
Model-Driven Engineering for
Analysing, Modelling and Comparing

Cloud Computing Service Level
Agreements

Fatima A A A Alkandari

Doctor of Philosophy

University of York

Computer Science

September 2014

Abstract

In cloud computing, service level agreements (SLAs) are critical, and underpin a pay-
per-consumption business model. Different cloud providers offer different services (of
different qualities) on demand, and their pre-defined SLAs are used both to advertise
services and to define contracts with consumers. However, different providers express
their SLAs using their own vocabularies, typically defined in terms of their own tech-
nologies and unique selling points. This can make it difficult for consumers to compare
cloud SLAs systematically and precisely. We propose a modelling framework that pro-
vides mechanisms that can be used systematically and semi-automatically to model and
compare cloud SLAs and consumer requirements. Using MDE principles and tools, we
propose a metamodel for cloud provider SLAs and cloud consumer requirements, and
thereafter demonstrate how to use model comparison technology for automating differ-
ent matching processes, thus helping consumers to choose between different providers.
We also demonstrate how the matching process can be interactively configured to take
into account consumer preferences, via weighting models. The resulting framework
can thus be used to better automate high-level consumer interactions with disparate
cloud computing technology platforms.

iii

Contents

Abstract iii

Contents iv

List of Figures xi

List of Listings xiii

List of Tables xvi

Acknowledgements xvii

Declaration xviii

1 Introduction 1
1.1 Introduction . 1

1.1.1 Service Level Agreements 1
1.1.2 Cloud Computing . 2
1.1.3 Model Driven Engineering (MDE) 3

1.2 Comparison and Selection of Cloud Computing Services 4
1.3 Problem Definition . 6
1.4 Motivation . 6
1.5 Research Hypothesis . 7
1.6 Research Objectives . 8
1.7 Research Methodology . 8
1.8 Thesis Structure . 10

iv

CONTENTS

2 Literature Review 12
2.1 Service Level Agreement . 12

2.1.1 Quality of Service (QoS) . 16
2.1.1.1 Common Quality of Service (QoS) and QoS classi-

fication . 17
2.1.1.2 QoS Ontology . 19

2.1.2 QoS-based web service selection literature 21
2.2 Cloud Computing . 23

2.2.1 Introduction . 23
2.2.2 Cloud computing features 25
2.2.3 Cloud classification . 27

2.2.3.1 Cloud computing deployment model 28
2.2.3.2 Cloud computing service model 29

2.2.4 Cloud Service Level Agreements (SLAs) 34
2.2.4.1 Commercial Cloud SLAs 34

2.3 Model Driven Engineering (MDE) 38
2.3.1 Models . 39
2.3.2 Metamodel . 40
2.3.3 Model management . 41

2.3.3.1 Model Transformation 41
2.3.3.2 Model Comparison 42
2.3.3.3 Model Constraints 43

2.3.4 Model Driven Engineering (MDE) Tools 43
2.3.4.1 EMF . 44
2.3.4.2 Epsilon . 44
2.3.4.3 Epsilon Object Language (EOL) 44
2.3.4.4 Epsilon Comparison Language (ECL) 45
2.3.4.5 Epsilon Transformation Language (ETL) 46
2.3.4.6 Epsilon Generation Language (EGL) 47
2.3.4.7 Epsilon Validation Language (EVL) 48

2.4 Comparison and Selection of Cloud Computing 49
2.4.1 Cloud computing QoS-based selection 50

2.4.1.1 Multi-Criteria Decision Making (MCDM) 51

v

CONTENTS

2.4.2 Cloud computing matching 52
2.4.3 Cloud computing QoS parameters and modelling 54
2.4.4 Cloud computing resources modelling 57
2.4.5 Digital SLAs . 58

2.5 Summary of Cloud Computing SLA Modelling and Comparison issues 66
2.6 Chapter Summary . 68

3 Problem Analysis 69
3.1 Introduction . 69
3.2 Motivating Example . 71

3.2.1 Goals to be Satisfied to Solve the Problem 72
3.3 Scenario and Use Cases . 72

3.3.1 Consumer-Providers/Provider-Providers 75
3.3.2 Comparison of Alternatives Scenarios 76

3.3.2.1 Name-based Matching 78
3.3.2.2 Optimal Matching 79
3.3.2.3 Approximate Value Matching 79

3.4 Steps of the Research Plan . 79
3.5 An approach for Cloud SLAs Comparison 85

4 Domain Analysis and Metamodelling 87
4.1 Introduction . 87
4.2 Constructing the cloud SLA metamodel 89

4.2.1 Cloud computing SLA metamodel 89
4.3 Cloud SLA Metamodelling . 92

4.3.1 General Types Package . 94
4.3.1.1 Abstract Syntax 95
4.3.1.2 Example of GeneralTypes Model 99

4.3.2 Service Package . 101
4.3.2.1 Abstract Syntax 101
4.3.2.2 Example of Service Model 102

4.3.3 CloudUnitSpec Package . 104
4.3.3.1 Abstract Syntax 104

vi

CONTENTS

4.3.3.2 Example of CloudUnitSpec model 105
4.3.4 ComputingUnit Package . 105

4.3.4.1 Abstract Syntax 106
4.3.4.2 Example of a ComputingUnit Model 107

4.3.5 Storage Package . 107
4.3.5.1 Abstract Syntax 108
4.3.5.2 Example of a Storage Model 109

4.3.6 Network Package . 109
4.3.6.1 Abstract Syntax 110
4.3.6.2 Example of Network Model 111

4.3.7 Obligation Package . 112
4.3.7.1 Abstract Syntax 112
4.3.7.2 Example of Obligation 113

4.3.8 Price Package . 114
4.3.8.1 Abstract Syntax 114
4.3.8.2 Example of Price Model 115

4.3.9 SLA Package . 115
4.3.9.1 Abstract Syntax 116
4.3.9.2 Example of SLA Model 118

4.3.10 Contract Package . 118
4.3.10.1 Abstract Syntax 119
4.3.10.2 Example of Contract Model 120

4.4 Early Versions of the Cloud SLA Metamodel 121
4.4.1 First Version Metamodel for Cloud Computing SLA 121
4.4.2 Revised SLA Metamodel . 124

4.5 Summary . 129

5 A Comparison Process for Cloud SLAs 130
5.1 Introduction . 130
5.2 General Process of Cloud SLA Model Comparison 131
5.3 Motivating Example . 134

5.3.1 Which Elements of Cloud SLA Models Can be Matched? . . 134
5.3.2 When are Model Elements Alike? 136

vii

CONTENTS

5.3.3 Cloud SLAs Concepts Involved in the Matching Process . . . 138
5.3.4 Matching patterns . 140

5.4 Matching Logic . 142
5.4.1 Matching the Cloud SLA Model 143
5.4.2 Matching QoS Properties . 145
5.4.3 Matching Obligation term 147
5.4.4 Matching Cloud Units . 147
5.4.5 Optimal Value Matching . 149
5.4.6 Approximate Matching . 152
5.4.7 Name-based Matching . 154

5.5 Implementation of Matching Logic in Epsilon 156
5.5.1 Comparison of GeneralTypes 157

5.5.1.1 Modifications for Approximate and Name-based im-
plementation . 164

5.5.2 Comparison of Cloud Unit Specifications 168
5.5.3 Comparison of Cloud Prices 171
5.5.4 Comparison of Cloud Unit and Price Implementation 172
5.5.5 Comparison of Cloud Service Implementation 172
5.5.6 Comparison of Cloud QoS Parameters’ Implementation . . . 173
5.5.7 Comparison of Cloud Obligation Implementation 174
5.5.8 Comparison of Cloud SLA Implementation 175

5.6 Approximate Values Model . 176
5.6.1 Abstract Syntax of the Approximation Model 177
5.6.2 Example of Approximate Model 177

5.7 Comparison Results Metamodel . 178
5.8 Summary . 180

6 A Conceptual Framework for SLA Model Comparison 181
6.1 Introduction . 181
6.2 Conceptual Architecture of SLA Comparison 182
6.3 Create a Weighting Model . 185

6.3.1 Abstract Syntax of Weighting Model 185
6.3.2 Example of a Weighting Model 186

viii

CONTENTS

6.4 Creating and Calculating a Cost Model 188
6.4.1 Cost Model . 188

6.4.1.1 Abstract Syntax of Cost model 188
6.4.1.2 Creating Cost Model 189

6.4.2 Calculating the Cost . 190
6.5 Analysing Results . 192
6.6 Decision Making Matrix . 194

6.6.1 Abstract Syntax of the MCDM Matrix 194
6.6.2 Constructing a Matrix Model 196

6.7 View Matching Results . 197
6.8 Summary . 197

7 Evaluation 199
7.1 Introduction . 199
7.2 Case Study . 200

7.2.1 Creating Cloud SLA models using the Cloud SLA abstract syntax201
7.2.2 Matching the cloud SLA of the consumer and provider 211

7.2.2.1 Matching models using the optimal matching logic . 215
7.2.2.2 Matching models using approximate matching logic 217
7.2.2.3 Matching models using name-based matching logic 218
7.2.2.4 Matching models using name-based matching logic,

to match cloud units and approximation to match
prices . 219

7.2.2.5 Matching models using approximation, to match cloud
units characteristics and name-based matching logic
to match prices . 221

7.2.2.6 Matching cloud providers’ SLAs 222
7.2.3 Analysing the outcome models of the comparison 224

7.2.3.1 Eliminate the redundancy in the outcome model . . 224
7.2.3.2 Weighting the requirements 228
7.2.3.3 Cost Model . 229
7.2.3.4 Decision Matrix 230

ix

CONTENTS

7.2.3.5 Discussing the Outcome of Different Matching Al-
gorithms . 232

7.3 Evaluation of the contributions . 234
7.3.1 Requirements of semi-automatic cloud computing SLAs . . . 235
7.3.2 Cloud SLA Metamodelling language 235
7.3.3 Evaluation of the comparison logics 236
7.3.4 Evaluation of the Supporting Decisions approach 237

7.4 Evaluation of the thesis contributions 237
7.5 Summary . 238

8 Conclusions and Future Work 240
8.1 Introduction . 240
8.2 Contribution . 241

8.2.1 Cloud SLA Metamodel . 241
8.2.2 Comparison Process . 242
8.2.3 Methodology for selecting between a set of cloud SLAs . . . 242
8.2.4 Evaluation Results . 243

8.3 Limitations of the cloud SLAs comparison and selection approach . . 244
8.3.1 Lack of support for SLA negotiation and monitoring 244
8.3.2 Lack of support for non-Infrastructure as a Service (IaaS) cloud

services . 244
8.3.3 Lack of support for cloud SLAs not defined using the proposed

abstract syntax . 244
8.4 Future work . 245

8.4.1 Support for the cloud SLA management life cycle 245
8.4.2 Support for non-cloud SLAs models 245
8.4.3 Cloud SLAs Matching Patterns 246
8.4.4 Large-scale Experiments . 246

Acronyms . 247

References 249

x

List of Figures

1.1 Research Methodology. 9

2.1 An SLA example adapted from [28]. 14
2.2 QoS Model [135]. 17
2.3 QoS Model [135]. 18
2.4 QoS Ontology [75]. 20
2.5 Computing Paradigm Shift [191]. 23
2.6 Metamodel of abstract syntax for a simple language [137]. 40
2.7 MCDM matrix [178] . 52
2.8 Reliability definition [83]. 56
2.9 Reliability definition SLA@SOI [27]. 57
2.10 WSLA Structure [150]. 59
2.11 WS-Agreement Structure [123]. 61
2.12 SLAng Structure [165]. 63

3.1 Comparison Scenario. 73
3.2 Our proposed approach for cloud SLA models comparison 86

4.1 Main components of the cloud SLA metamodel 91
4.2 Object diagram of consumer requirements 93
4.3 Cloud SLA general types Abstract Syntax 98
4.4 Example of Cloud SLA general types model 99
4.5 Service Abstract Syntax . 102
4.6 Example of Service Model . 103
4.7 Cloud Unit Abstract Syntax . 105

xi

LIST OF FIGURES

4.8 Computing Unit Abstract Syntax . 106
4.9 Example of Computing Unit model 107
4.10 Storage Unit Abstract Syntax . 108
4.11 Example of Storage Unit model . 109
4.12 Networking Abstract Syntax . 110
4.13 Example of cloud Network Model 111
4.14 A screen shot of Amazon EC2 Credits [4] 112
4.15 Obligation Abstract Syntax . 113
4.16 Example of Obligation Model . 114
4.17 Price Abstract Syntax . 115
4.18 Example of a Price Model . 115
4.19 SLA Abstract Syntax . 117
4.20 Example of SLA Model . 118
4.21 Contract Abstract Syntax . 119
4.22 Example of Contract Model . 120
4.23 A screen shot for EC2 SLA [4] . 122
4.24 First version SLA metamodel . 124
4.25 A provider SLA metamodel [37]. 126
4.26 A consumer SLA metamodel [37]. 128

5.1 Comparison Process Architecture . 133
5.2 General architecture of cloud SLAs 143
5.3 General architecture of QoS property specified in cloud SLAs 146
5.4 General architecture of cloud units specified in cloud SLAs 148
5.5 Approximate metamodel . 177
5.6 An example of approximate model 178
5.7 Trace metamodel . 179

6.1 Architecture of cloud SLA comparison and selection Process 184
6.2 A weight metamodel . 186
6.3 An example of the weight model . 187
6.4 A cost metamodel . 189
6.5 Example of repeated elements in the outcome of matching 193
6.6 MCDM matrix metamodel . 195

xii

LIST OF FIGURES

7.1 Provider A SLA Offers . 202
7.2 Provider B SLA Offers . 203
7.3 Provider C SLA Offers . 204
7.4 Matching cloud SLA with the concepts of the SLA Offer of provider A 205
7.5 Matching cloud SLA with concepts of SLA Offer of provider B . . . 207
7.6 Matching cloud SLA with concepts of the SLA Offer of provider C . . 208
7.7 Illustration of provider SLAs offers using the cloud SLA metamodel . 209
7.8 Illustration of a service model of provider A using the cloud SLA ab-

stract syntax . 210
7.9 Example of a consumer requirements using SLA 211
7.10 A trace model of the Optimal matching between consumer model and

provider A model is generated into an HTML document using Epsilon
Generation Language (EGL) . 216

7.11 A trace model of the Approximate matching between the consumer
model and provider A model is generated into an HTML document
using EGL . 218

7.12 A trace model of the Name-Based matching between a consumer model
and provider A model is transformed into an HTML document using
EGL . 219

7.13 A trace model matching similar cloud units and approximate prices is
transformed into HTML document using EGL 220

7.14 A trace model matching approximate cloud units and similar prices is
transformed into an HTML document using EGL 221

7.15 Example of matching providers offers SLA 223
7.16 A trace model of the Name-Based matching between a consumer model

and provider A’s model, after eliminating redundant elements, is gen-
erated into an html document using SLA. 227

7.17 Weighted elements in a weight model SLA 229
7.18 A cost model for matching cloud units of provider ASLA 230
7.19 Comparison results in the matrix model form SLA 231
7.20 Matching results of matching consumer requirements with provider’A

SLA using different matching algorithms 233

xiii

List of Listings

2.1 Concrete Syntax example [137] . 40
2.2 Example of ETL rule from [11] . 42
2.3 Concrete Syntax of a MatchRule from [11] 46
2.4 Concrete Syntax of a TransformationRule from [109] 47
2.5 Concrete Syntax of an EVL context[11] 48
2.6 Concrete Syntax of an EVL invariant from [11] 48
4.1 The EVL Constraint that validate instances of SingleValue and Ranged-

Value . 100
4.2 The EVL Constraint generated for QoSTerm 103
4.3 The EVL Constraint generated restricting the number of consumers

and providers of cloud SLA to one 120
5.1 Matching between a service requester SLA model and a provider SLA

model . 144
5.2 Matching Definition terms and QoSProperty in the service requester

SLA model with the provider’s SLA model 146
5.3 Matching Obligation terms Service Level Objective (SLO) in the ser-

vice requester’s SLA model and the provider’s SLA model 147
5.4 Matching cloud units SLO in the service requester’s SLA model and

the provider’s SLA model . 148
5.5 Optimal value matching logic of Value element attributes 149
5.6 Optimal matching logic of values . 150
5.7 Matching logic of SingleValue and RangedValue 151
5.8 Approximate matching logic of values 153
5.9 Approximate matching logic of SingleValue and RangedValue 154
5.10 Name-based Matching logic of values 155

xiv

LIST OF LISTINGS

5.11 Optimal matching implementation in Epsilon Comparison Language
(ECL) for the Value element . 158

5.12 Optimal matching implementation in ECL for the SingleValue elements 159
5.13 Optimal matching implementation in ECL for the RangedValue elements161
5.14 Optimal matching implementation in ECL for the SingleValue and

RangedValue elements . 163
5.15 Optimal matching implementation in ECL for the Unit elements . . . 164
5.16 Approximate matching of two SingleValues in ECL 165
5.17 Calculating difference percentages between two numbers in Epsilon

Object Language (EOL) . 166
5.18 Name-based matching of two SingleValues in ECL 167
5.19 Converting unit of values in EOL . 168
5.20 Matching cloud Computing units specifications in ECL 169
5.21 Matching cloud Storage units specifications in ECL 169
5.22 Matching cloud Networking units’ specifications in ECL 170
5.23 Matching prices in ECL . 171
5.24 Matching cloud unit in ECL . 172
5.25 Matching cloud services ECL . 173
5.26 Matching QoS properties ECL . 173
5.27 Matching obligation terms in ECL 174
5.28 Matching two cloud SLA models ECL 175
5.29 Storing the results of the matching rules in ECL 179
6.1 Assigning weights with SLA elements 187
6.2 Create a cost model for consumer model using EOL 189
6.3 Create cost model for provider offers 190
6.4 Calculate the cost of the cost model using EOL 191
6.5 Eliminate repeated left items from the trace model 193
6.6 Create matrix rows which present the criteria of the MCDM 196
6.7 Eliminate repeated left item of the trace model 196
7.1 EGL program to generate an html document for the trace model . . . 212
7.2 Epsilon Transformation Language (ETL) program to eliminate repeated

matching . 224
7.3 EOL program to eliminate repeated matching 228

xv

List of Tables

2.1 Deployment models of cloud computing 29
2.2 IaaS, PaaS and SaaS service models 31
2.3 Common components in SLAs of commercial cloud computing 35
2.4 Differences in terms of QoS parameters referred to in commercial

cloud SLAs . 37
2.5 Comparison of SLAs specifications 65

3.1 SLA Comparison, Use Case template is adopted from [112] 74
3.2 Consumer-Provider Comparison . 75
3.3 Provider Comparison . 76
3.4 Comparison Alternative Scenario . 77
3.5 Platform independent steps of a research plan 81
3.6 MDE-based steps related to the thesis objectives (Chapter 1) and the

platform-dependent steps (Table 3.5) 84

5.1 Consumer requirements and the two providers’ (A, B) SLA offers . . 141

7.1 Cloud unit characteristics and prices of Provider A 206

xvi

Acknowledgements

I would like to thank my supervisor, Prof. Richard Paige, for his invaluable guidance,
support and encouragement throughout my research.

I would like to thank my internal examiner, Dr. Dimitris Kolovos, for his comments
that improved my thesis. I also thank my friends for their encouragement.

I would like to express my warm gratitude to my parents, my husband, Salah, and
my sons, Mohammad, Abdullah and Ahmad, for their continuous support, encourage-
ment and patience.

xvii

Author Declaration

This work has not previously been presented for an award at this, or any other, Univer-
sity. All sources are acknowledged as References. Except where stated, all the work
contained in this thesis represents the original contribution of the author. Parts of the
work described in this thesis have been previously published as a workshop paper [37].

xviii

Chapter 1

Introduction

1.1 Introduction

The research in this thesis lies at the intersection between cloud computing and Model
Driven Engineering (MDE). In particular, it aims to investigate how MDE can assist
with particular domain challenges of cloud computing, and how users of cloud com-
puting Service Level Agreements (SLAs) can benefit from the automation support that
arises from the use of MDE tools, particularly for model management. Before defin-
ing the problem and research motivation, brief introductions to SLAs, cloud computing
and MDE are provided in the following sections.

1.1.1 Service Level Agreements

An SLA is a contract between different parties: these are usually a service provider,
a service consumer and perhaps a third party [124, 189] (e.g. consumers or providers
might delegate the monitoring and reporting of violations to a third party [150]). An
SLA can be used to identify the services to be provided to consumers, as well as the
qualities associated with those services: for example, the availability or response time
for service delivery. SLAs are fundamental to a variety of socio-technical or software
systems, as they provide a basic means of negotiation and arbitrage amongst the parties
that agree to be constrained by them.

For instance, suppose that a service consumer requires a network service. The ser-
vice provider of a network service provides the details of the network service in the

1

1. INTRODUCTION

SLA. The SLA contains a description and definition of the service. It might contain the
expected network service performance, maintenance, monitoring and reporting func-
tions. The service consumer and service provider can then negotiate on the SLA terms
and agree to be bound by the SLA. This means that if the service provider fails to meet
the agreement terms, penalties may apply.

An SLA defines measurable QoS parameters (e.g. availability and response time)
and SLOs [181]. QoS parameters might be defined in an SLA with a threshold value
(e.g. availability >99.9%); these combined form an SLO. An SLO is a term agreed be-
tween the service provider and the service consumer and is used as a means of defining
and measuring the quality threshold values of a provisioned service. An SLO is an ex-
pression over a set of the defined QoS parameters [181]. The QoS parameter threshold
values are monitored by at least one of the SLA parties to ensure that the SLOs are not
violated. In case of violation, penalties may apply; to be certain that all parties agree
to these said penalties, they may also be defined in the SLA (Chapter 2).

An SLA is important for service providers, so that they can try to avoid violations
and penalties, understand the consumer’s requirements, and know what could be done
to satisfy the consumer [198]. From the consumers’ perspective, an SLA is a way to
define their requirements (including the required QoS) to meet their business goals.

In distributed systems research, SLAs are often treated as specifications that can
be manipulated by computers [66, 70, 138] e.g. Web services or service-oriented ar-
chitectures. As a result, substantial research has been carried out that explores the
specification, automation and management of SLAs, including determining whether or
not there is an agreement on the terms specified in the SLA (this is discussed further
in Chapter 2).

1.1.2 Cloud Computing

Cloud computing is a distributed computing model that is gaining increased attention.
It is based on the idea of providing a pool of virtualized computing resources (such
as applications, servers and storage) that are accessed remotely on a pay-per-use basis
[41, 82, 186]. These computing resources can be accessed remotely at any time and de-
livered on-demand to consumers. Resources can be dynamically and rapidly scaled up
by acquiring resources on-demand and releasing them when not needed [133]. Many

2

1. INTRODUCTION

leading companies, such as Amazon, Google and Microsoft, have adopted this com-
puting paradigm, and market different cloud offerings that provide different services.

Cloud computing differs from other distributed system models in terms of its sup-
port for virtualization (which is “a method, process or system for providing services to
multiple, independent logical entities that are abstractions of physical resources, such
as storage, networking and computer cycles” [86]), rapid elasticity (cloud computing
capabilities are provisioned and released dynamically), and the models used for charg-
ing consumers for services (e.g. pay per consumption or a subscription basis).

The relationship between cloud providers and cloud consumers is normally gov-
erned by SLAs (as with other distributed computing models). The dynamic and com-
plex nature of cloud computing arguably warrants complex SLA specification and
management [76, 150]. One of the challenges in cloud computing is defining the SLA
specifications “in such a way that has an appropriate level of granularity, namely the
trade-offs between expressiveness and complicatedness, so that they can cover most of
the consumer expectations and is relatively simple to be weighted, verified, evaluated,
and enforced by the resource allocation mechanism on the cloud” [71]. Moreover,
managing the cloud computing SLA requires an appropriate means to be consistent
with the dynamic nature, autonomous and elasticity of cloud computing (i.e. self-
service, rapid and dynamic resource allocation and release). The automation of the
process of creating, selecting, negotiating managing and monitoring an SLA is ad-
dressed to tackle this challenge [26, 150, 197]. Furthermore, current cloud comput-
ing providers provide pre-defined cloud SLAs, which define the resource availability,
while other QoS parameters, such as performance and elasticity, are not considered.

1.1.3 Model Driven Engineering (MDE)

MDE is a principled approach to system engineering that utilizes models as first-class
artefacts of the development process [49, 50]. MDE is based on the construction and
automated manipulation of precisely defined models of concepts from a problem do-
main; these models are manipulated (e.g. using automated tools) to achieve business
and engineering goals, for example, the generation of code. Models in MDE are de-
fined formally in terms of their conformance to metamodels. Metamodels are used to
define the abstract syntax of modelling languages [161]. Operations can then be de-

3

1. INTRODUCTION

fined using metamodels to automatically manipulate models, e.g. for model transfor-
mation or code generation. The aim in using models is to raise the level of abstraction
and increase the automation of the software development process.

1.2 Comparison and Selection of Cloud Computing Ser-
vices

The vast number of cloud services from different providers makes it difficult for cloud
consumers to decide which services from which provider to select and use. Several
cloud computing studies addressed the problem of cloud services comparison and se-
lection [83, 90, 119, 128, 199]. Four main concerns have been identified in comparing
and selecting cloud services (see Section 2.4). First, the basis of comparison i.e. which
parameters of the cloud services should be used as a basis for comparison? Second, the
matching approaches i.e. how to match the consumer requirements with the provider
offers? Third, how to select the cloud service or offer from among different alterna-
tives. Finally, how can the consumers’ requirements and offers be captured?

Different studies proposed different parameters as a basis for comparison. Studies
such as [96, 119, 183] evaluate the performance of the cloud services offered by dif-
ferent cloud providers. This study provides performance comparison of the different
providers. For example, a study in [119] compares public cloud providers (Amazon
EC2, Windows Azure, Google AppEngine and RackSpace) and proposes a tool to
compare the performance and cost of cloud providers.

However, QoS parameters rather than performance may be considered to be impor-
tant by cloud consumers. These parameters may include static attributes like security
and localisation [38, 83], or dynamic attributes that, for example, provide the status of
the cloud service [36]. All such attributes may feed in to the cloud selection process.

Different approaches have been proposed to compare and select cloud providers
based on these different parameters. Studies such as [90, 128] were based on the
feedback from users to rank cloud services or providers.

For example, [128] suggested a platform to help cloud consumers in cloud providers
selection. This selection is based on the evaluations submitted to the platform by other
users. This study proposed a database model that defines the maturity model. This

4

1. INTRODUCTION

maturity model enables users to judge the quality of the service. Based on the in-
formation stored in the underlying database (i.e. other users’ judgements), a user can
select a provider based on the evaluation of the quality of service of different providers.
This evaluation of each service is based on different criteria such as support, scalability,
security, auditability, compliance, Data Centres, Interfaces, Certificates and SLA. The
maturity of each service is calculated on the basis of the weighted arithmetic average of
those criteria. [155] proposed to match SLAs because they define quality parameters
to express consumer requirements and provider offers.

[155, 199] provide approaches to matching consumer requirements and provider
offers. Functionality matching is introduced to return the service that is relevant to the
consumer requirements [199], while SLA mapping is introduced in [155] as mapping
between SLA elements based on their semantics and syntax. Current cloud providers
provide different terminologies to define their quality parameters, which may have the
same meaning. In the comparison, this difference is to be considered. [155] introduced
a case-based reasoning solution to enhance the matching of different terminology used
in the SLA. However, it selects the provider based on the total number of matched
elements, which does not consider the consumer preferences regarding the quality pa-
rameters.

To compare and select a cloud service or offer from different alternatives, differ-
ent criteria may be considered. The authors in [182] suggested that selecting cloud
providers is an MCDM problem and proposed a multi criteria cloud service selection.
Furthermore, the authors in another publication [183] compared the effect of different
MCDM methods on cloud providers selection. Other publications, such as [18, 83, 85],
discussed MCDM in cloud service selection.

For example, [83] proposed a framework to measure and rank cloud services. They
provide the means for cloud consumers to compare their requirements with different
cloud providers’ offers. They suggested a quality model for IaaS providers, which
included factors such as service response time, sustainability, interoperability, avail-
ability, reliability and elasticity. The paper included an evaluation the service provider
offers using the MCDM approach.

In this thesis, we explore approaches to comparing cloud SLAs to support con-
sumer decision making, pertaining to offers that match requirements; we explore the
use of MDE to help to automate the comparison and selection processes.

5

1. INTRODUCTION

1.3 Problem Definition

Cloud computing SLAs are arguably specified in ways that are ambiguous, imprecise
and inconsistent; there is, as yet, no standard specification for cloud SLAs. Differ-
ent cloud providers have different pre-defined SLAs; these SLAs are usually defined
in terms of the technology they offer. As such, each provider describes their SLA
in a platform-specific way, using the vocabulary and terminology that best fits their
needs (including, for example, their advertising needs, i.e., for emphasising the cloud
provider’s unique selling points). This, in turn, makes it difficult for cloud consumers
to rigorously compare SLAs, and also makes it challenging for consumers to specify
and negotiate their own, bespoke SLAs that more accurately meet their own needs.
Ultimately, cloud SLAs are important for cloud consumers in helping them to choose
the most suitable provider that can help them to achieve their business goals.

The problem that we address in the thesis is: given the wide range of ambiguous,
imprecise and not-yet-standardised specifications of cloud SLA offerings, how can we
help cloud consumers and cloud providers to compare different SLAs and thereafter
choose between them?

1.4 Motivation

Different studies have compared, and thereafter supported the selection of cloud ser-
vices based on different parameters. An SLA has often been used in past work to
define the quality parameters that can be used as a basis for comparison. As such,
having a machine-processable SLA will support both cloud consumers and providers
in expressing requirements and offers, and comparing them automatically.

The motivation of this work is to help cloud consumers precisely, efficiently and
automatically compare different cloud computing SLAs. The increasing number of
cloud providers with different offered services makes it challenging for consumers to
match their demand.

There is a problem with this; a significant difficulty is that there is as of yet no
standard vocabulary, metamodel or ontology for cloud SLAs. How does one com-
pare two concepts that are defined in terms of different properties, terms or rules? Let
us consider a small example. Different public cloud providers used different vocabu-

6

1. INTRODUCTION

lary to present availability, e.g. “Monthly Uptime” is used in the Amazon EC2 SLA
[4], “Monthly Availability” is used in RackSpace [21], “ Monthly Connectivity Uptime
Service Level” is used in Azure [32] and “Server Uptime” is used in GoGrid [16]. This
different terminology makes it difficult for consumers to match their demands (e.g.
availability) against these offers. Consumers have to compare this different vocabular-
ies and their definitions to find matches between the cloud offers and their demands.
Public cloud SLAs, such as the AWS EC2 SLA, provide only “Monthly Uptime” as an
QoS parameter in the SLA; other quality parameters, such as response time, elasticity,
interoperability, etc., are not included, although consumers may be interested in them
[38, 197].

We aim to provide mechanisms to help consumers to decompose and formalise -
using MDE tools and techniques - the comparison process.

1.5 Research Hypothesis

The research presented in this thesis investigates the following hypothesis:
Can MDE principles and tools support the precise modelling of cloud computing

SLAs in such a way that cloud stakeholders can define their offers and demands? In

addition, can the MDE principles and tools enable a semi-automated comparison pro-

cess for cloud computing SLAs, in order to help cloud stakeholders to make better

decisions about the appropriateness of the offerings of different cloud providers?

The main characteristics of the above statement are as follows:

1. Modelling cloud SLAs: By using MDE principles, artefacts can be produced for
modelling a cloud SLA in a systematic, standardized and reusable way.

2. Comparison process: By using MDE principles and models of cloud SLAs,
model comparison can be used to compare cloud SLAs semi-automatically, sys-
tematically and in a reusable way.

3. Comparing cloud providers: using the results from 1-2 above, the cloud con-
sumer will be able to identify possible semi-automated matches between their
demands and the cloud providers’ offers.

7

1. INTRODUCTION

4. Supporting decisions: By using the results from 1-3 above, the cloud consumer
will be supported in reasoning about the results of a comparison in order to help
select a cloud provider.

5. Semi-automation: The proposed approach will provide the semi-automation of
the comparison process, whereby some steps of the comparison process might
need human intervention, e.g. to choose between the different possible compar-
ison approaches.

1.6 Research Objectives

Motivated by the problem’s definition and hypothesis, this thesis focuses on the fol-
lowing objectives.

1. To provide mechanisms for modelling cloud SLAs, based on MDE principles,
techniques and tools.

2. To identify and describe precisely different scenarios for comparing cloud SLAs.

3. To provide mechanisms for automatically or semi-automatically comparing cloud
SLAs, based on MDE principles, techniques and tools.

4. To propose mechanisms for presenting the results of comparing cloud SLAs in
machine processable forms.

5. To evaluate the above mechanisms via examples inspired by real SLAs from
current cloud providers.

1.7 Research Methodology

The aim of this section is to describe the methodology which was used to evaluate the
hypothesis of this research. This exploratory method “focuses on determining what
concepts to measure and how to measure them best” [153], which means providing
more details where little information exists. It is used as pilot for other detailed studies

8

1. INTRODUCTION

Figure 1.1: Research Methodology.

[153]. This methodology consists of the following phases: the analysis, design and im-

plementation and evaluation phases [115]. Figure 1.1 shows the flow between phases
of the research methodology. A detailed description of the phases is as follows:

1. The analysis phase is the literature review. In this phase, we analyse cloud com-
puting SLAs, via the exploratory method [153]. We use this method because cur-
rent cloud SLAs are ambiguous, imprecise and not yet specified in a standard for-
mat. Therefore, in this phase, studies of SLA are reviewed in terms of their tech-
nical aspects, specifications and management mechanisms (Section 2.1). We also
review cloud computing, its common services and classifications (Section 2.2).
We also discuss cloud computing SLAs in Section 2.2.4. Through this analysis,
we identified challenges that further motivate the hypothesis and objectives of
this research.

2. In the design and implementation phase, based on the findings of the analysis

9

1. INTRODUCTION

phase, we propose, design and implement an approach in order to address the
hypothesis. This phase includes:

(a) An approach to support automatic comparison of cloud SLA models. This
including use cases and scenarios of cloud SLAs comparison to analyse and
define the modelling assets that are involved in the comparison approach
(Chapter 3).

(b) A cloud SLA metamodel was designed based on the findings of the cloud
SLA comparison approach and the analysis phase. This metamodel was
built incrementally and iteratively together with a comparison algorithm,
which is explained in the following step (Chapter 4).

(c) A comparison algorithm for cloud SLAs was developed iteratively with
the previous step. Each time the cloud SLA metamodel was changed, the
comparison algorithm was refined (Chapter 5).

(d) Refining the cloud SLA metamodel and the comparison algorithm. These
two processes underwent multiple iterations to refine the design that guided
the implementation of the proposed approach.

(e) A process of analysing the outcomes of the comparison algorithm and
forming as an MCDM problem was conducted. A detailed framework for
cloud SLA models comparison has been designed (Chapter 6).

3. The evaluation phase was carried out by identifying case studies in order to as-
sess the quality of our proposed approach (Chapter 7). This process was carried
out iteratively for every major refinement of the implementation.

1.8 Thesis Structure

Chapter 2 provides an overview of SLAs by describing their main components and
discusses their specifications. It also discusses cloud computing, its features and clas-
sifications. It provides a general overview of the MDE by describing its main concepts
and principles and presents a review of the research that on the intersection between
MDE and cloud computing.

10

1. INTRODUCTION

Chapter 3 analyses and explores the problem and identifies the steps of the research
plan to answer and address the hypothesis and objectives of this thesis. These are men-
tioned earlier in Sections 1.5 and 1.6. This Chapter starts with a motivating example
and then defines the scenarios and the use cases. It explains the different comparison
alternatives, which are: name-based, optimal and approximate, then presents the steps
of the research plan and links them with the objectives of this chapter. The last section
explains the general approach of cloud SLA comparison.

Chapter 4 illustrates the cloud SLA metamodelling approach. More precisely, sec-
tion 4.2 describes different versions of the constructed metamodel. Then, section 4.3
describes the cloud SLA metamodel. This metamodel focuses on different concepts in
the cloud computing SLAs, such as the QoS parameters.

Chapter 5 describes a general approach for matching two SLA models. It also
introduces different comparison logics: optimal, approximate and name-based. The
matching logics are split into several tasks. Different implementation details are dis-
cussed.

Chapter 6 illustrates our approach for comparing cloud SLAs to support cloud con-
sumer decisions. It explains how the preferences of the consumer can be expressed as
a weight model. This section provides a description of a cost model that can be used
as the criterion for the decision-making. It also explains how the results of comparing
the cloud SLAs with weight and cost models can support consumers to select a cloud
SLA.

Chapter 7 describes the evaluation of the contribution in this thesis against the
proposition of this thesis. It provides a case study to evaluate the work of this thesis. It
also describes the limitation of this work.

Chapter 8 summarizes the findings and contributions of this thesis. It also discusses
areas for future work.

11

Chapter 2

Literature Review

This chapter reviews topics that are considered in this research and have influenced
the work; it also serves to allow the reader navigate the topics related to this work.
This chapter provides a comprehensive overview of SLA, cloud computing and MDE,
which has been used to carry out the research in this thesis and to identify the research
gaps in this area. This chapter is divided into three parts. Section 2.1 presents an
introduction to SLA. Then in Section 2.2.3, we present an overview of cloud computing
in section 2.2, including its features and classifications and cloud SLAs. One of the
objectives of this study is to provide mechanisms for modelling cloud SLAs, based on
MDE principles, as discussed in section 1.6. Hence, section 2.3 explains MDE and
its concepts related to our objectives. We present related work that discusses cloud
computing service selection in Section 2.4. Then, a summary of the issues related to
cloud computing selection modelling is discussed.

2.1 Service Level Agreement

Our proposed study focuses on modelling and comparing cloud computing SLAs. We
briefly describe SLAs and their key topics. Before we start discussing SLAs, we ex-
plain what a service is in the context of distributed computing. The IT Infrastructure
Library (ITIL) [17] defines a service as:

“a means of delivering value to customers by facilitating outcomes cus-

tomers want to achieve, but without the ownership of specific costs and

12

2. LITERATURE REVIEW

risks”.

An SLA can be a part of a legal contract agreement [124] that is established be-
tween two or more parties. This agreement defines the framework of the relationship
and responsibilities of the different parties. Service providers and service consumers
are the main parties to the contract. [189] defines an SLA as:

“An explicit statement of expectations and obligations that exist in a

business relationship between two organizations: the service provider and

customer”.

An SLA can be used to remove ambiguity between parties by defining the service
consumers’ requirements and specifying the service qualities and responsibilities of
each party. The intention behind specifying and using an SLA is that, by providing
precise definitions and conditions, the parties can reduce the areas of conflict. As a
result, an SLA is used most frequently to identify service consumer’s requirements
and service provider’s capabilities.

There are several possible SLA structures, Figure 2.1 shows an example of such a
structure. The main components, as in the example, are:

• Duration of the SLA: The agreement specifies the start and end dates regarding
which the agreement conditions can be applied.

• Parties: This refers to the involved parties who take part in the SLA, these are
usually a service provider, a service consumer and perhaps a third party.

• List of services: Each SLA: defines the list of services that are covered by the
agreement. This is illustrated in Figure 2.1 as service scope.

• Service definition: This part includes a detailed description of the service and its
features and functions.

• Service Exclusions: This describes the uncovered conditions and services in the
SLA.

• SLO: This part defines a threshold level of service that a service provider promises
to provide to the service consumer. For example, a service provider might
promise to provide a service with 99.9% availability of the service time.

13

2. LITERATURE REVIEW

Figure 2.1: An SLA example adapted from [28].

14

2. LITERATURE REVIEW

• Penalty: This section of the agreement defines actions that might be taken when a

service provider fails to meet the promised SLO (violation). Examples of actions

that can be taken are: terminating the SLA, or an increasing/decreasing in the

agreed payment.

• Agreement effective date: specifies the duration of the service.

An SLA is an engineered artefact: it is developed through many different phases,
from first creation through to termination. The engineering process for managing all
of these phases is called SLA management. SLA management, which is defined as:

“the process of negotiation, SLA articulation, checks and balances,

and reviews between the supplier and consumer regarding the services

and service levels that support consumers’ BP” [118].

SLA management consists of several steps: [44, 45, 126]:

1. SLA creation: SLA management starts with this phase. In this phase service
providers develop an SLA depending on their capabilities and provide SLA Of-

fers. In the service consumers context, they define their requirements and refine
then into SLA requirements [44, 68, 126].

2. SLA discovery and selection: Several studies have address SLA discovery and
selection [160, 197] as one phase of the SLA life cycle. This entails discovering
the offered services from different service providers’ services to select services
that satisfy the functional and non-functional requirements of the service con-
sumers. The selection step may also include a decision-making process [83].

3. SLA negotiation: Negotiation starts between different SLA stakeholders to agree
on and sign the terms of the agreement [160].

4. SLA Monitoring: This phase starts when the service is provisioned and activated
for the service consumer. The service consumer starts monitoring and validating
the SLA and detects any violations that may occur [197].

5. SLA termination: This occurs when a consumer or service provider decides to
terminate when, for example, a violation occurs, or the service’s SLA expires
[197].

15

2. LITERATURE REVIEW

It is important for a service provider to avoid violating SLOs because, if this hap-
pens, penalties (possibly financial in nature) may apply. Thus, monitoring SLAs and
violations is essential in order for a service provider to take appropriate action. Au-
tomation and autonomy for regarding SLA monitoring is introduced to provide contin-
uous monitoring, evaluation and reporting and to reduce the need for a human interven-
tion [77]. Therefore, approaches for electronic SLA specification and SLA manage-
ment have been proposed, such as the Web Service Level Agreement (WSLA) [102],
WS-Agreement [40] and SLA@SOI, which are discussed later (see Section 2.4.5).
The objectives of these electronic SLAs, in addition to providing autonomous moni-
toring and reporting of the agreed SLAs terms, are to provide autonomous negotiation,
identification and selection of services/service providers [104].

One of the main components used in SLA automation is the definition of QoS
parameters and metrics, in order to monitor threshold values and ensure that these are
not exceeded. Thus, QoS iwill form the topic of the next sub section.

2.1.1 Quality of Service (QoS)

In this work, we focus on the mechanisms used to model SLAs. We identify the key
components of the SLA and how these can be used later in comparing and matching
different SLAs. QoS parameters are an important part of SLAs and their comparisons;
they are typically used in SLA guarantee conditions. The section provides a brief
description of QoS.

SLO usually defines thresholds over the QoS parameters, e.g. response time <=

5 seconds. QoS is often considered as a part of the non-functional requirements [154,
167]. More precisely, QoS:

“often refers to a set of quality requirements on the collective behavior of

one or more objects” [59].

QoS parameters are used in SLAs to represent the level of services guaranteed by
the service provider, e.g. to guarantee that the service will be available 99.9% of

the time. QoS and its parameters have been undertaken in some SLA specification
languages, e.g. WSLA [102] and WS-Agreement [40]. QoS has also been used as a
basis for web service discovery and selection, as in [68, 154, 194]. Because of the

16

2. LITERATURE REVIEW

Figure 2.2: QoS Model [135].

objectives of this thesis, and because QoS parameters are defined in SLAs, we briefly
discuss the studies of QoS that are relevant to our work. We describe research on QoS
parameter specifications (Section 2.1.1.2), common QoS parameters that are defined
in the SLA (Section 2.1.1.1) and how QoS parameters are used as a basis for service
selection, in Section 2.1.2.

2.1.1.1 Common QoS and QoS classification

Terms such as availability, reliability, accessibility, performance and cost are exam-
ples of QoS parameters. QoS parameters can be categorized differently [83, 135, 154].
For example, the authors of [135] defined a QoS model fora web service SLA that cat-
egorized QoS parameters into four categories: Performance, Dependability, Security

and Trust and Cost and Payment, as illustrated in Figure 2.2. QoS can be catego-
rized from the perspective of the service party [46]. This is illustrated in Figure 2.3,
which categorizes the QoS parameters of web services into three categories: Developer

Qualities, Provider Qualities and Consumer Qualities. [83] defined the QoS parame-
ters required by customers in order to select a cloud service, as: accountability, agility,
assurance of service, cost, performance, security and privacy, and usability. QoS pa-
rameters may be defined in terms of their sub-parameters: e.g., availability is defined

17

2. LITERATURE REVIEW

Figure 2.3: QoS Model [135].

in terms of uptime and downtime (Equation 2.1).
With differences in service functionality and service provider technologies, dif-

ferent QoS parameters may be defined in an SLA. Furthermore, each QoS parameter
definition varies in the literature. For example, web service availability in [46] is de-
fined in terms of uptime and downtime, as an Equation 2.1, while a different study [78]
defined (power-station) availability in terms of Mean Time TO Repair (MTTR) and
Mean Time Between Failure (MTBF), as illustrated in equation 2.2.

Availability = Uptime/(Uptime+Downtime) (2.1)

Availability = MTBF/(MTBF +MTTR) (2.2)

Different QoS specifications and ontologies have been proposed to define the QoS
service offers and requirements. QoS ontologies (Section 2.1.1.2) and specifications
were used as a basis for service selection and discovery (Section 2.1.2).

18

2. LITERATURE REVIEW

2.1.1.2 QoS Ontology

This section presents the notion of a QoS ontology; ontologies have been widely used
in the automation of matching processes [131, 172, 194, 207]: e.g., to select web
services. The concept of QoS ontology has been proposed as a way of facilitating
the intercommunication between a service consumer and a service provider [75]; in
particular, it has been used as a way to specify the QoS parameters. It is also used to
facilitate machine reasoning [75].

A QoS ontology example is illustrated in Figure 2.4. This example defines QoS
as a subclass of non-functional requirements and is defined by a MetricName, Value,
valueType, etc. A later study suggested a set of QoS attributes to be considered when
developing QoS ontology, which are: a value, a value type i.e. numeric or literal, met-

rics which describe how the parameters are calculated, and a function, which defines
how metrics are related [74]. QoS ontologies focus on the structure of the QoS param-
eters and how they are related, which helps when reasoning about QoS information
[176]. SLAs make use of QoS parameters and other components, such as the parties’
responsibilities, SLOs and penalties, to assist with negotiating and monitoring services.
QoS ontology provides a descriptive model of QoS (i.e. semantic representation) for
machine understanding. In this study, we focus on the attributes of the QoS: Value,
valueType, unit, hasName and tendency, in the cloud SLA comparison.

19

2. LITERATURE REVIEW

Figure 2.4: QoS Ontology [75].

20

2. LITERATURE REVIEW

2.1.2 QoS-based web service selection literature

QoS parameters have been used as a basis for selecting web services. To illustrate the
approaches to web service selection based on QoS, assume that a consumer requests a
web service with functionality “X” and that two providers provide web services “X”.
The consumer wishes to be able to distinguish between the two services. Therefore, the
consumer compares, e.g. the response time of each service, and chooses the provider
service with the shorter response time. Several studies have proposed web service
selection based on QoS. The general steps of such approaches [121, 131, 162, 194]
are:

1. A consumer defines functional and non-functional requirements. Then non-
functional requirements include the QoS parameters.

2. Providers define their offers, i.e. services and QoS parameters.

3. A QoS model defines the QoS concepts and values.

4. A process matches the consumer requirements and provider offers and then se-
lects a provider.

For example, [121] proposed an extensible QoS model that includes generic and
domain specific QoS parameters and a QoS registry. The QoS registry allows the
service providers to register their services and QoS parameters. The QoS information
in the registry is provided by the providers, and then computed by the consumers,
based on monitoring service execution or user feedback. The QoS registry computes
the values of QoS for each service provider. It also ranks the web service providers
based on the QoS values, by defining a MCDM matrix. This matrix derives when to
select, e.g. a service between multiple alternatives with multiple criteria [193, 195].
Another study [162] provided QoS-based web service selection by first verifying the
syntax and semantics of the service and also by its QoS. It then measures the QoS
values to compare them with the one advertised.

The above studies are proposed for web services rather than cloud computing,
which is our current focus. The nature of cloud computing (which is explained in
Section 2.2), where more related QoS properties and its model are considered (see
Section 2.4.3). Another difference between the above studies and the current one is

21

2. LITERATURE REVIEW

the fact that the comparison is based on evaluating or analysing the QoS parameters
while the comparison in this study is based on the QoS parameters provided by the
providers and consumers as part of the SLA contract. These studies are similar to our
work in that they employ QoS as a basis for selecting between different alternatives
and defining the MCDM matrix (see Section 2.4.1.1 and Chapter 6); however, in this
thesis, one of our objectives is to specify a cloud SLA using MDE to allow providers
and consumers to define their offers and requirements (see Section 1.6).

Several studies, for example [194], have proposed a QoS-based selection by spec-
ifying a set of QoS ontologies and vocabularies. They used Web Services Modelling
Ontology (WSMO) to define the service and QoS parameters. The QoS parameter is
defined by MetricName, ValueType, Value, MeasurementUnits, ValueDefinition, Dy-

namic/Static, isOptional, hasTendency, isGroup, and hasWeight. The last four at-
tributes were defined for the purpose of selection. During the selection process, these
attributes are checked and matched semantically. A selection algorithm based on these
QoS parameters forms a MCDM matrix for selecting a service provider. The common
QoS metrics ontology in many studies is [75, 148, 175, 194]: name, unit, value, type
and tendency.

A dynamic service selection via an agent, coupled with QoS ontology, has been
proposed by [131]. Consumers and providers, by using a QoS ontology, express their
preferences and policies. This study distinguished three types of QoS: upper, middle
and lower. The upper QoS defines generic concepts of QoS such as, QMeasurement,
while the middle QoS defines a set of QoS parameters, such as availability and per-
formance. It also defines sub-classes for these parameters, e.g. MTTR and uptime
are sub-classes of the availability parameter. The agent then finds a match from the
providers’ services and ranks the service based on the consumer requirements. Simi-
larly, we specify set of QoS parameters such as availability and performance, and then
one or more attributes within each QoS parameter (see Chapter 4).

As discussed in Section 1.6, one of our objectives is to provide a mechanism for
modelling cloud SLAs. Therefore, we discuss in the next section cloud computing
technology and cloud SLAs.

22

2. LITERATURE REVIEW

Figure 2.5: Computing Paradigm Shift [191].

