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Abstract

Business processes in large organisations are typically poorly understood and complex in
structure. Adapting such a business process to changing internal and external conditions
requires costly and time consuming investigative work and change management. In
contrast autonomic systems are able to adapt to changing environments and continue to
function without external intervention. Enabling business processes to adapt to changing
conditions in the same way would be extremely valuable. This work investigates the
potential to self-heal individual business process executions in generic business processes.
Classical and Immune-inspired classification algorithms are tested for their predictive
utility with Decision Trees augmented with MetaCost and Immunos 99 exhibiting the
best performance respectively. An approach to deriving recovery strategies from historical
process data in the absence of a process model is presented and tested for suitability.
Also presented is an approach to selecting the best of the determined recovery strategies
for application to a business process execution, which is then tested to determine the
impact of its parameters on the quality of selected recoveries.
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Chapter 1

Introduction

In the commercial world business improvement is extremely important. By producing
products faster, cheaper, and in larger quantities a business can become more profitable.
Accordingly there is huge interest in business improvement techniques and production
methodologies that can enable this to occur (e.g. [7]–[9]). In general, techniques and
methodologies for business improvement deal with first understanding and then controlling
elements of the production process and in turn the process itself.

Technical contributions to business improvement fall into two main groups, tools to
orchestrate or control the business process (e.g. business process management systems
such as [10] or [11]) and tools to measure business performance (e.g. Dashboards like
Oracle Business Intelligence [12] or Statistical Process Control [13]). A process which was
able to adapt to changes in the business environment would reduce the time and effort
taken to monitor and improve the processes manually, which would lead to decreased
costs through the reduction of process improvement programmes.

One increasingly popular tool to inform process improvement is that of process mining [14].
Process mining seeks to reconstruct the business process from the execution logs that
are stored by workflow systems. Referring to a model derived from real data ensures the
improvements are grounded on that basis, rather than on the mental model of the process
improvement consultant. Applying process mining to large scale business processes is
not without its own problems. In many cases there is a conceptual mismatch between
process designers, operational staff and IT systems engineers involved in orchestrating a
business process. This disconnect is particularly problematic for process mining [1].

One view of a business process is to see it as the software that runs on top of the hardware
of the business to produce the output required. Therefore approaches to organising
computer systems may provide some inspiration for improving business processes.

1



In academia there is a significant amount of research being conducted into the self-
organisation of systems in order to bring into software the ability to self-configure, self-heal,
self-optimise and self-protect [15], also known as self-* properties. These autonomic
systems are able adapt to changes in their execution environment and continue to function
without explicit reprogramming or reorganisation. The autonomic properties are ideal
properties of business processes.

Autonomic approaches are not entirely without precedent in industry, products incor-
porating self-* principles have been developed to ease the monitoring and configuration
workload for data centres and networks in products such as IBM’s autonomic computing
toolkit [16]. While the autonomic responses of these products make the infrastructure of
the business more robust the autonomic principles are not applied to the actual business
processes and tasks utilising the infrastructure. The existing approaches and products
are able to ease the burden on system and network administrators caused by changes
and failures. Easing the burden on infrastructure administration staff allows them to
concentrate more time on the development of the estate and on the delivery of new work
rather than them needing to spend the bulk of their time on problem management and
fire-fighting.

1.1 Business Processes

Considering the operation of a business as a process, or a series of processes, is not
a recent insight. Indeed Adam Smith’s 1776 work “An Inquiry into the Nature and
Causes of the Wealth of Nations” [17] alludes to a business process in a description
of the manufacturing process for making pins. The organisation of the production and
the organisation of the flow of pins between different people is analogous to a business
process. Each worker in the factory was assigned a task to perform and the sequence
of tasks required to produce a pin was determined. Defining and following a process
allowed pins to be manufactured at a greater rate per person employed than had been
possible with an identical number of individual pin makers.

In the literature there are a number of definitions of a business process. The standard
definition used is usually either that of Hammer and Champy [18] or that of Davenport
[19].

Hammer and Champy define a business process as “a set of activities that, taken together,
produce a result of value to a customer” [18, p. 3]. The strength of this definition is
that it does not constrain the types of activities or the types of actors that might be
involved in the execution of the process. The major disadvantage of the definition is
that it is limited in scope to only those processes which create a customer output, which
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would preclude the notion of internal processes. For example, promoting or hiring a new
employee would not create an output for a customer but is an essential business process.

Davenport provides an alternate definition of a business process: “A process is simply
a structured, measured set of activities designed to produce a specified output for a
particular customer or market” [19, p. 5]. This more comprehensive definition of a
business process includes a more explicit mention of an individual customer or market
which is an even stronger omission of non-customer-facing processes. Davenport’s
definition also includes an element of structure, and known input and output, which
is appropriate for clean-room implementations but in practice it has been found that
inputs/outputs are not well defined [1]. The cause of many process execution issues is
the execution of transitions between tasks before the inputs are available or the outputs
are finished.

While the precise definitions used vary, common themes are the collection of tasks, the
production of a product or the output, and the organisation of the tasks.

In order to ensure a consistent basis for discussion on business processes we use the
following definition incorporating the salient points. This definition is based on Ham-
mer and Champy’s [18] definition with the emphasis shifted from customer output to
measurable output.

There should be some result of applying a business process within its business context.
This result may be the production physical object in a manufacturing process, or an
intangible one (eg. a firewall port being opened). If it is possible to determine if the
output has been produced as desired then the output is measurable.

Definition: 1. A business process is the organisation of defined actions that are required
to be performed by the business in order achieve a measurable output.

It is important to note that Definition 1 says nothing about what the actions should
be or at which level they should be recorded. Figure 1.1 shows an example of a simple,
high-level business process for resolving a fault report. It is easy to see that the process
tasks could be decomposed into a more detailed design utilising both automated and
manual activities across many different departments (or indeed different businesses spread
across the globe).

Receive
Trouble Report Diagnose Fault Resolve Fault

Figure 1.1: An hypothetical high-level business process. Vertexes are tasks, and edges
are transitions between them.
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There are many ways to decompose business processes from high level goals into specific
activities, indeed this is the core of business process design. Many businesses will use
a naive approach where interested parties meet face to face and design the process on
paper by decomposing each task into sub-tasks until the level of individual activities is
reached. A decomposition of the example business process in Figure 1.1 follows with
each additional level of indentation representing an additional decomposition. The lowest
level activities would form the business process to be implemented.

1. Receive Trouble Report

(a) Customer contacts agent

(b) Agent validates customer identity

(c) Agent validates impacted service

(d) Trouble ticket is created

2. Diagnose Fault

(a) Automated diagnostics executed on impacted product

(b) Perform further diagnostics if automated diagnostics are inconclusive

(c) If issue cannot be diagnosed then escalate to product specialists

3. Resolve Fault

(a) Implement the remedial actions

• If an engineering visit is required
i. Create trouble ticket with supplier
ii. Reserve engineering appointment with customer

• if an engineering visit is not required perform remedial actions
• if remedial actions are unsuccessful return to 2.

(b) Apply compensation to customer account for out of service time

(c) Close trouble ticket.

Business processes are not constrained to a sequence. It is possible for multiple depart-
ments/businesses to each be performing work on a particular job simultaneously e.g. in a
telecommunications context a supplier could be building and shipping customer premise
equipment (CPE) while the provider is provisioning the service. Processes containing
automated or robotic elements are not exempt from this, although at the industrial
partner robotic tasks are usually executed in sequence. In this fashion a business process
can be considered to be the definition (or expectation) of how the execution should
occur.
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Within the process mining community, each execution of an instance of a business process
is known as a Process Instance. A process instance contains information on the tasks
executed and the attributes used during the execution of the business process. Process
attributes record information about the process such as its start and end time, and other
domain specific information such as the applicable customer name. The task information
in a process instance is characterised within BT in terms of task instances which record
the executions of the individual tasks contained within the process instance.

Definition: 2. A process instance is the execution of the tasks according to the structure
and definitions in the applicable business process.

A concept closely related to business process is workflow. The Workflow Management
Coalition [20] defines a workflow as:

Definition: 3. “The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules” [21, p. 8]

Definition 3 illustrates the link between workflow and business process. Business processes
necessarily require humans or systems that effect the tasks. These participants are
collectively referred to as actors. Business processes are concerned with the tasks
(automatic or manual) and their execution; workflow is concerned with the transition of
tasks between actors in the process. The relationship between workflow and business
process is often not a 1:1 relationship as a single person may execute multiple tasks
before passing a job onto the next stage in the process.

What is a task?

A canonical definition of a task or activity is not obvious. The difficulty in definition of a
task comes from the fact that business processes can be and often are represented at
different levels of detail [22]. Case studies and experience applying process mining in a
large business has shown that real business processes can exist at a variety of different
conceptual levels [1]. The following description is based upon work undertaken in the
context of an international service provisioning process in the telecommunications domain.

At the highest level process designers typically view their processes as a series of abstract
concepts which are linked in a prescribed way. Each of the elements at this conceptual
level would likely be broken down into multiple tasks during the implementation of a
process in the IT estate of the business. For example a concept might be “Provide Circuit
from A-End to B-End”. However this will require many tasks to be completed by many
people. This level will be referred to as the conceptual level.

At the next level the operational managers that are responsible for all of, or part of, the
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process would see each separate piece of work that needed to be done as a task. Often
the boundary between these tasks would be where the job must be passed from one team
to another as new skills are required. This will be referred to as the operational level.
The description of the production of a pin by Smith [17] is an example of an operational
level description. Another example of an operational level description for providing a new
telephony circuit to a customer might be:

Task 1: Validate customer address

Task 2: Validate network capacity is available

Task 3: Reserve required network elements

Task 4: Order Customer Premise Equipment (CPE)

Task 5: Arrange engineering appointment for service installation

Task 6: Receive notification from engineer that the service is installed

Task 7: Start customer billing

Task 8: Close order

The workflow level, the lowest level, would come from the people who manage the
implementation of a process in the workflow systems of the business. Within the workflow
system the conceptual or operational task being executed is largely irrelevant, all that is
important is who should be working on the task now, and where it should go next. The
transitions between actors that are finally defined at the workflow level are closely related
to how the job should be passed from one team to another at the operational level,
but the way this is organised may be unrelated to either the conceptual, or operational,
design of the business process.

Two concepts closely related to workflow are those of queues and transitions. A queue is
a container for work which is serviced by one or more actors. Each actor will take process
items from the queue one at a time as per the requirements of the process execution.
Once the actor has completed its processing it needs to move the job onto the next stage
of the workflow. The movement of the process execution from one queue to the next is
known as a transition.

A concrete example of multi-level design and implementation, based upon an extract of
tasks from a real process in the telecommunications domain is given in Table 1.1.

At the conceptual level, the process in Table 1.1 consists of only two high-level tasks
(Stage 2 and Stage 3) which are executed in sequence. At the operational level, the
process contains 7 tasks and 6 transitions which are executed in sequence. Finally, at
the workflow level the process utilises 4 queues and has 5 transitions.
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Table 1.1: Illustration of the relationship between conceptual levels of business processes.
Reading across the table increases the abstraction, reading down the table shows the
sequence of actions. The Operational/Workflow levels show the non-1:1 mapping from
business process to workflow. Task names and queue names have been redacted.

Conceptual Level Operational Level Workflow Level

Stage 2
Task A Queue 101
Task B Queue 102
Task C Queue 101

Stage 3

Task D Queue 103Task E
Task F Queue 12
Task G Queue 102

1.2 Autonomic Systems

Autonomic (or self-* systems) are those which are able to respond to changes in their
execution environment in such a way that they are able to continue to function, at either
full capacity or with a known degradation, in spite of those changes in environment [23].
This thesis will consider how autonomic systems could be applied to the execution of
business processes.

IBM, which incorporates some autonomic elements into some of its products, define
four autonomic properties that can be exhibited by such a system: self-configuration,
self-healing, self-optimisation and self-protection [23]. IBM’s systems are typically given
policies which guide the changes that the autonomic elements are able to make, and also
provide guidance on which of a set of generated changes would be the most beneficial.

The self-* properties of autonomic systems have applications to business processes and
their execution. Self-configuration refers to the ability of a system to adjust its executions
to fit the current environment. Within business processes this could take the form of
updating the selected tasks when new facilities are made available. For example, updating
process executions to use a new line testing tool that has improved accuracy.

Self-healing refers to the ability of a system to recover from the failure of its components.
Within business processes the main components are the tasks that are to be performed.
An example of a self-healing response to a business process would be to re-route business
processes around a task that is currently unavailable (perhaps due to underlying systems
issues). The business process executions impacted would be healed to avoid the problem.

Self-optimisation is the process by which a system is able to tune its use of resources
to best fit the system’s overall goals. For example, the system may adjust the tasks
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it uses to prefer those with shorter execution times if the focus is on the rate that
processes complete. Alternatively, the system might prefer higher cost but more accurate
diagnostics when customer satisfaction takes priority over throughput. More usually there
would need to be a balance between a number of completing priorities and the system
would be able to optimise itself to a compromise solution.

Finally, self-protection is the ability of the system to discover and resist attacks on the
system irrespective of the source. The nature of attacks on the system can be varied,
in the business process domain social-engineering could be considered an attack on a
customer interface procedure where an attack is trying to extract data from a business
process. Within telecommunications, there is the concept of ‘Slamming‘ where one
company attempts to appropriate the lines of another, a service transfer process could
be augmented with self-protection to try and prevent slamming from being successful.

1.3 Business Context

The industrial partner for this work is BT, a multinational telecommunications company
with operations in over 170 countries around the world. As a large, very process driven
company BT has a large amount of data available to trace the execution of a very large
number of business processes. Processes running at high volume require automated
solutions for problem detection and analysis because the number of people required to
manually inspect each order would be prohibitively expensive.

These processes cannot run flawlessly at all times since not all eventualities and scenarios
can be predicted ahead of time. Additionally, the regulatory and business framework can
change which in turn has an impact of business processes. These issues and the impact
of those on process analysis work are discussed in detail in [1].

A successful autonomic process system from a BT perspective is one which will allow it
to autonomously correct business process issues and in turn reduce the impact of process
failure on customers. Reducing the rate of process failure will lower the impact of that
failure on customers, and should therefore result in an increase in customer satisfaction.

1.3.1 Classification Performance

A key performance indicator for the work in this thesis will be the performance of any
predictive or classification algorithms that are used. In analysing the performance of these
the primary measure of performance has not been the simple headline accuracy measure
for each run. The true-positive rate for cases of predicted process failure is a better
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comparative measure from the perspective of businesses using these techniques. From a
reputational or customer service viewpoint, performing extra work away from the customer
on an order that would pass has no effect but failing to perform preventative work on
an order that does fail gives a negative customer experience and requires additional
corrective action. Misclassifying a process failure is therefore worse than misclassifying
an process success.

Although a higher false positive rate for process failures is therefore acceptable, a decision
would need to be made by the business as to what rate is appropriate for the situation.
The acceptable false positive rate chosen would depend on how the organisation chooses
to deal with predicted failures. If the business is using a highly trained specialist to
analyse each of these, a significant manpower cost could be wasted investigating orders
that would pass if the false positive rate was too high.

Acceptable values for the performance characteristics of the classifier are highly context
dependent. Within the business context each of the four classification outcomes can be
mapped onto a business scenario involving increasing or decreasing costs as follows:

• True Positive - This is a successful intervention so would usually reduce costs
through the avoidance of failure and the associated recovery actions.

• False Positive - This is an unnecessary intervention where a process that would
complete successfully has been identified as a failure. This will be a cost increase
as the cost of intervention has been incurred.

• True Negative - This is a successful process execution that had no intervention.
There is no change to costs for these process executions.

• False Negative - These are failures that have not been detected by the classifier.
There is a cost impact on these processes involved in correcting the process and
resulting issues. There is also an indirect cost to customer satisfaction since the
customer has likely been inconvenienced by the failure.

Given these cost impacts it follows that the acceptable performance of a classifier needs
to be informed by the cost impact of each of the classification outcomes and a balance
struck. For example, a classifier with a True Positive Rate of 40% and a False Positive
Rate of 1% is likely to yield significant cost savings to the business even though 40%
is not a majority of the failures. This is acceptable because the cost-benefit of such a
classifier is significant (assuming the cost savings for a true positive outweigh the cost
incurred for a false positive). Of course, what counts a significant cost savings is also
highly business and process dependent.
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1.4 Research Hypothesis

All of the elements discussed in this chapter lead up to the formulation of the research
hypothesis for this work. This will be the focal point for the conclusions in Chapter 7.
The research hypothesis brings together the question that is to be answered, and runs as
follows:

Business process improvement can incorporate autonomic properties of self-
healing to provide solutions to changing business contexts.

Each part of the thesis investigates a different facet of the above hypothesis. Each of
these can be mapped to a more precise sub-hypothesis as follows:

Hypothesis 1: Using historical business process data it is possible to predict the
outcome of a business process using a classical classification technique
(Chapter 3).

Hypothesis 2: It is possible to produce a better performing classifier to predict the
outcome of a business process using immune-inspired classification
techniques rather than classical classification techniques (Chapter 4).

Hypothesis 3: It is possible to produce accurate and useful recovery plans for business
processes in the absence of a formal model of the business process
(Chapter 5).

These hypotheses will be used to guide the conclusions at the end of the thesis.

1.5 Thesis Structure

The remaining chapters of this thesis are broken down to encompass specific elements of
the research that was conducted.

Chapter 2 reports on a survey of literature appropriate to business processes and to
self-* computing principles. The literature is surveyed with focus on applicability to the
research hypothesis.

Chapter 3 investigates the appropriateness of classical machine learning classifiers for the
prediction of business process outcomes. The chapter proposes a mechanism for creating
data sets from business process data that can be processed for those classification tests.
The performance of the classical classifiers for this prediction task is then examined.
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Chapter 4 reports on testing that was performed to determine if classifiers using Artificial
Immune Systems techniques could be used as a replacement for the classical techniques
which would not require parameter tuning. A technique that could provide accurate
predictions without requiring manual parameter tuning would vastly increase the speed
with which a system implementing the techniques from this thesis could be deployed
into new business processes. The chapter evaluates the results of experiments upon
these classifiers and considers if they might be able to replace the classical classifiers for
predicting business process outcomes.

Chapter 5 discusses how recovery strategies can be deduced from historical process
data, and how a process monitoring system might be extended to include automatically
determined recovery actions into an existing workflow. Experiments are performed
using historical data to determine the performance of the proposed approach in both
determining recovery strategies and in choosing the correct strategy for an intervention.

Chapter 6 evaluates the work undertaken in the thesis from scientific and industrial
standpoints. Opportunities for further work that have been identified are also discussed.

Chapter 7 draws together and evidences conclusions drawn from throughout the thesis
and identifies the novel contributions of this work.

1.6 Contribution to Knowledge and Business

This EngD project has investigated techniques for bringing self-healing features to generic
business processes. These have been developed in conjunction with BT as the industrial
partner for this work. Contributions to knowledge and to the business of the industrial
partner are summarised below.

1.6.1 Contributions to Knowledge

The main contributions to knowledge made by this thesis are:

1. Propose a method for using historical process data and process mining techniques
to produce classifiers suitable for the prediction of generic business processes. The
method includes a description of what data to capture and how that data should
be structured for classification (Section 3.1).

2. Propose the use of artificial immune systems techniques for the classification
of business processes (Chapter 4). This is a new area of application for AIS
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inspired classifiers. Four classifiers are tested with Immunos 99 showing the best
performance for this scenario.

3. Propose and demonstrate a method for the discovery of recovery strategies for
generic business processes without requiring an accurate model of the business
process (Section 5.2). This method utilises data on historical executions of the
process and the classifiers discussed in Chapters 3 and 4 to produce a recovery
database of the recovery strategies and some measures of their historical success.
The proposed method is classifier agnostic.

4. Propose a method for the selection of the most appropriate recovery strategy for the
current business process state suitable for generic business processes (Section 5.3).
This would allow an self-healing business process system to select an appropriate
recovery path for a detected and impending business process failure. This method
is also agnostic to the methods used to classify the business processes.

5. Propose a systems architecture that could be adopted by a business to implement
the self-healing techniques contributed by this thesis in an existing business process
system. The proposed system ensures clean separation and simple interfacing
between the existing workflow systems of the business and the self-healing system
(Section 5.3).

1.6.2 Contribution to Business

In addition to those contributions that this thesis makes to academic knowledge the
thesis makes a number of contributions to the industrial partner. The exact impacts on
the business of these contributions are commercially sensitive.

1. Investigated artificial immune inspired approaches for classification. In addition to
the academic contribution of this work, this introduces a new set of techniques to
BT that can be used an a variety of other areas, such as fault classification, churn
prediction and alike.

2. Studied in detail a specific BT process to inform the business on the near-term
suitability of the Immunos 99 for business process classification (Section 4.6). This
enables the business to be more confident that the results presented in the thesis
are applicable to real BT processes.

3. Proposed an end-to-end system for the self-healing of business processes that can
be used to augment any existing workflow system. The proposed system would
minimise the risk to BT’s existing systems since it requires minimal new interfaces
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to be effective and could be implemented in phases from detection first to complete
unattended recovery at the end (Section 5.3).

4. Performed a cost-benefit analysis of the potential impact of a self-healing process
system on failure rate and cost for business processes. This is a key way to measure
the potential impact of a new system or approach (Section 6.2.1). The results of
the cost benefit analysis show the potential impact of such a self-healing system
and help to prove the case for continued research in this area.
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Chapter 2

Literature Review

In this chapter literature relevant to the thesis is reviewed. Section 2.1 reviews the
literature on concepts of business processes and business improvement. Section 2.2
discusses existing approaches for bringing the self-* properties to business processes and
discusses the applicability of each approach.

2.1 Business Processes

2.1.1 Working with Business Processes - Design and Improvement

A simple way of designing a business process in a greenfield situation would be to gather
together knowledgeable users from the interested parts of the business and use their
expertise and discussion to generate an appropriate process design. This simple approach
often results in processes which work well for the groups represented at design time, but
less well when interfacing with those groups that were not represented (e.g. customers or
suppliers). However there are structured methods for designing and modelling1 business
processes which are discussed in this section. Process design approaches are split into
two broad areas, the clean-sheet approach and the re-engineering/re-design approach.

Clean-sheet approaches to process design are those which do not reference any existing
process designs, rather they start with an entirely new business process which is construc-
ted without any legacy or technical debt from existing processes. The main advantage of
a clean-sheet approach is that it does not perpetuate assumptions or inaccuracies from
any existing infrastructure. Clean-sheet approaches are typically used where there is no
existing process to modify, for example when a new product is launched to market.

1While designing and modelling business processes intuitively seem different things, the literature in
this area uses the two terms interchangeably.
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The alternative school is that of process re-engineering or process re-design. Re-
engineering approaches deal with incremental changes to a process design which adjust
the process to meet some new requirement. These approaches are typically used where
a business process has been in place for some time and it does not require wholesale
redefinition, for example where a new requirement to record the call handling time is
added to a call handling process. In general, process re-engineering is the less risky
approach as it does not wipe away the institutional memory inherent in an existing
process design, there is always a risk that the assumptions used in a clean-sheet design
will not match reality. False assumptions incorporated into an entire process design in
the clean-sheet approach are likely to be more damaging than those which only impact a
sub-set of the process as would be the case in process re-engineering.

