑟 = 75 

𝑍14 = 20521 𝐶2 = 1.2938 𝑝𝐹 Input/Output Coupling  

Impedance (Ω) 𝑍23 = 2195.0 𝐶3 = 1.3041 𝑝𝐹 

𝑍24 = 15535 𝐶4 = 1.3022 𝑝𝐹 𝐾𝑠1 = 259.4880 

𝑍34 = −1804.0  𝐾𝑙1 = 259.4880  

Filter 2 (Upper) 

Inductive Inter-resonator 

Coupling Impedances (Ω) 
Capacitors 

Short-Circuited Stubs 

Impedance (Ω) 

𝑍56 = 2170.0 𝐶5 = 0.8770 𝑝𝐹 𝑍𝑟 = 75 

𝑍58 = 39176 𝐶6 = 0.8809 𝑝𝐹 Input/Output Coupling  

Impedance (Ω) 𝑍67 = 3270.0 𝐶7 = 0.9007 𝑝𝐹 

𝑍68 = −4970.0 𝐶8 = 0.8770 𝑝𝐹 𝐾𝑠2 = 321.8633 

𝑍78 = 2386.0  𝐾𝑙2 = 321.8633  
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Fig. 6-7  Individual filter’s magnitude response for the 16-12-1 parallel connected dual 
bandpass filter 

 

 
Fig. 6-8  Circuit simulation for the 16-12-1 parallel connected dual bandpass filter with 

element values of Table 6-14   
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6.4.4 Parallel Connected Dual Bandpass Filter Example 2 

In this example an unequal partition (𝑁1 ≠ 𝑁2) dual bandpass will be considered 

with specifications as shown in Table 6-15. As before, (6.1) will be applied so that 

the normalised cutoff points in lumped domain are calculated as 𝛼 = 0.7454, 

𝛽 = 0.7819, 𝛾 = 0.9457 and 𝛿 = 1. 

Table 6-15 Parallel Connected Dual Bandpass Filter Example 2 Specifications 

Passband 1 1800-1860 MHz 

Passband 2 2100-2170 MHz 

Stopband Insertion Loss 𝐼𝐿 ≥ 40 dB 1925-2010 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 

Electrical length at Centre Frequency 45o 

 

To meet the specifications a 7th degree (𝑁 = 14) dual bandpass filter with unequal 

partition was used such that 𝑁1 = 6 and 𝑁2 = 8. The initial prescribed transmission 

zeros and two basis functions used are shown in Table 6-16. Each of the basis 

function provides a dependent pair of symmetrical transmission zeros which are 

assigned to the inner and upper stopband respectively. This yields an initial 14-6-1 

transfer function that may be realised using a trisection cascaded with a quadruplet 

section. 

In this example, it is imposed that 𝑁𝑍1 = 2 and 𝑁𝑍2 = 4 and from (6.17) 𝑁𝑍𝐾 = 6. 

Thus according to (6.16), the number of transmission zeros required for the 

decomposition into parallel connected bandpass filter networks is 𝑁𝑍𝑈 = 4. By 

solving the linear system (6.12) for five unknowns, the initial positions of the 

complex transmission zeros were determined as 𝜔𝑟3 = ±(0.8891 + 𝑗0.1664) and 

𝜔𝑟4 = ±(0.8891 − 𝑗0.1664). The iterative procedure of section 6.4.2 was then 

applied using these transmission zeros. The initial 6-2-0 basis function was 

replaced by a 6-6-0 basis function to accommodate for the extra complex 

quadruplet of transmission zeros. The iteration was initiated and after 6 iterations 

with absolute error on the coefficients of (6.12) defined to be less than 1e-11 so 

that (6.12) converges. The final complex quadruplet transmission zeros locations 
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were 𝜔𝑟3 = ±(0.8887 + 𝑗0.1656) and 𝜔𝑟4 = ±(0.8887 − 𝑗0.1656). Fig. 6-9 shows 

the simulated response before and after the introduction of quadruplet transmission 

zeros. Notice the slight difference in the rejection levels in the stopband in the two 

filters. This change must be accounted for to obtain the desired stopband rejection 

levels. 

