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Abstract  

 

 

Numerous natural phenomena are characterized by spatio-temporal dynamics which give rise to time 

evolving spatial patterns. Although studies that address the problem of modelling these complex dynamics 

exist, a model based control approach for such systems is still a challenging task. The work in this thesis 

is concerned with the development of control methods for such spatio-temporal systems, where interface 

growth is represented using a geometric evolution law. In particular, the focus is set on the control of 

dendritic crystal growth and wind aided wildfire spread. 

In the first section of the thesis several modeling approaches used to describe spatio-temporal systems 

are discussed and partial differential equation models are selected as a suitable class of models for 

describing the system dynamics. Following this, the complex nonlinear dynamics found in dendritic crystal 

growth and wind aided wildfire evolution are analyzed through the scope of geometrical partial differential 

equation models of interface evolution. 

In the next part of the thesis, a new method for controlling the shape of evolving interfaces, such as 

the boundaries of dendritic crystals, described by a temperature-dependent geometrical evolution law, 

where the normal velocity of the growing interface depends on both local curvature and temperature, is 

presented. A study of the control method in both two and three dimensions is provided, using both linear 

and non-linear interface dynamics, to demonstrate the effectiveness of the proposed method. 

Following this, a novel model-based approach for controlling the evolving complex-shaped fire front 

using a level-set formulation of the model is presented. The work shows how key influencing parameters 

such as terrain topography and fuel loading, extracted directly from satellite imaging data, can be 

incorporated in the model. Simulation results show the numerical method is computationally efficient 

and examples are given with both synthetic and real data to illustrate the robustness of the containment 

method against changing wind speed, fuel loading and terrain topography. 

Based on the developments made in the previous chapters, a new optimization method for 

controlling wildfire evolution is presented. Using a level set formulation of the evolving interface, a cost 

function is derived that allows the selection of a spatial location, such that the firefighting action has the 

best results with respect to a predefined target (minimum fire area increase etc.). Several tuning 

parameters are incorporated within the optimization algorithm, enabling a wide range of fire combat 

scenarios to be implemented. Numerical simulations provided demonstrate the effectiveness of the 

method. 
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1. Introduction 

 

 

1.1. Background to the project and Motivation 

 

Dynamical systems where the evolution depends on both the spatial interactions and the time 

dynamics of the neighboring spatial locations of the system are called spatio-temporal systems. 

Therefore, such systems evolve in both space and time, and the dynamics at a unique spatial location 

taken at a specific point in time is dependent on the dynamics of the system at other spatial locations and 

the evolutionary history back in time. In contrast, purely temporal systems involve measurements of a 

variable over time and are not concerned with the spatial interactions within the system. As a result, 

spatio-temporal systems can describe a wide range of highly complex natural phenomena, where the 

spatial interactions within the system produce time evolving patterns. Examples of spatio-temporal 

systems include crystal growth, fluid flows, combustion and flame propagation (wild land fire spread), 

climate systems, self-organized cellular systems.  

In recent years, numerical modelling, simulation and control of interface evolution problems that 

appear in such spatio-temporal systems has become of great interest. This current study is focused on 

simulation and control of such interface evolution problems, with application in two major areas: crystal 

growth and wind-aided forest fire spread. Although these phenomena are quite opposite by nature, given 

the fact that one implies solidification at relatively low temperatures, and the other is related to burning of 

biofuels (dried grass, shrub, timber etc.), both their dynamics can be modelled using similar techniques. 

In both cases, an initial interface (initial crystal seed, initial fire front) evolves in time, depending on 

numerous environment variables, to create complex patterns. Developing a systematic methodology of 

controlling the mode in which these interfaces evolve poses significant challenges to researchers and is 

an area of great interest. 

Solidification processes are amongst the most common phase change processes, where an interface 

separating two phases (e.g. liquid and solid) evolves in time to create spatio-temporal patterns, such as 

dendrite crystals. Dendritic crystal structures are found in numerous systems in nature, both organic and 

inorganic, where many complex patterns emerge from simple conditions. One of the most common 

examples of dendrite is the snow crystal (Nakaya, 1954, Kobayashi, 1993), but dendrite-like patterns 

have been observed in other substances such as pure metals (Warren, 1995), alloys (J.F. McCarthy and 

N.W. Blake, 1996) or non-metallic substances, such as helium (Rolley et. al, 1994). Crystal growth has 
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been a topic of study in numerous areas, such as physics, material science, physical chemistry, and 

pharmaceutical or food industries. Thus, crystal growth is a multidisciplinary field and there is currently a 

great interest in understanding the principles governing pattern formation in such systems. Solution 

crystallization is used to obtain many pharmaceutical products, where the morphology and structure of 

the crystals influence chemical properties of the drugs and their therapeutic performance (Lee and 

Myerson, 2006). Another example is in the field of material science, in the case of steel casting, where 

during solidification dendrite structures form in the melt with a specific growth rate, shape and size, 

which determine the properties of the solidified material, such as mechanical strength and electrical 

conductivity. In many cases metal solidification causes formation of dendrite structures that affect the 

quality of the final material (Govindaraju, 2002). Hence, for such processes where the properties of 

materials are determined by crystal structures, control and prediction of dendritic formation is of great 

interest. The control of crystal growth poses many difficulties due to the speed of the process and the 

numerous parameters that determine the evolution of the growth. 

The second application of spatio-temporal models that is considered in this work is the modeling 

and control of forest fires. Wild land fires are a natural occurring part of the environment and have 

been a topic of study for several decades, and the search for a mathematical model of evolution for fire 

spread has been a topic of intense research (Johnson et al, 2001).  

Wild fires can occur by both natural and artificial (manmade) causes, and have devastating effects. 

Regions where the climate is predominantly dry favor the ignition and spread of fires. In these 

conditions the sun’s heat or a lightning strike is enough to spark a fire. This can be considered as 

natural path of recycling, in the sense that the elimination of dead, useless vegetation can make space 

for a new repopulation of healthy vegetation. However, while there are few benefits of eliminating 

dried flora, in most cases destruction of vegetation often is correlated with decreases in fauna 

population. Human related activities and negligence, in particular, can also cause wild fires, and the 

most common causes are unattended campfires, inappropriate waste burning, fireworks, smoking or 

intentional arson.  

Wild land fires are responsible for numerous types of overwhelming damage. A direct and obvious 

example is the massive loss of forests and shrub, which in turn causes several chain effects. In general, 

areas covered by forests, create a perfect setup for wildlife habitat and the loss of forests causes large 

drops in environmental biodiversity, favorises greenhouse effects and increases soil deterioration. The 

damages are not limited solely to uninhabited areas. The dynamic nature of wildfires implies that 

evolution behavior is difficult to predict, especially when the fires reach the so called wild land-urban 

interface (Rehm et al 2009). In such cases, damages which are measured in loss of human lives and 

financial properties, are considerably greater (National Interagency Fire Center, 2012). 
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As a direct result of these highly unwanted outcomes, development of mathematical and numerical 

models of interface evolution for the rate of spread of wild fires and front movement prediction is 

crucial for a better understanding, management and prevention of these unwanted events. However, 

this is not an easy task, due to the fact that fires are influenced by a large number of factors, including 

the biofuel type, fuel loading, terrain slope factors, ignition factors, environment moisture, wind speed 

etc. (Rothermel, 1972).  

 

1.2. Dendritic crystal growth 

  

In this section a short presentation of the physical process that describes the formation of crystalline 

solids from melts is given. The process of crystallization is complex and will not be captured in detail in 

this section. Crystallization begins with the creation of a cluster of atoms of crystalline structure that 

grow in the melt to form nuclei, a process known as nucleation. The phase transformation (solidification) 

requires rearrangement of the atoms, which causes small atomic-scale movements. This process is due to 

extraction of heat from the melt in a more or less controlled manner. Once nucleation has occurred, the 

nuclei continue to grow, forming the macroscopic crystal, influenced by the kinetics of atom attachment 

to the interface, capillarity and diffusion of heat and mass (Dantzig and Rappaz, 2009).  

To explain the formation of dendritic crystals, consider a container of a pure substance in liquid state, 

heated to a certain temperature, high enough to ensure that there are no crystals in the melt. Consider the 

temperature is lowered below the freezing point of the liquid. If the cooling is done in such a manner that 

the liquid does not change phase, e.g. the system is in metastable equilibrium, any small perturbations, 

such as introducing a seed in the liquid (heterogeneous nucleation), or the spontaneous formation of a 

crystalline nucleus (homogeneous nucleation) cause a rapid and unstable phase change, namely dendritic 

crystal growth. The evolving solid-liquid interface takes a tree-like form (called a dendrite), consisting of 

a primary dendrite arm with braches that extend outward (secondary dendrite arms). This is the case of 

isolated growth (unconstrained growth) for a pure substance, where an isolated dendrite grows from an 

undercooled melt, and the growth is controlled mostly by heat flow (Fig 1.1.). When the heat flows from 

the solid into the melt (latent heat), the dendrites grow in a free manner, with a speed imposed mostly by 

the undercooling. The process is naturally unstable and the crystal will continue to grow until constrains 

due to surface tension or interface kinetic effects stabilize the growth. 

During the last decades, considerable theoretical effort was expended with the purpose of providing a 

better understanding of the mechanisms that control the pattern formation during dendritic crystal growth 

(Glicksman et al, 1976, Langer, 1980, Brower et. al, 1984, Kessler et. al, 1985, Kessler et. al, 1986, 



Chapter 1. Introduction 

 

 

4 

 

Kessler and Levine, 1986, Martin and Goldfield, 1987, Strain, 1990, Sethian and Strain, 1992). Despite 

many previous efforts to analyze and model the pattern formation in dendritic crystal growth, the 

mechanism by which the system evolves is not yet fully understood. 

Several mathematical models have been proposed to simulate dendritic growth. Two of the most 

common approaches to model crystal growth are the local geometrical models of evolution (Kessler et 

al., 1984, Zhao et al., 2011, Zhao et al., 2007), which take into account properties of the solid-liquid 

interface, such as curvature; another method is to model growth by non-local models that take into 

account other global parameters of the system (Gibou et al, 2003). Other approaches to model 

solidification exist in literature, that are somewhat a different approach from local and non-local models, 

such as cellular automata models (Zhao et al., 2009). 

 

Fig. 1.1. Growth pattern of  𝑁𝐻4𝐵𝑟 dendrite crystal 

Even though modeling and numerical simulations of dendritic crystal growth have shown an 

increase in scientific research interest, there are very few articles that point towards control of dendritic 

solidification processes. Most work done towards control has been done in the framework of non-local 

models, using a simplified geometry that cannot describe dendritic growth – the classical Stefan 
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problem. Another approach to control the shape of the crystal involves solving an inverse design 

problem, in the same framework of non-local models (Zabaras et. al. 1992).  

 

1.3. Wild fire propagation 

  

This section contains a brief description of the fundamental physical processes that are involved in 

the evolution of a typical (naturally occurring) fire together with a description of related mathematical 

models and fire management approaches. Wild land fires are the effect of released heat as a result of the 

thermochemical decomposition of biofuels, and the transport of the produced energy to the surrounding 

spatial locations which contain unburnt fuel. The transported heat causes a sustained reaction and 

consequently the ignition of the surrounding fuel occurs, driving the fire growth.  

The main phases of a combustion process can be divided in preheating (Hottel et. al, 1971), ignition, 

flaming, smoldering and glowing combustion (Williams, 1977); each phase represents a different 

physical phenomenon and implicates different chemical reactions. Although many of the ignition factors 

can be controlled (decreased human factor influence on the environment), natural causes, such as 

lightning strikes are not easy to predict. In recent years, fuel ignition due to lightning strikes has received 

more attention. Reports show that in Canada alone, 45% of all wild land fires are caused mainly by 

lightning strikes and the damage done represents 81% of the total areas burned (Environment Canada, 

2013). Studies have shown that lightning fires can affect the lightning environment through smoke, in 

some cases inverting the charge structures of cloud-ground lightning strikes.  

The two main forms of combustion are flames and smoldering, which represent the means of heat 

transfer that drive the fire front evolution. Combustion of a material is generally a fuel oxidation process, 

which generates as output thermal energy, accompanied by various products of complete combustion 

(carbon dioxide, water) and incomplete combustion (carbon monoxide, soot etc.).  This stage of the fire 

evolution is particularly difficult to model, due to the complex nature of the biofuel and the environment 

conditions in which the combustion actually occurs (Ward, 2001, Sullivan, 2007a). 

Fire front movement after combustion is associated to another class of process modelling, which 

brings together the various processes (chemical, physical) that describe the fire, and  relates them to the 

environmental factors (wind speed , terrain elevation etc.) to describe the time evolution of the fire front. 

The rate of spread describes how fast the fire front is burning through unburnt biofuels. Consequently, 

the rate of spread (or fire front velocity) is generally given by the heat flux that is generated from the 

active combustion of existing fuel cells in report to the heat that is required to ignite the surrounding fuel 

(Webber, 2001). 

The development of models for fire spread goes back as early as the 1970’, when a large number of 
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papers were published on this matter (Bruce et. al, 1961, Rothermel et. al, 1966, Van Wagner, 1967, 

Anderson, 1968, 1969, Emmons and Shen, 1971, Rothermel, 1972, Albini, 1976, Rothermel, 1983), a 

trend that has continued to present times (Rothermel 1991, Larini et. al,1998, Pastor, 2003, Balbi et. al, 

2009, Mallet et. al, 2009, Stepanov et al., 2012, Lautenberger, 2013). This variety in modelling 

techniques and approaches is mainly due to the interactions between the extremely large number of 

factors that influence the fire. Several types of models categories can be mentioned, depending on the 

modelling technique used (Sullivan, 2007a and 2007b): 

 Physical models  

 Quasi-physical models  

 Empirical models  

 Quasi-empirical models  

The fuel type is crucial in analyzing fires, mainly due to the fact that a first categorization is made 

according to the location of the most abundant and more likely fuel to burn – ground fuels, surface and 

crown fuels. The first category includes organic matter that is decomposing or dead, plant roots, duff etc. 

The immediate layer next to the ground fuels is the surface fuel layer, which is composed of fallen 

foliage, tree bark, twigs, branches, vines, grass, shrub etc. The top fuel layer is the crown layer, which 

consists of the mid-upper part of the fully-grown trees, where the canopy is located. Each layer has its 

unique physical properties, and contributes to a certain degree to the development of a fire, depending on 

the amount of heat produced and transferred. To facilitate the analysis of fire evolution, development of 

methodic classification and mathematical models of behavior for a wide range of fuel types was 

addressed (Scott and Burgan, 2005). 

The moisture content in these fuels may act in helping or delaying the fire ignition and propagation, 

and consequently production of smoke (Nelson, 2001). Humidity is mainly affected by the amount of 

water fall in a specific region, making the local weather climate an important factor for wildfires. The 

humidity percentage is influenced by the amount of solar radiation, the atmospheric pressure, wind 

speed, oceanic currents, terrain etc. Thus, another factor that needs to be taken into account is the 

coupling ensemble of meteorology and climatology conditions and local terrain topography with wildfire 

development and spread (Flannigan and Wotton, 2001, Coen et. al, 2013).  

To minimize the extent to which fires cause damage to both populated environments and natural 

ecosystems, fire management, control and suppression strategies have been developed. These techniques 

are managed in general by specialized organizations, which assess and plan the proper action to be taken. 

The effectiveness of these organizations depends on factors as available technology and resources 

available for fire suppression, the expertise and knowledge of people within the organization and external 

natural influences (i.e. bad weather, low visibility, strong winds etc.). Suppression strategies vary 
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depending on the size and strength of the fire, the terrain topography, fuel available and weather 

conditions. These approaches act by affecting the main factors that drive fire growth: 

 heat reduction – by using water, fire-fighting foam and gels 

 limit the amount of available oxygen (combustion inhibition)  

 limit the amount of  biofuel available – by organized burning various sites situated ahead 

of the fire 

The main suppression strategies can be divided in the following categories: 

 Direct control – is used when the fire is detected in its early stages or in regions of large, 

growing fires that can be rapidly and safely tackled. This method usually leads to relatively 

fast and complete extinguishment. 

 Perimeter control – implies that the fire evolution is fully or partially suppressed in such a 

way that the regions of fire front are contained inside a specified safety region. This 

approach is the most common approach for surface fires. 

 Prescription control (controlled burning) – is a particular suppression technique in which 

the fire ignition may be done deliberately. This approach is planned in time slots when 

forest fires do not naturally occur, and is used as a tool to regulate the possible fuel 

accumulation and to stimulate the growth of new vegetation. 

The typical life cycle of a forest fire can be described in terms of time delay intervals associated to 

key events from ignition to extinction, which is illustrated in Fig 1.2. (Martell, 2001). By combining 

these four stages, a simple mathematical model that doesn’t take into account the spatial pattern of the 

evolving fire can be derived as (Parks, 1964): 

𝑑𝑢

𝑑𝑡
= 𝐺𝑟𝐷 + 𝑎𝑡                                                                              (1) 

where 𝑢 represents the total burned area, it’s time derivative equals the fire growth rate, 𝑡 is the elapsed 

time since the fire detection event (𝑡𝐷), 𝐺𝑟𝐷 is the actual growth rate at the detection time and 𝑎 is the 

acceleration of fire growth. The initial condition of (1) is 𝑢(0) = 𝑢𝐷 and represents the size of the area 

burned at detection time 𝑡𝐷. 

The fire size 𝑢𝐴 when the actual suppression action begins (𝑡𝐴) is given by 

𝑢𝐴 = 𝑢(𝜏𝐴) = 𝑢𝐷 + 𝐺𝑟𝐷𝜏𝐴 +
1

2
𝑎𝜏𝐴

2                                                      (2) 

𝜏𝐴 = 𝑡𝐴 − 𝑡𝐷 

which will continue to grow at a rate of       

𝐺𝑟𝐴 = 𝐺𝑟𝐷 + 𝑎𝜏𝐴                                                                        (3) 

When the suppression resource is present, Parks assumed the growth rate to be decelerated by a linear 
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function factor that is dependent on the efficiency of the suppression 𝑒𝑓 and the time interval on which it 

has been active : 

𝑑𝑢

𝑑𝑡
= 𝐺𝑟𝐷 + 𝑎𝑡 − 𝑒𝑓(𝑡 − 𝜏𝐴) = 𝐺𝑟𝐴 − (𝑒𝑓 − 𝑎)(𝑡 − 𝜏𝐴)  ,    𝑡 ≥ 𝜏𝐴                   (4) 

The fire evolution then will be fully contained (i.e. growth no longer occurs and  
𝑑𝑢

𝑑𝑡
= 0) when 

𝑡 − 𝜏𝐴 =
𝐺𝑟𝐴

(𝑒𝑓 − 𝑎)
= 𝜏𝐶                                                                   (5) 

Although the modelling approach derived by Parks does not provide information about the front shape 

and does not include any meteorological or topographical aspects of the environment it offers an explicit 

relationship between the burned area covered by fire evolution and the effectiveness of the suppression 

method, being one of the first approaches to containment strategies. 

Fig. 1.2. Forest fire life cycle: 0 – 𝑡𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛,   [0 + ∆𝑡, 50] − ∆𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 , 

[50 + ∆𝑡, 100] − ∆𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , [100 + ∆𝑡, 150] − ∆𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , 

[150 + ∆𝑡, 200] − ∆𝑡𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , [200 + ∆𝑡, 250] − ∆𝑡𝑜𝑢𝑡 
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1.4. Aims and objectives  

 

This thesis aims to develop control strategies for systems with complex spatio-temporal dynamics, 

focusing on interface evolution problems linked to dendritic crystal growth and wind-aided fire spread. 

The control laws are derived based on a level set formulation of the geometrical model of the evolving 

interface.  

The main objectives of this work can be summarized as follows: 

 Extend the geometrical model of interface evolution for dendritic crystal growth  to include 

effects of undercooling (temperature dependence) in the pattern formation process 

 Develop, implement and evaluate through numerical simulation new techniques to control the 

evolution of the boundary of the dendritic crystals 

 Validate the novel methodology using both synthetic data and experimental data, gathered 

from time lapse observation of dendritic crystal growth  

 Advance current wind-aided fire evolution models to include interactions with terrain 

topography and fuel loading estimation to improve the fire front evolution prediction over a 

general terrain under known meteorological conditions 

 Develop efficient control strategies for the purpose of containment and suppression of wild 

land fires using a geometrical representation of the fire front interface dynamics. 

The control of spatio-temporal systems has numerous practical applications, but poses significant 

theoretical and implementation challenges. The results of this work will help advance our understanding 

of these systems as well as improve our ability to control them.    

 

1.5. Overview of the thesis 

 

The work undertaken in this thesis is organized into eight chapters, which provide a comprehensive 

background material needed for a control strategy definition together with independent chapters that 

contain the original research contributions. 

Chapter 2 makes an introduction to modelling approaches used for capturing spatio-temporal 

dynamics. Therefore, a comparison of several mathematical concepts is presented, with focus on the 

main dynamical models used throughout literature. This results in the selection of the most appropriate 

method to describe the two spatio-temporal systems of interest, dendritic growth and wildfire spread, in 

the form of partial differential equations. The Chapter provides a brief overview of geometrical models of 

interface evolution, which in this work are used to describe the dynamics of the two spatio-temporal 
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systems considered. In particular, the curvature driven evolution of a simple closed curve described by a 

partial differential evolution equation is studied in more detail. 

Chapter 3 provides a thorough  review of local and non-local interface evolution models used to 

describe dendritic crystal growth. In the scope of local evolution models, geometric laws of evolution 

that are based on curvature flows are presented. Non-local models such as the modified two-phase Stefan 

problem are considered. Although growth models described by PDE’s are the main focus of the current 

work, coupled dynamical systems are shown to be able to capture general characteristics of dendritic 

crystal growth. 

The Chapter also provides an overview of the most used techniques for tracking the moving 

boundary. The method adopted in this work is the implicit level set method as the preferred approach. 

The mathematical formulation of the approach is provided and illustrated through several numerical 

examples. 

Chapter 4 introduces the framework for modeling the spatio-temporal dynamics of propagating 

wildfires, where the rate of spread is determined by the combined effects of atmospheric, topographic 

and terrain dependent parameters. Semi-empirical approaches are chosen as the representative 

mathematical formulation, and fire interface dynamics are derived in a level set formulation. Several 

aspects of numerical implementation and fire front prediction are studied in a two dimensional space.  

Chapter 5 introduces a new strategy to control crystal growth, i.e. impose a desired shape, based on 

the level set formulation of  the geometrical model of the interface evolution. 

A new methodology to derive a distributed closed loop control strategy is presented, starting from an 

arbitrary initial interface and the desired reference. By representing the interfaces using a level set 

formulation, the main components needed to define the time evolution of a controlled variable are 

derived. The closed loop control method ensures the convergence of any initial simple and non-

intersecting curve to the desired reference.  

The control method is formulated for interfaces evolving in both two and three-dimensions, 

providing the basis for practical implementation. The numerical implementation of the proposed 

algorithm is presented in detail for 2D and 3D problems. 

To validate the new approach, several scenarios are studied, in both two and three dimensional cases. 

The novel technique is first used to control the nonlinear dynamics with artificially generated curve 

(surface) sets. Several key performance indicators are defined to measure the performance of the closed 

loop controller, with excellent results.  

To illustrate the robustness of the algorithm, experimentally observed data of a dendritic growth 

process is processed and the complex spatio-temporal pattern is then extracted and used as a reference. 

As a result, it was seen that the results of the proposed method allow arbitrary initial seeds to evolve into 
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highly complex shapes.  

Chapter 6 proposes a new fire suppression method for wild land fires, based on both static and 

dynamic data that can be measured or is readily available for the observed region where an ignition event 

has been detected. The new control method blends a-priori, slow varying, information of a region of 

interest with the rapidly changing measurements of atmospheric conditions, providing an accurate 

estimate of the system dynamics. The method is based on containing the evolving fire within a certain 

area by gradually reducing the temperature at the boundary between the burnt and unburnt biofuel layer. 

To this aspect, the suppression method is a parametric control problem, which idealizes the resources 

available. 

A nonlinear semi-empirical geometrical model of evolution is used to predict the growth of the fire 

interface and, based on key influencing parameters and the region defined by the containment zone, a 

specific control action is taken. 

The new suppression strategy is shown to be robust against several real-life scenarios. To this scope, 

the effects of artificially ignited fire fronts is analyzed under varying atmospheric and terrain conditions, 

together with their un-controlled counterparts, clearly showing the advantages of introducing the 

controlled dynamics. 

To further extend the method, satellite observations in the form of terrain imaging and digital terrain 

data are processed and quantitative information related to biofuel loading and terrain topography are 

estimated and incorporated into the evolution model, providing real-time accurate data for the prediction 

of a potential wildfire.  

Chapter 7 introduces a novel optimization strategy for controlling the evolution of wildland fires, 

based on a geometrical representation of the evolving interface. The method is aimed at providing a 

solution to a resource allocation problem in firefighting scenarios. Using known information about an 

area of interest where a fire is detected, a cost function, which incorporates the fire dynamics, is used to 

determine the spatial location where the available (limited) amount of firefighting resource is most 

effective, given a specific control target.  

The optimized boundary control strategy provides several tuning parameters that deliver a direct link 

between the evolving fire interface and the fire-fighting process, enabling the analysis of a vast number 

of scenarios. As with the approach presented in Chapter 6, the method can incorporate real-world data 

and containment sectors, thus being able to provide accurate predictions of the evolving dynamics. 
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Chapter 8 provides a summary of the work undertaken and highlights future directions of research. 

As a direct consequence of the work undertaken in this thesis, the following conference papers have 

been published to date. Two journal papers are in preparation. 

 

 Bouaru A & Coca D (2014) Control of spatio-temporal pattern formation governed by geometrical 

models of interface evolution. 2014 European Control Conference, ECC 2014 (pp 1993-1998) 

Bouaru A & Coca D (2014) Modelling and control of wildfires using geometrical models of interface 

evolution. 2014 Mathematics and Engineering in Marine and Earth Problems, MEME 2014  
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2. Mathematical representations of spatio-temporal systems 

 

2.1. Introduction 

 

Numerous natural phenomena such as dendritic crystal growth and wildfire propagation, exhibit highly 

complex patterns that fall in the category of spatio-temporal systems. To better understand the underlying 

dynamics in such systems an accurate mathematical representation of the spatial interactions and time 

dynamics in such systems, which enables numerical simulation and analysis, prediction and practical 

implementation of control strategies is crucial.  

This chapter provides an overview of different mathematical representations of spatio-temporal 

models. The most important classes of models that are used in practice to describe spatio-temporal 

dynamical systems are cellular automata (CA) models, coupled map lattice (CML) models and partial 

differential equation (PDE) models. This chapter succinctly reviews these approaches that are used to 

model spatio-temporal dynamics with focus on PDE models that will form the basis for the work. The 

Chapter is organized as follows. Section 2.2 provides a description of CA models present in literature. The 

third part, Section 2.3, provides details related to the structure and properties of CML models. In this thesis 

spatio-temporal systems will be represented using PDEs and therefore Section 2.4 is devoted to a brief 

theoretical overview of PDE models and interface evolution equations. 

 

2.2. Cellular automata models 

 

Cellular automata (CA) models represent an important tool in the study of spatio-temporal systems 

and were first introduced in (Neumann, 1951, 1966). A CA model is a discrete system that evolves in both 

discrete space and discrete time steps over a predefined spatial geometry. The main structure of a CA 

model is defined by a discrete grid structure, cell states, a neighborhood and a local transition rule. 

The discrete lattice (grid of cells) on which the model is defined, can be n-dimensional in size. The 

cells, which represent the atomic building blocks of the CA, can be chosen to have various shapes (triangle, 

square, hexagonal), usually under the assumption of homogeneity (Fig. 2.1). The selection between shapes 

is usually related to the nature of the system of interest and the type of evolution law that is selected. The 

most common lattice structure is the square lattice, mainly due to its relatively simple numerical 

implementation, but hexagonal and triangular lattice structures have been used in literature (Morita et. al, 

1995, Pagnutti et. al, 2005, Wuensche et. al, 2006). 
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Fig 2.1. CA lattice diversity (two dimensional CA) – square, hexagonal and triangular lattice 

structures 

The cell state, which is the value assigned to each cell, belongs to a set of allowed states, i.e. 𝑠 ∈ 𝑆 =

{𝑠0, 𝑠1, . . . , 𝑠𝑘}, with finite cardinality (𝑘 < ∞), where 𝑠𝑘 can only take a finite number of discrete values. 

Binary CA are the most common, where the allowed states are {0,1} . In the simplest CA models, the state 

of a cell at time step 𝑡 depends on the states of its neighboring cells at time step 𝑡 − 1, which in turn depend 

on their corresponding neighborhoods at time step 𝑡 − 2 etc.     

The neighborhood 𝑁 of a cell, represents the set of surrounding positions that influence the new value 

of the current cell. The neighborhood can be defined on different spatial locations and temporal steps, 

together with a variety of stencil size, allowing a large diversity in terms of evolution laws. Consider a one 

dimensional CA model, defined over a square lattice structure, where the spatial position of a cell is given 

by an index 𝑖 at a discrete time step 𝑡 and is denoted by 𝑥𝑖(𝑡). The neighborhood can then be a typical 

radial structure (Fig 2.2) or a combination of various spatial or temporal positions within the one 

dimensional CA (Wolfram, 1983, 1994). Considering the cell of interest is green, for the structures shown 

in Fig. 2.2, the neighborhoods can be defined as: 

 𝑅 = 1 ∶    𝑁 𝑥𝑖(𝑡) = { 𝑥𝑖−1(𝑡 − 1),  𝑥𝑖+1(𝑡 − 1)}  

                                                  𝑅 = 2 ∶    𝑁 𝑥𝑖(𝑡) = { 𝑥𝑖−2(𝑡 − 1),  𝑥𝑖−1(𝑡 − 1),  𝑥𝑖+1(𝑡 − 1),  𝑥𝑖+2(𝑡 − 1)} 

where here all the neighborhoods contain cells from the same temporal period. 

 

             a)  

 

                    b) 

 

Fig 2.2. CA neighborhood – 1D. a) radial, 𝑅 = 1  b) radial, 𝑅 = 2   



Chapter 2. Mathematical representations of spatio-temporal systems 

 

 

15 
 

                a)                                                       b)                                                        c) 

Fig 2.3. CA neighborhood – 2D. a) von Neumann neighborhood b) Moore neighborhood  

c) simple hexagonal neighborhood 

Given a two dimensional CA, the spatial location of an individual cell is defined by the set off indices 

(𝑖, 𝑗) at a discrete time step 𝑡 and is denoted by 𝑥𝑖,𝑗(𝑡). In the two dimensional space, the variety of 

neighborhoods that can be considered is significantly larger than the previous case, given the higher 

number of spatial and temporal location combinations available. Among the most popular neighborhood 

structures are the von Neumann, Moore and hexagonal neighborhoods (Fig. 2.3), but more complex 

structures can be considered (Billings, 2013). As in the one dimensional case, considering the cell of 

interest is green, for the structures shown in Fig. 2.3, the neighborhoods can be defined as: 

 von Neumann 

𝑁 𝑥𝑖,𝑗(𝑡) = { 𝑥𝑖,𝑗−1(𝑡 − 1),  𝑥𝑖−1,𝑗(𝑡 − 1),  𝑥𝑖−1,𝑗+1(𝑡 − 1),  𝑥𝑖,𝑗+1(𝑡 − 1)} 

 Moore 

𝑁 𝑥𝑖,𝑗(𝑡) = { 𝑥𝑖+𝑖𝑘,𝑗+𝑗𝑘(𝑡 − 1)|‖(𝑖𝑘, 𝑗𝑘)‖ ≤ 1} 

The transition function is the governing law that dictates the evolution process of the CA, i.e. how an 

individual cell’s state changes depending on its current value and the values of its current neighbors. At 

each time step, each cell is updated to time 𝑡 + 1 according to a function 𝑓: 𝑆𝑛 → 𝑆 that maps the selected 

neighborhood evaluated at time step 𝑡 to 𝑆. The transition rule can take various equivalent forms, 

depending on the nature of the system modelled by CA. Therefore, the local rule can be in the form of a 

truth table (Ilachinski, 2001), a Boolean function (Billings and Yang, 2003), probabilistic transition rule 

(Billings, 2013) or a polynomial function (Yang and Billings, 2000). 

CA models are among the most basic spatio-temporal systems, and poses relatively simple structures 

and construction rules. Despite their simplicity CAs can be used to describe the behavior of numerous 

phenomena that exhibit pattern formation and have been widely used to model and identify the structure 
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of spatio-temporal models (Zhu et al., 2001, Yeh et al., 2002, Karafyllidis and Thanailakis, 1997, Zhao et. 

al., 2009, Guo et. al., 2008, Zhao et. al., 2012). 

 

2.3. Coupled map lattice models 

 

The coupled map lattice model was first introduced in the 1980s (Kaneko, 1985, 1989) as a spatial 

counterpart of lumped discrete dynamical systems, and represents a class of discrete models that can be 

used to represent various phenomena described by spatio-temporal dynamics (Billings and Coca, 2002). 

CML models have gained increasing popularity in modelling spatio-temporal phenomena in recent years.  

Coupled map lattice models (CML) possess several similarities with CA models, having the same 

discrete time and space characteristics, but unlike CA, the state space is continuous (Pan and Billings, 

2008). In CA the information stored in the system states is discrete in nature, which limits the capability 

of CA to produce a high qualitative representation of a continuous system. Since CML models have the 

property of continuous state variables, they are able to better capture the system dynamics, since less 

information is lost through the discretization process. 

