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Abstract 

 

Most organisms use a molecular timekeeping mechanism centered on the so-

called “clock genes”, known to interact with one another in a 24-hour 

Transcriptional-Translational Feedback Loop (TTFL) to control circadian 

rhythms intracellularly. However, the discovery of circadian rhythmicity in the 

oxidation state of peroxiredoxins has suggested that an alternative metabolic 

oscillator may govern circadian rhythms independently of gene transcription. 

Although circadian rhythms have been documented in the morphology of the 

Drosophila visual system, much of the underlying physiology remains unclear. 

It was previously found that a circadian rhythm in the visual transduction 

amplitude of Drosophila persists in some “clock” gene mutants, indicating that 

the rhythm may persist independently of the TTFL. 

 

In this study the highly sensitive Steady State Visually Evoked Potential 

(SSVEP) assay was used to assess the visual function of the TTFL mutants 

ClkJrkst1 and per0 in order to determine whether a TTFL oscillator is driving 

oscillations in the visual contrast response of fruit flies, as well as dissect the 

contribution of individual neuron orders in the retina to the response. We have 

found that despite a complete loss of circadian rhythmicity in locomotor activity 

levels the ClkJrkst1 mutant exhibits robust circadian rhythms in contrast 

sensitivity, with a recurring peak 4 hours after anticipated light onset in the 

photoreceptors, lamina, and medullary neurons. We conclude that Drosophila 

possess a circadian rhythm in contrast sensitivity that can operate 

independently of clock gene transcription, and thus is likely synchronized 

instead by a metabolic oscillator.   
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1. Introduction 

1. 1. Overview 

 

The visual system of Drosophila melanogaster has proven an excellent model 

of circadian rhythmicity in the past, with almost exclusive links to regulation by 

the transcriptional-translational feedback loop (TTFL) based molecular 

timekeeping mechanism.  An alternative hypothesis however concerning a 

TTFL independent metabolic oscillator in conjunction with previous evidence of 

a circadian rhythm in visual transduction of a TTFL-impaired mutant indicates 

the need for further study of circadian rhythms in visual electrophysiology. This 

study aims to investigate whether a TTFL or metabolic oscillator likely controls 

the circadian rhythm in visual transduction by employing the highly sensitive 

SSVEP assay to measure rhythms in the visual response of TTFL-impaired 

mutants.  

 

1. 2. What are circadian rhythms? 

 

The term “circadian rhythm” refers to any process in an organism that 

undergoes just one complete cycle over the course of a 24-hour period, and 

that persists in the absence of environmental cues. It is widely believed that the 

purpose of such rhythms is to allow an organism to better adapt to an 

environment that is itself cyclical, with a 24-hour cycle of changing light and 

temperature levels (Sheeba et al., 1999; Yerushalmi and Green, 2009).  A 

better understanding of the cyclic nature in which our physiology changes may 

prove to be of great importance, for example, in treating sleep disorders, such 

as those that present as a non-motor symptom of Parkinson’s Disease, but that 

also appear in other contexts, including shift workers or people that are 

affected by jetlag (Jankovic, 2008; Sack et al., 2007). The organism Drosophila 

melanogaster is an excellent model for studying changes in rhythmicity. In 

addition to their short generation time, high fecundity and great genetic 

tractability, there has been extensive documentation of fruit flies exhibiting 

circadian rhythms (Konopka and Benzer, 1971; Pittendrigh, 1954). 

Furthermore, many components of the mammalian molecular timekeeping 

mechanism have homologs in Drosophila (Kloss et al., 1998; Panda et al., 

2002; Rutila et al., 1998; Takumi et al., 1999). 
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1. 3.  The Transcriptional-Translational Feedback Loop 

	

The conventional hypothesis is that all circadian rhythms are based on the 

“clock genes”, the set of genes that are known to interact with one another in a 

24-hour transcriptional-translational feedback loop (TTFL) to control rhythms 

intracellularly (reviewed in Blau, 2001 and Edery, 2000 and summarised below) 

(Figure. 1). In this loop (in the case of Drosophila melanogaster), a heterodimer 

comprised of dCLOCK (dCLK) and CYCLE (CYC) activate the transcription of 

the two clock genes period (per) and timeless (tim), as well as other so-called 

Clock Controlled Genes (CCGs) at approximately midday in what is often 

referred to as the positive arm of the TTFL. While environmental light levels are 

high, the protein Cryptochrome (CRY) is activated, and targets TIM for 

degradation by the proteasome. As light levels decrease, TIM levels 

accumulate until they are sufficiently high to outcompete the kinase Double-

time (DBT), which targets cytoplasmic PER for rapid degradation, for binding of 

PER. TIM and PER then form a stable heterodimer and translocate to the 

nucleus close to midnight. Here, one or both components of the PER:TIM 

complex inhibit dCLK:CYC, thus inhibiting their own transcription, as well as 

that of the CCGs. This forms the negative arm of the TTFL. PER:TIM is also 

thought to act indirectly via the nuclear receptor E75 to derepress its inhibition 

of dCLK:CYC (Kumar et al., 2014). In this way the PER:TIM dimer creates a 

delayed upswing in dCLK levels. PER and TIM are eventually degraded in the 

nucleus around dawn, relieving their inhibition of the dCLK:CYC complex, with 

the result that per and tim transcription is activated once more, but also that 

dClk expression is downregulated. The loop then recommences. This cycle 

takes 24 hours and results in circadian expression of its own components and 

of CCGs downstream of dCLK:CYC. 
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Figure 1: Model of circadian clock in Drosophila melanogaster showing photic 

input pathway (light; CRY) and two downstream effector pathways (ccgs, clock-

controlled genes; PDF, pigment-dispersing factor) (Figure from Edery et al., 

2000). During the late day/early night, the levels of PER (indicated by large P) and TIM 

(indicated by T) reach critical concentrations that favor dimerization, an event that 

stabilizes PER and stimulates the nuclear entry of the PER-TIM complex. The 

enhanced degradation of monomeric PER in the cytoplasm as a result of DBT-

mediated phosphorylation events and the light-induced degradation of TIM (in the 

photoreceptors), contribute to a delay in the nuclear accumulation of PER and TIM. In 

the nucleus, PER, TIM, or both 1) interact with dCLK:CYC, blocking its ability to 

stimulate transcription of per, tim, vri, and possibly ccgs and 2) by a mechanism that is 

not clear, upregulate expression of dClk and cry. Not shown is the degradation of 

highly phosphorylated PER and TIM in the nucleus, which relieves the block on 

dCLK:CYC-mediated transcription and leads to the downregulation of dClk and cry 

expression. Green lines, pathways leading to upregulation; red lines, pathways leading 

to downregulation; dashed lines, uncertain pathways. Small black boxes indicate E-box 

elements; small P, phosphorylation; ub, ubiquitin. 
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1. 4. Circadian rhythms in the fruit fly visual system 

 

The visual system of fruit flies (Figure. 2) in particular is recognized as 

possessing a number of processes that are controlled in a circadian manner. 

That is to say that these processes have been found to be rhythmically 

controlled by the molecular clock, independently of environmental cues such as 

light levels to which the organism can become entrained, known as zeitgebers. 

In the first optic neuropil, or lamina of Drosophila melanogaster the cross 

sectional axon area of the L1 and L2 large monopolar cells swell at the 

beginning of both the day and night under normal light: dark (LD) cycling, 

mirroring rhythms in locomotor activity levels, and the cross sectional area of 

the L1 cells continue to fluctuate significantly under constant conditions (Pyza 

and Meinertzhagen, 1999). In a congruent fashion, the L2 dendrite length is 

seen to lengthen at the beginning of the day. This structural plasticity in axon 

caliber persists in constant darkness and is altered or abolished in cryb and 

per01 clock gene mutants respectively (Weber et al., 2009).   