Re-design approaches such as [24] favour an evolutionary approach where the existing
process is taken as a base to work from. Aldowaisan and Gaafar’s approach requires
as input the existing process design and the desired goals of the design exercise (e.g.
Reduction in workforce, execution targets, desired capacity). Techniques for process
design that work from an existing model are likely to be more palatable to businesses
since the risk of negative consequences is reduced over the clean-sheet approach. The
proposed approach makes many assumptions which may limit the success of the resulting
design when it is used in execution. First, the method assumes that the existing process
model is correct and available however the absence of such accurate existing designs is
one of the main reasons that the field of process mining (see Section 2.1.5) is developing
as an active research area. Second, the approach does not address the environment or so
called ‘normal accidents’ [25] which means the design is likely to be brittle in practice.
Personal experience indicates that many process performance issues are caused by the
process instances that encounter exceptional or unforeseen issues during execution.

Clean sheet approaches are favoured by Hammer and Champy and such an approach is
described in [26]. In order to produce a process design using the Reijers et al. approach, a
specification of the ‘product’ to be produced is required. The specification is then broken
down into data elements and the set of dependencies between these elements, in the
form of a product/data model. The product/data model is used to derive a cost-optimal
plan giving the cheapest set of elements which must be calculated for a specified output.
The workflow to execute is derived from the set of elements to be calculated from the
cost-optimal plan and the dependencies between then (which are known as production
rules). Each production rule has an associated cost, so the space of possible sets of
production rules can be searched to find the minimal cost of the workflow. Finally the
proposed design is analysed for expected performance and validated with the end users of
the process. The use of process modelling tools for the analysis of the proposed design is
encouraged in this approach and a tool known as ExSpecT [27] is specifically mentioned.
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Another technique is proposed by Mendling and Simon [28] which seeks to use the
technique of view integration from database schema design and apply it to the business
process domain. The suggested design method is to produce, through interviewing process
participants or domain experts, event-driven process chains (EPCs) which describe the
view each of the participants should have on the overall business process. Once the
individual models are available then they can be merged using the method described.
This is held to be less error-prone and more time efficient than manually integrating the
EPCs. This approach is particularly interesting since it directly addresses merging business
processes for different organisations (either internally or externally to the business). Many
process improvement programmes that the author has observed have concentrated on
the issues caused at the interface of business units, an automated approach that could
produce linked processes for the entire super-set of contributors could be extremely
valuable.

Once a business process has been designed for a particular scenario it can be deployed
into the business. Deployment of a business process might utilise a specific business
process management system (BPMS) (for example, one of [10], [11], [29]) which takes
the business process design and automatically produces an appropriate workflow. An
alternative method of deployment, particularly for legacy processes, is to utilise an
existing workflow management system. Using an workflow management system requires
an additional workflow design and the appropriate operational support systems to be
modified or developed.

While the business process is in-life the support systems produced or modified in deploy-
ment are used to support execution of the business process instances in-situ. Systems to
control business processes are described further in Section 2.1.3.

This thesis is more closely aligned to re-engineering style approaches since changes are
made using the existing process as a base. However no new process design document or
process definition is produced and each process execution is dealt with on an individual
basis. Therefore the healing of individual business process executions should not be
considered to be a process design methodology.

2.1.2 Process Improvement

When deploying a new process, it is unlikely that process instances will execute either
as designed or as desired due unforeseen circumstances, knowledge gaps, and incorrect
assumptions during the design process. Therefore process improvement is often more
important than process design. In the same vein as structured approaches for process
design, there are many methodologies for process improvement including the Toyota
Production System [8] and Six Sigma [7]. These are discussed further below.
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Production management is one approach to the operation and improvement of business
processes. The business process and the resources that are required to execute that
process are treated as though they are a production line. One widely used production
management approach is the Toyota Production System [8] which defines a way to
organise the business (and therefore the business processes) to minimise waste and
other undesirable properties in order to streamline production and continuously improve.
Another approach, related to the Toyota Production System, is Lean Manufacturing
[30] which is less focused upon the manufacturing sector. The overall goal of the Lean
methodology is to remove resources and tasks from the process that do not directly
contribute to the end customer. Both the Toyota Manufacturing System and Lean
Manufacturing are intended for use in industries with tangible products, however these
approaches have been successfully used in service based industries. Case studies of the
application of lean methods to service industries include [31] which shows the main
challenge to implementation being one of mindset with the service industry managers not
wanting to be classified as manufacturers. A framework addressing some of the potential
issues with applying lean methods to service industries is proposed by Ahlstrom [32].

Another widely used approach for process improvement is Six Sigma which was originally
developed by Motorola [7]. Six Sigma seeks to identify and remove variation in business
processes through the use of trained process improvement specialists, and statistical
performance measures. Six Sigma is a data driven approach which concentrates on
eliminating defects from the process under control. A defect is defined in Six Sigma
as a result that deviates from customer specifications (eg. missing a delivery date, or
providing the wrong product). Metrics are defined such that defects can be detected
from data recorded during the process execution. Six Sigma aims to drive the rate of
failure below 3.4 per million executions (which corresponds to the definition of 6-sigma
in statistical modelling).

As a strong emphasis is placed upon measures in Six Sigma it is vital that such measures
accurately reflect the business performance that is being investigated. If overly simplistic
measures are used them they are open for abuse by staff seeking to inflate their own
performance. One disadvantage of Six Sigma, and of metric based approaches in general
is that they can lead to process participants disregarding the process to a greater or
lesser degree as they try and force the metrics.

A key approach to improving existing business processes is to monitor their execution for
anomalies, often this is using a business intelligence (BI) package (e.g. Oracle Business
Intelligence [12] or Pentaho [33]). A business intelligence package allows users to view and
analyse performance metrics which may include metrics on overall business performance
as well as process specific measures. These BI packages are not aware of the business
processes being measured and can only report on information that is pre-computed and
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stored for them to display. The key issue with this and similar approaches is that the
decision on what to change rests with a human actor who must discover the problem,
diagnose the cause, decide what to do, plan how and when to do it. All but the most
trivial changes would require a change programme to be setup leading to significant delay
before the change is enacted and significant cost.

The aforementioned approaches all involve significant work by experienced process
improvement practitioners, and also require a significant investment in time and effort to
gather data on process performance, to discover process issues, decide on an improvement
plan, implement the improvements and monitor for the desired effect. Azvine et al. [34]
suggest using intelligent software for problem identification and to feed back into process
execution. The tuning of process execution parameters automatically would allow some
level of autonomy in the business process by allowing the execution to react to changes in
the environment. However the approach proposed by Azvine et al. [34] does not consider
structural or organisational changes to the process, instead it considers only parametric
changes to the business process (e.g. allowable travel time for an engineer to travel to a
fault). Such limitations leave a large space of possible changes outside the scope of the
automated improvement mechanism.

There are two major issues which focus solely upon the metric based process improvement
options that were discussed in this section. The first is the manipulation of process to
artificially enhance the performance measures for the process. For example, if there is a
target for Task A to be complete within 1 hour, the team responsible for that task may
close and immediately reopen that Task each hour to keep the average time below the
target.

The second issue is that knowledge about the process and systems is assumed to be
accurate and up to date, and often more problematically, that the process that is being
executed is the same as the process that was designed and is documented. A further
disadvantage of these process improvement techniques is the need for a human to
identify issues, decide upon corrective action and implement the change programme.
Understanding the entirety of large scale business processes is not a practical undertaking.
Such a process would likely have hundreds of tasks each with its own pre- and post-
conditions, its own internal actions, and its own transition behaviour.

2.1.3 Business Process Management (BPM) Systems

Business processes are concerned with the orchestration of tasks in order for the business
to achieve a goal (see Definition 1). In the current environment is it likely that many of
the tasks in a business process are either fully automated or supported in some way by
an IT system, which is either a commercial off the shelf system (COTS) or a bespoke
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system built specifically for the task. Given the abundance of systems that are acquired
or built to support business processes a major challenge is to orchestrate these systems
to efficiently support the process instance executions.

Initial attempts at supporting and automating business processes revolved around Work-
flow Management Systems (WFMS) which are designed to facilitate the flow of work for
the tasks of a business process instance execution to the different process participants.
WFMSs control the current location and resource assignments for each process instance.
WFMSs may also support automated actions but will not usually enable a user to perform
the actions prescribed by the business process [21, p. 9]. Examples of systems of this
type include bug trackers (such as Bugzilla [35]) which allow users to assign work to
each other, and system administrators to configure the required stages of the workflow.
For example, in Bugzilla the progress of a bug would be implemented as the status of a
bug which might flow as follows: Created → Triage → Assigned → Testing → Closed.
In general, WFMSs are able to help organise the work, but do not play an active part in
that work itself.

van der Aalst et al. [36] give an overview of the historical development of systems and
IT from workflow systems to Business Process Management Systems (BPMS). Building
upon WFMSs, a BPMS should orchestrate the complete execution of a business process
from initiation to completion including both manual and automated tasks. In addition
to facilities provided by WFMSs BPM systems typically also provide extra facilities in
order to support the entire business process instead of just the workflow. BPM systems
may allow users to design and deploy user interfaces for manual tasks, to integrate with
existing systems (usually via web services), and to monitor the status of current process
instances.

In practical terms a BPMS is a system in which a business process can be designed
(typically using the Business Process Execution Language (BPEL) [37]) by a knowledgeable
person, and then deployed to a component of the BPMS which will manage the execution
of the process instances according to the design. Examples of BPM systems that are
currently available are JBoss jBPM [10], Oracle SOA Suite [29] and Progress Savvion
[11].

There are a number of advantages to using these tools including faster time to respond
to process design issues, no requirement for the IT infrastructure teams to be involved in
business decisions and increased reuse of process components [38].

Perhaps the greatest disadvantage of WFMS and BPMS approaches is the assumption
of a steady-state, or very slowly changing, context. In a modern commercial setting
businesses need to be able to adapt quickly to changing market conditions (e.g. a
competitor bringing out a new product, or a new competitor). In addition, as businesses
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become more complex and interconnected a relatively small issue either internally, or in
a supplier or customer relationship can have wide ranging effects across a company. The
ability of a company to respond quickly and change processes to include workarounds is
essential.

2.1.4 Designing Business Processes

There are many representations of business processes that can be used in designing
processes and for archiving historical process designs. Many proprietary tools such as
ARIS Business Architect & Designer [39] have their own representation, or might use the
standardised Business Process Modelling Notation (BPMN) [40]. Using a vendor specific
notation has the disadvantage of limiting portability of the designs between tools.

Alternatively BPMSs such as Oracle SOA Suite [29] or JBoss jBPM [10] are using the
BPEL Standard [37] as their notation with appropriate tooling support. The advantages
of using BPEL for design is that it can be executed on workflow engines from a choice of
vendors since BPEL is widely supported. The major components in BPEL are presented
here, but a full list is available in the specification [37]:

• Partner Links - These reference external web services that are to be used within
the process (e.g. a payment processing service).

• Variables store data on the process state, or web service messages.

• Sequences are sequential orderings of tasks.

• A receive is a point where the process to waits for an input.

• An invoke is a call to a service defined by a partner link.

• BPEL uses components such as a switch to provide control structure.

The list of main BPEL components clearly shows BPEL’s origins in the Service Oriented
Architecture (SOA) environment as they make no reference to the human actors which
are an important part of business processes. Human tasks are added in an implementation
dependent way by each BPMS. For example, in the Oracle SOA stack [29] human tasks
are added by first creating appropriate user interface elements on an application server
which can be scheduled and queued by calling a web service from the BPEL execution,
in this way the BPEL engine can be used unaltered from a pure SOA stack.

21



2.1.5 Process Mining

There are many reasons why processes might deviate from their designed form such as
local laws and customs, workarounds for process problems, out of date documentation,
staff training issues, and so on [1]. Process mining provides an approach to remove
or reduce these problems as it provides a mechanism to discover the process that was
executed from execution logs retained by the business. Deviations from the documented
process and coordination issues can be discovered.

Process mining was introduced by Weijters and van der Aalst in [41] and since that time
there have been many algorithms and analysis options proposed. A discussion of process
mining algorithms is out of the scope of this document however Tiwari et al. have a
comprehensive survey [42].

Process mining and process analysis tools such as ProM [43] and Aperture (Section 2.1.5)
utilise a simpler representation of business processes than that of BPMN or BPEL. In the
process mining representation each vertex of the diagram represents a task or activity
within the process, and the edges of the diagram represent transitions between these
activities that have been derived in the mining phase. In this fashion a task can in fact
be any representation of an activity from any of the conceptual levels (see Section 2.1)
be that the name of the work being undertaken, an individual, an organisational unit or
a high level concept. As an example of the flexibility of this approach van der Aalst et al.
use the ProM tool [43] to perform analysis on the social network of a large organisation
in the Netherlands [44].

Process mining provides a simpler representation than that typically used in process
design such as BPEL [37], Aris [39] or BPMN [40]. For example, Figure 2.1 shows
a BPMN process that contains a decision point that is used to route the executing
processes through the workflow. Process mining of instances of that process using the
Aperture Process Mining Tool would result in output like Figure 2.2. Current process
mining tools would not be able to derive the condition behind the decision, so a simple
fork in the process is shown instead. Decision Mining, is introduced by Rozinat and
van der Aalst in [45] and is still an active area of research with recent papers such as
[46] discussing the simplification of process models via the analysis of decision points
within the process. Other examples of recent work in decision mining include [47] which
examines the problem of determining scheduling rules from process models, and [48]
which investigates an approach to mine decisions that are not clean combinations of the
XOR and AND operators.
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Figure 2.1: A simple process using notation from BPMN 1.2.
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Figure 2.2: Result of process mining 100 process instances of the business process in
Figure 2.1 with the Aperture Process Mining Tool. Numerical values are execution
frequencies for each task and transition. 50 of the process instances were of Type 1 and
50 of Type 2.
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Industrial use of Aperture Process Mining Tool in BT

The Aperture Process Mining Tool is developed at BT by the author, with the intention
of realising some of the benefits of process mining and process based analysis in BT.
Aperture was initially developed prior to the start of the EngD however it was been
extended to allow the extraction of process data for classification purposes (as in Chapters
3 and 4). Aperture will continue to be used as a platform that will enable BT’s research
in the area of Process Analytics in the future.

Other process mining tools are available. The most commonly used and cited in literature
is ProM [43] which forms a central part of academic process mining. It’s primary purpose
though is the development and refinement of new algorithms, and as such the tool is very
complex and difficult for non-specialists to understand. In contrast, Aperture has been
designed from the outset to be used by business improvement and process improvement
specialists who are not well versed in process mining theory.

In addition to ProM there are now a number of other commercially available process
mining tools that are similar to Aperture in that they are tools for business users rather
than academic investigations. The most active of these in the process mining community
is Disco [49] the authors of which host a process mining mini-conference each year in
The Netherlands in conjunction with Wil van der Aalst, the major figure in the academic
process mining community. Given that BT owns and can develop Aperture precisely for
its own needs, and for the needs of this EngD project, it is the clear choice of process
mining tool for the EngD.

Aperture uses the principles of process mining to create models of process instances.
Once the set of process instances has been modelled a broad spectrum of process analysis
options can be used to help business improvement consultants identify areas for process
improvement. Comparison of process instances from before and after process changes
can be performed to quantify the effect of the change on the business.

Aperture has been, and is being, used in trials with BT business units collecting and
analysing data in order to inform the research and development direction for the tool
itself, and to deliver process improvements to the company. Aperture has been trialled
across 4 of BT’s lines of business, across various types of business process (sales processes,
troubleshooting processes, service delivery processes). The volumes of process instances
in the trials ranges from hundreds up to millions and the numbers of tasks from tens to
thousands.

As a result of providing the process mining tool to users responsible for process improve-
ment 2 of the processes analysed have seen a tangible increase in performance. Other
trials have identified issues with the process mining tool itself, and more usually with the
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workflow and data warehousing systems in the company.

Aperture takes information on the business process execution from the WFMS used by
the business and uses it to reconstruct each process instance. The algorithm used by
Aperture to derive the connections is based upon minimum spanning tree algorithms
[50]. First, the tasks that constitute the elements of the process instance are created.
Once processing of the individual tasks is complete, the connections between tasks in
the process instance need to be determined.

There are two different cases to consider when connecting the tasks in a process instance,
sequential process instances and parallel ones. Where a business process performs tasks
entirely sequentially with no temporal overlap between one task and the next Aperture is
able to determine the connections between tasks simply by ordering the tasks in each
process instance by start and end time and then added a connection between each pair.

However, in the alternate case where the process is either known to exhibit parallelism or
the existence of parallelism cannot be determined a computationally complex algorithm
for connections is used. This algorithm uses an approximation of a minimum spanning
tree to connect the process flow of execution. The cost of each edge in the tree is
determined by the time difference between the end of a task and the start of the next.
Pseudo-code describing the outline of the connection algorithm is given in Algorithm 1.

In some business processes there are cases where the process execution is required to run
concurrently in 2 or more distinct branches. For example, fabricating the components
of a car could be seen as part of the process for building the car itself. If we were to
process mine the building a car process from the execution traces of the component
manufacturers we would likely find that the reconstructed process includes links that are
not possible in practice: e.g. the completion of the engine cover by the manufacturer and
the start of the moulding of the radio’s volume dial by an external supplier. In order to
ensure the models of the process instances are accurate for large features Aperture allows
the for the integration of business knowledge into the process mining process. Utilising
business knowledge ensures that the derived process models are guided by structural
knowledge for large features.

Since the Aperture tool is data driven the quality of input data is of paramount importance.
There are many issues of data quality that can arise such as missing or erroneous
timestamps, systems that do not capture an appropriate level of detail in data and so
forth. There is more information on Aperture and the difficulties encountered when
performing process mining in large multinational enterprises in [1].

Once the actual business process model has been derived from the executing process
instances, it can be used to inform business improvement activities. It is also possible
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Algorithm 1: Pseudo-code outline description of Aperture’s connection algorithm
input : P , The process instance whose connections are to be determined
output :The determined set of connections between tasks in P

1 T := array of tasks in P ;
2 Ec := Set of candidate edges (initially empty) ;
3 foreach i in [1, |T |] do
4 foreach j in [1, |T |] do
5 if i 6= j and endTime(ti) ≤ startTime(tj) then
6 insert (ti , tj) into Ec ;
7 end
8 end
9 end

10 Emst := run kruskals MST algorithm using set of vertices T and edge set Ec ;
// Emst now contains edges forming a partially connected graph.

11 Tunconnected := find tasks which are unconnected to start and end in Emst ;
12 foreach tu in Tunconnected do
13 foreach tn in T starting after endTime(tu) do
14 if tn and tu are not currently connected by edges in Emst then
15 insert (tu, tn) into Emst ;
16 check parent of tu to remove now redundant connections ;
17 break ;
18 end
19 end
20 end
21 return Emst as the set of determined connections for P
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to use the derived model as the basis for a simulation of the process which can be
used to examine different options for resolving issues. This model provides an excellent
counterpoint to the purely metric driven approach described in Section 2.1.2, which can
be mislead by manipulative behaviour of the humans involved in the process. Process
mining of these cases would reveal the abnormal execution paths of the manipulated
orders allowing the underlying issue to be targeted for improvement.

Figures 2.3 and 2.4 show output from the Aperture tool, in an analysis of two actual
business processes at BT. The diagrammatic output illustrates some of the features of
Aperture analysis. The numeric values show execution frequencies of each of the tasks
and transitions in the business process, allowing the identification of frequent tasks and
frequent paths. The appearance of the edges in the figures is used to highlight areas
where there is potential inefficiency; solid edges represent transitions to a state that was
not previously observed in this execution, and the dashed edges represent transitions
to a state that was previously observed, therefore the dashed edges show where task
repetition is occurring.

Task repetition can be an indicator of either design or implementation issues within
a business process. To take a simplistic view, each task required for the process to
complete should need to be accomplished only once; if something needs to be executed
multiple times then it is taking away capacity that could have been used to progress
more process instances. Task repetition is not always an indicator of a process issue since
there might be a need for designed repetition. For example, if a customer reports a fault
with a telephony service they call the provider who tests the line and then arranges for a
technician to visit. Prior to the technician visiting it would be logical for the provider to
retest the line before the technician actually visits the property so that his time is not
wasted visiting a fault which is no longer in evidence.
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Figure 2.3: Example output from the Aperture Process Mining Tool using data from a
fictional process.

Each node represents a task in the business process and each edge a transition between two
tasks. The numerical labels for both nodes and edges are their frequency of occurrence.
Solid edges indicate the the target of the edge is the first occurrence of the task in
the process execution, dashed edges indicate that the target task has been previously
executed (therefore indicating where repeat work is being performed in the process).

The diagram has also been pruned to delete edges that occur less than 10 times to
remove noise from the diagram and aid comprehension of the main process behaviour.
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Figure 2.4: A model of a business process that provides new resilient data services to
multinational customers. The process involves staff in the countries at either end of the
circuit and in the UK. The sample includes for a 1293 process instances, and shows only
edges that arise in more than 90 per cent of process instance executions.

The numerical labels show frequency of occurrence. Solid edges indicate the the target
of the edge is the first occurrence of the task in the process execution, dashed edges
indicate additional executions.
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2.2 Autonomic Systems

In this section the different self-* properties are discussed and their possible effects on
the world of business processes is highlighted. From experience interacting with people
responsible for business processes it seems that a purely autonomic process with no
centralised control is unlikely to be adopted because the business would see the lack of
a central controller to mean there is no process control; therefore in addition to true
autonomic approaches some centralised approaches are also discussed which provide
some of the self-* properties while sacrificing some robustness for centralised control.

2.2.1 Self-Configuration and Self-Organisation

A self-configuring system is one which is able to adjust its operations based upon changes
in its operating environment [23]. These could be changes in the components of the
tasks, changes in available resources or changes in the components of the system itself.
This property has clear links into the management of IT systems and IT estates where
hardware and software are involved in a perpetual refresh cycle, and the user community
and uses of the systems are constantly changing [51].

A principle that is related to Self-Configuration is that of Self-Organisation. In this context
Self-organisation is the automatic arrangement of the components of a system such that
the system is able to complete some task, or meet some goal [52]. In this document
the term self-configuration is used as an umbrella term for both self-configuration and
self-organisation.

What constitutes self-configuration varies with the type of system that is being configured.
In an IT system the configuration might be which network links should be used, or which
servers should run which applications; in a robotic production line it might be which
robot executes its task in which order. The configuration (design) of a business process
incorporates the execution order and hand-offs within the process flow and the allocation
of tasks to actors within the system (which could be human or robotic - see Section 1.1).
Business processes are therefore most similar to systems with independent actors (e.g.
multi-agent systems [53]), or compositional systems (e.g. web services [54]), and are less
similar to systems such as computation clusters, data centres, and networks.

Techniques for self-configuration are generally reliant upon concrete information about the
actions of the components of the system being available. This could be an OWL-S [55]
specification or a web service description (i.e. WSDL [56]), a list of goals and preconditions
in multi-agent and planning-based systems [57] or some other representation. Concrete
information allows tools to reason about the world and the available resources. Producing

30



an appropriately rigorous description for a business process is a non-trivial task because
of the cost of discovering, validating and maintaining this information across hundreds (if
not thousands) of processes and many more constituent services. A further difficulty is
the inclusion of human actors within business processes which often leads to significant
variability in processes which would make predicting the progress of the process difficult
[1].