Let 𝐿𝑑 represents a d-dimensional computational lattice, such that 𝑘 = (𝑘1, 𝑘, … , 𝑘𝑑) ∈ ℤ𝑑 represent 

the set of coordinates over the map 𝐿𝑑. The general from for an input-output CML defined over 𝐿𝑑 is then 

given by a combination of a local interaction component 𝑓𝑙(∙) and a spatial coupling component 𝑓𝑐(∙) (Coca 

and Billings, 2001): 

𝑧𝑘(𝑡) = 𝑓𝑙(𝒒−𝑛𝑧𝑧𝑘(𝑡), 𝒒−𝑛𝑢𝑢𝑘(𝑡)) + 𝑓𝑐(𝒒−𝑛𝑧𝑧𝑘(𝑡), 𝒒−𝑛𝑢𝑢𝑘(𝑡), 𝒔𝑚𝑧𝒒−𝑛𝑧𝑧𝑘(𝑡), 𝒔𝑚𝑢𝒒−𝑛𝑢𝑢𝑘(𝑡)) (2.1) 

𝑧𝑘(𝑡) = 𝑓(𝒒−𝑛𝑧𝑧𝑘(𝑡), 𝒒−𝑛𝑢𝑢𝑘(𝑡), 𝒔𝑚𝑧𝒒−𝑛𝑧𝑧𝑘(𝑡), 𝒔𝑚𝑢𝒒−𝑛𝑢𝑢𝑘(𝑡)) 

where 𝒒−𝑛 represents a temporal back-shifting operator  

𝒒−𝑛 = (𝑞−1, 𝑞−2, … , 𝑞−𝑛)                                                                (2.2)  

So that 

𝒒−𝑛𝑧𝑧𝑘(𝑡) = (𝑧𝑘(𝑡 − 1), 𝑧𝑘(𝑡 − 2), … , 𝑧𝑘(𝑡 − 𝑛𝑧))                             (2.3) 

𝒒−𝑛𝑢𝑢𝑘(𝑡) = (𝑢𝑘(𝑡 − 1), 𝑢𝑘(𝑡 − 2), … , 𝑢𝑘(𝑡 − 𝑛𝑢))                           (2.4) 

with {𝑛𝑢, 𝑛𝑧} representing the maximum temporal lags associated with the input 𝑢 and the output 𝑧. In 

(2.1), 𝒔𝑚 is a multi-valued spatial translational operator with 

𝒔𝑚𝑧 = (𝑠𝑝𝑧
1
, 𝑠−𝑝𝑧

1
, … , 𝑠𝑝𝑧

𝑚𝑧
, 𝑠−𝑝𝑧

𝑚𝑧
)                                              (2.5) 

𝒔𝑚𝑢 = (𝑠𝑝𝑢
1

, 𝑠−𝑝𝑢
1

, … , 𝑠𝑝𝑢
𝑚𝑢

, 𝑠−𝑝𝑢
𝑚𝑢

)                                             (2.6) 

Such that 

𝒔𝑚𝑧𝑧𝑘 = (𝑧𝑘+𝑝𝑧
1 , 𝑧𝑘−𝑝𝑧

1 , … , 𝑧𝑘+𝑝𝑧
𝑚𝑧 , 𝑧𝑘−𝑝𝑧

𝑚𝑧 )                                (2.7) 
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𝒔𝑚𝑢𝑢𝑘 = (𝑢𝑘+𝑝𝑢
1 , 𝑢𝑘−𝑝𝑢

1 , … , 𝑢𝑘+𝑝𝑢
𝑚𝑢 , 𝑢𝑘−𝑝𝑢

𝑚𝑢 )                             (2.8) 

where the parameters {𝑝𝑢
𝑗

, 𝑝𝑧
𝑗
} ∈ ℤ𝑑 denote the spatial translation multi-indices with  {𝑚𝑢, 𝑚𝑧} being the 

maximum allowed spatial radius attached to input 𝑢 and the output 𝑧 respectively. 

  In equation (2.1), 𝑓: 𝑍𝑛𝑧+𝑚𝑧 × 𝑈𝑛𝑢+𝑚𝑢 → 𝑍 is a differentiable map that depends on the local input 

𝑢𝑘 ∈ 𝑈 and state 𝑧𝑘 ∈ 𝑍, evaluated at node 𝑘 , and the variables at neighboring sites. Usually the nearest 

neighbor map is the most commonly used (Bunimovich, 1995, Kaneko, 1989, Richter, 2008), but other 

types of neighborhood can be adopted, and the result considerably changes the spatio-temporal patterns 

obtained. 

CML have been successfully used to model complex spatio-temporal processes such as the dynamics 

in phase transitions in boiling (Yanagita, 1992), crystal growth (Reiter, 2005, Kessler et. al, 1990) or 

formation and dynamics of clouds (Yanagita and Kanebo, 1997).  

Although CML models are able to represent spatio-temporal information with higher fidelity than CA 

models, their main limitation is that they are discrete in space and time and thus cannot describe in full 

spatio-temporal processes that are continuous in space and time.  

 

2.4. Partial differential equations 

 

Partial differential equations (PDEs) are continuous time-space models that are widely used to 

accurately model an extensive range of natural phenomena (crystal growth, wildfire spread, fluid 

dynamics, heat transfer, acoustics etc.). PDEs represent a very powerful tool in modeling spatio-temporal 

systems. 

Consider an open subset 𝛀 ⊂ ℝ𝑛 ; the general form of a PDE of order 𝑘 ≥ 1 is given by: 

𝐿(𝐷𝑘𝑢(𝐱), 𝐷𝑘−1𝑢(𝐱), … , 𝐷𝑢(𝐱), 𝑢(𝐱), 𝐱) = 0, (𝐱 ∈ 𝛀)                               (2.9) 

where 𝐿: ℝ𝑛𝑘
× ℝ𝑛𝑘−1

× … × ℝ𝑛 × 𝛀 → ℝ is known and 𝑢: 𝛀 → ℝ is considered the unknown. The 

partial derivatives 𝐷𝑗𝑢(𝐱), 𝑗 ≥ 1 are given by  

 𝐷𝑗𝑢(𝐱) =
𝜕𝑗1𝑢

𝜕𝑥1
𝑗1

𝜕𝑗2𝑢

𝜕𝑥2
𝑗2

…
𝜕𝑗𝑁𝑢

𝜕𝑥𝑁
𝑗𝑁

                                                      (2.10) 

with 𝐷𝑢 = 𝐷𝑥𝑢 = (𝑢𝑥1
, … , 𝑢𝑥𝑛

) denotes the gradient of 𝑢 with respect to the variable 𝐱 = (𝑥1, … , 𝑥𝑛),   

𝑗𝑖 ∈ ℕ , 𝑖 = 1, 𝑁̅̅ ̅̅ ̅ and 𝑗1 + 𝑗2 + ⋯ + 𝑗𝑁 = 𝑗. In spatio-temporal systems one of the independent variables 

represents the time variable (𝑥1 = 𝑡) and the others are spatial coordinates.  

Let  𝑥 ∈ 𝛀 ⊂ ℝ be the spatial variable, 𝑡 ∈ 𝐓 ⊂ ℝ+ denotes time and 𝑢(𝑥, 𝑡): 𝛀 × 𝐓 → ℝ satisfies 

the following PDE: 
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𝐿 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑡
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑡2
,

𝜕2𝑢

𝜕𝑥𝜕𝑡
, … ) = 0                                       (2.11) 

The PDE in (2.11) is said to be linear if (2.9) can be written in the form: 

∑ 𝑎𝛼(𝑥) 𝐷𝛼𝑢 = 𝑓(𝑥), 𝑥 ∈ Ω, 𝛼 = (𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑁)

|𝛼|≤𝑘

                               (2.12) 

for given functions 𝑎𝛼(𝑥) , where |𝛼| = 𝛼1 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑁 and 𝑓(∙) is a known function. Examples 

of linear spatio-temporal PDE’s include the heat equation, the wave equation or the linear transport 

equation (Evans, 1998). If 𝐿(∙) is of the form 

∑ 𝑎𝛼( 𝐷𝑘−1𝑢, … , 𝐷𝑢, 𝑢, 𝑥) 𝐷𝛼𝑢 + 𝑎0( 𝐷𝑘−1𝑢, … , 𝐷𝑢, 𝑢, 𝑥) = 0 
|𝛼|=𝑘

             (2.12𝑎) 

 i.e. the coefficients of the highest order terms do not depend on 𝐷𝑘𝑢, the PDE is be categorized as 

quasilinear. Examples of such systems include the p-Laplacian or the minimal surface equation (Evans, 

1982). If the highest order derivatives of  𝑢 appear nonlinearly in (2.11), the PDE is considered fully 

nonlinear. Popular examples of nonlinear equations describing a space-time evolution are the Hamilton-

Jacobi equation and the reaction-diffusion equation (Osher and Fedkiw, 2003). 

PDEs are defined on bounded domains which often include several conditions to be specified within 

the domain. One necessary condition is the initial condition for the PDE that describes the state of the 

system at time 𝑡 = 0, i.e.  

𝑢(𝐱, 0) = 𝑢0(𝐱) , ∀𝐱 ∈ 𝛀                                                            (2.13) 

Depending on the problem under analysis additional conditions need to be imposed on 𝑢 at 𝐱 ∈ 𝜕𝛀 if 

𝛀 is bounded (physical constraints), as the PDE evolves over a time period 𝑡 = (0, 𝑇], to specify a unique 

solution, given a known function 𝜓(𝐱, 𝑡): 𝛀 × 𝐓 → ℝ : 

 Dirichlet condition: 𝑢(𝐱, 𝑡) = 𝜓(𝐱, 𝑡), ∀𝐱 ∈ 𝜕𝛀, 𝑡 ≥ 0,  

 Neumann condition: 
𝜕𝑢(𝐱,𝑡)

𝜕𝑛
= 𝜓(𝐱, 𝑡), ∀𝐱 ∈ 𝜕𝛀, 𝑡 ≥ 0  

 Mixed boundary conditions, which require 𝑢(𝐱, 𝑡) to take certain values on a subset 𝛀1 ⊂ 𝜕𝛀  and 

the derivative of 𝑢(∙) in the normal direction to take certain values on 𝛀2 ⊂ 𝜕𝛀 , with 𝛀1, 𝛀2 two 

disjoint parts such that 𝜕𝛀 = 𝛀1 ∪ 𝛀2,   

 Robin boundary condition which requires imposing a linear combination of Dirichlet and 

Neumann conditions on the boundary 𝜕𝛀 , i.e. 

𝑎 ∙ 𝑢(𝐱, 𝑡) + 𝑏 ∙
𝜕𝑢(𝐱, 𝑡)

𝜕𝑛
= 𝜓(𝐱, 𝑡) , ∀𝐱 ∈ 𝜕𝛀 ∈ 𝜕𝛀, 𝑡 ≥ 0                     (2.14) 

where 𝑎, 𝑏 may be scalars, vectors or functions. 

In the case of  crystal growth, the phase change is mainly driven by the temperature distribution in the 

considered domain where the growth is observed. Let 𝑢(𝑥, 𝑦, 𝑧, 𝑡): 𝛀 ⊂ ℝ3 × 𝐓 → ℝ  be a three 
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dimensional temperature field defined over a time period 𝑡 = [0, 𝑇], 𝑡 ∈ 𝐓 ⊂ ℝ+. Fourier’s law expresses 

the relation between thermal rate of flow �̇� and the temperature gradient ∇𝑢 across a unit surface 𝑆: 

�̇� =
Δ𝑞

𝑑𝑡
                                                                                    (2.15) 

�̇� = −𝐤∇𝑢                                                                              (2.16) 

where Δ𝑞 is the amount of heat that passes through 𝑆 in time 𝑑𝑡 and 𝐤 is the thermal conductivity. 

Considering the components of the flow in three spatial dimensions, the flow can be expressed as: 

�̇� = 𝑞𝑥𝑖 + 𝑞𝑦𝑗 + 𝑞𝑧 �⃗⃗�                                                            (2.17) 

𝑞𝑥 = −𝑘𝑥

𝜕𝑢

𝜕𝑥
, 𝑞𝑦 = −𝑘𝑦

𝜕𝑢

𝜕𝑦
, 𝑞𝑧 = −𝑘𝑧

𝜕𝑢

𝜕𝑧
                                             (2.18) 

where 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 are the thermal conductivities in each spatial dimension. Considering an element with 

volume 𝑑𝑣 , which is part of a material undergoing conductive heat transfer (Fig 2.4) and assuming that 

within the volume element there are a series of uniformly distributed heat sources that generate an equal 

and constant amount of heat 𝑞𝑣 throughout the volume, the material is homogenous and isotropic (𝑘𝑥 =

𝑘𝑦 = 𝑘𝑧 = 𝑘) and physical deformations due to temperature changes are neglected, the expression for the 

heat equation is obtained as (Evans,1998,  Arfken, 2013): 

𝜕𝑢

𝜕𝑡
=

𝑘

𝜌 ∙ 𝑐𝑝
∙ ∇2𝑢 +

�̇�𝑣

𝜌 ∙ 𝑐𝑝
                                                        (2.19) 

Fig 2.4. Volume element 𝑑𝑣 = 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 undergoing heat transfer 

where 𝜌 is the material density and 𝑐𝑝 is the specific heat capacity. The term 
𝑘

𝜌∙𝑐𝑝
 is a measure of the thermal 

inertia of the material, and characterizes the ability of the material to store thermal energy. Equation (2.19) 

expresses that the speed at which the temperature changes within a material, under the action of a 
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conductive heat flow and the influence of internal heat sources depends on the temperature gradient and 

the thermal inertia of the material. 

 Depending on the nature of the system observed there are several variations of the heat equation, 

which lead other well-known PDEs: 

 Poisson’s equation, which is obtained by considering steady state heat transfer, with internal heat 

sources  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢 = 𝑓(𝑥, 𝑦, 𝑧)                                              (2.20) 

and has a wide-ranging use in engineering and theoretical physics. 

 Fourier’s equation, which describes the transient heat transfer in the absence of internal heat 

sources 

𝜌 ∙ 𝑐𝑝 ∙
𝜕𝑢

𝜕𝑡
= 𝑘 ∙ ∇2𝑢                                                             (2.21) 

 Laplace’s equation , which describes any heat conduction problem where the temperature 

distribution is independent of the time variable 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢 = 0                                                      (2.22) 

Although one of the main uses of equation (2.19) lies in the field of thermal analysis and simulation, 

it is often used in differential geometry, in particular mathematical modeling of geometric flows in 

Riemannian manifolds, with the parameter of interest chosen to be the curvature (Eisenhart, 1947, Do 

Carmo, 1976, Brakke, 2015). 

 Let 𝛾: Ω ⊂ ℝ2 × [0, 𝑇] → ℝ2 be a smooth convex closed plane curve in ℝ2. Assuming the curve 𝛾 is 

parameterized by arc length 𝑠 then the curvature is defined as: 

𝑘(𝑠, 𝑡) =
𝜕2

𝜕𝑠2
𝛾(𝑠, 𝑡)                                                                      (2.23) 

If  𝛾(𝑠, 𝑡) is evolving under its mean curvature the following PDE is satisfied: 

𝜕

𝜕𝑡
𝛾(𝑠, 𝑡) = −𝑘(𝑠, 𝑡) ∙ 𝑁                                                               (2.24) 

where 𝑁 represents the outward unit normal to the curve. The curvature flow is one of the most studied 

types of curvature driven evolution and has found applications in numerous areas (crystal growth, flame 

propagation, image processing etc.). With respect to curvature, there can be defined a large variety of 

geometric flows, with two main categories being intrinsic flows such as Ricci flow (Ivancevic, 2011, 

Morgan and Tian, 2007), Calabi flow (Chen and He, 2008), Yamabe flow (Ye, 1994); or extrinsic flows 

such as the mean curvature flow or the surface tension flow.  

The evolution law (2.24) can be written in the form of a quasilinear PDE as: 
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(
𝜕

𝜕𝑡
−

𝜕2

𝜕𝑠2
) 𝛾 = 0                                                                     (2.25) 

which reveals the parabolic nature of curvature flow and similarities with the heat equation. The curvature 

flow (2.25), also called curve shortening flow, describes the relation between the normal velocity of an 

interface in relation to its local curvature. This type of geometric evolution has a smoothing effect over 

time, reducing irregularities on the curve, therefore reducing its arc length and area (Gage, 1984, Gage and 

Hamilton, 1986). If 𝐿(𝑡) represents the arc length of 𝛾(𝑠, 𝑡) , in the case of curvature flow, its time variation 

is given by: 

𝑑

𝑑𝑡
𝐿(𝑡) = − ∫ 𝑘2𝑑𝑠

𝛾(𝑠,𝑡)

                                                              (2.25) 

which implies that the curve evolution is in the direction that reduces the arc length, as noted. To exemplify 

this let us consider a two dimensional circle 𝐶 of time varying radius 𝑅(𝑡), and initial radius 𝑅(0) = 𝑅0 

evolving under curvature flow. At each point 𝑝 ∈ 𝐶, the curvature is then defined by 𝑘(𝑡) =
1

𝑅(𝑡)
 . The 

time evolution of the circle is then given by: 

𝑑

𝑑𝑡
𝑅(𝑡) = −

1

𝑅(𝑡)
                                                                    (2.26) 

By solving the simple curvature driven evolution equation in (2.26), the time variation of the radius 𝑅(𝑡) 

is found to have the form: 

𝑅(𝑡) = (𝑅0
2 − 2𝑡)

1
2                                                              (2.27) 

which describes the time evolution of the circle, which is continuously shrinking, eventually collapsing to 

a single point and developing a singularity at time 𝑡 =
𝑅0

2

2
.   

It is often the case that the dynamics of a continuous spatio-temporal system can be described by a 

system of partial differential equations. However, for the purpose of system identification, numerical 

simulations and control, a discretization of the linear (quasilinear, nonlinear) PDE under consideration is 

needed. Therefore, for such systems, measurements are usually taken in the form of time snapshots at 

regular time intervals, which can then be used to obtain a discrete-time representation of the system. The 

most popular way used to discretize PDEs over a domain are finite difference methods, which are used to 

obtain an approximation of the spatial and temporal derivatives, thus obtaining a discrete time continuous 

state approximation that can be used in simulations and the design of control laws. 

PDEs represent one of the most important classes of models, mainly due to their continuous nature. 

This special characteristic that distinguishes PDE models from discrete type approaches allows to better 

capture real-world dynamics of spatio-temporal systems.  
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2.5. Conclusions 

 

 This chapter included a brief introduction to the approaches that are used to model spatio-temporal 

dynamics, namely cellular automata (CA) models, coupled map lattice (CML) models and partial 

differential (PDE) models. By doing so, basic concepts that will be frequently referenced throughout the 

thesis were introduced. In this study the focus is set on representing the dynamics of systems using partial 

differential equations, mainly due to the fact that PDE models typically provide a clear relation between 

model parameters and physical behavior of the real-world system, thus creating an intuitive and suitable 

description of the system under analysis. Coupled map lattice models and CA models are also referenced 

throughout the next chapters, and several numerical studies are presented to illustrate their ability to capture 

the temporal dynamics together with the spatial interactions that produce complex evolving patterns found 

in spatio-temporal systems.  Chapter 3 will put this outline in background of mathematical approaches used 

to model the remarkable non-linear dynamics found in dendritic crystal growth, followed by Chapter 4 

which will give an overview of wild fire spatio-temporal models. 
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3. Models of dendritic crystal growth  

 

3.1. Introduction 

 

The growth of a crystal can be viewed as a moving boundary of a closed curve. Growth models 

developed are usually differentiated based on the approach used in defining the law of evolution of the 

moving boundary. Several modeling approaches were developed in literature. These can be categorized in 

two main types: local models (Eden, 1961, Wettlaufer et. al, 1994, Ben-Jacob et. al, 1984) and non-local 

models (Kobayashi, 1993, Chen, 2002). This chapter provides a review of crystal growth models together 

with a detailed numerical analysis of the interface growth models for dendritic crystal growth.  

The chapter is organized as follows. Section 3.2 is devoted to a review of dendritic crystal growth 

interface evolution models, namely local and non-local models of interface evolution, with emphasis given 

to (local) geometrical evolution laws. The third part, Section 3.3, provides an overview of the most 

common numerical methods used in interface evolution problems. The level set method is selected as the 

preferred numerical framework, due to its numerous advantages over other simulation methods (Osher and 

Fedkiw, 2003). Following this, the model classes presented in Section 3.2 are analyzed numerically in 

more depth in Section 3.4, which covers an analysis of curvature driven interface evolution models, the 

modified two-phase Stefan problem and CML dendritic growth models.  

 

3.2. Models of interface evolution  

 

3.2.1. Geometrical models of dendritic growth 

 

Models where growth speed is determined only by local parameters of the solid-liquid interface, such 

as curvature, or other shape-dependent properties are called geometrical models (Zhao et. al., 2007). This 

class of models usually doesn’t include long-range influences such as change in solute concentration, or 

heat flow, but have been used successfully to accurately model early stages of dendritic crystal growth 

(Brower et al, 1984). Let us consider a typical growth process, in which a crystal grows in a liquid solution. 

The crystal usually grows in all three dimensions, but for simplicity only growth in the 𝑥 − 𝑦 plane will be 

considered. 

In two dimensions, the crystal growth process can be viewed as the evolving boundary of a curve 

(interface), such that the curve separates at any given time the solid surface from the liquid melt.  
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Let 𝐶 be a closed curve, and �̃�: [0, 𝑆) × [0, 𝑇) → ℝ2 is a continuous function such that �̃�(𝑠, 𝑡) =

(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) is a point on the curve, with 𝑠 ∈ [0, 𝑆] a parameter along the curve (e.g. arc length) and 

𝑥, 𝑦 are Cartesian coordinates. 

Fig. 3.1. Time variation of contour 𝐶(𝑡)  

Further, it is supposed that the curve 𝐶 is injective at each time step, i.e. the curve does not intersect 

itself and does not have missing points, and the periodic boundary condition �̃�(0, 𝑡) = �̃�(𝑆, 𝑡) holds. As 

the crystal grows, its boundary undergoes deformations, generating various shapes (Fig. 3.1). The speed of 

the interface can be written as: 

 {

𝜕�̃�

𝜕𝑡
= 𝛼1(𝑠, 𝑡) ∙ �⃗⃗� + 𝛼2(𝑠, 𝑡) ∙ �⃗� 

 �̃�(𝑠, 0) = 𝐶0(𝑠)

                                                        (3.1) 

where �⃗⃗�  is the outward curve unit normal, �⃗�  is the tangent vector, 𝑠 is the curve parameterization, 𝑡 is the 

time parameter and 𝛼1 and 𝛼2 are components of some speed function 𝑉 in the normal and tangential 

directions. Usually the tangential component of the velocity does not affect the shape of the closed curve 

so that the last term in the right-hand side of equation (3.1) is equal to 0. The normal speed is typically a 

curvature dependent function, but it can also include other terms, like orientation angle, 𝜃 with respect to 

an axis. The equation of motion of the interface becomes: 

{
�⃗⃗� ∙

𝜕�̃�

𝜕𝑡
= 𝛼1(𝑘, 𝜃)

�̃�(𝑠, 0) = 𝐶0(𝑠)

                                                                        (3.2) 

where 𝑘 is the curvature. This type of motion is usually referred to as curvature based front evolution. The 

speed function 𝛼1(𝑘, 𝜃) can consist of several terms: a polynomial of curvature, with powers up to the 𝑛𝑡ℎ 

order, terms proportional to derivatives of the curvature with respect to some curve parameter, such as arc 

length, and terms related to the curve orientation. 
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The issue of front propagation in the normal direction under curvature-dependent flow is characteristic 

in modeling a wide range of physical phenomena that exhibit pattern formation, and among the most 

studied in literature crystal growth and propagation of flames. A typical curvature speed, given by 𝛼1 =

1 − 𝜀𝑘 , where 𝜀 is an arbitrary constant, was studied in a series of papers by Sethian (1985, 1989, 1990). 

This particular form of  𝛼1 is a specific representation of the Gibbs-Thomson energy conservation condition 

on the boundary of the solid (Almgren and Wang, 2000), in the case of crystal growth. Sethian presented 

a comparison of numerical methods to tackle the problem of front tracking under different 

parameterizations of the evolving curve for 𝛼1. The numerical algorithms presented are based on solving 

general Hamilton-Jacobi equations (Shu and Osher, 1989, Osher, 1993, Jiang and Peng, 2000), which 

approximate the movement of the boundary under its curvature.   

A first noticeable model used to describe the geometrical evolution of crystal growth was the one 

developed by (Brower et al., 1983), which was the starting point for many current works. They proposed 

a general model of the following form: 

{
 
 

 
 �⃗⃗� ∙

𝑑𝑥

𝑑𝑡
= 𝑭(𝑘, ∇𝑘, … )

𝑭 = 𝐹(𝑘) + 𝛾
𝜕2𝑘

𝜕𝑠2

                                                                         (3.3) 

where ∇𝑘 represents the covariant derivative on the surface, and 𝑭(𝑘, ∇𝑘,… ) is a general function of k 

and its derivatives. The term 𝛾
𝜕2𝑘

𝜕𝑠2
 in (3.3) has a stabilizing effect on the system, with 𝛾 > 0 representing 

a measure of surface tension. The function F was chosen to take into account the aspects of physical 

solidification, such as interface shape and minimum nucleation size: 

𝐹(𝑘) = 𝑘 + 𝛼𝑘2 − 𝛽𝑘3                                                                       (3.4) 

The equation (3.4) is a polynomial function of curvature, where the coefficients 𝛼 > 0 and 𝛽 > 0  are 

related to the degree of undercooling and the minimum bubble size for nucleation. This model was further 

developed in (Brower et al, 1984), where kinematics of geometrical evolution in two dimensions is 

investigated in terms of speed function 𝑭. By adding small perturbations to the initial front, they compute 

and analyze the effects of the surface tension parameter 𝛾 on the system. 

In the work of Kessler et. al, (1984, 1985) further improvement of the model is made by adding effects 

of crystalline anisotropy. The model (3.3) was modified into: 

�⃗⃗� ∙
𝑑𝑥 

𝑑𝑡
= [𝐹(𝑘) + 𝛾

𝜕2𝑘

𝜕𝑠2
] ∙ [1 + 𝑒 ∙ cos(𝑚𝜃)]                                             (3.5) 

The extra term proportional to 𝑒 was introduced in order to include the effects of repeated side-

branching characteristic to dendritic crystal growth. This effect is reflected in enhanced growth in the 
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direction given by the angle 𝜃, made by the curve normal and the 𝑦 axis along preferred 𝑚 fold symmetry. 

The anisotropy term 𝑒 was shown to be related to the growth velocity of a dendrite. For a value of 𝑒 greater 

than a threshold value 𝑒𝑐 = 0.15  the growth speed was shown to remain constant, and the amplitude of 

oscillations that affect the tip velocity drops. This means that for anisotropy strength smaller than the 

threshold value, the dendritic growth is unstable. 

Zhao et. al. (2007) introduced a new method of identifying the growth rule in crystal growth, based on 

the local geometry of the evolving boundary of the crystal. He proposed a polynomial form of the speed 

function 𝑭 of the from: 

𝑭 = 𝑎0 + 𝑎1𝑘 + 𝑎2𝑘
2 +⋯+ 𝑎𝑛𝑘

𝑛                                                          (3.6) 

where 𝑘 designates the curvature and 𝑛 is the order of the polynomial model. The coefficient 

vector {𝑎0, 𝑎1, … , 𝑎𝑛} is estimated using a least squares method using collected data points. The data points 

are obtained from a sequence of images of a growing 𝑁𝐻4𝐵𝑟 dendrite crystal from melt, taken at different 

time steps. The model was attained using regions of the boundary and not the whole boundary of the 

crystal, leading to a multi-order polynomial speed function of the form: 

𝑭 = 1.2105 + 129.34𝑘 − 957.85𝑘2                                               (3.7) 

The model (3.7), although simpler than the one proposed in (3.3) is able to approximate the real system to 

some degree and it captures the main properties of the crystal boundary evolution for regions with relatively 

large curvature growths. 

A similar and more accurate modeling approach is done by Zhao et. al. (2011). Using the same 𝑁𝐻4𝐵𝑟 

solution, the 2-D growth patterns of the crystal were recorded using a digital camera, and then processed 

to extract information regarding curvature and velocity of the solid-liquid interface. Using these 

measurements, they proposed modeling the growth of the crystal using a model of the form: 

�⃗⃗� ∙
𝑑𝑥 

𝑑𝑡
=∑𝑎𝑖𝑘

𝑖 +

𝑛

𝑖=0

𝛾
𝜕2𝑘

𝜕𝑠2
                                                               (3.8) 

This model closely resembles the model given by (3.3), but the main difference is that crystalline 

anisotropy is not taken into account. Also, given the polynomial order, not all the terms are required to be 

present, but only the ones that influence the evolution dynamics are chosen. Furthermore zero-power terms 

can be present in the model, which means that planar surfaces (regions on the boundary with zero 

curvature) are not stationary. The estimated model structure was found to be: 

�⃗⃗� ∙
𝑑𝑥 

𝑑𝑡
= 0.071 + 3.349𝑘 − 1709.49𝑘2 + 3.655

𝜕2𝑘

𝜕𝑠2
                            (3.9) 

The model (3.9) can reproduce the behavior of the real system, but its accuracy is limited to short time 

periods - limited relatively to the early stages of dendritic growth, when global parameters of the system 

can be ignored. This is due to the fact that the model does not take into account long range interactions, 
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such as change in solution concentration or temperature, which have a more significant impact on the 

growth on longer time scales. 

 

3.2.2. The Stefan problem 

 

Solidification models discussed above, that describe the growth dynamics of the crystal interface using 

local geometric properties, like curvature and its derivatives at the interface represent an effective method 

of describing the early stages of crystal growth (Zhao et. al. 2007). One of the key parameters that 

influences the crystal growth process over time is the change in temperature in the melt (Dantzig and 

Rappaz, 2009). The geometrical approach to model the growth does not directly include the effects that 

variation in heat flow has on the evolving boundary. 

In order to take into account the changes in temperature (and possibly other parameters, such as solute 

concentration, pressure) that occur in the melt in which the crystal is growing, a different way to model the 

process is necessary. The model for solidification of a liquid, as mentioned earlier, can be viewed as a 

moving boundary problem, often called a sharp interface-model. The phase transition process can be 

described by the classical Stefan problem (Vuik, 1993, Evans, 1951, Hill, 1987). 

In essence, the temperature distribution for a phase changing medium on a specified domain is obtained 

by solving a specific type of boundary value problem for the heat equation, where the evolving phase 

boundary is unknown and has to be obtained as part of the solution (Kim et. al, 2000, Crank, 1984).  

For simplicity, consider a two-dimensional domain, Ω ⊂ ℝ2, Ω: [0, 𝑙] × [0, 𝑙] in which a crystal is 

growing from melt; given this, a function 𝑢: Ω × [0, 𝑇] → ℝ (the temperature) is defined over a time 

interval 0 ≤ 𝑡 ≤ 𝑇, and an interface Γ(𝑡) that separates Ω in the solid and liquid phases denoted by two 

subdomains Ω𝑆(𝑡) and Ω𝐿(𝑡) (Fig. 3.2). 

Fig. 3.2. Solid phase Ω𝑆(𝑡) , liquid phase Ω𝐿(𝑡) and the free boundary Γ(𝑡) in the domain Ω 
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The classical two-phase Stefan problem requires finding the temperature distribution 𝑢(𝑥, 𝑦, 𝑡 > 0)  

and the boundary Γ(𝑡) , given the set of equations: 

𝜌𝑐𝑆
𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑡) = 𝑘𝑆∇(∇𝑢(𝑥, 𝑦, 𝑡))  in Ω𝑆(𝑡)                                     (3.10) 

𝜌𝑐𝐿
𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑡) = 𝑘𝐿∇(∇𝑢(𝑥, 𝑦, 𝑡)) in Ω𝐿(𝑡)                                      (3.11) 

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) in Ω𝑆(0) ∪ Ω𝐿(0)                                     (3.12) 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢𝑐 on 𝜕Ω                                                                   (3.12a) 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢Γ on Γ(𝑡)                                                                   (3.13) 

where 𝜌 is the material density, 𝑐𝑆, 𝑐𝐿 and 𝑘𝑆 , 𝑘𝐿 are the specific heat capacities and the heat conductivities 

in the solid and liquid subdomains, 𝑢0 is the initial temperature distribution, 𝑢𝑐 is the Dirichlet boundary 

condition on the boundary of the domain, 𝜕Ω and 𝑢Γ is the temperature on the interface. The heat equations 

in Ω𝑆(𝑡) and Ω𝐿(𝑡) can be written in a more compact form as: 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑡) = 𝐷𝑆/𝐿∇(∇𝑢(𝑥, 𝑦, 𝑡))                                                   (3.14) 

where 𝐷𝑆/𝐿 =
𝑘𝑆/𝐿

𝜌𝑐𝑆/𝐿
 is the thermal diffusivity. 

In addition to the set of equations (3.10) – (3.13) a conservation law on Γ(𝑡) is needed in order to 

balance the heat absorbed on the boundary and the latent heat generated through solidification: 

𝜌𝐿𝑉Γ ⋅ 𝑛 = 𝑘𝑆∆𝑢𝑆 ⋅ 𝑛 − 𝑘𝐿∆𝑢𝐿 ⋅ 𝑛                                                    (3.15) 

Here 𝑛 is the outward normal to the interface and 𝐿 is the latent heat. Equation (3.15) is called the Stefan 

condition and states that the normal velocity on the interface 𝑉Γ is prescribed by the jump of the temperature 

gradient over Γ(𝑡). 

In order to link the Stefan problem to crystal growth and dendritic solidification, the interface condition 

(3.13) needs to be modified in order to consider the influences of surface tension, molecular kinetics and 

anisotropy. In such situations the isothermal condition on the interface (3.13) is modified by the Gibbs-

Thomson relation: 

𝑢(𝑥, 𝑦, 𝑡) = −𝜎𝑐𝑘 − 𝜎𝑣𝑉Γ                                                         (3.13𝑎) 

where 𝜎𝑐  and 𝜎𝑣 represent the surface tension and the kinetic coefficients (which are constant in the case 

of isotropic growth) and 𝑘 is the curvature on Γ(𝑡).  

