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Abstract

This thesis presents numerical investigations of the fast electron transport and

discusses the fast electron heating of solid targets. Three areas have been investi-

gated in this context:

The first area introduces the concept of an ideal fast electron transverse confine-

ment which is obtained when the transverse dimensions of the target are comparable

to the laser spot size. This facilitates the heating of thick targets. This investigation

also explores the angular dispersion phenomenon in the context of the fast electrons.

This dispersion results in a longitudinal velocity spread of the fast electrons which

adversely affects their penetration of the target, and this in turn impairs the heating.

The work here shows that angular dispersion can not be avoided even when ideal

fast electron transverse confinement is achieved. Moreover, this dispersion impedes

fast electron penetration more significantly than does electric field inhibition. The

results indicate the importance of taking the angular dispersion into account in fast

electron transport calculations.

The second area investigates the effect of grading the atomic number at the in-

terface between the guide element and the solid substrate on resistive guide heating.

The numerical results imply that this graded interface configuration improves the

heating in large radius guide resembling that obtained in smaller guide. The larger

radius guide with the graded interface configuration is more tolerant to laser point-

ing stability than smaller radius. Further, this configuration increases the magnetic

collimation of fast electrons since more powerful confining magnetic field is obtained.

The last area studies numerically a Rayleigh-Taylor (RT) instability experiment

driven in a fast-electron-heated solid target. It was found that it is possible to

drive the RT instability in dense plasma isochoric heated by the fast electrons. The

RT instability growth occurs in few picoseconds, after establishing strong radiative

cooling. The curve growth rates depends on the type of atomic model used. Practi-

calities of extracting RT instability data due to structure in the heating profile are

described.
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Chapter 1

Introduction

1.1 Introduction and motivation

Extreme states of matter in conditions of high temperatures and densities re-

sembling those found elsewhere in the universe can now be created on Earth due to

the technological development of various devices such as lasers. This matter is in

the plasma state, composed of charged particles characterised by few particles in a

Debye sphere and strong coupling parameter greater than unity [6, 7].

When an ultra-intense laser interacts with solid matter, the matter is compressed

by the laser radiation pressure, this is of the order of 1014 Pa for a laser intensity

of 1018 Wcm−2. At this laser intensity and above, the motion of an electron be-

comes relativistic and the density, at which the laser and plasma frequencies match,

increases by a factor of γ. This allows the laser to deposit a significant fraction of

its energy at higher densities than is possible in low intensity laser-plasma interac-

tions [8]. The laser energy couples to electrons at the relativistic critical density, and

these in turn acquire high energies of several MeV [9]. These “fast” and energetic

electrons carry energy to the cold dense region of the plasma where the laser cannot

reach. One area of great interest is to heat targets at constant volume or isochor-

ically [10]. This type of heating, where the density is known precisely, is required

to investigate dense plasma properties [11], such as opacity and equation of state.
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The opacity and equation of state are crucial to the understanding of a number of

fields such as inertial confinement fusion (ICF) [12] and astrophysics. Although this

heating can be obtained to some extent in thin targets [13,14], the small inertial con-

finement time of thin targets, which is roughly equal to the target thickness divided

by the sound speed [15] drives interest in thicker targets. For example, the inertial

confinement time of an Al target with a thickness of 10 µm is less than 1 ns if this

target is heated to Te = 300 eV, so the sound speed can reach ≈ 107 cms−1. So these

thin targets expand rapidly. Also, the isochoric heating of thick targets is desirable

in the investigation of hydrodynamic phenomena such as the Rayleigh-Taylor insta-

bility [16]. Although different experimental approaches have been employed in order

to obtain isochoric heating, these include X-ray [15,17], laser-driven shock [18] and

proton heating [10], these techniques all have limitations as isochoric heating meth-

ods [10, 15]. This thesis explores fast electron heating in thick targets and explains

how a thick target can be designed to decrease the temperature gradients across its

depth.

The main advantage of using fast electrons is that they efficiently absorb laser

energy and are capable of heating targets to high temperatures [19] in a timescale

which is shorter than hydrodynamic timescales (usually in ns). The main heating

mechanism is Ohmic heating which results from a collisional return current. This

resistive background electron current heats the target as it flows to balance the

opposite fast electron current. Sherlock et al. [20] recently found that the collisional

damping of large amplitude plasma waves induced by the fast electrons is another

important source of heating. However, fast electron penetration of a target and as a

result target heating is obstructed by a number of mechanisms, most notably electric

field inhibition [21], fast electron spreading [22, 23], filamentation [24] and angular

dispersion. These mechanisms need to be considered carefully when designing a

thick target.

Generally, fast electron transport into a thick target can be divided into five
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stages as described by Norreys et al. [25]. The first stage is at the beginning of the

laser pulse when the fast electrons are ponderomotively accelerated into the cold

plasma and electric fields are setup. These fields then accelerate the background

electrons to draw a return current. The second stage is when the fast electrons slow

down due to electric field inhibition and the plasma temperature starts to rise due

to Ohmic heating. The third stage is when the plasma enters a Spitzer-like regime

(the temperature is of the order of 100 eV [26]) and the fast electrons are able to

penetrate further due to the reduction in resistivity. The fourth stage is when the

energy loss through collisions becomes significant (drag) and angular scattering of

the fast electrons starts to dominate. The final stage is when thermal diffusion carries

the deposited energy deeper into the target due to the large temperature gradient.

Practically, distinguish ability between these stages is difficult as the plasma rapidly

evolves between these stages [25].

Figure 1.1: Overview of the main mechanisms that occur when a laser of intensity
> 1018 Wcm−2 interacts with a solid target.

Figure 1.1 shows a schematic of the main mechanisms which occur when a laser

of intensity > 1018 Wcm−2 interacts with a solid density target and fast electrons

penetrate into the target. First, the laser interacts with the surface of the solid
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target. The pre-plasma forms at the surface due to the edge of the laser pulse

arriving before the main pulse. This pulse ionises the target, leading to an expo-

nential decrease in density from the target surface. Then the peak pulse reaches

and interacts with the plasma at the corrected critical density γncrit [1]. At this

region, a large fraction of the laser energy is converted into fast electrons which are

accelerated in the direction of the laser propagation. This causes charge separation

from the background ions within the plasma which in turn sets up an electrostatic

field and a large magnetic field. The electrostatic field then accelerates the heavier

ions. Moreover, both electrostatic and magnetic fields prevent any further pene-

tration of the fast electrons into the target. However, since the plasma is ionised,

it can supply a background (return) current that limits the magnetic field. In the

target, the fast and background current densities nearly balance, i.e. jf + jb ≈ 0

allowing the fast electrons to propagate. As the background electron density nb is

much higher than the fast electron density nf , the balanced current densities ensure

that the background current drift speed vb is low compared to the fast electrons’

current speed vf . The latter is approximately the speed of light. The slow moving

background current is highly collisional and heats the target. In addition, the fast

electrons travel transversely with large divergence angles. This angular spread has

no clear characterisation and adds considerable complexity to the field of fast elec-

tron transport [27]. A fraction of the fast electrons will leave the rear surface of a

target. This sets up a sheath field. One result of this is the acceleration of ions by

the target normal sheath acceleration (TNSA) mechanism. Further, if the target is

thin, the fast electrons can be reflected at the back of the target by this sheath. This

is referred to as refluxing [28]. Finally, the plasma pressure increases rapidly due to

rapid heating, which is mostly by Ohmic heating, leading to the plasma expansion

but on hydrodynamic timescales. More details regarding some of these processes

are given later in Chapter 2.

The rich physics of fast electron transport makes it of great interest in a number
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of applications [29, 30] including the Fast Ignition (FI) approach to the inertial

confinement fusion scheme [31]. In the FI approach, fast electrons are used to heat

the core of a spherically compressed DT plasma to temperatures exceeding 5 keV.

This part is critical as it needs accurate characterisation and control of fast electron

transport. Robinson et al. [27] cite the following three reasons why fast electron

transport is challenging for FI:

1. The stand-off distance, i.e. the distance between the fast electron source (at

γncrit) and the centre of the compressed fuel (hot spot), is several times the

size of the hot spot and fast electron source, so a reduction in the coupling

efficiency might occur due to angular spread.

2. There is a high possibility of various fast electron transport instabilities.

3. There are difficulties in depositing all the fast electrons in the hot spot.

This thesis presents three pieces of work which investigate fast electron heating.

The first explores how the heating of thick targets can be facilitated using a wire-like

shaped target to control the fast electron spreading. As part of this, a numerical

investigation is carried out to explore the effect of the angular dispersion of the fast

electrons on target heating and compared with the effect of electric field inhibition

on target heating. The second piece of work is a study the heating in larger radius

of the resistive guide using laser-generated-fast-electrons, aiming to improve the

uniformity of heating and to increase the magnetic collimation. This part mainly

explores the effect of grading the atomic number at the interface between the guide

element and the solid substrate. The third part of the study concerns the numerical

investigation of an experiment designed to study the Rayleigh-Taylor instability that

is driven in a fast electron heated target. This work involves extensive simulations

using a hybrid-PIC code to investigate the fast electron heating and hydrodynamic

codes to examine the Rayleigh-Taylor hydrodynamic instability.
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1.2 Thesis outline

This thesis consists of seven chapters, the first of which is this short introduction.

The next six chapters are summarised below:

Chapter 2: outlines some of the basic physics of fast electron transport and gives

a brief overview of femtosecond lasers and fast electron generation. The physics

relating to fast electron transport is then discussed, followed by a description

of the fast electron transport code ZEPHYROS.

Chapter 3: discusses the physics relating to the simulation work of Chapter 6.

This thesis investigates a Rayleigh-Taylor target heated by fast electrons and

the simulations involve a number of physical principles such as fast electron

heating, radiative cooling, opacity and the hydrodynamic Rayleigh-Taylor un-

stable situation. The basic physics relating to the simulations is discussed here,

along with a description of the hydrodynamics codes HYADES and HELIOS.

Chapter 4: discusses a wire-like shaped target design whereby the transverse con-

finement of the fast electrons can be achieved. Since angular dispersion has

been neglected in most fast electron transport calculations, an analytical and

numerical investigation of its effect on the heating has been carried out here.

This chapter also investigates the competing effects of angular dispersion and

electric field inhibition in impeding fast electron penetration which thus im-

pairs the heating with depth in the target.

Chapter 5: investigates the effect of grading the atomic number at the interface

between the guide element and the solid substrate, i.e. surrounding target.

This graded interface configuration is investigated into two main schemes of

resistive guiding; a pure-Z and a multilayered resistive guides. The aim of this

configuration is to improve the heating across the depth of a large radius guide

since those larger guides provide more tolerance to laser pointing stability.

The theory of resistive guiding structure and heating in the resistive guide are
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discussed. Numerical discussions are presented to analyse both the growth

rate of azimuthal magnetic field and guide heating using the graded interface

configuration.

Chapter 6: explores numerically the radiative cooling Rayleigh-Taylor experi-

ment that was performed by Rossall et al. [4]. This experiment is applica-

tion of the fast electron heating. The target heating, cooling rate, radiation

transport and Rayleigh-Taylor instability are investigated numerically and are

compared with the experimental results.

Chapter 7: summarises the findings of the thesis and suggests ideas for further

study in this field.
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Chapter 2

Fast electron transport

This chapter presents the theoretical background to the analytical and numerical

work discussed mainly in Chapters 4 and 5. After a brief introduction to the ultra-

intense laser, an overview of fast electron generation is presented followed by an

in-depth discussion of the fast electron transport.

2.1 Femtosecond petawatt laser: review

The laser-plasma scientist is primarily interested in four laser parameters: pulse

duration, energy, pulse shape contrast and the focal spot size. These parameters are

responsible for determining the laser power transferred per unit area (intensity) and

the condition of the target during the interaction. The invention of the chirped pulse

amplification (CPA) technique in 1985 [32] makes it possible to reach intensities

of > 1018 Wcm−2. Before CPA, it was almost impossible to achieve such high

intensities, since a laser pulse of GWcm−2 causes significant damage to the active

medium due to the nonlinear processes. The CPA technique provides a way of

obtaining higher intensities by stretching out a short laser pulse in time to prevent

damaging the laser components.

The peak intensity > 1018 Wcm−2 does not immediately interact with the pure

solid target. It is often accompanied by a nanosecond pre-pulse τASE, produced by
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amplified spontaneous emission, (low intensity pulse IASE < 1013 Wcm−2) interacts

first with the solid target and creates a pre-plasma as shown in Figure 2.1(a). Then

the peak intensity interacts with the pre-plasma before reaching solid density. Here,

the electrons are accelerated to relativistic speed as shown in Figure 2.1(b). The

ratio of peak pulse to pre-pulse (laser contrast factor) needs to be known and in

most cases be sufficiently high to prevent plasma formation. In this way, the surface

of the target remains unperturbed until the main pulse arrives and thus can interact

with the solid target.

Figure 2.1: (a) The ASE intensity arriving at the target surface, prior to the peak
intensity, creates a pre-plasma. (b) The peak intensity interacts with the pre-plasma,
ponderomotively accelerating electrons into the target to relativistic speed. This
figure is reproduced from [1].

The main feature of the short pulse laser in comparison with the long pulse laser,

in addition to the intensity, is that there is not enough time for coronal plasma

(high temperature, low density plasma) to form in front of the target during the

interaction. The amount of plasma formed due to the short pulse-solid interaction

is estimated by,

Ls = csτL. (2.1)
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where τL is the pre-pulse duration and cs is the adiabatic sound speed [8],

cs =

(
ZeffkBTe

mi

)1/2

' 3.1× 107

(
Te

keV

)1/2(
Zeff
A

)1/2

cm s−1 (2.2)

where Zeff is the effective ion charge, kB is the Boltzmann constant, Te is electron

temperature, mi is ion mass and A is the atomic mass number. For example, if a

500 fs pulse heats an Al target to 300 eV and assuming that Zeff = 9, a very steep

density profile would be formed of Ls ≈ 0.05 µm [8]. This is less than the laser

wavelength of an ultra-intense laser, which is usually 1 µm. Because of this steep

gradient, the laser deposits its energy at critical density γncrit as shown in Figure

2.2,

ncrit =
ε0mec

2

e2λ2L
. (2.3)

where γ = 1/(1− β2
s )

1/2 is the Lorentz factor, βs = v/c, v is the electron velocity, c

is the speed of light, ε0 is vacuum permittivity, me is the electron mass, e is charge

and λL is the wavelength of the laser in vacuum. As shown in Figure 2.2, the laser

interacts with the steep density gradient and it is reflected at the turning point.

However, the laser electric field can tunnel beyond this point to γncrit, i.e. the laser

beam propagates to a density that is increased by the γ factor, depending on the

absorption mechanisms. This is due to the fact that at intensities of > 1018 Wcm−2,

where the electric field exceeds 1013 Vm−1, electrons oscillate at relativistic velocities.

This increases the electron mass to γme, which reduces the ability of the electrons to

generate a current in the plasma that reflects the laser light more readily. Thus, an

intense laser beam penetrates deeper into the plasma. The strength of the relativistic

effects is usually indicated via the normalised vector potential of a laser beam [9,33],

a0 =
Posc
mec

=
γvosc
c

=
eEL
mecωL

=

√
ILλ2L

1.3× 1018
(2.4)

where Posc(vosc) is the transverse quiver momentum (velocity) of the electron in
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the laser field, EL is the peak electric field of the laser, ωL is the frequency of

the laser and IL is the laser intensity. Thus if a0 >> 1, the oscillation of the

electron in the electromagnetic field of the laser becomes relativistic. For λL = 1 µm,

EL ≈ 1013 Vm−1 [34] and IL ≈ 5× 1020 Wcm−2, a0 ≈ 20.

This thesis presents a study of the fast electron transport that is generated via

a high-power short pulse laser where the intensity reaches 1020 Wcm−2.

Figure 2.2: Sketch of the density profile of the laser beam incident at θL. Part of
the electric field of the laser, that is parallel to ∇ne at turning point, can tunnel to
the critical surface depending on the absorption mechanisms.
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2.2 Fast electron generation and its temperature

scaling

When Iλ2L > 1018 Wcm−2 interact with a target, its front surface exhibits a steep

density gradient. Two main mechanisms are important here: vacuum heating and

relativistic J×B force. These mechanisms act to convert a significant fraction of laser

energy into kinetic energy of fast, relativistic electrons. It has been experimentally

demonstrated that 20 % [35] to 50 % of the laser energy will be converted to fast

electrons at critical density [36].

The vacuum heating mechanism was first introduced by Brunel [37]. It occurs

near to the vacuum-plasma interface and in experiments with very high contrast

lasers. The electrons, which are near to the target edge, get pulled away from the

target into the vacuum. However, because the laser’s electric field oscillates as it

changes direction the electrons are accelerated back into the dense plasma where

ne >> γncrit, carrying the laser energy into the target.

The ponderomotive J × B force mechanism is similar to the vacuum heating,

except that the electrons are driven in the direction of the laser propagation by the

Lorentz force. This force depends on the spatial gradient in the laser light near

vacuum-plasma interface and oscillates the electrons with frequency 2ωL [9, 38, 39].

The ponderomotive force can be derived by considering non-relativistic electron

motion in the wave of an electromagnetic field, as shown below following Ref. [34],

me
dv

dt
= −e[E(r) + v ×B], (2.5)

where the electric field has the following waveform: E(r) = E0(r) cos(ω0t) and E0(r)

is the spatially varying amplitude. The (2.5) can be written in the non-linear second

order approximation as,

me
dv2

dt
= −e[(δr1.∇)E|r=r0 + v1 ×B1], (2.6)
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The term (δr1.∇)E|r=r0 comes from expanding E(r) during its motion at r0 using

the Taylor expansion rule. δr1 is electron displacement in the electric field and v1 is

the velocity. The velocity and displacement can be obtained from (2.5) by ignoring

v × B term (since this is for the first order) and integrating. The first integration

obtains the velocity, and the second integration obtains the displacement,

v1 =
−e
meω0

E0 sin(ω0t), (2.7)

δr1 =
e

ω2
0me

E0 cos(ω0t), (2.8)

The magnetic field can be derived from Maxwell’s equation ∇ × E(r) = −∂B1/∂t

by integration,

B1 = − 1

ω0

∇× E0 sin(ω0t), (2.9)

Substituting equations from (2.7) to (2.9) into (2.6) and using the waveform of the

electric field and averaging over time, then using identity ∇E2
0 = 2E0 × ∇ × E0 +

2E0(∇.E0) , the ponderomotive force is obtained,

Fpond = me <
dv2

dt
>= −1

4

e2

meω2
0

∇E2
0 . (2.10)

If the ponderomotive force is generated by an electrostatic wave, the first term

in (2.6) will be dominant. If the electron quiver velocity becomes relativistic, the

second term in (2.6) dominates the ponderomotive force. In the context of intense

laser-plasma interactions, this expression is relativistically corrected to [9],

Fpond = −∇(γ − 1)mec
2. (2.11)

On the other hand, the fast electron temperature, Tf , is not easy to determine

due to these various absorption processes and the complex distribution of the fast

electron mean energy. The fast electron temperature indicates mean energy of the
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fast electron population [38]. Beg law provides a rough indication of the expected

fast electron temperature at intensities up to 1019 Wcm−2 [40] and defined as,

TBeg ≈ 200

(
ILλ

2
L

1018 Wcm−2

)1/3

keV. (2.12)

Wilks ponderomotive law gives another rough indication at intensities above 1018 Wcm−2

and defined as [33],

Tpond ≈ 511

√1 +
ILλ2L

1.38× 1018 Wcm−2
− 1

 keV (2.13)

where λL in µm in both scales.

Recently, Sherlock [41] showed numerically that the ponderomotive scaling should

be reduced by a factor of 0.4, i.e. Tf = 0.6Tpond, since fast electrons undergo decel-

eration due to moving out of the absorption region and into the dense plasma. Also,

Kluge et al. [42] introduced new scaling laws derived from the Lorentzian steady

state distribution function for electron energy. In their model, they assumed high

intense-laser contrast without taking into account the increase in temperature due

to fast electron refluxing. Their scaling predicted that the fast electron mean energy

is in the same order as Beg’s law (2.12). Within the scope of fast electron transport

modelling, Robinson et al. [27] have stated that recent 3D Particle-In-Cell (PIC)

simulations in line with relativistic electron mean energy given by Wilks’s pondero-

motive scaling (2.13). In this thesis, the reduced ponderomotive scaling as shown by

Sherlock [41] has been used in our modelling using the ZEPHYROS code (Section

2.4).
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2.3 Fast electron transport

2.3.1 Fast electrons properties

When an intense laser beam interacts with a solid target, part of the laser’s

energy is reflected and another part is transferred to electrons, which then propagate

away from the injection region into the target. Based on energy conservation, the

energy flux balance can be applied [8], which yields,

βIL = nfvf ε̄f (2.14)

where β is the fraction of laser energy coupled into the fast electrons, IL is the laser

intensity in Wm−2, nf is the fast electron density in m−3, vf is the fast electron

velocity in ms−1 and ε̄f is the mean energy of the fast electrons in J, which exhibit

Wilks ponderomotive law (2.13) [33]. This balance states that the absorbed flux of

the laser’s energy is approximately equal to the heated electrons’ energy flux. As

the fast electrons are not atomically bounded [27] , one can estimate from (2.14)

fast electron properties as follows:

The fast electron density can be estimated if one considers, for example, that a

laser intensity is 1024 Wm−2 (note here the unit change to SI) with wavelength of

1 µm interacts with the target and only 30 % of the laser’s energy is transferred to

fast electrons. Thus, the density of the fast electrons is nf ≈ 2× 1027 m−3 and with

a mean energy of ε̄f ≈ 4 MeV . In addition, the fast electron current density can be

obtained from,

jf = enfvf . (2.15)

where vf is approximately the speed of light. This gives jf ≈ 1 × 1017 Am−2.

Furthermore, assuming that the fast electrons propagate as a uniform beam with

radius of the laser spot size of FWHM of 5 µm, the fast electron current can be
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estimated by multiplying both sides of (2.14) by eπr2spot,

If =
βePL
ε̄f

. (2.16)

where rspot is the beam radius, If is the total fast electron current, e is electron charge

and PL is the power of the laser (PL = πr2spotIL). This would yield If ≈ 6 MA.

2.3.2 Current balance approximation

The electric field growth in time t can be estimated from Maxwell’s equation in

1D in vacuum, E ≈ −jf t/ε◦. This would give E ≈ 1016 Vm−1 in just 3 ps using the

current density value estimated in the previous section. This large electric field is

sufficient to halt MeV fast electrons in a timescale of a few femtoseconds and within

a few µm of the absorption region [21]. In addition, large self-generated magnetic

fields at the surface, which arise due to charge separation, will reverse the flow of

the beam and prevent the propagation of fast electrons above the Alfven-Lawson

current limit [38, 43,44],

IA =
4πγβsmec

eµ0

= 1.7× 104γβs A (2.17)

This implies that the maximum current would be in the kA range, which is lower

than the fast electron current in the range of multi-MA current. To demonstrate

how the fast electrons are transported into the target, the concept of the current

balance approximation is needed [21],

jf + jb ≈ 0. (2.18)

where jf is the fast electron current density and jb is the background electron current

density. This states that the plasma will supply a background (return) current to

limit magnetic field and allow the fast electron beam to propagate. The return
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current is provided by target ionisation and will be drawn back by the electric field

into the absorption region. The current balance approximation is reasonable for

high plasma densities (nb ≥ 1029 m−3) as the charge neutrality occurs in ∆t ≈

2π/ωpe ≈ 10−16s where ωpe ≈ 56.4
√
nb rad.m−1 is the plasma frequency. Then

the non-neutrality of fast electrons occurs within distance x ∼= c∆t ≤ 0.1 µm [45].

However, the current neutralisation must be co-spatial such that the net current

density is nearly zero at any point otherwise the self-generated magnetic field, due

to current imbalance, would destroy the beam. It is worth mentioning that the

number of fast electrons is much less than the number of background electrons as

the target electron density far exceeds the electron density at which the laser energy

absorbed. As a consequence, the background electron speed is lower compared to

the fast electron speed. This has huge consequences for target interaction physics

and target heating which is discussed in the following sections.

2.3.3 Collision and resistivity

Dense plasma, if sufficiently cool, is in strongly coupled state. This means that

the strength of the plasma particle interactions is very strong and the potential

energy is comparable to, or dominates over, the thermal kinetic energy. The strong

Coulomb coupling parameter is defined as,

Γ =
1

4πε0

e2

rskBTe
. (2.19)

where ε0 is permittivity, rs = (3/4πni)
1/3 is the interatomic spacing, ni is the ion

density, kB is the Boltzmann constant and Te is the electron temperature. The strong

Coulomb coupling and small number of particles in a Debye sphere can significantly

affect the properties of the system such as the equation of state and the transport

processes, since strong collisions and scattering become dominant in this system

[6,7]. As the background current has a much slower velocity than the fast electrons,

17



it undergoes more energy exchange with the background ions by collisions. Thus,

the heating of the target is mainly due to the background current. The background

electron-ion collision rate is given by [8],

ν̄ei ' 2.91× 10−6Znb lnΛ Tb
−3/2 s−1. (2.20)

where nb and Tb are the background electron density and temperature respectively,

InΛ = In(λD/bmin) is the Coulomb logarithm, λD is the Debye length and bmin is

the minimum impact parameter, which is usually the classical electron radius or

the half of de-Broglie wavelength at high energy [46]. According to formula (2.20),

the collision rate drops with increasing temperature. This can be explained as the

temperature increases, the probability of collisions will decrease as the Coulomb

cross-section decreases. The background electron collisions have a significant effect

on the fast electron transport as demonstrated by Guerin et al. [47] as they found

numerically, using a PIC code, that the occurrence of collisions limits the mobility

of the background electrons and thus they are less able to provide a return current

which balances the fast electron current.

With regards to the fast electrons, it is reasonable to assume that they do not

strongly collide since their collision mean free path is much greater than the target

size. The collisional scattering time of the fast electron can be estimated from [48],

τscatter = 60Z−1
nb

1029 m−3

√
ILλ2L

1022 Wm−2
ps (2.21)

where λL in µm. This collisional scattering time is longer than the laser pulse

duration and in Copper solid density can reach ≈ 20 ps. This assumes that nb =

1029 m−3, IL = 1024 Wm−2 with λL = 1 µm.

