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A B S T R A C T

Infectious diseases are a major threat to the wellbeing of humans, livestock, and wildlife.

However, there is often a paucity of information for responding to these threats, and

thus a need to make efficient use of existing data. This thesis shows how to use Bayesian

analysis to maximise the information gained from already collected diagnostic test data.

First, the commonly used latent class analysis of multiple binary diagnostic tests is ex-

tended to account for vaccinated individuals, and used to estimate the effect of study size

on sensitivity and specificity estimates of DIVA (”Distinguishing Infected and Vaccinated

Animals”) tests for bovine Tuberculosis.

It is then shown how quantitative test responses can be used as clocks indicating the

time since infection to “hindcast” historic trends of disease incidence using cross-sectional

data. This is used to determine whether an endemic disease is increasing or decreasing

up to the time of sampling, enabling the tracking of trends in populations where routine

surveillance data is not available.

It is further demonstrated how to hindcast the rise and fall of disease outbreaks. Using

the 2007 UK Bluetongue virus outbreak and a whooping cough outbreak as examples, it

is shown that hindcasting can be used to determine whether an outbreak is increasing or

past its peak at the time of sampling, thus informing potential outbreak responses.

In the light of these methods for analysing quantitative test data, the challenges of

generating data on test kinetics are discussed. Suggestions are given for how to improve

on current methods by modelling the development of paired diagnostic tests as a dynamic

host-pathogen system.

This thesis demonstrates that multiple quantitative tests can be used to recover disease

trends in a population. These methods have far-reaching consequences for the design and

practice of disease surveillance in all contexts.
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1

C H A P T E R 1 : I N T R O D U C T I O N A N D O V E RV I E W

On the 17th of April 2009 the Mexican Institute for Social Security

sounded an epidemiological alert regarding an unusual pattern of

reported influenza cases (Echevarría-Zuno et al., 2009). Later stud-

ies suggested this outbreak started in February of 2009 (Echevarría-

Zuno et al., 2009) or possibly earlier (Smith et al., 2009). On April

23rd, the cause was identified as a novel influenza virus with serotype

H1N1 (Girard et al., 2010) and by the end of April, cases infected

with the identical strain had been reported in several different

countries (Fineberg, 2014). The presented symptoms in this flu out-

break were severe: of 899 patients hospitalised in Mexico, 6.5%

suffered critical illness; 41% of these critically ill patients died.

In the following months and for most of 2009, this novel strain,

spread from country to country under the moniker “swine flu”.

On the 11th of June 2009, WHO officially classified H1N1 as a pan-

demic flu (Chan, 2009), thereby triggering emergency responses by

governments across the world.

Despite the severity of initial cases, the pandemic H1N1 flu was

soon found to have similar morbidity to regular seasonal flu (Tu-

ite et al., 2010). In light of this, the responses by WHO and others

has been criticised (Durodié, 2011; Flynn, 2010), but most official

reports have subsequently concluded that the response was appro-

priate given the data available at the time (Fineberg, 2014; Leung

and Nicoll, 2010).

The case of the H1N1 outbreak highlights the difficulty of making

decisions in the face of an infectious disease outbreak, and the im-

portance of having enough information available so that action can

1



2 chapter 1 : introduction and overview

be taken proportionately to the true rather than perceived threat.

Disease surveillance can tell us what pathogens occur at what time

and in which hosts and environments. It is thus a critical link in the

chain between awareness and action. However, surveillance data is

often patchy and incomplete. Statistical techniques can contribute

substantially to the interpretation of these data, and in-depth statis-

tical analyses make it possible to maximise the information gained.

The statistical frameworks developed in this thesis have implications

for and relevance to multiple aspects of the interactions between di-

agnosing disease, developing new diagnostics and designing surveil-

lance systems and appropriate control policies.

The specific types of information required differ depending on the

epidemiology of the disease. Section 1.1 discusses different types

of disease epidemiology, and how the goals of surveillance differ

depending on the pattern of spread. Section 1.2 provides a brief dis-

ease description of how surveillance systems function, and typical

gaps and limitations in performance. Section 1.3 focusses on diag-

nostic tests and how more comprehensive analyses of collected test

results could help mitigate key gaps in the performance of exist-

ing surveillance systems. Section 1.4 highlights major current and

historical uses of statistical analysis in disease surveillance. Section

1.5 introduces key notations and the foundations necessary for con-

ducting the statistical analyses used in this thesis. Finally, section

1.6 describes the focus of the thesis, and lays out the structure of the

following chapters.

1.1 characterising patterns of infectious disease

The epidemiology of infectious diseases vary greatly in the particu-

lar. In general, however, there are a few categories of epidemiolog-

ical patterns that are often used for describing diseases. These are



1.1 characterising patterns of infectious disease 3

not distinct classes, but describe different aspects of observed pat-

terns of spread.

1.1.1 The basic reproduction number R0

A natural starting point is to consider the infectiousness of a pathogen.

This can be quantified by defining the seemingly theoretical concept

of the “basic reproduction number”, or R0 as the average number

of new cases infected by a single original case in a large host pop-

ulation in which every individual is susceptible to infection. Intu-

itively, it is clear that if R0 is less than 1, i.e. if each case infects on

average less than a single new host before recovering (i.e. ceasing

to be infectious, dying or leaving the population under study), the

pathogen will die out. If R0 > 1, the pathogen will instead spread

exponentially. As the pathogen spreads through the population the

number of susceptible individuals declines and the number of cases

infected by each new infective (the R number) is lower than R0. The

development of the R number over time determines the type of epi-

demiological pattern the pathogen follows.Observed values of R0

vary tremendously across infectious pathogens; studies have indi-

cated that in a totally susceptible population, a single measles case

can infect (i.e. have an R0 of) between 12 and 18 (Fine, 1993), while

for scrapie, R0 has been estimated to be 3.9 (Heffernan et al., 2005).

1.1.2 Endemic and epidemic disease

The terms endemic and epidemic are frequently used to characterize

disease. However, the terms are not exclusive and depend on the

spatial and temporal scale being considered.

An endemic pathogen is a pathogen that is continually present in a

population. This implies that the pathogen has reached a (possi-
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bly dynamic) steady state, where an individual infected with the

pathogen will on average spread the pathogen to one other indi-

vidual before recovering or dying (i.e. R ≈ 1). Note that this says

nothing about the absolute prevalence (i.e. proportion of the pop-

ulation infected) or incidence (number of individuals infected per

time unit) of the pathogen. The incidence of new infections could

exhibit a relatively stable trend in the population if the pathogen

spreads slowly and/or is chronic. Alternatively, it could show a reg-

ular or irregular pattern of fluctuations over a period of time, as the

infectiousness and/or the number of susceptible individuals change

or simply due to stochastic variation in disease contact. One exam-

ple of such a disease is Nephropatia epidemica, caused by the Pu-

umala virus (PUUV) (Family Bunyaviridae, genus hantavirus). It is a

zoonotic pathogen that has voles as its main host, but has an annual

season of a few months in winter when the voles are forced inside

buildings, and the pathogen can infect humans, causing seasonal

epidemics (Zeimes et al., 2012). That the pathogen is endemic does

not mean that the average incidence is stable; if the point of equilib-

rium increase or decrease, so does the incidence or prevalence. In

this context a major concern is the impact of climate change on in-

fectious pathogens, where it is feared that increasing temperatures

will lead to higher rates of transmission (e.g by increasing the num-

bers of disease vectors such as ticks or mosquitos (McMichael et al.,

2006) ), as well as a shift in the endemic regions for a wide range of

pathogens, leading to changes in the incidence for many pathogens

in both in humans and animals (Fox et al., 2011).

An epidemic pathogen is characterised by the change in incidence be-

ing dominated by the dynamics of the pathogen spread, rather than

changes in the equilibrium point. This could mean a classic outbreak

scenario, such as the rapid spread of Norovirus (winter vomiting

disease) in a naive population aboard cruise ships after food contam-
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ination (Isakbaeva et al., 2005). But it could also refer to a pathogen

such as HIV, where the number of cases are still increasing, only

lately showing some signs of having reached equilibrium (Nagelk-

erke et al., 2014); in this case, the increase is slow and steady, but

undeniably positive, and only rarely exhibits fluctuations.

As noted above the terms “epidemic” and “endemic” are comple-

mentary, not in contradiction. A pathogen could be endemic and

epidemic at the same time. Such pathogens tend to circulate in a

population (or in a nearby reservoir host) at a low level, causing oc-

casional outbreaks once some epidemic threshold is reached. Within

the wider population the pathogen would be technically endemic

but may remain undetected at low levels, only being detected dur-

ing ‘epidemic’ outbreaks. Alternatively, if the pathogen remains in

a reservoir population (where it is endemic) it may cause true epi-

demic outbreaks in connected and completely susceptible popula-

tions. A classic example of this is the epidemiology of measles in the

UK pre-vaccination. At some scale, it would always be present, caus-

ing occasional cases in the population. On a regular basis, however,

the number of children who had not been exposed would increase

to a critical level, and a measles epidemic would occur. Interestingly,

these epidemics nearly always started in London before spreading

to the rest of the country, probably because high population density

meant that a critical mass was reached earlier than in other cities

(Grenfell et al., 2001).

The terms emerging disease or reemerging disease have been increas-

ingly used, in particular in connection with climate change and

some of the high-profile outbreaks seen in the last decades. The

term is usually used to refer to diseases caused by pathogens that

have a high risk of being introduced or have recently been intro-

duced in a population, but where there is no (recent) history of oc-

currence in that particular population. Many examples of emerging
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diseases are arthropod-borne pathogens; Bluetongue (Wilson and

Mellor, 2009), Chikungunya (Thiboutot et al., 2010), and West Nile

Virus (Bernard et al., 2001) are all spread via arthropod bites. Since

the range and population densities of insects are highly affected by

micro- and macro- climate, a changing climate can be expected to

have a substantial effect on the locations and populations where

arthropod vectors are to be found (Daszak et al., 2000). An emerg-

ing (re-emerging) disease can also refer to diseases that have been

present in the past but were either not discovered or did not cause

problems until some recent change in circumstances increased the

incidence or the consequences of infection. The foot-and-mouth

disease outbreak in 2001 in the UK (Scudamore and Harris, 2002)

can be considered as a classic example of both an epidemic and an

emerging disease of concern for northern Europe, while in many

parts of the world, such as sub-saharan Africa, foot-and-mouth dis-

ease is endemic (Bronsvoort et al., 2004).

1.2 the implementation of surveillance systems

Disease surveillance can be defined as the systematic collection,

analysis and dissemination of disease information with the aim of

informing action towards the management of the disease (CDC,

2001). It can thus refer to any kind of data collection; covering an

entire population or just a representative sample, aggregated or

individual-based information, the registration of laboratory-confirmed

cases or monitoring high concentrations of pathogens that are likely

to cause disease. Given the above definition, it is crucial that col-

lected data are used to inform a suitable course of action with re-

gards to a particular disease or group of diseases.

The purpose of disease surveillance may differ depending on the

epidemiological pattern of the pathogen of interest. For endemic
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pathogens, the role of disease surveillance is to keep track of the

trend (for example changing incidence due to climate change), to

understand the burden of disease (Kosek et al., 2003; Parashar et

al., 2003), the epidemiology of the pathogen (Ali et al., 2002), and

to evaluate the effectiveness of any implemented control measures.

Infections might be underreported, which does not affect trend es-

timates as long as the proportion of cases being reported remains

stable, but can cause problems for comparisons over time, between

regions or between different surveillance systems. For epidemic dis-

eases, the role of disease surveillance is to catch an outbreak as early

as possible (Chan et al., 2010), provide information from which to

act to to limit its spread (Zhang et al., 2013), and help in the process

of understanding the likely cause of the outbreak (Communications,

2006) . It is usually (at least in the western world) the case that there

are existing surveillance systems and routines for reporting cases

and tracking the incidence curves. However, those surveillance sys-

tems might well have substantial reporting delay, which can limit

their usefulness for rapid response. Depending on the disease, it

is more or less likely that surveillance systems will fail to detect

cases; some, like measles, have clear and relatively severe symptoms,

while others such as chickenpox will probably not go unnoticed but

might go unreported as they usually have mild symptoms. For truly

emerging diseases i.e. those that have not been experienced previ-

ously anywhere, we know know almost nothing initially; there has

been no opportunity for extensive study, and while it is possible to

use disease models to predict behaviour uncertainty in any predic-

tions is large. In this scenario, the role of disease surveillance is first

to detect the initial incursion, and second to track development as

the disease spreads (or not) in the community (Chan et al., 2010).

Both of these are crucial in informing decisions as to what measures

are appropriate, enabling an effective response to be mounted.
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Figure 1.1: Generic structure of a disease surveillance system, showing the var-

ious tasks, stakeholder, and flows of information that needs to come

together in a functioning surveillance system, whether based on diag-

nosed cases or registration of syndromic indicators. Figure reproduced

from Triple S Consortium (2013) .
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However, no matter the objective, all surveillance systems are com-

posed of several different tasks linked together. Figure 1.1 highlights

the task flow that needs to be successfully implemented to form a

functioning surveillance system, using the surveillance of wildlife

disease as an example. This starts with the occurrence of a case, fol-

lows through to the case being recorded, and then being (correctly!)

communicated to statisticians and epidemiologists. Thus, the num-

ber of different people and organizations that are involved in pro-

ducing disease information is large and susceptible to miscommuni-

cations and errors. While the idea of taking note of infected individ-

uals can be traced back to the 1300s, the resources for coordinating

systematic population-level registration of deaths and cases of ill-

ness only became available in the 19th century; in the UK, the first

disease registry was introduced in 1838 by William Farr (Langmuir,

1976). The concept of surveillance as it is known today, in which the

informing of action is a critical aspect, was only set out in 1968 by

the WHO technical assembly (Declich and Carter, 1994). Computeri-

zation and automation has made the implementation of surveillance

systems easier and faster, but setting up large-scale surveillance pro-

grams is still a challenge requiring substantial expertise and capital

(CDC, 2001).

While it is easy to assume that data collection is a simple and pain-

less process, in reality it is one of the major hurdles within surveil-

lance, and worth describing in more detail. Starting from the occur-

rence of infection, a chain of events need to occur before a diagno-

sis is recorded in the database. First, the individual needs to either

show symptoms that are severe enough to be noticed, or be sampled

at random as part of a screening program. For many pathogens,

a substantial number of infected hosts exhibit mild or subclinical

symptoms, and are therefore not captured by passive surveillance.

Subclinical infections, while of limited consequence for the individ-
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Figure 1.2: Flowchart of the process from infection of a wild animal to the regis-

tration of a case in a database. After personal communication with

D. Gavier-Widen, Head of Pathology, Swedish National Veterinary

Institute.
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ual, can be crucial for understanding the pattern of spread and the

epidemiology of disease. Figure 1.2 show a schematic of the vari-

ous phases that a wildlife infection goes through from occurrence

up until the infection is registered in a database (D. Xavier-Widen,

personal communication).

After a case has been recorded, the doctor or veterinarian needs to

go through the effort of establishing a diagnosis, often by taking

samples that are sent for testing at a regional biomedical veterinary

or health care laboratory. Depending on available resources, includ-

ing time and interest of the veterinarian or doctor, this might only

happen for particularly unusual or severe cases. Once a sample is

analysed, the diagnostic laboratory procedures used need to be sen-

sitive enough to correctly establish the diagnosis. Depending on the

pathogen, this can be more or less difficult, and choosing the opti-

mal test would usually require that the referring doctor or veterinar-

ian has a suspicion of which pathogen to look for. Some pathogens

are predominantly present in a particular part of the body; as an

example, Bovine TB in cattle is only present in localized encapsu-

lated lesion, and the bacterium is unlikely to be found in other tis-

sue samples (OIE, 2009). Such pathogens would thus require sam-

ples to be taken from the correct tissues in order for the presence

of the pathogen to be detected. For wildlife diseases in particular,

where animals are received without knowledge of their clinical his-

tory, it is often a substantial detective effort to identify the correct

causative agent(s), and there is little doubt that a lot of infections go

undetected (Mörner et al., 2002).

The net effect of this chain of events is to create a pyramid of cases

(see figure 1.3, reproduced from Gibbons et al. (2014)). This can

lead to the “iceberg” phenomenon of disease (Last, 1963). For many

pathogens, only the very tip of the iceberg is detected and reported,

the cases that are most severe and/or noticeable. For some pathogens,
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Figure 1.3: The set of all cases of a particular disease, and the various levels of

registration of those cases. UE stands for the overall extent of Under

Estimation of cases which arise from Under Reporting of cases UR,

and Under Ascertained cases UA. Ignoring the non-reported cases

will lead to an underestimation of the disease incidence, if the disease

suffer non-neglible levels of UR and UA cases. Reproduced from Gib-

bons et al. (2014) .

seroepidemiology has indicated that the majority of cases go unde-

tected; two examples are Salmonella (Simonsen et al., 2011) and Per-

tussis (Boven et al., 2004). These are pathogens for which infection is

often asymptomatic or causing subclinical disease, leading to large

number of undetected cases. In fact, for a number of pathogens, it

was not possible to detect most infections before the advent of sen-

sitive PCR-based diagnostics (Watzinger et al., 2006) and advanced

antibody arrays (Uttamchandani et al., 2009).

In order to track cases from the lower levels of the pyramid, one can

broaden the inclusion criteria, at the risk of including false positive

cases. Another option is to target the lower levels via wider (longitu-

dinal or cross-sectional) screening programs that target either some

of the lower levels of the pyramid or the entire population (Gib-

bons et al., 2014). One of the hurdles to ongoing population level

screening is that it can be expensive, and thus particularly difficult

to implement, in particular in settings with limited resources, such
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as pathogen surveillance in developing countries. Occasional cross-

sectional studies are cheaper to implement than continuous surveil-

lance, but reliance on these limits the ability to track disease trends.

Infectious diseases were seen as a solved problem during the lat-

ter part of the 20th century (Fauci, 2001), with the result that dis-

ease surveillance started lagging behind. The AIDS epidemic that

began in the 1980s caused an increased awareness of the continu-

ing risk posed by infectious diseases, but as late as 1994, Berkelman

et al. (1994) referred to infectious disease surveillance as a “crum-

bling foundation”. The capacity for infectious disease surveillance

in general has improved greatly since then. With the advent of mod-

ern diagnostic measures such as those made possible by the PCR

revolution (Yang and Rothman, 2004) the ability to rapidly identify

pathogens has increased, and the effort of organizations such as the

European Centre for Disease Control (ECDC) and the World Organ-

isation for Animal Health (OIE) to standardize, unify and improve

disease surveillance databases has improved our ability to compare

pathogen occurrence and prevalence between different locations and

countries. The development of the internet has also been a great

help, with surveillance networks such as the ProMed mailing list

(Madoff, 2004) and HealthMap (Freifeld et al., 2008) making even

early warning signals of disease events available globally. However,

the quality of disease surveillance is uneven across different nations,

and in different contexts (The Institute of Medicine, 2007). Jones

et al. (2008) analysed which areas of the world new pathogens are

likely to emerge in, and compared that with how much research has

been focused on the same areas. They concluded that the research

and surveillance to a large extent are biased towards “the richer, de-

veloped countries of Europe, North America, Australia and some

parts of Asia, than in developing regions”. On the other hand, their

analysis indicated that lower-latitude developing countries have the
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highest risk for emerging infectious disease events (EID). One im-

plication of their study is that improving surveillance systems in

highly resource-constrained countries would have a high pay-off

for improving the ability of the global community to detect and re-

spond to EID.

Wildlife disease surveillance is another area that has often been ne-

glected, despite the growing awareness of the interdependence of

diseases in livestock, humans, and wildlife, and thus the mutual

importance of surveillance in all three types of hosts (Zinsstag et

al., 2011). However, since wildlife disease research is constrained in

funding (as few strong economical interests are directly affected),

and is technically challenging (Mörner et al., 2002), improving the

current state of surveillance systems has been difficult. Kuiken and

Gortázar (2011) describes the state of wildlife surveillance across

Europe, and concludes that a majority of countries have no gen-

eral surveillance established beyond targeted efforts for a few key

pathogens. In developing countries, surveillance systems for human

diseases are often severely lacking, and animal disease surveillance

has been referred to as “nonexistent” (Butler, 2006).

1.3 the use of diagnostics in disease surveillance

A veterinarian or medical doctor can use symptoms to diagnose dis-

ease in a patient. However, in order to confidently establish that the

disease is caused by a particular pathogen, rigorous and tested di-

agnostics procedures based on chemical or other assays are almost

always necessary. The suggestion that infectious diseases might be

caused by unseen organisms dates back to the 16th century, but only

gained widespread acceptance in the 19th. A particularly important

development was made by the german physician Robert Koch in

1890. Koch’s postulates (Kaufmann and Schaible, 2005) set out cri-
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teria for concluding that a microorganism is the cause of a partic-

ular disease. In the original form, the postulates were: A disease

is caused by a pathogen 1) if and only if it is present in a diseased

host, and absent in non-diseased hosts; 2) The microorganism can be

be isolated from an individual diagnosed with the disease, purified

and grown; 3) After isolating the microorganism, introducing it into

a healthy host causes the disease; and 4) from the experimentally in-

fected host, the microorganism can be isolated again, and identified

to be the same as the introduced organism. These postulates worked

to put the identification of organisms that cause a particular disease

on solid footing.

With respect to surveillance, the properties of a binary diagnostic

test for a particular pathogen can be summarised by the sensitivity

and the specificity of the test. The sensitivity refers to the probabil-

ity of getting a positive result from an individual infected with the

pathogen, while the specificity refers to the probability of getting a

negative result from an individual not infected with the pathogen

(the specificity). The terms of “Specificity” and “Sensitivity” were

first used in the context of a screening program for cervical cancer

(which we know now to largely be the consequence of an infectious

pathogen) in the 1940s as described in a publication of the CDC in

1961 (Morabia and Zhang, 2004).

Following Koch, microbial culture is commonly used as the gold

standard for diagnosis for infectious diseases (OIE, 2013), and treated

as being 100% specific, with no false positive results. A sample of tis-

sue or fluid is taken from the potential case, purified of substances

that may inhibit growth, and a culture of organisms is grown that

can be identified as a particular pathogen, via observation in mi-

croscope or some other approach through which it is possible to

identify features unique to that pathogen. This method will nearly

always (except in cases of sample contamination) be 100% specific,
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i.e. not show any false positives. However, growing a culture takes

time and is therefore resource intensive. Depending on the pathogen,

it might also be difficult due to biosecurity issues: only laborato-

ries with biosecurity classification level four are allowed to culture

highly pathogenic organisms such as Ebola or foot-and-mouth dis-

ease (US Department of Health and Human Services, 1999). For

other pathogens, it might be difficult to create the right conditions

of growth outside the host. For example, Mycobacterium spp. is no-

toriously difficult to culture, and if culture is successful, for taking

several weeks to grow before being identifiable (OIE, 2014). Viruses

and prions are even more challenging, requiring carefully prepared

environments with the correct cells and proteins present to replicate.

While culture is still used as a gold standard in studies of proper-

ties of new diagnostic methods, it is increasingly rare to use it as a

diagnostic tool in itself, for the above mentioned reasons.

Another method of diagnosis relies on the existence of genetic mate-

rial such as DNA or RNA from the pathogen in the test sample, as

a proxy for the presence in the sample of the pathogen itself. This

was made possible with the development of the polymerase chain

reaction (PCR) procedure in 1985 (Mullis et al., 1986). A small length

of a genetic sequence unique to the pathogen is used as a “primer”

to amplify any genetic material containing that primer to the point

where its presence can be easily detected. If amplified material is

then found, that is evidence for a diagnosis. A particular “primer”

tends to be unique to a particular pathogen; however, it is possible

to use a combination of primers to be able to detect and identify a

range of different pathogens simultaneously, including the identi-

fication of pathogen families, species, sub-species, or types. DNA-

and RNA-based methods tend to be highly sensitive, able to de-

tect concentrations of only a few tens or hundreds of organisms

per sample. Because of their sensitivity, however, they also tend to
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be prone to false positive results, and can easily suffer from cross-

contamination or cross-reactions with genetic material from non-

pathogen sources, resulting in low specificity.

A third approach to diagnosis is to look for effects of the pathogen

in the host (e.g. a detectable signature of the host responding to the

presence of the pathogen). At its core, this is exactly what medical

doctors do when diagnosing a patient in the traditional manner

based on a collection of symptoms indicative of a particular dis-

ease. . Whilst such symptoms based diagnosis at times has rather

low specificity i.e. several diseases may have similar symptoms, the

laboratory methods exploit the fact that the immune system of ani-

mals and humans respond to infections in specific and predictable

ways, generating antibodies that target a particular pathogen. These

antibodies can be isolated from e.g. a blood sample, and their ex-

istence detected by mixing the test sample with a preparation of

organic material derived from the pathogen that has been marked

for easy identification with e.g a fluorescent protein. If there are an-

tibodies in the sample that react with the organic preparation, this

can then be measured, for example via enzyme-linked immunosor-

bent assay (ELISA) (Wright et al., 1993). The existence of antibodies

are then taken as evidence for the individual having been infected

with the pathogen. However, since antibodies are not 100% specific,

there is usually a threshold concentration that the sample must dis-

play for the diagnosis to be reliable. A further complicating matter is

that there are several types of immune response that can be used as

a basis for a test. Some immune responses are specific to a particular

disease, while other immune responses (such as interferon-γ) can re-

act to a wide range of different infections. Some components of the

immune response, such as memory cells, remain in the body for a

long time, while others can subside quickly.
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The different approaches of diagnosis measure different aspects of

the host-pathogen interaction during the progression from initial

pathogen infection via subsequent host response to recovery. Be-

cause of this, they will show a case as positive under somewhat dif-

ferent conditions (Greiner and I. A. Gardner, 2000a). For a culture

approach to be feasible, there must still be live pathogens present

in the host, and thus a positive test is evidence of an ongoing infec-

tion. A genetics-based approach will be positive if DNA or RNA is

present; this mean that the pathogen could potentially have died

out, but dead organisms still remain in the body. A positive DNA or

RNA-based test is thus evidence of a recent infection, but not neces-

sarily one that is ongoing (the genetic remains can be present in the

body despite the infection having cleared). The presence of an im-

mune response indicates that the host has responded to an infection

at some point in the past. Some antibodies disappear quickly, and

so their presence indicates a recent infection. Other types of antibod-

ies can stay for weeks, months or years before their levels decline,

and so their presence would only indicate that the individual has

been infected at some point in the past. An additional complication

is that individuals can develop antibodies just by being exposed to

a pathogen, without developing an active infection. Using a positive

antibody test to indicate infection thus usually implies a broader

case definition than that based on using a culture test.

Knowing the details of what is being measured is thus important

for understanding exactly what any given test data represents, and

also for resolving possibly conflicting results between different tests.

Classically, a test result is reported as a binary positive/negative for

infection. More recent methods base such classifications on quan-

titative measurements of the indicator; concentration of antibodies

(Uttamchandani et al., 2009), number of copies of a particular gene

found (Caboche et al., 2014), or concentration of bacteria in a media
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(Hammes and Egli, 2010). In such cases if the test result is above a

certain cut-off value, it is classified as positive, but otherwise as neg-

ative.

However, quantitative results can also be analysed directly, in which

case the statistical properties of the measurement becomes impor-

tant. For example, many diagnostic methods use repeated dilutions

to bring concentrations into a range that can be measured, and then

the result is scaled by the dilution factor. If there is a constant error

in measuring the concentrations, the scaling will then introduce a

multiplicative error in the resulting data set. Such dilutions also fre-

quently mean that observations are clumped at different multiples

of the same number (2,4,8,. . . ), which can lead to under dispersion

which should be accounted for in any statistical analysis of the data.

The steps of the laboratory workflow can each introduce errors of

different sorts, which need to be taken into account in subsequent

statistical analysis (Greiner and I. A. Gardner, 2000b).

The use of the results of diagnostic testing can be approached from

at least two different viewpoints. From the clinician’s point of view,

a diagnostic test is a tool supporting decision-making and helps in

identifying appropriate treatment for the patient at the point of care.

From this clinical perspective, information on when to administer

treatment and when to abstain are the most important functions of

diagnostic testing, and this includes understanding the limitations

and strength of the available tests.

In order for a diagnostic test to be useful as a decision-support tool,

a clear result indicating the likely status of the individual is clearly

of great value: a message of “infected” or “not infected”, with a

known level of uncertainty. However, from a statistical or epidemi-

ological as opposed to clinical prospective, the interest lies in the

overall pattern of disease in the population. From these perspectives,

we have the luxury of not having to worry about what the test result
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is for any particular individual. Understanding these two differing

perspectives becomes important for the discussion of quantitative

test results instead of binary results, and the use of more than one

diagnostic test. For the clinician, a quantitative test response has lit-

tle value unless it can be translated to inform a particular course of

action, for instance by the use of a binary cutoff point. Likewise, in

most cases, the use of multiple diagnostic tests is only of relevance

to the extent that it can be used to pin down the appropriate diagno-

sis.

From a population perspective however, the overall distribution of

the quantitative test results within the population can be of use for

estimating test variability as well as variation in exposure and sever-

ity/response to pathogen infection between individuals. Multiple di-

agnostic tests, while providing limited additional information on the

individual level, can be used in the aggregate to provide a descrip-

tion of the how the pathogen is spreading, a problem we address in

this thesis (chapters 3 and 4). The increasing awareness of the high

proportion of subclinical infections that play an important role in

the epidemiology for a number of pathogens also complicates the

usage of a binary “infected”/“non-infected” dichotomy. The collec-

tion of test results pre-cutoff can thus be invaluable to statisticians

and epidemiologists, while being perceived as unnecessary by those

closer to the point of care e.g clinicians, and it is important to be

aware of this tension when conducting studies or setting up surveil-

lance systems, so that both perspectives are acknowledged.

