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 II. Abstract 
 
Arteriogenesis, remodelling of pre-existing collateral vessels following occlusion has 

potential as therapy for diseases of arterial occlusion such as coronary heart disease. 

Although haemodynamic force is known to induce arteriogenesis, genetic modulation 

remains largely undetermined. Analysis of collateral remodelling in mammalian models 

occurs post mortem preventing serial in vivo observation. Zebrafish embryos have a 

number of advantages that permit serial in vivo observation of heart and vasculature. 

I sought to determine if zebrafish embryos underwent arteriogenesis. Gridlock mutant 

embryos suffer complete and permanent occlusion of the aorta, but recover aortic blood 

flow from three to five days post fertilisation. To determine whether recovery was 

independent of gridlock mutation I performed laser-induced aortic occlusion of wildtype 

embryos preventing aortic blood flow distal to occlusion. Within 24 hours over 80% of 

embryos had recovered aortic blood flow, demonstrating zebrafish embryos undergo 

arteriogenesis. I next determined whether recovery occurred in a manner similar to 

mammalian arteriogenesis by demonstrating a similar modulation by nitric oxide. 

To determine gene expression following reduced haemodynamic force occurring with 

arterial occlusion I performed microarray analysis of wildtype embryos lacking cardiac 

contraction and thus haemodynamic force (tnnt2 morphants) at three timepoints in the 

first 60 hours of development. 290 genes were differentially expressed: 166 

demonstrated increased expression and 124 decreased expression in tnnt2 morphants 

compared to control (physiological haemodynamic force; -

fold change in expression). I evaluated level and localisation of expression of two of 

these genes (EFNB1 and EDNRB), and assessed the effect of inducing aberrant splicing 

by morpholino antisense oligonucleotide knockdown on general and vascular 

development, as well as the ability to recovery aortic blood flow by arteriogenesis. 
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V. List of Abbreviations 
 
Ab   absorption 
ADP   adenosine diphosphate 
ADRA2B  adrenoceptor 2B 
Ang1   angiopoietin-1 
Ang2   angiopoietin-2 
aRNA   antisense RNA 
At   aorta 
ATP   adenosine triphosphate 
BDM   2,3-butanedione monoxime 
bFGF   basic fibroblastic growth factor 
Bl   swim bladder 
bp   base pair 
Ca2+   calcium ion 
cAMP   cyclic adenosine monophosphate 
cDNA   complementary DNA 
CEBP1  CCAAT/enhancer binding protein 1 
cGMP   cyclic guanosine monophosphate 
CHD   coronary heart disease 
CYP51   cytochrome P450, family 51 
CYP26B1  cytochrome P450, family 26, subfamily b, polypeptide 1 
dH20   distilled water 
DIC   differential interference contrast 
DLAV   dorsal longitudinal anastomotic vessel 
Dll4   delta-like 4 
DMA   digital motion analysis 
DNA   deoxyribonucleic acid 
dNTP   deoxyribonucleotide triphosphate 
EC   endothelial cell 
ECM   extracellular matrix 
EDNRB  endothelin receptor type B 
EFNB1  ephrinB1 
eGFP   enhanced green fluorescent protein 
eNOS   endothelial nitric oxide synthase, formerly NOSIII 
ENU   ethyl-nitrosourea 
ET   endothelin-1 
FADS   fatty acid desaturase 2 
FSS   fluid shear stress 
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GFP   green fluorescent protein 
GMCSF  granulocyte macrophage colony stimulating factor 
GTP   guanine triphosphate 
h   hour 
HIF-1   hypoxia-inducible factor-1 
hpf   hours post fertilisation 
hpo   hours post occlusion 
HUVEC  human umbilical vein endothelial cell 
ICAM-1  intracellular adhesion molecule-1 
IL-4   interlukin-4 
iNOS   inducible nitric oxide synthase, formerly NOSII 
INSIG1  insulin induced gene 1 
ISH   in situ hybridisation 
ISV   intersegmental/intersomitic vessel 
MCP-1   monocyte chemotactic protein-1 
MI   myocardial infarction 
min   minute 
mm   millimetre 
MMP   matrix metalloprotease 
MO   morpholino antisense oligonucleotide 
MQ H20  milliQ water 
MRI   magnetic resonance imaging 
N   notochord 
NADPH  nicotinamide adenine dinucleotide phosphate 
NCID   notch intracellular domain 
nNOS   neuronal nitric oxide synthase, formerly NOSI 
NO   nitric oxide 
NOS   nitric oxide synthase 
NPPA   natriuretic peptide precursor A 
O2   oxygen 
PANTHER  protein analysis through evolutionary relationships 
PBS   phosphate buffered saline 
PCNA   proliferating cell nuclear antigen 
PCR   polymerase chain reaction 
Pi   inorganic phosphate 
PI3-K   phosphatidylinositol 3-kinase 

-MAPK  -mitogen activated protein kinase 
PLS1   plastin 
RBPJ recombination signal binding protein for immunoglobulin kappa J 

region 
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RHO   rhodopsin 
RNA   ribonucleic acid 
ROI   region of interest 
rpm   revolutions per minute 
rtp   room temperature and pressure 
RT-PCR  real-time polymerase chain reaction 
s   second 
SAGE   serial analysis of gene expression 
SDF1   stromal-cell derived factor 1 
sH20   sterile water 
SIV   subintestinal vessel 
SNP   sodium nitroprusside 
SR   sarcoplasmic reticulum 
SSRE   shear stress response element 
STAT1  signal transduction and activation of transcription 1 

    
tnnt2   cardiac troponin T2 
TSAd   T-cell-specific adapter molecule 
V   cardinal vein 
VEGF   vascular endothelial growth factor/VEGF-A 
VEGFR  vascular endothelial growth factor receptor 
VP   venous plexus 
VSMC   vascular smooth muscle cells 
WASp   Wiskott Aldrich syndrome protein 



18 
 

 

 

 

 

 

 

 

 

 

Chapter One 

General Introduction 



19 
 

Chapter 1: General Introduction 
 

1.1 Introductory Preamble 
 

This introduction discusses, in general terms, research relevant to arteriogenesis. It also 

discusses the position of the zebrafish embryo as a model organism within 

cardiovascular research, in comparison to mammalian models. The introduction refers 

particularly to arterial vasculature, since it is arterial occlusion which results in 

arteriogenesis. For clarity, I refer to zebrafish of 1-5 days post fertilisation as embryos 

throughout, although they are often referred to as larvae from 2 days post fertilisation. 

Specific introductions relevant to experimental results (for example microarray 

technology) are found leading results chapters (Chapters 3-6). 

 

1.2 Arteriogenesis and Neovascularisation 
 

Arteriogenesis defines remodelling of pre-existing arterial communications into patent 

collateral vessels following arterial occlusion (Buschmann and Schaper, 1999), and is 

often described ‘collateral vessel development’ or ‘remodelling’. It describes luminal 

enlargement of pre-existing vessels to redirect blood flow around an occlusion (figure 

1.1) (Heilmann, Beyersdorf et al., 2002).                                                                                                                            

Experiments demonstrate arteriogenesis to be driven by alterations in fluid shear stress 

(FSS), followed by infiltration of monocytes/macrophages (Van Royen, Piek et al., 

2001b). For example, sustained elevation of FSS following arterial ligation results in 

enhanced collateral blood flow (Eitenmuller, Volger et al., 2006). Release of monocyte 

chemotactic protein-1 (MCP-1) leads to increased collateral density (Hoefer, van Royen 

et al., 2001), while macrophage depletion by pu.1 knockdown significantly reduces 

recovery of blood flow around the occlusion (Gray, Packham et al., 2007). 
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Figure 1.1 Collateral vessel development. 
A and B depict the mechanism of arteriogenesis. Prior to occlusion (A), pre-existing 
endothelial communications transport little or no blood flow. Arterial occlusion 
initiates arteriogenesis (B), resulting in enlargement of the pre-existing endothelial 
communications and increased blood flow within them. C demonstrates post mortem 
X-ray angiography of unligated femoral artery in pig. * and 
superficialis and femoralis profunda respectively. D demonstrates the same arteries 
following double ligation (depicted by O). Arrowhead points to a collateral vessel 
which has remodelled to transport blood around occlusion site. C and D adapted from 
figure 6 Buschmann, Vokuil et al. (2003). 
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Arterial occlusion alters physiological levels of FSS in the vessel, causing elevations 

immediately anterior compared with posterior to occlusion (Schaper and Scholz, 2003). 

This results in attraction of monocytes/macrophages, whereupon it is believed they 

infiltrate the vessel and breakdown extracellular matrix (ECM), providing space for 

remodelling (Schaper and Buschmann, 1999). A more detailed discussion on mechanism 

follows in section 1.2.5, and figure 1.1 demonstrates key aspects. 

 

1.2.1 Clinical Relevance of Arteriogenesis 

Arteriogenesis is viewed as a potential therapeutic target for the millions suffering 

coronary artery occlusion (leading to Coronary Heart Disease; CHD) or peripheral 

artery occlusion (Peripheral Artery Disease) resulting from atherosclerosis (Heilmann, 

Beyersdorf et al., 2002). Present therapeutic strategies are able to alleviate symptoms, 

but stimulate little or no disease regression (van Royen, Piek et al., 2001a). Therapies 

are not tailored to individuals, potentially reducing efficacy. They aim to either prevent 

occlusion (blood-thinning drugs, statins) or revascularise/bypass vessels following 

occlusion (Heilmann, Beyersdorf et al., 2002). 

Blood-thinning drugs such as warfarin control occlusive disease by reducing likelihood 

of clot formation, while statins reduce low density lipoproteins responsible for 

atherosclerotic plaques (Weisfeldt and Zieman, 2007). Post-occlusion revascularisation 

(angioplasty, surgical bypass) are limited by restenosis and graft occlusion, prompting 

additional clinical intervention, and limited to patients meeting specific criteria (van 

Royen, Piek et al., 2001a). Patients with severe or widespread vascular pathology may 

not be suitable (Buschmann and Schaper, 2000). 

Therapies also do nothing to inhibit development of additional atherosclerotic plaques or 

their rupture (Van Royen, Piek et al., 2001b), which would necessitate further treatment. 

A drug or growth factor induced stimulation of arteriogenesis could prevent or reduce 

the consequences of arterial occlusion. In addition, characterisation of arteriogenesis (for 

example gene expression profiling) could provide clinicians with a means of identifying 

individuals at risk prior to disease onset, and may also allow pharmacogenetics, tailoring 

treatments to ethnic or gene-specific groups (Weisfeldt and Zieman, 2007), giving a 
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greater likelihood of success. A similar strategy is envisaged for treatment of cancers, 

diseases in which pathological angiogenesis plays a leading role (personal 

communication, Professor R Bicknell). 

 

1.2.2 Intra-species and Inter-species Variation 

Collateral vessels do not occur in all individuals of a species, or in all species. For 

example, while canine hearts demonstrate a high number of collateral vessels, the 

porcine heart demonstrates such vessels only rarely (Maxwell, Hearse et al., 1987). This 

has been hypothesised to be due to alterations in genetic predisposition to the position 

and quantity of collateral vessels that result (Buschmann and Schaper, 2000). 

 

1.2.3 Mammalian Vascular Anatomical Development 

Angioblasts - endothelial cell (EC) precursors, originating from embryonic and extra-

embryonic mesoderm, migrate to sites of blood vessel formation to create ‘strings’ of 

non-lumenised ECs (Roman and Weinstein, 2000). Some evidence suggests the strings 

remodel into lumenised structures through fusion of intracellular vacuoles (Kamei, 

Saunders et al., 2006) of ECs staked head to tail (Childs, Chen et al., 2002), although 

other evidence suggests lumen are extracellular and lined by multiple ECs positioned 

side to side (Blum, Belting et al., 2008). Vessels demonstrate an increasingly mature 

phenotype following vacuolisation when pericytes and vascular smooth muscle cells 

(VSMCs) migrate to the EC niche (Wang, Chen et al., 1998). 

Embryonic vascular patterning requires two processes: expression of a specific gene set 

coupled with onset of blood flow (Wang, Chen et al., 1998). EC fate is partly 

determined at the angioblast stage by the gene hey2 driving differentiation to arterial 

rather than venous fates (Peterson, Shaw et al., 2004), thereby demonstrating that ECs 

undergo the fate decision before the onset of blood flow. Furthermore, arteries and veins 

possess distinct gene expression patterns observable before the onset of flow. For 

instance, arteries specifically express ephrinB2 and ephrinB4, and veins EphB4 (le 

Noble, Moyon et al., 2004). 
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1.2.4 Vasculogenesis and Angiogenesis 

Vasculogenesis, embryonic development of the vasculature through EC coalescence, 

occurs at two sites in mammals: internal and external to the embryo proper (Jones, le 

Noble et al., 2006). Internally, vessels develop through differentiation and migration of 

angioblasts (Carmeliet, 2000); a VEGF-induced action (Carmeliet, Ferreira et al., 1996). 

Externally, blood islands in the extra-embryonic membrane, comprising haematopoietic 

and ECs, expand over the yolk-sac forming the capillary plexus (Jones, le Noble et al., 

2006). The two vascular networks unite, allowing passage of blood with the 

commencement of cardiac contraction (Jones, le Noble et al., 2006). 

Further vascular development occurs by angiogenesis, the de novo sprouting of vessels 

from pre-existing vessels through proliferation and migration of ECs (Buschmann and 

Schaper, 1999). Vasodilatation (mediated by nitric oxide; NO) and increases in 

permeability (mediated by VEGF) result in infiltration of plasma proteins that provide 

the extravascular platform for EC migration (Carmeliet, 2000). Growth factors including 

VEGF activate ECs, resulting in release of matrix metalloproteases (MMPs) and leading 

to breakdown of the ECM, providing the physical space required for proliferation and 

migration (Rosen, 2002). 

 

1.2.5 Mechanism of Arteriogenesis 

Arterial occlusion results in a steep FSS gradient developing locally in vasculature 

contiguous with the occlusion site (Buschmann and Schaper, 1999). FSS anterior to the 

occlusion becomes elevated in comparison to FSS posterior to it (figure 1.1). Sustained 

elevated levels of FSS activate ECs in contiguous vasculature (Chen, Li et al., 2001) 

(section 1.3.1), including collateral vessels. In man, approximately 30% of patients with 

partial or total occlusion of a coronary artery demonstrate the presence of collateral 

vessels on coronary angiography (Rentrop, Feit et al., 1989). Collateral vessels were 

significantly more frequent in patients with total rather than partial occlusion (Rentrop, 

Feit et al., 1989) suggesting a link between collateral vessel growth and disease 

progression. It remains unknown whether this holds for the general population not 

presenting with symptoms of coronary arterial disease. 
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Shear activated ECs express MCP-1 and adhesion molecules including intracellular 

adhesion molecule-1 (ICAM-1) (van Royen, Piek et al., 2001a). EC monocyte receptors 

are also upregulated (van Royen, Piek et al., 2001a). Circulating monocytes bind their 

receptor and transmigrate the vessel where they mature into macrophages (Bergmann, 

Hoefer et al., 2006). 

Monocytes are stabilised through upregulation of survival factors such as granulocyte 

macrophage colony stimulating factor (GMCSF), and are capable of releasing large 

quantities of growth factors (bFGF) (Buschmann and Schaper, 1999). Vessel localised 

breakdown the ECM (figure 1.2) (Heilmann, Beyersdorf et al., 2002). The first wave of 

EC and VSMC mitosis now occurs (Heilmann, Beyersdorf et al., 2002), permitting 

remodelling through physical enlargement of the vessel (figure 1.2). 

 

1.2.6 Mammalian Blood Vessel Anatomy 

In mammalian species arteries, arterioles, venules and veins have the same basic 

structure, comprising three distinct layers (figure 1.3). The tunica intima comprises a 

single layer of squamous ECs lining the vessel lumen and a surrounding basement 

membrane of connective tissue that includes pericytes (Armulik, Abramsson et al., 

2005), a cell of the same lineage as VSMCs (Benjamin, Hemo et al., 1998). Pericytes 

are important in intracellular signalling, and in small vessels multiple ECs are found 

connected to a single pericyte by focal adhesion (Armulik, Abramsson et al., 2005). 

Sited within the connective tissue is the internal elastic lamina, an elastic ring providing 

flexibility. 

The medial layer, the tunica media, is the thickest. It comprises layers of circular elastic 

fibres, connective tissue, and VSMCs. The external elastic lamina separates the second 

and third layers. VSMCs are predominantly found in arteries. VSMCs provide arteries 

with the tone and elastic properties necessary to counteract the force of high pressure 

blood pumped directly from the heart, and also bestow vasoactive properties on the 

vessel.  
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Figure 1.2 Time-course of collateral vessel remodelling during arteriogenesis. 
The number of days recorded demonstrates the timing of collateral vessel 
development in a rabbit hindlimb femoral artery ligation model. Timing alters 
dependent upon the model organism studied. Femoral artery ligation also leads to 
ischaemia (Heilmann, Beyersdorf et al., 2002), a response not observed in zebrafish 
embryos following arterial occlusion (Gray, Packham et al., 2007). Expression of 
transcription factors follows onset of ischaemia. In turn, this results in proliferation of 
ECs and VSMCs, expression of adhesion molecules, growth factors and cytokines, 
and breakdown of ECM. Expression of adhesion molecules, growth factors and 
cytokines results in activation of monocytes/macrophages. A change in contractile 
phenotype of VSMCs follows, along with an adjustment of cell vessel number. 
Adapted from figure 1 Heilmann, Beyersdorf et al., 2002. 
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Figure 1.3 Standard anatomical detail of the mammalian arterial system. 
As vessel diameter increases arterial anatomy changes. Capillaries comprise 
tunica intima, a single layer of squamous ECs lining the vessel lumen and a 
surrounding basement membrane of connective tissue, lacking elastic lamina and 
smooth muscle. Arterioles contain a small layer of smooth muscle and internal 
elastic lamina provides flexibility. The tunica media is thickest in muscular and 
elastic arteries. While elastic arteries contain large amounts of circular elastic 
fibres and connective tissue muscular arteries contain larger amounts of VSMCs. 
The external elastic lamina separates the second and third layers of the tunica 
media. VSMCs provide tone and elastic properties, and also bestow vasoactive 
properties on the vessel. In contrast, veins are unable to maintain tone due to 
thinner layers containing less elastic and muscular fibre. The tunica adventitia is 
predominantly connective tissue but also contains neurones necessary for VSMC 
innervation. In larger vessels a network of capillaries (vasa vasorum) supplies the 
vessel. 
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Veins are unable to maintain tone due to thinner layers containing less elastic and 

muscular fibre (Hong, Kume et al., 2008). The outermost layer, the tunica adventitia, is 

predominantly connective tissue, but also contains neurones necessary for VSMC 

innervation. In larger vessels a network of capillaries (vasa vasorum) supplies the vessel 

with nutrients (Davies, Blakeley et al., 2001). 

 

1.2.7 Mammalian Arterial Physiology 

The physiological role of arteries is transportation of nutrients, hormones and cells to 

tissues and organs. Innervation by the autonomic nervous system alters blood flow by 

innervating VSMCs found within the tunica media (Halka, Turner et al., 2008). 

Vasoconstriction of VSMCs causes a decrease in luminal cross-sectional area and 

thereby blood flow. Vasodilatation has a contrary effect, increasing luminal cross-

sectional area and blood flow. 

Physical forces also play a key role in vessel physiology. FSS acts directly on ECs to 

modulate structure and function (Cunningham and Gotlieb, 2005) through alteration in 

gene expression (Garcia-Cardena, Comander et al., 2001), release of vasoactive 

substances including NO (Lehoux, Castier et al., 2006) and activation of cell 

populations such as monocytes (Buschmann, Voskuil et al., 2003). In mice, the 

magnitude of FSS significantly increases at times the embryo is undergoing vascular 

remodelling (Jones, le Noble et al., 2006). Reorganisation of intermediate filaments, 

microtubules, and F-actin stress fibres to forces such as FSS demonstrate a key role for 

cytoskeletal elements in force transmission in ECs (Terzi, Henrion et al., 1997). 

 

1.2.8 Collateral Vessel Architecture 

Collateral vessels remodel from small EC lined vessels (Goncalves, Epstein et al., 2001) 

into larger vessels composed of ECs surrounded by an internal elastic lamina, as well as 

one or two layers of VSMCs (Buschmann and Schaper, 1999). Increases in vessel 

diameter are not solely a result of vasodilatation, but also EC and VSMC proliferation 

(Lloyd, Yang et al., 2001). 
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Collateral vessels often take on a tortuous, corkscrew-like appearance (Buschmann, 

Voskuil et al., 2003). Figure 1.4 demonstrates the general histology of a collateral 

vessel. Although normal resting blood flow in collateral vessels is reached quickly, only 

30-40% of maximal flow is ever reached (Eitenmuller, Volger et al., 2006). This may be 

due to normalisation in FSS levels, since FSS falls with increases in diameter observed 

during arteriogenesis (Eitenmuller, Volger et al., 2006). Blood flow is related to the 

fourth power of a vessel’s radius (Poiseuille’s formula), meaning minor changes in 

radius produce large alterations in flow (Davies, Blakeley et al., 2001). Thus, 

maintaining the level of FSS may increase the percentage of maximal flow achieved, 

and similarly, further reductions in FSS may decrease the percentage of maximal flow 

observed. Reduced recovery of functionality in tissues may also have a role, limiting the 

utility of collateral vessels as a means of meeting tissue oxygen demand. 

 

1.2.9 Comparison of Vasculogenesis, Angiogenesis and Arteriogenesis 

While often occurring in concert, vasculogenesis, angiogenesis and arteriogenesis are 

distinct processes which may occur to different degrees dependent on the situation. 

Figure 1.5 demonstrates the similarities and differences between the three processes 

discussed below. While initiated by VEGF and bFGF, and with an undetermined role for 

TGF , vasculogenesis leads to an immature vasculature (Carmeliet, 2000). Stimulation 

of angiogenesis occurs when ischaemia results in the expression of hypoxia inducible 

factor-1 (HIF-1) (van Royen, Piek et al., 2001a). HIF-1 expression in turn acts to 

increase transcription of genes including the nitric oxide synthase (NOS) enzymes and 

VEGF. Therefore, ischaemia initiates vasodilation (via NO release), increased vessel 

permeability, and enhanced EC proliferation (both via VEGF). 

Arteriogenesis differs from angiogenesis in that there is no de novo vessel formation 

(Carmeliet, 2000), and that arteriogenesis takes place without the need for ichaemia 

(Heil, Eitenmuller et al., 2006; Lee, Stabile et al., 2004), which is a key driver of 

angiogenesis. The driving force for arteriogenesis appears to be alterations in FSS. All 

three processes share some level of modulation by VEGF, although the role of VEGF in 

arteriogenesis is not clearly defined, as discussed below. 
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Figure 1.4 Basic histology of non recruited and remodelled collateral vessels. 
Histology of non recruited (A, C, E) and recruited (B, D, F) collateral vessels following mouse femoral 
artery ligation (A-D) and dog cardiac collaterals (E, F). (A) The vessel demonstrates small quantities of 

Mature collateral vessel 14 days post femoral artery ligation. The lumen of the remodelled collateral is 

Buschmann, Voskuil et al., 2003. (C, D) Green fluorescent leukocytes in the collateral environment. In 
C a small number of leukocytes can be observed, while a larger number are observable 7 days post 

figure 4 Babiak, Schumm et al., 2004. (E, F) eNOS expression (green) and nuclear staining (red). 
Yellow denotes overlap between colours. A larger lumen surrounded by cells expressing higher levels 
of eNOS is demonstrated in the recruited compared to non recruited vessel. Scale bar = 10 (E) and 

lu = lumen, m = media, gi = growing intima, ad = adventitia. Images adapted from figure 1 
Cai, Kocsis et al., 2004. 
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Figure 1.5 Comparison of vasculogenesis, angiogenesis, and arteriogenesis. 
(A) Embryonic and adult vasculogenesis (differentiation of angioblasts) is driven 
by VEGF and bFGF leading to an immature vascular network. (B) Ischaemia is 
the stimulus for angiogenesis, leading to expression and activation of the 
transcription factor HIF-1 which in turn activates NO and VEGF. The result is 
vasodilatation (NO), increased vessel permeability and increased EC proliferation 
(VEGF). (C) Arteriogenesis can also be modulated by VEGF although the 
mechanism is not as clear as for vasculogenesis and angiogenesis. Arteriogenesis 
does not require ischaemia, with alterations in FSS levels stimulating the process. 
Figure adapted from figures 1 and 2 Carmeliet 2000. 
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1.3 Modulation of Arteriogenesis 
 
Arteriogenesis undergoes modulation by a number of different factors. Factors may be 

systemic (alterations in FSS), local (for example NO and VEGF), circulating 

(infiltrating monocytes), or distant (bone marrow derived stem/progenitor cells). These 

factors are discussed in detail in the follow sections. 

 

1.3.1 Fluid Shear Stress as a Modulator of Arteriogenesis 

 

1.3.1.1 Fluid Shear Stress 

FSS is force per unit area between two parallel layers, specifically, between vascular 

wall and blood (Nesbitt, Mangin et al., 2006). FSS acts via mechanosensors on the EC 

surface to translocate signals to the nucleus. Signalling stimulates increases in DNA 

binding proteins which in turn bind shear stress response elements (SSREs). SSREs are 

lengths of base sequences within the promoter region of FSS-induced genes. Their 

binding leads to increased expression of genes such as monocyte adhesion molecules. 

FSS is directly proportional to flow rate (volume/unit time) and inversely proportional to 

vessel diameter. Thus, as blood flow increases FSS also increases, while as vessel 

diameter increases FSS levels fall. Poiseuille’s formula dictates that increases in luminal 

diameter, as occur during arteriogenesis, result in decreased flow (and thus 

haemodynamic force including FSS) since flow is related to the fourth power of the 

radius (Davies, Blakeley et al., 2001). The relationship between FSS and flow rate also 

links FSS to heart rate, cardiac output, vascular resistance and blood pressure. For 

instance, increases in heart rate (contractions per minute) may result in increased cardiac 

output (total blood volume ejected by the heart in one minute) since cardiac output is the 

product of heart rate and stroke volume (blood volume ejected by each ventricle). It then 

follows that increased cardiac output may increase blood pressure and thus flow rate and 

FSS (Davies, Blakeley et al., 2001). 
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1.3.1.2 Laminar and Non-laminar Blood Flow 

The principle of laminar flow dictates that erythrocytes at the blood stream boundary 

have slightly lower velocity than those to the stream’s centre, since they are prone to 

greater resistance from the vessel wall (Nesbitt, Mangin et al., 2006). Blood also 

experiences non-uniform turbulent flow, characterised by ‘eddies’ distorting the pattern 

of laminar flow and significantly slowing a cell’s passage (figure 1.6) (Nesbitt, Mangin 

et al., 2006). Recent evidence suggests areas of turbulent flow such as bifurcations 

(figure 1.6) experience lower levels of FSS and are more disposed to developing 

atherogenic plaques (Yoshizumi, Abe et al., 2003) demonstrating the importance of FSS 

to vessel homeostasis. 

 

1.3.1.3 Studying the Role of Fluid Shear Stress in Modulating Arteriogenesis 

Despite the importance of FSS to arteriogenesis little in vivo experimental work has 

looked directly at changes in gene expression induced by alterations in FSS. Surgery 

induces inflammation, altering gene expression through upregulation of non-specific 

inflammatory genes, which may also modulate collateral vessel development. To 

identify genes as vascular-specific careful post mortem excision would be necessary that 

may itself lead to altered gene expression. One group has performed such 

experimentation, to determine gene expression with FSS recovery after femoral artery 

ligation in mice (Lee, Stabile et al., 2004). Entire adductor muscles were excised for 

RNA extraction, preventing identification of genes as vascular-specific, but limiting post 

mortem operation time. Inflammatory response-related genes formed the largest 

upregulated gene cluster. Genes relating to infiltration of inflammatory cells with no 

known association with arteriogenesis: neutrophils, lymphocytes, mast cells (Hoefer, 

Grundmann et al., 2005) were also identified. Few of the other differentially expressed 

genes have been further implicated in arteriogenesis. This demonstrates the difficulties 

of determining gene expression with alterations in FSS in vivo. We therefore largely rely 

on extrapolation of results from microarray analysis of cell culture flow assays 

(discussed in section 4.1.9). 
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Figure 1.6 Blood rheology in an artery. 
The figure demonstrates the possible variations in flow that occur in such a vessel 
during physiology and pathology. Arrows represent the direction of blood flow. 
The position of the arrow represents the type of flow likely in that specific region 
of the vessel. Uniform laminar flow becomes turbulent at bifurcation points. 
Stenosis can cause deceleration of flow at its entry point followed by acceleration 
across the stenotic narrowing before flow becomes more stable and uniform on 
exiting the stenotic region. Adapted from figure 1 Nesbitt, Mangin et al., 2006. 
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1.3.1.4 Normalisation in Fluid Shear Stress Limits Collateral Vessel Conductance 

Following experimental femoral artery ligation of control animals collateral flow has not 

been observed rising above 40% of maximal independent of species (Buschmann, 

Voskuil et al., 2003; Lloyd, Yang et al., 2001; Kondoh, Koyama et al., 2004; Kumar, 

Branch et al., 2008). Poiseuille’s formula dictates that increases in luminal diameter, as 

occur during arteriogenesis, result in decreased flow (and thus haemodynamic force 

including FSS) since flow is related to the fourth power of the radius (Davies, Blakeley 

et al., 2001). To determine whether FSS normalisation limited flow Eitenmüller, Volger, 

et al. (2006) adapted femoral artery ligation in rabbit to include an arterio-venous shunt. 

The shunt, positioned between the distal stump of the ligated artery and femoral vein, 

artificially enhanced the level of FSS in the collateral vasculature two-fold of control 

values. Large differences in pressure between ligation-end of collateral vessels and 

reentry into the femoral artery, caused blood flow in collateral vessels to increase. 

Maximal flow was achieved 28 days post shunt insertion at which point collateral 

vessels were capable of conducting double the maximum flow of control animals 

(Eitenmuller, Volger et al., 2006), demonstrating in vivo the importance of FSS levels to 

collateral vessel development. 

Similar experiments with femoral artery ligation in pigs demonstrate that sustained 

elevations in FSS not only significantly increase collateral vessel flow, but also lead to 

more prolonged EC and VSMC proliferation and differentiation (Pipp, Boehm et al., 

2004), again pointing to FSS elevations as of fundamental importance to arteriogenesis. 

 
1.3.2 Endogenous Modulation of Arteriogenesis 
 
A major body of work on the mechanisms of arteriogenesis focuses on two molecules: 

NO and VEGF which possess critical roles in arteriogenesis. 

 

1.3.2.1 Nitric Oxide 
NO is an important dilator of the vasculature. It also functions to inhibit VSMC 

proliferation, and protects ECs from platelet aggregation (Cai, Kocsis et al., 2004a). NO 

forms through catalysis of L-arginine by the enzyme NOS in the presence of O2 and 
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NADPH (Kibbe, Billiar et al., 1999). There are three NOS isoforms. Endothelial NOS 

(eNOS, formerly NOSIII) is the predominant NO producer in vasculature (Cai, Kocsis et 

al., 2004a). Inducible NOS (iNOS, NOSII) is expressed in VSMCs and cells of 

monocyte lineage, while neuronal NOS (nNOS, NOSI) is expressed mainly in neurones 

and skeletal muscle (Liu and Huang, 2008). eNOS activity is regulated by physical 

forces such as FSS (Jacobi, Sydow et al., 2005), as well as signalling molecules such as 

VEGF (Hood, Meininger et al., 1998). 

NO freely diffuses into VSMCs where it activates soluble guanylate cyclase to catalyse 

GTP to cGMP (Villar, Francis et al., 2006). cGMP activates serine/threonine-specific 

protein kinase G leading to phosphorylation of myosin light chain phosphatase (Ignarro, 

1990). This leads to dephosphorylation of myosin light chains in VSMCs, resulting in 

vasodilatation. 

 

1.3.2.2 NO is an Important Modulator in Remodelling of Collateral Vessels 

Increases in collateral vessel blood flow resulting from three weeks exercise training in 

a rat model of femoral artery ligation are lost with inhibition of NO by the non-specific 

NOS inhibitor L-NAME (Lloyd, Yang et al., 2001). eNOS deficient mice undergoing 

femoral artery ligation demonstrate decreased collateral blood flow during the first week 

post ligation, which returns to control levels by three weeks post occlusion (Mees, 

Wagner et al., 2007). The authors hypothesise that absence of vasodilatation in eNOS 

deficient animals is responsible for the observation, stimulating continued remodelling 

of collateral vessels through sustained elevations in FSS long after FSS in wildtype 

control animals has normalised through dilatation (Mees, Wagner et al., 2007). It has 

also been hypothesised that the inability of eNOS deficient mice to respond to VEGF is 

responsible for the observation (Yu, deMuinck et al., 2005). 

VEGF leads to dose-dependent release of NO from HUVECs through elevation of NOS 

in the cells (Hood, Meininger et al., 1998). Conversely, NO production results in VEGF 

activity (Papapetropoulos, Garcia-Cardena et al., 1997). Utilising femoral artery 

ligation, VEGF treatment has led to significant elevations in collateral vessel blood 

flow, while L-NAME administration diminished the effect (Yang, Yan et al., 2001). 
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Thus, it appears that VEGF’s role in arteriogenesis is dependent on production of NO, 

which is in part stimulated by VEGF. 

 

1.3.2.3 Vascular Endothelial Growth Factor 

 

1.3.2.3.1 VEGF Receptor Expression is Spatially Specific 

The VEGF receptors are named VEGFR1 (Flt-1), VEGFR2 (Flk-1, KDR), and 

VEGFR3 (Flt-4) (Yancopoulos, Davis et al., 2000); the first two of which bind VEGF-

A, one of seven family members: VEGF-A to -F and Placental Growth Factor, PlGF 

(Siekmann, Covassin et al., 2008; Pipp, Heil et al., 2003; Otrock, Makarem et al., 

2007). VEGF-A acts predominantly by binding VEGFR2 (Siekmann, Covassin et al., 

2008), and is believed most important for vascular formation, initiating vasculogenesis 

and angiogenesis (Yancopoulos, Davis et al., 2000). Alternative splicing results in six 

isoforms of which VEGF-A165 primarily mediates VEGF action (Tammela, Enholm et 

al., 2005). For ease, VEGF-A165 is termed VEGF in further discussion. Functions of 

VEGF-B are undetermined, while VEGF-C and -D are primarily lymphaniogenic 

(Tammela, Enholm et al., 2005). VEGF-E appears to be a potent angiogenic factor 

binding VEGFR2, and VEGF-F a VEGF antagonist (Otrock, Makarem et al., 2007). 

PlGF has been described as ‘disease-specific’ with redundancy during vascular 

development and physiology, but inducing pathological angiogenesis (Fischer, Mazzone 

et al., 2008). This information is summarised in the table below: 

Isoform Main Role Receptor Interactions 

  

VEGF-A primary mediator of action VEGFR1/R2 

VEGF-B undetermined VEGFR1  

VEGF-C lymphangiogenic VEGFR2/R3 

VEGF-D lymphangiogenic VEGFR2/R3 

VEGF-E angiogenic VEGFR2 

VEGF-F VEGF antagonist VEGFR2 

PlGF pathological angiogenesis VEGFR2 
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VEGF receptors are generally spatially specific, with expression on ECs alone, although 

VEGFR1 is also expressed on monocytes/macrophages (Hiratsuka, Minowa et al., 

1998). Deficiency of this gene leads to substantially reduced monocyte migration 

(Hiratsuka, Minowa et al., 1998). VEGF receptors are receptor tyrosine kinases, and as 

such, ligand-receptor binding leads to receptor dimerisation. Dimerisation results in the 

autophosphorylation of specific tyrosine residues on the receptor, permitting signalling 

molecules to bind the phosphorylated tyrosines (Kowanetz and Ferrara, 2006). 

 
1.3.2.3.2 VEGF Modulates Physiological and Pathological Vascular Activity 
VEGF has participatory roles in the differentiation and migration of angioblasts 

(vasculogenesis), angiogenesis, vasodilatation, and vessel permeability. VEGFR2 is the 

predominant receptor for VEGF binding and intracellular signalling, with 

autophosphorylation of different tyrosine residues resulting in distinct downstream 

signalling. Autophosphorylation of VEGFR2 can lead to activation of phospholipase C-

- -kinase (PI3-K), mitogen activated protein kinase 

(MAPK) and T-cell-specific adapter molecule (TSAd) (figure 1.7) (Siekmann, Covassin 

et al., 2008). 

Deletion of a single VEGF allele results in lethal vascular abnormalities throughout 

murine embryos (Carmeliet, Ferreira et al., 1996). Smaller quantities of ECs were 

observed in the aorta of these animals, further supporting the hypothesis that VEGF is a 

crucial factor in EC survival, and demonstrating its critical importance in maintenance 

and development of vasculature. 

The predominant means of VEGF upregulation is binding of the HIF-1 

to its binding site on the VEGF promoter (Forsythe, Jiang et al., 1996), suggesting 

VEGF upregulation occurs under hypoxic conditions. However, arteriogenesis has been 

demonstrated to occur independently of hypoxia, which may suggest it is VEGF 

independent. Collateral vessel development was observed solely in the upper leg of 

rabbits with femoral artery ligation, an area unaffected by reduced blood flow as 

demonstrated by flow quantification at set pressure (Ito, Arras et al., 1997). 
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No alteration in expression of hypoxia-induced lactate dehydrogenase A or HIF-

mRNA was determined by Northern blot during collateral vessel development following 

femoral artery ligation in rabbit (Deindl, Buschmann et al., 2001). Transfection of naked 

plasmid VEGF in rabbits with femoral artery ligation inducing ischaemia resulted in 

significant increases in collateral vessel number visualised by angiography (Takeshita, 

Weir et al., 1996). Furthermore, fibroblasts excised, transfected with adenovirus 

including VEGF, and injected into the internal iliac artery following femoral artery 

excision in rabbit resulted in significantly increased numbers of collateral vessels and 

collateral conductance (Kondoh, Koyama et al., 2004). These data thus demonstrate a 

role for VEGF in arteriogenesis. However, Deindl, Buschmann et al. (2001) determined 

no alteration in VEGF mRNA expression by Northern blot or VEGF protein by Western 

blot in growing collateral vessels isolated from non-ischaemic upper leg of rabbits 

following femoral artery ligation. The authors are clear to distinguish ischaemic from 

non-ischaemic regions of the hindlimb. Together, the data may suggest that VEGF is 

upregulated in ischaemic regions in response to hypoxia, but not upregulated in non-

ischaemic regions, making VEGF modulation of arteriogenesis dependent on 

microenvironment. 

 

1.3.3 Cellular Modulation of Arteriogenesis 

 

1.3.3.1 Chemoattraction of Monocytes by MCP-1, GM-CSF, and TGF-  

Monocytes and macrophages are important to arteriogenesis. In rabbits, accumulation of 

monocytes to collateral vessels was reported from 12 hours post femoral artery ligation, 

reaching maximum after three days (Heilmann, Beyersdorf et al., 2002). Accumulation 

correlated with upregulation of adhesion molecules such as ICAM-1 by ECs (Scholz, Ito 

et al., 2000). 

MCP-1 is released from shear activated ECs (Van Royen, Piek et al., 2001b), and is the 

most potent stimulator of monocyte migration (Heilmann, Beyersdorf et al., 2002). 

MCP-1 promotes monocyte recruitment to collateral vessels following ligation (van 

Royen, Hoefer et al., 2003). Collateral conductance increased one week after ligation, 
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and returned to control levels by six months, suggesting a role for 

monocytes/macrophages during initiation of arteriogenesis. Collateral vessel density 

also increases after MCP-1 treatment (Heilmann, Beyersdorf et al., 2002). In human, 

patients suffering acute myocardial infarction who develop angiographically observable 

coronary collateral vessels have shown significantly higher plasma MCP-1 levels then 

patients without collaterals (Park, Chang et al., 2008), suggesting a link between MCP-1 

expression and collateral development. This contrasts with previous data obtained from 

a chronic infarct model in rat which reported no difference in collateral vessel number 

following single injection of MCP-1 intra-myocardially six weeks post infarction 

(Schwarz, Meven et al., 2004), and may again suggest a role for monocytes/ 

macrophages during initiation of arteriogenesis. Disruption of the MCP-1 receptor CCR-

2 in mice inhibits nearly all collateral vessel development after ligation (Schaper and 

Scholz, 2003). Suppression of monocytes by 5-fluorouracil significantly delays 

arteriogenesis (Heil, Ziegelhoeffer et al., 2002), while antibodies against ICAM-1 

abolish MCP-1’s effects (Van Royen, Piek et al., 2001b). 

GMCSF and TGF-

(Van Royen, Piek et al., 2001b). GMCSF inhibits monocyte/macrophage apoptosis, and 

TGF-

expression of growth factors by monocytes/macrophages (Van Royen, Piek et al., 

2001b). In addition, CXCR4a, expressed on macrophages, is the receptor for the 

chemokine SDF1. CXCR4+ cells have been observed to induce revascularisation 

following MI in mice (Jin, Shido et al., 2006; Morimoto, Takahashi et al., 2007). 

 

1.3.3.2 Modulation by Lymphocytes 

Immunohistochemistry from experiments performed utilising mice has demonstrated 

positive lymphocyte staining in adventitia of remodelling collateral vessels with 

antibodies against CD3, CD4, and NK1.1 (van Weel, Toes et al., 2007). Few positively 

stained cells were observed in non-operated contralateral legs. This data thus suggests a 

possible role for lymphocytes in modulation of arteriogenesis. In order to determine the 

subset of lymphocytes modulating arteriogenesis, the group performed antibody 
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depletion for CD4+ T cells, Natural Killer cells, or control. Natural Killer cells comprise 

part of the innate immune system, mediating cytotoxicity and secreting inflammatory 

cytokines. CD4 and Natural Killer cell depletion resulted in significantly reduced 

collateral vessel formation (van Weel, Toes et al., 2007). However, experiments in 

rabbits perfused with chemokines for monocytes (MCP-1) and lymphocytes 

(lymphotactin) following femoral artery ligation demonstrated that only MCP-1 induced 

a significant arteriogenic response (Hoefer, Grundmann et al., 2005), making a role for 

lymphocytes in modulation of arteriogenesis unclear. 

 

1.3.3.3 Modulation by Stem and Progenitor Cells 

The potential role of stem or progenitor cells in arteriogenesis also remains unclear. 

Since arteriogenesis describes remodelling of pre-existing vasculature a role for such 

cells in the initial phases of arteriogenesis may be unlikely, although it is possible stem 

cells may incorporated into the enlarged smooth muscle layers. Bone marrow from GFP 

expressing mice has been transplanted into mice previously irradiated (Schaper and 

Scholz, 2003). Transplantation was followed by femoral artery ligation. No GFP 

expressing cells were observed within collateral vessels following histology, suggesting 

such bone marrow derived cells do not play a role in arteriogenesis, although these cells 

have been identified by specific markers in angiogenesis following artery ligation 

(Heilmann, Beyersdorf et al., 2002). This hypothesis has been confirmed by similar 

murine transplantation and femoral artery ligation experiments which found no 

integration of multipotent adult progenitor cells within remodelling collateral vessels, 

but did observe improved collateral blood flow and cell integration within the skeletal 

muscle immediately surrounding remodelling collaterals (Huss, Heil et al., 2004). 

 

1.4 Studying Arteriogenesis in Current Models 
 

1.4.1 Studying Arteriogenesis in Mammalian Models 

 



42 
 

1.4.1.1 Vascular Surgery 

Vascular surgery is difficult and time-consuming. Complications can limit a study’s 

endpoint and subject availability. Furthermore, inflammation resulting from surgery 

leads to the release of large numbers of non- (Baik, 

Kwak et al., 2008) that may themselves modulate vessel formation. Sham operations of 

contralateral limbs are an important and effective means of countering such non-specific 

inflammation and cytokine release. 

 

1.4.1.2 Femoral Artery Ligation is an Acute Model of Arteriogenesis 

Femoral artery ligation presents an acute model of mammalian arteriogenesis (Tang, 

Chang et al., 2005). In contrast, arterial occlusion is a chronic disease spanning many 

decades. Thus, while results obtained from such experimentation will provide a broad 

framework of understanding, it may not be capable of unmasking the detailed 

pathophysiology involved during arteriogenesis. 

To mimic arterial occlusion more closely several studies utilised ameroid constrictors 

ensheathing the femoral artery. Constrictors gradually absorb liquid and swell, causing 

progressive occlusion (Cai, Vosschulte et al., 2000). Animals with constrictor 

implantation develop collateral vessels of significantly smaller diameter than animals 

undergoing femoral artery ligation (Tang, Chang et al., 2005). The observation is 

perhaps a result of the rapid elevation in FSS in acute occlusion compared to progressive 

occlusion. While acute occlusion results in a sudden pressure gradient pre- to post 

occlusion which induces luminal enlargement to restore blood flow, gradual occlusion 

with constrictors may permit muscle to accommodate for decreases in blood flow 

through alteration of fibre type and energy metabolism (McGuigan, Bronks et al., 2001), 

thereby reducing requirement for vessels of larger diameter. The longer timescale of 

gradual occlusion may permit collateral vessels to develop more fully, without 

significant levels of inflammation (Tang, Chang et al., 2005). 
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1.4.1.3 Identification of Collateral Vessels in Mammals 

The principle method for observing collateral vessels after arterial ligation is X-ray 

angiography (Babiak, Schumm et al., 2004; Deindl, Buschmann et al., 2001; Pipp, 

Boehm et al., 2004). Collateral vessel remodelling cannot be observed serially or in 

vivo, and is dependent upon observation at a single endpoint post mortem. Furthermore, 

X-ray angiography allows visualisation of collateral vessels with a luminal diameter 

(Mills, Fischer et al., 2000). Magnetic resonance imaging (MRI) has been utilised to 

determine blood flow in vivo, and is non-invasive (Wagner, Helisch et al., 2004). 