On the other hand, the resistivity of a material is a measure of the extent to which

the background electrons collide with the background ions as they move through
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them while carrying a current. It is defined as,

η =
meν̄ei
nbe2

, (2.22)

Substituting (2.20) into (2.22), the classical Spitzer resistivity is obtained [44],

η = 1.03× 10−4
ZInΛ

T 3/2
Ω.m. (2.23)

The Spitzer relation can be applied when the thermal velocity of the electrons is

much greater than the drift velocity, by linearising the momentum equation of the

electrons [48]. It is well-known that Spitzer relation overestimates the resistivity by

a factor of 100 at solid density and low temperature, leading to larger background

heating than may be expected [26,46]. Therefore, Spitzer resistivity is applicable to

high temperature plasmas. An alternative, the Lee and More resistivity model [46]

is used in fast electron transport calculations.

2.3.3.1 Lee and More resistivity

Lee and More [46] developed a useful model of resistivity which is applicable

across a wide range of densities and temperatures. Their model is based on the

Thomas-Fermi ionisation model and does not take into account the effects of atomic

structure. The Lee-More calculation of the electron-ion collision rate from the

Coulomb logarithm reflects the strong coupling and electron degeneracy effects [6].

Electron degeneracy is a quantum effect that dominates the behaviour of high den-

sity plasmas. It occurs due to the de-Broglie wavelength of electrons becoming

comparable to the interatomic spacing. Lee-More resistivity takes the following

form [46],

η =
me

nbe2τe
[Aα(µ/kBTe)]

−1. (2.24)

where nb is the background electron density, Aα is a coefficient function which de-

pends on the degree of electron degeneracy and this coefficient takes the following
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form [26],

Aα(µ/kBTe) =
4

3

F2

[1 + exp(−µ/kBTe)](F1/2)2
. (2.25)

where µ is the chemical potential, F2 and F1/2 are the Fermi integrals. The electron

relaxation time τe takes the form,

τe ≈ 0.6
me

1/2(kBTe)
3/2

(Z∗)2e4nilnΛei

[1 + exp(−µ/kBTe)]F1/2. (2.26)

where Z∗ is the ionisation level and ni is the ion density. The Lee-More Coulomb

logarithm is,

lnΛei = max

(
2,

1

2
ln[1 + Λ2]

)
(2.27)

where Λ >> 1 for weakly coupled plasma. The values of (2.27) for dense plasma is

typically in the range 2 to 10 [6, 46].

Figure 2.3: Plot of Al resistively (Ω.m) vs temperature (eV) in solid density.

Figure (2.3) shows an example of an Al resistivity curve at solid density that

is generated using simple model of the Lee and More. In this simple model, the

temperature range is from 0.1 to 300 eV which is divided into 15000 data points

in order to observe more details in the curve. The interatomic distance is 1.6 ×

10−10 m and the melting temperature is 0.11 eV. The Z∗ is determined by a simple

Thomas-Fermi ionisation model. As shown, the resistivity reaches a peak as electron
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scattering maximises, this is the region of the minimum mean free path (at ≈ 20 eV

in the Figure (2.3)) and it displays Spitzer-like resistivity at high temperatures.

Notice that the resistivity curve is not accurate at temperature range from 0.1 eV to

≈ 2 eV, i.e. the warm dense matter region. This is due to the fact that the ion-ion

correlations effect is not included in the Lee and More model. This effect has a

significant impact on the electron collision frequency and mean free path, and thus

the resistivity at this region. There are considerable efforts to understand this effect

on the resistivity of the materials and attempts to improve the resistivity model for

WDM regions, see for example [49–51].

2.3.4 Ohmic heating and drag collisional heating

The background current passing through the plasma resistively heats the plasma.

This resistivity is produced by electrons that are driven by the electric field when

they collide with ions [52]. This is known as Ohmic heating. The relation between

the electric field and resistivity can be obtained from a simplified Ohm’s law which

ignores the magnetic field,

E = ηjb, (2.28)

where jb is the background current density. To illustrate how Ohmic heating occurs,

the power density per unit volume is given as,

P = jbE, (2.29)

Using the current balance approximation in both of the equations and substitut-

ing (2.28) into (2.29), the Ohmic heating power per unit volume is defined,

Pheat = ηj2f , (2.30)
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Now, the power (or energy density) per unit volume due to the change in the

internal energy is given,

P =
∂U

∂t
=

3

2
nbkB

∂Tb
∂t

, (2.31)

where U is the internal energy. Comparing (2.31) with (2.30), the following rela-

tionship is obtained,

∂Tb
∂t

=
2

3kBnb
ηj2f . (2.32)

This explains that the heating of the target is sensitive to the resistivity of the

material. Also, this relationship shows that the Ohmic heating per femtosecond is

signifcant, reaching to ∂Tb/∂t ≈ 4.3 eVfs−1 in the case of fixed resistivity of Cu

ηcu = 10−8 Ω.m, jf = 1 × 1017 Am−2 and nb = 1029 m−3. The influence of the

fast electron temperature on the background temperature can be added to (2.32) as

follows [53,54],

∂Tb
∂t

=
2

3kBnb
ηj2b +

nf
nb

Tf
τf−b

. (2.33)

where Tf is the fast electron temperature and τf−b is the fast-background electron

collision time [54],

τf−b =
3
√

3

8π

me
1/2Tf

3/2

nb e4 lnΛ
(2.34)

The second term in the RHS of (2.33) shows the rate of fast electron energy loss to the

background electrons. It should be noticed here that the fast electron temperature

does not change significantly with time. This is due to their large mean free path as

explained in Section 2.3.3. The fast electron collision time with the background will

determine the amount of energy that transfer to the background. Equation (2.33)

is known as the “two group” electron model [54].

Drag collisional heating occurs when the fast electrons lose their energy to the

background via collisions as they propagate into the solid density target. Their

energy is transferred in the form of ionisation, excitation and bremsstrahlung ra-

diation. The contribution of the radiation emission to the target heating can be

neglected due to a small absorption cross section of the emitted radiation. The
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average collisional energy loss per unit path length [25] is given by the Bethe-Bloch

theory [55,56], (
dE

dx

)
collisions

=
−e4ne

8πε20mev2f
Ld (2.35)

where Ld is,

Ld =

[
ln

(γ − 1)(γ2 − 1)

2(J/mec2)2
+

1

γ2
− 2γ − 1

γ2
ln2 +

1

8

(γ − 1)2

γ2

]
(2.36)

and J is the mean ionisation potential. The rate of change in the temperature of

the target due to this heating is,

Cv

(
∂Tb
∂t

)
collision

=

〈
jf
e

(
dE

dx

)
collisions

〉
(2.37)

where Cv is the volumetric specific heat capacity. As shown from (2.32) and (2.37),

the Ohmic heating and the collisional heating scales as j2f and jf respectively.

2.3.5 The resistive magnetic field generation

The concept of current balance approximation assumes that the background

electrons respond immediately to the fast electrons. This is an important assumption

for understanding the generation of resistive magnetic fields. The fourth Maxwell

equation shows that the current densities of the background electrons and the fast

electrons produce a magnetic field as follows,

∇×B = µ◦(jb + jf ), (2.38)

The cancellation of the fast electron current by the background current is clear

if one assumes that jb + jf = 0. Thus jb + jf = (∇×B)/µ◦ = 0.

If this is not the case, the effect of resistivity is included in this model by multi-
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plying both sides of the equation by η and using the simple form of Ohm’s law [57],

η∇×B = µ◦(E + ηjf ), (2.39)

E = −ηjf +
η

µ◦
∇×B, (2.40)

Equation (2.40) shows that the generated electric field opposes the fast electron

current density. Substituting (2.40) into the second Maxwell equation yields the

magnetic field,

∂B

∂t
= −∇× E, (2.41)

∂B

∂t
= (∇× ηjf )−∇× (

η

µ◦
∇×B), (2.42)

The first term in (2.42) explains how an azimuthal magnetic field is generated,

which is the key element of the work covered in Chapter 5 of this thesis. The second

term shows the resistive diffusion of the magnetic field, which is usually neglected.

The reason for this is that at high temperatures, this diffusion is small during the

laser pulse duration. This reduces (2.42) to,

∂B

∂t
= (∇× ηjf ), (2.43)

∂B

∂t
= η(∇× jf ) + (∇η)× jf . (2.44)

This azimuthal magnetic field if sufficiently strong can collimate fast electrons.

The growth of the magnetic field can be estimated from (2.43). It yields 100 T in

1 ps if the radius of the beam is 10 µm, ηcu = 10−8 Ω.m and jf = 1 × 1017 Am−2 .

Each term of the (2.44) has a role in the generation of the magnetic field as follows:

The term η(∇×jf ) implies that the generated magnetic field forces fast electrons

towards higher fast electron current-density regions. The magnetic field develops

due to the spatial variation in the current density. As the fast electron current

beam density is highest on the target axis, the resulting radial force leads to the
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self-pinching of the fast electron beam [58]. In a plasma with Spitzer resistivity,

self-pinching occurs if the ratio of the radius of the beam R to the Larmor radius of

the fast electrons rg = γmevf/eB is greater than the square of the half-divergence

angle R/rg > θ2d [59]. By substituting the Larmor radius into the relation R/rg > θ2d

collimation parameter is obtained,

ΓCol =
eRB(t)

γmevfθ2d
. (2.45)

Collimation occurs when ΓCol is greater than 1. In addition, the radial force can

act on the small variations within the beam, resulting in breakup of the beam into

filaments [38]. This is discussed in the next section.

The term (∇η)×jf on the RHS of (2.44) implies that the generated magnetic field

forces the fast electrons towards higher resistivity regions. This term results in the

Ohmic heating of the target. Assuming that the fast electron beam has a Gaussian

profile, the Ohmic heating is higher in the centre of the beam. This leads to a large

degree of Ohmic heating along the target axis. Therefore, it can be excepted that the

resistivity is lower along the beam axis compared to transversely across the target.

This could lead to hollowing of the electron beam [51]. The structured resistive

guiding target [60] exploits the second RHS term to collimate the fast electrons by

designing targets with tailored resistivity. The theory of resistive-guiding targets is

discussed in Chapter 5, where we examine the effect of grading the atomic number

Z at the interface of a guiding structure on fast electron guide heating.

2.3.6 Transport instabilities and filaments

From Sections 2.3.3 and 2.3.5, it can be argued that the transport of fast electrons

is controlled more by the electric and magnetic fields than by the collisions. This

can be seen from the effects of three different beam-plasma instabilities on fast

electrons transport. These instabilities are the Weibel [61], the two-steam [52] and
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the filamentation instabilities [24,62]. They are classified according to their unstable

wave vector’s k directions with respect to the fast electron beam and to the electric

field as shown in Figure 2.4 [39,62].

The Weibel instability depends on a the background temperature. If the back-

ground temperature is high, the growth rate aligns with high-order modes of the

instability, resulting in small-scale filaments on a spatial scale of the order of skin

depth c/ωpe. If the background temperature is low, however, this can align the

growth with low-order modes, resulting in a small number of larger filaments [39].

Both two-stream and filamentation instabilities depend on the fast electron beam

density and are found on the same dispersion relation branch. However, the fast-

growing mode is intermediate between the two and is known as TSF mode, where

“TSF” stands for Two-Stream and Filamentation [62]. This is given as,

γTSE =

√
3

24/3

(
αn
γ

)1/3

ωpe (2.46)

where αn = nf/nb, γ = 1/
√

1− (v/c)2 which is the Lorentz factor associated with

the fast electron velocity; and ωpe is the plasma frequency. This process produces

density perturbations and filaments [63].

In reality, the fast electron beam experiences all these instabilities at the same

time. The most unstable process mainly shapes the beam while the other instabilities

start to grow exponentially [62]. The main evolution of the transport instabilities has

been observed as the splitting of the fast electron beam into filaments. Filamentation

onset is when there is a small fluctuation in the transverse magnetic field. The

magnetic term in the Lorentz force −ev × B bends the oppositely directed beams

towards spatially different points. This produces a nonzero current that induces

the magnetic field, concentrating the current density. This evolves ultimately into

a filament [39,64].

Experimentally, a number of diagnostic approaches have been employed in order

to investigate these filaments. For example, Storm et al. [65] used a spatially-resolved
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Figure 2.4: The Weibel, two-steam and flimanetation modes.

coherent transition radiation (CTR) imaging technique. The CTR is emitted when

the beam crosses the rear surface of a target and is imaged using a scientific-grade

CCD camera. The images contain small-scale structures indicating the presence

of filaments. Another example of a different diagnostic approach is that of proton

emission [66]. This emission is from the rear surface of the target and is detected

and imaged using a stack of radiochromic films (RCF) placed behind the target. All

these diagnostic approaches indicate that filaments occurs in both conductive and

insulating materials. The growth of filaments inside of the target implies that the

target is being strongly heated non-uniformly. However, non-uniform heating is not

desirable in most situations. This is the case in the hydrodynamics experiments as

explained in Chapter 6.

2.3.7 Fast electron heating literature review

Fast electron beam transport and its consequences on target heating across the

target depth is of interest. Ohmic resistive heating and drag collisional heating de-

pend on the ability of the fast electrons to penetrate the target. However, both
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collisions and electric fields can slow down fast electron penetration which reduces

the heating across the target depth. The reduction in heating has been experimen-

tally observed in [19,67] as temperature gradients across the target depth. Volpe et

al. [68] have shown experimentally that the electric field effect becomes important

at intensities of the order of 1017 Wcm−2 depending on the material while it is domi-

nant over the collisional process at intensities of the order of 1019 Wcm−2. The effect

of electric fields on penetration was experimentally observed by Key et al. [69] who

noted a strong reduction in fast electron penetration and heating on a CH target.

They attributed this to electric field inhibition, a phenomenon first proposed by Bell

et al. [21]. Pisani et al. found [70] experimentally clear evidence of this inhibition

in a CH target (insulator) compared to an Al target (metal). A CH target, which

has high resistivity, needs to be initially ionised to provide a return current, while

in an Al target, where resistivity is low, the return current is established by the free

electrons. In addition, Pisani et al. [70] also compared between the electric field

inhibition and collisional effect using a Monte Carlo code, which takes into account

only the collisions. It was found that the experimental fast electron penetration in

CH target was shorter than predicted by the code while an agreement is obtained

in case of Al target. The results of this experiment showed the adverse impact of

electric field on fast electron penetration.

A large angular spread is another effect which reduces penetration and this has

been explored in many experimental studies, for example see [22,23,71]. The increase

of the angular spread is due to several complex mechanisms and it increases with

increasing the transverse dimension of the target. The use of large transverse plane in

targets to more than 50 µm is unavoidable due to the limited pointing stability [72].

The adverse effect of angular spread on penetration led [60] to propose the use of

resistive magnetic fields [73] to collimate the beam with a resistive guide. Although

the resistive guide idea has mainly been proposed in the case of Fast Ignition, it

recently becomes of interest to improve the heating of extended targets for the sake
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of hydrodynamic experiments [74,75].

Fast electron refluxing mechanism can improve the heating in a target that has

a finite depth, i.e. a few tens of microns, [28] and as a result isochoric heating

can be obtained [76]. This mechanism can transfer ≈ 90% of the fast electron

energy into the thermal plasma before any hydrodynamic disassembly [77]. The

difficulty of heating increases with increasing target depth as the resistivity evolution

at low temperature can lead to annular transport as shown by MacLellan et al. [51].

Filamentation instabilities [24,62] also spoil the heating with depth, especially when

the thicker target has large transverse directions and is heated with a pulse of a few

ps.

On the other hand, there has been recent debate concerning the main fast elec-

tron heating mechanism. The numerical work of Kemp et al. [78] in 2006 shows that

fast electron energy transfers at solid density by Ohmic resistive heating followed by

diffusion and drag collision between the fast electrons and the background electrons.

However, Sherlock et al. [20] using a PIC code found that large amplitude of plasma

waves induced by the fast electrons is another important source of heating. The

collisional damping of these waves significantly heats the background plasma and

the heating rate exceeds the Ohmic resistive heating by a factor of ≈ 3. The work

in this thesis does not take into account this newly discovered source of heating.

2.4 Fast electron transport code: ZEPHYROS

ZEPHYROS is a 3D Cartesian-grid, particle-hybrid code developed by A. P.

L. Robinson. The hybrid approximation in the context of fast electron transport

means that a distinct population of electrons, i.e. fast electrons, is treated kinetically,

while a distinct population of background electrons is treated as a fluid. Splitting

the population of the fast electrons and the background electrons is a reasonable

approximation for two reasons. Firstly, the number of fast electrons is much less than

the number of background electrons nf << nb. Secondly, the mean energy of the fast
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electrons is much greater than the mean energy of the background electrons [27].

This split serves to simplify the numerical simulation, as otherwise the disparate

lengths and time scales between the fast and background electrons would make the

system computationally expensive. To handle difference in scale between the fast

electrons and background electrons, such as in temperature, density, mean free path,

a hybrid approximation is employed. This allows the use of larger time-steps and

cell sizes, which are computationally efficient.

Fast electron kinetics can be described using the Fokker-Planck equation [27],

∂f

∂t
+ v.

∂f

∂x
− e(E + v ×B).

∂f

∂p
= (

∂f

∂t
)collisions (2.47)

where f = f(x,p, t) is fast electron distribution and x and p are the phase-space

position and momentum respectively. This equation is solved using standard PIC

methods, except the collisional term on the RHS is treated using Monte-Carlo meth-

ods but with the collisional term operator includes angular scattering and drag (en-

ergy loss through collisions) due to the background electrons and ions [27, 57, 79].

The background electron motion is ignored in the kinetic treatment, as the speed of

the fast electrons is much greater than the mean speed of the background plasma.

The hybrid code is based on an “Ohmic approximation” since the electric and

magnetic fields are resistively generated. Also, it uses a reduced form of Maxwell’s

equations (see Sections 2.3.4 and 2.3.5). The magnetic field is given by the induction

equation (2.42). The electric field is obtained by substituting Ohm’s law into the

Ampere-Maxwell equation, ignoring the displacement current to give (2.40). Ignor-

ing displacement current relies on the assumption that the change in the electric

field, ∂E/∂t, is slow. Indeed, comparing the electric field and magnetic field terms,

in the Ampere-Maxwell equation, using dimensional analysis gives,

c2∇×B =
j

ε0
+
∂E

∂t
(2.48)
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∂E/∂t

c2∇×B
≈ ηj/τL
c2ηjτL/L2

≈ L2

c2τ 2L
(2.49)

where L is the beam width and τL is the laser pulse duration. Thus, the assumption

of ignoring the displacement current is valid if L << cτL. This assumption excludes

electromagnetic phenomena, for example modelling the laser pulse.

The background plasma is treated as a static fluid. This fluid is subject to heat-

ing, ionisation and change in resistivity. The background plasma heating evolves

due to Ohmic heating (Section 2.3.4) and collisional drag, and both are included

into the background electron energy equation. The resistivity is temperature depen-

dent and based on that of Lee-More resistivity (Section 2.3.3.1). In the Lee-More

resistivity model in ZEPHYROS, the Fermi integrals are constant terms and the

chemical potential is calculated using the Thomas-Fermi ionisation model.

Hybrid codes rely on current balance approximation, as discussed in Section

2.3.2. Therefore, the response of the background fluid to the fast electrons ensures

quasi-current neutrality. The interaction between the background electrons and fast

electrons is via collisions and electromagnetic fields. ZEPHYROS is a powerful tool

as it allows a lot of the features of physics to be included. Among the features

used in this thesis is a simple model of bremsstrahlung emission. This allows the

background to cool down under the assumption of the optically thin plasma. More

details on using the different features can be found in Ref. [74, 80].

As the laser pulse is not modelled in ZEPHYROS, the fast electrons are injected

via energy dump transversely over the laser spot of a few cells’ depth as a Gaussian

profile. The energy at this region promotes electrons from the fluid into fast electrons

(treated as macroparticles). If macroparticles fall below about 5 − 10 keV then

they are reabsorbed into the background electrons. However, neither the promotion

nor the absorption process is dependent on the background temperature. The fast

electrons move and interpolate to a computational grid, obtaining current density

and evolving electric and magnetic fields. The distribution of the fast electron energy
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is given as,

f(E) = exp

[
− E
Tf

]
. (2.50)

where Tf the fast electron temperature as determined by the reduced Wilks scaling

(2.13). In this thesis, all the fast electron transport calculations are performed using

ZEPHYROS.

2.5 Summary

This chapter provides an introduction to fast electron transport and its prop-

erties which are given after a brief review of the petawatt laser and fast electron

generation. The current balance approximation, Ohmic heating, resistive magnetic

field generation and transport instabilities are discussed. The physics of the hybrid

ZEPHYROS code used in this thesis to study the fast electron transport is also out-

line. More details on fast electron transport can be found in the recently published

topics review [25,27].
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Chapter 3

Rayleigh-Taylor instability and

Radiative losses

This chapter presents an overview of some of the areas of physics relating to

the work of Chapter 6, which concerns a computational investigation of a Rayleigh-

Taylor (RT) instability experiment driven in a fast-electron-heated target. As stated

in Section (2.1), the interaction time between the target and the short-pulse laser is

faster than hydrodynamic timescales. After the end of heating, the plasma pressure

leads to expansion. With suitable target materials, it is possible to arrange this

expansion to drive the RT instability. The RT instability is of great significance

in laser-plasma interactions as it has implications for degrading the performance of

compression of the capsules in inertial confinement fusion (ICF) [81]. It is also the

subject of ongoing research in astrophysics, since it occurs in certain astrophysical

objects such as young supernova remnants [82].

In this Chapter, section 3.1 introduces RT instability and gives a brief review of

literature on its effect in laser-plasma interactions. This is followed by an analytical

derivation of the RT growth rate formula as used in laser-plasma interaction studies.

Then section 3.2 discusses some of the physics of radiation losses, including material

opacity and radiative cooling rate. Finally, section 3.3 describes the physics of

the standard laser-plasma hydrodynamic code, followed by description of the 1D
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hydrodynamic HYADES and HELIOS codes.

3.1 Rayleigh-Taylor instabilities

The Rayleigh-Taylor (RT) instability [83,84] is a fluid instability which occurs at

the interface between two fluids, when a high-pressure, low-density fluid accelerates

a lower-pressure, higher-density fluid. This can also occur in plasmas and is of

particular interest at high-energy-density [12]. Perturbations at material interfaces

are susceptible to RT instability growth if the following condition is present,

∇P • ∇ρ < 0 (3.1)

This implies that the pressure P and density ρ gradients are of the opposite sign.

As an example of this (3.1) condition, Figure 3.1 shows pressure (left axis, solid

curve) and density (right axis, dashed curve) profiles at the interface (red-solid

line) between two plasmas. Here, the gradients in pressure and density across the

interface are opposite in direction. If the interface is structured with small amplitude

perturbations, the amplitudes of these perturbations will grow. Spikes of dense

material will penetrate into the lower-density plasma, and while the lower-density

plasma will grow as bubbles into the higher-density plasma [6].

It is often convenient to describe the interface surface of the perturbations as

a Fourier series of the sum of a large number of sinusoidal modes. A standard

treatment of linear theory for single-mode sinusoidal perturbations is considered

in this thesis; a review of which was given by Sharp [16]. The linear theory of

RT for the growth of small single-mode perturbations at the interface between two

incompressible fluids can be expressed as [83,85],

d2ζ(t)

dt2
− γ2RT ζ(t) = 0 (3.2)

34



Figure 3.1: Sample pressure (left axis, solid curve) and density (right axis, dashed
curve) profiles versus position of two-plasmas of different Z subjected to RT instabil-
ity from HELIOS simulation. The red-solid line indicates the interface between the
two different Z materials. The gradients of pressure and density across the interface
are opposite in direction, so at this interface the amplitudes of the perturbations are
susceptible to growth.

where ζ is the spatial amplitude of the single-mode of the perturbation and γRT is the

growth rate of this perturbation. In the linear theory, the growth of perturbations

exponentially increases with time from their initial amplitudes ζ0 which are assumed

much less than the wavelength of the perturbations (ζ0 � λ). When the amplitude

of the growing perturbations becomes comparable to the wavelength, the growth

starts to slow down and the sinusoidal perturbations become asymmetric [12]. This

is the weakly non-linear stage which will not be investigated here.

In the next two subsections, a brief literature review of RT instability in laser-

plasma interaction is given. Then the analytical derivation of the RT growth rate

formula is discussed in a configuration similar to target used in the laser-plasma

experiment to seed RT instability.
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3.1.1 Rayleigh-Taylor instability in laser-plasma interaction

The RT instability was named after work by Rayleigh [83] and later Taylor

[84]. Rayleigh considered only the effect of the gravitational field, whereas Taylor

added the acceleration induced by a pressure gradient, and they both studied this

instability in a linear regime. The RT instability has been excellently reviewed by

Kull (1991) [86]. This review presents a theoretical study of the RT instability

based on potential flow theory for plane and spherical geometries under various

conditions. Haan (1991) [87] studied the coupling modes theoretically using the

perturbation theory solution and stated that the coupling leads to bubbles and

spikes. Haan’s model is only valid during early weakly nonlinear RT instability. A

study of coupling mode of weakly nonlinear the RT instability is also performed by

Ofer et al. (1992) [88] using a 2D hydrodynamic code. They found that mode-mode

interaction affects the amount of mixing.

In the context of high-power laser laboratories, the RT instability can be driven

at very short time scales. For example, a long-pulse high-power laser depositing

its energy in a small region of the target will create low-density and high-pressure

plasma at the front of the target. This plasma is directly next to and accelerating

a high-density and low-pressure plasma. The RT instability growth arises as the

low-density plasma starts to push the high-density plasma. The required time for

the amplitude of the perturbed interface between the two plasmas to increase by a

factor of e (e-folding growth time) is [86],

τe−folding =

√
λ

2πg
≈ 1ns (3.3)

where it is assumed that the wavelength of the perturbation λ is 100 µm and g =

1015 cms−2 [34]. The classical RT growth rate is inversely proportional to (3.3),

i.e. γRT ∝ 1/τe−folding. This formula suggests that for the small perturbations, a

short wavelength grows more rapidly than a long one. The effect of a continuous
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density gradient was added by Lelevier et al. (1955) [89] and subsequently other

physical effects have been included in RT studies depending on the conditions and

circumstances that lead to the RT instability. For example, the process of material

ablation reduces the growth rate. This is discussed by Bodner (1974) [90] and

described by the Takabe formula (1985) [91].

The design of the RT experiment changes depending on the main purpose of the

investigation, for example whether the focus is on the ICF aspects or on astrophysical

objects. In all cases, however, these experiments are challenging as the time scale of

RT production is short and during this time measurement of the perturbation growth

needs recording [16]. The first clear experimental evidence of RT instability using

laser-driven targets was obtained in 1982 by Cole et al. [92]. In this experiment, an

Al target of 3 µm thickness was shot by three laser beams with 32 J and 1.2 ns of

pulse duration. An initial ripple of wavelength 20 µm and amplitude 0.5 µm was

machined at the surface of the target. A Cu target was set behind the Al target

and irradiated by another laser beam to create an X-ray backlighter beam. The

experiment showed that the average growth rate is lower than both the classical and

simulated values. However, the lack of high resolution made it difficult to determine

the real reason for this reduction [12,92].