 

Such temporal changes in morphology and physiology under constant 

conditions are generally attributed to governance by the molecular clock in 

specific TTFL-expressing cells. In the visual system, the photoreceptors and 

lamina glia are thought to possess “peripheral clocks”, where cycling 

components of the TTFL have been visualized, for instance by staining 

methods, and so are thought themselves to express the TTFL in order to 

uphold visual circadian rhythms when in constant darkness (DD) (Cheng and 

Hardin, 1998; Ewer et al., 1992; Liu et al., 1988). The lamina, in contrast has 

not been shown to express the TTFL autonomously, as evidenced by work on 

Drosophila melanogaster and close relative Musca domestica. It instead 

receives circadian input from other cell groups, both in the visual system, and 

from the so called “master pacemaker” (1st to 4th small ventral lateral neurons in 

the accessory medulla, Figure. 3) in the brain whose arborisations extend into 

the optic lobe (Bałys and Pyza, 2001; Górska-Andrzejak et al., 2013; Pyza and 

Meinertzhagen, 2003). In the case of L1 and L2 axon caliber, the morning peak 

is proposed to be stimulated by paracrine release of the neuropeptide pigment-

dispersing factor (PDF) from pacemaker cells onto the medullary terminals of 

the L1 and L2 cells, and is opposed by the action of the ion transport peptide 

(ITP) released from the 5th s-LNv to drive the evening peak (Damulewicz and 

Pyza, 2011). A bimodal rhythm in the abundance of presynaptic active zone 
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protein Bruchpilot (BRP) in the lamina possesses a morning peak dependent 

both on TTFL expression by the pacemaker and on direct photic input from the 

photoreceptors (Górska-Andrzejak et al., 2013). And so it has been seen that 

rhythms throughout the fruit fly’s visual system rhythms are maintained both by 

the contribution of the molecular clock and by photic entrainment. 
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Figure 2: Diagram of the structure of the fly visual system (Afsari et al., 2014). 

Shown are the photoreceptors (R1-8, of which R1-6 form synaptic connection with the 

lamina, while R7 and R8 connect to the transmedullary neurons), second order 

amacrine (A) and the lamina large monopolar cells (LMCs; L1 and L2), and the medulla 

neurons (C and T) that project to the lamina. Also shown are the dopaminergic neurons 

(DA) some projecting from the CNS to the lamina and others intrinsic to the medulla 

itself. For each category of neuron, only one or two representative cells are shown. 

(Afsari et al., 2014; Pecot et al., 2013). 
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Figure 3: Anatomical circadian pathways in flies (Figure from Gerstner and Yin, 
2010). In fruit flies (Drosophila melanogaster), various light-receiving cells are involved 

in functional neuroanatomical connections, such as those in the Hofbauer–Buchner (H–

B) eyelets and ocelli (OC), or from the optic lobes (OL). These project to circadian 

pacemaker cells, the lateral neurons (LN), via the posterior optic tract (POT). LN 

subtypes include the large, small, and 5th small ventral LN (LNv), as well as the dorsal 

LN (LNd). Little is known about the functional connectivity between these pacemaker 

cells and other clock cells, such as the dorsal neurons (DN1, DN2 and DN3 subtypes) 

the lateral posterior neurons (LPN) or cells that are involved in sleep and memory 

formation, such as the pars intercerebralis (PI) and mushroom bodies (MB). DNs and 

LNs comprise the ~150 cells of the clock network in the fly brain (Gerstner and Yin, 

2010). 
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1. 5.  Visual electrophysiology of clock mutants: an unexpected rhythm 

	
The electrophysiology of neurons in the fly visual system that underlie the 

morphological changes have been largely overlooked in the past. The few 

studies that have examined visual electrophysiology in Drosophila have 

employed electroretinography (ERG) in order to record the visual response 

amplitude from a trace generated by the pooled depolarization of retinal 

neurons (Belušic, 2011). A study by Stark describes a circadian rhythm in the 

sensitivity of the wild type Drosophila ERG which seemingly inexplicably 

persists in the previously termed “arrhythmic” period gene mutant strain per01, 

and persists, or is at most only subtly altered in the short and long period 

mutants perS and perL respectively (Chen et al., 1992). This raises questions 

concerning the degree of regulation on certain circadian rhythms such as visual 

transduction by the molecular clock, indicating control instead by an oscillating 

factor outside of the TTFL. 

 

The discovery of circadian rhythmicity in the oxidation state of peroxiredoxins 

both in red blood cells and Drosophila whole head homogenates has 

suggested that an alternative oscillator may govern circadian rhythms 

independently of gene transcription (O’Neill and Reddy, 2011). This hypothesis 

proposes that a more ubiquitous process such as metabolism may control 

certain rhythms as opposed to, or in addition to the clock genes that have 

previously been associated with circadian output (Figure. 4). 
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Figure 4: Coupling of genetic and metabolic clocks (Figure from Bass and 

Takahashi, 2011). Two types of circadian oscillator maintain synchrony between the 

light–dark environment and internal biochemical processes. These are genetic 

oscillators, which consist of a transcription–translation feedback loop, and - as two new 

studies show (O’Neill and Reddy, 2011; O’Neill et al., 2011)- metabolic oscillators, 

which are involved in fuel-utilization cycles and consist of the cycle of oxidation and 

reduction of peroxiredoxin enzymes. The two oscillator types are coupled, both driving 

rhythmic outputs (such as photosynthesis reaction cycles in plants and the feeding–

fasting cycle in animals) in synchrony with Earth’s rotation. 
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1. 6. What is controlling circadian rhythmicity in visual response amplitude? 

 

In this study the highly sensitive Steady State Visually Evoked Potential 

(SSVEP) assay was used to measure the visual function of the Drosophila 

TTFL mutants ClkJrkst1 and per01. This technique has been shown to have a 

higher signal to noise ratio than the traditional flash electroretinogram approach 

due to the elimination of out of band noise prior to analysis. This assay also 

allows dissection of the contribution of individual neuron orders in the retina 

(the photoreceptors, lamina, and medulla) to the response, and has 

demonstrated clear functional homology between the visual responses of 

Drosophila and vertebrates (Afsari et al., 2014). The ClkJrkst1 mutant is 

nocturnal under diurnal conditions and demonstrates abolished locomotor 

rhythmicity under constant conditions as a result of a premature stop codon in 

the C-terminal activation domain which prevents activation of dClk expression 

by Drosophila C-terminal binding protein (dCtBP) (Allada et al., 1998). The 

per01 fly strain is null for the period gene with a lack of light anticipatory 

locomotor behavior under LD and completely abolished locomotor rhythms 

under DD (Allada et al., 1998; Konopka and Benzer, 1971). Both dClk and per 

are key components of the transcription-translation feedback loop (Blau, 2001), 

and the per gene has been shown both to regulate certain visual circadian 

rhythms such as in lamina dendrite morphology (Weber et al., 2009), and in 

other cases to be independent of visual circadian rhythms, such as in ERG 

sensitivity (Chen et al., 1992). The aim of this study was therefore to determine 

whether a TTFL oscillator is driving oscillations in the visual contrast response 

and response amplitude of fruit flies.  
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2. Materials and Methods 

2. 1. Drosophila stocks 

 

Stock vials of Drosophila melanogaster were raised and maintained on a yeast-

sucrose-agar food medium (Carpenter, 1950). The per01 fly strain was kindly 

provided by Prof. Ralf Stanewsky (University College London). ClkJrk st1 flies 

(#24515) were obtained from the Bloomington Stock Centre (Indiana 

University). ClkJrk st1 carries a secondary mutation, st1, which causes bright red 

eye colour due to being null for the brown eye pigment xanthommatin (Have et 

al., 1995). Due to the visual nature of the assays used in this study, response 

amplitude could have varied due to eye pigmentation, and as such, a control 

with identical eye color was required for each clock gene mutant strain. The st1 

scarlet-eyed fly line (#605, Bloomington Stock Centre, Indiana University) was 

therefore used as the ClkJrk st1 control. Canton-S (CS) wild type (from 

laboratory stock) was crossed with iso4147, with isogenic chromosomes 2A + 3A 

(Sharma et al., 2005) and was used as a control for the per01 strain. All flies 

were kept in 25°C room with a 12hr: 12hr light: dark schedule, and were 

allowed to lay eggs on the food. After 2 days, adult flies were removed from the 

vials. Male flies were collected within ~18 hours of eclosion. 

 

2. 2. Photoentrainment for visual response analysis 

 

Once collected, flies were photoentrained in 12hr: 12hr light:dark (LD) cycles 

for 6 days in a constant temperature room (25°C). LD6 measurements were 

taken on the 6th day of photoentrainment to show any diurnal rhythms. 

