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Abstract 

Water management is a global challenge. Important facts of current concern in the 

water sector are: water scarcity threatened by the increasing consumption, safe 

drinking water supply resources threatened by climate changes and pollutants 

discharged from anthropogenic activities; and the accelerated urbanisation 

demanding adequate water supply together with the increasing wastewater 

generated by the growing urban population. These issues are becoming an 

imperative need that could be effectively addressed through adaptive water 

management strategies for the sustainable development of the societies worldwide. 

Metropolitan areas exemplify the rapid increase of urban population within a relative 

small area, which consequently results in the overexploitation of water supplies. 

Together with this overexploitation, human health could be threatened due to the 

water-health nexus in terms of water quality and quantity. The specific case study of 

this research: the Metropolitan Area of Merida (MAM) in Yucatan, Mexico has been 

analysed in order to exemplify the use of a decision maker’s tool to improve public 

health through the identification of major water pollutants and correlate them with 

waterborne diseases documented in epidemiologic statistics. The focus of this 

research was on two indicator contaminants: Faecal coliforms as microbial indicator 

of water quality, representing the non-conservative pollutants, and nitrate as chemical 

indicator of water quality, an example of a conservative pollutant that may persists in 

the groundwater for decades. Seven engineering interventions have been tested to 

identify most suitable management strategies through the following steps: 1. Quantify 

pollutants in the aquifer with the Sustainable Integrated Water Management Model 

(SIWMM), using a system dynamics approach; 2. Outcomes of the model served to 

quantify a) Public health risks posed from faecal coliforms through Quantitative 

Microbial Risk Assessment (QMRA), and b) Economic savings associated with 

pollutants reduction, 3. Develop cost benefit analysis of selected interventions, and 4. 

Identify the most suitable intervention in order to assist decision makers to cope with 

a sustainable supply of safe water and an integrated water management. The model 

framework developed in this thesis identifies the installation of soil absorption 

systems into septic tanks at household level, and installation of treatment plants for 

livestock wastewater as the most cost-benefit interventions of substantial positive 

impacts on groundwater quality and public health and, in addition, economic benefits.  
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Chapter 1. Introduction 

“Access to water supply and sanitation is a fundamental need and a human 

right”…”those without access are the poorest and least powerful. Access for the poor is 

a key factor in improving health and economic productivity and is therefore an essential 

component of any effort to alleviate poverty” (WHO/UNICEF, 2000).   

“… intimate interconnections of exposure pathways and control mechanisms suggest 

that treating water, including supply and resource management, as an integral part of 

the risk factor unsafe WSH (Water, Sanitation and Hygiene) is rational” (Ezzati et al., 

2004). 

1.1. Global water crisis 
Water is becoming an increasingly scarce resource. Even in the twenty first century, 

unclean water, inadequate sanitation and insufficient hygiene are the most significant 

risk factors of diarrhea, which is the world’s second leading cause of death of children 

under five years (UNICEF, 2000; WHO, 2008; UNICEF/WHO, 2009). Across 

developing countries, there are more than 750 Million people without access to safe 

water, 2.5 billion people without access to sanitation and 1.8 million children die every 

year due to diarrhea and other water-related diseases (WWDR, 2014). Most of these 

diseases have been attributable to unsafe water, sanitation and hygiene. However, few 

countries consider water and sanitation as a political priority, in particular the Latin-

American countries (Pruss-Ustun , 2008; Jefferies and Duffy, 2011; OPS, 2007). 

Rapid population growth in urban areas has generated a new challenge in terms of 

water management: to provide sustainable water access for current and future 

population. A rational approach is needed to find a balance between too weak 

standards, resulting in the depletion of water resources, and too stringent standards 

which are needlessly costly to achieve. That right balance can be achieved through the 

implementation of integrated and sustainable water management strategies designed 

to identify and reverse trends of pollutant concentrations through global planning and 

monitoring systems (GCCC, 2009; IWRB, 2009; Wu, 2011; Padowski and Jawitz, 

2012). 

Water abstraction per capita has substantially increased over the last decades due to 

growth, globalization and virtual water trade. In Mexico, a member country of the 

Organization for Economic Co-operation and Development (OECD), water abstraction 

per capita increased from 730m3 in 2002 to 740m3 in 2006 (Figure 1).  

It is important to notice that majority of this water abstraction increases is alongside the 

agricultural activity, since agriculture is the major water consumer in most developing 
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countries, with an intrinsic relationship to the reliability of rainfall. For instance, within 

the OECD, Mexico is ranked among the countries with the highest water abstraction 

per capita, but considering other countries with comparable rainfall such as Spain and 

Korea, abstraction per capita in Mexico is comparable (Figure 1). In addition, one of the 

biggest challenges in Mexico is the sustainable management of the water cycle within 

urban areas (OECD, 1998b; San Martin, 2002; Robles-Morua, 2010; OECD, 2011; 

OECD, 2008; OECD, 2009).  

 
Figure 1 Per capita water withdrawals (m3/year) for OECD countries. Source: OECD, (2011). 

1.2. Water management challenges 
Rapid global urbanization creates complex water management issues and the need to 

establish new adaptive approaches to environmental standards and regulations relating 

both to water quality and quantity, which respond to global and local challenges.  

In terms of water quantity, large volumes of water are daily used for every social and 

economic activity at different levels. Major sectors demanding water for their particular 

uses are agriculture, domestic and industry, which are continuously increasing their 

water withdrawals (Figure 2). While industrial water use dominates water consumption 

in developed countries, the agriculture sector is the main water consumer in developing 

countries. Significant portions of the water consumed in different sectors returns to the 

environment as wastewater with very variable water quality characteristics.  

Estimating volumes of wastewater per socio-economic activity and the corresponding 

concentration of pollutants per specific basin, catchment, district or country, can be a 

challenging task. The loads of water pollutants from municipal uses are particularly 

severe in developing countries due to the limited wastewater treatment, if any at all. For 

instance, a recent study in Bangladesh identified high concentrations of organic matter, 

total nitrogen and total phosphorus associated to discharges from septic tanks into 

water bodies (Tsuzuki et al., 2011). Another concern is the poor efficiency of existing 

wastewater treatment facilities, as reported in Thailand (Tsuzuki et al., 2009). 
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Figure 2 Water withdrawal by 3 major sectors in the OECD countries (%). Source: OECD, (1998a). 

Even though, it is common practice to develop water quality legislation based 

exclusively on the most suitable water characteristics for specific uses (i.e. drinking 

water); however, new directives would need to take into account particular conditions 

related to local natural resources such as climate, catchment characteristics and 

changes in water flows, in order to establish more adequate water quality criteria. With 

this approach, sustainable management for further improvements could be achieved 

based on updated monitoring data and new technologies (Wu, 2011).  

Because of urban areas generate large volumes of wastewater, high concentrations of 

contaminants such as organic matter, pathogens and heavy metals are expected in 

water resources, when poor sewage treatment is available in place. Therefore, there is 

a need to look at the whole system to propose integrated solutions (from the extraction 

point of the water supply chain, up to the final wastewater disposal), as well as 

sustainable solutions (forecasting future scenarios) for each individual problem to 

tackle (Leyva, 2010; Pokrajac, 1999).  

Integrated and sustainable approaches have been used worldwide in order to develop 

water resource management and city water safety plans (Jefferies and Duffy, 2011). 

From an integrated approach, it is important to consider physical and hydro-geological 

conditions which describe natural resources at spatial and temporal levels. From 

sustainable approach, cultural, economic, environmental and political factors that 

influence access to natural resources should be considered in order to manage water 

supply, sanitation and public health by local governments and water supply/wastewater 

treatment providers (Jonch-Clausen, 2000). Therefore, a combined sustainable 

integrated approach could cover all possible aspects necessary for an improved water 

management. 
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Sustainable water management may require collaborative cross-sector networks and 

trans boundary partnerships. An example of this is the current dinaric project where 

governments of Albania, Bosnia & Herzegovina, Croatia, and Montenegro work 

together for the protection and sustainable use of the dinaric karst transboundary 

aquifer system (UNESCO-IHP, 2006; Nalecz, 2011; Stevanovic et al., 2012). It implies 

taking participatory interventions from practitioners and stakeholders looking at both 

beneficial and detrimental interactions at the human-water system nexus. 

1.3. Water-health nexus 
The International Drinking Water Supply and Sanitation Decade (1981-1990) 

emphasized a global awareness of the intrinsic nexus between water and public health. 

Increasingly noticeable is the lack of data available that could relate the public health 

impact of water quality and quantity. Emerging water-related diseases such as public 

poisoning with arsenic and cadmium in drinking water worldwide due to natural and 

anthropogenic sources have contributed to the initiation of research projects and 

studies in order to generate a more solid database in both developed and developing 

countries.  

Positive and negative relationships can be found within the water-health nexus. For 

example, in Latin American and the Caribbean (LAC) countries (San Martin, 2002) 

reported negative impact in public health (i.e. incidence of cholera cases) due to the 

lack of water supply coverage. He also reported a positive impact in public health (i.e. 

nutrition indicators) due to higher coverage of water supply. These examples serve to 

indicate, that it is important to have and generate data related to the water-health 

nexus within geographical bases in order to identify current threats and hazards to be 

tackled, in short and long term prioritizing interventions. 

1.4. Aims and objectives 
Efficient water management strategies are required to rapidly adapt to current changes 

in urban areas. The aim of this research is to develop a framework-planning tool for 

urban water management in developing countries, as a strategy to assess public health 

improvements through cost effective interventions. This thesis will use a case study at 

the Metropolitan Area of Merida (MAM), in Yucatan Mexico, to develop such adaptive 

tool, and to propose potential strategic solutions. 

In order to achieve this, the following specific objectives have been identified: 

1. Estimate water quality and water quantity data in order to generate sensitive 

data input for the computer model named: Sustainable Integrated Water 

Management (SIWM) model. 
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2. Forecast water pollution concentration of selected water quality indicators by 

modelling them with the SIWM model, in order to identify main pollutants that 

could result in public health risks within a spatial location.  

3. Develop Quantitative Microbial Risk Assessment (QMRA) with outputs from the 

SIWM model, in order to identify the most significant health risks associated to 

water supply. 

4. Evaluate through cost-benefit analysis, potential engineering interventions to 

improve public health in order to support decision-makers in water resources 

management.  

5. Evaluate to which extent the model framework developed for the MAM case 

study is applicable to other comparable case studies, and what modifications 

would be needed for less comparable case studies 

1.5. Thesis outline 
This thesis has been divided into nine chapters.  

Chapter 1 gives an introduction and describes current water management challenges 

and outlines the aims and objectives of this research project.  

Chapter 2 presents the state of the art for this research topic through a review of 

relevant published literature, to conceptualize water management practices in the past, 

present and future perspective, as well as a deep description of the water-health nexus 

and the importance of controlling current water pollutants of major concern. This 

chapter also introduces key components to develop the “Sustainable Integrated Water 

Management” (SIWM) model and the system dynamics modelling approach used. 

Chapter 3 describes the case study of the Metropolitan Area of Merida (MAM), which 

was selected for simulation by the system dynamics model developed for this research. 

It includes current water management practices in the area, water policies and 

accessibility for the eight main socioeconomic activities demanding water in both urban 

and rural areas. It also explores current water threats of public health concern, in terms 

of pollutant’s concentration in the aquifer.  

Chapter 4 presents the first part of the methodology of this research, including three 

fundamental steps for the development of the system dynamics model (SDM): 

conceptualization, mathematical model and computer model (system dynamics model). 

Model assumptions, objectives and boundaries are also presented.  It also describes 

the sub-models that integrated the SIWM model. In addition, the description of data 

input estimated for the model in terms of: water and wastewater flows, and pollutants 

loads.  
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Chapter 5 presents the second part of the methodology, which describes the process 

of modelling the two pollutants selected for the present research: Faecal coliforms 

(FC), and nitrate (NO3), together with the description of the seven engineering 

interventions. At the end of this chapter the methodology of the cost-benefit analysis 

(CBA) undertaken with the results of the inventions is described in order to get 

familiarized with the potential outcomes of the CBA.  

Chapter 6 presents the first part of the results: the results of pollutant concentrations 

predicted in the aquifer, which is the sole water supply for the MAM case study, 

together with the effect of the overall seven engineering interventions. 

Chapter 7 presents the second part of the results: the results of the cost-benefit 

analysis. Costs are measured with available data from local infrastructure companies. 

Benefits are estimated through assessing changes in health risks associated with water 

supply quality, which is posed by the selected pollutants. Quantitative Microbiological 

Risk Assessment (QMRA) and, cost-saved for nitrate removal when excessive 

concentration is in the aquifer of the case study, in order to continue using as main 

water supply for the MAM case study. 

Chapter 8 presents a discussion of the novel model framework developed in this 

research, including its applicability beyond the study area as exemplified by a case 

study of a karstic aquifer in Germany.   

Chapter 9 presents the final conclusions and main recommendations for further 

research. 
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Chapter 2. Literature review 

…“Researchers and practitioners alike are becoming more aware of the importance of 

whole-system integration, both at a disciplinary level and geographical scale” (Hannah 

et al., 2008). 

This chapter introduces four key topics which serve as basis for the present research: 

 Water resource management practices: sustainable and integrated approaches 

to water resource management are described, along with approaches to 

groundwater management, which are particularly relevant to karstic aquifers, 

that provides a solid background supporting the case study of this research. 

 Water-health nexus: water pollutants (both microbial and chemical), and 

waterborne diseases are discussed in order to identify the impacts of water 

quality and quantity to public health. This section lays the foundation to 

understand the importance of engineering interventions in improving public 

health, sanitation and hygiene practices. 

 Modelling and predicting contaminant concentrations in groundwater, with 

particular emphasis on karstic aquifers: Examples of modelling approaches 

related to two major chemical and microbial pollution indicators (i.e. nitrate and 

faecal coliforms) in vulnerable karstic aquifers are discussed.  

 System Dynamics Modelling (SDM): the application of Vensim (i.e. a computer 

modelling software developed by Ventana Systems Inc.) in the water sector to 

improve current understanding and implementation of water management is 

described, together with its potential impact to improve public health. 

2.1. Water management 
Halving the proportion of people without access to safe drinking water and improved 

sanitation is one of the Millennium Development Goals set by the United Nations 

(WHO/UNICEF, 2006). To achieve this goal, it is important to recognise that the 

solution to similar needs may require different approaches, even within the same 

geographical area (San Martin, 2002; Taylor, 2011; Associates, 2008; Padowski and 

Jawitz, 2012). In order to tackle water issues within a specific area, it is important to 

identify the variety of pollutants discharged from different sources in a given zone, 

within a given water basin.  

Perry, (2013) suggests that setting a relevant framework is the most effective 

foundation for addressing both current and future water resource management. Such 

framework was named as the ABCDE + F of water resource management, which 
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stands for: Accounting, Bargaining, Codification, Delegation and Engineering (ABCDE) 

plus the corresponding Feedback (F) among these components. In particular, urban 

water management was related not only to surface water but also to groundwater, 

especially for those countries that rely mainly on groundwater such as Denmark (90%); 

Portugal (94%); Italy (89%); and Mexico (75%). Urbanization impacts the water 

balance in different ways such as: operation of water supply infrastructure, on-site 

sanitation, storm water management, and sewerage treatment plants (Marsalek et al., 

2006). 

The present research is based on a broad range of water management approaches 

from the literature, which were classified into two groups: sustainable and integrated 

approaches. Conceptual and computer models developed in this research are based 

on the combination of these approaches, thus it is named “Sustainable Integrated 

Water Management (SIWM) model”. Scientific contributions to the SIWM model are 

discussed below. 

2.1.1. Sustainable approach 
The sustainability approach for this research focuses on the four sustainability pillars: 

social, economic, political and environmental, interacting among the water cycle and 

human activities. Table 1 shows examples and the contributions of this approach to the 

present research. 

Table 1 Examples of relevant sustainable water management approaches 
Author Description Contribution 
San 
Martin, 
(2002) 

Findings of the Inter-American Development 
Bank’s Annual Meeting related to main 
impairments to promote improvements in 
water management for Latin America 

Three water sustainability factors: 
environmental, economic and social 
were used in 2 area: agriculture and 
industry 

Santana-
Medina et 
al., (2013) 

64 sustainable development (SD) indicators 
were classified. Qualitative analysis through 
active social participation result in a most 
inclusive and realistic approach 

Participatory approach of authorities 
in water, health, agriculture, 
livestock, aquaculture and urban 
public and rural development 

Howe et 
al., (2012) 

SWITCH Project (Sustainable Water 
Management in the City of the Future) was an 
international research project aimed to tackle 
current water scarcity in 13 urban scenarios  

Interconnection among water 
system and anthropogenic activities 
affecting the former to identify key 
human-water interactions  

Brandes, 
(2003) 

Water Sustainability Project (WSP) as part of 
the POLIS Project, uses “from supply to 
demand-side approach” for understanding of 
structure and dynamics of urban water 

Water management proposed for 
this research is based on water 
supply and demand in a dynamic 
system 

2.1.2. Integrated approach 
The integrated approach is defined for this research as the water management that 

focuses on all the physical factors affecting the water cycle considering spatial and 

temporal conditions. Relevant literature (OECD, 1998a; Pokrajac, 1999; Jonch-

Clausen, 2000; Liu et al., 2008; Arellanos, 2009) suggests that an integrated water 
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resource management (IWRM) should involve stakeholders and scientists to fulfill 

human-water system as follows: 

- Integration of freshwater and coastal zone management (saline intrusion) 

- Integration of land use and water management (human development) 

- Integration of alternative water sources (recycled water) 

- Integration of green and blue water (freshwater) 

- Integration of surface and groundwater (natural-environmental system) 

- Integration of quantity and quality of water resources (watershed) 

- Integration of upstream and downstream water (catchment integration) 

- Integration of science and decision-making strategies (practical science) 

Examples of Integrated Water Management (IWRM) approaches are: the 

administration for the River Delta in Iran, and the Nile River in Egypt, where national 

water resource management plans have successfully implemented an integrated 

approach from 2005 to 2007. Table 2 shows examples of integrated management 

schemes together with their relevance to the present research.  

Table 2 Examples of integrated water management approach 

Author Description Contribution 

McFarlane D.J., 
(2005) 

Integrated Water Supply Scheme (IWSS) is a demand-
supply approach applied in three Australian case 
studies with specific water stress.  Includes a water 
conservation optional system through behavioral 
changes. 

Methodology used to: 1)  
identifying the gaps (direct and 
indirect factors influencing water 
demand); 2) the options, and 3) 
selection of options 

Bueno et al., (2006) Water Demand Management (WDM) approach 
reducing water withdrawals or consumption to 
protect or enhance water quality, by increasing both 
supply capacity and storage capacity 

It served as a guide for the analysis 
of water engineering interventions 

Brandes O.M., 
(2007) 
  

Water soft path planning (WSPP) also known as “Back 
of the envelope” attempts to achieve a more 
comprehensive integrated scenario-based approach. It 
was applied in Canada with a Back-casting Framework 
(BEBF) at multi-scale scenario 

Back-casting technique used to 
optimize a desired future (i.e. 
increase water metering, pollution-
fee policy, incentives for  water use 
reduction) 

Turner, (2008); 
Turner et al., 
(2010) 

Integrated Resource Planning (IRP) for urban water 
resources in Australia to reduce water stress due to 
climate change, analyzing demand and supply options. 
It includes five steps: 1. Data collection; 2. Demand 
forecasting; 3. Optional analysis; 4. Implementation; 
and 5. Program evaluation. 

This methodology served to 
develop: 1) Overall process; 2) 
Current situation (baseline); 3) 
Developing interventions; 4) 
Implementing interventions; 5) 
Monitoring results.  

Pahl-Wostl, (2009) Adaptive Integrated Water Resources Management 
(AIWM), an interdisciplinary water management 
project based on complex socio-ecological system in 
line with the Water Framework Directives 

Methodology used on the 
modelling process by testing and 
improving interventions 

Jefferies and Duffy, 
(2011) 

Decentralized Systems (DS) are designed to look all 7 
components of management within the water cycle to 
optimize its management: 1) storm-water 
management 2) water conservation measurements 3) 
treatment for potable and not potable uses 4) energy 
recovery 5) nutrient recovery 6) source separation, 
and 7) landscape  

The seven components were 
considered together with the multi-
stakeholders approach for the 
inclusion of socioeconomic 
activities and the corresponding 
authorities in the model 

Australian 
Government, 
(2011) 

Integrated Resource Planning with Sustainability 
(IRPS) assessment for Urban Water Project with 
broader understanding of urban water demand 
analysis known as demand forecasting 

Water demand forecasting was 
used to estimate flows from 
different users and to identify main 
pollutant sources  
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To summarise, both approaches offer advantages and disadvantages, which are 

presented in Table 3, and the decision of using one among the other relies mainly on 

the specific water management issues faced. The major advantage of the approach 

taken in this thesis is the combination of the sustainable and integrated approach, 

providing a broader view of the particular scenario under study and facilitating decision 

making to tackle specific concerns. In particular, the unified approach proposed in this 

research aims to help decision makers to tackle public health concerns. 

Table 3 Advantages and disadvantages of sustainable and integrated approaches  
Author Advantages/Disadvantages Improvement of SIWM Model 

Sustainable approach 
San Martin, 
(2002) 

Adv. Water is treated as both 
environmental and economic resource, 
considering all sustainability pillars. 
Disadv. Limitation to current water 
management issues  

The present model identifies potential 
engineering interventions and allows 
to forecast future water management 
issues  

Santana-Medina 
et al., (2013) Adv. The participatory approach allows a 

holistic identification of local sustainability 
indicators. Disadv. Subjective evaluation 
of indicators by participants, not 
essentially objective 

Inclusion of all stakeholders of the 
water management provides a 
qualitative basis for sustainable 
development, but in addition, 
decisions will be based on quantitative 
considerations using the SIWMM 

Howe et al., 
(2012) 

Adv. Creates stakeholder platforms to 
solve local problems by sustainability-
oriented solutions. Disadv.  Lacking 
synchronisation between project stages  

Synchronisation between project 
stages is facilitated by the integrated 
approach and the extended modelling 
time scale of the SIWMM 

Brandes, (2003) Adv. Demand-site management rather 
than increases in water supply capacity 
was used. Disadv. This approach focuses 
on urban water demands whereas in 
many developing countries the major 
water-user is agriculture  

This soft-path approach for sustainable 
water management at urban level was 
extended in the present research by 
integrating both urban and rural areas 
for a more holistic solution 

Integrated approach 
McFarlane D.J., 
(2005) 

Adv. Allows a consistent comparison 
between water supply and demand 
management options. Disadv. 
Sustainability issues remain to be 
implemented 

SIWMM combines sustainable and 
integrated approaches to enhance 
decision support 

KayagaBueno et 
al., (2006) 

Adv. Water supply and demand have a 
common metric for strategic planning 
Disadv. Fully relies in stakeholders 
participation, and limited number of 
available data for decision making  

Lack of data compensated by 
estimating non-available data, using 
suitable literature and local databases 
(over a 20 years time period) 

Brandes O.M., 
(2007) 

Adv. It looks at three levels to compare 
future scenarios with back casting. Disadv. 
Scenarios analysis is based on water 
reduction assumptions, taking water-use 
of a specific household type as basis for 
these calculations 

The present thesis integrates a 
broader variety of water-users from 
urban and rural areas for a more 
comprehensive description of the real 
scenario 

Turner et al., 
(2006), (2010)  

Adv. It equally considers demand and 
supply-side options to close the supply-
demand gap. Disadv. Mainly based on 
accurate demand forecasting which 
requires highly skilled users; does not 
consider adaptations  

Application of the SIWMM does not 
require advanced knowledge. The 
model is flexible and allows 
adaptations, relating for instance 
demand forecast even in extreme 
situations 
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Pahl-Wostl, 
(2009) 

Adv. Water management adaptations are 
considered within the complexity of the 
water system, with indirect consideration 
of sustainability. Disadv. Approach is at 
the local level; extension to regional levels 
would require modifications of the model 
framework   

SIWMM provides a holistic approach 
on regional scale, considering 
management policies in line with 
national and international regulations, 
for present and future water 
management policy options  

Jefferies and 
Duffy, (2011) 

Adv. It tackles long-term issues 
considering the complex water system. 
Disadv. Main focus is improving urban 
water systems and solutions are based on 
cases studies that might not be 
generalizable 

SIWMM incorporates various groups 
of stakeholders within the 8 different 
socio-economic sectors of the water 
system. 

Australian 
Government, 
(2011) 

Adv. It considers reduced demand and 
increased supply, including alternative 
sources to overcome increases in demand 
and to enhance supply-demand balance. 
Disadv. The focus is on urban systems to 
optimize water management; 
sustainability and cost-effectiveness 
analysis remain to be implemented 

SIWMM includes sustainability 
assessment and cost-benefit analysis 
as part of the model framework  

In terms of water management, the aim of this research is the development of a model 

capturing water-human interactions that considers local factors affecting water flow 

such as rainfall and recharge, and current water management practices, such as 

wastewater treatment infrastructure and level of treatment in water supply systems. In 

particular, challenges related to water management in Latin American countries were 

documented by Anton, (1993) as follows:  

- Lack of financial resources: inadequate investment and maintenance of existing 

water supply networks; inadequate investment in water and sewage treatment in 

spite of increasing risk of contamination; less investment in replacement of obsolete 

systems and expansion of networks; increased water services cost due to 

elimination of subsidies. 

- Structural adjustment and the need for self-financing: reduced expenditure on water 

management, supply and sanitation; poorest with no water access due to increased 

connection cost or discontinued services due to lack of payment. 

- Population growth: as consequence of a decrease in death rates during most of the 

20th century, and birth rates remains high, global population is still increasing. Even 

though birth rates in urban areas have decreased during last decades, water needs 

has increased due to urbanization and increasing per capita demand. 

- Inadequate protection of water resources: hydrological catchment systems and 

recharge areas affected by unregulated water abstractions and wastewater 

discharges. 

- Lack of knowledge of existing resources: inaccurate information for long-term 

decisions in urban water supply, such as types of local water resources, available 
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volumes, water renewal, vulnerability to contamination, and measures to develop, 

manage and protect water resources. 

- Inadequate water resources management: limited operational management due to 

lack of qualified technical personnel, lack of coordination between decision-makers 

and technical experts, lack of comprehensive analysis of management practices. 

- Wasteful practices: inappropriate consumption practices, lack of awareness of 

water value and water-saving technologies, pricing policies which do not promote 

conservation, lack in metering. 

- Inefficiency, politics, and bureaucracy in water management: shortage of financial 

resources in water institutions often related to large amounts of money spent on 

salaries for politicians shifted to administrative charges in the water sector. Growth 

on administrative personnel is often paralleled by shrinking of technical personnel, 

with shortage of money for the latter.  

- Corruption: water companies collect large amounts of money which they report for 

purchasing expensive materials which in fact are “commissions” to suppliers to 

profit from their administrative position in the public water company. In addition, 

ambiguous procedures for new household connections or maintenance promote 

the use of bribes to speed up the process. 

- Shortage of trained professionals: as a consequence of shortage in salaries, 

experienced professionals prefer to leave water companies, lack of professional 

training due to low salaries and insufficient incentives.    

Consideration of these challenges helped to inform the design of water management 

interventions for the case study of this research, in which public health improvements 

could be achieved by protecting water supply sources and considering the most cost-

benefit strategy. 

2.1.3. Groundwater management 
Globally, groundwater is the largest available reservoir of water on Earth. 65% of 

groundwater abstracted is used for drinking purposes, 20% for irrigation and livestock, 

and 15% for industry and mining (Zektser and Everett, 2006). Millions of people in 

urban areas depend on groundwater as their principal source of drinking water. For 

example, in urban Nigeria almost 60% of the population use local wells. 
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Figure 3 Urban water cycle. Source Marsalek et al., (2006) 
 

Even though many countries rely on groundwater as the only drinking water source 

(Kabo-bah et al., 2014), Figure 3 shows variety of anthropogenic activities within urban 

areas that strongly affect groundwater systems (Marsalek et al., 2006). Thus, it is 

important to establish adequate treatment for wastewater and drinking water supply 

(Saleem et al., 2011; James and Martha, 2002; Bolger and Stevens, 1999). An 

example in this respect is the European Water Framework Directive (WFD), which has 

set groundwater quality standards that cope with up to date emergent pollutants 

identified (Zwahlen, 2003; Nalecz, 2011; UNESCO-IHP, 2006).  

Figure 4 The role of public administration to facilitate groundwater management. Source: Nanni et al., 
(2003) 

Moreover, sustainable groundwater management is not clearly or noticeably 

appreciated in city planning and decision-making because some countries consider 

groundwater as a hidden (and free) resource, hence it is barely or not accounted for at 
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all in national statistics (Grönwall, 2010). Consequently, it is common to underestimate 

groundwater consumption as many indirect groundwater uses are barely identified 

(Hernandez et al., 1995; Grönwall, 2010).  
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Resource Assessment 
• Describe local hydrogeology in regional context with simplified maps and representative 

profiles 
• Calculate aquifer water balances, including surface water interactions 
• Appraise hydrogeological uncertainty and groundwater-level historical trends 
• Describe links to surface water and wastewater as potential resource and threat (Briefing 

Note 12) 
Quality Characteristics 

• Assess annual quality variations(Briefing Note 14) and presence of brackish/saline 
groundwater 

• Evaluate evidence for extent and possible causes of current pollution 
• Assess potential pollution risks from land use & aquifer pollution vulnerability (Briefing Note 8) 

Required Services 
• Discuss alternative socioeconomic scenarios with political leaders and water users 
• Predict future demands over planning period (10 or more years) 
• Assess aquifer target yields, allowing for environmental discharges 
• Draft options for aquifer stabilization or rational mining with exit strategy (Briefing Note 11) 
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Institutional Provisions 
• Appraise legal framework, customary arrangements and water permit system (Briefing Notes 

4 & 5) 
• Assess responsibilities of all relevant organizations 
• Identify groundwater allocation criteria and priorities 
• Review resource-fee policy and enforcement 

Water Allocation & Usage 
• Summarize current position by sector graphs of historical trends in water use 
• Establish water-user profiles and water well inventory 

Monitoring Networks 
• Status of abstraction metering and estimation 
• Status of wastewater discharges affecting groundwater 
• Arrangements for aquifer water level and water quality monitoring 

Institutional Capacity 
• Assess ‘enforceability’ of water, land use and environmental law 
• Scope of user and other key stakeholder participation 
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Economic Analyses 
• Estimate groundwater economic value (Briefing Note 7) 
• Assess feasibility of implementing direct and/or indirect groundwater pricing 
• Assess consequences of modifying macro-economic policies 
• Undertake systematic cost-benefit analysis of short listed options 

Definition of Options 
• Describe management options to achieve stated aquifer services (Briefing Note 3) 
• Consider conjunctive use and compare demand management options to supply-side 

augmentation 
• Appraise need to integrate groundwater and Surface water planning 
• Conclude on preferred option to pursue 
• Identify key tasks, responsible institutions, financial needs and implementation timetable 
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User/Stakeholder Participation 
• Appraise improvements in user/stakeholder participation required (Briefing Note 6) 
• Define action plan for their engagement 
• Prepare program for training, communication & publicity 

Monitoring & Review Requirements 
• Define improvements in monitoring needed for new management plan (Briefing Note 9) 
• Install improved management monitoring network 
• Propose timetable and process for internal/external evaluation of plan effectiveness 

 

Figure 5 Checklist for the elaboration of groundwater management plans, from the World Bank. 
Source: Garduno et al., (2006) 
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Worldwide increased use of groundwater at the urban level has been common in 

recent years. This has cause sinking water tables as the aquifers have become 

overexploited. Abstraction rates compromise feasibility of aquifer recharge, by 

concentrating pollutants in reduced aquifer volumes (Kabo-bah et al., 2014). In order to 

avoid the incremental growth of groundwater contamination and the depletion of water 

table, public water administration should ideally be based on recommendations such as 

those made by the World (Figure 4) (Nanni et al., 2003). 

To illustrate this we can consider some of the issues documented by Febles and 

Hoogesteijin, (2008) in the management of the aquifer underneath of the Metropolitan 

Area of Merida in Yucatan, these are: the lack of control of water pollutants, volumes of 

water abstracted and water quality of all types of wastewater discharged.  

Following the checklist actions from the World Bank shown in Figure 5, a starting point 

could be the development of a framework of main and potential pollutant sources, 

taking into account current scenarios, as described in Chapters 4 and 5. Groundwater 

pollutants and their relations to public health are described in the following sections. 

2.1.4. Groundwater critical hazards 
Groundwater is contaminated by different sources such as acid rain, farming activities, 

contiguous aquifers or surface-water bodies with high concentrations of pollutants. 

Some of the major groundwater pollutants of human health concern are pathogenic 

bacteria and nitrate originated from human activities and animal waste; also heavy 

metals such as lead and copper from household corroded plumbing or from mining and 

construction activities.  

For instance, a major source of nitrate is the spread of fertilizers used in agriculture 

(Akinyemi et al., 2014; USEPA, 2012b; Siarkos et al., 2014). Anton, (1993) has 

reported high concentration of nitrate in groundwater beneath agricultural areas, 

explained as a consequence of intensified fertilizer use since 1960’s, and documented 

a list of main sources of urban and rural pollutants (Table 4).  

Nonetheless, groundwater has also a natural attenuation capacity to reduce pollutants. 

For instance, discharges from domestic sources accumulate disease-causing agents 

(i.e. faecal coliforms) that could be removed rapidly because of the filtering capacity of 

the aquifer. Although, such capacity depends on the aquifer geological formation, while 

some are very effective (silty sandstone) others not, such as karstic aquifers with more 

permeable structure that allows contaminants to move quickly through the aquifer 

conduits.  
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Table 4 Sources and potential groundwater contaminants 
Source Potential contaminants 
Accidental spills Various inorganic and organic chemicals 
Acid rain Oxides of sulphur (SOx) and nitrogen (NOx) 
Agricultural activity Fertilizers, pesticides, herbicides, and fumigants 
Animal feedlots Organic matter, nitrogen, and phosphorus 
De-icing of roads Chlorides, sodium, and calcium 
Deep-well injection of 
waste 

Inorganic and organic compounds, radioactive materials, 
and radionuclides 

Hazardous waste disposal 
sites 

Variety of inorganic and organic compounds (i.e. 
pesticides) 

Industrial-liquid-waste 
storage ponds and lagoons 

Heavy metals and various cleaning solvents and 
degreasing compounds 

Landfills, industrial Wide variety of inorganic and organic compounds 
Landfills, municipal Gases, organic and inorganic compounds (i.e. chlorides) 
Land disposal of liquid and 
semisolid industrial waste 

Organic compounds, heavy metals, and various cleaning 
solvents and degreasers 

Industrial wastes leakage Petroleum and derivate, toxic metals 
Land disposal of municipal 
wastewater and waste 

Organic and inorganic compounds (i.e. ddetergents and 
solvents), and pathogenic microbial, etc. 

Mining Minerals and acid mine drainage 
Rainfall Chloride, sulphate, organic compounds, etc. 
Saltwater intrusion Inorganic salts 
Septic tank leaching fields  Organic matter, nitrogen, phosphorous, bacteria, etc. 
Storage tanks, 
underground 

Organic cleaning and degreasing compounds, petroleum 
products, and other hazardous wastes 

Source: Adapted from Anton (1993); Bear and Verruijit (1987), Tchobanoglous and Schroeder, (1987); 
Ritter et al., (2002); Drew and Hotzl, (1999). 

Furthermore, contamination due to overexploitation to supply urban and rural activities 

are increasing (Rodes et al., 1998). For instance, in 2012 in the United States an 

increasing number of groundwater sites (>120,000) do not meet the drinking water 

standards. Estimated costs for reaching the standards are 110 - 127 billion USD 

because of expensive treatment processes (Program and Council, 2012).   

In Europe, three conventions are relevant to groundwater management: the UNECE 

Water Convention (Convention of the Protection and Use of Trans boundary 

Watercourses and International Lakes), the Convention on Biodiversity (CBD), and the 

UN Framework Convention on Climate Change (UNFCCC). Examples of groundwater 

projects undertaken in line with these conventions are: the groundwater monitoring 

system in Minsk Belarus 2007, and technical aspects of groundwater monitoring in 

Ukraine 2008, which generated valuable field data (Nalecz, 2011). Particularly, the 

INTERREG III C project from the Western Bug River Basin, identified that the critical 

water pollutant sources across Ukraine and Poland were industrial plants and 

uncontrolled sewage discharges (Nalecz, 2011).  

From a political perspective, it is necessary to take into account the lack of regulation 

related to the discharge of wastewater into groundwater resources, which may be 

difficult to achieve due to the “hidden” character of groundwater resources.  
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2.1.5. Karstic aquifer 
Karstic aquifers supply drinking water to 25% of global population (Leibundgut, 1998; 

Pulido-Bosch, 1999). A conceptual model to represent karstic aquifers was developed 

by the European Commission in 1995 (Figure 6).    

 

 

 

 

 

 

 

 

 

Karstic aquifers have been defined as ‘those that contain dissolution-generated 

conduits that permit rapid transport of groundwater, often in turbulent flow’ (Beck et al., 

1999).  For instance, karst term in the MAM case study describes the limestone nature 

of the aquifer where the water body is composes mainly of soluble rock that conduct 

water principally through porosity media formed by the dissolution of the rock. These 

are characterized by (European Commission, 1995): 

• Absence of permanent surface flow, and presence of shallow holes and closed 

depressions 

• Presence of caves and large underground passages 

• Existence of large springs frequently located at the base of the carbonate 

sequence 

Karstification is a process starting with the rainwater that becomes acid in contact with 

carbon dioxide in the atmosphere and the soil. Then it drains into the fractured rock of 

the aquifer creating a network of channels and fissures continuously eroding and 

enlarging these channels. As it drains, it transport larger amount of water together with 

pollutants present (Gunn, 2004). 

Intrinsic properties used to describe karstic aquifer are: porosity, permeability and 

hydraulic conductivity. Porosity is expressed as a percentage of ‘the ratio of the volume 

of voids in the rock mass to the total bulk volume’. Permeability depends on hydraulic 

Figure 6 Conceptual model of a karstic aquifer. Source: European Commission, (1995) 
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conductivity which is expressed as the rate at which a volume of fluid can pass through 

a cross-sectional area of rock in units of length per unit of time (Beck et al., 1999; 

Waltham, 2013). Thus, such easy infiltration could lead to public health threats due to 

waterborne diseases as discussed below. 

2.2. Engineering interventions 
Engineering interventions are defined here as the actions taken in the water sector 

related to the improvement of water and wastewater treatment and management in 

order to improve the overall impact in population’s health. Mara, (2006) is one of the 

pioneers to develop engineering interventions related to water supply, sanitation and 

hygiene for the developing world. One clear example in WASH engineering 

interventions was the condominium sewerage, an off-site system of lower cost  

compared to conventional supply ($19/connection vs $88/connection), created to 

provide adequate water supply and sanitation to urban and high-density peri-urban 

areas (Mara, 2008; Mara, 2009). The main aim of those engineering interventions was 

to slow down the diarrhoea disease incidence (DDI), specially for the 0-4 years age-

group, which is  of major concern in developing countries (DDI= 2.4-5.2). 

According to Harvey et al., (2002), in order to determine the most appropriate 

engineering interventions for wastewater management, the following factors must be 

considered: 

o Ground conditions 

o Groundwater level 

o Topography 

o Location and type of  water sources 

o Quantity and quality of wastewater generated 

o Climate conditions 

o Socio-cultural conditions 

A report from the European Commission distinguishes a variety of engineering 

interventions based on the “typical response interventions” as illustrated in Table 5 

(European Commission, 2005).  

According to Table 5 most of the engineering interventions in the present research are 

classified as water and environmental sanitation interventions because they focus on 

the improvement or development of water and wastewater infrastructure to improve the 

management of the water supply system.  

More specifically, engineering interventions for preventing diarrhoea have also been 

reviewed by Clasen et al., (2007) concluding that interventions at household level are 
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more effective to prevent diarrhoea than interventions at water source level. Thus, the 

selection of interventions in this thesis would be considered at household level.  

Table 5 Examples of engineering interventions in the water sector 
Water 

• Development of new or expansion of 
existing water systems 

• Provision of items to host communities or 
water institutions 

• Water resources assessments • Water tankering 
• Expansion and/or improvement of 

the water system 
• Redirection of supplies to drinking water 

Environmental Sanitation 
• Sanitary assessment • Expansion of existing sanitary systems 
• Implementation and improve 

facilities at water points 
• Construction of temporary toilet and other 

sanitary facilities 
• Construct private toilet/latrine 

facilities 
• Distribution of sanitary kits 

• Implement other sanitation facilities • Vector control 
Source: Modified from European Commission,( 2005) 

2.3. Water and public health  
Human health has been affected along the years by pollutants released in the 

environment. One of the most relevant interconnections between environmental 

pollutants and public health is in terms of water quality, a vital element for every society 

which has been changed over time due to traditional and modern anthropogenic 

activities. Therefore, establishing adequate water quality and public health monitoring 

data is fundamental to prevent and control present and future water-related diseases 

(Briggs, 2003; Fawell and Nieuwenhuijsen, 2003).  

Water quality is interconnected with the public health status of the supplied area. For 

example, in the U.S. alone, more than 80 percent of antibiotics produced are used in 

livestock activities for pigs, cows, chicken, and turkeys. In terms of wastewater 

generated from livestock, the U.S. Food and Drug Administration (FDA) recognized 

misuse and overuse of antibiotics in a wide range of livestock activities. These issues 

have created a specter of untreatable infections due to superbugs, which are defined 

as antibiotic-resistant bacteria capable of infecting people. The amount of these 

antibiotics released in wastewater is difficult to quantify considering the massive 

livestock production not only in the U.S. but worldwide (Kar Avinash, 2011). 

Historical evidences of water-related disease outbreaks have been documented 

worldwide. Bitton, (2010) classified 502 causes of disease outbreaks from 1971 to 

1985 into four categories. Category 1 (49%): untreated or inadequately disinfected 

groundwater; Category 2 (24%): untreated or inadequate disinfected or filtered surface 

water; Category 3 (16%): due to distribution or storage deficiencies; and Category 4 

(11%): represents miscellaneous. Even though, dirty water kills people, especially 

children not only in outbreaks but in everyday life.    
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2.3.1. Drinking water contaminants 
Mexico drinking water regulations shown in Table 6 are based on the USEPA (U.S. 

Environmental Protection Agency) in line with the Maximum Contaminant Level (MCL) 

set by WHO.  

USEPA has set primary and secondary drinking water regulations (NPDWR or primary 

standards and NSDWR or secondary standards). In general, primary standards are 

legally enforceable while secondary standards are not.  