Of particular importance is the adverse effect of RT instability on the symmet-

ric compression of a spherical target in inertial confinement fusion (ICF) (see e.g.

Lindl [81]). The initial perturbations are seeded either by manufacturing defects of

the outer surface of the spherical target, by the laser or radiation non-uniformities in

“direct” and “indirect” drive approaches respectively. Two types of RT instability

occur in ICF. The first type is the “ablative RT” instability, which occurs at the

early stage of the interaction, i.e. acceleration phase, at the target surface where

part of the heated material is ablated away. The second type is the “classical RT ”

instability, which occurs at the inner surface of the spherical target when it is being

decelerated late in time by the hot, but relatively low density, spot (deceleration
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phase). Nuckolls and Wood (1972) [93] predicted that the heated ablated material

in ablative RT instability will remove a significant fraction of the perturbations.

However, their model proved to be optimistic, as the first numerical investigation

performed by Lindl and Mead (1975) [94] showed that the growth rate is much

higher than Nuckolls and Wood’s prediction. Lindl (1995) [81] describes the RT

instability in context of indirect drive ICF. In 1996, Budil et al. [95] conducted the

first experiment to directly observe and compare these two different types of RT

instability, i.e. ablative and classical RT, in a planar and indirect dirve geometries.

Two different target designs were used for each type of instability. The first was

similar in configuration to that of Cole et al. [92] for ablative RT, while the second

was similar to the configuration in Figure 3.2 for classical RT. Both targets were

irradiated by identical radiation source whilst different perturbation wavelengths

were tested. The measurement of the growth factors showed that the ablative RT

growth rate is lower than the classical growth due to the fact that the heated mate-

rials ablate away from the target surface. The velocity of the ablated material is of

the order of 105 cms−1 with the results described by Takabe [91]

γRT = ±
√

(
Atkg

1 + kL
)− βablatekva. (3.4)

where At is Atwood number, k is the wave number and L is the density scale length.

These parameters are discussed in the next section. Here βablate is an adjustable fac-

tor which depends on the details of the investigation and va is the ablation velocity.

The influence of a finite target thickness in these experiments is negligible. Betti

et al. (1998) [96] estimated the growth rate of ablative RT instability by including

the effects of thermal conduction and the Froude number (a dimensionless num-

ber gives the ratio of ablation velocity to the product of acceleration and ablation

front thickness). They estimated two expressions for ablative RT growth, one for a

large Froude number and one for a small Froude number. In 2000, Lobatchev and

Betti [97] showed that the RT instability in the deceleration phase is not a pure

38



classical phenomenon as mass ablation from the spherical target’s inner surface sig-

nificantly reduces the classical RT growth rate. This mass ablation is caused by the

heat flux from the hot spot towards the inner surface. They estimated the ablation

velocity using standard hot-spot parameters and found this to be of the order of

17 µmns−1 for typical direct-drive National Ignition Facility (NIF) target. Mar-

tinez et al. (2015) [98] successfully managed to image the non-linear bubble-merger

regime at the ablation front for the first time in an indirect drive experiment at

NIF. Furthermore, The RT induced magnetic field is currently an ongoing topic of

investigation, see e.g. [99, 100]. The gradients in temperature and density created

by RT growth instability generate magnetic fields near the unstable interface. The

strength of these fields depends on the hydrodynamic conditions and on the plasmas.

The presence of the RT instability in a short-pulse high intensity laser-solid

experiments system was identified by Lancaster et al. in 2009 [67]. This experiment

was designed to study electron transport by measuring the longitudinal temperature

gradient using a transverse optical shadowgraphy. Bi-layered targets were used, e.g.

a CH-Cu target, where the Cu layer use for Cu Kα imaging. To explain the results,

it was necessary to include RT in the analysis. It was found that the 1 µm of Cu

can rapidly cool by radiation emission dropping its pressure and then be pushed

by the lower-Z CH materials. The influence of the RT effect was inferred from the

temperature measurement. Without including the RT effect into the temperature

calculation, the CH temperature was unrealistically high by a factor of 2 or 3 and

did not agree with other published temperature data [19,101]. The emergence of the

RT instability was unexpected. These findings led Rossall et al. [4] to develop an

experiment to specifically drive the RT instability in a fast electron heated target.

This experiment is computationally studied in Chapter 6.
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3.1.2 The analytical derivation of RT growth rate

The growth rate formula for the classical RT instability in the case of finite

depths for two fluids is derived following the procedure in Landau and Liftshitz [102].

Figure 3.2 shows the sketch of a heavier fluid, with density ρh and depth hh, which

is supported by a lighter fluid, with density ρl and depth hl, in accelerating field g.

The interface between the two fluids along the x-axis has a sinusoidal perturbation

of amplitude z = ζ(x, t). Assume the following conditions to simplify this complex

situation,

Figure 3.2: Schematic of heavier fluid, with density ρh, sits on the top of the lighter
fluid, with density ρl. Both fluids have finite depth denoted as hh and hl. A
sinusoidal perturbation along the x-axis, given by z = ζ(x, t), has been introduced
at the interface between the two fluids.

1. Both fluids are incompressible, which means the density is constant. This

assumption reduces the mass continuity equation to ∇.u = 0, where u is the

fluid velocity, which implies that the volume of both fluids is constant.

2. The flow in both fluids is irrotational, i.e. ∇×u = 0. Thus, the velocity can be

represented as u = ∇φ, where φ is the velocity potential. Since it is assumed

that the fluids are also incompressible, the continuity equation ∇.u = 0 will

satisfy the Laplace equation,

∇2φ = 0. (3.5)

3. The upper heavy fluid boundary at z = +hh and the lower lighter fluid bound-
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ary at z = −hl are stationary at their surfaces. These conditions at the bound-

ary are essential to solve (3.5). The boundary conditions can be expressed as,

∂φh
∂z

= 0 at z = +hh (3.6)

∂φl
∂z

= 0 at z = −hl (3.7)

4. As the flow is incompressible and irrotational, the linearised momentum equa-

tion, including the term of the accelerating field in 1D, can be written after

the integration as,

P = −ρ∂φ
∂t
− ρgz (3.8)

where P is the fluid pressure.

5. At the interface where z = ζ(x, t), the pressure must be continuous across the

interface (i.e. Pl = Ph). So (3.8) is written as,

ρh
∂φh
∂t

+ ρhgζ = ρl
∂φl
∂t

+ ρlgζ (3.9)

6. Assuming the perturbation ζ is small at the interface, i.e. ζ << λ, it is possible

to assume that the vertical component of the velocity uz at the interface where

z = ζ(x, t) is simply the time derivative of this perturbation. This implies,

uz =
∂φl,h
∂z

=
∂ζ

∂t
at z = ζ (3.10)

7. Finally, the fluid velocities must be the same for each fluid at the interface

position at z = 0,

∂φh
∂z

=
∂φl
∂z

(3.11)

Using these conditions, the stability of the interface between the two fluids can be

estimated as follows. The separable solution to (3.5) of the form of propagating
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wave along x-axis is,

φ = f(z) cos(kx− wt) (3.12)

where w is the frequency of the wave, k = 2π/λ is the wave number, λ is the

wavelength of the sinusoidal perturbation and f(z) is the function determining the

variation of the velocity of the wave with depth. Substituting (3.12) into (3.5), gives,

d2f(z)

dz2
− k2f(z) = 0 (3.13)

The solution of (3.13) is,

f(z) = Aekz +Be−kz (3.14)

where A and B are constants. Substitution of this solution into (3.12) gives the

following general solution for the velocity potential,

φ = (Aekz +Be−kz) cos(kx− wt) (3.15)

This solution has to satisfy the boundary conditions defined in (3.6) and (3.7) for

heavier fluid and lighter fluid. This leads to re-writing (3.15) as,

φh = C1 cosh k(z − hh) cos(kx− wt) (3.16)

φl = C2 cosh k(z + hl) cos(kx− wt) (3.17)

where φh and φl is the solution of the heavier fluid and lighter fluid and C1 and C2

are new constants with following values 2Aekhl and 2Ae−khh respectively. Applying

the conditions (3.10) and (3.11) into (3.9) gives,

(ρl − ρh)g
∂φl
∂z

= ρh
∂2φh
∂t2
− ρl

∂2φl
∂t2

(3.18)
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Substituting both (3.16) and (3.17) into (3.18) and (3.11) gives two linear equations,

ω2 =
kg(ρl − ρh)C2 sinh(khl)

ρlC2 cosh(khl)− ρhC1 cosh(khh)
(3.19)

C2 sinh(khl) = −C1 sinh(khh) (3.20)

Multiplying both the numerator and denominator in (3.19) by (C2 sinh(khl))
−1 and

then using (3.20), the dispersion relation that describes the stability of the interface

between the two fluids is,

ω2 =
(ρl − ρh)kg

ρl coth(khl) + ρh coth(khh)
(3.21)

As shown in Figure 3.2 the lighter fluid accelerates the heavier fluid so the initial

perturbations will grow. Multiplying both numerator and denominator of (3.21) by

ρh + ρl and then taking the square root, the rate of this growth is,

γRT = ±
√
Atkgf (3.22)

where where At = (ρh − ρl)/(ρh + ρl) is the Atwood number and f a fluid factor

which accounts for the finite thickness of materials,

f =
(ρh + ρl)

ρl coth(khl) + ρh coth(khh)
(3.23)

In the laser-produced plasma context, a planar target has a configuration similar

to Figure 3.2, however the situation is more complex as the target is subject to

expansion leading to a density gradient at the interface. This expansion can reduce

this growth as illustrated in Figure 3.3. The density gradient scale length L is

defined [85],

L =
ρavg

|(∂ρavg
∂z

)|
= ρavg|

∂z

∂ρavg
| (3.24)
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where ρavg is the density at the interface. Thus the density is reduced by a factor of

e−kL. Using Taylor expansion on this factor and ignoring higher orders terms gives,

e−kL =
1

(1 + kL)
for kL << 1 (3.25)

Including (3.25) into (3.21) with re-arrangment gives the growth rate γRT ,

γRT = ±

√(
Atkg

1 + kL

)
f (3.26)

Figure 3.3: The density profile at the interface between the two fluids. The dot-
dashed green curve shows the initial density profile while the solid blue curve shows
the density gradient profile after the target expansion. L refers to the density gra-
dient scale length (3.24).

As seen (3.26), one of the roots is positive, which indicates the growing pertur-

bations. Both density gradient L and finite thickness of the fluids f reduce this

growth. In the case that At becomes negative, this would imply that a perturbation

oscillates around its initial amplitude. Therefore, At needs to be of a positive order

to make the perturbation grow.
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In the case of very deep fluids (i.e. khl, khh >> 1 ) and ignoring the effect of a

density gradient, (3.26) reduces to the classical RT form γRT = ±
√
Atkg. In the work

of Chapter 6, the growth rate of the form of (3.26) is used as this form best represents

the situation of the RT instability in non-ablating laser-plasma experiments [85,95].

There are other terms which can be added into (3.26) which will reduce the

RT instability growth. These are surface tension, viscosity and ablation. However,

in the scope of the laser-plasma experiments, both surface tension and viscosity are

negligible since the plasma acceleration is high [12,103]. Typically the acceleration is

in the order of 1015 cms−2 in a long-pulse laser experiment [34] and potentially much

higher for high intensity experiments. Nevertheless, these effects may be important

at very short wavelength [12]. Although ablation has a significant stabilising effect

in for example ICF capsules [81], it will not significantly contribute if the target has

a configuration similar to Figure 3.2.

It is worth mentioning that in the above derivativation, the fact that plasma

is a compressible fluid is not taken into account. The debate of the role of com-

pressibility in RT growth has not been determined yet [104]. However, (3.26) shows

good agreement with many laser-plasma experiments, for example the experiment

of Ref. [95], which addresses whether compressibility stabilises or destabilises the

growth. The conclusion is that the effect is relatively small [12]. Furthermore, in

RT unstable situation in high energy density matter radiation loss can act to sta-

bilise the instability growth by reducing the pressure gradient. In the experiment

described latter in Chapter 6, radiation losses lead to a RT stable configuration be-

coming unstable (by reversing the pressure gradient) and then back to a RT stable

through reversing the pressure gradient again. Thus, Radiation can modify the RT

growth rate via the changing the pressure gradient. The RT stabilisation due to

strongly radiative shocks is discussed by Huntingdon et al. [105].
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3.2 Radiative losses in dense plasma

The plasma hydrodynamics can be strongly influenced by radiation transport.

Within the plasmas, the photons can interact with bound and free electrons by

absorption, emission and scattering processes. This interaction involves exchanges

of momentum and energy. Therefore, the methodology of calculating opacity and the

inclusion of atomic processes and radiation transport into hydrodynamic simulation

codes are essential to compute accurately the hydrodynamics of the plasmas. The

exact analytical solutions to the complete form of the non-linear radiative transfer

equation, which is a kinetic equation for photons [38], are difficult to obtain since the

radiation field is a function of position, time, energy and propagation angle [38,106].

Hence, the equation is approximated using a multi-group diffusion approach [107].

This method allows the radiative transfer equation to be solved within a specific

range of photon frequency domain. Good approximation is obtained when the mean

free path of the photons λν is very short compared to the hydrodynamic length

scales [38]. The basic idea of the multi-group approach is to split the frequency

spectrum into a finite number of groups. So the detailed spectrum and opacities are

averaged in separate groups and the resulting opacities are given as group-averaged

opacities [107].

The plasma emits radiation via free-free, bound-free and bound-bound emission

processes. The free-free (bremsstrahlung) and bound-free (radiative recombination)

transitions result in a continuous emission spectra while the bound-bound (radiative

de-excitation) transition results in line spectra. The emitted radiation from the hot

plasma is an important diagnostic tool of the plasma as it contains information about

the plasma temperature and density [6, 108]. During the hydrodynamic simulation

relating to the work of Chapter 6, the effect of accurate theoretical opacities data

has great impact on predictions of radiative cooling, which in turn affects target

hydrodynamics and the growth of the RT unstable perturbations. The following

subsections cover opacity and radiative cooling in more depth.
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3.2.1 Opacity

The opacity is a measure of the extent to which a plasma is opaque or trans-

parent to radiation due to absorption (or emission) and scattering processes. When

radiation with frequency ν, travels a distance s in the direction z through plasma

of mass density ρ, the spectral radiation intensity Iν is [6],

Iν = Iν0 exp

[
−
∫ s

0

ρ κν dz

]
(3.27)

where Iν0 is the initial spectral intensity at s = 0, κν = µν/ρ is opacity and µν

is the absorption coefficient. The spectral intensity Iν is the transported energy

through area dA during time dt and frequency dν [38]. The ratio of Iν to Iν0 gives

the transmission Tν [11] while the integral in (3.27) gives the optical depth τν . If

τν >> 1, the plasma is optically thick which means that the mean free path of the

photons (λν) is much less than the plasma thickness while if τν < 1, the plasma is

optically thin and λν is comparable or greater than the plasma thickness. However,

the optical depth τν varies with frequency which means that the plasma may be

optically thin at one wavelength and optically thick at another [6]. The mean free

path of the photons λν is given by,

λν =
1

ρ κν
(3.28)

The λν gives the average distance of the photon flight into the plasma before it

becomes absorbed or emitted.

Opacity depends highly on the composition and conditions (i.e. temperature

and density) of the plasmas. There are various processes that contribute to the

total absorption (or emission) of photons, i.e. the free-free, bound-free and bound-

bound processes [108].

Two main approaches to the spectral averaging of opacities are the averaged

Planck mean κ<ν>p and the averaged Rosseland mean κ<ν>R opacities. The former
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normalises the Planck blackbody as the weighting function then averages the opacity

values directly, while the latter uses the temperature derivative of the Planck curve

as the weighting function then averages the inverse of the opacities. The Planck

mean opacity yields correct values for optically thin plasmas, and the Rosseland

mean in the case of optically thick. Both methods are defined respectively, as [109],

κ<ν>p ≡
∫∞
0
κνBνdν∫∞

0
Bνdν

. (3.29)

κ<ν>R ≡
∫∞
0

1
κν

∂Bν
∂T
dν∫∞

0
∂Bν
∂T
dν

. (3.30)

where κν is the monochromatic opacity and Bν is the normalised Planck black-body

function.

Creation of theoretical opacity data needs accurate calculation of the radiative

properties of plasmas. This is difficult due to the large amount of atomic data

that has to be taken into account such as transitions, populations and photoioni-

sation cross-sections as well as spectral line shapes [110]. Considerable effort has

been made to generate theoretical opacity data such as TOPS [111], IMP [112] and

PROPACEOS [113].

In this thesis, two different types of opacity are used in the hydro-codes: opacity

that is based on the screened hydrogenic atomic model in HYADES [114] and tab-

ulated PROPACEOS opacities [113] based on the detailed configuration accounting

(DCA) atomic model. In the screened hydrogenic atomic model, the wave function of

each electron is calculated as a hydrogen-like atom. The electric field of the nucleus

determining the orbit of each electron is shielded by the other electrons’ charge. A

set of screening constants is usually used to mimic the effect of the other electrons.

Thus, the accuracy of the model depends on these screening constants [115]. In the

context of opacity, the main problem is that this model is missing a description of

the line splitting of n-shells into n, l and j states. This splitting occurs for single

electron states due to the relativistic fine structure. These configurations need to be
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taken into account in the opacity for intermediate and high-Z materials [12]. The

splitting has recently been included in a screened hydrogenic model [116]. On the

other hand, the detailed configuration accounting (DCA) atomic model provides

details of different excitation states and occupations in the plasma. These details

include the sub-shell levels, continuum lowering and spectral line transport [112].

In this model, the spin-orbit interactions (i.e. j-j coupling) are included in opacity

calculations. This is time-consuming in the case of high-Z materials due to the high

number of levels which need to be computed. So the results are tabulated rather

than calculated inline with hydrodynamic simulations.

Both of the above atomic models can be calculated in local thermodynamic equi-

librium (LTE) or non-LTE models. The assumption of LTE simplifies the solution

of rate equations by considering that the electrons and ions are in equilibrium while

the photons are not. There are two conditions that have to be satisfied in order to

assume that the plasma is in LTE. Firstly, the plasma needs to be dense enough so

that the collisional processes dominate over the radiative processes and secondly, all

transition processes are in detailed balance, i.e. each transition is balanced by its

inverse [6].

Both opacity models are compared to TOPS opacities later in Chapter 6 [111].

TOPS opacity is calculated using the LEDCOP code which is based on Detailed

Term Accounting (DTA) atomic model. This model includes each possible transi-

tion and the details of the line shapes that arises from LS coupling with an atom.

Therefore, it is computationally expensive and usually restricted to the study of

lighter elements.

3.2.2 Radiative cooling rate

The radiative cooling rate is the rate of loss of thermal radiation by inelastic

collisions with atoms, ions or molecules [117]. The cooling rate QEmis in terms of
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multi-group opacities is given as [118],

QEmis =
8π(kBTe)

4

c2h3

Nf∑
gi

κνpgi
xgi+1∫
xgi

x3

ex − 1
dx

 , x =
hν

kBTe
(3.31)

where gi is the photon frequency group index, Nf is the number of frequency groups

and κνpgi is the mean Planck opacity for frequency group gi that defined in (3.29).

However, equation (3.29) can be written as function in emissivity ην in relation

(3.31) as [118],

κνpgi =
1

ρ

xgi+1∫
xgi

ηνdx

xgi+1∫
xgi

Bν(T )dx

(3.32)

where ρ is the density and ην is the emissivity which depends upon temperature

and degree of ionisation [34]. The emissivity follows Kirchhoff relation, i.e. ην =

µνBν(T ), only under the assumption of LTE. The cooling rate in (3.31) is in units of

energy per unit mass per unit time. As shown in (3.31), radiative cooling is strongly

dependent on temperature, which means that radiative cooling has a significant role

in hot plasmas. Also, it depends on the opacity where different atomic processes are

included. At high temperature, different ionisation levels contribute to the opacity

and line radiation from different ions may significantly contribute to the opacity and

emissivity. This emphasises the importance of inclusion the detailed atomic physics

in hydro-codes although accounting for the details of these effects is challenging,

especially for high-Z materials [118].

In a dense plasma, cooling occurs through ionisation, excitation and collisional

processes, especially the three-body recombination collisional process. In this pro-

cess, two free electrons enter into an ion sphere at the same time. One of them

is captured by the ion while the other carries away the extra energy. Since this

process requires the presence of two electrons, its rate is high in the dense plasmas

and the density factor of this process contains n2
e which corresponds to the two
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electrons [108]. Both temperature and density decrease rapidly with time and the

target cools adiabatically due to its expansion into the vacuum [119]. As the den-

sity drops, the three-body recombination rate decreases. However, the emission and

cooling can still have strong collisional dependence through collisional excitation

and de-excitaition processes, which both scale linearly with electron density ne [30].

3.3 Laser-plasma hydrodynamic codes

The standard laser-plasma hydrodynamic code simulates a plasma as two or three

temperature quasi-neutral plasma and comprises a set of hydrodynamic equations

as follows [8],

∂ρ

∂t
+∇.(ρu) = 0 (3.33)

∂ρu

∂t
+∇.(ρuu) +∇P − Fp = 0 (3.34)

∂εe
∂t

+∇.
[
u(εe + Pe) + qe −

Qei

γe − 1

]
= ΦL +QAbs −QEmis (3.35)

∂εi
∂t

+∇.
[
u(εi + Pi) + qi +

Qei

γi − 1

]
= 0 (3.36)

Equation (3.33) is the continuity equation, where ρ and u are the mass density and

velocity respectively . Equation (3.34) is the momentum equation, where P is the

pressure and Fp is the ponderomotive force which is defined in (2.10). This term,

which presents the way of laser-plasma coupling, acts only on the electrons since they

respond effectively to the electric field of the laser. However, most hydrodynamic

codes not include Fp and the laser-plasma coupling is due to inverse bremsstrahlung.

The energy equation is usually written twice; once for electrons (3.35) and once

for ions (3.36), subscripts e and i respectively. This is to allow for thermodynamic

imbalance between electrons and ions and to heat to a two temperature model. One

for electron and one for ions. The energy density εe,i is the sum of internal and
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kinetic energies,

εe,i =
Pe,i

γe,i − 1
+

1

2
ρu2 (3.37)

where γe,i is the number of degrees of freedom for each species.

The terms qe,i in (3.35) and (3.36) describe the heat flow inside the plasma [6],

qe,i = −κeff∇Te,i (3.38)

where,

κeff = min

{
κe,i, f

qe,if
|∇Te,i|

}
(3.39)

where κe,i is the thermal conductivity coefficient for electrons and ions, respectively,

qe,if is the free-streaming heat flux and f is the flux limit multiplier; the typical value

in the case of high laser intensity is in the range of 0.03 [120] to 0.1 [121] although

for NIF, a flux limiter of 0.15 seems to apply [122]. Equation (3.39) implies that the

heat flow is limited and corrected. This is due to the fact that the classical theory of

Spitzer and Harm [34] overestimates the heat flow in the case of steep temperature

gradient. Qei is the electron-ion heat exchange rate [8],

Qei =
2me

mi

nekB(Te − Ti)
τei

(3.40)

where τei is the inverse of electron-ion collision time ν̄ei which is defined in (2.20).

ΦL in (3.35) is the absorbed laser flux (ΦL = βIL) which defines another way

of laser-plasma coupling [8]. The β is the fraction of the laser energy coupling to

electrons and IL is the laser intensity. QAbs and QEmis are the radiation energy

absorption and emission respectively [113] which usually computed using multi-

group diffusion approach with tabulated opacities.

The above set of equations - (3.33) to (3.36) - is closed via an equation of state

which connects pressure and temperature. If the plasma is at low densities, the

ideal gas equation of state is used, (i.e. P = kBnT ), while if the plasma is at high
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densities, the Thomas-Fermi statistical model is used. Typically, in high-energy

density simulations, a tabulated equation of state is used for each material [8].

Description of the hydrodynamic codes that have been used in this thesis is given

in the next subsections.

3.3.1 HYADES

HYADES is a 1-D Lagrangian radiation-hydrodynamic code written by Jon Lar-

son [114]. As a Lagrangian code, the mesh moves with the plasma, which means that

the mass is fixed within each cell. This helps to maintain the boundaries between

the different materials which is useful in tracking the interface between them. The

code can set up three different geometries; planar, cylindrical and spherical. The

plasma is treated in the fluid approximation, in which electron and ions are treated

separately; their velocities are described via Maxwell-Boltzmann statistics and the

radiation is only coupled to the electrons. Temperature are calculated for electrons,

ions and radiation field.

Two approximation methods are used in the radiative energy transport package;

a gray diffusion approximation and a multi-group diffusion approximation. In the

former, the photons have a pure Planckian distribution and the opacity is extracted

from the SESAME data library. The multigroup model allows for a small departure

from Planckian radiation distribution. Opacity data is generated using an internal

algorithm based on the screened hydrogenic model and includes some atomic shell

and simple x-ray line effects. The limit definition of radiation group is used to

generate opacity data, a specific number of spectral groups with a minimum and

maximum range of energy needs to be assigned. In both methods, the assumption

of the type of spectral averaging of opacities (Planckian mean or Rosseland mean)

is needed.

Different ionisation models are included in the code, starting with the Saha, LTE

average-atom, non-LTE average-atom, Thomas-Fermi and fully stripped models. In
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addition, the code has several ways to deposit the energy in the material such as

lasers, radiative fluxes and other sources.

3.3.2 HELIOS

HELIOS is also a 1D Lagrangian hydro-code and was developed by Prism Com-

putational Sciences Inc [113]. The hydrodynamic model and geometries are similar

to HYADES. The laser energy is deposited by the inverse bremsstrahlung model.

HELIOS differs from HYADES that both the equation of state and opacity data

are obtained from the PROPACEOS code (Prism OPACity and Equation Of state

code). The contributions of the bound-bound, bound-free and free-free processes to

the multi-group opacity are computed using the DCA model. The absorption and

emissivity are determined from the atomic level populations. Although using the

DCA model for multi-group opacity calculations is computationally expensive, es-

pecially for intermediate atomic number such as Cu, as thousands of atomic energy

levels are computed, it provides an accurate opacity data which is vital for radia-

tive cooling calculation as shown in (3.31). The exchange of radiative energy with

plasmas such as the radiative cooling rates QEmis, defined in (3.31), and QAbs are

both computed using Planckian opacities while the transport term in the radiation

diffusion equation is computed by using Rosseland mean opacities [123].

