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Abstract

Colloidal dispersions are found in many modern product formulation pro-

cesses, and one of the problems commonly occurring in these processes is char-

acterising the particles within these systems. The existing theories for predicting

acoustic scattering in these systems do not fully account for the interactions

between neighbouring particles. Most importantly they do not account for the

thermal interactions in thermoacoustic scattering.

In this thesis I develop an asymptotic solution in the small wave number

limit to the multiple scattering problem. This is done by considering the thermo-

acoustic field interaction between two different sized particles close together, and

applying this to a pair distribution probability function, giving an extra term

in the far field scattering calculations. This provides a method of predicting

attenuation in mono- and bi-disperse colloids, especially for those of higher con-

centrations.

This theory is compared to attenuation experimental data for a number of

different colloidal systems, mono- and bi-disperse of increasing concentrations,

where the thermal field overlap between particles is more prominent. Comparing

these experiments with the new two particle thermoacoustic scattering theory

give more consistent results than previous theories for volume concentrations up

to 30%.

Further work, as part of a CASE studentship, on sedimentation detection

in pipe flow using by monitoring the behaviour of pulses of ultrasound is also

presented in this thesis.
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Chapter 1

Introduction

“That’s it! You people have stood in my way long enough. I’m

going to clown college!” - Homer Simpson

1.1 Colloidal Dispersions

A colloid, also known as a colloidal dispersion, is a suspension of particles, ranging

from nano-metre to micro-metre in size. In a colloid these particles are dispersed

evenly throughout the suspending medium, and do not settle (a degree of stirring

is acceptable within this definition), hence the name colloidal dispersion. We

call the particles the disperse phase, and the suspending media the continuous or

suspending phase. Each of these phases can be a gas, liquid or solid, although in

this thesis we will consider only the case where the continuous medium is a liquid

and the dispersed phase is either a liquid or a solid.

In modern manufacturing, a huge number of products are, at one stage or

another in their manufacture, colloids. Examples of these include foods, pharma-

ceuticals, cosmetics and paints. Colloidal suspensions are not always stable and

can change depending on temperature, light or time. Mechanical disturbances,

such as, stirring, pumping and vibrations can also affect the stability of a colloid.

The particle sizes can also have an impact on stability. In general stability occurs

when, either, all the particles are of the same size (mono-disperse), or they are

of all different sizes (poly-disperse).
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The ability to be able to measure whether a colloid is stable and whether

it has been sufficiently mixed is a key issue for manufacturing. As technology

advances, it is increasing important to be able to determine these properties for

increasingly concentrated dispersions. The aim of this thesis is to develop the

theoretical foundations of ultrasound measurements of colloids to enable it to be

used to monitor particle size distribution.

1.1.1 Types of colloids

Colloids can be classed into four main types, [1], examples of which are given in

table 1.1:

Sol: is defined as having a solid disperse phase in either a liquid or a solid con-

tinuous phase

Emulsion: is defined as having a liquid disperse and continuous phase

Foam: is defined as having a gas disperse phase in a liquid or solid continuous

phase

Aerosol: is defined as having a liquid or solid disperse phase in a gas continuous

phase

In this thesis the focus will be on emulsions and sols with a liquid continuous

phase. However, this will not be limited to a single disperse phase as a colloid

dispersion can contain more than one type of dispersed phase.

1.1.2 Light scattering

Colloids can traditionally be distinguished from true solutions, where components

are are mixed at a molecular level, by the Tyndall Effect [1]. By passing a beam of

light through a colloid, an observer viewing from a direction perpendicular to the

direction of the beam of light observes the illumination due to the disperse phase

scattering the light in all directions. However, if a beam of light passes through a

true solution then an observer would not see any light as the light passes cleanly

though the solution without being scattered, see figure 1.1. The Tyndall effect
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Disperse

Phase

Continuous

Phase
Type Examples

Solid Liquid Sol Paint, colloidal silica, muddy water

Liquid Liquid Emulsion Milk, oil in water

Gas Liquid Foam Froth, soap suds, whipped cream

Solid Gas Aerosol Smoke, dust

Liquid Gas Aerosol Fog, mist, clouds

Solid Solid Solid sol Ruby glass, pearls

Liquid Solid
Solid

Emulsion
Cheese, jelly, shoe polish

Gas Solid Solid Foam Lava, pumice, aerated chocolate

Table 1.1

Different combinations of disperse and continuous phases create

different types of colloids. Alongside these are examples of each type

of colloid.

is wavelength dependent and visible light will scatter from particles with sizes

down to about 80nm. Particles smaller than this will not scatter visible light and

if shorter light wavelengths are not used then the Tyndall effect is not altogether

a reliable indicator of the formation of a solution.

1.1.3 Ultrasound measurement of colloids

While light scattering can be a useful tool in the classification of colloids, it suffers

from significant drawbacks. Since light cannot penetrate opaque materials, for

example pipe walls, it cannot be used for in-line monitoring except by providing

windows. Second, light scattering requires a low concentration of disperse phase,

which, particularly in industry requires diluting the sample, which can change

the particle structure. It is possible to use other forms of electromagnetic radia-

tion, however these require ionising radiation, which could be of concern in some

industries, particularly the food industry.

High frequency sound waves, usually called ultrasound can penetrate opaque
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Figure 1.1

A red laser beam being pointed through water (left) and milk (right).

In the left image, the beam passes cleanly through the water because

it is not reflected as water is not a colloid. In the right image, the

light is being reflected in all directions because milk is a colloid.
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materials, which can be exploited in the pursuit of non-invasive and non-intrusive

testing. Ultrasound, also does not require sample dilution in the measurement

process. This makes ultrasound a potentially valuable tool for monitoring colloids.

By exploiting the theory of ultrasound spectroscopy it is possible to avoid the

need for calibration, provided the physical constants of the samples in question

are known. Furthermore, the ability to be able to detect the phase, as well as

the amplitude of ultrasound radiation provides valuable additional information.

There are many examples of ultrasound being used to measure the concentration

and size of particles [2, 3], and also to monitor processes, such as flocculation,

crystallisation and creaming [4, 5]. However the existing theory of ultrasound

particle sizing applies only to the limit of concentrations too low for acoustic

multiple scattering to occur and one of the aims for this thesis is to increase the

range of concentrations that can be accurately measured.

It is worth noting that acoustic theory is based on a completely different

set of physical laws to electromagnetic propagation, although the mathematical

apparatus deployed has many similarities in describing scattering phenomena. In

particular, sound is the collective motion of many particles whilst light is carried

by an elementary particle, the photon. This means that ultrasound and light

techniques, provide complimentary information that can be used to characterise

a colloidal system.

1.2 Theory of Acoustics

Ultrasound shares a historical time line (not surprisingly) with general acoustics.

The idea that sound is a wave phenomenon originally grew from an analogy with

water waves [6, 7]. The Greek philosopher Chrysippus (c.a. 240 B.C.) mentioned

this idea, as did the Roman engineer and architect Vetruvius (c.a. 25 B.C.) and

the Roman philosopher Boethius (A.D. 480-524). Aristotle (384-322 B.C.) was

also known to promote this idea of waves. However, technological limitations

prevented the exploitation of these ideas.

The first instance of sound being described as “pressure” pulses between ad-

jacent fluid particles is in Newton’s (1642-1727) Principia (1686). The present

classical theory of sound propagation has its foundations in the work of Euler
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(1707-1783), Lagrange (1736-1813) and d’Alembert (1717-1738).

Ultrasound is defined as the range of sound frequencies above human hearing,

typically above 16 kHz. In the application of ultrasound measurement of emulsion

properties, low powered acoustic fields are generated, typically below 100 mW.

As the power levels are low, the wave propagation does not cause any disruption

to the particles or affect the samples, meaning that ultrasound is considered to

be non-destructive. This also means that linear elastic theory can be applied to

ultrasound measurement except at the high power levels associated with power

ultrasound. Typical measurement power levels are of the order of 10 kWm−2 and

this is further reduced by the fact that pulsed sound is used with a duty cycle

(ratio of time on to time off) of 10−3 giving average power levels of 10 Wm−2.

Sound waves are compressional oscillations in time and space occurring in ex-

tended material bodies. In figure 1.2 the wave is a time-varying and space-varying

signal. The frequency f characterises the time variation, and the wavelength λ

characterises the space variation. These are related through the velocity of sound,

c = fλ. (1.1)

In this thesis, propagation is assumed to be adiabatic in homogeneous media

[8]. This means that despite the temperature fluctuations due to the changes in

pressure, the effects of thermal diffusion are negligible, so that the compression

may be assumed to be adiabatic. Pierce [6] shows that this assumption holds for

values approaching f → 0. It is also shown that the dissipation of heat falls as the

wavelength increases. However, this assumption fails above 1012 Hz in water, and

when the media is inhomogeneous. The propagation may become closer to the

isothermal conditions near the boundaries under these conditions. This is known

as thermal scattering, which will be described in more detail in section 1.2.2.

Wood [9], describes how propagation through a material is dependent on a

relationship between density and elasticity. This gives an expression for the speed

of sound in a homogeneous fluid that depends upon the compressibility κ and the

density ρ,

c2 =
1

κρ
. (1.2)
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For the ideal case, this can be expanded to a non-scattering multi-phase sys-

tem [10]. This equation is known as the Urick equation

c2 =
1

κ̄ρ̄
(1.3)

where

κ̄ =
∑
j

φjκj, (1.4)

and

ρ̄ =
∑
j

φjρj, (1.5)

where κ̄ and ρ̄ are the effective adiabatic compressibility and density of the mix-

ture and φ is the volume fraction of each phase.

For a two phase system such as an emulsion, this can be simplified to

κ̄ = κ′φ+ κ(1− φ) (1.6)

and

ρ̄ = ρ′φ+ ρ(1− φ), (1.7)

where the unprimed values are the continuous phase, and the primed values are

the disperse phase.

1.2.1 Measurement of sound velocity and attenuation

The measurement of sound velocity is based on the method devised by Colladon

and Sturm [11] and differs only through the development of more sophisticated

technology. A signal is sent from one transducer, through the material to a

receiver - a technique known as “pitch and catch”, or reflected and received again

by the first transducer - referred to as “pulse echo”. The time between the sent

signal and received signal is then used along with the distance travelled by the

wave to calculate the speed.

In addition to the velocity of sound the other commonly measured quantity

is the attenuation. Using the same apparatus as the velocity measurement, the
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amplitude of a single peak is monitored. The amplitude of a decaying wave is

expressed as [9]

Ax = A0e
−αx, (1.8)

where x is the propagation distance, A0 is the initial amplitude, and α is the

attenuation coefficient. Thus it follows that the attenuation coefficient can be

obtained by

α =
1

x
ln

(
A0

Ax

)
. (1.9)

1.2.2 Thermal effects

The fluctuations in pressure associated with sound waves cause oscillations in

temperature as well. The basic acoustic theory assumes that these temperature

fluctuations are adiabatic, and that the effects of heat transfer are negligible.

However as noted earlier, at high frequencies, heat transport can be important.

This effect becomes more prevalent at the boundaries due to the sudden changes

in thermal properties.

Generally, the term thermoacoustics can include any effects by temperature

and entropy on acoustic propagation, however a more precise definition was cre-

ated by Kirchhoff [12], from the theory of friction and heat conduction. This idea

has been described fully by Lord Rayleigh [13].

While thermodynamics effects can be used to power engines, heat pumps

and refrigerators [14], these use very high pressures to create large temperature

changes. The relationship between temperature and pressure in a liquid medium

of infinite extent is given by Edmonds [15] as

∆T =
∆P

β

(
ξ − 1

ρc2

)
, (1.10)

where ∆T is the change in the amplitude of the temperature perturbation, ∆P is

the amplitude of the pressure perturbation, β is the thermal expansion coefficient

and ξ is the isothermal expansion coefficient. In the systems involved in acoustic

spectroscopy, a typical value for the temperature variation for a 10 kWm−2, 1
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MHz acoustic wave in water would be approximately 4 mK [16]. While it is

tempting to assume this is negligible, as many have done, it is important to note

that as a wave propagates across a boundary, the difference in specific heats mean

that the pressure fluctuations give rise to different temperature perturbations.

Consequently, if heat did not flow through this boundary layer there would be

a discontinuity in temperature. Therefore, there must be heat flow through the

boundary. This energy transport will heat and cool the region near the boundary,

with an associated expansion and contraction of the boundary layer. This creates

a secondary sound source. Thermoacoustic effects are particularly strong in oil-

in-water colloids due to the contrast in specific heats.

1.2.3 Visco-inertial effects

Another secondary source of sound at a phase boundary is due to visco-inertial

effects. Visco-inertial acoustic effects are similar to thermoacoustics in the sense

that result from a difference in material properties, which in the case of visco-

inertial effects is the difference in density between the phases. In the case of a

particle, the oscillating forces in sound waves cause motion of the particle relative

to the surrounding area. The surrounding medium resists this force and causes

movement to counter balance this. This movement is a sound source as the

medium around the particle compresses and rarefies. This creates a shear field

that propagates away from the particle. This wave decays quickly from the source

as a fluid cannot support shear waves to any significant extent.

1.3 Single Scattering Theory

The scattering of an acoustic wave is the term used to describe any energy loss

from the wave, reducing the propagating acoustic field. The energy lost from the

propagating field is scattered in all directions and also converts to thermal and

viscous dissipations around each particle. In emulsions, the scattering arises at

the boundaries of each of the suspended particles. In single scattering theory, it

assumed that each of these particles are far apart, so that the scattering from

each individual particle does not interact with any other particle.
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1.3.1 History of acoustic scattering theory

The first theory for scattering of acoustic waves was developed by Lord Rayleigh

[13, 17]. He considered propagation in the long wavelength limit, where the

distance over which thermal diffusion and viscous diffusion take place within one

cycle

ka� 1, (1.11)

where k = 2π
λ

is the wavenumber and a is the particle radius. This is known as

the Rayleigh limit and also sometimes known as the long wavelength limit, and

can be rewritten in terms of the wavelength

2πa

λ
<

1

10
. (1.12)

The ultrasound velocity and attenuation per wavelength vary with the parameter

which is proportional to the thermal and the visco-inertial wave length in the

long wavelength limit. The limit equation (1.11) can be written in terms of this

parameter as

a
√
f <

√
v

20π

√
a, (1.13)

where v is the sound velocity. This approximation is valid for the work in this

thesis, as the measurements that will be made in the MHz region, with particles

with radii around 1µm.

One of the most important theories Rayleigh considered was that attenuation

is inversely proportional to the square of the frequency,

α ∝ f 2. (1.14)

Lord Rayleigh investigated acoustic scattering off a spherical object. Following

the work of Lord Rayleigh there have been attempts to improve and expand the

theory to include thermal and visco-inertial effects, most notably by Epstein and

Carhart, and Allegra and Hawley [18, 19]. This is the most widely used theory

of ultrasound scattering and is referred to as ECAH.
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1.3.2 Acoustic propagation in a viscous fluid

For acoustic wave propagation in a fluid, following the method of Epstein and

Carhart [18], the governing equations are: conservation of momentum in the form

of Navier-Stokes equations, conservation of mass, and conservation of energy.

The effects of microstructural relaxation will be neglected, so that background

temperature and pressure will remain constant as the system is in a quasi-steady

state. The perturbations to these fields are assumed to be small, which implies

that we can neglect the variability of coefficients of viscosity and heat conduction

with temperature, thus they can be treated as constants. The compressional

coefficient of viscosity will, on the other hand, be retained. In the form of a

viscous stress tensor, Pij,

Pij = ηeij −
2

3
(η − µ) (∇ · v) δij, (1.15)

where η and µ are the coefficients of shear viscosity and compressional viscosity

respectively, v is the velocity, δij is the Kronecker symbol (δij = 1 for i = j,

otherwise δij = 0) and eij is the strain tensor defined by

eij =
∂vi
∂xj

+
∂vj
∂xi

. (1.16)

The three conservation equations for mass, momentum and energy are [18]:

∂ρ

∂t
+∇ · (ρv) = 0, (1.17)

ρ
∂v

∂t
+ ρ (v · ∇) v = −∇p+Nη∇ (∇ · v)− η∇×∇× v, (1.18)

where N = 4
3

(
1 + µ

2η

)
and p is pressure, and

ρ
∂u

∂t
+ ρv · ∇u+ p (∇ · v)−Ψη −∇ · (τ∇T ) = 0, (1.19)

where Ψη = 1
2
eijPij is the rate of viscous heating, τ is thermal conductivity, T is

temperature and u is the specific internal energy. With a little rearrangement,

using equation (1.17), the energy equation equation (1.19) can be rewritten in

12



the form,

ρ
Du

Dt
+ pρ

D

Dt

(
1

ρ

)
−Ψη −∇ · (τ∇T ) = 0, (1.20)

where

D

Dt
≡ ∂

∂t
+ v · ∇ (1.21)

is the Lagrangian derivative. Note the correction of equation (1.20) from [18]

with the extra ρ on the second component.

We now consider perturbations of the basic state, using the following substi-

tutions into equations (1.17)–(1.19),

ρ = ρ0 + ρ1, p = p0 + p1, (1.22)

T = T0 + T1, u = u0 + u1,

where index 0 denotes the constant unperturbed values. Retaining only the first

order terms in perturbed quantities, the linearised form of the conservation equa-

tions are,

∂ρ1

∂t
+ ρ0∇ · v = 0, (1.23)

ρ0
∂v

∂t
+∇p1 −Nη∇ (∇ · v) + η∇×∇× v = 0, (1.24)

ρ0
∂u1

∂t
+ p0 (∇ · v)− τ∇2T1 = 0, (1.25)

assuming that τ is constant. The terms u1, ρ1 and p1 are related through the

thermal and caloric equations of state, writing the pressure and the internal

energy in the form

p = p(ρ, T ), u = u(ρ, T ), (1.26)
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and using u̇ to denote ∂u
∂t

we have,

u̇ =
∂u

∂t
=

(
∂u

∂ρ

)
T

ρ̇+

(
∂u

∂T

)
ρ

Ṫ , (1.27)

∇p =

(
∂p

∂ρ

)
T

∇ρ+

(
∂p

∂T

)
ρ

∇T, (1.28)

which can be linearised about the basic state. From the definition of the adiabatic

speed of sound c and the ratio γ = Cp

Cv
, where Cp and Cv are specific heats, at

constant pressure and constant volume respectively, we can write(
∂p

∂ρ

)
T

=
c2

γ
. (1.29)

Also, from the thermodynamic relations we have,(
∂u

∂T

)
ρ

= Cv, (1.30)

(
∂p

∂T

)
ρ

=
ρ0(γ − 1)Cv

βT0

, (1.31)

where β = − 1
ρ0

(
∂ρ
∂T

)
p
. That can also be expressed as

(
∂p

∂T

)
ρ

= −
(
∂p

∂ρ

)
T

(
∂ρ

∂T

)
p

=
c2ρ0β

γ
. (1.32)

This expression together with equation (1.31) implies,

γ(γ − 1)Cv = c2β2T0. (1.33)

Furthermore,

ρ2
0

(
∂u

∂ρ

)
T

= p0 − T0

(
∂p

∂T

)
ρ

=
p0 − ρ0 (γ − 1)Cv

β
. (1.34)

Hence, by differentiating equations (1.23) and (1.28) with respect to time we
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obtain,

u̇ = −ρ0

(
∂u

∂ρ

)
T

∇ · v + CvṪ , (1.35)

∇ṗ = −
(
ρ0c

2

γ2

)
∇ (∇ · v) +

[
ρ0 (γ − 1)Cv

βT0

]
∇Ṫ . (1.36)

Putting these two equations into equation (1.25) together with the derivative

of equation (1.24) with respect to time,

ρ0
∂2v

∂t2
+∇ṗ−Nη∇

(
∇ · ∂v

∂t

)
+ η∇×∇× ∂v

∂t
= 0. (1.37)

Hence the equations of energy and momentum conservation can be written as

γσ∇2T − Ṫ =
(γ − 1)

β
∇ · v, (1.38)

∂2v

∂t2
−
(
c2

γ

)
∇ (∇ · v)−Nν∇

(
∇ · ∂v

∂t

)
+ ν∇×∇× ∂v

∂t
= −

(
βc2

γ

)
∇Ṫ ,

(1.39)

where we have introduced the kinematic viscosity ν = η
ρ0

and the thermometric

diffusivity σ = τ
ρ0Cp

.

1.3.3 Acoustic potentials

We now seek solutions to equations (1.38) and (1.39) in the form of harmonic

waves with a time dependence exp(−iωt), where ω = 2πf is the angular fre-

quency, so that time derivatives can be replaced by

∂

∂t
= −iω. (1.40)

Using this reduces equations (1.38) and (1.39) to the form,

γσ∇2T + iωT =
γ − 1

β
∇ · v, (1.41)
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ω2v +

(
c2

γ
− iωNν

)
∇ (∇ · v) + iων∇×∇× v = −

(
iωc2β

γ

)
∇T. (1.42)

Clebsch’s theorem states that a vector v can always be represented in terms

of a scalar potential ϕ̄ and a vector potential χ as

v = −∇ϕ̄+∇× χ, (1.43)

with ∇ · χ = 0. Using Clebsch’s theorem on equation (1.41),

γσ∇2T + iωT +
γ − 1

β
∇2ϕ̄ = 0. (1.44)

Thus, T is a function of the scalar potential ϕ̄ only. Applying the same

substitution to equation (1.42) gives,

∇
[
ω2ϕ̄+

(
c2

γ
− iωNν

)
∇2ϕ̄−

(
iωc2β

γ

)
T

]
= ∇×

[
ω2χ + iων∇×∇× χ

]
.

(1.45)

We seek solutions in which both sides of this equation vanish independently,

so recalling that ∇ · χ, we have

ν∇2χ + iωχ = 0, (1.46)

βT = −
(
iωγ

c2

)
ϕ̄−

[
i

ω
+
Nνγ

c2

]
∇2ϕ̄. (1.47)

Now, denoting e = Nνω
c2

and h = σ
ω

(
ω
c

)2
for simplicity and substituting equa-

tion (1.47) into equation (1.44), we obtain the following fourth order partial

differential equation for ϕ̄,

ϕ̄+
( c
ω

)2

[1− i (e+ γh)]∇2ϕ̄−
( c
ω

)4

h (ih+ eγ)∇4ϕ̄ = 0. (1.48)
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This can be factorised in the form

(
∇2 + k2

c

) (
∇2 + k2

T

)
ϕ̄ = 0, (1.49)

where

1
k2c
1
k2T

}
=

c2

2ω2

{
1− i (e+ γh)±

[
1− 2ie− 2ih (γ − 2)− (e− γh)2] 1

2

}
. (1.50)

Here kc and kT are referred to as the acoustic and thermal wave numbers re-

spectively. Since kc 6= kT , the general solution of equation (1.49) can be written

as

ϕ̄ = ϕ+ ψ, (1.51)

where,

∇2ϕ+ k2
cϕ = 0, ∇2ψ + k2

Tψ = 0. (1.52)

Thus the scalar potential can be written as the sum of two solutions of two

different Helmholtz equations. These are joined by a vector potential χ, satisfying

a third Helmholtz equation

∇2χ + k2
sχ = 0. (1.53)

This shows that the media can support two kinds of longitudinal and one kind

of transverse wave. The subscripts c, T and s represent the wave numbers for the

compression, thermal and shear modes respectively. For frequencies ω such that

e and h are small (as is the case for this thesis) the wave numbers kc, kT and ks

can be simplified as

kc =
(ω
c

){
1 + i [Nν + (γ − 1)σ]

ω

c2

}
, (1.54)

kT = (1 + i)

√
ω

2σ
, (1.55)
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ks = (1 + i)

√
ω

2ν
. (1.56)

The wave number kc represents the acoustic wave propagation at speed c,

but with an imaginary part that represents the small degree of attenuation from

viscosity and thermal diffusion. Introducing the attenuation coefficient,

α = [Nν + (γ − 1)σ]
ω2

c3
, (1.57)

we can write equation (1.54) in the form

kc =
(ω
c

)
+ iα. (1.58)

The second two wave numbers are non-propagation waves due to thermoacoustic

and visco-inertial effects that decay after a few wavelengths, due to them both

being complex. Thus, these waves decay within distances of order
√

σ
ω

and
√

ν
ω

respectively.

We can derive the temperature field from equation (1.38), as

∇ · v = ∇2ϕ̄ = −k2
cϕ− k2

Tψ =
iβ

γ − 1

(
ω − iγσ∇2T

)
, (1.59)

which gives

T = Γcϕ+ ΓTψ, (1.60)

where

Γc =
−ik2

c (γ − 1)

β (ω + iγσk2
c )
≈ k2

c (γ − 1)

βσk2
T

=
iβωT0

Cp
(1.61)

and

ΓT =
−ik2

T (γ − 1)

β (ω + iγσk2
T )
≈ − 1

βσ
. (1.62)

It is worth commenting that the ratio of the thermal factors,∣∣∣∣ ΓcΓT

∣∣∣∣ ≈ k2
c (γ − 1)

k2
T

, (1.63)

is small, as k2
c � k2

T , as noted by Pinfield [20]. This means the temperature

changes are dominated by the thermal mode, ψ.
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1.3.4 Boundary conditions

As discussed above scattering occurs at the boundaries between the phases. At a

boundary where there is a change in the material properties there is a requirement

for continuity of the velocity, temperature, heat flux and stress components: this

means that

v = v′, (1.64a)

T = T ′, (1.64b)

τ
∂T

∂n
= τ ′

∂T ′

∂n
, (1.64c)

Pij = P ′ij, (1.64d)

where n is the normal unit vector facing outwards from the surface of the dispersed

phase.