Table 6-16  14-10-1 Parallel Connected Dual Bandpass Filter Basis Functions  

(a) Initial Basis Functions (14-6-1) 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 8 − 4 − 1 

Provide a single transmission zero at the origin, a two 

pairs of symmetrical prescribed transmission zero at 

𝜔𝑟1 = ±0.8749, a dependent pair of symmetrical 

transmission zero at 𝜔z1 = ±0.8236 and three 

transmission zero at infinity 

1 6 − 2 − 0 

Provide a dependent pair of symmetrical transmission 

zeros at 𝜔𝑧2 = ±1.0075 and four transmission zeros at 

infinity 

(b) Final Basis Functions Used in the Iterative Procedure (14-10-1) 

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 8 − 4 − 1 

Provide a single transmission zero at the origin, a two 

pairs of symmetrical prescribed transmission zero at 

𝜔𝑟1 = ±0.8749, a dependent pair of symmetrical 

transmission zero at 𝜔z1 = ±0.8236 and three 

transmission zero at infinity 

1 6 − 6 − 0 

Provide two pairs of symmetrical prescribed 

transmission zero at 𝜔𝑟3 = ±(0.8887 + 𝑗0.1656) and 

𝜔𝑟4 = ±(0.8887 − 𝑗0.1656) and a pair of symmetrical 

dependent transmission zero at 𝜔z2 = ±1.0072  
 

The rest of the synthesis is done as described before with the filter’s polynomials 

shown in Table 6-17. Additionally, the coupling matrices for each individual parallel 
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filter network may be computed as shown in Table 6-18 using (6.10) and 

polynomials in Table 6-17. The corresponding topology is shown in Fig. 6-10. 

Finally the magnitude response for each filter network is shown in Fig. 6-11. 

 

Fig. 6-9 Simulated magnitude response of a dual bandpass filter before and after 
decomposition into parallel connected filter networks  

 

Table 6-17 14-10-1 Parallel Connected Dual Bandpass Filter Polynomials 

Filter 1 

 (𝜀 = 1.3543 × 103, 𝜇 = 1) 

𝑃1(𝑝) = 𝑝
3 + 0.6793𝑝 

𝐴1(𝑝) = 0.0853𝑝
5 + 0.0999𝑝3 + 0.0292𝑝 

𝐵1(𝑝) = 𝑝
6 + 1.7483𝑝4 + 1.0172𝑝2 + 0.1969 

Filter 2 

 (𝜀 = 1.3543 × 103, 𝜇 = 1) 

𝑃2(𝑝) = 𝑝5 + 1.7144𝑝3 + 0.7101𝑝 

𝐴2(𝑝) = 0.1144𝑝7 + 0.3286𝑝5 + 0.3142𝑝3 + 0.1000𝑝 

𝐵2(𝑝) = 𝑝8 + 3.8241𝑝6 + 5.4781𝑝4 + 3.4839𝑝2 + 0.8300 
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Table 6-18  𝑁𝑟 + 2 × 𝑁𝑟 + 2 Coupling Matrix of a 14-10-1 Dual Bandpass Filter 

𝑀 = 𝑀𝑇 + 𝑝𝑀𝐶 +
1

𝑝
𝑀𝐿 

𝑀𝑇1 =

[
 
 
 
 
0.0000 0.2066 0 0 0
0.2066 0.0000 0 0 0
0 0 0.0000 0 0
0 0 0 0.0000 0.2066
0 0 0 0.2066 0.0000]

 
 
 
 

 

𝑀𝑇2 =

[
 
 
 
 
 
0.0000 0.2391 0 0 0 0
0.2391 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0.0000 0.2388
0 0 0 0 0.2388 0.0000]

 
 
 
 
 

 

𝑀𝐶1 =

[
 
 
 
 
0.0000 0 0 0 0
0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0
0 0 0 0 0.0000]

 
 
 
 

 

𝑀𝐶2 =

[
 
 
 
 
 
   0.0000 0 0 0 0 0

0    1.0000 0 0 0 0
0 0    1.0000 0 −0.0318 0
0 0 0    1.0000 −0.0382 0
0 0 −0.0318 −0.0382    1.0000 0
0 0 0 0 0    0.0000]