It worth mentioning that fast electron transport is not included in HYADES or

HELIOS, all fast electron modelling in this thesis was done with the ZEPHROYS

code (section 2.4). The temperature that results from the fast electron heating are

used as initial inputs to both hydrodynamic model.

3.4 Summary

This chapter has given the background to RT instability and radiative losses in

dense plasmas. The RT instability has been introduced, followed by a brief literature
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review of RT instability in laser- plasma interaction. The RT growth formula has

been derived and discussed in the context of laser-plasma interaction. The radiative

losses in dense plasmas are discussed, including opacity and radiative cooling rates.

Finally, the standard laser-plasma hydrodynamic code has been discussed with an

introduction to the two hydro-codes, HYADES and HELIOS, which were used to

study the RT experiment discussed in Chapter 6.
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Chapter 4

Angular dispersion in fast electron

heated targets

4.1 Introduction

This chapter includes a description of angular dispersion of a fast electron beam.

Angular dispersion affects the longitudinal penetration of the fast electrons and

target heating. This effect is compared to the electric field inhibition [21] which also

limits electron beam penetration into extended targets. As presented in Chapter

2, multi-MeV fast electrons are generated at intensities above 1018 Wcm−2 due

to the coupling of a significant fraction of laser energy to a dense target. The

fast electrons set up a huge electric field close to the target surface due to charge

separation. This field confines significant number of electrons to near the target

surface [21]. It is stated in Section 2.3.2 that the fast electrons are transported

into the target once they are neutralised by background electrons. However, the

background electrons move slowly compared to the fast electrons and undergo a lot

more scattering and collisions (see Section 2.3.3). This limits their mobility [47].

Further, the ability of the plasma to provide background electrons is restricted by

time dependent target ionisation and conductivity [21, 124]. If there is a deficiency

in the number of background electrons needed to balance the fast electrons, an
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inhibition results [21, 45,70] and is known as “ electric field inhibition”.

Another phenomenon limits electron penetration of a target, this is the new

material set out in this chapter, and is angular dispersion. A comparison is made

between the effect of angular dispersion and electric field inhibition, this shows

that angular dispersion more strongly impedes fast electron penetration and impairs

target heating. Further, the angular dispersion is significant even under extreme

control of the fast electron spreading.

This chapter begins with a discussion of factors that hinder fast electron penetra-

tion and target heating (Section 4.2), followed by details of how the transverse fast

electron spreading can be controlled (Section 4.3). Then an analytical and numeri-

cal investigation of the angular dispersion of the fast elections is presented (Section

4.4). A numerical comparison of the electric field inhibition and angular dispersion

is then made (Section 4.5). Finally, the results of the chapter are discussed (Section

4.6).

4.2 Fast electron penetration and target heating

Section 2.3.4 states that the main mechanism of target heating is Ohmic heat-

ing. In this heating mechanism, the resistive background electron current heats the

plasma as it flows to balance the opposite fast electron current. Due to this balance,

the heating rate can be determined by the fast electron current density,

∂Tb
∂t

=
2

3kBnb
ηj2f . (4.1)

The full derivation of (4.1) is given in Section 2.3.4. Clearly, this heating rate

depends on the fast electron density (since jf = enfvf ). Therefore, if the fast

electron density is reduced, the heating rate will reduce. Thus, the target heating

depends on

• the ability of the fast electrons to penetrate a target; and

57



• the production of enough background current by target ionisation to satisfy

current balance (Section 2.3.2).

Evans et al. [19] show that the resulting background temperature can reach 500 eV

within a few picoseconds. This rapid heating is desirable in many applications, such

as investigations into the atomic physics of dense plasma [125], the Fast Ignition

approach [31] and the application describe in Chapter 6. There are three well-

studied factors which impede fast electron penetration and consequently impair

target heating. These are electric field inhibition [21], filamentation [24] and fast

electron spreading [22]. Each of these factors affects the target heating in a specific

direction with respect to the fast electron beam axis, as shown in Figure 4.1.

Figure 4.1: The mechanisms that affect the fast electron penetration with respect to
the fast electron beam axis and target dimensions. The fast electron spreading and
filaments reduce the fast electron penetration in the transverse directions (width and
thickness in the Figure) while the fast electron spreading and electric field inhibition
reduce the penetration in the longitudinal direction.

The electric field inhibition is greatest in the longitudinal direction (x in Figure

4.1), where the fast electrons move along the beam axis. The reason for it being

greatest on-axis is that the laser intensity at this point would be expected to lead

to higher current density [39]. This effect was identified by Bell et al. [21] and
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experimentally demonstrated by Pisani et al. [70]. Using (2.40) with ignoring the

magnetic field, if one assumes, for example, the fixed resistivity of Al η ≈ 10−6 Ω.m

and jf ≈ 1017 Am−2, electric field strength can reach E ≈ 1011 Vm−1. Thus, the

electric potential energy is about 1 MeV over a distance of 10 µm. This amount of

energy is large enough to confine a significant number of the fast electrons that have

a lower energy than this. This causes a rapid drop in the fast electron density with

depth in the target.

Filamentation [24] occurs in the transverse directions (y and z in Figure 4.1).

In these directions, the fast electrons move out of the beam axis. As discussed in

Section 2.3.6, the filamentary structures occur due to transport instabilities. When

small perturbations arise in the transverse magnetic field, the magnetic force bends

the opposing currents, which eventually leads to the radial break-up of the fast

electron beams into filaments. Consequently, the target is heated non-uniformly in

these filaments. This heating is observed in the work of Chapter 6.

Fast electron spreading or divergence affects the fast electron penetration in the

transverse directions and longitudinal direction as shown in Figure 4.1. The fast

electrons spread outwards transversely due to several complex mechanisms which

include scattering with ions and background electrons [45] and influence of the mag-

netic field near the critical surface [38]. Experimental evidence [22, 23] show that

the fast electrons propagate in solid targets with large divergence angle usually

characterised by the half-angle of divergence θd between 30◦ [23] and more than

50◦ [22]. Although there is as yet no full characterisation of this angular spread, the

experimental measurement [23] states that the divergence angle increases with the

laser intensity. This makes the fast electron beam radius size grow to several times

the laser spot size [22]. The control of fast electron divergence has been subject

on many studies, e.g. [126, 127], including the work by Robinson and Sherlock [60]

on using the structured resistive-guiding. In the next section, control of the fast

electron spreading is introduced which differs from the structured resistive-guiding
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concept. This control of the fast electron spreading allows clear observation of the

considerable impact of the angular dispersion on the longitudinal heating.

4.3 Controlling the transverse spreading of fast

electrons

The fast electron divergence increases with the increased transverse dimensions

of the target. Control of the fast electron divergence is possible using a narrow

or wire shaped target under condition that the width and thickness of the target

are comparable to the laser spot size. This gives excellent fast electron transverse

confinement. Figure 4.2 shows a square cross-section target. Wire targets were

experimentally used in [128,129] as nail-wire target and cone-wire target respectively.

The nail head and cone aided laser coupling to the target. In this section, the

spreading of the fast electrons is controlled from the early stages of the interaction

and a high degree of laser pointing stability is assumed.

Figure 4.2: Wire-like target geometry, w refers to the width, t to the thickness and
L to the length.

Fast electron transverse confinement was explored using ZEPHYROS. An Al

wire-like target was designed using two different target dimensions; 200×27×27 µm3

and 200 × 15 × 15 µm3. These target dimensions are represented by L × w × t
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respectively in Figure 4.2. The ratio of the laser diameter spot size to the w × t

dimensions was 1:3 for 200 × 27 × 27 µm3 and 2:3 for 200 × 15 × 15 µm3, where

the laser spot radius size, rspot, was 5 µm. The cell size of the grid was 1 µm in

each direction with 800 macroparticles injected into each cell. This helps to reduce

the statistical noise. The convergence in ZEPHYROS is discussed in Appendix A.

The laser irradiation intensity was 1.27 × 1020 Wcm−2 in a 500 fs duration pulse.

The temporal profile of the fast electron beam is top-hat shaped and the transverse

profile is ∝ exp[− r2

2r2spot
]. It was assumed that 30 % of the laser energy coupled

to the fast electrons. The fast electron beam mean energy was 2.7 MeV. The

background temperature was set initially to 1 eV everywhere. The resistivity is

described by the Lee and More model. The minimum mean free path was taken as

5rs, where rs is the interatomic spacing (Section 2.3.3). The fast electron angular

distribution is uniform over a solid angle defined by the input of a divergence angle

θd. Reflection boundary conditions were implemented. The main parameters, which

are varied in the simulations, are summarised below in Table 4.1. Divergence angles

of θd = 50◦−60◦ are used to match experimental observations at laser intensity that

exceed 1020 Wcm−2 [22].

Target target dimension (µm3) θd (degree)
(L× w × t)

A 200× 27× 27 50
B 200× 27× 27 60
C 200× 15× 15 60

Table 4.1: Wire-like target dimensions and the half-angle divergence angle that used
in each simulation.

Figure 4.3 shows a spatial plot of the background temperature along the x-

direction at 700 fs for Targets A, B and C respectively. The temperature map uses

a logarithmic colour scheme with log10(Tb). The fast electron spreading is controlled

in the transverse directions (y and z) and results in uniform transverse temperatures.

Target C shows a higher background temperature compared to Targets A and B,

since the ratio of the laser diameter spot size to the transverse directions is higher.

61



Figure 4.3: Plots of background temperature (eV) log10 along the x-direction at
700 fs (X-Z Slices). The longitudinal (x) and transverse (z) axes are defined in
Figure 4.2. The half-angle divergence of Target A is 50◦ and that of Targets B and
C is 60◦.

On the other hand, even with this control of the spreading, there is a clear non-

uniform heating with the depth in all three targets (x-axis in Figure 4.3). This

non-uniformity of heating is seen in experiments as temperature gradient. One of

the reasons for this gradient is the surface electric field inhibits penetration of the

fast electrons. Notice the slight differences in the temperature gradients of Targets

A and B. The simulation conditions of Targets A and B are identical, with the

exception of the 10◦ difference in the divergence angle. This implies that the fast

electron half-angle divergence has a role in the fast electron penetration, even with

the target geometry controlling the transverse spreading. Figure 4.4 shows a line-out
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of the background temperatures in eV of Targets A and B along the x-direction for

40 ≤ x ≤ 200 µm at 700 fs. The most important point is that Target A is heated

slightly more than Target B simply by reducing θd. This suggests that the fast

electron penetration in Target B is reduced longitudinally due this slight difference

in the angle compared to Target A. The electron density and current density are

identical at injection. The electric field inhibiting electron penetration is the same

in Targets A, B and C. The reduction of heating in Target B is due to the reduction

in fast electron density across the target depth due to angular dispersion. This

assumption is discussed in the following section.

Figure 4.4: Line-out of background temperature in the unit of eV from Targets A
and B along the x-direction for 40 ≤ x ≤ 200 µm at 700 fs. The dashed blue line
for Target A at 50◦ and the solid red line for Target B at 60◦.

4.4 Angular dispersion of the fast electrons

All the electrons in the fast electron beam are relativistic and move with speed

close to c. The divergence of the fast electron beam means that fast electrons

acquire transverse and longitudinal velocity spread between c and c sin θd and c cos θd

respectively. This causes an increase in the length of the fast electron beam with
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Figure 4.5: Schematic of Gaussian-like distribution function for particles at t=0
(blue bins). After the period of time δt , each particle gains a longitudinal velocity
spread c cos θ (red bins) which disperses the particles along of the path.

time and a spatial dispersion results from this velocity spread. The result is a drop

in the fast electron density along the x-axis. Figure 4.5 shows a demonstration of

the angular dispersion. Initially, a group of particles has a Gaussian distribution

shown as blue bins. After a short period of time δt, this group is dispersed (red bins)

as each particle acquires its own velocity and angle while moving a certain distance.

Because of this, the length of the group increases with δt. This is analogous to what

happens to a fast electron beam with a longitudinal velocity spread. The length of

the fast electron beam increases in the longitudinal direction with time due to spatial

dispersion caused by the velocity spread. In the next subsections, the effect of the

angular dispersion on the target heating is discussed analytically and numerically.

4.4.1 Analytical model

Figure 4.6 shows a schematic of the fast electron trajectory inside the wire-like

target. cτ0 is the length of the fast electron beam and ct is the propagation distance

of the fast electron beam. As the fast electrons travel with θd due to the angular

spread, the difference in travel between the fast electrons travelling with θd and the
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Figure 4.6: Schematic of fast electron trajectory inside the wire-like target in the
x-z plane showing the difference in travel along the x direction. cτ0 is the length
of the fast electron beam at injection and ct is the propagation distance the fast
electron beam.

others travelling in the x-direction as shown in Figure 4.6 is ,

δx = ct(1− cos θd) (4.2)

Consider the spatial dispersion induced by the angular spread of the fast electrons

θd. Let us denote the effect of the dispersion by α. The dispersion increases the fast

electron beam duration, i.e. τ0 → ατ0. The length of the fast electron beam with

dispersion is cτ0 + δx. Thus, the dispersion after a given time t is,

α = 1 +
t

τ0
(1− cos θd) (4.3)

and the dispersion at a given depth is,

α = 1 +
x

L0

(4.4)
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where,

L0 ≈
cτ0

1− cos θd
(4.5)

L0 is the fast electron penetration depth due to the beam divergence. Larger depth

L0 indicates more uniform heating. Clearly from (4.5), more uniformity in heating

can be obtained with a lower divergence angle θd or a larger beam duration τ0. This

suggests more uniform heating using a 1 ps rather than a 100 fs laser pulse.

However, the dispersion decreases the fast electron density according to flux

conservation, i.e. nf → nf/α, and this affects the Ohmic heating as follows. The

Ohmic power heating per unit volume has been previously defined in (2.30) as,

Pheat = ηj2f = ηe2c2n2
f (4.6)

where η is a fixed resistivity. Due to the dispersion, (4.6) becomes,

Pheat =
ηe2c2n2

f

α2
(4.7)

This implies that the dispersion has a quadratic effect on the heating power. This

means that the overall heating rate falls with the dispersion. Thus, although the

dispersion increases the fast electron beam duration and as a result the beam can

heat the target for longer, there is also a strong reduction in the fast electron density

due to this effect.

4.4.2 Numerical demonstration

The effect of angular dispersion on the fast electron density is numerically inves-

tigated with parameters for Target A (see Table 4.1 Section 4.3), and with a beam

duration and divergence angle of 100 fs and 30◦ respectively. The simulation in-

cludes electric field inhibition. Figure 4.7 shows a time sequence of the fast electron

density. The increase in the longitudinal length of the fast electron beam over time
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is seen in Figure 4.7 (a) - (e). There is a corresponding decline in the fast electron

density as the beam increases in the length and as time progresses. The reduction

of the fast electron density in the longitudinal direction is due to both electric field

inhibition and the angular dispersion. Figure 4.7 shows that the dispersion becomes

significant after the end of beam duration of 100 fs, as suggested by (4.3). In ad-

dition, the uniform distribution of the fast electron beam over a solid angle of 30◦

is shown in Figures 4.7 (a) and (b). In this distribution, more fast electrons at the

edge of the cone than at its centre. The beam loses its original uniform distribution

shape over time as shown in Figure 4.7 (b)-(e). This change in the shape of the

injected beam provides another evidence of angular dispersion.

4.4.3 Effect of the divergence angle

Al wire-like targets in the Target A geometry were simulated with θd = 30◦ and

50◦. The beam duration in both simulations was 500 fs. Figure 4.8 shows Y-Z slices

of the fast electron density across x = 30 µm for θd = 30◦ at 700 fs and 1500 fs in (a)

and (b) respectively and for θd = 50◦ at 700 fs and 1500 fs in (c) and (d) respectively.

The fast electron density map uses a logarithmic colour scale. Due to sampling at

x = 30 µm, it is possible to see electron ring-like structure for small divergence,

e.g. 30◦, to larger divergence, e.g. 50◦, this is washed out by reflections off target

surface. This is shown in Figures (a) and (c) 700 fs for 30◦ and 50◦ respectively.

Furthermore, it is apparent that fast electron density is more slowly dispersed with

30◦ compared to with 50◦ as suggested by (4.4) and as shown in Figures 4.8 (b) for

30◦ and (d) for 50◦. The fast electron density is higher at 30◦ than at 50◦ at the

same time of 1500 fs.

4.4.4 Scale of the fast electron penetration

Equation (4.5) indicates that larger fast electron penetration depth L0 implies

higher temperatures to greater depth. This increased heating can also be obtained
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Figure 4.7: log10 fast electron density in (m−3) at (a)100 fs, (b)300 fs, (c)400 fs,
(d)500 fs and (e)700 fs respectively along x-direction of simulation box.
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(a)700 fs (b)1500 fs

(c)700 fs (d)1500 fs

Figure 4.8: (a) Z-Y Slices of the fast electron density across x = 30 µm log10 in
(m−3) for θd = 30◦ and 50◦. Figures (a) and (b) for 30◦ at 700 fs and 1500 fs
respectively whilst Figures (c) and (d) for 50◦ at 700 fs and 1500 fs respectively.

with a lower divergence angle. Based on (4.5), the penetration depth can reach

L0 ≈ 420 µm and L0 ≈ 300 µm for Targets A and B respectively. However, these

penetration depths exceed the longitudinal size of the target which is 200 µm, but

despite this the heating in Figure 4.3 for Targets A and B is non-uniform. The reason

for this is that the penetration depth in (4.5) does not take into account the effect

of the reduction in the fast electron density due to the dispersion. This reduction is

significant as suggested by (4.7). In addition, there is electric field inhibition which

also has a role in the reduction of fast electron density across the depth in Targets A

and B. Thus, the penetration depth (4.5) exceeds the longitudinal size of the target

due to not including other effects that reduce the fast electron density. Both angular
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dispersion and electric field inhibition are responsible for the significant temperature

gradients and this is discussed later in Section 4.5.

4.4.5 Effect of angular dispersion on fast electron density

To precisely assess the role of angular dispersion on fast electron density, three

simulations were performed using Target A geometry. All the simulations are, with

θd = 50◦ or θd = 0◦, without including the magnetic field evolution since self-resistive

magnetic field can cause a pinch for the fast electrons near the injection region. How-

ever, the electric field inhibition was included in these simulations and fast electron

beam duration was 500 fs and the mean fast electron energy was 2.7 MeV. Two

simulations, with θd = 50◦ and θd = 0◦, ignored the effect of the acceleration due to

the Lorentz force and the effects of scattering and drag collision. The third simu-

lation is with θd = 0◦ but with including the effects of the Lorentz force, scattering

and drag collision. The purpose of the third simulation is to assess the role of these

latter effects on the fast electron density along x-direction. The results are shown

in Figure 4.9. This Figure shows the behaviour of fast electron densities along the

x-direction plotted using a logarithmic density scale. Generally, there is a reduction

in the fast electron density when θd = 50◦ is used. The difference in this reduction is

70% at x = 50 µm compared to θd = 0◦ (black dot-dashed line-Test 1). Some of the

fast electrons are confined near the injection region at x = 10 µm in all simulations.

This is due to the electric field inhibition.

The electric field potential energy ∆Φ was estimated in these simulations with

respect to the front target surface at 500 fs using,

∆Φ = e

∫ 160

1

Edx (4.8)

where e is the electron charge and x = 160 µm is the maximum distance that the

fast electrons reach at 500 fs. The integration of (4.8) over x was performed using
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Figure 4.9: Plot of the fast electron densities at 500 fs in the longitudinal direction
using Target A geometry. The black dot-dashed line shows the densities when
θd = 0 (Test 1) and the red solid line when θd = 50◦. Neither simulation includes
the resistive magnetic field, the Lorentz force or drag and scattering. The green
dashed line shows the density when θd = 0 where Lorentz force, drag and scattering
are included (Test 2). The black dotted line at x = 10 µm shows the peak of the
fast electron densities and where the electric field inhibition effect is dominant. The
black dashed line at x = 90 µm shows at which distance the reduction in the fast
electron density becomes significant. The blue dashed line at x = 140 µm shows the
end of the length of the fast electron beam.

the trapezoidal integration method. It was found that ∆Φ ≈ 0.55 MeV in all the

simulations. The 0.55 MeV of electric field potential energy indicates that energetic

electrons with energy lower than ≈ 0.55 MeV are confined at this region. Beyond

x = 10 µm as shown in Figure 4.9, the fast electron density remains high along the x-

direction when θd = 0 (black dot-dashed line - Test 1), the Lorentz force, scattering

and drag collisions cause a slight reduction (green dashed line - Test 2). A strong

reduction with slight fluctuations between x = 10− 40 µm is noticed when θd = 50◦

(red solid line). The reduction in red solid line is due to the angular dispersion since

this is the only effect included in this simulation. More noticeable reduction occurs

beyond x = 90 µm in the red solid line (θd = 50◦) compared to the black dot-dashed
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and green dashed lines (θd = 0◦) again due to angular dispersion. The difference

between the fast electron density without angular dispersion (black dot-dashed and

green dashed lines) increases with distance due to Lorentz force, drag and scattering

effects. These effects reduce the fast electron density along x-direction but not as

large as the angular dispersion. After x = 140 µm, a steep drop in the fast electron

density was noticed. This steep drop is expected since the length of the fast electron

beam using 500 fs duration is cτ0 = 150 µm. However, this drop is steeper when

angular dispersion is significant.

Figure 4.10: Line-out of background temperature in the units of eV from the simu-
lation with θd = 0 (blue dashed line) and θd = 50◦ (red solid line) along x-direction
from the target surface until x = 150 µm at 700 fs.

The effect of the dispersion on the target heating is shown in Figure 4.10. This

Figure shows a line-out of the background temperature in eV from θd = 0◦ (Test

1) and θd = 50◦, i.e. with and without angular dispersion, along the x-direction

at 700 fs. The very large reduction in background temperature is due to angular

dispersion. This reduction is about a factor of 4 compared to without angular

dispersion (blue dashed line).
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4.5 Longitudinal effects impeding the fast elec-

tron penetration

As described in Section 4.2, the electric field inhibition impedes fast electron

penetration along the laser beam axis. In Section 4.4, the angular dispersion also

reduces the fast electron density and heating power more strongly than the effects

of Lorentz force, drag and scattering. The angular dispersion effect was inferred

from the increase in the length of the fast electron beam (see Figure 4.7). In all

of the simulations in this chapter the fast electron spreading was controlled by

restricting the transverse size of the target and making this size comparable to

the source diameter size. Therefore, the reduction in the fast electron density in

the longitudinal direction is mainly due to electric field inhibition and an angular

dispersion. In this section, a numerical study is presented to determine which of the

electric field inhibition and angular dispersion has the more significant effect.

The drop in fast electron density due to the large growth of the electric field has

been estimated analytically by Bell et al. [21] as,

nf = n0

(
t

τL

)(
x0

x+ x0

)2

(4.9)

where n0 is the fast electron density at source, t is the time after the end of the laser

pulse, τL is the laser pulse duration, x is the distance from the target surface and x0

is the fast electron penetration depth, which is given in the case of the Al target as,

x0 = β−1
(

IL
1018 Wcm−2

)−1(
Tf

0.2 MeV

)2 ( η

10−6 Ω.m

)−1
12 µm (4.10)

where β is the fraction of laser energy coupled to the fast electrons. The depth x0

in (4.10) depends on the resistivity and is inversely proportional to the resistivity.

The electric field inhibition becomes dominant when the resistivity is near to its

peak [21, 70]. This model is estimated using fixed temporal and spatial resistivity.
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Therefore, the level of electric field inhibition anticipated in an experiment is numer-

ically assessed by predicting the time-dependent electric field and resistivity. From

this, the fast electron density and the associated electric field are computed along

the x direction. Target A geometry was used in this study.

Figure 4.11: Plot of the mean of the resistivity (left axis, green solid line) and of the
mean of electric field (right axis, blue dashed line) as function of time at x = 50 µm
and mid y-axis. The red dashed line at t = 0.5 ps indicates the end of the laser
pulse duration.

Figure 4.11 shows both the mean of the resistivity (left axis, green solid line) and

of the electric field (right axis, blue dashed line) as a function of time at x = 50 µm

and in mid y-direction. The resistivity rises quickly during the laser pulse. This is

indicated by the shadow area in the Figure. This rise is due to the strong collisions.

The resistivity reaches a peak of 5×10−7Ω.m at 200 fs. After this, it drops over time

and then remains nearly constant just after the end of the laser pulse of 500 fs. This

time dependent is driven by target heating at x = 50 µm. The electric field rises

during the laser pulse, reaching a peak of ≈ 7 GVm−1 at 300 fs. Then it decreases

gradually, reaching a new low constant value after 700 fs. It can be seen that the

electric field is high during the laser pulse and peaks ≈ 100 fs after the resistivity.

Then its strength drops and more slowly than the resistivity. Therefore, the electric
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field as inhibitor is limited in Al target due to the reduction in the resistivity. This

is experimentally observed in [70].

Figure 4.12: Plot of the mean of the fast electron density (left axis, solid line) and of
the electric field (right axis, dashed line) and in the longitudinal direction at 500 fs.
The red dashed line at x = 50 µm indicates the position of the information of Figure
4.11.

To assess this limitation as function in distance, both the longitudinal fast elec-

tron density (left axis, solid line) and the longitudinal electric field (right axis, dashed

line) are plotted along the x-axis at 500 fs, i.e. at the end of the laser pulse, and

shown in Figure 4.12. At this time of 500 fs, the mean of electric field strength

and of resistivity are 3.5 GVm−1 and 2 × 10−7Ω.m respectively. The fast electrons

penetrate from the left to the right in this Figure. Some of the fast electrons are

peaked 10 µm. This is near the target surface. The fast electron density penetrate

longitudinally to a distance of ≈ 150 µm. In addition, there is a spike of the electric

field, which is about ≈ 8 GVm−1 moves into the target and that is close to the fast

electron penetration front. This front moves with a velocity of 2 × 108 ms−1. The

existence of the fast electron peak at 10 µm indicates the confinement of some of the

fast electrons in this region. Using (4.8) with same integration limits, the electric
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field potential energy ∆Φ at 500 fs is ≈ 0.55 MeV. This energy is low compared to

the fast electron mean energy (2.7 MeV). This means that only the fast electrons

that have less energy than the electric potential energy will be confined near the

target surface. This is illustrated in Figure 4.12, where some of the fast electron

density reaches 150 µm, i.e. a distance that is more than half length of the target.

