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Abstract 

Anthropogenic climate change is driven by increasing emissions of greenhouse 

gases (GHGs), and the three biogenic GHGs with the greatest effect on radiative 

forcing are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). One 

mitigation strategy is to substitute fossil fuels with biomass-derived energy, so a 

thorough understanding of the GHG budget of energy crop production is needed. 

Agriculture’s biggest contribution to GHG emissions is N2O as a consequence of 

nitrogenous (N) fertiliser applications.  

Here two different novel automated systems, SkyBeam and SkyLine, are presented, 

capable of measuring net ecosystem exchange (NEE) of CO2, CH4 and N2O on a 

near-continuous basis. Unlike micrometeorological methods, SkyBeam and SkyLine 

resolve to the plot scale, enabling manipulative experimentation to further 

understanding GHG fluxes. In fully replicated experiments, the effects on GHG of 

compost addition and different N fertiliser types were investigated in Miscanthus x 

giganteus and oilseed rape (OSR, Brassica napus). A further comparison of soil GHG 

flux under a Miscanthus field and a conventional arable field was made using flux 

chambers. 

N2O made a major contribution to the GHG balance in the arable field (14% total soil 

flux) and from the OSR, where it reduced the GHG sink by ca. 50%. N2O flux was not 

a significant factor in Miscanthus, though compost addition increased N2O emission. 

Miscanthus was a net GHG source, attributed to CO2 emissions resulting from 

ploughing. Soil fluxes of N2O and CH4 were greater than those including vegetation. 

Strong diurnal patterns were seen in all three GHGs measured, and these differed 

between crops. N2O showed uptake during the day and emission at night from 

Miscanthus, whereas N2O emissions were largest during the day from OSR. Diurnal 

peaks in soil respiration occurred at 15.00 under barley (Hordeum vulgare) at and 

under Miscanthus at 20.00. Continuous measurements are vital to characterise the 

diurnal pattern of GHG flux, or can be used to direct appropriately-timed daily 

measurements to calculate GHG budgets.  
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1 General Introduction 

 Trace gases 

Trace gases are those gases found in the atmosphere at very low concentrations, 

generally accepted to mean gases at less than 1% of total volume, i.e. they are 

present at concentrations lower than 10,000 parts per million (ppm), though Conrad 

(1996) suggests a lower concentration of 20 ppm. For the purpose of this thesis the 

less conservative definition will be considered, and thus encompasses a great many 

compounds including, inter alia, carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), various chlorofluorocarbons (CFCs), nitric oxide (NO), ammonia (NH3), carbon 

monoxide (CO) and other non-methane hydrocarbons (NMHCs). Short-lived species 

such as CO and NO vary greatly in concentrations across spatial scales (Matson &  

Harriss, 2009) whilst longer lived gases, such as CO2 and N2O, have more spatially 

consistent concentrations. 

Of all the trace gases, it is those that play a role in the radiative balance of the planet 

that are of particular interest in the context of climate change. Gases that increase 

the radiative forcing of solar radiation are known collectively as greenhouse gases 

(GHG) and the GHGs that make the largest contribution to warming, after water 

vapour (H2O), are CO2, CH4, CFCs and N2O (IPCC, 2011). Whereas CFCs are 

artificially synthesised chemicals that have been widely phased out due to their 

ozone-destructive reactions in the stratosphere, CO2, N2O and CH4 are all biogenic 

gases. A thorough understanding of the processes controlling the production and 

consumption of these latter three gases is key to our ability to manage land use to 

benefit the GHG balance. 

Although it is now widely appreciated that the atmospheric concentration of CO2 is 

rising rapidly, the importance of CH4 and N2O is frequently overlooked despite the 

fact that N2O and CH4 have, mole for mole over a 100 year timeframe, a global 

warming potential 298 and 34 times, respectively, that of CO2 (see Forster et al., 

2007, Myhre, 2013). Indeed, some of the most sensible strategies for reducing 

national GHG burdens specifically tackle these more potent gases. Unfortunately, 

both N2O and CH4 can be emitted in rapid bursts directly from terrestrial systems 

(Ambus et al., 2010) necessitating a more continuous approach for accurately 

quantifying their fluxes. Sources and sinks of trace gases 
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1.1.1.1 CO2   

Photosynthesis and respiration represent the major global biological sinks and 

sources of carbon (Reay &  Grace, 2007); CO2 is assimilated by plants through 

photosynthesis and converted to biomass, with the plants themselves, together with 

heterotrophic organisms, subsequently using this assimilated carbon for respiration, 

and produce CO2 which is released back into the atmosphere. It is a combination of 

combustion of fossil fuels, specific industrial processes and land use change that are 

largely responsible for the elevation of atmospheric CO2 (Stocker et al., 2014) 

concentrations from levels of pre-industrial levels of 280 ppm to nearly 400 ppm in 

this decade. 

For a summary of the fate of assimilated carbon, see Figure 1a in Singh et al..(2010). 

It is thought that approximately 50% of anthropogenic CO2 emissions are absorbed 

by terrestrial and oceanic carbon sinks annually (Sitch et al., 2015). The major 

terrestrial CO2 sinks are net primary production (NPP) and sequestration to the soil 

(Reay &  Grace, 2007). Sequestration occurs where carbon accumulates in the soil, 

either because environmental conditions do not favour decomposition, which will lead 

to a buildup of organic material in the soil (e.g. peat lands), or where a proportion of 

decomposed biomass becomes ‘inert’ and is held back from the atmosphere for 

thousands of years (Reay &  Grace, 2007). There is concern that with warming global 

temperatures, conditions will favour decomposition and increasing amounts of 

detritus will be respired back to the atmosphere rather than being sequestered in soils 

(Singh et al., 2010). 

Soil respiration is the largest biological source of CO2 in terrestrial ecosystems (Bahn 

et al., 2009). Factors controlling soil respiration include temperature (Singh et al., 

2010), soil moisture (Orchard &  Cook, 1983), substrate availability and the nitrogen 

content of necromass (Raich &  Tufekcioglu, 2000) and O2 levels (Salome et al., 

2010). Practices to inhibit CO2 losses from soil include reduced tillage in agricultural 

practice, and soil CO2 losses can be managed through land use: deforestation and 

conversion of grassland to agricultural use can result in large soil C losses through 

respiration. 

1.1.1.2 N2O  

N2O is produced biologically by microbes through two processes, nitrification and 

denitrification (Firestone &  Davidson, 1989). Nitrification is an aerobic process, 

through which ammonium (NH4
+) is oxidised to nitrite (NO2

-) and nitrate (NO3
-); 
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denitrification is an anaerobic sequence of reactions through which NO3
- is reduced 

to dinitrogen gas (N2) via N2O (Figure 1.1). A third pathway, nitrifier denitrication, is 

carried out by the same bacteria which oxidise NH4 and are capable of reducing NO2
- 

to N2O (Wrage et al., 2001)..Whereas nitrification is an autotrophic process, 

denitrification is heterotrophic and requires a carbon (C) source (see Wrage et al., 

2001). The principal factors controlling nitrification are known to be NH4 availability, 

soil temperature, moisture and pH (Parton et al., 1996). The most important factor 

controlling denitrification is oxygen (O2) concentration due to the sensitivity of nitrogen 

oxide reductase (NOR) enzymes which are inhibited in aerobic conditions (Knowles, 

1982). Consequently, factors affecting O2 availability will influence denitrification 

rates, and hence N2O production. These factors include soil water content (Davidson 

et al., 1993), and soil respiration, since at higher rates O2 levels are depleted 

(Castaldi, 2000).  

Apparent net N2O uptake is seen when reduction of N2O to N2 exceeds the rate of 

N2O production (Chapuis-Lardy et al., 2007) and up to two thirds of N2O produced at 

depth within a soil profile may be reduced to N2 as it diffuses upwards to the 

atmosphere (Clough et al., 1999). N2O consumption in soils is generally held to occur 

at very high moisture levels which create anoxic conditions (Conen &  Neftel, 2007) 

but N2O uptake has been reported on several occasions from well aerated, dry soils 

(e.g. (Flechard et al., 2005, Warneke et al., 2015, Wu et al., 2013), a process which 

has been attributed to aerobic denitrification (Bateman &  Baggs, 2005), and which 

has been shown to be predominantly of biological origin (Warneke et al., 2015). 

The concentration of N2O in the atmosphere has increased from 270 ppb prior to the 

industrial revolution to its current concentration of ca. 320 ppb (Forster et al., 2007). 

The rise in atmospheric N2O is largely a consequence of the increase in 

anthropogenic nitrogen (N) fixation via the Haber-Bosch process, principally for the 

production of nitrogenous fertilisers (Vitousek et al., 1997). N2O may be produced 

directly by microorganisms in soils or indirectly, when nitrogen (N) is leached from 

soils (e.g. as nitrate, NO3) and a percentage subsequently converted into N2O (Adler 

et al., 2007). Hence, one principal driver of N2O production from soils is the addition 

of N fertilisers to agricultural land (Forster et al., 2007) and, very specifically, rapid 

bursts of N2O production have frequently been seen in agricultural systems after 

wetting events (e.g. such as rainfall (Woli et al., 2010)) and these emissions can 

constitute 20% of the annual flux, occurring over just a few days (Mummey et al., 

1997).   
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Figure 1.1 Elements of the nitrogen cycle showing nitrification and denitrification pathways. 

Enzymatic steps responsible for N2O production are indicated by the large arrows; the 

enzymes hydroxylamine reductase (HAO) and nitric oxide reductase (NOR) are labelled 

adjacent to the arrows. Adapted from Wrage et al. (2001). 
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This high temporal variability represents a major challenge when attempting to 

quantify field fluxes for this gas. 

1.1.1.3 CH4  

Atmospheric concentration of CH4 has risen to around 1770 ppb, from a pre-industrial 

level of 770 ppb, constituting an increase of more than 250%, the largest percentage 

increase of any of CO2, N2O and CH4 (Conrad, 2009). By far the largest global source 

of CH4 is microbial in origin, which totals 69% of net CH4 production (Conrad, 2009). 

The chemical reactions governing CH4 production occur in anaerobic conditions, most 

commonly where acetate or CO2 is reduced in the absence of alternative electron 

receptors (Figure 1.2; (Schutz et al., 1988, Thauer, 1998)). CH4 is produced by 

methanogenic archaea, predominantly from soils, ruminant guts, sediments and any 

system where a combination of available carbon and anaerobic conditions occur 

(Myhre, 2013), making the largest biological sources of CH4 are wetlands, rice 

paddies, livestock and microbial processes in landfill sites (Myhre, 2013). The net 

system fluxes of CH4 are greatly complicated by the fact that methanotrophic bacteria, 

in the presence of oxygen, can oxidise up to 90% of CH4 produced (Le Mer &  Roger, 

2001), making net fluxes the result of these two processes. A third, and much less-

well understood process, is anaerobic CH4 oxidation, which is undertaken by a group 

of archaea in the presence of sulphate (Knittel &  Boetius, 2009). Spatial 

heterogeneity in ecosystems, both vertically and horizontally, means that both CH4 

sources and sinks are often present, with the highest net fluxes to the atmosphere 

frequently associated with wetter regions (McNamara et al., 2008), whilst drier soils 

within the same catchment may well be acting as effective CH4 oxidation sites (Figure 

1.2; (Bradford et al., 2001). Factors governing whether a soil is a net producer or 

consumer of CH4 include its physical properties (Smith et al., 2003), available N 

content (Bender &  Conrad, 1995, Reay &  Nedwell, 2004), water content and pH 

(Bender &  Conrad, 1995). Using a combination of land use, basic edaphic and 

climate information, combined with literature values, it is possible to estimate 

landscape CH4 fluxes, but there still remain major data gaps; these are often 

associated with unusual land uses (e.g. willow energy crops on previous agricultural 

land) or critical interfaces between wet and dry or terrestrial and aquatic systems. Not 

unlike N2O, CH4 may be emitted from the soil in large bursts over short periods of 

time (Moore et al., 1990) but there are a number of important and differing alternative 

pathways for CH4 transport through plant-soil systems, in particular, diffusion through 

aerenchyma in wetland plant species allows CH4 formed in sediments to reach the 

atmosphere (Kludze et al., 1993)   
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Figure 1.2 Methane fluxes across a landscape, the equations for production (methanogenesis) 

and consumption (oxidation) are shown. Methanogenesis occurs in anaerobic conditions and 

oxidation in aerobic. Upward arrows indicate where CH4 is released to the atmosphere and 

downward arrows where uptake will occur. Uptake generally occurs in well aerated soils such 

as in agricultural and forest systems (1 & 2), whereas emission will occur where the water 

table is high (3), through direct transport via aerenchymous wetland plants (4), or from 

sediments via ebullition (5) or upward diffusion through a water body (6).  

  



32 
 

 Trace gases and agricultural soils 

In 2013, agriculture contributed approximately 8% of the UK’s annual net GHG 

emissions, which made it a larger contributor than industrial processes and equated 

to more than half of the emissions from transport (DECC, 2015). The breakdown of 

UK agricultural emissions reveals that the three biggest sources are soil N2O flux (ca. 

50%), CH4 from livestock (ca. 25%) and emissions from manure management (ca. 

15%) (DEFRA, 2014a). 

N2O production by agricultural soil is derived principally from mineral N and manure 

applications to arable and grassland, and N excretion from livestock, with indirect 

emissions from NO3 leaching and NH3 volatilisation also important additional sources 

(Skiba et al., 2012). The type of mineral N applied as fertiliser can affect N2O fluxes 

(Dobbie &  Smith, 2003a, Zhang et al., 2014, Zhou et al., 2014) and a range of 

mitigation techniques are available. However, due to the heterogeneity of N2O fluxes, 

a fundamentally better understanding of the processes governing N2O fluxes is 

needed in order to implement precision agriculture to effectively reduce future N2O 

emissions (Rees et al., 2013).  

Whereas livestock agriculture is a large source of CH4, soils under arable crop 

cultivation are often CH4 sinks (Flessa et al., 1998, Gregorich et al., 2005, Meijide et 

al., 2010, Sanz-Cobena et al., 2014), and European crop lands are known to be a net 

sink for CH4 (Ciais et al., 2010). The sink effect is due to the aerobic nature of the 

majority of arable soils, and the sink effect diminishes depending on soil type, with 

the greatest oxidation seen in sandy-loams and the least in clay soils (Regina et al., 

2007). Grasslands are also often CH4 sinks (Wei et al., 2015), though this is by no 

means always the case (Hortnagl &  Wohlfahrt, 2014), and the presence of grazing 

animals can shift a CH4 sink to a net source (Schonbach et al., 2012). 

Tillage is known to increase soil respiration, particularly in the period immediately 

following disturbance (Alvaro-Fuentes et al., 2007, Reicosky et al., 1997, Roberts &  

Chan, 1990). Reducing, or halting tillage completely can reduce soil respiration and 

increase soil C sequestration (Jacobs et al., 2009), and as such has been 

recommended as a GHG mitigation technique (Paustian et al., 2000). However, soils 

under reduced tillage regimes have been shown to emit more N2O than those under 

conventional tillage (Koga et al., 2004), and modelled values have indicated that as 
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much as 300% of the gain in sequestered C from reduced tillage may be simply lost 

as N2O flux to the atmosphere (Li et al., 2005). 

 GHGs and bioenergy crops 

With a growing world population, and a diminishing global reserve of fossil fuels, it is 

necessary for alternative sources of energy production to be investigated. Ethanol 

from biomass has long been used as a petroleum substitute (Nastari, 2012, Tyner, 

2012), most commonly fermented from sugars obtained from corn (Zea mays) or 

sugar cane (Saccharum spp.). Diverting food crops into energy production would 

seem counter-productive, given that there is genuine concern regarding our ability to 

meet future global food demand (Godfray et al., 2010). Crops such as corn, sugar 

cane, oilseed rape (OSR, Brassica napus) are considered first generation energy 

crops. Attention has recently turned to utilising lignocellulosic material: woody tissue 

and non-food crop by-products such, as corn stover. For this reason crops such as 

short rotation coppice (SRC) tree species such as willow (Salix spp.), poplar (Populus 

spp.), the perennial grasses Miscanthus (Miscanthus x giganteus) and switch grass 

(Panicum virgatum) and short rotation forestry (SRF) are being cultivated for energy 

production (Rowe et al., 2009), and these are referred to as second generation energy 

crops. These are attractive since they do not deplete food supplies, have high yields 

(Oliver et al., 2009), require less fertiliser input than annual arable crops (Don et al., 

2012), and can be grown on marginal agricultural land (Gopalakrishnan et al., 2011). 

The challenge with utilising for lignocellulosic material for fuel production lies in 

degrading the hemicellulose to smaller carbon molecules which can be fermented to 

produce ethanol or transesterified for the production of biodiesel (Ragauskas et al., 

2006). Pretreatment must be undertaken to achieve this, which can be energy 

intensive, and is costly in terms of finance and GHG emissions. In order to make this 

process viable, maximum value in terms of by-products must be extracted from the 

‘biorefineries’ where processing occurs (Ragauskas et al., 2006), and much research 

into energy-efficient enzymatic digestion of hemicellulose is being carried out 

(Chandra et al., 2015, Hong et al., 2015, Yang et al., 2015). In addition to liquid fuel 

production, energy may be derived from direct combustion of biomass in dedicated 

power stations, such as that found at the UK’s largest power station, Drax, in North 

Yorkshire. 

It is vital to consider the previous role of any land utilised for energy crop cultivation. 

The GHG fluxes associated with land use change to bioenergy production will largely 
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depend on the nature of the land use transition. The largest net gain in terms of GHG 

balance is predicted to come from converting conventional tilled arable land to either 

broad leaved forest or Miscanthus, mainly due to the reduction in N fertiliser usage 

(St Clair et al., 2008), and any transition from grassland or forestry to energy cropping 

is likely to lead to a net emission of GHGs (Harris et al., 2015). CH4 may be similarly 

affected by land use change. Since CH4 oxidation/production is heavily reliant on 

whether soils are anaerobic, an important factor in whether land is a source or sink of 

CH4 is the impact on soil moisture status. If changes in the land use alter soil water 

relations, this may affect the rate at which CH4 is produced or consumed. Converting 

forest to bioenergy crop production can stop CH4 oxidation; in contrast the planting of 

oil palms may stimulate CH4 oxidation (Cherubini et al., 2009).  

In order to obtain an accurate GHG budget for bioenergy, full life-cycle analyses 

(LCA) of bioenergy production must be undertaken (Kaltschmitt et al., 1997). This 

accounts for the fluxes of all GHGs at each discrete stage of bioenergy production. If 

bioenergy production GHG balance is only considered in terms of CO2, it may well 

encourage utilisation of crops with high nitrogen fertiliser requirements as feedstocks, 

which might lead to increased N2O emissions which undermine any carbon gain 

(Reay et al., 2012). An attributional LCA considers each phase of the process which 

may contribute a net production or consumption of GHGs (Figure 1.3); a 

consequential LCA considers the wider implications of energy production, including 

indirect land use change. However, the work in this thesis stops at the ‘farm gate’: 

only the GHG balance in terms of fluxes from soil and vegetation will be investigated.
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Figure 1.3 Conceptual biofuel life cycle analysis. Each stage must be considered in terms of greenhouse gas (GHG) production and consumption in 

order to quantify the GHG balance of bioenergy. 
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 Soil fluxes vs net ecosystem fluxes 

The net ecosystem GHG flux is the total flux of GHG gases, either positive or 

negative, once all the sources and sinks have been determined and accounted for. 

This is the most important figure when considering trace gas fluxes, especially with a 

view to extrapolating budgets at a landscape scale and larger (Mosier, 1998). It has 

been known for some time that CH4  flux from soil to the atmosphere may be facilitated 

by aerenchymous tissue in rice plants (ButterbachBahl et al., 1997), peatland plants 

such as Eriophorum vaginatum (Saarnio &  Silvola, 1999) and other wetland species 

(Ding et al., 2005). Trace gas emissions have been measured from the stems of non-

aerenchymous plant species: Gauci et al. (2010) measured significant emissions of 

CH4 from the stems of alders (Alnus glutinosa) and N2O emissions have also been 

detected from stems of wetland trees  (Rusch &  Rennenberg, 1998) and non-wetland 

tree species (Pihlatie et al., 2005). In order to be confident of the total net GHG 

exchange it is important to be able to measure both the fluxes of trace gases from the 

soils beneath vegetation, but also the fluxes from the vegetation itself.  

 Existing technologies for trace gas measurement 

Several technologies exist for the quantification of trace gas fluxes and many studies 

have been conducted ex situ with soil incubated in laboratory studies. However, since 

it is field fluxes which are of most value to climate change research, so for the 

purposes of this thesis, the common techniques used for in situ field measurements 

of fluxes will be considered. Each method has various advantages and 

disadvantages, in terms of the quality of the data they can produce, and the cost at 

which those data are generated. Of particular interest are the spatial scale at which a 

method is able to measure and the frequency of the measurements (Figure 1.4), 

which can be key to detecting subtleties in the mechanisms controlling trace gas 

fluxes. 

 Chamber methods 

Since the early twentieth century, chambers have been employed to measure trace 

gases (Matson &  Harriss, 2009). Chambers may be classified as static/non-steady 

state or dynamic/steady state. Static chambers are also often referred to as cover-

boxes and they usually consist of a sealed chamber placed over the soil with an air-

tight sampling port through which volumes of air are removed, normally manually, at  



37 
 

 

Figure 1.4 Common methods of trace gas measurements, considered in terms of the area at 

which they measure (horizontal axis) and the frequency of the measurements mad (vertical 

axis).  
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discrete intervals. Chambers may be a single unit placed on the soil, but more 

commonly they have a two-part construction, consisting of a base fitted into the soil 

and a separate cover box. The base, often referred to as a collar or core, is usually 

partially buried below the soil surface for the duration of the study, whilst the cover is 

deployed only during gas sampling periods. Gas samples are taken from the 

headspace at intervals and stored in gas tight containers which are usually pre-

evacuated glass or metal containers or bags (e.g. Rochette & Erikson-Hamel, 2008). 

The gas samples are then normally returned to the laboratory where they are 

subsequently analysed to determine the time series of concentrations for the gases 

of interest. Flux rates are calculated using a regression of change in gas 

concentration over time (e.g. Venterea et al., 2009), and much work has been done 

to suggest a standardised methodology (de Klein & Harvey 2012)  

An alternative design for static chambers is to simply cycle the accumulating 

headspace gas from the chamber through an analyser such as an infrared gas 

analyser (IRGA), photoacoustic analyser or tunable diode laser. Such chambers are 

frequently designed for manual operation, which requires the investigator to place the 

chamber over the collar, and in the case of a field experimental comparison, to move 

the equipment sequentially between collars. In these systems, the chamber closes 

for a specified length of time and circulates headspace gas through the analyser 

which measures the concentration of the trace gas at a high frequency, typically 1Hz. 

Each chamber closure generates a series of concentrations over time which are used 

to plot a regression, from which the flux can be calculated. The data from such 

systems are normally stored as a file on the analyser or attached computer, and can 

be viewed in real time in the field. Commercial systems for CO2 fluxes, with associated 

software, are available from PP Systems (UK) and Li-Cor (USA). 

Automated chambers are also available, which are designed for longer term 

deployment over weeks, months or even years (Grace et al., 2012). These automated 

chamber systems close for a programmable length of time in a preordained sequence 

and monitor fluxes at programmed intervals, and can be multiplexed into multiple 

chamber arrays across a landscape or experimental set up. It is recommended that 

chambers should incorporate a vent for equalising internal and external pressures 

(see below) since ‘pumping’ actions may affect flux measurements. Achieving this, 

whilst ensuring that no gas leakages occur, has resulted in the development of quite 

sophisticated vent designs, which are also discussed below.   
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One variant of the static chamber is the dynamic chamber which, instead of allowing 

an accumulation of air in the chamber, maintains a constant and measured air flow 

through the chamber, directly fed to a gas analyser. This approach has been used for 

several decades (Reiners, 1968) and relies on the difference in the concentrations of 

incoming and outgoing air to determine flux rates and an accurate measurement of 

flow rates. Again, these chambers usually consist of two components, viz. a collar 

inserted below the soil surface and the chamber itself, which sits on top of the collar, 

forming a seal in the same fashion as for a coverbox. 

 Gradient techniques 

A major criticism of chamber approaches is that the chamber itself may affect the 

microclimate of the system under study, thus influencing the processes being 

measured. In practice, these criticisms do not apply to short flux measurement 

periods when chambers are removed between measurements, but the next stage in 

the development of in situ flux measurements is to try and avoid any chamber 

whatsoever. This led to the development of the so-called ‘gradient methods’ which 

relied on measuring the diffusive gradient of the gas over the system, taking 

simultaneous measurements of gas concentration at various different heights above 

the vegetation canopy. For example, using a tower with chemical traps (e.g. Duyzer 

et al., 1992) or piped inlets at different heights serving a fast response analyser, it is 

possible to detect positive and negative gradients and to subsequently calculate 

ecosystem fluxes. Whilst avoiding any invasive chambers or manipulation of the 

system under study, the calculation of flux and requirement for a measurable gradient 

meant that the approach has been rapidly superseded by the development of the 

more sophisticated and analytically demanding eddy covariance (EC) approach. The 

technique was originally used for analysis of CO2 fluxes but has also been used for 

other trace gases, including N2O and CH4, using fast response analysers (Hargreaves 

et al., 1994). 

A similar gradient approach has been applied to estimating fluxes of trace gases 

through the soil profile, using the quite marked gradients of gas concentrations 

frequently seen down soil profiles. Soil gas probes have been used to calculate fluxes 

of gases within a soil profile by measuring concentrations of gas at specific depths 

below the surface and applying diffusive models (e.g. Li & Kelliher, 2005). 

Additionally, approaches similar to those used for the above-ground chamber 

technique have been attempted. In these cases, the probes usually consist of hollow 
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tubes that are placed in the soil at a certain depth, achieved by driving the probe 

vertically into the soil or by excavating an opening for the probe directly in the soil. 

Some such soil probes have holes in the sub-surface end of the tube to allow diffusion 

of gas into the probes and the probe is sealed with a cap at the end exposed above 

the surface. It is from this end that samples may be taken for analysis, using the same 

techniques employed with chamber-based methods, such as a GC (Fierer et al., 

2005) and IRGA (Brummell &  Siciliano, 2011). The probe itself is commonly made 

from corrosion proof metal such as stainless steel but other non-reactive materials 

such as bronze (Dowdell et al., 1972) or plastics e.g. polyvinylchloride (Goodroad &  

Keeney, 1985) have been used.  Other designs utilise gas permeable materials such 

as silicon (Kammann et al., 2001a, Boon et al., 2014), and therefore do not require 

holes for gas diffusion. Samples may be taken once the internal gas concentration 

has equilibrated with those of the soil, which may occur around seven hours after 

placement/flushing (Kammann et al., 2001b). These probes are completely buried 

and have a gas sampling tube which extends from the probe to above the soil surface. 

Probes are designed to be left in the field for periods of weeks or months, with 

sampling being undertaken at intervals, as determined by the experimenter. As with 

chambers, probes may be sampled manually for discrete measurements, or they may 

be automated for near-continuous measurements (Albanito et al., 2009). Probes are 

left uncapped outside of sampling periods and fluxes are calculated using the same 

regression approaches employed for chamber-based methods, with a number of 

assumptions being made (see below). Due to the reliance of soil probes on passive 

diffusion, the temporal resolution which they provide is generally very low, in the order 

of hours or days (Albanito et al., 2009) since with any change in gradient a new 

equilibrium must be reached, and so they are wholly unsuitable for situations where 

fluxes rapidly change. 

 Box method 

In a similar technique to the gradient air sampling described above, Denmead et al.. 

(1998) outlined a mass balance method for calculating trace gas fluxes within large 

square plots. In this case, gas concentrations were sampled at specific heights along 

the four boundaries of a 24 m x 24 m plot and the difference in concentrations (in 

addition to monitoring the wind direction) used for the calculation of fluxes within the 

plot using simple mass balance approaches. The equivalent calculations could be 

made from circular plots with concentrations measured in the centre, since the wind 

direction will always be towards the measuring equipment (Denmead, 1995). The 
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concentrations of the gases can be measured using rapid analysers, or an on-line GC 

(Denmead et al., 1998). The principle has been used to extrapolate fluxes over much 

larger areas; see for example Kozlova et al. (2008), who used measurements from 

tall towers in Siberia and Shetland to infer large areal fluxes. The use of tall towers 

has enabled estimation of terrestrial fluxes at the national scale, such as the Mace 

Head tower in western Ireland (Biraud et al., 2002), through back modelling the 

source of GHGs using naturally- occurring radioisotopes of radon and lead as tracers. 

A network of further towers around the UK is in development, with sites at Rigehill, 

Angus and Tacolneston. Similarly, measurements of GHG concentration made by 

aeroplane- mounted analysers have been used to infer regional fluxes through a 

mass balance approach (e.g. Pitt et al., 2015). 

 Eddy covariance (EC) methods  

Continuous measurements of flux may also be determined using the eddy covariance 

technique (EC). This is a micrometeorological method, as for the atmospheric 

gradient and box methods, but it relies on the fact that the lower atmosphere, or the 

atmospheric boundary layer (ABL), consists of turbulent rotational eddies of air 

moving laterally across the earth’s surface (Caughey et al., 1979). Consequently, 

each eddy has both a vertical and horizontal element and simultaneous measurement 

of these eddies at high frequency, coupled to monitoring of other atmospheric 

properties and high frequency gas analyses enables the calculation of various fluxes 

over a landscape; heat and moisture transfers have been measured for several 

decades using this process (McMillen, 1988). With the advent of high frequency gas 

analysers, the technique has been adapted to detect fluxes of  infra-red absorbing 

trace gases such as CO2 (Leuning &  Moncrieff, 1990), CH4 (Fowler et al., 1995) and 

N2O (Wienhold et al., 1994). 

EC systems have three general components: the first is a tower or structure to raise 

the equipment above the landscape of interest; the second element is a high 

frequency sonic anemometer to measure wind speed in three dimensions, and the 

third is a high frequency gas analyser. Eddy systems can only be reliably used to 

quantify trace gas fluxes over relatively homogeneous landscapes with a large “fetch”, 

i.e. an unobstructed approach. As the technology and supporting software have 

improved, EC approaches are becoming more commonly used and have been used 

to measure CO2 fluxes over forest canopies (Grace et al., 1995, Miranda et al., 1997), 
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grassland (Soussana et al., 2007, Twine et al., 2000), fens (Grondahl et al., 2008) 

and agricultural land (Laville et al., 1999, Zenone et al., 2011).  

Unfortunately, there are trace gases for which no appropriate fast response analysers 

(say, 10Hz) exist and alternatives to the conventional EC approach have been 

developed, involving collection of samples of gas over longer periods of time (e.g. on 

an hourly basis) for subsequent analysis and correlation to turbulence; examples of 

these techniques are relaxed eddy accumulation (REA) and disjunct eddy covariance 

(DEC; see (Rowe et al., 2011)). REA consists of two reservoirs for collecting gas 

samples, one for holding samples from upward eddies and one for downward eddies. 

The amount sampled is proportional to the speed of the eddy and the flux of the gas 

of interest can be calculated from the volume collected in each reservoir and its 

concentration (Businger &  Oncley, 1990). The gradient methods described above 

and REA are considered to be indirect methods of flux calculation, whereas DEC is a 

direct technique. Samples are taken for periods of less than 0.1 s, but they are 

separated by intervals of tens of seconds to allow the equipment to complete the 

analysis (Grabmer et al., 2004). DEC has been used to sample volatile organic 

compounds (VOCs) as well as HNO3, O3, CO2, CH4, N2O, and SO2 (Turnipseed et al., 

2009). EC systems have been deployed on aircraft (Desjardins et al., 1982) and used 

to measure trace gas fluxes over urban areas (Karl et al., 2009, Mays et al., 2009), 

Antarctica (King et al., 2008) and various entire landscapes in Europe (Vellinga et al., 

2010).  

The recent developments in laser technology, including high frequency cavity ring 

down (CRD), have opened the possibility of expanding EC approaches to any IR 

absorbing gas in a far more routine way, and of expansion to stable isotope 

monitoring; unfortunately these analytical devices are expensive (typically £35,000 to 

£75,000 per instrument).   

 Satellite-based measurements 

Scanning imaging absorption spectrometer for atmospheric cartography 

(SCIAMACHY) is an example of a satellite-based sensing platform that records the 

intensity of solar radiation reflected from the earth’s surface and from this calculates 

the concentration of trace gases, including CH4, N2O and CO2 (Frankenberg et al., 

2005). This enables long-term measurements of fluxes on a global scale, taking 

measurements at a spatial resolution of 30 km x 60 km per pixel and it is able to cover 
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the whole globe in 6 days (Frankenberg et al., 2005). Geo-synchronous satellites 

appear to be stationary over the equator and can monitor a much smaller area for 

extended periods: there are many satellites orbit capable of measuring trace gas 

emissions, and a comprehensive review can be found in Thies & Bendix (2011).    

 Evaluation of flux methods. 

 Chamber methods 

There is often an inherent delay between sample collection and analysis when using 

manual chambers. Whilst an automated system using, for example, an IRGA may 

give results in real time, samples collected from cover boxes normally need to be 

analysed after return to the laboratory, though there are examples of field-deployed 

GCs designed for in situ analysis (Fest et al., 2009). Delay between sample collection 

and analysis prevents any dynamic modification during field campaigns and, in 

extreme, can mean results are not seen until after the experiment is dismantled (Ma 

et al., 2007, Brummell &  Siciliano, 2011). This reduces an investigator’s ability to 

react to a fault in the equipment, and any faults may go undetected until too late to 

rectify; it also means that sampling programmes cannot be readily modified in light of 

incoming information. Also, it is important to ensure that sample deterioration does 

not occur during storage and a number of studies have investigated a variety of 

storage and transport containers. Commercially available storage tubes (Exetainer 

839W, Labco Ltd, High Wycombe, UK) are widely used and have been shown to 

maintain samples without deterioration for 8 weeks (Laughlin &  Stevens, 2003) and 

this longevity of samples has several benefits for an experimenter. Additionally, the 

volume taken per sample may allow for analysis of several gases from the same 

sample, or for sequential analyses. It also gives the investigator the opportunity to 

dilute samples if the concentrations are outside the normal analytical range.  

One key advantage of chambers is that they enable the investigator to collect flux 

data at a very high spatial resolution, with the basal area of chambers typically less 

than 1 m2 (Matson &  Harriss, 2009). This has helped to characterise the fluxes of 

trace gases in different vegetation and soil types and to identify and understand flux 

‘hot spots’ within the landscape (Grondahl et al., 2008). Use of collars with chambers 

also allows for the application of treatments in manipulation studies, such as nutrient 

additions (Zhang et al., 2008, Yao et al., 2009a, Jiang et al., 2010), litter removal (Yan 

et al., 2008) or biota exclusion (Heinemeyer et al., 2011). In addition to treatments, 
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cover box studies provide the scope for replication, which adds considerable power 

within experimental and observational contrasts. 

However, cover boxes are not without their problems and the use of sub-surface 

collars may create undesirable effects. Normally, cores are driven into the ground in 

order to avoid side “leakage” of the gases from the chamber which could lead to an 

underestimation of the flux (Rochette &  Eriksen-Hamel, 2008). It has been shown 

that even when rings are minimally inserted into the soil “so as to avoid cutting fine 

roots” (e.g. 5 cm; (Zhang et al., 2008)), CO2 fluxes will be significantly reduced by 

collar insertion (Heinemeyer et al., 2011). In fact, Heinemeyer et al. (2011) 

demonstrated that collar insertion can reduce CO2 fluxes by up to 30% when 

compared to chambers placed over surface-resting collars. Whilst this may not be a 

major issue in comparative studies of treatment effects, it does raise significant 

questions as to the level to which soil flux data are underestimated, especially when 

the absolute flux forms part of a full life cycle GHG analysis. 

The manual nature of sample collection normally employed in cover box work has 

both advantages and disadvantages. One clear advantage is that a manual approach 

does not require a field power source, enabling systems to be deployed virtually 

anywhere, no matter how remote. Brummell & Siciliano (2011) highlight the 

advantage of being able to gather samples from many separate experimental units 

(chambers) in a short space of time, thus being able to measure simultaneous fluxes 

across treatments, vegetation and soils comparisons, etc. This contrasts with flux 

measurements taken from automated chambers which require several minutes per 

measurement and, consequently, give staggered flux measurements across an 

experimental site. Questions have been raised, however, about the length of time that 

a chamber is left in place and the effect that this may have on the regression 

calculations arising from the measurements (Heinemeyer &  McNamara, 2011).  

Due to the nature of a static chamber, as the headspace gas concentration of a trace 

gas increases over time, it may tend to saturate, thus reducing the diffusion rate of 

gas from the soil (Davidson et al., 2002). In this case if a flux is measured continuously 

the regression reveals an asymptote. Heinemeyer & McNamara (2011) show that by 

measuring headspace concentrations over longer periods, e.g. 75 minutes, as is 

typical of manual cover boxing, the regression  can underestimate the level of the flux 

by up to 30% compared to a regression calculated with fewer measurements from 

the first 15 minutes after chamber closure. Moreover, the sampling method itself is 
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destructive and by actually removing the sample volume from the chamber 

headspace, the investigator is altering the gas composition within the chamber with 

implications for pressure within the chamber and the diffusion gradient.  

Addition of a vent to chambers allows pressure equalisation with the atmosphere 

outside the chamber which reduces errors in the flux measurements from static 

chambers; the effectiveness of this varies depending on the porosity of the soil and 

speed of the wind passing over the chamber (Conen &  Smith, 1998). Christiansen et 

al. (2011) confirm that a vent is required to avoid an overestimation in methane flux 

caused by disturbance when placing a chamber. However, poorly designed vents 

used to equalise internal and external pressure are known to cause overestimation of 

fluxes in windy conditions due to the Venturi effect (Davidson et al., 2002), though 

such issues have now been largely addressed by improvements in vent design (Xu 

et al., 2006).  

One of the stated advantages of cover boxes is the reduced cost of the equipment, 

in comparison to that of automated chambers (Heinemeyer &  McNamara, 2011), with 

typical unit costs of £10 and £5000 for manual and automatic units, respectively. 

However, such figures ignore the associated costs of manual sampling, which may 

be considerable. Automated dynamic chamber systems sample and store data 

continuously in large quantities, which only need to be downloaded relatively 

infrequently with consequent reductions in staff time costs; for equivalent manual 

measurements there are considerable staff time and travel & subsistence costs. 

Additional to the field costs associated with manual sampling are the staff and 

equipment costs associated with the subsequent laboratory analyses.  

More importantly, frequently taken flux measurements will yield a more accurate flux 

estimate and automatic sampling always carries this advantage, whilst also avoiding 

time-based bias. When sampling manually, there is a tendency to sample during the 

daytime (Heinemeyer et al., 2011) and this very strong bias towards day 

measurements is obvious from the refereed literature. For example, from the 40 

refereed papers involving long-term manual cover box approaches resulting from a 

Web of Knowledge search, none reported any night time sampling of trace gases. 

Flux estimates based solely on measurements taken during daylight hours contain an 

inevitable bias and are open to criticism. Whilst work has been done to ascertain the 

most suitable time to sample to avoid bias (e.g. de Klein & Harvey, 2012), certain 

assumptions are made, chiefly that GHG fluxes are governed by soil temperature.  
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Dynamic chambers have many of the same benefits and problems associated with 

static chambers but sampling is non-destructive, and does not alter the physical 

composition of the headspace gas or cause step-wise alterations in the internal 

chamber pressure due to the removal of gas (Brummell &  Siciliano, 2011). However, 

dynamic systems require a power source to maintain a flow of air through the 

chambers, and are more physically constrained because of the necessary sampling 

and inlet lines. They also require accurate flow control and monitoring, combined with 

continual analysis of the concentration of gas in the inlet stream. In comparisons of 

chamber-based techniques for CO2 flux measurement, dynamic chambers have been 

shown to have a smaller variation in accuracy than static chambers (Pumpanen et 

al., 2004) and the higher frequency of measurements per chamber closure provides 

a more reliable method of producing a regression (Heinemeyer &  McNamara, 2011).  

When chambers are automated they can provide near-continuous data for gas fluxes, 

and can be left in the field for weeks or months. This generates data appropriate for 

detecting and understanding temporal variation of fluxes which manual sampling may 

miss. However, depending on design, automated chambers may still not provide an 

entirely accurate estimate of flux (Yao et al., 2009a, Yao et al., 2009b) and a problem 

which Yao et al. (2009a) highlighted, and led to underestimated N2O and CO2 fluxes, 

was due to the chambers being extensively closed throughout their study, excluding 

precipitation from landing on the soil under the chamber. Additionally, their study also 

showed that the manual static chambers probably overestimated fluxes due to the 

lack of temporal resolution, in direct contrast with other studies (Norman et al., 1997), 

some of whom attributed the underestimation to pressure artefacts (Davidson et al., 

2002, Pumpanen et al., 2004) or development of modified diffusion gradients 

(Heinemeyer &  McNamara, 2011). Automated chambers that only close for the 

period of measurement should be used where possible, avoiding problems that arise 

from isolating the soil from normal ambient conditions.  

The relative merits of automated chambers versus manual coverboxes vary 

depending on the trace gas of interest. Whilst continuous measurements are the ideal 

for all three GHGs, it may not be achievable or cost effective and this is of particular 

importance if more than one site is to be studied. Automated portable CO2 systems 

are so readily available that the savings on equipment made by using coverboxes are 

not justifiable in respect of the quality of the data they produce. For CH4 and N2O the 

situation is different. The analytical equipment needed to measure these in real-time 

with chambers is either ill-equipped for transportation, prohibitively expensive or both, 
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though in the last couple of years, steps have been made in the development of 

portable CH4 analysers (e.g. the 15 kg UGGA, Los Gatos Research, CA USA). The 

flexibility required to sample multiple sites may not be provided by such equipment. 

Because they can be used to obtain gas samples for post hoc analysis, coverboxes 

can therefore provide an extremely effective way of obtaining flux data for N2O and 

CH4 to complement CO2 data obtained from automated chamber systems (Norman 

et al., 1997). 

Perhaps the greatest shortcoming of chamber methods for measuring trace gas 

fluxes is their inability to capture vegetation fluxes. The size of commercial chambers 

(such as the Licor 8100-103) prevents measuring fluxes from all but very short 

vegetation: in fact the newest revision of Licor’s long term chambers, which uses a 

lateral closing motion as opposed to an ‘over the top’ mechanism, further reduces the 

capacity to measure from anything but the very shortest vegetation. Whilst these 

systems are extremely effective for measuring fluxes between the soil-air interface, 

vegetation may be an extremely important component for CO2, N2O and CH4 

(ButterbachBahl et al., 1997, Pihlatie et al., 2005, Rusch &  Rennenberg, 1998). 

Whilst larger bespoke chambers have been developed, the tendency is for them to 

be left in situ throughout a study, with resulting micro-environment changes (Mordacq 

et al., 1991, Pape et al., 2009). 

Altering the micro-climate within a chamber is an issue inherent to all chamber based 

methodologies. Temperature increases within a closed chamber can be as large as 

20oC, and to avoid this, opaque insulated chambers are recommended for CH4 

(Butterbach-Bahl et al., 2011) and N2O measurements (Rochette &  Eriksen-Hamel, 

2008). These, however, are not suitable for long term deployment over vegetation, 

and will not accurately reflect day time CO2 exchanges, as they prevent 

photosynthesis. Clear chambers allow photosynthesis to continue but are more prone 

to temperature increase. To reduce this, the period over which measurements are 

taken, and chambers are closed, should be kept as short as possible. Tall automated 

chambers such as those developed by Pape et al. (2009) have a lid that remains open 

except when measurements are taken, though the high-sided design of them still 

isolates the soil and vegetation within from ambient conditions. Whilst these concerns 

are of lesser importance in comparative studies, where all treatments are exposed to 

the same conditions, the same cannot be said when these data are needed for 

accurate flux budgets (Rochette &  Eriksen-Hamel, 2008). When data are used for 
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this purpose, it is vital that they reflect as accurately as possible the fluxes under 

naturally occurring conditions. 

 Eddy covariance 

A major advantage of EC systems over chamber measurements is the minimal 

alteration of the landscape that is being studied. This means that the data delivered 

are free from many of the biases inherent in chamber measurements and it is an 

increasingly popular method for obtaining non-invasive, high frequency flux data. 

Sampling is achieved by measuring the gas concentrations of the ambient 

atmosphere, quantifying the in vivo fluxes at the landscape scale. This puts such 

techniques at an advantage to chamber-based studies when calculating large-scale 

fluxes. Continuous data from high frequency analysers provide high temporal flux 

data, ensuring that short-term emissions after occurrences such as rainfall are not 

missed as might be the case using discrete sampling methods. Another major 

advantage of the EC system is that the gases that can be analysed are only limited 

by the availability of appropriate high frequency (ca. 10 Hz) analytical equipment and 

not by sample size. Due to the nature of that equipment, typically IRGAs and tunable 

diode lasers, the fluxes are calculated in near real-time in the field. 

Eddy systems, however, are not suitable for use everywhere. Baldocchi (2003) 

outlines three major restrictions on their effectiveness: the terrain being measured 

must be flat; stable environmental conditions are necessary; the underlying 

vegetation needs to stretch “upwind for an extended distance”. The loss of accuracy 

when these conditions are breached seriously limits the locations where this 

technology to be deployed. The flux footprint (i.e. the area which an eddy system can 

measure) is normally at the scale of thousands of square metres, and this increases 

with tower height (Schmid, 1994). This lends the technology to measurement of fluxes 

of whole ecosystems and also means that the EC technique cannot provide high 

spatial resolution; clearly, EC is not really suited for trace gas flux quantification in 

experimental contrasts. Replication is hard to achieve with flux towers, due to the 

scale over which they are deployed, with the size of the equipment being prohibitive; 

towers in excess of 1.5 m cannot be erected indiscriminately. Recent developments 

in laser technologies now mean that EC for CO2 and CH4 are becoming routine but 

N2O still remains a challenge for EC, but has been successfully deployed; the new 

generation of CRD lasers for the routine high frequency analyses of N2O will 

revolutionise EC approaches for this gas. 
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The variations on EC, namely REA and DEC systems, are subject to the same 

limitations with regards to suitability of location and scale of spatial resolution. The 

temporal resolution of these is several orders of magnitude less than can be achieved 

with high frequency analysers. Despite this EC and REA have been shown to give 

similar flux estimates (Oncley et al., 1993, Pryor et al., 2008), and when discrepancies 

were found by Oncley et al. (1993), these were be attributed to the IRGA 

malfunctioning. DEC has also been shown to give similar flux estimates to EC, and 

has been successfully used with a range of trace gases (Turnipseed et al., 2009).  

The limitations of EC are not confined to the detection equipment and site topography. 

In their critique of EC, Loescher et al. (2006) list several additional sources of potential 

error which are inherent to the application of the theory behind the method. These 

include stratification of the boundary layer during the night time, periods of low 

turbulence that prevent flux measurement and vertical and horizontal advection which 

cause underestimation of fluxes. Each of these can cause gaps in the collected data 

and the methods for filling these gaps are also prone to error. Furthermore, where 

data are collected from night time measurements, they lose temporal resolution as 

the time period over which fluxes are estimated increases to as much as twelve hours 

(Loescher et al., 2006).   

 Gradient methods 

As a micrometeorological technique, like EC, above ground gradient sampling is 

limited in where it can be used. It has the same requirements for fetch and 

homogeneity as EC and, therefore, is not suitable for experimental plots or replication 

(Denmead, 2008). It has also been shown to give lower flux calculations than those 

obtained from chamber-based studies (Smith et al., 1994). The temporal resolution 

of the flux data from this method is, as with other methods, controlled by the apparatus 

used for measuring the gas concentrations. This also governs the power requirement 

of the equipment which also restricts the technique’s suitability to specific locations. 