 
 
 
 
 

 

 

𝑀𝐿1 =

[
 
 
 
 
+0.0000 0 0 0 0

0 +0.5778 −0.0274 −0.0087 0
0 −0.0274 +0.5927 −0.0274 0
0 −0.0087 −0.0274 +0.5778 0
0 0 0 0 +0.0000]

 
 
 
 

 

𝑀𝐿2 =

[
 
 
 
 
 
+0.0000 0 0 0 0 0

0 +0.9513 −0.0466 0 −0.0050 0
0 −0.0466 +0.9377 −0.0295 0 0
0 0 −0.0295 +0.9838 0 0
0 −0.0050 0 0 +0.9466 0
0 0 0 0 0 +0.0000]
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Fig. 6-10  14-10-1 Parallel Connected dual bandpass filter topology 

 

 

Fig. 6-11  Individual filter’s magnitude response of the 14-10-1 parallel connected dual 
bandpass filter 
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6.4.5 Comparison Between Cascaded N-tuplets and Parallel Connected 

Dual Bandpass Realisations 

The example in section 6.4.4 was used to compare the coupling bandwidths for the 

two different physical realisations. The two filters have topologies as shown in Fig. 

6-12. It can be noted from Table 6-19 that the cascaded n-tuplets sections 

realisation resonant frequencies are much more spread out than in the parallel 

connected realisation. It also clear that the resonant frequencies for filter 1 and 

filter 2 are within their respective bandwidths in the parallel connected network 

realisation.  

 
(a) 14-6-1 Filter Cascaded N-tuplets Sections Realisation 

 
(b) 14-10-1 Filter Parallel Connected Network Realisation 

Fig. 6-12  Two possible physical realisation of dual bandpass filter 
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Table 6-19 Dual Bandpass Filter Resonance Frequencies 

All combline Resonators 75 Ω 

Physical length 𝜆/8 long at 𝑓𝑜 = 1.985 𝐺𝐻𝑧 

14-6-1 Cascaded N-tuplets  14-10-1 Parallel Connected Networks 

Resonator Frequency (𝐺𝐻𝑧) Resonator Frequency (𝐺𝐻𝑧) 

1 2.0158 1 1.8243 

2 1.9656 2 1.8403 

3 1.9420 3 1.8243 

4 2.0438 4 2.1384 

5 2.1471 5 2.1294 

6 1.9843 6 2.1596 

7 2.0158 7 2.1353 
 

Table 6-20  14-6-1 Cascaded N-tuplets Dual Bandpass Filter Inter-resonator 

Couplings using two combline resonators model 

Coupling Coefficient 𝐾𝑚 (GHz) 𝑓𝑒𝑣 (𝑀𝐻𝑧) 𝑓𝑜𝑑 (𝑀𝐻𝑧) 
Coupling Bandwidth 

(𝑀𝐻𝑧) 

1-2 0.3614 1837.0 2122.8 285.8189 

1-3 0.1726 1899.3 2053.5 154.2296 

2-3 0.0612 1928.1 1980.6 52.5401 

3-4 0.3637 1831.8 2132.1 300.3593 

4-5 0.0445 2041.0 2150.6 109.5521 

4-6 0.0398 1980.6 2047.3 66.6491 

4-7 0.1316 1977.8 2079.2 101.4609 

5-6 0.1445 1967.9 2160.5 192.5830 

6-7 0.3847 1838.8 2137.2 298.3703 
 

This could simplify numerical analysis when determining physical dimensions in 

parallel connected networks. In general the parallel connected network realisation 

has narrow coupling bandwidths compared to the cascaded n-tuplets realisation as 

evident from the results in Table 6-20, Table 6-21 and Table 6-22. Certainly some 

of the couplings in cascaded n-tuplets would require close proximity couplings or 
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other mechanisms to be practically realised [95]. This is worsened in very wide 

dual bandpass filters, making the cascaded n-tuplets realisation impractical [94]. 

The parallel connected network realisation therefore, provides a better realisation 

for moderate to wide bandwidth filters. The additional complex transmission zeros 

only slightly affect the filter’s group delay and thus merely used for physically 

separating the two filtering paths in the parallel connected dual bandpass filter. 