The Stefan problem is one of the most common methods of modeling dendritic crystal growth (Gupta, 

2003). Although it provides a more accurate description of the process than the previous discussed class of 

geometric models, solving the Stefan problem it is computationally intensive and it poses difficulties in 

numerical simulation (Rubinshteĭn, 1971, Javierre et al, 2006, Tan and Zabaras, 2006). Numerical 

simulations have been done using different types of front tracking methods. The interface location is 
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tracked either explicitly (Juric and Tryggvason, 1996) or implicitly, using a phase field model (Kobayashi, 

1993) or the level set method (Chen et. al, 1997; Gibou et. al., 2003; Sethian and Strain, 1992; Leung et. 

al., 2004). A review of these numerical methods used to capture and track the evolution of an interface will 

be detailed in Section 3.3.  

 

3.2.3. Cellular automata models for dendritic crystal growth 

 

 A recently new method of modeling dendritic crystal growth was proposed in the form of cellular 

automata (CA) models. In order to simulate the previous types of models – geometric models and the 

Stefan problem – the equations that describe the growth must be discretized over a finite mesh. To obtain 

a more precise approximation to the models and to ensure numerical stability in numerical simulations, the 

spatial and temporal steps taken must be chosen relatively small. The CA modeling approach provides  a 

mathematical approximation of the system dynamics where the time, space, as well as the state variables 

belong to a discrete set.  

Most commonly, the transition rule for the CA model is coupled with the diffusion equation (3.14) in 

the whole domain, and the Gibbs-Thomson correction (3.16) on the cells that represent the interface, in 

order to include effects typical to dendritic growth. Such models have been simulated by Wei et.al. (2010), 

Sakaguchi and Ohtaki (1999), Reiter (2004) and show a good resemblance to the standard model of 

solidification (the Stefan problem) in two dimensions.  

Zhao et. al. (2009) proposed a new method of determining the transition rule for a binary CA, in the 

case of dendritic growth, directly from experimental data. By observing the patterns formed by a 

growing 𝑁𝐻4𝐵𝑟 dendrite, a transition rule was determined based on the speed at which the boundary 

evolves as: 

𝑐(𝑥, 𝑦, 𝑡 + 1) = max (𝑚, 𝑐(𝑥, 𝑦, 𝑡) +
1

𝑀
∑|�⃗� (𝑥𝑖,𝑦𝑖)|

𝑀

𝑖=1

)                                    (3.16) 

where 𝑐(𝑥, 𝑦, 𝑡 + 1) represents the state of cell 𝑐(𝑥, 𝑦) at time 𝑡 + 1, �⃗� (𝑥𝑖,𝑦𝑖) denotes the velocities of 

significant occupied cells in the considered neighborhood (Moore), 𝑀 denotes the total number of such 

cells and 𝑚 is a noise reduction parameter. Although the model can exhibit features similar to models 

coupled with diffusion, it is somewhat limited, in the sense that the transition rule was determined from a 

relatively small amount of experimental data. The main advantage of this modeling approach is that the 

behavior of real crystal growth can be translated in the transition rule for a relatively simple model, which 

to some degree can predict dendritic growth. 

The significant advantage of CA models is that they are far less expensive computationally to 
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implement than other solidification models, one drawback being the large number of cells needed in order 

to capture more accurately the growth dynamics; the resolution is needed because CA are usually affected 

by artificial anisotropy, which is more obvious when the mesh has a low resolution.  

 

3.3. Numerical methods for solving interface evolution problems  

 

The model equations presented in the previous sections (curvature models, the Stefan problem) in 

general do not have an analytical solution. Analytical solutions are only available under very restrictive 

conditions that are not found in realistic cases. Analysis of more realistic solidification scenarios requires 

numerical methods. When simulating numerically these evolution models a challenging problem is keeping 

track of the moving interface. Methods used in tracking the evolution of an interface can be divided into 

two categories: front-tracking methods, where the position of the interface needs to be explicitly updated 

at each time step, and implicit methods, which allow the front to move through a fixed lattice without 

explicitly dealing with the interface position. (Javierre-Perez, 2003). In this thesis, implicit methods will 

be deployed in the numerical studies presented. 

Front tracking methods use an explicit representation of the moving interface. This is done by adding 

marker particles on the interface, and then moving the particles under the velocity on the interface. These 

methods can be used with success in cases where the interface is relatively simple. The cases where the 

interface complexity is high (such as dendritic shapes) need special care and can lead to instability. This is 

due to the fact that particles need to be added/removed, redistributed on the interface and reconnected at 

each time step, a process that becomes more complicated in higher dimensions. Also topological changes 

of the interface (merging/braking) are also difficult to treat. Although front tracking methods have a number 

of disadvantages, Juric and Tryggvason (1996) developed such a method for solidification using a front-

tracking algorithm. Their method was able to describe two dimensional dendritic growth using the Stefan 

problem. Marker particles were added to the growing interface in order to maintain a high resolution and 

stability.   

Implicit methods use a global parameterization of the interface, rather than a local one (such as in front 

tracking methods).The most used implicit methods are the phase field method and the level set method. 

The phase-field method is one of the most popular methods for simulating solidification (Caginalp and 

Fife, 1986, Suzuki et al., 2002, Fabbri and Voller, 1997). This method avoids tracking the interface by 

using a function 𝜑(𝐱, 𝑡), called the order parameter, which is coupled with the temperature. The function 

𝜑(𝐱, 𝑡) is defined over the entire computational domain and has values in the interval [0,1]. The phase 

field function takes constant values in each phase: 𝜑(𝐱, 𝑡) → 0 in the solid region, 𝜑(𝐱, 𝑡) → 1 in the liquid 

region far away from the interface, and the region where the relationship 0 < 𝜑(𝐱, 𝑡) < 1 holds, defines 
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the interface: 

𝜑(𝐱, 𝑡) = {
1 if 𝐱 is outside the interface 
0 if 𝐱 is on the interface 

−1 if 𝐱 is inside the interface 
                                              (3.17𝑎) 

 This phase field variable is coupled with the heat equation by: 

{
  
 

  
 𝜀2

𝜕𝜑

𝜕𝑡
= −

𝛿𝐹

𝛿𝜑
𝜕𝑢

𝜕𝑡
= 𝑘Δ𝑢 −

𝐿

2

𝜕𝜑

𝜕𝑡

𝐹(𝜑, 𝑢) = ∫ [
1

2
𝜀2(∇𝜑) + 𝑓(𝜑, 𝑢)]

                                                     (3.17𝑏) 

Here 𝜀 is a parameter that describes the width of the interface (i.e. how fast the transition 0 → 1 is 

made), 𝐹(𝜑, 𝑢) is an energy functional, 𝑓(𝜑, 𝑢) is a free energy function that constitutes the difference 

between phase field models, 
𝛿𝐹

𝛿𝜑
 denotes the derivative of 𝐹(𝜑, 𝑢) with respect to the phase field variable, 

𝑘 and 𝐿 represent the thermal diffusivity and the latent heat and 𝑢 is the temperature. Notice that there are 

no boundary conditions imposed on the interface and in order for this model to describe the Stefan problem 

special conditions must be imposed. To obtain this similarity, an asymptotic analysis of the model is 

required. This analysis consists in expanding the phase-field equations in a parameter proportional to the 

interface width 𝜀 and as 𝜀 → 0 the phase-field model reproduces the dynamics of the Stefan problem. This 

method is one of the most popular used to simulate solidification and has been studied and implemented 

numerically in numerous papers. Simulations performed by Kobayashi (1993) were the first simulations 

of dendritic growth that are in agreement with the sharp interface model. Wang and Sekerka (1996) studied 

the effects of the parameter 𝜀 on the model and the convergence to the Stefan problem. They showed that 

the grid spacing needs to be very small in order for the phase field model to converge to the sharp interface 

model, which makes the phase field method impractical to use on uniform grids; a solution to this limitation 

would be a grid adaptation to solve the problem as  𝜀 → 0. 

The level set method is implicit method for front tracking that is based on embedding the evolving 

interface into a higher dimensional function. The method was first introduced by Osher and Sethian (1988) 

to study the effects of evolving curves under normal speed equal to the local curvature. Since then, it has 

been widely used in areas such as image processing, computer vision, optimization problems and mainly 

computational physics (Stefan problems, liquid-gas interactions, liquid flow, heat flow, flame propagation 

etc.). One important property of the level set approach is that it can solve the interface location exactly and 

there is no interface width as in the phase-field model. Because of this, there is no need for asymptotic 

analysis of the model. Another major advantage of the level set method is that topological changes of the 

interface, such as braking and merging are very easy to handle. 

The main idea of the level set approach is to use a higher dimensional function, 𝜑, called a level set 
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function, to parameterize the domain in which the interface is evolving, so that the zero level set of the 

function 𝜑 corresponds to the interface. The level set function is chosen with the following property: 

𝜑(𝐱, 𝑡) = {
+𝑑 if 𝐱 is outside the interface 

0 if 𝐱 is on the interface 
−𝑑 if 𝐱 is inside the interface 

                                           (3.18) 

where 𝑑 represents the minimum distance from the interface Γ and the point  𝐱 ∈ ℝ𝒏 (𝑑 = min|Γ − 𝐱|).   

If Γ(𝑡) represents an interface moving in a domain 𝐷 ⊂ ℝ𝟐, and 𝜑: ℝ𝟐 × [0, 𝑇] → ℝ is the level set 

function, then the interface at any given time is defined by Γ(𝑡) = {𝐱: 𝜑(𝐱, 𝑡) = 0} (Fig. 3.3).   

Fig. 3.3. Embedding of a circle as the zero level-set of a higher dimensional function 

In order to track the movement of the interface, the zero level set of the function 𝜑 has to evolve in the 

same way as the interface. Therefore any point 𝐱(𝑡) on the interface must satisfy the condition: 

𝜑(𝐱(𝑡), 𝑡) = 0 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇                                                 (3.19)  

Taking the derivative of equation (3.19) with respect to the time parameter 𝑡 results in: 

𝜕𝜑

𝜕𝑡
(𝐱(𝑡), 𝑡) + ∇𝜑(𝐱(𝑡), 𝑡) ∙ �̇�(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝑇                            (3.20)  

where �̇�(𝑡) = 𝑉(𝑡) represents the velocity of the point 𝐱(𝑡). Equation (3.20) is called the level set equation 

and is valid only on the interface. By defining a function 𝐹 as a continuous extension of 𝑉(𝑡) over the 

whole computational domain, the level set equation can be written as: 

𝜑𝑡 + 𝐹 ∇𝜑 = 0                                                                (3.21) 

Notes on algorithms used to construct velocity extensions off the interface can be found in 

(Adalsteinsson and Sethian, 1997) and (Chopp, 2009). 

This implicit representation in the form of a level set of a function has a series of attractive geometric 

properties (Osher and Fedkiw, 2003): 
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a) the outward normal vector to Γ(𝑡) is simply given by: 𝑛 =
∇𝜑

|∇𝜑|
 

b) the curvature of the interface can be computed from: 𝑘 = ∇ ∙ 𝑛. The curvature is signed, so that 

it takes positive values in convex regions, negative values in concave regions and it is equal to zero for 

planar regions. 

c) by taking 𝜑(𝐱, 0)as a signed distance function, the interior/exterior of the interface can be easily 

accessed. 

d) the level set method can be easily extended to higher dimensions. 

Equation (3.20) can be written in a more general form by using property (a): 

𝜑𝑡 + 𝑉 ∙ 𝑛|∇𝜑| = 0                                                                  (3.22) 

This form of the level set equation is the most common form found in literature and is very suitable 

when only the normal speed 𝑉 ∙ 𝑛 is known, and the actual velocity field 𝑉 is not given explicitly, which 

is generally the case in computational physics.  

Equations (3.21) and (3.22) are particular forms of the general Hamilton-Jacobi equation: 

𝜑𝑡 + 𝐻(∇𝜑) = 0                                                                     (3.23) 

where the Hamiltonian 𝐻(∙) is a function that depends at most on the first order derivatives of the level set 

function. The Hamiltonian has a linear form in the case of (3.21) and is given by: 

𝐻1(∇𝜑) = 𝑉 ∙ ∇𝜑                                                            (3.24) 

whereas in the case of (3.22) the Hamiltonian is non-linear: 

𝐻2(∇𝜑) = 𝑉 ∙ 𝑛|∇𝜑|                                                      (3.25) 

Methods for solving Hamilton-Jacobi type equations have been widely studied and several numerical 

methods exist for problems described by (3.24) and (3.25). If the speed function is given by local curvature, 

i.e. 𝑉 ∙ 𝑛 = 𝑘 = ∇ ∙ (
∇𝜑

|∇𝜑|
), then the level set equation (3.21) is not a Hamilton-Jacobi equation, since the 

front speed depends on second order derivatives of 𝜑 and requires a different set of numerical schemes to 

solve (Osher and Fedkiw, 2003).  

Currently, the level set method has been successfully used to simulate the patterns in dendritic crystal 

growth. Sethian and Strain (1992) were the first to present a method for solving the standard model of 

solidification. Their solution combined boundary integral approach with the level set method to calculate 

the normal velocity in the interface. Their method was able to accurately track the evolution of complicated 

shapes that exhibit complex behavior typical to dendritic growth. Later, in Chen et. al (1997) an 

improvement is made by developing a simpler way of finding the normal velocity, without any restrictions 

imposed by a boundary integral formulation. A similar approach was done by Fried (2004) by using a finite 

element method for the Stefan problem, where the boundary is expressed as a zero level set. Leung et. al. 

(2004) propose a new approach to the level set formulation of the Stefan problem. They use an adaptive 
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mesh refinement, to modify the density of grid points close to the interface. This gives the advantage of 

less computational complexity and higher resolution in tracking the interface. A similar technique is used 

in (Chen et. al., 2009), where the spatial ratio between neighboring cells is adjusted. 

 

3.4. Numerical studies of crystal growth in 2D 

 

This section discusses of the difficulties that arise with numerical discretization and provides 

simulations of crystal growth models presented in the previous section.  

 

3.4.1. Time and Space Discretization 

 

In the following sections the level set function 𝜑 is considered to be defined in a subdomain 𝐷 ⊂ ℝ𝟐, 

such that the domain 𝐷 can be represented on a Cartesian grid. Consider the grid with the following 

properties: the points on the grid are uniformly spaced in an interval 0 ≤ 𝑥 ≤ 𝐿1, 0 ≤ 𝑦 ≤ 𝐿2, such that 

𝑥𝑖 = (𝑖 − 1)∆𝑥,     𝑖 = 1,2, … , 𝑁 

𝑦𝑗 = (𝑗 − 1)∆𝑦,     𝑗 = 1,2, … ,𝑀 

where 𝑁 is the total number of nodes in the 𝑥 direction and 𝑀 is the total number of nodes in the 𝑦 direction. 

Given 𝐿1, 𝐿2 and 𝑁, 𝑀 the spacing between 2 grid points is given by: 

∆𝑥 =
𝐿1

𝑁−1
  and ∆𝑦 =

𝐿2

𝑀−1
 

For simplicity it is assumed that ∆𝑥 = ∆𝑦 = ℎ and the number of points in each direction is taken to 

be equal. 

In a similar fashion the discrete time 𝑡 is considered uniformly spaced in the interval0 ≤ 𝑡 ≤ 𝑇: 

𝑡𝑘 = (𝑘 − 1)∆𝑡,  𝑘 = 1,2, … , 𝑃 

where 𝑃 is the number of time steps and ∆𝑡  is the size of a time step: ∆𝑡 =
𝑇

𝑃−1
. 

On this discrete mesh the following approximations to the derivatives of the level set function can be 

defined: 

- first order accurate forward and backward difference: 

𝜑𝑥
+ ≈

𝜑𝑖+1 − 𝜑𝑖
∆𝑥

, 𝜑𝑦
+ ≈

𝜑𝑗+1−𝜑𝑗

∆𝑥
                                                   (3.26) 

𝜑𝑥
− ≈

𝜑𝑖 − 𝜑𝑖−1
∆𝑥

, 𝜑𝑦
− ≈

𝜑𝑗−𝜑𝑗−1

∆𝑥
                                                  (3.27) 

- second order  accurate central difference: 

𝜑𝑥 ≈
𝜑𝑖+1 − 𝜑𝑖−1

2∆𝑥
, 𝜑𝑦 ≈

𝜑𝑗+1 − 𝜑𝑗−1

2∆𝑦
                                          (3.28) 
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- second order accurate finite difference for the second derivative : 

𝜑𝑥𝑥 ≈
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

∆𝑥2
, 𝜑𝑦𝑦 ≈

𝜑𝑗+1 − 2𝜑𝑗 + 𝜑𝑗−1

∆𝑦2
                                (3.29𝑎) 

𝜑𝑥𝑦 ≈
𝜑𝑖+1,𝑗+1 − 𝜑𝑖+1,𝑗−1 − 𝜑𝑖−1,𝑗+1 + 𝜑𝑖−1,𝑗−1

4∆𝑥∆𝑦
                                         (3.29𝑏) 

 

3.4.2. Simulation  of geometric models of dendritic crystal growth 

 

In this section issues related to numerical discretization and simulation of individual components of 

the geometric models are analyzed and simulations presented. Also a short analysis of difficulties in 

simulating geometric models is presented. 

 

3.4.2.1. Motion of level sets in the normal direction 

 

This section discusses the motion of an interface under an internally produced velocity field for 

constant motion in the normal direction. Let us recall the general level set equation: 

𝜑𝑡 + 𝑉|∇𝜑| = 0                                                                           (3.30) 

Motion on an interface in the normal direction is given by equation (3.30) where 𝑉 = 𝑎, where 𝑎 is 

chosen as a constant term. The sign of the speed 𝑎 determines the direction in which the interface is moving 

at a given time: if 𝑎 > 0  the interface moves in the direction of the normal and if 𝑎 < 0 the interface will 

move opposite the normal direction. In the trivial case where 𝑎 = 0, equation (3.30) is reduced to 𝜑𝑡 = 0, 

which means the interface is stationary at all times. Equation (3.30) is a Hamilton-Jacoby equation, with 

the Hamiltonian of the form 𝐻(𝜑𝑥 , 𝜑𝑦) and there are a variety of numerical solvers available, as detailed 

in (Osher and Fedkiw, 2003). In this project, Godunov’s method is used to compute spatial derivatives in 

equation (3.30). This method ensures that the flow of information is correctly discretized in time, i.e. how 

the gradient ∇𝜑 = (𝜑𝑥 , 𝜑𝑦) is computed depending on the sign of the speed. The method for equation 

(3.30) is as follows, for both positive and negative values of the speed term: 

- if  𝑎𝜑𝑥
+ > 0 and 𝑎𝜑𝑥

− > 0, 𝜑𝑥 = 𝜑𝑥
− 

- if  𝑎𝜑𝑥
+ < 0 and 𝑎𝜑𝑥

− < 0, 𝜑𝑥 = 𝜑𝑥
+ 

- if  𝑎𝜑𝑥
+ ≥ 0 and 𝑎𝜑𝑥

− ≤ 0, 𝜑𝑥 = 0 

- if 𝑎𝜑𝑥
+ ≤ 0 and 𝑎𝜑𝑥

− ≥ 0, 𝜑𝑥 = {
𝜑𝑥
+, |𝑎𝜑𝑥

+| > |𝑎𝜑𝑥
−| 

𝜑𝑥
−, |𝑎𝜑𝑥

−| > |𝑎𝜑𝑥
+|

 

The same process applies to obtain the derivative in any spatial dimension. After choosing the correct 
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values for the derivatives the gradient magnitude can be found simply by |∇𝜑| = √𝜑𝑥
2 + 𝜑𝑦

2. The front 

is then advanced in time using a third order accurate TVD-RK (total variation diminishing Runge Kutta) 

method (Shu and Osher, 1989): 

- first a forward Euler step is taken to advance the solution to time 𝑡 + ∆𝑡:  

𝜑𝑡+1 − 𝜑𝑡

∆𝑡
+ 𝑉𝑡|∇𝜑𝑡| = 0 

- 𝜑𝑡+1 is then used in another Euler step to advance the solution to time 𝑡 + 2∆𝑡: 

𝜑𝑡+2 − 𝜑𝑡+1

∆𝑡
+ 𝑉𝑡+1|∇𝜑𝑡+1| = 0 

- this is followed by an averaging : 𝜑𝑡+
1

2 =
3

4
𝜑𝑡 +

1

4
𝜑𝑡+2, which produces a solution for time 𝑡 +

1

2
∆𝑡 

In the case where the speed term is not constant, the  term 𝑉𝑡+
1

2  is computed from the relevant 

governing laws of the process (e.g. if the front evolves with speed proportional to local curvature, 

𝑉𝑡+
1

2 will be computed from the curvature of 𝜑𝑡+
1

2 ) 

- the fourth stage is another forward Euler step , to advance the solution to time 𝑡 +
3

2
∆𝑡: 

𝜑𝑡+
3
2 − 𝜑𝑡+

1
2

∆𝑡
+ 𝑉𝑡+

1
2 |∇𝜑𝑡+

1
2| = 0 

- the final solution at time 𝑡 + ∆𝑡 is then found by a second averaging step : 

𝜑𝑡+1 =
1

3
𝜑𝑡 +

2

3
𝜑𝑡+

3
2 

Higher order integration schemes exist in literature, but require more computational effort and there 

are no major advantages in practical calculations.  

To ensure stability the time step used in the numerical integration method must satisfy the CFL 

condition (Courant–Friedrichs–Lewy condition), which states that the time step must be taken smaller than 

a certain value, otherwise the simulation will produce incorrect results. This condition affirms that the 

speed ∆𝑥/∆𝑡 of the numerical waves must be at least as fast as the absolute value of the physical wave 

speed |V|. The CFL step restriction for motion in the normal direction is: 

∆𝑡 <
1

𝑚𝑎𝑥 (
|𝑎𝜑𝑥|
∆𝑥

+
|𝑎𝜑𝑦|
∆𝑦

)

                                                       (3.31) 
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Figure 3.4. illustrates the motion of an initial shape under positive normal velocity 𝑉𝑛 = 0.5 . The 

domain is taken to be 𝐷 = [−2,2] × [−2,2], with a number of grid nodes 𝑁 = 200 in each spatial 

direction, giving a spatial step size of ∆𝑥 = ∆𝑦 = 0.201. The time step restriction given by (3.31) is ∆𝑡 =

0.0284 𝑠. Time plots of the evolution are taken at every ∆𝑡𝑃𝑙𝑜𝑡 = 0.125 𝑠 until the final simulation 

time 𝑇 = 1𝑠 .  Figure 3.5. illustrates motion under the same spatial and temporal conditions, but with 

negative speed  𝑉𝑛 = −0.5. 

Fig. 3.4. Evolution of a star shaped curve under positive normal velocity 

Fig. 3.5. Evolution of a star shaped curve under negative normal velocity 
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3.4.2.2. Motion of level sets under curvature flow 

 

The local curvature is given by the divergence of the normal vector and can be written in terms of the 

level set function as: 

𝑘 = ∇ ∙ (
∇𝜑

|∇𝜑|
) =

𝜑𝑥
2𝜑𝑦𝑦 − 2𝜑𝑥𝜑𝑦𝜑𝑥𝑦 + 𝜑𝑦

2𝜑𝑥𝑥
|∇𝜑|3

                                         (3.32) 

By replacing the normal speed with  𝑉𝑛 = −𝑏𝑘
𝑞, where 𝑞 is the power of the curvature term and 𝑏 is 

chosen as a positive constant, the equation that characterizes motion with speed proportional to curvature 

is obtained as: 

𝜑𝑡 = 𝑏𝑘
𝑞 ∙ |∇𝜑|                                                                        (3.33) 

Equation (3.33) can be solved by using the TVD-RK method previously described, using a CFL time 

step restriction given by:  

∆𝑡 <
1

2𝑏
((∆𝑥)2)𝑞

+
2𝑏

((∆𝑦)2)𝑞

                                                                (3.34) 

Motion of level sets under curvature flow is presented in Fig.3.6. The domain is taken to be 𝐷 =

[−2,2] × [−2,2] , with a number of grid nodes 𝑁 = 200 in each spatial direction, giving a spatial step size 

of ∆𝑥 = ∆𝑦 = 0.201.The time step restriction of ∆𝑡 = 5.0504 ∙ 10−4 𝑠 is a few orders in magnitude 

smaller than the case of motion with constant normal speed. Time plots of the evolution are taken at 

every ∆𝑡𝑃𝑙𝑜𝑡 = 0.125 𝑠 until the final simulation time 𝑇 = 1𝑠 . The weighting term of the curvature is 

taken 𝑏 = 0.2 and the power term 𝑞 = 1. Motion under curvature shrinks any curve into circles, which 

then continue to shrink into a single point and vanish. 
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Fig. 3.6. Evolution of a star shaped curve under curvature flow 

 

3.4.2.3. Motion of level sets under curvature flow combined with advection in the normal direction   

 

This type of motion is characterized by normal speed  𝑉𝑛 = 𝑎 − 𝑏𝑘, which gives the following level 

set equation: 

𝜑𝑡 + 𝑎|∇𝜑| = 𝑏𝑘 ∙ |∇𝜑|                                                        (3.35) 

and can be solved by discretizing separately the normal term and the curvature term, as discussed in 

previous sections. Once both terms are discretized, a 3rd order TVD-RK method can be used to advance 

the front forward in time. The CFL condition required to ensure stability of equation (3.35) is given by: 

∆𝑡 <
1

𝑚𝑎𝑥 (
|𝑎𝜑𝑥|
∆𝑥

+
|𝑎𝜑𝑦|
∆𝑦

) +
2𝑏
(∆𝑥)2

+
2𝑏
(∆𝑦)2

                                       (3.36) 

This type of motion can be viewed as a linearization of geometrical crystal growth model (3.3) and is 

illustrated in Fig.3.7. This can be regarded as a simple crystal growing under two competing forces:  the 

normal velocity term, which sustains growth and tends to expand the crystal and the curvature force that 

smoothes out the irregularities on the crystal shape, playing the role of a surface tension type-force. The 

linearized model of crystal growth (3.35) cannot predict dendritic crystal growth: over time, the curvature 

term will continue to flatten any perturbations on the interface, until it eventually becomes a circle, which 

then can only be expanded by the normal term, hence complex shapes present in dendritic growth cannot 

form. 
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The domain is taken to be 𝐷 = [−2,2] × [−2,2], with a number of grid nodes 𝑁 = 200 in each spatial 

direction, giving a spatial step size of ∆𝑥 = ∆𝑦 = 0.201. The time step restriction is ∆𝑡 = 0.0046 𝑠. Time 

plots of the evolution are taken at every ∆𝑡𝑃𝑙𝑜𝑡 = 0.125 𝑠 until the final simulation time 𝑇 = 1 𝑠. The 

normal velocity is  𝑉𝑛 = 0.25 and the curvature weight is 𝑏 = 0.02. 

Fig. 3.7. Evolution of a star shaped under speed equal to the curvature combined 

with a normal speed term. Perturbations on the curve are diminished in time, and 

the shape tends to turn circular. 

 

3.4.2.4. Motion of level sets under the second derivative of curvature  

 

The level-set equation that characterizes the motion of a closed curve under this normal velocity is 

given by (Chopp and Sethian, 1999): 

𝜑𝑡 + 𝑐 ∙ 𝑘𝑠𝑠|∇𝜑| = 0                                                            (3.37) 

where 𝑐 is a weighting factor and the term 𝑘𝑠𝑠 denotes the second order derivative of the curvature with 

respect to local arc-length, and can be expressed in terms of the level set function 𝜑 as: 

𝑘𝑠𝑠 = ∇ [∇ [∇ ∙
∇𝜑

|∇𝜑|
] ∙
(𝜑𝑦, −𝜑𝑥)

|∇𝜑|
] ∙
(𝜑𝑦, −𝜑𝑥)

|∇𝜑|
                                      (3.38) 

                          =
𝑘𝑥𝑥𝜑𝑦

2 − 2𝑘𝑥𝑦𝜑𝑥𝜑𝑦 + 𝑘𝑦𝑦𝜑𝑥
2

𝜑𝑥
2 + 𝜑𝑦

2 −
(𝑘𝑥𝜑𝑥 + 𝑘𝑦𝜑𝑦)𝑘

√𝜑𝑥
2 + 𝜑𝑦

2

                   (3.39) 

where 𝑘 is the curvature given by (3.32) and the subscripts refer to derivatives with respect to the two 

spatial directions. It is obvious from (3.38) that the 𝑘𝑠𝑠 term involves computing derivatives of the level 

set function up the fourth order, which can lead to a noisy numerical simulation. In order to reduce errors 
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in numerical estimates, (Chopp and Sethian, 1999) propose using fourth order accurate approximations to 

the derivatives of 𝜑, instead of (3.28)-(3.29a, b): 

𝜑𝑥 ≈
1

12∆𝑥
(−𝜑𝑖+2,𝑗 + 8𝜑𝑖+1,𝑗 − 8𝜑𝑖−1,𝑗 + 𝜑𝑖−2,𝑗)                              (3.40𝑎) 

𝜑𝑥𝑥 ≈
1

12(∆𝑥)2
(−𝜑𝑖+2,𝑗 + 16𝜑𝑖+1,𝑗 − 30𝜑𝑖,𝑗 + 16𝜑𝑖−1,𝑗 − 𝜑𝑖−2,𝑗)                  (3.40𝑏) 

𝜑𝑥𝑦 ≈
1

48(∆𝑥)2
(−𝜑𝑖+2,𝑗+2 + 16𝜑𝑖+1,𝑗+1 + 𝜑𝑖−2,𝑗+2 − 16𝜑𝑖−1,𝑗+1 + 𝜑𝑖+2,𝑗−2 − 16𝜑𝑖+1,𝑗−1

− 𝜑𝑖−2,𝑗−2 + 16𝜑𝑖−1,𝑗−1)                                                                                                  (3.40𝑐) 

Given (3.40a, b, c), the derivatives 𝜑𝑦 , 𝜑𝑦𝑦 , 𝑘𝑥 , 𝑘𝑥𝑥 , 𝑘𝑦 , 𝑘𝑦𝑦 and 𝑘𝑥𝑦 are approximated using the same 

numerical stencils. After all terms are discretized accordingly, the front can be advanced by using the 3rd 

order TVD-RK scheme previously presented. Under this type of curvature flow, closed curves tend to 

shrink into circles, and then remain stationary, due to the fact that the second order derivative of the 

curvature of a circle is equal to zero, which means that the level sets remain static.  

This motion is demonstrated in Fig. 3.8, Fig. 3.9. The domain is taken to be 𝐷 = [−2,2] × [−2,2], 

with a number of grid points 𝑁 = 50 in each spatial direction, giving a spatial step size of ∆𝑥 = ∆𝑦 =

0.0816. The time step restriction is ∆𝑡 = 5 ∙ 10−6 𝑠. Time plots of the evolution are taken at every 

∆𝑡𝑃𝑙𝑜𝑡 = 0.125 𝑠 until the final simulation time 𝑇 = 0.1 𝑠. The curvature weighting term is 𝑐 = 0.06. A 

larger weight would mean a smaller time restriction in order to ensure stability, which would greatly 

increase simulation time. 

Fig. 3.8. A circle under curvature flow given by 𝑘𝑠𝑠, remains stationary (after 20 000 iterations) 
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Fig. 3.9. A star shape curve evolving under curvature flow given by 𝑘𝑠𝑠 , transforms 

approximately into a circle after 20 000 iterations 

 

3.4.2.5. Numerical difficulties of geometric models of dendritic crystal growth  

 

From the previous sections it can be seen that geometric models of crystal growth have the general 

form: 

�⃗⃗� ∙
𝑑𝑥 

𝑑𝑡
=∑𝑎𝑖𝑘

𝑖 +

𝑛

𝑖=0

𝛾
𝜕2𝑘

𝜕𝑠2
  

where the coefficients 𝑎𝑖 and 𝛾 take real positive or negative values and 𝑛 is the order of the curvature 

polynomial. This general model can be re-written in a level set representation as: 

𝜑𝑡 + (𝑎0 +∑𝑎𝑖𝑘
𝑖

𝑛

𝑖=1

+ 𝛾𝑘𝑠𝑠) ∙ |∇𝜑| = 0 

𝜑𝑡 + 𝑎0 ∙ |∇𝜑| = −(∑𝑎𝑖𝑘
𝑖

𝑛

𝑖=1

+ 𝛾𝑘𝑠𝑠) ∙ |∇𝜑| 

Motion of level sets under curvature flow or a general flow involving curvature and its derivatives is 

numerically stable only if the weighting term is taken to be positive. The case where this constant has a 

negative value, i.e. 𝑎𝑖 < 0 or 𝛾 < 0, allows for small perturbations caused by numerical approximations 

to grow, and lead to instability (Osher and Fedkiw, 2003). There was no study found on a regularization 

method to stabilize motion of level sets under this kind of flow.   

Unfortunately geometric models presented have polynomial terms which are weighted by negative 

terms, which cause the simulation of such components to be numerically unstable. 
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3.4.3. Simulation of the modified Stefan problem 

 

Numerical simulations of non-local models of growth require discretization of the set of equations 

(3.10)-(3.16). The velocity of the interface is given by the Stefan condition (3.15) which can then be used 

to evolve the front using a level set formulation. The method developed by (Chen. et. al., 1997) was 

implemented in this project in order to simulate dendritic growth. Solving the modified Stefan problem is 

usually a three step process: 

a)  firstly the initial temperature distribution is defined in a computational domain, an initial crystal 

seed is set, and the level set function attached to the seed is constructed .With this initial information the 

normal velocity can be determined from the Stefan condition (3.15) .This speed is only valid for points on 

the interface and needs to be extrapolated to the whole domain, to properly move all level sets. 

b)  after the speed function is found, the front can be advanced forward in time with the level set 

method by using a third order TVD-RK scheme. This motion usually does not preserve the signed distance 

property of the level set function and, after each time step the level set function needs to be reinitialized as 

a signed distance function. 

c)  the last step involves updating the temperature in the solid and liquid subdomains and applying 

the Dirichlet boundary condition (3.13a) on the interface. 