1.4 the use of statistical methods in disease surveillance

This section will not attempt a review of all types of statistical analy-

sis used in the process of disease surveillance; there is far too much

to cover in just a few paragraphs. Instead, it will describe a few ex-
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amples of how statistical analysis can be used to extract important

signals from limit surveillance data that can then be used to inform

decisions on how to manage a particular disease.

At the most fundamental level, statistical analysis can be used to

highlight patterns in collected data. In 1854, the physician John Snow

identified the source of a Cholera outbreak by mapping the cases

and noticing that there was a cluster of cases around a particular

street pump, a study widely considered to mark the start of epi-

demiology (Hempel, 2013). Such cluster analysis has remained an

important research topic to this day. One of the most well-known

modern statistical tools for cluster analysis is the Kulldorf scan statis-

tic (Kulldorff, 1997), implemented in the SatScan program (Kull-

dorff et al., 1998), among other statistical software packages. Cluster

detection can look for either clusters in spatial dimensions with a

number of cases occurring in one area, clusters in temporal dimen-

sions where a number of cases occur within a short space of time

but not necessarily in the same place or clusters in both space and

time. Cluster analysis can also be based on metrics other than space

and time, e.g. age, to detect unusual aspects of data. Another promi-

nent type of pattern detection is to understand when reported cases

of some disease reaches an “unusual” level, due to an outbreak or

because of some other change in epidemiology, that might require a

public health intervention. One important approach for doing so is

known as a temporal scan statistic, first introduced in Farrington et

al. (1996), which described the Farrington Algorithm. This algorithm

continuously evaluates an incoming time series for statistically sig-

nificant changes, sounding an alarm if the cumulative change over a

specified time period reaches a significance threshold, according to

some statistic; many different statistics have been suggested for this

broad purpose (Unkel et al., 2012).
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Statistical analysis can also be used to extract trends from indirect

data sources. One example is the recent increasing usage of syn-

dromic surveillance. The main motivation for syndromic surveil-

lance is that there is a delay between infection and symptoms, and

between symptoms and health-care-seeking behavior (in humans),

symptoms severe enough to be noticed by a farmer or veterinar-

ian(in livestock) or to cause death and the resulting carcass to be

noticed by hunters or the general public (in wildlife). However, a

symptomatic individual has an effect on its surroundings or habitat,

and this effect can be tracked. Since symptoms occur before an in-

fection is diagnosed, syndromic surveillance has the potential to in-

crease the timeliness, sensitivity and robustnesss of existing systems

(Buehler et al., 2003; Dórea et al., 2011). Hulth et al. (2009) devel-

oped a statistical model using partial least squares regression to pre-

dict officially reported influenza case numbers from web searches

submitted to a medical web site. Google Flu Trends also predicts in-

fluenza levels, using a simple statistical regression model combined

with model selection procedures and using google search queries as

their data source (Ginsberg et al., 2009). Syndromic surveillance can

be used for animals as well; Warns-Petit et al. (2010) describe the use

of data mining to categorize recorded necropsy data pre-diagnosis

in wild animals, identifying clusters that could signify wildlife dis-

ease outbreaks of re-emerging or emerging pathogens.

An increasing use of statistical analysis is to integrate different sources

of information together with the surveillance data to make infer-

ence about the epidemiology of disease. For example, in the case

of a disease outbreak, it is possible to combine data analysis with

models of the epidemic process to, for example, predict the timing

of the peak based on the present rate of change, estimate the du-

ration of the outbreak, or the scale of the impact (Andersson et al.,

2008). Epidemic models informed by statistical analysis were heav-
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ily used during the 2001 foot-and-mouth disease outbreak in Britain

(Kao, 2002), and again during the 2007 bluetongue disease outbreak

(Szmaragd et al., 2009) to inform the decisions on suitable control

policies. Another approach is to combine information on diagnos-

tic test behaviour with data analysis to estimate historic patterns

of disease. For example, Giorgi et al. estimated the time of the start

of an HIV outbreak under assumptions of exponential growth of

viral load (Giorgi et al., 2010). Others have exploited information

on diagnostic test kinetics, i.e., the pattern of diagnostic test values

during the course of infection, to estimate average incidence rates.

Examples include the use of antibody test kinetics to estimate sero-

incidence rates forinfluenza (Baguelin et al., 2011), Salmonella in cat-

tle (Nielsen et al., 2011) and Salmonella in humans (Simonsen et al.,

2008). Interestingly enough, because of the delay in surveillance sys-

tems, it may sometimes be necessary to estimate what is happen-

ing “now”. Höhle and An der Heiden (2014) describes a Bayesian

model for “nowcasting” current levels of disease, based on the num-

ber of currently reported cases and the expected number of delayed

reports that will arrive in the coming weeks, and demonstrates its

use in the case of a large 2011 outbreak of Shiga toxin-producing E.

coli 0104 in Germany.

1.5 foundations for the statistical methods used in the

thesis

The following sections give a general overview of the statistical foun-

dations underlying the methods developed in the thesis, introducing

the core terminology and describes some of the specific assumptions

and approaches used.
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1.5.1 A brief introduction to Bayesian Statistics

This thesis adopts a Bayesian approach to the analysis of diagnos-

tic test data, instead of a classical, frequentist approach. The differ-

ence is partly in philosophy, but mostly show up as a difference

in how results are reported and which tools tend to be used. In a

Bayesian framework, probability distributions are encodings of our

knowledge of the world. The Bayesian methodology described be-

low provides a means to update these distributions when new in-

formation is available, and thus the Bayesian approach provides a

natural framework for the integration of data. Quantities that we

are interested in can be viewed as having probability distributions

that encode our original knowledge about them, with a modal value

representing the “best guess” for the true value, and the spread of

the distribution describing our uncertainty of that guess. Assume

that there are two quantities: A, which represents something you

want to know, and B, which represents a quantity that you have

some knowledge of e.g. via measurement or observation. As an ex-

ample, consider a person named Ainsley, with an unknown gender

but with the known height of 157cm. Then A would represent the

gender of Ainsley, and B would represent the height.

There are three important types of probability distributions in Bayesian

statistical analysis: prior distributions, posterior distributions, and

likelihoods. A prior distribution P(A) represents our knowledge

about A before (or prior to) observing some (new) data B. In the ex-

ample of Ainsley, it would be our best guess of the gender before

learning about the height. For example, in the wikipedia page on

the name “Ainsley”, there are links to 5 male and 3 female people.

Taking this information as our prior gives a binomial distribution

Bin(5/8, 3/8) for the outcomes (male,female).
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A posterior distribution P(A|B) represents the state of our knowl-

edge incorporating the data B. The notation P(x|y) refers to the

probability of x conditional on the value of y. In the case of our ex-

ample, the posterior distribution P(A|B) would refer to our knowl-

edge of Ainsley’s gender given that we know the height of 157cm.

A likelihood P(B|A), finally, describes the probability of observing

the data B given a particular value for A. It is often treated as a func-

tion L(x) of the possible values x of A, so that L(x) := P(B|A = x).

In our example, P(B|A) would refer to the probability of the height

being 157cm given that Ainsley was male/female, respectively. The

likelihood is typically based on a set of assumptions underlying our

model of the process of interest and describes how the data is gener-

ated.

The prior, the posterior, and the likelihood can be related to each

other via Bayes’ theorem:

P(A|B) = P(A)P(B|A)

P(B)

This equation can be interpreted as saying that what is known about

some object A given that we make some observation B is encoded

in the probability P(A|B), and that this can be expressed by multi-

plying the prior with the likelihood P(B|A) divided by the proba-

bility P(B). The probability P(B) is often called the normalization

constant for the posterior distribution P(A|B) and is the probability

of observing the data B under the assumptions underlying the like-

lihood irrespective of the value of A. In intuitive terms, Bayes’ the-

orem thus tells us how, under model assumptions encoded by the

likelihood, to modify our prior state of knowledge about the world

by how surprising (i.e how unlikely) newly observed data is.

It should be noted that the normalization constant P(B), the uncon-

ditional probability distribution of the data, is rarely known. The

posterior probability is therefore usually calculated as P(A|B) ∝

P(B|A)P(A). Since for most applications, only the relative probabil-
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ity of different values of A are of interest (and in particular, finding

the values of A with the highest posterior probability), this is rarely

an issue in practice (e.g. see the section on Markov chain Monte

Carlo below).

Bayesian inference make use of Bayes’ theorem in the following way.

Assume that there there is some data that is believed to be relevant

to a quantity of interest. Set up a statistical model describing how

the data is expected to be distributed depending on the various pa-

rameters that might might affect the observed data. Then calculate

the likelihood (as defined in the previous section) of the observed

data under the statistical model. Assign a prior distribution for all

parameters representing our state of knowledge about them before

conducting the statistical analysis. Finally, calculate the posterior dis-

tribution from the product of the likelihood and the prior distribu-

tion. This posterior distribution can also be interpreted as the prior

distribution shifted in the direction of the data likelihood.

From the Bayesian perspective, the full posterior is of interest and

the posterior distribution is what tends to be reported, possibly

summarised, rather than point estimates of parameter values. An

Analytical solution of the posterior distribution is only possible in

fringe cases, and numerical algorithms are the only way to conduct

Bayesian inference in practice. For this reason the application of

Bayesian statistical analysis has expanded greatly with the advent

of cheap widely available computing resources.

1.5.2 Markov chain Monte Carlo

The posterior distribution is usually described with a complex mul-

tidimensional integral that is not solvable analytically, and so needs

to be approximated numerically. Many different algorithms have

therefore been developed that implement Bayesian inference by pro-
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viding approximate posterior distributions. The most common class

of algorithms, and the kind used in this thesis, are Markov chain

Monte Carlo (MCMC) type algorithms (Robert and Casella, 2011).

In very general terms, MCMC algorithms work by selecting an ini-

tial point in the parameter space, and then jumping from point to

point by calculating the value of the density at the current point

(up to a normalizing constant, e.g. P(B) in the example above), and

then calculating the density at a second point drawn from a pro-

posal distribution. The algorithm decides to move to the second

point or stay with the current point by taking into account proper-

ties of the proposal distribution and the relative value of the density

at the proposed second point compared to the current one. In this

way, the algorithm generates a sequence of samples from the pos-

terior, where each sampling point is only dependent on the preced-

ing sampling point. The type of conditional dependence that this

process exhibits is known as “Markov property”, and sequence of

samples having the Markov property is known as a Markov chain.

Because we are generating the sequence at random, the whole proce-

dure is thus known as Markov chain Monte Carlo(MCMC); MCMC

was preceded by so called Monte Carlo algorithms that propose in-

dependent samples from the distribution of interest but are typi-

cally much less efficient. It can be proven that by carefully specify-

ing the conditional jump probability, the distribution of the samples

of the MCMC converge to the posterior distribution of interest (As-

mussen and Glynn, 2011). There are many different implementa-

tions of MCMC , but the two oldest and most widely used are the

Metropolis-Hastings algorithm and Gibbs sampling.

The Metropolis algorithm was published in a seminal paper by Metropo-

lis et al. (1953). Using the Metropolis algorithm, sequential samples

are generated as follows: Assume a starting point Xt and an expres-

sion for the posterior density p(x) = p(A = x|B) ∝ p(B|A =
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x)p(A = x). Jump from Xt = xi to a new point xj randomly selected

in in the parameter space using an arbitrary transition probability

distribution T(x|Xt) that depends on the current point, and is sym-

metric so that T(xi|xj) = T(xj|xi). Compare the posterior density Xi

and Xj, and if the value at Xj is larger than that at Xi, set Xt+1 = Xi.

However, if p(Xj) ≤ p(Xi), then calculate the ratio α = p(Xj)/p(Xi),

and set Xt+1 = Xj as the next value of the chain with probability α.

If Xj is rejected, then set Xt+1 = Xi. Once a value for Xt+1 has been

chosen, set Xt+1 as the new point, and repeat the process. Metropo-

lis et al. proved in their paper that the distribution of samples gener-

ated in this way will converge to the distribution defined by p(). In

the Metropolis algorithm, the transition kernel T(x|Xt) is arbitrary

but must be symmetric, so that T(Xi|Xj) = T(Xj|Xi). A generaliza-

tion known as the Metropolis-Hastings (MH) algorithm that relaxes

this symmetry requirement was later described in a paper by Hast-

ings (1970), and it is this form that is most commonly implemented.

Gibbs sampling can be seen as a special case of the Metropolis al-

gorithm, introduced in Geman and Geman (1984), that can be used

if it is possible to sample from the conditional posterior distribu-

tion for each variable (holding the others fixed) but not necessarily

from the full joint posterior distribution. Assume a posterior den-

sity p() and a starting point in the parameter space Xt, with com-

ponents Xt = (x0, x1, . . . , xn). Fix all but the first component of Xt,

and generate a new value x′0 by sampling from the conditional pos-

terior distribution p(x|x1, x2, x3, . . . , xn). Then sample a new value

x′1 from p(x|x′0, x2, x3, . . . , xn), conditioning on the newly sampled

value x′0. Repeat the process for each component until a new vector

Xt+1 = (x0, x1, x2, x3, . . . , xn) has been generated. Repeat the process

from the beginning starting at Xt+1.

The use of MCMC algorithms is a computationally expensive pro-

cess, but the realisation of Moore’s law, other developments in CPU
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design, and improved design of proposal distribution such as Hamil-

tonian MCMC (Hanson, 2001) have made more and more problems

tractable using MCMC methods. The MCMC algorithm can itself

be implemented using different approaches. It is possible to code it

explicitly using a programming language of your choice, such as R,

C++ or Python. Alternatively, there are a number of computational

packages that have implemented an engine for the translation of sta-

tistical models to program code running an MCMC algorithm, al-

lowing the user to focus on encoding their model using the engine

syntax.

1.5.3 MCMC engines

One of the earliest implemented engines for MCMC was the BUGS

project, which was started in 1989, and popularized with the cre-

ation of the Windows software WinBUGS (Lunn et al., 2009). BUGS

is a declarative language for describing statistical models as Directed

Acyclical Graphs (DAGs) (Thomas et al., 1994). These are graphs

where each statistical component is a node. Edges between a pair

of nodes represent their conditional dependence. Hierarchical sta-

tistical models are well suited to a description in terms of DAGs,

and so with the increasing prominence of hierarchical modelling

(Steenbergen and Jones, 2002), BUGS and WinBUGS gained in pop-

ularity (though it may be that with the advent of WinBUGS, hierar-

chical modelling became easier and thus more popular). One down-

side of this approach, however, is that there is no concept of “order”

in a BUGS program file, and thus only limited possibilities to im-

plement if-then type statements. An alternative open source imple-

mentation of the BUGS language is JAGS (Just Another Gibbs Sam-

pler) by Plummer (2003), and after ongoing development of Win-

BUGS ceased, JAGS has become one of the dominant programs with
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which Bayesian inference is implemented. Like BUGS, it is based on

a declarative language describing DAGS, and as a result the kinds of

models that are possible to implement are somewhat restricted.

A relatively recent development is STAN (Hoffman and Gelman,

2014), a probabilistic programming language with more sophisti-

cated MCMC algorithm known as a “No-U-turn Hamiltonian MCMC”.

By adjusting the size of sampling steps based on information on the

gradient of the posterior, STAN can be more more efficient and in

general take fewer iterations to reach convergence, though each it-

eration requires more computations. For a wide range of models,

this translates into STAN implementations of a given Bayesian in-

ference problem being faster in terms of reaching a given effective

sample size compared with corresponding implementations in JAGS

or WinBUGS. As opposed to JAGS or WinBUGS, the language is not

based on DAGS; the program code is interpreted sequentially and

is therefore more expressive. As a side effect, the sequential nature

combined with a requirement to declare the type of variable upon

definition (continuous, integer, etc) makes for substantially easier

debugging of code.

The different engines described have different strengths and weak-

nesses. Coding your own model has the advantages of allowing

you to incorporate problem-specific information and shortcuts, and

that it can result in faster inference, especially when coding is car-

ried out using a lower-level language. A disadvantage is that the

coding itself can take considerable time, and that the resulting pro-

gram is more prone to bugs than using one of the higher-level lan-

guages that already has an MCMC engine implemented. WinBUGS

has been around for a long time, and there are a wide variety of ex-

amples and models implemented to take inspiration from. JAGS is

faster than WinBUGS, is portable across computing platforms, does

not rely on a DOS-based software, and is still being developed and
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improved. On the downside, Dr. Martyn Plummer is the sole devel-

oper, which means that bug fixes and improvements can take time.

STAN is faster, more expressive, easier to debug, and under very

active development by a four-person team. However, at the time of

this writing, there are some models that cannot be implemented,

and there are not a large numbers of previous examples for how

STAN can be used.

In this thesis, all the described models were implemented in JAGS,

with the exception of chapter 4, which made use of STAN.

1.5.4 Evaluation of convergence

Running an MCMC algorithm results in a series of sequentially cor-

related draws of parameter values. The proofs of convergence of

MCMC state that in the limit, i.e. after “enough” number of sequen-

tial parameter values have been drawn, the distribution of param-

eter values corresponds to the posterior distribution of interest. In

order to evaluate if “enough” draws have been made, one needs to

evaluate whether the MCMC procedure has reached a steady state.

To do so in a strict formal manner is only possible in some simple

analytically tractable special cases, but for the remainder of models

there are a number of heuristics that can be used for this purpose.

Summary statistics have been proposed that measure the amount of

convergence. The Gelman-Rubin statistic (Brooks and Gelman, 1998)

measures the within-chain variance of several (usually parallel) runs

of the same MCMC algorithm, with initial values in different parts

of the parameter space, and compares this to the overall variance

of all chains taken as a whole. If the ratio of the overall variance to

the within-chain variance is less than 1.15 (the original paper rec-

ommended 1.2 as a rough criteria for convergence), this is taken as

evidence that the different chains are sampling from the same distri-
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bution, and thus have converged. The GR statistics relies on the exis-

tence of several different chains, and that the different chains initial

values were chosen from sufficiently different parts of the parame-

ter space that their starting between-variance is high. In this thesis,

Initial starting values for the parameters in the various MCMC anal-

yses conducted were chosen at random, either sampled from the

prior distributions, or by selecting a central region of the support

and sampling uniformly for this region. In either case, initial values

independently sampled for each chain.

Another heuristic includes looking at autocorrelation plots for dif-

ferent parameters, as too high an autocorrelation indicates that the

chain is still shifting towards the true value. A high autocorrelation

can also indicate bad “mixing”, where the chains have converged

to the true posterior, but where the correlation between individual

draws is so high that you need to generate a large number of draws

to produce an unbiased estimate representative of the full poste-

rior distribution. In addition to any quantitative evaluations, it is

also essential to visualise the draws directly; obvious patterns over

time tend to indicate non-convergence, and other problems such as

parameters being correlated with each other also tend to show up

when plotting.

For the results presented in this thesis, the Gelman-Rubin statistics

has been used for the initial judgement of convergence and all par-

allel chains have GR values under the accepted threshold of 1.15. As

a rule of thumb, five chains have been run in parallel to provide suf-

ficient data on between-chain variability. After a draw passes this

value, additional inspection of trace plots and autocorrelation plots

have been used to further ensure that the estimated posterior is not

misleading.
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1.5.5 On the selection of priors

The choice of priors is a contentious one in the field of Bayesian sta-

tistical analysis, with many different schools, and the approach used

in this thesis has evolved over the course of the years of work. As

a general summary, there are three main categories of priors: infor-

mative priors, uninformative priors, and weakly informative priors

(Robert (2007), p 105ff).

Informative priors explicitly try to incorporate previous information

in a parametric form. This information might be results from previ-

ous studies or solicited from experts. This is a classic approach to

Bayesian statistical analysis, as it is strongly influenced by the view

that probability distributions should describe our state of knowl-

edge of the world. In the work for this thesis, informative priors

were used in the development phase of the hindcasting model for

the variance of test diagnostics. At a later stage, these priors were

changed to the uninformative kind. The hindcasting method is thus

robust to the choice of prior, and the data used was informative

enough to identify parameters without strong prior beliefs.

According to the “uninformative” school of thought, priors are cho-

sen in a way that attempt to influence the posterior estimates as lit-

tle as possible. A classic example of this is the use of a gamma(0.0001,0.0001)

prior for the reciprocal of the variance of a normal distribution, thus

putting approximately equal weight to a large subset of the positive

real number line. (This choice of prior was introduced as a recom-

mended choice in BUGS in 1994(Thomas et al., 1994), and subse-

quently gained popularity). This school is primarily governed by

an attempt to be as scientifically unbiased and objective as possible.

A category of priors that can be used in both an informative and

an uninformative setting is conjugate priors. These are priors cho-

sen so that the prior distribution P(A) and the posterior distribu-
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tion P(B|A)P(A) both belong to the same class of parametric dis-

tributions. For example, the Beta B(a, b)-distribution is the conju-

gate prior to the proportion parameter of a binomial distribution

Bin(a, p), in that the posterior distribution for p given a beta prior

B(a, b) and observed c success and d failures from a binomial distri-

bution is B(a + c, b + d). Because of this property, conjugate priors

simplify analytical calculations and were important for making nu-

merical calculations tractable in the early days of lower computer

power. In the case of Gibbs sampling (described above), using conju-

gate priors implies that the posterior conditional distribution of each

component follows a known parametric form, and so can be easily

sampled when updating the components. One reason the gamma

prior became popular was that the gamma distribution is the con-

jugate prior for the inverse of the variance parameter in a normal

distribution with unknown mean and variance.

The approach of weakly informative priors, championed by amongst

other, Andrew Gelman (Gelman et al., 2008), was used during later

phases of the thesis work, when investigating and trying to resolve

convergence issues. When using weakly informative priors, the prin-

ciple is to incorporate domain knowledge on as general a level as

possible. So, for example, it is known that the height of humans are

on the order of meters and not kilometers or millimeters, and so

a lognormal distribution of lognorm(1,
√

10) would be used to in-

corporate this knowledge ( a standard deviation of 101/2 implies

that 95% of the distribution lies within [1/(101/2∗2), 1x(101/2∗2)] =

[1/10, 10)]). This improves the behaviour of the numerical inference

by regularizing the likelihood surface, while at the same time avoid-

ing that posterior estimates are highly influenced by subjective ex-

pert judgements.



1.6 thesis outline 35

1.6 thesis outline

The work conducted in this thesis is focused on ways to exploit

the full potential of diagnostic data, leveraging the continuous and

dynamic nature of test measurements, and the additional informa-

tion gained by combining multiple diagnostic tests. A key part part

of the argument put forward is that recording raw test data and

conducting multiple tests on samples typically collected in current

surveillance systems would make possible statistical analyses that

can produce valuable information on the epidemiology of diseases.

This is conceptualised as being of particular value where surveil-

lance data is limited, or for diseases where little is known, either

because they are emerging infections, or because they have been un-

detected or considered of low priority in the past.

The classical Hui-Walter latent class analysis (Hui and Walter, 1980)

makes it possible to estimate the unknown sensitivity and specificity

of two binary diagnostic tests by comparing their results in two set-

tings with differing levels of incidence. Chapter two applies this ap-

proach to evaluate the use of multiple diagnostic tests to estimate

sensitivity and specificity of diagnostic tests that can distinguish vac-

cinated and infected animals (DIVA tests) for Mycobacterium bovis,

producing recommendations regarding a potential vaccine trial in

cattle in the UK. It expands on the Hui Walter approach by showing

how to estimate vaccine efficacy in addition to sensitivity and speci-

ficity.

Chapter three also looks at the additional benefit of using two diag-

nostic tests, but in a more general fashion by treating the diagnos-

tic test response as continuous with known kinetics over the time

since infection. The concept of “hindcasting” (inferring the histori-

cal trend of) historic disease dynamics from cross-sectional data is

introduced, and applied to the situation of endemic diseases which
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exhibit linear trends. In this way, it is possible to estimate the long-

term trends of pathogen incidence, for example to evaluate the im-

pact of policy implementations using cross-sectional data.

Chapter four is primarily aimed at improving the early phase of dis-

ease surveillance, during the initial phase of an outbreak, or when a

new pathogen has been introduced to a region or country. The focus

is on emerging or epidemic pathogens where the interest is on find-

ing out information on the dynamic of an outbreak. The approach

is illustrated by application to two case studies, one based on a blue-

tongue outbreak in the UK in 2007, and one based on a whooping

cough outbreak in Wisconsin in 2003..

Chapters three and four highlight the benefits gained by utilizing

knowledge of test kinetics in disease surveillance, and thus make a

case for considering ways to ensure greater access to such informa-

tion. Chapter five is thus an exploration of strategies for improving

estimation of test kinetics using observational data, with a particu-

lar focus on the potential advantages of estimating two or more test

kinetics simultaneously.

Chapter six provides an overview of the results presented in the

thesis, highlights potential avenues of research and argues for the

greater utilisation of multiple testing in the field of disease surveil-

lance.
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C H A P T E R 2 : A L AT E N T C L A S S A N A LY S I S O F B T B

D I VA T E S T S

Abstract The practice of disease surveillance covers the process from

discovering potential cases, via taking samples and testing these for

disease with different diagnostic tests, to collecting the test results in

databases, analysing the patterns of disease, and deciding on appro-

priate responses and policies. As a part of this process, establishing

the properties of the diagnostic tests used is of critical importance.

This chapter describes an application of classical binary diagnostic

test analysis for estimating sensitivity and specificity in a setting of

vaccinated individuals tested using two diagnostic tests with dif-

ferent properties in vaccinated and unvaccinated animals. Starting

from the definitions of sensitivity and specificity of a diagnostic test,

it discusses an approach to estimate these using a Bayesian Latent

Class Analysis. The approach is then applied to estimate the effect

of study size on sensitivity and specificity estimates for a trial of a

test for bovine Tuberculosis that is able to distinguish between vac-

cinated and infected animals, a so-called DIVA (”Distinguishing

Infected and Vaccinated Animals”) test. The sample size analysis

was commissioned by the Welsh Government and the British Depart-

ment for Environment, Food and Rural Affairs (Defra). The result

of the analysis shows that the sample size required to demonstrate

that the test specificity is above the previously established thresh-

old for cost-effectiveness, is in excess of 30 000 animals, even under

the assumption that the real specificity is 99.9999%, and including a

pilot study of animals tested with a gold-standard approach. The de-

scribed framework expands on published studies by estimating vac-

39
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cine efficacy in addition to diagnostic test properties, allowing for

the application of latent class analysis in a wider range of settings

than previously possible.

2.1 introduction

Diagnostic testing plays a crucial role in the surveillance and detec-

tion of infectious diseases. In its simplest form, we take a sample

from an individual, and use our test, for example an antibody test,

to say whether the individual is infected. As all tests are imperfect,

knowing the behaviour of the diagnostic tests used for surveillance

is fundamental to evaluate collected surveillance data; of particular

importance is the reliability and error rates of the tests used.

Classically, diagnostic tests have been treated as having a binary re-

sponse, producing either a positive or a negative result. The diag-

nostic test gives a result that can be classified as “positive” if the

individual is infected, and a result that can be classified as “nega-

tive” if the individual is not infected. Denote by D+(D−) a infected

(non-infected) individual, and t+ (t−) a positive (negative) test result.

The probability that a test of an infected animal produces a positive

result , Se = P(t+|D+) is commonly referred to as the sensitivity

of the test, and the probability that a test of a non-infected animal

produces a negative test, Sp = P(t−|D−) is commonly referred to as

the specificity of the test. This terminology was first introduced in

1961 by Thorner and Remein (1961) in a US dept. of Health publica-

tion. Together, sensitivity and specificity fully describe the expected

behavior of a binary test, when used in a population and on a dis-

ease where both sensitivity and specificity can be assumed to be the

same for all individuals.

In order to estimate the specificity of a test, the ideal situation is to

test a population that is known to be free from disease, and produce
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statistical estimates and confidence intervals of the specificity from

the proportion of negative test results and the number of individu-

als in the population. Similarly, in order to evaluate the sensitivity

of a test, the ideal situation is to test a population where all individ-

uals are known to be infected, and estimate the sensitivity from the

proportion of positive test results. However, such ideal situations

are rare, as it requires either a perfect test or a controlled infection

study.

A somewhat more realistic approach is to test a population with un-

known prevalence with two tests, one reference test where the sensi-

tivity and specificity is already known, and another test that is being

evaluated. In such a situation, it is possible to estimate the unknown

sensitivity and specificity of the new test. However, this creates a bit

of a catch-22 situation, as the properties of the reference test would

have to have been evaluated at some point in the past.

A statistical method for estimating the properties of two diagnostic

tests at once was pioneered by Hui and Walter (1980). In this sem-

inal paper, they show that it is possible to estimate the unknown

sensitivity and specificity of two different diagnostic tests simulta-

neously if both tests are used on all individuals in two populations

with different (but unknown) prevalences of disease. The approach

used in their paper is known as ”Latent Class Analysis”.

This chapter extends such latent class analysis to a situation where

a vaccine can be expected to interfere with the diagnostic test per-

formance. The assumptions are that two populations with different

prevalences of disease are available, each population is split up into

one vaccinated and one unvaccinated subpopulation, and two diag-

nostic tests are used on all four subpopulations. We allow sensitivity

and specificity to vary for vaccinated and unvaccinated individu-

als. It is demonstrated that it is possible to extend the latent class

framework to estimate unknown vaccine efficacy in addition to the
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unknown test parameters, and population prevalences. The frame-

work is applied to estimate the effect of study size on sensitivity and

specificity estimates for a trial of a test for bovine Tuberculosis that

is able to distinguish between vaccinated and infected animals, a

so-called DIVA (”Distinguishing Infected and Vaccinated Animals”)

test. The results of this study are currently being considered by the

Welsh Government and the British Department for Environment,

Food and Rural Affairs) (Defra).