2.2 Cloud Computing

In this section, we provide an overview of cloud computing as a basis for developing
models of cloud SLAs (as discussed later in Chapter 4). We first provide an overview
of the general concepts and characteristics of cloud computing, then outline different
deployment mechanisms and service categorization of cloud computing. Following
this, we discuss the cloud computing service terminologies. Finally, we discuss com-
mercial cloud computing SLAs and their terminologies.

2.2.1 Introduction

Many definitions have been proposed for cloud computing, each of which, defines the
phenomenon from a distinct point of view. The National Institute of Standards and
Technology (NIST) defines cloud computing as:

“a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interac-

23

2. LITERATURE REVIEW

tion. This cloud model is composed of five essential characteristics, three
service models, and four deployment models” [133].

Other studies define cloud computing as a parallel and distributed computing sys-
tem [55], or as providing scalable and QoS guaranteed network-enabled services. [192]
and [186] defined a cloud as a pool of virtual, dynamically scaled resources which are
exploited by a per-use model. A well-known example of cloud computing is Amazon
Web Services (AWS).

Cloud computing is a topic that is attracting significant attention in both industry
and academia. It has been described, in [191], as a computing paradigm shift. The
authors argue that this paradigm consists of 6 phases, as shown in figure 2.5. In the
first phase, users used a dummy terminal with monitors and keyboards, connected to
mainframes. In the second phase, users used stand-alone PCs. In the third phase, users
share resources connected by a network. In the fourth phase, users are connected to a
global network (internet), which is formed of local networks connected to each other,
using PCs to access applications and resources. In the fifth phase, users using PCs
can connect to a computational grid. Grid computing involves combining distributed
resources from different organizations to reach a common goal [53]. The sixth phase
is cloud computing, where scalable software and hardware resources are provided as a
service and can be accessed remotely.

Cloud computing shares aspects with, and is built on, existing technologies. For
example, AWS provide cloud services using pre-defined Application Programming
Interfaces (APIs) described as Web services that are implemented across HTTP. Web
services are used to build web applications and can be described using WSDL, which
is based on Extensible Markup Language (XML). WSDL describes a collection of
operations that web services expose.

Cloud computing is often defined in relation to Grid Computing [82, 187]. Grid

Computing is distributed computing that coordinate resources using standard, open,
general-purpose protocols and interfaces for a common goal [82, 186]. Cloud com-
puting and grid computing share several features in common, such as employing dis-
tributed resources and supporting the aggregation of heterogeneous hardware and soft-
ware resources.

However, cloud and grid computing differ in other aspects, such as resource shar-
ing. Grid computing aims to enable fair resource sharing across organizations and

24

2. LITERATURE REVIEW

coordinates resources whereas, in cloud computing, cloud providers provide resources
to cloud consumers as a dedicated service/resource. They differ in other aspects, such
as their business model; in cloud computing, the payment model is based on consump-
tion, which is not usually the case in grid computing. Cloud computing is thus a form
of Utility Computing, which refers to providing computing resources like other utili-
ties, such as electricity. Cloud consumers are expected to pay bills on a consumption
basis.

Clouds rely on Virtualization technology. [156] describes virtualization as an ap-
proach to abstracting the complexity of the physical resources and providing virtual
resources to cloud consumers. There are different levels of virtualization, such as
server, storage and network virtualization. In server virtualization, the physical server
hosts several virtual servers. These virtual servers may run different operating sys-
tems and share the same physical resources in the host server. Hypervisor software,
such as Xen, KVM and VMware, are examples used to create a virtual machine in
the cloud. Cloud computing, by using virtualization, can dynamically add, resize or
remove virtual resources (e.g virtual servers) on demand.

Cloud computing has its own features that make it distinct from other technologies.
Some of these features will be discussed in Section 2.2.2.

In the context of this work, we need to define the terms: cloud provider and cloud

consumer, which will be used frequently throughout this thesis. A cloud consumer

(cloud service consumer) is a user or organization that uses or consumes one or more
cloud computing services. Cloud consumers can be end users, enterprises, developers
and cloud resellers. A cloud provider (cloud service provider) is an organization that
provides cloud services to consumers.

2.2.2 Cloud computing features

In this section, we list the features of clouds that are found in the previous studies about
cloud computing. These features are general and independent of the different classes
or categories of cloud, which are introduced later in Section 2.2.3.

• Autonomous: Cloud computing is typically described as self-service, where con-
sumers can request, manage, configure, release and access their resources, with-
out the need to interact directly with the cloud providers. These activities can

25

2. LITERATURE REVIEW

usually be performed via automated systems.

• Pool of Resources: Cloud computing provides a pool of computing resources
as a service to consumers. These resources are generally computing power,
memory, storage, networking, operating systems, platforms and applications
[82, 158, 186].

• On-demand service provision: Resources in the cloud are provisioned and of-
fered on-demand. Consumers can release resources when they are not required.
For example, a consumer could request a virtual machine in Amazon EC2 to
use for as long as needed; when finished, they can release this computing power
[41, 55, 186]. This characteristic can potentially help to reduce the operating
expenses, as resources are only paid for as long as they are used.

• Ubiquitous network access and Location independent: Resources can be ac-
cessed remotely from anywhere and at any time. Cloud computing resources are
provided and are available through the network. They can be accessed by using
thin and thick clients (e.g. PCs, laptops and mobile phones) [133].

• Rapid Elasticity: Because of their self-service and on-demand characteristics,
a consumer can rapidly scale-in (decrease resources) or scale-out (increase re-
sources). The provisioning of services, in many cases, can be done automat-
ically. For example, cloud providers such as Amazon EC2 [3] claim that con-
sumers can add a number of virtual servers within a very short time; e.g., minutes
rather than hours or days.

• Metering/Measured services and SLA: A cloud system provides a metering ca-
pability for distinct resources, and charges consumers based on their usage of
those resources. Measuring resource usage is a key element needed to charge the
consumer accurately. This is important for both billing and capacity planning.
Therefore, cloud providers such as Amazon provide tools that automatically and
continuously monitor and manage the usage of resources.

For example, AWS provides a cloudWatch [2] service and resource monitoring,
such as CPU utilization within a time period (say 5 minutes) [2]. By monitor-
ing these metrics, a consumer may decide to take some action. Assume that a

26

2. LITERATURE REVIEW

CPU utilization is desired to be between 20-90%; when it exceeds the upper
limit, a consumer may wish to run another Virtual Machine (VM), and when it
falls below the lower limit, this VM, which is considered to be an underutilized
resource, can be shut down to reduce costs. Monitoring metrics (e.g. uptime

and downtime) allows consumers to ensure that the guarantees applied by cloud
providers in an SLA (e.g., availability) are fulfilled.

• Payment Model: As discussed earlier, cloud computing uses a pay per con-
sumption model. Consumers pay only for the actual usage of resources. Cloud
providers charge on a pay as-you-go or or subscription basis. With the former,
consumers pay for a unit of service (e.g., GB, CPU), usually for a certain period
of time (e.g. an hour), while, with the latter, cloud consumers sign a contract and
pay “for using a pre-selected combination of service units for a fixed price and

longer time frame, usually monthly or yearly” [196].

The features of cloud computing have been claimed to encourage enterprises to
investigate how they can benefit from their applications by migrating to the cloud. This,
however, raises several issues concerning aspects such as reliability and availability,
interoperability and security and privacy [41, 71, 208]. [89, 149] suggest that the
migration process (i.e., application or data) to the cloud does not have to be “all or
nothing”, as some services can be migrated while others are not. Thus, before moving
to he cloud, these challenges should be planned and studied [64, 89].

Cloud computing provides various services. Clouds have been classified based on
the services they provide. It is essential to understand the difference between these
services and classifications in order to, better plan whether moving to the cloud and
achieving the enterprise’s goals. The next section discusses the different classifications
of cloud computing.

2.2.3 Cloud classification

In this section, we discuss cloud computing classifications to give the reader a better
overview of the cloud domain. This will help to explore the domain of cloud computing
and understand the cloud terminologies. [38] stated that different categorizations of

27

2. LITERATURE REVIEW

cloud computing have different QoS parameters to be defined in an SLA. This section
presents two classifications of cloud computing.

Cloud computing can be classified depending on the service model and deployment
model. Deployment models differ in terms of who the consumers of the cloud services
are and who owns the cloud. Existing deployment models include: public clouds, pri-

vate clouds, hybrid clouds and community clouds. Service models differ in terms of
the types of services that are provided by the cloud. The most prominent service mod-
els are: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS) [151]. We briefly explain both the deployment models and service
models, which are summarized in Tables 2.1 and 2.4.

2.2.3.1 Cloud computing deployment model

• Private cloud: The services of private clouds are provisioned for exclusive use
by an organization. The infrastructure of the cloud is hosted and managed within
the organization or can be run and managed by a third party, on behalf of that
organization alone [133]. Reduced capital cost is not generally a key goal for
such clouds [127, 163]. However, privacy concerns are reduced when compared
with public cloud computing. In private clouds, the enterprise owns the data, and
they are not shared with others, such as in public clouds [99].

• Public cloud: Public clouds provide cloud services to public consumers, who
may belong to different organizations. Each cloud provider applies its own pol-
icy and pricing models. Examples of such clouds are; AWS, RackSpace, Google,
Windows Azure and GoGrid. Consumers of such types of clouds buy services
and pay on a per-consumption basis.

• Community cloud: In community clouds, cloud services are offered to con-
sumers of the same community with common policies, values and concerns (e.g.
security requirements), where they share the same infrastructure [133]. It is sim-
ilar to a private cloud but it is provided to a set of organizations rather than a
single one [97].

• Hybrid cloud: Hybrid clouds involve combining of more than one cloud (private
and public) to provide a cloud environment, i.e., a cloud infrastructure of hybrid

28

2. LITERATURE REVIEW

clouds consists of both public and private clouds. Each cloud is independent but
they are bound together by standardized or proprietary technology which enables
data and application portability [133].

Table 2.1: Deployment models of cloud computing

Deployment Model Characteristics Advantages Disadvantages

Private Cloud Services exclu-
sively provided
for a single
enterprise

Critical and core
applications can
be applied, where
the privacy is not
the main concern
[99]

There can be
a significant
upfront cost
[163]

Public Cloud Services are pro-
vided for public
use.

Reduced upfront
cost [127], Pay
per consumption
basis

Security, privacy
and jurisdiction
[92]

Hybrid Cloud Combination of
private and public
cloud

More secure
than public ones,
where critical
data can be stored
in a private cloud
and is more cost-
efficient than
private and public
clouds [132]

Data portabil-
ity, planning of
load distribution
across private
and public re-
sources adds
to complexity
[132, 200]

2.2.3.2 Cloud computing service model

• SaaS

In this service model, cloud providers host the applications. The consumers ac-
cess applications through networks via thin or thick client interfaces. Consumers
do not have to concern themselves with managing the underlying cloud infras-
tructure, maintenance, installation and updating the application[114, 116] “with
the possible exception of limited user-specific application configuration” [133].
In this cloud, instead of buying software licenses and installing applications on

29

2. LITERATURE REVIEW

in-house servers, the applications are hosted by a third party, which can con-
ceivably reduce the capital costs [203]. Examples of this kind of service are
Salesforce.com (Customer Relationship Management (CRM)) and Google Apps
(such as Google Docs). SaaS is a multi-tenant platform [156], which supports
many consumers using a common infrastructure [173].

• PaaS

PaaS clouds provide an environment in which to build, deploy, test and host ap-
plications, which tend to operate online [116, 156]. The PaaS cloud providers
provide the hardware and software to build an application, which frees the de-
velopers from concerns about the underlying system. Lawton [116] states that
PaaS provides the developer with an OS, API programming languages and man-
agement capabilities.

For software developers, the complexity of the underlying physical system is
hidden and they only need to focus on the application development process. The
developer does not need to worry about how to configure the servers for building
applications, and thus has the potential to increase programming productivity
[91].

Cloud providers, such as the Google App Engine [13], Force.com [12] and
Heroku [34], are examples of PaaS. Some PaaS clouds allow developers to work
offline e.g. the Google App Engine, whereas others, such as Bungee Connect
must to be connected to the internet to build their applications [190].

For example, Google App Engine enables developers to build web applications
using standard Java and Python technologies. The application is run under the
Google infrastructure. Google provides distributed data storage services as well
as, API for authenticating users and sending email using Google accounts [31].
The Google App Engine provides a SDK, to allow developers to work offline and
then upload their application to the Google App Engine. They can also upload a
new release of their application as a new version.

• IaaS

IaaS is a service model that offers users computing power, storage and network
topologies as a service [133]. Cloud providers own the physical resources of

30

2. LITERATURE REVIEW

Table 2.2: IaaS, PaaS and SaaS service models

Service Model Service Contents Characteristics

SaaS Applications, e.g. Social
networks, Office suites,
CRM, Human Resource
Management (HRM)

– Consumers are provided
with an application,
which is accessible
remotely at any time,
and do not have to
worry about managing
or controlling the un-
derlying infrastructure
and application platform
[114, 116, 133]

– Consumers can config-
ure their applications
[133]

PaaS Programming languages and
environments, e.g. Devel-
opment tools, Frameworks,
Deployment tools, Databases,
Data storage, Message queue

– Consumers are provided
with a platform to de-
velop their application
and do not have to worry
about managing or con-
trolling the underlying
infrastructure, servers or
operating system [91]

– Consumers can develop
and deploy applications
using the platform and
tools provided by PaaS
cloud providers [91]

IaaS Servers, Storage, Network
(e.g., firewalls, load balanc-
ing)

Consumers are provided with
virtual hardware and do not
have to worry about managing
or controlling the underlying
infrastructure [132]
Consumers can deploy and
manage their own software
OS on virtual hardware and
manage it [91]

31

2. LITERATURE REVIEW

IaaS, and supply a pool of resources. The service contents are computing re-

sources (servers), storage devices and networking. Consumers are free from the
concerns related to managing the underlying infrastructure, so they can focus on
managing the virtual hardware [91, 132]. They can acquire and access these re-
sources (servers, storage and network) as a service remotely. Cloud consumers
do not control the underlying cloud infrastructure, but do control the provisioned
service, as well as. the operating system, storage and certain network functions
such as a firewalls [43].

Amazon EC2 and S3 [1, 5], GoGrid [15], and Rackspace [21] are examples of
commercial IaaS clouds, while Eucalyptus [33] and OpenNebula [35] are ex-
amples of open source IaaS clouds. In public clouds, providers compete on the
basis of the performance of their resources and also pricing. IaaS clouds offer
APIs to start, stop, scale and manage these services. In this thesis, one of our
objectives is to model SLAs for clouds (Section 1.6), specifically IaaS clouds.
Therefore, we discuss the IaaS attributes in more detail. The key IaaS attributes
are as follows:

– Computing Power: IaaS cloud provides servers as a service; they are ac-
cessed remotely ,as in Amazon EC2 [3]. It allows consumers to increase
their computing capacity rapidly and without buying and investing in new
hardware. The IaaS cloud is based on virtualization technology (see Sec-
tion 2.2.1), which allows the creation of multiple servers with various op-
erating systems on one physical server; the consumer then acquires the
server. Consumers can control the server and its operating system and de-
ploy applications on it, then release or stop the server when it is not needed,
to reduce costs. Providers offer pay as-you-go models for payments. In the
subscription model, consumers pay in advance for certain servers for a cer-
tain period of time, whereas, in the on-demand payment model, consumers
pay for resource usage only for a short time unit (an hour). The price of a
server depends on the server performance (RAM, Compute Unit), operat-
ing system and payment model.

– Storage: Another facility offered by a typical IaaS provider is on-demand
storage. Consumers can store and retrieve their data with the cloud, typ-

32

2. LITERATURE REVIEW

ically using web access, such as AWS S3 [5] and RackSpace cloud files
[21]. Most providers offer storage and charge consumers based on the
space they use on a monthly basis. The price depends also on the stor-
age type, which may include: Object storage and block storage. Object

storage (such as RackSpaces cloud files or AWS S3) provides access to an
object through an API interface, and, contains a collection of objects and
each object contains object data and object meta-data [79]. Block storage is
file level access, which is a “logical array of unrelated blocks, addressed by
their index in the array (i.e., their Logical Block Address (LBA))” [79] and
can be used when consumers need to increase their hard drive utilisation.

– Networking: Cloud IaaS provides networking and communication services
such as load balancing, firewalls, and public IPs. Some providers allow
users to create a Virtual Private Cloud (VPC). Cloud providers charge con-
sumers for the transferred data or bandwidth. They generally charge based
on the amount of data transferred within a month. Many IaaS clouds trans-
fer data-in to the service of the service provider, which is a free service or
costs less than transferring data-out of the service [3, 21].

To provide a better explanation of the IaaS model, let us consider Amazon EC2
as an example [1]. Consumers request computing power from EC2 in the form
of VMs; these VMs are launched within a short time. The VMs are created
from a pre-configured Amazon Machine Image (AMI), or by creating an AMI
that contains the consumer’s application, data and configuration. Consumers
can store these AMI with data and configuration settings using Amazon S3 as
repository, then create VMs rapidly based on these AMIs. They can choose
the size of computing power offered by Amazon, such as the operating system,
small instances, large instances, extra-large instances, etc., then configure the
security group and network access to the EC2 instances. Depending on a set of
conditions, they can auto-scale. The pre-defined conditions with the continuous
monitoring of VM allow rapid scaling when these pre-conditions are met.

In this section, we discussed cloud computing and the different kinds of provided
services, mainly IaaS. We focused on the main concepts of the IaaS service. The main
functional properties of the IaaS cloud are: computing power, storage,and networking.

33

2. LITERATURE REVIEW

We also considered how each service can be charged. Understanding cloud services
helps a cloud consumer to decide what is to be outsourced in the cloud. This includes
details of how the service is monitored and managed. Given sufficient details, cloud
consumers and cloud providers can negotiate over the offered services. Cloud con-
sumers can thereafter compare different offers from various cloud providers based on
QoS and cost [64]. Concepts such as computing power, storage and networking can
be used as a basis for cloud computing comparison and matching cloud computing
services[141, 206].

For cloud consumers, the challenge is to define their demands for their business
goals. clearly They have to provide a clear definition of the required service(s) and
QoS, while also minimizing the cost. Those requirements are used as a basis for com-
paring different offers. Like web services and other distributed systems, QoS is used
as a basis for comparing the services of different service providers. Therefore, the next
section discusses cloud SLAs.

2.2.4 Cloud SLAs

After presenting an overview of SLAs in section 2.1 and cloud computing concepts in
section 2.2, we now discuss commercial cloud SLAs. One the objectives of our thesis
(Section 1.6) is to provide mechanisms for modelling cloud SLAs. This section inves-
tigates the cloud SLA domain, however, an overview of cloud computing researches
that discuss the QoS of cloud computing and the comparison and selection of cloud
services is presented later in section 2.4.

2.2.4.1 Commercial Cloud SLAs

Our objective of this thesis is to model and compare cloud provider’s SLAs and cloud
consumer’s requirements, and thereafter demonstrate how to use model comparison
technology to automate various matching processes. We first analyse and compare the
SLAs of commercial cloud providers.

Commercial cloud providers, such as Amazon [4, 6], GoGrid [16] and RackSpace
[23], provide a static or pre-defined (non negotiable) SLA. [92] argues that there is a
lack of well defined SLAs from the commercial cloud providers.

34

2. LITERATURE REVIEW

Table 2.3: Common components in SLAs of commercial cloud computing

EC2 Azure RackSpace GoGrid
Commitments EC2 Availabil-

ity 99.95%
Monthly
Connectivity
Uptime Ser-
vice Level
99.95%

Network 100%
for cloud
server failure
restoration
or repair will
be complete
within an hour
of problem
identification

100% server
uptime 100%
uptime of
the internal
network

Credit <99.95%
monthly up-
time: 10%
credit, <99%
monthly up-
time: 30%
credit

<99.95%
monthly up-
time: 10%
credit, <99%
monthly up-
time: 25%
credit

Network:
5% of the
fees for each
30 minutes
of network
downtime, up
to 100% of
the fees Cloud
Server Hosts:
5% of the fees
for each addi-
tional hour of
downtime, up
to 100% of the
fees

Credit equiv-
alent to 100
times the Cus-
tomer’s fees
for the im-
pacted Service
feature for the
duration of the
Failure, up to
100%

Credit Request Email Customer con-
tact Support

Customer
contact Cloud
team

Customer
completes
the auto-
mated SLA
Credit Request
process online

Interval time to
request credit

by the end
of the second
billing cycle
after violation

5 business Day 30 days 48 hours

Service Time Monthly Monthly Monthly
period

Current period

35

2. LITERATURE REVIEW

Commercial cloud providers define different SLA structures and terminologies.
For example, Amazon EC2 defines Monthly uptime, while RackSpace define Monthly

Availability in their SLAs. Gogrid, as another example, defines different cloud ser-
vices, their QoS parameters and SLO for each service in one cloud SLA, while Ama-
zon EC2 defines two SLAs; one for the EC2 service and the other for the S3 service.

In this section, we compare some of the pre-defined and non-machine readable
SLAs of IaaS clouds, which are: Amazon [4], GoGrid [16] and RackSpace [23], to
identify the similarities and differences between the SLAs. In the comparison, we
sought any similarities and differences in the structure of the SLA components, such
as services (e.g. server, storage, network) covered by the SLA, SLO and QoS.

The general structure of pre-defined SLAs is quite similar, as observed in Amazon
EC2 and S3 [4, 6], GoGrid [16], Windows Azure (Cloud Services SLA) [32] and
RackSpace [23]. The general common structure of pre-defined cloud SLAs consists
of:

• Service: each cloud provider defines the services covered by the SLA. For ex-
ample, Amazon ECs SLA covers the services Amazon Elastic Compute Cloud

and Amazon Elastic Block Store, while there is another SLA for Amazon Simple

Storage Service which is called Amazon S3. The Gogrid SLA covers computing

service, cloud storage and networking in one SLA.

• Definition section: defines and describes terms used in the SLA. For example,
Amazon EC2 defines monthly uptime and service credit and this is applied to the
other clouds SLAs.

• Obligation section: contains the SLOs of the service. These define precisely
the thresholds of the quality values and describe the action to be taken when a
violation occurs. In some pre-defined SLAs, this section is called commitment.
The most common QoS indicator introduced in these SLAs is availability, par-
ticularly its attribute uptime.

• Credit: This section describes how the credit is calculated. In case of violation
or failure of an SLA, certain remedies may apply. In the case of cloud comput-
ing (Amazon, GoGrid, RackSpacae and Windows), these remedies are credits,

36

2. LITERATURE REVIEW

which are calculated and defined and given by the cloud provider to the cloud
consumer.

• Credit Request: This describes the requirements for requesting credits e.g. re-
quests within 5 working days of when the violation occurred and providing evi-
dence of the violation (service logs).

Table 2.4: Differences in terms of QoS parameters referred to in commercial cloud
SLAs

EC2 Azure RackSpace GoGrid

Availability 99.95%
Monthly
Uptime Per-
centage

99.95%
Monthly
Connectivity
Uptime

99.9%
Monthly
Availability

100% Individ-
ual servers up-
time

Time to re-
solve

- - 1 hour -

Support re-
sponse time

- - - 30 m (Emer-
gency), 120
m(Others)

(Internal)
Network
performance

- - - Packet loss
<0.1, Latency
<5ms

Outage Running in-
stances have
no external
connectivity,
Elastic Block
Store (EBS)
perform zero
read write IO

Connectivity
Downtime

API error Failures in the
hardware and
hypervisor

However, these pre-defined SLAs differ in terms of the details of those sections,
depending on the technology offered by the provider, as illustrated in Table 2.4. We

37

2. LITERATURE REVIEW

observed that availability is a common QoS indicator in cloud pre-defined SLAs. The
terms availability or uptime always appear in publicly available cloud provider SLAs,
but availability properties, such as uptime and downtime, are defined and calculated
differently. These attributes, together with their threshold (which are used to evaluate
availability), are defined in the obligation section of each SLA. This difference in ter-
minology (and the semantics of the widely used terms) makes it difficult for consumers
to make meaningful comparisons of cloud SLAs. The challenge is to enable the auto-
mated comparison of similar QoS parameters, while keeping the SLA flexible to allow
cloud providers and cloud consumers to define their own terminologies.

We aim to provide support for comparing different cloud SLAs, using different
scenarios then use the results of these comparisons for further processing; e.g., dif-
ferent visualizations. The objective of this thesis (see Section 1.6) is to model cloud
SLAs and automate the comparison process using MDE. MDE supports automated
processing and standard representations and is used successfully in software develop-
ment processes. Therefore, the topic of the next section (see Section 2.3) is MDE.

2.3 Model Driven Engineering (MDE)

MDE uses models as first-class artefacts of the development process. It is argued that
MDE can be used to manage the complexity of software development, by using stan-
dardized languages and the automated management of engineering artefacts (models).
In MDE, models are expressed at different levels of abstraction to capture various con-
cepts, knowledge and also the requirements of the problem domain. MDE “allows the
exploitation of models to simulate, estimate, understand, communicate and produce
code” [84]. MDE aims to improve the productivity and quality of software develop-
ment, to improve communication and information sharing between stakeholders and
also automation [136]. This approach is relevant to abstracting the complexity of the
software development process.

In this thesis, we present cloud SLAs as standard artefacts to automate the process
of cloud SLA comparison and selection. Thus, to achieve these goals and as explained
in the introduction (see Section 1.6), we employ MDE; hence, this section gives an
overview of MDE concepts. MDE involves the key concepts of: models, metamodels,
model transformations and model management. This section describes these MDE

38

2. LITERATURE REVIEW

artefacts and relates them to the previous discussion on cloud computing and SLAs.

2.3.1 Models

Models are the core artefacts in MDE. As in object-oriented technology, where ”Ev-

erything is an Object”, MDE is based on the principle that ”Everything is a model”

[49]. There have been many definitions of the term model: “ A model is a represen-

tation of a concept. The representation is purposeful: the model purpose is used to

abstract from the reality the irrelevant details” [168]; “A model is a purposely ab-

stracted, clear, precise and unambiguous conception” [80]; “A model is a purposeful

abstraction that allows one to reduce complexity by focusing on certain aspects” [184].
Thus, a model is an abstraction of reality, which can be a system, phenomenon, object
system or a system under study (SUS) [113]. The model represents the main properties
of the system under study. By focusing on the main properties and discarding ones,
models simplify and reduce the complexity of the system under study.

A map is an example of a model; it represents a certain geographical area. For same
area, there can be different maps, each of which is represented in a way that supports
a certain goal [49], e.g., to describe political boundaries, the geological structure, etc.

Models are used widely in the field of science. Some examples of model usage in
science are mathematical models, statistical models and biological models. In software
development, models are used generally; for example, to describe software architecture
or the behaviour of a system. In the context of software development, one of the
aims in using MDE is to increase the automation of the software development process
[88, 105]. One of the definitions of a model, in the context of MDE, is

“a description of (part of) a system written in a well-defined language.
A well-defined language is a language with well-defined form (syntax),
and meaning (semantics), which is suitable for automated interpretation
by a computer” [103].

A model is expressed in a modelling language. A modelling language is defined in
terms of metamodels. A metamodel describes the abstract syntax of a language.

39

2. LITERATURE REVIEW

2.3.2 Metamodel

The relationship between a model and a metamodel is called instantiation. A model
conforms to a metamodel [49]. A metamodel defines the modelling language in a high
level of abstraction (e.g. above the code level). A model conforms to a metamodel,
which specifies its elements based on the concepts that are defined in the metamodel,
and uses these elements according to the rules or constraints of the metamodel. A valid
model is one that conforms to a metamodel and satisfies the constraints captured by its
metamodel [146].

For example, classes, data types and packages could represent the key construct
(abstract syntax) of the modelling language. Figure 2.6 provides an example of the
metamodel abstract syntax, which defines a model. This model consists of a collection
of types, each of which has a name and attributes which also have a type. Concrete
syntax is the notation that is used to enable the description and presentation of the
model [61]. Concrete syntax can be textual or graphical [61]. A common example of a
general purpose modelling language is the Unified Modelling Language (UML) [29].

Returning to the abstract syntax shown in Figure 2.6, a possible concrete syntax for
this abstract syntax is listed in Listing 2.1. Semantics are used to describe the meaning
of the concepts in the language.

Figure 2.6: Metamodel of abstract syntax for a simple language [137].

service requester SLA model with provider SLA model]

Listing 2.1: Concrete Syntax example [137]

1 Type Mail {

2 From : User

3 To : User

4 }

5 Type User {

40

2. LITERATURE REVIEW

6 Name : String

7 }

8 Type String;

Several metamodelling frameworks have been proposed, which can be used to de-
fine metamodels and models that conform to their metamodels, such as the OMG Meta
Object Facility (MOF) [19] and Eclipse Modelling Framework (EMF) [9].

2.3.3 Model management

The aim of MDE is to raise the level of abstraction and increase the automation in the
software development process. A typical MDE process involves various inter-related
models that capture different level of abstractions and may use different modelling lan-
guages. Model management is the discipline of manipulating models (e.g., via trans-
formation, comparison, merging) using automated tools. Model management tasks,
such as model transformation, validation and comparison, are discussed in this sec-
tion.

2.3.3.1 Model Transformation

Transformation is a fundamental operation in MDE. A transformation transforms a
source model into one or more target models, based on the transformation rules. The
rules describe how concepts in the source model relate to those in the target models;
these relations are expressed in terms of the source and target metamodels [103, 166].
Transformations can be used to transform models from higher levels of abstraction to
lower ones. They can also be used to transform models at the same level of abstraction.
Another transformation can be performed from a low level to a higher level (e.g. in
reverse engineering). Transformations can also generate code.

There are different approaches to transformations such as Model-to-Model (M2M),
Model-to-Text (M2T) and Text-to-Model (T2M). In M2M, the target model is derived
from the source model. The transformation in M2M is usually defined by a set of
rules, each of which specifies how the source element(s) is transformed into the equiv-
alent target element(s) [109]. Many M2M transformation languages have been pro-
posed, such as the Epsilon Transformation Language (ETL) [109], Query/View/Trans-
formation (QVT family) [20] and ATL (ATLAS transformation language) [98]. M2M

41

2. LITERATURE REVIEW

languages can be classified as imperative, declarative or hybrid [109]. In the impera-
tive transformation, the scheduling of the rule execution is defined by users explicitly,
whereas in declarative languages, an execution engine decides which rule is to be exe-
cuted. Hybrid languages are a mix of implicit and explicit rule scheduling. An example
of a M2M transformation written in ETL (a hybrid language) is shown in listing 2.2.
ETL syntax is explained later in section 2.3.4.7.

In an M2T transformation, the target is text, e.g. code or non code artefacts such
as documentation. Common approaches to M2T transformation are template-based
approaches [65]. The Epsilon Generation Language (EGL) is an example of M2T
transformation language, as explained later in section 2.3.4.6.

The third type, T2M transformation, transforms text into generate structured arte-
facts that are used to form models. The different transformation approaches are pre-
sented in [65].

Listing 2.2: Example of ETL rule from [11]

1 rule Tree2Node

2 transform t : Tree!Tree

3 to n : Graph!Node {

4 n.label = t.label;

5 if (t.parent.isDefined()) {

6 var edge = new Graph!Edge;

7 edge.source = n;

8 edge.target = t.parent.equivalent();

9 }

10 }

2.3.3.2 Model Comparison

Model comparison is an operation executed on two models to identify any matching
elements between them [54, 106]. Model comparison is an important task in MDE; it
supports model development processes (e.g. for model versioning) [60], model com-
position and model transformation testing [107]. For two model elements, we need
a calculation or algorithm in order to be able to compare or match two models [54].
The outcome of this calculation may identify any differences; e.g., elements for which
matching elements do not exist in the opposite [107] model.

42

2. LITERATURE REVIEW

Several model comparisons apply different calculations and methods to match two
models. [110] categorized several approaches to model matching. In Identity-based

matching, elements are matched based on their identities, assuming that each element
has a unique, static and persistent identity. This approach finds any differences be-
tween two versions of the same model, and so does not work for independent models.
The second approach is signature-based matching. This is similar to identity-based
matching, in that it matches the identities of elements. However, the identity in this
matching is not static but calculated dynamically. This approach applies to comparing
independent models. A third approach is similarity-based matching. This approach
seeks to calculate the aggregate similarity of the features of elements. It also spec-
ifies a weight for each feature. Finally, in custom language-specific matching, users
can specify a comparison algorithm using a specific language for comparison. While
this approach can provide more accurate matching results, it requires significant ef-
fort to develop the comparison algorithm. ECL is an example of this approach. This
thesis’ objective, as described in Section 1.6, is to compare cloud SLAs using MDE
principles; thus we use one of the model comparison approaches, i.e., ECL, which is
explained in section 2.3.4.4.

2.3.3.3 Model Constraints

In a large software development process, where different but related models are created
for different perspectives [51], it is essential to detect and report any inconsistencies
between the models [51]. Models with missing information (incompleteness) and in-
compatible information (contradiction) are forms of inconsistency [105].

The Object Constraint Language (OCL) is a prominent language used to specify
the consistency constraints in UML. Epsilon Validation Language (EVL) is another
example of a model validation language, as discussed in section 2.3.4.7. The EVL
supports the repairing of inconsistencies as well as inter-model constraints, which is
not the case with OCL [105].

2.3.4 MDE Tools

A number of model management frameworks exist, including AMMA [48], EMF
[169], and Epsilon[10]. In the following sections (2.3.4.1 and 2.3.4.2), we discuss

43

2. LITERATURE REVIEW

EMF and Epsilon, as these technologies are employed in this thesis.

2.3.4.1 EMF

The Eclipse Modelling Framework (EMF) is built on the Eclipse platform, which is in
itself a tool-integration platform for software development. It provides tools such as a
graphical editor to define the metamodels and tools to generate model editors form the
metamodels. The EMF framework includes three main components: Ecore, which is
used to specify metamodels, and EMF.Edit, which is used for building editors for new
modelling languages and EMF.Codegen, which is a code generation for facilitating
the building of an editor for the EMF model. The EMF model editor consists of;
a navigation view to specify the models’ elements and property, and, is used in the
model examples in Chapter 4. Several tools have been built for use with the EMF, such
as the Graphical Modelling Framework (GMF) [14] and Epsilon [10], as described in
section 2.3.4.2.

2.3.4.2 Epsilon

We use Epsilon in this thesis to implement model comparison, transformation, man-
agement and and creation. Epsilon [108] stands for Extensible Platform of Internet

Language for mOdel maNagement. It is a family of task-specific languages which can
be used to manage EMF models. Epsilon can be used to perform different MDE tasks,
such as model-to-model transformation, code generation, model merging, comparison
and validation. For each of these MDE tasks, Epsilon provides a task-specific lan-
guage. EOL is the core language and other model management languages are built
atop it. In the following sections, we explain each of the Epsilon task-specific lan-
guages that are used later in this thesis.

2.3.4.3 Epsilon Object Language (EOL)

EOL [11, 108] is a model management language used to manage models from var-
ious technologies such as EMF and XML. It allows the creation, modification and
querying of models. EOL contains different features. It supports model querying oper-
ations such as select(), collect(), etc. It has the capability of model modification, such
as modifying element’s properties, adding, removing and deleting model elements.

44

2. LITERATURE REVIEW

Furthermore, EOL supports access to multiple models that are possibly conforming
to different metamodels. EOL users can reuse their defined operations, not only in
other EOL programs, but also in other Epsilon languages. Finally, it supports common
programming constructs such as while and for loops and if..else statements, and also
provides support for user interaction. EOL has been used in the cloud SLA comparison
and selection process in Chapters 5 and 6.

2.3.4.4 Epsilon Comparison Language (ECL)

ECL is a rule-based, metamodel-independent language for comparing the arbitrary
models of arbitrary metamodels [11]. As with other Epsilon languages, ECL is built
on EOL language. With ECL, users can define comparison rules for the elements in
two models. The result of the ECL comparison is a trace that consists of a number of
matches. Each match has a reference to the compared elements (left and right) and a
Boolean to indicate the matching result. It also has a reference to the match rule that
led to the decision.

As ECL is used in this thesis for comparing and matching elements of cloud SLA
models, we provide further details of it. The concrete syntax of an ECL rule is dis-
played in Listing 2.3. ECL rules are specified in modules ECLModule. In this module,
a user can import other epsilon modules, a set of match rules and pre and post blocks
[106]. Statements defined in the pre part are executed before executing the match rules,
while statements in the post part are executed after executing the match rules that are
defined in the module. Both the pre and post parts are optional. The name of the rule
follows the keyword rule. This rule declares two parameters leftParameter and right-

Parameter, e.g. two elements from two models. The left parameter is defined after the
match keyword and the right parameter is defined after the with keyword. The rule can
optionally extend other rules. These are separated by a comma and defined after the
extends keyword. Rules that are specified in the extends part are executed before the
comparison statement and, if the rules in this part are not satisfied, the compare part is
not executed. This extends is an optional part. The rule can optionally specify a guard

expression or block of statements. The guard statement narrows the set of matched
elements; if the guard fails for specific parameters, the compare part is not executed.

After the compare keyword, users specify comparison expressions or block of

45

2. LITERATURE REVIEW

statements. Expressions after guard and compare follow a column. The block of
statements is defined between curly brackets ({}) after the guard and compare key-
word. In this comparison part, a user can specify their matching statements to indicate
whether the left and right parameters are matched or not. This compare part returns
a Boolean value to indicate whether the two parameters (left and right) are matched
or not. If this Boolean value indicates that a match has been found (true value), an
optional do is executed and if the comparison result is true, a user can specify any ad-
ditional actions. If the left and right parameters are matched, the do part allows a user
to define any other actions. An ECL rule is executed automatically for the non-lazy
and non-abstract rules. The operation match() invokes the lazy rule.

Listing 2.3: Concrete Syntax of a MatchRule from [11]

1 (pre <name> {

2 statements+

3 })?

4 (post <name> {

5 statements+

6 })?

7

8 (@lazy)?

9 (@greedy)?

10 (@abstract)?

11 rule <name>

12 match <leftParameterName>:<leftParameterType>

13 with <rightParameterName>:<rightParameterType>

14 (extends (<ruleName>,)*<ruleName>)? {

15 (guard (:expression)|({statementBlock}))?

16 compare (:expression)|({statementBlock})

17 (do {statementBlock})?

18 }

2.3.4.5 Epsilon Transformation Language (ETL)

ETL is a hybrid model-to-model transformation language, built on EOL; this allows
the transformation language to integrate with other Epsilon languages and share and
reuse operations [109]. ETL transforms input models into arbitrary output models. As

46

2. LITERATURE REVIEW

in ECL, ETL rules are organized in modules ETL. ETL modules include also pre and
post blocks, as in the ECL module. Listing 2.4 displays the concrete syntax of ETL.

Each rule defines a name, a sourceParameter and one or more targetParameter.
The sourceParameter is used to specify an element of the source model that is involved
in the transformation, while the targetParameter specifies the target element(s) of the
target model. Similar to ECL, an optional extends specifies the rules that it extends,
separated by a comma. After the optional guard keyword, a user can define sim-
ple EOL expressions following column (:) or as a block of statements between curly
brackets ({}). The ETL statements are executed if the optional parts extend and guard
rules and expressions are satisfied. Finally, a sequence of EOL statements form the
body of the transformation rule that is executed, which means a target element(s) is/are
created. These statements populate the contents of the created element(s). The ETL
is used in this thesis to transform the outcome of the matching process to a decision
matrix (Chapter 6).

Listing 2.4: Concrete Syntax of a TransformationRule from [109]

1 (@abstract)?

2 (@lazy)?

3 (@primary)?

4 rule <name>

5 transform <sourceParameterName>:<sourceParameterType>

6 to (<targetParameterName>:<targetParameterType> (, <

targetParameterName>:<targetParameterType>)*

7 (extends (<ruleName>,)*<ruleName>)? {

8 (guard (:expression)|({statement+}))?

9 statement+

10 }

2.3.4.6 Epsilon Generation Language (EGL)

EGL is a model-to-text transformation language. It is a template-based language for
code generation and documentation [159]. It includes standard features, such as de-
coupling content from the destination, mixing generated and hand-written code, and
coordinating templates. EGL defines sections which are: static sections, dynamic sec-
tions and dynamic output sections. The contents of a static section appear verbatim in

47

2. LITERATURE REVIEW

the generated text. The executable code (expressed in EOL) is defined in the dynamic

section and is enclosed between [% %]. The results of evaluating the expressions in
dynamic output, which has the syntax [%=expr%], are included in the generated text.
EGL is used in this thesis to generate HTML documents for the outcome models of the
matching process (as described in Chapter 7).

2.3.4.7 Epsilon Validation Language (EVL)

EVL is a validation language built on EOL, which is used to evaluate constraints on
models [11]. This task-specific language allows users to distinguish between errors
(constraints) and warnings (critiques), and to specify fixes for failed constraints. Figure
2.5 describes the concrete syntax of the EVL context. A context part specifies an
element type that is involved in the evaluation in the invariant part and is a guard.
This guard is used to limit the instances involved in this context. The invariant can be
(constraints) or (critiques). Figure 2.6 describes the concrete syntax of the invariant.
Both constraints and critiques define an optional guard part, which is defined to further
limit instances that are involved in this operation. This guard may have an expression
or a block of statements. If the expression (or block of statements) is satisfied, then a
check part is executed. This part specifies an expression or block of statements. Similar
to the guard part, if the expression (or block of statements) is satisfied, it executes the
message part. The message part, which consists of expressions or blocks of statements,
returns a String. This String describes why a constraint has failed for an element. The
optional fix part consists of a block of statements that can be used by users to define
fixing actions. EVL is used in this thesis to define the constraints on cloud SLA models,
as described in Chapter 4.

Listing 2.5: Concrete Syntax of an EVL context[11]

1 context <name> {

2 (guard (:expression)|({statementBlock}))?

3 (invariant)*

4 }

Listing 2.6: Concrete Syntax of an EVL invariant from [11]

1 (@lazy)?

48

2. LITERATURE REVIEW

2 (constraint|critique) name {

3 (guard (:expression)|({statementBlock}))?

4 (check (:expression)|({statementBlock}))?

5 (message (:expression)|({statementBlock}))?

6 (fix)*
7 }

We reviewed the MDE and the tools that will be used in this thesis. Cloud comput-
ing SLAs modelling and the automated comparison of cloud SLAs will be been dis-
cussed with regard to thesis objectives (see Section 1.6) in Section 2.4. In Section 2.4
we will discuss the rautomated comparison of cloud SLAs will be been discussed with
regard to thesis’ objectives (see Section 1.6), including SLA specifications.

2.4 Comparison and Selection of Cloud Computing

As described in Section 1.5, the thesis’ hypothesis investigates how cloud SLAs can
help consumers to select between different offers.

Web service selection has been discussed in the literature (such as [94, 121, 131]
and [162]) using different approaches. [204] provides a classification of different the
approaches to web service selection, which used consumer preferences as one of the
criteria that used for classifying the various selection approaches. [94] suggested that
service comparison and selection, that help consumers to choose an appropriate web
service, consists of 3 phases: functional matching, text-based QoS matching and finally
QoS numeric-based QoS matching.

When considering how to automate cloud selection, we can consider the questions
raised in Section 1.2. The first question asks about the basis for the comparison - what
parameters are involved in the selection/matching process, and how are they named and
modelled (see Sections 2.4.3 and 2.4.4). The second question relates to how to select
an offer amongst different offerings (see Section 2.4.1). The third question is how to
match a requirements and offers to filter the similarities to be involved in the selection
process (see Section 2.4.2). The final question is how these requirements and offers
are captured to automate the comparison and selection process (see Section 2.4.5).

The next section discusses the literature on service selection (i.e. web services and
cloud services) which are based on numeric-based QoS matching. Then, we discuss the

49

2. LITERATURE REVIEW

studies that have addressed text-based QoS (including functionality matching). After
that, this section discusses the QoS parameters that are of interest in the domain of
cloud computing and to be included in the matching process. Usually, QoS is parts of
SLAs. We discuss some of the electronic SLAs that are used to define web services or
cloud computing SLAs. These electronic SLAs are used to automate the comparison
process regarding cloud offers. After that, we conclude by identifying the research gap
and the contribution of this work, before presenting a summary of this chapter.

2.4.1 Cloud computing QoS-based selection

Like web service selection, in the domain of cloud computing, several studies have
discussed cloud services selections [83, 90, 119, 128, 199]. Various studies have dis-
cussed QoS matching (i.e. numeric-based) in the domain of cloud computing. This
matching is used to distinguish the appropriate cloud service offer from other cloud
services offers that have the same functionality and are based on the same QoS criteria
(i.e. the results of functional and text-based matching). This numeric-based match-
ing is discussed in [83, 85, 183] as an Multi-Criteria Decision Making (MCDM). The
MCDM approach is widely used in to solve selection problems [93, 204] (e.g. web
service selection). In this approach, calculation processes are performed using differ-
ent criteria selected from among different alternatives (e.g. cloud service offers from
different cloud providers) to enable consumers to make decisions to select appropriate
alternatives (see Section 2.4.1.1). In MCDM, decision makers (e.g. consumers) can
provide their preferences based on the criteria, which is (i.e. consumer preferences) an
essential factor in the selection approaches [204].

For example, [18] used MCDM to compare between different cloud providers. In
this study, the criteria are determined based on the literature and expert interviews.
[18] defines 3 main criteria (i.e. Provider perspective, Service perspective, Support
perspective) and 8 sub-criteria. The importance of these criteria is based on the experts’
opinions.

However, this thesis is interested in the consumer requirements as a basis for cloud
provider selection (see Section 1.5). [83] provides a mathematical framework as a
means to for selecting a cloud offer based on consumer requirements. The authors
suggested a QoS model for IaaS providers and then, by providing consumer require-

50

2. LITERATURE REVIEW

ments and collecting offers from different providers and based on the QoS models as
a criterion, a calculation is performed to select the provider offer. The authors did
not discuss how these criteria (i.e. consumer requirements) were captured for match-
ing similar criteria from the providers’ offers. Furthermore, it is not discussed in this
study, i.e. [83], how the cloud providers’ offers for the same requested criteria were
filtered to form MCDM (i.e. text-based QoS matching).

[183] compared 13 cloud services based on performance attributes and applied
MCDM. They applied different MCDM techniques, such as Min-Max, and assumed
that all of the compared criteria have the same consumer preferences (i.e. the same
weights). In MCDM different techniques cause significant differences in the results.
Consumers (i.e. decision makers) may select and apply MCDM techniques depend-
ing on different factors [179]. The following Section (2.4.1.1) describes the MCDM
approach.

2.4.1.1 MCDM

This section presents a brief description of MCDM (or Multi Criteria Decision Anal-
ysis MCDA [177]), which “is concerned with designing mathematical and computa-
tional tools to support the subjective evaluation of a finite number of decision alterna-
tives under a finite number of performance criteria by a single decision maker or by a
group” [122].

As explained in [183], the MCDM is illustrated as an evaluation matrix. This
evaluation matrix (as shown in Figure 2.7) has different m alternatives (A1, ..Am) and
n criteria (c1, ..cn). In this figure, each row has a number of values, aij represents the
value of the alternative Ai against the cj criteria. A weight value can be assigned to
each criterion to add importance to the criteria according to the decision maker. This
is represented in the figure as wj where each criterion is assigned a weight. The values
(aij) in the matrix may have different measurements. Therefore, the first operation
performed in the matrix is Normalization. Then calculations are performed to find the
best alternative.

51

2. LITERATURE REVIEW

Figure 2.7: MCDM matrix [178]

Different MCDM methods for calculating the best alternative have been proposed
in the literature, each of which has its respective advantages and disadvantages [58].
Several studies compare these methods; e.g., the Weighted Sum Method (WSM),
Weighted Product Method (WPM), Analytical Hierarchical Process (AHP), Technique
for order preference by similarity to ideal solution (TOPSIS), VlseKriterijumska Op-
timizacija I Kompromisno Resenje (VIKOR), etc., which may return different results
and how to select one of them [58, 152, 178].

The next section discusses QoS matching in the cloud computing domain to fil-
ter the alternatives that define the same service functionality and QoS properties as
required by the consumer.

2.4.2 Cloud computing matching

In this section, we present the studies that match the services that define both similar
functionality and QoS terminology as required by consumers. These studies are based
on ontology matching, which is “the problem of finding the semantic mappings be-
tween two given ontologies” [73]. Semantic matching “is an approach where semantic
correspondences are discovered by computing, and returning as a result, the semantic
information implicitly or explicitly codified in the labels of nodes and arcs” [147]. The
semantic matching approach, as proposed by [147], identifies the degree of similarity
between the offered and required services.

For example, [47, 120] discussed matchmaking approaches for functional and non-
functional (i.e. QoS parameters) requirements. The matchmaking algorithm calculates

52

2. LITERATURE REVIEW

the matching degree, which is identified as: exact, plugin and subsume and fail [47].
The matching degree is based on a ranking that depends on the number of matching el-
ements found in an offer, which ignores the values of the parameters and the consumer
preferences.

In the domain of cloud computing, [100, 142, 155] employ matching cloud services
approaches that are based on ontology-based semantic matching. For example, [142]
used OWL-S. OWL-S, which is a language that specifies the service profile as well
as the service-process model but not the QoS ontology. [194] proposed an ontology
for the QoS model based on an existing ontology model. Then, based on this ontology
language, the services are filtered by matching the functional properties, then matching
the QoS properties. [74] presents a unified QoS/SLA ontology for QoS-based web
service selections.

However [129, 155, 157, 202] introduced SLA mappings, which are argued to in-
crease the market liquidity, where the SLA parties negotiate the already understood
and mapped SLA parameters. Unlike ontology, SLAs can be used by consumers and
providers in other management processes, e.g. SLA negotiation and monitoring. SLAs
in [155, 157] are expressed using WS-Agreement or WSLA.

For example, [155] proposed to match SLAs because they define quality param-
eters to express consumer requirements and provider offers. [155] used a machine
learning algorithm to automate the management of market knowledge; this approach
is based on building market knowledge based on user service requirements. This mar-
ket knowledge is used in automatic SLA matching and automatic SLA selection. The
automatic matching is based on matching two SLA elements semantically, followed by
automatic mapping to show the differences between their syntax specifications. The
automatic matching of SLAs is performed first by calculating the similarities between
the element definitions using a character-based similarity metric, then checking the
similarity between the element metrics to see if they are semantically similar, and if
their functions are logically similar. Then the similarities between all of the properties
are combined to calculate the probability of element equality. When two SLA elements
of two different SLAs are matched, an SLA mapping is created and recommended to
users. A provider is automatically selected of by iterating a set of public SLAs and
checking the similarity between all of the elements that are required by users. The
SLA that has the highest probability and exceeds a predefined threshold is chosen as

53

2. LITERATURE REVIEW

the optimal offer.
However, [155] suggested selecting a provider based on the total number of matched

elements, which fails to consider the consumer preferences or priorities regarding the
quality parameters. Another issue is that the correctness of the SLA mapping depends
on user feedback, who may submit contradictory feedback.