An additional challenge in self-organised systems is matching the organisations that are
generated by self-configuration techniques and the goals of the business. For example,
each agent might have a cost implication and the goals to minimise cost of the solution
and to achieve the highest throughput of tasks could be in conflict. In business processes
there are usually several competing goals, and their relative importance can change as in
field of multi-criteria optimisation [58].

Decentralised Organisation

The essence of self-configuring/self-organising systems is their ability to organise without
a requirement for a central controller using only location limited communications and
sensing abilities [59]. Decentralised systems have the advantage that they are not
vulnerable to the failure of the central controller and as such can be made more robust.
However the conservative nature of business regarding process management means that
it seems unlikely that businesses would adopt a decentralised approach. Experience
indicates that it is often felt that a slow rigid process is seen as preferable to a fast but
variable one. One rejected research direction for this work could be to investigate how a
self-organising business process could be constructed from high-level components which
are themselves predefined and centrally controlled.

Swarm based approaches to decentralisation place a number of individual elements into
a shared environment. Each of the elements within a swarm has only a limited ability to
sense the environment and to communicate with other elements and only has a fixed
number of actions that can be taken [59]. In spite of the limitations of each element
within the swarm the emergent behaviour can be very powerful and very robust to
environmental change, particularly in natural systems e.g task allocation in ant colonies
[60].

One issue with decentralised approaches is ensuring that the rules of the individuals in
the swarm are appropriate for the swarm to achieve the overall goal. This is particularly
important because business processes are not effective or complete if they do not complete
their work. Winfield et al. propose the discipline of swarm engineering [61] to bring
dependability to swarms. The proposed approach is an iterative one with 3 phases:
analysis, design and test. The analysis phase determines if the system is able to perform

31



desired actions, and that it does not exhibit undesirable behaviours. The design phase
suggested is an extension of the Yourdon structured design methodology. The test phase
uses statistical methods to measure the times in which the swarm performs the desired
behaviours. The paper focuses on safety critical systems which would typically have
more stringent dependability requirements than those of business processes, however the
points made should be applicable even in the weakened business process case.

Other decentralised organisation approaches can be seen in swarm robotics. Swarm
robotics is a field concerned with enabling a group of robots to co-operate to achieve a
particular task or function in a given environment [62]. This is conceptually similar to
the way a business uses groups of people to perform a business process.

One such approach is an evolutionary robotics one proposed in [63]. Evolutionary Robotics
is a bottom up approach where variations are made to the each robots “genome” and
then the selection for breeding is determined based on the performance of the overall
swarm. Tuci et al. ’s approach evolves neural network based controllers for each robot
that allow them to self-organise at runtime to perform their task.

In [64] it is argued that some of the research on swarm robotics can be helpful in an
immune-inspired self-organisation in complex computer architectures, citing [65] as an
example of such an approach. An alternative immune-inspired approach is proposed by
Capodieci et al. [66]. In both cases at a high level each robot contains a lymph node
that contains a set of antibodies describing when different modes of operation apply.
The robots are able to trade antibodies with each other when in communications range
which allows the improving co-ordination rules to be spread throughout the swarm. As
with many swarm robotics tasks this case study is to perform a foraging task that is
much simpler than a business process would be.

Business processes often contain time-constraints. For example, that a field engineer
must visit the property for an installation at the agreed time. The approaches to swarm
robotics discussed thus far in this section are not able to deal with this problem. Khaluf
and Rammig [67] describe an approach which allows a swarm of robots to allocate tasks
between themselves whilst respecting the deadlines for each task without the requirement
for any central control. Any work on self-organising business processes would also have
to deal with these issues.

Another decentralised organisation approach is that proposed by Kota et al. [68]. The
paper describes how a system of agents would be able to modify their relationships in
order to ensure efficient task distribution and allocation throughout the swarm. The
performance of the system is shown to be approaching that of a centralised allocator
[68] which should provide evidence to businesses that decentralised solutions should
not be written off on the basis that the trade-off between efficiency and resilience is
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unfavourable.

Self-Configuration in Multi-Agent Systems (MAS)

MAS are those systems which consist of multiple independent autonomous agents that
are able to self-configure without the requirement for central control [69]. The systems
are made up of agents which coordinate actions between themselves, allocate resources
and so on. Since such systems evolve together with their environment and adapt as it
changes; they are robust to changes in that environment [70].

MAS agents have a number of important properties which make them useful in this
context [53]:

• Autonomy - Agents should be able to work alone and without external intervention,
and they should have some control of their own state.

• Social Ability - Agents should be able to communicate with each other.

• Reactivity - Agents should detect and respond to changes in the environment.

• Pro-Activeness - Agents should take actions to move the system towards its goal
even in the absence of changes in the environment.

One approach to self-organisation in such a multi-agent system is Unity described by
Tesauro et al. [71]. Unity uses an approach called “goal-driven self-assembly”. Each agent
starts with a very simple description of what it is supposed to do. The agents register
themselves in a registry and then use that registry to determine the agents that can
provide facilities they require for execution. Ultimately the agents are connected via the
negotiated relationships to provide services to each other and the external environment.
This approach allows agents to be added and removed dynamically with re-configuration
taking place as appropriate.

A type of multi-agent system is known as an holonic multi-agent system [72] which
extends a standard MAS by allowing the participating agents to form larger super-agents.
These holonic MAS can also support self-organisation with a suitable approach such as
[73]. In this way agents providing low level functionality may decide to work together
to present a larger block of functionality to the rest of the system. This is analogous
to the way that a business might organise itself in to teams of staff that work together
to accomplish the team’s and the organisation’s goals. In actively utilising the larger
structures, the holonic approach would appear to be a good fit for a partially autonomic
system where the larger structures might be created manually and then allowed to
self-configure at the level higher than that of individual agents.
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Another related approach is illustrated by Itao et al. in [74]. Jack-in-the-Net provides a
mechanism by which Cyber-Entities (similar to agents) with simple behaviours are able
to dynamically self-organise into Super-Entities in order to provide some service to the
world. This idea could be very useful in the business process context, if for example, the
systems that were necessary for a business goal were able to amalgamate and present a
single ‘process’ to the world that could be invoked e.g. a customer email service, a line
test application, and a fault diagnostic library could combine to form a complete fault
resolution service. One area that Jack-in-the-Net does not address is that of prioritisation
or queuing of incoming work which is essential in business processes.

Multi-agent approaches such as these have the advantage that they are able to adapt
to the environment and provide a system to perform a task given the appropriate goals
and agents. The main deficiency in these techniques in terms of using them for business
processes is that they do not allow human actors to take part in the system. In addition
MASs of autonomic agents may not be able to replicate some constructs that are part of
business processes, for example if a service test requires a technician to be present at
each end of a circuit then the dispatcher agent would need to recognise and schedule this
appropriately which appears to be non-trivial for autonomic agents. Self-configuration
in business processes could incorporate different tasks at different levels of complexity.
It could be that the configuration simply decides upon task allocations to different
applications and human actors, alternatively the configuration might be the temporal
organisation of tasks within the entire business process.

MAS and Artificial Immune Systems

There is also a body of work in which Multi-Agent Systems are constructed using
approaches from Artificial Immune Systems (AIS). One example of such an approach
is described by Dasgupta [75]. Dasgupta proposes a framework that uses an artificial
immune inspired approach to create a multi-agent decision support systems which have
the desirable properties of MAS that are discussed above.

A further AIS inspired approach to MAS is described by Sathyanath and Sahin [76]. In
this paper Sathyanath and Sahin propose a generic model called AISIMAM for building
self-organising multi-agent systems. They demonstrate the technique using a simulated
mine clearing exercise where multiple independent robots are co-operating. This has some
similarities to the business process domain where multiple teams can be co-operating on
a single process, however the proposed system contains only a single type of agent which
is not generally the case for business processes.

There are however artificial immune inspired systems which are not multi-agent systems
as they do not exhibit all of the properties of multi-agent systems discussed at the start
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of section 2.2.1. For example, classification algorithms constructed using the principles of
AIS (eg. [77] and [78]) can be thought to exhibit autonomy (of agents) as the recognition
cells in the classifier function independently, but they do not communicate with each
other as co-operative agents would.

2.2.2 Guided Self-Organisation

A system requiring central control is not one in which the actors are operating auto-
nomically because each actor is not managing itself in response to polices from the
administrator [23]. In spite of this such systems might be desirable for real businesses
because central/hierarchical control is a more familiar organisational paradigm than a fully
distributed, flat organisation. It is possible that some of the benefits of a self-configuring
system could be realised without the system being truly autonomous. In this section
approaches that require global knowledge, or central control are introduced.

Planning Inspired Approaches

One area of research which has applicability to self-configuration is planning. Given a
goal that is described in some way, and a set of actions that are available for execution,
a planning algorithm is able to a determine the series of tasks required for the goal
to be accomplished. Algorithms for planning are numerous and varied, some examples
are STRIPS [79], GraphPlan [57] and SHOP [80]. A disadvantage of these approaches
is that they rely on knowledge of the overall goal of the system and on the system’s
current state so that actions can be appropriately planned by a central planner. A truly
autonomic system would not require a central controller or planner.

A rudimentary approach to self-configuration using planning is used in Kreno [81]. Kreno
utilises the GraphPlan algorithm [57] to plan the execution of the appropriate tasks
based on the user requirements. The tasks available to the planner are discovered from a
standard Universal Description, Discovery and Integration (UDDI) repository and the
domain knowledge required to produce the plan is generated from OWL ontologies.
Based on the available resources Kreno creates a description of a planning problem which
it then passes to GraphPlan for a WS-BPEL plan to be produced. The final stage is the
execution of that plan on a standard BPEL execution engine. In its current state Kreno
is also limited to influencing new process instances at their inception so environmental
changes detected during the execution of a process would not be able to influence the
execution.

Kreno’s approach includes an element of self-configuration, in that it produces plans
without supervision and allows them to be executed. Such an approach could be
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extended to allow the OWL corpus of domain knowledge to be updated with feedback
from executions of previous plans, allowing the system to respond to environmental
changes in an autonomic fashion (this is similar to the case-based reasoning approaches
to self-configuration, see Section 2.2.2).

One weakness of planning-based approaches such as [81] can be in the incorporation
of contingency or runtime information into the plans. That is to say that a plan which
seems sensible at 09:00 may be infeasible at 10:00 if one of the agents is taken offline
due to a fire, for example. It is essential that self-configured business processes are able
to deal with interruptions. A naive approach would be to re-plan after each step but this
would introduce considerable overhead.

Lundh et al. [82] describe a system which aims to resolve some of the issues with
changing environments. The system also takes inspiration from planning, and is able to
produce a configuration of robots. The configuration is then monitored to detect changes
in available resources, and reconfigured to accommodate the changes. Reconfiguring
the system is performed when an environmental monitor detects some change, e.g. a
system going offline. However, this introduces the issue of determining what failures
should be monitored which can either be done manually, or perhaps could utilise some of
the change detection approaches discussed in Section 2.2.5.

Case-Based Reasoning

Case-Based Reasoning (CBR) [83] uses a database of historical information to make
decisions about the best actions to take in a new situation. The large amount of historical
and archived data on process executions together with their metrics mean a large database
of previous cases can be derived. Approaches such as [84] provide mechanisms to use
CBR in self-configuration scenarios.

A potential weakness of a CBR solution is that being guided by the past is only useful
if there is only slow evolution in the environment. In the case where there is rapid
environmental change, a CBR approach may suggest a next task that has previously
been reliable but could now be undesirable due to changes in costs, unreliability issues,
or other problems. A more practical disadvantage of CBR approaches is the amount of
storage space required to hold to corpus of prior executions.

The advantage of CBR approaches over other approaches in this section is that they
do not require a specific expert to create descriptions of the components of the system
but they are able to learn from the actions of previous executions. This is desirable in a
business environment where the number of tasks to be annotated may number in the
thousands.
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Web Services Composition

Businesses are increasingly using SOA and BPMS to expose and compose business
processes from existing functionality. These separate pieces of business functionality
are usually exposed to the BPMS/SOA as web services. Therefore web service com-
position provides a possible basis for the implementation of a self-configuring system.
Compositional approaches were studied as part of a general review of self-* systems
whilst the focus area for the thesis was still being decided. Self-configuration of business
processes was not pursued because the implementation of such a system would be of
significantly higher risk than augmenting an existing process with self-healing elements.
Self-configuration is more risky because the business would not be able to perform the
process at all if the self-configuration system failed, whereas it can continue to serve
customers with the existing process even if the self-healing parts are non-operative, albeit
with a higher failure rate. The compositional approaches discussed in this section do not
directly impact the self-healing focus of this thesis, nor the proposed solution.

In a web service-composition approach, semantic information is used to annotate services.
A composition algorithm then reasons over the annotated elements [54]. This is not
strictly a self-organisation approach itself because the configuration is considering only
the semantics of the available services and is not considering the execution environment.
If each of the tasks within a business process could be exposed as a web service, then an
appropriate composition of those web services could execute that business process. As
with Kreno [81], the requirement for a central planner or composer prevents this being a
true self-organising approach.

Planning approaches such as the GraphPlan [57] approach used by Kreno [81] are not
able to reason over predicates that might be applicable only for a certain time window.
In business processes the requirement to be active in a certain window is important, for
example, a technician may only be able to gain access to a customers premises for a
certain time, or a resource reservation might only be applicable for a matter of minutes.
However approaches such as [85] could replace GraphPlan in the Kreno system to allow
such reasoning to occur.

One such Semantic Web approach to combining web services that might also be of
use is described by Traverso and Pistore in [86]. Models of each service should be
provided in OWL-S [55]. The OWL-S models can be translated into automata, as can
the requirements for the service to be built. Given the automata for the source services
and the target, [86] uses the “Planning as Model Checking” [87] approach to plan the
composite service. The generated configuration can then be translated into BPEL4WS
[37] for execution on standard infrastructure.

Another approach to service composition is proposed by Yu et al. [88]. In this approach
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Genetic Programming is used both to select web services to meet the business goal and
to optimise the selection of services based on their QoS characteristics. This would give
the business confidence that the produced organisation of services would have acceptable
performance characteristics. The other approaches discussed in this section would not
give such an indication as they do not consider service performance in their selections.

2.2.3 Self-Healing

Self-healing is the ability of a system to continue to operate in spite of the degradation
or failure of some of the components of that system [23]. In terms of business processes
this could be failure of either the systems supporting automated parts of the process, or
‘failure’ of the teams executing manual tasks in the process. One difficulty introduced
by the split nature of business processes is that is can be difficult to detect if a manual
task is completed correctly because those tasks are given to human to exploit their
ingenuity, however issues might arise later in the process execution as a result of mistakes.
Automated tasks would typically be unresponsive over network links, or return error
messages, but human actors may not be so helpful. Example studies of fault-tolerance
in financial systems are discussed in [89] and in [64]. Self-healing systems use a detect-
diagnose-heal cycle which requires instrumentation of the system being healed to allow
for detection, and the ability to reason about the system to determine the cause of issues
and the corrective action to be taken [90].

Architectural Approaches

The architectural approach to self-healing provides resilience at the level of the system
infrastructure and requires that the system be designed with that system or architecture
in mind. In general these systems use an observe-monitor-repair cycle in which the system
is observed for its performance characteristics, these are checked to determine if the
system is in an acceptable state and if it is not then changes to the architecture are
made to repair the fault [91].

One such approach is given by Garlan et al. in [91] where a notion of style is introduced
to adapt the framework of the specific application that is running, by providing the
important performance metrics, available architectural operations, and some repair
strategies that are applicable to the operators and architecture. Repairs are performed
when a performance issue is detected by applying the repair operators to the architectural
model maintained in the system, and then translating those architectural changes via a
translator to the runtime system.

A similar approach is presented by Park et al. [92]. They describe a system with a
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monitoring layer, diagnosis & decision layer and an adaptation layer which runs in parallel
to the running system rather than as part of it. Within these layers, six processes run
monitoring, filtering, translation, analysis and diagnosis & detection. This architecture
extends other approaches like [93] which monitor logs and reports coded into the
application for execution issues by also monitoring the hardware and operating system for
non-logged issues. Remedial action is determined using a rule engine that uses predefined
user-specified actions.

The architecture of the system that includes self-healing is important for determining what
problems and solutions can be used. For example, [91] and [92] propose their approaches
in software systems which have flexible architectures, applying these approaches to a
enterprise architecture where politics and vested interests play a part would be a major
challenge. In some domains certification of designs might be required which would require
the re-certification of the system each time a architectural change was made, in that
case architectural approaches would seen infeasible.

Immune Inspired Approaches

One option for self-healing in complex systems is to again take inspiration from the
immune system of mammals [94]. Immune systems in nature are able to respond to
maintain their organism in the face of internal and external environmental changed by
detecting these perturbations, diagnosing the issue and correcting the issue.

Looking at artificial immune systems (AIS) with the area of business processes in mind,
an approach detailed by Russ et al. [95] describes how an AIS approach could be used
to allocate tasks to computational resources in a grid. H-cells in the system are used to
monitor resources and to manage the allocation of programs to those resources. S-cells
in the system would monitor the executing programs themselves. H-cells which need to
learn the systems characteristics throughout its life-cycle do so using the Hierarchical
Adaptive Response Theory (hierarchical-ART) classifier. The H-cells learn through the
systems life so are able to adapt to changes as the nature of the workload changes, this
is essential in a business process environment where change due to both internal and
external factors is virtually constant. The design of the S-cells of the AIS in this approach
was to be completed at the time of Russ’ publication.

An advantage of an AIS approach is that it is highly decentralised which can improve
the resistance of the system. In addition the adaptation of individual H-cells enables
the system to adapt to localised changes in the overall environment leading to fast and
expert changes being made. A weakness of this approach is that different cells would
need to be developed to monitor each type of resource and each type of work, in a
business process the number of each of these could be very large, in addition is the issue
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of monitoring human actors each one of which could be considered a different resource.

Guangzhu et al. introduce an approach to adapt AIS to multi-agent systems [96]. The
IMEAS algorithm is able to use its virtual cell types to efficiently calculate which agent
should receive a particular job without requiring a complex and extensive mathematical
model of the system to be defined. Details of the large number of virtual cells that would
be required are not discussed so it is not clear if such a system is computationally feasible
in a large scale system.

Self-Healing in Business Processes

Self-healing is most closely related to dealing with the failure of components or parts
of the system with that characteristic (e.g. the financial example used in [89] and [64]).
However in a business process the notion of failure of a component is rarely clearly defined.
Alternatively the failure of an instance of a business process is generally well defined by
the metrics of the organisation. For example, company guidelines might state that faults
on a residential phone line should be fixed within 8 hours, designing and commissioning
an Ethernet link between 2 countries should take less than 3 months etc. With that in
mind self-healing of a business process becomes more about resolving, or avoiding, issues
in the execution of the process than about fixing failures of the infrastructure supporting
the process. Of course, failure of the infrastructure may imply failure of the process
instance but that is not a given.

There is also the question of how a business process should self-heal and in which
circumstances. Detecting the failure of a business process is the first issue, if a single
process instance fails from the set of 1,000 that are running that day then no healing
is likely to be required, however if 500 out of the 1,000 are failing then some remedial
action would be required. Diagnosing the system could also be problematic, in some
cases components might signal failure but not cause any process instances to fail. Once
the problem is diagnosed then some healing is required, the most straightforward method
of healing would be to change the business process to re-route the process executions
around an alternative path, for example bypassing a task which requires a failed system.
This approach is related to self-configuration of the process. Healing a business process
at the component level would require the ‘tasks’ in the process to be re-engineered and
implemented with self-healing in mind which is likely to be infeasible in terms of the
effort required.

One approach to self-healing which has direct applicability to business processes is that
demonstrated by Baresi et al. [97], Their approach uses BPEL and business rule engines
(specifically from JBoss) which are either already used to drive business processes, or
are being examined for adoption in many businesses. The extensions made use pre- and
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post- conditions specified in WSCoL (a language designed for this system) to generate
assertions that can be checked at runtime to discover issues, and recovery strategies that
can be executed specified in a language called WSReL. The recovery strategies that are
applicable to each failure scenario are designed by the users and entered into the system,
they are not however automatically generated or suggested. WSCoL and WSReL are
described in [98]. Detection of issues within the process is performed by the WSCoL
probes that are added to the business process which check conditions hold at specific
points. Diagnosis takes the form of selecting the most appropriate recovery strategy from
those applicable to the currently violated constraints based on priorities defined in each
strategy. Healing is then performed by executing the selected recovery strategy on the
individual process instances that has failed.

2.2.4 Self-Optimisation

Self-optimisation is the process by which a system can monitor and tune its use of
resources to best fit the system’s overall goals [23]. For example, a fault management
system might have a time target for resolution to meet and a staffing level target - when
faults are flowing into the business at a higher than normal rate the system could allocate
more line-testing applications to prevent a backlog of test requests building up. The
self-healing of a system in response to failure outlined above could be considered an
optimisation of that system in this way - new resources are acquired to replace faulty
ones.

Optimising with Workload Changes

In one type of self-optimising system, the parameters of the system are adjusted auto-
matically to tune the system based on changes in its workload. Dynamic workloads are a
feature of many systems particularly those that are involved in interactions with external
parties (e.g. the rate of customers calling a customer service line). One method for
optimising a system in response to changing workload is by monitoring its level of current
performance and then making some changes to the system based on that measurement.

An example of that approach is described by Menascé et al. [99]. Their approach uses
the notion of Quality of Service (QoS) as represented in a goal-function and a predictive
model of the system to enable the controller to regularly sample the system state, perform
a search in the space of possible configurations for a prediction of an improved QoS, and
then for that controller to issue instructions for the system to change into the selected
state, this tuning would need to occur regularly to be effective. The paper describes
an extension to the basic proposal of fixed-rate sampling of performance, to allow the
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sampling rate itself to be varied. Experimental results from the paper show an improved
result is generally achieved.

Another approach to optimising QoS measures in a dynamic system is given by Stantchev
and Schröpfer [100]. They propose a method which is able to map the business require-
ments of a process onto the technical requirements of the infrastructure supporting it.
Where a performance shortfall is detected their proposed system aims to improve the
performance of the system by dynamically starting additional instances of the overloaded
services which can then share the load. The efficiency of this approach would depend
upon the ability of the process to support parallel execution in an efficient way. In general
business processes separate instances of the process are usually independent, so can be
efficiently executed in parallel provided sufficient resources are available.

Optimising with Service Changes

In contrast to the approaches described above Gehlert and Heuer [101] describe a
situation where some self-optimisation is possible - the addition of a new service/resource
to the environment. There are many reasons why this might occur including: service
maintenance, the introduction of a new version of an existing service with bug fixes, a new
product requires some new functionality which is not present in the initial environment,
or new copies of a service deployed for resilience. The paper describes a goal-based
approach to this situation where both the new service and the existing system have goal
models which can be reasoned with. Upon the introduction of a new service the approach
first checks to see if the new service replaces an existing one using the provided goal
model, if the service is able to take part in a replacement the goal models are further
examined to determine if one or more requirements is improved by the new service and if
so a replacement is arranged.