(Heil, Ziegelhoeffer et al., 

2004). Microcomputed tomography (microCT) permits three-dimensional observation of 

collateral vessels, and has a resolution of appro

occurs post mortem at a single timepoint (Duvall, Robert Taylor et al., 2004). 

 

1.4.2 Studying the Influence of FSS on Gene Expression Profiles by Cell Culture 

Since different research groups perform cell culture assays and microarray analyses with 

different materials, cell populations, and methods, it becomes difficult to compare 

results and fully interpret collective significance. For instance, some groups performed 

experiments with mean FSS of around 12dyn/cm2 (Himburg, Dowd et al., 2007), while 

others have used double that value (McCormick, Eskin et al., 2001). It is important to 

note that alterations in EC gene expression are observed in vitro with FSS of less than 

1dyn/cm2 (Hove, Koster et al., 2003), and it is possible that ECs respond to varying FSS 

levels differently, making comparison of data obtained with different FSS levels 

difficult. In microarrays designed to examine the role of FSS on ECs Jagged1 

expression has been identified as upregulated with FSS of 25dyn/cm2 (McCormick, 

Eskin et al., 2001) and downregulated with FSS of 12dyn/cm2 (Chen, Li et al., 2001). 

Another important point to note is that these experiments were performed in vitro 

utilising culture assays. Cultured cells generally reside in an environment over a period 

of days, while ECs can reside in microenvironments for many months. This difference 

might translate to incomplete or deceptive mimicry of in vivo conditions (Staton, Lewis 

et al., 2006). Additionally, in vitro systems are based primarily on single monolayers of 
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cells. In vivo cells undergo wide-ranging interactions, including with different cell 

populations. These issues are discussed in more detail in Chapter 4. 

 

1.5 Utilisation of Zebrafish in Cardiovascular Research 
 
Mammalian model organisms can suffer several innate disadvantages and limitations to 

their utilisation in studying cardiovascular development and pathology (section 1.4). 

Exploitation of novel model organisms that do not share these disadvantages, such as 

zebrafish, may permit alternative techniques that do not suffer the same limitations. The 

zebrafish (Danio rerio) is a freshwater tropical teleost belonging to the Cyprinidae 

(minnow) family. Adults reach a length of approximately 4cm (Froese & Pauly, 

24/01/08). Zebrafish were first utilised as a developmental model by researchers 

including George Streisinger. Their potential importance as a novel model organism was 

demonstrated by two large scale mutagenesis screens (Boston and Tuebingen) during 

the 1990s. The AB wildtype line is the primary line utilised in generation of transgenic 

and mutant embryos from the Zebrafish International Resource Centre. The line was 

generated by crossing lines A and B purchased by Streisinger from pet shops. The line is 

maintained through screening for healthy haploid offspring from individual females and 

crossing them to males (Jason Cockington, University of Adelaide, Australia).  

 

1.5.1 Advantages of Utilising Embryonic Zebrafish 
 

1.5.1.1 Care and Breeding 

In contrast to other commonly utilised non-mammalian model organisms 

(Caenorhabditis elegans, Drosophila melanogaster, yeasts) the zebrafish is a vertebrate, 

and therefore has closer evolutionary ties to mammalian species. 

The small size of adult zebrafish enables large numbers to be reared in relatively small 

spaces, providing high density populations. Small size means zebrafish are also 

economically more viable. An adult zebrafish costs six pence per week to care for, 

compared to 105 pence per mouse (personal communication, Dr. S Francis). 
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While murine litter size ranges from 6-12, zebrafish have a prodigious fecundity with 

single pairs capable of producing hundreds of offspring, allowing more rapid turnover of 

experiments. In addition, embryos are age-matched to each other, and pairing can occur 

at regular intervals of 7-14 days. 

 

1.5.1.2 Development 

Development of zebrafish embryos is rapid compared to mammalian models, achieving 

development from one cell to a recognisable body plan within 24hpf (figure 1.8) at 

standard incubation temperatures of 28 degrees Celsius (Westerfield, 2000; Kimmel, 

Ballard et al., 1995). Embryos undergo fertilisation and development externally of the 

adult. This permits observation of development in vivo without surgical intervention. In 

contrast, mammals develop internally and are maternally dependent for exchange of 

nutrients and waste products. 

Embryos develop with an optical clarity unrivalled by other vertebrate models. Embryos 

are almost fully transparent between fertilisation and 3dpf (Isogai, Horiguchi et al., 

2001). With onset of pigmentation, the majority of the embryo is still easily observable 

with simple light microscopy. In addition, embryos can be chemically treated or 

genetically manipulated to inhibit pigmentation (Westerfield, 2000). 

 

1.5.1.3 Genetic and Pharmacological Manipulation of Embryos  
Another benefit is the ease of administering small non-peptide molecules. Many 

commonly used compounds, including the anaesthetic tricaine, readily diffuse into 

embryos (Chico, Ingham et al., 2008). This obviates the need for gaseous or intravenous 

drug administration. 

A number of techniques have been developed taking advantage of the ease of genetic 

manipulation in zebrafish embryos. Morpholino antisense oligonucleotides (MOs) are 

frequently used to knockdown genes of interest. MOs are short 25 base-pair nucleotides 

synthesised with a morpholine rather than ribose backbone (Summerton and Weller, 

1997). 
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Figure 1.8 Differential Interference Contrast (DIC) images of live zebrafish embryos 
during the first five days of development. 
The time in hours is given when embryos are incubated at 28.5°C. Embryos develop from a 
single cell to a recognisable body plan in 24 hours at standard conditions, allowing research a 
faster turnover time than may be possible with mammalian models. From Zebrafish A 
Practical Approach, Editors Christiane Nüsslein-Volhard and Ralf Dahm. Oxford, 2002. 
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The basic MO structure can be found in figure 1.9. MOs act via steric block to prevent 

translation of mRNA to peptide at the ribosome, and are complementary to a specific 

sequence in the mRNA. MOs are designed to act as either start-site blockers (generally 

binding to the transcript immediate 5’ to the start codon) fully preventing translation, or 

splice-site blockers, resulting in modification of pre-mRNA splicing to knockdown a 

gene’s functional sequence (Summerton, 2007). 

Generation of stable germline transgenic lines (Motoike, Loughna et al., 2000) permits 

non-invasive high-resolution in vivo time-lapse microscopy (Lawson and Weinstein, 

2002). Promoters, such as transcription factors, drive fluorescent protein production 

(Peters, Rao et al., 1995) that allows easy observation under ultraviolet light of cells in 

which promoter is present. For example, several lines have been generated which 

produce enhanced green fluorescent protein (eGFP) in vasculature. Fli1 encodes a 

transcription factor expressed in cells of presumptive haemangioblast lineage, as well as 

cranial neural crest and a subset of myeloid cells (Lawson and Weinstein, 2002), 

permitting vascular visualisation although fli1 is not vascular-specific (figure 1.10). A 

flk1 (VEGFR2) transgenic line has also been generated, with eGFP expression specific 

to vasculature (Jin, Beis et al., 2005). The flk1:eGFP line has been crossed with putative 

mutants demonstrating reduced blood flow in order to aid detailed examination of ECs 

in vivo (Jin, Herzog et al., 2007). 

Generation of point mutations in spermatogonia of adult zebrafish by ethyl-nitrosourea 

(ENU) has been used to generate offspring heterozygotic, and through interbreeding 

homozygotic, for mutations (Haffter, Granato et al., 1996; Driever, Solnica-Krezel et 

al., 1996). Over 50 mutants have been described which affect the cardiovascular system 

(Chen, Haffter et al., 1996). Their existence permits improved understanding of various 

aspects of cardiology and vascular biology including primary vessel formation 

(gridlock) (Weinstein, Stemple et al., 1995), cardiac contraction (silent heart) (Sehnert, 

Huq et al., 2002), heart rate (slow mo) (Baker, Warren et al., 1997) and heart rhythm 

(breakdance) (Langheinrich, Vacun et al., 2003). 
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Figure 1.9 Comparison of DNA and morpholino antisense oligonucleotide 
(MO) structure. 
The MO is constructed utilising a morpholine backbone, rather than the 
deoxyribose ring found in DNA. MOs are constructed utilising standard DNA 
bases (B) of adenine, cytosine, guanine, and thymine. Non-ionic 
phosphorodiamidate bonds bind each ring-based subunit. In nucleic acids, 
anionic phosphodiester bonds bind subunits. From Summerton, 2005. 
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Many of the genes responsible for zebrafish mutations are homologous or likely 

homologous to human genes causing diseases with similar characteristics or phenotypes 

(Warren and Fishman, 1998), which thereby allows study of human disease in a model 

with numerous other advantages. 

 
1.5.2 Advantages of Utilising Embryonic Zebrafish in Cardiovascular Research 

In addition to the advantages already discussed (section 1.5.1) in utilising zebrafish 

embryos as a model organism, there are many factors which make embryonic zebrafish 

advantageous to cardiovascular research. In 2001 Unger reviewed mammalian models 

and recent experimental approaches to studying collateral vessel development. In 

summary, Unger highlights model characteristics most advantageous to studying 

collateral vessel development. Unger points out that since arteriogenesis is a dynamic 

process, serial endpoints are most advantageous. Although serial endpoints are often not 

possible in mammalian models due to the techniques utilised to determine collateral 

vessel density, serial observation is possible in zebrafish embryos (Lawson and 

Weinstein, 2002). Unger also suggests animals small in size, easily maintained, and 

easily manipulated for experimentation (Unger, 2001). Zebrafish embryos can come 

close to matching these suggestions, while many mammals fail to do so. 

 

1.5.2.1 The Embryonic Cardiovascular System 

Unlike all mammalian species, there is no requirement for a functioning cardiovascular 

system during the first days of development in zebrafish, since oxygen demand is met 

through diffusion (Pelster and Burggren, 1996). This permits study of cardiac 

contraction, and the effect of environments free from haemodynamic force in vivo. It 

allows occlusion of major vessels within embryos providing insights into thrombosis 

(Thattaliyath, Cykowski et al., 2005), and recovery of blood flow (Gray, Packham et al., 

2007). 

The early function of the cardiovascular system is similar in zebrafish and mammalian 

embryos. For instance, increases in cardiac output, stroke volume and blood pressure, 

and a decrease in vascular resistance parallel development in mammals and zebrafish 

(Schwerte and Fritsche, 2003). Tissue oxygenation by simple diffusion during the first 
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days of development (Pelster and Burggren, 1996) permits study of the cardiovascular 

system without hypoxia, and in a way impossible in mammals. 

At the heart-tube stage of development the heart of zebrafish is so highly conserved as 

to largely resemble that of human embryos (Fishman and Chien, 1997). In comparison, 

C. elegans has no heart; and the contractile dorsal vessel of Drosophila pumps a 

hemolymph directly to tissues at low pressure (Isogai, Horiguchi et al., 2001); thus 

having little similarity to the mammalian cardiovascular system. Both early blood cell 

and early vascular development are conserved between vertebrates including zebrafish, 

which present with only minor modifications to a standard pattern of vascular 

development (Isogai, Horiguchi et al., 2001), making zebrafish embryos an ideal model 

system through integrating simplicity with conservation. 

Optical transparency of zebrafish embryos makes the heart and vasculature easily 

accessible for study, permitting observation with light microscopy (Bagatto and 

Burggren, 2006). It therefore also permits utilisation of techniques dependent upon light 

microscopy. Digital motion analysis (DMA; section 2.5.2) utilises movie files obtained 

with light microscopy to visualise blood circulatory paths (Schwerte and Pelster, 2000), 

and obviates the need for transgenic lines or costly equipment. However, since DMA is 

dependent upon motion between movie frames, interference can occur from 

physiological processes such as intestinal peristalsis even under anaesthesia. In addition, 

DMA only identifies blood vessels in which blood circulates. 

 

1.5.3 Disadvantages of Utilising Embryonic Zebrafish 

Though vertebrate, the zebrafish is a non-mammalian species, implying physiology and 

pathology to be more evolutionarily distant from human than mice, the most commonly 

utilised model organism. Although genes between zebrafish and human are often 

homologous, phenotypic characteristics of diseases caused by homologous genes in the 

two species can be very different (Weinstein, Stemple et al., 1995; Gessler, Knobeloch 

et al., 2002) making extrapolation from zebrafish to human difficult without recourse to 

mammalian models. Furthermore, following divergence from land vertebrates, the fish 

genome underwent partial duplication (Postlethwait, 2007). Zebrafish thus possess two 
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copies of many mammalian genes, making extrapolation of single gene manipulation in 

zebrafish to mammals difficult. It is therefore possible that zebrafish and their embryos 

may not reflect human processes such as arteriogenesis. 

As a relatively novel model organism there remains a requirement for reagents, 

particularly antibodies suitable for immunohistochemical staining common in other 

model organisms. 

 

1.5.4 Vasculature of Zebrafish Embryos 

 
Despite divergent evolutionary paths, zebrafish and mammals share a basic pattern of 

myocardial and vascular development (Fishman and Chien, 1997). It is for this reason, 

and the advantages described above, that the zebrafish embryo is utilised in 

cardiovascular research. This section describes the development of the embryonic 

vascular system, laying down the foundation for understanding results obtained utilising 

zebrafish embryos to study arteriogenesis. 

 

1.5.4.1 Formation of Vasculature Occurs through Vasculogenesis 

The cardiovascular system begins functioning at approximately 24 hours post 

fertilisation (hpf), with the onset of cardiac contraction and lumenisation of major 

vessels (Chen, Haffter et al., 1996). The circulation follows a single circulatory loop 

rather than the double loop observable in mammalian species. Circulation is brisk within 

head and trunk by 36hpf (Schwerte and Fritsche, 2003). 

Embryonic vasculature, and hence circulation, begins as a simple loop (figure 1.10A) 

with blood exiting the heart through the bulbus arteriosus to the ventral aorta which 

divides into the aortic arches found on either side of the jaw. Blood then enters the 

paired lateral dorsal aortae before the vessels fuse to form the dorsal aorta (Weinstein, 

Stemple et al., 1995). The dorsal aorta transports blood to trunk and tail, having its 

nomenclature altered to caudal artery distal to the urogenital opening (Isogai, Horiguchi 

et al., 2001). 
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Figure 1.10 Development of the Embryonic Zebrafish Vasculature from 1-
5dpf. 
Lateral views of laser-scanning confocal microscopy images of fli1:eGFP 
transgenic embryos. The embryonic vasculature begins at 1dpf as a simple loop of 
aorta and cardinal vein transporting blood away from and back to the heart 
respectively (A). By 2dpf (B) the ISV are fully formed. At 5dpf, the embryo has 
developed a more mature vasculature that includes a complex subintestinal 
vasculature (C). At=aorta, V=cardinal vein, ISV=intersegmental vessels, 
SIV=subintestinal vessels, VP=venous plexus, DLAV=dorsal longitudinal 
anastomotic vessels, Bl=swim bladder. Each sub-figure composite of 4 images. See 
Chapter 2 for detailed methodology describing how I generated these images. Scale 
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Blood is transported back towards the heart through the caudal vein, which at onset of 

circulation is formed of a plexus of vessels that remodel to a single vessel by 

approximately 3dpf (figure 1.10). Anterior to the plexus the vein is termed the cardinal 

vein. Close to the aortic bifurcation the cardinal vein divides, emptying into the duct of 

Cuvier or the common cardinal vein which cross the yolk sac replenishing the heart 

(Isogai, Horiguchi et al., 2001). 

 

1.5.4.2 Intersegmental Vessel Formation 

At about the same time as cardiac contraction initiates, pairs of endothelial sprouts 

emerge from the dorsal aorta close to boundaries dividing the somites that make up the 

notochord. The sprouts extend between somites by extension and retraction of filopodia, 

mostly at the dorsal leading edge. By 28hpf, EC strands reach the roof of the neural tube 

and branch caudally and rostrally (Isogai, Lawson et al., 2003). Anastomosing vessels 

fuse the EC strands to form two dorsal longitudinal anastomotic vessels (DLAVs). Each 

sprout forms an intersegmental vessel; paired at each somitic boundary. 

Sprouts form from three ECs, with the first remaining within the aorta ventrally, sending 

a process out into the somatic boundary (Childs, Chen et al., 2002). A second cell 

echoes this role but from the developing DLAVs (having originally migrated from the 

aorta). One or more cells then form a link between the first and second (Childs, Chen et 

al., 2002). The cells do not appear to line up head to tail. All three appear to enclose the 

lumen on formation, suggesting a more complex development than originally envisaged 

(Blum, Belting et al., 2008). By 2dpf the ISV are patent with an active circulation 

(Isogai, Horiguchi et al., 2001). 

 

1.5.4.3 Formation of Intestinal Vasculature 

At 2dpf blood vessels that will supply the digestive system, the supraintestinal artery 

and subintestinal veins, begin developing. The supraintestinal artery is a continuation of 

the mesenteric artery, which branches from the dorsal aorta close to the kidneys. At this 

time, the subintestinal veins drain directly into the cardinal vein. By 3dpf the 
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subintestinal vein has begun to undergo angiogenesis broadening the intestinal 

vasculature (Isogai, Horiguchi et al., 2001). 

 

1.6 Concluding Remarks 
 
The aim of this general introduction was to describe to date research performed with 

regard to arteriogenesis and factors which modulate its mechanism. Since the research 

was almost fully dependent upon mammalian models, I have described the development 

and physiology of mammalian vasculature. I have also described the development and 

physiology of zebrafish vasculature during embryonic phases (1-5dpf) to place the 

zebrafish embryo as a model within the context of cardiovascular research. Previous 

experimentation specifically related to my research is found in introductions to each 

results chapter (Chapters 3, 4, 5, and 6). 

 

1.7 Project Aims and Objectives 
 
From the evidence in this introduction I hypothesise that: 

 zebrafish embryos can be exploited to generate a novel, non-mammalian model 

of collateral vessel development (arteriogenesis) 

 collateral vessel development in zebrafish embryos will share some level of 

conservation with arteriogenesis observed in mammalian species 

 zebrafish embryos can be exploited to determine the role of genes with 

differential expression in absent haemodynamic force. 

 

The objectives of my research are therefore to: 

 determine whether zebrafish embryos can undergo collateral vessel formation 

(arteriogenesis) after arterial occlusion 
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 determine the role of nitric oxide in collateral vessel development in order to 

determine whether conservation between zebrafish embryos and mammalian 

species occurs 

 perform microarray analysis on genetically manipulated embryos without 

haemodynamic force to determine differential gene expression in vivo 

 exploit the zebrafish embryo to determine the role of genes differentially 

expressed without haemodynamic force in modulating arteriogenesis in zebrafish 

embryos. 
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Chapter 2: Materials and Methods 
 

2.1 Chemical Acquisition 
 
All chemicals were acquired from Sigma (Poole, UK) unless otherwise stated. 

 

2.2 Recipes 
 

2.2.1 E3 medium 

10L of 10x stock was made with 28.7g 5mM NaCl, 1.27g 0.17mM KCl, 4.8g 0.33mM 

CaCl2, 8.17g 0.33mM MgSO4, and kept at rtp. A 1x working solution was made by 

diluting stock with dH2O, and adding 3 drops of 0.01% Methylene Blue fungicide. The 

1x solution was kept at 28.0°C (Nüsslein-Volhard & Dahm, 2002). 

 

2.2.2 MS-222 (Tricaine) 

Stock solution was made by combining 400mg MS-222 powder, 97.9ml dH20, and 

2.1ml 1M Tris (pH 9). pH was adjusted to 7 (Westerfield, 2000). A working dose of 

50mg/l was utilised. 

 

2.2.3 Low Melt-Point Agarose 

1% low melt-point agarose was made up using E3 media, and heated until dissolved.  

50mg/l MS-222 was added to ensure continued anaesthetisation of embryos. Prepared 

agarose was kept at 37°C to maintain liquidity. 

 

2.2.4 Phosphate-Buffered Saline 

1 Phosphate-Buffered Saline (PBS, Sigma) tablet was fully dissolved in 200ml milliQ 

H2O and autoclaved to ensure sterility. 

 

2.2.5 PBST 

1x PBS + 0.1% Tween-20. 
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2.3 Zebrafish Husbandry 
 

2.3.1 Home Office Regulation 

All studies conformed to Home Office requirements for the use of animals in scientific 

research and were performed in accordance with project licence number 40/3031 issued 

to Dr TJA Chico. 

 

2.3.2 Aquaria Light Cycle 

The aquaria follow a 14:10 hour light:dark cycle. 

 

2.3.3 Embryo Collection 

Embryos were collected from adult tanks using a breeding trap that prevents adults from 

ingesting embryos by the presence of a physical mesh barrier. Embryos were sorted into 

groups of 40 fertilised offspring and placed in Petri dishes containing fresh E3 medium. 

Embryos were incubated at 28.0°C up to a maximum of 5.2dpf at which point they were 

destroyed using bleach. 

 

2.3.4 Zebrafish Strains and Lines Utilised 
 

2.3.4.1 Wildtype Strains 

AB strain embryos were utilised throughout for experiments requiring wildtype 

embryos. 

 

2.3.4.2 Transgenic Lines 

The fli1:eGFP transgenic line expressing endothelial GFP was obtained from the 

Zebrafish International Resource Centre (University of Oregon, Eugene, Oregon, USA). 

Gata1:dsRED transgenic embryos expressing dsRED in erythrocytes were a gift of Dr. 

Leonard Zon (Howard Hughes Medical Institute, Maryland, USA). Fli1:eGFP and 

gata1:dsRED lines were crossed to produce fli1:eGFP/gata1:dsRED embryos. These fish 
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were crossed with nacre to produce the line in a pigment-free background. Homozygous 

nacre embryos lack melanophores due to a single base mutation in a gene homologous 

to the mammalian protein microphthalmia-associated transcription factor (Lister, 

Robertson et al., 1999). 

 

2.3.4.3 Mutant Strains 

Homozygous gridlock mutants were a gift of Dr. Randall Peterson (MIT, Massachusetts, 

USA). Mutants were crossed with the fli1:eGFP transgenic line to produce gridlocks 

expressing GFP within endothelial cells (gridlock/fli1:eGFP). 

 

2.4 Preparation of Embryos for Microscopy 
 

2.4.1 Embryo Dechorionation 

Embryos naturally hatch from their chorion at approximately 2.5dpf at 28.0°C. If 

required before this timepoint, embryos were manually dechorionated using Dumont #4 

tweezers (WPI, Florida, USA). 

 

2.4.2 Slide Preparation 

Standard glass microscopy slides (25x75x10mm) were covered with 10 layers of 

insulating tape, and a chamber of approximately 25mm2 excised from the centre using a 

scalpel. 

 

2.4.3 Mounting Live Embryos 

Embryos were first anaesthetised with 50mg/l MS-222 and then immobilised in 1% low-

melt-point agarose with added MS-222 on a number 1.5 cover-slip. Embryos were 

positioned laterally with an inverted orientation to that finally desired for viewing, using 

a one-hair brush which permits orientation without injuring embryos. E3 with added 

MS-222 was used to fill the slide chamber. The cover-slip was positioned to fully cover 

the chamber, with the mounted embryo inside the chamber. 
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2.5 Light Microscopy 
 

2.5.1 Inducing Mechanical Aortic Occlusion 
 

2.5.1.1 Laser-induced Aortic Occlusion 

4/5dpf wildtype AB or fli1:eGFP/gata1:dsRED embryos with/without chemical 

incubation as discussed were mounted as described (section 2.4.3). A pulsed UV air-

cooled Micropoint nitrogen 337nm laser (VSL-337ND-S Spectra-Physics, California, 

USA) mounted on a Zeiss Axiophot 2 microscope was used to injure (Serluca and 

Fishman, 2001) and occlude the proximal/mid aorta by endothelial damage and 

subsequent clot formation. The procedure was repeated 3 hours post occlusion, at the 

same site, to maintain occlusion. 

 

2.5.1.2 Observation of Laser-induced Aortic Occlusion Embryos 

Following occlusion, embryos were serially observed by stereomicroscopy at 3 and 5h, 

then every 5h for 22-24 hours. 

 

2.5.2 Digital Motion Analysis 

Digital Motion Analysis (DMA) is a technique developed to visualise blood circulatory 

paths using video technology (Schwerte and Pelster, 2000) but I and others in Dr 

Chico’s lab adapted this for use with digital recording apparatus. DMA provides a 

means of visually demonstrating paths taken by moving cells, such as erythrocytes 

through a vessel, without the need for transgenic animals or specialised equipment. 

However, since DMA is dependent upon motion, interference can occur from 

physiological processes such as intestinal peristalsis even with anaesthesia. 

 

2.5.2.1 DMA Procedure 
Each frame of a movie file is composed of pixels. Each pixel is denoted a greyscale 

value of 0 (black) to 255 (white), which alters from frame to frame. While the greyscale 
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value of non-altering pixels between two frames remains constant, the greyscale value 

of pixels in areas of the frame undergoing movement change. 

Two consecutive frames were subtracted from one another utilising ImageJ software for 

the length of the movie file, so that each pixel making up a frame is subtracted from its 

counterpart pixel in the following frame. The result was a trace image of pixels that had 

altered in greyscale value between one frame and the next. Trace images were assigned 

colour through ImageJ lookup tables. ImageJ (Rasband) is a free to download Java 

based programme designed for analysis of image-based results. 

 

2.5.3 Determination of Aortic Blood Velocity 

To date, it has been difficult to determine haemodynamic parameters such as aortic 

blood velocity in zebrafish embryos. Their small size prevents the use of techniques, 

such as Doppler ultrasound, commonly performed in mammalian models. I developed a 

means of determining aortic blood velocity using light microscopy. In conjunction with 

bespoke software designed in collaboration with Scott Reeves (Cardiovascular Science, 

Medical School, Royal Hallamshire Hospital), the technique permitted rapid assessment 

of aortic velocity, allowing determination of erythrocyte acceleration during systole and 

deceleration during diastole (figure 2.1). During the course of the work, a similar 

technique was independently published by another group (Malone, Sciaky et al., 2007). 

 

2.5.3.1 Recording Regions of Interest for Determination of Aortic Blood Velocity 

1s of footage at 500 frames/s was recorded at three areas of the aorta, proximally at the 

highest point of the yolk-sac (ISV 6-8), at a midpoint (ISV 14-16), and distally (ISV 27-

29) at 10x magnification using a high-speed camera (A504k, Basler, Germany) mounted 

on an Olympus IX81 inverted miscroscope (Hertfordshire, UK) and Video Savant 

software (Version 4.0, IO Industries, Ontario, Canada). Next, a Region of Interest (ROI) 

the length of the 3 ISV and of 1 pixel depth in the x dimension was created. Figure 2.2 

demonstrates the position of the ROI within the aorta proximally. The data from the ROI 

was exported as a single .TIF file. 
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Figure 2.1 Determination of mean aortic velocity. 
Measurements for aortic blood velocity were taken from the proximal aorta of a 5dpf 
wildtype embryo. A recording time of 2000ms provides information on a number of 
cardiac cycles, permitting data such as mean aortic velocity, acceleration, and 
deceleration to be calculated. 
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Figure 2.2 Position of the region of interest within the proximal aorta for 
measurement of aortic blood velocity. 
An ROI of approximately 3 ISVs in length is positioned medially within the aorta. 1s 
of footage at 500 frames/s provides data on approximately 5 cardiac cycles. At=aorta, 
V=cardinal vein, ISV=intersegmental vessel, ROI=region of interest, Bl=swim 
bladder, N=notochord. 
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Figure 2.3 False-colour kymograph generated from video savant footage. 
Repeated recording of the ROI permits generation of a kymograph demonstrating the 
movement of erythrocytes along the ROI (horizontal dimension) over time (vertical 
dimension). By determining an erythrocytes movement over time, velocity can be 
calculated. Each “streak” repr  
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2.5.3.2 Bespoke Software Determines Aortic Blood Velocity Automatically 
Bespoke software (Correlator v0.1-0.9 Scott Reeves, Cardiovascular Science, Medical 

School, Royal Hallamshire Hospital) was utilised to automate analysis. The software 

calculates movement of cells (in this case erythrocytes) using a routine of pattern 

matching (cross correlation). A ROI from a first time-step of a kymograph (figure 2.3) is 

compared with the ROI from a second time-step, and the best match identified.  

The distance the ROI travels to identify the best match represents the distance travelled 

by the erythrocytes. The process is repeated for the same time-step with more ROI 

spread horizontally across the kymograph, and a mean value for ROI travel calculated 

for that time-step. The process is then repeated between subsequent time-steps and the 

mean erythrocyte velocity calculated by dividing by the size of the time-step. 

 

2.5.3.3 Frame-frame Cell Tracking 

In order to validate the automation software, individual erythrocytes from Video Savant 

recordings were tracked with ImageJ Manual Tracker plugin for approximately 100ms 

using the full 500 frames of movie file recorded. 15 erythrocytes were tracked per 

section of aorta. 

 

2.6 Confocal Microscopy 
 
Fli1:eGFP/gata1:dsRED double transgenic embryos in wildtype or nacre background 

were imaged using sequential scanning with a 10x or 20x objective on an Olympus FV-

1000 laser-scanning confocal microscope using FV-10 ASW software (version 1.4). 

Analysis was performed using ImageJ software (Rasband). To produce Z stacks, slices 

 

 

2.7 Preparation of Total RNA and cDNA 
 
One of two protocols was utilised in extracting total RNA. All extractions associated 

with the microarray and its validation were performed using the Trizol method (section 

2.7.2) followed by RNA clean-up (section 2.7.3). The Trizol method permits intervals 
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and storage at several steps without affecting purity, permitting multiple samples and 

timepoints to be extracted together limiting operator variability. 

Other extractions were performed following the protocol of Nucleospin RNA II (section 

2.7.4). Nucleospin RNA II is time-efficient, with extraction lasting no more than 1h. It 

does not require toxic compounds such as phenol/chloroform, and produces RNA of 

similar purity to the Trizol protocol. 

 

2.7.1 Handling and Storage 

To prevent degradation of RNA, extraction was performed on ice (4°C) and protective 

equipment worn throughout. On completion, RNA was immediately stored at -80°C. 

 

2.7.2 Extraction of total RNA Utilising Trizol 

reagent (Trizol) was added, and embryos roughly homogenised using a disposable pellet 

pestle (Sigma). Homogenate was passed through a 25G needle by syringe action 

ortexed before centrifugation at 

13,000rpm for 15min at 4°C. An interval can be taken at this point, storing the sample at 

4°C. The colourless upper phase of the sample was transferred into an RNase free 1.5ml 

-isopropanol mixture was vortexed and 

incubated for 2 hours at -80°C. A longer interval can be taken at this point. 

Having stood for 10min to fully defrost the sample, the sample was centrifuged at 

13,000rpm for 20min to form a pellet. The liquid was remove

added before further vortexing to resuspend the pellet. The sample was then centrifuged 

at 8,000rpm for 15min. The ethanol was removed, and the pellet allowed to air dry for 

2O, placed on a hot block at 55°C for 

20min being pipetted up and down several times throughout. 
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2.7.3 Cleanup of total RNA 

RNA cleanup followed the protocol of the Qiagen RNeasy Mini Handbook (fourth 

edition, April 2006). Briefly, RNA obtained in section 2.7.2 was applied to an RNeasy 

column and centrifuged for 15s at 8000rpm. Following transfer of the column to a new 

then centrifuged for 15s at 8000rpm. This step was repeated, discarding flow-through. 

Columns were transferred to new RNase free collection tubes and centrifuged for 60s at 

2O was 

pipetted directly onto the filter membrane followed by centrifugation for 60s at 

8000rpm. This step was repeated with elute from the previous stage. 

 

2.7.4 Extraction of Total RNA Utilising Nucleospin RNA II 

Extraction followed the Total RNA Isolation User Manual for Nucleospin RNA II 

(October 2007/Revision 8; Macherey-Nagel, Fisher Scientific, Loughborough, UK) 

protocol for Total RNA Purification from Cultured Cells and Tissue. Briefly, embryos 

-mercaptoethanol and passed 

through a 25G needle by syringe action (Becton Dickinson (BD), Oxford, UK) 5 times. 

Lysate was transferred to a filter column and centrifuged at 11000g for 60s. RNA 

thanol to lysate and mixed. Lysate 

was loaded onto a nucleospin RNA II column and centrifuged at 11000g for 30s. The 

centrifuged at 11000g for 60s. DNA was digested by addition 

 11000g for 120s. 

20 and spun at 11000g for 60s. 

 

2.7.5 Quantification of Total RNA 
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2.7.5.1 Quantification of Total RNA for Microarray-associated Extraction 

Extracted and cleaned RNA was quantified using the NanoDrop ND100 

spectrophotometer and quality assessed using an Agilent Bioanalyser 1000 Nanochip. 

The Bioanalyser quantifies RNA using microfluidics technology permitting automation 

and reduced operator variability. The Nanodrop requires only 0.5-  

permitting quantification without substantially affecting the volume available for 

experimentation. Samples with purity (Ab260/Ab280) of 1.8-2.0 were used in microarray 

analysis. 

 

2.7.5.2 General Quantification of Total RNA 
Quantification of total RNA for other experiments was performed utilising a DU Series 

500 spectrophotometer (Beckman, California, USA) with a 1:100 dilution of 

sample:sH20, since the spectrophotometer was closely located making its utility more 

time-efficient. Samples with purity of 1.6-2.0 were used for further experiments. 

 

2.7.6 Reverse Transcription of RNA for PCR 

Reverse transcription of total RNA to cDNA was performed following the Reverse-iT 

1st Strand Synthesis Kit or its replacement Verso cDNA Kit (ABgene, Surrey, UK) 

using a PTC-200 DNA Engine Cycler (Bio-Rad Laboratories, Hertfordshire, UK). 

 

 

2.8 Microarray Gene Analysis 
 
Extracted and cleaned total RNA was passed to The Sheffield Microarray Core Facility 

(University of Sheffield). Sample handing, slide preparation, hybridisation and confocal 

image reading were performed by Dr. Paul Heath. The probabilistic model utilised for 

GeneChip analysis was developed and run by Dr. Marta Milo (Department of 

Biomedical Sciences, University of Sheffield) due to its high level of speciality and 

understanding. 
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2.8.1 Pair-mating of Adult Fish for Embryo Collection 

Adult wildtype AB strain fish were individually pair-mated in tanks with a dividing wall 

to separate female and male the night before embryo collection. The following morning 

the dividing wall was removed, allowing time-specified embryo fertilisation to occur. 

 

2.8.2 MO Injection 

Embryos collected from a parent pair were sorted for fertilised embryos of one cell stage 

and divided into 2 equal groups to be simultaneously injected with [1nl] control or tnnt2 

MO (Sehnert, Huq et al., 2002). 

 

2.8.3 Time-points of Total RNA Extraction from MO Injected Embryos 

Total RNA of control/tnnt2 MO injected embryos was extracted at three timepoints: 36, 

48, and 60hpf. 100-130 embryos were used per group, with three replicates per group. 

 

2.8.4 Microarray Gene Analysis Methodology 

Solutions and materials required for sample labelling, hybridisation and staining were 

purchased from Affymetrix (California, USA). Determination of gene expression took 

place using Affymetrix Zebrafish chips (1 chip per group, total 18) and standard 

Affymetrix protocol. 

 

2.8.4.1 Affymetrix Microarray Gene Analysis Protocol 

5µg of total RNA was used to produce cDNA through the addition of an oligo d(T) 

molecule with attached T7 polymerase binding site. T7 polymerase was then used to 

drive the production of antisense RNA with incorporated biotinylated nucleotides. 

Antisense RNA was fragmented by heating and included in the hybridisation solution 

injected into a GeneChip Zebrafish Genome array.  Hybridisation (16h at 45

rpm) took place in a rotisserie oven. Post hybridisation washing and staining was carried 

out using the Fluidics station 400 (Affymetrix) following manufacturers’ instructions; 

unincorporated material was removed by stringency washing. Biotinylated nucleotides 

were labelled using streptavidin-phycoerythrin. 
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Chips were scanned using the GeneChip Scanner 3000 (Affymetrix) and the resultant 

.DAT image converted to a .CEL file by GeneChip Operating Software. At appropriate 

points the integrity of the RNA molecules were monitored using the NanoDrop and 

Agilent Bioanalyser systems to ensure full quality control of materials. 

 

2.8.5 Microarray Data Analysis 

Data obtained by microarray gene analysis methodology was analysed by probabilistic 

model (Liu, Milo et al., 2005; Sanguinetti, Milo et al., 2005) using freeware available 

from http://www.bioinf.man.ac.uk/resources/puma. The model performed probe-level 

analysis of data, and provided each gene expression level an uncertainty measure to 

increase the robust nature of statistical analysis. Analysis is described in more detail in 

Chapter 4. 

 

2.9 Identifying Base-Sequences of Genes of Interest in Zebrafish 

Embryos 
 

2.9.1 Interspecies Gene and Protein Nomenclature 

In order to provide consistency between groups a standard gene and protein 

nomenclature is utilised: 

Species Gene Nomenclature Protein Nomenclature 

Zebrafish gene Protein 

Human GENE PROTEIN 

Mouse Gene PROTEIN 

 

For consistency, I refer to genes and proteins by their human nomenclature, unless 

clearly relating to other species. 

 

http://www.bioinf.man.ac.uk/resources/puma
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2.9.2 Inter-Species Sequence Alignment 

The sequences of genes of interest were aligned between human (Homo sapiens) mouse 

(Mus musculus), chick (Gallus gallus) and zebrafish using Ensembl Genome Browser 

release 47 and 52 (Oct 2007 and Feb 08, http://www.ensembl.org/-index.html) and 

ClustalW 1.83 and 2.0.10 (EMBL-EBI, accessed Nov 2007) to allow observation of 

regions of conservation between species. Such regions are likely to be regions of 

functionality within the gene sequence. 

 

2.9.3 Reverse Transcription PCR Primer Design 

The Ensembl database was utilised to identify proposed gene sequences in zebrafish. 

Primers of 20-25bp were designed using Primer3 version 0.4.0 software 

(http://frodo.wi.mit.edu/, accessed Nov 2007) against regions conserved between 

species. Primers were then purchased from Invitrogen (Paisley, UK). 

 

2.9.4 Primer Sequences and Expected Band Size 

 
EDNRB 

Forward GCA GTG ATG AGT GCT CAA GG 

Reverse AGA AGC TGA AAA GCC ACC AA 

Expected Band Size 718bp 

 
EFNB1 

Forward TGA CCT GCA ACA AAC CAG AG 

Reverse GCC AGA GTG CTG AGT GAC AG 

Expected Band Size 579bp 

 
GAPDH 

Forward AGG CTT CTC ACA AAC GAG GA 

Reverse GCC ATC AGG TCA CAT ACA CG 

Expected Band Size 1019bp 

 

http://www.ensembl.org/-index.html)
http://frodo.wi.mit.edu/
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2.9.5 Primer Dilution 

2O. 

 

2.9.6 PCR Controls 

GAPDH was used as positive control. sH2O was used as negative control. 

 

2.9.7 Primer Combinations 

F1:R1, F1:R2, F2:R1, F2:R2. 

 

2.9.8 PCR Protocol 

Bioline, London, UK) vortexed, 

- ube 

2O. The mixture was vortexed and spun down. 

 

2.9.9 PCR programme 

A PTC-200 DNA Engine Cycler (Bio-Rad Laboratories) was utilised. 

Step 1: 94°C for 60s 

Step 2: 94°C for 30s 

Step 3: Annealing temperature for 30s 

Step 4: 72°C for 60s 

Step 5: Go to step 2 for 29 further cycles 

Step 6: 72°C for 300s 

Step 7: 10°C for  

 

2.9.10 Annealing Temperature 

The annealing temperature (step 3 of the PCR programme) was taken as 2°C less than 

the combined forward and reverse primers’ mean melting temperature (Tm) (1 M Na+) 

taken from the provided datasheet. 
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2.9.11 Gel Electrophoresis 

PCR product was run on a 1% multi-purpose agarose (Bioline) gel at 125V for 

labels products of 10,000-200bp or 2,000-50bp in length respectively. 

 

2.9.12 PCR Product Extraction from Agarose Gel 

Following electrophoresis PCR product to be sequenced was excised from the agarose 

gel under UV light (Ultra-Violet Products, Cambridge, UK) by scalpel blade and 

extracted from the gel by performing the Qiagen Qiaquick Gel Extraction Kit protocol 

using a microcentrifuge. 

 

2.9.13 Visualisation of PCR Product 

Bands pertaining to PCR product were visualised and identified utilising UVItec 

apparatus (Cambridge, UK). 

 

2.9.14 PCR Product Sequencing 

 was sequenced against my custom primers (section 2.9.3; 

ABI3730 capillary sequencer, Core Genomics Facility, University of Sheffield) to 

visualise possible alignment alterations between the Ensembl v47 sequence and 

sequence identified through custom primers. Products were purified to remove excess 

primer, dNTPs, and non-specific products at the facility. Data electropherograms were 

viewed using the free software Finch TV (version 1.4.0 2006, www.geospiza.com). 

 

2.10 MO Injection 

2.10.1 Purchase of MO 

MOs were purchased from Gene Tools Inc, Oregon, USA. Custom MOs were designed 

using Gene Tools’ free design service. 

 

http://www.geospiza.com)
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2.10.2 MO Storage 

Prior to dilution, MO crystals were stored at rtp. Following dilution with sH2O, MOs 

were stored at -20°C. Before injection, MOs were fully defrosted on ice and vortexed to 

ensure complete dissolution of the MO in the solution. 

 

2.10.3 MO Sequences 

 
STANDARD STOCK CONTROL 

5’-CCTCTTACCTCAGTTACAATTTATA-3’ 

 
tnnt2 

I utilised a previously published (Sehnert, Huq et al., 2002) start-site blocking MO. 

5’-CATGTTTGCTCTGATCTGACACGCA-3’ 

 
ednrb 
The MO was designed as a splice-site blocker, interacting at the intron:EXON boundary 

of exon 2. 

5’-AGCCAGAAGCTGAAAAACAGGTACT-3’ 

 
efnb1 

The MO was designed as a splice site blocker, also interacting at the intron:EXON 

boundary of exon 2. 

5’-CACAAACCTGCAACACAAAGCATAC-3’ 

 

2.10.4 MO Injection Protocol 

MOs were injected as standard (Westerfield, 2000), with the yolk-ball identified as 

injection site. 1.0mm glass filamentous capillary tubes (WPI, Florida, USA) were heated 

to a fine point using a Flaming/Brown Micropipette Puller (P-97, Sutter Instruments, 

California, USA) and filled with MO working solution via capillary action. The extreme 

tip was removed using Dumont #4 tweezers (WPI, Florida, USA). A 10mm/0.1mm 

division graticule (Pyser-Sgi, Kent, UK) was used to determine injection volume by 

calculating the volume injected into an oil-drop on the graticule. 
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One cell stage embryos were positioned along the edge of a standard microscopy slide 

on a 90mm Petri-dish lid for injection. Post-injection, embryos were placed in 

 

 

2.10.5 MO Dilution and Working Solution 

The [50nM] MO crystals were diluted to [1nM] with sH2O, and the solution divided into 

each 

experiment. Phenyl Red acts as a colorant making observation of injection easier, and 

also identifies pH. Over acidic MO dilutions can affect activity. 

 

2.10.6 MO Injection Volume 

To ensure injection volume would not affect response to MO injection, all MOs were 

injected at a volume of 1nl. For dose-response experiments concentration was altered 

through altering the dilution factor. 

 

2.11 Whole Mount in situ Hybridisation Staining 
 
Whole mount in situ hybridisation (ISH) is commonly utilised to determine gene 

expression patterns during early development by detecting specific nucleic acid 

sequences with RNA probes. In zebrafish embryos, ISH has a major advantage over 

antibody immunohistochemistry, since very few antibodies exist at present. 

 

2.11.1 PTU Treatment of Embryos 

Pigment cells can inhibit the observation of gene expression patterns. To prevent 

formation of pigment cells, embryos at 6hpf were treated with 0.0045% PTU (1-Phenyl-

2-thiourea) solution. 

 

2.11.2 Fixation of Embryos 

Embryos of desired developmental stage were fixed with 4% paraformaldehyde in 1x 

PBS overnight at 4°C. The embryos were then dehydrated with 100% methanol and 

stored at -20°C for at least 12h. 
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2.11.3 Preparation of DNA Template with PCR Amplification 

PCR for DNA template amplification were prepared and performed as described in 

sections 2.7 and 2.9. 

 

2.11.4 Preparation of Vector-containing Bacteria 

PCR product was inserted into plasmid vector and grown in E. coli TOP10 cells 

according to pCR 2.1-TOPO protocol (Version R, April 2004, Invitrogen). Figure 2.4 

shows the vector map for pCR 2.1-TOPO. Cells were grown on Ampicillin selective 

 

 

2.11.5 Vector DNA Extraction 

Vector DNA was extracted from the cells following the MinElute Gel Extraction Kit 

protocol (Qiaquick Spin Handbook, November 2006, Qiagen). DNA concentration was 

 

 

2.11.6 Antisense RNA Probe Synthesis 

ed with HindIII restriction enzyme (NEB, London, UK) 

for 2h at 37°C. Purification was performed according to the HiSpeed Plasmid 

Purification Handbook (Qiagen, December 2001) using a Midi kit; and quantification by 

running a series on a 0.8% agarose gel with Hyperladder I (Bioline). 

Antisense RNA probe was synthesised by 2h incubation at 37°C in transcription mix 

-DIG-

2O; Roche). DNA was then digested 

 

-80°C for 

30min. The mixture was centrifuged at 12,000rpm for 15min at 4°C, washed with 70% 

2O. The probe was tested to identify two bands 

on a 0.8% agarose gel and stored at -80°C as a 1:200 dilution of formamide. 
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Figure 2.4 pCR 2.1-TOPO vector map. 
Figure from pCR 2.1-TOPO protocol Version R, April 2004 (Invitrogen). 
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2.11.7 Whole Mount in situ Hybridisation Protocol 
 
Whole mount ISH was performed as previously published (Thisse and Thisse, 2008) 

with minor modifications as described. All steps took place in 1.5ml tubes rather than 

96-well plates. 