Circadian rhythms were determined by measuring the flies’ responses on the 

1st or 2nd day of constant conditions following photoentrainment (termed DD1 or 

DD2 respectively). Following 6 days of photoentrainment flies were transferred 

to constant darkness (DD) and constant temperature (again 25°C) for 16-24 

hours (DD1 readings) or 40-48 hours (DD2 readings) before being prepared for 

visual response analysis. Constant conditions were maintained in order to 

prove that a rhythm was truly circadian; as such a rhythm should persist in the 

absence of environmental cues or zeitgebers.   
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2. 3. Preparation for SSVEP and ERG 

 

Flies were trapped in a shortened Gilson pipette tip using a pooter, so that only 

the head and fore legs were exposed (Fig. 5), and then secured with a small 

amount of nail polish (Creative Nail Design), avoiding the eyes and without 

flooding the tip. In the case of flies that were currently experiencing subjective 

night (ZT12, 16, and 20) or were being kept under constant conditions for 

circadian time (CT) readings, this preparation process was performed under a 

red filtered light in order to minimize interference with the flies’ current light 

cycle (Chiu et al., 2010). Each fly was allowed to recover in the dark for a 

period of ~20 minutes prior to visual response measurement. 
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Figure 5:  Trapping Drosophila and recording a visual response (Figure from 
Afsari et al., 2014). The fly is trapped in a shortened Gilson pipette tip and exposed to 

a blue LED flash. Glass recording and reference electrodes are rested on the eye and 

mouthparts of the fly, respectively, and the output from the recording electrode is 

amplified and digitized (see text). 
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2. 4. SSVEP and ERG 

 

Visual responses of the flies were obtained via the SSVEP assay (steady state 

visual evoked potential), the full details of which, including those of SSVEP 

analysis and the stimuli used, are described in (Afsari et al., 2014). Essentially, 

upon having been given time to recover from being secured in a pipette tip, 

each fly was placed (in its pipette) in a ring chamber, and a micromanipulator 

was used to place a glass drawn contact reference electrode filled with simple 

Drosophila saline (Heisenberg, 1971) on the mouthparts of the fly to prevent 

any feeding movements during recording, while a second saline filled recording 

electrode was placed on the surface of the eye, gently so as not to damage it. 

Again, in the case of flies that were currently experiencing subjective night or 

were under constant conditions, the electrode placement was performed using 

a dissection microscope with a red filtered light. The output from the second 

electrode was amplified as described in (Hindle et al., 2013), and recorded 

using the DasyLAB program (Measurement Computing Corporation, 2012). 

DasyLAB was also used to confirm the quality and stability of each fly’s photic 

responses by examining the response upon manually toggling the stimulation 

LED. Flies were then exposed to a randomized sequence of flickering blue LED 

light, in which a either a single square wave with mean flicker illumination of 12 

Hz, known as the “probe”, or a wave formed by the sum of two square waves of 

mean frequencies 12 and 15 Hz, the “mask”, were delivered. The resultant 

responses were then analyzed using a Fourier transform (Bracewell, 1978) to 

extract the response amplitude of the individual frequency components. Flies 

that were unable to produce a robust photic response as determined by ERG 

trace analysis were omitted from the data set. 
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2. 5. SSVEP statistical analysis 

 

Flies that produced a robust ERG trace and high quality contact with both 

electrodes in the ERG assay were further analysed by SSVEP. Changes in the 

sensitivity of the visual response were calculated from the estimated Rmax 

parameter (Figure. 6). Statistical significance of the effect of 

Zeitgeber/circadian time on Rmax was determined by a univariate ANOVA 

(p<0.05) of the data acquired from the SSVEP assay and were Bonferroni 

corrected. Levels of significance are denoted in APA style by letters above data 

points, where all points denoted with a lower case “a” are found to be 

significantly different from the point denoted upper case “A”, likewise with “b” 

and “B” and so on. For clarity between upper and lower case, the letter C has 

been omitted, and D used instead.  
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Figure 6:  Flies measured at different times of day may present with a variable 

visual response phenotype at 3 different orders of neurons when assessed by 

the SSVEP assay.  Male st1 flies that had been photoentrained for 6 days in 12:12 

light: dark cycles were exposed to a pre-programmed, randomized sequence of 

flickering blue light at ZT4 and ZT16 (n = 19). The separated photoreceptor response 

(A), represented by the first harmonic (F1) frequency, lamina response (B), 

represented by the second harmonic (2F1), and medulla response (C), represented by 

the intermodular term (F1+ F2), are here plotted versus probe contrast. The dark line 

indicates the mean response (grey shaded area as ± 1 standard error) to the 

presentation of a single frequency of flicker ("probe”). The solid grey line indicates the 

mean response, (pink shaded area as ± 1 standard error) to presentation of the probe 

plus a 30% mask stimulus as the second frequency. The results demonstrate that 

Drosophila may present with a different visual response phenotype at different times of 

day, and validates the use of the SSVEP assay to visualize the temporal effects at 

multiple neuron orders in the visual system. In this study both the masked and 

unmasked maximum response amplitude, or Rmax, for each component is determined 

from these contrast response function curves generated by the SSVEP assay and are 

used to represent the strength of visual transduction. 
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2. 6. Assaying circadian rhythms in locomotor activity 

 

Male flies were collected within ~18 hours of eclosion and anaesthetized with 

CO2. Males were used rather than females, whose egg laying activity can affect 

an accurate measurement of rhythms in locomotor activity (Chiu et al., 2010). 

All males were transferred with a fine paintbrush to individual 5mm diameter 

glass tubes plugged at one end with 5% sucrose set agar (Fluka Analytical, 

1%). A small amount of cotton wool was placed into the other end using a pair 

of forceps. The set agar end was finally covered with a plastic tube cap 

perforated with small holes to allow ventilation (Trikinetics, Waltham, MA, 

USA). Tubes were set on their sides until all flies had awoken and then loaded 

into DAM2 activity monitors (Trikinetics, Waltham, MA, USA). The activity 

monitors measured the frequency with which each fly tripped a beam of 

infrared light that crossed the center of the tube. The DAM monitors were kept 

in a light and temperature controlled incubator (25°C) and flies were 

photoentrained in 12hr: 12hr lights on: lights off (LD) cycles for ~3.5 days, and 

then kept in constant darkness (DD) for a minimum of 7 more days. Locomotor 

activity was collected in bins of 2 minutes. 

 

The data collected by the DAM software was used to generate actograms for 

each individual fly using the ImageJ program (Abramoff et al., 2004) with the 

ActogramJ plugin (Schmid et al., 2011). A Lomb-Scargle periodogram analysis 

was performed using the ActogramJ plugin in order to determine which flies 

exhibited true circadian rhythmicity and the length of their freerunning period 

(Refinetti et al., 2007; Schmid et al., 2011).  Flies were defined as rhythmic if 

the results of Lomb-Scargle analysis met the following criteria; (1) Exactly one 

distinct peak was deemed significant with a probability of p>0.05, and (2) The 

peak was in the range of 21-27 hours. Representative group profiles of 

locomotor activity rhythm for each genotype, both after 3 days of 12:12 hour 

light: dark cycles and after 3 days of constant darkness, were generated by 

averaging the activity levels of all flies in bins of 30 minutes. 
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3. Results 

3. 1. Locomotor activity rhythms of TTFL mutants 

 

The purpose of the locomotor experiment was to confirm the previously 

documented behavioural phenotypes of both WT and TTFL mutant Drosophila 

(the latter of which are associated with arrhythmicity under constant DD 

conditions (Allada et al., 1998; Konopka and Benzer, 1971)). To this end, flies 

were photoentrained in activity monitors in 12:12 light: dark cycles for 3 days 

under constant temperature (25°C), before undergoing 7 further days of 

constant darkness (DD) also at constant temperature. The locomotor activity 

levels of both control and mutant flies were measured using an activity monitor 

and were averaged into 30-minute bins (Figure. 7). A Lomb-Scargle 

periodogram analysis was performed on the resultant actogram plots of all flies 

assayed, and was used to determine power of rhythmicity and free-running 

period length (for full details of this assay and criteria for determinable 

locomotor circadian rhythmicity see Materials and Methods).  