Nevertheless, in Mexico only those in Table 6 are officially regulated; of special 

concern is microbial control which is regulated by a single indicator: faecal coliforms 

(full list -Appendix A). Pollutants can be classified in two main groups: chemical and 

biological, which are discussed in the following section, along with emergent pollutants 

that comprise current pollutants of major concern worldwide.  

Chemical pollutants. Some sources of chemical pollutants in water are: natural 

occurrence, and anthropogenic activities such as industrial, agricultural and livestock 

production. It is challenging to monitor the broad variety of pollutants discharged from 

all sources, thus some pollutants of major occurrence and significant health and/or 

environmental impacts have been selected as chemical indicators (Table 7).   

Biological pollutants. Current WHO guidelines for drinking-water quality (fourth 

edition, 2011), classified 29 pathogens transmitted through drinking-water supply into 

four categories: 19 bacteria, 8 viruses, 11 protozoa, and 4 helminthes (Table 8).  

Major pathogenic bacteria and protozoa transmitted through water are listed in Table 9 

shows a list of pathogenic microbial, with transmission routes, symptoms and diseases.  

The use of faecal coliform as microbial indicator for monitoring water quality has been 

widely promoted by national and international authorities. In particular E. coli, which 

accounts for up to 97% of total coliforms is used for different purposes (Dufour, 1997; 

Allen and Edberg, 1995). It assumes absence of similar organisms as the indicator 

used (WHO, 2011). 
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Table 6 Maximum Contaminant Levels (MCL) for drinking water  
Pollutant Type* Unit USEPA EU WHO Mexico 

Microorganisms 
Total Coliforms  1 % ≤5   0 
Faecal coliform (E. Coli) 1     0 
Turbidity 1 NTU ≤5   5 

Disinfection Byproducts 
Total Trihalomethanes (TTHMS) 2  µg/l 80 10 1 200 

Disinfectants 
Chlorine as CL2 1 µg/l 4000  5000 200-1500 
Chloride 2 mg/l 250 250  250 

Chemicals 
Aluminum 2 mg/l 0.05-.2 2  2 
Ammonium  µg/l  500  500 
Arsenic 1 µg/l 10 10 10 50 
Barium 1 mg/l 2  0.7 0.7 
Cadmium 1 µg/l 5 5 3 5 
Chromium (total) 1 µg/l 100 50 50 50 
Copper 2 mg/l 1 2 2 2 
Cyanide (as free cyanide) 1 µg/l 200 50 70 70 
Fluoride 2 mg/l 2 1.5 1.5 1.5 
Iron 2 mg/l 0.3 0.2  0.3 
Lead 1 µg/l 15 10 10 25 
Manganese 2 mg/l 0.05 0.05 0.4 0.15 
Mercury 1 µg/l 2 1 1 1 
Nitrate (as Nitrogen) 1 mg/l 10 501 501 10 
Nitrite (as Nitrogen) 1 mg/l 1 50 20 50 
Silver 2 mg/l 0.1    
Sodium 1 µg/l  200,000  200,000 
Sulfate 2 mg/l 250    
Zinc 2 mg/L 5   5 
Aldrin and dieldrin4 1 µg/l   0.03 30 
Chlordane4 1 µg/l 2  0.2 300 
2,4-D (Dichlorophenoxy acetic acid) 1 µg/l 70 30  50,000 
DDT (Dichlorodiphenyl 
trichloroethane) 

 µg/l  1  1000 

Heptachlor epoxide 1 µg/l 0.2   300 
Hexachlorobenzene 1 µg/l 1   10 
Lindane4  1 µg/l 0.2  2 2000 
Metoxichlorine  mg/l    20 
Phenol   µg/l    1 

Radionuclides 
Alpha particles 1 pCi/l 15   0.13 
Beta particles and photon  1 mRem/l 4   13 

Others 
Color 2 units 15   20 
Hardness (CaCO3)  µg/l    500,000 
Foaming Agents 2 mg/l 0.5   0.5 
Odor 2 Unit 3   good 
pH 2 Unit 6.5-8.5   6.5-8.5 
Total Dissolved Solids 2 mg/l 500   1000 
1as nitrate; 2The sum of benzo(b)fluoranthene, benzo(k)fluranthene, benzo(g,h,l) perylene, and 
indenol(1,2,3-cd)pyrene; 3unit in Bq/l; 4pesticides. *Type refers to primary (1) or secondary (2) standard. 
Source: USEPA, (2009); WHO, (2011); NOM-127-SSA-1994; Sullivan et al., (2005). 
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Table 7 Chemical pollutant indicators for water quality monitoring 
Pollutant Origin Human/environmental impact 
Nitrate (NO3) Fertilizers, human and animal wastes Wastewater from livestock, agriculture, 

domestic urban and rural (septic tanks, 
landfills), and industries  

Phosphorus Fertilizers, detergents Eutrophication 
Nitrogen As nitrite and nitrate: runoff from 

fertilizer use; leaching from septic tanks; 
sewage; erosion of natural deposits 

Infants <6 months who drink water with 
nitrate above MCL* (10 mg/L) could 
become seriously ill and, if untreated, may 
die. Symptoms include shortness of 
breath and blue-baby syndrome 

Fluorides Additive for strong teeth; erosion of 
natural deposits; discharge from 
fertilizer and aluminum factories 

Bone disease (pain and tenderness of the 
bones); children may get mottled teeth 

Pesticides Runoff from agriculture  Cardiovascular system or reproductive 
system problems 

Lead (Pb) Corrosion of households plumbing 
systems; erosion of natural deposits 

Children: delays in physical or mental 
development; deficits in attention; adults: 
kidney problems; high blood pressure 

Cadmium 
(Cd) 

Corrosion of galvanized pipes; natural 
deposits erosion; metal refineries 
discharge; batteries and paints runoff 

Kidney damage 

Copper (Cu) Corrosion of household plumbing 
systems; erosion of natural deposits 

Short-term: gastrointestinal distress. 
Long-term: liver or kidney damage 

Chromium 
(Cr) 

Discharge from steel and pulp  mills; 
erosion of natural deposits 

Allergic dermatitis 

Nickel (Ni) Production of stainless steel and nickel 
alloys. Naturally occurs in groundwater. 

Nickel allergy. Inhaled nickel compounds 
are carcinogenic to human. 

Mercury (Hg) Erosion of natural deposits; refineries 
and factories discharges; runoff f 

Kidney damage 

Source: Adapted from USEPA, (2009); Avalos, (2009).  

Table 8 Waterborne pathogens transmitted through water 
Type of 
pathogen 

Pathogen Human 
risk 

Pathogen Human 
risk 

Bacteria Acinetobacter High Leptospira High 
 Aeromonas High Mycobacteria Low 
 Pseudomona aeruginosa High Bacillus High 
 Burkholderia pseudomallei High Salmonella High 
 Campylobacter High Shigella High 

 Enterobacter sakazakii  High Staphylococcus aureus High 
 Escherichia coli – 

Pathogenic  
High Tsukamurella High 

 Helicobacter pylori High Vibrio cholerae High 
 Klebsiella High Yersinia High 
 Legionella  High   

Viruses Adenoviruses Moderate Hepatitis A and B viruses High 
 Astroviruses Moderate Orthoreoviruses High 
 Caliciviruses Moderate Rotaviruses High 
 Enteroviruses High Entamoeba histolytica High 

Protozoa Acanthamoeba High Giardia intestinalis High 
 Balantidium coli High  Isospora belli High 
 Blastocystis High Microsporidia High  

 Cryptosporidium High Naegleria fowleri High 
 Cyclospora cayetanensis High Toxoplasma gondii High  

Helminths Dracunculus medinensis High Fasciola spp. High 
 Free-living nematodes High Schistosoma spp. High 
Source: Adapted from WHO, (2011); Jimenez, (2008) 
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Table 9 List of pathogenic bacteria and protozoan, transmission route, and symptoms 
Pathogen Symptoms/transmission of infection Illness 

Bacteria 
Escherichia coli Diarrhoea, hemolytic uremic syndrome, 

vomiting. 
Intestinal infections,  
gastroenteritis 

Campylobacter jejuni Diarrhoea, vomiting, fever, muscle pain, 
Guillain-Barre syndrome 

Campylobacteriosis. Diarrhoea  

Yersinia enterolitica Fever, abdominal pain, dysentery Yersinosis, diarrhoea 
Salmonella typhi Acute gastroenteritis with diarrhoea, 

abdominal cramps, fever, nausea, vomit, 
headaches and, in severe cases, death 

Salmonellosis or typhoid fever  

Shigella Acute gastroenteritis with diarrhoea, 
abdominal pain, migraine and faeces with 
blood and mucous infectious 

Bacillary shigellosis or 
dysentery; more virulent in old 
people and children   

Mycobacterium 
tuberculosis  

Cause diseases in people who swim in 
contaminated water 

Gastrointestinal alterations 

Vibrio cholerae Usually affects children, causes liquid 
diarrhoea with hydro electrolytic losses and 
severe dehydration, and vomiting 

Gastroenteritis by ingestion of 
polluted water or irrigation 

Helicobacter pylori Transmission not well-known; possible by 
unsanitary conditions and polluted food.  

Gastritis, duodenal ulcer, 
carcinoma, diarrhoea 

Legionella 
pneumophila 

Acute respiratory illness Legionellosis 

Leptospira  Jaundice, fever (Well’s disease) Leptospirosis  
Protozoan 

Enterocytozoon 
bieneusi 

Diarrhoea, malabsorption Enterocytozoon bieneusi 
diarrhoea 

Balantidium coli Diarrhoea, dysentery Balantidiasis 
 Watery diarrhoea Isospora belli diarrhoea 
Entamoeba histolytica Gas, abdominal pain, fever, invade the 

large intestine.  
Amoebiasis, (amoebic 
dysentery); hepatic dysentery.   

Naegleria fowleri Fatal disease; inflammation of the brain Amoebic meningoencephallitis 
Cryptosporidium Diarrhoea, stomach cramps, nausea, 

dehydration and headaches. 
Cryptosporidiosis Infective dose 
is 1-10 cysts.  

Giardia lamblia Very liquid, odorous and explosive 
diarrhoea, and loss of appetite 

Giardiasis, particularly affects 
undernourished children  

Ascaris Persistent cough, wheezing, nausea, vomit, 
abdominal pain, and diarrhoea  

Ascariasis 

Hymenolepis  Diarrhoea, itching, loss of appetite Hymenolepiasis 
Viral 

Hepatitis A  Fever, nausea, diarrhoea, inflammation of 
liver, necrosis, sclera icterus 

Hepatitis A; Hepatitis E 

Enterovirus (67 types) Heart anomalies, meningitis Gastroenteritis 
Poliovirus Weakness, muscle pain, fatigue Poliomyelitis 
Rotavirus Vomiting, diarrhoea, fever, dehydration Diarrhoea, gastroenteritis 
Adenovirus (31 to 51 
types) 

Stomach and intestines inflammation, 
watery diarrhoea, vomiting, and fever 

Adenoviral diarrhoea 

Reovirus Vomiting, diarrhoea Gastroenteritis 
Source: Marsalek et al., (2006) based on – for bacteria: Craun, (1988); Sansonetti, (1991); Thomas et al., (1992); 
Hopkins et al., (1993), Lima and Lima, (1993); Nachamkin, (1993); Jawetz et al., (1996); Johnson et al., (1997); - for 
protozoan: Salas et al., (1990); Gray, (1994); Goldstein et al., (1996); Tellez et al., (1997); WHO, (1997); Cifuentes et 
al., (2002); USEPA, (2010);  Jimenez, (2008)based on California Department of Health and Cooper, (1975); Asano et 
al., (1998); Kadleck & Knight, (1995). 
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Emergent pollutants. These are defined as a broad set of synthetic or naturally 

occurring chemicals or microorganisms of increasing concern, which are not commonly 

monitored and may be harmful to human health and the ecosystem (Survey, 2013). 

Examples of emergent pollutants are: 

- Heavy metals that remain unchanged for years and thus may pose a threat to both 

human health and the ecosystem.  

- Endocrine Disruptors (EDs). Since 2012 there is a list of 435 endocrine disrupter 

priority substances of adverse health effects and of environmental concern 

(Petersen G., 2007).   

- Methyl tert-butyl ether (MTBE). The use of MTBE-oxygenated gasoline poses an 

imminent threat to public health because it dissolves easily in water, infiltrating 

faster in the ground than other gasoline components. Data support the conclusion 

that MTBE is a potential human carcinogen at doses higher than 20-40 ppb. 

- Diethylhexyl-phthalate (DEPH). Mainly used as additive in plastics for flexibility 

purposes, therefore it has widespread use in industry, consumer and medical 

products. DEHP is well absorbed by the body when swallowed or breathed in. 

Some health effects in animals are kidney adverse effects, impacting male sexual 

development, and causing tumors.  

2.3.2. Transmission of water-related diseases 
Transmission routes for water-related diseases include gastro-oral, oral-oral, 

breastfeeding, and faecal-oral. Most water-related diseases such as diarrhoea is 

mainly transmitted through faecal-oral route shown in Figure 7, which has been further 

differentiated as the 5F’s by (Mara et al., 2010) in Figure 8. Health impacts of these 

water related diseases can be measured through Quantitative Microbial Risks 

Assessment (QMRA), as discussed below. 

 

 

 

 

 

 

 

 
 

Figure 7 Faecal-oral transmission route. Source: Ezzati et al., (2004) 
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Figure 8 The 5F’s Faecal-oral transmission pathways. Source: Mara et al., (2010) 

2.3.3. QMRA 
QMRA stands for “Quantitative Microbiological Risk Assessment”. The first step to 

develop a QMRA is identifying the risk(s) through the collection of data. There are 

different data collection methods that could be implemented such as those used in 

previous studies, international guidelines, or field data collection. Commonly used 

parameters for risks identification are: access to water supply by service level, use of 

water sources, selection of water sources and households for testing quality and 

quantity data, sanitation condition, continuity, cost (affordability) and leakage. All these 

factors may be collected, to integrate all available data sources (official and non-

official) and all the stakeholders involved (Howard et al., 2006).   

According to the WHO guidelines for drinking water, it is important to consider a 

tolerable disease burden of ≤ 106 DALY (Disability Adjusted Life Year), which may be 

difficult to achieve for developing countries. There is a need of a better approach than a 

single value as a measure to evaluate risk acceptability. Besides, available dose-

response database is also needed in order to implement Quantitative Microbial Risk 

Assessment (QMRA) at a case study level (Drechsel et al., 2010). 

The 2006 WHO guidelines for wastewater reuse have established the method QMRA-

MC (Quantitative Microbial Risk Analyses-Monte Carlo simulations) as a more rigorous 

method to estimate annual infection risks. This method represents the daily variation in 

infection risk to determine the annual risk by repeated calculation through n-Monte 

Carlo simulations. Monte Carlo Analysis incorporated into the QMRA (QMRA-MC) has 

the advantage to calculate and include the worst case scenario into the risk 

assessment and is a useful tool for decision-makers and city planners. 

In general, Quantitative Microbiological Risk Assessment (QMRA) is divided into four 

main stages (WHO, 2011): 

1. Hazard Identification 
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2. Exposure Assessment 

3. Hazard characterization  

4. Risk Characterization  

In terms of chemical risks assessment, some models assess ecological risks from toxic 

chemicals in the environment (Bartell et al., 2003). Environmental Risk Assessment 

(ERA) is used to trace the environmental fate, human health effects, and ecological 

effects of different pollutants. ERA models aim to represent key ecological processes to 

quantify adverse effects of pollutants on organisms (Hunka et al., 2013; Schmolke et 

al., 2010a; Wang and Luttik, 2012; Forbes et al., 2011).  

For example, risk assessment for contaminated groundwater has been performed in 

Denmark by Troldborg, (2010). Results allowed the identification of pollutant sources 

and reveal the importance of local rather than regional or national conditions. 

2.4. Modelling contaminant concentrations in groundwater  
This research focuses on nitrate as a persistent (conservative) chemical indicator 

pollutant, and faecal coliforms as non-persistent (non-conservative) microbial indicator 

pollutant – both of relevance to groundwater quality, modelled with the MAM case 

study data.  

2.4.1. Nitrate  
Nitrate is a major persistent contaminant in groundwater. For instance, in the United 

States this is the number one drinking water contaminant.  Various models have been 

developed to describe and predict nitrate concentration in groundwater in relation to 

nitrogen input from agriculture and other anthropogenic activities in aquifer recharge 

zones. There is no general or widely applicable “nitrate model” available – modelling 

concept, input parameters and assumptions have to be adapted to local characteristics 

with respect to climatic conditions, aquifer hydrogeology, pollutant sources, population 

dynamics, etc.  

The generation and fate of nitrate in aquifers is affected by a number of factors which 

bring uncertainties to its simulation. In the specific case of karstic aquifers, nitrate 

modelling is often based on simplifying approaches that appear to be reasonable 

approximations (Bear and Verruijit, 1987; Pinder et al., 1993): 

- High vulnerability of karstic aquifers in combination with the shallow depth of the 

water table (such as in the MAM study area) justifies the assumption that any nitrogen 

applied to the surface may leach into the groundwater.  

- Nitrogen input from agriculture, livestock and other human activities is primarily in the 

form of organic and ammonia nitrogen. Conversion to nitrate depends on the efficiency 

of bacterial nitrification and is not easy to predict. In highly vulnerable, oxygen rich 
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karstic aquifers, organic N and ammonium N are effectively converted to nitrate. This is 

exemplified by nitrogen load modelling for the Barton Spring Zone, a karst aquifer in 

central Texas (Mahler et al., 2011). Over an observation period of 2.5 years, a balance 

between total nitrogen input by stream recharge and nitrogen load at discharge sites 

was found. However, the portion of organic ammonia N was high in recharge water and 

becomes rather low in deep water supply wells or at discharge sites, indicating 

extensive conversion to nitrate.  

- Nitrate does not show significant attenuation in porous karst limestone with conduit 

flow and easily reaches deeper sections of an aquifer. In a south-western Georgia 

(USA) karst aquifer, no correlation between nitrate concentration and sampling well 

depth at 0-80 m was observed (Katz et al., 2014). 

- Once formed in an oxygen rich karstic aquifer, nitrate is expected to persist for 

decades since bacterial denitrification is considered negligible under these conditions 

(Tesoriero et al., 2007). In line with this, nitrate levels may respond to interventions with 

a significant delay. Katz et al., (2014) have simulated for a south-western Georgia 

(USA) karst aquifer the scenario “no further N input from 2001” and found that flushing-

out of nitrate to half of its concentration takes several decades. A similar delay time is 

predicted by a numeric simulation of nitrate concentration 2008-2060 for a highly 

permeable basalt aquifer in south-central Idaho, USA (Skinner and Rupert, 2012). 

Considering the above, a simplified approach has been applied to nitrate modelling in 

the MAM groundwater; further details are described in Chapter 4.  

2.4.2. Faecal coliform 

Microbial contamination from livestock and domestic wastewater constitutes the most 

serious water quality problem in many areas of the world. Faecal coliforms are an 

example of a non-persistent pollutant, which is widely used as a biological indicator of 

water quality as described in section 2.2.1. In the modelling of transport and 

concentration of faecal coliforms in groundwater, two major differences to nitrate have 

to be considered: larger size (about 1 µM vs < 1nm for nitrate) and die-off (half-life 

typically a few days vs years or decades for nitrate). These principally increases the 

complexity of modelling approaches together to the filtering effects, which depends on 

soil type and pore size, and due to the significant influence of environmental 

parameters on microbial  lifetime (John and Rose, 2005). Thus, under the specific 

conditions of highly vulnerable karstic aquifers, various studies (including tracer tests) 

suggest relatively simple microbial transport behaviour (Pinder et al., 1993):  
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- Microbes can be transported through fractures in karstic limestone even faster than 

small molecules (such as nitrate) since they are excluded on the basis of their size 

from fine porosity outside major flow paths (Harvey, 1997). 

- A diffuse recharge from rainfall into a 30m thick unsaturated limestone layer in the 

Jura Mountains, Switzerland, was simulated by irrigation with tracer spiked water. The 

tracers, either small fluorescent dye molecules or mud particles, took only 1-2 hours to 

pass 2 m of soil and 30 m of limestone; particles arrived with remarkably little 

retardation - even faster than the dye molecules (Goldschneider et al., 2008). 

- A tracer study with 1 µM fluorescent microspheres (simulating bacteria) accompanied 

by transport modelling in a karst conduit system of the Austro-German alps revealed a 

transport over 2.5 km with about 40% recovery. Peak “arrival times” of the 

microspheres were 18 h and 83 h under high and low flow conditions, respectively 

(Göppert and Goldscheider, 2008). 

- Field data from Yucatan, Mexico (Osorio, 2009; Torres, 2010) report significant faecal 

coliform levels in deep water supply wells, suggesting effective vertical transport from 

the surface to deeper zones of the karst aquifer.   

From the above mentioned, the modelling approach of this thesis relies on various 

simplifying assumptions for transport and fate of faecal coliforms in the vulnerable karst 

aquifer of the MAM study area, as discussed in Chapter 4. The following section 

describes the modelling software used in the present research. 

2.5. System Dynamics Modelling (SDM) 
System dynamics concept was first developed by Prof Jay W. Forrester in 1956 

through modelling industrial dynamics at Sloan School in the USA. It was meant to 

represent complex systems, providing feedback, accumulations, delays and non-linear 

dynamics and thus simulate a realistic scenario analysis on the basis of a suitable 

conceptual model. Applicability of SDM was rapidly extended from economics to 

engineering, environmental science, ecology and transport (Grobler and Strohhecker, 

2012). SDM integrates multiple data sources and methods to analyze and design 

policies, from the easiest system with a few components to a complex social, 

economic, managerial, and ecological system (Wei et al., 2012). 

In recent years, SDM has been applied to a broad set of research areas. In particular, 

environmental examples include: climate change prediction (Modelling et al., 2012), 

engineering services (Lai et al., 2001), environmental impacts (Deaton and Winebrake, 

2000), interrelationships between environmental, ecological and economic resources 

(Constanza et al., 1998), garbage disposal (Cai, 2006), land resources (Chen et al., 
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1999), waste management (Ciplak, 2013); sustainable development (Xu et al., 2002), 

transport systems (Shepherd, 2014), and land use changes (Parsons et al., 2011). 

SDM and sustainability are interwoven because of its suitability to provide a holistic and 

more comprehensive structural representation with interdisciplinary methodological 

formulations of the real scenario under study. For example, Wei et al., (2012) illustrates 

how SDM allows easy adaptation to changes within all elements of the water system 

that were tested through computer simulation.   

The modelling process includes a series of steps that needs to be addressed in order 

to measure the usefulness of the model. On the one hand, the modelers may 

implement, test, and analyses the structural model. On the other hand decision makers 

and stakeholders may get involved in problem formulation, assessment of uncertainties 

and results, and formulation of recommendations (Grimm and Schomolke, 2011). An 

illustrative example is the process used to standardize Transparent and 

Comprehensive Ecological modelling (TRACE), where the following steps were taken 

(Schmolke et al., 2010b): 

a. Model development: problem formulation, design and formulation of conceptual 

model represented, model description, parameterization, and calibration. 

b. Model testing and analysis: verification, sensitivity analysis, and validation. 

c. Model application: results and recommendations.  

2.5.1. System dynamic software 
Commercial computer-based simulation software with significant applications to the 

environmental sector are: Vensim (Ventana Systems Inc.), Simile, Simantics, STELLA, 

iThink (from isee Systems), PowerSim, and AnyLogic (Sterman, 2000; Ford, 2009). 

2.5.2. Vensim software 
Vensim was created in 1985 initially for business and technical support. There have 

been six versions of this software; likewise, there are six configurations of Vensim 

namely: Vensim PLE (free version), PLE Plus (used in the present research version 

5.9e), DSS, Pro, Read, and Venapp Runtime. Differences among these configurations 

depend on the users purposes (Ventana Systems, 2012).  

Vensim is an interactive software, which allows development, exploration, analysis and 

optimization of simulated systems (Eberlein and Peterson, 1992). The model can 

increase robustness and quality with dimensional consistency and reality check 

application within the interface. In addition, it can be coupled with advanced simulation 

technologies to enhance optimization of the system (i.e. causal tracing of structure and 

behavior, subscripting array, Monte Carlo sensitivity analysis, and GIS - Geographic 

Information System). 
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Multidisciplinary, multi-scale and multi-stakeholder approaches were envisaged for the 

development of the Sustainable Integrated Management Model designed in this 

research project. Therefore, the versatile interface development tool of Vensim for 

creating a management system was one of the selection criteria. 

2.5.3. Using Vensim in the water sector 
A water balance model is a system of equations designed to represent the hydrological 

cycle. It aims to improve understanding of the critical processes that influence the 

hydrological cycle. Depending on the objectives of the study and the data availability, 

modelling can have different levels of complexity. A simple model may be suitable for 

some purposes; in other cases more complex models may be required. It is important 

to recognize that increasing model complexity does not necessarily improve accuracy 

(Walker and Zhang 2001). 

Examples of SDM applied to the water sector include: global modelling of water 

resources (Simonovic, 2002), carrying capacity of water resources (Sun et al., 2007) 

water users accountability (Wei et al., 2012), water and food security (Khan et al., 

2005), water pricing (Sahin et al., 2014); water resource planning (Zhang et al., 2008), 

water use issues (Fedorovskiy et al., 2004), and reservoir operations (Ahmad and 

Simonovic, 2000). SDM of the interplay between environmental factors, socio-

economic impacts of anthropogenic activities and engineering interventions helps water 

practitioners to gain a more comprehensive understanding of the scenario (Blanco-

Gutiérrez et al., 2011).  

Examples of Vensim application to the water sector are limited to water demand 

management (Jefferies and Duffy, 2011; Bueno et al., 2006); water-quality modelling 

for pollutant abatement (Mirchi, 2013), and water scarcity assessment (Sušnik et al., 

2012). Water Demand Management (WDW) is a Vensim-based model to move toward 

demand-driven urban scenarios (Jefferies and Duffy, 2011). It is a generic decision 

support tool to help decision-makers to compare cost-effectiveness options. Another 

example of a generic demand management model using Vensim was developed by 

Bueno et al., (2006) as a simple decision support tool for urban water engineers, 

planners and managers, which compares cost benefits over long time periods to 

support strategic decisions.  

2.6. Research problem 
Yucatan, Mexico, presents over 115,000 km2 of tertiary and quaternary carbonates, 

characterized by shallow doline (a hollow or basin in a karstic region, typically funnel-

shaped), low hills, and flooded cave systems (Gunn, 2004; Reddell, 1977). These 

makes the MAM case study located at the northwest of Yucatan, Mexico a very 

vulnerable karstic aquifer to contamination. Of particular concern are the waterborne 
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diseases in this area, as this aquifer is the sole water supply for every activity in the 

growing urbanized area (Drew and Hotzl, 1999; BGS et al., 1995; Marin et al., 2003; 

Reddell, 1977). Therefore, it is of major importance to have an adequate strategy for a 

sustainable water management, which if possible, avoids rapid infiltration of 

contaminants from the surface to the aquifer, but also mitigate pollutants infiltrated in 

the aquifer through adequate wastewater management. Evidences of waterborne 

diseases are limited; nevertheless the “diarrhea season” has been historically 

documented by Dohering and Buttler, (1974); Lutz et al., (2000); Marin and Perry, 

(1994) which is expected as a consequence of the wash out effect of the aquifer. 

2.7. Research gap 
The approach taken in this research to improve public health due to waterborne 

diseases is integrating water and wastewater management practices. As the majority of 

wastewater in the case study is directly discharged into the groundwater with little or no 

treatment (treatment is less than 15% in the case study area), engineering 

interventions suggested in this research are needed in order to control and mitigate 

pollutants present in these wastewater.  

In terms of the water human health nexus, it is important to establish a relation 

between pollutants concentration in the aquifer and local epidemiologic statistics. Thus, 

this research introduces the implementation of Quantitative Microbial Risk Assessment 

due to direct water consumption from the aquifer, which could evidence risks posed by 

the presence of microbial contaminants in the aquifer, as documented by Marin et al., 

(2000). Moreover, as a decision making tool, this research quantifies the economic 

benefit obtained by tackle these waterborne diseases (i.e. diarrhea), and the treatment 

cost-saved by reducing chemical pollutants (i.e. NO3) in the aquifer. Overall, this case 

study is used as an example to illustrate the need to adapt policies and protocols in a 

broader context to provide a safe quality level of water supply through an adequate 

wastewater treatment system. 
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Chapter 3. Case study 

“Balancing anthropogenic demands for water against the water needs of aquatic 

ecosystems is a pressing global issue”. (Petts et al., 2006). 

This chapter contains the case study data collected during the last three years of 

research and 2 fieldworks and aims to summarize the most relevant aspects of the 

Metropolitan Area of Merida (MAM). MAM is located in Yucatan, southeast Mexico, one 

of the 26 Latin American and Caribbean (LAC) countries. Two thirds of the LAC region 

is classified as arid or semi-arid, thus a quarter of its total population (over100 million 

people) lives in water stress areas (UNESCO, 2005).  In the LAC countries, 68 million 

people live without access to improved water supply, and in terms of sanitation 

coverage, a total of 116 million people have no access to improved sanitation, 

(UNESCO, 2005). Mexico faces specific water issues; one of the most relevant is 

groundwater pollution due to improper use and disposal of heavy metals, synthetic 

chemicals and hazardous wastes. In addition, aquifer depletion and saline intrusion are 

increasing. In Mexico in 2000, 94% of urban population had access to improved water 

supply, but only 63% in rural area had this service (WHO/UNICEF, 2000).  

Interest for the MAM case study is raised by the intrinsic current and future threats of 

groundwater contamination in the area, as a consequence of the rapid urban 

development and climate change. Water threats pose serious risks to human health 

due to water’s quality and quantity impact in health, which was discussed on previous 

chapters. In this chapter, important characteristics of the MAM are described. These 

are: location, hydrogeology, water management, water supply and wastewater 

infrastructures, and water threats both natural and anthropogenic. 

3.1. Location of the MAM  
The Metropolitan Area of Merida (MAM) is situated in the northwest of Yucatan State, 

in the Yucatan Peninsula, southeast Mexico (Figure 9). Merida is the largest urban 

area of the Yucatan Peninsula (Drew and Hotzl, 1999). Yucatan Peninsula is of 

hydrological importance because it has a mean recharge of 25,316 hm3, which is the 

32% of the total mean recharge in Mexico (79,652 hm3). This makes Yucatan 

Peninsula one of the most important reservoirs of groundwater in Mexico (Yucatan 

Government, 2013; Anton, 1993; CONAGUA, 2010a).  

The MAM was created in 2008 by Merida City Council comprising 5 municipalities: 

Kanasin; Conkal; Ucú; Uman; and Merida (Figure 9). The municipality of Progreso was 

included two years later due to its proximity (~ 25km from Merida), and because of its 
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importance as a major maritime port for economic and touristic development in 

Yucatan (Herrera-Silveira et al., 2004; OECD, 2008). 

 
   Figure 9 Case study location: Metropolitan Area of Merida (MAM), Yucatan, Mexico 

For purposes of the present research, the MAM area includes the 6 municipalities of 

the MAM from Figure 10 along with 25 peripheral municipalities located between the 

Ring of Sinkholes (RS), as the south border, up to the coast of Progreso, as north 

border, which is further described in Chapter 4. 

 
           Figure 10 Municipalities of the Metropolitan Area of Mérida (MAM), Yucatan, México. 

3.2. Hydrogeology 
The Yucatan Peninsula is underlain by a highly permeable unconfined karstic aquifer of 

48 meter depth in average at the MAM area, increasing to 80m at south and 

decreasing up to 0.5m depth at the north coast (González-Herrera et al., 2002). 

According to Morris et al., (1994), aquifers can be classified into two groups: 

consolidated and unconsolidated (deposits). Consolidated includes limestone, 

sandstone and some volcanic terrains. When fractured it is highly permeable. Some of 

Metropolitan Area of Mérida 
 

Case study: 
Metropolitan Area of 
Mérida (MAM) 
State: Yucatán 
Región: Yucatán 

 
 

http://commons.wikimedia.org/wiki/File:Conflicto_Limitrofe_Yucatan_Campeche_Quintana_Roo.PNG?uselang=es


34 
 

the world’s cities examples relying on this type of aquifer are Cebu City (Philippines), 

Jaffna (Sri Lanka), and Tai Yua (China). Examples of fractured volcanic aquifers are 

San Juan (Costa Rica), Guatemala City (Guatemala), and San Salvador (El Salvador). 

Unconsolidated aquifers are characterised by high porosity and great thickness. Some 

of the world’s largest cities that rely on this type of aquifer are Mexico City, Beijing and 

Jakarta (See Appendix B of karstic aquifer worldwide). The MAM karstic aquifer is an 

unconsolidated aquifer of limestone and dolomites deposits (Teixeira, 2004; Sanchez y 

Pinto, 1999; RAMSAR, 2009; Yucatan Government, 2013).  

The Ring of Sinkholes (RS) is a semi-circular, around 10 km broad and 240 km long 

band of natural waterholes (sinkholes) that spans from Celestun in the northwest cost 

to Dzilam at the northeast coast of the Yucatan Peninsula (Figure 10). Several 

researches describe the RS as a hydraulic barrier and highly conductive channel 

through which groundwater flows from the centre of Yucatan Peninsula to the sea 

(Perry et al., 1995; Holliday, 2007; CONABIO, 2010; SEDUMA, 2012). This might be 

questionable depending of local or regional levels of analysis. For instance González-

Herrera et al., (2002) suggested that the RS has a hydraulic conductivity only slightly 

higher than the surrounding rock on the basis of groundwater flow modelling. 

Geologically, the Yucatan aquifer was formed by a meteor collision ~65 Million years 

ago, which resulted on the development of the RS, where sinkholes are locally called 

“cenotes” from the Maya language “dzonot”, meaning a cave with water (Lugo-Hubp et 

al., 1992; BGS et al., 1995; Urrutia-Fucugauchi et al., 2011; Marin et al., 2003; 

Gonzalez et al., 2007). Since 2009 the RS was declared as a wetland site of 

international importance due to its geological nature (Anton, 1993; RAMSAR, 2010).  

The Yucatan aquifer is a mature karstic formation and it constitutes the only source of 

water supply for the MAM. Due to the karstic complexity with dissolution conduits, 

fractures and underground channels, water quality is difficult to monitor, thus a 

relatively simple model for “effective” groundwater flow has been suggested (González-

Herrera et al., 2002), in which the karst aquifer was treated as homogeneous, granular-

porous medium of very high hydraulic conductivity. There is limited evidence for the 

high permeability assigned to the “Sierrita de Ticul” (Figure 11), the highest area of 

Yucatan, which also has been modelled as a flow barrier (Perry et al., 2002; González-

Herrera et al., 2002; Marin, 1990). Others more refined modelling approaches have 

tried to address regional-scale complexity of groundwater flow patterns, as 

documented in Bauer-Gottwein et al., (2011), but there is still not a consensus for 

modelling this system.    

The Yucatan water table is less than 2m ±0.5masl (metres above mean sea level), with 

a freshwater lens of 1m thick at the north coast increasing to the south up to 80m 
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(Marin, 1990). On the basis of regional hydrological and geological characteristics, the 

national water authority CONAGUA (for its Spanish acronyms) has divided the Yucatan 

Peninsula in three regions (Figure 11): the coastal zone, the belt of cenotes, which 

includes the RS and the Sierrita de Ticul, and the inner plateau where the MAM is 

located (Anton, 1993; Sanchez y Pinto, 1999).   

 

 

 

 

 

 

 

       
  

Figure 11 Hydrogeological regions of Yucatan aquifer. Source: Sanchez y Pinto, (1999) 

Karstic aquifers can be defined as highly soluble freshwater bodies that conduct water 

principally via porosity by the dissolution of the rock. In the MAM area this dissolution 

phenomenon together with the high water table results in a high vulnerable aquifer 

(Holliday, 2007; Schmitter-Soto et al., 2002).  

 

 

 
 

 
 

 
Figure 12 Diameter of microorganisms related to aquifers pore size. Source: Morris et al., (1994) 

Even though natural attenuation, an intrinsic characteristic of the aquifers that often 

control contaminant loads through adsorption, dilution and filtration, in the MAM it has 

been reported to be limited. For instance, Figure 12 shows the nature of the 

unconsolidated limestone strata with fissures and apertures of larger pore opening than 

the size of the microbial pollutants (Morris et al., 1994).   

3.3. Water management  

Despite of the fact that Merida is the largest city in the southeast of Mexico, its urban 

development plan created every four years by Merida City Council has failed in terms 

of water management. The unsuccessful management may be due to political changes 
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every three years at municipal level, every four years at Yucatan State level as well as 

every six years at National level, cutting off the creation of robust and uninterrupted 

action plans to protect and safeguard the natural water resources (Teixeira, 2004).  

Febles and Hoogesteijin, (2008) analysed the water management regulations at the 

three government levels in Mexico: municipal, state and federal, in order to identify the 

cause of failure in terms of water management in Yucatan. After identifying many 

discrepancies in government jurisdiction and lack of congruence among the three 

authority levels, it was suggested the creation of a State law for drinking water and 

wastewater treatment, and the development of norms for a) pluvial water infiltration in 

green areas; b) design, construction and operation of drainage systems and treatment 

plants; c) infiltration of septic tanks discharges, and d) promotion of infiltration fields for 

septic tanks and treatment plants effluents. 

Septic tanks (ST) are of particular concern in the MAM area. ST are designed with 2/3 

of the tank volume set aside for sludge and scum accumulation and 24hr hydraulic 

detention time in the remaining 1/3 volume, which under effective operation leads to a 

total tank volume equal to 3 times the daily flow volume (Quintal, 1992; Gill et al., 

2004). Nevertheless current status of ST in Yucatan do not comply with these 

specifications (Quintal, 1993). 

One recent attempt to improve water management policies with a hydrological and 

political administrative approach has been the creation of a new decree by Yucatan 

Government in 2013. The aim of this new decree is to declare the Ring of Sinkholes as 

a protected reservoir area. This  decree provided valuable data for this research in 

terms of water abstraction (Table 12) and wastewater discharge volumes (Table 13) 

within the study area (Yucatan Government, 2013). 

According to the new 2013  decree, the area between the RS (as southern boundary) 

and the coastline area (as the northern boundary), is now a priority area to implement 

sustainable water management policies for the MAM (Figure 13). This priority area has 

been divided into four sub-zones A, B, C, D, and each subzone is again divided in: 

recharge, transition, and discharge zones according to its geographical location (Table 

9) (Yucatan Government, 2013). A total of 53 municipalities are distributed as follows:  

- Sub-zone A: MAM and its periphery. It comprises 17 municipalities: 7 are recharge 

zone (A1), 8 are transition zone (A2) and 2 are discharge zone (A3). 

- Sub-zone B: influence zone of the MAM. It comprises 16 municipalities: 6 are 

recharge zone, 7 are transition zone and 3 are discharge zone. 

- Sub-zone C: eastern zone of the sinkholes ring influence. It comprises by 14 

municipalities: 11 are transition zone, and 3 are discharge zone.   
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- Sub-zone D: western zone of the sinkholes ring influence. It comprises 6 

municipalities: 5 are transition zone, and 1 is discharge zone.  

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Twenty seven municipalities are comprised as RS municipalities (Figure 13), which are 

major recharge zone on this new decree (13 recharge municipalities from sub-zones A 

and B shown on Table 9). As an ecosystem, sinkholes are particularly vulnerable to 

drastic environmental changes (i.e. wastewater discharge from the MAM), thus these 

RS municipalities are of priority importance for this thesis (RAMSAR, 2010).    

Additionally, the technical committee for water management of the MAM has reported 

that sub-zone A is of major concern for both water supply and wastewater disposal, 

because it encompasses 57% of total Yucatan population and 41% of total water 

abstraction (CCPY, 2012).  

Due to the above, this new priority area was the basis to establish the study area of this 

research. The Sustainable Integrated Water Management Model (SIWMM) uses the 

data of the new ordinance, to serve as a strategy tool for the current and future 

sustainable water management of the MAM. Summarising, the selected area for the 

implementation of the SIWMM includes a total of 31 municipalities, 25 of which are 

within the priority area (Figure 13). The selection was based on two criteria, the 

geographical location of the MAM (municipalities highlighted on Table 10), and the 

regional groundwater flow direction, in order to assume a continuous water flow from 

one aquifer section to another (see Chapter 4 for further information). 

 

Figure 13 Priority area by Yucatan Government, (2013) 
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Table 10 Priority area from government for water management in Yucatan 
Sub-zone Sub-zone A Sub-zone B Sub-zone C Sub-zone D 

Recharge A.1 Seye 
A.1 Acanceh 
A.1 Timucuy 
A.1 Homun 
A.1 Cuzama 
A.1 Tecoh 
A.1 Tekit 

B.1 Tahmek 
B.1 Hoctun 
B.1 Xocchel 
B.1 Hocaba 
B.1 Sanahcat 
B.1 Huhi 
 

  

Transition A.2Chicxulub 
Pueblo 
A.2 Mococha 
A.2 Merida 
A.2 Ucu 
A.2 Conkal 
A.2 Tixpehual 
A.2 Kanasin 
A.2 Uman 

B.2 Motul 
B.2 Telchac Pueblo 
B.2 Baca 
B.2 Muxupip 
B.2 Yaxkukul 
B.2 Tixkokob 
B.2 Cacalchen 

C.2 Dzilam Gonzalez 
C.2 Temax 
C.2 Cansahcab 
C.2 Dzoncauich 
C.2 Suma 
C.2 Tepakan 
C.2 Teya 
C.2 Tekal de 
Venegas 
C.2 Tekanto 
C.2 Bokoba 
C.2 Izamal 

D.2 Tetiz 
D.2 Samahil 
D.2 Kinchil 
D.2 Chochola 
D.2 Abala 

Discharge A.3 Ixil  
A.3 Progreso 

B.3 Sinanche 
B.3 Telchac Pueblo 
B.3 Dzemul 

C.3 Dzilam de Bravo 
C.3 Dzidzantun 
C.3 Yobain 

D.3 Hunucma 

   Note: Municipalities highlighted are included in the MAM study area of the present research 

3.4. Water supply infrastructure  
In Mexico, each municipality is responsible to provide adequate water supply to its 

population, based on the Maximum Contaminant Level (MCL) standard, established on 

the national norm NOM-127-SSA1-1994. Since 1987, the water authority established a 

standard simplified water treatment process (potabilization system), for a maximum 

capacity of 250l/s to supply a population up to 75,000 inhabitants. Then in 2000 it was 

updated to a four-step treatment process due to new emergent pollutant. This 

comprises: flocculation (with Al2(SO4)3 or polyelectrolytes), sedimentation, filtration, and 

disinfection (with chlorine gas), which is currently in use as generic treatment, 

adaptable to local pollutants of concern (CONAGUA, 2007).  