Another test was performed to assess the role of the resistivity in Target A

geometry but with resistivity reduced to 30%. The longitudinal fast electron density

for a reduced resistivity (black dashed line) and Target A (green solid line) are shown

in Figure 4.13 (a) in logarithmic scale. The fast electron densities in both simulations

show almost the same behaviour after 20 µm. There is a significant difference in the

first 20 µm. This is the region where the electric field inhibition is able to confine

the lower energetic fast electrons. According to (4.10), the fast electron penetration

depth scales x0 ∝ η−1 and so with this reduction in resistivity, more fast electrons

should penetrate and the fast electron density should remain high. Figure 4.13 (a)

shows, however, the differences in the fast electron density with depth are minor

despite the large reduced resistivity. The major difference occurs near the injection

region. Further, Figure 4.13 (a) also shows that the fast electron density decreases

with the depth, even though the resistivity is low. This reduction is attributed to

the angular dispersion. Notice that the θd = 50◦ in these simulations. If angular

dispersion is not important, then the fast electron density should remain high in the

reduced resistivity case.

Furthermore, Figure 4.13 (b) shows the fast electron density along the x-direction

in Target A (green solid line) and the information of Figure 4.9, θd = 0 (Test 1)

which is shown here as a blue dashed line and θd = 50◦ shown as red dot-dashed

line, where all resistive magnetic fields, acceleration due to Lorentz force, drag and

scattering are turned off and only the effect of the angular dispersion and electric

field inhibition are included. Notice that all these effects are included in Target A

(green solid line). The red dot-dashed line shows the results when θd = 50◦ and the
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Figure 4.13: (a) Plot of the fast electron densities log10 at 500 fs in the longitudinal
direction. The black dashed curve shows the simulation with 30% reduction in
resistivity using Target A geometry whilst the solid green curve shows simulation of
Target A. (b) Plot of the fast electron densities log10 at 500 fs in the longitudinal
direction. The blue dashed and red dot-dashed curves show the simulation without
effects of Lorentz force, scattering, drag collisions and self-resistive magnetic field
with θd = 0◦ and θd = 50◦ respectively whilst the green solid curve shows simulation
of Target A. In both Figures (a) and (b), dotted line at x = 10 µm shows where the
electric field inhibition is dominant and the dashed line at x = 90 µm shows where
the angular dispersion effect becomes significant.

blue dashed line when θd = 0◦. The fast electron densities in the green solid and

red dot-dashed lines show almost the same behaviour at the first 90 µm. There is

a difference after 90 µm. The fast electron density in Target A (green solid line)

is reduced slightly more due to including these effects. However, the reduction is
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not large in the comparison with the blue dashed line, where there is no dispersion.

We can conclude from this Figure that the main factor reducing the fast electron

density is the angular dispersion. From Figures 4.13 (a) and (b), the conclusion

is that angular dispersion drives the temperature gradient in fast electron heated

target.

4.6 Discussion of the results

The work of this chapter can be divided into three main points:

1. Controlling the fast electron spreading using wire-like target design with transverse

directions comparable to the laser diameter spot size:

The simulations show (Figure 4.3) that this design provides excellent fast elec-

tron transverse confinement since fast electron spreading is controlled in the

early stages of the interaction. The more comparable the ratio between the

transverse directions and the laser diameter spot, the more control of the

fast electron spreading is obtained. The transverse uniform heating can be

obtained. This could solve the problem of non-uniformity in the transverse

directions, since a significant transverse temperature gradient is experimen-

tally observed in these directions even in very thin foil [130]. This design

of wire-like target facilitated the heating with depth. Over long propagation

distances filamentation can break-up the beam even in these geometries, es-

pecially when the beam duration is in the order of ps. This will impair the

heating uniformity.

2. Studying the effect of angular dispersion on longitudinal fast electrons penetration

and target heating:

The angular dispersion of the fast electrons is significant, especially after the

end of the beam injection or equivalently the end of the laser pulse (4.3).

Larger penetration depth L0 due to the beam divergence is obtained when a
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lower divergence angle and longer beam duration are used. This provides more

uniformity in heating. However, the dispersion also has a quadratic effect on

Ohmic heating, which reduces the heating rate significantly (4.7). Since L0 in

(4.5) does not include the effect of this reduction in nf , (4.5) overestimates

the actual penetration depth. This needs to be corrected in the theory and

is ongoing work. Excepting (4.5), the analytical work agrees with the simu-

lation in Sections 4.4.2 and 4.4.3 and with the temperature plots in Figure

4.3. The dispersion reduces the longitudinal heating rate and results in strong

temperature gradients. The effect of dispersion on the fast electron density

is also studied, where the resistive magnetic fields, the Lorentz force and the

drag and scattering are all turned off. It was found that the reduction on

the fast electron density is massive with θd = 50◦ compared to an identical

simulation with θd = 0, especially after 90 µm. The angular dispersion in this

case reduces the heating by a factor of 4.

3. Investigating both electric field inhibition and angular dispersion to determine

which is more significant:

The electric field inhibition was assessed numerically in wire-like geometry

and any reduction in the fast electron density with the depth of the target is

due to both the electric field inhibition and angular dispersion. Figure (4.12)

shows that fast electrons are confined near the target surface or injection site

at 10 µm. This is the region where the electric field inhibition is dominant.

The electric field is able to inhibit fast electrons with energy below the electric

potential energy. Reduction in the resistivity to 30% does not increase the

penetration of the fast electron density and the behaviour of the fast electron

density along the x-direction is almost the same as in the target that is an-

ticipated in an experiment. If the angular dispersion is not important, then

the fast electron density should remain high in the case of reduced resistivity.

The reduction in fast electrons is mainly due to the angular dispersion since
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we found the effect of the resistive magnetic field, the Lorentz force, drag and

scattering taken all together reduce the fast electron density, but not as much

as does in the angular dispersion.

4.7 Summary

In this chapter, the concept of extreme fast electron transverse confinement has

been introduced along with a numerical demonstration. Then the angular dispersion

of the fast electrons is investigated and compared to the electric field inhibition

effects in terms of their effects on the longitudinal fast electron penetration and

target heating.

The discussion in this chapter indicates that the angular dispersion of the fast

electrons must not be neglected in the fast electron transport calculations and in-

deed requires thorough consideration. This dispersion has great implications for the

longitudinal target heating and is the most significant cause for strong temperature

gradient along the propagation direction for extended targets. This could affect, for

example, fast ignition if any significant dispersion occurs prior to the coupling of

the compressed fuel and fast electrons.

80



Chapter 5

Resistive interface guiding of fast

electron propagation

5.1 Motivation

In the preceding chapter, a wire-like target was used to control the spreading

of a fast electron beam with significant divergence. This design creates excellent

transverse confinement of the fast electrons when the transverse directions of the

wire-like target are comparable to the laser diameter spot size (Section 4.3). Similar

control of fast electron spreading is possible using a resistive guiding structure [60,

74]. This structure is based on exploiting resistivity gradients produced by using

different Z materials in order to guide and focus fast electrons. This is beneficial

to applications such as Fast Ignition [31] where the energetic fast electrons need

to be transported through stand-off distance of 100 µm [27] and deposited into

the compressed core of DT plasma. Recently, the resistive guide use has also been

suggested as a driver in hydrodynamics experiments [74]. However, more work needs

to be done to improve the fast electron propagation and heating along the depth of

the guide. The formation of the magnetic field within the guide close to the axis is

observed in [74,75,131] independent the guide geometry. The development of these

“ interior” fields in the target interior is due to inhomogeneous propagation of the
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fast electrons. These interior fields produce a strongly annular transport pattern

which leads to heating only the outer surface of the guide while its middle remains

relatively cold. This affects the attempt to produce uniform heating. Although

the results of [74] show that using a guide with a radius comparable to the laser

spot radius can mitigate to some extent this problem and improve the heating, this

condition might be impractical if one considers the problem of the limited pointing

stability of the laser systems [72]. If the laser hits the edge of the resistive guide

rather than its centre, the guide will not achieve its aim as a collimator and the fast

electrons will transport into the surrounding material. Therefore, a larger radius

guide is needed.

There are two types of resistive guide have been investigated in [60,74]; standard

and multilayered resistive guides. A standard resistive guiding scheme [74] is based

on embedding a pure, high-Z material in terms of wire or strip into the core of a

pure low-Z target (i.e. solid substrate) whilst a multilayered resistive guide [60] uses

materials of different atomic number Z in such a way that gradient in resistivity is

created from the core of the wire to its cladding and this wire is embedded into pure,

low-Z solid substrate. Hitherto, a sharp interface is produced by engineering between

the guide and solid substrate in these both schemes. The work of this chapter shows

numerically that grading the atomic number at the interface between the guide and

solid substrate of these schemes minimises the formation of the interior magnetic

field, leading to improvement in heating of guide core. This solves the problem of

poor heating into a larger guide radius. In addition, more powerful, faster confining

magnetic fields can be obtained with this graded interface configuration. Higher

magnetic flux density is obtained in standard resistive guide while larger magnetic

field width is obtained in multilayered resistive guide in case of using graded interface

configuration. In this chapter, the focus is on improving the uniformity of the fast

electron propagation and subsequently the heating in these schemes using the graded

interface configuration.
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The chapter begins with a discussion of the theory of resistive guide. This is

followed by a summary of the results of recent published numerical investigations

attempting to improve resistive guide heating [74, 75]. Then the effect of grading

the atomic number at the interface between the guide and the solid substrate is

numerically investigated in both standard and multilayered resistive guide schemes.

A general discussion of the chapter results is given, followed by a summary of the

chapter.

5.2 Resistive guiding concept

5.2.1 The theory

Plasma resistivity induces a significant magnetic field inside an overdense plasma

when a resistivity gradient or shear in the fast electron current density exists. This

is described (see Section 2.3.5) by the following induction equation in the hybrid

approximation [73]:

∂B

∂t
= η(∇× jf ) + (∇η)× jf (5.1)

Resistive guiding concept was initially introduced by Robinson and Sherlock [60]

to enable the magnetic collimation of fast electrons. They proposed fabricating a

solid target in which a high-resistivity material is embedded into the core of a low-

resistivity solid target as a strip or a wire, as shown in Figure 5.1. This creates

a resistivity gradient in a direction which is transverse to that of the fast electron

beam propagation. Thus, according to the second term on the right-hand-side of

(5.1), an azimuthal magnetic field will be produced at these gradients. This will

collimate the fast electrons to the higher resistivity region and guide them along the

core.

The dynamics of the collimation process are as follows: at the early stages of

the laser interaction, the (∇η) × jf term initiates collimation of the fast electrons

by producing a strong azimuthal magnetic field. This pushes the fast electrons into
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Figure 5.1: A diagram of the structured resistivity guiding. (a) shows the design
used by Kar et al. [2] and (b) shows that used by Ramakrishna et al. [3].

a higher resistivity region. The temperature of the guiding region increases to over

100 eV due to return current heating and the collimation of the fast electrons. Be-

cause of this, the resistivity of the guide, which follows Spitzer (2.23), reduces and

as it becomes less than that of the surrounding target. The(∇η)× jf term reduces

and eventually reverses. This reduces the magnetic field and could expel the fast

electrons from the guide when the magnetic field reverses. However, the collimation

due to (∇η)× jf causes a shear in the fast electron current density inside the guide

η(∇ × jf ). This collimation offsets the magnetic reversal and reinforces the colli-

mated magnetic field, prolonging the collimating effect. Solodov et al. [132] found

numerically that the reversal of the resistivity gradient effect occurs less than 0.5 ps

after the beginning of the laser pulse. They embedded a Cu wire into an Al wire-like

target. However, even with this reversal, they stated that around 65% of the injected

fast electrons collimated up to 150 µm depth. Robinson and Sherlock [60] show that

in the case of low-Z guiding embedded into a high-Z target, a decollimating magnetic

field is generated. This magnetic field expels the fast electrons from the guide. The

concept of resistive guiding has been experimentally demonstrated by Kar et al. [2]

and by Ramakrishna et al. [3]. In the experiment of Kar et al., a tin (Sn) strip layer

was placed between two large Al slabs (shown in Figure 5.1(a)). Ramakrishna et al.
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used an iron (Fe) wire embedded into an Al cylindrical geometry (shown in Figure

5.1(b)). Both experiments show evidence of fast electron collimation along the path

of the guide, regardless of the target geometry.

Figure 5.2: A diagram of the azimuthal magnetic field Bφ in (T) and its width Lφ in
(µm) as function of distance. The red and blue lines at z = 20 µm and z = 30 µm
show the direction of the field.

The ability of the guide to confine the fast electrons depends on the ratio of

the fast electron Larmor radius rg to the generated azimuthal magnetic field width

Lφ. It is assumed that the azimuthal magnetic field of the guide Bφ has a uniform

Gaussian profile as shown in Figure 5.2 and its width Lφ is the FWHM of this

profile. The red and the blue lines z = 20 µm and z = 30 µm respectively show

the positive (counter clockwise) and negative (clockwise) direction of the azimuthal

magnetic field respectively. The guide diameter is also shown in the Figure 5.2. The

fast electrons travel on a helical trajectory inside the guide with a radius that is
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defined as,

rg =
γmec

eBφ

(5.2)

where γ is the Lorentz factor and Bφ is the uniform azimuthal magnetic flux density.

Thus, the confinement condition of the fast electrons along the guide is,

BφLφ ≥
γcme

e
(1− cos θd) (5.3)

This implies that the product of BφLφ needs to be larger than the fast electron

momentum (Pf = γcme) to reflect the fast electrons back towards the guide axis.

The limit to confinement ensures that the fast electron circular segment just touches

the far side of the confining region. The typical value of the product BφLφ to confine

the fast electrons is about 10−3 Tm [74]. This BφLφ product and (5.3) condition

are studied in the two schemes in this chapter.

5.2.2 The heating

Strong heating occurs where the beam is collimated. As the fast electrons are

confined into a guide, the material is rapidly heated due to Ohmic heating to over

100 eV over a distance without significant heating of the surrounding materials.

Robinson et al. [74] have investigated analytically and numerically the most sig-

nificant parameters that improve the heating of a pure Z resistive guide with a

sharp interface. The geometry of the guide in their investigations was a pure Al

cylindrical wire embedded into a CH2 target. The CH2 target dimensions were

300× 100× 100 µm and a 10 µm Al wire was centred in the mid y and z directions.

They expressed the relation between the heating parameters in term of pressure as,

Pwire ∝
Zn

3/5
i β4/5I

2/5
L τ

2/5
L

λ
4/5
L

(5.4)
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where Pwire is the electron pressure produced in the guide, ni is the ion density, β is

the fraction of the laser energy coupled to the fast electrons, IL is the laser intensity,

τL is the laser pulse duration and λL is the wavelength of the laser.

In their analytical work of (5.4), they have assumed that the main heating mech-

anism is Ohmic heating with resistivity provided by the Spitzer model (2.23) and

the fast electrons are perfectly confined by the guide. To support their analytical

conclusion (5.4) several simulations were run and the following results were obtained,

• Shorter λL improves the heating with the depth by a factor of 3 if λL = 0.5 µm

is used rather than λL = 1 µm [74].

• A lower divergence angle θd increases the heating with depth since the con-

finement of fast electrons is easier to obtain with lower θd compared to larger

θd.

• Matching the wire radius size to the laser spot radius size, i.e. rwire = rspot,

gives better heating than the case of rwire > rspot. This is due to the fact that

the rate of the confining magnetic field becomes higher when rwire = rspot.

• Lower intensity and longer laser pulse duration is favoured for good heating.

• Heating is improved linearly with Z only if the material follows the Spitzer

resistivity. The effect of the low-temperature resistivity limits the heating in

high-Z materials.

• Although (5.4) states that the heating can be improved as it is proportional

to β4/5, optimising β is still an experimental challenge.

Although the relation (5.4) demonstrates the parameters that can improve heat-

ing with depth, it does not guarantee any uniformity. The annular heating pattern

in the background temperature profiles is observed [74], especially in the case of

rwire > rspot.
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Robinson et al. [75] recently proposed using the conical guide structure [133] to

heat extended targets. They found that adding an inverse conical taper onto an

embedded wire target improves the heating with depth since this structure reduces

the angular spread of the fast electrons. Better heating is obtained when the length

of the inverse conical taper is large and its half-angle is small.

5.3 Grade interface in Z for the resistive guide

Figures 5.3 and 5.4 show the target Z profile along with the shape of the boundary

for the resistive guides that are investigated for standard and multilayered designs

respectively. The resistive guide is a cylindrical wire in both schemes. The left-hand

columns of Figures 5.3 (a) and (b) show a taken slice from the target Z-profile in the

mid y-direction at 10 ≤ z ≤ 40 µm for the standard design of the resistive guide.

The materials used in Figures 5.3 (a) and (b) are pure Al wire (Z = 13) embedded

into a CH (Z = 3.5) solid substrate. The shape of the boundaries between the wire

and the solid substrate are shown in the right-hand column of Figures 5.3(a) and

(b). As shown, the standard resistive guiding has a sharp interface in Z between the

Al wire and CH solid substrate. The difference between Figures 5.3(a) and (b) is

only in the wire diameter size, which is 10 µm and 5 µm for (a) and (b) respectively.

Figure 5.3(c) in the left-hand column shows a similar design to Figures 5.3(a) and

(b), i.e. pure Al wire (Z = 13) embedded into a CH (Z = 3.5) solid substrate,

except that the boundary between the wire and the solid substrate is graded in Z.

The shape of this grading is shown in the right-hand column of Figure 5.3(c). As

shown, the overall diameter of the wire is 10 µm. Between 5 µm and 10 µm, a

finite gradient in Z is introduced. This is located between the wire and the solid

substrate. Both Figure 5.3(b) and the core in Figure 5.3 (c) have the same mass

of Al and thus the heating can be compared between the two designs. However,

the design in Figure 5.3(c) provides more tolerance to the pointing stability process

since the wire diameter in (c) is twice that in (b).
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Figure 5.3: The left-hand column shows slices taken for the target Z profile in the
mid y-direction at 10 ≤ z ≤ 40 µm. The right-hand column shows the shape of the
boundary in Z between the wire and solid substrate in the x-z midplane. Designs (a)
and (b) are the standard resistive guide with sharp interface. The wire diameter is
10 µm and 5 µm respectively. Design (c) is the standard resistive guide with graded
interface in Z. The total wire diameter is 10 µm while the wire diameter that is not
graded in Z is 5 µm. The black circles indicate the graded in Z with position.
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Figure 5.4: The left-hand column shows slices taken for the target Z profile in the
mid y-direction at 10 ≤ z ≤ 40 µm. The wire diameter in both (d) and (e) is 10 µm.
The difference between the two is the shape of boundary in Z shown in the right-
hand column, taken in the x-z midplane. Design (d) has a sharp interface while (e)
has a graded interface. The black circles indicate the grade in Z with position.
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In addition, the effect of grading the interface is also investigated in a multilay-

ered resistive guide design proposed in [60] and it is shown in Figure 5.4. In this

design, different Z materials are used in such a way that a gradient in resistivity is

created in the wire between the core and the cladding. The composition of the wire

is varied between the two different Z materials according to [60],

ni = nhψ + nl(1− ψ) (5.5)

Z = Zhψ + Zl(1− ψ) (5.6)

where h and l are denoted as a high-Z material and low-Z material respectively and

ψ is a mixed fraction of materials h and l. The materials used are Al (Z=13) and

C (Z=6) for Figure 5.4 (d) and Al(Z=13) and CH(Z=3.5) for Figure 5.4 (e). The

form used for ψ is,

ψ =


Al ψ = 1

C or CH ψ = 0

linear interpolation 0 < ψ < 1

(5.7)

The left-hand column diagrams in Figures 5.4 show a simulation slice of the target

Z-profile in the mid y-direction at 10 ≤ z ≤ 40 µm for this multilayered scheme.

The shape of the boundary between the multilayered-Z wire and the surrounding

material can be seen in the right-hand column of Figures 5.4. Figure 5.4 (d) shows a

target with a sharp wire-substrate interface and the gradient in Z between Al (Z=13)

and C (Z=6) whilst Figure 5.4 (e) shows a grade profile down to CH (Z=3.5),i.e to

the substrate. The boundary in this case is shown in the right-hand column of

Figure 5.4 (e). Both wires in Figure 5.4 (d) and (e), have the same diameter and

a gradient in Z between the core and the cladding. The core in both designs has a

5 µm diameter and is ungraded in Z.

To achieve the best performance from the graded interface configuration, which
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is used in (c) in Figure 5.3 and (e) in Figure 5.4, the following relationship needs to

be satisfied,

χ =
rcore
rspot

< 1 (5.8)

where χ is the ratio of the radius of the core rcore to the laser radius spot rspot. rcore

is the part of wire that has not been graded. The ratio (5.8) needs to be less than

1 for the scheme to achieve its aim, otherwise the confined fast electron beam will

break up into filaments inside the guide which will result in transverse non-uniform

heating of the wire.

5.3.1 Simulation set-up

Simulations were performed using the 3D particle hybrid code ZEPHYROS. A

200× 100× 100 grid was used with a 0.5 µm cell size in each direction. The number

of macroparticles injected into each of these cells was 126 to reduce the statistical

noise. This is discussed in the Appendix A. The target consisted of a CH substrate

within which a wire of radius rwire was embedded. The construction of the wire

and its boundary with the CH substrate in each run are summarised in Table 5.1.

This wire was co-linear along the x-axis and centred on y = z = 25 µm. The laser

irradiation intensity was 1.27× 1020 Wcm−2 with a pulse duration of 2 ps, the laser

wavelength is 1 µm. It is assumed that 30% of the laser energy was coupled to

the fast electrons. The temporal profile of the fast electron beam is top-hat shaped

and the transverse profile is ∝ exp[− r2

2r2spot
], where rspot = 3.5 µm. The fast electron

angular distribution is uniform over a solid angle and defined by the half-angle of

divergence 50◦. The energy distribution of the fast electrons is from the reduced

Wilks’ ponderomotive scaling (2.13), giving Tf = 2.7 MeV. The resistivity uses the

Lee and More model and a minimum mean free path as 5rs.

From Table 5.1, it can be seen that Runs A, C, D and E have rwire > rspot. This

means the whole of the electron beam source is put into the wire. This is not the

case in Run B where rwire < rspot. The purpose of performing Run B is to compare
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Run rwire rcore rgrade interface χ Target Z Profile
(µm) (µm) (µm) (5.8) (shown in Figures 5.3

and 5.4 respectively)
A 5 5 0 1.4 (a)
B 2.5 2.5 0 0.7 (b)
C 5 2.5 2.5 0.7 (c)
D 5 2.5 0 0.7 (d)
E 5 2.5 2.5 0.7 (e)

Table 5.1: Table of wire geometric parameters.

it with Runs C - E as they have the same rcore, i.e. the same mass of Al, although

the rwire in Runs C -E is twice that in Run B.

5.3.2 Results

The discussion of the results is divided into three sections as follows. The effect

of interface design on the generated azimuthal magnetic fields is investigated first.

Then the effect of the resulting azimuthal magnetic field on the guide heating is

discussed, and finally, the maximum kinetic energy and largest Larmor radius that

confined within each guide is estimated.

5.3.2.1 The azimuthal magnetic field rate

Figure 5.5 shows an x-z slice taken of the magnetic field in units of T in the y

midplane at 2.2 ps for Runs A - E. Generally, a strong azimuthal magnetic field

has been generated at the interface between the wires and the CH substrate at

20 ≤ z ≤ 30 µm. This field provides collimation for the fast electron beam. Radial

expansion on the fast electron beam is evident from the formation of the magnetic

field outside the wire at the CH substrate.

Some features of a magnetic field are formed within the wire close to the axis

noticeable mainly in Runs A and D. Both Runs A and D have rwire > rspot and their

wire boundaries with the CH substrate are sharp. The formation of this magnetic

field in both runs is due to the inhomogeneous propagation of the fast electrons. In
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Figure 5.5: x-z Slices taken of the magnetic field in (T) in the y midplane at 2.2 ps.
The design of each run and Target Z profile is shown in Figure 5.3 for Runs A-C
and in Figure 5.4 for Runs D and E. The wire parameters are summarised in Table
5.1.

the case of Run A, this field is observed at x = 20 µm and x = 40 µm while it is only

observed at x = 20 µm in Run D. The difference in the formation of these ‘interior’

magnetic fields between the two wires is due to the difference in the wire construction
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between Run A (pure-Z guide) and Run D (multilayered-Z guide). The generation of

these fields within the wire is undesirable and is considered to be inhibiting factor in

obtaining uniform fast electron heating in the transverse direction across the guide.

The effect of these fields on heating will be discussed in Section 5.3.2.2. The interior

magnetic field is not observed in the case of Runs B and C and only weakly observed

in Run E. This implies that improved uniformity of the fast electron propagation is

obtained in these wires.

Figure 5.6: Plot of the magnetic field near the head of the wire for run B (solid line)
and run C (dashed line), x = 10 µm, at 15 ≤ z ≤ 35 µm and in the y midplane
2.2 ps.

In addition, the azimuthal magnetic fields in Runs B and C looks similar in

Figure 5.5 although the wire radius in Run C is twice that in Run B, see Table

5.1. In Figure 5.5, the diameter of the wire in Run C looks smaller than its actual

diameter size (10 µm). The azimuthal magnetic field is generated along the graded

region of the wire. The formation of the magnetic fields so close to the core of the

wire leads to the azimuthal magnetic being located along the inner edge of the wire.

To assess the difference in the azimuthal magnetic field between Runs B and C,

line-outs of the azimuthal magnetic fields are taken from each run near the head of

the wire, x = 10 µm, at 15 ≤ z ≤ 35 µm and in the y midplane at 2.2 ps. This is
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shown in Figure 5.6. The reverse in the azimuthal magnetic field direction is shown

as the positive (counter-clockwise) and negative (clockwise) values. The variation in

the magnetic field at z < 20 µm and z > 30 µm is due to the magnetic fields that are

generated by the fast electron expansion in the radial direction. In this Figure, the

peak of Bφ in Run C (graded interface) is higher than in Run B (sharped interface)

by about 1000 T. The difference in the magnetic flux density is calculated at the

end of the laser pulse (2 ps) and is found to be higher in Run C than in Run B by

24%. This figure also shows that the FWHM of the magnetic field widths Lφ for

both Runs B and C are similar. Thus, grading the interface increases Bφ and has a

minor effect on the width of the azimuthal magnetic field Lφ.

Figure 5.7: Plot of the magnetic field at x = 10 µm near the beam injection for runs
A, D and E at 15 ≤ z ≤ 35 µm and in the y midplane at 2.2 ps.