	
The scarlet-eyed control flies st1 exhibit 2 clear peaks in locomotor activity 

levels under LD conditions, which center around light on- and offset or ZT0 and 

ZT12 (Figure. 7A). There is a strong appearance of anticipation of the morning 

“M” peak towards the end of the dark period, evidenced by a gradual increase 

in average activity, however there is no obvious indication of similar anticipation 

of the lights-off transition. 68.6% of the st1 flies were found to be DD rhythmic 

by Lomb-Scargle analysis, and those that were rhythmic had an average free-

running period length of 24.4 hours (Figure. 7B). The definition of the M and E 

peaks is diminished under DD conditions, however decreasing activity levels at 

CT12 and low activity levels throughout the subjective night visually 

demonstrate some retention of the circadian rhythm. 

The homozygous molecular clock mutant ClkJrkst1 has no M or E peaks in 

locomotor activity, but does have a strong nocturnal rhythm under LD 

conditions (Figure. 7C). It has relatively constant activity levels during the day, 

which then increase by approximately 60% 30 minutes after light offset and 

remain fairly constant until ZT0. The sharp differences in activity that occur at  
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Figure 7:  Daily rhythms in locomotor activity of control (st1, CS / iso4147, and 
w1118) flies (A and B, E and F, I and J respectively) and of clock gene mutant 

(ClkJrk st1 and per0) flies (C and D, G and H respectively). Male flies of each 

genotype (n≥18) were photoentrained for 3 days in a 12:12 hour LD (light: dark) cycle 

before being subject to 3 days in DD (constant darkness). Graphs in the left column 
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show the average activity levels on LD3 while graphs in the right column show average 

activity levels on DD3. All vertical bars represent the average activity levels (in arbitrary 

units) recorded in 30-minute bins during the light or anticipated light period (light and 

dark grey) and the dark or anticipated dark period (black). The horizontal bars below 

LD graphs represent when the lights were on or off (white or black, respectively). ZT0 

and ZT12 represent the Zeitgeber time in hours, or the start and end of the defined 

photoperiod respectively. For DD graphs; CT0 and CT12 represent the circadian time 

in hours, or the start and end of the anticipated light period in constant dark conditions 

(denoted by the grey bar). In panels A and E the letters M and E denote the morning 

and evening peaks in activity respectively.  
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the two light transitions indicate a lack of light anticipatory behavior in the 

ClkJrkst1 mutant. It is worth noting that the lower levels of activity observed in 

the mutant between ZT0 and ZT12 are only relatively so, as even then the 

mutant is more active than the control fly. Under constant darkness, only 16.6% 

of ClkJrkst1 flies were found to be rhythmic and of these the average DD period 

length was slightly lengthened in comparison to the control, at 25.2 hours 

(Figure. 7D).   

 

The isogenic crossed wild type fly, CS / iso4147, exhibits a similar rhythm in 

activity levels to that of the scarlet-eyed control (Figure. 7E). There is a slight 

increase in activity levels around peak times (ZT0 and ZT12) in comparison to 

st1, which reveals that in addition to anticipation of the M peak, there is some 

anticipation of the E peak prior to the lights-off transition. This is also true of the 

wild type fly’s behavior under constant darkness, where the evening peak is still 

distinguishable from the otherwise dampened rhythm, and some anticipation of 

light onset is revealed at the end of the subjective night (Figure. 7F). The power 

of free running rhythmicity is stronger than that of the scarlet-eyed control, with 

92.3% of the CS x iso4147 flies found to be DD rhythmic by Lomb-Scargle 

analysis. Those that were rhythmic had an averaged DD period length of 23.7 

hours. 

The second TTFL mutant, per0, retains a strong ability to photoentrain, with 

both M and E peaks under LD conditions in spite of disruption to the molecular 

clock. Anticipation of the evening peak however is lost, with a very sharp 

increase in activity immediately following the lights-off transition (Figure. 7G). 

There appears to be some anticipation of the morning peak. Generally, activity 

levels remain low, but at peak times, the mutant’s activity levels are seen to be 

almost 50% higher than those detected in the wild type control.  Under constant 

darkness the per0 fly is mostly arrhythmic, with only 18.8% of the per0 flies 

possessing a detectable rhythm and of these the average DD period length 

was a shortened 22.2 hours (Figure. 7H).   

 

Another eye colour defective wild type fly, the white-eyed w1118, was also 

assayed. This strain possessed clear circadian locomotor rhythmicity. Under 

LD conditions there were clear M and E peaks in activity levels at each light 

transition, with obvious anticipation of said transitions on both occasions 

(Figure 7I). The white-eyed fly appeared to take a shorter or even 

indeterminable “siesta” in the middle of the day. This siesta is a behavior 
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usually typical of WT Drosophila (Hall, 2003) and is observed in the two other 

control flies assayed here, but in neither of the TTFL mutants. Under constant 

DD conditions, w1118 exhibited strong free-running rhythmicity, analogous to 

those of the WT and scarlet-eyed control, with diminished distinctiveness of M 

and E peaks, but retained anticipation of light transitions (Figure. 7J). 100% of 

the w1118 flies were found to be DD rhythmic by Lomb-Scargle analysis with an 

averaged DD period length of 24.03 hours.  

 

This experiment was successful in confirming the expected behavioural 

phenotypes of each fly strain. All wild type flies were found to exhibit biphasic 

rhythms in locomotor activity levels under LD conditions, with peaks at ZT0 and 

ZT12 and some anticipation of light transitions, although the length of the 

typical midday siesta was variable, as were the overall levels of activity (lower, 

in particular, in the case of st1). All WT fly lines had a majority of flies deemed 

to retain a truly circadian rhythm, and had an average period length of 

approximately 24 hours.  

The results of the ClkJrkst1 mutant mirror those previously described (Allada et 

al., 1998; Kim et al., 2002). The homozygous mutants used in this study had no 

anticipation of light transitions and nocturnal preferences under LD conditions, 

with complete abolition of rhythmicity under DD conditions in all but 16.6% of 

those assayed. 

The second TTFL mutant, per0, also demonstrates its expected locomotor 

phenotype. The mutant has little evidence of anticipatory behavior of light 

transitions under LD, with an otherwise normal biphasic diurnal rhythm and is 

completely arrhythmic in all but 18.8% of flies assayed when under DD 

conditions. 

 

From these results we can conclude that the WT and control flies used in this 

study are capable of demonstrating typical circadian rhythmicity, and that the 

TTFL mutants are representative of their respective phenotypes also, with little 

to no indication of functioning circadian rhythmicity under constant conditions 

as determined by the locomotor assay. 
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3. 2. Circadian rhythmicity in the visual contrast sensitivity of ClkJrkst1 

 

We know that Drosophila with disrupted expression of key molecular clock 

genes such as dClk and per can demonstrate arrhythmicity under constant 

conditions, as evidenced by the results of the locomotor assay, and therefore 

that the molecular clock drives certain manifestations of circadian function. It 

has also been shown that the same mutant strains can hold certain circadian 

rhythms under free-running conditions (Edgar et al., 2012), indicating that some 

circadian output is not governed exclusively by the molecular clock. A rhythm 

once found in the visual sensitivity of a period mutant fly under constant 

conditions, measured using the less sensitive ERG assay (Chen et al., 1992) 

now suggests, in light of the notion of alternative oscillators, that a rhythm in 

the contrast sensitivity of Drosophila melanogaster is another circadian rhythm 

that can function independently of the molecular clock. The hypothesis for this 

study therefore is that Drosophila possess a circadian rhythm in contrast 

sensitivity under DD free-running conditions that can persist independently of a 

functional molecular clock. The visual contrast sensitivity of control and TTFL 

mutant flies was measured by way of the SSVEP assay, in which each fly was 

exposed to a pre-programmed and randomized sequence of flickering blue 

LED light. This was performed on flies that had been photoentrained in 12:12 

LD for ~5/6 days immediately following eclosion (LD6 readings), and on those 

that were also kept for a further 24 or 48 hours under constant conditions (DD1 

or DD2 readings). 