Day 1. Embryos underwent a serial dilution of methanol in PBS: 75% (vol/vol), 50%, 

25% each for 5min. Embryos were then washed 4 x 5min in PBST. Proteinase K 

90m at 96hpf to ensure total embryonic penetration to staining. Proteinase K digestion 

was stopped by incubating embryos for 20min in 4% PFA. Washes of 5 x 5min 

followed to remove residual PFA. Embryos were incubated in prehybridisation buffer 

(50ml of 50% formamide, 5xSSC, 0.1% Tween-

. Embryos were then 

incubated in probe hybridisation buffer (prehybridisation buffer plus 1:200 dilution of 

probe in formamide) overnight at 70°C on a heatblock. 

Day 2. Probe hybridisation buffer was removed before washing briefly in hybridisation 

wash (50% formamide, 5xSSC, 0.1% Tween-20, citric acid pH6) at 70°C. This was 

followed by a serial dilution of 75% wash:25% 2xSSC (vol/vol), 50% wash:50% 

2xSSC, 25% wash:75% 2xSSC, 100% 2xSSC all at 70°C for 15min. 0.2xSSC at 70°C 2 

x 30min. 75% 0.2xSSC:25 PBST, 50% 0.2xSSC: 50% PBST, 25% 0.2xSSC: 75% 

PBST, 100% PBST all at rtp for 10min. Embryos were incubated in blocking solution 

(PBST, 2% sheep serum, 2mg/ml BSA) for 2-4h and incubated in 1:4000 anti-DIG-AP 

shaking at 4°C overnight. 

Day 3. Antibody solution was discarded and embryos washed briefly in PBST at rtp, 

followed by 6 further PBST washes at rtp for 15min each. Embryos were incubated 

three times, 5min each wash, with staining buffer (100mM tris HCl pH9.5, 50mM 

MgCl2, 100mM NaCl, 0.1% Tween-20). Embryos were then incubated in staining 

solution (100mg/ml NBT, 50mg/ml BCIP in staining buffer) and monitored by 

dissecting microscope. Embryos were incubated in staining solution for 36hpf before the 

reaction was stopped with PBS pH 5.5 and 1mM EDTA. 
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2.11.7.1 Acquisition of tRNA 

tRNA lyophilised powder from wheat germ type V (Sigma) was extracted three times 

with phenol/chloroform to remove protein. 

 

2.11.8 Visualisation and Image Capture 

For visualisation embryos were placed in a watch-glass and imaged utilising a colour 

camera attached to a Zeiss Axiovision microscope. 

 

2.12 Statistical Analysis 
 

2.12.1 Power Calculations  

Statistical Power was calculated post hoc with OpenEpi 2.2.1 (Dean, Sullivan et al., 

2008). 

 

2.12.2 Statistical Tests 

Statistical analysis and graphical representations were created with GraphPad Prism 4.0 

or 5.01 (GraphPad Software Inc., California, USA). N = one clutch of embryos. Data 

represents mean±SEM. Statistical comparison of two groups was by unpaired t test, and 

more than two groups by one-way ANOVA. Bonferroni post-tests were performed to 

identify groups demonstrating statistical significance. 

 

2.12.3 Significance 

* = P<0.05, significant difference from control 

** = P<0.01, very significant difference from control 

*** = P<0.001, highly significant difference from control. 
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Chapter 3: Exploiting the Zebrafish Embryo to Develop 

Models of Arteriogenesis 
 
In this chapter I determine whether zebrafish embryos can undergo collateral vessel 

formation (arteriogenesis) after arterial occlusion. I utilise two approaches: 1) gridlock, 

a mutant suffering a permanently occluded proximal aorta; and 2) mechanically-induced 

aortic occlusion of wildtype embryos. I demonstrate, by determination of the role of 

nitric oxide, that zebrafish arteriogenesis shares at least some level of conservation with 

arteriogenesis observed in mammalian species. As with Chapters 4, 5, and 6, I will start 

by describing the relevant background.  Following the results (section 3.2) I will go on 

to discuss their relevance (section 3.3) within the context of the field. 

 

3.1 Introduction 
 

3.1.1 Gridlock 

Gridlock mutant zebrafish were identified in the Boston mutagenesis screen and were 

identified by complete and permanent occlusion of the aorta at the bifurcation of the 

lateral dorsal aortae due to malformation during vasculogenesis (Peterson, Shaw et al., 

2004). Gridlock mutation is hypomorphic, leaving residual expression (Zhong, Childs et 

al., 2001). Adult mutants are homozygous viable. Viability was credited to the possible 

development of collateral vessels transporting blood around the site of occlusion to more 

distal parts of the aorta (Gray, Packham et al., 2007; Weinstein, Stemple et al., 1995). 

However, this hypothesis has not been investigated directly, and possibilities such as 

abnormal vessel patterning may explain survival of gridlock mutant zebrafish. 

Notch signalling leads to activation of a subfamily of basic helix-loop-helix (bHLH) 

transcription factors, hairy/Enchancer-of-split, including Hey2, to which the mutation 

responsible for the gridlock phenotype was subsequently positionally cloned (Zhong, 

Rosenberg et al., 2000). Activation of Hey2 by Notch appears important for aortic 

angioblast cell fate determination (Zhong, Rosenberg et al., 2000), leading to formation 

of arteries rather than veins. 
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Hey2 expression in vasculature of zebrafish embryos is restricted to arteries with 

expression along the length of the aorta (Zhong, Childs et al., 2001). A dose-dependent 

pattern of aortic loss is demonstrated with gridlock MO knockdown; the bifurcation 

fusing the paired lateral dorsal aortae into the single dorsal aorta being the most 

vulnerable to reduced levels (Zhong, Childs et al., 2001). Hey2 expression has also been 

visualised in the developing heart field of zebrafish embryos, at regions representing 

cardiac precursor fields (Winkler, Elmasri et al., 2003). 

Gridlock mutation can be rescued irreversibly during the period of angioblast migration 

(12-24hpf) (Peterson, Shaw et al., 2004). Rescue compounds upregulated VEGF 

expression to suppress the phenotype, pointing to the importance of VEGF in successful 

vascular development, as described in section 1.3.2.3. 

 

3.1.2 Hey2 

Zebrafish gridlock mutants have been described as a means of studying aortic 

coarctation (Weinstein, Stemple et al., 1995), the narrowing of the aorta at the aortic 

arch, although there is no indication the mammalian gridlock orthologue Hey2 is 

responsible for this disease. Mice deficient in Hey2 do not appear to suffer abnormalities 

in arterial-venous fate decisions or aortic development. Hey2 knockout mice do present 

with cardiomyopathy and defects in the ventricular septum, assumed to be a result of 

expression of Hey2 within the heart (Gessler, Knobeloch et al., 2002). In zebrafish, 

Hey2 is known to be a negative regulator of cardiomyocyte proliferation (Jia, King et 

al., 2007), supporting this hypothesis. Hey2 limits heart growth by opposing Gata5, 

which promotes cardiomyocyte proliferation. Gridlock mutant zebrafish develop greater 

numbers of larger cardiomyocytes resulting from increased expression of early growth, 

and myocardial, genes. Conversely, upregulation of Hey2 in wildtype embryos causes 

reduced heart size through decreased cardiomyocyte number and volume (Jia, King et 

al., 2007). 

One reason for differences in phenotypes observed between zebrafish and mammals 

may be that despite structural similarity (73.6% similarity, 67.6% identity) orthologues 

may have distinct roles in different species (Winkler, Elmasri et al., 2003). 
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Differences may be associated with gene redundancy with other hairy-related genes, or 

differential evolution of hey function following genome duplication in zebrafish. 

Furthermore, hey2 mutation in zebrafish (gridlock) is hypomorphic leaving residual 

expression (Weinstein, Stemple et al., 1995), while mouse studies utilised complete 

knockout of Hey2 by lacZ insertion (Gessler, Knobeloch et al., 2002). It is possible that 

complete knockout in zebrafish would yield a phenotype different to that visualised with 

hypomorphic mutation, and which may reveal cardiac defects, since expression in the 

cardiac field has been visualised (Winkler, Elmasri et al., 2003). 

 

3.2 Results 
 

3.2.1 gridlock Mutant Embryos Recover Blood Flow Distal to Occlusion Site 

To determine rates of aortic blood flow recovery distal to occlusion binary counts 

recording presence or absence of aortic blood flow distal to occlusion were performed 

on gridlock mutant embryos from 2-5dpf. 

At 2dpf no gridlock mutant embryo was observed with aortic blood flow. At 3dpf a 

minority of embryos (23.9±4.9%) had recovered aortic blood flow distal to site of 

occlusion. No blood cells were observed passing through the occlusion site. By 4dpf 

57.3±0.3% of embryos had recovered aortic blood flow distal to occlusion. At 5dpf the 

majority (83.4±1.2%) of embryos recovered aortic blood flow (235 embryos; figure 

3.1). Weinstein, Stemple et al. (1995) report embryos without distal blood flow at 7dpf. 

The group also report only mutants with remodelled (collateral) circulation survive 

beyond two weeks post fertilisation. At this timepoint diffusion is no longer sufficient 

for oxygenation (Pelster and Burggren, 1996). The data therefore suggests occlusion in 

gridlock mutants is complete and permanent, with survival of mutants occurring through 

transport of blood around the site of occlusion. The data does not exclude the possibility 

of mutant survival through abnormal vessel patterning during development transporting 

blood around the occlusion site. 
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Figure 3.1 Time-course of percentage recovery of aortic blood flow distal to the 
site of occlusion in gridlock mutant embryos. 
The percentage of gridlock embryos with aortic blood flow distal to the site of 
occlusion rises from 0% at 2dpf to 83.4±1.2% by 5dpf. The occlusion remains intact 
throughout. It has been hypothesised (Weinstein, Stemple et al., 1995) that survival 
of mutant fish beyond embryonic stages is dependent upon transport of blood around 
the occlusion site. 
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3.2.2 Vasculogenesis and Angiogenesis are Unaffected by gridlock Mutation 

In order to determine whether abnormal vascular patterning was responsible for survival 

of gridlock mutant embryos I compared vasculogenesis (de novo vessel formation 

through in situ differentiation of angioblasts) and angiogenesis (growth and remodelling 

of primitive vascular networks) in wildtype and gridlock embryos. I performed laser-

scanning confocal microscopy of gridlock/fli1:eGFP or wildtype fli1:eGFP embryos at 

5dpf to produce representative images of embryonic vasculature (figure 3.2). 30 

embryos per group were first observed under fluorescent stereomicroscopy. Four 

representative gridlock and two representative wildtype embryos were then imaged by 

confocal microscopy. By 5dpf vasculogenesis is complete and angiogenesis of ISVs, 

DLAVs, and SIVs has occurred, with embryos demonstrating a standard vascular 

pattern (Isogai, Horiguchi et al., 2001). 5dpf is also the last timepoint at which I studied 

zebrafish embryos. 

Of the approximately 30 gridlock embryos observed by fluorescent stereomicroscopy, 

all demonstrated normal patterning of aorta and cardinal vein on comparison with 

wildtype embryos, suggesting normal vasculogenesis, during which these vessels form 

(Isogai, Horiguchi et al., 2001). Gridlock embryos demonstrated normal patterning and 

number of ISVs, and also normal development of communications between aorta, or 

cardinal vein, and SIVs. DLAVs developed normally in comparison to wildtype. The 

ISVs, SIVs and DLAVs form later than aorta and cardinal vein, during angiogenesis 

(Isogai, Horiguchi et al., 2001). Their normal patterning in gridlock embryos suggests 

angiogenesis is unaffected by the mutation. Recovery of aortic blood flow through 

transport of blood around occlusion in gridlock embryos demonstrates the functional 

ability of aorta, ISVs and SIVs. Thus, despite complete absence of flow distal to 

occlusion in gridlock embryos, no vessels failed to form, and no vessel was found to 

have undergone aberrant angiogenesis by 5dpf. 
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Figure 3.2 Laser-scanning confocal microscopy of gridlock/fli1:eGFP and 
fli1:eGFP embryos at 5dpf. 
Representative lateral view of fli1:eGFP (A, and magnified section C) and 
gridlock/fli1:eGFP (B, and magnified section D) embryo at 5dpf. Aorta and cardinal 
vein, formed during vasculogenesis, of gridlock are normal compared to wildtype. 
ISVs, DLAVs, and SIVs, formed later by angiogenesis, are numerically and 
structurally normal also, on comparison with wildtype fli1:eGFP embryos. At=aorta, 
V=cardinal vein, ISV=intersegmental vessels, SIV=subintestinal vessels, 
DLAV=dorsal longitudinal anastomotic vessel. Each sub-figure composite of 4 
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3.2.3 Pattern of gridlock Mutant ‘Collateral’ Blood Flow 

In order to determine the origin of restored aortic blood flow in gridlock embryos the 

pattern of gridlock ‘collateral’ blood flow was observed by digital motion analysis 

(DMA) (Schwerte and Pelster, 2000). Consecutive frames from movie files are 

subtracted from one another resulting in a trace image. Trace images depict regions of 

movement (for example, blood flow) between frames, allowing observation of 

alterations in blood flow over time without harming embryos. 

Figure 3.3 demonstrates representative DMA images of blood flow patterns in wildtype 

(A) and gridlock embryos (B) at 5dpf. In wildtype embryos, the majority of blood is 

transported along aorta and cardinal vein. Smaller volumes are transported by efferent 

and afferent ISVs to cardinal vein and from aorta respectively. The pattern of efferent 

and afferent ISVs is not fixed, except for the first four pairs (Isogai, Horiguchi et al., 

2001). Only very small volumes of blood enter SIVs, supplying the developing gut with 

blood, from communications with the aorta. Blood flows in multiple directions within 

SIVs, often reversing direction. 

Gridlock aortic blood flow was restored in one of two ways (figure 3.3B and C). The 

majority of gridlock embryos (88%) acquired aortic blood flow via communications 

between aorta and subintestinal vasculature. Blood can also be restored to the aorta via 

reversal of flow in afferent ISVs (12%). Figure 3.3C is a diagrammatical representation 

of the pattern of blood flow in the gridlock mutant of B. As can be observed in figure 

3.3B and C, the two forms of restored aortic blood flow are not exclusive, but can occur 

together at the same timepoints. 

 
3.2.4 Laser-induced Aortic Occlusion Results in Recovery of Aortic Blood Flow 

Distal to the Occlusion Site 

In order to demonstrate that recovery of aortic blood flow through remodelling of 

vessels in gridlock embryos was not a phenotypic characteristic of the mutation, but a 

spontaneous response to vascular occlusion observed in all embryos, I developed a 

means of occluding the proximal/mid aorta in wildtype embryos by focussed laser-

induced injury. 
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Figure 3.3 Pattern of ‘collateral’ blood flow in gridlock embryos resulting in 
aortic blood flow distal to occlusion. 
Angiograms generated by DMA demonstrating representative lateral views of 5dpf 
wildtype (A) blood flow, and gridlock (B) ‘collateral’ blood flow. (C) 
diagrammatically represents the direct of blood flow in (B). At=aorta, V=cardinal 
vein, ISV=intersegmental vessels, SIV=subintestinal vessels, Bl=swim bladder. Red 
arrows in (B) denote collateral vessels. Directional arrows and coloured vessels in 
(C) denote direction of blood flow: red, away from the heart; blue, towards the heart; 
grey, undetermined. (A) and (B) composite of 4 images and generated by Caroline 
Gray. 
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Focussed laser-energy has previously been utilised to occlude the lateral dorsal aortae 

close to the bifurcation with the proximal aorta in zebrafish at approximately 12hpf, to 

observe the effect of absent FSS on kidney morphogenesis (Serluca and Fishman, 2001). 

A pulsed UV nitrogen 337nm laser was used to injure and completely occlude the 

proximal/mid aorta by endothelial damage and subsequent clot formation. Since I was to 

utilise clot formation to develop occlusion, I could not attempt laser-induced EC damage 

before 24hpf, at which time cardiac contraction begins (Chen, Haffter et al., 1996). In 

order to phenocopy gridlock mutants as closely as possible, I directed EC damage to the 

proximal aorta, at a location just posterior to swim bladder (figure 3.4). I began by 

attempting aortic occlusion at 2 and 3dpf. Aortic occlusion at either timepoint would 

allow study of aortic blood flow recovery over a period of 72-96 hours. However, EC 

damage at these timepoints most frequently resulted in aortic rupture with severe trunk 

haemorrhage without occlusion, or fistula formation between aorta and cardinal vein. I 

therefore repeated the procedure in 5dpf embryos to determine if aortic occlusion was 

successful in more developed embryos. Laser-induced EC damage no longer resulted in 

vessel rupture or fistula formation. Occasionally, clot formation did not result in total 

vessel occlusion. On these occasions, EC damage was repeated immediately posterior to 

the initial attempt. In order to comply with Home Office regulation during envisaged 

longer post-occlusion observation, the procedure was repeated in 4dpf embryos. I found 

that by approximately 4h post occlusion clots began to degrade permitting passage of 

erythrocytes through the occlusion site, thereby preventing observation of aortic blood 

flow recovery over longer timepoints. In attempt to prevent clot degradation laser-

induced EC damage was repeated at the occlusion site 3h post occlusion, generating an 

enlarged thrombus. 

This secondary EC damage and clot build-up prevented clot degradation prior to 22h 

post occlusion in the vast majority of embryos. Only embryos which maintained 

occlusion until 22h post occlusion were included in the studies. 
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Immediately after laser-induced aortic occlusion (5 replicates, total of 65 embryos) in 

8.7% of embryos a small number of erythrocytes were observed to enter the aorta via 

communications with the subintestinal vasculature (figure 3.5). This is presumably a 

passive process permitting the movement of erythrocytes along a vessel of sufficient 

luminal diameter induced by the sudden change in pressure difference between occluded 

distal aorta and patent SIVs. The movement of erythrocytes in this manner ceased within 

five minutes, possibly as a result of further alterations in intravascular pressure. 

However, by 3h post occlusion 50.0% of embryos had recovered aortic blood flow from 

the same type of communications between aorta and SIVs. Angiograms generated using 

DMA demonstrate a close similarity in development of communications between 

gridlock and wildtype occluded embryos (compare figures 3.3 and 3.6). By 22h post 

occlusion 90.7% of embryos had restored aortic blood flow (figure 3.5). Occlusions 

began to fail following this timepoint, due to degradation of the clot, preventing later 

observation. 

 

3.2.5 Restoration of Aortic Blood Flow Distal to Occlusion Occurs via Pre-existing 

Communications 

DMA allows observation of alterations in blood flow over time. However, DMA is 

dependent upon shifts in pixel greyscale values between frames resulting from 

movement. It is therefore not possible to observe patent vessels with absent blood flow, 

and difficult to observe vessels with very low volumes of blood flow. Laser-scanning 

confocal microscopy of transgenic embryos permits observation of cardiovascular 

development over time, and is not dependent upon movement. fli1:eGFP/gata1:dsRED 

double transgenic embryos expressing endothelial GFP and erythrocyte dsRED allow 

the interaction between vasculature and blood to be observed. A defining feature of 

arteriogenesis is remodelling of pre-existing vessels (Buschmann and Schaper, 1999; 

Carmeliet, 2000). The presence of pre-existing vessels prior to occlusion, and their 

recruitment post occlusion, demonstrates that vasculogenesis or angiogenesis are not 

inducing recovery of aortic blood flow. 
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Figure 3.5 Time-course of wildtype embryos recovering aortic blood flow 
distal to the site of laser-induced occlusion. 
The percentage of wildtype embryos (n=65) with aortic blood flow distal to 
the site of laser-induced occlusion rises from 0% immediately following 
occlusion to 90.7% in a 22h period. The occlusion remained intact throughout. 
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Figure 3.6 Pattern of ‘collateral’ blood flow in wildtype embryos 
following laser-induced aortic occlusion. 
Angiograms generated by DMA demonstrate representative lateral views of a 
5dpf wildtype embryo prior (A) and 22h post occlusion (B). (C) 
diagrammatically represents the direct of blood flow in (B). At=aorta, 
V=cardinal vein, ISV=intersegmental vessels, SIV=subintestinal vessels, 
Bl=swim bladder. † denotes occlusion site and * communications recovering 
blood to the aorta distal to the occlusion site. Directional arrows and coloured 
vessels in (C) denote direction of blood flow: red, away from the heart; blue, 
towards the heart; grey, undetermined. (A) and (B) composite of 4 images. 
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Laser-scanning confocal microscopy of 4dpf fli1:eGFP/gata1:dsRED wildtype embryos 

prior to and following laser-induced aortic occlusion was performed. The aim of this 

experiment was to determine in wildtype embryos the presence of vessels prior to 

occlusion which undergo recruitment as ‘collateral’ vessels following occlusion. The 

experiment would thus enable identification of pre-existing ‘collateral’ vessels. It would 

also exclude the possibility of occlusion inducing vasculogenesis or angiogenesis as a 

means of developing collateral blood flow. 

Figure 3.7 demonstrates the same 4dpf embryo immediately prior to and 5h post 

occlusion. Immediately prior to occlusion the embryo has standard wildtype blood flow. 

As described by Isogai, Horiguchi et al. (2001) the majority of blood is pumped from 

heart to aorta, returning through the cardinal vein. Smaller volumes are transported 

through efferent and afferent ISVs. Smaller volumes are also transported through SIVs, 

only very small volumes of which enter SIVs via communications with the aorta. Within 

SIVs, blood flows in multiple directions often changing direction. 

Immediately post occlusion, blood flow halts posterior to occlusion. Blood flow 

continues within the head, and the heart continues to contract normally. A small 

minority of embryos (8.7%; discussed in the previous section) are observed to have 

small numbers of erythrocytes entering the aorta, which ceases within five minutes. On 

observation at 3h post occlusion 50.0% of embryos have recovered aortic blood flow via 

communications connecting SIVs and aorta. Exactly the same communications are 

observed prior to occlusion; transporting little or no blood flow. This suggests 

vasculogenesis and angiogenesis are not involved in the development of ‘collateral’ 

vessels. It suggests that ‘collateral’ blood flow develops through pre-existing vessels, a 

feature key to the definition of arteriogenesis (Buschmann and Schaper, 1999). 

Observation of a communication pre- and post occlusion in the same animal is not 

possible in mammalian species (as discussed in section 1.4), and thus this experiment 

also highlights an advantage of exploiting zebrafish embryos for such research. 
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Figure 3.7 Recovery of aortic blood flow distal to the site of occlusion is the 
result of flow redistribution in pre-existing vessels (legend continued overleaf). 
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Figure 3.7 Recovery of aortic blood flow distal to the site of occlusion is the 
result of flow redistribution in pre-existing vessels (continued). 
Representative lateral laser-scanning confocal microscopy image of a 
fli1:eGFP/gata1:dsRED wildtype embryo at 4dpf immediately prior to laser-
induced aortic occlusion (B), and 5h after occlusion (D). Box in (A) depicts area 
imaged in (B) and (D). (C) and (E) are diagrammatical representations of blood 
flow in (B) and (D) respectively. The diagrammatical representations demonstrate 
the high degree of blood flow alteration following aortic occlusion. While direction 
of flow in aorta and cardinal vein remains constant before and after occlusion, 
direction of flow in ISVs and SIVs varies. For example, before occlusion, blood 
flows ventrally within ISVs, while after occlusion, blood flow in ISVs is dorsal. 
Arrows depict direction of blood flow, vessels without arrows demonstrate absent 
flow. At=aorta, V=cardinal vein, ISV=intersegmental vessels, SIV=subintestinal 
vessels. † in (A) denotes occlusion site. (A) composite of 3 images, scale bar 
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3.2.6 The Effect of NOS Inhibition on Recovery of Aortic Blood Flow in gridlock 

Mutants 

NO has been shown to modulate collateral vessel formation in a wide range of species 

and models (Cai, Kocsis et al., 2004a; Lloyd, Yang et al., 2001; Yu, deMuinck et al., 

2005). To determine if zebrafish embryo ‘collateral’ vessel remodelling shares this 

modulation I determined the effect of pharmacological inhibition of all NOS isoforms 

by the non-specific inhibitor L-NAME (Fritsche, Schwerte et al., 2000). 

An advantage of zebrafish embryos is the ability of applying small molecule inhibitors 

at different timepoints during cardiovascular development through media incubation and 

subsequent diffusion into embryos (Chico, Ingham et al., 2008) to test their effects 

without requiring direct intervention. I was therefore able to assess the effect of NOS 

inhibition on restoration of aortic blood flow in gridlock embryos. I was also able to 

assess the possible role of NO-mediated vasodilatation in collateral vessel development 

through NOS inhibition. 

Gridlock embryos (n=6-30 embryos/replicate, 8 replicates/group) were incubated in 

[1mM] L-NAME from 1-5dpf, the L-NAME solution being replaced at 24h intervals. 

Treatment with L-NAME from 1-5dpf induced a very significant decrease (P<0.01) in 

the percentage of embryos recovering aortic blood flow compared to untreated control 

siblings (control 75.14±4.23%, L-NAME 42.99±8.85%; power 100%) (figure 3.8). This 

suggests that as in other species and models (Cai, Kocsis et al., 2004a; Lloyd, Yang et 

al., 2001; Yu, deMuinck et al., 2005), NO modulates collateral vessel formation in 

zebrafish embryos. 

NO mediates vasodilatation, and so to exclude inhibited vasodilatation as the cause of 

decreased percentages of gridlock embryos recovering aortic blood flow I performed 

additional experiments to determine the time dependence on NO production. 3h L-

NAME washout with fresh medium at 5dpf demonstrated no significant change from the 

decrease in aortic blood flow recovery described, suggesting inhibition of NO-mediated 

vasodilatation is not responsible for decreased aortic blood flow recovery in gridlock 

embryos. 
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 Figure 3.8 Effect of NOS Inhibition on Recovery of Aortic Flow by 
‘Collateral’ Vessel Remodelling in gridlock Mutant Embryos. 

Treatment with [1mM] L-NAME from 1-5dpf led to a very significant 
reduction in recovery of aortic flow (P<0.01) compared to control sibling 
embryos. 3h Washout at 5dpf did not significantly affect this result, excluding 
a role for NOS inhibition in vasoactivity as the cause of reduction in recovery 
of aortic flow. In addition, treatment for 5h at 5dpf did not result in reduced 
recovery of aortic flow compared to control siblings, providing further 
evidence for the exclusion of inhibited NO-mediated vasodilatation as the 
cause. 
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Further supporting this notion, gridlock embryos treated with L-NAME (for 5h) only at 

5dpf demonstrated no significant difference in recovery of aortic blood flow on 

comparison to untreated control embryos (figure 3.8). Thus, inhibition of NO-mediated 

vasodilatation for 5h at 5dpf did not result in a reduced recovery of aortic blood flow as 

might be expected if NO-mediated vasodilatation was responsible for recovery of blood 

flow in gridlock embryos. 

 
3.2.7 The Effect of NOS Inhibition on Recovery of Aortic Blood Flow following 

Laser-induced Aortic Occlusion 

As discussed in section 3.2.6 NO has been shown to modulate arteriogenesis in a range 

of species and models. To determine if zebrafish embryo ‘collateral’ vessel remodelling 

following laser-induced aortic occlusion shares this modulation I determined the effect 

of pharmacological inhibition of NOS by L-NAME. Wildtype embryos were treated 

with [1mM] L-NAME 16h prior to laser-induced occlusion, and for the subsequent 

length of experimentation. The recovery of aortic blood flow was observed at 22h post 

occlusion, the timepoint at which the greatest percentage of embryos had recovered 

aortic blood flow via ‘collateral’ vessels following laser-induced occlusion. 

At 22h post occlusion the percentage of embryos having recovered aortic blood flow 

had decreased highly significantly (P<0.001) in L-NAME treated embryos compared to 

controls (control 85±8% L-NAME 30±8%; n=15 embryos control, 28 L-NAME, power 

96.8% or 92.8% with continuity correction) (figure 3.9). This suggests that, like other 

species and models (Cai, Kocsis et al., 2004a; Lloyd, Yang et al., 2001; Yu, deMuinck 

et al., 2005), NO mediates ‘collateral’ vessel development in wildtype zebrafish 

embryos suffering induced aortic occlusion. 

 

3.2.8 NOS Inhibition Affects Heart Rate but not Aortic Blood Velocity 

In addition to its role in vasodilatation, NO also modulates cardiac contraction and so 

heart rate. This has been demonstrated through inhibition of NOS by L-NAME in mice, 

which resulted in a significant decrease in heart rate (Jacobi, Sydow et al., 2005). 
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Figure 3.9 Percentage of wildtype embryos with blood flow distal to the 
occlusion site 22h post laser-induced occlusion following NOS inhibition. 
NO synthase inhibition by [1mM] L-NAME treatment resulted in a highly significant 
decrease (P<0.001) in the ability of embryos to remodel vessels to perfuse the aorta 
with blood flow compared to control 22h post occlusion. 
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It is therefore possible that NOS inhibition in zebrafish embryos decreases the 

percentage recovery of aortic blood flow following occlusion through altered 

modulation of cardiac contraction. For example, decreased heart rate may lead to 

decreased blood flow, intravascular pressure, and FSS in remodelling communications, 

resulting in decreased remodelling. Decreased stroke volume may also result in 

decreased blood velocity, since blood volume may be reduced. In zebrafish, eNOS 

expression has been demonstrated from 3dpf in cardiomyocytes, dorsal aorta, and 

cardinal vein (Fritsche, Schwerte et al., 2000). Vasoactivity of L-NAME and SNP at 

concentrations I have utilised has also been found (Fritsche, Schwerte et al., 2000). 

To determine whether recovery of aortic blood flow following occlusion was influenced 

by NO modulation of cardiac contraction, heart rate and aortic blood velocity in 

wildtype L-NAME or SNP treated embryos were studied at 5dpf. As with previous NOS 

inhibition studies embryos were treated with [1mM] L-NAME for 16h prior to 

observation. Figure 3.10 demonstrates the effect of NOS inhibition on heart rate at 5dpf. 

Heart rate was significantly decreased (P<0.05, n=10 per group) following L-NAME 

treatment compared to control sibling embryos (control: 132.2±6.5 beats/minute; L-

NAME 113.2±3.1; power 100%), concurring with mammalian data (Jacobi, Sydow et 

al., 2005). This result suggests the possibility that decreased blood flow caused by the 

fall in heart rate may cause a decrease in the percentage of embryos recovering aortic 

blood flow. However, treatment of sibling embryos with the NO donor SNP 

demonstrated no significant difference in heart rate on comparison to control embryos 

(figure 3.11; P>0.15, n=8 per group, control: 168.3±4.0 beats/minute; SNP: 159.8±3.9; 

power 99.1%), suggesting super-physiological levels of NO do not affect heart rate. 

I then wished to determine the effect of decreased heart rate on aortic blood velocity. It 

has been difficult to determine haemodynamic parameters such as aortic blood velocity 

in zebrafish embryos. Their small size prevents use of techniques such as Doppler 

ultrasound, commonly performed in mammals. I developed a means of determining 

aortic blood velocity by calculating erythrocyte movement through time. 
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Figure 3.10 Effect of NOS inhibition on the heart rate of wildtype 
embryos at 5dpf. 
NOS inhibition by [1mM] L-NAME treatment resulted in a significant 
decrease in heart rate (P<0.05) in wildtype embryos compared to control 
sibling embryos at 5dpf. 
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Figure 3.11 Effect of NOS elevation on the heart rates of wildtype 
embryos at 5dpf. 
Enhancement of NOS activity by [1mM] SNP treatment did not significantly 
alter heart rate in wildtype embryos at 5dpf compared to control (P>0.05). 
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Velocity was determined at three areas of the aorta, proximally at the highest point of 

the yolk-sac (ISV 6-8), at a midpoint (ISV 14-16), and distally (ISV 27-29). Velocity 

was determined utilising wildtype embryos at 5dpf. Aortic blood velocity has 

demonstrated significant reduction at the proximal portion of the aorta in a concentration 

dependent manner to anaesthetic (MS-222) treatment earlier during embryonic 

development at 2dpf (Malone, Sciaky et al., 2007). This demonstrates that the technique 

has the sensitivity required to measure subtle alterations in haemodynamic parameters in 

zebrafish embryos. It also demonstrates that embryos at the earliest stages of 

development have the physiological processes necessary for alterations in 

haemodynamics. 

I found no significant difference at any of three points along the aorta in aortic blood 

velocity (figure 3.12) following the same L-NAME treatment performed above (P>0.05; 

proximal -NAME 1041±115, power 10.3%; mid aorta: 

-NAME 801 -NAME 

434±55; n=14-15 per group). This result suggests aortic blood velocity is not affected by 

decreased heart rate. It is possible that inhibition of vasodilatation by NOS inhibition 

limits the effect of decreased heart rate on aortic blood velocity, maintaining velocity via 

decreased luminal diameters in vessels. SNP treatment identical to heart rate studies also 

demonstrated no significant difference in aortic blood velocity (figure 3.13; P>0.05; 

proximal aorta: 

n=10/group). 

The novel Correlator software utilised in determining embryonic aortic blood velocity 

was compared to the technique of frame-frame cell tracking to determine correlation and 

disagreement between the techniques. Figure 3.14 demonstrates correlation between 

techniques which results in a slope of 0.84, suggesting a highly correlative association. 

A Bland-Altman disagreement plot (figure 3.15) of the same data demonstrates that 

percentage differences between techniques are as high as 50%, with a bias of 7.63.
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Figure 3.12 Effect of NOS inhibition on aortic blood velocity of wildtype 
embryos at 5dpf. 
NOS inhibition by [1mM] L-NAME treatment did not significantly effect 
aortic blood velocity (P>0.05) in any region of the aorta measured (proximal, 
mid, distal) in wildtype embryos at 5dpf compared to control siblings. 
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Figure 3.13 Effect of NO donor SNP on aortic blood velocity of wildtype 
embryos at 5dpf. 
Enhancement of NOS activity by [1mM] SNP treatment did not significantly 
effect aortic blood velocity (P>0.05) in any region of the aorta measured 
(proximal, mid, distal) in wildtype embryos at 5dpf compared to control. 
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Figure 3.14 Validation of correlator software through comparison with manual 
frame-frame cell tracking. 
Using data obtained from all 3 aortic areas of the aorta (proximal, mid, and distal) for 
wildtype fish at 5dpf (26 recordings) the Correlator software and frame-frame cell 
tracking were compared. The plot of identity, comparing methods with a slope of 
0.84±0.03 by linear regression, demonstrates a good correlation between techniques. 
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Figure 3.15 Bland-Altman disagreement plot identifying disagreement between 
correlator software and frame-frame cell tracking. 
Bland-Altman disagreement plot using the same data as figure 2.4. A bias of 7.63 
exists between the two methods. Crossed line=mean difference, dashed lines=95% 
confidence intervals. 
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3.3 Discussion 
 

3.3.1 gridlock Mutant Embryos Recover Aortic Blood Flow Distal to Occlusion Site 

Gridlock mutant zebrafish were identified by complete and permanent occlusion of the 

aorta at the bifurcation of the lateral dorsal aortae due to malformation during 

vasculogenesis (Peterson, Shaw et al., 2004). As they develop a minority of embryos 

undergo swelling of the yolk-sac; however all other vasculature is described as 

physiologically normal, including cranial vasculature. At the onset of circulation at 

approximately 36hpf, occlusion prevents all blood flow distal to it (Weinstein, Stemple 

et al., 1995). Despite this, adult mutants are homozygous viable. Viability has been 

credited to possible development of collateral vessels transporting blood around the site 

of occlusion to more distal parts of the aorta (Gray, Packham et al., 2007; Weinstein, 

Stemple et al., 1995). However, this hypothesis had not been investigated directly. Other 

possibilities, such as abnormal vessel patterning, may have explained survival of 

gridlock mutant zebrafish. To determine rates of recovery of aortic blood flow distal to 

occlusion in gridlock mutant embryos binary counts were performed from 2-5dpf (235 

embryos). 

Despite complete aortic occlusion in gridlock mutant embryos, recovery of aortic blood 

flow was observed between 3 and 5dpf, the last observed timepoint (figure 3.1). While 

no mutant embryo was observed with aortic blood flow at 2dpf; percentages of aortic 

blood flow increased thereafter. Almost one quarter of embryos at 3dpf demonstrated 

recovery of aortic blood flow. At 4dpf over half, and at 5dpf over 80%, of embryos had 

recovered aortic blood flow. The gradual increase in numbers of embryos demonstrating 

aortic blood flow from 3-5dpf could result from genetic variability between siblings of 

different parent pairs, or differences in haemodynamic parameters which are known to 

vary widely during the first days of embryonic development. For instance, greater 

cranial blood velocity in some embryos may result in greater FSS levels, a key stimulus 

for vascular remodelling. 

Percentages of aortic blood flow recovery do not continue to increase until all embryos 

recovery flow. Gridlock embryos are observed without aortic blood flow at 7dpf and 2.5 
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weeks (Weinstein, Stemple et al., 1995), suggesting not all gridlock recover aortic blood 

flow. Recovery of flow also appears critical for survival since only mutants with 

recovered flow survive to this later timepoint (Weinstein, Stemple et al., 1995) when 

diffusion is no longer sufficient for tissue oxygenation (Pelster and Burggren, 1996). 

The data therefore suggests occlusion in gridlock mutants is complete and permanent, 

with survival of mutants occurring through vascular remodelling transporting blood 

around occlusion. However, the data does not exclude the possibility of mutant survival 

resulting from abnormal vessel patterning during development transporting blood 

around occlusion. 

Exploiting gridlock mutant embryos provides an easy resource for determining blood 

flow recovery following occlusion. Occlusion is present from aortic formation 

(Peterson, Shaw et al., 2004) and embryonic optical clarity enables visualisation of 

blood vessels with light microscopy. Gridlock embryos would also therefore provide a 

means of rapid high-throughput screening of drugs (particularly small non-peptide 

molecules that diffuse into tissues) and genes (Chapters 5 and 6) for possible modulation 

of arteriogenesis. In contrast, there is presently no mammalian mutation resulting in 

complete and permanent occlusion of a major artery, and such mutation might prove 

embryonic lethal. Surgical intervention is thus required to induce occlusion. 

Determination of blood flow recovery is most common utilising indirect techniques such 

as Doppler ultrasound (Heil, Ziegelhoeffer et al., 2004), preventing direct observation. 

Zebrafish embryos therefore demonstrate advantages over mammalian models in 

determining recovery of blood flow after occlusion. 

 

3.3.2 Recovery of Aortic Blood Flow is Independent of Vasculogenesis and 

Angiogenesis 

To determine whether gridlock mutant survival resulted from abnormal vessel patterning 

during development transporting blood around occlusion I utilised embryos with the 

fli1:eGFP transgene to compare vasculogenesis and angiogenesis in wildtype and 

gridlock by laser-scanning confocal microscopy. By 5dpf de novo formation 

(vasculogenesis) of aorta and cardinal vein is complete (Isogai, Horiguchi et al., 2001). 
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Growth and remodelling of ECs (angiogenesis) for ISV, DLAV and SIV formation has 

also occurred, following a standard pattern (Isogai, Horiguchi et al., 2001). Any defect 

in patterning in gridlock compared to wildtype is thus easily observable. 

Gridlock embryos demonstrated normal patterning of aorta and cardinal vein when 

compared to wildtype embryos (figure 3.2), suggesting vasculogenesis is unaffected by 

hypomorphic hey2 mutation. Patterning of ISVs, DLAVs and SIVs was comparable 

between gridlock and wildtype embryos. ISV number demonstrated no difference. 

Normal development of communications between aorta, or cardinal vein, and SIVs was 

also observed in gridlock compared to wildtype embryos. The ISVs and SIVs form 

during angiogenesis, later than the aorta and cardinal vein (Isogai, Horiguchi et al., 

2001). These data demonstrate defective patterning during angiogenesis is not 

responsible for recovery of aortic blood flow in gridlock mutants. Further supporting 

this data, Hey2 deficient mice demonstrate no apparent abnormality in vasculogenesis or 

angiogenesis (Gessler, Knobeloch et al., 2002). Comparable vasculogenesis and 

angiogenesis in gridlock and wildtype embryos therefore demonstrates recovery of 

aortic blood flow in gridlock does not result from abnormal vessel patterning during 

development, and is independent of vasculogenesis and angiogenesis. It must be noted 

however that no histological techniques were performed to compare molecular 

characterisation of wildtype and gridlock embryos, and it therefore cannot be 

determined with certainty that gridlock vasculature is equivalent to wildtype 

vasculature. Such histology would provide valuable additional data. 

 

3.3.3 Pattern and Recovery of Aortic Blood Flow Distal to Occlusion Site is not a 

Phenotype of gridlock Mutation 

Angiograms generated by digital motion analysis (DMA) (Schwerte and Pelster, 2000) 

permitted determination of the origin of restored aortic blood flow in gridlock mutant 

embryos by determining the pattern of gridlock ‘collateral’ blood flow. In wildtype 

embryos (figure 3.3A) at 5dpf the majority of blood flow is transported along aorta and 

cardinal vein. Smaller volumes are carried by efferent ISVs transporting blood to 

cardinal vein, and afferent ISVs transporting blood from aorta. Only very small volumes 
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enter SIVs, from communications with the aorta. Blood flows in multiple directions 

within SIVs, reversing direction frequently. 

Gridlock mutant embryos recovered aortic blood flow in one of two ways (figure 3.3B 

and C). Almost 90% of gridlock embryos restored aortic blood flow via communications 

between aorta and SIVs, while the remainder restored blood to the aorta via reversal of 

flow in afferent ISVs. As can be seen from figure 3.3B and C, both means of recovering 

aortic blood flow distal to occlusion can occur within the same embryo at the same time. 

There is no apparent difference in recovery of aortic blood flow between the two means, 

which may suggest these vessels most susceptible to remodelling or endogenous factors 

such as vasoactivity. 

To demonstrate recovery of aortic blood flow in gridlock mutant embryos was not a 

phenotypic characteristic of the mutation, but a response to vascular occlusion 

observable in all embryos, I developed a means of occluding the proximal/mid aorta in 

wildtype embryos (figure 3.4) by focussed laser-energy. Previous studies demonstrated 

the feasibility of utilising focussed laser-energy to occlude the lateral dorsal aortae in 

early development (12hpf) (Serluca and Fishman, 2001; Serluca, Drummond et al., 

2002), however, after preliminary experimentation a later timepoint (4dpf) for aortic 

occlusion was found necessary. Earlier timepoints resulted in aortic rupture or fistula. 

Aortic ligation was not possible due to the practical difficulty of performing surgery in 

embryos of approximately 5mm total length at 4dpf. 

Embryos with laser-induced aortic occlusion were found to recover aortic blood flow 

distal to occlusion. Less than 10% of embryos were observed with small numbers of 

erythrocytes entering the aorta immediately after occlusion, which ceased within five 

minutes. A passive process resulting from sudden alterations in pressure between distal 

aorta and patent SIVs is proposed to account for this movement. Gridlock mutant 

embryos do not demonstrate similar movements of erythrocytes. Since gridlock 

occlusion is present from earliest aortic development (Peterson, Shaw et al., 2004) 

sudden pressure alterations might not be expected. Passive erythrocyte movement has 

not been observed in mammals with arterial ligation. Human arterial occlusion is 

generally gradual, allowing tissue time to adapt to altering pressure (Tang, Chang et al., 
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2005), while sudden pressure alterations induced by acute occlusion requires 

recruitment and morphogenesis of larger magnitudes of tissue (Buschmann, Voskuil et 

al., 2003) than in zebrafish embryos, as discussed below. 

The majority of wildtype occluded embryos were observed with recovery of aortic blood 

flow by 22h post occlusion (figure 3.5). Angiograms generated by DMA demonstrate 

close similarity in development of communications between gridlock and wildtype 

occluded embryos, as is observable in figures 3.3 and 3.6. Both gridlock and wildtype 

occluded embryos recover aortic blood flow distal to occlusion by flow of blood from 

SIVs to aorta via short length communications. Other embryos recovered aortic blood 

flow through reversal of flow in afferent ISVs, as was also observed in gridlock 

embryos. 

It can thus be concluded that recovery of aortic blood flow in gridlock mutant embryos 

is not a phenotypic response to hypomorphic hey2 mutation, but a response to vascular 

occlusion that can occur in all zebrafish embryos. The pattern of aortic blood flow 

recovery in gridlock and wildtype occluded embryos is similar, suggesting occlusion of 

proximal aorta leads to similar redistributions of intravascular pressure and blood flow 

that then leads to similar patterns of ‘collateral’ blood flow. Gridlock mutant embryos 

are therefore a robust model in which to observe recovery of aortic blood flow. 