2.2 a latent-class analysis of vaccinated populations

In this section, the notation follows that of Johnson et al. (2001) closely,

with the addition of vaccinated and unvaccinated subpopulations,

and a vaccine effectiveness parameter.

Consider two populations in which there are cases of the pathogen

of interest; one ”high prevalence” population and one ”low preva-

lence” population, but where the exact prevalences are unknown in

both populations. Each population is split into two subpopulations;

one consisting of vaccinated individuals, and one consisting of non

vaccinated individuals. Assume there are two different tests, with

possibly differing sensitivity and specificity. Assume that the results

of the tests are independent conditional on the status of the animal,

and that sensitivity and specificity are affected by the vaccination

status of the individual.

Ignoring vaccination, we would define P(t = +|D = +) as the

probability of a test t being positive given that the true status D is

positive. We would also have P(t = +|D = −), P(t = −|D = +),

and P(t = −|D = −) denote the probabilities of the different

combinations of test results and true status. However, here we as-

sume that each test t can have different sensitivity Setv, defined as

Setv = P(t = +|D = +, v) when used to test animals with vaccina-
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tion status v (i.e. vaccinated or unvaccinated). Likewise, we assume

that the specificity Sptv = P(t = −|D = −, v) can differ between

tests and between vaccinated and unvaccinated animals. Setv and

Sptv are treated as unknown properties of the tests in the model. De-

note the prevalence in each unvaccinated population p by Ip1, and

the prevalence in each vaccinated population by Ip2 = λ ∗ Ip1, where

λ denotes the vaccine efficacy defined as the relative reduction in in-

cidence in vaccinated animals. Assume that the relative reduction of

incidence is the same regardless of the original incidence rate.

Finally, consider the event that a particular individual is tested with

the two diagnostic tests. Denote by ++ the event that the two tests,

according to a specified ordering, are positive. In a similar fashion

+− denotes the event in which the first test is positive and the sec-

ond negative, etcetera. Note that that a test can be positive either

because the true status of an animal D = + and the test gives the

correct answer (with probability Setv), or because the true status is

negative, D = −, and the test gives the wrong answer (with proba-

bility 1− Sptv).

Using this, it is possible to write the probability for a combined test

result given population and vaccination status as:

P(+ + |p, v) = (Se1v ∗ Ipv)(Se2v ∗ Ipv)+

(1− Sp1v) ∗ (1− Ipv)(1− Sp2v) ∗ (1− Ipv)

P(+− |p, v) = (Se1v ∗ Ipv)((1− Se2v) ∗ Ipv)+

(1− Sp1v) ∗ (1− Ipv p)(Sp2v) ∗ (1− Ipv)

P(−+ |p, v) = ((1− Se1v) ∗ Ipv)(Se2v ∗ Ipv)+

(Sp1v) ∗ (1− Ipv)(1− Sp2v) ∗ (1− Ipv)

P(−− |p, v) = ((1− Se1v) ∗ Ipv)((1− Se2v) ∗ Ipv)+

(Sp1v) ∗ (1− Ipv)(Sp2v) ∗ (1− Ipv)



44 chapter 2 : a latent class analysis of btb diva tests

When tabulating test data, denote by N++,pv the number of observa-

tions where both tests were positive in population p with vaccina-

tion status v, and similarly for the number of observations with only

the first test positive, only the second test, or neither test positive.

Then the vector

N = {N++,pv, N+−,pv, N−+,pv, N¯,pv}

is multinomial-distributed with probability vector

{P(+ + |p, v), P(+− |p, v), P(−+ |p, v), P(−− |p, v)}

There are four counts for each subpopulation, and four subpopu-

lations, giving a total of 16 data points, and 12 degrees of freedom.

The probability vector is a function of {Setv} and {Sptv}, with four

distinct values each, Ip, with two values, and by λ, giving a total of

of 11 parameters. We therefore have one degree of freedom when

estimating the parameters.

Given observed counts {N}, the data likelihood for the parameters

in the model is then simply:

∏
∀p,v

(
P(+ + |p, v)N++,pv × P(+− |p, v)N+−,pv×

P(−+ |p, v)N−+,pv × P(−− |p, v)N−−,pv)
)

We evaluated the likelihood using a Bayesian Markov Chain Monte

Carlo (MCMC) approach implemented in the JAGS language (Plum-

mer, 2003) using beta priors for Sepv and Sppv, with parameters de-

rived from the results of ”gold standard” tests. Specifically, if the

number of true positive animals, as detected by a gold standard

test that were detected by test 1 was s1, and the number incorrectly

tested as negative was n1, then a β(s1 + 1, n1 + 1) prior was used

for the sensitivity of test 1. A similar approach was used to define

beta priors for the sensitivity of test 2 and the two specificities. Start-

ing values for the parameters in the MCMC were chosen at random
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from the prior distributions, independently sampled for each chain.

Inspection of trace plots indicated that for all scenarios, the chains

had fully converged after a burn-in of 1000 iterations. The following

1000 iterations were then used as basis for the presented results.

There is a potential technical issues with the implementing the above

approach, known as label switching. In the expressions above, swap-

ping Se for 1− Sp, and Sp for 1− Se would give the exact same re-

sult, and so the posterior could converge to either of these interpre-

tations, leading to a bimodal distribution. One solution for both of

these problems to require that Sensitivity plus Specificity is above 1

(as otherwise swapping the interpretation of the test around, treat-

ing positive test response as a negative result and vice versa, would

result in a better test) (Toft et al., 2004). In the case of this study, the

use of prior information from gold standard tests proved enough to

resolve the potential bimodality, so constraining the sensitivity and

specificity was not needed.

2.3 applying the model to inform an m.bovis diva test trial

The use of widespread vaccination is one of the most powerful meth-

ods available for the control of endemic and epidemic infectious

diseases. The success stories are many, including polio, smallpox

(WHO and Global Commission for the Certification of Smallpox,

1980), and rinderpest (FAO, 2013). In some cases however, the use of

vaccination can be complicated by diagnostic tests failing to distin-

guish between infected and vaccinated individuals. Unless the vac-

cine is perfectly efficacious, this means that any breakthrough cases

that occur despite vaccination would go undetected. In the case of

an outbreak of cases, the lack of a functioning test would severely

hamper control efforts.
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In the case of bovine Tuberculosis (”bTB”), the standard test recom-

mended for screening by the World Organisation for Animal Health

is the so-called tuberculin skin test (OIE, 2009), which consists of

injecting purified tuberculin proteins in the neck of the animal and

looking for the resulting inflammation that indicates the presence

of antibodies against M.bovis. Vaccinated animals will show the

same reactions, and so the tuberculin test is unable to distinguish

between vaccinated animals without infection, and vaccinated ani-

mals where breakthrough infections have occurred. Because of this,

the European Council have made it mandatory for countries to ab-

stain from vaccination if they want to retain an export classification

(EEC, 1977). The concern is that infected animals will be exported

and thus spread the disease to countries that are disease free.

Bovine Tuberculosis is endemic in the UK and there has been a steady

increase in incidence since 1984 (Gilbert et al., 2005). This increas-

ing incidence has resulted in a similarly increasing cost to farmers

and society (DEFRA, 2014). Suitable policies for the control of bTB

has been the subject for intense debate (Schiller et al., 2011), includ-

ing the controversial proposals for the culling of badgers which can

transmit infections to cattle (Godfray et al., 2013), and which many

believe represent a reservoir for bTB. One option is the large-scale

vaccination of the cattle population (Waters et al., 2012). However,

because of the EEC regulation, this has so far not been an option.

Recently, new tests for bTB have become available that can diagnose

infection in vaccinated animals. These tests are able to distinguish

between antibodies produced in response to vaccination, and anti-

bodies produced in response to a natural infection, so-called DIVA

tests. They have been evaluated in lab settings as well as in con-

trolled experimental infections, and have been found to have a very

high specificity, as well as a good sensitivity (AHAW, 2013; Conlan

et al., 2015). The next step in the evaluation is to test their perfor-
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mance in realistic field conditions, necessitating a large, long-term

trial involving production farms in the UK.

This section describes the effect that design choices, vaccine efficacy,

true test sensitivity and true test specificity have on the sample size

required to attain a certain level of precision for the estimated test

sensitivity and specificity, using the latent class analysis framework

described above. A particular goal for the analysis is to estimate the

sample size needed to able to be able to reliably prove that the novel

DIVA test reaches a 99.85% threshold.

This threshold was established in (Conlan et al., 2015) by using individual-

based modelling to investigate the cost-effectiveness of introducing

vaccination of bTB in the UK under a range of different scenarios.

False positive tests incur a large cost in terms of unnecessary use of

containment efforts and full-herd tests. Conlan et al. thus concluded

that a DIVA test would need to be reach 99.85% specificity, for the

balance between a reduced clinical burden and an increased cost of

false-positive diagnosis (with subsequent actions) to be beneficial.

The previous studies of the DIVA test indicate that the true speci-

ficity is likely above 99.9%, making it likely that it would be possible

to begin routine vaccinations. However, in order to provide reliable

evidence that this is the case in real-world conditions, any estimates

of specificity produced by the trial should ideally indicate that the

95% credible interval for the posterior estimate is above 99.85.

2.3.1 Data simulation

As in the description of the framework, the following assumptions

were made when analyzing the potential outcomes of a DIVA trial:

• The study is composed of one ”high prevalence” population

and one ”low prevalence” population, but the exact preva-

lences are unknown.
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• Each population is then split into two subpopulations; one con-

sisting of vaccinated individuals, and one consisting of non

vaccinated individuals.

• It is assumed that there are two different tests used in the trial,

both DIVA capable. It is further assumed that these tests had

differing sensitivity and specificity, but that sensitivity and

specificity was not affected by the vaccination status of the an-

imal. The analysis used a balanced design, with equal number

of individuals in each subgroup, as it was believed that this

represented the most likely protocol to be adopted for the field

trials.

Data were simulated using the R software package (R Core Team,

2012). During data generation, it was assumed that the trial was

run on four groups of equal size: vaccinated and unvaccinated cat-

tle from either a high prevalence (modelled as a prevalence of 5%),

or a low prevalence (modelled as 2%) population. In addition to this

data, it was also assumed that there would be a number of animals

taken from breakdown herds that had been tested positive using

the established skin test and could be considered ”gold standard”

positive, as well as a number of animals taken from certified bTB-

free farms that could be considered ”gold standard” negative. These

smaller populations of known positive and known negative animals

was included because the results from animals with known disease

status could be expected to provide information on sensitivity and

specificity that could replace test results from a large number of

tests from animals with unknown status, thereby decreasing the

required size of the study. The other reason for including such ani-

mals is to provide a safe lower bound for the specificity, estimated

in a way that is incontrovertible; an additional safeguard to guaran-

tee a baseline of useful results. Finally, it was felt that having prelim-
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inary estimates of the test properties would be useful for farmers to

be convinced of the benefit to being part in the vaccination study.

Data was generated from scenarios with different combinations of

parameters: eight different values of sample size were used between

30 000 and 100 000 animals in 10 000 step intervals; 10 different val-

ues for true specificity between 0.9990 and 0.9999, and for the gold

standard combinations of either 30 positive and 100 negative ani-

mals, 300 positive and 1000 negative, or 1500 positive and 5000 nega-

tive animals were used. 100 different data sets were randomly gener-

ated for each unique combination of parameter values.

2.3.2 Results

Recall that we assume that the true specificity of the DIVA test is

above 99.9%, and that the 95% credible interval for the posterior of

the estimates of specificity produced by the trial should be above

99.85%.

In order to provide a context for the results of the sample size calcu-

lations, one can consider a hypothetical scenario where a perfect test

is available for use on all animals in the study. Table 2.1 shows the

relationship between sample size and width of the confidence inter-

val for four different specificities, assuming that the imperfect DIVA

test could be tested on gold standard negative animals.
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Table 2.1: This table indicates the relationship between sample size and precision

for evaluating specificity of a diagnostic test with a gold standard ap-

proach. Numbers are taken from the appendix written by Innocent,

McKendrick, and Rydevik of the Triveritas Ltd for a consortium (2015)

report to Defra and the Welsh Government. These are based on an ex-

act formula for sample size calculations of binomial distributions (Ar-

mitage et al. (2008), p117), and gives the lowest sample size for which

there is an 80% probability that a random sample would produce a con-

fidence interval of equal to or less than the required width.

true sensitivity width of credible interval sample size

70% +/-5% 353

70% +/-1% 8230

75% +/-5% 320

75% +/-1% 7382

99.5% +/-0.5% 1226

99.5% +/-0.2% 5974

99.85% +/-0.5% 696

99.85% +/-0.2% 2508

99.99% +/-0.3% 1162

99.99% +/-0.2% 2034

99.99% +/-0.1% 6150

99.99% +/-0.05% 20320

While in reality there are no true gold standard tests available for

bovine tuberculosis, post mortem identification of lesions with sub-

sequent identification of the causal agent is considered to have 100%

specificity. One approach would therefore use the results from post-

mortem examinations to identity assuredly positive animals. An-

other approach to ensuring that the test is evaluated on guaran-
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teed negative animals, instead of using a gold standard test for clas-

sification, is to apply the test to animals that are highly unlikely

to have been exposed to bTB. One example would be a low-risk-

classified farm in Scotland (which is classified as officially bTB-free

since 2009). While these approaches are too expensive to carry out

on a full scale, we can use both approaches on a smaller scale and

use the results to inform our priors for the latent class analysis.

Figure 2.1 shows the effect of sample size on the credible interval of

the estimated specificity of one of the DIVA tests. Each box repre-

sents the results from fitting the latent-class model to 100 different

randomly generated data sets with a varying number of tested an-

imals, assuming that the true specificity of the test was 0.999, and

that in addition to the main study, 30 animals that were gold stan-

dard positive and 100 animals that were gold standard negative

were tested to derive priors for the specificity and sensitivity of the

DIVA test (see methods for details). We would desire that the study

has at least 80% power, i.e. at least 80% chance that the posterior es-

timate would show the result desired if the hypothesis that is being

tested is true. In the case of the current study, this translates to be-

ing able to have at least an 80% chance to prove that the DIVA tests

are good enough (i.e. better than 99.85% specificity). For the figure,

this translates to the lower end of the box being above the 99.85%

line. Clearly, even with 100 000 animals, the study does not reach

sufficient power.

Figure 2.2 shows how distribution of the lower bound of the credi-

ble interval change under different assumptions of true specificity

and the number of gold standard tested animals used to inform the

prior distribution for specificity and sensitivity. This figure clearly

indicates that the most crucial parameter is the true specificity, which

has to be much higher than the threshold efficacy in order to pro-

duce data that can reliably demonstrate that the specificity is, in-
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Figure 2.1: The above box plots describes the distribution of the lower bounds of

the credible intervals for the estimated specificity of the DIVA tests.

Each box represents the results from fitting the latent-class model to

100 different randomly generated data sets with a varying number

of tested animals, assuming that the true specificity of the test was

0.999, and that in addition to the main study, 30 animals that were

gold standard positive and 100 animals that were gold standard neg-

ative were tested to give a baseline indication of the sensitivity and

specificity (analysed as described in the methods). The box plot param-

eters were modified from a standard box plot to display 80% and 95%

quantiles. Thus, the box represents the central region in which 60% of

estimate lower 95% bounds of the estimated specificity Ŝp from 100

simulations falls. The whiskers indicate the extreme 95% range of the

lower 95% credible interval, and the middle mark indicate the median.

The red horizontal line indicate the 99.85% threshold above which a

DIVA test would be cost effective when implemented - the lower edge

of a box above this line would thus indicate a power of more than 80%

for demonstrating that the test used is cost effective, based on data

with the number of samples indicated.
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Figure 2.2: This figure shows how the credible interval is affected by different

conditions, and which conditions are required to reach 80% power.

As in figure 1, the lower edge of the boxes signify the threshold for

which 80% power is reached. The red line indicate the 99.85% speci-

ficity threshold - Columns indicate varying specificity; rows indicate

varying sizes of a gold standard pilot study. The blue line indicate the

trend of the medians as a function of sample size.
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deed above the threshold. From the results shown in the figure, it

is possible to say that if the true specificity is high enough, above

0.9995, sufficient power can be reached with a combination of a pi-

lot study using 1500 gold standard positive and 5000 gold standard

negative animals; and a study on production animals including a

total of 50 000 animals. If the DIVA test has near perfect specificity

, >0.9999, and only on very rare occasions give false positive results,

then sufficient power can be reached with a pilot study on 300 posi-

tive and 1000 negative animals, and a study on production animals

including 30 000 individuals.

As described in the methods section above, in addition to estimat-

ing sensitivity and specificity for the two DIVA tests, the vaccine

efficacy parameter is also estimated. For the middle-of-the-road sce-

nario with an assumed true specificity of .9999, a sample size of 30

000 animals, 300 positive and 1000 negative gold-standard tested an-

imals, and a true vaccine efficacy of 0.6, the mean posterior estimate

of the vaccine efficacy had a root mean square error (RMSE) of 4.7

percentage units based on 100 different simulated data sets, a rela-

tive error of about 8% . The mean width of the 95% credible interval

was 20.6 percentage units. The true sensitivities and specificity of

the diva tests have little influence on these estimates (with an as-

sumed true specificity of 0.999 , the RMSE was 4.3 percentage units,

a 7% relative error, and the mean width was 21.8 percentage units);

similarly for the number of gold standard tested animals used. How-

ever, the true vaccine efficacy has a strong influence on the width of

the credible intervals. Figure 2.3 shows how the 95% posterior credi-

ble interval varies for different sample sizes and different true levels

of vaccine efficacy.

As the true vaccine efficacy increases, so does the absolute size of

the confidence interval. To estimate a 90% vaccine efficacy to within

+/- 10 percentage units, a sample size of at least 70 000 animals
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Figure 2.3: Each vertical line represents the 95% posterior credible interval of the

inferred vaccine efficacy parameter for different sizes of the pilot study,

and for different true values of the parameter. The true specificity of

the DIVA test was fixed at 0.9999, and the number of gold standard

tests were fixed at 300 positive and 1000 negative animals. For each

combination of sample size and true vaccine efficacy, ten different data

sets were simulated. The horizontal axes are thus on on a categorical

scale that indicate the level of true vaccine efficacy, ranging from 10%

to 90%. The grey lines indicate the 95% posterior credible interval

of the efficacy parameter for each data set, with the dots indicating

the posterior mean, coloured according to the level of assumed true

vaccine efficacy. The dashed horizontal lines indicate vaccine efficacy

levels in 10%-unit intervals
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would be needed, while a 50% vaccine efficacy could be estimated

to within 10 percentage units with 50 000 animals. For less effective

vaccines, 30 000 animals would be more than enough to estimate

efficacies of less than 30% to within 10 percentage units. The increas-

ing size of the confidence interval is likely due to higher vaccine ef-

ficacy leading to fewer positive animals, making the evaluation of

test sensitivity and specificity more uncertain, and thus as a conse-

quence all parameters of the posterior.

2.4 discussion

This chapter has expanded on previous work on the Hui-Walter

paradigm by demonstrating how to estimate the sensitivity and

specificity of two tests with different properties in vaccinated and

unvaccinated populations. In addition, it demonstrates that this can

be done for a vaccine with unknown efficacy, using two populations

with different levels of disease, each population divided into vacci-

nated and unvaccinated subpopulations.

Results from the sample size evaluation highlight that the ability to

prove that the DIVA tests have a specificity high enough to pass the

cost-effectiveness threshold of 99.85% established by Conlan et al.

(2015), is highly dependent on the actual specificity of the tests. It

is a challenging criteria that will require either a very large trial, or

that the DIVA test is better than the required threshold by a large

margin, or some combination of the two. A sample size of 50 000 an-

imals in the trial would only be likely to clear the 99.85% threshold

if the true specificity is above 99.99%, with sample sizes of 500 000

animals required if the test is ”only” 99.9% sensitive, equivalent to

5% of the UK cattle population which would be a very large trial.

Moreover, without the addition of animals with known true infec-

tion status the required sample sizes are even larger.
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Note that these study sizes were calculated under the assumption

that it is needed to prove “beyond reasonable doubt” that the vac-

cine is cost effective. It could be argued that the decision of whether

to vaccinate or not should be decided based on which course of ac-

tion is “most likely” to be economically beneficial; there is a cost

to vaccinating, but there is likewise a cost to not vaccinate. By as-

suming that evidence “beyond reasonable doubt” is needed, the im-

plicit assumption is that the status quo is preferable in the absence

of considerable evidence to the contrary. If, instead, a “most likely”

approach to the decision were taken, this would allow each option

to be chosen based on their own merit. In technical terms, such an

approach would be translated to requiring that at least 50% of the

mass of the posterior probability distribution fall above the 99.85%

threshold. If such a decision criteria would be seen as sufficient, the

required study size to reach 80% power could be reduced consider-

ably (preliminary investigations indicate that the study size could

potentially be reduced by a factor between 5 and 10, assuming other

study parameters remain the same).

The Hui-Walter paradigm is well established for estimating the prop-

erties of diagnostic tests in the absence of a gold standard. By us-

ing vaccinated and non-vaccinated individuals as two distinct pop-

ulations, it becomes possible to estimate the efficacy of a vaccine

in addition to the properties of the diagnostic tests. To our knowl-

edge, no previous paper has made use of Hui-Walter type models

in this way before. This could be useful in situations where novel

vaccines and diagnostic tests are used to control a disease, where

the vaccine effect has been tested in controlled studies, but the field

efficacy of the tools is unknown. Such a situation is likely to occur

for rapidly developing outbreaks, such as the recent Ebola outbreak

(WHO Ebola Response Team, 2014), where both vaccines and new

diagnostic tools are developed in response to the occurrence of the
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outbreak. While the resulting efficacy estimates are not as precise as

those from a study designed for efficacy evaluation, the simulation

results presented above indicate that they would still be sufficient to

evaluate usefulness to within +/- 10 percentage-units.

An important assumption made in the use of the Hui-Walter paradigm

is the assumption of independence between the results of the two

different diagnostic tests, conditional on the true status on the ani-

mal. The conditional independence assumption is necessary in the

case of two tests and two populations, or as in our case, between

four subpopulations with four unknown sensitivity/specificity pa-

rameters. However, if the tests in question both measure the same

type of response to infection, this assumption can be questioned.

In Toft et al. (2007), it is suggested that if the assumption of condi-

tional independence is unreasonable, one can consider the use of

three different tests. In the DIVA situation, this would be difficult,

but a possible strategy is to conduct post-mortem evaluations on an-

imals which have been indicated as positive. In such a situation, it

is enough if one test is conditionally independent from the others.

Clegg et al. (2011) used a three-test latent class approach to evalu-

ate the performance of the interferon-γ test, the SICCT test, and a

multiplex antibody assay for detecting bovine Tuberculosis (all tests

described in OIE (2009)), assuming that the SICCT test was condi-

tionally independent from the two others. Unfortunately, in our sit-

uation the SICCT test would show vaccinated animals as positive;

however, should another DIVA test be developed based on another

principle from the two tests used in this study, a three-test approach

could be used to estimate possible dependencies between the exist-

ing tests.

An additional consideration is the time between testing animals.

While the analysis in this chapter assumes that all animals are in-

fected randomly and independently from each other, and that there
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is a dichotomy between ”infected” and ”non-infected” animals, it is

likely that test sensitivity is dependent on the time since infection.

The disease progression after infection with M.bovis can take up to a

year (Domingo et al., 2014), and can be usefully considered to pass

through several distinct stages. A diagnostic test is likely to have

different sensitivity at each stage in the disease. Therefore, if an an-

imal is infected and tests negative, it is likely that subsequent tests

close enough in time will also be negative, and the nominal sensi-

tivity would therefore overestimate the herd-level sensitivity. A pos-

sible way to circumvent this would be to model the measured test

response as a continuous variable instead of using the infected/non-

infected classification. This could be done using either a mixture

model approach, or by incorporating information on how the test

response would depend on the time since infection.

The work in this chapter has shown that with the introduction of a

vaccine for a disease, it is possible to estimate the vaccine efficacy

using two tests with unknown sensitivity and specificity, demon-

strating that tests that have not yet been assessed against a gold

standard can still be used in a situation where a vaccine is expected

to interfere with the test results. It has further been shown that such

tests can be used even if the vaccine efficacy is unknown. In this sit-

uation, a trial of diagnostic tests would also produce estimates of

a vaccine efficacy. Finally, in regards to the DIVA tests for bovine

TB, the results indicate that attempting to establish confidence in-

tervals for the sensitivity and specificity of new diagnostic tests is

likely to only provide partial evidence for demonstrating that a test

has reached a particular specificity threshold, when the required

specificity is close to 100%. In such situations, the evidence from

field studies of test properties needs to be combined with labora-

tory studies, the fundamental science underlying the tests and other
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sources of information to determine whether the true specificity is

sufficiently high for the intend ended use.

2.5 from binary to continuous tests

In this chapter, the assumption has been that diagnostic tests pro-

duce binary results, and implicitly that each individual is either in-

fected or noninfected. Often, a binary diagnostic test is generated

by taking a continuous measurement of some quantity, such as the

level of antibodies in the blood, and checking to see whether it is

above a pre-defined cutoff value. By converting a continuous mea-

surement to a true/false value, we are in essence throwing away

information (Fig 2.4). However, knowing the quantitative value of

the test measurement can tell us more than a binary test result can.

A quantitative test result can allow us to estimate the overall distri-

bution of test values in the population, evaluate the variability of the

binary classification for a given test value, and increase the precision

of population incidence or prevalence estimates.

Figure 2.4: This figure shows a typical curve for the development of viral load

test measurements over time . A positive or negative test result can

be generated by setting a cut-off value (black line). Above the line, the

test is “positive”; below the line, the test is “negative”.
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The binary classification is useful and straightforward. In clinical

practice, such an approach makes perfect sense in order to decide

on appropriate treatments. In modelling, the simplicity of the bi-

nary classification allow for tractable expressions for the disease dy-

namics. This is embodied by the basic SIR model where individuals

move from uninfected/susceptible, to infected, to non-infected and

recovered/removed. This type of model has a long history as a tool

for understanding the dynamics of infectious diseases (Hethcote,

2007).

However, in several cases, this categorization is too simplistic. As

a simple example, consider chickenpox, which lie dormant after

the disease has run its course, kept in check by antibodies. If these

wane, the virus may re-emerge as shingles. For bovine tuberculo-

sis, as discussed in the previous section, the disease progresses via

several stages, and many individuals carry the mycobacterium in-

definitely without suffering ill health. Such processes are impor-

tant aspects of disease dynamics and host responses, but the binary

paradigm lacks the expressive power to capture such nuances. In

mathematical modelling of disease dynamics, an approach is to

include more stages representing recovered-but-immune, asymp-

tomatic, asymptomatic but infectious, etc. In statistical inference, the

diagnostic test can be modelled as a categorical response variable, or

as a continuous response following some kinetic curve.

The following chapters in this thesis continue to model situations

where each individual has been tested using multiple diagnostic

tests. However, as we will see, instead of binary tests, tests with a

continuous, quantitative response are considered. In this way, much

richer types of analyses can be conducted. Chapter 3 describe how

historic linear incidence trends can be estimated from cross-sectional

data. Chapter 4 describes how it can be applied in an epidemic set-

ting. These two chapters serve to demonstrate the potential analyses
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that can be done when going beyond the classical terminology of

binary diagnostic testing of disease. Finally, chapter 5 suggests an

approach to estimating test kinetics of multiple given observed data,

which can be considered an extension of the estimation of sensitivity

and specificity described in this chapter.
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C H A P T E R 3 : H I N D C A S T I N G T R E N D S O F

I N F E C T I O N F R O M M U LT I P L E T E S T D ATA

Abstract

This chapter describes a novel statistical approach to combine data

from multiple diagnostic tests with different temporal characteristics

to hindcast the historical unobserved trend of an endemic infectious

disease. Assuming a cross-sectional sample of individuals infected

with a pathogen, a Bayesian MCMC approach is used for estimating

time of exposure and the overall epidemic trend in the population

prior to the time of sampling. It is demonstrated how to utilize this

approach to distinguish between decreasing and non-decreasing

trends. Further, the chapter describes results of applying this for ide-

alised pairs of diagnostic tests, based on different host-pathogen

dynamics. Finally, we discuss the benefits of this novel methodol-

ogy for the management of infectious diseases, and for evaluation of

policy interventions.

3.1 introduction

Pathogens are one of the major contributors to the burden of disease

in humans (Lopez et al., 2006), have a substantial economic impact

on the livestock industry (Stott, 2003), and can be a serious threat

to conservation and management of wildlife populations (Daszak

et al., 2000). A crucial component of efforts to control endemic dis-

ease is the use of infectious disease surveillance for tracking trends

and evaluating the effect of control measures. The current state of

human disease surveillance has been characterized as deficient in

65
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terms of both coverage and reporting speed (Butler, 2006). The more

complex settings typical of livestock and particularly wildlife sys-

tems tend to result in available surveillance data being sparser still

for animal disease (Mörner et al., 2002; Perez et al., 2011; The Royal

Society, 2002)

The structure of a functioning disease surveillance system is com-

plex, with a string of tasks that need to be accomplished before a

case is recorded in a database and becomes available to epidemiol-

ogists and policy makers. However, a crucial part is the use of diag-

nostic tests to identify and confirm the type of pathogen that caused

infection. This and the following chapter will argue that combin-

ing two or more quantitative diagnostic tests with trajectories of the

development of average test measurements following infection pro-

vide substantial additional information that can be used to estimate

historic patterns of infection. Current analyses typically treat diag-

nostic tests as binary classifiers of infected/non-infected individu-

als. However, the behaviour of diagnostic tests are more complex as

they typically return a result in terms of a non-binary response level.