Another matching approach is [90], who proposed a recommender system (RS)
to help consumers to select the best services from different cloud providers which
match their requirements. This is based on user feedback, while [62] showed that
users are likely to ignore explicit ratings. [170] is based on the Cloud Service Provider
Index (CSP-Index), which captures the similarities between various properties of the
cloud providers. The cloud broker collects service properties from the cloud providers,
such as service type, unit cost, and available resources. Each service is defined by an
indexing key. However this approach does not consider the variation in QoS values
between provider offers.

As discussed in Section 1.6, this study focuses on modelling cloud SLAs, which
is used by cloud parties, to provide their offers and requirements and can be used for
service comparison and selection, as introduced in [155]. Therefore, the following
section discusses the QoS parameters’ terminology and model, which can be used as a
basis for cloud SLAs selection (see Section 2.4.1).

2.4.3 Cloud computing QoS parameters and modelling

1. Which QoS parameters should be considered in cloud SLAs?

QoS parameters were used as a basis for comparing and then selecting the offers
that fits the consumer requirements [83, 183, 194]. Therefore, this thesis uses
cloud QoS parameters, which are a part of cloud SLAs, as a basis for comparing
cloud computing offers.

To compare these QoS parameters, we first explore what these are. Are the
QoS parameters of cloud computing SLAs similar to other computing technol-
ogy, such as web services or grids? Some QoS parameters are specific to cloud
computing, such as auto-scaling [38] or elasticity [83]. Are the QoS parameters
of cloud computing SLAs similar to other computing technology, such as web
services or grids? [197] argued that cloud SLAs are different to traditional web

54

2. LITERATURE REVIEW

services, as more QoS parameters related to energy, security, privacy and trust
should be considered. [38] distinguishes the main SLA metrics according to the
cloud service models i.e., SaaS, PaaS, IaaS, and general terms of SLA. For exam-
ple, in IaaS clouds, the important SLA metrics are: CPU capacity, memory size,
boot time, storage, scale up, scale down, scale up time, scale down time, auto-
scaling, availability, response time and the maximum number of VMs that can be
configured on a physical server. Another set of QoS parameters are: availability,
accessibility, arrival-rate, non-repudiation, isolation, regularity and completion-
time; these are defined in the SLA@SOI project, as discussed earlier in section
2.4.5. Cost is one of the factors that affect cloud consumers’ preferences for one
cloud provider over another. These QoS parameters should be considered when
designing our cloud SLA model.

As we can see, different studies suggested different cloud QoS parameters; some
of these parameters are specified depending on the services provided by the
cloud.

The comparison approaches [121, 162, 194] are based on the terminology of
the QoS parameters. These studies specify the QoS terms in order to select a
web service based on its QoS. As we discussed in Section 2.1. SLAs include
the QoS parameters. We want the SLA specification, which includes the QoS
parameters, to facilitate the comparison and selection approach. Therefore, like
[121, 162, 194], to compare and select an appropriate cloud provider offer based
on the consumer requirements, this thesis proposes to specify the QoS terms in
the cloud SLAs.

However, as discussed in Section 2.2.4.1, the pre-defined cloud providers may
use different QoS terminology in their SLAs. Therefore, designing cloud SLAs
that specify the QoS terminology while allowing a degree of flexibility for the
cloud parties (e.g. cloud providers) to define their own QoS terms is proposed in
this thesis (see Section 4.2.1)

2. What is the QoS parameter model?

We include this question because one of our goals in this thesis is to model cloud
SLAs, especially QoS parameter definitions. [26] defined QoS parameters and

55

2. LITERATURE REVIEW

how they are measured, which is different to the former study. For example,
reliability is defined in [83], as illustrated in Figure 2.8, whereas 2.9 Figure
illustrates the reliability in [27]. In this example, reliability is defined differently
in these two studies, in [83], reliability is defined in terms of the number of
failures and the promised mean time of failure, whereas, in [27] is defined in
terms of the total number of invocations of the number of failures. [56] defined
cloud reliability as illustrated in equation 2.3. From the above examples, we can
detect the existence of differences when defining QoS parameters, i.e., reliability
in this example. The QoS parameters were defined using different terms and
metrics.

Therefore, we design SLA specifications that allow of these differences in the
sub-parameters, by specifying the QoS concept, while allowing the SLA parties
to define their sub-parameters within the QoS concepts (see Chapter 4).

Figure 2.8: Reliability definition [83].

56

2. LITERATURE REVIEW

Figure 2.9: Reliability definition SLA@SOI [27].

CloudServiceQOSReliability(S) = R/M (2.3)

where:

S = service
R = the times of called and successful implements of S
M = total called times of S

3. What is the model of the QoS metric?

The metrics describe how the parameters are assigned value. As described in
Section 2.1.2, the parameter has: a name, value, type and unit. Other properties
an be defined based on the usage purpose.

As discussed in this section and Section 2.2.4, the terminology and model of QoS
parameters in cloud computing may differ. In this work, we model an SLA for a
specific domain of cloud computing, which is IaaS, where cloud providers provide dif-
ferent resource units. These resources, which are based on the consumer requirements
affect the cost of the provided cloud service and consumer choices. Therefore, cloud
resource units are discussed in the following section.

2.4.4 Cloud computing resources modelling

This section summarizes the IaaS cloud resource modelling discussed in Section (2.2.3.2).
These resources, such as computing resources, are provisioned according to different

57

2. LITERATURE REVIEW

specifications (e.g., CPU) and prices. Cost is an essential property that affects the
choices of the decision makers. Therefore, cost is considered in the SLA agreements.
Cloud providers offer the resources and their prices, which depend on various proper-
ties, such as: the payment method (see Section 2.2.2), resource location and duration
of the resource usage. Therefore, we discuss cloud resource modelling as it might be
considered in the cloud SLAs. As discussed in Section 2.2.3.2, the common IaaS re-
sources are: Computing, Storage and Networking. In the following, we summarize the
main resource properties that form a cloud resource unit and may affect the resource
prices.

Computing resources consist mainly of: CPU speed, the number of cores, RAM,
OS and Storage Capacity. Usually, the computing resource is a virtual machine, al-
though cloud providers, such as GoGrid, provide a physical computing resource. The
storage resource is defined by its size, which tends to have a minimum and a maximum
size. The different types of storage are discussed in Section 2.2.3.2, which are block
storage and object storage.

The Networking resource is defined by he size of its bandwidth usage and the
direction of the data, which can be into the cloud, out from the cloud, or between
different resources within the cloud.

Other properties affect the cloud resource, which are common to different kinds
of cloud resources. The location of the resource, payment model and payment period
affect the resource price, e.g. [3].

The QoS parameters, including the cost, are considered as a component of SLAs;
therefore, in the context of specifying QoS and cloud unit resources terminology, we
discuss the specifications of SLAs in the next section.

2.4.5 Digital SLAs

In this thesis, one of our objectives is to provide mechanisms for modelling cloud com-
puting SLAs (see Section 1.6). Digital SLAs are used to automate the negotiation and
monitoring of SLAs. In section 2.4.1 we discussed SLA selection and comparison
based on QoS. The QoS parameter terminology plays an essential role in this selection
and matching process. Therefore, in this section, we review the existing SLA specifi-
cations based on whether they specify the QoS parameter terminology. In addition to

58

2. LITERATURE REVIEW

QoS terminology, we investigate the IaaS cloud resource unit specification and termi-
nology in order to calculate the total cost based on the requirements. In this section,
we outline some of the existing SLA specifications.

WSLA is a framework for describing SLAs for web services created by IBM. It
specifies the service measurements of the agreed services between the SLA parties,
and is used for monitoring the agreement. WSLA provides a language for specifying
and monitor an SLA, and in particular allows the SLA parties to specify measurement
directives, which are special functions for composing aggregate metrics and predicates
to evaluate specific metrics [130].

The specification of WSLA contains three main sections, as described in [30, 102]
and illustrated in Figure 2.10:

Figure 2.10: WSLA Structure [150].

1. Parties section: defines the Signatory Party, i.e. service provider, service con-
sumer and the Supporting Party. The party captures the technical properties of
the parties such as the contact information i.e. address.

59

2. LITERATURE REVIEW

2. Service definitions: describes a service and SLA parameters that are related to a
service. This definition contains one or more service objects. Each service object

defines the associates with one or more SLAParameter. Each SLAParameter has
a name, type and unit, and is defined by a metric. The SLAParameter refers to
one Metric that has a MeasurementDirective type (that defines how the metric
value is measured by the provider), or special Function to compose aggregate
metrics and predicates to evaluate specific metrics.

3. Obligations: specifies, by using logical conditions, the acceptable threshold of
metrics, and describes the actions to be taken when a violation occurs. It de-
scribes the guarantees and constraints on SLA parameters, by using logical con-
ditions. As shown in Figure 2.10, the Obligation defines the ServiceLevelOb-

jective and ActionGuarantee. Both ServiceLevelObjective and ActionGuarantee

refer to the SLAParameter defined in the service definitions.

The specifications of WSLA allow the parties to monitor the QoS parameters,
which are separated from the contractual terms, to detect any violations. However,
WSLA does not specify the terminology for the QoS parameters, as this terminology
can be used, for example, in negotiations, where different parties may define different
QoS and use different terminology for the same QoS which make it ambiguous to the
SLA parties.

Another SLA specification isthe WS-Agreement (Web Service Agreement) which
was developed by the Grid Resource Allocation and Agreement Protocol working
group. WS-Agreement is an XML-based language that is used for the specification
and negotiation of SLAs between parties [40]. The QoS parameters and their metrics
are considered as domain-specific terms; thus it is not specified and makes it more
flexible than WSLA. Therefore, to automate the monitoring of SLA agreements, the
structures of QoS metrics, such as predicates, units and parameters, and QoS ontology
concepts, were proposed in [144]. The WS-Agreement is composed of the main parts
name (optional), Context and Terms, as illustrated in Figure 2.11.

The agreement Context contains information about the agreement parties and the
duration of the agreement. The attributes of the Context are: AgreementInitiator

(optional), AgreementResponder (optional), ServiceProvider, ExpirationTime, Tem-

plateID (optional), and TemplateName optional. The Terms section is the core part

60

2. LITERATURE REVIEW

Figure 2.11: WS-Agreement Structure [123].

of the agreement offer. It defines one or more Term, where the terms are related using
the term compositor: All, OneOrMore and ExactlyOne. Each term refers to a service.
There are two types of terms, which specify the functional and non-functional proper-
ties:

• Service Description Terms: describe the functionality of the service. It consists
of: a name of Service Description Terms, a name of the required or offered
service and its functionality. It is a domain dependent on the description of the
service functionality.

• Guarantee Terms: define the SLO and qualifying conditions for a service (i.e.
described in the Service Description Terms) that can be fulfilled or violated. It

61

2. LITERATURE REVIEW

defines three states: fulfilled, monitored and not determined.

The assurance of the service quality (or availability) is associated with the service
described in the Service Description Terms. Each agreement contains zero or more
Guarantee Terms. Guarantee Terms, which consist of:

• Obligated: specifies the obliged party.

• ServiceScope: specifies the list of services to which the guarantee term applies.

• QualifyingConditions: specifies an optional precondition to be met to enforce a
guarantee.

• ServiceLevelObjective: specifics the condition that must be met under which a
guarantee holds.

• BusinessValueList: one or more business values, i.e. Penalty and Reward are
associated with the ServiceLevelObjective.

Both WSLA and the WS-Agreement define the SLA using XML, while SLAng
uses the Unified Modelling Language (UML) to model and define the language [164].
The SLA itself can be expressed in XML or Human-Usable Textual notations (HUTN).
SLAng defines a vocabulary for web services. It defines the terms of the behaviour of
the services and the clients who are involved in service usage. Corresponding to the
service usage, SLAng defines six types of SLA (i.e. levels) that are classified into
two classes: Vertical and Horizontal SLAs. The Vertical SLAs, which manages the
interaction between two subordinate peers, are: Hosting, Persistence and Communica-
tion, while the Horizontal SLA, which manages the interaction between two coordinate
peers, are: ASP (Application Service Provider), Container and Networking.

SLAng defines, for each type of SLA (i.e. Hosting, Persistence, etc.), a general
structure including Responsibility for the Client of the service, the Server provider of
the service, and Mutual, which is the responsibility of both the service client and ser-
vice provider (see Figure 2.12). Each responsibility (i.e. client, server and mutual)
defines a set of SLA parameters (such as availability, performance, maintenance, mon-
itoring, security, backup and throughput) specific to the type of SLA.

Like the WS-Agreement specifications, the model is composed of:

62

2. LITERATURE REVIEW

Figure 2.12: SLAng Structure [165].

• agreement parties

• offered services

• agreement terms which specify the QoS guarantees and the parties’ obligations.

However, SLAng does not define the financial terms, such as costs, prices of the
service and penalties in case of violation. Furthermore, the specification of this SLA
is defined for electronic services with defining a limited set of QoS parameters. [38,
83] argued that more QoS parameters should be considered in the cloud SLAs (see
Section 2.4.3) than are provided in this specification.

SLA* is an abstract syntax for defining digital SLA agreements [63, 101]. It was
developed as a part of SLA@SOI, which is a project that provides solutions for the
automation of SLA negotiation and management, which is initiated for the Service
Oriented Infrastructure. It proposes a SLA(T), i.e. SLA Template, that defines the
structure of the SLA. It specifics built-in QoS terms. The SLA* is inspired by the

63

2. LITERATURE REVIEW

structure of the WS-Agreement, but differs from the WS-Agreement in the sense that
it includes domain vocabulary and constraint language. The SLA is composed of the
following main parts: Domain Vocabularies, Party, Interface Declarations, Variable

Declarations and Agreement Terms. Many built-in QoS parameters’ terminologies
are defined in SLA* [63, 101], which are: throughput, MTTR, MTBF, availability,
accessibility, arrival-rate, non-repudiation, isolation, regularity and completion-time.

SLA* defines the terminology for SLA (i.e. SLA vocabulary) which describes,
for example, the SLA states (i.e. agreed, terminated, violated, etc.), the SLA parties
and their role (i.e. Party and the role can be provider or customer), agreement terms,
action and others. The goal of using these terms is to manage the SLA life cycle from
initialization to termination.

All of the discussed SLA specifications define party section. The service descrip-
tion or definition and SLO, are presented in WSLA and the WS-Agreement. The met-
rics are defined in WSLA and SLA*, while QoS terminologies are specified in SLAng
and SLA*.

Table 2.5 summarizes the differences between SLAs specifications.

64

2. LITERATURE REVIEW

Table 2.5: Comparison of SLAs specifications

SLA Specifi-
cation

QoS terminol-
ogy

Cloud resource
units terminol-
ogy

Metrics Business value
(e.g. cost and
penalties)

WSLA NA NA specifies
measurement
directives
to compose
metrics

specifies ac-
tion in case of
violation

WS-
Agreement

NA NA does not spec-
ify metrics and
is considered
as domain-
specific terms

specifies the
terms for
penalties and
rewards

SLAng specify limited
set of QoS ter-
minology

NA does not pro-
vides metrics
but is based on
the behaviour
of the parties

NA

SLA* Specifies a
built-in QoS
terminology

NA yes specifies ac-
tion terms
in case of
violation and
payment terms

Unlike the research presented in this thesis, the above studies are not defined specif-
ically for cloud computing, so we may need to consider different QoS properties or
cloud resources (see Sections 2.2.3.2 and 2.4.3).

65

2. LITERATURE REVIEW

2.5 Summary of Cloud Computing SLA Modelling and
Comparison issues

In section 2.4, we identified the following categories of related work: (1) Digital SLAs,
(2) Selecting a cloud offer from different cloud provider offers, (3) Matching cloud
computing requirements and offers, (4) The QoS properties and models to be con-
sidered in the cloud SLA, and (5) The cloud resources and their models that can be
considered in the cloud. In the this section, we summarise some of the issues related
to the modelling and comparison of cloud SLAs.

• Cloud computing providers define their SLAs, using their own terminology that
is dependent on cloud technology (see Section 2.2.4). These SLAs are defined
largely in natural language. Furthermore cloud providers can update these SLAs
and the QoS, e.g., the last version of EC2 SLA was updated in 2013 with the
monthly uptime percentage as a commitment, while the older version was from
2008, with the annual uptime percentage [4]. The comparison of two SLAs,
defined in natural language, which may be structured differently and use differ-
ent terms, is difficult to automate. Therefore, structured SLAs were proposed to
facilitate the automation of SLA management and comparison.

• As described in Section 2.4.5, the widely mentioned WSLA and WS-Agreement
do not specify QoS terminology, which are used for comparing cloud SLAs. The
SLAng language fails to specify financial aspects, such as costs and penalties,
which is an important property in the consumers’ decision-making process. The
SLA* is a service-oriented SLA, which does not specify the service and resource
units terms, which is needed to compare SLAs for the same service.

• As noted in Section 2.4.3, there is a lack of agreement about the QoS properties
and terminologies to be specified for the IaaS cloud.

• In selecting cloud computing approaches (see Section 2.4.1), where MCDM
were proposed, some of the studies, which are reviewed in Section (2.4.1), failed
to define how the requirements and offers were captured, while others failed to
define how these data were filtered to form the MCDM problem.

66

2. LITERATURE REVIEW

• In matching cloud computing, the studies based on the SLA mapping approaches
failed to consider supporting the consumer decision-making by providing MCDM,
which allows consumers to add their preferences regarding the various QoS pa-
rameters and constraints on the QoS values. MCDM considers the difference
between the offered QoS values and the required QoS values, while matching
approaches in Section 2.4.2 do not consider the difference between values of
QoS properties.

• The approaches discussed in Section 2.4.1 match the QoS properties. Cost is an
essential property in the decision-making process [83, 183]. The cloud providers
offer their resource units and prices separately from the SLA. To include the cost
and as part of an automated comparison, the specification of the resource unit is
required to match it with the offered cloud resource unit and then calculate the
cost. None of the digital SLAs (which are presented in Section 2.4.5) specify the
terminology for IaaS clouds’ resource units. Furthermore, based on the matching
terminology, there will be more than one match found when the terminology
of the required resource unit matches that of the offered resource units. For
example, the required resource is defined as follows: VM with (CPU core = 1,
RAM = 4.75 GB and storage size = 32 GB). The offered resource units in a
cloud provider are defined as follows: VM1 with (CPU core = 1, RAM = 3.75
GB and storage size = 20 GB) and VM2 with (CPU core = 2 , RAM = 7 GB
and storage size = 40 GB). The matching that is based on terminology matching
and the structure of the VM resource returns two matches. In this case, a further
step might be required in order to select one of the offered VMs. In general, for
the cloud provider and consumer SLAs, there is no single SLA specification that
specifies the QoS terminology and cloud resource units that can be used to select
an offer from a range of different offers in an automated fashion.

• In general, there is no single definition suitable for cloud SLA comparison and
selection. Therefore, we need a framework, including a customisable and user-
configurable technique that can be used to define a project or domain-specific
comparison of SLAs.

This thesis focuses on the comparison of cloud SLAs. The hypothesis and objec-
tives are presented in Chapter 1. This approach proposes metamodels to allow cloud

67

2. LITERATURE REVIEW

SLAs to be precisely captured using models, and to automate the comparison process
by two phases. The first phase involves matching the required SLA with the offered
SLA. The second phase entails supporting the consumers’ decision-making by the se-
lection one offer form a range of different offers using MCDM.

2.6 Chapter Summary

In this chapter, we described the SLA concepts and specifications. An SLA forms part
of the legal contract between the service consumer and service provider. SLA specifi-
cations and electronic SLAs have been introduced. The main components of SLAs are
the QoS parameters and metrics. Different services, service providers and consumer
requirements require different QoS parameters. Therefore, several studies focused on
service/provider selection which are based on SLA and QoS. Various researches have
also proposed QoS ontologies to create precise definitions and facilitate auto-selection
of services.

This chapter also described how cloud computing technology provides different
types of services and how the dynamic nature of clouds requires continuous moni-
toring to ensure the required/agreed service level. Different studies defining different
QoS parameters and models have been described. A comparison of public clouds that
provide various SLAs with different terminologies, has been discussed. There is a lack
of standard specifications for cloud SLAs and the QoS terminologies.

We described the MDE principles and tools and the intersection between cloud
computing and MDE. We then described the related works on the selection of a cloud
offer from a a range of different offers. This selection is a post process for matching
consumer requirements with a provider’s offer. We discussed various matching ap-
proaches, many of which are based on terminology matching. Therefore, we presented
the QoS parameters and digital SLAs, as they are used as input for the matching pro-
cess. After that, we discussed the issues associated with the related work, which are
summarized in Section 2.5.

The next chapter (Chapter 3) explores, analyses and discusses the ways to approach
thesis’ hypothesis and objectives, as proposed in Chapter 1.

68

Chapter 3

Problem Analysis

3.1 Introduction

Chapter 2 introduced the concept of an SLA, which is part of a contract between dif-
ferent parties, usually a service provider and a serviceconsumer. An SLA consists of
the definition of services and QoS parameters associated with those services (Sections
2.1.1 and 2.4.3). SLAs define service level objectives which associate qualities with
threshold values in cases where violation penalties may apply (Sections 2.1,2.1.1). An
SLA plays a fundamental role in web services and SOA as it is used as a basic means
for negotiation as well as for monitoring the quality of the service. SLAs are often
treated as specifications to be manipulated by computers. As a result, many studies
have been carried out that discuss the specifications, automated processing and man-
agement of an SLA (Chapter 2).

Cloud computing was introduced in Chapter 2. We also discussed cloud SLAs and
their impreciseness and differences in terminology (Section 2.2.4). A challenge with
this is that there is, as yet, no standard vocabulary, metamodel or ontology for cloud
SLAs.

A number of SLA languages have been proposed (see Section 2.4.5). These SLA
languages are not specific to the cloud computing domain. They were designed to: help
to monitor QoS parameters by providing measurement directives and special functions
to compose aggregate metrics [102], specify the negotiation of SLA between different
parties, and automate the SLA negotiation and management process [26, 40].

69

3. PROBLEM ANALYSIS

Cloud selection and comparison processes have been reviewed in Section 2.4.
Matching process is performed based on finding matches between two SLAs (see Sec-
tion 2.4.1), while the selection process is based on selecting an offer between various
offers that fits the consumer requirements (see Section 2.4.2). The matching process
is founded on matching QoS terms and structures, whereas the selection process is
founded on calculations that involve values of QoS terms and parameters.

Our approach in this work is to utilise MDE principles and technologies to achieve
the objectives mentioned in Section 1.6. Our goal is to provide mechanisms for mod-
elling cloud SLAs, based on MDE principles, techniques and tools and then automati-
cally or semi-automatically to compare and select cloud SLAs.

This chapter is concerned with eliciting and specifying the detailed plans and re-
quirements of a solution to the problem identified in Chapter 1. We use a standard Re-
quirement Engineering (RE) process to develop a general understanding of the problem
domain. An RE process is:

“ a coordinated set of activities for exploring, evaluating, documenting,
consolidating and changing the objectives, functionalities, assumptions,
qualities and constraints that the system-to-be should meet based on the
opportunities and capabilities provided by new technologies” [185].

An RE process includes developing a sufficient understanding of the problem and
its domain. It also includes defining the objectives to be satisfied, the functional
services, constraints and assumptions, and assigning responsibilities among different
components. There are multiple artefacts and techniques in RE, such as scenarios [185]
and use cases [112], which are used in this chapter. Use cases are used to identify the
requirements, and the behaviour of the use case can be described by scenarios [171].
To explore the steps of our plan that will shape the solution to the problem explained in
Chapter 1, we provide scenarios and use cases in this chapter. Before that, we start by
introducing a motivating example to explain the problem and the goals to be achieved
in order to solve it. By defining the use case and scenarios, we can use them to capture
functional and non-functional requirements for semi-automating cloud SLA compari-
son (Section 3.3). Then, a list of requirements for satisfying the objectives is described
in Section 3.4.

70

3. PROBLEM ANALYSIS

3.2 Motivating Example

Assume that an organisation wants to use a public cloud provider and is looking for
VM and storage services. This organisation has business goals that it anticipates to
achieve by migrating to the cloud; hence, it prepares and defines its required services
and qualities, e.g. the required VM(s) and their performance, the required storage, the
availability threshold for the VM and availability for the storage service, and their total
budget. The organisation then looks at offers from the available service providers.

Suppose that an organisation wants to a find public cloud provider that matches
their needs and starts to compare different cloud offers. This comparison can be based
on different criteria, e.g. service functionality, price and QoS. Usually, the param-
eters of the QoS are defined in an SLA (Section 2.1.1). However, there are many
public clouds that provide VM and storage as services. The increasing number of
cloud providers, the variation in their service details (e.g. one cloud provider may
provide VM and dedicated servers while another only VM and Messaging Services),
different qualities of service and the varying pricing models makes it difficult for the
organisation to compare different cloud services or providers in terms of the organisa-
tion’s needs. The comparison process starts with the organisation trying to find cloud
providers who offer the required service(s) that meet the organisation’s needs, which
narrows the search space. Then the organisation selects the cloud that best matches
the organisation’s needs. The wealth of cloud services with different QoS parameters
makes the process of selection a difficult task; [83, 183] argue that the problem of se-
lecting cloud computing is an MCDM problem. In such a problem, a decision-maker
has multiple criteria with multiple alternatives and different preferences. The decision-
maker has to identify and evaluate the criteria based on these preferences [201].

The problem is: how do we systematically compare cloud SLAs, thus helping
the organisation move into cloud computing? How can we systematically narrow the
search space? Can the organisation automatically or semi-automatically select the ser-
vice provider that best matches its business needs? To determine how these questions
can be answered, we first precisely identify what the goals are and what the solution to
the problem should achieve. This is discussed in the next section.

Before defining the goals for this motivating example, in the next section, we con-
tinue with the example to identify the parties involved. In RE, it is essential to un-

71

3. PROBLEM ANALYSIS

derstand who is involved to achieve the objectives of the problem and what are their
responsibilities are [185]. The main party in this example is the service requester. The
service requester is a party who wants to match their needs against SLA offers. The
service requester can be a cloud consumer or cloud provider. In our example, the cloud
consumer (i.e the organisation) is the service requester. The other party is the cloud
provider who provides the pre-defined SLAs that will be compared against the needs
of the service requester.

3.2.1 Goals to be Satisfied to Solve the Problem

This section describes the general goals that are to be achieved to address the problem
presented in Chapter 1: can we systematically help an organisation (cloud consumer)
to make decisions about different cloud computing offers by comparing cloud SLAs?
In web service studies, automated approaches have been proposed to address such a
problem [42, 125]. In some studies [94, 125] the automation of web service selection
is based on QoS. Current cloud providers provide their pre-defined SLA with some
of the QoS parameters, such as availability and uptime, e.g. Amazon EC2 [4] (Sec-
tion 2.2.4.1). Thus, as in web service studies, we identify the following goals:

• Language for SLA: to facilitate the communication between the service requester
and the service providers, where an organisation uses this language to specify
their needs.

• Automation of Comparison: to narrow the search space for the comparison pro-
cess among a wide range of providers, taking into account the different criteria
for matching.

• Automation of Selection: to help the organisation to select the best provider of-
fers that match their needs.

3.3 Scenario and Use Cases

In this section, we describe the comparison scenarios and the actors involved. We
assume that there is a repository of SLAs from different cloud providers. We assume

72

3. PROBLEM ANALYSIS

that this repository can be implemented as models conforming to a common SLA meta-
model; a metamodel is presented later in Chapter 4. By having a standard language
(metamodel) and editing tools to create models, a repository of cloud SLA models can
be implemented. A service requester can be any consumer that wants to compare and
find cloud services that match their needs. The general scenario is illustrated in Fig-
ure 3.1 and use case 3.1. The template for expressing the use cases in this chapter is
adopted from [112].

Figure 3.1: Comparison Scenario.

Figure 3.1 shows that the service requesters need to provide their demands. The
requester provides their needs using common terminologies (in an SLA language, Sec-
tion 2.4.5). A set of providers SLA offers are required (e.g. stored in a repository)
in order to compare them with the service requester’s demands. A comparison pro-
cess is required to compare the service requester’s demands and providers’ SLA offers
(e.g., in the repository), which generates any match between the requester needs and
the offers. To this end, a smaller set of provider offers that match the requester’s needs
can then be post-processed. This post-processing is used to achieve more fine-grained
match requirements, which can help the service requester to select a better offer.

Use case 3.1 illustrates more details of the comparison process. For SLA compar-
ison, the service requester (usually the cloud consumer) provides their needs (SLA).
Then a comparison process is invoked to calculate the matches between the cloud

73

3. PROBLEM ANALYSIS

Use Case 3.1: SLA Comparison, Use Case template is adopted from [112]

Use Case Name: SLA Comparison
Summary: System Context use case. A cloud consumer provides

their requirements. The system then finds the match-
ing offers of the cloud providers.

Basic Course of Events:

1. A cloud consumer provides their needs
with regard to cloud services and
SLO/QoS in terms of an SLA.

2. The system finds the matching elements
of the cloud consumers’ needs against
different cloud providers’ offers stored in
the repository.

3. The system responds by providing a set of
offers in the repository that matches the
cloud consumer’s needs.

Assumptions: Cloud provider SLA offers stored in a repository

Post Condition:

1. Cloud consumer provides preferences on
their needs.

2. The system responds by providing a fur-
ther processing based on the consumers
preferences to select a better offer.

consumer’s needs]and the cloud provider’s offers. This comparison process provides
matching offers to cloud consumers. A cloud consumer may request further process-
ing, e.g. to find more fine-grained matches, which is described in this use case as a
post condition.

In the next sections (3.3.1 and 3.3.2), we provide more detailed use cases covering
alternative cases. The purpose of these use cases is to show the interactions with dif-
ferent actors and more details of the comparison alternative scenarios. The alternative
scenarios provide different options for the actors.

74

3. PROBLEM ANALYSIS

3.3.1 Consumer-Providers/Provider-Providers

This section describes use cases to show the interactions between the service requester
and the comparison process. For example, can a comparison process compare an SLA
offer of a provider against other SLA offers stored in the repository, or only compare
the consumer needs (SLA) with the SLAs in the repository? The goal of this case
is to help providers to understand how they differ from the competition. Some cloud
providers, indeed, provide a comparison of their service offers with other providers’
offers (i.e. Amazon AWS) [24, 25]. To this end, we define two use cases to show the
interactions: first, the interaction with the service requester as a cloud consumer pro-
vides their needs in term of an SLA. The second use case interaction is when a service
requester compares one of the SLA offers against another SLA in the repository.

Use Case 3.2: Consumer-Provider Comparison

Use Case Name: Consumer Provider Comparison
Summary: System Use Case Context. This use case explains that

cloud consumer needs are used in the comparison pro-
cess.

Basic Course of Events:

1. Service consumer provides their needs in
terms of SLA.

2. The matching process is invoked.

3. The matching process returns providers’
SLA offers that match consumer needs.

Assumptions: Cloud provider SLAs are stored in a repository

The aim of the consumer-provider comparison (Use Case 3.2) is to help the cloud
consumer (e.g organisation) to select the cloud SLA offers that match the consumers’
SLA. This may also help the cloud provider to compare their offers with other competi-
tors in order to improve their services. Another possibility is that the service requester
wants to compare one of the SLAs in the repository against other SLAs in the repos-
itory; for example, a service provider may want to compare their offers against other
provider offers. The two use cases are similar; the differences are the provided SLA,
whether it is a consumer’s SLA or one of the provider offers stored in the repository.

75

3. PROBLEM ANALYSIS

Use Case 3.3: Provider Comparison

Use Case Name: Providers Comparison
Summary: System Use Case Context. This use case specifies that

the cloud provider offer is compared with other SLA
offers that are stored in the repository.

Basic Course of Events:

1. A service requester provides an SLA of-
fer of a cloud provider using the provider
to be compared with other SLA offers.

2. The matching process is invoked.

3. The matching process returns providers
SLA offers that matches the service re-
quester’s input.

Assumptions: Cloud provider SLAs are stored in a repository

The reason for having two use cases is as in the case of Consumer-Provider Com-
parison use case (Use Case 3.2), we have to take into account the variations between
providers’ SLAs and imprecise and incomplete consumer’s requirements [68].

3.3.2 Comparison of Alternatives Scenarios

This section illustrates the comparison of alternative scenarios that were introduced
in Use Case 3.1 (Section 3.3). These scenarios capture additional details about the
alternative requirements for comparison: for example, matches could be in terms of
different properties or a different match degree. A number of options exist:

• compare the SLAs in terms of an optimal match of their QoS values, e.g., their
service uptime, their service performance [134, 176].

• compare the SLAs in terms of an approximate match of their QoS values; for
example, two SLAs may be considered approximate if their service uptimes are
within a certain delta of each other [69, 140].

• compare the SLAs in terms of a domain-specific similarity measure based on
their service-level objectives; for example, two SLAs may be name-based simi-

76

3. PROBLEM ANALYSIS

Use Case 3.4: Comparison Alternative Scenario

Use Case Name: Matching Scenarios
Summary: This use case explains that the service requester has

different options for matching scenarios.
Pre–condition: An SLA to be matched against other SLAs in the

repository (input) is provided.

Basic Course of Events:

1. Service requester provides the required
matching scenario.

2. The matching scenario is invoked.

3. The matching scenario responds by re-
turning the SLA offers that match the ser-
vice requester input.

Alternative Paths: In step 1, the service requesters have several op-
tions of the match scenario. They can choose from:

1. Name-based match scenario (Section
3.3.2.1).

2. Optimal match scenario (Section 3.3.2.2).

3. Approximate match scenario (Section
3.3.2.3).

Assumptions: Cloud provider SLA offers stored in a repository.

77

3. PROBLEM ANALYSIS

lar if they are structurally similar (i.e., defined using similar language) and, based
on feedback from a domain expert, their service-level objectives are similar.

As discussed in Section 2.4.4, in order to include the cost of the cloud offer to
be used in the decision-making problem (i.e. selection process), a matching of the
required cloud resource units and offered cloud resource units should be performed
first. By doing matching terminologies, the matching process returns the resource unit
that define the same resources, e.g., a required VM can be matched with any offered
VM, without taking into account the different capacity between them. However, to
include the values, e.g. VM capacity, may require adding some constraints to the
matching process. For example, consumer requires a VM with price that does not
exceed X/month.

Therefore, sections 1.2 and 2.4 discussed different comparison approaches in cloud
computing. In general, there is no single definition suitable for SLA comparison,
and that, more concretely, we need a framework, including a customisable and user-
configurable technique that can be used to define a project or domain-specific com-
parison for SLAs. We also argue that such a comparison needs to take into account
consumer preferences, which allows the consumer to decide which characteristics of
an SLA are to be emphasised in the comparison process.

3.3.2.1 Name-based Matching

This scenario describes the first alternative in Use Case 3.4. Cloud SLA In this compar-
ison scenario, we find the matched elements, regardless of their values. For example,
if a consumer defines a VM, then this scenario will return all VMs that are offered by
the provider regardless of, e.g., number of cores and RAM size. This comparison sce-
nario is provided if the service requester provides abstract definitions of QoS (i.e. they
are incomplete and imprecise) [193]. To explain this, assume a service requester is
able to define preferences for a certain QoS, e.g. higher availability (without defining
the value) is more important than lower price. The service requester does not define
any desired values of the required availability. In this case the comparison scenario
matches all offers that define availability regardless of their values.

This matching logic is used in the later scenarios Sections (3.3.2.2 and 3.3.2.3)
implicitly. However, we provide it as a stand-alone use case that can be used when the

78

3. PROBLEM ANALYSIS

values of, e.g., the QoS parameters are not the main concern of the service requester.

3.3.2.2 Optimal Matching

In the previous comparison scenario (Section 3.3.2.1), the main focus was on matching
elements, regardless of their values. In this scenario, which is the second alternative in
Use Case 3.4, the focus is on the required and provided value(s) of the QoS parameters.
Assume a service requester is trying to find a specific cloud service with, e.g., specific
performance values or prices. This comparison scenario finds the exact or better values

of two elements. This is the case when a service requester wants to find at least the
required values, e.g., an availability threshold value. The values in the QoS parameters
could be a Boolean, a single numeric, a range numeric or a string [83].

3.3.2.3 Approximate Value Matching

In the optimal match scenario in Section 3.3.2.2, consumers may be too strict in match-
ing the QoS parameters, where there is a risk of failing to find services that match
their requirements when using certain values [69]. Therefore another possible sce-
nario arises, whereby consumers relax their constraint on the matching, and thus try
to match approximate values for the QoS parameters; this is the third alternative in
the Use Case 3.4. For example, two SLAs elements may be considered approximate
if their service uptimes are within a certain delta of each other. Another example, is
when two cloud units are matched while their prices do not match (e.g. 0.9$, 0.8$).
An approximate match defined with delta=0.1, matches their prices.

3.4 Steps of the Research Plan

In the previous sections, we described the use cases and scenarios. We used use cases
to analyse the problem at hand, and to establish a more detailed research plan, which
addresses the thesis objectives. We describe this research plan further in this section.

Once again, the objective of this research is to model cloud SLAs and semi-automatically
compare cloud SLAs based on MDE principles, techniques and tools (Section 1.6).
Therefore, we link these steps to the objectives of this thesis. To do so, we first discuss

79

3. PROBLEM ANALYSIS

the steps that satisfy the goals stated in Section 3.2.1, and link them with the use cases
provided in this chapter. Then, we identify the MDE-based steps.

From previous scenarios and use cases (Section 3.3), we can identify a set of steps
in order to satisfy the goals discussed in Section 3.2.1. Table 3.5 summarises the
identified steps.

The first step is that the framework should provide means for the SLA specification
which can be used by a service requester to describe their needs. Also, the SLA of-
ferings of the cloud provider (which are stored in a repository) are to be defined using
similar language. We assume that, in all use cases, the framework should have a repos-
itory to store the SLA offers. One of the main objectives is the comparison algorithm.
Different comparison algorithms that support the uses cases in Section 3.3 should be
supported. These are the general steps to (semi)-automate an SLA comparison process.

80

3. PROBLEM ANALYSIS

Table 3.5: Platform independent steps of a research plan

Step Applicable use case
S1 The framework shall provide

an SLA language for the ser-
vice requester

• Use Case Consumer-Provider
Comparison 3.2.

S2 The framework shall provide
a language for cloud offers • Use Case Provider Comparison 3.3.

S3 The framework shall have a
repository to store cloud of-
fers

• Use Case Consumer-Provider
Comparison 3.2.

• Use Case Provider Comparison 3.3.

• Use Case SLA Comparison 3.1.

• Use Case Comparison Alternative
Scenario 3.4.

S4 The framework shall pro-
vide comparison algorithms
for different comparison sce-
narios

• Use Case SLA Comparison 3.1.

• Use Case Comparison Alternative
Scenario 3.4.

S5 The framework shall allow
the service requester to pro-
vide their preferences (e.g.
weighting)

• Use Case SLA Comparison 3.1.

S6 The framework shall support
more fine-grained match re-
quirements

• Use Case SLA Comparison 3.1.

S7 The framework shall provide
the results of the comparison
scenarios

• Use Case SLA Comparison 3.1.

• Use Case Comparison Alternative
Scenario 3.4.

81

3. PROBLEM ANALYSIS

One of the objectives of the thesis is to provide mechanisms for automatically or
semi-automatically comparing cloud SLAs, based on MDE principles, techniques and
tools. The comparison process will compare the different cloud provider SLA offers
against cloud consumer SLAs. This requires the SLA models for both cloud providers
and cloud consumers to be defined; these are explained in the following required steps.

Sp1 The input to the framework shall be a cloud consumer SLA model. The SLA
model is used by the comparison scenarios (Section 3.3).

Sp2 The framework shall have a repository of SLA models of cloud provider offers.
This work assumes a repository containing a set of SLA models from different
cloud providers. These models conform to a cloud provider SLA metamodel.

Sp3 The framework shall define a cloud SLA Metamodel(s) which can be used to
produce SLA models of both cloud providers and cloud consumers. Using a
common language (metamodel) facilitates the communication and matching the
elements from both the required and offered SLAs.

A metamodel defines the abstract syntax of the SLA, e.g, it defines the main
classes of the SLA, their attributes, constraints and rules to form consumer SLA
models. Therefore, an SLA metamodel is a means for cloud consumers and
cloud providers to define and specify their SLA.

Sp4 The framework shall provide different comparison algorithms. These algorithms
are applied to the comparison alternatives in use case 3.4 (Section 3.3.2).

Sp5 The framework could provide a cloud consumer preference model. The model is
used to provide a more fine-grained comparison (e.g weighting elements in the
SLA model). Many QoS-based selection studies provide a weighting schema.
Each element is given a weight by the consumer to show an importance or pri-
ority of this element among other elements for the consumer.

Sp6 The framework shall provide an output model of the comparison process. As
discussed in Section 2.3.3.2, the result of the model comparison should be rep-
resented in some form. These results can be a subject of further processing.

82

3. PROBLEM ANALYSIS

Sp7 The framework could provide a method for visualizing the outcome of the com-
parison process. The outcome of the matching algorithm needs to be visualizable
in human-readable forms, which allows the consumers and providers to realise
and analyse the differences between the models.

Table 3.6 specifies the required steps that are MDE-dependent. The table links
those steps with the objectives of this research (Section 1.6). The achievements of the
steps (Table 3.6) will be assessed in terms of completeness after considering the case
studies. A methodology for comparing cloud SLAs based on these steps is developed
in the following section.

83

3. PROBLEM ANALYSIS

Table 3.6: MDE-based steps related to the thesis objectives (Chapter 1) and the
platform-dependent steps (Table 3.5)

Step Applies to thesis objective Applies to platform-
dependant Require-
ments

Sp1 Cloud Con-
sumer SLA
Model

Objective # 1 (Section 1.6) mod-
elling cloud SLAs based on MDE
principles

S1

Sp2 Cloud
Provider
SLA Model

Objective # 1 (Section 1.6) mod-
elling cloud SLAs based on MDE
principles

S2

Sp3 Cloud SLA
Metamodel Objective # 1 (Section 1.6) mod-

elling cloud SLAs based on MDE
principles

S1, S2

Sp4 Model Com-
parison and
different
matching
algorithms

Objective # 2 (Section 1.6) au-
tomatically or semi-automatically
comparing cloud SLAs, based on
MDE principles

S4

Sp5 Cloud con-
sumer Prefer-
ence Model

Objective # 2 (Section 1.6) au-
tomatically or semi-automatically
comparing cloud SLAs, based on
MDE principles

Service requester pref-
erences (e.g. Weighting
scheme) (S5)

Sp6 Matching Re-
sults Models
and Meta-
model

Objective # 4 (Section 1.6) present-
ing the results of comparing cloud
SLAs in machine processable forms

S6

Sp7 An MDE-
based method
for results
visualisation

Provide results of the
comparison algorithms
(S7)

84

3. PROBLEM ANALYSIS

So as to be able to use cloud SLAs for both consumers and providers - as discussed
in Section 2.4 - when constructing a cloud SLA we should capture the following infor-
mation:

• The QoS terms that will be used in both matching and selection.

• The service types of the cloud SLA and cloud resource terminologies, structure
and prices to be compared and matched.

• The weights that will be assigned by consumers to provide the preference model.

• A different model will be needed to further process the output results of the
model comparison process (i.e. model for MCDM).

3.5 An approach for Cloud SLAs Comparison

This section describes our approach to comparing cloud SLAs to help consumers to
select a cloud SLA offer using MDE principles. The purpose of this section is to
provide an overview of our proposed approach before going into the details in the fol-
lowing chapters. As we described in Section 3.4, metamodels for cloud SLAs are one
of the requirements for this approach. Models that conform to this metamodel can be
compared. This is illustrated in Figure 3.2. Cloud SLA models of providers and con-
sumers conform to our proposed metamodels, which is described in Chapter 4. The
conformant SLA models are involved in a comparison process. This comparison pro-
cess consists of a number of matching processes, whereby each process matches two
models. This comparison is described in Chapter 5. The outcome of the matching
consumer model with a provider model is a model. Having a number of providers to
be matched with a consumer, the result will be a number of matched models. Dif-
ferent models’ management tasks, such as model transformation, can be performed to
analyse the results, which may need human interaction at certain points. The different
outcome models can be transformed into a decision-making matrix. This is presented
in Chapter 6.

85

3. PROBLEM ANALYSIS

Figure 3.2: Our proposed approach for cloud SLA models comparison

86

Chapter 4

Domain Analysis and Metamodelling

Chapter 3 introduced use cases and scenarios for cloud SLA comparison, and specified
the requirements for addressing the research objectives described earlier in Section 1.6.
To compare cloud SLAs based on MDE tools and principles, consumer and provider
models are required. As discussed earlier in Section 2.3, in MDE, a model conforms
to a metamodel. Thus, a metamodel is specified as one of the goals in Table 3.6 in
Section 3.4. As discussed in Section 3.4, we constructed two metamodels for cloud
SLAs: one for cloud providers and the other for cloud consumers. However, we ended
up with one cloud SLA metamodel for both cloud providers and consumers, which is
discussed in Section 4.2.

This chapter presents not only the metamodel for describing cloud SLAs, but also
the process by which it was developed, including the different versions of the meta-
model that have been elaborated. This chapter starts with an introductory section.
Then, Section 4.3 presents the construction process and describes the cloud SLA meta-
model used in our proof-of-concept tool support. Then Section 4.2 presents the early
versions of the cloud SLA metamodel.

4.1 Introduction

This study explores the research hypothesis (described in Section 1.5) on how MDE
can help consumers in cloud computing to compare different cloud providers’ SLAs.
In Chapter 3 we specified the goals needed to address the thesis’ objectives. A cloud

87

4. DOMAIN ANALYSIS AND METAMODELLING

SLA metamodel, a cloud provider SLA offering model and a cloud consumer SLA
requirements model are needed to address objectives 1-3 (Section 1.6). This chapter
describes the cloud SLA metamodel and how it has been constructed.

To construct an SLA metamodel for cloud computing, we analysed the cloud com-
puting domain (Sections 2.2.4, 2.2.3.2). As mentioned earlier (Section 2.2.3.2), the
domain of clouds can be categorised into IaaS, PaaS and SaaS. Different kind of ser-
vices provided by cloud computing may have different QoS, and thus different QoS
parameters might be required to be specified for each service [38]. In this thesis, our
focus will be on IaaS cloud computing as a proof of concept. Other cloud services,
i.e. PaaS and SaaS, may potentially extend this metamodel by following the example
process described in this chapter.

In constructing a cloud SLA metamodel, we studied the pre-defined public IaaS
cloud SLAs. These pre-defined cloud SLAs structures, are in general, similar to other
SLAs; they consist of: service definitions, service guarantee, credit in case of violation
and credit request (Section 2.1). Examples of pre-defined cloud SLAs are: AWS EC2
[3] and S3 [5], RackSpace SLA [21] and GoGrid SLA [15]. A cloud consumer, as in
web services [94, 121, 162, 176, 194], may use the QoS as a criterion for selecting
better cloud services.

We identified the most common QoS parameters in cloud computing SLAs offer-
ings. In public cloud SLA offers, availability is the most common QoS concept, while
cloud computing studies, such as [38, 81, 83], present other QoS concepts that should
be considered in the cloud computing SLA (Section 2.4.3). For example, Amazon
EC2 and S3 SLAs define “Monthly Uptime Percentage”, RackSpace defines “Monthly
Availability” and GoGrid defines “Server Uptime” (Section 2.2.4.1). We started con-
structing the cloud SLA metamodel with the common QoS availability. In constructing
a cloud SLA metamodel, we provide Availability and Maintainability as QoS concepts
as a proof of concept. Other QoS concepts were discussed in Section 2.4.3 by follow-
ing the example of the QoS concepts described in this metamodel. The next section
provides a detailed description of the development of the cloud SLA metamodel.

88

4. DOMAIN ANALYSIS AND METAMODELLING

4.2 Constructing the cloud SLA metamodel

We construct a cloud SLA metamodel iteratively: we first analyse the domain of cloud
computing and cloud SLAs; construct a metamodel; run small examples using a com-
parison process (testing); and extend and refine the metamodel. The cloud computing
domain is a large domain with a number of concepts. Therefore, we constructed a
metamodel incrementally, i.e. we started constructing a metamodel for one of the
concepts. There is a possibility that a model that conforms to a metamodel may not
correctly capture the concepts for a specific purpose. Thus, we started with a small con-
cept and generating models. These models are evaluated (for comparison processes).
If the evaluation fails, we take a step back to refine the metamodel; otherwise, we
extend the metamodel to include other concepts.

We start the metamodel construction using two pre-defined SLAs, Amazon EC2
and S3, as examples. Amazon AWS is one of the leading providers of cloud comput-
ing and has been used as an example in many studies, such as [95, 111, 143]. Other
cloud provider offers were considered, including RackSpace and GoGrid (both are
IaaS public cloud. RackSpace is a common cloud that usually is compared with Ama-
zon AWS [83, 119] and GoGrid has a different cloud SLA structure). The previously
mentioned public clouds are IaaS clouds: they provide computing power, storage and
networking. In the next section we describe the proposed metamodel. Section 4.2.1
provides a general description of the cloud SLA metamodel and an example model of
a cloud SLA. The details of this metamodel are provided in Section 4.3. Then sec-
tions 4.4.1 and 4.4.2 provide a brief description of the early phases of constructing a
cloud SLA metamodel.

4.2.1 Cloud computing SLA metamodel

We determined, after a number of experiments, that the two metamodels largely over-
lap (modulo naming conventions and a few additional constructs), and thus combined
them. The new metamodel is different to the previously explained metamodels (Sec-
tion 4.4.2). The cloud SLA metamodel illustrated in Figure 4.1 is thus composed of
several metamodels. The figure shows the general composition while the details of
each metamodel are explained later in Section 4.3. The cloud SLA metamodel is com-

89

4. DOMAIN ANALYSIS AND METAMODELLING

posed as follows:

• A Contract metamodel that includes different SLAs (Section 4.3.10).