Water supply coverage in Yucatan has been increasing from 74.8% of Yucatan 

population with access to water supply in 1990 up to 96.2% in 2009. The remaining 

people rely on private supply such as water wells in the backyards of households that 

have commonly been used until the 1960’s before the authorities started the operation 

of a water supply system in Yucatan State (JAPAY, 2009). Water supply system 

provides chlorination as the only disinfection method. Nonetheless, according to 

national records, consumption of chlorine gas for water disinfection in Yucatan has 

decreased from 9220 L in 2000, up to 6290 L in 2009 (CONAGUA, 2010a). This may 

be because the majority of Yucatan water abstraction is used for agriculture activity, 

where water quality is not strictly regulated in contrast to drinking water.   
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Four main water well fields, which only use chlorination as treatment process, to supply 

an average of 4m3/s of “tap water” to the MAM at 40m depth (Cuevas et al., 2003). 

These are:  Merida I, Merida II, and Merida III and currently under construction Merida 

IV (Table 11). From these, Merida I is of major supply, and is the nearest to the 

recharge zone around the RS. Water quality of the RS has been reported as favourable 

for human consumption. Thus, proximity of water well fields to the RS guarantees good 

water quality (Pacheco et al., 2004b).  

     Table 11 Water supply fields of the Metropolitan Area of Merida 
Well field Operation 

start year 
Supply area Area 

(m2) 
Number 
of wells 

Capacity 
(L/s) 

(%) 
Population 

supplied  
Merida I 1966 SE- Merida  6,250,000 24 1200 40 
Merida II 1985 SW- Merida 720,000  10 500 14.46 
Merida III 1993 North Merida 316,000  14 of 17 700 4.29 
Merida IVa 2014 NW-Merida 413,610 26 1300 25 
Interurban 
wellsb 

 Around Merida  33 1650* 13.45 

Progreso  Progreso  23 1150* 2.8 
*Value estimated assuming 50 L/s for each well SE: Southeast; SW: Southwest. aUnder construction, it is planned to 
supply 350,000 people; b data from SEDESOL. Source: adapted from Flores-Abuxapqui et al., (1995); JAPAY, (2013); 
CONAGUA, (2011). Chlorination in Merida IV has been reported to use 1680kg of chloride per month JAPAY, (2009) 

Nevertheless, Flores-Abuxapqui et al., (1995) have reported different levels of 

contamination from these water well fields. Surprisingly, the highest contamination was 

within the peripheral area of Merida I (centre and south of Merida), which was 

associated to wastewater and faecal pollution. High concentration of mesophilic 

anaerobes in the influencing area of Merida III (northeast and east of Merida), was 

associated to the presence of wastewater treatment plant leakage or contamination 

within the distribution network. The best water quality was reported in the peripheral 

area of Merida II plant (west and north of Merida) for both: received water (at the 

household tap) and inter-households (at the distribution network). 

In 2013 the  decree  set a total water abstraction for the  priority area of 495 million m3 

(Table 12), which represent the 41% and 19% of the total abstraction in Yucatan State 

and Yucatan Peninsula respectively (CCPY, 2012).  

      Table 12 Water abstraction in the priority area of Yucatan in 2013 (m3/year) 
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A 3.7E+7 1.9E+4 0.0 7.2E+6 2.4E+7 2.0E+6 1.7E+8 5.9E+7 3.0E+8 
B 1.7E+7 1.0E+3 3.6E+4 9.9E+4 1.3E+6 7.7E+5 8.8E+6 4.2E+7 7.1E+7 
C 2.5E+7 0.0* 0.0 5.4E+4 6.4E+4 8.6E+5 6.6E+6 4.4E+7 7.7E+7 
D 2.4E+7 0.0* 7.3E+4 1.1E+5 1.8E+4 3.2E+6 3.5E+6 8.0E+6 3.8E+7 

A-D 1.0E+8 2.0E+4 1.1E+5 7.4E+6 2.5E+7 6.8E+6 1.9E+8 1.5E+8 4.9E+8 
Rest of Yucatan 2.9E+8 5.0E+3 4.0E+3 3.8E+5 1.1E+7 9.1E+6 4.8E+7 3.2E+8 6.8E+8 
Total 3.9E+8 2.5E+4 1.1E+5 7.8E+6 3.7E+7 1.6E+7 2.4E+8 4.8E+8 1.1E+9 

*There was no data reported in the Yucatan ordinance, it is incomplete. Source: Yucatan Government, (2013). 
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Main users are agriculture and multiple uses with 257 million m3 per year, public urban 

sector with 25.6 million m3 per year, services sector with 7.4 million m3 per year, and 

the livestock activity with 6.8 million m3 per year (Yucatan Government, 2013).  

Even though Table 12 shows the most recent statistic data of water abstraction in 

Yucatan, its reliability is questionable, since according to JAPAY (water authority for 

the Metropolitan Area of Merida) more than 40% of total extracted water is lost within 

the distribution system (JAPAY, 2009). Thus, volume of abstracted water documented 

might be overestimated for the MAM area. Additionally, unaccounted private water 

wells used for water supply all over the Yucatan State, particularly in rural areas, are 

not regulated by water authorities (Foster et al., 2001). Furthermore, private wells are 

not counted in the water abstraction statistics, which would result in an underestimation 

of the real abstracted volumes (Hernández-Terrones et al., 2010).  

Similarly, wastewater discharge volume and pollutant loads reported in 2013, can be 

underestimated due to illegal discharges from industry and domestic users with water 

wells in the households backyard, inadequate septic tanks operation and maintenance 

(i.e. lower residential time than required), sewage leakage from septic tanks cracks, 

agriculture activity with unregistered fertilizers volumes, livestock with lack of 

wastewater treatments, and many small industries with inadequate disposal of 

wastewater (Osorio, 2009; Yucatan Government, 2013).  

3.5. Wastewater infrastructure 
Wastewater discharges to Yucatan aquifer have increased by 50% over the past 10 

years. Even though sewerage in Yucatan has increased from 42.1% in 1990, up to 

67.6% in 2009, only 2.4% of the wastewater in Yucatan is treated. It is important to 

notice that most of this wastewater is treated by wastewater treatment plants (WWTP) 

which are only located in new residential areas within the MAM area (CONAGUA, 

2008; CONAGUA, 2010b; CONABIO, 2010).  

In terms of domestic wastewater infrastructure, the majority of wastewater in Yucatan is 

collected in more than 200, 000 septic tanks, placed only 1 to 3 m above the water 

table. A removal  of faecal bacteria by one log was reported for septic tanks (Morris et 

al., 2003). All septic tanks discharge direct or indirectly (through absorption wells) their 

effluents to the aquifer (Castillo et al., 2011). The majority of farmers and 

slaughterhouses do not apply any treatment at all and most of their wastewater 

effluents are directly discharged to the aquifer. 

In 2010, a total of twenty-five WWTP were reported in the MAM that was treating only 

2.4% of the total wastewater generated in Yucatan (Basulto-Solis, 2010; CONAGUA, 

2010b). In 2011, it increased to 29 WWTP, even though Yucatan is still the third 
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Mexican State with the lowest sewerage coverage (CONAGUA, 2011). After treatment, 

effluents from WWTP are discharged via injection wells which are drilled down to saline 

interface. The residual sludge is spread on permeable areas, allowing the leachate 

seepage. Majority of these WWTP were built in the last two decades, as part of the 

new regulations for residential areas in Merida City as an attempt to reduce 

groundwater contamination (Yucatan Government, 1994). The rest of the MAM does 

not have any WWTP except one in Uman and one in Progreso (CONAGUA, 2009d).  

   Table 13 Wastewater discharge in the priority area of Yucatan (m3/year) 
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A 7.28E+03 1.52E+04 3.93E+06 1.18E+07 1.44E+06 1.71E+07 
B 0.00E+00 8.00E+02 1.33E+05 9.02E+05 7.50E+05 1.78E+06 
C 7.15E+03 0.00E+00* 4.84E+04 3.84E+05 1.69E+05 6.08E+05 
D 2.87E+04 0.00E+00* 6.24E+04 7.01E+04 6.27E+05 7.88E+05 

A-D 4.31E+04 1.60E+04 4.17E+06 1.31E+07 2.99E+06 2.03E+07 
Rest of Yucatan 0.00E+00 4.00E+03 1.78E+06 3.34E+06 1.69E+06 6.81E+06 
Total 4.31E+04 2.00E+04 5.95E+06 1.65E+07 4.68E+06 2.71E+07 

Note: there was not data reported for agriculture, domestic, public urban and multiple activities. Data reported *Data 
reported as in the Yucatan ordinance, it is incomplete. Source: Yucatan Government, (2013).  

Priority area discharge a total of 128 million m3 of wastewater per year, this is 70% of 

total wastewater of Yucatan (Table 13). From this 20 million m3 per year were used for 

not municipal uses and 108 million m3 per year for municipal uses, distributed as 

follows: 13.1 million m3 from industry, 4.1 million m3 from services sector, 2.9 million m3 

from livestock (porcine only), and 0.43 million m3 from aquaculture (Yucatan 

Government, 2013). However, no data was reported for major water consumers such 

as domestic and agriculture sector. In case of agriculture, it is difficult to estimate due 

to its dependence on many factors such as effective water utilisation by the crops, 

water leakage and evaporated water from the soil. For this research, assumptions were 

made based on the water demand per each type of crop, and the fraction of water that 

is leaking into the soil as wastewater. 

3.6. Water threats  
In general, Yucatan Peninsula is considered as highly vulnerable to groundwater 

pollution based on the DRASTIC index, in particular for Yucatan State (Gijon, 2007). 

This index is a ranking methodology documented in 1987 by the U.S. Environmental 

Protection Agency and evaluates the most important hydrogeological factors that 

control the groundwater movement, and hence the pollution potential. These factors 

are the acronym of DRASTIC that stands for: Depth to water, (net) Recharge, Aquifer 

media, Soil media, Topography, Impact on the vadose zone (unsaturated zone), and 

hydraulic Conductivity of the aquifer. From the intrinsic vulnerability map obtained by 
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DRASTIC, and a map of land use, a contamination risk map was created by Gijon, 

(2007) to identify high risk areas, categorised by low, medium, high and extreme risk to 

contamination (Figure 14).  

 

 

 

 

 

 

 

 
 

 
Figure 14 Groundwater contamination risk map of Yucatan. Source: Gijon, (2007) 

Yucatan water quality degradation in the MAM is due to the following reasons: massive 

demographic growth (1.74 % of average annual population growth rate); saline 

intrusion; deterioration of wetlands, sinkholes and coastal areas; inadequate economic 

and environmental policies; inadequate water metering system and solid waste and 

wastewater disposals; flooding risk due to seasonal hurricanes; lack of regulation for 

water contamination control; lack of sustainable urban planning and management; and 

inadequate authority distribution among local, state and federal governments (Tello . 

and Alonzo, 2003; CONAGUA, 2009c). Of special concern are the frequency of 

hurricanes episodes occurring in the last decades, which can increase threatening to 

the MAM aquifer as documented by (Pacheco and Cabrera, 2013) after hurricane 

Isidore in 2002. Table 14 shows historic records of hurricanes that have affected 

Yucatan Peninsula.  

   Table 14 Historic record of hurricanes in Yucatan Peninsula 
Name Category* Year Wind speed 

(km/h)  
Peninsula States affected 

Gilbert H5(H4) 1988 287 Quintana Roo, Yucatan 
Diana TT(H2) 1990 110  Yucatan, Campeche 
Roxanne H3(DT) 1995 185  Quintana Roo, Yucatan, Campeche 
Dolly TT(H1) 1996 110  Quintana Roo, Yucatan, Campeche 
Isidore H3 2002 205 Quintana Roo, Yucatan, Campeche 
Emily H3(H1) 2005 215 Yucatan, Quintana Roo 
Wilma H4(H3) 2005 241 Yucatan, Quintana Roo 

     Source: Alcica Construction, (2009); *Saffir/Simpson scale  
 
The MAM case study has current and future anthropogenic threats (i.e. population 

growth, water demand and wastewater discharges) and natural threats (i.e. saline 
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intrusion, hurricanes) to the water resources that have been historically documented 

since the Maya civilization (Back, 1995), and are topic of current  and future concern 

due to metropolitan growth (Alcocer et al., 1999; Granel and Galez, 2002). The next 

sections describe major water threats to the MAM. 

3.6.1. Population growth 
The population of the MAM was 1,027,004 in 2010, almost double the population of 

667,312 in 1990. Population density rise from 293 people per km2 in 1990 to 450 

people per km2 in 2010. More than 50% of the total population of Yucatan State live in 

the MAM. The MAM is one of the faster growing regions from the 30 member nations of 

the OECD (OECD, 2008; COMEY, 2011). Based on CONAPO (National Council of 

Population in Mexico), projected population growth for 2030 in the MAM is 24%, 

therefore it is considered as a future challenge to develop a sustainable water supply 

system and sanitation coverage for adequate disposal of the wastewater discharged 

within this priority area (CCPY, 2012). 

3.6.2. Groundwater contamination  
Since 1999, the water underneath Merida city is considered inappropriate for human 

supply in line with the WHO standards. Such restriction is mainly because of leachates 

from solid waste and high concentration of chlorides from 100 up to 170 mg/L. Chloride 

contamination has been attributed to the infiltration of septic tanks and industrial 

chemicals such as chlorinated solvents (Alcocer et al., 1999). Additionally, dissolved 

solids concentrations are high in some areas associated to contamination from 

clandestine solid waste disposals, which has been a common practice for many years 

in all Yucatan. It was only since last decade, that three municipalities of the Yucatan 

State (Merida, Progreso and Uman) have built landfills with appropriate materials for 

solid waste disposal. Furthermore, open defecation, remains within the MAM area 

contributing as a source of contamination (Alcocer et al., 1999; Yucatan Government, 

2013).  

The major concern of water management due to the increasing population is in terms 

of water quality rather than water quantity. This is because the natural recharge 

capacity of the Yucatan aquifer is ten times higher than the current water extracted. 

Yucatan aquifer is considered an important national water reservoir, but of high 

vulnerability to contamination because of its karstic nature (COMEY, 2014; Hernández-

Terrones et al., 2010).  
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Several studies suggest that groundwater mainly flows in a north-western direction 

across the Yucatan State (Figure 15), although karst fractures may change the 

groundwater direction at local level (Marin, 1990; Sanchez y Pinto, 1999; Steinich and 

Marín, 1997). Due to the nature of the aquifer, the groundwater is vulnerable to 

contamination from both natural and anthropogenic sources. Any pollutant that enters 

the groundwater system is rapidly spread out due to the high hydraulic conductivity, 

which implies rapid dilution at the local level but also rapid contamination of large water 

volumes (Felton and Currens, 1994). Historically, the main concern in terms of water 

quality has been the inability to provide an adequate sanitary drainage system in 

Yucatan. It is mainly because of two reasons: 1. the hardness and rock-like 

characteristics of the karstic soil and, 2. the surface-proximity of the water table 

underneath (5 meters in average) which does not allow drilling deep enough along all 

the MAM to build an adequate drainage system. Consequently, this has been driving 

the common practice of open defecation among rural areas.  

 

 

 

 

 

 

 

 

 

Figure 15 Natural water resource and groundwater flow direction in north-western Yucatan. Source: 
Escolero et al., (2000). 

A potential solution but with good feasibility was suggested by Castillo et al., (2011) by 

implementation of a secondary treatment to the septic tank effluents. Special attention 

is needed in rural areas where most or even all of the water for human consumption 

and cultivation of crops is extracted from shallow wells where microbial pollutants tend 

to be more concentrated, leading to a significant risk for gastrointestinal diseases 

among the rural population (Alcocer et al., 1999).  

During 2003-2008, a water quality monitoring study was performed for 106 main water 

wells, corresponding to one in each municipality of the Yucatan State. More than 86% 

of these wells reported total and faecal coliforms concentrations above the MCL for 

drinking water requirements. It was concluded that 24% of these were associated to 
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human origin and 10% to livestock activity (Osorio, 2009). In addition, water supply 

wells in up to 21 municipalities had nitrate concentration above the MCL (45mg/l), 

which was associated with agriculture, livestock and domestic sources (Perez-Ceballos 

and Pacheco, 2004). Furthermore, Mendez et al., (2005), reported that 88% of the 106 

main water supply wells had higher coliform concentration than the MCL. From these 

wells 23% were associated to human origin while 43% were associated to animal 

origin, which increases water pollution from livestock. 

Due to the above, a particular concern is the livestock wastewater generated in the 

priority area, which in 2013 accounted for 2.98 million cubic meters, mainly from 

porcine activity. Special attention is needed for the solid excreta loads discharged 

together with these wastewaters through the aquifer. These excreta loads account to 

1,417 tons per year from porcine, and 234 tons per year from poultry, together with 

262,800 tons per year from solid urban waste, altogether producing lixiviation that goes 

straightforward to the Yucatan aquifer (Yucatan Government, 2013).  

Other important contaminants detected in the Yucatan aquifer are high loads of organic 

matter from nixtamalisation wastewater from (residuals from corn processing by local 

factories) and sludge from septic tanks. Only for Merida, these loads account for 

273,020 million m3 per year. High waste loads from these activities are generated all 

around Yucatan State without treatment, which makes them difficult to manage and 

thus to control (Yucatan Government, 2013). A summary of documented nitrate 

concentrations in Yucatan groundwater is presented in Chapter 5, which pointed out 

the importance to monitor and control nitrate in the MAM case study. 

3.6.3. Water-related diseases and public health  
Mexican epidemiological statistics reports water-related diseases based on the 

Intestinal Infectious Diseases (IID) defined by the International Classification of 

Diseases (ICD-10). These are ten groups: A00: Cholera; A01: Typhoid and paratyphoid 

fever; A02: Other salmonella infections; A03: Shigellosis, A04: Other bacterial intestinal 

infections (i.e. E. coli; and Yersinia); A05: Other bacterial foodborne intoxication; A06: 

Amoebiasis; A07: Other protozoal intestinal diseases such as Balandiasis, 

Cryptosporidiasis, Giardiasis, and Isosporiasis; A08: Intestinal infections caused by 

viruses and other organisms; and A09: Other gastroenteritis and colitis of infectious 

and unspecified origin (Table 15).  

Even though infant mortality rate in Mexico has decreased over decades (156/1000 in 

1930; 39.9/1000 in 1980; 23.9/1000 in 1990; and 13.9/1000 in 2000); high values of IID 

case are reported, in most cases with no further identification of the specific pathogen 

causing the disease, these are generalised as “IID” group (Gonzalez et al., 1991; 

Mendez et al., 2004; Zaidi et al., 2006).  
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 Table 15 Water-related diseases in Mexico 
Disease 
group 

Number of cases per year 
2002 2003 2004 2005 2006 2007 2008 2009 

IID 6.8E+6 6.2E+6 5.9E+6 5.91E+6 5.7E+6 5.5E+6 5.5E+6 5.5E+6 
A01 7.9E+3 2.0E+4 2.6E+4 3.18E+4 3.7E+4 4.5E+4 4.4E+4 4.7E+4 
A02 8.1E+4 1.0E+5 1.1E+5 1.10E+5 1.1E+5 1.2E+5 1.2E+5 1.4E+5 
A03 3.1E+4 2.8E+4 2.2E+4 1.94E+4 1.6E+4 1.5E+4 1.3E+4 1.2E+4 
A05 2.2E+4 3.6E+4 3.9E+4 4.06E+4 3.8E+4 3.6E+4 3.6E+4 3.9E+4 
A08 5.4E+6 4.8E+6 4.8E+6 4.77E+6 4.7E+6 4.5E+6 4.6E+6 4.6E+6 
Total 1.2E+7 1.1E+7 1.1E+7 1.09E+7 1.1E+7 1.0E+7 1.1E+7 1.1E+7 

IID: Intestinal Infectious Diseases based on (WHO, 2010) comprises groups A00-A009 as follows A00: Cholera, A01: 
Typhoid and paratyphoid fevers; A02: Other salmonella infections; A03: Shigellosis; A04: Other bacterial intestinal 
infections i.e. E. coli; A05: Other bacterial foodborne intoxications; A06: Amoebiasis; A07: Other protozoal intestinal 
diseases i.e. Balantidiasis, Cryptosporidiasis, and Giardiasis; A08: Viral and other specified intestinal infections such as 
Rotavirus and Adenovirus; A09: Other gastroenteritis and unspecified origin. Source: CONAGUA, (2010a).  

Mexican statistic data reported IID as the first or second cause of death in Mexico 

during 1930-1980. It dropped to the seventh cause of death in 1990, and to the 

fifteenth in 2000 with an incidence rate of 5.4 per 100,000 inhabitants and 5,216 total 

deaths. For 2008 it was reported as the 19th cause of death with incidence rate of 3.4 

per 100,000 inhabitants and 3,574 deaths. Nevertheless, it is still one of the top five 

cause of death in Mexico for infant mortality with a reduced infant mortality rate (IMR) 

from 3,667.9/100,000 live births (LB) in 1922 to 37.1/100,000 LB in 2008 (SSA, 2011). 

Of particular concern for Yucatan is the Acute Diarrhoea Diseases (ADD). In Mexico, 

ADD incidence has been increasing in the last 30 years due to improvements of 

methods for diagnosis (from 1716.5/100000 inhabitants in 1980, up to 7945.7/100000 

inhabitants in 1998). Since 1999 it has been reduced from 7473.9/100000 inhabitants 

in 1999 down to 5264.2/100000 inhabitants in 2010), but it is still a major public health 

concern in Mexico (SINAVE, 2012). Similarly in Yucatan, ADD has been reduced 

(Table 16) but it is has been always higher than national rate, thus it remains one of the 

major public health concern to be tackle. In the MAM, main water-related diseases from 

2007 to 2009 were diarrhoea and gastroenteritis based on health statistics (Table 17). 

Table 16 Acute Diarrhoea Diseases (ADD) statistics in Yucatan 
Year Mexico Yucatan 

Cases Rate* Cases Rate* 
2000 6891063 7000.4 221113 13043.7 
2005 5912952 5688.4 139288 7624.9 
2010 5706232 5264.2 124590 6402.9 

       *Rate is given in number per 100, 000 inhabitants 

ADD have a seasonal pattern considerable increasing during rainy season, thus it is 

called diarrhoea season (Dohering and Buttler, 1974; Lutz et al., 2000; Marin and 

Perry, 1994). For instance, in 2010 incidence rate per population age-group were as 

follows: 4.83 in adults, 47.64 in children less than 1 year-old, 2.31 in children between 

1 to 4 years-old. Thus, children under 1 year-old and elders are at highest death risk 

from acute diarrhoeic disease in Yucatan. 
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   Table 17 Water-related diseases number of cases in MAM from 2007-2009 
# Water-related diseases Number of cases in MAM  
1 Toxoplasmosis 3 
2 Ascariasis 1 
3 Strongyloidiasis 1 
4 Typhoid and paratyphoid fever 2 
5 Salmonellosis 2 
6 Bacterial intestinal infections 14 
7 Amoebiasis 4 
8 Viral Intestinal Infections 3 
9 Leptospirosis 2 
10 Diarrhoea and gastroenteritis 247 
11 Dengue 4 
12 Hepatitis A 2 
13 Cysticercosis 2 
14 Intestinal Parasites 2 

                         Source: INEGI, (2013) 

In 2010 Yucatan has the third highest mortality rate of the 31 States of Mexico with 11 

172 deaths due to IID (Table 18), which was almost the double of national death rate 

(4.83 per 100 000 Yucatan 2.9/100,000 National) for the same year (SINAVE, 2012). 

     Table 18 Mortality rate in Yucatan, from Intestinal Infection Diseases  
Mortality rate from Intestinal Infection Diseases (IID) 

Population age/year 1980 1985 1990 1995 2000 2005 2008 2010 
Pop <1 10.8 7.1 4.3 1.7 0.7 0.8 39.1 47.6 
Pop 1-4 90.1 54.1 36.5 14.9 7.6 14.5 8.5 2.3 
Pop 5-14 7.1 6 1.6 1.3 1 0.3 0.5  
Pop 15-64 44.7 44.7 18.9 10.7 6.9 4.7 4.2  
Pop >65 356.3 286.7 167.8 113.8 58 47.2 43.1  
Yucatan average 63.5 41.4 22.6 11.6 5.8 5.6 4.7 4.83 

    *Rate is given in number per 100, 000 people. Source: SINAVE, (2012). 

In Merida, more than 40% of the deaths of children under-six years in 1960 was due to 

water-related pathogens. Between 1990-2000 Yucatan infant mortality rate (IMR) has 

been in average the highest among the three States of the Yucatan Peninsula (13.83), 

and also higher than the national average (13.8) as shown in Figure 16.  

 

 

 

 

 

 

Figure 16 Infant mortality rate in the 3 states of the Yucatan Peninsula. Source: SSA, (2001); INEGI, 
(2001) cited by Mendez et al., (2004) 

Even though water related diseases have decreased because of improvements in 
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remains one of the main issues in the aquifer of the MAM, thus of health (Alcocer et al., 

1999; Mendez et al., 2004). 

In 2000, acute diarrhoea diseases incidence in Yucatan was the highest in Mexico (8 

698 per 100 000 inhabitants - Yucatan, 4 955 cases per 100 000 inhabitants -national) 

(Osorio, 2009; Mantilla et al., 2002; Alonzo and Acosta, 2003). Furthermore, Table 19 

shows incidence rate for specific disease in 2011 which were significantly higher than 

the national rate (SINAVE, 2012). 

Table 19 Incidence rate of Intestinal Infectious Diseases in Yucatan, 2011  
Intestinal infectious Diseases Incidence rate* 

Yucatan Mexico 
Intestinal amebiasis 745.54 384.15 
Helminthiasis 464.48 284.96 
Intestinal infectious from protozoans 179.62 71.9 
Ascariasis 231.56 71.37 
Paratyphoid and other salmonellosis 30.77 112.02 
Typhoid fever 3.5 44 
Bacterial food poisoning 21.42 40.71 

*Incidence rate is given per 100, 000 inhabitants. Source: SINAVE, (2012). 

A study in Yucatan aimed to identify the cause of salmonellosis in children with 

diarrhoea reported the same types of salmonella (S. Typhimurium and S. Enteritidis) as 

in raw meat (chicken, pork and steak meat). The study also reported antibiotic 

resistance from these types of salmonella; specifically S. Typhimurium was resistant to 

ten antibiotics (including ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, 

aminoglycosides, nalidixic acid and extended-spectrum cephalosporin). During the 

study (2003-2005) there were three deaths due to S. Typhimurium in children under-6 

months. S. Typhimurim, S. Typhi and S. Enteritidis, which may cause sepsis and 

meningitis (Zaidi et al., 2006). 

Mendez et al., (2004) have reported the highest infant mortality rate by municipalities in 

Yucatan State (Figure 17), which could be attributed to poor/deteriorated water quality 

through short-circuit contamination of the aquifer. Municipalities with the highest infant 

mortality rate (IMR) in 2000 were: Chichimila (71.11); Chankam and Chikindzonot 

(63.26), Yaxcaba (52.18), and Quintana Roo, Sudzal, Tunkas and Cenotillo (50.42). 

Morbidity causes in Yucatan in 2000, are shown in Table 20. Zoonotic diseases are 

intrinsically related to water quality due to the water vector transmission route of 

pathogens (Reyes-Novelo et al., 2011).  
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For instances, Leptospirosis in Yucatan is excreted through animal urine and infects 

humans through direct ingestion of contaminated food or water. Diagnosis is difficult 

due to minimal symptomatology.  

Table 20 Morbidity top ten causes in Yucatan, 2000 
Cause of disease Total Rate 
Acute respiratory infections 891796 53172.4 
Intestinal infectious 150885 8996.3 
Urinary infectious 78515 4681.3 
Intestinal amebiasis 62037 3698.9 
Gastritis, duodenitis and ulcers 41947 2501 
Other helmintiasis 35015 2087.7 
Ascariasis 25115 1497.4 
Asma 18057 1076.6 
Acute otitis media 13525 806.4 
Varicela 12365 737.2 

                               Source: Yucatan Government, (2009). Rate is given per 100,000 inhabitants 

Figure 17 Infant mortality rates (IMR) in the Yucatan Peninsula, a) 1990, b) 2000. 
Source: Mendez et al., (2004) 
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Nonetheless, Zavala-Velazquez et al., (1998) found 14% of patients first diagnosed 

with dengue in Yucatan were positive to Leptospira interrogans, with 2.2/100,000 

inhabitants of incidence rate in 2000 in rural Yucatan, where it is predominant during 

rainy season (Vado-Solis et al., 2002b).  

 

 

 

 

 

 

 
 

Figure 18 Water related diseases in Yucatan reported as Intestinal Infectious Diseases (IID). Source: 
Annual epidemiological information from Secretary of Health, 1990-2010, SSA, (2014).  

 
 

Figure 18 summarises annual records (1990-2010) of water-related diseases reported 

for Yucatan State. It was found that the majority of water-related diseases in Yucatan 

were caused by the groups A04, A08 and A09. 

Although Mexican government provides adequate water quality levels for drinking 

purposes, the majority of the urban population prefers bottled water as drinking water. 

This is mainly due to the unreliability of the quality control monitoring system at 

different water distribution network points. Mexican government rigorously monitors the 

water quality only at the potabilization plant, thus a subsequent water contamination 

may not essentially be detected. This is of important concern especially in the Yucatan 

Peninsula due to the close proximity of the water table, antiquity of the pipeline 

distribution system (>50 years old), and easy propagation of contaminants related to 

the lack of sewerage and wastewater treatment systems (JAPAY, 2009). 
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To summarise: 

- Contamination of groundwater within the MAM has been evaluated through 

punctual field work research and periodic monitoring by water authorities. These 

could give a good insight to identify those potential pollutants, and pollutant’s 

sources that might be causing most of the microbial and chemical water-related 

diseases.  

- Pollutants such as total and faecal coliforms, nitrate, and heavy metals (chrome, 

cadmium, iron and lead) have been reported as extremely high in some MAM 

areas. In addition, high levels of secondary contaminants such as chloride, 

detergents, sulphate and hardness have been documented (Pacheco et al., 2004a; 

Osorio, 2009).  

- Even though in National health statistics there are no diseases records related to 

chemical water pollution (i.e. heavy metals), diverse field studies have reported 

significant high concentration of these in the MAM aquifer. Thus these could help to 

the identification of potential water-related diseases (Marin et al., 2003; Gonzalez et 

al., 2007).  

- Yucatan government first attempt to protect and avoid further groundwater quality 

deterioration created in 1994 a regulation for the control and adequate disposal of 

wastewater within the city of Merida (Yucatan Government, 1994). Ten years later, 

a new regulation was created to enforce the former, related to the adequate 

planning and construction around Merida. On this new regulation, specification of 

ST were established to be of 1.3L minimum capacity, with a minimum of 24hr 

retention time (considering 80% of water consumption); and with at least once ST 

empty within 2 to 5 years (Yucatan Government, 2004). 
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Chapter 4. Methodology for the model development 

…”collaboration between academics (e.g. hydrologists geomorphologists, engineers 

and ecologists), practitioners (e.g. water and habitat managers) and stakeholders (e.g. 

landowners, anglers and recreational users) –(is needed)- to balance the multiple and 

often conflicting pressures associated with the management of the system (e.g. flood 

alleviation and reservoir management) against the protection, and even enhancement, 

of ecosystem properties (e.g. conservation and restoration of habitats)” (Hannah et al., 

2008). 

This chapter describes the model developed for this research, along with the 

underlying assumptions and selection of input parameters, it includes: 

 A brief description of the model with scopes and limitations 

 The model structure, based on the conceptual model (Figure 20) 

 A discussion of the model assumptions and setting of relevant parameters 

4.1. Model: Scopes and boundaries 
The Sustainable Integrated Water Management (SIWM) model was designed and 

tested for the Metropolitan Area of Merida (MAM), case study of this research. 

Nevertheless, the model is structured in a generic sense; meaning that it could be 

applied to other cases studies taking into account the specific socioeconomic activities 

of a given area under spatial and temporal conditions. In general there were three main 

steps to develop the SIWM model: conceptualization, mathematical representation, and 

system dynamic modelling (Figure 19). 

  

 

 
 

 

 

Figure 19 Steps and sub-steps to develop the Sustainable Integrated Water Management (SIWM) model 
of this research. 

The scopes of the SIWM model are as follows:  

- Identification of the most significant pollutant sources of public health concern 

for the study area.  

- Forecast future concentrations of selected indicator pollutants in the case study. 
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- Model the effect of water management interventions on pollutant 

concentrations. 

The limitations of this SIWM include:  

- For the study area, due to incomplete or fragmentary (and sometimes 

inconsistent) data to set the required data input for model input parameters 

some data was estimated on the basis of “typical” pollutant concentrations 

reported in the literature.     

- For the study area, a simplified approach was applied to the modelling of 

groundwater flow patterns and distribution of pollutants, which may not be 

robust enough to represent the karstic nature of the aquifer. This focuses on 

addressing regional and long-term water pollution issues rather than local or 

seasonal patterns.   

- Modelled interventions are suggested on the basis of current technical status 

and cost-effectiveness thus needs to be updated for future scenarios.     

4.2. Conceptual model 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Top-diagram: Conceptual model of the case study area, as a physical representation of the 
groundwater pollution scenario. Bottom-diagram: Simplified graphical representation of the model 

structure. Colour within one aquifer section illustrates homogeneous distribution of pollutants within the 
water volume of this section. Colour grading between sections illustrates that different pollutant 

concentrations built in different aquifer sections, as a consequence of different wastewater inflow 
volumes and pollutant loads. 
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The starting point of the SIWM model was to build a conceptual model in order to 

represent a qualitative analysis of anthropogenic activities interacting with the water 

cycle.  Figure 20 illustrates the central idea of the conceptual model for the MAM.  

The left diagram shows how physically all wastewater discharged by the different 

socio-economic activities in the area infiltrates the aquifer (See Chapter 3 for study 

area description). Diagram in the right of  shows a simplified graphical representation of 

the model structure, with a focus on aquifer sub-sections, groundwater flow, recharge, 

wastewater discharge, and sectional homogeneity of the aquifer with respect to 

pollutant distribution. This representation already implies certain assumptions which 

are explained in more detail in the next chapter. 

These two diagrams were conceptually translated within system dynamics platform into 

the causal-loop shown in Figure 21. Vensim platform allows the visualization of all 

variables comprised by the system as well as their potential interactions, represented 

through arrows pointing toward and/or away from the variables, giving an idea of how 

the variables are interconnected and how the causal loops are embedded in the 

dynamic model structure. Once all variables and their interrelations are declared within 

the platform, Vensim run the model and shows results as tables and graphs.  

<Pollutant Discharge Agriculture>
<Pollutant Discharge Aquaculture>

<Pollutant Discharge Dom Rural>

<Pollutant Discharge Dom Urban>
<Pollutant Discharge Industry>
<Pollutant Discharge Institutions>

<Pollutant Discharge Livestock>

<Pollutant Discharge Public Urban>

<WW Flow Agriculture>
<WW Flow Aquaculture>

<WW Flow Domestic Rural>

<WW Flow Industry>
<WW Flow Domestic Urban>

<WW Flow Institutions>
<WW Flow Public Urban>

<WW Flow Livestock>

<Water Abstracted Domestic Rural>

<Water Abstracted Domestic Urban>
<Water Abstracted Industrial>
<Water Abstracted Institutional>

<Water Abstracted Agriculture>
<Water Abstracted Aquaculture>
<Water Abstracted Livestock>

<Water Abstracted Public Urban>
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Figure 21 Causal-loop diagram of the Sustainable Integrated Water Management Model for the 
Metropolitan Area of Merida (MAM), Yucatan, Mexico. Arrows in and out indicates inflows and 

outflows for the MAM aquifer, each having its own F: Flow of water in m3/s, andQ: Quality parameter 
such nitrate concentration in mg/m3 or faecal coliforms in CFU/m3, W means “water”; WW means 

“wastewater”.  
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Based on the literature (Pokrajac, 1999; Jonch-Clausen, 2000; Liu et al., 2008; 

Arellanos, 2009) and the current scientific evidence of the Yucatan aquifer conditions 

(Marin et al., 2003; OECD, 2008; Holliday, 2007), the sustainable and integrated water 

management shown in Figure 22 was derived. 

This approach also considers major problems of water management in Latin American 

and the Caribbean countries discussed by San Martin, (2002), which emphasize the 

imperative need to shift to a more integrated and comprehensive approach in the water 

sector. Figure 22 includes the anthropogenic factors acting as major water polluters, 

linked to the natural water system in order to identify those interconnections where 

water-human management could be assess to quantify public health risks through the 

SIWM model. The SIWM model ultimately provides pollutants concentrations which 

serve to quantify microbial and chemical risks, which are translated to cost-saved in the 

public health sector. These costs-saved are benefits quantified by cost-benefit analysis, 

in order to recommend the most cost-benefit public health intervention. 

 

 

 

 

 

 

 

 

 

Figure 22 Concept of the SIWMM, relating natural and anthropogenic influences on water supply and 
quality, wastewater management and public health 

 

4.3. Model structure 
This section includes: description of the study area, sub-models comprising the SIWM 

model, and a simplified graphical representation of the model structure. 

4.3.1. Study area 
The study area encompasses a rectangular area of about 100 km x 45 km that includes 

the MAM defined by the Yucatan government along with peripheral municipalities of the 

MAM (Figure 23). The geographic orientation of this area is based on the groundwater 

flow direction (southeast to northwest), to consider pollutant transport along with 

groundwater flow.  
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This area is divided into 4 equally-sized sections: A, B, C and D from southeast to 

northwest direction, referred to as “aquifer sections”. Each section has its own 

characteristic for example in terms of population and wastewater load (both are highest 

in C that includes majority of Merida City and lowest in A, a predominantly rural area). 

 

 

 

 

 

 

 

 

 

 

4.3.2. Sub-model structure 
The model includes 10 sub-models, representing the water cycle (aquifer sub-model) 

and human influence (9 sub-models). Aquifer sub-model was conceived as the 

environmental factor for the conceptual model of this research (Figure 20). It comprises 

water quality data as input and output from the MAM case study.  

Table 21 Sub-model structure of the present research 
Factor Group Sub-model Coding name in the model 

Water cycle Aquifer Aquifer AQUIFER 
 
 
 
Human 

Population Population POP 
Urban Domestic Urban DU 

Industry IND 
Institution INS 
Public Urban PU 

Rural Domestic Rural DR 
Agriculture AGR 
Aquaculture AQU 
Livestock LIV 

The model was developed with data from the 4 aquifer sections of the MAM case study 

(Figure 23), which was delimited considering the site-specific groundwater pollution 

documented and data availability from local research. The human influence comprises 

9 sub-models. The population sub-model, which affects all the other 8 sub-models that 

represent the anthropogenic activities and are classified into two groups: “urban” and 

Figure 23 Rectangular study area of the model with the four aquifer sections A, B, C and D. 
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Intermediary Pre -data Post -data 

Figure 24 Data flow of the Sustainable Integrated Water Management (SIWM) model 

“rural”, as shown in Table 21 together with their coding name used within the model 

environment.  

Figure 24 shows the 3 stages of data flow from input data, data processes and 

calculations, and final outputs. Once the most significant health risks associated with 

drinking water are identified, by quantifying pollutants concentration in the aquifer, 

potential public health interventions are modelled. Quantitative Microbial Risk 

Assessment (QMRA) was performed in order to estimate the burden of diseases for 

specific pollutants. Finally, cost-benefit analyses for the public health interventions are 

evaluated to identify interventions that could most effectively tackle the highest public 

health risks related to specific pollutants. 

 

 

 

 

 

 

 

 
    

In order to explain the relevance of each of ten activities (sub-models in the SIWM 

model), a brief description is presented below. These impacts qualitative and 

quantitative to the water cycle through the pollutants loads estimated as wastewater 

discharged. Pollutants load values were estimated based on the total production or 

number of people (i.e. workers, students) per specific activity, which were obtained 

from statistical databases of the MAM case study. 

1. AQUIFER. This is segmented in 4 sections (A, B, C, and D), taking into 

consideration the very different water consumption and wastewater generation 

within each section. It serves to integrate the 8 human activities-based sub-

models in order to represent a holistic scenario of the water cycle for the MAM 

case study, and the scenario analysis for all interventions.   

2. POP. This sub-model was built as a dynamic element linked to the growth rate 

for the 8 activities, which are depending on population growth.  

3. AGR. It comprises three main agricultural groups: vegetables, fruits and maize. 

Vegetable group includes tomatoes, cabbage, onion, and pepper. Fruits group 

Data input : 
critical pollutants 

(flows & 
concentrations) 

Conversion of units:  
(i.e. concentration: 

mg/m3 to mg/s) 

Internal calculations:  
mathematical  

equations  setup in 
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treatment (mg/m3) 

Treatment process 
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Pollutant 
concentration after 

treatment 
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Output 1: 
total concentration of 
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Output 2: 
interventions for 
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Output 3: 
cost-benefit analysis 

of potential 
interventions 
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includes watermelon, pineapple, banana, and citrus. Maize was treated as 

single group due to its significantly high production and water requirements. 

4. AQU. It includes two main aquaculture groups: shrimps and fish. Due to the 

significant production, shrimps are considered a separate group, whereas the 

rest of the aquaculture production is grouped as “fish”, including mainly tilapia 

and ornamental fishes. 

5. LIV. It includes four main livestock activities: porcine, ovine, poultry and bovine. 

Poultry comprises: chicken, turkey and duck production. 

6. DR. This includes rural households classified according to the type of 

wastewater treatment currently operating: HH1. Households connected to 

septic tanks (HH-ST), HH2. Households connected to improved septic tanks 

(HH-iST), as an intervention; HH3. Households connected to wastewater 

treatment plant (HH-WWTP), and HH4. Households connected to improved 

wastewater treatment plants (HH-iWWTP) – as an intervention.  

7. DU. This includes the same groups as in DR. 

8. PU. This includes two groups: services and trade. Trade comprises shopping 

centers, city market, and small shops. Service includes all public spaces such 

as parks, museums, stadiums, etc. in the urban area.   

9. INS. This comprises hospitals, hotels, and offices and schools. Offices and 

schools are grouped together because of the similarity on water consumption 

and type of pollutants discharged. 

10. IND. This includes two main groups: manufacture and construction. 

Manufacture comprises food, plastics, wood, metals, textile, mechanic, 

electronics, and other manufactured products. Construction includes all 

registered contractors and activities related to the construction sector, including 

sites of materials extraction.   

4.4. Model input:  Assumptions and parameter settings 

The study area (Figure 23) comprises altogether 31 municipalities, some of which are 

entirely located within an aquifer section but the majority are fractionalized and grouped 

into the corresponding area. Since many relevant data are registered at municipality 

level, these were implemented as weighted contributions by area percentage of each 

municipality. Table 22 gives an overview of important literature sources from which 

relevant data have been extracted.     