  

3.4.3.1. Velocity extension 

 

The normal velocity is defined only on the interface, but can be easily extended to the whole domain 

using the advection equation: 

𝑉𝜏𝑒𝑥𝑡 + 𝑆(𝜑𝜑𝑥)𝑉𝑥 = 0                                                                (3.41) 

where 𝑆(∙) represents the sign function, 𝑢 is the temperature, 𝑉𝑥 =
𝜕𝑢

𝜕𝑥
 on the interface, 𝜏𝑒𝑥𝑡  is a fictitious 

time. In (Chen. et. al., 1997) the authors propose using four different terms in approximating the extension 

of the velocity: the two Cartesian coordinates 𝑥 − 𝑦 and the 45°rotated Cartesian coordinates 𝜉 − 𝜂, in 

order to minimize the effects of grid orientation. Discretization of the four speed terms are given by: 

𝑢𝑖,𝑗
1 = −𝑆𝑖,𝑗(𝜑𝑥) ((𝑢𝑖+2,𝑗 − 𝑢𝑖+1,𝑗) − (𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗)) ℎ⁄                         (3.42𝑎) 

𝑢𝑖,𝑗
2 = −𝑆𝑖,𝑗(𝜑𝑦) ((𝑢𝑖,𝑗+2 − 𝑢𝑖,𝑗+1) − (𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗−2)) ℎ⁄                         (3.42𝑏) 

𝑢𝑖,𝑗
3 = −𝑆𝑖,𝑗(𝜑𝜂) ((𝑢𝑖+2,𝑗+2 − 𝑢𝑖+1,𝑗+1) − (𝑢𝑖−1,𝑗−1 − 𝑢𝑖−2,𝑗−1)) √2ℎ           (3.42𝑐)⁄  

𝑢𝑖,𝑗
4 = −𝑆𝑖,𝑗(𝜑𝜉) ((𝑢𝑖+2,𝑗−2 − 𝑢𝑖+1,𝑗−1) − (𝑢𝑖−1,𝑗+1 − 𝑢𝑖−2,𝑗+2)) √2ℎ⁄           (3.42𝑑) 

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are the temperature jumps across the interface and 𝜑𝑥 , 𝜑𝑦, 𝜑𝜂 , 𝜑𝜉 are the derivatives 
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of the level set function taken in the 𝑥 − 𝑦 and 𝜉 − 𝜂 directions, and ℎ is the grid spacing. This 

discretization is followed by a smoothing step to remove any sharp jumps that may have formed, which is 

required to maintain accuracy when calculating the velocity field over the whole domain: 

{
𝑖𝑓 𝑆𝑖,𝑗(𝜑𝜑𝑥) > 0, 𝑢𝑖,𝑗

1 = 𝑢𝑖,𝑗
1 −

1

2
(𝑢𝑖,𝑗

1 − 𝑢𝑖−1,𝑗
1 ) 

𝑖𝑓 𝑆𝑖,𝑗(𝜑𝜑𝑥) < 0, 𝑢𝑖,𝑗
1 = 𝑢𝑖,𝑗

1 +
1

2
(𝑢𝑖+1,𝑗

1 − 𝑢𝑖,𝑗
1 ) 

                                  (3.43) 

The equations related to the other spatial directions are processed in a similar fashion as (3.43). 

Finally the velocity extension is calculated from values of 𝑢1, 𝑢2, 𝑢3, 𝑢4 and the level set function 

𝜑 using:  

𝑉𝑖,𝑗 =
1

2
(𝑢𝑖,𝑗

1 (
𝜑𝑥
|∇𝜑|

)
𝑖,𝑗

+ 𝑢𝑖,𝑗
2 (

𝜑𝑦
|∇𝜑|

)
𝑖,𝑗

+ 𝑢𝑖,𝑗
3 (

𝜑𝜂
|∇𝜑|

)
𝑖,𝑗

+ 𝑢𝑖,𝑗
4 (

𝜑𝜉
|∇𝜑|

)
𝑖,𝑗

)          (3.44)  

This speed is defined at each grid point in the discrete mesh and can be used in equation (3.21).The spatial 

derivatives of 𝜑 from (3.44) are approximated by second order accurate schemes and the gradient |∇𝜑| is 

computed using central difference approximations. After this, the level set equation (3.21) can be solved 

forward in time using the third order Runge-Kutta scheme.  

 

3.4.3.2. Re-initialization of the level set function 

 

After a solution of (3.21) is computed, the resultant level set function can cease to be a signed distance 

function (|∇𝜑| ≠ 1 ), after only one iteration. This means that the level sets are no longer equally spaced 

between each other. However, conserving the signed distance property of the level set function is a key 

element in order to capture the interface accurately. To maintain this desired property, the solution is to 

reinitialize 𝜑 as a SDF (signed distance function) after each iteration. A direct method of doing this would 

be to find the zero level contour and recalculate the distances from it to all grid nodes. Although this 

approach would solve the problem, it can become computationally expensive, as interface complexity and 

mesh point density grow. To avoid this, (Sussman et. al., 1994) propose solving the following equation to 

steady-state to obtain the re-initialization effect: 

𝜑𝑡 = 𝑆(𝜑0)(1 − |∇𝜑|)                                                         (3.45) 

𝜑(𝐱, 0) = 𝜑0(𝐱) 

where 𝜑0(𝐱) is the current level set function and 𝑆(∙) is the sign function. Equation (3.45) is discretized 

by: 

𝜑𝑖,𝑗
𝑡+1 = 𝜑𝑖,𝑗

𝑡 − ∆𝑡 ∙ 𝑆𝜀(𝜑𝑖,𝑗
0 )𝐺(𝜑𝑖,𝑗

𝑡 )                                    (3.46) 
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With: 

𝑆𝜀(𝜑)𝑖,𝑗 =
𝜑𝑖,𝑗

√𝜑𝑖,𝑗
2 + 𝜀2

 , 𝜀 = 2ℎ 

{
𝑎 = 𝜑𝑥

−   𝑏 =  𝜑𝑥
+

𝑐 = 𝜑𝑦
−   𝑑 =  𝜑𝑦

+ 

𝐺(𝜑)𝑖,𝑗 = {

√max((𝑎+)2, (𝑏−)2) + max((𝑐+)2, (𝑑−)2) − 1,   if 𝜑𝑖,𝑗
0 > 0 

√max((𝑎−)2, (𝑏+)2) + max((𝑐−)2, (𝑑+)2) − 1,   if 𝜑𝑖,𝑗
0 < 0 

0        otherwise

 

The superscript (𝑛)+ and (𝑛)− denote max(𝑛, 0) and min(𝑛, 0) respectively and 𝑆𝜀 represents the 

sign function smoothed by order parameter 𝜀. Usually equation (3.46) has to be iterated 3-4 times each 

time step to ensure that the data in 𝜑 is close to a SDF. Even though this method provides a better solution 

to initialization, one disadvantage is that during the process the zero level set can move, resulting in loss 

of area over time. Chang et. al. (1996) proposed the following procedure to solve this problem: 

𝜑𝑡 + (𝐴0 + 𝐴(𝑡))(−𝑃 + 𝑘)|∇𝜑| = 0                                                (3.47) 

𝜑(𝐱, 0) = 𝜑0(𝐱) 

where 𝐴0 is the total mass of the initial level set function 𝜑(𝐱, 0), 𝐴(𝑡) is the mass associated with the 

current level set function 𝜑𝑡, 𝑃 is a positive constant taken for stabilization purposes and 𝑘 is the curvature 

of the interface. 

Another approach to solve the re-initialization without the effects of mass loss is done in (Russo and 

Smereka, 2000) where an improvement over the algorithm proposed by (Sussman et. al., 1994) is 

presented. The authors suggest using different expressions for the sign function 𝑆𝜀 and for matrix 𝐺. 

 

3.4.3.3. Temperature Update 

 

Let us recall the heat equation in the domain together with the Gibbs-Thomson condition on the 

interface: 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑡) = 𝐷𝑆 𝐿⁄ ∙ ∇(∇𝑢(𝑥, 𝑦, 𝑡))                                                    (3.48) 

𝑢(𝑥, 𝑦, 𝑡) = −𝜎𝑐𝑘 − 𝜎𝑣𝑉Γ                                                                  (3.49) 

Let us assume for simplicity that the thermal diffusivities in the solid and liquid region are both equal 

to 1.Equation (3.48) can be discretized by applying explicit or implicit methods. Although explicit methods 

are simpler to implement, they require a very small time step restriction for stability. Among the implicit 

methods the following methods are evoked: implicit Euler method and Crank-Nicolson method. 
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The implicit Euler method discretization is given by: 

𝑢𝑡+1 − ∆𝑡 ∙ ∇(∇𝑢𝑡+1) = 𝑢𝑡                                                                 (3.50)
 

where the term ∇𝑢𝑡+1 is discretized using central differences. Equation (3.50) can be rewritten on a discrete 

rectangular mesh as: 

(1 +
4∆𝑡

ℎ2
) 𝑢𝑖,𝑗

𝑡+1 −
∆𝑡

ℎ2
∙ (𝑢𝑖+1,𝑗

𝑡+1 + 𝑢𝑖−1,𝑗
𝑡+1 +𝑢𝑖,𝑗+1

𝑡+1 + 𝑢𝑖,𝑗−1
𝑡+1 ) = 𝑢𝑡                          (3.50𝑎) 

In this form, it is easier to see that (3.50a) can be written as a linear system of equations  

𝑨 ∙ 𝑢𝑡+1 = 𝒃 ∙ 𝑢𝑡 

with unknowns 𝑢𝑖,𝑗
𝑡+1.The resulting matrix 𝑨 is symmetric and the system can be solved very fast by using 

linear solver methods (LUP decomposition, Cholesky decomposition, PCG method). This method allows 

choosing time steps proportional to the square of the grid spacing, greatly reducing computational effort 

as compared to explicit methods. The implicit Euler method is unconditionally stable. 

The Crank-Nicolson integration method can be used to attain second-order accuracy in both time and 

space: 

𝑢𝑡+1 −
∆𝑡

2
∙ ∇(∇𝑢𝑡+1) = 𝑢𝑡 +

∆𝑡

2
∙ ∇(∇𝑢𝑡)                                          (3.51) 

Here the Laplacian operators are discretized using only central differences. On a discrete rectangular mesh 

it has the form: 

(1 + 2
∆𝑡

ℎ2
) 𝑢𝑖,𝑗

𝑡+1 −
∆𝑡

ℎ2
∙ (𝑢𝑖+1,𝑗

𝑡+1 + 𝑢𝑖−1,𝑗
𝑡+1 +𝑢𝑖,𝑗+1

𝑡+1 + 𝑢𝑖,𝑗−1
𝑡+1 ) = 

= (1 − 2
∆𝑡

ℎ2
) 𝑢𝑖,𝑗

𝑡 +
∆𝑡

ℎ2
∙ (𝑢𝑖+1,𝑗

𝑡 + 𝑢𝑖−1,𝑗
𝑡 +𝑢𝑖,𝑗+1

𝑡 + 𝑢𝑖,𝑗−1
𝑡 )     (3.51𝑎) 

As in the case of the implicit Euler method, equation (3.51) can be written in the form of a linear system: 

𝑨 ∙ 𝑢𝑡+1 = 𝑩 ∙ 𝑢𝑡 

which can be solved in the same manner. The Crank-Nicolson is unconditionally stable but the time step 

needs to be chosen with care, due to the fact that decaying oscillations may appear in the solution. It is 

recommended that a small time is used, similar to the implicit Euler method. 

Any of the two methods can be used to update the temperature in the domain, but for grid points that 

near the interface special care is needed. If the interface passes between two grid points, the stencils of 

(3.50a) or (3.51a) need to be modified. For example, let us say the interface is between points 𝑥𝑖 and 𝑥𝑖+1, 

and the equation for the node 𝑥𝑖 is of interest. The solution is not defined across the interface and the values 

of 𝑢𝑖+1
𝑡+1 need to be valid. This is achieved by producing ghost values (Gibou and Fedkiw, 2005) using 

extrapolation, from values left of the interface. For example in the case of constant extrapolation, one would 

take 𝑢𝑖+1
𝐺 = �̃�, where �̃�(𝑥) = 𝑢𝐼 represents the extrapolation function and is given by (3.49). Linear 

extrapolation is given by: 



Chapter 3. Models of dendritic crystal growth 

 

47 
 

{

�̃�(𝑥) = 𝑐 ∙ 𝑥 + 𝑑

�̃�(0) = 𝑢𝑖

�̃�(𝜃∆𝑥) = 𝑢𝐼 ,   with 𝜃 =
𝑥𝐼 − 𝑥𝑖
∆𝑥

 

where 𝑥𝐼 is the exact location of the interface between two grid points. Cases where the interface crosses 

between grid points in other spatial directions can be handled in a similar fashion. Constant and linear 

extrapolations are the simplest to implement but other approximations can be used (quadratic or cubic 

extrapolation). The stencils can be modified on every point of the domain if needed, by simply modifying 

the corresponding coefficients in the linear system. 

 

3.4.3.4. Simulation results 

 

In this section simulations for the modified Stefan problem are presented. All simulations have a 

number of properties in common: 

- The temperature is updated using a modified Crank-Nicolson method, using a time step of ∆𝑡 = 10−3 

seconds, on discrete rectangular domain with 𝑁 = 109 grid points in each spatial direction, yielding 

a spatial step size of ℎ = 0.037. 

- For simplicity, the thermal diffusivities are considered to be equal to 1 in both liquid and solid domains. 

- The interface temperature is chosen to be 𝑢𝐼 = 0
° Celsius, which means that as the crystal grows, the 

solid region will have the same temperature 𝑢𝑆 = 0
° Celsius. The degree of undercooling is                      

∆𝑢 = −0.5° Celsius. Also the external boundaries of the rectangular domain are kept at constant 

temperature equal to the undercooling ( 𝑢𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = ∆𝑢 𝑖𝑛 Ω𝐿(𝑡)). 
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The numerical results are shown in Figs.3.10.-.3.12. 

        a)        b) 

Fig. 3.10. a) Evolution of a circular seed with radius 𝑟 = 0.1 over a time interval ∆𝑇 = 0.8𝑠.The time 

levels are shown in increments of 0.1 seconds. b) The temperature distribution at final time ∆𝑇 

   a)        b) 

Fig. 3.11. a) Evolution of a square seed with 𝑙 = 0.1 over a time interval ∆𝑇 = 0.8𝑠.The time levels are 

shown in increments of 0.1 seconds. b) The temperature distribution at final time ∆𝑇. 
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   a)       b) 

Fig. 3.12. a) Evolution of a four sided star shape seed over a time interval ∆𝑇 = 0.8𝑠.The time levels are 

shown in increments of 0.1 seconds. b) The temperature distribution at final time ∆𝑇. 

 

Although, for numerical reasons these simulations were carried out using a simplified solidification 

model and different initial seeds, the model maintains its essential properties; it exhibits key characteristics 

of real dendritic growth, such as side branching. The average simulation time for the non-local model in 

the form of the modified Stefan problem for each particular case is quite high, each simulation taking 7-8 

hours using a HPC (high performance computing) cluster. 

 

3.4.4. CML simulation of  dendritic crystal growth 

 

3.4.4.1. Model description 

 

Coupled map lattice models provide an alternative means of modeling dendritic growth. As stated in 

Section 2.3, each CML model consists of a number of elements: the discrete lattice structure, the 

neighborhood taken into consideration and the transition rule which governs the evolution of the model. In 

the following, a modified version of the model proposed by Sakaguchi and Ohtaki (1999) is presented. The 

interface in the model is assumed to be sharp, in the sense that points on the mesh are categorized into 

occupied and unoccupied cells.  

The evolution model under consideration is the two-phase Stefan problem presented in the previous 

sections, i.e. equations (3.10)-(3.13), where the computational domain is taken to be a square lattice. The 
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discretization using a CML formulation requires several steps. The CML model is coupled with the heat 

equation, and has two distinct steps: 

- The first step requires solving the diffusion equation over the whole domain: 

𝑢𝑖,𝑗
𝑡+1 = 𝑢𝑖,𝑗

𝑡 + 𝐷{𝑢𝑖+1,𝑗
𝑡 + 𝑢𝑖−1,𝑗

𝑡 + 𝑢𝑖,𝑗+1
𝑡 + 𝑢𝑖,𝑗−1

𝑡 − 4𝑢𝑖,𝑗
𝑡 }                         (3.52)  

Here 𝐷 represents the diffusion coefficient, 𝑢 the temperature and the superscript the time. Equation (3.52) 

represents the standard five point stencil and is highly biased along the coordinate axes. For this reason a 

modified form is used, where the representation given by (3.52) is averaged with one given by rotating the 

axes by 45°, resulting in a nine-point stencil, called the “isotropic Laplacian”, which reduces artificial 

anisotropy: 

             𝑢𝑖,𝑗
𝑡+1 = 𝑢𝑖,𝑗

𝑡 𝐷 [
1

6
(𝑢𝑖−1,𝑗

𝑡 + 𝑢𝑖,𝑗+1
𝑡 + 𝑢𝑖+1,𝑗

𝑡 + 𝑢𝑖,𝑗−1
𝑡 )     

+
1

12
(𝑢𝑖−1,𝑗−1

𝑡 + 𝑢𝑖+1,𝑗+1
𝑡 + 𝑢𝑖+1,𝑗−1

𝑡 + 𝑢𝑖−1,𝑗−1
𝑡 ) − 𝑢𝑖,𝑗

𝑡 ]                                        (3.53) 

- Each node in the mesh has two sets of information embedded: information related to the temperature 

field and information related to the crystal surface. The second is expressed using a global variable 𝑥𝑖,𝑗, 

which can change its state only at unoccupied nearest neighbors of already occupied cells. After this 

growth step, the temperature is then modified to take into account the effects of the growth pattern.  

The second step (the transition rule) is given by: 

{
𝑥𝑖,𝑗
𝑡+2 = 𝑥𝑖,𝑗

𝑡 + 𝑐1(𝑇𝑖,𝑗
𝑚 − 𝑢𝑖,𝑗

𝑡+1)

𝑢𝑖,𝑗
𝑡+2 = 𝑢𝑖,𝑗

𝑡+1 + 𝑐2(𝑇𝑖,𝑗
𝑚 − 𝑢𝑖,𝑗

𝑡+1)
                                                  (3.54) 

Equation (3.54) has effect only on cells that satisfy 𝑢𝑖,𝑗 < 𝑇𝑖,𝑗
𝑚, which is considered the melting 

temperature. If this condition is not satisfied, then 𝑢𝑖,𝑗
𝑡+2 = 𝑢𝑖,𝑗

𝑡+1 and 𝑥𝑖,𝑗
𝑡+2 = 𝑥𝑖,𝑗

𝑡 .The rate of growth is 

proportional to the difference between the melting temperature 𝑇𝑖,𝑗
𝑚 and the current temperature 𝑢𝑖,𝑗

𝑡+1.The 

parameters 𝑐1 and 𝑐2 correspond to a measure of released latent heat with 𝐿 =
𝑐2

𝑐1
. As 𝐿 increases (the 

amount of latent heat produced rises) and the diffusion process acts as a restrictive factor for the growth. 

 

3.4.4.2. Model simulations  

 

Simulations were carried out using von Neumann and Moore neighborhoods (Fig. 2.3.). The following 

parameters were used for all simulations:  

 the computational domain is formed out of square cells with 𝑁 = 300 points in each spatial 

direction,  

 the melting temperature is 𝑇𝑖,𝑗
𝑚 = 0° Celsius,  
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 the initial temperature in the domain is taken 𝑇0 = −1.5
° Celsius,  

 the diffusivity constant is 𝐷 = 0.2  and the latent heat parameters 𝑐1 = 0.285, 𝑐2 = 0.7.  

 to ensure that the heat diffusion process is computed properly a time update step of ∆𝑡 =

10−3 𝑠  was used.  

 as an initial condition for growth, a single solid seed is placed at the center of the domain. 

    a)       b) 

Fig. 3.13. a) Crystal growing in undercooled melt after ∆𝑇 = 1.5  seconds using the normal von 

Neumann capture rule b) Temperature distribution at final time ∆𝑇 

   a)       b) 

Fig. 3.14. a) Crystal growing in undercooled melt after ∆𝑇 = 1  second using the normal Moore capture 

rule b) Temperature distribution at final time ∆𝑇 

As expected, the simulations results for different neighborhoods are different due to the fact that under 
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the von Neumann rule the crystal presents a growth that tends to favor the axial direction, whereas the 

Moore rule favors growth patterns in diagonal directions. The simulation results show that CML models 

possess the ability to reproduce general characteristics of dendritic crystal growth.  

 

3.5. Conclusions 

 

Dendritic crystal structures are found in numerous structures, and have a significant influence over the 

behavior, and subsequently properties of the system of interest. Various approaches have been developed 

to study dendritic growth, but the underlying laws that characterize this growth type have yet to be fully 

understood. Geometrical models of interface evolution provide an excellent candidate to describe the 

highly nonlinear spatio-temporal dynamics found in dendritic growth, in terms of local properties of the 

crystal interface. Global parameters, such as the temperature, which are known to have a noteworthy 

influence in the growth process, can be incorporated into the geometrical laws, extending the capability of 

developed models. This temperature influence on growth is further studied in upcoming chapters, where 

the control of the evolving interface is considered in two and three dimensional space. Although more 

accurate models for the growth process are available, solving the associated equations requires significantly 

higher computational effort in comparison to geometrical representations.  
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4. Models of wildfire propagation  

 

4.1. Introduction 

 

Wild land fires are present throughout most geographical regions (wilderness, rural areas etc.) and 

occur in a highly varied conditions in terms of live/dead vegetation, atmospheric conditions, terrain 

structure, humidity or other influencing factors. From a systems engineering point of view, wild land 

fires involve very complex phenomena, typically chemical oxidation reactions, which are usually 

exothermic in nature, releasing energy in the form of heat, and the transfer of this energy to the nearby 

unburnt fuel resource, followed by the ignition and combustion processes(Saito, 2001, Ward, 2001). 

Frequently, this results in extensive damage to both fauna and flora, and, if the fire is within the urban-

wildlife border, loss of human lives. Due to the dynamic behavior of wild land fires and the relatively 

large number of influencing parameters that dictate the fire intensity and rate of spread, the prediction, 

control, containment and prevention of such processes is not an easy task to accomplish. Having 

highlighted some of the features of fire spread models, it is straightforward to include wildfire evolution 

processes within the spatio–temporal class of models. 

This chapter provides a survey of the wildfire evolution models, together with analysis and numerical 

simulations of wind-aided fire growth models. The chapter is organized as follows. Section 4.2 provides a 

comprehensive review of fire propagation models, with emphasis on wind-aided growth models 

described by geometrical laws of interface evolution. The third part, Section 4.3 offers a detailed 

numerical analysis of wind-aided fire spread models, using a series of idealized conditions – 

topographical and environmental.  

 

4.2. Wind-aided fire evolution models  

 

In this chapter, geometrical models that describe the wind-aided evolution of a single fire front 

interface generated by a single ignition event are studied. The fire is assumed to evolve in a plane, 

ignoring fire height, which is usually adequate in observing the burned area perimeter spread over time.  

A simple classification of forest fires can be made based on the biofuel type and the fire location 

relative to the ground (Finney and Ryan, 1995) into surface, crown, spotting and acceleration fires: 

 Surface fires – are found in regions where the biofuel does not exceed the height of 2 m, 

with the usual burning material being shrubs, small trees, grass, leaves etc. It is reasonable 
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to include in this section the category of ground fires, which consumes fuel found between 

the mineral soil and dead vegetation area. In this work, the main focus is set on this type of 

fire spread, since it’s the most commonly occurring type of wildfire. 

 Crown fires – are usually found in areas with vegetation containing both surface fuel and 

a canopy layer, and usually develop from surface fires. Depending on the severity of the 

fire, it may be classed as active (if the surface and canopy vegetation burn alongside) or 

passive crown fire (if only some of the canopy layer vegetation is affected). 

 Spotting fires – are known to occur in regions rich in resin content, and are caused by the 

fact that burnable materials from the vegetation is transported in the form of embers over 

some distance away from the initial fire, causing new conflagrations; this makes fire 

suppression and prediction in such cases a nearly impossible task. 

 Acceleration fires – are found in regions with high slopes (valleys, canyons etc.), and 

develop rapidly due to heat being transported to unburnt fuel in an accelerated manner 

due to convective currents. 

 Fire spread modeling approaches can be classified into physical, quasi-physical, empirical, quasi-

empirical. Physical fire evolution models are models that describe the fire evolution using a theoretical 

approach (Fujii et al., 1980, Hwang and Xie, 1984, Weber, 1989). Such models take into account both 

the laws of physics and chemical reactions that take place during a fire, such as fluid mechanics, 

combustion, gas matter reactions, heat transfer etc. In comparison with physical models, the quasi-

physical models only take into account the physics aspect of the fire evolution problem, whilst 

overlooking the chemical processes that are present (Wolff et al. 1991, Albini, 1985, Butler et al., 2004 

Vaz et al., 2004). Although these models are founded on rigorous theoretical approaches, their validation 

is problematic, mainly due to the difficulties in the evaluation of individual components that contribute to 

the fire spread mechanism (Pastor et al., 2003). This shortcoming led to the development of empirical 

models, which are derived from statistical correlations from data extracted gathered in field or laboratory 

experiments (Burrows et al., 1991, Alexander et al., 1990, Marsden-Smedley and Catchpole, 1995, 

Fernandes et al., 2002). Although easier to validate, these models are often only valid in the specific 

scenarios in which the fire was observed. 

This section focuses on quasi-empirical models. As stated from their name, these models are 

obtained following experimental observations that are linked and analyzed with a physical context that 

characterizes the fire evolution (Rothermel and Anderson, 1966, Sullivan, 2007a and 2007b). Therefore 

quasi-empirical models are well suited for characterizing a wide range of fire evolution cases, with the 

observed data usually driving the model structure (parameters). This property makes the quasi-empirical 

modelling approach an excellent candidate from a systems engineering perspective in terms of dynamics 
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analysis and prediction, numerical simulation and development of suppression techniques. Let 𝛤(s, 𝑡) be 

a positively oriented curve (closed and simple planar curve) representing a moving boundary. The time 

varying curve is defined as a continuous map �̅�𝛤: [0, 𝑆(𝑡)) × [0, 𝑇] → ℝ2, where �̅�𝛤(𝑠, 𝑡) =

(𝑥1
𝛤(𝑠, 𝑡), 𝑥2

𝛤(𝑠, 𝑡)) are the Cartesian coordinates of a point on the curve 𝛤(s, 𝑡) at a given time, 𝑠 ∈

[0, 𝑆(𝑡)) is the arc length and it is assumed that the fire front is a closed curve at all times, i.e. the 

condition �̅�𝛤(0, 𝑡) =  �̅�𝛤(𝑆(𝑡), 𝑡) holds. The fire interface is defined as the curve 𝛤(s, 𝑡) that surrounds 

the burnt area. Furthermore, the parameterization is chosen such that the unburnt biofuel lies on the right 

of the interface, in the direction of increasing 𝑠 (Fig. 4.1).  

The time evolution of the fire interface can then be described by the equation  

{

𝜕

𝜕𝑡
�̅�𝛤(𝑠, 𝑡) = 𝐹(�̅�𝛤{�̅�𝛤(𝑠, 𝑡)}) ∙ �⃗⃗� 

�̅�𝛤(𝑠, 0) = 𝛤0

                                                (4.1) 

where �⃗⃗�  is the outward unit normal, 𝐹(∙) is a general functional that describes the rate of spread of the 

fire and �̅�𝛤{∙} represents a set of state variables that characterize each point �̅�𝛤(𝑠, 𝑡) along the curve, i.e. 

the collection of parameters that influence the growth. 

Fig. 4.1. Time variation of contour 𝛤(s, 𝑡) in time ∆𝑡 
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One of the first semi-empirical models was proposed by Frandsen (1971) who modelled the fire 

evolution in the 𝑥 − 𝑧 plane by considering a volume element Δ𝑉 that is moving at a constant depth in 

the 𝑧 plane, from 𝑥 = −∞ to 𝑥 = 0, where the fire interface is located. He proposed that the rate of 

spread of the fire front is given by: 

𝐹 =

𝐼𝑥𝑖𝑔 + ∫ (
𝜕𝐼𝑧
𝜕𝑧
)
𝑧𝑐
𝑑𝑥

0

−∞

𝜌𝑏𝑒𝑄𝑖𝑔
                                                                (4.2) 

where 𝐼𝑥𝑖𝑔 represents the horizontal heat flux absorbed at ignition time, 𝜌𝑏𝑒 is the bulk density of the 

available fuel, 𝑄𝑖𝑔 denotes the net heat absorbed by the fuel as it nears ignition and the integral term 

(
𝜕𝐼𝑧

𝜕𝑧
)
𝑧𝑐

is a measure of the gradient of the vertical intensity of the heat flux evaluated at depth 𝑧𝑐 of the 

fuel bed. Equation (4.2) formulates the rate of spread of the fire using the ratio between the heat flux 

transmitted into the fuel bed (the numerator term) and the heat required for ignition by the unburnt fuel 

(the denominator term), but doesn’t take into account directly any topographical or atmospheric 

conditions, limiting its use. 

Following the model proposed in (4.2), Rothermel (1972) extended Frandsen’s approach, introducing 

a series of new concepts to include the effects of wind, terrain topography and detailed fuel properties 

into the mechanism of heat propagation, giving the rate of spread: 

𝐹 =

Γ′ ∙ 𝑤𝑛 ∙ ℎ ∙ (1 − 2.59
𝑀𝑓
𝑀𝑥

+ 5.11 (
𝑀𝑓
𝑀𝑥
)
2

− 3.52 (
𝑀𝑓
𝑀𝑥
)
3

) ∙ 𝑛𝑠 ∙ 𝜉 ∙ (1 + Φ𝑤 +Φ𝑠)

𝜌𝑏𝑒 ∙ 𝜀 ∙ (250 + 1.116𝑀𝑓)
         (4.3) 

which takes into account numerous parameters of the fire interface dynamics. The rate of spread 𝐹 of the 

model (4.3) depends on the following set of variables: 

 The optimum reaction velocity Γ′, which indicates the completeness and rate of fuel 

consumption 

 The net fuel loading 𝑤𝑛 

 The biofuel  heat content ℎ 

 A scaling factor determined by the ratio of fuel moisture, 𝑀𝑓 and the moisture of extinction 𝑀𝑥 

 The mineral damping coefficient 𝑛𝑠 

 The propagating flux ratio 𝜉 

 Wind (Φ𝑤) and slope (Φ𝑠) contribution factors 

 The amount of fuel involved in the ignition process, 𝜌𝑏𝑒 

 The ratio between 𝜌𝑏𝑒 and the actual amount of available fuel 𝜌𝑏, denoted by 𝜀. 

A more convenient expression of Rothermel’s model can be obtained by introducing a measure of 
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the heat released per area unit of the fire front 𝐼𝑅 , which is proportional to the rate of change of the 

biofuel from solid state to gas state: 

𝐹 =
𝐼𝑅𝜉(1 + Φ𝑤 +Φ𝑠)

𝜌𝑏𝑒𝜀𝑄𝑖𝑔
                                                               (4.3𝑎) 

Here 𝐼𝑅 = −ℎ
𝑑𝑤

𝑑𝑡
 represents the reaction intensity, with 

𝑑𝑤

𝑑𝑡
 expressing a measure of the mass loss rate per 

unit area in the fire front, and ℎ has the same meaning as in (4.3) and 𝑄𝑖𝑔 is the heat of pre-ignition. 

Although written in compact from (4.3a), each term involves a relatively large number of 

parameters; ultimately eleven parameters are needed to fully describe the evolution of fire interface. 

Rothermel’s model was proven to be practical, most of its dynamics being consistent with observed 

wildfire evolution in nature, making it one of the most widely used simulation models and the basis for 

most of the current fire evolution models (Pastor et. al, 2003). Although the model (4.3) resolves some of 

the weaknesses of the Frandsen model, it still retains a significant series of shortcomings – in order to 

accurately describe fire dynamics the number of  inputs to the model needs to be relatively large, with 

most parameters being difficult to estimate or ascertain (e.g. fuel moisture, fuel density, fuel mineral 

percentage etc.); in addition, the rate of spread is valid only at the head of the interface and cannot predict 

the evolution at the flanks or at the rear of the fire, meaning the speed functional 𝐹 does not properly 

describe the fire dynamics. 