• A cloud SLA metamodel (Section 4.3.9), which support specifying QoS param-
eters and SLO for service in an IaaS cloud.

• A service metamodel (Section 4.3.2), which specifies the services of IaaS cloud
computing.

• A small metamodel for IaaS cloud service units was constructed, which allows
service providers to specify service units separately from the SLA (which is the
case of the public cloud provider). These can be reused independently of the
main cloud SLA metamodel (Section 4.3.3.1).

• A price metamodel, because the public clouds provide different prices for the
same type of unit. This depends on the payment method (on-demand or subscrip-
tion), and can use different currencies depending on the location of the service
(Section 4.3.8).

• An Obligation metamodel which specifies SLO and credits in case of violation
of the SLA (Section 4.3.7).

• A generalTypes metamodel which specifies different concepts that are used by
other metamodels (Section 4.3.1).

• A small metamodel for weighting, which allows cloud consumers to provide
their preferences (Section 6.3).

90

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.1: Main components of the cloud SLA metamodel

91

4. DOMAIN ANALYSIS AND METAMODELLING

4.3 Cloud SLA Metamodelling

Section 4.2.1 provided an overview of the cloud SLA metamodel. This section dis-
cusses it in more detail. In each of the following sections we present a description of a
(Package) of the main metamodel. Each section provides a general description of the
package, abstract syntax, an example model created by the built-in EMF tree-based
editor and constraints for certain models.

We provide an example model to explain the general cloud SLA metamodel. As-
sume a cloud consumer defines the following requirements for computing service that
defines uptime = 99.9%, response time = 60 -160 GB and cloud unit (i.e. VM) with
Linux operating system, number of cores 2, RAM = 10 GB and storage = 500 GB.
Figure 4.2 shows the object diagram of these requirements as an SLA.

This figure shows an SLAs model that has a name, modelA, and defines a consumer
as a party to this SLA. This model defines an SLA for a computing service. The SLA of
the computing service defines two parameters: upTime and response time. The upTime
parameter belongs to the QoS term Availability, while the response time parameter
belongs to the Performance QoS term. Both the Availability and Performance terms
are defined as QoS terms in the computing service. Uptime is defined as a single value
= 99.9 and has a percentage as a unit, while the response time is defined as a ranged
value type. The minimum value is 60 and the maximum value 120 of type time unit
(i.e. second). The ModelA SLA defines a computing unit (i.e VM) with name VM1
and Linux OS. It has a cpu speed defined as the number of cores = 2, a RAM as a
single value = 10 and the size unit type is GB. The price of VM1 is 0.06 USD (i.e. $)
and the location of this computing unit is the US.

92

4. DOMAIN ANALYSIS AND METAMODELLING

Fi
gu

re
4.

2:
O

bj
ec

td
ia

gr
am

of
co

ns
um

er
re

qu
ir

em
en

ts

93

4. DOMAIN ANALYSIS AND METAMODELLING

4.3.1 General Types Package

The aim of the GeneralTypes package is to specify a set of common concepts that
can be reused by other packages, such as value and units. QoS parameters and SLO
thresholds have values, units and types, e.g. Latency <5 ms, where 5 is the value, ms

is the unit and the type of this value is numeric. The units are used in defining cloud
computing services, prices and SLAs and are as follows:

• Time unit specifies the time units e.g. Monthly payment period, Hourly price
or Monthly uptime. The common time units identified from pre-defined cloud
SLAs are hour, month and year. Time is defined as a value and a unit, e.g. 1
month (1 is the value and the month is the unit). As shown in Figure 4.2, the
response time is defined per second, the price value is defined per hour and the
payment period is defined per month.

• The capacity unit specifies the RAM and storage size, e.g. RAM = 10 GB or
Storage = 500 GB. The common capacity units identified are: MB, GB and TB.
Capacity is defined as a value and a unit, e.g. 10 GB where 10 is the value and
GB is the unit.

• Percentage: specifies a percentage associated with QoS parameters. For ex-
ample, in pre-defined cloud SLAs, the commonly used percentage is upTime
percentage = 99.9%.

• Currency unit: specifies the currency that is used by the cloud party. For exam-
ple, Amazon EC2 uses USD currency in their offers, while RackSpace provides
the prices using the USD and GBP currencies.

• Location: specifies the location of the cloud services. For example, Amazon
EC2 provides VM instances in different regions, e.g. US East, US West, EU etc.
[8].

• Value type: specifies the value associated with SLA elements, e.g. QoS parame-
ter, size value. A value type can be, e.g., a numeric, string or unordered set [83].
A numeric value can be a single value or a range value, e.g. size = 10 GB and
response time = 60-120 second.

94

4. DOMAIN ANALYSIS AND METAMODELLING

Thus a metamodel that includes the main units has been created. The following
section presents the abstract syntax of the General Types Package.

4.3.1.1 Abstract Syntax

Figure 4.3 illustrates the GeneralTypes abstract syntax.

• Value: This is an abstract class and has two attributes which are:

isPositive (Boolean attribute) and valueType. The valueType describes the type
of a value e.g. String or Integer. The attribute isPositive is true when, the higher
a value, the better its quality; and false when the lower a value, the better its
quality (when the valueType is numeric).

• SingleValue: This class extends the abstract class Value and contains the unit of
type UnitType. Moreover, it has one string attribute which is value. This is used
to define numeric, string and Boolean single values (e.g. SingleValue(value =
99.9, type = float, isPositive = true, unit = percentage)).

• RangedValue: This class extends the abstract class Value and may specify a max-

Unit and a minUnit of type UnitType. Furthermore, it specifies two attributes:
min and max. As illustrated in Figure 4.2, the response time is defined as a
ranged value with min = 60 and max =120.

• UnitType: It is an abstract class that is extended by other classes. This is used to
define ranged numeric values, e.g RangedValue (min =99.9 max = 100, type =
float, isPositive = true, minUnit = percentage, maxUnit=percentage).

• SizeType: This class inherits from the abstract UnitType class. It has an attribute
unit of type sizeUnitType. This class is used to define the capacity size, e.g.
storage size.

• Percentage: This class specifies the attribute unit which is of type PercentageU-

nit and extends the UnitType. This is used to define QoS parameters that have
percentage values, e.g. availability 99.9%.

• TimeType: The unit attribute defined in this class is a timeUnit type. As SizeType

class, it extends the UnitType. This is used to define the time periods. For

95

4. DOMAIN ANALYSIS AND METAMODELLING

example, in AWS, a price is defined per hour for cloud VMs, while it is defined
per month for cloud storage.

• RequestType: The unit attribute has a RequestUnit type. This class also extends
the UnitType. The cloud provider charges the cloud consumer for the bandwidth
and requests. A request is a HTTP method such as GET or POST. This class is
used to define the request type.

• CurrencyType: The unit attribute has a Currency type. This class also extends
the UnitType class. This is used to define the different currencies.

• NamedElement: This abstract class specifies an attribute name which is a string
type. This class is extended by other classes in other packages. This is used to
define the names of different objects.

• Location: This class specifies three attributes country, region and area. This is
used to define the regional location of the service. This is used to define the
location of the services.

• TimePeriod: This class has an Integer attribute interval and a TimeUnit attribute
timeUnit. The TimePeriod extends the NamedElement class. This is used to
define the time units; for example, the time unit of the payment periods (monthly
or yearly).

• PayementPeriod: This class extends the abstract class NamedElement, has an
attribute payementType and specifies a timePeriod. This class is used to define
the payment method for a service. As discussed, (see Section 2.2.2), the pay-
ment methods can be pay-as-you-go or on a subscription basis. Cloud providers
provide for the same cloud unit, but with different prices based on the differ-
ent payment methods. For instance, the price of the Amazon EC2 VM named
“m3.medium” is $0.07 per hour on-demand, while the price of the reserved ser-
vice (i.e. subscription) is $0.05 per hour.

• ValueType: It is an enumeration that has three values Integer, String and Float.
This is used to define the type of the value, which is captured in the abstract class
Value.

96

4. DOMAIN ANALYSIS AND METAMODELLING

• TimeUnit: An enumeration that defines values: second, minute, hour, day, month

and year. This is used by the TimeType class and defines the measurement unit
for time.

• SizeUnitType: The value of this enumeration is: Mbit, Gbit, MB, GB and TB.
This defines the attribute unit in the SizeType class. This enumeration is used to
define a set of the measurement units for the capacity size.

• PaymentType: The value of the enumerations are: subscribe, onDemand, spot.
This defines the type of the attribute paymentType of class PaymentPeriod. This
enumeration specifies a set of payment types (Section 2.2.2).

• OS: This enumeration specifies the common operating systems used in cloud
computing, e.g. Windows, Linux, Unix (Section 2.2.3.2). In cloud computing,
the VM is defined in terms of a set of parameters, one of which is the OS. This
OS is used in defining the VM in IaaS clouds.

• Region: This is used to define a set of regions to define the location of the service,
these are: NorthAmerica EU Asia SouthAmerica Africa Australia.

• Country: This is used to define a set of countries that can be used later to define
the location of the service. As a proof of concept, for simplicity in the com-
parison, we specify this enumeration to define a set of countries, to define the
location of the cloud services.

• Currency: This enumeration is to define the possible currencies that a cloud SLA
party can use to define their offers or needs. Similar to the TimeUnit enumer-
ation, we specify a set of currencies to be used in the comparison process as a
proof of concept.

• logicalOperator: This enumeration defines a set of logical operators less lessE-

qual greater greaterEqual equal notEqual. This is used to define the SLO logical
condition, e.g. availability lessEqual 99.0%.

97

4. DOMAIN ANALYSIS AND METAMODELLING

Fi
gu

re
4.

3:
C

lo
ud

SL
A

ge
ne

ra
lt

yp
es

A
bs

tr
ac

tS
yn

ta
x

98

4. DOMAIN ANALYSIS AND METAMODELLING

4.3.1.2 Example of GeneralTypes Model

Figure 4.4 illustrates an example use of the GneralTypes metamodel. In the example,
two Locations are defined, Ireland and the US; thus, the cloud provider provides ser-
vices in those two locations. The USD currency means that the cloud party defines
these service units in this currency only. It is possible to define different currencies,
thus allowing the units to have prices in different currencies. This is necessary, since
some cloud providers provide services in different locations, and using a different cur-
rency in each one, e.g., RackSpace provides prices in USD in [21] and GBP in [22].
The diagram also illustrates that different time periods were defined which are: hourly,
monthly, yearly and a 3 year period, which are used to define the payment periods.
There are also three payment periods which are defined based on the time periods.

Figure 4.4: Example of Cloud SLA general types model

We can also define constraints on the SingleValue and the RangedValue using EVL.
SingleValue and RangedValue specify the attributes value, min and max which can have
a string type. To ensure that these attributes can be defined in the model, we specify an
EVL constraint shown in Listing 4.1.

The context SLAs!SingleValue defines two constraints on the SingleValue. The first
constraint is constraint AllDigits, which check that the string value is real or an inte-
ger, when the valueType is defined as a Float or Integer. The other constraint, Boolean-

99

4. DOMAIN ANALYSIS AND METAMODELLING

Value, checks that only true and false are defined as values for the attribute value, when
the valueType is defined as Boolean; otherwise, a message is produced. In effect, this
defines a domain specific type system for a particular SLA.

The constraint AllDigitsRanged is defined to check that the min and max string
values defined in RangedValue have a numeric (Float or Integer) type only. The con-
straint minLessThanMax checks that the minimum value (min) is less than or equal to
the maximum value (max). If not, then this can be repaired by swapping the min and
max values.

Listing 4.1: The EVL Constraint that validate instances of SingleValue and Ranged-
Value

1 context SLAs!SingleValue{

2 constraint AllDigits {

3 guard: self.valueType.name = "Integer" or self.valueType.name =

"Float"

4 check : (self.value.isReal() or self.value.isInteger())

5 message : self.value + " is not a valid Numeric Value"

6 }

7 constraint BooleanValue{

8 guard : self.valueType.name = "Boolean"

9 check : (self.value = "false" or self.value ="true")

10 message : self.value + " is not a valid Boolean Value"

11 }

12 }

13 context SLAs!RangedValue{

14 constraint Numeric{

15 check : self.valueType.name = "Integer" or self.valueType.name

= "Float"

16 message : self.min + " to " + self.max + " should have a

Numeric type"

17 }

18 constraint AllDigitsRanged {

19 check : (self.min.isReal() or self.min.isInteger()) and (self.

max.isReal() or self.max.isInteger())

20 message : self.min + " to " + self.max + " not a valid Numeric

Value"

21 }

22 constraint minLessThanMax {

100

4. DOMAIN ANALYSIS AND METAMODELLING

23 check : self.min.asReal() <= self.max.asReal()

24 message : self.min + " should be less or equal to" + self.max

25 fix {

26 title : "Swap Min " + self.min + " with " + self.max

27 do{

28 var swap : String;

29 swap = self.max;

30 self.max = self.min;

31 self.min = swap;

32 }

33 }

34 }

35 }

4.3.2 Service Package

As described in Section 2.2.3.2, IaaS clouds provide three main services which are:
Computing Power, Storage and Networking [206]. In typical pre-defined commercial
cloud SLAs (such as Amazon and RackSpace), there is an SLA for each service. For
example, Amazon AWS provides two SLAs: one for EC2 (Computing) and one for
S3 (Storage); while RackSpace provides SLAs for cloud servers, cloud files (Storage),
and the Load Balancer (Network). To define an SLA, the cloud party first defines the
services to be included in the SLA, and then defines the QoS parameters related to
each service. Back to Figure 4.2, the SLA model specified Computing as a service.
The next section explains the abstract syntax of the Service Package.

4.3.2.1 Abstract Syntax

The abstract syntax is illustrated in Figure 4.5.

101

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.5: Service Abstract Syntax

• Service: an abstract class which contains at least one qosTerms of type QoSTerm

(Section 4.3.9). This abstract Service class is used to specify the service type in
an SLA model. The Computing, Storage and Networking services extend this
class.

• Computing: extends the Service class, used to describe the service type of the
cloud SLA (which in this case is computing).

• Storage: acts as a storage service of the SLA which extends the Service class.

• Networking: acts as a Networking service of the SLA which extends the Service
class.

4.3.2.2 Example of Service Model

Figure 4.6 illustrates an example of a Service model. There are three services cre-
ated: Computing, Storage and Network. The Computing service defines two qosTerms:
availability and maintainability, while the Storage service specifies one qosTerm: Avail-
ability. In general, cloud parties create a service and its QoS parameters (QoSTerm).
Then, when the cloud parties define their SLAs, they refer to the created service and

102

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.6: Example of Service Model

its QoS parameter (QoSTerm). Thus, we created a separate Package for the Service

types and the QoSTerm. Each QoSTerm (Section 4.3.9.1) is defined once in a service;
hence, an EVL constraint needs to be specified. This is illustrated in Listing 4.2. This
EVL constraint below is used to ensure that a model defines the QoS concept (e.g.
Availability) no more than once within the same service.

Listing 4.2: The EVL Constraint generated for QoSTerm

1 context SLAs!Service{

2 constraint OneQoSTermTypeForEachService {

3 check {

4 var notfound : Boolean;

5 notfound = true;

6 for (qos in self.qosTerms) {

7 if (self.qosTerms.select(e | e.EClass.Name = qos.EClass.Name)

.size > 1){

8 notfound = false;

9 break;

10 }

11 }

12 return notfound;

13 }

14 message : self.qosTerms + " has duplicate QoSTerm"

15 }

103

4. DOMAIN ANALYSIS AND METAMODELLING

16 }

4.3.3 CloudUnitSpec Package

This package is constructed to specify IaaS cloud service units. The pre-defined public
cloud SLAs do not provide specifications of the provided service, e.g. the CPU and
RAM of a VM. However, these service units are specified to include the cost of the
service in the SLA comparison. For a computing service, a unit is a ComputingUnit
(called an instance in Amazon EC2, or a cloud server in RackSpace and GoGrid), while
the storage unit can be cloud storage, block storage and backup storage. The network
unit describes transferring types of data (i.e. in to the cloud service, out from the
cloud service or between cloud services). Each service unit has a price and the cloud
consumer is charged for consuming it. For example, an EC2 instance that has vCPU=
1, RAM = 3.75 GB, Storage = 1 x 4 SSD GB and Price = $0.070 per Hour is considered
a service unit of Computing Unit. In the following sections (4.3.4- 4.3.6), a metamodel
of the service units for Computing Unit, Storage and Networking is provided.

4.3.3.1 Abstract Syntax

Figure 4.7 illustrates the abstract syntax of CloudUnitSpec:

• CloudUnitSpec: This is an abstract class, which is extended by ComputingU-

nit, StorageSpec and NetWorkUnit classes. The CloudUnit class (explained in
Section 4.3.10.1) is associated with the CloudUnitSpec class.

104

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.7: Cloud Unit Abstract Syntax

4.3.3.2 Example of CloudUnitSpec model

As illustrated in Section 4.3.3.1 the CloudUnitSpec class is an abstract class extended
by other classes: ComputingUnit, StorageSpec and NetWorkUnit. These classes are
used to define the different units of services of the IaaS cloud, e.g. (CompUnitSpec),
CloudStorage and BlockStorage. These units are explained in the following sections
(4.3.4- 4.3.6).

4.3.4 ComputingUnit Package

This package is provided to specify the Computing Power of an IaaS cloud (Sec-
tion 2.2.3.2). Computing power can be expressed in terms of VMs (e.g. Amazon EC2,
RackSpace and GoGrid) or dedicated servers (e.g. GoGrid and RackSpace). From
the different cloud providers, several recurring characteristics have been identified in
defining computing units. The common specifications are:

• Each server is assigned a name, e.g., “m3.medium’,’ the VM name in Amazon
EC2 [7].

• Each server is assigned with a number of vCPU (cores), e.g. “m3.medium” has
vCPU = 1 [7].

105

4. DOMAIN ANALYSIS AND METAMODELLING

• Memory (RAM), e.g. “m3.medium” has memory = 3.75 GiB [7].

• Storage, e.g. “m3.medium” has storage = 1 x 4 GB[7].

• OS, e.g. Amazon EC2 provides support for different OSs, such as Linux and
Windows [8].

4.3.4.1 Abstract Syntax

Figure 4.8 illustrates the abstract syntax of the computing power unit.

Figure 4.8: Computing Unit Abstract Syntax

• CompUnitSpec: This class has a name and extends the abstract class CloudUnit-

Spec (Section 4.3.3.2) and the NamedElement class (Section 4.3.1.1). It also
defines a Boolean attribute isVM, which is true if the computing unit is a VM
and false otherwise. Moreover, the OS attribute is defined to specify the oper-
ating system of the computing unit. This class associates with CPUSpeed class
and Value class. The Value class, which is explained in Section 4.3.1.1 supports
expressions of memory and storageSize.

106

4. DOMAIN ANALYSIS AND METAMODELLING

• CPUSpeed: Defines the CPU specifications, which has the attributes; speed and
numberOfCores.

4.3.4.2 Example of a ComputingUnit Model

In this section, we provide a small example of the VM specifications’ model. As
illustrated in Figure 4.9, a CompUnitSpec named medium, storageSize (SingleValue)
= 40 GB, ram (SingleValue) = 3.75 GiB and number of cores = 2.

Figure 4.9: Example of Computing Unit model

4.3.5 Storage Package

The storage package is constructed for the purpose of specifying cloud storage service
units. Cloud providers provide storage in different types and at different prices, such
as: cloud storage, block storage and backup storage. Amazon S3 and RackSpace are
examples of cloud storage, while Amazon EBS, RackSpace Cloud Block Storage and
GoGrid Block Storage are examples of block storage. Backup Storage is also provided
by Amazon, RackSpace and GoGrid. Why do we include these storage types in the
metamodel? Cloud storage is included in pre-defined cloud SLA offers (e.g. Amazon
S3 SLA and RackSpace cloud files SLA). Block storage is also usually related to the

107

4. DOMAIN ANALYSIS AND METAMODELLING

VM which affects its price, while the backup storage is used by Amazon, RackSpace
and GoGrid in their offers.

This package allows the consumer to define their requirements which can be then
compared with the cloud providers offers, compare the prices, and thereafter calculate
the total cost of the cloud service.

4.3.5.1 Abstract Syntax

The abstract syntax of the storage services is as follows (Figure 4.10):

Figure 4.10: Storage Unit Abstract Syntax

• StorageSpec: This is an abstract class and specifies a size of type Value (Sec-
tion 4.3.1.1). It inherits the CloudUnitSpec class (Section 4.3.3.1). This class
is extended by three other classes which are explained as follows: These three
classes are provided to distinguish the different storages that are provided by the
cloud provider.

• CloudStorage: This class extends the StorageSpec class. This class is used to
specify cloud storage such as Amazon S3 and RackSpace.

• BlockStorage: This class extends the StorageSpec class. This class specifies
block storage (such as Amazon EBS).

108

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.11: Example of Storage Unit model

• Backup: This class extends the StorageSpec class and specifies a unitBackup.
This class specifies backup storage (available from all cloud providers).

4.3.5.2 Example of a Storage Model

As illustrated in Figure 4.11, a storage unit, of CloudStorage type is defined with a size
of range (RangedValue) = 1-50, thus we assign min = 1 and max = 50; and the units of
minUnit and maxUnit = TB. The attribute isPositive = true (in the properties window)
which means that a larger value of size is better.

4.3.6 Network Package

This package is constructed to specify the network service units. IaaS public clouds
provide networking services, such as transferring data into/out of cloud services and
between cloud services. Other networking services may also be provided, such as load
balancing and firewalls. These services are provided with respect to other services,
i.e. they are related to Storage and Computing services. Moreover, cloud providers
specify prices for these services. As a consequence, we include such network services
in our metamodel. In addition, some cloud providers (e.g. GoGrid) include references
to network performance in a cloud SLA. Some cloud providers also distinguish data
transferring in to the cloud provider services, and out of the cloud provider services.

109

4. DOMAIN ANALYSIS AND METAMODELLING

They distinguish services in different geographical locations. For instance, data trans-
fer from Amazon EC2 to another Amazon EC2 in a different geographical locations
costs $0.01 [8].

4.3.6.1 Abstract Syntax

The abstract syntax of the Network Package is illustrated in Figure 4.12.

Figure 4.12: Networking Abstract Syntax

• NetworkUnit: This is an abstract class that extends the CloudUnitSpec. It speci-
fies the size of type Value (which is explained in Section 4.3.1.1). This class may
have a service.

• RequestType: This class extends the abstract class NetworkUnit and has an at-
tribute requestType. Usually public cloud providers (e.g. Amazon and RackSpace)
define a request and a price for this service depending on the number of requests.

110

4. DOMAIN ANALYSIS AND METAMODELLING

Typical request examples are: put, get or post. Thus this class is constructed to
specify the price of different requests.

• TransferType: This class extends the abstract class NetworkUnit and has an at-
tribute transferType. In public cloud providers, transferring data into the cloud
has different prices compared to transferring them out of the cloud services. The
price of this service depends on the size of the data and to where they are trans-
ferred.

• TransferType: This is an enumeration and has three values in, out and internet.
The in is to specify data transferred into the cloud provider service. The out is to
specify data transferred out of the service to another service but within the same
provider. Finally, internet is used to specify that data are transferred out of the
cloud provider services.

• RequestType: This is an enumeration and has values PUT, GET, DELETE, POST,

LIST, HEAD, COPY, RESTORE, and Archive. These values are used to specify
the request type.

4.3.6.2 Example of Network Model

Figure 4.13: Example of cloud Network Model

DataTransferType can be defined by a name and a size, as illustrated in Figure 4.13.
We can also associate the DataTransferType with a service that is using this network

111

4. DOMAIN ANALYSIS AND METAMODELLING

service, e.g. transferring data from the cloud servers (Computing) to the internet (out
side the cloud services), as in the figure.

4.3.7 Obligation Package

An obligation, in the context of a cloud SLA, is a commitment of the cloud provider
in case of violations. Public cloud providers define a penalty in the form of credit as
a commitment in case of SLA violation. Cloud providers usually provide different
threshold values for a service (SLO Section 2.2.4.1) as a commitment, and different
credit values for each threshold, as illustrated in Figure 4.14. Therefore, we define an
obligation as a number of terms (obligationTerm), each of which consists of an SLO
and credit. Overall, this package is constructed to specify the obligations which are
composed of SLO and credit as explained in the following section.

Figure 4.14: A screen shot of Amazon EC2 Credits [4]

4.3.7.1 Abstract Syntax

The abstract syntax of the obligation package is illustrated in Figure 4.15.

• ObligationTerm: Each Obligationterm contains slo of type SLO, parameter-

Value of type QoSPreperty (Section 4.3.9.1) and may specify violation of type
Credit.

• SLO: This class specifies a value and an operator. This class is constructed to
specify an SLO logical condition, e.g. uptime <99.95.

• Credit: This class defines a creditValue and may specify a creditType, minValue

and maxValue. This class is used to specify the credit value in case the logical
condition (SLO) is true.

112

4. DOMAIN ANALYSIS AND METAMODELLING

• ServiceCreditType: This is an enumeration and has two values: serviceTime

and servicePrice. This class is created to support the comparison process, to
differentiate how credit is calculated. For example, in Amazon EC2 the credit is
calculated based on the percentage of the total charges paid by a consumer for a
monthly billing period, while in GoGrid, the credit is calculated as one hundred
(100) times the Consumer’s fees for the impacted Service feature for the duration
of the Failure.

Figure 4.15: Obligation Abstract Syntax

4.3.7.2 Example of Obligation

An example of an Obligation model is illustrated in Figure 4.16. The obligation term
has a parameterValue named upTime, which is created in the service model (Sec-
tion 4.3.2.2). For this QoSProperty there is an SLO defined, where the threshold level
uptime is <99.95% and >99.9% and has a credit value with 10% of the total cost of
the service unit.

If this is the case, then there is a credit to be paid to the consumer, as shown in the
figure.

113

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.16: Example of Obligation Model

4.3.8 Price Package

In cloud computing offers, cloud providers usually give a set of cloud service unit
prices. Additionally, cloud providers usually provide a calculator for the cloud con-
sumer to calculate the expected cost of consuming cloud services. To support such
price estimates, a price package was included, to both compare prices and to calculate
the cost of the cloud service units. The proposed metamodel is constructed for both
provider and consumer SLAs; thus, this package includes only the prices. The cost
(which is the total price for the services used) is calculated separately in Section 6.4.2.

4.3.8.1 Abstract Syntax

The abstract syntax of the price package, which is illustrated in Figure 4.17, consists
of:

• Price: This class specifies an attribute priceValue which has a Float type and a
number of pricePer of type SingleValue . Moreover, it specifies the payment-

Period of type PaymentPeriod (Section 4.3.1.1), currency of type CurrencyType

(Section 4.3.1.1) and may define extraCharges.

114

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.17: Price Abstract Syntax

4.3.8.2 Example of Price Model

The example of a price model in Figure 4.18 indicates a price of $0.06 for using the
service for an hour (pricePer) on a monthly payment basis.

4.3.9 SLA Package

Cloud SLAs consist of several components (as explained in Section 2.2.4.1). A pre-
defined cloud SLA, e.g. EC2 or RackSpace, defines for each service an SLA. Each

Figure 4.18: Example of a Price Model

115

4. DOMAIN ANALYSIS AND METAMODELLING

SLA has a definition section where a service and relevant QoS parameters can be de-
fined. It also contains an Obligation section, where it defines an SLO and credits. In
the abstract syntax for the SLA package, which is explained in the following section,
we define Availability as a QoS parameter; it is the most common QoS concept in
cloud SLAs. Two more QoS concepts are defined, Maintainability and Performance,
because the public cloud SLAs of GoGrid and RackSpace defined such concepts; their
inclusion here is meant to be a proof of concept to show that non-availability concepts
can be supported. Other QoS concepts can be added by extending QoSTerm. The pur-
pose of constructing this package is to support specifying a cloud SLA consisting of a
definition, obligation, QoS concepts and service. In the following section, the abstract
syntax is illustrated.

4.3.9.1 Abstract Syntax

Figure 4.19 illustrates the abstract syntax of a SLA which consists of:

• SLA: has a name and a service of type Service (Section 4.3.2.1). Moreover, each
SLA may contain an Obligation and Definition, where different obligation terms
and definitions can be defined.

• Definition: contains a number of terms DefinitionTerm e.g. QoS parameters.
This class specifies definitions of the cloud SLA, which is usually is a part of the
cloud SLA (Section 2.2.4.1).

• Obligation: Acts as a container where different obligationTerms can be defined
(Section 4.3.7). This class specifies the obligations of the cloud provider, which
is usually part of the cloud SLA (see Section 2.2.4.1).

• DefinitionTerm: This class has a description attribute and associates a QoSProp-

erty. This class specifies the definition term and its description.

• QoSProperty: Specifies a QoS parameter that has a Value and associates with
a number of QoSTerm. This class specifies the quality parameters that can be
defined by the cloud provider or consumer. This QoSProperty is used in the
ObligationTerm term (see Section 4.3.7.1). This class is used to quantify the
QoS concepts [52], i.e. QoSTerm.

116

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.19: SLA Abstract Syntax

• QoSTerm: An abstract class that contains a number of QoSProperty. The classes
extend the QoSTerm are (the QoS concepts): Availability, Maintainability, Per-

formance, Elasticity, etc. In this abstract syntax, we define some of these pa-
rameters as a proof of concept. We choose Availability because it is common
in cloud computing SLAs. The performance parameter is used widely in QoS
studies and also in web service SLAs. The performance in the pre-defined cloud
SLAs is provided in the GoGrid SLA for the networking service.

• Availability: A class that extends the abstract class QoSTerm, where different
parameters related to availability can be defined as a QoSProperty.

• Performance: A class that extends the abstract class QoSTerm, where different
parameters related to performance can be defined as a QoSProperty.

• Maintainability: A class that extends the abstract class QoSTerm, where different
parameters related to maintainability can be defined as a QoSProperty.

117

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.20: Example of SLA Model

4.3.9.2 Example of SLA Model

The SLA in Figure 4.20 refers to a Computing service created in a Service Model
(Section 4.3.2.2). It has the name Computing SLA. This model also defines an obli-
gation and a definition, each of which consists of terms. The obligation defines obli-
gationTerms which is created in Obligation model (Section 4.3.7.2). The definition
defines terms; e.g. Computing Monthly Uptime. This term has a text description,
e.g. “monthly Uptime is calculated by subtracting from 100% the percentage...”, and
it refers to the QoSProperty Monthly Uptime created in the Service Model in Sec-
tion 4.3.2.2.

4.3.10 Contract Package

As mentioned in Section 2.2.4.1, an SLA is part of a contract that includes the parties,
definitions of the services and QoS for each service. In our metamodel, the contract
defines a number of SLAs and parties. The contract also contains the cloud service
specifications and their prices, in the form of a CloudUnit. This CloudUnit is defined
to allow cloud providers or cloud consumers to define their demands and include the
costs in SLA comparisons. The pre-defined cloud SLAs define services but do not
include the prices and different specifications for these services, which are normally
defined separately; e.g. Amazon EC2 defines instance types [7] and instance prices
[8]. Each cloud unit is identified by (e.g. Amazon EC2, S3, RackSpace and GoGrid):

1. a set of characteristics (e.g. as mentioned in Section 4.3.4).

118

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.21: Contract Abstract Syntax

2. a geographical location, e.g. different locations are defined for the Amazon EC2,
such as the US and EU [8].

3. a price which depends on the characteristics of the cloud unit and geographical
location [8].

4.3.10.1 Abstract Syntax

Figure 4.21 illustrates the Contract abstract syntax, which defines:

• SLAs: Act as the root of SLA models. It allows a Party to define more than one
SLA. Moreover it contains a number of CloudUnit.

• Party: A Party has a name and contact details and is extended by the Consumer
and Provider classes.

• SLA: Contains details about SLA, which is explained in Section 4.3.9.

• CloudUnit: Associates the Location (see Section 4.3.1.1), Price (see Section 4.3.8)
and CloudUnitSpec (see Section 4.3.3.1). Thus an SLA party can define a num-
ber of cloud units. Figure 4.2 shows that a computing unit named VM1 with
price 0.06 USD per hour and located in the US is defined as a cloud unit.

119

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.22: Example of Contract Model

4.3.10.2 Example of Contract Model

The Contract model example defines different SLA models, e.g. ComputingUnits and
CloudStorage SLAs, as shown in Figure 4.22. The model defines a Provider named
AAProvider. This cloud party can define a number of cloud units. In this figure, we
created two cloudUnits. Each CloudUnit refers to a price (which is created in the
Price model - Section 4.3.8.2), a location (which is created in the GeneralTypes model
- Section 4.3.1.2), a cloud unit (which is created in the ComputingUnit model - Sec-
tion 4.3.4.2, ta Storage model - Section 4.3.5.2 and a Network model - Section 4.3.6.2).
As illustrated in the figure, the computing unit is named “small” and its location is the
US and its price is $0.068.

A cloud party can be either a provider or a consumer. Initially, the metamodel
was developed for one party, e.g. a cloud provider creates an SLA model for their
offers, while the consumer creates an SLA model for their demands. However, an
SLA is a contract between two or more parties (as explained in Section 2.1). The
notion of a Contract makes it possible to define one or more parties. However, we
added constraints to restrict the number of consumers and providers as parties in a
cloud SLA to one of each. This is illustrated in the EVL constraints in Listing 4.3.

Listing 4.3: The EVL Constraint generated restricting the number of consumers and
providers of cloud SLA to one

120

4. DOMAIN ANALYSIS AND METAMODELLING

1 context SLAs!SLAs{

2 constraint MoreThanOne {

3 check : self.parties.select(e | e.isKindOf(SLAs!Consumer)).

size() <=1 and self.parties.select(e | e.isKindOf(SLAs!

Provider)).size() <=1

4 message : "SLA must define at most 1 consumer and 1 provider"

5 }

6 }

4.4 Early Versions of the Cloud SLA Metamodel

4.4.1 First Version Metamodel for Cloud Computing SLA

Amazon SLA EC2 and S3 have similar structures (Figure 4.23). Each makes use of the
following concepts: Definitions, Service Commitments and Service Credits (describes
a threshold value of the monthly uptime percentage and the credits if that threshold
is exceeded), Credit Request and Payment Procedures (describes how to request the
credits) and Parties [4]. Before constructing a cloud SLA metamodel we analysed
relevant digital SLAs to determine the accepted ways of specifying SLA concepts and
structure. The WSLA (see Section 2.4.5) specifies the following main sections: Parties,
Definitions and Obligations. Thus the development of the metamodel SLA is inspired
by the WSLA: not only it is similar to the main components in SLA for Amazon SLA
EC2 and S3, but it is also objective and precise (see Section 2.4.5).

121

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.23: A screen shot for EC2 SLA [4]

122

4. DOMAIN ANALYSIS AND METAMODELLING

Our main concern is to find matches between cloud consumer requirements and
cloud provider offers based on the QoS parameters. Cloud providers use different ter-
minology in their SLA offers, so comparing the same parameters based on the parame-
ter name is not feasible. For example, two different terms (uptime and availability) are
used to express the same concept in cloud SLAs Amazon EC2 and RackSpace. Also,
the Monthly Uptime Percentage is calculated in terms of the unavailability of the EC2
instances. RackSpace defines the Monthly Availability in terms of the unavailability of
the server (e.g. server error response or no response). Therefore, our metamodel varies
from the WSLA. Figure 4.24 illustrates the first version of our cloud SLA metamodel.

The figure shows that the SLAContract defines a number of services and a ser-

viceObligation. Moreover, the ServiceTerm defines a number of services and may have
a serviceObligation. Each Service defines a number of QoS, which is used to define
the QoS concept. Each QoS defines one or more measuredAttribute. Each Metric has
attributes: name, type, value and time period. These attributes were defined to be used
in the comparison process. Similar to the WSLA, we defined MeasurementDirectives

and a Function that is defined to calculate and exchange metric values.
A model that conforms to this metamodel allows a QoS concept to be defined using

different names. Thus it is possible to define the same QoS parameters using different
names, e.g. uptime and availability (Amazon EC2 and RackSpace). Thus we refined
our metamodel. In the following section we discuss the second stage of constructing a
cloud SLA metamodel.

123

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.24: First version SLA metamodel

4.4.2 Revised SLA Metamodel

The cloud SLA metamodel was altered frequently during the construction process. We
added new components to the metamodel, which required refinements. As discussed
in the previous section, the terminology of QoS might have different names but similar
meanings. The reason for differences might refer to the providers advertising needs,
i.e., for emphasising the cloud provider’s unique selling points. We specified the QoS

124

4. DOMAIN ANALYSIS AND METAMODELLING

parameters name, so that providers use this specific terminology. Another addition to
the first version is the consumer requirements. As illustrated in the previous section
we had one metamodel for a cloud SLA. After the first version (Section 4.4.1), the
metamodel went through several refinements and testing operations.

For example, the service in metamodel 4.24, can be defined by the user using dif-
ferent names, e.g. the Amazon computing service is called EC2 [3] and the RackSpace
computing service is called Cloud servers [21]. When we want to compare, e.g., QoS

parameters, logically, they have to define the same service. Using different names
makes the comparison infeasible. Figure 4.25 shows that a metamodel specifies three
classes: Computing, Storage and Networking. For another example, assume that a
model defines a QoS parameter name availability and another model defines uptime as
a QoS name. A comparison operation will not compare the two parameters while they
may have the same meaning (as discussed in Section 2.2.4.1).

The revised metamodel changed to two metamodels: one for SLA cloud provider
offers and the second for cloud consumer requirements. This decision was made for
the following reasons:

• As discussed in Section 3.4 Table 3.5 (S5), cloud consumers may want to provide
their own preferences, which are not included in the cloud provider offers.

• Cloud consumers usually define high level parameters of QoS [174], while cloud
providers may provide more details about QoS (in the SLA) to monitor the pa-
rameters. This is to avoid penalties in case of SLA violation [76]; for example,
high level parameters such as SLA availability and low level parameters such
as upTime and downTime [76]. Therefore the cloud provider SLA may include
more details than the cloud consumer requirements.

125

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.25: A provider SLA metamodel [37].

126

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.25 shows the second version of the metamodel for cloud SLA offers. The
figure shows that an SLA defines different services. There are different categories of
services, which are: Computing units, Storage or Networking, which are presented as
subclasses of the Service Class to define the service type. IaaS clouds provide differ-
ent services: Computing Power, Storage and Networking (Section 2.2.3.2) and the sub
classes ComputingUnit, Storage and Networking represent these IaaS services. Fur-
thermore, pre-defined cloud providers provide an SLA for each service, e.g. Amazon
(EC2 SLA and S3 SLA) and RackSpce (Cloud Server SLA, Cloud Files SLA and
Cloud Load Balancer SLA). The Service class refers to the QoS class. This QoS is a
superclass of Availability and Reliability. These classes are defined to provide the QoS
concept. As explained in (Section 2.1.1.1 equation 2.1) availability can be calculated
in terms of uptime and downtime, which are described as low level parameters [76].
The figure illustrates that the attribute of Availability is called the attribute of type
AvailabilityAttr. AvailabilityAttr is an enumeration that defines upTime, downTime and
incident-Time (Section 2.1.1.1). Different attributes of Reliability include Mean Time
TO Repair (MTTR), Mean Time Between Failure (MTBF) [180] and Max Time To
Recover (MaxTTR). Thus a cloud consumer and cloud provider define their QoS con-
cepts using specific terminology. Availability and Reliability have attributes: value,
valueType and name. The enumerated type AvailabilityAttr specifies elements of the
availability quality; for example, availability is defined in terms of uptime and down-
time [135]. Finally, Credit is an action subclass, and an attribute of the Obligation

class. Cloud providers usually define a credit request in their SLAs as an action. A
consumer has to request the credit and provide evidence of the violation, e.g. Amazon
EC2 [4].

127

4. DOMAIN ANALYSIS AND METAMODELLING

Fi
gu

re
4.

26
:A

co
ns

um
er

SL
A

m
et

am
od

el
[3

7]
.

128

4. DOMAIN ANALYSIS AND METAMODELLING

Figure 4.26 illustrates the metamodel for consumer requirements. The metamodel
is similar to the provider metamodel. The differences are: the WeightedValue class
(which is not included in the provider metamodel), Obligation, Credits and Action
classes (which are not included in the consumer metamodel, largely as a simplifica-
tion). The WeightedValue class is included in the consumer metamodel to provide a
means for consumers to provide their preferences with respect to different cloud at-
tributes, i.e. add weight to the QoS parameters.

4.5 Summary

In this chapter, we described the cloud SLA metamodel. We first provided the gen-
eral SLA metamodel which is composed of several packages. An example of a cloud
SLA model with an object diagram was provided. This chapter presented a detailed
description of each package, including the abstract syntax and an example model. As
mentioned in Chapter 3, we originally envisioned the need for two metamodels - one
for cloud SLA providers and another for consumers - but we ended up with one meta-
model. Therefore a description of the early versions of the cloud SLA metamodels
showed how the two cloud SLA metamodels for providers and consumers were sim-
ilar and thus we ended up with one SLA metamodel. The next chapter explains the
cloud SLA comparison process.

129

Chapter 5

A Comparison Process for Cloud SLAs

Chapter 4 introduced a metamodel for cloud SLAs. The metamodel is composed of
several packages (such as CloudUnitSpec, Price and Services) and includes features
related to QoS and cost. This metamodel was noted as one of the requirements in
Table 3.6 in Section 3.4 in order to help to specify and better automate the process
of selecting between cloud SLAs. This chapter presents the comparison process for
cloud SLAs. The comparison process demonstrates both the core logic for matching
SLAs (i.e., those parts that do not vary between different comparison scenarios) and
the key variation points for different scenarios (e.g., for different degrees of precision
in comparison).

5.1 Introduction

We can use the metamodel previously defined in Chapter 4 as the basis for SLA com-
parison. SLA comparison can be supported via the use of model comparison (or match-
ing) rules. Comparison and matching is task- and language-specific: for example, there
is no unique way to compare UML models - they can be compared in terms of UIDs,
concept names, structural similarities, etc. (Section 2.3.3.2 discussed model compari-
son as a model management task in MDE). Similarly, there is no unique way to com-
pare cloud SLAs; the specific comparison logic that we use should be dictated by the
intended use of the result of matching consumer requirements against provider offers
(Section 2.4 discusses the matching and similarity between service components and

130

5. A COMPARISON PROCESS FOR CLOUD SLAS

QoS). In the comparison process that we present in this section we focus on finding
matches and similarities between the elements of the cloud SLA models. The over-
all intention of our approach is to semi-automate the matching process of consumer
requirements with cloud provider SLAs, to help consumers to select from amongst
different cloud offers.

In our matching approach, we first match an SLA model for consumer requirements
and an SLA model for provider offerings; this is the core part of our approach. We then
propose three different matching algorithms: Optimal, Approximate and Name-based
matching scenarios (as illustrated in use case scenarios in Sections 3.3.2.1- 3.3.2.3).
These algorithms serve to provide different types of matching (of different accuracies)
to support different scenarios.

This chapter starts with examples to illustrate the matching logic between two SLA
models, then discusses the optimal match process in Section 5.4.5. Section 5.4.6 ex-
plains the Approximate match algorithm. The Name-based match algorithm is then
discussed in Section 5.4.7.

After discussing the algorithms conceptually, we present an implementation based
on standard model management tasks and tools, particularly Eclipse EMF and Epsilon.
The matching implementation is divided into several ECL tasks. In each section we
explain an ECL task, which focuses on matching different parts of the SLA models
(Sections 5.5.1- 5.5.7, and 5.5.8). In each section, we first provide the matching imple-
mentation of the Optimal match algorithm, and then discuss the variations necessary to
support the other matching logics. Finally we describe the metamodel for the results of
the matching process (i.e. a trace metamodel). This metamodel – and its conformant
models – are used to present the results to a consumer; we describe the uses of these
models in the next chapter.

5.2 General Process of Cloud SLA Model Comparison

In this section we describe the general process of comparing cloud SLA models. In
this comparison process we focus on finding matching elements in two SLA models.
Any matched element is included in the output results. Before delving into the details,
it is important to differentiate between the two phrases (comparison and matching)
which will be used throughout this chapter. By comparison, we mean the total process

131

5. A COMPARISON PROCESS FOR CLOUD SLAS

of comparing a service requester model against a number of provider SLA models;
while the matching process (whether described as a matching logic or algorithm) is the
process of finding matches between two model elements.

Figure 5.1 describes the comparison process for comparing a service requester
model against n provider SLA models. This comparison process is composed of n
matching processes.

The comparison process starts when a service requester (e.g. the consumer) pro-
vides a cloud SLA model to be matched against a repository of SLA models (the repos-
itory was first discussed in the use case scenarios in Section 3.3) of different providers’
offers. Assume a situation as illustrated in Figure 5.1. As such, we have a consumer
model as input to the process, along with a repository of n SLA models. The input
model is compared against n SLA provider models stored in the repository. Then, a
matching process involving two models is invoked n times, with each providing an
output model as a result. The output model is called a trace model, as it captures the
links between different models.

As illustrated in the figure, each matching process can be composed of several
sub-matching processes. Different elements of the cloud SLA, e.g. QoSProperty and
CloudUnit (Section 4.3) can be matched using different matching logics, e.g. Optimal,
Approximate and Name-based (see Section 5.4). How the matching is carried out and
how these matching logics differ is explained in this chapter, but first we provide a
motivating example in Section 5.3 to illustrate the idea of matching SLA elements.

132

5. A COMPARISON PROCESS FOR CLOUD SLAS

Figure 5.1: Comparison Process Architecture

133

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.3 Motivating Example

In this section we provide a motivating example to illustrate the matching process
of two SLA models. In this section, assume that we have a consumer requirement
together with provider A and Provider B models specified as illustrated in Table 5.1.
The model elements in the table represent the elements of cloud SLA models, while
the values of the consumer and provider models described in the table can be either
elements (which may have attributes and references) or elements’ attributes.

In this example, we illustrate which elements of two cloud SLA models can be
matched, wherein the matched elements will be included in the output (trace) model.
In comparing two models we compare the elements, their attributes and references.
To compare these model elements, we have to consider the logic of matching SLA
elements. To match two elements we define the left parameter as an element of the
consumer model while the right parameter is an element of the provider model.

5.3.1 Which Elements of Cloud SLA Models Can be Matched?

In this example, we explain the matching of cloud consumer’s requirements against
SLAs offers from two providers (i.e. Provider A and B) (Table 5.1).

• Matching services: to find matching elements between two models (e.g. the
consumer and provider models), we first match the service elements of the two
models. As we see in the table, the consumer model defines two service ele-
ments: computing and storage, which match the provider model elements. In
the context of the metamodel (see Section 4.3), we match the elements between
the consumer model and the provider model.

• Matching QoS concepts: for example, to match Availability (in row 3 of Ta-
ble 5.1) in the consumer model with Availability in a provider model, a match
should be found first between the service, e.g. Computing, in both the consumer
and provider models. Therefore, the availability (in row 3 of Table 5.1) of a com-
puting service in both the consumer and providers models is matched against
each other. However, the availability of computing in the consumer model is
not matched with the availability of the storage service in the provider models

134

5. A COMPARISON PROCESS FOR CLOUD SLAS

(rows 3 and 6 in the table are not matched), because they are defined for different
services; namely computing and storage.

• Matching QoS parameters: the QoS properties defined within Availability (QoSTerm

class, see Section 4.3.1.1) can be matched with QoS properties defined within
Availability in the provider model. The elements defined within the computing
service in the consumer model (e.g. availability) are matched only with the ele-
ments defined within the same service (i.e. the Availability elements defined for
computing) of the provider model (e.g. availability and uptime). In this case we
match references, e.g. the Value element of both parameters. For example, the
Value for availability and MTBF in the consumer model are matched with the
uptime Value defined in the provider model.

• Matching values: to match two values, we have to match their units and then
their values.

1. Matching units: for example, theQoS property availability in the consumer
model in row 3 is matched with the uptime defined in the provider A model,
but not with the downtime in the provider B model, because the uptime unit
is defined as a percentage (i.e. %), while the unit for the downtime is a time
unit (i.e. minute).

2. Matching values: the cloud metamodel has two types of value: SingleValue

and RangedValue (Section 4.3). For example, the consumer model defines
a response time as a single value which is a time = 2 minutes, while B de-
fines a range from 70 to 120 seconds. A single value element (SingleValue

class, see Section 4.3.1.1) and a range value element (RangedValue class,
see Section 4.3.1.1) can be matched. These two elements can be matched
because they define a time using different time units (seconds and minutes).
To match these two values, the value and unit of one of the elements should
be converted into the other unit of the other element (e.g. 2 minutes should
be converted into 120 seconds).

• Matching prices: to match two prices from the consumer and provider models,
the two prices should define the same payment type (e.g. the price in the con-
sumer model should match that of a yearly subscription in provider A’s model,

135

5. A COMPARISON PROCESS FOR CLOUD SLAS

but not the on-demand payment price). To match two prices they should be the
prices of two matched cloud units.

• Matching cloud units: in matching cloud units (CloudUnit, see Section 4.3.10), a
match between the characteristics of the cloud unit (CloudUnitSpec Section 4.3.3.1)
of the same type should be carried out, e.g. matching VM1 and VM2 of the con-
sumer model with the VMs in provider A’s models. There are four possible
combinations in which VMs in the consumer and provider A’s models can be
matched: VM1 and VM1, VM1 and VM2, VM1 and VM1, and VM2 and VM2.
The storage size of the consumer model is compared with that of the provider’s
models. Computing units are composed of different attributes, which are vCPU,
size and storage as illustrated in the example. To match computing units the
composite attributes should be matched first.

In the preceding, we discussed which two elements of two SLA models are consid-
ered in the matching logic. Now we explore how to match two model elements: when
are such model elements alike or the same?

5.3.2 When are Model Elements Alike?

We return to the example illustrated in Table 5.1; there are a number of different ele-
ments defined in the consumer model. We first look at provider A and provider B to
find the same elements. For example, the consumer model defines its location as the
UK; the same location is defined in provider B’s model. In this case, the match process
returns true for these SLA model elements. Similarly, both the consumer model and
provider A’s model define a computing service and as such these model elements will
be matched.