Figure 5.7 shows a comparison of the line-outs of the azimuthal magnetic fields

between Run A and Runs D and E. These lines are taken near the head of the wire,

x = 10 µm, at 15 ≤ z ≤ 35 µm and in the y midplane at 2.2 ps. The magnetic flux

density is lower and the width is larger in the case of multilayered-Z wires (Runs D

and E) compared to that of pure-Z wire (Run A). Comparing Run A with D where
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the interface is sharp, the magnetic field flux density in Run A (pure Z) is higher

than in Run D (multilayered Z) by 44% while the width of the field in Run A is

smaller than in Run D by 24% at the end of the laser pulse (2 ps). Furthermore, the

comparison between Runs D and E, where the difference is only in the shape of wire

boundary with substrate, shows that the magnetic flux density in Run D is slightly

higher than in E by 26%. However, the magnetic field profile of Run E (green circle-

solid line) is smoother compared to that of Run D (red solid line). The width of

the magnetic field is larger in Run E than in Run D by 50% at the end of the laser

pulse. Thus, grading the atomic number at the interface in the multilayered-Z guide

significantly increases the width of the magnetic fields and establish more Gaussian-

like profile. This smooth profile affects the heating as it increases the uniformity of

the fast electron propagation. This is discussed in Section 5.3.2.2.

Figure 5.8: Plot of the product BφLφ in Tm as a function of time near the head of
the wire (x = 10 µm) and in the y mid-plane.

Figure 5.8 shows the resulting product BφLφ (see Section 5.2) in the units of Tm

as a function of time which is estimated near the head of the wire, i.e. x = 10 µm,

and in the y mid-plane for all the runs. The product BφLφ is calculated from the
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measurement of the peak of the magnetic field and the FWHM of its width. As

shown, Run C gives the highest values of this product. A given value of BφLφ of

10−3 Tm is obtained at the first 200 fs in Run C while it is obtained later in time at

300 fs in Run B, 400 fs in Runs A and E and finally at 500 fs in Run D. Obtaining

this value early in the pulse enhances early collimation of the fast electron beam.

This enhanced collimation increases the heating in the wire as more fast electrons

are confined. The next highest product is obtained in Run B. The wire radius size

in Run B is the same as the core radius size in Run C (i.e. 2.5 µm) and both have

the same mass of Al. The reason for BφLφ being higher in Run C is likely due to

rwire < rspot. More fast electrons move into the CH substrate than are confined in the

wire in Run B. The product BφLφ of Run E (green dotted line) is comparable to that

of Run A (blue cross-solid line) at the early time then becomes higher and matches

that of Run B (red solid line). This suggests the multilayered Z wire with graded

interface configuration produces BφLφ values which lie between those observed for

large and small diameter pure-Z wires. In addition, the product BφLφ of Run E is

higher than that of Run D due to the increase in Lφ by 50%. This is due to graded

the interface between the wire and the CH substrate in Run E. Interestingly, the

product BφLφ in Run A is higher than in Run D. The 44% difference in Bφ between

Runs A and D increases the product BφLφ. Even with this, we find in Section

5.3.2.2 that the heating in Run D is more uniform than in Run A. This results from

reduced interior magnetic fields in Run D compared to Run A and the higher fast

electron current density in Run D.

5.3.2.2 The fast electron heating

The influence of the resulting azimuthal magnetic field on wire heating in Runs

A-E is discussed in this section. Figure 5.9 shows an x-z slice taken of the background

temperature in eV in the mid y-direction at 2.2 ps for Runs A-E. Strong heating

occurs in the wires where the fast electrons are collimated due to the resistive return
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Figure 5.9: x-z Slices taken of the background temperature in (eV) in the y midplane
at 2.2 ps for Runs A-E. The design of each run and Target Z profile is shown in
Figure 5.3 and summarised in Table 5.1.

current. The CH substrate is heated but to temperature lower than the wire. This

heating is due to some radial expansion of the fast electrons and does not result from

radiation transport which is not included in ZEPHYROS. There is a gradient in

temperature with depth along the guide which is observed in all runs. However, this
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gradient differs in each run due to the difference in the generated azimuthal magnetic

field discussed previously. Annular heating is observed in Run A at x = 20 µm and

x = 40 µm which is in line with the position of the generated interior magnetic

fields as shown previously in Figure 5.5. This corrupts the uniformity of heating

along the depth of the wire. More uniform heating with the depth is obtained in

Run B due to the small radius of the guide. The result of Run B is already noticed

in [74]. However, the heating in Run B is comparable to that in Run C although the

latter has twice the wire diameter the of Run B. This result identifies an important

solution to solve the problem of the laser pointing stability. A large guide diameter

can be heated uniformly just as for a small guide diameter if its interface with the

CH substrate is graded in Z and if χ is less than 1. This is discussed later in the

end of this section.

The images of Runs D and E show the temperature profile in the case of using

multilayered wire scheme. High temperature ≈ 5 keV is observed at the electron

beam injection site in both images. This is on the left hand side of the figure.

Then the temperature suddenly drops at x ≈ 15 µm before rising again ≈ 3 keV at

x ≈ 25 µm followed by a gradually dropping along the depth of the guide. The drop

in temperature at x = 15 µm is due to the growth of the interior magnetic fields at

this position, which excludes the fast electrons. However, this drop is larger in Run

D than in Run E due to the stronger interior magnetic fields in Run D. The difference

between the two runs is due to the graded interface in Run E. Heating in Run D

is more uniform than in Run A even though BφLφ is lower in D than in A. As the

core of Run D is small, this maintains a higher fast electron current density which

increases the heating rate. To understand this, it is helpful to look at j2f in both

runs. Figure 5.10 shows line-outs of j2f at y = z = 25 µm at the end of the laser pulse

2 ps in Runs A and D along x-direction at 10 ≤ x ≤ 100 µm. The reason for taking

j2f is that the rate of heating scales as ∂Tb/∂t ∝ j2f as stated in (2.32). Generally,

the fast electron density in Run D is higher than in Run A. In both runs, there is
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a decrease in the fast electron density between 10 ≤ x ≤ 15 µm before rising again

at x ≈ 17 µm and reaching the maximum at x ≈ 25 µm and decreasing again after

x ≈ 30 µm. After this, fluctuations in the fast electron density are observed which

is likely due to the drag and scattering of the fast electrons. The observations of

the fast electron density in Figure 5.10 are in line with the background temperature

images.

Figure 5.10: Plots of the square fast electron current density in A2m−4 at y = z =
25 µm along x-direction at the end of the laser pulse 2 ps in Runs A and D at
10 ≤ x ≤ 100 µm.

To view the data of the background temperature images in more detail for Runs

B-E, line-outs of the background temperature is taken at y = z = 25 µm along

x-direction between 10 ≤ x ≤ 100 µm at 2.2 ps and shown in Figure 5.11. Gener-

ally, all targets have temperatures in the keV range which is high compared to the

temperature ranges that observed in [74,75]. The reason for this is that the reduced

Wilks’ ponderomotive scaling (2.13) is used in all these targets while a standard

Wilks’ ponderomotive scaling used in work of [74, 75]. When the reduced Wilks’

ponderomotive scaling is used, the fast electron kinetic energy is reduced by 0.6.
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Figure 5.11: Plots of background temperature in eV in Runs B - E at y = z = 25 µm
at 2.2 ps in each case along x-direction at 10 ≤ x ≤ 100 µm.

This reduction increases the fast electron density since,

jf =
eβIL
ε̄f

(5.9)

and consequently, this increases the rate of heating as stated in (2.32). In Figure

5.11, it can be seen that Runs B (red solid line) and C (orange dashed line) are

heated to similar temperatures. There is oscillation in their temperature between

10 ≤ x ≤ 15 µm due to inhomogeneity of the fast electron propagation near the

injection region. After this, a gradual reduction in the temperature occurs. The

slight difference in temperature between Runs B and C is due to the fact that that

rwire > rspot in Run C while rwire < rspot in Run B. Note that Run C provides

more tolerance to the pointing laser inaccuracy. Significant drop in temperature is

observed in the multilayered-Z scheme (Runs D and E) between 10 ≤ x ≤ 20 µm.

After x = 20 µm, the variation in temperature in Run D (green dotted line) is larger

than in Run E (black circle-solid line). More uniform heating is obtained in Run E
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where the interface is graded in Z.

On the other hand, the result of Run C is insensitive to the centring accuracy of

the beam. It is essential that rwire > rspot and the χ is less than 1 in the design of

Run C. To test the insensitivity of the centring accuracy of the beam in Run C, χ is

chosen to be 0.44. Figures 5.12 (a) and (b) show two different examples where the

laser does not hit the centre of the wire in the design of Run C. In Figure 5.12 (a),

the laser centring point is outside the rcore but still inside the rwire while in Figure

5.12 (b) the laser hits the upper edge of the rcore. The resulting heating from the

both examples are still uniform with the depth even with this non-centring. More

uniform heating is obtained when the laser hits close to the centre of the wire. As

the magnetic field is located on the inner edge of the wire due to the grading the

interface, the fast electron beam is uniformly confined in the core. The grading at

the interface with χ is less than 1 ensures the fast electrons with diverging trajectory

are redirected towards the higher resistivity regions. The conclusion is the design of

the Run C gives smoother heating compared to all other runs.

Figure 5.12: x-z slices taken of the background temperature in (eV) in the y midplane
at 2.2 ps for two examples of the design of Run C. In (a) the laser centring point is
outside the rcore but still in the rwire area while the laser hits the upper edge of the
rcore in (b).
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5.3.2.3 Kinetic energy of the fast electrons and their Larmor radius

inside the wire

The maximum kinetic energy of the fast electrons confined inside the wire is

of interest. This is estimated at the end of the laser pulse by calculating the fast

electron momentum using the confinement condition (5.3) for fast electrons with

angle of 90◦ to x-axis as,

eBφLφ ≈ Pf (5.10)

where e is the electronic charge and Pf is the fast electron momentum. This approx-

imation gives the maximum fast electron momentum inside the wire. The Lorentz

factor γ is calculated in the form,

γ =

√(
Pf
mec

)2

+ 1 (5.11)

where me is the electron mass and c is the speed of light to enable an estimate of

the kinetic energy of the fast electrons εf as,

εf = 0.511(γ − 1) MeV (5.12)

Run Bφ Lφ εf rg
(T) (µm) (keV) (µm)

A 3500 0.99 640 1
B 3600 1 680 1
C 4600 0.96 900 1
D 2200 1.3 480 1.5
E 1700 2.2 720 2

Table 5.2: Maximum kinetic energy εf and largest Larmor radius of the fast elec-
trons, at 2 ps, inside the wire in Runs A -E

Table 5.2 shows the maximum kinetic energy εf and the largest Larmor radius

rg of the confined fast electrons inside the wire at 2 ps for Runs A-E along with the

values of Bφ and Lφ. The energy of the confined fast electrons in Run C (graded
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interface) is the highest and reaches ≈ 900 keV. This is inline with the highest

temperatures are observed in Run C. Also, the slight difference in temperature

between Runs B and C is reflected in the difference between εf . Runs A and B

show a comparable fast electron energy. This is expected since both Bφ and Lφ

are comparable. However, Run B is heated more uniformly than Run A due to the

smaller radius of the wire. This is in line with the results in Figure 5.8. Run E has

slightly higher εf than Run D due to the grading the interface in Run E.

The largest Larmor radius is estimated as shown in Table 5.2. Generally, the

Larmor radius in the guide with multilayered-Z is larger than in guide with pure-Z.

For Runs A-C, this radius rg is nearly equal to Lφ whilst slightly larger in Run D and

smaller in Run E. According to the confinement condition (5.3), the fast electrons

will be confined if,

Lφ ≥ rg (5.13)

5.4 Discussion of the results

The main findings of this chapter concern the effect of grading the atomic number

at a boundary between the guide element and the solid substrate. The reason for

doing this is to improve the uniformity of heating whilst designing a target with

a larger radius of the guide account for laser pointing instabilities. Grading the

atomic number at the interface of a resistive guide is beneficial for two reasons;

firstly, it helps to collimate the fast electrons uniformly to the core of the larger

radius of the guide. This produces heating similar to that in a smaller guide radius.

A larger guide radius with grade interface configuration is more tolerant to pointing

stability of the laser. Secondly, it increases the product BφLφ at an early time of the

interaction, which helps to confine more fast electrons into the guide. The condition

for best performance of the graded interface configuration is that the ratio between

the core of the wire that has not been graded to the laser spot radius must be less

than 1.
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The study of the grade interface configuration is performed in two schemes of

the guide; standard pure-Z and multilayered Z wires. The results of this work can

be summarised as follows.

1. For the azimuthal magnetic field

The configuration reduces the interior magnetic fields that form within the

guide close to the axis. This implies more uniform propagation of the fast

electrons and consequently improves the heating. In addition, it increases the

magnetic flux density Bφ in the pure-Z guide by 24% while increasing the

width Lφ in the multilayered-Z guide by 50% at the end of the laser pulse. A

more uniform magnetic field profile is also obtained with a graded interface

in the multilayered-Z guide. Furthermore, the graded interface configuration

increases azimuthal magnetic field growth rate in both schemes. The fastest

and highest azimuthal magnetic field growth rate is obtained when the pure-Z

wire has a graded interface in Z. In this case, the typical values of the product

BφLφ are obtained at the first 200 fs of the interaction. This increases the

guide heating as more fast electrons are confined at early time of interaction.

2. For the guide heating

An increase in the uniformity of heating is obtained in both schemes when

their interface with the solid substrate is graded in Z. The graded interface

configuration reduces the annular heating strongly in the pure-Z guide scheme

while reduce it to some extent in the multilayered-Z guide scheme. Compara-

ble heating is obtained in a large radius, pure-Z guide with graded interface

compared to a small radius, pure-Z guide with sharp interface. In addition,

improvement in heating is observed in a multilayered-Z guide with graded in-

terface compared to the same scheme with sharp interface due to increasing

homogeneity in fast electron density.

3. For fast electron kinetic energy and its Larmor radius
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Higher energetic fast electrons are confined in pure-Z and multilayered-Z guides

with graded interface. The Larmor radius is of the order of Lφ in both schemes.

5.5 Summary

This chapter considers the effect of grading the atomic number Z between the

guide and the solid substrate and studies numerically the effect of this configuration

on standard and multilayered resistive guide schemes. Out of the designs introduced

in this chapter, the pure-Z guide with grade interface is the most promising for three

reasons. Firstly, it is more tolerance to pointing process . Secondly, this design gives

the highest BφLφ compared to all of the other designs. Thirdly, it provides a way

to control the uniform propagation of the fast electrons when using larger wires.
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Chapter 6

Modelling the Rayleigh-Taylor

instability driven by radiatively

cooling dense plasma

6.1 Motivation

Lancaster et al. [67] included the Rayleigh-Taylor (RT) instability to explain the

expansion behaviour of a thick layered target and to reproduce temperatures that

were in agreement with other published temperature data [19,101]. The emergence

of the RT instability in their work was unexpected and was inferred from simulation.

The findings of Lancaster et al. [67] led Rossall et al. [4] to design an experiment to

directly observe linear regime of the RT growth at the interface of a fast-electron-

heated solid density target. In this experiment, a CH-Cu target with a machined

sinusoidal interface was X-ray radiographed face-on to measure the growth in the

sinusoidal features with time. This chapter investigates the experiment of Rossall et

al. [4] by performing numerical simulations. The key aim of this investigation is to

obtain a better understanding of the physics of the experiment and explore how RT

instability may be studied at very high energy density. Four main physics aspects
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are involved in this experiment: fast-electron-heating of the solid target, radiative

cooling, radiation transport and hydrodynamic RT instability. The physics of each

these phenomena are investigated.

The chapter begins with a description of the Rossall et al. [4] experiment, in-

cluding the experimental concept and results (Section 6.2). Then the simulation

work is divided into four sections as follows. Section 6.3.1 explores the RT target

heating by fast electrons using the ZEPHYROS code. Section 6.3.2 estimates the

radiative cooling of each layer in the RT target. Section 6.3.3 focuses on the influ-

ence of the radiation transport (in particular the opacity) on the hydrodynamics.

Section 6.3.4.1 investigates the RT growth and compares numerical results with the

experimental ones. The radiation hydro-codes HELIOS and HYADES are used in

these investigations to examine the effect of using theoretical opacity models that

based on DCA and screened hydrogenic models respectively on the acceleration of

the Cu-CH interface. This acceleration is driven by a pressure difference between

the materials. This pressure difference derives from the radiation cooling in the

two materials. Finally, the results of the chapter are discussed (Section 6.4) and a

summary of the chapter is given in Section 6.5.

6.2 The Rossall et al. experiment

6.2.1 Experimental set-up

The Rossall et al. [4] experiment was performed at Target Area West (TAW)

using the VULCAN laser [134]. This laser is an Nd:glass laser which operates at a

wavelength of 1.053 µm and consists of 8 beam-lines. Figure 6.1 shows a schematic of

the experiment. A bi-layered Rayleigh-Taylor target was irradiated by a short-pulse

chirped pulse amplification (CPA) beam-line. This beam was focused into a spot of

diameter 10 µm with a 3 ps pulse duration containing 300 J of energy. This gives a

peak intensity of up to ≈ 1020 Wcm−2. As shown, the CPA beam was focused on
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the RT target in a direction whereby both materials could be heated simultaneously.

The RT target dimension was 200× 27× 200 µm and consisted of 25 µm and 2 µm

thick CH and Cu layers receptively as shown in Figure 6.2. A sinusoidal (ripple)

was machined at the interface between the two layers. This has a wavelength of

30 µm and amplitude of 300 nm. The errors associated with the thicknesses of the

Cu and CH layers of the target were found to be 10% and 5% respectively, while

those associated with the amplitude of the sinusoidal were 0.5 nm for the Cu and a

few nm for the CH. The total number of target shots during the experiment was 50.

Figure 6.1: Diagram of the Rossall et al. [4] experimental set-up (top view).

Two diagnostics were used to study the RT target. The primary diagnostic

measured perturbation growth using X-ray backlighter probing. In this diagnostic,

a backlighter Ti target was irradiated by a second beam with 2 ps of pulse duration

containing 100 J of energy. This beam was focused into a spot of diameter 200 µm

using a f/3 parabolic mirror, yielding an intensity of up to ≈ 2× 1017 Wcm−2. The

Ti backlighter target thickness was 25 µm. The radiation from the Ti backlighter

passed through the RT target at different time delays to measure the change in

transmission, from which the amplitude of the sinusoidal can be inferred. The images
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of the target were made using a 2D spherical quartz crystal with a radius of 38 cm

placed after the RT target and recorded on image plate. The delay time between

the RT heating pulse and the backlighter pulse was varied starting from 50 ps and

ranging up to 200 ps. The reason for starting at 50 ps was to ensure that radiative

cooling in the RT target was established. The second diagnostic measured the

Cu K-shell emission spectrum using a HOPG (Highly Ordered Pyrolutic Graphite)

spectrometer. This spectrometer was placed out of the RT target plane at angle of

24◦ facing the Cu layer of the RT target. Then the time-averaged Kα and He-like

spectrum was recorded on image plates during the experiment and used to estimate

the Cu temperature and density.

Figure 6.2: Diagram of the RT target design, showing the directions of the laser
heating pulse and radiograph radiation.

6.2.2 Rayleigh-Taylor experimental concept

Figure 6.3 shows the stages of RT evolution. The target becomes RT unstable

when the density gradient and pressure gradient across the CH-Cu interface are anti-
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parallel. The initial density gradient is fixed by the choice of target material. The

target is isochorically heated by the fast electrons, with the assumption that both

the Cu and the CH are uniformly heated. The pressure gradient (∇P = kBn∇T )

is driven by radiative cooling. The simplistic view is that the intermediate-Z Cu

radiatively cools more rapidly than the low-Z CH. As a result, the pressure in the

Cu drops more quickly than in the CH, establishing RT unstable conditions with

∇ρ • ∇P < 0 across the material interface. Material flow results from the differing

pressures. However, the situation is more complex. The details of radiative cooling

depend upon the temperature and density of the Cu and CH. It is the rich physics

associated with radiative cooling that forms a large part of this chapter. It is worth

mentioning that this experiment designed only to investigate the RT instability in

the linear regime.

Figure 6.3: Diagram of the RT experimental concept.

6.2.3 Experimental results

The methodology of analysing the experimental data is described extensively by

Rossall [5]. A brief discussion of the experimental results is given in this section.

The sinusoidal growth in the RT target is measured using monochromatic X-ray

radiography. The change in transmission of a Ti Kα source is measured from peak

to trough. The spatial variation of the transmitted radiation, which is dominated by

the Cu, gives a measure of the growth of the sinusoidal features. The measurements
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Figure 6.4: Sample of radiographic image of the experiment from the 2D spherical
crystal imager at 150 ps. The left image shows the Ti Kα source passing through
the RT target. The backlighter does not pass through portion A while it does pass
through portions B and C. However, it was difficult to see any perturbations in
portion C. Therefore, the RT data is picked up from portion B. The right image
shows the laser incidence direction, the RT target dimensions and the integration
area (blue box). The distance from the edge of the target to the end of the blue box
is ≈ 45 µm.

are converted to line-densities using Beer’s law (3.27). From these the growth of the

sinusoidal amplitude is inferred. However, this analysis was challenging since poor

contrast between the peaks and troughs was obtained in the backlighter images.

Figure 6.4 shows an example of the image of the backlighter passing through the RT

target at 150 ps. The left image in the Figure 6.4 shows the Ti Kα source passing

through the RT target while the right image in the Figure 6.4 shows the same

image with a schematic of the target position and dimension, the laser incidence

direction and the area where the RT data is picked up by integration (blue box). As

a result, the backlighter signal over the selected section of the image, the blue box

in Figure 6.4, was integrated along the direction of the perturbations to enhance the

contrast of any perturbations which were present. This integration was parallel to

the perturbations. Clearly from the left image, the backlighter does not pass into

portion A and it is difficult to see any perturbations in portion C. Therefore, the
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RT data was picked up from the portion B. The distance from the edge of the target

to the end of the blue box is around ≈ 45 µm. We will see later in Section 6.3.1

that the poor contrast in portion C is due to strong fast electron filaments growing

parallel to the sinusoidal perturbation direction and the area where the RT data is

integrated is the region of the target that is heated uniformly.

Figure 6.5: The experimental change in transmission ∆T from peak to trough (solid
point, left axis) along with the associated perturbation wavelength in µm (hollow
point, right axis). The dashed line shows the experimental change in transmission for
the cold RT target. The dotted line shows the experimental perturbation wavelength
for the cold RT target. This data was analysed by Rossall [5].

The change in the transmission ∆T and the associated perturbation wavelength

values resulting from this integration are shown in Figure 6.5. The change in the

transmission ∆T is plotted on the left axis (solid points) while the associated per-

turbation wavelength is plotted on the right axis (hollow points) of Figure 6.5. The

black dashed line shows the experimental recorded change in transmission in a cold

RT target which is 0.062± 0.007. This is from a target that was not shot. In addi-

tion, the red dotted line shows the perturbation wavelength of the cold target which

is 24.5 ± 6.1 µm. The measurement of ∆T was performed for fast electron heated
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RT targets at time delays between 50 ps and 200 ps. However, as explained above,

the poor contrast of the images affected the ability to identify the peaks and troughs

of the perturbations. This is especially so at the time delays of 50 ps and 200 ps.

This was not the case at 75 ps, 100 ps and 150 ps where the increases in ∆T and

the associated fundamental wavelength 30 µm were readily identified. At these time

delays, the increases in ∆T were observed, which indicates to the increase in the

amplitude of the sinusoidal perturbation. At 150 ps time delay, the measurement

showed that ∆T was less than it was at 100 ps and the error bar of the associated

wavelength was large compared to 75 ps and 100 ps.

Figure 6.6 shows the experimental peak-to-trough amplitude growth in nm. The

increase in peak-to-trough amplitude was measured and found to be 480± 150 nm

and the time integrated growth rate was found to be 10± 2 ns−1 at a time delay of

100 ps.

The Cu plasma conditions were deduced from the time-averaged record of Cu

spectra using the HOPG sperctrometer. It was found that the peak temperature of

the Cu was 350± 50 eV and the the electron density was ne = 1022 − 1023 cm−3.

6.3 The simulation

The RT instability growth in the Rossall et al. [4] experiment differs from the

classical RT phenomenon (see Chapter 3) in four ways. Firstly, the target thickness

is finite, which means that the growth of the RT will be limited to a short time scale

by target expansion. Secondly, the target exhibits quick expansion, dropping the

density at the interface. Thirdly, the target is heated by the fast electrons, which

means that the fast electron transport processes affect target heating. Fourthly,

there is strong radiative cooling in both materials of the target, which influences

the target pressure. These factors lead to a complex picture. Modelling is therefore

needed to understand this experiment. The numerical studies in this chapter are

divided into four main sections as follows:
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Figure 6.6: The experimental growth in the sinusoidal amplitude. This data was
analysed by Rossell [5].

1- Investigation of the RT target heating As explained in Section 6.2.1, the target

was shot from one side whereby both the CH and the Cu could be heated simulta-

neously. This heating is explored via the ZEPHYROS code and the temperature of

each material is estimated.

2- Estimating the radiative cooling As stated in Section 6.2.2, the pressure gra-

dient was driven by the radiative cooling. This occurs after isochoric target heating.

This radiative cooling is estimated in both hydrodynamic codes; HYADES and HE-

LIOS.

3- Investigation of the radiation transport The influence of radiation transport is

investigated in both HYADES and HELIOS. Since each hydro-code uses a different

opacity model as explained in Section 3.3, the theoretical TOPS opacity [111] is

used for comparison purposes.

4- Investigation of hydrodynamic RT instability The two hydrodynamic codes

HYADES and HELIOS are used to model the time dependent interface Atwood

number, density, length scale and acceleration. These are used as inputs in to 1D
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dimensional RT growth rate formula and RT growth amplitude model.

6.3.1 Investigation of the RT target heating

The background temperatures of the Cu and CH layers were modelled using

ZEPHYROS and as a function of the half-divergence angle in a copy of the experi-

mental RT target but without the sinusoidal interface. The cell size of the grid was

1 µm in each direction with 130 macroparticles injected into each cell. This helps

to reduce the statistical noise. It was assumed that 30% of the laser energy coupled

to the fast electrons. The laser intensity, spot size and pulse duration parameters

were identical to those of the experiment. The fast electron temperature was set to

2.7 MeV (see Section 2.2). Three divergence angles of 50◦, 60◦ and 70◦ were used in

the simulations, since these were the expected angles produced for intensities up to

1020 Wcm−2 [22,23,135,136]. Figure 6.7(a) shows the Z atomic number of the cold

RT target at 3 µm depth in the x-direction. The thickness of each layer is shown in

the y-direction. The top layer is 2 µm of Cu. Figure 6.7(b) shows the background

temperature at 3 µm depth in the x-direction, notice the compressed side in the

z-direction. It also shows the heated region where the laser strikes the RT target.