Table 6-21  14-10-1 Parallel Connected Dual Bandpass Filter Inter-resonator 

Couplings using two combline resonators model 

Coupling Coefficient 𝐾𝑚 (GHz) 
𝑓𝑒𝑣 

(𝑀𝐻𝑧) 

𝑓𝑜𝑑 

(𝑀𝐻𝑧) 

Coupling Bandwidth 

(𝑀𝐻𝑧) 

Filter 1 

1-2 0.0640 1801.4 1862.3 60.9030 

1-3 0.0202 1814.9 1833.6 18.7286 

2-3 0.0640 1801.4 1862.3 60.9030 

Filter 2 

4-5 0.0940 2102.1 2164.6 62.5434 

4-7 0.0100 2133.2 2140.5 7.2627 

5-6 0.0595 2119.7 2168.9 49.1275 

5-7 0.0478 2112.6 2152.9 40.2689 

6-7 0.0575 2121.1 2175.1 54.0165 
 

 

 

Table 6-22  Dual Bandpass Filter Input/Output Couplings Bandwidths Comparisons 

(𝑀𝐻𝑧) 

14-6-1 Cascaded  

N-tuplets 

(Input=Output) 

14-10-1 Parallel 

Connected Networks 

Filter 1 (Input=Output) 

14-10-1 Parallel 

Connected Networks 

Filter 2 (Input/Output) 

𝑓3𝑑𝐵𝑢𝑝𝑝𝑒𝑟 = 2088.9 𝑓3𝑑𝐵𝑢𝑝𝑝𝑒𝑟 = 1859.7 𝑓3𝑑𝐵𝑢𝑝𝑝𝑒𝑟 = 2175.5/2172.4 

𝑓3𝑑𝐵𝑙𝑜𝑤𝑒𝑟 = 1945.3 𝑓3𝑑𝐵𝑙𝑜𝑤𝑒𝑟 = 1789.5 𝑓3𝑑𝐵𝑙𝑜𝑤𝑒𝑟 = 2101.9/2098.8 

𝑓3𝑑𝐵 = 143.5767 𝑓3𝑑𝐵 = 70.1797 𝑓3𝑑𝐵 = 73.6691/73.5675 
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6.5 Dual Bandpass Filter Design Example 

In this section, a prototype dual bandpass filter will be designed with specifications 

shown in Table 6-23. Using (6.1) the normalised cutoff points in lumped domain 

are calculated as 𝛼 = 0.7508, 𝛽 = 0.7940, 𝛾 = 0.9532 and 𝛿 = 1. 

Table 6-23 Dual Bandpass Filter Specifications 

Passband 1 1800-1870 MHz 

Passband 2 2100-2160 MHz 

Insertion Loss < 1 dB 

Stopband Insertion Loss 𝐼𝐿 ≥ 40 dB 1950-2000 MHz 

Passband Return Loss (𝑅𝐿) 20 dB 

Electrical length at Centre Frequency (1.98 GHz) 45o 

 

Table 6-24  12-4-1 Dual Bandpass Filter Basis Functions  

𝛼𝑟 𝑁-𝑁𝐹𝑇𝑍-𝑁𝑂𝑇𝑍 Purpose 

1 4 − 2 − 1 

Provide a single transmission zero at the origin, a 

dependent pair of symmetrical transmission zero at 

𝜔z1 = ±0.8760 and a single transmission zero at 

infinity 

1 8 − 2 − 0 

Provide a dependent pair of symmetrical transmission 

zeros at 𝜔𝑧2 = ±0.8500 and six transmission zeros at 

infinity 
 

To meet the specifications a 6th degree (𝑁 = 14) dual bandpass filter with 𝑁1 = 6 

and 𝑁2 = 6. The two basis functions used are shown in Table 6-24. Each of the 

basis function provides a dependent pair of symmetrical transmission zeros which 

are assigned to the inner stopband. This yields an overall 12-4-1 transfer function 

shown in Fig. 6-13. 