The availability value is defined in the consumer model as 99.99%, which does
not equal the availability value defined in, e.g., provider A’s model. In this case, can
we say that the availability parameters in both models are not the same? It depends
on the consumer to decide the degree of matching that is acceptable for the problem
they are trying to solve. For example, if a consumer wants to find the same or better

values, then, in this example the matching process returns false which means that the
availability in both models is not the same. However if the consumer accepts the

136

5. A COMPARISON PROCESS FOR CLOUD SLAS

differences between the values of availability within, e.g. a threshold of 5%, then the
matching returns true, which means that the 99.99% and 99.95% values are the same
and so, accordingly, the availability in the consumer and provider A’s models are the
same. We call this matching approximate matching.

The response time value in the consumer model is defined as a SingleValue (see
Section 4.3.1.1), whereas the response time in provider B’s model is defined as a
RangedValue (see Section 4.3.1.1). The matching process returns true (i.e. the value
of SingleValue is the same as the value of RangedValue) if the value of SingleValue

is within the range of values of RangedValue. If both values are defined as a range,
a matching process returns true if they define the same or better range of values. For
example, the storage size of the consumer and provider A’s models is defined as a
range from 1 GB to 20 TB, which is an optimal match. However, what if one range is
a subset of the other range or both ranges intersect at certain values? Again, it is for
the consumer to decide the required degree of matching. If, for example, a consumer
allows an approximate matching between values, then if the difference between both
the lower limits and upper limits is within the approximate value the match is true,
and false otherwise. For example, the storage size of the consumer model does not
match that of Provider B’s model if the approximate value of the difference percentage
is 5%, because the difference between the lower limit of the storage size in the con-
sumer model and the lower limit of the storage size in provider B’s model exceed the
approximate value.

Matching VMs between the consumer and the provider models considers matching
the values of the attributes. For the optimal match, VM1 is matched against VM1
and VM2 in provider A’s model. The values of the attributes of VM1 are not the
same at least and so the matching process returns false, while the matching process
returns true for VM2. The consumer may prefer to find approximate matching with a
difference of 5% between values. In this example, there are no matches (the matching
process returns false) for consumer VM1 and VM2. A consumer may prefer to relax

the matching degree again to find a similar VM as defined in the consumer model. For
example, the name-based match returns true when for matching VM1 of the consumer
model with VM1 of the provider A and provider B models, and with VM2 of both
providers, while the matching process of VM 2 of the consumer model returns false
when matched with all of the VMs in both provider models. This is because the name-

137

5. A COMPARISON PROCESS FOR CLOUD SLAS

based match ignores matching values and checks that the two elements have the same
OS (i.e., in this example both VMs have the Linux OS). A consumer can also restrict
matching cloud units to match the prices (i.e. using optimal matching to find the lower
prices) of those matched VMs. In this case, a matching process returns true when it
matches the VM1 of the consumer model and VM1 of provider A’s model, while it
returns false for the VM2 of the consumer model and VM2 of provides A’s model.
Another example of a name-based match is matching between MTBF, as defined in
the consumer model, and downtime, as defined in provider B’s model, where both
elements have a time unit. The name-based match ignores the values; the units are
similar but still the matching process returns false. MTBF is defined as, the higher the
value the better, while, for downtime, the lower the value the better; therefore, the two
values are not matched.

In Section 5.4, we discussed different matching logics precisely: Optimal, Approx-
imate and Name-based.

5.3.3 Cloud SLAs Concepts Involved in the Matching Process

As illustrated in Chapter 4, our metamodel is constructed for both provider and con-
sumer SLAs. In Chapter 3, we described different use cases to compare an SLA of a
service requester and an SLA of a cloud provider. In this section we provide an exam-
ple of provider and service requester SLA models to help explain the general matching
process, and show the differences between the different matching logics.

The above examples demonstrated that there are different matching algorithms. We
break the comparison down into several parts, the first of which is an overview of the
key concepts that may be matched during the process. This is specific for cloud SLA
matching.

• Services: in matching SLAs, we first match the service elements (e.g. comput-
ing, storage or networking). Cloud providers usually announce the services and
the service unit specifications that are available.

• Quality concepts: i.e. elements that conform to classes that inherit the QoSTerm
class (see Section 4.3.9), e.g. availability or reliability.

138

5. A COMPARISON PROCESS FOR CLOUD SLAS

• Cloud Unit Specifications: in matching we assume that consumers require a
specific unit specification and want to find a match with the provider offers.
Usually consumers specify service units with the price that they are willing to
pay.

• QoS Parameters: i.e. QoSProperty elements (see Section 4.3.9), these param-
eters define the QoS indicators and their values present at the level of service
under question. These values are used as thresholds to monitor the quality of
service and any occurrence violations.

• Obligation: this represents the degree of commitment with which the service
providers will meet their offered and promised quality of service.

• Prices and cost: presumably, a consumer may want to compare the costs of
different services. We treat the definition and modelling of price and cost as an
initialisation step (i.e., prior to full SLA matching): the consumer should specify
the quantity and price they are willing to pay for services in which they are
interested (Section 6.4). This can be done either using a pre-defined model that
captures prices, or interactively during the early stages of the matching process.

These concepts are matched based on model elements.

• Matching model elements. There are different options for matching two ele-
ments. It depends on how strict the matching algorithm is. Thus, we have dif-
ferent options for matching logics (i.e. Optimal, Approximate and Name-based,
see Section 5.4). For example, two elements can be matched if they have the
same name, two elements can be matched if they have the same name, same at-
tributes and attribute values, or two elements can be matched if they have similar
references.

• Matching references of two elements. This matching has different options. It is
based on the number of references and whether or not the referenced elements
are matched.

We specify some of the key options (or variation points) for matching model el-
ements and combine these with the concepts of SLA matching to form the different
matching logics (Section 5.4).

139

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.3.4 Matching patterns

Given each of these different concepts and concerns, we have a number of options
available for comparing and matching. Given that there exist many different types
of clouds (hybrid, public, private) and cloud consumers (individual end users, small
businesses, multi-nationals), we attempt to remain generic, and provide mechanisms to
support different types of matching, define the cloud parties’ own matching semantics,
and configure the degree to which a matching holds. It remains unclear which cloud
SLA matching semantics is most suitable in different circumstances. As such, our
matching approach allows different experiments to be run, and empirical data to be
collected. Given that we aim to treat cloud SLAs – and the comparison process – as
models and MDE operations, we have the means to repeat and easily modify such
experiments. We have identified three patterns of matching that are applicable to cloud
SLAs.

• optimal value match encoded in the requirements and provisions (e.g., at least
the value of the QoS property requested is provided)

• approximate value match (e.g., the requested availability value is within 5% of
what is provided); there are a number of variants of this.

• name-based matching (described in more detail later)

Other options for matching are possible, such as matching value elements if they
have exact “values”. For example, x matches y if (x.value = y.value and x.isPositive =

y.isPositive = true) or (x.value = y.value and x.isPositive = y.isPositive =

false). However, these are arguably special cases, so we focus on precise descriptions
of Optimal value matching, Approximate value matching, and Name-based matching

as a proof of concept of the different matching methods of cloud SLA models. The
difference between optimal and approximate matching is that the former calculates the
same or better model elements, including their attribute values. Approximate matching
matches the model elements with the percentage differences in their attribute values.
On the other hand, name-based matching matches model elements that have some
similar attributes values or some similar references. In Section 5.4, we describe the
different matching logics we used in our comparison process.

140

5. A COMPARISON PROCESS FOR CLOUD SLAS

Table 5.1: Consumer requirements and the two providers’ (A, B) SLA offers

Model Ele-
ments

Consumer Re-
quirements

Provider A’s offer Provider B’s offer

1. Location

UK US, Ireland, Sydney
and Tokyo

US and UK

Computing SLA

2. Service
Computing Computing Computing

3. Availability
(Computing)

availability 99.99%,
MTBF = 1 hour

uptime 99.95% availability 99.95%
downtime = 5 min-
utes

4. Performance
Response time = 2
minutes

- Response time = 70
150 seconds

Storage SLA

5. Service
Storage Storage Storage

6. Availability
(Storage)

availability 99.9% availability 99.9% availability 99.9%

Cloud Units and Prices

7. VM1 price
$262.80 per year
(subscription) $0.070 per hour

(on demand)
$0.05 per hour
(annual subscrip-
tion)

$0.12 per hour
(on demand)
$65.7 per month
(subscription)
$262.80 per year
(subscription)

8. VM1 Spec. vCPU=1,
Mem=4-7GB,
Storage=32GB,
OS = Linux

vCPU=1,
Mem=3.75GB,
Storage=4GB,
OS = Linux

vCPU=2,
Mem=2 GB,
Storage=100GB
OS = Linux

9. VM2 price
$0.140 per hour $0.140 per hour $0.24 per hour

10. VM2 Spec. vCPU=3,
Mem=4-7GB,
Storage=32GB,
OS = Windows

vCPU=2,
Mem=7.5GB,
Storage=32GB,
OS = Linux

vCPU=4,
Mem=4GB,
Storage=200GB,
OS = Linux

11. Storage price
$60 per GB per
month

$0.0300 per GB per
month

$0.12 per GB per
month

12. Storage Size
1 GB - 10 TB 1 GB - 20 TB 10 GB - 1 TB

141

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.4 Matching Logic

One option for comparing cloud SLAs is to attempt to at least match the values held in
the models, e.g., the requirements specified by the consumers and providers. We have
called this “optimal matching”. An alternative is to approximately match the values
held in the model. For example, two elements – availability1 = 99.95% and avail-
ability2 = 99.9% – are matched if the percentage difference between the two values =
10%. Another possible option is where consumers can accept some similarities (e.g.
attributes names) between their requirements and what the providers offer, or are al-
lowed to ignore certain concepts (like credit) and ask for an optimal match between
other concepts. Our proposed solution for cloud SLA comparison allows a consumer
to customise their matching requirements.

Our focus so far in the matching process has been on QoS parameters; this is largely
because these concepts appear most frequently in each of the cloud SLAs we studied
(see Section 2.4.3). In SLAs, QoS performance is monitored via these parameters
and their given threshold values (SLO, see Section 2.1). Generally, QoS parameters
are presented and defined differently, e.g., as service uptime, downtime or restoration
time. How do we match QoS parameters in a cloud SLA? In general, we first check
if the QoS parameters belong to the same service and represent the same quality (i.e.
QoSTerm), then we provide different options for matching.

So the question now is: how do we actually carry out a comparison between con-
sumer requirements and cloud provider SLAs? More precisely, what is the structure of
the comparison logic? The comparison logic will take into account one (or more) of
the matching options described above. This may be helpful when one matching pro-
cess returns many results between two elements. The consumer has different options
for finding a match to their requirements. To simplify the matching logic we break
it down into several parts. Depending on the SLA concepts of the elements and the
model’s structure for each one, each element may have a different matching algorithm.
The matching algorithm of each element type is explained in a different subsection.
We first illustrate the general cloud SLA matching algorithm in Section 5.4.1.

142

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.4.1 Matching the Cloud SLA Model

To illustrate the generic matching, we provide a diagram showing the main components
of cloud SLA (see, Figure 5.2). As explained in Section 4.3, an SLA class has one
reference to a service; that service is either computing, storage or networking. The
generic comparison logic matches the consumer’s requests with the provider’s offers.
We start by matching the service. This ensures that we are matching the same requested
and offered services defined in the cloud consumer and provider SLA models. Once we
have ensured that the required service matches (i.e. the SLA of the same service), we
match the QoSProperty defined for this SLA, if required by the consumer. As shown
in the figure, the service defines a number of QoSPropertys. Also, we can match the
the SLO of two SLAs that define the same service. Another component of the cloud
SLAs are the cloud units. These cloud units (see Section 4.3.4) are composed of cloud
unit specifications and the price of the unit. A match algorithm of this cloud unit is
provided in Section 5.5.2.

Figure 5.2: General architecture of cloud SLAs

Then, we apply a matching algorithm for the components of the SLA model, i.e.
the definition and obligation. These two components define the QoS parameters and
the SLO, which define the threshold values of the parameters and credits.

In this general matching process, we match the references of the cloud SLAs. The
process of matching the SLA models consists of five main matching tasks as follows:

143

5. A COMPARISON PROCESS FOR CLOUD SLAS

• Matching SLAs

• Matching units and prices.

Matching SLAs consists of matching composite elements.

• Matching services

• Matching the definition and QoS parameters

• Matching the obligation and SLO

The general structure of the matching logic is illustrated in Listing 5.1 in pseudo
code. The providerSLA and serviceReq models are instances of the metamodel de-
scribed in Section 4.3. Thus, we use metamodel class names in this algorithm.

Listing 5.1: Matching between a service requester SLA model and a provider SLA
model

1 for each providerSLA model in a set of provider SLA models{

2 p = providerSLA model;

3 c = serviceReq model;

4 for each element in c {

5 for each element in p {

6 If c.SLA.service = p.SLA.service{

7 apply matching rule for c.DefinitionTerm and p.DefinitionTerm

;

8 apply matching rule for c.ObligationTerm and p.ObligationTerm

;

9 }

10 apply matching rule for c.CloudUnit and p.CloudUnit;

11 }

12 }

13 return trace of matching elements ;

14 }

The comparison logic in Listings 5.1 and 5.2 illustrates the logic of finding matches
between the SLA model of a service requester (e.g. a consumer requirement) and a set
of SLA models of cloud providers’ offers (e.g. provider offers stored in a repository,
see Chapter 3). The matching focuses on the QoSProperty (see Chapter 4.3.9.1) -

144

5. A COMPARISON PROCESS FOR CLOUD SLAS

which is part of the service definition (see Section 4.3.9.1) and obligation (see Sec-
tion 4.3.7) - as well as the cloud units defined in the contract Package (see Sec-
tion 4.3.10). Listing 5.1 illustrates the comparison logic which finds the matches be-
tween two models serviceReq and providerSLA. It finds matches between the definition
terms (DefinitionTerm class, see Section 4.3.9.1), obligation terms (ObligationTerm

class, see Section 4.3.7.1) and cloud units (CloudUnit class Section 4.3.10.1). Any
two matched elements are stored in the result (trace model, see Section 5.7). As ex-
plained in the metamodel (Section 4.3), each provider can define a number of SLAs in
one model. Each SLA defines one service and a number of definition terms (including
QoSProperty) and obligation terms. Therefore, in the algorithm we first match services
and then match the DefinitionTerm and ObligationTerm as they are reference elements
of the SLA model.

5.4.2 Matching QoS Properties

In this section, we focus on the QoSProperty, which is defined as part of the Defi-

nitionTerm in the cloud SLA metamodel. An illustration of the structure of a QoS
property is provided in Figure 5.3. The figure shows that a QoSProperty has a value
and belongs to the QoSTerm. To match two QoS parameters (i.e. QoSProperty, see
Section 4.3.9.1), first, they should describe the same QoS concept (i.e. associate with
the same QoSTerm, see Section 4.3.9.1). The general matching checks the references
of the QoSProperty. If they refer to the same elements, a match is found.

145

5. A COMPARISON PROCESS FOR CLOUD SLAS

Figure 5.3: General architecture of QoS property specified in cloud SLAs

Listing 5.2 describes the calculation of matches for two QoS parameters QoSProp-

erty, which belong to the same service and same QoSTerm. In this matching algorithm,
we match the consumer and the provider QoSProperty element by matching reference
elements Value and QoSTerm. A match is true if both references match. Assume that
a consumer defines downTime = 1 hour as a QoSProperty of an Availability concept
(i.e. QoSTerm) and a provider defines a response time = 2 minutes as a performance

concept. These two parameters can be matched where they define a time unit and
the lower their values, the better their quality. However, these two parameters define
different concepts.

Listing 5.2: Matching Definition terms and QoSProperty in the service requester SLA
model with the provider’s SLA model

1 p = providerSLA;

2 c = serviceReq;

3 if c.service = p.service{

4 apply matching rule for c.QoSProperty and p.QoSProperty;

5 apply matching rule for c.QoSProperty.value and p.QoSProperty.

value;

6 }

146

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.4.3 Matching Obligation term

An obligation is composed of an SLO and a credit (see Section 4.3.7), however we fo-
cus in this algorithm on the SLO. The SLO is composed of a reference to QoSProperty

(which is defined in the definition term, see Section 4.3.9) and a value (representing
a threshold value). To match two SLOs, we match the QoSProperty (Section 5.4.2)
and the value defined in the SLO. The algorithm is illustrated in Listing 5.3. The al-
gorithm applies a matching rule for the SLO elements. This rule matches the SLOs’
references. One of the references refers to QoSProperty (see Section 5.4.2). The other
rule matches the value reference defined in the SLO. A match is found if both rules are
true.

Listing 5.3: Matching Obligation terms SLO in the service requester’s SLA model and
the provider’s SLA model

1 p = providerSLA;

2 c = serviceReq;

3 if c.service = p.service{

4 apply matching rule for c.SLO and p.SLO;

5 apply matching rule for c.SLO.value and p.SLO.value;

6 }

5.4.4 Matching Cloud Units

Cloud units are part of the cloud’s SLA model. Each cloud SLAs (see Section 4.3.10)
defines a number of cloud units. Each cloud unit consists of the cloud unit specifi-
cations, price and location. The general structure of the cloud units is illustrated in
Figure 5.4. The main elements in this figure are the cloud unit characteristics (Unit-

Spec, as seen in the figure, specified as a class CloudUnitSpec in the SLA metamodel)
and the price of the unit (Price). The match algorithm matches the unitSpec of the
consumer and provider and the related prices of these two units.

147

5. A COMPARISON PROCESS FOR CLOUD SLAS

Figure 5.4: General architecture of cloud units specified in cloud SLAs

To match two cloud units, different rules are applied, as illustrated in Listing 5.4: a
rule for matching cloud specifications, a rule for matching prices and a rule for match-
ing locations. If all rules return true, then a match for cloud units between the consumer
and provider has been found.

Listing 5.4: Matching cloud units SLO in the service requester’s SLA model and the
provider’s SLA model

1 p = providerSLA;

2 c = serviceReq;

3 for each c.cloudUnit{

4 for each p.cloudUnit{

5 apply matching rule for c.cloudUnitSpec and p.cloudUnitSpec;

6 apply matching rule for c.price and c.price;

7 apply matching rule for c.location and c.location;

8 }

9 }

The above comparison logic (Listings 5.1- 5.4) is generic in the sense that it can
be encoded in different matching libraries and tools. The matching rules defined in
these listings define the matching logic of each algorithm. We can instantiate the logic

148

5. A COMPARISON PROCESS FOR CLOUD SLAS

(and rules) further to include optimal matching or name-based matching rules. For
example, a consumer can choose an optimal match for CloudUnit and a name-based
match for DefinitionTerm (i.e. QoSProperty), where the similarity logic can be defined
by the consumer. In the following sections, we discuss the different matching options
in detail: optimal value matching (see Section 5.4.5), approximate value matching (see
Section 5.4.6) and name-based matching (see Section 5.4.7).

5.4.5 Optimal Value Matching

Optimal value matching is based on the idea that for the two model elements to match,
the values of their attributes (of interest to be matched) must be the same or better - we
will go into further details on what ’better’ means in different scenarios shortly. For
example, the QoSProperty class has a Value; we say that two elements are matched if
the attribute (e.g. Value) of the offered element is the same as the required attribute
value or better. This particular example offers an important example inherent in many
cloud SLAs: the QoSProperty defines the direction of the value, which means that the
parameter is of better quality if it has a higher value – this pattern/style appears in
many cloud SLAs.

The optimal value matching logic matches the values of the attributes of the ele-
ment Value. For example, assume that the required availability is 99.90% and a pre-
defined SLA offers a server uptime of 99.95%. In this case, we can say that a match is
found, because both have the same units (e.g., %) and, for both parameters, the higher
value the better the offered element (e.g., the offered value 99.95 is greater than the
required value 99.90). The logic for matching values is seen in Listing 5.5, where each
attribute of the Value type of two SLA models (consumer and provider) are checked if
they are all equal or better, the match is then true. However, comparing two attributes is
not just about checking the values. For example, the Value has an attribute: unit. In this
case, we match the values of similar units. Therefore, the algorithm of the matching
SingleValue is seen in Listing 5.6.

Listing 5.5: Optimal value matching logic of Value element attributes

1 return (servReq.Value.attribute1 = providerSLA.Value.attribute1)

and .. and

2 (servReq.Value.attributeN = providerSLA.Value.attributeN);

149

5. A COMPARISON PROCESS FOR CLOUD SLAS

Listing 5.6: Optimal matching logic of values

1 if (servReq.direction = providerSLA.direction){

2 if (servReq.direction = "positive"){

3 if (servReq.unit = providerSLA.unit)

4 return (servReq.value <= providerSLA.value);

5 else if (servReq.unitType = providerSLA.unitType)

6 return (convert(servReq.value) <= convert(providerSLA.value));

7 else return false;

8 }

9 else{ //if (servReq.direction = "negative")

10 if (servReq.unit = providerSLA.unit)

11 return (servReq.value >= providerSLA.value);

12 else if (servReq.unitType = providerSLA.unitType)

13 return (convert(servReq.value) >= convert(providerSLA.value));

14 else return false;

15 }

16 }

17 else return false; // servReq.direction <> providerSLA.direction

Listing 5.6 describes the logic of comparing two values of the element SingleValue

(see Section 4.3.9.1). In this pseudo-code, we match two values servReq and provider-

SLA. Each value has a direction. The direction presents the parameter tendency, i.e. the
higher the value, the better the quality (i.e. direction = positive) or the lower the value,
the better the quality (i.e. direction = negative). We match two values if their directions
are the same. Positive values are matched if the offered value (providerSLA.value) is
equal to or greater than the required value (servReq.value). On the other hand, negative
values are matched if the offered value (providerSLA.value) is equal to or less than the
required value (servReq.value).

To match the two values (i.e. servReq.value = providerSLA.value), for which the
consumer has defined the unit, the provider value should define the same unit. If the
units are defined as the same type (e.g., a time unit), convert the value and unit into the
other unit and match it. This is the case when we match a SingleValue. For a range
value element (i.e. RangedValue), the logic is the same as for a single value, where the
minimum and maximum values of both servReq and providerSLA are equal or better.
In our metamodel, we defined different types of values, specifically SingleValue and
RangedValue. In SingleValue, the type of value can be numeric or string. However, the

150

5. A COMPARISON PROCESS FOR CLOUD SLAS

RangedValue has a numeric type only.
The case of matching two elements having different value types may occur. The op-

timal matching logic matches different value types, i.e. SingleValue and RangedValue.
Listing 5.7 illustrates the matching logic we used in our implementation. Two ranged
values are matched if the minimum and maximum of the service requester matches
(equal or better) the minimum and maximum of the service provider’s offer. For single
and ranged values, we choose to compare them assuming the possibility of the service
requester’s fuzzy requirements. They are matched if the value of the SingleValue is
within the range of values of the RangedValue. For example, assume we have 2 single
values (x = 10 and y = 10) and two ranges of values (a = [10 .. 20] and b = [15 ..
30]). Matching x and y returns true. Matching a and b also returns true, because the
minimum value in a is less than 15 and the same applies to the maximum values. If
matching x and a, the value of x (i.e. 10) is within the range of a, while a match not
found in case of matching required value b with the offered value y, because b does not
include the value of y (i.e. 10) and the required value is higher than the offered value
(i.e. minimum value 15 >offered value 10). The consumer and provider may define
certain elements, e.g., storage size, and different value, i.e. single and range values.
For example, a consumer defines a storage size of 500GB while a provider provides a
storage size as a range value [1 - 1000GB]. We wish to provide flexibility in matching
values, assuming the imprecise requirements of the consumer. This matching can be
used for example, when a consumer requires VM with not more than X as a price.

Listing 5.7: Matching logic of SingleValue and RangedValue

1 if (c.direction = p.direction){

2 if c.SingleValue and p.SingleValue

3 return match(c.SingleValue.value,p.SingleValue.value)

4 if c.RangedValue and p.RangedValue{

5 return match(c.RangedValue.min,p.RangedValue.min) and match(c.

RangedValue.max,p.RangedValue.max)

6 }

7 if c.SingleVlaue and p.RangedValue{

8 return match(c.SingleValue.value,p.RangedValue.min) and match(c

.SingleValue.value,p.RangedValue.max) or (c.SingleValue.

value >= p.RangedValue.min and c.SingleValue.value <= p.

RangedValue.max)

151

5. A COMPARISON PROCESS FOR CLOUD SLAS

9 }

10 if c.RangedValue and p.SingleValue{

11 return match(c.RangedValue.min,p.SingleValue.value) and match(c

.RangedValue.max,p.SingleValue.value) or (c.SingleValue.

value >= p.RangedValue.min and c.SingleValue.value <= p.

RangedValue.max)

12 }

13 }

14 else return false;

15

16 operation match(a, b) : Boolean{

17 if (a.direction = "positive")

18 return (a.value <= b.value);

19 else(a.direction = "negative")

20 return (a.value>=b.value);

21 else return false;

22 }

5.4.6 Approximate Matching

Assume that in optimal matching (see Section 5.4.5), requires a VM with at most X

price, and the VM match is found but not the price. This is because the provided price
for the required VM is higher than the required price. For example the required price
is 0.06$ while the offered is 0.07$. If for example, an approximate value (e.g. 20%)
for the price is allowed and provided then a match for this VM may be found.

In approximate matching, a match between two different model elements is found
if the difference between the two values does not exceed a specified value. The list-
ing in 5.8 illustrates the logic of approximate SingleValue matching. The algorithm in
Listing 5.8 defines an approximation value = x, then computes the difference between
two values of the servReq and ProviderSLA. If this difference is less than or equal to
the approximation value, a match is found between these two values. The difference
between values can be decided by the consumer. For example, assume that a consumer
defines availability as 99.99% and the provider defines availability as 99.0%. The
values of the two parameters are unequal; however, using the approximate algorithm
returns two parameters as matching if, for example, the consumer defines a difference

152

5. A COMPARISON PROCESS FOR CLOUD SLAS

between values of 10%. This match is used when consumers are not strict about the
required values and allow some approximation. As shown in Listing 5.8, servReq has
an approximation value which is assigned by the consumer. If both elements have the
same direction, the algorithm checks the units it calls approximateMatch to calculate
the difference between two values. If the two elements belong to the same unitType
(e.g. time unit minutes and hours), it first convert the values and then calls the approx-
imateMatch. It returns false if the two elements have different units.

Listing 5.8: Approximate matching logic of values

1 x = servReq.approximation; (approximation defined by consumer)

2 if (servReq.direction = providerSLA.direction){

3 if (servReq.unit = providerSLA.unit)

4 return approximateMatch (providerSLA.value,servReq.value,x);

5 else if (servReq.unitType = providerSLA.unitType)

6 return approximateMatch (convert(providerSLA.value),convert(

servReq.value),x);

7 else return false;

8 }

9 operation approximateMatch(a,b,x): Boolean{

10 return (ApproxDifference(a,b) <= x);

11 }

In range value matching, the match returns true if the differences between the mini-
mum and maximum values of the servReq and providerSLA do not exceed the approx-
imate value (servReq.approximation) defined by the servReq. (ApproxDifference) cal-
culates the approximate value of difference between two numbers (see Section 5.5.1.1).
For example, assume that servReq defines a range value of [15-30] and an approximate
value of difference of 10%. The match is true if the minimum and maximum values of
providerSLA are within the range [15(±15∗10%) - 30(±30∗10%)].

Listing 5.9 illustrates the matching logic of different Value element types (Singl-
eValue and RangedValue). This algorithm matches approximately, single and range
values together. If the single value is within the range of the ranged value then a match
is found. If the single value is outside the range (i.e <min or >max) and the difference
between the single value and min/max value is less than the approximate value, then
a match is found. For example, assume a consumer defined storage size of 100 GB,
an approximate value of 10% and a provider defined storage size of [40 - 90] GB. Al-

153

5. A COMPARISON PROCESS FOR CLOUD SLAS

though the consumer value is outside the range of the provider values, a match is found.
The approximateMatch in Listing 5.9 is the same as that illustrated in Listing 5.8. As
explained in Section 3.3.2.3, approximation matching may returns matched elements
with values that are less or greater than the required values.

Listing 5.9: Approximate matching logic of SingleValue and RangedValue

1 if (servReq.direction = providerSLA.direction){

2 x = servReq.approximation; (approximation defined by consumer)

3 if servReq.SingleValue and providerSLA.SingleValue

4 return approximateMatch(servReq.SingleValue.value,providerSLA.

SingleValue.value,x);

5 if servReq.RangedValue and providerSLA.RangedValue{

6 return approximateMatch(servReq.RangedValue.min,providerSLA.

RangedValue.min,x) and approximateMatch(servReq.RangedValue.

max,providerSLA.RangedValue.max,x);

7 }

8 if servReq.SingleVlaue and providerSLA.RangedValue{

9 return ((servReq.SingleValue.value >= providerSLA.RangedValue.

min) and (servReq.SingleValue.value <= providerSLA.

RangedValue.max)) or (approximateMatch(servReq.SingleValue.

value,providerSLA.RangedValue.min,x) or approximateMatch(

servReq.SingleValue.value,providerSLA.RangedValue.max,x));

10 }

11 if servReq.RangedValue and providerSLA.SingleValue{

12 return ((servReq.RangedValue.min <= providerSLA.SingleValue.

value) and (servReq.RangedValue.max >= providerSLA.

SingleValue.value)) or (approximateMatch(servReq.RangedValue

.min,providerSLA.SingleValue.value,x) or approximateMatch(

servReq.RangedValue.max,providerSLA.SingleValue.value,x));

13 }

14 }

5.4.7 Name-based Matching

In this match, we check only the attributes (primitive types) defined in the value type
(i.e. Value, SingleValue and RangedValue, see Section 4.3.1.1). In our metamodel,
SingleValue and RangedValue extend the abstract class Value (see Section 4.3.1.1).

154

5. A COMPARISON PROCESS FOR CLOUD SLAS

This class defines the direction of the value, i.e. the higher the value, the better the
quality, or the lower the value the better the quality.

In this match, for example, we match the QoSProperty of two elements with the
same definition as a unit type attribute, regardless of their values. This match implies
fewer restrictions than the other two matching logics (i.e. Optimal and Approximate).
This algorithm can be used to find similar elements (e.g. QoSProperty) when, for
example, consumers cannot find a match using the other two algorithms (i.e. Optimal
and Approximate). We try to match all QoSProperty that are used to describe the same
service (e.g computing) and same QoS (e.g Availability). As stated earlier, providers
define their SLA in a platform-specific way. By using name-based matching, we try
to make it possible for consumers to find QoS Properties that define the requested
QoS (e.g Availability). As illustrated in Listing 5.10, this matching logic matches two
elements if they have similar units and the value directions are the same.

For example, assume that the servReq model defines downTime (isPositive=false,
value=15, unit=minute, type=float), and the providerSLA model defines MTTR (is-
Positive=false, value=1, unit=hour, type=float) as a property of QoS Maintainability.
These two parameters are matched based on name-based matching logic, because both
elements define a false value for the isPositive attribute, the same unit type (i.e. time
unit) and are defined as a property of Maintainability.

Listing 5.10: Name-based Matching logic of values

1 if (servReq.direction = providerSLA.direction and servReq.QoSTerm

= providerSLA.QoSTerm)

2 return match(servReq.unit,providerSLA.unit);

3 else

4 return false;

The differences between the name-based and the other matching logics are illus-
trated in Section 5.5, where we explain the implementation of each rule. The following
section illustrates the implementation of the different rules for matching logic.

155

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.5 Implementation of Matching Logic in Epsilon

To investigate the thesis’ hypothesis (see Section 1.5), we seek to provide a semi-
automatic comparison of cloud SLAs using MDE principles. The logic described in
the previous section is generic in the sense that it can be encoded in different matching
libraries and tools. As proof of concept, we have implemented the matching logic in
Epsilon (see Section 2.3.4.2), using ECL (see Section 2.3.4.4). Epsilon is a set of task-
specific languages for managing models [11]. In ECL, a set of match rules with pre
and post blocks form an EclModule.

In our proof of concept implementation, we create several comparison EclModules,
each of which is implemented using one of the three comparison logics (i.e. Optimal,
Approximate and Name-based Section 5.4). Each task performs a comparison of a set
of elements in our model; the same matching logic applies to all of the elements in this
module. For example, a module for optimal match values of QoSProperty, a module
for approximate match values of QoSProperty and a module for name-based match of
QoSProperty. Matching the whole SLA model is performed by a set of EclModules,
each of which matches a part of the SLA model. Therefore, different combinations of
matching logics can be used to match cloud SLAs. For example, in an EclModule, we
can import a name-based matching module for QoSProperty, approximate matching
for the cloud units and optimal matching for the prices to find matches between two
SLA models.

In this section, we will focus on a general SLA metamodel comparison. In some
comparison modules, there may be differences in comparison implementation between
different matching logics (i.e. Optimal, Approximate and Name-based) and we will
point out these differences, if any, when we explain the rules.

The basic pattern in ECL [11] is to compare models by matching pairs of ele-
ments. For this, we define a matching rule which has a unique name, leftParameter

and rightParameter. In the compare part we define the matching logic for the specific
parameters under comparison. The matches() operation is used implicitly to deter-
mine and invoke the (type-) appropriate matching rule to compare two elements. In
the following sections we describe the implemented rules in each EclModule we have
created. Each ECL rule defines the left parameter and right parameter to be matched.
In our implementation the left parameter represents an element of the consumer model

156

5. A COMPARISON PROCESS FOR CLOUD SLAS

and the right parameter represents an element of a provider model.

5.5.1 Comparison of GeneralTypes

In this matching implementation we define a number of rules which take a service
requester’s (ConsumerSLA in the example) elements as leftParameters and a service
provider’s (ProviderSLA in the example) elements as rightParameters. Different rules
are created to match elements of types Value, SingleValue and RangedValue. First
the element Value in the rule matchAbstractValue is compared to match the isPosi-
tive and the type attributes. This rule is extended by other rules: matchSingleValue,
matchRangedValue, matchSingleAndRanged and matchSingleAndRanged. These rules
are:

• compare a single value of ConsumerSLA with a single value of ProviderSLA

• compare a range value of ConsumerSLA with a range value of ProviderSLA

• compare a single value of ConsumerSLA with a range value of ProviderSLA

• compare a range value of ConsumerSLA with a single value of ProviderSLA

This combination of matching rules is defined to make the comparison task generic,
and to match different definitions of values between different SLAs. To illustrate this,
assume that a service consumer requires a cloud storage as a single value = x GB, and
the storage specifications of the provider’s offer state that the storage size is a range
value equal to [a..b], where a ≤ x ≤ b. The values can be matched because x is defined
within the range and both elements define the same unit type (i.e. storage size). If two
units define the same unit types but using different units names (e.g. minute and hour),
one of the values is converted to the other unit (e.g. 1 hour is converted to 60 minutes),
and then the values are matched. These rules are invoked by other rules in different
ECL modules to compare the values.

In our metamodel (see Section 4.3), we specified classes to define time units, size
units, etc. To match elements that conform to these classes, we define other rules:
matchSizeType, matchPercentage, matchTimeType, matchTimeUnit and matchCurren-

cyType to compare the units. For example, operation c.timeperiod.matches(p.timeperiod)

in rule matchPaymentPeriod (Listing 5.15) invokes rule matchTimeUnit. This ECL task

157

5. A COMPARISON PROCESS FOR CLOUD SLAS

imports an EOL task, which is ExactValueMatching. This EOL task consists of a num-
ber of operations such as convertSingleValues and convertRangeValues, to calculate
the values in case they have different units. Rule matchLocation is included to match
the location(s) of the service (if required) by the consumerSLA with the location(s)
provided by providerSLA. These rules are defined as an ECL module. The same ECL
modules are created for the approximate and name-based matchings.

Listing 5.11 illustrates a match rule for the elements of the type Value of the SLA
metamodel (see Section 4.3). The rule defines ConsumerSLA!Value as a left parameter
and ProviderSLA!Value as a right parameter. The rule matches two Value elements of
the consumer and provider models. The two values are matched if they define the same
value type e.g. both define a value of the string type or both define a value of numeric
type and both define the same value of the isPositive attribute.

Listing 5.11: Optimal matching implementation in ECL for the Value element

1 import "OptimalValueMatching.eol";

2 rule matchAbstractValue

3 match c : ConsumerSLA!Value

4 with p : ProviderSLA!Value {

5 compare {

6 if (not c.isPositive.isDefined() and not p.isPositive.isDefined

() and not c.ValueType.isDefined() and not p.ValueType.

isDefined())

7 return true;

8 else if (c.isPositive.isDefined() and p.isPositive.isDefined()

and c.valueType.isDefined() and p.valueType.isDefined())

9 return (c.isPositive = p.isPositive and c.valueType = p.

valueType);

10 else if(c.isPositive.isDefined() and p.isPositive.isDefined())

11 return (c.isPositive = p.isPositive);

12 else if (c.ValueType.isDefined() and p.ValueType.isDefined())

13 return (c.valueType = p.valueType);

14 else return false;

15 }

16 }

The rule defined in Listing 5.12 shows the implementation of matching two single
values; this rule can be specialised. In ECL the non-lazy rules are evaluated automati-

158

5. A COMPARISON PROCESS FOR CLOUD SLAS

cally in a top down fashion [11]. We declare this rule (i.e. matchSingleValue) as lazy

so that it is invoked only by the matches command. The SingleValue class extends
the Value class. This rule extends the rule explained in Listing 5.11. The rule defines
the SingleValue of the consumer model as a left parameter and the same element (i.e.
SingleValue) in the provider model as the right parameter. This rule checks if the left
parameter value is equal to or better than the right parameter. If the units of the two
values are defined, the rule then calls a checkPositive operation to match the two val-
ues. The instruction “if (c.unit.EClass.Name = p.unit.EClass.Name)” checks if the two
values define different unit names but have the same unit type (e.g. hour and minute
different unit names but both define unit type: time); then, to match the two values, the
operation checkPositive is invoked.

This operation (i.e. checkPositive) checks if both elements define isPositive as true

then the rule checks if the left parameter (i.e. required value) is less than or equal to
the right parameter (i.e. offered value). If the two elements define a false value for the
isPositive element then the match rule checks if the left parameter is greater than or
equal to the right parameter.

A convert operation is called when the left parameter defines a different unit name
from the right parameter’s unit name. This operation converts a value; for example,
1 hour is converted into 60 minutes, so that the two values can be matched. If both
elements define different unit types then the match rule returns false.

Listing 5.12: Optimal matching implementation in ECL for the SingleValue elements

1 @lazy

2 rule matchSingleValue

3 match c : ConsumerSLA!SingleValue

4 with p : ProviderSLA!SingleValue

5 extends matchAbstractValue {

6 compare {

7 if (c.unit.isDefined() and p.unit.isDefined())

8 if (c.valueType <> "String" and p.valueType <> "String")

9 if (c.unit.EClass.Name = p.unit.EClass.Name)

10 return checkPositive(c,p);

11 else return false;

12 else return (c.value <= p.value); //return stringMatching

13 else return checkPositive(c,p);

14 }

159

5. A COMPARISON PROCESS FOR CLOUD SLAS

15 }

16 operation checkPositive(a:ConsumerSLA!SingleValue, b:ProviderSLA!

SingleValue): Boolean{

17 if (a.unit.isDefined() and b.unit.isDefined()){

18 if (a.isPositive.isDefined()){

19 if (a.isPositive = true){

20 if (a.unit.matches(b.unit))

21 return (a.value.asReal() <= b.value.asReal());

22 else

23 return a.value.asReal() <= convert(a.unit.unit, b.value, b.

unit.unit);

24 }

25 else{

26 if (a.unit.matches(b.unit))

27 return (a.value.asReal() >= b.value.asReal());

28 else

29 return a.value.asReal() >= convert(a.unit.unit, b.value,

b.unit.unit);

30 }

31 }

32 else{

33 if (a.unit.matches(b.unit)){

34 return (a.value.asReal() = b.value.asReal());

35 }

36 else return false;

37 }

38 }

39 else if (not a.unit.isDefined() and not b.unit.isDefined()){

40 if (a.isPositive = true)

41 return (a.value.asReal() <= b.value.asReal());

42 else return (a.value.asReal() >= b.value.asReal());

43 }

44 else return false;

45 }

The implementation of matching two ranges of values is illustrated in Listing 5.13.
Like the rule for matchSingleValue, this rule extends the matching rule illustrated in
Listing 5.11 and is declared as lazy. If two parameters (i.e. left and right) define the
same unit names or same unit types, then the checkPositive operation is called. The

160

5. A COMPARISON PROCESS FOR CLOUD SLAS

operation checkPositive is the same as that illustrated in Listing 5.12 and the difference
is the ranged values matching. The operation checks the c.min against the p.min and
the c.max against the p.max. This operation matches the c.min (i.e. the minimum value
of a RangedValue element of the consumer model) with the p.min (i.e. the minimum
value of a RangedValue of the provider model). If both values (min and max) are equal
or better in both elements then the match rule returns true; otherwise, it returns false. In
other words, the operation checks if the isPositive value is equal to true, then it checks
if the c.min and c.max are equal to or less than the p.min and p.max. If the isPositive
value is equal to false, then the operation checks if the c.min and c.max are equal to or
greater than the p.min and p.max. If the two values have different unit names but define
the same unit type (e.g. size or time), the convert operation evaluates the value (min or
max) in terms of the other unit. A range value defined the values only as numeric (see
Section 4.3.1.2).

Listing 5.13: Optimal matching implementation in ECL for the RangedValue elements

1 @lazy

2 rule matchRangedValue

3 match c : ConsumerSLA!RangedValue

4 with p : ProviderSLA!RangedValue

5 extends matchAbstractValue {

6 compare {

7 if (c.minUnit.isDefined() and p.minUnit.isDefined() and c.

maxUnit.isDefined() and p.maxUnit.isDefined())

8 if (c.minUnit.EClass.Name = p.minUnit.EClass.Name and c.

maxUnit.EClass.Name = p.maxUnit.EClass.Name)

9 return checkPositive(c,p);

10 else return false;

11 else return checkPositive(c,p);

12 }

13 }

14 operation checkPositive(a:ConsumerSLA!RangedValue, b:ProviderSLA!

RangedValue): Boolean{

15 if(a.maxUnit.isDefined() and a.minUnit.isDefined() and b.

maxUnit.isDefined() and b.minUnit.isDefined()){

16 if(a.isPositive.isDefined()){

17 if (a.isPositive = true){

161

5. A COMPARISON PROCESS FOR CLOUD SLAS

18 if(a.maxUnit.matches(b.maxUnit) and a.minUnit.matches(b.

minUnit))

19 return (a.max.asReal() <= b.max.asReal() and a.min.asReal()

<= b.min.asReal());

20 else

21 return(a.max.asReal() <= convert(a.maxUnit.unit,b.max,b.

maxUnit.unit) and a.min.asReal() <= convert(a.minUnit.

unit, b.min,b.minUnit.unit));

22 }

23 else{

24 if(a.maxUnit.matches(b.maxUnit) and a.minUnit.matches(b.

minUnit))

25 return (a.max.asReal() >= b.max.asReal() and a.min.asReal

() >= b.min.asReal());

26 else

27 return (a.max.asReal() >= convert(a.maxUnit.unit,b.max,b.

maxUnit.unit) and a.min.asReal() >= convert(a.minUnit.

unit, b.min,b.minUnit.unit));

28 }

29 }

30 else return false;

31 }

32 else if(not a.maxUnit.isDefined() and not a.minUnit.isDefined()

and not b.maxUnit.isDefined() and not b.minUnit.isDefined()

){

33 if (a.isPositive = true)

34 return (a.max.asReal() <= b.max.asReal() and a.min.asReal()

<= b.min.asReal());

35 else return (a.max.asReal() >= b.max.asReal() and a.min.asReal

() >= b.min.asReal());

36 }

37 else return false;

38 }

Listing 5.14 defines two rules. The first rule (i.e. matchSingleAndRanged) matches
the SingleValue element as the left parameter and the RangedValue element as the
right parameter, while the second rule (i.e. matchRangedAndSingle) does the opposite.
Both rules have the same logic, so we will briefly explain only one of them. In the rule
matchSingleAndRanged, the consumer element is a single value while the provider el-

162

5. A COMPARISON PROCESS FOR CLOUD SLAS

ement is a range of values. As in Listings 5.12 and 5.13, the match rule executes the
checkPositive operation if both elements define the same unit types. The checkPosi-
tive operation checks if the left parameter value is less than or equal to the maximum
value of the right parameter when the isPositive = true. If isPositive = false then, the
operation checks if the left parameter is greater than or equal to the minimum value of
the right parameter.

Listing 5.14: Optimal matching implementation in ECL for the SingleValue and
RangedValue elements

1 @lazy

2 rule matchSingleAndRanged

3 match c : ConsumerSLA!SingleValue

4 with p : ProviderSLA!RangedValue

5 extends matchAbstractValue {

6 compare{

7 if (c.unit.isDefined() and p.minUnit.isDefined() and p.maxUnit

.isDefined())

8 if (c.unit.EClass.Name = p.minUnit.EClass.Name and c.unit.

EClass.Name = p.maxUnit.EClass.Name)

9 return checkPositive(c,p);

10 else return false;

11 else return checkPositive(c,p);

12 }

13 }

14 @lazy

15 rule matchRangedAndSingle

16 match c : ConsumerSLA!RangedValue

17 with p : ProviderSLA!SingleValue

18 extends matchAbstractValue {

19 compare{

20 if (p.unit.isDefined() and c.minUnit.isDefined() and c.maxUnit

.isDefined())

21 if (p.unit.EClass.Name = c.minUnit.EClass.Name and p.unit.

EClass.Name = c.maxUnit.EClass.Name)

22 return checkPositive(c,p);

23 else return false;

24 else return checkPositive(c,p);

25 }

163

5. A COMPARISON PROCESS FOR CLOUD SLAS

26 }

In our metamodel, we specify different unit classes and enumerations such as Time-

Unit, TimePeriod and UnitType (see Section 4.3.1.1). A value defined in an SLA model
may define a unit; these may be, for example, size or time. When we match values,
we must match the units first, to give meaning to the matching process. Therefore, we
create rules to match the units, as explained in Listing 5.15. We provide an example of
one unit.

Listing 5.15: Optimal matching implementation in ECL for the Unit elements

1 @lazy

2 rule matchTimeType

3 match c : ConsumerSLA!TimeType

4 with p : ProviderSLA!TimeType{

5 compare : c.unit.name= p.unit.name

6 }

7 @lazy

8 rule matchTimeUnit

9 match c : ConsumerSLA!TimePeriod

10 with p : ProviderSLA!TimePeriod{

11 compare : c.interval = p.interval and c.timeunit.matches(p.

timeunit)

12 }

5.5.1.1 Modifications for Approximate and Name-based implementation

This section discusses the modifications made in the implementation of the approxi-
mate and name-based matching for the GeneralTypes elements, specifically the Sin-

gleValue and RangedValue elements, which were explained in Listings 5.12- 5.14.
We created the same rules for the GeneralTypes elements in different ECL modules:
one for approximate and one for name-based matching, but some rules differ in terms
of their details. The modifications are made for the approximate and name-based
matching in rules matchSingleValue, matchRangedValue, matchSingleAndRanged and
matchSingleAndRanged rules.

The approximate matching implementation invokes an EOL helper function, which
is defined as an approximate operation to calculate the difference percentage in the

164

5. A COMPARISON PROCESS FOR CLOUD SLAS

numeric values of ConsumerSLA and ProviderSLA. There are many different approx-
imate operations that can be defined; the proof-of-concept in this thesis makes use of
formula 5.1 (but other formulae can be used) and two values (x and y). To illustrate
the differences between optimal matching and approximate matching, Listing 5.16 is
provided. As illustrated, two EOL modules are imported (named ApproximateValue-

Matching and ReturnApproxValueOperation), which are different from the files im-
ported in the optimal value matching ECL module (Listings 5.12- 5.14). The Approx-

imateValueMatching EOL module calculates the percentage difference between two
values (Listing 5.17) and matches it with the approximate value (returned by the oper-
ation returnApproximateValue). The imported module ReturnApproxValueOperation

defines the returnApproximateValue operation which returns a real value (approximate
value) defined in the approximate model (Section 5.6).

In this module, we assign a variable of real type named approxValue with the
approximate value returned by invoking the returnApproximateValue operation. In
the rule matchSingleValue, an approximate operation is invoked when two values are
matched. This operation is defined in the imported EOL module. The approximation is
calculated as illustrated in equation 5.1. This equation calculates the percent difference
as explained in [57].

Listing 5.16: Approximate matching of two SingleValues in ECL

1 import "ApproximateValueMatching.eol";

2 import "ReturnApproxValueOperation.eol";

3

4

5 rule matchSingleValue

6 match c : ConsumerSLA!SingleValue

7 with p : ProviderSLA!SingleValue

8 extends matchAbstractValue {

9 compare {

10 var approxValue : Real;

11 approxValue = returnApproximateValue(c);

12

13 if (c.unit.matches(p.unit))

14 if (c.valueType <> "String" and p.valueType <> "String")

15 return approximate(c.value.asReal(), p.value.asReal(),

approxValue);

165

5. A COMPARISON PROCESS FOR CLOUD SLAS

16 else return approximate(c.value,p.value,approxValue);

17 else if (c.unit.EClass.Name = p.unit.EClass.Name)

18 return convertSingleValues(c.value,c.unit.unit,p.value, p.

unit.unit,approxValue);

19 else return false;

20

21 }

|(x− y)/((x+ y)/2)| ∗ 100 (5.1)

As part of approximate matching, we need to explain how to match primitive types,
e.g. numeric or string values. Listing 5.17 illustrates a part of the EOL module that
calculates the percentage difference between two numeric values and an operation that
calculates the percentage between two string values. This task also includes other
calculations which convert a unit into a different unit, to compare the values. This
EOL task is invoked by other ECL tasks to perform the calculations; for example, the
EOL task applied to (hour, 1, minute) returns 60 minutes.

For the approximate matching of two strings, a distance algorithm such as [140]
can be used. In this implementation and as a proof of concept, we use the Levenshtein
Distance algorithm. Then we calculate the percentage distance between two values
(one from the consumer model and the other from a provider model), as illustrated in
the implementation in Listing 5.17.