 

The scarlet-eyed wild type fly st1 demonstrated a highly significant relationship 

between time-of-day and mean Rmax in the photoreceptors and medullary 

neurons (p>0.05) (Figure. 8A and 8C). Under LD conditions a multiple 

comparison of means found there to be a significant increase in contrast 

sensitivity in the photoreceptors and medulla between ZT0 and ZT8 (p>0.05). 

By ZT8 mean Rmax increased by 100% in the photoreceptors, and by 200% in 

the medulla relative to the level of contrast sensitivity at light onset. Statistically 

speaking, no significant comparisons were found under DD conditions or 

indeed at any time in the lamina (Figure. 8A-C), however in all 3 orders of 

neurons the graphs appear to show a rhythm that repeats approximately 16 

hours, with less distinct peaks occurring at ZT20, CT16 on DD1, and CT8 on 

DD2. The results of a Fast Fourier Transform (FFT, not shown) support this 

observation by indicating that while not sufficiently significant to be highlighted 
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Figure 8:  Scarlet-eyed control (st1) Drosophila melanogaster exhibit a rhythm in 

mean visual contrast sensitivity in the photoreceptors and medullary neurons 

under LD conditions. Male flies (n ≥15 for each time point) were photoentrained in 

12:12 hour LD cycles for 6 days and had visual responses recorded via the SSVEP 

assay on LD6, DD1 or DD2. New flies were used for every reading and readings were 

taken at intervals of 4 hours over 3 days. The mean Rmax in contrast sensitivity is 

plotted versus time in Zeitgeber or circadian time. Shown are the mean responses in 

the photoreceptors, lamina, and the medulla.  
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by ANOVA, there are most likely 3 cycles occurring over the 3-day time course, 

or only slightly less likely, 4 cycles over 3 days. 

 

The TTFL mutant ClkJrkst1 exhibits a highly significant relationship between 

time-of-day and the Rmax of its visual contrast sensitivity in all three orders of 

neurons assayed (p>0.005) (Figure. 9). In the photoreceptor response there 

was found to be a significant difference between the contrast sensitivity at CT4 

on DD1 (peak) and both CT16 on DD1 and CT20 on DD2 (troughs) (Figure. 

9A). There was a 59% decrease in contrast sensitivity between DD1 CT4 and 

DD1 CT16.  In the lamina, many more significant comparisons of means were 

identified, with peaks levels of sensitivity highlighted at ZT4, ZT8 and DD1 CT4, 

and lowest levels occurring from ZT12-ZT20 (dark phase), DD1 CT8-CT16 and 

DD2 CT20 (subjective night) (Figure. 9B). These results indicate that in stark 

contrast to its activity rhythm the ClkJrkst1 mutant possesses a unimodal rhythm 

in contrast sensitivity with a morning peak at ZT/CT4 and lowest values during 

the subjective night and decreases in sensitivity of 31-70% at these times. It 

would also appear that this rhythm repeats with an approximate period of 24 

hours and persists under constant DD conditions, suggesting it could be 

defined as circadian. Responses in the medulla also support this conclusion, 

with a significant decrease (67%, p>0.005) between peak values at ZT4 and 

DD1 CT4 and the trough at DD1 CT16 (Figure. 9C). The FFT results (not 

shown) state that the ClkJrkst1 fly most likely undergoes 3 complete cycles over 

the 3-day time course, consistent with circadian rhythmicity.  

 

In comparison to the results of the scarlet-eyed control, while the ClkJrkst1 fly 

seems not to experience a shortened period under free-running conditions, the 

two data sets otherwise follow a similar trend, with a unimodal rhythm peaking 

during the light/anticipated light period.  

While the results of the control fly in this experiment do not completely support 

the hypothesis that WT Drosophila possess a circadian rhythm in contrast 

sensitivity, a strong circadian rhythm is presented by the TTFL mutant fly 

ClkJrkst1. These results indicate that the correct function of molecular clock 

component dCLK is not essential for the retention of circadian rhythmicity in 

visual contrast sensitivity. 
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Figure 9:  Locomotor arrhythmic clock mutant (ClkJrkst1) Drosophila 

melanogaster possess a circadian rhythm in mean visual contrast sensitivity in 

the photoreceptors, lamina, and medulla. Male flies (n ≥15 for each time point) were 

photoentrained in 12:12 hour LD cycles for 6 days and had visual responses recorded 

via the SSVEP assay on LD6, DD1 or DD2. New flies were used for every reading and 

readings were taken at intervals of 4 hours over 3 days. The mean Rmax in contrast 

sensitivity is plotted versus time in Zeitgeber or circadian time. Shown are the mean 

responses in the photoreceptors, lamina, and the medulla. Also shown are the results 

from the control fly, st1 (dashed grey line).  
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3. 3. Circadian rhythmicity in the visual contrast sensitivity of per0 

 

In this experiment a second TTFL mutant, the period gene null per0, was tested 

for rhythmicity in visual contrast sensitivity. As another mutant of a core 

component of the molecular clock its responses can provide further evidence 

for the role or lack thereof of control over this visual rhythm. The control for this 

study, the isogenic-crossed wild type strain CantonS / iso4147 carries no known 

mutations, unlike the eye colour defective control st1 and so should offer a 

more accurate assessment of the WT Drosophila response. As in the previous 

experiment, visual contrast response was measured by way of the SSVEP 

assay on flies that had been photoentrained in 12:12 LD for ~5/6 days 

immediately following eclosion (LD6 readings), and on those that were also 

kept for a further 24 or 48 hours under constant conditions (DD1 or DD2 

readings). 

 

The isogenic-crossed WT fly exhibits a highly significant relationship between 

time-of-day and the Rmax of its visual contrast sensitivity in all three orders of 

neurons assayed (p>0.005) (Figure. 10). In the photoreceptors there was a 

significant difference between peak values at ZT4, ZT8 and ZT16 and the 

lowest value measured at DD1 CT16 (Figure. 10A). There was a difference of 

~39% between the peak and trough values.  The lamina neurons showed a 

similar response, but without a significant peak at ZT8 (Figure. 10B). No 

significant comparisons were identified in the medullary neurons (Figure. 10C). 

The FFT results (not shown) indicate that the most likely number of rhythmic 

cycles undergone over the 3-day time course is 7. By looking at the graphs, 

although 7 significant peaks are not found by the Bonferroni comparison of 

means, the trend of the data does appear to reflect the results of the FFT, and 

could therefore suggest that the WT fly has a biphasic rhythm in contrast 

sensitivity, and a period shortened to slightly under 24 hours under free-running 

DD conditions, leading to 7 peaks over 3 days.  

 

The TTFL mutant per0 also exhibits a highly significant relationship between 

time-of-day and the Rmax of its visual contrast sensitivity in all three orders of 

neurons assayed (p>0.005) (Figure. 11). In the photoreceptors peak levels 

occurred at ZT8, DD2 CT8 and DD2 CT16, with the lowest values at ZT16 and 

DD1 CT0 (Figure 11A). Peak values were ~59% higher than the lowest 

recorded sensitivity values. In the lamina neurons, the lowest values also  
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Figure 10: Isogenic crossed wild type (CS / iso4147) Drosophila melanogaster 

demonstrate some evidence of rhythmicity in mean visual contrast sensitivity in 

the photoreceptors and lamina. Male flies (n ≥15 for each time point) were 

photoentrained in 12:12 hour LD cycles for 6 days and had visual responses recorded 

via the SSVEP assay on LD6, DD1 or DD2. New flies were used for every reading and 

readings were taken at intervals of 4 hours over 3 days. The mean Rmax in contrast 

sensitivity is plotted versus time in Zeitgeber or circadian time. Shown are the mean 

responses in the photoreceptors, lamina, and the medulla.  
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occurred at ZT16 and DD1 CT0, with peaks at DD2 CT0 and DD2 CT8 (Figure 

9B). Several more multiple comparisons were highlighted in the medullary 

neuronal response, with peaks identified at ZT4, ZT8, DD1 CT20 and DD2 

CT8, and lowest levels of contrast sensitivity at ZT12, ZT16, DD1 CT0, DD1 

CT4, and DD1 CT20. The results of the FFT (not shown) suggest that over the 

3 days assayed, the per0 flies undergo either just one compete cycle (or in 

other words, there is no repeating rhythm to be seen) or 8 complete cycles. It is 

possible that the per0 fly has a shortened period length in its rhythm in contrast 

sensitivity as well as locomotor activity, and that it, like the WT experiences a 

biphasic rhythm in its visual response (i.e. resulting in 8 peaks over 3 days). 