The filter’s polynomials were then computed as tabulated in Table 6-25. The 

transverse coupling matrix were generated and reduced to the folded canonical 
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topology shown in Fig. 6-14. The resulting 𝑁𝑟 × 𝑁𝑟 coupling matrix is shown in 

Table 6-26. The element values in Table 6-26 coupling matrices were converted to 

a distributed network and re-normalised by dividing by tan(𝑎𝜔𝑢2). Finally, the 

element values were converted to capacitively loaded resonators as shown in 

Table 6-27. 

 

Fig. 6-13  Simulated magnitude response of a 12-4-1 dual bandpass filter  
 

By employing the method as described in Chapter 1, the resonance frequencies, 

coupling bandwidths and 3 dB bandwidths for the input and output couplings were 

computed according to Table 5-15 , Table 5-16 and Table 5-17 respectively. EM 

modelling techniques were used to compute the initial physical dimension of the 

course model. Further fine tuning would be required to obtain equal ripple 

passband return loss in both bands. Fig. 6-15 shows the EM model for the dual 

bandpass filter and the corresponding EM simulation is shown in Fig. 6-16. 
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Table 6-25 12-4-1 Dual Bandpass Filter Polynomials 

Characteristic Polynomials 

 (𝜀 = 3.9105 × 103, 𝜇 = 1) 

𝑃(𝑝) = 𝑝5 + 1.4899𝑝3 + 0.5545𝑝 

𝐹(𝑝) = 𝑝12 + 4.6549𝑝10 + 8.9309𝑝8 + 9.0372𝑝6 + 5.0861𝑝4 + 1.5097𝑝2

+ 0.1847 

𝐸(𝑝) = 𝑝12 + 0.2095𝑝11 + 4.6768𝑝10 + 0.8130𝑝9 + 8.9988𝑝8 + 1.2471𝑝7

+ 9.1153𝑝6 + 0.9452𝑝5 + 5.1256𝑝4 + 0.3539𝑝3 + 1.5171𝑝2

+ 0.0524𝑝 + 0.1847 

𝑌 Matrix Polynomials 

𝑌11𝑛(𝑝) = 0.2095𝑝
11 + 0.8130𝑝9 + 1.2471𝑝7 + 0.9452𝑝5 + 0.3539𝑝3 + 0.0524𝑝

= 𝑌22𝑛(𝑝) 

𝑌21𝑛(𝑝) = 𝑌12𝑛(𝑝) = −(𝑝5 + 1.4899𝑝3 + 0.5545𝑝)/𝜀 

𝑌𝑑𝑒𝑛(𝑝) = 2𝑝
12 + 9.3317𝑝10 + 17.9297𝑝8 + 18.1524𝑝6 + 10.2118𝑝4

+ 3.0267𝑝2 + 0.3694 
 

 

Table 6-26  𝑁𝑟 ×𝑁𝑟 Coupling Matrix of a 12-4-1 Dual Bandpass Filter 

𝑌𝐵𝑃 = 𝑀𝑇𝑠 + 𝑝𝑀𝐶𝑠 +
1

𝑝
𝑀𝐿𝑠 

𝑀𝑇𝑠 =

[
 
 
 
 
 
0.1048 0 0 0 0 0
0 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0.0000 0
0 0 0 0 0 0.1048]

 
 
 
 
 

 

𝑀𝐶𝑠 =

[
 
 
 
 
 
+1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 +1.0000 0 −0.0290 0
0 0 0 +1.0000 0 0
0 0 −0.0290 0 +1.0000 0
0 0 0 0 0 +1.0000]
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𝑀𝐿𝑠 =

[
 
 
 
 
 
+0.7859 −0.1900 0 0 0 0
−0.1900 +0.7770 −0.0713 0 −0.0317 0

0 −0.0713 +0.8199 −0.1409 0 0
0 0 −0.1409 +0.7202 −0.0631 0
0 −0.0317 0 −0.0631 +0.7757 −0.1899
0 0 0 0 −0.1899 +0.7859]

 
 
 
 
 

 

 

 
Fig. 6-14  12-4-1 Dual Bandpass Filter Topology 

 