Development of collateral blood flow in mammalian species after ligation surgery can 

occur over longer timepoints than is necessary for observation of aortic blood flow 

recovery in either wildtype occluded or gridlock zebrafish embryos. Following femoral 

artery ligation in mice 50% recovery of arterial blood flow is observed between three 

days and three weeks dependent on strain (Heil, Ziegelhoeffer et al., 2004), meaning 

with preparation, surgery and post mortem analysis a single experiment might take up to 

two months. Timepoints can increase further as model size increases because of the time 

required to generate the amount of new tissue necessary for morphogenesis of vessels in 

larger animals (Buschmann, Voskuil et al., 2003). Models of blood flow recovery in 

zebrafish embryos therefore provide a means of performing experiments more rapidly. 
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3.3.4 Recovery of Aortic Blood Flow Distal to Occlusion Site Occurs through Pre-

existing Arterial Communications 

It is widely accepted that arteriogenesis involves remodelling of pre-existing arterial 

communications into patent collateral vessels following arterial occlusion (Buschmann 

and Schaper, 1999). To provide further evidence that the mechanism of aortic blood 

flow recovery distal to occlusion was not vasculogenesis or angiogenesis, but rather 

arteriogenesis, double transgenic fli1:eGFP/gata1:dsRED wildtype embryos underwent 

laser-induced aortic occlusion (figure 3.7). Utilising double transgenic embryos with 

laser-scanning confocal microscopy provided a means of observing interactions between 

vasculature and blood temporally. Presence of pre-existing vessels prior to occlusion, 

and their recruitment following occlusion, would demonstrate independence from 

vasculogenesis and angiogenesis since both processes induce new vessel growth 

extending the vascular network (Isogai, Horiguchi et al., 2001). In vivo observation of 

endothelial communications pre- and post occlusion in the same animal is difficult in 

mammalian species (section 1.4). Although in vivo X-ray angiography is achievable, 

 not identified (Mills, Fischer et al., 

2000). Doppler ultrasound and MRI provide indirect evidence through demonstration of 

blood flow in the vessels (Wagner, Helisch et al., 2004). My experiment provides direct 

evidence of remodelling through recruitment of pre-existing vessels in arteriogenesis. It 

highlights one advantage of exploiting zebrafish embryos for such research. The pattern 

and recovery of aortic blood flow in zebrafish embryos following occlusion has already 

been discussed in section 3.3.3 and will therefore not be repeated here. Laser-induced 

aortic occlusion in transgenic embryos demonstrated existence of communications 

between aorta and SIVs prior to onset of occlusion. Observation of the same embryos 5h 

after occlusion demonstrated recovery of aortic blood flow through those same 

communications, suggesting ‘collateral’ blood flow develops through recruitment of 

pre-existing vessels, a key defining feature of arteriogenesis (Buschmann and Schaper, 

1999). 
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3.3.5 Different Time-course for Recovery of Aortic Blood Flow Distal to Occlusion 

in gridlock Mutants Compared to Laser-induced Occlusion of Wildtype Embryos 

Between 2dpf, when no gridlock mutant embryo is observed with aortic blood flow, and 

5dpf over 80% of gridlock embryos recover aortic blood flow distal to occlusion 

through recruitment of pre-existing vessels. A similar percentage (90.7%) of wildtype 

embryos having undergone laser-induced aortic occlusion recover aortic blood flow 

distal to occlusion after 22h through recruitment of pre-existing vessels. I hypothesise 

that the more rapid recovery of aortic blood flow distal to occlusion in wildtype 

occluded embryos results from higher levels of haemodynamic forces prior to occlusion 

compared to gridlock. Occlusions developed by focussed laser-injury must abruptly 

withstand levels of force developed under powerful fully-circulating blood flow rather 

than cranial-only circulation of gridlock mutants. Gridlock occlusion, permanent and 

present from earliest aortic development, must only withstand force developed by 

cranial circulation, which could be much lower than haemodynamic force of full 

circulation. In mammalian models, falls in FSS back to physiological pre-ligation levels 

after onset of collateral blood flow is seen as the cause of low-level conductance in 

collateral vessels (Eitenmuller, Volger et al., 2006). Artificially elevating levels of FSS 

results in significantly higher levels of conductance within collateral vessels in rabbit 

following femoral artery ligation (Eitenmuller, Volger et al., 2006), supporting the 

notion of higher haemodynamic force inducing recovery of aortic blood flow more 

rapidly than lower levels. 

Although collateral vessel development occurs at different rates dependent upon various 

factors including species, strain, and site of occlusion (Babiak, Schumm et al., 2004; 

Deindl, Buschmann et al., 2001; Pipp, Boehm et al., 2004; Heil, Ziegelhoeffer et al., 

2004) it appears to follow a standard plan (figure 1.2) in mammals (Heilmann, 

Beyersdorf et al., 2002). Occlusion results in differential gene expression, leading to 

release of growth factors, cytokines, and adhesion molecules (Scholz, Ito et al., 2000). 

Monocyte/macrophage activity has also been observed at this stage (Bergmann, Hoefer 

et al., 2006). Cell proliferation has yet to take place (Heilmann, Beyersdorf et al., 2002). 

It is likely that I am observing only the early stages of blood vessel remodelling, which 

may correspond to the phase immediately post-occlusion in mammals. Gene expression 
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profiling of embryos without haemodynamic force has demonstrated differential gene 

expression within 12h between these and physiologically normal embryos (Chapter 4). 

Genes differentially expressed included growth factors (VEGF), cytokines (SDF-1), and 

blood flow recovery has also been demonstrated with pu.1 knockdown resulting in 

significantly decreased percentages of gridlock with aortic flow recovery (Gray, 

Packham et al., 2007). In mammals, proliferation and migration of ECs and VSMCs 

then follows (Heilmann, Beyersdorf et al., 2002), before first recovery of blood flow 

(figure 1.2). I did not determine cell proliferation (for example, by BrdU labelling). It is 

presumed zebrafish aortic blood flow recovery can occur prior to cell proliferation, since 

recovery was observed as early as 3h post occlusion in wildtype occluded embryos, 

providing little time for proliferation and migration. 

 

3.3.6 The Effect of NOS Inhibition on Recovery of Aortic Blood Flow Distal to 

Occlusion 

Nitric oxide has been demonstrated to modulate collateral vessel formation in a wide 

range of species and models (Cai, Kocsis et al., 2004a; Lloyd, Yang et al., 2001; Yu, 

deMuinck et al., 2005). Genetic knockout (Mees, Wagner et al., 2007) and 

pharmacological inhibition (Lloyd, Yang et al., 2001) of NOS result in delayed 

collateral vessel remodelling following femoral artery ligation in mammals. eNOS 

expression has been demonstrated in zebrafish from 3dpf in cardiomyocytes, aorta and 

cardinal vein (Fritsche, Schwerte et al., 2000). To determine if zebrafish embryo 

‘collateral’ vessel remodelling shares NO modulation I determined the effect of 

pharmacological inhibition of all NOS isoforms by the non-specific inhibitor L-NAME. 

L-NAME has been previously reported to cause vasoconstriction in zebrafish embryos 

from 3dpf (Fritsche, Schwerte et al., 2000), demonstrating the early development of 

haemodynamic control, as well as the activity of L-NAME in zebrafish embryos. An 

advantage of zebrafish embryos over other models is the ability to apply small molecule 

inhibitors through media incubation and subsequent diffusion into embryos (Chico, 

Ingham et al., 2008). I was therefore able to assess the effect of NOS inhibition on 

recovery of aortic blood flow in gridlock mutant embryos, and wildtype embryos 
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undergoing laser-induced aortic occlusion. I was also able to assess the possible role of 

NO-mediated vasodilatation in ‘collateral’ vessel formation through NOS inhibition. 

Gridlock embryos were observed with only 57% of control levels of aortic blood flow 

recovery following L-NAME treatment from 1-5dpf (P<0.01; figure 3.8), suggesting 

that as in other species and models of vascular occlusion NO modulates ‘collateral’ 

vessel formation in zebrafish embryos following aortic occlusion. In further support of 

this notion, I assessed whether ‘collateral’ vessel remodelling of wildtype occluded 

embryos also shared NO modulation. At 22h, the last observation timepoint following 

laser-induced aortic occlusion, L-NAME treated embryos were observed with only 35% 

of control levels of aortic blood flow recovery (P<0.001; figure 3.9). This data provides 

further evidence to suggest that like other previously studied species NO modulates 

‘collateral’ vessel development in zebrafish embryos following aortic occlusion. 

 

3.3.7 NO Modulation of Embryonic Zebrafish Arteriogenesis does not Result from 

Modulation of Vasoactivity or Aortic Blood Velocity 

NO mediates vasodilatation and cardiac contractility. To determine whether the 

significant decreases in percentages of embryos recovering aortic blood flow following 

occlusion were mediated via these processes I first treated gridlock embryos with L-

NAME from 1-5dpf and followed it by washout for several hours. If inhibited 

vasodilatation was responsible for decreased percentages of blood flow recovery, L-

NAME washout would rapidly return percentages to control levels, since NO-mediated 

vasoactivity is responsive within minutes (Fritsche, Schwerte et al., 2000). Washout did 

not alter the percentage of aortic blood flow recovery following L-NAME treatment, 

suggesting inhibited NO-mediated vasodilatation does not cause decreased flow 

recovery. To confirm these results, I treated gridlock embryos for 5h at 5dpf. Again, if 

inhibited NO-mediated vasodilatation was responsible for decreased aortic blood flow 

recovery rates gridlock treated with L-NAME for 5h would decrease flow recovery. 

However, no decrease in flow recovery was observed. Therefore, it appears NO 

modulation of arteriogenesis in zebrafish embryos does not result from NO-mediated 

vasoactivity, concurring with mammalian data. Despite the volume of mammalian 

research linking NO to arteriogenesis little evidence suggests NO-mediated 
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vasodilatation is the primary modulatory role for NO in collateral vessel development, 

although some evidence demonstrates inhibited NO-mediated vasodilatation causing 

reduced blood flow in recruited collateral vessels of eNOS deficient mice (Yu, 

deMuinck et al., 2005). Transgenic mice overexpressing human eNOS are found with 

increased collateral blood flow immediately after femoral artery ligation; however this 

did not lead to any effect on arteriogenesis (Mees, Wagner et al., 2007). 

NOS inhibition has been shown to cause significant reductions in heart rate in mice 

(Jacobi, Sydow et al., 2005), demonstrating NO modulation of cardiac contractility. It is 

therefore possible that L-NAME inhibition of NOS in zebrafish embryos decreases 

percentage recovery of aortic blood flow following occlusion through modulation of 

cardiac contraction. Decreased heart rate may result in decreased blood flow, 

intravascular pressure, and FSS in remodelling communications resulting in decreased 

remodelling of those communications. Decreased stroke volume may also result in 

decreased blood velocity, because blood volume may be decreased. 

To determine if recovery of aortic blood flow following occlusion was influenced by 

NO modulation of cardiac contractility, heart rate and aortic blood velocity in wildtype 

L-NAME or SNP treated embryos were studied at 5dpf. L-NAME treatment resulted in 

heart rates of 86% of control rates (P<0.05; figure 3.10), thus concurring with 

mammalian data which demonstrated heart rate falls by half with L-NAME treatment 

(Jacobi, Sydow et al., 2005). This may suggest that decreased volumes of blood flow 

caused by falls in heart rate result in decreased percentages of embryos with aortic blood 

flow recovery. Treatment of sibling embryos with SNP led to no significant change in 

heart rate compared to untreated control sibling embryos (figure 3.11). SNP has 

previously been reported to have no significant affect on heart rate or stroke volume in 

zebrafish until 12dpf, utilising identical concentrations as I utilised (Pelster, Grillitsch et 

al., 2005). Human intracoronary injection of SNP resulted in increased heart rate 

compared to control (Parham, Bouhasin et al., 2004), as was also observed following 

intravenous administration in conscious dogs where heart rate was 88±20% of control 

(Pagani, Vatner et al., 1978). It thus appears that NO donation causes alterations in heart 
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rate in developed adult mammalian hearts, but does not affect heart rate of developing 

zebrafish embryos. 

To determine the effect of decreased heart rate on aortic blood velocity I developed a 

means of determining aortic blood velocity by calculating movement of erythrocytes 

with respect to time. Previously, it has been difficult to determine haemodynamic 

parameters in zebrafish embryos due to their small size preventing the use of techniques 

commonly performed in mammals. Aortic blood velocity has demonstrated significant 

reduction in the proximal aorta in a concentration dependent manner to MS-222 at 2dpf 

(Malone, Sciaky et al., 2007), demonstrating the technique has the sensitivity required to 

measure subtle alterations in haemodynamic parameters in zebrafish embryos. It also 

demonstrates that embryos at the earliest stages of development have the physiological 

processes necessary for controlling haemodynamics. Although correlation between the 

novel Correlator software and frame-frame cell tracking was demonstrated as positive 

with a slope of 0.84 (figure 3.14), a Bland-Altman disagreement plot (figure 3.15) 

demonstrated percentage differences of up to 50%. This suggests there is significant 

difference between the two techniques, perhaps in the measurement of outliers, and 

demonstrates the importance of determining such disagreement. 

L-NAME treatment did not result in significant alterations in aortic blood velocity 

compared to control siblings (figure 3.12) suggesting aortic blood velocity is not 

affected by decreased heart rate. It is possible that inhibition of vasodilatation by NOS 

inhibition limits the effect of decreased heart rate on aortic blood velocity, maintaining 

velocity via decreased vessel luminal diameters. It should be noted the power of this 

experiment was limited to 10.3% proximally, making it more difficult to identify 

changes in velocity. Erythrocyte numbers entering ISVs of 5 and 6dpf zebrafish 

embryos decrease significantly on L-NAME treatment, as a result of decreased vessel 

diameter (Fritsche, Schwerte et al., 2000). However, aortic blood velocity was not 

determined. L-NAME treatment did not affect non-ischaemic (physiologically normal) 

blood flow in rat muscles (Lloyd, Yang et al., 2001), while it has significantly reduced 

limb perfusion in mice (Jacobi, Sydow et al., 2005), perhaps suggesting measurement of 

different indices accounts for alternative results. Fritsche, Schwerte et al. also 
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demonstrated an increased erythrocyte passage with SNP treatment, resulting from 

increased vessel diameter. I found no significant difference in aortic blood velocity 

compared to control siblings with SNP treatment (figure 3.13; power 30.3% 

proximally). Transgenic eNOS overexpressing mice demonstrate increases in tissue 

perfusion only immediately after arterial ligation compared to wildtype animals (Mees, 

Wagner et al., 2007), described as resulting from maximal vasodilatation of vessels. 

Non-ischaemic hindlimb blood flow was unaffected by SNP injected in wildtype mice 

(Kumar, Branch et al., 2008). Thus, it appears SNP treatment does not induce changes 

in blood velocity. 

 

3.4 Limitations and Future Work 
 

3.4.1 Zebrafish Embryonic Arteriogenesis is observed at its Earliest Stages 

Although studying the remodelling of blood vessels into collateral vessels following 

occlusion in the very early zebrafish (1-5dpf) has resulted in the discovery that zebrafish 

undergo arteriogenesis, and has demonstrated the possibility that arteriogenesis in 

zebrafish embryos shares conservation with mammalian arteriogenesis, it is likely that 

only early stages of blood vessel remodelling are observed. Independent of model, 

mammalian arteriogenesis follows a standard plan (section 3.3.5; figure 1.2). At the 

earliest phases occlusion induces changes in gene expression and monocyte/macrophage 

activity (Heilmann, Beyersdorf et al., 2002), both processes observed in zebrafish 

embryos following aortic occlusion (Chapter 4 and Gray, Packham et al., 2007). Only 

after this first phase is cell proliferation and maturation observed. Zebrafish embryos 

have numerous advantages that make their exploitation in studying arteriogenesis an 

addition to the field. Of particular utilisation is embryonic optical transparency 

permitting easy observation of collateral vessel development, and gene knockdown by 

morpholino antisense oligonucleotides. Optical transparency decreases as embryos 

increase in size and develop greater amounts of pigmentation. Morpholinos remain 

active for only the first days of development. Thus, although research at later timepoints 

in zebrafish should be performed in order to further consolidate zebrafish and 
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mammalian arteriogenesis, zebrafish are best exploited at embryonic stages for this 

research. 

 

3.4.2 Binary Assay for Determining Aortic Blood Flow Distal to Occlusion Site may 

limit the Nature of Data Obtained 

To determine aortic blood flow recovery distal to occlusion a simple binary assay of 

presence or absence of aortic flow was utilised. The assay’s speed permits high-

throughput experimentation, and can be performed using simple light microscopy 

without needing to mount embryos. However, the assay prevents the determination of 

haemodynamic measurement such as aortic blood velocity. 

Techniques now exist to permit determination of haemodynamic performance. 

Experimentation to determine possible blood velocity changes in collateral vessels and 

aorta during remodelling would provide information on vascular performance during 

arteriogenesis in an in vivo model. However, the means of determining aortic velocity I 

have utilised requires a large sample size to result in any significant experimental power. 

Particle Image Velocimetry (PIV) could be utilised to similar effect, and would be able 

to determine velocity within an entire field, over multiple timepoints, resulting in two- 

and three-dimensional velocity maps of a vessel. 

 

3.4.3 Zebrafish Embryonic Collateral Vessels Lack Molecular Characterisation 

The research outlined within this chapter was performed to determine whether 

exploitation of zebrafish embryos could yield new models of arteriogenesis: remodelling 

of pre-existing communications following arterial occlusion. Having determined that 

pre-existing vessels do remodel following arterial occlusion, an important next step is to 

characterise the nature of collateral vessels further. To fully exploit these novel models 

of arteriogenesis, physiological and molecular characterisation of collateral vessels 

should be determined. In this way it would be possible to further determine whether 

arteriogenesis in zebrafish embryos is conserved with mammalian arteriogenesis, or 

whether the mechanisms are different yet share some degree of conservation (for 

example, response to NOS inhibition, as demonstrated). 
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Methods for physiological characterisation such as BrdU staining to determine cell 

proliferation, and molecular characterisation such as in situ hybridisation and Western 

blot analysis, are performed with ex vivo tissue or tissue samples, but may still yield 

novel data. Utilisation of ex vivo tissue contradicts a key advantage of exploiting 

zebrafish embryos for such research: that of an in vivo model system. In addition, the 

number of antibodies available for Western blot analysis in zebrafish remains small. 

 

3.5 Conclusion 
 
My data demonstrates that zebrafish embryos are able to undergo a process akin to 

arteriogenesis to perfuse the aorta with blood flow through pre-existing communications 

following aortic occlusion. I have demonstrated that the process is not a phenotypic 

response to gridlock mutation, but a response to vascular occlusion that can occur in 

wildtype embryos following laser-induced aortic occlusion. 

I have shown that like mammalian arteriogenesis, recovery of aortic blood flow distal to 

occlusion site in gridlock mutants and wildtype embryos having undergone laser-

induced aortic occlusion is modulated by NOS inhibition. I have also demonstrated that 

modulation by NOS inhibition is not a result of modulating vasoactivity or aortic blood 

velocity. 

In short, I have exploited the zebrafish embryo to develop two models, one high-

throughput (gridlock mutant embryos) and one low-throughput (laser-induced aortic 

occlusion of wildtype embryos) useful for the study of collateral vessel remodelling. 

With its many advantages, I believe using zebrafish embryos to study collateral vessel 

remodelling adds a complementary tool to mammalian models for further elucidating 

arteriogenesis. 
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Chapter 4: Role of Haemodynamic Force in Altering Gene 

Expression 
 
Having exploited zebrafish embryos to develop two models of arteriogenesis (Chapter 

3) I wanted to further exploit the advantages of zebrafish embryos to investigate the role 

of haemodynamic force in modulating gene expression. Many pro-arteriogenic genes are 

differentially expressed with altered levels of haemodynamic force (Schaper and Ito, 

1996). Development of collateral vessels is induced when ECs previously experiencing 

little or no haemodynamic force are exposed to the force. Gene expression following 

onset of cardiac contraction, with ECs suddenly exposed to haemodynamic force, may 

be analogous to collateral vessels suddenly exposed to haemodynamic force. Therefore, 

in this chapter I describe combining the advantages of zebrafish embryos with current 

microarray technology to identify candidate genes with the potential to modulate 

arteriogenesis, through comparing gene expression under physiological levels of 

haemodynamic force and its absence. 

 

4.1 Introduction 

 

4.1.1 Cardiac Contraction 

Myocytes are the contractile cells of the myocardium and are comprised of myofibrils, 

which are in turn constructed of myofilaments, constructed of sarcomeres (figure 4.1A). 

Sarcomeres consist of filaments of actin and myosin, which slide past one another 

during excitation-contraction coupling, leading to sarcomere shortening, myocyte 

shortening, and thus at the whole organ scale, muscle contraction. 

-helical strands of globular actin molecules. 

With tropomyosin and troponin molecules the actin filament forms a regulatory complex 

controlling binding of the myosin head to the filament. Between the two strands of the 

actin filament lies a rod shaped tropomyosin molecule, upon which binds troponin-T, -

C, and -I. 
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Figure 4.1 Anatomical and molecular composition of myocytes. 
A, Simplified diagram of myocyte anatomy demonstrating the different structures 
which comprise the myocyte. B, Actin-myosin association during cross-bridge 
formation. Troponin-T binds the rod-shaped tropomyosin molecule, while 
troponin-I inhibits the myosin head binding site of the F actin filament. Calcium 
ions bind to troponin-C to initiate the conformational change of the troponin 
complex which frees the myosin head binding site. 
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Troponin-T binds the tropomyosin molecule, while troponin-C serves as a binding site 

for free intracellular Ca2+, and troponin-I blocks the myosin ATP-dependent binding site 

on the actin filament (figure 4.1B) (Klabunde, 2005; Bers, 2002). At low [Ca2+]i myosin 

head binding sites on the actin filament are inhibited by tropomyosin’s positioning. 

 
4.1.2 Excitation-Contraction Coupling 

Upon myocyte depolarisation L-type calcium channels on the plasma (sarcolemma) 

membrane alter to an open conformation allowing influx of Ca2+ into myocytes. The 

influx leads to calcium-induced calcium release of Ca2+ within the sarcoplasmic 

reticulum (SR) through the activation of ryanodine receptors on the SR membrane 

(Davies, Blakeley et al., 2001). Free cytosolic Ca2+ binds troponin-C causing a 

conformational change that alters the position of tropomyosin against the actin filament, 

thereby exposing the myosin head binding site. ATP hydrolysis to ADP + Pi provides 

the energy necessary for a conformational change resulting in a ‘ratchet’ action of the 

myosin head, pulling the actin filament towards the centre of the sarcomere (Bers, 

2002), decreasing sarcomere length and resulting in muscle contraction when scaled up 

to the myocardial level. Ca2+ entry into myocyte cytoplasm slows, allowing uptake into 

SR by Ca2+-ATPases, sarcolemmal Na+/Ca2+ exchanger, and mitochondrial Ca2+ 

uniporter. This results in less free Ca2+ to bind troponin-C, and a reverse conformational 

change occurs so that tropomyosin competitively inhibits the myosin head binding site 

(Bers, 2002; Klabunde, 2005; Levy, 2005). 

 

4.1.3 Zebrafish silent heart Mutation 

The zebrafish mutant silent heart has been shown to result from reduced tnnt2 

expression caused by mutated protein sequence. Phenotypically, silent heart embryos 

present a non-contractile heart. During development, pericardial oedema forms, and the 

endocardial lining separates from the surrounding myocardium (Sehnert, Huq et al., 

2002). Death ensues by 7dpf (Sehnert, Huq et al., 2002). 
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4.1.4 Microarray Technology 

Microarrays allow quantitative assessment of target samples: be they cDNA, mRNA, 

protein, or tissue (Jayapal and Melendez, 2006). This section focuses on cDNA and 

oligonucleotide microarrays, utilising mRNA, since I wished to determine differential 

gene expression with altered haemodynamic force. These microarrays permit assessment 

of expression levels of thousands of genes in a single experiment, providing a means for 

assessing alterations in gene expression at the genome level (Affymetrix). Other 

techniques for determining gene expression such as Northern blots, in situ hybridisation, 

and reverse transcription PCR are unsuitable for multiple gene expression analysis 

(Jayapal and Melendez, 2006) since the number of genes analysed in one experiment is 

limited (Lockhart, Dong et al., 1996; McCormick, Eskin et al., 2001). Oligonucleotide 

microarrays (such as Affymetrix GeneChips) are versatile, sensitive and specific while 

providing standardisation and reproducibility (Jayapal and Melendez, 2006). These 

factors result from in situ oligonucleotide synthesis of probe sets defined by their ability 

to hybridise target genes (Jayapal and Melendez, 2006). Oligonucleotide design allows 

regions homologous to other genes to be avoided, thereby avoiding non-specific 

hybridisation (Gerhold, Rushmore et al., 1999). Oligonucleotide probes also remove 

requirement for maintaining cDNA clones necessary for cDNA microarrays (Gerhold, 

Rushmore et al., 1999). Oligonucleotide microarrays consist of numerous DNA 

sequence probes sets (11-20 probe pairs) synthesised to substrate at known locations 

(Liu, Milo et al., 2005). Each probe pair consists of perfect match and mismatch probes, 

in which a single base is made complimentary to a base on the perfect match probe (Liu, 

Milo et al., 2005). The slight alteration in probe sequence allows measurement of non-

specific hybridisation, which occurs when target mRNA sequences are not perfectly 

complimentary to probe (Liu, Milo et al., 2005). Probe sets are used in qualification and 

quantification of target binding, detected through fluorescent labelling of target RNA 

(Affymetrix). Specific detail regarding methodology for performing oligonucleotide 

(Affymetrix) microarrays can be found in section 2.8.4. Samples are hybridised 

separately on different chips utilising a single fluorescent label (Lockhart, Dong et al., 

1996). cDNA microarrays (Schena, Shalon et al., 1996), in contrast, label nucleotides 

before simultaneous hybridisation onto the same array (Lockhart, Dong et al., 1996). 
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Limitations to microarray technology include possible differences between mRNA and 

protein levels, cost, and requirement for skilled personnel (Jayapal and Melendez, 

2006). 

 

4.1.5 Influence of Laminar Flow on Gene Expression 

Haemodynamic force, comprising FSS, cyclic stretch and other less studied forces such 

as longitudinal stretch, influence gene expression (Schaper and Scholz, 2003), and many 

pro-arteriogenic genes are differentially expressed with altered levels of haemodynamic 

force (Schaper and Ito, 1996). Microarray analysis of HUVECs following 24h FSS 

exposure mimicking physiological laminar flow rheology of arteries demonstrated a 

significant downregulation of endothelin-1 (ET) and MCP-1, and upregulation in Tie-2 

and Jagged1 (McCormick, Eskin et al., 2001), genes known to have roles in vessel 

formation and remodelling. A sustained decrease in ET mRNA and peptide levels was 

also observed in bovine aortic ECs following FSS exposure compared to no flow 

cultures, which was maintained for several hours after the removal of FSS from the 

system (Malek, Greene et al., 1993), suggesting ET, MCP-1 and other genes 

differentially expressed are partially regulated by haemodynamic force. Similar analysis 

in human aortic ECs led to differential expression of 125 genes compared to no flow 

cultures. Genes upregulated included Notch4, VEGFR2, Tie-2, and vimentin, while those 

downregulated included Jagged1 (Chen, Li et al., 2001). Once more, these genes are 

noted for their involvement in controlling cardiac performance (e.g. VEGFR2 (Jacobi, 

Tam et al., 2004), or cell shape (e.g. vimentin), which necessarily undergo alteration 

during remodelling (Cai, Kocsis et al., 2004b). These studies provide evidence of EC 

gene expression under approximate physiological conditions (i.e. ECs under FSS), and 

therefore provide us with knowledge desirable in determining changes in gene 

expression under pathological conditions. Atherosclerotic plaques, for instance, develop 

at areas of turbulent rather than laminar flow conditions (Yoshizumi, Abe et al., 2003). 
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4.1.6 Influence of Turbulent Flow on Gene Expression 

Microarray analysis of HUVECs treated with turbulent rather than laminar flow for 24h 

resulted in gene expression closest to that of no flow cultures (Garcia-Cardena, 

Comander et al., 2001). HUVECs exposed to laminar flow demonstrated differential 

expression of 100 genes compared to HUVECs under turbulent flow of similar force 

(Garcia-Cardena, Comander et al., 2001). The results demonstrate the capacity of ECs to 

detect differences in flow patterns (Ohura, Yamamoto et al., 2003). Several cytoskeletal 

elements including vimentin demonstrated significant upregulation with laminar flow 

compared to no flow cultures, supporting the hypothesis that active remodelling of 

cytoskeletal elements takes place when ECs are exposed to FSS (Garcia-Cardena, 

Comander et al., 2001). Similar experiments were performed to observe the affect of 

turbulent flow on pig aortic ECs compared to laminar flow. The aortic ECs 

demonstrated significant upregulation of vascular specific genes such as the ET 

precursor preproendothelin with turbulent flow (Himburg, Dowd et al., 2007), 

concurring with previous studies that demonstrate a downregulation in ET in conditions 

of laminar flow (Malek, Greene et al., 1993), and suggesting a flow-related regulation of 

ET. MCP-1 follows a similar pattern of expression. Laminar flow demonstrated 

downregulation (Malek, Greene et al., 1993), while turbulent flow led to upregulation 

(Himburg, Dowd et al., 2007). Also significantly upregulated under turbulent flow was 

PCNA, proliferating cell nuclear antigen, a gene expressed during cell proliferation, 

suggesting turbulent flow induces proliferation. 

 

4.1.7 Influence of Haemodynamic Force on EC-VSMC Interactions 

The vasculature is not formed of ECs in isolation. ECs are physically close to, and 

interact with, other cell types, particularly VSMCs and pericytes. It is thus important to 

observe the influence of haemodynamic force on EC-VSMC interaction. 

A co-culture of human aortic ECs and human aortic VSMCs was submitted to 4h or 24h 

FSS. The two cell populations were then separated, and underwent microarray analysis 

independently (Heydarkhan-Hagvall, Chien et al., 2006). ECs demonstrated differential 

expression of nearly 700 genes following 4h FSS, this number falling to approximately 

300 after 24h FSS (Heydarkhan-Hagvall, Chien et al., 2006); providing further evidence 
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of the temporal nature of gene expression under the influence of FSS. Following 24h 

FSS in VSMCs, 200 genes were differentially expressed. Of most interest, 20 genes 

were upregulated and 36 downregulated in both ECs and VSMCs at the 24h timepoint 

(Heydarkhan-Hagvall, Chien et al., 2006) demonstrating the importance of considering 

EC-VSMC interaction. For instance co-culture resulted in increased expression of MCP-

1 compared to EC monoculture when determined by RT-PCR (Chiu, Chen et al., 2004). 

On addition of FSS to co-cultured cells, altered gene expression was lost, perhaps 

suggesting an atheroprotective role for FSS in downregulating expression of 

pathological genes induced by EC-VSMC interactions. 

 

4.1.8 Influence of Cyclic Stretch on Gene Expression 

Stretch of VSMCs cultured on deformable substrate has demonstrated regulation of 

proliferation, migration and apoptosis of cells, as well as ECM breakdown (Haga, Li et 

al., 2007) by mechanical force. It has been suggested that the influence of cyclic stretch 

on gene expression is of greater importance than FSS, since it has a force two orders of 

magnitude higher (Heil and Schaper, 2004). VSMCs mechanically deformed with low 

levels of stretch resulted in three of 5000 possible genes upregulated and 13 

downregulated two-fold (Feng, Yang et al., 1999). MMP1 demonstrated significant 

downregulation, perhaps in order to inhibit breakdown of ECM required to withstand 

stretch. HUVECs under cyclic stretch upregulate expression of MCP-1 mRNA and 

protein (Demicheva, Hecker et al., 2008). In contrast, increased FSS had no effect on 

MCP-1 expression, although ECs adapted to low FSS demonstrate significant MCP-1 

downregulation with increasing FSS levels (Demicheva, Hecker et al., 2008). A further 

study demonstrated differential expression of 11 of 4000 genes arrayed in HUVECs 

under conditions of cyclic stretch (Frye, Yee et al., 2005), suggesting cyclic stretch is 

not an important gene expression regulator in ECs or that stretch induces a highly 

specific gene set. Some genes (heat shock proteins 10, 47, and ) upregulated were 

linked to oxidative stress. One,  stimulating proliferation, has been associated with 

arteriogenesis (Van Royen, Piek et al., 2001b).  
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4.1.9 Studying Modulation of Gene Expression by Haemodynamic Force in vivo 

Despite attempts to more closely mimic in vivo physiology, such as the co-culture of 

ECs and VSMCs (Heydarkhan-Hagvall, Chien et al., 2006), studies to determine the 

modulation of gene expression by haemodynamic force and alterations in 

haemodynamic force have been performed in vitro utilising cell culture flow assays. It is 

difficult to extrapolate in vitro studies to the in vivo situation, since more complex 

interactions occur including interactions with non-vascular cell-types (Clayton, 

Chalothorn et al., 2008). Likewise, arteriogenesis requires the cooperation of vascular 

and non-vascular cell-types (Heilmann, Beyersdorf et al., 2002) as well as endogenous 

modulation (Lloyd, Yang et al., 2001), and therefore the study of haemodynamic force 

and its relationship to arteriogenesis is best studied in an in vivo setting. Furthermore, 

while effects of FSS or cyclic stretch have been studied independently, in vivo many 

haemodynamic forces interact simultaneously. 

It is difficult to modulate haemodynamic performance in mammalian models for in vivo 

microarray analysis. Surgery induces inflammation and necrosis. Manipulation of blood 

flow can induce ischaemia, which itself alters gene expression (Flamant, Toffoli et al., 

2009), and to which arteriogenesis has been demonstrated to be independent (Heil, 

Eitenmuller et al., 2006). One study set out to determine gene expression profiles in an 

active area of collateral vessel growth following femoral artery ligation in mice 

compared to sham operated animals (Lee, Stabile et al., 2004). 783 genes demonstrated 

at least two-fold change in expression in ligated animals compared to sham controls at 

one or more of five timepoints ranging from six hours to 14 days. Genes with known 

roles in arteriogenesis such as MCP-1 and  were upregulated in ligated animals, 

however the largest functional group of genes identified with significant differential 

gene expression were those involved in inflammation. The zebrafish embryo does not 

suffer hypoxia under standard incubation conditions (Schwerte, Uberbacher et al., 2003) 

prior to 14dpf even in the absence of blood flow (Pelster and Burggren, 1996). Necrosis 

and inflammation are rarely observed in gene knockdown through MO injection 

(Summerton and Weller, 1997), the technique I employed. Furthermore, the advantages 

of the model can be exploited to more rapidly elucidate the role of candidate genes in 

modulation of arteriogenesis than can occur with mammalian models. 



132 
 

4.2 Results 
 

4.2.1 Embryonic Development is Unaffected by tnnt2 Knockdown 

Wildtype embryos were injected with tnnt2 or standard control MO at the 1-4 cell stage 

and observed microscopically for cardiac contraction at 30hpf, allowing time for any 

contraction to initiate. In wildtype embryos, contraction begins at approximately 26hpf 

(Chen, Haffter et al., 1996). Contraction was not observed in the vast majority of tnnt2 

morphants (approximately 95% of morphants over the course of experimentation). tnnt2 

morphants with contraction were removed prior to RNA extraction. All control 

morphants were observed with contraction and blood flow. tnnt2 morphants developed 

normally, dechorionating without mechanical aid from 48hpf like control morphants. 

They responded to touch stimuli, demonstrating non-cardiac muscle to be unaffected by 

tnnt2 knockdown. However, by 60hpf tnnt2 morphants developed pericardial oedema, 

as reported by Sehnert, Huq et al. (2002). 

 

4.2.2 Vasculogenesis and Angiogenesis are Unaffected by tnnt2 Knockdown 

In order to demonstrate whether vasculogenesis and angiogenesis occurred comparably 

to standard control MO injected sibling embryos under conditions of absent blood flow 

(tnnt2 morphant embryos), I performed laser-scanning confocal microscopy of 

fli1:eGFP embryos injected with tnnt2/control MO at 60hpf, the latest timepoint at 

which the microarray analysis was performed. 

Vasculature of approximately 20 morphants per group was observed under fluorescence 

stereomicroscopy and representative morphants (2 per group) randomly chosen for 

confocal microscopy. Figure 4.2 demonstrates representative lateral views of morphant 

embryonic vasculature. All tnnt2 morphants demonstrated normal patterning and 

formation of aorta and cardinal vein compared to control morphants. As reported in 

previous chapters, aorta and cardinal vein develop de novo during vasculogenesis by in 

situ differentiation of angioblasts during the first 24hpf (Isogai, Horiguchi et al., 2001). 

Their normal patterning and formation in tnnt2 morphants suggests vasculogenesis is 

not affected by tnnt2 knockdown in zebrafish embryos.  
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Figure 4.2 Laser-scanning confocal microscopy of fli1:eGFP transgenic 
embryos at 60hpf injected with tnnt2/control MO. 
Lateral view of a representative fli1:eGFP transgenic embryo at 60hpf injected 
with control (A) or tnnt2 (B) MO. Absent blood flow does not affect 
vasculogenesis or angiogenesis. Yolk-sac swelling can be just determined in tnnt2 
morphants. At=aorta, V=cardinal vein, VP=venous plexus, ISV=intersegmental 
vessels, DLAV=dorsal longitudinal anastomotic vessels, Y=yolk-sac. A and B 
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These vessels in tnnt2 morphants appeared collapsed, presumably due to absence of 

blood flow. tnnt2 morphants demonstrated normal patterning and number of ISVs. 

DLAVs and SIVs also developed normally when compared to control morphants. ISVs, 

DLAVs, and SIVs develop after aorta and cardinal vein by growth and remodelling of 

these vessels in angiogenesis (Isogai, Horiguchi et al., 2001). Normal development of 

vessels formed during angiogenesis suggest the process is unaffected by tnnt2 

knockdown. 

 

4.2.3 Absent Blood Flow Results in Differential Gene Expression Profiles During 

Early Development 

The microarray was designed to demonstrate alterations in gene expression that may 

occur with changes in haemodynamic forces since this is a stimulus of arteriogenesis. In 

order to determine the effect of absent blood flow, and therefore absent haemodynamic 

force, on gene expression during early embryonic development in vivo a total of 18 

Affymetrix GeneChip Zebrafish Genome arrays were utilised. The chips corresponded 

to 18 groups of 100-130 age-matched tnnt2/control MO injected wildtype embryos. 

Total RNA was extracted with Trizol (Sigma, Poole, UK) at three timepoints: 36, 48, 

and 60hpf. These timepoints were chosen since they represent the first 2.5 days during 

which blood circulates vasculature in wildtype embryos (Isogai, Horiguchi et al., 2001). 

Although a timepoint prior to onset of circulation may have been beneficial to 

demonstrate gene expression of tnnt2 mutants was comparable to wildtype embryos, the 

aim of the microarray was to observe the effect on gene expression of changes in 

haemodynamic forces, since this results in induction of arteriogenesis. Prior to RNA 

extraction at 36hpf, all embryos underwent manual dechorionation with Dumont #4 

tweezers (WPI, Florida, USA), since natural dechorionation had yet to occur. Embryos 

injured during dechorionation were excluded. At 48 and 60hpf morphants that had not 

yet naturally dechorionated underwent manual dechorionation. At each timepoint RNA 

was extracted from three replicate groups of tnnt2 or control morphants. Each tnnt2 

replicate group was matched to control derived from the same parent pair, with equal 

numbers of morphants in groups. RNA cleanup was performed with Qiagen RNeasy 

Mini Kit, and resulting RNA quantified and quality assessed by NanoDrop. Samples 
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with purity (Ab260/Ab280) of 1.8-2.0 were used in microarray analysis. To prevent 

degradation, RNA extraction was performed on ice (4°C) and protective equipment 

worn. On completion, RNA was immediately stored at -80°C. RNA was quality 

assessed again immediately prior to generation of cDNA, the first step of gene 

expression analysis (section 2.8.4.1), and at appropriate points during analysis. 

Data was analysed by probabilistic model performing probe-level analysis (Liu, Milo et 

al., 2005; Sanguinetti, Milo et al., 2005). A cut-off of a two-fold change in gene 

expression with 80% probability was used to identify a list of candidate genes with 

differential expression between control/tnnt2 morphants. Candidate genes were 

clustered using GeneSpring GX (version 7.3.1, Agilent Technologies), and Gene Cluster 

3.0 (de Hoon, Imoto et al., 2002) and Treeview 1.6 software (Eisen, 2002). Protein 

Analysis Through Evolutionary Relationships (PANTHER) gene ontology (Thomas, 

Campbell et al., 2003) classified genes into groups based on biological process, and was 

used to determine fractional difference of tnnt2 compared to control. The number of 

differentially expressed genes in each biological process against the total number of 

genes (differentially + undifferentially expressed) categorised to each process: (number 

of genes observed in biological process – number of genes expected in biological 

process)/number of genes expected in biological process. 

Experiments conformed to the Minimum Information About a Microarray Experiment 

(MIAME) proposal (Brazma, Hingamp et al., 2001), which seeks to define the minimum 

information required to ensure data is easily interpretable. The data has been deposited 

in the Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ Accession 

GSM207470 and will be freely available following publication of the data. Pubmed 

literature searches (www.pubmed.gov) were performed to identify genes of interest. 

Replicate gene array chips for both control and tnnt2 demonstrated a low degree of 

variability (figure 4.3). Variability was improved by normalisation (figure 4.4). Both 

control and tnnt2 demonstrated a trend of increasing total gene expression from 36-

48hpf, followed by a decrease from 48-60hpf (figure 4.5). 

http://www.ncbi.nlm.nih.gov/geo/
http://www.pubmed.gov)
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290 genes were differentially expressed by the parameters. 166 genes had a significant 

decrease in gene expression ratio in tnnt2 compared to control (1.1% of total genes on 

chip). 124 genes had a significant increase in gene expression ratio in tnnt2 (0.8% of 

total genes on chip) compared to control (figure 4.6). Seven, encoding genes of 

metabolism such as the cytochrome P450 system (CYP26B1) had expression ratios 

which increased and decreased in tnnt2 compared to control. This may result from 

presence of different gene isoforms on the GeneChip. Figures 4.7 and 4.8 demonstrate 

diagrammatically changes in gene expression over the three timepoints in tnnt2 

morphants compared to control. 

The majority of genes (71.4%) with decreased expression ratios in tnnt2 compared to 

control were observed at 48hpf and included genes linked to developmental patterning 

(ephrinB1/EFNB1) (Frisen, Holmberg et al., 1999) and those of myeloid lineage 

(SPI1/PU.1). As well as its involvement in cell fate during patterning, ephrinB1 also 

modulates vessel development during angiogenesis (Adams, Wilkinson et al., 1999), a 

process part driven by haemodynamic force (Carmeliet, 2000). EphrinB1’s decreased 

expression in absent blood flow concurs with data from the related ligand ephrinB2, 

which demonstrates decreased mRNA and protein levels with falls in blood flow 

induced by ligation of the chick vitelline artery (le Noble, Moyon et al., 2004). SPI1 is a 

myeloid-specific transcription factor which plays an important role in monocyte 

development (Lieschke, Oates et al., 2002). Monocytes are directed to sites of injury by 

a series of processes induced by altered haemodynamic force (Heilmann, Beyersdorf et 

al., 2002), and thus a decreased SPI1 expression might be expected in conditions of 

absent force. 37 genes (18.9%) demonstrated decreased expression ratios at the earliest 

timepoint of 36hpf. These genes included adrenoceptors such as adrenoceptor 2B 

(ADRA2B), 2C and 2Da, as well as endothelin receptor B (EDNRB).  

Their decreased expression might suggest absent haemodynamic force limits expression, 

since there would be less requirement for vascular control compared to control siblings. 

ENDRB is expressed on ECs and VSMCs (Murakoshi, Miyauchi et al., 2002; Bagnall, 

Kelland et al., 2006), the latter responding to cyclic stretch induced by blood flow.  
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Figure 4.5 Total gene expression levels of control and tnnt2 over time. 
In both control and tnnt2 groups, a trend of increasing total gene expression is 
demonstrated from 36-48hpf, followed by a decrease from 48-60hpf. 
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Concurring with my data, onset of cyclic stretch induced significant upregulation of 

EDNRB mRNA (Cattaruzza, Dimigen et al., 2000). The smallest number of genes (19 

of 166) with decreased expression ratios was observed at 60hpf, including rhodopsin 

(RHO), a molecule important in light perception. A very small number of genes 

demonstrated decreased expression ratios at more than one timepoint, including 

adrenoceptor 2Da differentially expressed at 36 and 48hpf. The sustained depression in 

expression of these genes may highlight the importance of their relationship with 

haemodynamic force. No genes demonstrated decreased expression ratios at all three 

timepoints. 

Of genes with increased expression ratios in tnnt2 compared to control, the majority 

were observed at 60hpf (91 of 124). This group included VEGF, whose receptors are 

specific to ECs and monocytes/macrophages (Hiratsuka, Minowa et al., 1998), cell 

types involved in vessel remodelling following alterations in haemodynamic force. 

Indeed, VEGF induces vessel growth following alterations in haemodynamic force 

(Babiak, Schumm et al., 2004). VEGF upregulation predominantly occurs through 

binding of HIF-1 to the VEGF promoter (Forsythe, Jiang et al., 1996) under hypoxic 

conditions. However, HIF-1, and other hypoxia-induced genes such as lactate 

dehydrogenase A (Deindl, Buschmann et al., 2001) did not demonstrate differential 

expression in tnnt2 despite their presence on the GeneChip, suggesting increased VEGF 

expression in this microarray is not in response to hypoxia. 

22 genes (17.4%) demonstrated increased expression ratios at 36hpf, including plastin 1 

(PLS1). At 48hpf the same number of genes demonstrated increased expression ratios. 

These included CXCR4a, the receptor for stromal-cell derived factor-1 (SDF-1), 

expressed on macrophages (Jin, Shido et al., 2006). It has been demonstrated that 

CXCR4+ cells induce neovascularisation following MI in mice (Morimoto, Takahashi et 

al., 2007), again linking monocytes/macrophages with haemodynamic force and 

subsequent vessel remodelling. Very small numbers of genes demonstrated increased 

expression ratios at two or all three timepoints. 
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Figure 4.6 Venn diagram of differential gene expression in tnnt2 compared to 
control groups. 
Genes were classed as differentially expressed if there was -fold difference in 
expression between tnnt2 and control with 
figure represent examples differentially expressed in that group. In total 290 genes 
were differentially expressed. 166 (red circle) demonstrated a decrease in 
expression ratio in tnnt2 compared to control including CXCR4a and natriuretic 
peptide precursor A (NPPA). 124 demonstrated an increase (green circle) 
including adrenoceptor 2B (ADRA2B), endothelin receptor B (EDNRB) and SPI1. 
7 genes demonstrated both increased and decreased expression ratios. These 
encoded genes of general metabolism such as the cytochrome P450 system 
(CYP26B1) and eukaryote translation initiation factor (EIF4E1B). 
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Figure 4.7 Venn diagram demonstrating temporal nature of genes with 
decreased expression ratio in tnnt2 compared to control. 
The numbers in the figure represent numbers of genes differentially expressed. 
The majority of genes with decreased expression ratios in tnnt2 compared to 
control occurred at 48hpf. These included CCAAT/enhancer binding protein 
(CEBP1), ephrinb1 (EFNB1) and SPI1. Smaller numbers of genes had decreased 
expression rations at 36h, including adrenoceptors (ADRA2B) and endothelin 
receptor B (EDNRB). 19 genes demonstrated decreased expression ratios at 60hpf, 
including rhodopsin (RHO). Small numbers of genes were identified with 
differential expression at more that one timepoint. Of these, the most interesting 
shared differential expression at 36 and 48hpf, including adrenoceptors 
(ADRA2Da) and hairy and enhancer of split 7 (HER7). No genes demonstrated 
decreased differential expression at all three timepoints. 
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Figure 4.8 Venn diagram demonstrating temporal nature of genes with 
increased expression ratio in tnnt2 compared to control. 
The numbers in the figure represent numbers of genes differentially expressed. 
The majority of genes with increased expression ratios in tnnt2 compared to 
control occurred at 60hpf, and included natriuretic peptide precursor A (NPPA) 
and VEGF. At 36hpf 22 genes demonstrated increased expression ratios, including 
plastin 1 (PLS1). 22 genes also had increased expression ratios at 48hpf. These 
included CXCR4a. Very small numbers of genes demonstrated differential 
expression at more than one timepoint. Many, such as insulin induced gene 1 
(INSIG1) and signal transduction and activation of transcription 1 (STAT1) 
differentially expressed at both 36 and 60hpf represent genes of metabolism. 2 
genes were also identified with increased expression ratios at all three timepoints: 
a cytochrome P450 family member (CYP51), and fatty acid desaturase 2 (FADS2). 
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Genes in these groups were associated with growth and metabolism, such as CYP51, 

part of the cytochrome P450 system. 