One limitation of this approach is that it applies only to well defined, automated services
which are easily started, stopped and replaced. In a business process where many tasks
are to be performed by hand it is not clear how an ‘improved’ version of the service could
be either developed or inserted into the environment.

Self-Optimisation of Business Processes

Self-optimisation of business processes sounds like a panacea, potentially providing a
process which is able to run optimally without any of the expenditure currently required
on business improvement methodologies and practitioners. For processes involving human
actors there is the complication that the resource pool for each of these tasks cannot be
changed quickly, if they can be changed at all.
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Nevertheless the optimisation of the automatic parts of the process may still yield
important gains in efficiency and performance depending upon which tasks on the critical
path of the process are able to be improved.

2.2.5 Self-Protection

Self-protection is the ability of a system to discover and resist attacks on the system,
irrespective of the source [15]. This is a specific definition that avoids self-protection
from overlapping with the other self-* properties, primarily self-healing.

As for self-configuration, approaches to including self-protection into a system can
be inspired by biology. D’haeseleer et al. [102] propose the use of immune-inspired
mechanisms to detect change in a distributed system. Two algorithms are given to
efficiently generate detectors, which can be done multiple-times independently in a
distributed system. The paper claims that this would give higher change detection rates
that a single set, in addition to the removal of the single point of failure. Once the
detectors are generated they are able to check the strings that are present in the system
and determine if they are self-strings (part of the system) or non-self-strings (foreign or
malicious). The action to be taken when a change is detected is left open.

The approach of D’haeseleer et al. is extended by Sterritt and Hinchey [103] where three
elements are introduced into the multi-agent system to facilitate self-protection. The first
is the notion of apoptosis, which is where biological cells self-destruct when a continuous
signal telling them not to is removed. The second is the notion of cell quiescence, a way
of parking an agent in a dormant state so it can be verified as safe before it can rejoin
the actual system. The third is a signal, which they call the ALice signal, which is used
by the system agents to securely identify each other as having authorisation to be part
of the system. These elements are used to allow agents to self-destruct if they cannot be
determined to be valid and correct thus protecting the system from the introduction of
misbehaving agents.

The main limitation of the approaches proposed in [102] and in [103] is that they are
dealing with agents acting either maliciously, or correctly but not both. In business
processes, particularly where humans are involved, it might be the case that the agent is
acting maliciously only part of the time. It might also be the case that what appears to be
malicious behaviour may actually be a mistake or misunderstanding on the agents behalf
(for example, where a service is disconnected erroneously because the agent misunderstood
the customers instruction). Choosing the point at which mistaken/erroneous behaviour
is classified malicious and then agent removed from the system is not straightforward.
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Self-Protection in Business Processes

Of all the self-* properties, self-protection is the one which seems to have the smallest
applicability to business processes at the industrial partner. Protection of the system
from an external attacker is not something that is regularly considered in this context as
the operators who have access to the system are part of the business process themselves,
and are therefore not external to the system. The elements that are of most concern are
addressed by other properties: failure of a process to complete is addressed by self-healing,
failure of the process due to workload changes could be dealt with either by self-organising
methods or by self-healing.

The most appropriate issue to examine for self-protection seems to be the protection of
the system from misbehaving actors within the process itself, these could be compromised
computer systems, disenfranchised human actors, or simply mistakes made by either. In
other words preventing the system from failure due to malicious interactions.

Self-protection would likely be more appropriate in other contexts outside of the tele-
communications processes at the industrial partner where the external environment is
hostile and systems need to resist attacks alone. One extreme example of this would
be in autonomic space exploration [103]. Another example of an area on interest for
self-protection might be in the automotive industry where self-protection is desirable
to protect vehicle systems from issues introduced by exposing the systems to external
communications [104].

2.2.6 Discussion of Self-* and Business Processes

The applicability of each of the self-* properties to business processes is varied. One of
the hardest parts of managing business processes is designing new processes, the use of
self-configuration seems an ideal fit for this problem.

Businesses are constantly reviewing and improving their business processes to reduce
costs, increase efficiency, and increase profitability. The area of self-optimisation seems
ideal for this task, although the review literature does not seem an ideal fit for the
business process area.

The issues of self-healing appear to be best dealt with from the perspective of recon-
figuration - that is to say that the process could self-heal by redirecting their execution
path when a problem occurs. An alternative would be to change each task to support
self-healing implicitly (eg. a line test service that repairs itself rather than requiring the
process to instead use an alternative testing service). Re-implementing all of the tasks
within a business process would require an enormous amount of implementation effort
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which is very likely to be untenable, therefore approaches that can incorporate existing
services with little or no modification are to be preferred.

Self-protection is not a large area of concern for businesses in my experience, those
actors executing business processes are usually trusted (whether humans or machines).
However it is possible that some of the self-protection principles could be applied to
protect against failure of the process execution, but fixing process instances would be
closer to self-healing.

The major issue facing the project is how to include human actors in an autonomic
system in a way that allows the agents in the system to interact with them appropriately
without forcing the human actors to function like production line robots.

2.3 Classification

Classification techniques are designed to address the problem of determining the label of a
new observation based upon a set of training data that is already labelled. Classification is
a well known area of machine learning [105] that has been extensively studied. Section 2.2
has reviewed areas of autonomic and self-* systems that utilise classification techniques.
For example, self-healing often requires the use of a classifier to determine when healing
would be required. Chapters 3 and 4 utilise classification to make a prediction on the
outcome of a business process execution and Chapter 5 utilises classifiers to determine
potential recovery paths. This section will review first the classical classification techniques
and then the immune inspired techniques used in the research.

2.3.1 Classical Classification Techniques

The first of the algorithms used in this thesis is J48 which is a Java based implementation
of C4.5 [106]. C4.5 is a development of techniques such as ID3 [107] which produce
decision trees suitable for classifying new instances from a set of training data. These
techniques are attractive to the industrial partner for two reasons. First, they produce
human understandable models which means the model itself can be an input to business
improvement programmes. Secondly, decision trees are extensively used internally for use
cases such as churn prediction [108] and determining the risk involved in reactivating
dormant telephony circuits.

The other classical technique used in the thesis is Association Rule Mining [109]. The
RIPPER algorithm is able to efficiently process noisy data sets such as business process
data. As with the decision tree techniques the rule base is human understandable so can
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be used as an input to business process improvement projects. There are also existing
use cases for association rule techniques as the industrial partner in diverse areas such as
network appliance failure prediction and video recommender systems.

Not all misclassifications are equally impacting on the business. It was desirable to utilise
a technique that would penalise the classifier more for missing an impending process
failure than for mistakenly flagging a success as a failure. One mechanism for adding
this cost-sensitivity to classifiers is to adjust the training data using stratification [110].
This means however that we are either duplicating training data or removing potentially
useful observations from the training data in order to re-balance the classes.

An alternative to the stratification technique is MetaCost [111]. MetaCost is able to wrap
any standard classifier and provide cost sensitivity to the resulting classifications. This
gives a standard mechanism that can be used to address both the class skew inherent in
the business process data and to ensure the more costly missed failure cases are treated
appropriately.

The introduction of MetaCost does however introduce additional parameters to the
learning problem in the form of the required cost matrix. One option to tune the cost
matrix for MetaCost would be to use human intelligence however this very laborious and
time consuming work for a person who could be better employed. If a human is not
able to be used for tuning then there are two options: to use alternative classification
techniques that may be more amenable to the raw data as in the next section, or use an
automated optimisation technique.

One automated optimisation technique that could be used would be Genetic Programming
(GP) [112]. GP based techniques use the principles of natural selection to develop solutions
to problems over a series of evolutionary steps. For the parameter optimisation case
it would be possible to set up a GP to optimise the parameters of the cost matrix for
MetaCost based on the performance of the classifier produced in each run. A example
cost function that could be used for this would be the potential monetary savings for
the business which could be calculated using the performance results of the classifier.
This thesis however is concerned with determining the viability of a self-healing business
process system for generic business processes and not to optimising the system for a
single process, therefore the investigation of alternative classification techniques that may
have wider immediate applicability was preferred to investigating the optimal classifier
parameters for the single example data set.
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2.3.2 Immune Inspired Techniques

Artificial Immune Systems inspired techniques are those which attempt to solve problems
with the application of techniques from immunology either literally or as inspiration.
de Castro and Timmis [113] introduce the area and cover the relationship between AIS,
Computational Immunology and Computer Science/Engineering. One area that AIS are
used in is classification. These immune classification techniques can be used in similar
ways to the classical ones and perform the same function as the classical classification
techniques discussed previously. Since AIS classification techniques are structured so
differently to classical ones, it was desirable to test a number of algorithms to determine
their performance characteristics on business process data.

Chapter 4 focuses on the testing of a number of immune inspired classification techniques.
This section introduces the area and the techniques used with more detailed discussion
on the details of the algorithms used discussed in Section 4.2. These techniques are new
to the industrial partner and have the potential to be effective in areas wider that just
autonomic business processes. These techniques were favoured because they have ready
implementations and as such support rapid testing on new data sets. Additionally the
chosen techniques cover a number of different approaches from within the field of AIS
classification.

AIRS is a family of classification algorithms proposed by Watkins et al. [77]. AIRS takes
inspiration from a number of elements of the immune system but does not seek to
duplicate its functionality precisely. Within [77] AIRS is benchmarked against several
classical algorithms including C4.5 which is discussed above and it performs similarly.
Within the paper an initial classifier AIRS1 is proposed followed by some improvements to
form the AIRS2 classifier. In addition, to reduce the runtime of the algorithm further work
was undertaken to parallelise parts of the training process in [114]. Runtime performance
is a key issue in industrial contexts where rapid retraining may be required.

CSCA and CLONALG are two immune inspired algorithms that utilise the principles of
clonal selection to build classification systems. CLONALG [115] is introduced by Castro
and Zuben as an approach that can produce classifiers or with modification be used as
an optimisation technique. CSCA is a different algorithm proposed by Brownlee [116]
which takes the desirable features of CLONALG and its variants and produces a new
classifier on that basis. [116] reports encouraging results for CSCA but precise details
are not given.

The Immunos family of classifiers was first proposed by Carter [117] and is unusual in
that it was proposed by a medical doctor rather than by a computer scientist or electrical
engineer as the rest of the algorithms discussed here are. The original publication does
not contain enough information to produce an implementation of the algorithm. In [78]
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Brownlee proposes a number of implementations of Immunos-81 (named as Immunos-1
and Immunos-2) which he shows provide similar accuracy to those reported by Carter in
the original paper. Brownlee then proposes a new algorithm, Immunos-99, which is a
new algorithm inspired by his work with Immunos-81. Immunos-99 reports favourable
classification performance on standard data-sets from the UCI machine learning repository.
In the course of the EngD work was undertaken to improve the runtime of the Immunos
99 algorithm resulting in an order of magnitude improvement [3] without significantly
changing classifier performance.

Since the testing of immune-inspired classification algorithms in this thesis there have
been further developments in this field. Tay et al. [118] have proposed extensions to the
AIRS2 [77] algorithm which includes additional immune-inspired techniques and results
in improved classification performance on a number of test data sets.

Another interesting development is the AC-CS algorithm developed by Elsayed et al.
[119]. This algorithm merges the principles of association rule classification as exhibited
by JRip of the classical classification techniques discussed above and immune-inspired
techniques to produce a hybrid of the two. The reported performance of the AC-CS
classifier is competitive and the algorithm has a large runtime advantage over classical
algorithms.

Investigating the impact of these improvements on the business process data set would
be an opportunity for further work in this space. The system proposed in Chapter 5 is
classifier agnostic so could easily incorporate improved classification algorithms as they
become available.

2.4 Summary

This literature review has covered the relevant literature pertaining to business processes,
process mining and the principles of autonomic computing. Also surveyed have been
existing approaches to incorporating each autonomic principle into a computing and/or
process system. None of the literature reviewed has dealt with the generic business
process executions. Literature that covered processes was surveyed however these were
manufacturing or physical processes covering the production of a physical item and not
business processes which are typically more abstract and intangible.

The most promising area of study seemed to be the self-healing of individual process
executions. A structural reconfiguration approach may be suitable but only when working
at the level of individual business process executions. The detect-diagnose-act cycle used
for self-healing systems can then be used to heal individual executions by reorganising
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their remaining tasks.

The following chapter starts the work by investigating how classical classification al-
gorithms can be used to predict potential process failures as the detect phase of the
detect-diagnose-act cycle.
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Chapter 3

Classical Classification Techniques
for Process Prediction

Initial work on this project focused on the predictive element of a self-correcting system.
The specific area being targeted is that of the detect phase of the detect-diagnose-heal
cycle used in self-healing systems (see Section 2.2.3). In addition to detection being the
first stage, it is also an area that could provide a shorter-term benefit to an enterprise,
via the augmentation of existing workflow systems.

Section 3.1 briefly reviews the nature of business process data and describes the approach
used to create training data for rest of the thesis. Section 3.2 discusses the setup for
classification experiments performed on a sample of real business process data from a
large enterprise. Section 3.3 in this chapter discusses the experimental results obtained
from classical classification approaches when they are applied to the business process
data prepared as discussed.

3.1 Business Process Data and Data Acquisition

Most of the business process data that is available to the project is structured as, or
can be transformed to, a data set with a each row representing a single execution of a
particular task. The columns present in the data are unique to each business process
however data that is suitable for process mining must provide the following:

• A Process Instance Identifier which will be used to group the tasks in each process
instance together

• Some temporal information to place the task in time. This could be a start time
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and an end time, a start time and a duration etc. In some cases only a start time
is available, which is acceptable only in the case where the business process is
known to be sequential.

• A task name (or other identifier) which could be any type providing it can identify
the task.

Additional attributes can also be provided for either the process instance (e.g. customer
name), or for the specific task instance (e.g. employee number of the executor). Attributes
can be of any type. The collection of attributes provided is unique for each business
process therefore any analysis methods used must be able to deal with this situation.

Some observed attribute types are:

• Numerical - both integers and real numbers

• Temporal - Timestamp or Date values (which can have varying accuracy depending
on the workflow system involved)

• Categorical - Complete lists of possible values are not always available

• Strings - unstructured text, such as notes about the work

One important consideration with regards to the available historical information is that
the progression of attribute values is not typically available in the recorded information.
If an attribute was to have a number of values throughout the lifetime of the associated
task or process instance, only the last assigned value would be available to post-hoc
analysis. This lack of intermediate state in the training data may impact the accuracy of
predictive methods.

3.1.1 Data Issues

The historical process data stored in a business is not usually without issues. Some of
these issues are due to problems in the underlying workflow systems which are not easily
solved. For example where updates to task comments after the task is finished cause the
start date but not the end date for the task to be updated. Such an error causes the
impacted task to appear to end before it starts. For more information on process mining
with this data the reader is directed to [1].

The primary issue with any data set is its accuracy. In general process execution data is
collected automatically and as such is largely free of keying or transposition errors. It
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is the case though that workflow systems do not always ensure the consistency of data.
One of the most common issues with data is erroneous or missing time stamps; tasks or
process data may indicate that a task started but did not finish, or a task finished without
being started, or that a task finished before it started. Previous work on process mining
(see Section 2.1.5 and [1]) has taken a simple approach where process instances that are
tainted in this way are simply discarded. It is not clear how a predictive algorithm would
need to deal with such erroneous data.

A closely related issue to that of erroneous times, is that of tasks with zero duration.
Zero-duration tasks are usually those which are opened and/or closed in an automated
fashion. Zero-duration tasks could also be recorded if the resolution of the timing
information is not sufficient to capture the different in start/end times, for example a
data set where only the month and year is recorded for start and end times.

Process analysis for business improvement is usually performed after the process instances
have been completed. This means that all attributes are available to the analyser. In a
predictive capacity however it becomes important to know which attributes are available
to the process during execution and which are only assigned at or after the completion
of the process instance. For example, in a business process which is resolving faults, the
reported type of the fault is available at execution time, but the actual type of fault that
was resolved is not available until the end of the process instance.

Some business processes may choose to perform parts of their work in parallel with each
other. In one such business process the customer can order redundant services to be
provided to ensure service continuity in the event of a fault occurring. These separate
circuits would be provided using the same (or very similar) business processes involving
the same tasks. Where inferences are to be made between tasks it is important that such
separation of tasks is accounted for.

3.1.2 Augmentation by Aperture

Work with business processes in BT is concerned with process analytics and in particular
with Process Mining. Process Mining covers methods of reconstructing the executed
process design from information recorded during execution. BT’s process mining tool,
Aperture, has been discussed in [1] and Section 2.1.5.

The use of process mining tools allows the basic data returned from workflow systems
to be augmented with causal links between the tasks. The additional information can
then be used in predictive models of the system to determine the future actions of the
process, or the eventual outcome based on the sequence of completed work.
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3.2 Experimental Setup and Measures

3.2.1 Data Acquisition

For the initial experimentation a simple but representative data set was required. The
chosen process data is from a high volume, sequentially executing provisioning process
from within the BT Group. Task and process attributes were anonymised for confidentiality
reasons. The execution traces from this business process were extracted from the workflow
systems that manage the execution.

Once the execution traces were acquired they are first processed by the Aperture Process
Mining Tool (Section 2.1.5) to reconstruct an appropriate structure for each process
instance. The data is then processed again using a script to select categorical attributes
from the process and to introduce additional pseudo-attributes regarding timing and
structure. The data is then exported in a file format suitable for the tools used. The
investigation utilises the Weka data mining toolkit [120]. Weka was chosen because it
allows a single input data set to be shared across a large number of classifiers easily. Using
identical data sets across classification runs reduces the scope for errors to be introduced
into the analysis by data transformations. An additional advantage of Weka was the
availability of the implementations of the immune classification algorithms discussed in
Chapter 4.

Data exports were produced for the most recent 1, 2 and 3 task sequences for each
transition in the test database of process instances. In each case one row appears in the
test set for each transition in each process instance. The stages of the process that are
shorter than the length for the test set are omitted from the prepared file for that set.

The attributes that comprise the training data are split into two categories. The first set
are Process Attributes which comprise information regarding the entire business process.
Examples of process attributes would be Customer Name, Product, Geographic Location
and alike. Task Attributes are those which are specific to a task within the business
process. Examples of task attributes are the employee performing the task, the outcome
of a line test and alike.

Some of the task and process attributes might be timestamps. Rather than include the
raw timestamp as an attribute, which is unlikely to be directly useful, each timestamp is
instead decomposed into the following elements.

• The day the timestamp occurs on.

• The AM or PM specifier.
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• The percentile of the time within the execution day.

These elements are used to attempt to allow the classifier to discover relationships
between the nature of the timestamps and the outcome as part of the training process.
As a result of the decomposition the classification algorithms do not need to be aware of
timestamps as a data type.

Further attributes are added to encode the temporal position of the 1, 2, or 3 step
sequence of tasks within the business process. The attributes used for this are:

• Time in seconds from the start of the business process to the start of this sequence.

• For each task:

– Time in seconds from the start of the process to the task start.

– Time in seconds from the start of the sequence to the task start.

– Task duration in seconds.

Finally, for each task the number of tasks connecting into this task in the process
execution graph is included as the in-degree. In sequential processes this will always be
1, since each process will have one and one only immediately previous task. In parallel
processes this can be greater than one, for example in the scenario where task C starts
once the concurrently running tasks A and B both complete.

For the initial experimentation the data set produced was further filtered to include
process executions containing only the most frequent 10 tasks. This simplified data set
is known throughout as the 10-task data set. This sample data has 8 input process
attribute columns and 11 columns for each task. The exact structure of the sample data
is shown in Table 3.1. Using a simplified data set will allow for faster initial testing,
and mitigate the effect of the extreme amount of noise present in the source data. The
distribution of success (outcome=Y) and failure (outcome=N) for each of the three test
sets is shown in Figure 3.1.

In addition to the noise typically present in a business process data set, there is also an
element of class skew, although the degree of this skew varies between different business
processes. Figure 3.1 clearly shows the unbalanced nature of the classes in the test data
set used in this section. This class skew did influence the thought process used to choose
the classifiers to test in this section, however given the industrial nature of the EngD
there was also a strong requirement that any techniques chosen were acceptable and
appropriate for the industrial partner. Therefore, Decision Trees and Association Rules
where chosen for initial testing because they have a track record of usage at BT for
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Table 3.1: Structure of the classification training data for the simplified data set with
a single recent task. Columns 9 to 20 would be replicated for the each of the 1,2 or 3
tasks in task sequence included in the data.

Column Name Type/Description

1 CARE LEVEL Categorical - Process Specific
2 COMMS PROVIDER Categorical - Process Specific
3 GM Categorical - Process Specific
4 PRODUCT Categorical - Process Specific
5 REGION Categorical - Process Specific
6 SOM Categorical - Process Specific
7 SUB PRODUCT Categorical - Process Specific
8 SUB ZONE Categorical - Process Specific
9 Task 1 Def ID Categorical - identifying the type of

task performed
10 Task 1 Start Day Categorical - The day of the week Task

1 began on
11 Task 1 End Day Categorical - The day of the week Task

1 ended on
12 Task 1 Start AM PM Categorical - Whether Task 1 started

in AM or PM
13 Task 1 End AM PM Categorical - Whether Task 1 ended

in AM or PM
14 Task 1 Start Percentile Numeric - Which percentile of the day

did the task start in
15 Task 1 End Percentile Numeric - Which percentile of the day

did the task end in
16 Task 1 In Degree Numeric - How many previous tasks

link to this on
17 Task 1 Out Degree Numeric - How many following tasks

link from this one
18 Seconds to task 1 start Numeric - How many seconds elapsed

between the start of the business pro-
cess and the start of task 1

19 Seconds frm sequence start to task 1 Numeric - How many seconds elapsed
between the start of this records task
sequence and the start of task 1

20 Task 1 Duration Seconds Numeric - How long task 1 ran for
(task end - task start)

21 Depth Numeric - How many previous tasks
exist for this process execution

22 OUTCOME Categorical - Was this business process
completed successfully (Y or N)
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Figure 3.1: Histograms showing distribution of outcomes in the 3 sample sets

tasks involving skewed data such as customer churn prediction and network failure event
detection. The results of this testing were then used to justify the testing of other less
familiar classification techniques in Chapter 4.

3.2.2 Measurement

In order to compare the performance of the algorithms under test three measures common
to machine learning will be used. All tests will use a 10 fold cross-validation approach
on the data set. The first measure is the overall accuracy of the algorithm which is the
number of correctly predicted values as a percentage of the records in the data set. The
second measure is the true positive (TP) rate for the outcome classes which gives the
proportion of the testing instances that correctly lie in that class (for each class). The
third measure is the false positive (FP) rate which gives the proportion of the predicted
results which incorrectly appear in this class (for each class).

As discussed in Section 1.3.1, headline accuracy is not the best measure for deciding
the business suitability of the algorithms. The True-Positive and False-Positive rates
are more important from a cost-benefit perspective. Analysis and conclusions will be
performed with this in mind.
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3.3 Experimental Results

The algorithms tested were Decision Trees and Association Rules. These were chosen
because they are well known algorithms suited to categorical classification problems.
Further, they are both have a excellent track record of successful uses within the industrial
partner. Results for each technique are presented in the remainder of this section.