This technique shares many of the advantages of EC, such as providing data over 

large areas, in long-term deployment, and it is non-invasive and the approach can 

also be used to sample for multiple gases. However, the requirement for 

measurements to be taken from multiple heights either prevents synchronous 

sampling or can introduce sources of error. 
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The above methods are used to measure fluxes from above the soil surface. This 

may include exchange from vegetation, or just from the soil air interface. Soil gas 

probes, however, allow measurements from an added dimension below the soil 

surface. This gives an additional layer of spatial resolution that is useful for 

investigating gas-evolving processes within the soil profile. As they are relatively 

small, it is possible to have replicates and to use them in manipulation experiments. 

They may be used to collect long-term fluxes, and the temporal resolution is dictated 

by the equipment used to measure gas concentrations, thus the relative merits in this 

respect are identical to those of automated and manual chambers. As a rather low-

tech piece of equipment, individual probes are not expensive. Once again, though, 

the extra costs inherent in the sampling method used need to be accounted for, such 

as man-hours, travel and analysis apparatus.  

Installation of probes is, however, an invasive process. Whether probes are driven in 

vertically through the soil column (Brummell &  Siciliano, 2011) or horizontally into the 

face of an excavated pit face (Kammann et al., 2001a), the disruption to the soil is 

unavoidable. Either method will cause root death, which affects fluxes as shown with 

collar insertion for chambers (Heinemeyer et al., 2011, Mills et al., 2011), and whilst 

in long-term studies root growth will recover, this factor should be considered if data 

are collected soon after the probes are inserted. Probes that are designed with holes 

in them face limitations as to where they can be used. In soils that are prone to water 

logging or have a high water table, the holes allow water to enter the internal space 

and prevent effectiveness. Furthermore, over a study period of months, soil particles 

may pass into the probe or block the holes, thereby preventing diffusion of gas into 

the probe (Fang &  Moncrieff, 1998). The problems of blockage and water are negated 

by the use of sealed probes which separate the gas phase from the solid and liquid 

phases in the soil (Kammann et al., 2001a). Silicone and other polymers used for 

these probes will support the growth of microbial biofilms (Dupin &  McCarty, 1999), 

and these may have a direct effect on trace gas flux, especially CH4 (Clapp et al., 

2004). Furthermore, growth of microbes on other polymers used for gas-permeable 

membranes such as polyethylene can cause them to degrade (Albertsson et al., 

1987). 

 Box method 

This method is designed to bridge the gap in the spatial area that is able to be 

measured by chambers and micrometeorological methods. The ability to measure 
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fluxes from areas that are on the scale of tens of square metres is especially attractive 

as it allows for replication and treatments to be applied, but involves non-destructive 

sampling and is not dependent upon wind direction (Denmead et al., 1998). However, 

Denmead et al. (1998) also highlight several flaws in the design of the technique, 

including the number of samples required to calculate the flux, which increases the 

source of error, and that it is inaccurate when measuring at low wind speeds. 

However, the results gained from mass balance studies are closer to those of models 

than the results from chamber measurements, which led Park et al. (2010) to 

conclude that it is the more accurate method.  

 Satellite-based measurements 

These techniques are the best equipped to large-scale measurements and deliver 

column gas concentration and not flux, which has to be derived from some form of 

‘back-projection’ modelling. Depending on whether the satellite platform is in a 

geostationary equatorial orbit or low earth orbit determines whether the equipment 

will be measuring a small area at high temporal resolution (i.e. every 10-15 minutes) 

(Thies &  Bendix, 2011) or the whole globe over a period of days (Frankenberg et al., 

2005). Satellites are designed for long-term deployment and are capable of providing 

continuous data sets over many years. However, there have been problems with the 

longevity of the sensing equipment and in making appropriate post-capture 

corrections (Thies &  Bendix, 2011). Maintenance of such equipment is hindered 

greatly by location and the equipment is very expensive to design, build and deploy 

into space, which severely restricts the availability of this technology. At present, the 

spatial resolution of such satellite imagery is poor - typically hundreds of km2 - but will 

inevitably improve with time.   
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 Summary 

It is clear that no single existing technology for trace gas measurement satisfies all 

the desired qualities to a high degree (Table 1.1). Where some methods produce high 

frequency data, they are expensive and do not resolve spatially to the plot scale (e.g. 

EC). Lower cost methods such as manual chambers are an effective way of 

measuring multiple gases simultaneously to obtain comparisons between 

experimental contrasts, but they are labour intensive, yield low frequency data and 

there are issues in scaling up from the small scale to landscape values. Automation 

is the key to providing high frequency data, and in order to measure NEE, which is 

the key value to consider in terms of GHG balance, then a system which measures 

from both soil and vegetation is required to achieve this goal. 

In this thesis, two novel automated chamber systems are presented, which are 

capable of measuring over vegetation (in one case from Miscanthus, which grows to 

heights in excess of 3 m), and can deliver the NEE of the three most important 

biogenic GHGs. The flexibility offered by a chamber based system has been utilised 

to investigate the effects of experimental manipulations, and the near-continuous data 

generated may shed light on previously unreported patterns in trace gas fluxes. 
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Table 1.1 Qualitative valuation of methods for trace gas flux measurements. Techniques are given a star rating from 1-5 depending on their 

performance in each category where 1 star = lowest and 5 stars = highest. 

  
Method Cost1 Area2 Spatial definition3 Sampling frequency4 Precision5 Accuracy6 Power requirement7

CHAMBERS

Manual Static

Automatic Static

Automatic Dynamic

EDDY SYSTEMS

Eddy covariance 

Relaxed Eddy Acccumulation

Disjunct Eddy Covariance

GRADIENT SYSTEMS

Flux gradient method

Soil gas probes

Satellite SCIAMACHY

Box Method
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Table 1.1 breakdown of headings: 1. Cost. Covers the cost of equipment. 2. Area: the scale 

over which a technique can quantify fluxes.3. Spatial definition. How sensitive a technique is, 

i.e. how good the spatial resolution is. 4. Sampling frequency. How often measurements are 

taken, ranging from high (10 Hz) to low (days- weeks). 5. Precision. The ability of a technique 

to produce repeatable results. 6. Accuracy. How close to the actual flux that the estimate 

calculated is. 7. Power requirement. This refers to the need for electrical power in the field.  
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 Aims and hypotheses 

Several broad aims were addressed during the course of this project: 

  To develop a novel automated chamber system to deliver high frequency 

GHG flux data at a fine spatial scale from the large bioenergy crop Miscanthus x 

giganteus. It must be able to measure net ecosystem exchange of the three most 

important biogenic GHGs, CO2, CH4 and N2O.  

 To expand the development of a low cost automated chamber system for 

flexible deployment in more conventional crops, providing high frequency and fine 

spatial resolution with the capacity for more than 20 replicates. 

 To compare in-field GHG fluxes from a bioenergy crop, Miscanthus x 

giganteus, to conventional arable crops. 

 To investigate the drivers of GHG fluxes across a variety of agricultural 

systems. 

 

The primary specific hypotheses investigated experimentally whilst completing the 

above objectives were: 

1. GHG fluxes would be significantly higher from the soil under conventional 

cropping than under Miscanthus x giganteus. 

2. There would be a significant difference between cumulative soil CO2 flux from 

an arable crop measured on a monthly and a sub-daily frequency. 

3. GHG flux, in particular N2O emissions, would be greater from Miscanthus x 

giganteus treated with green waste compost than from untreated controls. 

4. N2O emissions from oilseed rape would significantly differ between mineral 

nitrogen forms applied to the crop (NH4 and NO3), and that applying double the 

nitrogen as NH4NO3 would significantly increase N2O emissions.  

Further emergent hypotheses were investigated based upon observations made 

during the course of experimentation, and on opportunities available through 

collaboration. These included i NEE of CO2 from Miscanthus measured using EC and 

large a large clear automated chamber would not significantly differ ii there would be 

no significant difference between fluxes of N2O measured using manual static 

chambers and a novel automated chamber system iii sunlight is a key driver of N2O 

emission from soil under oilseed rape. The outlined aims and hypotheses were 
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undertaken across three experimental field campaigns, and are described in the 

following chapters.  
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2 A comparison of trace gas fluxes from soil under a 
bioenergy crop and a conventional arable crop 
system 

 Introduction 

Global atmospheric carbon dioxide (CO2) levels have exceeded 400 parts per million 

(ppm), constituting a rise of 120 ppm from pre-industrial levels (see Tjiputra et al., 

2014). This increase is largely attributed to emissions from the combustion of fossil 

fuels for the generation of energy. Carbon dioxide, amongst other greenhouse gases 

(GHGs), has properties which cause the atmosphere to warm, with warming resulting 

from human activity referred to as anthropogenic climate change. It is a widely-held 

opinion that a rise of more than 2 oC will have hugely detrimental effects on the global 

biosphere, and in order to remain within this 2 oC target, atmospheric CO2 should not 

exceed 500 ppm (IPCC, 2014). The optimal way of achieving this, in the absence of 

efficient technology for the removal of CO2 from the atmosphere (Boot-Handford et 

al., 2014), is to drastically reduce emissions (Smith et al., 2014). The United Kingdom 

has pledged to reduce CO2 emissions to below 1990 levels by 2030, in part by 

ensuring 15 % of the nation’s energy requirements are met by so-called renewable 

sources by 2020 (DECC, 2011). Bioenergy, or energy derived directly from biomass, 

has been identified as one route through which these reductions can be realised 

(DECC, 2011).  

Bioenergy crops are those grown specifically to provide a feedstock for energy 

production, whether from processing for production of liquid transportation fuels or for 

direct combustion in power plants. The fundamental attraction of bioenergy crops with 

regard to GHG balance is that they are considered a “carbon-neutral” alternative to 

fossil fuel-derived energy (Clifton-Brown et al., 2004). This neutrality is predicated 

upon the direct carbon emissions from the combustion of biomass being in equilibrium 

with the carbon sequestered during photosynthesis. The growing phase of bioenergy 

crops can result in a net uptake of CO2 from photosynthesis (Cadoux et al., 2014), 

and for this reason, fast growing woody species such as poplar (Populus spp.) and 

willow (Salix spp.) are increasingly being used as bioenergy crops, as well as 

perennial grasses such as switchgrass (Panicum virgatum) and Miscanthus 

(Miscanthus x giganteus) (Lewandowski et al., 2000, van der Weijde et al., 2013). 

Such non-food crops are referred to as second generation energy crops. Additional 
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carbon may be sequestered in the soil through the growth of plant root tissues and 

litter fall from senescing plants (Clifton-Brown et al., 2007, Don et al., 2012).  

Further gains in terms of GHG balance have been modelled as a result of converting 

conventional tilled arable land to Miscanthus, with half of this gain being made from 

reduced N2O emissions due to lower nitrogenous fertiliser application (St Clair et al., 

2008). Miscanthus has a low nitrogen requirement (van der Weijde et al., 2013), 

possibly because it increases nitrogen mineralisation rates in the soil (Davis et al., 

2013) and recycles nitrogen very efficiently when left to senesce over winter (Strullu 

et al., 2011). It has been suggested that Miscanthus may play a role in nitrogen 

fixation (Davis et al., 2010, Keymer &  Kent, 2014). However, previous land use must 

be considered; for example, converting pasture to short rotation forestry (SRF) can 

increase N2O emissions (Palmer et al., 2014). Additionally it has been estimated that 

the carbon benefits of energy derived from first generation energy crops such as corn 

(Zea mays) would be undermined in totality by the fertiliser-driven N2O during growth 

(Crutzen et al., 2008).  

In addition to the emission of CO2 from respiration, soil can be both a source and sink 

of the biogenic GHGs methane (CH4) and nitrous oxide (N2O). These two important 

gases are, mole for mole, 34 and 298 times more potent in terms of global warming 

potential (GWP) than CO2 (Myhre, 2013). CH4 production occurs in wetter soils in 

anaerobic conditions and is consumed through oxidation by methanotrophic microbes 

in aerated soil (Bradford et al., 2001). The largest natural sources of CH4 are wetlands 

and peat uplands (Ciais, 2013, McNamara et al., 2008), whereas forest and 

agricultural soils are commonly strongly oxidising (Bradford et al., 2001, Flessa et al., 

1998). By far the biggest contribution to soil N2O results comes from the application 

of nitrogenous fertiliser to agricultural soil (Myhre, 2013). Processes governing N2O 

are complex and our knowledge of them is continually growing (Butterbach-Bahl et 

al., 2013), but broadly speaking two processes are responsible for its generation. N2O 

is produced as a by-product of ammonium (NH4) oxidisation through nitrification and 

as a product of nitrate (NO3) reduction during denitrification (Firestone &  Davidson, 

1989). Negative fluxes have been shown to occur and are commonly attributed to 

further reduction of N2O to dinitrogen gas (N2) which requires anoxic conditions 

(Chapuis-Lardy et al., 2007). N2O consumption is rather enigmatic, and has also been 

reported in dry, well aerated soils (Chapuis-Lardy et al., 2007). In order to accurately 

assess the GHG balance of bioenergy production full life cycle analyses (LCA) must 

be undertaken, quantifying the emissions or uptake of trace gases at every stage of 
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their production, including the intrinsic emissions associated with fertiliser production, 

harvest and transportation of biomass and subsequent downstream processing 

(Cherubini et al., 2009). A full LCA is beyond the scope of this study, which ends at 

‘the farm gate’, but equally essential is the quantification of the trace gas fluxes from 

the soils during the cultivation of these crops. 

Chamber-based methods are commonly used for measuring trace gas fluxes from 

soils, and, placed on the soil surface, they measure the change in concentration of 

the gases of interest in a known enclosed volume over time, typically 1-2 hours for 

N2O and CH4, less for CO2. Situating chambers throughout a landscape enables a 

representative estimate of flux to be gathered at a high spatial resolution. Manual 

chambers are a low-cost method which allow an experimenter to measure many 

replicates concurrently with no requirement for power (Heinemeyer &  McNamara, 

2011), which makes them appropriate for field work in remote locations (Brummell &  

Siciliano, 2011). However, due to the high demand for manpower, they tend to be 

measured on a weekly or monthly basis (Drewer et al., 2012, Guckland et al., 2010, 

Toma et al., 2011, von Arnold et al., 2005). Automated chambers increase the 

temporal resolution of measurements, but their power requirement and higher cost 

means they are less commonly used. Commercial automated systems are available 

to buy for CO2 flux measurement, but equivalent systems for CH4 and N2O fluxes are 

not commonly available, but may be constructed by adapting CO2 systems with the 

addition of supplementary analysers. For a detailed description and evaluation of 

various chamber techniques see Chapter 1.  

Methodological comparisons of trace gas fluxes measured using manual chambers 

and near-continuous systems (e.g. eddy covariance and automated chambers) can 

be split into two categories: those which focus on absolute values of point 

measurements (Ambus &  Robertson, 1998, Heinemeyer &  McNamara, 2011, 

Matsuura et al., 2011) and those investigating the effect on cumulative estimated 

fluxes over time as a consequence of measurement frequency (Burrows et al., 2005, 

Laville et al., 1997, van der Weerden et al., 2013, Yao et al., 2009a, Yu et al., 2013b). 

All of the latter, however, compare the methodologies within a single land use or 

vegetation type, and it is generally accepted that by making daily, weekly or monthly 

manual measurements simultaneously from multiple experimental treatments or land 

uses, a valid comparison of GHG fluxes can be made. It is more questionable whether 

the long-term estimate of flux from such discrete measurements is reliable. A 

comparison of the frequency at which measurements are made, from two land uses 
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under the same physical conditions, and the effect of estimated cumulative flux over 

long periods of time will therefore be of value in terms of knowing how reliable GHG 

budgets based upon manual sampling regimes actually are. Such a comparison 

would also provide to a comparison of automated and manual systems, due to the 

difference in measurement frequency employed by the different methods.  

In the current study, soil GHG measurements were made with manual static 

chambers on a monthly basis from two adjacent fields, one of which was used to 

cultivate the bioenergy crop Miscanthus, the other being used for conventional arable 

crop production, over the course of 18 months. The total flux of CO2, N2O and CH4 

was calculated from these data to test the hypothesis that the total soil GHG flux 

would be significantly lower from the field in which Miscanthus was grown.  

Automated soil CO2 chambers were deployed for the entirety of the study in the 

Miscanthus field, and for a period of four months in the arable field, during which time 

spring barley (Hordeum vulgare) was grown. These measurements allowed a 

comparison of the total soil CO2 flux calculated using both monthly and continuous 

data to be made. Both the manual and automated CO2 measurements were made 

using the same infrared gas analyser (IRGA) and measured the exact same positions 

in the crops. 
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 Methods and materials 

  Site 

The study site was a working farm, on which both perennial crops used for bioenergy 

production (willow (Salix spp.) and Miscanthus) and combinations of conventional 

arable crops, namely wheat (Triticum aestivum), barley (Hordeum vulgare) and 

oilseed rape (OSR; Brassica napus) in a rotation, were grown. Short rotation coppice 

(SRC) willow is harvested every three years, but Miscanthus is harvested annually, 

in the spring.  

Two adjacent (on a north-south orientation) fields under different cropping strategies 

were chosen to compare the different trace gas fluxes associated with arable crop 

and Miscanthus production. The Miscanthus field used in this study had been 

established seven years prior to the start of measurements; the two most recent 

rotations in the arable field had been winter wheat and OSR, respectively. At the start 

of this study in September 2012, the field had been too wet to plough and so was left 

fallow until it was drilled with spring barley in April 2013. The barley was harvested in 

September 2013 and the subsequent crop of OSR was sown almost immediately. 

The two previous arable rotations had received approximately 200 kg-N fertiliser ha-1 

per annum, and 179 kg-N ha-1 was applied to the barley as ammonium nitrate in three 

doses between the end of April and the beginning of June 2013. Chamber bases were 

left in situ during the applications, in the understanding that even application would 

be achieved by the agricultural machinery. 

Unusually for Miscanthus, the field was tilled in April 2013, following a disappointing 

harvest of ca 7.5 tonnes ha-1 in the previous year. The tillage was undertaken in an 

attempt to spread the rhizomes more evenly and thus increase yield.  

Due to the nature of the crop production in the arable field, this study was divided into 

three Campaigns: Campaign 1 covers the period the arable field was left fallow, 

Campaign 2 the period during which barley was grown and Campaign 3 covered the 

first months of OSR production until the harvest of Miscanthus in spring 2014.  
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 Trace gas flux measurements 

2.2.2.1 Monthly measurements 

Measurements of CO2, CH4 and N2O flux were made on approximately a monthly 

basis starting in October 2012. CH4 and N2O fluxes were measured using the manual 

static chamber technique and a Licor survey chamber (LI- 8100-103, Licor. Lincoln 

NE) attached to an infrared gas analyser (LI-8100 IRGA, Licor, Lincoln NE) was used 

to measure soil CO2 flux. Both types of chamber used the same collars (opaque 

polyvinyl chloride (PVC), diameter 20 cm, height 10 cm) which were inserted into the 

soil to a depth of approximately 2 cm at the start of each Campaign and left in place 

so that the same positions were measured throughout the Campaign. The collars in 

the Miscanthus were, throughout the entire study period, shared with automated 

chambers which measured soil CO2 flux on a near-hourly basis in between the 

monthly schedule. In Campaign 2 automated chambers were also deployed in the 

arable crop, and these also shared the collars with the manual chambers. Where 

necessary a good seal with the surrounding soil was achieved by putting fine building 

sand around the base of the collars. Collars were distributed at random within the 

area within which the automated chamber system could function (limited to ca 160 m2 

due to the length of the gas lines), and during Campaigns 2 and 3 the Miscanthus 

collars were arranged within the plots of a controlled compost addition experiment 

(see Chapter 3). Collars were kept free of aboveground biomass, but did not exclude 

roots. 

Soil CO2 fluxes measured with the survey chamber and IRGA were calculated using 

the internal Licor software; the chamber closure was set to two minutes with a 30 

second ‘dead band’ at the beginning of the measurement to allow for mixing of the 

headspace gas. The linear regression of the short-term changes in CO2 concentration 

over time was used to provide the flux, and the software made the required 

adjustments for chamber volume, area and temperature.  

Manual chambers were deployed immediately after the Licor survey chamber 

measurements. Manual chambers were made of the same cylindrical opaque PVC 

pipe as the surface collars, with a flat circular lid (height 24 cm, diameter 20 cm). To 

minimise internal heating the chambers were covered with an insulating layer of 

aluminium thermal foil and chambers were sealed onto the collars using a 5 cm wide 

rubber band. A septum through which gas samples were removed was formed using 

a Subaseal (SubaSeal No. 25, Sigma-Aldrich, St Louis, MO, USA) pushed into a 1 
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cm circular hole in the centre of the chamber lid. In order to minimise disturbance to 

the soil surrounding the collar, samples were taken through a 1.5 m length of vacuum 

tubing (Tygon Formulation R-3603 Tubing, Part number AAC00002, Saint-Gobain 

Performance Plastics, Akron, OH, USA) which passed through the septum. Samples 

were taken using 20 cm3 plastic syringes and transferred to pre-evacuated 12 cm3 

vials (Exetainer 839W, Labco Ltd, High Wycombe, UK). Syringes were pumped three 

times prior to sampling in order to mix the chamber headspace and gas within the 

tubing. Chambers were closed for two hours and were sampled five times at 30 

minute intervals (at 0, 30, 60, 90 and 120 minutes).  

Concentrations of N2O, CH4 and CO2 were determined by gas chromatograph (GC; 

PerkinElmer Instruments, Shelton, CT, USA) fitted with an electron capture detector 

(ECD) and a flame ionisation detector (FID) at the University of York, usually within a 

week of sampling. The overpressure of the sample vials enabled the flow of the gas 

through the equipment’s autosampler, and the GC was calibrated using a reference 

gas (BOC Gases, Guildford, Surrey, UK) on average every 8 samples.  

Fluxes were calculated as the change in concentration over time as determined by 

linear regression, and were adjusted for area, volume and temperature, which was 

measured at the time of sampling. Outliers were identified by calculating the 

studentised residual of each individual point of a regression, which is the ratio of the 

residual to the estimated error variance with that point removed from the regression, 

and a studentised residual greater than 2 indicates a point with undue influence on 

the regression (SAS 9.3, SAS Institute Inc., NC), thus any such point was excluded 

from the analysis. 

2.2.2.2 Sub-daily measurements 

Throughout the entire study period, soil CO2 fluxes were measured from under the 

Miscanthus using an automated chamber system. Licor automated chambers (LI-

8100-101, Licor, Lincoln NE) were attached to an IRGA via a multiplexer (Electronic 

workshops, Department of Biology, University of York, York UK); chambers were 

programmed to close according to the same protocol used for the monthly survey 

chamber measurements and fluxes were similarly calculated using the Licor software. 

Measurements cycled continuously between chambers, and chambers were placed 

over the exact same collars used for the monthly measurements. 
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During Campaign 1 eight chambers were deployed in the Miscanthus whilst six 

chambers were used during Campaigns 2 and 3, but were arranged with two 

chambers within each of three experimental plots. Therefore the fluxes from the two 

chambers within each plot were averaged prior to any statistical analyses for the latter 

two Campaigns. During Campaign 2, four chambers were deployed within the arable 

field, again deployed on the same collars used for monthly measurements. 

 Environmental variables 

At the end of the two hour chamber closure for the monthly measurements, soil 

moisture within each collar was measured using a soil moisture sensor (SM200, 

Delta-T, Cambridge UK) attached to a multi-meter. The millivolts reading was 

converted to a volumetric soil moisture value post hoc using the formula for mineral 

soil provided in the Delta-T manual .  

Air temperature was measured during chamber closures using a digital thermometer 

and soil temperature at 10 cm depth was also determined in each field. Throughout 

Campaign 2 soil moisture and temperature in both fields (and the Miscanthus for most 

of Campaign 3) were logged as hourly averages (SM200 moisture probes, ST1 soil 

temperature sensors; DL2 and GP1 loggers, Delta-T, Cambridge UK).  

Meteorological data (air temperature, solar radiation, humidity) were measured and 

recorded on site using a weather station (WP1, Delta-T, Cambridge UK) and rainfall 

data for 2013 were provided by a research group from Centre for Ecology and 

Hydrology who were working at the same site. Hourly data were also retrieved from 

the Met Office station at Scampton, ca. two miles from the study site.  

 Data analysis 

Automated chamber fluxes were calculated using the internal Licor software. Analysis 

of manual chamber measurements were performed using linear regression, and 

cumulative fluxes were calculated using trapezoidal integration in SAS (SAS 9.3, SAS 

Institute USA). Statistical analyses (e.g. analysis of variance, mixed effects models, 

t-tests) were all performed in SAS and graphs were produced using Sigmaplot 

(Sigmaplot 12.3, Systat software, IL USA) and SAS. Data were tested for normality 

and where necessary transformations (log and reciprocal) were performed.                
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 Results 

 Monthly gas flux measurements 

2.3.1.1 CO2 fluxes 

Soil CO2 flux was characterised by lower values during the winter months, increasing 

through spring to peak in the summer (Figure 2.1). Fluxes from the arable field peaked 

in June 2013 at 892 ± 160 mg m-2 h-1 and slightly later, in July 2013, from the 

Miscanthus field at 817 ± 50 mg m-2 h-1. There was a significant difference in CO2 flux 

between the fields over the whole study period, F[1,147]= 11.78, p< 0.0001; sampling 

date was also significant, F[15,147]= 43.39, p<0.0001 and there was a significant 

interaction between sampling date and crop regime, F[14,147]= 7.74, p< 0.0001.  

The fluxes from the two fields differed during Campaign 1 F[1,78]=43.21, p< 0.0001, 

approached significance in Campaign 2, F[1,28]=3.00, p= 0.09 and were not different 

during Campaign 3, F[1,28]= 1.02, p= 0.32 (see Figure 2.1). The fluxes were 

significantly higher in the arable field on every measurement day during the first 

Campaign. During this period the arable field was left fallow, and the fluxes were 

probably driven by the input of carbon from the decomposing roots and residue from 

the preceding wheat crop. There were higher CO2 fluxes from the arable soil during 

Campaign 2 on the two measurement days following fertiliser application to the barley 

crop, and these days are mostly responsible for the larger cumulative fluxes from the 

arable field. Fluxes were similar from both crops in late July 2013, yet higher from the 

Miscanthus in August; at this point the Miscanthus was still growing whereas the 

barley was mature and almost ready for harvest. Fluxes were remarkably similar from 

both fields throughout Campaign 3, with the exception of higher fluxes from 

Miscanthus in December 2013, as the fluxes declined through winter. 

The total CO2 flux was higher from the arable field in Campaign 1: 390 ± 55 g m-2 

compared to 110 ± 17 g m-2, t[22]= 4.87, p<0.001. In Campaign 2 the total flux from the 

arable field (930 ± 130 g m-2) was nearly twice as large as that from the Miscanthus 

(460 ± 28 g m-2), t[7]= 2.48, p<0.05, but there was no difference in the total CO2 flux 

between the fields during Campaign 3, when the OSR was developing (arable 750 ± 

120 g m-2, Miscanthus 930 ± 140 g m-2), t[7]= -0.92, p> 0.3.     
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Figure 2.1 Mean flux (top panel) and cumulative flux (bottom panel) ± 1SE of soil CO2 flux 

measured using a Licor survey chamber and IRGA, from fields under an energy crop and 

adjacent arable crop. Dashed vertical lines separate ‘Campaigns’ where the practices in the 

arable were fallow, spring barley and OSR respectively. Solid arrows indicate N fertiliser 

application to the arable crop and dashed arrows indicate the timing of Miscanthus harvest. 

Significant differences in flux are indicated: * p<0.05, ** p<0.01, *** p<0.001.  
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2.3.1.2 N2O fluxes 

Soil N2O fluxes from the arable field exhibited three distinct peaks in March (127 ± 35 

µg m-2 h-1), June (307 ± 42 µg m-2 h-1) and July (258± 67 µg m-2 h-1) 2013 (Figure 2.2). 

In contrast N2O fluxes were close to zero in the Miscanthus, with the highest value of 

24 ± 1 µg m-2 h-1 seen in July 2013. N2O flux was significantly higher from the arable 

field for the entire study period F[1,76]= 11.6, p<0.02, and there was a significant effect 

of sampling date F[17,76]= 4.95, p<0.001 and significant interaction between date and 

crop regime F[25,76]= 2.36, p<0.009.  

Fluxes were higher on two occasions during the fallow period in the arable field 

(Campaign 1), and on every day measurements were taken during Campaign 2 

(Figure 2.2). Emissions of N2O increased dramatically following fertiliser applications 

at the end of April 2013, but whilst there was a trend for higher fluxes from the arable 

during Campaign 3, there was no single day on which they were significantly different.  

The total flux of N2O was higher from the arable field in all three Campaigns. In 

Campaign 1 the total emissions from arable, 154 ± 45 mg m-2 were thirty times higher 

than those from the Miscanthus, 5 ± 2 mg m-2, t[22]= 4.3, p< 0.0001. In the second 

Campaign, emissions were much greater than the first Campaign, and the total flux 

from arable (413 ± 52 mg m-2) was closer to forty times that from the Miscanthus (11 

± 2 mg m-2), t[7]= 5.04, p< 0.002. The third Campaign was typified by decreased 

emissions from the arable field, and the total flux of 102 ± 23 mg m-2 period-1 was the 

lowest seen from this field. In contrast, Campaign 3 saw the highest total flux from 

the Miscanthus, although at 34 ± 2 mg m-2 it was still three times lower than the arable 

flux, t[7]= 3.6, p< 0.009.   

2.3.1.3 CH4 fluxes 

CH4 fluxes were very low for most of the study period, and when they differed from 

zero they tended to be negative, indicating net uptake by the soil (Figure 2.3). The 

total flux from Campaigns 1 and 2 suggest that both systems were weak net sinks for 

CH4. However, in Campaign 3 a peak in emission (217 ± 137 µg m-2 h-1) during 

December 2013 from the Miscanthus shifted this field into a net source over the 

Campaign. On the same day the arable showed the largest negative flux for the entire 

study period (-176 ± 176 µg m-2 h-1). Due to the large variation between chambers in 

both crops, there were no significant differences between fluxes on any measurement 

day, nor were there any significant differences in the total fluxes.   
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Figure 2.2 Mean flux N2O and cumulative flux ± 1SE from an arable field and adjacent 

Miscanthus crop. Vertical dashed lines separate different Campaigns with different crops in 

the arable field. Significant differences between fluxes are shown: * p<0.05, ** p<0.01, *** 

p<0.001. Solid arrows show nitrogen fertiliser application to the arable and dashed arrows 

Miscanthus harvest. 
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Figure 2.3 Mean flux CH4 and cumulative flux ± 1SE from soil under arable and Miscanthus 

crops, measured using manual static chambers. Dashed vertical lines denote different crops 

in the arable field. Solid arrows represent timing of nitrogen fertiliser application to the arable 

crop and dashed arrows time of Miscanthus harvests.  
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 GHG Balance 

CO2 was the largest contributor to the total GHG balance for both crops (Figure 2.4). 

In absolute terms Campaign 2 saw the greatest flux of GHGs of the whole study, 

produced from the arable field. The total N2O flux of 123 g CO2-eq m-2 for Campaign 

1 was more than 10 % of the total soil respiration from that field during the same 

period (997 g CO2-eq m-2). Total N2O flux from the arable field during Campaign 1 

also represented a substantial proportion of the total soil GHG flux, which at 53 g 

CO2-eq m-2 equated to 14 % of the CO2 flux. In Campaign 3, the total N2O flux of 30 

g CO2-eq m-2 was lower, amounting to just 4 % of the total CO2 flux. As a proportion 

of total soil GHG flux, N2O was lower from the Miscanthus field, however, and was 

the equivalent to just 1.4 %, 1.1 % and 0.9 % of the total CO2 flux for Campaigns 1, 2 

and 3. The contribution of CH4 to the total flux of GHGs from both fields was negligible 

(Figure 2.4). It is important to emphasise that the fluxes measured in this study were 

from soil only and the total GHG flux presented is not the net ecosystem exchange, 

which, by accounting for CO2 uptake by vegetation would greatly reduce, if not 

reverse, the total GHG emissions.  
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Figure 2.4 Total soil flux of three GHGs expressed in CO2 equivalents (Myhre et al., 2013) 

from an arable field and a Miscanthus field. Campaigns represent periods of varying length 

during which the arable field was used for different crop production and cover the period from 

September 2012 to March 2014. Values are means ± 1 SE.  
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 Sub-daily measurements 

Automated chamber measurements of soil CO2 flux from beneath Miscanthus 

showed a similar pattern to the data from the manual chamber, with low fluxes through 

the winter of 2012-13, higher fluxes through summer 2013 followed by a decline into 

autumn and winter 2013 (Figure 2.5). A point of interest is the variation between the 

fluxes during autumn between 2012 and 2013: peak fluxes in October 2012 were well 

below 200 mg m-2 h-1, declining to below 100 mg m-2 h-1 by the end of the month. In 

contrast, at the start of October 2013 maximum fluxes were still above 600 mg m-2 h-

1 and were still greater than 300 mg m-2 h-1 by the end of this month. This variation 

was also detected in the survey chamber measurements, which were below 100 mg 

m-2 h-1 in October 2012 and below 400 mg m-2 h-1 in October 2013. During Campaign 

2 in summer 2013 there was an initial peak in soil CO2 flux in late May, followed by a 

decline in early June before fluxes increased to their annual peak of ca. 700 mg m-2 

h-1 through late July and August. Unfortunately, instrumental malfunction meant that 

no data were collected for the majority of August, though the shape of the trend, allied 

to the data from the survey chamber, suggests that soil fluxes probably continued to 

rise slightly to a maximum during the intervening period. The reduction in flux 

throughout the end of summer was punctuated by a brief and rapid increase to around 

1100 mg m-2 h-1 in early September 2013, a peak not detected under the monthly 

measurement regimen. 

The scatter in the automated data demonstrates the diel variation in fluxes, which is 

reflected in the daily mean values (Figure 2.5, bottom panel). The daily means more 

clearly show fluctuations in the fluxes between days, with peaks and troughs shown 

over periods of a few days.  

Measurements from the arable field during Campaign 2 in summer 2013 show that 

soil CO2 fluxes were slower to increase under the barley then they were in the 

Miscanthus (Figure 2.6). Fluxes from the Miscanthus increased during late May to 

over 600 mg m-2 h-1, whilst arable fluxes were still below 400 mg m-2 h-1. However, 

when fluxes increased under the barley they did so rapidly, reaching a maximum of 

ca. 1500 mg m-2 h-1 during early July. Fluxes under arable were declining through late 

July, whilst Miscanthus fluxes were still increasing. By the end of the measurement 

period in late July, just prior to harvest, fluxes under the barley crop had reduced to 

less than 400 mg m-2 h-1.   
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Figure 2.5 Mean ± 1 SE soil CO2 flux from automated Licor chambers under Miscanthus. Top 

panel shows means of each cycle of chamber closure (ca 1 hour in frequency) and the bottom 

panel shows the daily mean. Dashed lines represent the timings of harvests in the adjacent 

arable field.  
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Figure 2.6 Mean soil CO2 ± 1 SE flux measured using automated Licor chambers from under 

Miscanthus (open circles) and an arable crop (closed circles, spring barley) during Campaign 

2. Means are based on a cycle of chamber closures at ca. 1 hour frequency (top panel) and 

daily means are also shown (bottom panel). Arrows indicate timing of nitrogen fertiliser 

applications to the arable crop.  
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Scatter within the sub-daily measurements in the arable again reflects the diel 

variation in soil CO2 flux, which was at its greatest during peak emissions at the 

beginning of July 2013, where the daily mean (ca 900 mg m-2 h-1) was approximately 

60% of the daily maximum flux (ca 1500 mg m-2 h-1) (Figure 2.6).  

Analysis of the data from the automated chambers matches the data from the manual 

chamber measurements, showing significant differences between soil CO2 flux from 

the arable field and the Miscanthus field F[1,453]= 4.72, p<0.04, a significant effect of 

date F[128,453]= 14.12, p<0001 and an interaction between date and crop F[63,453]= 11.6, 

p<0.0001.  

The calculated total CO2 flux from the soil under Miscanthus was lower using 

automated data than when calculated using monthly manual measurements (Figure 

2.7) in Campaign 2 (T[5]= -3.17, p<0.03) and Campaign 3 (T[5]= -5.06 p<0.004), and 

approached significance in Campaign 1 (T[7]= -1.92 p< 0.1). Using automated data 

from the arable field did not significantly affect the calculated total soil CO2 flux in 

Campaign 2 (T[3]= -1.29, p= 0.29), the only period during which these chambers were 

available for use in this field.  

 Diurnal trends in soil CO2 flux 

Data from the automated chambers show that soil CO2 flux varied throughout the day 

both in the Miscanthus field and under the arable crop (Figure 2.8) during Campaign 

2. The trends are strikingly different for the two fields, with the lowest daily flux under 

Miscanthus occurring between 9.00 and 10.00 and peak emissions throughout the 

late evening. Fluxes from the arable field, on the other hand, peaked during the 

afternoon around 15.00 and the lowest fluxes were seen during the early morning. 

Depending on the time of day, the mean Miscanthus flux ranged from 83% (at 21.00) 

to 46% (at 14.00) of the arable flux, which introduces the potential for a massive bias 

in measurements.  

The diurnal trend under the Miscanthus was similar in both Campaigns 2 and 3, 

though there was a difference in the absolute values of these fluxes, with higher 

values during Campaign 2 of summer 2013 than the subsequent Campaign during 

winter of that year (Figure 2.8). Campaign 1 did not show such a strong diel trend, 

although the fluxes during that period were much smaller than the other two 

Campaigns.   
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Figure 2.7 Total CO2 flux from soil under Miscanthus and arable cropping, measured using 

and IRGA and automated chambers (ca.  hourly measurements) or a manual survey chamber 

(ca.  monthly measurements). Campaigns represent periods of different crop production in the 

arable field (1- fallow, 2- spring barley, 3- oilseed rape). Automated and manual 

measurements were made from the same positions: results of paired t-tests show significant 

differences between the total flux calculated from automated and manual measurements, * p< 

0.05, ** p< 0.01.   
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Figure 2.8 The diurnal variation in soil CO2 flux from an arable field and a Miscanthus field. 

Top panel: Miscanthus and arable (spring barley) fields from the same Campaign show 

contrasting daily cycles (Miscanthus n= 480, arable n= 320). Values are means ± 1SE, note 

the axis break. Bottom panel: soil CO2 flux under Miscanthus over three Campaigns (1- winter 

2012-13, 2- summer 2013, 3- winter 2013-4).  
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 Environmental variables 

The pattern of solar radiation was somewhat predictable, peaking in 2013 during the 

middle of June (Figure 2.9). Perhaps surprisingly, there was a brief increase in solar 

radiation towards the end of February 2013, but otherwise it was characterised by 

lower values during the winters of 2012-3 and 2013-4. The contrast between the 

values for September 2012 and 2013 is worth noting: daily maxima of solar radiation 

during the former, approaching 800 W m-2, were higher than those during the latter, 

which were closer to 500 W m-2. The values during the rest of autumn for both years 

were more similar.  

Air temperature also peaked during summer, but it lagged behind values of solar 

radiation, peaking during late July and the beginning of August 2013 (Figure 2.9). 

Temperatures reached the lowest of the study period during January 2013. Soil 

temperatures exhibited a similar pattern to air temperature, though was generally 

higher. Soil temperature in both the Miscanthus and arable fields were similar.  

Soil moisture (at 5 cm depth) was measured throughout the summer and autumn 

2013. Peaks in soil moisture could be seen following periods of rainfall (Figure 2.9), 

and was followed by rapid drops in the intervening periods. During June and July the 

arable field appeared to be wetter than the adjacent Miscanthus field. Soil moisture 

was lowest at the start of September 2013, but following sustained period of 

precipitation during September and October, moisture peaked in the Miscanthus field 

during late October 2013. The arable field was wettest during May 2013, but dried out 

to similar levels to the Miscanthus field by the end of July. 

The periods that received the most rainfall were the winters (Figure 2.9). A lack of 

rain through April and into the first half of May 2013 left the site close to drought 

conditions. This was followed by sustained rainfall for the remainder of May, but the 

first half of June and most of July 2013 were also very dry.  

 Relationship between environmental variables and fluxes 

The measured environmental variables were used to explain the patterns in the 

observed fluxes in both the monthly and sub-daily data. In addition to concurrent 

measurements, daily maxima and minima were used to explain monthly fluxes.   
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Figure 2.9 Environmental and meteorological variables measured at the study site across 

three Campaigns (separated by vertical dashed lines). Solar radiation and air temperature are 

daily means (of hourly measurements; solid line). Daily maximum values are shown for both 
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air temperature and radiation, and daily minimum values for temperature (dotted lines), since 

minimum solar radiation values were all zero they are not shown. Soil temperature and soil 

moisture show hourly mean values from the Miscanthus field (open circles) and the arable 

field (closed circles), and rainfall data are daily total values. Rainfall data were collected from 

the met station on site; however, during periods of instrumental error the rainfall data from a 

Met Office station approximately two miles from the site were used.  
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2.3.6.1 Monthly gas fluxes 

Soil CO2 flux displayed strong linear relationships with several environmental 

variables (Figure 2.10). These relationships were consistent across both the arable 

and Miscanthus fields, and for the most part were similar in terms of the strength and 

direction of the relationship. The variable explaining most of the variance in the arable 

field was soil temperature (R2= 0.46, p< 0.0001), which had a strong positive 

correlation with CO2 flux. Concurrent air temperature, daily minimum temperature and 

maximum solar radiation all demonstrated strong positive relationships with soil 

respiration from the arable field, explaining 44%, 37% and 32% of the variation, 

respectively. Maximum daily solar radiation did not exhibit a significant relationship 

with fluxes from under the Miscanthus, although concurrent solar radiation does seem 

to have been important for CO2 flux from the Miscanthus field: this variable explained 

the variation soil respiration most closely (R2= 0.83, p< 0.0001), which was in contrast 

to the much weaker, though significant, relationship of this variable with the arable 

fluxes (R2= 0.16, p< 0.01). Fluxes from the Miscanthus field also showed strong 

positive linear relationships with soil temperature (R2= 0.67, p<0.0001), air 

temperature (R2= 0.53, p< 0.0001) and minimum daily temperature (R2= 0.49, p< 

0.0001), though this last variable did not have as strong an effect on fluxes from the 

Miscanthus field as for the arable, as shown from the gradient of the regression lines 

(Figure 2.10). The relationship between soil CO2 flux and soil temperature was 

improved slightly with a quadratic model for Miscanthus (R2= 0.69 versus R2= 0.67 

for a linear fit), but did not alter the R2 value for the arable field. No other relationship 

between CO2 flux and environmental variable was improved with a non-linear model. 

Two variables showed significant negative relationships with soil respiration in both 

fields. Somewhat surprisingly, soil respiration declined with increasing soil moisture 

in a similar fashion under both crops, explaining 25% of the variation in the arable 

field and 35% in the Miscanthus field. Relative humidity showed a closer relationship 

in both the arable (R2= 0.30, p< 0.0001) and the Miscanthus fields (R2= 0.65, p< 

0.0001).  

N2O fluxes were less well described by environmental variables, and in all cases the 

relationships were stronger from the arable field than from the Miscanthus field 

(Figure 2.11). Perhaps surprisingly, the variable which explained the most variation 

in N2O flux was maximum daily solar radiation for the arable field (R2= 0.53, p< 

0.0001), as fluxes increased with radiation, but this did not show a significant   



82 
 

 

Figure 2.10 Monthly soil CO2 flux measurements using a Licor survey chamber from an arable 

(ARAB) and a Miscanthus field (MISC) plotted against environmental variables. All panels 

(except the bottom right) display linear regression lines, with the R2 statistic (*** denotes 
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p<0.001). The bottom right panel compares a quadratic fit with the linear fit for the same data 

(soil temperature) in the adjacent panel. All other variables were best described with a linear 

relationship.  
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Figure 2.11 Monthly N2O flux measurements from an arable and a Miscanthus field, made 

using static chambers, and their relationship with various environmental variables. The R2 

statistic is displayed in each panel, where *** denotes p< 0.001. The top two rows compare 
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the same variable with a linear fit (left panel) and a curve fit (right panel). No other variables 

were improved by the use of non-linear regression. 

  



86 
 

relationship with fluxes of N2O from Miscanthus soil. Instantaneous solar radiation 

was less important in explaining the N2O fluxes in the arable field (R2= 0.32, p< 

0.0001), but there was a significant relationship with fluxes from the Miscanthus (R2= 

0.26, p< 0.0001), which was second only to soil temperature in this crop. Soil 

temperature displayed a strong positive relationship with arable fluxes (R2= 0.35, p< 

0.0001) and also appeared important in controlling fluxes from the Miscanthus (R2= 

0.27, p< 0.0001). This relationship was better described with a quadratic model than 

a linear fit for both crops (Figure 2.11). Minimum daily temperature and concurrent air 

temperature both positively affected N2O fluxes from the arable field, explaining 22% 

and 24% of the variation respectively, and whilst the minimum daily temperature was 

also important for fluxes from Miscanthus (R2= 0.13, p< 0.001), concurrent air 

temperature was not significant.  

Perhaps a little counterintuitively, soil moisture displayed a significant negative 

relationship with N2O flux in both fields, though with R2 values of 0.16 and 0.08 in 

from the arable and Miscanthus respectively, the relationships were not particularly 

strong. Despite this, the regressions suggest that N2O emission will cease at a soil 

moisture level of ca. 0.7 m3 m-3. The relationship between fluxes and soil moisture 

was equally well described by linear and non-linear models. 

No environmental variable was shown to be significantly associated with CH4 fluxes, 

from either field (Table 2.1). Stepwise multiple regression showed no improvement in 

describing CH4 flux from the Miscanthus field, but it was significant for fluxes from the 

arable field (Equation 2.2). This analysis indicated that soil moisture was the most 

important control over CH4 flux, with fluxes becoming more positive with increasing 

soil moisture, and that solar radiation also played a role. Multiple regression models 

also indicate that soil temperature was the most important factor controlling soil CO2 

flux in the arable field (Equation 2.3), and that soil moisture and maximum daily air 

temperature were significantly related variables. This model was a better predictor 

(R2=  0.60, p< 0.0001)  than any individual variable, and  fluxes from the Miscanthus 

were also very well described (R2= 0.91, p< 0.0001) by a model including air 

temperature, solar radiation and relative humidity (Equation 2.4). 
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Table 2.1 Correlation matrix for monthly fluxes of CO2, N2O and CH4 with measured environmental variables. Values shown are Pearson correlation 

statistics. * p < 0.05, ** p< 0.01, ***  p<0.001, ns= not significant. 