4.4.1. Population 
This sub-model represents the internal engine to establish the dynamics of the model 

by building the simulation on the quantitative relation of human activities to the 

population growth. This is the case in particular for public urban, institutions, domestic 
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urban and domestic rural activities, and accounts in good approximation for the 

remaining activities (the growth of livestock activity, for instance, has been slightly 

higher in recent years due export of porcine meat to the USA). 

As an example, Figure 25 shows the schematic representation in Vensim® of the 

interconnection between population sub-model and domestic water consumption in 

aquifer section A. 

Table 22 Major sources of input data for modelling the case study 
Data Source Comprehensiveness and 

time period 
Catchment characterization: 
Biological, chemical, and heavy 
metals; GPS data  

Dr. Julia Pacheco project: 
“Protection of peripheral zone and 
influence wells areas to supply the 
current MAM”. 

Most recent data 
generated of groundwater 
quality in Yucatan (2010-
2012) 

Annual production of agriculture 
and livestock in Yucatan State 

SIAP: Yucatan State Office of 
Information for Sustainable Rural 
Development  

Statistic database of the 
institution (1990-2010) 

Urban and rural statistic of the MAM YUCATAN: Yucatan Government 
Portal 

Statistic database of 
institutions (1990-2010) 

Statistic data of aquaculture in the 
Yucatan State 

SFAYP: Ministry of Agriculture and 
Fisheries of Yucatan State 

Institution database 
(1990-2010) 

Water quality and quantity of the 
Metropolitan Area of Yucatan 

JAPAY: Board of Water Supply and 
Sewerage of Yucatan State-
personal communication. 

Statistic data of the 
institution (1990-2010) 

Statistic data of rural municipalities 
of MAM and statistics of Yucatan 

OEDRIS: Yucatan State Office for 
the Sustainable Rural Development 

Rural activities database 
(2008-2012) 

Environmental Plan for Yucatan 
State and environmental data for 
the MAM 

SEDUMA: Ministry of Urban 
Development and Environment of 
Yucatan Government 

Yucatan State water 
resource management 
plans (2008-2012)  

Rural and Urban areas of Yucatan 
State 

SEMARNAT: Ministry of 
Environment and Natural 
Resources 

Statistic data from the 
database of the institution 
(2000-2010) 

Aquaculture areas of Yucatan State. 
Data per activity: total number and 
production. 

CONAPESCA. National Commission 
of Aquaculture and fishing. 
(SAGARPA) 

Punctual data from a 
sample of 80 places from 
Yucatan State. (2012-
2013) 

Quality and quantity of Yucatan 
water basin. Domestic and industrial 
wastewater characterization. 

CONAGUA. (National Water 
Commission) 

Data from internal 
monitoring quality control 
(2009-2011). 

Water nexus public health statistics 
of monitoring control for Yucatan 
State 

COFEPRIS: Federal Commission for 
the Protection against Sanitary Risk 

Statistic data from the 
database of the institution 
(2008-2010) 

Yucatan health statistics for last 10 
years: mortality, nativity, causes of 
death.| 

SSY (Health Secretariat of Yucatan 
State) 

Statistic data from the 
database of the institution 
(2000-2010) 

Population statistics: households, 
economic activities, GPS location. 

INEGI (National Population and 
household census) 

Statistic database of the 
institution (2000-2010) 

Wastewater treatment plants 
characterization: Removal efficiency 
of chemical and biological indicators 

Determination of pathogen 
microorganisms present on 
domestic wastewater treatment 
plants (Basulto-Solis, 2010). 

Punctual study of 3 of 17 
wastewater treatment 
plants in Yucatan State 
(2008-2010). 
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Population growth is estimated by the following integral, which use historic population 

records from 1990 to 2010, and then extrapolate these data for the full simulation 

period (2010-2060). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔𝑃𝑔𝑃ℎ = ∫ [𝐵𝑃𝑔𝑃ℎ𝑠(𝑠) − 𝐷𝐷𝑃𝑃ℎ𝑠(𝑠)]𝑑𝑠 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃)𝑡
𝑡𝑡   Equation 1 

 This equation is equivalent to the defined equation used in Vensim® as follows:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔𝑃𝑔𝑃ℎ = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐵𝑃𝑔𝑃ℎ𝑠 − 𝐷𝐷𝑃𝑃ℎ𝑠, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃))  Equation 2 
 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 25 Interconnection between population and domestic sub-models, exemplified for aquifer section 
A of the MAM case study 

From historic records of the study area, an annual population growth of 1.74% has 

been derived for all 4 sections of the MAM.   

4.4.2. Aquifer  

a. Aquifer sections area and volume 

The water volume of each aquifer section (Table 23) was calculated as the product of 

section area, average aquifer “thickness”, and aquifer porosity. Average values for 

aquifer section thickness were derived from depth data of the municipalities located in 

the section. Aquifer porosity is the fraction of water volume over total space volume, 

the remaining volume being taken by soil minerals.  

 Table 23 Water volume of the four aquifer sections 
Aquifer 
section 

Area 
(km2) 

Aquifer thickness 
(m) 

Aquifer porosity 
(Dimensionless) 

Aquifer water 
volume (m3) 

A 1148 72 0.35 2.89E+10 
B 1148 55 0.35 2.14E+10 
C 1141 44 0.35 1.99E+10 
D 1144 21 0.35 5.42E+09 

Source: Authors estimates based on: aquifer area from INEGI,( 2010); aquifer thickness from Gonzalez-Herrera, (1992); 
aquifer porosity from González-Herrera et al., (2002). 

b. Aquifer recharge 

Average annual rainfall data for the Yucatan municipalities is reported by the national 

government (INEGI, 2010), from historic records (1960-2009), which were used to 

calculate the rainfall per aquifer section (Table 24). 
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Table 24 Rainfall per aquifer sector in (mm/year) 
Aquifer 
section 

Rainfall- as annual 
precipitation (mm/y) 

A 1305 
B 1268 
C 1264 
D 1013 

Source: INEGI, (2010), average values from historic records (1960-2009) 

The water balance of the Yucatan karst aquifer in the study area is maintained by 

groundwater flow (with coastal outflow) and recharge by precipitation. Recharge is a 

crucial parameter for the modelling of contaminant concentrations since it determines 

the “dilution” of contaminants by both rainwater and flowing groundwater. Recharge of 

the aquifer within the study area results from average annual precipitation, after 

abstraction of actual evaporation.  

Estimates of the water recharge (as % of annual precipitation) for larger areas of the 

Yucatan karst aquifer have been given by several authors, and the values vary 

somewhat, most of them within a range of 10 - 20 % (Table 25).  Based on these data, 

a uniform value of 15% of the average annual precipitation per section has been 

assumed as aquifer recharge per section.  

        Table 25 Data reference to estimate effective rainfall for aquifer recharge 
Reference Area Recharge Method 

Bauer-Gottwein et al., (2011) based on 
Lesser, (1976) 

Yucatan aquifer 14 Water balance  

Aranda, (2011) based on Hanshaw and 
Black, (1980) 

Yucatan aquifer 5-15 Rain - Eo 

Graniel, (2010) based on BGS et al., (1995) Merida 9 Rain - Eo 
Graniel (1999) based on Rodriguez, (1984); 
SARH, (1988), and Black, (1988) 

Merida 15-25 Rain - Eo 

Gondwe et al., (2010) Yucatan Peninsula 23 Rain - Eo 
CONAGUA, (2010a) Yucatan Peninsula 15 Runoff fraction of rain  
Gonzalez-Herrera et al., (2014)  Yucatan aquifer 20 Assumption 
Eo: Evapotranspiration; Recharge is given as % of precipitation 

c. Groundwater Flow 

As already mentioned in Chapter 2, karstic aquifers in general are complex and 

heterogeneous systems with dissolution conduits, fractures and underground channels, 

which makes very challenging the modelling of groundwater flow. It is generally 

accepted that the karst aquifer in the north-western part of Yucatan (including the study 

area) is characterized by high hydraulic conductivity but very low hydraulic gradient of 

only 7-10 mm/km. Groundwater velocity measurements in the Yucatan aquifer have 

recently been summarized and are highly variable, ranging from only 7 millimetres per 

day to 10 meters per day for conduit flow (Casares-Salazar et al., 2013). While  small-

scale laboratory experiments with soil or rock samples may reveal low hydraulic 

conductivity, the effective hydraulic conductivity of the Yucatan karst aquifer at the 100 
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km scale (as for the study area) may reach very high values of 1 m/s (Worthington and 

Ford, 2009).  

The north western Yucatan aquifer has been modelled by implementing such high 

effective hydraulic conductivity values and assuming a homogeneous porous medium 

(Gonzalez, 2002). The model reveals a close match between the simulated and 

measured water table in the area. The water table contours indicate a groundwater flow 

direction from southeast to northwest, i.e. parallel to the long edge of the rectangular 

study area (Figure 23) of the present research.    

The present research also assumes an equivalent porous medium for the aquifer 

sections, as well as an equivalent groundwater flow from southeast to northwest. 

Groundwater flow velocity, however, increases from section to section (A to D) due to 

additional contributions of recharge and decreasing aquifer section volumes.   

d. Groundwater inflow into section A 

Groundwater inflow from outside the study area is mainly from the Ring of Sinkholes, 

located at the south-eastern end of section A, this is the starting point of the study area. 

The fraction of groundwater that flows through the Ring of Sinkholes (RS) in north 

western direction (i.e. towards Progreso the geometrical centre of the ring) is effectively 

feeding aquifer section A of the study area.  

In order to estimate this flow, the following assumptions and data were considered: 

- The RS is the only source of groundwater inflow for the aquifer section A 

- Water flow in the RS divides into: 40% to east coast, 40% to west coast, 20% 

north west  

- According to INEGI (2002) total recharge (rainfall - evapotranspiration) in the 

RS is 1317 Mm3/y, so:  

If total recharge in the RS =            1317x106 m3/y   

Then total groundwater flow from RS in all three directions = 41.76m3/s 

Then assuming that 20% of the total flow from RS is entering section A yields the value 

8.32m3/s for groundwater inflow into aquifer section A.  

4.4.3. Water abstraction and wastewater discharge flows  

In this section, a detailed description of water abstraction and wastewater discharge 

estimates for each of the 8 socioeconomic activities is presented. 

4.4.3.1. Domestic Urban (DU) 
Water usage for each type of household (HH) is a function of the total population in 

urban area and the water usage per capita. Table 26 shows the total number of 

households per aquifer section, together with the connection to different wastewater 
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treatment facilities in 1990. Table 27 shows total water usage and wastewater 

discharge per aquifer section in 1990. For per capita water consumption, statistical 

data for the Mexican population in 2006 was 4.23x10-6 m3/s (740 m3/y) (OECD, 2009).  

Total population of aquifer sections was obtained from Mexican census (INEGI, 1990). 

The wastewater discharge shown in Table 27 was obtained by assuming that 80% of 

total water consumption is transformed into wastewater. 

Table 26 Total urban households by treatment option (HH1-HH4), 1990 
Aquifer 
section 

Domestic Urban HH (number) 
HH1 HH2 HH3 HH4 Total 

A 4958 0 261 0 5219 
B 23745 0 1250 0 24995 
C 65106 0 3427 0 68533 
D 33578 0 1767 0 35345 

Total 127387 0 6705 0 134092 
HH1: households connected to septic tanks; HH2: households connected to improved septic tank; HH3: households 
connected to wastewater treatment plants; HH4: households connected to improved wastewater treatment plants. 

     Table 27 Water use and wastewater from domestic urban (m3/s), 1990  
Aquifer 
section 

Total HH* 
(number) 

Water usage Wastewater 
discharge 

A 5219 8.83E-02 7.06E-02 
B 24995 4.23E-01 3.38E-01 
C 68533 1.16E+00 9.28E-01 
D 35345 5.98E-01 4.78E-01 

Total 134092 2.27E+00 1.82E+00 
  * HH: Household; DU: Domestic Urban 

4.4.3.2. Industry (IND) 

Mexican government data on industrial water usage in the study area are rather limited 

since industries usually have their own water supply infrastructure and are not 

dependent on the public water supply system. To estimate industrial water 

consumption and wastewater production in the study area, the number of employees 

by industry sector in the MAM was extrapolated from Mexican government statistical 

data, and typical sector-specific water consumption per employee was derived from 

international literature.  

Table 28 shows the average water usages for different industries based on number of 

employees (Smith et al., 2012). An average of these values was used for water usage 

for manufacture industries of the study area.    

Water usage in construction comprises temporary accommodations, tool washing, wet 

trades (i.e. brickwork, screening, concreting and plastering); ground works (i.e. grouting 

and drilling), dust suppression (i.e. road and wheel washing); hydro-demolition, among 

others (Waylen, 2011). Meanwhile for manufacture industries, water use includes 

cooling machines, cleaning and sanitary (Hoi and Mui, 2002).  
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Table 28 Typical water use and wastewater discharge for different industries 
Industry Water-use 

(GED)1  
Water use 

(m3/s*employee) 
WW-discharge 

(m3/s*employee)2 
Construction 31 1.36E-06 1.16E-06 
1. Plastic 120 5.28E-06 4.49E-06 
2. Chemical  833 3.66E-05 3.11E-05 
3. Wood 2144 9.43E-05 8.02E-05 
4. Metal 738 3.25E-05 2.76E-05 
5. Electric 284 1.25E-05 1.06E-05 
6. Textile 1660 7.30E-05 6.21E-05 
7. Food & Beverage 1967 8.65E-05 7.35E-05 
8. Materials  86 3.78E-06 3.22E-06 

1GED: Gallons per Employee per Day. 2 Wastewater discharge was estimated based on the assumption that 85% of the 
water usage is converted to wastewater (Metcalf and Eddy, 1991; Metcalf and Eddy, 2003). 

One of the major water-using manufacturing industries is food processing. It spends 

most water on washing and carrying products through the plants. A characteristic of 

their wastewater is a high concentration of organic waste. Of particular concern is the 

meat processing, resulting in grease and fats contaminants that are difficult to remove 

with conventional treatments (Tchobanoglous & Schroeder, 1987).  

Both types of industries are predominantly within the MAM. The latest census of 

industries in 2013 reported a total of 516 construction companies in Yucatan from 

which 477 (92%) are located within the study area. For the same year, a total of 534 

manufacturing companies have been reported in Yucatan, from which 480 (90 %) are 

located within the study area, being food processing the main manufacture industry 

with 113 companies (INEGI, 2014; SIEM, 2014). 

Total number of employees per industries in 1990 is show in Table 29. The 1990 value 

was obtained by extrapolating back (based on population growth) the available data of 

industries per aquifer section.  

Table 29 Total number of employees by industry, 1990 
Aquifer 
section 

Construction 
industry 

Manufacture 
Industry 

Total 

A 0 0 0 
B 740 1180 1920 
C 2705 4666 7371 
D 1273 1918 3191 

Total 4718 7764 12482 

As it is mentioned in the literature, data of water usage for industries is rather limited 

and is not reported as part of the public water supply. Usually industries have their own 

supply and are not dependent on the public water supply system (Metcalf and Eddy, 

1991; Smith et al., 2012). This is the case in the study area, thus industrial water usage 

reported by government may be underestimated. 

Water usage is a function of the number of employees per type of industry and typical 

water usage per employee (Table 30). Total number of employees per industry in 1990 
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was estimated by extrapolating back from the national economic census (INEGI, 1998, 

2004, 2008).  

Typical wastewater discharges from different industries (Table 30) were estimated by 

assuming an average of 85% of the water usage in industry is converted in wastewater 

(Metcalf and Eddy, 1991; Metcalf and Eddy, 2003). 

       Table 30 Water use and wastewater from industry (m3/s), 1990 
Aquifer 
section 

Construction industry Manufacture industry Total 

 Water use Wastewater Water use Wastewater Water use Wastewater 
A 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
B 1.01E-03 8.58E-04 5.34E-02 4.54E-02 5.44E-02 4.63E-02 
C 3.69E-03 3.13E-03 2.07E-01 1.76E-01 2.11E-01 1.79E-01 
D 1.74E-03 1.48E-03 8.89E-02 7.55E-02 9.06E-02 7.70E-02 

Total 6.44E-03 5.47E-03 3.49E-01 2.97E-01 3.56E-01 3.02E-01 

This assumption was applied to Yucatan industries based on literature review and due 

to the fact that there is no wastewater reuse reported by the industrial sector 

(SEMARNAT, 2008). From the literature review in Mexico, beverage and food industry 

reported a total water consumption of 15,938m3/month and a wastewater discharge of 

14,095m3/month which corresponds to the 88% of the water usage converted in 

wastewater. Water consumption for metal industry from the same study was 25,900 

m3/month and wastewater discharge was 19,130 m3/month, which correspond to the 

74% of the water usage converted in wastewater (Cortez et al., 2009).  

4.4.3.3. Institutions (INS) 
The institution sub-model developed in this research is covering four types of 

institutions: hospitals, hotels, offices, and schools. Offices and schools were grouped 

together based on the similarity of both water requirements and wastewater 

characteristics. Measurement of water usage and wastewater discharge from 

institutions should be based on particular characteristics such as size of the facility, 

water use per student (for schools), per bed (for hospitals), or per any representative 

units used to define water usage (Tchobanoglous and Schroeder, 1987; USGS, 2000). 

The latter is because those measurements vary according to the geographical location, 

climate and type of facility (Metcalf and Eddy, 1991). Nevertheless, due to lack of data 

for water usage in specific activities for the case study, average water usage and 

average wastewater discharge were taken from the literature (NCDENR, 2009; Qasim, 

1999; Tchobanoglous and Schroeder, 1987; Metcalf and Eddy, 2003; Metcalf and 

Eddy, 1991). 

Average water and wastewater values per sub-activities from institutional facilities are 

reported in Table 31. For Yucatan case study, Table 32 to Table 34 present these total 

values per type of institution. A summary of water usage and wastewater discharge 
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from all institutions for the baseline year of simulation (1990) is reported in Table 37. 

Total number of facility (or measure unit used) corresponds to the activities reported 

from national census (INEGI, 1990; SEFOE, 2014).  

Table 31 Average data of water use and wastewater from institutions 
Sub-activity Unit Water use 

(L/unit*day) 
WW flow 

(L/unit*day) 
% of Water use 

converted in WW 
Hospitals Bed 741 693.5 93.6 
Hotels Guest 190 182.4 96 
Offices & Schools Employee 65.2 62.1 91.0 

*Average values. Sources: water use from Tchobanoglous and Schroeder (1987),Metcalf and Eddy (1991); wastewater 
discharge from Metcalf and Eddy, (1991); Metcalf and Eddy, (2003). WW: Wastewater.  

Water usage in hospitals is a function of the number of beds, average water use per 

bed and wastewater discharge rate (Table 32). As the data available in Yucatan is 

given in total number of hospitals, an average number of 15 beds per hospital were 

assumed. Then the total number of beds per aquifer section was obtained by 

multiplying the average of 15 beds per total number of hospitals in each municipality, 

times the fraction of the municipality that correspond to the geographic location within 

the aquifer section. Water usage in hotels is a function of the number of guests, 

average water usage per guest, and wastewater discharge rate (Table 33).  

Table 32 Water use and wastewater from hospitals (L/day), 1990 
Aquifer 
sections 

Total  
beds 

Water usage  Wastewater  

A 257.7 1.9E+05 1.8E+05 
B 554.8 4.1E+05 3.8E+05 
C 969.5 7.2E+05 6.7E+05 
D 678.4 5.0E+05 4.7E+05 

                                
Table 33 Water use and wastewater from hotels (L/day), 1990 

Aquifer 
sections 

Total  
guest 

Water usage  Wastewater  

A 1.7E+01 3.3E+03 3.1E+03 
B 2.0E+04 3.9E+06 3.7E+06 
C 7.6E+04 1.4E+07 1.4E+07 
D 4.4E+04 8.4E+06 8.0E+06 

The data available is in total number of hotels from this, an average of 25 guests per 

hotel was assumed. The total numbers of guests per aquifer section was obtained by 

multiplying the average of 25 guests per total hotels in each municipality times the 

municipality fraction that corresponds to the geographic location within the aquifer 

section. Wastewater discharge in schools and offices is a function of the number of 

students, average water use per student and wastewater discharge rate (Table 34).  

According to the literature the total flow of water usage in schools is converted to 

wastewater discharge (Metcalf and Eddy, 1991). Therefore, a hundred per cent of the 

water usage in schools is used as wastewater discharge value for schools. 
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      Table 34 Water use and WW from schools and offices (L/day), 2010 
Aquifer 
sections 

Students 
type 1 

Students 
type 2 

W-use 
schools 

WW 
schools 

Employees 
in offices 

W-use 
offices 

WW 
offices 

A 4.3E+02 1.1E+04 6.4E+05 6.4E+05 1.1E+03 5.8E+04 4.7E+04 
B 7.2E+03 3.8E+04 2.8E+06 2.8E+06 4.1E+04 2.2E+06 1.8E+06 
C 2.4E+04 1.1E+05 8.6E+06 8.6E+06 7.5E+04 4.0E+06 3.3E+06 
D 1.3E+04 5.3E+04 4.1E+06 4.1E+06 2.8E+04 1.5E+06 1.2E+06 

Type 1: High school & University; Type 2: Kinder, elementary & secondary school. W-use: water usage; WW: 
wastewater 

The total number of students per aquifer section was obtained by multiplying total 

number of students per municipality times the fraction of the municipality that 

correspond to the geographic location within the aquifer section.  

The total number of employees from offices was obtained by multiplying the total 

number of employees per municipality by the fraction of the municipality that 

correspond to the geographic location within the aquifer section.  

Overall, offices and schools are the biggest water users from the institutions evaluated 

(Table 35). It may be because of the large numbers of young people that represent the 

majority of the Yucatan State population. An exception is hotels water usage in aquifer 

sections C and D, where majority of touristic area is located. 

Table 35 Water use from institutions (L/day), 2010 
Sub-activities Unit Aquifer sections Total Water 

usage (m3/s) A B C D 
Hospitals Bed 1.9E+05 4.1E+05 7.2E+05 5.0E+05 2.1E-02 
Hotels Guest 3.3E+03 3.9E+06 1.4E+07 8.4E+06 3.1E-01 
Offices & Schools Emp/Student 7.0E+05 5.0E+06 1.3E+07 5.6E+06 2.8E-01 
Total  8.9E+05 9.3E+06 2.8E+07 1.4E+07 6.1E-01 

In terms of geographical location, the highest consumption of water and hence highest 

discharge of wastewater is located in section C (Table 36 and Table 37); it is because 

most of Merida the capital city is located in section C, which has the majority of 

institutions infrastructure.     

            Table 36 Wastewater discharge from institutions (L/day), 2010 
Sub-activities Unit Aquifer sections Total WW 

(m3/s) A B C D 
Hospitals Bed 1.8E+05 3.8E+05 6.7E+05 4.7E+05 2.0E-02 
Hotels Guest 3.1E+03 3.7E+06 1.4E+07 8.0E+06 3.0E-01 
Offices & Schools Emp/Student 6.9E+05 4.6E+06 1.2E+07 5.3E+06 2.6E-01 
Total  8.7E+05 8.7E+06 2.6E+07 1.4E+07 5.0E+07 

These available data for 2010 were extrapolated back to the year 1990, based on 

population growth rate of 1.74%/y. Table 37 summarises institutional water usage and 

wastewater discharge for 1990, as baseline input data for the model. 
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Table 37 Water use (WU) and wastewater (WW) flows in m3/s from institutions, 1990  
Aquifer 
sections 

Office  & Schools Hospital Hotel Total   (m3/s) 

 WU WW WU WW WU WW WU WW 
A 5.7E-3 5.6E-3 1.6E-3 1.5E-3 2.7E-5 2.6E-5 7.3E-3 7.1E-3 
B 4.0E-2 3.7E-2 3.3E-3 3.1E-3 3.2E-2 3.0E-2 7.5E-2 7.1E-2 
C 1.0E-1 9.7E-2 5.9E-3 5.5E-3 1.2E-1 1.1E-1 2.3E-1 2.1E-1 
D 4.6E-2 4.3E-2 4.1E-3 3.8E-3 6.8E-2 6.5E-2 1.2E-1 1.1E-1 

Total 1.9E-1 1.8E-1 1.5E-2 1.4E-2 2.2E-1 2.1E-1 4.3E-1 4.1E-1 

4.4.3.4. Public Urban (PU) 
For the estimation of both, water usage and wastewater discharge flows in trade 

activities, an average value from activities grouped in trade activity from the literature 

(Table 38) was used. Water demand for service activities is a function of a typical 

municipal water use for public services of 5.5x10-7 m3/s per capita (Metcalf and Eddy, 

1991), and the total population in urban areas.  

Total population in urban areas was obtained per municipality from data census 

multiplied by the fraction of each municipality corresponding to each section of the 

aquifer. Total water usage and wastewater discharged from services in each aquifer 

section is shown in Table 39 for 1990. In terms of wastewater discharge, 80% of water 

usage was assumed to be converted in wastewater, similarly as in domestic. 

               Table 38 Typical flow of water and wastewater per customer from trade, 1990 
Trade W-use Range (gal/unit/d) Average 

m3/s 
*WW (gal/d*unit) Average 

m3/s Min Max Average Min Max Average 
Restaurant 8 10 9 3.96E-7 2 4 3.0 1.32E-7 
Food take-away 3 8 5.5 2.42E-7 1 5 3.0 1.32E-7 
Bar & cocktail 2 4 3 1.32E-7 1 5 3.0 1.32E-7 
Cinema 2 4 3 1.32E-7 2 4 3.0 1.32E-7 
Department store 8 13 10.5 4.62E-7 8 12 10.0 4.40E-7 
Cafeteria 4 10 7 3.08E-7 1 3 2.0 8.80E-8 
Coffee shop 15 30 22.5 9.90E-7 4 8 6.0 2.64E-7 
Store, retail 5 20 12.5 5.50E-7 1 4 2.7 1.17E-7 
Average 5.9 12.4 9.13 4.01E-7 2.5 5.6 4.1 1.80E-7 

Source: Metcalf and Eddy, (1991); Tchobanoglous and Schroeder, (1987). *WW: wastewater discharged 

Table 39 Water usage and wastewater flows (m3/s) from service, 1990 
Aquifer 
section 

Urban 
population 

Water 
usage  

Wastewater 
discharge 

A 2.09E+04 1.15E-02 9.18E-03 
B 1.00E+05 5.50E-02 4.40E-02 
C 2.74E+05 1.51E-01 1.21E-01 
D 1.41E+05 7.77E-02 6.22E-02 

Total 5.36E+05 2.95E-01 2.36E-01 

Total water usage for trade activities is a function of the average water usage in trade 

activities, an average wastewater discharge, and the total number of people in trade 

activities. Total number of people in trade sector was obtained from the total number of 

employees per municipality from census data multiplied by the fraction of each 
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municipality corresponded to each section of the aquifer. Total water usage and 

wastewater from trade are shown in Table 40.  

                          Table 40 Water usage and wastewater flow from (m3/s) trade, 1990 
Aquifer section Trade employee  Water usage Wastewater 

A 2.51E+02 1.01E-04 4.51E-05 
B 5.07E+02 2.04E-04 9.13E-05 
C 4.27E+02 1.72E-04 7.69E-05 
D 6.40E+02 2.57E-04 1.15E-04 

Total 1.83E+03 7.33E-04 3.29E-04 

Table 41 Water use from public urban activities (m3/s), 1990 
Activity A B C D Total 
Service 1.15E-02 5.50E-02 1.51E-01 7.77E-02 2.95E-01 
Trade 1.01E-04 2.04E-04 1.72E-04 2.57E-04 7.33E-04 
Total  1.16E-02 5.52E-02 1.51E-01 7.80E-02 2.96E-01 

Table 42 Wastewater discharge from public urban activities (m3/s), 1990 
Activity A B C D Total 
Service 9.18E-03 4.40E-02 1.21E-01 6.22E-02 2.36E-01 
Trade 4.51E-05 9.13E-05 7.69E-05 1.15E-04 3.29E-04 
Total  9.23E-03 4.41E-02 1.21E-01 6.23E-02 2.36E-01 

In terms of water usage, the service sector reports a usage for services significantly 

higher than trade sector in section C and D. This may be due to predominant service 

activity around Merida (Table 41). Overall, the main water usage from public urban 

activities in the study area is the service sector, which accounts for a total of 2.9x10-1 

m3/s in 1990. It is not the same for wastewater discharge, where sections B, C and D 

have a significantly higher wastewater discharge in service (Table 42). Even though the 

wastewater discharges from service activity is 80% and 45% for trade, these does not 

change the pattern of wastewater discharge for each section. Therefore for Yucatan 

case study, the main wastewater from public urban activities is discharged from service 

activities which accounts for a total of 2.36x10-1 m3/s. 

4.4.3.5. Domestic Rural (DR) 
Table 43 shows the total number of households (HH) per aquifer section together with 

connection to different treatment facilities (HH1-HH4) per section of Yucatan in 1990, 

showing that only simple septic tanks are relevant to the rural section.  

Table 43 Total rural households by treatment (HH1-HH4), 1990 
Aquifer 
section 

Total Rural HH (number) 
HH1 HH2 HH3 HH4 Total 

A 1739 0 0 0 1733 
B 8332 0 0 0 8332 
C 22844 0 0 0 22844 
D 11782 0 0 0 11782 

Total 44801 0 0 0 44801 
HH1 & HH2: households with septic tank and improved septic tank respectively; HH3 & HH4: 
households connected to wastewater treatment plants and improved wastewater treatment 
plants respectively. 
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Table 44 shows total water usage and wastewater discharge of domestic rural in 

Yucatan in 1990 (details explained in section 4.4.3.1.). Water usage is a function of the 

per capita water abstraction and total population or total number of households. Data of 

water abstraction per capita for Mexico, and total population were obtained from 

Mexican census (OECD, 2009; INEGI, 1990). 

Table 44 Water use and wastewater from domestic rural (m3/s), 1990  
Aquifer 
section 

Total HH 
(number) 

W-use 
(m3/s) 

WW 
(m3/s) 

A 1733 2.93E-02 2.35E-02 
B 8332 1.41E-01 1.13E-01 
C 22844 3.89E-01 3.11E-01 
D 11782 2.49E-01 1.99E-01 

Total 44801 8.08E-01 6.46E-01 
                  HH: Household; W-use: Water usage; WW: Wastewater discharge 
 

4.4.3.6. Agriculture (AGR) 
The agriculture sub-model comprises two groups: vegetables and fruits, which are 

representative of the main agriculture in the study area (INEGI, 2010).  Vegetables 

include: tomato, maize, cucumber, habanero and green chilli, zucchini, avocado, and 

henequen. Fruits group includes: watermelon, orange, lemon, mamey, coco fruit, 

papaya, and other fruits. In order to estimate water usage and wastewater discharge 

from agriculture activity, it is important to consider fundamental principles based on 

FAO, (1986). Crop water utilization is defined as “the amount of water needed to meet 

the water loss through evapotranspiration (Eo), and to grow in optimal conditions”.  

In order to derive crop water utilization, there are three environmental parameters that 

need to be considered: climate, crop type, and growth stage of the crop. The influence 

of the last two parameters is reported as crop factor (Kc).  

- Climate influence on crop water needs (Eo) - it is given by the reference crop 

evapotranspiration (Eo) used by FAO (grass), expressed in millimetres per unit of 

time (i.e. mm/day; mm/month; mm/season). The rate of Eo is determinate from a 

large area, by green grass 8 to 15cm tall, which grows completely in shades and 

with no shortage of water; either by experimental evaporation (such as the pan 

method) or by measured climate data (such as the Blaney-Criddle method). 

- Crop type influence on the crop water needs (Kc) – it depends on three factors: the 

type of crop, the growth stage of the crop and the climate. In order to determinate 

Kc, there are three steps: 1. Determine total growing period of each crop is needed; 

2. Determine the various growth stages of each crop; and 3. Determine the Kc 

value for each crop at each stage of growth or ETo (estimated above). Typical 

values of total growing period and growth stages for various crops are documented 

by FAO, (1986). All these values need to be considered. 
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 Table 45 Water utilization efficiency per crop (kg/m3) 
 

Crop 
Type of  crop Crop water utilization efficiency (kg/m3)   

min max average 
Tomato* vegetables 10 12 11 
Cabbage* vegetables 12 20 16 
Onion* vegetables 8 10 9 
Pepper* vegetables 1.5 3 2.25 
Maize vegetables 0.8 1.6 1.2 
Pasture vegetables 1.5 2 1.75 
Watermelon* fruit 5 8 6.5 
Pineapple* fruit 8 12 10 
Banana* fruit 2.5 4 3.25 
Citrus* fruit 2 5 3.5 
Vegetable vegetables 7.9 11.3 9.6 
Fruits fruit 4.4 7.3 5.8 
* Vegetables and fruits used to estimate average for each type of crop. Maize was estimated with its original value. 

From the above explained, FAO, (2013) have reported the water utilization efficiency 

for harvested yield (Ey) for specific crops (Table 45). Water utilization efficiency (Y/ET) 

is defined as yield of plant product (tonnes of crop, Y) per unit of crop water use (litres 

of water lost by evapotranspiration, ET) (Atwell et al., 1999). Table 46 shows 

agriculture production by crop type (SAGARPA, 2010).   

 
Table 46 Total crop production (m3/s) in Yucatan in 2005 

Crops Type Total production (ton)  
A B C D 

Tomato vegetables 0.0E+00 4.5E+02 1.5E+03 1.1E+03 
Maize vegetables 7.1E+03 1.0E+03 0.0E+00 0.0E+00 
Cucumber vegetables 8.4E+01 3.0E+02 3.4E+02 3.4E+02 
Habanero chilli vegetables 0.0E+00 2.6E+02 3.9E+02 2.4E+02 
Green chilli vegetables 6.3E+01 0.0E+00 4.0E+01 0.0E+00 
Zucchini vegetables 0.0E+00 4.1E+02 6.4E+02 4.4E+02 
Vegetables vegetables 0.0E+00 3.7E+02 4.3E+02 2.9E+02 
Avocado vegetables 0.0E+00 2.7E+02 4.8E+02 3.2E+02 
Henequen  vegetables 1.2E+02 8.3E+02 0.0E+00 0.0E+00 
Watermelon fruit 6.3E+02 6.8E+02 3.0E+02 3.0E+02 
Mamey fruit 0.0E+00 2.7E+03 2.9E+03 0.0E+00 
Coco fruit fruit 0.0E+00 2.4E+02 4.0E+02 0.0E+00 
Papaya fruit 0.0E+00 2.3E+02 2.3E+02 2.3E+02 
Orange fruit 0.0E+00 1.8E+02 3.7E+02 3.2E+03 
Lemon fruit 3.4E+02 2.0E+03 2.0E+03 1.6E+03 
Other citrus fruit 0.0E+00 1.1E+03 1.6E+03 1.3E+03 
Other fruits fruit 0.0E+00 5.5E+02 7.6E+02 5.5E+02 
Total fruits fruit 9.7E+02 7.7E+03 8.5E+03 7.1E+03 
Total Veg vegetables 7.4E+03 3.9E+03 3.9E+03 2.8E+03 
 

In order to derive the initial data input for the model, which starts simulating in 1990, 

agriculture production growth was assumed to follow population growth (average 

population growth rate of 1.74%/y). Then agriculture production was extrapolated back 

to 1990, and the results are given in Table 47.Table 48 is grouping crop production 
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from Table 46 into the three groups: vegetables, fruits and maize. Maize was classified 

separately since it is a major crop in the area but its value for water utilization efficiency 

is much lower than the vegetable value.                                         

Table 47 Agriculture production (Tons), 1990 
Crops Type Total production 

A B C D 
Tomato vegetables 0.0E+00 3.5E+02 1.2E+03 8.7E+02 
Maize vegetables 5.5E+03 7.8E+02 0.0E+00 0.0E+00 
Cucumber vegetables 6.5E+01 2.3E+02 2.6E+02 2.6E+02 
Chile habanero vegetables 0.0E+00 2.0E+02 3.0E+02 1.8E+02 
Chile verde vegetables 4.8E+01 0.0E+00 3.1E+01 0.0E+00 
Zucchini vegetables 0.0E+00 3.1E+02 4.9E+02 3.4E+02 
Vegetables vegetables 0.0E+00 2.8E+02 3.3E+02 2.2E+02 
Avocado vegetables 0.0E+00 2.1E+02 3.7E+02 2.5E+02 
Henequen  vegetables 9.6E+01 6.4E+02 0.0E+00 0.0E+00 
Watermelon fruit 4.9E+02 5.2E+02 2.3E+02 2.3E+02 
Orange fruit 0.0E+00 2.1E+03 2.2E+03 0.0E+00 
Lemon fruit 0.0E+00 1.9E+02 3.0E+02 0.0E+00 
Mamey fruit 0.0E+00 1.7E+02 1.7E+02 1.7E+02 
Coco fruit fruit 0.0E+00 1.4E+02 2.9E+02 2.5E+03 
Citrus fruit 2.6E+02 1.6E+03 1.5E+03 1.2E+03 
Other fruits fruit 0.0E+00 8.5E+02 1.2E+03 9.7E+02 
Papaya fruit 0.0E+00 4.2E+02 5.8E+02 4.2E+02 
Total fruits fruit 7.5E+02 5.9E+03 6.5E+03 5.5E+03 
Total Veg vegetables 5.7E+03 3.0E+03 3.0E+03 2.1E+03 
Total Production Veg + Fruit 6.4E+03 8.9E+03 9.5E+03 7.6E+03 
* Total veg is estimates without maize. Total Production includes: vegetables, fruits, and maize. 

Table 48 Total agriculture production (Tons), 1990 
Crops A B C D Total 

production  
Vegetables 2.1E+02 2.2E+03 3.0E+03 2.1E+03 7.5E+03 
Fruit 7.5E+02 5.9E+03 6.5E+03 5.5E+03 1.9E+04 
Maize 5.5E+03 7.8E+02 0.0E+00 0.0E+00 6.3E+03 
Total 6.4E+03 8.9E+03 9.5E+03 7.6E+03 3.2E+04 

In 2013, Yucatan government reported a total water usage in the Metropolitan Area of 

Merida (MAM) for agriculture of 3.71x107 m3/y (1.2 m3/s), which corresponds to a total 

area of 480 km2 (Yucatan Government, 2013). The total agriculture area of MAM 

covered by the four sections of this study is 595 km2. Therefore the total water usage 

for agriculture corresponding to the four sections was extrapolated to 1.5 m3/s in 2013. 

The wastewater estimation was obtained considering the following assumptions: 

- Water needed for the crop (water utilization by crop, Table 45) is less than the 

water irrigation volume reported, therefore, the remaining of the irrigation volume in 

Yucatan is considered as wastewater discharged to the aquifer (irrigation – crop 

water utilisation = wastewater). 
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- As there is no wastewater treatment infrastructure placed in agriculture fields, total 

wastewater reported will be considered untreated, which means the total load of 

pollutants (chemical  and microbial) will reach the aquifer. 

By combining the data of agriculture production per crop type in 1990 (Table 47) with 

the data of water utilization per crop type (Table 45), the water utilization per crop type 

and aquifer section were estimated and reported in Table 49, with a total crop water 

utilization of 0.29 m3/s in 1990 for the study area.  

Table 49 Water utilization per crops (m3/s), 1990 
Crops A B C D Total 
Vegetables 6.9E-04 7.3E-03 9.8E-03 7.0E-03 2.5E-02 
Fruit 4.1E-03 3.2E-02 3.6E-02 3.0E-02 1.0E-01 
Maize 1.4E-01 2.1E-02 0.0E+00 0.0E+00 1.7E-01 
Total 1.5E-01 6.0E-02 4.5E-02 3.7E-02 2.9E-01 

 
By extrapolating back based on population growth the total irrigation water use for 

agriculture from 2013 to the year 1990, a value 0.79 m3/s is obtained for the study area 

(Table 50).  

The corresponding wastewater discharge, as given in Table 51, is derived by 

“subtracting” Irrigation – crop water utilization = Wastewater. The total wastewater 

discharge in the study corresponds to 0.5 m3/s, i.e. 63% of the irrigation water usage. 

Table 50 Water use in agricultural Irrigation (m3/s), 1990 
Crops A B C D Total 
Vegetables 1.9E-03 2.0E-02 2.6E-02 1.9E-02 6.7E-02 
Fruit 1.1E-02 8.7E-02 9.6E-02 8.1E-02 2.8E-01 
Maize 3.9E-01 5.6E-02 0.0E+00 0.0E+00 4.5E-01 
Total 4.0E-01 1.6E-01 1.2E-01 1.0E-01 7.9E-01 

                    
Table 51 Wastewater discharge from agriculture (m3/s), 1990 

Crops A B C D Total   
Vegetables 1.17E-03 1.25E-02 1.67E-02 1.19E-02 4.22E-02 
Fruit 6.94E-03 5.51E-02 6.07E-02 5.10E-02 1.74E-01 
Maize 2.47E-01 3.50E-02 0.00E+00 0.00E+00 2.82E-01 
Total 2.5E-01 1.0E-01 7.7E-02 6.3E-02 5.0E-01 

 

4.4.3.7. Aquaculture (AQU) 
This sub-model comprises two predominant aquaculture activities in Yucatan State 

which are classified in two groups: “shrimp”, and “fish and others”; the latter is mainly 

represented by tilapia (Oreochromis niloticus) and ornamental fish; based on their 

volume of production.  

An important reason for considering aquaculture activity as sub-model for this research 

was its local and extended impact on the water quality along the 1500 km of the coastal 

area in the Yucatan Peninsula. A monitoring program was conducted in 1999 in four 

coastal cities at the north of Yucatan (Progreso, Dzilam, Sisal and Celestun). The aim 
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of this study was to identify anthropogenic impact in terms of water quality. This study 

reported the municipalities of Sisal and Progreso had the worst water quality along the 

coastal area of Yucatan in terms of ammonium, nitrate, nitrite, phosphate, silicate, and 

chlorophyll-a. Impacting factors identified were the shrimp farm effluents from 

aquaculture activity, harbor effluents, and inadequate wastewater disposal. Thus, these 

issues should be integrated in the water management for Yucatan (Herrera-Silveira et 

al., 2004). 

Potential sources of nitrate were identified from shrimp ponds, which are fertilized with 

nitrate and silica to favour the growth of diatoms. The highest concentrations of salinity, 

nutrients and chlorophyll-a were related to shrimp farms and harbor effluents. 

Ammonium, nitrite and phosphate were related to anthropogenic impact from tourism 

due to its seasonal variation (higher during the summer). 