Certainly the mutant and control seem to be in phase with one another under 

LD conditions, and appear to share an increase in sensitivity on DD2 CT8, 

however statistically there is no repeating rhythm to be found in the response of 

the per0 fly in spite of a clear relationship between time-of-day and contrast 

sensitivity overall. Another possible conclusion therefore is that the per0 fly has 

little to no control over contrast sensitivity when under constant DD conditions.  

 

The results of this experiment suggest that the WT Drosophila possesses a 

circadian rhythm in visual contrast sensitivity that is biphasic, and peaks twice 

per cycle, from ZT4-ZT8, and again in the middle of the dark phase at ZT16. 

This rhythm appears to decrease slightly in period length when under constant 

conditions. While this rhythm may persist under LD conditions in the absence 

of per expression, the regularity of peak sensitivity values under constant 

darkness seem to be per dependent.   
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Figure 11:  Locomotor arrhythmic clock mutant (per0) Drosophila 

melanogaster demonstrate some evidence of rhythmicity in mean visual 

contrast sensitivity in the photoreceptors, lamina, and medulla. Male flies 

(n ≥15 for each time point) were photoentrained in 12:12 hour LD cycles for 6 

days and had visual responses recorded via the SSVEP assay on LD6, DD1 or 

DD2. New flies were used for every reading and readings were taken at 

intervals of 4 hours over 3 days. The mean Rmax in contrast sensitivity is plotted 

versus time in Zeitgeber or circadian time. Shown are the mean responses in 

the photoreceptors, lamina, and the medulla. Also shown are the results from 

the control fly, CS / iso4147 (dashed grey line).  
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3. 4. Circadian rhythmicity in the visual contrast sensitivity of w1118 

 

Discrepancies between the conclusions drawn from the control fly strains st1 

and CS / iso4147 make it difficult to ascertain the true WT phenotype of rhythmic 

contrast sensitivity in Drosophila melanogaster. The aim of this experiment is to 

measure the effects of time-of-day on the Rmax of contrast sensitivity in a third 

control line, the white-eyed WT fly, w1118, and so provide further indication of 

the true WT phenotype. As in the previous experiments, visual contrast 

response was measured by way of the SSVEP assay on flies that had been 

photoentrained in 12:12 LD for ~5/6 days immediately following eclosion (LD6 

readings), and on those that were also kept for a further 24 hours under 

constant conditions (DD1 readings). 

 

The w1118 flies show a highly significant relationship between time-of-day and 

contrast sensitivity Rmax in the photoreceptors, lamina and medulla as 

determined by univariate ANOVA (p>0.005) (Figure. 11). In the photoreceptors, 

peak values were recorded from CT0-CT8 on DD1, during the anticipated light 

period of the first day under constant darkness (Figure. 11A). These peak 

levels were found to be significantly higher than almost all other time points 

measured and sensitivity was 55-94% higher at these times. These peak 

values from CT0-CT8 were also seen in the lamina and medullary neurons, 

were all time points but ZT4 elicited a significant difference to at least one of 

the DD1 subjective daytime values (Figure. 11B and C). The results of the FFT 

(not shown) indicate that the w1118 flies underwent only one complete cycle 

over 2 days (i.e. no detectable repeating rhythm) that peaked on DD1.  

 

The results of the white-eyed control fly’s visual responses suggest that while 

the fly has a highly significant relationship between time-of-day and contrast 

sensitivity, there is no repeating rhythm to be seen over 2 days, and as such, 

no likely circadian rhythmicity, despite highly significant peaks being identified 

under free-running DD conditions.  
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Figure 12:  White-eyed control (w1118) Drosophila melanogaster exhibit a rhythm 

in mean visual contrast sensitivity in the photoreceptors, lamina, and medulla 

under DD conditions. Male flies (n ≥15 for each time point) were photoentrained in 

12:12 hour LD cycles for 6 days and had visual responses recorded via the SSVEP 

assay on LD6, DD1 or DD2. New flies were used for every reading and readings were 

taken at intervals of 4 hours over 3 days. The mean Rmax in contrast sensitivity is 

plotted versus time in Zeitgeber or circadian time. Shown are the mean responses in 

the photoreceptors, lamina, and the medulla.  
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4. Discussion 

4.1. Overview 

 

In this study the Steady State Visually Evoked Potential assay enabled the 

characterization of Drosophila melanogaster’s rhythmicity in visual contrast 

response in the photoreceptor, lamina, and medullary neurons in a highly 

sensitive manner. Given that previous work on Drosophila has reported a 

circadian rhythm in visual pigment levels and ERG-measured luminance 

sensitivity of both wild type and period gene mutant strains under free-running 

conditions (Chen et al., 1992), one might have expected to uncover a similar 

circadian rhythm in visual contrast sensitivity that can function independently of 

the core molecular clock. As such, entering this study our hypothesis was that 

the wild type phenotype of Drosophila melanogaster would be a circadian 

rhythm in contrast sensitivity, that would persist in the absence of a functional 

molecular clock, a state represented by the TTFL-impaired mutants ClkJrkst1 

and per0. While admittedly the lack of an obvious trend in the rhythmicity of 

contrast sensitivity amongst the wild type and eye colour mutant strains makes 

the matter of characterizing the wild type phenotype somewhat problematic, the 

high degree of regularity in the phase and periodicity of the dClk mutant 

ClkJrkst1 both under LD and DD conditions offers strong support for the 

hypothesis, demonstrating an alternative timekeeping mechanism that can 

persist for at least 48 hours under constant darkness independently of normal 

TTFL function.  

 

4. 2. Characterization of the WT contrast response rhythm 

 

In this study the results of three data sets contribute to the characterization of 

Drosophila melanogaster’s wild type rhythm in visual contrast sensitivity. These 

three control genotypes are the scarlet-eyed st1, the white-eyed w1118, and the 

brick red-eyed isogenic crossed CS/iso4147. As previously stated, due to the 

visual nature of the SSVEP assay primarily used in this study, eye colour 

control genotypes of all mutants used were employed. Neither of the two eye 

colour mutations have had any previous association with dysfunctional 

circadian rhythmicity. It is quite possible that different visual eye pigments 

migrate in a temporal fashion resulting in changes in the phase or amplitude of 

a rhythm in contrast sensitivity. A rhythm in levels of visual pigment absorbance 

in white-eyed Drosophila was previously found to coincide with a circadian 



	 42	

rhythm in luminance sensitivity (Chen et al., 1992). If different eye colour 

pigments migrate at different speeds or cycle out of phase with one another 

then this could account for differences seen between the contrast sensitivity 

rhythms of fly strains with varying eye colour. This however makes the matter 

of characterizing a wild type rhythm more challenging as one must look 

searchingly to find any common features between the three data sets.  

 

To begin with, one could argue that the CantonS/iso4147 line, being a true wild 

type with no eye colour defects in addition to having been crossed with an 

isogenic line should be the most likely of the three controls measured to 

represent the true wild type phenotype. While the ordinary CS line is highly 

inbred, this outcrossed line may offer heterotic vigour in the hybrid offspring, 

and thus a more reliable view of WT rhythmicity. The fly has a fairly regular 

rhythmicity and a period of only slightly less than 24 hours. The rhythm is 

biphasic, with an FFT identifying 7 likely peaks over 3 days and a Bonferroni 

multiple comparisons test highlighting two of the peaks and one of the troughs 

in this 3-day rhythm. Peaks occur during the subjective day at ZT4-8 as well as 

around midnight, at ZT16. Many of the documented rhythms in the Drosophila 

visual system are described as being unimodal (Chen et al., 1992; Górska-

Andrzejak et al., 2013; Weber et al., 2009) although there is some precedent 

for bimodality also (Damulewicz et al., 2013). I do believe it is worth noting 

however that while numerous studies of rhythmic changes in morphology or 

protein expression include broad statements regarding the phase and modality 

of the rhythms uncovered, one cannot ultimately take too much stock in such 

claims as all too often the time points of such studies are irregularly spaced, 

with no results between ZT4 and ZT13, or even just a comparison between 

midday and midnight. As such, these may not accurately reflect a potentially 

more complex rhythm. The CantonS/iso4147 line demonstrated textbook 

rhythmicity in locomotor behaviour levels and so is a good candidate for 

potentially defining the wild type rhythm. It does however conflict with the 

results of the other two wild type lines, particularly being the only line to 

demonstrate visual rhythm bimodality, and a recurring nighttime peak. 