CROP Variable 
Soil 

Temp Air temp 
Soil 

Moisture 

Solar 
Radiatio

n 
Relative 

Humidity 

Daily 
mean air 

temp 

Daily 
maximu

m air 
temp 

Daily 
Maximu

m 
radiation N2O flux CH4 flux CO2 flux 

Log CO2 
flux 

Arable 

Soil temp 1 0.96*** -0.68*** 0.84*** -0.81*** 0.97*** 0.97*** 0.95*** 0.55*** 0.04  ns 0.69*** 0.71*** 

Air temp 0.96*** 1 -0.71*** 0.83*** -0.83*** 0.97*** 0.98*** 0.96*** 0.5*** 0.03  ns 0.67*** 0.69*** 

Soil 
moisture -0.68*** -0.71*** 1 -0.72*** 0.7*** -0.7*** -0.72*** -0.72*** -0.41*** 0.01  ns -0.52*** -0.68*** 

Solar 
radiation 0.84*** 0.83*** -0.72*** 1 -0.69*** 0.1 0.16*** 0.22*** 0.61*** 0.08  ns 0.31** 0.35*** 

Relative 
humidity -0.81*** -0.83*** 0.7*** -0.69*** 1 -0.2*** -0.3*** -0.36*** -0.25* -0.01  ns -0.58*** -0.51*** 

Dailymea
n temp 0.97*** 0.97*** -0.7*** 0.1*** -0.2*** 1 0.9*** 0.6*** 0.46*** 0.01  ns 0.63*** 0.6*** 

Daily max 
air temp 0.97*** 0.98*** -0.72*** 0.16*** -0.3*** 0.9*** 1 0.8*** 0.46*** 0  ns 0.63*** 0.62*** 

Daily max 
radiation 0.95*** 0.96*** -0.72*** 0.22*** -0.36*** 0.6*** 0.8*** 1 0.4*** 0.04  ns 0.68*** 0.63*** 

N2O flux 0.55*** 0.5*** -0.41*** 0.61*** -0.25* 0.46*** 0.46*** 0.4*** 1 0.04  ns 0.42*** 0.41*** 

CH4 flux 0.04  ns 0.03  ns 0.01  ns 0.08  ns -0.01  ns 0.01  ns 0  ns 0.04  ns 0.04  ns 1 0.02  ns 0.09  ns 

CO2 flux 0.69*** 0.67*** -0.52*** 0.31* -0.58*** 0.63*** 0.63*** 0.68*** 0.42*** 0.02  ns 1 0.85*** 

Log CO2 
flux 0.71*** 0.69*** -0.68*** 0.35*** -0.51*** 0.6*** 0.62*** 0.63*** 0.41*** 0.09  ns 0.85*** 1 
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CROP Variable 
Soil 
Temp Air temp 

Soil 
Moisture 

Solar 
Radiatio
n 

Relative 
Humidity 

Daily 
mean air 
temp 

Daily 
maximu
m air 
temp 

Daily 
Maximu
m 
radiation N2O flux CH4 flux CO2 flux 

Log CO2 
flux 

Misc’ 

Soil temp 1 0.96*** -0.77*** 0.91*** -0.79*** 0.97*** 0.97*** 0.95*** 0.4*** -0.01  ns 0.82*** 0.76*** 

Air temp 0.96*** 1 -0.76*** 0.87*** -0.82*** 0.96*** 0.98*** 0.91*** 0.32*** 0  ns 0.74*** 0.75*** 

Soil 
moisture -0.77*** -0.76*** 1 -0.83*** 0.74*** -0.8*** -0.83*** -0.77*** -0.27*** -0.07  ns -0.55*** -0.51*** 

Solar 
radiation 0.91*** 0.87*** -0.83*** 1 -0.63*** 0.22*** 0.24*** 0.33*** 0.46*** -0.12  ns 0.92*** 0.67*** 

Relative 
humidity -0.79*** -0.82*** 0.74*** -0.63*** 1 -0.29*** -0.31*** -0.43*** -0.33*** 0.07  ns -0.81*** -0.68*** 

Dailymea
n temp 0.97*** 0.96*** -0.8*** 0.22*** -0.29*** 1 0.98*** 0.7*** 0.45*** -0.02  ns 0.79*** 0.79*** 

Daily max 
air temp 0.97*** 0.98*** -0.83*** 0.24*** -0.31*** 0.98*** 1 0.77*** 0.43*** -0.02  ns 0.78*** 0.85*** 

Daily max 
radiation 0.95*** 0.91*** -0.77*** 0.33*** -0.43*** 0.7*** 0.77*** 1 0.43*** -0.1  ns 0.82*** 0.68*** 

N2O flux 0.4*** 0.32*** -0.27*** 0.46*** -0.33*** 0.45*** 0.43*** 0.43*** 1 0.2* 0.45*** 0.31*** 

CH4 flux -0.01  ns 0  ns -0.07  ns -0.12  ns 0.07  ns -0.02  ns -0.02  ns -0.1  ns 0.2* 1 0.07  ns 0.07  ns 

CO2 flux 0.82*** 0.74*** -0.55*** 0.92*** -0.81*** 0.79*** 0.78*** 0.82*** 0.45*** 0.07  ns 1 0.84*** 

Log CO2 
flux 0.76*** 0.75*** -0.51*** 0.67*** -0.68*** 0.79*** 0.85*** 0.68*** 0.31*** 0.07  ns 0.84*** 1 
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Arable: 

N2O µg m-2 h-1 = 3.90 soil temp (oC) - 7.49     

R2= 0.41, p< 0.0001         (Eq 2.1) 

CH4 µg m-2 h-1= 35.81 soil moist (m3 m-3) - 0.04 radiation (W m-2) - 14.45  

R2= 0.14, p= 0.05        (Eq 2.2) 

Log10 CO2 mg m-2 h-1= 0.23 soil temp (oC) - 1.80 soil moist (m3 m-3) - max temp (oC) 

+3.90 

R2= 0.60, p< 0.0001        (Eq 2.3) 

Miscanthus: 

 Log10 CO2 mg m-2 h-1= 0.30 Air temp (oC) - 0.01 radiation (W m-2) - 0.09 RH (%) + 

10.62 

R2= 0.91, p< 0.0001        (Eq 2.4) 

 

2.3.6.2 Sub-daily soil CO2 fluxes 

Soil respiration was positively related to soil temperature (Figure 2.12) in the 

Miscanthus (R2= 0.60, p< 0.0001), where it was the variable showing the strongest 

correlation with respiration, and in the arable field, though here the relationship was 

much weaker (R2= 0.09, p< 0.0001). There was also a weak, but significant, positive 

relationship between CO2 fluxes and solar radiation in both fields, explaining 3% and 

7% of the variation from the arable and Miscanthus fields, respectively (Figure 2.12). 

The relationship between soil respiration and air temperature was less straight 

forward. For both fields, the data were better described by a non-linear model (Figure 

2.12), which indicates a positive effect on CO2 flux below a threshold temperature, 

and a subsequent decline as temperatures increased further. These relationships 

suggest an optimum air temperature for soil respiration of around 25 oC   
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Figure 2.12 Relationship of environmental variables to log10 transformed soil CO2 fluxes 

measured using automated chambers, from and arable field (top four panels) and a 

Miscanthus field (bottom four panels).   
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in the arable field, but lower, ca 20 oC in the Miscanthus.  

The relationship of CO2 flux with soil moisture was also best described by a non-linear 

fit, with respiration in both fields declining more quickly above a threshold: this was 

more severe in the arable field, where it seems that fluxes tended to zero at moisture 

levels ca. 0.5 m3 m-3, as opposed to 0.6 m3 m-3 in the Miscanthus field. Even when 

moisture levels in the upper 5 cm of the soil were very low (< 0.05 m3 m-3) in the 

Miscanthus field, soil respiration continued.  

The diurnal pattern in soil CO2 flux from the arable field can be seen to follow closely 

air temperature, the variable with which it was most closely associated (Figure 2.13). 

This was not so clear for the Miscanthus field, where CO2 fluxes did not appear to be 

as synchronous with soil temperature, with which they were most closely related. This 

discrepancy suggests that another factor is an important control of soil CO2 flux. 

However, multiple regression models including additional measured environmental 

variables were not a significant improvement on regressions with any single variable. 
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Figure 2.13 Diurnal pattern of CO2 fluxes measured over 80 days from an arable field (top 

panel, n=320) and a Miscanthus field (bottom panel n=480) with the environmental variable 

with which the fluxes were most closely related. Values are means ± 1SE, measured during 

May- July 2013. 
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 Discussion 

 Monthly soil GHG fluxes 

The arable field consistently produced higher fluxes of GHGs from the soil than the 

Miscanthus field across the whole study period. This was expected, especially for 

N2O, principally due to the history of fertiliser amendment; fertiliser application to the 

crops during this study totalled 179 kg-N ha-1 to the arable field, compared to zero to 

the Miscanthus. The N2O fluxes reported from the Miscanthus here were of a similar 

order of magnitude to those reported elsewhere. In a similar study at the same site, 

Drewer et al. (2012) saw peak N2O emissions of ca. 110 µg m-2 h-1 from Miscanthus, 

and a cumulative flux of 152 kg CO2-eq ha-1 y-1. The peak emissions presented here 

of 24 µg m-2 h-1 were lower, but the cumulative flux over the entire 485 day period 

equated to ca. 100 kg CO2-eq ha-1 y-1. Other studies have seen a similar range of N2O 

fluxes from unfertilised Miscanthus in Denmark (Jorgensen et al., 1997), North 

America (Behnke et al., 2012) and Japan (Mori et al., 2005, Toma et al., 2011).  

N2O emissions from arable crops are typically in the range of 0.3- 3 % of the applied 

total N fertiliser (De Klein et al., 2006), which here would amount to 0.57- 5.73 kg-N 

ha-1 y-1, or 0.84- 8.43 kg N2O ha-1 y-1. The cumulative N2O flux from the arable field of 

669 mg N2O m-2 for the entire study equates to 3.1 kg N2O-N ha-1 y-1, an intermediate 

level of emissions, though it is towards the upper bound of those reported from cereal 

crops by Stehfest & Bouwman (2006), and greater than the total flux associated with 

spring barley in a Scottish study, in which the total emission of 0.8 kg N2O-N ha-1 y-1 

equated to an emission factor of 0.67 % of the applied N fertiliser (Smith et al., 1998a). 

If the total flux from the unfertilised Miscanthus soil is taken as a baseline, then an 

emission factor (EF) of 1.54 % of the 179 kg applied over the period can be estimated. 

The peak emission measured from the arable field in this study was slightly more than 

300 µg m-2 h-1, occurring in the weeks following fertiliser addition to the barley crop, 

in June 2013. This figure is comparable to other studies from fertilised barley, where 

peaks ranging from ca. 60 µg m-2 h-1 (Petersen, 1999), ca. 300 µg m-2 h-1 (Chatskikh 

&  Olesen, 2007), and ca. 440 µg m-2 h-1 (Kaiser et al., 1998) have been published. 

However, in some circumstances fluxes in excess of 4000 µg m-2 h-1 have been seen 

from organic arable soils (Petersen et al., 2012).  

The soil CO2 fluxes (0- 1000 mg m-2 h-1) from both fields were in the typical range 

reported for soil respiration from arable soils (Chirinda et al., 2010, Drewer et al., 
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2012, Poll et al., 2013). Highest fluxes were seen here during the summer months, 

when the air and soil temperatures were highest and maximum carbon input to the 

soil via the crop root system would have been occurring. During Campaign 2 it is clear 

from the monthly data that respiration was higher from the barley crop than the 

Miscanthus during the first weeks. Later in this Campaign, soil respiration was higher 

under the Miscanthus and this is most probably a consequence of the different growth 

trajectories of the two crops. Through May and June the barley was in its rapid growth 

phase, with a high rate of photosynthesis ensuring high root exudates and fuelling 

soil respiration. At this point the Miscanthus had only recently emerged and lagged 

behind in terms of green shoot growth. During July the barley had matured and 

photosynthesis slowed as grain filled and soil respiration also slowed under this crop 

(Sreenivasulu &  Schnurbusch, 2012). Conversely the Miscanthus continued to grow 

well into September, probably maintaining a strong carbon supply to the soil and thus 

driving the higher soil respiration seen in this crop during July into August. The 

presence of more above-ground biomass in the Miscanthus field compared to the 

arable field during December 2013 was probably linked to the occurrence of higher 

respiration seen during Campaign 3.  

Higher rates of soil respiration were consistently seen from the arable field during 

Campaign 1, during its fallow period. In contrast, the CO2 fluxes from both fields were 

similar for the most part of winter 2013-14 (Campaign 3). The fallow period of 

Campaign 1 was the result of the land being inaccessible to farm machinery, and so 

the roots and other residues of the previous rotation crop (wheat) had been left in the 

soil. It is suggested here that decomposition of this residual material was the driver 

for the higher respiration seen from this field during this time.  

CH4 fluxes did not statistically differ between the two fields. The fluxes were small, 

and for the majority of the study they were negative, indicating oxidation was 

occurring in the soil. Whilst agricultural soils are known to be a net sink for CH4 (Flessa 

et al., 1998), nitrogen addition to soils, particularly as fertiliser, is known to inhibit the 

enzymes required for CH4 oxidation (Arif et al., 1996, Hutsch, 2001). In light of this it 

might have been expected that greater uptake would have been seen under the 

Miscanthus crop. The absence of a difference between the two fields might perhaps 

be down to the additional inhibitory effect of any herbicides applied to both crops, 

since these are also known to reduce CH4 oxidation (Arif et al., 1996). Ultimately, the 

role CH4 played in the overall GHG balance for this site was very minor.  
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 GHG balance 

Without net ecosystem exchange (NEE) of CO2 from both crops it is not possible to 

provide the final GHG balance for the two fields in this study but it is possible to make 

inferences using the data collected. During Campaign 1, when the arable field was 

fallow, it is possible to conclude that the arable field was a net source for GHGs, since 

there was no photosynthesis to offset soil respiration. It may be that during the winter 

months, when the Miscanthus senesced that this crop was also a net source for 

GHGs. It is possible to make an estimate of CO2 uptake from gross primary 

productivity (GPP), or, more accurately, from the yield of the crops. In 2013 the mean 

yield from barley in the UK was 5.8 t ha-1 (DEFRA, 2013), which equates to 580 g m-

2 of grain, and if a harvest index of 50% is assumed (Bertholdsson &  Brantestam, 

2009) this would equate to 1160 g m-2 total biomass. A 44% carbon content of this 

biomass (Elsgaard et al., 2012) would give an estimate of 510 g-C m-2 in the biomass 

alone, and does not account for additional carbon sequestered to the soil or soil biota. 

The total soil respiration during the cultivation of the barley crop in Campaign 2 was 

997 g CO2 m-2 (271 g CO2-C m-2) which would mean in terms of carbon dynamics the 

arable field was a net sink of around 239 g C m-2. The role N2O plays in the GHG 

balance becomes critical, since, with an emission of 123 g CO2-eq m-2 for the 

Campaign, N2O emissions move the balance further towards being a net GHG 

source. It is essential, therefore, to have highly robust estimates of both N2O flux and 

NEE from arable land in order to accurately assess the full impact of agriculture on 

climate change. It is also important to note that this study makes no consideration for 

the intrinsic GHG emissions associated with harvest, production or fertiliser 

manufacture which will undoubtedly tip the balance well into a net source of GHGs 

for the production of this crop. 

Due to the lower CO2 fluxes from the Miscanthus (Campaigns 1 and 2) and the 

negligible N2O fluxes throughout the study, it is likely that the Miscanthus field was a 

net sink for GHGs, confirming previous reports (Drewer et al., 2012) which makes 

Miscanthus attractive as a bioenergy crop. These estimates, based upon monthly 

measurements, assume that the time of day at which samples are taken is 

representative of the daily mean, in order to generate reliable data. 
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 Measurement frequency and diurnal variation of CO2 fluxes 

High frequency measurements of CO2 with automated chambers gave a lower 

estimate of total CO2 flux from the Miscanthus field during Campaigns 2 and 3 than 

that calculated using monthly measurements. This can be attributed to the inherent 

bias involved in measuring at discrete intervals. The bias is two-fold: first, in respect 

to the day on which sampling takes place, and second, regarding the time of day at 

which measurements are taken. As shown by the hourly data, there was substantial 

daily variation between fluxes, and also a strong diurnal variation. If the monthly 

sampling day happens to have particularly high or low fluxes, this would skew the 

estimate of the flux for the entire month. Perhaps more importantly, by sampling 

during the afternoon, as was dictated by the logistics of the field work in the current 

study, the monthly data do not include measurements from the part of the day when 

fluxes were at their lowest. This led to an overestimation of the total flux from this crop 

for the two Campaigns during which the diurnal cycle of soil respiration was strongest. 

During Campaign 1, when the diurnal variation was much less pronounced, there was 

no difference between the hourly and monthly derived estimates.  

A striking characteristic of the hourly CO2 data is the marked difference in the diurnal 

cycles between the arable field and the Miscanthus field, shown by the mean hourly 

flux from both fields during Campaign 2. At 05.00 soil respiration in the arable field 

began to increase, until it peaked at around 15.00. In the Miscanthus field, fluxes 

began to decrease at 05.00 towards a daily minimum at around 09.00. After this time 

respiration began to increase until it reached the daily maximum in the late afternoon 

and early evening. Unlike respiration in the arable field, the rate of flux did not decline 

sharply after peaking, but stayed relatively stable throughout the night. The time of 

day at which fluxes are measured is crucial, especially if the purpose is to compare 

fluxes from the two different crops. Measuring between 09.00 and 15.00 will 

exaggerate the differences between the fields, whereas fluxes between 18.00 and 

05.00 are much more similar in both fields. This has implications not only for this 

study, but any investigation which uses a single daily flux measurement with which to 

measure an experimental contrast. 

There are a huge number of papers relying on a single time point sampling schedules 

(Barrena et al., 2013, Finocchiaro et al., 2014, Gauder et al., 2012, Jeuffroy et al., 

2013, Johnson et al., 2010, Perdomo et al., 2009, Shvaleva et al., 2014, von Arnold 

et al., 2005, Zhang et al., 2013), which compare fluxes of all or some of CO2, N2O and 
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CH4 from different land uses or crop types. Some authors acknowledge the 

importance of selecting the appropriate time for sampling, though most do not. Zhang 

et al. (2013) state that they performed their sampling between 09.00 and 11.00, since 

that was representative of the daily mean flux; however, they did not measure this 

themselves, and the reference cited providing this information (Lin et al., 2009), also 

stated this as a fact without either offering any data to support this claim or a reference 

as evidence. Likewise, Perdomo et al. (2009) state they chose sampling times to be 

representative of the daily mean, which is also based upon another study which 

asserts  that 10.00- 12.00 is typical of the daily mean flux (Kessavalou et al., 1998), 

but without any supporting evidence.  

The cause of this diurnal pattern in soil respiration was probably the availability of 

carbon to microbes in the form of root exudates and root respiration itself. Since 

barley has been specifically bred to be short, the time taken for photosynthate to move 

through the plant will be shorter than in the much taller Miscanthus. It would be 

expected, therefore, that the amount of labile carbon in each field peaked at a different 

time, hence the asynchrony in soil respiration patterns. With this in mind, this 

particularly calls into question studies which compare fluxes under forests with arable 

or grassland fluxes by using a daily measurement regime. For example, it has been 

shown that respiration under forests can be uncoupled from soil temperature (Liu et 

al., 2006).  

It is possible that the difference in the diurnal pattern of soil respiration is attributable 

to the different photosynthetic pathways used by the barley (C3) and the Miscanthus 

(C4). The diurnal pattern of soil respiration of the C4 species maize has also been 

shown to be dependent on soil temperature (Han et al., 2008), which resembled more 

closely the pattern seen here under the barley than under the Miscanthus. Barley 

bundle sheath cells move assimilated carbon rapidly to the phloem (Leegood, 2008), 

which suggests that the translocation of photosynthate to the soil occurs relatively 

more quickly than may occur in Miscanthus.  

 Environmental controls of GHG flux 

2.4.4.1 CO2 

The controls on soil respiration differed between the two fields and, indeed, varied 

depending on whether monthly or hourly measurements are considered. The clear 

message is that temperature played a key role in both fields: the close relationship 
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between soil CO2 flux and both air temperature (Bouma et al., 1997, Raich &  

Schlesinger, 1992) and soil temperature (Kane et al., 2003, Kutsch &  Kappen, 1997) 

is commonly reported. Whilst the monthly data indicated that the response of CO2 flux 

to temperature was similar in both fields, the automated data revealed differences; 

soil temperature was the best predictor of flux from in the Miscanthus field, air 

temperature was better for the arable field.  

It is notable that monthly CO2 flux in the Miscanthus field was very significantly 

correlated with solar radiation, but much less so for the arable soil CO2 fluxes. This 

relationship was still present in the hourly data, but much less strong. A link with solar 

radiation is to be expected, since photosynthesis will increase with solar radiation and 

this, in turn, will increase the availability of carbon substrate for soil. It is clear that 

there is a fraction of soil respiration that is decoupled from temperature control at this 

site, which has been shown before in forests (Liu et al., 2006, Makita et al., 2014, 

Savage et al., 2013), in agricultural systems (Oikawa et al., 2014) and grasslands 

(Bahn et al., 2009). Carbon supply certainly controls respiration in plant roots 

(Lotscher &  Gayler, 2005, Savage et al., 2013) and since root respiration may 

account for as much as 50 % of total soil respiration (Bond-Lamberty et al., 2004) it 

is highly probable that this contributes to the difference in diurnal pattern of soil 

respiration between the two fields. The time taken for assimilated carbon to be 

respired from the soil varies between plant species, with transfer through taller 

vegetation taking longer (Kuzyakov &  Gavrichkova, 2010), so it follows that 

Miscanthus photosynthate reaching the soil will peak later in the day than that of 

barley. Furthermore, the Miscanthus, as a perennial crop, has a bigger more 

established root system, which will provide a greater proportion of total soil respiration 

than rotation arable crops.  

The negative relationship of soil respiration and soil moisture was consistently seen 

in both the monthly and hourly data, and can be explained by increasing moisture 

limiting O2 availability for respiration.  

2.4.4.2 N2O  

N2O fluxes were positively correlated to soil temperature in both fields, as might be 

expected, and whilst concurrent air temperature was also positively related to flux in 

the arable field, there was no relationship with concurrent air temperature and N2O 

fluxes from the Miscanthus field. The minimum daily air temperature was significantly 

related to fluxes from both fields, and the conclusion to be drawn is that on warmer 
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days the soil environment is more favourable to microbes producing N2O, be that 

through nitrification or denitrification. The strong positive relationship between N2O 

flux and solar radiation in the arable field was somewhat unexpected. It may be 

explained as the product of heterotrophic denitrification, which requires a carbon 

source (Firestone &  Davidson, 1989). It follows that increased solar radiation will 

stimulate more photosynthesis and therefore an increase in carbon substrate for 

denitrifiers. The lack of such a relationship in the Miscanthus field can be attributed 

to the low fluxes in this field, with the drier soil conditions not favouring denitrification 

coupled to lower N availability. 

There was a negative relationship between N2O flux and soil moisture in both fields. 

This is somewhat surprising if the predominant process through which N2O is 

produced is denitrification as suggested from the apparent relationship with root 

carbon supply; N2O would be expected to increase with soil moisture through the 

creation of more anaerobic conditions and therefore favour N2O emission. An 

alternative conclusion might be that the N2O emissions at this site are driven by 

nitrification and so increasing soil moisture reduces oxygen availability and thus 

inhibits N2O production. In actuality the soil in this study was often over or near field 

capacity. The soil at this site has previously been assessed as having a bulk density 

of 1.5 g cm-3 (Case et al., 2014) which, if a particle density of 2.65 g cm-3 is assumed, 

gives a porosity of 57%. A volumetric soil moisture content of 0.57 m3 m-3 therefore 

approximates to 100 % water-filled pore space (WFPS); maximum N2O production 

through denitrification is known to occur at around 70% WFPS (Bateman &  Baggs, 

2005, Rabot et al., 2015), which in this soil equates to ca. 0.4 m3 m-3 soil moisture. 

Above this water level N2O production generally declines, and fluxes can become 

negative due to complete reduction of N2O to dinitrogen gas (Chapuis-Lardy et al., 

2007), which may explain the lowest N2O fluxes seen at this site in the wettest soil 

conditions.  
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 Conclusions 

Trace gas fluxes were greater from the soil in the arable field than from the 

Miscanthus field. The greatest contribution was from CO2 in both fields, yet this is 

likely to have been at least offset by photosynthesis. To confirm this, it is essential 

that NEE of CO2 be quantified for both crops, which is beyond the capability of 

traditional chamber techniques. N2O made a substantial contribution to the total GHG 

flux from the soil in the arable field but not in the Miscanthus, which did not receive 

any nitrogen fertiliser. N2O emissions have the potential to transform a net GHG sink 

into a net source, and this will have fundamental implications should it become 

general practice for fertiliser to be applied to bioenergy crops.  

Automated measurements show that soil respiration exhibits a distinct diurnal pattern 

which differs between fields, and it is inferred that this is due to the covering 

vegetation type. This calls into question any comparison between fluxes from different 

land uses or crop types which is based upon single daily measurements. In order to 

have confidence in such comparisons it is absolutely essential that the underlying 

diurnal pattern of flux is established in order to ensure that measurements are made 

during the period that is best representative of the daily mean.  

Whilst this study has shown the diurnal pattern in soil CO2 flux, no such data were 

collected to establish whether a similar cycle took place for either N2O or CH4 at this 

site. It remains a crucial question which needs to be addressed: do all trace gas fluxes 

exhibit a diurnal pattern? Without this knowledge any such research from which GHG 

inventories are derived, or upon which policy is made, must be questioned. It is 

possible that estimates of flux which are extrapolated to the regional, national or 

global scale may also, consequently, be inaccurate. The need for continuous, or near 

continuous measurement systems for trace gas monitoring is clear and immediate.  
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3 Skybeam: a novel automated chamber system for 
high frequency measurement of the net ecosystem 
exchange of three trace gases 

 Introduction 

One strategy for reducing GHG emissions to the atmosphere is to replace fossil fuel 

combustion with that of biomass (DECC, 2011, Rowe et al., 2009). This relies on the 

principle that the CO2 emitted to the atmosphere from biomass combustion is in 

equilibrium with the CO2 drawn down by the plant as it was growing, thus having no 

net loading effect on the atmosphere. In order to fully account for the GHG budget of 

energy produced in this manner, a full life cycle assessment (LCA) must be conducted 

(Kaltschmitt et al., 1997), which will quantify the net effect on GHGs for each stage of 

energy production. In addition to the growing stage, this will include other steps e.g. 

direct emissions from agricultural vehicles used for sowing and tending the crops in 

the field, harvesting the crop, transportation to its place of combustion, and any 

intrinsic emissions from downstream processing and fertiliser manufacture. Whilst EU 

assessment of global warming potential (GWP) of bioenergy production accounts for 

the consequences of many of these stages, it is only through quantification of further 

indirect processes, such as indirect land use change (iLUC) that the total net balance 

can be assessed, which is referred to as consequential LCA (CLCA) (e.g. Styles et 

al., 2015). 

One of the attractions of Miscanthus as such an energy crop is its low demand for N 

fertiliser (St Clair et al., 2008), due to its efficiency at recycling nutrients from above 

ground biomass and storing them below-ground in its rhizome when it senesces over 

winter (Strullu et al., 2011). Various studies have investigated the effect of fertiliser 

on Miscanthus yields, with mixed results, with some authors reporting increased 

yields (e.g. Larsen et al., 2014, Smith &  Slater, 2010) and others no effect (see 

Maughan et al., 2012, Teat et al., 2015). In Chapter 2 of this thesis it was shown that 

unfertilised Miscanthus had a smaller soil-GHG footprint than an arable crop grown 

at the same site, largely due to the high N2O fluxes seen from the fertilised arable 

crop. However, if agricultural practices alter, and it becomes common practice to 

apply fertiliser to energy crops, it may fundamentally change the GHG balance of 

producing that crop, and therefore negate any gains in GHG emission from bioenergy 

production. 
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Diurnal patterns in soil respiration were demonstrated in the previous Chapter. 

Furthermore, this diurnal variation was different between fields under different crops 

at the same site and it is possible that similar diurnal patterns exist in N2O and CH4 

fluxes. If there is no such variation, then measuring fluxes once a day, at any time, 

will give data sufficiently accurate to produce an estimate representative of cumulative 

flux from a system. If, however, there are diurnal variations in these fluxes, it is vital 

that flux measurements are taken regularly enough to account for this diurnal pattern, 

to eliminate bias, or to ensure measurements are taken at a time when fluxes are 

typical of the daily mean. Ideally flux data would be collected continuously over the 

long term to produce reliable GHG budgets for bioenergy production.  

The need for continuous ecosystem gas flux data has led to the development of the 

eddy covariance (EC) technique, which quantifies net ecosystem-atmosphere gas 

transfers (commonly CO2) over a comparatively large area, typically hundreds of 

square metres; (see Baldocchi &  Wilson, 2001, Reichstein et al., 2003). Whilst the 

development of this technique has advanced in situ estimation of ecosystem-

atmosphere CO2 exchanges, the technique cannot be used for quantification of 

exchanges at normal field trial or plot scales because of stringent ‘fetch’ requirements. 

The importance of being able to measure at the plot or management unit scale 

becomes clear when consideration is given to how trace gas fluxes can be managed 

though land use. It is at the management unit scale (e.g. methane production from 

cattle pastures) rather than at the landscape scale (e.g. agricultural land as a whole) 

that land management with beneficial GHG balances will be achieved. It is only when 

one attempts to find an appropriate location for an EC system that these stringent site 

requirements reveal how few sites across a typical landscape are actually appropriate 

for EC measurements; fences & hedges, streams, small hills, buildings, trees and 

human activity are all to be avoided, biasing location and, hence, attempts to up-

scale.  

Additionally, there is still active debate about some of the assumptions upon which 

the EC technique relies (see, for example, Mahrt, 2010) and the technique is still far 

from routine for monitoring the major GHG gases besides CO2. Increasingly, we need 

measurements at smaller ‘field’ scales, enabling flux comparisons across 

heterogeneous landscapes or gradients (e.g. pastures, wetlands, water bodies) and 

across field manipulations (e.g. N additions, warming, elevated CO2).  
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Mass balance approaches can rarely be used to quantify C or N flux differences, 

particularly under field conditions, because they invariably require the detection of a 

small change against a background of a large ecosystem stock (see, for example, 

Heath et al., 2005). In a number of limited circumstances, stable isotopes can be used 

to detect these changes (e.g. 15N dilution; C3 plants in C4 soils, after Ineson et al., 

1996) but not without disturbance of the systems under study. In contrast, chamber 

methods can detect quite subtle changes in net C and N balance and can also be 

used to identify underlying controlling factors, such as rainfall events and weather 

fronts. Initial comparisons of flux estimates made using EC and chamber methods 

have yielded similar results (e.g. Laine et al., 2006), but the confounding influence of 

spatial and temporal heterogeneity actually make such direct comparisons very 

difficult. Burrows et al. (2005) have shown the clear value of automated chambers for 

determining CO2 flux estimates at high frequency, but automated chambers 

frequently present problems of power supply, centralised gas analysis, expensive 

multiplexing, and, critically, they cannot be easily applied to tall vegetation. Whilst 

existing automated chamber systems such as that made by Licor can measure fluxes 

from over short (10 cm) vegetation, no such system yet exists that can provide the 

same data from perennial grasses used as bioenergy crops, e.g. Miscanthus x 

giganteus, which grow to heights in excess of 3 m. Establishing automated chambers 

in large numbers across spatially separated plots is prohibitively expensive and there 

is an urgent need for techniques to enable alternative automatic effective NEE and 

GHG measurements at the plot scale.  

Here, a novel automated system is presented. The system is called SkyBeam and 

has been designed as a single chamber, which can automatically move repeatedly to 

the same points within a crop, then closing to make a flux measurement. The chamber 

is large enough to measure from over vegetation as tall as 3 m, ensuring that the flux 

measurements delivered are NEE and not just soil derived fluxes. By using a clear 

chamber photosynthesis may continue, and using a short chamber closure ensures 

that the crop is exposed to ambient conditions for as much of the study period as 

possible. Circulating the headspace gas through multiple analysers allows the 

quantification of NEE of the three most important biogenic GHGs from a single 

chamber closure. The system was deployed to measure GHG fluxes from Miscanthus 

x giganteus in late spring 2013 and was in operation until December of that year. That 

particular year the farmer elected to apply a green waste compost to the crop, and 

SkyBeam allowed the effects of compost addition on the GHG balance to be 

investigated in a fully replicated experimental contrast.   
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 Methods and materials 

 Site description 

The following work was undertaken at a working farm in the East Midlands of the 

United Kingdom (UK), within a field producing Miscanthus x giganteus (henceforth 

Miscanthus) at the same site as described in Chapter 2 of this thesis. The Miscanthus 

field was used for production of a crop which ultimately would be used to produce 

electricity by direct combustion of the biomass at Drax power station in North 

Yorkshire, UK. The crop was harvested each spring, during March or April, and the 

crop regrew during May-June growing rapidly until October. The crop was allowed to 

senesce over winter before being harvested the following spring, thus completing the 

annual cycle. The Miscanthus crop had been planted seven years previously and had 

not received any fertiliser for at least the two years prior to this experimental work and 

the soil type has been defined as of Beccles 1 association (Drewer et al., 2012), fine 

silt over clay. In spring 2013 the field was harrowed in an attempt to redistribute the 

rhizomes more evenly, with a view to improving yield. In July 2013 the field received 

an application of a green compost, consisting largely of wood waste, at a rate of 4 T 

ha-1. The part of the field in which this work was conducted was deliberately excluded 

from receiving compost, but this was added shortly after in a controlled experiment.  

 Trace gas flux measurements 

3.2.2.1 SkyBeam design 

SkyBeam, an automated chamber system, was developed at the University of York 

by the Electronic and Mechanical Engineers at the Department of Biology. Testing of 

the system was initially undertaken on the University of York campus and, 

subsequently, at the field site in Lincolnshire, prior to commencing experimental work 

(see Appendix A).  

The design of the SkyBeam consisted of a single chamber suspended from a trolley, 

mounted on a gantry comprising a rigid aluminium beam and two pairs of scaffolding 

towers for support (Figure 3.1). The gantry was built to a height of 6 m to allow for 

clearance above a fully grown Miscanthus crop of 3 m. Suspending the chamber from 

a beam allowed repeated measurements to be taken from preselected points along 

a transect directly underneath the beam. A 10 m beam allowed for six separate 

measurement positions to be sited under the system.   
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Figure 3.1 The design, construction and deployment of SkyBeam. The initial design (top left) 

illustrates the concept of a single chamber suspended over the area to be measured. The 

chamber was mounted on a trolley which traversed the beam in order to repeatedly measure 

the same positions. A hoist lowered the chamber and raised it on completion of a 

measurement. The final design (bottom right) included an additional pair of scaffold towers 

with a secondary beam perpendicular to the main beam, for supplementary support. The 

height of the main beam was 6 m and it spanned 10 m, allowing for 6 measurement positions. 

Accurate landing was achieved with guide rods (bottom left) which were customised white 

PVC pipes. Within the plot surrounding each landing base, collars were installed for 

measurement of soil respiration using Licor automated chambers, and manual static 

chambers for CH4 and N2O fluxes (top right). Here manual chambers can be seen in situ, 

whilst the automated chambers have been removed from the collars for the manual 

measurements to be made. 
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A single measurement consisted of the chamber being lowered over the designated 

position for a specified length of time, before being raised at the end of the 

measurement, at which point the trolley moved to the next position and the process 

repeated. The automation of the system was achieved by developing an interface 

with a Licor system (LI-8100, Licor, Lincoln NE USA), which used an infrared gas 

analyser (IRGA) and automated chambers to measure soil CO2 fluxes. Here the IRGA 

controlled the opening and closing of the large SkyBeam chamber (through raising 

and dropping), which replaced the very much smaller normal Licor-built automated 

soil flux chambers. The system was a dynamic closed-chamber system, where the 

headspace gas continually circulated via a 10 m length of polyethylene tubing (Bev-

A-Line IV, Cole-Parmer, London UK) through the analyser throughout the chamber 

closure period. The Licor software was used to program the length of chamber closure 

and the number of observations to be made during an experimental run. The Licor 

software also calculated the CO2 flux, and full details of the equations used are 

published the instrument’s manual, following Healy et al. (1996). SkyBeam’s firmware 

was developed to be fully programmable in terms of the number of landing positions 

(replicates) and the sequence in which they were sampled, permitting the adoption of 

flexible, randomised experimental designs.  

The trolley used for the lateral movement of SkyBeam and the winch for vertical 

movement were powered using a 12 V DC supply, for ease of use in field 

environments. Additional analysers, such as the LGR CH4 and N2O analysers (Los 

Gatos Research, CA USA) used during the field campaigns in Lincolnshire required 

mains electricity (230 V AC), supplied from marine batteries and inverter charged 

from a diesel generator. The generator was situated so that the prevailing wind 

removed emissions from the study area, so as not to interfere with any of the eddy 

covariance (EC) measurements being taken at the site. In addition a conditional ‘start’ 

module was programmed to prevent generator operation if the wind direction was 

unsuitable. 

The position of the SkyBeam trolley was determined and controlled through the use 

of ‘location’ magnets positioned on the underside of the beam. Sensors on the trolley 

were triggered when they passed a magnet, which was placed above each of the 

specific location points to be measured. The ‘drop’ distance required for each 

sampling position was programmed during the initial setting of the system, and relied 

on the time taken for the chamber to descend to the correct height. 
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3.2.2.2 SkyBeam chamber design  

The chamber design was a cage-like structure, with a circular clear Perspex roof for 

the chamber sitting on top of a framework of vertical aluminium rods (Figure 3.2). The 

dimensions of the chamber were 1 m internal diameter and 1.5 m in height; 

extensions were built to accommodate the growing crop, but were unnecessary due 

to poor crop growth that year. The base of the chamber was a flat circular acrylic 

flange and the walls of the chamber were formed by stretching clear 720 gauge (180 

µm) polythene (Cat No. PM0026, First Tunnels, Barrowford, UK), around the 

framework, sealed using fibreglass tape.  

Pressure inside the chamber was equalised with ambient pressure through the 

inclusion of a vent, after Xu et al. (2006). Pressure was monitored by the Licor system 

for accurate flux calculation and gas concentrations were also adjusted for 

temperature, which was measured using a thermistor within the chamber headspace. 

The landing bases consisted of flat circular flanges on which the bases of the chamber 

sat (Figure 3.2) and three concentric rings of rubber seal were fixed to the base of the 

chamber to ensure an airtight seal when the chamber was closed. Bases were 

positioned on the soil surface and packed with fine building sand to form a seal with 

the soil.  

3.2.2.3 Gas measurements and flux calculations 

The SkyBeam chamber was deployed from June to December 2013, and was 

programed to close for 10 minutes per measurement, with a delay separating each 

measurement as the chamber moved between positions, to allow the gas lines to 

purge with ambient air. CO2 fluxes from the SkyBeam system were calculated using 

the internal Licor software, with a ‘dead band’ of 30 seconds to allow for mixing. The 

flux was calculated as a linear regression over two minutes, which was found to best 

describe the instantaneous flux at the time of closure. Regressions over a longer 

period saw CO2 concentrations approach an asymptote, especially during daylight 

measurements and, therefore, an underestimate of the flux.  

CH4 and N2O fluxes were measured over two campaigns of approximately two weeks 

each (between July and October 2013) during the study. During these periods, two 

cavity ring down laser (CRD) analysers- a fast GHG analyser for CH4 and an N2O 

analyser (Los Gatos Research, CA USA)- were incorporated into the SkyBeam 

assembly, drawing the headspace gas from the exhaust of the IRGA before returning 

it to the chamber (see Appendix B). Both CRD analysers measured at 1 Hz, and  
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Figure 3.2 Design of the SkyBeam chamber and landing bases. The chamber stood 1.5 m tall with an internal diameter of 1 m (left). Internal pressure 

was equalised with ambient using a vent (inset, centre), and the landing base comprised a flat circular flange and a perpendicular collar, whose sides 

were vertical viz the soil surface (top right: side profile, bottom right: top profile).  
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fluxes were calculated as the linear regression of the change in concentration over 

time during the period 200 to 440 seconds following chamber closure. Fluxes were 

adjusted for chamber temperature volume and area. Further adjustment was made 

to the CO2 fluxes during daylight hours based upon the light attenuation of the 

chamber material, after Heinemeyer et al. (2013) (Appendix C).  

3.2.2.4 Soil trace gas fluxes 

Soil respiration was measured using an automated chamber system with an IRGA 

(LI-8100-101 chambers, Licor, Lincoln NE) from the same plots as used by the 

SkyBeam system. Two collars were placed within each of six plots, and were inserted 

to a depth of 2 cm. For a full description of the measurement protocol see Chapter 2 

of this thesis. CO2 fluxes were calculated using the linear regression function within 

the Licor internal software. Soil N2O and CH4 fluxes were measured using manual 

static chambers placed over the same collars used by the automated respiration 

chambers, approximately once a month. The protocol used is outlined in Chapter 2 

of this thesis.  

3.2.2.5 Eddy covariance measurements 

An eddy covariance (EC) tower was sited within the same Miscanthus field as the 

SkyBeam system, under the stewardship of Centre for Ecology and Hydrology (CEH). 

The system measured CO2 concentration at a rate of 10 Hz and CO2 fluxes were 

integrated as 30 minute averages (EddyPro, Licor, Lincoln NE), producing data for 

the net ecosystem exchange (NEE) of CO2.   

 Experimental design 

3.2.3.1 Compost addition 

The experimental area was selected following harvest of the Miscanthus crop and 

subsequent harrowing of the field in spring 2013. Six plots were demarcated, each 

containing one landing base for the SkyBeam system (Figure 3.4). The emerging 

shoots across the field were surveyed and plots were sited in an area representative 

of the field. Two 20 cm diameter collars were installed within each of the six plots, to 

be used by automated chambers and for manual flux measurements (Figure 3.4). 

Automated chambers were deployed during May 2013, and the first manual 

measurements were made the same month.  
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Figure 3.3 Aerial view of experimental site. Arrow marked “N” indicates the direction of North. 

The prevailing wind direction is denoted by the elongated arrow. The circle in the north-eastern 

region of the field shows the location of the EC system, and the rectangle in the northwest 

corner is the SkyBeam system. The square containing “G” symbolises the diesel generator for 

powering the equipment. The northern half of the western boundary of the Miscanthus field 

was bordered by a mature deciduous wood, exceeding 10 m in height. The southern half of 

the western boundary was adjacent to another Miscanthus field, as was the western half of 

the south boundary. The neighbouring field at the eastern half of the south boundary was 

dedicated to conventional arable crop rotation (barley and oilseed rape during the 

experimental period), as were the two fields to the north of the Miscanthus. The entire eastern 

side of the Miscanthus was bordered by a short rotation coppice stand which was 

approximately 3 m tall during the study.   
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Figure 3.4 Overhead schematic of the plots beneath the SkyBeam system. Dashed lines show the margins of each plot. Plot numbers are indicated, 

and the treatment they received: +COMP= with compost, -COMP= control. The large circles represent the SkyBeam landing bases, and the small 

circles represent the collars used for manual and automated chambers. Grey shaded areas represent support towers. Not to scale.  
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In July 2013 a green compost was applied (5 T ha-1) to the soil surface Miscanthus 

field at large; a subsample of this compost was taken and well mixed and applied to 

the experimental plots by hand, at an equivalent rate, a few days later. The compost 

consisted of decomposed woody material composed of pieces smaller than 5 cm to 

fine sawdust-like particles and included timber and included timber and composite 

materials. It was hypothesised that the addition of compost would increase the soil 

moisture and availability of nitrogen (N), and so would stimulate production of N2O. 

Plots were therefore paired according to the flux of N2O prior to compost application, 

and one plot within each pair was designated at random to receive compost 

(+COMP), the other kept as a control (-COMP). Biomass was harvested by hand at 

the end of the measurement period in spring 2014. Vegetation from within each plot 

was cut at height analogous to mechanical harvesting, and dried at 70oC until at 

constant weight. 

3.2.3.2 Methodological comparison 

The presence of a CO2 EC system within the Miscanthus provided the opportunity to 

directly compare the measured NEE of CO2 using both the SkyBeam and EC 

techniques. Automated chambers delivered high frequency measurements of soil 

respiration, which enabled the assumptions regarding night time fluxes made during 

EC data processing to be investigated.  

It was further hypothesised that there would be a significant difference between the 

total estimated flux of N2O and CH4 made using manual chamber data and high 

frequency NEE measurements from SkyBeam. 

3.2.3.3 Partitioning of carbon fluxes 

Both the EC system and SkyBeam delivered NEE of CO2, and for the purposes of 

this analysis, NEE is defined as 

NEE = Reco  - photosynthesis 

where Reco is ecosystem respiration. Reco can be defined as 

 Reco = Ra + Rh 

where Ra is autotrophic respiration and Rh is heterotrophic respiration. However, in 

this study, in the absence of root exclusion collars, Reco can only be partitioned into 
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soil respiration (Rsoil) and above ground autotrophic respiration (Rplant). So we can 

define Reco as 

 Reco = Rsoil + Rplant.  

However, during the night, no photosynthesis occurs, thus 

 NEE = Reco. 

For the purposes of analysis, night is defined here as any period with PAR levels of 

zero. The night time data from the automated soil chambers under SkyBeam were 

used to establish the relationship between Reco and Rsoil, which was then extrapolated 

to day time data and the derived values for day time Reco were used to estimate 

photosynthesis. The relationship between day time and night time Reco was used to 

estimate day time values for Reco from the EC data, which allowed a further calculation 

of photosynthesis to be made.  

 Environmental variables 

Soil moisture and temperature were measured within each of the six experimental 

plots using SM200 moisture probes and ST1 temperature sensors, and logged as 

hourly averages on GP1 and DL2 dataloggers (Delta-T, Cambridge, UK). 

Meteorological data (air temperature, solar radiation and humidity) were recorded as 

hourly averages using an onsite weather station (WP1, Delta-T, Cambridge, UK). 

Rainfall data were retrieved from the Met Office weather station ca. two miles from 

the site, and additional measurements of air temperature, and solar radiation were 

measured and provided by CEH concurrently with the EC measurements. 

 Data processing 

All statistical analyses were performed using SAS (SAS 9.3, SAS Institute, NC USA). 

Gas fluxes were calculated by linear regression, and cumulative fluxes were 

estimated from trapezoidal integration. Repeated measures analysis of variance in 

fluxes between compost treatments were conducted using mixed effects models. 

Graphs were produced using Sigmaplot (Sigmaplot 12.3, Systat software, IL USA).  
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 Results 

 NEE data from SkyBeam 

3.3.1.1 CO2  

At the beginning of the study during June 2013 fluxes of CO2 from the Miscanthus 

remained positive throughout the whole day (Figure 3.5). From July onwards fluxes 

increased, both negative and positive: negative fluxes are defined as a flux from the 

atmosphere to the ecosystem and were seen during the daylight hours as the crop 

photosynthesised, and positive fluxes were seen during the night when 

photosynthesis halted (Figure 3.6). Negative fluxes steadily increased through the 

summer to a maximum of ca. 2500 mg m-2 h-1 from the amended plots (+COMP) and 

more than 3000 mg m-2 h-1 from the control (-COMP) plots, which occurred during late 

September 2013. Highest emissions of CO2 were seen during August for both 

treatments and were ca. 3000 mg m-2 h-1 and 3500 mg m-2 h-1 for +COMP and -COMP 

respectively, though generally during this time the daily maximum fluxes were 

between 1000 and 2000 mg m-2 h-1. Fluxes decreased in magnitude through autumn 

into the winter, tending towards zero by December, though there were still isolated 

occurrences of negative NEE which indicates that there was still some photosynthetic 

activity at this time. There was no significant effect of compost addition on the daily 

mean CO2 flux (F[1, 455]= 1.27, p= 0.26).  

The cumulative NEE of CO2 shows that for both treatments the Miscanthus was a net 

source of carbon emissions (Figure 3.7). Daily total fluxes of NEE were exclusively 

positive for July and the first week of August for both treatments. During the second 

week in August there were isolated days where the net CO2 flux was negative, initially 

in the -COMP plots, but by the middle of the month both treatments were increasingly 

taking up more CO2 than they were emitting over the course of a day (Figure 3.7, top 

panel). Through September there were more days of net uptake, particularly in the 

second half of the month. These days slowed the cumulative emission of CO2, 

particularly in the -COMP plots, and over the last few days of September into the 

beginning of October the system was accumulating carbon in both treatments, 

demonstrated by the decrease in the cumulative NEE of CO2. There were no data 

collected between 2nd October and 9th November, and so the periods either side have 

been treated as separate. It is entirely possible that had data been collected during 

this interval the system would have been shown to be a net sink for CO2. At the end   
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Figure 3.5 Mean ± 1SE (n=3) net ecosystem exchange (NEE) of CO2 from over Miscanthus 

measured using the SkyBeam system approximately hourly. Top panel shows fluxes from 

plots amended with green compost (open symbols) bottom panel shows unamended plots 

(closed symbols), vertical arrows indicate timing of addition. Negative fluxes indicate uptake 

and positive fluxes emissions.  
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Figure 3.6 Fingerprint map of NEE CO2 measured using SkyBeam over Miscanthus during summer 2013. Measurements were taken from a 

compost addition experiment, with plots amended with compost (+COMP, right hand panel) or un-amended controls (-COMP, left hand panel). 