3.3.1 Decision Trees

The J48 classifier was used for the decision tree experiments. J48 is a java based
implementation of the C4.5 decision tree algorithm [106] provided with the Weka toolkit
[120]. J48 was chosen for business suitability reasons. J48 and decision trees in general
are well known and well used inside the industrial partner, using a technique which is
already understood means there is would likely be less resistance to implementation of
a solution involving these techniques rather than something less well known. Unlike
Naive Bayes J48 does not make any assumptions regarding the interdependence of input
variables, this is an advantage because when dealing with process data it is not always
clear which attributes are in fact dependent on each other. A further advantage of
decision trees is that they produce human-understandable trees and/or rule sets which
can provide information for manual process improvement activities.

Since J48 is an implementation of the C4.5 algorithm it performs classification identically
to C4.5. First a tree is grown by recursively spitting the data set by whichever variable
best split the set of training samples into subsets by class. The measure used in J48 to
determine the split is normalised information gain which means the attribute with the
highest information gain is chosen to split the training set at each stage.

Classification is performed by navigating the decision tree by starting at the root and
comparing the attribute value from the instance to the values associated with split point
on the node, and continuing to the next node. This continues until a leaf node is reached
when the label of the leaf is returned as the class for the new instance.

There are a number of parameters used to control the J48 classifier. Those used for
the experiments in this section are shown in Table 3.2. The results of applying the J48
decision tree algorithm to the prepared data are shown in Tables 3.4, 3.5 and 3.6.

The imbalance between the class frequencies in the test data set appeared to be causing
the decision tree algorithm to simply ignore the failures and return a default prediction
of success. This is not acceptable in the target environment so techniques to address
this issue were investigated. An approach to aid classifiers in dealing with unbalanced
data sets is the MetaCost approach [111] which can extend an existing classifier with
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cost sensitivity. The MetaCost approach was the one investigated in this work via the
CostSensitiveClassifier class in the Weka toolkit [120].

The MetaCost [111] approach treats the underlying classifier as a black-box requiring no
modifications to the underlying algorithm. The alternative approach is to use stratification
which adjusts the training data to adjust the weighting of each class by either under
or oversampling but this either reduces the data available to learning or increases the
learning time in the case of oversampling. Instead, MetaCost creates a number of
re-samples of the training data, uses the classifier to build an ensemble of models trained
on those re-samples, then relabels each instance in the original training data with the
highest probability class resulting from applying the ensemble set of classifiers. Full
details are presented in Domingos’s paper [111]. MetaCost allows the J48 classifier to
take into account the higher cost of not predicting a process failure, which is an essential
feature of the business process being tested. Weka’s implementation of MetaCost,
CostSensitiveClassifier, has a number of parameters which adjust its operation,
those used for the experiments in this section are give in Table 3.3.

Using the J48 classifier augmented with MetaCost here is a clear and expected increase in
both true and false positive rates for increasing cost of misclassification. It is also evident
that increasing costs above 10 in each of the three test sets has an unacceptable effect
on false positive rate. The tests with cost of misclassification of 10 have excellent results.
Another interesting result is the decrease in true positive rate when additional process
steps are incorporated into the training set, this suggests that the process structure is
less important to success than the categorical attributes of the process.

Incorporating a penalty for misclassifying the more important failure cases has a clear
improvement upon the resulting true positive rate for that class of faults with a minimal
impact on the false positive rate of the larger success class.

The results for the unmodified decision trees and the MetaCost augmented classifiers
at cost 5 are very similar and would likely be acceptable for industrial use due to their
very low false positive rates, however the true positive rates of between 44% and 59%
would mean that a large number of failures would potentially go undetected. The best
performing classifier from all of the runs is that with a cost of a missed failure at 10 and
1-step of process history which shows excellent performance with 86.5% of failures being
detected with only a 2.8% false positive rate. The remaining classifiers have unacceptable
performance for the industrial context. It is interesting that the best performing classifier
only contains the details for the most recent task in the process instance which suggests
that the increasing number of tasks combinations observed as the number of tasks
included in the prediction data increases is making it difficult for the training process to
produce a highly performing model.
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Table 3.2: Parameters used for J48 classifier runs

Parameter Value

Binary Splits false
Confidence Factor 0.25
Debug false
Min Observations per Leaf 2
Data Folds 3
Reduced Error Pruning false
Save data for Visualisation false
Sub Tree Raising (pruning) true
Unpruned false
Smooth leaf counts with Laplace false

Table 3.3: Parameters used for CostSensitiveClassifier augmented classifier runs

Parameter Value

Classifier weka.classifiers.trees.J48
(with parameters from Table 3.2)

Cost Matrix [0.0 $COST; 1.0 0.0]
(with $COST set per the run)

Debug false
Minimise Expected Cost true
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Table 3.4: Results of applying J48 to the 1-step test set

Classifier Accuracy True Positive Rate False Positive Rate

J48 [106] 96.580% 44.6% 0.2%
J48 (with cost 5) 96.494% 44.5% 0.4%
J48 (with cost 10) 96.533% 86.5% 2.8%
J48 (with cost 100) 88.786% 94.9% 11.6%

Table 3.5: Results of applying J48 to the 2-step test set

Classifier Accuracy True Positive Rate False Positive Rate

J48 [106] 95.901% 47.3% 0.4%
J48 (with cost 5) 95.901% 50.4% 0.7%
J48 (with cost 10) 84.309% 78.6% 15.3%
J48 (with cost 100) 10.736% 97.7% 95.8%

Table 3.6: Results of applying J48 to the 3-step test set

Classifier Accuracy True Positive Rate False Positive Rate

J48 [106] 95.076% 57.2% 0.9%
J48 (with cost 5) 94.907% 59.0% 1.2%
J48 (with cost 10) 83.368% 77.7% 16.0%
J48 (with cost 100) 15.025% 97.2% 93.8%
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3.3.2 Association Rules

Another machine learning technique that is applicable to predictive problems is association
rule mining e.g. JRip [109]. A rule mining classifier attempts to apply association rules
mined from a training set to the classification of the test set of data. Business process
data is generally both noisy and somewhat inconsistent. The exact results of applying
the JRip association rules algorithm are shown in Table 3.8. The parameters used for
these runs of JRip are specified in Table 3.7.

In terms of the true positive rate for failure detection the rule based classifier is not signi-
ficantly different than the decision tree cases with rates between 32% - 58% overlapping
with the TP rates for the decision tree classifiers. The false positive rates though are
higher than those of the decision trees which makes the rule classifier less palatable to
the industrial partner. In the industrial context false positive rate would be the key driver
of additional cost to the business, therefore techniques that deliver lower false positive
rates are to be preferred.

An interesting characteristic of the results of the rule classifier is that they gain accuracy
with additional process data which is counter to the decision tree approach. This appears
to be due to the ability to infer more specific rules to deal with individual cases in the
training set. In a more realistic data set highly specific rules are likely to have lower
predictive power due to over fitting. Further testing on disjoint training and testing sets,
and testing on other process data could be used to gain further insight into this effect.
Internal testing on other process data at BT [4] suggests that in less skewed data sets
the predictive power of the rules is significantly diminished.

Table 3.7: Parameters used for association rule classifier runs

Parameter Value

Check Error Rate as stop-criterion true
Debug false
Data Folds 3
Min Total Weight of Instances 2.0
Optimisation Runs 2
Pruning true

Table 3.8: JRip Classification performance on the test data sets

Data Set Accuracy True Positive Rate False Positive Rate

1-Step 94.828% 32.8% 1.4%
2-Step 94.328% 42.9% 1.8%
3-Step 92.942% 58.1% 3.3%
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3.4 Conclusion

This chapter examines the performance of two classical classification algorithms, Decision
Trees and Association Rules, in terms of their ability to predict a business process outcome.
Association rules are outperformed by decision trees and so are discounted from further
testing. The results obtained show that decision trees can be used to produce an accurate
predictive classifier, however there is a need to tune the parameters of MetaCost to counter
the skewed nature of the input data. This tuning might lead to manual effort however
it would also be possible to use optimisation techniques such as genetic programming
[121] to determine appropriate parameters for MetaCost. Such an optimisation would
attempt to minimise the cost of the classification results based on the impact of each
type of failure to the business; true positives have a small cost impact consisting only of
the resolution cost with no cost due to customer engagement, false positives have a high
cost as they incur both the cost of rectifying the problem and the reputation damage of
failing to meet the customers expectations. Therefore a suitable cost function might be
Cost = (£ per TP× Number of TP) + (£ per FP× Number of FP). Exact values for
the monetary impacts would be obtained from the business.

To attempt to lessen or remove the requirement for parameter tuning testing alternative
classification approaches was desirable. The alternatives tested were those based on
artificial immune systems. These techniques were attractive because of the cellular nature
of their construction, it seemed likely they would be well placed to detect and classify the
highly variable failure cases in the business process data. Experiments to determine the
performance of the artificial immune systems algorithms in the business process outcome
scenario are discussed in the following chapter.
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Chapter 4

Immune Inspired Techniques for
Process Prediction

4.1 Introduction

In the previous chapter a number of classical classifiers were tested. This testing revealed
weaknesses for the unmodified algorithms when they encountered skewed input data, such
as typical business process data. Therefore some investigation of alternative techniques
was desirable. In this chapter a number of alternative classifiers inspired by artificial
immune systems are tested against business process data. The experiments and results
are discussed and then evaluated against the benchmark set by the classical classification
algorithms. Additionally Section 4.6 discusses the essentials of an internal case study
where the Immunos 99 classifier is tested against an additional data set.

When business process executions fail, they usually do so in ways that are not well
understood. This means that it is not easy to partition the problem space into clear
success and failure parts. Decision trees attempt to split the problem space by choosing
which attribute best partitions the input into classes, this is seems to be at odds with
the aforementioned nature of business process systems. Artificial Immune Systems
inspired classifiers however are based upon immune systems in nature which evolve sets
of individual recognition cells each of which captures information about the learned
environment independently. Given that each of these cells can evolve to match very
different scenarios, this seems a good match for the business process space where failures
can occur for an incredible variety of different reasons.

Each of the specific algorithms used is introduced briefly in the following section.
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4.2 Candidate Algorithms

4.2.1 AIRS

AIRS [77] produces a classifier by developing a pool of memory cells which have the
function of matching specific observations (antigens) as they do in a mammalian immune
system. At a very high-level, AIRS operates as per Algorithm 2.

The initialisation step (line 1) normalises the values in the training data such that the
distance between any two attribute values is between [0, 1]. This step also ensures that
the range of possible values for cell-to-cell interactions are in the range [0, 1]. Next,
the affinity threshold is calculated as the average affinity value over all the antigens
feature vectors. Affinity is the measure of similarity between 2 feature vectors with small
values representing strong affinity. The calculated affinity threshold is used later in the
algorithm. Finally, the initial population of memory-cells and Artificial Recognition Balls
are seeded using random sampling from the training set. An Artificial Recognition Ball
(ARB) is a construct that groups an antibody, the number of resources held by the ARB
and the current stimulation value for the ARB.

Memory cell identification and ARB generation (line 3) starts by selecting the existing
memory cell (mcmatch) that is most stimulated by the current antigen ag, where stimu-
lation is calculated as 1− affinity(ag,mcmatch). Once the memory cell is identified new
ARBs are created and placed into the population of (possibly existing) ARBs. Precise
details on the exact generation of ARBs are given at [77, p. 298].

Competition for resource and development of candidate memory cells (line 4) is a phase
where the ARBs that are currently present in the pool are evaluated to determine their
fitness and if they are to be retained into the next iteration of the algorithm. Fitness of
a given ARB is calculated by first determining the stimulation level for all ARBs given
the current antigen, ag. The stimulation value is then normalised across the ARBs in
the population that have the same class as ag. Each ARB is then allocated a slice of
the available resources. If the level of resource allocation exceeds that indicated by the

Algorithm 2: High-Level pseudo-code description of the AIRS Algorithm
1 Initialisation ;
2 foreach antigen (ag) do
3 Memory cell identification and ARB generation ;
4 Competition for resources and development of candidate memory cell ;
5 Memory cell introduction ;
6 end
7 return memory pool for classification

66



resource limit parameter then resources are removed from the weakest ARBs until the
resource limit is satisfied. Any ARBs with zero resources are then deleted. To determine
if the ARBs have been stimulated enough by the current antigen the algorithm uses a
stopping criterion. If sufficient stimulation has occurred (based on parameter value) then
the algorithm moves onto the next antigen, otherwise the ARB is given the opportunity
to produce mutated offspring and this step is repeated.

Memory cell introduction (line 5) is the final stage in the training algorithm for the
current antigen. This stage is where the decision is taken on whether to introduce the
memory cell being developed here into the memory pool. The memory cell identified in
line 3, mcmatch is replaced with the new memory cell mccandidate where the new cell is
stimulated more by the antigen and the affinity between the 2 memory cells is below the
threshold specified by the affinity threshold calculated on line 1 and the affinity threshold
scalar parameter. This completes the processing for the current antigen.

Once all antigens have been processed, the resulting memory cells can be used for
classification. AIRS classifies data by using a k-nearest-neighbour approach where the
classification is determined by the majority vote of the closest k memory cells to the
observation.

Key parameters for the AIRS algorithm are:

• Distance metric - This is used the calculate the distance and affinity between
observations and between observations and memory cells. Euclidean distance is
typically used.

• Resource limit for pools of candidate memory cells. AIRS assigns resources to
potential memory cells as part of its candidate selection process. The weakest cells
are removed until the total candidate population is below this threshold.

• Affinity Threshold Scalar - This determines if a new entrant to the memory pool
should remove the memory cell that was previously the best match for the current
observation or not. Removal helps to keep the memory pool diverse by avoiding
the retention of similar memory cells.

The exact parameters used during the testing of AIRS in this section are give in Table
4.1.
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Table 4.1: Parameters used for testing of the AIRS algorithm in Chapter 4

Parameter Value

Affinity Threshold Scalar (-F) 0.2
Clonal Rate (-C) 10.0
Hypermutation Rate (-H) 2.0
Mutation Rate for Cloned ARBs (-M) 0.1
Total allocatable resources (-R) 150
Stimulation threshold (-V) 0.9
Number of antigens used to calculate the affinity threshold (-A) -1 (all)
Initial ARB pool size (-B) 1
Initial memory cell pool size (-E) 1
Number of nearest neighbours for classification (-K) 3
Random Seed (-S) 1 though 10

4.2.2 CLONALG

CLONALG has high level similarities with AIRS in that CLONALG also involves the
development of a pool of memory cells which will form the final classifiers. However
there are very different algorithms. CLONALG does not include mechanisms of affinity
mutation and somatic hypermutation [114] so will evolve differently to the AIRS algorithm.
CLONALG also runs for multiple generations of memory-cells whereas AIRS uses a single
generation. A high level description of the algorithm in pseudo-code is shown in Algorithm
3. The steps are briefly discussed below.

The initial stages of the CLONALG algorithm are straightforward. First (line 1) the
antibody pools that will form the final classifier are created. Unlike AIRS, there is no
pre-processing or normalisation step. The rest of the training algorithm is then a nested
loop over each generation and example from the training set (antigen) in turn (lines 2
and 3). Line 4 shows that the training set is processed in a random order via the selection
without replacement step. Lines 5 and 6 are straightforward.

The Clone AB step on line 7 makes copies of the antibodies in AB in proportion to their
affinities from AF . This means that the antibodies that show the highest affinity to the
current antigen become more frequent and are therefore more likely to survive through
the remaining steps of the algorithm.

In the affinity maturation step (line 8) the input antibodies (ABcloned) to the step are
mutated, with the level of mutation being proportional to the affinity from AF , the
greater the affinity between the antibody and the antigen the less mutation is applied
to the cloned antibodies in ABcloned . This results in the antibodies in ABcloned being
updated with the newly mutated versions.
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Algorithm 3: High-Level pseudo-code description of the CLONALG Algorithm
1 Initialisation ;
2 foreach Generation (g) in [0, G] do
3 while Training set is not empty do
4 ag := randomly (without replacement) remove antigen (ag) from training

set ;
5 AF := Calculate affinities between each ab ∈ AB and ag ;
6 AB := select n antibodies from the system with highest affinity with ag ;
7 ABcloned := Clone(AB);
8 Affinity Maturation(ABcloned) ;
9 AFcloned := Calculate affinities between each ab ∈ ABcloned and ag ;
10 Insert new memory cells into pool ;
11 Insert random antibodies into pool to the replace d antibodies with the

lowest affinity ;
12 end
13 end
14 return Antibodies from memory pool ;

At line 9, the cloned antibodies are exposed to the antigen in the exactly the same way
as the original antibody set was on line 5. Once the affinities are calculated, then new
antibodies from ABcloned can be inserted into the memory pool. Antibodies in ABcloned
are placed into the memory pool where the affinity of the new antibody to the current
antigen is higher than the affinity of the most closely matching antibody in the memory
pool, the old antibody is replaced in the pool by the new one. In addition on line 11, the
replacement step inserts new random antibodies into the memory pool in place of the d
antibodies with the lowest affinity with ag to ensure a level of diversity in the memory
pool.

The final classifier returned on line 14 consists of the memory pool at the conclusion of
the training algorithm. CLONALG is then able to classify new observations by returning
the classification of the best matching memory cell from the memory pool.

The exact parameters used during the testing of CLONALG in this section are give in
Table 4.2.

Table 4.2: Parameters used for testing of the CLONALG algorithm in Chapter 4

Parameter Value

Antibody Pool Size (-N) 30
Clonal Factor (-B) 0.1
Selection Pool Size (-n) 20
Total Replacements (-D) 0 (disabled)
Number of Generations (-G) 10
Random Seed (-S) 1 though 10
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4.2.3 CSCA

CSCA is introduced in [116] by Brownlee as a technique inspired by Clonal Selection and
CLONALG that represents the classification problem as one of function optimisation. In
CSCA the memory pool population is exposed to partitions of the input data a single
partition at a time. Each memory cell keeps an internal score representing its affinity to
the training instances and mutation is applied in inverse proportion to the affinity of the
memory cell. One feature of CSCA that is not present in AIRS or CLONALG is its ability
to automatically set the required number of memory cells.

A high level description of the algorithm in pseudo-code is shown in Algorithm 4. The
steps are briefly discussed below.

The first step in the algorithm (line 1) is to populate the antibody pool using randomly
selected antigens from the training set (without replacement). Once initialisation is
completed the next steps of the algorithm are repeated for the required number of
generations (G). Within each generation a number of steps are required (lines 3-6).

First, the affinity scores for each antibody and antigen combination is calculated and the
fitness of each antibody is then calculated. In the selection step (line 4), the antibodies
to be carried forward to the following steps are selected. The selected set includes all
antibodies unless: they have a misclassification score of 0 or the antibodies have a fitness
score below ε (these low scorers are also removed completely from the base antibody
population).

In the cloning and mutation stage (line 5) the antibodies that were selected on line 4
are subjected to a proportionate cloning and mutation stage to generate a modified
antibody set. Full details of this set are available in [116]. Finally for this generation
the generated clones are inserted into the main antibody pool. In addition, n randomly
selected antigens are also inserted where n = |ABselected |.

Algorithm 4: High-Level pseudo-code description of the CSCA Algorithm
1 Initialise antibody pool ;
2 foreach Generation (g) in [0, G] do
3 Calculate affinities between all antibodies and antigens ;
4 ABselected := Selection ;
5 Cloning and mutation ;
6 Clones and new antibody insertion ;
7 end
8 Final pruning ;
9 return Antibodies from memory pool ;
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Table 4.3: Parameters used for testing of the CSCA algorithm in Chapter 4

Parameter Value

Initial Population Size (-S) 50
Generations (-G) 5
Clonal Scale Factor (-a) 1.0
Minimum fitness threshold, ε (-E) 1.0
Number of neighbours for classification (-k) 1
Total partitions (-p) 1
Random Seed (-r) 1 though 10

Unlike AIRS and CLONALG the antibody set is not immediately returned for use as a
classifier, instead CSCA includes a final pruning step (line 8). In the final pruning step
the antibody population is again exposed to all antigens from the training data and the
affinity and fitness scores calculated for the antibodies within. A selection step identical
to that on line 4 is performed to select a set of antibodies. These selected antibodies are
then returned for use in classification. CSCA then makes classifications using the same
k-nearest-neighbour approach as AIRS and its set of selected antibodies.

Key parameters for CSCA would be:

• The number of generations in the training phase.

• The initial memory pool population size.

• The minimum fitness threshold - which controls the removal of poorly performing
memory cells from the pool.

4.2.4 Immunos 99

Immunos 99 [78] is a newer algorithm based on the principles of Immunos-81 [117].
Immunos 99 differs from the other techniques in that it uses competition between different
memory cells at classification time rather that at training time. Immunos 99 also utilises a
single exposure to training data as per AIRS which is desirable from a runtime perspective.
Immunos 99 works by developing a memory pool of memory cells for each classification
label which contains cells which correlate strongly with one classification label and weakly
with the others. A high level description of the algorithm in pseudo-code is shown in
Algorithm 5. The steps are briefly discussed below.

Immunos 99 starts by partitioning the training data (antigens) into groups based on the
classification label attached to each antigen. The loop starting at line 2 then produces
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Algorithm 5: High-Level pseudo-code description of the Immunos 99 Algorithm
1 Divide the training data into antigen groups (per class) ;
2 foreach Group (g) do
3 Create initial b-cell population ;
4 foreach Generation (G) do
5 Calculate affinities between antigens in g and b-cells in g ;
6 Perform population pruning ;
7 Affinity Maturation ;
8 Insert random antigens from g ;
9 end
10 end
11 foreach Group (g) do
12 Final population pruning ;
13 end
14 return the final b-cell population ;

a set of b-cells for each group independently. The first set of b-cells are copies of the
antigens of the group.

The training for each group starts by calculating the affinities between the all antigens in
all groups and the current set of b-cells. For each antigen the b-cells are ranked by their
affinities to that antigen and the rank of each b-cell is recorded. A fitness measure for
each b-cell is produced by dividing the sum of ranks for the antigens in the same group
divided by the sum of ranks for the antigens in the other groups. This gives each b-cell
a fitness score representing how well it differentiates the current group from the other
groups. Full details of this are available at [78, p. 18].

Once the affinities and fitness scores are known, then the population is pruned (line 6).
Population pruning at this stage involves removing those b-cells that have fitness score
between 0 and 1 which means that they are more closely related to antigens in other
groups. The exact fitness value used for pruning is determined by a parameter ε similar
to CSCA.

In the affinity maturation step (line 7) the population of b-cells is ordered by fitness
score in descending order. Each cell is then cloned using its rank-proportion of the
total number of antigens belonging to the b-cells class from the training set. Once the
clones are created they are mutated inversely proportional to the b-cells rank so that
larger mutations occur to less fit cells. After these new b-cells are introduced to the
population a number of randomly selected antigens from the current group are added.
The number of random cells introduced is the same as the number removed by pruning.
This introduces additional diversity into the population.

Once all of the groups have been processed the final pruning step can be performed.
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Table 4.4: Parameters used for testing of the CSCA algorithm in Chapter 4

Parameter Value

Generations (-G) 1
Random Seed (-r) 1 though 10
Minimum Fitness Threshold, ε (-E) -1.0
Seed population ratio (-S) 0.2

Each group of b-cells is then exposed again to the entire antigen set. However, instead of
accumulating rank based scores as before this time only the best matching cell is scored.
Pruning then proceeds exactly as before removing those cells with fitness scores between
[0, ε]. The final b-cell population can then be returned for classification.