Moreover, the expectation of this test response varies as a function

of time since infection. To make use of such data and realise these

benefits, a novel statistical approach is introduced for recovering

population-level trends of infection even from only cross-sectional

data by combining knowledge of the dynamic characteristics of mul-

tiple diagnostic tests to infer the timing of infection events for indi-

viduals. The process of recovering such trends will be referred to

as “hindcasting”, following terminology established in other papers

(Banakar et al., 2011; Kleczkowski and Gilligan, 2007; Wethey and

Woodin, 2008) for reconstructing historical trends from currently

available data. This chapter will focus on the potential use of hind-

casting in the case of endemic diseases, while chapter four describes

the potential for hindcasting in an epidemic setting.
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Changes in the epidemiology and/or incidence of endemic pathogens

are ideally tracked through the use of routine, ongoing surveillance.

However, in a number of situations and for a number of pathogens,

such ongoing surveillance is either non-existent or limited in its abil-

ity to provide a full, unbiased view. For some diseases, the epidemi-

ology is known and the disease is considered important, but surveil-

lance relies on diagnostic measures which are either expensive and

underutilized, or lacking in sensitivity and/or specificity. One such

example is the disease scrapie in sheep. Scrapie is a prion-spread

disease with a very long incubation period, and difficult-to-detect

symptoms. In the USA, scrapie has decreased from a 0.2% preva-

lence to less than 0.05% between 2003 and 2009 thanks to introduced

policy measures (United States Department of Agriculture, 2010).

However, there are substantial biases in reported prevalence num-

bers, raising the need for additional surveillance measures (Del Rio

Vilas and Pfeiffer, 2010). Another pathogen, endemic in most of Eu-

rope, is Mycobacterium avium subsp. Paratuberculosis, also known as

”Johne’s disease”. Paratuberculosis infections are asymptomatic for a

long period of time, only detectable after some period and with the

use of specifically targeted tests (OIE, 2014). Reported prevalences

across Europe vary widely, from 0.1% to 20%, largely owing to the

difficulty of diagnosis (Nielsen and Toft, 2009). With these kinds of

so-called iceberg disease systems (see Section 1.2), where routine

surveillance only captures a small proportion of actual cases, there

is a strong need for alternative strategies that can ensure that the

trend measured by routine surveillance systems is representative of

the full epidemiology of the targeted disease system.

There are a number of endemic diseases considered to be of low

importance and therefore not targeted by surveillance. When such

a disease suddenly gains importance, because of increasing preva-

lence induced by changes such as mutation of the pathogen, or due
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to realizations of the extent of its economic impact, the ability to

rapidly gain an understanding of the historic trends would be ex-

tremely useful in prioritizing and targeting interventions. This can

be the case even for high profile pathogens such as the H5N1 flu

virus, where the threat of silent spread in poultry flocks is a seri-

ous concern (Savill et al., 2006). Some pathogens have a very high

incidence of undiagnosed infection, where the pathogen circulates

widely in the population causing non-specific disease. Salmonella

(Simonsen et al., 2011) and Pertussis (Hallander et al., 2009) are two

examples of human diseases where the true extent of infections have

been unknown until fairly recently. Sexually transmitted infections

are also often under diagnosed because of social stigma associated

with testing. Chlamydia is a disease with a significant disease bur-

den in most parts of the world (WHO, 2012a), and where the preva-

lence in women is much better known, and often reported to be

higher, than in men for whom the testing rate is much lower(see

e.g. the introduction of Götz (2005) ).

For many endemic diseases, policies are put in place to reduce inci-

dence or eradicate the disease - either locally, as with bovine viral di-

arrhea(BVD) in Scandinavia and Scotland (Ståhl and Alenius, 2012);

or globally, as happened with Rinderpest in Cattle (FAO, 2013) and

smallpox in humans (WHO and Global Commission for the Certifi-

cation of Smallpox, 1980). Measuring the impact of implementation

of such policies is needed to ensure that eradication efforts are on

the right track. High costs restrict implementation of longitudinal

surveillance programmes whereas cross-sectional studies of disease

are more common. Therefore, methodology that could infer tempo-

ral trends from cross sectional data would be extremely beneficial.

The application of the hindcasting techniques introduced here could

be used to extend the utility of such cross-sectional studies to fulfil
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some of the objectives of an ongoing surveillance system (see Sec-

tion 1.2 for a discussion of such objectives).

Several papers have recovered limited historical characteristics of

the spread of pathogens from cross-sectional data using a single di-

agnostic test, typically an antibody test. For example, Giorgi et al. es-

timated the time of the start of a local HIV outbreak under assump-

tions of exponential growth of viral load (Giorgi et al., 2010). Others

have exploited information on diagnostic test kinetics, i.e., the pat-

tern of diagnostic test values during the course of infection, to esti-

mate average incidence rates. Example includes the use of antibody

test kinetics to estimate sero-incidence rates for influenza (Baguelin

et al., 2011), salmonella in cattle (Nielsen et al., 2011) and salmonella

in humans (Simonsen et al., 2008). One challenge in these kind of

studies is that the relationship between the magnitude of signals

from diagnostic tests and time since infection is usually not mono-

tonic; the signals tends to increase and then decrease. This means

that the inverse problem of estimating time since infection given a

test value is non-unique and although this can be framed as a statis-

tical problem the resulting inference is highly uncertain (Giorgi et

al., 2010; Simonsen et al., 2009), limiting what can be estimated from

test data. However, there are often several diagnostic tests available

that target different aspects of the multi-faceted dynamic interac-

tion between host and pathogen (Casadevall and Pirofski, 2001), and

would thus exhibit different test kinetics. That is, the profile of test

responses, as a function of time since infection, will differ depend-

ing the underlying diagnostic used. This means that, in principle,

we can generate a unique signal for a given time since infection by

combining results of several diagnostic tests that respond on differ-

ent time scales. Here, this fact is exploited to develop a more robust

statistical approach for analyzing cross-sectional field data from two

or more diagnostic tests. Empirical infection models that character-
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ize test kinetics are used to infer the time since infection for each in-

dividual. While there is large uncertainty in the estimated infection

time for each individual, the combined estimates from multiple indi-

viduals describe the overall population-level distribution of infection

times, which can be used to estimate the overall trend of incidence.

In an endemic setting, trends of infection are often gradual, and can

be approximated by a constant change per time unit (month, year,

decade). The chosen approach in this chapter was thus to posit that

the incidence follows a linear trend with some slope. Section 3.2 de-

velops the statistical framework for hindcasting in general, while

section 3.3 details the mathematical consequences of assuming a

constant linear trend with reinfections on inference of the trend

from cross-sectional data. Section 3.4 details the choice and imple-

mentation of test kinetics. Section 3.5 details results from applying

the framework to data simulated under a range of different scenar-

ios. Finally, section 3.6 discuss the implications of the results and the

hindcasting framework.

3.2 statistical framework

The statistical framework used for hindcasting in this thesis assumes

test data ynk from multiple disease diagnostics indexed by k = 1, . . . , K

on individuals i = 1, . . . , N. Each individual is assumed to have

been tested at some time ti, after having been exposed to the pathogen

at some earlier time ei. It is further assumed that these individuals

are chosen in an unbiased, random manner from a larger popula-

tion. Each diagnostic test is assumed to return a value measured on

a continuous scale, which might, for example be the highest dilution

at which antibodies are detected in a serological test. Without loss of

generality, these values are assumed to be rescaled to the unit inter-

val [0,1].
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Initial exposure to a pathogen is the start of a complex dynamical

process within the host. Such internal host-pathogen interactions

can be conceptualised as a multivariate process that depends on the

time since initial exposure. Each diagnostic test is assumed to tar-

get the state of a different component of this process so that each

test k carried out at time ti on individual i can be modelled as a la-

tent variable lik(ti, ei) = lik(di), with each test having differing but

correlated response patterns over the time since initial exposure

di = ti − ei. these latent variables are modelled using results from

experimental infection studies for a given host-pathogen system,

where the length of time since initial infection di is known.

The known data, across all individuals in the sample, comprises a

set of test results denoted by Y = {yik} with sampling times T =

{ti}. The aim is to infer the unknown set of exposure times E =

{ei}, using information on the behaviour of the latent processes L =

L(T, E) = {lik(ti, ei)} generating the test results. In the hindcasting

model used here, L represents the expected value of the test results

given ei and ti. Note that when describing these sets the limits of

each index k = 1, . . . , K and n = 1, . . . , N are implicit.

Assume that the sampling times T and the observed test values

Y,are known whereas the quantities L and E are assumed to be sub-

ject to uncertainty and variation. There are thus three components to

the statistical model: a latent process model P(L|T, E, θL) describing

uncertainty and variation in the host-pathogen interaction process

within the host in terms of the time since initial exposure; a testing

or observation model P(Y|L, θY) describing the distribution of re-

sults from tests carried out on the hosts conditional on the internal

latent process; and an epidemic trend model P(E|T, θe), describing

the historical development of the epidemic in terms of the distribu-

tion of exposure times in the sampled host population, at the time

of sampling. The specific implementations of each of these compo-
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nents in the linear trend setting is described in the next two sections.

Combining the three parts of the model, the full data likelihood

given an observed data set {Y, T} is written as P(Y, E, L|T, θ) =

P(Y|L, θY)P(L|T, E, θL)P(E|T, θE), where θ = {θY, θL, θE} Thus the

likelihood combines models for testing with those for within and

between host pathogen interactions.

According to Bayes’ theorem, the so-called posterior distribution for

the unknown parameters is proportional to the data likelihood and

prior P(θ). Using the parameters of interest θ, the latent process L,

the exposure times E, given the observed test data Y and sampling

times T, the posterior distribution can be described by the equation

P(L, E, θ|Y, T) = (P(Y, E, L|T, θ)P(θ))/(P(Y, T))

Within the Bayesian framework all inference is based on the poste-

rior. The prior P(θ) can result from previous measurements or ex-

pert opinion, and represents knowledge about the values of the pa-

rameters before any of the data used in the likelihood is observed.

In what follows, the simplifying assumption will be made that the

latent process L is modelled by a known deterministic function of T

and E. This means that the term P(L|T, E, θL) drops out of the likeli-

hood which then simplifies to

P(Y, E|T, θ) =

P(Y|L(T, E), θY)P(E|θE)

, and the posterior becomes

P(E, θ|Y, T) =
P(Y|E, T, θY)P(E|θE)P(θY)P(θE)

P(Y, T)

Note that under this notation any parameters defining the determin-

istic latent process L(T, E) = lnk(tn, en) are suppressed since they are

not inferred i.e. θ = {θY, θE}.
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In both cases above the normalization factor P(Y, T) is typically un-

known and computationally expensive to calculate. However, stan-

dard Markov Chain Monte Carlo (MCMC) methods circumvent this

problem and are able to generate samples from the posterior even

though the normalization is unknown (see Section 1.5.2).

3.3 parametrization of a linear trend of incidence

3.3.1 Distribution of times since infection (tsi) under linear trend

The hindcasting framework estimates the historic trend of infection

f (t) in the population from cross-sectional data. The trend f (t) de-

scribes the incidence over time if the cases are reported continuously.

If, instead, infected cases are sampled at a single point in time, this

sample will consist of individuals that have been infected some time

in the past. The objective is then to estimate the distribution of these

times since infection(”tsi”), based on collected test measurements.

The probability density function distribution is hereafter denoted

ftsi(t). In order to simplify calculations, the time is measured back-

wards; the time of the cross-sectional sample is defined as t = 0, and

an infection that occurred 10 time units ago is denoted t = 10.

It should be noted that because we only have one observation per in-

dividual, it is only possible to estimate one time since infection, and

the population level distribution of times since infection is in effect

the distribution of times since last infection. Thus, this modelling

approach implicitly assumes that any reinfection of an individual

resets the “clock” of the infectious disease dynamic to zero.The most

basic scenario used for hindcasting a disease trend represents an en-

demic disease, with cases occurring at a constant rate. Formally, this

scenario can be defined by assuming that the entire population is

exposed to a constant force of infection λ. For a randomly observed
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infected individual, it can then be shown (Muench, 1934) that the

time since infection ftsi is distributed according to an exponential

distribution with rate parameter λ, ftsi(t) = λe−λt.

The assumption of “last infection resets the clock” implies that later

infections hide earlier infections, which leads to an apparent increas-

ing incidence, captured by the above expression. If, instead, it is as-

sumed that the first infection confers immunity, as so only the first

exposure to the pathogen is observed, this will mean that later infec-

tions are blocked or invisible, leading to an apparent decrease in in-

cidence. This can be described by changing the sign of the exponent

in the above expression so that the equation becomes f ?tsi(t) = λeλt.

However, note it is now necessary to explicitly include an upper

limit on time (such as the year of birth of each individual), as f ?tsi(t)

will otherwise have an infinite integral and not be a probability dis-

tribution.

This basic scenario assuming that only the last infection is visible

was modified to a scenario in which the force of infection changes

over time according to a linear trend. In this, the force of infection

λ at a time t is equal to λ(t) = α + βt as mentioned above. Because

of the linearity of the trend, the probability of having been infected

during a time period from 0 to T is equivalent to the probability of

having been infected under a constant trend of the mean incidence

over the period, λ̂(t) = α + βT/2 (See Figure 3.1).

In the constant case, the probability of having been infected during

the time period T can be written as
∫ T

t=0 λe−λtdt = 1 − e−λT. By

analogy to the constant case, we can thus write the probability of

having been infected by time t assuming a linear trend as P(I <

t) = 1− e−(α+β∗t/2)∗t. By taking the derivative of this, the probability

density function for the times since infection can be calculated as

ftsi(t) = d(P(i < t))/dt = (α + βt)e−(α+βt/2)t.
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Figure 3.1: The cumulative force of infection an individual is exposed to over a

time period from 0 to T for a linear trend λ(t) = α + βt (shown by

the total area shaded yellow plus that shaded purple), is the same as

the cumulative force of infection for a constant force of infection at the

intensity equal to that of the linear trend at T/2; ˆλ(t) = α + βT/2

(shown in blue and purple).
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Furthermore, In the implementation this distribution was assumed

to be censored at some time point in the past C, and it was further

assumed that it was possible, a priori, to distinguish individuals

that had been infected at some point during this time period, from

naive individuals. When implementing such a censoring, the equa-

tion above needs to be modified by an additional scaling factor 1/(1−

e−(α+βC/2)C), equal to one over the integral of ftsi(t) over the time

span (0, C). The full equation used to represent the distribution of

exposure times was thus

ftsi = (α + βt)e−(α+βt/2)t/(1− e−(α+βC/2)C)

As the model is implemented in the Bayesian framework, priors for

both the prevalence (α) and trend (β) parameters needs to be speci-

fied. In order to provide a prior for the incidence, information about

the population size needs to be incorporated. This was done by not-

ing that the number of positive and negative individuals in a pop-

ulation can be approximately described by a binomial model, pa-

rameterised by the probability of infection p. Then denote by N+

the number of positive individuals known to have been infected be-

tween the time of censoring C and the time of sampling (defined as

t = 0), from a population of size N. With an uninformative Beta(1, 1)

prior for the probability of infection p the distribution of the prob-

ability of infection given the number of positives and negatives ob-

served is p ∼ Beta(N+ + 1, N − N+ + 1). Under the assumption of

a linear trend, the mean incidence over the time period C is equal to

the incidence at time C/2, λ̂ = α + β× C/2. The proportion p of ob-

served positive individuals are exactly one minus those that had not

been infected during any of the time periods up until the time of

censoring C. From this observation, the mean incidence λ̄ per time

unit can be derived from the proportion of positive individuals over

the time period C by the relationship:
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p = 1− (1− λ̄)C → 1− λ̄ = (1− p)1/C → λ̄ = 1− (1− p)1/C

For the trend parameter β, note that if the linear trend model is as-

sumed to hold over the time period C, then the incidence is not al-

lowed to become negative over this time. Using this, the restriction

for the trend becomes:

λ̄± β× C/2 > 0→

λ̄ > β× C/2 > −λ̄→

λ̄2/C > β > −λ̄× 2/C

Following this, the trend was assigned a uniform prior, β ∼ U(−λ̄×

2/C, λ̄ × 2/C). The intercept parameter α was then simply calcu-

lated from trend and λ̄ via α = λ̄− β× C/2.

3.3.2 Properties of the linear-trend-induced distibution of times since infec-

tion

The properties of the distribution ftsi(t) of times since infection are

somewhat counterintuitive. Figure 3.2 shows its shape for decreas-

ing (β = 0.05), constant (β = 0), and increasing (β = −0.05) pa-

rameter values, holding α constant to 0.1. The first thing to note is

that because we are looking backwards in time, coefficients have op-

posite sign to what at first might seem intuitive . β = 0.05 denotes

that the incidence rate has been decreasing by 0.05 per time unit,

whereas β = −0.05 denotes that the incidence rate is increasing.

The second thing to note is that all three curves have a similar up-

wards slope. The further back in time we look, the less likely we are

to find a case that occurred at that time. This is the consequence of

the implicit assumption mentioned above that only the time of latest

infection for each individual is taken into account, which means that
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Figure 3.2: Time since infection vs the value of ftsi(t), when assuming a linear

trend of incidence that is either decreasing, constant, or increasing.
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more recent infections can hide infections that occurred further back

in time. However, it will be demonstrated that it is still possible to

estimate the incidence trend from the parameters of the exponential

distribution.

The aim of this chapter is to recover the population-level trend of

incidence from test measurements taken from individuals that have

been infected at a some point in the past in a population where the

time-since-infection (tsi) distribution is assumed to follow the equa-

tion under a linear trend defined above. In order to study the prop-

erties of this inference problem, a first approach is to investigate the

simplified situation where the times of infection are known and gen-

erated using ftsi.

Including the priors described in the previous section, the expres-

sion for the log posterior of ftsi given observations of time since in-

fections X (denoted by LPf ), becomes

LPf (α, β|X) = log(U(α| − 2× λ̄/C, 2× λ̄/C))+

log Beta(λ̄|N + 1, N − N+ + 1))+

∑
∀i

log[(λ + β× Xi)
e−(λ+β×Xi/2)Xi

(1− e−(λ+β×C./2)×C))
× I(X < C)]

Figure 3.3 shows the resulting log-likelihood surface of LPf . Times

of infections X = {xi} were simulated from the probability distri-

bution of ftsi, and the value of the log posterior LPf given the sim-

ulated data was calculated over a grid of values for α and β. Note

that this is assuming that the times of infection were exactly known.

. There are two things to note in this image: the first one is that the

region of highest likelihood is that surrounding the black line. This

black line is the line for which the combination of α and β results

in the same average incidence λ̄, which indicates that the Beta prior

on λ̄ has a strong influence on the curvature of the log-likelihood

surface. Another thing to note is that the estimated log-likelihood
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Figure 3.3: Density surface of the log posterior distribution LPf over α (x-axis)

and β(y-axis), conditional on a collection of 1000 times since infec-

tion generated from the probability distribution defined by ftsi =

(α + βT)e−(α+βT/2)T/(1 − e−(α+βC/2)C). Yellow indicates a den-

sity value in the highest quantile, blue a density value in the lowest

quantile. Note that this assumes that times since infection are known

exactly; the full inference procedure includes estimating these times

since infection from test data.
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changes little along the line of equal mean incidence c, but drops off

quickly with increasing perpendicular distance to the line. There is

little distinguishing the region surrounding the true value (noted

by the black dot), from the rest of the likelihood along the line of

constant incidence. This indicates that while it will be relatively easy

to recover the value of λ̄, finding the correct combination of α and β

is more challenging.

3.4 test kinetics

The hindcasting framework incorporates knowledge of the kinetics

of diagnostic test responses after infection in the form of a latent

process model P(L|T, E, θL). This latent process model describes

(stochastic or deterministic) aspects of the dynamic process that de-

velop following the introduction of a pathogen to a host. This pro-

cess is complex, with a wide variety of factors. However, as pointed

out by Pugliese and Gandolfi (2008), for many applications it is

enough to describe this dynamic as a two-part interaction, with one

variable representing the overall level of immune response, and a

second variable representing the total pathogen burden. Formalis-

ing the interaction of these two variables over time by simple paired

differential equations, it is possible to capture many of the quali-

tative patterns of interest for disease modelling, as will be demon-

strated here, this approach proves useful as the basis for statistical

inference.

It will be assumed that the kinetics of antibody test response after

infection reflects an underlying development of the host immune

response. Similarly, when looking at the kinetics of e.g. a quantita-

tive PCR test, the development of the measured quantity of nucleic

acid will be assumed to reflect the pathogen burden in the host. In

other words, it is assumed that observed test measurements are pro-
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portional to host immune response and pathogen load, respectively.

Under these assumptions, a paired differential equation approach

can be used to generate realistic paired test kinetics reflecting under-

lying host-pathogen interactions.

For the purpose of evaluating the framework, example test kinetics

were generated using a Lotka-Volterra predator prey type model.

This type of model is usually defined in terms of the growth rates of

two populations, a “predator” population, and a “prey” population,

where the “predator” eats eats the “prey”. For more details on the

properties of such models, see e.g. Wangersky (1978). In our case,

the pathogen fills the role of the “prey” which is being hunted by

the immune response, our predator. Denoting pathogen levels at

time t by Na(t) and immune response levels at time t by Ab(t) the

model can formally be written as:

dNa/dt = (bNa − h× Ab(t))× Na(t)

dAb(t)/dt = bAb × Na(t)− dAb Ab(t)

In these equations, bNa can be interpreted as the growth rate of the

pathogen in the host in the absence of an immune response, and h

can be interpreted as the proportion of pathogens that dies per time

unit for each unit level of immune response (i.e. the predation rate).

bAb is the the unit level of increase in immune response generated

per time unit for each single pathogen organism present in the host,

and dAb indicates the rate of decline of the immune response per

time unit in the absence of stimulation by presence of the pathogen.

The equations can be solved for a given set of parameter values us-

ing any generic linear ordinary differential equation (ODE) solver

to generate a bivariate function LV(t) = (Ab(t), Na(t)) describing

the mean trajectory of antibodies and pathogen load over time (see

figure 3.4). In practice, the values of LV(t) were pre-calculated for a

range of time points and stored in a lookup-table.For the purpose of
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evaluating the hindcasting framework, LV(t) was assumed to be be

known and used to define the latent process model.

Figure 3.4: Graph of a typical Lotka-Volterra curve. X-axis indicates time, y-axis

indicates “population size”/antibody level/pathogen load. Red line

indicates the trajectory for the prey (pathogen), blue indicates the tra-

jectory of the predator (antibody level).

Given a particular time since infection t, and using LV(t) as the la-

tent process model LV(t), the observation model P(Y|L(t), θY) can

be defined by assuming that observed test measurements are then

log-normally distributed around LV(t). Specifically, it is assumed

that test measurements come from a bivariate lognormal distribu-

tion around LV(E), where E are the times of exposure, with zero

correlation and independent standard deviation for the two tests:

log N(Y|µ = log(LV(E)), Σ =
( σ2

1 0
0 σ2

2

)
)
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The exact combination of tests used could have an impact on the

performance of the hindcasting procedure. By varying the parame-

ters of the Lotka-Volterra equations, three different combinations of

tests were generated, representing three disease types, or canonical

patterns of host-pathogen interaction in terms of test responses as a

function of time since exposure. Table 3.1 shows the parameter val-

ues used for each of these disease types; however it is the relative

response times of the two tests which determine the disease type.

Figure 3.5 shows development over time together with phase plots

for the three different canonical patterns. The set of parameters la-

belled a type 1 disease correspond to an incubating pathogen and

capture the type of interaction one would see for a pathogen which

has an incubation period during which it is reaching full strength,

followed by an immune response and a decline of pathogen levels,

until the host is completely cleared. This is modelled by assuming

a high growth rate for the pathogen, a moderately high number

of antibodies generated per pathogen, antibodies being efficient at

killing the pathogens, and a slow die off of antibodies. This results

in an initial high pathogen growth, until the antibodies have caught

up, bringing the pathogen load under control. Influenza is a classic

example of a disease where incubation plays a major role in its epi-

demiology and pathogenesis (Carrat et al., 2008).

The set of parameters labelled a type 2 disease correspond to a fast-

acting pathogen and assume that the growth phase of the pathogen

has already been completed at t=1. This is modelled by having a

high starting value for the nucleic acid values. It then models the dy-

namic with a slow pathogen growth, the antibody kill rate being ten

times the pathogen growth, and a low growth and die-off rate for

the antibodies, so that it takes some time for the pathogen load to

be brought down to zero. This pattern models rapid-acting diseases

such as norovirus infection (Lessler et al., 2009).
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Figure 3.5: Graphs of the three types of LV dynamics used, development over time

and phase plots. Left hand side shows kinetic curve over time (red in-

dicates pathogen load, blue indicates antibody response). Right hand

side shows phase plots in terms of locations over time in the space of

Antibody response (x-axis) versus pathogen load (y-axis). The graphs

on the right hand side also display 1000 example test results, gen-

erated by assuming 25% lognormal noise around the mean curves.

Dashed line indicates where on the the kinetic curve each point origi-

nate from.
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The set of parameters labelled a type 3 disease, models a ”chronic

infection with acute phase”, and assumes that the growth rate of

the pathogen is equal to the die-off rate of the antibody, an antibody

growth of ~1 antibody/pathogen and time unit, but that each an-

tibody is relatively ineffective in killing pathogens. In this way, the

pathogen load and the antibody levels reach a slowly declining equi-

librium after an initial growth phase, resulting in high levels of both

antibodies and pathogen load remaining for some time after the

pathogen has peaked. Scrapie and Tuberculosis are two diseases that

follows this pattern.

Table 3.1: Table of parameter values for different types of LV curves.

Pathogen

type

Prey

growth Pred

kill %

Pred.

growth

prey

death Starting

state

Prey

peak

time

Type 1 3 0.15 0.6 0.3 na=1,ab=0 2

Type 2 0.06 0.6 0.06 0.06 na=20,ab=01

Type 3 0.6 0.3 0.9 0.6 na=1,ab=0 2.5

The time scale over which these kinetics develop varies depending

on the type of pathogen modelled. As mentioned earlier, scrapie

(which would be a type 3 disease) is a a very slow-developing dis-

ease, where the expected development of the pathogen level would

be on the order of several years (United States Department of Agri-

culture, 2010). Similarly, Paratuberculosis (also type 3) can take up

to a year of in-host replication before it starts showing symptoms

(OIE, 2014). On the other hand, bluetongue virus (a type 1 disease,
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with a 10 day incubation period) in sheep has a time period of 2-

7 weeks from infection, through incubation and showing of symp-

toms, to potential clearing of the disease (Sperlova and Zendulkova,

2011). In humans, Chlamydia (also resembling a type 1 disease)

takes around a month to show symptoms, but the bacteria can then

remain persistent at a low level for months or years after that, caus-

ing damage to the patient (Hogan et al., 2004). Norovirus infection

(a type 2 disease) has a very quick course of action with only about

4 days from infection to clearance (Patel et al., 2009).

In general, we can only expect to estimate times since infection ac-

curately while the infection process is ongoing, i.e up to the time it

takes for the infection dynamic to go from exposure to clearing the

infection and removing all antibodies. Fortunately, antibodies often

remain for extended periods of time; however, once the pathogen is

cleared, the benefits of multiple tests are lost. If the dynamic reaches

a more-or-less steady state with only minor changes after T = 5

(whatever the unit of T is), then we can only reasonably expect to

distinguish times since infection up until time 5, and by extension

only expect to hindcast population-level dynamics of the disease

that occurred within that time frame. The important characteristic

of multiple diagnostic tests for the purpose of hindcasting is that

the different tests have different dynamics over time. Looking at the

test kinetic phase plots in Figure 3.5 (right column), we can see that

the bivariate trajectories give more information than if we were to

project them onto either axis (i.e. take only a single measure of infec-

tion). With differing test kinetics it is, in principle, possible to com-

bine the test results into as close-to-unique signatures of times since

infection as possible. The greater the difference between test tra-

jectories, the more precision is gained from combining them. Even

with two tests with identical kinetic trajectories, the combined mea-

surement will reduce measurement error and increase precision.
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However, with increasing separation of timescales, the ability to dis-

tinguish early from late infections becomes both more robust, and

more sustainable under higher levels of measurement error.

From these observations, and looking at the three categories of paired

kinetics displayed above, we would expect combined test data from

a type 1 disease to give precise levels of estimate under moderately

high levels of noise up until T = 5, since both test kinetics are

changing and providing information up that point. A type 2 disease

reaches a slow-changing state after T = 7 for both antibody levels

and pathogen load, and would thus have difficulty providing infor-

mation beyond this time horizon. The final type 3 disease exhibits a

well-defined separation between the two curves and a strong interac-

tion occurring up until T = 15, indicating that such an infection may

provide useful information at least up until that time.