Overall aquaculture activity within the study area of this research is small. In Yucatan, 

there were in total 51 aquaculture production units (aquaculture facilities) in 2013, 

which are located in 23 municipalities. Seven of these municipalities are within the 

study area of this research, which in total account for 21 aquaculture production units. 

These are show in Table 52, were they are classified in the two aquaculture groups 

mentioned above. 

Table 52 Sections of the case study with aquaculture activity 
Municipality Aquifer section Group 
Hunucma C and D Shrimp, fish and others* 
Kanasin B and C Shrimp, fish and others* 
Merida B, C and D Shrimp, fish and others* 
Mococha C Shrimp, fish and others* 
Progreso D Fish and others 
Seye B Fish and others 
Uman C Fish and others 

        *Fish and others: includes tilapia and ornamental fish 

Due to the current small presence of aquaculture in Yucatan, it contributes a relatively 

small water usage compared to other activities such as agriculture or livestock. It is 

important to quantify this activity due to the fact that surface water is not available and 

that the waters around the peninsula are well endowed with marine life. Therefore, the 

karstic aquifer underneath the study area could be endangered if there is not adequate 

management of these effluents. 

Some studies in high densities of fish farms in Chile, Scotland, Mediterranean, and the 

Kingdom of Norway reported little risk of regional eutrophication in coastal water with 

good water exchange (Soto and Norambuena, 2004; Gowen and Ezzi, 1994; Pitta et 

al., 2006; Husa et al, 2010). Moreover, other studies in the salmon farming at the north 

of Norway have found, based on monitoring of water transport and typical nitrogen and 
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phosphorous along coastal areas, that the release of nutrients from aquaculture has an 

insignificant effect in coastal waters (Aure et al., 2010). 

In 2006 Yucatan authorities reported a total aquaculture water use of 1.73x105 m3, 

which was considered as “non-consumed” (SEMARNAT, 2006). It was therefore 

assumed that hundred per cent of this water usage turns into wastewater. Water usage 

in aquaculture is a function of the total production per year and average water usage 

per product. Average water usage for fish (tilapia) reported in the literature as “water 

use efficiency for tilapia” is 2.9 m3 per kg of fish produced (range from 2.7m3/kg to 

3.1m3/kg), and shrimp 0.75 m3/ton (Boyd, 2007; Van der Heijden, 2012). 

Table 53 Aquaculture production (Kg), 1990 
Activities A B C D Total  
Fish and others 0.00E+00 2.65E+03 1.08E+04 5.28E+03 1.87E+04 
Shrimp 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Total 0.00E+00 2.65E+03 1.08E+04 5.28E+03 1.87E+04 

                                     
Total aquaculture production per section in 1990 is reported in Table 53. Water usage 

for the same year is reported in Table 54, and wastewater discharge is the same, 

assuming that total water usage is returned as wastewater. 

Table 54 Water use in aquaculture (m3/s), 1990 
Activities A B C D Total 
Fish and others 0.00E+00 2.44E-04 9.91E-04 4.86E-04 1.72E-03 
Shrimp 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Total 0.00E+00 2.44E-04 9.91E-04 4.86E-04 1.72E-03 

4.4.3.8. Livestock (LIV) 
This sub-model includes porcine, bovine, poultry (chicken and turkey), and ovine 

activities, which were selected based on the representative livestock production for 

Yucatan reported over the last two decades (SAGARPA, 2005). It is important to 

consider this activity as part of the model due to its water quality impact. Table 55 

shows water demand for specific livestock reported in the literature. For the present 

research this corresponds to the blue water portion (surface and groundwater) of the 

water footprint (WFP) of these products. 

        Table 55 Specific water demand per livestock product for Mexico 
Product Average water demand (m3/Ton meat)1 Type of production 
Bovine  157 Grazing 
Porcine 602 Industrial 
Poultry  305 Industrial 
Ovine  276 Grazing 

1blue water portion of the water footprint of the product produced in Mexico. Source: Melkonnen & Hoekstra, 2010; 
Doreau, Corson, and Wiedemann, 2012. 

WFP is considered the main method to assess water use in terms of green, blue and 

grey water. Blue water is the most direct measurement that represents the drinking 

water and the services required for the animal growth (Melkonnen & Hoekstra, 2010; 
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Doreau, Corson, and Wiedemann, 2012). In this study, livestock blue water reported for 

Mexico was used as average water usage to estimate livestock water use. 

Yucatan State is classified in three regions in terms of agriculture and livestock 

activities. The northeast is the largest livestock area; all south is corn production area 

and the northwest was the henequen region, nevertheless henequen production has 

declined and now porcine and poultry are the predominant activities. In Yucatan, the 

largest area of bovine activity is located at the northeast portion, as well as poultry and 

swine industry in the MAM which have flourished in the last two decades. Therefore, 

the study area of this research has an important risk of groundwater contamination by 

livestock wastewater (INIFAP, 2010).  

In terms of economic growth, swine farming has a recent growth, from which about 25 

thousand people depend directly or indirectly since 2006. In addition, local 

consumption of pork meat in Yucatan is among the highest in Mexico, therefore the 

production is expected to increase mainly with the demand of increasing population 

(SEMARNAT, 2006). Livestock production in 1990 corresponding to the four sections 

of the study area is reported in  Table 56 (INEGI, 1990).   

   Table 56 Livestock production (Tons), 1990 
Aquifer section Bovine Ovine Porcine Poultry Total 

A 4.23E+02 1.58E+01 4.84E+02 2.01E+03 2.94E+03 
B 3.09E+03 1.68E+01 2.87E+04 1.10E+04 4.27E+04 
C 3.19E+03 1.76E+01 3.10E+04 2.47E+04 5.89E+04 
D 3.02E+03 5.41E+00 3.00E+04 1.20E+04 4.50E+04 

Total 9.73E+03 5.57E+01 9.01E+04 4.97E+04 1.50E+05 

Total water consumption of 10 hm3 per year (0.32 m3/s) for the 300 swine farming in 

Yucatan and total wastewater discharge of 7 hm3 were reported in 2006 (SEMARNAT, 

2006). It was assumed that the 70% of water usage is converted to wastewater. In this 

way, using production values from  Table 56, data were derived for water usage and 

wastewater production by livestock activity as shown in Table 57 and Table 58. 

Table 57 Water use in m3/s from livestock, 1990 
Aquifer section Bovine Ovine Porcine Poultry Total 

A 2.11E-03 1.39E-04 9.23E-03 1.95E-02 3.10E-02 
B 1.54E-02 1.47E-04 5.47E-01 1.06E-01 6.69E-01 
C 1.59E-02 1.54E-04 5.91E-01 2.39E-01 8.46E-01 
D 1.50E-02 4.74E-05 5.72E-01 1.16E-01 7.04E-01 

Total 4.84E-02 4.87E-04 1.72E+00 4.81E-01 2.25E+00 

Table 58 Wastewater discharge in m3/s from livestock, 1990 
 
 

 
 

Aquifer section Bovine Ovine Porcine Poultry Total 
A 1.48E-03 9.71E-05 6.46E-03 1.36E-02 2.17E-02 
B 1.08E-02 1.03E-04 3.83E-01 7.42E-02 4.68E-01 
C 1.11E-02 1.08E-04 4.14E-01 1.67E-01 5.92E-01 
D 1.05E-02 3.32E-05 4.00E-01 8.15E-02 4.93E-01 

Total 3.39E-02 3.41E-04 1.20E+00 3.36E-01 1.57E+00 
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4.5. Summary of model settings and data input  

Table 59 summarises the data for water usage and wastewater release, mostly derived 

from literature information on typical water usage for the specific activity or sub-module, 

respectively estimated in this chapter. These data were extrapolated in Vensim to the 

starting year 1990 and used for the simulations.  

Table 59 Data input for the Sustainable Integrated Water Management Model (SIWMM) in 1990 for full 
study area 

Sub-module Variable (units) Typical Water usage W-usage WW 
(Reported unit) (Converted unit) (flow unit) (flow/unit) 

Agriculture unit m3/Ton m3/s *Ton m3/s m3/s 

Vegetable 104.2 3.3E-06 6.7E-02 4.3E-02 
Fruits 172.4 5.5E-06 2.8E-01 1.8E-01 
Maize 833.3 2.6E-05 4.5E-01 2.8E-01 
Total     8.0E-01 5.0E-01 

Aquaculture unit m3/kg m3/s * kg m3/s m3/s 

Shrimp 750 2.4E-05 0.E+00 0.0E+00 
Fish & others 2.9 9.2E-08 1.7E-03 1.7E-03 
Total     1.7E-03 1.7E-03 

Livestock unit m3/Ton m3/s *Ton m3/s m3/s 

Porcine 602 1.9E-05 1.7E+00 1.2E+00 
Bovine 157 4.9E-06 4.8E-02 3.4E-02 
Poultry 305 9.6E-06 4.8E-01 3.4E-01 
Ovine 276 8.7E-06 4.9E-04 3.4E-04 
Total     2.2E+00 1.6E+00 

Industry unit GED m3/s *empl m3/s m3/s 

Construction 31 1.3E-06 6.4E-03 5.5E-03 
Manufacture 817 3.5E-05 2.8E-01 2.4E-01 
Total     2.9E-01 2.4E-01 

Institutions unit L/day*people m3/s *people m3/s m3/s 

Hospitals 741 8.5E-06 1.5E-02 1.4E-02 
Hotels 190 2.1E-06 2.2E-01 2.1E-01 
Office & School 53.2 6.1E-07 6.2E-02 5.1E-02 
Total     4.6E-01 4.1E-01 

Public Urban unit G/day*people m3/s*people m3/s m3/s 
Service 12.5 5.4E-07 2.5E-02 2.0E-02 
Trade 9.13 4.0E-07 7.3E-04 4.4E-04 

Total     2.6E-02 2.0E-02 
Domestic 

Urban 
unit G/day*people m3/s*people m3/s m3/s 
HH1 366 4.2E-06 8.8E-02 7.1E-02 
HH2 366 4.2E-06 4.2E-01 3.4E-01 

HH3 366 4.2E-06 1.2E+00 9.3E-01 
HH4 366 4.2E-06 6.0E-01 4.8E-01 
Total     2.3E+00 1.8E+00 

Domestic 
Rural 

unit L/d*people m3/s*people m3/s m3/s 
HH1 366 4.2E-06 2.9E-02 2.4E-02 
HH2 366 4.2E-06 1.4E-01 1.1E-01 

HH3 366 4.2E-06 3.9E-01 3.1E-01 
HH4 366 4.2E-06 2.0E-01 1.6E-01 
Total     7.6E-01 6.1E-01 

HH1 & HH2: households with septic tank and improved septic tank respectively; HH3 & HH4: 
households connected to wastewater treatment plants and improved wastewater treatment 
plants respectively. 
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All data for the 8 socio-economic activities (8 sub-models) including agriculture, 

livestock, aquaculture and industry sub-models were estimated based on statistical 

data and production records at aquifer section scale. Based on 20 years period of data 

input (1990-2010) together with the mathematical equations defined throughout this 

chapter, Vensim estimates current and future water demand and wastewater 

production in term of water quality (Q), using for instance nitrate (in mg/m3) or faecal 

coliforms (in CFU/m3) and in terms of water quantity (F) using flows (in m3/s), as 

illustrated in the causal-loop of the SD model developed for the MAM case study (see 

Figure 21).  

In general, values of flows are given in m3/s, and pollutant concentrations (see Chapter 

5) are given in CFU/m3 or mg/m3 for FC or NO3 respectively, so that pollutant loads in 

CFU/s or mg/s for FC or NO3 respectively van be derived. Then a series of equations 

are declared in Vensim to interconnect the data input of water flow (including 

groundwater flow, rainfall, water abstraction and wastewater release) and pollutant 

concentrations through mathematical equations. These equations allow Vensim to 

simulate pollutants concentration over 50 years of simulation period.  

Population growth is used as the linking dynamic parameter to forecast the future 

development of water abstraction and wastewater release (and consequently pollutant 

loads), in particular since the majority of the social and economic production is related 

to local consumption. In the near future, however, livestock and in particular porcine 

activity could become an external factor along with increasing export sales. 

Concerning the estimation of pollutant loads, there are other methods than the used in 

this thesis (compare Chapter 5) as discussed by Benham et al., (2006). For instance, 

for bacteria loads Bacteria Source Load Calculator (BSLC) by Zeckoski et al., (2005) 

and Bacteria Indicator Tool (BIT) by USEPA (2000) methods might be used. Other 

indirect methods to estimate pollutants loads are through technical guidelines (e.g., 

USEPA, 2012c) as described by Niu and Phanikumar, (2015), which could lead to 

significant uncertainty associated to specific management practices and pollutant stage 

of change for each socioeconomic activities. For instance, between storage and 

application of manure on land (DeGuise and Mostaghimi, 2000) reported a decrease in 

FC of two orders of magnitude but also a re-growth of bacteria during field application 

has been observed (Crane et al., 1980; Wang et al., 2004). For the present thesis, a 

significant amount of local data was available, mainly from historic data records, 

together with data from local field research collected. Thus pollutant loads in this 

research were largely estimated on the basis of existing data, with some years of data 

inconsistency that were extrapolated.     
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Chapter 5. Methodology for modelling pollutants 

“Most modellers would argue that the primary benefits of modelling are to bring clarity 

of thought and to integrate all the information about one question. Models can also be 

used to quantify processes and effects, make predictions and give some understanding 

of uncertainty, but these benefits are less easy to realise…modelling tools are to help 

analyse many aspects of the groundwater….but not all” (UKEA, 2009).  

This chapter includes the pollutant’s selection, pollutant’s sources, and specific 

implications for model inputs with assumptions and parameter settings for each of the 

two pollutants modelled: Faecal coliforms (FC), and nitrate (NO3). It also present a 

summary of the interventions proposed in this study together with the description of the 

cost-benefit analysis developed for the selection of the most suitable intervention 

proposed in this research. 

5.1. Pollutants selection: Nitrate and faecal coliform 
Groundwater pollutants in Yucatan aquifer and associated diseases have already been 

discussed in chapter 3. Nitrate (NO3) and faecal coliforms (FC) were selected for the 

SIWM model because of their impact for public health. 

Nitrate is a chemical indicator of water quality and an example of a conservative 

pollutant, i.e. nitrate may remain mainly unchanged in groundwater for decades and is 

not essentially degraded during wastewater treatment processes but requires specific 

removal techniques (such as ion exchange or biological denitrification). The latter 

accounts in particular for the oxygen rich groundwater of the Yucatan aquifer which is 

expected to prevent anoxic denitrification processes. Tracing the fate of a conservative 

pollutant could help to understand the long-term effects of pollution of the natural 

aquifer resource by anthropogenic activities in the study area.      

In terms of public health, excessive concentration of nitrate in water can cause 

cyanosis (also called blue babies’ syndrome or methemoglobinemia) in children under 

5 years due to reduction of nitrate to nitrite in the upper digestive tract of infants 

(Zaporozec, 1983). Some studies have associated nitrate with hypertension, and as a 

consequence of chemical reaction to nitrosamines also with cancer and premature 

diabetes in adults (Pacheco and Cabrera, 2013; Parslow et al., 1997; Comly, 1987; Hill 

et al., 1973). In addition, it has been reported as a cause of recurrent stomatitis (Gupta 

et al., 1999). Nitrate analysis of selected deep water supply wells of all 106 Yucatan 

municipalities revealed that in 2007-2008, 25 municipalities had higher nitrate 

concentrations than the allowed maximum of 45 mg/L (Osorio, 2009).  
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Faecal coliform (FC) are a microbial indicator of water quality and represent the non-

conservative pollutants, which are characterized by a relatively fast decay and often 

effective removal by a variety of wastewater treatment options. Faecal coliform bacteria 

are a subgroup of total coliforms that traditionally have been associated with faecal 

contamination. Faecal coliform in water are not essentially harmful to human, but 

indicate a higher risk of pathogens being present in the water and causing various 

diseases, in particular acute diarrhea.   

The MAM is located in the north west of Yucatan, where Dohering and Buttler, (1974) 

reported that by that time, more than 40% of deaths in children under 6 years were 

attributed to gastrointestinal diseases from waterborne pathogens.  

In 1995 a collaborative study carried out by BGS et al., found contamination with faecal 

coliforms (FC) exceeding 1000MPN/100ml in shallow wells (at a depths close to the 

water table) beneath Merida city. High surface concentration of FC entails a significant 

contamination risk also for deeper parts of the aquifer. Osorio, (2009) reported an 

average FC concentration of 43.2 CFU/100ml ranging from 0 to 470 CFU/100ml in 106 

deep water supply wells of the Yucatan municipalities. 

MPN (Most Probable Number) and CFU (Colony Forming Units) are considered as 

equivalent counts for FC (see section 5.3.3.). Coliform concentrations from cited 

references up to latest 90’s, were reported in MPN whereas CFU has been used more 

recently. MPN procedure using multiple tube fermentation is more variable than CFU 

using membrane filtration as a result of the probabilistic basis for calculating the MPN 

as documented by Gronewold and Wolpert, (2008). Therefore, international standard 

methods of water and wastewater for microbiological examination have shifted from 

MPN to CFU.   

5.2. Nitrate 
5.2.1. Sources of nitrate 
In general, agriculture (fertilizers) and livestock (animal waste) have been considered 

as the largest anthropogenic sources of nitrate in groundwater (Zaporozec, 1983). 

Domestic sewerage systems such as septic tanks are documented as the major non-

agricultural source of nitrate in groundwater (Rao et al., 2013). A significant portion of 

groundwater nitrate has not been released as such, but is formed from ammonia-

nitrogen or organic nitrogen by bacterial nitrification (Figure 26). Other examples of 

pointed nitrogen sources are industrial discharges, waste-disposal sites and manure 

pits. Examples of non-point or diffuse nitrogen sources also include: natural 

background in groundwater and atmospheric deposition (Deshmukh, 2012; Zaporozec, 

1983; Ballester et al., 2001; Velazco et al., 2009; Panno et al., 2001). 
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In Yucatan, nitrate in groundwater was considered an issue of rural areas because of 

its well-known association to agricultural runoff of nitrogen-containing fertilizers 

(Pacheco et al., 1997; Pacheco and Cabrera, 2003). Nevertheless, high concentrations 

of nitrate in urban areas have been found in the last two decades, which are above 

Maximum Contaminant Level (MCL). These have been attributed to sewerage failures 

and wastewater infiltration (CONAGUA, 2010a). Specifically, Merida city has a massive 

discharge of septic tanks to the aquifer (CONAGUA, 2014; BGS et al., 1995), resulting 

in high punctual nitrate concentrations in and near the city, often exceeding at least in 

the upper part of the aquifer the MCL, which is 45mg/l established by Mexican 

regulation in line with WHO guidelines (Pacheco et al., 1997). 

 

                  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 26 Sources of nitrate in groundwater and nitrogen cycle (Taylor, 2003) 

5.2.2. Spatial variability of nitrate in groundwater  
In karstic aquifers, depth dependent nitrate concentration variability has been 

documented (Marin et al., 2000; Bakhsh et al., 2005). Nitrate varies from shallow to 

deep groundwater wells. Generally, nitrate concentrations tend to be higher in shallow 

groundwater than in deep groundwater (Ohou, 2008; Torres, 2010). It is because there 

is less transport distance from the origin sources (i.e. septic tanks, fertilizers from 

agriculture) and consequently less dilution (Nolan et al., 1998). For example, in a study 

of the Chalk aquifer in Hampshire, UK, nitrate concentration at shallow depths (around 

12m) was found around 60mg/l, while in about 26m depth, concentrations are 

decreased by half (Stuart et al., 2009). For the Yucatan karst aquifer, similar 

observations were reported, with 1.8 fold nitrate concentration in shallow wells (near 

surface) compared to deep wells (40 m) (Osorio, 2009).  

It can be important to identify and locate potential nitrate sources (e.g. septic tanks) 

and the distance between them, in order to improve natural attenuation of pollutant by 

the aquifer system itself. For example, in the context of septic tanks regulation, the 

Pennsylvania Department of Environment Protection (PADEP) suggest a minimum 
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Figure 28 Long-term fluctuations of nitrate concentrations in boreholes Chalk. Source: Stuart and 
Chilton, (2007) 

area of 1.4 acres by septic tanks to locally ensure sufficient nitrate dilution (Taylor, 

2003; Almasri, 2007).  

5.2.3. Temporal variability of nitrate in groundwater 
An example for the seasonal fluctuation of nitrate in groundwater is documented by 

Chilton and Foster, (1991) for the Chalk aquifer in the UK (Figure 27). Various factors 

may contribute to the fluctuations such as time of fertilizer application, plant uptake of 

fertilizer in summer (growing season), and enhanced leaching due to higher rainfall in 

autumn and winter months (Taylor, 2003; Deshmukh, 2012; IGME, 2002). Seasonal 

variation of nitrate in areas with distinct wet and dry seasons has been generally 

reported as higher in wet periods and lower in dry periods (Wall et al., 1998; Chiroma 

et al., 2007; Cidu and Biddau, 2012; Hayden, 2012). 

 

Figure 27 Seasonal fluctuation of nitrate in Chalk groundwater aquifer of the UK. Source: Chilton and 
Foster, (1991) 

A time-series data study held by BGS in 2006 in the UK (Stuart and Chilton, 2007), to 

define past trends in order to estimate future nitrate concentration a linear increase of 

nitrate was derived from three different linear regression methods (ordinary least 

squares-OLS; robust linear regression; and KT-Sen slope – a non-parametric test. In 

spite of the significant temporal fluctuation of concentration, a linear trend of increasing 

nitrate is found, in average at 0.34mg NO3/l annually, which is in line with the general 

trend in Europe of about 0.4 mg nitrate increase annually, reported by European 

Environmental Agency in 1999 and other studies (Beeson and Cook, 2004).  
 

 

 

 

 

 

http://www.bgs.ac.uk/research/groundwater/quality/nitrate/trends.html
http://www.bgs.ac.uk/research/groundwater/quality/nitrate/trends.html
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The irregular fluctuations observed in Figure 28 depend on three main factors: land use 

changes, i.e. fertilizer application; hydrogeological conditions i.e. groundwater flow 

direction, and local groundwater pumping patterns (Stuart and Chilton, 2007). Another 

example in Valencia Spain by Ballester et al., (2001), documented historic records of 

nitrate concentration with significant increases in groundwater over time at the north of 

Valencia: 19 mg/l in 1968; 60mg/l in 1984; 84mg/l in 1995; and 104 mg/l in 2000. The 

latest concentrations are two or three times above the Maximum Contaminant Level for 

drinking water supply of the population (45mg/l). 

A variety of field studies for the MAM confirm seasonal fluctuations of nitrate 

concentration in the karstic groundwater of the MAM (Pacheco et al., 2001; BGS et al., 

1995). However, such temporal fluctuations appear to be less pronounced in deep 

water supply wells; for example, continuous monitoring of nitrate 2000-2008 in selected 

deep water supply wells of aquifer sections B, C, and D indicates that the nitrate 

concentration keeps within a relative narrow range (CONAGUAc, 2008). 

In spite of significant spatial and temporal variations of nitrate concentration in 

groundwater, simplified approaches such as a linear regression models for averaged, 

long term concentration modelling and estimating future trends are often applied, see 

for example Stuart and Chilton, (2007). 

5.2.4. Model input: assumptions and parameters settings 
Only the major nitrogen containing wastewater sources are considered for nitrate 

concentration modelling, these include: Wastewater from urban and rural domestics, 

wastewater from livestock, and fertilizer-N from agriculture (Table 60). As discussed in 

Chapter section 5.2.1., a significant portion of nitrate is not present in the wastewater 

as such, but in the form of nitrogen containing precursor compounds such as ammonia 

and organic nitrogen.  

  Table 60 Typical nitrate concentration in wastewater from different activities 
Sub-

model 
Type Reported values  Reference NO3 

(mg/l) 
NO3 

(mg/m3) 
AQUIFER Background 10 .5 mg NO3/l Torres, (2010) 10.5 1.05E+04 

DU septic tanks 79 mg TKN/l  Castillo et al., (2011) 347.6 3.47E+05 
DR septic tanks 79 mg TKN/l  Castillo et al., (2011) 347.6 3.47E+05 

AGR - Vegetable 136 mg NO3-N/l Moratalla et al., (2009) 598 5.98E+05 
 - Fruits 136 mg NO3-N/l Moratalla et al., (2009) 598 5.98E+05 

LIV - Ovine 52 mg TN/l Hegg, (1983) 229 2.29E+05 
 - Poultry 40.5 mg TN/l Hegg, (1983) 178 1.78E+05 
 - Porcine 131 mg TN/l Hegg, (1983) 576 5.76E+05 
 - Bovine 40 mg TN/l Hegg, (1983) 176 1.76E+05 

TKN: Total Kjeldahl Nitrogen; NO3-N: nitrate-nitrogen; TN: Total Nitrogen including TKN and NO3-N. 

The concentration of nitrogen in pollutant sources is commonly reported in the literature 

as TN (Total nitrogen) or TKN (Total Kjeldahl Nitrogen that does not include nitrate and 
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nitrite N, the latter species generally have only insignificant contribution to the total 

nitrogen content of domestic and livestock wastewater). In agriculture in contrast, 

nitrate can be a major component of fertilizers.  

From the literature, typical concentrations in wastewater (Table 60) were used to model 

the load of nitrate discharged into each aquifer section of the MAM, considering that 

the karstic aquifer is intrinsically vulnerable and any discharged nitrogen leaches into 

the groundwater. The literature values given in mass of N in Table 60 were multiplied 

by a factor of 4.4 for N transformation to NO3 (see below), taking into account the mass 

difference between N (atomic mass 14) and NO3 (molecular mass 62). 

a. Conversion of nitrogen to nitrate in the aquifer 

Any nitrogen present in the wastewater is assumed to be converted; either in soil or in 

the groundwater, by microbial oxidation (nitrification) to nitrate that persists in the MAM 

aquifer. Conversion to nitrate depends on the efficiency of bacterial nitrification and is 

in general not easy to predict. Total conversion of N to nitrate is a specific assumption 

for the highly vulnerable, oxygen rich aquifer of the study area, displaying similar 

oxygen levels in shallow wells and deep boreholes (Torres, 2010). It is also in line with 

an assumption of (BGS et al., 1995; USEPA, 2005) for the Merida area. The 

assumption is further confirmed by nitrogen load modelling for the Barton Spring Zone, 

a karst aquifer in central Texas (Mahler et al., 2011). Over an observation period of 2.5 

years, a balance between total nitrogen input by stream recharge and nitrogen load at 

discharge sites was found. However, the portion of organic + ammonia N is high in 

recharge water and becomes rather low in deep water supply wells or at discharge 

sites, indicating extensive conversion to nitrate. Specifically for fertilizer-N application in 

the MAM area have estimated 44% leaching of total fertilizer N as nitrate into the 

groundwater (Gonzalez-Herrera et al., 2014).  

b. No attenuation by soil 

Considering the highly permeable soil matrix of the Yucatan karstic aquifer and rapid 

solute transport on the one hand, and the general high mobility of nitrate on the other 

hand, sorption or retardation of nitrate by soil was neglected, as suggested for instance 

by Shamrukh and Abdel-Wahab, (2011). In a south-western Georgia (USA) karst 

aquifer, no correlation between nitrate concentration and sampling well depth at 0-80 m 

was observed (Katz et al., 2014).  

c. Homogeneous distribution in the groundwater 

There is a spontaneous and complete mixing between wastewater, recharge water 

from rainfall, and the aquifer groundwater, which results in a uniform nitrate distribution 

in the groundwater within an aquifer section. That means, the model averages higher 

(as detected in the proximity of point sources) and lower local concentrations. This is 

an approximation with respect to the depth-dependent nitrate gradient observed in 
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deep and shallow water of karstic aquifers, as described in section 5.2.2. It is also a 

simplification with respect to the lateral concentration gradient of nitrate originating from 

point sources. On the other hand, the very high hydraulic conductivity of aquifer in the 

study area, the groundwater flow, and the time scale applied in the simulation (70 

years) favour a long-term homogeneous mixing of nitrate by flow and diffusion.  

 

d. Persistence, no denitrification 

It is assumed in this research that nitrate is not degraded by bacterial denitrification or 

other processes, i.e. it has an “infinite” lifetime in the karst groundwater of the study 

area. Anoxic denitrification is generally believed to be blocked by dissolved oxygen in 

the groundwater (Tesoriero et al., 2007). In a report covering both shallow and deep 

wells of the aquifer in the study area, significant dissolved oxygen concentrations 

between 1.54 and 7.58 mg O2/L have been reported (Torres, 2010), with higher 

concentrations in the deep wells.      

e. Aquifer nitrate concentration in 1990 

Assigning an aquifer nitrate concentration at the beginning of simulation in the year 

1990 was not straightforward since suitable data is relatively scarce. Considering 

groundwater nitrate concentration in both the water already present in all aquifer 

sections, as well as in the groundwater flowing into section A, a value of 10.5mg/l 

nitrate was chosen, as given as a depth-independent average of 7 sinkholes within the 

ring of sinkholes. The latter constitutes both a part of aquifer section A and the 

contributes much of the groundwater inflow into that section (Perez-Ceballos et al., 

2011). For simplicity, this value was selected for initial nitrate concentration in the 4 

aquifer sections. It is possible that this underestimates the actual concentration in 

1990, since nitrate inflow is expected to have already been substantial at this time. A 

range of 9-22 mg/L nitrate was reported from 1991 measurements in deeper 

groundwater in Merida (BGS et al., 1995).  

5.3. Faecal coliform 
5.3.1. Sources and spatial variability of faecal coliform (FC) 
Generally, numerous point (a discharge that comes out of any identifiable conveyance) 

and non-point sources (discharge that does not come out of an identifiable 

conveyance) of microbial pollutants have been identified (Figure 29). These include 

from non-pointed (or diffuse pollution): urban runoff and livestock over extensive areas, 

agricultural irrigation with primary treated water; and from point sources (or punctual 

pollution): septic tanks, wastewater discharges, leakage and spills of sewage (Mahler 

et al., 2000; Sullivan et al., 2005). 

Once pollutants are released, many factors could affect microbial survival in 

groundwater such as light intensity, nutrients availability, pH, dissolved oxygen and 
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temperature (Carter and Knox, 1986). Bacteria survive longer in groundwater than in 

surface water: at limited light intensity, such as in many of the sinkholes around the 

MAM, faecal coliforms have been reported to survive up to 170 days and E. coli up to 

120 days (Kudryavtseva, 1972).  

 

 

 

 

 

 

 

Groundwater contamination by FC is widespread in Yucatan due to the high water 

table and porosity of the karst matrix with vertical cracks that facilitate the direct 

microbial entrance to the aquifer. The study carried out by BGS et al., in 1995 found 

bacterial contamination, with faecal coliforms (FC) exceeding 1000 CFU/100ml in 

shallow wells (at a depth close to the water table) beneath Merida city. High surface 

concentration of FC entails a significant contamination risk also for deeper parts of the 

aquifer. Osorio, (2009) reported an average FC concentration of 43.2 CFU/100ml 

ranging from 0 to 470 CFU/100ml in deep water supply wells of the 106 municipalities 

of Yucatan. Based on the literature data, the main FC sources in the MAM are: 

• Septic tanks (ST)  

Due to their large number in Merida, the capital city, accounting in total for about 

200,000, septic tanks have been identified as one of the main sources of faecal 

contamination within the MAM (Morris et al., 2003). These septic tanks are neither well-

constructed nor well maintained, and therefore facilitate the large discharge of faecal 

pollution into the aquifer (Lutz et al., 2000).  

• Livestock waste 

A study conducted by Pacheco et al., (2000a) in a porcine production unit from 1998 to 

1999 reported FC from not detected to 1.71x105 CFU/100ml in shallow wells (5-6.5m 

deep) within the farm and outside the farm, thus identifying the impact of porcine 

livestock lixiviation to the groundwater under this area. Within this relatively small area 

(4 ha) with 100m distance between wells, an increased FC concentration during rainy 

season was documented. Within the 12 wells monitored, three different concentration 

Figure 29 Sources of faecal pollution from rural in groundwater. Source: ARGOSS, (2001) 



87 
 

levels were identified: two wells with FC concentrations up to 7x103 CFU/100ml; three 

wells with FC concentrations up to 1.2x104 CFU/100ml; and the other seven wells with 

FC concentrations up to 2.2x104 CFU/100ml.  

FC concentrations in this rural area are several orders of magnitude higher than in the 

Merida urban environment (BGS et al., 1995). An increased downstream concentration 

of FC in Merida urban environment due to downstream transport of FC from rural areas 

in the south of the city was assumed by Marin, (1990). However, unlike in the case of 

nitrate, a lateral transport of FC over long distances (10th of kilometres) is considered 

unlikely in view of the rapid die-off and – in spite of very high hydraulic conductivity - 

the limitation of groundwater flow rate by the very low hydraulic gradient of the area.   

5.3.2. Temporal variability of FC in groundwater 
Microbial pollution in the Yucatan aquifer may increase significantly during rainy 

season (June to September), and consequently gastrointestinal diseases increases, 

thus the rain season is often named diarrhoea season (Lutz et al., 2000; Marin and 

Perry, 1994). Such increases during heavy rains are attributed to the increased 

hydraulic loading that spreads pollutants in the aquifer. Pacheco et al., (2000b), 

confirmed high seasonal variation in a study carried out in 4 small towns in the north of 

Merida city. Agriculture and particularly porcine activity are predominant in this area. 

Thus, pollution has been associated to infiltration of these discharges (Pacheco et al., 

2004b). 

5.3.3. Units of FC concentration  
In the literature, FC are reported either as CFU/100ml, meaning colony forming unit per 

100ml (most recent studies), or as MPN/100ml, meaning most probable number per 

100ml (most historic data). While some studies suggest sophisticated produces for 

CFU/MPN conversion (Gronewold and Wolpert, 2008; Gronewold et al., 2011), in this 

research these two units are used as equivalent, as it is widely reported (Foster et al., 

2000; WHO, 2001; Jimenez, 2008; USEPA, 2010; Cho et al., 2010). 

5.3.4. Decay of FC  
In absence of adequate nutrients, FC and other bacteria are generally assumed to 

decrease or “die-off” at a first-order rate, described by the Chick Law (Benham et al., 

2006; Wilkinson et al., 1995; Rosen, 2000): 

C =C0 x 10-kt 

Where:  C= bacterial concentration at time t 

  C0= bacterial concentration at time 0 

  t= time (in days, for example) 

  k = rate constant for the decay 
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The crucial parameter in this equation is the k value (decay or die-off rate constant), 

which determines how fast bacteria will extinguish from groundwater. The half-life is 

related to k by t50 = ln2/k. FC is widely use as indicator microorganism for pathogens of 

faecal origin in the groundwater. Nevertheless, there are bacteria with shorter and 

longer lifetime, and significantly longer half-life has been documented for pathogenic 

viruses in groundwater (Mitchell and Chamberlain, 1978; John and Rose, 2005). 

Bacterial half-life in groundwater is highly dependent on environmental factors such as 

temperature and soil characteristics, as explained below.  

5.3.5. Model input: assumptions and parameters settings  

a. Concentration of faecal coliform in wastewater 

While the wastewater flows for the 8 socioeconomic activities have already been 

determined as described in Chapter 4, in this section the concentration of FC in the 

wastewater for selected activities will be described. Three main faecal coliform sources 

were selected in order to estimate the faecal coliform concentration in the aquifer of the 

MAM, based on the documented FC presence in the MAM. These are: livestock, septic 

tanks (ST) from domestic urban, and ST from domestic rural.  

Table 61 Typical FC concentration by type of wastewater source 
Sub-

model 
Source Average value reported 

(CFU/100ml) 
Reference FC (CFU/m3) 

DU Wastewater 3x105 Castillo et al., (2011) 3x109 
DR Wastewater 3x105  Castillo et al., (2011) 3x109 
LIV Ovine 1x104 Estimated(a) 1x108 

Poultry 1.2x103 USEPA (2012a) 1.2x107 

Porcine 3.6x105 USEPA (2012a) 3.6x109 

Bovine 6.2x105 USEPA (2012a) 6.2x109 

ST: Septic Tanks; DU: Domestic Urban; DR: Domestic Rural; LIV: Livestock. (a) An intermediate value of poultry and 
porcine for ovine values. 

Data per activity were obtained from the literature and are summarized in Table 61. 

Whenever available, data from local studies were used, otherwise the values refer to 

national and international data. These values serve as data input for the model, to 

forecast faecal coliform loads to simulate for the Metropolitan Area of Merida (MAM).  

b. Decay rate in groundwater 

John and Rose, (2005) have reviewed die-off rates for microorganisms in groundwater 

and reported a high variability of literature values for coliform bacteria (values given for 

base 10, range for logarithm of k= 0.007-1.5 log/d, corresponding to k= 0.016-3.4/d, 

base e). Die-off is not only depending on microorganisms’ species but on 

environmental factors such as temperature, pH, and soil matrix. In addition, even for 

comparable species and conditions, a significant variability among investigations was 

observed. John and Rose, (2005) reported from all the studies reviewed a median 

value of k=0.27/d for coliforms in groundwater at a temperature range 21-37°C.  
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Data for the in-situ die-off of FC in the karstic matrix under conditions of the Yucatan 

aquifer were not found in the literature. The die-off constant was therefore derived from 

literature data for closely related soil-groundwater matrices. For the aquifer under the 

MAM, water temperatures in shallow and deep wells are between 25 and 30°C, and 

the pH is around 7 (Torres, 2010). Leal-Bautista et al., (2013) reported a karstic aquifer 

water temperature of 25°C and pH 6.8, both constant over a depth of 0-38m below 

water level for the Tulum region within the Yucatan aquifer (but distant from the MAM).   

Howell et al., (1996), reported for groundwater in the presence of a highly porous soil 

matrix (sand) at 25°C a die-off rate constant of 0.12/d. The conditions under which 

this value was determined are close to the MAM conditions. Therefore, k=0.12/d 

(1.4x10-6/s), corresponding to a half-life of 5.8 days, was assumed as the die-off rate 

constant of faecal coliforms in the MAM aquifer. 

c. No attenuation by soil 

As already outlined in Chapter 2, microbes can be transported at a faster rate through 

fractures and conduit flow in karstic limestone than small molecules (such as nitrate)  

due to size exclusion from smaller pores (Harvey, 1997). A tracer study with 1 µM 

fluorescent microspheres (simulating bacteria) in a karst conduit system of the Alps 

revealed 40% recovery over a transport distance of 2.5 km, with peak between 18-83h 

depending on groundwater flow velocity (Göppert and Goldscheider, 2008). It is 

therefore assumed those faecal coliforms are not attenuated by soil in the Yucatan 

aquifer with its very high hydraulic conductivity.  

d. Homogeneous distribution in the groundwater 

With similar arguments as described above, a homogeneous distribution of faecal 

coliform in the water of an aquifer section is assumed. FC may well be transported tens 

of meters and contribute to deeper levels of the aquifer (20-40m) where most of 

drinking water of the MAM is abstracted. The model does not consider seasonal 

variations of FC groundwater concentration with rainfall but averages concentration 

over the year. This scenario may be closer to the real situation in the rain season, with 

often daily heavy showers, than in the dry season. In the latter, bacteria may die-off 

close to the point of release before they distribute in the aquifer. 

5.4. Summary of engineering interventions 
Table 62 summarises the seven potential interventions proposed in this thesis, by 

specific removal efficiencies for each intervention. Examination of the response to this 

set of seven interventions aims to improve the overall quality of wastewater discharged 

to the groundwater. Improvement is defined as the removal of two pollutants: Faecal 

Coliforms (FC) and Nitrate (NO3), which have been identified in the literature as two of 
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major concern in the area (see Chapter 3 of case study description). While removal of 

faecal coliforms is greatly controlled by adequate wastewater treatment from domestic 

activities, nitrate removal requires several other actions due to the variety and 

complexity of the sources for this pollutant (i.e. diffuse source from agriculture and 

livestock activities). For example, reducing nitrogen compounds in wastewater reduces 

nitrate load since all nitrogen is converted to nitrate by nitrification in the aquifer.  

Table 62 Summary of engineering interventions for the MAM 
Intervention  Wastewater 

treatment 
% 3Dom WW 

treated 
% 4Liv WW 

treated 
% nitrate 
removal 

Log 5FC 
removal 

Baseline 1ST 94 0 0 1 
  2WWTP 6 0 80 3 
1 ST 94 0 30 3 
  WWTP 6 0 80 3 
2 ST 0 0 0 1 
  WWTP 100 0 80 3 
3 ST 0 0 0 1 
  WWTP 100 0 80 3 
4 ST 94 0 0 1 
  WWTP 6 0 100 6 
5 ST 0 0 0 1 
  WWTP 100 0 100 6 
6 ST 0 0 0 1 
  WWTP 0 100 100 6 
7 6BMPs  0   0 65 0 

1ST= Septic Tanks; 2WWTP=Wastewater Treatment Plants; 3Dom= domestic urban and domestic rural; 4Liv= 
Livestock; 5FC= Faecal Coliforms; 6BMPs: Best Management Practices in agriculture. NOTE: the first 5 
interventions are designed for the domestic urban and rural sectors; intervention 6 is designed for the livestock 
sector, and intervention 7 is designed for the agriculture sector, as discussed on section 6.6.  

The interventions proposed differ in terms of pollutant removal efficiency, treatment 

capacity and the costs and benefits obtained. Even though interventions 2 and 3, could 

achieve similar benefits in terms of removal efficiency, it is expected a significant cost 

difference, which is evaluated through cost-benefit analysis described below. For 

instance, considering the karstic conditions of the aquifer in the MAM, which 

exacerbate drainage construction due to the porous carbonate rocks and limestone 

beneath soil, intervention 2 (connecting ST to WWTP) would be significantly more 

expensive than intervention 3 (collecting ST to WWTP), which requires instead vacuum 

trucks to transport the wastewater. 

5.5. Cost-benefit analysis 
Figure 30 shows a schematic representation of the cost-benefit analysis (CBA) 

performed in this thesis. The cost component was derived from Capital (investment), 

and operation and maintenance (O&M), based on data available from existing 

wastewater treatment infrastructure. For the benefit analysis, two components were 

considered: a) economic value gained due to disease averted estimated through 

QMRA specifically for diarrhoea caused by pathogenic E. coli in drinking water, and b) 

economic value gained from averted nitrate removal treatment prior to drinking water 

use.  
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O&M= Operation and Maintenance  
 

a) Cost-saved due to disease averted 

Drinking water standards are generally based on the assumption that natural water is 

used as water supply (Hutton and Haller, 2004). Therefore, for the cost-benefit analysis 

of this research, direct use of groundwater consumed as drinking water was assumed 

for MAM case study. The former is considered as the worst case scenario in order to 

estimate Quantitative Microbial Risk Assessment (QMRA).  