1.3.5 Sommerfeld radiation condition

An important concept to consider is what happens to an acoustic wave as it

approaches infinity. Consider, Φ that satisfies the three-dimensional Helmholtz

equation outside some finite sphere of radius a,

∇2Φ + k2Φ = 0. (1.65)

Spherically symmetric solutions of equation (1.65) satisfy

1

r2

d

dr

(
r2dΦ

dr

)
+ k2Φ = 0, (1.66)

or, rewritten,
d2

dr
(rΦ) + k2 (rΦ) = 0, (1.67)

which has solutions

Φ =
eikr

r
and

e−ikr

r
. (1.68)
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These solutions correspond to outgoing and ingoing waves to and from infinity

respectively. In scattering problems it is required that sound waves traverse out-

wards towards infinity. This is imposed by the Sommerfeld radiation conditions

[21]

|rΦ| < k, (1.69)

r

(
∂Φ

∂r
− ikΦ

)
→ 0, (1.70)

uniformly as r →∞, since

∂

∂r

(
eikr

r

)
= ikΦ− 1

r2
eikr, (1.71)

which only the outgoing wave from equation (1.68) satisfies. It follows that we

can calculate the far field scattering pattern,

Φ(ka, θ) =
eikr

r

{
Φ(ka, θ) +O

(
1

kr

)}
, (1.72)

as r →∞, where Φ(ka, θ) is the scattered solution of equation (1.65).

1.3.6 Single particle solution

Let us consider a plane wave incident on a spherical particle of radius a, as in

figure 1.3. The continuous phase, outside the sphere, and the disperse phase,

inside the sphere, are composed of two different media. The continuous phase is

denoted by unprimed and the disperse phase by primed variables. This is an axi-

symmetric problem. This allows us to use spherical polar coordinates (r, θ and Ω)

with the origin at the centre of the sphere. Since the problem is axi-symmetric,

vΩ = PrΩ = 0. This leaves equation (1.64) with six boundary conditions.

The incident plane wave is of the form

ϕ0 = exp(−ikr cos θ), (1.73)
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Figure 1.3

Geometry of single spherical object with a plain wave propagating

towards it as described in the ECAH single scattering method.

which can be written as a sum of spherical waves in the form

ϕ0 =
∞∑
n=0

in(2n+ 1)jn(kr)Pn(cos θ), (1.74)

where jn is the spherical Bessel’s function of order n and Pn is the Legendre

polynomial. The scattering from the sphere provides six additional waves to

consider, three outside of the sphere, and three inside. The external velocity

potential is given by

ϕ = ϕ0 + ϕR + ψ + χ, (1.75)

where the subscript R represents the reflected compressional wave and ψ, the

thermal wav. In addition, there is the vector potential, χ, however, due to axial

symmetry, only the Ω component needs to be considered which is denoted by a
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scalar χ. Writing the solutions to Helmholtz equations (1.52) and (1.53) give,

ϕR =
∞∑
n=0

in (2n+ 1)Anhn (kcr)Pn (cos θ) , (1.76)

ψ =
∞∑
n=0

in (2n+ 1)Bnhn (kT r)Pn (cos θ) , (1.77)

χ =
∞∑
n=0

in (2n+ 1)Cnhn (ksr)P
1
n (cos θ) , (1.78)

where the hn are the spherical Hankel functions, which means that the solution

satisfies the Sommerfeld radiation conditions equations (1.69) and (1.70) Similarly

for inside the sphere, the velocity potentials are given by ϕ′ = ϕ′R + ψ′ + χ′

ϕ′R =
∞∑
n=0

in (2n+ 1)A′njn (k′cr)Pn (cos θ) , (1.79)

ψ′ =
∞∑
n=0

in (2n+ 1)B′njn (k′T r)Pn (cos θ) , (1.80)

χ′ =
∞∑
n=0

in (2n+ 1)C ′njn (k′sr)P
1
n (cos θ) . (1.81)

The coefficients An to C ′n are determined by applying the boundary conditions

(1.64) on the surface of the sphere at r = a. Continuity of velocity gives

kcj
′
n (kca) + Ankcah

′
n (kca) +BnkTah

′
n (kTa)− Cnn(n+ 1)hn(ksa) =

A′nk
′
caj
′
n (k′ca) +B′nk

′
Taj

′
n (k′Ta)− C ′nn(n+ 1)jn (k′ca) (1.82a)

and

jn (kca) + Anhn (kca) +Bnhn (kTa)− Cn [hn (ksa) + ksah
′
n (ksa)] =

A′njn (k′ca) +B′njn (k′Ta)− C ′n [jn (k′sa) + k′sah
′
n (k′sa)] . (1.82b)
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On the surface of sphere r = a, continuity of temperature requires that

Γc [jn (kca) + Anhn (kca)] + ΓTBnhn (kTa) =

Γ′cA
′
njn (k′ca) + Γ′TB

′
njn (k′Ta) (1.82c)

and continuity of thermal flux that

τ
{

Γc [kcaj
′
n (kca)− Ankcah′n (kca)] + ΓTBnkTah

′
n (kTa)

}
=

τ ′ {Γ′cA′nk′caj′n (k′ca) + Γ′TB
′
nk
′
Taj

′
n (kTa)} . (1.82d)

Finally the condition of continuity of stress components gives

η

{[
kcaj

′
n (kca)− jn (kca)

]
+ An

[
kcah

′
n (kca)− hn (kca)

]
+Bn

[
kTah

′
n (kTa)− hn (kTa)

]
− 1

2
Cn

[
(ksa)2 h′′n (ksa) +

(
n2 + n− 2

)
hn (ksa)

]}
= η′

{
A′n
[
k′caj

′
n (k′ca)− jn (k′ca)

]
+B′n

[
k′Taj

′
n (k′Ta)− jn (k′Ta)

]
− 1

2
C ′n
[

(k′sa)
2
j′′n (k′sa) +

(
n2 + n− 2

)
jn (k′sa)

]}
(1.82e)

and

η

{[
(ksa)2 jn (kca)− 2 (kca)2 j′′n (kca)

]
+ An

[
(ksa)2 hn (ksa)− 2 (kca)2 h′′n (kca)

]
+Bn

[(
1− 2ν

σ

)
(kca)2 hn (kTa)− 2 (kTa)2 h′′n (kTa)

]
+2n(n+ 1)Cn [ksah

′
n (ksa)− hn (ksa)]

}
= η′

{
A′n

[
(k′sa)

2
jn (k′sa)− 2 (k′ca)

2
j′′n (k′ca)

]
+B′n

[(
1− 2ν

σ

)′
(k′sa)

2
jn (kTa)− 2 (k′Ta)

2
j′′n (k′Ta)

]
+2n (n+ 1)C ′n [(k′sa) j′n (ksa)− jn (k′sa)]

}
. (1.82f)

These equations allow for the computation of the scattering coefficients. In the
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limit of µ′, µ → 0, Cn and C ′n are negligible and our equations (1.82a)–(1.82f)

reduce to four equations (1.82a)–(1.82d), ignoring the stress components. These

form sets of six linear equations from which the coefficient An can be calculated

numerically, to find the scattered acoustic field. This solution was first obtained

by Epstein and Carhart [18] for emulsions and aerosols and later by Allegra

and Hawley [19] generalised the solution to include solid particles (introducing a

number of typographical errors in the equations in their paper which are corrected

in Challis et al. [22], and hence this solution is referred to as ECAH.

1.3.7 Small wave number limit

While we can find an exact solution of the ECAH equations (1.82a)–(1.82f),

Harlen et al. [23] showed, for the parameter values typical of ultrasound experi-

ments, that these matrices have very high condition numbers, as seen in table 1.2.

This causes the inversion of these problems to be numerically unstable. This is

known as being ill-conditioned. These problems occur for kca and k′ca � 1, and

arise from the divergence of the spherical Hankel functions as kca→ 0.

Condition number

|kca| |kTa| A0 A1 A2

8.47× 10−8 6.6× 10−3 1.5× 108 2.9× 1022 5.9× 1037

4.2× 10−3 6.6 7.7× 104 6.0× 108 2.9× 1014

Table 1.2

Table from Harlen et al. [23]. Calculated condition numbers for

ECAH matrix generated by equations (1.82a)–(1.82f) for two

combinations of wavenumbers kc and kT and particle radius a, for

silicone oil. The material properties for silicone oil appear in

section 2.2.

For |z| � 1 the spherical Bessel and Hankel functions have the asymptotic
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properties [24]

jn(z) ≈ 22z2 n!

(2n+ 1)!
, (1.83a)

hn(z) ≈ − 1

2nzn+1

(2n)!

n!
i, (1.83b)

j′n(z) ≈ 2nnzn−1 n!

(2n+ 1)!
, (1.83c)

h′n(z) ≈ n+ 1

2nzn+2

(2n)!

n!
i. (1.83d)

For typical applications kca ≈ 10−3, this suggests that it should be possible to

obtain appropriate solutions using the asymptotic equations (1.83). Kleinman

[25] showed how to construct uniformly asymptotic solutions for the exterior

scattering problem in the limit where kca� 1. The radiation condition at infinity

satisfying Helmholtz equations have radiation solutions with the asymptotic form

ϕ(r, θ,Ω) =
eikcr

r

∞∑
n=0

fn(θ,Ω)

rn
, (1.84)

where fn are differentiable functions of kc, and the polar angles θ and Ω. However,

ϕ is not regular at infinity due to the presence of the eikr term. To be regular at

infinity a function ϕ must satisfy the following two conditions:

lim
r→∞
|rϕ| <∞, (1.85)

and

lim
r→∞

∣∣∣∣r2∂ϕ

∂r

∣∣∣∣ <∞. (1.86)

Thus to provide a regular problem, we introduce the variable

ϕ̃ = e−ikc(r−a)ϕ, (1.87)

where ϕ̃ satisfies

∇2ϕ̃ = −2ikc
r

∂

∂r
(rϕ̃), (1.88)

25



together with the boundary condition

lim
r→∞

r2∂ϕ̃

∂r
= 0, (1.89)

which implies that ϕ̃ is a regular function.

Using this form, there have been three different methods, each exploring a

different limit of |kTa| with the limit of |kca| � 1, carried out in [23, 26, 27].

These works neglect the visco-inertial terms, as will we in the remainder of this

thesis. Although, subsequent solutions using these methods including the shear

mode have been carried out by Pinfield and Povey [28], in the exposition below

we shall also neglect visco-inertial effects.

1.3.7.1 Low-frequency potential scattering

The first method, described by Harlen et al. [23], is based on the asymptotic

solution when both |kca| and |kTa| � 1. This method is known as Low Frequency

potential scattering theory or LFPST. We define functions in the exterior given

by,

ϕ̃ = e−ikcrϕ and ψ̃ = e−ikT rψ. (1.90)

These are both regular at infinity and we can rewrite the Helmholtz equations

(1.49) in the form

∇2ϕ̃ = −2ikc
r

∂

∂r
(rϕ̃) , ∇2ψ̃ = −2ikT

r

∂

∂r

(
rψ̃
)
. (1.91)

In the thermoacoustic approximation, there are four boundary conditions corre-

sponding to continuity of the normal component of velocity, pressure, temper-

ature and thermal flux. Putting the substitutions (1.90) into these boundary

conditions, we have

ikc cos θeikca cos θ + eikca
(
ikcϕ̃+

∂ϕ̃

∂r

)
+ eikT a

(
ikT ψ̃ +

∂ψ̃

∂r

)
=

∂

∂r
(ϕ′ + ψ′) ,

(1.92)
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eikca cos θ + eikcaϕ̃+ eikT aψ̃ = ρ̂ (ϕ′ + ψ′) , (1.93)

Γc
(
eikca cos θ + eikcaϕ̃

)
+ ΓT e

ikT aψ̃ = Γ′cϕ
′ + Γ′Tψ

′, (1.94)

Γc

(
ikc cos θeikc cos θ +

(
ikcϕ̃+

∂ϕ̃

∂r

)
eikca

)
+ΓT

(
ikT ψ̃ +

∂ψ̃

∂r

)
eikT a = τ̂

(
Γ′c

∂

∂r
ϕ′ + Γ′T

∂

∂r
ψ′
)
, (1.95)

where ρ̂ = ρ′/ρand τ̂ = τ ′/τ . Since the functions ϕ̃, ψ̃, ϕ′ and ψ′ are regular they

can be expanded as Poincaré series in the form,

ϕ̃ =
∞∑
n=0

(ikc)
n ϕ̃n, (1.96)

ψ̃ =
∞∑
n=0

(ikT )n ψ̃n, (1.97)

ϕ′ =
∞∑
n=0

(ik′c)
n
ϕ′n, (1.98)

ψ′ =
∞∑
n=0

(ik′T )
n
ψ′n. (1.99)

These series converge for |kca| < ln(2) and |kTa| < ln(2), as shown by Kleinmann

[25]. This perturbation approach exploits the cause of the ill-conditioning of

ECAH. Furthermore, it can be shown, using LFPST, that the error is bounded by

O(|kca|m+1) if the solution to order-m is used. From equations (1.52) and (1.91)

the terms in the Poincaré series are related by

∇2ϕ̃n+1 = −2

r

∂

∂r
(rϕ̃n) , (1.100)

∇2ϕ′n+2 = ϕ′n, (1.101)
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∇2ψ̃n+1 = −2

r

∂

∂r

(
rψ̃n

)
(1.102)

and

∇2ψ′n+2 = ψ′n. (1.103)

Hence at order zero ϕ̃0, ψ̃0, ϕ′0 and ψ′0 satisfy Laplace’s equation and so are given

by,

ϕ̃0 =
e−ikca

r

∞∑
n=0

A
(0)
n

rn
Pn (cos θ) , (1.104)

ψ̃0 =
e−ikT a

r

∞∑
n=0

B
(0)
n

rn
Pn (cos θ) , (1.105)

ϕ′0 =
∞∑
n=0

A
′(0)
n rnPn (cos(θ)) , (1.106)

ψ′0 =
∞∑
n=0

B
′(0)
n rnPn (cos(θ)) , (1.107)

where from the boundary conditions subsequent terms are found by solving the

associated Poisson equations. The leading order contribution to the far field

scattering is found in the second-order terms. Consequently, the effects of the

thermal scattering are found to be proportional to (kTa)2 in the limit of |kTa| � 1,

so the term ψ̃2 is of most interest to us.

1.3.7.2 Geometric theory of diffraction

The LFPST approximation is no longer valid once the particle size becomes com-

parable with the thermal length scale
√

σ
ω

. The second method, from Harlen

et al. [26], relies, again, on the assumption that |kca| � 1, however this time,

|kTa| � 1. It is based on curves along which the terms of asymptotic expansions

satisfy ordinary differential equations, known as rays. This will only be sum-

marised briefly here, but there is a more in-depth discussion in [26]. The thermal

component of the potential ψ satisfies an equation of the form,

(
∇2 + k2

Tn
2(x)

)
ψ = 0, (1.108)
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where n(x) is the effective refractive index of the media. If homogeneous, n(x) =

constant, then plane wave solutions are obtained,

ψ = ψ̃ein(x)kT·r, (1.109)

where kT = kT k̂T is the propagation vector, k̂T the unit vector. Solutions are

sought on the basis of (1.109) in the form

ψ = ψ̃eikT s(x), (1.110)

which when introduced in (1.108) gives

−k2
T

{
|∇s|2 − n2

}
ψ̃ + 2ikT∇s · ∇ψ̃ + ikT ψ̃∇2s+∇2ψ̃ = 0. (1.111)

The crucial difference with this method is that, since kTa is large, the expansion

of inverse powers of ikTa are used in place of (1.97),

ψ̃ =
∞∑
m=0

(ikTa)−mψ̃m. (1.112)

It follows from this that if ψ̃0 6= 0 then the Eiconal equation

|∇s|2 = n2(x) (1.113)

is obtained. For m = 0,

2∇s · ∇ψ̃0 + ψ̃0∇2s = 0, (1.114)

and for m = 1, 2, ...,

2∇s · ∇ψ̃m + ψ̃m∇2s = −∇2ψ̃m−1. (1.115)

These two equations can be considered as analogous to equation (1.96) in the LF-

PST case. For homogeneous media, it can be considered, for a spherical geometry,
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that

s(r) = ±constant, (1.116)

thus, equation (1.110) becomes,

ψ = ψ̃e±kT r. (1.117)

Using this equation with boundary conditions, similar to the method in sec-

tion 1.3.7.1, we define

ϕ̃ =
∞∑
n=0

∞∑
m=0

(ikca)n

(ikTa)m
ϕ̃nm, (1.118)

ϕ′ =
∞∑
n=0

∞∑
m=0

(ik′ca)n

(ik′Ta)m
ϕ′nm, (1.119)

ψ̃ =
∞∑
n=0

∞∑
m=0

(ikca)n

(ikTa)m
ψ̃nm, (1.120)

ψ′ =
∞∑
n=0

∞∑
m=0

(ik′ca)n

(ik′Ta)m
ψ′nm. (1.121)

By expanding these equations, it is shown that solutions with the order (kca)2(kTa)−1

describe the first interactions between the thermal and acoustic fields, the full so-

lution has been solved by Harlen et al. [26].

1.3.7.3 Weak thermal scattering approximation

This third method, first described by Pinfield et al. [29] and later developed by

Harlen et al. [27], is based on the assumptions, |kca| � 1, but with |kTa| ∼ 1.

This allows the use of a perturbation power series in ikca, similar to LFPST but

where ϕ̃n and ψ̃n remain dependent on kT :

ϕ̃ =
∞∑
n=0

(ikca)nϕ̃n, (1.122)

ψ̃ =
∞∑
n=0

(ikca)nψ̃n, (1.123)
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ϕ′ =
∞∑
n=0

(ikca)nϕ′n, (1.124)

ψ′ =
∞∑
n=0

(ikca)nψ′n. (1.125)

It can again be shown for |kca| < ln(2) that these series converge. The key

observation is that in this limit the acoustic fields ϕ̃ and ϕ′ make only a weak

contribution to the temperature fields since Γc ∼ (kca)2ΓT , from equation (1.63).

As a consequence, the thermal boundary conditions (1.64) link the ϕ̃n+2, ϕ
′
n+2

and ψ̃n, ψ
′
n, whereas velocity and pressure boundary conditions link ϕ̃n, ψ̃n, ϕ

′
n

and ψ′n. Following this, the solutions can be written as finite sums, as follows:

ϕ̃n =
n∑

m=0

Amn
am+1

rm+1
Pm(cos θ) + In(r, θ), (1.126)

ϕ′n =
n∑

m=0

A′mn
rm

am
Pm(cos θ) + I ′n(r, θ), (1.127)

which only contain the first n harmonics, and

ψn =
n−2∑
m=0

Bnmhm(kT r)Pm(cos θ), (1.128)

ψ′n =
n−2∑
m=0

B′nmhm(k′T r)Pm(cos θ), (1.129)

which only contain the first n− 2 harmonics. Where In and I ′n are the associated

particular integrals of the inhomogeneous equations, see [27] for more details.

This gives the solution for order n = 0,

ϕ̃0 = 0, (1.130)

ϕ′0 =
1

ρ̂
, (1.131)
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which is just an increase in the internal acoustic field to balance the external field.

At order |kca|, the leading terms give a dipole field:

ϕ̃1 = A11
a2

r2
cos θ, (1.132)

ϕ′1 = A′11

r

a
cos θ, (1.133)

where

A11 =
ρ̂− 1

1 + 2ρ̂
, A′11 =

3

1 + 2ρ̂
. (1.134)

At order |kca|2, the leading order thermal field terms are produced,

ψ2 =
τ̂
(

Γ̂G′c − ρ̂Gc

)
(k′Ta− tan k′Ta)

ρ̂
(
τ̂ k′Ta+ (1− τ̂ − ikTa) tan kTa

a
r
eikT (r−a)

) , (1.135)

ϕ̃ = A22
a3

r3
P2(cos θ) + A20

a

r
− A11

a(r − a)

r2
cos θ, (1.136)

where Γc

ΓT
= −k2

ca
2Gc,

Γ′c
Γ′T

= −k2
ca

2G′c, Γ̂ =
Γ′T
ΓT

,

A22 =
2(ρ̂− 1)

3(2 + 3ρ̂)
, (1.137)

A20 =
ρ̂− v̂

3ρ̂
+

(Γ̂τ̂ − 1)(Γ̂G′c − ρ̂Gc) (k′Ta− tan k′Ta) (ikTa− 1)

Γ̂ρ̂ (τ̂ k′Ta+ (1− τ̂ − ikTa) tan k′Ta)
. (1.138)

Note the correction from Harlen’s original paper [27] in the denominator of equa-

tion (1.138).

1.3.8 Forward scattering

Now the results of the calculations in sections 1.3.7.1–1.3.7.3 can be used to

predict the attenuation of a system of particles suspended in liquid. Epstein

and Carhart [18], and Allegra and Hawley [19] obtained a calculation for the
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energy at large distances, so after the effects of the thermal and shear modes

have disappeared. They simply assumed the total energy lost is proportional to

the concentration of the particles, φ, as(
k̃c
kc

)2

= 1 +
3φf(0)

k2
ca

3
, (1.139)

where f(θ) is the far field pattern, which has the form,

ϕ ∼ eikcr

r
f(θ) =

eikcr

r

∞∑
n=0

(2n+ 1)AnPn(cos θ). (1.140)

Also, k̃c is the effective wave number for the dispersion. It may also be written

as

k̃c =
ω

c̃
+ iαtot, (1.141)

where c̃ is the effective sound speed in the dispersion, and αtot is the total attenua-

tion throughout the two separate phases and the scattering due to the spheres. So,

subtracting the dispersed phase attenuation just leaves the scattered attenuation

α = (αtot − αC(1− φ)− αP ), where αC and αP are the attenuation coefficients

for the continuous phase and particle phase, respectively. This can be written as

an attenuation coefficient

αP = − 3φ

2k2
ca

3

∞∑
n=0

(2n+ 1) ReAn. (1.142)

This is simply a summation of the attenuation of many single scatters as one

particle is not considered to have an effect on any other particles.

A comparison of the three approximations, LFPST (section 1.3.7.1), geo-

metric theory of diffraction (section 1.3.7.2) and weak thermal scattering (sec-

tion 1.3.7.3), compared to the ECAH solution can be found in figure 1.4.
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Figure 1.4

Thermal wavenumber and particle size against |kTa| attenuation per

wavelength for ECAH single scattering theory, with the three

approximation limits for the different regions of the limits of |kTa|,

for a silicone oil-in-water emulsion with a 5% volume fraction. The

blue line, LFPST described in section 1.3.7.1, approximates the

ECAH prediction closely when |kTa| < 1 but fails outside this region.

Similarly the purple line, geometric theory of diffraction described in

section 1.3.7.2, provides a close approximation for |kTa| > 1 but

again fails outside this region. The green line, weak thermal

scattering described in section 1.3.7.3, provides a good approximation

in the region |kTa| ∼ 1.
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1.4 Single Field Multiple Scattering Methods

There have been various methods over the years to devise a theory to compensate

for multiple scattering effects. One of the early attempts was a model devised by

Urick and Ament [30], which was based on a ”thin slab approximation” to obtain

an effective wavenumber for a single particle scattering system. The forward

and back scattered wave amplitude were then calculated from a thin slice of

the disperse phase less than a wavelength thick. The apparent wavenumber was

determined by calculating the scattering coefficients by comparing the reflected

and transmitted waves which would be obtained from a homogeneous slice of

fluid with a given wavenumber. It was assumed that each particle in the slice

experienced the same acoustic field, hence, transverse waves were neglected. They

gave the result, (
k̃c
kc

)2

=

(
1− 3iφ

k3
ca

3
A0

)(
1− 9iφ

k3
ca

3
A1

)
. (1.143)

Two of the more common theories for the analysis of ultrasound measurements

are by Waterman and Truell [31], Fikioris and Waterman [32], Lloyd [33, 34],

and Lloyd and Berry [35]. They use the hierarchy method to determine the

wavenumber of a dispersion and ensemble average to obtain the acoustic field,

building on work by Foldy [36] and Lax [37, 38].

Waterman and Truell’s first attempt [31] at solving the problem agreed with

ECAH. However, a later calculation by Fikioris and Waterman [32], corrected an

error and provided(
k̃c
kc

)2

= 1− 3iφ

k3
ca

3
(A0 + 3A1)− 27φ2

k6
ca

6

(
A0A1 + 2A2

1

)
. (1.144)

Lloyd and Berry approached the problem from a different point of view. They

took the point of view of the density energy states in a medium. This method is

currently the most accepted solution to the multiple scattering problem. However,

it is flawed as it deals with particles as points rather than spheres. The result

that is presented here has been terminated at second order terms, however more
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can be calculated, (
k̃c
kc

)2

= 1− 3iφ

k3
ca

3

(
∞∑
n=0

(2n+ 1)An

)
−

27φ2

k6
ca

6

(
A0A1 +

10

3
A0A2 + 2A2

1 + 11A1A2 +
230

21
A2

2

)
, (1.145)

or in terms of the far-field,(
k̃c
kc

)2

= 1 +
3φ

k2
ca

3
f(0) +

9φ2

4k4
ca

6

(
f 2(π)− f 2(0)−

∫ π

0

dθ
1

sin(θ/2)

(
d

dθ
f 2(θ)

))
,

(1.146)

upto n = 1. This result was also found later by Linton and Martin [39] by

considering only the acoustic scattering off each sphere in a finite array of spheres,

and taking the limit as the scatter size tends to zero.

1.4.1 Limitations of single field scattering theory

While single scattering theory can be effective in predicting the acoustic behaviour

of a colloidal dispersions, it does suffer when the concentrations of the disperse

phase increase. This can be explained by looking at the decay length of the

thermal field around an oil droplet, which is given by [40] as

δT =

√
2τ

ρCpω
. (1.147)

At low enough concentrations the droplets are sufficiently far enough apart that

these field do not interact. But now consider

δT ≥
d

2
, (1.148)

where d is the distance between the centre of neighbouring particles. Then the

thermal fields of the two droplets must overlap. In figure 1.5, the decay length

in water has been plotted against frequency. The decay length decreases as the

frequency increases, thus there will be more thermal overlap at lower frequencies.
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Figure 1.5

A comparison of thermal decay length against frequency from

equation (1.147) in water at 25◦C. At lower frequencies the thermal

decay length is higher, which leads to more overlaps with other

particles’ thermal fields.