Fendel and Wolff (2001) proposed another quasi-empirical approach to model the functional 𝐹, 

based on Rothermel’s model. They proposed a speed functional of the form: 

𝐹 = 𝐹(𝑈, 𝜃,𝑚;… )                                                                    (4.4) 

where now the fire rate of change is dependent on the wind velocity magnitude 𝑈, the angle 𝜃 between the 

fire interface normal �⃗⃗�  and the wind direction, measured counterclockwise, the mass loading 𝑚 of the 

biofuel and additional parameters, independent of 𝑈, 𝜃,𝑚, such as the curvature 𝑘 of the fire front, as 

suggested by Osher and Sethian (1998). Although curvature effects have been observed to influence the 

head of the fire under strong warm winds, these effects are limited to early stages of fire growth and do not 

hold, in general, at large spatio-temporal scales.  
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Fig. 4.2. Fire front evolution as a function of wind speed 𝑈 and wind direction 𝜃. Initial wildfire is 

considered to be a circle or radius 𝑅  

The model (4.4) characterizes the time dynamics of the fire interface as a whole by assuming that the 

main driver of fire evolution is the wind and by taking into account the appropriate parameters distributed 

at the front, rear and sides of the fire (Fig 4.2). Given the three specific possible wind directions (𝜃 = 0 – 

downwind, 𝜃 = 𝜋 – upwind and  𝜃 = {
𝜋

2
,
3𝜋

2
} at the fire flanks), the speed functional 𝐹 is taken to be: 

{
𝐹(𝑈, 𝜃) = 𝜐𝑓(𝑈 𝑐𝑜𝑠 (𝜃)) + 𝛽 (𝑈 𝑠𝑖𝑛

𝜆(𝜃)) , |𝜃| ≤
𝜋

2

𝐹(𝑈, 𝜃) = 𝛽 (𝑈 𝑠𝑖𝑛𝜆(𝜃)) + 𝜀(𝑈 𝑐𝑜𝑠2(𝜃)), |𝜃| >
𝜋

2

                                  (4.5) 

with 𝜐𝑓(∙), 𝛽(∙) and 𝜀(∙) denote the velocities at the front, flanks and rear of the fire interface and the 

term 𝜆 ≈ 2 − 4 is a tuning parameter. The three rates of spread that characterize the model must be 

consistent with physical observations, in the sense that the rate of spread at  𝜃 = 0 should be the 

dominant term in 𝐹, since the conductive and convective heat transfer determined by wind speed is the 

principal mechanism of fire spread. Also the rate of spread at the rear (𝜃 = 𝜋) should have the smallest 

contribution since the preheating effects of the unburnt fuel due to current fire are diminished by the 

convective cooling effects of the upwind. In general, the following holds: 
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𝜐𝑓(∙) > 𝛽(∙) > 𝜀(∙)                                                                 (4.6) 

As a simple choice, with 𝜆 = 2, the model (4.5) becomes: 

{
𝐹(𝑈, 𝜃) = {𝜀0𝑐𝑜𝑠

2𝜃 + 𝑐1√𝑈 𝑐𝑜𝑠(𝜃) } + {𝜀0𝑠𝑖𝑛
2𝜃 + 𝑎𝑈𝑠𝑖𝑛2𝜃 ∙ 𝑒−𝑏𝑈𝑠𝑖𝑛

2𝜃}, |𝜃| ≤
𝜋

2

𝐹(𝑈, 𝜃) = {𝜀0𝑠𝑖𝑛
2𝜃 + 𝑎𝑈𝑠𝑖𝑛2𝜃 ∙ 𝑒−𝑏𝑈𝑠𝑖𝑛

2𝜃} + {𝜀0𝑐𝑜𝑠
2𝜃 ∙ 𝑒−𝜀1𝑈𝑐𝑜𝑠

2𝜃}, |𝜃| >
𝜋

2

        (4.7) 

The specific form of 𝐹(𝑈, 𝜃) in (4.7) is obtained using: 

𝜐𝑓(𝑈) = 𝜀0 + 𝑐1√𝑈                                                                  (4.8) 

𝛽(𝑈) = 𝜀0 + 𝑎𝑈 ∙ 𝑒
−𝑏𝑈                                                         (4.9) 

𝜀(𝑈) = 𝜀0 ∙ 𝑒
−𝜀1𝑈                                                                (4.10) 

as the wind-speed functions. The model parameters Θ = [𝜀0, 𝜀1, 𝑎, 𝑏, 𝑐1] do not depend on 𝑈or 𝜃 but 

they incorporate properties of the biofuel and fuel bed over which the fire is spreading. One of the 

major advantages of this model is that it can be easily simulated numerically, and can be readily 

applied to scenarios where the wind direction is time varying or the distribution of vegetation is 

spatially varying. 

Another recent approach to determining the rate of spread is given by Fernandes (2001). He proposes 

an exponentially fitted rate of spread, obtained from experimental prescribed fires using different 

biofuels:  

𝐹 = 𝑎 ∙ 𝑒𝑏𝑈 ∙ 𝑒−𝑐𝑀𝑑 ∙ ℎ𝑑                                            (4.11)  

where 𝑈 is the wind speed measured at 2m height, 𝑀𝑑 represents the percentage of moisture content 

found in (dead) biofuel, ℎ is a measure of the vegetation height and the terms 𝑎, 𝑏, 𝑐, 𝑑 were estimated 

to best fit the observed data. The model takes into account simple biofuel properties and is in good 

agreement with the fire dynamics determined by wind speed, however no correlation is made between 

the terrain topography and atmospheric conditions. 

An improvement of model (4.4) was proposed by Mallet et. al. (2009) by minimizing the set of 

parameters needed to describe the spatio-temporal dynamics, while still maintaining the principal 

features that determine the shape of the fire interface: 

{
𝐹(𝑈, 𝜃) = 𝜀0 +𝑚√𝑈 ∙ (𝑐𝑜𝑠𝜃)

3
2,            |𝜃| ≤

𝜋

2

𝐹(𝑈, 𝜃) = 𝜀0[𝛼 + (1 − 𝛼)|𝑠𝑖𝑛𝜃|], |𝜃| >
𝜋

2

                                     (4.12) 

The reduced parameter set Θ = [𝜀0, 𝛼,𝑚] is given by 𝜀0 which represents the velocity at the flanks, 

the ratio 𝛼 ∈ [0,1] between the flank and rear velocities and 𝑚 which is a measure of biofuel density. 

Besides the parameter reduction, one major difference between model (4.4) and (4.12) lies in the fact that 

only the head of the fire front is dependent on the wind speed and orientation while the rate of change at 

the flanks and rear has a smaller impact on the overall expansion of the fire interface. Since (4.12) 
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contains only three independent parameters it is significantly easier to tune either directly from 

experimental prescribed fires or through numerical simulation and analysis.  

The simplistic model approach allows to incorporate the terrain topography (or other relevant 

parameters) in a straightforward manner, by adjusting the speed functional 𝐹 by: 

𝐹𝑠𝑙𝑜𝑝𝑒(𝑈, 𝜃, 𝜇) = 𝐹(𝑈, 𝜃) ∙ 𝑒
𝜇                                                         (4.13) 

where the exponential term 𝑒𝜇  is an estimate of the terrain slope. From physical observations (Luke and 

McArthur, 1978) a simple choice of the exponent in (4.13) can be made by associating positive 𝜇 values 

with positive terrain incline (i.e. the fire front is moving uphill and has an accelerated rate of spread), 

negative 𝜇 values to negative terrain incline (i.e. the fire front is advancing downhill and has a damped 

rate of spread) and 𝜇 = 0 in the case where the terrain is flat. 

The main goal of fire evolution models is to predict the highly nonlinear behavior of the spatial 

spread of the fire interface, under varying scenarios that describe the physical landscape together with 

environmental atmospheric conditions. Therefore fast and accurate simulations are needed in cases where 

real time prediction of the evolving interface might aid in deciding the best suppression strategy. Given 

such constraints, the PDE models presented could hold considerably more amounts of information about 

the dynamics than would be necessary, given their continuous time-space characteristics. In such cases 

CA models might be better suited to compute the physical dynamics using discrete sets of data that 

characterize a series of physical quantities.   

Several approaches have been proposed to model and predict forest fires. Most commonly classical 

CA models with rectangular elements (Karafyllidis and Thanailakis, 1997, Quartieri et. al, 2010) or 

hexagonal cells (D'Ambrosio et. al, 2006) are studied, but other approaches such as CA structures 

coupled with Fuzzy cognitive maps (Carvalho et. al., 2006) have been explored. The states of the CA are 

usually set to be growth dependent factors, such as wind speed, wind direction or terrain topography 

increasing the capabilities of the CA models.  More recently, probabilistic CA models have been 

proposed (Pak and Hayakawa, 2011, Almeida and Macau, 2011) which provide a fire spread rate that 

depends on the probabilities assigned to individual cells within the CA structure (the probability of a cell 

to become burnt, the probability of a burned cell to influence a neighboring unburnt cell, the proportion 

of vegetation the cell contains etc.).  

While the underlying model structure is common (CA modelling approach) the transition rule is 

often quite different, although it tries to capture the same interface dynamics and is based on similar 

physical assumptions. In the work of (Karafyllidis and Thanailakis, 2006) the binary CA model is 

characterized by: 
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𝑆𝑖,𝑗
𝑡+1 = 𝑆𝑖,𝑗

𝑡 + (𝑛𝐻𝑖−1,𝑗𝑆𝑖−1,𝑗
𝑡 + 𝑤𝐻𝑖,𝑗−1𝑆𝑖,𝑗−1

𝑡 + 𝑒𝐻𝑖,𝑗+1𝑆𝑖,𝑗+1
𝑡 + 𝑠𝐻𝑖+1,𝑗𝑆𝑖+1,𝑗

𝑡 )

+ 0.83(𝑛𝑤𝐻𝑖−1,𝑗−1𝑆𝑖−1,𝑗−1
𝑡 + 𝑛𝑒𝐻𝑖−1,𝑗+1𝑆𝑖−1,𝑗+1

𝑡 + 𝑠𝑤𝐻𝑖+1,𝑗−1𝑆𝑖+1,𝑗−1
𝑡

+ 𝑠𝑒𝐻𝑖+1,𝑗+1𝑆𝑖+1,𝑗+1
𝑡 )                                                                                                        (4.14) 

 The CA states in (4.14) are proportional on the wind velocity magnitude and direction taken in 

north, south, east, west directions (𝑛, 𝑠, 𝑒, 𝑤, 𝑛𝑤, 𝑛𝑒, 𝑠𝑤, 𝑠𝑒) and the weights 𝐻𝑚,𝑛 that linearly 

approximate the height difference between cells on the CA lattice. Although the states of model (4.14) 

are two-dimensional, numerical results have been found to be in good agreement with observed forest 

fires. Furthermore, the addition of wind and terrain effects does not significantly increase the 

computational time, making the model a good candidate for real time simulations.  

A higher dimensional CA is considered in (Quartieri et. al, 2010) where the state dimension is taken 

to be 4 and the transition rule is given by the number of neighboring cells that are currently burning (𝑁𝑏): 

𝑆𝑖,𝑗
𝑡 = {

0 − unburnt fuel cell
1 − not flamable cell
2 − burning fuel cell
3 − burned fuel cell

                                                   (4.15) 

𝑆𝑖,𝑗
𝑡+1 = 𝑓(𝑆𝑖,𝑗

𝑡 , 𝑁𝑏) 

The term 𝑁𝑏 incorporates preconditions of ignition, such that if sufficient neighboring cells are in 

state 𝑆𝑘,𝑙
𝑡 = 2, then at the next time step the influenced cell will change its state from inactive to active. 

This effect is similar to the heat transfer generated and passed to the unburnt biofuel by the evolving fire 

interface as in Rothermel’s approach. Similar to (4.15), the statistical approach of (Almeida and Macau, 

2011) uses a series of probabilities to determine the state evolution of a cell within the CA lattice: 

{
𝑆𝑖,𝑗
𝑡+1 = 𝑓(𝑆𝑖,𝑗

𝑡 , 𝒫𝐷 , 𝒫𝐵 , 𝒫𝐼)

𝑆𝑖,𝑗
𝑡 ∈ [𝑆0, 𝑆1, 𝑆2, 𝑆3]

                                                        (4.16) 

Where 𝒫𝐷 , 𝒫𝐵 , 𝒫𝐼 model the probability of a cell to contain vegetation, the probability of a cell to end 

its combustion process and the probability of a cell to begin its ignition process with the allowed state 

values are similar to (4.15). 

Although CA models provide a more simplistic approach, in both theoretical and numerical terms, 

they can be used to obtain relevant descriptions of wildfire dynamics. Although simpler to implement 

numerically, as stated in the previous chapters, CA models are usually affected by anisotropy at small 

lattice resolutions, and provide inaccurate results. This results in an additional term that needs to be taken 

into account, which leads to increasing the system complexity. One major advantage still remains the 

diversity in constructing the transition rule, which provides CA with a great flexibility in adjusting the 

time dynamics of the fire front. However most parameters that influence forest fires are continuous in 
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nature, and significant information is lost through the discretization effects, typical to CA models, 

described in the second chapter of this thesis.  

 

4.3. Numerical studies of wildfire propagation  

 

This section is focused on the numerical discretization and simulation of geometric models that 

describe the evolution of the wildfire fronts, taking into account time and space varying parameters such 

as fuel density, wind speed and wind direction. As a consequence, the rate of spread of the interface, i.e. 

the speed functional (4.1) has to be calculated at every point on the fire interface and then used to evolve 

the front in time. 

Various numerical methods have been used to simulate wildfire dynamics. The main approaches 

used to this means are cellular automation (Muzy et. al., 2005), ellipse reconstruction (Anderson et. al, 

1982, Finney et. al, 1994), the finite element method (Linn et. al, 2000 and 2002), maker particle method 

(Filippi et. al, 2010), volume of fluid method (Hirt and Nichols, 1981) and the level set method (Mallet 

et. al., 2009). 

The volume of fluid method, is one of the most powerful methods for tracking a free evolving 

interface. The front Γ is represented on a grid where cells are assigned real values from the interval [0,1], 

such that the value 0 is allocated to cells outside Γ, 1 is allocated to cells that are entirely located inside 

the contour defined by Γ and estimated ’volumes’ between 0 and 1 are associated with grid cells through 

which the interface passes. After this embedding is complete, the front is advected using a speed 

functional, and the volume percentages are then updated for all grid cells, giving the new position of the 

interface. Although widely used in computational physics the method has a series of disadvantages over 

the previously mentioned the level set method (Osher and Fedkiw, 2003), such as difficulties in handling 

multiple velocity fields or handling topological changes of the interface (merging/braking). Therefore the 

level set method will be the method of choice to simulate the geometrical models of wildfire evolution. 

More specifically, the representation of the rate of spread of the wildfire interface given by (4.13) 

will be used in the numerical analysis presented here.  

 

4.3.1. Simulation of  geometric models of wildfire evolution 

 

The motion of the fire front interface in the normal direction is given by the model (4.1)  

{

𝜕

𝜕𝑡
�̅�𝛤(𝑠, 𝑡) = 𝐹(�̅�𝛤{�̅�𝛤(𝑠, 𝑡)}) ∙ �⃗⃗� 

�̅�𝛤(𝑠, 0) = 𝛤0
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with a specific choice of the speed functional 𝐹 illustrated in (4.13)  

{
𝐹(𝑈, 𝜃, 𝜇) = (𝜀0 +𝑚√𝑈 ∙ (𝑐𝑜𝑠𝜃)

3
2) ∙ 𝑒𝜇 ,            |𝜃| ≤

𝜋

2

𝐹(𝑈, 𝜃, 𝜇) = (𝜀0[𝛼 + (1 − 𝛼)|𝑠𝑖𝑛𝜃|]) ∙ 𝑒
𝜇 , |𝜃| >

𝜋

2

  

The representation of interface motion in the normal direction, described in the previous chapter, was 

shown to be governed by the well-known level set equation: 

𝜑𝑡 + 𝑉|∇𝜑| = 0                                                                   (4.17) 

In the following sections let us consider the level set function 𝜑 is defined in a generic bounded 

subdomain 𝐷 ⊂ ℝ𝟐, 𝐷: [−𝑙, 𝑙] × [−𝑤,𝑤], {𝑙, 𝑤} ∈ ℝ represented on a uniformly spaced Cartesian grid. 

The evolving fire interface is denoted by 𝛤(𝑡) and let 𝜑:𝐷 ⊂ ℝ𝟐 × [0, 𝑇] → ℝ be its associated level set 

function, constructed using (3.18). By combining (4.13) with (4.17) the level set representation of the 

evolving fire interface is obtained as: 

{
𝜑𝑡 + 𝑒

𝜇 ∙ (𝜀0 +𝑚√𝑈 ∙ (𝑐𝑜𝑠𝜃)
3
2) ∙ |∇𝜑| = 0,            |𝜃| ≤

𝜋

2

𝜑𝑡 + 𝑒
𝜇 ∙ (𝜀0[𝛼 + (1 − 𝛼)|𝑠𝑖𝑛𝜃|]) ∙ |∇𝜑| = 0, |𝜃| >

𝜋

2

                    (4.18)  

with the parameters 𝑈 ∈ ℝ+, 𝜃 ∈ [−𝜋, 𝜋] and 𝜇 ∈ ℝ .  

In the level set equations (4.18) the Hamiltonian given by 𝐻(𝜑𝑥 , 𝜑𝑦) = 𝐹(𝑈, 𝜃, 𝜇) ∙ |∇𝜑| needs to 

be numerically approximated such that the discretized Hamiltonian �̂�(𝜑𝑥
+, 𝜑𝑥

−; 𝜑𝑦
+, 𝜑𝑦

−) is consistent, 

in the sense that �̂�(𝜑𝑥
+, 𝜑𝑥

−; 𝜑𝑦
+, 𝜑𝑦

−) = 𝐻(𝜑𝑥 , 𝜑𝑦). This can be achieved by using various numerical 

approximation methods (Lax-Friedrichs, Roe-Fix, Sethian-Osher, Godunov). However, due to its 

generality and robustness, the Godunov scheme is the most suited to approximate �̂�(𝜑𝑥
+, 𝜑𝑥

−; 𝜑𝑦
+, 𝜑𝑦

−) 

(Osher and Fedkiw, 2003). The information contained in �̂�(𝜑𝑥
+, 𝜑𝑥

−; 𝜑𝑦
+, 𝜑𝑦

−) is then used to advance 

the front in time using a third order accurate TVD-RK method to obtain the approximation of the level 

set function 𝜑 at time 𝑡 + ∆𝑡. Special care needs to be taken in ensuring stability of the numerical 

integration resulting in the following CFL time step restriction needs to be satisfied: 

∆𝑡 (
|𝐻1|

∆𝑥
+
|𝐻2|

∆𝑦
) < 1                                                         (4.19) 

where 𝐻1 =
𝐹(𝑈,𝜃,𝜇)𝜑𝑥

|∇𝜑|
 , 𝐻2 =

𝐹(𝑈,𝜃,𝜇)𝜑𝑦

|∇𝜑|
 and the partial derivatives of the level set function, 𝜑𝑥 , 𝜑𝑦 are 

computed using a second order central difference stencil.  

Given that the front shape is dependent on the zero level set of the level set function 𝜑, special care 

needs to be taken after the time integration of (4.18), to ensure the interface is tracked correctly. One of 

the most common causes for inaccuracy is loss of the signed distance property (i.e. |∇𝜑| ≠ 1) in time. 
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To resolve this issue, the numerical re-initialization method described in the previous chapter is used to 

re-distance the level sets of the degraded level set function 𝜑, so that |∇𝜑| = 1 holds.      

Although (4.18) describes the level set representation of the wind aided rate of spread of a wildfire, 

the numerical implementation is not straightforward. The wind direction angle 𝜃, representing the angle 

measured in the anti-clockwise direction between the positive 𝑂𝑥 axis and the interface normal (Fig.2) 

is not directly measurable. 

 Recalling that the interface normal can be written in terms of the level set function as 

�⃗⃗� =
∇𝜑

|∇𝜑|
=

𝜑𝑥

√𝜑𝑥
2 + 𝜑𝑦

2

𝑖 ̇ +
𝜑𝑦

√𝜑𝑥
2 + 𝜑𝑦

2

𝑗 ̇                                        (4.20) 

the inner product between the 𝑂𝑥 component of the wind speed, 𝑈𝑥𝑖 ̇ and the interface normal �⃗⃗�   can be 

evaluated through: 

〈𝑈𝑥𝑖 ̇, �⃗⃗� 〉 = ‖𝑈𝑥‖ ∙ ‖�⃗⃗� ‖ cos 𝜃                                                            (4.21) 

giving 

cos 𝜃 =
〈𝑈𝑥𝑖 ̇, �⃗⃗� 〉

‖𝑈𝑥‖ ∙ ‖�⃗⃗� ‖
                                                                      (4.22) 

By replacing the respective values in (4.22) it follows that: 

cos 𝜃 =
𝜑𝑥

√𝜑𝑥
2 + 𝜑𝑦

2

                                                                  (4.23) 

which provides a direct relationship between the level set function 𝜑 and the cosine of 𝜃.  

Evaluating magnitude of the cross product between 𝑈𝑥𝑖 ̇ and �⃗⃗�  results in: 

‖𝑈𝑥𝑖 ̇ × �⃗⃗� ‖ = ‖𝑈𝑥‖ ∙ ‖�⃗⃗� ‖ sin 𝜃                                                            (4.24) 

sin 𝜃 =
‖𝑈𝑥𝑖 ̇ × �⃗⃗� ‖

‖𝑈𝑥‖ ∙ ‖�⃗⃗� ‖
                                                                     (4.25) 

which after replacing terms in (4.24) and rearranging gives 

sin 𝜃 =
𝜑𝑦

√𝜑𝑥
2 + 𝜑𝑦

2

                                                                   (4.26) 

Substituting (4.22) and (4.26) into (4.18), results in a direct correlation between the time evolution 

of level set function associated with the wildfire interface, 𝜑𝑡 in terms of its first order partial 

derivatives, 𝜑𝑥 and 𝜑𝑦 and the speed functional 𝐹(𝑈, 𝜃, 𝜇) as : 
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𝜑𝑡 =

{
 
 
 
 

 
 
 
 

−𝑒𝜇 ∙

(

 
 
𝜀0 +𝑚√𝑈 ∙

(

 
𝜑𝑥

√𝜑𝑥
2 + 𝜑𝑦

2

)

 

3
2

)

 
 
∙ |∇𝜑|,            |𝜃| ≤

𝜋

2

−𝑒𝜇 ∙

(

 𝜀0

[
 
 
 

𝛼 + (1 − 𝛼) ||
𝜑𝑦

√𝜑𝑥
2 + 𝜑𝑦

2

||

]
 
 
 

 

)

 ∙ |∇𝜑|, |𝜃| >
𝜋

2

                     (4.27)  

which can now be discretized and implemented numerically, provided the input parameter set given by 

Θ = [𝜀0, 𝛼,𝑚, 𝜇] and the initial shape of the fire front, 𝛤0  are known.  

Within the following subsections, the same notations provided in the previous chapter are used for 

the numerical approximation of discrete partial/full derivatives of the level set function. In most 

simulations the spatial domain 𝐷 is taken to be the square centered at point 𝑂(0,0) on a Cartesian grid, 

with  𝐷: [−40,40] × [−40,40] and 𝑁 = 800 points in each spatial direction, giving a grid spatial 

resolution of ∆𝑥 = ∆𝑦 = 0.1. The initial shape of the fire front is taken to be a circle of radius 𝑅 ∈

ℝ+,centered at the point 𝐶0(𝑥0, 𝑦0) of the computational Cartesian grid (Fig. 4.3). As the interface is 

advanced in time, the level set function degrades from a signed distance function and after every 𝑁𝑖𝑡 =5 

iterations, the re-initialization algorithm is used to address this issue. 

  

4.3.1.1.  Basic wildfire evolution 

  

 First a basic evolution is addressed, under constant wind speed, wind speed direction and biofuel 

distribution. To this aspect, the parameter vector Θ = [𝜀0, 𝛼, 𝑚] as 𝜀0 = 0.2, 𝛼 = 0.5 and 𝑚 = 0.5 with 

the constant wind speed 𝑈 = 10.The wind speed direction is taken to be constant, with the wind 

blowing in the S-N direction. The initial fire front is set to be a circle of radius 𝑅 = 5, centered 

at 𝐶0(0, −10). The interface then is evolved using the fixed set parameters for the time period 𝑇 = [0,3] 

and snapshots of the interface are taken at constant time intervals ∆𝑡𝑝𝑙𝑜𝑡 = 0.25 (Fig. 4.4). As regions 

inside the fire perimeter are considered to have depleted the biofuel resource (and therefore cannot 

sustain burning), the total area enclosed by the wildfire grows with time, with the growth being stronger 

in the North direction due to wind effects (Fig. 4.5 , Fig 4.6). 
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Fig. 4.3. Fire front evolution initial boundary and computational domain 

Fig. 4.4. Fire front evolution of a circular initial fire front (red), under Θ = [0.2, 0.5, 0.5] with constant 

wind speed 𝑈 = 10 blowing in the S-N direction. The time level sets are shown in increments of  

∆𝑡𝑝𝑙𝑜𝑡 = 0.25 
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Fig. 4.5. Time evolution of the area enclosed by the fire front under constant wind speed 

Fig. 4.6. Time evolution of fire front arc length under constant wind speed 

 

4.3.1.2. Evolution under wind speed magnitude and wind direction variation 

  

 A more representative scenario can be set by varying the wind speed magnitude 𝑈 and the wind 

direction 𝜃. Usually both are time varying and significantly influence the rate of spread of the ‘head’ of 
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the fire front. Though the amount described by 𝑈 can be directly incorporated into (4.27), introducing 

arbitrary angular increments ∆𝜃 to 𝜃, independent of other parameters requires the following 

conversion: 

𝑟 = √𝜑𝑥
2 + 𝜑𝑦

2                                                                   (4.28) 

𝜃′ = arctan (
𝜑𝑦

𝜑𝑥
)                                                                       (4.29) 

𝜃𝑡+∆𝑡 = 𝜃′ + ∆𝜃                                                                          (4.30) 

{

𝜑𝑥 = 𝑟 cos(𝜃
𝑡+∆𝑡)

𝜑𝑦 = 𝑟sin (𝜃
𝑡+∆𝑡)

                                                                   (4.31) 

which is the well-known direct and inverse coordinate transformation from Cartesian coordinates to 

polar coordinates. The effects of varying wind speed are shown in Fig. 4.7 – Fig 4.9. The wind 

direction is set to be S-N, with the wind speed taking discrete, increasing values in the interval 

[10,90] in increments of ∆𝑈 = 10 at every ∆𝑡𝑤𝑖𝑛𝑑 = 0.25. 

Fig. 4.7. Time evolution of fire front under changing wind speed  

Observed wind speed and wind direction during a prescribed fire are usually not constant 

throughout the experiment, which is consistent with observations of real wildfire scenarios. This 

behavior is exemplified in Fig. 4.10 – Fig. 4.12, where in addition to the gradual increase in wind 

speed magnitude, the wind direction progressively changes from a south-north direction to an east-



Chapter 4. Models of wildfire propagation 

 

69 
 

west direction, which can be clearly seen from the change in the fire front head. As expected, under 

more aggressive wind conditions, the fire front spreads much faster, covering a broader area. 

 

 

4.3.1.3. Fire islands and multiple fire fronts 

 

Spotting effects in wildfires are commonly observed, although prediction and prevention of such 

events is an extremely difficult task. Spotting fires that start near the original surface fire front usually 

develop into similar surface fires. As the fires grow, they can merge, creating a single wildfire 

interface.  Given that initially these fire fronts are not linked directly, islands of unburnt biofuel can be 

formed within the wildfire perimeter, but in time they are consumed by the fire. Simulations shown in 

Fig.4.13 illustrates the evolution of multiple fire fronts that evolve together. The initial fire interfaces 

are set to be circles of radii 𝑅1 = 8, 𝑅2,3,4 = 5 centered at 𝐶1(−15,−20), 𝐶2(0, −30), 𝐶3(0, −5) 

and 𝐶4(10, −15). The results shown in Fig. 4.14 illustrate the behavior of multiple fire fronts that have 

unburnt islands. The initial fronts are taken to be circles with radii  𝑅1 = 5, 𝑅2 = 10, 𝑅3 = 5 with 

centres at 𝐶1(−20,−20), 𝐶2(0, −20), 𝐶3(0, −5). A circular region of unburnt fuel with  𝑅𝑢𝑏 = 4 and 

𝐶𝑢𝑏(4, −20)is placed inside the second fire. Similar initial conditions to previous simulations are used 

(fuel loading, flank velocity, constant wind speed), but with several independent fire fronts evolving 

simultaneously. After a period of time, the fronts merge together, demonstrating the capability of the 

level set method to deal with multiple fire fronts in a straight forward manner. 

Fig. 4.8. Time evolution of the area enclosed by the fire front under changing wind speed  
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Fig. 4.9. Time evolution of the fire front arc length under changing wind speed 

 

 

4.3.1.4. Effects of fuel density on wildfire propagation 

 

 Fuel concentration is one of the key influencing parameters in the spread of wildfires, and often 

the distribution is not constant within an observed region. To illustrate this effect a series regions of 

constant biofuel density were considered (Fig. 4.15a), with variations from low fuel density (𝑚 = 0.1), 

medium density (𝑚 = 0.5) and high fuel density (𝑚 = 1) defined. The initial fire front configuration is 

given by a series of spatially distributed wildfires superimposed over a terrain with the previously defined 

fuel distribution (Fig. 4.15b). The initial fronts are taken to be circles with radii  𝑅1 = 5, 𝑅2 =

10,  𝑅3 = 5 with centres at 𝐶1(−20,−20), 𝐶2(0, −20), 𝐶3(10, −5). The multiple fire fronts are shown 

to evolve at different rates, under the influence of constant wind speed. As the wildfire passes through 

each fuel density region, it can be seen that the fuel loading greatly impacts the rate of spread (Fig. 4.16). 
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Fig. 4.10. Time evolution of fire front under changing wind speed and wind direction 

Fig. 4.11. Time evolution of the fire front area under changing wind speed and wind direction 
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Fig. 4.12. Time evolution of the fire front arc length under changing wind speed and wind direction 

 

4.3.1.5. Terrain elevation effects on wildfire propagation 

 

 Terrain topography usually influences the behavior wind aided wildfires by altering the rate of 

spread under uphill, downhill of flat terrain conditions. Usually, the fire front propagates at a higher 

rate under higher positive terrain gradient with backwind and is known to be slowed down under 

negative gradient under the same conditions. An idealized terrain consisting of 3 different terrain 

inclinations were considered, representing an undulating terrain: a flat ground region followed by a hill 

area (both up and downhill, with no plateau region at the peak) followed by a flat surface (Fig. 4.17). 

The initial fronts are taken to be circles with radii  𝑅1 = 5 and 𝑅2 = 3 with centres at 𝐶1 = (−10,−25) 

and   𝐶2 = (−10, −20). Under constant fuel loading, and wind speed magnitude and direction (S-N), 

the wildfire is evolving at higher rates in regions where the slope is taken to be positive (the distance 

between time consecutive level sets is greater) and has a damped evolution in regions with a negative 

slope (Fig. 4.18). It is important to notice that although the wind component amplifies or inhibits the 

wildfire evolution mainly at the head of the fire, the rate of spread at the flanks can still have 

noticeable effects. 
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Fig. 4.13. Time evolution of multiple independent fire fronts 
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Fig. 4.14. Time evolution of multiple fire fronts with unburnt biofuel islands 
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a)                                                                                                                b) 

Fig. 4.15. a) Biofuel density b) Initial wildfires under varying fuel density terrain – green, black, 

magenta, cyan regions are defined according to a) 

Fig. 4.16. Wildfire evolution under varying fuel density  
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Fig. 4.17. Terrain slope map (𝑒𝜇) , 𝜇𝑑𝑜𝑤𝑛 = −0.7, 𝜇𝑢𝑝 = 0.2 

Fig. 4.18. Wildfire evolution under varying terrain topography 
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4.4. Conclusions  

 

This chapter explored modelling approaches to wind aided wildfire evolution, with emphasis on 

geometrical quasi-empirical models, which combine both experimental data and fundamental 

governing laws to determine the spatio-temporal dynamics of the fire front. A numerical analysis of 

the models was undertaken in a two dimensional space, using a level set formulation, to explore the 

behavioral dynamics of a wildfire in a series of idealized scenarios, under constant or discrete time-

varying parameters (wind speed magnitude, wind direction, biofuel loading, terrain topography). 

Additional improvements to the model can be made by incorporating a series of real-world values: 

satellite imaging data and digital terrain elevation data can be used to refine the model and obtain more 

accurate results; these real-world parameters can greatly aid in determining an effective fire 

suppression strategy, an approach that is explored in more detail in the subsequent chapters.  
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5. A new approach for controlling crystal growth using a 

level set formulation 

 

5.1. Introduction 

 

Dendritic crystal growth is mainly driven by the temperature gradient evolution over time. Thus, the 

speed at which the boundary of the crystal evolves is mainly affected by how the temperature around it 

changes (Glicksman and Lupulescu, 2004).  

The problem of controlling crystal growth can be viewed as the problem of determining the time-

dependent temperature distribution over the domain of interest such that the boundary of the crystal 

evolves in a desired fashion.  

A solution to this problem could found by solving an inverse design problem over the spatial domain 

of interest. Given a model of crystal interface evolution and the desired crystal front position over time, 

the goal is to compute the temperature distribution inside the domain and the heat flux at its boundaries 

that would ensure that the crystal boundary follows the desired ‘trajectory’ (Zabaras et. al. 1992, Kang 

and Zabaras, 1995). These problems are ill-posed and require some form of spatial regularization method 

to ensure stability. Since these problems are open loop approaches, they cannot deal with inherent 

perturbations or measurement noise that would be present during control. 

Another strategy involves controlling the changes in heat flux on the boundary of the spatial domain 

so that the heat distribution inside the domain follows the desired reference distribution or in such way 

that a specific functional is minimized. The control of the free boundary of an evolving crystal 

represented by a sharp interface model (the Stefan problem) has been approached for the first time by 

(Hinze and Ziegenbalg, 2007) using an optimal control approach, according to the authors. They 

represented the free interface using a graph, and provided examples for one and two dimensional cases. 

Other approaches have been developed using simplified one dimensional problems (Banks et. al., 2008), 

where the laser control of the boundary is considered. In (Bernauer and Herzog, 2011) the time evolution 

of the crystal boundary was defined as a motion planning problem (optimal control), with the interface 

now being represented using a level set formulation. 