Fluxes varied with time of day (horizontal axis) and time of year (vertical axis). Negative values indicate net uptake of CO2 and positive values net 

release. 
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Figure 3.7 Mean ± 1SE (n=3) cumulative NEE (bottom panel) and daily total flux (top panel) 

of CO2 from Miscanthus measured using SkyBeam. Plots were either amended with green 

compost (+COMP) or un-amended (-COMP), vertical arrows indicate timing of application. 

Due to the absence of data for October, the cumulative fluxes are calculated as two separate 

periods.   
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of the first period the total NEE of CO2 was 172 ± 241 g m-2 for the -COMP plots and 

546 ± 164 g m-2 from the +COMP, indicating that at this point in the growth cycle the 

Miscanthus was a net source of carbon emissions. When data collection 

recommenced in the second week of November the crop was still photosynthesising, 

to such an extent that the daily net fluxes were negative, for both the -COMP and 

+COMP. Within a week, however, net daily fluxes were positive, and by the end of 

the study the system was a net source for both treatments, with total emissions of 

108 ± 31 g CO2 m-2 period-1 and 80 ± 33 g CO2 m-2 period-1 from the –-COMP and 

+COMP plots respectively. The total NEE of CO2 was not significantly different 

between compost treatments for either the period July to October (t[2]= -0.92, p= 0.45), 

or the period November to December (t[2]= 0.48, p=0.68). 

3.3.1.2 N2O 

N2O fluxes were initially small (< 100 µg m-2 h-1, Figure 3.8). In fact, the majority of 

fluxes from both treatments were negative, indicating net uptake of N2O by the 

system. Six days after measurements began, there was a short-lived period of large 

N2O emissions from both treatments, peaking at ca. 1500 µg m-2 h-1 in the –-COMP 

plots and more than 2000 µg m-2 h-1 in the +COMP. This period of emission coincided 

with a day of heavy rain (more than 7 mm) on the 21st July 2013, which was the first 

precipitation in more than two weeks at the site (Figure 3.8, top panel). Within 48 

hours the previous pattern of small and negative fluxes resumed. A similar, though 

much smaller, burst of positive N2O fluxes occurred around September 11th 2013, 

following several days of rain preceded by a prolonged dry period. Fluxes during the 

second period of measurements were smaller (-100 to 100 µg m-2 h-1), and 

predominantly negative for both treatments (Figure 3.8). 

The two measurement periods were analysed separately. There was a significant 

effect of compost addition on individual rates of N2O flux during the first period (F[1,4]= 

8.64, p< 0.043), with fluxes being higher from the +COMP plots. Fluxes significantly 

differed (F[352,1380]= 10.32, p<0.0001), but there was no interaction between treatment 

and time. There was no effect of compost on NEE of N2O during the second period 

of measurements.  

During the first measurement period the Miscanthus was a net source for N2O, but a 

net sink in the second period from both treatments (Figure 3.9). Whilst the total NEE 

from the +COMP plots tended to be higher, the total flux was not significantly different  
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Figure 3.8 Mean ± 1SE (n=3) NEE of N2O from Miscanthus following a compost addition 

measured using the SkyBeam system. Unamended plots (-COMP, closed circles) are shown 

in the bottom panel, amended plots (+COMP, open circles) in the top panel. Measurements 

were made approximately hourly. Negative fluxes indicate uptake of N2O and positive fluxes 

release and the dashed horizontal lines represent an estimated detection limit for N2O flux, 

based on Cowan et al., (2014). The total daily rainfall for the study period is shown in the top 

panel. Vertical arrows indicate timing of compost addition. 
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Figure 3.9 Mean (± 1SE, n=3) cumulative (bottom panel) and total (top panel) NEE of N2O 

from Miscanthus measured using SkyBeam, following a green compost addition. Open 

symbols represent amended plots (+COMP) and closed symbols untreated controls (-COMP), 

vertical arrows denote timing of compost addition. Note the break in the axes on both panels. 

For clarity the daily totals from the second period of measurements has been expanded (top 

panel, inset). Negative fluxes indicate uptake, positive fluxes emission.  
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at the end of either period. Negative and positive daily totals of NEE were seen during 

both periods, but the cause of the Miscanthus being an overall net source for N2O 

over the first period was attributable the aforementioned three day period of high 

fluxes from 21-23rd July 2013 (Figure 3.9). 

3.3.1.3 CH4  

CH4 fluxes were for the most part negative, indicating that there was net uptake by 

the system (Figure 3.10). This was consistent across both treatments and 

measurement periods. Fluxes varied between ca. -130 to 50 µg m-2 h-1, though were 

typically in the -100 to 0 µg m-2 h-1 range, for both +COMP and –-COMP plots, and 

there was no significant difference between the treatments. The greatest uptake was 

seen during the beginning of the study throughout July, and reduced over the course 

of the summer, so that by the end of September uptake was rarely stronger than -50 

µg m-2 h-1.  

The Miscanthus system was a net sink for CH4 over both periods for both treatments 

(Figure 3.11). Despite there being occasional positive CH4 fluxes, there were only two 

days over which the Miscanthus was a net source; on both days the total emissions 

were close to zero, and they both occurred during the first measurement period 

(Figure 3.11).  

 Soil trace gas fluxes 

3.3.2.1 CO2  

Soil CO2 fluxes at the start of May were generally below 300 mg m-2 h-1, and the 

overall pattern from both treatments saw CO2 fluxes increase over the summer into 

August, after which they began to decline through autumn into the winter months 

November and December, when fluxes rarely exceeded 200 µg m-2 h-1 (Figure 3.12). 

During August, an equipment failure prevented data collection, but either side of this 

gap the fluxes reached a peak for both treatments of ca. 600 and 800 µg m-2 h-1 for 

the –-COMP and +COMP treatments respectively. The general trend in soil CO2 flux 

was punctuated by two distinct periods of high fluxes (Figure 3.12). During mid-May 

there was a sustained period of approximately two weeks during which fluxes reached 

600 µg m-2 h-1 for plots which were to receive both treatments. Following this period 

fluxes declined to 300- 400 µg m-2 h-1 and continued the gradual increase that typified 

the pattern previously. The second distinct period of especially high fluxes occurred   



122 
 

 

Figure 3.10 Mean ± 1SE (n=3) NEE of CH4 from Miscanthus following a compost addition 

(open circles, top panel) and from untreated controls (bottom panel, closed circles). Vertical 

arrows indicate timing of compost addition. 
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Figure 3.11 Mean (± 1SE, n=3) cumulative (bottom panel) and total (top panel) NEE of CH4 

from Miscanthus measured using SkyBeam, following a green compost addition. Open 

symbols represent amended plots (+COMP) and closed symbols untreated controls (-COMP), 

vertical arrows indicate timing of addition. Note the break in the axes on both panels. Negative 

fluxes indicate uptake, positive fluxes emission. 
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Figure 3.12 Mean ± 1SE (n=3) soil CO2 flux from under Miscanthus following a compost 

addition measured using automated chambers. Closed circles represent control plots (-

COMP) and open circles plots treated with compost (+COMP), vertical arrows indicate timing 

of addition.   
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over two days during the second week of September, and it was at this time that the 

maximum annual soil fluxes in excess of 1000 µg m-2 h-1 from the –-COMP and 1300 

µg m-2 h-1 +COMP plots were seen. These high fluxes occurred following sustained 

rain which ended an approximately two week period with no precipitation. Prior to the 

application of compost, there was no significant difference in the daily mean soil CO2 

flux between the +COMP and –-COMP plots F[1,284]< 0.00, p> 0.98, nor was there a 

difference over the entire study after treatment application, F[1,628]= 0.39, p<0.54. 

However, there was a trend for higher CO2 fluxes from the +COMP plots in the six 

weeks immediately after treatment, and if the fluxes from these weeks are analysed 

separately then this trend approached significance, F[1,96]= 3.05, p= 0.084. The total 

soil CO2 flux following compost addition did not differ between treatments, t[2]= 0.02, 

p > 0.98 (Figure 3.13).  

3.3.2.2 N2O 

Like N2O NEE measured using SkyBeam, soil N2O fluxes were generally very small 

(< 20 µg m-2 h-1) throughout the study period, from both treatments (Figure 3.14). 

However, with the exception of one occasion in November 2013, fluxes were always 

positive. At this time, as with several other sampling days, zero was within the 

standard error of the mean flux.  

N2O emissions peaked on the 26th July 2013, four days after compost addition. Fluxes 

of ca. 115 µg m-2 h-1 and 25 µg m-2 h-1 were seen from the +COMP and –-COMP plots 

respectively. The peak in N2O fluxes coincided with the largest values recorded with 

SkyBeam, though the manual measurements were undertaken several days after the 

maximum seen from the automated system.  

There was no significant difference in soil N2O flux between the compost treatments 

during the whole study period (F[1,35]= 1.55, p< 0.23), though fluxes significantly 

differed between sampling days (F[8,32]= 5.68, p< 0.0003), and there was a significant 

interaction between treatment and time (F[8,32]= 2.43, p< 0.04). The fluxes seen 

closest to the compost addition appeared to differ between the treatments, and indeed 

if this day is analysed separately, emissions were significantly higher from the 

+COMP plots than from the controls, (t[4]= 4.71, p< 0.01). The total cumulative flux for 

the period July 2013 to March 2014 did not differ between the –-COMP (59 mg m-2 

period-1) and the +COMP plots (63 mg m-2 period-1) (t[4]= 0.30, p< 0.78).  
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Figure 3.13 Daily mean and cumulative ± 1SE (n=3) soil CO2 flux under Miscanthus up to and 

following compost addition. The arrow indicates the timing of application and the dashed 

vertical line bounds the six week period following compost addition during which fluxes tended 

to be higher from the amended plots (see text for details). Cumulative curves are shown for 

before and after compost addition. 
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Figure 3.14 Mean flux N2O and CH4 ± 1SE from the soil under Miscanthus in plots treated with 

green compost (+COMP) and no compost (-COMP). Measurements were made using manual 

static chambers. Negative fluxes indicate net uptake and positive fluxes emission. Arrows 

denote timing of compost application, ** represents p< 0.01, t-test.  
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3.3.2.3 CH4  

CH4 fluxes were close to zero for both treatments throughout the study (Figure 3.14). 

When the fluxes differed from zero they tended to be negative (-100 to 0 µg m-2 h-1), 

which indicated that, as shown by the parallel measurements from SkyBeam, the soil 

was taking up CH4. There was one sampling day, in December 2013, where an 

emission of > 200 µg m-2 h-1 was seen from the –-COMP plots, which was in contrast 

to the flux of ca. 0 µg m-2 h-1 from the +COMP plots. There was no significant 

difference in fluxes between treatments over the entire study (F[1,32]= 0.79, p< 0.39), 

neither did they differ with sampling date (F[8,32]= 1.89, p< 0.10) and there was no 

interaction between date and treatment (F[8,32]= 0.92, p< 0.52). By the end of the study 

period, the –-COMP plots were a net source of CH4 (160 mg m-2 period-1), but the 

+COMP plots appeared to be a net sink (-68 mg m-2 period-1); the variation within 

each treatment, however, was large and the two treatments did not significantly differ 

(t[4]= -0.97, p< 0.39). 

 Comparison of trace gas fluxes from SkyBeam and manual chambers 

The period from 19th July 2013 to 2nd August 2013 was used to compare the fluxes of 

CH4 and N2O measured from the soil, using manual chambers, and of NEE of CH4 

and N2O measured using SkyBeam. Soil fluxes were measured three times during 

this period, and SkyBeam operated continuously throughout. 

NEE for both gases, as measured by SkyBeam was consistently lower than the soil 

measurements: the closest (temporally) automated measurement from SkyBeam was 

significantly lower than from the manual chamber within the same plot for N2O, (t[19]= 

7.99, p< 0.0001), and CH4, (t[14]= 2.32, p< 0.036). The same was also true for the daily 

mean fluxes based upon the continuous SkyBeam measurements, for N2O, (t[23]= 

5.74, p< 0.0001), and CH4, (t[17]= 4.30, p, 0.0005).  

The manual chamber measurements yielded a higher estimate of cumulative N2O flux 

compared to that derived from the hourly SkyBeam measurements. Cumulative soil 

N2O flux from coverboxes was 68 ± 17 mg m-2 for the period and significantly greater 

than 19 ± 3 mg m-2 for the same period based upon SkyBeam data (t[5]= 3.12, p< 

0.027). There was no significant difference between the estimate of cumulative CH4 

flux between static chambers and SkyBeam (t[5]= -1.3, p> 0.2). 
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 Biomass harvested from compost treatments 

Above-ground biomass from the control plots tended to be greater than that from the 

+COMP plots (Figure 3.15). The total biomass from the –-COMP plots was 203 ± 20 

g m-2 compared to 129 ± 18 g m-2from the +COMP plots, though they did not 

significantly differ (t[4]= -2.61, p=0.06), and scaled up, this would represent a yield of 

2.03 and 1.29 odt ha-1. 

 Greenhouse gas budget of NEE of three trace gases.  

The GHG balance of trace gases, over both periods in which NEE of all three gases 

was measured using SkyBeam, did not differ between compost treatments. The 

contribution of CO2 to the overall budget was between 3 and 4 orders of magnitude 

greater than that of either N2O or CH4 (Figure 3.16). Despite CH4 acting as a net 

carbon sink, it was dwarfed by the emissions of CO2 from both treatments, and whilst 

N2O acted as a sink in the first period and a source in the second, it had very little 

bearing on the overall GHG balance.  

 EC derived NEE of CO2  

3.3.6.1 Comparison of EC and SkyBeam 

At the start of the study period (early July 2013) the CO2 NEE measured using EC 

were in the range of ca. -1200 to 1500 mg CO2 m-2 h-1 (Figure 3.17). Through the 

summer the negative range of values decreased quickly, so that by the end of August 

2013 minima NEE of < -3000 mg m-2 h-1 were seen (Figure 3.18). Throughout this 

time the maximum values of NEE remained fairly constant around 1500 mg m-2 h-1. 

Uptake reduced through September, though even at the end of the month there were 

isolated fluxes of ca. -3000 mg m-2 h-1. During September maximum fluxes also 

diminished to approximately 1000 mg m-2 h-1. From November onwards fluxes were 

predominantly positive, and were of the range 0- 500 mg m-2 h-1.  

The number of EC flux values that made were retained after quality control totalled 

much fewer than those from the SkyBeam system (Figure 3.17), and these tended to 

be at the extremes of the daily range: there were fewer fluxes close to zero in the EC 

data than were seen by the SkyBeam system. In order to calculate daily mean fluxes 

from the EC data, any days with fewer than 6 measurements (half hourly averages) 

were removed, as this was deemed not to be representative of a 24 hour period, 
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Figure 3.15 Oven-dried biomass of Miscanthus from growing season 2013-2014 from plots 

amended with compost (+COMP) and controls (-COMP). Values are means ± 1SE, n=3.  
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Figure 3.16 GHG balance expressed as CO2 equivalents (CO2-eq, (Myhre et al., 2013)) 

derived from the cumulative NEE of three trace gases, CO2, N2O and CH4. The contribution 

of N2O and CH4 is so small to see on this scale.  
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especially since SkyBeam data were ca. hourly in frequency. The daily mean NEE of 

CO2, as measured by the EC system was negative throughout July and August 

(Figure 3.19, middle panel): net flux of CO2 was in the region of 0 to -500 mg m-2 d-1
, 

and this decreased to a minimum of ca. -1000 mg m-2 d-1 during the first half of August. 

By the start of September the net daily flux was becoming more positive, tending 

towards zero, and there were days of positive net emission, which increased in 

frequency towards the end of the month. This pattern is reflected in the cumulative 

NEE of CO2 from the EC data, where there was a steady accumulation of carbon by 

the system until the end of August, after which an equilibrium was reached, until at 

the end of September it appears that the Miscanthus system began to lose carbon 

(Figure 3.19, bottom panel).  

In contrast, the data from SkyBeam indicate that for the early part of the summer, the 

Miscanthus was a net source of CO2, with daily means in the range of 0 to 1000 mg 

m-2 d-1 (Figure 3.19, top panel). From mid-August there were days on which the daily 

mean NEE of CO2 was negative, indicating net uptake of CO2 on these occasions. 

These occurrences increased in frequency, so that by the start of October, the running 

average was negative, which would suggest that at this point the Miscanthus was 

starting to accumulate carbon, at the point where the EC data indicate the opposite 

was happening. The cumulative flux calculated from SkyBeam reflects that of the EC 

data from around August 28th, where emission and uptake are in equilibrium and the 

cumulative flux remains static for approximately the next four weeks (Figure 3.19, 

bottom panel). From September 25th, however, the SkyBeam data reflect a net 

accumulation of carbon by the Miscanthus, at the very time that the EC data show a 

release of carbon.  

For the entire study period, the daily mean NEE of CO2 measured by the EC system 

was lower than that from SkyBeam (t[57]= -6.85, p< 0.0001). However, the cumulative 

flux CO2 calculated with the data from both systems remained largely static during 

the period 26th August to 23rd September 2013 (Figure 3.19), and indeed during this 

period the daily mean NEE CO2 did not differ between the two systems (t[28]= -1.95, 

p> 0.06).  
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Figure 3.17 NEE of CO2 from Miscanthus measured using EC system (bottom panel) and the 

SkyBeam system (top panel, mean ± 1SE, n=3). Negative fluxes indicate net uptake of CO2 

and positive fluxes emission. EC data are the means of 30 minute period 
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Figure 3.18 Fingerprint maps of NEE of CO2 measured using SkyBeam (left) and EC (right). Positive fluxes represent net release of CO2 and negative 

fluxes net uptake. 
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Figure 3.19 Daily mean (top and middle panels) and cumulative (bottom panel) NEE of CO2 

from Miscanthus measured using EC (closed circles) and SkyBeam (open circles). Daily 

means are accompanied by a 1 week running average (solid lines). Cumulative values from 
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SkyBeam data are means ± 1SE (n=6), EC data are not replicated. Negative values of NEE 

indicate net uptake pf CO2 and positive values net release.  
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Due to the conservative quality control for the EC data, for the period 4th July to 1st 

October 2013, 2486 half-hourly flux measurements were rejected, as opposed to just 

1785 which were retained. As such, a more relevant comparison between SkyBeam 

data and EC values is derived from the hourly averages of the data. Comparing the 

hourly means from both systems shows that SkyBeam tended to yield higher (more 

positive) flux values than those from the EC system (t[2147]= 16.74, p< 0.001). This 

was particularly evident at high rates of uptake, during highest rates of photosynthesis 

(Figure 3.20).  

3.3.6.2 Partitioning of carbon fluxes from EC and SkyBeam 

Night time hourly ecosystem respiration (Reco) from SkyBeam was higher than soil 

respiration (Rsoil) measured data from the automated chambers, and this displayed a 

good linear relationship (Figure 3.21). This relationship was used to extrapolate 

values for Reco during the day time from concurrent Rsoil measurements. The mean 

daily night time Reco was estimated to be ca. 12% lower than day time Reco (Figure 

3.22), and allowed for an estimate of photosynthetic activity to be made.  

Photosynthesis, as calculated from EC data, increased from the end of July to daily 

means in excess of 2500 mg m-2 h-1 during August. During the beginning of 

September photosynthetic rates dropped, but increased again for the second half of 

that month (Figure 3.23). Data from SkyBeam suggests that photosynthesis was 

much lower in that particular part of the field during July, where rates increased 

steadily from ca. 100 mg m-2 h-1 to more than 500 mg m-2 h-1. These values were 

approximately 1000 mg m-2 h-1 lower than for the field as a whole, as shown in the EC 

data (Figure 3.23). However, during August the estimated rates of photosynthesis 

became much more similar for both systems’ data, and by the beginning of 

September there were days on which the area of the field measured by SkyBeam 

was photosynthesising more than the mean of the EC’s fetch.  

   



138 
 

 

Figure 3.20 Comparison of hourly mean values of NEE from both the EC system and SkyBeam 

from a Miscanthus x giganteus field. The solid line shows the linear regression of the two 

variables, the dashed line represents the one to one relationship.   
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Figure 3.21 Relationship between soil respiration (Rsoil), measured using automated chambers 

and ecosystem respiration (Reco), measured using SkyBeam during the night. This relationship 

was used to extrapolate day time values of Reco from Rsoil measurements.  
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Figure 3.22 Relationship between the mean night time ecosystem respiration (Reco), measured 

using SkyBeam, and mean day time Reco, calculated from Rsoil measured using automated 

chambers.  
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Figure 3.23 Daily mean values of photosynthesis, expressed in terms of mg CO2 m-2 h-1, 

calculated from NEE data measured using SkyBeam and EC from a Miscanthus field. A 

running 7-day average is shown for both EC data (solid line) and SkyBeam (dashed line).  
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 Environmental variables and their relationship to trace gas fluxes 

3.3.7.1 Patterns in environmental variables 

During May the daily average air temperature of approximately 10oC included daily 

ranges extending from near-zero to more than 20oC. Daily means rose to a peak of 

more than 20oC in early August and the highest temperature recorded was also during 

this month, when a maximum greater than 30oC was reached (Figure 3.24).  Soil 

temperature followed a similar pattern to air temperature, with maximum values 

occurring at the same time, though the soil was consistently warmer than the air 

(Figure 3.24). Soil temperature did not differ between the +COMP and –-COMP 

treated plots (F[1,291]= 0.11, p> 0.72). The annual peak in solar radiation occurred 

earlier than that of temperature, with a maximum daily mean of over 200 W m-2 

achieved in June (Figure 3.24). The highest recorded level of radiation was more than 

1000 W m-2 and this was also seen in June. Interdiel fluctuations could be quite 

pronounced, and consecutive daily means sometimes differed by a factor of three.  

Prolonged rainfall during May was followed by a dry first half of June; there was also 

a period of more than two weeks during July in which no rain fell at all (Figure 3.24). 

There was no significant difference in soil moisture prior to compost addition. The 

compost treatment was applied during this dry spell and following the application the 

+COMP plots were significantly wetter (F[1,91]= 7.40, p< 0.008). A significant 

interaction between treatment and date (F[82,91]= 15.25, p< 0.0001), indicated that the 

treatment effect changed, and post hoc tests showed that it was following rainfall that 

the treatments differed (Figure 3.24). After a summer characterised by periods of 

consecutive dry days, punctuated by sporadic precipitation, rain fell on the vast 

majority of days from the beginning of October into the middle of November. This was 

reflected in the soil moisture readings, which rarely exceeded 0.25 m3 m-3 until 

November, when moisture levels were maintained above 0.3 m3 m-3. By this time 

moisture levels were consistent between the two compost treatments. 

3.3.7.2 Correlation matrix 

All four gas fluxes (NEE CO2, N2O and CH4 and soil respiration) were significantly 

positively correlated with each other (Table 3.1), reflecting the likelihood they were 

affected by common factors. Other variables showing positive correlations were solar 

radiation and air temperature and soil temperature, and relative humidity was 

significantly negatively correlated with air temperature and solar radiation (Table 3.1). 
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Figure 3.24 Environmental and meteorological variables recorded throughout the study 

period. With the exception of rainfall (daily totals), values shown are daily means of hourly 

measurements; for soil moisture and soil temperature the data are daily means ± 1SE, n=3. 

The dashed lines for air temperature represent the daily maximum and minimum, and for solar 

radiation (radiation) the maximum, since the daily minimum was always zero. Vertical arrows 

indicate timing of compost addition.   
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Table 3.1 Correlation matrix of trace gas fluxes measured using SkyBeam and automated chambers (soil respiration only) and environmental variables. 

Values shown are Pearson correlation coefficients, significance levels are denoted (* p< 0.05, ** p< 0.01, *** p< 0.001). 

TREAT Variable Flux N2O Flux CH4 NEE CO2 

 Soil 

respiration  
Solar 
radiation Air temp 

Relative 
humidity 

Soil 
moisture 

Soil 
temp 

Hourly 
rain 

Daily 
rain 

-COMP 

Flux N2O 1  0.23 *** 0.11 *** 0.18 ***  -0.02ns 0.15 *** 0.12 *** 0.07ns -0.32 *** 0.08* 0.32 *** 

Flux CH4 0.23 *** 1  0.33 *** 0.21 ***  -0.54 *** -0.36 *** 0.59 *** -0.04ns -0.46 *** 0.11* 0.11 *** 

NEE CO2 0.11 *** 0.33 *** 1  0.37 ***  -0.65 *** -0.29 *** 0.69 *** 0.01ns -0.21 *** 0.03ns 0.05*** 

Soil respiration 0.18 *** 0.21 *** 0.37 *** 1   -0.01ns 0.44 *** 0.1** -0.55 *** 0.35 *** -0.06* -0.1 *** 

             

Solar radiation -0.02ns -0.54 *** -0.65 *** -0.01ns  1  0.56 *** -0.76 *** -0.31 *** 0.32 *** -0.02ns -0.05ns 

Air temperature 0.15 *** -0.36 *** -0.29 *** 0.44 ***  0.56 *** 1  -0.59 *** -0.6 *** 0.87 *** 0.05ns 0.05*** 

Relative humidity 0.12 *** 0.59 *** 0.69 *** 0.1**  -0.76 *** -0.59 *** 1  0.39 *** -0.38 *** 0.04ns 0.15 *** 

Soil moisture 0.07ns -0.04ns 0.01ns -0.55 ***  -0.31 *** -0.6 *** 0.39 *** 1  -0.6 *** 0 0.12 *** 

Soil temperature -0.32 *** -0.46 *** -0.21 *** 0.35 ***  0.32 *** 0.87 *** -0.38 *** -0.6 *** 1  0 -0.15 *** 

Hourly rain 0.08* 0.11* 0.03ns -0.06*  -0.02ns 0.05ns 0.04ns 0 0 1  0.27 *** 

Daily rain 0.32 *** 0.11 *** 0.05*** -0.1 ***   -0.05ns 0.05*** 0.15 *** 0.12 *** -0.15 *** 0.27 *** 1  
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TREATMENT Variable Flux N2O Flux CH4 NEE CO2 
Soil 
respiration   

Solar 
radiation Air temp 

Relative 
humidity 

Soil 
moisture 

Soil 
temp  

Hourly 
rain 

Daily 
rain 

+COMP 

Flux N2O 1 0.14 *** 0.16 *** 0.1 **  0.06 *** 0.19 *** 0.05 ns 0.07 ns -0.24 *** 0 ns 0.22 *** 

Flux CH4 0.14 *** 1 0.34 *** 0.13 ***  -0.45 *** -0.38 *** 0.51 *** -0.07 ns -0.34 *** 0.04 ns 0.11 *** 

NEE CO2 0.16 *** 0.34 *** 1 0.26 ***  -0.61 *** -0.25 *** 0.66 *** 0.03 ns -0.16 *** 0.04 ns 0.07 *** 

Soil respiration 0.1 ** 0.13 *** 0.26 *** 1  0 *** 0.43 *** -0.01 ns -0.51 *** 0.37 *** -0.01 ns -0.02 ** 

             

Solar radiation 0.06 ns -0.45 *** -0.61 *** -0.04 ns  1 0.55 *** -0.76 *** -0.29 *** 0.4 *** -0.04 ns -0.1 *** 

Air temperature 0.19 *** -0.38 *** -0.25 *** 0.43 ***  0.55 1 -0.58 *** -0.53 *** 0.87 *** 0.03 ns 0.05 *** 

Relative humidity 0.05 ns 0.51 *** 0.66 *** -0.01 ns  -0.76 *** -0.58 *** 1 0.38 *** -0.43 *** 0.08 ** 0.15 *** 

Soil moisture 0.07 ns -0.07 ns 0.03 ns -0.51 ***  -0.29 *** -0.53 *** 0.38 *** 1 -0.61 *** 0.09 * 0.16 *** 

Soil temperature -0.24 *** -0.34 *** -0.16 *** 0.37 ***  0.4 *** 0.87 *** -0.43 *** -0.61 *** 1 0 ns -0.13 *** 

Hourly rain 0 ns 0.04 ns 0.04 ns -0.01 ns  -0.04 ns 0.03 ns 0.08 ** 0.09 * 0 ns 1 0.35 *** 

Daily rain 0.22 *** 0.11 *** 0.07 *** -0.02 **  -0.1 *** 0.05 *** 0.15 *** 0.16 *** -0.13 *** 0.35 *** 1 
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The relationship between soil moisture and temperature was also significantly 

negative 

3.3.7.3 NEE CO2 and environmental variables 

The variable which showed the strongest relationship with NEE of CO2, for both 

treatments, was solar radiation (Figure 3.25), which consistently accounted for at 

least 60% of the variation in NEE. For both the –-COMP and +COMP plots, NEE was 

strongly negatively related to the instantaneous rate of solar radiation. The 

relationship in the control plots (-COMP) was best described as a non-linear function 

(R2= 0.60), where maximum uptake occurred at radiation levels between 400 and 600 

W m-2 (Figure 3.25). A non-linear model also fitted well to the +COMP treatment (R2= 

0.49), but was best described by a linear model (R2= 0.66), perhaps due to the 

reduced biomass present in these plots (Figure 3.1), meaning that maximum uptake 

was not achieved in this treatment. At 0 W m-2 NEE was positive, since with no light 

no photosynthesis occurred, and NEE consisted of ecosystem respiration at this 

point.  

Relative humidity was positively related to NEE for both treatments, and explained 

51% and 53% of the variance in the –-COMP and +COMP plots respectively (Figure 

3.25). NEE became positive as relative humidity approached 80%, indicating that 

above this emission exceeded uptake. The only other variable to show a significant 

relationship with NEE of CO2 was air temperature, which was very weakly significant 

(R2= 0.04, both treatments) and with uptake increasing slightly with higher 

temperatures. Neither soil temperature nor soil moisture displayed significant 

relationships with NEE.  

3.3.7.4 Soil respiration 

Relative humidity and air temperature were the two variables significantly associated 

with soil respiration across both compost treatments (Figure 3.26). Air temperature 

had the biggest effect on soil respiration, best described as a non-linear relationship 

which explained 15% and 19% of the variation in the –-COMP and +COMP treatments 

respectively. It is suggested that soil respiration peaked at around 20 oC (Figure 3.26). 

Soil respiration increased very slightly with relative humidity in both treatments, 

though where this relationship was decidedly weak in the +COMP plots (R2= 0.03), it 

was stronger in the –-COMP plots (R2= 0.14).  
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Figure 3.25 Environmental variables which demonstrated a significant relationship with NEE 

of CO2 measured using SkyBeam, for -COMP (top three panels) and +COMP plots (bottom 

four panels). R2 values and significance level are shown, (* p< 0.05, ** p< 0.01, *** p< 0.001).   
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Figure 3.26 Relationship of soil respiration to environmental variables from plots treated with 

compost (+COMP, bottom panel) and controls (-COMP top panel). R2 values and significance 

level are shown, (* p< 0.05, ** p< 0.01, *** p< 0.001). The model, linear or non-linear, with the 

best fit is displayed.  
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The effect of soil moisture on respiration was different between the two treatments. 

Whereas it was not significantly related in the +COMP plots, it there was a negative 

relationship in the control plots, where it explained 10 % of the variation (Figure 3.26). 

This relationship would suggest that as volumetric soil moisture approached 40%, soil 

respiration approached zero in this treatment. 

3.3.7.5 N2O and environmental variables 

As seen for soil respiration, air temperature and relative humidity were the two 

variables consistently significantly related to the NEE of N2O from both compost 

treatments (Figure 3.27). Relative humidity showed a weak positive relationship with 

both the –-COMP plots (R2= 0.02) and the +COMP plots (R2- 0.04). The variable 

which explained most of the variation in flux of N2O was air temperature, for the -

COMP treatment (R2= 0.11), and whilst this variable had a slightly better relationship 

with the +COMP plots (R2= 0.13), it was soil moisture that explained most of the 

variation in N2O flux from these plots (R2= 0.14), with which N2O flux had a positive 

relationship (Figure 3.27). 

 The relationship of N2O and environmental variables differed somewhat for the 

monthly coverbox data (Figure 3.28). The variable which explained the greatest 

variation (R2= 0.30) in the –-COMP treatment was the daily minimum value of relative 

humidity, with soil N2O fluxes declining with increased humidity. Daily minimum 

temperature also had a big influence, (R2= 0.26) with fluxes increasing with 

temperature, and concurrent soil temperature (R2= 0.20) and air temperature (R2= 

0.16) were also significantly related to soil N2O flux (Figure 3.28). The relationship 

with soil temperature indicated that fluxes increased exponentially above 10oC, and 

that air temperature > 20oC were required for the highest fluxes (Figure 3.28).  

Similarly, in the +COMP plots N2O fluxes increased above a soil temperature 

threshold of 10 oC, and this was the best predictor of fluxes (R2= 0.44, Figure 3.28). 

The relationship with concurrent air temperature was not so strong in the +COMP 

treatment (R2= 0.16), though fluxes did increase with temperature, and this was 

clearer in the relationship with minimum daily air temperature, which explained 32%    
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Figure 3.27 Relationship of NEE of N2O measured using SkyBeam to environmental variables 

from plots treated with compost (+COMP bottom panel) and controls (-COMP top panel). R2 

values and significance level are shown, (* p< 0.05, ** p< 0.01, *** p< 0.001). The model, 

linear or non-linear, with the best fit is displayed.   
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Figure 3.28 Significant relationships of environmental variables soil N2O flux measured using 

coverboxes from compost amended plots (+COMP bottom panel) and controls (-COMP top 

panel) under Miscanthus.   
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of the variation in fluxes. Soil moisture was also significantly related to N2O fluxes, 

though this relationship was relatively weak (R2= 0.10), and, perhaps surprisingly, 

was negative (Figure 3.28).  

3.3.7.6 CH4 and environmental variables 

CH4 fluxes measured using SkyBeam were most closely related to relative humidity 

in the control treatment (R2= 0.30) and the +COMP treatment (R2= 0.19), with fluxes 

increasing with humidity in both (Figure 3.28). Both treatments also showed a 

significant negative relationship with solar radiation, and whilst it was a stronger 

relationship in the +COMP plots (R2= 0.16) than the controls (R2= 0.09), fluxes 

declined more quickly with radiation in the latter (Figure 3.29). This decline in fluxes 

was not a reduction in emission, since fluxes were predominantly negative, rather it 

indicates an increase in oxidation of CH4. In addition to solar radiation and humidity, 

uptake of CH4 increased with air temperature, though this relationship was weak for 

both the control plots (R2= 0.05) and +COMP treatment (R2= 0.04). This relationship 

suggests, for both treatments, that a shift from net emission to net uptake of CH4 

occurred at around 15oC.  

The monthly measurements of soil CH4 flux demonstrated slightly different 

relationships with environmental variables. In fact, no variables were significantly 

related to the fluxes measured from the control plots. However, the relationship 

between CH4 flux and air temperature was significant in the +COMP plots, and though 

it was better described by a non-linear relationship (R2= 0.24) in the monthly data, it 

would indicated that at air temperatures above 15oC CH4 fluxes displayed a net 

uptake (Figure 3.30). The pattern was similar with soil temperature, though this 

relationship was less strong (R2= 0.10). Two other variables significantly related to 

CH4 fluxes were mean daily solar radiation (R2= 0.24) and soil moisture (R2= 0.17), 

and while the former was a positive relationship, with negative fluxes at low daily 

mean radiation and positive fluxes above a mean of 150 W m-2, fluxes became more 

negative with increased soil moisture (Figure 3.30), though the soil was dry 

throughout the study, with moisture never exceeding 30%.   
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Figure 3.29 Relationship of NEE of CH4 measured using SkyBeam to environmental variables 

from plots treated with compost (+COMP bottom panel) and controls (-COMP top panel). R2 

values and significance level are shown, (* p< 0.05, ** p< 0.01, *** p< 0.001). The model, 

linear or non-linear, with the best fit is displayed.  
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Figure 3.30 Significant relationships of environmental variables soil CH4 flux measured using 

coverboxes from compost amended plots (+COMP) under Miscanthus. No significant 

relationships were found with the fluxes from the control (-COMP) plots. R2 values and 

significance level are shown (* p< 0.05, ** p< 0.01, *** p< 0.001). 
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 Multiple regression models 

It was possible to account for at least 75 % of the variance in all the fluxes of all three 

gases from the +COMP treatment, though the –-COMP treatment was less well 

described. Solar radiation was the most important predictor of NEE of CO2 from both 

treatments, (Equations 3.1 and 3.4), with daily rainfall significant for the –-COMP plots 

and soil moisture for the +COMP treatment. Solar radiation was also the most 

significant variable for N2O flux from the –-COMP plots, though this model performed 

less well (R2= 0.29, Equation 3.2). Air temperature had a bigger influence on N2O flux 

from the +COMP plots than any other variable, and overall this model accounted for 

a much greater proportion of the variance in flux than in the control plots (R2= 0.77, 

Equation 3.5). Air temperature was the most important variable in respect to CH4 

fluxes, and was the only variable significantly related to +COMP fluxes, accounting 

for 23% of the variance (Equation 3.3); it also had the most influence on CH4 flux from 

the +COMP plots, and was incorporated in a model explaining 86% of the variation 

here (Equation 3.7). Soil respiration was very well described by a model including 

solar radiation and soil temperature (R2= 0.93, Equation 3.4) in the –-COMP plots and 

was most strongly influenced by air temperature in the +COMP plots, with other 

significant variables being soil moisture and soil temperature (R2= 0.91, Equation 3.8).  

3.3.8.1 Control plots 

 

NEE CO2 (mg m-2 h-1) =  -8.4 * solar radiation (W m-2) – 137 * daily rain (mm) + 1179 

R2= 0.85, p< 0.0001        (Eq 3.1) 

NEE N2O (µg m-2 h-1) =  -0.03 * solar radiation (W m-2) + 2.3 * daily rain (mm) – 3.9 

R2= 0.29, p< 0.05        (Eq 3.2) 

NEE CH4 (µg m-2 h-1) =  -1.6 * air temperature (oC) + 10.5 

R2= 0.23, p< 0.03        (Eq 3.3) 

Soil respiration (mg m-2 h-1) = -0.7 * solar radiation (W m-2) + 11.2 * soil temperature (oC) + 

268 
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R2= 0.93, p< 0.0001         (Eq 3.4) 

3.3.8.2 Plots with compost 

 

NEE CO2 (mg m-2 h-1) =  -4.2 * solar radiation (W m-2) + 198 * soil moisture (%) -833 

R2= 0.75, p< 0.0001        (Eq 3.5) 

NEE N2O (µg m-2 h-1) =  -11.0 * air temperature (oC) + 7.5 * soil temperature (oC) – 4.5 * daily 

rain (mm) + 30.4  

R2= 0.77, p< 0.0001        (Eq 3.6) 

NEE CH4 (µg m-2 h-1) =  -18.6 * air temperature (oC) + 15.8 * soil temperature (oC) – 7.4 daily 

rain (mm) -8.0 

R2= 0.86, p< 0.0001        (Eq 3.7) 

Soil respiration (mg m-2 h-1) = 48.3 * air temperature (oC) + 130 * soil moisture (%) – 57.9 * soil 

temperature (oC) – 73.6  

R2= 0.91, p< 0.0001        (Eq 3.8) 

 Diurnal patterns in trace gas fluxes 

3.3.9.1 NEE measured using SkyBeam  

The diurnal pattern for NEE of CO2 was typified by positive fluxes through the night 

time and negative fluxes during the daytime. The transition from emission to uptake 

was relatively rapid, with an average flux of ca. 1000 mg m-2 h-1 at 06.00 but negative 

flux by 07.00 from –-COMP, indicating that photosynthesis quickly exceeded 

respiration (Figure 3.31). The transition was less quick in the +COMP plots, and 

tended to occur slightly later. The peak emissions CO2 were on average 

approximately 1200 mg m-2 h-1 from –-COMP and 1000 mg m-2 h-1 from +COMP, and 

occurred between 01.00 and 02.00 (Figure 3.31). Night time NEE from the –-COMP 

plots tended to be slightly higher than the +COMP treatment, but during the day the 

difference was more pronounced, in the opposite direction, with maximum uptake in 

the region of -1500 mg m-2 h-1 in –-COMP viz ca. -800 mg m-2 h-1 from +COMP. The 

period of maximum uptake occurred between 10.00 and 16.00, but tended to be more 
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even in the +COMP treatment. The period during which NEE switched from negative 

to positive in the early evening was not so swift and typically occurred between 17.00 

and 18.00 (Figure 3.31).  

In a similar pattern to NEE of CO2, N2O also exhibited a diurnal trend of positive fluxes 

during the night time and negative fluxes during the day time (Figure 3.31, bottom 

panel). Maximum emission occurred between 03.00 and 04.00 and were in the region 

of 5 – 15 µg m-2 h-1. From 05.00 fluxes consistently declined, in a manner less severe 

than displayed by CO2, becoming negative around 09.00 and reaching maximum 

uptake at 16.00. Maximum uptake was ca. -20 µg m-2 h-1, but the transition from 

uptake to emission during the evening was quicker than the opposite switch in the 

morning, and closely resembled the change from negative to positive displayed by 

that of CO2 (Figure 3.31 

CH4 fluxes were on average negative throughout the entire day. However, these too 

displayed a diurnal pattern, characterised by fluxes close to zero during the period 

21.00- 06.00, and oxidation through the day (Figure 3.31). After 06.00, in a fashion 

similar to that seen in CO2 and N2O, oxidation increased at a fairly constant rate until 

it peaked at ca. -40 µg m-2 h-1, coinciding with the largest negative N2O fluxes, but 

occurring 1-2 hours after the most negative CO2 fluxes (Figure 3.31).  
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Figure 3.31 Diurnal pattern of NEE of CH4 (top panel), CO2 (middle panel) and N2O (bottom 

panel) from Miscanthus amended with compost (+COMP) and a non-amended control (-

COMP), as measured using SkyBeam between July and October 2013. Values displayed are 

means ± 1SE (n=3 * 51 days for CH4 and N2O and n= 3* 89 days for CO2). 
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3.3.9.2 Soil respiration 

The diurnal fluctuation in soil respiration was typified by lowest rates of respiration 

around 9.00 (Figure 3.32), which coincided with the lowest values of NEE of CO2 

(Figure 3.31, middle panel). However, respiration increased through the afternoon 

and continued to do so throughout the evening, reaching its daily peak at around 

21.00 in the –-COMP controls: the pattern was similar for the +COMP plots, though 

the afternoon increase was steeper and peaked earlier at 15:00. Respiration tended 

to be higher in the +COMP treatment through the afternoon (Figure 3.32) as it 

increased more quickly after the daily minimum, which was in contrast to NEE of CO2, 

which was lower in the –-COMP treatment during the day. During the night Rsoil was 

similar for both treatments (Figure 3.31, middle panel). It was also apparent that the 

daily maxima and minima were approximately 20-30 mg m-2 h-1 higher in the +COMP 

treated plots, thought the absolute daily variation of ca. 40 mg m-2 h-1 was similar for 

both plots. This amplitude of diurnal variation was 15% and 14% of the daily maximum 

values for the –-COMP and +COMP plots respectively.  

3.3.9.3 Drivers of diurnal patterns 

The pattern of soil respiration did not simply follow the pattern of soil temperature, 

indicating this process was not simply temperature dependent. However, during the 

period from 09.00 to 17.00 it would seem that soil temperature could have been the 

key driver of soil respiration (Figure 3.33, top panel), and this period was used to 

estimate the magnitude of its influence, which was subtracted in order to calculate a 

temperature-independent respiration rate, referred to here as ‘baseline respiration’, 

(Figure 3.33, bottom panel).  

NEE of N2O and CH4 tracked the pattern of baseline respiration throughout the night, 

(Figure 3.33). During the day time, particularly between 09.00 and 17.00 the trends 

in NEE diverged from respiration, whilst still following the same general pattern 

(Figure 3.33). The pattern in baseline respiration was also remarkably similar to that 

of NEE of CO2, as measured using SkyBeam (Figure 3.34).   
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Figure 3.32 Diurnal pattern of Rsoil from plots under Miscanthus, following a compost addition 

(+COMP) and untreated controls (-COMP). Values displayed are mean ± 1SE (n=3).  
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Figure 3.33 Top panel: diurnal pattern of soil respiration and soil temperature. The vertical 

lines indicate period of day when soil temperature appears to be the principal driver of 

respiration. Bottom panel: diurnal pattern of soil respiration with temperature dependent 

respiration subtracted (baseline respiration) and NEE of N2O and CH4 measured using 

SkyBeam. Values shown are means across the study period, only data from –-COMP 

treatment used.  
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Figure 3.34 Diurnal patterns of NEE CO2 from Miscanthus measured using SkyBeam and soil 

respiration using automated chambers. Negative values in NEE indicate net uptake of CO2. 

Values shown are means across the study period from un-amended plots (-COMP). 
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 Discussion 

 Evaluation of SkyBeam system 

SkyBeam operated successfully and uninterrupted from the beginning of July until the 

first week of October 2013, and for a further few weeks throughout November and 

December 2013 until it was dismantled at the end of the year. In doing so the system 

completed a total of 20,000 chamber closures. Whilst ambitious designs for chambers 

to measure gas exchange by large vegetation have been proposed for many years 

(Eckardt, 1968), examples of implementation of such ideas are rare, and lack the 

automation required to produce continuous data (Mordacq et al., 1991). The design 

of SkyBeam not only produced a dataset with 24 hour coverage over six months 

(Figure 3.18), but by using a single automatic chamber the Miscanthus crop at each 

measurement position was only enclosed for 10 minutes out of every hour, ensuring 

its isolation from the environment was kept to a minimum.  

Due to the automated nature of both SkyBeam and the soil flux chambers employed 

in this study, flux data were generated for CO2 for both night-time and day-time for a 

period of almost 6 months, at approximately hourly resolution. The same resolution 

data were generated for CH4 and N2O for two shorter, distinct, campaigns of 24 and 

26 days respectively. Such CO2 data were not delivered by EC since it is not really 

effective at collecting flux data at night due to the afore-mentioned problems of 

atmospheric stratification (Aubinet, 2008), with mathematical gap filling being a major 

limitation of the technique. The delivery of continuous data for NEE of CO2 and soil 

respiration has shed light upon the underlying processes of NEE and raises questions 

about the way in which CO2 fluxes are partitioned in many EC datasets. Similarly, the 

data delivered by SkyBeam differed from data generated using cover boxes, which 

were used exclusively only in the day-time and on a relatively infrequent monthly 

schedule, and this too has provided important information about interpretation of 

single daily measurements of soil GHG fluxes.  

 Miscanthus as a net carbon source 

It is important to note that 2013 was an atypical year in terms of normal Miscanthus 

management. This was largely due to the non-standard harrowing of the Miscanthus 

field between the previous year’s harvest and the emergence of new green shoots, in 

an effort to increase the yield by spreading the rhizomes more evenly. The previous 

year the crop had produced a below-expected yield, which had been attributed to the 
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heterogeneity of the original distribution of the rhizomes, sown at least 7 years 

previously. Tillage is known to increase soil respiration, since aerobic microbial 

activity is stimulated through increase exposure to atmospheric oxygen (e.g. Fiedler 

et al., 2015). Due to the disturbance from tillage, it is suggested that 2013 was more 

typical of an establishment year and it is widely accepted that Miscanthus does not 

reach peak yields until around its sixth year (Arundale et al., 2014, Christian et al., 

2008, Larsen et al., 2014). The biomass harvested from the experimental plots in this 

study equated to ca. 2 t ha-1, which is much less than optimum yields reported in this 

country, which can be in excess of 12 t ha-1 (Clifton-Brown et al., 2004). During the 

establishment phase, yields gradually increase over the first 4-5 years and it was 

unsurprising, therefore, that this 2013 crop failed to exceed 1.5 m in height. This poor 

growth rate would help to explain why, according to SkyBeam data, the system was 

a net source for CO2 over the study period. In addition to less aboveground biomass 

photosynthesising, turnover of belowground carbon has been shown to cause 

Miscanthus to be a net source of CO2 during the first two years of establishment 

(Jorgensen et al., 2014). It should also be pointed out that NEE of CO2 was 

consistently at its lowest during the period immediately prior to equipment failure at 

the end of September 2013 (Figure 3.6), and so it is conceivable that had 

measurements continued the system would have been seen to be a sink for CO2 over 

the course of the year.  