Thus we can define a critical concentration, φc, at which the thermal field of

neighbouring particles begin to overlap. This critical volume fraction is given by

[41]

φc =

(
1

1 + δT
a

)3

. (1.149)

The critical volume fraction can be seen in figure 1.6 for varying particle sizes in

water at 25◦C at 1 MHz. It is notable that the critical volume fraction becomes

more predominant as the particle size is reduced.

More recent approaches to overcome the limitations of single field scattering

theory have been by Pinfield [42, 43] and Luppé et al. [44]. They consider the

additional effects on multiple scattering caused by mode conversion two and from

thermal waves. Building on the work by Waterman and Truell [31] and Waterman
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Figure 1.6

A comparison of critical volume fraction against particle radius in

water at 25◦C at 1 MHz. As the particle size is reduced the amount

of thermal overlap increases, which reduces the accuracy of current

theories when measurements of concentrations greater than this are

required.
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[45] the transition operator T pq(r) is introduced by defining a generalised far field

scattering function

f qp(θ) =
∞∑
n=0

(2n+ 1)T qpn Pn(cos θ), (1.150)

where

T pqn (r)jn(kqr)Pn(cos θ) = T pqn (r)hn(kpr)Pn(cos θ). (1.151)

The coefficients p and q represent either the thermal or the compressional waves,

such that we can consider

TCCn ≡ An, (1.152)

to be the compressional scattering coefficient from equation (1.76), and

TCTn ≡ Bn, (1.153)

to be the thermal scattering coefficient from equation (1.77). This method

assumed that the zero order coefficients of the compressional-thermal mode-

conversion terms are retained, and thus allow the introduction of a thermal inci-

dent wave

ψinc
T =

∞∑
n=0

i(2n+ 1)jn(kT r)Pn(cos θ). (1.154)

This allows for TCT0 thermal fields based on zero order compressional fields to

be generated, but also T TC0 , a scattered compressional field based on the zero-

order thermal field. This has been used to account for multiple scattering of the

thermal waves for higher concentration colloids, and produces an additional term

to the Lloyd and Berry equation (1.146),

∆

(
k̃c
kc

)2

= −27φ2

k6
ca

6

k3
c

6kT (k2
c − k2

T )
[(2ikTa− 1) j0(2kca)

−(2kca)j′0(2kca)] ·
{
TCT0 h0(kTa)

}{ T TC0

j0(kTa)

}(
1− e2ikT a

)
. (1.155)

While this method does consider the thermal overlap between particles, it does

not explicitly look at the interaction between two particles, which is what we aim
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to do in this thesis.

1.5 Aims and Outline of Thesis

The focus of this thesis is to increase understanding of inter-particle thermo-

acoustic scattering in the pursuit of developing methods for increased accuracy

in predicted attenuation profiles of high concentration colloidal suspensions, by

developing a mathematical solution for thermo-acoustic scattering by a pair of

spheres for different sizes. The first step towards this is using the Harlen et al.

[27] weak thermal scattering method to treat the problem in the low frequency

limit, which allows the use of perturbation power series to define the acoustic field

about a sphere. This approach is used to solve thermoacoustic scattering system

by particles, in chapters 4 and 5, using methods of Gaunaurd et al. [46] and

Greengard and Rokhlin [47]. From this we will calculate the scattering coefficients

for two systems. In chapter 4 we consider the case of two spheres in-line with

the incident plane wave, and in chapter 5 the case where the incident wave is at

some arbitrary angle of the orientation of the particles.

The second aim of this thesis is to use the results of the two methods in

chapters 4 and 5, to improve the prediction of scattering theory at higher concen-

trations by incorporating multiple scattering effects from thermal overlap. This

is explored in chapter 6.

Another objective of this thesis is to obtain experimental data on mono- and

bi-disperse colloidal systems in order to test the theoretical predictions. In the

next chapter, the details of the experimental systems studied for this thesis are

presented. Scattering results are shown in chapter 3 and show that current acous-

tic scattering theory does not adequately capture the behaviour of two different

sized dispersions in a single continuous phase. This data will then be compared, in

chapter 6 with the new multiple scattering theory which can model the behaviour

of different size particles.

The final objective is to develop an apparatus for in-line detection of sedimen-

tation in pipes. This is investigated in chapter 7, where we develop a system of

a pair of rotating ultrasound transducers to monitor the attenuation and sound

through the pipe at different angles.
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Chapter 2

Materials and Methods

2.1 Introduction

In this chapter we look at three different experimental studies and the techniques

and materials used in these. The main purpose of the experiments to follow

is to demonstrate the need for an improved acoustic multiple scattering model.

The first study involves the varying of concentration of a mono-disperse colloidal

system. To measure it we use a Malvern Ultrasizer, which measures attenuation

from 2 to 120 MHz, and the TF Intrustments ResoScan, which measures velocity

and attenuation at a single frequency of around 8 MHz. The purpose of this study

is to investigate how the velocity and attenuation measurements change with

concentration of the dispersed phase from the dilute, in which single scattering

dominates, to concentrated where multi-scattering dominates.

The second study looks at a bi-disperse system, at different concentration

levels. This has the dual purpose of validating single scattering theory for mix-

tures of different particles and challenging the bi-spherical theory developed in

this thesis. This study will be conducted using the Malvern Ultrasizer.

The third study, based again on bi-disperse systems, looks at how these sys-

tems cream over time. Using the Acoustiscan we can monitor the attenuation

and velocity across the height of a sample at a single frequency. This allows us

to see how two particle sizes affect how the sample behaves.
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2.2 Studied systems

All the following materials have their relevant properties provided in table 2.1.

2.2.1 Water

For each of the systems described in this thesis we will be using Millipore Water.

This is purified water provided through a Milli-Q water purifying system, sup-

plied by Millipore Corporation, Massachusetts, USA. Milli-Q using a de-ionisation

system, with an added microfiltation process that removes particulate impurities

that de-ionisation may not remove. In particular, the filtration removes small

surfactant molecules which can have the unfortunate effect of stabilising small

bubbles which interfere with ultrasound propagation. For the purposes of this

thesis, we will now exclusively refer to Millipore water, when we use the word

“water”.

2.2.2 Bromohexadecane in water

This system is made up of: 1-Bromohexadecane 97% supplied by Sigma-Aldrich

Company Ltd., Dorset, UK; Caflon GL0700 Alcohol Ethoxylate, supplied by Uni-

var, Illinois, USA. Note this material is hazardous, use appropriate safety precau-

tions, and water. Bromohexadecane is used as it is density matched with water,

however, its other properties provide a good thermal difference to produce large

thermal acoustic effects. It is also known to create stable emulsions. Caflon is

used as a surfactant, to lower the surface tension between bromohexadecane and

water. The caflon creates a single molecule layer around a sphere of bromohexa-

decane. The amount of caflon added determines the size of the spheres created

in the homogenisation process described in section 2.3.

2.2.3 Hexadecane in water

This system is made up of: n-Hexadecane 99% supplied by Alfa Aesar, Keysham,

UK; Caflon, and water. This system is used, like bromohexadecane as it provides

good thermal contract to produce large thermo-acoustic effects and creates a
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stable emulsions. However, unlike bromohexadecane it is not density matched

with water. Caflon is again used as a surfactant.

2.2.4 Silica in water

This system is made up of: Silica Ballotini solid soda glass balls, SiLibeads R©

supplied by Jencons-PLS, Pennsylvania, USA; and water. This system is used as

the Silica beads sediment quickly so can be used for sedimentation measurements

in chapter 7.

2.2.5 Polystyrene-PEGMA

This system is made up of: styrene, PEGMA 2000 stabiliser and water. The

PEGMA 2000 is used as surfactant. Three samples of this system were provided

of size 100nm, 400nm and 900nm. These samples were kindly provided by Dr. H.

N. Yow, University of Leeds, as part of a project looking at the acoustic properties

of these materials in relation to ink jet printing methods. Details of samples can

be found in table 2.3.

2.2.6 Silicone Oil

Dow Corning R© 200/50cS fluid, silicone oil, supplied by VWR International Ltd,

Poole, England, is used as it has a higher viscosity than water, so the effects of

stirring speeds can be observed.

2.3 Sample preparation

One litre of hexadecane or bromohexadecane in water emulsion was prepared by

first calculating the required amount of surfactant (Caflon) by using the following,

Vcaflon = 4πRr2 × φm10−6

ρ4
3
πr3

, (2.1)

where ρ is the density, R is the radius of the surfactant molecule, r is the desired

particle radius, φ is the weight percentage of the disperse phase, and m is the
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total mass. Stir the sample with a magnetic flea for ten minutes to ensure it has

been thoroughly mixed. Place the sample in a water bath at 5◦C to remove any

excess gas within the sample for 60 minutes. The sample is then passed through

a high pressure homogeniser. Often multiple passes are required to create an

emulsion with the desired particle size. After each pass use a Mastersizer 3000

(Malvern Instruments) to take a light scattering measurement of the average

particle size and spread. When creating particle sizes of less than around 800nm,

it is recommend to first make a emulsion with a particle size larger than that is

required, then adding additional surfactant to create smaller particles. Once the

emulsion has been created it can be stored at room temperature, provided it is

covered, to prevent evaporation. Details of the particular samples can be found

in tables 2.2 and 2.3

2.4 Ultrasound experiments

Three different acoustic measurement devices were used to analyse these fluid sys-

tems. While all three instruments measure the attenuation of ultrasound through

a material, they operate at different frequencies and require different sample vol-

umes, as summarised in table 2.4.

2.4.1 Ultrasizer

The Ultrasizer MSV from Malvern Ltd [52] (see figure 2.1) is an acoustic spec-

troscopy device for measuring acoustic attenuation. It functions by using the

“pitch and catch” transmission method (see figure 2.2). A voltage generates an

acoustic signal in a transducer that is received in a second transducer. The volt-

age is measured in the second transducer and the attenuation is calculated by

comparing the signal amplitude and the distance between transducers. A key

feature of this instrument is that it provides a broad range of frequencies. There

are two pairs of broadband transducers to cover the frequency range. The low

frequency pair covers frequencies from 2MHz to 20MHz and the high frequency

pair measures from 18MHz up to 120MHz. The distance between these pairs

of transducers is varied to optimise the signal to noise ratio and is calculated
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420 139.14 0.85 30 901.2 900

420 139.14 7.68 30 104.8 100

480 92.76 0.57 20 897.2 900

480 92.76 5.12 20 98.5 100

510 69.57 0.43 15 903.1 900

510 69.57 3.84 15 105.3 100

540 46.38 0.28 10 896.8 900

540 46.38 2.56 10 101.9 100

570 23.19 0.14 5 904.2 900

570 23.19 1.28 5 101.1 100

Table 2.2

Details of composition of Hexadecane-in-water experimental systems.

Each makes 600ml.

Mean particle

size (nm)

Size used

in model (nm)

393.0 400

898.1 900

Table 2.3

Details of Polystyrene PEGMA particles in experimental systems

kindly provided by Dr. H.N. Yow.
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Instrument
Frequency

(MHz)

Sample

Volume

(ml)

Pulse or

continuous
Attenuation Velocity

Acoustiscan 2-5 20 to 300 Pulse 3 3

ResoScan 7.3-8.4 0.2 Pulse 3 3

Ultrasizer 2-120 500 Quasi-Continuous 3 8

Table 2.4

Comparison of experimental methods.

automatically by the device software. The device compares the measurements

at two distances to factor out errors. It also automatically calibrates the effects

of diffraction to reduce errors. One drawback of this device is that it requires

large amount of sample, 500ml, to be used. The chamber is heated using a Huber

MiniStat heater. The temperature is also recorded when a measurement takes

place.

The chamber also contains a stirrer, this can be set to have an angular speed

from 0 to 3000 RPM. The manufactures guidelines suggest a minimum stirring

speed of 200 RPM with 500 RPM being a generally appropriate setting. Stirring

reduces flocculation and creaming effects, as well as keeping the temperature even

throughout the sample. However, over stirring can lead to air being drawn into

the sample, or vibrate the apparatus too vigorously. Following the manufacturer’s

instructions for the software, multiple automated measurements can be made.

Control data was obtained with water at 25◦C at different stirring speeds. In

figure 2.3 we present the attenuation spectrum of water, with stirrer at 100 RPM

and 1000 RPM. It can be seen that both stirring speeds are able to recover the

attenuation coefficient for Millipore water. From this we can set the stirrer at

500RPM as a mean value. Further analysis on how to calibrate the system based

on bulk viscosity has been carried out by Holmes et al. [53].

There are a number of problems that can arise under certain situations. One

peculiar phenomenon can occur when using high concentration samples when

varying the stirrer speed. In figure 2.4 there is an artefact at 40MHz which

is more prominent at lower stirring speeds. It has been speculated that the
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Figure 2.1

The Malvern Ultrasizer MSV [52].

system will want to set the distance between the transducers to be very small.

This reduces the amount the stirrer effects the fluid in the chamber between the

transducers, providing erroneous readings. A study, using COMSOL Multiphysics

was carried out to monitor the flow in this section of the chamber. The minimum

distance between the transducers is 5.08mm. In figure 2.5 we see a diagram of the

ultrasizer fluid chamber, which shows how the transducers can move together or

apart to create different distances between the transducers. In figure 2.6, we have

the Comsol model of the Ultrasizer measurement chamber with the transducer

distance set to 5.08mm. Also seen in the model is the stirring mechanism. Using

the rotating machinery, laminar flow module in Comsol, the flow in between can

be monitored. In figure 2.7, we see a fluid velocity magnitude profile of the plane

equidistant between the transducers for stirring at 100RPM. The flow between

the transducers and above is reduced to around 1mm s−1, whereas the section

below the transducers has a high velocity, indicating mixing is occurring in this

region.

To investigate this effect further, Dow Corning 200 50cS silicone oil was put

into the Ultrasizer and stirred at different angular velocities, as this has an in-

creased viscosity. In figure 2.8, the sample had been stirred at different angular

velocities from 100 to 1500RPM. This is compared to the attenuation coefficient

of silicone oil. It can be seen that stirring speed has little effect on the attenuation

of the sample.
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High frequency
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Colloidal suspension

Figure 2.2

A schematic diagram of Malvern Ultrasizer. Two pairs of

transducers, one low frequency (2MHZ to 20MHZ) and one high

frequency (18MHz to 120MHZ) transmit acoustic signals across the

sample whilst the sample is stirred.

49



1

10

100

1000

107 108

A
tt

en
u
at

io
n

(N
p
/m

)

Frequency (Hz)

100RPM
1000RPM
αMHz−2

Figure 2.3

Attenuation-frequency calibration data for water, for different stirrer

speeds at 25◦C using the Malvern Ultrasizer. The theory line is

provided by the attenuation factor of water in table 2.1. Notice from

equation (1.14) that attenuation increases as frequency squared

increases. It can be seen that both stirring speeds are able to recover

the attenuation coefficient for water.
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Figure 2.4

Attenuation-frequency data for 800nm 30% hexadecane-in-water

emulsion, for different stirrer speeds first rising and then decreasing

in speed at 25◦C using the Malvern Ultrasizer. The ´ and ˆ represent

whether the stirrer was decreased or increased to the angular speed.

At around 40MHz a measurement artefact occurs with slower stirring

speeds.

51



Moveable
transducer
distance

High frequency
transducers

Low frequency
transducers

Stirrer

Figure 2.5

Diagram of Ultrasizer sample chamber. Green area can be reduced or

expanded depending on required transducer separation.
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Figure 2.6

COMSOL Multiphysics model of the geometry of the Ultrasizer

chamber. The distance between the transducers is set to the minimum

5.06mm (0.2 inch) to determine fluid flow between the transducers.

53



Figure 2.7

COMSOL Multiphysics model showing the flow in mm/s in the

Ultrasizer chamber equidistant between the transducers for 100RPM

when they are at the minimum distance, 5.06mm, apart.
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Figure 2.8

Pure Dow Corning 200 50cS silicone oil stirred at different angular

velocities. The increase in stirring speed has little effect on the

attenuation of the sample.
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Figure 2.9

Polystyrene PEGMA 5% 100nm and 5% 900nm, stirred at different

angular velocities, compared with weak thermal scattering model.
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Figure 2.10

Acoustiscan ultrasound profiler.

This test was carried out again, with more intermittent steps, with Polystyrene

PEGMA 5% 100nm and 5% 900nm, shown in figure 2.9. At low stirring speeds

the attenuation is not affected. As the stirring increases to high speeds, above

1300RPM, we see a large increase in the attenuation at low frequencies. However,

this could be attributed to the high stirring speeds introducing air into the system.

Further analysis of the Ultrasizer system can be found from Povey [54].

2.4.2 Acoustiscan

The Acoustiscan ultrasound profiler (as seen in figure 2.10) was designed by

Phillip Nelson and Malcolm Povey for the purpose of providing information about

the destabilisation of emulsions, dispersions and colloidal systems by measuring

the velocity of sound and the attenuation of a sample multiple times along a

vertical cross-section of the sample [55].

The velocity and attenuation of a sample are measured by two pairs of ul-

trasonic transducers, with centre frequencies of 2MHz and 5MHz, although they

have a frequency scanning range of 0.6MHz to 10HMz. The transducers have a

pulse generated for them by a NDT solutions pulse receiver unit. The received
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pulse is measured, as are the echoes to provide greater accuracy. These trans-

ducers are placed against two 300× 35× 1mm3 glass panels, in which the sample

sits between, as seen in figure 2.11. To couple the transducers with the glass

windows, Dow Corning silicone oil is used. This also acts as a lubricant for the

movement of the transducers. The amount of lubricant is carefully controlled

to keep measurements consistent and repeatable. The transducer aperture can

be moved up and down the sample container in steps as small as 1mm, which

is around 10% of the transducer size. Taking measurement of step size of 5mm

for a 250mm sample can take 7 minutes to complete. Once a measurement is

complete the transducer aperture is moved off the end of the sample holder and

a carousel is rotated to bring the next sample on to the measurement platform.

The carousel can contain up to six samples. The whole apparatus is contained

in an insulating cabinet so that temperate can be regulated. The temperature

is controlled by an inflow of compressed air cooled and dried in a vortex cooler,

together with three lamps working in tandem.

To calibrate, one must use distilled water. The calibration data can be seen

in figure 2.12. To calibrate correctly, we need to calculate the speed of sound in

water using Marczak’s equation [56]

vwater = 1.402385× 103 + 5.038813T − 5.799136× 10−2T 2

+3.287156× 10−4T 3 − 1.398845× 10−6T 4 + 2.787860× 10−9T 5, (2.2)

where T is temperature in degrees Celsius, as shown in figure 2.13. Calibrat-

ing also accounts for the signal delay due to the walls of the sample container.

Diffraction is also accounted for by assuming the speed of sound between water

and samples does not vary greatly, such that diffraction does not significantly

change compared to water. Data 5mm near the top and the bottom of the sam-

ple has to be discarded due to diffraction effects around the edge of the samples.

Further information about the Acoustiscan can be found from Nelson et al. [55]

and Povey [54].
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Figure 2.11

Schematic diagram of an Acoustiscan ultrasound profiler.
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Figure 2.12

Typical calibration data for distilled water in an Acoustiscan

ultrasound profiler. Edge effects can be seen at the top of the sample,

which are more gradual for the intensity reading than for the velocity

reading.
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Figure 2.13

The speed of sound in pure water as a function of temperature as

described by Marczak’s equation (2.2).

2.4.3 Resoscan

The Resoscan, TF Instruments Inc. (as seen in figure 2.14), is a ultrasonic high

precision relative measurement device. It contains two 200µl cells which measure

sound velocity and attenuation simultaneously. The transducers have a working

frequency of 7.3-8.4MHz. The temperature of the cells can be very precisely set

from 5 to 70◦C by a Peltier thermostat. The instrument can be set to automati-

cally measure samples with a varying temperature range.

Following the method of Holmes et al. [57], the device can be calibrated by

putting Millipore water in the sample chambers and comparing with literature

sources [56], shown in figure 2.13. Further analysis of the Resoscan system can

be found in [54].
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Figure 2.14

Resoscan, TF instruments Inc. [58].

62



Chapter 3

Experiment and comparison with

existing theories

Two main studies were carried out as part of this research. Firstly, a number of

experiments were carried out investigating the effect of different concentrations of

monodisperse colloidal dispersions on the attenuation spectrum measured by the

Malvern Ultrasizer (see section 2.4.1). This data is also compared with data from

Herrmann [5]. This was then compared with readings of velocity and attenuation

taken from the ResoScan (section 2.4.3) at varying concentration levels. The Re-

soScan study was then expanded over a temperature range, again measurements

of velocity and attenuation were taken over this region.

The second study was looking at how attenuation is effected by the mixing

two different sized dispersions. The Ultrasizer was used to carry out a frequency

sweep of the samples to acquire attenuation spectra. These samples were then

measured using the AcoustiScan (section 2.4.2) over time to monitor how these

samples behave.

These experiments are compared with the current theories described in chap-

ter 1 to show the area where improvements in the acoustic theories need to be

made.
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3.1 Mono-disperse experiments

3.1.1 Concentration

This first series of experiments are designed to test how measurements of samples

are effected by increasing concentrations of the disperse phase in mono-disperse

emulsions, as the theories presented in chapter 1 have been shown to be inaccurate

at higher concentrations due to overlaps in the thermal dissipation fields.
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Figure 3.1

Silicone-in-water dispersion data for particle radii 230-760nm, from

Herrmann [5], compared with single weak thermal scattering theory.

The lines represent the theoretical prediction and the symbols

represent the data.

Herrmann et al. [5] carried out silicone-oil-in-water experiments using a fixed-

path ultrasonic interferometer, described by Herrmann [59] and Eggers [60]. Us-

64



ing a frequency range of 0.5 and 10 MHz, they measured emulsions with particle

radii of 230-760nm, with concentrations increasing from 5% to 50%. Each of

the concentrations is compared to single weak thermal scattering theory (see sec-

tion 1.3.7.3) and plotted for thermal wave number |kTa| against attenuation per

wave length (Np), as seen in figure 3.1. It can be seen for low concentrations,

5% and 10% that the prediction is quite accurate, however as the concentration

increases the prediction becomes more inaccurate, especially for lower values of

|kTa|. with the experimental data providing a lower attenuation than the pre-

diction. Also notice how the peak of the experimental data is shifted positively

along the |kTa| axis.

Two of the Polystyrene PEGMA samples provided were ∼400nm and ∼900nm

in radius. These were both measured in the ResoScan, measuring the velocity

and the attenuation of the sample. The attenuation in the ResoScan is measured

in Nps2m−1 so it is necessary to multiply it by f 2 to provide an attenuation

measurement compatible to the other experiments. We can see in figures 3.2

and 3.3 that, while the prediction is accurate at lower concentrations, at around

11% the experiments provide results with a lower velocity and attenuation than

expected.

3.1.2 Discussion

In figure 3.1 we see the attenuation prediction for hexadecane in water become

more inaccurate as the concentration increases. When the concentration reaches

above 10% we see deviation from the prediction, especially for lower values of

|kTa|. As the concentration increases, the experimental data deviates even more

the prediction, with the peak of the data moving in a positive direction along

the |kTa| axis. This indicates that multiple scattering effects are occurring which

single scatting theory does not account for. This is reaffirmed in the polystyrene

PEGMA in water experiments, as seen in figure 3.3, where the two attenuation

experiments deviate from the prediction of weak thermal scattering, which needs

to be accounted for.

In addition to the attenuation measurements, in figure 3.2 we see a similar

phenomenon occurring with the velocity of the sample. While for low concen-
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Figure 3.2

∼400 nm and ∼900 nm Polystyrene PEGMA in water velocity for

concentrations measurements from ResoScan at ∼8MHz, compared to

single weak thermal scattering theory. The points represent the

experimental data, and the lines are the prediction.
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Figure 3.3

∼400 nm and ∼900 nm Polystyrene PEGMA in water attenuation

for concentrations measurements from ResoScan at ∼8MHz,

compared to single weak thermal scattering theory. The points

represent the experimental data, and the lines are the prediction.
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trations, the particle size has little effect on the velocity, the experimental data

does suggest that for larger particles we see a larger contribution to changes in

velocity at higher concentrations.

3.1.3 Temperature

Continuing with the ResoScan, we monitored the change in velocity and atten-

uation due to temperature changes. In figure 3.4, 17% ∼400nm Polystyrene

PEGMA was heated from 25◦C to 40◦C and back to 25◦C. It can be seen that for

both attenuation and velocity this provided stable results. However, performing

a similar test on 8.2% 900nm Polystyrene PEGMA, in figure 3.5, did not provide

so consistent results. This time the sample was heated from 25◦C to 60◦C, down

to 15◦C, back to 60◦C, and then returned to 25◦C. While the sound velocity re-

mains repeatable over the temperature scan, the attenuation does not. It can be

seen as the temperature is reduced for the first time that it does not follow the

profile as it did when heating up, and does not return to the initial attenuation

for 25◦C. Between 15 and 25◦C the attenuation reading is repeatable, but as it

increases over 25◦C is increases from the previous readings. This suggests that

the heating of the same is transforming it somehow.

The experiment was repeated on 8.8% ∼400nm Polystyrene PEGMA in fig-

ure 3.6. However, this time the temperature began at 15◦C, was heating to 25◦C

and reduced to 15◦C. This was repeated with increasing maximum temperature

by 5◦C each repetition until 60◦C, then the maximum temperature was decreased

5◦C until 25◦C. Again the velocity reading is highly repeatable, but the attenua-

tion reading increases every repetition. However, the attenuation increases with

every pass of the temperature, although it does plateau further into the exper-

iment, suggesting there is a transformation in the sample but it reaches some

equilibrium.