Although over the past few years the areas of modeling and numerical simulations of dendritic 

crystal growth have become an important area of research, there are no articles that point towards control 

of geometric dendritic growth models presented in the previous sections. In this chapter a new method 

for controlling the shape of an evolving interface, which is based on a geometric model of interface 
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evolution and exploits the level set formulation is introduced and demonstrated through numerical 

simulations. The chapter is organized as follows: Section 5.2 briefly describes the geometrical 

representations of dendritic growth together with a basic control problem, where the temperature is 

considered to be the manipulated variable. In Section 5.3, a novel approach for controlling crystal 

growth, using a level set formulation, is presented. The next part, Section 5.4 provides details of the 

numerical implementation of the proposed control algorithm in two dimensions, followed by Section 5.5, 

where the extension to a three dimensional space is presented. Finally, Section 5.6 presents detailed 

numerical results for the proposed control law, using both artificial interface reference shapes and 

complex interface profiles extracted from experimental data. 

 

5.2. Level set formulation of dendritic crystal growth  

 

Let us consider the time evolution of a solid-liquid interface, in a classic case of dendritic 

solidification. Let 𝛤(𝑡) be a positively oriented curve (closed and simple planar curve) representing the 

moving boundary. The curve is defined as a continuous map �̃�𝛤: [0, 𝑆) × [0, 𝑇] → ℝ2, where �̃�(𝑠, 𝑡) =

(𝑥1
𝛤(𝑠, 𝑡), 𝑥2

𝛤(𝑠, 𝑡)) are the Cartesian coordinates of a point on the curve 𝛤(𝑡) at a given time, 𝑠 ∈ [0, 𝑆) 

is the arc length, and the periodic boundary condition �̃�(0, 𝑡) =  �̃�(𝑆, 𝑡) holds. The curve is 

parameterised so that the interior is on the left in the direction of increasing s. The unit tangent to the 

curve is �̂� = �̃�𝑠/|�̃�𝑠| and the unit normal, pointing inside the curve, is given by �̂� = �̃�𝑠
⊥/|�̃�𝑠

⊥|. Here |�̃�| =

(�̃� ∙ �̃�)1/2  denotes the norm of �̃�,  �̃� ∙ �̃�  denotes the inner product of �̃� and �̃�, (𝛼1, 𝛼2)
⊥ = (−𝛼1, 𝛼2) 

and �̃�𝑠 = 𝜕�̃�/𝜕𝑠. The velocity of the interface 𝛤(𝑡) can be written as 

𝑑�̃�

𝑑𝑡
= 𝑉𝑛�̂� + 𝑉𝜏�̂�                                                                        (5.1) 

where 𝑉𝑛 and 𝑉𝜏 are the projections of the velocity in the normal and tangential direction, respectively. 

The propagation speed of interface is assumed to be orthogonal to the tangent �̂� (i.e. 𝑉𝜏 = 0) and 

typically depends on the geometrical properties of the interface, such as the curvature 𝑘(𝑠, 𝑡) = −�̂�
𝜕2�̃�

𝜕𝑡2
  

and its derivatives, and on the orientation angle   (defined by cos 𝜃 = �̂� ∙ �̂� ) 

�̂� ⋅
𝑑�̃�

𝑑𝑡
= 𝑉𝑛(𝑘, 𝜃)                                                                    (5.2) 

Now considering the class of local geometric models introduced in previous chapters that have been used 

to model dendritic crystal growth: 
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{
  
 

  
 �̂�

𝑑�̃�

𝑑𝑡
= (𝐹(𝑘) + 𝛾

𝜕2𝑘

𝜕𝑠2
) [1 + 𝜀 cos (𝑚𝜃)]   

�̃�(𝑠, 0) = 𝛤(0) = 𝛤0  

𝐹(𝑘) =∑𝑎𝑖𝑘
𝑖                              

𝑝

𝑖=0

                                      (5.3) 

where �̂� is the unit normal of 𝛤(𝑡) at �̃� at time 𝑡, 𝑎𝑖 ∈ ℝ are physical parameters that are related to the 

physical growth process, and the term 𝛾
𝜕2𝑘

𝜕𝑠2
, with 𝛾 ∈ ℝ+ is a measure of surface tension.  In the case of 

dendritic crystal growth, it was shown that 𝑝=3, 𝑎1 = 1, 𝑎2 is related to the degree of undercooling and 

𝑎3 represents a measure of the minimum bubble size for nucleation. The extra term proportional to 𝜀 was 

introduced to include the effects of repeated side-branching characteristic to dendritic crystal growth. 

This effect is reflected in enhanced growth in the direction given by the angle 𝜃 made by the curve 

normal and the axis along preferred 𝑚 −fold symmetry.  

The level set method provides a framework to capture the interface dynamics by using a higher 

dimensional function 𝜑 to parameterize a bounded domain in which the interface is evolving, and 

furthermore the interface corresponds to the zero level set of the function 𝜑. Let Ω𝛤(𝑡) ⊂ ℝ
2 denote the 

interior of 𝛤(𝑡). The level set function 𝜑𝛤: ℝ
2 × [0, 𝑇] → ℝ is then  

𝜑𝛤(𝑥, 𝑡) = {

−𝑑(𝑥, 𝑡),    𝑥 ∈ Ω𝛤
0,  𝑥 ∈ 𝛤

+𝑑(𝑥, 𝑡),            𝑥 ∈ ℝ2\Ω𝛤

                                                (5.4) 

where 𝑑(𝑥, 𝑡) is a distance function defined by 𝑑(𝑥, 𝑡) = min
𝑠∈[0,𝑆)

‖𝑥 − 𝑥𝛤(𝑠, 𝑡)‖. If  𝛤(𝑡)  represents time 

varying interface in a domain Ω ⊂ ℝ2 , and 𝜑𝛤(𝑥, 𝑡) is its attached level set function, then the zero level 

set of the function 𝜑𝛤(𝑥, 𝑡) has to evolve in the same way as the interface, and 𝛤(𝑡) =

{𝑥 ∈ ℝ2|𝜑𝛤(𝑥, 𝑡) = 0}  holds for any time 0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥. Using (5.5) the model (5.4) can be rewritten 

as: 

𝜕𝜑𝛤
𝜕𝑡

+ (𝑎0 +∑𝑎𝑖𝑘
𝑖

𝑝

𝑖=1

+ 𝛾
𝜕2𝑘

𝜕𝑠2
) |∇𝜑𝛤| = 0                                               (5.5) 

where the speed function considered as a weighted curvature polynomial: 

𝐹 =∑𝑎𝑖𝑘
𝑖

𝑝

𝑖=0

+ 𝛾
𝜕2𝑘

𝜕𝑠2
                                                                      (5.6) 

with 𝛾 > 0 and 𝑎𝑖>0 ∈ ℝ
+

. The advection term 𝑎0 determines the direction of evolution for 𝛤(𝑡). 

Negative values will move the points 𝑥 ∈ 𝛤(𝑡) in the direction opposite to the curve normal 

(solidification), and positive values will move the points 𝑥 ∈ 𝛤(𝑡) towards the inside of the curve, in the 

normal direction (melting). 
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The main factor driving dendritic crystal growth is the undercooling imposed to the molten phase. It 

is therefore natural to choose the temperature as a control parameter and develop a control strategy using 

it as the manipulated variable and the output as the solid-liquid interface. Let us consider the temperature 

on a bounded domain Ω ⊂ ℝ2, defined as 𝑢: Ω → ℝ. The governing equation inside the domain is given 

by the time dependent heat equation: 

{

𝜕

𝜕𝑡
𝑢(𝑥, 𝑦, 𝑡) = 𝐷 ∙ ∇(∇𝑢(𝑥, 𝑦, 𝑡)) + 𝑢𝑒𝑥𝑡

𝑢(𝑥, 𝑢, 0) = 𝑢0

                                               (5.7)  

where 𝐷 is the thermal diffusivity, 𝑢0 is the initial temperature inside Ω at time 𝑡 = 0 and 𝑢𝑒𝑥𝑡: Ω → ℝ 

represents an external heat source. The idea is to manipulate the input variable 𝑢𝑒𝑥𝑡  such that 

𝑢(𝑥, 𝑦, 𝑡) takes the desired profile inside Ω, such that the zero level set of 𝜑𝛤 reaches a desired profile, 

given the evolution law (5.5). This would mean that the undercooling changes in time, change which 

would prescribe the shape and speed of growth of the crystal. The input control function can be applied 

on the boundary of the domain 𝜕Ω (boundary control) or it can be prescribed on the whole surface of Ω 

(distributed control). In the next section, a distributed control problem is presented, using a level set 

formulation of the evolving crystal interface. 

 

5.3. Control of evolving interfaces governed by geometric laws of evolution 

 

Consider the general geometrical model of boundary evolution: 

�̂�
𝑑�̃�

𝑑𝑡
= 𝐹(𝑘(𝑠, 𝑡), 𝑢(𝑥, 𝑡)) = 𝑢(𝑥, 𝑡) ∙ [𝑎0 +∑𝑎𝑖𝑘

𝑖(𝑠, 𝑡)

3

𝑖=1

+ 𝛾
𝜕2𝑘(𝑠, 𝑡)

𝜕𝑠2
]                 (5.8) 

where 𝑢(𝑥, 𝑡) represents the control function; which in our case, is the temperature. The domain in which 

the crystal grows is assumed to be a bounded, rectangular domain Ω ⊂ ℝ2 , Ω: [−𝑙, 𝑙] × [−𝑤,𝑤]. To 

describe the control method the following need to be defined: 

 Let the desired crystal interface (reference) be denoted by a closed and non-intersecting 

contour, 𝛤𝑟 

 The evolving crystal boundary, with the initial crystal seed  𝛤0 = 𝛤(𝑡 = 0), which needs to be 

evolved in a controlled manner is indicated by 𝛤(𝑡). 

 Let 𝜑𝑟(𝑥), 𝜑𝑟: Ω × [0, 𝑇] → ℝ and 𝜑𝛤(𝑥, 𝑡), 𝜑𝛤: Ω × [0, 𝑇] → ℝ be the level set functions 

attached to with 𝛤𝑟  and 𝛤(𝑡) respectively, with 𝑇 ≥ 0 representing the maximum time window.  

The goal is to design a feedback control law: 

𝑢(𝑥, 𝑡) = 𝑢(𝜑𝑟(𝑥), 𝜑𝛤(𝑥, 𝑡), 𝑡)                                                      (5.9) 
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such that 𝜑𝛤(𝑥, 𝑡) → 𝜑𝑟(𝑥) (i.e. 𝛤(𝑡) → 𝛤𝑟) as 𝑡 → ∞. Equation (5.9) assumes that the growth process 

can be viewed in real-time and the control 𝑢(𝑥, 𝑡) can be applied on Ω in real-time (i.e. unnoticeable time 

delay, regardless of its amplitude or spatial location).  

To properly observe the growth process, it is assumed that optical data is used, and continuous 

snapshots are taken of the domain Ω in which the crystal is growing, at appropriate time steps. Let  

𝐼(𝑥, 𝑡): Ω → ℝ be the measured image intensity function of a snapshot taken at time 𝑡, which is 

processed to determine the crystal interface 𝛤(𝑡) and its interior Ω𝛤(𝑡). By introducing the functions: 

Φ𝑟(𝑥) = 𝑠𝑖𝑔𝑛(−𝜑𝑟(𝑥, 𝑡))                                                           (5.10) 

Φ𝛤(𝑥, 𝑡) =  𝑠𝑖𝑔𝑛(−𝜑𝛤(𝑥, 𝑡))                                                     (5.11) 

a distributed control law can be formulated as: 

𝑢(𝑥, 𝑡) = 𝐾𝑝 ∙ 𝑒(𝑥, 𝑡) + 𝐾𝑖∫ 𝑒(𝑥, 𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑥, 𝑡)                         (5.12) 

where 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 are the proportional, integral and derivative controller gains respectively, and the error 

function is given by: 

𝑒(𝑥, 𝑡) = −
1

2
Φ𝑟(𝑥) ∙ [Φ𝑟(𝑥) − Φ𝛤(𝑥, 𝑡)] ∙ [𝜑𝑟(𝑥) − 𝜑𝛤(𝑥, 𝑡)]                 (5.13) 

The term (5.13) represents the error function that is used in as the input to the closed loop control 

law. The error function is defined using level set representations of two simple non-intersecting 2D 

curves, namely the ‘set-point’ curve 𝛤𝑟 and the controlled interface 𝛤(𝑡). The first part of the equation, 

encompassing the functions Φ𝑟(𝑥), Φ𝛤(𝑥, 𝑡) contains the information related to the zero level contours 

of the set-point and evolving interface, explicitly providing the spatial locations where the control needs 

to be applied. The right hand element of (5.13), containing the term defined by the level set function 

𝑔(𝜑𝑟(𝑥), 𝜑𝛤(𝑥, 𝑡)) = 𝜑𝑟(𝑥) − 𝜑𝛤(𝑥, 𝑡) provides a measure of the distances between the two curves of 

interest, providing information regarding the magnitude of the control action that needs to be applied to 

minimize 𝑒(𝑥, 𝑡). Therefore, equation (5.13) provides a measure of the interface shape difference 

between two arbitrary curves, regardless of boundary complexity or position within a specified domain, 

and can be directly used in the design of a feedback control law. 

Then, the level set formulation for the time evolution of the closed loop system (5.8) is governed by: 

𝜕𝜑𝛤
𝜕𝑡

+ 𝑢(𝑥, 𝑦, 𝑡) ∙ (𝑎0 + 𝛾
𝜕2𝑘(𝑠, 𝑡)

𝜕𝑠2
) |∇𝜑𝛤| = (−∑𝑎𝑖𝑘(𝑠, 𝑡)

𝑖

3

𝑖=1

) ∙ |𝑢(𝑥, 𝑦, 𝑡)| ∙ |∇𝜑𝛤|       (5.14) 

There are two distinct behaviors related to crystal growth, namely solidification and melting. A 

desired crystal shape can be achieved not only by controlling solidification, but also through controlled 
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melting of a crystal. By joining these two cases, any desired outline can be achieved, starting from an 

arbitrary seed shape. 

 

5.4. Discretization 

 

It is worth noting that (5.14) contains the curvature power terms 𝑘(𝑠, 𝑡)𝑖 , 𝑖 = 1,3̅̅ ̅̅  and the curvature 

Laplacian 𝑘𝑠𝑠 =
𝜕2𝑘(𝑠,𝑡)

𝜕𝑠2
 which are expressed in terms of interface arc length. In order to simulate the 

closed loop system numerically using the level set approach, these curvature terms have to be 

approximated from the level set function 𝜑𝛤.  

As shown in Chapter 3, Section 3.4.2, 𝑘(𝑠, 𝑡) and 𝑘𝑠𝑠 can be expressed in terms of the level set 

function 𝜑𝛤 and its spatial derivatives as: 

 

𝑘 = ∇
∇𝜑𝛤
|∇𝜑𝛤| 

=
𝜑𝑥
2𝜑𝑦𝑦 − 2𝜑𝑥𝜑𝑦𝜑𝑥𝑦 + 𝜑𝑦

2𝜑𝑥𝑥
|∇𝜑𝛤|

3
                                         (5.15) 

 

𝑘𝑠𝑠 = ∇ [∇ [∇ ∙
∇𝜑𝛤
|∇𝜑𝛤| 

] ∙
(𝜑𝑦, −𝜑𝑥)

|∇𝜑𝛤|
] ∙
(𝜑𝑦, −𝜑𝑥)

|∇𝜑𝛤|
=
𝜑𝑦
2𝑘𝑥𝑥 − 2𝑘𝑥𝑦𝜑𝑥𝜑𝑦 + 𝜑𝑥

2𝑘𝑦𝑦
𝜑𝑥
2 + 𝜑𝑦

2
−
𝑘(𝑘𝑥𝜑𝑥 + 𝑘𝑦𝜑𝑦)

√𝜑𝑥
2 + 𝜑𝑦

2
        (5.16) 

 

where (∙)𝑦 ,(∙)𝑥, (∙)𝑥𝑥, (∙)𝑦𝑦, (∙)𝑥𝑦 are the first order, second order and mixed directional derivatives 

of 𝜑𝛤 and 𝑘. Computing 𝑘𝑠𝑠 using (5.16) involves computing derivatives of the level set function up to 

the fourth order, which introduces numerical noise. To decrease the errors in numerical estimations, 

fourth order accurate approximations are used when calculating 𝑘𝑠𝑠 (Chopp and Sethian, 1999).  

To advance the front in time a third order total variation-diminishing (TVD) Runge-Kutta (which 

has 𝒪(∆𝑡3) truncation error) scheme was used to solve (5.8). TVD RK schemes are guaranteed not to 

introduce any spurious fluctuations during the integration, which might result from higher order 

temporal discretization (Shu and Osher, 1989). Consider the following equation: 

𝜕𝜑

𝜕𝑡
= ℒ(𝜑)                                                                           (5.17) 

where ℒ denotes the spatial operator of (5.8). Then, the time discretization of (5.17) can be expressed 

by:  

{
 
 

 
 

𝜑(1) = 𝜑(0) + ∆𝑡ℒ̂(𝜑(0)) 

𝜑(2) =
3

4
𝜑(0) +

1

4
𝜑(1) +

1

4
∆𝑡ℒ̂(𝜑(1))

𝜑(3) =
1

4
𝜑(0) +

2

3
𝜑(2) +

2

3
∆𝑡ℒ̂(𝜑(2))

                                              (5.18) 
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with 𝜑(0) = 𝜑𝛤(𝑡), 𝜑𝛤(𝑡 + ∆𝑡) = 𝜑
(3) and ℒ̂ represents the discrete approximation of ℒ.  

 

5.5. Extension to three dimensions  

 

The previous sections considered controlling the crystal growth in two dimensions. This 

simplifying statement is adequate in many practical cases, where only planar interactions are of 

interest. However, since dendritic growth is a three dimensional process, in this section an extension of 

the control method to three dimensions is presented, using a level set approach. Consider the evolution 

of a crystal seed in a bounded domain 𝐷 ⊂ ℝ3 . The evolving interface is represented by the zero level 

set of a three dimensional SDF 𝜑, i.e. a surface that separates two domains of positive volumes. Due to 

the properties of the level set approach, an extension to higher dimensions is straightforward and is 

reflected explicitly in its geometric properties: 

 The interface unit normal �⃗� = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) is given by  

�⃗� =
(
𝜕𝜑
𝜕𝑥
,
𝜕𝜑
𝜕𝑦
,
𝜕𝜑
𝜕𝑧
)

|(
𝜕𝜑
𝜕𝑥
,
𝜕𝜑
𝜕𝑦
,
𝜕𝜑
𝜕𝑧
)|
=
∇𝜑

|∇𝜑|
                                             (5.19)  

 The divergence of the unit normal (interface mean curvature 𝑘) is defined by: 

𝑘1 = 𝜑𝑥
2𝜑𝑦𝑦 + 𝜑𝑦

2𝜑𝑥𝑥 + 𝜑𝑥
2𝜑𝑧𝑧 ++𝜑𝑧

2𝜑𝑥𝑥 + 𝜑𝑦
2𝜑𝑧𝑧 + 𝜑𝑧

2𝜑𝑦𝑦                  (5.20𝑎) 

𝑘2 = 𝜑𝑥𝜑𝑦𝜑𝑥𝑦 + 𝜑𝑥𝜑𝑧𝜑𝑥𝑧 + 𝜑𝑦𝜑𝑧𝜑𝑦𝑧                                     (5.20𝑏) 

𝑘 =
1

|∇𝜑|3
(𝑘1 − 2𝑘2)                                                   (5.20𝑐) 

It is obvious that increasing the spatial dimension, the amount of information that needs to be 

processed is significantly increased. Since the level set function 𝜑 needs to be a signed distance 

function, additional effort is needed in properly defining it. Similar to (5.19) and (5.20), other 

geometrical quantities can be defined in a similar manner from their corresponding definition. 

Considering that 𝜑 is defined on a discrete uniform Cartesian grid {𝑥𝛼 , 𝑦𝛽 , 𝑧𝛾} with 

{𝑥𝛼 , 𝑦𝛽 , 𝑧𝛾|1 ≤ 𝛼 ≤ 𝑚, 1 ≤ 𝛽 ≤ 𝑛, 1 ≤ 𝛾 ≤ 𝑝}, 𝑚, 𝑛, 𝑝 ∈ ℕ, the discretization of the LSF can be done 

in a dimension by dimension manner for all spatial directions, using the formulae from previous 

chapters, for all spatial derivatives. It is worth mentioning that the re-initialization algorithm can be 

extended in an upfront manner, using all relevant elements that are added due to the dimensionality 

increase. 

Having set the framework for interface dynamics representation in three dimensions, the control 

method (5.12) is readily applicable, with the difference that the reference and evolving interfaces are 
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now represented by surfaces. Also, the interface dynamics is observed in a 3D space, and therefore 

observations in this sense are considered to be available to close the feedback loop. To exemplify the 

motion of a surface in ℝ3, consider a bounded and uniformly spaced spatial domain of 𝐷 = [−2,2] ×

[−2,2] × [−2,2], with 𝑁 = 50 grid nodes in each spatial direction, yielding a spatial step size ∆𝑥 =

∆𝑦 = ∆𝑧 = 0.081. The initial surface is set to be a regular octahedron, which is set to evolve under a 

linear growth model, namely evolution dependent on local curvature and normal velocity (Fig 5.1). The 

normal velocity is set to be  𝑉𝑛 = −0.1 and the curvature weight 𝑏 = 0.2, i.e. the crystal is melting. 

Time plots of the evolution are taken at every ∆𝑡𝑃𝑙𝑜𝑡 = 0.04 𝑠 until the final simulation time 𝑇 = 0.02 𝑠 

(Fig 5.2). 

Fig. 5.1. Initial interface (regular octahedron) 

 

5.6. Numerical simulations of the crystal growth control method 

 

This section demonstrates the proposed control approaches through numerical simulation examples 

of applied control of the crystal interface. In this dissertation both synthetic and real reference shapes, 

derived from experimental data, are used. Three control strategies are investigated, namely the 

classical P, PI and PID distributed control laws. The synthetic data is generated in both 2D and 3D 

cases and used directly in the control method. To generate a reference shape from real world data, 
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experimental data obtained from observing growth patterns of 𝑁𝐻4𝐵𝑟 crystals were analysed. 

Snapshots were recorded during the growth process, and stored in a PC. The resulting image intensity 

functions were then processed to extract the complex solid liquid interface of the crystal, which is then 

used as the reference shape in the control algorithm. Following the numerical simulations, a 

comparison of the several proposed control laws is performed using multiple performance indicators. 

Fig. 5.2. Evolution of a regular octahedron under normal velocity given by curvature and advection 

in the normal direction. 

 

5.6.1. Synthetic data simulations 

 

To exemplify the proposed control method, several cases are presented, in both two and three 

dimensional spaces. Using a proportional control law and artificially generated reference sets, 

solidification-melting scenarios are simulated, where the control law is given by (5.10)-(5.13). 

In two dimensions, an evolving crystal interface is described by a simple, non-intersecting closed 

curve. An artificially generated Jordan curve (Krantz, 2008) in the form of a 4-point star was chosen as 
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the reference shape (𝛤𝑟) , together with an initial circular seed (𝛤0) of radius 𝑅 = 1.4 (Fig 5.3). The 

goal is to control the evolution of an initial crystal seed, of arbitrary area and arc length, in order to 

obtain a crystal that has the given reference shape. The parameters 𝑎𝑖  ,  𝑖 = 0,4̅̅ ̅̅    of the model 

(5.8) were chosen as follows  𝑎0 = 1, 𝑎1 = −0.01, 𝑎2 = −10
−5 , 𝑎3 = −10

−5,  𝑎4 = −10
−5. The 

initial crystal shape is chosen such that the crystal interface has some sections inside and others outside 

of 𝛤𝑟. The two dimensional space in which the growth is observed is set as the square  𝛺: [−3 , 3] ×

[−3 , 3] , which is discretized on a uniform Cartesian grid with resolution of 300 × 300 points, giving 

a spatial step size of  ∆𝑥 = ∆𝑦 = 0.02. The controller gains in (5.12) were chosen empirically as  𝐾𝑃 =

5 , 𝐾𝑖 = 1 and 𝐾𝐷 = 10
−3 . To evaluate the performance of the proposed controller for the two 

dimensional case, the following normalized error functions 𝐸𝑎𝑟𝑐  and 𝐸𝑎𝑟𝑒𝑎 were introduced, together 

with an overall performance error 𝐺𝑒𝑟𝑟𝑜𝑟:  

𝐸𝑎𝑟𝑐(𝑡) =
𝐴𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ(𝛤𝑟) − 𝐴𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ(𝛤(𝑡))

𝐴𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ(𝛤𝑟)
                                              (5.22) 

 

𝐸𝑎𝑟𝑒𝑎(𝑡) =
𝐴𝑟𝑒𝑎(Ω𝑟) − 𝐴𝑟𝑒𝑎(Ω𝛤)

𝐴𝑟𝑒𝑎(Ω𝑟)
                                                                     (5.23) 

 

𝐺𝑒𝑟𝑟𝑜𝑟(𝑡) = sum(|𝑒(𝑥, 𝑡)|                                                                                      (5.24) 

Fig. 5.3. Setup for the 2D control problem 

In the three dimensional case, the error measures for the controller performance are chosen to be 

the surface area and volume errors, 𝐸𝑠𝑎 and 𝐸𝑣, defined by: 

𝐸𝑠𝑎 = 
𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎(𝛤𝑟) − 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎(𝛤(𝑡))

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎(𝛤𝑟)
                         (5.25) 
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𝐸𝑣 = 
𝑉𝑜𝑙𝑢𝑚𝑒(𝛤𝑟) − 𝑉𝑜𝑙𝑢𝑚𝑒(𝛤(𝑡))

𝑉𝑜𝑙𝑢𝑚𝑒(𝛤𝑟)
                                              (5.26) 

where now 𝛤𝑟 and 𝛤(𝑡) are three dimensional functions. 

The controlled spatio-temporal system (5.14) was then simulated for 𝑇𝑠𝑖𝑚 = 1.5 seconds using the 

proportional controller (Fig. 5.5). The time evolution of  𝐸𝑎𝑟𝑐(𝑡), 𝐸𝑎𝑟𝑒𝑎(𝑡) and 𝐺𝑒𝑟𝑟𝑜𝑟(𝑡) illustrated in 

Fig. 5.5 – Fig.5.7, exemplify the performance of the control approach. 

Fig. 5.4. Time evolution of the initial crystal seed. Time plots (blue) shown in increments of  

∆𝑡𝑝𝑙𝑜𝑡 = 0.1 seconds 

Fig. 5.5. Arc length error 2D synthetic seed 
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Fig. 5.6. Area error 2D synthetic seed 

Fig. 5.7. Global error 2D synthetic seed 

In three dimensions, the growth is observed in the cube given by 𝛺: [−2 ,2] × [−2 , 2] × [−2 , 2], 

which is discretized on a Cartesian grid with 𝑁 = 100 Points in each spatial direction. The initial 

volume is set to be a cube centered at 𝑂(0,0,0) with edge length 𝐿 = 2, and the reference volume is a 

sphere with center at 𝐶(0.2,0.2,0.2) and radius 𝑅 = 1.5 (Fig. 5.8). 

Under these assumptions the interface is set to evolve under the geometric law given by 

𝜕𝜑𝛤
𝜕𝑡

+ 𝑢(𝑥, 𝑦, 𝑧, 𝑡) ∙ (𝑎0)|∇𝜑𝛤| = (−𝑎1𝑘) ∙ |𝑢(𝑥, 𝑦, 𝑧, 𝑡)| ∙ |∇𝜑𝛤|                   (5.27) 
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with 𝑎0 = 1, 𝑎1 = −0.01 and 𝑘 given by (5.20c). The PID control law (5.12) is used, with and 

empirical choice for the parameters 𝐾𝑃 = 8, 𝐾𝑖 = 5 and 𝐾𝐷 = 1 ∙ 10
−3. The closed loop system is then 

simulated for 𝑇𝑠𝑖𝑚 = 0.4 seconds (Fig. 5.9). In order to quantify the performance of the proposed 3D 

control approach, the enclosed volume and the surface area errors are calculated and normalized using 

the respective reference values (Fig. 5.10 and Fig. 5.11).  

Fig. 5.8. Initial conditions for the 3D control problem 

a)                                                                                     b) 

Fig. 5.9. 3D controlled growth: a) system evolution after time 𝑇𝑠𝑖𝑚 b) Reference shape 
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Fig. 5.10. Surface area error – 3D control 

Fig. 5.11. Enclosed volume error – 3D control 

In both 2D and 3D cases, the error converges towards zero, and the initial seed reaches the desired 

interface shape, thus proving the effectiveness of the novel control approach. 
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5.6.2. Simulations using experimental data 

 

This section will explore the control of dendritic growth using observed growth patterns of 𝑁𝐻4𝐵𝑟 

crystals. In the previous section an application of the proposed control method was presented, using 

relatively simple interface shapes. However it is well known that dendritic patterns exhibit highly 

complex spatio-temporal patterns and the aim is to be able to control any initial seed into an arbitrarily 

complex crystal shape. For this purpose, experimental data of the 𝑁𝐻4𝐵𝑟 growth process was captured 

at relevant time intervals in the form of RGB images, and a single frame was selected for analysis (Fig. 

5.12). After the image in Fig. 5.12 is processed and an image segmentation algorithm is applied 

(Gonzalez et al., 2004), the underlying intricate boundary of the dendrite is extracted (Fig. 5.13a, Fig 

5.13b), which is then used as the reference for the controlled system. 

Fig. 5.12. Growth pattern of  𝑁𝐻4𝐵𝑟 dendrite crystal  

a)                                                                                                   b) 

Fig. 5.13. a) Segmented image (central dendrite) b) Boundary of  𝑁𝐻4𝐵𝑟 dendrite crystal 
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The discretization is changed with regards to the previous section, with the spatial domain now 

defined by 𝛺: [−3 , 3] × [−3 , 3]. The domain is discretized on a uniform Cartesian grid using a spatial 

step size of  ∆𝑥 = ∆𝑦 = 0.005, resulting in a mesh of 1200 × 1200 nodes. The model parameters in 

(5.8) were chosen as 𝑎0 = 1, 𝑎1 = −0.01, 𝑎2 = −10−5 , 𝑎3 = −10
−5,  𝑎4 = −10

−5. The PID 

parameters were chosen empirically to be 𝐾𝑝 = 5,𝐾𝑖 = 8,𝐾𝐷 = 0. Having defined the reference curve, 

the initial seed (𝛤0) is defined by a circle of radius 𝑅 = 0.5 centred at the point 𝐶(0,0). (Fig 5.14). The 

system is then simulated for 𝑇𝑠𝑖𝑚 = 0.7 seconds and time snapshots are taken every ∆𝑡𝑝𝑙𝑜𝑡 = 0.1 

seconds (Fig 5.16) and the performance is tracked through the three performance measures defined in 

the previous section (Fig. 5.15 – Fig. 5.18).  

Fig. 5.14. Initial control setup using 𝑁𝐻4𝐵𝑟 dendrite crystal reference 

The accuracy of numerical discretization is a key factor in the control method, and is linked with 

the complexity of the target interface. For simple interfaces the arc length and area errors are very 

close to zero, meaning that the final shape has reached the desired reference. The effect of numerical 

discretization is more noticeable when the complexity of the boundary is increased. For the dendritic 

reference shape the reference properties are described by 

𝐴𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ(𝛤𝑟) = 28.4855 

     𝐴𝑟𝑒𝑎(Ω𝑟) = 4.933 
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The final values for 𝐸𝑎𝑟𝑐 and 𝐸𝑎𝑟𝑒𝑎 in the controlled system are non-zero, even though relatively fine 

grid resolution was used. Nonetheless, the final area and the arc length were tracked to within 0.3% 

and respectively 2.3% of their reference values. By increasing the resolution of the representation 

(increasing the number of grid points, lowering the spatial step size), the crystal boundary is better 

represented, and the approximation errors will converge towards zero. 

Fig. 5.15. Time evolution of the controlled system using 𝑁𝐻4𝐵𝑟 dendrite crystal reference. Time 

plots are shown in increments of ∆𝑡𝑝𝑙𝑜𝑡 = 0.1 seconds  

 

5.6.3. Controller performance comparison 

 

In this section an evaluation of the performance of the proposed method using different control 

strategies, namely P, PI and PID in a two dimensional space is presented. The evolution is viewed 

within the previously used domain 𝛺: [−3 , 3] × [−3 , 3] and the numerical grid resolution is set to 

300 × 300 points, giving a spatial step size of ∆𝑥 = ∆𝑦 = 0.02. The analysis is performed using as a 

reference a relatively simple interface in the form of a six point star, together with the initial curve 𝛤0 

in the form of a circular seed with radius equal to 𝑅 = 1.4 (Fig. 5.19). The model parameters 𝑎𝑖 , 𝑖 =

0,4̅̅ ̅̅   remain the same as in section 5.6.1. The controller tuning was performed empirically, and the 

model then simulated for 𝑇𝑠𝑖𝑚 = 0.5 seconds. The controller gains are set to be 𝐾𝑝 = 5,𝐾𝑖 = 10, 𝐾𝐷 =
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5 ∙ 10−4. By using the previously defined global error 𝐺𝑒𝑟𝑟𝑜𝑟 , a measure of the performance capability 

between controller types can be defined as: 

𝐺𝑃−𝑃𝐼(𝑡) = 𝐺𝑒𝑟𝑟𝑜𝑟
𝑃 (𝑡) − 𝐺𝑒𝑟𝑟𝑜𝑟

𝑃𝐼 (𝑡)                                                        (5.28) 

𝐺𝑃−𝑃𝐼𝐷(𝑡) = 𝐺𝑒𝑟𝑟𝑜𝑟
𝑃 (𝑡) − 𝐺𝑒𝑟𝑟𝑜𝑟

𝑃𝐼𝐷 (𝑡)                                                       (5.29) 

𝐺𝑃𝐼−𝑃𝐼𝐷(𝑡) = 𝐺𝑒𝑟𝑟𝑜𝑟
𝑃𝐼 (𝑡) − 𝐺𝑒𝑟𝑟𝑜𝑟

𝑃𝐼𝐷 (𝑡)                                                       (5.30) 

Fig. 5.16. Arc length error 𝑁𝐻4𝐵𝑟 dendrite crystal reference 

Fig. 5.17. Area error 𝑁𝐻4𝐵𝑟 dendrite crystal reference 
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Fig. 5.18. Global error 𝑁𝐻4𝐵𝑟 dendrite crystal reference  

 

where 𝐺𝑒𝑟𝑟𝑜𝑟
𝑃 , 𝐺𝑒𝑟𝑟𝑜𝑟

𝑃𝐼 (𝑡), 𝐺𝑒𝑟𝑟𝑜𝑟
𝑃𝐼𝐷 (𝑡) are the absolute global errors obtained through simulation using the 

respective control strategy (P, PI and PID). The comparative performances of the formulated problem 

are shown in Fig. 5.20. Overall, the PID controller has a marginally better performance than the PI and 

P controller configurations, demonstrating the capability of the derivative term.  