Classification with Immunos 99 is slightly more complicated than for the other algorithms
in that there is an element of competition between the memory cells in each classification
label group. The new observation is exposed to each population of memory cells and the
label for the pool with the highest avidity to the new observation is the classification
label applied. Avidity is defined as the sum of the affinities for the memory pool.

An additional point in Immunos 99’s favour for the desired parameter free classifier is
that Brownlee notes a general insensitivity to changes in its parameters. Given this
insensitivity the parameters are not discussed further here. Interested readers are directed
to Brownlee’s description of the algorithm [78]

4.3 Experimental Setup

The hypothesis for this chapter is that immune inspired algorithms will perform better
for business process prediction than the classical algorithms discussed in Chapter 3. If
this was the case then they would be the obvious choice for utilisation in an autonomic
process system.

In order to test this the immune inspired algorithms were exposed to the same data sets
used for the classical classification techniques. Full details on the data preparation are
included in Section 3.2. Each of the 4 immune classifiers were exposed to the 1, 2, and 3
step sets of the same process data used in Chapter 3. Each classifier was tested using a
10-fold cross-validation technique and the results collected for comparative analysis, the
experiments were repeated 10 times each. Utilising the same test data and techniques
for both set of classifiers will allow the relative performances to be compared.

The software used for these experiments was the immune algorithms for Weka [120]
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Table 4.5: Table summarising results of applying the immune classifiers. The 10 repetitions
of each experiment are summarised using median.

Classifier Steps Accuracy (%) TP (%) FP (%) TN (%) FN (%)

AIRS 1 92.99 25.14 2.84 97.16 74.86
AIRS 2 91.24 20.76 3.37 96.63 79.24
AIRS 3 88.69 22.05 4.06 95.94 77.95
CLONALG 1 90.78 7.16 2.84 97.16 92.84
CLONALG 2 87.78 10.78 3.37 96.63 89.22
CLONALG 3 84.26 15.28 4.06 95.94 84.72
CSCA 1 94.17 0.07 0.05 99.95 99.93
CSCA 2 92.93 0.18 0.07 99.93 99.82
CSCA 3 90.14 2.29 0.48 99.52 97.71
Immunos 99 1 84.65 68.11 14.35 85.65 31.89
Immunos 99 2 84.11 73.94 15.10 84.90 26.06
Immunos 99 3 80.23 70.96 18.81 81.19 29.04

package [116, Section 8]1, an open source implementation of a number of immune
algorithms including those discussed.

4.4 Results

Results from the application of these algorithms to the described test data are found in
this section. Box-plots showing the distribution of the True Positive, False Positive and
Accuracy for each combination or Classifier and Data Set are shown in Figures 4.1, 4.2
and 4.3 respectively. The median performance statistics for each combination of data set
and classifier are shown in Table 4.5.

As can be expected from testing a wide variety of techniques, the performance of the
immune inspired algorithms on the test data is varied. Of the immune inspired algorithms
tested Immunos 99 [78], [117] achieved the best performance in terms of the true positive
rate, the false positive rate is however high enough to be a concern (see section 3.2.2).

The CSCA algorithm shows some surprising results with extremely low true and false
positive rates reported for all test sets. Results of approximately 0% for both true and
false positive rates suggests that CSCA is making a default outcome=Y prediction in
virtually all cases. Also notable in this context is the overall performance of CLONALG
which is much more variable between runs that the other classifiers suggesting that the
randomness inherent in the algorithm has a larger impact that for the other algorithms.
CLONALGs performance is also poor with TP rates between 7% and 15%.

1Available at: http://wekaclassalgos.sf.net
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Figure 4.1: Box-plot showing the True Positive Rates for each run of the Immune
Classifiers, grouped by classifier and number of steps in the data-set
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Figure 4.2: Box-plot showing the False Positive Rate for each run of the Immune
Classifiers, grouped by classifier and number of steps in the data-set

75



AIRS CLONALG

CSCA Immunos 99

80

85

90

80

85

90

1 2 3 1 2 3
Steps

Ac
cu
ra
cy

Figure 4.3: Box-plot showing the overall accuracy for each run of the Immune Classifiers,
grouped by classifier and number of steps in the data-set

The results for these techniques prompt questions on potential reasons for such a wide
variation. Further research is required on the techniques to see if useful insight can be
gained from the differences in the techniques. For example, could the variation be related
to the different distance metrics used in the different classifiers, or different internal
representations.

As with the classical classifiers, further testing on more complex data sets is required
to determine if these performance levels can be sustained on more complex input data.
An internal BT case study using the Immunos 99 algorithm on a different data set is
discussed in Section 4.6.

4.5 Conclusions from Initial Experiments

In this section a number of immune inspired classification approaches have been invest-
igated to determine if they offer advantages over the classical approaches covered in
Chapter 3

Of the immune approaches Immunos 99 has the most favourable performance charac-
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teristics although its false positive rate is high enough to be a concern. Further work
would be required to look further at the specifics of the algorithms that have been tested
to discover the reasons for differences in performance. A particularly important area for
investigation will be the representation of the business process instances, both in terms of
the data provided to the classifiers for training and testing, and in terms of the internal
representation and measures used by the classifiers themselves.

Previous investigation internally at BT suggests that the performance of predictive
algorithms will degrade rapidly with additional complexity [4]. Investigation is also
required to determine if results reported here are transferable to other more complex
process data sets.

4.6 Case Study: High-Volume Wholesale Service Provision

A later opportunity brought a new data set into consideration due to interest in the
immune-inspired classification results at the industrial partner. This data set comprises of
the process execution history for the provision of a very large number telephony services
(of the order of 100, 000’s). The product involved is of strategic importance and has a
material effect on the performance of the company. The volume of data and criticality of
the impacted product provided an ideal opportunity to test the immune inspired predictive
approach described in this chapter.

The content of this section is adapted from an internal BT document written by the
author originally intended for internal consumption [5]. This section is intended to see if
the performance of the Immunos 99 classifier is consistent between data sets, given the
initially promising results from the previous section and interest from BT in those results.
This case study is not intended to confirm or deny that Immunos 99 is the best classifier
for all process data. Additionally, the long run time of the other classifiers meant that
was not possible to test them in the time scale given by the industrial partner for the
production of the internal report. The Immunos 99 classifier used in this section is the
parallelised implementation described in [3] which has a considerable runtime advantage
over the other algorithms, and over the original Immunos 99 implementation used in the
previous section.

4.6.1 Experimental Setup

The data set contains all of the provision orders for the impacted service arriving within a
1 month period. The exact number of provisions is confidential. The success criteria for
each process is whether the order was completed on or before the Customer Commitment
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Date (CCD), which is the date agreed with the customer for service commencement.

The data set consists of >700,000 observations of changing process state during the life
time of these provision orders. There are approximately 200 different tasks that have
been observed in the data sample. The data set was prepared in the same way as the
data sets discussed previously in the thesis, see Section 3.2.1 for more details.

4.6.2 Experiments

The first step was to determine how the Immunos 99 classifier performed on the extracted
data with no additional modification or mitigating steps being used. Unfortunately it was
not possible to train the classifier on the entire data set because training the algorithm
resulted in the process exceeding the 16GB of memory available to the test machine.
Instead, to get a representative results, a sample of 100,000 observations was taken to
be used in the experimentation. The results of a 10-fold cross validation in terms of
the performance of the classifier was as follows (raw results from Weka are shown in
Appendix A):

• Overall accuracy: 75% - This is a simple measure measurement of the number of
observations the classifier classified correctly.

• True Positive Rate (TP): 57% - This is the percentage of process observations from
process failures that were correctly identified by the classifier. This is analogous to
a correct predication of CCD failure.

• True Negative Rate (TN): 77% - This is the percentage of observations of CCD
Successes that are correctly identified by the classifier. These are cases where no
intervention was suggested, and none was required.

• False Positive Rate (FP): 22% - This is the percentage of observations of CCD
Successes that are incorrect identified as impending CCD failures. These are cases
where an intervention would have been suggested (leading to additional work within
BT) but would have had no-effect since the case would have successfully completed
anyway.

• False Negative Rate (FN): 43% - This is the percentage of observations of CCD
Failures that are incorrectly identified as CCD Successes. These are the cases when
an intervention within the process would have been advantageous but would not
have been suggested.

The sensitivity of the classifier to True Positive cases whilst avoiding making too many
False Positive predictions is the key balance to be struck. This could be turned into a
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Table 4.6: Performance of the Immunos 99 classifier in terms of complete provisions
rather than in terms of individual observations

Measure Value

Number of instances 2545
Number of process failures 202
Number of false positives 1608
Number of failures with a fail detection 199

Cost/Benefit calculation by applying a nominal cost to each intervention and the cost
of not intervening in terms of customer complaints or penalty payments for missing
appointments and/or committed dates.

Classification Characteristics

The raw cross validation results show a partial picture of the results. The larger issue is
not how the classifier behaves for individual observations but rather how it deals with
whole orders. A lower true positive rate overall could be tolerated if more failures were
detected during an orders lifetime (with the proviso that such a notification would need
to be early enough for intervention to be possible). The timescales required for prediction
to be useful, and the related level of acceptable latency for predictions is something that
will require discussion with knowledgeable people inside the process.

In order to determine how the classifier is performing on whole orders the results from
the initial classification were post-processed in order to count the number of complete
orders, and capture the behaviour of the classifier throughout the observations of the
order. The post-processed results are shown in Table 4.6.

To discuss the absolute frequencies first – there are 2545 orders in our sample of 100,000
observations of order touches. Of these, 202 failed their Customer Commitment Date
(CCD). The classification performance shows that 1608 orders had at least 1 incorrect
“CCD fail” prediction during their life. Therefore, had the system been live, BT would
have needed to manually investigate over 70% of the orders. This level of false positives
is untenable due to the high volume of orders for this product. More encouragingly there
were failure detections in over 98% of orders that did fail.

Next, attention was turned to the time required in a process for a failure detection to be
made. The median time to detect failure is an excellent 5-6 hours after order placement
– this would likely give plenty of time for an intervention in the process to occur before
the CCD.

An alternative measure of the amount of time since the start of the process is that of
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depth. This measures the number of touches between the start of the order and the
current observation. The median depth for a successful failure prediction is 3, again
this should be early enough for intervention, especially when a field engineering visit is
required.

In summary, the true positive rate is very promising as there are only 3 cases that are
never flagged as potential failures. However the prevalence of false positives is a problem
– 63% of successful cases were flagged as failure at least once which is likely to be an
unacceptable burden.

Investigating Characteristics of Failure Detections

The next investigative step was to examine the classified data to try and determine where
the classifier was strong, and where it was weak. In this way assumptions about the data
can be validated and suggestions about how the data and/or classifier might be adjusted
to give improved performance can be formulated.

Accuracy by Depth

To look for suggestions of a relationship between the accuracy of the classifier and the
depth of the current observation in the business process the values were plotted (Figure
4.4). The chart shows increasing depth on the x-axis and classification accuracy on the
y-axis. Depth is defined as the number of tasks that occur up to and including the first
task in the sequence included in the test data, for example the sequence A→ B → C
is at depth 0 if these are the first 3 tasks in the business process. The more erratic
behaviour of the line is coincident with the reduction in the number of observations at
those depths. These points should be given less credence in analysis.

It is interesting to note the increase in accuracy between depths 9 to 20. This suggests
that the middle of the process provides the best opportunities for prediction. To determine
if this is reasonable would require knowing what the tasks were at each depth, however
there is no direct relationship between depth and task.

True Positive and False Positive Rate by Depth

The next test examined the relationship between depth of observation and the two most
important classifier metrics, True Positive and False Positive rates (Figure 4.5).

The chart suggests that true positive rate trends downwards over time. This suggests
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Figure 4.4: Accuracy of the Immunos 99 classifier by depth. Points indicate the accuracy
at each depth, the opacity of the points represents the number of observations summarised
at that point.
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Figure 4.5: True positive and false positive rates plotted against depth. Confidence
intervals are drawn at the 95% level.
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the classifier might be leaning towards marking the cases as failures early on and then
correcting that incorrect prediction as the case continues. The spike in false positive rate
between depths 25 and 53 is an interesting anomaly that would require additional work
with people involved in the process execution to understand.

True Positive and False Positive Rate by Task

Whilst the depth of the process gives us some idea of performance over time it does not
give useful information about the actual tasks that were performed because the tasks at
each depth are not the same in each case. Figure 4.6 shows the true positive rate on the
x-axis and the false positive rate on the y-axis of a scatter chart. The tasks with the
greatest predictive utility are those with high true positive and low false positive rates.
Actual task names are replaced with generated identifiers to mask their identity.

We can deduce a set of tasks with desirable classification characteristics in this case.
Further investigation into the suitability and appropriateness of the higher performing
tasks required discussion with the process owners.
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Figure 4.6: Scatter plot showing the true (TP) and false positive (FP) rates for each task
with FP on the x-axis and TP on the y-axis. The values for each task are at the centre
of the task identifier. Opacity and size indicate the number of observations for each task.
Tasks with higher predictive utility would appear in the upper left of the chart.
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Figure 4.7: Classification performance using best performing tasks. Confidence intervals
are drawn at the 95% level.

Improved Performance using Best Performing Tasks

The next test was to determine whether the performance of the classifier improves if only
the best tasks were used for the classification. The tasks used where those 14 that had
TP > 0.5 and FP < 0.25.

Figure 4.7 shows the accuracy by depth of the chosen tasks in terms of FP and TP rates.
The same trend downwards over time can be observed in the chart, but an improvement
on the previous tests can be observed in the reduction in false positive rate with increasing
depth.

An interesting result from Figure 4.7 is the increase in TP near the start and end. There
could be a number of potential reasons, with the following hypotheses proposed:

• At lower depths there is more training data because some process executions contain
fewer tasks than others. Process executions containing less tasks will contribute
observations at earlier depths and not at higher depths.

• Cases with extreme depths are almost certainly to have taken so long that the
process has already missed the CCD. This would be very easy for the classifier to
detect and use.
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Classification Performance Against Clock Time

The notion of depth in the process data is an abstraction of time. Some processes will
run for over 30 days and others for less than 4 yet they may contain a similar number of
events and therefore similar depths. Business performance of the classifier is intrinsically
tied to how much real time is available to prevent a failure from occurring. Identifying
failures only 10 minutes before they occur is not a useful outcome. Figure 4.8 shows the
classification accuracy in terms of true positive and false positive rates with the x-axis
representing real time elapsed since the start of the process at the point of observation.

Examining the points in the chart shows a decrease in false positive rate after 8 days. This
is interesting, and likely related to the failure of an initial engineering activity, however
our most useful interventions would be in that timescale so this is of concern.

Classification Performance Against Time to CCD

Examining the performance with increasing time is interesting, but given the product in
question is provisioned with reference to a Customer Commit Date (CCD) it would be
interesting to examine how the classifier performance changes as the CCD approaches
and passes. A key question is can the system intervene accurately and with a sufficient
number of days before CCD to make a difference to the customer. Figure 4.9 shows the
TP and FP plotted on the y-axis against time to CCD on the x-axis.

The most interesting observations to come out of this chart is that it shows the classifier
has 0 false positives after CCD, which are all failures by definition. It is interesting to
see that Immunos 99 has picked up that fact in the classifier training phase. Another
interesting feature is the bump in TP rate about 10 days before the CCD. Root cause
analysis to determine why the bump in performance might exist be will be performed
later with the process owners. The highly erratic nature of this graph makes conclusions
drawn from the trend lines suspect.

Including Frequencies

The sporadic nature of the results shown in Figure 4.9 combined with the wide confidence
intervals on the best fit lines suggests that performance is not steady. This might stem
from uneven distribution of data over time to CCD. Therefore the previous plot was
reproduced as Figure 4.10 but this time with point size representing the number of
observations behind that point.

Figure 4.10 clearly shows the skew in the data towards events occurring on the day. This
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Figure 4.8: Classification Performance plotted against clock time. Confidence intervals
are drawn at the 95% level.
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Figure 4.9: True positive rate and false positive rate plotted against time to CCD.
Confidence intervals are drawn at the 95% level.
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Figure 4.10: True positive rate and false positive rate plotted against time to CCD
including observation frequencies. Confidence intervals are drawn at the 95% level.

is problem for training the classifier on the earlier data, and also for intervention. Even
correctly predicting a failure on the day does not leave sufficient time to resolve the
problem.

Future Work

There are a number of possible actions that could be taken to attempt to increase
accuracy, these include using a less detailed data set, although that has been briefly
tested and does not appear to have a significant effect. Another option would be to
adjust the training data provided to the classifier to only include those observations from
the start of the process out to the ‘point of no return’ where no successful intervention
is possible. This may help the classifier focus of the more important parts of the process
more accurately. This work is scheduled to take place within BT’s 2015/2016 strategic
research programme.
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4.7 Conclusions

This chapter examines four immune-inspired classification algorithms in terms of their
ability to predict the outcome of business process executions from trace data gathered
on those executions. Of the algorithms tested only Immunos 99 shows performance
characteristics worth pursuing in future work. The current performance of the Immunos
99 classification algorithm is promising although there is work to do to reduce the false
positive rate sufficiently for business use.

Following the initial testing which used the same test data as used for the classical
classification techniques in Chapter 3, results of a internal BT case study examining the
strengths and weaknesses of Immunos 99 on a completely new data set are summarised.
This reiterated the findings of the initial testing that the false-positive rate exhibited by
Immunos 99 is the key issue that would need to be resolved before the algorithm could
be considered the ideal choice for business process data.

At this point both classical and immune inspired classification techniques have been
tested against business process data. Each of the two types of techniques has drawbacks.
The decision tree techniques require a human to spend time tuning cost parameters
when the algorithms are trained. The requirement for human tuning will increase the
costs of implementing that technique to take it out of the reach of low volume processes.
Immunos 99 however shows the opposite: in high volume processes the number of false
positives is likely to make the Immunos 99’s performance untenable, however these are
exactly the processes which would be able to afford tuning of the decision tree/MetaCost
solution.

In combination, Chapter 3 and 4 have shown the it is possible to make predictions on
business process outcomes using classifiers derived from historical execution data. These
classifiers are the first stage of creating a self-healing business process system as they
will allow the system to determine where intervention would be required. The next task
is to determine what interventions can be made and which of those interventions is
most appropriate. Chapter 5 discusses the determination of recovery strategies and their
selection in detail.
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Chapter 5

Identifying & Applying Recovery
Strategies

5.1 Introduction

In Chapters 3 and 4 techniques to predict the outcome of a business process execution
have been discussed. Being able to predict the ultimate success or failure of a business
process execution is not sufficient for a self-optimising business process system to be
complete. In addition to predicting when a business process might fail the system must
also be able to determine and then execute an appropriate recovery strategy to try and
ensure the process completes successfully in terms of the identified business goals.

A recovery strategy can take one of two forms. The first form would be an sequence of
task executions that is predicted to return the executing business to a state where the
predictive element of the system begins to predict success. At the end of the recovery
path the system resumes executing the process as originally intended.

The second form of recovery strategy would be a longer sequence of states that would
map out the entire remaining lifetime of the business process execution from the point
of failure being predicted to the eventual completion of the business process. This would
mean that once the classifier has predicted a failure, the process will never return to
normal control.

In small, well understood systems, it might be possible for an expert user to determine in
advance all of the possible failure states of a business process and to determine the best
path to success in each of those failure states. However in complex business processes
such as those discussed in this thesis such complete knowledge is not usually possible.
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Table 5.1: Example of an historical recovery with classifier data using a sliding window
of size 3

# Task 1 Task 2 Task 3 … Real Outcome Classifier Outcome

1 A B C … Success Success
2 B C D … Success Success
3 C D E … Success Failure
4 D E F … Success Failure
5 E F G … Success Failure
6 F G H … Success Success
7 G H I … Success Success

An alternative solution that does not require a human to predetermine recovery scenarios
is then to be preferred. Given that a well documented and machine understandable
process design is not available, as discussed in previous chapters, solutions that allow the
self-optimising process system to learn recovery strategies from historical data, and that
allow the system to determine which recovery is best suited to unfamiliar scenarios are
ideal.

This following section discusses in detail one approach to extract recovery strategies from
historical execution data using a predictive classifier such as those discussed in Chapters
3 and 4. Discussion of how to best determine which recovery to apply in a given failure
scenario is presented in Section 5.3.

5.2 Determining Recovery Strategies

A process recovery could be defined as the the return of a process execution to a state in
which success is predicted, leaving the remainder of the process execution to standard
workflow mechanisms, this is referred to as a short-type recovery. The alternative long-
type recovery strategy is defined as the sequence of tasks required to complete the current
process execution in a successful state, taking a process execution out of the normal flow
entirely once failure has been predicted.

A classifier that has been trained for use in process prediction could be applied to a set
of historical process data, which could be the same or different to that used for training,
in order to discover recovery strategies. When the classifier is applied to historical
data, the training data is extended with an additional attribute showing the outcome
of classification at that stage of the process. Using this additional column the data set
can be processed to extract examples of process executions where a recovery has been
observed.
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Table 5.1 shows an example extract from historical data that has been evaluated by a
classifier. Row 3 is the first row of the execution that shows a failure prediction, this is
the point that the recovery starts. Row 6 is the next row that has a success prediction,
therefore our short-type recovery strategy consists of the transitions used on rows 3-6,
i.e. E → F → G → H and the long-type recovery strategy consists of the transitions
from row 3 to the end: E → F → G → H → I.

When this approach to generating recovery strategies is applied to a large training set
this produces a database of observed recoveries which can be further augmented with
reliability metrics. The complete listing of data recorded for each recovery is:

• The state of the process immediately prior to the recovery beginning, consisting of:

– The attributes of the process execution

– The task history of the process execution (e.g. A→ B → C)

◦ The temporal state of each task

◦ The name of each task

◦ The position of the task within the process execution

• The short recovery path

• The long recovery path

• Number of times the recovery is observed

• Number of times the recovery results in a successful outcome

• Number of times the recovery results in an unsuccessful outcome.

Depending upon the business’s appetite for risk, at this stage rows with an observed
number of successful interventions or a percentage success rate below a threshold may be
removed from the database. Removing entries from the recovery database will prevent
them from being considered for automated recovery.

5.2.1 Effectiveness of Strategy to Discover Recoveries

The approach to discovering recovery strategies described above was applied to the data
sets described in Section 3.1. This produced a table for each data set of discovered
recoveries and some basic performance metrics for those recoveries. Summary details are
shown in Tables 5.2 and 5.3.
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Table 5.2: Statistical summary of discovered recovery strategies, using short paths

Data Set Number of
Recoveries

Mean Obs. per
Recovery Path

Mean
Success %

Variance of
Success %

10-task 144 182.75 85.17% 501.00
Full 3835 1571.23 43.08% 618.09

Table 5.3: Statistical summary of discovered recovery strategies, using long paths

Data Set Number of
Recoveries

Mean Obs. per
Recovery Path

Mean
Success %

Variance of
Success %

10-task 144 163.32 84.93% 539.63
Full 3835 1188.84 40.47% 753.48

From Tables 5.2 and 5.3 it can be seen that the longer paths are observed less in the
historical data. Longer paths are likely to be observed less because of the variation and
noise in the training data. The longer a path is the less likely it is to occur by chance.