Listing 5.17: Calculating difference percentages between two numbers in EOL

1 operation approximate(x:Real,y:Real,approxRate : Real):Boolean{

2 return (approxRate>=((x-y)/((x+y)/2)).abs()*100.0)

3 }

4 operation approximate(s1:String,s2:String,approxRate:Real):

Boolean{

5 return (approxRate>=((Simmertic.LevenshteinDistance(s1,s2).

asReal()/(s1.length.asReal().max(s2.length.asReal()))*100.0))

)

6 }

Listing 5.18 illustrates the same rules defined in the previous Listings 5.12 and 5.16
that matches the GeneralTypes elements (see Section 4.3.1.1). The Listing illustrates

166

5. A COMPARISON PROCESS FOR CLOUD SLAS

only the rule that matches two single values, to illustrate the changes made for the
name-based matching. This rule returns true when the two values have the same units.
As we can see, the rule does not check numeric or string values and does not import any
EOL files. This rule, like other single value matched rules for optimal and name-based
matching extend other rules that match other attributes, i.e. isPositive and valueType.
As we explained in Section 5.4.7, in name-based matching, the focus is on matching
the type of value rather than the value itself. For example, a consumer requests a
response time = 60 seconds and define the isPositive = false, while a provider offer
provides a response time = 3 hours with a isPositive = false. This match checks if both
elements define the same unit type (i.e. time unit) and have the same isPositive value
(i.e. false), then the matching rules returns true.

Listing 5.18: Name-based matching of two SingleValues in ECL

1 rule matchSingleValue

2 match c : ConsumerSLA!SingleValue

3 with p : ProviderSLA!SingleValue

4 extends matchAbstractValue {

5 compare {

6 if (c.unit.isDefined())

7 if (p.unit.isDefined())

8 return (c.unit.matches(p.unit) or (c.unit.EClass.Name = p.

unit.EClass.Name));

9 else return false;

10 else return true;

11 }

12 }

13 }

In name-based matching, the value, min and max attributes of SingleValue and
RangeValue are not the main focus; instead, we focus on other attributes (i.e. unit and
isPositive), so the rule matchAbstractValue remains the same as for the optimal match-
ing. The differences are in the other value rules (i.e. matchSingleValue, matchRanged-

Value, matchSingleAndRanged and matchSingleAndRanged); as described in Listing 5.18,
these rules match the unit attributes rather than the values attributes (of SingleValue and
RangeValue).

In this implementation we define a helper operation to convert the units and their

167

5. A COMPARISON PROCESS FOR CLOUD SLAS

corresponding values to make them comparable. This is defined because different
providers may define different units. For example, the size of Memory can be defined
as 0.5 GB (which is equal to 512 MB). This is illustrated in Listing 5.19, which defines
the operation: convert. This operation converts the sizeUnitType and TimeUnit, which
are provided as a proof of concept that other types such as currency can be converted.
This operation is used in both Optimal and Approximate matching, and is precisely
defined in the imported EOL module.

Listing 5.19: Converting unit of values in EOL

1 operation convert(inUnit1 : Any, inValue2 : Any, inUnit2: Any) :

Real{

2 var convertedValue: Real = 0.0;

3 if (inUnit1.EEnum.Name = "sizeUnitType"){

4 ..

5 }

6 else if(inUnit1.EEnum.Name = "TimeUnit") {

7 ..

8 }

9 return convertedValue;

10 }

The ECL rules explained in this section are invoked by other ECL modules. We
kept each different matching logic in a separate ECL module to differentiate clearly
between them and reuse them in other files.

5.5.2 Comparison of Cloud Unit Specifications

The cloud SLA metamodel specifies different cloud units: Computing, Storage and
Networking (Section 4.3). These cloud units take part of the implementation for match-
ing cloud SLAs, and so are explained in this section.

A comparison module is created to compare cloud units’ characteristics. This mod-
ule consists of rules for matching two cloud unit characteristics (e.g. VM). Again, we
created three ECL modules containing the same rules, but each module contains differ-
ent matching logics. The difference between Optimal, Approximate and Name-based
come from the EOL programs that are imported, as explained in the previous section.
In this section we illustrate a part of the cloud unit characteristics’ optimal matching

168

5. A COMPARISON PROCESS FOR CLOUD SLAS

shown in Listing 5.20.
In this module, we define a rule named matchCompUnitSpec, which takes the con-

sumer’s CompUnitSpec as the leftParameter and a provider’s CompUnitSpec as the
rightParameter (Listing 5.20). This module imports the other ECL rules explained in
Section 5.5.1, to match the values. There are three main rules: matchCompUnitSpec

(Listing 5.20), matchStorageSpec (Listing 5.21) and matchNetworkUnit (Listing 5.22).

Listing 5.20: Matching cloud Computing units specifications in ECL

1 import "OptimalGeneralInfoMatchnig.ecl";

2 ...

3 rule matchCompUnitSpec

4 match c : ConsumerSLA!CompUnitSpec

5 with p : ProviderSLA!CompUnitSpec{

6 compare : (c.cpu.matches(p.cpu) and c.ram.matches(p.ram) and c.

storageSize.matches(p.storageSize) and c.os = p.os and c.

isVM =p.isVM)

7 }

8 rule matchCPU

9 match c : ConsumerSLA!CPUSpeed

10 with p : ProviderSLA!CPUSpeed{

11 compare : (c.numberOfCores = p.numberOfCores)

12 }

Listing 5.21 defines a rule (i.e. matchStorageSpec) to match the storage required
by the consumer and provided by providers. This rule is declared to be greedy, be-
cause the elements in this rule conform to an abstract class (which is StorageSpec).
This rule defines a guard statement. This statement checks if the elements names are
equal, because different storage types are specified in the SLA metamodel (see Sec-
tion 4.3.5.1), which are: CloudStorage, BlockStorage and BackUp. If the elements in
the guard statements have the same name (e.g. both are CloudStorage), then the rule
proceeds to compare the sizes of the storage. The matches operation invokes the rule
that matches the size.

Listing 5.21: Matching cloud Storage units specifications in ECL

1 @greedy

2 rule matchStorageSpec

3 match c : ConsumerSLA!StorageSpec

169

5. A COMPARISON PROCESS FOR CLOUD SLAS

4 with p : ProviderSLA!StorageSpec{

5 guard : c.EClass.name = p.EClass.name

6 compare : (c.size.matches(p.size))

7 }

The operation c.cpu.matches(p.cpu) invokes the matching rule matchCPU (List-
ing 5.20). Rules matchRequest and matchDataTransfere (Listing 5.22) are defined to
match elements, that extends the Networking class (see Section 4.3.6).

Listing 5.22: Matching cloud Networking units’ specifications in ECL

1 rule matchNetworkUnit

2 match c : ConsumerSLA!NetWorkUnit

3 with p : ProviderSLA!NetWorkUnit{

4 compare : c.size.matches(p.size) and c.service.matches(p.

service)

5 }

6 rule matchRequest

7 match c : ConsumerSLA!Request

8 with p : ProviderSLA!Request

9 extends matchNetworkUnit{

10 compare : p.requestType.includesAll(c.requestType)

11 }

12 rule matchDataTransfere

13 match c : ConsumerSLA!DataTransfertype

14 with p : ProviderSLA!DataTransfertype

15 extends matchNetworkUnit{

16 compare {

17 if (c.toService.isDefined() and p.toService.isDefined() and c.

toLocation.isDefined() and p.isDefined())

18 return (c.transferType.name = p.transferType.name and c.

toService.matches(p.toService) and c.toLocation.matches(p.

toLocation));

19 else if (c.toService.isDefined() and p.toService.isDefined())

20 return (c.transferType.name = p.transferType.name and c.

toService.matches(p.toService));

21 else if (c.toLocation.isDefined() and p.toLocation.isDefined()

)

22 return (c.transferType.name = p.transferType.name and c.

toLocation.matches(p.toLocation));

170

5. A COMPARISON PROCESS FOR CLOUD SLAS

23 }

24 }

5.5.3 Comparison of Cloud Prices

Pricing is part of the cloud SLA model; as such, it can be included when matching two
SLAs. This section describes the implementation of matching the prices of two cloud
units. In the ECL implementation (Listing 5.23), we define a rule named MatchPrice.
A explained in Section 4.3.8, the price model defines a payment period, value, priced
unit (price per) and a currency. To match values, we match all of these attributes. As
illustrated in Listing 5.23, we first define a guard which matches the payment periods.
If they match, the compare condition is evaluated. This guard statement is used to
check that the compared prices are for the same payment period, because the prices for
on demand or subscription services vary.

Usually, prices in cloud computing are defined per time or size, e.g. VM is priced
per hour and Storage is priced per size (GB). The difference in the approximate match-
ing is the compare statement. Instead of checking the equality of two values, we check
that the differences between two values lies within an accepted range (i.e. an approx-
imate operation, see Section 5.5.1). In the name-based matching, we do not compare
the price value, but match the payment periods (i.e. on-demand or subscription) and
the price per unit (i.e. time or size). Name-based matching assumes that the service
requester is unsure about the price or, for example, want the lowest price for a specific
payment type and period (e.g. on demand or subscription).

Listing 5.23: Matching prices in ECL

1 rule MatchPrice

2 match c : ConsumerSLA!Price

3 with p : ProviderSLA!Price{

4 guard : c.paymentPeriod.matches(p.paymentPeriod)

5 compare: c.priceValue = p.priceValue and c.pricePer.matches(p.

pricePer) and c.currency.matches(p.currency)

6 }

171

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.5.4 Comparison of Cloud Unit and Price Implementation

This section describes the implementation of matching the CloudUnit, which relates
the matching of cloud unit specifications (see Section 5.5.2) and the matching of prices
(see Section 5.5.3). In the unit and price comparison implementation in ECL (List-
ing 5.24), we defined a rule to compare the CloudUnit (see Section 4.3.10), which
associates the location price and cloud unit specifications. Therefore, we created a rule
to match CloudUnits, which invokes the ECL rules explained in Sections 5.5.1- 5.5.3.
This rule matches the cloud unit defined by the ConsumerSLA as a combination of in-
voking three matching rules. Different options are available for this matching rule by
mixing different matching logics of the invoked rules. For example, an optimal match
can be invoked for both the cloud unit matching and price matching; an approximate
match can be invoked for both the cloud unit matching and price matching.

Listing 5.24: Matching cloud unit in ECL

1 rule matchCloudUnitAndPrice

2 match cUnit : ConsumerSLA!CloudUnit

3 with pUnit : ProviderSLA!CloudUnit{

4 compare : cUnit.hasSpec.matches(pUnit.hasSpec) and cUnit.price.

matches(pUnit.price) and cUnit.location.matches(pUnit.

location)

5 }

5.5.5 Comparison of Cloud Service Implementation

In implementing the matching of cloud SLA models, the ECL rules can match any
two elements. In the SLA models, these are defined as the left parameter and the right
parameter, e.g. availability from the consumer and the provider models. However,
these two elements (e.g. availability) may be defined under two different services (e.g.
computing and storage). Therefore, we create a rule to match the services and then
match other elements which are related (e.g. the QoSProperty) in the model. This
section presents the implementation of matching services which is part of the SLA
model matching. To match the SLA models, we first match the service defined by the
SLA model. We define a rule to match the services defined in two SLA models (e.g.the
consumer and provider models). This rule, as illustrated in Listing 5.25, matches the

172

5. A COMPARISON PROCESS FOR CLOUD SLAS

element names, which are: Computing, Storage and Networking (see Section 4.3.2).
This rule is imported by other ECL modules that match the SLA (see Section 5.5.8)
and QoS (see Section 5.5.6). This rule is the same for the three matching logics.

Listing 5.25: Matching cloud services ECL

1 @greedy

2 rule matchServices

3 match c : ConsumerSLA!Service

4 with p : ProviderSLA!Service {

5 compare : c.service.EClass.name = p.service.EClass.name

6 }

5.5.6 Comparison of Cloud QoS Parameters’ Implementation

This section presents the implementation of the matching QoS parameters that are a
key concept in cloud SLAs. To match two QoS properties, we need to match the value
attributes and the QoS concept that is defined by. In our SLA metamodel (see Sec-
tion 4.3), the QoSPropety class associates a number of QoSTerm classes. In the match-
ing implementation (see Listing 5.26), we created a rule named matchQoSTerm that
matches two QoSPropety elements by matching the QoS concepts. Rule matchQoSTerm

matches two QoS concepts (i.e. QoSTerm) and returns true if they define the same QoS
concept and the same service. This rule is invoked by another rule named matchQosProp-

erty. The rule matchDefintionTerm returns true if the QoSProperties are matched
and the values of the QoSProperties elements are matched by invoking two rules:
matchQoSProperty and matching value rules (Sectionr̃efsub:compGeneral). The changes
made in the approximate and name-based matching implementation are EOL programs
that are imported, as described in Section 5.5.1.

Listing 5.26: Matching QoS properties ECL

1

2 rule matchDefinition

3 match c: ConsumerSLA!Definition

4 with p : ProviderSLA!Definition{

5 compare : c.terms.matches(p.terms)

6 }

173

5. A COMPARISON PROCESS FOR CLOUD SLAS

7 rule matchDefinitionTerm

8 match c : ConsumerSLA!DefinitionTerm

9 with p : ProviderSLA!DefinitionTerm {

10 guard : c.define.matches(p.define)

11 compare : c.define.value.matches(p.define.value)

12 }

13 rule matchQoSTerm

14 match c : ConsumerSLA!QoSTerm

15 with p : ProviderSLA!QoSTerm {

16 guard : c.belongsTo.EClass.name = p.belongsTo.EClass.name

17 compare : (c.EClass.name = p.EClass.name)

18 }

19 rule matchQosProperty

20 match cq : ConsumerSLA!QoSProperty

21 with pq : ProviderSLA!QoSProperty{

22 compare : (cq.qosTerm.exists(e | pq.qosTerm.exists(ep | e.

matches(ep)))

23 }

5.5.7 Comparison of Cloud Obligation Implementation

This section provides a description of the implementation of matching Obligations in
cloud SLA models. Obligations are part of the cloud SLA model (see Section 4.3).

The Obligation is defined in our SLA metamodel as term(s). Therefore we define
a rule named matchObligation as in Listing 5.27 to compare the obligations. This rule
invokes another rule named matchObTerms to compare each term. To match SLO, we
match the values by invoking value matching (see Section 5.5.1). The difference in
implementing approximate or name-based matching is the importing of the ECL task
(see Section 5.5.1) for the approximate or name-based matching.

Listing 5.27: Matching obligation terms in ECL

1 ...

2 rule matchObligation

3 match c: ConsumerSLA!Obligation

4 with p : ProviderSLA!Obligation{

5 compare : (c.terms.matches(p.terms))

6 }

174

5. A COMPARISON PROCESS FOR CLOUD SLAS

7 rule matchObTerms

8 match c : ConsumerSLA!ObligationTerm

9 with p : ProviderSLA!ObligationTerm {

10 guard : c.parameterValue.EClass.Name = p.parameterValue.EClass.

Name

11 compare : (c.slo.matches(p.slo) and c.violation.matches(p.

violation))

12 }

13 @lazy

14 rule matchSLO

15 match c : ConsumerSLA!SLO

16 with p : ProviderSLA!SLO{

17 compare : c.value.matches(p.value)

18 }

19 @lazy

20 rule matchCredit

21 match c : ConsumerSLA!Credit

22 with p : ProviderSLA!Credit{

23 compare : c.creditValue.matches(p.creditValue) and c.creditType

= p.creditType

24 }

5.5.8 Comparison of Cloud SLA Implementation

This implementation explains one way to relate other rules, described earlier (see Sec-
tions 5.5.1 and 5.5.4- 5.5.7) to match two SLA models.

In this implementation, we compare two SLA models. We created a rule named
matchSLAs to match SLAs elements, which invokes the matchSLA rule (see Listing 5.28).
Rule matchSLA invokes other rules described earlier (i.e. Sections 5.5.1, 5.5.3 and
5.5.5- 5.5.7). In this implementation, we compare all of the cloud SLA elements. This
is illustrated by the operation import in the Listing. By running this ECL task, two
SLA models are compared to match the same elements in both models. The result of
the comparison rules is stored in a result model, which is discussed in Section 5.7.

Listing 5.28: Matching two cloud SLA models ECL

1 import "Service.ecl";

2 import "OptimalObligationMatching.ecl";

175

5. A COMPARISON PROCESS FOR CLOUD SLAS

3 import "OptimaltUnitAndPrice.ecl";

4 import "OptimalMatchQoSProperty.ecl";

5 import "OptimalGeneralInfoMatchnig.ecl";

6

7 ...

8 rule matchSLAs

9 match c : ConsumerSLA!SLAs

10 with p : ProviderSLA!SLAs {

11 compare : c.serviceSLA.matches(p.serviceSLA)

12 }

13 rule matchSLA

14 match c : ConsumerSLA!SLA

15 with p : ProviderSLA!SLA {

16 compare : c.service.matches(p.service)

17 do {

18 if (c.define.isDefined() and p.define.isDefined())

19 c.define.terms.matches(p.define.terms);

20 if (c.obligation.isDefined() and p.obligation.isDefined())

21 c.obligation.terms.matches(p.obligation.terms);

22 }

23 }

5.6 Approximate Values Model

Sections 5.4.6 and 5.5.1.1 introduced an approximation value. A consumer may need
to be able to define different approximation values for the required SLA elements. We
support this in our approach by using an approximation model. This model contains
different approximation values for different SLA model elements. Adding the no-
tion of approximate values to the approximate matching process requires an additional
metamodel. The approximate model consists of a number of items, each of which has
a value (i.e. approximate value) and refers to an element in the SLA model. These
approximate values are used as threshold values for the difference between two ele-
ment values in cloud SLA model (see Listings 5.16 and 5.17). The abstract syntax is
described in the following section.

176

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.6.1 Abstract Syntax of the Approximation Model

The metamodel of the approximate model is illustrated in Figure 5.5 and consists of:

• Approx: a class that has an association with a number of items of type Approx-

Item. This class holds set of items that are assigned an approximate value from
a service requester.

• ApproxItem class has a string attribute named name , a real attribute named ap-

proxValue and a reference named itemRef. The itemRef holds the object of SLA
model that is assigned the approximate value.

Figure 5.5: Approximate metamodel

5.6.2 Example of Approximate Model

We provide an example of the approximate model to be consistent with the explanation
of a metamodel introduced in Chapter 4. As shown in Figure 5.6, a model consists of
two approxItems. One of the approxItems refers to the uptime QoS parameter and
its value equals 99.95%. The approximation value of this QoS parameter is assigned
to 0.5%. This approximation value is used in the approximate matching process, as
explained in Sections 5.4.6 and 5.5.1.1.

177

5. A COMPARISON PROCESS FOR CLOUD SLAS

Figure 5.6: An example of approximate model

5.7 Comparison Results Metamodel

Section 5.2 presented the general architecture of the comparison process: matching
two SLA models produces an output model. The output model holds the results of the
matching rules, which were previously explained in Section 5.5. Since the objective
of this work is to enhance the automation of the cloud SLA selection process, and
help cloud consumers to select the appropriate offers from cloud providers, the output
of the matching process is presented as a model which holds the matches that were
found with SLA provider offers. This resulting model can thereafter be processed
and manipulated, e.g., to present the results to consumers in different forms or styles
(depending on their needs).

When two elements are matched, the output model holds a reference to both matched
elements of a consumer model and a provider model. As explained (in Section 5.5), if
the matching rules match a leftParameter with a rightParameter, then the rule returns
true or false; thus the output results of a match rule holds references to leftParameter

and rightParameter.
The output model thus consists of elements, each of which is created when a match

rule returns true. This element holds references to the two matched elements.
The output results (i.e. Trace) metamodel is illustrated in Figure 5.7. The trace

class defines a number of items of type TraceItem. Each item (i.e. TraceItem) asso-

178

5. A COMPARISON PROCESS FOR CLOUD SLAS

ciates a left and right references. These two references hold matched objects from the
two compared models.

Figure 5.7: Trace metamodel

As presented in Section 5.5.8, in the ECL module, we can define a post block which
is executed after evaluating the match rules in an ECL module. In the matching rules
discussed earlier in this chapter, we included the post statements in the ECL module.
This post block creates the output model.

In the post part of the ECL, in Listing 5.29, we created and externalised a trace
model to store the matching elements. The matchTrace operation of ECL consists of
the number of matches that holds the references to the compared objects [11]. We store
the objects that are assigned as the same objects (the match has a true value). These
statements in the post block create elements of the Trace metamodel (i.e. TraceItem)
that holds references of the left and right parameters.

Listing 5.29: Storing the results of the matching rules in ECL

1 post {

2 var item : Any;

3 var trace = new TraceModel!Trace;

4 for (item in matchTrace.matches){

5 if (item.matching) {

6 var traceItem : new TraceModel!TraceItem;

7 raceItem.left = item.left;

8 traceItem.right = item.right;

9 trace.items.add(traceItem);

10 }

11 }

12 }

179

5. A COMPARISON PROCESS FOR CLOUD SLAS

5.8 Summary

In this section, we described the different matching logics of the SLA model compari-
son. We implemented SLA model comparison that finds the matching elements in the
model. Three matching logics were proposed: Optimal, Approximate and Name-based
logics. The matching process is implemented using ECL. The implementation of the
SLA model comparison is divided into different ECL tasks (modules), each of which
match part of the SLA model separately. Each of the compared parts of the SLA is
implemented to match the three matching logics, each of which is created in a sepa-
rate ECL task. To compare two SLA models, the implementation makes it possible
to mix the three matching logics with different parts of the SLA elements. A model
is created as a result of the comparison task. This model holds the matched elements
from the process of matching two SLA models. The comparison tasks may produce
multiple results. To make it easier for consumers to compare the matched models, we
use a weighting process. The weighting process allows consumers to accumulate the
results from the matching process and assign weights to the requirements. This will be
discussed in the next chapter.

180

Chapter 6

A Conceptual Framework for SLA
Model Comparison

6.1 Introduction

Chapter 4 discussed different SLA metamodels and models, while Chapter 5 discussed
the matching logic for comparing two SLA models. A model that can be used to rep-
resent the outcome of the matching process was discussed in Chapter 5. In this chapter
we discuss how the results can be presented in ways that can support the consumer
(i.e. service requester) in making decisions. As discussed in Chapter 5, the compar-
ison tasks compare a consumer SLA model with a number of provider SLA models.
Consumers may have preferences with regard to which SLA elements they want to con-
sider and emphasise in the outcomes of the comparison process. This chapter discusses
a so-called consumer preference model and explains how this preference model, and
the comparison results (trace models), can be usefully combined in a way that helps
consumers when selecting an offer. These models, tasks and overall process can be
supported via a workflow of model management tasks, and these are explained in this
chapter.

This chapter is organised as follows: first, we explain the conceptual framework
for the comparison of cloud SLAs using MDE principles. Then, we explain how the
preferences of the consumer/service-requester can be formed as a weight model (Sec-
tion 6.3). Following this, we introduce a cost model, which can be used to define, for

181

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

example, the number of cloud units and total cost associated with a requested service of
each provider. In addition, we discuss the process of analysing the comparison results,
which may require consumer interaction (Section 6.4). The chapter also describes a de-

cision matrix, formed from trace models (Section 6.6). The decision matrix is derived
to be used in cloud SLA selection problems. After that, the final section discusses the
visualisation of these trace results (Section 6.7) to demonstrate proof-of-concept that
trace results can be presented in a user-friendly manner.

6.2 Conceptual Architecture of SLA Comparison

As discussed (in Chapter 1), this thesis investigates how to help cloud consumers to
make choices regarding cloud SLAs through the semi-automation of the comparison
and selection process using MDE principles. In chapter 5, we described the algorithm
of matching two models (e.g. consumer and provider) as a major aspect part of the
comparison process (Section 5.2). This comparison process matches a consumer SLA
model with n provider SLA models by repeating the matching process (Chapter 5) n

times. The outcome of the comparison process is a number of models as described in
Section 5.2. Cloud consumers may want to make decisions based upon one of those
output models which better matches their requirements. This chapter discusses the
outcome of the comparison process and how this can be further managed (using MDE
tasks) to help consumers to make decisions. For example, how these outcome models
(i.e. trace models Section 5.7), when combined with the cloud consumers preferences,
can help them to make better decisions when selecting the cloud provider’s offer.

In a case where a selection or decision must be made between multiple attributes
(criteria) and multiple alternatives (i.e matched models from different provider offers)
(called the MCDM problem) [193, 195], a MCDM matrix is derived to solve this prob-
lem. Therefore, in this thesis we propose a MCDM matrix metamodel. Then, the
trace model is transformed into the matrix model. The MCDM matrix metamodel
is described in Section 6.6. Before we explain the MCDM matrix, we illustrate a
conceptual architecture of the framework of the comparison and selection process in
Figure 6.1.

In Figure 6.1, the processes are model management tasks, the input of a task is a
model and the output is a model. Some tasks may require a consumer interaction which

182

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

is presented in the figure as dotted arrows. This framework, as shown in the figure, con-
sists of multiple model management tasks, e.g. model comparison and transformation,
and a number of models (that conform to different metamodels). The main components
are:

• Comparison process: this comparison process includes different matching logics
using ECL tasks, which are matching different components of cloud SLA models
as describe in Chapter 5.

• Cloud provider SLA models: these models can be instantiated using the cloud
SLA metamodel (Chapter 4), these models are assumed to be stored in the SLA
repository.

• Cloud consumer SLA model: this model is instantiated by the service requester
using the SLA metamodel (Chapter 4).

• Outcome models of the comparison process (trace models): the outcome model
of each matching process which conforms to the trace metamodel is described
in Section 5.7.

• Create weighting model: this process accepts a consumer mode and preferences
for the elements of the cloud SLA from a consumer as a weight, to produce a
weight model. A detailed description is provided in section 6.3.

• Data Analysis Process: this process is presented in case a consumer interacts
with the trace models of the comparison to, for example, add some constraints to
the trace model. This is further discussed in Section 6.5. Therefore, the output
of this process is like the input model that conforms to the trace metamodel, (i.e.
the new trace model- Figure 6.1).

• Create cost: in this simple process, the quantity of each unit defined in the con-
sumer model is requires the price of each unit as defined in the provider model,
so we can calculate the expected total cost for each provider according to their
requirements. The outcome of this process is a cost model. This is further ex-
plained in Section 6.4.

183

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

• MCDM matrix: this process forms trace models, a consumer model and cost
models as a decision matrix. This matrix is usually formed in such cases to aid
in finding a better offer. This is further explained in Section 6.6.

• View matching results: this process presents a way in which the results of the
matching process can be visualised. This is explained in Section 6.7.

	
 	

Quantity	

defined	
 by	

user	

…	

…	

Comparison	
 Process	

Consumer	

Model	

SLAs	

repository	

Weight	

Model	

View	

matching	

Results	

Trace	

Model	
 1	

Cost	

Model	
 1	

Trace	

Model	
 n	

Data	
 Analysis	
 Process	

Transform	

to	
 MCDM	

Matrix	

MCDM	

Matrix	

Create	

weighting	

model	

New	

Trace	

Model	
 1	

New	

Trace	

Model	
 n	
 Create	
 Cost	

Cost	

Model	

m	

n	
 cost	
 models	

n	
 trace	
 models	

n	
 trace	
 models	

input	
 model	

n	
 input	
 models	

provider	
 SLA	
 models	

n	
 output	
 models	
 	

Weight	
 values	

defined	
 by	

user	

Chapter	
 5	

Section	
 6.5	

Section	
 6.4	

Section	
 6.3	

Section	
 6.3.1	

Section	
 6.4.1	

Section	
 5.7	

Section	
 5.7	

Section	
 6.6.1	

Section	
 6.6	

Section	
 6.7	

Chapter	
 4	

Figure 6.1: Architecture of cloud SLA comparison and selection Process

Now we discuss each component, shown in Figure 6.1 in different sections (except
matching cloud provider SLA models and cloud consumer SLA models, which are
discussed in Chapter 4. The comparison process and trace models are discussed in
Chapter 5). We start with the process of creating a weighting model.

184

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

6.3 Create a Weighting Model

A consumer searching for an acceptable cloud SLA may not value all SLA concepts
and constructs equally; for example, availability may be markedly more valuable than
credit for downtime. To address this, we introduce a weighting model to allow con-
sumers to assign weights to their specific requirements. Adding a notion of weights to
the matching process requires an additional metamodel.

This process requires consumer interaction to provide weights for the elements de-
fined in the consumer models. The process assigns elements defined in the consumer
model with a weight and forms a weight model. Each weight model consists of a num-
ber of items, each of which has a weight and refers to an element in the consumer SLA
model. The abstract syntax of a weight model is described in the following section.

6.3.1 Abstract Syntax of Weighting Model

The metamodel consists of (Figure 6.2):

• Weight: a class that has an association with a number of items of type Weighte-

dItem. This class holds a set of items that are weighted from a service requester.

• WeightedItem: a class that has a string attribute named name and real type at-
tribute named weight. It also has a reference to an object named itemRef. The
weight is used to specify the service requester by adding a weight value to the
concepts of the SLA model. The itemRef holds the object of the SLA model
which can be used for further processing, as illustrated in Section 6.6.

185

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

Figure 6.2: A weight metamodel

6.3.2 Example of a Weighting Model

To be consistent with the explanation of metamodels introduced in Chapter 4, we pro-
vide an example of the weight model, as shown in Figure 6.3. The weighted item
may refer to any class in the SLA model. It is the choice of the service requesters to
add weights to the classes of the SLA model to suit their requirements. To create this
model, an interaction with a service requester is needed, i.e. consumers should provide
weight values for the SLA model elements. Figure 6.3 illustrates the weighting model
which consists of a number of WeightedItems, presenting SLA model objects: SLA,
DefinitionTerm, SLO and ObligationTerm. For example, the weighted item Definition-

Term has a weight value = 0.5 and has a reference to DefinitionTerm, as defined in the
consumer metamodel.

186

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

Figure 6.3: An example of the weight model

The process of creating a weight model, using elements defined in the consumer
model and weight values, is illustrated in Listing 6.1. This process is partially auto-
mated created using an EOL module. In this proof of concept study, weight elements
are created to act as consumer weights. Each weight element has a weight value. A
weight value can be assigned to any element defined in the consumer model. In creat-
ing the weighting model process, a number of questions can be raised: Which elements
in the consumer SLA should be considered in the weighting process? Should a group
of elements, which conform to the same class, have the same weight value? We be-
lieve it is the consumer’s responsibility to decide which elements are assigned a value.
Listing 6.1 describes the algorithm used to create a weight model in pseudo-code.

The inputs of this process are consumerModel and cost model which is explained
in the next section (6.4), and the outcome is a weighting model.

Listing 6.1: Assigning weights with SLA elements

1 input = consumerModel;

2 input = costModel;

3 create new weightModel;

4 for each element in conusmerModel{

5 if (input=hasWeight)

6 input weight;

7 create a new weightedElement;

8 weightedElement.itemRef=element;

187

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

9 weightedElement.weight=weight;

10 add weightdElement to weightModel;

11 }

6.4 Creating and Calculating a Cost Model

As several studies suggest [83, 119], the cost of the service is an essential part of
decision-making. A cost model is created when a consumer requires a cost to be a
factor in the decision-making process. The cost is the expected cost of consuming
cloud services during a specified time period. This cost depends on the prices of the
service units that are defined in the provider’s SLA offers. It also depends on the
quantity of units that are required by a consumer. The quantity is not included in the
cloud SLA metamodel. A consumer interaction is expected to provide the quantity. We
create a cost model from the consumer requirements (i.e. cloud units) and the quantity
of each. In this section, we discuss two processes: firstly, creating a cost model based
on the quantities provided by the consumer (Section 6.4.1), then calculating the cost
based on the prices in the provider offer (Section 6.4.2).

6.4.1 Cost Model

The cloud SLA metamodel does not specify quantities; thus, we create a simple meta-
model that specifies the quantity of each cloud unit as defined in the consumer the
metamodel. To create a cost model, we first explain the abstract syntax of the cost
model. The abstract syntax is described in the following section.

6.4.1.1 Abstract Syntax of Cost model

The abstract syntax of cost metamodel, as illustrated in Figure 6.4, consists of:

• UnitItemCost: this class specifies an integer attribute numberOfItems which is
used to define the required quantity of a specific cloud unit. Another attribute
specified by this class is the price which define the price of the cloud unit. This
class specifies a total attribute which defines the total cost of a specific cloud unit

188

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

• Allunits: this class specifies an attribute totalCost which defines the total cost
of all units required by the consumer. It specifies a reference item to refer to
UnitItemCost.

Figure 6.4: A cost metamodel

6.4.1.2 Creating Cost Model

In this study, we assign quantities to create a model which consists of cloud units and
their prices from a provider SLA model and the quantity required by consumer. First,
we assume that a consumer provides a quantity for each cloud unit as defined in the
consumer SLA model; thus a cost model as explained in listing 6.2 is created. This list-
ing creates a cost model using the EOL module. This cost model consists of a number
of items. Each item is assigned a number (presents quantity) and a reference to a cloud
unit defined in the consumer model. The inputs of this algorithm are consumerModel

and the quantities required by the consumer (e.g. consumer interaction). The outcome
is a cost model holding quantities and refers to the cloud units.

Listing 6.2: Create a cost model for consumer model using EOL

1 new costModel;

2 input consumerModel;

3 for (element in consumerModel.cloudUnits){

4 new costItem;

5 costItem=element;

6 costItme.quantity=input quantity;

7 add costItem to costModel

189

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

8 }

A cost model is created for each provider model matched with the consumer model.
As illustrated in Listing 6.3, the inputs of this module are: the consumerCostModel

(created from Listing 6.2) and a traceModel, and the output is a providerCostModel.
The item in the providerCostModel is assigned a quantity from the quantity of ele-

ment in consumerCostModel. This is done by selecting the item traceModel that has a
reference to the element and assigns the providerCostModel.item to the item.right.

Listing 6.3: Create cost model for provider offers

1 input consumerCostModel;

2 input traceModel;

3 new providerCostModel;

4 for each element in cosumerCostModel{

5 if element.exists in traceModel.item{

6 new providerCostModel.item;

7 providerCostModel.item.quantity=element.quantity;

8 providerCostModel.item=select.traceModel.right(element=

traceModel.item.left);

9 }

10 }

The traceModel may contain a unit in the consumer model that is matched with
more than one unit from the provider model. In this case, a user interaction is required
to eliminate the repeated cloud unit from the matching model, which is discussed in
Section 6.5. In the next section, we discuss how the cost may be calculated.

6.4.2 Calculating the Cost

The cost metamodel is created to calculate the cost of the cloud units for each provider.
This cost refers to the consumption price of the service in a time period. The meta-
model specifies the amount or quantity of service units required. For example, a con-
sumer requires 3 VMs with the same characteristics. Public clouds provide a calculator
to calculate the expected cost of the service consumption, e.g. an AWS calculator [3].
The calculator calculates the total cost for a month. In AWS, a consumer provides
the expected utilisation of the service unit, i.e. CompUnitSpec. The consumer also

190

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

provides the quantity required of each CompUnitSpec. In this implementation, the
consumer provides their needs using a cost model.

The service requester provides their required quantity of service units. Then the
costs for each provider offer are calculated, based on the quantities provided by a
service requester. The costs calculated for the service requester SLA model and other
SLA provider offers can be compared.

We explained the abstract syntax of the cost used in the metamodel. In the follow-
ing, we explain how the cost is calculated.

In calculating the cost of the computing unit, we must consider the price and pay-

mentPeriod that are provided in the SLA models. Cloud providers, e.g. Amazon EC2
and GoGrid provide the price per hour for the on-demand and subscription period.
Usually, a provider calculates the expected cost for a monthly period, e.g an AWS
calculator.

Listing 6.4 presents a calculation of the estimated cost for a month period and a
100% utilisation of the cloud computing unit. For the Networking and Storage units,
the public cloud offers are given in GBP per month. Some providers add extra charges
to the service price, so this is added to the total cost. The Storage and Network cloud
units are specified by the size, which can be a single value or a ranged value. The
algorithm typically performs a computation operation. The input is a costModel. The
costModel is changed by adding a value to the totalCost attribute, and a value to the
attribute totalItemCost for each item involved in this process.

Listing 6.4: Calculate the cost of the cost model using EOL

1 Input costModel;

2 for each item in costModel{

3 if (item is ComputingUnit){

4 costModel.totalItemCost=(CalculatePrice(priceValue,pricePer,

monthperiod)*item.quantity)+extra charge

5 }

6 else if (item is Storage or item is Networking){

7 totalItemCost=calculate(size.value*quantity);

8 costModel.totalCost=totalCost+TotalItemCost;

9 }

10 }

11 costModel.totalCost=totalCost;

191

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

The next section describes the process of removing duplicate elements from the
trace model.

6.5 Analysing Results

An element in the service requester model using matching rules may or may not be
included in the trace model. This means that, if there is no match between the service
requester element and any of the elements in the provider model, then this element is
not included in the trace model as an outcome. If a match is found between an element
in a service requester model and another element in the provider model, then this is
included in the trace model. The matching rules may also return a match between
an element of a service requester model with more than one element in the provider
model. In this case, the element in the service requester model is included in the trace
models more than once.

This helps us to understand how can we process the outcomes before, e.g. trans-
forming it into the MCDM matrix or cost model. The trace model may contain a
repeated element from the consumer model which is matched with more than one el-
ement in the provider model. Assuming we have results as in Figure 6.5, the element
in consumer model c1 is matched with elements in the provider models (p1 and p2).
Therefore, the trace model contains, in this case, two traceItem elements that refer to
c1 in the consumer model. This happens, for example, when the consumer requires
VM (OS= Linux, RAM=3.75 GB, number of cores =) price = 0.6$ per hour. The
name-based match returns more cloud units that have OS = Linux. In this case, the
required VM is matched with more than one VM.

In this case, if there is more than one element in the provider model that matches an
element in the service requester model, an interaction with a service requester might be
required to eliminate the matches, so that each element in the service requester model
will match only one element in the provider model.

192

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

Figure 6.5: Example of repeated elements in the outcome of matching

Human interaction may help to eliminate this, by selecting one element or, alter-
natively, for example, finding the distances between different matched values. This is
a multi-criteria decision analysis [193, 195]. Our proof of concept study illustrates a
way to remove the redundant elements from the trace models by using an ETL module,
as illustrated in Listing 7.2, as an example. We simply keep the first element found in
the trace model and remove any repeated element.

To eliminate the elements of the trace model, we transform the trace model into
a new trace model. This is done by transforming the traceItem into the new model
if the item.left is not added to the new trace model. This is illustrated in Listing 7.2.
The listing defines two models: traceModel as the input model and NewMatched as
the output model. It simply copies the non-repeated traceItem.left to the newItem in
the newTraceModel. Where there are any repeated traceItem.left, it is the consumers
choice to select one of the traceItems to go to the newTraceModel, e.g., select the
nearest offered item to the required item.

Listing 6.5: Eliminate repeated left items from the trace model

1 input = traceModel;

2 create newTraceModel;

3 for(traceItem in traceModel){

4 if traceItem.left is not repeated in traceModel.items{

5 create newItem;

6 newItem=itraceItem;

7 add newItem to newTraceModel;

8 }

9 else if itraceItem.left is repeated in traceModel.items{

10 input=select nearest item;

193

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

11 create newItem;

12 newItem=traceItem;

13 add newItem to newTraceModel

14 }

15 }

Now a trace model can be used to form, for example, a matrix model, which is
discussed in the following section (Section 6.6.2).

6.6 Decision Making Matrix

The outcome of the matching process of two SLAs may produce multiple matching
elements. Having a set of provider offers matched with the consumer model (multiple
trace models) allows the consumer to choose between different matched offers. The
selection process may need to take into account consumer preferences (weight model).
Selecting between different alternatives (trace models) with multiple criteria (elements
in the consumer model) is called an MCDM problem. An MCDM matrix is then
derived to solve such a problem. In our implementation, we constructed a metamodel
to specify the MCDM matrix. In this section we describe the abstract syntax of this
MCDM matrix. The MCDM models are constructed from: a weight model and a
number of trace models.

6.6.1 Abstract Syntax of the MCDM Matrix

Figure 6.6 illustrates the abstract syntax of the matrix. We simply try to have the
general structure of a matrix, which consists of a number of rows and columns. The
metamodel consists of:

• Matrix class: has one or more rows (i.e. associates with Row class) and one or
more columns (i.e. associates with the Column class). It also specifies one or
more elements (i.e. associates with the Element class).

• Row class: is created to specify the rows of the matrix. Each row defines a string
type attribute named parameterName. This name defines the parameters (cri-
teria) that are defined in the SLA model (Chapter 4.3) that a service requester

194

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

Figure 6.6: MCDM matrix metamodel

wants to include in the decision matrix. This class specifies another real type at-
tribute named weight. This weight attribute defines the weights that are specified
by the consumer in the weighting model (Section 6.3). It also associates with the
Element class. The element association defines the data or values in the row.

• Column class: is created to specify the columns in the matrix. Each column
specifies string attributes ID and SLAName. These attributes define the cloud
provider id and name. As with the Row class, this class associates with the
Element class, to define the elements of a column.

• Element class: is constructed to define the data of the matrix. Each element is
associated with one Row class: and one Column class. It also has an attributed
eItem that refers to the object elements of the SLA model.

How can we form the results into a matrix model as explained in this section? This
is described in Section 6.6.2. The matrix model is formed from the consumer SLA
model elements and the outcomes of the matching processes (number of trace models).
Each trace model is an outcome of the matching process between the consumer and
provider SLAs models.

195

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

6.6.2 Constructing a Matrix Model

A matrix model is formed using different criteria and alternatives. The criteria are the
elements of the service requester model and the alternatives are the different provider
offers. As we illustrated, the MCDM matrix includes weight values for the criteria.
Therefore in constructing the matrix model, the elements in a weighted model (Sec-
tion 6.3) are used to form the criteria and weight value of the matrix.

We construct a matrix via a number of different steps. First, we transform the
elements in the weight model into the matrix with different rows which represent the
different criteria of the decision matrix. This is illustrated in Listing 6.6.

A weightModel is an input model in this Listing. The algorithm creates a new
matrixModel and assigns rows to the items defined in the weightModel. It also assigns
a weight value to each row, as defined in the weightModel.

Listing 6.6: Create matrix rows which present the criteria of the MCDM

1 input=weightModel;

2 new matrixModel;

3 for each element in weightModel{

4 create new matrixModel.row

5 matrixModel.row.weight=element.weight;

6 matrixModel.elements=element;

7 }

The second step is to form the columns into a matrix. Each column presents a
service provider offer. In this model, we include the trace model which is generated
from the process explained in Section 6.5. The trace model includes items from both
the provider and consumer models, so we add the element to the row that presents
the same criteria. This is illustrated in Listing 6.7. Two input models are defined for
constructing a column in a matrix: a traceModel and a matrixModel (which is the
outcome from Listing 6.6 and where the matrix rows were defined). A new column is
created (i.e. matrixModel.column). We then find the row.item in the matrixModel that
matches with the item.left in the traceModel and assign this item (i.e. item.right) to the
matrixModel.element. This matrixModel.element is added to the column elements.

Listing 6.7: Eliminate repeated left item of the trace model

1 input1=traceModel;

196

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

2 input2=matrixModel;

3 for each provider{

4 new matrixModel.column

5 matrixModel.column.ID = provider ID;

6 for each item in traceModel{

7 new matrixModel.elements;

8 matrixModel.elements.eItem= item.right;

9 row=find(matrixModel.row.item=item.left);

10 matrixModel.elements.row=row;

11 matrixModel.elements.column=matrixModel.column;

12 matrixModel.column.add(matrixModel.element);

13 }

14 }

The results may produce empty elements in the matrix. This happens when there
are no matches found between a criterion in the service requester model and the provider
model. This can be discussed as a multi criteria decision analysis [83, 193, 195].

6.7 View Matching Results

Having a trace model as an output (e.g. trace model and matrix model) model, allows
a consumer to view the results. This can be done by, for example, transforming it into
documents using the EGL model management task. This EGL task may be used to
transform SLA models into a HTML code. Another way to view the results is to use
ModelLink, which is a tool which consists of 2 or 3 EMF tree-base editors [10] to view
the links between the consumer, provider and match models.

6.8 Summary

This chapter presented the processes and models involved in cloud computing SLA
comparison. It described the general architecture of the comparison process. The main
inputs of the process are the service requester SLA model and a set of provider SLA
offers. The output of the matching process is a set of trace results. Different MDE
model management tasks were performed on those models, such as transformation.

197

6. A CONCEPTUAL FRAMEWORK FOR SLA MODEL COMPARISON

A consumer preferences model and trace models are processed to create an MCDM
matrix, which is usually formed in such problems.

198

Chapter 7

Evaluation

7.1 Introduction

In this thesis, a metamodel for cloud SLA and a semi-automatic comparison process for
such SLAs have been proposed. This chapter evaluates the proposed approach, includ-
ing an evaluation of the hypothesis, which was stated earlier: Can MDE principles and

tools support the precise modelling of cloud computing SLAs in such a way that cloud

stakeholders can define their offers and demands? In addition, can the MDE principles

and tools enable a semi-automated comparison process for cloud computing SLAs, in

order to help cloud stakeholders make better decisions about the appropriateness of

offerings from different cloud providers?

The evaluation is based on three distinct points:

1. Instantiating cloud SLA models for cloud providers and consumers that conform
to cloud SLA model described in Chapter 4.

2. Using model comparison (see Chapter 5) to match the instantiated cloud SLAs
models by applying different algorithms.

3. Supporting consumers in decision making by applying the different model man-
agement tasks (see Chapter 6) based on the outcomes of the model comparison.

The evaluation of the thesis contributions is discussed against the goals and objec-
tives of the thesis. In this thesis, we evaluate our contributions using a case study.

199

7. EVALUATION

7.2 Case Study

This section describes how we evaluated all of the research contributions in combina-
tion, i.e., when they are put together and applied to a new case study. The evaluation
helps to explore the strengths and weaknesses of our work. The case study example
is built based on other studies in [72, 83, 139, 188]. The values of the consumer re-
quirements are adapted from [83]. The broker service is used for matching consumer
requirements with the provider offers [72, 139].

The case study is used to evaluate the hypothesis and the overall methodology that
we contribute; as such, it complements the evaluations done in the preceding chapters.
To start with, we describe the scenario for the evaluation. A cloud broker service pro-
vides a match between cloud consumer requirements and a number of cloud provider
SLAs. This service has a repository of SLAs models, cloud providers, cloud consumers
(cloud service requesters) and a broker. Cloud providers provide the broker with their
SLA offers. A cloud consumer requests an offer based on specific requirements. The
broker creates a cloud SLA model expressed in a specific language and finds a match
between the cloud provider requirements and cloud offers stored in the repository. In
this example, we discuss the cloud broker service components:

• Cloud SLA and repository: How can different cloud SLA offers be expressed
using the proposed model? Section 7.2.1 describes cloud SLA models using
examples of three cloud providers. We describe the offers’ details, the concepts
used in each offer and how they can be presented using the proposed metamodel,
as explained in Section 4. These offers are then stored in the repository.

• Matching process and matching logics: the cloud broker then starts a matching
process which finds matches between consumer requirements and cloud offers.
The cloud brokerage service uses the matching process, which finds matches
between cloud SLA models, as explained in Chapter 5.

• Preparing Results for the selection problem: the cloud broker provides the re-
sults as a decision matrix from which the consumer may select an offer. After
the matching process is completed, the results are a number of matching models.
These models are processed then organized as an MCDM matrix (Chapter 6).

200

7. EVALUATION

In this example, a consumer may desire to choose a cloud service; they can make
use of QoS parameters as the basis for modelling their requirements. These services
and QoS parameters are specified in the SLA models of providers. A consumer wishes
to find the cloud provider offer that matches their requirements. Therefore, the con-
sumer provides requirements to a cloud broker. A cloud broker is a service that has a
repository of cloud SLAs. It stores cloud SLAs in a repository and collects the con-
sumer requirements to find a match with these provider SLAs. A cloud broker finds
matches between the consumer SLAs and provider SLAs, by using a common language
to define both the provider and consumer SLAs.

7.2.1 Creating Cloud SLA models using the Cloud SLA abstract
syntax

This section describes how the SLAs of cloud providers and consumers are defined
using the proposed cloud SLA abstract syntax (Section 4.3). The purpose of this sec-
tion is to test the applicability of the proposed metamodel, to define pre-defined cloud
SLAs as model instances of this metamodel. In this example, provider SLA models are
defined based on three public cloud providers: Amazon AWS, RackSpace and GoGrid.
We randomly refer to the cloud providers as provider A, B and C. A consumer require-
ment is based on the requirements presented in [83] . We provide an example of how
the three cloud SLAs look as they are used in the examples. The SLAs of the three
cloud providers are as follows:

• The first provider Provider A defines two SLAs, one being a service for Com-

puting and the other for Storage. Both SLAs use specific terminologies: Service
Commitment, Definitions and Service Commitment and Credit as sections in the
SLAs of provider A. In the Computing SLA, the commitment section defines
Monthly uptime percentage at least 99.95%. In the Definitions section differ-
ent terms are provided with descriptions, such as Monthly uptime percentage,
describing how the value of this term is calculated. The Service Commitment
and Credits defines two conditions (as violations) to request credit. The first is a
credit of 10% of a monthly billing period, which is eligible to be requested if the
Monthly uptime is less than 99.95% but equal to or greater than 99.0%. The sec-
ond is a credit of 25%, which is eligible to be requested if the Monthly uptime is

201

7. EVALUATION

Less than 99.0% of a monthly billing period. The second SLA, which is the SLA
for storage, defines within the Commitment section the same parameter with a
different value (99.9%). Difference values are given to the same parameter in
the Service Commitment and Credits section (Figure 7.1).

Figure 7.1: Provider A SLA Offers

• The second provider, (i.e. Provider B) defines two SLAs, one for computing
and the other for storage service. The first SLA defines Cloud Servers will be

monthly available 99.9%. It defines a number of SLA credits for different val-
ues of monthly availability. It defines how monthly availability and credits are
calculated. The cloud server host is defined within this SLA and a restoration
time within 1 hour is defined. Another parameter, which is network availabil-

ity, is provided as a 100% guarantee. The storage SLA defines: guarantee and
credits sections. The guarantee defines Cloud Files available 99.9% and some
description of what is, for example, unavailability. The credit values are defined
in terms of monthly billing periods, as shown in Figure 7.2.

202

7. EVALUATION

Figure 7.2: Provider B SLA Offers

• The third provider (i.e. Provider C), defines server uptime, cloud storage and
network performance in one SLA document. This SLA defines a section named
Server Uptime. This section defines how Individual servers will deliver 100%

uptime. The credit values are calculated in terms of Memory Hours Fees at

the time of Failure. A cloud storage section defines 100% uptime and credits
are calculated in terms of the impacted Service feature for the duration of the

Failure. This is illustrated in Figure 7.3.