 

4.2.4 Analysis of Differentially Expressed Genes 
 

4.2.4.1 Classification of Differentially Expressed Genes by Gene Ontology 

Protein Analysis Through Evolutionary Relationships (PANTHER) gene ontology 

(Thomas, Campbell et al., 2003) enables classification of genes into groups based on 

their molecular function, involvement in biological processes, or the cellular 

components they are associated with by utilising published evidence and prediction 

based upon evolutionary relationships. I first determined which biological process (for 

instance signal transduction or visual perception) each gene belonged. This allowed me 

to identify which biological processes were most affected by differential gene 

expression of tnnt2 compared to control at each timepoint. Figure 4.9 demonstrates 

graphically the number of named differentially expressed genes assigned to each 

biological process at each timepoint. 

At 36hpf a small number of genes are seen to be differentially expressed (37 with 

decreased expression, 22 with increased expression in tnnt2). These genes represent the 

majority of biological processes, although no gene represents either apoptosis or antigen 

presentation, suggesting tnnt2 knockdown has not affected general development since 

cellular apoptosis has not been induced. At 48hpf all biological processes are 

represented. The largest numbers of genes are observed with decreased expression and 

represent signal transduction, protein transcription/translation, and morphogenesis. At 

60hpf the biological processes with highest numbers of differentially expressed genes 

have increased expression in tnnt2 compared to control, and represent the processes with 

decreased gene expression at 48hpf. At 48 and 60hpf the number of differentially 

expressed genes representing apoptosis and antigen presentation remain very low 

(apoptosis: total of 2 differentially expressed genes at both timepoints; antigen 

presentation: 4). 
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Figure 4.9 Gene ontology provides data describing the biological processes of 
differentially expressed genes. 
A graphical representation of the number of genes with increased and decreased 
expression following tnnt2 knockdown compared to control MO knockdown at 36, 
48, and 60hpf. 
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Over the three timepoints the largest groups of genes represent signal transduction, 

protein transcription/translation and morphogenesis, resulting in part from these 

processes high representation at 48hpf. 

Gene ontology can also be utilised to determine whether numbers of differentially 

expressed genes from a specific biological process is an under- or over-representation of 

the number expected, the fractional difference. Fractional difference increases with the 

number of genes from a specific process differentially expressed compared to the total 

number of genes in that process (for example, the total number of genes in a process 

listed on the GeneChip). Fractional difference was determined at each timepoint (figure 

4.10 and figure 4.17 in the appendix at end of this chapter) by comparing the number of 

differentially expressed genes in each biological process against the total number of 

genes (differentially + undifferentially expressed) categorised to each process: (number 

of genes observed in biological process – number of genes expected in biological 

process)/number of genes expected in biological process. Positive fractional differences 

therefore demonstrate over-representation of genes in a biological process, while 

negative fractional differences demonstrate under-representation. Over the three 

timepoints eight biological processes demonstrated significant under- or over-

representation (P -

representation of cholesterol metabolism and steroid metabolism at 36 and 48hpf. Over-

representation might suggest a failure for tnnt2 embryos to metabolise cholesterol and 

steroids required during physiology, and could contribute to the cardiac failure observed 

at 60hpf. There was a significant under-representation of cell proliferation and 

differentiation at 48hpf and cell cycle at 60hpf. This under-representation might suggest 

a reduced embryonic growth of tnnt2 morphants at later timepoints, although no visible 

manifestation has been observed of decreased proliferation in this study (particularly 

regarding the vasculature, section 4.2.2) or by Sehnert, Huq et al. (2002). Of most 

interest may be significant over-representation of genes classified to G-protein mediated 

signalling at 48hpf, a process which includes vasoregulatory genes such as EDNRB. 

Evidence suggests zebrafish embryos respond to decreased haemodynamic force by 

vasoconstriction even at this early developmental stage (Pelster, Grillitsch et al., 2005).  
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Figure 4.10 Fractional difference demonstrates under- and over-
representation of differentially expressed genes. 
Selected regions of a graph of log fractional difference, demonstrating biological 
processes with significant under- or over-representation of differentially expressed 
genes, including statistical significance. Blue columns represent differentially 
expressed genes at 36hpf, green at 48hpf, and red at 60hpf. * = P<0.05, Binomial 
statistical test. 
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Significant over-representation might thus suggest an attempt to control falls in 

haemodynamic force in tnnt2 morphants through vasoconstriction. 

A series of interesting biological processes demonstrated increased but non-significant 

over-representation. Blood circulation, blood clotting, macrophage-mediated immunity, 

and regulation of vasoconstriction all demonstrated non-significant over-representation. 

Over-representation of genes classified to blood circulation (cytoglobin, NPPA) and 

blood clotting (coagulation factor IX, thrombospondin 3) is conceivably directly related 

to absent cardiac contraction and blood pooling which results in tnnt2 morphants, and is 

thus caused by tnnt2 knockdown and not by absence of haemodynamic force. Over-

representation of macrophage-mediated immunity might result from induction of altered 

haemodynamic force in tnnt2 morphants mirroring conditions inducing vessel 

remodelling (Heilmann, Beyersdorf et al., 2002). As discussed in the previous paragraph 

(in discussing G-protein mediated signalling), over-representation of genes classified to 

regulation of vasoconstriction might occur in tnnt2 morphants in an attempt to raise low 

haemodynamic force by vasoconstriction. 

 

4.2.4.2 Clustering of Differentially Expressed Genes 

Clustering of differentially expressed genes provides data on similarities in expression 

over time. Genes demonstrating differentially increased or decreased expression in tnnt2 

morphant GeneChips compared to control were hierarchically clustered into gene trees 

in order to demonstrate similarity of gene expression pattern over time. Gene trees are 

illustrated in figure 4.11 (genes with decreased expression in tnnt2 morphant GeneChips 

compared to control) and 4.13 (genes with increased expression in tnnt2 compared to 

control). Figure 4.12 illustrates isolated branches of the gene tree for genes with 

decreased expression in tnnt2 compared to control. The branch in figure 4.12A contains 

four genes involved in modulation of vasculature, three adrenergic receptors (2B, 2C, 

and 2Da), and EDNRB. As discussed in section 4.2.3, these genes are involved in 

vasoregulation. Their decreased expression with absent haemodynamic force might 

suggest less control of vasoactivity it required with reduced blood flow. The cluster in 

figure 4.12A also contains angiopoietin-like 2b (ANGPTL2B). 
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Figure 4.11 Tree of hierarchically clustered genes 
with differentially decreased expression in tnnt2 
GeneChips. 
Hierarchical clustering into gene trees permits 
demonstration of similarity of gene expression over 
time. Here, clustering enables similarity of genes with 
decreased expression in tnnt2 versus control to be 
compared. 
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Figure 4.12 Hierarchical clustering provides information on similarity of gene expression over time. 
Figures A-C represent branches of the tree of genes with significantly decreased expression in tnnt2 
GeneChips compared to control in figure 4.11. For instance, A, demonstrates similar clustering and thus gene 
expression of several vasoactive genes including adrenoceptors and EDNRB. 
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ANGPTL2B is expressed in skeletal muscle and heart, as well as other tissues such as 

intestine (Hato, Tabata et al., 2008), and has been shown to induce sprouts in porcine 

pulmonary arterial ECs, suggesting a role in angiogenesis (Kim, Moon et al., 1999), a 

process modulated by haemodynamic force as related elsewhere. Gene knockdown in 

zebrafish embryos resulted in death at 72hpf due to pericardial effusion (Kubota, Oike et 

al., 2005). When knocked down in combination with angiopoietin-like 1, ISVs and 

DLAVs failed to form, suggesting they act in concert to inhibit angiogenesis (Kubota, 

Oike et al., 2005). The genes contained within the branch in Figure 4.12B demonstrate 

decreased expression patterns in tnnt2 morphant GeneChips compared to control chips 

primarily at 48hpf. Genes within this branch include EFNB1 and SPI1. The role of these 

genes and their relationships to haemodynamic force have been discussed in section 

4.3.2, and thus will not be repeated here. 

Figure 4.12C presents a branch with very different patterns of gene expression between 

groups. The genes in this branch demonstrate little expression at 36 or 60hpf in either 

tnnt2 or control GeneChips. At 48hpf, gene expression in tnnt2 remains very low in 

comparison to control gene expression. Genes include 2b (platelet GPIIb). 

Integrins are cell surface receptors capable of cell-ECM attachment and signalling, with 

evidence linking integrin function to induction of angiogenesis through expression on 

platelets and bone-marrow derived cells (Feng, McCabe et al., 2008). For instance, 

2b 3 led to 35% reduction in angiogenesis in mice (Rhee, 

Black et al., 2004), while murine V 3 knockout enhanced angiogenesis (Reynolds, 

Wyder et al., 2002), suggesting a complex role for integrins in vessel remodelling. 

Figure 4.14A illustrates a branch of the gene tree for genes with differentially increased 

expression in tnnt2 GeneChips compared to control (figure 4.13). Figure 4.14A contains 

genes with increased expression compared to control at the earliest timepoint of 36hpf. 

secreted from macrophages during vessel remodelling in order to breakdown ECM, 

allowing migration and proliferation of ECs (Heilmann, Beyersdorf et al., 2002), as well 

as undergoing increased expression in inflammation (Baik, Kwak et al., 2008). 
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Figure 4.13 Tree of hierarchically clustered genes with differentially increased 
expression in tnnt2 GeneChips. 
This clustering enables the similarity of expression in genes with increased expression in 
tnnt2 compared to control GeneChips to be compared. 
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Figure 4.14 Clustering provides information on the similarity of gene expression 
over time in genes with increased expression in tnnt2. 
Branches isolated from the gene tree generated by hierarchical clustering of genes with 
significantly increased expression in tnnt2 GeneChips compared to control (figure 4.13) 
provide information on the similarity of gene expression over time. (A) contains genes 
with increased expression compared to control at the earliest timepoint of 36hpf. The 

from macrophages during vessel remodelling in order to breakdown ECM, allowing 
migration and proliferation of ECs. B demonstrated increased expression at 48hpf in 
tnnt2 GeneChips. This branch includes CXCR4a, the receptor for the chemokine SDF 
(stromal-cell derived factor) 1, expressed on macrophages. 
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Increased expression of a member of the TNF receptor superfamily in tnnt2 may suggest 

a desire for increased sensitivity to TNFs, perhaps to induce greater vascular 

remodelling, since conditions of reduced haemodynamic force mirror conditions which 

induce remodelling. The genes continue to demonstrate increased expression in 

comparison to control at 48 and 60hpf. 

Genes within the branch of Figure 4.14B demonstrated increased expression at 48hpf in 

tnnt2 GeneChips. This branch includes CXCR4a, the receptor for the chemokine SDF 

(stromal-cell derived factor) 1, expressed on macrophages. CXCR4+ cells have been 

observed to induce revascularisation following MI in mice (Jin, Shido et al., 2006; 

Morimoto, Takahashi et al., 2007), and angiogenesis necessary for tumour growth 

(Feng, McCabe et al., 2008). CXCR4a has therefore been demonstrated to modulate 

remodelling in processes which are commonly devoid of physiological levels of 

haemodynamic force. 

A body of evidence demonstrates the importance of haemodynamic forces such as FSS 

and cyclic stretch to vascular development, remodelling, and gene expression. Much of 

this work comes from in vitro studies, with disadvantages I discussed in section 4.1.9. 

Exploiting advantages of zebrafish embryos I have been able to determine gene 

expression in the absence of haemodynamic force in vivo. 

 

4.3 Discussion 
 

4.3.1 Embryonic Development is Unaffected by tnnt2 Knockdown 

To determine the effect of tnnt2 knockdown on embryonic development sibling 

wildtype embryos at the 1-4 cell stage (figure 1.6) were injected with either tnnt2 or 

standard control MO. Their development was observed by stereomicroscopy to 60hpf, 

the latest timepoint for microarray analysis. Control morphants demonstrated normal 

development under standard incubation conditions at 28°C (Westerfield, 2000), 

including normal vascular development (section 4.3.2 below). Cardiac contraction of 

control morphants occurs at approximately 26hpf, again concurring with published data 

(Chen, Haffter et al., 1996). No other developmental defect is visible by 60hpf. tnnt2 
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morphants were observed developing comparably to control morphants. Cardiac 

contraction was inhibited in almost all morphants (approximately 95%), demonstrating 

the success of tnnt2 knockdown. Despite tnnt2 knockdown, tnnt2 morphants were able 

to dechorionate from 48hpf without mechanical intervention. Morphants responded to 

touch stimuli, demonstrating non-cardiac muscle was unaffected by tnnt2 knockdown. 

By 60hpf, tnnt2 morphants developed pericardial oedema, as observed by Sehnert, Huq 

et al. (2002). Pericardial oedema at this later timepoint may suggest heart failure, and it 

is possible that gene expression changes observed at this timepoint are a result of cardiac 

abnormalities rather than absent haemodynamic forces alone. 

 

4.3.2 Vasculogenesis and Angiogenesis are Unaffected by Absent Blood Flow 

The complete absence of blood flow through the vasculature that occurs due to 

inhibition of cardiac contraction in tnnt2 morphant embryos prevents development of 

physiological levels of FSS that occur in control morphants. Development of the 

vascular system has been shown to require genetic predetermination, as well as onset of 

blood flow (Wang, Chen et al., 1998). Arterial and venous ECs are molecularly distinct. 

For example, arterial cells express EFNB2 and venous cells its receptor EPHB4 (Wang, 

Chen et al., 1998) before the onset of circulation. No-flow chick embryos demonstrated 

normal development of the vascular plexus (le Noble, Moyon et al., 2004). In situ 

hybridisation demonstrated expression of EFNB2 to be spatially distinct, with some 

areas of plexus expressing EFNB2 and others staining negatively, suggesting arterial-

venous differentiation without flow. In zebrafish embryos, inhibition of Notch resulted 

in expression of venous markers in arteries (Lawson, Scheer et al., 2001) suggesting 

Notch specifies an arterial fate, while its absence induces a venous fate. However, local 

vascular conditions are also important. Arterial EC grafts from quail were able to 

colonise chick vein, with expression of specific arterial/venous markers changing with 

relocation (le Noble, Fleury et al., 2005). Studies utilising fli1:eGFP transgenic 

zebrafish embryos have demonstrated vessels made up of  aortic-derived ECs are able to 

form venous vessels (Isogai, Lawson et al., 2003). These data suggest that despite early 

genetic differentiation, plasticity remains. Plasticity might be one way in which vascular 

remodelling is possible. 
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To determine whether vasculogenesis and angiogenesis occurred comparably to 

standard control MO injected sibling embryos under conditions of absent blood flow 

(tnnt2 morphant embryos), I performed laser-scanning confocal microscopy of 

fli1:eGFP transgenic embryos injected with either tnnt2/control MO at 60hpf, the latest 

timepoint at which microarray analysis was performed. Approximately 20 tnnt2/control 

morphants were observed by fluorescent stereomicroscopy, and two representative 

morphants randomly chosen for confocal microscopy at 60hpf (figure 4.2). In control 

morphants vasculature developed as described by Isogai, Horiguchi et al. (2001), with 

aorta traversing laterally to the tail, before joining the cardinal vein which will return 

blood to the heart at onset of circulation. The caudal-most end of the cardinal vein forms 

the venous plexus at this time. By 1.5dpf ISVs had began to form, sprouting from dorsal 

aorta migrating dorsally (Childs, Chen et al., 2002; Isogai, Lawson et al., 2003) to form 

DLAVs by 2dpf. The ISVs became patent at 2dpf, and SIVs began to develop at this 

timepoint (Isogai, Horiguchi et al., 2001). 

On comparison with control morphant embryos, tnnt2 morphants appeared to have 

developed a normal vascular patterning. tnnt2 morphants demonstrated normal 

development of aorta and cardinal vein, suggesting vasculogenesis is not affected by 

tnnt2 knockdown since vasculogenesis is the process responsible for formation of these 

vessels (Isogai, Horiguchi et al., 2001). However, aorta and cardinal vein appear 

collapsed, presumably resulting from absence of blood flow. tnnt2 morphants also 

demonstrated normal patterning and number of ISVs, DLAVs, and SIVs when 

compared to control morphants. These vessels develop through growth and remodelling 

of aorta and cardinal vein during angiogenesis (Isogai, Horiguchi et al., 2001). Normal 

development of these vessels suggests angiogenesis is unaffected by tnnt2 knockdown. 

This data concurs with previous observation of vascular development in these 

morphants (Isogai, Lawson et al., 2003), as well as findings from vessel occlusion 

during early zebrafish development in studies of kidney morphogenesis which 

determined no alteration in development to 72hpf without blood flow (Serluca, 

Drummond et al., 2002). 
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4.3.3 Zebrafish Embryos Permit Determination of Differential Gene Expression 

Unfeasible Utilising Alternative Model Systems 

Microarray technology utilising in vitro cell culture assays of different vascular cell 

populations from differing sources have consistently demonstrated changes to the 

expression of genes involved in vascular performance and vascular control under 

conditions of altered haemodynamic force (McCormick, Eskin et al., 2001; Chen, Li et 

al., 2001). For instance, microarray analysis of human aortic ECs under conditions of 

laminar flow demonstrated upregulation of VEGFR2 (Chen, Li et al., 2001), which 

mediates vasculogenesis and angiogenesis (Yancopoulos, Davis et al., 2000). 

Upregulation of VEGFR2 expression was also determined in collateral vessels of canine 

hearts in immunohistochemical studies (Cai, Kocsis et al., 2004b), demonstrating the 

ability for microarray analysis of in vitro assays to successfully replicate in vivo 

evidence. However, given the complexities of the vasculature, with interaction of 

vascular and non-vascular cell populations (Clayton, Chalothorn et al., 2008), 

haemodynamic force, and endogenous modulation, vasculature is difficult to mimic 

accurately in vitro (Weinstein, 2002), making extrapolation into the in vivo setting 

challenging. Although effects of FSS or cyclic stretch have been studied independently 

in vitro, in vivo many haemodynamic forces interact simultaneously. Utilisation of 

mammalian models for in vivo microarray analysis is difficult since manipulation of 

blood flow can induce hypoxia and ischaemia. Furthermore, surgery has the potential of 

inducing inflammation and necrosis, a result observed following microarray analysis of 

collateral vessel remodelling after femoral artery ligation in mice (Lee, Stabile et al., 

2004). 

Zebrafish embryos permit determination of differential gene expression following 

complete absence of physiological levels of haemodynamic force in vivo for microarray 

analysis, as I have demonstrated. At the timepoints my microarray was performed, 

zebrafish embryos do not suffer from hypoxia under standard incubation conditions 

(Schwerte, Uberbacher et al., 2003), allowing determination of gene expression in vivo 

without ischaemia for the first time. Gene knockdown through MO injection at 

appropriately determined concentrations limits inflammation and necrosis which 

obstructs in vivo mammalian models (Summerton and Weller, 1997). Exploiting 
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zebrafish embryos therefore overcomes difficulties intrinsic to cell culture. The 

simplicity of MO injection also limits risks of indirect responses in gene expression 

resulting from inflammation and necrosis, possible with difficult surgery necessary in 

mammalian models to perform similar experiments. 

 

4.3.4 Absent Blood Flow Results in Differential Gene Expression Profiles During 

Early Development of Zebrafish Embryos 

18 Affymetrix Zebrafish GeneChips were used in determining the effect of absent 

haemodynamic force in vivo on gene expression during early embryonic development. 

Experimentation resulting in generation of RNA for microarray analysis was designed to 

reduce variability and ensure quality as much as possible. Morphant groups were paired, 

with equal numbers of 100-130 age-matched tnnt2/control MO injected sibling wildtype 

embryos from the same parent pair. Morphants were manually dechorionated as 

necessary. Morphants injured during manual dechorionation were removed, and 

morphant numbers equalised again. Three replicates per timepoint (36, 48, and 60hpf) 

were generated. In order to prevent degradation of RNA, extractions were performed on 

ice (4°C) and protective equipment worn throughout. On completion, RNA was 

immediately stored at -80°C. At each timepoint total RNA was extracted using Trizol 

(Sigma, Poole, UK) since the protocol permits storage at several steps without affecting 

purity. This allows multiple samples and timepoints to be extracted simultaneously, 

reducing operator variability. RNA cleanup was performed with Qiagen RNeasy Mini 

Kit to purify RNA samples. Only samples with purity (Ab260/Ab280) of 1.8-2.0, as 

determined by NanoDrop, were used in microarray analysis. RNA quality was 

determined again immediately prior to generation of cDNA necessary for analysis, and 

at appropriate points during analysis. Experimentation was performed in this way to 

reduce variability and maintain quality. 

Replicate GeneChips for both control and tnnt2 demonstrated a low degree of variability 

(figure 4.3), despite MO injection and total RNA extraction occurring independently for 

each replicate group. The low variability is suggestive of an accurate determination of 

differential gene expression in response to the altered physiology of tnnt2 morphant 

embryos compared to control morphant embryos, rather than indirect effects such as 
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inflammation caused by either MO injection or tnnt2 knockdown. Excluding cardiac-

specific activity of tnnt2, tnnt2 morphant embryos have been described as 

physiologically, if not phenotypically, normal at the timepoints the microarray was 

performed (Sehnert, Huq et al., 2002). The low variability observed was reduced further 

by normalisation (figure 4.4). 

Genes were classed as differentially expressed if there was -fold difference in 

expression between groups with 

force, including during arteriogenesis, results in infiltration of monocytes, breakdown of 

ECM, and release of endogenous mediators, we may expect to observe gene expression 

changes in at least some genes related to these processes. As described in more detail in 

the following paragraphs such gene expression changes are observed, with, for example 

SPI1, CXCR4a, and VEGF. 

290 genes (1.95% of total genes represented on the GeneChip) were identified as 

differentially expressed at one or more timepoint (figure 4.6). Seven, encoding genes of 

metabolism such as members of the cytochrome P450 system (CYP26B1) had 

expression ratios which increased and decreased in tnnt2 compared to control. 166 genes 

demonstrated a significant decrease in gene expression ratio in tnnt2 compared to 

control (figure 4.7). 19% of genes (37 genes) demonstrated decreased expression in 

tnnt2 at 36hpf, including a number associated with vasoregulation: adrenoceptor 2B, 

2C, 2Da, and EDNRB. These genes may demonstrate decreased expression since absent 

haemodynamic force might make control of vasoactivity unnecessary. EDNRB is 

expressed on ECs and VSMCs (Murakoshi, Miyauchi et al., 2002), and therefore its 

regulation may result from decreased expression by ECs (modulated by FSS) or VSMCs 

(modulated by cyclic stretch). Onset of cyclic stretch induced significant upregulation of 

EDNRB mRNA in VSMCs (Cattaruzza, Dimigen et al., 2000). Microarray analysis of 

HUVECs following exposure to FSS for 24h demonstrated significant downregulation 

of endothelin (McCormick, Eskin et al., 2001). On comparison to no flow cultures, 

bovine aortic ECs exposed to FSS also demonstrated sustained decreases in endothelin 

mRNA and peptide (Malek, Greene et al., 1993). These data demonstrate regulation of 
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EDNRB and endothelin expression by haemodynamic force and concur with my finding 

of decreased expression of EDNRB in absence of haemodynamic force. 

Almost 72% of genes with decreased expression in tnnt2 demonstrated differential 

expression at 48hpf. These included genes associated with developmental patterning 

(EFNB1) and the myeloid lineage (SPI1). Like other members of the ephrin family such 

as EFNB2, specifically expressed on arterial EC (section 4.2.3), EFNB1 is also involved 

in cell fate decisions. For example, EFNB1 has been localised to regions of cartilage 

differentiation during mouse development (Davy, Aubin et al., 2004). Additionally, 

EFNB1 is implicated in angiogenesis in vitro (Huynh-Do, Vindis et al., 2002) and in 

vivo (Kojima, Chang et al., 2007) (Chapter 6), and therefore might undergo modulation 

by alterations in haemodynamic force. Decreased expression in tnnt2 compared to 

control did not result in any visible defect in angiogenesis, with tnnt2 morphant 

vasculature developing comparably to control siblings. EFNB1 has not previously been 

reported with differential expression with alterations in haemodynamic force. The 

related ligand ephrinB2 demonstrates decreased mRNA and protein levels with falls in 

blood flow induced by ligation of the chick vitelline artery (le Noble, Moyon et al., 

2004). The receptor EphB2, which has affinity for EFNB1, demonstrated significant 

downregulation in human aortic ECs with FSS (Heydarkhan-Hagvall, Chien et al., 

2006). These data therefore suggest possible regulation of Ephrin-Ephs by 

haemodynamic force. SPI1 is a myeloid-specific transcription factor which plays an 

important role in monocyte development (Lieschke, Oates et al., 2002). Monocytes are 

directed to sites of injury by a series of processes induced by altered haemodynamic 

force (Heilmann, Beyersdorf et al., 2002), and thus a decreased SPI1 expression might 

be expected in tnnt2 which demonstrate similar conditions compared to control. 19 

genes demonstrated significantly decreased expression in tnnt2 at 60hpf, including 

rhoposin (RHO). A very small number of genes demonstrated decreased expression at 

more than one timepoint. Adrenoceptor 2Da was differentially expressed at 36 and 

48hpf. Sustained decreased expression may highlight the importance of their association 

with haemodynamic force. No genes demonstrated decreased expression ratios at all 

three timepoints. 
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124 genes demonstrated significantly increased gene expression in tnnt2 compared to 

control (figure 4.8). 22 genes (17.4%) demonstrated increased expression ratios at 

36hpf, including plastin 1 (PLS1). At 48hpf the same number of genes demonstrated 

increased expression, including CXCR4a. CXCR4a is the receptor for stromal-cell 

derived factor-1 (SDF-1), expressed on macrophages (Jin, Shido et al., 2006). CXCR4+ 

cells induce neovascularisation following MI in mice (Morimoto, Takahashi et al., 

2007), demonstrating the link between monocytes/macrophages and haemodynamic 

force with subsequent vessel remodelling. MCP-1 is a key chemokine for attraction of 

monocytes to sites of vessel remodelling. MCP-1 demonstrates significantly decreased 

expression in aortic ECs exposured to laminar FSS (Malek, Greene et al., 1993), while 

turbulent flow led to significantly increased expression (Himburg, Dowd et al., 2007). 

This data suggests monocyte attraction and maturation is most important at sites of low 

haemodynamic force, as with tnnt2 morphants. 

The majority of genes with increased expression occurred at 60hpf (73%). VEGF was 

one such gene. VEGF receptors are specific to ECs and monocytes/macrophages 

(Hiratsuka, Minowa et al., 1998), cell types involved in vessel remodelling following 

alterations in haemodynamic force. VEGF is known to induce vessel growth following 

alterations in haemodynamic force (Babiak, Schumm et al., 2004). Human aortic ECs 

exposured to FSS demonstrated significantly increased expression of vegfr2 on 

comparison to no flow cultures (Chen, Li et al., 2001), suggesting a requirement for 

increased VEGF signalling. VEGFR2 is the predominant receptor for VEGF-A165 

(which I have termed simply VEGF throughout) (Siekmann, Covassin et al., 2008), the 

isoform believed most important for VEGF’s modulation of vasculogenesis and 

angiogenesis (Yancopoulos, Davis et al., 2000; Tammela, Enholm et al., 2005). VEGF 

upregulation predominantly occurs through binding of HIF-1 to the VEGF promoter 

(Forsythe, Jiang et al., 1996) under hypoxic conditions. However, HIF-1, and lactate 

dehydrogenase A, another hypoxia-induced gene (Deindl, Buschmann et al., 2001) did 

not demonstrate differential expression in tnnt2 despite their presence on the GeneChip, 

suggesting increased VEGF expression is not in response to hypoxia in this study. Very 

small numbers of genes demonstrated increased expression ratios at two or all three 
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timepoints. Genes in these groups were associated with growth and metabolism, such as 

CYP51, part of the cytochrome P450 system. 

Although data resulting from microarray analysis can be determined from analysing 

possible roles of individual differentially expressed genes, as I have performed above, 

additional information can be obtained by grouping genes by similarity. Gene ontology 

classifies genes sharing biological process, molecular function, or pathway; while 

clustering divides genes into branches sharing similar levels of expression. 

 

4.3.5 Gene Ontology Provides Analysis on the Biological Processes of Differentially 

Expressed Genes 

I first utilised Protein Analysis Through Evolutionary Relationships (PANTHER) gene 

ontology (Thomas, Campbell et al., 2003) to determine which biological processes were 

most affected by differential gene expression in tnnt2 compared to control at each 

timepoint (figure 4.9). At 36hpf small numbers of genes are differentially expressed (59, 

of which 37 demonstrated decreased expression in tnnt2). These genes are classified to 

the majority of biological processes however no gene is classified to apoptosis or 

antigen presentation. This suggests tnnt2 knockdown has no affect on general 

development since cellular apoptosis has not been induced. It also demonstrates an 

advantage of utilising zebrafish embryos for microarray analysis, and suggests 

macrophage-associated genes are differentially expressed due to absence of 

haemodynamic force and not inflammation. The largest group of differentially 

expressed genes in microarray analysis of thigh muscle following femoral artery ligation 

in mice was inflammatory response-related genes (Lee, Stabile et al., 2004). The genes 

within this group included monocyte/macrophage-related genes such as MCP-1, but also 

genes of neutrophil infiltration (ENA-78) and inflammatory resolution (lipocortin 1), 

suggesting these genes may have been induced by surgical intervention rather than 

vessel occlusion. Genes, including the interleukin 1 receptor precursor, associated with 

inflammation have also been induced in vitro, following exposure to FSS (McCormick, 

Eskin et al., 2001). At 48hpf all biological processes are represented. The largest 

numbers of genes are observed with decreased expression and represent signal 

transduction, protein transcription/translation, and morphogenesis. These processes 
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frequently include large numbers of genes in microarray analysis studying 

haemodynamic force (McCormick, Eskin et al., 2001; Chen, Li et al., 2001), 

presumably due to their high numbers in the genome and wide-ranging roles. At 60hpf 

the biological processes with highest numbers of differentially expressed genes have 

increased expression in tnnt2 compared to control. They represent processes with 

decreased gene expression at 48hpf. At the two latest timepoints the number of 

differentially expressed genes representing apoptosis and antigen presentation remained 

very low. This again suggests that genes associated with inflammation (such as MCP-1 

and CXCR4a) differentially expressed in tnnt2 undergo differential expression as a 

result of absent haemodynamic force and not indirect inflammation induced by MO 

injection. 

I then utilised gene ontology to determine whether differentially expressed genes 

classified to specific biological processes under- or over-represented their process. This 

is termed fractional difference and was determined for each timepoint (figure 4.10 and 

figure 4.17 in the appendix at the end of the chapter). Fractional difference increases 

with the number of genes in a process differentially expressed compared to total 

numbers of genes on the GeneChip classified to that process. Eight biological processes 

demonstrated significant under- or over-representation (P<0.05, Binomial statistical 

tests) over the three timepoints. Cholesterol metabolism and steroid metabolism 

demonstrated significant over-representation at 36 and 48hpf. Genes classified to 

metabolic groups demonstrate differential expression with stimulation or alteration in a 

number of microarray studies in vivo (Lee, Stabile et al., 2004), in vitro (Chen, Li et al., 

2001), and following EC-VSMC co-culture (Heydarkhan-Hagvall, Chien et al., 2006). 

This suggests metabolism of cells exposed to haemodynamic force alters with specific 

local conditions. It is known ECs are capable of detecting and responding to different 

flow patterns (Ohura, Yamamoto et al., 2003), which may come some way to explaining 

why atherosclerosis develops in regions of low haemodynamic force (Yoshizumi, Abe et 

al., 2003). Cell proliferation and differentiation demonstrated significant under-

representation at 48hpf, and cell cycle at 60hpf. This might suggest reduced embryonic 

growth of tnnt2 morphants at 48 and 60hpf, however observation in this and previous 
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studies (Sehnert, Huq et al., 2002) did not visualise differences compared to control 

siblings at these timepoints. 

G-protein mediated signalling demonstrated significant over-representation at 48hpf. 

This group includes vasoregulatory genes such as EDNRB. Zebrafish embryos induce 

vasoconstriction in response to decreased haemodynamic force at this timepoint (Pelster, 

Grillitsch et al., 2005). Several microarray studies on haemodynamic force have 

reported differential expression of vasoregulatory genes like EDNRB, demonstrating 

their association with haemodynamic force. HUVECs exposed to 24h laminar flow 

downregulated endothelin (McCormick, Eskin et al., 2001), while sustained decreases in 

endothelin mRNA and peptide levels was observed in bovine aortic ECs following 

laminar flow exposure compared to no flow cultures (Malek, Greene et al., 1993). 

Aortic ECs demonstrated significant upregulation of vascular specific genes such as the 

endothelin precursor preproendothelin with turbulent flow (Himburg, Dowd et al., 

2007), concurring with previous studies that demonstrate a downregulation in ET 

exposed to laminar flow, and suggesting a flow-related regulation of such genes. 

Significant over-representation might thus suggest an attempt to control falls in 

haemodynamic force in tnnt2 morphants through vasoconstriction. 

Although not significantly over-represented several biological processes associated with 

vascular remodelling demonstrated non-significant over-representation: blood 

circulation, blood clotting, macrophage-mediated immunity, and regulation of 

vasoconstriction. Over-representation of genes classified to blood circulation and blood 

clotting is conceivably directly related to absent cardiac contraction and blood pooling 

resulting from tnnt2 knockdown, and thus results from tnnt2 inhibition of cardiac 

contraction and not absent haemodynamic force. Over-representation of macrophage-

mediated immunity (genes such as MCP-1) might result from induction of altered 

haemodynamic force in tnnt2 morphants mirroring conditions inducing vessel 

remodelling (Heilmann, Beyersdorf et al., 2002). Laminar flow led to downregulation of 

MCP-1 in HUVECs (McCormick, Eskin et al., 2001), while exposure to turbulent flow 

resulted in upregulation in aortic ECs (Himburg, Dowd et al., 2007). HUVECs under 

cyclic stretch upregulate expression of MCP-1 mRNA and protein (Demicheva, Hecker 
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et al., 2008). These data thus demonstrate the possible association between induced 

expression of genes of macrophage-mediated immunity and haemodynamic force. Over-

representation of genes classified to regulation of vasoconstriction has been discussed, 

with the example of EDNRB, in the previous paragraph. 

 

4.3.6 Clustering of Differentially Expressed Genes Provides Analysis on 

Similarities in Gene Expression over Time 

Genes differentially up- or downregulated in tnnt2 morphant GeneChips compared to 

control were hierarchically clustered into gene trees in order to demonstrate similarity of 

gene expression over time. Figure 4.11 illustrates the gene tree for genes differentially 

downregulated in tnnt2 morphant GeneChips compared to control and figure 4.13 the 

tree for genes differentially upregulated in tnnt2 compared to control. Figure 4.12 

illustrates isolated branches of the gene tree for genes differentially downregulated in 

tnnt2 compared to control. The branch in figure 4.12A contains genes (adrenergic 

receptors 2B, 2C, 2Da, EDNRB) involved in vasoregulation and vascular development 

(Cruz, Parnot et al., 2001). As discussed in section 4.3.5, this finding concurs with the 

role of the genes in modulating vessel tone, since vasoactivity will be dependent in part 

on the volume of flow within a vessel. The branch also contains angiopoetin-like 2b 

(ANGPTL2B). ANGPTL2B is expressed in a number of tissues including skeletal muscle 

and heart (Hato, Tabata et al., 2008). ANGPTL2B induces sprout formation on porcine 

pulmonary arterial ECs, suggesting a role in vascular remodelling (Kim, Moon et al., 

1999), a process modulated by haemodynamic force. Knockdown in zebrafish embryos 

caused death by 72hpf resulting from pericardial effusion (Kubota, Oike et al., 2005), 

but when knocked down in combination with angiopoietin-like 1, ISVs and DLAVs 

failed to form. This may suggest the two genes act in concert to inhibit angiogenesis 

(Kubota, Oike et al., 2005). These data demonstrates a role for ANGPTL2B in vascular 

remodelling, and may suggest its clustering to other genes linked to vascular control and 

development. 

The genes contained within the branch in Figure 4.12B demonstrate expression patterns 

significantly downregulated in tnnt2 morphant GeneChips compared to control 

primarily at 48hpf. Genes within this branch include EFNB1 and SPI1. Both genes are 
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involved in developmental processes. While EFNB1 plays a role in modulating 

embryonic development (Compagni, Logan et al., 2003), including vascular 

development (Adams, 2002), SPI1 is critical for myelopoiesis (Lieschke, Oates et al., 

2002), as discussed in section 4.3.4. Figure 4.12C presents a branch with severe patterns 

of gene expression. The genes in this branch, such as 2b (platelet GPIIb), 

demonstrate very little expression at 36 or 60hpf in either tnnt2 or control GeneChips. 

At 48hpf, gene expression in tnnt2 remains very low in comparison to control gene 

expression. Evidence links integrin function to induction of angiogenesis, through 

expression on platelets and bone-marrow derived cells (Feng, McCabe et al., 2008). 

2b 3 led to 35% reduction in angiogenesis in mice (Rhee, 

Black et al., 2004), while murine V 3 knockout enhanced angiogenesis (Reynolds, 

Wyder et al., 2002). Data regarding roles of integrins in vascular remodelling remain 

contradictory, and might be explained by complex roles in which integrins can be both 

pro- and anti-angiogenic dependent on precise conditions. 

Figure 4.14A illustrates a branch of the gene tree for genes differentially upregulated in 

tnnt2 GeneChips compared to control (figure 4.13). Figure 4.14A contains a branch of 

genes upregulated in tnnt2 at 36hpf. The genes continue to be upregulated in comparison 

to control at 48 and 60hpf. One gene is a member of TNF receptor superfamily (member 

thus allowing migration and proliferation of ECs (Heilmann, Beyersdorf et al., 2002). 

 also undergoes increased expression during inflammation (Baik, Kwak et al., 

2008). Increased expression of the TNF receptor superfamily in tnnt2 may suggest a 

desire for increased sensitivity to TNFs, perhaps to induce greater vascular remodelling, 

since conditions of reduced haemodynamic force mirror conditions which induce 

remodelling. The genes contained within the branch of Figure 4.14B were upregulated at 

48hpf in tnnt2 GeneChips such as CXCR4a, the receptor for the cytokine SDF1. 

CXCR4a has been shown to modulate arteriogenesis in mammalian models through 

stem cell recruitment to the ischaemic area (Jin, Shido et al., 2006). Furthermore, 

CXCR4+ cells induce revascularisation following MI in mice (Morimoto, Takahashi et 

al., 2007). Concurring with this, other members of Dr Chico’s lab have demonstrated 
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that inhibition of CXCR4a through MO knockdown or pharmacological antagonism 

inhibits arteriogenesis (Ms Caroline Gray; manuscript in preparation). 

Meta-analysis of this microarray together with other microarrays seeking to determine 

gene expression profiles in arteriogenesis or vascular remodelling may also provide 

further insight. It may enable a determination of genes expressed in different models and 

different species including mammalian and non-mammalian species. Thus, meta-

analysis may help determine the evolutionary pathway of arteriogenesis, and differences 

in gene expression essential for the process to occur. 

 

4.4 Limitations and Future Work 
 

4.4.1 Differential Gene Expression Analysis Utilised Total Embryonic RNA 

Microarray analysis of differential gene expression of control compared to tnnt2 

morphant embryos were performed utilising total RNA of zebrafish embryos. The 

advantage of this method is technical ease, as well as the ability to begin RNA 

extraction immediately, capturing gene expression profiles as close to conditions of in 

vivo physiology as is possible. This is particularly relevant when the goal is 

determination of haemodynamic force on gene expression profiles. 

Techniques for isolating vascular tissue are technically complex and time-consuming in 

such a small organism, making capture of gene expression during conditions of in vivo 

physiology difficult. In addition, isolation ignores interactions between other cell-types, 

physical forces, and endogenous mediators which may also modulate gene expression. 

FAC sorting technology could also have been utilised, to isolate cells of vascular and 

non-vascular types before undergoing microarray analysis (Covassin, Amigo et al., 

2006). Once more however, this would involve removing cells from conditions of in 

vivo physiology, as well as from the complex of interactions that may be necessary for 

modulation of gene expression. 
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4.4.2 Microarray Validation 

Microarray validation by real-time PCR was to be performed utilising RNA extracted 

and used in microarray analysis in order to limit variability. However, it was difficult to 

combine extraction of high quality (Ab260/280 of 1.8-2.0) and high yield RNA necessary 

for each microarray timepoint, resulting in repeated rounds of MO injection and RNA 

extraction which extended experimentation considerably beyond the timeframe 

originally envisaged. Additionally, high quality RNA generated was used entirely in 

generation of cDNA for microarray, making it necessary to repeat MO injection and 

RNA extraction again for validation. Thus, time was reduced for validation and further 

experimentation. Had more time been available, I would have been able to perform real-

time PCR for genes of interest (Chapters 5 and 6) at all three timepoints. It would have 

been interesting to perform Northern blots of genes of interest to determine changes in 

RNA levels, and Western blots to observe levels of protein. It would also have been 

interesting to compare gene expression levels in tnnt2 with those observed following 

induced inhibition of cardiac contraction by pharmacological inhibitors such as BDM 

(2,3-butanedione monoxime). BDM blocks myofibrillar ATPase (Bartman, Walsh et al., 

2004), so that at high enough concentrations cardiac contraction is inhibited or reduced 

to the extent that blood flow is prevented. This experimentation would allow 

determination of at which point in early development of zebrafish embryos inhibited 

contraction had the most affect on gene expression. 

 

4.5 Conclusion 
 
In Chapter 3, I exploited zebrafish embryos to develop two models of arteriogenesis, a 

process in part modulated by haemodynamic force. In this chapter, I wanted to further 

exploit advantages inherent to zebrafish embryos in comparison to mammalian species 

to increase understanding of the role haemodynamic force plays in modulating 

arteriogenesis. Many arteriogenesis-associated genes are differentially expressed with 

alterations in haemodynamic force. In this chapter I described combining the advantages 

of zebrafish embryos with current microarray technology to identify candidate genes 

with potential to modulate arteriogenesis, through comparing gene expression under 

physiological levels of haemodynamic force and in its absence. To my knowledge, this 



169 
 

is the first time determination of gene expression without haemodynamic force has been 

performed in vivo with a model of haemodynamic force (rather than FSS or cyclic 

stretch) without induction of ischaemia. The microarray has demonstrated a potentially 

important role for vasoactive genes such as adrenoceptors and EDNRB in stimulation of 

arteriogenesis. 
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Chapter 5: Modulation of Arteriogenesis by Endothelin 

Receptor B 
 

In Chapter 4 microarray technology was utilised to identify a gene set differentially 

expressed under conditions of absent blood flow, and thereby absent haemodynamic 

force, compared to controls under physiological levels of blood flow. 290 genes 

differentially expressed were scrutinised by performing literature searches to create a list 

of candidate genes with known functions within vasculature. One panel of genes which 

demonstrated significant expression and over-representation in multiple forms of 

analysis were a group of vasoactive genes including several adrenoceptors and 

Endothelin receptor B (EDNRB). The role of EDNRB in arteriogenesis has not been 

studied. EDNRB is known to have roles within tumour angiogenesis, which shares some 

genetic and molecular components with arteriogenesis. This chapter thus discusses 

utilisation of the zebrafish embryo models of arteriogenesis discussed in Chapter 3 to 

extrapolate on the microarray analysis obtained in Chapter 4 to determine the role of 

EDNRB in modulating arteriogenesis. The introduction discusses previous research 

which led me to hypothesise roles for EDNRB in modulating arteriogenesis. 

 

5.1 Introduction 
 

5.1.1 The Endothelin System 
 

5.1.1.1 Endothelin-1 and Endothelin Receptors 

Endothelin-1 (ET) is a vasoconstrictor peptide released predominantly by ECs, but also 

expressed on cells including VSMCs, monocytes, and macrophages (Miyauchi and 

Masaki, 1999). ET exerts its functions by binding the seven transmembrane G-protein 

coupled endothelin receptor A or B. Endothelin receptor A is located predominantly on 

VSMCs and endothelin receptor B (EDNRB) primarily on ECs, as well as VSMCs 

(Murakoshi, Miyauchi et al., 2002; Bagnall, Kelland et al., 2006). While VSMC 
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receptor expression leads to vasoconstriction on ligand binding, EC EDNRB activation 

leads to release of vasodilators such as NO (Murakoshi, Miyauchi et al., 2002). In 

VSMCs, ligand binding leads to activation of phospholipase C, which in turn activates 

Protein Kinase C leading to increased [Ca2+]i stimulating muscle contraction and thus 

vasoconstriction (Takigawa, Sakurai et al., 1995). EDNRB also clear circulating ET 

(Pollock and Schneider, 2006). Mammalian species have EDNRB subsets, termed 

EDNRB1 and EDNRB2, while zebrafish have a single ednrb gene analogous to 

EDNRB1 (Kelsh, Harris et al., 2008). There is no equivalent to EDNRB2 in zebrafish 

(Kelsh, Harris et al., 2008). 