More interesting however is the difference in success between the simplified 10-task data
set and the original data in the full data set. The drastic reduction in performance
between these two suggests that the more complex and chaotic a data set the less
successful the recovery is. That simpler processes lead to more consistent and correct
outcomes would seem to be intuitively correct. Further work to determine how complexity
correlates to the number and quality of recoveries produces for a business process would
be an excellent candidate for further research.

5.3 Implementing Recoveries Automatically

To self-optimise a business process and ensure that it completes successfully requires three
things. First, the ability to detect potential issues (Chapters 3 and 4). Second, options for
corrective action to to be taken as discussed in the first part of this chapter and third, the
application of those recovery strategies to the running business process. The remainder
of the chapter discusses how recovery strategies can be used in an adaptive process
system that could support the execution of business processes on existing infrastructure.
This chapter also discusses how to best select a recovery strategy for a particular failure
prediction, and how the predictions might be adjusted over time to take into account
changes in the process and environment.

In order for the proposed process system to be considered self-optimising/self-healing
there should be some feedback and learning from completed business processes. The
simplest way to incorporate feedback mechanisms is by allowing the results of completed
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processes to influence the selection of recovery strategies for those business processes
that are predicted to fail.

In order to incorporate these features into an existing business process system, a companion
system would be required that would monitor the business process and intervene where
required. The autonomic business process system will need to interface with existing
workflow systems to report the progress of business processes, detect potential failures,
and adjust workflow to optimise for success.

The remainder of this section introduces a proposed a proposed self-optimising process
system incorporating feedback mechanisms, which can be used to augment existing
workflow systems with self-healing properties for individual process executions. A block
diagram showing the data flows between components in the combined system is shown
in Figure 5.1 and a detailed description of the steps taken by the self-healing system to
influence the existing workflow immediately follows. The proposed system was derived
with reference to what would be acceptable to the industrial partner.

Each time a business process is updated in the controlling workflow system a notification
is provided to the autonomic process system. Each update flows through the proposed
autonomic system as follows (with reference to Figure 5.1):

• Workflow system notifies the system of an update to a monitored execution

• If the workflow is not yet complete then:

– The Classifier/Monitor module makes a prediction for the closing status of
the execution based on the current state

– If the prediction is success then no further action is taken

– If the prediction is failure then the execution is passed to the Recovery Engine
which will consult the Recovery Database for the best matching recovery (see
Section 5.3.2).

– If a suitable recovery cannot be found, then the execution is passed to a
Human Expert with the best candidate. The Human Expert will accept/edit
the suggested recovery and pass it back to the Recovery Engine.

– The recovery workflow is then returned to the Workflow System for execution

• If the workflow is complete then:

– The Classifier/Monitor passes the update to the Learning/Adaptation (L/A)
module

– The L/A module uses the final outcome of the execution to update the
Recovery Database with details of this execution (success and total counts)
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– If the execution contained an intervention, the L/A will forward the details
of the process to the Human Experts. In high volume processes this will be
done with an appropriate proportion of the cases as the entire volume is likely
to be untenable. The proportion of cases to be sent to review is a system
parameter to be agreed with the business.

– The expert will validate the workflow and by indicating which of the recovery
steps were required, which will score the recovery in terms of efficiency. The
efficiency score will be used by the Recovery Engine to adjust a weight attached
to each recovery. This weight would be included in the scoring mechanism
used by the Recovery Engine to select the most appropriate recovery.

Figure 5.1 shows the inclusion of human experts into the autonomic process system.
Human experts in this context are people with an in-depth knowledge and understanding
of the process and the underlying systems. These people will be able to take a problematic
process execution and resolve any issues that are impacting its execution. The experts
will also be able to examine the recoveries stored in the system and rank them based on
their expected efficiency and effectiveness using their inherent knowledge of the process.

The human experts therefore provide three benefits to the system. First, the system will
be able to learn from the knowledge of the humans within it by incorporating human
feedback on the suitability of chosen recoveries. Second, to validate the interventions
made by the system. Third, to assist in scoring the recovery strategies for use in the
adaptation of the recovery database. By utilising human expertise in this way the
system can take over the management of the common simple issues using the automated
intervention techniques proposed and allow the humans to concentrate on those cases
that are best suited to human problem solving.

The feedback flows described above and indicated in Figure 5.1 would be implemented as
a weight (or weights) assigned to each recovery strategy. The current weight of a recovery
strategy will be incorporated in the calculation used to determine the most suitable
recovery for the current process state. When a recovery intervention was determined to
have been successful, the weight of the implemented recovery would be increased by a
small amount, and vice versa. The human experts in the system should also influence the
weights through their review process. The experts score the selected recovery based upon
the number of tasks in the recovery path that are absolutely necessary for successful
recovery. The proportion of absolutely necessary tasks to the number of tasks in the whole
recovery path would represent the estimated efficiency of the recovery. The efficiency
metric would be used to adjust the weight of the recovery strategy with more efficient
recoveries having their weights increased.

It is likely that the process being monitored will evolve over time. Process evolution
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can occur due to changes in the process design, changes to working conditions such as
supporting system changes, personnel changes, or changes in the external environment
(e.g. extreme weather events impacting field engineering activities [2]). Another addition
to the scoring mechanism would be an atrophy parameter. This would reduce the
weighting of all recoveries by a small amount each time period, causing those recoveries
which are no longer being selected to be less likely to be selected for use. The changes
in weights on the recovery scenarios would become useful input to business process
improvement programmes.

The system described relies heavily upon the use of weights to allow the system to adapt
to its business process and environment. The use of weights has a number of issues
that need to be addressed. The first of these is to determine appropriate values for the
initial weights, and second to determine the appropriate changes to be made to the
weights based on the feedback flows in the system. The investigation of the first of these
problems is discussed beginning in Section 5.3.1. The investigation of the second part
would be a prime candidate for further work.

The proposed approach feels intuitively useful because it wraps existing business process
infrastructure enabling easier integration with those systems. There are a number of
barriers to testing the proposed system in a real deployment. First, the source data that is
available for analysis relates to large scale, mission critical process for the business. Using
a large scale process means there is a large volume of data available for analysis, however
due to the mission critical nature of the business process changes to its infrastructure
are not made lightly. Second, the human elements of the process system are practically
impossible to include in a test situation. Whilst not all parts of the proposed system
can be analysed in full detail, the selection of recoveries is analysed further in the next
section.

5.3.1 Choosing a Recovery

The proposed system discussed in Section 5.3 and illustrated in Figure 5.1 selects the
most appropriate recovery from the recovery database by finding the recovery strategy
that has occurred at the process state most similar to the current process state. A key
element in selecting the recovery most appropriate for the current situation is the notion
of similarity. Intuitively, the recovery most similar to the current process state should be
chosen for automatic implementation. This is subject to the recovery being retained in
the recovery database, Section 5.2 discusses potential pruning of the recovery database
based on business needs (e.g. removing recoveries with low success rates).

There are a number of features which could contribute to a similarity score for a given
particular process state (S) and recovery strategy (R). Data for each of these elements
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is recorded for the recoveries in the recovery database as discussed in Section 5.2. These
include:

• Exact Path Similarity;

• Partial Path Similarity (also referred to as Task in Path);

• Attribute similarity;

• Temporal similarity.

For Exact Path Similarity (ExactPathScore(S,R)), the sequence of tasks executed in
the current process state is tested to determine if it matches exactly the sequence of
tasks executed immediately prior to the recovery path. The comparison is a test for
equivalence between the string constructed of the 3 tasks in the path for the current
process state and recovery. The test returns 1 when the path matches exactly and 0
otherwise. For example the path A→ B → C ?

= X → Y → Z would result in a 0 score
as the strings are different.

Partial Path Similarity (PartialPathScore(S,R)) is calculated on the degree of match
between the tasks in the process state at the start of the recovery and the current
process state, irrespective of the relative position of the task in the sequences. The
function returns the number of tasks in the recent history of S that match the equivalent
in R. When a task has been matched, it is removed from matching consideration for
the remaining elements in the sequence. For example, given a recovery with the path
A → B → C, a process state with path B → B → C would match 2 of the path
elements, B and C. Similarly the path A→ A→ A and the recovery A→ B → C would
match 1 element, A.

Attribute Similarity is calculated independently for each attribute common to the process
and recovery. The total attribute similarity is calculated by multiplying the number of
matching attributes with the attribute match score. Attributes are considered to be
matches if and only if they are exactly equal. AttributeScore(S,R) returns the number
of attributes in S that match those in R. For example, Table 5.4 shows a process
(column 2) and recovery (column 3) which share 4 attributes (one per row). The last
column in Table 5.4 indicates which attributes are exact matches between the Process
and Recovery. The total row shows that 2 of the 4 attributes match. Therefore in this
case AttributeScore(S,R) = 2× AttributeWeight. The tasks in the execution path and
the exact path itself are considered in ExactPathScore and PartialPathScore respectively
and are not considered as attributes for the calculation of AttributeScore.

Temporal Similarity does have some complications since the processes are unlikely to
feature identical timestamps, instead the temporal behaviour may exhibit periodicity over
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Table 5.4: Example attributes for a recovery and a process state

Attribute Name Process Value Recovery Value Matches

Customer Customer S Customer T 0
Product PSTN PSTN 1
Include Broadband Y N 0
Region Cumbria Cumbria 1

Total Matches: 2

Score(S,R) = ExactPathWeight× ExactPathScore(S,R)
+ PartialPathWeight× PartialPathScore(S,R)
+ AttributeWeight× AttributeScore(S,R)

(5.1)

a number of timescales. Such periodicity would be useful knowledge for a predictive
algorithm. For example, process failures may be more likely in processes or tasks starting
on a Friday or starting after 3:00pm. To attempt to overcome this issue the start and end
timestamps for each task in the task sequences are decomposed as discussed in Section
3.2.1. Decomposing the temporal elements does not mean these are omitted, instead
the attributes that are created through decomposition are incorporated into the standard
attribute scoring process described above. For example, if the start time of S and the
start time of R are both PM times, then this would count as an attribute match in the
same way as if the customer was matched.

Each of the listed features is available in the data sets that have been used throughout
this thesis. The accuracy of each attribute is dependent on the source data, the quality
of which can be variable, as discussed in Section 3.1.1.

The overall similarity score Score(S,R) incorporates all of the above elements as shown
in Formula 5.1. There is a partial dependency between the exact path match and the
partial patch match, however this is simply a way of further rewarding exact matches
over those matches that contain the same tasks but in a different sequence.

5.3.2 Scoring a Recovery using Similarity Measures

To calculate the similarity score for a process state, S, and recovery, R, each similarity
measure is calculated and the results are summed together to give the overall similarity
score for S and R (see Formula 5.1). The recovery that will be selected for a given
process state is the one with the highest similarity score.

To test the appropriateness of these similarity measures the recovery strategies determined
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in Section 5.2 were used. Each predicted failure state from the 3-step training data
set and the 10-Task simplified variant of that data set (see Section 3.2.1) were scored
using Formula 5.1 and the initial weights for each match type shown in Table 5.5. These
weights, used for initial testing, are not scientifically determined, instead they are chosen
so that the resulting values can easily be decomposed to the different match types by
visual inspection and charting. For a real deployment, these weights would likely need to
be tuned or trained to give acceptable real-world performance.

The distribution of the highest similarity score for each process state and recovery is
shown in the histograms in Figure 5.2. For the 10-Task, 3-Step dataset the histogram
shows there were a negligible number of matches on attributes only (which would score
between 0-100) and the most matches are on full paths (in the 1000+ bracket). Similarly,
in the Full Dataset there are few matches on attributes only and again the most matches
are on full paths. This is interesting because it shows that most of the observed paths in
the dataset do have at least one instance where a recovery has been observed. Knowing
that virtually all of the observed paths have a recovery is positive in that it suggests that
this means there is a detectable path to successful completion for most process execution
issues.

To determine realistic weights appropriate to a business process in the real world some
parameter optimisation would be required. A typical approach to optimise a set of
parameters for a given situation is to use an evolutionary algorithm and a fitness function
which would be used to map the proposed weights to a result that describes the suitability
of that set of input parameters (e.g. [122]). When working with process data however
a fitness function can be very difficult, if not impossible, to define because the success
of the executing process is ultimately dependent on the external environment and upon
factors that are not under the control of the business process system. Some of these
environmental failures could be factored into a fitness function however, these are
highly process specific and non-trivial to define and reason about. An example of an
environmental failure would be the situation in which an engineering visit is required
and the customer is not at home when the engineer arrives for the appointment. The
process may be considered a failure because the fault is not resolved even though the
business process was flawlessly executed. The difficultly of defining a fitness function in
an analogous multi-agent simulation is discussed in [123].

Table 5.5: Weights used for initial testing

Element Weight

ExactPathWeight 1000
PartialPathWeight 100
AttributeWeight 1
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Figure 5.2: Histogram showing distribution of maximum similarity scores for recovery/pro-
cess state comparison in the test data sets using the scores from Table 5.5.

As a fitness function is not practical, given the difficulties discussed, an alternative
method to gauge the suitability of a set of scoring criteria is required. The data sets that
are available have a large amount of historical data for the process being experimented
on. Using historical data to validate the outcome of simulations is discussed by Sargent
in [124], the approach is to partition the data set into separate sets used for building and
validating the simulation. To determine recovery suitability, historical data is leveraged
to replace a fitness function by counting the number of successful processes exhibiting
the recovery behaviour and dividing by the total number of processes exhibiting the
behaviour. This allows analysis of different scoring options based on the historical success
of the chosen recoveries.

Details of the success rates of the selected recoveries for the weights in Table 5.5 are
shown in Table 5.6 for both the simplified 10-Task and Full Data sets. The table shows
the proportion of selected recoveries that have been observed in the historical process
data and the median success percentages of the historical processes that contained the
selected recovery path.

It is immediately apparent from the table that the simplified data appears to be significantly
more amenable to the described recovery approach with its median success rate of 83.77%
than the more complex and noisy full data set with the far lower median success rate of
11.11%. This is an interesting and important point. It suggests that simpler processes
(or simplified data from complex processes, perhaps at a higher conceptual level, see
[1]) produces higher quality recoveries. This may be due to the fact that the simplified
data contained fewer tasks and therefore less noise and variability in the task sequences.
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Table 5.6: Success percentages for historical process data containing the selected recovery
path for the selected recoveries using the weights from Table 5.5

Data Set Recos. Observed Mean Success % Median Success %

10 Task, 3-Step 67.00% 74.32% 83.77%
Full Data set, 3-Step 97.00% 28.21% 11.11%

Such a reduction in variability could easily account for the higher proportion of recoveries
that were observed in historical data for the 10 Task, 3-Step data set. There are
possible approaches that could be used to reduce the variability of the paths in the
full data set. For example, paths that occur infrequently could be exempted from the
automated recovery process, allowing humans to take the complex cases and leveraging
the automated approaches for common issues. Work is ongoing within the industrial
partner to determine how a complex process should best be represented to get the best
value out of an automated recovery approach.

5.3.3 Realistic Scoring

Whilst the weights described in Table 5.5 were appropriate for initial testing, in a realistic
process system the weights associated with the different match types would need to be
tuned for best effect. In order to determine how best to approach this, it was necessary
to test different weights and attempt to discover how the different weights impact the
quality of selected recoveries. The data set used for the testing of the different weights
was the full data set. The full set was chosen because its initially poor results had the
largest scope for improvement (see Table 5.6). If a significant increase in the quality of
the recoveries was observed for certain testing weights, then it would have revealed that
careful tuning of these parameters would be required in a real system. Alternatively, if
the analysis revealed no significant chance in behaviour for the different sets of input
parameters, then it is likely that it was the underlying complexity of the data set and
business process that had the largest impact on the quality of the chosen recoveries.

The relative importance of the different weights to be applied to the different match
types were unknown. In order to try and gain additional insight into the importance
and configuration of the match type weightings a sensitivity analysis was performed.
This analysis tested for correlations between the different weights and the quality of the
produced recoveries, as measured by the previously discussed metrics of success count
and success proportion.

To perform the sensitivity analysis the Spartan [125] Toolkit’s Latin Hypercube analysis
option was chosen because it was able to test the effect of changes in all 3 of the weights
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(ExactPathWeight, PartialPathWeight & AttributeWeight) simultaneously, revealing
combinatorial effects as well as individual impacts of weights on the quality of the
selected recoveries. First, Spartan generated 100 sets of potential scores for the 3
different match types. Each score would be varied over the range 0 to 100. The 0-1000
range used for the initial testing was not used here because the generated parameter
values will not produce results that can be decomposed by visual inspection. Each test
run would consist of a complete scoring of the Full 3-Step data set. The exact weights
used for each match type in each test are shown in Appendix B.

Spartan requires one or more numerical inputs representing the quality of the produced
recoveries for each parameter set. Each run through the historical process data using
the identified recoveries would generate one result per observation that was a predicted
failure. To summarise the performance of each set of weights over the entire data set,
the median of 3 output variables were recorded for each set of weights. Median was
chosen over mean because the distribution of the recovery quality metrics is unknown
and cannot be assumed to be normally distributed. The recovery quality metrics that
were tested for sensitivity were:

• The median number of historical observations of the selected recovery that were
successful;

• The median number of historical observations of the selected recovery overall;

• The median percentage of historical observations of the recovery that were suc-
cessful.

5.3.4 Sensitivity Analysis Results

The sensitivity analysis produces a correlation coefficient for each input variable. Results
for each output are shown in Tables 5.7, 5.8 and 5.9. All figures in those tables are
rounded to 4 significant figures. Scatter plots showing each combination of input and
output values are shown in Figures 5.3 through 5.11.

The results of the Spartan analysis of the proposed scoring scheme show no statistically
significant relationships between any of the weights and the success of the selected
recoveries at the correlation coefficient > 0.9 level. These results show that the scoring
weights are not a significant driver for recovery quality.

The shapes of the charts also show that the output values that are counts are always in
the range [0, 2], this shows that there is little consistency in the business process since
each recovery is only observed few times in the historical process data. The lack of
significant correlations and the low frequency of each specific process paths suggest that
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it is likely that the underlying complexity of the business process being examined is the
key factor behind the low quality of the selected recoveries.

Table 5.7: Table showing correlation between input weights and the number of matching
recoveries in the historical data

Score Type Correlation Coefficient P-Value

Exact Path Weight 0.4223 0
Partial Path Weight −0.6793 0
Attribute Weight 0.4537 0

Table 5.8: Table showing correlation between input weights and the number of matching
successful recoveries in the historical data

Score Type Correlation Coefficient P-Value

Exact Path Weight 0.1709 0.089 32
Partial Path Weight −0.1742 0.083 00
Attribute Weight −0.2373 0.016 68

Table 5.9: Table showing correlation between input weights and the proportion of
matching recoveries that are successful in the historical data

Score Type Correlation Coefficient P-Value

Exact Path Weight −0.4591 0
Partial Path Weight 0.8900 0
Attribute Weight −0.6412 0
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Figure 5.3: Scatter plot showing the relationship between the attribute weight and the
number of matching recoveries in the historical data
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Figure 5.4: Scatter plot showing the relationship between the attribute weight and the
number of matching successful recoveries in the historical data
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Figure 5.5: Scatter plot showing the relationship between the attribute weight and the
proportion of matching recoveries that are successful in the historical data
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Figure 5.6: Scatter plot showing the relationship between the exact path weight and the
number of matching recoveries in the historical data
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Figure 5.7: Scatter plot showing the relationship between the exact path weight and the
number of matching successful recoveries in the historical data
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Figure 5.8: Scatter plot showing the relationship between the exact path weight and the
proportion of matching recoveries that are successful in the historical data
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Figure 5.9: Scatter plot showing the relationship between the partial path weight and
the number of matching recoveries in the historical data
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Figure 5.10: Scatter plot showing the relationship between the partial path weight and
the number of matching successful recoveries in the historical data

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

LHC Analysis for Parameter: task_in_path_score
Measure: med_total_count

Correlation Coefficient: −0.679

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

co
un

t

Figure 5.11: Scatter plot showing the relationship between the partial path weight and
the proportion of matching recoveries that are successful in the historical data
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5.4 Conclusions

This chapter proposes a methodology for extracting recovery strategies from historical
process data using a predictive classifier. This is often necessary in business process
contexts as the business process design is not often completely specified at a level
appropriate to automated reasoning. Some analysis of the generated recoveries is then
performed based on the occurrence of the recoveries in historical process data. This leads
to the conclusion that the greater the complexity in the business process the proportion
of high quality recoveries reduces against the total number of recoveries that can be
found.

Once recovery strategies have been discovered the next issue to be solved was that
of application; which recovery should be applied to a detected problematic state. A
complete autonomic business process system is then proposed using the learning from
the prior chapters. This process system can be connected to an existing legacy workflow
system and provide automated or semi-automated recovery of predicted business process
failures for arbitrary business processes. Weights are used in the process system to tune
the selection and application of recovery strategies.

A sensitivity analysis was performed on the weight parameters used for recovery selection
in the proposed system. This analysis also used historical data due to the issues with
simulating business process systems which have been discussed previously. The conclusion
from the sensitivity analysis is that the complexity of the business process is the key
determinant of the estimated performance of the proposed process system and that the
tested parameter weights do not have a statistically significant effect on the quality of
the selected recovery. This is a key finding, as it indicates that procedures which simplify
the business process data from the full complexity of the recorded data to a summarised
state might yield improved performance in terms of recovery selection. Determining the
exact relationship between the complexity of the business process and the performance
of the recovery approaches discussed in this chapter would be ideal for future work.

It is likely that businesses would be reluctant to deploy a technology that cannot show a
strong expectation of improving the status quo. One of the key issues with the process
data used for this analysis is its complexity. The humans involved in the execution of this
process are familiar with any inherent complexity and would be better placed to discover
solutions to errors than an automated process. If humans could be utilised to produce
and rate recoveries, the recovery engine would be able to learn from their knowledge,
and use human experience to improve its automated suggestions.

The following chapter evaluates the work in the undertaken in the thesis with discussion
of the work conducted and an analysis of the appropriateness of the approaches for
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business purposes.
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Chapter 6

Evaluation & Future Work

This chapter will summarise and evaluate the work undertaken in this thesis from both a
scientific and business standpoint. Final conclusions from the work will be discussed in
Chapter 7.

Chapter 1 introduces the thesis and the problem space that is to be explored. It sets the
contextual background for the rest of the work and provides business context for that
work.

Chapter 2 contains a comprehensive review of literature on both business processes an on
self-* and autonomic computing. From the review it can be seen that there is little or no
prior history of work in the area covered by the research hypothesis. Process improvement
techniques are typically taken from successful practitioners (e.g. the Toyota Production
System [8] and its derivatives) and converted to generic approaches, or are statistically
based, like Six Sigma [7]. Self-* and autonomic approaches in this area are typically
based on the infrastructure underlying the business process rather than the process itself,
for example, starting additional web servers to satisfy additional demand. There is clearly
a gap for a focused technique which attempts to resolve issues with individual process
executions.