3.1.4 Discussion

While the velocity of the samples in figures 3.4–3.6 across the temperature range

remains consistent and repeatable, we find that the attenuation of the samples

increases as the heat and cooling cycles progress. It is concluded that the sam-
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Figure 3.4

17.0% 400nm Polystyrene PEGMA in water ResoScan, at ∼8MHz,

of velocity and attenuation compared to change in temperature. The

sample was heated from 25◦C to 40◦C , and then let to cool down to

25◦C . ˆ represent the sample heating up and ´ represent the sample

cooling down.
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Figure 3.5

8.2% 900nm Polystyrene PEGMA in water ResoScan, at ∼8MHz, of

velocity and attenuation compared to change in temperature. The

sample was heated and cooled from 25◦C → 60◦C → 15◦C → 60◦C →

15◦C starting from the red and green points respectively. ˆ represent

the sample heating up and ´ represent the sample cooling down.
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8.8% 400nm Polystyrene PEGMA in water ResoScan, at ∼8MHz, of

velocity and attenuation compared to change in temperature. The

sample was heated and cooled from 15◦C to 25◦C and cooled back

down to 15◦C, this process was repeated but the maximum

temperature was increased by 5◦C each time until 60◦C, then down at

intervals of 5 ◦C until 25◦C, starting from the red and green points

respectively.
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Figure 3.7

Weak thermal scattering predictions of three hexadecane in water

emulsions. 1. 30% 100nm, 2. 30% 900nm, 3. 15% 100nm and 15%

900nm, 30% total volume.

ples are destabilised by increasing temperature and that probably an aggregation

process is occurring which affects the attenuation more than the velocity.

3.2 Polydisperse

The next set of experiments revolved around mixing two different sized mono-

disperse emulsions together. This is to test to see how accurate the theories in

chapter 1 are when applied to bi-disperse systems. In each of these experiments

the attenuation was calculated by adding together the volume averaged attenua-

tion from the individual attenuation predictions for two mono-disperse emulsions.

First we look at the weak thermal scattering prediction of two mono-disperse
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Figure 3.8

Attenuation spectrum of two hexadecane in water emulsions, of size

100nm and 900nm, separately and mixed (shown by points) compared

with single weak thermal scattering theory (shown by lines). The

mixed samples are mixed 50% v/v each for 100nm and 900nm. The

mixed weak thermal scattering solutions were obtained by combining

the attenuation from both 100nm and 900nm spectrum.
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Figure 3.9

A closer look at weak thermal scattering predictions of three

hexadecane in water emulsions compared with experimental data for

the third data set. 1. 5% 100nm, 2. 5% 900nm, 3. 2.5% 100nm and

2.5% 900nm, 5% total volume.
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and the subsequent mixture of these two emulsions behave. See in figure 3.7

how a 30% 100nm and a 30% 900nm weak thermal scattering theories combines.

The first experiment considered were two mono-disperse 30% hexadecane-in-water

emulsions, one ∼100nm, the other ∼900nm, as seen by the dark blue and the pink

points respectively in figure 3.8, which now just considers points over the range of

measurements from the instrument. Similar to the results in figure 3.1 we see at

30% the single weak scattering theory prediction (solid lines) over-estimates the

prediction of the attenuation. The peak of the curve for the experimental data

has also shifted slightly in the positive |kTa| direction also. For 900nm, we see the

we under-estimate the prediction, this may be due to |kT b| > 1 at this point. The

subsequent experimental data is for the two samples mixed together, 50% v/v

for each of the samples. As the concentration decreases, the experimental data

fits the prediction better, although around |kTa| the experimental data increases

in attenuation more than the prediction expects. In figure 3.9, we take a closer

look at the 5% sample, and note that we obtain a fairly accurate prediction just

using single weak thermal scattering theory.

The next series of experiments involved putting the same samples each into

their own cell in the Acoustiscan (see section 2.4.2). These are kept at 25◦C

and left over time. The cells are measured every seven hours for time of flight

and intensity of a pulse. These can be, with calibration, used to calculated the

velocity and attenuation of a sample.

The first sample of 30% 900nm hexadecane in water can be seen in fig-

ures 3.10–3.13, where the time is represented by the change in colour from blue

at the start of the experiment to red at the end of the experiment. It can be

seen that the sample has a fairly even velocity across the whole height at around

1442ms−1, as with the attenuation levels at approximately 60 Np/m. However,

at the end of the sample we can see that the velocity has spilt into two regions,

one which has the velocity of water and one which almost has the velocity of

hexadecane. Similarly, the attenuation has spilt into two regions. This suggests

the emulsion has separated into two regions, one of water and one of hexadecane.

We can interpret the velocity data to a concentration by using the ultrasound
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Figure 3.10

Acoustiscan velocity measurement of 30% 900 nm hexadecane in

water over 37 days.
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Figure 3.11

Acoustiscan attenuation measurement of 30% 900 nm hexadecane in

water over 37 days.
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Figure 3.12

Acoustiscan velocity profile measurement of 30% 900 nm hexadecane

in water over 37 days, where the dashed lines represent the predicted

velocity at 0%, 30% and 100%.
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Figure 3.13

Acoustiscan attenuation profile measurement of 30% 900 nm

hexadecane in water over 37 days.

77



normalisation profiling technique described by Pinfield et al. [61] as,

φ = δ

(
∆

1

v2
m

)
+ ε

(
∆

1

v2
m

)2

, (3.1)

where

∆
1

v2
m

=
1

v2
m

− 1

v2
, (3.2)

δ =
φ0

〈∆ 1
v2m
〉h,0

, (3.3)

and

ε =
φ0

〈
(

∆ 1
v2m

)2

〉h,t

(
1−
〈∆ 1

v2m
〉h,t

〈∆ 1
v2m
〉h,0

)
, (3.4)

where φ is the concentration, φ0 is the initial concentration, vm is the measured

velocity, v is the continuous phase velocity and 〈f〉h,t represents the average of

the scalar quantity f over the height of the sample at time t.

The advantage of this technique is that only information about the continuous

phase velocity and the initial concentration are required. Also it can be applied

regardless of the knowledge of the full scattering parameters, or even if Urick’s

equation applied. However, this method has some drawbacks, as it neglects the

contribution of attenuation relative to the real part of the wave number. Also

it assumes that ultrasound velocity is independent of the size of the scattering

particle. For poly-disperse emulsions, this can cause departures of the solution

from what is actually happening. Further discussion of this restriction can be

found in Pinfield et al. [62]

Using this technique produces the concentration profile found in figure 3.14.

The calculated concentration can then be used with the weak thermal scattering

theory to generate predicted attenuation. In figure 3.15 we compared the log-

arithm of the measured attenuation with that predicted. A perfect prediction

would give the results of zero, however we can see that the majority of the values

at the start of the experiment are around −1 but as the experiment progresses

they move towards zero as the concentration in the lower part of the suspension

is decreasing. These calculations are carried out with the remaining samples as
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Figure 3.14

Acoustiscan concentration profile measurement of 30% 900 nm

hexadecane in water over 37 days.
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Figure 3.15

Acoustiscan comparison of the weak thermal scattering attenuation

prediction and measurement of 30% 900 nm hexadecane in water

over 37 days.
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seen in the following figures.

In figures 3.16 and 3.17 for 100nm 30% hexadecane in water, we see little

change across the whole height of the sample for the attenuation and velocity.

However, at the end of the experiment we do see a region of low velocity at the

top of the sample and a region of high velocity at the bottom of the sample.

Similarly, we see a region of high attenuation at the top of the sample, suggesting

that creaming has occurred. In figure 3.18 the concentration profile shows that

the concentration does not vary much over time compared with the 30% 900nm

sample, however by the end of the experiment we see that there is a slight gradient

across the sample. In figure 3.19 we see the logarithm of measured over predicted

attenuation is close to zero for most of the points. The prediction being more

accurate for the smaller particle radius is consistent with equation (1.149) as the

critical volume is less. However, the accuracy here maybe due to over prediction,

as weak thermal scattering is not optimal as |kTa| ≈ 11.3, which is constant with

figure 3.8.

In figures 3.20–3.23 for 15% 900nm and 15% 100nm hexadecane in water,

we see similar patterns as previous samples. The concentration profile starts

uniformly at 30% and over time decreases near the bottom of the sample, and

increases to around 60% at the top. The measured attenuation compared to the

predicted attenuation shows that the accuracy of the prediction increases over

time in the lower concentration regions as the concentration is decreasing.

In figures 3.24–3.27 for 10% 900nm and 10% 100nm hexadecane in water,

we see similar patterns as previous samples. The concentration profile starts

uniformly at 20% and over time decreases near the bottom of the sample, and

increases to around 60% at the top, similar to the figure 3.26.

In figures 3.28–3.31 for 7.5% 900nm and 7.5% 100nm hexadecane in water,

we see similar patterns as previous samples. The concentration profile starts

uniformly at 15% and over time decreases near the bottom of the sample, and

increases to around 60% at the top, similar to the figure 3.26. The comparison

between the predicted data and measured data shows that the accuracy of the

prediction increases as the concentration is lower at the end of the experiment.

80



0 5 10 15 20 25 30 35

Time (Days)

20

40

60

80

100

120

140

160

H
ei

gh
t

(m
m

)

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

V
el

o
ct

y
(m

/s
)

Figure 3.16

Acoustiscan velocity measurement of 30% 100 nm hexadecane in

water over 37 days.
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Figure 3.17

Acoustiscan attenuation measurement of 30% 100 nm hexadecane in

water over 37 days.
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Figure 3.18

Acoustiscan concentration profile measurement of 30% 100 nm

hexadecane in water over 37 days.
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Figure 3.19

Acoustiscan comparison of the weak thermal scattering attenuation

prediction and measurement of 30% 100 nm hexadecane in water

over 37 days.
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Figure 3.20

Acoustiscan velocity measurement of 15% 900nm and 15% 100nm

hexadecane in water over 37 days.
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Figure 3.21

Acoustiscan attenuation measurement of 15% 900nm and 15%

100nm hexadecane in water over 37 days.
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Figure 3.22

Acoustiscan concentration profile measurement of 15% 900nm and

15% 100nm hexadecane in water over 37 days.
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Figure 3.23

Acoustiscan comparison of the weak thermal scattering attenuation

prediction and measurement of 15% 900nm and 15% 100nm

hexadecane in water over 37 days.
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Figure 3.24

Acoustiscan velocity measurement of 10% 900nm and 10% 100nm

hexadecane in water over 37 days.
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Figure 3.25

Acoustiscan attenuation measurement of 10% 900nm and 10%

100nm hexadecane in water over 37 days.
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Figure 3.26

Acoustiscan concentration profile measurement of 10% 900nm and

10% 100nm hexadecane in water over 37 days.
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Figure 3.27

Acoustiscan comparison of the weak thermal scattering attenuation

prediction and measurement of 10% 900nm and 10% 100nm

hexadecane in water over 37 days.
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Figure 3.28

Acoustiscan velocity measurement of 7.5% 900nm and 7.5% 100nm

hexadecane in water over 37 days.

0 5 10 15 20 25 30 35

Time (Days)

20
30
40
50
60
70
80
90

100

H
ei

gh
t

(m
m

)

0

50

100

150

200

A
tt

en
u
at

io
n

(N
p
/m

)

Figure 3.29

Acoustiscan attenuation measurement of 7.5% 900nm and 7.5%

100nm hexadecane in water over 37 days.
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Figure 3.30

Acoustiscan concentration profile measurement of 7.5% 900nm and

7.5% 100nm hexadecane in water over 37 days.
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Figure 3.31

Acoustiscan comparison of the weak thermal scattering attenuation

prediction and measurement of 7.5% 900nm and 7.5% 100nm

hexadecane in water over 37 days.
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3.2.1 Discussion

Throughout these experiments, we find that that there is a theme of higher con-

centrations of emulsions having their attenuation being over predicted. In fig-

ure 3.8, we see that that the higher concentration samples follow this trend. We

also see variation from the predicted attenuation due to the mixing of two differ-

ent particles sizes, which is more predominant at lower frequencies. This suggests

that thermo-acoustic effects are stronger at lower frequencies, which is consistent

with current theory (equation (1.147)).

From the experimental data for 30% 900nm hexadecane in water and 30%

100nm hexadecane, we have shown that the 100nm emulsion remain fairly stable

over the course of the experiment, as seen in figure 3.18. The 900nm emulsion, on

the other hand, has some drastic creaming occurring, however it can be seen for

at least the first five days that the sample was stable. However, it is worth noting

while the emulsion is in its creaming state that the ultrasonic measurement is

likely to have some inaccuracies as it is difficult to say how exactly the emulsion

is creaming, which scattering theory does not account for.

For the data for the 100nm and 900nm samples mixed together, we find simi-

lar behaviour as with the samples separated. However, now we find that the finer

emulsion is no longer stable as it is being destabilised by the larger particles. This

can be seen in each of the experiments. While the predicted concentration for the

samples seems to agree with the idea that larger particles are destabilising more

rapidly, we see that the whole sample is destabilised soon after the initial desta-

bilisation, leaving the sample segregated between two regions of hexadecane and

water. The comparison between the attenuation predicted from the calculated

concentration and the experimental data, however, does not provide as accurate

of a comparison. We find that at the start of each sample the measured attenu-

ation is lower than the predicted attenuation, which is consistent with the other

experiments carried out in this chapter. However, the mixtures do not always get

more accurate as the concentration is lowered. This could be due to the scatter-

ing of different size particles interacting which has not been accounted for with

current scattering theories.
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Chapter 4

Two particle perturbation

solution (in-line)

4.1 Introduction

In chapter 1, I discussed that current models for predicting ultrasonic scattering

fail to be accurate at higher concentrations compared to experimental data, such

as that presented in chapter 3. This is because these models do not fully account

for the effects of multiple scattering, in particular the overlap of the thermal and

visco-inertial boundary layers surrounding each particle. It was also shown in

chapter 1, that taking asymptotic solutions for kca� 1 the original ECAH single

particle solution can be accurately approximated and the numerical solutions are

no longer ill-conditioned. In this chapter we explore thermoacoustic scattering

by a pair of spheres to study how the overlap of the fields affects ultrasound

scattering.

In this chapter, we expand the method of treating |kca| � 1, in particular

the weak thermal scattering method (see section 1.3.7.3,) from Harlen et al. [27],

where |kTa| ∼ 1. This method is combined with the method from Gaunaurd et

al. [46], who describe a translation addition theorem for solutions to Helmholtz

equations, and Greengard and Roklin [47], who descibe a translation addition the-

orem for solutions to Laplace’s equation. While this method is briefly described

in the paper by Hazlehurst et al. [63], here we will go into more detail.
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Figure 4.1

Figure of two sphere problem.

Let us consider two particles, 1 and 2, with radii of a and b respectively, where

a and b are of the same order. These two particles are placed at a distance d

between their centres, on an axis, z, say, such that d > a + b. A plane wave

traverses parallel to the direction of the z axis. We define an origin at the centre

of each particle, O1 and O2, say. From each origin there is a set of spherical polar

coordinates, which due to the axisymmetry of this geometry can be reduced to

just (r1, θ1) and (r2, θ2). This coordinate system is illustrated in figure 4.1.

The surfaces of the spheres are defined by

r1 = a =

√
x2 + y2 +

(
z +

d

2

)2

(4.1)

and

r2 = b =

√
x2 + y2 +

(
z − d

2

)2

. (4.2)

As in the case of the single particle the acoustic and thermal waves must

satisfy Helmholtz equations, in the continuous and discrete phases, so that

(∇2 + k2
c )ϕ = 0, (∇2 + k2

T )ψ = 0, in the continuous phase (4.3)

and

(∇2 + k′2c )ϕ′ = 0, (∇2 + k′2T )ψ′ = 0, in the discrete phase. (4.4)
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The incident acoustic wave is a plane wave travelling in the positive z direction

ϕinc = eikcz = eikcr cos θ. (4.5)

where r is the distance from the midpoint between the sphere centres. However,

in order to apply the boundary conditions at each particle surface we shall instead

write this field in terms of the local coordinates centred on O1 and O2 as

ϕ
(1)
inc = eikcz = eikc(r1 cos θ1)e−kc

d
2 , (4.6)

ϕ
(2)
inc = eikcz = eikc(r2 cos θ2)eikc

d
2 , (4.7)

for particle 1 and 2, respectively.

4.1.1 Boundary conditions

For the two particle system, the same boundary conditions from the single particle

case are used (equation (1.64)), however, now they have to be applied on both

particles. On each particle boundary, r1 = a and r2 = b, there are pressure,

normal velocity, temperature and heat flux conditions:

ϕinc + ϕ+ ψ = ρ̂ (ϕ′ + ψ′) , (4.8)

∂

∂n
(ϕinc + ϕ+ ψ) =

∂

∂n
(ϕ′ + ψ′) , (4.9)

Γc (ϕinc + ϕ) + ΓTψ = Γ′cϕ
′ + Γ′Tψ

′, (4.10)

Γc
∂

∂n
(ϕinc + ϕ) + ΓT

∂

∂n
ψ = τ̂

(
Γ′c

∂

∂n
ϕ′ + Γ′T

∂

∂n
ψ′
)
, (4.11)

where ρ̂ = ρ′

ρ
and τ̂ = τ ′

τ
.

4.2 Weak thermal scattering approximation

We now use the method of Harlen et al. [27] to find an approximate solution that

is valid in the limit |kca| � 1 and |kcb| � 1, when |kTa| ∼ 1 and |kT b| ∼ 1. Using

the small acoustic wave number limit, the problem is transformed to a regular
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problem by introducing

ϕ̃(1) = e−ikc(r1−a)ϕ(1), (4.12)

for solutions around sphere 1, and

ϕ̃(2) = e−ikc(r2−b)ϕ(2), (4.13)

for solutions around sphere 2 from equation (1.87). Since |r2 − r1| < d the

radiation boundary condition

lim
r1→∞

r1

(
∂ϕ(1)

∂r1

− ikcϕ(1)

)
= 0 (4.14)

still holds provided that ϕ̃(1) is regular at infinity.

Following the approach of Harlen et al. [27] we seek an asymptotic solution by

expanding the potentials as Poincaré series. For ease of notation it is convenient

to choose kc as the small parameter where we understand this to be in units based

on the average particle size a+b
2

. The appropriate scaling of the thermal terms is

given by defining
Γc
ΓT

= −(kc)
2Gc, (4.15)

and
Γ′c
Γ′T

= −(kc)
2G′c, (4.16)

from which the boundary conditions for sphere 1 can now be written as,

ϕ
(1)
inc + ϕ̃(1) + ψ(1) = ρ̂

(
ϕ′(1) + ψ′(1)

)
, (4.17)

∂ϕ
(1)
inc

∂r1

+

(
ikcϕ̃

(1) +
∂ϕ̃(1)

∂r1

)
+
∂ψ(1)

∂r1

=
∂

∂r1

(
ϕ′(1) + ψ′(1)

)
, (4.18)

−(kc)
2Gc

(
ϕ

(1)
inc + ϕ̃(1)

)
+ ψ(1) = Γ̂

(
−(kc)

2G′cϕ
′(1) + ψ′(1)

)
, (4.19)

−(kc)
2Gc

(
∂ϕ

(1)
inc

∂r1

+ ikϕ̃(1) +
∂ϕ̃(1)

∂r1

)
+
∂ψ(1)

∂r1

= Γ̂τ̂

(
−(kc)

2G′c
∂ϕ′(1)

∂r1

+
∂ψ′(1)

∂r1

)
,

(4.20)
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where Γ̂ =
Γ′T
ΓT

. Similar boundary conditions for sphere 2 can be obtained in

the same manner. The transformations in equation (4.12) allow for a regular

perturbation expansions in (ikc),

(ϕ
(1)
inc, ϕ̃

(1), ϕ′(1), ψ(1), ψ′(1)) =
∞∑
n=0

(ikc)
n(ϕ

(1)
incn, ϕ̃

(1)
n , ϕ′(1)

n , ψ(1)
n , ψ′(1)

n ), (4.21)

where the superscript (1) represents solutions in the frame of the first sphere in the

frame (r1, θ1). Similarly, the transformation in equation (4.13) allow perturbation

expansions around (ikc) for solutions in the frame (r2, θ2),

(ϕ
(2)
inc, ϕ̃

(2), ϕ′(2), ψ(2), ψ′(2)) =
∞∑
n=0

(ikc)
n(ϕ

(2)
incn, ϕ̃

(2)
n , ϕ′(2)

n , ψ(2)
n , ψ′(2)

n ). (4.22)

These two expansions can be used to transform our acoustic Helmholtz equa-

tions (4.3) and (4.4) into the following inhomogeneous equations,

∇2ϕ̃(1)
n = − 2

r1

∂

∂r1

(
r1ϕ̃

(1)
n−1

)
for r1 > a, r2 > b, (4.23)

∇2ϕ′(1)
n = −k

′2
c

k2
c

1

a2
ϕ′n−2 for r1 < a, (4.24)

and,

∇2ϕ′(2)
n = −k

′2
c

k2
c

1

b2
ϕ′n−2 for r2 < b. (4.25)

Note that equation (4.23) can also be expressed as

∇2ϕ̃(2)
n = − 2

r2

∂

∂r2

(
r2ϕ̃

(2)
n−1

)
for r2 > b, r1 > a, (4.26)

where ϕ̃n = ϕ′n = 0 for n < 0. The thermal Helmholtz equations (4.3) and (4.4)

are transformed simply as

(
∇2 + k2

T

)
ψn = 0 for r1 > a, r2 > b, (4.27)
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and (
∇2 + k′2T

)
ψ′n = 0 for r1 < a or r2 < b. (4.28)

Using these perturbations, the boundary conditions from equations (4.17)–(4.20)

can again now be rewritten at order (ikc)
n as,

ϕ
(1)
incn

+ ϕ̃(1)
n + ψ(1)

n = ρ̂
(
ϕ′(1)
n + ψ′(1)

n

)
, (4.29)

∂ϕ
(1)
incn

∂r1

+

(
1

a
ϕ̃

(1)
n−1 +

∂ϕ̃
(1)
n

∂r1

)
+
∂ψ

(1)
n

∂r1

=
∂

∂r1

(
ϕ′(1)
n + ψ′(1)n

)
, (4.30)

Gc

(
ϕ

(1)
incn−2

+ ϕ̃
(1)
n−2

)
+ ψ(1)

n = Γ̂
(
G′cϕ

′(1)
n−2 + ψ′(1)

n

)
, (4.31)

Gc

(
∂ϕ

(1)
incn−2

∂r1

+
1

a
ϕ̃

(1)
n−3 +

∂ϕ̃
(1)
n−2

∂r1

)
+
∂ψ

(1)
n

∂r1

= Γ̂τ̂

(
G′c
∂ϕ
′(1)
n−2

∂r1

+
∂ψ
′(1)
n

∂r1

)
, (4.32)

and similarly for sphere 2 at order (ikc)
n,

ϕ
(2)
incn

+ ϕ̃(2)
n + ψ(2)

n = ρ̂
(
ϕ′(2)
n + ψ′(2)n

)
, (4.33)

∂ϕ
(2)
incn

∂r2

+

(
1

b
ϕ̃

(2)
n−1 +

∂ϕ̃(2)

∂r2

)
+
∂ψ

(2)
n

∂r2

=
∂

∂r2

(
ϕ′(2)
n + ψ′(2)

n

)
, (4.34)

Gc

(
ϕ

(2)
incn−2

+ ϕ̃
(2)
n−2

)
+ ψ(2)

n = Γ̂
(
G′cϕ

′(2)
n−2 + ψ′(2)

n

)
, (4.35)

Gc

(
∂ϕ

(2)
incn−2

∂r2

+
1

b
ϕ̃

(2)
n−3 +

∂ϕ̃
(2)
n−2

∂r2

)
+
∂ψ

(2)
n

∂r2

= Γ̂τ̂

(
G′c
∂ϕ
′(2)
n−2

∂r2

+
∂ψ
′(2)
n

∂r2

)
. (4.36)

These eight boundary conditions can be split up into four pairs. Equations (4.31)

and (4.32) provide the solutions to the thermal field for n ≥ 2 at r1 = a. Similarly,

equations (4.35) and (4.36) provide the solutions for the thermal field for n ≥ 2 at

r2 = b. The other two pairs provide a solution to the acoustic field at order n. The

two pairs of boundary conditions for each sphere decouple at each order allowing

the calculations of the acoustic and thermal waves to be done sequentially in the

order ϕ̃
(1)
0 , ϕ̃

(2)
0 , ϕ̃

(1)
1 , ϕ̃

(2)
1 , ψ

(1)
2 , ψ

(2)
2 , ϕ̃

(1)
2 , ϕ̃

(2)
2 , ψ

(1)
3 , ....
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Now the outgoing waves can be decomposed into spherical harmonics [64],

ϕ̃(1)
n =

∞∑
m=0

[
Anm

am+1

rm+1
1

Pm(cos θ1) +Bnm
bm+1

rm+1
2

Pm(cos θ2)

]
+ I(1)

n (r1, θ1), (4.37)

ϕ′(1)
n =

∞∑
m=0

anm
rm1
am

Pm(cos θ) + I ′(1)
n (r1, θ1), (4.38)

ψ(1)
n =

∞∑
m=0

Cnmhm(kT r1)Pm(cos θ1) +Dnmhm(kT r2)Pm(cos θ2), (4.39)

ψ′(1)
n =

∞∑
m=0

cnmjm(k′T r1)Pm(cos θ1), (4.40)

ϕ̃(2)
n =

∞∑
m=0

[
Bnm

bm+1

rm+1
2

Pm(cos θ2) + Anm
am+1

rm+1
1

Pm(cos θ1)

]
+ I(2)

n (r2, θ2), (4.41)

ϕ′(2)
n =

∞∑
m=0

bnm
rm2
bm
Pm(cos θ) + I ′(2)

n (r2, θ2), (4.42)

ψ(2)
n =

∞∑
m=0

Dnmhm(kT r2)Pm(cos θ2) + Cnmhm(kT r1)Pm(cos θ1), (4.43)

ψ′(2)
n =

∞∑
m=0

dnmjm(k′T r2)Pm(cos θ2), (4.44)

where I
(1)
n , I

′(1)
n , I

(2)
n and I

′(2)
n are the particular solutions of the inhomogeneous

equations equations (4.23)–(4.26) respectively. However, in the current form,

these equations are posed in different coordinate systems, hence these need to be

transformed into equations with a single coordinate system.