 

 Compost addition  

3.4.3.1 Yield and soil properties 

The biomass harvested from the +COMP plots, whilst not significantly lower than the 

–-COMP plots, suggested that the compost addition certainly did not increase yield in 

the experimental plots. One of the purported advantages of growing Miscanthus as a 

bioenergy crop is that it has very low nutrient requirements. In previous studies on 

fertiliser addition to Miscanthus there have been mixed results, with some studies 

showing increased yields with nitrogen application (Cosentino et al., 2007, Ercoli et 

al., 1999), but many that did not (Danalatos et al., 2007, Muylle et al., 2015, Teat et 

al., 2015), and some that have seen effects vary across different sites (Haines et al., 

2015). It has been shown that Miscanthus grown with lower N input produces a higher 

quality feed stock for combustion, due to a reduction in the ash that it produces 

(Hodgson et al., 2010). Green compost is not commonly applied to Miscanthus, 

though it may be used to aid phytoremediation of brownfield sites contaminated with 
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heavy metals (Lord, 2015), which may subsequently be used for bioenergy crop 

production. Since this was not such a site, it remains unclear exactly the aim of the 

farmer in making this application; it may be that Miscanthus acts as an inexpensive 

solution to disposal of waste materials. It did help the soil retain moisture, and in so 

doing may have slowed leaching of nutrients in soil water, which may have benefits 

in terms of yields in future years. 

3.4.3.2  CO2 

Since the NEE of CO2 is the product of the two general processes, respiration and 

photosynthesis, the potential existed for the compost to affect the balance by 

influencing either or both of these processes. The range of NEE from the +COMP 

treatment tended to be less than that from the –-COMP, with less uptake during the 

day, and lower emission through the night. The lower values during the day are 

reflected by the trend in lower standing biomass in those plots: less vegetation means 

less photosynthesis which also leads to less carbon being fixed in those plots and 

less autotrophic respiration. However, the soil respiration from the +COMP plots 

suggested that the compost was stimulating heterotrophic respiration during the first 

six weeks following application. There were only three replicates, and it is suggested 

that in future work a larger transect with more replication would help identify 

differences more easily. Green waste compost has been shown to increase soil 

respiration in some agricultural (Perez-Piqueres et al., 2006, Vaughan et al., 2011) 

and urban soils (Beesley, 2014). 

3.4.3.3 N2O  

N2O emissions from both treatments were generally low, in comparison to other 

agricultural systems where emissions may commonly be of the order of thousands of 

µg m-2 h-1 (Dobbie et al., 1999). The peak soil fluxes measured using manual 

chambers were of a similar order of magnitude to those seen under Miscanthus when 

unfertilised (Drewer et al., 2012, Jørgensen et al., 1997). The peak fluxes measured 

using SkyBeam, however, were much higher and were more similar to the peaks often 

seen from fertilised arable crops (Smith et al., 2012). 

During the first period of high frequency N2O measurements from SkyBeam, fluxes 

were higher from the +COMP treatment. This was most apparent during the first 

rainfall after measurements started during July 2013, when the highest fluxes from 

the soil chambers were also seen. As the first rain in over two weeks, this constituted 

a rewetting event, which have been shown to stimulate N2O fluxes from agricultural 
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soils when fertilised with mineral nitrogen (Ruser et al., 2006, Smith et al., 2012), 

slurry (Rochette et al., 2004) and especially when compacted (Beare et al., 2009), 

but also from forest soils (Brumme et al., 1999) and grasslands (Kim et al., 2010). 

The likely cause of such bursts of N2O emission is denitrification, as the precipitation 

causes a rapid rise in soil moisture and anaerobic microsites within the soil matrix. In 

well aerated soils, it has been suggested that prolonged dry periods allow a buildup 

of NO3 through nitrification which is rapidly denitrified following rainfall (Kim et al., 

2010). 

The current study suggests that the heightened effluxes of N2O from the +COMP plots 

were not caused by increased input of nitrogen from the compost, since as green 

waste compost its carbon to nitrogen ratio is likely to have been very high, but due to 

the elevated soil moisture levels created by the compost amendment, which in turn 

made the soil more anaerobic and more suitable for N2O production through 

denitrification.  

3.4.3.4 CH4 

Over both measurement periods the SkyBeam data showed that the system was a 

net sink for CH4, indicating that oxidation was the dominant CH4 microbial process. It 

is perhaps surprising that there was no difference between the two compost 

treatments, since the compost increased the soil moisture. The elevated moisture 

might have been expected to stimulate CH4 production due to increased anaerobic 

zones (McNamara et al., 2008) and the occasion on which the highest efflux was 

recorded using manual chambers was during December 2013, when the soil was 

wettest.  

 Comparison of SkyBeam and manual chambers 

Higher fluxes of N2O and CH4 were seen from the manual chambers than from the 

SkyBeam chambers within the same plots. The comparison was made between the 

closest temporal measurements, which was within two hours of each other. Despite 

this, there was an inevitable separation in time and space, neither of which cannot be 

discounted as a cause for the differences, especially given the diurnal variation in 

fluxes of both gases that were seen in this study. The second major difference was 

that SkyBeam included the vegetation within its chamber. 
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The presence of vegetation may play a role in GHG balance. Since it was first 

identified by Keppler et al. (2006), the formation of CH4 by vegetation under UV-A 

stimulation has been further investigated and corroborated (Fraser et al., 2015). CH4 

is further known to be transported via aerenchyma in vascular plants, particularly 

wetland species (Le Mer &  Roger, 2001), where CH4 formed in the anoxic 

rhizosphere is passively transported to the atmosphere. Miscanthus sacchariflorus, a 

species related to Miscanthus x giganteus, has been shown to be aerenchymous (Qin 

et al., 2010) and it follows that the same may be true for Miscanthus x giganteus. In 

a CH4 oxidising soil the concentration gradient could lead to CH4 diffusing from the 

atmosphere through vegetation into the soil, meaning the presence of vegetation 

might increase the rate of CH4 uptake from the air. Indeed, the presence of 

aerenchymous species has been shown to be able to reduce CH4 emission from soils 

(Dinsmore et al., 2009). Aerenchymous tissue has also been suggested to transport 

N2O between soil and atmosphere along a concentration gradient (Jorgensen et al., 

2012, Pihlatie et al., 2005, Rusch &  Rennenberg, 1998), and so it may be a factor in 

the increased uptake of N2O seen here in the SkyBeam chamber compared to the 

manual chambers.  

 Comparison of SkyBeam and EC system 

NEE of CO2 measured using SkyBeam differed to that measured using EC, in that 

the rate of uptake measured was lower in the former. Whilst fluxes were of a similar 

order of magnitude, it would appear that photosynthesis was not as strong from the 

SkyBeam experimental plots. It is entirely possible that, since the area covered by 

SkyBeam was smaller than the fetch of the EC system, there was a difference in the 

productivity of the crop between the two areas. The biomass harvested from the 

SkyBeam experimental plots was low, especially in comparison to the yields generally 

expected for Miscanthus. It is also possible that the crop in the SkyBeam area of the 

field developed more slowly than the field at large. It appeared as though the 

Miscanthus was photosynthesising most under SkyBeam during the period 

immediately prior to mechanical failure, in October 2013 (Figure 3.18), at a time when 

NEE from the EC system shows the field as a whole was not drawing down as much 

CO2. The area of the field in which SkyBeam was assembled was close to a mature 

stand of various broadleaf trees (Figure 3.3), which, during the evening when the sun 

was in the west, cast a long shadow over the western side of the Miscanthus field. 

With no such obstacle shading the rest of the field, this will have affected the total 

radiation available to the Miscanthus in various parts of the field, and in fact the daily 
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mean values of radiation measured by the met station on SkyBeam were 81% of that 

measured by the system on the EC tower. This comparison is made with the caveat 

that no cross calibration was done between the two radiation sensors. 

 Diurnal patterns in trace gas fluxes 

The diurnal pattern in NEE of CO2 was entirely expected, with negative values seen 

in the day, due to photosynthesis, and positive values at night, when respiration was 

the dominant process. The pattern in soil respiration was not so straightforward, 

however. As seen in Chapter 2 of this thesis, the diurnal pattern of soil respiration 

under Miscanthus did not follow the expected pattern of a temperature dependent 

process, and this pattern was consistent between both compost treatments. It is 

widely accepted that soil respiration is controlled by either soil or air temperature and 

moisture (Buchmann, 2000), and this is the basis upon which NEE partitioning of EC 

data is generally conducted (Bhattacharyya et al., 2013). It is clear that in this study 

that while temperature was an important controlling factor, there is a strong 

temperature independent influence on the diurnal pattern of soil respiration. It also 

raises questions regarding how EC data should be partitioned in future, and how 

reliable gap-filled night time data are. 

Soil respiration is substrate limited, and increasing concentrations of labile carbon in 

the soil will cause an increase in respiration rate (Jones &  Hodge, 1999, Kuzyakov, 

2006), and it follows that soil respiration is controlled by photosynthesis (Kuzyakov &  

Cheng, 2001). The fact that in many ecosystems the peak in root exudation coincides 

with highest daily temperatures can mask the influence of carbon supply on 

respiration, though under forests, where the photosynthate may take up to four days 

to reach the rhizosphere, respiration and soil temperature can be decoupled (Ekblad 

&  Hogberg, 2001). Under the Miscanthus, which in this year approached 2 m in 

height, it might be expected that the time taken for the photosynthate to reach the 

rhizosphere was shorter than that under mature forests, but longer than for shorter 

vegetation, thus explaining the peak in soil respiration which occurred in the early 

evening, and maintained high levels throughout the night, long after photosynthesis 

halted.  

Once it is hypothesised that carbon supply might be the key driver of the diurnal 

pattern of soil respiration, the diurnal patterns in N2O and CH4 flux can be more easily 

interpreted. Where diurnal patterns in N2O flux have been reported, the majority of 
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studies show increased emission through the day, reducing through the night, and 

temperature is reported as the driving influence (Das et al., 2012, Hu et al., 2013, 

Livesley et al., 2008, Simek et al., 2010, van der Weerden et al., 2013). The diurnal 

pattern of N2O uptake during light conditions, and release during darkness, has been 

shown at one arctic tundra site (Stewart et al., 2012), where CH4 and N2O uptake 

occurred concurrently. That both net emission and net consumption of N2O were seen 

over the course of the day under the Miscanthus indicates that there was more than 

one process governing NEE. Daytime net consumption exceeded emission, but this 

balance changed rapidly during the early evening, coinciding with the upturn in 

temperature independent soil respiration. Since respiration is carbon dependent, the 

increase in respiration rate might also be used as a proxy for carbon availability. 

Denitrification is a heterotrophic process which requires a C source (Firestone &  

Davidson, 1989), and so sudden availability of the day’s photosynthate in the 

rhizosphere may stimulate a rapid increase in N2O production through denitrification. 

Furthermore, with increasing soil respiration, it would be expected that O2 

concentration will decrease, providing better conditions for denitrification, due to the 

sensitivity of the enzyme nitric oxide reductase (NOR) to O2 (Knowles, 1982).  

N2O uptake is most often reported in nitrogen limited soils with high soil moisture 

(Roobroeck et al., 2010, Wrage et al., 2004), and is generally attributed to the 

complete reduction of N2O to N2 as the final step in denitrification (Chapuis-Lardy et 

al., 2007, Wu et al., 2013). The net uptake reported here during the day occurred in 

a soil without a history of mineral N application, and the compost applied had a high 

C:N ratio, so it is to be expected that the soil under the Miscanthus had a low N 

concentration. However, the soil was generally dry, and rather than stimulating N2O 

reduction, heavy rainfall was followed by the highest emissions seen. N2O uptake by 

soil has been reported in dry soil with high O2 concentration (Flechard et al., 2005), 

and a similar sink has been shown to be due to microbial processes, since autoclaving 

the soil halted the process (Wu et al., 2013). Net uptake under dry conditions may 

also be due to diffusion along a concentration gradient, where N2O moves from the 

atmosphere down the soil profile to reduction sites at depth (Stewart et al., 2012). 

One study suggested that another C4 species (Zea mays) may store or even 

metabolise N2O (Grundmann et al., 1993), a process which would also help to explain 

the lower N2O flux seen in the SkyBeam chamber compared to the manual chambers. 

Alternatively, in the absence of NO3
-, denitrifiers may use N2O as an electron 

acceptor. This, however, would not explain the increase in emission of N2O during 
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the night, unless there were also a diurnal pattern in NO3 availability which would see 

the microbes preferentially use this, thus producing N2O in the process. 

It has been suggested recently that many (in some cases, more than 99%) reported 

negative N2O fluxes should be discounted as within the detection limit of the system 

by which they were measured (Cowan et al., 2014). By considering all the measured 

variables used to calculate a flux, it is possible to propagate the associated error 

terms to estimate the limits of uncertainty in the flux calculation. In this study, if the 

manufacturer’s accuracy of N2O concentration (0.2 ppb at concentrations greater than 

300 ppb (LGR, 2014)) is used conservatively and an accuracy of ± 1 ppb is assumed, 

and a further 1% error is estimated for other variables (temperature, pressure, area 

and volume), this yields a propagated error of ± 1.45 %, or a detection limit of ca. ± 

30 µg m-2 h-1 (Figure 3.8). In this case, 24 of 82 negative fluxes would be rejected as 

zero, and a further 61 positive fluxes would rejected across both compost treatments. 

In the study by Cowan et al., (2014) the sites used each received significant N input, 

either through mineral fertiliser application, manure or through faecal deposits of 

grazing livestock, thus it is argued that these systems were more conducive to N2O 

emission than the Miscanthus crop in this study. The negative fluxes seen in Cowan 

et al. (2014) were a distinct minority of the measurements, none were greater than -

10 µg N2O-N m-2 h-1, all of which would fall within the estimated detection limit of 

SkyBeam; more than 25% of the negative fluxes witnessed in the Miscanthus were 

greater than twice the detection limit, and negative fluxes overall represented 

approximately half the total number of fluxes. Whilst it is plausible that many small 

negative N2O fluxes from agricultural fields may be due to analytical error, it would be 

unwise to reject all such fluxes out of hand, especially since there is a conceptual 

basis (Davidson et al., 2000) and experimental evidence (Wu et al., 2013) for 

biological uptake of N2O in soils. 

The diurnal pattern of CH4 flux differed from that of N2O, in that fluxes were never 

positive. This does not discount the possibility that both oxidation and production were 

occurring in the soil, but it does raise the possibility that the control of the diurnal 

pattern was the single process of oxidation, which increased through the day, until it 

halted in the early evening and didn’t start again until the morning. In this study CH4 

emission was best described by a model including temperature as the major 

explanatory variable. Diurnal variation in CH4 emissions have been reported on 

numerous occasions in wetland plants, with peaks in emission occurring during the 

afternoon (Wang &  Han, 2005, Yu et al., 2013b, Zhang &  Ding, 2011), which are 
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attributed to transport through the plant. A similar pattern of increased uptake during 

the afternoon, reducing at night has been reported from above a forest system 

measured using EC (Wang et al., 2013), though this was attributed to the breakdown 

of the atmospheric boundary layer at night interpreted as emission during the night. 

Since it is not a micrometeorological technique, SkyBeam was not subject to such 

uncertainties in night time flux measurements. PAR has been attributed as the control 

of increased CH4 oxidation in a forest understory during the day, where a diurnal 

pattern similar to that seen in the Miscanthus of this study was reported (Sundqvist et 

al., unpublished). Direct uptake of CH4 has been seen in boreal plants (Sundqvist et 

al., 2012), and should such a process be under stomatal control, it would explain why 

uptake halted coincidentally with photosynthesis.   

 Conclusions 

Whilst it is difficult to draw any wide conclusions regarding the net GHG balance of 

Miscanthus cultivation from this study, it is valuable in that it provides information on 

the effects of specific farming practices on a mature Miscanthus crop. The data 

presented here show that tillage of Miscanthus strongly hinders crop development, at 

least in the short term. The addition of green waste compost did not give any 

improvement in yield, but it did cause elevated emission of N2O, an important GHG. 

Whilst N2O only played a small part in the GHG balance here, any practice that 

increases GHG emissions during the cultivation of the crop is detrimental to the 

potential carbon savings of biomass-derived energy. The measurements from 

SkyBeam indicated that the Miscanthus was a net source of GHGs, an important 

consideration for a crop whose sole function is to produce carbon-neutral energy.  

Despite the discrepancy between NEE of CO2 measured using SkyBeam and the EC 

tower in this field, there was a good general agreement between the two methods, 

and the advantage of a chamber approach was demonstrated by its ability to measure 

at the plot scale, at a spatial resolution fine enough to perform experimental contrasts, 

which is beyond the capability of micrometeorological techniques.  

There were clear diurnal patterns in the fluxes of all three GHGs measured by 

SkyBeam, patterns not previously reported from this crop. By revealing these diurnal 

patterns, the need for continuous data of all three gases has been highlighted. If 

estimates of cumulative GHG are made from single daily measurements, then the 

potential for measuring at a time of day which will yield an inaccurate value is large. 
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This was established for soil respiration in Chapter 2 of this thesis, but has now been 

shown to be the case for both N2O and CH4 as well. The frequency with which flux 

measurements are made is extremely important. With particular focus on N2O, large 

proportions of the annual budget might be emitted over the course of a couple of days. 

Had the manual measurement in July 2013 been made just two days later than it was, 

the cumulative flux estimate for N2O from Miscanthus would have indicated it was a 

sink as opposed to a source. As it was, due to the timing of the manual chambers, 

and their inability to identify the diurnal pattern of fluxes, the manual chambers 

overestimated the flux of both CH4 and N2O in comparison to SkyBeam’s continuous 

measurements. 

There is also a discrepancy between flux estimates measured using simpler soil 

chambers and those which include vegetation and soil. This suggests that plants 

themselves play an important role in GHG flux, whether by direct metabolic processes 

or as a passive transport system through which GHGs may move bi-directionally 

between the soil and the atmosphere.  

Further work must be undertaken in order to understand the key drivers of GHG 

fluxes, especially in respect to their diurnal variation. Only by understanding the 

diurnal pattern of each individual system will it be possible to ensure robust estimates 

of GHG budgets are being made, which will have great importance in our ability to 

mitigate anthropogenic climate change over the coming decades. 
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4 A comparison of greenhouse gas emissions from 
oilseed rape (Brassica napus) under different 
nitrogen treatments and methods of measurement 

 Introduction 

One of the biggest global sources of N2O is agriculture, where pasture land can be a 

large N2O source due to animal urine and faecal deposits (see Williams et al., 1999, 

Chadwick et al., 2000, Bell et al., 2015), and compaction due to trampling (Uchida et 

al., 2008). Arable farming can also be a large emitter of N2O, particularly as a result 

of the application of nitrogenous fertilisers (DEFRA, 2014a). In Chapter 3 of this thesis 

it was shown how amending a soil with green waste compost increased N2O 

emissions and it was also clear that N2O may be emitted in short-lived bursts of large 

fluxes. Given the correct combination conditions following fertiliser application, for 

example anaerobic soil conditions as a result of rainfall, a large proportion of the total 

annual N2O flux may be emitted in just a few hours (Mummey et al., 1997). 

Mineral nitrogen may be applied to crops in various different forms, including 

ammonium nitrate (NH4NO3), and urea (CH4N2O). Depending on a soil’s capacity for 

nitrification or denitrification, the type of fertiliser applied will affect the amount of 

nitrogen (N) lost as N2O (Bateman &  Baggs, 2005). Knowledge of a system’s 

potential for N2O production should enable a fertiliser strategy designed to minimise 

N2O emissions, and therefore mitigate agricultural contribution to climate change. 

Restrictions already exist regarding the timing of fertiliser application with a view to 

preventing N losses through leaching and N2O emissions (Environment Agency, 

2015). In addition to N2O emissions, N leaching from soils into groundwater can lead 

to problems such as eutrophication in watercourses (Kroeze &  Seitzinger, 1998). 

Improved knowledge of N losses after fertiliser application will help to reveal where it 

is applied in excess, enabling the prevention of needless waste, but may also be key 

if an N2O credit scheme, similar to that for CO2 is introduced.  

IPCC tier 1 emissions factors (EF) state that ca. 1% of applied N will be lost as N2O 

over the course of the following year (De Klein et al., 2006). If any credit scheme for 

N2O is to be effective, then it is likely that EFs will be the way in which they are 

implemented (Millar et al., 2010). It is therefore vital that their reliability is assessed 

empirically. If these EFs are shown to be robust through ground-truthed data, then it 

will reinforce any credit scheme. If, on the other hand, they are shown to be unreliable, 
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then a more accurate method for approximating emissions will be required to support 

such a scheme.  

Trace gas fluxes may exhibit diurnal variation in both the amplitude and the direction 

of flux. This is to be expected for CO2, where the gas is consumed by photosynthesis 

and produced by respiration. N2O emissions may also display a diurnal pattern, and 

indeed in Chapter 3 of this thesis it was uniquely shown that NEE of N2O under 

Miscanthus follows a cycle of net consumption during the day and emission at night. 

Diurnal patterns have been reported for N2O in previous studies, but these have 

consistently shown peaks in emission during the afternoon and lower emission during 

the night, and generally attribute this to a temperature driven process (e.g. 

Christensen, 1983, Das et al., 2012). Furthermore, it has been shown that CH4 flux 

may also vary on a diurnal basis, as shown in Chapter 3.   

In Chapter 3 it was shown that soil flux of N2O and CH4, when measured using soil-

based opaque manual chambers, was higher than NEE of these two gases within the 

same experimental plots. Solar radiation was shown to play an important role in 

controlling not only NEE of CO2, but N2O as well. Whilst photosynthetically active 

radiation (PAR) has been suggested to play a role in diurnal patterns of N2O flux, it 

has been used to explain increasing fluxes of N2O during the day time, and the 

authors concluded that the relationship was actually due to the warming effect PAR 

had on microbial processes in the soil (Das et al., 2012). Other studies have pointed 

out that the apparent Q10 of N2O flux is too great to be driven by temperature alone, 

and that PAR may be in some way responsible for the additional increase in flux 

(Christensen, 1983).  

SkyBeam (see Chapter 3) was an automated chamber system devised specifically to 

deliver a full GHG balance from the energy crop Miscanthus (Miscanthus x 

giganteus). Using this system the role that vegetation plays in N2O and CH4 flux was 

shown, as was the vital importance of high frequency measurements in capturing the 

inter- and intra-diurnal variability in trace gas fluxes. The system was a bespoke 

design for a specific challenge, and the scale of the equipment required to measure 

NEE from a crop which can grow in excess of 3 m make it impractical to deploy in 

fields of smaller vegetation. Here SkyLine is presented, a second independently 

developed automated system designed for use in more conventional crops than 

Miscanthus. The new system employs a single automated chamber, but is guided by 

a pair of parallel ropes to deliver the chamber to the correct positions. The use of 
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ropes ensures the potential length of the measurement transect is in excess 20 m, 

allowing in excess of 15 replicates. Aluminium trellis is used from which to suspend 

the guide ropes. 

The long term study of monthly measurements in Chapter 2 showed that soil N2O flux 

made a considerable contribution to the total GHG flux from barley (Hordeum 

vulgare). Here a second arable crop, oilseed rape (OSR, Brassica napus), is studied 

over the course of one month following fertiliser application. OSR is a member of the 

brassica genus, which includes broccoli, mustard and turnip. Whilst it has been used 

as an energy crop, it is more often cultivated for the high oil content of its seeds, which 

can be used in food production and cooking. It is often planted in rotation with wheat 

(Triticum aestivum) or barley, and will typically receive between 100 and 200 kg N  

ha-1 in fertiliser over the course of its cultivation. OSR was grown on 675 000 ha in 

the UK, constituting 11% of available agricultural land, with average yields of ca. 4 T 

ha-1 (DEFRA, 2014b) Understanding the response of OSR to N fertilisation, and 

developing the ability to reduce N2O emissions from this crop would constitute a 

significant saving in the UK’s agricultural GHG footprint.  

This study investigated the effect of different N fertiliser treatments on the fluxes of all 

three biogenic GHGs from OSR. It also took the opportunity to investigate further the 

role vegetation and light play by measuring GHG flux from both soil and vegetation 

using both manual opaque chambers and an automated clear chamber from the same 

positions, and also using smaller opaque chambers to measure fluxes from the soil 

only. 
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 Materials and methods 

 Study site 

The study was conducted on a working farm in Lincolnshire, in the east midlands of 

the United Kingdom at which various research had been undertaken over the previous 

seven years, so its management had been well documented. In addition to arable 

crops, the farm is also used for the production of perennial crops Miscanthus 

(Miscanthus x giganteus) and willow (Salix spp.) for the purpose of energy production. 

The field in which the following experiments took place is used for annual arable crops 

in rotation, and the crop immediately preceding the oilseed rape (OSR) in this study 

had been spring barley.  

Table 4.1 Overview of mineral nitrogen fertiliser applications to the OSR at the study site. The 

first application was prior to measurements commencing. 

Date 
 

Fertiliser  
 

Total product 
applied (kg ha-1) 
 

Total NH4-N 
(kg ha-1) 
 

Total NO3-N 
(kg ha-1) 
 

05/03/2014 
 

Double Top1   

18.8% NH4-N  
8.2% NO3-N  
30% SO3 
 

250 
 

47 
 

20.5 
 

24/03/2014 
 

Nitram2   

17.2% NH4-N  
17.3% NO3-N 
 

200 
 

34.4 
 

34.6 
 

01/04/2014 
 

Nitram2   

17.2% NH4-N 
17.3% NO3-N 
 

200 
 

34.4 
 

34.6 
 

1,2 Brand names of GrowHow products http://www.growhow.co.uk/  2 98.6% NH4NO3.     

The OSR crop was drilled in the autumn of 2013, and all measurements during this 

study were made after crop emergence in March and April 2014. The OSR received 

its first treatment of mineral nitrogen (N) fertiliser a fortnight prior to the start of the 

measurement period, and then twice during the study (Table 4.1). Nitrogen treatments 
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were applied to the experimental plots to synchronise exactly with the fertiliser 

applications made by the farming contractor. Collars were left in situ, and fertiliser 

was weighed out and applied by hand to each chamber area on a pro rata basis to 

match the application rate to the field as a whole. An area of the OSR crop adjacent 

to the SkyLine study area was covered with plastic sheeting during the first fertiliser 

treatment prior to the deployment of equipment, and again during subsequent 

treatments. All equipment was deployed away from the tracks in the field created by 

tractors (‘tramlines’; Figure 4.1), as access to the crop was continually required by the 

farming contractor throughout the study period. 

 Greenhouse gas flux measurements 

GHG fluxes were measured at the site using manual static chambers (coverboxes) 

and SkyLine, with N2O fluxes delivered from opaque coverboxes and a full suite of 

GHGs (CO2, N2O and CH4) measured using SkyLine. 

4.2.2.1 SkyLine design  

SkyLine was an automated chamber-based system developed by the Mechanical and 

Electronic Workshops at the Department of Biology at the University of York. The 

basis of the design was a single chamber, suspended from a motorised trolley, in turn 

mounted on parallel horizontal Kevlar ropes (Figure 4.2). The ropes were held above 

the crop by trellis arches of 2 metres height, 18 metres apart, allowing the trolley to 

repeatedly traverse a pre-selected transect in the crop. Magnets embedded in the 

rope designated ‘stops’ at which the chamber automatically lowered to conduct a 

measurement. Landing bases for the chamber consisted of a flat, circular flange-ring 

with an inner diameter of 38 cm, which lay parallel to the soil surface. The flange had 

a perpendicular collar which was inserted below the soil surface in order to achieve a 

seal. The bases (henceforth ‘rings’) were analogous to the circular collars used for 

coverboxes and some automated chambers (e.g. Licor LI-8100 system, Licor, Lincoln 

NE). Upon completion of the programmed measurement period, the chamber was 

automatically lifted and the trolley moved to the next ‘stop’. The sequence in which 

rings were sampled was programmable, allowing for randomisation or exclusion of 

specific rings if required. In addition to automated operation, the system could be 

controlled manually, allowing an operator to move the trolley between points, and 

drop and raise the chamber at will. 
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Figure 4.1 Aerial view of the OSR field. The SkyLine system is labelled towards the north of 

the field. Measurement collars 1-16 indicate where manual coverboxes were located. ‘CEH 

Wallingford tower’ is an eddy covariance (EC) system for CO2, ‘CEH Edinburgh’ tower was an 

EC system for N2O. To the east of the field were various pieces of equipment including a diesel 

generator for power supply and a met station. ‘Tramlines’ indicate the tracks used by tractors 

when treating the crop. The prevailing wind direction was from the southwest.  
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Figure 4.2 Aerial (A) and side-profile (B) schematics of the SkyLine system, showing the trellis 

arch supports at either end, supporting Kevlar ropes in between. The motorised trolley is 

depicted at the midpoint of the two supports. The system in situ (C) at the OSR field site. The 

LGR cavity ring down (CRD) analysers were housed in the garden box behind the right hand 

trellis support. 
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4.2.2.2 SkyLine chamber 

The SkyLine chamber was a cylindrical chamber made of clear Perspex which 

allowed the transmission of light, thus enabling photosynthesis to continue, and 

therefore allowing the measurement of the net ecosystem exchange (NEE) of CO2 to 

be measured from within the chamber. The chamber was designed as non-steady 

state dynamic chamber; that is, headspace gas was circulated from the chamber 

through analytical equipment and then returned. The rim at the base of the chamber 

was covered with a rubber seal which formed a gas-tight closure when dropped on 

the flange of the landing base (Figure 4.3). Inside the seal was a pressure sensor 

which was activated when the chamber landed on the collar and formed an air-tight 

seal. 

A large chamber (internal diameter= 40.74 cm, height= 62 cm, volume= 80.8 L) was 

necessary to completely accommodate the OSR crop over which the measurements 

were made. Towards the end of the study, some binding of the crop was necessary, 

and pea netting was used for this purpose. The attenuation of light by the chamber 

was measured by simultaneously recording levels of photosynthetically active 

radiation (PAR) inside and outside of the chamber using two matched PAR sensors 

(QS-2 PAR quantum sensor, Delta-t Instruments, Cambridge UK) attached to a data 

logger (GP1, Delta-t Instruments, Cambridge UK), measuring at 1 Hz over a period 

of 21 days during the study period. After determining the effect of the chamber on 

light interception, CO2 fluxes made using the SkyLine chamber were adjusted during 

hours of daylight (determined using the PAR data from an onsite met station) by using 

the equation from a light response curve, as described by Heinemeyer et al. (2013) 

(see Appendx C).  

The aperture of the sampling tube was situated 10 cm from the top of the chamber 

(approximately 60 cm above the soil surface) and the return tube opened 

approximately 5 cm from the bottom lip of the chamber (Figure 4.3). This design was 

used in order to avoid sampling from directly above the soil surface, and to assist 

mixing of the headspace. There is some debate about the incorporation of fans to mix 

chamber headspaces (for a full discussion see (Davidson et al., 2002) and the effect 

of such fans was also investigated in the current study.  

In order to minimize pressure artefacts associated with closing a chamber over the 

soil, a vent was incorporated into the design of the chamber, after Xu et al. (2006).   
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Figure 4.3 The SkyLine chamber in situ during a measurement over an OSR plant (left hand 

panel). Note the PAR sensor mounted within the chamber (circled). The schematic of the 

chamber (right hand panel) highlights the components and dimensions: A- manifold with 

attached gas lines. Arrows denote direction of flow; the sampling line draws from near the top 

(circa 10 cm) of the chamber and the return pipe opens near the base of the chamber. B- vent 

for pressure equalisation, after Xu et al. (2006). C- chamber constructed from clear Perspex, 

allowing the transmission of light and therefore permitting photosynthesis. D- gasket to ensure 

gas-tight seal between chamber and E- landing base. 
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4.2.2.3 Gas analysis   

Housed in the motorised trolley was a Licor infrared gas analyser (IRGA, Li-8100, 

Licor, Lincoln NE) for measurement of CO2 concentration. This apparatus was 

configured to control the SkyLine chamber as it would for a Licor long-term automated 

chamber, so that the length of chamber closure, the chamber volume and soil area 

covered were controlled and the Licor software used to calculate the CO2 flux in units 

of µmol m-2 s-1. Headspace gas was circulated from the chamber through an umbilical 

via polyethylene tubing (Bev-A-Line IV, Cole-Parmer, London UK) to the IRGA, before 

returning to the chamber.  

In order to measure the fluxes of N2O and CH4, the exhaust from the IRGA was 

intercepted via a T-piece and passed through Bev-A-Line tubing to separate cavity 

ring-down (CRD) laser analysers (Los Gatos Research, CA USA) housed at one end 

of the SkyLine apparatus. The gas was circulated in series, and the stronger flow rate 

of the internal pump of the CH4 analyser dictated that it was first in the sequence. A 

shunt for any over-pressure was used to compensate for different flow rates (see 

Appendix B). Both CRD analysers measured at 1 Hz, and fluxes were calculated as 

the change in concentration over time by linear regression, corrected for volume, 

temperature and soil area. In addition to CH4 concentration, the first CRD also 

measured CO2, which allowed for a second independent calculation of NEE. 

4.2.2.4 Manual static chambers (coverboxes) 

On 13 days between 19th March and 15th April 2014 the fluxes of N2O were measured 

using manual static chambers (coverboxes), with measurements made between 

09.00 and 18.00. The coverboxes were of the same diameter as the SkyLine chamber 

(40 cm), which allowed them to be fitted over the same rings. Chambers were 

deployed both under the SkyLine system, and at other areas within the rest of the 

OSR field (Figure 4.1). The chambers were circular in horizontal cross-section, and 

the main body consisted of two stacked opaque polypropylene sections, designed to 

gain clearance over the vegetation. These sections were clamped in place using 

bulldog clips, and a gasket formed a seal between the bottom section and the base 

ring, and between the lower and upper sections. The lid of the top section was flat 

aluminium sheeting; incorporated into the lid of the box was a vent for pressure 

equalisation and a three-way tap from which the headspace gas could be sampled. 

Gas samples were taken through the tap using a 100 cm3 syringe and stored in 

evacuated air-tight containers, and this was done at four time points (0, 20, 40 and 
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60 minutes). Samples were analysed for CO2 and N2O concentration by gas 

chromatography by the Centre for Ecology and Hydrology (CEH) Edinburgh, and 

fluxes were calculated by linear regression. Corrections were made for temperature, 

volume and area.  

 Experimental designs 

4.2.3.1 Nitrogen treatment 

The SkyLine system was assembled and, on 18th March 2014, the N2O flux from all 

18 rings was measured using manual operation of the system. The measured fluxes 

were used in order to arrange the rings into a blocked design for experimental 

manipulation, by ranking and grouping the most similar together. Five blocks of three 

rings were arranged and a single replicate of each treatment was assigned within 

each block at random. Prior to treatment the fluxes were compared using analysis of 

variance (F[2,8]= 1.18, p= 0.3553), which showed no pre-treatment differences. 

Three different forms of N addition were applied: NH4NO3 in the form of fertiliser (FER) 

(Table 4.1), NH4 in the form of NH4Cl (NH4) and NO3 in the form of NaNO3 (NO3). The 

three treatments were applied at the same time as the farmer treated the field. The 

fertiliser rings received the same dose as the rest of the field; the NH4 and NO3 

treatments then received the same dose as the respective component parts of the 

fertiliser (i.e. NH4: 34.4 kg N ha-1; NO3: 34.6 kg N ha-1) . The chemicals for the 

treatments were weighed on a digital balance to 2 decimal places and applied to the 

experimental rings by hand. Care was taken to ensure the treatments were applied 

evenly throughout the rings, to mimic the action of the spreader used by the farming 

contractor. Treatments were applied on two occasions during the study period, 

directly mimicking the practices of the farmer. The first application took place on 24th 

March 2014, and the second one week later on the 1st April 2014.  

The fluxes of three GHGs (CO2, N2O and CH4) were followed using automated 

measurements from the SkyLine system, starting from the day of application until 11th 

April 2014. Chamber closures of 10 minutes were programmed for flux 

measurements, with a gap of 5 minutes between closures. Following this protocol, 

each cycle (the time to visit all 18 rings) was 270 minutes long, allowing for 

approximately six measurements at each sampling point per day. 



184 
 

4.2.3.2 Comparison of SkyLine and coverboxes 

Opaque coverboxes were used to measure the N2O flux from the OSR field on 13 

days during the study period. In order to achieve this, 16 chambers were deployed 

throughout the field (Figure 4.1). Additional measurements were made with 

coverboxes from the 8 rings under the SkyLine system that received the FER 

treatment (equivalent of 200 kg ha-1 of Nitram fertiliser, on two occasions). The total 

cumulative flux of N2O measured using the coverbox method was calculated and 

compared to the total N2O flux measured using the SkyLine system for the same 

period (25th March to 10th April, since no coverbox measurements were taken on 24th 

March). 

In order to test the hypothesis that individual N2O flux measurements would not differ 

between the SkyLine chamber and the static chambers, on four days during the study 

period (19th, 25th, 27th March, 10th April 2014) manual measurements were taken using 

the SkyLine chamber, which was shaded with reflective cloth to mimic the opacity of 

the static chamber. This was an opportunistic additional hypothesis, and in order not 

to interfere with the primary comparison of automated measurements and 

coverboxes, these measurements were taken after the coverbox sampling. At the end 

of the 60 minute measurement period, the coverbox was lifted to purge the 

headspace, but left raised above the vegetation to keep it darkened. Each coverbox 

was then removed in turn and replaced with the shaded SkyLine chamber, which was 

closed for 10 minutes and the headspace circulated sequentially through the CRD 

analysers for N2O CO2 and CH4 (Appendix B) as in the automated measurements.  

4.2.3.3 Comparison of light and dark N2O fluxes 

In order to test whether the flux of N2O differed under light and dark measurement 

conditions, comparisons were made between April 8th -9th 2014 through a combination 

of manual operation of the SkyLine system, and the use of smaller, opaque flux 

chambers to exclude the vegetation. For this experiment, only the 8 FER rings under 

the SkyLine system were used. Small base rings (10 cm diameter) were inserted into 

the soil at the base of the vegetation inside the SkyLine rings. In order to measure 

GHG flux from the soil, opaque cylindrical chambers (dimensions: diameter x height 

y) were placed on the base rings and sealed with an air-tight rubber band (Figure 

4.4). Headspace gas was circulated through the LGR analysers for five minutes and 

fluxes calculated using linear regression. An initial round of measurements was made 

commencing around 10:00 on the 8th April, with all of the rings exposed to light. 

Measurements were taken from the small soil chamber and the large SkyLine 
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chamber sequentially. Since it was hypothesised that the fluxes measured with the 

SkyLine chamber were principally driven by processes in the soil, the measurements 

from the small chambers were used to assign the rings into four pairs. This was done 

by ranking the fluxes and grouping similar rings: the vegetation in one ring of each 

pair was shaded, and the other left unshaded. Three subsequent rounds of 

measurements were made through the evening of April 8th and a further round started 

at 08:00 on the following morning (April 9th). The ring of each pair to be shaded was 

assigned at random, as was the order in which the rings of each pair would be 

sampled. Shading of the plant was achieved with reflective cloth to avoid warming, 

and gaps were left at the base of the vegetation in order to allow the headspace to 

circulate freely during flux measurements (Figure 4.4). For each SkyLine 

measurement the chamber was then closed for ten minutes, with a gap of five minutes 

to purge the chamber.  

 Ancillary measurements 

Soils were sampled from within the chamber bases on a weekly basis throughout the 

study. Soil inorganic N was measured through extraction in 1 M KCl and analysis of 

the filtered extract using a Bran-Luebbe AA3 autoanalyser, and soil moisture was 

determined by oven drying at 105 oC until constant mass. High frequency (1 minute, 

averaged over 15 minutes) measurements of soil moisture and temperature at 5 cm 

depth were made using temperature and moisture probes (UA-001-64 & S-SMD-

M005, Hoboware, Onset Corporation, MA USA), and quantum sensors measured 

PAR (ambient and inside the SkyLine chamber; SKP 215, Skye Instruments, Powys, 

Wales, UK). Other meteorological variables were provided by CEH Edinburgh 

courtesy of a met station sited with their EC system at the site, and rainfall data were 

obtained from the Met Office for the nearby station detailed in Chapter 2. 

Aboveground biomass of OSR was destructively harvested by hand at the end of the 

study, prior to grain filling, by CEH Lancaster and oven dried to constant weight. 

 Statistical analyses 

All statistical analyses were conducted using SAS (SAS 9.3, SAS Institute, NC USA), 

and graphs were produced with Sigmaplot (Sigmaplot 12.5, Systat Software). Where 

necessary, fluxes were transformed in order to normalize them. Mean N2O flux rates 

were log transformed and the reciprocal of the mean CO2 fluxes were used for 

repeated measures analysis. Repeated analyses were performed on the flux rates 
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and the daily total fluxes of CO2, CH4 and N2O using a mixed effects model with PROC 

MIXED (ring and block as random effects).  

Analysis of variance was carried out on cumulative flux of CO2 CH4 and N2O from the 

nitrogen treatments over the whole period to test for treatment. The fluxes of CO2 

measured using Licor and LGR analysers were tested for correlation and the statistic 

reported is Pearson’s correlation. In the chamber comparison experiment the 

methods were tested for differences using a paired t test for each time point. A paired 

t-test was also used for the light and dark contrast experiment. Cumulative fluxes 

were calculated by trapezoidal integration.  
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Figure 4.4 Example of a FER ring with shaded vegetation. The shroud did not go all the way 

to the soil surface in order to allow gas to circulate. Inside the large SkyLine ring is a small 

opaque chamber, allowing measurement of GHG flux from just the soil. 
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 Results 

 Nitrogen treatment 

Initial fluxes of N2O (24th – 30th March) were positive, but low, and not exceeding 250 

µg m-2 h-1 (Figure 4.5). Four days after the first N addition, fluxes began to increase, 

particularly for the fertiliser treatment. A technical fault prevented data from being 

collected automatically on March 28th, but manual measurements were obtained in 

the afternoon of March 29th. This round of measurements suggests that there may 

have been a peak in emissions in the intervening period (Figure 4.5), since fluxes 

from both all treatments were close to 500 µg m-2 h-1 at this point. Fluxes then 

continued at this higher rate, and, indeed, were still high up to the second N addition 

on April 1st. By the time the second addition was applied the flux in the FER treatment 

was approaching 1000 µg m-2 h-1, and a trend towards higher fluxes from this 

treatment started to become apparent over the following few days (Figure 4.5). 

When analysed for the entire study period, there was a significant difference in N2O 

flux between treatments, F[2,423]=12.10, p<0.0001, and there was a significant 

interaction between treatment and time during the study, F[144,423]= 1.44, p< 0.003. 

The FER rings showed distinct peaks in flux during the afternoons of March 31st to 

April 6th. These peaks increased steadily from ca. 500 µg m-2 h-1 on the 31st to a 

maximum of 3131 µg m-2 h-1 on the 6th April. From the afternoon of April 6th the NH4 

rings demonstrated slightly higher fluxes than the other two treatments for three 

consecutive cycles, and the highest mean N2O flux (4266 µg m-2 h-1) was recorded 

from the NH4 rings on April 6th. In the first part of the study period (24th to 28th March) 

the NO3 rings tended to show slightly higher fluxes, but after the second N application 

these were the slowest to respond, with fluxes not exceeding 1000 µg m-2 h-1 until 

April 5th. 

There was a strong correlation between the flux of CO2 independently measured 

using the IRGA and CRD analysis systems (Figure 4.6), r= 0.97, p< 0.0001. There 

were no significant differences in the NEE of CO2 (calculated with Licor software) 

between the three N treatments (Figure 4.7). Positive fluxes were apparent during 

hours of darkness, when respiration was the dominant process, and negative fluxes 

were seen during the daytime when the OSR was photosynthesising. The amplitude 

of the oscillation between positive and negative fluxes increased through the study 
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Figure 4.5 N2O flux from OSR under three nitrogen treatments, from automated measurements using the SkyLine system, with data from one parallel 

cycle of manual measurements (inside the black elipse). Data shown are means ± 1SE, n= 5, note the log10 scale. Arrows denote the timing of 

treatment application 

.
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Figure 4.6 Comparison of CO2 flux calculated using IRGA software (Licor, Lincoln NE) and 

cavity ring down laser LGR (Los Gatos Research, CA). The solid line is the regression line 

(equation shown top left), and the dashed line represents the 1:1 line. 
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Figure 4.7 Mean NEE of CO2 ±1SE from OSR following three nitrogen treatments measured with the SkyLine system. Arrows denote the timings of 

treatment application. Negative flux indicates net uptake of CO2 and positive flux release.  



192 
 

period as the crop grew and flowered. Peaks in positive flux can be seen overnight 

e.g. March 30-31st (700 mg m-2 h-1) and April 5-6th (898 mg m-2 h-1). These peaks 

followed the two days that showed the greatest uptake in CO2 (maxima of -1953 mg 

m-2 h-1 and -1765 mg m-2 h-1 respectively). 

There were also no significant differences in the CH4 flux between the three 

treatments F[2,359]= 0.08, p= 0.9271 (Figure 4.8). Fluxes were often negative, 

indicating the soil was taking up CH4, though they were close to zero: the minimum 

flux (greatest uptake) was -54 µg m-2 h-1 from the FER treatment and the maximum 

(greatest emission) 39 µg m-2 h-1 from the NO3 treatment. There did not appear to 

have been any response to the application of the nitrogen treatments on either 

occasion.  

The daily total N2O flux was significantly different between nitrogen treatments (Figure 

4.9) F[2, 149]= 4.48, p< 0.013, although there were only three individual days during 

which there was a significant effect. On the 24th March, following the first application 

of nitrogen, the NO3 rings emitted more N2O than either the NH4 or FER plots. For the 

majority of the study period the FER rings were the highest emitters of N2O, though 

this wasn’t statistically significant until April 2nd; by April 11th the NO3 rings were 

emitting less than the other two treatments (Figure 4.9). It is also evident that the total 

amount of N2O produced from all three treatments doubled in the space of 48 hours, 

between April 7th-9th. There was also a further peak in N2O emission over April 12th. 

However, despite the FER treatment consistently producing more N2O, by the end of 

the study there were no differences between the total N2O produced by the different 

forms of nitrogen; FER 357 ± 67 mg N2O m-2, NH4 306 ± 82 mg N2O m-2, NO3 196 ± 

66 mg N2O m-2, F[2,12]= 1.31 p=0.31. The total N2O-N lost from the system by the three 

treatments was: FER 2.27 ± 0.42 kg N2O-N ha-1 (1.77 ± 0.33% of total N applied); 

NH4 1.95 ± 0.52 kg N2O-N ha-1 (2.83 ± 0.75%); NO3 1.25 ± 0.42 kg N2O-N ha1 (1.80 

± 0.60%).  

There were no differences in the total daily NEE of CO2 between treatments 

F[2,156]=0.38, p=0.69. The OSR was a net sink for CO2, with the total accumulation 

being: FER 136.73 ± 21.26 g CO2 m-2, NH4 167.03 ± 12.55 g CO2 m-2, NO3 112.75 ± 

22.36 g CO2 m-2. The effect of treatment on total NEE of CO2 was not significant 

F[2.12]= 2.00, p=0.17, with NH4 tending towards being the greatest sink and NO3 the 

weakest sink. Despite fixing carbon over the whole study period, there were individual 
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Figure 4.8 Mean CH4 flux (±1SE, n=5) from OSR following three nitrogen treatments measured using the SkyLine system. Negative fluxes indicate 

uptake and positive fluxes release. Arrows indicate timing of treatment applications. 
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Figure 4.9 The daily mean total (top panel) and cumulative (bottom panel) fluxes of N2O from 

OSR following three nitrogen treatments, measured using the SkyLine system. Error bars 

±1SE, n=5. Arrows indicate timing of nitrogen application. Letters are used to denote daily 

significant differences (alpha= 0.05) between treatments.  
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Figure 4.10: The daily mean total (top panel) and cumulative (bottom panel) NEE of CO2 from 

OSR following three nitrogen treatments, measured using the SkyLine system. Error bars 

±1SE, n=5. Arrows indicate timing of nitrogen applications. The vertical axis has an inverted 

scale: negative fluxes indicate uptake and positive fluxes emission.  
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days during which the system was a net source for CO2 (Figure 4.10): the day of the 

first application (March 24th) and March 29th, where all three nitrogen treatments 

displayed a net loss of CO2, but also April 2nd, 4th and 5th when individual treatments 

were losing carbon whilst the other two fixed it.  