3.5 implementation

3.5.1 Describing endemic trends using the hindcasting framework

The test kinetics and the distribution of times since infection are

combined to make use of the hindcasting framework. Recall that

in general, the posterior probability P(E, θ|Y, T) of a set of exposure

times E and model parameters θ given observed data Y and obser-

vation times T, can be written as a combination of a deterministic

process L(T, E) of expected test results at a given time point , an ob-

servation process P(Y|L(T, E), θY), and a distribution of exposure

times P(E|θE), forming the expression

P(E, θ|Y, T) = P(Y|L(T, E), θY)P(E|θE)P(θ)/(P(Y, T))

∝ P(Y|L(T, E), θY)P(E|θE)P(θ)
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In the linear trend scenario, the distribution of exposure times is

defined as P(E|θE) = ftsi(E|α, β) = (α + βE)e−(α+βE/2)E/(1 −

e−(α+βC/2)C), with the priors for α and β defined in section 3.4. The

deterministic function L(T, E) describing expected test levels was

set as the solution LV(t) to the Lotka-Volterra equations defined in

section 3.5, with values over time included in the JAGS model as a

lookup table.

Finally, the observation process P(Y|L(T, E), θY) giving the distribu-

tion of observed test data was set as a bivariate lognormal distribu-

tion around LV(t) with zero correlation and independent standard

deviation for the two tests:

P(Y|L(T, E), θY) = log N(Y|µ = log(LV(E)), Σ =
( σ2

1 0
0 σ2

2

)
)

Defining suitable priors for the lognormal distribution proved chal-

lenging - in the traditional parametrisation of the lognormal dis-

tribution, standard deviation σ is defined on the log scale. How-

ever, in terms of interpretability, it is easier to work on the observed

scale, using (σ?
1 , σ?

2 ) = exp((σ1, σ2)). In this way, σ? > 1, and in-

terpretable as the multiplicative variation around the mean; e.g.

σ? = 1.5 implies a relative standard deviation of 1.5, and ~68% of

the mass of the distribution fall within mean/1.5, mean ∗ 1.5. How-

ever, when putting a prior on σ?, and generating posterior samples,

the MCMC chains proved to be mixing very slowly. This was likely

due to the sampler having a fixed step length despite the fact that

a step change of size δ when σ? is close to one has a much larger

effect on the likelihood than the same δ step when σ? is large. To

counter this slow mixing, the prior was instead set for σ?? = eσ?−1

and given an exponential distribution P(σ??) = λe−λ(σ??−1), shifted

to account for σ?? always being above 1 (since σ? − 1 > 0). The full

expression of the prior is thus P(sigma?? = x) = λe−λ(x−1). After ex-

perimentation, λ was chosen to be 20, which gave a posterior where
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the majority of the mass was under σ? < 1.5, and only an infinitesi-

mal mass above σ? > 2.0.

Given the priors and the model for times since exposure, the full ex-

pression for the posterior distribution of P(E, θ|Y, T) thus becomes

P(E, θ|Y, T) = P(Y|L(T, E), θY)P(E|θE)P(θ) ∝

∏
∀i
[log N(Yi|µ = log(LV(Ei)), Σ = (σ?

1 , σ?
2 ))]×

∏
∀i
[(λ + β× Ei)

e−(λ+β×Ei/2)Ei

(1− e−(λ+β×C/2)×C))
× I(Ei < C)]×

λe−λ(eσ?1−1−1) × λe−λ(eσ?2−1−1)×

U(α| − 2× λ̄/C, 2× λ̄/C)×

β(λ̄|N + 1, N − N+ + 1))

3.5.2 Simulated data for framework evaluation

In order to determine the feasibility of the approach laid out in the

previous section, the ability of the hindcasting framework to detect

the direction of change in the incidence of infections in a population

was evaluated. The impact and interactions of a number of differ-

ent factors on the performance of the hindcasting procedure were

investigated by generating data under a sequence of scenarios that

is described below. For all the scenarios used to evaluate the per-

formance of the hindcasting framework, data were generated by

sampling the specified number of times since infection from the dis-

tribution ftsi of times since infections under a linear trend. Given

these sampled times of infection, sample data was generated using

a lognormal observation error around the expected mean test val-

ues defined by specified test kinetics associated with the scenario.

The multiplicative standard deviation for the lognormal observation
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term P(Y|L(T, E), θY) was set to a relative variation of 1.25 around

the mean kinetic curve. The overall population size that was sam-

pled was chosen so that the expected number of positive samples

would be constant across the scenarios which have different levels

of incidence. By fixing the number of positive samples, rather than

sample sizes of positive and negative individuals, the effect of differ-

ing trends and levels of incidence could be evaluated without being

confounded with sample size effects.

The initial exploration of decreasing, constant, and increasing trends,

was conducted using a single data set for each type of trend. Subse-

quent scenarios were evaluated repeatedly, each time with indepen-

dently generated identically distributed data sets. The total number

of different scenarios was 193, with each scenario being run 11 times.

The JAGS code for evaluating these scenarios was run on Amazon’s

cloud computing service EC2 (Juve et al., 2009). Running all 2213

scenarios took 72 hours using a 32 core computation-optimised

linux instance.

Scenarios with increasing, constant, and decreasing trends

In a first step, the framework was applied to three data sets gener-

ated under different scenarios: a scenario with decreasing incidence

trend (50% decrease in the level of incidence over the time span), a

scenario with constant incidence trend, and a scenario with increas-

ing incidence trend (50% increase in the level of incidence over the

timespan). For all of these initial scenarios, an incubating disease

(type 1) was assumed, a sample size of 5000, an incidence at the

time of sampling of 0.05 per individual and time unit, and a time

span of 20 time units. For all three trends, it was assumed that two

diagnostic tests were used.

Scenarios with different test kinetics and trends of different magnitude

In the second set of scenarios, the effect of trend and sample size on

the ability of the hindcasting framework to recover trends was con-
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sidered. Data sets were generated with different trends (50% increas-

ing or decreasing, 25% increasing or decreasing, or constant), dif-

ferent assumed sample sizes (100, 250, 500, 1000 and 2000 samples),

and different test kinetics (using disease types 1, 2, and 3 as defined

in section 3.4). For all scenarios, it was assumed that the incidence at

the time of sampling was 0.1 per individual and time unit, and that

two diagnostic tests were used.

Scenarios comparing different test kinetics and number of tests

In the third set of scenarios, the trend was fixed to a 50% increasing

trend, with an incidence of 0.1 per individual and time unit. Instead,

it was assumed that either two diagnostic tests, only an antibody

based test, or only a Nucleic acid (or antigen) based test were used

for testing collected samples. Sample sizes again varied between 100,

250, 500, 1000 or 2000 samples.

Scenarios modelled after real-world settings

Finally, the performance of the framework was also evaluated for

three case studies based on plausible parameter values, to produce

a first indication of the real-world usefulness of the hindcasting

framework. These three examples were modelled after scrapie in

sheep, Chlamydia in humans, and squirrelpox in squirrels. Scrapie

in the US has been subject to an intense control effort since around

2002. Between 2003 and 2009, the estimated prevalence decreased

from 0.2% to 0.05%, a reduction of 75%,equivalent to a 12.5% reduc-

tion per year over 6 years (United States Department of Agriculture,

2010, p7). In terms of the Lotka-Volterra dynamics discussed ear-

lier, scrapie would correspond to a slow-growing pathogen with

a longterm chronic infection, the third of the three generic disease

types. The development of scrapie in the US was thus modelled us-

ing a starting incidence of 0.2%, a 12.5% reduction per year over 6

years, using disease type 3 acting on a timescale where peak pathogen

burden is reached after 3 years, the typical time of onset of clinical
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signs for scrapie (United States Department of Agriculture (2010), p9

).

Chlamydia incidence in Sweden decreased between 1990 and 1995,

after which the trend reversed and increased until 2007. In 2006,

a mutated strain of Chlamydia trachomatis that was not detected by

the standard tests started spreading in some Swedish counties (Her-

rmann et al., 2008). By the time this strain had been discovered and

tests adjusted, a number of cases that would otherwise have been

detected continued to carry the infection and infect others. By 2007,

the number of cases reported yearly had increased from ~32500 in

2004 to 47500, a 50% increase. Based on these events, a scenario

was modelled by assuming a 0.02% incidence (the approximate in-

cidence among 20-24 year olds, the highest-risk group). Chlamydia

was considered a type 1 disease where the disease dynamic plays

out over approximately 2 years (to model both the potential for per-

sistent infections and the duration of antibodies), and a trend of 50%

increase over these two years.

Squirrelpox is a viral disease that plays a major role in the decline

of European red squirrel (Sciurus vulgaris) populations in the UK.

The eastern grey squirrel (Sciurus carolinensis), which are asymp-

tomatic carriers of squirrelpox, was imported to the UK in the late

1800s (Stritch et al., 2015). Grey squirrels have since spread the dis-

ease to red squirrels, for which squirrelpox is a deadly infection.

Squirrelpox infections have recently been reported in Ireland, and

a study there indicated a 34% seroprevalence; though it is unknown

how long the virus has been circulating. This setting was modelled

by assuming a 30% incidence at the time of sampling, a fast-acting

type 2 disease where the dynamic process lasts over three years (the

life expectancy of red squirrels). Since the trend of squirrelpox is un-

known, a range of different slopes were examined.
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The scrapie scenario is used to investigate the number of cases re-

quired to use the hindcasting framework for evaluating the effect of

control measures in a low-incidence, livestock context. The Chlamy-

dia scenario is used to investigate the number of cases required to

recover increasing trends in a medium-incidence human context.

The squirrelpox scenario investigates the precision with which one

can estimate differing trends in a high-incidence, wildlife context

where the number of available samples are limited. For these three

case studies, ten different datasets was generated for each set sam-

ple size, and the hindcasting framework was applied to each data

set.

3.5.3 Sampling from the posterior using JAGS

For conducting inference of the endemic trend, the posterior distri-

bution of parameters described in the previous section is evaluated,

conditional on observed test data and knowledge of expected test

kinetics.

A high level language for hierarchical Bayesian models known as

JAGS (Plummer, 2003) was used to implement the statistical frame-

work and evaluate the posterior distribution using the Metropolis-

Hastings algorithm combined with Gibbs sampling (see section 1.5.2

for a more detailed discussion). The code was called from within R

using the rjags package (Plummer, 2014). Initial starting values for

the parameters in the MCMC were chosen at random from the prior

distributions, independently sampled for each chain. Samples were

then taken from the joint posterior distribution of times since infec-

tion across all individuals, and parameters of the trend of incidence.

As noted in the introduction (section 1.5.4) a key question with the

implementation of MCMC algorithms is that of convergence and

mixing. The reliability of our sampling tools were assessed using
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Gelman-Rubin (GR) statistics for the posteriors as well as visual

inspection of trace plots. Figure 3.6 shows typical trace plots from

three scenarios (decreasing, constant and increasing trend) the last

1000 draws for each chain (thinned so that every 10th draw is shown)

of the population level trend parameter β, the intercept parameter α,

and the mean incidence λ̂ , from five different chains after all chains

have been run for a 1500 iteration burn-in.

For the full range of scenarios, it was not feasible to inspect trace

plots. Instead, a Gelman-Rubin statistic above 1.15 was used to filter

out those runs that had not converged (~5% of the total runs). The

results from these runs were excluded from subsequent analysis.

3.6 results

3.6.1 Scenarios with increasing, constant, and decreasing trends

For the first set of scenarios, the posterior distribution was evaluated

using the JAGS implementation of the framework as described ear-

lier, and the results studied in-depth. Figure 3.7 shows the posterior

distributions for the incidence parameter α, the slope parameter β,

and the mean incidence λ̂ using data from the three scenarios.

Figure 3.7 clearly indicates that the posterior distributions of the

trend parameter differ significantly between the increasing, the con-

stant and the increasing trend scenarios, and correctly identifies the

direction of change, with the 95 % credible intervals excluding the

zero for the increasing and decreasing scenario. In each scenario the

posteriors associated with the five realisations (denoted by the five

colours) overlap, indicating that the MCMC chain has converged. It

is however interesting to note that the estimates are all biased com-

pared to the true value, although the true value lies within the 95 %

credible interval.
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Figure 3.6: Traceplots of the the MCMC samples of the α(incidence at the time of

sampling) and β(trend) parameters for three different scenarios, with

five chains each. Colours indicate the respective chains.
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Figure 3.7: Density plots for the MCMC samples of α and β from the posterior,

fitted to data generated assuming populations with decreasing(top

row),constant (middle row), and increasing (bottom row), and of inci-

dence. Each colour for a density distribution indicates the results from

one of the five chains that was generated from each MCMC run. The

vertical line indicate the true parameter values.
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Figure 3.8: Histogram of estimated times since infection, together with the trend

line based on estimated parameter values of ftsi(t) (red) and the trend

line based on true parameter values for ftsi(t)(black). Bars indicate

the proportion of mean posterior estimates of infection times for indi-

viduals falling into that time point. Grey shading indicates the 95%

posterior credible interval for the trend.
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The distribution of estimated infection times across the population

of samples is plotted in Figure 3.8. This figure displays the histogram

of the mean posterior estimates of the infection times, overlaid with

a red line indicating the probability distribution of times-since-infection

(TSI) defined by the mean posterior estimates of the trend and inter-

cept parameters and the definition of ftsi from section 3.3. The black

line indicates the TSI distribution defined by the true parameters

and that was used to generate the data. The true trend curve and

the estimated trend curves follow each other reasonably well, and

the histogram of estimated times since infections also seem to follow

the true trend. However, there seem to be small bias in very recent

infections - the final bar of the histogram is lower than preceding

ones, and the trend (in particular the decreasing trend) seem to be

dragged down by this. This seems to indicate that the source of the

bias is a minor tendency for the hindcasting framework to estimate

very recent infections as having been infected for a longer time pe-

riod.

As mentioned in section 3.3.3, because of the way reinfections hide

preceding infections, the trend lines are roughly exponentially in-

creasing for all three scenarios. The good fit of the estimated trend

can be better seen by viewing them in a traditional manner as indi-

cating the incidence of cases over time (see figure 3.9). This graph

shows the linear trend lines defined by the estimated parameters,

together with histograms of the number of cases that were infected

in each time period. Note that the uncertainty of the estimated inci-

dence increase as you go back in time.

3.6.2 Scenarios with different test kinetics and trends of different magnitude

Following evaluation of the individual runs, performance was fur-

ther evaluated by generating data with different slopes of the inci-
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Figure 3.9: Histograms of actual times of infection generated under the different

scenarios, (counting multiple infections per individual separately) to-

gether with estimated trend line. Grey shading indicate 95% posterior

credible intervals of the linear trend
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Figure 3.10: Estimated trend lines (thin lines) for different disease types (indi-

cated by colour), using different combinations of number of sampled

positive individuals and strength of slope. The thick black lines indi-

cate the true trend line
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dence trend, with different numbers of collected positive samples,

and different disease type. Figure 3.10 shows the mean posterior es-

timated trends obtained by applying the hindcasting framework to

generated data sets for each combination of slope, sample size and

disease types. These plots indicate that the mean of the posterior dis-

tribution of the trend parameter usually correspond well with the

true trend lines (indicated in black), if the sample size was 500 posi-

tive individuals or more. For trends of +/-25% change over the time

period and samples sizes of 250 or less, the estimated trend was no

longer reliable, and could even have the wrong direction of slope.

There was no obvious relationship between disease type and perfor-

mance.

It is also of interest to quantify the level of uncertainty in the esti-

mated trend. Figure 3.11 show posterior credible intervals of the

trend parameter in the various scenarios. Here it can be clearly seen

that with a sample size of 2000 positive individuals, all posterior

credible intervals exclude zero for the scenarios with 50% increase,

25% decrease, and 50% decrease over the time period of interest.

With 1000 samples, the posterior credible intervals exclude zero

for the +/-50% change scenarios. With 500 samples, the maximum

posterior estimates are still close to the true values for most scenar-

ios, but the credible intervals start overlapping zero. At 250 samples

or less, the posterior estimates of all scenarios become unreliable.

Again, no obvious pattern between different disease types can be

seen.

Figure 3.12 shows the reliability of the posterior estimates, sum-

marised in terms of the average proportion of the mass of the pos-

terior distribution that lies on the correct side of zero. This quantity

can be interpreted as the posterior probability for the correct sign

of the slope. . Note that these proportions are somewhat unreliable,

as we only have 11 replicates for each point. Nevertheless, some in-
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Figure 3.11: Posterior Credible intervals for the slope parameter of the trend from

scenarios with different sample size and slope relative to an incidence

at the time of sample of 0.1 per time unit and individual. Thick grey

line indicates zero slope, dashed black line indicate true slope. Dots

indicate mean posterior estimate of the slope; lines indicate 95% pos-

terior credible interval. Color indicate different disease type
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Figure 3.12: Average posterior probability for the true sign of the trend parame-

ter . The posterior probability is defined as the proportion of the 95%

posterior credible interval that indicate correct sign for the trend pa-

rameter. The dots indicate the posterior probability averaged over the

11 replicates for each combination. Colour indicate different disease

types.
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teresting patterns can be seen. A proportion of 75% of runs exclud-

ing zero seems to be reached at 1000 samples for the 50% increase,

25% and 50% decrease scenarios; for the +/-50% change scenarios,

500 samples seem to have been enough to clearly distinguish the

trend from a constant one. Also, as long as the number of samples

are 250 or above, the hindcasting procedure can distinguish between

an increasing and a decreasing trend, as indicated by the upper row,

though it seems more difficult to correctly identify an increasing

trend than a decreasing one. As in the earlier graphs, no clear pat-

terns between different disease types could be identified.

3.6.3 Scenarios comparing different test kinetics and number of tests

The effect of combining diagnostic tests for hindcasting, compared

to using only single tests, was evaluated in scenarios assuming a

50% increasing trend (see figure 3.13). Whereas the combination

of tests performed well for sample sizes above 250, the single-test

scenarios showed some peculiarities. Scenarios with a single anti-

body test and disease type 3 produced exceptionally bad estimates

of the trend no matter the sample size. On the other hand, scenarios

with either disease type 1 or 2 fell down when using only a nucleic-

acid based test. Equally surprising is that for disease type 1 and 2,

the performance was almost identical with a single antibody test,

as with a combined test; similarly with disease type 1 and nucleic

acid test. This indicates that the interaction of types of tests used,

the trend of disease in the population, and the type of pathogen

considered is not completely straight-forward and warrant further

research.
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Figure 3.13: Posterior Credible intervals for the slope parameter of the trend from

scenarios with different sample size and number of tests used. Thick

grey line indicates zero slope, dashed black line indicate true slope.

Dots indicate mean posterior estimate of the slope; lines indicate 95%

posterior credible interval. Colour indicate type of disease. Column

indicate whether only antibody tests was used, only nucleic acid

based tests, or both types of tests combined
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3.6.4 Scenarios modelled after real-world settings

The resulting estimates of the three different cases-studies using

real-world plausible parameters can be seen in figure 3.14.

The scrapie-based scenario indicates that for these parameters, it

would be possible to prove a disease reduction with as few as 100

samples, seeing as all but one of the posterior credible intervals ex-

clude zero. With 1000 samples, the posterior credible interval indi-

cates the correct slope to within a factor of 2.

For the chlamydia-based scenario, 500 cross-sectional samples would

be needed to prove that the trend is increasing; with 2000 cross-

sectional samples, the correct slope could be estimated to within a

factor of 2.

Finally, with the squirrelpox scenario, it was assumed that only a

limited number of animals would be able to be caught. Assuming

that 250 animals were caught, the true trend would have to be +/-

50% change in incidence over the three years, in order to conclu-

sively demonstrate an increasing or decreasing trend.

3.7 discussion

This chapter has introduced and tested a novel technique for hind-

casting the history of exposure to disease in a population using only

cross-sectional data combined with information on pathogen test

kinetics. The results demonstrate that this procedure enables esti-

mation of changes in disease incidence over time. The results also

demonstrated how this approach is able to distinguish between an

increasing trend and a stable, or decreasing trend, as well as pro-

duce posterior estimates quantifying this disease trend. This goes

beyond previous sero-incidence studies which estimated the average

incidence in a population, without attempting to estimate tempo-
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Figure 3.14: Posterior Credible intervals for the slope parameter of the trend from

three different scenarios with real-world plausible parameters. For the

scrapie and Chlamydia scenarios, the trend was fixed and the sample

size varied. For the Squirrelpox scenario, sample size was fixed at

250 animals, and the trend varied. Dots indicate mean posterior esti-

mate of the slope; lines indicate 95% posterior credible interval. Black

dashed lines indicate true trend, and light-grey line indicate zero.



3.7 discussion 109

ral trends in prevalence (Baguelin et al., 2011; Nielsen et al., 2011;

Simonsen et al., 2008).

The use of Lotka-Volterra (LV) equations to describe the pathogen-

host dynamic, and thus the joint development over time of an anti-

body and an antigen-based test, made it possible to consider several

different archetypes for the pathogen-host dynamic. Hindcasting

was found to be possible for all of the different archetypes exam-

ined. Further, different archetypes proved to result in very similar

overall hindcasting performance, with the exception of robustness to

changes in number of tests used. The results on number of tests ver-

sus performance in section 3.6.3 seem to indicate that using a combi-

nation of diagnostic tests is more robust across the board than using

a single diagnostic test; and that it may be possible to use a single

diagnostic test for hindcasting, but it may also fail completely. This

warrants further research into the specific requirements of disease

kinetics for hindcasting.

The results obtained from evaluating scenarios with parameters

close to observed epidemiological patterns in scrapie, Chlamydia,

and Squirrelpox, indicate that useful precision levels can be reached

with realistic sample sizes. The scrapie scenario indicated that on

the order of 100-1000 samples could provide useful information.

Given the size of the sheep industry, and that schemes for the surveil-

lance of Scrapie already exists, such studies could feasibly be con-

ducted (under the assumption that suitable test diagnostics could

be found). The chlamydia scenario indicated that at least 500, and

preferably more than 2000, crossectional samples would need to be

taken. This would be a large study, but in settings where chlamydia

surveillance is otherwise lacking, could potentially still be motivated

by the overall public health costs of Chlamydia. Finally, in the case

of squirrelpox, it was indicated that at least 250 animals would need

to be caught and tested. Thisis a very large study in wildlife settings;
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further, the trend would only rarely be as large as 50%. Hindcasting

would thus only be usable for squirrelpox in certain special cases,

such as a setting where it had only recently been introduced to a

naive population, and it was needed to demonstrate that the intro-

duction had happened.

The results described in this chapter indicate that the hindcasting

procedure can provide reliable estimates of epidemic trends under

a range of conditions. However, as indicated in section 3.6.1 and by

figure 3.7, there seem to be a consistent, small bias when estimating

the incidence and slope parameters. The source of this bias has yet

to be fully explained. The prior distributions used in the hindcast-

ing framework are weak, and in the case of the slope and incidence

parameters, unbiased. Further, the density surface shown in figure

3.3, indicate that conditional on knowing the true time of infection,

the maximum likelihood estimates for slope and incidence are unbi-

ased. Together, this means that the source of the bias lie in the imple-

mentation of the MCMC algorithm and/or in the estimation of the

times since infection. Indeed, figure 3.8 indicate that the proportion

of very early infection tends to be underestimated (which would

lead to the estimated trend lines being pulled toward zero, causing

the described bias in the trend parameters). Further research would

be required to understand why this is the case. Early infections are

close to the edge of the support for the distribution of times of in-

fection, and the lognormal distribution used for these has a discon-

tinuity at t = 0 - both discontinuities and sampling at the edge of

support could be creating problems for the MCMC sampler. A solu-

tion might be to choose a prior density that does not asymptotically

vanish at t = 0, but it is not obvious what distribution(s) would be

suitable. It could also be the case that the optimal step size is differ-

ent for very early infections and for later infections. Since the lognor-

mal distribution is implemented with tail switching, this could then
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mean that samples from early times are disproportionally likely to

be rejected, biasing the resulting posterior samples. Drawing sam-

ples from a transformed variable might in that case be helpful but

again, it is not obvious which transformations would be suitable.

In real world applications, the kinetics used to inform the hindcast-

ing technique would likely be derived from other published data,

such as experimental infection studies. In such cases, the LV cal-

culations could be replaced with a simple lookup table for the ex-

pected mean response of the test at a given point in time, combined

with information on the variability of the test. Alternatively models,

such as the LV equations, fitted to available test kinetic data could

be used.

The natural pairing of tests to be modelled with the LV approach

is a nucleic acid test for genetic material from the pathogen (e.g. a

realtime PCR test) or an antigen ELISA, combined with a test mea-

suring the antibody test response, such as a quantitative ELISA test.

However, any combination of two or more tests commonly used for

pathogen diagnostics could be used, though a LV approach would

no longer be suitable. Other examples are a pairing of a culture-

based test combined with IGG antibodies, or even the severity of

symptoms measured on an ordinal scale combined with viral load

measurements. Thus, a wide range of diagnostic measures could po-

tentially be used within the hindcasting framework presented here.

The results from this and the next chapter provide strong arguments

in favour of recording raw test results together with the resulting

diagnosis, and for utilising more than one diagnostic test whenever

feasible. Thus, when setting up surveillance systems, it should be

emphasised that the results of all diagnostic tests used should be

recorded in the database. Such a database should also detail the

quantitative level of evidence (i.e. the test level) in addition to the

regular binary ”infected/non-infected” result. The cost of conduct-
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ing and recording the result of two or more diagnostic tests should

be considered in relation to the benefits. For example in terms of

feedback to farmers and policymakers on the impact of control mea-

sures and for detecting any potential costly changes in the preva-

lence. It should also be noted that the methods introduced here en-

able such benefits to be derived from cross-sectional data and there-

fore the additional costs described above should be compared with

the costs of running longitudinal studies.

An important extension to the work presented here is to consider

more complex changes in pathogen incidence than simple linear

trends. In principle, since the hindcasting procedure provides ap-

proximate times of exposure any model that describes the pattern of

times of exposure could be considered. The linear trends described

here are primarily suitable for endemic diseases. Therefore, in the

following chapter, development of the hindcasting technique is con-

tinued by considering outbreaks of epidemic diseases.
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C H A P T E R 4 : T H E A P P L I C AT I O N O F H I N D C A S T I N G

I N E P I D E M I C S C E N A R I O S

The following chapter has been submitted as a paper to PloS Com-

putational Biology on the 18th of June 2015, and is reproduced here

in the format of that journal. The original title of the paper was

Using combined diagnostic test results to hindcast trends of infection from

cross-sectional data

The paper describes an expansion of the hindcasting framework

described in chapter 3 to the hindcasting of disease outbreaks. In

such settings the timescale of interest is shorter than for endemic

diseases, and so the issue of reinfections can be ignored. Since the

disease incidence change more rapidly, the assumption of a linear

trend is exchanged for that of a lognormal trend. The hindcasting

framework assuming lognormal trends is then applied to two case

studies, based on one outbreak of bluetongue and one outbreak of

whooping cough, to estimate the incidence trend in both increas-

ing epidemics, as well as epidemics past their peak. In this way, it

is shown that hindcasting can be used to determine the stage of an

outbreak at the time of sampling, thus informing potential outbreak

responses.
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4.2 abstract

Infectious disease surveillance is key to limiting the consequences

from infectious pathogens and maintaining animal and public health.

Following the detection of a disease outbreak a response in propor-

tion to the severity of the outbreak is required. In order to assess

this severity, it is critical to obtain accurate information concerning

the origin of the outbreak and its forward trajectory. However, there
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is often considerable uncertainty about the outbreak’s history prior

to first detection, which may lead to over- or under-reaction.

Data on the infectious status of individuals is accessible from a widen-

ing range of diagnostic tests that typically have different tempo-

ral characteristic, e.g. in terms of when peak test response occurs

relative to time of exposure. We have developed a statistical frame-

work that combines data from multiple diagnostic tests and is able

to hindcast (infer historical trend of) an infectious disease epidemic

prior to the time of detection.

Assuming diagnostic test data from a cross-sectional sample of in-

dividuals infected with a pathogen during an outbreak, we use a

Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate

time of exposure and the overall epidemic trend in the population

prior to the time of sampling. We evaluate the performance of this

statistical framework on simulated data based on two historical out-

breaks: a bluetongue outbreak in cattle, and a whooping cough out-

break in humans. The results show that hindcasting the outbreaks

can provide accurate estimates of epidemic trends, whether an out-

break is increasing or past its peak. We conclude that it is possible to

recover epidemic trends of both human and animal pathogens from

cross-sectional data collected at a single point in time.

4.3 introduction

Infectious disease surveillance is the first line of detection and de-

fence against infectious pathogens and therefore crucial to main-

taining animal and public health. However, the current state of dis-

ease surveillance has been characterised as deficient in terms of

both coverage and reporting speed for both humans (Butler, 2006)

and animals (Mörner et al., 2002; The Royal Society, 2002). The chal-

lenge is to use the data generated by this often sparse and biased
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surveillance, to decide on an appropriate response to disease out-

breaks. Any response needs to balance the social and economic con-

sequences of the adopted control strategy with the social and eco-

nomic risks posed by the outbreak (WHO, 2012b). In the case of the

pandemic H1N1 flu in 2009, early analyses mistakenly assumed the

epidemic had been only recently introduced, causing substantial

overestimates of the basic reproduction ratio (Mercer et al., 2011)

and case fatality rates (Echevarría-Zuno et al., 2009) that suggested

a far greater risk to human life than was actually the case, leading

to a more robust response than was necessary (Leung and Nicoll,

2010). The more complex settings typical of livestock and particu-

larly wildlife systems tend to result in the available surveillance data

being sparser still for animal diseases (Perez et al., 2011). In the UK,

the absence of routine surveillance for Salmonella in poultry in the

mid 1980s meant that the emergence of Salmonella Enteritidis PT4

was not recognised until it had become a major public health and

political problem by 1988 (Rodrigue et al., 1990). Early identification

of this epidemic caused by the new strain would have enabled faster

intervention..