4.2.1 Decomposition of incoming plane wave

The incoming plane wave also needs transforming into the appropriate system.

Taking a Taylor expansion of the exponential function provides,

ϕ
(1)
inc = eikcr1 cos θ1− d

2 = 1 + ikc

(
r1 cos θ1 −

d

2

)
−
k2
c

(
r1 cos θ1 − d

2

)2

2
+ ... (4.45)
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so that,

ϕ
(1)
inc0

= 1, (4.46)

ϕ
(1)
inc1

= r1 cos θ1 −
d

2
, (4.47)

ϕ
(1)
inc2

=
r2

1

3
(2P2(cos θ1) + 1)− dr1 cos θ1 +

d2

4
, (4.48)

about sphere 1, and,

ϕ
(2)
inc0

= 1, (4.49)

ϕ
(2)
inc1

= r2 cos θ2 +
d

2
, (4.50)

ϕ
(2)
inc2

=
r2

2

3
(2P2(cos θ2) + 1) + dr2 cos θ2 +

d2

4
, (4.51)

about sphere 2. Note that the terms in d arise from translation of the origin from

midpoint between spheres to the centre of spheres 1 and 2.

4.2.2 Translation addition theorem for Helmholtz solu-

tions.

In section 1.3.6 we noted that the general radiating solution of Helmholtz equation

can be written as

ψ =
∞∑
n=0

Cnhn(kT r)Pn(cos θ). (4.52)

Hence from linear superposition we may construct the radiating solutions from

two different spheres as,

ψ =
∞∑
n=0

[Cnhn(kT r1)Pn(cos θ1) +Dnhn(kT r2)Pn(cos θ2)] . (4.53)

While this is the general solution for the two particle problem, this form is not

convenient for applying the boundary conditions on the surface of the two spheres.

The solution of the radiating wave from the other sphere needs to be translated

and added to the solution of the sphere where the boundary conditions are being
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applied. To do this we can use the translation addition theorem set out by

Gaunaurd et al. [46], and applying it to translation along the z axis. The following

translates a solution from the (r1, θ1) frame to the (r2, θ2) frame,

hn(kT r1)Pn(cos θ1) =
∞∑
q=0

Q(0n0q)jq(kT r2)Pq(cos θ2). (4.54)

Similarly, the backwards translation from the frame of (r2, θ2) to the frame of

(r1, θ1) is provided by

hn(kT r2)Pn(cos θ2) =
∞∑
q=0

(−1)n+qQ(0n0q)jq(kT r1)Pq(cos θ1), (4.55)

where

Q(0n0q) = iq−n(2n+ 1)

n+q∑
σ=|n−q|

iσ(−1)σb(n0q0)
σ

jσ(kTd), for r > d,

hσ(kTd), for r < d,
(4.56)

and

b(n0q0)
σ = (2σ + 1)

(
n q σ

0 0 0

)2

, (4.57)

where the Wigner 3− j symbol is defined in appendix A.

Using this translation, equation (4.53) can be written in two forms, one in the

frame of (r1, θ1) and a second in the frame of (r2, θ2):

ψ(1) =
∞∑
n=0

[
Cnhn(kT r1)Pn(cos θ1) +Dn

∞∑
q=0

(−1)n+qQ(0n0q)jq(kT r1)Pq(cos θ1)

]
,

(4.58)

ψ(2) =
∞∑
n=0

[
Dnhn(kT r2)Pn(cos θ2) + Cn

∞∑
q=0

Q(0n0q)jq(kT r2)Pq(cos θ2)

]
, (4.59)

which now allow the boundary conditions in equations (4.8)–(4.11) to be evalu-

ated on each of the spheres.
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4.2.3 Translation addition theorem for Laplace’s equation

solutions

A similar procedure is applied to the solutions to Laplace’s equation in the ex-

pansion of the acoustic spherical harmonics. The general exterior solution of

Laplace’s equation is given by,

ϕ =
∞∑
n=0

An
1

rn+1
Pn(cos θ). (4.60)

and so the solution outside two spheres maybe written as,

ϕ =
∞∑
n=0

[
An

1

rn+1
1

Pn(cos θ1) +Bn
1

rn+1
2

Pn(cos θ2)

]
. (4.61)

As with the Helmholtz solution, to be able to impose the boundary condition,

the solution from the frame of one particle need to be translated into the frame

of the second. The translation along the z axis, from frame (r2, θ2) to (r1, θ1) is

given by Greengard and Rokhlin [47] as,

Pn(cos θ2)

rn+1
2

=
1

dn+1

∞∑
q=0

(r1

d

)q (n+ q)!

n!q!
Pn(cos θ1). (4.62)

Similarly, the translation from frame (r2, θ2) to (r1, θ1) is given by,

Pn(cos θ1)

rn+1
1

=

(
−1

d

)n+1 ∞∑
q=0

(r2

d

)q (n+ q)!

n!q!
Pn(cos θ2). (4.63)

This now allows equation (4.61) to be written in both the (r1, θ1) and (r2, θ2)

frames,

ϕ(1) =
∞∑
n=0

[
An

1

rn+1
1

Pn(cos θ1) +Bn
1

dn+1

∞∑
q=0

{(r1

d

)q (n+ q)!

n!q!
Pq(cos θ1)

}]
,

(4.64)
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and

ϕ(2) =
∞∑
n=0

[
Bn

1

rn+1
2

Pn(cos θ2) + An

(
−1

d

)n+1 ∞∑
q=0

{(r2

d

)q (n+ q)!

n!q!
Pq(cos θ2)

}]
,

(4.65)

which now allow the boundary conditions in equations (4.8)–(4.11) to be solved

on each of the spheres.

4.3 Thermoacoustic scattering by two spheres

Using these transformations the external field equations equations (4.37), (4.39),

(4.41) and (4.43) may be written as

ϕ̃(1)
n =

∞∑
m=0

[
Anm

am+1

rm+1
1

Pm(cos θ1)

+Bnm

(
b

d

)m+1 ∞∑
q=0

{(r1

d

)q (m+ q)!

m!q!
Pq(cos θ1)

}]
+ I(1)

n (r1, θ1), (4.66)

ϕ̃(2)
n =

∞∑
m=0

[
Bnm

bm+1

rm+1
2

Pm(cos θ2)

+Anm

(
−a
d

)m+1 ∞∑
q=0

{(r2

d

)q (m+ q)!

m!q!
Pq(cos θ2)

}]
+ I(2)

n (r2, θ2), (4.67)

ψ(1)
n =

∞∑
m=0

[
Cnmhm(kT r1)Pm(cos θ1) +Dnm

∞∑
q=0

(−1)m+qQ(0m0q)jq(kT r1)Pq(cos θ1)

]
,

(4.68)

and

ψ(2)
n =

∞∑
m=0

[
Dnmhm(kT r2)Pm(cos θ2) + Cnm

∞∑
q=0

Q(0m0q)jq(kT r2)Pq(cos θ2)

]
.

(4.69)
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We can now proceed to find the solutions following the method of Harlen et al.

[27].

4.3.1 Order one solution

At order one in the ikc expansion the incident field is constant while the leading

order acoustic fields satisfy

∇2ϕ̃
(1)
0 = 0, (4.70)

∇2ϕ
′(1)
0 = 0, (4.71)

∇2ϕ̃
(2)
0 = 0, (4.72)

∇2ϕ
′(2)
0 = 0, (4.73)

as ϕ̃
(1)
−1 = ϕ̃

(2)
−1 = ϕ

′(1)
−2 = ϕ

′(2)
−2 = 0. From the boundary conditions (4.31), (4.32),

(4.35) and (4.36) we deduce that ψ
(1)
0 = ψ

(2)
0 = ψ

′(1)
0 = ψ

′(2)
0 = 0. Thus only

boundary conditions (4.29), (4.30), (4.33) and (4.34) need to be considered.

As in the case of the single sphere the solution consists of a constant field 1
ρ̂

inside each particle so that

a00 = b00 =
1

ρ̂
, (4.74)

with all other coefficients being zero.

4.3.2 Order ikc solutions

At order ikc the incident field, expressed with respect to sphere one, is of the

form r1P1(cos θ1) − d
2
. Since, the constant does not produce any external field

we can use the solution from order one and simply add this to the solution for

r1P1(cos θ1) and r2P2(cos θ2).

At this order the acoustic fields satisfy

∇2ϕ̃
(1)
1 = 0, (4.75)

∇2ϕ
′(1)
1 = 0, (4.76)
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∇2ϕ̃
(2)
1 = 0, (4.77)

∇2ϕ
′(2)
1 = 0. (4.78)

and from the boundary conditions boundary conditions (4.31), (4.32), (4.35) and

(4.36), ψ
(1)
1 = ψ

(2)
1 = ψ

′(1)
1 = ψ

′(2)
1 = 0. Applying the boundary conditions (4.29),

(4.30), (4.33) and (4.34), we obtain

∞∑
m=0

[
(A1m − ρ̂a1m) δmq +B1m

(
b

d

)m+1 (a
d

)q (m+ q)!

m!q!

]
= aδ1q, (4.79)

∞∑
m=0

[
(B1m − ρ̂b1m) δmq + A1m

(
−a
d

)m+1(
b

d

)q
(m+ q)!

m!q!

]
= bδ1q, (4.80)

∞∑
m=0

[
(−(m+ 1)A1m −ma1m) δmq +B1mq

(
b

d

)m+1 (a
d

)q (m+ q)!

m!q!

]
= aδ1q,

(4.81)

and

∞∑
m=0

[
(−(m+ 1)B1m −mb1m) δmq + A1mq

(
−a
d

)m+1(
b

d

)q
(m+ q)!

m!q!

]
= bδ1q,

(4.82)

where δmq is Kronecker’s delta, defined as

δmq =

{
1 if m = q,

0 if m 6= q.
(4.83)

This is an infinite system of linear equations. However, the higher order terms

decay rapidly as shown in figure 4.4, so we truncate the system at order qmax

leaving a 4qmax × 4qmax matrix problem. Note that in the limit d → ∞, the

coupling tends to zero and we recover

A11∞ =

(
ρ̂− 1

2ρ̂+ 1

)
a, (4.84)
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The behaviour of A11/A11∞ with increasing separation for

a/b = 1/3, 1/2, 1, 2, 3 for silica in water.

B11∞ =

(
ρ̂− 1

2ρ̂+ 1

)
b, (4.85)

a11∞ =
3a

2ρ̂+ 1
, (4.86)

and

b11∞ =
3b

2ρ̂+ 1
, (4.87)

the single sphere solutions of Harlen et al. [27]. In figures 4.2 and 4.3 we show how

A11 and a11 behave as a function of d for different values of a, b. As d/a → ∞
the solutions for the two sphere problem converge to the sum of single sphere

solutions. However, even when the spheres are touching the changes to A11 and

a11 compared with the single sphere solutions are small.
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The behaviour of a11/a11∞ with increasing separation for
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Error of A11 for different values of qmax. It can be seen after a couple

of terms that the solution converges rapidly. As d is increased the

solution converges even more rapidly.
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4.3.3 Order (ikc)
2 solutions

At order (ikc)
2 the thermal terms come into effect, so that boundary conditions

(4.31), (4.32), (4.35) and (4.36) now have to be considered. Hence the thermal

boundary conditions lead to the equations

∞∑
m=0

[(
C2mhm(kTa)− Γ̂c2mjq(k

′
Ta)
)
δqm +D2m(−1)m+qQ(0m0q)jq(kTa)

]
=

[
Γ̂G′c
ρ̂
−Gc

]
δq0, (4.88)

∞∑
m=0

[(
D2mhm(kT b)− Γ̂d2mjq(k

′
T b)
)
δqm + C2mQ(0m0q)jq(kT b)

]
=

[
Γ̂G′c
ρ̂
−Gc

]
δq0, (4.89)

∞∑
m=0

[(
C2mkTah

′
m(kTa)− c2mΓ̂τ̂ k′Taj

′
m(k′Ta)

)
δqm

+D2m(−1)m+qQ(0m0q)kTaj
′
q(kTa)

]
= 0, (4.90)

and

∞∑
m=0

[(
D2mkT bh

′
m(kT b)− d2mΓ̂τ̂ k′T bj

′
m(k′T b)

)
δqm

+C2mQ(0m0q)kT bj
′
q(kTa)

]
= 0, (4.91)

for the thermal coefficients. Again this system can be truncated at order qmax.

While this can be solved as a separate matrix problem, it is convenient to see

this as part of a larger linear system involving the acoustic boundary conditions

at this order.
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At this order the acoustic field equations are inhomogeneous,

∇2ϕ̃
(1)
2 =

−2

r1

∂

∂r1

(
r1ϕ

(1)
1

)
, (4.92)

∇2ϕ
′(1)
2 = −k

′2
c

k2
c

1

a
ϕ
′(1)
0 , (4.93)

∇2ϕ̃
(2)
2 =

−2

r1

∂

∂r2

(
r2ϕ

(2)
1

)
, (4.94)

∇2ϕ
′(2)
2 = −k

′2
c

k2
c

1

a
ϕ
′(2)
0 . (4.95)

and applying the boundary conditions (4.29), (4.30) and (4.33), (4.34) leads to

the equations,

∞∑
m=0

[(
A2m + C2mhm(kTa)− ρ̂a2m − Γ̂c2mjm(k′Ta)

)
δqm

+B2m

(
b

d

)m+1 (a
d

)q (m+ q)!

m!q!
+D2m(−1)m+qQ(0m0q)jq(kTa)

]

=

[
−2

3
δq2 +

(
ĉ− 1

3

)
δq0

+
∞∑
m=0

{
2

m+ 1
A1mδqm −

2

q + 2
B1m

(a
d

)q ( b
d

)m+1
(m+ q)!

m!q!
(q + 1)

}]
, (4.96)

∞∑
m=0

[(
B2m +D2mhm(kT b)− ρ̂b2m − Γ̂d2mjm(k′T b)

)
δqm

+A2m

(
−a
d

)m+1(
b

d

)q
(m+ q)!

m!q!
+ C2mQ(0m0q)jq(kTa)

]

=

[
−2

3
δq2 +

(
ĉ− 1

3

)
δq0

+
∞∑
m=0

{
2

m+ 1
B1mδqm −

2

q + 2
A1m

(
b

d

)q (−a
d

)m+1
(m+ q)!

m!q!
(q + 1)

}]
,

(4.97)
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∞∑
m=0

[
(−(m+ 1)A2m + C2mkTah

′
m(kTa)−ma2m − c2mk

′
Taj

′
m(k′Ta)) δqm

+B2mq

(
b

d

)m+1 (a
d

)q (m+ q)!

m!q!
+D2m(−1)m+qQ(0m0q)kTaj

′
q(kTa)

]

=

[
−4

3
δq2 −

2

3
δq0 +

∞∑
m=0

{
−A1mδqm −B1m

(a
d

)q ( b
d

)m+1
(m+ q)!

m!q!

}]
, (4.98)

and

∞∑
m=0

[
(−(m+ 1)B2m +D2mkT bh

′
m(kT b)−mb2m − d2mk

′
T bj

′
m(k′T b)) δqm

+A2mq

(
−a
d

)m+1(
b

d

)q
(m+ q)!

m!q!
+ C2mQ(0m0q)kT bj

′
q(kT b)

]

=

[
−4

3
δq2 −

2

3
δq0 +

∞∑
m=0

{
−B1mδqm − A1m

(
b

d

)q (−a
d

)m+1
(m+ q)!

m!q!

}]
,

(4.99)

where ĉ = k′2c
k2c

. Here again we have excluded the contribution from the incident

field that arise from shifting the origin to the centre of each sphere. As before

the constant term does not contribute to the external field, while the linear term

does not produce a contribution to A20 or B20, which are the only terms needed

to determine the far field scattering.

We can use Rayleigh’s formulae to determine the values of the spherical Bessel

function [24],

jn(z) = zn
(
−1

z

d

dz

)n
sin z

z
(4.100)

and

hn(z) = zn
(
−1

z

d

dz

)n
eiz

z
. (4.101)

This matrix system of size 8qmax × 8qmax can be solved to provide the results

as seen in figure 4.5.
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Again in the limit d → ∞ we recover the single particle solution given by

Harlen et al [27] in which the only non-zero components are C20, D20, c20 and d20.

C20 =
ikTaτ̂(Gcρ̂− Γ̂G′c)(k

′
Ta cos k′Ta− sin k′Ta)

eikT aρ̂ (τ̂ k′Ta cos k′Ta+ (1− τ̂ − ikTa) sin k′Ta)
, (4.102)

D20 =
ikT bτ̂(Gcρ̂− Γ̂G′c)(k

′
T b cos k′T b− sin k′T b)

eikT bρ̂ (τ̂ k′T b cos k′T b+ (1− τ̂ − ikT b) sin k′T b)
, (4.103)

c20 =
(Gcρ̂− Γ̂G′c)(ikTa− 1)

Γ̂ρ̂ (τ̂ k′Ta cos k′Ta+ (1− τ̂ − ikTa) sin k′Ta)
, (4.104)

and

d20 =
(Gcρ̂− Γ̂G′c)(ikT b− 1)

Γ̂ρ̂ (τ̂ k′T b cos k′T b+ (1− τ̂ − ikT b) sin k′T b)
. (4.105)

In figure 4.5, we show how coefficients behave as as a function of d, for different

values of a and b with |kTa| = 1. At large d/a, the results converge towards the

single particle solution, however the approach is not monotonic. This is due to the

oscillating behaviour of sin(k′Ta), cos(k′Ta), sin(k′T b) and cos(k′T b). In figure 4.6

we see how C20 differs from the single particle solution when a = b. When the

particles are touching we see the biggest difference at around |kTa| = 2. As the

particles move further apart, the peak difference reduces, and decreases with kTa.

A negative difference is also observed at around |kTa| = 3. As d is increased, the

peak and the trough are translated in the negative |kTa| direction, as well as

reducing in size. This is due to the solution converging to the single particle

solution.

For the acoustic coefficients, we can show in a similar way that as d→∞, we
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The behaviour of |C20/C20∞| with increasing separation for

a/b = 1/3, 1/2, 1, 2, 3 for silicone in water and |kTa| = 1.
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The behaviour of |A20/A20∞| with increasing separation for

a/b = 1/3, 1/2, 1, 2, 3 for silicone in water.

obtain the single particle solutions for A20 and B20

A20 =
ρ̂− ĉ

3ρ̂
+

(Γ̂τ̂ − 1)(Γ̂G′c − ρ̂Gc) (k′Ta− tan k′Ta) (ikTa− 1)

Γ̂ρ̂ (τ̂ k′Ta+ (1− τ̂ − ikTa) tan k′Ta)
, (4.106)

B20 =
ρ̂− ĉ

3ρ̂
+

(Γ̂τ̂ − 1)(Γ̂G′c − ρ̂Gc) (k′Tn− tan k′T b) (ikT b− 1)

Γ̂ρ̂ (τ̂ k′T b+ (1− τ̂ − ikT b) tan k′T b)
. (4.107)

In figure 4.7, we can see how these coefficients behave as d→∞, for different

values of a and b, converge towards the single particle solution.

For the coefficient A20, it is also possible to see how fast this term converges,

so we are able to limit the number of terms needed to be calculated, figure 4.8.

It is also possible to observe how these coefficients behave across a range of

kTa values to see where these effects are most prominent, as in figure 4.9. As with

C20, in figure 4.6 we see the largest difference when the particles are touching,
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A comparison of the behaviour of |A20|/A20∞ over kTa for different

values of d.

however, A20 is less than the single particle solution.

4.4 Far field

Using the coefficients that were generated in section 4.3, we can calculate the far

field contribution. For a single sphere far from the particle the reflected acoustic

wave has the form [27],

ϕ ∼ eikcr

r
f single(θ), (4.108)

which, for small kTa gives the far field pattern

f single(θ) = k2
ca

3 (A11 cos θ − A20) +O(|kca|3) as r →∞. (4.109)
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Note this only contains the acoustic terms as the thermal wave is non-propagation

and thus does not appear in the far field. For two particles, the far field can be

expressed by

ϕ(1)+(2) ∼ eikcr

r

(
f (1)(θ) + f (2)(θ)eikcd

)
(4.110)

by taking a (ikc) expansion of the two particle far field solution from Gaunaurd

et al. [46]. Which gives,

f (1)(θ) = k2
ca

3 (A11 cos θ − A20) +O(|kca|3) as r →∞, (4.111)

and

f (2)(θ) = k2
cb

3 (B11 cos θ −B20) +O(|kcb|3) as r →∞. (4.112)

However, what we are most interested in is the change to the far field due to

multiple scattering,

f excess(θ) =
f (1)(θ)

f single(θ)
, (4.113)

which tells us the contribution the thermoacoustic multiple scattering has on the

far field.

In figures 4.10–4.13 we see the effect multiple thermoacoustic scattering has

on the far field. For d = (a + b), in figure 4.10, we see that when b is greater

than a that the difference between the single far field scatter and the multiple

far field scatter is larger in magnitude. For a/b = 3 the lowest point is around

|kTa| = 0.9 (|kT b| = 2.7). As a/b increases, the lowest point moves in the positive

|kTa| direction, however decreases in size. This suggests that larger particles have

a greater influence on smaller particles but smaller particles have a lesser effect

on larger ones. This also suggests that the attenuation spectrum would have its

peak reduced suggesting a lower concentration of colloid.

In figure 4.11 we have d = 1.5(a+ b). Notice now that the amount of change

from the single far field solution is now less than for d = (a + b). However, the

lowest point has now moved in the negative |kTa| direction. While the pattern

of the lowest point being shifted in the positive |kTa| direction remains, we now

have peak which is greater than the single far field. This suggests now that the
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Excess far field as a result of in-line multiple thermoacoustic

scattering for d = (a+ b).
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Excess far field as a result of in-line multiple thermoacoustic

scattering for d = 1.5(a+ b).
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attenuation peak would now be shifted in the positive |kTa| suggesting that the

two particles are behaving like a single larger particle size.

In figures 4.12 and 4.13, we see similar behaviour with d = 2(a + b) and

d = 3(a+ b) as with 1.5(a+ b), but even more so with the curves being shifted in

the negative |kTa| direction, but with even less magnitude, suggesting that the

further the particles are apart the less multiple scattering has an effect.

4.5 Close field

We can use the solutions in the previous sections to provide an insight to how

the acoustic and thermal fields behave when two particles are close together

for particles of the same size, and those of different sizes. These plots are the

maximum pressure and temperature excursion arising from the sinusoidal exciting

pressure field for the second order terms.

In figure 4.14, when the particles are touching they behave as a single par-

ticle larger than a particle of that size on its own, which is in agreement with

figure 4.10, as the drop in the far field at |kTa| = 1 suggests that the attenuation

prediction will provide a curve one would expect from a larger particle size. This

behaviour is reflected in figure 4.19, as it too is showing behaviour of a single

larger particle.

As the particles are moved further apart as in figure 4.15, we see now that

even though there is distance between the two particles, that the pressure around

both spheres still behaves as if it were one larger sphere. As they are further

apart and behaving as a single sphere, it suggests that it is behaving as an even

larger sphere as in figure 4.14. This behaviour is reflected also in figure 4.20.

This suggests even though they are further apart, multiple scatter still has a

large effect.

If we increase the size of one of the particles as in figures 4.16 and 4.17 and

their temperature counterparts figures 4.21 and 4.22, we see the bigger particle

has more effect on the close field than the smaller particle. This is mirrored in

figures 4.11–4.13, where when one particle much larger then it has more influence

over the other. Figures 4.17 and 4.22 emphasise this even more as d is increased

the influence the larger particle has on the pair is still observed.
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Excess far field as a result of in-line multiple thermoacoustic

scattering for d = 2(a+ b).
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Figure 4.13

Excess far field as a result of in-line multiple thermoacoustic

scattering for d = 3(a+ b).
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Figure 4.14

Close field plot of pressure for

a/b = 1 and d = a+ b and |kTa| = 1.
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Figure 4.15

Close field plot of pressure for

a/b = 1 and d = 2a+ b and

|kTa| = 1.
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Figure 4.16

Close field plot of pressure for

a/b = 1/2 and d = a+ b and

|kTa| = 1.
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Figure 4.17

Close field plot of pressure for

a/b = 1/3 and d = 1.2a+ b and

|kTa| = 1.
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Figure 4.18

Close field plot of pressure for

a/b = 1/3 and d = 2a+ b and

|kTa| = 1.
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Figure 4.19

Close field plot of temperature for

a/b = 1 and d = a+ b and |kTa| = 1.
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Figure 4.20

Close field plot of temperature for

a/b = 1 and d = 2a+ b and

|kTa| = 1.
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Figure 4.21

Close field plot of temperature for

a/b = 1/2 and d = a+ b and

|kTa| = 1.
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Figure 4.22

Close field plot of temperature for

a/b = 1/3 and d = 1.2a+ b and

|kTa| = 1.
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Figure 4.23

Close field plot of temperature for

a/b = 1/3 and d = 2a+ b and

|kTa| = 1.
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Chapter 5

Two particle perturbation

solution (general angle)

5.1 Introduction

In chapter 4, we looked at weak thermal scattering of two particles which are

aligned perpendicular to the direction of the plane wave. However, in reality, this

will not be the case, and thus we must consider the general case when there are

two particles not aligned with the incoming wave.