Whilst CH4 fluxes were generally small, they were also largely negative; until April 

11th the OSR system was a net sink under all three treatments (Figure 4.11). There 

were sporadic occurrences of a single treatment being a source over a 24 hour period, 

but there was no clear pattern: however, one such day of emissions on April 12th 

flipped the NO3 treatment from a sink to a source. There was a significant treatment 

effect F[2,152]= 8.10, p< 0.001, and the total flux over the study period was higher from 

the NO3 rings than from the FER and NH4 F[2.12]= 5.90, p< 0.02. However, due to the 

fluxes being so small in comparison to those of N2O and CO2, CH4 plays a very small 

part in the total GHG balance. 

The overall GHG balance for the OSR system during this study period was negative, 

with CO2-eq derived from the IPCC fifth assessment report (Myhre et al., 2013), it is 

therefore a GHG sink (Figure 4.12). The contribution of CH4 to the overall balance is 

negligible: the treatment in which CH4 had the greatest effect was FER (-0.08 ± 0.02 

g CO2-eq m-2) which represents approximately 0.26 % of the total GHG balance, but 

N2O had much more influence. Emissions of 106.31 ± 19.83 g CO2-eq m-2  (FER), 

91.33 ± 24.31 g CO2-eq m-2 (NH4) and 58.54 ± 19.60 g CO2-eq m-2 (NO3) greatly 

reduced the effect of the GHG sink that is driven by the CO2 uptake: the N2O fluxes 

of the FER, NH4 and NO3 treatments represent reductions of 77.75 ± 14.50 %, 54.67 

± 14.55 % and 51.92 ± 17.39 % respectively. The overall GHG balance did not differ 

between nitrogen treatments F[6,8]= 0.89, p>0.54. 
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Figure 4.11 The daily mean total (top panel) and cumulative (bottom panel) NEE of CO2 from 

OSR following three nitrogen treatments, measured using the SkyLine system. Error bars 

±1SE, n=5. Arrows indicate timing of nitrogen applications. The bottom panel has an inverted 

vertical axis: negative fluxes indicate uptake and positive fluxes emission. Letters are used to 

denote daily significant differences (alpha= 0.05) between treatments.  
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Figure 4.12 The relative contribution of each gas to the total GHG balance from the OSR under 

three nitrogen treatments, measured using the SkyLine system. Total flux is expressed in 

terms of CO2 equivalents over 100 years using the latest emissions factors (IPCC 2013). The 

contribution of CH4 is so small it cannot be seen at this scale. Negative flux indicates uptake 

(net sink) and positive fluxes emission (net source) 
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 Chamber comparison  

N2O fluxes measured with coverboxes from the FER rings under SkyLine exhibited a 

similar general pattern to those of the automated measurements: they increased over 

the study period (25th March – 10th April, Figure 4.13) following the application of the 

Nitram fertiliser. The N2O flux increased from 184.6 ± 45.4 µg m-2 h-1 on March 25th 

(one day after the first fertiliser application) to 3551.2 ± 512.9 µg m-2 h-1 on the 10th 

April. This is slightly higher than the peak flux from the automated SkyLine 

measurements (3131.4 ± 508.3 µg m-2 h-1) which was recorded on 6th April. Of the 

eight days that coverbox measurements were taken from the FER rings under 

SkyLine, two occasions (19th March and 14th April) fell outside the period during which 

SkyLine was running automatically. These two days have been dropped from this 

analysis.  

Using the remaining six occasions to calculate the total flux of N2O for the period gives 

an estimate that is nearly five times higher than using the higher frequency SkyLine 

data (Figure 4.14): 1170.1 ± 184.0 mg N2O m-2 versus 242.3 ± 39.8 mg N2O m-2 which 

was highly significant, t[7]= -6.07, p< 0.0006. It should be pointed out that all the 

manual static chamber measurements were taken during daylight hours.  

Fluxes of N2O measured using the opaque static chambers were higher than those 

measured with manual operation of a darkened SkyLine chamber. This was 

significant on two of the four days that this comparison was undertaken: 25th March 

t[7]=-4.36, p< 0.004 and 10th April t[6]=6.31, p<0.001 (Figure 4.15). On the other two 

occasions, the apparently large differences between the two chamber types were 

driven by single rings: on 19th March, fluxes were relatively evenly matched between 

the two techniques, save for ring 17, where the flux of 314.0 µg m-2 h-1 from the 

coverbox was nearly 50 times higher than the flux in the SkyLine chamber (7.0 µg m-

2 h-1). On 27th March the ring with the highest flux measured with coverboxes was ring 

1 (3261.2 µg m-2 h-1) which was nearly four times large than ring 14 (819.4 µg m-2 h-

1), which was the next largest. Ring 1 also produced the highest coverbox flux on 10th 

April (4275 µg m-2 h-1), though the fluxes were more evenly distributed on this 

occasion, when the next highest flux was 3642.4 µg m-2 h-1 from ring 2. Generally 

there was a similar pattern demonstrated by both techniques: high and low coverbox 

fluxes were also high or low with the SkyLine chamber. With the exception of 19th 

March the highest coverbox flux was also the highest SkyLine flux, and the lowest 

fluxes were the same on each day except for 27th March.  
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Figure 4.13 N2O flux from the FER rings (2 applications of Nitram NH4NO3 fertiliser at 200 kg 

ha-1) measured using coverboxes (top panel) and the cumulative flux of N2O calculated from 

these measurements (bottom panel). All values are means ± 1 SE, n=8. The arrows indicate 

the timings of fertiliser application. 
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Figure 4.14 The total flux of N2O from the FER treatment (2 doses of NH4NO3 Nitram fertiliser 

at 200kg ha-1) calculated from trapezoidal integration of measurements from the SkyLine 

system and manual coverboxes for the period 25 March 2014 – 10th April 2014. Values shown 

are means ± 1SE, n=8. *** denotes significant difference (p < 0.001), paired t-test.  
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Figure 4.15 Comparison of N2O flux from OSR measured using opaque static chambers 

(coverboxes) and a manually operated shaded SkyLine chamber. Measurements taken from 

vegetation treated with the equivalent of 200 kg ha-1 Nitram fertiliser (NH4NO3) on two 

occasions. Significant differences are shown: ** p<0.01 *** p<0.001. Values are means ± 1SE 

n=8.  
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 Dark and light comparison 

After the first round of measurements with the small soil flux chambers, six rings 

displayed similar fluxes of N2O, which made three evenly matched pairs. Two other 

rings (17 and 18), were badly mismatched, so were removed from the analyses 

presented here. As a consequence, the number of replicates per treatment was 

reduced to three for the soil flux chambers. The same pairings did not hold for the 

measurements from the large chamber, since the fluxes did not display the same 

pattern, so all eight rings have been included in the analyses of these fluxes. 

There was no significant effect of shading on N2O flux from either the soil chambers 

or the SkyLine measurements (Figure 4.16). However, fluxes were higher from the 

soil chambers than from the SkyLine chambers F[1,60]= 38.54, p<0.0001. The fluxes 

measured from the SkyLine chamber during this comparison were of a similar 

magnitude to those already measured through automated operation, and the highest 

fluxes measured with coverboxes. Remarkably, the soil chamber fluxes were up to 

six times larger. 

The change in flux through time approached significance (F[4,60]= 2.41, p= 0.059), but 

there was no interaction between time and chamber size (F[4.60]= 1.41, p> 0.24). This 

change in time was represented by increases through the afternoon, before a decline 

in fluxes as night fell. By the following morning fluxes were beginning to increase once 

more. A similar diurnal pattern in N2O fluxes was also apparent from the higher 

frequency automated measurements: this pattern is apparent in both the soil and 

SkyLine chamber measurements.  

Since initial N2O fluxes from the soil chambers were more evenly matched than the 

SkyLine measurements, these were used to investigate the change in flux following 

the shading treatment. There were no significant differences in the change between 

shaded and unshaded rings (Figure 4.17); in the first round following shading (45 

minutes after), both treatments increased in flux, and they were very similar t[2]=0.35, 

p> 0.75. By the next round of measurements (ca. 240 minutes), the flux from the 

shaded rings had decreased, whilst the flux from the unshaded rings continued to 

rise, and a trend appeared which suggests that the treatments started to differ, 

t[2]=2.67, p< 0.13. Prior to the next round of measurements the sun set and both 

treatments were deprived of light, and fluxes from all rings decreased. At this point 

the shaded rings were producing lower fluxes than prior to treatment,   
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Figure 4.16 Comparison of mean ± 1 SE N2O fluxes with shaded and unshaded OSR 

vegetation. The top panel shows fluxes from small soil chambers, the bottom panel from the 

rings using the SkyLine chamber. The grey shaded area shows hours of darkness, and the 

arrow denotes the time at which the shrouding was implemented; the first round of 

measurements (prior to shrouding) was used for statistical grouping. Soil flux measurements 
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were paired; one unbalanced pair was removed from the analysis (n=3 (see text)); SkyLine 

measurements were not paired, so all rings were included (n=4). 
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Figure 4.17 Change in N2O flux following shading vegetation. Shaded area indicates night 

time. 
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whereas the unshaded rings were still emitting as much N2O as pre-treatment. Fluxes 

were lower than initial values when the next series of measurements were made at 

08.55 the following morning, nearly 24 hours following the first round.  

 Environmental variables 

Radiation (solar and photosynthetically active radiation (PAR)), and temperature (air 

temperature, at canopy height and soil temperature) all displayed similar diurnal 

patterns, with peaks in the afternoon and lowest values during the night (Figure 4.18). 

Of the four positions at which temperature was measured (air, canopy height, soil 

surface and soil at 5 cm depth), the daily variation was greatest in the canopy and 

smallest in the soil.  

The concentration of NO3 and NH4 in the soil increased following both applications of 

nitrogen; all rings were measured prior to nitrogen treatment, with mean NH4-N 

concentrations of 37.9 ± 7.8 mg kg-1 (FER), 35.0 ± 4.0 mg kg-1 (NH4) and 30.3 ± 14.9 

mg kg-1 and mean NO3-N counts of 5.5 ± 1.2 mg kg-1 (FER), 5.7 ± 0.8 mg kg-1 (NH4) 

4.7 ± 0.4 mg kg-1 (NO3) (Figure 4.19). Only the FER rings were sampled for the rest 

of the study period, which involved four more measurements of soil N. Four days 

following nitrogen application, NO3-N concentration had risen to 24.9 ± 5.1 mg kg-1, 

and dropped to 20.7 ± 3.3 mg kg-1 on April 1st, just prior to the second N addition. A 

week later NO3-N had increased again to 27.4 ± 3.1 mg kg-1, before a final 

concentration of 24.1 ± 3.3 mg kg-1 was recorded on April 15th. Soil NH4-N, after an 

initial increase following the first N application (up to 60.18 ± 7.40 mg kg-1 on 28th 

March), then remained relatively stable with means of 69.0 ± 12.0 mg kg-1, 66.0 ± 6.8 

mg kg-1 and 55.2 ± 9.1 mg kg-1 on 1st, 9th and 15th April respectively, despite a second 

N application. 

Volumetric soil moisture was characterised by three distinct peaks (28th March, 1st 

and 7th April), followed by gradual declines. The gravimetric soil water content 

followed a similar pattern, but had less variability. 
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Figure 4.18 Hourly mean measurements of temperature (temp) at various heights relative to 

the ground, photosynthetically active radiation (PAR) and solar radiation at the study site.  
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Figure 4.19 Hourly mean soil moisture (bottom panel) at 5 cm depth and daily mean ± 1 SE 

(n=5) soil properties for three different N treatments in the OSR. The daily means are data 

from the control (FER) treatment only. Arrows denote timings of nitrogen applications.  
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There was a strong positive correlation between air temperature and soil temperature 

(Figure 4.20). Temperature measurements at canopy height and soil surface, whilst 

also positively correlated with the other temperature measurements, had a slightly 

distorted relationship, possibly due to sunstrike of the equipment, or a fault in the 

equipment itself. For this reason data from the canopy height and soil surface are 

discounted from further analysis. The correlation matrix also shows that PAR and 

solar radiation are strongly positively correlated. Both PAR and solar radiation had a 

moderately positive correlation with air and soil temperature. The relationship with 

soil temperature was weaker most likely due to the insulating effect of the upper soil 

surfaces.  

 Simple regression models 

There were weak negative relationships between CO2 flux and temperature (Figure 

4.21), with air temperature explaining between eight and thirteen percent of the 

variance in the flux (FER R2= 0.08, NH4 R2 = 0.13, NO3 R2= 0.11). Soil temperature 

was barely significant for NH4 treatment only (R2 = 0.02), but this was a very weak 

negative relationship. The variables which explained the greatest variation in CO2 flux 

were solar radiation and PAR. The relationship between light and CO2 was strongly 

negative and non-linear, indicating that the most negative net CO2 flux (highest levels 

of photosynthesis) occurred at when levels of sunlight were highest. The variation 

between the effect of light on each treatment was smaller for solar radiation (FER R2= 

0.61, NH4 R2= 0.59, NO3 R2= 0.61). A greater variation between nitrogen treatments 

in response to PAR was seen (FER R2= 0.83, NH4 R2= 0.87, NO3 R2= 0.74). There 

were no variables with a significant relationship with CH4 flux (Figure 4.22). 

Many environmental variables showed a significant relationship with N2O flux (Figure 

4.23). Volumetric soil moisture explained a small amount of the variance for all 

treatments (FER R2= 0.04, NH4 R2= 0.02, NO3 R2= 0.03), though the slope of these 

relationships was very close to zero. There was a positive relationship between 

sunlight and N2O flux for all treatments: solar radiation explained between four and 

seven percent of the variance (FER R2= 0.05, NH4 R2= 0.07, NO3 R2= 0.04). PAR was 

similar in its effectiveness as a predictor of N2O flux for two treatments, but 

interestingly much better for the NO3 treated replicates (FER R2= 0.05, NH4 R2= 0.05, 

NO3 R2= 0.19); the slope of the lines was similar for all three treatments, however. 

The best single predictor of N2O flux for the FER and NH4 treatments was soil   
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Figure 4.20 Correlation matrix of the measured environmental variables at the OSR field site 

over the experimental period. Pearson’s correlation coefficient is shown inset in each panel. 

The scatter plots include data from all three Nitrogen treatments. 
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Figure 4.21 Linear regression models for NEE of CO2 from OSR under three nitrogen treatments. R2 statistics are included where significant.  
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Figure 4.22 Linear regression between environmental factors and CH4 flux from three different nitrogen treatments under OSR.  Significant R2 values are 

displayed 
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Figure 4.23 Linear regression models between environmental variables and N2O flux from OSR under three different nitrogen treatments 
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temperature (FER R2= 0.25, NH4 R2= 0.33, NO3 R2= 0.16), in a non-linear relationship; 

air temperature was not as good a predictor for FER and NH4 treatments, but almost 

as good for NO3 (FER R2= 0.15., NH4 R2= 0.19, NO3 R2= 0.14).  

 Multiple regression 

With the exception of soil NO3-N, NH4-N and gravimetric soil water content (GWC), 

the measured environmental variables were used as independent predictors of N2O 

flux in stepwise regression models to explain variation in diurnal N2O flux and the 

variation between days over the study period. Canopy temperature and soil surface 

temperature were not included in the models, due to the inclusion of air temperature 

and soil temperature.  

4.3.6.1 Daily total N2O flux 

The variation in daily total N2O flux is more clearly related to the measured 

environmental variables than the single regressions explaining instantaneous N2O 

fluxes (Table 4.2). The most important variable for total daily fluxes was the daily 

minimum air temperature, which explained 43%, 54% and 48% of the variation in 

FER, NH4 and NO3 treatments respectively, and 44% of all the treatments combined. 

The other variables that featured in all of the models were the maximum solar 

radiation- which was responsible for 11- 18% of the variation for individual treatments 

and 18% overall- and maximum volumetric soil moisture: 16% (FER), 15% (NH4), 

18% (NO3) and 13% overall. The final models explained between 80-85% of the 

variance for individual treatments and 74% for all treatments combined, yielding final 

equations for daily total flux (Fd (mg m-2 day-1)) of: 

FER Fd = 8.1*min air temp + 0.08*max solar radiation – 4550*max soil moisture +1866 

NH4 Fd = 8.7*min air temp + 0.06*max solar radiation – 3390*max soil moisture +1373 

NO3 Fd = 4.6*min air temp + 0.04*max solar radiation – 2538*max soil moisture +1038 

All  Fd = 7.1*min air temp + 0.06*max solar radiation – 3489*max soil moisture +1425 
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Table 4.2 Stepwise regression models to explain the mean daily total N2O flux from OSR 

under three different nitrogen treatments, and all treatments together. “Max” indicates the 

maximum daily value of a variable, “min” the daily minimum; β= standardised estimate of a 

variable. 

Step 

 Treatment 

FER NH4 NO3 ALL 

1 

Variable 

Min air 

temp 

Min air 

temp 

Min air 

temp 

Min air 

temp 

β 0.51 0.42 0.46 0.44 

r2 0.43 0.54 0.48 0.44 

p <0.009 <0.002 <0.005 <0.0001 

2 

Variable 

Max soil 

moisture 

Max solar 

radiation 

Max solar 

radiation 

Max soil 

moisture 

β -0.53 -0.42 -0.54 -0.47 

r2 0.16 0.11 0.18 0.05 

p <0.06 <0.09 <0.03 0.001 

3 

Variable 

Max solar 

radiation 

Max soil 

moisture 

Max soil 

moisture 

Max solar 

radiation 

β 0.63 0.72 0.65 0.64 

r2 0.23 0.15 0.19 0.18 

p <0.004 <0.02 <0.004 <0.0001 

Final 

Intercept 1866 1373 1038 1425 

r2 0.81 0.80 0.85 0.74 

p <0.0001 0.0003 0.0002 <0.0001 
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4.3.6.2 Diurnal trend in N2O fluxes 

There was a clear diurnal pattern in N2O fluxes, with higher rates of emission during 

daylight hours, a pattern still evident despite the gradual increase in emissions 

following applications of mineral nitrogen. The effect of this is shown by the difference 

in flux estimates for total N2O flux for the period when using either only measurements 

taken during the day or during the night (Figure 4.24). Daytime measurements across 

all three N treatments yield a higher value (336.1 ± 55.5 mg m-2) than night time 

measurements (156.4 ± 24.0 mg m-2), F[1,24]= 9.5, p< 0.006. Clearly, since using fluxes 

measured through the day provides a total flux that is more than twice that from night 

time fluxes this questions the accuracy of estimates based solely upon day time 

measurements. 

To better illustrate the diurnal pattern, N2O fluxes were normalised to the highest daily 

value, yielding values between 0 and 1 (Figure 4.25). This removed the effect of 

increasing N2O fluxes following nitrogen addition. The normalised N2O fluxes peaked 

during the afternoon and the lowest values were around midnight (Figure 4.25).  

The normalised fluxes and the independent variables were averaged over each cycle; 

models were constructed for individual nitrogen treatments, and again for all fluxes. 

Variables that were less frequently than daily were not included in the diurnal models. 

As these models were attempting to explain diurnal variation, only days where 

coverage of flux measurements spanned the whole 24 hour period were used (thus 

excluding 8 of the 21 days of the study period). The most important variable for 

explaining N2O flux in the NH4 treatment was PAR; for the FER, NO3 and all 

treatments combined it was solar radiation. No other variables were significant in the 

models, the equations of which are shown below, where Fnorm=normalised flux N2O:  

FER Fnorm= 0.001* solar radiation + 0.57  R2= 0.23, p<0.0001 

NH4 Fnorm= 0.61* PAR +0.56   R2= 0.30, p<0.0001 

NO3 Fnorm= 0.001* solar radiation + 0.59 R2= 0.21, p<0.002 

All Fnorm= 0.001* solar radiation + 0.57 R2= 0.23, p<0.0001 
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Figure 4.24 The mean (± 1SE, n=5) total estimated flux of N2O from OSR under three different 

nitrogen treatments from automated SkyLine measurements, separated into data collected 

during the day and data collected at night (periods of 0 W m-2 solar radiation). ** denotes 

significant difference p< 0.01.  
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Figure 4.25 Mean N2O fluxes by cycle normalised to the highest daily mean (FER treatment 

only, solid line) from SkyLine rings flowing two applications of Nitram fertiliser (NH4NO3). Solar 

radiation (bottom panel, dashed line) and air temperature (top panel, dashed line) averaged 

over the same period as the flux measurements are also shown. 
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  Plant biomass and soil pH 

There were no significant differences between the total biomass of OSR between the 

nitrogen treatments. However, the soil from the NH4 treated rings was more acidic 

(pH 5.7) than the NO3 rings (pH 6.3) (F[2,15]= 7.13, p< 0.007). The soil pH of the FER 

treatment did not differ (pH 6.0) from either of the other treatments.  

In both the NH4 and NO3 treatments there was a significant correlation between soil 

pH and the total N2O flux for the study period. This nature of this relationship differed 

between the two treatments, however: in NH4 there was a negative relationship 

between total N2O and pH (r= -0.89, p= 0.04), but the relationship was positive in the 

NO3 treatment (r= 0.91, p= 0.03). The FER treatment did not display any relationship 

with pH.  
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 Discussion 

 SkyLine automated flux system 

The SkyLine system enabled the measurement of three trace gases, CO2, CH4 and 

N2O from over OSR at high frequency for a period of 21 days. The system 

successfully completed 1322 closures, providing nearly 4000 individual flux 

measurements, yielding a near-continuous dataset (measuring each replicate 

approximately every four hours). Using a clear chamber, enclosing both the soil and 

the vegetation, ensured the flux data were of NEE of the three gases of interest. NEE 

data of such high frequency from over tall vegetation is almost unprecedented without 

using eddy covariance (EC) equipment. The advantage that SkyLine has over EC is 

that its spatial resolution allowed the testing of hypotheses through manipulative 

experiments; the inability to deliver such spatial resolution is one of the shortcomings 

of the EC technique.  

An automated chamber system for measurement of N2O is described by Breuer et al. 

(2000), which utilised an in-line gas chromatograph (GC) with electron capture 

detector (ECD), in conjunction with an IRGA for measurement of CO2. This system 

has subsequently been adapted and used in several studies under subtropical 

rainforest (Rowlings et al., 2012) and semi-arid agricultural soils (Barton et al., 2008, 

Morris et al., 2013). SkyLine has several advantages over these systems, foremost 

being the number of replicates it can provide. The number of chambers 

accommodated in the aforementioned studies were three (Rowlings et al., 2012), five, 

six (Barton et al., 2008) and twelve (Morris et al., 2013), as opposed to eighteen by 

SkyLine. Another system similar to the Breuer system is described by Nishimura 

(2005), which provided six replicates. 

The number of replicates SkyLine can provide is limited principally by the distance 

between the vertical supports across which the ropes are suspended. It is thought 

that this distance might be increased to as much as 50 m, and over more 

homogeneous landscapes (e.g. grassland) where a smaller chamber footprint is 

required for representative measurements, the number of replicates might be 

increased to 50. Studies over pasture are being conducted with the equipment with 

30 replicates (Stockdale & Ineson, unpublished). A limiting factor becomes the time 

required to complete a full measurement cycle. A drawback to the Breuer system is 

that each measurement required a chamber closure of between 45 and 60 minutes, 
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and whilst the chamber lid was opened in between measurements, the protocol meant 

that each chamber was closed for 30- 50% of the study period. The SkyLine system, 

with a 10 minute closure for each replicate in every four hour cycle reduced the time 

the vegetation was enclosed to less than 5% of the study period. SkyLine, with its use 

of in line laser analysers, also negated the requirement for storage of samples for 

laboratory analysis, as carried out with manual chamber measurements, or with 

accumulating automated systems such as SIGMA (Ambus et al., 2010, Juszczak &  

Augustin, 2013).  

  Nitrogen treatment effect 

Methane fluxes were small throughout the study, and largely negative, indicating 

uptake of CH4 through oxidation by soil microbes. However, whilst the FER and NH4 

treatments were net sinks for CH4, the NO3 treated rings were a net source. On all 

days where there were significant differences in the total daily flux of CH4, the NO3 

rings were consistently the cause of these differences, with net emission as opposed 

to consumption. Both NH4
+ and NO3

-  have been shown to inhibit CH4 oxidation 

(Dunfield &  Knowles, 1995), and while NH4
+ does so as a competitive inhibitor, NO3

- 

not only inhibits competitively but also through the subsequent production of NO2
- 

from denitrification and by reducing the pH of the soil.  

CO2 fluxes followed a clear diurnal pattern, with net uptake during the day and net 

emission at night. Fluxes were well described through the relationship with PAR, 

which also explains the occurrence of the largest emissions overnight following days 

with the greatest uptake, as carbon fixed through photosynthesis was respired by soil 

microbes and the vegetation. Rapid respiration of carbon fixed through 

photosynthesis has been shown in cereal crops (Gregory &  Atwell, 1991), and the 

time lag between peak photosynthesis and respiration is known to be of the order of 

hours for grasses and herbs (Kuzyakov &  Gavrichkova, 2010). There were no 

differences between either the total CO2 flux or the plant biomass between treatments 

which indicates that the system was not nitrogen limited.   

The differences in individual N2O fluxes between the three treatments exhibited over 

the study period suggests both nitrification and denitrification were important to N2O 

production at this site. Firestone & Davidson (1989) cite NH4
+  concentrations as the 

principal proximal control on nitrification. The same authors recognise oxygen 

concentration, carbon supply and NO3
- as limiting factors for denitrification, and state 
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that oxygen levels are the most important in fertilised soils, since the reductase 

enzymes are inhibited by O2 (Knowles, 1982); it is thought that the threshold above 

which no nitrification occurs is ca. 70-75% water-filled pore space (WFPS) (Bateman 

&  Baggs, 2005, Well et al., 2006), and that nitrification peaks at 60% WFPS (Bateman 

&  Baggs, 2005). That the NO3 rings produced most N2O over the 24 hours following 

the first treatment application suggests that denitrification was the dominant process 

at that time. This is supported by the relative concentrations of soil NO3-N (less than 

8 mg kg-1) and NH4-N (ca. 30 mg kg-1) prior to nitrogen application, which suggest 

that NO3
- was the limiting factor to N2O production at the time of application. Previous 

studies at this site have measured the bulk density of the soil to be ca. 1.2-1.6 g cm-

3  (Case et al., 2012, Case et al., 2014, Drewer et al., 2012), and if a particle density 

of 2.65 g cm-3 is assumed, then the highest soil moisture content measured at the site 

(0.38 cm3 cm-3) approximates to 70-100% WFPS, and the lowest (0.32 cm3 cm-3) to 

60-80%. It follows, then, that for much of the study period conditions were probably 

favourable for both processes to occur concurrently.  

N2O production from both nitrification and denitrification provides an explanation for 

the fact that there was no significant difference between nitrogen treatments for the 

total N2O flux over the study period. Whereas N2O from the NO3 treatment must be a 

product of denitrification, N2O from both FER and NH4 treatments could have been 

produced by both processes. The NO3
- portion of the fertiliser might be reduced via 

denitrification, but the NH4
+ will produce N2O during nitrification, and then the resulting 

NO3
- will also feed into denitrification; similarly, any N2O immediately coming from the 

NH4 treatment will have been the product of nitrification, but later may have continued 

to be produced by either the oxidation of NH4
+ or the reduction of the NO3- produced. 

Despite receiving twice as much mineral N, the FER rings did not produce more N2O 

overall, which indicates that following the two N applications the system was not 

nitrogen limited.  

 Controls of N2O flux 

Individual N2O fluxes showed significant relationships with several variables, but the 

variable which explained most of the variation in the FER and NH4 treatments was 

soil temperature; the most important variable for explaining fluxes from NO3 

treatments was PAR. The effect of PAR was probably a proxy for labile carbon input 

to the soil from the OSR root exudates as the vegetation photosynthesized. As one 

of the three principal limiting factors in denitrification described in Firestone & 
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Davidson (1989), available soil carbon drives denitrification directly, and also 

indirectly by creating anaerobic zones as a result of the heterotrophic respiration it 

stimulates in the soil (Farquharson &  Baldock, 2008). As microbial processes, both 

nitrification and denitrification are directly affected by temperature, hence the 

relationship between soil temperature and N2O flux in the FER and NH4 treatments. 

It also explains temperature’s importance in the NO3 treatment, where it was the most 

closely associated environmental variable after PAR.  

Perhaps most surprising is that the relationship between individual N2O flux and soil 

moisture was found to be so weak in this study. Explaining just 2-4% of individual N2O 

fluxes in this study, soil moisture is often found to be one of the key drivers of N2O 

production (Dobbie &  Smith, 2003b, Skiba &  Smith, 2000, Skiba et al., 1998), though 

this is not always the case (Kaiser et al., 1996). The lack of a close relationship to 

individual fluxes might be due to the soil moisture content never dropped to a point 

where it became limiting. It also may be the result of the simultaneous occurrence of 

two processes (nitrification and denitrification) with different optima with regard to soil 

moisture (Farquharson &  Baldock, 2008). Whilst both these are reasonable 

explanations, other factors appeared to be exerting a greater influence over N2O 

fluxes at this site.  

The daily total flux of N2O was largely explained (80-85% of the variation in individual 

treatments, 74% overall) by the measured daily values of minimum air temperature, 

maximum solar radiation level and maximum volumetric soil moisture content. 

Previous studies have identified soil mineral-N content as a key factor in N2O 

production from agricultural soils (Abdalla et al., 2010, Dobbie &  Smith, 2003b, 

Jahangir et al., 2012), though it may only be a significant factor when soil moisture is 

not limiting (Jones et al., 2007). It should be noted that the frequency of soil N data in 

this study was not high enough to be of use to regression modelling. The inclusion of 

solar radiation in this study’s model is rare, if not unique: whilst carbon is occasionally 

included as soil organic carbon (SOC) or dissolved organic carbon (DOC) in models 

explaining fluxes from agricultural soils (e.g. Harrison &  Matson, 2003, Kaiser et al., 

1996, Petersen et al., 2008)), parkland (Lemke et al., 1998) and fens (Ambus &  

Christensen, 1993), PAR or solar radiation are never included as independent 

variables in such models. Since denitrification is a heterotrophic process, it follows 

that it is reliant on the amount of carbon entering the system, which ultimately is driven 

by photosynthesis which is directly proportional to levels of PAR and solar radiation, 

as shown here in this study.  
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 Diurnal pattern of N2O flux 

There was a clear daily pattern in N2O flux throughout the study period at this site. 

Highest rates of N2O emission were seen in the afternoon, and the lowest fluxes 

through the night. When these fluxes were normalized to the highest daily value, the 

diurnal trend was a sinusoidal pattern much like that displayed by CO2 flux, though 

inverted, as CO2 uptake peaked during daylight hours. This was in direct contrast to 

the diurnal pattern seen from the Miscanthus crop at the same site during the previous 

year (Chapter 2 of this thesis).  

A diurnal pattern in N2O flux has been reported several times before from agricultural 

field studies, over bare soil (Blackmer et al., 1982, Ryden et al., 1978) and pasture 

(Christensen, 1983, Das et al., 2012, Livesley et al., 2008, Simek et al., 2010), which 

all showed peaks in N2O emissions in the afternoon. Similar daily peaks were shown 

from bare soil in Scotland and grassland in Brazil (Alves et al., 2012), whereas a 

greenhouse study with monoliths of two different soil types showed confounding 

diurnal patterns, with daytime peaks of N2O flux from a sandy loam and night-time 

peaks from a peaty-gley (Smith et al., 1998b). Many of these authors attributed the 

principal cause of diurnal trends to soil temperature (Alves et al., 2012, Blackmer et 

al., 1982, Livesley et al., 2008) which has also been shown to drive diurnal patterns 

in the laboratory (Hatch et al., 2005). Smith et al. (1998b) also describe soil 

temperature as the controlling factor of daily N2O flux, and that the night-time peaks 

are due to N2O being produced deeper in the soil profile, hence a lag between air 

temperature and soil temperature at the N2O production microsites. Christensen 

(1983), whilst acknowledging the role of soil temperature, proposed that PAR may 

influence N2O flux; Das et al. (2012) specifically investigated the role of PAR in N2O 

flux, but concluded that the influence was limited to the warming effect it had on the 

upper layers of soil. The results of this study showed, on the other hand, that it was 

solar radiation (and in one instance PAR) that drove the diurnal pattern in N2O flux in 

this system, and not air or soil temperature.  

 Dark and light N2O flux 

If solar radiation was the cause of diurnal peaks in N2O emissions, it would be 

expected to see a reduction in N2O flux following shading of the vegetation. The logic 

behind this is that the shaded vegetation stops photosynthesising, thus the carbon 

supply to the soil is slowed, causing the rate of denitrification to slow. When the first 



226 
 

round of measurements were taken following experimental shading (40 minutes after 

shading), fluxes for both shaded and unshaded treatments had increased, suggesting 

that the supply of carbon in the soil had not yet been affected. The second round of 

measurements took place over 200 minutes after, and there was perhaps the start of 

a trend of dropping fluxes in the shaded treatment, whilst the unshaded fluxes 

continued to rise. The experiment suffered from a low number of replicates (n=3), and 

no statistical difference was found. By the time the third round of measurements were 

taken, the sun had set and all plants were in darkness (the suggestion of lower fluxes 

from the shaded replicates was still apparent). 

Of two studies which have attempted to investigate the effect of light on measured 

N2O flux by using clear and opaque chambers, one (Stewart et al., 2012) found that 

soils acting as a sink for N2O in light switched to a source in opaque chambers. This, 

however, was a study from an N limited tundra landscape, though it is precisely the 

same effect described in Chapter 3 of this thesis. A second study in a salt marsh in 

the northeastern United States saw N2O emission increase in opaque chambers 

compared to clear chambers (Moseman-Valtierra et al., 2011), which was attributed 

to denitrification inhibition by increased oxygen levels in the sediments as a 

consequence of photosynthesis, which is a situation specific to coastal environments 

and not relevant to an agricultural system. In order to investigate the hypothesis that 

shading vegetation will decrease N2O flux in a denitrifying agricultural soil, further 

experimentation is required, with higher frequency measurements following shading.  

 Chamber comparisons 

There was a large discrepancy between the fluxes measured with manual static 

chambers and the SkyLine system. In paired comparisons fluxes tended to be higher 

from the manual chambers than from the darkened SkyLine chamber (Figure 4.15). 

Due to the logistics of the operation, the coverbox measurements were always made 

first, with the SkyLine measurement taking place a minimum of 75 minutes after the 

opaque chambers were placed. The flux measurements from SkyLine was therefore 

made after the vegetation had been darkened for over an hour, sometimes as long 

as two hours. The results of the shading experiment above suggest that this 

darkening may slow N2O flux due to cutting off the carbon supply to the soil for 

denitrification. If this is the case then the manual measurement process itself may be 

responsible for altering the N2O flux subsequently measured by SkyLine.  
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The second way that the paired manual chamber and SkyLine measurements differ 

is that the coverboxes were placed from late morning into the afternoon, which has 

been shown in this study and others (e.g. Alves et al., 2012, Christensen, 1983)) to 

be the peak time for emissions. So the bias in taking manual measurements in the 

current study was two-fold: they were invariably made at the time of peak N2O flux 

where SkyLine measured the flux as the peak declined, and they reduced the rate of 

N2O flux for subsequent SkyLine measurements.  

The total N2O flux for the study period measured using manual measurements was 

nearly five times higher than the total derived from automated SkyLine 

measurements. This reflects two contrasting aspects of the measurement regimes of 

the two systems: the first is influenced by the frequency of measurements, and the 

second is the effect of a clear chamber compared to an opaque chamber. Concerns 

have long been raised regarding the practice of using a single daily measurement 

from which to extrapolate daily, monthly, or even annual fluxes (Ryden et al., 1978). 

The extent to which manual measurements might overestimate fluxes is largely 

dependent upon the amplitude of the diurnal variation and the time of day at which 

the measurement is made. In extreme cases, daily maxima might be 15 times higher 

than the minima (Simek et al., 2010) which opens up the possibility of greatly 

overestimating the true flux; various comparisons of fluxes calculated with single daily 

measurements and more frequent data show overestimates in the region of 60% 

(Maljanen et al., 2001), 31-49% (Yao et al., 2009b)  and 21% (Brumme &  Beese, 

1992). The results here show a bigger discrepancy than those elsewhere, but using 

day-time measurements from SkyLine alone gave a two-fold difference in the 

estimate of total N2O flux for the period than if night time measurements were used. 

If only the maximum daily values from SkyLine are used, then the manual chamber 

measurements still estimated the total N2O flux to be more than twice as high for the 

same period. Further explanation for this may be found in the comparison of the fluxes 

derived from the small, opaque soil chambers and the large clear SkyLine chamber. 

The N2O fluxes measured using small soil chambers were much higher than in the 

clear SkyLine chamber, indeed, up to 30 times higher (Figure 4.16). The principal 

differences between the chambers were: the area covered (SkyLine 0.12 m2, soil 

chamber 0.009 m2), the chamber volume (SkyLine 83 L, soil chamber 2.6 L), the 

opacity of the soil chamber and the fact that the SkyLine chamber included the 

vegetation and the soil chamber did not. Due to the exclusion of vegetation, the soil 

chambers very quickly saw a large buildup (up to 3000 ppm) of CO2, which did not 
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occur in the SkyLine chamber where photosynthesis reduced the CO2 concentration 

in the headspace. According to Fick’s law, buildup of CO2 within the soil chamber 

reduced efflux from soil pores which will have resulted in anaerobic zones in the soil 

surface layers and further stimulated denitrification, thus increasing N2O production 

(Figure 4.26). Depending on the CO2 accumulation within the headspace of the large 

static manual chambers, which were in place for one hour (c.f. 10 minutes for the 

SkyLine chamber), a similar process may have occurred.  

Augmenting the effects of this process is the fact that the large static chambers were 

not mixed, except by minor disturbance of the air through pumping the syringe at the 

discrete sampling times; in between sampling, the headspace will have settled, 

leaving CO2 concentrations to be highest immediately above the soil surface 

(Schneider et al., 2009), increasing anaerobic microsites in the soil pores and 

stimulating N2O production through denitrification. Since it is suggested here that 

cutting off light to vegetation did not reduce the carbon supply for denitrification until 

after one hour, it is feasible that an initial increase in N2O production is one ‘artefact’ 

of the opaque static chamber method used here.  

A further possible explanation for the apparent increased fluxes in the small soil 

chambers is the inclusion of N2O hotspots in its footprint. N2O production is 

notoriously spatially heterogeneous; it has been shown in the high variance between 

individual rings in this study and in many previous investigations (Clayton et al., 1994, 

Velthof et al., 1996, Turner et al., 2008, Chadwick et al., 2014,), even over very small 

(< 1 m) distances (Ambus &  Christensen, 1994). At the end of the current study the 

entire upper 10 cm of soil was taken intact from the base of one of the small soil 

chambers and incubated in the laboratory; it was found through systematic paring 

down of the soil core that almost all the N2O flux from that chamber had been derived 

from a volume of soil approximately 1 cm3 (Ineson & Toet, personal communication). 

Such hot spots are likely to be found close to the roots of the vegetation where 

exudates provided a labile carbon source for denitrification. Since the roots of OSR 

are small, they do not reach the circumference of the landing bases of the SkyLine 

chamber (40 cm diameter)   
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Figure 4.26 Schematic of the proposed chamber dynamics of the clear SkyLine chamber (A), 

the opaque soil flux chamber (B) and the large opaque manual chamber (C). Open arrows 

denote chemical flows, the dashed line indicates the travel of light and closed arrow flow of 

gas for sampling. Left panel: high concentrations of CO2 in the soil chamber reduce the 

diffusion gradient and therefore the efflux from the soil, increasing anaerobic pockets and 

stimulating increased N2O production through denitrification. Photosynthesis by the OSR in 

the SkyLine chamber reduces CO2 concentrations and so the soil remains more aerated than 

in the soil chamber, and the flow rate of 0.4 l min-1 ensures the headspace is well mixed. Root 

exudates provide a carbon source for both respiration and denitrification in the soil. Right 

panel: there is no flow of headspace gas in the large manual chamber in between sampling; 

during this period the CO2 from respiration settles at the bottom of the chamber as it is heavier 

than air, which slows diffusion of O2 into the soil and creates more anaerobic pockets where 

N2O production from denitrification increases.  
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within which the small chamber bases sat (11 cm diameter see; Figure 4.4 for an 

example of where the small chamber bases were placed), close to the base of the 

vegetation and the roots. The proportion of the small landing bases’ area which will 

have encompassed roots (or have been in close proximity to them) will have been 

greater than that of the larger landing bases, thus increasing the likelihood of the 

occurrence of hotspots per unit area in the small chambers. 

 Total N2O flux and GHG balance 

The N2O emissions measured using SkyLine during this study were high in 

comparison to other studies of agricultural systems. The results from the FER 

treatment presented here amount to a total emission of ca 2.3 kg N ha-1 over the 21 

days of measurements, with a peak daily emission of ca 770 g N2O-N ha-1 day-1 and 

a maximum mean individual flux of more than 2000 µg N2O-N m-2 h-1 in the FER 

treatment and nearly 3000 µg N2O-N m-2 h-1 in the NH4 treatment. According to a 

comprehensive review of N2O fluxes from agricultural soils (Stehfest &  Bouwman, 

2006) the total flux reported here was above the mean (and median values) for 

fertiliser rate and study length. It is, however, below the mean values for crop type 

(though OSR is included in the category “other” in Stehfest &  Bouwman (2006), which 

includes anything that isn’t a legume, grass or cereal), although it is greater than the 

median total flux. 

The fluxes found here are consistently higher than others for temperate systems. A 

Danish study reported a peak emission of N2O of ca. 94 µg m-2 h-1 following 

application of 124 kg N ha-1 as pig slurry (Chatskikh et al., 2008); the same paper 

reports no peak in emissions from a prior fertiliser treatment of 71 kg N ha-1 as 

NH4NO3. The total N2O produced during the cultivation of the OSR crop equated to 

an average of 6.8 g N ha-1 day-1, which is considerably less than 100 g N ha-1 day-1, 

which is what the FER treatment in this chapter averaged. In an intercropping 

experiment in Canada, a maximum mean N2O flux of ca 60 g N ha-1 day-1 was 

reported, though this was based on a single monthly measurement in each of four 

months, taken during the day-time (Beaudette et al., 2010).  

Also in Canada, Asgedom et al. (2014) used weekly manual chamber measurements 

and reported peak emissions of ca. 175 g N ha-1 day-1 approximately one month after 

application of ca. 140 kg N ha-1 urea fertiliser, and a total emission of 2.48 kg N ha-1 
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for the entire growth cycle of the OSR. Peaks of ca 500 µg N2O-N m-2 hr-1 from OSR 

were seen in an unreplicated experiment in Germany (Hellebrand et al., 2003), 

following 150 kg N ha-1 unspecified fertilizer type which yielded an annual total 

emission of 3.89 kg N ha-1. Also in Germany, peak fluxes of approaching 400 µg N2O-

N m-2 h-1 were reached after fertiliser applications to OSR (which totaled 150 kg N ha-

1) in each of three consecutive years (Kavdir et al., 2008) with bursts of N2O emission 

persistently seen throughout the year (200-400 µg N2O-N m-2 h-1) months after 

fertiliser application. To put these values in context, N2O flux measured from OSR in 

a drier climate (maximum measured WFPS < 30%) following fertiliser application (75 

kg-N urea) was an order of magnitude smaller: maximum hourly N2O flux during the 

year was < 40 µg N2O-N m-2 h-1, and the annual flux was < 140 g-N ha-1 (Barton et 

al., 2010).  

The emissions factor (EF) for fertiliser is defined as the proportion of applied N emitted 

to the atmosphere as N2O, and the range given for mineral fertilisers is by the IPCC 

is 0.3-3% (De Klein et al., 2006). This range does not account for crop type, and OSR 

is associated with a lower EF than grassland or leafy crops (Dobbie &  Smith, 2003b). 

Commonly, the EF from experimental fertiliser additions is calculated as: 

 (N2O from N application – N2O from control) / total N applied * 100 

In the current study, there was no untreated control since it was not part of the 

hypotheses under test. It is only possible, therefore, to express the total N2O flux in 

terms of the total N application, which ranged from 1.8-2.8% across the three nitrogen 

treatments. This is likely to be an overestimate of the actual EF for the measurement 

period, though it is calculated over just 21 days and so does not account for N2O 

emissions which will have occurred after the cessation of measurements. Assuming 

further N2O emissions occurred throughout the year, the EF for this system will have 

been at the upper limit of the IPCC estimate. Reported values from OSR range from 

0.02% (Barton et al., 2008), 0.06% (Barton et al., 2010) where fluxes were low, 0.7% 

(Skiba et al., 1998) under high N input (235 kg N ha-1 year-1), to values greater than 

2.5% (Merino et al., 2012) and even over 3.2% (Kaiser &  Ruser, 2000).  

The large N2O flux at this site has implications for the GHG balance for the production 

of the crop. Using the data for three GHGs from the SkyLine system the site had a 
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negative GWP; however, the balance was close to neutral, with the N2O emissions 

largely counteracting the sink effect of photosynthesis. Further bursts of N2O 

emissions could easily tip the balance, and certainly, if the data from the manual 

chambers were used to provide an estimate of total GHG flux, the system would be 

estimated to have had a positive net effect on radiative forcing. This serves to 

highlight the importance of fully accounting for all GHGs when assessing the impacts 

in terms of GWP. Since OSR is the principal feedstock for biodiesel in Germany (de 

Vries et al., 2014) it is vital that accurate measurement of N2O flux is included in any 

lifecycle analysis (LCA), and it emphasises the need to move away from first 

generation energy crops.  

 Conclusions 

The value of automated chamber systems has been reinforced in the findings 

presented here. The spatial resolution provided by the SkyLine system enabled an 

experimental contrast to be performed into the effect of different nitrogen fertilisers on 

GHG fluxes from OSR. The findings showed that both nitrification and denitrification 

played an important role in N2O production at this site. The OSR was a net sink for 

GHGs, but the contribution of N2O to the GHG balance negated ca. 50% of the total 

GHG gains from photosynthesis. The absence of a difference both in the total N2O 

flux and the above ground biomass between the fertiliser treatment and the nitrate 

and ammonium treatments, which received half as much nitrogen as the fertiliser, 

indicated that the system was not N limited and that the fertiliser had been applied in 

excess. CH4 fluxes were not a significant element of the GHG budget at this site. 

The high frequency of flux measurements from SkyLine revealed a strong diurnal 

pattern in N2O fluxes, characterised by peaks of emission through the afternoon and 

lower emissions at night, and this pattern was explained best with its relationship to 

solar radiation as opposed to temperature. It is suggested, due to this relationship 

with sunlight, that carbon supply from the plant played an important role in the diurnal 

pattern of N2O fluxes.  