Furthermore the CantonS rhythm is as or less robust in the rhythmicity of its 

contrast response than the other controls measured, with very few significant 

comparisons. Inadequacy in the number of time points is an ever present 

concern in chronobiological studies, as more time points may reveal more 

significant peaks that are sharp enough to be missed by infrequent 
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measurements. It is therefore a possibility that the lack of distinction between 

CS’s 7 “peaks” indicates that there is no real rhythm to be seen, and that more 

frequent time points would reveal a sharp peak for instance during the 

subjective day which would better agree with the multitude of morning peaking 

unimodal visual rhythms previously recognized in Drosophila, as well as with 

the other control lines. 

 

So let’s address the rhythm measured in the scarlet-eyed control, st1. This fly 

demonstrated decent rhythmicity in the locomotor assay, although less robustly 

than CantonS. It exhibited a rhythm in contrast sensitivity that was very regular, 

with a period shortened to less than 24 hours, causing the results of the FFT to 

support either 3 or 4 peaks over the 3 day time course. Contrast sensitivity 

peaked initially during the subjective day at ZT8, and although thereafter was 

not sufficiently robust to be highlighted by the multiple comparison of means 

test, appeared to repeat, albeit somewhat diminished, every 16 hours or so. 

And so this rhythm may be characterized as being unimodal, with a daytime 

peak and diminishing robustness under constant DD conditions. Whether or not 

a rhythm with period shortened to 16 hours under constant darkness can be 

termed circadian is debatable, but while the regularity of this rhythm is 

appealing as a benchmark for the WT phenotype, having previously deemed 

any rhythm in the locomotor assay with a period shorter than 21 hours to not be 

circadian, I must likewise dismiss the st1 visual rhythm. In spite of overly 

shortened period, many features of the st1 rhythm better correlate with what 

would have been expected of the WT visual contrast rhythm. For instance, as 

previously mentioned, unimodality has been seen to be common of most visual 

rhythms in Drosophila (Chen et al., 1992; Górska-Andrzejak et al., 2013; 

Weber et al., 2009), including in rhythms of luminance and contrast sensitivity 

in other model organisms. Luminance sensitivity rhythms in Drosophila and 

zebrafish have both been described as being unimodal and peaking around 

light offset (Chen et al., 1992; Li and Dowling, 1998). Meanwhile circadian 

rhythms in visual contrast sensitivity have been documented in Xenopus and 

murine models. These contrast rhythms also agree with one another, both 

being unimodal and peaking during subjective daylight (Hwang et al., 2013; 

Solessio et al., 2004). If from this we conclude that visual sensitivity rhythms 

are homologous across these models, then we must expect that the Drosophila 

contrast rhythm is also most likely to be unimodal with a daytime peak. And so 

although the period and robustness of the st1 rhythm may be somewhat 
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dubious, given our previous frame of reference for rhythms in visual contrast it 

may reflect the true WT phenotype. Of course we must also acknowledge the 

possibility that like the CantonS fly, more frequent SSVEP readings may reveal 

more distinct peaks in sensitivity for instance around midnight, which would 

therefore support the CantonS rhythm as being more archetypal.  

 

Thirdly we have the responses of the white-eyed control fly, w1118. Strikingly 

this strain does not appear to have any peaks in sensitivity when under LD 

conditions, only exhibiting peak values on DD1 subjective daytime and 

significantly lower contrast sensitivity at all other times. While the significance 

of this increased acuity on DD1 appears highly robust compared to other fly 

lines due to the sheer number of significant comparisons found by Bonferroni 

testing, the FFT does not identify any likely cycling of the response over two 

days, and to the eye the responses on LD6 and DD1 bear very little 

resemblance to one another. While the peak in sensitivity on DD1 is much 

greater than any measured on LD6, the highest values of each day of 

recordings may coincide at 8 hours after light onset, at ZT/CT8, as although the 

ZT8 reading is significantly lower than that seen on DD1, it is not as low as any 

other time point on the same day. The white-eyed fly could then have a 

unimodal rhythm peaking towards the end of the subjective day, just as in the 

st1 line and in other models. This however a generous conclusion given that 

statistically there is no repeating rhythm, and the increased robustness of a 

possible rhythm when free-running compared to that of LD conditions is 

incompatible with the gradual decline in amplitude usually associated with 

circadian rhythms in DD. A second day’s worth of DD readings could reveal a 

more obvious repeating trend, as could more frequent readings. It has been 

suggested previously that the white-eyed mutant fly is not only optomotor blind 

due to its lack of visual eye pigmentation, but is in fact dazzled by moderate 

daylight, showing drastically lowered courtship vigour in daylight in comparison 

both to control lines in daylight, and to its own vigour under dim red light (Krstic 

et al., 2013). And so in this study the mutant may be dazzled during daytime 

LD conditions, concealing the typical WT rhythm, which otherwise continues 

unhindered, with low contrast sensitivity at night, and high sensitivity during the 

subjective daytime under DD conditions when it is not dazzled by greater light 

intensity. 
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And so we are left with two apparent options when characterizing the WT 

rhythm in contrast response; 1) a bimodal rhythm with daytime and nighttime 

peaks, supported only by data from the CantonS / iso4147 line and 2) a unimodal 

rhythm with a daytime peak supported by data from the st1 line, and potentially 

from the w1118 line. Given the homology seen amongst the recorded contrast 

sensitivity rhythms of other model organisms (Hwang et al., 2013; Solessio et 

al., 2004), as well as homology in the luminance response rhythm between 

Drosophila and zebrafish (Chen et al., 1992; Li and Dowling, 1998), it is 

possible that the WT rhythm is that which correlates with Xenopus and mouse 

models, and is here presented by the response of the st1 fly. Ultimately 

however, despite discrepancies between the control lines, one must argue that 

the CantonS / iso4147 flies, being heterozygous offspring of a classic Drosophila 

WT strain and an isogenic line are the most reliable example of wild type 

behavior, as evidenced by their exemplary locomotor rhythms. This should be 

confirmed by further examination of wild type Drosophila melanogaster with 

more frequent time points.  

 

4. 3. Circadian rhythms in the contrast response of TTFL-compromised 

mutants 

 

In order to determine the involvement of the molecular clock in the control of 

Drosophila’s rhythm in visual contrast sensitivity two Transcriptional-

Translational Feedback Loop impaired mutant lines were used. The first of 

these, ClkJrkst1 carries a mutation deleting most of dClk’s C-terminal domain, 

disrupting normal function of the core molecular clock component and thus 

disrupting the TTFL. The second, per0, is a genetic knock out of the period 

gene, another core component of the TTFL and so the mutant is also lacking 

correct TTFL function.  

 

What may appear ironic at first, the circadian rhythmicity in the ClkJrkst1 mutant 

arguably demonstrates the most robust circadian rhythm measured in this 

study. This mutant, despite disrupted TTFL function, has a highly regular 

circadian rhythm. The rhythm appears to peak 4 hours after anticipated light 

onset on every day assayed, even under DD conditions, although the peak of 

DD2 is sufficiently diminished in amplitude not to be identified by a multiple 

comparison of means test, and significant troughs during the subjective night 

are found on all three days. The rhythm has a periodicity of approximately 24 
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hours as the FFT results indicate that 3 complete cycles occur over the three-

day time course. And so the first of the TTFL impaired mutants has a clear and 

truly circadian rhythm in visual contrast sensitivity that peaks during the 

subjective day, and then significantly decreases during the subjective night, 

and so is unimodal. The rhythm gradually diminishes in amplitude each 

subsequent day under constant conditions. This rhythm is very similar in phase 

to that of the control, the st1 fly. It is slightly longer than that seen in the control, 

which correlates with the results of the locomotor assay, in which the minority 

of ClkJrkst1 flies found to be behaviourally rhythmic had a period that was 

slightly lengthened compared to the control. The amplitude of the rhythm is 

also slightly greater in the ClkJrkst1 relative to that of the control.  