203

7. EVALUATION

Figure 7.3: Provider C SLA Offers

The question is: how can these SLAs of providers be defined using our metamodel?
We discuss each provider offer concept (i.e. Providers A, B and C) and match them
with the SLA model elements that conform to classes of the proposed syntax for the
cloud SLA model.

Let us consider provider A. In its offer, we can construct an SLA model (using the
abstract syntax) to capture two separate SLAs, where each refers to a specific service
element. The party element defines the provider ID and is defined as the provider.
The monthly uptime is defined as a QoSProperty element. The value of this parameter
(99.95%) is defined as a SingleValue element. This QoSProerty is defined within the
SLA that defines computing in the Service element. The uptime is defined as an Avail-

ability element. The credit is defined as a Credit element, and the violation value (e.g.
Monthly uptime is Less than 99.0%) is defined as an SLO element. This is illustrated
in Figure 7.4. The classes and references of the abstract syntax are presented in solid
lines, while the dotted shapes present a possible instance of the class. A cloud broker

204

7. EVALUATION

defines also the cloud units for the provider. Therefore, cloud units (i.e. computing
and storage) characteristics are shown in Table 7.1, and are also included in the cloud
SLA model defined by the cloud broker. This table shows an example of how cloud
units are defined (for provider A; providers B and C are similar).

Figure 7.4: Matching cloud SLA with the concepts of the SLA Offer of provider A

The provider B SLA can be defined in the proposed abstract syntax, as illustrated
in Figure 7.5. In this figure, a match is performed between cloud SLA and Provider
B. Each SLA is matched with the SLA element (each element conforms to a service
class), monthly available (with a QoSProperty of type Availability) and restoration time
is matched with a QoSProperty of Maintainability elements. The network parameter
is defined as a QoSProperty of Availability element. One question is within which

205

7. EVALUATION

Table 7.1: Cloud unit characteristics and prices of Provider A

Computing Units and Prices
Unit vCPU Memory

GB
storage
GB

OS Price

Small VM 1 1.7 160 Linux $0.06
per hour

Medium VM 2 3.75 410 Linux $0.012
per hour

Large VM 4 7.5 2*420 Linux $0.024
per hour

xLarge VM 8 15 2*840 Linux $0.048
per hour

service this network availability QoSProperty is defined. It can be defined within the
SLA that defines computing service. In this case, we have two availability parameters
that define the cloud server in this service. This is defined in computing SLA, which
means this is the availability of the network of computing service. We did not specify
network service as a part of computing service, so this network may be defined as a
Networking parameter or as a Computing parameter. In this example, we defined it as
a computing parameter.

206

7. EVALUATION

Figure 7.5: Matching cloud SLA with concepts of SLA Offer of provider B

For provider C, an SLA class is matched with the provider SLA, each service in
provider C is matched with an SLA class (Figure 7.6). Each SLA class defines a service
type: Computing, Networking and Storage. Server uptime is assigned as a QoSProp-

erty of type Availability in the SLA. This QoSProperty is defined as QoSProperty of
Computing service. Storage and Networking services also define a QoSProperty up-
time. In addition, network performance is assigned as a QoSProperty of type Perfor-

mance in the SLA that defines Networking. Figure 7.6 illustrates the SLA concepts for
Computing and Networking services.

207

7. EVALUATION

Figure 7.6: Matching cloud SLA with concepts of the SLA Offer of provider C

The models from the previous offers are shown in Figure 7.7. The models were
created using a tree-based EMF editor. As we can see for the three providers, they
have a similar structure. As illustrated, Provider A and B define two SLA elements,
one for computing and one for storage. While provider C provides one more SLA
element for the networking service, as they define a network performance. As we can
see, each SLA has a definition section, which consists of a number of terms. Each term
defines a QoS parameter and its value. The SLA section also has an obligation section.
Like the definition section, the obligation section defines a number of obligation terms,
which consists of an SLO parameter and credits. Each SLO defines a QoS parameter
and a threshold value.

The QoS parameters are defined as illustrated in Figure 7.8. This model creates
the service type and the QoS concepts that are of interest to the provider. The QoS
parameters are defined within each concept. In this figure, we can see the two services
created Computing and Storage. Computing service defines the Availability and Main-

tainability concepts. One QoS parameter is defined as upTime with its value. This QoS
parameter is referred to by the definition term illustrated in Figure 7.7.

208

7. EVALUATION

(a
)P

ro
vi

de
rA

(b
)P

ro
vi

de
rB

(c
)P

ro
vi

de
rC

Fi
gu

re
7.

7:
Il

lu
st

ra
tio

n
of

pr
ov

id
er

SL
A

s
of

fe
rs

us
in

g
th

e
cl

ou
d

SL
A

m
et

am
od

el

209

7. EVALUATION

Figure 7.8: Illustration of a service model of provider A using the cloud SLA abstract
syntax

210

7. EVALUATION

The main element, which is the SLAs, defines a number of cloud units. Each cloud
unit defines a specific cloud unit characteristic and its price. For the purpose of this case
study, Figure 7.9 illustrates consumer requirements in the form of an SLA model. This
consumer model is used to find matches with cloud SLA models, which are explained
in Figure 7.7.

Figure 7.9: Example of a consumer requirements using SLA

We have described above the cloud provider SLAs offers and explained how these
can be defined using the proposed abstract syntax, as cloud SLA model instances, that
can be stored in the repository. A cloud consumer provides an SLA to find a provider
offer that matches their requirements. The cloud consumer SLA is defined, as we did
with the cloud offers, by using the proposed cloud SLA metamodel. The cloud broker
service starts to find a match between the requested and offered SLAs.

7.2.2 Matching the cloud SLA of the consumer and provider

The purpose of this section is to describe the matching logics and the outcome models
of the matching process. This process matches cloud consumer requirements with
cloud providers SLAs. In this example, a cloud broker has consumer requirements
defined as a cloud SLA model and three provider SLA models stored in the repository.
The cloud broker service matches the cloud consumer SLA with each provider SLA.

211

7. EVALUATION

As we described in section 5.4, there are different matching logics – i.e. Optimal,
Approximate and Name-Based.

It is up to the service requester to choose the matching logic. For example, if
the requester does not provide approximate values the approximate matching is not
performed. If the service requester provides values as a lower limit and wants to find
better ones, then optimal matching is performed. In this case study, we assume that the
broker service performs different matching logics.

In the first match, a matching process matches the cloud SLA concepts and values
(Optimal). In this matching a consumer expect the matching process returns the SLA
offers with same or better values than the required values. The result of this matching
depends on the required values: a match between the required elements and offers
may not be found or redundant matches can be found (see Section 7.2.2.1). As a
result, a second matching logic (i.e. Approximate) can be deployed to reduce the
matching results (see Section 7.2.2.2). A match for the requirements is not yet found:
thus a name-based matching logic is applied (see Section 7.2.2.3). This matching
returns a number of redundant matching. Therefore, other ways are explored (see
Sections 7.2.2.4, 7.2.2.5 and 7.2.3.1). This is explained in the next example, but before
that, we explain the outcome model of the comparison (Trace models Section 5.7),
which is used throughout this case study.

A consumer can view the result of each matching process; thus there are three trace
models which can be viewed by a consumer. This trace model consists of items, and
each item has two parameters, i.e. left and right. The left points to a consumer element
model, while the right refers to an element in the provider model. As an MDE concept
model can be transformed to text, and to illustrate a perhaps more human-accessible
representation of the trace model, this model is transformed into an HTML document,
as in Figure 7.10.

We generate simple HTML to represent the trace model, using EGL. This EGL
program (as described in Listing 7.1) generates HTML that displays a table of trace
items in the trace model. It generates the element name of left and right parameters
for each item in a table row. Thus we can view the matched elements of both the
provider and consumer models. The operation printItem is invoked to print details of
each element in the cloud SLA.

212

7. EVALUATION

Listing 7.1: EGL program to generate an html document for the trace model

1 [%

2 var matched : matchTrace!Trace = matchTrace!Trace.allInstances.at

(0);

3 %]

4

5 <body>

6 <h1> Name-Based units and Approx. prices Matching Results </h>

7 <table cellspacing="0" id="customers" >

8 <tr align="center"><th colspan="2" > Comparison Results</th></

tr>

9 <tr align="center">

10 <th colspan="1" > Consumer requirements </th>

11 <th colspan="1" align="center"> Provider offers </th>

12 </tr>

13 [%for (item in matched.items){%]

14 <tr>

15 <td>[%=printItem(item.left)%]</td> <td>[%=printItem(item.

right) %]</td>

16 </tr>

17 [%}%]

18 </table>

19 </body>

20

21 [%operation printItem(item: Any){

22

23 }

We will use the generated HTML documents in the following examples to describe
the results of different matching logics.

We now provide an example of matching a cloud consumer model (Figure 7.9) with
a provider model (Figure 7.7). Different matching logics are applied. The purpose of
this example is to show the differences in the trace models using different logics. The
matching examples are:

• Matching models using Optimal matching.

• Matching models using Approximate matching.

213

7. EVALUATION

• Matching models using Name-Based matching.

• Matching models using Name-Based matching for all elements except prices,
for which we use Approximate matching.

• Matching models using Approximate matching for all elements except prices,
for which we use Name-Based matching.

Each matching logic and its results are discussed in different sections. In all exam-
ples, the input model for the matching process is a model defined based on consumer
requirements, as illustrated in Figure 7.9. We also make use of a provider model (A),
as illustrated in Figures 7.7 and 7.8, and the output model is a trace model, which is
presented as an html document. In this example, elements of interests that will be
matched by the logics are as follows:

• CloudStorage: this means a match is found for the storage characteristics (i.e.
cloud storage and its size).

• CompUnitSpec: this means a match is found for VM characteristics (i.e. CPU,
Memory storage and OS).

• DataTransferType: this means a match is found for transfer type characteristics.

• CloudUnit: this means a match is found for cloud units (e.g. cloud storage, VM
and transfer type) and their price.

• Computing: this means a match is found for the computing service defined in
models.

• Storage: this means a match is found for the storage service defined in models.

• QoSProperty: this means a match is found for the QoS parameters, which belong
to the same QoS concept and service.

214

7. EVALUATION

7.2.2.1 Matching models using the optimal matching logic

Section 5.4.5 discussed the exact matching logic. In this matching algorithm, we match
all attributes in each element, matching the elements of SingleValue and RangedValue,
of the consumer model with all of the attributes in the provider model. These elements
define the values of the cloud QoS properties, the cloud unit characteristics and the
prices. The result of this matching is illustrated in Figure 7.10. The figure shows the
trace model of the optimal matching between the consumer requirements (Figure 7.9)
and provider offer (Figure 7.1). This type of matching returns better values (see Sec-
tion 5.4.5).

The figure shows that two models define the same services (e.g. computing and
storage), the same concept (e.g. Availability) and the two QoSProperty elements.
There is only one match on the Computing Unit (i.e. VM1) and no match for VM2.
There is more than one match for Cloud Storage (i.e. four matches for the cloud stor-
age), DataTransfer elements of type OutBound and CloudUnit. Figure 7.10 shows that
(CLoudUnit) matches are found for storage and networking (i.e. OutBound) but not
computing unit. This match is a result of matching the cloud unit specifications and
the price. For the cloud unit of type Storage, there is more than one match, since the
cloud provider provides for the bigger required storage size less prices per GB.

215

7. EVALUATION

Figure 7.10: A trace model of the Optimal matching between consumer model and
provider A model is generated into an HTML document using EGL

216

7. EVALUATION

7.2.2.2 Matching models using approximate matching logic

This match provides an approximation on the elements of type SingleValue, Ranged-

Value and Price, since the previous matching found more than one match for some of
the requirements of the consumer. In this match, an approximate value is defined by
the consumer for each element to define the difference percentage (see Section 5.4.6).
The result of this matching process is shown in Figure 7.14.

The main differences between these results and the results in Figure 7.10, are: a
matching for two computing units (i.e. VM1 and VM2), networking units (i.e. Data-
Transfer outbound), CloudUnit and redundant matches were found. The two comput-
ing units, storage unit and networking unit were matched but the prices of these units
did not match: thus, there was no match for the CloudUnit elements. If the approx-
imation value (i.e. 10%) for the price is increased, this matching logic may return
matching elements of type CloudUnit.

217

7. EVALUATION

Figure 7.11: A trace model of the Approximate matching between the consumer model
and provider A model is generated into an HTML document using EGL

7.2.2.3 Matching models using name-based matching logic

The last matching methods (i.e. Optimal and Approximate) did not find all of the
required cloud units (see Section 7.2.2.1 and 7.2.2.2). Therefore another matching
method is performed. This example provides name-based matching between the ele-
ments of type SingleValue and RangedValue and Price. This matching logic returns
all possible matching combinations, e.g. VM is matched in the provider model with
all VMs that define the same OS. The results are illustrated in Figure 7.12 which, in
this case, do not help a consumer to meet their requirements. Thus we created two
more examples to show other options for matching cloud SLAs using MDE principles.
These examples are discussed in sections 7.2.2.4 and 7.2.2.5. Section 7.2.3.1 provides

218

7. EVALUATION

an ETL process to eliminate the redundant elements.

Figure 7.12: A trace model of the Name-Based matching between a consumer model
and provider A model is transformed into an HTML document using EGL

7.2.2.4 Matching models using name-based matching logic, to match cloud units
and approximation to match prices

A constraint is added to the price value where an approximate matching is performed.
As we noticed in Section 7.2.2.3 there were redundant elements in the outcome of the

219

7. EVALUATION

name-based matching; thus this constraint is added. This is an example of performing
similar matching on the elements of type CloudUnitSpec and performing approxima-
tion on the price value of type Price. One CloudUnit element of type computing was
found in this example, as matching elements between a consumer and cloud provider.
For the other types of the CloudUnit elements (i.e. Storage and Networking) redundant
matched elements were found. This is shown in Figure 7.14. The results depend on
the approximation values and the input models.

Figure 7.13: A trace model matching similar cloud units and approximate prices is
transformed into HTML document using EGL

220

7. EVALUATION

7.2.2.5 Matching models using approximation, to match cloud units character-
istics and name-based matching logic to match prices

From the previous matching, a number of matches were found for requirements (e.g.
VM1). This matching adds constraints to the cloud elements of type CloudUnitSpec

with an approximation. This section provides a matching algorithm that finds cloud
units characteristics with a percentage difference in their values, while it also matches
similar prices (i.e. on demand prices or subscription prices). From the results, illus-
trated in Figure 7.14, using similar matching for Price maks a difference in the results
for the CloudUnits, which returns one matching element for each required cloud unit,
compared to the output model illustrated in Figure 7.14.

Figure 7.14: A trace model matching approximate cloud units and similar prices is
transformed into an HTML document using EGL

221

7. EVALUATION

7.2.2.6 Matching cloud providers’ SLAs

A cloud brokerage service provides a matching process to match cloud providers’ SLA
offers. This can help providers to understand how they differ from the competition.
Some cloud providers, indeed, provide a comparison of their service offers with other
providers offers (i.e. Amazon AWS). It can be used also when a provider compares
two different versions of their SLAs. The matching process is the same as the matching
discussed in the previous example. However, the matching is performed between two
cloud offers.

In this case study, Provider A, for competition reasons, wants to compare its SLA
and cloud units with those of Providers B and C. Provider A inspects which elements
provide better values in the other two providers. The trace models provides details of
the matching points with each provider. However, we provide a simple HTML figure
to show the matching points. Figure 7.15 illustrates the optimal matching outcomes
between Provider A and Providers B and C. This figure shows that a table of Provider
A is compared with providers B and C. In this figure, matched elements are presented
as text in red.

222

7. EVALUATION

Figure 7.15: Example of matching providers offers SLA

223

7. EVALUATION

7.2.3 Analysing the outcome models of the comparison

In this section, we present how the proposed approach can help to support consumers
in making decisions. A number of outcome models - three in our example are available
for the consumer to analyse. They can analyse the outcome of matching each provider.
As explained in Section 7.2.2, the trace model can be transformed into another model
or documents. As we suggested in Section 6.6, a decision matrix can be formed to help
consumers. This matrix is used to calculate the score of the alternatives and select the
one with the highest score (see Section 6.6). This section describes the different model
management tasks that were performed to generate this matrix. First, we have noticed
from examples in the last section that there might be missing or redundant values (e.g.
when VM1 from the consumer model is matched with more than VMs in a provider
model). This is discussed briefly in the following section.

7.2.3.1 Eliminate the redundancy in the outcome model

Based on the results of matching process, some of them (i.e. optimal, name-base
matching) returned repeated matches, e.g. VM1 from the consumer model, is matched
with more than one server in the cloud provider model. By using a model management
task, e.g. transformation to, for example, remove the redundancy, we generated the
following ETL code to eliminate the repeated elements in the outcome (trace) model.
In this example, we select one of the repeated elements (i.e. the one with the nearest
values) and discard all of the others. The Listing 7.2 is an example of this operation.

Listing 7.2: ETL program to eliminate repeated matching

1 pre{

2 var nMatched : NewMatched!TraceItem ;

3 var matchedModel : Matched!Trace = Matched!Trace.allInstances.at

(0);

4 var rightSet : Set;

5 var leftSet : Set;

6

7 }

8 rule transformTrace

9 transform m : Matched!Trace

10 to nm: NewMatched!Trace{

224

7. EVALUATION

11 var nearestItem : Any;

12 for (e in m.items){

13 nearestItem = e;

14

15 if (leftSet.size > 0){

16 for(item in m.items.select(n | n.left = e.left)){

17 if(item.right <> nearestItem.right){

18 if (not classSet.includes(e.left.EClass.name)){

19 if (checkNearest(e,item.right,nearestItem.right) = "nearest"

)

20 nearestItem = nearestItem;

21 else nearestItem = item;

22 }

23 }

24 }

25 if (not leftSet.includes(e.left))

26 nm.items.add(nearestItem.equivalent());

27 else if (leftSet.includes(e.left)){

28 var changedItem : Any;

29 changedItem = nm.items.selectOne(n | n.left = e.left);

30 nm.items.remove(changedItem);

31 nm.items.add(nearestItem.equivalent());

32 }

33 }

34 else nm.items.add(nearestItem.equivalent());

35 leftSet.add(e.left);

36 }

37 }

38 @lazy

39 rule transformTraceItem

40 transform m : Matched!TraceItem

41 to nm : NewMatched!TraceItem{

42 nm.left = m.left;

43 nm.right = m.right;

44 }

45 /* operation checkNearest */

46

This matching logic is applied to the model illustrated in Figure 7.12. Figure 7.16
shows the name-based matching trace model after applying this ETL task. It is clear

225

7. EVALUATION

from this figure that there is, at most, one matched element for each required element,
and any redundancy in Figure 7.12 was eliminated.

226

7. EVALUATION

Figure 7.16: A trace model of the Name-Based matching between a consumer model
and provider A’s model, after eliminating redundant elements, is generated into an html
document using SLA.

227

7. EVALUATION

7.2.3.2 Weighting the requirements

After processing the outcome models, it is time to produce a matrix for the consumer.
There are several steps for producing a matrix. First, a weight model is produced,
as described in Listing 7.3. This weight model is constructed based on a consumer’s
requirements. The consumer provides weights to their preferable elements. Then, a
model is created to assign weight values to the model elements of the consumer SLA
models. In this Listing, we assign weights to the elements of type: QoSProperty, om-

pUnitSpec, CloudUnit, Price, StorageSpec, SLO and NetWorkUnit in the consumer
model. The output model of processing this listing is illustrated in Figure 7.17. We
can see that a number of cloud SLA model elements are assigned with a weight value.
These elements and weights are used to form the matrix, which is described in Sec-
tion 7.2.3.4. The consumer requires the expected cost to be included in this decision
matrix. The cost is discussed in the next section (7.2.3.3).

Listing 7.3: EOL program to eliminate repeated matching

1 var cost : Cost!Allunits = Cost!Allunits.allInstances.at(0);

2 var m : Sequence := Req.allInstances;

3 var weight : new weight!Weight;

4 var weightValue : Real;

5 var e : Any;

6 for (e in m){

7 if (e.isKindOf(Req!SLO))

8 weight.items.add(createNewItem(e.EClass.name,e,0.6)) ;

9 else if (e.isKindOf(Req!QoSProperty))

10 weight.items.add(createNewItem(e.EClass.name,e,0.9)) ;

11 else if (e.isKindOf(Req!CompUnitSpec))

12 weight.items.add(createNewItem(e.EClass.name,e,0.6)) ;

13 else if (e.isKindOf(Req!CloudUnit))

14 weight.items.add(createNewItem(e.EClass.name,e,0.7)) ;

15 else if (e.isKindOf(Req!Price))

16 weight.items.add(createNewItem(e.EClass.name,e,0.8)) ;

17 else if (e.isKindOf(Req!StorageSpec))

18 weight.items.add(createNewItem(e.EClass.name,e,0.6)) ;

19 else if (e.isKindOf(Req!NetWorkUnit))

20 weight.items.add(createNewItem(e.EClass.name,e,0.6)) ;

21 }

228

7. EVALUATION

22 weight.items.add(createNewItem("Cost",cost,0.8));

23 operation createNewItem(name: Any, itemRef: Any, weightValue:

Real): Any{

24 var item : new weight!WeightedItem;

25 item.name = name;

26 item.weight = weightValue;

27 item.itemRef = itemRef;

28 return item;

29 }

Figure 7.17: Weighted elements in a weight model SLA

7.2.3.3 Cost Model

As described in Section 7.2.1 (Figure 7.9), the consumer required two VMs: a storage
and data transfer to and from the cloud. There were matches found between consumer
VMs and the VMs in the provider models. The storage unit was found in two of
the providers’ models but none of those providers matched with data transfer “to the
cloud”. The cost is calculated against the matched units only. VM cost is calculated
based on the full utilisation of a month period. These VMs are usually priced per
hour. Cloud storage and data transfer costs are calculated based on the size required
during a month period. The storage prices provided are per GB. The total cost of

229

7. EVALUATION

consumer requirements is based on the prices provided by Provider A, as illustrated in
Figure 7.18. The abstract syntax of this model is described in Section 6.4.

Figure 7.18: A cost model for matching cloud units of provider ASLA

7.2.3.4 Decision Matrix

There are different multi-criteria decision approaches [93, 145] to selecting cloud
provider offers. This work provides the outcome models as an MCDM matrix. The ma-
trix is constructed from the outcome models of the matching process (i.e. trace models
produced from Sections 7.2.2 and 7.2.3.1), the weighted model (Section 7.2.3.2) and
the cost model (Section 7.2.3.3). Figure 7.19 illustrates a matrix model. As described
in the figure, a row in the matrix presents the criteria, while the columns present the
cloud provider SLA elements. This can be presented to the consumer, for example, as
a HTML document or may take other forms. In this figure, as we can see, there are
elements in the consumer model that did not match any of those in the providers’ mod-
els. This matrix provides information for the consumer about their preferable elements
(elements with weights). It is then up to the consumer to decide how to proceed with
such information, e.g. to choose one of the MCDM methods [58, 152] to normalise
and calculate the values for appropriate offers.

230

7. EVALUATION

Figure 7.19: Comparison results in the matrix model form SLA

One of the most common and simplest methods is the weighted sum [152]. This
method has been used to select web services [87, 205]. The used method is explained
as follows:

If there are m provider services with n criteria, the service with the maximum score
is selected. The score is calculated as shown in equation 7.1 [177].

P (score) = maxi

n∑
j=1

aij ∗ wj for i = 1, 2, 3m (7.1)

where: P(score) is the alternative (provider SLA), n is the number of criteria, m is
the number of the providers SLAs, wj represents the weight value for the j-th criterion
and aij is scaled value for the i-th provider SLA and j-th criterion. The aij value is

231

7. EVALUATION

normalized from equation 7.2 [39, 205].

aij =



cij − cmin
j

cmax
j − cmin

j

for criteria more is better and cmax
j − cmin

j 6= 0

cmax
j − cij

cmax
j − cmin

j

for criteria more is worse and cmax
j − cmin

j 6= 0

1 if cmax
j − cmin

j = 0

(7.2)

The calculations of this MCDM using weighted summation as explained in equa-
tions 7.1, 7.2 and the results displayed in Figure 7.19 return values of 0.353, 0.536
and 0.798 for providers A, B, and C respectively. As described in equation 7.1 the best
offer has the maximum score. The score of provider C > provider B > provider A,
thus provider C has the best offer.

As was discussed in Section 2.4.1.1 different MCDM methods were discussed in
the literature such as AHP and TOPSIS that may produce different results. This is not
our main concern in this study: however, including different methods as a choice for a
consumer might be considered in the future as a potential improvement of this work.

7.2.3.5 Discussing the Outcome of Different Matching Algorithms

This section discusses the outcome models explained in Sections 7.2.2.1 and 7.2.2.3-
7.2.2.5. Figure 7.20 illustrates matching the consumer model with provider A using
different matching algorithms (i.e. name-based, optimal, approximate-nameBased and
nameBased-approximate). The QoSProperty elements in the outcome model of the
different matching algorithms were the same. From the figure, we can see that the
differences in the results of the matching algorithms were in the CloudUnits and Com-

puting Unit elements. For example, three matching algorithms return similar outcomes
when matching Computing Unit VM1, which are: medium and large, while optimal
matching returns xlarge.

232

7. EVALUATION

Fi
gu

re
7.

20
:

M
at

ch
in

g
re

su
lts

of
m

at
ch

in
g

co
ns

um
er

re
qu

ir
em

en
ts

w
ith

pr
ov

id
er

’A
SL

A
us

in
g

di
ff

er
en

tm
at

ch
in

g
al

go
ri

th
m

s

233

7. EVALUATION

Also, optimal matching did not return any matched element with Computing Unit

VM2 and two CloudUnits. This is because these elements contain more than one
attributes (e.g. computing unit attributes are: cpu, RAM and storage), which are in-
volved in the matching algorithm. For example, in the optimal matching, Computing

Unit VM1 is matched with the xlarge one, but no match was found for CloudUnit VM1
because the price (which is an attribute of the CloudUnit element) did not match.

We cannot objectively decide which algorithm is better in the case of matching
CloudUnit, this depends on the requester’s decision about which unit to choose: the
one with the nearest price value or nearest specifications, e.g. CloudUnit VM1 matched
with small and large for the name-based and approximate-nameBased algorithm.

In this thesis, we do not study the differences between these matching algorithms,
but we provide them as available options for consumers and providers. In general, op-
timal and approximate matching algorithms are more specific than name-based match-
ing; thus, the possibility that name-based matching returns matches between two el-
ements is higher than the other two matching approaches. For consumers who are
uncertain (or unspecific) about their required values name-based matching might be
appropriate. For consumers with hard requirements, e.g. prices that should not exceed
specific values, optimal matching may be used. For consumers with approximate val-
ues approximate matching might be more appropriate. However, when we compare
CloudUnits elements, the results do not show what we expected from optimal and ap-
proximate matching. For example, the optimal matching of the CloudUnits of type
Cloud Storage type returns higher size specifications than required, because the price
per GB is the same as required. This is because the cloud providers provide cheaper
prices per GB for bigger storage capacity. In this case, it might be more appropriate to
calculate and compare the cost of the total required storage than comparing prices per
GB. In this example, name-based and approximate-nameBased matching is better than
the other two matching techniques, because they return the cloud unit that matches the
required size and this reflects the real cost of this storage.

7.3 Evaluation of the contributions

In this section, we examine the contributions of this thesis based on the case study.

234

7. EVALUATION

7.3.1 Requirements of semi-automatic cloud computing SLAs

In Chapter 3, we used requirement engineering to analyse the semi-automatic compar-
ison of cloud SLAs. A number of case studies were defined to determine requirements
to semi-automate the comparison of cloud SLAs. The contribution of this chapter is
such that a set of requirements based on the MDE principles were provided. To semi-
automate the comparison, an approach of metamodel, models, model comparison and
model transformation were proposed. Other SLA specifications were developed, but
not specified for cloud SLAs. Many of the electronic SLAs were developed to nego-
tiate and monitor QoS parameters, while this study proposes an SLA specification for
comparison as a pre-step to negotiation and monitoring. One of the first requirements
was to develop a cloud SLA metamodel.

7.3.2 Cloud SLA Metamodelling language

In Chapter 4, a metamodel for cloud SLA was proposed. The purpose of this meta-
model is to enable the semi-automation of the cloud SLA comparison. The first version
of developing this metamodel was inspired by the existing SLA language, i.e. WSLA
[102]. This metamodel was constructed iteratively and incrementally. Different pre-
defined cloud provider SLAs were used as example models (e.g. Amazon EC2 SLAs
[3], RackSpace [21] and GoGrid [16]).

We used the metamodel to produce example models and used these models in small
matching process examples. These matching processes were developed by using Ep-
silon ECL. In this proof of concept study, and by experimenting with the cloud SLA
from different pre-defined cloud provider SLAs and QoS concepts as a main compo-
nent to the SLA, we determined that this constructed SLA fulfils its requirements. The
models that are defined by this SLA are well-defined as they conform to a metamodel.

The constructed models of the public cloud providers pre-defined SLAs are illus-
trated in Section 7.2.1. The benefit of the cloud SLA is such that different offers can
be produced with similar structures and concepts. It also includes the unit specifica-
tion and prices, which is usually requested by the consumer. Another benefit of this
metamodel is that both the consumer and provider can define their models by using its
abstract syntax. It provides a communication language between them. The contribu-
tion of this SLA is the specification of the cloud QoS concepts, such as Availability,

235

7. EVALUATION

where the QoS parameters can be defined within these concepts. Providers can define
parameters using their own terminologies, but they have to be specific about to which
concept they belong. This cloud SLA is constructed to define IaaS clouds; it specifies
only the basic IaaS cloud services. As a result, we take the abstract view that an IaaS
cloud service is composed of API, hardware and networking [117].

7.3.3 Evaluation of the comparison logics

As in the examples shown in Section 7.2.2, there are different possibilities available
for defining a match between two models. The suitability and appropriateness of a
particular logic depends on the user requirements, which are implemented using a set
of ECL rules and by using a particular set of input models.

For the cloud computing units, the providers provide a set of units with differ-
ent characteristics that are priced differently, while the QoS property provided by the
providers is less than the cloud units. The cloud computing providers provide a set of
units with different characteristics which are priced differently, and the number of QoS
parameters provided by the providers is less than the number of cloud units. These two
concepts may need different matching logics. We ran a number of examples and test
the outcome from the three matching logics. These experiments included the cloud
SLAs. We ran an example comparing different cloud offers. The results of each com-
parison were analysed. By experimenting with the three matching logics on a number
of cloud SLA concepts, we determined that this matching process fulfils its require-
ments.

Further studies and examples are needed to determine the appropriate matching
combination that may return reasonable output models, which can help a consumer to
make decisions. In the matching logics, we match the concepts of the cloud SLAs do-
main and also match the values of these concepts. We defined three matching logics,
based on matching values; thus we had exact and approximate matches, while sim-
ilar logic matches only the concepts of the cloud SLAs. The matching process was
developed using the ECL.

236

7. EVALUATION

7.3.4 Evaluation of the Supporting Decisions approach

In Chapter 6, we defined a number of small metamodels (i.e. weight, cost and matrix
models) and a set of model management tasks. The purpose of these small metamodels
is to define cloud consumer requirements and the expected cost, where they are created
separately from the cloud SLAs. A number of tasks were created to manage the out-
come models of the matching processes. These outcome models are transformed into
a matrix model. We provide, as a proof of concept, that a consumer can analyse the
outcome of the matching process. This analysis step is proposed based on the results
of a matching process. A matching process finds more than one match for a specific re-
quirement or no matches are found. In the case where no matches are found, a different
matching logic can be processed while, in the case of repeated matches, a consumer
decides which entry can be removed. These processes are a pre-step to constructing a
matrix model.

Studies such as [83, 182], suggested an MCDM approach in such a case, when a
selection has to be made between alternatives, based on multiple criteria. This chapter
provides the cloud consumer with the matching process as a decision matrix. This
section provides the outcome of the processing model in the form of a decision matrix
and a weighted sum as the MCDM method for choosing a cloud SLA offer.

A number of experiments were performed to test the outcome models of each pro-
cess (i.e. weight model, trace model after elimination, cost model and matrix model)
and use those outcomes as input models in the other process. We determined, after
several experiments, the processes of assigning weight (Section 6.3), creating and cal-
culating a cost model (Section 6.4) and creating a matrix model (Section 6.3.1) to fulfil
the requirements.

7.4 Evaluation of the thesis contributions

The contributions of this thesis will now be assessed in terms of the distinct character-
istics which were identified in Section 1.5.

1. Modelling cloud SLA: The proposed approach provides an abstract syntax for
defining the cloud SLA models, taking into account the specification of their
characteristics, such as service type, QoS concepts and cloud units (Section 4.3).

237

7. EVALUATION

This abstract syntax can be used to define consumer and provider models. Cloud
providers with different cloud SLA structure models were produced using the
abstract syntax. Therefore, we conclude that the proposed approach satisfies
modelling cloud SLA.

2. Comparison process: The proposed approach provides a comparison process
which compares a cloud SLA to a number of cloud provider SLAs. Furthermore,
different matching logics were provided which are: exact, approximate and sim-
ilar matching (Section 5.4). Moreover, different cloud SLA concepts can use
different matching logics to find a match with a consumer’s requirements.

3. Comparing cloud providers: The comparison process was constructed for model
comparisons, i.e. cloud consumer models compared with cloud provider mod-
els. The constructed metamodel, as described in Section 4.3, is used to define
both cloud providers and consumers SLAs. Thus the comparison process pro-
vides a comparison for matching providers SLAs when they conform to the same
metamodel of consumer SLAs.

4. Supporting decisions: The proposed approach provides a number of model
management tasks to analyse and transform the models involved in the com-
parison process. It provides a model for consumer preferences to assign weight
values. It also calculates the expected cost for each provider and transforms all
these models to one model (i.e. matrix model). This matrix includes information
about the matched services, consumer preferences and the expected cost. To this
end, a consumer can then decide the approach of processing the MCDM.

5. Semi-automation: This approach provides a semi-automatic comparison and
selection of cloud SLAs. This is achieved by the matching process and the pro-
vision of the MCDM matrix (by using model management tasks, i.e. model
comparison and transformation).

7.5 Summary

In this chapter, we provided a case study to evaluate the contribution of this thesis.
The case study shows the feasibility of the proof-of-concept approach that we have de-

238

7. EVALUATION

fined, that can be used to address the hypothesis. First, we implemented our proposed
metamodel to define a number of pre-defined cloud provider SLAs. This metamodel
was implemented to define the consumer requirements. Then, a process of matching
and selecting cloud SLA among provider SLAs was provided. The evaluation out-
lines the feasibility of applying MDE principles, such as metamodelling and model
management tasks, in the process of comparing and selecting cloud SLAs.

239

Chapter 8

Conclusions and Future Work

8.1 Introduction

In this thesis, we presented a semi-automatic MDE approach for comparing and se-
lecting cloud computing SLAs. An SLA metamodel as proposed for cloud providers
offers and consumer requirements. A process composed of two phases for the auto-
mated comparison of SLAs was proposed. The first phase is a matching process for
matching SLAs one by one. The second process is supporting the consumers’ deci-
sion.s The input of the first phase are is cloud SLA models. This SLA conforms to the
proposed metamodel. The SLA model structure consists of the party, service, obliga-
tion and cloud resource units. The SLA defines the QoS terminology as well as the
resource units’ terminology. The output of the second phase is the MCDM model,
where we applied an MCDM approach to select a cloud SLA offer.

This research aimed to investigate the hypothesis described in section 1.5, specifi-
cally:

Can MDE principles and tools support the precise modelling of cloud computing

SLAs in such a way that cloud stakeholders can define their offers and demands? In

addition, can the MDE principles and tools enable a semi-automate comparison pro-

cess for cloud computing SLAs, in order to help cloud stakeholders to make better

decisions about the appropriateness of the offerings from different cloud providers?

The hypothesis detailed above is investigated by defining the research objectives
presented in Section 1.6.

240

8. CONCLUSIONS AND FUTURE WORK

1. To provide mechanisms for modelling cloud SLAs, based on MDE principles,
techniques and tools (see Chapter 4).

2. To identify and describe precisely different scenarios for comparing cloud SLAs
(see Chapter 5).

3. To provide mechanisms for automatically or semi-automatically comparing cloud
SLAs, based on MDE principles, techniques and tools (see Chapters 5 and 6).

4. To propose mechanisms for presenting the results of comparing cloud SLAs in
machine processable forms (see Sections 5.7 and 6.6).

5. To evaluate the above mechanisms via examples inspired by real SLAs from
current cloud providers (see Chapter 7).

The following sections summarise the contributions of this research regarding the
thesis hypothesis and research objective. Then, the limitations of the proposed ap-
proach and future work are discussed in the following sections.

8.2 Contribution

The contributions of the thesis are summarized in this section.

8.2.1 Cloud SLA Metamodel

The first key contribution of this thesis is a language for cloud SLAs, which is pre-
sented in Chapter 4. We observed in the literature that there is no standardised cloud
SLA language for cloud computing, and public cloud providers define their SLAs us-
ing different terminologies, which makes it difficult for consumers to systematically
compare and select between the public cloud SLAs.

The cloud SLA language we present is a metamodel (consisting of abstract syntax
and well-formedness constraints) for defining cloud SLAs, specifically for IaaS clouds.
The purpose of this abstract syntax is to support the construction of well-defined cloud
SLAs models. The abstract syntax includes specifications of QoS concepts (which

241

8. CONCLUSIONS AND FUTURE WORK

define a number of QoS parameters, specifications of the obligation terms (i.e. SLO
and credits) and cloud resource units. Each cloud unit defines the characteristics of the
unit and its price.

The abstract syntax allows both cloud providers and consumers to define a well-
structured cloud SLA for use in systematic comparison and selection. This SLA can
be then be used as a starting point for cloud negotiations; in particular, the metamodel
makes it possible to define different cloud SLA models, which can then be compared
semi-automatically.

8.2.2 Comparison Process

One of our research objectives was to semi-automate the comparison process for cloud
SLAs. In Chapter 5, we presented such a process. This comparison process includes
a matching logic that can be applied to two cloud SLAs. The matching logic is im-
plemented using a model comparison language (ECL). The comparison process can
be used to match the concepts of SLA (i.e. matching model elements and properties)
as well as matching the values of the SLA concepts. Different matching algorithms
were provided, which can be used to support different comparison scenarios and sat-
isfy different customer requirements. One of these algorithms is arguably too restric-
tive (optimal match), while another is too flexible (name-based match); however, these
logics are needed in different scenarios, because clouds are differently defined and
specify various QoS and resource units, as well as defining their structures differently.
By providing different algorithms, we make it possible for the consumers the possi-
bility to find matches between arbitrary selections of model elements that define their
cloud SLA. By using this matching logic, we achieve semi-automation for cloud SLA
matching. This matching process matches SLAs one by one, which facilitates, for the
providers, the analysis of the similarity and differences between two SLAs.

8.2.3 Methodology for selecting between a set of cloud SLAs

One of our objectives is to help cloud consumers to select a cloud provider, based on
cloud SLA comparison. In Chapter 6, we present a methodology to semi-automate the
decision-making aspect of this selection process.

242

8. CONCLUSIONS AND FUTURE WORK

This selection process provides a weighting model that allows a cloud consumer to
add weight values for the required elements in the cloud SLA model. The weighting
model allows the customisation of the comparison process, as it enables a consumer to
emphasise those attributes/values that are most important to them. The process make
it possible to define a cost model, which can be used as the key criterion for making
decisions about which cloud SLAs to select, based on the results of the comparison
process. Overall, the contribution of these two models is that they define consumer-
specific requirements in models that are separated from the cloud SLA metamodel.
This allows us to define one metamodel for consumers and providers, whilst still cap-
turing separate consumer-specific requirements in a model. This helped us simplify the
matching process, where the model comparison was constructed based on comparing
models that conform to the same metamodel, while still taking into account informa-
tion from the consumer, which is necessary to tailor the comparison results to his/her
own requirements.

The methodology provides a set of model management tasks to create the models
(cloud SLA, weighting model, cost model) and also to analyse the results of the match-
ing process. This methodology does not provide a selection of what is the best offer
but, rather, transforms all of the information – i.e. the outcome models of the match-
ing process, the weighting model and the cost model – into a single model, a decision

matrix. The decision matrix can then be used by consumers to choose the offer that
best matches their requirements. In a sense, our methodology reduces and restricts the
search space of cloud SLAs for consumers.

The proposed metamodel is composed of a set of metamodels, e.g. cloud resource
units. The cloud resource unit models are defined separately from the cloud SLAs,
which can refer to these units. This makes the cloud units modular in nature, and so
applicable to other process such as resources provisioning and resource monitoring.

8.2.4 Evaluation Results

Chapter 7 presents an evaluation of the thesis’ results, including the thesis’ hypothesis.
We evaluated the expressiveness of the SLA metamodel in a largely test-based way, by
showing how it supports the specification of different pre-defined cloud SLA models
from different providers. These models were then used in the examples of the different

243

8. CONCLUSIONS AND FUTURE WORK

comparison and matching processes. Then examples of creating weighting, cost and
finally matrix models were provided. In Section 7.4, we assessed the feasibility and
benefits of the contributions of this thesis.

8.3 Limitations of the cloud SLAs comparison and se-

lection approach

8.3.1 Lack of support for SLA negotiation and monitoring

The purpose of the proposed metamodel is to support consumers in selecting a cloud
offer based on cloud providers’ predefined SLAs, which can be described as a pre-
negotiation step. The specifications of this metamodel did not mention any agreement
terms section as, for example, in a WS-Agreement, which defines the parameters under
negotiation. Also, this SLA does not specify the service interface or service objective,
which makes it possible to monitor the parameters of the agreement.

8.3.2 Lack of support for non-IaaS cloud services

The proposed metamodel focuses on IaaS cloud computing. It specifies IaaS cloud
services: Networking, Storage and Computing. Other types of cloud – PaaS and SaaS
– may define different service types. Furthermore, the cloud units of such clouds are
different to the IaaS cloud units. This cloud SLA metamodel also provides specifica-
tions regarding the basic services, while these services can have more components. For
example, the computing service is composed of API, hardware and networking.

8.3.3 Lack of support for cloud SLAs not defined using the pro-

posed abstract syntax

This approach supports matching cloud SLAs through model comparison tasks. How-
ever, the pre-defined cloud SLA offers are structured differently using different termi-

244

8. CONCLUSIONS AND FUTURE WORK

nology. This approach does not consider SLAs defined using other languages. The
approach should facilitate transformation from different cloud offers, e.g. as Amazon
EC2 and S3 models to our proposed models.

8.4 Future work

8.4.1 Support for the cloud SLA management life cycle

The proposed approach defines cloud SLA models, for capturing QoS parameters and
cloud resource units, which are used to help consumers support their decisions by
automating the comparison and selection of a cloud offer, but not the other SLA man-
agement process such as negotiation and monitoring. Therefore, automating the ne-
gotiation and monitoring of the cloud SLA management process is an interesting area
for future work. This can be done, by for example, using MDE techniques to transfer
the cloud SLA to one of the reviewed SLAs in Section 2.4.5, e.g. WS-Agreement or
SLA*.

8.4.2 Support for non-cloud SLAs models

The proposed approach defines the models to be involved in the comparison process.
However, cloud providers define their cloud SLAs using different models (e.g. differ-
ent terminologies, structures and textual descriptions (documents)). Within the textual
descriptions, it is difficult to identify the cloud SLA concepts precisely. Therefore, in
order to automate the construction of the cloud SLA models, in this thesis, the cloud
pre-defined SLA models were implicitly transformed into instances of the proposed
metamodel. One possible approach is to provide explicit transformation rules from
pre-defined SLAs into SLA models that conform to the proposed metamodel. This
transformation would necessarily provide general rules for critical cases, and there-
after additional rules would be needed to handle unusual or unexpected SLA concepts
[67].

245

8. CONCLUSIONS AND FUTURE WORK

8.4.3 Cloud SLAs Matching Patterns

The differences between cloud SLAs raises issues in the matching process. The opti-
mal matching logic was too restrictive to find a match between certain concepts (e.g.
Computing units), while the name-based matching logic was too relaxed (it matched
all of the requirements with all of the offered computing units). Further analysis might
result in the identification of patterns of different matching logics that are specific to
the concept of cloud SLAs. This will provide tailored rules that match each concept in
cloud SLAs.

8.4.4 Large-scale Experiments

We have conducted small-scale proof-of-concept case studies in this thesis, to demon-
strate the key concepts and feasibility of semi-automatically comparing and selecting
cloud SLAs. Large-scale experiments need to be carried out to provide quantitative
data on the wider feasibility of the proof-of-concept, particularly in terms of its accu-
racy (e.g., in terms of false positives or false negatives), and scalability.

246

Acronyms

Acronyms

AHP Analytical Hierarchical Process.

API Application Programming Interface.

AWS Amazon Web Services.

CRM Customer Relationship Management.

ECL Epsilon Comparison Language.

EGL Epsilon Generation Language.

EOL Epsilon Object Language.

ETL Epsilon Transformation Language.

EVL Epsilon Validation Language.

HRM Human Resource Management.

IaaS Infrastructure as a Service.

ITIL IT Infrastructure Library.

KPI Key Performance Indicator.

M2M Model-to-Model.

M2T Model-to-Text.

MCDM Multi-Criteria Decision Making.

MDE Model Driven Engineering.

247

Acronyms

MTBF Mean Time Between Failure.

MTTR Mean Time TO Repair.

PaaS Platform as a Service.

QoS Quality of Service.

SaaS Software as a Service.

SLA Service Level Agreement.

SLO Service Level Objective.

T2M Text-to-Model.

VM Virtual Machine.

WSLA Web Service Level Agreement.

XML Extensible Markup Language.

248

References

[1] Release: Amazon EC2: on 2006-11-30, . URL http://aws.amazon.

com/releasenotes/Amazon-EC2/532. 32, 33

[2] Amazon CloudWatch, . URL http://aws.amazon.com/

cloudwatch/. 26

[3] Amazon Elastic Compute Cloud (Amazon EC2), . URL http://aws.

amazon.com/ec2/. 26, 32, 33, 58, 88, 125, 190, 235

[4] Amazon EC2 Service Level Agreement, . URL http://aws.amazon.

com/ec2-sla/. xii, 7, 34, 36, 66, 72, 112, 121, 122, 127

[5] Amazon Simple Storage Service (Amazon S3), . URL http://aws.

amazon.com/s3/. 32, 33, 88

[6] Amazon S3 Service Level Agreement, . URL http://aws.amazon.com/

s3-sla/. 34, 36

[7] Amazon EC2 Instances, . URL http://aws.amazon.com/ec2/

instance-types/. 105, 106, 118

[8] Amazon EC2 Pricing, . URL http://aws.amazon.com/ec2/

pricing/. 94, 106, 110, 118, 119

[9] Eclipse Modeling Framework Project (EMF). URL http://www.

eclipse.org/modeling/emf/. 41

[10] Epsilon, . URL http://www.eclipse.org/epsilon/. 43, 44, 197

249

http://aws.amazon.com/releasenotes/Amazon-EC2/532
http://aws.amazon.com/releasenotes/Amazon-EC2/532
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3-sla/
http://aws.amazon.com/s3-sla/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epsilon/

REFERENCES

[11] The epsilon Book, . URL http://www.eclipse.org/epsilon/doc/

book/. xiv, 42, 44, 45, 46, 48, 156, 159, 179

[12] What is Force.com? URL http://www.salesforce.com/platform/

what/. 30

[13] Google App Engine: Platform as a Service. URL https://developers.

google.com/appengine/. 30

[14] Graphical Modeling Project (GMP). URL http://www.eclipse.org/

modeling/gmp/. 44

[15] GoGrid, . URL http://www.gogrid.com/. 32, 88

[16] GoGrid SLA, . URL http://www.gogrid.com/legal/sla.php. 7,
34, 36, 235

[17] Itil glossary and abbreviations. URL http://www.

itil-officialsite.com/InternationalActivities/

TranslatedGlossaries.aspx. 12

[18] A Multi-Criteria Decision-making Model for an i. 5, 50

[19] OMG’s MetaObject Facility. URL http://www.omg.org/mof/. 41

[20] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
URL http://www.omg.org/spec/QVT/1.1/. 41

[21] RackSpace, . URL http://www.rackspace.com/. 7, 32, 33, 88, 99, 125,
235

[22] RackSpace (UK), . URL http://www.rackspace.co.uk/. 99

[23] Rackspace Service Level Agreement, . URL http://www.rackspace.

com/cloud/legal/sla/. 34, 36

[24] RackSpace cloud files comparison, . URL http://www.rackspace.co.

uk/cloud/files/compare. 75

250

http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://www.salesforce.com/platform/what/
http://www.salesforce.com/platform/what/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.gogrid.com/
http://www.gogrid.com/legal/sla.php
http://www.itil-officialsite.com/InternationalActivities/TranslatedGlossaries.aspx
http://www.itil-officialsite.com/InternationalActivities/TranslatedGlossaries.aspx
http://www.itil-officialsite.com/InternationalActivities/TranslatedGlossaries.aspx
http://www.omg.org/mof/
http://www.omg.org/spec/QVT/1.1/
http://www.rackspace.com/
http://www.rackspace.co.uk/
http://www.rackspace.com/cloud/legal/sla/
http://www.rackspace.com/cloud/legal/sla/
http://www.rackspace.co.uk/cloud/files/compare
http://www.rackspace.co.uk/cloud/files/compare

REFERENCES

[25] Cloud Load Balancers Comparison, . URL http://www.rackspace.co.

uk/cloud/load-balancers/compare. 75

[26] Sla Management Foundations, . URL http://sla-at-soi.eu/

research/focus-areas/sla-management-foundations/. 3, 55,
69

[27] Standard Terms used in SLA SOI, . URL wiki.sla-at-soi.eu. xi, 56,
57

[28] SLA Template, . URL http://www.slatemplate.com/. xi, 14

[29] Unified Modeling Language. URL http://www.uml.org/. 40

[30] Web Service Level Agreements (WSLA) Project. URL http://www.

research.ibm.com/wsla/. 59

[31] What Is Google App Engine:. URL http://code.google.com/

appengine/docs/whatisgoogleappengine.html. 30

[32] Windows Azure SLA. URL http://www.microsoft.com/

windowsazure/sla/. 7, 36

[33] OpenNebula.org Open Source Data Center Virtualization. URL http://

www.eucalyptus.com/. 32

[34] Heroku. URL https://www.heroku.com. 30

[35] OpenNebula.org Open Source Data Center Virtualization. URL http://

opennebula.org/. 32

[36] Toward dynamic and attribute based publication, discovery and selection for
cloud computing. Future Generation Computer Systems, 26(7):947 – 970, 2010.
4

[37] F. Al-Kandari and R.F. Paige. Modelling and Comparing Cloud Computing Ser-
vice Level Agreements. In Proc. 1st International Workshop on Model-Driven

Engineering for High Performance and CLoud computing (MDHPCL). ACM
Press, 2012. xii, xviii, 126, 128

251

http://www.rackspace.co.uk/cloud/load-balancers/compare
http://www.rackspace.co.uk/cloud/load-balancers/compare
http://sla-at-soi.eu/research/focus-areas/sla-management-foundations/
http://sla-at-soi.eu/research/focus-areas/sla-management-foundations/
wiki.sla-at-soi.eu
http://www.slatemplate.com/
http://www.uml.org/
http://www.research.ibm.com/wsla/
http://www.research.ibm.com/wsla/
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.microsoft.com/windowsazure/sla/
http://www.microsoft.com/windowsazure/sla/
http://www.eucalyptus.com/
http://www.eucalyptus.com/
https://www.heroku.com
http://opennebula.org/
http://opennebula.org/

REFERENCES

[38] M. Alhamad, T. Dillon, and E. Chang. Conceptual SLA framework for cloud
computing. In Digital Ecosystems and Technologies (DEST), 2010 4th IEEE

International Conference on, pages 606 –610, april 2010. 4, 7, 27, 54, 55, 63,
88

[39] Jayanath Ananda and Gamini Herath. A critical review of multi-criteria deci-
sion making methods with special reference to forest management and planning.
Ecological Economics, 68(10):2535 – 2548, 2009. ISSN 0921-8009. 232

[40] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement). Global Grid Forum, 31:1–47, 2007. 16, 60, 69

[41] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53:50–58,
April 2010. ISSN 0001-0782. 2, 26, 27

[42] I.Budak Arpinar, Ruoyan Zhang, Boanerges Aleman-Meza, and Angela
Maduko. Ontology-driven web services composition platform. Information

Systems and e-Business Management, 3(2):175–199, 2005. ISSN 1617-9846.
72

[43] Mark L. Badger, Timothy Grance, Robert Patt-Corner, and Jeffrey M. Voas.
Cloud computing synopsis and recommendations. Technical report, National
Institute of Standards and Technology, May 2012. 32

[44] P. Balakrishnan, S.T. Selvi, and G.R. Britto. GSMA based Automated Negotia-
tion Model for Grid Scheduling. In Services Computing, 2008. SCC ’08. IEEE

International Conference on, volume 2, pages 569–570, 2008. 15

[45] P. Balakrishnan, S. Thamarai Selvi, and G. Rajesh Britto. Service Level Agree-
ment Based Grid Scheduling. In Web Services, 2008. ICWS ’08. IEEE Interna-

tional Conference on, pages 203–210, 2008. 15

252

REFERENCES

[46] Z. Balfagih and M.F. Hassan. Quality Model for Web services from Multi-
stakeholders’ Perspective. In Information Management and Engineering, 2009.