In order to be able to provide some autonomic response to individual business process
executions a predictive technique would be required that would determine which process
executions would require an intervention. To that end Chapter 3 examines the performance
of well known and well understood classification algorithms from machine learning to
determine their performance on business process execution data. Chapter 3 discussed
how process data could be gathered and prepared for classification before testing the
approaches on real process data from the industrial partner. The chapter concludes that
decision trees can provide acceptable performance however they require tuning to do so.
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An alternative predictive technique was then sought in order to reduce or remove the
requirement for parameter and cost tuning that is needed by the classical classification
techniques. Chapter 4 examines immune-inspired techniques which were chosen as they
seemed to have characteristics that were well suited to business process data; generally
that they are structured to be able to detect many different diverse failure scenarios in
a single classifier rather than simply partition in input space. Four immune algorithms
were tested against the same process data as used in Chapter 3 and the results discussed.
Of the immune classifiers tested Immunos 99 showed the best performance.

Once the process outcome can be predicted, the next step is to determine how the
problem can be resolved. Chapter 5 builds upon the classification techniques that are
discussed in Chapters 3 and 4 by proposing a technique to link the prediction of a
business process execution failure with a recovery strategy that can be used to prevent
the failure from occurring. The first problem addressed in Chapter 5 is that of determining
recoveries. Business processes are seldom specified completely which makes automated
reasoning about the process design virtually impossible. An alternative approach is
proposed in which recovery strategies are extracted from historical process data using
the classification techniques previously discussed. The second half of Chapter 5 proposes
an autonomic process system which utilises the discovered recoveries and a predictive
classifier to build a system which can be retrofitted to existing workflow systems to
provide self-healing properties to the business processes executed by that workflow system.
Both the generation of recovery strategies and the technique used to determine the most
appropriate recovery for a given failure scenario are discussed and tested using historical
process data.

To evaluate this work it is necessary to consider two different view points. The first is
an academic view considering the technology used and the results obtained in isolation.
The second is one of business context which is driven by the applicability of the solution
to the business providing the data for study. These two view points have different
notions of acceptable performance, and of research impact. The scientific evaluation will
be undertaken first in the following section and the business evaluation in the section
following that.

6.1 Scientific Evaluation

The focus of the thesis has tended towards the self-healing element of the hypothesis
and different chapters have examined different aspects of self-healing as it relates to
business processes. Each chapter makes contributions to the overall thesis and has its own
conclusions which can be drawn. This section will summarise the scientific conclusions
from each chapter of the thesis.
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Key concerns for the scientific evaluation of this work are the performance of the
classification techniques and the performance of the selected recoveries as these are the
main indicators of algorithmic suitability. The scientific evaluation is concerned primarily
with the optimal performance of the algorithms under examination.

In Chapter 3, investigations into the applicability of classical machine learning classifiers
to the problem of business process prediction were performed. Specifically, decision
tree and association rule based classifiers were tested. Association rule classifiers were
immediately discounted from contention because they showed unacceptable accuracy,
which is likely to be due to the noisy nature of the process data. The decision tree
classifier had difficulties with the initial data due to the skewed nature of the data set.
Using the MetaCost technique to address the imbalance between classification classes
gave results that showed for the test data available an accurate classifier can be produced.
A weakness of this approach was that the exact cost parameters for MetaCost needed to
be determined by trial-and-error which increases the amount of human effort required to
utilise the technique on a new business process.

In Chapter 4 a number of immune-inspired classification techniques were evaluated to
determine if they could be used as an alternative to the classical techniques. Immune
techniques were investigated to determine if they would be able to provide acceptable
classification performance without extensive parameter tuning. Of the 4 classifiers that
were tested Immunos 99 showed the most favourable performance. Immunos 99 was
able to deal more effectively with the process data than the unmodified decision tree
algorithms, however it did not perform better than the decisions trees augmented with the
MetaCost technique. Of particular concern was the elevated false positive rate exhibited
by Immunos 99 compared with the decision tree techniques. An excellent piece of further
work would be to examine ways to reduce that false positive rate.

Chapter 5 discusses the discovery and selection of recovery strategies for the autonomic
process system. In addition, Chapter 5 also describes a proposed process system that
could be used to bring self-healing to existing legacy workflow systems. First, an approach
to determining recovery strategies was proposed and tested using historical data and
the Immunos 99 classifier from Chapter 4. Second, a mechanism for selecting the
most appropriate recovery strategy for a given predicted failure was discussed and a
sensitivity analysis of the technique to the process similarity metrics used was performed
using historical data to estimate performance. The approaches proposed showed poor
performance in terms of the success rate of the chosen recoveries on raw process data
(~11% success). The performance of the approach on simplified data was excellent, with
the suggested recoveries showing ~84% success. This suggests that simpler processes are
more amenable to automated intervention.

A key theme throughout all of the chapters in the thesis was the difficulties that arose
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around the complexity and chaotic nature of the process data. The simplified data
set, which was an extract of the most commonly occurring behaviours, showed better
performance throughout. Determining the relationship between process complexity and
the performance of the autonomic approach discussed in this thesis is a key question for
future work.

In terms of the research hypothesis, is has been shown that self-healing can be applied
to business processes using the techniques discussed. However, it has also been shown
that the success of these techniques depends mostly upon the complexity of the process
being managed.

6.2 Business Evaluation

The most important factor in the business evaluation is the impact of the solution
upon business metrics such as overall costs and customer experience. In particular the
performance of the classifier will have a large impact on the overall suitability of the
system. In this section, the business impact of the results of each chapter of the thesis
are considered and then a cost-benefit analysis of the performance of the techniques is
used to determine if the techniques are suitable for implementation as they currently
stand.

The key concerns for the business evaluation differ slightly from those of the scientific
evaluation, which was mainly concerned with algorithmic performance. The business
evaluation is concerned with determining the suitability of the techniques in terms
of how they could be used in the real world. Businesses are not concerned with the
optimal performance of the algorithms, instead they are interested in the cost savings
and customer satisfaction increases that these techniques can bring. For example, a
classification algorithm that had 0% false positives, and 40% true positives would be
considered poor from a scientific standpoint, however this would allow 40% of customers
to be better served which would be very acceptable. Generally, the trade off between false
positives and true positives is crucial as this is directly related to increasing costs (false
positives) and cost savings (true positives). This is illustrated further in the cost/benefit
analysis in Section 6.2.1.

In Chapter 3 classical classification techniques are evaluated for their ability to predict
the outcome of a business process execution based on execution trace data. Association
rules showed unacceptable performance. Decision tree algorithms showed excellent
performance where coupled with a technique to deal with the unbalanced nature of the
process data (MetaCost in this case). The performance levels would be acceptable to
a business in most cases, subject to specific business goals and strategy, however the

112



need for a human to tune the MetaCost parameters for the classifier would limit the
applicability of the technique to those critical business processes which could afford to
spend resources on parameter tuning.

In Chapter 4 a number of immune-inspired classification techniques were tested to
determine if they were able to provide acceptable performance without the requirement
for human parameter tuning on new process data. Removing the requirement for tuning
would increase the applicability of the technique to a wider number of business processes as
the initial setup costs and effort would be lower. One of the four techniques tested showed
reasonable performance characteristics - Immunos 99. The true positive performance of
Immunos 99 was excellent with a true-positive rate between 68% and 74%, which would
provide the opportunity for a significant proportion of failures to be avoided. The false
positive rate of the algorithm was a concern though, at between 14.3% and 18.2%. This
false positive rate in a process with 10,000 process executions per week would lead to
between 1,430 and 1,820 additional investigations. That volume of investigations would
be not be able to be absorbed using the existing capacity of the business. Therefore,
in high volume processes the number of false positives is likely to make the current
performance of these techniques untenable, however these are exactly the processes which
would be able to afford tuning of the decision tree/MetaCost solution.

Chapter 5 covers the generation and application of recovery strategies to process failures
in a proposed self-healing process system. The approach was tested using both the
simplified process data from Chapters 3 and 4 as well as the full data set which the
simplified data was synthesised from. The classifier used for the generation of the
recoveries was the Immunos 99 classifier from Chapter 4. The results obtained from the
testing of the proposed approaches on historical data clearly show there are issues to be
addressed. The simplified process data performs well whilst the full data exhibited poor
performance. Recoveries on the full data only had a success rate of 11% which would
not be sufficient to address the number of interventions which would result from the
process predictions. For example, a process with a process with 10,000 process steps per
week 1,000 of which would fail without intervention, a classifier with a true positive rate
of 74% and a false positive rate of 15.5% would require 2,135 interventions in total. If
only 235 of these interventions are successful (assuming 11% success rate) this leaves
1,900 steps pending failure which is much worse than the 1,000 which would fail without
intervention. Exactly which success rate would be required for an implementation to
be feasible would be dependent on a cost-benefit analysis such as the one discussed in
the following section. The results suggest that process complexity is a key determinant
for recovery performance. Businesses can typically only move to reduce their inherent
complexity of the long-term therefore further research would be required to address the
performance drop with increasing complexity before these techniques could be used in at
the industrial partner.
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6.2.1 Cost-Benefit Analysis

To determine if the techniques described within this thesis would be suitable for de-
velopment and deployment within a business a cost-benefit analysis would typically
be performed. In this section a simulation is used to compare the performance of a
standard process system with an autonomic self-healing process system as proposed. The
performance results from the earlier chapters are used as parameters to the simulation.

There are a number of costs that are applicable to executing business processes. Those
considered for this evaluation are:

• Cost of customer interactions (e.g. incoming calls, letters, email).

• Cost of an automated intervention

• Cost of a manual intervention

Under the assumption that the cost of the tasks are identical between the manual and
autonomic cases, the costs incurred by the process can be modelled by considering the
number of customer interactions that are involved in a process. For example, if the
customer calls to chase the progress of an order, an additional interaction is required. If
the customer’s order has an intervention the cost of the second interaction is not incurred
instead the lower cost of intervention is incurred.

To measure the potential cost savings available through the application of the autonomic
system described in this thesis, a simple simulation of a system has been built using
the performance profile of the predictive classifier and the estimated success rate of the
automated interventions. This simulation covers the intake of jobs over 10 time periods
with a nominal 10% failure rate under normal conditions (taken from knowledge of the
industrial partner).

In the non-autonomic case, in each time period 90% of the input jobs are successful and
10% carry over into the next time period where they will add to the normal intake of
jobs. The number of interactions in each time period can then be calculated using a
simple multiplier of £25. Summing the cost of interactions over all 10 periods gives a
total cost of the simulation.

For the autonomic case, using the true positive rate and false positive rate of the
predictive classifier, the number of jobs that would be identified as requiring intervention
can be calculated. Each of these interventions is assigned a cost of £5 to indicate the
significantly lower effort that would be required for an internal intervention verses a
customer interaction. Using the success percentage from the recovery experimentation
allows the number of jobs that would be successfully corrected to be determined. The
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Table 6.1: Simulation results showing potential cost savings of using the autonomic
process system vs. the standard situation. 10 Task and Full indicate which of the median
recovery success rates from Table 5.6 was used in the simulation runs.

Data Set Min Lower Quartile Median Upper Quartile Max

J48/10 Task -948,060 902,705 1,272,130 1,662,023 2,807,820
I99/10 Task -1,522,955 110,215 505,405 875,876 2,197,010
J48/Full -2,163,400 -788,998 -381,010 23,611 1,565,160
I99/Full -2,748,960 -1,352,616 -941,915 -574,685 1,050,510

number of jobs from period Pn that would carry over to period Pn + 1 can be calculated
as the number of those jobs that fail and are not sent to intervention and the number
of jobs that have an unsuccessful intervention. The costs of the interactions and the
interventions over the 10 time periods the be calculated to give the total cost of the
simulation.

Once the costs of the existing system and the proposed autonomic system are captured
from the simulation the delta between the costs can be calculated. This then indicates
the change in service costs that result from the autonomic system with the simulated
performance characteristics. For the simulations, the number of input jobs in each period
is randomly chosen from a normal distribution with the mean 100,000 and the standard
deviation of 5000.

Each simulation was executed 1000 times. The results of the simulation runs are shown
in Table 6.1 and Figure 6.1. An example of a single run of the simulation to illustrate
its construction is shown in Appendix C. In the results presentation I99 stands for the
Immunos 99 classifier with a 2-step window, J48 stands for the J48 classifier with a 1-step
window. The respective window sizes where chosen because those returned the best
performance of the tests performed in Chapter 4 and 3 respectively. The 10 Task or Full
label shows which of the recovery result percentages from Chapter 5 was used, 83.77%
from the 10 Task simplified process data used in testing the classifiers in Chapters 3 and
4 or 11.11% from the full process data set with no simplifications (see Table 5.6).

The results of the simulation show that under the assumptions of the simulation, there
are significant cost savings to be made for the simpler 10 Task data sets. However, the
current situation is closest to the two Full scenarios, where the classification performance
and recovery success performance are both low. Further work to investigate how data and
process complexity correlates with process performance, and to determine how complex
process data is best processed for consumption by classification algorithms would be
required to improve performance before any implementation would be appropriate
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Figure 6.1: Box plot showing distributions of cost savings in simulation scenarios. 10
Task and Full indicate which of the median recovery success rates from Table 5.6 was
used in the simulation runs.

6.3 Future Direction

Each chapter of the thesis has briefly discussed possible future research directions for the
work covered within. The key theme for future work is dealing with the complexity of
realistic business process data as this as a detrimental impact on the classification and
recovery performance throughout. The next steps at BT will be to attempt to understand
and address these questions in order to build a system suitable for use. The approach
will need to be tested and validated within a limited trial to confirm its suitability for use
in a wider context.

First a candidate business process will be identified for a trial of the technology. The
first step will then be an analysis of the performance of the classification algorithms for
that process. This analysis will include lengthy consideration on the characterisation
of the training data for the classifier and on mechanisms for dealing with the inherent
complexity of the data. For example, it may benefit the classifiers performance to only
train upon the most popular process behaviour.

The next step will be to implement the classifier on the existing live business process so
that its performance can be monitored over a considerable period of time. During the
test no automatic intervention will be performed, instead lists of potential failures will be
provided to the business for manual investigation. Feedback on the quality of that list
will be essential in tuning the classifier for real use. The system will be providing real
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business benefit at this point by allowing the company to resolve process issues before
they impact customers, raising customer satisfaction and lowering the average cost to
serve for the monitored process.

Once the classifier is suitable for the identification of process issues the next step will be
to produce recovery strategies using the classifier and the technique discussed in Chapter
5. It will then be possible to make a recovery suggestion for each of the identified process
issues. The failure list will then be extended to include a suggestion for how the business
process might be corrected in each case. Feedback from the agents investigating the
potential failures will be used to guide development and modification of the recovery
generation and selection algorithms.

Finally, once the feedback and metrics from the agents using the feedback suggestions
reaches a suitably high level, work can begin to integrate the recovery paths automatically
into the workflow for impacted business processes. A confidence metric will need to
be developed to allow the system to determine for each case whether it should be
automatically recovered, or if it should be sent to a human for manual investigation.
Over time as the technique improves the number of manual interventions should fall.

The integration of the system proposed in this thesis with a running workflow system will
require a lengthy and costly change programme and therefore an extremely high level
of confidence in the benefits of the autonomic process system. Taking a step by step
approach as outlined here will allow the system to be rigorously tested at each stage.

6.4 Summary

This thesis has examined in detail the issues that arise in realising an autonomic business
process system that is able to monitor itself for potential failures and then to self-correct
those potential failures by changing their execution paths. The research has concluded
that it is possible to predict imminent business process failures using both classical
classification techniques and immune-inspired techniques and discovered the weaknesses
of each of those approaches. Further, the work has concluded that it is possible to
discover and assign recovery strategies to impending failures in the absence of a model
or design of the process being monitored. However the investigations have determined
that the success of the automated recoveries depends largely upon the complexity of the
process under control.

The thesis has also considered the commercial applicability of the outcomes of the
research though a simulation and associated cost-benefit analysis. The cost-benefit
analysis shows that an autonomic process system can reduce both an organisations cost
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to serve and the number of failures which make it though to a customer impacting event.
Finally, the thesis has shown that such benefit is more likely to be realised on less complex
business processes.
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Chapter 7

Conclusions

7.1 Research Hypotheses

The work discussed in this thesis was intended to address the research questions raised
by the hypothesis and sub-hypotheses introduced in Section 1.4. These hypotheses are
as follows:

Business process improvement can incorporate autonomic properties of self-
healing to provide solutions to changing business contexts.

This hypothesis was decomposed into 3 sub-hypotheses as follows:

Hypothesis 1: Using historical business process data it is possible to predict the
outcome of a business process using a classical classification technique
(Chapter 3).

Hypothesis 2: It is possible to produce a better performing classifier to predict the
outcome of a business process using immune-inspired classification
techniques rather than classical classification techniques (Chapter 4).

Hypothesis 3: It is possible to produce accurate and useful recovery plans for business
processes in the absence of a formal model of the business process
(Chapter 5).

Each of the technical chapters addresses one of the aforementioned sub-hypotheses. This
chapter will bring together the contributions of each chapter to the resolution of the
hypotheses and the contribution to knowledge and contribution to the industrial partner.
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7.2 Process Prediction using Classical Techniques

Chapter 3 contributes a method to exploit historical business process data to produce
a classifier suitable for the prediction of the outcome for executing business processes.
This method was tested against simplified data from the industrial partner and found to
provide acceptable performance when paired with a technique to address class skew in
the training data set.

The key contribution of this chapter is to inform businesses that relatively well known
techniques can be used to provide outcome prediction to generic business processes
using data that would be captured as part of the existing workflow systems. This tells
the business that such techniques can be implemented with a few changes required to
existing systems.

With respect to the first sub-hypothesis, work in Chapter 3 shows that it is possible to
predict the outcome of a business process execution using classical techniques.

7.3 Process Prediction using Immune Inspired Techniques

Chapter 4 builds upon the technique used to produce classical classifiers in Chapter 3 to
apply the process data to a selection of immune-inspired classification algorithms. This
chapter provides a number of contributions to knowledge in addition to the contribution
to the industrial partner.

The first contribution to knowledge is the application of immune-inspired algorithms to
business process prediction. This is a new area of application for these techniques that
has not been previously explored.

The second contribution is an important contribution to the industrial partner. Chapter 4
tests a variety of immune-inspired classification techniques and determines that Immunos
99 provides the best performance albeit with an elevated false positive rate. In addition
to informing the industrial partner about which techniques are best suited for process
prediction this also exposes BT to a number of new classification techniques that could
be used in a wider set of application domains within the business.

An additional contribution to business of this chapter is the in depth case study of
applying an immune inspired classification techniques to a specific a BT process. The
results of the study were communicated back to interested parties inside the company.
This aids BT in making decisions on its own research programme. As a result of this
case study interest in immune-inspired techniques has grown and will certainly form part
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of future work in a variety of problem domains such as churn prediction.

With respect to the second sub-hypothesis Chapter 4 shows that it is possible to produce
a classifier for business process prediction using immune-inspired techniques but fails to
prove that these are definitively better than the classical classifiers, primarily due to the
elevated false positive rate for the immune classifiers.

7.4 Determining Process Recovery Paths

Chapter 5 addresses the third of the sub-hypotheses, that of producing an appropriate
recovery plan for a failing business process in the absence of a defined model of the
business process. Results of applying this technique to example data from the industrial
partner show that it performs better on simpler business processes and performance
is poorer on more complex data. The proposed method is applicable to all business
processes.

A measure of the impact of this work at the industrial partner is that significant effort
was spent determining the patentability of this invention. Whilst the determination was
ultimately that this invention does not qualify for patent protection work will continue
within the research programme aiming to produce a prototype that can demonstrate the
technology for internal and external use.

The proposed recovery method is also a contribution to knowledge given the absence
of other techniques able to deal with systems without a formal model or a manually
produced list of recoveries. Whilst the technique has been discussed with reference to
business processes, it may be possible to apply the same or a similar approach to diverse
problem spaces where no formal model of the system exists.

7.5 Business Contribution vs. Scientific Contribution

Given the industrial nature of the EngD programme this thesis has needed to consider the
contributions it makes to the industrial partner as well as those contributions it makes to
knowledge. In places there is a trade off between these two facets. As shown in the other
sections of this chapter there is generally a strong synergy between the contributions to
knowledge and contribution to business, both communities are informed by the work in
the thesis.

Some sections of this thesis report primarily on business concerns. For example, the
cost-benefit model for the proposed autonomic process system discussed in Section
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6.2.1 is much more important in a business context than an academic one. Whilst the
contribution to knowledge made by this thesis is important, it was the business context
that guided the development, scope and scale of the work undertaken.
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Appendix A

High Volume Wholesale Service
Provision Classification Results

These are the raw results reported by Weka for the 10-fold cross-validation performed on
the data set discussed in the case study in Section 4.6

Summary

Correctly Classified Instances 75433 75.433 %
Incorrectly Classified Instances 24567 24.567 %
Kappa statistic 0.2122
Mean absolute error 0.2457
Root mean squared error 0.4957
Relative absolute error 129.1558 %
Root relative squared error 160.7236 %
Coverage of cases (0.95 level) 75.433 %
Mean rel. region size (0.95 level) 50 %
Total Number of Instances 100000

Confusion Matrix

a b <– classified as
6086 4557 a = outcome=N

20010 69347 b = outcome=Y
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Appendix B

Spartan Analysis Candidate Scores

Exact Path Match Score Task in Path Match Score Attribute Match Score

1 21 80 9
2 34 62 25
3 75 31 88
4 99 96 80
5 77 16 7
6 92 51 46
7 51 60 70
8 96 21 76
9 48 28 82

10 16 89 22
11 46 39 27
12 54 38 35
13 94 64 43
14 85 71 91
15 35 82 14
16 44 9 65
17 4 25 75
18 36 33 24
19 94 46 61
20 66 81 19
21 19 79 74
22 10 59 4
23 3 24 60
24 73 5 3
25 97 62 86
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Exact Path Match Score Task in Path Match Score Attribute Match Score

26 88 13 0
27 58 74 72
28 25 15 16
29 70 72 5
30 81 49 75
31 19 38 92
32 11 95 42
33 54 32 36
34 84 28 40
35 77 44 57
36 57 4 39
37 13 76 99
38 10 93 68
39 50 89 3
40 86 43 44
41 33 66 13
42 72 2 82
43 16 25 18
44 70 46 36
45 74 98 8
46 5 26 29
47 17 8 33
48 96 0 31
49 41 70 32
50 6 65 16
51 61 7 19
52 22 74 61
53 14 22 30
54 25 29 66
55 31 68 48
56 66 80 71
57 2 18 21
58 29 51 12
59 29 15 47
60 43 54 54
61 85 90 62
62 23 2 10
63 90 47 100
64 26 57 49
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Exact Path Match Score Task in Path Match Score Attribute Match Score

65 9 13 55
66 46 85 92
67 78 56 77
68 51 68 79
69 79 99 96
70 41 87 38
71 88 41 48
72 0 77 72
73 33 18 94
74 38 11 51
75 57 21 55
76 65 11 42
77 62 87 32
78 24 36 1
79 63 9 93
80 74 42 21
81 27 69 10
82 55 92 85
83 61 61 84
84 48 30 63
85 83 41 95
86 8 91 68
87 67 99 14
88 69 54 26
89 31 20 52
90 92 6 81
91 37 96 65
92 60 83 89
93 39 58 27
94 82 65 57
95 91 75 98
96 45 36 38
97 7 53 84
98 13 34 59
99 99 50 50

100 52 85 89
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Appendix C

Cost Saving Simulation Example

Is shown overleaf.
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