 

The first conclusion we may take away from this is that although there is a loss 

of an evening or nighttime peak, the rhythm in contrast sensitivity seen in the 

WT persists in ClkJrkst1, and thus must be partially capable of functioning 

independently of the molecular clock. The evening peak in the L1 and L2 

monopolar cell swelling/shrinking rhythm has been proposed to be driven by 

evening release of Ion Transport Peptide (ITP) from the 5th sLNv (Hermann-

Luibl et al., 2014), where ITP expression was also documented as being 

diminished in ClkAR, a hypomorph mutant of dClk, and so it is likely that the 

ClkJrkst1 mutant also experiences low ITP expression and thus a loss of the 

evening-driven peak in visual activity. Given that dClk is integral to TTFL 

function the retention of the daytime peak supports the idea of an alternative 

timekeeping mechanism, such as the more recently proposed metabolic 

oscillator (Bass and Takahashi, 2011; Causton et al., 2015; Edgar et al., 2012; 

O’Neill and Reddy, 2011). In this model autonomous cycling of redox 

metabolites produce circadian output independently of molecular clock gene 

transcription. In fact, rhythms in the oxidation state of peroxiredoxin proteins 

have been found to be conserved across all kingdoms of life, and to cycle in 

the very same ClkJrkst1 mutant used in this study (a rhythm which also peaks 

between ZT0 and ZT4, and is unimodal) (Edgar et al., 2012).  And so although 

some features of WT rhythm may have yet to be fully elucidated, one cannot 

deny that a robust and circadian rhythm is maintained in a TTFL-impaired 

mutant, and that this strongly suggests that the rhythm in visual contrast 

sensitivity’s daytime peak is or can be governed exclusively by an alternative 

circadian oscillator. Given similarities in the phase and modality of this rhythm, 

it is likely driven by a metabolic oscillator that derives from the cycling state of 
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reactive oxygen species. In mice, the circadian rhythm in contrast sensitivity is 

described as being modulated by the CLOCK analog NPAS2 and D4 retinal 

dopamine receptors in a dopaminergic signaling pathway in the retinal ganglion 

cells (Hwang et al., 2013). While Drosophila melanogaster expresses no 

second analog of dCLK, such as the pair CLOCK and NPAS2 in mice it may 

have some as-of-yet unidentified timekeeping component that regulates the 

contrast response in a similarly dopaminergic pathway. Additionally ClkJrkst1’s 

increased rhythmic amplitude relative to the control st1 may then be accounted 

for by ClkJrkst1’s high levels of tyrosine hydroxylase and subsequently 

dopaminergic signaling (Kumar et al., 2012).  

 

There is proven homology between the dopaminergic neuronal network of fruit 

flies and vertebrates (Nässel and Elekes, 1992; Sanes and Zipursky, 2010). 

Dopaminergic signaling specifically modulates the contrast response of both 

vertebrates and flies in which a loss of dopaminergic signaling results in a loss 

of photoreceptor function (Chyb et al., 1999; Hindle et al., 2013). It has also 

been shown that due to dopamine’s self-oxidising nature and proneness to 

generating reactive oxygen species (ROS), dopaminergic neurons in particular 

are highly sensitive to oxidative stress (Graham, 1978; Hald and Lotharius, 

2005; Hanna et al., 2015), in which case the dopaminergic neurons of the 

Drosophila retina may be prime candidates for circadian control by a metabolic 

oscillator. 

 

Meanwhile the per0 fly, our second TTFL mutant does not offer such 

informative responses. This mutant, while possessing significant changes in 

Rmax both under LD and DD conditions, has no repeating rhythm, with the FFT 

suggesting a likely 1 or 8 cycles of 3 days. In contrast to the CS fly, there is no 

obviously shortened and repeating biphasic rhythm to support the idea of 8 

distinct peaks having occurred, and more likely there is no rhythm at all. The 

period gene impaired mutant used in a study of Drosophila luminance 

sensitivity was found to have an unimpeded unimodal circadian rhythm, as was 

the period null mutant used in the study of circadian rhythmicity of PRX species 

(Chen et al., 1992; Edgar et al., 2012). This strongly supports the idea that 

expression period gene, as another core component of the molecular clock like 

dClk, is most likely not required for the maintenance of the circadian rhythm in 

contrast sensitivity under constant conditions. While in this study the period 

mutant was found to have a significant relationship between time-of-day and 
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contrast sensitivity Rmax both under LD and DD conditions, the more distinct 

and telling peaks of this rhythm may have been overlooked due to insufficiently 

frequent time points.  

 

4. 4. Local effects on circadian rhythmicity of the Drosophila contrast response 

 

One of the benefits of the SSVEP assay is of course the ability to use a Fourier 

Transform to separate out and identify the contribution of the photoreceptor, 

lamina, and medullary neurons individually, thanks to their respective 

frequency tags. In this study therefore the contrast response of each genotype 

is separated into 3 parts, showing the contribution of these neuron orders. 

Previous studies in the Drosophila visual system have uncovered numerous 

rhythmic changes in the morphology and expression patterns in specific cell 

types. For instance the expression of Bruchpilot, a protein found in the 

presynaptic active zone whose function involves organizing the release of 

neurotransmitter containing vesicles, undergoes a circadian rhythm in 

abundance peaking at ZT13 (Górska-Andrzejak et al., 2013; Kittel et al., 2006). 

It is probable that a corresponding rhythm in neurotransmitter release in the 

lamina would affect the phase of the local rhythm in visual sensitivity. However 

the phase in all three orders of neurons, appeared to be exactly the same in 

each of the genotypes used, for instance while differences were found in the 

rhythms of the ClkJrkst1 and CantonS lines, in each of these lines, phase was 

no different in the photoreceptors, lamina, or medulla. From this we can 

conclude that despite local synaptic modifications that would likely affect the 

visual transduction pathways and so sensitivity, the fact that the 

photoreceptors, lamina and medulla are electrically linked in a feedback loop 

(Heisenberg, 1971) is preventing any local changes to the rhythm in contrast 

sensitivity. Any local circadian changes must contribute to the overall waveform 

of all three neuron orders.  
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4. 5. Concluding remarks  

 

It is well accepted that the function of circadian rhythms is to allow for better 

adaptation to an environment that fluctuates itself in a circadian manner, and 

so allow an organism enhanced fitness and odds of survival (Sheeba et al., 

1999; Yerushalmi and Green, 2009). In this instance it is proposed that 

Drosophila experience a circadian rhythm in visual contrast sensitivity that is 

bimodal, peaking twice during the day at ZT4 and ZT16. Given that fruit flies’ 

rhythm in locomotor activity is also bimodal, peaking at ZT0 and ZT12 it is quite 

likely that the two rhythms have a similar phase and periodicity so that the flies 

may experience an enhanced ability to differentiate between two visual inputs 

when its activity levels are higher, as such an ability would confer an advantage 

in terms of detecting food, predators, or potential mates. This rhythm is out of 

phase with that of luminance sensitivity which peaks during the dark 

period/subjective night only (Chen et al., 1992). Presumably this trade-off 

between contrast and luminance sensitivity occurs so that during the dark 

period when activity levels are lower the fly is more sensitive to a light startle 

reaction. During the day when light levels are higher, the luminance sensitivity 

is an unnecessary metabolic cost, however regardless of light levels, increased 

contrast sensitivity remains worthwhile as long as activity levels are high.  

 

In spite of the challenges in identifying Drosophila’s wild type rhythm in contrast 

sensitivity, the robustness of the ClkJrkst1’s rhythm cannot be overlooked. The 

discovery of another circadian rhythm that is partially molecular clock 

independent adds additional weight to the recent theory of a metabolic 

oscillator and calls for a reexamination of the driving force behind circadian 

rhythmicity. Furthermore the results of this study strengthen the link between 

the dopaminergic pathway and circadian rhythmicity in the visual system. This 

improved understanding of the contributing factors to visual function provides 

knowledge that is vital for the treatment of both circadian and visual disorders 

in humans. In order to better understand these factors future routes of study 

should include looking for evidence of metabolic input to the contrast response 

locally, such as measuring for circadian rhythmicity in ROS and peroxiredoxin 

species in the retina. 
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