ICIME ’09. International Conference on, pages 287–291, 2009. 17, 18

[47] U. Bellur and R. Kulkarni. Improved matchmaking algorithm for semantic web
services based on bipartite graph matching. In Web Services, 2007. ICWS 2007.

IEEE International Conference on, pages 86–93, July 2007. 52, 53

[48] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and
Modeling in the Small. In Uwe Assmann, Mehmet Aksit, and Arend Rensink,
editors, Model Driven Architecture, volume 3599 of Lecture Notes in Computer

Science, pages 33–46. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-
28240-2. 43

[49] Jean Bézivin. On the unification power of models. Software & Systems Model-

ing, 4(2):171–188, 2005. ISSN 1619-1366. 3, 39, 40

[50] Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In
Ralf Lmmel, Joo Saraiva, and Joost Visser, editors, Generative and Transfor-

mational Techniques in Software Engineering, volume 4143 of Lecture Notes

in Computer Science, pages 36–64. Springer Berlin Heidelberg, 2006. ISBN
978-3-540-45778-7. 3

[51] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting model inconsis-
tency through operation-based model construction. In Software Engineering,

2008. ICSE ’08. ACM/IEEE 30th International Conference on, pages 511–520,
2008. 43

[52] Paolo Bocciarelli and Andrea D’Ambrogio. A model-driven method for describ-
ing and predicting the reliability of composite services. Software & Systems

Modeling, 10(2):265–280, 2011. ISSN 1619-1366. 116

[53] Miguel L Bote-Lorenzo, Yannis A Dimitriadis, and Eduardo Gómez-Sánchez.
Grid characteristics and uses: a grid definition. In Grid Computing, pages 291–
298. Springer, 2004. 24

253

REFERENCES

[54] Cédric Brun and Alfonso Pierantonio. Model differences in the eclipse model-
ing framework. UPGRADE, The European Journal for the Informatics Profes-

sional, 9(2):29–34, 2008. 42

[55] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer

Systems, 25(6):599 – 616, 2009. ISSN 0167-739X. 24, 26

[56] Bu-Qing Cao, Bing Li, and Qi-Ming Xia. A Service-Oriented Qos-Assured and
Multi-Agent Cloud Computing Architecture. In MartinGilje Jaatun, Gansen
Zhao, and Chunming Rong, editors, Cloud Computing, volume 5931 of Lecture

Notes in Computer Science, pages 644–649. Springer Berlin Heidelberg, 2009.
ISBN 978-3-642-10664-4. 56

[57] Ed.D. Carl J. Wenning. Percent difference percent error. Illinois State Univer-
sity, Dept of Physics. URL http://www.phy.ilstu.edu/slh/. 165

[58] Prasenjit Chatterjee, Vijay Manikrao Athawale, and Shankar Chakraborty. Ma-
terials selection using complex proportional assessment and evaluation of mixed
data methods. Materials & Design, 32(2):851 – 860, 2011. ISSN 0261-3069.
52, 230

[59] Avraam Chimaris and GeorgeA. Papadopoulos. Implementing QoS Aware
Component-Based Applications. In Robert Meersman and Zahir Tari, edi-
tors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and

ODBASE, volume 3291 of Lecture Notes in Computer Science, pages 1173–
1189. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-23662-7. 16

[60] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A Metamodel
Independent Approach to Difference Representation. Journal of Object Tech-

nology, 6(9):165–185, 2007. 42

[61] Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: a foun-
dation for language driven development. 2008. 40

254

http://www.phy.ilstu.edu/slh/

REFERENCES

[62] Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit Interest
Indicators. In Proceedings of the 6th International Conference on Intelligent

User Interfaces, IUI ’01, pages 33–40, New York, NY, USA, 2001. ACM. ISBN
1-58113-325-1. 54

[63] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establish-
ing and Monitoring SLAs in Complex Service Based Systems. In Web Ser-

vices, 2009. ICWS 2009. IEEE International Conference on, pages 783–790,
July 2009. 63, 64

[64] Gerard Conway and Edward Curry. Managing Cloud Computing: A Life Cycle
Approach. In 2nd International Conference on Cloud Computing and Services

Science (CLOSER 2012), pages 198–207, Porto, 2012. 27, 34

[65] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–645, 2006. ISSN 0018-8670. 42

[66] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer, and A. Youssef. Web services on demand: WSLA-
driven automated management. IBM Systems Journal, 43(1):136–158, 2004.
ISSN 0018-8670. 2

[67] Varró, Dániel. Model Transformation by Example. In Oscar Nierstrasz, Jon
Whittle, David Harel, and Gianna Reggio, editors, Model Driven Engineering

Languages and Systems, volume 4199 of Lecture Notes in Computer Science,
pages 410–424. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-45772-5.
245

[68] Amir Vahid Dastjerdi and Rajkumar Buyya. A Taxonomy of QoS Management
and Service Selection Methodologies for Cloud Computing. Cloud Computing:

Methodology, Systems, and Applications, L. Wang, R. Ranjan, J. Chen, and B.

Benatallah (eds), CRC Press, Boca Raton, FL, USA, 2011. 15, 16, 76

[69] Martine De Cock, Sam Chung, and Omar Hafeez. Selection of Web Services
with Imprecise QoS Constraints. In Proceedings of the IEEE/WIC/ACM Inter-

national Conference on Web Intelligence, WI 07, pages 535–541, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3026-5. 76, 79

255

REFERENCES

[70] Markus Debusmann and Alexander Keller. SLA-Driven Management of Dis-
tributed Systems Using the Common Information Model. In Germän Gold-
szmidt and Jürgen Schönwälder, editors, Integrated Network Management VIII,
volume 118 of IFIP - The International Federation for Information Processing,
pages 563–576. Springer US, 2003. ISBN 978-1-4757-5521-3. 2

[71] T. Dillon, Chen Wu, and E. Chang. Cloud Computing: Issues and Challenges.
In Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, pages 27–33, 2010. 3, 27

[72] D.A D’Mello, I Kaur, N. Ram, and V.S. Ananthanarayana. Semantic Web Ser-
vice Selection Based on Business Offering. In Computer Modeling and Simula-

tion, 2008. EMS ’08. Second UKSIM European Symposium on, pages 476–481,
Sept 2008. 200

[73] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Ontology
matching: A machine learning approach. In Steffen Staab and Rudi Studer, ed-
itors, Handbook on Ontologies, International Handbooks on Information Sys-
tems, pages 385–403. Springer Berlin Heidelberg, 2004. ISBN 978-3-662-
11957-0. 52

[74] G. Dobson and A. Sanchez-Macian. Towards Unified QoS/SLA Ontologies. In
Services Computing Workshops, 2006. SCW ’06. IEEE, pages 169–174, 2006.
19, 53

[75] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: a QoS ontology for service-
centric systems. In Software Engineering and Advanced Applications, 2005.

31st EUROMICRO Conference on, pages 80–87, 2005. xi, 19, 20, 22

[76] V.C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low level Metrics
to High level SLAs - LoM2HiS framework: Bridging the gap between moni-
tored metrics and SLA parameters in cloud environments. In High Performance

Computing and Simulation (HPCS), 2010 International Conference on, pages
48–54, 2010. 3, 125, 127

256

REFERENCES

[77] Vincent C. Emeakaroha, Marco A.S. Netto, Rodrigo N. Calheiros, Ivona
Brandic, Rajkumar Buyya, and César A.F. De Rose. Towards autonomic de-
tection of SLA violations in cloud infrastructures. Future Generation Computer

Systems, 28(7):1017 – 1029, 2012. ISSN 0167-739X. Special section: Quality
of Service in Grid and Cloud Computing. 16

[78] M.C. Eti, S.O.T. Ogaji, and S.D. Probert. Integrating reliability, availability,
maintainability and supportability with risk analysis for improved operation of
the afam thermal power-station. Applied Energy, 84(2):202 – 221, 2007. ISSN
0306-2619. 18

[79] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. Object storage: the future
building block for storage systems. In Local to Global Data Interoperability -

Challenges and Technologies, 2005, pages 119–123, 2005. 33

[80] Eckhard D Falkenberg, Wolfgang Hesse, Paul Lindgreen, Björn E Nilsson,
JL Han Oei, Colette Rolland, Ronald K Stamper, Frans JM Van Assche, Alexan-
der A Verrijn-Stuart, and Klaus Voss. A framework of information system con-
cepts. The FRISCO report, 1998. 39

[81] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini. QoS-Aware
Clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Confer-

ence on, pages 321–328, July 2010. 88

[82] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Comput-
ing 360-Degree Compared. In Grid Computing Environments Workshop, 2008.

GCE ’08, pages 1 –10, nov. 2008. 2, 24, 26

[83] S.K. Garg, S. Versteeg, and R. Buyya. SMICloud: A framework for Comparing
and Ranking Cloud Services. In Utility and Cloud Computing (UCC), 2011

Fourth IEEE International Conference on, pages 210 –218, dec. 2011. xi, 4, 5,
15, 17, 50, 51, 54, 56, 63, 67, 71, 79, 88, 89, 94, 188, 197, 200, 201, 237

[84] T. Gherbi, D. Meslati, and I. Borne. MDE between Promises and Challenges.
In Computer Modelling and Simulation, 2009. UKSIM ’09. 11th International

Conference on, pages 152–155, March 2009. 38

257

REFERENCES

[85] M. Godse and S. Mulik. An Approach for Selecting Software-as-a-Service
(SaaS) Product. In Cloud Computing, 2009. CLOUD ’09. IEEE International

Conference on, pages 155–158, Sept 2009. 5, 50

[86] T. Grandison, E.M. Maximilien, S. Thorpe, and A. Alba. Towards a Formal
Definition of a Computing Cloud. In Services (SERVICES-1), 2010 6th World

Congress on, pages 191–192, July 2010. 3

[87] Roy Grønmo and Michael C. Jaeger. Model-driven methodology for building
qos-optimised web service compositions. In Lea Kutvonen and Nancy Alonis-
tioti, editors, Distributed Applications and Interoperable Systems, volume 3543
of Lecture Notes in Computer Science, pages 68–82. Springer Berlin Heidel-
berg, 2005. ISBN 978-3-540-26262-6. 231

[88] Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad,
and the ugly. IBM Systems Journal, 45:451–462, 2006. 39

[89] Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay Rao, Kun-
wadee Sripanidkulchai, and Mohit Tawarmalani. Cloudward Bound: Planning
for Beneficial Migration of Enterprise Applications to the Cloud. In Proceed-

ings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 243–254,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0201-2. 27

[90] Seung-Min Han, Mohammad Mehedi Hassan, Chang-Woo Yoon, Hyun-Woo
Lee, and Eui-Nam Huh. Efficient Service Recommendation System for Cloud
Computing Market. In Dominik Ślezak, Tai-hoon Kim, StephenS. Yau, Os-
valdo Gervasi, and Byeong-Ho Kang, editors, Grid and Distributed Computing,
volume 63 of Communications in Computer and Information Science, pages
117–124. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-10548-7. 4, 50,
54

[91] C.N. Höfer and G. Karagiannis. Cloud computing services: taxonomy and com-
parison. Journal of Internet Services and Applications, 2(2):81–94, 2011. ISSN
1867-4828. 30, 31, 32

258

REFERENCES

[92] P. Hofmann and D. Woods. Cloud computing: The limits of public clouds for
business applications. Internet Computing, IEEE, 14(6):90–93, Nov 2010. ISSN
1089-7801. 29, 34

[93] Ting-Ya Hsieh, Shih-Tong Lu, and Gwo-Hshiung Tzeng. Fuzzy MCDM ap-
proach for planning and design tenders selection in public office buildings. In-

ternational Journal of Project Management, 22(7):573 – 584, 2004. ISSN 0263-
7863. 50, 230

[94] Angus F.M. Huang, Ci-Wei Lan, and Stephen J.H. Yang. An optimal QoS-
based web service selection scheme. Information Sciences, 179(19):3309 –
3322, 2009. ISSN 0020-0255. 49, 72, 88

[95] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T. Fahringer, and D. H J
Epema. Performance Analysis of Cloud Computing Services for Many-Tasks
Scientific Computing. Parallel and Distributed Systems, IEEE Transactions on,
22(6):931–945, June 2011. ISSN 1045-9219. 89

[96] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T. Fahringer, and D.H.J.
Epema. Performance Analysis of Cloud Computing Services for Many-Tasks
Scientific Computing. Parallel and Distributed Systems, IEEE Transactions on,
22(6):931–945, June 2011. 4

[97] Wayne Jansen and Timothy Grance. Sp 800-144. guidelines on security and
privacy in public cloud computing. Technical report, Gaithersburg, MD, United
States, 2011. 28

[98] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Satellite

Events at the MoDELS 2005 Conference, pages 128–138. Springer, 2006. 41

[99] Seny Kamara and Kristin Lauter. Cryptographic Cloud Storage. In Radu Sion,
Reza Curtmola, Sven Dietrich, Aggelos Kiayias, JosepM. Miret, Kazue Sako,
and Francesc Sebé, editors, Financial Cryptography and Data Security, volume
6054 of Lecture Notes in Computer Science, pages 136–149. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-14991-7. 28, 29

259

REFERENCES

[100] Jaeyong Kang and Kwang Mong Sim. Towards agents and ontology for cloud
service discovery. In Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), 2011 International Conference on, pages 483–490. IEEE,
2011. 53

[101] Keven T. Kearney and Francesco Torelli. The SLA Model. In Philipp Wieder,
Joe M. Butler, Wolfgang Theilmann, and Ramin Yahyapour, editors, Service

Level Agreements for Cloud Computing, pages 43–67. Springer New York,
2011. ISBN 978-1-4614-1613-5. 63, 64

[102] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of Network

and Systems Management, 11:57–81, 2003. 16, 59, 69, 235

[103] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003. ISBN 032119442X. 39, 41

[104] Bastian Koller and Lutz Schubert. Towards autonomous SLA management us-
ing a proxy-like approach. Multiagent and Grid Systems, 3(3):313–325, 2007.
16

[105] Dimitrios Kolovos. An extensible platform for specification of integrated lan-

guages for model management. PhD thesis, University of York, 2008. 39, 43

[106] Dimitrios S. Kolovos. Establishing Correspondences between Models with the
Epsilon Comparison Language. In Richard F. Paige, Alan Hartman, and Arend
Rensink, editors, Model Driven Architecture - Foundations and Applications,
volume 5562 of Lecture Notes in Computer Science, pages 146–157. Springer
Berlin Heidelberg, 2009. ISBN 978-3-642-02673-7. 42, 45

[107] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model com-
parison: a foundation for model composition and model transformation testing.
In Proceedings of the 2006 international workshop on Global integrated model

management, GaMMa ’06, pages 13–20, New York, NY, USA, 2006. ACM.
ISBN 1-59593-410-3. 42

260

REFERENCES

[108] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The Epsilon
Object Language (EOL). In Arend Rensink and Jos Warmer, editors, Model

Driven Architecture - Foundations and Applications, volume 4066 of Lecture

Notes in Computer Science, pages 128–142. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-35909-8. 44

[109] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The Epsilon
Transformation Language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pieran-
tonio, editors, Theory and Practice of Model Transformations, volume 5063 of
Lecture Notes in Computer Science, pages 46–60. Springer Berlin Heidelberg,
2008. ISBN 978-3-540-69926-2. xiv, 41, 42, 46, 47

[110] D.S. Kolovos, D. Di Ruscio, A. Pierantonio, and R.F. Paige. Different models
for model matching: An analysis of approaches to support model differenc-
ing. In Comparison and Versioning of Software Models, 2009. CVSM ’09. ICSE

Workshop on, pages 1–6, 2009. 43

[111] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D.P. Anderson. Cost-benefit
analysis of Cloud Computing versus desktop grids. In Parallel Distributed Pro-

cessing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–12,
May 2009. 89

[112] Daryl Kulak and Eamonn Guiney. Use Cases: Requirements in Context.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN
0201657678. xvi, 70, 73, 74

[113] I. Kurtev. Adaptability of model transformations. PhD thesis, University of
Twente, Enschede, May 2005. 39

[114] Hyun Jung La and Soo Dong Kim. A Systematic Process for Developing High
Quality SaaS Cloud Services. In MartinGilje Jaatun, Gansen Zhao, and Chun-
ming Rong, editors, Cloud Computing, volume 5931 of Lecture Notes in Com-

puter Science, pages 278–289. Springer Berlin Heidelberg, 2009. ISBN 978-3-
642-10664-4. 29, 31

[115] Craig Larman and Victor R. Basili. Iterative and Incremental Development: A
Brief History. Computer, 36(6):47–56, 2003. ISSN 0018-9162. 9

261

REFERENCES

[116] G. Lawton. Developing Software Online With Platform-as-a-Service Technol-
ogy. Computer, 41(6):13–15, 2008. ISSN 0018-9162. 29, 30, 31

[117] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sand-
holm. What’s Inside the Cloud? An Architectural Map of the Cloud Landscape.
In Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges

of Cloud Computing, CLOUD ’09, pages 23–31, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3713-9. 236

[118] L. Lewis and P. Ray. Service level management definition, architecture, and re-
search challenges. In Global Telecommunications Conference, 1999. GLOBE-

COM ’99, volume 3, pages 1974–1978 vol.3, 1999. 15

[119] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: com-
paring public cloud providers. In Proceedings of the 10th annual conference on

Internet measurement, IMC ’10, pages 1–14, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0483-2. 4, 50, 89, 188

[120] Lei Li and Ian Horrocks. A software framework for matchmaking based on
semantic web technology. International Journal of Electronic Commerce, 8(4):
39–60, 2004. 52

[121] Y. Liu, A.H. Ngu, and L.Z. Zeng. QoS computation and policing in dynamic
web service selection. In Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, WWW Alt. ’04, pages 66–73,
New York, NY, USA, 2004. ACM. ISBN 1-58113-912-8. 21, 49, 55, 88

[122] Freerk A Lootsma. Multi-criteria decision analysis via ratio and difference

judgement, volume 29. Springer Science & Business Media, 1999. 51

[123] Heiko Ludwig. Ws-agreement concepts and use–agreement-based service-
oriented architectures. Technical report, IBM Research Division, Technical Re-
port, 2006. xi, 61

[124] Heiko Ludwig, Alexander Keller, Asit Dan, Richard King, and Richard Franck.
A Service Level Agreement Language for Dynamic Electronic Services. Elec-

tronic Commerce Research, 3(1-2):43–59, 2003. ISSN 1389-5753. 1, 13

262

REFERENCES

[125] U.S. Manikrao and T. V. Prabhakar. Dynamic selection of web services with
recommendation system. In Next Generation Web Services Practices, 2005.

NWeSP 2005. International Conference on, pages 5 pp.–, Aug 2005. 72

[126] E. Marilly, O. Martinot, S. Betge-Brezetz, and G. Delegue. Requirements for
service level agreement management. In IP Operations and Management, 2002

IEEE Workshop on, pages 57 – 62, 2002. 15

[127] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand
Ghalsasi. Cloud computing – The business perspective. Decision Support Sys-

tems, 51(1):176 – 189, 2011. ISSN 0167-9236. 28, 29

[128] Benedikt Martens, Frank Teuteberg, and Matthias Gräuler. Design and imple-
mentation of a community platform for the evaluation and selection of cloud
computing services: a market analysis. In ECIS, 2011. 4, 50

[129] Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Jrn Altmann.
Cost-benefit analysis of an SLA mapping approach for defining standardized
cloud computing goods. Future Generation Computer Systems, 28(1):39 – 47,
2012. ISSN 0167-739X. 53

[130] E. Michael Maximilien and Munindar P. Singh. Toward Autonomic Web Ser-
vices Trust and Selection. In Proceedings of the 2Nd International Conference

on Service Oriented Computing, ICSOC ’04, pages 212–221, New York, NY,
USA, 2004. ACM. ISBN 1-58113-871-7. 59

[131] E.M. Maximilien and M.P. Singh. A framework and ontology for dynamic web
services selection. Internet Computing, IEEE, 8(5):84–93, Sept 2004. ISSN
1089-7801. 19, 21, 22, 49

[132] Oleksiy Mazhelis and Pasi Tyrväinen. Economic aspects of hybrid cloud infras-
tructure: User organization perspective. Information Systems Frontiers, 14(4):
845–869, 2012. ISSN 1387-3326. 29, 31, 32

[133] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing, 2011.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. 2, 24, 26, 28,
29, 30, 31

263

REFERENCES

[134] A Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support for
QoS-Aware Service Selection, Binding, and Mediation in VRESCo. Services

Computing, IEEE Transactions on, 3(3):193–205, July 2010. ISSN 1939-1374.
76

[135] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar.
Comprehensive QoS monitoring of web services and event-based SLA violation
detection. In Proceedings of the 4th International Workshop on Middleware for

Service Oriented Computing, MWSOC ’09, pages 1–6, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-848-3. xi, 17, 18, 127

[136] Parastoo Mohagheghi and Vegard Dehlen. Where Is the Proof? - A Review of
Experiences from Applying MDE in Industry. In Ina Schieferdecker and Alan
Hartman, editors, Model Driven Architecture Foundations and Applications,
volume 5095 of Lecture Notes in Computer Science, pages 432–443. Springer
Berlin Heidelberg, 2008. ISBN 978-3-540-69095-5. 38

[137] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. In Oscar Nierstrasz, Jon
Whittle, David Harel, and Gianna Reggio, editors, Model Driven Engineering

Languages and Systems, volume 4199 of Lecture Notes in Computer Science,
pages 98–110. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-45772-5. xi,
xiv, 40

[138] Vinod Muthusamy, Hans-Arno Jacobsen, Tony Chau, Allen Chan, and Phil
Coulthard. SLA-driven business Process Management in SOA. In Proceedings

of the 2009 Conference of the Center for Advanced Studies on Collaborative

Research, CASCON ’09, pages 86–100, Riverton, NJ, USA, 2009. IBM Corp.
2

[139] S.K. Nair, S. Porwal, T. Dimitrakos, AJ. Ferrer, J. Tordsson, T. Sharif, C. Sheri-
dan, M. Rajarajan, and AU. Khan. Towards Secure Cloud Bursting, Brokerage
and Aggregation. In Web Services (ECOWS), 2010 IEEE 8th European Confer-

ence on, pages 189–196, Dec 2010. 200

264

REFERENCES

[140] Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Com-

put. Surv., 33(1):31–88, March 2001. ISSN 0360-0300. 76, 166

[141] Le Duy Ngan and R. Kanagasabai. OWL-S Based Semantic Cloud Service
Broker. In Web Services (ICWS), 2012 IEEE 19th International Conference on,
pages 560–567, June 2012. 34

[142] Le Duy Ngan and R. Kanagasabai. Owl-s based semantic cloud service broker.
In Web Services (ICWS), 2012 IEEE 19th International Conference on, pages
560–567, June 2012. doi: 10.1109/ICWS.2012.103. 53

[143] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing System. In
Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM Interna-

tional Symposium on, pages 124–131, May 2009. 89

[144] Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Semantic
WS-agreement partner selection. In Proceedings of the 15th international con-

ference on World Wide Web, WWW ’06, pages 697–706, New York, NY, USA,
2006. ACM. ISBN 1-59593-323-9. 60

[145] Serafim Opricovic and Gwo-Hshiung Tzeng. Compromise solution by MCDM
methods: A comparative analysis of VIKOR and TOPSIS. European Journal of

Operational Research, 156(2):445 – 455, 2004. ISSN 0377-2217. 230

[146] Richard F. Paige, Phillip J. Brooke, and Jonathan S. Ostroff. Metamodel-based
Model Conformance and Multiview Consistency Checking. ACM Trans. Softw.

Eng. Methodol., 16(3), July 2007. ISSN 1049-331X. 40

[147] Massimo Paolucci, Takahiro Kawamura, TerryR. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In Ian Horrocks and James
Hendler, editors, The Semantic Web - ISWC 2002, volume 2342 of Lecture Notes

in Computer Science, pages 333–347. Springer Berlin Heidelberg, 2002. ISBN
978-3-540-43760-4. 52

[148] I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, and M.E. Anagnostou. A
QoS ontology language for Web-services. In Advanced Information Network-

265

REFERENCES

ing and Applications, 2006. AINA 2006. 20th International Conference on, vol-
ume 1, pages 6 pp.–, 2006. 22

[149] T. Parveen and S. Tilley. When to Migrate Software Testing to the Cloud? In
Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third

International Conference on, pages 424–427, April 2010. 27

[150] Pankesh Patel, Ajith Ranabahu, and Amit Sheth. Service level agreement in
cloud computing. Cloud Workshops at OOPSLA09, pages 1–10, 2009. xi, 1, 3,
59

[151] Junjie Peng, Xuejun Zhang, Zhou Lei, Bofeng Zhang, Wu Zhang, and Qing Li.
Comparison of Several Cloud Computing Platforms. In Information Science and

Engineering (ISISE), 2009 Second International Symposium on, pages 23–27,
2009. 28

[152] Yi Peng, Gang Kou, Guoxun Wang, and Yong Shi. Famcdm: A fusion approach
of MCDM methods to rank multiclass classification algorithms. Omega, 39(6):
677 – 689, 2011. ISSN 0305-0483. 52, 230, 231

[153] Alain Pinsonneault and Kenneth L. Kraemer. Survey research methodology in
management information systems: An assessment, 1993. URL http://www.

escholarship.org/uc/item/6cs4s5f0. 8, 9

[154] Shuping Ran. A model for web services discovery with QoS. SIGecom Exch.,
4(1):1–10, March 2003. ISSN 1551-9031. 16, 17

[155] Christoph Redl, Ivan Breskovic, Ivona Brandic, and Schahram Dustdar. Au-
tomatic SLA Matching and Provider Selection in Grid and Cloud Computing
Markets. In Proceedings of the 2012 ACM/IEEE 13th International Conference

on Grid Computing, GRID ’12, pages 85–94, Washington, DC, USA, 2012.
IEEE Computer Society. ISBN 978-0-7695-4815-9. 5, 53, 54

[156] B.P. Rimal, Eunmi Choi, and I. Lumb. A Taxonomy and Survey of Cloud Com-
puting Systems. In INC, IMS and IDC, 2009. NCM ’09. Fifth International Joint

Conference on, pages 44–51, aug. 2009. 25, 30

266

http://www.escholarship.org/uc/item/6cs4s5f0
http://www.escholarship.org/uc/item/6cs4s5f0

REFERENCES

[157] Marcel Risch, Ivona Brandic, and Jörn Altmann. Using sla mapping to increase
market liquidity. In Service-Oriented Computing. ICSOC/ServiceWave 2009

Workshops, volume 6275 of Lecture Notes in Computer Science, pages 238–
247. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16131-5. 53

[158] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Em-
merich, and F. Galan. The reservoir model and architecture for open federated
cloud computing. IBM Journal of Research and Development, 53(4):4:1 –4:11,
july 2009. ISSN 0018-8646. 26

[159] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A.C. Polack.
The Epsilon Generation Language. In Ina Schieferdecker and Alan Hartman, ed-
itors, Model Driven Architecture - Foundations and Applications, volume 5095
of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg,
2008. ISBN 978-3-540-69095-5. 47

[160] Pawel Rubach and Michael Sobolewski. Dynamic SLA Negotiation in Au-
tonomic Federated Environments. In Robert Meersman, Pilar Herrero, and
Tharam Dillon, editors, On the Move to Meaningful Internet Systems: OTM

2009 Workshops, volume 5872 of Lecture Notes in Computer Science, pages
248–258. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-05289-7. 15

[161] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of
model-driven software development. Software, IEEE, 20(5):42–45, Sept 2003.
ISSN 0740-7459. 3

[162] M.A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A QoS broker based
architecture for efficient web services selection. In Web Services, 2005. ICWS

2005. Proceedings. 2005 IEEE International Conference on, pages 113–120
vol.1, 2005. 21, 49, 55, 88

[163] Dr. N.V. Kalyankar. Shivaji P. Mirashe. Cloud Computing. JOURNAL OF

COMPUTING, 2:78–82, March 2010. 28, 29

[164] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise Service
Level Agreements. In Proceedings of the 26th International Conference on

267

REFERENCES

Software Engineering, ICSE 04, pages 179–188, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2163-0. 62

[165] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise Ser-
vice Level Agreements. In Proceedings of the 26th International Confer-

ence on Software Engineering, ICSE ’04, pages 179–188, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0. URL http:

//dl.acm.org/citation.cfm?id=998675.999422. xi, 63

[166] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, Simon Helsen, and
Krzysztof Czarnecki. Model-Driven Software Development Technology, Engi-

neering, Management. John Wiley & Sons, 2006. 41

[167] Vladimir Stantchev and Christian Schrpfer. Negotiating and Enforcing QoS and
SLAs in Grid and Cloud Computing. In Nabil Abdennadher and Dana Petcu,
editors, Advances in Grid and Pervasive Computing, volume 5529 of Lecture

Notes in Computer Science, pages 25–35. Springer Berlin Heidelberg, 2009.
ISBN 978-3-642-01670-7. 16

[168] Anthony M. Starfield, Karl Smith, and Andrew L. Bleloch. How to Model It:

Problem Solving for the Computer Age. McGraw-Hill, Inc., New York, NY,
USA, 1993. ISBN 0070058970. 39

[169] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Model-

ing Framework. Pearson Education, 2008. ISBN 9780132702218. 43

[170] S. Sundareswaran, A. Squicciarini, and D. Lin. A Brokerage-Based Approach
for Cloud Service Selection. In Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, pages 558–565, June 2012. 54

[171] A.G. Sutcliffe, N. A M Maiden, S. Minocha, and D. Manuel. Supporting
scenario-based requirements engineering. Software Engineering, IEEE Trans-

actions on, 24(12):1072–1088, Dec 1998. ISSN 0098-5589. 70

[172] L. Taher and H. El Khatib. A framework and qos matchmaking algorithm for
dynamic web services selection. In In Proceedings of the 2 nd International

Conference on Innovations in Information Technology (IIT05, 2005. 19

268

http://dl.acm.org/citation.cfm?id=998675.999422
http://dl.acm.org/citation.cfm?id=998675.999422

REFERENCES

[173] Dave Thomas. Enabling Application Agility–Software as a Service, Cloud
Computing and Dynamic Languages. Journal of Object Technology, 7(4):29–
32, 2008. 30

[174] Emir Toktar, Guy Pujolle, Edgard Jamhour, ManoelC. Penna, and Mauro Fon-
seca. An XML Model for SLA Definition with Key Indicators. In Deep Medhi,
JosMarcos Nogueira, Tom Pfeifer, and S.Felix Wu, editors, IP Operations and

Management, volume 4786 of Lecture Notes in Computer Science, pages 196–
199. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75852-5. 125

[175] Vuong Xuan Tran and H. Tsuji. A survey and analysis on semantics in QoS
for web services. In Advanced Information Networking and Applications, 2009.

AINA ’09. International Conference on, pages 379–385, May 2009. doi: 10.
1109/AINA.2009.43. 22

[176] Vuong Xuan Tran, Hidekazu Tsuji, and Ryosuke Masuda. A new QoS ontology
and its QoS-based ranking algorithm for web services. Simulation Modelling

Practice and Theory, 17(8):1378 – 1398, 2009. ISSN 1569-190X. Dependable
Service-Orientated Computing Systems. 19, 76, 88

[177] Evangelos Triantaphyllou. Multi-criteria decision making methods. In Multi-

criteria Decision Making Methods: A Comparative Study, volume 44 of Ap-

plied Optimization, pages 5–21. Springer US, 2000. ISBN 978-1-4419-4838-
0. doi: 10.1007/978-1-4757-3157-6 2. URL http://dx.doi.org/10.

1007/978-1-4757-3157-6_2. 51, 231

[178] Evangelos Triantaphyllou. Multi-criteria decision making methods: a compar-

ative study, volume 44. Springer Science & Business Media, 2013. xi, 52

[179] Evangelos Triantaphyllou and Khalid Baig. The impact of aggregating benefit
and cost criteria in four mcda methods. Engineering Management, IEEE Trans-

actions on, 52(2):213–226, May 2005. 51

[180] D.T. Tsesmetzis, IG. Roussaki, IV. Papaioannou, and M.E. Anagnostou. QoS
awareness support in Web-Service semantics. In Telecommunications, 2006.

AICT-ICIW ’06. International Conference on Internet and Web Applications and

Services/Advanced International Conference on, pages 128–128, Feb 2006. 127

269

http://dx.doi.org/10.1007/978-1-4757-3157-6_2
http://dx.doi.org/10.1007/978-1-4757-3157-6_2

REFERENCES

[181] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler. Aggregation of ser-
vice level agreements in the context of business processes. In Enterprise Dis-

tributed Object Computing Conference, 2008. EDOC ’08. 12th International

IEEE, pages 43–52, Sept 2008. 2

[182] Z. ur Rehman, F.K. Hussain, and O.K. Hussain. Towards Multi-criteria Cloud
Service Selection. In Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), 2011 Fifth International Conference on, pages 44–48, June
2011. 5, 237

[183] Z. ur Rehman, O.K. Hussain, and F.K. Hussain. IaaS Cloud Selection using
MCDM Methods. In e-Business Engineering (ICEBE), 2012 IEEE Ninth Inter-

national Conference on, pages 246–251, 2012. 4, 5, 50, 51, 54, 67, 71

[184] MIKE USCHOLD. Knowledge level modelling: concepts and terminology. The

Knowledge Engineering Review, 13:5–29, 2 1998. ISSN 1469-8005. 39

[185] A. van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. Wiley, 2009. ISBN 9780470012703. 70, 72

[186] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.

Rev., 39:50–55, 2008. 2, 24, 26

[187] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically
scaling applications in the cloud. SIGCOMM Comput. Commun. Rev., 41:45–
52, 2011. ISSN 0146-4833. 24

[188] Salvatore Venticinque, Rocco Aversa, Beniamino Di Martino, Massimilano
Rak, and Dana Petcu. A Cloud Agency for SLA Negotiation and Management.
In MarioR. Guarracino, Frédéric Vivien, JesperLarsson Träff, Mario Cannatoro,
Marco Danelutto, Anders Hast, Francesca Perla, Andreas Knüpfer, Beniamino
Di Martino, and Michael Alexander, editors, Euro-Par 2010 Parallel Process-

ing Workshops, volume 6586 of Lecture Notes in Computer Science, pages 587–
594. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21877-4. 200

270

REFERENCES

[189] Dinesh C. Verma. Supporting Service Level Agreements on IP Networks.
Macmillan Technical Publishing, 1999. 1, 13

[190] Eelco Visser. WebDSL: A Case Study in Domain-Specific Language Engineer-
ing. In Ralf Lmmel, Joost Visser, and Joo Saraiva, editors, Generative and

Transformational Techniques in Software Engineering II, volume 5235 of Lec-

ture Notes in Computer Science, pages 291–373. Springer Berlin Heidelberg,
2008. ISBN 978-3-540-88642-6. 30

[191] Jeffrey Voas and Jia Zhang. Cloud computing: new wine or just a new bottle?
IT professional, 11(2):15–17, 2009. xi, 23, 24

[192] Lizhe Wang, Gregor Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie
Tao, and Cheng Fu. Cloud Computing: a Perspective Study. New Generation

Computing, 28(2):137–146, 2010. ISSN 0288-3635. 24

[193] Ping Wang. QoS-aware web services selection with intuitionistic fuzzy set under
consumer’s vague perception. Expert Systems with Applications, 36(3, Part 1):
4460 – 4466, 2009. ISSN 0957-4174. 21, 78, 182, 193, 197

[194] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A QoS-Aware Selec-
tion Model for Semantic Web Services. In Asit Dan and Winfried Lamersdorf,
editors, Service-Oriented Computing - ICSOC 2006, volume 4294 of Lecture

Notes in Computer Science, pages 390–401. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-68147-2. 16, 19, 21, 22, 53, 54, 55, 88

[195] Xiaoting Wang and Evangelos Triantaphyllou. Ranking irregularities when eval-
uating alternatives by using some ELECTRE methods. Omega, 36(1):45 – 63,
2008. ISSN 0305-0483. Special Issue Section: Papers presented at the IN-
FORMS conference, Atlanta, 2003. 21, 182, 193, 197

[196] Christof Weinhardt, Arun Anandasivam, Benjamin Blau, Nikolay Borissov,
Thomas Meinl, Wibke Michalk, and Jochen Stößer. Cloud Computing- A Clas-
sification, Business Models, and Research Directions. Business & Information

Systems Engineering, 1(5):391–399, 2009. 27

271

REFERENCES

[197] L. Wu and R. Buyya. Service Level Agreement (SLA) in Utility Computing
Systems. ArXiv e-prints, October 2010. 3, 7, 15, 54

[198] Edward Wustenhoff and Sun BluePrints. Service level agreement in the data
center. Sun Microsystems Professional Series, 2002. 2

[199] Jianhong Xu, Weizhi Gong, and Ye Wang. A cloud service discovery approach
based on FCA. In Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE

2nd International Conference on, volume 03, pages 1357–1361, Oct 2012. 4, 5,
50

[200] Xun Xu. From cloud computing to cloud manufacturing. Robotics and

Computer-Integrated Manufacturing, 28(1):75 – 86, 2012. ISSN 0736-5845.
29

[201] Jiann Liang Yang, Huan Neng Chiu, Gwo-Hshiung Tzeng, and Ruey Huei Yeh.
Vendor selection by integrated fuzzy MCDM techniques with independent and
interdependent relationships. Information Sciences, 178(21):4166 – 4183, 2008.
ISSN 0020-0255. 71

[202] Viktor Yarmolenko and Rizos Sakellariou. Towards increased expressiveness in
service level agreements. Concurrency and Computation: Practice and Experi-

ence. 53

[203] L. Youseff, M. Butrico, and D. Da Silva. Toward a Unified Ontology of Cloud
Computing. In Grid Computing Environments Workshop, 2008. GCE ’08, pages
1 –10, nov. 2008. 30

[204] Hong Qing Yu and Stephan Reiff-Marganiec. Non-functional property based
service selection: A survey and classification of approaches. In Non Func-

tional Properties and Service Level Agreements in Service Oriented Computing

Workshop co-located with The 6th IEEE European Conference on Web Services,
2008. 49, 50

[205] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. Qos-aware middleware for web services composition. Software En-

272

REFERENCES

gineering, IEEE Transactions on, 30(5):311–327, May 2004. ISSN 0098-5589.
231, 232

[206] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, M. Menzel, and S. Nepal.
An ontology-based system for cloud infrastructure services’ discovery. In Col-

laborative Computing: Networking, Applications and Worksharing (Collabo-

rateCom), 2012 8th International Conference on, pages 524–530, Oct 2012. 34,
101

[207] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee. Semantics in service discovery
and QoS measurement. IT Professional, 7(2):29–34, Mar 2005. ISSN 1520-
9202. 19

[208] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security
issues. Future Generation Computer Systems, 28(3):583 – 592, 2012. ISSN
0167-739X. 27

273

	Abstract
	Contents
	List of Figures
	List of Listings
	List of Tables
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Introduction
	1.1.1 Service Level Agreements
	1.1.2 Cloud Computing
	1.1.3 MDE

	1.2 Comparison and Selection of Cloud Computing Services
	1.3 Problem Definition
	1.4 Motivation
	1.5 Research Hypothesis
	1.6 Research Objectives
	1.7 Research Methodology
	1.8 Thesis Structure

	2 Literature Review
	2.1 Service Level Agreement
	2.1.1 Quality of Service (QoS)
	2.1.1.1 Common QoS and QoS classification
	2.1.1.2 QoS Ontology

	2.1.2 QoS-based web service selection literature

	2.2 Cloud Computing
	2.2.1 Introduction
	2.2.2 Cloud computing features
	2.2.3 Cloud classification
	2.2.3.1 Cloud computing deployment model
	2.2.3.2 Cloud computing service model

	2.2.4 Cloud SLA
	2.2.4.1 Commercial Cloud SLA

	2.3 Model Driven Engineering (MDE)
	2.3.1 Models
	2.3.2 Metamodel
	2.3.3 Model management
	2.3.3.1 Model Transformation
	2.3.3.2 Model Comparison
	2.3.3.3 Model Constraints

	2.3.4 MDE Tools
	2.3.4.1 EMF
	2.3.4.2 Epsilon
	2.3.4.3 Epsilon Object Language (EOL)
	2.3.4.4 Epsilon Comparison Language (ECL)
	2.3.4.5 Epsilon Transformation Language (ETL)
	2.3.4.6 Epsilon Generation Language (EGL)
	2.3.4.7 Epsilon Validation Language (EVL)

	2.4 Comparison and Selection of Cloud Computing
	2.4.1 Cloud computing QoS-based selection
	2.4.1.1 MCDM

	2.4.2 Cloud computing matching
	2.4.3 Cloud computing QoS parameters and modelling
	2.4.4 Cloud computing resources modelling
	2.4.5 Digital SLA

	2.5 Summary of Cloud Computing SLA Modelling and Comparison issues
	2.6 Chapter Summary

	3 Problem Analysis
	3.1 Introduction
	3.2 Motivating Example
	3.2.1 Goals to be Satisfied to Solve the Problem

	3.3 Scenario and Use Cases
	3.3.1 Consumer-Providers/Provider-Providers
	3.3.2 Comparison of Alternatives Scenarios
	3.3.2.1 Name-based Matching
	3.3.2.2 Optimal Matching
	3.3.2.3 Approximate Value Matching

	3.4 Steps of the Research Plan
	3.5 An approach for Cloud SLA Comparison

	4 Domain Analysis and Metamodelling
	4.1 Introduction
	4.2 Constructing the cloud SLA metamodel
	4.2.1 Cloud computing SLA metamodel

	4.3 Cloud SLA Metamodelling
	4.3.1 General Types Package
	4.3.1.1 Abstract Syntax
	4.3.1.2 Example of GeneralTypes Model

	4.3.2 Service Package
	4.3.2.1 Abstract Syntax
	4.3.2.2 Example of Service Model

	4.3.3 CloudUnitSpec Package
	4.3.3.1 Abstract Syntax
	4.3.3.2 Example of CloudUnitSpec model

	4.3.4 ComputingUnit Package
	4.3.4.1 Abstract Syntax
	4.3.4.2 Example of a ComputingUnit Model

	4.3.5 Storage Package
	4.3.5.1 Abstract Syntax
	4.3.5.2 Example of a Storage Model

	4.3.6 Network Package
	4.3.6.1 Abstract Syntax
	4.3.6.2 Example of Network Model

	4.3.7 Obligation Package
	4.3.7.1 Abstract Syntax
	4.3.7.2 Example of Obligation

	4.3.8 Price Package
	4.3.8.1 Abstract Syntax
	4.3.8.2 Example of Price Model

	4.3.9 SLA Package
	4.3.9.1 Abstract Syntax
	4.3.9.2 Example of SLA Model

	4.3.10 Contract Package
	4.3.10.1 Abstract Syntax
	4.3.10.2 Example of Contract Model

	4.4 Early Versions of the Cloud SLA Metamodel
	4.4.1 First Version Metamodel for Cloud Computing SLA
	4.4.2 Revised SLA Metamodel

	4.5 Summary

	5 A Comparison Process for Cloud SLAs
	5.1 Introduction
	5.2 General Process of Cloud SLA Model Comparison
	5.3 Motivating Example
	5.3.1 Which Elements of Cloud SLA Models Can be Matched?
	5.3.2 When are Model Elements Alike?
	5.3.3 Cloud SLA Concepts Involved in the Matching Process
	5.3.4 Matching patterns

	5.4 Matching Logic
	5.4.1 Matching the Cloud SLA Model
	5.4.2 Matching QoS Properties
	5.4.3 Matching Obligation term
	5.4.4 Matching Cloud Units
	5.4.5 Optimal Value Matching
	5.4.6 Approximate Matching
	5.4.7 Name-based Matching

	5.5 Implementation of Matching Logic in Epsilon
	5.5.1 Comparison of GeneralTypes
	5.5.1.1 Modifications for Approximate and Name-based implementation

	5.5.2 Comparison of Cloud Unit Specifications
	5.5.3 Comparison of Cloud Prices
	5.5.4 Comparison of Cloud Unit and Price Implementation
	5.5.5 Comparison of Cloud Service Implementation
	5.5.6 Comparison of Cloud QoS Parameters' Implementation
	5.5.7 Comparison of Cloud Obligation Implementation
	5.5.8 Comparison of Cloud SLA Implementation

	5.6 Approximate Values Model
	5.6.1 Abstract Syntax of the Approximation Model
	5.6.2 Example of Approximate Model

	5.7 Comparison Results Metamodel
	5.8 Summary

	6 A Conceptual Framework for SLA Model Comparison
	6.1 Introduction
	6.2 Conceptual Architecture of SLA Comparison
	6.3 Create a Weighting Model
	6.3.1 Abstract Syntax of Weighting Model
	6.3.2 Example of a Weighting Model

	6.4 Creating and Calculating a Cost Model
	6.4.1 Cost Model
	6.4.1.1 Abstract Syntax of Cost model
	6.4.1.2 Creating Cost Model

	6.4.2 Calculating the Cost

	6.5 Analysing Results
	6.6 Decision Making Matrix
	6.6.1 Abstract Syntax of the MCDM Matrix
	6.6.2 Constructing a Matrix Model

	6.7 View Matching Results
	6.8 Summary

	7 Evaluation
	7.1 Introduction
	7.2 Case Study
	7.2.1 Creating Cloud SLA models using the Cloud SLA abstract syntax
	7.2.2 Matching the cloud SLA of the consumer and provider
	7.2.2.1 Matching models using the optimal matching logic
	7.2.2.2 Matching models using approximate matching logic
	7.2.2.3 Matching models using name-based matching logic
	7.2.2.4 Matching models using name-based matching logic, to match cloud units and approximation to match prices
	7.2.2.5 Matching models using approximation, to match cloud units characteristics and name-based matching logic to match prices
	7.2.2.6 Matching cloud providers' SLA

	7.2.3 Analysing the outcome models of the comparison
	7.2.3.1 Eliminate the redundancy in the outcome model
	7.2.3.2 Weighting the requirements
	7.2.3.3 Cost Model
	7.2.3.4 Decision Matrix
	7.2.3.5 Discussing the Outcome of Different Matching Algorithms

	7.3 Evaluation of the contributions
	7.3.1 Requirements of semi-automatic cloud computing SLA
	7.3.2 Cloud SLA Metamodelling language
	7.3.3 Evaluation of the comparison logics
	7.3.4 Evaluation of the Supporting Decisions approach

	7.4 Evaluation of the thesis contributions
	7.5 Summary

	8 Conclusions and Future Work
	8.1 Introduction
	8.2 Contribution
	8.2.1 Cloud SLA Metamodel
	8.2.2 Comparison Process
	8.2.3 Methodology for selecting between a set of cloud SLA
	8.2.4 Evaluation Results

	8.3 Limitations of the cloud SLA comparison and selection approach
	8.3.1 Lack of support for SLA negotiation and monitoring
	8.3.2 Lack of support for non-IaaS cloud services
	8.3.3 Lack of support for cloud SLA not defined using the proposed abstract syntax

	8.4 Future work
	8.4.1 Support for the cloud SLA management life cycle
	8.4.2 Support for non-cloud SLA models
	8.4.3 Cloud SLA Matching Patterns
	8.4.4 Large-scale Experiments

	Acronyms

	References