 

 

 

 

 

 

In real scenario, direct groundwater consumption represents around 20% (mainly in 

rural areas) of the MAM case study, which still rely on backyard shallow water wells (5-

6.5m depth), which have no data of water quality or any monitoring control (Alonzo and 

Acosta, 2003). Figure 31 shows a schematic representation to describe the 

development of the health benefits for this thesis, measured through QMRA. 

b) cost-saved from nitrate removal treatment averted 

The economics of different alternatives for nitrate removal during wastewater 

treatments were evaluated based on data from current wastewater infrastructure 

designed for this purpose. In general, costs and benefits were estimated based on the 

Figure 31 Steps taken to develop QMRA for E. coli in the case study 

Figure 30 Schematic process to develop cost-benefit analysis (CBA) for the MAM case study 
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data source reported in Table 63. These are existing and potential wastewater 

infrastructure for the different interventions under evaluation. 

          Table 63 Data source to estimate interventions costs 
Costs Data References 
 Materials and labour Varela, (2008); Gonzalez, (2013) 
 Wastewater treatment cost SEDUMA, (2009) 
 Operation and maintenance costs JAPAY, (2013) 
 Current WWTP: costs, treatments, 

capacity and specifications 
Perez, (2006a); Perez, (2006b); BIY, 
(2007)  

 Minimum wage CONASAMI, (2014) 
 Interest rate SEDUMA, (2009) 
Benefits Data References 
 Local study data SEDUMA, (2009) 
 Β-Poisson coeff. for E.coli   Haas et al., (1999) 
 QMRA for drinking water Howard et al., (2006) 
 Cost-saved for nitrate removal 

treatment 
Arquiespacios del sureste, (2007); Dunas, 
(2007) 

 Cost-saves for averted diarrhoea 
disease 

Aviv, (2007); CONAGUA, (2008); 
SEDUMA, (2009) 
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Chapter 6. Results of modelling interventions 

This chapter contains modelling results, which are presented by intervention from the 

baseline scenario to the intervention 7. 

As the basis of all scenario simulations and the 7 interventions, population growth is 

defined assuming a growth rate of 1.74% per year for the full simulation period (1990-

2060) for the 4 aquifer sections (Figure 32).  

 

      Figure 32 Simulated population development in the four aquifer sections of the study area 

As a reminder, Table 64 summarises selected model input data with respect to aquifer 

dimensions and flow rates.  

Table 64 Model input for pollutants simulations per aquifer section 
Data Section A Section B Section C Section D 

*Recharge (m3/s) 7.3 7 7 5.5 
GW inflow (m3/s) 8.32 15 21 28 
WW return (m3/s) 0.52 1.65 3.32 1.95 
Aquifer volume (m3) 2.88E10 2.14E10 1.99E10 5.42E9 
Aquifer area (km2) 1,148 1,148 1,141 1,144 
Population           1990                                                                           
                               2010 

27832 
38790 

133308 
185794 

365510 
509419 

188507 
262726 

   *Recharge is considered 15% of total rainfall. GW= groundwater 

    Table 65 Percentage of wastewater treated by current infrastructure in the MAM 
Wastewater 
Treatment 

Aquifer 
Section A 

Aquifer 
Section B 

Aquifer 
Section C 

Aquifer 
Section D 

1ST 100 97 83 95 
2WWTP 0 3 17 5 

Author estimation based on CONAGUA (2011). 1ST= Septic Tank; 2WWTP= wastewater Treatment Plant. 

Another general input for each modelled scenario in the absence of interventions 

relates to the treatment infrastructure in place which is distributed as shows in Table 

65. There is a total of 25 wastewater treatment plants distributed within the MAM area, 

which in total corresponds to less than 15% wastewater treatment coverage. 
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6.1. Modelling nitrate concentration 
6.1.1. Baseline and “stopped inflow” 
Scenario 1: Figure 33 shows the “baseline” simulation, which represents nitrate 

concentration by aquifer section, based on the assumptions and parameter input as 

described in Chapters 4 and 5, with the treatment infrastructure currently in place.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33 Nitrate concentration in the 4 aquifer sections of the MAM. Conditions: constant population 
growth of 1.74%/y; source of nitrate are: Aquifer background; DU: Domestic Urban, DR: Domestic Rural, 
AGR: Agriculture, and LIV: livestock, with 80% removal by WWTP in place for DU and DR; no treatment 

for LIV and AGR.  
 

Scenario 2: As scenario 1 but from the year 2010, any nitrate inflow into the aquifer is 

stopped, with exception of background concentration of groundwater in section A 

(Figure 34). 

  

 

 

 

 

 
 

Figure 34 Nitrate concentration in the 4 aquifer sections of the MAM. Conditions: as in scenario 1 but 
after 2010 any nitrate inflow from anthropogenic sources is stopped. 

Scenario 2 is a hypothetical scenario that displays the delayed concentration decrease 

of nitrate, even when 100% removal of nitrate from wastewater is considered. In 

section C, for example, the decrease in the first year after improvement is negligible, 

and it takes about 25 years to achieve a 50% nitrate reduction. This can be explained 

by the very large aquifer volume that delays the wash-out effect through groundwater 

inflow and rainwater. It is important to consider this delay for predicting the 

effectiveness of treatment interventions.  
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6.1.2. Validation of NO3 results 
In order to compare the values obtained from the model with field data per aquifer 

sections A-D (2009 and 2010), available field data are summarized in Table 66. 

Table 66 Field data of nitrate concentration within the MAM, from water supply wells 
Location Average in mg/m3 

(range) 
Year 

tested 
Reference Conditions 

Section A   1.75E+04 
(1.5E+04-2E+04) 

2009/10 

Torres, 
(2010) 

Deep water supply-wells, 
about 20 located in aquifer 
sections A-D. 
Concentration range 
derived from nitrate 
concentration map.   

Section B 2.25E+04 
(1.5E+04-3E+04) 

2009/10 

Section C 3 E+04 
(1.5E+04-4.5E+04) 

2009/10 

Section D 2.25E+04 
(2E+04-2.5E+04) 

2009/10 

Section A   1.3E+04 2003/4 

Osorio, 
(2009) 

Deep water supply-wells 
from 106 municipalities of 
Yucatan 2003-2004. 

Section B 1.8 E+04 2003/4 
Section C 2.1 E+04 2003/4 
Section D 1.6 E+04 2003/4 
Section A   1.9 E+04 2007/8 Deep water supply-wells 

from 106 municipalities of 
Yucatan 2007-2008. 

Section B 2.8 E+04 2007/8 
Section C 1.9 E+04 2007/8 
Section D 2.5 E+04 2007/8 

All data in Table 66 refer to nitrate concentration in deep water supply wells (45m 

depth). The model assumes homogeneous distribution of nitrate within an aquifer 

section, and therefore reflects better the nitrate concentration in the deep aquifer than 

elevated concentrations in near-surface water. Near-surface water might not be 

representative of the entire aquifer due to its proximity to pollution point sources. The 

most recent study in this respect was documented by Torres, (2010), covering north-

western Yucatan, which covers most of the study area. Torres, (2010) reported 

average values for 15 shallow water supply wells (≤15m depth), and 20 deep wells 

(45m depth), which were measured from September 2009 to February 2010. In 

average nitrate concentration in shallow wells is only 1.8 fold higher than in deep wells. 

This confirms that the homogeneous dilution approach taken in this research is a 

reasonable approximation for nitrate, even though there is a certain depth gradient and 

punctual peak concentrations, in particular within Merida area (Aquifer section B, C and 

D). Another relevant study was documented by Osorio, (2009) which covers full 

Yucatan State. Samples were taken from the 106 water supply wells at a depth of 45m, 

which decreases toward the coast. Osorio, (2009) also addressed time-dependent 

changes in nitrate concentration by comparing field data reported for 2003-2004 and 

the same field data for 2007-2008.   

Figure 35 illustrates the reasonable agreement of modelled nitrate levels and field data 

(2003, 2007 and 2009) for section A, B, and C. The difference between simulated data 

and field data 2003-2004 and 2007-2008 is within 50%. Moreover, simulated data lie 
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within the range of the nitrate concentrations derived in the study of Torres, 2009 

(section D is not considered in this study). For section D, the model strongly 

overestimates nitrate concentration relative to field data. This may be related to the 

difficulty of estimating the aquifer thickness in section D where several coastal 

municipalities quantify the thickness with only 1m. Due to the low thickness of the 

freshwater lens in section D, a significant portion of the pollutants may diffuse into the 

underlying seawater as documented by Wissmeier et al., (2009). Another factor that 

could be responsible for the discrepancy for aquifer section D is the saline intrusion 

from the coast that facilitates the formation of tidal freshwater wetlands (TFWs), 

favouring denitrification by a mechanisms called dissimilatory reduction of nitrate to 

ammonia (DNRA) with up to 30% of nitrate reduction in coastal sites (Osborne et al., 

2012; Giblin et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

Beyond these studies, there are several investigations described in the literature 

regarding nitrate concentration for specific, small areas of the MAM, in particular, close 

to Merida city, but these point source data were considered neither representative nor 

appropriate for comparison with the modelling results. Furthermore, due to diffuse and 

point sources of pollution, wastewater discharges contribute significantly to the overall 

composition of the groundwater as reported in different studies documented by 

USEPA, (2010).  

In summary, simulated nitrate concentrations are in reasonable agreement with field 

data for deeper sections of the aquifer, where a more homogeneous distribution of 

nitrate is expected due to diffusion and/or groundwater flow over extended time 

Figure 35 Comparison of simulated nitrate concentration and field data for 2003-2009. Field data 2003, 
2007 from Osorio, (2009) and intervals from Torres, (2010) 
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periods. Therefore, no additional adjustments to the model were carried out for nitrate 

simulation. A limitation of the model is that it overestimates nitrate levels in section D at 

low thickness of the freshwater lens. Besides, the model was not designed for and 

does not reflect elevated nitrate levels in the proximity of near-surface point sources.  

6.2. Modelling faecal coliform concentration: initial attempt 
6.2.1. Baseline and “stopped inflow”  
Scenario 1. This is the “baseline” simulation which represents faecal coliform 

concentration by aquifer section (Figure 36), based on the assumptions and parameter 

input as described in chapters 4 and 5, assuming homogeneous distribution of the 

pollutant over the whole aquifer section volume, and with the wastewater management 

infrastructure currently in place. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36 FC baseline concentration in the 4 aquifer sections of the MAM. Conditions: constant 
population growth of 1.74%/y; sources of FC are: DU: Domestic Urban, DR: Domestic Rural, AGR: 

Agriculture, and LIV: livestock. For DU and DR, ST removes 1 log FC and WWTP 3 log FC, no treatment 
for LIV and AGR. 

Scenario 2. As scenario 1, but from the year 2010, any FC inflow into the aquifer is 

stopped. Scenario 2 (Figure 37) is a hypothetical scenario that displays the rapid 

elimination of faecal coliform from the groundwater when 100% removal from 

wastewater is considered. This illustrates the very different response times of faecal 

coliform and nitrate to treatment. 
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Figure 37 FC concentration in 4 aquifer sections of the MAM. Condition: as in Scenario 1, but after 2010 
any FC inflow is stopped 

6.2.2. Validation of FC results 
In order to compare model results with published data, field data from Yucatan, Merida 

and specifically from sections A-D from deep water supply wells have been 

summarized in Table 67.  

Table 67 Faecal Coliforms (FC) concentrations reported within the study area 

*reported as MPN/100ml 

Location Average 
reported 

CFU/100ml 

Value 
converted 

CFU/m3 

Year 
tested 

Reference Conditions 

Section A 1.70E+01 1.70E+05 2007/8 Osorio, (2009) Deep water supply-wells 
from 106 municipalities of 
Yucatan over 1 year  

Section B 7.72E+01 7.72E+05 2007/8 
Section C 8.06E+01 8.06E+05 2007/8 
Section D 2.22E+01 2.22E+05 2007/8 

Merida 4.00E+04* 4.00E+08 1983 Cabrera et al., 
(1983) 

Boreholes and shallow 
wells in rural area 

Merida 
 

1.00E+03 
 

1.00E+07 
 

1991-
1993 

 

Foster and 
Chilton, (2004) 
BGS et al., 
(1995) 

Based on BGS et al., (1995) 

Merida 2.50E+03 2.50E+07 2003 Morris et al., 
(2003) 

Based on BGS et al., (1995) 

Merida 4.39E+01* 4.39E+05 2010 Mendez et al., 
(2010) 

Merida  

Merida 2.66E+03 2.66E+07 2012 Heise, (2013) 29 wells Merida-Progreso 

Yucatan 5.00E+03 5.00E+07 2002 Pacheco et al., 
(2002) 

55 shallow wells of 92 
municipalities 

Yucatan 6.90E+01 6.90E+05 2003 Osorio, (2009) 106 water supply wells of 
the 106 municipalities   

Yucatan 4.70E+03 4.70E+07 2003 Pacheco and 
Cabrera, (2013) 

106 water supply wells of 
the 106 municipalities 

Yucatan 4.32E+01 4.32E+05 2007 Osorio, (2009) 106 water supply wells of 
the 106 municipalities 

Yucatan 1.00E+03* 1.00E+07 2009 Cabrera et al., 
(2010) 

32 sinkholes in Yucatan 
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The model assumes homogeneous distribution of FC within an aquifer section, and 

might therefore reflect better the FC concentration in the deep aquifer than elevated 

concentrations in near-surface water in the proximity of point sources (as the other data 

in Table 67 for Merida and Yucatan).  

Figure 36 illustrates that simulated FC concentrations are much lower, by a factor of 

about 10, than field data for the deep aquifer in sections A, B and C. Only for section D, 

field data match the simulated data. The latter might however be an accidental match, 

considering the factors that may reduce pollutant concentration in the low-thickness 

freshwater lens of section D, as discussed in section 6.1.2. with respect to the nitrate 

levels in this aquifer section. 

Poor correlation for FC simulation could be attributed to two main facts that may be 

governing the transport of FC in the MAM karstic aquifer: 1. The aquifer is modelled in 

this thesis as a medium with homogeneous porosity but karstic aquifers are intrinsically 

heterogeneous, involving for instance a conduit-matrix structure, and 2. FC and in 

general microbial transport is complex to reproduce due to their relatively short half-life 

compared with conservative chemical pollutants, and the half-life also depends on 

environmental factors. In addition, strong seasonal fluctuation of FC concentration in 

karstic groundwater has been documented (Desai, 2010). A more detailed explanation 

of the features that complicate the modelling of FC transport and concentration in 

karstic aquifers are described below. 

1. Karst aquifers nature. Due to the heterogeneity of the porous medium, even within 

the same aquifer section, site-specific water fluxes may govern pollutant transport. 

In certain deep wells in aquifer section C, where most of Merida municipality is 

located, 8 CFU/100 mL have been measured, while in others, up to 230 

CFU/100mL have found. This indicates that local concentration observes high 

variations, possibly due to the fact that FC are transported through a conduit 

system from local point sources to deeper sections of the aquifer. Based on the 

literature, some of the most common difficulties for modelling fracture networks 

such as the MAM karst aquifer are as follows (Savarovsky et al., 2012; Drew & 

Holtz, 1999): 

 Limited amount of site-specific information about fracture and conduit position, 

conductivity, and interconnection 

 Complex flow paths 

 Diffuse flow (non-linear) 

 Shallow water table (predominant conduits in the phreatic zone) 

 Heterogeneous permeability (complex groundwater flow) 

 Non-linearity between water flow velocity and hydraulic gradient 
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2. FC transport. Modelling the behaviour of FC as a non-conservative pollutant in a 

karstic aquifer is complicated by the following:  

 Spatial variability is highly correlated to land use (Petersen, 2006, and Desai, 

2010). 
 Storm events have been associated with increases in bacterial concentration in 

aquifers due to erosion and re-suspension of sediments (Boehm et al, 2002; 

Reeves et al., 2004).    

 Solar radiation and in-situ regrowth are recognized as important factor that 

control bacteria levels in aquatic systems. Microbial enhancement leading to 

biofilm formation can obstruct the porous medium, known as pore clogging or 

bio-clogging, resulting in small changes in the physical structure of the porous 

medium i.e. reduce hydraulic conductivity of the matrix at local scale (Taylor 

and Jaffe, 1990; Baveye et al., 1998). 

These features could considerably affect the transport and survival of pathogens. In 

particular, with respect to their particle size that may limit their diffusion into small pores 

of the aquifer matrix and prevent a homogeneous distribution in the aquifer within the 

limited microbial life time.  

To summarize, the specific features governing FC transport in the karstic aquifer may 

contribute to a general underestimation of FC concentration by the model that 

considers homogeneous distribution in the total aquifer volume, resulting in “over-

dilution”. The following sections therefore describes a refined approach, specifically 

applied to FC modelling, to better reproduce FC transport by redefinition of the aquifer 

volume in which FC pollutants effectively distribute. 

6.2.3. Refined approach for FC simulation in the accessible aquifer volume  
In this work the aquifer has so far been modelled as a single continuum and equivalent 

porous medium. This approach appears suitable for modelling of nitrate as a persistent 

contaminant, since the latter is expected to reach a relatively homogeneous distribution 

due to diffusion, in view of the simulated time period of several decades.   

Other popular modelling concepts for karst aquifers include conduit flow modelling only, 

suitable in particular when the matrix has low permeability, and biphasic conduit-matrix 

models that include exchange between the phases by diffusion. The volume of 

conduits and fissures in karst aquifers is generally considered only a small fraction of 

the total aquifer volume.  

This raises the question whether an alternative model is more suitable for simulating 

concentrations on FC as a non-conservative pollutant in the MAM karstic aquifer. The 

rationale is the decay of FC with a half-life of a few days only what limits the probability 
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of extensive permeation of the matrix, or homogeneous distribution in the total aquifer 

volume, respectively, simply because FC would die-off during the diffusion process.  

Since transport of FC from the surface to and within the conduit system is expected to 

be fast, a major fraction of the FC load should be present in the small volume of the 

conduit system plus a limited volume (fissures and large pores in close proximity to the 

conduits) of the matrix that is readily accessible to FC by diffusion. In this alternative 

model, the FC load resides in a small fraction of the total aquifer volume rather than 

spontaneously distributing over the total volume.  Since data for the conduit volume are 

not available for the study area, the issue was addressed by a calibration that varies 

the aquifer volume between 1% and 100% of the total aquifer volume, followed by a 

comparison with field data (Figure 39). The following literature observations further 

support the idea that FC may reside in the limited volume of the conduits and readily 

accessible matrix volume:  

- In a karst aquifer in Florida, the flow of rain in the conduits has been directly 

visualized by electrical conductivity tomography (Meyerhoff et al., 2012). This 

technique allows monitoring of rainfall infiltration into conduits on the basis of varying 

salt concentrations that affect the conductivity. First of all, after a rainfall event, the 

conductivity of major parts of the explored aquifer volume remained unchanged. A 

drastic change was, however, observed at conduit sites in about 5-25 m depth, with lag 

times of 1-3 days, indicating the selective infiltration of the conduits by rainwater with 

low salt concentration.  With an additional lag time of about 3 days, the rainwater 

seems infiltrates the matrix in close proximity to the conduits. A similar scenario may be 

assumed for FC that would be flushed in the conduits after rainfall. However, in 

contrast to the small size (<1nm or 10-9 m) ionic components of salts, the particle size 

of FC in the range of 1 µm or 10-6 m should disfavour diffusion from the conduit into the 

small pores of the matrix. Diffusion would eventually be limited further by formation of 

biofilms that closes small pores of the matrix. To overcome this issue, a calibration of 

the aquifer volume was carried out for FC modelling in order to define a reduced 

volume of the aquifer in which FC is effectively distributed.  

6.3. Calibration of the model for FC simulation 

The following section describes the calibration of the aquifer volume specifically for FC 

modelling. This refined approach, which is based on the literature review, assumes 

predominant groundwater flow through conduits and fractures. FC is assumed to be 

flushed from the surface along with the wastewater and rainfall into a small conduit 

volume, from where it diffuses into readily accessible parts (including large pores and 

fissures) of the limestone matrix.  
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Since data for the conduit and readily accessible matrix volume are not available for 

the study area, the issue was addressed by a calibration process that varies the aquifer 

volume by a “reduction” between 10% and 99% (or -0.1 to -0.99 if expressed in 

fractions as in Table 68) relative to the original volume, along with a comparison with 

field data (Table 68 and Figure 38). This should not be considered as an actual 

reduction of the total aquifer volume but interpreted as the effective volume (or fraction 

of the total aquifer volume) where FC are concentrated. 

Table 68 Aquifer volume variation for calibration of the FC modelling 
Aquifer vol. variation FC concentration (CFU/m3) per aquifer sections 
fraction per cent Model A Model B Model C Model D 

Publish data (2007) 1.7E+05 7.72E+05 8.06E+05 2.22E+05 
Baseline (100%) 4.27E+03 7.12E+04 9.10E+04 3.01E+05 

-0.1 -10% 4.75E+03 7.90E+04 1.01E+05 3.34E+05 

-0.2 -20% 5.35E+03 8.91E+04 1.14E+05 3.75E+05 

-0.3 -30% 6.09E+03 1.02E+05 1.30E+05 4.29E+05 

-0.4 -40% 7.11E+03 1.19E+05 1.52E+05 5.00E+05 

-0.5 -50% 8.54E+03 1.42E+05 1.82E+05 5.99E+05 

-0.6 -60% 1.07E+04 1.78E+05 2.27E+05 7.47E+05 

-0.7 -70% 1.42E+04 2.37E+05 3.03E+05 9.91E+05 

-0.8 -80% 2.13E+04 3.55E+05 4.54E+05 1.49E+06 

-0.9 -90% 4.25E+04 7.08E+05 9.06E+05 2.91E+06 

-0.95 -95% 8.48E+04 1.40E+06 1.88E+06 5.64E+06 

-0.97 -97% 1.41E+05 2.32E+06 2.98E+06 9.00E+06 

-0.99 -99% 4.11E+05 6.62E+06 8.63E+06 2.27E+07 
 

Calibration was carried out with published data (Osorio, 2009). If the volume of the 

aquifer is reduced by 90%, a very good match with field data is obtained for section B 

and C, while FC concentration is still underestimated (but now only by a factor of about 

3) for section A and overestimated (by a factor of about 10) for section D (Figure 38).  
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Figure 38 Comparison of simulated FC concentration and field data for deep aquifer wells in 2007 
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In Figure 39, the volume reduction is expressed in % reduction of the original aquifer 

volume. For instance, a variation by -90% means the reduced volume is 10% of the 

original volume.     

Overall, reduction of the aquifer volume by 90%, i.e. an aquifer volume of 10% of the 

original volume was used for further calculations in Chapters 6 and 7, since it provides 

not only a reasonable (although not optimal) overall match with field data, but also the 

best match for section C, which is the focus area of this study as detailed in the cost-

benefit analysis (Chapter 7). In this section water quality issues are of particular 

concern due to the highest population density and thus the highest water consumption 

and wastewater discharge.  

6.4. Sensitivity analysis of FC concentration  
Sensitivity analysis (SA) serves to test how the uncertainty of the output of a model 

(such as pollutant concentration in the present research) is related to the uncertainty of 

specific input parameters.  

In order to identify those parameters of greater importance for modelling FC 

concentration, three input parameters are tested in the sensitivity analysis. These are: 

aquifer volume, rainfall and the die-off rate of FC. Based on calibration results (section 

6.3), a reduced aquifer volume of 10% of the original volume was applied to all further 

calculations of FC concentration in the MAM aquifer.  

 

Figure 39 Calibration of FC concentration: aquifer volume variation expressed in % reduction  of the 
original volume. Field data from Osorio, (2009) 



104 
 

Table 69 Input parameters tested for sensitivity analysis of FC (CFU/m3) concentration 
Parameter to test  

(±50%) 
Aquifer 
section 

Baseline 
value 

Range 

Aquifer volume (m3) 
 

A 2.88E+09 1.44E+09 to 4.32E+09 
B 2.14E+09 1.07E+09 to 3.21E+09 
C 1.99E+09 9.95E+08 to 2.99E+09 
D 5.42E+08 2.71E+08 to 8.13E+08 

Rainfall (m3/s)  
 

A 7.3 3.65 to 10.95  
B 7 3.5 to 10 
C 7 3.5 to 10 
D 5.5 2.75 to 8.25 

Die-off constant rate “k” (s-1) A-D 1.4E-06 7E-07 to 2.83E-06 

Sensitivity analysis was performed with the Vensim platform using the Monte Carlo 

(MC) function. For the MC simulation three parameter settings are important: 1. The 

minimum and maximum values to change the parameter under evaluation, which is 

shown in Table 69; 2. The distribution or variation of the selected parameters, which 

was set as a random uniform distribution, means that all possible values of the 

parameters would have the same probability to occur; 3. The number of simulations to 

run for the sensitivity test, which was set 200 (default number of simulation). Aquifer 

volume, rainfall and die-off rate k were varied as shown in Table 69, in order to identify 

the effect of these variations to the FC concentration in the 4 aquifer sections. Results 

of the SA are shown in Table 70. Additionally, SA results are presented from Figure 40 

to Figure 42, corresponding to variations in aquifer volume, rainfall and die-off constant 

rate “k” respectively. The colours indicate the confidence boundaries of FC 

concentration from the 200 simulation results, where the beige colour represents the 

50% confidence, the green is the 75% confidence, the blue is the 95% confidence and 

the grey is the 100% confidence. These graphs also include field data from Osorio, 

2009 for comparisons of SA results for the year 2007. 

Table 70 Sensitivity analysis results of FC concentration in the 4 aquifer sections 

Parameter to test Aquifer 
section 

Published Data 
FC (CFU/m3) 

Model result FC concentration 
(CFU/m3) for 2007 

Average Min Max 
Aquifer volume 

(m3) 
(±50%) 

A 1.70E+05 4.55E+04 2.71E+04 8.07E+04 
B 7.72E+05 7.29E+05 4.54E+05 1.34E+06 
C 8.06E+05 9.49E+05 5.81E+05 1.69E+06 
D 2.22E+05 3.12E+06 1.89E+06 5.30E+06 

Rainfall (m3/s) 
(±50%) 

A 1.70E+05 4.06E+04 4.05E+04 4.06E+04 
B 7.72E+05 6.80E+05 6.78E+05 6.81E+05 
C 8.06E+05 8.69E+05 8.68E+05 8.71E+05 
D 2.22E+05 2.80E+06 2.77E+06 2.83E+06 

Die-off constant 
rate “k” 

(in s-1) (±50%) 

A 1.70E+05 4.47E+04 2.71E+04 8.01E+04 
B 7.72E+05 7.48E+05 4.54E+05 1.34E+06 
C 8.06E+05 9.58E+05 5.81E+05 1.71E+06 
D 2.22E+05 3.06E+06 1.89E+06 5.37E+06 

NOTE: Published data from Osorio, (2009) for the year 2007  
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In general, it could be observe d a good correlation between model results with field 

data for aquifer sections B and C, while over- and underestimations are observed for 

aquifer sections A and D, respectively. In summary, the model is able to reproduce 

adequately the FC field data for the aquifer sections B and C, which are the main 

interest of this research and serve to develop the following steps of this research, in 

particular the cost benefit analysis focusing in section C (Chapter 7).  

From variations of aquifer volume (Figure 40), FC concentrations results are within 

50% of confidence bound for the four aquifer sections, including the FC concentration 

obtained with the baseline value of aquifer volume (blue line). From variation of rainfall 

(Figure 41), FC concentrations results are almost the same (overlapped in the graphs), 

indicating the negligible effect of rainfall. From variation of “k” die-off constant rate 

(Figure 42), FC concentrations results are within 50% confidence bound for the four 

aquifer sections, including the FC concentration obtained with the baseline value (blue 

line) of “k”.  

 

 

 

 

 

 

 

 

 

Overall, the SA results confirm the importance of the aquifer volume parameter, and 

the sensitivity of FC levels to variation of the aquifer volume, as well as the sensitivity 

variations of the die-off constant rate “k”. In contrast, rainfall variation within 

comparable range has almost no effect on FC concentration. The general negligible 

effect of rainfall variation on FC concentration means rainfall is not a determinant 

parameter for FC in yearly bases simulation. This is further explored in the following 

Figure 40 Comparison of SA results from aquifer volume variations (±50%) with FC concentration field 
data ( ) from Osorio, (2009) for the year 2007  
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section by short-term simulations to identify seasonal variation of FC concentration, 

thus to determine if rainfall could have a bigger impact in the FC concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 Comparison of SA results from “k” die-off constant rate variations (±50%), with field data  
( ) from Osorio, (2009) for the year 2007 

Figure 41 Comparison of SA results from rainfall variations (±50%), with field data ( ) from Osorio, 
(2009) for the year 2007  
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6.5. Simulation of seasonal variation of FC concentration 
So far the model has kept rainfall constant with time at about 7 m3/s, without 

considering seasonal variations. However, in the study area there is a dry season 

(November-April) and a rainy season (May-October), with very different monthly 

precipitation. Field data about seasonal variation of FC concentration in the study area 

are limited, but a study of Pacheco et al., 2000 (sampling year 1983) covering 17 

shallow wells in the north of  Merida, strongly support the idea of a seasonal variation 

of FC concentration. In the dry season, FC concentration dropped to a minimum of 1 

CFU/100ml, while in the rainy season peak concentrations in the range of 1x10E+05 

CFU/100ml are reached. The study has shown a correlation between temporal 

variation of FC concentration and the precipitation pattern (Figure 43) considering that 

the rainfall washes FC from its points of origin at the surface into the aquifer. 

Physically, one may imagine this as a flushing-out effect that is particularly efficient at 

high rainfall, while in the absence of rain the microbial contaminants reside in the 

unsaturated zone (upper layer of the aquifer) and die-off. 

 

 

 

 

 

 

 

 

As an example, the seasonal variations for section C were implemented in the model 

by considering monthly (rather than annual) rainfall and associating the FC 

concentration resulting from more or less effective infiltration in the aquifer with the 

amount of monthly rain. In detail, the FC level was multiplied with a factor that is the 

ratio between rainfall in a specific month (INEGI, 2011) and, the average monthly 

rainfall. Consequently, the concentration of FC in the aquifer is positively correlated 

with the amount of rainfall, as documented by Pacheco et al., (2000). 

With these assumptions and framework conditions, the concentration of FC was 

simulated on a monthly timescale. Figure 44 exemplifies the results for the year 2010, 
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Figure 43 Comparison of seasonal variations of FC concentration (shallow wells in the north of 
Merida, in 1983 from Pacheco et al., (2000), and average monthly precipitation for Merida from 

INEGI, (2011)  
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where the pattern of FC concentration is closely related to the precipitation pattern. 

Due to the short half-life of FC, no significant accumulation is observed and FC 

concentration is expected to respond to changes in rainfall intensity. 

 

 

 

 

 

 

 

 

The results of this simulation show that principally, seasonal variation of FC 

concentration can be modelled by the SIWMM associating infiltration of FC into the 

aquifer with the amount of rainfall on a monthly base. Modelling results qualitatively 

confirm the seasonal trends of FC concentration in shallow wells observed in a field 

study in the north of Merida.   

This modelled FC concentration with two peaks (Figure 44) does not perfectly match 

the documented field data for the sampling year 1983 with a single maximum peak 

(Figure 43). This could be due to the limited number of experimental samples, taken 

from selected water wells and only within a single year rather than over extended time 

period. 

On the longer time scale (2010-2020), implementation of seasonal variations in 

principle does not alter the trend of FC concentration increase (Figure 45). Average FC 

concentrations of the seasonal model are comparable to the FC concentration in 

season-independent model, as given in section 6.3. 

 

 

 

 

Figure 44 Simulation of seasonal variation of FC concentration in aquifer section C in the year 
2010, using simulated FC loads for 2010 and the average monthly precipitation pattern of figure 

43, and assuming that FC transfer in the aquifer is positively correlated with precipitation 
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Climate change scenarios for the Yucatan Peninsula as a consequence of global 

warming have been developed for the horizon 2020 and predict a regional transitional 

climate (semi-arid in the northern portion, sub-humid in the south) that is very sensitive 

to changes (Orellana et al., 2012). The results reveal important temperature increases 

as well as a significant decrease in precipitation for some territories and an increase for 

others. Such a change in precipitation would be of very limited impact for the results of 

the season-independent SIWM model, considering the results of sensitivity analysis of 

the model (section 6.4), where a variation of annual rainfall by ±50% has practically no 

effect on FC concentration. As soon as the infiltration of FC into the aquifer is 

associated to the amount of rainfall, however, as in the seasonal model described in 

this section, changes of precipitation are predicted to affect FC concentration and water 

quality in a monthly-based scale.   

Furthermore, special considerations must be taken to current climate change 

conditions globally, which consequently affect seasonal patterns, which could produce 

uncertainty in the scientific modelling. For instance, Ries et al., (2015) have 

documented intrinsic changes in a Mediterranean karstic aquifer recharge due to 

seasonal changes. It was found that approximately 66% of rainfall percolates through 

the unsaturated zone during rainy season, compared to 0% during dry season. 

Nevertheless, these seasonal changes are varying over the years. Another issue for 

seasonal variation analysis is documented by Schmitt, (2010) realising the high risks 

and uncertainties for investments in resilience interventions due to alterations of 

seasonal variations with extreme events (i.e. droughts, hurricanes and flooding). 

Figure 45 Simulation of seasonal variation of FC concentration in aquifer section C in the time 
period 2010-2020, using simulated FC loads and the average monthly precipitation pattern of 

figure 43, and assuming that FC transfer in the aquifer is positively correlated with 
precipitation.  
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6.6. Modelling interventions 
A total of seven interventions were modelled, effectively starting in 2010. All 

interventions aim to improve public health status and reduce water-related diseases 

through engineering strategies within the water cycle of the MAM.  

The first five interventions are aimed at improving wastewater quality from both 

domestic urban (DU) and domestic rural (DR) origin. The sixth intervention is designed 

to improve wastewater quality from livestock activities. The seventh aims  to implement 

best management practices specifically for nitrogen-based fertilizer (N-fertilizer) use in 

agriculture. Each intervention improves wastewater quality prior to discharge into the 

MAM aquifer. Therefore, the two major outcomes of these interventions are:  

- Protection and preservation of the overall groundwater quality of the MAM and 

through this  

- Reduction of water-related diseases incidence from these two pollutants to 

achieve the goal of improving public health in the MAM.  

The 7 interventions are: 

1. Improve all existing septic tanks (ST) from domestic urban (DU) and domestic 

rural (DR) 

2. Connect all ST to existing domestic wastewater treatment plants (WWTP) 

3. Collect all ST to existing domestic WWTP (cost difference to intervention 2) 

4. Improve existing domestic WWTP removal efficiency: 

a. Activated Sludge/Extended Aeration (AS/EA) 

b. Anaerobic Digester/Trickling Filter (AD/TF) 

5. Increase number of domestic WWTP and connect all households to WWTP 

6. Create new WWTP for livestock (LIV)  

7. Improve nitrogen-based fertilizers management for agriculture (AGR), referred 

to as Best Management Practices (BMPs)  

All interventions are simulated along with the population growth of 1.74% per year. 

Therefore, it is also important to identify the time-dependent need for an increased 

wastewater treatment infrastructure, in order to cope with the increasing wastewater 

release by a growing population. The simulations assume same growth rate of 1.74%/y 

for all activities since domestic consumption is the major driving force.   

In order to establish the effect of potential engineering interventions, these are 

compared with the current scenario named “baseline” scenario with limited treatment. It 

is important to notice that current treatment processes in WWTP are mainly of two 

types: activated sludge (AS) and anaerobic digester (AD), both with some variations 

but assumed to have the same removal efficiency for the two pollutants. An average of 

the removal efficiency summarised on Table 71, was used for the simulation.  
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Table 71 Main treatments used in the Wastewater Treatment Plants of the study area 
Treatment 

Process 
Number of 

3WWTP 
% of 

treatment 
process 

Percent of 
nitrate 

removal 

Logarithm 
of 4FC 

removal 

Reference 

1AS/EA 16 55 80 3 log Perez, (2006b); Perez, 
(2006a) 

2AD/TF 13 45 75 4 log Alcica Construction, (2009) 
1AS/EA= Activated Sludge/ Extended Aeration; 2AD/TF= Anaerobic Digester/ Trickling Filter; 3WWTP= Waste 
Water Treatment Plants 4Faecal Coliforms 

These two treatments are widely recommended for tropical countries, because the 

removal process is mainly depending on the microbial activity intrinsically present in the 

wastewater. Main differences are related to the costs of investment, operation and 

maintenance. AS requires a constant energy source for the aeration process, while AD 

does not. In terms of the removal efficiency for the two pollutants of interest, AS 

generally provides better removal of NO3 than AD, while AD provides better FC 

removal than AS. Nevertheless, the overall performance of these treatments depends 

on various parameters such as the expert design, qualified operators, and optimal 

weather and operation conditions.  

Intervention 1. Improve all ST from DU and DR. The aim of this intervention is to 

improve the removal efficiency of existing septic tanks (ST) from domestic urban (DU) 

and domestic rural (DR). This is achieved through considering additional processes 

and/or improved design of the existing ST. Hydraulic retention time (HRT) is a 

determinant for the microbial removal efficiency, usually ST are designed for 48h HRT, 

but depends on the number and water consumption rates of people per household.  

Actions: Including a soil-adsorption system (SAS) after ST with a minimum 900mm of 

unsaturated soil from the release point to the groundwater table (most of microbial 

removal has been reported within the first 375mm) could increase faecal coliform 

(specifically Escherichia coli or E. coli) removal efficiency from 1 to 3 log reduction of 

FC (Samimian, 2009). By design specifications there is no NO3 removal. Nevertheless 

a 30% NO3 reduction could be achieved by including SAS immediately after the ST 

(Costa et al., 2002; USEPA, 1999), and this is also assumed in the simulation. 

Outcomes: Final outcomes of this intervention are: 

FC removal. FC removal increased from 1 log removal in existing ST to 3 log removal 

in improved ST, with no changes in WWTP. Figure 46 shows results. 
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Figure 46 Intervention 1: FC concentrations in the 4 aquifer sections of the MAM. Conditions: constant 
population growth of 1.74%/y; sources of FC are: DU: Domestic Urban, DR: Domestic Rural, AGR: 
Agriculture, and LIV: livestock. Intervention starts in 2010: 3 log FC removal by improved ST. Other 

treatment practices as in baseline scenario: 3 log FC removal by WWTP for DU and DR; no treatment for 
LIV and AGR. 

 

a. NO3 removal. NO3 removal increased from 0% to 30% removal in existing ST 

with no changes in WWTP. Results are shown in Figure 47.   

 

 

 

 

 

 
 

 

Figure 47 Intervention 1: NO3 concentrations in the 4 aquifer sections of the MAM. Conditions: constant 
population growth of 1.74%/y; sources of NO3 are: Aquifer background; DU: Domestic Urban, DR: 

Domestic Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 30% NO3 removal by 
improved ST. Other treatment practices as in baseline scenario: 80% NO3 removal by WWTP for DU and 

DR; no treatment for LIV and AGR. 

By comparing FC concentration before and after intervention 1 since 2010 (Figure 48), 

it can be concluded that this intervention has a strong reducing effect only in aquifer 

section A, where 100% of wastewater is treated by ST, and contribution of livestock to 

FC is minor. By comparing NO3 concentrations obtained before and after intervention 1 

(Figure 48), results show a weaker tendency of nitrate concentration increase in the 4 

aquifer sections. It is important to notice however, that as a consequence of 

intervention 1, nitrate concentrations in aquifer sections C and D reach the above 

Maximum Contaminant Level (MCL) for drinking water uses (MCL= 45 mg NO3/l) about 

10 years later than in the baseline scenario. 
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Figure 48 Intervention 1: Faecal coliform (FC-top) and nitrate (NO3, bottom) concentrations comparison 
between baseline scenario and intervention 1, for each aquifer section. 

Intervention 2. Connect all ST from DU and DR to WWTP (high cost). The aim of this 

intervention is to improve the overall quality of domestic effluents of existing ST, by 

building a sewerage system to connect these to the existing nearest WWTP for further 

treatment. Actions: There is the need to build drainage infrastructure at household 

level, in order to connect all ST to WWTP. Considering the karstic soil nature of the 

MAM, constructing such an infrastructure is expected to be challenging and therefore 

expensive. Nevertheless, the final outcomes of this intervention could justify the high 

costs. Outcomes: Final outcomes of this intervention are: 
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a. FC removal. FC removal increased from 1 log removal in existing ST to 3 log 

removal in existing WWTP. Figure 49 shows results and Figure 51-top shows a 

comparison with the baseline.   
 
 
 
 
 

Figure 49 Intervention 2: FC concentrations in the 4 aquifer sections of the MAM. Conditions: constant 
population growth of 1.74%/y; sources of FC are: background; DU: Domestic Urban, DR: Domestic Rural, 
AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 3 log FC removals by connecting ST to 

WWTP in place for DU and DR; no treatment for LIV and AGR. 
b. NO3 removal. Figure 50 shows results of this intervention for nitrate removal 

and Figure 51-bottom shows a comparison with baseline nitrate concentrations. 

 

 

 

 

 

 

Figure 50 Intervention 2: Nitrate (NO3) concentration in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of NO3 are: background; DU: Domestic Urban, DR: 

Domestic Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 80% NO3 removal by 
connecting ST to WWTP in place for DU and DR; no treatment for LIV and AGR. 
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Figure 51 Intervention 2: Faecal coliform (FC-top) and nitrate (NO3, bottom) concentrations comparison 
between baseline scenario and intervention 2, for each aquifer section of the MAM. 

 

Intervention 3. Collect all ST from DU and DR to WWTP (low cost). The aim of this 

intervention is to reduce pollution from domestic wastewater by transporting with 

vacuum trucks the stored wastewater to nearby WWTPs for further treatment, 

eventually at a lower cost than with intervention 2. This improvement achieved by this 

intervention is highly dependent on the transport frequency. Even if pollutants 

concentrate in the sediment of the ST, and these sediments are removed once a year, 

as currently regulated in Merida at the municipality level, based on the national law 

(NOM-006-CAN-1997), the overall effect of nitrate and FC removal is not expected to 

be significant. Furthermore, complete transfer of released wastewater to treatment 

plants would, due to limited ST volume (typically ~1-2m3, require a very high transport 
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frequency of >50 per year. This may be not feasible in urban areas with high population 

density as in the MAM case study. 

Actions:  Provide an adequate infrastructure with vacuum trucks to collect and transport 

the domestic wastewater to the WWTP at the required frequency.  

Outcomes: Final outcomes of this intervention would be the same as for intervention 2, 

given that all wastewater released into septic tanks is transported at high frequency to 

wastewater treatment plants. This may, however not be feasible in practice because of 

the high population density in the MAM area.  