 

5.1.1.2 Endothelin Receptor B and Vascular Control 

Through its vasoconstrictive properties ET is involved in regulation of blood pressure. 

EDNRB may influence blood pressure through regulation of vascular tone, alterations in 

renal haemodynamics, clearance of circulating ET, or a combination of these 

mechanisms (Bagnall, Kelland et al., 2006). Blood flow measurement in EDNRB loss of 

function mutant mice demonstrated significantly elevated systolic blood pressure 

compared to wildtype animals, attributed to development of salt-sensitive hypertension 

(Murakoshi, Miyauchi et al., 2002). In another study, EC-specific inactivation of 

EDNRB led to increased concentrations of plasma ET and reduced endothelial-

dependent vasodilatation, but did not alter blood pressure (Bagnall, Kelland et al., 

2006). It has also been demonstrated that EDNRB is not required for ET-activated 

vasoconstriction in human branchial arteries (Berthiaume, Yanagisawa et al., 2000). 

Experiments utilising VSMCs in culture demonstrated significant EDNRB mRNA 

upregulation following onset of cyclic stretch, mimicking increases in blood pressure, 

maintained for 12h after abolishment of stretch (Cattaruzza, Dimigen et al., 2000). 

Elevated EDNRB mRNA levels resulted in significantly increased VSMC apoptosis, 

and it was hypothesised by Cattaruzza, Dimigen et al. (2000) that increased apoptosis 

was a means of permitting arterial remodelling to occur. EDNRB deficient mice 

experience reduced levels of vascular remodelling following ligation of the right 

common carotid artery (Murakoshi, Miyauchi et al., 2002). Animals present with 

enlarged areas of neointimal formation and stenosis compared to wildtype animals. 
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Concurring, EDNRB antagonism in wildtype mice leads to similar levels of neointima 

and stenosis developing (Murakoshi, Miyauchi et al., 2002). 

ET promotes proliferation and migration of ECs, a key constituent of angiogenesis, in 

vitro as well as in vivo (Cruz, Parnot et al., 2001). EC migration is also important to 

vasculogenesis and re-endothelisation of arteries following intervention for vessel 

occlusion (Daher, Noel et al., 2008). Angiogenesis has been induced through ET 

binding EDNRB, and inhibited by the EDNRB specific chemical antagonist BQ788 

(Salani, Taraboletti et al., 2000). Increased migration of ECs in vitro was stimulated by 

ET and completely inhibited with BQ788 (Daher, Noel et al., 2008). One hypothesis 

suggests the role of ET-EDNRB in angiogenesis may be to induce upregulation of 

MMP-2, necessary for ECM breakdown during vessel growth and migration (Bagnato 

and Spinella, 2003). 

EDNRB has been identified as a modulator of forms of vascular development and 

remodelling other than arteriogenesis, making EDNRB a possible modulator of 

arteriogenesis, since many processes, such as breakdown of ECM, are similar in 

angiogenesis and arteriogenesis. The potential of EDNRB to modulate arteriogenesis 

has yet to be defined, and is the intent of the results which follow. 

 

5.1.2 Morpholino Antisense Oligonucleotide Knockdown 
 
Morpholino antisense oligonucleotides (MOs) are frequently used to knockdown genes 

of interest in zebrafish embryos. MOs are short 25 base-pair nucleotides synthesised 

with a morpholine rather than ribose backbone (Summerton and Weller, 1997). The 

basic MO structure can be found in figure 1.8. MOs act via steric block to prevent 

translation of mRNA to peptide at the ribosome, and are complementary to a specific 

sequence in the mRNA.Splice-site blocking MOs result in modification of pre-mRNA 

splicing to knockdown a gene’s functional sequence (Summerton, 2007). An advantage 

of splice-site blocking MOs in contrast to start-site blockers, which inhibit translation, is 

the ability to determine activity through PCR analysis. 
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However, MO knockdown can suffer from off-target affects instead of, or in addition to, 

desired specific gene knockdown (Eisen and Smith, 2008). In turn, an observed 

phenotype may not relate to the gene studied. For instance, it is reported that neural 

defects observed in 15-20% of MO studies result from activation of p53 and therefore 

apoptosis (Eisen and Smith, 2008). Eisen and Smith (2008) suggest utilisation of one or 

more controls to confirm findings are specific: GeneTools standard control MO, specific 

gene mismatch controls, use of different MOs targeting the same gene, and rescue 

experimentation. 

 

5.2 Results 
 
Arteriogenesis is dependent, at least in part, on haemodynamic force (Buschmann and 

Schaper, 1999) with mammalian studies demonstrating the importance of forces such as 

FSS to development of collateral blood flow following arterial ligation (Eitenmuller, 

Volger et al., 2006; Pipp, Boehm et al., 2004). In Chapter 4 I demonstrated differential 

expression of 290 genes with absent haemodynamic force. It is therefore possible that at 

least some differentially expressed genes modulate arteriogenesis. I began by 

scrutinising the 290 differentially expressed genes to generate a list of candidates with 

known functions within vasculature. 

 

5.2.1 Literature Search of Differentially Expressed Genes 

To identify potential modulators of arteriogenesis, I scrutinised the 290 differentially 

expressed genes by performing literature researches utilising the public database 

www.pubmed.gov. I created a candidate list of genes with known vascular function, 

genes believed to have greatest possibility of modulating arteriogenesis (figure 5.24 in 

chapter appendix). EDNRB demonstrated significantly decreased expression with absent 

haemodynamic force. This, combined with their known roles in vascular development 

and remodelling as summarised above, led me to hypothesise EDNRB deficiency may 

lead to reduced recovery of aortic blood flow following occlusion. The role of each of 

these genes in arteriogenesis has not been studied, despite demonstrations of their 

importance in vascular remodelling in mammals (Adams, Wilkinson et al., 1999; 

http://www.pubmed.gov
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Murakoshi, Miyauchi et al., 2002). These results aim to determine the role these genes 

may play in modulating arteriogenesis in the models I describe in Chapter 3, utilising 

morpholino oligonucleotide knockdown. Prior to knockdown, however, I confirmed 

expression and sequenced these genes in zebrafish embryos. 

 

5.2.2 Expression of EDNRB in Zebrafish Embryos 

To confirm expression of EDNRB in zebrafish embryos I performed RT-PCR analysis. 

Total RNA from 36hpf wildtype embryos was reverse transcribed to generate cDNA. 

This timepoint was utilised since it was the first microarray timepoint. Forward and 

reverse primer pairs (coloured red in figures 5.1B) designed against Ensembl predicted 

sequences for EDNRB (figure 5.1B) were used to identify expression of the genes by 

RT-PCR with relevant primer pairs. Expression of GAPDH was utilised as positive 

control. Predicted sequences predict transcripts with the primer pairs of band sizes 

EDNRB: 718bp, and GAPDH: 1019bp. 

RT-PCR of EDNRB demonstrated transcript with band size approximately 800bp, 

corresponding with the predicted size of 718bp (figure 5.1A). These results thus 

supported expression of EDNRB in zebrafish embryos at 36hpf. 

 

5.2.3 Sequencing Confirms Predicted EDNRB Sequences 

Determination of EDNRB expression was performed utilising primer pairs designed 

against the Ensembl automated predicted sequence. It was therefore important to 

confirm Ensembl automated predicted sequence for EDNRB. PCR product from section 

5.2.2 was sequenced against the primer pairs at the University’s Core Genomics Facility 

with the aim of visualising possible base-pair alignment alterations. Product was 

purified to remove excess primer, dNTPs, and non-specific products. Sequence 

alignment for EDNRB (figure 5.2) demonstrated 91% homology between PCR product 

and predicted sequence. Non-homologous regions are found at either end of the product 

where primers bind, suggesting true alignment is likely 100% between PCR product and 

predicted sequence. These results confirm automated predicted sequence of EDNRB in 

zebrafish embryos. 
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Figure 5.1 Expression of EDNRB in wildtype zebrafish embryos. 
PCR analysis with specific primers in A (red base lettering in B) demonstrates 
expression of EDNRB in wildtype embryos. B, Ensembl predicted sequence for 
EDNRB. Black/blue bases indicate alternate exon sequences. Red bases indicate the 
sequence of primers utilised. 
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Predicted AACCATGCATAGAAAACTATTGCAATAGGTTTATTAATGATTTTGTAATTCTAGCCTACA 60 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted GACGGGTTGATATCTGTGTTATGCTAAAGAAAACAGTGCTGACTGTTAAATAGTCATGCG 120 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted TTTCCAAATTATTATGGAAACAAGATGCGTTTTTTGTTTTTTGTTTCTCCTGACTGAACA 180 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted CATTGCAGTGATGAGTGCTCAAGGAAAGGATTTTAATCAGAGTCGGCTTTCCATGGGACC 240 
Sequenced --------------------------------NNNNNNNNNNNNNGNNTNNNNNGGGNNC 28 
                                                       *  *     ***  * 
 
Predicted TTTGTCTCCAACTCAAAAATCTACGATTGTAATAGGAAACCAGATCAACGAGTCCATGCC 300 
Sequenced TTTGTCTCCNACTCNAAAATCTACGATTGTAATAGGAAACCNNNTNNACGAGTCCATGCC 88 
          ********* **** **************************   *  ************* 
 
Predicted TCGGCGACCAAAAGTTTTGCCTCCTATGTGTACAGATCCCACGGAAATCAGGGACACCTT 360 
Sequenced TCGGCGACCAAAAGTTTTGCCTCCTATGTGTACAGATCCCACGGAAATCAGGGACACCTT 148 
          ************************************************************ 
 
Predicted CAAGTATATTAACACCGTGGTTTCATGCCTTGTATTTGTAGTTGGTATAATCGGAAATTC 420 
Sequenced CAAGTATATTAACACCGTGGTTTCATGCCTTGTATTTGTAGTTGGTATAATCGGAAATTC 208 
          ************************************************************ 
 
Predicted CACGCTGCTTAGAATCATTTATAAAAACAAATGCATGCGGAACGGTCCAAATATTCTCAT 480 
Sequenced CACGCTGCTTAGAATCATTTATAAAAACAAATGCATGCGGAACGGTCCAAATATTCTCAT 268 
          ************************************************************ 
 
Predicted TGCAAGTCTGGCGCTTGGGGACCTCTTACACATCATGATAGACATTCCCATCAATGTGTA 540 
Sequenced TGCAAGTCTGGCGCTTGGGGACCTCTTACACATCATGATAGACATTCCCATCAATGTGTA 328 
          ************************************************************ 
 
Predicted TAAGCTTCTGGCTAAAGATTGGCCATTTGGTGTTGGACTTTGCAAACTGGTTCCTTTTAT 600 
Sequenced TAAGCTTCTGGCTAAAGATTGGCCATTTGGTGTTGGACTTTGCAAACTGGTTCCTTTTAT 388 
          ************************************************************ 
 
Predicted ACAAAAGACATCAGTTGGCATTACAATTCTGAGTTTGTGTGCACTGAGCATAGACAGATT 660 
Sequenced ACAAAAGACATCAGTTGGCATTACAATTCTGAGTTTGTGTGCACTGAGCATAGACAGATT 448 
          ************************************************************ 
 
Predicted TCGAGCAGTGTCATCCTGGAACCGCATCAAAGGCATTGGTGTTCCCAAATGGACAGCCAT 720 
Sequenced TCGAGCAGTGTCATCCTGGAACCGCATCAAAGGCATTGGTGTTCCCAAATGGACAGCCAT 508 
          ************************************************************ 
 
Predicted TGAAATCATTCTGATTTGGGTGTTGTCCATTATACTTGCAGTGCCAGAGGCCATTGCCTT 780 
Sequenced TGAAATCATTCTGATTTGGGTGTTGTCCATTATACTTGCAGTGCCAGAGGCCATTGCCTT 568 
          ************************************************************ 
 
Predicted TGACATGATCACAATGGACTACAAAGGAGAGCAGCTCAGGATTTGCCTTCTGCACCCTA- 839 
Sequenced TGACATGATCACAATGGACTACAAAGGAGAGCAGCTCANGATTTGCCTTCTGCACCCTAA 628 
          ************************************** ********************  
 
Predicted GCAAAGAATCAAGTTTATGCAGGTCAGTTTGCATATATAAAGATTGGTGGCTTTTCAGCT 899 
Sequenced GCAAAGAATCAAGTTTATGCAGTTTTATAAG-AAAGCCAAAGATTGNNGNNNNNNNNNNN 687 
          ********************** *   *  * * *   ********  *            
 
Predicted TCTACTTCTGCATGCCATTGACATGTACTGCCATATTTTACACTCTTATGACCTGTGAAA 959 
Sequenced NNNNN------------------------------------------------------- 692 
                                                                             
Predicted TGCTTCGGAAAAAAAATGGAGTCCAAATTGCACTCAGTGATCACATAAAACAGAGACGTG 1019 
Sequenced ------------------------------------------------------------ 
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Predicted AGGTGGCTAAAACCGTTTTCTGTTTGGTGCTAGTCTTTGCACTGTGCTGGCTTCCACTGC 1079 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted ATCTTAGTCGTATTCTTCAACGTACAATTTATGATGAAAGGGACCCCAACCGTTGTGAGC 1139 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted TTCTGAGTTTCTTCTTGGTTCTTGATTATATTGGGATCAATATGGCATCAGTGAACTCAT 1199 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted GTATAAACCCAATTGCTTTGTACATGGTTAGCAAGCGCTTCAAGAGCTGCTTCAGATCAT 1259 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted GTCTGTGTTGCTGGTGTCTGCCTCCTGAAATACTAGCCATGGATGACAAACAGTCCTGCA 1319 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted TAAAGCTGAAGGTAACAGAGCGAGGATCAGCCATAACAGCCATGTCTCCAACAAGTATAC 1379 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted TTCAAATTAGGCACTGATATGCTTACATGTATCAATGGCCAACAAATTTACTTTAACATT 1439 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted TAATACTATGCAAATAAAACCATGAACCATAAAATGGTGATATAAAAGGCAAA        1492 
Sequence ----------------------------------------------------- 

Figure 5.2 Confirmation of EDNRB ensembl predicted sequence. 
The EDNRB PCR amplicon underwent sequencing to confirm the Ensembl predicted 
sequence and demonstrated 91% homology. C = cytosine, G = guanine, T = thymine, 
A = adenosine, N = not determined, * = sequence match, - = sequence absence. 
Numbers on right refer to base-pair number of predicted sequence. 
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To identify regions of homology between EDNRB sequences in zebrafish and other 

model organisms I compared sequence alignments utilising ClustalW (version 2.0.10; 

www.ebi.ac.uk/Tools/clustalw2/index.html). While the Ensembl predicted sequence 

were utilised for human, mouse and chick, the zebrafish sequence I determined for the 

genes were utilised. Regions of homology between species are often functional regions, 

and thus important to determine.  

Alignment of EDNRB zebrafish sequence to human, mouse, and chick demonstrated a 

homology of 61-71% (zebrafish-human 63%, -mouse 61%, -chick 71%). There is 

significant homology from base-pair 126 onwards between all species aligned (figure 

5.3). Human and mouse sequences demonstrate a series of base-pairs prior to the 

zebrafish sequence (approximately 400 and 140 base-pairs respectively). The regions of 

sequences demonstrating homology correspond to the majority of exon 1 onward, as can 

be observed from figure 5.1. A variety of protein domains are therefore possibly 

homologous between the aligned species, and their roles are described briefly in figure 

5.4. 

 

5.2.4 In situ Hybridisation Determines EDNRB Expression Pattern 

I decided to perform whole-mount in situ hybridisation (ISH) to help determine 

endogenous expression in zebrafish embryos. ISH is commonly utilised to determine 

gene expression patterns during early development in zebrafish embryos by detecting 

specific nucleic acid sequences with RNA probes. ISH has a major advantage over 

antibody immunohistochemistry, since very few antibodies are presently cross-reactive 

with zebrafish. In addition, reagents and technique have been optimised for zebrafish 

embryos (Thisse and Thisse, 2008). 

ISH was performed at 2 and 4dpf (n=18-24/group) with a probe developed from PCR 

product as described by Thisse and Thisse (2008). Representative lateral views of 

EDNRB expression pattern can be observed in figure 5.5. At 2dpf (figure 5.5A), a strong 

line of staining originating at a site above the pericardial sac traverses laterally towards 

the tail. Its apparent termination is the end of the yolk-sac extension. 

 

http://www.ebi.ac.uk/Tools/clustalw2/index.html)
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human ATGAATAAAAGTACTTGTCTGATGGCAGCAGAGACCCCGAGCAAACGGTGGAGGCTACAC 60 
mouse ------------------------------------------------------------ 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                          
human TGTCTGGCATTCTCGCAGCGTTTCGTCAGAGCCGGACCCGCCTGCAGCTCAAGGGAGGCG 120 
mouse ------------------------------------------------------------ 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                             
human TGCTCCTCTCCCAGAGCAGGCTGGAACCCAGCTGGGTTCCGCCTCCCGGGAAGGTGGTCT 180 
mouse ------------------------------------------------------------ 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                             
human CCATTCGTCGCTCTGCATCTGGTTTGTCAGATCCGAGAGGCTCTGAAACTGCGGAGCGGC 240 
mouse ------------------------------------------------------------ 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                             
human CACCGGACGCCTTCTGGAGCAGGTAGCAGCATGCAGCCGCCTCCAAGTCTGTGCGGACGC 300 
mouse ------------------------------ATGCAATCGCCCGCAAGCCGGTGCGGACGC 30 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                             
human GCCCTGGTTGCGCTGGTTCTTGCCTGCGGCCTGTCGCGGATCTGGGGAGAGGAGAGAGGC 360 
mouse GCCTTGGTGGCGCTGCTGCTGGCCTGTGGCTTCTTGGGGGTATGGGGAGAGAAAAGAGGA 90 
chick ------------------------------------------------------------ 
zfish ------------------------------------------------------------ 
                                                                             
human TTCCCGCCTGACAGGGCCACTCCG---CTTTTGCAAACCGCAGAGATAATGACGCCACCC 417 
mouse TTCCCACCTGCCCAAGCCACGCTGTCACTTCTCGGGACTAAAGAGGTAATGACGCCACCC 150 
chick ------------------------------------------------------------ 
zfish ---------------------------------------------ATGAGTGCTCAAGGA 15 
                                                                             
human ACTAAGACCTTATGGCCCAAGGGTTCCAACGCCAGTCTGGCGCGGTCGTTGGCACCTGCG 477 
mouse ACTAAGACCTCCTGGACCAGAGGTTCCAACTCCAGTCTGATGCGTTCCTCCGCACCTGCG 210 
chick ------------------------------------------------------------ 
zfish AAGGATTTTAATCAGAGTCGGCTTTCCATGGGACCTTTGTCTCCAACTCAAAAATCTACG 75 
                                                                             
human GAGGTGCCTAAAGG---AGACAGGACGGCAGGATCTCCGCCACGCACCATCTCCCCTCCC 534 
mouse GAGGTGACCAAAGG---AGGGAGGGGGGCTGGAGTCCCGCCAAGATC---CTTCCCTCCT 264 
chick ---------------------------------------------------TCGCTCCCG 9 
zfish ATTGTAATAGGAAACCAGATCAACGAGTCCATGCCTCGGCGACCAAAAGTTTTGCCTCCT 135 
                                                         *  *  **  
 
human CCGTGCCAAGGACCCATCGAGATCAAGGAGACTTTCAAATACATCAACACGGTTGTGTCC 594 
mouse CCGTGCCAACGAAATATTGAGATCAGCAAGACTTTTAAATACATCAACACGATTGTGTCG 324 
chick ATGTGCACCGGGCAGACGGAGATCAAGGAGACCTTCAAGTATATCAACACGGTGGTGTCA 69 
zfish ATGTGTACAGATCCCACGGAAATCAGGGACACCTTCAAGTATATTAACACCGTGGTTTCA 195 
        ***          *  ** ****   * ** ** ** ** ** *****  * ** **  
 
human TGCCTTGTGTTCGTGCTGGGGATCATCGGGAACTCCACACTTCTGAGAATTATCTACAAG 654 
mouse TGCCTCGTGTTCGTGCTAGGCATCATCGGGAACTCCACGCTGCTAAGAATCATCTACAAG 384 
chick TGCCTGGTGTTCGTCCTGGGCATCATCGGCAACTCCACGCTGTTGCGGATCATCTACAAG 129 
zfish TGCCTTGTATTTGTAGTTGGTATAATCGGAAATTCCACGCTGCTTAGAATCATTTATAAA 255 
      ***** ** ** **  * ** ** ***** ** ***** **  *  * ** ** ** **  
 
human AACAAGTGCATGCGAAACGGTCCCAATATCTTGATCGCCAGCTTGGCTCTGGGAGACCTG 714 
mouse AACAAGTGCATGCGCAATGGTCCCAATATCTTGATCGCCAGTCTGGCTCTGGGAGACCTA 444 
chick AACAAGTGCATGAGGAACGGCCCCAACATCCTCATCGCCAGCCTGGCCCTGGGTGACTTG 189 
zfish AACAAATGCATGCGGAACGGTCCAAATATTCTCATTGCAAGTCTGGCGCTTGGGGACCTC 315 
      ***** ****** * ** ** ** ** **  * ** ** **  **** ** ** *** *  
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human CTGCACATCGTCATTGACATCCCTATCAATGTCTACAAGCTGCTGGCAGAGGACTGGCCA 774 
mouse CTGCACATCATCATAGACATACCCATTAACACCTACAAGTTGCTCGCAGAGGACTGGCCA 504 
chick CTGCACATCATCATCGACATCCCCATCAGCGTCTACAAGCTACTTGCAGAGGACTGGCCC 249 
zfish TTACACATCATGATAGACATTCCCATCAATGTGTATAAGCTTCTGGCTAAAGATTGGCCA 375 
       * ****** * ** ***** ** ** *     ** *** * ** **  * ** *****  
 
human TTTGGAGCTGAGATGTGTAAGCTGGTGCCTTTCATACAGAAAGCCTCTGTGGGAATCACT 834 
mouse TTTGGAGCTGAGATGTGTAAGCTGGTGCCCTTCATACAGAAGGCTTCTGTGGGAATCACA 564 
chick TTTGGTGTCGAAATGTGTAAATTAGTGCCCTTCATTCAAAAGGCATCAGTGGGCATCACA 309 
zfish TTTGGTGTTGGACTTTGCAAACTGGTTCCTTTTATACAAAAGACATCAGTTGGCATTACA 435 
      ***** *  *   * ** **  * ** ** ** ** ** **  * ** ** ** ** **  
human GTGCTGAGTCTATGTGCTCTGAGTATTGACAGATATCGAGCTGTTGCTTCTTGGAGTAGA 894 
mouse GTGCTGAGTCTTTGTGCTCTAAGTATTGACAGATATCGAGCTGTTGCTTCTTGGAGTCGA 624 
chick GTGTTGAGTTTGTGTGCCCTCAGTATAGACAGGTACCGAGCAGTTGCTTCTTGGAGTCGA 369 
zfish ATTCTGAGTTTGTGTGCACTGAGCATAGACAGATTTCGAGCAGTGTCATCCTGGAACCGC 495 
       *  ***** * ***** ** ** ** ***** *  ***** **  * ** ****   *  
 
human ATTAAAGGAATTGGGGTTCCAAAATGGACAGCAGTAGAAATTGTTTTGATTTGGGTGGTC 954 
mouse ATTAAAGGAATTGGGGTTCCAAAATGGACAGCAGTAGAAATTGTTTTAATTTGGGTGGTC 684 
chick ATTAAAGGAATTGGAGTGCCAAGGTGGACTGCTGTTGAAATTGTACTCATCTGGGTTATA 429 
zfish ATCAAAGGCATTGGTGTTCCCAAATGGACAGCCATTGAAATCATTCTGATTTGGGTGTTG 555 
      ** ***** ***** ** ** *  ***** **  * *****  *  * ** *****  *  
 
human TCTGTGGTTCTGGCTGTCCCTGAAGCCATAGGTTTTGATATAATTACGATGGACTACAAA 1014 
mouse TCTGTGGTTCTGGCTGTCCCCGAAGCCATAGGTTTTGATATGATTACGTCGGACTACAAA 744 
chick TCGGTGGTATTGGCTGTTCCTGAAGCTATTGCATTTGACATGATAACAATGGAGTACAGG 489 
zfish TCCATTATACTTGCAGTGCCAGAGGCCATTGCCTTTGACATGATCACAATGGACTACAAA 615 
      **  *  *  * ** ** ** ** ** ** *  ***** ** ** **   *** ****   
 
human GGAAGTTATCTGCGAATCTGCTTGCTTCATCCCGTTCAGAAGACAGCTTTCATGCAGTTT 1074 
mouse GGAAAGCCCCTAAGGGTCTGCATGCTTAATCCCTTTCAGAAAACAGCCTTCATGCAGTTT 804 
chick GGAAAGGATCTCAGAATCTGCCTGCTTCACCCCACACAGAAAACATCCTTTATGATGTTT 549 
zfish GGAGAGCAGCTCAGGATTTGCCTTCTGCACCCTA-GCAAAGAATCAAGTTTATGCAGGTC 674 
      ***      **  *  * *** * **  * **    ** *  *     ** ***  * *  
 
human TACAAG-ACAGCAAAAGATTGGTGGCTATTCAGTTTCTATTTCTGCTTGCCATTGGCCAT 1133 
mouse TACAAG-ACAGCCAAAGATTGGTGGCTGTTCAGTTTCTACTTCTGCTTGCCGCTAGCCAT 863 
chick TACAAG-AAAGCTAAAGACTGGTGGCTGTTCAGCTTTTATTTCTGTTTGCCACTGGCTAT 608 
zfish AGTTTGCATATATAAAGATTGGTGGCTTTTCAGCTTCTACTTCTGCATGCCATTGACATG 734 
           * * *   ***** ******** ***** ** ** *****  ****  *  *    
 
human CACTGCATTTTTTTATACACTAATGACCTGTGAAATGTTGAGAAAGAAAAGTGGCATGCA 1193 
mouse CACTGCAGTCTTTTATACCCTGATGACCTGCGAAATGCTCAGGAAGAAGAGCGGTATGCA 923 
chick CACAGCACTTTTCTATACTCTCATGACCTGTGAGATGTTACGAAAGAAAAGTGGGATGCA 668 
zfish TACTGCCATATTTTACACTCTTATGACCTGTGAAATGCTTCGGAAAAAAAATGGAGTCCA 794 
       ** **  * ** ** ** ** ******** ** *** *  * ** ** *  **  * ** 
 
human GATTGCTTTAAATGATCACCTAAAGCAGAGACGGGAAGTGGCCAAAACCGTCTTTTGCCT 1253 
mouse GATTGCTTTGAATGATCACTTAAAGCAGAGACGAGAAGTGGCCAAGACAGTCTTCTGCCT 983 
chick GATTGCTTTAAATGATCACTTAAAACAGAGACGCGAGGTGGCCAAGACTGTGTTCTGCCT 728 
zfish AATTGCACTCAGTGATCACATAAAACAGAGACGTGAGGTGGCTAAAACCGTTTTCTGTTT 854 
       *****  * * ******* **** ******** ** ***** ** ** ** ** **  * 
 
human GGTCCTTGTCTTTGCCCTCTGCTGGCTTCCCCTTCACCTCAGCAGGATTCTGAAGCTCAC 1313 
mouse GGTCCTCGTGTTTGCTCTCTGTTGGCTTCCCCTTCACCTCAGCCGGATCCTGAAGCTCAC 1043 
chick GGTACTTGTTTTTGCCTTGTGTTGGCTTCCACTTCATTTAAGCAGAATATTGAAACTCAC 788 
zfish GGTGCTAGTCTTTGCACTGTGCTGGCTTCCACTGCATCTTAGTCGTATTCTTCAACGTAC 914 
      *** ** ** *****  * ** ******** ** **  * **  * **  *  * *  ** 
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human TCTTTATAATCAGAATGATCCCAATAGATGTGAACTTTTGAGCTTTCTGTTGGTATTGGA 1373 
mouse CCTGTATGACCAGAGCAATCCACACAGGTGTGAGCTTCTGAGCTTTTTGTTGGTTTTGGA 1103 
chick TATTTATGATCAAAAGGACCCCAATAGATGTGAACTTTTAAGCTTTTTTCTTGTAATGGA 848 
zfish AATTTATGATGAAAGGGACCCCAACCGTTGTGAGCTTCTGAGTTTCTTCTTGGTTCTTGA 974 
        * *** *  * *   * **  *  * ***** *** * ** **  *  * **  * ** 
 
human CTATATTGGTATCAACATGGCTTCACTGAATTCCTGCATTAACCCAATTGCTCTGTATTT 1433 
mouse CTACATTGGTATCAACATGGCTTCTTTGAACTCCTGCATCAATCCAATCGCTCTGTATTT 1163 
chick CTACATTGGCATTAACATGGCCTCACTGAATTCCTGCATCAATCCAATTGCTCTATATTT 908 
zfish TTATATTGGGATCAATATGGCATCAGTGAACTCATGTATAAACCCAATTGCTTTGTACAT 1034 
       ** ***** ** ** ***** **  **** ** ** ** ** ***** *** * **  * 
 
human GGTGAGCAAAAGATTCAAAAACTGCTTTAAGTCATGCTTATGCTGCTGGTGCCAGTCATT 1493 
mouse GGTGAGCAAAAGATTCAAAAACTGCTTTAAGTCATGTTTGTGCTGCTGGTGCCAAACGTT 1223 
chick GGTGAGCAAGAGATTCCAAAACTGCTTTAAGTCATGTTTGTGTTGCTGGTGCCAA---TC 965 
zfish GGTTAGCAAGCGCTTCAAGAGCTGCTTCAGATCATGTCTGTGTTGCTGGTGTCTG---CC 1091 
      *** *****  * *** * * ****** *  *****  * ** ******** *        
 
human TGAAGAAAAACAGTCCTTGGAGGAAAAGCAGTCGTGCTTAAAGTTCAAAGCTAATGATCA 1553 
mouse TGAGGAAAAGCAGTCCTTGGAGGAGAAGCAGTCCTGCCTGAAGTTCAAAGCCAACGATCA 1283 
chick CAAAGATCTGTTGTCCCTGGAGGAAAGACAGTCGTGTTTAAAGTTCAAAGCTAATGATCA 1025 
zfish TCCTGAAATACTAGCCATGGATGACAAACAGTCCTGCATAAAGCTGAAGGTAACAGAGCG 1151 
          **        ** **** ** *  ***** **  * *** * ** *  *  ** *  
 
human CGGAT--ATGACAACTTCCGTTCCAGTAATAAATACAGCTCATCTTGA------- 1599 
mouse CGGAT--ATGACAACTTCCGGTCCAGCAATAAATACAGCTCGTCTTGA------- 1329 
chick CGGAT--ACGATAACTTCCGTTCCAGTAACAAGTACAGCTCCTCATAA------- 1071 
zfish AGGATCAGCCATAACAGCCATGTCTCCAACAAGTATACTTCAAATTAGGCACTGA 1206 
       ****     * ***  **    *   ** ** ** *  **    *          
 

Figure 5.3 EDNRB inter-species homology. 
Alignment of EDNRB sequences from zebrafish, human, mouse, and chick 
demonstrates homology between species of between 64 and 70%. Homology is 
observed for the majority of exons 2-5, suggesting these regions may be functional 
regions of the gene. Homology over numerous intron:exon boundaries provides a 
choice for MO splice-site blocker design. 
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This expression pattern concurs with that previously observed (Lister, Cooper et al., 

2006)  in which the cells are described as presumptive melanocytes (arrow, figure 5.5A). 

There is also some weak expression immediately dorsal to the line corresponding with 

the region of SIVs, as well as expression within the brain which corresponds with 

EDNRB as a marker for neural crest cells (Parichy, Ransom et al., 2000). 

Despite identical conditions of hybridisation and staining as 2dpf embryos, only weak 

staining was detectable in 4dpf embryos, suggesting possible decreased EDNRB 

expression from 2 to 4dpf (figure 5.5B). This would concur with my microarray analysis 

which demonstrated decreased expression in EDNRB in control embryos from 48 to 

60hpf (log2 expression at 48hpf: 4.29, 60hpf: 1.36). The strong line of lateral staining 

observed at 2dpf is no longer observable, presumably a result of completed melanocyte 

migration or development. Expression in the region of aorta and cardinal vein remains. 

ET promotes EC proliferation and migration (Cruz, Parnot et al., 2001), components of 

angiogenesis. Angiogenesis continues to 4dpf in zebrafish embryos (Isogai, Horiguchi et 

al., 2001), possibly explaining continued levels of EDNRB expression in this region. 

Expression within the head is also still observable at this timepoint. 

 

5.2.5 Determination of Morpholino Concentration for EDNRB Knockdown 

Having confirmed expression of EDNRB in zebrafish embryos I wished to identify their 

possible role in modulating arteriogenesis. I chose to perform knockdown experiments, 

since morpholino antisense oligonucleotides (MOs) are frequently used to knockdown 

genes of interest in zebrafish embryos. MOs are designed against a gene’s sequence, and 

thus confirmation of base-pair sequence as I performed in section 5.2.3 is important to 

ensure activity. 

A splice-site MO for EDNRB (Gene Tools Inc, Oregon, USA) were designed against the 

confirmed sequence, to perform steric block at regions demonstrating homology when 

aligned against human, mouse and chick (section 5.2.3). Since multiple exons EDNRB 

demonstrated high levels of homology, the MO were designed to interact with the 

intron:exon boundary of exon 2. 
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Figure 5.5 In situ hybridisation of zebrafish embryos to an EDNRB probe 
further determines the expression pattern of EDNRB. 
48hpf (A) and 96hpf (B) wildtype embryos underwent in situ hybridisation to help 
further determine the expression pattern of EDNRB during early development. The 
results appear to show a fall in expression of EDNRB at 96hpf compared to 48hpf. 
Arrow (A) demarks proposed ventral stripe formed of melanocytes. Each sub-figure 
comprised of 3-  
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Figure 5.6 Dose-response graph to determine the concentration at which to 
utilise the EDNRB splice MO. 
A concentration of [500nM] EDNRB MO led to reduced survival rates for embryos 
that made utilisation impractical. While a concentration of [50nM] provided the best 
survival, MO activity was not always detected. A concentration of [100nM] was 
utilised in further experiments. 
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To determine the concentration at which the MO should be utilised dose-response 

experiments were performed to determine embryonic survival over several 

concentrations (50, 100, 200, 500nM) during the first 3dpf (n=3, total of 120 

embryos/group). 

Figure 5.6 presents survival rates for embryos injected with EDNRB MO in comparison 

to standard control MO. [50nM] MO demonstrated highest survival rates, however, once 

more MO activity could not be guaranteed at this concentration. [100nM] and [200nM] 

shared similar levels of survival (60.5±7.5% and 51.1±2.3% respectively at 24hpf) 

which corresponded well with survival of embryos injected with control MO (100nM: 

65.0±0.9%, 200nM: 59.8±5.7%). [500nM] led to greatly reduced levels of survival 

compared to embryos injected with the same concentration of control MO, suggesting 

toxicity. [100nM] EDNRB MO was utilised for further experimentation, again to reduce 

the possibility of non-specific effects caused by toxicity. 

 

5.2.6 EDNRB Morpholinos Knockdown the Gene of Interest 

To determine activity of the EDNRB MO I performed PCR analysis. Total RNA was 

extracted from wildtype embryos injected with [100nM] EDNRB, or control MO and 

reverse transcribed generating cDNA. cDNA was then utilised in PCR analysis and gel 

electrophoresis. 

Transcript band shifts were observed with [100nM] EDNRB MO at 1 and 5dpf by PCR 

analysis, demonstrating splice modification by the MO (figure 5.7B) up to 5dpf. No 

band shifts were observed with cDNA generated from embryos injected with [100nM] 

control MO. While control bands appear of equal concentration at both 1 and 5dpf at 

over 200ng, band shifts generated by EDNRB splice modification appear reduced at 

5dpf (60ng, upper band) compared to 1dpf (100ng, upper band), suggesting a decrease 

in MO activity from 1-5dpf, as if often observed. It appears MO knockdown induces 

exon skip, generating transcripts of smaller band sizes. The MO interacts at 

intron1:exon2 boundary, and may therefore result in ‘loss’ of several domains including 

a bombesin receptor domain which can stimulate VSMCs, a neuropeptide Y domain 

regulating VSMC constriction, or a GPR37 orphan receptor (figure 5.4). 
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5.2.7 Gross Phenotype of EDNRB Knockdown 

In order to determine gross phenotype of EDNRB knockdown in zebrafish embryos, I 

injected wildtype embryos with [100nM] EDNRB, or control MO (approximately 40 

embryos per group). A further group of 40 sibling embryos were left uninjected with 

MO. Embryos were then observed under stereomicroscopy at 2 and 5dpf. Wildtype 

embryos injected with control MO did not demonstrate any altered phenotype compared 

to uninjected embryos at 2 or 5dpf. 

At both timepoints, gross structures including head, trunk, body length, and heart 

structure appeared comparable under stereomicroscopy. It can thus be deduced that 

injection of standard control MO does not result in altered physiology of embryos. At 

2dpf EDNRB knockdown embryos demonstrated previously reported abnormal 

melanophore pigment cell expression (Lister, Cooper et al., 2006), in addition to severe 

pericardial oedema and yolk-sac enlargement (figure 5.16). This may result from 

inhibition of EDNRB’s role in renal sodium reabsorption (Bagnall, Kelland et al., 2006) 

causing fluid imbalances or fluid retention due to hypertension (Murakoshi, Miyauchi et 

al., 2002). Pericardial oedema continued at 5dpf, leading to a thin, elongated heart but 

that continued to contract. Yolk-sac enlargement increased from 2-5dpf. Body length is 

reduced compared to control embryos. In some embryos, slight necrosis to the tail was 

observed at 5dpf. EDNRB phenotype at 5dpf can be seen in figure 5.9 compared to 

control MO injected siblings. Embryos continued to swim, and react to touch stimuli 

normally. 

 

5.2.8 Vessel Patterning in EDNRB Knockdown 

To determine whether EDNRB knockdown resulted in abnormal vascular patterning or 

development through abnormal vasculogenesis (de novo vessel formation through in situ 

differentiation of angioblasts) or angiogenesis (growth and remodelling of primitive 

vascular networks) I performed confocal microscopy of fli1:eGFP MO injected 

embryos. 
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Figure 5.7 Assessing the activity of EDNRB MO by PCR analysis. 
PCR analysis was performed on cDNA generated from total RNA extracted at 
timepoints described in the figure. At 1 and 5dpf splice modification was observed 
following EDNRB splice MO injection leading to observation of multiple bands 
following EDNRB knockdown. GAPDH expression was utilised as positive control, 
while no RT lanes were used to demonstrate PCR specificity to the gene of interest. 
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Figure 5.8 Phenotype of EDNRB knockdown in wildtype embryos at 2dpf. 
EDNRB knockdown in wildtype embryos at 2dpf (C) resulted in severe pericardial 
oedema and yolk-sac enlargement on comparison with control MO injected siblings 
(B) and uninjected siblings (A). Y=yolk-sac, PC=pericardial sac. Representative 
lateral views complied of 2-  
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Figure 5.9 Phenotype of EDNRB knockdown in wildtype embryos at 5dpf. 
Representative lateral view showing the phenotype observed following EDNRB 
knockdown in wildtype embryos at 5dpf. Pericardial oedema remained in EDNRB 
knockdown wildtype embryos at 5dpf (C). Enlargement of the yolk-sac increases 
from 2-5dpf. Slight necrosis of the tail was observed in some embryos. In contrast, 
control MO injected siblings (B) and uninjected siblings (A) looked normal. Arrow 
denotes site of dorsal stripe, arrowhead site of ventral stripe. Y=yolk-sac, 
PC=pericardial sac. Each sub-figure compiled from 2-3 images. Scale ba  
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Representative embryos were chosen for laser-scanning confocal microscopy at 2 and 

5dpf from approximately 40 observed by fluorescent stereomicroscopy. The same 

embryos were studied at both timepoints.  

By 2dpf vasculogenesis, during which aorta and cardinal vein develop, is complete. At 

5dpf angiogenesis of ISVs, DLAVs, and SIVs has occurred, with untreated embryos 

demonstrating a standard vascular pattern (Isogai, Horiguchi et al., 2001). Angiogenesis 

is responsible for formation of ISVs, DLAVs, and SIVs. 5dpf is also the last timepoint 

at which recovery of aortic blood flow in gridlock embryos was observed (section 

5.2.11). Of approximately 40 knockdown embryos per group observed by fluorescent 

stereomicroscopy at 2dpf, all EDNRB knockdown embryos demonstrated normal 

patterning of aorta and cardinal vein on comparison with wildtype embryos (figure 

5.11), suggesting normal vasculogenesis, during which these vessels form (Isogai, 

Horiguchi et al., 2001). 

EDNRB knockdown embryos appear to demonstrate abnormalities in vessel structure, 

particularly towards the tail. Vessels developed during vasculogenesis that form prior to 

2dpf such as dorsal aorta and cardinal vein appear normal, although difficult to observe 

due to development of severe yolk-sac enlargement. Observation remains obscured at 

5dpf. It is particularly difficult to observe aorta and cardinal vein, and determine 

presence of SIVs due to oedema. While normal patterning and number of ISVs is 

observed on their formation, and DLAVs develop normally, at 5dpf DLAVs appear 

abnormal. The vessels demonstrate a more ‘looping’ phenotype, presumably a response 

to growth and remodelling necessary as embryos grow. Such a phenotype could be due 

to loss of EC migratory signals, or inhibited vessel maturation. EDNRB has been 

previously shown to be necessary for correct migration of ECs in vitro and in vivo 

(Cruz, Parnot et al., 2001). 

 

5.2.9 Recovery of Aortic Blood Flow with EDNRB Knockdown 

Haemodynamic force, including FSS plays a significant role in recovery of aortic blood 

flow following arterial occlusion (Buschmann and Schaper, 1999). In chapter 4, I 

demonstrated decreased expression of EDNRB in absence of haemodynamic force. 
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Therefore, it is reasonable to hypothesise EDNRB deficiency may lead to reduced 

recovery of aortic blood flow following occlusion. The role of these genes in 

arteriogenesis has not been studied, despite demonstrations of their importance in 

vascular remodelling in mammals (Adams, Wilkinson et al., 1999; Murakoshi, 

Miyauchi et al., 2002). I therefore wished to determine the potential role of the genes in 

modulating arteriogenesis. 

To do this, I undertook EDNRB knockdown in gridlock mutant embryos, since the 

mutants’ amenability to high throughput screening suited the experimentation (3 

replicates, 30-50 embryos per group per replicate). Recovery of aortic blood flow by 

‘collateral’ vessels in knockdown embryos was determined by binary count of presence 

or absence of aortic blood flow and compared to embryos injected with standard control 

MO. Gridlock mutants were not affected by MO injection any differently than wildtype 

embryos, appearing entirely normal, however detailed investigation was not performed 

and it is possible vessel histology was altered. By 5dpf, EDNRB knockdown embryos 

demonstrate pericardial oedema and severe yolk-sac swelling, as discussed in section 

5.2.8. Gridlock embryos with EDNRB knockdown may therefore demonstrate a 

phenotype which precludes accurate determination of recovery of blood flow. However, 

recovery of blood flow was determined to provide preliminary data regarding the role of 

EDNRB in arteriogenesis.  

At 2dpf no EDNRB knockdown gridlock mutant or control MO gridlock embryo was 

found to have aortic blood flow. No significant difference from control MO injecting 

siblings was observed at 3dpf (control: 26.60±8.95, EDNRB knockdown: 13.09±10.16). 

At 4dpf, a very significant reduction (P<0.01) in recovery of aortic blood flow distal to 

occlusion was observed (control: 63.93±3.41, EDNRB knockdown: 27.47±6.61), as 

demonstrated in figure 5.21. This very significant reduction was maintained at 5dpf 

(control: 66.73±3.26, EDNRB knockdown: 27.50±6.85; power 100%). It seems likely 

that EDNRB controls blood flow, and thus is linked to haemodynamic force, through 

vasoregulation. Ligand binding of EDNRB on VSMCs leads to vasoconstriction, while 

activation of endothelial EDNRB results in NO release inducing vasodilatation 

(Murakoshi, Miyauchi et al., 2002). 
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Figure 5.12 The effect of EDNRB knockdown on the acquisition of aortic blood 
flow distal to the occlusion site in gridlock mutant embryos. 
EDNRB knockdown gridlock mutant embryos do not demonstrate a difference in the 
acquisition of aortic blood flow distal to the occlusion site compared to control MO 
injected siblings at 3dpf. At 4dpf, a very significant reduction (P<0.01) in the 
acquisition of aortic blood flow is observed, which was maintained at 5dpf. 
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Experiments utilising VSMCs in culture have demonstrated a significant upregulation of 

EDNRB mRNA following onset of cyclic stretch, mimicking increases in blood 

pressure, which were maintained for a further 12h after abolishment of stretch 

(Cattaruzza, Dimigen et al., 2000). EC-specific inactivation of EDNRB leads to 

increased plasma concentrations of ET and reduced endothelial-dependent 

vasodilatation (Bagnall, Kelland et al., 2006). Furthermore, EDNRB mutant mice suffer 

significantly reduced levels of vascular remodelling following ligation of the common 

carotid artery (Murakoshi, Miyauchi et al., 2002). This data therefore concurs with 

previous data in having found a significant reduction in levels of ‘collateral’ vessel 

development with EDNRB knockdown/knockout. 

 

5.2.10 Chemical Antagonism of EDNRB does not affect Recovery of Aortic Blood 

Flow in gridlock Mutant Embryos 

Since EDNRB knockdown in gridlock mutant embryos by MO led to significant 

reductions in the percentage of embryos recovering aortic blood flow, I sought to 

reproduce the effect by chemical antagonism. Groups of gridlock mutant embryos were 

antagonist BQ788 dissolved in DMSO from 2.5-5dpf. This timepoint was chosen since 

embryos appear to develop without abnormality to 2dpf (sections 5.2.8 and 5.2.9). 