Although the problem is no longer axisymmetric we can use the same methods

as in chapter 4; the weak thermal scattering approach of |kca| � 1 and |kTa| ∼ 1

from Harlen et al. [27], with translation addition theorems for Helmholtz and

Laplace’s equations from Gaunaurd et al. [46], and Greengard and Rokhlin [47]

respectively.

Let us consider two particles, as seen in figure 5.1, 1 and 2, with radii a and b

respectively, where a and b are of the same order. These two particles are placed

at a distance d between their centres, on an axis, z say, such that d > a+ b. Now

consider a plane wave propagating at an angle α from the z axis. We define an

orgin at the centre of each particle, O1 and O2. From each origin we define a

set of spherical polar coordinate, (r1, θ1, φ1) and (r2, θ2, φ2), with respect to the

centre of each particle and the z-axis.

The surfaces of the spheres are defined by equations (4.1) and (4.2). As with
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Figure 5.1

Figure of two sphere problem with general direction incoming plane

wave at angle α from the z axis.
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the case of the single particle and the two particles in-line case, the acoustic and

thermal waves must satisfy, in the continuous and discrete phases, the Helmholtz

equations (4.3) and (4.4). The incident acoustic wave is travelling perpendicular

to angle α from the z axis, defined as,

ϕinc = eik·x = eikcr cos(θ−α), (5.1)

where r is the distance from the midpoint of the spheres and the wave vector lies

in the plane φ = 0. In each sphere’s frame about origins O1 and O2, this equation

becomes

ϕ
(1)
inc = eikcr cos(θ−α) = eikcr1 cos(θ1−α)e−ikc

d
2 (5.2)

and

ϕ
(2)
inc = eikcr cos(θ−α) = eikcr2 cos(θ2−α)eikc

d
2 (5.3)

for sphere 1 and 2, respectively.

5.1.1 Boundary conditions and weak thermal scattering

The boundary conditions and the method of transforming the problem into a

weak thermal scattering problem for the general angle are dealt with in the same

manner as in sections 4.1.1 and 4.2, so to avoid repetition the reader is referred

to the previous chapter for these expressions.

5.1.2 Decomposition of incoming plane wave

As with the case of the previous chapter, in the limit kca � 1 and kcb � 1, the

incoming wave can be expanded by taking a Taylor expansion of equations (5.2)

and (5.3),

ϕ
(1)
inc = eikc(r1 cos(θ1−α)− d

2) = 1+ikc

(
r1 cos(θ1 − α)− d

2

)
−
k2
c

(
r1 cos(θ1 − α)− d

2

)2

2
+· · ·

(5.4)

125



and

ϕ
(2)
inc = eikc(r2 cos(θ2−α)+ d

2) = 1+ikc

(
r2 cos(θ2 − α) +

d

2

)
−
k2
c

(
r2 cos(θ2 − α) + d

2

)2

2
+· · ·

(5.5)

so that equation (4.21) can be written as a power series in ikc,

ϕ
(1)
inc =

∞∑
n=0

(ikc)
nϕ

(1)
incn

, (5.6)

where,

ϕ
(1)
inc0

= 1, (5.7)

ϕ
(1)
inc1

= r1 cos (θ1 − α)− d

2

= r1

(
P 0

1 (cos θ1) cosα + P 1
1 (cos θ1) sinα

)
− d

2
, (5.8)

ϕ
(1)
inc2

=
r2

1

3
(2P2(cos (θ1 − α)) + 1) ,

= r2
1

[
cos2 α

3

(
2P 0

2 (cos θ1) + 1
)
− 1

3
sin(2α)P 1

2 (cos θ1) +
sin2 α

3
P 2

2 (cos θ1)

]
− r1d

[
P 0

1 (cos θ1) cosα + P 1
1 (cos θ1) sinα

]
+
d2

4
, (5.9)

for sphere 1 and, similarly,

ϕ
(2)
inc =

∞∑
n=0

(ikc)
nϕ

(2)
incn

, (5.10)
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where,

ϕ
(2)
inc0

= 1, (5.11)

ϕ
(2)
inc1

= r2 cos (θ2 − α)

= r2

(
P 0

1 (cos θ2) cosα + P 1
1 (cos θ2) sinα

)
, (5.12)

ϕ
(2)
inc2

=
r2

2

3
(2P2(cos (θ2 − α)) + 1) ,

= r2
2

[
cos2 α

3

(
2P 0

2 (cos θ2) + 1
)
− 1

3
sin(2α)P 1

2 (cos θ2) +
sin2 α

3
P 2

2 (cos θ2)

]
− r2d

[
P 0

1 (cos θ2) cosα + P 1
1 (cos θ2) sinα

]
+
d2

4
, (5.13)

for sphere 2. Here Pm
n (cos θ) are the associated Legendre polynomials [24].

5.1.3 Translation addition theorem for Helmholtz solu-

tions in a non-axis-symmetric geometry

As with section 4.2.2 we consider a general radiation solution to the Helmholtz

equation, however, we drop the condition of axisymmetry so that ψ has the

general form,

ψ =
∞∑
n=0

n∑
m=−n

Cnmhn(kT r)P
|m|
n (cos θ)eimφ. (5.14)

Thus for two spheres the solution can be written as

ψ =
∞∑
n=0

n∑
m=−n

[
Cnmhn(kT r1)P |m|n (cos θ1)eimφ1

+Dnmhn(kT r2)P |m|n (cos θ2)eimφ2
]
. (5.15)

As with the axis-symmetric case, we can apply the translation addition theorem
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[46] to translate a solution form the (r1, θ1, φ1) frame to the (r2, θ2, φ2) frame,

hn(kT r1)P |m|n (cos θ1)eimφ1 =
∞∑

q=|m|

Q(mnmq)jq(kT r2)P |m|q (cos θ2)eimφ2 , (5.16)

and similarly the converse relationship,

hn(kT r2)P |m|n (cos θ2)eimφ2 =
∞∑

q=|m|

(−1)n+qQ(mnmq)jq(kT r1)P |m|q (cos θ1)eimφ1 ,

(5.17)

where

Q(mnmq) = iq−n(2n+ 1)
(n−m)!

(n+m)!

n+q∑
σ=|n−q|

iσ(−1)σb(nmqm)
σ

jσ(kTd), for r > d,

hσ(kTd), for r < d

(5.18)

and

b(nmqm)
σ = (−1)−m(2σ+ 1)

√
(n+ |m|)!(q + |m|)!
(n− |m|)!(q − |m|)!

(
n q σ

0 0 0

)(
n q σ

m −m 0

)
,

(5.19)

where the Wigner 3 − j symbols are defined in appendix A. This now allows

equation (5.15) to be expressed in either, the (r1, θ1, φ1) frame or the (r2, θ2, φ2)

frame, as

ψ(1) =
∞∑
n=0

n∑
m=−n

[
Cnmhn(kT r1)P |m|n (cos θ1)

+Dnm

∞∑
q=|m|

(−1)n+qQ(mnmq)jq(kT r1)P |m|q (cos θ1)

 eimφ1 , (5.20)
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or as,

ψ(2) =
∞∑
n=0

n∑
m=−n

[
Dnmhn(kT r2)P |m|n (cos θ2)

+Cnm

∞∑
q=|m|

Q(mnmq)jq(kT r2)P |m|q (cos θ2)

 eimφ2 , (5.21)

which can now be applied to the boundaries around each particle.

5.1.4 Translation addition theorem for Laplace’s equation

solutions in a non axis-symmetric geometry

In the long wave asymptotic approximation the external acoustic wave at each

order is obtained from the solution of a Poisson equation of the form

∇2ϕ = g, (5.22)

where the function g is known from lower-order solutions. Thus, as with the in

line case, there is a similar problem of translating the general external solution

of Laplace’s equation in spherical polar coordinates,

ϕ =
∞∑
n=0

n∑
m=−n

Anm
1

rn+1
P |m|n (cos θ)eimφ, (5.23)

to a solution for two radiating points in the same field, of the form

ϕ =
∞∑
n=0

n∑
m=−n

[
Anm

1

rn+1
1

P |m|n (cos θ1)eimφ1 +Bnm
1

rn+1
2

P |m|n (cos θ2)eimφ2
]
. (5.24)

As with the Helmholtz solution this equation needs to be transformed into

two equations, one in the frame of (r1, θ1, φ1) and one in the frame of (r2, θ2, φ2).

This can be done by following the method of Greengard and Rokhlin [47], with
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rearrangement from Rico et al. [65], using the following translations:

P
|m|
n (cos θ2)eimφ2

rn+1
2

=
1

dn+1

∞∑
q=|m|

W(mnmq)

(r1

d

)q
P |m|q (cos θ1)eimφ1 , (5.25)

and

P
|m|
n (cos θ1)eimφ1

rn+1
1

=

(
(−1)

d

)n+1 ∞∑
q=|m|

W(mnmq)

(r2

d

)q
P |m|q (cos θ2)eimφ2 , (5.26)

where the Wigner coefficients W(mnmq) are given by

W(mnmq) = (−1)n+m (n+ q)!

(n− |m|)!(q + |m|)!
. (5.27)

This allows equation (5.24) to be expressed in either the frame of (r1, θ1, φ1)

or the frame of (r2, θ2, φ2),

ϕ1 =
∞∑
n=0

n∑
m=−n

[
Anm

rn+1
1

P |m|n (cos θ1)

+
Bnm

dn+1

∞∑
q=|m|

W(mnmq)

(r1

d

)q
P |m|q (cos θ1)

]
eimφ1 , (5.28)

and

ϕ2 =
∞∑
n=0

n∑
m=−n

[
Bnm

rn+1
2

P |m|n (cos θ2)

+
Anm(−1)n+1

dn+1

∞∑
q=|m|

W(mnmq)

(r2

d

)q
P |m|q (cos θ2)

]
eimφ2 , (5.29)

from which we can now apply the boundary conditions on both spheres.
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5.2 Thermoacoustic scattering by two spheres

We can use the weak thermal scattering approximation from section 4.2 to con-

struct the solution for the acoustic and thermal fields as Poincaré expansions of

the form

ϕ(1) = eik(r1−a)

∞∑
n=0

(ikc)
nϕ̃(1)

n , (5.30)

and

ψ(1) =
∞∑
n=0

(ikc)
nψ(1)

n , (5.31)

where ϕ̃
(1)
n and ψ

(1)
n are solutions of the exterior Poisson and Helmholtz equa-

tions together with corresponding expansions for the interior fields. The general

form for the solutions at each order are obtained from equations (5.20), (5.21)

and (5.23)–(5.29) as

ϕ̃(1)
n =

∞∑
q=0

q∑
p=−q

[
Anqp

(
a

r1

)q+1

P |p|q (cos θ1)

+Bnqp

(
b

d

)q+1 ∞∑
s=|p|

W(pqps)

(r1

d

)s
P |p|s (cos θ1)

]
eipφ + I(1)

n (r1, θ1, φ), (5.32)

ϕ̃(2)
n =

∞∑
q=0

q∑
p=−q

[
Bnqp

(
b

r2

)q+1

P |p|q (cos θ2)

+Anqp(−1)q+1
(a
d

)q+1
∞∑
s=|p|

W(pqps)

(r2

d

)s
P |p|s (cos θ2)

]
eipφ + I(2)

n (r2, θ2, φ), (5.33)

ϕ′(1)
n =

∞∑
q=0

q∑
p=−q

anqp

(r1

a

)q
P |p|q (cos θ1)eipφ + I ′(1)

n (r1, θ1, φ), (5.34)

ϕ′(2)
n =

∞∑
q=0

q∑
p=−q

bnqp

(r2

b

)q
P |p|q (cos θ2)eipφ + I ′(2)

n (r2, θ2, φ), (5.35)
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ψ(1)
n =

∞∑
q=0

q∑
p=−q

[
Cnqphq(kT r1)P |p|q (cos θ1)

+Dnqp

∞∑
s=|p|

(−1)q+sQ(pqps)js(kT r1)P |p|s (cos θ1)

]
eimφ, (5.36)

ψ(2)
n =

∞∑
q=0

q∑
p=−q

[
Dnqphq(kT r2)P |p|q (cos θ2)

+Cnqp

∞∑
s=|p|

Q(pqps)js(kT r2)P |p|s (cos θ2)

]
eimφ, (5.37)

ψ′(1)
n =

∞∑
q=0

q∑
p=−q

cnqpjq(k
′
T r1)P |p|q (cos θ1)eipφ, (5.38)

ψ′(2)
n =

∞∑
q=0

q∑
p=−q

dnqpjq(k
′
T r2)P |p|q (cos θ2)eipφ, (5.39)

where In are the particular solutions of the inhomogeneous terms in the Pois-

son equations. The unknown coefficients Anqp, Bnqp, Cnqp, Dnqp, anqp, bnqp, cnqp and

dnqp are determined by applying the four pairs of boundary conditions equa-

tions (4.29)–(4.36).

5.2.1 Order one solutions

As with the single particle case, and the axis-symmetric solution case the solution

at order one is simply,

a000 = b000 =
1

ρ̂
. (5.40)

with all other coefficients being equal to zero.

5.2.2 Order ikc solutions

At order ikc, as with the axis-symmetric case, the incident field has a constant

term −d
2
, that does not produce any external field, thus the solution can be cal-

culated without the constant and the contribution simply added to the interior
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solution. The thermal field is zero at this order, while the acoustic field terms

are solutions of the Laplace equations (4.75)–(4.78) together with boundary con-

ditions (4.29), (4.30), (4.33) and (4.34). Substituting the solutions in the form of

equations (5.32)–(5.35) for n = 1 we obtain the system of equations,

∞∑
s=|p|

[
(A1sp − ρ̂a1sp) δqs +B1sp

(
b

d

)s+1 (a
d

)q
W(pspq)

]
= a

(
δq1δ|p|0 cosα− δq1δ|p|1 sinα

)
, (5.41)

∞∑
s=|p|

[
(B1sp − ρ̂b1sp) δqs + A1sp(−1)s+1

(a
d

)s+1
(
b

d

)q
W(pspq)

]
= b

(
δq1δ|p|0 cosα− δq1δ|p|1 sinα

)
, (5.42)

∞∑
s=|p|

[
(−(s+ 1)A1sp − sa1sp) δqs +B1spq

(
b

d

)s+1 (a
d

)q
W(pspq)

]
= a

(
δq1δ|p|0 cosα− δq1δ|p|1 sinα

)
, (5.43)

and

∞∑
s=|p|

[
(−(s+ 1)B1sp − sb1sp) δqs + A1sp(−1)s+1q

(a
d

)s+1
(
b

d

)q
W(pspq)

]
= b

(
δq1δ|p|0 cosα− δq1δ|p|1 sinα

)
. (5.44)

Note that since the only inhomogeneous terms are for p = 0 and p = ±1 only the

p = 0 and p = ±1 coefficients are non-zero and in particular, when α = 0, we

recover equations (4.79)–(4.82).

While in principle this is an infinite system, higher order terms decay rapidly,

as shown in figure 5.2, so the system can be truncated at order qmax, resulting in

two independent sets of 4q2
max matrix problems.
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Figure 5.2

Error of A110/A11∞ for the case a = b for different values of qmax and

α. It can be seen that the coefficients error reduces exponentially with

qmax. As d is increased, the rate of convergence increases. However,

the value of α has little impact on the rate of convergence.
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As with the axis-symmetric case, it can be shown that in the limit d → ∞
the coupling tends to zero and we recover,

A110 =

(
ρ̂− 1

2ρ̂+ 1

)
a cosα, (5.45)

A111 =

(
ρ̂− 1

2ρ̂+ 1

)
a sinα, (5.46)

B110 =

(
ρ̂− 1

2ρ̂+ 1

)
b cosα, (5.47)

B111 =

(
ρ̂− 1

2ρ̂+ 1

)
b sinα, (5.48)

a110 =
3a

2ρ̂+ 1
a cosα, (5.49)

a111 =
3a

2ρ̂+ 1
a sinα, (5.50)

b110 =
3a

2ρ̂+ 1
b cosα, (5.51)

and

b111 =
3a

2ρ̂+ 1
b sinα. (5.52)

These are the same as the single sphere solutions presented by Harlen et al. [27].

As with the axis-symmetric case, the solution converges towards the single

particle solution as d → ∞ for any α. However, we also need to consider the

rotation of the incident wave, in figure 5.3 we see how the behaviour of A11p,

defined as
√
A2

110 + 2A2
111, changes as the incident angle changes for different

values of d. It is clear to see that the most difference from the single particle

solution occurs when α = 0 or ±π, the in-line case, while there is no effect of the

interaction where the direction of the wave is perpendicular. At this order the

interaction is driven by the gradient in pressure, so that when the particles are

aligned perpendicular to the field they experience the same pressure and so do

not interact.
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The behaviour of A11p as the incident angle changes for different

values of d.

We can see how A111 behaves in figure 5.4 as d/a→∞ for different α, as the

solution converges to the single particle solution.

5.2.3 Order (ikc)
2 solutions

Order (ikc)
2 is the leading order at which the thermal terms come into effect,

so boundary conditions from equations (4.31), (4.32), (4.35) and (4.36) are also

considered. The thermal boundary conditions lead to the equations

∞∑
s=|p|

[(
C2sphs(kTa)− Γ̂c2spjs(k

′
Ta)
)
δqs +D2sp(−1)q+sQ(pspq)jq(kTa)

]
P |p|q (cos θ1)

=

[
Γ̂G′c
ρ̂
−Gc

]
δq0δp0, (5.53)

136



1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7 8 9 10

A
1
1
p
/A

1
1
p
∞

d/a, (α = 0)

a/b = 3
a/b = 2
a/b = 1

a/b = 1/2
a/b = 1/3

1

1.02

1.04

1.06

1.08

1.1

1.12

1 2 3 4 5 6 7 8 9 10

A
1
1
p
/A

1
1
p
∞

d/a, (α = π/3)

a/b = 3
a/b = 2
a/b = 1

a/b = 1/2
a/b = 1/3

Figure 5.4

Behaviour of A11p for the single sphere solution compared to the two

sphere arbitrary angle solution for varying d and α.
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∞∑
s=|p|

[(
D2sphs(kT b)− Γ̂d2spjs(k

′
T b)
)
δqs + C2spQ(pspq)jq(kT b)

]
P |p|q (cos θ1)

=

[
Γ̂G′c
ρ̂
−Gc

]
δq0δp0, (5.54)

∞∑
s=|p|

[(
C2spkTah

′
q(kTa)− c2spΓ̂τ̂ k

′
Taj

′
s(k
′
Ta)
)
δqs

+D2sp(−1)q+sQ(pspq)kTaj
′
q(kTa)

]
= 0, (5.55)

and

∞∑
s=|p|

[(
D2spkT bh

′
s(kT b)− d2spΓ̂τ̂ k

′
T bj

′
s(k
′
T b)
)
δqs

+C2spQ(pspq)kT bj
′
q(kT b)

]
= 0 (5.56)

for the thermal coefficients. Again this system can be truncated at order qmax.

An immediate observation is that the p = 0 equations are the same as equa-

tions (4.88)–(4.91). Furthermore, since the equations for different p are uncoupled

it also follows that the coefficients for p 6= 0 are all zero. Thus at this order the

C2q0, D2q0, c2q0 and d2q0 coefficients are identical to the coefficients of the in-line

case and so there is no α dependence of the solution and we can use the calcu-

lation from chapter 4. In figure 5.5 we see how the solution tends to the single

particle solution as d→∞ for any arbitrary angle.

The physics behind this is that the leading order contribution to the thermal

field arises purely from the differential heating of the two phases under a ho-

mogeneous compression and so does not depend on the direction of the incident

wave.

As with the in-line case, this can be solved as a separate matrix problem, but

it is more convenient for this to be part of a larger linear system involving the

acoustic boundary conditions at this order also.
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At this order the acoustic field equations are inhomogeneous, as given by

equations (4.92)–(4.95) and applying the boundary conditions (4.29), (4.30) and

(4.33), (4.34) leads to the equations,

∞∑
s=|p|

[
(A2sp − ρ̂a2sp)δqs + (C2s0hs(kTa)− Γ̂c2s0js(k

′
Ta))δqsδ0p

+B2sp

(
b

d

)s+1 (a
d

)q
W(pspq) +D2s0(−1)s+qQ(0s0q)jq(kTa)δ0p

]
= −cos2 α

3
(2δq2δp0 + δq0δp0) +

1

3
sin 2αδq2δp1 −

sin2 α

3
δq2δp2 + ĉδq0δp0

+
∞∑
s=|p|

[
2

s+ 1
A1spδqs −

2

q + 2
B1sp

(a
d

)q ( b
d

)s+1

W(pspq)

]
, (5.57)

∞∑
s=|p|

[
(B2sp − ρ̂b2sp)δqs + (D2s0hs(kT b)− Γ̂d2s0js(k

′
T b))δqsδ0p

+(−1)s+1A2sp

(a
d

)s+1
(
b

d

)q
W(pspq) + C2s0(−1)s+qQ(0s0q)jq(kT b)δ0p

]
= −cos2 α

3
(2δq2δp0 + δq0δp0) +

1

3
sin 2αδq2δp1 −

sin2 α

3
δq2δp2 + ĉδq0δp0

+
∞∑
s=|p|

[
2

s+ 1
B1spδqs −

2

q + 2
(−1)s+1A1sp

(
b

d

)q (a
d

)s+1

W(pspq)

]
, (5.58)

∞∑
s=|p|

[
(−(s+ 1)A2sp − ρ̂sa2sp)δqs + (C2s0kTah

′
s(kTa)− Γ̂c2s0k

′
Taj

′
s(k
′
Ta))δqsδ0p

+qB2sp

(
b

d

)s+1 (a
d

)q
W(pspq) +D2s0(−1)s+qQ(0s0q)kTaj

′
q(kTa)δ0p

]
= −2 cos2 α

3
(2δq2δp0 + δq0δp0) +

2

3
sin 2αδq2δp1 −

2 sin2 α

3
δq2δp2

+
∞∑
s=|p|

[
−A1spδqs −B1sp

(a
d

)q ( b
d

)s+1

W(pspq)

]
, (5.59)
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Figure 5.5

The behaviour of |C200/C20∞| with increasing separation for

a/b = 1/3, 1/2, 1, 2, 3 for silicone in water and |kTa| = 1.

∞∑
s=|p|

[
(−(s+ 1)B2sp − ρ̂sb2sp)δqs + (D2s0kT bh

′
s(kT b)− Γ̂d2s0k

′
T bj

′
s(k
′
T b))δqsδ0p

+(−1)s+1qA2sp

(a
d

)s+1
(
b

d

)q
W(pspq) + C2s0(−1)s+qQ(0s0q)kT bj

′
q(kT b)δ0p

]
= −2 cos2 α

3
(2δq2δp0 + δq0δp0) +

2

3
sin 2αδq2δp1 −

2 sin2 α

3
δq2δp2

+
∞∑
s=|p|

[
−B1spδqs − (−1)s+1A1sp

(
b

d

)q (a
d

)s+1

W(pspq)

]
. (5.60)

Note, only the p = 0 terms for the thermal coefficients C2sp, D2sp, c2sp and

d2sp, are considered and so the p 6= 0 terms are zero. Again, the contribution

in the incident field brought about by the shift in the origin has been excluded.

Solving these terms, as with the in-line gives us solutions that reduce to the single

particle solution as d→∞.
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The acoustic coefficients, however, do depend on the angle of the incident

wave, however the systems of equations for each of p are uncoupled and we have

non-zero solutions for |p| ≤ 2. The solutions for A200 are shown in figures 5.6

and 5.7. The largest difference between the single particle solution and the two

particle solution coefficients is when the particles are in-line, with the least dif-

ference when the particles are perpendicular to the incident wave.

In figure 5.8 we show how many terms of qmax are required to generate a

solution with an acceptable amount of error. When the particles are touching

we see that the solution required 8 terms to reduce the error to 10−6%, where at

larger distances the convergence is more rapid.

It is also possible to see where these effects are most prominent by observing

how these coefficients behave across a range of kTa, as seen in figure 5.9.

5.3 Far field

Using the coefficients generated in section 5.2, the far field can be calculated. As

with the in-line case, provided kca � 1, we can express the far field radiation

from both spheres as in equation (4.110) However, what we are most interested in

is the change in the far field due to additional scattering due to the second sphere,

thus we calculate in equation (4.113) f excess(θ), which shows us the contribution

that the multiple thermoacoustic scattering has on the far field. It can be seen in

figure 5.10 that as expected the closer the particles are to each other the larger

the change to the far field scatter, however, it can also be seen that the change in

incident angle only appears to change the magnitude of the far field scatter and

not frequency dependence. The frequency dependence arises from the thermal

interactions which at this order do not depend on the angle of the incident wave.

The effect the distance of the particles from each other has on the far field is the

same as for the two particles in line case. This suggests when the particles are

touching that the far field behaves like a single particle in the region of |kTa| ∼ 1.

However, as the particles move further apart, the thermal overlap still occurs,

creating an increase in the far field around |kTa| ∼ 2. This peak reduces as the

particles are moved further apart.
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Figure 5.6

The behaviour of A200/A20∞ for different incident wave angles for

different values of d for silicone in water and |kTa| = 1
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The behaviour of A200/A20∞ for different d as the incident angle α is

rotated for silicone in water.

5.4 Close field

We can also use the solutions in the previous sections to provide an insight as to

how the acoustic and thermal fields behave when two particles are close together

for particles of the same size, and when they have different sizes. These plots

are the maximum pressure and temperature excursion arising from the sinusoidal

pressure field at the second order. Each of figures 5.11–5.20 has been rotated so

that the incident wave travels along the horizontal axis.

In figure 5.11, the particles are touching, so they behave as a single particle

larger than a particle of that size on its own. This agrees with, figure 5.10, as

the drop in the far field at |kTa| = 1 suggests that the attenuation prediction

will provide a curve one would expect from a larger particle size. The change of

incident wave angle is noticed most internally. This behaviour is again seen in

figure 5.16, as the thermal field is almost spherical just a particle distance away.