Table 6-27  Final Element Values of a Capacitively Loaded Dual Bandpass Filter 

Inductive Inter-resonator 

Coupling Impedances (Ω) 
Capacitors 

Short-Circuited Stubs 

Impedance (Ω) 

𝑍12 = 373.90 𝐶1 = 1.0429 𝑝𝐹 𝑍𝑟 = 75 

𝑍23 = 1013.8 𝐶2 = 1.0527 𝑝𝐹 Input/Output Coupling  

Impedance (Ω) 𝑍25 = 2225.7 𝐶3 = 1.0069 𝑝𝐹 

𝑍34 = 497.10 𝐶4 = 1.1203 𝑝𝐹 𝐾𝑜𝑢𝑡𝑝𝑢𝑡 = 198.2380 

𝑍45 = 1085.1 𝐶5 = 1.0542 𝑝𝐹 𝐾𝑖𝑛𝑝𝑢𝑡 = 198.2380  

𝑍56 = 373.70 𝐶6 = 1.0429 𝑝𝐹 Capacitive Inter-resonator 

Coupling Impedance (Ω)   

  𝑍35 = 3318.8 
 

 

 

 



 

237 

 

Table 6-28 12-4-1 Dual Bandpass Filter Resonance Frequencies 

All combline Resonators 75 Ω 

Physical length 𝜆/8 long at 𝑓𝑜 = 1.98 𝐺𝐻𝑧 

Resonator Frequency (𝐺𝐻𝑧) 

1 2.0011 

2 1.9938 

3 2.0283 

4 1.9460 

5 1.9927 

6 2.0011 
 

 

Table 6-29  12-4-1 Dual Bandpass Filter Inter-resonator Couplings using two 

combline resonators model 

Coupling 
Coefficient 𝐾𝑚 

(GHz) 

𝑓𝑒𝑣 

(𝑀𝐻𝑧) 

𝑓𝑜𝑑 

(𝑀𝐻𝑧) 

Coupling Bandwidth 

(𝑀𝐻𝑧) 

1-2 0.4063 1827.6 2140.4 312.8530 

2-3 0.1525 1949.3 2069.1 119.8209 

2-5 0.0679 1966.9 2018.9 52.0633 

3-4 0.3014 1855.7 2103.6 247.8932 

3-5 0.0465 1985.3 2036.4 51.1467 

4-5 0.1350 1909.8 2025.9 116.1516 

5-6 0.4061 1827.0 2139.9 312.9401 
 

 

Table 6-30  12-4-1 Dual Bandpass Filter Input/Output Couplings  

Resonator Frequency (𝑀𝐻𝑧) 

𝑓3𝑑𝐵𝑢𝑝𝑝𝑒𝑟 2077.5 

𝑓3𝑑𝐵𝑙𝑜𝑤𝑒𝑟 1927.4 

𝑓3𝑑𝐵 150.0603 
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(a) Top view 

 

 

(b) Perspective view 

Fig. 6-15  12-4-1 dual bandpass filter EM model 
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Fig. 6-16  Coarse EM vs Circuit simulation for the 12-4-1 dual bandpass filter 

6.6 Conclusion 

A method of direct synthesis of dual bandpass filter has been given. Section 6.2 

highlighted the different methods used when synthesising dual bandpass filters. 

Then in section 6.3 the proposed method was described with the dual bandpass 

filter realised as cascaded n-tuplet. The alternative realisation using parallel 

connected bandpass networks were given in section 6.4 together with some design 

examples. Comparison was drawn between the two physical realisations and their 

merits were given. In section 6.5 an illustrative example of dual bandpass filter 

synthesis and design was given. Finally, a thesis conclusion and future work are 

presented in Chapter 7. 



 

240 

 

Chapter 7 Conclusion and Future Work 

Filter synthesis is at the root of microwave filter design. Many decades of research 

has produced a conventional design process. The rapid development of 

information and technology has led to more challenges in the communication 

industry. This has meant that the design of filters needs to adapt to the dynamic 

requirements impossed by the wireless communications industry.  

This research has produced some advanced work in filter synthesis and physical 

realisations suitable for selective microwave filters which are required to improve 

performance and reduce weight, volume and costs. Not only can the synthesis 

techniques be used for BTS filter designs but could also be used in many RF and 

microwave filter designs. 