BQ788 has not previously been utilised in zebrafish embryos. However BQ788 has been 

demonstrated to inhibit ET-induced angiogenesis (Salani, Taraboletti et al., 2000) and in 

vitro EC migration (Daher, Noel et al., 2008). A different EDNRB specific antagonist 

(A-192621) was demonstrated to decrease vascular remodelling following arterial 

ligation in mice (Murakoshi, Miyauchi et al., 2002). 

Gridlock embryos survived BQ788 treatment equally well as wildtype embryos. 

Survival rates ranged from 86.0±3.1%-100% irrespective of treatment group (n=3, 10-

30 embryos per group per replicate), demonstrating good embryonic tolerance. The 

heart rate compared to DMSO or untreated control siblings (figure 5.14; P>0.3; 

n=8/group; DMSO control: 156.8±3.76, untreated: 143.3±8.27, BQ788: 145.3±6.63; 

power 98.95%). 
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Figure 5.13 The effect of BQ788 on heart rate of gridlock mutant embryos at 
5dpf. 
Incubation from 2.5-5dpf with the EDNRB specific antagonist BQ788 demonstrates 
no significant difference on heart rates of gridlock mutant embryos at 5dpf compared 
to DMSO or untreated sibling control. 
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Figure 5.14 The effect of BQ788 on the acquisition of aortic blood flow distal to 
the occlusion site in gridlock mutant embryos. 
Incubation from 2.5-5dpf with the EDNRB specific antagonist BQ788 at [0.1], [1], or 

occlusion site in gridlock mutant embryos compared to DMSO or untreated sibling 
control. 
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This suggests EDNRB deficiency is not altering cardiac contractility. BQ788 has not 

previously been reported to affect heart rate. 

In contrast to the results of EDNRB MO knockdown, BQ788 treatment of gridlock 

mutant embryos did not significantly reduce recovery of aortic blood flow (figure 5.23; 

n=4, 10-20 embryos per group per replicate) at any of the three concentrations. At 2dpf 

no embryo was observed with aortic blood flow. At 3dpf comparable percentages of 

embryos recovered aortic blood flow between groups (DMSO: 31.13±11.88%, 

roups at 

788: 76.80±9.70%; power DMSO v [5  

BQ788 has not previously been described for utilisation in zebrafish embryos. BQ788 

incubation of embryos was performed by immersing embryos in media containing the 

antagonist. It is therefore possible that BQ788 did not freely diffuse into embryos. 

Embryos were incubated in BQ788 at 2.5dpf to observe the antagonist’s effect after 

vasculogenesis, and angiogenesis of ISVs, DLAVs, and some SIVs were completed 

(Isogai, Horiguchi et al., 2001). It is possible that inhibition of EDNRB is required prior 

to this timepoint in order to cause significant differences in response to arterial 

occlusion. 

5.3 Discussion 
 
Haemodynamic force modulates arteriogenesis (Buschmann and Schaper, 1999). 

Microarray analysis of zebrafish embryos in presence or absence of physiological 

haemodynamic force (Chapter 4) demonstrated differential expression of 290 genes 

between groups. Literature searches identified genes with possible roles in modulation 

of arteriogenesis through knowledge of other roles within vasculature. For example, 

although arteriogenesis and angiogenesis are distinct processes, they share mechanistic 
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traits such as modulation by NO (Yu, deMuinck et al., 2005), and infiltration of 

monocytes/macrophages (Van Royen, Piek et al., 2001b). EDNRB was identified as a 

possible candidate. Its role in modulating arteriogenesis has not been studied. EDNRB 

modulates blood flow through its involvement in vasoactivity (Murakoshi, Miyauchi et 

al., 2002), as well as promoting EC proliferation and migration (Cruz, Parnot et al., 

2001) a key constituent of angiogenesis. The aim of this chapter was exploitation of 

zebrafish embryos to determine the role of EDNRB in modulating arteriogenesis 

utilising morpholino oligonucleotide knockdown. Prior to knockdown, I began by 

confirming expression of EDNRB in zebrafish embryos. 

 

5.3.1 Expression of EDNRB in Zebrafish Embryos 

In order to confirm expression of EDNRB in zebrafish embryos I performed RT-PCR 

utilising wildtype embryo total RNA extracted at 36hpf and reverse transcribed. RNA 

extraction was performed at 36hpf since this was the first microarray timepoint. EDNRB 

transcript band size was observed at approximately 800bp (figure 5.1A), corresponding 

with the predicted band size of 718bp. GAPDH control also demonstrated transcript size 

corresponding with that predicted. Thus, these results confirm expression of EDNRB in 

zebrafish embryos at 36hpf. Transcript band size was determined utilising primer pairs 

designed against Ensembl predicted sequences. To confirm the sequences PCR product 

was sequenced at the University’s Core Genomics Facility allowing visualisation of 

potential alterations in base-pair alignment. Product was purified at the facility to 

remove excess primer, dNTIPs, and non-specific products. Alignment between PCR 

product and predicted sequence for EDNRB demonstrated 91% homology (figure 5.2). 

Once more, non-homologous regions were identified at either end of the alignment at 

primer binding locations. This may suggest true alignments are closer to 100% 

homology. These results confirm the automated predicted sequences for EDNRB in 

zebrafish embryos. 

Alignment of EDNRB zebrafish sequence to human, mouse, and chick demonstrated a 

homology of 61-71% with significant homology from base-pair 126 onwards between 

all aligned species (figure 5.3). The regions of homology correspond to the majority of 
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exon 1 onward. A variety of protein domains are therefore possibly homologous 

between the aligned species (discussed in section 5.3.3). 

 

5.3.2 Expression Pattern of EDNRB is Elucidated by ISH 

I performed whole-mount in situ hybridisation (ISH) to determine expression patterns in 

zebrafish embryos. ISH is commonly utilised to determine gene expression patterns 

during early development in zebrafish embryos by detecting specific nucleic acid 

sequences with RNA probes. It has a major advantage over antibody 

immunohistochemistry, since few antibodies are cross-reactive with zebrafish. In 

addition, reagents and technique have been optimised for zebrafish embryos (Thisse and 

Thisse, 2008). At 2dpf (figure 5.5A), a strong line of staining originating at a site above 

the pericardial sac traverses laterally towards the tail. It apparently terminates at the end 

of the yolk-sac extension. This expression pattern concurs with that previously observed 

(Lister, Cooper et al., 2006)  in which the cells are described as presumptive 

melanocytes (arrow, figure 5.9A). There is weak expression immediately dorsal to the 

line corresponding with the region of aorta and cardinal vein. This may correspond to 

vascular cells such as VSMCs expressing EDNRB (Cattaruzza, Dimigen et al., 2000), or 

vascular-associated cells such as macrophages which also express the gene (Miyauchi 

and Masaki, 1999). Expression within head which corresponds with EDNRB expression 

in neural crest cells (Parichy, Ransom et al., 2000) was also observed. Despite identical 

conditions of hybridisation at 4dpf, only weak staining was detectable (figure 5.5B). 

This could suggest decreased expression of EDNRB from 2 to 4dpf. As mentioned in the 

previous section, this would concur with my microarray analysis which demonstrated 

decreased expression in control embryos from 48 to 60hpf. The strong line of lateral 

staining is not observable at 4dpf, presumably a result of decreased expression in 

melanocytes. Expression in the region of aorta and cardinal vein remains. ET promotes 

EC proliferation and migration (Cruz, Parnot et al., 2001), components of angiogenesis. 

Angiogenesis continues at 4dpf in zebrafish embryos (Isogai, Horiguchi et al., 2001), 

perhaps explaining continued levels of EDNRB expression in this region. Expression 

within head is also still observable at this timepoint. 
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5.3.3 EDNRB Knockdown by Morpholino Injection 

Having confirmed expression of EDNRB in zebrafish embryos I wished to determine 

their possible role in modulating arteriogenesis, and did so by performing knockdown 

with MO. As MOs are designed against a gene’s sequence, confirmation of base-pair 

sequence (section 5.2.3) is important to ensure activity. Splice-site blocking MOs result 

in modification of pre-mRNA splicing to knockdown a gene’s functional sequence 

(Summerton, 2007). An advantage of splice-site blocking MOs is the ability to 

determine activity by PCR analysis. To determine the concentration at which MOs 

should be utilised dose-response experiments were performed to determine embryonic 

survival over several concentrations during the first 3dpf. MO-induced lethality is most 

likely during this timepoint since MOs are injected at 1-4 cell stage. Dose-response 

experiments were performed through alteration of MO concentration, rather than 

alteration of injected volume, to remove the possibility of non-specific phenotypes 

resulting from increasing volume. 

Survival rates following EDNRB knockdown were highest following injection of 

[50nM] (figure 5.11) however, MO activity was not always detected. [100nM] was 

utilised in future experiments, since this concentration combined high survival rates with 

activity. Additionally, [100nM] was the second lowest concentration examined, and is 

therefore least likely to cause toxicity and non-specific phenotypes. Embryonic survival 

was the parameter utilised in dose response experimentation. In hindsight, a prudent 

method may have been a more detailed study of embryos’ anatomy and physiology to 

accurately determine possible alterations. 

Transcipt band shifts demonstrated splice modification with injection of EDNRB MO at 

1 and 5dpf (figure 5.7). The band shifts appeared reduced at 5dpf suggesting decreased 

MO activity, as is often observed. It appears MO knockdown induces exon skip, 

generating transcripts of smaller band sizes. The MO interacts at intron1:exon2 

boundary, and may therefore result in ‘loss’ of several domains including a bombesin 

receptor domain which can stimulate VSMCs, a neuropeptide Y domain regulating 

VSMC constriction, or a GPR37 orphan receptor (figure 5.4). 
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5.3.4 Gross Phenotypic Characterisation of EDNRB Knockdown 

To determine gross phenotype of EDNRB knockdown in zebrafish embryos I injected 

wildtype embryos with [100nM] EDNRB, or control MO. A group of embryos were also 

left uninjected. Wildtype embryos injected with control MO did not demonstrate altered 

phenotype on comparison with uninjected embryos at 2 or 5dpf under stereomicroscopy. 

Gross structures such as head, trunk, heart, and body length are comparable between 

groups demonstrating injection of MOs does not in itself alter embryonic development. 

EDNRB knockdown in wildtype embryos demonstrated abnormal melanocyte pigment 

cell expression at 2dpf (figure 5.8), as previously described (Lister, Cooper et al., 2006). 

Embryos also demonstrated severe pericardial oedema and yolk-sac enlargement, which 

may result from inhibition of EDNRB’s role in renal sodium reabsorption (Bagnall, 

Kelland et al., 2006) causing fluid imbalances or fluid retention due to hypertension 

(Murakoshi, Miyauchi et al., 2002). By 5dpf (figure 5.9) the pericardial sac of EDNRB 

knockdown embryos had become more oedematous. As a result, the heart became thin 

and elongated, but continued to contract and pump blood around the vasculature. Body 

length is reduced compared to control embryos. Some embryos demonstrate slight 

necrosis of the tail, although embryos continued to swim and react to touch stimuli. 

 

5.3.5 Vessel Patterning in EDNRB Knockdown 

To determine the effect of EDNRB knockdown on vascular patterning and development 

through vasculogenesis and angiogenesis, fli1:eGFP transgenic embryos underwent MO 

injection and observation by fluorescent stereomicroscopy. Representative embryos 

underwent laser-scanning confocal microscopy at 2 and 5dpf. By 2dpf vasculogenesis, 

during which aorta and cardinal vein develop, is complete. At 5dpf angiogenic 

development of ISVs, DLAVs, and SIVs is complete, and wildtype embryos 

demonstrate a standard reproducible vascular pattern (Isogai, Horiguchi et al., 2001). 

5dpf is also the last timepoint at which recovery of aortic blood flow in gridlock mutant 

embryos was determined. At 2dpf, embryos demonstrated normal patterning of aorta 

and cardinal vein on comparison with control MO embryos (figure 5.10). This suggests 

normal vasculogenesis in EDNRB knockdown embryos. Genetic knockdown of vascular 
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EDNRB in mice was not reported to result in abnormal vasculogenesis (Murakoshi, 

Miyauchi et al., 2002). 

EDNRB knockdown embryos demonstrated apparent abnormalities in vessel structure, 

particularly towards the tail, at 5dpf (figure 5.11). Vessels developed prior to 2dpf 

during vasculogenesis (aorta, cardinal vein) appear normal, although difficult to 

visualise due to yolk-sac enlargement. It remains difficult to visualise aorta and cardinal 

vein, and determine presence of SIVs at 5dpf. Normal patterning and number of ISVs is 

observed on formation. DLAVs also develop normally. However, at 5dpf DLAVs 

appear abnormal. The vessels demonstrate a ‘looping’ phenotype, presumably a 

response to abnormal forms of growth and remodelling that occurs during embryonic 

growth. Given that vessels remain extant but demonstrate some unusual patterning it 

may suggest EC migration or vessel maturation is inhibited. EDNRB has been shown to 

be necessary for correct migration of ECs in vitro and in vivo (Cruz, Parnot et al., 2001). 

However, the possibility cannot be ruled out that abnormality in patterning, most highly 

visible at the tail, could also result from the severe phenotypic characteristics of 

pericardial oedema, yolk-sac enlargement, and slight necrosis to the tail region. 

 

5.3.6 Recovery of Aortic Blood Flow with EDNRB Knockdown 

Haemodynamic force including FSS plays a significant role in the recovery of aortic 

blood flow following arterial occlusion (Buschmann and Schaper, 1999). In chapter 4, I 

demonstrated decreased expression of EDNRB with absent haemodynamic force. 

Therefore, it is reasonable to hypothesise EDNRB deficiency may lead to reduced 

recovery of aortic blood flow following occlusion. The role of these genes in 

arteriogenesis has not been studied, despite demonstrations of their importance in 

vascular remodelling in mammals (Adams, Wilkinson et al., 1999; Murakoshi, 

Miyauchi et al., 2002). To determine their potential role in modulating arteriogenesis I 

undertook gene knockdown in gridlock embryos, a mutant which undergoes 

arteriogenesis to recover aortic blood flow (Chapter 3). The high throughput nature of 

observing recovery of aortic blood flow distal to occlusion in gridlock mutants provides 

a rapid means for determining the effect of potential modulators on arteriogenesis. As 

discussed in Chapter 1 (section 1.4), observation of arterial blood flow recovery 
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following occlusion (ligation) in mammals can be limited by disadvantages when 

compared to zebrafish embryos. These include technical difficulty, prolonged 

experimental timeframes, and inadequate techniques for identification of collateral 

vessels of all diameters in vivo and serially (Mills, Fischer et al., 2000; Heil, 

Ziegelhoeffer et al., 2004; Duvall, Robert Taylor et al., 2004). Generation of gene 

knockdown/knockout mice required would also beget similar disadvantages. 

EDNRB knockdown in gridlock mutants demonstrated very significant reduction 

(P<0.01) in recovery of aortic blood flow distal to occlusion at both 4 and 5dpf (figure 

5.12). While no aortic blood flow was observed at 2dpf, recovery of blood flow in 

EDNRB knockdown gridlock embryos was also reduced, though non-significantly, at 

3dpf. This suggests EDNRB knockdown may have altered gridlock’s response to aortic 

occlusion at an early stage prior to first observed recovery of flow at 3dpf. EDNRB is 

expressed on ECs where endothelin binding induces vasodilatation through release of 

NO, and also on VSMCs where endothelin binding induces vasoconstriction 

(Murakoshi, Miyauchi et al., 2002). It has been suggested ET controls vascular tone 

before development of nervous innervation. For example, NO and ET modulate vascular 

parameters in Xenopus laevis tadpoles prior to onset of autonomic control (Schwerte, 

Printz et al., 2002). Both FSS and cyclic stretch alter endothelin and EDNRB expression 

levels, and ECs are capable of determining alterations in haemodynamic force (Ohura, 

Yamamoto et al., 2003). Exposure of HUVECs to laminar flow representative of arterial 

rheology led to significant downregulation of ET (McCormick, Eskin et al., 2001), while 

turbulent flow resulted in upregulation of the endothelin precursor preproendothelin 

(Himburg, Dowd et al., 2007). Significant upregulation of EDNRB mRNA is observed 

following induction of cyclic stretch to cultured VSMCs (Cattaruzza, Dimigen et al., 

2000). Thus, EDNRB expression is not only determined by haemodynamic force acting 

on vasculature, but can also alter haemodynamic force by its regulation of vasoactivity. 

This is important to stress, since many genes associated with arteriogenesis are 

differentially expressed with altered levels of haemodynamic force (Schaper and Ito, 

1996). Furthermore, FSS induced by laminar flow is believed responsible for initial 

dilation of collateral vessels through activation of eNOS (Unthank, Nixon et al., 1996). 
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EDNRB knockdown may therefore inhibit EDNRB-regulated NO-mediated 

vasodilatation, preventing recovery of blood flow. 

EC-specific inactivation of EDNRB in mice reduced endothelial-dependent 

vasodilatation supporting this hypothesis (Bagnall, Kelland et al., 2006). Inactivation 

also increased plasma ET concentrations, because clearance by EDNRB was inhibited 

(Bagnall, Kelland et al., 2006). Plasma ET may have been able to bind VSMC EDNRB 

and EDNRA both unaffected by EC-specific inactivation, resulting in vasoconstriction, 

preventing vasodilatation by another means. Although EDNRB knockdown by MO in 

zebrafish embryos was not EC-specific preventing VSMC constriction, EDNRA is 

unaffected, permitting vasoconstriction on endothelin binding, and thereby inhibiting 

vasodilatation required for recovery of blood flow. 

Evidence demonstrates the importance of monocytes/macrophages to arteriogenesis. 

Macrophage depletion by pu.1 knockdown in gridlock embryos significantly reduces 

recovery of blood flow around occlusion (Gray, Packham et al., 2007). MCP-1 is 

released from shear activated ECs (Van Royen, Piek et al., 2001b), and is the most 

potent stimulator of monocyte migration (Heilmann, Beyersdorf et al., 2002). MCP-1 

promotes monocyte recruitment to collateral vessels following ligation (van Royen, 

Hoefer et al., 2003). EDNRB is also expressed on monocytes and macrophages 

(Miyauchi and Masaki, 1999). Therefore EDNRB knockdown may result in decreased 

recruitment or activity of monocytes to remodelling vessels, limiting recovery of aortic 

blood flow. 

 

5.3.7 Chemical Antagonism of EDNRB does not affect Recovery of Aortic Blood 

Flow in gridlock Mutant Embryos 

Since EDNRB knockdown in gridlock mutant embryos by MO led to significant 

reductions in percentage of embryos recovering aortic blood flow, I sought to reproduce 

the effect by chemical antagonism. Groups of gridlock mutant embryos were treated 

with three concentrations of the specific EDNRB antagonist BQ788 from 2.5-5dpf. This 

timepoint was chosen since embryos appear to develop without abnormality to 2dpf 

(sections 5.2.7 and 5.2.8). BQ788 has not previously been utilised in zebrafish embryos. 
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However it has been demonstrated to inhibit ET-induced angiogenesis (Salani, 

Taraboletti et al., 2000) and in vitro EC migration (Daher, Noel et al., 2008). An 

alternative EDNRB specific antagonist (A-192621) decreased vascular remodelling 

following arterial ligation in mice (Murakoshi, Miyauchi et al., 2002). Recent research 

in chick has demonstrated no effect with EDNRB inhibition by BQ788 in physiological 

development, however alterations in haemodynamic force induced by arterial ligation 

resulted in significantly reduced ‘collateral’ vessel development in comparison to 

control ligated embryos (Ms Emily Hoggar, personal communication). This data 

provides a further link between EDNRB and altered haemodynamic force. 

Gridlock embryos survived BQ788 treatment equally well as untreated control sibling 

embryos, and demonstrated no alteration in heart rate (figure 5.13). BQ788 treatment of 

gridlock mutant embryos did not significantly reduce recovery of aortic blood flow 

(figure 5.14) at any of the three concentrations, contrasting with EDNRB knockdown. 

BQ788 has not previously been described for utilisation in zebrafish embryos. 

Incubation of embryos was performed by immersing embryos in media containing the 

antagonist. It is therefore possible that BQ788 did not freely diffuse into embryos. 

Embryos were incubated in BQ788 at 2.5dpf to observe the antagonist’s effect after 

formation of the vessels which remodel during recovery of blood flow in gridlock 

embryos. It is possible inhibition of EDNRB is required prior to this timepoint in order 

to cause significant differences in response to arterial occlusion. The early non-

significant reductions in recovery of aortic blood flow observed following EDNRB 

knockdown may support this theory. 

 

5.4 Limitations and Future Work 
 

5.4.1 Effects of EDNRB Knockdown on Recovery of Aortic Blood Flow in gridlock 

Mutant Embryos is not confirmed by Chemical Antagonism 

I have demonstrated EDNRB knockdown significantly reduces recovery of aortic blood 

flow distal to occlusion in gridlock mutant embryos (figure 5.12). However, these 

results were not confirmed by chemical antagonism of EDNRB by BQ788 (figure 5.14). 

The role of EDNRB in modulating arteriogenesis therefore needs confirmation, although 
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studies in mice (Murakoshi, Miyauchi et al., 2002) and chick (Ms Emily Hoggar, 

personal communication) suggest a role. Diffusion of BQ788 into embryos should be 

identified through Western blot and immunoprecipitation, so activity can be confirmed. 

This would require custom design of antibodies, since no commercially produced 

antibody against EDNRB is available for use with zebrafish. It would also be beneficial 

to perform BQ788 treatment of embryos at earlier timepoints, or through different 

methods of administration. Injection of BQ788 directly into the circulation, in an 

adaptation of microangiography methodology (Isogai, Horiguchi et al., 2001), may yield 

differing results. Means are available to determine if BQ788 did freely diffuse into the 

embryos including mass spectrometry (which would demonstrate the drug’s presence, 

but not its location) and high performance liquid chromatography (HPLC) allowing 

identification and quantification. 

 

5.4.2 EDNRB Significantly Reduces Recovery of Aortic Blood Flow in gridlock 

Mutant Embryos by an Unknown Mechanism 

The mechanism by which EDNRB may modulate arteriogenesis has not been the remit 

of this work, which was to identify EFNB1 and EDNRB as potential modulators of the 

process. Work in mice (Murakoshi, Miyauchi et al., 2002) led to the hypothesis that 

decreased levels of NO may, at least in part, cause the effects seen in zebrafish gridlock 

mutant embryos following EDNRB knockdown. It would therefore be of interest to 

challenge this hypothesis. NO is easily inhibited in the zebrafish embryo with the NOS 

inhibitor L-NAME, which results in a 97% reduction in levels of nitrite in embryo 

media (Gray, Packham et al., 2007). NO levels can also be enhanced through use of the 

NO donor SNP (Pelster, Grillitsch et al., 2005). Utilising these means together with the 

models of aortic occlusion developed would therefore permit further understanding of 

the mechanism that associates EDNRB with arteriogenesis. 

 

5.5 Conclusion 
 
Utilising a model of zebrafish embryonic arteriogenesis developed in Chapter 3, I have 

demonstrated a possible role for EDNRB, extrapolated from the microarray analysis 
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discussed in Chapter 4, in modulating arteriogenesis. I have shown expression of 

EDNRB in zebrafish embryos and confirmed predicted sequences, before attempting to 

demonstrate their localisation within the embryo. While further work is required to 

confirm my findings, and identify the mechanism by which modulation of arteriogenesis 

may occur, I have demonstrated significant alteration in arteriogenesis by EDNRB 

knockdown, a gene with significantly decreased expression in absence of blood flow 

and haemodynamic force when compared to physiological levels. My results thus 

present microarray analysis of zebrafish embryos as a successful means for determining 

differential gene expression. 
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Chapter 6: Modulation of Arteriogenesis by EphrinB1 
 
Microarray technology (Chapter 4) was utilised to identify a gene set differentially 

expressed under conditions of absent blood flow, and thereby absent haemodynamic 

force, compared to controls under physiological levels of blood flow. From 290 genes 

demonstrating differential expression EphrinB1 (EFNB1) was identified as a candidate 

for a role in modulating arteriogenesis. EFNB1 demonstrated significantly decreased 

expression in the absence of blood flow, leading me to hypothesis EFNB1 deficiency 

through knockdown may limit the level of recovery of aortic blood flow observed 

following occlusion. Despite a demonstration of EFNB1’s importance to angiogenesis, 

its role in arteriogenesis has not been elucidated. 

This chapter discusses utilisation of the zebrafish embryo models of arteriogenesis 

described in Chapter 3 to extrapolate on the microarray analysis obtained in Chapter 4 to 

determine the role of EFNB1 in modulating arteriogenesis. The introduction discusses 

previous research which led me to hypothesise roles for EFNB1 in modulating 

arteriogenesis.  

 

6.1 Introduction 
 

6.1.1 Ephrin Signalling Molecules 
 
The ephrin ligand-eph receptor signalling system acts locally since both ligand and 

receptor tyrosine kinase are bound to a cell’s plasma membrane (Pasquale, 2004). 

Ephrin activity appears dependent upon clustering, and thus membrane association 

would serve this function (Yancopoulos, Klagsbrun et al., 1998). While ligand-receptor 

binding appears promiscuous; ligand and receptor expression is spatially-specific. 

EphrinB ligands (B1-B3) and corresponding ephB receptors have roles in vascular 

development and maintenance, including physiological and pathological angiogenesis 

(Adams, 2002). Gene expression profiles peak at these times (Frisen, Holmberg et al., 
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1999). For example, in human, expression of ephrinB2 is weaker in homeostatic adult 

arterial ECs compared to placental arteries or arteries undergoing vascular remodelling 

(Korff, Braun et al., 2008). It is becoming clear that while ephrinB ligands act in 

concert, with some potential redundancy, each has a specific function which cannot be 

entirely compensated for by other members of the family (Adams, Wilkinson et al., 

1999). EFNB1 and B2 localise to arterial structures, and ephB3 expressed on some 

arteries. EFNB1 and ephB3 are again found localised to venous tissue, coexpressed with 

ephB4 (Adams, Wilkinson et al., 1999; Wang, Chen et al., 1998). 

 

6.1.1.1 EphrinB1 

EFNB1 is required during embryonic development. Inactivation in mice resulted in 

skeletal deformation including polydactyly and cleft palate, as well as perinatal lethality 

(Compagni, Logan et al., 2003; Davy, Aubin et al., 2004). EFNB1 has been identified as 

localised to regions of cartilage differentiation (Davy, Aubin et al., 2004), suggesting 

further roles in embryonic development. EFNB1 has also been implicated in 

angiogenesis. Angiogenesis has been induced through phosphorylation of tyrosine 

residues on EFNB1 in ECs in vitro (Davy, Aubin et al., 2004; Huynh-Do, Vindis et al., 

2002) as well as in vivo in mice corneal pocket assay (Kojima, Chang et al., 2007). The 

role of EFNB1 in angiogenesis, together with roles of other members of the ephrinB 

family such as ephrinB2 in vessel specification, identify EFNB1 as a potential 

modulator of other vascular-specific processes such as arteriogenesis. 

 

6.2 Results 
 
Arteriogenesis is dependent, at least in part, on haemodynamic force (Buschmann and 

Schaper, 1999) with mammalian studies demonstrating the importance of forces such as 

FSS to development of collateral blood flow following arterial ligation (Eitenmuller, 

Volger et al., 2006; Pipp, Boehm et al., 2004). In Chapter 4 I demonstrated differential 

expression of 290 genes with absent haemodynamic force. It is therefore possible that at 

least some differentially expressed genes modulate arteriogenesis. I began by 
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scrutinising the 290 differentially expressed genes to generate a list of candidates with 

known functions within vasculature. 

 

6.2.1 Literature Search of Differentially Expressed Genes 

To identify potential modulators of arteriogenesis, I scrutinised the 290 differentially 

expressed genes by performing literature researches utilising the public database 

www.pubmed.gov. I created a candidate list of genes with known vascular function, 

genes believed to have greatest possibility of modulating arteriogenesis. EFNB1 

demonstrated significantly decreased expression with absent haemodynamic force. This, 

combined with its known roles in vascular development and remodelling, led me to 

hypothesise EFNB1 deficiency may lead to reduced recovery of aortic blood flow 

following occlusion. The role of EFNB1 in arteriogenesis has not been studied, despite 

demonstrations of its importance in vascular remodelling in mammals (Adams, 

Wilkinson et al., 1999; Murakoshi, Miyauchi et al., 2002). These results aim to 

determine the role EFNB1 may play in modulating arteriogenesis in the models I 

describe in Chapter 3, utilising morpholino oligonucleotide knockdown. Prior to 

knockdown, however, I confirmed expression and sequenced EFNB1 in zebrafish 

embryos. 

 

6.2.2 Expression of EFNB1 in Zebrafish Embryos 

To confirm expression of EFNB1 in zebrafish embryos I performed RT-PCR analysis. 

Total RNA from 36hpf wildtype embryos was reverse transcribed to generate cDNA. 

This timepoint was utilised since it was the first microarray timepoint. Forward and 

reverse primer pairs (coloured red in figures 6.1B) designed against Ensembl predicted 

sequences for EFNB1 were used to identify expression of the genes by RT-PCR with 

relevant primer pairs. Expression of GAPDH was utilised as positive control. Predicted 

sequences predict transcripts with the primer pairs of band sizes EFNB1: 579bp and 

GAPDH: 1019bp. EFNB1 demonstrated a transcript with band size of a little under 

600bp (figure 6.1A), corresponding well with the predicted transcript band size of 

579bp. These results thus supported expression of EFNB1 in zebrafish embryos at 

36hpf. 

http://www.pubmed.gov
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Figure 6.1 Expression of EFNB1 in wildtype zebrafish embryos. 
PCR analysis with specific primers in A (red base lettering in B) demonstrates 
expression of EFNB1 in wildtype embryos. B, Ensembl predicted sequence for 
EFNB1. Black/blue bases indicate alternate exon sequences. Red bases indicate the 
sequence of primers utilised to identify expression. 
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6.2.3 Sequencing Confirms Predicted EFNB1 Sequences 

Determination of EFNB1 expression was performed utilising primer pairs designed 

against Ensembl automated predicted sequences. It was therefore important to confirm 

Ensembl automated predicted sequences for EFNB1. PCR product from section 6.2.2 

was sequenced against the primer pairs at the University’s Core Genomics Facility with 

the aim of visualising possible base-pair alignment alterations. Product was purified to 

remove excess primer, dNTPs, and non-specific products. Sequence alignment 

demonstrated a 93% base-pair alignment match between PCR product and predicted 

sequence for EFNB1. Non-homologous regions are found at either end of the product. 

The EFNB1 sequence alignment can be observed in figure 6.2. This result confirms the 

automated predicted sequence for EFNB1 in zebrafish embryos. 

To identify regions of homology between the EFNB1 sequence in zebrafish and other 

model organisms I compared sequence alignments utilising ClustalW (version 2.0.10; 

www.ebi.ac.uk/Tools/clustalw2/index.html). While Ensembl predicted sequences were 

utilised for human, mouse and chick, the zebrafish sequences I determined for the genes 

were utilised. Regions of homology between species are often functional regions, and 

thus important to determine. Zebrafish EFNB1 demonstrated homology of 64-70% when 

aligned against human, mouse and chick (figure 6.3; zebrafish-human 66%, -mouse 

64%, -chick 70%). Homology between all the species aligned occurred throughout the 

sequence, with regions of greatest homology occurring from around base-pairs 116-535 

and 700-900 (as determined by the zebrafish sequence). These base-pairs correspond to 

the beginning of exon 2 (figure 6.1) through to the middle of exon 4, and the majority of 

exon 5. Thus, a variety of protein domains are likely homologous between the species. 

A brief description of the domains’ role is included in figure 6.4. 

 
6.2.4 Determination of Morpholino Concentration for EFNB1 Knockdown 

Having confirmed expression of EFNB1 in zebrafish embryos I wished to identify its 

possible role in modulating arteriogenesis. A splice-site MO for EFNB1 (Gene Tools 

Inc, Oregon, USA) were designed against its confirmed sequence, to perform steric 

block at regions demonstrating homology when aligned against human, mouse and chick 

(section 6.2.3). 

http://www.ebi.ac.uk/Tools/clustalw2/index.html)
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Predicted ATGGCTGGAAGTGACGGCTCGTGGAAATATTACCTCTGGATTCTGACAGCCATGTGCAGA 60 
Sequenced ------------------------------------------------------------ 
 
Predicted TACGCGTTACCCGCAGCCAAATCACTGGAGTCGGTCGTGTGGAATTCGCAAAATCCCAAG 120 
Sequenced ------------------------------------------------------------ 
 
Predicted TTTGTGTCTGGGAAGGGCTTAGTGATTTACCCGGAGATTGGTGACAAACTGGACATTATC 180 
Sequenced ------------------------------------------------------------ 
 
Predicted TGCCCCAAAGGGGACATGGGGAGACCATATGAGTTTTATAAACTCTACCTGGTGAAGAAA 240 
Sequenced ------------------------------------------------------------ 
 
Predicted GAGCAGGCCGAGTCCTGCAGCACCATACTGGACCCCAATGTTCTAGTGACCTGCAACAAA 300 
Sequenced ------------------------------------------------------------ 
 
Predicted CCAGAGAAAGACATCAAATTCACCATCAAGTTCCAGGAGTTCAGTCCAAACTACATGGGA 360 
Sequenced ----------------ANNNNNNNNNNNNNTTTNNGGNGTTCNGTCNNAACTACATGGGA 44 
                          *             **   ** **** ***  ************ 
 
Predicted CTTGAATTTAAACGCTTCACAAACTATTACATCACCTCAACGTCTAATGGAACACAGGAA 420 
Sequenced CTTGAATTTAAACGCTTCACAAACTATTACATCACCTCAACGTCTAATGGAACACAGGAA 104 
          ************************************************************ 
 
Predicted GGCTTGGAAAACAGAGAAGGTGGGGTTTGTAGTACGAGATCCATGAAGATCATCATGAAA 480 
Sequenced GGCTTGGAAAACAGAGAAGGTGGGGTTTGTAGTACGAGATCCATGAAGATCATCATGAAA 164 
          ************************************************************ 
 
Predicted GTGGGCCAAGATCCAAATGCACCAGATCCAGATTTACCAGACCTCCCAGACCGGCCGTAT 540 
Sequenced GTGGGCCAAGATCCAAATGCACCAGATCCAGATTTACCAGACCTCCCAGACCGGCCGTAT 224 
          ************************************************************ 
 
Predicted GACAATGAGATCAAGGACCCCACAACCAGCCCTTCTCGCAAGACTGAACGAGGCAGAGAG 600 
Sequenced GACAATGAGATCAAGGACCCCACAACCAGCCCTTCTCGCAAGACTGAACGAGGCAGAGAG 284 
          ************************************************************ 
 
Predicted AATGAAGTGGACGGGAATGGATCCAAAATGCCCGGCAAAGACACAAGAAACCAGAACAAC 660 
Sequenced AATGAAGTGGACGGGAATGGATCCAAAATGCCCGGCAAAGACACAAGAAACCAGAACAAC 344 
          ************************************************************ 
 
Predicted AGTCCCGGTTCTGTGGAAGGAATATTCGGCTCTAAACCAGCTCTCTTCGCTGCCATCGGA 720 
Sequenced AGTCCCGGTTCTGTGGAAGGAATATTCGGCTCTAAACCAGCTCTCTTCGCTGCCATCGGA 404 
          ************************************************************ 
 
Predicted GCGGGCTGTGTGATCTTCCTCCTAATCATAATCATCCTCATCGTCTTGCTCCTCAAGCTT 780 
Sequenced GCGGGCTGTGTGATCTTCCTCCTAATCATAATCATCCTCATCGTCTTGCTCCTCAAGCTT 464 
          ************************************************************ 
 
Predicted CGCAAGAGAACCCGGAAGCACTCGCAACCCAGGGGCGGGACTGCCCTGTCACTCAGCACT 840 
Sequenced CGCAAGAGAACCCGGAAGCACTCGCAACCCAGGGGCGGGACTGCCCTGTCACNNNNNNNN 524 
          ****************************************************         
 
Predicted CTGGCCACGCCCAAAGGAGCCGCCCAGGCCGGCTCAGAGCCAAGTGACATCATCATCCCC 900 
Sequenced NNNGGNAAN--------------------------------------------------- 533 
             *  *                                                      
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Predicted CTGCGGACAACAGAGAATAACTACTGTCCCCACTATGAAAAAGTTAGCGGAGACTATGGA 960 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted CACCCCGTCTACATAGTGCAGGAAATGCCGCCGCAGAGCCCTGCCAATATCTACTACAAA 1020 
Sequenced ------------------------------------------------------------ 
                                                                             
Predicted GTCTGA          1026 
Sequenced ------ 

Figure 6.2 Confirmation of EFNB1 ensembl predicted sequence. 
The EFNB1 PCR amplicon underwent sequencing to confirm the Ensembl predicted 
sequence. Sequencing demonstrated that the EFNB1 mastermix shared 93% 
alignment to the Ensembl predicted sequence. A=adenine, C=cytosine, G=guanine, 
T=thymine, N=undetermined. *=base-pair alignment, - =absent sequence. Numbers 
to right denote base sequence number. 
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human ATGGCTCGGCCTGGGCAGCGTTGGCTCGGCAAGTGGCTTGTGGCGATGG-TCGTGTGGGC 59 
mouse ATGGCCCGGCCTGGGCAGCGTTGGCTCAGCAAGTGGCTTGTGGCTATGG-TCGTGCTGAC 59 
chick ------------------------------------------------------------ 
zfish ----------ATGGCTGGAAGTGACGGCTCGTGGAAATATTACCTCTGGATTCTGACAGC 50 
                                                                             
 
human GCTGTGCCGGCTCGCCACACCGCTGGCCAAGAACCTGGAGCCCGTATCCTGGAGCTCCCT 119 
mouse GCTGTGCCGGCTTGCCACGCCGTTGGCCAAGAACCTGGAGCCCGTGTCCTGGAGCTCTCT 119 
chick -------------------------------------------------------TCCTC 5 
zfish CATGTGCAGATACGCGTTACCCGCAGCCAAATCACTGGAGTCGGTCGTGTGGAATTCGCA 110 
                                                             **    
 
human CAACCCCAAGTTCCTGAGTGGGAAGGGCTTGGTGATCTATCCGAAAATTGGAGACAAGCT 179 
mouse TAACCCTAAGTTCCTAAGTGGGAAGGGCTTGGTGATCTACCCGAAGATTGGAGACAAGCT 179 
chick TTCTTCCAGATTCATGAGTGGGAAAGGGTTGGTCATCTACCCGGAGATTGGGGACAAACT 65 
zfish AAATCCCAAGTTTGTGTCTGGGAAGGGCTTAGTGATTTACCCGGAGATTGGTGACAAACT 170 
           * *  **  *   ****** ** ** ** ** ** *** * ***** ***** ** 
 
human GGACATCATCTGCCCCCGAGCAGAAGCAGGGCGGCCCTATGAGTACTACAAGCTGTACCT 239 
mouse GGACATCATCTGCCCCCGAGCAGAAGCAGGGCGGCCCTACGAGTACTACAAGCTGTACCT 239 
chick GGACATTATCTGCCCCAAGGCGGAGCCGTCCAAGCCTTACGAGTACTACAAGCTGTACCT 125 
zfish GGACATTATCTGCCCCAAAGGGGACATGGGGAGACCATATGAGTTTTATAAACTCTACCT 230 
      ****** *********   *  **          ** ** ****  ** ** ** ***** 
 
human GGTGCGGCCTGAGCAGGCAGCTGCCTGTAGCACAGTTCTCGACCCCAACGTGTTGGTCAC 299 
mouse GGTGCGGCCAGAGCAGGCGGCTGCTTGCAGCACTGTGCTTGATCCCAATGTACTGGTCAC 299 
chick GGTGAAAAAGGACCAGGCAGATGCCTGCAGCACCGTCATGGACCCCAACGTGCTGGTGAC 185 
zfish GGTGAAGAAAGAGCAGGCCGAGTCCTGCAGCACCATACTGGACCCCAATGTTCTAGTGAC 290 
      ****      ** ***** *   * ** *****  *  * ** ***** **  * ** ** 
 
human CTGCAATAGGCCAGAGCAGGAAATACGCTTTACCATCAAGTTCCAGGAGTTCAGCCCCAA 359 
mouse TTGCAACAAGCCACACCAGGAAATCCGCTTCACCATCAAGTTCCAAGAGTTCAGCCCCAA 359 
chick GTGCAACCGGCCCGAGCAGGAGATCCGCTTCACCATCAAGTTTCAGGAGTTCAGCCCCAA 245 
zfish CTGCAACAAACCAGAGAAAGACATCAAATTCACCATCAAGTTCCAGGAGTTCAGTCCAAA 350 
      *****    **  *  * ** **    ** *********** ** ******** ** ** 
 
human CTACATGGGCCTGGAGTTCAAGAAGCACCATGATTACTACATTACCTCAACATCCAATGG 419 
mouse CTACATGGGCCTGGAATTCAAAAAGTACCACGATTACTACATTACATCAACGTCCAATGG 419 
chick CTACATGGGCCTGGAGTTCAAGCGGCAGCAGGATTACTTCATCACATCCACCTCTAACGG 305 
zfish CTACATGGGACTTGAATTTAAACGCTTCACAAACTATTACATCACCTCAACGTCTAATGG 410 
      ********* ** ** ** **           * ** * *** ** ** ** ** ** ** 
 
human AAGCCTGGAGGGGCTGGAAAACCGGGAGGGCGGTGTGTGCCGCACACGCACCATGAAGAT 479 
mouse GAGCTTGGAGGGACTGGAGAACCGGGAGGGAGGTGTGTGTCGCACCCGCACTATGAAGAT 479 
chick GACACTGGATGGCCTGGAGAACCGGGAAGGAGGGGTCTGCCAGACACGCTCCATGAAGAT 365 
zfish AACACAGGAAGGCTTGGAAAACAGAGAAGGTGGGGTTTGTAGTACGAGATCCATGAAGAT 470 
       *    *** **  **** *** * ** ** ** ** **    **  *  * ******** 
 
human CATCATGAAGGTTGGGCAAGATCCCAATGCTGTGACGCCTGAGCAGCTGA--CTACCAG- 536 
mouse CGTTATGAAGGTTGGGCAAGATCCAAATGCTGTGACACCCGAGCAGTTGA--CTACCAG- 536 
chick CGTCATGAAAGTGGGGCAGGATCCAAACGCGGTGATCCCGGAGCAGCTGA--CGACGAG- 422 
zfish CATCATGAAAGTGGGCCAAGATCCAAATGCACCAGATCCAGATTTACCAGACCTCCCAGA 530 
      * * ***** ** ** ** ***** ** **       ** **          *  * **  
 
human CAGGCCCAGCAAGGAGGCAGACAACACTGTCAAGATGGCCACACAGGCCCCTGGTAGTCG 596 
mouse CCGGCCAAGCAAGGAGTCAGACAACACTGTCAAGACAGCCACACAGGCTCCTGG---TCG 593 
chick TCGGCC---CACGCAGCCAGCCAA-------GCGACCGCCCCTCGAGGGCC-------CG 465 
zfish CCGGCCGTATGACAATGAGATCAAGGACCCCACAACCAGCCCTTCTCGCAAGACTGAACG 590 
       ****        *      ***          *    * *                ** 
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human GGGCTCCCTGGGTGACTCTGATGGCAAGCATGAGACT--GTGAACCAGGAAGAGAAGAGT 654 
mouse GGGATCCCAGGGTGACTCTGACGGCAAGCATGAGACT--GTGAACCAGGAAGAGAAGAGT 651 
chick GAGCTGCCGGGGCCA------GGGTCAGCAGGAGGTTCCGTCAACCAGAACGGCCAGGAG 519 
zfish AGGCAGAGAGAATGA---AGTGGACGGGAATGGATCCAAAATGCCCGGCAAAGACACAAG 647 
        *      *    *       *    * * *            ** * *     *     
 
human GGCCCAGGTGCAAGTGGGGGCAGCAGCGGGGACCCTGATGGCTTCTTCAACTCCAAGGTG 714 
mouse GGCCCAGGTGCAGGTGGCGGTGGCAGCGGGGACTCTGACAGCTTCTTCAACTCCAAGGTA 711 
chick ACCCAAGGTCC------------CAGCG---------ATGGGTTCCTGAGCTCCAAAGTC 558 
zfish AAACCAGAACAA--------CAGTCCCGGTTCTGTGGAAGGAATATTCGGCTCTAAACCA 699 
         * **                   **         *  *  *  *   *** **     
 
human GCATTGTTCGCGGCTGTCGGTGCCGGTTGCGTCATCTTCCTGCTCATCATCATCTTCCTG 774 
mouse GCATTGTTCGCAGCCGTCGGCGCCGGCTGTGTCATCTTCCTGCTCATCATCATCTTCTTG 771 
chick GCCGTTTTCGCTGCCATCGGCGCGGGCTGCGTCATCTTCATCCTCATCATCATCTTCCTC 618 
zfish GCTCTCTTCGCTGCCATCGGAGCGGGCTGTGTGATCTTCCTCCTAATCATAATCATCCTC 759 
      **  * ***** **  **** ** ** ** ** ****** * ** ***** *** ** *  
 
human ACGGTCCTACTACTGAAGCTACGCAAGCGGCACCGCAAGCACACACAGC---AGCGGGCG 831 
mouse ACAGTCCTACTACTCAAGCTCCGCAAGCGCCATCGCAAGCATACACAGC---AGCGGGCG 828 
chick GTCGTCCTCCTGATCAAGATCCGCAAGCGGCACCGGAAGCACACGCAGC---AGCGGGCC 675 
zfish ATCGTCTTGCTCCTCAAGCTTCGCAAGAGAACCCGGAAGCACTCGCAACCCAGGGGCGGG 819 
         *** * **  * *** * ****** *    ** *****  * ** *    * * *   
 
human GCTGCCCTCTCGCTCAGTACCCTGGCCAGTCCCAAGGGGGGCAGTGGCACAG-CGGGCAC 890 
mouse GCTGCCCTCTCGCTCAGTACCCTAGCCAGCCCCAAAGGGGGTAGTGGTACAG-CGGGCAC 887 
chick GCAGCCTTGTCCCTCAGCACCTTGGCCAGCCCCAAATG---CAGCGGGAGCG-CCGGCTC 731 
zfish ACTGCCCTGTCACTCAGCACTCTGGCCACGCCCAAAGG----AGCCGCCCAGGCCGGCTC 875 
       * *** * ** ***** **  * ****  *****  *    **  *    * * *** * 
 
human CGAGCCCAGCGACATCATCATTCCCTTACGGACTACAGAGAACAACTACTGCCCCCACTA 950 
mouse CGAGCCCAGCGACATCATCATCCCCTTACGGACTACAGAGAACAACTACTGCCCCCACTA 947 
chick AGAGCCCAGCGACATCATCATCCCTTAA-------------------------------- 759 
zfish AGAGCCAAGTGACATCATCATCCCCCTGCGGACAACAGAGAATAACTACTGTCCCCACTA 935 
       ***** ** *********** **                                     
 
human TGAGAAGGTGAGTGGGGACTACGGGCACCCTGTCTACATCGTCCAAGAGATGCCGCCCCA 1010 
mouse TGAGAAGGTGAGTGGGGACTACGGGCATCCTGTCTACATCGTCCAGGAGATGCCCCCTCA 1007 
chick ------------------------------------------------------------ 
zfish TGAAAAAGTTAGCGGAGACTATGGACACCCCGTCTACATAGTGCAGGAAATGCCGCCGCA 995 
                                                                             
 
human GAGCCCGGCGAACATCTACTACAAGGTCTGA 1041 
mouse GAGCCCGGCGAACATCTACTACAAGGTTTGA 1038 
chick ------------------------------- 
zfish GAGCCCTGCCAATATCTACTACAAAGTCTGA 1026 

Figure 6.3 EFNB1 inter-species homology. 
Alignment of EFNB1 sequences from zebrafish, human, mouse, and chick 
demonstrates homology between species of between 64 and 70%. Homology is 
observed for the majority of exons 2-5. 
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Since multiple exons demonstrated high levels of homology, MOs were designed to 

interact with the intron:exon boundary of exon 2. To determine the concentration at 

which the MOs should be utilised dose-response experiments were performed to 

determine embryonic survival over several concentrations (50, 100, 200, 500nM) during 

the first 3dpf (n=3, total of 120 embryos/group). 