Using the data available when an epidemic is first detected to esti-

mate its development at earlier times would help inform early deci-

sions of the potential risks posed by an outbreak, leading to a more

proportionate response than would be the case from waiting for the

epidemic trends to be revealed by subsequent real time monitoring.

In the current study, we introduce a novel statistical approach to re-

cover population-level trends of exposure from only cross-sectional

data by combining knowledge of the dynamic characteristics of mul-

tiple diagnostic tests to infer the timing of exposure events for indi-

viduals. Here we refer to the process of recovering such trends as

“hindcasting”, following terminology established in other papers

(Banakar et al., 2011; Kleczkowski and Gilligan, 2007; Wethey and
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Woodin, 2008) for reconstructing historical trends from currently

available data.

Several papers have recovered limited historical characteristics of

epidemics from cross-sectional data using a single diagnostic test,

e.g. an antibody test. For example, Giorgi et al. estimated the time

of the start of an HIV outbreak under assumptions of exponential

growth of viral load (Giorgi et al., 2010). Others have exploited in-

formation on diagnostic test kinetics, i.e., the pattern of diagnostic

test values during the course of infection, to estimate average inci-

dence rates. Examples include the use of antibody test kinetics to

estimate sero-incidence rates for influenza (Baguelin et al., 2011),

Salmonella in cattle (Nielsen et al., 2011) and Salmonella in humans

(Simonsen et al., 2008). One challenge in these kind of studies is that

the relationship between the magnitude of signals from diagnostic

tests and time since exposure is usually not monotonic; they tend

to increase and then decrease. This means that the inverse problem

of estimating time since exposure given a test value is non-unique

and although this can be framed as a statistical problem the result-

ing inference is highly uncertain (Giorgi et al., 2010; Simonsen et

al., 2009), limiting what can be estimated from test data. However,

there are often several diagnostic tests available that target differ-

ent aspects of the multi-faceted dynamic interaction between host

and pathogen, and thus exhibit different test kinetics (Casadevall

and Pirofski, 2000). That is, the profile of test responses, as a func-

tion of time since exposure, will differ depending on the underlying

diagnostic used and the immunopathogenesis of the disease. Thus,

in principle we can generate a unique signal for a given time since

exposure by combining results of diagnostic tests that respond on

different time scales. Here, we exploit this fact to develop a more ro-

bust statistical approach for analysing cross-sectional field data from

multiple diagnostic tests. To do so we make use of empirical infec-
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tion models that characterise test kinetics to infer the time since ex-

posure for each individual. While there is a considerable uncertainty

in the estimated exposure time for each individual, the combined es-

timates from multiple individuals can be used to describe the over-

all population-level distribution of infection times and estimate the

shape of the overall epidemic trend with a high level of confidence.

A detailed description of the hindcasting framework and case stud-

ies can be found in the methods section. We demonstrate the hind-

casting of epidemic trends by applying the developed framework to

case studies of real outbreaks of two contrasting diseases, whoop-

ing cough in humans and bluetongue in cattle (see Fig 4.1). For each

disease, we investigate two scenarios representing detection during

either the increasing or the decreasing phase of the epidemic. We

conclude that when combined with two (or more) appropriate di-

agnostic tests (i.e. that differ in their temporal response following

exposure, see Fig. 4.2) our methods allow historical epidemic trends

to be recovered from cross sectional sample data. Moreover for the

example diseases considered, suitable diagnostic tests already exist.

4.4 results

We applied the hindcasting framework (described in the methods

section, below) to case studies based on a recorded outbreak of whoop-

ing cough in humans, and a bluetongue outbreak in cattle (see Fig

4.1). For each outbreak we assumed two scenarios, firstly where a

cross-sectional sample was taken midway through the outbreak (in-

creasing epidemic trend/early detection), and in a second scenario

towards the end of the outbreak (decreasing epidemic trend/late

detection). Based on published temporal characteristics of real di-

agnostics, test results were then simulated for these samples (see

methods). For each disease (whooping cough and bluetongue) and
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each scenario (increasing and decreasing outbreaks) the hindcast-

ing technique was applied to the corresponding test results to assess

performance in recovering early increasing phases and late decreas-

ing phases of outbreaks.

Figure 4.1: Outbreak scenarios together with estimated epidemic curves. Top left:

Testing 100 whooping cough cases at week 35 of the Wisconsin out-

break. Top Right: Testing 100 bluetongue cases at week 7 of the 2007

UK outbreak. Bottom left: Testing 25 cases at week 25 of the Wiscon-

sin outbreak. Bottom right: Testing 30 cases at week 3 of the 2007 UK

outbreak. In all scenarios, cases were sampled from the full population

of cases shown in the outbreak data of Fig. 4.1 that had been exposed

before the time of testing. Vertical dashed lines indicate time of cross-

sectional sample. Red bars indicate cases included in the sampling

frame for testing, grey bars indicate cases not included. Red lines indi-

cate the mean posterior hindcast trend based on the cross-sectional test

data. The grey transparent regions around the trends indicate the 95%

posterior credible interval.

We evaluated the robustness of the hindcasting framework by re-

stricting the number of individuals sampled (i.e. in the outbreak
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data of Fig. 1 selecting only a subset of individuals infected at the

sampling time), and by using only a single diagnostic test.

The results show this technique was able to estimate epidemic trends

for both increasing and decreasing scenarios, in both whooping

cough and bluetongue outbreaks (Fig 4.2). For the increasing whoop-

ing cough epidemic, when assuming a sample of all 122 cases that

had occurred between the start of the epidemic up to week 25, the

coefficient of determination (R2) between underlying case counts

(smoothed by a 7-day moving average) and the estimated epidemic

trends was 0.74, with a 95% confidence interval of [0.69-0.78]. When

sampling 230 cases from the full whooping cough epidemic up un-

til week 36, after it had declined, the curve fit was somewhat better,

with R2 of 0.82[0.68-0.94].

We also looked at the bluetongue epidemic, which had substantially

fewer cases. When assuming a sample of the 26 animals that had oc-

curred during the increasing phase, during the first two weeks, the

fitted curve was nearly perfect, with an R2 of 0.9[0.86-0.92]). How-

ever, for the corresponding decreasing scenario, assuming a sam-

ple of the 61 animal cases that had occurred up to week seven, the

hindcast trend could not fully capture the erratic nature of the un-

derlying case count data, as indicated by R2 values of 0.21[0.15-0.27].

Nonetheless, the trend did indicate an elevated incidence over the

stretch of time when the majority of cases occurred, thus capturing

the approximate time that had elapsed between the start of the epi-

demic and the time of sampling.

When reducing the sample size, the hindcasting technique was still

able to recover both increasing and decreasing phases. The good fit

was maintained with sample sizes as low as 20 individuals, with R2

values for the whooping cough scenarios, of 0.77[0.27-0.83], for the

increasing and 0.67[0.09-0.86] for the decreasing scenario. Similarly,
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Figure 4.2: Graphs of the kinetics of diagnostic tests used in the paper. Top: Diag-

nostic test kinetics for Whooping cough, with an antibody test(solid

line) and a test measuring bacterial load (dashed line). Bottom: Diag-

nostic test kinetics for bluetongue, with an antibody test (solid line),

and a test measuring viral load (dashed line). The graph is showing

idealised test kinetics, based on published data on Pertussis (Bidet et

al., 2008; Teunis et al., 2002) and Bluetongue tests (López-Olvera et

al., 2010) (see methods for details).
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for the increasing bluetongue scenario, also assuming 20 samples,

the R2 was maintained at 0.91[0.87-0.93]).

The performance of the hindcasting technique was significantly

hampered when using a single diagnostic test instead of two con-

trasting ones. For the increasing phase of the bluetongue and whoop-

ing cough outbreaks, the average performance was still acceptable

when hindcasting trends based on a single antibody test from 20 in-

dividuals, but with substantially higher variability. The average R2

was 0.83[0.04-0.86] for the increasing whooping cough, and 0.85[0.74-

0.89] for the increasing bluetongue scenario. Hindcasting performed

substantially worse when using only one test in the decreasing whoop-

ing cough scenario, with R2 of 0.59[0.28-0.89] even when using the

full set of cases, and failed completely when using just 20 cases (R2

0.04[0-0.28]).

To get a better understanding of the effect of different tests on the

performance of the hindcasting technique, we investigated how di-

agnostic test data and the combination of different tests affected the

prediction of the time since infection. The images in Fig 4.3 show

how the likelihood of estimated times of infection given observed

test data varies as a function of actual time since exposure. Each

pixel is coloured by generating 10 observations from the distribution

of test measurements at a time since exposure given by the X axis,

and calculating the likelihood for a time of exposure given by the Y

axis, conditional on these observations. Areas in dark red indicate

regions of higher likelihood. From the point of view of accurately re-

covering historic trends in the epidemic the ideal result would have

the maximum likelihood values along the diagonal which would

mean the likelihood of time since exposure was very firmly focussed

on the true exposure time given observed data.

It was interesting to compare the kinetics of the whooping cough an-

tibody test as seen in Fig 4.2, with the corresponding image (4.3a) of
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Figure 4.3: The graphs show the log likelihood of inferred times of exposure as a

function of true time since exposure, given test data generated assum-

ing that the individual was exposed to whooping cough (top row) or

bluetongue (bottom row) at the true time. Both the X and Y axes are

on a log scale. Each pixel represents the value of the likelihood at a

time of exposure given by the Y axis, given 10 test results, generated

assuming a time since exposure given by the X axis.. The colour of

the pixel indicate the likelihood for an estimated time, given the sam-

ple data, with dark red being most likely, and pale yellow being least

likely. A clear, dark red diagonal indicates that the time since infection

is easily recoverable, while a more diffuse diagonal indicates higher lev-

els of uncertainty (see the results section for details). The first column

shows results based only on data from the antibody test relevant to the

disease in question, the middle column results based on an appropriate

nucleic acid test, and the right hand column shows the results based

on both tests (see text for details).
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the likelihood of exposure time, based on observing test data from

this single diagnostic test. The times shown in both Figures 4.2 and

4.3 are times since exposure; short times since exposure represent

more recent infections. The times of 20 days or less since exposure

correspond to the phase of infection where the test response is in-

creasing rapidly. Here, the probable infection times (red coloured

pixels), given the data, are centred on the diagonal (i.e. the true ex-

posure times) with a narrow band of high-probability red pixels. We

can see that for times since exposure of greater than 20 days, when

the kinetics of the antibody test are developing at a slower pace, the

diagonal of red pixels becomes wider and more diffuse, indicating

a greater variation around the true times since exposure. Further-

more, we can see that there are two different diagonals crossing at

25 days. This corresponds to the peak of the diagnostic response

curve, with the two diagonals indicating the possibility that a given

test result could have been the result of testing an individual dur-

ing either the increasing or the decreasing phase of the response

curve. In general, estimation of the time since exposure is more pre-

cise when the true time since exposure corresponds to phases where

the response is changing rapidly, and is more difficult to infer when

the test response levels out (4.3b and d). For diagnostic tests with a

peaking response, estimating the time of infection can be precise but

not unique, with two different regions of probable infection times

for a given test response (4.3e). By combining early responding tests

with later responders, it becomes possible to create a test signature

that combines the best feature of both tests. The best combination of

tests is the combination that provides unique and precise signature

along the timeline of infection for an individual (4.3 c and f).
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4.5 discussion

In this paper, we have shown that it is possible to recover epidemic

trends of both human and animal pathogens from cross-sectional

data collected at a single point in time. We were able to recover this

temporal information using a novel statistical framework which

combines paired diagnostic test measurements made on collected

samples with the temporal kinetics of diagnostics test measurements

over the course of infection.

The inferential framework introduced here enables utilisation of

all the case data available up until identification of an outbreak.

Here we focussed on purely cross-sectional samples but the meth-

ods are applicable to longitudinal data and data sets combing both

longitudinal and cross sectional samples. We were able to estimate

the trends of both increasing epidemics and decreasing epidemics,

as well as estimate the approximate pace of increase or decrease.

Such information would be valuable for tailoring appropriate man-

agement decisions immediately when an outbreak has been de-

tected, without the need to observe subsequent spread to estimate

the trend.

The implementation of the framework used in this paper combines

surveillance data with information on the test kinetics using a sim-

plified model. For example, individual variation in the test response

is modelled as variation around a common mean test curve, rather

than as variation in the shape of the curve itself. Variations in the

two tests are considered independent, and the error distribution is

assumed to be log normal. This limits the pattern and range of vari-

ation our model can capture, but facilitates model specification and

estimation. More detailed modelling of the individual and popula-

tion level processes in order to tailor the model to a particular dis-

ease is entirely consistent with the statistical framework introduced
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and would increase the real-world validity and predictive power be-

yond that shown in the applications presented here.

Likewise, we make use of the lognormal distribution as a parsimo-

nious parametrization of the epidemic trend. This is suitable for epi-

demics where only a single peak is expected, allowing fast model

fitting whilst capturing the time span and general direction of the

trend. The trade off is that more complex aspects of trends in the

epidemic cannot be captured. Moreover, the lognormal distribution

requires the trend to decline to zero after any peak. Should either of

these limitations pose a problem, more suitable models can be used,

though such models are likely to come at higher computational cost.

The hindcasting framework introduced here estimate epidemic trends

by combining observed data with information on how tests responses

develop after exposure. Matthews and Woolhouse (2005) give an ex-

tensive overview of studies that incorporate different data sources

to recover the underlying dynamics of disease spread (Haydon et

al., 2003; Presanis et al., 2011), and argue that the future of disease

analysis lies in models taking account of a wider range of inputs,

such as diagnostic test performance, disease pathogenesis, or trans-

mission mechanics, in addition to regular surveillance data. Our

methodology improves on earlier studies incorporating test kinet-

ics (Baguelin et al., 2011; Nielsen et al., 2011; Simonsen et al., 2008)

in three ways: by incorporating information from more than one di-

agnostic test; by considering their joint kinetic pattern; and by mod-

elling non-constant incidence.

Similar approaches could be used to model other aspects of the dis-

ease system such as population demography, contact networks, or

spatial location, to estimate more complex aspects of disease dy-

namics e.g. not only temporal patterns of spread, but also, spatial

spread, and the pattern of spread through the demographic struc-

ture of the population.
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Hindcasting exploits knowledge of the host-pathogen interaction,

and thus relies on previously conducted longitudinal studies of

such interactions, and in particular on the test response after initial

pathogen exposure. Our results demonstrate one of the many ways

in which experimental infection studies can provide substantial ad-

ditional benefits to disease control and research. Currently, only a

fraction of pathogen tests have published information on how time

since exposure affects test response; the method introduced here

gives another reason why such studies on test kinetics are useful.

We have described a new framework for hindcasting the temporal

patterns of epidemics, using two example host-pathogen systems

and the pairing of antibody tests with pathogen load. The frame-

work demonstrates the potential to utilise the information inherent

in the increasing variety of diagnostic tests. We were able to esti-

mate both increasing and declining epidemic trends under the as-

sumption that all individuals were being tested at a single point in

time, implying its usefulness for cross-sectional surveillance data

as well as in less restrictive settings. Recovering temporal incidence

trends using multiple tests on cross-sectional field data has the po-

tential to be of considerable value in the early phase of an outbreak

and as a key determinant of introducing proportionate responses to

newly detected disease threats.

4.6 methods

4.6.1 Statistical framework

Our method assumes test data yik from multiple disease diagnostics

indexed by k = 1, . . . , K on individuals i = 1, . . . , N. We assume

that each individual is tested at some time ti, after having been ex-

posed to the pathogen at some earlier time ei. We further assume
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that these individuals are chosen in an unbiased, random manner

from a larger population. Each diagnostic test is assumed to return

a value in the form of a continuous ‘level’, which might, for example

be the highest dilution at which antibodies are detected in a serolog-

ical test. Without loss of generality we assume that these levels are

scaled to the unit interval [0,1].

Initial exposure to a pathogen is the start of a complex dynami-

cal process within the host. We conceptualize such internal host-

pathogen interactions as a multivariate process that depends on the

time since initial exposure. Each diagnostic test is assumed to tar-

get the state of a different component of this process so that each

test k carried out at time ti on individual i can be modelled as a

latent variable lik (ti, ei) = lik (di), with each test having differing

but correlated response patterns over the time since initial exposure

di = ti − ei. We model these latent variables using results from exper-

imental infection studies for a given host-pathogen system, where

the length of time since initial exposure di is known.

The known data, across all individuals in the sample, comprises a

set of test results denoted by Y = {yik} with sampling times T =

{ti}. Our aim is to infer the unknown set of exposure times E = {ei}

, using information on the behaviour of the latent processes L =

L (T, E) = {lik(ti, ei)} generating the test results. Note that when

describing these sets the limits of each index k = 1, . . . , K and i =

1, . . . , N are implicit.

Under our statistical model we assume that the sampling times T

are precisely known whereas the quantities Y, L and E are assumed

to be subject to uncertainty and variation. There are thus three com-

ponents to the statistical model: a latent process model P(L|T, E, θL)

describing uncertainty and variation in the host-pathogen interac-

tion process within the host in terms of the time since initial expo-

sure; a testing or observation model P(Y|L,θY) describing the distri-
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bution of results from tests carried out on the hosts conditional on

the internal latent process; and an epidemic trend model P(E|T, θe),

describing the historical development of the epidemic in terms of

the distribution of exposure times in the sampled host population,

at the time of sampling. We discuss specific implementations of each

of these components in the examples described below.

Combining the three parts of the model, we write the full data likeli-

hood given an observed data set {Y, T} as

P (Y, E, L|T,θ) = P (Y|L, θY) P(L|T, E,θL)P(E|T, θE) ,

where θ = {θY, θL, θE}. Thus the likelihood combines models for test-

ing with those for within and between host pathogen interactions.

According to Bayes’ theorem, the so-called posterior distribution for

the unknown parameters is proportional to the data likelihood and

prior P(θ). We can express this relationship for the parameters of

interest, the latent process L, the exposure times E and the parame-

ters θ, given the observed test data Y and sampling times T , by the

equation

P (L, E, θ|Y, T) =
P (Y, E, L|T,θ) P(θ)

P(Y, T)

Within the Bayesian framework all inference is based on the poste-

rior. The prior P(θ) can result from previous measurements or ex-

pert opinion, and represents knowledge about the values of parame-

ters before we see the data used in the likelihood.

In what follows, we will make the simplifying assumption that the

latent process L is modelled by a known deterministic function of T

and E, and represents the expected value of the test results given the

times since exposure. This means that the term P (L|T, E,θL) drops

out of the likelihood which then simplifies to P (Y, E|T,θ) =

P (Y|L (T, E) , θY) P (E|θE), and the posterior becomes
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P (E, θ|Y, T) =
P (Y, E|T,θ) P (θ)

P(Y, T)

Note that under this notation any parameters defining the determin-

istic latent process L (T, E) = {lnk(tn, en)} are suppressed since they

are not inferred i.e. θ = {θY, θE}.

In both cases above the normalisation factor P(Y, T) is typically un-

known and computationally expensive to calculate. However, stan-

dard Markov Chain Monte Carlo (MCMC) methods circumvent this

problem and are able to generate samples from the posterior even

though the normalisation is unknown. The results presented in this

paper are generated from an MCMC sampler implemented with

a Metropolis-Hastings algorithm in JAGS (Plummer, 2003) using

Gibbs sampling (Casella and George, 1992).

4.6.2 Case studies

Whooping cough is a human disease caused by the bacteria Bor-

detella pertussis, causing prolonged spasmodic coughing. Despite

widespread vaccination coverage there has been a resurgence of

cases in several countries; in the Netherlands there has been a steady

increase in the incidence since 1996, and in California, USA in 2011,

there was a widespread outbreak with 9000 cases and ten deaths

(Winter et al., 2012). Possible reasons for such resurgence include

decreasing vaccine coverage and/or antigenic drift (Greeff et al.,

2010). Here we make use of data describing a countywide outbreak

of Pertussis primarily among adolescents and adults in Fond du Lac

County, Wisconsin, USA in 2003-2004, (Sotir et al., 2008). After an

early cluster of cases in a high school in early May 2003, there was

a large outbreak of Whooping Cough throughout the county start-

ing from October. After some time, this outbreak was contained, and

the final cases occurred in February 2004. The upper part of Fig 4.1
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shows interpolated case counts per 48-hour period over the duration

of the outbreak.

Bluetongue virus (BTV) is a midge-borne virus that can infect rumi-

nants such as sheep, cattle, deer and camelids, causing bluetongue

disease with symptoms such as internal haemorrhages, swelling of

the tongue, lesions in the mouth, and in some species death (most

notably in naïve sheep and white tailed deer). Bluetongue infections

can have severe economic consequences for livestock farming, both

due to loss of productivity, and because of the severe control mea-

sures needed to prevent spread (Alban et al., 2010). In 2006, BTV

emerged throughout northern Europe, with recorded outbreaks

in the Netherlands, Belgium, Germany, and Luxembourg. In 2007,

the UK had its first recorded outbreak (DEFRA, 2008). The first in-

fections occurred sometime in early August 2007 (DEFRA, 2008)

when midges introduced the pathogen to the British Isles, but the

first case was not detected until September. The lower part of Fig 1

shows the case count per day, with numbers interpolated from the

published weekly data (DEFRA, 2008).

In order to assess our methodology we consider two scenarios for

each pathogen outbreak. In the “increasing” scenarios we assume

the epidemic is recognised early and explore test results from sam-

ples taken at a time early on in the outbreak (when the outbreak is

increasing, see e.g. Fig 4.1). In contrast in the “decreasing” scenar-

ios we use test results assumed to be obtained from individuals ex-

posed during the entire outbreaks, with samples collected at a rela-

tively late stage in the outbreak (i.e. when it is in decline). The goal

was to see how well hindcasting could distinguish between such in-

creasing scenarios, and scenarios where the epidemic had declined.

We were also interested to see if it was possible to estimate the ap-

proximate time span of the epidemics, measured as the longest esti-

mated exposure time among tested cases.
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4.6.3 Implementation of the Whooping Cough scenarios

Outbreak data and detection scenarios

We based our whooping cough data set on the case count curve of

the 2003 Wisconsin whooping cough outbreak. We used published

bi-weekly case counts, and interpolated these using a LOESS (Cleve-

land and Devlin, 1988) approach to generate estimated 48 hour case

counts.

We investigated two hypothetical scenarios for when the outbreak

could have been first detected and cases tested. We simulated one

scenario where we assumed that cases were sampled and the sam-

ples tested 25 weeks after the first observed case. At this time point,

the first wave had passed, and the second sharp increase in inci-

dence had been going on for about a month. 126 cases had been

reported by this time in the actual outbreak. The second scenario

assumed that testing of cases occurred at week 36, taking samples

from the 230 cases from the full whooping cough epidemic up until

that time. This time point marks the end of the epidemic, with no

later cases reported.

Diagnostic test characteristics

The results of diagnostic testing are characterised in terms of an

underlying mean trend and a model which accounts for variation

around this reflected measurement error, and within and between

individual variability in test response.

The sampled cases produced from the scenarios as described above

were assigned simulated test results, based on the elapsed time

between the time of exposure in the actual outbreak and the as-

sumed time of sampling, using published kinetics of real-time PCR

analysis and quantitative ELISA for Pertussis (Bidet et al., 2008; Te-

unis et al., 2002), to inform a latent process P(L|T, E, θL). Specifi-

cally these were the kinetics of ELISA IgG pertussis antitoxin (Te-
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unis et al., 2002) for antibody test response ab (d) as a function of

time since exposure d, and real-time PCR measurement of persis-

tence over time of Bordetella pertussis DNA in nasopharyngeal secre-

tions (Bidet et al., 2008) (see Fig 4.2) for the pathogen load DNA (d)

. As noted earlier formally, we defined the deterministic function

L(di) = (DNA (di) , ab (di)) by fitting interpolated curves to the pub-

lished data on DNA and antibody levels using LOESS (Cleveland

and Devlin, 1988).

The distribution P (Yi|L (di)) of test measurements was modelled

as a lognormal distribution conditional on the state of the latent

process: let yi = (yNA, yab)i represent a bivariate measurement

of nucleic acid and antibody levels on individual i, and define the

distribution P (Yi|L (di)) = lN (L (di) , Σ2)) , where Σ2 is a diago-

nal covariance matrix, reflecting the assumption of no correlation

between test results when conditioned on the time since exposure.

The variance for each test (i.e. the diagonal elements of ) was as-

sumed known. Antibodies as well as level of pathogens in a host

often follow log-normal distributions, as has been rigorously argued

(Koch, 1966); the suitability of using the lognormal distribution for

modelling a wide range of biological phenomena has also been de-

scribed more recently (Limpert et al., 2001).

Epidemic trend

A lognormal distribution was also used to parameterize the un-

known distribution P(E|T, θe) of times of exposure given the time

of testing, P (E|T, θe = {µ, σ}) = lN (µ, σ). (See section 4.7 for tech-

nical details). In this case, we exploit the ability of the lognormal to

model extreme skewness to capture both increasing and decreasing

epidemics using only two parameters.
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4.6.4 Implementation of the Bluetongue scenarios

Outbreak data and detection scenarios

As with Whooping Cough, we assumed two different hypothetical

scenarios for when the outbreak was noticed and animals tested:

one assuming that animals tested are sampled from the 26 exposed

cases at week two, and the other assuming that animals tested were

sampled from the 61 animals exposed by the end of week seven (Fig

2).

Diagnostic test characteristics

We modelled test behaviour based on published data (López-Olvera

et al., 2010), and assumed lognormal distributions for the epidemic

trend, as well as for the variance of the diagnostic tests (Fig 3). Specif-

ically we based the behaviour of the latent process P(L|T, E, θL) on

a study of experimental infection of European red deer with BTV

serotype 1 and 8 that described the dynamics of BTV serotype 1 vi-

ral load (vl) as measured with RT-PCR, and antibody levels (ab) as

measured with ELISA (López-Olvera et al., 2010). As above we de-

fine the latent process describing antibody concentration and viral

load as a deterministic bivariate function of the duration d elapsed

since exposure as L = {l (di)} ≡ {vl (di) , ab (di)} which does not

vary between individuals. We estimate L by fitting smooth and in-

terpolated curves to the experimental study data on viral load and

antibody levels independently and take the values of these curves at

each exposure time d to define the values of the deterministic func-

tions, vl (d) , ab (d) . LOESS (Cleveland and Devlin, 1988) was used

as a nonparametric fitting method.

Conditional on the time since exposure, the observed test values

yi = (yvl, yab)i were modelled as a bivariate log-normal distribu-

tion with mean equal to the deterministic latent process = {l (di)} =

(vl (di) , ab (di)) . For individual i, this can be formally written as
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P (yi|l (di)) =lN (l (di) , Σ2), where lN indicates a bivariate lognor-

mal probability function, and Σ2 is the covariance matrix. We as-

sumed that the variation in observed antibody levels and viral loads

to be independent so that the covariance matrix Σ2 is diagonal, with

variance components σ2
1 , σ2

2 . The variance for each test (i.e. the diago-

nal elements of ) was assumed known.

4.6.5 Epidemic trend

The third and final part of the model, the distribution of times since

exposure (E|T, θe) , was modelled as a lognormal distribution

P (E|T, θe = {µ, σ}) = lN (µ, σ)

(see section 4.7 for further details).

4.6.6 Choice of priors

We followed the recommendations of Gelman (2006) and used a

combination of informative and weakly informative priors for the

parameters. The means for the lognormal distribution describing

the epidemic trends were themselves given lognormal priors. It was

assumed that any prior information about the start of the epidemic

would be correct to within an order of magnitude. This translated to

prior means for the increasing whooping cough of 100 days, and

prior means for the decreasing whooping cough scenario of 200

days. The corresponding values for BTV were 10 days and 100 days,

respectively. The standard deviations for the prior distributions were

chosen as log
(√

3/2
)

, corresponding to 95% confidence intervals of

(mean ∗ 1/3, mean ∗ 3). This standard deviation was chosen to model

a confidence that the “best guess” was within a factor 10 from the

true values.
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The standard deviation of the lognormal distributions for the epi-

demic trend was assumed to follow a vague folded t-distribution,

with five degrees of freedom and standard deviation of log(100).

The high standard deviation was chosen so as to allow even an epi-

demic trend that is currently increasing to have cases occurring sev-

eral hundred days ago.

We also attempted to use uninformative priors, but these were found

to lead to slow and /or failing convergence of the MCMC algorithm.

Changing the specific values of the priors did not influence the pos-

terior estimates noticeably.

4.7 supplementary information

4.7.1 Evaluation of convergence

When evaluating convergence of the MCMC runs used to estimate

the parameters of the epidemic trends of outbreaks (see the results

section in main body of the paper), the Gelman-Rubin (GR) statistic

(Gelman and Rubin, 1992) was used as a first indicator. This widely

used statistic (Kathryn et al., 1996) measures the ratio of the within-

chain variability to the between-chain variability e.g. for multiple

chains started from different initial conditions.

The convergence behaviour (Fig 4.4) was quantified for the MCMC

algorithm for each of the 100 different data sets generated for each

combination of scenario, type of disease diagnostic, and the number

of individuals tested (see main text). For each of these datasets the

MCMC samples were generated using a 10 000 iteration burn in,

and subsequent capturing of the following 10 000 iterations. In each

case 5 chains were run in parallel to ensure sufficient information on

between-chain variability.
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As indicated in Fig 4.4, for the whooping cough scenarios, the GR

statistic was nearly always below the threshold of 1.1 recommended

by Gelman et al. (2004). The convergence was less fast for bluetongue

scenarios using paired disease diagnostics with only approximately

50% of the runs having converged by 20 000 iterations as measured

by the threshold standard.