At low transportation frequency, only minor effects on pollutant reduction can be 

expected. But even an annual collection of the sediments in a ST would be beneficial in 

combination with intervention 1, since the transfer of sediments to the soil absorption 

system (SAS) would affect the proper function of the latter due to clogging of pores. 

Intervention 4. The aim of this intervention is to improve the quality of domestic 

effluents from existing WWTP. Existing treatments are assumed to have 3 log removal 

of FC and 80% removal of NO3. Actions: An improved performance of current WWTP is 

achieved by investing in qualified operators, continuous training, and a reliable 

monitoring system. Upon this intervention, the existing WWTP are assumed to operate 

at optimal conditions with the highest removal efficiency. Outcomes: These are: 

FC removal. FC removal increases from 3 log removal to 6 log removal in existing 

WWTP with no changes in ST infrastructure. Modelling results are shown in Figure 52. 

Figure 54-top shows a comparison with baseline.  

 

 

 

 

 

 

 

Figure 52 Intervention 4: FC concentrations in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of FC are: DU: Domestic Urban, DR: Domestic 

Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 6 log FC removal by WWTP 
in place for DU and DR. Other treatment practices as in baseline scenario: 1 log FC removal by ST 

for DU and DR; no treatment for LIV and AGR.   
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a. NO3 removal. Increased from 80% to 100% removal by WWTP, with no 

changes in existing ST. Results are shown in Figure 53. Figure 54-bottom 

shows a comparison with baseline. 

 

 

 

 

 

 

 

 

This intervention has very little effect since only a small portion of total wastewater from 

DU and DR is treated by WWTP. Consequently, improving these WWTP has little 

influence on the overall contaminant concentration in the aquifer 

 

 

 

 

Figure 53 Intervention 4: Nitrate (NO3) concentration in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of NO3 are: background; DU: Domestic Urban, DR: 

Domestic Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 100% NO3 removal 
by improved WWTP for DU and DR. Other treatment practices as in baseline scenario: 1 log FC 

removal by ST for DU and DR; no treatment for LIV and AGR.   
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Figure 54 Intervention 4: Faecal coliforms (FC-top) and Nitrate (NO3, bottom) concentrations 
comparison between baseline scenario and intervention 4, for each aquifer section of the MAM.  
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Intervention 5. The aim of this intervention is to improve the overall quality of domestic 

effluents by connecting all households to improved WWTP, and also increase the 

performance of existing WWTP in terms of pollutants removal efficiency.  

Actions: There is a need to build new WWTP and to connect households to these 

WWTP by sewer pipes. In addition, the treatment efficiency of existing WWTP will be 

increased, as described for intervention 4. Outcomes: Final outcomes of this 

intervention are: 

a. FC removal. FC removal increased from 1 and 3 log removal from ST and 

existing WWTP respectively, to 6 log removal due to wastewater collection and 

improved WWTP. Figure 55 shows results and Figure 57-top shows a 

comparison with baseline. 

 

 

 

 

 

 

 

 

b. NO3 removal. Increased from 0% in ST or 80% in existing WWTP respectively, 

to 100% removal due to wastewater collection and improved WWTP. Results 

are shown in Figure 56. Figure 57-bottom shows a comparison with baseline. 

 

 

 

 

 

Figure 55 Intervention 5: FC concentrations in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of FC are: Domestic Urban, Domestic Rural, 

Agriculture, and livestock. Intervention starts in 2010: 6 log FC removals by wastewater collection 
from ST and improved WWTP for DU and DR. Other treatment practices as in baseline scenario: 1 

log FC removal by ST for DU and DR; no treatment for LIV and AGR.   

Figure 56 Intervention 5: Nitrate (NO3) concentration in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of NO3 are: Aquifer background; Domestic Urban, 

Domestic Rural, Agriculture, and livestock. Intervention starts in 2010: 100% NO3 removal by 
wastewater collection from ST and improved WWTP for DU and DR. Other treatment practices as in 

baseline scenario: 1 log FC removal by ST for DU and DR; no treatment for LIV and AGR.   
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There is a strong reduction of FC in section A where domestic sources are major 

contributors to FC contamination. The effect is relatively small in sections B-D where 

livestock is the major contributor to FC contamination. Importantly, nitrate levels in 

section C and D, which in the baseline scenario would exceed the MCL value 45 mg/L 

for drinking water within the next two decades, are kept below this value until 2060. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 57 Intervention 5: Nitrate (NO3) concentrations comparison between baseline scenario and 
intervention 5, for each aquifer section of the MAM. 
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Intervention 6. The aim of this intervention is to improve the overall quality of livestock 

effluents by creating WWTP for livestock, since there is no infrastructure currently in 

place for these effluents. Actions: There is the need to build WWTP infrastructure in 

place at farm level, in order to connect and treat all wastewater by WWTP. Considering 

the karstic soil conditions of the MAM, building the infrastructure required for this 

intervention could be expensive. Nevertheless, the final outcomes of this intervention 

could justify the costs at long term. Outcomes: Final outcomes of this intervention are: 

a. FC removal. 6 log removals are assumed by WWTP. Modelling results are 

shown in Figure 58. Figure 60-top shows a comparison with baseline.  

 

 

 

 

 

 

 

 

 

 

b. NO3 removal. 100% removal is assumed by WWTP. Results are shown in 

Figure 59. Figure 60-bottom shows a comparison with baseline. 

 

 

 

 

 

 

Figure 59 Intervention 6: Nitrate (NO3) concentration in the 4 aquifer sections of the MAM. 
Conditions: constant population growth of 1.74%/y; sources of NO3 are: Aquifer background; DU: 
Domestic Urban, DR: Domestic Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 
2010: 100% NO3 removal by WWTP. Other treatment practices as in baseline scenario: 1 log FC 

removal by ST for DU and DR; no treatment for LIV and AGR.   

Figure 58 Intervention 6: FC concentrations in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; sources of FC are: DU: Domestic Urban, DR: Domestic 

Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 6 log FC removals by WWTP 
in LIV. Other treatment practices as in baseline scenario: 1 log FC removal by ST for DU and DR; no 

treatment for LIV and AGR.   
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There is an instant >80% FC reduction in sections B-D where livestock is the major 

contributor to FC contamination. The effect is relatively small in section A where 

domestic sources are the major contributors to FC contamination. In addition, increase 

of nitrate levels in sections B-D slows down substantially, retarding the 45 mg/L MCL to 

2045 (for D) or later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intervention 7. This intervention is focused on improving the management of nitrogen-

based fertilizer use through the application of best management practices (BMPs) at 

the farming level. This is planned to reduce the overall leachate of nitrate to the aquifer 

from agriculture activity exceeding of 45 mg/L MCL to about 2045 (for D) or later. 

According to the Yucatan government statistics, there is no use of manure as fertilizer 

for agriculture; therefore there is no FC contamination from agriculture. Thus, this 

Figure 60 Intervention 6: Faecal coliform (FC-top) and nitrate (NO3, bottom) concentrations 
comparison between baseline scenario and intervention 6 by aquifer section of the MAM. 
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intervention is effective for nitrate removal only. Actions: Apply BMPs to nitrogen-based 

fertilizer use. Outcomes: Final outcomes of this intervention are: 

NO3 removal. According to literature reports (Shepherd and Chambers, 2007) through 

BMPs in agriculture at farm level, a 65% reduction of nitrate leaching can be achieved. 

Results are shown in Figure 61.  

 

 

 

 

 

 

Figure 61 Intervention 7: Nitrate (NO3) concentration in the 4 aquifer sections of the MAM. Conditions: 
constant population growth of 1.74%/y; source of NO3 are: Aquifer background; DU: Domestic Urban, 

DR: Domestic Rural, AGR: Agriculture, and LIV: livestock. Intervention starts in 2010: 65% NO3 removal 
by BMPs in agriculture. Other treatment practices as in baseline scenario: 1 log FC removal by ST for DU 

and DR; no treatment for LIV and AGR.   

A comparison with baseline is shown in Figure 62. The nitrate levels in section A are 

almost kept at aquifer background levels, indicating that this intervention is very 

effective in this area where agriculture is the major contributor to nitrate contamination 

by wastewater. The intervention yields only insignificant results in section B-D where 

agriculture is only a minor contributor to nitrate contamination. 

Figure 62 Intervention 7: Nitrate (NO3) concentrations comparison between baseline scenario and 
intervention 7 by aquifer section of the MAM.  
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6.7. Comparison of interventions performance 
In summary, the best results to reduce FC in the aquifer were obtained under the 

scenario of livestock intervention 6, after which 3 of the 4 aquifer sections have by far 

the lowest FC concentration at the end of the simulation period (Table 72). The only 

exception is aquifer section A what can be explained by considering the relatively 

insignificant livestock activity in this area. The highest reduction of nitrate in the aquifer 

is achieved under the scenario of intervention 5, where none of the 4 aquifer sections 

reach the MCL of 45mg NO3/l at the end of the simulation period in 2060.  

Table 72 Comparison of faecal coliforms and nitrate concentration at the end of the simulation period 
(2060) after interventions 1-7. 

Intervention  
Nitrate (mg/m3) Faecal Coliforms (CFU/m3) 

A B C D A B C D 

Baseline 2.17E+04 4.46E+04 6.66E+04 8.14E+04 9.09E+04 1.20E+06 1.59E+06 5.00E+06 
1 2.09E+04 4.06E+04 5.75E+04 7.00E+04 1.81E+04 1.06E+06 1.24E+06 4.26E+06 
2 1.96E+04 3.65E+04 4.35E+04 5.18E+04 1.81E+04 1.06E+06 1.24E+06 4.26E+06 
3 1.96E+04 3.65E+04 4.35E+04 5.18E+04 1.81E+04 1.06E+06 1.24E+06 4.26E+06 
4 2.17E+04 4.46E+04 6.56E+04 8.05E+04 9.09E+04 1.20E+06 1.59E+06 5.00E+06 
5 1.90E+04 3.44E+04 3.67E+04 4.35E+04 1.79E+04 1.06E+06 1.24E+06 4.26E+06 
6 2.13E+04 2.93E+04 4.54E+04 5.20E+04 7.30E+04 1.40E+05 3.53E+05 7.49E+05 
7 1.52E+04 3.99E+04 6.31E+04 7.76E+04  N/A N/A N/A N/A 

*N/A: Not applicable 

6.8. Selection of interventions for cost benefit analysis (CBA)  
Interventions resulted in different levels of improvement in the aquifer water quality. 

The following graphs compare the performance of the 7 different interventions by 

individual aquifer sections. Based on Table 72, pollutants removal efficiency, display 

the following patterns:  

            For NO3 reduction:    For FC reduction:   
 

 
 
 
 
 
 

For nitrate removal over all aquifer sections, interventions 5, 1 and 6 are the most 

effective. Meanwhile, for FC removal interventions 6, 5 and 1 in this order are the most 

effective. Considering their feasibility and long-term impact, the interventions 1, 5 and 6 

were selected to carry out CBA in Chapter 7.  

  

Aquifer 
section 

Intervention  Aquifer 
section 

Intervention 

A 7 > 5 > 2&3 > 1 > 6 > 4     A 5 >1, 2&3 >6 > 4 
B 1 > 6 > 5 > 2&3 > 7 > 4  B 6 > 5, 1, 2&3 > 4 
C 5 > 2&3 > 6 > 1 > 7 > 4  C 6 > 5, 1, 2&3 > 4 
D 5 > 2&3 > 6 > 1 > 7 > 4  D 6 > 5, 1, 2&3 > 4 
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Aquifer section A. 

a. FC reduction in groundwater is presented in Figure 63-top. Most effective 

intervention is intervention 6. Other interventions have limited effectiveness. 

b. NO3 reduction in groundwater is presented in Figure 63-bottom. Most effective 

intervention is 7 which aimed to reduce N-based fertilizers in agriculture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 Aquifer section A. Faecal coliform (FC) and nitrate (NO3) concentrations comparison 
between baseline scenario and the 6 relevant interventions in the aquifer section A of the 

MAM. 
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Aquifer section B 
a. FC reduction in groundwater is presented in Figure 64-top. Most effective 

intervention is 6. Other interventions have limited effectiveness. 

b. NO3 reduction in groundwater is presented in Figure 64-bottom. Interventions 

reduce nitrate concentration in 2060 by up to 30%, with gradual differences in 

effectiveness. Most effective intervention is 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

Figure 64 Aquifer section B. Faecal coliform (FC) and nitrate (NO3) concentrations comparison 
between baseline scenario and the 6 relevant interventions in the aquifer section B of the MAM. 
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Aquifer section C 

a. FC reduction in groundwater is presented in Figure 65-top. Most effective 

intervention is 6. Other interventions have limited effectiveness. 

b. NO3 reduction in groundwater is presented in Figure 65-bottom. Interventions 

reduce nitrate concentration in 2060 by up to 45%, with gradual differences in 

effectiveness. Most effective intervention is 5.  

  

Figure 65 Aquifer section C. Faecal coliform (FC) and nitrate (NO3) concentrations comparison between 
baseline scenario and the 6 effective interventions in the aquifer section C of the MAM. 
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Aquifer Section D 

a. FC reduction in groundwater is presented in Figure 66-top. Most effective 

intervention is 6. All remaining interventions have limited effectiveness. 

b. NO3 reduction in groundwater is presented in Figure 66-bottom. Interventions 

reduce nitrate concentration in 2060 by up to 45%, with gradual differences in 

effectiveness. Most effective intervention is 5 for this aquifer section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 66 Aquifer section D. Faecal coliform (FC) concentrations comparison between baseline 
scenario and the 6 interventions in the aquifer section D of the MAM.  
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6.9. Analysis and discussion of model results 
6.9.1. Nitrate and FC concentrations in the aquifer 
The model simulates pollutant concentration in the karstic aquifer of the study area by 

assuming spontaneous homogeneous distribution of the wastewater-related pollutant 

load in the water volume of each aquifer section. For the conservative pollutant nitrate, 

this approach provides a reasonable approximation with the (limited) available field 

data in section A, B and C. The model underestimates nitrate levels in section D, which 

might be related to hydrogeological specificities of this aquifer section such as low 

thickness of the freshwater lens. 

Modelling of Faecal Coliforms (FC) by the same approach initially gave a poor 

correlation with field data. Under consideration of the specific properties of this 

microbial pollutant, in particular the particle size and short lifetime, the aquifer volume 

was calibrated and a reduced volume, comprising 10% of the original volume of each 

aquifer section, applied to further modelling of FC concentration. This reflects the idea 

that FC is initially transported within small conduit volume and readily accessible 

fissures and larger pores. Their size and short lifetime does not allow FC to effectively 

diffuse through smaller pores into the limestone matrix, so that a major part of the 

aquifer volume is not accessible to FC. After volume calibration, the simulated FC 

levels are in good agreement with field data for sections B and C, and higher than field 

data for section A. Again, a poor agreement was found for section D. 

6.9.2. Future scenario without interventions 
The simulations already consider the limited existing infrastructure for wastewater 

management. Without additional wastewater management practice, the nitrate 

concentration is predicted to increase continuously by up to 1mg/L per year (section C) 

during the simulation time period, and exceed the MCL of 45 mg/L in section B by 2060 

and in section C by 2035. 

Increasing nitrate concentrations in groundwater are a worldwide problem. The general 

trend in Europe is an increase by about 0.4 mg/L per year (Beeson and Cook, 2004). 

Higher increases are reported at local sites, such as in the north of Valencia, Spain, 

where in average the nitrate level has increased by 2.6mg/L per year in the last 

decades (Perez et al., 2001). 

FC concentration is predicted to almost double between 2010 and 2060 for aquifer 

section C of the study area. Increases of FC concentrations could lead to increases in 

disease outbreaks; nevertheless evidence to identify specific pathogenic pollutant is 

very limited when diarrhoea cases are reported. For instance, Craun et al., (2010) 

provided an overview of main pathogens causing outbreaks associated with drinking 

water in the United States from 1971 to 2006. Results of this review reported as non-

legionella bacteria (which include the FC group) as main pathogen cause of a total of 
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113 outbreak from which, 105 outbreaks were directly caused by drinking water. From 

all outbreaks reported over the 35 years period of study, only 12 (11.4%) were 

identified for E. coli as the sole pathogen which caused the outbreak.   

6.9.3. Effect of interventions 
A long term reduction of NO3 concentration in the aquifer by up to 45% is achieved by 

the most effective interventions 5 and 6, relating to nitrogen release from domestic and 

livestock sources. An important issue for decision makers is the delayed response of 

nitrate concentration on the interventions. For example, a reduction of nitrate level by 

20% may take about 10 years (Figure 34). This delay is confirmed by Katz et al., 

(2014) for a karst aquifer in south-western Georgia, USA, where the simulation of 

flushing-out nitrate to halve its concentration takes several decades. Similar delay was 

predicted in the basalt aquifer in south-central Idaho, USA (Skinner and Rupert, 2012). 

Considering that the planning and implementation of the interventions may take several 

years, a long-term planning of interventions for nitrate reduction is of particular 

importance. 

In contrast, response of FC levels to the interventions is fast, as expected from the 

short lifetime of these microorganisms. Model results for FC concentration follows 

similar pattern when comparing the effect of the different intervention as followsː for 

aquifer section B-D interventions effect is higher for intervention 6, relating to livestock 

wastewater, than for all the other interventions. The exception is in aquifer section A, 

where livestock activity is insignificant and the effect of the interventions is contrary to 

the above pattern, meaning other interventions results in higher reduction than 

intervention 6. This confirms the adequacy of the model approach used in this 

research. Nonetheless, FC results are subject to many objections due to the lack of 

knowledge in terms of processes that control bacteria survival and movement in the 

soil and in groundwater as discussed by Benham et al., (2006), which limits the 

applicability to a watershed-scale model.   

Based on the literature, there are two main types of interventions widely used to 

improve drinking water quality for preventing diarrhoea: at the water source level and at 

the household level. Although the three interventions selected in this thesis to perform 

CBA only covers the household level intervention, this type of intervention has been 

documented as more efficient than interventions at the water source level (Chasen et 

al., 2007).  

6.9.4. Seasonal variations 
Seasonal variation of nitrate levels in deeper sections of the aquifer is considered 

insignificant in the simulation. This is confirmed by continuous monitoring of nitrate in 

an individual, deep water supply well in section C, with no evidence of a seasonal 
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pattern (CONAGUA, 2008). In terms of seasonal variation significance, a similar study 

developed by Elci and Polat, (2011) for the karstic area of Turkey, examines the 

seasonal variability of the groundwater quality in this system. It was also concluded that 

no statistically significant changes were observed during season change from all 

different quality indicators monitored (electrical conductivity, nitrate, chloride, sulphate, 

sodium, and heavy metals). Nevertheless, a local and temporal variability of nitrate 

levels was observed. From these findings, two main conclusions could be drawn and 

are principally transferable to the interpretation of the model results for the MAM study: 

1. Comparing single-site field data with model results has limitations, thus should 

be carefully interpreted. 

2. Seasonal variability is case-specific, as mentioned by Elci and Polat, (2011) dry 

season not essentially results in higher concentration of all groundwater quality 

indicators due to the effect of other conditions that also plays an important role, 

such as water circulation times, lithology, recharge, and land use patterns. 

Seasonal variation of FC levels in the MAM can be very significant according to field 

data, in particular in shallow wells. It was shown that a seasonal variation of FC- low in 

dry period and high in rain period- can in principle be modelled by relating FC load to 

precipitation, assuming that FC released on the surface is flushed more effectively in 

the aquifer by more rainfall. A practical implication for decision makers could, for 

instance, be the development of seasonal based effluent limits for wastewater 

treatment facilities, with season-dependent implementations of more effective 

disinfection procedure or even implement filter devices. 

6.9.5. Intervention feasibility and timescale of implementation 
As already indicated in section 6.8, feasibility and effectiveness are not the same for 

the seven suggested interventions. Interventions 2 and 3 have been evaluated by the 

Yucatan Government and the scientific community to some extent but are not 

considered feasible (Osorio, Personal communication, 2013). Building an extended 

drainage structure in the karstic soil of the MAM would be a project with unforeseeable 

costs.  Concerning intervention 3, it is very questionable if a high-frequency 

transportation of wastewater from septic tanks to WWTP by vacuum trucks is a 

practical solution for the study area. Intervention 4 (improving efficiency of existing 

WWTP), resulted in too little benefit with respect to water quality based on the 

simulation results. Intervention 7 (BMPs for N-based fertilizers) improves groundwater 

quality in aquifer section A, but only related to nitrate levels. Section A is the area with 

the highest agricultural activity of the study area, and intervention 7 would have only 

little effect to the other aquifer sections. In conclusion, the most promising in terms of 

effectiveness and feasibility are interventions 1, 5 and 6, which were selected for 

further analysis.   
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Selected interventions 1, 5 and 6 have benefits for both public health and costs-saving 

due to nitrate pollution averted. In addition, these interventions were considered 

feasible from the viewpoint of: 

- existing information for implementation of the interventions found on the 

literature (from similar cases studies) 

- reasonable timescale to construct and start operating within the timescale of the 

proposed intervention (50 years), as show in Table 73   

- available workforce, personnel training and raw material in place for 

implementation of the interventions 

- The planning phase prior to effective implementation of the intervention was 

relatively short (considering some pilot projects such as for intervention 6) 
Table 73 Typical timescale required to implement new infrastructure for selected interventions 

Infrastructure stage Time frame Year of effective implementation of 
intervention (starting in 2010) 

Planning stage to modify 
existing ST with SAS 
technology 

3 month  

Installation of SAS  12 months  
Building connection to ST 2 months 2012 for intervention 1 
Planning of WWTP 
construction  

6 months  

Construction of WWTPs 23 months  
Interconnection with 
sewerage system 

2 months  

Total time to implement 
WWTP 

31 months 2013 for intervention 5 and 6 

Source: Estimation based on CONAGUA, (2007); and USEPA, (1999). 

For practical purposes to evaluate the different interventions at the same timescale, the 

effects (benefits) of all interventions were assumed to start in 2010. 

6.9.6. Benefits for decision making and practical implications of interventions 
In practice, all interventions scenarios simulated in this research are subject to a variety 

of factors includingː 

- Life-time of the project. The time scale of the project is 50 years, with 

interventions effectively starting in 2010. Majority of these interventions would 

require construction up to several years and consequently the benefits would be 

seen with a delay, but some would be accountable after the first year. For 

instance, intervention 7 where best management practice in agriculture would 

account after the first year, conditioned to crops season, harvesting period, and 

fertilization practice subject of change. 

- As discussed in the costs estimation section, majority of these interventions 

would require capital cost coverage by the government, which would be subject 

to annual budget and change of government parties may also affect the 
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continuity of the projects. These would again results in an uncertainty about 

how feasible these interventions would be in practice.  

Benefits for decision making are diverse, from adequate allocation of diverse land use 

socio economic activities, up to the control and preservation of natural water resources 

exclusively confined to water supply for primary uses (drinking water). Some of the 

main benefits for decision making are shown Table 74. These are achieved through the 

modelling approach used, which integrates the latest trends in hydro-economic models 

reviewed by Booker et al., (2012). These include among others the incorporation of 

modelling competing demands, governance and institutional conditions (i.e. laws, 

regulations and water quality standards), scenario analysis for the selection of 

engineering interventions, and economic analysis to identify the most cost-benefit. 

 Table 74 Benefits of implementing model framework for decision making 

Although, if the main aim for other cases scenarios is to test adaptive solutions to 

climate change, a resilient approach could easily be implemented through new 

resilience scenarios simulations. Outcomes could serve for investment decisions using 

CBA as described by Nkomo and Bernard, (2006), by calculating among others: 

climate change damages, net benefits of adaptation, costs of preventive engineering 

interventions (cost of precaution), as well as net benefit of the interventions as follows: 

a) Climate change damages. “Net economic loss in net welfare due to physical 

damages of climate change compared to the baseline case”. 

b) Net benefits of adaptation. “Net reduction in climate change damages due to 

optimal capital investment for climate change interventions”. This is divided in: 

a. Climate change benefits: damages avoided by adaptation actions 

b. Climate change costs: costs of resources used for adaptation actions 

c) Costs of precaution/caution. “Costs assuming climate will/ will not change, 

respectively and making the capital investment.  

d) Net benefits of implementing adaptive interventions. “Measurement of the 

climate change damages avoided by adapting to climate change”. 

Area  Benefit How to implement 
Public 
urban 

Planed urbanization  
through considering 
population growth  

By projecting population growth and water 
demand, coupled by location of water resources 
and water supply capacity, decision makers 
could project the future urban development 
safeguarding adequate water supply quantity 
and quality  

Water 
supply  

Protection and prevention 
of water quality 
deterioration 

Baseline conditions should be simulated 
together with an intervention, restricting the 
peripheral area of the main catchment system 

Catchment Guaranteed water table 
level, thus sufficient water 
quantity under climate 
change conditions 

Water quantity could be projected under current 
conditions for baseline. Then an intervention for 
climate change conditions (extreme events) 
could be implemented   
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Even though, resilience interventions for climate change adaptation would be planned 

under uncertainties (i.e. precise nature of climate variability, changes over long-term 

period), by using the framework developed by Callaway, (2004) to estimate costs and 

benefits of adaptive interventions to climate change (Nkomo and Bernard, 2006).  
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Chapter 7. Results of cost-benefit analysis of interventions 

“The greatest risk to public health from microbes in water is associated with 

consumption of drinking-water that is contaminated with human and animal excreta, 

although other sources and routes of exposure may also be significant” (WHO, 2011). 

7.1. Cost-benefit analysis 

To analyse the relative cost-effectiveness of each intervention, model results were 

used to estimate health gains in the study population in each case. These could then 

be compared to the costs of each intervention. Health benefits were estimated in terms 

of disability-adjusted life years (DALYs) gained and quality-adjusted life years (QALYs) 

as result of improvements in water quality resulting from the proposed interventions.  

A cost-benefit analysis (CBA) was carried out in order to compare the cost 

effectiveness of most promising interventions and propose the most suitable for the 

MAM region. Costs and benefits listed in Table 75 were considered over a 50-year 

period (2010-2060).  

Table 75 Costs and benefits to calculate for the MAM case study 
Costs  Benefits  
Costs of Interventions- 
section 7.3.   

Economic value of the health life gained due to reduced diarrhoea 
incidence –sections 7.2.1. 

 Economic value of treatment saved for removing excessive nitrate, 
prior to use as drinking water- section 7.2.2. 

The costs of interventions included capital costs (installation) and operation and 

maintenance costs (O&M), as mentioned in Figure 30 (Chapter 5). Capital 

maintenance was excluded due to lack of data. In the benefit analysis, Quantitative 

Microbial Risk Assessment (QMRA) was used to estimate the change in incidence of 

diarrhoea associated with each intervention. This was then converted to an estimate of 

Disability-Adjusted Life Years (DALYs) saved, which in turn was used to estimate the 

economic value of the health gains. Diarrhoeal disease incidence was assumed to be 

associated predominantly with the presence in water supplies of E. coli. Faecal 

coliforms (FC) are a widely accepted indicator of microbial water quality and faecal 

contamination (WHO 2011), and also considered a good indicator of bacterial 

pathogens. E. coli constitute about 95% of FC and for routine purposes, FC and E. coli 

may be regarded as generally equivalent indicators of faecal pollution (Dufour, 1997; 

Allen and Edberg, 1995; WHO, 1996; Howard et al., 2006). Thus, for practical 

purposes FC was used in this thesis as equivalent of pathogenic E. coli in the QMRA. 

In addition, the economic benefit from the savings for the removal of excessive nitrate 

in drinking water was considered. 
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The impact of interventions was measured in the third segment of the modelled aquifer 

(section C) that displays not only the highest population but also the highest 

concentration of domestic and livestock pollutant sources. Impacts were assessed for 

the whole population of this area assuming their exposure to drinking water of the 

same quality as the resultant aquifer water quality at baseline and after modelling each 

intervention. From the 7 interventions simulated in Chapter 6, intervention 1 (improve 

existing septic tanks), 5 (increase the number of domestic WWTP and connect all 

households), and 6 (create new WWTP for livestock) were selected for the cost-benefit 

analysis considering their feasibility and long-term impact on water quality in aquifer 

section C as discussed in section 6.8. 

This chapter describes costs and benefits and estimations for the 50 years of 

intervention lifetime. At the end of this chapter, cost-benefit ratio (B/C) of each 

intervention provides the criteria (ratio >1) to select the most adequate intervention. 

7.2. Benefits estimates  
Benefits of the proposed interventions in this research are measured in terms of: 

a) Economic value of the healthy life gained associated with a reduction in 

diarrhoeal disease. This benefit is measured through QMRA for pathogenic E. 

coli (assumed as equivalent of FC), and  

b) Economic value of NO3 removal treatment averted (when excessive NO3 is 

present in the aquifer prior to use as drinking water). This benefit is estimated 

by calculating the cost of treatment that would be required to reduce nitrate 

concentration to an equivalent level prior to delivery in each case.  

7.2.1. Benefit a) Economic value of the health gains by reduction in 
diarrhoeal disease  

QMRA was applied to estimate diarrhoea diseases caused by faecal coliforms (FC) in 

drinking water (assuming direct water consumption from the MAM aquifer). As FC is 

the microbial indicator for microbial water quality (WHO, 2011) and field data and 

infectivity parameters are often expressed in E. coli, FC was used as equivalent to 

pathogenic E. coli, as discussed above (section 7.1.). Based on WHO, (2011), a risk 

assessment process for FC in the MAM comprises 4 steps (Table 76):  

Table 76 Quantitative Microbial Risk Assessment (QMRA) for FC in the MAM 
Step QMRA  

Hazards identification  Diarrhea incidence due to high 
concentration of FC in the aquifer 

Exposure assessment Aquifer FC concentration ingested as 
drinking water 

Hazard characterisation Dose-response equation 
Risk characterization Infection risks estimation 

Note: Quantitative Microbial Risk Assessment (QMRA) FC was evaluated in term of E. coli.   
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Annual diarrhoea infection risk per person in the study area (hereby: aquifer section C) 

by exposure to FC taken up with drinking water was calculated through QMRA. 

Groundwater concentrations of FC modelling in Chapter 6 were used, with a baseline 

concentration in aquifer section C of 91 CFU/100 mL in 2010. Then, a “worst case” 

scenario was applied, considering use of groundwater as drinking water without prior 

treatment. This reflects to some extent the actual situation that an estimated 20% of the 

population, in particular in suburban and rural areas of the study area, directly abstract 

drinking water from nearby shallow wells rather than relying on public supply (Alonzo 

and Acosta 2003).   

7.2.1.1. Daily dose of FC: dd(FC) 
The daily faecal coliform dose dd(FC), ingested per person by consumption of drinking 

water, was calculated by the equation 

dd(FC) = c(FC) * DWpppd    Equation 3     

dd(FC): daily FC dose per person, unit CFU/(person*day)  

c(FC): groundwater FC concentration in aquifer section C, as modelled in 

Chapter 6, unit CFU/100 mL  

DWpppd: average consumed drinking water per person and day, unit 

L/(person*day)  

DWpppd was assumed to be 1.4 L/(person*day) based on Haas et al., (1999). 

Using the baseline concentrations of FC for 2010, a dd(FC) of 1274 

CFU/(person*day), respectively, was calculated.    

7.2.1.2. Annual infection risk: 𝑷𝑷(𝒅) 
The infection risk upon single exposure to FC was calculated using the β-Poisson dose 

response equation. Dose-response relationship depends on the pathogen and 

ingestion pathway (e.g. by drinking water). For pathogenic bacteria (i.e. E. coli), the β-

Poisson model usually provides a better match with observed infection risk than other 

approaches. It expresses the probability distribution of an infection based on two main 

parameters, a median infectious dose (N50) and a slope parameter (α) as follows 

(WHO, 2001):          

  

PI(d): Infection risk of a person after single dose exposure 

d: pathogen dose (here: dd(FC)) 

N50: median infective dose, unit CFU  

α: infectivity constant 

𝑃𝐼(𝑑)  =  1 − �1 + 
𝑑
𝐼50

�21/𝛼 − 1��
−𝛼

 Equation 4 
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Values used on the β-Poisson model are summarised in Table 77, and are specifically 

for diarrhoea infection due to pathogenic E. coli (considered equivalent to FC).   

Table 77 Values used to estimate annual infection risk with the β-Poisson model 
Parameter Value (unit) Reference 

N50 8.6*107 (CFU) Haas et al., (1999) 
α 0.1778 Haas et al., (1999) 
d 1274 (CFU/person*day) Estimated 

Using these parameters, a single-dose infection risk of 1.27*10-4 is calculated. From 

that single (daily) dose response, the annual infection risk was derived using the 

equation: 

PI(A)(d): annual infection risk of a person 

PI(d): Infection risk of a person after single dose exposure, as calculated above 

n: number of exposures per year (here: 365) 

By this equation, an annual infection risk PI(A)(d) = 4.52*10-2 is calculated for the 

reference year 2010.  The calculated annual incidence of diarrhoea infections in study 

area aquifer section C (population 509419) is 23,080. The value is lower than the 

extrapolated incidence 33200 for aquifer section C, using the data of registered 

incidence of diarrhoea in Yucatan State (SSA, 2011). This may be explained by the fact 

that only a part of the registered diarrhoea cases origins from drinking water.  

The calculations were repeated using water quality results from each run of the model, 

as a result of interventions 1, 5 and 6 and an equivalent annual infection risk was 

estimated in each case. 

Table 78 shows the summary of water quality improved by each intervention, the 

associated number of diarrhoea infections, and the annual infection risk. 

Table 78 Summary of water quality and the associated number of infections in 2010 by intervention 
Intervention Water quality (FC 

in CFU/m3) 
Number of infections Annual infection 

risk PI(A)(d) 
Baseline 9.1E+05 23080 4.52*10-2 

1 7.6E+05 19537 3.82*10-2 
5 7.6E+05 19490 3.82*10-2 
6 1.6E+05 4053 7.93*10-3 

7.2.1.3. DALYs 
Disability Adjusted Life Years (DALY) for a disease or health condition are calculated 

as the sum of the Years of Life Lost (YLL) due to premature mortality in the population 

and the Years Lost due to Disability (YLD) for people living with the health condition or 

its consequences (WHO, 2011). 

DALY = YLL + YLD      Equation 6 
YLL is obtained as the product of the number N of disease-related deaths, and lost 

years L between death age and life expectation: 

PI(A)(d) = 1 - [1 - PI(d)]n 

 

Equation 5 
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YLL = N * L Equation 7 
YLD is the product of the number I of disease incidence cases (derived from the annual 

infection risk PI(A)(d), as calculated above), the disability weight DW (also given as a 

“severity factor” of the disease), and the average duration of disability L: 

YLD = I * DW * L Equation 8 
For the cost-benefit analysis, it is reasonable to follow a recommendation of Hutton and 

Haller, (2004) and only consider the loss of economically productive years, i.e. the gap 

between death age and 60 years. 

In view of a cost-benefit analysis, these general equations are usually adapted by 

implementing age-weighted disease incidence data and consideration of economically 

productive life years. The case study-specific evaluation of YLL and YLD was 

complicated by limited availability of such data. For Yucatan State, age-group specific 

data for diarrhoea incidence and diarrhoea related deaths are only fragmentary. 

Therefore, the available data for the average (over all age groups) diarrhoea-

associated death risk in 2010, in combination with the mean age of Yucatan population 

(29 years) for 2010 and a 60 years cut-off age for economic productivity (Hutton and 

Haller, 2004), was used to derive YLL. The result was then adjusted by the use of an 

age weighting factor f, which was derived from the more complete country-wide 

Mexican database: 

YLL = N * L = [(population * PI(A)(d)) * (PD(A))] * (60 - mean age) * f Equation 9 

Population: population of aquifer section C in 2010 (509 419), (SSA, 2011) 

PI(A)(d): annual diarrhoea infection risk of a person, as calculated above 

(4.52*10-2  for aquifer section C in 2010) 

PD(A): average annual death risk upon diarrhoea infection in Yucatan 2010 

(7.6*10-4) 

Mean age: referring to the population of Yucatan state in 2010 (29 years) 

f: age weighting factor (0.47) 

When these Yucatan-specific values are substituted in the YLL equation, the latter 

modifies to: 

 

PD(A) was obtained as the ratio of registered diarrhoea-based deaths (94) and diarrhoea 

infections (124 424) in Yucatan State 2010 (SSA, 2011). The correction factor f was 

derived from the comparison of age-group specific, following the recommendations of 

Hutton and Haller, (2004), and age-averaged YLL calculations, using available data for 

the Mexican country and assuming a similar age-related distribution of diarrhoea 

YLL = [(population * PI(A)(d)) * 7.6 * 10-4] * 31 * 0.47 

 

Equation 10 
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incidence and diarrhoea-related deaths for Mexico and Yucatan. The age-averaged 

calculation overestimates the YLL since diarrhoea associated deaths is particular high 

in age groups 0-1 years and >65 years, which are not economically productive. YLD 

was calculated as follows: 

YLD = I * DW * L = (population * PI(A)(d)) * DW * (average duration of disease)     Equation 11 

  DW: disability weight or severity factor referring to diarrhoea, 0.105 (WHO, 2011) 

  Average duration of disease: referring to diarrhoea in Yucatan, 5.6 days or 0.0153 

years (SEDUMA, 2009) 

When these diarrhoea-specific values are substituted in the YLD equation, the latter 

modifies to: 

 

Here, the YLD for economically non-productive age-groups (<15 years and >60 years, 

about 30% of total population) was not excluded, taking into account that YLD will be 

overestimated. This is justified by the necessity to consider in the cost-benefit analysis 

also for these age groups the expenses for diarrhoea treatment, which make a 

significant contribution to the total disease-associated costs. In the disease-associated 

cost calculation, the overestimated loss of economic productivity will be down-corrected 

by using a correction factor for the economically productive portion of the population 

(see Equation 14). 

Based on these equations and considerations, YLL = 225 years and YLD = 37 years 

are obtained for faecal coliform associated diarrhoea in aquifer section C for the 

reference year 2010 (Table 79). 

Table 79 Summary of YLL and YLD estimates by intervention 
Intervention YLL YLD 

Baseline 255 37 
1 216 31 
5 215 31 
6 44.8 6.5 

7.2.1.4. Economic value gained by reducing diarrhoeal disease 

For the calculation of diarrhoea-related economic value, YLL and YLD were 

considered. YLL was associated with an economic loss (salary loss), and YLD in 

addition with the treatment costs.  

Economic value = (annual salary * YLL)+[(annual salary * YLD * f)+(treatment cost/year*YLD)]      
                                                     Equation 13 
Average salary per capita in Yucatan State was reported 150 Mexican Pesos/day 

(SEDUMA, 2009), corresponding to 54750 Mexican Pesos/year or 3997 USD/year, 

using a conversion factor 0.073. 

YLD = (population * PI(A)(d)) * 0.105 * 0.0153 years Equation 12 
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Average treatment costs for a single diarrhoea infection sum up to 367 Mexican Pesos 

(SEDUMA, 2009). Considering 5.6 days duration of the disease, a treatment cost of 

23917 Mexican Pesos or 1746 USD per year is assumed.  

f is a correction factor that considers the “economically active” portion of the total 

population. In Yucatan, f = 0.64 (INEGI, 2012). This correction factor partially 

compensates the overestimated YLD value, as outlined above. 

When these values are substituted in the economic value equation, the latter is 

modified as follows for the calculation of diarrhoea associated economic loss in the 

study area for a one-year period, reference year 2010: 

 

Using YLL = 255 years and YLD = 37 years as calculated above, the annual diarrhoea-

related economic value for aquifer section C (population 509 419) in 2010 sum up to 

1,170,000 USD. Monetary benefit of interventions is given in Table 80.  

Table 80 Annual economic loss by diarrhoeal disease in aquifer section C reference year 2010 
Intervention Economic loss (Million USD) Economic benefit (Million USD) 

Baseline 1.17 - 
1 1.01 0.16 
5 1.00 0.17 
6 0.27 0.90 

7.2.1.5. Diarrhoeal disease benefit by intervention 
From the data estimate in section 7.2.1.4, the economic loss by diarrhoeal disease was 

extrapolated to the 50-years period of intervention (2010-2060), considering population 

growth-associated increase of baseline FC concentration in groundwater. For ease of 

comparison and consistency, constant 2010 prices were assumed in all calculations. 

Similarly, a constant salary of 3997 USD/year was applied for diarrhoeal related 

economic loss in the all intervention time period (2010-2060).  

Table 81 Effect of interventions on faecal coliform concentration in groundwater c(FC) and on diarrhoea-
related benefit for the 50-years period 2010-2060. Data refer to aquifer section C of the MAM study area, 

assuming an annual population growth by 1.7% 
 Intervention c(FC) in groundwater  

CFU/m3 
Annual disease-related 
economic value (Million USD) 

Disease-related benefits 
2010-2060 (Million USD) 

Baseline 2010 9.1E+05 (year 2010) 1.17 - 
Baseline 2060 1.6E+06 (year 2060) 4.78 149 
Intervention 1 1.2E+06 (year 2060) 3.67 31 
Intervention 5 1.2E+06 (year 2060) 3.67 31 
Intervention 6 3.5E+05 (year 2060) 1.1 115 
 

Intervention 6 promises maximum economic benefit in the order of 115 Million USD, as 

summarised in Table 81. Disease-related benefits in this table were calculating as the 

cumulative benefit, when considering the average of annual economic values for 2010 

and 2060 from Table 81 and multiplied it by the 50 years of intervention time period. 

Economic value= (3997 USD * YLL) + [(3997 USD * YLD * 0.64) + (1746 USD * YLD)] 
Equation 14 
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7.2.2. Benefit b) Economic value of NO3 removal treatment averted 
A second benefit from the selected interventions is the averted nitrate removal costs 

when nitrate concentration in the aquifer exceeds the national drinking water quality 

standards.  

According to the International Agency for Research on Cancer (IARC), nitrate is 

classified in group 2A which group probable carcinogens to humans, specifically due to 

ingested nitrate or nitrite where endogenous nitrosation take place. However, there is 

no solid evidence in the literature yet to document the relationship between nitrate 

uptake and cancer risks in public health. Therefore, in this research nitrate pollution in 

drinking water has been evaluated from the view point of saving treatment investments 

for reducing nitrate concentration of the groundwater to an acceptable level prior to use 

as drinking water.   

The approach taken to measure this benefit was based on the assumption that the 

government should guarantee water quality standards in supplying the population with 

drinking water. The exceeding nitrate concentration in the aquifer would be reached at 

different time under each intervention scenario as show in Table 82. Subtracting these 

times per intervention when nitrate concentration is exceeded from the time on the 

baseline scenario (or “no doing anything scenario”) when nitrate concentration is 

exceeded, the total years of nitrate removal treatment is obtained. 