Highest survival rates for EFNB1 splice MO injection were recorded injecting a 

concentration of 50nM (figure 6.5). However, MO activity was not always detected by 

PCR analysis. Survival rates with [500nM] EFNB1 MO averaged 21.4±7.4% at 24hpf, 

making utilisation of the MO at this concentration impractical. Survival rates with 

[100nM] and [200nM] EFNB1 MO were similar (100nM: 56.3±16.1%, 200nM: 

62.5±22.0%). Therefore, [100nM] was utilised in future experiments, since the lower 

concentration is least likely to result in non-specific effects caused by toxicity. 

 

6.2.5 EFNB1 Morpholinos Knockdown the Gene of Interest 

To determine activity of EFNB1 MOs I performed PCR analysis. Total RNA was 

extracted from wildtype embryos injected with [100nM] EFNB1 or control MO and 

reverse transcribed generating cDNA. cDNA was then utilised in PCR analysis and gel 

electrophoresis. 

[100nM] EFNB1 MO resulted in almost complete abolition of normally sized transcript 

expression at 24hpf (figure 6.6). A highly reduced concentration of cDNA is detected 

compared to control MO injected embryos whose transcript band was marked by 

EFNB1 primers. While more than 200ng DNA is detected in control (lane 3, figure 6.6) 

by Hyperladder II molecular weight marker, only approximately 50ng cDNA is detected 

in cDNA generated from EFNB1 MO injected embryos (lane 4). This suggests a four-

fold reduction in EFNB1 expression with MO. Inducing steric block at the boundary of 

intron1:exon2, the MO knockdown may result in an early stop to mRNA splicing, since 

no splice transcripts of different band sizes were observed with RT-PCR (figure 6.6). 

The beginning of exon2 spans an Ephrin family domain necessary for Ephrin function 

(figure 6.4). EFNB1 expression may thus be abolished through an early stop to this 

domain. 
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Figure 6.5 Dose-response graph to determine the concentration at which to 
utilise the EFNB1 splice MO. 
A concentration of [500nM] EFNB1 MO resulted in severely reduced survival rates 
for embryos. While a concentration of [50nM] provided the best survival, MO 
activity was not always detected. A concentration of [100nM] was utilised in further 
experiments. 

 

20

40

60

80

100

500nM
200nM
100nM
50nM

500nM

200nM
100nM
50nM

Control

EFNB1 Splice

hpf



226 
 

 

Figure 6.6 Assessing the activity of EFNB1 MO by PCR analysis. 
PCR analysis was performed on cDNA generated from total RNA extracted at 
timepoints described in the figure. A, [100nM] EFNB1 splice MO led to almost 
complete abolishment of gene expression at 24hpf. 
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6.2.6 Gross Phenotype of EFNB1 Knockdown 
In order to determine gross phenotype of EFNB1 knockdown in zebrafish embryos, I 

injected wildtype embryos with [100nM] EFNB1 or control MO (approximately 40 

embryos per group). A further group of 40 sibling embryos were left uninjected with 

MO. Embryos were then observed under stereomicroscopy at 2 and 5dpf. Wildtype 

embryos injected with control MO did not demonstrate any altered phenotype compared 

to uninjected embryos at 2 or 5dpf. 

At both timepoints, gross structures including head, trunk, body length, and heart 

structure appeared comparable under stereomicroscopy. It can thus be deduced that 

injection of standard control MO does not result in altered physiology of embryos. At 

2dpf, EFNB1 knockdown embryos did not demonstrate significant gross phenotypic 

abnormality compared to control injected embryos (figure 6.7), although yolk-sac may 

be slightly enlarged. At 5dpf, EFNB1 knockdown embryos presented with slight 

pericardial oedema and possible deformations of craniofacial ultrastructure observed as 

a protruding mouth (figure 6.8). EFNB1 has been identified as localised to regions of 

cartilage differentiation in mice (Davy, Aubin et al., 2004), and inactivation has resulted 

in skeletal deformation (Compagni, Logan et al., 2003), which may account for the 

possible craniofacial deformation. The swim bladder has not inflated, and embryo body 

length is shorter than control siblings, both characteristics suggestive of delayed 

development. 

 

6.2.7 Vessel Patterning in EFNB1 Knockdown 

To determine whether EFNB1 knockdown resulted in abnormal vascular patterning or 

development through abnormal vasculogenesis (de novo vessel formation through in situ 

differentiation of angioblasts) or angiogenesis (growth and remodelling of primitive 

vascular networks) I performed confocal microscopy of fli1:eGFP MO injected 

embryos. Representative embryos were chosen for laser-scanning confocal microscopy 

at 2 and 5dpf from approximately 40 observed by fluorescent stereomicroscopy. The 

same embryos were studied at both timepoints.  
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Figure 6.7 Phenotype of EFNB1 knockdown in wildtype embryos at 2dpf. 
[100nM] EFNB1 MO did not result in significant abnormality of wildtype embryos at 
2dpf, although the yolk-sac may be slightly enlarged in EFNB1 knockdown embryos 
(C) compared to control MO injected siblings (B) or uninjected siblings (A). 
Representative lateral views compiled from 3 images. Y=yolk-sac, PC=pericardial 
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Figure 6.8 Phenotype of EFNB1 knockdown in wildtype embryos at 5dpf. 
At 5dpf, EFNB1 knockdown embryos (C) presented with slight pericardial oedema, 
and possible deformation of craniofacial structure (*) on comparison with control 
MO injected siblings (B) or uninjected siblings (A). The swim bladder of EFNB1 
knockdown embryos has not inflated appearing flat in (C), and embryos are shorter 
than control and uninjected siblings, both characteristics suggestive of delayed 
development. Y=yolk-sac, Bl=swim bladder, PC=pericardial sac. Representative 

 



230 
 

By 2dpf vasculogenesis, during which aorta and cardinal vein develop, is complete. At 

5dpf angiogenesis of ISVs, DLAVs, and SIVs has occurred, with untreated embryos 

demonstrating a standard vascular pattern (Isogai, Horiguchi et al., 2001). Angiogenesis 

is responsible for formation of ISVs, DLAVs, and SIVs. 5dpf is also the last timepoint 

at which recovery of aortic blood flow in gridlock embryos was observed. Of 

approximately 40 knockdown embryos per group observed by fluorescent 

stereomicroscopy at 2dpf, all EFNB1 knockdown embryos demonstrated normal 

patterning of aorta and cardinal vein on comparison with wildtype embryos (figure 6.9), 

suggesting normal vasculogenesis, during which these vessels form (Isogai, Horiguchi et 

al., 2001). 

All EFNB1 knockdown embryos demonstrated normal patterning and number of ISVs, 

and also normal development of DLAVs and communications between aorta, or cardinal 

vein, and SIVs at 5dpf (figure 6.10). The ISVs, DLAVs and SIVs form later than aorta 

and cardinal vein, during angiogenesis (Isogai, Horiguchi et al., 2001), which occurs 

from approximately 30hpf. Their normal patterning in EFNB1 knockdown embryos 

suggests angiogenesis is unaffected by EFNB1 knockdown. Therefore, despite gene 

knockdown, no vessels failed to form, and no vessel was found to have undergone 

aberrant angiogenesis by 5dpf. 

 

6.2.8 Recovery of Aortic Blood Flow with EFNB1 Knockdown 

In chapter 4, I demonstrated decreased expression of EFNB1 in absence of 

haemodynamic force. I thus hypothesise EFNB1 deficiency may lead to reduced 

recovery of aortic blood flow following occlusion. The role of these genes in 

arteriogenesis has not been studied, despite demonstrations of their importance in 

vascular remodelling in mammals (Adams, Wilkinson et al., 1999; Murakoshi, 

Miyauchi et al., 2002). I therefore wished to determine the potential role of EFNB1 in 

modulating arteriogenesis. 

To do this, I undertook EFNB1 knockdown in gridlock mutant embryos, since the 

mutants’ amenability to high throughput screening suited the experimentation (3 

replicates, 30-50 embryos per group per replicate).  
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Figure 6.11 The effect of EFNB1 knockdown on the acquisition of aortic blood 
flow distal to the occlusion site in gridlock mutant embryos. 
Although a very significant (P<0.01) increase in the acquisition of aortic blood flow 
distal to the occlusion site is observed in gridlock mutant embryos at 3dpf, this 
significant reduction does not continue to 4 and 5dpf. 
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Recovery of aortic blood flow by ‘collateral’ vessels in knockdown embryos was 

determined by binary count of presence or absence of aortic blood flow and compared to 

embryos injected with standard control MO. 

No EFNB1 knockdown gridlock or control MO gridlock embryo was observed with 

aortic blood flow at 2dpf. At 3dpf, EFNB1 knockdown in gridlock mutant embryos 

resulted in a very significant (P<0.01) increase in recovery of blood flow distal to 

occlusion compared to control (control: 26.60±8.95%, EFNB1 knockdown: 

58.63±6.68%; power 100%), as seen in figure 6.11. However, by 4dpf this significant 

increase has been lost (control: 63.93±3.41, EFNB1 knockdown: 65.03±3.54), and does 

not recover at 5dpf (control: 66.73±3.26, EFNB1 knockdown: 74.53±4.71; power 100%) 

despite similar levels of experimental power. This could result from reductions in MO 

activity at these later timepoints. 

 

6.3 Discussion 
 
Microarray analysis of zebrafish embryos in presence or absence of physiological 

haemodynamic force (Chapter 4) demonstrated differential expression of 290 genes 

between groups. Literature searches identified genes with possible roles in modulation 

of arteriogenesis through knowledge of other roles within vasculature. For example, 

although arteriogenesis and angiogenesis are distinct processes, they share mechanistic 

traits such as modulation by NO (Yu, deMuinck et al., 2005), and infiltration of 

monocytes/macrophages (Van Royen, Piek et al., 2001b). EFNB1 was identified as one 

possible candidate. EFNB1’s role in modulating arteriogenesis has not been studied 

although it has known roles in vascular remodelling including angiogenesis (Adams, 

2002). The aim of this chapter was exploitation of zebrafish embryos to determine the 

role of EFNB1 in modulating arteriogenesis utilising morpholino oligonucleotide 

knockdown. Prior to knockdown, I began by confirming expression of EFNB1 in 

zebrafish embryos. Since many discussion points refer to the techniques utilised in both 

this and the previous chapter, reasons justified in Chapter 5 will not be repeated here. 
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6.3.1 Expression of EFNB1 in Zebrafish Embryos 

To confirm expression of EFNB1 in zebrafish embryos I performed RT-PCR utilising 

wildtype embryo total RNA extracted at 36hpf and reverse transcribed. RNA extraction 

was performed at 36hpf since this was the first microarray timepoint. The EFNB1 

transcript demonstrated a band size of just under 600bp (figure 6.1), corresponding well 

with the predicted band size of 579bp. GAPDH control also demonstrated transcript size 

corresponding with that predicted. Thus, these results confirm expression of EFNB1 in 

zebrafish embryos at 36hpf. 

Transcript band size was determined utilising primer pairs designed against Ensembl 

predicted sequences. To confirm the sequences PCR product was sequenced at the 

University’s Core Genomics Facility allowing visualisation of potential alterations in 

base-pair alignment. Product was purified at the facility to remove excess primer, 

dNTIPs, and non-specific products. Alignment demonstrated 93% base-pair alignment 

between PCR product and predicted sequence for EFNB1 (figure 6.2). Non-homologous 

regions were found to either end of the alignment at primer binding locations. This 

result therefore confirms the automated predicted sequences for EFNB1 in zebrafish 

embryos. 

Alignment of zebrafish EFNB1 to human, mouse, and chick (figure 6.3) demonstrated 

homology of 64-70%. Homology occurred throughout the sequence between all the 

species. Regions of greatest homology corresponded to the beginning of exon 2 (figure 

6.1) through to the middle of exon 4, and the majority of exon 5. Thus, a variety of 

protein domains are likely homologous between the species (figure 6.4). 

 

6.3.2 EFNB1 Knockdown by Morpholino Injection 

With confirmed expression of EFNB1 in zebrafish embryos I wished to determine its 

possible role in modulating arteriogenesis, and did so by performing knockdown with 

MO. To determine the concentration at which MOs should be utilised dose-response 

experiments were performed to determine embryonic survival over several 

concentrations during the first 3dpf. MO-induced lethality is most likely during this 

timepoint since MOs are injected at 1-4 cell stage. Dose-response experiments were 
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performed through alteration of MO concentration, rather than alteration of injected 

volume, to remove the possibility of non-specific phenotypes resulting from increasing 

volume. 

Survival rates following EFNB1 knockdown were highest following injection of [50nM] 

(figure 6.5) however, MO activity was not always detected. [100nM] was utilised in 

future experiments, since this concentration combined high survival rates with activity. 

Additionally, [100nM] was the second lowest concentration examined, and is therefore 

least likely to cause toxicity and non-specific phenotypes. 

EFNB1 knockdown resulted in almost complete abolition of gene expression at 24hpf as 

determined by PCR analysis (figure 6.6). A highly reduced concentration of DNA was 

detected compared to control MO injected embryos with a possible four-fold reduction 

in EFNB1 expression. Inducing steric block at the boundary of intron1:exon2, the MO 

knockdown may result in an early stop to mRNA splicing, since no splice transcripts of 

different band sizes were observed with RT-PCR. The beginning of exon2 spans an 

Ephrin family domain necessary for Ephrin function (figure 6.4). EFNB1 expression 

may thus be abolished through an early stop to this domain. 

 

6.3.3 Gross Phenotypic Characterisation of EFNB1 Knockdown 

In order to determine gross phenotype of EFNB1 knockdown in zebrafish embryos I 

injected wildtype embryos with [100nM] EFNB1 or control MO. A group of embryos 

were also left uninjected. Wildtype embryos injected with control MO did not 

demonstrate altered phenotype on comparison with uninjected embryos at 2 or 5dpf 

under stereomicroscopy. Gross structures such as head, trunk, heart, and body length are 

comparable between groups demonstrating injection of MOs does not in itself alter 

embryonic development. At 2dpf no gross phenotypic abnormality was observed in 

wildtype embryos injected with EFNB1 MO, aside from possible slight enlargement of 

the yolk-sac (figure 6.7). At 5dpf EFNB1 knockdown embryos demonstrated slight 

pericardial oedema and possible deformations of craniofacial structures (figure 6.8) 

which could result from no specific effects of the MO as outlined elsewhere. EFNB1 is 

localised to regions of cartilage differentiation in mice (Davy, Aubin et al., 2004), and 
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inactivation results in skeletal deformations (Compagni, Logan et al., 2003), which may 

account for the observed craniofacial deformation. In addition, the swim bladder 

appeared uninflated, and embryo body length was reduced compared to control MO 

injected embryos. Together this may indicate delayed development. 

 

6.3.4 Vessel Patterning in EFNB1 Knockdown 

To determine the effect of EFNB1 knockdown on vascular patterning and development 

through vasculogenesis and angiogenesis, fli1:eGFP transgenic embryos underwent MO 

injection and observation by fluorescent stereomicroscopy. Representative embryos 

underwent laser-scanning confocal microscopy at 2 and 5dpf. At 2dpf, EFNB1 

knockdown embryos demonstrated normal patterning of aorta and cardinal vein on 

comparison with control MO embryos (figure 6.9). This suggests normal vasculogenesis 

in knockdown embryos. Although EFNB1 is expressed throughout the vasculature 

(Adams, Wilkinson et al., 1999), there is no evidence to suggest a role for EFNB1 in 

vasculogenesis. At 5dpf all EFNB1 knockdown embryos demonstrated normal 

patterning of ISVs, DLAVs, and SIVs, and normal number of ISVs compared to control 

MO injected embryos (figure 6.10). Their normal development suggests angiogenesis is 

unaffected in EFNB1 knockdown embryos. Development of communications between 

aorta, or cardinal vein, and SIVs was also normal. Thus, despite EFNB1 knockdown, no 

vessels failed to form, and no vessel was found to have undergone aberrant angiogenesis 

by 5dpf. 

 

6.3.5 Recovery of Aortic Blood Flow with EFNB1 Knockdown 

Since EFNB1 demonstrated significantly decreased expression in the absence of 

haemodynamic force I hypothesise EFNB1 deficiency may lead to reduced recovery of 

aortic blood flow following occlusion. The role of these genes in arteriogenesis has not 

been studied, despite demonstrations of their importance in vascular remodelling in 

mammals (Adams, Wilkinson et al., 1999; Murakoshi, Miyauchi et al., 2002). To 

determine their potential role in modulating arteriogenesis I undertook gene knockdown 

in gridlock embryos, as described in Chapter 3. 
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No EFNB1 knockdown gridlock or control MO gridlock embryo was observed with 

aortic blood flow at 2dpf. At 3dpf, EFNB1 knockdown in gridlock mutant embryos 

resulted in a very significant (P<0.01) increase in recovery of blood flow distal to 

occlusion compared to control (figure 6.11). By 4dpf this significant increase was lost 

and did not recover at 5dpf. At these timepoints there was no significant difference from 

control values. These results are possibly due to reductions in MO activity at 4 and 5dpf. 

Given the short timeframe of increased recovery of aortic blood flow, it is difficult to 

determine the possible mechanisms involved. Expression in kidney arterioles and 

glomeruli suggested possible roles in vascular patterning and development (Adams, 

2002). Such alterations during development of zebrafish embryos could account for my 

observation, since vasculature is plastic at this time and undergoes sprouting and 

regression (Isogai, Lawson et al., 2003). However, I did not determine alterations in 

vasculature patterning of EFNB1 knockdown embryos at 2dpf. Utilisation of MOs 

designed against different regions of EFNB1’s sequence may permit validation of this 

result. Closely related molecules, such as EFNB2, demonstrate an important role in 

arterial-venous fate decisions at timepoints close to the onset of blood flow (Wang, 

Chen et al., 1998). It is possible that embryonic expression peaks at this timepoint. If 

EFNB1 expression follows a similar pattern lower levels of expression may occur at the 

later timepoints of 4 and 5dpf, and thus the effect of deficiency may be lessened. This 

hypothesise could be tested by performed in situ hybridisation at all three timepoints. 

 

6.4 Limitations and Future Work 
 

6.4.1 Confirmation of EFNB1 Knockdown 

EFNB1 knockdown embryos demonstrated cranio-facial malformations at later 

timepoints which could result from non specific effects of the EFNB1 MO. This in turn 

calls into question the observed effect of EFNB1 deficiency in the recovery of aortic 

blood flow in gridlock mutants. Although a standard control MO was utilised to limit 

the risk of observing non specific effects resulting from the injection procedure, it would 

also be beneficial to compare EFNB1 knockdown embryos to embryos injected with an 

EFNB1 mismatch MO which has no functionality. Together with the experiments 
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performed, this would allow a determination of the role of specific to non specific 

effects of MO injection. 

 

6.4.2 EFNB1 Significantly Affects Recovery of Aortic Blood Flow in gridlock 

Mutant Embryos by an Unknown Mechanism 

The mechanism by which EFNB1 knockdown in gridlock mutant embryos resulted in 

significantly increased recovery of aortic blood flow has not been determined. The remit 

of this work was to identify EFNB1 as a potential modulator of arteriogenesis. 

Determination of expression levels at the timepoints at which recovery of aortic flow 

was observed (i.e. 3-5dpf) by in situ hybridisation or Northern blot may indicate one 

aspect of the mechanism. Lower expression levels at a particular timepoint (for example 

at 4 and 5dpf) may reduce the ‘potential’ for EFNB1 knockdown. Repeating knockdown 

experimentation with a splice-site MO designed against a different region of the gene 

may help confirm the results described in this chapter, or provide mechanistic 

information by affecting the recovery of aortic blood flow in gridlock embryos in a 

different manner. It may also be beneficial to perform similar knockdown experiments 

utilising a start-site MO inhibiting translation of the entire gene. In this way, the 

mechanism of action may start to be determined. 

 

6.5 Conclusion 
 
Utilising a model of zebrafish embryonic arteriogenesis developed in Chapter 3, I have 

demonstrated a possible role for EFNB1 in modulating arteriogenesis extrapolated from 

the microarray analysis discussed in Chapter 4. I have demonstrated expression of 

EFNB1 in zebrafish embryos and confirmed automated predicted sequences. While 

further work is required to confirm my findings, and identify the mechanism by which 

modulation of arteriogenesis may occur, I have shown a significant increase in the 

recovery of aortic blood flow in gridlock mutants in a time specific manner by EFNB1 

knockdown. My results suggest microarray analysis of zebrafish embryos to be a 

successful means for determining differential gene expression. 
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Chapter 7: General Discussion 
 
In this chapter I bring together the findings from my results chapters (Chapter 3-6) in 

order to discuss methodology, the position of the research within the field, 

improvements that may be made to the research, and possible future directions. To do 

this I begin the chapter with a summary of principle findings. 

 

7. 1 Summary of Principle Findings 
 
The principle novel findings from this work indicate: 

 Arteriogenesis in zebrafish embryos is not a phenotypic response to gridlock 

mutation, but a response to vascular occlusion that can occur in wildtype 

embryos following laser-induced aortic occlusion 

 Like mammalian arteriogenesis, recovery of aortic blood flow distal to occlusion 

site in gridlock mutants and wildtype embryos having undergone laser-induced 

aortic occlusion is modulated by NOS inhibition 

 Modulation by NOS inhibition is not a result of modulating vasoactivity or aortic 

blood velocity, suggesting NO modulation shares a mechanism between 

zebrafish and mammalian arteriogenesis 

 Microarray analysis in the absence of physiological in vivo haemodynamic force 

permits determination of differential gene expression compared to controls 

providing novel data on genes and gene groups undergoing differential 

expression 

 EDNRB and vasoactive genes demonstrated significantly decreased expression in 

absence of blood flow and haemodynamic force when compared to physiological 

levels and deficiency significantly suppressed arteriogenesis following 

knockdown suggesting EDNRB modulation of arteriogenesis 
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 EFNB1 also demonstrated significantly decreased expression in absence of 

haemodynamic force. EFNB1 knockdown resulted in a temporal alteration in 

recovery of aortic blood flow, demonstrating significantly enhanced flow 

recovery at 3dpf, but not 4 or 5dpf. 

 

7.2 Methodology 
 

7.2.1 Aortic Occlusion 

Utilisation of zebrafish embryos provides an alternative model system for performing 

cardiovascular research to mammalian models. As an alternative, the methods and 

protocols utilised demonstrate both positive and negative features. 

Utilisation of pre-existing transgenic (fli1:eGFP/gata1:dsRED) and mutant (gridlock) 

embryos provided the opportunity to perform in vivo studies of aortic blood flow 

recovery following both permanent (gridlock) and induced aortic occlusion. Thus, in 

vivo confocal microscopy of fli1:eGFP/gata1:dsRED transgenic embryos pre- and post 

aortic occlusion permitted determination of the existence of vessels capable of 

remodelling in zebrafish embryos prior to induction of occlusion. The existence of such 

vessels is a key characteristic of arteriogenesis. 

It is unfortunate that induction of aortic occlusion in wildtype embryos was found to be 

unfeasible at earlier timepoints than 4dpf due to the formation of arterio-venous fistulas 

in the developing vasculature. In conjunction with Home Office regulation limiting 

utilisation of zebrafish embryos to 5.2dpf at standard incubation temperatures of 28°C a 

timepoint at 4dpf limited observation of aortic blood flow recovery to 22 hours. 

Although this length of time allowed observation of aortic blood flow recovery around 

the occlusion site in wildtype embryos, it limited observation of vessel maturation and 

stability that would have occurred over longer timepoints. This in turn limits the data 

achievable from such studies. 

The characterisation of remodelling vessels was also limited by not performing 

histology. Histology may have determined pre- and post- blood flow recovery vessel 
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arterio-venous identify through expression of EphrinB2 (arteries) and EphB4 (veins). 

This would therefore have demonstrated if vessel identity altered following vessel 

occlusion. Histology for endogenous mediators such as NO, or the enzyme eNOS, pre- 

and post- blood flow recovery may have demonstrated a difference in expression levels 

of eNOS in non recruited vessels compared to recruited post- recovery vessels, as has 

been identified in mammals (Cai, Kocsis et al., 2004a). Thus, performing histological 

examination of vessels involved in recovery of aortic blood flow may have helped 

further analyse similarities and differences between mammalian and zebrafish 

arteriogenesis in vessel identity and expression of endogenous mediators. 

 

7.2.2 Morpholino Knockdown 

Morpholino knockdown experiments to determine the role of EDNRB (Chapter 5) and 

EFNB1 (Chapter 6) in modulation of zebrafish arteriogenesis were performed utilising 

the generic standard control morpholino generated by GeneTools. The standard control 

is directed against human -globin pre-mRNA, a gene not present in zebrafish, and thus 

acts to control against the process of MO injection (Eisen and Smith, 2008). However, 

the standard control may not control against specific MO sequences and it may therefore 

be beneficial to perform additional experiments to MO knockdown utilising specific 

EDNRB or EFNB1 randomised or nucleotide polymorph MO versions. In contrast, the 

decision to utilise splice site blocking MOs was advantageous to the research. This type 

of MO, in comparison to start site blocking MOs, is beneficial in that RNA levels can be 

determined by PCR and thus deficiency can be determined quickly and simply. It should 

be noted however that a decreased RNA level does not necessarily equal a decrease in 

protein. 

A further problem with utilisation of MOs is the difficulty in injecting precise, 

consistent and reproducible volumes, even in performing estimations by injecting 

volumes into oil measured by graticule. It is therefore possible individual embryos 

received varying volumes of MO. 
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7.2.3 Microarray Execution and Validation 

Although I believe the microarray comparing gene expression in the presence and 

absence of haemodynamic force (Chapter 4) was performed well, the extended length of 

time beyond that originally envisaged required to obtain high quality and high yield 

RNA necessary for each of the three microarray timepoints prevented validation by real-

time PCR. The absence of validation prevents complete confidence in the differential 

gene expression observed in the absence of haemodynamic force and the subsequent 

gene knockdown studies performed in Chapters 5 and 6. 

It would have been interesting to perform Northern blots of genes of interest to 

determine changes in RNA levels, and Western blots to observe levels of protein. It 

would also have been interesting to compare gene expression levels in tnnt2 with those 

observed following induced inhibition of cardiac contraction by pharmacological 

inhibitors such as BDM (2,3-butanedione monoxime). BDM blocks myofibrillar 

ATPase (Bartman, Walsh et al., 2004), so that at high enough concentrations cardiac 

contraction is inhibited or reduced to the extent that blood flow is prevented. This 

experimentation would allow determination of at which point in early development of 

zebrafish embryos inhibited contraction had the most affect on gene expression. 

 

7.3 Position of the Research within the Field 
 

7.3.1 Utilisation of Zebrafish Embryos in the Study of Arteriogenesis 

Arteriogenesis is almost exclusively studied by performing arterial ligation in 

mammalian models. Ligation induces downstream ischaemia and hypoxia which 

induces angiogenesis and arteriogenesis, distinct processes from one another (Carmeliet, 

2000). Furthermore, arteriogenesis is able to occur in absence of hypoxia (Heil, 

Eitenmuller et al., 2006; Lee, Stabile et al., 2004). Therefore utilisation of ligation may 

confuse a study of arteriogenesis. Zebrafish embryos do not suffer hypoxia under 

standard incubation conditions of 28° Celsius prior to 14 days post fertilisation even in 

the absence of blood flow (Pelster and Burggren, 1996). I believe this to be an 
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advantage over mammalian models and permits observation of arteriogenesis 

independently of angiogenesis. 

Despite anatomical differences, early function of the cardiovascular system is similar 

between zebrafish and mammalian embryos (Schwerte and Fritsche, 2003), making 

zebrafish embryos a valid model for studying mammalian disease processes such as 

arteriogenesis. However, differences in gene function thought to have come about 

during evolution might mean zebrafish may not reflect human disease processes. 

Before any determination of genetic modulation I needed to demonstrate that zebrafish 

embryos underwent arteriogenesis, since the model is novel to the process. The gridlock 

mutant’s phenotype is complete and permanent occlusion of the aorta, and recovers 

aortic blood flow during the first days of development despite maintenance of occlusion. 

I have demonstrated through laser-induced aortic occlusion of wildtype zebrafish 

embryos that recovery of aortic blood flow is not a response to gridlock mutation, but a 

response to vascular occlusion that can occur in all embryos. This therefore 

demonstrates for the first time exploitation of zebrafish embryos is suitable for studying 

arteriogenesis, and may prove complementary to mammalian models. My utilisation of 

gridlock embryos allowed observation of aortic blood flow recovery without surgery 

and possible subsequent non-specific cytokine release. Gridlock also provided a high-

throughput means for determining vessel remodelling. This starting point allowed me to 

consider endogenous and genetic modulation of arteriogenesis. Determining endogenous 

modulation and genetic basis of arteriogenesis is important, since arteriogenesis is 

considered a potential therapeutic target for arterial occlusion resulting from 

atherosclerosis (Goncalves, Epstein et al., 2001). Present therapies alleviate symptoms 

but stimulate little or no disease regression (van Royen, Piek et al., 2001a), making 

further research necessary. Characterisation, by for example gene expression profiling, 

could provide clinicians with a means of identifying individuals at risk prior to onset of 

disease, and may allow pharmacogenetic tailoring of treatments to ethnic or gene-

specific groups (Weisfeldt and Zieman, 2007), giving a greater likelihood of treatment 

success. 
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With the current level of model characterisation zebrafish embryos prove 

complementary to existing models of arteriogenesis. For instance, the apparent ability of 

embryos to recovery aortic blood flow following occlusion via remodelling pre-existing 

vessels suggest arteriogenesis to be an evolutionarily conserved process. Greater model 

characterisation, including histological determination of possible alterations in collateral 

vessel gene expression, endogenous molecule expression, and modulation by circulating 

cells (such as monocytes, currently being performed by Caroline Gray), would permit a 

greater comparison of aortic blood flow recovery in zebrafish embryos and mammalian 

models. Observation of embryonic aortic blood flow recovery over longer timepoints 

into juvenile and adult stages may permit generation of a basic timeplan similar to that 

possible for mammalian arteriogenesis (figure 1.2). Greater model characterisation and 

longer observational timepoints may therefore allow determination of similarities and 

differences between zebrafish and mammalian arteriogenesis, which may in turn allow 

determination of zebrafish as a complementary or comprehensive stand alone model of 

arteriogenesis. 

 

7.3.2 Recovery of Aortic Blood Flow Distal to Occlusion Site in Zebrafish Embryos 

is modulated by NOS inhibition 

In order to help unravel the endogenous modulation of arteriogenesis in zebrafish 

embryos I chose to investigate the role of nitric oxide. eNOS expression has been 

demonstrated in zebrafish from 3dpf in cardiomyocytes, aorta and cardinal vein 

(Fritsche, Schwerte et al., 2000). The ease of administering small non-peptide 

molecules, including L-NAME, via simple diffusion into embryos permitted 

determination of nitric oxide’s role in zebrafish arteriogenesis without the need for 

gaseous or intravenous drug administration, as is necessary in mammals. 

Nitric oxide is well documented to modulate arteriogenesis in mammalian models. 

Femoral artery ligation of eNOS deficient mice results in decreased collateral blood 

flow during the first week post ligation, although flow returned to control levels by three 

weeks post ligation (Mees, Wagner et al., 2007). In corroboration, non-specific 

inhibition of NOS enzymes by L-NAME administration diminished blood flow in 

collateral vessels (Yang, Yan et al., 2001). L-NAME has been previously reported to 
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cause vasoconstriction in zebrafish embryos from 3dpf (Fritsche, Schwerte et al., 2000), 

demonstrating its activity in zebrafish embryos, as well as the early development of 

haemodynamic control. Thus, I determined the role of NO in modulation of 

arteriogenesis in zebrafish embryos by administration of L-NAME to embryo media. I 

found NOS inhibition led to significant reduction in recovery of aortic blood flow in 

gridlock mutant embryos, suggesting that as in other species and models of vascular 

occlusion NO modulates ‘collateral’ vessel formation in zebrafish embryos following 

aortic occlusion. A significant reduction in aortic blood flow recovery also occurred 

following NOS inhibition of wildtype embryos having undergone laser-induced aortic 

occlusion. This data demonstrates that NO modulation is not isolated to modulation of 

aortic blood flow recovery in gridlock mutants and provides further evidence to suggest 

that like other previously studied species NO modulates ‘collateral’ vessel development 

in zebrafish embryos following aortic occlusion. 

It has been suggested that observed decreased collateral vessel blood flow with NO 

inhibition in mammals results from absence of vasodilatation. It was hypothesised that 

inhibition of vasodilatation stimulated continued remodelling of collateral vessels via 

sustained elevations in haemodynamic force which would have normalised in control 

animals through dilatation (Mees, Wagner et al., 2007). However, it has also been 

hypothesised that the inability of eNOS deficient mice to respond to VEGF is 

responsible for the observation (Yu, deMuinck et al., 2005), suggesting NO-mediation 

of VEGF is responsible for decreased collateral blood flow. Although I sort to determine 

the role of NO in modulation of arteriogenesis, I did not determine the effect of VEGF. I 

found that NOS inhibition by L-NAME did not significantly reduce aortic blood flow 

recovery in gridlock mutant embryos by modulating either vasoactivity or aortic blood 

velocity. 

NOS inhibition has been shown to cause significant reductions in mammalian heart rate 

(Jacobi, Sydow et al., 2005), demonstrating modulation of cardiac contractility by NO. 

It is therefore possible L-NAME decreases percentage recovery of aortic blood flow in 

zebrafish embryos following occlusion through modulation of cardiac contraction. 

Decreased heart rate may result in decreased blood flow, intravascular pressure, and 
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haemodynamic force in remodelling communications resulting in decreased remodelling 

of those communications. Decreased stroke volume may also result in decreased blood 

velocity, because blood volume may be decreased. L-NAME treatment of zebrafish 

embryos resulted in heart rates of 86% of control, thereby concurring with mammalian 

data which demonstrated heart rate falling by half with L-NAME treatment (Jacobi, 

Sydow et al., 2005). This may suggest decreased volumes of blood flow caused by falls 

in heart rate result in decreased percentages of embryos with aortic blood flow recovery. 

To determine the effect of decreased heart rate on aortic blood velocity I developed a 

means of determining velocity by calculating movement of erythrocytes in respect to 

time. It has previously been difficult to determine haemodynamic parameters in 

zebrafish embryos due to their small size. During the course of the work, a similar 

technique was independently published by another group who demonstrated significant 

reduction of aortic blood velocity in a concentration dependent manner to MS-222 at 

2dpf (Malone, Sciaky et al., 2007). This data thus independently demonstrated the 

technique has the sensitivity necessary in order to measure subtle alterations in 

haemodynamic parameters in zebrafish embryos. It also demonstrated embryos at the 

earliest stages of development have the physiological processes necessary for control of 

haemodynamics. L-NAME treatment did not result in significant alterations in aortic 

blood velocity suggesting aortic blood velocity is not affected by decreased heart rate. It 

is possible that inhibition of vasodilatation by L-NAME administration limits the effect 

of decreased heart rate on aortic blood velocity, maintaining velocity via decreased 

vessel luminal diameters, and it should be noted that the statistical power of this 

experiment was found to be 10.3% at the proximal aorta. This fact makes it more 

difficult to identify changes in velocity, and it is possible increasing the power by 

studying greater numbers of embryos might identify an effect. 

Erythrocyte numbers entering intersegmental vessels of 5 and 6 day post fertilisation 

zebrafish embryos decrease significantly on L-NAME treatment, as a result of decreased 

vessel diameter (Fritsche, Schwerte et al., 2000). However, aortic blood velocity was 

not determined in the study. L-NAME treatment did not affect non-ischaemic 

(physiologically normal) blood flow in rat muscles (Lloyd, Yang et al., 2001), while it 
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has significantly reduced limb perfusion in mice (Jacobi, Sydow et al., 2005), perhaps 

suggesting measurement of different indices accounts for alternative results. 

Studying the role of NO mediation in gridlock and laser-occluded embryos has therefore 

enabled me to demonstrate that zebrafish and mammalian arteriogenesis share 

mechanisms, at least in part, and suggests some level of conservation between 

arteriogenesis in mammalian and non-mammalian vertebrates. 

 

7.3.3 Microarray Analysis in the Absence of Physiological in vivo Haemodynamic 

Force permits Determination of Differential Gene Expression compared to 

Controls 

Genetic analysis of the effect of haemodynamic force has been performed under varying 

conditions by many groups; however studies have mostly occurred in vitro. Cultured 

cells generally reside in an environment for a period of days, while ECs can reside in 

microenvironments in a quiescent state for many months. The significance of this 

difference is unknown, but might translate to incomplete or deceptive mimicry of in vivo 

conditions (Staton, Lewis et al., 2006). In vitro systems are based primarily on single 

monolayers of cells which contrasts with the in vivo environment where cells undergo 

wide-ranging interactions, including with different cell populations. Furthermore, in 

vitro studies have determined effects of either FSS or cyclic stretch to gene expression, 

while both forces help comprise haemodynamic force in vivo. 

To my knowledge only one study has performed microarray analysis with the aim of 

determining gene expression following arterial ligation (Lee, Stabile et al., 2004). 

Ligation of the femoral artery led to the largest group of differentially expressed genes 

relating to inflammation despite sham operation of contralateral limbs. I describe the 

first study to perform microarray analysis in an in vivo model which does not induce 

angiogenesis and arteriogenesis, and is free of hypoxia, as well as surgically-induced 

gene expression. Exploitation of zebrafish embryos enabled me to identify genes which 

may modulate arteriogenesis alone. In addition, I performed the microarray utilising 

total RNA. This method is technically simple, and permits RNA extraction immediately, 

capturing gene expression as close to conditions of in vivo physiology as is possible. 
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While it enables determination of gene expression for the whole organism, permitting 

observation of the interaction between physical forces, endogenous modulation and 

different cell types, it does not enable isolation of vascular-specific gene expression, 

which is dependent upon further analysis and hypotheses. 

Differentially expressed genes included a number previously demonstrated to modulate 

arteriogenesis in both mammalian models and my models utilising zebrafish embryos. 

For example, endogenous modulation was represented by differential expression of 

VEGF. Several studies have demonstrated increased collateral vessel remodelling or 

increased collateral blood flow following VEGF administration (Kondoh, Koyama et 

al., 2004; Takeshita, Weir et al., 1996). However, these studies have been performed in 

models where distinction between ischemic and non-ischemic regions was not made. 

VEGF upregulation predominantly occurs following binding of hypoxia-inducible factor 

1 (HIF-1) to the VEGF promoter (Forsythe, Jiang et al., 1996), suggesting VEGF 

upregulation occurs under hypoxic conditions. Mammalian studies in which ischemic 

and non-ischemic regions of muscle were analysed independently found collateral vessel 

development occurred in regions unaffected by reduced blood flow (Ito, Arras et al., 

1997). Other members of Dr. Chico’s lab have demonstrated arteriogenesis to occur 

independently of hypoxia in zebrafish (Gray, Packham et al., 2007). Differential 

expression of VEGF in the microarray analysis therefore suggests VEGF has a role in 

modulating alterations in haemodynamic force, and could indeed modulate 

arteriogenesis. It is possible VEGF modulates arteriogenesis through mediation of NO 

as has been demonstrated in vitro (Hood, Meininger et al., 1998), or conversely through 

NO-mediation of VEGF (Papapetropoulos, Garcia-Cardena et al., 1997). It is 

unfortunate that eNOS and iNOS genes, the isoforms of NOS observed and 

hypothesised to modulate arteriogenesis, were not represented on the GeneChip utilised 

preventing determination of possible mediation between VEGF and NO. 
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7.3.4 Differential Expression of Vasoactive Genes in the Absence of Haemodynamic 

Force 

A cluster of vasoactive genes demonstrated significantly decreased gene expression in 

the absence of haemodynamic force. In order to determine a possible role for these 

genes in modulating arteriogenesis I performed knockdown experimentation of EDNRB. 

Although a role for EDNRB in angiogenesis and vascular remodelling has been 

described (Murakoshi, Miyauchi et al., 2002), I am the first to research and find a role 

for EDNRB in modulation of arteriogenesis. I have demonstrated EDNRB knockdown 

significantly reduces recovery of aortic blood flow distal to occlusion in gridlock mutant 

embryos. While my results were not confirmed by chemical antagonism, studies in mice 

(Murakoshi, Miyauchi et al., 2002) and chick (Ms Emily Hoggar, personal 

communication) do suggest a role. The mechanism by which EDNRB may modulate 

arteriogenesis was not the remit of this work. It is possible that decreased levels of NO 

may, at least in part, causes the effects seen in zebrafish gridlock mutant embryos 

following EDNRB knockdown, and it would be of interest to challenge this hypothesis. 

NO is easily inhibited in zebrafish embryos with NOS inhibition by L-NAME 

administration, although L-NAME does not distinguish between NOS isoforms. NO 

levels can also be enhanced through use of the NO donor SNP (Pelster, Grillitsch et al., 

2005). Utilising these means together with the models of aortic occlusion developed 

would permit further understanding of the mechanism that associates EDNRB with 

arteriogenesis. Since EDNRB is also expressed in monocytes/macrophages, cells 

important to collateral vessel remodelling, it would also be of interest to determine the 

effect of EDNRB knockdown on monocyte/macrophage recruitment and activity 

following arterial occlusion. It is possible that knockdown of EDNRB inhibits 

monocyte/macrophage activity in some way, thereby reducing recovery of aortic blood 

flow. Given expression of EDNRB in multiple cell-types (ECs, VSMCs, 

monocytes/macrophages), further research might also lead to isolate which of these cell-

types is affected by EDNRB reduction. EDNRB knockdown in any of these cell-types 

might reduce recovery of aortic blood flow following occlusion, and it is possible that 

knockdown in all three contribute to the effect I have observed. 
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7.3.5 Temporal Alterations in Recovery of Aortic Flow with EFNB1 Knockdown 

EFNB1 knockdown in gridlock mutant embryos resulted in a very significant increase in 

recovery of blood flow distal to occlusion compared to control at 3dpf (figure 6.11) 

however by 4dpf this significant increase was lost and did not recover at 5dpf. These 

results are possibly due to reductions in MO activity at 4 and 5dpf. Given the short 

timeframe of increased recovery of aortic blood flow, it is difficult to determine the 

possible mechanisms involved. Expression in kidney arterioles and glomeruli suggested 

possible roles in vascular patterning and development (Adams, 2002). Such alterations 

during development of zebrafish embryos could account for my observation, since 

vasculature is plastic at this time and undergoes sprouting and regression (Isogai, 

Lawson et al., 2003). However, I did not determine alterations in vasculature patterning 

of EFNB1 knockdown embryos at 2dpf. Utilisation of MOs designed against different 

portions of EFNB1’s sequence may permit validation of this result. Closely related 

molecules, such as EFNB2, demonstrate an important role in arterial-venous fate 

decisions at timepoints close to the onset of blood flow (Wang, Chen et al., 1998). It is 

possible that embryonic expression peaks at this timepoint. If EFNB1 expression follows 

a similar pattern lower levels of expression may occur at the later timepoints of 4 and 

5dpf, and thus the effect of deficiency may be lessened. The hypothesis could be tested 

by performed in situ hybridisation at all three timepoints. 

 

7.4 Summary 
 
This work demonstrates that zebrafish embryos are able to undergo a process akin to 

mammalian arteriogenesis. Though the zebrafish models developed and discussed may 

prove complementary to existing mammalian models, more work is required to 

determine the mechanistic and histological similarities and differences that may exist 

between zebrafish and mammals undergoing vessel remodelling after occlusion. I 

believe that with this additional data, it may be possible to describe zebrafish embryos 

as a stand alone comprehensive model for the study of arteriogenesis. 
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