Fig 4.5 show examples of traceplots from scenarios with diagnostic

test results from 100 individuals. The patterns of the bluetongue tra-

ceplots indicate that that chains are mixing slowly, which explains

the low values of the GR statistic obtained. Fig 4.6 shows the esti-

mated epidemic trends using mean parameter values from the final

5000 iterations of the MCMC algorithm, with separate trends for

each of the 5 chains. These plots indicate that despite the slow mix-

ing, the practical difference between chains was miniscule.

4.7.2 Generating simulated data

The bluetongue and whooping cough data sets we applied the hind-

casting inference framework to were simulated in R using the fol-

lowing procedure:

• Choose an observation time T after the first recorded case of

the epidemic we base our simulated data on.

• Record the observed exposure times E = {ei} for all cases that

had occurred in the real epidemic up until the time of obser-

vation T and evaluate the duration of infection/exposure for

each individual {di = T − ei} at time T.

• Use the deterministic function l(di) based on the interpolated

test trajectory to assign mean test values for each case given

the durations of infection

• Set the variance Σ2 of the log-normal distribution to corre-

spond to published test variability.
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Figure 4.4: Distribution of the GR statistic across the different scenarios. Each

box represents the distribution of GR calculated on different sets

MCMC samples, the samples generated by fitting the hindcasting

model 100 times to different data sets. The runs represented by each

box was all generated assuming the same combination of scenario, di-

agnostic tests used, and number of individuals sampled. The middle

line of the boxes indicate the median, the top and bottom of the boxes

indicate 25 and 75% quantile, respectively, and the thin black lines

indicate the range of results. The horizontal red lines indicates a GR

value of 1.1, which is considered to be an indicator that the chains

have reached full convergence
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Figure 4.5: Examples of MCMC traceplots, generated by fitting the hindcast-

ing model to scenarios assuming that disease diagnostics were

collected from 100 individuals. Each colour indicates a different

chain (i.e. started with different initial conditions). “Peak.time”

and”duration" are the parameters for the mean and variance

of the lognormal distribution describing the epidemic trends.

“Peak.time.dev” is the variance of the prior of peak.time.
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Figure 4.6: Estimated epidemic trends by chain. The parameters of the lognormal

distribution describing the epidemic trend was calculated from the

mean of the last 5000 samples of “peak.time” and “duration” in the

traceplots in Fig 4.5, above.
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• Generate test results from the log normal distribution with Σ2

variance and mean test values generated in steps 3 and 4.

Test scores corresponding to viral load and antibody response are

then simulated using the deterministic function L = {l (di)} ≡

{vl (di) , ab (di)} described in the methods section. Note that the

infection times are not subsequently used in the inference proce-

dure, but they do provide an opportunity to assess the inferences

obtained.

The lognormal variation around this curve was set to be 57% follow-

ing data on B. Pertussis antibody variability published by Versteegh

et al. (2005). DNA measurements and antibody measurements were

assumed to have the same level of noise.

Based on published data (Chatzinasiou et al., 2010) on variability of

RT-PCR we set the log-normal variability to 27%. For simplicity, we

assume equal variability for antibody measurements.

4.7.3 An alternative formulation of the lognormal distribution to allow the

MCMC sampler to efficiently sample multimodal likelihood surfaces

As shown in figure 4.3 in the main text, the likelihood for times

since exposure is often multimodal. Combining multiple tests can

reduce this problem, but if the MCMC sampler is initiated in the

wrong region, convergence can be an issue where the chain becomes

‘stuck’ around one mode with an extremely small probability of

jumping to an alternative mode. By allowing the MCMC sampler

to jump between disjoint regions of exposure times in one step, the

different modes are no longer isolated from each other. The follow-

ing describes how to implement such a solution in the case of the

lognormal distribution used in the paper.

Assume that times of exposure ei are lognormally distributed, ei ∼

logN(µ, σ) For the standard lognormal parametrization, the density
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for a particular time of exposure e given mean µ and variance σ is

given by

p (e|µ, σ) = lN (e|µ, σ) = N (log (e)|µ, σ) = φ(
log (e)− µ

σ
)

, where φ (x) = N (x| µ = 0, σ = 1).

Tautologically, we can rewrite e as

e = elog(e) = eµ+log(e)−µ = eµ+[(log(e)−µ)/σ]∗σ = eµ+∆∗S∗σ

where S ∈ {−1, 1}, and ∆ =
∣∣∣ log(e)−µ

σ

∣∣∣ ≥ 0.

Now, instead of assuming that e is coming from a lognormal distri-

bution, we can

assume that S has a discrete probability function,

a) p (S = 1) = p (S = −1 ) = 0.5

, and that ∆ has a folded standard normal distribution with a proba-

bility density function given by

b) p (∆, ∆ > 0 ) = φ (∆) + φ (−∆) = 2φ (∆)

In this way, ∆ can be interpreted as how far e is away from the mean

of the lognormal distribution, measured in the number of standard

deviations, and S indicates whether it is in the upper or lower quan-

tile. Note that for fixed µand σ, each exposure time e can be written

uniquely as a combination of ∆ and S.

p (e|µ, σ) = p (∆, S|µ, σ) = p (∆) ∗ p (S)

From a) and b), we get that
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p (∆) ∗ p (S) = 2 ∗ φ (∆) ∗ 0.5 = φ(∆) = φ(| log (e)− µ

σ
|)

Thus, (since the normal distribution is symmetric) this new formula-

tion results in the same probability distribution for T as the lognor-

mal distribution, and thus an equal contribution to the data likeli-

hood. For the bluetongue and whooping cough examples, the full

posterior likelihood is written as

L (E, θ|Y, T)∼
(

∏
∀i

( lN (Y|L (T− ei) , Σ2))lN (ei |µ, σ)

)
Prior (µ) Prior(σ)

Using the new formulation, this becomes

p (E, θ|Y, T)∼

(
∏
∀i

(
lN
(

L
(

T − eµ+∆i∗Si∗σ
)

, Σ2
))

φ (∆i) ∗ 2 ∗ p(Si)

)
Prior (µ) Prior(σ) =

(
∏
∀i

(
lN
(

L
(

T − eµ+∆i∗Si∗σ
)

, Σ2
))

φ (∆i)

)
Prior (µ) Prior(σ)

In an MCMC setting, this formulation allows for generating a new

proposal T′ by jumping from (∆, S+) → (∆, S−), thus reducing the

risk of getting stuck in local maximums of the likelihood. In effect,

by decomposing e into two separate variables, we are adding an ex-

tra dimension that the MCMC sampler can jump through, bringing

the separate modes closer together.
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C H A P T E R 5 : T H E C H A L L E N G E S O F E S T I M AT I N G

T E S T K I N E T I C S

5.1 introduction

In previous chapters, we have shown how to use hindcasting to un-

derstand the past spread of infectious diseases from cross-sectional

studies, and thereby better inform current actions. This estimation

of historic trends from recent samples is done by treating diagnos-

tic test measurements as “clocks” that can indicate the time since

pathogen exposure. The development of test measures as a func-

tion of time since exposure is often referred to as “test kinetics”, and

knowledge of these kinetics is crucial in order to be able to calibrate

the clocks used for hindcasting. Understanding test kinetics is also

important in other contexts such as producing accurate diagnoses

(Pawlotsky, 2002); estimating the duration of host immunity (Hallan-

der et al., 2005); and understanding the pathogenesis and dynamics

of the within-host infectious processes (Kirschner and Linderman,

2009).

During development of the hindcasting framework, it was neces-

sary to consider how and where to find information on test kinet-

ics. However, a major bottleneck for current kinetic studies is the

reliance on experimental or longitudinal follow-up data, which are

difficult to collect. Consequently, published information on kinet-

ics is scarce. This chapter represents a preliminary investigation of

whether it is possible to estimate test kinetics from observational

data in a way that makes them usable for modern statistical pro-

147
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cedures such as hindcasting, or sero-incidence studies that rely on

kinetics to inform inference.

Commonly used sources for data on test kinetics are experimen-

tal infection studies, longitudinal follow-up studies, and observa-

tional studies. Each study design bring with it a particular tradeoff

between factors such as ease of implementation, study size, study

cost, number of observations per time unit, and bias in the resulting

estimates. In an experimental infection study, such as that by López-

Olvera et al. (2010) used in Chapter 4 to model BTV kinetics, indi-

viduals are infected in a controlled manner with a particular dose

of pathogens, and then tested using available diagnostics at regular

intervals until the end of the experiment. Such studies require strict

ethical consideration, and can require access to facilities with high

biosafety level ratings. In some cases, such as with biosecurity level

4 (BSL4) pathogens, (US Department of Health and Human Services,

1999) only a handful of institutions world-wide have the suitable

containment facilities to carry out experimental infections . Because

of the costs of containment, experimental studies tend to only infect

a small number of individuals. This means that estimated test kinet-

ics can fail to be fully representative for the population as a whole.

The question of how representative such studies are of the entire

population is intensified by the fact that study criteria usually ex-

clude individuals that suffer from sickness, malnutrition, and other

conditions that are common in field situations (OIE (2013), p. 10). In

addition, modes of primary and secondary disease contact in exper-

imental conditions can be far removed from those encountered in

field conditions.

Alternatively, naturally occurring infections can be tracked in lon-

gitudinal follow up studies, such as the study by Versteegh et al.

(2005) that was used to model Pertussis antibody kinetics in Chapter

4. Infected cases are detected via routine or enhanced surveillance,
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and are then tested repeatedly for some length of time thereafter.

On the one hand, such studies do not come with the same limita-

tions as experimental studies: kinetics estimated based on naturally

occurring cases are more likely to be representative of other cases

occurring in the field; there are fewer ethical considerations; and a

larger number of individuals can be included in the study for the

same cost. On the other hand, identifying cases poses a challenge,

especially for rare or emerging pathogens, as can identification of

the initial infection time. Furthermore, repeated testing of cases can

be difficult or impossible, in particular for wildlife pathogens in free-

ranging animals.

The term “observational study” is here used for studies conducted

on samples from infected individuals that has been discovered (ob-

served) in the course of regular surveillance, and not necessarily

comprising of a random sample from the entire population. This

implies that samples are collected from naturally infected individ-

uals, with no follow-up sampling. This is even more limiting than

follow-up studies, since there is no information on how the test mea-

surements of the individual develop over time. However, it is a lo-

gistically much easier design than a follow-up study and often, es-

pecially in the case of rare, less studied, or emerging pathogens, the

only available source of kinetics data.

An ideal inference method would therefore be able to estimate test

kinetics even from regular observational studies. Given the above

considerations, it would need to be usable even when only a single

observation per individual is available, and account for uncertainty

in the time of infection. In situations with limited observations per

individual, it becomes important to leverage as much as possible

from previously obtained knowledge of the host-pathogen dynam-

ics. Describing within-host disease processes with mathematical

models can make it possible to fit the kinetic curve parsimoniously
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using a few key parameters. Given that such processes are driven,

at a minimum, by two components, namely immune response and

pathogen growth, this implies that incorporating multiple tests that

correspond to each of these components into mathematical and/or

statistical models would improve the estimate of the test kinetics.

The work of Simonsen et al. (2009) is one of the more detailed pub-

lished papers that estimates test kinetics from population data. They

used a mathematical model of antibody kinetics that also implic-

itly describes antigen levels, and longitudinal follow-up data on

Salmonella immune response to estimate the parameters of the model.

However, the study was limited by not having access to antigen

data, and the assumed model for antigen response was therefore

quite simplistic.

In section 5.2, the model of Simonsen et al. is described and used

as a stepping stone for considering the benefit of including multi-

ple measurements of different aspects of the host-pathogen system,

by explicitly incorporating antigen measurements. Section 5.3 then

discusses the challenges for developing methods for estimating test

kinetics from observational data to inform the growing number of

studies and models that use test kinetics as clocks, such as hindcast-

ing and sero-incidence studies (e.g. Teunis et al. (2012), Simonsen

et al. (2009), Simonsen et al. (2011), Baguelin et al. (2011) and many

more).
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5.2 a suggested approach for improving the joint estima-

tion of multiple test kinetics

5.2.1 Reimplementing Simonsen etal (2009) with added nucleic acid measure-

ments

Simonsen et al. (2009) describe a study in two parts: part 1 consisted

of a longitudinal study of Salmonella antibody kinetics where 302 pa-

tients with a culture-confirmed diagnosis of Salmonella enteritidis or

Salmonella typhimurium infection were tested up to four times over

an 18 month period following the detection of infection. Samples

thus generated were tested for three different types of antibodies:

IgG, IgA, and IgM. The test results were then used to estimate the

kinetics of these antibodies after infection, assuming the reported

dates of onset of symptoms were the actual times of infection. Part

2 of the study involved a cross-sectional sample of the population,

where 1780 individuals were tested for antibodies against Salmonella.

Using the kinetics of antibody levels following exposure estimated

in part 1, the average time since exposure to Salmonella could be

calculated and used to estimate the incidence of exposure, or sero-

incidence, of Salmonella in the population.

In the Simonsen et al. study, only antibody measurements were col-

lected, and therefore antigen levels were only included implicitly in

the model as a driving force for the antibody response. However, the

formulation they used allows us to include antigen measurements

in the observation process with only a slight adjustment, and thus

explore the potential benefits of including antigen measurements.

The model they used was reimplemented using the RStan (Stan De-

velopment Team, 2014) MCMC engine (see section 1.5.3). A model

with only antibody measurements was compared with a model that

assumed paired antibody and antigen measurements. For simplicity,
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it was assumed that only a single type of antibody was measured

instead of the three types of antibodies considered in the original

paper.

The modelling approach is based on describing the interaction of

a particular antibody level (denoted by IG(t)) and pathogen load

(denoted by Z(t)) by the following pair of equations:

dIG(t)
dt

= S× Z(t)− a× (IG(t)− X?)

and 
Z(t) = (1− t/D) for t < D

Z(t) = 0 for t ≥ D

These equations represent a system where pathogen load is at its

maximum value at the time of infection, and then decreases lin-

early with time until the pathogen is cleared. The antibody levels

increases with S units for each unit increase of pathogen load per

time unit, and a proportion a of the difference between current an-

tibody level and the steady state antibody level X? is removed per

time unit. Thus X? represents the background antibody level that is

present even in the absence of infection. These are first-order linear

differential equations which allows them to be solved as a function

of time since infection t. Doing so leads to the following explicit ex-

pressions for IG(t), under the condition that IG(0) = X?:

IG(t) = X? +
S + aS(D− t))

Da2 − S + aSD
Da2 e−at

if t < D, and

IG(t) = X? +
SeaD − S− aSD

Da2 e−at

otherwise.
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The statistical model for observed test values is then constructed in

the following manner: Assume that a set of test results X = {xij}

has been obtained by taking samples from individuals i = 1, . . . , N

, with each sample j having been taken at certain times since expo-

sure eij. The model is hierarchical; the test response for each individ-

ual i is assumed to be governed by individual parameters θi, which

in turn are sampled from a population-level lognormal distribution,

θi ∼ log N(Θ2, Σθ), where Θ2 denotes the population means for the

parameters, and Σθ denotes the covariance matrix between the pa-

rameters. To facilitate legibility, let Θ1 = {θ1, ...θN} denote the set of

individual parameters i.e. across all individuals in the population.

Given the parameters and an infection time for individual i, the

test values X = {xij} taken at times j = 1, 2, . . . , N are then as-

sumed to come from a separate log-normal distribution. In the case

of antibody-only tests, this can be written as

xij|eij, θi ∼ log N(IG(eij|θi), ΣIG)

where ΣIG denotes the variability of the IG levels around the value

of the mean test kinetics at time eij, assuming parameters θi for the

test trajectory.

Given these elements, the posterior for the model given observed

test values X can be written as a product of the likelihood for the

population-distribution parameters Θ2, the likelihood of the individ-

ual parameters Θ1 given the population distribution, and the like-

lihood for the observed test values X given individual parameters,

and the priors for the parameters. The posterior probability thus be-

comes

P(Θ1, Θ2, Σθ |X) ∝ ∏
∀i

[
P(θi|Θ2, Σ)∏

∀j

(
P(xij|θi, eij)

)]
Prior(Θ2)Prior(ΣΘ)Prior(ΣIG) =

∏
∀i

[
log N(θi|µ = Θ2, ΣΘ)∏

∀j

(
log N(xij|µ = IG(eij|θi), ΣIG)

)]
×

Prior(Θ2)Prior(Σθ)Prior(ΣIG)
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When including antigen measurements, IG(t) is replaced with F(t) =

{IG(t), Z(t)}, and xij = (xab, xna)ij ∈ X are then defined as vectors

of antibody and antigen test levels, with values coming from a bi-

variate lognormal distribution:

xij = (xab, xna)ij ∼ log N(µ = {IG(t), Z(t)}, ΣF)

where ΣF is a 2x2 covariance matrix; it will be assumed that the

off-diagonal elements are zero, i.e. that the two components of the

lognormal distribution are conditionally independent. The individ-

ual variance of the two components may differ, however. Note that

when modelling antibody and antigen measurements jointly, X be-

comes a two-column matrix.

All parameters were given vaguely informative priors (as discussed

in section 1.5), that regularise the posterior distribution without re-

quiring precise information about the parameters. The log of the

population-level parameter means Θ2 were given Cauchy(0, 2) pri-

ors. The between-parameter covariance Σθ was defined as the prod-

uct of a LKJ(1.5)-prior on the between-parameter correlation and

a Cauchy(0, 2) priors on the variance around each parameter mean.

The notation LKJ refers a distribution on correlation matrices that

was introduced in Lewandowski et al. (2009) (“LKJ” stands for the

first letters of the surnames of the authors). The measurement vari-

ances ΣF were given exponential priors with parameter 1/ log(1.05).

In order to compare the inferences when collecting either a single

or a double test measurement, RStan was used to implement both

the model with only antibody levels, and the model with both anti-

body and antigen levels. These models were then applied to simu-

lated data sets with known parameter values. For both models, indi-

viduals were assumed to be sampled at three different time points

over the course of infection,with the sampling times being randomly

sampled from a uniform U(0, 300) distribution. After confirming

that the sampler had converged using MCMC trace plots and the
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Gelman-Rubin statistic, the resulting posterior estimates could then

be compared to the true underlying parameter values. Fig 5.1 shows

resulting estimates of the antibody and antigen kinetic curves, com-

pared with the underlying true population-level kinetics, and the

observed individual-level measurement trajectories. As can be seen,

the estimated mean kinetics were nearly identical for the two-test

and the one-test models, both for antibody kinetics and for antigen

kinetics, and close to the population-level mean trajectories. How-

ever, in the one-test model, the variation of individual-level anti-

gen kinetics is non-existent, while the estimated spread is closer to

the actual spread in the two test model. Since the one-test model

lacks any data on antigen levels, any estimated variance would be

strongly influenced by the Cauchy prior on the log parameter scale,

which places a large proportion of the prior density at low values

and therefore has a shrinking effect. The fact that the two test model

underestimates the actual variability can be explained by the fact

that very few individuals have more than one measurement before

the antigen has declined fully, making it difficult to estimate the ex-

act slope of this decline.

Despite the these difficulties in estimating variability, these results

seem to indicate that one could estimate antigen kinetics without

measuring mean antigen kinetics. However, this is likely a conse-

quence of the assumption that the antigen levels follow a simple lin-

ear decay with fixed initial value 1. For some situations, such as for

pathogens with a very rapid initial growth, or where the timescale

of interest is long relative to the increasing phase, this may well be

an adequate description. In general, however, a more flexible de-

scription of the development of pathogen load is clearly desirable.



156 chapter 5 : the challenges of estimating test kinetics

Figure 5.1: Estimated antibody and antigen kinetics using the Simonsen et al.

(2009) model on a generated data set. Results are from either a model

including only antibody test(“One test”) or antibody and antigen test

measurements (“Two tests”). Thin red lines indicate estimated test

kinetics for the individual, and the black dots measured test values

observed at these times; thin black lines connect the three samples

taken from each individual. The thick red line indicates the estimated

population-mean kinetics, while the thick black line (mostly hidden by

the estimated red line) indicates the true population-mean kinetics.
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5.2.2 Using piecewise linear curves to describe pathogen load kinetics

Assuming a linear trend is a very simplified and unrealistic model

for the antigen kinetics. This was not an issue for the Simonsen et al.

paper as it was primarily focused on antibodies, and was interested

in using the test kinetics on a time scale where antigen presence was

low. However, it is a clear obstacle when the antigen levels are of

interest as well. A major reason for assuming a linear trend is that

this leads to mathematically tractable explicit solutions for the an-

tibody curves, a requirement when implementing inference with

the current generation of MCMC engines (see section 1.5.3). A more

flexible approach would be to include differential equations, such as

the Lotka-Volterra equations used in Chapter 3, directly in the sta-

tistical model, and use ODE-solvers to generate numerical solutions.

This would remove the need for analytical solutions, and allow for

a wide range of dynamics to be modelled. An ODE solver with lim-

ited capacity has recently been made available in RStan (with the

v2.5.0 release on 20 October 2014). An attempt was made to use the

RStan implementation, but unfortunately, it was not found to be suf-

ficiently robust for modelling noisy and partially observed data.

An alternative approach to including more realistic pathogen load

kinetics in observational studies would be to allow the kinetics to

follow a piecewise linear curve. Here we show that such an approach

is compatible with currently available statistical tools such as Rstan

as it remains mathematically tractable, while allowing for greater

flexibility in the kinds of patterns that could be captured (see Figure

5.2). Using the framework described in the previous section, this can

be implemented by replacing the expression for Z(t) with a piece-

wise linear curve, and solving the systems of equations in this more

general case.
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Recall that the explicit expressions for IG(t) in the simplified Lotka

Volterra model, under the condition that IG(0) = X?:

IG(t) = X? +
S + aS(D− t))

Da2 − S + aSD
Da2 e−at

if t < D, and

IG(t) = X? +
Sead − S− aSd

Da2 e−at

otherwise.

If the above is generalised by assuming that Z(t) can be any linear

trend, i.e. Z(t) = αt + β, the expression for IG(t) instead becomes:

Ig(t) = X? +
αaSt− αS + βaS

a2 + ke−at

where k is a constant chosen so as to match any boundary condi-

tions.

Recall that the original formulation assumes that the pathogen load

follows a simple linear decrease until it is cleared. If the pathogen

load is instead allowed to have a piecewise linear trajectory, then the

resulting differential equations are still solvable, but a wider range

of kinetics can be captured. Specifically, assume that the pathogen

load passes through four stages instead of two: an increasing phase,

a steady phase, a declining phase, and a cleared phase. This can be

parametrised by

Z(t) =



t/R, for t < R

1 for R ≤ t < tD + R

1 + (tD + R− t)/D for tD + R ≤ t < R + tD + R

0 for t ≥ R + tD + D
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R is then the initial rate of increase, tD is the length of time that the

pathogen load is constant, tD + R is the time it starts declining, and

D is the rate of the decline.

Using these expressions for Z(t), the explicit form for IG(t) becomes

IG(t) =



X? + S(at−1)
Ra2 + k1e−at for t < R

X? + S
a + k2e−at for R ≤ t < tD + R

X? + aS(D+tD+R−t)+S
Da2 + k3e−at for tD + R ≤ t < R + tD + D

X? + k4e−at for t ≥ R + tD + D

In order to find the constant k1, we note that IG(t) must be continu-

ous at (and thus equal at either side of) all change points, and that

IG(0) = X?.

For k1, this implies that

IG(0) = X? +
S(a ∗ 0− 1)

Ra2 + k1e−a∗0 = X? ⇒ k1 =
S

Ra2

Given k1 and the change point at R, we can then calculate k2 by the

following:

IG(R) = X? +
S(aR− 1)

Ra2 +
S

Ra2 e−aR = X? +
Sa
a2 + k2e−aR ⇒

k2e−aR =
S(aR− 1)

Ra2 +
S

Ra2 e−aR− Sa
a2 ⇒ k2 =

S(aR− 1)eaR

Ra2 +
S

Ra2 −
SaeaR

a2 =

=
aRSeaR − SeaR + S− aRSeaR

Ra2 ⇒

k2 = S× 1− eaR

Ra2

Again, given k2, and the change point at t = tD + R, we get k3 from

the following:

IG(tD + R) = X? +
Sa
a2 + S× 1− eaR

Ra2 e−a(tD+R) =
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= X? +
aS(D + tD + R− (tD + R)) + S

Da2 + k3e−a(tD+R) ⇒

k3 =

(
Sa
a2 + S× 1− eaR

Ra2 e−a(tD+R) − S(Da + 1)
Da2

)
ea(tD+R) =

= S×
(

RDaea(tD+R) + D(1− eaR)− R(Da + 1)ea(tD+R)

RDa2

)
=

= S×
(

D(1− eaR)− R(Da− Da + 1)ea(tD+R)

RDa2

)
⇒

k3 = S×
(

1− eaR

Ra2 − ea(tD+R)

Da2

)
Finally, using the value for k3, k4 is calculated by looking at the value

for IG(t) at tD + D + R:

IG(tD + D + R) = X? +
aS(D + tD + R− (tD + D + R)) + S

Da2 +

S×
(

1− eaR

Ra2 − ea(tD+R)

Da2

)
e−a(tD+D+R) = X? + k4e−a(tD+D+R) ⇒

k4 = S×
(

ea(tD+D+R) − ea(tD+R)

Da2 +
1− eaR

Ra2

)
The expressions defined above combine to define joint antibody/anti-

gen test kinetics, allowing for a piecewise linear development of the

antigen kinetics, and consequently a more nuanced model for the

antibody kinetics as well. Figure 5.2 shows an example of the trajec-

tory of kinetic curves using this new parametrisation.

These expressions could directly replace simpler models for test ki-

netics used when fitting curves to directly or indirectly observed

multiple test data. In the model described in 5.1.1, it is simply a mat-

ter of redefining F(t) = {IG(t), Z(t)}. However, when using MCMC-

type algorithms for fitting piecewise-defined curves, care needs to

be taken with the sampling algorithm and priors to ensure conver-

gence.
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Figure 5.2: Example trajectories for test kinetics using piecewise linear trends for

the pathogen load kinetics
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Unfortunately, preliminary naive implementations of the piecewise

linear model in RStan struggled with the discontinuous derivatives

inherent in the piece wise linear formulation. In general, models

in which the parameterisation of a curve changes at known or un-

known “knots” are known as change point models, and there is an ex-

tensive literature for fitting these in an MCMC context (the introduc-

tion of Fearnhead (2006) provides an overview). There is no reason

to believe that the piecewise linear curves described here could not

be fitted via such approaches, but it requires additional work on the

sampling implementation, which is beyond the scope of this thesis.

5.3 discussion

This chapter has described two extensions to existing methods for

the estimation of test kinetics; first a description and a worked ex-

ample of how to infer antibody- and antigen-based tests jointly;

and second, a suggestion for how the kinetics of antigen based tests

could be modelled more realistically using piece-wise linear curves.

The study by Simonsen et al. (2009) that was used here as a starting

point is part of a group of studies (Graaf et al., 2014; Simonsen et al.,

2009; Teunis et al., 2012; Versteegh et al., 2005) that estimate test ki-

netics using a statistical approach for fitting mathematical equations

(derived as the solutions to simple differential equations) to longi-

tudinal measurements. All of these are restricted to only measuring

antibodies, and including the antigen development in their model

as an unobserved variable. Based on the results shown here, these

studies would likely benefit from expanding the scope of inference

to including antigen measurements (note that for many pathogens,

this would require that cases are sampled at an early stage before

the infection has cleared). In order for resulting estimates of antigen

kinetics to be usable as clocks indicating time since infection, such
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expansions should use a flexible parametrisation for the antigen ki-

netics. A piecewise linear curve would be one option for doing so,

while still allowing for the joint antibody and antigen kinetics be

solved analytically. Such tractability is extremely useful in the imple-

mentation of inference using the current generation of MCMC en-

gines. However, such practical requirements are likely to be relaxed

for the next generation of such tools.

In that case another option would be to model the dynamic sys-

tems without the constraint of having to provide analytical solutions.

There exists a substantial literature on the simulation of viral within-

host kinetics (Canini and Perelson, 2014), that makes use of complex

systems of differential equations. These equations typically use a

large number of parameters; Heffernan and Keeling (2008) model

the dynamics of Measles infection using a complex system of differ-

ential equations with 19 parameters to capture the interplay of CD8

T-cells, peripheral blood mononuclear cells (PBMCs) and measles

virus, while Ciupe et al. (2007) use a system of differential equations

with 14 parameters to model Hepatitis B infection. Indivdual pa-

rameters estimates are taken from the literature - fitting all model

parameters simultaneously would require that a wide range of mea-

surements be taken on a large number of subjects for the parameters

to be identifiable. As a consequence, this approach is limited to very

intensely studied systems of pathogen and hosts.

Systems of ordinary differential equations (ODE), such as the Lotka-

Volterra equations used for simulation test kinetics in chapter 3, that

are not analytically tractable but less complex than those used in

the within-host kinetic models mentioned above, would be a natural

intermediate step between these two extremes. As an added bene-

fit, such relatively parsimonious models would be able to be fitted

not only to well-studied disease systems, but also to rare, neglected,

or emerging diseases. However, this approach would require imple-
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menting a custom MCMC sampler, since the ODE solvers in off-the-

shelf software such as RStan are not yet stable enough to be used in

fitting models to noisy data.