N2O flux measurements made using opaque manual chambers were significantly 

lower than those made using SkyLine. It is hypothesised that, in altering the light 

available to the vegetation, the manual chambers had a direct influence on the 

denitrification process in the soil. In addition, cumulative flux estimates of N2O using 
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manual measurements overestimated the total flux by 5 times compared to the 

estimate using SkyLine measurements, principally due to the inherent bias caused 

by measuring during the afternoon when fluxes were highest, and this finding 

reinforces the necessity of high frequency measurements to enable accurate 

estimates of GHG fluxes to be made. Further work needs to be undertaken to 

investigate the role that solar radiation has on the diurnal pattern of N2O fluxes.   
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5 General discussion 

 Evaluation of the novel systems presented 

The aim of this study was to develop novel automated technologies to deliver full 

GHG budgets from a range of crop systems. The use of automated techniques 

allowed the delivery of near-continuous data for soil respiration, NEE and fluxes of 

N2O and CH4. The nature of these data has yielded vital new information on the 

diurnal cycles of trace gas fluxes, the differences in diurnal cycles between different 

crops, and the drivers of GHG fluxes. 

SkyBeam and SkyLine were both deployed with great success, in two medium-term 

GHG experiments. The challenges in measuring from two very different crops, namely 

Miscanthus and OSR, were varied. It was particularly pleasing to produce a virtually 

uninterrupted four month dataset using SkyBeam from its initial deployment. Dropping 

a chamber consistently and accurately over a crop the size of Miscanthus was in and 

of itself a feat worthy of note. The scale of the chamber makes SkyBeam almost 

unique in its objective, and where Mordacq et al. (1991) used a chamber to measure 

gas exchange over small trees, it was not an automated system, and the enclosed 

vegetation was isolated from ambient environmental conditions for long periods of 

time.  

Among the shortcomings of SkyBeam was the cumbersome nature of the supporting 

structures, and the time required for installation. Whilst this was time well-invested, 

considering the amount of data generated over the course of half a year, it does not 

reflect such a practical solution for shorter study periods. The success of SkyBeam 

led to the development of SkyLine, a much more adaptable system. Its reliance on 

shorter, lightweight support structures and ropes instead of a rigid beam made 

SkyLine easier to transport, quicker to install and able to measure from a longer 

transect. In work subsequent to this study, SkyLine has been deployed at five further 

sites, for up to a year, and has now measured from over grassland and clear fell 

forest, in addition to the measurements from OSR. Its flexibility as a platform for GHG 

measurements has been demonstrated by the use of standing tree trunks in the forest 

study from which to suspend its ropes, in place of aluminium trellis. It has also been 

used to measure GHG fluxes from over water as well as land.  
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The use of a single chamber is not only cost-effective, but it means that the 

measurement positions are only isolated from the environment for a maximum of ten 

minutes at a time; in between flux measurements the crop and soil are exposed to 

ambient environmental conditions. A common design for previous automated 

chamber systems has incorporated a permanent base in the soil, with a lid closing for 

measurements (Morris et al., 2013, Pape et al., 2009, Rowlings et al., 2012). The 

sides of a collar (in the case of Pape (2009) these are 43 cm high) will inevitably have 

an effect on the internal microclimate. The analysers employed by both SkyLine and 

SkyBeam enabled fluxes to be calculated over a short period of time, which minimised 

the potential for changes in the headspace microclimate to effect the fluxes such as 

temperature (Butterbach-Bahl et al., 2011) or pressure artefacts (Pumpanen et al., 

2004). In contrast, automated systems which utilise a inline GC (Nishimura et al., 

2005) require chamber closure times of at least 30 minutes, which can have adverse 

effects on the accuracy of flux measurements (Heinemeyer &  McNamara, 2011). 

 The influence of N2O on GHG balance 

In this study the flux of N2O from two different crops, barley and OSR, has been shown 

to be a major contributor to the net GHG balance. In the OSR N2O emissions negated 

up to 50% of the carbon gains from photosynthesis. The total N2O flux was 

comparable from barley over its cultivation, and depending on the NEE (not measured 

in this study), it had the potential to turn a net GHG sink into a net source. The 

estimated emission factor (EF) from the OSR ranged from 1.8 to 2.8% across the 

nitrogen treatments, and the total N2O flux (413 mg m-2) produced from under the 

barley equated to an EF of ca. 1.45%, though it should be noted that in lacking an 

untreated control, and not measuring for a full year, these numbers are not EFs in the 

strictest sense. These EFs are both higher than the default 1% Tier 1 IPCC guideline 

figure, but fall within the uncertainty range (De Klein et al., 2006). These results add 

weight to the EFs reported in Reay et al. (2012) which include indirect emissions, 

which ranged from 1.8 to 3.8%.  

The nitrogen addition study in Chapter 3 did not attempt to measure leaching of 

applied N, but the fact that N2O emissions were not higher in the fertiliser (FER) 

treatment than either the nitrate or ammonium treatments, despite receiving twice as 

much mineral N, might suggest that much of the applied N did indeed run off. The 

absence of an increase in the total biomass from the FER treatments at the end of 
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the study might support this, but without measuring N content of the biomass it is not 

possible to be certain of this; it may be that after treatment application the system was 

neither N limited, nor was the excess N incorporated into the vegetation. Very recently 

it has been suggested that indirect emissions of N2O from water courses caused by 

fertiliser runoff might be underestimated by as much as 40% (Turner et al., 2015), 

which highlights the serious issue that use of excess N in agriculture. This raises 

important questions regarding the attitude towards fertiliser use in agriculture. Clearly 

the current study reflects the unsuitability of first generation crops for biofuel 

production due to fertiliser-derived emissions. This is a serious matter which needs 

to be addressed, since for example Europe’s largest economy, Germany, uses OSR 

as its principal biodiesel feedstock (de Vries et al., 2014), and 12% of global cereals 

are predicted to be diverted to bioethanol production by 2022 (OECD-FAO, 2013). It 

has been shown that, in terms of GHG balance, it is only lignocellulosic feedstocks 

such as Miscanthus, other perennial grasses and waste products that will offer a 

benefit from biofuel production (Searchinger et al., 2008), and the findings of the 

current study would not contradict that conclusion. Application of green waste 

compost was also shown to increase N2O fluxes in Miscanthus compared to untreated 

controls. Whilst the fluxes were very low in respect to those seen from the other two 

crops in this study, in the cultivation of energy crops, every effort should be made to 

maximise the GHG benefit. Any bioenergy production which receives nitrogen 

application is inevitably going to be questionable in terms of its GHG gains (Reay et 

al., 2012).  

There is a wider question regarding fertiliser application to arable land. Economically, 

fertiliser use is a trade-off between yield improvement and cost of fertiliser, and so 

long as the yield increase is financially more advantageous to farmers that the outlay, 

fertiliser will continue to be applied in excess (Davidson et al., 2014). It has been 

suggested that by issuing financial incentives to landusers for reducing N2O 

emissions, N fertiliser derived emissions could be reduced by 50% (Millar et al., 

2010). Other approaches include improving nitrogen use efficiency (NUE) in crops 

(Davidson et al., 2014) or use of slow release fertilisers (Chien et al., 2009). 

 Diurnal patterns in trace gas fluxes 

It was striking to find such a marked difference in the diurnal pattern of soil respiration 

between different crops grown on adjacent fields (Chapter 2), especially given that 
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soil respiration is often described as a function of soil or air temperature 

(Bhattacharyya et al., 2013, Buchmann, 2000). It is clear from the data presented in 

Chapters 2 and 3 that there was a strong temperature-independent influence on 

respiration, particularly under the Miscanthus, and that this is often ignored when 

night time EC data are processed (Bhattacharyya et al., 2013).  

The cause for the discrepancy between the barley and Miscanthus in this study 

cannot be fully explained here, though it is hypothesised that assimilated carbon 

moving through the vegetation to the soil is the driver. It is known that photosynthate 

moves through larger vegetation at slower rates than through short plant species 

(Bradford et al., 2012, Kuzyakov &  Gavrichkova, 2010, Liu et al., 2006, Savage et 

al., 2013), and so it is possible that carbon arriving at the soil peaked later in the day 

under Miscanthus than barley, thus stimulated a later peak in soil respiration.  

Diurnal patterns in N2O flux have been reported on several occasions (Christensen, 

1983, Das et al., 2012, Hu et al., 2013, Livesley et al., 2008), but without exception 

these report diel variations of highest flux in the afternoon or early evening and lowest 

through the night. These studies all deal exclusively with N2O emission, and in that 

respect the data presented in Chapter 4 from OSR are consistent with their findings. 

In contrast to the majority of these authors’ interpretation, the current study found a 

closer relationship between solar radiation and N2O flux than with temperature.  

The exact opposite pattern in N2O flux was witnessed in the Miscanthus, where it was 

shown that net uptake of N2O occurred during the day, but net emission at night. The 

only instance of such a pattern of uptake during light conditions and release in the 

dark has been seen in an arctic tundra, and was demonstrated using opaque and 

clear chambers (Stewart et al., 2012). Such a pattern is difficult to interpret, since the 

biological processes governing N2O production and reduction are rather convoluted 

(Butterbach-Bahl et al., 2013), but it is assumed that N2O consumption occurs when 

reduction to N2 exceeds production (Chapuis-Lardy et al., 2007). The reason for this 

to vary over the course of a day needs further investigation, but the presence of 

vegetation may be key, since it might store or metabolise N2O (Grundmann et al., 

1993) or act as a passive gas transport channel from higher ambient concentrations 

to reduction sites further down the soil profile (Clough et al., 1999). If vegetative 

transport is mediated by stomata, then it would halt when photosynthesis ceased and 
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the stomata closed. Since the N2O emission increase seen coincided with soil 

respiration, it is possible that it was driven by production from heterotrophic 

denitrification.  

CH4 flux in Miscanthus also exhibited a diurnal pattern. As was consistent across all 

three crops, oxidation was the dominant CH4 process at this site, which was a net 

sink in all of the current studies. In the Miscanthus, unlike the OSR and the barley, 

there was a strong pattern of peak uptake during the day, and fluxes closer to zero at 

night. It was demonstrated that temperature was the major explanatory variable, 

which is consistent with a microbial process. It cannot be discounted that the 

vegetation itself was taking up CH4 as has been seen in boreal plants (Sundqvist et 

al., 2012), and this also would explain the abrupt halt of uptake when the plant 

stopped photosynthesising. 

 Automated vs manual measurements and the effect of 
sampling frequency 

There have been several comparisons made of fluxes measured using automated 

systems and manual chambers, and they tend to take one of two approaches. The 

first involves direct comparison of techniques measuring the same flux at the same 

frequency (Ambus &  Robertson, 1998, Heinemeyer &  McNamara, 2011, Pumpanen 

et al., 2004). The second approach is comparing the total flux estimated between 

different measurement frequencies (Laville et al., 1997, van der Weerden et al., 2013, 

Yu et al., 2013a). The current study has enabled comparisons between techniques 

on both of these levels, across a variety of crop types. 

 Comparison of static and dynamic chambers 

In Chapter 3 measurements of CH4 and N2O flux using manual static chambers were 

made from within the same experimental plots as the SkyBeam chamber. It was 

shown that CH4 and N2O fluxes from the manual chambers were significantly higher 

than those made by SkyBeam. This was not designed as an experimental 

comparison, and is described with the caveat that SkyBeam was a clear chamber 

which enclosed the vegetation, and the manual chambers covered the soil only. 

However, when manual chambers were deployed over the OSR in Chapter 4, these 

were measuring from the exact same positions as SkyLine, and so included 



239 
 
 

vegetation in the flux. In this instance the fluxes were again much higher for N2O. The 

caveat in this instance is that again the manual chambers were opaque and SkyLine 

clear. Static chambers have been shown to underestimate CO2 fluxes (Heinemeyer 

&  McNamara, 2011, Pumpanen et al., 2004), so whether the discrepancy in this study 

is due to temporal separation, opacity of the chambers or the presence of vegetation 

cannot be ruled out. 

 Comparison of monthly and sub daily measurements 

Estimates of cumulative soil respiration were made from barley and Miscanthus in 

Chapter 3, using monthly data from a Licor survey chamber and ca. hourly 

measurements using Licor automated chambers. Measurements were made from the 

same collars for both techniques. In the Miscanthus the monthly measurements 

consistently overestimated the cumulative flux, compared to the hourly data. The 

trend was not significant in the barley. Low frequency measurements have been 

shown to give lower estimates than high frequency measurements of cumulative flux 

on for N2O (van der Weerden et al., 2013), and CH4 (Yu et al., 2013a). In this study 

the over estimation of cumulative flux is attributed to the insensitivity of a single 

measurement on one day per month to the inter- and intradiel variation. In particular 

under the Miscanthus, by not including the early morning in monthly measurements, 

the lowest fluxes were missed and so the measurements were biased.  

A similar bias was introduced in the comparison between manual measurements and 

automated measurements of N2O in Chapter 4, where the manual chambers were 

deployed only during the day, during the period of peak daily fluxes, and SkyLine 

measurements included the night time fluxes, which were the lowest.  

 Comparisons of light and dark 

The diurnal pattern of N2O flux suggested that had an effect on N2O fluxes in Chapter 

4. This was reinforced by the importance of solar radiation in the multiple regression 

models for N2O flux, but also in the shading experiment that was performed. Although 

the comparison was flawed, the trend for lower fluxes under shaded vegetation 

indicated that with further replication statistical significance might be demonstrated.  



240 
 
 

Counter intuitively, the measurements of N2O flux from the opaque manual chambers 

were significantly higher than those from the clear chamber in Chapter 4. An 

explanation is proposed for this (see Section 4.4.6), which is reinforced by the theory 

of Moseman-Valtierra (2011) when a similar increase in fluxes was seen in darkened 

chambers.  

The effect of heightened N2O fluxes from darkened soil chambers compared to clear 

NEE chambers was consistent between measurements made in the Miscanthus and 

OSR. In Chapters 3 and 4 the presence of vegetation in clear chambers was 

associated with reduced N2O flux. This lends weight to the idea that 

photosynthesising vegetation maintains higher O2 levels within the chamber and so 

inhibits denitrification (Moseman-Valtierra et al., 2011). Darkened chambers, whether 

they enclosed vegetation (Manual chambers, Chapter 4) or not (small soil chambers, 

Chapter 4; manual chambers, Chapter 3), create anaerobic environments due to the 

buildup of CO2 and stimulate N2O production through denitrification. A drop in O2 

concentration would also explain the elevated CH4 fluxes from the manual chambers 

in Chapter 3 in comparison to the SkyBeam chamber. If such a process is occurring, 

it would represent a hitherto undescribed chamber artefact. 

Diffusion gradients are known to build up inside chambers which can have an effect 

on the apparent flux (Healy et al., 1996, Heinemeyer &  McNamara, 2011). If, due to 

the opacity of the chamber, the chamber itself were altering the flux process, and not 

just inaccurately measuring it, questions regarding the use of opaque chambers arise 

which need to be addressed. Chambers are specifically recommended to be opaque, 

especially those which are required to be closed for tens of minutes, in order to reduce 

the warming effect that a clear chamber can have (Butterbach-Bahl et al., 2011, 

Rochette &  Eriksen-Hamel, 2008). It may be that by avoiding one chamber artefact 

(warming), another equally serious one is introduced (stimulation of N2O). 

 Environmental controls of trace gas flux 

Several consistent patterns emerged from the relationships between trace gas fluxes 

and the measured environmental variables (Table 5.1). Solar radiation and air 

temperature both displayed negative relationships with NEE in the OSR and 

Miscanthus. Due to the auto correlative nature of incoming radiation and air 

temperature, the two variables’ associations with trace gas fluxes were consistently  
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Table 5.1 Summary table of significant relationships between environmental variables and trace gas fluxes, across all chapters. +sign =  positive 

relationships, (i.e. greater emission with increasing values of the independent variable) and – sign = negative relationships (i.e. reduced emission/ 

greater uptake with increasing values of the independent variables). Frequency is defined as H= hourly measurements, M= monthly measurements. 
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the same. In the case of NEE, it is the solar radiation which is the driver of the 

relationship, since it is sunlight which stimulates photosynthesis, and this was 

reflected in individual regressions in Chapters 3 and 4, where radiation was the 

variable with the closest relationship with NEE. Soil respiration, N2O flux and CH4 flux 

are all the products of microbial processes, and as such it is to be expected that 

temperature would have an important influence on them. Soil temperature is often 

described as strongly influencing soil respiration (Buchmann, 2000, Kane et al., 2003, 

Kutsch &  Kappen, 1997). The relationships seen in this study were not so 

straightforward. Whereas soil respiration under barley followed a typical temperature 

dependent diurnal pattern (see Chapter 2), respiration under Miscanthus did not, with 

a lagged element to the pattern of diurnal variation (see Chapters 2 and 3). Whilst 

there was certainly a strong temperature associated influence on respiration under 

the Miscanthus, there was an independent process also driving respiration. It is 

suggested here that the temperature independent element was due to carbon supply. 

In their warming experiment, Fitter et al. (1999) showed that it was photosynthetically 

active radiation which drove increased soil respiration due to greater allocation of 

belowground carbon, as opposed to the increase in temperature, to which plants 

acclimatised. Various approaches have been used to demonstrate the relationship 

between photosynthate and soil respiration, such as girdling (Hogberg et al., 2002, 

Hogberg et al., 2001) and isotopic labelling of CO2 (Kuzyakov &  Cheng, 2001), which 

have shown the influence that recent photosynthate has on soil respiration. That solar 

radiation was also shown to be significantly associated with N2O flux from all three 

crops might initially be dismissed as due to its close relationship with temperature. 

However, in the OSR it was shown to be the variable with the closest relationship with 

the diurnal variation in N2O flux, which has led to the hypothesis that it was carbon 

supply which drove this pattern in fluxes here. Solar radiation was also seen to be 

important in multiple regression models explaining N2O flux from Miscanthus.  

Soil temperature was also positively related to soil N2O flux, in both barley and 

Miscanthus. A range of Q10 OF 2.2 to 7.1 has been reported for soil N2O flux (Alves 

et al., 2012), and the values in this thesis do not contradict those findings. It is perhaps 

surprising that no effect of soil temperature was seen in CH4 fluxes, though this was 

perhaps down to the very low fluxes seen across all crops.  
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Air temperature exhibited the similar relationships to fluxes as soil temperature, which 

is to be expected since the two variables are inextricably linked. This was one of the 

few variables with which CH4 flux was significantly associated in any of the three 

crops. CH4 flux under Miscanthus declined with increasing air temperature. In this 

case this decline represented an increase in CH4 oxidation, which has been shown in 

previous studies (Butterbach-Bahl &  Papen, 2002). 

Negative effects of soil moisture on soil respiration in barley and Miscanthus can be 

attributed to reduced O2 levels in the soil with increasing moisture levels. The negative 

relationship with N2O flux seen in all three crops was somewhat surprising. Whilst in 

anoxic conditions caused by very high soil moisture levels N2O reduction is known to 

exceed N2O production (Chapuis-Lardy et al., 2007), the soils during this study were 

rarely waterlogged, and so it is more difficult to explain this relationship with that 

mechanism. Ordinarily, N2O flux would be expected to increase with soil moisture as 

anaerobic conditions stimulate denitrification (Dobbie &  Smith, 2003b, Skiba et al., 

1998). Indeed, the hourly measurements of N2O from Miscanthus did demonstrate a 

more conventional positive relationship with soil moisture, and this is most likely to 

the extra sensitivity in data interpretation that comes with higher frequency 

measurements. 

 Future work 

The work described in the current study has produced several important questions 

that should be addressed in order to further the understanding of the processes 

controlling trace gas fluxes. The most pressing issue is to establish the driver of the 

differing diurnal cycles of N2O flux. How common is such diurnal variation in N2O? 

High frequency measurements are required from a range of plant soil systems to 

characterise any existing patterns. It is clear that if two different crops grown on 

adjacent fields (same soil type) exhibited opposite patterns in diel N2O patterns, it is 

entirely possible that current understanding of N2O fluxes is inadequate. Does 

recently assimilated photosynthate drive the diel pattern seen in the OSR? If so, it 

may be possible to show this through manipulating the levels of radiation arriving at 

the plants. The biggest challenge when manipulating light levels is decoupling light 

and temperature. Low energy LED grow lamps are available which give off little heat, 

and these may offer the opportunity to manipulate night time light levels without 

raising temperature, to establish whether diurnal N2O cycles could be disrupted.  
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Of equal interest is the uptake of N2O from well aerated, N limited soils. Through 

laboratory incubations an understanding is growing that N2O uptake in aerated soils 

is much more common than previously reported (Stockdale, personal 

communication). Since N2O has such a large GWP, understanding all the 

mechanisms governing its production and consumption is vital to our ability to mitigate 

emissions. Ascertaining whether aerobic uptake of N2O by soils is simply reduction of 

N2O to N2, or a previously undescribed assimilatory pathway for N would be of great 

interest.  

Since our knowledge of the drivers of N2O production, especially at fine temporal 

resolution is rather poor, it is becoming clearer that in addition to high frequency 

measurements of soil temperature and moisture, measurements of the chemical 

properties of the soil need to be made more often. High frequency data on mineral N 

and dissolved organic nitrogen and carbon (DON and DOC) within the chamber might 

be very useful in terms of explaining observed fluxes, and predictive modelling of 

emissions.  

It was apparent in the study from OSR, as has been shown in various other studies, 

that N2O fluxes can be driven by very small ‘hotspots’. The work in Chapter 4 enabled 

the detection of such a hotspot, which was extracted in a soil core and microbial 

analysis of the soil is planned. It may be that hotpots are responsible for the majority 

of the total landscape N2O flux, and as such it is a matter of urgency that we discover 

exactly what is creating these hotspots.  

Further investigation into the differences in soil respiration under various crops 

species will also be of great value, especially in terms of accurately partitioning NEE 

from EC data. Communication with computer modellers invariably includes the 

request for more measurements of flux to be made to validate models. In order to 

enable simulations of GHG emissions under various scenarios to be as accurate as 

possible, it is essential that robust flux measurements are made from a variety of land 

uses.  

 Summary 

From the work presented here it is apparent how crucial N2O is in term of GHG 

balance, and that it is essential that is quantified accurately and reliably. If N2O flux is 
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to be estimated through the use of emissions factors, then they must be verified so 

that they are more precise than the default Tier 1 EFs, around which there has been 

shown to be much variance. Direct measurements of GHGs taken at high frequency 

are capable of providing important information regarding the temporal and spatial 

variation of. Measurements made with SkyBeam and SkyLine in Miscanthus and OSR 

demonstrated how large, fleeting bursts of N2O emissions characterise N2O flux, and 

that these short-lived events may contribute major proportions of an annual GHG 

budget. It is pleasing to hear that revised substrate-specific EFs are being prepared 

for the UK based upon a comprehensive regime of direct measurements (Chadwick, 

personal communication). 

The work in the OSR reinforced the understanding that continued use of first 

generation crops for bioenergy production will not provide substantial gains in terms 

of GHGs. The application of nitrogenous fertiliser ensures that N2O emissions 

counteract much of the carbon gain from crop growth, and the remaining ‘carbon 

credit’ will be subsumed by further inherent emissions from transportation, fertiliser 

manufacturing and processing of the feedstock. Miscanthus provides a much more 

promising opportunity in terms of bioenergy. Its low N2O emissions ensured that the 

major contributor to the GHG balance was CO2. In this current study the field of 

Miscanthus was seen as a net source according to measurements made by 

SkyBeam. This, however, was an atypical year, with tillage creating conditions more 

akin to an establishment year for the crop and stimulating a large turnover of soil C, 

and the yield of the crop itself very poor. Subsequent years with less disturbance 

should see an improvement in yield, which will drive more uptake of CO2 and create 

a strong GHG sink. 

Addition of compost to the Miscanthus did not improve the yield, and in fact it 

increased N2O emissions, and there was the suggestion it may also have increased 

CO2 losses from the soil. Since no measurements of soil quality were made in this 

study it is not possible to state whether there were any unseen benefits gained from 

this compost application, and it is possible that it may stimulate improvements to the 

crop in years beyond this study. The conclusions drawn here, however, are that the 

compost was detrimental to the GHG balance and so such practices should be 

avoided where possible. It is also recommended that the soil be disturbed as little as 
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possible, meaning farmers should refrain from tilling the soil in which perennial crops 

are cultivated. 

The strong and differing diurnal patterns in fluxes of all three GHGs, across different 

crops raises serious implications for how trace gas sampling regimes should be 

structured in the future. Rates of soil respiration in particular varied in the timings of 

peak fluxes between crops on adjacent fields. If flux estimates are to be based on 

single daily measurements then the timing of these is crucial, since by measuring in 

the early morning the discrepancies between crops might be entirely different or non-

existent in the afternoon. The total opposite behaviour of N2O fluxes in Miscanthus 

and OSR demonstrated the importance of taking measurements throughout a 24 hour 

cycle. In Miscanthus uptake during the day was replaced by emission at night, and 

so raises the very real possibility that measuring at the ‘wrong’ time of day might lead 

a researcher to draw wholly inaccurate conclusions as to whether a system is a net 

source or sink. Equally, due to the depression of N2O emissions in the OSR during 

the night, a cumulative flux based entirely upon day time measurements will 

overestimate the magnitude of the crop as a source.  

The use of clear, automated chamber systems for the measurement of trace gas 

fluxes has enabled the quantification of a full GHG balance for two crops. Both 

SkyLine and SkyBeam provided a flexible measurement platform with which 

manipulative experiments were performed. This is due to the spatial resolution of the 

chamber, which is not achievable with EC systems. The potential to use such 

systems, in conjunction with micrometeorological techniques to gain a more thorough 

understanding of trace gas fluxes is large, and it will also be possible to gain important 

insight into the challenges of scaling up from small footprints to larger scales.  
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Appendix A 

Testing of the SkyBeam system at the University of York. 

Fluxes of CO2 were measured from grass sward plots under a prototype of SkyBeam, 

using the SkyBeam chamber and clear Licor Li-8100 103 chambers and an IRGA. 

Chambers of each type were paired within each plot and the order in which they were 

used (SkyBeam (gantry), Licor) was randomised. The null hypothesis that there would 

be no significant difference between the CO2 flux measurements made using 

SkyBeam and Licor chambers was tested, using Wilcoxon signed rank test which 

showed there was no significant difference between the methods (S= -9, n=6, p> 

0.05). 
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Appendix B 

 

Schematic of the analyser set up. Headspace gas travelled from the chamber and to 

the IRGA and back in a loop, with the exhaust from the IRGA being subsampled by 

the CH4 LGR analyser. In turn the exhaust from the CH4 analyser was subsampled 

by the N2O analyser. Arrows denote the direction of flow.  
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Appendix C 

NEE fluxes were adjusted, after Heinemeyer et al. (2013), according to the light 

response curve of NEE and the attenuation of light by the chamber. 

The light attenuation by the Skybeam chamber demonstrated by the results of linear 

regression of internal and external PAR 

Internal PAR= 0.60 * External PAR +0.04    R2= 0.85, p< 

0.0001 

 

Light response curve: 

NEE= 11.8 * Solar radiation – 0.02 * solar radiation2    R2= 0.54, p< 

0.0001  
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The light attenuation by the SkyLine chamber demonstrated by the results of linear 

regression of internal and external PAR: 

Internal PAR= 0.71 * External PAR -0.02    R2= 0.88, p< 

0.0001 

 

Light response curve of NEE inside the SkyLine chamber 

NEE= 685 * Log10 (Internal PAR) + 2460     R2= 0.55, p< 

0.0001 

  



251 
 
 

List of references 

Abdalla M, Jones M, Ambus P, Williams M (2010) Emissions of nitrous oxide from 
Irish arable soils: effects of tillage and reduced N input. Nutrient Cycling in 
Agroecosystems, 86, 53-65. 

Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net 
greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17, 
675-691. 

Agency E (2015) The nitrate pollution prevention regulations 2015.  pp Page, 
Controller of Her Majesty's Stationery Office. 

Albanito F, Saunders M, Jones MB (2009) Automated diffusion chambers to monitor 
diurnal and seasonal dynamics of the soil CO2 concentration profile. European 
Journal of Soil Science, 60, 507-514. 

Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation 
of polyethylene. Polymer Degradation and Stability, 18, 73-87. 

Alvaro-Fuentes J, Cantero-Martinez C, Lopez MV, Arrue JL (2007) Soil carbon 
dioxide fluxes following tillage in semiarid Mediterranean agroecosystems. Soil & 
Tillage Research, 96, 331-341. 

Alves BJR, Smith KA, Flores RA et al. (2012) Selection of the most suitable sampling 
time for static chambers for the estimation of daily mean N2O flux from soils. Soil 
Biology & Biochemistry, 46, 129-135. 

Ambus P, Christensen S (1993) Denitrification variability and control in a riparian fen 
irrigated with agricultural drainage water. Soil Biology & Biochemistry, 25, 915-923. 

Ambus P, Christensen S (1994) Measurement of N2O emission from a fertilsed 
grassland- an analysis of spatial variability. Journal of Geophysical Research-
Atmospheres, 99, 16549-16555. 

Ambus P, Robertson GP (1998) Automated near-continuous measurement of carbon 
dioxide and nitrous oxide fluxes from soil. Soil Science Society of America Journal, 
62, 394-400. 

Ambus P, Skiba U, Drewer J, Jones SK, Carter MS, Albert KR, Sutton MA (2010) 
Development of an accumulation-based system for cost-effective chamber 
measurements of inert trace gas fluxes. European Journal of Soil Science, 61, 785-
792. 

Arif MAS, Houwen F, Verstraete W (1996) Agricultural factors affecting methane 
oxidation in arable soil. Biology and Fertility of Soils, 21, 95-102. 



252 
 
 

Arundale RA, Dohleman FG, Heaton EA, McGrath JM, Voigt TB, Long SP (2014) 
Yields of Miscanthus x giganteus and Panicum virgatum decline with stand age in the 
Midwestern USA. Global Change Biology Bioenergy, 6, 1-13. 

Asgedom H, Tenuta M, Flaten DN, Gao XP, Kebreab E (2014) Nitrous oxide 
emissions from a clay soil receiving granular urea formulations and dairy manure. 
Agronomy Journal, 106, 732-744. 

Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: 
An analysis of the problem. Ecological Applications, 18, 1368-1378. 

Bahn M, Schmitt M, Siegwolf R, Richter A, Bruggemann N (2009) Does 
photosynthesis affect grassland soil-respired CO2  and its carbon isotope composition 
on a diurnal timescale? New Phytologist, 182, 451-460. 

Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon 
dioxide exchange rates of ecosystems: past, present and future. Global Change 
Biology, 9, 479-492. 

Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapour exchange of a 
temperate broadleaved forest across hourly to decadal time scales. Ecological 
Modelling, 142, 155-184. 

Barrena I, Menendez S, Dunabeitia M et al. (2013) Greenhouse gas fluxes (CO2, N2O  
and CH4) from forest soils in the Basque Country: Comparison of different tree 
species and growth stages. Forest Ecology and Management, 310, 600-611. 

Barton L, Kiese R, Gatter D, Butterbach-Bahl K, Buck R, Hinz C, Murphy DV (2008) 
Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change 
Biology, 14, 177-192. 

Barton L, Murphy DV, Kiese R, Butterbach-Bahl K (2010) Soil nitrous oxide and 
methane fluxes are low from a bioenergy crop (canola) grown in a semi-arid climate. 
Global Change Biology Bioenergy, 2, 1-15. 

Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O 
emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 
41, 379-388. 

Beare MH, Gregorich EG, St-Georges P (2009) Compaction effects on CO2 and N2O 
production during drying and rewetting of soil. Soil Biology & Biochemistry, 41, 611-
621. 

Beaudette C, Bradley RL, Whalen JK, McVetty PBE, Vessey K, Smith DL (2010) 
Tree-based intercropping does not compromise canola (Brassica napus L.) seed oil 
yield and reduces soil nitrous oxide emissions. Agriculture Ecosystems & 
Environment, 139, 33-39. 



253 
 
 

Beesley L (2014) Respiration (CO2 flux) from urban and pen-urban soils amended 
with green waste compost. Geoderma, 223, 68-72. 

Behnke GD, David MB, Voigt TB (2012) Greenhouse Gas Emissions, Nitrate 
Leaching, and Biomass Yields from Production of Miscanthus x giganteus in Illinois, 
USA. Bioenergy Research, 5, 801-813. 

Bell MJ, Rees RM, Cloy JM, Topp CFE, Bagnall A, Chadwick DR (2015) Nitrous oxide 
emissions from cattle excreta applied to a Scottish grassland: Effects of soil and 
climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 
343-353. 

Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the 
induction of CH4 oxidation activity. Soil Biology & Biochemistry, 27, 1517-1527. 

Bertholdsson NO, Brantestam AK (2009) A century of Nordic barley breeding-Effects 
on early vigour root and shoot growth, straw length, harvest index and grain weight. 
European Journal of Agronomy, 30, 266-274. 

Bhattacharyya P, Neogi S, Roy KS, Rao KS (2013) Gross primary production, 
ecosystem respiration and net ecosystem exchange in Asian rice paddy: an eddy 
covariance-based approach. Current Science, 104, 67-75. 

Biraud S, Ciais P, Ramonet M et al. (2002) Quantification of carbon dioxide, methane, 
nitrous oxide and chloroform emissions over Ireland from atmospheric observations 
at Mace Head. Tellus Series B-Chemical and Physical Meteorology, 54, 41-60. 

Blackmer AM, Robbins SG, Bremner JM (1982) Diurnal variability in rate of emission 
of nitrous oxide from soils. Soil Science Society of America Journal, 46, 937-942. 

Bond-Lamberty B, Wang CK, Gower ST (2004) A global relationship between the 
heterotrophic and autotrophic components of soil respiration? Global Change 
Biology, 10, 1756-1766. 

Boon A, Robinson JS, Chadwick DR, Cardenas LM (2014) Effect of cattle urine 
addition on the surface emissions and subsurface concentrations of greenhouse 
gases in a UK peat grassland. Agriculture Ecosystems & Environment, 186, 23-32. 

Boot-Handford ME, Abanades JC, Anthony EJ et al. (2014) Carbon capture and 
storage update. Energy & Environmental Science, 7, 130-189. 

Bouma TJ, Nielsen KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of 
roots in soil: Interactions with soil CO2, soil temperature and soil water content. Plant 
and Soil, 195, 221-232. 

Bradford MA, Ineson P, Wookey PA, Lappin-Scott HM (2001) Role of CH4 oxidation, 
production and transport in forest soil CH4 flux. Soil Biology & Biochemistry, 33, 1625-
1631. 



254 
 
 

Bradford MA, Strickland MS, DeVore JL, Maerz JC (2012) Root carbon flow from an 
invasive plant to belowground foodwebs. Plant and Soil, 359, 233-244. 

Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils 
of Australia. Journal of Geophysical Research-Atmospheres, 105, 26353-26367. 

Brumme R, Beese F (1992) Effects of liming and nitrogen fertilisation on emissions 
of CO2 and N2O from a temperate forest. Journal of Geophysical Research-
Atmospheres, 97, 12851-12858. 

Brumme R, Borken W, Finke S (1999) Hierarchical control on nitrous oxide emission 
in forest ecosystems. Global Biogeochemical Cycles, 13, 1137-1148. 

Brummell ME, Siciliano SD (2011) Measurement of carbon dioxide, methane, nitrous 
oxide and water potential in soil ecosystems. Methods in Enzymology, Vol 46: 
Research on Nitrification and Related Processes, Pt B, 496, 115-137. 

Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea 
abies stands. Soil Biology & Biochemistry, 32, 1625-1635. 

Burrows EH, Bubier JL, Mosedale A, Cobb GW, Crill PM (2005) Net ecosystem 
exchange of carbon dioxide in a temperate poor fen: a comparison of automated and 
manual chamber techniques. Biogeochemistry, 76, 21-45. 

Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. Journal 
of Atmospheric and Oceanic Technology, 7, 349-352. 

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S 
(2013) Nitrous oxide emissions from soils: how well do we understand the processes 
and their controls? Philosophical transactions of the Royal Society of London. Series 
B, Biological sciences, 368, 20130122. 

Butterbach-Bahl K, Kiese R, Liu CY (2011) Measurements of biosphere-atmosphere 
exchange of CH4 in terrestrial ecosystems. In: Methods in Enzymology: Methods in 
Methane Metabolism, Vol 495, Pt B. (eds Rosenzweig AC, Ragsdale SW) pp Page. 
San Diego, Elsevier Academic Press Inc. 

Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange 
between the atmosphere and untreated and limed soil of a N-saturated spruce and 
beech forest ecosystem in Germany. Plant and Soil, 240, 77-90. 

ButterbachBahl K, Papen H, Rennenberg H (1997) Impact of gas transport through 
rice cultivars on methane emission from rice paddy fields. Plant Cell and Environment, 
20, 1175-1183. 

Cadoux S, Ferchaud F, Demay C et al. (2014) Implications of productivity and nutrient 
requirements on greenhouse gas balance of annual and perennial bioenergy crops. 
Global Change Biology Bioenergy, 6, 425-438. 



255 
 
 

Case SDC, McNamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition 
on N2O and CO2 emissions from a sandy loam soil - The role of soil aeration. Soil 
Biology & Biochemistry, 51, 125-134. 

Case SDC, McNamara NP, Reay DS, Whitaker J (2014) Can biochar reduce soil 
greenhouse gas emissions from a Miscanthus bioenergy crop? Global Change 
Biology Bioenergy, 6, 76-89. 

Castaldi S (2000) Responses of nitrous oxide, dinitrogen and carbon dioxide 
production and oxygen consumption to temperature in forest and agricultural light-
textured soils determined by model experiment. Biology and Fertility of Soils, 32, 67-
72. 

Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evloving stable 
boundary layer. Journal of the Atmospheric Sciences, 36, 1041-1052. 

Chadwick DR, Cardenas L, Misselbrook TH et al. (2014) Optimizing chamber 
methods for measuring nitrous oxide emissions from plot-based agricultural 
experiments. European Journal of Soil Science, 65, 295-307. 

Chadwick DR, Pain BF, Brookman SKE (2000) Nitrous oxide and methane emissions 
following application of animal manures to grassland. Journal of Environmental 
Quality, 29, 277-287. 

Chandra RP, Arantes V, Saddler J (2015) Steam pretreatment of agricultural residues 
facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. 
Bioresource Technology, 185, 302-307. 

Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M (2007) Soils, a sink for 
N2O? A review. Global Change Biology, 13, 1-17. 

Chatskikh D, Olesen JE (2007) Soil tillage enhanced CO2 and N2O emissions from 
loamy sand soil under spring barley. Soil & Tillage Research, 97, 5-18. 

Chatskikh D, Olesen JE, Hansen EM, Elsgaard L, Petersen BM (2008) Effects of 
reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops 
in Denmark. Agriculture Ecosystems & Environment, 128, 117-126. 

Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S 
(2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: 
Key issues, ranges and recommendations. Resources Conservation and Recycling, 
53, 434-447. 

Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertiliser 
producction and use to improve nutrient efficiency amd minimise environmental 
impacts. In: Advances in Agronomy, Vol 102. (ed Sparks DL). San Diego, Elsevier 
Academic Press Inc. 



256 
 
 

Chirinda N, Olesen JE, Porter JR, Schjonning P (2010) Soil properties, crop 
production and greenhouse gas emissions from organic and inorganic fertilizer-based 
arable cropping systems. Agriculture Ecosystems & Environment, 139, 584-594. 

Christensen S (1983) Nitrous oxide emission from a soil under permanent grass- 
seasonal and diurnal fluctuationss as influenced by manuring and fertilisation. Soil 
Biology & Biochemistry, 15, 531-536. 

Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of 
Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial 
Crops and Products, 28, 320-327. 

Christiansen JR, Korhonen JFJ, Juszczak R, Giebels M, Pihlatie M (2011) Assessing 
the effects of chamber placement, manual sampling and headspace mixing on CH4 
fluxes in a laboratory experiment. Plant and Soil, 343, 171-185. 

Ciais P, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, 
J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. 
Thornton, (2013) Carbon and Other Biogeochemical Cycles. In: Climate Change 
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA. 

Ciais P, Wattenbach M, Vuichard N et al. (2010) The European carbon balance. Part 
2: croplands. Global Change Biology, 16, 1409-1428. 

Clapp LW, Semmens MJ, Novak PJ, Hozalski RM (2004) Model for in situ 
perchloroethene dechlorination via membrane-delivered hydrogen. Journal of 
Environmental Engineering-Asce, 130, 1367-1381. 

Clayton H, Arah JRM, Smith KA (1994) Measurement of nitrous oxide emissions from 
fertilised grassland using closed chambers. Journal of Geophysical Research-
Atmospheres, 99, 16599-16607. 

Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, 
Miscanthus. Global Change Biology, 13, 2296-2307. 

Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for 
energy in Europe and its potential contribution to decreasing fossil fuel carbon 
emissions. Global Change Biology, 10, 509-518. 

Clough TJ, Jarvis SC, Dixon ER, Stevens RJ, Laughlin RJ, Hatch DJ (1999) Carbon 
induced subsoil denitrification of 15N-labelled nitrate in 1 m deep soil columns. Soil 
Biology & Biochemistry, 31, 31-41. 

Conen F, Neftel A (2007) Do increasingly depleted delta N-15 values of atmospheric 
N2O indicate a decline in soil N2O reduction? Biogeochemistry, 82, 321-326. 



257 
 
 

Conen F, Smith KA (1998) A re-examination of closed flux chamber methods for the 
measurement of trace gas emissions from soils to the atmosphere. European Journal 
of Soil Science, 49, 701-707. 

Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, 
CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60, 609-. 

Conrad R (2009) The global methane cycle: recent advances in understanding the 
microbial processes involved. Environmental Microbiology Reports, 1, 285-292. 

Cosentino SL, Patane C, Sanzone E, Copani V, Foti S (2007) Effects of soil water 
content and nitrogen supply on the productivity of Miscanthus x giganteus in a 
Mediterranean environment. Industrial Crops and Products, 25, 75-88. 

Cowan NJ, Famulari D, Levy PE, Anderson M, Reay DS, Skiba UM (2014) 
Investigating uptake of N2O in agricultural soils using a high-precision dynamic 
chamber method. Atmospheric Measurement Techniques, 7, 4455-4462. 

Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel 
production negates global warming reduction by replacing fossil fuels. Atmospheric 
Chemistry and Physics, 8, 389-395. 

Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass 
productivity of Miscanthus x giganteus as affected by plant density and N-fertilization 
in central Greece. Biomass & Bioenergy, 31, 145-152. 

Das BT, Hamonts K, Moltchanova E, Clough TJ, Condron LM, Wakelin SA, 
O'Callaghan M (2012) Influence of photosynthetically active radiation on diurnal N2O 
emissions under ruminant urine patches. New Zealand Journal of Agricultural 
Research, 55, 319-331. 

Davidson EA, Galloway JN, Millar N, Leach AM (2014) N-related greenhouse gases 
in North America: innovations for a sustainable future. Current Opinion in 
Environmental Sustainability, 9-10, 1-8. 

Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a 
conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 50, 667-
680. 

Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garciamendez G, Maass 
JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry 
tropical forest. Ecology, 74, 130-139. 

Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and 
biases in chamber-based measurements of soil respiration. Agricultural and Forest 
Meteorology, 113, 21-37. 



258 
 
 

Davis MP, David MB, Mitchell CA (2013) Nitrogen Mineralization in Soils Used for 
Biofuel Crops. Communications in Soil Science and Plant Analysis, 44, 987-995. 

Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH 
(2010) Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-
Fixation and Low Greenhouse Gas Emissions in a Miscanthus x giganteus Agro-
Ecosystem. Ecosystems, 13, 144-156. 

De Klein C, Novoa RS, Ogle S et al. (2006) N2O emissions from managed soils, and 
CO2 emissions from lime and urea application. IPCC Guidelines for National 
Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories 
Programme, 4. 

De Klein C, Harvey M (2012) Nitrous Oxide Chamber Methodology Guidelines. 

de Vries SC, van de Ven GWJ, van Ittersum MK (2014) First or second generation 
biofuel crops in Brandenburg, Germany? A model-based comparison of their 
production-ecological sustainability. European Journal of Agronomy, 52, 166-179. 

DECC (2011) UK Renewable Energy Roadmap. Department of Energy & Climate 
Change 3 Whitehall Place London SW1A 2AW. 

DECC (2015) Annual statement of emissions for 2013. Controller of Her Majesty's 
Stationery Office. 

DEFRA (2014a) Agricultural emissions reporting. 

DEFRA (2014b) Farming statistics, final crop areas, yields, livestock populations and 
agricultural workforce at June 2014.  pp Page, Office for National Statistics. 

Denmead OT (1995) Novel meteorological methods for measuring trace gas fluxes. 
Philosophical Transactions of the Royal Society of London Series a-Mathematical 
Physical and Engineering Sciences, 351, 383-396. 

Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide 
between landscapes and the atmosphere. Plant and Soil, 309, 5-24. 

Denmead OT, Harper LA, Freney JR, Griffith DWT, Leuning R, Sharpe RR (1998) A 
mass balance method for non-intrusive measurements of surface-air trace gas 
exchange. Atmospheric Environment, 32, 3679-3688. 

Desjardins RL, Brach EJ, Alvo P, Schuepp PH (1982) Aircraft monitoring of surface 
carbon dioxide exchange. Science, 216, 733-735. 

Ding WX, Cai ZC, Tsuruta H (2005) Plant species effects on methane emissions from 
freshwater marshes. Atmospheric Environment, 39, 3199-3207. 



259 
 
 

Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009) Effect of water table on 
greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318, 229-242. 

Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive 
agricultural systems: Variations between crops and seasons, key driving variables, 
and mean emission factors. Journal of Geophysical Research-Atmospheres, 104, 
26891-26899. 

Dobbie KE, Smith KA (2003a) Impact of different forms of N fertiliser on N2O 
emissions from intensive grassland. Nutrient Cycling in Agroecosystems, 67, 37-46. 

Dobbie KE, Smith KA (2003b) Nitrous oxide emission factors for agricultural soils in 
Great Britain: the impact of soil water-filled pore space and other controlling variables. 
Global Change Biology, 9, 204-218. 

Don A, Osborne B, Hastings A et al. (2012) Land-use change to bioenergy production 
in Europe: implications for the greenhouse gas balance and soil carbon. Global 
Change Biology Bioenergy, 4, 372-391. 

Dowdell RJ, Smith KA, Crees R, Restall SWF (1972) Field studies of ethylene in the 
soil atmosphere: equipment and preliminary results. Soil Biology and Biochemistry, 
4, 325-331. 

Drewer J, Finch JW, Lloyd CR, Baggs EM, Skiba U (2012) How do soil emissions of 
N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? 
Global Change Biology Bioenergy, 4, 408-419. 

Dunfield P, Knowles R (1995) Kinetics of methane oxidation by nitrate, nitrite and 
ammonium in a humisol. Applied and Environmental Microbiology, 61, 3129-3135. 

Dupin HJ, McCarty PL (1999) Mesoscale and microscale observations of biological 
growth in a silicon pore imaging element. Environmental Science & Technology, 33, 
1230-1236. 

Duyzer JH, Verhagen HLM, Weststrate JH, Bosveld FC (1992) Measurement of the 
dry deposition flux of NH3 on to coniferous forest. Environmental Pollution, 75, 3-13. 

Eckardt FE (1968) Techniques de mesure de la photosynthèse sur le terrain basées 
sur l’emploi d’enceintées climatisées. In: Fonctionnement des écosystèmes terrestres 
au niveau de la production primaire. (ed Eckardt FE). Vaillant-Carmanne, S.A. 
(Belgium), UNESCO. 

Ekblad A, Hogberg P (2001) Natural abundance of C-13 in CO2 respired from forest 
soils reveals speed of link between tree photosynthesis and root respiration. 
Oecologia, 127, 305-308. 

Elsgaard L, Gorres CM, Hoffmann CC, Blicher-Mathiesen G, Schelde K, Petersen SO 
(2012) Net ecosystem exchange of CO2 and carbon balance for eight temperate 



260 
 
 

organic soils under agricultural management. Agriculture Ecosystems & Environment, 
162, 52-67. 

Ercoli L, Mariotti M, Masoni A, Bonari E (1999) Effect of irrigation and nitrogen 
fertilisation on biomass yield and efficiency of energy use in crop production of 
Miscanthus. Field Crops Research, 63, 3-11. 

Fang C, Moncrieff JB (1998) Simple and fast technique to measure CO2 profiles in 
soil. Soil Biology & Biochemistry, 30, 2107-2112. 