Chapter 1 begun with the overview description of filter synthesis and design 

techniques. This formed the foundation for the work presented in the rest of the 

Chapters. The synthesis is presented in a way suitable for easy computer 

programming. 

In Chapter 2, the method of generating the generalised Chebyshev characteristic 

function used in the design of Chebyshev microwave filters was demonstrated. 

This allows different Chebyshev characteristic functions with arbitrary bandwidths 

to be synthesised. Linear combinations of the elementary characteristic functions, 

based on reflection and transmission zeros placement, allow high order 

symmetrical and asymmetrical characteristic functions to be determined. The 

demonstrated method is applicable to the synthesis of lumped and distributed, 

single or multi-band electrical filters. Typical and practical synthesis examples are 

given to show the power of this method. 

An exact design technique for realising generalised Chebyshev distributed low-

pass filters using coupled line/stub without approximating the series short circuited 

stubs has been demonstrated in Chapter 3. These low-pass filters have better 

selectivity and overall stopband response with quarter-wave transmission zeros. 
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The physical realisation I has a simple equivalent circuit, however, it requires 

isolation walls to eliminate coupling between basic sections. Since a single basic 

section may realise a pair of finite frequency transmission zero, a maximum of 

(𝑁 − 1)/2 pairs of symmetrically located transmission zeros is achievable.  

A more general meander-like structure, physical realisation II, with optimal number 

of elements and simple physical layout of transmission lines has also been 

presented. Its physical realisation does not require decoupling walls between the 

parallel coupled line section and hence is easier to construct. However, only 

certain forms of transfer functions are realisable as described in Chapter 3. 

Synthesis of a few realisations up to 9th degree together with the required 

transmission zeros locations of their canonical forms have been illustrated.  

A low-pass filter design example utilising the later physical realisation was 

fabricated and measurement results showed good agreement with theory. 

Comparison with other low-pass filter realisations reviewed that the proposed low-

pass filter has a much higher roll-off rate and deeper effective stopband. 

Future work could focus on general extension of the synthesis approach to an Nth 

meander-like low-pass filter. It would also be interesting to see how the stopband 

could further be extended in this physical realisation within realisable element 

values. One possible solution is to change the filter impedance and use of 

impedance matching circuits at both the input and output of the filter network. This 

would allow small electrical lengths to be used and thus much broader stopband 

width. Another alternative solution is to shorten the open circuited stubs and 

compensate the resulting effect by lumped capacitive loading at the ends of the 

shortened stubs. This broadens the effective stopband with minimum effect on the 

passband return loss while providing close-to-theoretical rejection in the stopband 

as was demonstrated in Chapter 3. Future work could also investigate the 

possibility of using this known synthesis approach in design of meander-line 

phase-shifters [97]. 

In Chapter 4, a new method for synthesis of pseudo-elliptic bandpass filter with 

integrated transmission zeros has been described. Pseudo-elliptic filters described 

in this Chapter make an important application in the design of filters with 
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transmission zeros at finite frequency to increase close-to-band rejection. These 

sorts of filters could suitably be used in cellular BTS where a high rejection is 

required in the transmitter band of the receiver filter and conversely the receiver 

band of the transmitter filter.  

Two suitable low-pass prototypes were considered together with their merits.  The 

asymmetrical-frequency-transformed pseudo-elliptic low-pass prototype filter 

provides an easy design for pseudo-elliptic bandpass filters with all transmission 

zeros at a single finite frequency. The advantage provided is that, although the 

filtering response is asymmetrical, the pseudo-elliptic low-pass filter itself is 

symmetrical and thus produces a symmetrical physical structure. Nevertheless, the 

rejection is not well distributed across the stopband and generally will require 

higher filter order to improve the stopband rejection than the general pseudo-elliptic 

low-pass prototype filter. The general pseudo-elliptic low-pass prototype filter with 

distributed transmission zeros in the stopband is therefore preferred. Such a 

prototype, moreover also generally produces a physically asymmetrical filter. In 

addition it requires fewer elements for the same attenuation in the stopband than 

its asymmetrical-frequency-transformed elliptic low-pass prototype filter 

counterpart.  