In figure 5.12 the particles are further apart, the pressure around both spheres

still behaves as if it were one larger sphere. Being further part and still having
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Error of A200/A200∞ for different values of qmax and α with a = b. It

can be seen after a couple of terms that the solution converges

rapidly. As d is increased the solution converges even more rapidly.

When the incident wave angle changes there is a slight increase in

convergence, but it is not significant.
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A comparison of the behaviour of |A200/A200∞| over kTa for different

values of d and α = 0, π/3 for a = b.
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Excess far fields as a result of multiple thermoacoustic scattering for

different d and α = 0, π/3.
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Figure 5.11

Close field plot of pressure for

a/b = 1 and d = a+ b, |kTa| = 1 and

α = π/3. The plot has been rotated

so the incident wave travels along

the horizontal direction.
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Figure 5.12

Close field plot of pressure for

a/b = 1 and d = 2a+ b, |kTa| = 1

and α = π/3. The plot has been

rotated so the incident wave travels

along the horizontal direction.

their thermal field over lapping creates the impression of an even larger sphere

than in figure 5.11. This behaviour is reflected also in figure 5.12, suggesting even

though they are further apart, multiple scattering still has a large effect.

When increasing the size of one of the particles figures 5.13 and 5.14 and their

temperature counterparts figures 5.13 and 5.14, the effects of the smaller particle

are lost within the effect of the bigger particles. However, when the distance is

increased between the smaller particle and the bigger particle, as in figures 5.15

and 5.20, the thermal field of the smaller particle has an influence on the bigger

particle, as smaller particle have larger thermal fields.
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Figure 5.13

Close field plot of pressure for

a/b = 1/2 and d = a+ b, |kTa| = 1

and α = π/4. The plot has been

rotated so the incident wave travels

along the horizontal direction.
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Figure 5.14

Close field plot of pressure for

a/b = 1/3 and d = 1.2a+ b,

|kTa| = 1 and α = π/4. The plot has

been rotated so the incident wave

travels along the horizontal direction.
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Figure 5.15

Close field plot of pressure for

a/b = 1/3 and d = 2a+ b, |kTa| = 1

and α = π/3. The plot has been

rotated so the incident wave travels

along the horizontal direction.
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Figure 5.16

Close field plot of temperature for

a/b = 1 and d = a+ b, |kTa| = 1 and

α = π/3. The plot has been rotated

so the incident wave travels along

the horizontal direction.
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Figure 5.17

Close field plot of temperature for

a/b = 1 and d = 2a+ b, |kTa| = 1

and α = π/3. The plot has been

rotated so the incident wave travels

along the horizontal direction.
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Figure 5.18

Close field plot of temperature for

a/b = 1/2 and d = a+ b, |kTa| = 1

and α = π/4. The plot has been

rotated so the incident wave travels

along the horizontal direction.
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Figure 5.19

Close field plot of temperature for

a/b = 1/3 and d = 1.2a+ b,

|kTa| = 1 and α = π/4. The plot has

been rotated so the incident wave

travels along the horizontal direction.
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Figure 5.20

Close field plot of temperature for

a/b = 1/3 and d = 2a+ b, |kTa| = 1

and α = π/3. The plot has been

rotated so the incident wave travels

along the horizontal direction.
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Chapter 6

Multiple Scattering Theory

6.1 Introduction

In this chapter, we look at how the results in chapters 4 and 5 can be applied

to scattering in an emulsion. These calculations show that the far field thermo-

acoustic radiation pattern from a pair of closely separated spheres differs from

the superposition of two isolated spheres due to the overlap in the thermal field.

This effect is not taken into account in the Lloyd and Berry [35] approximation to

multiple scattering, that only includes the long-range interactions of the acoustic

field and assumes that scatters can be approximated as points. Here we use the

formulation of Linton and Martin [39] to include the effect of interactions between

neighbouring particles by averaging the results obtained in the previous chapters

over orientation and radial distribution the results prediction for the attenuation

are compared to the previous theories and experimental data shown in chapter 3.

6.2 Approach to multiple scattering

Current Lloyd and Berry theory [35] has several limitations, which limits its use

for accurately predicting multiple scattering behaviour in concentrated emulsions.

Firstly, it treats each particle as a point isotropic scatter. This assumption fails

for our model as we have shown in chapter 5 that there is a strong angular

dependence on the incident wave angle to a pair of scattering particles. The
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Figure 6.1

Large volume VR, with radius R, around a sphere, with a second

smaller volume V , with radius h.

Lloyd and Berry method also assumes a uniform pair probability distribution,

outside of the excluded volume. However multiple studies, including those by

McClements and Dickinson [66], and Choudhury and Ghosh [67] have shown

that is not valid for concentrated emulsions.

We begin by considering the formulation of the multiple scattering problem

given by Linton and Martin [39]. Let us a consider a large volume VR, with radius

R centred around a particle, with an incident sound wave k = kcẑ, as shown in

figure 6.1.

For a single particles we can consider the scattered acoustic wave to be of the

form (equation (1.140))

ϕscat =
∞∑
n=0

Aiso
n hn(kcR)Pn cos θ ∼ eikcR

ikcR
f(θ), (6.1)

where

f(θ) =
∞∑
n=0

Aiso
n Pn cos θ (6.2)

154



is the far field pattern and Aiso
n is the scattering coefficient from a single isolated

sphere. Now consider replacing the single particle with two particles a displace-

ment D apart, using two coordinate systems, one based around each particle,

such that,

ϕscat =
∞∑
n=0

Anon-iso
n hn(kcR1)Pn(cos θ1) +

∞∑
n=0

Bnon-iso
n hn(kcR2)Pn(cos θ2), (6.3)

where Anon-iso
n and Bnon-iso

n are the two-sphere system scattering coefficients. How-

ever provided R1 � D we can approximate

R1 ≈ R2 = R, (6.4)

θ1 ≈ θ2 = θ. (6.5)

Therefore, we can now write

ϕscat =
∞∑
n=0

(
Anon-iso
n +Bnon-iso

n

)
hn(kcR)Pn(cos θ),

∼ eikcR

ikcR

(
Anon-iso
n +Bnon-iso

n

)
Pn(cos θ). (6.6)

However, Anon-iso
n and Bnon-iso

n , can be defined as a combination of the single

sphere scattering coefficient and the additional associated with the presence of

the neighbouring sphere, so that

Anon-iso
n = Aiso

n + Apair
n (D), (6.7)

and

Bnon-iso
n = Biso

n +Bpair
n (−D), (6.8)

where D = (D,α) is the distance and orientation of the pair of particles compared

to the incident wave, as shown in figure 6.2. Now equation (6.6) becomes,

ϕscat ∼
eikcR

ikcR

(
Aiso
n + Apair

n (D) +Biso
n +Bpair

n (−D)
)
hn(kcR)Pn(cos θ). (6.9)
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α

θ

Figure 6.2

Two sphere in orientation of incident wave

If spheres are identical (A = B) this can be simplified,

ϕscat ∼
eikcR

ikcR

(
2Aiso

n + Apair
n (D) + Apair

n (−D)
)
hn(kcR)Pn (cos θ) . (6.10)

Now that the arms Apair
n decay to zero rapidly as D → ∞. Let us now extend

this to N particles in a volume V , where V
1
3 = R, then,

ϕscat ∼
eikcR

ikcR

∞∑
n=0

(
A(N)
n +B(N)

n + · · ·
)︸ ︷︷ ︸

N terms

Pn(cos θ), (6.11)

where A
(N)
n is the scattering coefficient of a particle in an N particle system.

Again, we define each scattering coefficient as the single isolated sphere scatter-

ing coefficient combined with the additional scattering generated the presence

of each of the other spheres in the volume. However, since our calculations for

pairs of particle show that this is short-range, we shall approximate this as the

superposition of all possible pair interactions, so that,

A(N)
n ≈ Aiso

n +
N∑
j=2

Apair
n (Dj). (6.12)
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Now we need to take an average of equation (6.11) over V ,

〈ϕscat〉 ∼
∫
· · ·
∫
ϕscat(r1, r2, r3, · · · , rN)p(r1, r2, r3, · · · , rN)dV1 · · · dVN , (6.13)

where p(r1, r2, r3, · · · , rN) is the probability density function for the configuration

where the particles are located at r1, r2, r3, · · · , rN . However, since we are only

including the single and pair contributions we only require the single particle p(r)

and pair particle probability densities.

Since the suspension is assumed to be homogeneous, the single density prob-

ability density is given by,

p(r) =
n0

N
, (6.14)

where n0 is the number density of spheres. The pair-correlation function is given

by

p(r1, r2) =
n2

0

N2
g(D), (6.15)

where D = r2 − r1 and g(D) is the radial distribution function.

6.2.1 Radial distribution function

The Lloyd and Berry [35] method assumes that the particles are distributed evenly

throughout the fluid by the Heaviside function,

g(D) = H(D − 2a), (6.16)

where

H(x) =

{
1 for x > 0,

0 for x ≤ 0.
(6.17)

However, it has been shown in multiple studies of colloidal particle distribution,

including those by McClements and Dickinson [66], and Choudhury and Ghosh

[67], that this is only accurate for very low concentrations of colloids. These

studies have shown that short-range inter-particle forces (such as Van der Waals

forces) are important factors in determining the radial distribution function.
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By assuming that colloidal particles are spherical and isotropic, the distri-

bution of colloidal particles can be derived using the same statistical mechanics

methods used for atomic distributions. Despite that colloidal particle dynamics

are based on friction dominated, diffusive dynamics, the micro-structure of both

colloids and atomic particles are very similar, only with different orders of magni-

tude and time scales. For colloids the inter-particle forces consist of a short-range

repulsion modelled using the Lennard-Jones potential equation [68, 69],

uLJ(r) = 4ε

[( a
2r

)12

−
( a

2r

)6
]
, (6.18)

where u(r) is the potential energy, and ε is an amplitude parameter, which is an

attractive force for 2r > a and a repulsive force for 2r < a, and the Van der

Waals pair potential [70, 71], which is a longer range attractive potential,

uvdW = −Aeff
6

[
2a2

r2 − 4a2
+

2a2

r2
+ ln

(
1− 4a2

r2

)]
, (6.19)

where a is the particle radius, and Aeff is the effective Hamaker constant. As-

suming that the system is in thermodynamic equilibrium, the pair probability

distribution is given formally by integrating over the distribution of the remain-

ing N − 2 particles

g(2)(D) =
V 2N !

N2(N − 2)!
·
∫
· · ·
∫
e−βUNdr3 · · · drN , (6.20)

here β = 1/kBT and UN is the potential energy, where kB is the Boltzmann

constant and T is the temperature. In this form the integral is not particularly

useful, but Ornstein-Zernike integration methods can be applied [72]. Combin-

ing this with the Percus-Yevick approximation [73], a solution for g(r2) can be

obtained [74, 75].

In figure 6.3, the particle distribution for different concentrations has been

plotted, compared to the distance between each of the spheres, using a MATLAB

code provided by Sandler [76]. Note that as φ increases that g(D) becomes in-

creasing non-uniform with maxima at interger numbers of diameters, representing

shells of particles, as seen in figure 6.4.
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Particle packing for closely packed particles.
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Returning to equation (6.13), this now allows us to write the total scattering,

ϕscat = NAiso
n +N(N − 1)

∫∫∫
Apair
n (D)g(D)d3D, (6.21)

where

g(D) =
1

4π
g(D). (6.22)

This integral, over the volume V gives,

∫∫∫
Apair
n (D)g(D)d3D =

1

2

∫ π

0

sin(α)

(∫ h

0

g(D)Apair
n (D,α)dD

)
dα, (6.23)

where h is the radius of V .

6.3 Far field scatter

To be able to utilise this theory more effectively, it is useful to consider the far

field scatter, rather than the individual scattering coefficients. Averaging over all

possible pair configurations the far field pattern is given by,

f(θ) = f iso + 2πn0

∫ π

0

∫ ∞
0

g(D) sin(α)fpair(D,α)dDdα, (6.24)

where the integral now expands to infinity as the far field scattering effects due to

the close proximity of pairs reduces rapidly as D increases. Here we can include

the volume fraction, φ = 4πa3n0/3. This can then be used in the Lloyd and Berry

[35] approximation up to n = 1 to the derive the effective wave number,

(
k̃c
kc

)2

= 1 +
3φ

k2
ca

3
f(0) +

9φ2

4k4
ca

6

(
f 2(π)− f 2(0)−

∫ π

0

dθ
1

sin(θ/2)

(
d

dθ
f 2(θ)

))
.

(6.25)

We can now use this, combined with equation (6.24) to calculate a new effective

wave number k̃c. This can be separated into the velocity and attenuation parts,
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by

k̃c =
ω

ṽ
+ iα̃, (6.26)

where ṽ is the effective sound velocity in the dispersion and the imaginary part

α̃ is the total attenuation from the continuous and suspended phases of the dis-

persion as well as the contribution from scattering. To determine the attenuation

additional due to scattering alone αscat, the contributions from the phases must

be subtracted,

αscat = α̃− αc(1− φ)− αsφ, (6.27)

where αc and αd are the attenuation coefficients of the continuous and suspended

phases respectively, and φ is the volume concentration of the suspended phase.

6.4 Results

In this section we look at the experimental data from chapter 3 and compare it

to our new two particle weak thermal scattering solution.

6.4.1 Monodisperse

In figure 6.5 we compare the silicone oil-in-water data from Herrmann [5], de-

scribed in section 3.1.1, with the previous scattering theory (represented by the

dashed lines) and the new two sphere scattering theory solution (represented by

the solid lines). At low concentrations, the difference between the two sphere and

single sphere weak thermal scattering solutions is negligible. At lower concentra-

tions the particles are further apart and thus multiple scattering has little effect

on the scattering as a whole. However, both solutions match the experimen-

tal data curve, which suggests that the existing theory captures the scattering

mechanisms at this concentrations.

As the concentration of the emulsion increases, we start to see slight variation

between the single and the two sphere weak thermal scattering solutions. This

is almost exclusively in the lower frequency range, where |kTa| < 2. At lower
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Figure 6.5

Silicone oil-in-water dispersion data for particle radii 230-760nm,

from Herrmann [5], compared with single weak thermal scattering

theory (WTS) (dashed), and two sphere multiple scattering weak

thermal scattering theory (WTS) (solid). The lines represent the

theoretical prediction and the symbols represent the data.
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frequencies the thermal field around each particle has a larger radius, of
√
σ/ω,

as described in equation (1.147), so that the proximity of other particles has a

greater thermal boundary effect on the thermal fields, whereas for |kTa| > 2 the

thermal boundary layer is sufficiently thin that there is little overlap.

As the concentration of the disperse phase is increased to 20%, we see the

discrepancy between the two solution increase at lower |kTa|. The single weak

thermal scattering theory prediction over estimates the level of attenuation in

this region, while the two particle weak thermal scattering prediction reduces

the predicted level of attenuation in-line with the experimental data, providing

a good correlation. However, while the peak in the experimental data, matches

that of the prediction, we find that overall the prediction still overestimates the

whole attenuation.

At 30% we see an increased discrepancy between the two solutions, particu-

larly for lower values of |kTa|. However, the two particle weak thermal scattering

solution now under predicts the levels of attenuation at the lowest values of |kTa|.
This maybe because the superposition of pair corrections over estimating the ef-

fect of multiple scattering in groups of particles. Note, in section 5.3 we found the

largest difference in the far field between the single and the two sphere solutions

was when |kTa| ∼ 1, which seems to be the case here. On the other hand, we do

find the peak in the attenuation curve has shifted slightly to a larger |kTa| value,

which is also seen in the experimental data, where there is a slight shift in the

peak compared to lower concentration data. Again we find the overall prediction

still over-estimates the attenuation level.

For the 40% and 50% predictions, again there is a divergence between the

two predictions at values |kTa| closer to 1. We find both of the two particle

weak thermal scattering solutions both greatly over estimate the attenuation

levels below |kTa| = 6. There is a shift in the attenuation peaks consistent with

the experimental data, however the experimental data shift is much greater in

magnitude. As |kTa| approaches 1 we see the two particle weak thermal scattering

prediction approach the attenuation levels seen in the experimental data.

Overall, we see that at lower concentrations the two particle weak thermal

scattering method provides a prediction consistent with the experimental data.

As the concentration increases to a point where the single weak thermal scatter-
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ing solution is no longer accurate in predicting attenuation levels, the two particle

solution provides more accurate predictions. However, as the concentration in-

creases to even higher levels, while providing a closer prediction than previous

methods, the prediction fails to quantitatively predict the behaviour of the ex-

perimental system. This is most likely because the two particle weak thermal

scattering system excludes the combined scattering from more than two parti-

cles, which is reasonable in emulsions at around 20%, but is no longer valid as

the concentration increases and the particles are packed even closer. However the

results are sensitive to the two particle distribution function, which is another

possible source of error.

The second series of experiments described in section 3.1.1 were two Polystyrene

PEGMA samples, of sizes ∼ 400nm and ∼ 900nm, which had their velocity and

attenuation measured in the ResoScan at different concentration levels. We can

now compare this experimental data with the new two particle weak thermal

scattering theory. In figure 6.6 we see a comparison of the dispersion velocity in

two samples, compared to the single weak thermal scattering theory, shown by

dashed lines, and two particle weak thermal scattering, shown by solid lines. It

can be seen that for the 400nm prediction there is a good consistency between

the experimental data and the two particle weak thermal scattering theory. It

successfully predicts the velocity up to a concentration of 16%, unlike the single

weak thermal scattering theory which is only consistent until 8%. However, we

find that the 900nm two particle weak thermal scattering prediction over esti-

mates the experimental data. While it provides a suitable prediction until 10%,

which is greater than the single weak thermal scattering theory by 2%, it over

predicts the velocity for concentrations higher than this. This discrepancy is

probably caused by visco-inertial effects, as the contrast in density between the

continuous and disperse phase is high, and the thermal contrast is smaller than

for other emulsion systems.

This discrepancy is more prominent in figure 6.7, as the attenuation predicted

by the two particle weak thermal scattering theory does not provide a significant

improvement over single weak thermal scattering theory. Figure 6.7 follows the

same convention as with figure 6.6, except considering attenuation as opposed to

velocity of the emulsion. We find for both the 400nm and the 900nm that the two
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Figure 6.6

∼400 nm and ∼900 nm Polystyrene PEGMA in water velocity for

concentrations measurements from ResoScan at ∼8MHz, compared to

single weak thermal scattering theory (dashed) and compared to two

particle weak thermal scattering (solid). The points represent the

experimental data, and the lines are the prediction.
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∼400 nm and ∼900 nm Polystyrene PEGMA in water attenuation

for concentrations measurements from ResoScan at ∼8MHz,

compared to single weak thermal scattering theory (dashed) and

compared to two particle weak thermal scattering (solid). The points

represent the experimental data, and the lines are the prediction.
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particle weak thermal scattering theory is only consistent with the experimental

data under 10%, which is only a minor improvement over the single weak thermal

scattering method. As previously stated, this is likely due to visco-inertial effects

being more prominent than the thermal effects studied in this thesis.

6.4.2 Polydisperse

The second set of experiments aimed to see whether bi-disperse emulsions could

be predicted using scattering theory. Further details of the experimental set up

of the experimental process can be found in section 3.2. In figure 6.8 we can see

the experimental data for hexadecane-in-water, for mono-disperse, 100nm and

900nm emulsions at 30%, and a bi-disperse emulsion consisting of equal parts of

100nm and 900nm radii particles at different concentrations.

Here we define a to be the smaller particle, so that a frequency with |kTa| ∼ 1

corresponds to a thermal layer around each particle that is the depth equal to the

radius of the smaller particles. This is however small compared to the radius of

the large particles, so that corresponding values of kT b are larger. Unfortunately,

the range of frequencies available are only able to probe |kTa| from 1 to 6, so that

we do not have measurements in the range where kT b is of order one.

For each of the experiments two predictions have been calculated, one for

single particle weak thermal scattering, shown by dashed lines, and one for two

particle thermal scattering, shown by solid lines.

We first consider the two mono-disperse samples figure 6.8. As with the

previous mono-disperse results for the silicone oil-in-water system, we see two

main differences between the single particle and pair particle solution. First we

have the peak shift in the attenuation curve, however, with the hexadecane system

this shift is more predominant. This could be due to the greater density difference

between the two phases compared with water and silicone oil, thus a greater

peak shift. The second characteristic is the reduction in attenuation at lower

|kTa| values. Again, we see an under prediction compared with the experimental

data, this is again likely due to the two particle weak thermal scattering method

only considering pairs of particles, and so overpredicting the effect of particle

overlap. Overall, we see an over prediction in the attenuation levels with both
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Attenuation spectrum of two hexadecane in water emulsions, of size

100nm and 900nm, separately and mixed (shown by points) compared

with single weak thermal scattering theory (shown by dashed lines)

and two particle weak thermal scattering (shown by solid lines). The

mixed samples are mixed 50% v/v each for 100nm and 900nm. The

mixed weak thermal scattering solutions were obtained by combining

the attenuation from both 100nm and 900nm spectrum.
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mono-disperse samples, which is consistent with previous samples in section 6.4.1.

While the two particle weak thermal scattering solution does not give a complete

solution to the problem, it does provide a better prediction than the single weak

thermal scattering model.

Moving on to the bi-disperse emulsions, at the lowest concentration, we do

not see much difference between the single and two particle weak thermal scat-

tering solutions. The only discrepancy between the two solutions can be seen

at |kTa| > 4 above the attenuation peak, where the pair solution is more con-

sistent with the experimental data. As the concentration increases to 10% we

see that this increase in attenuation in the two particle weak thermal scattering

solution compared to the single particle solution has increased, again in line with

the experimental data. Also we see that the attenuation level is slightly lower

at |kTa| > 4 above the attenuation peak. These trends are found in increasing

amount as the concentration increases, as well as increasing peak shift. How-

ever, two discrepancies remain. The overall level of the predicted attenuation

is greater than the experimental data, particularly at higher concentration pre-

dictions. The second inconsistency is at |kTa| ∼ 1 where the experimental data

in each of the bi-disperse emulsions starts to increase again as |kTa| is reduced.

There is a second attenuation peak at |kTa| = 0.2 caused by the larger particles.

This is not shown in figure 6.8 as it is outside the range of the instrumentation.

However, the experimental system is not purely bi-disperse and there will be a

spread of particle sizes around 900nm and 100nm, which will cause a spreading

of the attenuation peaks. So the increase in attenuation at lower |kTa| may be

caused by particles between 100nm and 900nm.

Using the two particle weak thermal scattering solution for bi-disperse emul-

sions does provide an improvement over the single particle weak thermal scat-

tering theory, however it suffers from the same problems as the mono-disperse

solution. Again we can speculate that this is due to considering only pair thermo-

acoustic interactions between particles, where as for higher concentrations, a par-

ticle is likely to be close to more than one other particle, thus creating different

scattering behaviour. Another consideration is that for bi-disperse colloidal dis-

persions, the particles maybe not be simply being mixed uniformly. Instead, it

is possible that the smaller particles are drawn preferentially towards the larger
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particles.

The final set of experiments looked at concentration variations in samples over

a period of time due to creaming, described in section 3.2. Each of the figures 6.9–

6.13, uses the velocity profile measurement to calculate a predicted concentration.

This is then used with the two particle weak thermal scattering theory to produce

an attenuation, which is compared with the experimentally measured attenuation.

For reference the results with the single weak thermal scattering method approach

from figures 3.15, 3.19, 3.23, 3.27 and 3.31 are reproduced here.

We find in figure 6.9 that the new prediction provides a closer match com-

pared to the experiential data. This is consistent with figure 6.8 as at |kT b| ≈ 11.3

we see the two particle weak thermal scattering theory gives a better prediction.

However, in each of the other samples, we find little change compared to the single

weak thermal scattering theory. This is because |kTa| ≈ 2.1, we can see in region

in figure 6.8 where the peak of the attenuation curve that there in negligible dif-

ference between the single and the two particle weak thermal scattering theories.

Therefore, it can be seen that two particle weak thermal scattering theory does

not significantly improve the attenuation prediction for 100nm particles.

6.5 Discussion

Overall, we can see that using a two particle weak thermal scattering provides

some improvements over using single scattering theory, however, this method does

not provide a definitive solution to the problem. While it does have some limita-

tions, it has provided a good step in addressing some of the previous problem.

Using a two particle approach does change the attenuation curves shown in

figures 6.5 and 6.8, in qualitative agreement with trends seen in the experimental

data, such as the decrease in attenuation levels at lower frequencies. By account-

ing for the thermal field interactions between close pairs of particles, we are able

to explan the reduction in attenuation at lower frequencies. This approximation

works best at intermediate concentrations where the interactions are pairwise,

while at higher concentrations it starts to under predict the levels of attenuation,

due to the neglect of three and four particle interactions.

This method also provides some of the peak shift in the attenuation curve
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Figure 6.9

Acoustiscan comparison of the single sphere (top) and two sphere

(bottom) weak thermal scattering attenuation prediction and

measurement of 30% 900 nm hexadecane in water over 37 days.
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Figure 6.10

Acoustiscan comparison of the single sphere (top) and two sphere

(bottom) weak thermal scattering attenuation predictions and

measurement of 30% 100 nm hexadecane in water over 37 days.
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Figure 6.11

Acoustiscan comparison of the single sphere (top) and two sphere

(bottom) weak thermal scattering attenuation prediction and

measurement of 15% 900nm and 15% 100nm hexadecane in water

over 37 days.
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Figure 6.12

Acoustiscan comparison of the single sphere (top) and two sphere

(bottom) weak thermal scattering attenuation prediction and

measurement of 10% 900nm and 10% 100nm hexadecane in water

over 37 days.
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Figure 6.13

Acoustiscan comparison of the single sphere (top) and two sphere

(bottom) weak thermal scattering attenuation prediction and

measurement of 7.5% 900nm and 7.5% 100nm hexadecane in water

over 37 days.
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seen in the experimental data in figures 6.5 and 6.8. This again is due to the

modelling of two particle close together, allowing the coupling between the fields

to act like a single larger particle rather than two smaller particles.