Farquharson R, Baldock J (2008) Concepts in modelling N2O emissions from land 
use. Plant and Soil, 309, 147-167. 

Fest BJ, Livesley SJ, Drosler M, van Gorsel E, Arndt SK (2009) Soil-atmosphere 
greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in 
south-eastern Australia. Agricultural and Forest Meteorology, 149, 393-406. 

Fiedler SR, Buczko U, Jurasinski G, Glatzel S (2015) Soil respiration after tillage 
under different fertiliser treatments - implications for modelling and balancing. Soil & 
Tillage Research, 150, 30-42. 

Fierer N, Chadwick OA, Trumbore SE (2005) Production of CO2 in soil profiles of a 
California annual grassland. Ecosystems, 8, 412-429. 

Finocchiaro R, Tangen B, Gleason R (2014) Greenhouse gas fluxes of grazed and 
hayed wetland catchments in the US Prairie Pothole Ecoregion. Wetlands Ecology 
and Management, 22, 305-324. 

Firestone MK, Davidson EA (1989) Microbial basis of NO and N2O production in soil. 
In: Exchange of trace gases between terrestrial ecosystems and the atmosphere (eds 
EO Andreae and DS Schimel) pp 7-21. John Wiley & Sons.  

Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999) 
Root production and turnover in an upland grassland subjected to artificial soil 
warming respond to radiation flux and nutrients, not temperature. Oecologia, 120, 
575-581. 

Flechard CR, Neftel A, Jocher M, Ammann C, Fuhrer J (2005) Bi-directional 
soil/atmosphere N2O exchange over two mown grassland systems with contrasting 
management practices. Global Change Biology, 11, 2114-2127. 

Flessa H, Wild U, Klemisch M, Pfadenhauer J (1998) Nitrous oxide and methane 
fluxes from organic soils under agriculture. European Journal of Soil Science, 49, 
327-335. 

Forster P, Ramaswamy V, Artaxo P et al. (2007) Changes in atmospheric constituents 
and in radiative forcing. Chapter 2. In: Climate Change 2007. The Physical Science 
Basis. 



261 
 
 

Fowler D, Hargreaves KJ, Macdonald JA, Gardiner B (1995) Methane and CO2 
exchange over peatland and the effects of afforestation. Forestry, 68, 327-334. 

Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing 
methane emissions from global space-borne observations. Science, 308, 1010-1014. 

Fraser WT, Blei E, Fry SC, Newman MF, Reay DS, Smith KA, McLeod AR (2015) 
Emission of methane, carbon monoxide, carbon dioxide and short-chain 
hydrocarbons from vegetation foliage under ultraviolet irradiation. Plant Cell and 
Environment, 38, 980-989. 

Gauci V, Gowing DJG, Hornibrook ERC, Davis JM, Dise NB (2010) Woody stem 
methane emission in mature wetland alder trees. Atmospheric Environment, 44, 
2157-2160. 

Gauder M, Butterbach-Bahl K, Graeff-Honninger S, Claupein W, Wiegel R (2012) 
Soil-derived trace gas fluxes from different energy crops - results from a field 
experiment in Southwest Germany. Global Change Biology Bioenergy, 4, 289-301. 

Godfray HCJ, Beddington JR, Crute IR et al. (2010) Food Security: The Challenge of 
Feeding 9 Billion People. Science, 327, 812-818. 

Goodroad LL, Keeney DR (1985) Site of nitrous oxide production in field soils. Biology 
and Fertility of Soils, 1, 3-7. 

Gopalakrishnan G, Negri MC, Snyder SW (2011) A Novel Framework to Classify 
Marginal Land for Sustainable Biomass Feedstock Production. Journal of 
Environmental Quality, 40, 1593-1600. 

Grabmer W, Graus M, Lindinger C, Wisthaler A, Rappengluck B, Steinbrecher R, 
Hansel A (2004) Disjunct eddy covariance measurements of monoterpene fluxes 
from a Norway spruce forest using PTR-MS. International Journal of Mass 
Spectrometry, 239, 111-115. 

Grace J, Lloyd J, McIntyre J et al. (1995) Fluxes of carbon dioxide and water vapour 
over an undisturbed tropical forest in south west Amazonia. Global Change Biology, 
1, 1-12. 

Grace P, Van Der Weerden TJ, Kelly K, Rees RM, Skiba UM (2012) Automated 
greenhouse gas measurements in the field. In: Nitrous oxide chamber methodology 
guidelines. (eds De Klein CAM, Harvey MJ) pp Page. Wellington, New Zealand, 
Ministry for Primary Industries. 

Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA (2005) Greenhouse gas 
contributions of agricultural soils and potential mitigation practices in Eastern Canada. 
Soil & Tillage Research, 83, 53-72. 



262 
 
 

Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse-labelled crops of barley and 
wheat. Plant and Soil, 136, 205-213. 

Grondahl L, Friborg T, Christensen TR et al. (2008) Spatial and inter-annual variability 
of trace gas fluxes in a heterogeneous high-arctic landscape. Advances in Ecological 
Research, Vol 40, 40, 473-498. 

Grundmann GL, Lensi R, Chalamet A (1993) Delayed NH3 and N2O uptake by maize 
leaves. New Phytologist, 124, 259-263. 

Guckland A, Corre MD, Flessa H (2010) Variability of soil N cycling and N2O emission 
in a mixed deciduous forest with different abundance of beech. Plant and Soil, 336, 
25-38. 

Haines SA, Gehl RJ, Havlin JL, Ranney TG (2015) Nitrogen and Phosphorus 
Fertilizer Effects on Establishment of Giant Miscanthus. Bioenergy Research, 8, 17-
27. 

Han G-x, Zhou G-s, Xu Z-z (2008) Temporal variation of soil respiration and its 
affecting factors in a maize field during maize growth season. Shengtaixue Zazhi, 27, 
1698-1705. 

Hargreaves KJ, Skiba U, Fowler D, Arah J, Wienhold FG, Klemedtsson L, Galle B 
(1994) Measurement of nitrous oxide emission from fertilised grassland using 
micrometeorological techniques. Journal of Geophysical Research-Atmospheres, 99, 
16569-16574. 

Harris Z, Spake R, Taylor G (2015) Land use change to bioenergy: A meta-analysis 
of soil carbon and GHG emissions. Biomass and Bioenergy in press. 

Harrison J, Matson P (2003) Patterns and controls of nitrous oxide emissions from 
waters draining a subtropical agricultural valley. Global Biogeochemical Cycles, 17, 
13. 

Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D 
(2005) Laboratory study of the effects of two nitrification inhibitors on greenhouse gas 
emissions from a slurry-treated arable soil: impact of diurnal temperature cycle. 
Biology and Fertility of Soils, 41, 225-232. 

Healy RW, Striegl RG, Russell TF, Hutchinson GL, Livingston GP (1996) Numerical 
evaluation of static-chamber measurements of soil-atmosphere gas exchange: 
Identification of physical processes. Soil Science Society of America Journal, 60, 740-
747. 

Heath J, Ayres E, Possell M et al. (2005) Rising atmospheric CO2 reduces 
sequestration of root-derived soil carbon. Science, 309, 1711-1713. 



263 
 
 

Heinemeyer A, Di Bene C, Lloyd AR et al. (2011) Soil respiration: implications of the 
plant-soil continuum and respiration chamber collar-insertion depth on measurement 
and modelling of soil CO2 efflux rates in three ecosystems. European Journal of Soil 
Science, 62, 82-94. 

Heinemeyer A, Gornall J, Baxter R, Huntley B, Ineson P (2013) Evaluating the carbon 
balance estimate from an automated ground-level flux chamber system in artificial 
grass mesocosms. Ecology and Evolution, 3, 4998-5010. 

Heinemeyer A, McNamara NP (2011) Comparing the closed static versus the closed 
dynamic chamber flux methodology: Implications for soil respiration studies. Plant 
and Soil, 346, 145-151. 

Hellebrand HJ, Kern J, Scholz V (2003) Long-term studies on greenhouse gas fluxes 
during cultivation of energy crops on sandy soils. Atmospheric Environment, 37, 
1635-1644. 

Hodgson EM, Fahmi R, Yates N et al. (2010) Miscanthus as a feedstock for fast-
pyrolysis: Does agronomic treatment affect quality? Bioresource Technology, 101, 
6185-6191. 

Hogberg P, Nordgren A, Agren GI (2002) Carbon allocation between tree root growth 
and root respiration in boreal pine forest. Oecologia, 132, 579-581. 

Hogberg P, Nordgren A, Buchmann N et al. (2001) Large-scale forest girdling shows 
that current photosynthesis drives soil respiration. Nature, 411, 789-792. 

Hong E, Kim D, Kim J et al. (2015) Optimization of alkaline pretreatment on corn 
stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella 
pneumoniae AJ4. Biomass & Bioenergy, 77, 177-185. 

Hortnagl L, Wohlfahrt G (2014) Methane and nitrous oxide exchange over a managed 
hay meadow. Biogeosciences, 11, 7219-7236. 

Hu Z-h, Zhou Y-p, Cut H-l, Chen S-t, Xiao Q-T, Liu Y (2013) Effects of Diurnal 
Warming on Soil N2O Emission in Soybean Field. Huanjing Kexue, 34, 2961-2967. 

Hutsch BW (2001) Methane oxidation in non-flooded soils as affected by crop 
production - invited paper. European Journal of Agronomy, 14, 237-260. 

Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H (1996) Quantification of soil 
carbon inputs under elevated CO2:C-3 plants in a C-4 soil. Plant and Soil, 187, 345-
350. 

IPCC (2011) Summary for policy makers. In: IPCC Special Report on Renewable 
Energy Sources and Climate Change Mitigation. (eds O. Edenhofer RPM, Y. Sokona, 
K. Seyboth, P. Matschoss, S. Kadner, T., Zwickel PE, G. Hansen, S. Schlömer, C. 



264 
 
 

von Stechow) pp Page. Cambridge, United Kingdom and New York, NY, USA., 
Cambridge University Press. 

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working 
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, 
Geneva, Switzerland. 

Jacobs A, Rauber R, Ludwig B (2009) Impact of reduced tillage on carbon and 
nitrogen storage of two Haplic Luvisols after 40 years. Soil & Tillage Research, 102, 
158-164. 

Jahangir MMR, Khalil MI, Johnston P et al. (2012) Denitrification potential in subsoils: 
A mechanism to reduce nitrate leaching to groundwater. Agriculture Ecosystems & 
Environment, 147, 13-23. 

Jeuffroy MH, Baranger E, Carrouee B et al. (2013) Nitrous oxide emissions from crop 
rotations including wheat, oilseed rape and dry peas. Biogeosciences, 10, 1787-1797. 

Jiang JY, Hu ZH, Sun WJ, Huang Y (2010) Nitrous oxide emissions from Chinese 
cropland fertilized with a range of slow-release nitrogen compounds. Agriculture 
Ecosystems & Environment, 135, 216-225. 

Johnson JMF, Archer D, Barbour N (2010) Greenhouse Gas Emission from 
Contrasting Management Scenarios in the Northern Corn Belt. Soil Science Society 
of America Journal, 74, 396-406. 

Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of three 
differently charged amino acids in soil and their effects on plant organic nitrogen 
availability. Soil Biology & Biochemistry, 31, 1331-1342. 

Jones SK, Rees RM, Skiba UM, Ball BC (2007) Influence of organic and mineral N 
fertiliser on N2O fluxes from a temperate grassland. Agriculture Ecosystems & 
Environment, 121, 74-83. 

Jorgensen CJ, Struwe S, Elberling B (2012) Temporal trends in N2O flux dynamics in 
a Danish wetland - effects of plant-mediated gas transport of N2O and O2 following 
changes in water level and soil mineral-N availability. Global Change Biology, 18, 
210-222. 

Jørgensen SV, Cherubini F, Michelsen O (2014) Biogenic CO2 fluxes, changes in 
surface albedo and biodiversity impacts from establishment of a Miscanthus 
plantation. Journal of Environmental Management, 146, 346-354. 

Jørgensen RN, Jørgensen BJ, Nielsen NE, Maag M, Lind AM (1997) N2O emission 
from energy crop fields of Miscanthus ''Giganteus'' and winter rye. Atmospheric 
Environment, 31, 2899-2904. 



265 
 
 

Juszczak R, Augustin J (2013) Exchange of the Greenhouse Gases Methane and 
Nitrous Oxide Between the Atmosphere and a Temperate Peatland in Central Europe. 
Wetlands, 33, 895-907. 

Kaiser EA, Eiland F, Germon JC et al. (1996) What predicts nitrous oxide emissions 
and denitrification N-loss from European soils? Zeitschrift Fur Pflanzenernahrung 
Und Bodenkunde, 159, 541-547. 

Kaiser EA, Kohrs K, Kucke M, Schnug E, Heinemeyer O, Munch JC (1998) Nitrous 
oxide release from arable soil: Importance of N-fertilization, crops and temporal 
variation. Soil Biology & Biochemistry, 30, 1553-1563. 

Kaiser EA, Ruser R (2000) Nitrous oxide emissions from arable soils in Germany - 
An evaluation of six long-term field experiments. Journal of Plant Nutrition and Soil 
Science, 163, 249-259. 

Kaltschmitt M, Reinhardt GA, Stelzer T (1997) Life cycle analysis of biofuels under 
different environmental aspects. Biomass & Bioenergy, 12, 121-134. 

Kammann C, Grunhage L, Jager HJ (2001a) A new sampling technique to monitor 
concentrations of CH4, N2O and CO2 in air at well-defined depths in soils with varied 
water potential. European Journal of Soil Science, 52, 297-303. 

Kammann C, Grunhage L, Jager HJ, Wachinger G (2001b) Methane fluxes from 
differentially managed grassland study plots: the important role of CH4 oxidation in 
grassland with a high potential for CH4 production. Environmental Pollution, 115, 261-
273. 

Kane ES, Pregitzer KS, Burton AJ (2003) Soil respiration along environmental 
gradients in Olympic National Park. Ecosystems, 6, 326-335. 

Karl T, Apel E, Hodzic A, Riemer DD, Blake DR, Wiedinmyer C (2009) Emissions of 
volatile organic compounds inferred from airborne flux measurements over a 
megacity. Atmospheric Chemistry and Physics, 9, 271-285. 

Kavdir Y, Hellebrand HJ, Kern J (2008) Seasonal variations of nitrous oxide emission 
in relation to nitrogen fertilization and energy crop types in sandy soil. Soil & Tillage 
Research, 98, 175-186. 

Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from 
terrestrial plants under aerobic conditions. Nature, 439, 187-191. 

Kessavalou A, Mosier AR, Doran JW, Drijber RA, Lyon DJ, Heinemeyer O (1998) 
Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-
fallow tillage management. Journal of Environmental Quality, 27, 1094-1104. 

Keymer DP, Kent AD (2014) Contribution of nitrogen fixation to first year Miscanthus 
x giganteus. Global Change Biology Bioenergy, 6, 577-586. 



266 
 
 

Kim DG, Mishurov M, Kiely G (2010) Effect of increased N use and dry periods on 
N2O emission from a fertilized grassland. Nutrient Cycling in Agroecosystems, 88, 
397-410. 

King JC, Lachlan-Cope TA, Ladkin RS, Weiss A (2008) Airborne measurements in 
the stable boundary layer over the Larsen Ice Shelf, Antarctica. Boundary-Layer 
Meteorology, 127, 413-428. 

Kludze HK, Delaune RD, Patrick WH (1993) Aerenchyma formation and methane and 
oxygen exchange in rice. Soil Science Society of America Journal, 57, 386-391. 

Knittel K, Boetius A (2009) Anaerobic Oxidation of Methane: Progress with an 
Unknown Process. In: Annual Review of Microbiology.  pp Page. Palo Alto, Annual 
Reviews. 

Knowles R (1982) Denitrification. Microbiological Reviews, 46, 43-70. 

Koga N, Tsuruta H, Sawamoto T, Nishimura S, Yagi K (2004) N2O emission and CH4 
uptake in arable fields managed under conventional and reduced tillage cropping 
systems in northern Japan. Global Biogeochemical Cycles, 18, 11. 

Kozlova EA, Manning AC, Kisilyakhov Y, Seifert T, Heimann M (2008) Seasonal, 
synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 
300-m tall tower in central Siberia. Global Biogeochemical Cycles, 22. 

Kroeze C, Seitzinger SP (1998) Nitrogen inputs to rivers, estuaries and continental 
shelves and related nitrous oxide emissions in 1990 and 2050: a global model. 
Nutrient Cycling in Agroecosystems, 52, 195-212. 

Kutsch WL, Kappen L (1997) Aspects of carbon and nitrogen cycling in soils of the 
Bornhoved lake district .2. Modelling the influence of temperature increase on soil 
respiration and organic carbon content in arable soils under different managements. 
Biogeochemistry, 39, 207-224. 

Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. 
Soil Biology & Biochemistry, 38, 425-448. 

Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and 
organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. 

Kuzyakov Y, Gavrichkova O (2010) REVIEW: Time lag between photosynthesis and 
carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change 
Biology, 16, 3386-3406. 

Laine A, Sottocornola M, Kiely G, Byrne KA, Wilson D, Tuittila E-S (2006) Estimating 
net ecosystem exchange in a patterned ecosystem: Example from blanket bog. 
Agricultural and Forest Meteorology, 138, 231-243. 



267 
 
 

Larsen SU, Jorgensen U, Kjeldsen JB, Laerke PE (2014) Long-Term Miscanthus 
Yields Influenced by Location, Genotype, Row Distance, Fertilization and Harvest 
Season. Bioenergy Research, 7, 620-635. 

Laughlin RJ, Stevens RJ (2003) Changes in composition of nitrogen-15-labeled 
gases during storage in septum-capped vials. Soil Science Society of America 
Journal, 67, 540-543. 

Laville P, Henault C, Renault P et al. (1997) Field comparison of nitrous oxide 
emission measurements using micrometeorological and chamber methods. 
Agronomie, 17, 375-388. 

Laville P, Jambert C, Cellier P, Delmas R (1999) Nitrous oxide fluxes from a fertilised 
maize crop using micrometeorological and chamber methods. Agricultural and Forest 
Meteorology, 96, 19-38. 

Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of 
methane by soils: A review. European Journal of Soil Biology, 37, 25-50. 

Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. Journal 
of Experimental Botany, 59, 1663-1673. 

Lemke RL, Izaurralde RC, Nyborg M (1998) Seasonal distribution of nitrous oxide 
emissions from soils in the Parkland region. Soil Science Society of America Journal, 
62, 1320-1326. 

Leuning R, Moncrieff J (1990) Eddy covariance CO2 flux measurements using open-
path and closed-path CO2 analysers- corrections for aanalysing water vapour 
sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer 
Meteorology, 53, 63-76. 

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: 
European experience with a novel energy crop. Biomass & Bioenergy, 19, 209-227. 

Li CS, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is 
likely to increase nitrous oxide emissions, offsetting reductions in climate radiative 
forcing. Climatic Change, 72, 321-338. 

Li Z, Kelliher FM (2005) Determining nitrous oxide emissions from subsurface 
measurements in grazed pasture: A field trial of alternative technology. Australian 
Journal of Soil Research, 43, 677-687. 

Lin X, Wang S, Ma X et al. (2009) Fluxes of CO2, CH4, and N2O in an alpine meadow 
affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing 
periods. Soil Biology & Biochemistry, 41, 718-725. 



268 
 
 

Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006) Temperature-
independent diel variation in soil respiration observed from a temperate deciduous 
forest. Global Change Biology, 12, 2136-2145. 

Livesley SJ, Kiese R, Graham J, Weston CJ, Butterbach-Bahl K, Arndt SK (2008) 
Trace gas flux and the influence of short-term soil water and temperature dynamics 
in Australian sheep grazed pastures of differing productivity. Plant and Soil, 309, 89-
103. 

Loescher HW, Law BE, Mahrt L, Hollinger DY, Campbell J, Wofsy SC (2006) 
Uncertainties in, and interpretation of, carbon flux estimates using the eddy 
covariance technique. Journal of Geophysical Research-Atmospheres, 111, 19. 

Lord RA (2015) Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus 
or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable 
energy crop production. Biomass & Bioenergy, 78, 110-125. 

Lotscher M, Gayler S (2005) Contribution of current photosynthates to root respiration 
of non-nodulated Medicago sativa: Effects of light and nitrogen supply. Plant Biology, 
7, 601-610. 

Ma WK, Schautz A, Fishback L-AE, Bedard-Haughn A, Farrell RE, Siciliano SD 
(2007) Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide 
in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biology & 
Biochemistry, 39, 2001-2013. 

Mahrt L (2010) Computing turbulent fluxes near the surface: Needed improvements. 
Agricultural and Forest Meteorology, 150, 501-509. 

Makita N, Kosugi Y, Kamakura M (2014) Linkages between diurnal patterns of root 
respiration and leaf photosynthesis in Quercus crispula and Fagus crenata seedlings. 
Journal of Agricultural Meteorology, 70, 151-162. 

Maljanen M, Hytonen J, Martikainen PJ (2001) Fluxes of N2O, CH4 and CO2 on 
afforested boreal agricultural soils. Plant and Soil, 231, 113-121. 

Matson PA, Harriss RC (2009) Biogenic trace gases: measuring emissions from soil 
and water, John Wiley & Sons. 

Matsuura S, Mori A, Hojito M, Kanno T, Sasaki H (2011) Evaluation of a portable 
chamber system for soil CO2 efflux measurement and the potential errors caused by 
internal compensation and water vapor dilution. Journal of Agricultural Meteorology, 
67, 127-137. 

Maughan M, Bollero G, Lee DK et al. (2012) Miscanthus x giganteus productivity: the 
effects of management in different environments. Global Change Biology Bioenergy, 
4, 253-265. 



269 
 
 

Mays KL, Shepson PB, Stirm BH, Karion A, Sweeney C, Gurney KR (2009) Aircraft-
Based Measurements of the Carbon Footprint of Indianapolis. Environmental Science 
& Technology, 43, 7816-7823. 

McMillen RT (1988) An eddy correlation technique with extended applicability to non-
simple terrain. Boundary-Layer Meteorology, 43, 231-245. 

McNamara NP, Plant T, Oakley S, Ward S, Wood C, Ostle N (2008) Gully hotspot 
contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a 
northern peatland. Science of the Total Environment, 404, 354-360. 

Meijide A, Cardenas LM, Sanchez-Martin L, Vallejo A (2010) Carbon dioxide and 
methane fluxes from a barley field amended with organic fertilizers under 
Mediterranean climatic conditions. Plant and Soil, 328, 353-367. 

Merino P, Artetxe A, Castellon A, Menendez S, Aizpurua A, Estavillo JM (2012) 
Warming potential of N2O emissions from rapeseed crop in Northern Spain. Soil & 
Tillage Research, 123, 29-34. 

Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen fertilizer 
management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: 
an emissions reduction protocol for US Midwest agriculture. Mitigation and Adaptation 
Strategies for Global Change, 15, 185-204. 

Mills R, Glanville H, McGovern S, Emmett B, Jones DL (2011) Soil respiration across 
three contrasting ecosystem types: comparison of two portable IRGA systems. 
Journal of Plant Nutrition and Soil Science, 174, 532-535. 

Miranda AC, Miranda HS, Lloyd J et al. (1997) Fluxes of carbon, water and energy 
over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant 
Cell and Environment, 20, 315-328. 

Moore T, Roulet N, Knowles R (1990) Spatial and temporal variations of methane flux 
from subarctic northern boreal fens. Global Biogeochemical Cycles, 4, 29-46. 

Mordacq L, Ghashghaie J, Saugier B (1991) A simple field method for measuring gas 
exchange of small trees. Functional Ecology, 5, 572-576. 

Mori A, Hojito M, Kondo H, Matsunami H, Scholefield D (2005) Effects of plant species 
on CH4 and N2O fluxes from a volcanic grassland soil in Nasu, Japan. Soil Science 
and Plant Nutrition, 51, 19-27. 

Morris SG, Kimber SWL, Grace P, Van Zwieten L (2013) Improving the statistical 
preparation for measuring soil N2O flux by closed chamber. Science of the Total 
Environment, 465, 166-172. 



270 
 
 

Moseman-Valtierra S, Gonzalez R, Kroeger KD et al. (2011) Short-term nitrogen 
additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric 
Environment, 45, 4390-4397. 

Mummey DL, Smith JL, Bolton H (1997) Small-scale spatial and temporal variability 
of N2O flux from a shrub-steppe ecosystem. Soil Biology & Biochemistry, 29, 1699-
1706. 

Muylle H, Van Hulle S, De Vliegher A, Baert J, Van Bockstaele E, Roldan-Ruiz I 
(2015) Yield and energy balance of annual and perennial lignocellulosic crops for bio-
refinery use: A 4-year field experiment in Belgium. European Journal of Agronomy, 
63, 62-70. 

Myhre G, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-
F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. 
Takemura and H. Zhang (2013) Anthropogenic and Natural Radiative Forcing. In: 
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I 
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

Nastari P (2012) Sugar and ethanol production - where Brazil stands in 2020? 
International Sugar Journal, 114, 74-78. 

Nishimura S, Sudo S, Akiyama H, Yonemura S, Yagi K, Tsuruta H (2005) 
Development of a system for simultaneous and continuous measurement of carbon 
dioxide, methane and nitrous oxide fluxes from croplands based on the automated 
closed chamber method. Soil Science and Plant Nutrition, 51, 557-564. 

Norman JM, Kucharik CJ, Gower ST et al. (1997) A comparison of six methods for 
measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research-
Atmospheres, 102, 28771-28777. 

OECD-FAO (2013) Agricultural outlook 2013-2022. 

Oikawa PY, Grantz DA, Chatterjee A, Eberwein JE, Allsman LA, Jenerette GD (2014) 
Unifying soil respiration pulses, inhibition, and temperature hysteresis through 
dynamics of labile soil carbon and O2. Journal of Geophysical Research-
Biogeosciences, 119, 521-536. 

Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climate 
change: a review of the effects of elevated atmospheric CO2 and drought on water 
use and the implications for yield. Global Change Biology Bioenergy, 1, 97-114. 

Oncley SP, Delany AC, Horst TW, Tans PP (1993) Verification of flux measurement 
using relaxed eddy accumulation. Atmospheric Environment Part a-General Topics, 
27, 2417-2426. 



271 
 
 

Orchard VA, Cook FJ (1983) Relationship between soil respiratin and soil-moisture. 
Soil Biology & Biochemistry, 15, 447-453. 

Palmer MM, Forrester JA, Rothstein DE, Mladenoff DJ (2014) Conversion of open 
lands to short-rotation woody biomass crops: site variability affects nitrogen cycling 
and N2O fluxes in the US Northern Lake States. Global Change Biology Bioenergy, 
6, 450-464. 

Pape L, Ammann C, Nyfeler-Brunner A, Spirig C, Hens K, Meixner FX (2009) An 
automated dynamic chamber system for surface exchange measurement of non-
reactive and reactive trace gases of grassland ecosystems. Biogeosciences, 6, 405-
429. 

Park K-H, Wagner-Riddle C, Gordon RJ (2010) Comparing methane fluxes from 
stored liquid manure using micrometeorological mass balance and floating chamber 
methods. Agricultural and Forest Meteorology, 150, 175-181. 

Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kulmala AE 
(1996) Generalized model for N-2 and N2O production from nitrification and 
denitrification. Global Biogeochemical Cycles, 10, 401-412. 

Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 
emissions from agricultural soils. Biogeochemistry, 48, 147-163. 

Perdomo C, Irisarri P, Ernst O (2009) Nitrous oxide emissions from an Uruguayan 
argiudoll under different tillage and rotation treatments. Nutrient Cycling in 
Agroecosystems, 84, 119-128. 

Perez-Piqueres A, Edel-Hermann W, Alabouvette C, Steinberg C (2006) Response 
of soil microbial communities to compost amendments. Soil Biology & Biochemistry, 
38, 460-470. 

Petersen SO (1999) Nitrous oxide emissions from manure and inorganic fertilizers 
applied to spring barley. Journal of Environmental Quality, 28, 1610-1618. 

Petersen SO, Hoffmann CC, Schafer CM et al. (2012) Annual emissions of CH4 and 
N2O, and ecosystem respiration, from eight organic soils in Western Denmark 
managed by agriculture. Biogeosciences, 9, 403-422. 

Petersen SO, Schjonning P, Thomsen IK, Christensen BT (2008) Nitrous oxide 
evolution from structurally intact soil as influenced by tillage and soil water content. 
Soil Biology & Biochemistry, 40, 967-977. 

Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T (2005) Plant-mediated nitrous 
oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist, 168, 93-98. 



272 
 
 

Pitt J, LE Breton M, Allen G et al. (2015) The development and evaluation of airborne 
in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption 
Spectrometer (QCLAS). development, 8, 8859-8902. 

Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013) Field-scale manipulation of 
soil temperature and precipitation change soil CO2 flux in a temperate agricultural 
ecosystem. Agriculture Ecosystems & Environment, 165, 88-97. 

Pryor SC, Larsen SE, Sorensen LL, Barthelmie RJ (2008) Particle fluxes above 
forests: Observations, methodological considerations and method comparisons. 
Environmental Pollution, 152, 667-678. 

Pumpanen J, Kolari P, Ilvesniemi H et al. (2004) Comparison of different chamber 
techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 
159-176. 

Qin X-Y, Xie Y-H, Chen X-S (2010) Comparative Study on the Aerenchyma of Four 
Dominant Wetland Plants in Dongting Lake. Wuhan Zhiwuxue Yanjiu, 28, 400-405. 

Rabot E, Cousin I, Henault C (2015) A modeling approach of the relationship between 
nitrous oxide fluxes from soils and the water-filled pore space. Biogeochemistry, 122, 
395-408. 

Ragauskas AJ, Williams CK, Davison BH et al. (2006) The path forward for biofuels 
and biomaterials. Science, 311, 484-489. 

Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration 
and its relaitionship to vegetation and climate. Tellus Series B-Chemical and Physical 
Meteorology, 44, 81-99. 

Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: Correlations and 
controls. Biogeochemistry, 48, 71-90. 

Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ 
(2012) Global agriculture and nitrous oxide emissions. Nature Climate Change, 2, 
410-416. 

Reay DS, Grace J (2007) Carbon Dioxide: Importance, Sources and Sinks. In: 
Greenhouse Gas Sinks. (eds Reay DS, Hewitt CN, Smith KA, Grace J), Cabi 
Publishing-C a B Int, Cabi Publishing, Wallingford 0X10 8DE, Oxon, UK. 

Reay DS, Nedwell DB (2004) Methane oxidation in temperate soils: effects of 
inorganic N. Soil Biology & Biochemistry, 36, 2059-2065. 

Rees RM, Baddeley JA, Bhogal A et al. (2013) Nitrous oxide mitigation in UK 
agriculture. Soil Science and Plant Nutrition, 59, 3-15. 



273 
 
 

Regina K, Pihlatie M, Esala M, Alakukku L (2007) Methane fluxes on boreal arable 
soils. Agriculture Ecosystems & Environment, 119, 346-352. 

Reichstein M, Tenhunen J, Roupsard O et al. (2003) Inverse modeling of seasonal 
drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. 
Journal of Geophysical Research-Atmospheres, 108. 

Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss 
from different cropping systems. Soil & Tillage Research, 41, 105-118. 

Reiners WA (1968) Carbon dioxide evolution from floor of three Minnesota forests. 
Ecology, 49, 471-&. 

Roberts WP, Chan KY (1990) Tillage induced increases in carbon dioxide loss from 
the soil. Soil & Tillage Research, 17, 143-151. 

Rochette P (2011) Towards a standard non-steady-state chamber methodology for 
measuring soil N2O emissions. Animal Feed Science and Technology, 166-67, 141-
146. 

Rochette P, Angers DA, Chantigny MH, Bertrand N, Cote D (2004) Carbon dioxide 
and nitrous oxide emissions following fall and spring applications of pig slurry to an 
agricultural soil. Soil Science Society of America Journal, 68, 1410-1420. 

Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide 
flux: Are absolute values reliable? Soil Science Society of America Journal, 72, 331-
342. 

Roobroeck D, Butterbach-Bahl K, Brueggemann N, Boeckx P (2010) Dinitrogen and 
nitrous oxide exchanges from an undrained monolith fen: short-term responses 
following nitrate addition. European Journal of Soil Science, 61, 662-670. 

Rowe MD, Fairall CW, Perlinger JA (2011) Chemical sensor resolution requirements 
for near-surface measurements of turbulent fluxes. Atmospheric Chemistry and 
Physics, 11, 5263-5275. 

Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of 
large-scale deployment of dedicated bioenergy crops in the UK. Renewable & 
Sustainable Energy Reviews, 13, 260-279. 

Rowlings DW, Grace PR, Kiese R, Weier KL (2012) Environmental factors controlling 
temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O 
from an Australian subtropical rainforest. Global Change Biology, 18, 726-738. 

Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees 
mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant 
and Soil, 201, 1-7. 



274 
 
 

Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC (2006) Emission of 
N2O, N-2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture 
and rewetting. Soil Biology & Biochemistry, 38, 263-274. 

Ryden JC, Lund LJ, Focht DD (1978) Direct in-field measurement of nitrous oxide 
from soils. Soil Science Society of America Journal, 42, 731-737. 

Saarnio S, Silvola J (1999) Effects of increased CO2 and N on CH4 efflux from a boreal 
mire: a growth chamber experiment. Oecologia, 119, 349-356. 

Salome C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in 
topsoil and in subsoil may be controlled by different regulatory mechanisms. Global 
Change Biology, 16, 416-426. 

Sanz-Cobena A, Garcia-Marco S, Quemada M, Gabriel JL, Almendros P, Vallejo A 
(2014) Do cover crops enhance N2O, CO2 or CH4 emissions from soil in 
Mediterranean arable systems? Science of the Total Environment, 466, 164-174. 

Savage K, Davidson EA, Tang J (2013) Diel patterns of autotrophic and heterotrophic 
respiration among phenological stages. Global Change Biology, 19, 1151-1159. 

Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer 
Meteorology, 67, 293-318. 

Schneider J, Kutzbach L, Schulz S, Wilmking M (2009) Overestimation of CO2 
respiration fluxes by the closed chamber method in low-turbulence nighttime 
conditions. Journal of Geophysical Research-Biogeosciences, 114, 10. 

Schonbach P, Wolf B, Dickhofer U et al. (2012) Grazing effects on the greenhouse 
gas balance of a temperate steppe ecosystem. Nutrient Cycling in Agroecosystems, 
93, 357-371. 

Schutz H, Conrad R, Goodwin S, Seiler W (1988) Emission of hydrogen from deep 
and shallow fresh water environments. Biogeochemistry, 5, 295-311. 

Searchinger T, Heimlich R, Houghton RA et al. (2008) Use of US croplands for 
biofuels increases greenhouse gases through emissions from land-use change. 
Science, 319, 1238-1240. 

Shvaleva A, Silva FCE, Costa JM et al. (2014) Comparison of methane, nitrous oxide 
fluxes and CO2 respiration rates from a Mediterranean cork oak ecosystem and 
improved pasture. Plant and Soil, 374, 883-898. 

Simek M, Brucek P, Hynst J (2010) Diurnal fluxes of CO2 and N2O from cattle-
impacted soil and implications for emission estimates. Plant Soil and Environment, 
56, 451-457. 



275 
 
 

Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate 
change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 
8, 779-790. 

Sitch S, Friedlingstein P, Gruber N et al. (2015) Recent trends and drivers of regional 
sources and sinks of carbon dioxide. Biogeosciences, 12, 653-679. 

Skiba U, Jones SK, Dragosits U et al. (2012) UK emissions of the greenhouse gas 
nitrous oxide. Philosophical Transactions of the Royal Society B-Biological Sciences, 
367, 1175-1185. 

Skiba U, Smith KA (2000) The control of nitrous oxide emissions from agricultural and 
natural soils. Chemosphere - Global Change Science, 2, 379-386. 

Skiba UM, Sheppard LJ, MacDonald J, Fowler D (1998) Some key environmental 
variables controlling nitrous oxide emissions from agricultural and semi-natural soils 
in Scotland. Atmospheric Environment, 32, 3311-3320. 

Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of 
greenhouse gases between soil and atmosphere: interactions of soil physical factors 
and biological processes. European Journal of Soil Science, 54, 779-791. 

Smith KA, Clayton H, Arah JRM et al. (1994) Micrometeorological and chamber 
methods for measurement of nitrous oxide fluxes between soils and the atmosphere- 
overview and conclusions. Journal of Geophysical Research-Atmospheres, 99, 
16541-16548. 

Smith KA, Dobbie KE, Thorman R, Watson CJ, Chadwick DR, Yamulki S, Ball BC 
(2012) The effect of N fertiliser forms on nitrous oxide emissions from UK arable land 
and grassland. Nutrient Cycling in Agroecosystems, 93, 127-149. 

Smith KA, McTaggart IP, Dobbie KE, Conen F (1998a) Emissions of N2O from 
Scottish agricultural soils, as a function of fertilizer N. Nutrient Cycling in 
Agroecosystems, 52, 123-130. 

Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F (1998b) Effects of 
temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by 
soils. Atmospheric Environment, 32, 3301-3309. 

Smith P, Bustamante M, Ahammad H et al. (2014) Agriculture, forestry and other land 
use (AFOLU). Climate change, 1-179. 

Smith R, Slater FM (2010) The effects of organic and inorganic fertilizer applications 
to Miscanthus x giganteus, Arundo donax and Phalaris arundinacea, when grown as 
energy crops in Wales, UK. Global Change Biology Bioenergy, 2, 169-179. 



276 
 
 

Soussana JF, Allard V, Pilegaard K et al. (2007) Full accounting of the greenhouse 
gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture 
Ecosystems & Environment, 121, 121-134. 

Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain 
number in cereals. Trends in Plant Science, 17, 91-101. 

St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs 
of energy crop production. Biomass & Bioenergy, 32, 442-452. 

Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils 
under natural vegetation: summarizing available measurement data and modeling of 
global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207-228. 

Stewart KJ, Brummell ME, Farrell RE, Siciliano SD (2012) N2O flux from plant-soil 
systems in polar deserts switch between sources and sinks under different light 
conditions. Soil Biology & Biochemistry, 48, 69-77. 

Stocker T, Qin D, Plattner G-K et al. (2014) Climate change 2013: The physical 
science basis, Cambridge University Press Cambridge, UK, and New York. 

Strullu LSL, Cadoux S, Preudhomme M, Jeuffroy MH, Beaudoin N (2011) Biomass 
production and nitrogen accumulation and remobilisation by Miscanthus x giganteus 
as influenced by nitrogen stocks in belowground organs. Field Crops Research, 121, 
381-391. 

Styles D, Gibbons J, Williams AP et al. (2015) Consequential life cycle assessment 
of biogas, biofuel and biomass energy options within an arable crop rotation. Global 
Change Biology Bioenergy, 7, 1305-1320. 

Sundqvist E, Crill P, Molder M, Vestin P, Lindroth A (2012) Atmospheric methane 
removal by boreal plants. Geophysical Research Letters, 39, 6. 

Teat AL, Neufeld HS, Gehl RJ, Gonzales E (2015) Growth and Yield of Miscanthus x 
giganteus Grown in Fertilized and Biochar-Amended Soils in the Western North 
Carolina Mountains. Castanea, 80, 45-58. 

Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 
Microbiology-UK, 144, 2377-2406. 

Thies B, Bendix J (2011) Satellite based remote sensing of weather and climate: 
recent achievements and future perspectives. Meteorological Applications, 18, 262-
295. 

Tjiputra JF, Olsen A, Bopp L et al. (2014) Long-term surface pCO2 trends from 
observations and models. Tellus Series B-Chemical and Physical Meteorology, 66, 
24. 



277 
 
 

Toma Y, Fernandez FG, Sato S et al. (2011) Carbon budget and methane and nitrous 
oxide emissions over the growing season in a Miscanthus sinensis grassland in 
Tomakomai, Hokkaido, Japan. Global Change Biology Bioenergy, 3, 116-134. 

Turner DA, Chen D, Galbally IE et al. (2008) Spatial variability of nitrous oxide 
emissions from an Australian irrigated dairy pasture. Plant and Soil, 309, 77-88. 

Turner PA, Griffis TJ, Lee X, Baker JM, Venterea RT, Wood JD (2015) Indirect nitrous 
oxide emissions from streams within the US Corn Belt scale with stream order. 
Proceedings of the National Academy of Sciences. 

Turnipseed AA, Pressley SN, Karl T et al. (2009) The use of disjunct eddy sampling 
methods for the determination of ecosystem level fluxes of trace gases. Atmospheric 
Chemistry and Physics, 9, 981-994. 

Twine TE, Kustas WP, Norman JM et al. (2000) Correcting eddy-covariance flux 
underestimates over a grassland. Agricultural and Forest Meteorology, 103, 279-300. 

Tyner WE (2012) Biofuels and agriculture: a past perspective and uncertain future. 
International Journal of Sustainable Development and World Ecology, 19, 389-394. 

Uchida Y, Clough TJ, Kelliher FM, Sherlock RR (2008) Effects of aggregate size, soil 
compaction, and bovine urine on N2O emissions from a pasture soil. Soil Biology & 
Biochemistry, 40, 924-931. 

van der Weerden TJ, Clough TJ, Styles TM (2013) Using near-continuous 
measurements of N2O emission from urine-affected soil to guide manual gas 
sampling regimes. New Zealand Journal of Agricultural Research, 56, 60-76. 

van der Weijde T, Kamei CLA, Torres AF, Vermerris W, Dolstra O, Visser RGF, 
Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. 
Frontiers in Plant Science, 4, 18. 

Vaughan SM, Dalal RC, Harper SM, Menzies NW (2011) Effect of fresh green waste 
and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from 
a Vertisol. Waste Management, 31, 1720-1728. 

Vellinga OS, Gioli B, Elbers JA, Holtslag AAM, Kabat P, Hutjes RWA (2010) Regional 
carbon dioxide and energy fluxes from airborne observations using flight-path 
segmentation based on landscape characteristics. Biogeosciences, 7, 1307-1321. 

Velthof GL, Jarvis SC, Stein A, Allen AG, Oenema O (1996) Spatial variability of 
nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil 
Biology & Biochemistry, 28, 1215-1225. 

Venterea RT, Spokas KA, Baker JM (2009) Accuracy and Precision Analysis of 
Chamber-Based Nitrous Oxide Gas Flux Estimates. Soil Science Society of America 
Journal, 73, 1087-1093. 



278 
 
 

Vitousek PM, Aber JD, Howarth RW et al. (1997) Human alteration of the global 
nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737-750. 

von Arnold K, Nilsson M, Hanell B, Weslien P, Klemedtsson L (2005) Fluxes of CO2, 
CH4 and N2O from drained organic soils in deciduous forests. Soil Biology & 
Biochemistry, 37, 1059-1071. 

Wang K, Liu C, Zheng X et al. (2013) Comparison between eddy covariance and 
automatic chamber techniques for measuring net ecosystem exchange of carbon 
dioxide in cotton and wheat fields. Biogeosciences, 10, 6865-6877. 

Wang ZP, Han XG (2005) Diurnal variation in methane emissions in relation to plants 
and environmental variables in the Inner Mongolia marshes. Atmospheric 
Environment, 39, 6295-6305. 

Warneke S, Macdonald BCT, Macdonald LM, Sanderman J, Farrell M (2015) Abiotic 
dissolution and biological uptake of nitrous oxide in Mediterranean woodland and 
pasture soil. Soil Biology & Biochemistry, 82, 62-64. 

Wei D, Xu R, Tenzin T, Wang YS, Wang YH (2015) Considerable methane uptake by 
alpine grasslands despite the cold climate: in situ measurements on the central 
Tibetan Plateau, 2008-2013. Global Change Biology, 21, 777-788. 

Well R, Kurganova I, de Gerenyu VL, Flessa H (2006) Isotopomer signatures of soil-
emitted N2O under different moisture conditions - A microcosm study with arable loess 
soil. Soil Biology & Biochemistry, 38, 2923-2933. 

Wienhold FG, Frahm H, Harris GW (1994) Measurements of N2O fluxes from fertilised 
grassland using a fast response analyser. Journal of Geophysical Research-
Atmospheres, 99, 16557-16567. 

Williams DL, Ineson P, Coward PA (1999) Temporal variations in nitrous oxide fluxes 
from urine-affected grassland. Soil Biology & Biochemistry, 31, 779-788. 

Woli KP, David MB, Darmody RG, Mitchell CA, Smith CM (2010) Assessing the 
nitrous oxide mole fraction of soils from perennial biofuel and corn-soybean fields. 
Agriculture Ecosystems & Environment, 138, 299-305. 

Wrage N, Lauf J, del Prado A et al. (2004) Distinguishing sources of N2O in European 
grasslands by stable isotope analysis. Rapid Communications in Mass Spectrometry, 
18, 1201-1207. 

Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier 
denitrification in the production of nitrous oxide. Soil Biology & Biochemistry, 33, 
1723-1732. 



279 
 
 

Wu DM, Dong WX, Oenema O, Wang YY, Trebs I, Hu CS (2013) N2O consumption 
by low-nitrogen soil and its regulation by water and oxygen. Soil Biology & 
Biochemistry, 60, 165-172. 

Xu LK, Furtaw MD, Madsen RA, Garcia RL, Anderson DJ, McDermitt DK (2006) On 
maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient 
air. Journal of Geophysical Research-Atmospheres, 111. 

Yan YP, Sha LQ, Cao M et al. (2008) Fluxes of CH4 and N2O from soil under a tropical 
seasonal rain forest in Xishuangbanna, Southwest China. Journal of Environmental 
Sciences-China, 20, 207-215. 

Yang M, Zhang J, Kuittinen S, Vepsalainen J, Soininen P, Keinanen M, Pappinen A 
(2015) Enhanced sugar production from pretreated barley straw by additive xylanase 
and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation. 
Bioresource Technology, 189, 131-137. 

Yao ZS, Zheng XH, Xie BH et al. (2009a) Comparison of manual and automated 
chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. 
Atmospheric Environment, 43, 1888-1896. 

Yao ZS, Zheng XH, Xie BH et al. (2009b) Comparison of manual and automated 
chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. 
Atmospheric Environment, 43, 1888-1896. 

Yu L, Wang H, Wang G et al. (2013a) A comparison of methane emission 
measurements using eddy covariance and manual and automated chamber-based 
techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81-90. 

Yu LF, Wang H, Wang GS et al. (2013b) A comparison of methane emission 
measurements using eddy covariance and manual and automated chamber-based 
techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81-90. 

Zenone T, Chen JQ, Deal MW et al. (2011) CO2 fluxes of transitional bioenergy crops: 
effect of land conversion during the first year of cultivation. Global Change Biology 
Bioenergy, 3, 401-412. 

Zhang W, Mo JM, Yu GR, Fang YT, Li DJ, Lu XK, Wang H (2008) Emissions of nitrous 
oxide from three tropical forests in Southern China in response to simulated nitrogen 
deposition. Plant and Soil, 306, 221-236. 

Zhang XB, Wu LH, Sun N, Ding XS, Li JW, Wang BR, Li DC (2014) Soil CO2 and N2O 
Emissions in Maize Growing Season Under Different Fertiliser Regimes in an Upland 
Red Soil Region of South China. Journal of Integrative Agriculture, 13, 604-614. 

Zhang YH, Ding WX (2011) Diel methane emissions in stands of Spartina alterniflora 
and Suaeda salsa from a coastal salt marsh. Aquatic Botany, 95, 262-267. 



280 
 
 

Zhang ZH, Duan JC, Wang SP et al. (2013) Effects of seeding ratios and nitrogen 
fertilizer on ecosystem respiration of common vetch and oat on the Tibetan plateau. 
Plant and Soil, 362, 287-299. 

Zhou MH, Zhu B, Bruggemann N, Bergmann J, Wang YQ, Butterbach-Bahl K (2014) 
N2O and CH4 Emissions, and NO3

- Leaching on a crop-yield basis from a subtropical 
rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer. 
Ecosystems, 17, 286-301. 

 

 