It is essential that the laser heats both layers.

Figure 6.7: (a) Slice taken for target Z-profile at 3 µm depth in x-direction (see
Figure 6.2), showing the thickness of each layer in y-direction. (b) Slice taken for
target background temperature in eV at 3 µm depth in x-direction at 3.5 ps(see
Figure 6.2), showing the simulated laser spot position.

Figure 6.8 shows x-z contour plots of the resulting background temperatures of
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the Cu and CH for three divergence angles respectively at 3.5 ps. These slices were

taken for each material at the interface where the simulated laser hit. Generally, the

simulations showed electron filaments growing along the x-direction. The presence

of the filamentary structures inside the RT target implies non-uniform heating. This

is likely the reason why no clear perturbations were seen in portion C of the exper-

imental measurement in Figure 6.4. These filaments grow parallel to the sinusoidal

perturbation direction. These simulations are in agreement with the observation of

filaments in other experiments with similar target dimensions [65]. The presence

of filaments leads to complex temperature structures and this will have an impact

on the target hydrodynamics. In addition, the RT target heating in the x-direction

is also adversely affected by both electric field inhibition and angular dispersion as

discussed in Chapter 4.

Figures 6.8 (a) and (b) illustrate the different filaments structure in the Cu and

CH layers. This difference between the two materials is related to the resistivity, for

example in the Spitzer regime, Te > 100 eV gives relation Z ∝ η and η ∝ T−3/2. The

heating rate is resistivity dependent (2.32), with resistive heating of Cu slower than

plastic. According to this, the background temperature in the case of Cu (Z=29)

is lower than that of CH (Z=3.5). Therefore, as stated in Section 2.3.6, when the

background temperature is low, a small number of large filaments grow, while in the

case of a high background temperature, a large number of small-scale filaments are

observed [39,137]. This agrees with the filamentary structure observations in Figure

6.8 for Cu and CH.

In addition, the filament structures within the same material differ according to

the divergence angles. This is also shown Figure 6.8. Fewer filaments were obtained

with a smaller divergence angle. This is related to transverse fast electron temper-

ature Tf,⊥ [138]. A larger divergence angle causes a reduction in Tf,⊥, since the

number of the fast electron current density jf reduces. This affects the modulation

in the transverse self-generated magnetic field and how the Lorentz force acts to
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bend the oppositing beams.

(a) Cu (b) CH

Figure 6.8: Contour slices taken of RT target background electron temperatures in
eV at the interface between the Cu and CH layers. Figures (a-1), (a-2) and (a-3) for
Cu at 50◦, 60◦ and 70◦ respectively. Figures (b-1), (b-2) and (b-3) for CH at 50◦,
60◦ and 70◦ respectively.

Furthermore, the filament temperatures in the same material varied at specific

divergence angle. For example, the filament temperatures in the case of Cu at 50◦

ranged from 200 eV to a peak of 700 eV. This variation in temperature makes
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defining a background temperature a challenge. An attempt was made to estimate

an overall mass average background temperature of each material individually. The

mass of each layer in the RT target was calculated and was found to be 7.14 ×

10−7 g for Cu and 1.1 × 10−6 g for CH. The overall background temperature of

each material was estimated at x = 50 µm. This is the region where the RT data

is measurement was made from experimental images. In this region, the simulated

RT target temperature is relatively uniform. Figure 6.9(a) shows an example of the

temperature distribution and it is varied between 350 eV and 700 eV. The area under

these temperature spikes gives the overall background electron temperature. The

mean of the background temperature and variance were estimated from this. This

process of estimating the background temperature was repeated for each material at

different divergence angles and the results are shown in Figure 6.9(b) as a function

of the half-divergence angle. It is seen that the background temperature decreases

with increasing divergence angle. This is due to the transverse spreading of the

fast electrons. The background temperatures at 50◦ and 60◦ are similar and are

in agreement with the experimental determined temperature of 350 ± 50 eV. The

simulation also predicts that the Cu and CH will heat to similar temperatures.
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Figure 6.9: (a) Shows an example of estimating the target temperature of CH layer
at x = 50 µm. The mass average temperature calculated over the material thickness
then the mean of the background temperature and its variance were estimated in
the area under temperature spikes (b) Shows the resulting background temperature
of each material as a function of the half-divergence angle at a depth of 50 µm.
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Finally, fast electron refluxing [28] was observed in the simulated RT target. This

refluxing is expected since the thickness of the target in the y-direction is restricted

to 27 µm. However, the fast electron refluxing does not significantly affect the

heating of the RT target.

6.3.2 Radiative cooling

The specific radiative cooling rate QEmis is a strong function of the tempera-

ture, since QEmis ∝ T 4 as stated in Section 3.2.2, and it is usually calculated in

hydrodynamic codes with multi-group opacities and radiative transfer [118]. At

high temperatures, the average excitation and ionisation is high. These contribute

to the emission of radiation and the total opacity, which in turn leads to the radia-

tive cooling. Since the radiative cooling is sensitive to radiation emission processes

and opacity as shown in (3.31), appropriate accounting for the details of the atomic

physics is essential. The estimation of radiative cooling is performed using both

HYADES and HELIOS to explore the sensitivities of the two different models. (HE-

LIOS) employs a large amount of detailed atomic data based on the DCA model

while HYADES uses in-line calculations based on the screened hydrogenic atomic

model. To calculate the radiative cooling, targets of composition and thickness as

used in the experiment were modelled under the approximation of LTE and hydro-

dynamic motion of the plasma turned off.

Figure 6.10(a) shows the radiative cooling rate of the Cu and CH at solid density

as a function of temperature; this was obtained from HYADES. From left to right,

the radiative cooling of the CH is higher than that of the Cu until 250 eV. Beyond

this temperature, the cooling rate of the Cu exceeds that of the CH. This would

cause CH to cool faster than Cu in the simulation as CH will radiate more strongly

than the Cu at lower temperatures in HYADES. This affects the material flow as the

CH pressure gradient might not be sufficient to push the Cu. This has implications

for the perturbed amplitude growth predicted from HYADES as shown later in

121



Figure 6.10: (a) Shows log10 radiative cooling for solid density of Cu and CH in
HYADES, considering LTE and no hydro-motion. Lower than 250 eV the CH starts
to cool faster than the Cu in HYADES. (b) Shows log10 radiative cooling for solid
density of Cu and CH in HELIOS, considering LTE and no hydro-motion. The Cu
radiates faster than the CH even at low temperatures in HELIOS.

Section 6.3.4.6. In comparison in HELIOS, Figure 6.10(b) shows the Cu radiative

cooling rate is greater than that of the CH including lower temperatures. The two

calculations are of the same magnitude the differences, however, particular below

250 eV, are very important.

To explain the reason for this difference in radiative cooling between the two

codes, the average ionisation Z∗ of the solid density of the Cu and the CH as a

function of temperature is shown in Figures 6.11(a) and (b) respectively. Generally,

the average ionisation increases with temperature. Figure 6.11(a) shows the average

ionisation of Cu solid density. As shown, at the peak experimental temperature

of 350 ± 50 eV, Z∗ is in the range of Ar-like Cu to Ca-like Cu, i.e. ionised to

L-shell. Here, the ions with an incomplete outer shell include a large number of

decaying excited states and line transitions which contribute to the energy loss

via radiation. These transitions also contribute to the opacity and thus affect the

radiative cooling [118]. It is therefore important to use detailed atomic physics

models in order to include many possible transitions between the different levels of

excitation across many ionisation effects. This is not the case with CH, however,

where Figure 6.11(b) shows the average ionisation of solid density CH between 300

and 400 eV is full ionisation Z∗ ≈ 3.4, K-shell.

It is worth mentioning that the plasma also cools by target expansion into the
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Figure 6.11: (a) Average ionisation Z∗ of Cu solid density as a function of temper-
ature. The dashed lines show the experimental temperature range 350± 50 eV. (b)
Average ionisation Z∗ of CH solid density as a function of temperature. The dashed
lines show the experimental temperature range 350±50 eV. The CH is fully ionised
at these temperatures.

vacuum and thermal conduction. Both effects can be modelled and how these effect

RT growth are discussed in Sections 6.3.4.3 and 6.3.4.5 respectively.

6.3.3 Investigation of the radiation transport

As stated in Section 3.2, plasma hydrodynamics can be influenced by aspects of

radiation transport, such as the accuracy of the opacity calculation, the details of the

atomic data (which are essential in order to estimate the absorption and emission

of the photons), and the type of radiative approximation method that is used to

perform the radiation calculations. The multi-group radiation model was used here

to calculate the radiation transport. This model is computationally efficient and

maintains accuracy by grouping opacity variations across the range of frequency

domain is of interest. The model was employed using 50 energy groups, with up to

10 keV maximum photon energy.

The RT target consisted of Cu and CH, each of which behave differently with

regard to radiation transport. Since CH plasma is a low-Z material, it tends to be

optically thin at high temperatures [108]. The difficulty comes with a 2 µm thickness

of Cu, since it has an intermediate atomic number (Z=29) and the Cu can vary

between optically thick and optically thin across the frequency range. It is assumed

123



that the simulated RT target is optically thin and the Planckian mean opacity is used

here for two reasons. Firstly, since there is no source of energy gain in the simulated

target, it is assumed that the radiation can escape the target. This ignores the

small fraction of photons of the order of yL/λ<ν> which are absorbed [6], where yL

is the plasma thickness and λ<ν> is the mean free path of photons. Secondly, the

emission opacities are Planckian mean opacities and the radiative cooling depends

on emission opacities as defined in (3.31) [118]. In addition, it is assumed that the

plasma is in LTE. The assumption of LTE with Planckian mean opacity is valid here

since the mean free path of photons is greater than the Cu layer thickness [139].

In the preceding section, it has stated that the difference in the predicted radia-

tive cooling between HYADES and HELIOS is due to the difference in the atomic

model used to calculate opacity. Intermediate Z-materials such as Cu need detailed

atomic data, including the atomic structure of different ions and the energy levels

of ground and excited states and line transitions. HYADES opacity is based on

the screened hydrogenic model whereas HELIOS opacity is computed by calculating

the contributions of the bound-bound, bound-free and free-free processes using the

DCA model. Details of each model were given in Section 3.2.1.

TOPS HELIOS HYADES
Cu density κ<ν>p λ<ν> κ<ν>p λ<ν> κ<ν>p λ<ν>

(gcm−3) (cm2g−1) (µm) (cm2g−1) (µm) (cm2g−1) (µm)

8.93 2200 0.5 1690 0.7 7800 0.1
0.893 990 10 400 30 2600 4
0.0893 400 260 50 2290 2300 44

Table 6.1: Table of Cu emission opacities κ<ν>p in cm2g−1 and photon mean free
path λ<ν> in µm at 400 eV and different densities.

To show the impact of opacity on radiative cooling, the frequency averaged

Planckian mean opacities were calculated for each code using (3.29) at 400 eV for

the different densities of the Cu and CH. These were then compared to TOPS

opacities at the same temperature and densities. The frequency range is between
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≈ 1×1016 Hz to 2×1018 Hz which corresponds to the range of the photon energy used

in the calculations, i.e. 0.01−10 KeV. The integration of (3.29) was performed using

the trapezoidal integration method. A short IDL program was written to read the

extracted HYADES opacity. Table 6.1 shows the emission opacity of Cu for the three

codes. Generally, there is a difference between all three codes, which is due to the

different in atomic models involved. Some agreement, however, was found between

TOPS which uses DTA atomic model and HELIOS which uses DCA atomic model.

This is due to the fact that both codes use detailed atomic systems. The difference

between them becomes clear at 1/100th solid density. At this density, TOPS opacity

is higher than HELIOS by factor 8. Moreover, HYADES opacity κ<ν>p is high

compared to both HELIOS and TOPS at all densities. From Table 6.1, the screened

hydrogenic atomic model overestimates opacities. This overestimation results from

the hydrogenic degeneracy of atomic levels while the splitting of the energy levels

with different angular momentum was neglected.

In addition, Table 6.1 shows the mean free path of emitted photons, estimated

using (3.28). HYADES has a shorter mean free path λ<ν> than both HELIOS and

TOPS, and this difference increases as the Cu density is reduced. This implies that

in a HYADES simulation Cu will radiate more effectively and cool more quickly.

Again, both the HELIOS and TOPS mean free paths agree except at the lowest

density. It is important to note that the mean free path is greater than the size

of the Cu layer, i.e. 2 µm, excepted at solid density. The fact that the mean free

path at solid density is shorter than the size of the Cu layer can be ignored since

the target expands dropping the density quickly.

Table 6.2 shows the emission opacity of CH for the three codes. There is an

agreement in the generated opacity from the three codes. This emphasises the fact

that in these conditions CH does not need a complex atomic model.

An attempt was made to match the Cu-HYADES radiative cooling with that

of Cu-HELIOS, since the HELIOS opacities are in some agreement with TOPS
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TOPS HELIOS HYADES
CH density κ<ν>p λ<ν> κ<ν>p λ<ν> κ<ν>p λ<ν>

(gcm−3) (cm2g−1) (µm) (cm2g−1) (µm) (cm2g−1) (µm)

1.1 71 130 70 130 70 120
0.11 8 10700 8.5 10600 8 12100
0.011 0.90 100× 104 0.8 110× 104 0.7 140× 104

Table 6.2: Table of CH emission opacities κ<ν>p in cm2g−1 and photon mean free
path λ<ν> in µm at 400 eV and different densities.

opacities as shown in Table 6.1. The ratio between both opacities at each density of

the Cu and the CH was estimated, as shown in Table 6.3, this was to enable the use

of an opacity multiplier in HYADES. The ratio for CH at different densities is nearly

1, but this is not the case for the Cu, where the ratio needs to be different at each

different density. Figure 6.12 shows an example of the Cu radiative cooling at solid

density after the using opacity ratio at solid density of 0.22. The cooling rate using

the scaled opacity by the multiplier (red circle-solid line) is compared to standard

HYADES (green dashed line) and HELIOS (blue solid line). Again, hydrodynamic

motion was turned off in these calculations and the cooling rate calculation started

at 400 eV. It was found that Cu in standard HYADES cools faster than that in

corrected HYADES. In standard HYADES, the temperature drops from 400 eV to

338 eV at time of 1 ps while it drops to 366 eV in the same time period when the

0.22 opacity multiplier is used. However, even with this correction the cooling rate

curve does not match that of HELIOS. The opacity multipliers required to match

radiative cooling in HELIOS for Cu and CH solid density are greater requiring 0.1

and 0.033 respectively. These values make the HYADES opacity low compared to

other opacity values, which is not physically correct. The effect of using an opacity

multiplier in HYADES for RT growth is investigated in Section 6.3.4.6.
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Cu density (gcm−3) Ratio CH density (gcm−3) Ratio
8.93 0.22 1.11 1
0.893 0.15 0.11 1.1
0.0893 0.021 0.011 1.14

Table 6.3: The opacity ratios between HELIOS and HYADES for Cu and CH based
on values of Tables 6.1 and 6.2 respectively for the different densities.

Figure 6.12: Shows the difference in radiative cooling log10 for fixed solid density of
Cu between standard HYADES (opacity multiplier=1), corrected HYADES (opacity
multiplier = 0.22) and HELIOS.

6.3.4 Investigation of hydrodynamic RT instability

6.3.4.1 The hydrodynamic modelling

The approach to hydrodynamic modelling is to set a single uniform temperature

for the target, i.e. the same temperature for both layers. The assumption is that the

target is instantaneously and isochorically heated by the fast electrons. A similar

approach was used by Lancaster et al. [67]. The radiation hydrodynamic model

simulates the radiative processes and target hydrodynamics over time. The hydro-

codes are given the conditions that represent the situation at the end of the short-

pulse laser duration including a temperature of 350 eV.
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6.3.4.2 Simulation initialisation

The simulations were carried out with a total of 100 zones, 30 for Cu and 70 for

CH, in planar geometry. This choice of zone numbers means that the zone sizes were

small, which was sufficient resolution to track the changes in the parameters at the

material interface. Each material was defined in a separate region with thicknesses

of 2 µm of Cu and 25 µm of CH and densities of 8.9 gcm−3 and 1.11 gcm−3 for

the Cu and CH respectively. In HYADES, the Cu layer was feathered into the CH-

Cu interface with a ratio of 1.15 in order to obtain high spatial resolution. Open

boundary conditions were implemented to allow for plasma expansion. A multigroup

diffusion radiative transport model was used with radiation divided into 50 energy

groups, with up to 10 keV maximum photon energy. The effect of using a higher

number of groups was tested, with a range of 30 to 60 and 100, and it was found that

increasing the number of groups in HYADES beyond 40 had no significant impact

on the radiation calculations, while in HELIOS, it was computationally expensive

using more groups than 50 as the DCA model was used. In addition, LTE ionisation

model was employed in both codes.

The tabulated SESAME equation of state [140] was used in HYADES while the

tabulated PROPACEOS equation of state was used in HELIOS. The opacity in

HYADES is based on hydrogenic model, while the PROPACEOS opacity is used in

HELIOS which is based on the DCA model. The time step was chosen with the

consideration that it should yield accurate results for post-processing hydrodynamic

data with sufficient resolution to enable capture changes in amplitude and growth

rate. Trial simulations were carried out with a range of time steps, and as a result

the time interval for successive post-processing of the hydrodynamic data was chosen

to be 5 ps.
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6.3.4.3 RT target expansion dynamic

The temporal evolution of RT target expansion is shown in Figure 6.13. The

expansion of the Cu in HELIOS is more rapid than in HYADES. It seems that the

compression wave is much stronger in HYADES than in HELIOS. This results in

a decrease in density in HELIOS compared to HYADES, leading to higher Atwood

number in HYADES than in HELIOS as discussed in the next section.

Figure 6.13: (a) Temporal evolution of the RT expansion in HELIOS. The green
lines represent the Cu layer expansion and the red lines the CH layer expansion.
The arrows indicate the direction of the expansion. (b) Temporal evolution of the
RT expansion in HYADES. The Cu layer is located above the 25 µm zone boundary
position while the CH layer lies below 25 µm. The arrows indicate the direction of
the expansion.

The experimental results predict that the RT growth occurs within the first

150 ps. This is supported by simulation. Initial Cu is at higher density and pressure

ensuring a stable interface. This is clear in both Figure 6.13 and Figure 6.14(a).

The latter figure shows the simulated pressure (left axis, blue dot-dashed curve) and

simulated density (right axis, green solid curve) versus distance at 10 ps. The black

dashed lines at 0 and 27 µm show the initial target position while the red dashed

line at 25 µm indicates the interface position between the CH and the Cu. Figure

6.14(a) shows that the higher Cu pressure, which is 1 × 1014 Pa, compresses the

lower pressure CH, which is 3 × 1013 Pa, and this leads to an increase in the local

density of the CH to 1.5 gcm−3. The interface is initially located at 25 µm (red
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Figure 6.14: Simple pressure (left axis, dot-dashed curve) and density profile (right
axis, solid curve) from HELIOS at (a) 10 ps, (b) 20 ps and (c) 100 ps. The red dashed
line at distance of 25 µm indicates the initial position of the Cu-CH interface, the
sky-blue dot-dashed line indicates the new location of the interface due to the Cu
compression at the first 20 ps and the black dashed lines at 0 and 27 µm distance
indicate the initial boundaries of the RT target before expansion. (d) shows the
velocity of the Cu-CH interface with time in HELIOS.

dashed line), but this position changes due to the Cu compressing the CH. Thus the

interface moves approximately −2 µm to the left as shown in Figure 6.14(b). The

new location is shown in Figure 6.14(b) as sky-blue dot-dashed line. The simulation

suggests that the RT configuration starts to emerge at 20 ps when the Cu pressure

drops due to radiative cooling faster than the CH pressure, while the Cu density is

still higher than the CH pressure, as shown in Figure 6.14(b). As the time progresses,

the Cu pressure drops significantly compared to the CH pressure and the CH then
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starts to accelerate the Cu. This is a RT unstable situation. Figure 6.14(c) shows an

example of this at 100 ps. Figure 6.14(d) shows the velocity of the Cu-CH interface.

During the first 55 ps the Cu accelerates the CH. This is the RT stable situation.

The RT unstable situation occurs beyond 55 ps where the CH accelerates the Cu.

6.3.4.4 Post-processor for RT parameters

Both HYADES and HELIOS are used to calculate the time dependent Atwood

number At, acceleration g , density scale length L and the finite thickness factor

f . These are used as input to a 1-dimensional growth rate formula (3.26). With

this information, it is possible to predict growth of a perturbation based on the

time-dependent evolution. A 1D hydro-code has been used in elsewhere [85, 95] to

investigate RT instability in a similar way.

Figure 6.15: (a) Acceleration profile at the Cu-CH interface for both codes.
(b) Atwood number at the Cu-CH interface for both codes.

Figure 6.15(a) shows the acceleration profiles of both HELIOS and HYADES.

The acceleration values are higher than those usually obtained using a long-pulse

laser system by approximately 2-3 orders of magnitude and will lead to high growth

rates. The typical RT acceleration value produced by a long-pulse laser system is

about 10 µmns−2 [34]. The maximum acceleration is at 30 ps in HYADES and at

≈ 40 ps in HELIOS then starts to drop due to the target expansion. In addition,

Figure 6.15(b) shows a large difference in the predicted Atwood number due to

the difference in the expansion dynamics as explained in the previous section. The
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Atwood number in HELIOS is smaller than in HYADES.

Figure 6.16: (a) shows the time-dependent finite thickness factor f in HELIOS (red
solid line) and HYADES (blue dashed line). (b) shows the time-dependent density
scale length L in HELIOS (red solid line) and HYADES (blue dashed line).

Figure 6.16 (a) the time-dependent finite thickness factor f . This factor in HE-

LIOS does not change significantly and the same is true of the Atwood number

in Figure 6.15(a). In HYADES, the change in this is larger but still small. The

importance of including this factor into the RT growth formula (3.26) can be un-

derstood from (3.23). According to the denominator in (3.23), if the product of

kh ≥ 2, so coth(kh) ≈ 1, thus f ≈ 1, which means f does not affect the growth

rate. In our simulation of the experiment, the initial experimental wavenumber is

k ≈ 0.21 µm−1 and coth(khCH) and coth(khCu) are approximately 1 and 2.5 re-

spectively. The thickness of the CH is sufficient not to affect the RT growth, this is

not the case for Cu and including f is important. Figure 6.16 (b) shows the time-

dependent density scale length L. This scale increases significantly with time in

HYADES in contrast to HELIOS. The differences in f and L is due to the difference

in the expansion dynamics of the two codes.

6.3.4.5 The RT instability growth rate

The growth rate of the RT was calculated from both hydro-codes using (3.26),

and the physics of different stabilisation effects on RT growth and the simulation

parameters are discussed in Sections 3.1.2 and 6.3.4.2 respectively.
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Figure 6.17: Growth rate in ns−1 using (3.26) for both HELIOS and HYADES.

Figure 6.17 shows the predicted RT growth rate from HELIOS (red solid line)

and HYADES (blue dashed line). The RT growth starts at 20 ps. This growth

continues and reach to the peak of ≈ 8 nm−1 at ≈ 30 ps in HYADES and at ≈ 45 ps

in HELIOS. The growth continues as time progresses but the rate decreases due to

the target expansion. This expansion reduces both the acceleration and the density

at the interface. The predicted growth rate is lower in HYADES than in HELIOS.

This is because the radiative cooling rate is overestimated in HYADES, as discussed

in Section 6.3.2. The strong radiative cooling in HYADES makes the target cool

quickly, leading to a reduction in pressure in the RT target, so the duration of the

CH pushing into the Cu will be short. This is apparent in Figure 6.10(a), since at

temperatures lower than 250 eV the cooling rate of the CH is faster than that of

the Cu in HYADES.

Figure 6.18 shows calculations using data from HELIOS for classical RT growth

formula γclassical =
√
Atkg (dashed line) , γL =

√
Atkg/(1 + kL) (circle-solid line)

and (3.26) γLF =
√
Atkg/(1 + kL)f (solid line), where f is given in (3.23). It is

well-known that the classical RT formula overestimates the growth, since density-
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Figure 6.18: Comparison between the growth rate in HELIOS using the classical RT
formula (dashed line), (3.26) without including the finite thickness factor f (circle-
solid line) and (3.26) formula including f (solid line). This growth is in the unit of
ns−1

gradient stabilisation is not taken into account [6]. The influence of density-gradient

stabilisation is seen in the green curve. This reduces the growth rate all times and

results in a more rapid drop. An additional important effect is the finite target

thickness factor f . This factor also stabilises the growth and its effect is seen in the

red curve.

Another test was carried out to study the effect of the heat flow inside the

plasmas on the RT growth rate. The simulated target was assumed to be heated

uniformly and isochorically at thydro = 0, a gradient in temperature occurs once the

target starts to expand. A simulation was performed by turning thermal conduction

off, this showed that the RT growth rate increased by a factor of 10. This led to

testing the validity of using the Spitzer and Harm model [34] and whether using

a flux limiter would make a difference. The flux limiter imposes an upper limit

on the conductivity. It was found that using a flux limiter does not affect RT

growth. To interpret this result, a quantitative estimation of the ratio between the
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electron-ion collision mean free path λei = (vth/νei) and temperature scale length

LT = (Te/|dTe/dx|) was made for the Cu and the CH. vth = (kBTe/me)
1/2 is the

electron thermal velocity and νei is the electron-ion collision rate defined in (2.20).

The electron-ion collision rate νei is of order of 1018 s−1 and 1017 s−1, for the Cu and

the CH respectively and with lnΛ = 5. The thermal velocity vth for both materials

was in the order of 106 ms−1. This implies that the electron-ion collision mean free

path λei is 10−12 m for Cu and 10−11 m for CH. The temperature scale-lengths for

both materials are in the order of 10−5 m. Therefore, the ratio between the electron-

ion collision mean-free-path λei and temperature scale length LT for the Cu and CH,

respectively is,

λei
LT
≈ 10−7 (6.1)

λei
LT
≈ 10−6 (6.2)

and since λei << LT , the Spitzer and Harm model is valid here [34]. It is worth

mentioning, that this analysis account for heat conduction perpendicular to a planar

interface. The RT instability is 3D phenomenon and heat condition in the orthogonal

directions is important. This is an important physics which need to be discussed

when 2D or 3D hydrodynamic simulation is used to model this experiment.