Table 82 Years of NO3 concentration exceeding regulation by intervention (section C) 
Intervention Year when NO3 concentration 

exceeds regulation 
Number of years required to 

remove NO3 
Baseline 2032 28 

1 2038 21 
5 > 2060 0 
6 > 2060 0 

A rough cost estimate for the installation and operation of nitrate removal technologies 

has been done on the basis of Jensen et al., (2012). Electrodialysis reversal (EDR), as 

currently applied in California (USA), is a relatively cost effective nitrate removal option, 

but still requires average costs for both investment and operation and maintenance 

(O&M) of 1.6 USD per 1000 Gallons (or 3785 litres) of drinking water. Nitrate removal 

efficiency of 90% is assumed (GE, 2005). Due to the effectiveness of this technology in 

nitrate removal, treatment of only a portion of the drinking water would be required so 

that upon mixing of the purified water with untreated water, the MCL of 45mg/L can be 

maintained. This practice would minimize operation costs and was assumed to be 

applied for the case study. The volume fraction VT/Vo of the water that needs to be 

treated to achieve an overall concentration below MCL increases along with increasing 

nitrate levels, according to the following equation: 
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VT/Vo= 1.11 – (1.11 * 45mg/L / Co)          Equation 15 

Vo= total groundwater volume 

VT= treated groundwater volume 

Co= nitrate concentration in groundwater before treatment (>45 mg/L) 

For section C, treatment would be initiated in the year 2032 when the MCL of nitrate is 

reached, and the portion of water that requires treatment according to the formula 

above increases from 2% in 2032 up to 40% in 2060. Considering a domestic water 

abstraction in 2010 of 2.2 m3/s in section C, annual water consumption sums up to 

about 69 Billion litres. Along with population growth, it rises to 100 Billion litres in 2032 

(onset of nitrate removal) and 160 Billion litres in 2060 (end of simulation). Considering 

treatment costs of 0.00042 USD/L, an economic loss of 840, 000 USD is predicted for 

2032, and 27 Million USD for 2060, associated with nitrate removal. Over the 28 year 

period (2032-2060) of nitrate removal treatment, the economic loss would be sum up to 

392 Million USD.  

Table 83 summarizes the nitrate concentrations in 2060 depending on interventions at 

the wastewater level, and the economic benefits associated with intervention due to 

averted nitrate removal. The benefits are very significant for interventions 5 and 6 that 

keep nitrate levels below the MCL over the whole simulation period. 

Table 83 NO3 concentration in 2060 in aquifer section C, cumulated nitrate removal costs (onset when 
MCL is exceeded) and economic benefits associated with interventions 

Intervention NO3 concentration in 
2060 (mg/L)  

Cost for NO3 reduction 
(Million USD) 

Economic benefit 
(Million USD) 

Baseline 70 392 - 
1 58 108 284 
5 38 - 392 
6 44 - 392 

7.2.3. Summary of benefits 
Table 84 shows the total benefits obtained by the three interventions selected. All 

interventions provide significant economic benefits of several hundred million USD. The 

overall most effective intervention is 6, which over the 50 years period of intervention, 

results in a total benefits of 507 Million USD.   

Table 84 Summary of benefits from the selected interventions (over 50 years) 
Intervention Economic benefit gained 

by disease reduction 
(Million USD) 

Economic benefit gained 
by avoiding NO3 removal 

(Million USD) 

Total economic 
benefit gained 
(Million USD) 

1 31 284 315 
5 31 392 423 
6 115 392 507 
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7.3. Costs of interventions 
General methodologies to estimate costs of engineering interventions have been 

documented by Vesilind and Rooke, (2003) and McGivney and Kawamura, (2008). The 

latter includes a more practical estimation by using nominal cost of different 

infrastructure. The method used in this research to estimate costs of interventions is 

based on the estimation of the full simulation period 2010-2060 and includes two main 

costs components to estimate: Capital cost, and Operation and Maintenance cost 

(O&M), all of these considering the time value of money, as described below. 

- Capital cost: is one-time investment paid as bank loans, but because in the 

MAM case study these facilities are government-owned system, interests of the 

loans are neutralized by tax exemption for government projects. 

- Operation and Maintenance costs (O&M). These includes labour costs, energy 

and supplies (i.e. chemicals). 

To simplify costs calculations, zero discounting rate was applied for capital costs and 

O&M costs (Broome, 1992).  

7.3.1. Summary of costs estimate for the selected interventions 
Rough cost estimates were performed for the three selected interventions (1, 5 and 6) 

which for aquifer section C promise the most significant pollutant reduction over time, 

considering investment and O&M costs for a 50-year period between 2010 and 2060, 

without adjustment for inflation, as recommended by USEPA, (1999) for long lifetime 

wastewater projects.  

The costs of intervention 1 (improvement of ST) consist on a capital investment for a 

soil absorption system (SAS) to connect to each ST, which has a unit cost of 400 USD 

(EPA, 1999). Assuming installation of the SAS in each household (4 people) of the 

MAM that has a ST, and taking into account population growth in aquifer section C, 

overall costs of 71 Million USD were derived for the full intervention time (2010-2060). 

O&M is not required for this technology, assuming adequate O&M of the ST.  

The costs of intervention 5 (built new wastewater treatment plants and connect all 

households to new or existing plants) was simplified by associating the domestic 

wastewater release with a demand for modern treatment plants. This approach 

assumes a full replacement of the small number of less effective treatment plants 

currently in place. The costs for intervention 5 was thus derived from the domestic 

(1.73 m3/s) wastewater produced in section C in 2010, and literature estimates for 

representative average costs by m3 of treated water in a typical municipal treatment 

plant. OECD, (2006) provides such data and points out that the expenses for 
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wastewater collection by connecting households to the plants (0.8 – 1.0 USD/m3) are 

higher than the treatment costs itself (0.3 – 0.5 USD/m3). The lower limit values 0.8 and 

0.3 USD/m3 of the given range were applied to the cost calculation in this research. 

With these data, annual costs for domestic wastewater treatment in 2010 are 60 Million 

USD, and 5.8 Billion USD for the 50-year period with consideration of 1.7% annual 

population (and consequently wastewater volume) increase. For wastewater treatment 

plants in Mexico with relatively large treatment capacity, lower values for treatment 

costs 0.15 USD/m3 (Jimenez, 2008) and 0.13 USD/m3 (Bartone, 2000) have been 

reported. Treatment costs per m3 generally are the lower, the higher the capacity of the 

treatment plant is. It is particular difficult to estimate the costs for installation and 

maintenances of a pipe system that connects households in the study area to the 

treatment plants, since extra costs are expected due the karstic soil characteristics.    

The costs estimation for intervention 6 is based on a study of the Yucatan government 

(SEDUMA, 2009), focusing on an projected central treatment plant for 40 pig farms 

(40000 pigs) in the MAM. Livestock wastewater is collected at the farm and transported 

by trucks to the treatment plant within a radius of 25 km. A lifetime of 50 years is 

assumed for the plant. Projected investment costs are 4.9 Million USD and operation 

and maintenance costs 1.8 Million USD/year. Since porcine is the major livestock 

activity in aquifer section C, the extrapolation of the data focused on porcine livestock 

and other activities were neglected. From the number of pigs (72000) in aquifer section 

C in 2010, it was concluded on a demand of 1.8 centralised treatment plants. The 

associated costs over the 50-year period, considering growth of livestock activity along 

with population growth (1.7%), are estimated 315 Million USD. Removal efficiencies for 

FC and nitrate are in the range of 99% (SEDUMA, 2009). 

A summary of the estimated cost for the selected interventions in aquifer section C, 

over the 50-year period of intervention is presented in Table 85. The result is the net 

present value (NPV) of each intervention. Conversion to annual costs for financing of 

the interventions was estimated by dividing the total cost of the intervention by 50 

years, the time period of the intervention.  

Table 85 Costs estimate in Million USD over 50 years for the selected interventions  
Parameter Intervention 

1 
Intervention 

5 
Intervention 

6 
Capital costs ($) 71 2900 9 
O&M costs ($) - 2900 311 
Total costs (2010-2060) 71 5800 320 
Average annual costs 1.4 114 6.3 

       Note: costs are estimated assuming constant 2010 prices 

For intervention 5 (new WWTPs) a 1:1 ratio of capital cost and O&M costs was used, 

based on data provided by The World Bank Group, (2015). 
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7.3.2. Per capita costs estimate for the selected interventions 

Per capita costs for each selected intervention, both for the annual average and the 

cumulated 50 years costs (as given in Table 85) were estimated under the 

considerations mentioned above (neutralised inflation with government tax exemption) 

calculated for the 2010 population of aquifer section C (Table 86). Decreasing per 

capita costs with increasing population may represent a contribution to the Time Value 

of Money for the interventions investment. 

Table 86 Per capita costs estimates (section C population 2010) for selected interventions, relating to 
averaged annual and 50 years cumulated costs of interventions 

Intervention Averaged annual 
per capita cost (in 

USD) 

Cumulated 50 years 
costs (2010-2060) 

per capita (in USD) 
1 2.7 139 
5 230 11,159 
6 13 626 

7.3.3. Sensitivity analysis of costs estimate for the selected interventions 
Sensitivity analysis was performed in a simplified approach for both the economic 

benefits and the costs associated with the selected interventions 1, 5 and 6 (Table 87 

and Table 88). On the benefit side, the parameter under variation was the minimum 

wage which affects the economic gains by disease reduction. On the cost side, two 

parameters displayed in Table 85 were varied: capital costs and O&M costs of the 

selected interventions. Variations were within a range of ±10% and refer to the 

cumulated costs for the 50 years simulation period.  

Table 87 Effect of variation of minimu wage on 50 years benefits of selected interventions 

Variation Intervention 50-years benefits (cost-savings) (Mio USD) 
     FC-related     NO3-related            Total 

Baseline 
1 31 284 315 
5 31 392 423 
6 115 392 507 

min wage -10% 
1 28 284 312 
5 28 392 420 
6 104 392 496 

min wage -5% 
1 29 284 313 
5 30 392 422 
6 110 392 502 

min wage +5% 
1 32 284 316 
5 33 392 425 
6 121 392 513 

min wage +10% 
1 34 284 318 
5 34 392 426 
6 126 392 518 

 

The sensitivity analysis from the benefit side is exemplified by the variation of the 

minimum wage in Table 87, indicating that a ±10% variation of minimum wage has a 

significant (±10%) effect on the benefits by avoiding FC-related disease, but only a 
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minor effect (±2%) on the overall 50-year economic of the interventions that are driven 

by avoiding nitrate removal costs. The latter remains unaffected by variation of the 

minimum wage. 

Similarly, results of sensitivity analysis from the costs side is exemplified by the 

variation of capital costs in relation to the 50 years costs of the interventions, which are 

presented in Table 88. Variations up to ±10% are observed.  

Table 88 Effect of variation of capital costs and O&M costs on the 50 years costs of selected 
interventions  

Variation Intervention 
50-years costs (Mio USD) 
Capital cost variation O&M cost variation 

Baseline 
1 71 71 
5 5800 5800 
6 320 320 

 cost -10% 
1 64 71 
5 5510 5510 
6 320 284 

cost -5%  
1 68 71 
5 5655 5655 
6 320 299 

cost +5% 
1 75 71 
5 5945 5945 
6 321 330 

 cost +10% 
1 78 71 
5 6090 6090 
6 322 345 

 

Since the 50 year benefit exceed the costs only for interventions 1 and 6, the further 

analysis of uncertainty focused on these two promising interventions.  

In the baseline scenario, benefits exceed costs for intervention 1 by 248 Million UDS 

and for intervention 6 by 192 Million USD. When all parameters under consideration 

(minimum wage, capital cost and O&M costs) are applied simultaneously with a 

variation of ±10% in the sensitivity analysis, the ranges (minimum to maximum) for 

these savings become 238-258 Million USD for intervention 1, and 149-235 Million 

USD for intervention 6. That means the uncertainty resulting from a combined effect of 

parameters is rather high, 86 Million USD for intervention 6, while lower, only 20 Million 

USD, for intervention 1. 

7.4. Cost-benefit ratio 
Costs and benefits estimations of the selected interventions for the 50-year period 

(2010-2060) are summarised in Table 89. The outcome of QMRA and saved nitrate 

removal treatment costs served to evaluate the benefits from the binomial cost-benefit 
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analysis. CBA ratio of a given intervention provides the criteria (ratio >1 is feasible) to 

select the most adequate intervention for the MAM case study.  

Table 89 Costs vs. benefits for interventions 1, 5 and 6, over 50 year (2010-2060) 
Intervention 50-years  

Costs (Mio USD) 
50-years benefits (cost-savings) (Mio USD) 
FC-related      NO3-related            Total 

B/C 
ratio 

1 71 31 284 315 4.4 
5 5800 31 392 423 0.1 
6 320 115 392 507 1.6 

Summarising, the intervention 1 (improvement of septic tanks in households) and 

intervention 6 (built centralised wastewater treatment plants for livestock, sewage 

collection by trucks) result in a benefit/cost ratio > 1, and both provide significant saving 

in the order of 200 Million USD. Intervention 5 (built new wastewater treatment plants 

and connects all households to new or existing plants) results in a benefit/cost ration 

much lower than 1. This is related to the high costs for the installation, connection and 

operation of new wastewater treatment plants.  
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Chapter 8. Discussion of model framework and application 
beyond the study area 

The framework developed in this research aims to identify main public health risks and 

subsequently evaluate potential engineering interventions of significant cost-benefit 

outcome. The methodology to create this framework was set out through combining 

different methodologies as described in Figure 67 which have been used and 

documented in the literature separately and are incorporated in this research and 

applied for integrated and sustainable water management on a case-specific approach.  

This methodology is then a novel approach to help decision-makers to better overview 

the current and future threats, simulate potential interventions and foresee their effects 

in the short and long-term application, with the ultimate goal to prioritize those 

interventions that would result in a favourable cost-benefit action. 

 

Figure 67 Schematic overview of model framework 

A brief description of each framework step is discussed below: 

- Framework objective. The objectives are case-specific oriented based on what 

is known of the current situation, what has been already tried to solve the issue 

and what are the decision-makers main awareness and potential contributions 

to solve the issues under study.  

- Data collection and estimation of missing data. This step is fundamental for the 

full framework. Data quality and quantity would be the limiting factor to create 

model structure and foresee potential interventions. Thus, it is fundamental to 

invest enough time and resources to collect data of sufficient quality and 

adequate quantity. 
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- System dynamics modelling development. The SD modelling process requires 

a wide range of data available both from site-specific case study and from the 

general hydrodynamics conditions governing the aquifer system under study.  

- Simulation of baseline and interventions. The baseline scenario requires to be 

tested through calibration and validation of the model, and eventually 

adaptations are required in order to reasonable match with field data. 

Simulations of interventions are the key outcome of this framework, in order to 

foresee future scenarios and apply cost-benefit analysis. 

- Decision-makers recommendations. The final step of the framework is writing 

down the findings of the framework. After careful evaluation and analysis of the 

costs and benefits that results for each of the interventions tested, a 

recommendation or of a single or combined interventions is presented to the 

decision-makers. 

8.1. Advantages and disadvantages of the proposed framework 
This framework has advantages and disadvantages which are discussed in this section 

in order to identify the potential for application to other study areas. These are: 

Advantage: 

- Easy to use model, no advanced skills required by user, although development 

of the model requires a significant amount of data and specialist knowledge 

- Highly versatile for application to other cases studies by modifying input data 

and/or some minor changes of the internal model structure if required, including 

other engineering interventions. An example is given below 

- The model interface is illustrative for presentation to decision-makers 

- Easy to interpret model outcomes, such as graphs and tables  

- The general framework is fully used as a supply chain where outputs of one 

stage serve as inputs to the next stage (i.e. model results are used for cost-

benefit analysis)  

- Auto verification of model consistency in units and equations, combined with 

relatively fast simulation time 

- Other water/wastewater quality parameters can be tested subject to parameter-

specific modifications if required 

Disadvantage: 

- Limited to the availability of input data in the present case study. 

Approximations and extrapolations had to be used to derive missing data  

- Uncertainty in the hydrogeological characteristics of the karst aquifer (although 

this is considered a general issue for karstic aquifers modelling).  
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- The model calculate average contaminant levels at regional scale for relatively 

large aquifer volume, thus it does not reflect local variations of contaminant 

concentrations within the region, such as expected in the proximity of point 

sources.  

- Availability of new input data, such as additional field data for contaminant 

levels, is valuable but makes necessary an adaptation, revalidation and re-

calibration of the model. This includes also an update of interventions costs, in 

order to maintain adequacy of final recommendations to decision makers.  

- Simplified karstic heterogeneity model approach. Classic hydrogeological 

approaches are unable to model conduits of karst aquifers (Bakalowicz, 2005).  

The SIWMM can be applied to other case studies without significant modifications if the 

following basic information is available, eventually after calibration of the model: 

- Population development 

- Catchment area and aquifer volume 

- Recharge 

- Flows of water abstraction and wastewater return for the specific 

socioeconomic activities  

- Contaminant concentration in wastewater for the specific socioeconomic 

activities  

- Efficiency of aquifer infiltration by the contaminant 

- Information of lifetime or decay rate for microbial contaminants 

- Groundwater flow direction and volume 

8.2. Applicability of the proposed framework to comparable case 
studies 

An example where the SIWMM can be readily applied for the simulation of contaminant 

concentration in a similar karstic aquifer is the Franconian Alb in Germany (Einsiedl et 

al., 2010). The hydrogeology and contaminant transport at this study site have been 

extensively explored by isotope and tracer tests, combined with mathematical 

modelling. The conceptual model describes a biphasic system of conduits and rock 

matrix, with fast water flow through the conduits and slow flow and transport in the 

matrix. The contaminant under study is the pharmaceutical diclofenac, considered 

(such as nitrate in the MAM study), as a conservative pollutant without significant 

biodegradation in the aquifer. Catchment area is clearly defined and associated with 

spring outflow. Diclofenac is released by wastewater treatment plants in know 

concentrations. These concentrations in the groundwater are consistent with significant 

dilution by storage in the large volume of the rock matrix. Importantly, this assumption 

reflects the similar approach used for modelling of nitrate levels by the SIWMM, based 
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on homogeneous distribution of pollutant over the total aquifer volume of the MAM, 

even with the likely presence of a conduit-matrix structure. Table 90 shows a summary 

of data input from the Franconian Alb study case required for modelling through the 

SIWMM. Remarkably, the SIWMM calculates for an equilibrium state (considering 

continuous infiltration of the same concentration for 30 years, as suggested in Einsiedl 

et al., (2010). 

Table 90 Simulation of Diclofenac concentration Franconian Alb, case study at two independent sites 
Input parameter Site 1 Site 2 
Population Constant Constant 
Catchment 18 km2 23 km2 
Aquifer volume 2.3x107 m3 1.5x107 m3 
Recharge 230 mm/year 230 mm/year 
Wastewater (WW) 80 m3/s 80 m3/s 
Groundwater flow 136 L/s 174 L/s 
Diclofenac concentration in WW ~1 µg/L ~1 µg/L 
Infiltration efficiency 100% 100% 
Contaminant lifetime infinite Infinite 
Diclofenac concentration in 
aquifer: field data (average of 2 
samples)  

12 ng/L 3 ng/L 

Diclofenac concentration in 
aquifer: simulated data for 
equilibrium state 

7 ng/L 5 ng/L 

Diclofenac concentrations are in reasonable agreement with field data. Once the 

baseline concentration of contaminant is simulated, the effect of interventions might be 

included in the modelling such as implementation of specific technologies in the 

wastewater treatment plants for removal of the pharmaceutical of concern. Even if in 

this case study example, the low concentrations of the pharmaceutical in groundwater 

are not considered a health concern, a quantitative risk assessment might in principle 

be applied to the baseline and interventions scenarios, and the scenarios might be 

compared in a cost-benefit analysis following the suggested model framework. 

Applicability of this framework to other similar case studies is possible considering the 

following limitations: 

- The objective of the framework is related to the specific issues of the case study 

- The SIWMM is a generic model as discussed in the methodology chapter. Thus 

the SIWMM itself is subject to data availability for the case study under 

analysis, including the adjustment required to adequately reproduce the 

hydrodynamic conditions governing the aquifer under study.   

- Costs and benefits of the interventions under evaluation are also subject to data 

availability at regional level 
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8.3. Applicability of the proposed framework to non-comparable case 
studies 

For non-similar cases, it is important to highlight those considerations of the SIWM 

model proposed here for its transferability as described below. 

- Modify the multidisciplinary modelling approach. As reviewed by Scheibe et al., 

(2015), hydrologic models have a rigorous interest for the multi-scale nature of 

the aquifer under study, resulting in a necessary simplification of models 

parameters (as the proposed in the SIWMM), which consequently may question 

models predictability. In this respect, experts on hydrogeological conditions of 

the study area (catchment), general context of social and economic factors, and 

complexity of the water supply system (policy makers), might be consulted prior 

to use the model framework for implementation of  adaptive measurements   

- Water users and polluters sectors review. Depending of the given urban/rural 

area, these sectors should be reviewed, in order to redefine and/or modify as 

appropriate those social and economic activities included or excluded of the 

model structure, after identification of the significant biological and chemical 

pollutants  

- Sectionalisation of the model framework. The series of steps in the 

methodology of the model framework could be used independent. For example, 

for specific case study, data for catchment hydrogeology are not available; 

pollutants concentration at steady state conditions could be estimated.   

- Evaluate model transferability through calibration, validation and sensitivity 

analysis. If the case study is significantly different to the present study, rigorous 

analysis of data input and output could be assessed through the model 

interface in order to identify those specific parameters that could be used to 

simulate and report for further evaluation 

Summarizing, for comparable cases studies, the framework could be easily adapted by 

considering the above limitations. For non-comparable cases studies, it is important to 

highlight that through system dynamics modelling as a step of the framework, allows to 

test and evaluate whether or not there are some logical and numerical relationships 

between parameters of the model, which facilitates the identification of possible 

variables interconnections to be used for modelling purposes. Furthermore, calibration, 

validation and sensitivity analysis would adequately evaluate whether or not the model 

is able to reproduce the real scenario of the given case study. 
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Chapter 9. Conclusions and recommendations 

A sustainable integrated water management model was developed and applied to the 

case study of the Metropolitan Area of Merida (MAM) Yucatan, Mexico in order to 

predict the effect of water management interventions on groundwater contaminant 

levels and ultimately identify interventions of substantial economic and health benefits.  

The MAM covers an area of about 5000 km2 in the northwestern part of the Yucatan 

Peninsula, with a population of about 1 Million in 2010. The aquifer underneath the 

MAM has been recently declared by the RAMSAR Convention as a wetland site of 

international importance due to its hydrogeological nature. The MAM karstic aquifer 

presents a high hydraulic conductivity but a low hydraulic gradient, substantial recharge 

by precipitation, with absence of surface runoff and a continuous groundwater flow 

directed toward the coast. The karstic aquifer is the only source of drinking water in the 

MAM (Chapter 3).  

The porous soil matrix makes the karstic aquifer very vulnerable to contaminants that 

directly infiltrate the groundwater along with, for instance, untreated wastewater. 

Wastewater management in the MAM is insufficient; the majorities of households and 

of livestock farming are not connected to wastewater treatment plants. Pollutant load is 

expected to increase along with a rapid population growth, and improved wastewater 

management practices are urgently needed. These issues are exacerbated in the MAM 

area by drastic climate change phenomena such as hurricanes. In addition, the 

complex hydrogeology of the karstic aquifer makes the prediction of spatial and 

temporal patterns of groundwater contaminants a challenging task. This and a rather 

limited database for groundwater contaminants complicate the planning of effective 

wastewater management interventions with respect to public health and economic 

benefits.  

The present thesis project attempts to address this issue by developing a novel 

sustainable integrated water management model that aims to quantify the effect of 

interventions not only on groundwater contaminant reduction but also on the 

improvement of public health and on economic benefits. System dynamics modelling 

(Vensim software) is applied to predict future levels of selected contaminants in the 

groundwater of the MAM. The model divides the aquifer in 4 interconnected (by 

groundwater flow) sections, and considers water inflow (rain, groundwater, and 

wastewater) and outflow (water abstraction, groundwater). A simplification that largely 

facilitates the estimation of contaminant levels is the assumption of a spontaneous, 

homogeneous distribution of the contaminants in the groundwater of each section. The 
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model projects the effect of various interventions that reduce the contaminant load of 

inflowing wastewater on the concentration of the contaminants (Chapter 6).  

The focus of this research was on two indicator contaminants: Faecal coliforms as a 

microbial indicator of water quality and representing the non-conservative pollutants, 

which are characterized by a relatively fast decay, and nitrate as a chemical indicator of 

water quality and an example of a conservative pollutant that may persists in the 

groundwater for decades. Among the considered socioeconomic activities, domestic 

and livestock were identified as major sources of faecal coliform and nitrate 

contamination due to wastewater release into the groundwater. The model is readily 

applicable to other contaminants that may origin from different socioeconomic 

activities, such as heavy metals from industrial sources.   

Faecal coliforms in groundwater trigger a major risk of diarrhea infection. The latter was 

analysed using Quantitative Microbiological Risk Assessment (QMRA), and disease 

associated costs were calculated on the basis of Disability Adjusted Life Years (DALY).  

Finally, a preliminary cost benefit analysis (CBA) for several interventions was 

performed for the most important section of the MAM (section C). The costs associated 

with the intervention include capital investment, operation and maintenance (O&M). 

The benefits are defined as cost-savings of expenses, either associated with a reduced 

burden of waterborne diarrhea or with removal of excessive nitrate in the aquifer for 

drinking water use in order to comply with the Maximum Contaminant Level (MCL) of 

45 mg/L nitrate.  

9.1. Conclusions 
Major outcomes of the modeled scenarios are: 

 Modeled nitrate concentrations in groundwater of aquifer sections A, B, and C 

are in reasonable agreement with averaged field data for deep parts of the 

aquifer were drinking water is abstracted (45 m depth). 

 Nitrate will exceed the Maximum Contaminant Level according to international 

standards for drinking water in the most populated sections (Section C) of the 

study area within the next 20 years.  

 Wastewater management interventions have a delayed effect on nitrate levels; 

it takes years to reduce the nitrate level by 5 mg/L.  

 Modeled faecal coliform concentrations required a calibration of the aquifer 

volume that is effectively accessible to these microorganisms. A reasonable 

match with field data was achieved for aquifer sections A, B, and C. 

 Wastewater management interventions have an “instant” effect on faecal 

coliforms levels in the groundwater. 
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 Among various interventions, the treatment of wastewater from livestock is 

overall the most effective with a long-term reduction of nitrate levels by 30% 

and faecal coliforms by 80% in the most populated section of the study area. 

 Improving existing domestic septic tanks by adding a soil-absorption system is 

a relatively cheap intervention with nitrate and FC contaminant reductions in 

2060 mostly between 10 and 20%. 

 The interventions, in particular those for livestock, would significantly reduce 

diarrhea burden and may even save individual life. The savings estimated by 

QMRA and DALY for reduced disease burden over a 50-years period are, 

however, much lower than the costs of the interventions.  

 The intervention for livestock would keep nitrate levels in the most populated 

section of the MAM below the Maximum Contaminant Level for the next 45 

years. Given that modern (expensive) technologies would be applied to remove 

excessive nitrate from drinking water in the absence of interventions, a costs-

benefit analysis predicts benefits in the range of 390 Million USD over a 50-year 

period. 

 Even the improvement of existing domestic septic tanks would bring a benefit of 

about 280 Million USD associated to the reduction of nitrate levels.    

 Based on the cost-benefit ratio, intervention 1 (improvement of ST) is the most 

effective intervention.  

9.2. Recommendations 
Future work may apply this water management tool to other emergent pollutants and 

other case studies of karstic aquifers. 

Further work is needed for creating field data to assess the health impact of elevated 

nitrate concentrations, which in this study could not be derived due to lack of statistic 

data for the study area. 

The sustainable integrated water management model identifies the treatment of 

wastewater from households (by implementing soil absorption systems into septic 

tanks) and livestock (by centralized wastewater treatment plants) as an interventions 

with substantial positive impacts on groundwater quality and public health and, in 

addition, substantial economic benefits. Installing soil absorption systems and 

treatment plants for livestock, as exemplified by a projected centralized pilot plant 

including a wastewater transportation infrastructure in the MAM, are priority 

recommendations to the water authorities of the Metropolitan Area of Merida. 
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Appendix A 

Drinking Water Maximum Contaminant Level (MCL) Standards. Those highlighted are 

officially regulated in Mexico. 

Pollutant Type Unit USEPA EU WHO Mexico 
Microorganisms       
Cryptosporidium 1 % removal 99    
Giardia lamblia 1 % removal 99.9    
Heterotrophic plate count (HPC) 1 CFU/million ≤500    
Total Coliforms  1 CFU/100ml ≤5 0 0 0 
Faecal coliform (E. Coli) 1 CFU/100ml    0 
Viruses (enteric) 1 % removal 99.9    
Turbidity 1 NTU ≤5   5 
Disinfection Byproducts       
Haloacetic acids (HAA5) 1 µg/l 60    
Chlorate  µg/l   700  
Chlorite 1 µg/l 1000  700  
Bromate 1 µg/l 10 10 10  
Total Trihalomethanes (TTHMS)  µg/l 80 10 1 200 
Disinfectants       
Chlorine dioxide as CLO2 1 µg/l 800    
Chlorine as CL2 1 µg/l 4000  5000 200-1500 
Chloramines as CL2 1 µg/l 4000    
Inorganic chemicals       
Ammonium  µg/l  500  500 
Antimony 1 µg/l 6 5 20  
Arsenic 1 µg/l 10 10 10 50 
Asbestos (fiber >10 micrometers) 1 Million/l 7    
Barium 1 µg/l 2000  700 700 
Beryllium 1 µg/l 4    
Boron  µg/l  1 500  
Cadmium 1 µg/l 5 5 3 5 
Chromium (total) 1 µg/l 100 50 50 50 
Copper 1 µg/l 1300 2 2000 2000 
Cyanazine  µg/l  0.6   
Cyanide (as free cyanide) 1 µg/l 200 50 70 70 
Cyanogen chloride  µg/l   70  
Fluoride 1 µg/l 4000 1.5 1.5 1500 
Formaldehyde  µg/l   900  
Lead 1 µg/l 15 10 10 25 
Mercury 1 µg/l 2 1 1 1 
Selenium 1 µg/l 50 10 10  
Nitrate (as Nitrogen) 1 µg/l 10,000 501 501 10,000 
Nitrilotriacetic acid  µg/l   200  
Nitrite  1 mg/l 10 (as 

Nitrogen) 
50  50 50 

Thallium 1 µg/l 2    
Organic chemicals       
Acrylamide (of treatment dose)  1 % ≤0.05  0.1 0.5  
Alachlor 1 µg/l 2 20   
Aldicarb* 1 µg/l   10  
Aldrin and dieldrin* 1 µg/l   0.03 30 
Atrazine* 1 µg/l 3 2   
Benzene 1 µg/l 5 1 10  
Benzo (a)pyrene (PAHs) 1 µg/l 0.2 0.01 0.7  
Bromodichloromethane  µg/l  60   
Bromoform  µg/l  100   
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Carbofuran* 1 µg/l 40  7  
Carbon tetrachloride 1 µg/l 5  4  
Chlordane* 1 µg/l 2  0.2 300 
Chlorobenzene 1 µg/l 100    
Chloroform  µg/l   200  
Chlorotoluron*  µg/l  30   
Chlorpyrifos*  µg/l   30  
2,4-D (Dichlorophenoxy acetic acid) 1 µg/l 70 30  50,000 
2,4-DB (Dichlorophenoxy butyric 
acid) 

   90   

Dalapon 1 µg/l 200    
1,2-Dibrome-3-chloropropane 
(DBCP)* 

1 µg/l 0.2  1  

1,2-Dichlorobenze  µg/l   1000  
1,4-Dichlorobenzene  µg/l   300  
o-Dichlorobenzene 1 µg/l 600    
p-Dichlorobenzene 1 µg/l 75    
1, 2-Dichloroethane 1 µg/l 5 3 30  
1,1-Dichloroethene  µg/l   30  
1,2-Dichloroethene  µg/l   50  
1, 1-Dichloroethylene 1 µg/l 7    
cis-1, 2-Dichloroethylene 1 µg/l 70    
trans-1, 2-Dichloroethylene 1 µg/l 100    
DDT 
(Dichlorodiphenyltrichloroethane) 

 µg/l  1  1000 

Dichloromethane 1 µg/l 5  20  
Dimethoate*  µg/l   6  
Dichlorprop*  µg/l  100   
1,2-Dichloropropane 1 µg/l 5  40  
1,3-Dichloropropene*  µg/l   20  
Di (2-ethylhexyl) adipate 1 µg/l 400    
Di(2-ethylhexyl) phthalate 1 µg/l 6 8   
Dibromoacetonitrile  µg/l  70   
Dibromochloromethane  µg/l  100   
Dinoseb 1 µg/l 7    
Dioxin (2,3,7, 8-TCDD) 1 µg/l 0.00003    
Diquat 1 µg/l 20    
Edetic acid (EDTA)  µg/l   600  
Endothall 1 µg/l 100    
Endrin* 1 µg/l 2  0.6  
Epichlorohydrin 1 %  ≤0.01 of 

dose to treat 
water 

0.1 0.4  

Ethylbenzene 1 µg/l 700  300  
Ethylene dibromide 1 µg/l 0.05    
Fenoprop*  µg/l  9   
Gryphosate 1 µg/l 700    
Heptachlor 1 µg/l 0.4    
Heptachlor epoxide 1 µg/l 0.2   300 
Hexachlorobenzene 1 µg/l 1   10 
Hexachlorobutadiene  µg/l  0.6   
Hexachlorocyclopentadiene 1 µg/l 50    
Isoproturon*  µg/l  9   
Lindane* 1 µg/l 0.2  2 2000 
MCPA* (2-methyl-4-
chlorophenoxyacetic acid) 

 µg/l   2  

Mexoprop*  µg/l  10   
Methoxychlor* 1 µg/l 40  20  
Metolachlor*  µg/l  10   
Metoxichlorine  µg/l    20,000 



174 
 

Microcystin-LR  µg/l  1   
Molinate*  µg/l  6   
Molybdenum  µg/l   70  
Monochloramine  µg/l   3000  
Monodhloroacetate  µg/l  20   
Oxamyl (Vydate) 1 µg/l 200    
Polychlorinated biphenyls (PCBs) 1 µg/l 0.5    
Pendimethalin*  µg/l  20   
Phenol   µg/l    1 
Pentachlorophenol 1 µg/l 1  9  
Picloram 1 µg/l 500    
Polycyclic aromatic hydrocarbons  µg/l  0.13   
Pyriproxyfen*  µg/l  300   
Simazine* 1 µg/l 4  2  
Styrene 1 µg/l 100  20  
Terbuthylazine*  µg/l  7   
Tetrachloroethylene 1 µg/l 5 10 40  
Toluene 1 µg/l 1000  700  
Toxaphene 1 µg/l 3    
2,4,5-TP (Silvex)* 1 µg/l 50 9   
2,4,6-Trichlorophenol  µg/l   200  
1,2,4-Trichlorobenzene 1 µg/l 70    
1,1,1-Trichloroethane 1 µg/l 200    
1,2,2-Trichloroethane 1 µg/l 5    
Trichloroacetate  µg/l   200  
Trichloroethylene 1 µg/l 5 10 70  
Trifluralin*  µg/l  20   
Vinyl chloride 1 µg/l 2 0.5 0.3  
Xylenes (total) 1 µg/l 10,000  500  
Radionuclides       
Alpha particles 1 pCi/l 15   0.14 
Beta particles and photon  1 mRem/y 4   14 
Radium 226 and Radium 228  1 pCi/l 5    
Tritium  Bq/l  100   
Uranium 1 µg/l 30  15  
Aluminum 2 µg/l 50-200 200  200 
Chloride 2 µg/l 250,000 250,000  250,000 
Color 2 units 10   20 
Hardness (CaCO3)  µg/l    500,000 
Zinc 2 µg/l 5000   5000 
Corrosivity 2  noncorrosive    
Foaming Agents 2 µg/l 500   500 
Iron 2 µg/l 300 200  300 
Manganese 2 µg/l 50 50 400 150 
Nickel  µg/l  20 20  
Odor 2 Unit 3   good 
pH 2 Unit 6.5-8.5   6.5-8.5 
Silver 2 µg/l 100    
Sodium  µg/l  200,000  200,000 
Sulfate 2 µg/l 250,000 250,000   
Total Dissolved Solids 2 µg/l 500,000   1000,000 
Total Organic Carbon    No 

change 
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Appendix B 

Karstic aquifers worldwide. 

 Location 
Africa Anjajavy Forest, western Madagascar Madagascar dry deciduous forest, western 

Madagascar 
Ankarana Reserve, Madagascar Tsingy de Bemaraha Strict Nature Reserve, 

Madagascar 
Asia Area around Guilin and Yangzhou in Guangxi Zhuang 

Autonomous Region, China  
Jiuzhaigou and Huanglong National Park 
(UNESCO World Heritage Site), Sichuan, China 

Zhangjiajie National Forest Park, forming part of the 
Wilingyuan scenic area, Zhangjiajie Prefecture, 
Hunan, China 

Zhi Jin Dong in Gui Zhou Province, China 

The Stone Forest (called the South China Karst by 
UNESCO), Yunnan Province, China 

Arabika Massif (including Voronya Cave- the 
world’s deepest cave), Abkhazia, Georgia 

Bantimurung, Indonesia Ofra region, Israel 
Akiyoshi plateau, Japan Vang Vieng, Laos 
Gunung Mulu National Park, Malaysia Kilim Karst Geoforest Park, Langkawi, Malaysia 
Kinta Valley, Perak, Malaysia El Nido, Palawan, Philippines 
Coron, Palawan, Philippines Sagada, Mountain Province, Philippines 
Chocolate Hills, Bohol, Philippines Negros and Gigante Islands, Negros Oriental, 

Philippines 
Krabi región, Thailand Phangnga Bay Area, southern Thailand 
Kenting National Park, Taiwan Taseli plateau, Turkey 
Halong Bay, Vietnam  Phong Nha-Ke Bang, Vietnam 
Tam Coc-Bich Dong in Ninh Binh Province, Vietnam  

Europe 
 

Eastern region of the Northern Limestone Alps in the 
provinces of Salzburg, Upper Austria, Styria and 
Lower Austria, forming huge limestone plateaus such 
as Steinernes Meer, Hagengebirge, Tennengebirge, 
and Hochschwab, Austria 

Area around Graz, Styria, Austria 

Central Rhodope karst (including Trigad Gorge), 
Bulgaria 

Devnya Valley, Varna Province, Bulgaria 

Dragoman marsh, Bulgaria Cadi mountain range, Catalonia 
Regions of Dalmatia (including Zagora), Lika, Gorski 
kotar, Kvarner and the islands in Croatia 

Garraf Natural Park area, Catalonia 

Moravian Karst, Czech Republic Bohemian Karst, Czech Republic 
Tuhala karst area, Estonia Ares de l’Anie, in the southernmost part of 

Baretous valley, southwest France  
Causes of the southern Massif Central, France Honnetal at Balve, Germany 
Swabian Alb region in the federal state of Baden-
Wuerttember, Germany 

Region of the Mecsek Mountains in Hungary 

Bukk, a plateau in northeastern Hungary The Burren in County Clare, Ireland 
Kras, a plateau in northeastern Italy and 
southwestern Slovenia 

Murge, in Apulia and Basilicata, southern Italy 

Herzegovina region of Montenegro and Bosnia-
Herzegovina 

Polish Jura Chain (Jura Krakowsko-
Czestochowska), Poland 

Holy Cross Mountains (Gory Swietokrzyskie) with the 
Jaskinia Rai, Poland 

Tatra Mountains including the Jaskinia Wielka 
Sniezna (Great Snowy Cave) – the longest cave 
in Poland 

Slovak Paradise, Slovak Karst and Muranska planina, 
Slovakia 

Apuseni Mountains, Romania 

Kras, a plateau in southwestern Slovenia and 
northeastern Italy 

Region of Inner Carniola, Slovenia 

Picos de Europe and Basque mountains, northern 
Spain 

Ciudad Encantada in the Cuenca province, 
Castilla-La Mancha, Spain 

White Peak of the Peak District, around Matlock, 
Castleton (including Thor’s Cave), England, United 
Kingdom 

El Torcal de Antequera nature preserve, 
southern Spain 
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Yorkshire Dales (including Malham Cove), England, 
United Kingdom 

Southern region of the Brecon Beacons National 
Park, Wales, United Kingdom 

Eastern foothills of Maya Mountains including parts 
of the Cockscomb Basin Wildlife Sanctuary, Belize 

Great Blue Hole near the center of Lighthouse 
Reef, Belize 

North 
America 

Monkman Provincial Park in the Northern Rockies Nahanni region in the Northwest Territories 

Wood Buffalo National Park in Alberta and the 
Northwest Territories 

Niagara Escarpment, Ontario 

Marbel Canyon, British Columbia Northern Vancouver Island, British Columbia 
Mogotes in Vinales Valley Los Haitises National Park 
Cockpit Country region Cenotes of the Yucatan Peninsula 
Sótanos of the Sierra Gorda, Querétaro Cacahuamilpa grottos Guerrero 
Karst forest, Puerto Rico  Mountains of northwestern Puerto Rico 
Kosciusko Island, southeaster Alaska Mitchell Plain and uplands of southern Indiana 
Great Valley of Appalachia (Huntsville, Alabama to 
northeast Pennsylvania) 

Shenandoah  Valley, Virginia 

Driftless Area of southwest Wisconsin, southeast 
Minnesota, northeast Iowa and northwest Illinois. 

Florida península 

Mammoth Cave area and the Bluegrass region of 
Kentucky 

Illinois Caverns State Natural Area and Illinois 
Sinkhole Plain in Monroe County,  

Ozark Plateau of Missouri and Arkansas Kamas Ranch and Alabaster Cavern area of 
Oklahoma 

Cumberland Plateau in Middle Tennessee Grassy Cove Karst Area, Tennessee 
Hill Country of Texas and its northern extensions, 
including the Palo Pinto Mountains 

Carlsbad Caverns National Park, New Mexico 

Central Pennsylvania Presque Isle County near and around Rogers 
City in northern Michigan 

Germany Valley Karst Area, West Virginia Swago  Karst Area, West Virginia 
Leeuwin-Naturaliste National Park, near Margaret 
River, south west western Australia 

Cutta Caves National Park and Kintore Caves 
Conservation Park, Katherine, Northern 
Territory 

Oceania Northern Swan Coastal Plain, Perth, Western 
Australia 

Naracoorte Caves National Park, South Australia 

Jenolan Caves, New South Wales Wombeyan Caves, New South Wales 
Mole Creek Karst Conservation Area, Tasmania Takaka Hill, South Island 
Waitomo, Oparara regions Nakanai Mountains, East New Britain 
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