Fig. 5.19. Controller comparison initial setup 
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It can be seen that the control method is more sensitive to numerical discretization when shapes 

with a high degree of complexity are involved. Although better results are obtained with large spatial 

resolutions, extra effort is needed in numerical computations. The time constant ∆𝑡 used for numerical 

integration used when discretizing equation (5.8) needs to be lowered in order to insure stability, which 

results in longer simulation times. 

Fig. 5.20. Response comparison of P, PI and PID controllers  

 

5.7. Conclusions  

 

This chapter introduced a novel distributed method for controlling the evolution of a solid-fluid 

interface, such that of a dendritic crystal, using temperature dependent geometrical model. The free 

interface (crystal boundary) is represented using a level set formulation. The closed loop control 

method is also formulated using a level set approach and was presented for both two and three 

dimensional cases, with the temperature taken to be the manipulated variable. 

Numerical simulations with synthetic data were performed, using a generic geometrical model of 

interface evolution, in both two and three dimensional spaces. A number of error measures were 

defined to evaluate the performance of the control strategy. Experimentally obtained data was analyzed 

and the complex spatio-temporal pattern of a  𝑁𝐻4𝐵𝑟 dendrite crystal was successfully used to validate 



Chapter 5. A new approach for controlling crystal growth using a level set formulation 

 

 

98 
 

the new approach. The performance and effectiveness of P, PI and PID control strategies was 

analyzed, using a relatively simple reference shape. 

The proposed control method could be implemented in practice using laser arrays (Shuja and 

Yilbas, 2012) which allow controlling the temperature around the boundary of the evolving interface, 

or by using a boundary control approach to achieve a desired temperature distribution inside the 

domain. Time-lapse imaging, segmentation and tracking algorithms could be used to observe the 

position of the interface in real-time. 
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6. A model-based control approach for managing wildland 

fires 

 

6.1. Introduction 

 

Wildfire modelling and simulation approaches provide the basis for understanding and predicting the 

spread of wildfires, as well as for implementing decision support systems to help minimize their 

environmental, economic and health impacts (Martell, 2001). However, the underlying processes 

governing the dynamics of wildfires are highly complex and nonlinear, which makes it difficult to predict 

and control their evolution (Rehm and McDermott, 2009). 

Historically, there are several established approaches to managing the load of wildland fires (Martell, 

2001), such as fuel management, fire prediction and prevention or fire detection. Each approach actively 

contributes to minimizing the impact of occurring fires to both biological and economic sectors. The fuel 

management aims to alter the biofuel density and composition around the fire such that the fire spread 

undergoes a damped evolution, which will lead to full extinction. The fire prevention and prediction 

component is targeted mostly at reducing the rate of recurrence of human triggered fires, but also fires 

caused by natural phenomena, such as lightning. Fire detection is a crucial component, since a timely 

finding of an evolving fire (ideally as soon as vegetation ignition occurs) enables relevant firefighting 

authorities to better assess the situation, prioritize against existing risk factors and prepare a more efficient 

strategy to extinguish the fire. Depending on the location of high fire risk areas (populated or remote areas 

etc.), several detection approaches might be employed. Often, infrared fitted sensing devices (satellites, 

look-out towers, patrol aircraft etc.) are used to this scope. 

A vast range of wildfire spread models have been proposed in literature (Sullivan, 2007a and 2007b). 

This chapter focuses on an approximate quasi-empirical model of wind-aided fire spread, proposed by 

Fendell and Wolff (2001) and refined further by Mallet et al. (2009).  Specifically, a novel model-based 

approach for controlling the evolving complex-shaped fire front using a level-set formulation of the model 

is proposed. A derivation of how key parameter functions such as terrain topography and fuel loading, 

extracted directly from satellite imaging data, can be incorporated in the model is presented in detail.  

The numerical method is computationally efficient and examples are given with both synthetic and 

real data to illustrate the robustness of the containment method against changing wind speed, fuel loading 

and terrain topography. The Chapter is organized as follows. Section 6.2 introduces a novel model-based 

containment method based on a level set formulation aimed at managing wild land fires. The third part, 
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Section 6.3 is dedicated to the numerical analysis of the proposed method. Artificially generated data 

(terrain properties, atmospheric conditions etc.) is used to demonstrate the containment method. Using 

terrain elevation models, a data fusion method is presented, that easily allows real time, measured data to 

be incorporated into the control strategy.  

 

6.2. Model-based containment of wildfires using geometrical models of interface 

evolution 

 

Let the moving fire front boundary be described by a time varying closed planar curve 𝛤(𝑡). Following 

the description in Chapter 4, consider the following nonlinear evolution model that gives the rate of 

propagation for the fire front, over a domain of interest Ω ⊂ ℝ2 : 

𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡)) = {
𝜀0 + 𝑎(�̅�𝛤 , 𝑡)√|�̅�(�̅�𝛤 , 𝑡)| ∙ cos(𝜃𝛤(𝑡))

3
, |𝜃𝛤| ≤

𝜋

2

𝜀0(𝛼 + (1 − 𝛼)|sin(𝜃𝛤(𝑡))|),                    |𝜃𝛤| >
𝜋

2
 

           (6.1) 

where �̅�: Ω × [0, 𝑇] → ℝ+
2  is the wind velocity field, 𝜃𝛤: [0, 𝑆(𝑡)) × [0, 𝑇] → [−𝜋, 𝜋] denotes the angle 

between the wind direction and the fire front normal measured in an anticlockwise direction along the 

boundary 𝛤(𝑡), 𝜀0 ∈ ℝ+ is the front velocity at the flanks, 𝛼 ∈ [0,1] is the ratio between the velocity at 

the rear at the flanks of the fire front and 𝑎: Ω → ℝ+
2  describes the spatial distribution of fuel loads, which 

can be estimated in practice using high-resolution synthetic aperture radar (Reigber et al., 2013).  

Assuming that all relevant data is available (measured, observed or estimated), the goal is to derive a 

control strategy such that at any time 𝑡 after the fire has been detected, the fire front 𝛤(𝑡) is confined inside 

a “safe zone”, i.e. the fire front evolution is suppressed and contained. Let the domain in which the fire 

grows (is observed) to be a bounded, rectangular domain with Ω: [−𝑙, 𝑙] × [−𝑤,𝑤], 𝑙, 𝑤 ∈ ℝ+. In 

practice, the safe zone contour could be the urban–wildlife limit which could contain forests, fields, rural 

or urban settlements etc. To prevent the fire from reaching any area within Ω, a “safe zone” contour 𝛤𝑟 is 

introduced, in which the fire may be allowed to possibly evolve, without causing significant damage (i.e. 

the fire is not allowed to reach any area outside 𝛤𝑟 ).  

Let 𝜑𝑟(𝑥), 𝜑𝑟: Ω × [0, 𝑇] → ℝ and 𝜑𝛤(𝑥, 𝑡), 𝜑𝛤: Ω × [0, 𝑇] → ℝ be the level set functions attached 

to with 𝛤𝑟 and 𝛤(𝑡) respectively, with 𝑇 ≥ 0 representing the maximum time window. Using equation 

(3.22), the fire evolution model (6.1) can then be written in level set formulation as: 

{
 
 

 
 𝜕

𝜕𝑡
𝜑𝛤 + (𝜀0 + 𝑎(�̅�𝛤 , 𝑡)√|�̅�(�̅�𝛤 , 𝑡)| ∙ cos(𝜃𝛤(𝑡))

3
) ∙ |∇𝜑𝛤| = 0,      |𝜃| ≤

𝜋

2

𝜕

𝜕𝑡
𝜑𝛤 + (𝜀0(𝛼 + (1 − 𝛼)|sin(𝜃𝛤(𝑡))|)) ∙ |∇𝜑𝛤| = 0,                        |𝜃| >

𝜋

2

                (6.2)  
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Let Ω𝛤𝑟 ⊂ ℝ
2 be the zone enclosed by 𝛤𝑟, i.e. the subset where 𝜑𝑟 < 0 . A control function 

�̅�𝑐(𝑥, 𝜑𝑟 , 𝑚) can be expressed as:  

�̅�𝑐(𝑥, 𝜑𝑟 , 𝑚) =

{
 
 

 
 −

|𝜑𝑟(𝑥)|
𝑚

max(|𝜑𝑟(𝑥)|
𝑚)

+ 1, 𝑥 ∈ Ω𝛤𝑟

1,  𝑥 ∈ ℝ2\Ω𝛤𝑟  

, 𝑚 ∈ ℝ+                                (6.3)  

where the parameter 𝑚 is a tunable parameter, used to define the amount of available firefighting 

resource available within the observed domain Ω. Having �̅�𝑐(𝑥, 𝜑𝑟 , 𝑚), a feedback control law for the 

fire front velocity can be defined as:  

 𝐹𝑐(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)) = [1 − �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)] ∙ 𝐹(�̅�𝛤(𝑡), �̅�(𝑥𝛤 , 𝑡), 𝜃𝛤(𝑡))         (6.4) 

By applying the fire fighting agent on the boundary, the effective front temperature is gradually 

reduced, until the full extinction of the evolving fire. Using (6.4), the evolution equation (6.2) can be 

written in controlled form as: 

{
 
 

 
 𝜕

𝜕𝑡
𝜑𝛤 + 𝑇[1 − �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)] ∙ (𝜀0 + 𝑎(�̅�𝛤 , 𝑡)√|�̅�(�̅�𝛤 , 𝑡)| ∙ cos(𝜃𝛤(𝑡))

3
) ∙ |∇𝜑𝛤| = 0,   |𝜃| ≤

𝜋

2

𝜕

𝜕𝑡
𝜑𝛤 + 𝑇[1 − �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)] ∙ (𝜀0(𝛼 + (1 − 𝛼)|sin(𝜃𝛤(𝑡))|)) ∙ |∇𝜑𝛤| = 0,                      |𝜃| >

𝜋

2

  (6.5)  

where 𝑇 represents the temperature of the fire front. The effects of selecting different values for the 

tunable variable 𝑚 is shown in (Fig. 6.1) where  𝛤𝑟 is set to be a square region of side length 𝐿 = 500, 

within a domain Ω: [0,600] × [0,600].  

The control law (6.4) is designed based on a level set formulation of the model such that the fire 

evolution is stopped within a predefined containment area by actively controlling the temperature of the 

fire front. To fully define the controlled equation (6.5), the following statements are taken to hold 

throughout the domain Ω: 

 Direct wildfire suppression treatments (wetting, cooling, smothering, chemical quenching) are 

applied to burning fuel along the fire perimeter to slow down the front velocity. The optimum 

treatment can be selected depending on the individual environmental setup.  

 No bounds are imposed on the control �̅�𝑐(�̅�𝛤(𝑡),𝜑𝑟, 𝑚), i.e. the control can be applied 

everywhere on the fire front and unlimited amounts of resources are available for fire combat.  

 The resource needed is available without any time delay 

The set of equations (6.5) describe a model based containment control method of the geometrical 

model of fire front evolution (6.1), where the interface velocity is influenced by wind speed, wind 

direction, biofuel density and the applied control �̅�𝑐(∙). The model (6.5) is in fact a Hamilton-Jacobi 

equation: 

𝜑𝑡 + 𝐻(∇𝜑) = 0                                                                        (6.6) 
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with a nonlinear Hamiltonian 𝐻(∇𝜑). The discretization and numerical simulation approaches described 

in Chapter 4, Section 4.3 were used in the next sections of this chapter.  

Fig. 6.1. Profiles obtained by varying the power term 𝑚  

 

6.3. Numerical implementation of the wildfire suppression method 

 

This section presents examples of applied control of the fire interface, using the containment method 

previously defined. In this dissertation both synthetic and real data are used to illustrate the proposed 

method. The method is highly robust to changes in a wide range of influencing parameters such as 

atmospheric conditions (wind speed and wind direction), fuel density or terrain topography. For real data 

simulations, satellite terrain images are analyzed and an estimate of the fuel loading is then derived. 

Terrain topography maps are created for various regions using a series of terrain elevation matrices in 

the form of DTED (Digital Terrain Elevation Data) information files. These files are processed to obtain 

representative terrain elevation models, which are then used to estimate the terrain slope in the control 

scenarios. 
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6.3.1. Synthetic data simulations 

 

To illustrate the proposed fire suppression approach, several cases are presented, representing 

controlled and uncontrolled scenarios, using artificially generated data. For simplicity let us assume that 

the evolving interface is described by simple, non-intersecting closed curve, i.e. no ‘islands’ are formed 

throughout the burning process. The initial fire front, observed at detection, is therefore set to be circular 

seed (𝛤0) of radius 𝑅 = 1, centered within the observation domain Ω. The shape of the safety zone (𝛤𝑟) 

is defined square region of side length 𝐿 = 60, also centered within Ω  (Fig 6.2). The two dimensional 

space in which the growth is observed is set as the square  𝛺: [−40 ,40] × [−40 ,40] , which is 

discretized on a uniform Cartesian grid with resolution of 300 × 300 points.  

Fig. 6.2. Initial setup for wildfire evolution 

Assuming a uniformly distributed fuel loading (𝑎(𝑥) = 0.5) over a flat terrain, under constant wind 

speed and wind direction, the fire advances rapidly, and eventually passes the safety zone boundary (Fig. 

6.3.). Here it is assumed that the wind is blowing in an S-N direction under �̅� = 1, with south bearing 

being at the bottom of the graph. The velocity at the flanks is taken to be 𝜀0 = 0.2 and the velocity 

ratio 𝛼 = 0.5.  Under the same topographical and atmospheric conditions, but with the applied 

distributed suppression method (𝑚 = 4), the evolution of the fire front is greatly damped, taking a 

significantly longer time to reach the designated safety perimeter (Fig. 6.4), and eventually leading to 

full extinction. This allows more time for evacuation purposes, development of new fire suppression 

strategies etc.  
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 Fig. 6.3. Uncontrolled wildfire evolution 

Fig. 6.4. Controlled wildfire evolution 

In the event of fire spotting, several fire fronts might be growing in parallel, and the wind might 

favor ignition events closer to the safety zone. Since the suppression method is based on actively 

analyzing the region within a predefined boundary, the control agent will be applied to each front 

independently, meaning that fronts closest to the boundary will be given a higher importance. To 

illustrate this scenario consider the setup shown in Fig. 6.5. Through the proposed scenario, the 

atmospheric conditions are altered as follows: the wind speed is increased gradually, each 0.2 seconds, 

varying from 1 to 16; the wind direction is initially taken to be the S-N heading, and gradually rotating 

towards N-E heading by 5° each 0.2 seconds. The fuel loading is considered constant throughout the 

whole domain. 
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Fig. 6.5. Multiple wildfire detection 

                                  a)                                                                             b) 

Fig. 6.6. Multiple wildfires – a) uncontrolled evolution b) suppression active 

It can be seen that both fronts are actively managed, and due to the fact that the smaller spot fires 

that are ahead of the primary fire have consumed significantly less fuel, and the main fire front can be 

put out without any extraordinary effort due to its decelerated growth rate. 

 

6.3.2. Satellite terrain data simulations 

 

In most forest fire scenarios, timely detection is crucial in formulating a valid firefighting strategy. 

We have seen from the previous section that the suppression method is highly effective if the parameters 

incorporated in the model can be obtained, so that an accurate prediction of the front dynamics can be 

achieved. If the properties of the observed area are known a priori, as in the case of experimental man 
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made fires, then the suppression method presented earlier can be applied easily (under the hypothesis 

that an unlimited amount of fire suppressing agent is readily available). In real situations, the properties 

of the fuel bed, atmospheric conditions and the terrain topography are usually unknown beforehand, and 

need to be acquired as soon as an event is discovered. In this section, a method to exploit satellite imaging 

data to estimate key properties of the terrain, such as fuel loading or terrain elevation, which are then 

incorporated in the controlled model (6.5), is proposed and demonstrated.  

The atmospheric conditions could be estimated using on site tools or by using geostationary (GOES) 

or polar orbiting (POES) meteorological satellites (Bevis et al., 1992, Tang et al., 2008, Griffith et al., 

1978, Kidd et al., 2003). The POES satellites usually provide much more accurate data than their 

geostationary counterparts due to the lower altitude at which they are orbiting the Earth (≈ 850 𝑘𝑚 

above sea level). These special satellites provide weather information by observing the Earth at several 

wavelengths of the electromagnetic spectrum. Depending on the information of interest, the spectral 

bands might be in the visible range to NIR (near infrared) [0.6, 1.6]𝜇𝑚 for cloud monitoring, infrared 

band [3.9, 7.3]𝜇𝑚 which is used to monitor water vapor (and gas) absorption, and long wave infrared 

[9, 12]𝜇𝑚 which is used for thermal imaging (Atlantic region, Europe and Africa – illustrated in Fig. 

6.7 to Fig. 6.9 – courtesy of http://tropic.ssec.wisc.edu/tropic.php ). 

Fig. 6.7. Region of interest – Color background view 

Fig. 6.8. Region of interest – Water vapor view 

http://tropic.ssec.wisc.edu/tropic.php
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Fig. 6.9. Region of interest – Infrared enhancement view 

 

To demonstrate the suppression method using real data,  several satellite images of terrains (Fig. 

6.10) - courtesy of Google Maps, containing various fuel loading distributions were used. 

The selected terrain images are captured in the additive RGB color model. The maps for each picture 

are represented by a three dimensional matrix of 421x421, 502x502 and 514x514 pixels respectively. The 

images are used to estimate the fuel loading map, that is then incorporated in the fire evolution model. 

Since not all the information contained within the snapshots is relevant for control purposes, a color based 

segmentation algorithm in the RGB color space is used (Selvarasu et. al., 2010). It is natural to consider 

that each pixel 𝑃(𝑖, 𝑗)  in a snapshot is defined by the color intensity vector 𝐶𝑖𝑗
𝑅𝐺𝐵 = [𝐶𝑖𝑗

𝑅 𝐶𝑖𝑗
𝐺 𝐶𝑖𝑗

𝐵] , 

which contains the three values associated with the red, green and blue components. For the selected 

snapshots, the sampling depth was taken to be 8 bits, which provides adequate spatial continuity in the 

image texture. In the current case, the color of interest is pure green, which can be represented in the RGB 

space by the vector 𝐶0𝐺0 = [0 255 0] or simply 𝐶𝐺 = 255. To identify if a pixel represents a green 

value, a typical Euclidean distance 𝑑(𝑞, 𝑝) between 𝐶𝑖𝑗
𝑅𝐺𝐵and 𝐶0𝐺0 is calculated for each pixel 𝑃(𝑖, 𝑗) 

from: 

𝑑(𝐶𝑖𝑗
𝑅𝐺𝐵 , 𝐶0𝐺0) = √∑(𝐶𝑖𝑗

𝑅𝐺𝐵(𝑝) − 𝐶0𝐺0(𝑝))
2

3

𝑝=1

                                        (6.7) 
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a)  Terrain 1: http://goo.gl/maps/RoOuV    b) Terrain 2: http://goo.gl/maps/LFBUL   

     

c) Terrain 3: http://goo.gl/maps/7VDhM 

Fig. 6.10. Satellite acquired terrain data 

Then the pixel 𝑃(𝑖, 𝑗)  is categorized as being green if the value 𝑑(𝐶𝑖𝑗
𝑅𝐺𝐵 , 𝐶0𝐺0) is below a predefined 

threshold 𝑑𝑔. After the ‘green’ pixels have been detected (i.e. the regions with alive, burnable vegetation), 

the information needs to be incorporated into equation (6.5). The fuel loading map 𝑎 is constructed by 

associating the ‘greenness’ of each pixel with discrete fuel loading value. Therefore, if 𝑑(𝐶𝑖𝑗
𝑅𝐺𝐵 , 𝐶0𝐺0) <

𝑑𝑔 the discrete location (𝑖, 𝑗) on the discrete fuel loading map will be assigned a value of 1, otherwise it 

http://goo.gl/maps/RoOuV
http://goo.gl/maps/LFBUL
http://goo.gl/maps/7VDhM
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will be assigned a value of 0. By applying (6.7) to the snapshots shown in Fig. 6.10 a, b, c, and assuming 

a threshold value of 𝑑𝑔 = 0.3, the binary fuel loading maps are obtained (Fig. 6.11 a, b, c). The maps 

created contain a diverse range of fuel loading, with Terrain 1 being covered with the most biofuel, Terrain 

2 with a low amount of green fuel, and Terrain 3 somewhere in between the first two. 

      a)           b) 

                                                      c) 

 

Fig. 6.11. Fuel loading map – a) Terrain 1, b) Terrain 2, c) Terrain 3 

The above binary fuel loading maps can now be directly used in the model (6.5). To this regard, a 

circular initial fire front was placed at the center of each map. The atmospheric conditions are taken to vary 
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rapidly throughout the life of the fire front. The wind speed is set to gradually increase over the 

interval [1, 81] , over a period of 𝑇𝑠𝑖𝑚 = 1200 seconds, whilst undergoing a rapid change of direction 

from the S-N heading, towards N-W heading by 5° each 30 seconds. The tuning parameter in (6.3) is 

taken to be 𝑚 = 2. In each case, the safe zone considered is represented by a square region of suitable 

dimensions. Simulation results are shown in Fig. 6.12. 

                        a)                    b) 

       c) 

Fig. 6.12. Wildfire evolution under suppression agent, level sets are shown in time increments of 

∆𝑡𝑝𝑙𝑜𝑡 = 30 seconds – a) Terrain 1, b) Terrain 2, c) Terrain 3 
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Under the described scenarios, it can be seen that the evolution of wind aided wildfires is, as expected, 

favored in regions with higher fuel density (Fig. 6.12a) as opposed to regions with low amounts of fuel 

(Fig. 6.12b). However, due to the use of the fire suppression agent along the evolving interface, the growth 

is slowed down and doesn’t exceed the designated safe zone. 

 

6.3.3. Terrain elevation from DTED models 

 

To accurately describe the terrain topography a measure of the terrain elevation is needed. The Digital 

Terrain Elevation Data (DTED) models represent a series of uniformly sampled spatial matrices that 

contain elevation data, which provide valuable numerical information for numerous applications, such as 

map generation, relief maps, GPS navigation, various flight simulators, terrain slope estimation or terrain 

roughness estimation. The data was gathered via satellites, by measuring signals reflected from the Earth’s 

surface, and analyzed to provide numerical values of local elevation. Initially, the elevation models were 

generated by the Defense Mapping Agency (DMA) and are currently provided by the U. S. National 

Geospatial Intelligence Agency (NGA) (DMA, 1996). Several DTED models have been created (Table 

6.1.): 

 DTED-0 (level 0 maps) – this is the lowest level of fidelity model, with the grid spacing 

between data points being 30′′(arc-seconds) apart (≈ 1𝐾𝑚). Currently, this is the only 

elevation model available to the general public.  

 DTED-1 (level 1 maps) – contains medium resolution data, with the grid spacing being 3′′ 

(≈ 100 𝑚), and are mainly used in military based applications, and are not available to the 

general public.  

 DTED-2 (level 2 maps) – contain very high resolution terrain information, with the data 

points being sampled at 1′′ (≈ 30 𝑚), and are available only for military activities. 

 

DTED level Post Spacing Ground distance Resolution (for 1°Lat × 1°Long surfaces) 

 DTED Level 0 30 arc-sec ≈ 1𝐾𝑚 120 × 120 

 DTED Level 1 3 arc-sec ≈ 100 𝑚 1200 × 1200 

 DTED Level 2 1 arc-sec ≈ 30 𝑚 3600 × 3600 

Table 6.1. Digital Terrain Data accuracy 

In this study, the DTED level 0 data was used to construct an estimate of the observed terrain slope 

that was incorporated in (6.5) in order to illustrate the robustness of the proposed suppression method on 
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varied terrain topography. The information contained in the DTED files is represented as elevation points 

in meters, within cells defined by latitude and longitude indexes or a geographic reference system. First, a 

region from the north-eastern hemisphere is selected, contained between the following latitude and 

longitude reference points: 

𝑅𝑒𝑔𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∶ {

[44.9958°, 46.0042°] 𝑁

[23.9958° ,25.0042°] 𝐸
   

which is a mountainous regions. After preprocessing the raw data a 3D mapping of the region is obtained, 

showing the peaks of altitude – the elevation map 𝑍𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (Fig. 6.13), which contains values 

between 𝑍𝑚𝑖𝑛 ≈ 161 m and 𝑍𝑚𝑎𝑥 ≈ 2436 m: 

Fig. 6.13. Terrain elevation map 

Based on the elevation map obtained from DTED data, the slope of a point was calculated as  

𝑠 = tan(√(
𝜕𝑍

𝜕𝑥
)
2

+ (
𝜕𝑍

𝜕𝑦
)

2

)

−1

                                                      (6.8) 
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where 𝑍 is the terrain elevation and the derivatives 
𝜕𝑍

𝜕𝑥
 and 

𝜕𝑍

𝜕𝑦
 were approximated over a 8-cell 

neighborhood (Fig 6.14), using the contour spacing ∆: 

𝜕𝑍

𝜕𝑥
=
𝑍5 − 𝑍4
2∆

                                                                       (6.9) 

𝜕𝑍

𝜕𝑦
=
𝑍2 − 𝑍7
2∆

                                                                    (6.10) 

Using (6.8), the resulting slope angle, expressed in radians, can be estimated from the terrain elevation 

map 𝑍𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and is depicted in Fig. 6.15. 

Fig. 6.14. Neighborhood of 8 points used to estimate the slope of the central point 𝑍0 

Fig. 6.15. Terrain slope estimate of  𝑅𝑒𝑔𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

Until now all the information processed was derived from a-priori known elevation information 

contained in the DTED level 0 models. It is well known that terrain topography has a relatively low time 

dynamic, and landmarks are usually representative for long periods of time. To add new information to the 

model, for the purpose of robustness, satellite imaging data needs to be used. Following the steps of 
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previous section, a snapshot of the terrain was acquired and processed to obtain an estimate of the fuel 

loading within the selected area (Fig. 6.16 and Fig 6.17). Having now an estimate of all relevant data, the 

terrain slope information and fuel loading can be directly incorporated into the nonlinear evolution 

dynamics, creating a data fusion model. 

Fig. 6.16. Terrain topography satellite image – http://goo.gl/maps/uc1D8   

Fig. 6.17. Terrain topography – fuel loading map 

Next an initial fire front was placed within the observed region, and a predefined safety zone delimited by 

a square was introduced to define the initial control problem. The wind is set to blow in the S-N direction 

http://goo.gl/maps/uc1D8
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with a magnitude of  �̅� = 10. The flank velocity is influenced by 𝜀0 = 0.2 and the rear/flank velocity 

ratio 𝛼 = 0.5. The evolution of an initial fire front was observed under natural evolution (Fig.6.18) and 

under the action of a fire suppression strategy present (Fig. 6.19), with 𝑚 = 4. 

Fig. 6.18. Unconstrained wildfire evolution for the data fusion model. Time plots are shown in 

increments of ∆𝑡𝑝𝑙𝑜𝑡 = 15 seconds until final time 𝑇𝑠𝑖𝑚 = 150 seconds 

Fig. 6.19. Wildfire evolution under suppression agent for the data fusion model. Time plots are 

shown in increments of ∆𝑡𝑝𝑙𝑜𝑡 = 40 seconds until final time 𝑇𝑠𝑖𝑚 = 400 seconds 
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It can be clearly seen that under the specified conditions, the fire suppressing strategy has good results, 

severely damping the evolution of the fire front. The observation time for the controlled case is over twice 

as large as the uncontrolled scenario, proving the effectiveness of the method. 

 

6.4. Conclusions  

 

This chapter has explored a model based containment method, based on a geometrical formulation 

of the evolving nonlinear dynamics. The main contributions presented in this Chapter can be summarized 

as follows:  

 Developed a novel level set formulation of a fire control problem, and proposed a law that 

can be robustly tuned according to a predefined contour, that is meant to enclose the 

evolving wildfire for the purpose of protection 

 Proposed a novel data fusion algorithm that enables real-world data to be incorporated 

directly into the wildfire rate-of-spread models, together with fast changing measured data 

from atmospheric conditions 

 A practical approach to prediction and control of quasi-empirical wind-aided fire spread 

models 

The approach presented in this chapter provides a containment strategy for spatio-temporal systems, 

which can be used to predict and formulate an efficient tactic to tackling fire scenarios, where time and 

well-organized resource allocation are critical factors in delivering a positive outcome, with minimal 

biological degradation and economical losses. A next step in maturing the suppression method would be 

to incorporate constraints to the controlled variable, so that it can be used effectively in real fire combat 

circumstances. 
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7. Optimized boundary control for wildland fire fronts 

 

7.1. Introduction 

 

When wildfires occur, they cause severe damage to ecosystems and generate vast amounts of gaseous 

and particle emissions that have a significant impact on the configuration and operation of the global 

atmosphere and jet stream, thus actively influencing climate change (Rowell and Moore, 2000). In severe 

cases, suppression of wildfires can take a significant amount of time (Bayham et. al, 2011) which makes 

the suppression strategy, resource allocation and dispatch critical elements. These decisions affect the 

spatio-temporal behavior of the evolving wildfire, and dictate the severity of the damages during 

suppression and after fire extinction. Assessing the wildfire impacts led to the development of fire 

economics (Gorte and Gorte, 1979, Baumgartner and Simard, 1982, Mercer and Prestemon, 2005, 

Sparhawk, 1925) which is focused on estimating environmental and social relationships together with the 

economic compromises associated with wildfire suppression. As there will always be resource limitation 

in most wildfire suppression scenarios (i.e. number of firefighters, accuracy of terrain and weather 

information, available equipment and technology, spatial distribution of firefighting crews, financial 

resources etc.) it is very important to use the available resources as efficient as possible. However this is 

not a trivial decision, mainly due to the vast number of possibilities and priorities that might arise during a 

real world situation. 

The problem of optimizing the resource allocation has gathered a lot of attention in recent years 

(Martell, 2001, Donovan and Rideout, 2003, Hu and Ntaimo, 2009, Haight and Fried, 2007, Lee at. al, 

2012, Castillo and Rodriguez, 2015). Depending on the main objective of interest, several approaches have 

been developed in literature, all having a common economical factor and various other optimization 

criteria. There are situations where the biodiversity of the local environment takes priority in the 

firefighting strategy (Richards et. al, 1999), in which the emphasis is placed on the initial attack response 

(Wiitala, 1999, Fiorucci et. al, 2002, Fiorucci, 2004), where the resource sharing between several 

firefighting units might be considered (Tsang et. al, 2013, Figueras i Jove et. al, 2013) or just reducing the 

cost and spread of the wildfire (Holmes et. al, 2008, Finney et, al 2009, Gebert et. al, 2007).  

The optimization problems for wildfire containment and suppression mainly focus on known, available 

firefighting quantities and their costs of maintenance, transport and operation, together with loss costs due 

to the fire, but there are relatively few papers that consider the spatial distribution of firefighting resources, 

given the spatio-temporal structure (geometry) of the evolving fire front. Such approaches, which consider 
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the shape of the evolving fire front, presented in (Parlar, 1983, Bressan, 2007, Bressan and De Lellis, 2009, 

Wei et. al, 2015) use an optimization algorithm to allocate regions around the fire front where walls might 

be constructed by means of removing the vegetation/soaked in water to prevent further growth of the 

wildfire. A similar optimization problem is considered in (Chi et. al, 2003, HomChaudhuri et. al, 2010, 

HomChaudhuri et. al, 2013, Arca et. al, 2015) using genetic algorithms, where a set of quadratic fire lines 

are constructed around an evolving elliptical fire front, given a simplified artificially generated terrain 

geometry and atmospheric conditions. The geometry of the fire is usually complex and depends on a large 

number of factors, making its time prediction a difficult task.  

This chapter is organized as follows: in Section 7.2 a new optimization method for controlling the 

complex fire interface, based on a geometrical model of interface evolution is presented. The new method, 

which takes into account the geometry of the evolving fire interface, can be tuned to mimic a large number 

of fire-fighting scenarios. Section 7.3 provides numerical examples with artificially generated data, as well 

as with data extracted from real world measurements. 