6.3.4.6 The RT peak-to-trough amplitude growth

The perturbation amplitude is estimated using an analytical approach described

in Wood-Vasey et al. [85]. This section begins by demonstrating this analytic

method, followed by a comparison of the experimental results.

6.3.4.6.1 The analytical solution of embedded interface peak-to-trough

amplitude growth

The linear growth of spatial amplitude perturbation is calculated using the

analytic approach described in Wood-Vasey et al. [85]. This approach is based on

solving the linearised equation governing perturbation growth as defined previously

135



in (3.2) as a function of growth rate using the backward differencing method of the

Taylor series [141],

ζ ′′(t)− γ2RT ζ(t) = 0 (6.3)

where ζ is the spatial amplitude of the single-mode of the perturbation and γRT is

the growth rate of RT (defined in (3.26)).

The Taylor backward differencing method is a standard method ensuring stability

in solving ordinary differential equations (ODEs) [141]. Since (6.3) is a second-order

ODE, two boundary conditions need to be specified to describe the physical situation

being modelled. If the target is in static equilibrium, it can be assumed that there is

no evolution in the spatial amplitude of perturbation ζ at time less than zero. Since

the target is manufactured, the initial spatial amplitude can be measured ζ(t = 0).

Thus the perturbation amplitude at ζ(t = 0) and ζ ′(t = 0) can be specified as,

ζ(t = 0) = ζ(t < 0) = 600 nm (6.4)

ζ ′(t = 0) = ζ ′(t < 0) = 0 nm/ps (6.5)

where 600 nm is the initial amplitude of the sinusoidal from peak to trough as used

in the experiment. Using the backward differencing method, the spatial amplitude

at specific time tn is,

ζ(tn) ≈ ζ(tn−1) + ∆tζ ′(tn−1) +
∆t2

2
ζ ′′(tn−1) (6.6)

ζ(tn−1) ≈ ζ(tn−2) + ∆tζ ′(tn−2) +
∆t2

2
ζ ′′(tn−2) (6.7)

ζ(tn−2) ≈ ζ(tn−1)−∆tζ ′(tn−1) +
∆t2

2
ζ ′′(tn−1) (6.8)

where ∆t is the time interval. In addition, the backward differencing method is
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applied to equation (6.3) as,

ζ ′′(tn−1) = γ2RT ζ(tn−1) (6.9)

ζ ′′(tn−2) = γ2RT ζ(tn−2) (6.10)

Substituting (6.9) into (6.6) gives,

ζ(tn) ≈ ζ(tn−1) + ∆tζ ′(tn−1) +
∆t2

2
γ2RT ζ(tn−1) (6.11)

Similarly, substituting (6.10) and (6.9) into (6.7) and (6.8), respectively, then com-

bining those latter equations gives,

ζ ′(tn−1) ≈ ζ ′(tn−2) +
1

2
∆tγ2RT [ζ(tn−1) + ζ(tn−2)] (6.12)

Equations (6.11) and (6.12) are used to estimate the growth of the perturbed

amplitude as a function of the growth rate γRT . This method is more accurate for

estimating the growth than the simple growth calculation equation [142],

ζ(t) = ζ0e
γRT t (6.13)

where ζ0 is the initial amplitude. The reason is that this simple growth calculation

is applied when the acceleration is constant or slowly varying with time [85]. The

acceleration in laser-produced plasmas tends to change very quickly and in the cur-

rent this case happens in a few picoseconds.

6.3.4.6.2 The RT peak-to-trough amplitude results

Figure 6.19 shows a comparison between the experimental and the HE-

LIOS simulation results for the growth of the perturbed amplitude. The simulated
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Figure 6.19: Comparison of the experimental and HELIOS simulation results for
the growth of the perturbed peak-to-trough amplitude in (nm).

perturbed amplitude is estimated using (6.11) and (6.12) and using the starting

temperatures of 300, 350 and 400 eV. The variation in perturbation amplitude due

to the uncertainty in temperature is shown as a green dotted line 300 eV and a red

dashed line for 400 eV. Generally, the growth increases more as in the experimental

data and reproduces the experimental growth at 75 ps reasonably well, while it is

slightly lower at 100 ps for 350 eV and 400 eV. The difference in the growth between

350 eV and 400 eV is only 3 nm. However, using 300 eV, the simulation matches

within the error of the experiment at 75 ps yet at 150 ps the predicted difference

between 350 eV and 300 eV is 72 nm. Several tests were performed to see at which

temperature the growth rate curve can reach the experimental data at 100 ps. Gen-

erally, it was found that using higher temperatures leads to a higher growth curve

and unrealistic temperature 2 KeV are needed to reproduce the experimental point

at 100 ps. Interpretation of this result is not straightforward as the Cu.

Futhermore, the experimental peak-to-trough amplitude growth at 150 ps is

less than at 100 ps. This is incorrect in terms of linear RT instability where the
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perturbation amplitude grows exponentially with time. Figure 6.5 shows a large

error bar in the perturbed wavelength at 150 ps. This indicates that this point

might not part of the same series. Therefore, this point can be discarded when

trying to fix the modelling results.
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Figure 6.20: Comparison of the experimental growth of perturbed peak-to-trough
amplitude in (nm) in with HYADES and HELIOS.

In addition, a comparison between the experimental data and the numerical

data from HYADES and HELIOS at 400 eV is shown in Figure 6.20. As shown,

the perturbed amplitude in HYADES is lower than that in HELIOS, due to the

difference in the radiative cooling rate.

On the other hand, the effect of using an opacity multiplier in HYADES was

investigated and it was found that using an opacity multiplier as determined at

solid density does not significantly increase the RT growth rate. Also, the correction

multiplier at solid density is not valid as time progresses, since the density decreases

with time. The effect of using an opacity multiplier is apparent in the temperature

profile up to 40 ps of the hydrodynamic simulation, as shown in Figure 6.21. Even

with a time dependent opacity multiplier is unlikely HYADES can accurately track

the complex emission and opacity processes of the Cu.
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6.4 Discussion of the results

The numerical investigations of the Rossall et al. experiment [4] provide several

important findings as follows,

1. RT target heating using the fast electrons :

The hybrid ZEPHYROS simulation suggested the presence of filaments in the

RT target even with a restriction in its thickness to 27 µm. The lack of com-

pactness in other dimensions spoilt the uniformity of heating and minimised

the positive heating effect of fast electron refluxing. The presence of filaments

explains the poor contrast in the experimental radiographic raw images as

they grew parallel to the sinusoidal perturbation. This poor contrast made

the experimental analysis challenging resulting in the large error bars associ-

ated with measurement as shown in Figure 6.6. However, it was possible to

identify the sinusoidal perturbation in the region where more uniform heating

arose. This region is at a distance of 50 µm from the laser. The tempera-

ture at this distance was estimated and it was found to be 350 eV. Similar
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to Cu layer temperature extracted from the experiment. The simulation also

suggested that the Cu and the CH are heated to similar temperatures.

2. RT target radiative cooling:

The biggest challenge in modelling this experiment was to obtain accurate

atomic physics calculations in order to predict the radiative cooling correctly.

At 350 ± 50 eV, the CH layer is highly ionised but the Cu is not, being

ionised to an incomplete L-shell where a possibly large number of decaying

excited states and line transitions need to be taken into account. Thus the Cu

needs a detailed atomic model to obtain accurate radiative cooling. Without

this, a hydro-code will incorrectly estimate the Cu radiative cooling. This is

the case when using HYADES, where the simple screened hydrogenic atomic

model is used, as it underestimated the radiative cooling. The CH pressure

is insufficient to push the Cu and so the RT growth is under-predicted. The

DCA atomic model in HELIOS predicted different radiative cooling rates,

showing that the Cu radiative cooling was greater than the CH even at low

temperatures.

3. RT target radiation transport:

The accuracy of the opacity calculations plays an important role in the RT

results and it was found that the effect of opacity is more important than

thermal conduction and the details of the multi-group diffusion model. The

importance of opacity lies in the fact that the radiative cooling calculation

is affected by the emission opacity as shown in (3.31). The mean emission

opacity was calculated from HELIOS and HYADES and compared to TOPS

opacity. It was found that the Cu opacity is higher in HYADES than in either

HELIOS or TOPS at 400 eV, thus the mean free path of emitted photons

is short, which implies that Cu-HYADES was more optically thick than Cu-

HELIOS. Again, this is due to the fact that the screened hydrogenic model in

HYADES neglected the splitting of the energy levels, which affects the total
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opacity emission.

4. RT hydrodynamic instability :

Rapid growth of the RT has been simulated. This rapid growth occurs after

an initial period of interface stability. A rapid drop in Cu pressure reverses the

interface acceleration and the RT growth begins, reducing the pressure driving

the interface acceleration and the Atwood number. The RT acceleration is

high compared to the typical acceleration value that is observed in a long-

pulse laser system by 2-3 orders of magnitude. The hydrodynamic simulation

indicates that the peak RT growth rate is 8 ns−1 which occurs at ≈ 45 ps.

The peak-to-trough amplitude growth increases more as in the experimental

data and reproduces the experimental growth at 75 ps and slightly lower at

100 ps for 350 eV. The growth of the perturbed amplitude increases more in

HELIOS, where its opacities show some agreement with TOPS opacities, than

in HYADES, and this increase is more in line with the experimental data.

6.5 Summary

This chapter has concentrated on the numerical investigation of the Rossall et

al. experiment [4] that was performed in the VULCAN TAW. In this experiment, a

CH-Cu target with a machined sinusoidal interface was X-ray radiographed face-on

to measure the growth in the sinusoidal with time. The simulation of this experi-

ment explored fast electron heating, radiative cooling, radiation transport and RT

instability.

This work shows that it is possible to drive the RT instability in a target heated

by the fast electrons. However, uniform heating is vital for clear observation of the

sinusoidal perturbations. Also, the modelling of this experiment shows the impor-

tance of including a robust atomic physics model in hydrodynamic codes. There are

a number of areas in which improvements can be made in both the experiment and
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the modelling, and these are discussed later in Chapter 7 as recommendations for

future work.
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Chapter 7

Conclusions and future work

7.1 Summary and Conclusions

This thesis has numerically investigated fast electron heating, with the aim of

improving the isochoric heating across the depth in the target. The research has

shown that careful design of a thick target is essential to minimise fast electron

spreading, which is one of the main mechanisms that obstruct fast electron trans-

port and target heating. Here, we have shown that a wire-like shaped target with

transverse confinement of the fast electrons can increase to some extent the uni-

formity of heating across the depth. We have also found that grading the atomic

number at the interface of the resistive guide increases the uniformity of heating

across the depth in the guide. The graded interface configuration minimises the

annular transport effect and increases the powerful confining magnetic fields which

both consequently improve the uniformity of the heating. These guide targets are

also more tolerant to laser pointing stability. In addition, we have shown that a

target with uniform isochoric fast electron heating is a useful tool with which to

investigate hydrodynamic instabilities such as the RT instability.

The thesis began with a brief introduction to fast electron transport and ex-

plained the motivation for the fast electron heating study. Chapter 2 has discussed

the basic physics of fast electron transport and given a description of the hybrid-
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particle ZEPHYROS code, which has been used to carry out the numerical investi-

gation of the fast electron transport. The main physics relevant to Rayleigh-Taylor

instability and radiative losses has been explained in Chapter 3.

In Chapter 4, the hindrances to the fast electron transport in a solid target have

been discussed with respect to the fast electron beam direction; these are the electric

field inhibition, filamentation and the fast electron spreading. The latter effect has

been minimised by redesigning the target to be wire-like, so that the transverse

directions of the target and the source diameter spot size are comparable. This

target design has been numerically tested and found to provide excellent transverse

fast electron confinement. Uniform transverse heating was also obtained due to this

confinement. However, regardless the control of the fast electron spreading, the fast

electron density across the depth in the target was impeded by both the electric

field inhibition and the angular dispersion. This impairs in target heating across its

depth. Since the angular dispersion has not yet been addressed in the context of the

fast electron transport, analytical and numerical investigations have been performed

to measure its extent. It was found that the angular dispersion has a quadratic

effect on the Ohmic heating. This significantly reduces the heating rate. The reason

for this is that the fast electron density drops across the depth as the fast electron

beam is longitudinally dispersed. Thus, decreasing the resistive background electron

density needed to balance the fast electrons. This drives a strong temperature

gradient along the wire-like target depth. Angular dispersion is significant after

the end of the electron beam injection and it reduces the heating by a factor of

4. In addition, it impedes the fast electron density more strongly than electric

field inhibition, resistive magnetic field, drag and scattering effects. However, the

angular dispersion effect can be reduced using lower divergence angle and longer fast

electron beam pulse duration so that more uniformity in heating can be obtained.

The results of this chapter have confirmed the importance of considering the effects

of angular dispersion in the fast electron transport calculations.
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In Chapter 5, improvement on the heating in a larger radius of the resistive guide

has been discussed. A larger resistive guide is needed as it is more tolerance to

pointing stability of the laser. The nonuniform propagation of the fast electrons and

heating inside the larger guide is inferred by the development of interior magnetic

fields within the guide close to the axis and formation of annular heating pattern.

The heating is improved by grading the atomic number at the interface between

the guide element and the solid substrate. We referred to this as “graded interface

configuration”. The main condition for best performance of this graded interface

configuration is that the ratio between the core of the wire that has not been graded

to the laser spot radius must be less than 1. This configuration investigated in stan-

dard, pure-Z and multilayered-Z resistive guiding schemes. Generally, the graded

interface configuration helps to collimate the fast electrons to higher resistivity re-

gion uniformly which improve both the magnetic collimation and guide heating. In

pure-Z resistive guide scheme, the graded interface configuration helps to collimate

the fast electrons to higher resistivity region uniformly, producing heating compa-

rable to the heating obtained in smaller guides. Also, it produces more powerful

azimuthal magnetic fields at the boundary between the guide element and the solid

substrate, leading to increased heating in the guide. In multilayered-Z resistive guide

scheme, this configuration minimises effect of interior magnetic fields to some extent

which improves the heating. In addition, it was found that the graded interface con-

figuration increases the azimuthal magnetic flux density Bφ in the standard-Z guide

scheme by 24% while increases the width Lφ in the multilayered-Z guide scheme by

50% at the end of the laser pulse. A faster and higher azimuthal magnetic field

rate obtained when the interface is graded in Z in standard-Z scheme. The typical

values of the product BφLφ are obtained at the first 200 fs of the interaction in

this scheme. This increases the guide heating as more fast electrons are confined at

early time of interaction. Higher energetic fast electrons are confined in pure-Z and

multilayered-Z guides with graded interfaces.
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Chapter 6 has explored numerically the Rayleigh-Taylor instability experiment

driven using a fast electron heated target. The numerical investigation has been

divided into four sections in order to study the different aspects of the physics

affecting the RT instability. The first section concerned the fast electron heating of

the RT target. The simulation has suggested the presence of filaments, although the

RT target thickness was thin, 27 µm. Because of the lack of compactness in other

directions of the target, the uniformity of heating was spoilt by filament growth.

These filaments grow in the direction parallel to the sinusoidal perturbation seeded

for RT instability which affects the ability to identify the perturbation and worsens

the contrast of the backlighter images. This poor contrast made the experimental

analysis challenging resulting in the large error bars associated with measurement.

It was possible to identify the sinusoidal perturbation in the region where more

uniform heating arose. This was at depth of 50 µm. The temperature was estimated

at this depth and found to be in agreement with the experimental Cu temperature

350± 50 eV with divergence angles of 50◦− 60◦. Also, the simulation has suggested

that at this depth the Cu and CH are heated to a similar temperature. The second

section investigated the RT target cooling rate. This investigation was performed

using two hydro-codes, HELIOS and HYADES, where two different atomic models.

At 350 ± 50 eV, the CH layer is highly ionised but the Cu is not, being ionised

to an incomplete L-shell where a possibly large number of decaying excited states

and line transitions need to be taken into account. Thus, the Cu needs a detailed

atomic model. The screened hydrogenic model in HYADES underestimates the

cooling rate of the Cu which affects the hydrodynamic motion. The CH pressure

was insufficient to push the Cu and so the RT growth is under-predicted. The DCA

model in HELIOS showing a greater cooling rate for Cu than for CH even at lower

temperature and produces higher RT growth rate. The radiative cooling results

led to the third section of the investigation which concerned radiation transport.

The importance of opacity lies in the fact that the radiative cooling calculations are
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affected by the emission opacity. It has been shown that the Cu opacity is higher in

HYADES than in either HELIOS or TOPS opacities. Thus, the simulated RT target

in HYADES emits its radiation faster than in HELIOS. The last section investigated

the hydrodynamic RT instability. A rapid growth was experimentally observed and

the predicted growth obtained from HELIOS simulation was more in line with the

experimental data compared to HYADES. The RT acceleration is high compared

to the typical acceleration value that is observed in a long-pulse laser system by

2-3 orders of magnitude. The hydrodynamic simulation indicates that the peak RT

growth rate is 8 ns−1 which occurs at ≈ 45 ps. The simulations of this experiment

have shown that the RT instability can be driven using short pulse laser system.

However, the uniformity of fast electron heating is vital to drive this instability.

7.2 Future work

This section outlines some suggestions for further research. This is restricted to

three topics discussed in this thesis; the angular dispersion model, graded-interface

of the resistive guide and the RT instability experiment concept.

The angular dispersion model needs to be extended to incorporate the fast elec-

tron density predictive capability, parameterising of the laser parameters and ma-

terials properties such as lattice structure. Furthermore, angular dispersion needs

to be explored with drive laser parameters relevant to the Fast Ignition, i.e. 20 kJ

energy and 20 ps laser pulse duration, since it is expected that this may influence

the ignition and coupling of the compressed fuel and fast electrons.

In terms of graded interface configuration, this concept needs to be extended

to other geometries, for example, in a conical guide [75] for minimising the annular

transport and increasing fast electron focusing. Ongoing work includes a comparison

of the graded interface resistive guide and a bi-structured resistive guide.

With regard to the RT instability driven in the fast electron heated target,

developments can be made to both experimental and numerical investigations. Ex-
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perimentally, an extended wire technique could be used as a method of controlling

heating uniformity in the transverse direction in order to prevent filamentation. In

addition, it would also be useful to measure both the Cu and CH temperatures, e.g.

with a dopant, as the simulation of this experiment needs precise initial tempera-

tures for both materials. Numerically, this experiment needs to be explored using

a 2D hydrodynamic code in order to study the effects of lateral expansion and the

effect of thermal conduction, and to measure the change in transmission. Detailed

atomic physics needs to be used in the 2D modelling. Furthermore, the effect of

filamentation should be included in the modelling as this contributes to changes in

the RT growth rate and to study the effect of the filaments on the interface.
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Appendix A

Convergence in ZEPHYROS

In this appendix, the convergence in ZEPHYROS is briefly discussed. The num-

ber of the macroparticles is essential to obtain high resolution and to reduce the

statistical noise. Statistical noise is the unexplained variation in the simulation due

to error or residual. This noise can be decreased via using more macroparticles in a

simulation since it scales as N−1/2 [124]. This requires more computational resources

and a balance needs to be made. In ZEPHYROS, the acceptable macroparticles is

tested using Target A (see Chapter 4) and the results is shown in Figure A.1.

Figure A.1: Line-out of background temperature using logarithmic scale for three
different number of macroparticles, 250 thousand, 1 Million and 24 Million
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This Figure shows a plot of the background temperature as function of distance

in logarithmic scale using three different number of macroparticles 2.5 × 105, 106

and 2.4× 107. As shown, the noise decreases with increasing the number and more

smooth line is obtained. The average number of particle per cell is 20, 80 and 1940

for 2.5× 105, 106 and 2.4× 107, respectively. In this thesis, above 100 particle/cell

is used.
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Appendix B

Fast electron trajectory inside the

guide

The fast electron trajectory inside the guide is shown in this appendix. The fast

electron motion is affected by the magnetic field flux density, it width and the wire

diameter. The information that provide in both Tables 5.1 and 5.2 is used in this

study. A particle pusher code is firstly described, followed by the results of this

study.

B.0.1 Particle pusher code

A sample particle pusher code has been written to study the trajectory of the

single fast electron motion inside the guide. In this type of code, the positions and

momentum of the fast electrons are updated using the leapfrog scheme and Boris

algorithm [38, 143] respectively. The position updating is performed in 3P , where

P = γmec is the momentum and γ is the Lorentz factor. Each position is evaluated

at integral time steps while the momentum is evaluated at half times. For example

the position in the x-direction,

xn+1 = xn +
∆t

γn+1/2me

Pn+1/2
x (B.1)
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where ∆t is the time step size and Px is the momentum in the x-direction. The

momentum updating is done by the Boris algorithm, which is commonly used in

plasma simulations because of its stability and simplicity. In this method, the electric

field E and magnetic field v ×B are entirely separated in the discretised equation

of motion. Following the discussion in Ref. [38], this algorithm can be divided into

three main steps. Firstly, fast electrons are accelerated in the electric field for a half

time step,

P− = Pn−1/2
x,y,z −

1

2
eEnδt (B.2)

where P− = (P−x ,P
−
y ,P

−
z ) is the momentum, e is the electron charge and En =

(Ex,Ey,Ez) is the electric field. Equation (B.2) is the discretised equation of motion

for the electric field. Secondly, the discretised equation of motion for the magnetic

field is written as,

P+ −P−

∆t
= − e

2meγ∗
(P+ + P−)×Bn (B.3)

where P+ = (P+
x ,P

+
y ,P

+
z ) is the momentum, γ∗ is the constant Lorentz factor

during this step (since this step does not do any work on the fast electrons) and

Bn = (Bx,By,Bz) is the magnetic field. Equation (B.3) is re-arranged into the

following set of three linear equations,

P+
x −P−x = −αzP+

y + αyP
+
z − αzP−y + αyP

−
z (B.4)

P+
y −P−y = αzP

+
x − αxP+

z + αzP
−
x − αxP−z (B.5)

P+
z −P−z = −αyP+

x + αxP
+
y − αyP−x + αxP

−
y (B.6)

where,

αx,y,z =
e∆t

2meγ∗
Bx,y,z (B.7)

Equations (B.4) to (B.6) are re-written in the matrix form then solved for P+.
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Thirdly, the momentum of each direction is updated by accelerating the fast

electrons again by the electric field for half a time step,

Pn+1/2
x,y,z = P+ − 1

2
eEnδt (B.8)

B.0.1.1 Results

To study the motion of single fast electron inside the guide. The information

of the wire radius rwire in Table 5.1 and the magnetic flux density and its width in

Table 5.2 are used in the code as input. The electric field value is extracted from

ZEPHYROS for each run and it found is of order of 108 Vm−1. The magnetic field

profile in the pusher code is gaussian as previously shown in Figure 5.2. The fast

electron is injected at angle of 90◦.

Figure B.1 show the single fast electron motion inside the Run A and B as

function of distance . The fast electron oscillates in Run B ( small wire diameter)

faster than in Run A ( large wire diameter). In these two runs, both values of Bφ

and Lφ are comparable. The conclusion is faster fast electron oscillation is obtained

with reduced wire radius. The results of Run C is not shown here as the results are

similar to Run B.

Single fast electron trajectory is estimated for Runs D and E. Both runs have

the same wire radius while the values of Bφ and Lφ are different. The affect of

this difference is clear in Figure B.2. The fast electron oscillates faster in Run E

compared to Run D. This is due the large width Lφ in Run E and it is in line with

the kinetic energy of the fast electron as shown in Table 5.2. With larger Lφ, the

fast electron circular segment touches the near side of the confining region. Thus,

the electron reflects back towards the axis faster than in the case of Run D where

the width is small compared to Run E.
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Figure B.1: The fast electron trajectory in Runs A and B
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Figure B.2: The fast electron trajectory in Runs D and E
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Symbols and Abbreviations

α Effect of angular dispersion.

β Fraction of laser energy coupled into the fast electrons.

βs Ratio between electron velocity to speed of light.

βablate Adjustable factor in Ablative Rayleigh-Taylor instability.

ε0 Vacuum permittivity.

ε̄f Fast electron mean energy.

η Resistivity.

ην Emissivity.

γ Lorentz factor.

γRT Rayleigh-Taylor growth rate.

γe,i Number of degrees of freedom for each species, electrons and ions.

γTSE growth rate of TSF mode.

κν Opacity.

κ<ν>p Planckian mean opacity.

κ<ν>R Rosseland mean opacity.

κνpgi Planckian mean opacity for frequency group gi.

κe,i Thermal conductivity coefficient for electrons and ions.

λ Wavelength of the sinusoidal perturbation.

λL Wavelength of the laser.

λν Mean free path of photons.

λei The electron-ion collision mean free path.
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λD Debye length.

µ Chemical potential.

µ0 Permeability of free space.

µν Absorption coefficient.

ν Radiation frequency.

ν̄ei Background electron-ion collision rate.

ω Wave frequency.

ωL Laser frequency.

ωpe Plasma frequency.

φ Potential velocity.

φh,l Potential velocity of heavier and lighter fluids.

ΦL Absorbed laser flux.

∆Φ Electric field potential energy.

ρ Mass density.

ρh,l Mass density of the heavier and lighter fluids.

ρavg Mass density at the interface.

τL Laser pulse duration.

τ0 Fast electron duration.

τscatter Collisional scattering time of the fast electrons.

τe Electron relaxation time.

τf−b Fast-background electron collision time .

τe−folding e-folding growth time.

τν Optical depth.

τei Inverse of electron-ion collision time.

θL Angle of the laser incident.

θd divergence angle.

ζ Spatial amplitude of the single-mode of the perturbation.

ζ0 Initial spatial amplitude of perturbation.

εe,i Energy density of electrons and ions.

158



∆T Change in Transmission.

Γ Coulomb coupling parameter.

ΓCol Collimation parameter.

lnΛ Coulomb logarithm.

χ Smoothing ratio of the wire radius to the laser spot radius.

ψ Mixed fraction of materials.

Bν Normalised Planck blackbody function.

Bφ Azimuthal magnetic density flux field.

cs Adiabatic sound speed.

IL Laser intensity.

Iν Spectral radiation intensity.

Iν0 Initial spectral radiation intensity.

Ls Scale length.

L0 fast electron penetration depth due to beam divergence.

Lφ Width of the azimuthal magnetic field.

Qei Electron-ion heat exchange rate.

R Fast electron beam radius.

rs interatomic spacing.

rg Larmor radius.

x0 fast electron penetration depth due to electric field inhibition.
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