The approach by Simonsen et al. (2009) and others replicated and

improved upon in this chapter rely on longitudinal follow-up mea-

surements of infected individuals, and furthermore treat times of

infection as known without uncertainty. For pathogens where re-

peated (longitudinal) testing of cases is difficult, the only available

data may be single cross-sectional samples taken from infected indi-

viduals. In this situation, the only known information available for

an individual would be the value of a test measurement at a particu-

lar time, and no information on how those values behaved earlier or

later. Consequently, it would not be possible to estimate how trajec-

tories differ between individuals, or indeed identify individuals that

deviate in a systematic manner from the average. However, if the in-

dividuals from whom samples are taken cover the whole range of

the infection process (i.e. different individuals in the sample were

infected very recently, a very long time ago and at all points in be-

tween), population-average test kinetics may still be estimable. For

the purpose of inference approaches such as hindcasting, which fo-

cus on population-level patterns, this may still be sufficient. An ini-

tial attempt was made to fit such a model, and initial results were

promising, but had difficulty converging, and time did not permit

further exploration or development.

The assumption of infection times being known without uncertainty

could also be problematic, in particular for non-livestock animals

which are not continuously monitored for disease, or for diseases

with a substantial delay between the time of exposure and onset

of symptoms. In such situations, the times of exposure E = {eij}

could be replaced with the times of observation O = {oij}. These

could then be related to exposure times by assuming that the time
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elapsed from exposure until observation {εij} follow some random

distribution modelling the incubation period of the disease (and pos-

sibly other factors, such as the probability of an individual being ob-

served), such as a gamma distribution (Nishiura, 2007). In this way,

it would be possible to replace the times of exposure in the frame-

work described in 5.2 via the relation {ei j} = {oij − εij}. This would

require modelling the time delay until observation together with the

other parameters and would increase the uncertainty of estimated

test kinetics, but would likely still be possible. Attempts were made

to fit such models including incubation terms, and initial attempts

were promising.

A major obstacle to the use of hindcasting and similar methods is

the difficulty of finding usable data describing the kinetics of di-

agnostic tests as a function of time since infection. Most published

experimental infection studies (Cray and Moon, 1995; Hoffman et

al., 2006; Komar et al., 2003; López-Olvera et al., 2010; Major et al.,

2004) only present their results in the form of graphs and summary

statistics, which poses an obstacle to incorporating the results in sta-

tistical procedures. Similarly, while the longitudinal studies and the

mathematical modelling studies mentioned above sometimes (but

not always) present parameter estimates, producing kinetic curves

from these estimates can be very difficult. The lack of easily acces-

sible data may be because statistical methods exploiting such kinet-

ics in epidemiological studies are not yet in wide use. It would be

highly beneficial if kinetics data were more widely available in eas-

ily usable formats. Each study may be expensive, but making the

results available would allow the study to have a long-lasting im-

pact, which is clearly beneficial to the individual scientists, as well

as to society as a whole. Most importantly, having the kinetics from

diagnostic tests available would make approaches such as the hind-
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casting described in previous chapters, usable on a wide scale and

in a wide range of settings.
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I M P L I C AT I O N S A N D F U T U R E W O R K

In the field of infectious disease surveillance, there is often a paucity

of data, nationally (Parliamentary Office Of Science & Technology,

2014) and globally (World Health Organization, 2000), which con-

stitute a substantial challenge for monitoring endemic trends, and

detecting epidemics, and the emergence of novel pathogens. Lack

of information further complicates the already challenging task of

managing disease risks and deciding on appropriate actions. It is

therefore imperative to make full use of the data that has been col-

lected.

With the the rapid scientific development of computer-based meth-

ods for Bayesian inference (Lunn et al., 2009), it is increasingly feasi-

ble to integrate multiple sources of data into coherent models. Wool-

house and Matthews (Matthews and Woolhouse, 2005) give an ex-

tensive overview of studies that incorporate different data sources

to recover the underlying dynamics of disease spread (Haydon et al.,

2003; Presanis et al., 2011), and argue that the future of disease anal-

ysis lies in models taking into account a wider range of inputs, such

as quantitative diagnostic test measurements, disease pathogenesis,

or transmission mechanics, in addition to standard case count data.

The work presented in the thesis is in line with such arguments,

combining information on quantitative test measurements with

knowledge of the within-host dynamics in the form of test kinetics,

and developing methods that can be used to inform policy response

in situations where only cross-sectional data are available. The the-

sis was carried out as part of the WildTech Framework 7 project.

169



170 chapter 6 : general discussion : context, implications and future work

WildTech was a project to develop advanced multiplex diagnostics

for detecting wildlife diseases, using both nucleic acid and immune

response based tests. The inspiration for hindcasting came from this

setting of multiple tests and combined nucleic acid and immune re-

sponse data. The simple case of two paired diagnostic test measure-

ments was used as natural starting point for developing methods

that exploit the synergy from multiple tests. However, as noted ear-

lier the Bayesian and computational tools used here lend themselves

to the integration of data from multiple sources. Therefore, as the

use of multiplex testing develops further the framework for infer-

ence developed in this thesis could be applied to the results from

multiple (i.e. >2) diagnostic tests.

6.1 summary of the results

The simplest case of multiple testing is that of using two tests with

binary outcomes. Compared to a single test, two tests used in two

populations with different incidences enable estimation of test sen-

sitivity and specificity as well as the incidence levels. This is com-

monly done using a latent class model approach, first introduced in

Hui and Walter (1980). This approach has become very popular; a

recent review by Smeden et al. (2013) identified 111 published pa-

pers that used latent class models to evaluate diagnostic tests in hu-

mans and animals, the large majority published after 2000. In chap-

ter two of this thesis, a Hui-Walter type latent class analysis was de-

veloped for a situation involving vaccinated animals. A simulation

study was used to analyse the relationship between the properties

of the newly developed Distinguishing between Infected and Vacci-

nated Animals (DIVA) tests for bovine tuberculosis, and the study

size used to estimate these properties.
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The extension of the classical Hui Walter approach used in chapter

2 made it possible to estimate the efficacy of the vaccine used in the

study as opposed to assuming it was known, in addition to estimat-

ing unknown properties of the two DIVA tests. It was demonstrated

that in such a situation, vaccine efficacy can be estimated with good

precision, as well as estimating the sensitivity and specificity of two

diagnostic tests with unknown sensitivity and specificity. This has

important practical implications for the feasibility of simultaneously

introducing novel tests and implementing control strategies using

vaccines for which the efficacy is not fully known. As far as we are

aware, this is the first study demonstrating the joint estimation of

vaccine efficacy, incidence, and the sensitivity and specificity of diag-

nostic test. Of the 111 papers covered in the review mentioned ear-

lier (Smeden et al., 2013), only one considered the use of latent class

models in the context of vaccinated animals (Engel et al., 2008), and

this study never included vaccine efficacy as a model parameter.

Of particular interest was the relationship between study size, as-

sumptions of true DIVA test properties, and the resulting estimates

of the specificity of the tests, when the specificity reached values

of 99.9% and higher. An important objective of the study was to

demonstrate that the DIVA tests have a sufficiently high specificity,

with a threshold level of 99.85%, as this is critical for a large-scale

bTB vaccination program to be cost effective (Conlan et al., 2015).

The results of the simulation study indicated that demonstrating

that the tests superseded the performance threshold would require

either a very large study, (above 100 000 animals), or that true speci-

ficity was near perfect, with less than 1 in 100 000 truly negative an-

imals testing positive. As an alternative, the results indicated that

strengthening the main study with a pilot study that made use of

reference animals that are verified positive or negative to bTB a pri-

ori would reduce the required sample size. In light of these results,
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a joint field trial of a bTB vaccine together with DIVA tests as rec-

ommended in AHAW (2013) may allow for a good evaluation of

the vaccine efficacy. However, it is unlikely to provide sufficient ev-

idence of DIVA test performance to satisfy the 99.85% specificity

threshold, and therefore other types of evidence will need to be con-

sidered to demonstrate that the test satisfies this criteria. The full

results of the simulation study have been included in a report sub-

mitted to DEFRA and the Welsh Government, to be used in discus-

sions as to whether to conduct a large-scale vaccine/DIVA trial in

the UK.

In the third chapter, the use of multiple tests with non-binary re-

sults was considered, using a model that assumes that the tests have

quantitative results depending on the state of infection, and that

they follow a particular known trajectory after exposure to a pathogen.

By considering the diagnostic tests measurement in combination

with the kinetics of the tests, a ”clock” was incorporated that could

be used to estimate time since infection. Earlier studies have com-

bined test values and kinetics (Baguelin et al., 2011; Nielsen et al.,

2011; Simonsen et al., 2008) using a single test, and estimated the

mean incidence of infection over some period of time. This chapter

demonstrated that by incorporating information from more than

one diagnostic test, and by considering their joint kinetic pattern,

it becomes possible to relax the assumption of a constant level of

incidence and estimate not only the historic mean incidence, but lin-

early increasing or decreasing epidemic trends. In this thesis, the

the terminology of ”hindcasting” was introduced for this type of

analysis. In particular, the results used syntethic data generated un-

der a wide range of conditions to demonstrate that a cross-sectional

sample using two diagnostic tests could reliably be used to esti-

mate whether the incidence trend has been increasing or decreas-

ing. Counterintuitively, it was also discovered that the estimation of
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an increasing trend was more difficult than estimating a decreasing

trend, implying that different levels of effort are required for moni-

toring the effect of policy interventions depending on their expected

success.

The approach used in chapter 3 models the distribution of times

since infection in a cross-sectional sample, in effect modelling the

cumulative incidence. This approach is closely related to “force of

infection” studies (Hens et al., 2010) which considers age-stratified

prevalence data to estimate how the so-called “force of infection”

varies with age. As an example of the similarity, the chapter redis-

covered an equation first described by Griffiths (1974) that models

the distribution of times since infection in a cross-sectional sample,

assuming a previous linear trend β, an instantaneous incidence at

the time of sampling α, and including possible censoring of times

since infection larger than some value C:

p(t = T) =
(α + βT)e−(α+βT/2)T

1− e−(α+βC/2)C

The context is different however. Griffiths modelled the exposed

fraction of a population in a situation where the incidence is sta-

ble over time, but differs by age, and where the force of infection

follows a linear trend as a function of age. In contrast, our equation

assumes a homogenous population, but a changing incidence over

time, and is implemented in a framework where the times since

infections (equivalent to age in Griffiths’ implementation) are in-

ferred rather than known. Moreover if ages of individuals or other

covariates can be estimated for the individuals tested in our cross-

sectional data then the methods introduced here could be extended

to account for them.

In chapter four, the application of hindcasting was expanded to that

of epidemic diseases where reinfections can be ignored, but where

the trend of incidence develops in a more dynamic fashion, e.g. ris-

ing and then falling. By considering epidemics, the study can be
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compared with recent papers that focus on recovering transmis-

sion networks with a combination of epidemiological and phylo-

genetic data. The recent study by Jombart et al. (2014) combined

genetic data with case counts to estimate unobserved epidemic pa-

rameters of the 2003 SARS outbreak. In a similar fashion, Biek et al.

(2012) used the number of genetic mutations between cases to re-

construct the network of spread between cattle herds and badger

groups. These studies also recover epidemic patterns from cross-

sectional data, but rely on genetic mutation rates as “clocks”. Since

genetic mutation rates are measured in transmission events, such

phylogenetic models can describe epidemics on a time scale of in-

fected generations, but have difficulty with estimating the absolute

time between events unless the mutation rates are very high. By us-

ing a test kinetic based approach in the hindcasting model we mea-

sure the absolute time since infection, which is more suited to de-

scribing the overall population-level development of the epidemic.

Since test kinetics can be measured on a time scale of days or weeks,

it should also be better suited to estimate rapidly developing early

phase of an epidemic than phylogenetic models where the genetic

mutation rates are measured on the order of weeks or months for

viruses (Duffy et al., 2008) and much slower for bacteria.

The content of chapter 4 is a reproduction of the paper ”Recovering

epidemic trends from cross-sectional data using multiple diagnostic

tests” (submitted to PloS Computational Biology on the 18th of June

2015). The paper is based on two case studies; a 2007 Bluetongue

outbreak in Cattle in the UK, and a B. Pertussis outbreak in humans

in Wisconsin, USA. In the chapter it is demonstrated that epidemic

trends can be fitted by using a single log-normal parametrization

of the trend for both epidemic trends in an exponentially increas-

ing phase as well as epidemic trends past their peak. It also demon-

strated that in addition to the trend, the approximate length of time
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since the start of the outbreak can be estimated, information that

would be of benefit to outbreak investigations. The statistical frame-

work described in the paper can be applied to estimate both com-

plex trends and time since introduction from cross-sectional data

provided that two or more sufficiently different diagnostic tests are

used to measure the state of disease in the host. The paper also con-

tains an indepth analysis of how different diagnostic tests combine

to add information on individual-level time since infection, high-

lighting in particular the problem of non-identifiability. The anal-

ysis indicate that when combining multiple tests, the tests should

be chosen so as to measure aspects of the host-pathogen interaction

that develop over different time scales, as opposed to measuring the

same process.

The implementation of the epidemic hindcasting model in Chap-

ter 4 utilizes a novel parametrization of the lognormal distribution

describing the trend, which is described in the included supplemen-

tary information. This was motivated by the fact that in the frame-

work utilized in the chapter, the overall likelihood of times since in-

fection given observed test data often have multiple modes. Even if

one mode had the dominant mass, the multi modality can lead to

the MCMC algorithm getting stuck around the local maximum. In

the case of the hindcasting model, for many types of kinetic curves,

the time since infection that would maximise the likelihood for an

observed data point can be either before or after a peak in the test

kinetics, with a range of time since infection in between (where the

test kinetic peaks) that would result in low likelihood values. If the

time of infection is parametrized with a single parameter, it can then

be difficult for the sampler to go from a sample of the posterior with

recent time-of-infection parameter value for an individual to sample

with the pre-peak, or distant time of infection for the same individ-

ual. In order to make the overall posterior computationally tractable,
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the log-normal distribution was parametrized in terms of a binary

variable signifying upper or lower tail and a positive variable mea-

suring distance in number of standard deviations away from the

mean, and the mean and standard deviation of the distribution:

Lognorm(µ, ∆) =

eµ+∆Sσ,

S ∈ {−1, 1}

∆ ∼ Nstandard(∆)I[∆ ≥ 0]

Using this parameterization, the MCMC sampler can jump between

either tail of the lognormal distribution by switching the value of S,

leading to better mixing than the standard formulation, and avoid-

ing either tail being isolated from the other in the sampling space.

So-called mode-hopping MCMC algorithms that can jump between

different modes of the posterior are well described in the literature

(Behrens, 2008; Sminchisescu et al., 2003; Tjelmeland and Hegstad,

2001), but tend to focus on general solutions that are implemented

in the jumping kernel. The solution describe above is simple and

straightforward to implement in any MCMC-engine and can be eas-

ily generalised to any situation where modes of the posterior are

likely to lie in either tail of a symmetric distribution.

Together, chapters three and four demonstrated the importance of

detailed quantitative diagnostic test kinetics for extracting maxi-

mum information from infectious disease studies. Since these meth-

ods require us to have knowledge of the test kinetics, access to stud-

ies generating such information are crucial. Some of the studies on

test kinetics found in the literature use highly sophisticated models

of within host dynamics (Baccam et al., 2006; Hancioglu et al., 2007;

Heffernan and Keeling, 2008; Mallet et al., 2013). These typically re-

quire a large number of parameters (Heffernan and Keeling use 19
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parameters), which are fitted by assigning values or priors from the

literature and expert opinion. This type of approach generates de-

tailed predictions of the entire dynamic of the host pathogen system,

but is only feasible for systems such as Measles-humans which have

been very intensely studied. On the other end of the spectra, the ex-

perimental infection studies found tend to only report measured val-

ues without the use of any statistical inference framework (Cray and

Moon, 1995; Hoffman et al., 2006; Komar et al., 2003; López-Olvera

et al., 2010). There is thus a need for approaches that can be used to

generate parametric descriptions of test kinetics in non-experimental

settings or for emerging diseases. A group of studies focusing on

the use of seroincidence models (Graaf et al., 2014; Simonsen et al.,

2009; Teunis et al., 2012; Versteegh et al., 2005) strike an appealing

balance between statistical sophistication and use of observed longi-

tudinal data. Chapter five explores how the approach used in these

studies could be taken further by replicating the study by (Simon-

sen et al., 2009), detailing the potential benefit of using two or more

diagnostic tests, and showing how it would be possible to increase

the realism of the model used by assuming a piecewise linear anti-

gen curve. The chapter also discusses additional research that needs

to be done in this field to strengthen diagnostic test usage, and as a

result thereof strengthen disease surveillance.

6.2 future directions

The results in this thesis have highlighted the importance of consid-

ering the diagnostic tests used for disease surveillance and epidemi-

ological studies, and in particular the use of multiple diagnostic

tests. They have also shown the kind of unexpected and useful con-

clusions that can be drawn from data collected with more than one
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test. However, there are a number of different research questions

that have yet to be pursued owing to lack of time and resources.

In the Hui-Walter work conducted in chapter 2, it was assumed that

the results of the two DIVA tests were mutually independent. This

is a strong assumption that can be questioned. An extension of the

described work could thus be to consider the issue of dependence.

Since introducing covariance structures in a two-test Hui Walter

framework lead to a non-identifiable system (Georgiadis et al., 2003),

this would imply either considering the situation with three tests

with different properties, or to consider tests that produce a quanti-

tative rather than binary results. Quantitative type tests could also

be used to consider the issue of disease progression. The presented

analysis intentionally ignored this issue, but it is well known that

the progression of bTB in the host has a strong impact on the ability

to identify the pathogen (Whelan et al., 2010) , whether by immune

response or by pathology. Assuming either a latent quantitative indi-

cator variable, or an explicitly quantitative test would make it possi-

ble to model this dependency.

The hindcasting framework introduced and developed in this the-

sis shows a lot of promise in endemic settings for tracking trends

in populations where ongoing surveillance is lacking. Chapter 3

demonstrated the example of linear trends, but there is a need to

evaluate both the robustness of this modelling approach when as-

sumptions of linearly changing incidences are not met. Non-linear

trends could be considered as well, such as exponential trends, or

even fitting smoothly varying trends with the use of splines or lasso.

However, there are a number of complications that need to be con-

sidered when generalising hindcasting in endemic settings. If the

incidence is high enough, the issue of reinfections of individuals

needs to be considered. The assumption used in the chapter was

that the test kinetics of a reinfected individual followed the same
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pattern as a naive individual infected for the first time. This is a

simplification, and a more nuanced approach would be needed for

pathogens where infection confer a substantial level of immunity.

For many diseases, reinfections are an important aspect of the epi-

demiology; in particular for diseases where behaviour is an impor-

tant risk factor, such as Chlamydia (Edgardh et al., 2009). When gen-

eralising the type of trend considered, a statistical complication is

that the approach used for hindcasting in this thesis requires that

the distribution of ”times since infection” at the time of sampling is

modelled. The “times since infection” distribution is the integral of

the continuous-time trend expression, and thus have a substantially

more complicated parametrisation than is commonly used in regu-

lar curve fittings. Parameterising the models used for hindcasting

in a different way may circumvent this issue, but it is unclear what

other approach could be used. A related issue is that the current

approach requires that there is a limit to the time span for which

hindcasting is applied, or that the incidence goes down to zero at

some point in the past. This is not a fully satisfactory approach, and

finding a different way of considering this issue would be beneficial.

The use of hindcasting in epidemic settings, as described in chap-

ter 4, could prove important for outbreak response, in particular for

outbreaks where detecting is delayed. The work described in the

chapter used a lognormal parametrisation which seems to be capa-

ble of capturing the essence of even quite irregular epidemics. How-

ever, here as for endemic settings, more complex parametrisations

could be considered. One interesting approach would be to model

the disease dynamics explicitly, by the use of SIR type models, as

this might allow for estimating pathogen characteristics such as R0

in addition to estimating the epidemic trend. As SIR models are

analytically intractable this would require the solving of a system

of ODEs. Unfortunately at present none of the generalist Bayesian
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MCMC packages have ODE solvers that are sufficiently capable, and

so it would require coding the sampler in a general programming

language.

The hindcasting approach could be extended even further by incor-

porating additional aspects of the disease system such as popula-

tion demography (e.g. age- and sex-structure), contact networks,

or spatial location. This might enable the estimation of disease dy-

namics not only in time but also in spatial spread, or of the pattern

of spread through the demographic structure of the population. In

Birrell et al. (2011), a number of data sources is combined to esti-

mate the dynamics of the H1N1 influenza pandemic in London

during 2009, including age-structured patterns of disease spread.

This is done using observed binary data, and thus cannot estimate

time since infection for observed cases. Similar types of evidence

synthesis using quantitative diagnostic measures combined with a

hindcasting type approach would have the potential for even more

in-depth understanding of the disease dynamics.

The approach used in both chapter 4 and 5 for describing test ki-

netics is intentionally simplistic. By only using one parameter to

describe the combined effect of measurement error and individual

variation in the trajectory, inference in the MCMC framework is sim-

plified, allowing the chapters to focus on highlighting the potential

of hindcasting. It might well be that using a one-parameter descrip-

tion of error is enough to recover trends even in more realistic set-

tings, as the hindcasting procedure has been surprisingly robust to

even high levels of noise, at least in an epidemic setting where the

overall shape of the curve is more important than producing esti-

mates of e.g trend or location parameters. However, it is likely that

when this approach is used on field data, it would benefit from mod-

eling the various influences on test measurements separately: from

individual-level variation in the underlying process being measured,
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via contamination and preservation issues, to noise introduced in

the laboratory process of sample preparation and measurement. In

order to model the individual-level variation, the lookup-table ap-

proach used in chapters 3 and 4 would have to be replaced with

parametric hierarchical descriptions of the kinetics, where the pa-

rameters for each individual come from population-level probability

distributions.

Modelling the test kinetics in a more complex manner requires that

there are data available on the kinetics of the test, of sufficient qual-

ity to support such models. The proposal in chapter 5 to recover the

test kinetics from observational data would be one way to make it

more feasible to collect such data. The work described in the chap-

ter is just a very first step, and there are a number of improvements

that could be implemented. Instead of assuming that the time of

infection reported is correct, one could incorporate the incubation

time into the model as an unobserved variable. Another improve-

ment concerns the parametrisation of the kinetic curve: in Simon-

sen et al. (2009) it is assumed that the pathogen level declines lin-

early from a high starting point, which is clearly a strong simplifica-

tion. As an alternative chapter 5 suggested using a piecewise linear

pathogen curve. Another option would be to model the interaction

of immune response and pathogen levels directly as a pair of differ-

ential equations instead of attempting to find explicit expressions for

the curves. Making use of this would allow for much more realistic

descriptions of the test kinetics.

The hindcasting models developed in this thesis incorporate a ”clock”,

that translates observed data to a time since infection via knowl-

edge of diagnostic test levels as a function of time since infection.

This clock could be constructed in other ways as well. As mentioned

above, in phylogenetic analyses, the rate of mutation of a pathogen

is known, and this rate of mutation combined with genetic distance
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translates into a time since the last common ”ancestor pathogen”.

Hindcasting could be generalized by combining phylogenetic data,

quantitative diagnostic test data, and test kinetics. Potential other

”clocks” exist that could also be used for the purpose of hindcasting.

On the farm level, the diffusion pattern of pathogens into the envi-

ronment means that the distance from e.g. a farm that a pathogen

was detected, possibly combined with knowledge of past weather

and rain volume, could be used to determine how long the pathogen

had been diffusing from the farm, and thus the time since the farm

was first infected. A common practice in animal disease surveillance

is the use of pooled samples, such as sampling from the bulk milk

tank at a dairy cattle farm rather than from individual animals, or

combining blood samples from multiple individuals. In such pooled

samples, the direct relationship between time and indicators be-

comes diffuse; however, the relative prevalence of different disease

indicators would still reflect aspects of the disease dynamic of the

sampled population, providing information that could be utilized

in a hindcasting type framework. Looking at the individual level,

clinical descriptions of stages of disease could be used as ordinal

measurements of time since infection. Such measurements might not

be precise enough in themselves, but when combined with one or

more of the other clocks mentioned here, could help decrease uncer-

tainty and consequently increase the accuracy of estimated popula-

tion level trends.

6.3 policy implications

Current systems of disease surveillance are often limited in terms of

timeliness and completeness. The quality and existence of disease

surveillance is particularly limited in developing countries (Butler,

2006; US General Accounting Office, 2001), in wildlife (Mörner et al.,
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2002), and for pathogens that are not currently considered high risk

(US General Accounting Office, 2001). The risk posed by infectious

diseases is increasing (Jones et al., 2008), due to climate change (Fox

et al., 2011; McMichael et al., 2006), increasing air traffic volume

which increases the risk that a local epidemic becomes a global prob-

lem (Lipkin, 2013), and a number of other factors. As a consequence

of this, the capacity and flexibility of disease surveillance needs to

improve. Because of the costs involved in establishing surveillance

systems, improvements in the use of existing systems and the data

they produce are likely to be most cost effective.

DEFRA (2013), provides a series of suggested objectives for improve-

ment in the animal disease surveillance sector. The policy objectives

include: timeliness/ early identification; risk assessment; trend anal-

ysis and detection of change in endemic diseases; effective surveil-

lance data gathering and analysis; and development of improved

surveillance methodology.

This thesis has presented a number of results that can be used to

reach objectives such as these by making better use of existing surveil-

lance systems, extracting more information from cross-sectional data

than was previously thought possible, and supporting the decision

making of epidemiologists and policy makers. The extent of the

time delay between an infection event, via its detection, to it being

registered by the overall disease surveillance system, plays an espe-

cially important role during outbreaks of disease or when a novel

pathogen has been introduced. While multiple testing in itself will

not improve the time from infection to registration, hindcasting the

times of infection before the point of detection could help mitigate

the effects of delayed detection by allowing one to act as if the dis-

ease had been tracked all along. In this way, it can also help improve

the risk assessment of emerging diseases once the disease has been

identified, by providing information of its previous trajectory and
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rate of spread, thus informing predictions about future trajectories

and rates of spread. This in turn would help to inform a more pro-

portionate response in terms of disease control effort.

In situations where a novel pathogen has been discovered, two of

the most pressing questions are how long the pathogen has been

present, and if it is on the increase. A current example is the recent

discovery of a leprosy-like disease in Scotland among squirrels (Mered-

ith et al., 2014). Being able to sample across the squirrel popula-

tion and establish whether it has been spreading over the last few

years, or if it has already reached an endemic steady state, would be

highly relevant for helping decision-makers decide on what actions

to take.

In the context of endemic diseases, one of the most important objec-

tives for assessing the burden of disease and evaluating the impact

of policy measures, is to estimate and track trends of incidence. As

suggested by the results in chapter 3, cross-sectional studies could

be used to estimate trends and detect changes in incidence over

multi-year periods. In settings where ongoing surveillance systems

exists, the results could be used to validate data and trends as esti-

mated by routine surveillance. In addition, it would enable the track-

ing of trends in populations for pathogens where routine surveil-

lance is not conducted and only occasional cross-sectional studies

are implemented.

Because of the high cost of surveillance systems, it is important to

utilise available effort and collected data as efficiently as possible.

In DEFRA (2013), it is stated that ”Development and use of new or

improved methodologies for collating, interpreting and analysing

such diverse data is likely to be needed to aid in the implementation

of improved surveillance methodologies”. With the rapid develop-

ment of novel diagnostic methods, it becomes possible to conduct

statistical analyses that exploit the additional information inherent
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in these new diagnostic tests. As the results in this thesis demon-

strate, by taking the quantitative nature of diagnostic tests test into

account, and by combining multiple tests, there is a substantial gain

in statistical power that can be used to estimate critical aspects of

the epidemiology of disease.

Thus, increasing the collection and usage of quantitative information

at all levels of the surveillance system should be a priority. Often,

what is registered in databases as case/non-case is the result of ap-

plying a cutoff to a quantitative result of a diagnostic test. Collecting

the underlying quantitative test data as well as the cut-off classifi-

cation would be a good first step that could likely be taken without

a great increase in expenditures. Switching from binary tests in sit-

uations and for diseases where such are used, to tests with quanti-

tative information, and ideally with known test kinetics, would be

a benefit, both at the point-of-care or point-of-diagnosis in terms

of modern tests with better performance and faster turn-around,

as well as to epidemiologists and statisticians working with the col-

lected data to understand population level patterns. With quantita-

tive data enabling richer analysis of the dynamics and state of dis-

ease in a population, this would in turn provide a stronger evidence

base from which to conduct research, manage the effects of disease,

and decide on policy measures to reduce the burden of disease.

6.4 conclusion

The research put forward in this thesis highlights the importance of

considering the choice of diagnostic tests not only from a cost per-

spective but from the perspective of gaining as much information

as possible from collected data. Despite the additional cost, using

two or more diagnostic tests is from this perspective a tremendous
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gain in terms of the kinds of analyses it enables, and the informa-

tion these can provide.

This thesis has shown the rich possibilities for analyses that open

up with the advent of quantitative diagnostic test data. At all lev-

els, there needs to be an understanding of the additional informa-

tion that can be derived from such analyses; those conducting tests

and filling out forms; those designing databases for the collection of

surveillance data; those analyzing the data; those implementing the

surveillance systems; and those responsible for using these data to

inform their decisions on management of infectious diseases.

In summary, multiple quantitative tests can measure the progression

from a naive to an infected individual, and recover disease trends in

a population. Embracing their use will allow us to shed light on the

past to inform our actions in the future!
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