 

7.2. Optimized boundary control of wildfires using geometrical models of interface 

evolution 

 

Recalling the description in the previous chapters, consider the following nonlinear evolution model 

that gives the rate of propagation for a time varying curve �̅�𝛤(𝑠, 𝑡) denoting fire front over a domain of 

interest Ω ⊂ ℝ2 : 

𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡)) = {
𝜀0 + 𝑎(�̅�𝛤 , 𝑡)√|�̅�(�̅�𝛤 , 𝑡)| ∙ cos(𝜃𝛤(𝑡))

3
, |𝜃𝛤| ≤

𝜋

2

𝜀0(𝛼 + (1 − 𝛼)|sin(𝜃𝛤(𝑡))|),                    |𝜃𝛤| >
𝜋

2
 

           (7.1) 

where �̅�, 𝜃𝛤 , 𝜀0, 𝛼 and 𝑎 are have the same definitions as in Chapter 6.  In the previous chapter an idealized 

control strategy was presented, based on a level set formulation of (7.1) which was aimed at containing the 

fire front evolution within a predefined boundary, through the means of applying a suppression agent: 

𝐹𝑐(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)) = [1 − �̅�𝑐(�̅�𝛤(𝑡), 𝜑𝑟 , 𝑚)] ∙ 𝐹(�̅�𝛤(𝑡), �̅�(𝑥𝛤 , 𝑡), 𝜃𝛤(𝑡))      (7.2) 

To achieve this goal, there were no restrictions imposed on the suppression agent �̅�𝑐(∙). However, in most 

real-world scenarios, this is not the case and the resource saturation plays a major role in defining the cost 

and damage of a wildfire (Martell, 2001). Given the growth in the amount of information available before 

and during fire combat, the efficiency of the initial attack response and overall time to extinction could be 

minimized through varying spatial allocation of the fire suppression resource. To this end, the geometry of 

the fire front, together with external conditions (wind speed, terrain slope, amount of available suppression 
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agent etc.) can be used to define an optimization problem such that the expansion of the fire interface, 

�̅�𝛤(𝑠, 𝑡) is minimum, given specific constraints.  

The optimized control can be viewed as a two-step process: in the first step the goal is to determine 

the optimal location where the fire suppression agent should be applied, based on the geometry of the 

evolving front and the environmental parameters (wind speed, wind direction, fuel loading, and terrain 

topography); the second step of the suppression strategy is achieved through applying the physical 

control agent at the region identified in the first step, considering that there are sufficient firefighting 

teams distributed around the fire interface so that there is no delay between the optimal location detection 

and applied control. 

 Let 𝜑𝛤(𝑥, 𝑡), 𝜑𝛤: Ω × [0, 𝑇] → ℝ be the level set function attached to �̅�𝛤(𝑠, 𝑡), with 𝑇 ≥ 0 

representing the maximum time window. Considering that all relevant environmental data is measured 

or estimated, and the location and initial shape of the fire front �̅�𝛤(𝑠, 𝑡 = 0)  is known, an optimization 

control algorithm is proposed, such that the area enclosed by the fire front is minimized, given a limited 

amount resources, in terms of amount of firefighting materials. The algorithm can be described by the 

following steps: 

1. Calculate the centroid 𝑐(𝑥𝐶𝐺 , 𝑦𝐶𝐺) of the evolving interface �̅�𝛤(𝑡), based on the zero level 

set of its attached function 𝜑𝛤(𝑡).  

2. Fit a circle 𝐶(𝑡), centered at 𝑐(𝑥𝐶𝐺 , 𝑦𝐶𝐺), with radius 𝑅(𝑡) greater than the maximum distance 

between the centroid and the fire interface:  

 

𝑑𝑚𝑎𝑥(𝑡) = max‖�̅�𝛤(𝑡) − 𝑐(𝑥𝐶𝐺 , 𝑦𝐶𝐺)‖                                           (7.3) 
 

𝑅(𝑡) = 𝑑𝑚𝑎𝑥(𝑡)+Δ𝑅 , Δ𝑅 ∈ ℝ
+                                                  (7.4) 

 

such that the fire interface is fully enclosed within 𝐶(𝑡). 

3. Divide the circle 𝐶(𝑡) into 𝑀 circular sectors 𝐶𝑖(𝑡) of equal central angles 𝜂𝑖 , such that 

∑𝜂𝑖

𝑀

𝑖=0

= 2𝜋                                                              (7.5) 

and embed each circular sector in 𝑀 level set functions  𝜑𝑐
𝑖(𝑥, 𝑡), where the level set 

functions 𝜑𝑐
𝑖(𝑥, 𝑡) are set to have binary values: 

𝜑𝑐
𝑖(𝑥, 𝑡) = {

 0  if x is outside the interface 𝐶𝑖(𝑡)

1 if x is on or inside the interface 𝐶𝑖(𝑡)
, 𝑖 = 1,𝑀̅̅ ̅̅ ̅̅          (7.6) 

4. Using the level set functions 𝜑𝑐
𝑖(𝑡), select the region where the applied (finite) control is 

most effective, given the goal is to minimize the total enclosed area of the fire at every time 

step. The applied control is set as: 
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{
𝑢𝑐(�̅�𝛤(𝑠, 𝑡), 𝜑𝑐

𝑖(𝑡), 𝑡) = −𝛿𝑐  𝜑𝑐
𝑖𝑜𝑝𝑡(𝑡)𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), 𝑡)

𝑖 = 𝑖𝑜𝑝𝑡

             (7.7) 

Where the optimum sector, given by 𝜑𝑐
𝑖𝑜𝑝𝑡

(𝑡), where the suppression agent is physically 

applied, is selected such that the fire front enclosed area 𝐴(�̅�𝛤(𝑠, 𝑡), 𝑢𝑐(∙)) is minimized 

during the time interval [𝑡0, 𝑡1]:  

 

𝑖𝑜𝑝𝑡 = argmin
𝑖

∫ 𝐴(�̅�𝛤(𝑠, 𝑡), 𝑢𝑐(�̅�𝛤(𝑠, 𝑡), 𝜑𝑐
𝑖(𝑡), 𝑡)) 𝑑𝑡   

𝑡1

𝑡0

, 𝑖 = 1,𝑀̅̅ ̅̅ ̅̅                          (7.8) 

 

given the control constraint:  

 

{
 
 

 
 ∫ 𝑢𝑐(�̅�𝛤(𝑠, 𝑡), 𝜑𝑐

𝑗+1
, 𝑡)𝑑𝑠 = 𝑢𝑚𝑎𝑥(𝑡)

𝐿𝑗+1(𝑡)

𝐿𝑗(𝑡)

 𝑢𝑚𝑎𝑥(𝑡) = −𝛿𝑐𝜑𝑐
𝑗+1(𝑡)𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), 𝑡)

𝑅(0)

𝑅(𝑡)

,   𝑗 = 0,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅               (7.9) 

 

Where 𝛿𝑐 is a control weighting coefficient, and ∆𝐿 = 𝐿𝑗+1(𝑡) − 𝐿𝑗(𝑡) represents the arc 

length of the fire front region situated in the (𝑗 + 1)𝑡ℎ sector. 

5. Iterate steps 1 - 4 for time 𝑡 ∈ [0, 𝑇]. 

Given the time evolution of the fire front is: 

{

𝜕

𝜕𝑡
�̅�𝛤(𝑠, 𝑡) = 𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), 𝑡) ∙ �⃗⃗� 

�̅�𝛤(𝑠, 0) = 𝛤0

                                              (7.10) 

the controlled evolution can be formulated as: 

{

𝜕

𝜕𝑡
�̅�𝛤(𝑠, 𝑡) = (1 − 𝑢𝑐 (�̅�𝛤(𝑠, 𝑡), 𝜑𝑐

𝑖𝑜𝑝𝑡(𝑡), 𝑡)) ∙ 𝐹(�̅�𝛤(𝑡), �̅�(�̅�𝛤 , 𝑡), 𝜃𝛤(𝑡), 𝑡) ∙ �⃗⃗� 

�̅�𝛤(𝑠, 0) = 𝛤0

                       (7.11) 

where the agent applied on the boundary, 𝑢𝑐 (�̅�𝛤(𝑠, 𝑡), 𝜑𝑐
𝑖𝑜𝑝𝑡(𝑡), 𝑡), is given by (7.3 – 7.9). Using (7.7) 

the controlled evolution model (7.11) can then be written in level set formulation as: 

{
 
 

 
 𝜕

𝜕𝑡
𝜑𝛤 + (1 − 𝑢𝑐 (�̅�𝛤(𝑠, 𝑡), 𝜑𝑐

𝑖𝑜𝑝𝑡(𝑡), 𝑡)) ∙ (𝜀0 + 𝑎(�̅�𝛤, 𝑡)√|�̅�(�̅�𝛤, 𝑡)| ∙ cos(𝜃𝛤(𝑡))
3
) ∙ |∇𝜑𝛤| = 0, |𝜃| ≤

𝜋

2

𝜕

𝜕𝑡
𝜑𝛤 + (1 − 𝑢𝑐 (�̅�𝛤(𝑠, 𝑡), 𝜑𝑐

𝑖𝑜𝑝𝑡(𝑡), 𝑡)) ∙ (𝜀0(𝛼 + (1 − 𝛼)|sin(𝜃𝛤(𝑡))|)) ∙ |∇𝜑𝛤| = 0,                   |𝜃| >
𝜋

2

   (7.12) 

The optimization problem (7.3 – 7.9) takes into account the geometry of the fire front together with 

any relevant influencing parameters that effect the fire spread. Therefore the control 𝑢𝑐(∙) will always 

be applied in the region where the fire growth is predicted to have the greatest impact. However, there 
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might be situations where the fire needs to be contained within a region, in order to preserve and protect 

the environment and minimize economic loss. To capture this information in the control strategy, the 

information related to the “safe zone” contour 𝛤𝑟 is needed. Therefore, if the contour 𝛤𝑟 is known, and 

𝜑
𝑟
(𝑥), 𝜑

𝑟
: Ω × [0, 𝑇] → ℝ is its attached level set function, a measure of the distance between the circular 

sectors 𝐶𝑖(𝑡) and 𝛤𝑟 can be obtained as: 

𝑑𝑖,𝛤𝑟(𝑡) = ∫ −𝜑𝑟 ∙ [max (𝜑𝑐
𝑖 , 𝐻(1 − 𝜑𝛤(𝑡))) − 𝐻(1 − 𝜑𝛤(𝑡))] 𝑑𝑥𝑑𝑦

Ω

 , 𝑖 = 1,𝑀̅̅ ̅̅ ̅̅         (7.13) 

𝑑𝛤𝑟(𝑡) = [𝑑1,𝛤𝑟(𝑡), … , 𝑑𝑀,𝛤𝑟(𝑡)]                                                              (7.13𝑎) 

�̅�𝛤𝑟 =
𝑑𝛤𝑟(𝑡)

max 𝑑𝑖,𝛤𝑟(𝑡)
                                                                              (7.13𝑏) 

where �̅�𝛤𝑟 is the normalized distance and  𝐻(𝜙) is the two dimensional Heaviside function given by: 

𝐻(𝜙) = {

0 ,     𝜙 < 0

1,     𝜙 > 0
                                                                         (7.14) 

Having obtained the distance vector 𝑑𝛤𝑟(𝑡) ∈ ℝ
𝑀, the selection criteria in Step 4 is augmented with a 

decisional element through: 

𝑖𝑜𝑝𝑡 =

{
 
 

 
 argmin

𝑖
∫ 𝐴(�̅�𝛤(𝑠, 𝑡), 𝑢𝑐(𝜑𝑐

𝑖(𝑡), 𝑡)) 𝑑𝑡
𝑡1

𝑡0

,   min 𝑑𝛤𝑟 > 𝛿𝑚𝑖𝑛

                                       argmin
𝑖

𝑑𝛤𝑟                ,   min 𝑑𝛤𝑟 ≤ 𝛿𝑚𝑖𝑛

 ,   𝑖 = 1,𝑀̅̅ ̅̅ ̅̅ ,   𝛿𝑚𝑖𝑛 ∈ ℝ
+  (7.15) 

where 𝛿𝑚𝑖𝑛 is the threshold distance below which the control is switched to the sector closest to the “safe 

zone” 𝛤𝑟 . 

 

7.3. Numerical implementation of the optimized control problem 

 

This section presents examples of applied control to the fire interface, using the optimized 

containment method presented in the previous section, with both artificial data and real data extracted 

from satellite imaging and DTED models.  

 

7.3.1. Numerical discretization of the control algorithm  

 

In the following it is assumed that the domain of interest where the fire growth is observed is given 

by a bounded, rectangular domain Ω ⊂ ℝ2 , Ω: [−𝑙, 𝑙] × [−𝑤,𝑤] and is discretized on a uniform 



Chapter 7. Optimized boundary control for wildland fire fronts 

 

 

122 
 

rectangular grid, as in Section 3.4.1. Given the set of  𝑃 vertices (𝑥𝑖 , 𝑦𝑖) of the evolving curve �̅�𝛤(𝑠, 𝑡), 

the enclosed area and the centroid coordinates are given by (Bockman, 1989): 

𝐴 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑃−1

𝑖=0

                                                          (7.16) 

𝑥𝐶𝐺 =
1

6𝐴
∑(𝑥𝑖 + 𝑥𝑖+1) ∙ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑃−1

𝑖=0

                              (7.17) 

𝑦𝐶𝐺 =
1

6𝐴
∑(𝑦𝑖 + 𝑦𝑖+1) ∙ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑃−1

𝑖=0

                             (7.18) 

Based on the center point given by (𝑥𝐶𝐺 , 𝑦𝐶𝐺) the circular sectors and their associated level set 

functions from Step 3 of the control method are generated using: 

𝐶𝑖(𝑡) ∶ {

𝑥𝐶𝐺 + 𝑅(𝑡) cos(𝜁𝑖)

𝑦𝐶𝐺 + 𝑅(𝑡)sin (𝜁𝑖)
  , 𝜁𝑖 ∈ [𝜂𝑖 , 𝜂𝑖+1]                                             (7.19) 

𝜑𝑐
𝑖(𝑥, 𝑡) = {

1 , ‖𝑥 − (𝑥𝐶𝐺 , 𝑦𝐶𝐺)‖ ≤ 𝑅(𝑡) 

0 , ‖𝑥 − (𝑥𝐶𝐺 , 𝑦𝐶𝐺)‖ > 𝑅(𝑡)
                                          (7.20) 

which can now be directly used to calculate equations (7.7)-(7.9). To properly evaluate the integral in 

(7.13) a suitable approximation of the Heaviside function is needed. Here a smeared out, first order 

approximation is used (Osher and Fedkiw, 2003): 

𝐻(𝜙) = {

0                                      ,       𝜙 < −𝜖   
1

2
+
𝜙

2𝜖
+
1

2𝜋
𝑠𝑖𝑛 (

𝜋𝜙

𝜖
)   ,   − 𝜖 ≤ 𝜙 ≤ 𝜖

1                                     ,           𝜖 < 𝜙

                                         (7.21) 

where 𝜖 is a tunable parameter that determines the bandwidth of numerical smearing, chosen to be 1.5∆𝑥. 

  

7.3.2. Synthetic data simulations 

 

 To illustrate the proposed optimized fire suppression approach, several cases are presented, 

representing controlled and uncontrolled scenarios, using artificial fire fronts. The evolving interface is 

described by a simple, non-intersecting closed curve, i.e. no ‘islands’ are formed throughout the burning 

process. The initial fire front, observed at detection, is chosen to be a circle of radius 𝑅 = 50, centered 

within the observation domain Ω; the safety zone (𝛤𝑟) is given by the square region of length 𝐿 = 350, 

also centered within Ω  (Fig 7.1). The two dimensional space in which the growth is observed is set as 

the square  𝛺: [0 ,421] × [0 ,421] , which is discretized on a uniform Cartesian grid with resolution of 

421 × 421  points. The fire growth model parameters are set to be �̅� = 50, 𝜀0 = 0.2, 𝛼 = 0.5 and 𝑎 =
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0.5. The angle at which the wind is blowing is initially set to be 90° (i.e. S-N direction) and is decreased 

at every ∆𝑡𝜃𝛤 = 2 seconds by 5° (i.e. the wind direction is shifting towards the east). 

The number of divisions used to evaluate the effectiveness of the control is chosen to be 𝑀 = 4, 

with Δ𝑅 = 10 resulting in four sectors (Fig. 7.2, Fig. 7.3) with initial radius at 𝑡 = 0 to be 𝑅(0) = 50 

with the control weighting term  𝛿𝑐 is set to 0.5. The initial normalized distance function �̅�𝛤𝑟(0), shown 

in Fig. 7.4, displays the evaluation of the “closeness” of each sector to the predefined safety zone. Although 

the initial front is centered within the domain, due to numerical discretization, the initial distance values 

are marginally different. The threshold for (7.15) is set to be 𝛿𝑚𝑖𝑛 = 10
6. The model is then simulated for 

the time period 𝑇 = [0,20] seconds, with interface snapshots taken at constant time intervals ∆𝑡𝑝𝑙𝑜𝑡 = 2 

seconds. The time evolution of the fire interface in the controlled and uncontrolled scenarios is depicted in 

Fig.7.5a and Fig.7.5b. The normalized distance function at final simulation time for the two cases is 

illustrated in Fig. 7.6a and Fig. 7.6b. 

Fig. 7.1. Initial setup for wildfire evolution 

With the described evolution setup, the simulated scenario would be representative of a rapidly 

growing fire, with relatively limited firefighting resources, where the fire attack is spread over a large area. 

Although the scenario does not foresee an extinction time, the fire growth is minimized within the sector 

where the destruction would be the greatest with respect to the selection criteria (7.15) previously defined, 

with the sector nearest to the safety zone being selected as Sector 1. 
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Fig. 7.2. Sector division at time 𝑡 = 0 

Fig. 7.3. Level set functions 𝜑𝑐
1, 𝜑𝑐

2, 𝜑𝑐
3, 𝜑𝑐

4 attached to the four sectors at time 𝑡 = 0 
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Fig. 7.4. Normalized distance function �̅�𝛤𝑟(0) 

a)                                                                                         b) 

Fig. 7.5. a) Controlled fire front evolution b) Uncontrolled fire front evolution 

The control selection strategy defined by (7.8, 7.9 and 7.15) can be tuned through three independent 

terms: 𝛿𝑐, 𝛿𝑚𝑖𝑛 and 𝑀. The control weight 𝛿𝑐 together with the number of divisions 𝑀 and the minimum 

safe distance 𝛿𝑚𝑖𝑛 dictate the power of the initial attack and the effectiveness of the suppression method.  

As 𝛿𝑐 is augmented, a larger amount of firefighting resource is available to tackle the evolving fire 

front. The effect of increasing the control weighting can be viewed in Fig. 7.7, where the front evolution 

is compared for varying values of  𝛿𝑐, using a low number of divisions, with 𝑀 = 4. All remaining 

parameters remain unchanged with regards to the previous example. As  𝛿𝑐 is larger, the area growth of 
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the fire front is seen to decrease comparatively with time, indicating a shorter active combat period and 

a faster extinction time. 

                                                  a)                                                                                  b) 

Fig. 7.6. a) Normalized distance function �̅�𝛤𝑟 at time 𝑡 = 20 - Controlled case b) Normalized 

distance function �̅�𝛤𝑟 at time 𝑡 = 20 - Uncontrolled case 

Fig. 7.7. Suppressed fire evolution under varying 𝛿𝑐 

The increase of the number of divisions 𝑀 enables a more accurate evaluation of the predicted fire 

front and allows the control to be applied with a finer detail, enhancing the overall suppression efficiency 

for a selected region, given a limited (low) amount of resources. This implies that for the purpose of 

suppressing the fire growth, a series of 𝑀 firefighting squads are allocated. These squads are then 

spatially distributed according to the sector division, around the evolving interface, such that if an action 
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is needed, it is supplied at demand, with the intensity given by 𝛿𝑐, for the selected region. However, if a 

vast amount of resources are available or if the evolving fire front is small in size, choosing a smaller 

number of divisions will increase the prediction accuracy and the efficiency of the suppression method. 

This effect is illustrated in Fig. 7.8, where three scenarios are presented, with two, four and eight 

divisions respectively. The initial setup for the problem is chosen to be the same as in Fig. 7.1, 

with 𝑅(0) = 50, Δ𝑅 = 10, 𝛿𝑐 = 0.5, 𝛿𝑚𝑖𝑛 = 2 ∙ 10
5 and all remaining parameters remain unchanged 

(fire evolution model parameters, fuel loading, wind speed, wind direction change rule). 

Fig. 7.8. Suppressed fire evolution under varying division numbers 𝑀 

The minimum safe distance term 𝛿𝑚𝑖𝑛 indicates the threshold when the fire front has extended into a 

critical region and all effort must be focused on that area. This is representative of a scenario where the fire 

is close to an area which contains endangered species for example or the fire is near the urban-wildlife 

interface and immediate action is necessary in order to preserve and protect the delicate ecosystem and to 

minimize human and financial losses. The effect of varying  𝛿𝑚𝑖𝑛 is illustrated in Fig. 7.9, where the 

suppressed fire front evolution is compared between three distinct values. The number of divisions used 

to evaluate the effectiveness of the control is chosen to be 𝑀 = 4, with Δ𝑅 = 10 together with initial 

radius at 𝑡 = 0 to be 𝑅(0) = 50 and the control weighting term 𝛿𝑐 = 0.5. The model is then simulated 

for the time period 𝑇 = [0,10] seconds, with interface snapshots taken at constant time intervals ∆𝑡𝑝𝑙𝑜𝑡 =

2 seconds. The angle at which the wind is blowing is initially set to be 90° (i.e. S-N direction) and is 

decreased at every ∆𝑡𝜃𝛤 = 2 seconds by 5° (i.e. the wind direction is shifting towards the east). At 𝑡 = 5 

seconds the wind direction is set to change from its current direction to −90°(i.e. N-S direction), indicating 

a counterflow wind change, after which the direction is increased at every ∆𝑡𝜃𝛤 = 2 seconds by 5° (i.e. the 

wind direction is shifting towards the west). The wind speed is set to be �̅� = 100. 
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With increasing values of  𝛿𝑚𝑖𝑛 the fire front regions that are closer to the safe zone take priority 

quicker, regardless of the fire evolution in other directions.  

Fig. 7.9 Suppressed fire evolution under varying 𝛿𝑚𝑖𝑛 

 

7.3.3. Satellite and DTED data simulations 

 

As with most firefighting incidents, possessing as much information as possible enables better resource 

planning and more precise predictions of future fire growth. Therefore, real world information can be used 

to enhance the potential of the optimized suppression method. The data fusion algorithm presented in 

Section 6.3.3 could be used to incorporate real world information directly into the proposed control 

algorithm. Taking the observed region to be the same as in Fig. 6.16, together with estimated fuel loading 

(Fig. 6.17) and estimated terrain slope (Fig. 6.15), the optimized control problem can be defined as in the 

previous sections. The number of divisions used is set to 𝑀 = 3, with 𝑅(0) = 50, Δ𝑅 = 10, 𝛿𝑐 = 0.5 

and 𝛿𝑚𝑖𝑛 = 10
4. The safe region is defined by a square of side length 𝑙 = 500 centered on the observed 

domain. The flank velocity is influenced by 𝜀0 = 0.2 and the rear/flank velocity ratio 𝛼 = 0.5. The 

model is then simulated for the time period 𝑇 = [0,50] seconds, with interface snapshots taken at constant 

time intervals ∆𝑡𝑝𝑙𝑜𝑡 = 5 seconds. The angle at which the wind is blowing is initially set to be 90° (i.e. S-

N direction) and is increased at every ∆𝑡𝜃𝛤 = 5 seconds by 5° (i.e. the wind direction is shifting towards 

the west). The wind speed is set to blow in the S-N direction with a magnitude of �̅� = 40, and is gradually 

increased, at every ∆𝑡�̅� = 5 seconds, reaching a value of �̅� = 60 at the final simulation time. The 

comparison between the controlled and unconstrained evolution using the parameters given above is 

shown in Fig. 7.10 a, b.  
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                                  a)                                                                                           b) 

Fig. 7.10. a) DTED model controlled evolution b) DTED model unconstrained evolution 

Even in cases where the atmospheric conditions are varying, such as changing wind speed and erratic 

wind direction, the suppression method is shown to effectively slow down the evolution of the fire front, 

given a limited amount of resource which is distributed in three areas around the fire front.  

  

7.4. Conclusions  

 

This chapter applied an optimized model based containment method, based on a nonlinear 

geometrical interface evolution model for wind-aided fire spread. This has resulted in several 

contributions, namely  

 An optimized fire suppression method that incorporates the spatial distribution and number 

of available resources together with the geometry of an arbitrarily complex ‘safe zone’ 

within the control strategy to determine the most effective action to be taken with respect to 

a cost functional. 

 A dynamically tunable three term cost functional that allows the prediction and evaluation 

of efforts needed to achieve a predefined target goal, based on firefighting resource 

availability, wildfire dimensions and priority zones.  

 A practical approach to formulating an optimized firefighting strategy based on the 

geometry of the evolving fire front together with all influencing parameters. 
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8. Conclusions 

 

8.1. Introduction  

 

An extremely large number of natural systems can be categorized within the class of spatio–temporal 

systems, with a diverse range varying from microscopic (stem cell colonies, crystal growth etc.) to large 

scale dynamics (wildfire evolution, weather patterns etc.). The aim of this research has been to explore, 

formulate and present an approach to solving the non-trivial task of controlling the nonlinear dynamics in 

systems which exhibit spatio–temporal patterns, namely the dynamics observed in dendritic crystal growth 

and wind-aided wildfire spread. Three separate approaches have been developed, using a continuous 

representation in the form of PDE systems. In essence, the developed control methods consist of: 

 Placing the control problem in a finite observable time – space domain, 

 Incorporating real world data in the parametric models from either analyzing an 

experimentally observed pattern formation process or estimating key parameter values from a 

set of static (low time dynamics) observations and 

 Employing higher dimensional transformations to the two or three dimensional processes 

under analysis to obtain a local set of properties used to synthesize the control laws. 

The novel approaches have been proven to deliver excellent results with both synthetically generated 

and physical data sets, thus fully achieving the aims set out in Section 1.4 of this thesis.  

This chapter is structured as follows. The second part, Section 8.2 provides an overview of the thesis 

and describes the main contributions. The final fragment, Section 8.3, looks at possible future directions 

of research within the area of modeling and control of spatio-temporal systems, based on the developments 

made within this thesis. 

 

8.2. Thesis summary  

 

The thesis begins with a short introduction to spatio–temporal models, with emphasis on dendritic 

crystal growth and wind aided wildfire evolution. Some theoretical aspects of the processes are described, 

which highlight the complexity of the systems under analysis. The topic addressed in this thesis, namely 

control of highly complex dynamical systems, represents a new direction in research, as systems with the 

fore mentioned properties have not been addressed in numerous studies to date. 
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Chapter 2 discusses several approaches to model spatio–temporal dynamics, together with their 

mathematical formulation and provides a clear reasoning as to why PDE models are used throughout this 

work to achieve the research objectives. Also, a short introduction to developing dynamics is given, in the 

form of geometric driven interface evolution, which is a key property for the study of pattern formation. 

The work undertaken in Chapters 3 and 4 provides a detailed and comprehensive overview of the 

theoretical aspects of modeling and numerical simulations related to the two systems under analysis. These 

chapters provide the basis for the later developed formulation of controlled dynamics. 

In Chapter 3, both local and nonlocal models of interface evolution are analyzed, with focus on 

dendritic crystal growth. In view of purely local evolution models, the crystal interface growth is 

formulated as a nonlinear function that describes the rate of change in terms of curvature flow, namely 

higher order polynomials of curvature and its derivatives with respect to arc length. Nonlocal models were 

studied through the standard model of solidification, which was adapted to include the interface kinematics 

found in dendritic growth through a Gibbs-Thomson relation – the modified two–phase Stefan problem. 

Although these two approaches are able to describe the crystal growth process, numerical discretization 

and simulation prove to pose several challenges. Because these models do not have a general analytical 

solution, interface capturing techniques are frequently used, which increase the complexity even further. 

The higher dimensional transformation used in the level set method enables study of the effects of 

evolving curves under normal speed dependent on local curvature or an externally generated velocity 

field. 

Chapter 4 provides a thorough analysis of quasi-empirical wind aided fire spread models, through 

the scope of geometrical representations. An immense variety of scenarios can be generated through 

altering the spatial and temporal distribution of key influencing parameters in the fire growth, which 

makes prediction process non trivial. A level set formulation is used to embed the nonlinear parametric 

evolution model into a time evolving surface, by use of a signed distance transformation, which can then 

be used to keep track of the fire front. The numerical study provided shows the influence of parameter 

variations on the fire interface. 

The frameworks described in Chapter 5, 6 and 7 represent the key innovations of this thesis. They 

describe a methodology of taking a complex model, with spatio–temporal dynamics, and creating a 

control loop control around the process of interest such that several performance criteria are met. 

A novel closed loop distributed control method for dendritic crystal growth is shown in Chapter 5. The 

method is built around the geometrical models presented in Chapter 3, and uses the temperature within a 

bounded domain as the control variable. Initially the closed loop method is derived in a two dimensional 

space, and then further extended to include dynamics in a three dimensional domain. When looking at the 

performance of the control strategy, quantitative measures of representative interface properties are used. 
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As part of the validation process, several scenarios were studied, with excellent results. Following a 

comparison of different control approaches, the conclusion that emerged was that in the developed 

framework, basic control laws can be effectively used to control the nonlinear model. It was shown that 

experimentally observed crystal growth data can be directly incorporated into the new control method, 

enabling the design of arbitrarily complex interface shapes. Nonetheless, the study also pointed out some 

of the limitations of the method, that is, the complexity of the desired crystal shape is a key factor in 

determining an appropriate discretization for the control strategy.  

In Chapter 6 a new framework for containment and suppression for the evolution of wind assisted 

wildfire spread was presented. More precisely, the temperature of the fire is gradually reduced, until full 

extinction is achieved. In this regard, the study followed a similar principle as the one in Chapter 5, by 

using a similar geometrical representation of the evolving dynamics in a level set formulation. However 

the introduction of new concepts was needed to define the containment strategy – a predefined containment 

area, which encloses the initial fire front. Since the method is designed to aid in real time situations, a 

prediction of the wildfire behavior together with the information regarding the intensity of the control is 

derived. To aid this, a parameter estimation was carried out over a finite area, with respect to terrain 

topography and biofuel quantitates, information which was then incorporated in straightforward manner in 

the control strategy. Although significant positive results have been achieved, proving the effectiveness of 

the proposed algorithm, it is yet to be considered a complete suppression method, mainly due to the 

complexity of the fire spread mechanism and the environmental factors. 

Chapter 7 explored a new optimization strategy for controlling wildland fire fronts based on a 

geometrical model of interface evolution. To achieve this, a cost function was defined, that provides the 

optimal location where the fire resource needs to be allocated, based on the complex fire geometry, the 

terrain topography and the atmospheric conditions that influence the fire. Several tuning parameters have 

been incorporated within the cost function, among which the number of spatial divisions, the control 

weighing and the minimum safe distance to a safe zone are most important. The careful selection of these 

parameters allows for a large variety of scenarios to be simulated and analyzed. The method is shown to 

be ready applicable to real-world data, with DTED data and fuel loading estimation being easily 

incorporated in the control algorithm. A more comprehensive optimization might be achieved through real-

time data fusion between measured atmospheric data and the actual fire evolution, such that a more accurate 

prediction of the fire evolution is achieved, and therefore a more effective firefighting strategy is deployed. 

As a final point it is worth noting that this study was successful on bringing together various fields of 

research, such as computational physics theory, phase transitions theory, flame propagation theory and 

spatio-temporal dynamics theory, which together aided the development of new control strategies that will 

definitely have significant practical applications in real world scenarios.  
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8.3. Future research directions 

 

The thesis mainly focused on presenting original model based control methods together with a 

comprehensive numerical analysis for two distinct systems with spatio-temporal dynamics. It is known 

that the dynamics of most spatio-temporal systems have yet to be fully understood and there is currently 

great interest in determining the basic principles which govern pattern formation in such systems. 

Therefore, given that the control of such systems is still in its early stages, several opportunities of future 

research may be considered, some of which are briefly presented below: 

a) Advance the distributed control methodology to achieve interior and boundary control 

 These control approaches would be of great interest, since the aim of the project is to 

develop an efficient and physically attainable control methodology for dendritic crystal 

growth models. 

 Another issue that needs addressing is the problem of controllability. The system dynamics 

is described by a parabolic PDE. We are allowed to act on the trajectories of the system by 

means of a suitable control (internal, boundary) and, given a time interval, the initial and 

final states of the system, we need to find a control such that the solution matches the desired 

state at the final time. Controllability of such approaches is uncertain given the control 

problem (shape control of the two dimensional heat equation)  

b) Extend existing geometrical models of boundary evolution to include long-range interactions 

 Current geometrical models have been extended to include variations in temperature, but 

model can be further extended to include changes in solute concentration, in order to capture 

more efficiently the dynamics of the crystal growth. 

 The modified two-phase Stefan problem would be an excellent candidate for this approach, 

since additional variations in non-local parameters can be incorporated in a straightforward 

manner in the growth dynamics. 

c) Modelling and analysis and control of other types of crystal growth processes  

 Another interesting pattern formation exhibited in crystal growth processes comes in the 

form of spiral crystal growth. As with dendritic crystal growth, modeling the boundary 

evolution of spiral crystal growth systems poses several difficulties. Using experimental 

data, an identification of the growth rule (system model) in spiral growth can be determined, 

which can then be used to design a control method for this type of interface evolution. 

d) Understanding the effects due to variations in fuel vertical structure and moisture on fire front 

dynamics 
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 Although ignition events are rarely discovered as soon as they occur, the rate at which an 

initial fire front evolves in time will be influenced by the fuel structure, which is not 

necessarily heterogeneously distributed in the vertical plane. This is also reflected in the 

amount of moisture that the respective layer is capable of holding at a specific time. 

Therefore the fuel loading estimates obtained from satellite imaging suffer from the 

limitation that this information is not directly accessible, which is detrimental to the accurate 

prediction of wildfires. Since the parameters are linked closely to climate conditions, a 

parametric model which reflects the weather history could significantly improve the 

effectiveness of the suppression method. 

e) Advanced control and containment strategies for protection against wildfires 

 The nonlinear and complex dynamics of wildfires poses a significant challenge in the design of a 

reliable parametric control method. Functional optimization methods can be developed around the 

parametric evolution models with the aim of improving the spatial effectiveness of the suppression agent. 

To this end, model based predictive control could be used in conjunction with the time evolution of several 

key influencing parameters to determine time and energy efficient suppression approaches, together with 

increased spatial awareness of where the fire attack should be focused on. 
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