Integrated transmission zeros were achieved using re-entrant transmission line 

elements. The design of microwave bandpass filters using re-entrant resonators 

with arbitrarily placed transmission zeros above the passband had been 

demonstrated. A five pole re-entrant bandpass filter was designed and fabricated. 

The measured results showed good agreement with established theories. Such a 

simple physical construction offers significant advantages over conventional design 

when very high stopband attenuation is required. 

Chapter 5 showed the general application of the synthesis methods of Chapter 1 

and Chapter 2 to the synthesis of bandpass filters and narrow dual bandpass 

filters. The synthesis is based on linear combination of Chebyshev elementary 

characteristic functions based on the number and position of the transmission 

zeros.  
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Applications for the design of practical bandpass filters have been examined. 

Explicit design procedures for exact synthesis of pseudo-combline and interdigital 

bandpass filter have been given. Two experiment 5th degree combline bandpass 

filters were designed. A similar design procedure has been demonstrated for 

interdigital bandpass filters. Furthermore, the method of synthesising relatively 

close-spaced Chebyshev dual passband filters was outlined. A 10th degree 

symmetrical dual bandpass filter was synthesised to illustrate the principles. 

Multiband filters are important in modern communication systems that ensure 

effective filtering for multi-bands in diplexer architectures. An alternative method for 

direct synthesis of dual bandpass filters was presented in Chapter 6 that allows 

better control over out-of-band rejection levels as opposed to [93]. The outlined 

method provides a simple direct synthesis method for design of dual bandpass 

filter by using pre-determined basis functions. The method allows control over the 

number and position of both the reflection and transmission zeros in both 

passbands and stopbands. It also provides a better alternative to other 

approximation methods where transformations and optimisations are used.  

Practical Limitations of the dual bandpass filter are clearly understood. This is due 

to increased permutation of the number and position of reflection and transmission 

zeros - because of increased number of passbands and stopbands compared to 

single bandpass filters. Some of the transmission zeros of the basis functions are 

dependant transmission zeros in order to control the four passband edges of the 

dual bandpass filter. However, the synthesis method enables these transmission 

zeros to be allocated to the desired stopbands to meet the filter’s specifications. 

The method also allows synthesis of dual bandpass filters with arbitrary 

bandwidths and separations of the two bands. Finally the method could also be 

used for different physical topological realisations. It has been demonstrated how 

cascaded n-tuplets section realisation may be achieved. The parallel connected 

filter networks also provides alternative realisation especially when the two bands 

are wide apart. The decomposition of a dual bandpass filter into parallel connected 

filter networks has clearly been demonstrated with examples. The merits of both 
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topologies in terms of coupling bandwidth realisations have also been shown and a 

practical design example given.  

Since much of the work involved synthesis, future work would perhaps focus on 

implementing the synthesis of dual bandpass in different technologies. Further 

miniaturisation could be achieved by use of multi-mode ceramic filters. This is 

another area being exploited to increasing performance of microwave filters. 

However, it must be mentioned here that not all facets of microwave filter are 

simultaneously improved as filter design often involves various trade-offs.  

Another area that could be exploited in future is implementing the dual band filter 

parallel sub-networks using different unloaded quality factors. This is possible 

because the two filter sub-networks dimensions and hence the unloaded quality 

factor is frequency dependant thus allowing different dimensions for the networks 

to be used. Different technology implementation could also be exploited for the two 

sub-networks.  

Sometimes, other multiband filters such as triple and quadruplet bandpass filters 

may be required. The low-pass prototype filter networks for such filtering function 

may easily be generated using the concept developed in Chapter 2. 

Future research could also focus on finding other simple physical structures that 

could be used to implement strong couplings in wide dual bandpass filters dealt 

with in Chapter 6. As it has been demonstrated before, it is one thing to develop 

filter circuit networks through synthesis and quite another to be able to physically 

realise the circuit model. Even though EM simulators provide close to real 

performance of the physical filter, it would be imperative to fabricate some 

prototype designs to see the measured performance and validate some of the 

synthesised dual bandpass filters, especially the parallel connected network.
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