However, the model is limited in a number of ways which could have been

the cause of the inconsistencies between the model and the measured data. One

consideration is that there are other effects occurring apart from thermo-acoustic

effects, notably visco-inertial effects. While care was take in choosing materials

where this effect was not prominent, it can not be completely removed from a

system.

Another problem is that only pair interactions between particles are consid-

ered. While this is reasonable for lower concentrations as the particles are far

apart, as the concentration increases the number of particles close to a single

particle will increase, there is an increased likelihood of three or more particle

clusters giving rise to a different scattering coefficient than just considering the

summation of the different pair combinations within that three particle group.

This may also explain why the two particle weak thermal scattering method

on bi-disperse colloids does not fully capture the scattering seen in experiments.

As well as multiple particle clusters, the difference in size of the particle may

have caused structural changes, such as the bigger particles attracting the smaller

particles to it, creating a thermal effect of a single larger particle, or the smaller

particles “cloaking” the bigger particle. Again this could be scope for further

research, in particular into particle structuring in colloidal suspensions.
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Chapter 7

Sedimentation detection in a pipe

7.1 Introduction

In the modern industrial world, pipes play an important role in the transport

of fluids. They are vital in numerous industries from fluid and gas distribution

[77–79], sewage drainage [80], manufacturing and mixing. When pipes are used

to transport multiphase fluids, there are a number of processes, interactions and

reactions that can happen inside a pipe; sedimentation at the bottom of the

pipe, scale forming on the inner pipe wall, the material in the pipe completing

a chemical reaction, the materials in the pipe forming a colloid, bubbles in the

flow, demixing, or even blockages. While some of these situations are desirable,

others can lead to productivity loss, from inefficient flow within the pipe, or even

having to stop production altogether.

It is necessary to be able to determine what the current fluid and flow condi-

tions within pipe are. However, current methods to determine this are less than

desirable, as they may require physical removal of sections of pipe to inspect the

interior. This technique also does not tell you any information about the flow

when any process is taking place. Light scattering techniques could be used to

determine information about the inside of the pipe, however, this would require

the manufacture of specialist pipe sections with the apparatus built in to the

pipe wall and cannot be used for bulk property determination in opaque mate-

rials. Generally this method is impractical due to cost, and retrofitting to an
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existing plant would require the halting of any process during installation. Fur-

thermore, this system would only allow measurement on this particular section

of pipe. Using ultrasound for this problem has many advantages, as ultrasound

can penetrate most pipe walls, so transducers can be mounted on the outside of

any pipe in use. As no specialist section of pipe is required, costs can be reduced

and the system can be used on any section of pipe, allowing for greater flexibility.

Ultrasonic techniques are currently widely used in the inspection of pipe walls,

for the detection of flaws on the surface or subsurface [81], so ultrasonic detection

of behaviour inside the pipe could be developed from these systems.

In this chapter, we develop an ultrasonic technique for determining the state

of the fluid inside of a pipe. We expand on the work of Soe et al. [82] and

Lee [83] by introducing a pair of transducers and that can be rotated around

the pipe to give a detialed picture of the fluid structure within the pipe. We

first look at the theoretical background for the problem, bringing together the

ideas from chapter 6. This will be compared to modelling work completed using

COMSOL Multiphysics. Lastly, we compare both models with experimental data

on a 25.4mm diameter stainless steel pipe, with a silica in water suspension

provided by Luis Martin de Juan from Procter and Gamble Newcastle Innovation

Centre.

7.2 Experimental methods

The measurement system used was a commercial ultrasonic transmitter, receiver

and pre-amplifier system, known as a US-Key, manufactured by Lecoeur Elec-

tronique, France. The system can be seen in figure 7.1. This system is mounted

on a section steel of pipe, 25.4mm in diameter with a 1.6mm thickness. This has

been capped on one end and has a cap leading to rubber tubing on the other end

to prevent any build up of pressure. One pair of transducers (Olympus M1057,

manufactured by Olympus NDT Inc., Massachusetts, USA) with a central fre-

quency of 5MHz were used. These transducers were placed in a bespoke holder

which applies a constant pressure to each transducer through the use of springs

and allows the transducer pair to be freely rotated around the pipe. Between the

transducer and the pipe wall, an acoustic coupling gel, Sonotech Soundsafe R©,
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manufactured by Magnaflux, Illinois, USA, was applied. The gel is also used as

a lubricant, which allows the smooth rotation of the holder. The transducers are

connected to the US-Key, which in turn was connected via USB to a computer

running MATLAB that both controls the pulse transmission and processes the

signal received from the transducers. A pulse is sent from one, usually the lower

of the two transducers, into the pipe. The signal is measured at both transducers,

which allows for measurement of both the reflected and transmitted signal. This

allows for more accurate measurement of time of flight and attenuation of the

pulses. To measure the data, the time difference between each pulse received and

the maximum amplitude of these pulses is measured, using the pitch and catch,

pulse-echo techniques described in section 1.2.1. These values are calculated using

the US-Key’s supplied code. Using multiple reflections allows a more accurate

calculation of the attenuation and time of flight.

The test fluids consisted of different concentrations of silica beads in water.

The silica beads are approximately 400-600 microns in size, from Jencons (Scien-

tific) Ltd, UK. Three different concentrations were used, 0%, 5% and 10%. The

samples were poured into the pipe, shaken up and allowed to settle over a few

minutes. The ultrasonic measurements were first obtained with the transducer

pair located at zero degrees to vertical, vertically aligned (θ = 0◦ in figure 7.2).

They were rotated in 5◦ steps, with measurements taken, until 90◦, the horizontal

alignment, where the angle measured is shown in figure 7.2.

7.3 Modelling of acoustic propagation in the pipe

experiment

To model the propagating compressional wave through a pipe, we will be mod-

elling in two ways. Firstly, one dimensional model based on the profile of the

pipe. Secondly, COMSOL Multiphysics [84] is used to create a numerical finite

element model. In each of the models we consider a steel pipe, with a solid layer

of silica to simulate the silica bead sediment layer inside the pipe, and then the

remainder of the interior of the pipe filled with water.
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Figure 7.1

Picture of physical set up ultrasonic system for use in the experiment

attached to a section of steel pipe.

7.3.1 Plane wave interaction at a surface boundary

When the ultrasonic pulse encounters a step change in acoustic properties, such as

at the edge of the pipe wall or sedimentation layer, a portion of the compressional

wave is reflected with some transmitted through the materials. The levels at

which this occurs is dependent on the acoustic impedance of each media, and the

angle of incidence. Acoustic impedance is defined as

Z = ρv. (7.1)

Let us consider a plane boundary at x = 0 separating two homogeneous materials

with acoustic impedance Z1 on the negative side and Z2 on the positive side of

the x axis. Now let us consider an incident wave, heading in a positive direction

toward the boundary at an angle θi, as in figure 7.3, of the form

pi = Aie
i(k1x cos θi+k1y sin θi−ωt), (7.2)
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Sediment layer

Transducers

θ Angle of rotation

y

x

Figure 7.2

Cross section of the pipe experiment set up. The transducer pair are

in yellow. The angle of rotation θ is measured from the vertical line

through the centre.

which, from the solution of Helmholtz equations, in turn, generates a reflected

wave,

pr = Are
−i(k1x cos θr−k1y sin θr+ωt), (7.3)

and a transmitted wave

pt = Ate
i(k2x cos θt+k2y sin θt−ωt), (7.4)

where the subscripts i, r and t represent the incident, reflected and transmitted

waves respectively; k1 = ω
v1

and k2 = ω
v2

are the wave numbers of materials 1 and

2; and A are the amplitudes of each wave.

We need to consider what happens to these waves at the boundary. For wave

transmissions, there are two boundary conditions that need to be met. Firstly,

the acoustic pressures need to be equal on both sides of the boundary, namely,

p− = p+ at x = 0, (7.5)
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Figure 7.3

Diagram showing how an acoustic wave is reflected and transmitted

when it incident on a boundary (at x = 0) between two materials.

where p− and p+ are the acoustic pressures on the negative and positive sides of

the x-axis respectively. Secondly, the normal components of the particle velocity

on both sides of the boundary must be equal,

1

ρ1

n · ∇p− =
1

ρ2

n · ∇p+ at x = 0, (7.6)

where n is the normal unit vector to the boundary. Substituting the first of these

gives

Aie
ik1y sin θi + Are

ik1y sin θr = Ate
ik2y sin θt , (7.7)

for all y. For this to hold, the exponents must all be equal, giving

sin θi = sin θr, (7.8)

and
sin θi
v1

=
sin θt
v2

, (7.9)
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known as Snell’s Law [85]. Thus equation (7.7) can be reduced to

1 +R = T, (7.10)

where R and T are the reflection and transmission coefficients defined as

R =
Ar
Ai

(7.11)

and

T =
At
Ai
. (7.12)

Now applying the boundary condition from equation (7.6) we obtain

1−R =
Z1

Z2

cos θt
cos θi

T, (7.13)

giving

R =
Z2 cos θi − Z1cosθt
Z2 cos θi + Z1cosθt

. (7.14)

This is known as the Rayleigh reflection coefficient [85]. It is also possible to

write cos θt in terms of θi by Snell’s Law (7.9),

cos θt =
(
1− sin2 θt

) 1
2 =

[
1−

(
v2

v1

)2

sin2 θi

] 1
2

. (7.15)

Three distinct cased for the reflected and transmitted waves can be deduced

from this equation.

1. If v1 > v2 then the angle of the transmitted wave is always less than that of

the transmitted wave, θi > θt.

2. For the case v1 < v2 we define the critical angle, θc, as

sin θc =
v1

v2

. (7.16)

When v1 < v2 and θi < θc the transmitted wave is at a larger angle from

the incident but still propagates into the medium.
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3. When v1 < v2 and θi > θc the the transmitted wave in equation (7.4), is of

the form

pt = Ate
µxei(k1 sin θi−ωt), (7.17)

where

µ = k2

[(
v2

v1

)2

sin2 θi − 1

] 1
2

. (7.18)

These waves travels in the y-direction, parallel to the boundary, but decays

exponentially. This is called an evanescent wave and no energy is transmit-

ted in to the material. Consequently, all the sound energy is reflected back

but with a phase given by

R = eiψ, (7.19)

where

ψ = 2 tan−1

(ρ1

ρ2

)√(
cos θc
cos θi

)2

− 1

 . (7.20)

This is known as total internal reflection.

Provided that the acoustic wave length is short compared with the pipe and

sediment layer thickness, we can approximate the propagation of sound as a plane

wave though a series of parallel slabs.

7.3.2 COMSOL Model definition

A computational model was created using COMSOL Multiphysics 4.4 to simulate

ultrasonic propagation through a pipe wall. One model was made that can be

used to simulate the pipe with different transducer positions, and varying amounts

of sediment. The model used the COMSOL transient pressure acoustics model

and was created in two dimensions. While the experiment would be carried out

in three dimensions, the small element size and simulation time step required to

accurately model this system in three dimensions would increase the run time for

the simulation to unacceptable levels with the current computational set-up. The

model report, generated by COMSOL multiphysics, can be found in appendix B.
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7.3.3 Geometry

The geometry of the COMSOL model can be found in figure 7.4. There is a cir-

cular cross section of a pipe with diameter of 25.4mm with a thickness of 1.6mm.

These dimensions are the same as the experimental pipe. Running through the

pipe there is a horizontal boundary. The distance, h, between the lowest point of

the interior wall, shown in figure 7.5, and the boundary is determined from the

concentration, φ, of the silica phase, using

h = r (1− cos(θ)) , (7.21)

where r is the internal radius of the pipe, and θ is determined by the Taylor

expansion of

φ =
1

2π
(2θ − sin(2θ)) . (7.22)

Attached on opposite sides of the pipe are two transducers. These are marked

on figure 7.4 by red and blue lines. They have width of 6.35mm, as the transducers

in the experiment have diameter of this amount. The red line transducer is the

transmitter and the blue line is the receiver. This pair of transducers can be

rotated freely, using the centre of the pipe as a point of rotation, at any angle

that is desired.

7.3.4 Acoustic wave propagation

To model the propagating wave, we used the Transient Pressure Acoustics physics

contained within the Acoustic module in COMSOL. A plane wave was emitted

from the transmitter transducer, shown by the red line in figure 7.4. The pulse

emitted at a frequency of 5MHz to match the experimental procedure. This pulse

then travels through the pipe and is measured at the receiver transducer, shown

by the blue line in figure 7.4. The pulse is also measured at the transmitter

transducer, so reflections in the system can also be measured. The measurements

are taken by using a probe along the boundary. The probe takes an integral across

the boundary to make a measurement, as in the case of acoustic transducers. The

acoustic properties of the materials, which include the longitudinal speed of sound

and the material’s density, can be found in table 2.1.
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Figure 7.4

Geometry of COMSOL Multiphysics model. A 25.4mm diameter pipe

with thickness of 1.6mm. A sedimentation layer is represented by the

horizontal line within the pipe. The transducers are highlighted with

the red and blue lines. The red line represents the transmitter and

the blue line the receiver. The orange arrow shows the direction of

the propagating ultrasound wave.
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Figure 7.5

The relationship between h and θ as described in equation (7.21),

where h is the shortest distance between the lowest point in the pipe

and the sediment layer, theta is the angle between the intersect

between the sediment layer and the pipe wall with the centre of the

pipe, and r is the radius of the pipe.
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7.3.5 Finite element mesh

A finite element mesh was used to discretise the configuration in figure 7.4. In

this model a free triangular mesh was used. As with all computer modelling a

trade off between accuracy and computation time is necessary, so we followed the

work by Watson et al. [86] by selecting the maximum element size emax to be

emax =
λ

10
, (7.23)

where λ is the wavelength. This allows for a wave to be sampled ten times in

each wavelength, which allows for wave form to still be accurately represented.

7.3.6 Solver configurations

There is only one solver configured in the model, a time dependant solver. The

time steps taken are important as they determine the duration and the accuracy

of the simulation. Following the work of Mylavarapu and Boddapati [87], we set

the time step, tstep, to be

tstep =
1

10f
, (7.24)

where f is the frequency.

7.3.7 Data analysis

The data generated by COMSOL Multiphysics is measured in the same way as in

the experiment in section 7.2, so direct comparisons can be made. The simulation

was run over a range of different transducer angles from 0 to 90 degrees. The

level of sedimentation was also varied between 0% and 10%.

The advantage of using a software package like COMSOL, is that it allows the

visualisation of the wave inside of the pipe, that we would not have otherwise.

As we can see in figure 7.6, a propagating wave after 10 microseconds has begun

to traverse the pipe. Also seen is the wave reflecting inside the sediment layer.
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Figure 7.6

COMSOL Multiphysics model of a ultrasonic propagating wave

though a pipe after 10 microseconds. This shows the total acoustic

pressure field in Pascals. The wave propagating through the pipe can

be seen, as well as the reflections in the sediment layer.
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7.4 Results

Figures 7.7 and 7.8 show the time of flight and attenuation data for 5% and

10%v/v silica in water comparisons of one dimensional model, COMSOL Multi-

physics model and experimental data.

Using a one dimensional model, the time of flight of the sections of the pipe,

in figure 7.7, containing water is calculated to be 15.35µs. The angle that the

sediment begins is at 36.3◦ and 46.6◦ for 5% and 10%, respectively. Without

sedimentation layer and only within the pipe, the cross sections of the pipe, both

the one dimensional model and the COMSOL Multiphysics are in good agreement

with the experimental data. However, as the transducers are rotated into the

region where the sediment starts to have an effect we see that the COMSOL

model deviates from the one dimensional model but providing a shorter time of

flight with a difference of up to 3µs. This could be due to the fact that a part

of the plane wave transmitted through the transducer spends more time in the

silica phase, in which the speed of sound is fast, before the wave is refracted

into the water phase, which reduces the total time the wave takes to reach the

receiving transducer. Both of these models deviate from the experimental data.

For the 5% data we see that the time of flight remains fairly constant as the

transducers are rotated with a steep drop at 10◦ to levels close to the COMSOL

model. This maybe due to how the silica beads settled in the pipe. In both the

models, we assumed that the silica layer was perfectly flat which may not be the

case in reality. For the 10% we see that the experimental data stays constant

until the transducer is rotated below 30◦ at this point the experimental data has

reasonable agreement quite well with the COMSOL multiphysics data, bar a few

exceptions. These may be caused by the fact that the silica beads in the pipe do

not form a solid block of silica, as the models assume. These variations in the

way that the beads are packed contribute towards the errors in the results.

The attenuation in figure 7.8 is calculated by comparing the measurements of

the pipe when it only contains water to when there is silica in the pipe. Thus the

attenuation in the sections of pipe which only contain water have a one dimen-

sional predication of 0Np as no extra attenuation occurs. As the transducer is

rotated below 36.3◦ and 46.6◦ for 5% and 10% respectively, the predicted attenua-
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Figure 7.7

Time of flight of an acoustic wave through a pipe section for a one

dimensional model (lines), COMSOL Multiphysics model (squares)

and experimental data (circles), for 5% and 10% concentrations. It

appears that the COMSOL model agrees with the experimental data,

within experimental error.
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Figure 7.8

Relative attenuation of an acoustic wave through a pipe section for a

one dimensional model (lines), COMSOL multiphysics model

(squares) and experimental data (circles), for 5% and 10%

concentrations. The COMSOL model agrees with the experimental

data for the 10% and has reasonable agreement with the 5% data.
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tion rises as it approaches 0◦ to 1.18Np and 1.91Np. The COMSOL Multiphysics

model follows the behaviour of the one dimensional models for high angles, but

below 50◦ for 5% we see that the attenuation begins to rise. This is due to the

fact that part of the transducer is starting to overlap with the region to the

pipe where sediment occurs. As the transducers are rotated to 0◦ the COMSOL

model behaves similarly to the one dimensional model, however with a slightly

increased attenuation level. This effect again happens with the 10% sample, with

the attenuation starting to rise below 60◦, and remaining slightly above the one

dimensional model as the angle decreases below 45◦. The experimental data fol-

lows a similar trend as the time of flight data, the 5% experiment agrees quite

well above the sediment layer, but as the transducers are rotated to lower an-

gles we find the measured attenuation is lower than both models predict until

5◦ where the attenuation becomes slightly higher than one dimensional model,

and agree with the COMSOL model. This again could be due to the assumption

that the sediment layer is completely level, but in reality this may not be the

case. The 10% data also agrees with the models in the region in which there is

only water. As we move to lower angles the experimental data also agrees well

with the COMSOL model, suggesting that the model indeed does provide a good

prediction of the attenuation.

7.5 Conclusions

The purpose of this chapter was to determine whether the use of an in-line pair

of rotating ultrasonic transducers can be used to increase its effectiveness in

sedimentation measurement of solids in a fluid flow within a pipe. As part of

this process we used a simple one dimensional mathematical model, which was

improved upon by creating a computational two dimensional model of the mon-

itoring system together with the sedimentation layer. This was used to evaluate

whether a model of this type would provide reasonable predictions of the system.

Experiments were carried out on a stainless steel pipe with a silica bead sediment

layer. The effect of the sediment layer on the time of flight and the attenuation

levels over different angles of the pipe were investigated.

The results of the two models show a decrease in the time of flight and an
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increase in the attenuation as the transducers were increasingly rotated into the

sediment layer, with these effects even greater for the COMSOL Multiphysics

model. The experimental results show a good quantitative comparison with the

COMSOL model data, especially for the 10% silica sediment layer sample. How-

ever, some variations from the models occurred, this is due to the model repre-

senting the sediment as a continuous layer of silica rather than a packed layer of

silica particles. Also, the assumption that the silica layer is perfectly flat may

have caused some errors within the prediction as well, as the uneven surface may

change the direction the compressional waves are refracted.

While the COMSOL model provided a good prediction of the experimental

data, to increase its accuracy a full three dimensional model could be designed,

as well as improvements to the properties of the silica sediment layer in regards

to spherical packing. However, the long computational times of acoustic propa-

gation models in COMSOL Multiphysics may prevent quick determination of the

sediment layer within a pipe.

While the models may have had some variation compared to the experiment,

we find that a pair of rotating transducers can be used as a tool in determining the

extent of sedimentation occurring. Further testing of different concentration levels

could be investigated to determine how small changes in the concentration effect

the time of flight and attenuation data, as the current results provide encouraging

results. To increase the functionality of the system it could be possible to include

multiple transducers. To provide a faster measuring system, as well as provide

opportunities for inverse methods for determining the contents of the pipe and

distribution of the sedimentation layer.
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Chapter 8

Discussion and conclusions

The aim of this thesis is to improve attenuation predictions of acoustic mea-

surements of colloidal suspensions at higher concentrations by considering the

thermoacoustic scattering overlap between neighbouring particles. This is moti-

vated by the needs of industry to be able to size particles in ever increasingly

concentrated systems that are optically opaque. Current theories provide good

results at low concentrations, but over predict scattering at higher concentrations.

Attempts to improve attenuation predictions have been made through incorpo-

rating the effects of multiple scattering, however, these do not fully capture the

thermoacoustic behaviour between close pairs of particles. The main results of

this thesis are:

• a new two particle scattering calculation for thermoacoustic scattering,

• incorporation of this new two-particle scattering calculations to improve

multiple scattering predictions by considering pair interactions,

• providing new experimental data on mono-and bi-disperse colloidal systems

in order to test theoretical predictions,

• developing an apparatus for in-line detection of sedimentation in pipes.

The purpose of this chapter is to briefly bring together the conclusions of the

different parts of the study, and to present the conclusions as a whole. From this,

suggestions for future research are considered.
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Experiments were carried out to obtain new data for mono- and bi-disperse

colloidal systems, in chapter 3. Comparing these to existing scattering theories,

described in chapter 1 showed that these approaches fail for systems of concen-

trations above 10%, in particular at lower frequencies. In chapter 1, we saw that

the thermal overlap between two particles, was most prominent at lower frequen-

cies. This was the motivation for developing an improved multiple scattering

calculation that resolves the thermal fields between particles. For this reason,

it was decided to study how the thermal overlaps between two particles behave,

and what implications these have on the acoustic measurements of a system as a

whole.

In chapters 4 and 5 we determined the thermoacoustic interactions between

pairs of particles. The method of solution followed the approach of Harlen et

al. [27] in constructing asymptotic expansions for values of |kca| � 1 where the

particle size is small compared with the acoustic wavelength but of the same order

as the thermal decay length, |kTa| ∼ 1, since these are the conditions found in

acoustic experiments. This is combined with the acoustic two particle scattering

model of Greengard and Rokhlin [47]. This was the first step in answering the

objective of this thesis.

The overlap of thermal fields when the particles are close together affected the

scattering coefficients at orders kc and (kc)
2 significantly. Although the thermal

terms do not come into effect until order k2
c , at order kc there is still a difference

between the single scattering coefficient and the two particle scattering coefficient

as the particles come close together due to interactions through the pressure.

This is important as these coefficients contribute to the leading order far field

scattering. More interesting is what happens to the second order terms, when

the thermal contributions take effect. As with the first order scattering term, the

difference between the single and two particle thermal coefficients, increased as

the particles get closer. However the sign of the difference changes with frequency

from being greater than to being less than the single particle case. The thermal

field around the pair of particles produces a scattering response similar to that of

a single larger particle even where the particles are not touching. As the second

order thermal coefficients impact on the second order acoustic coefficients this

suggests that thermoacoustic scattering has a large impact on the far field if the
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particles are close. We also noted how the different ratios in size between the

two particles affected the scattering coefficients. It was seen that a larger particle

has a greater impact on the scattering coefficients on a smaller particle, whereas

a small particle has little impact on a larger one. This could be because the

smaller particle is being “hidden” inside the larger particle’s thermal field. We can

speculate whether if we had many small particles surrounding a larger particle, as

would be the case if there are attractive colloidal forces the small particles would

“cloak” the larger particles, or would appear just one larger particle. However,

this is beyond the scope of this work.

The dependence of the scattering solution on the angle of the incident wave

compared to the axis of the line of centres of the two particles was considered

in chapter 5. The two main conclusions from this chapter are: that the most

additional scattering effects occurs when the particles are perpendicular to the

incident wave, and that the thermal part of the scattering in unaffected by the

angle of the incident wave. The case when the particles are orientated perpen-

dicular to the incident wave provides the greatest multiparticle scattering effect

as the first sphere shields the second sphere from the pressure field. However,

when they are parallel to the incident wave, the acoustic scattering from each

sphere can be accounted for from the single scattering result, and so at this order

multiple scattering does not need to be accounted for. In contrast the thermal

scattering is independent of orientation. The idea of the thermal scattering be-

ing independent of incident wave angle has been explored before by Pinfield [42].

In this paper she shows that the thermal incident wave generates an additional

compressional scattering term based on the zero order thermal field, which is in-

dependent of the incident wave angle. This is consistent with the findings in this

thesis.

In chapter 6, we consider how pair-wise interaction between particles can be

included in multiple scattering theory, such as the Lloyd and Berry [35] theory.

This method allows the inclusion of the modification to scattering due to all ther-

mal overlaps between particles. The results from the previous two chapters are

used to calculate a new effective wave number for a given system. Compared

with calculations based on scattering by an isolated particle the new two-sphere

weak thermal scattering provides lower predicted attenuation levels at the lower

197



frequencies. This is in agreement with the mono- and bi-disperse experimental

data gathered in chapter 3, and gives improved predictions at moderate concen-

trations, from 10% to 30%.

However, although it predicts qualitatively the peak shift that is found in

the experimental data it is not quantitative. This may be due to visco-inertial

effects which were not considered as part of this thesis. The more likely reason

is that each of the pairs of particles were considered independently, i.e. clusters

of greater than two spheres were not explicitly considered. It is not unreasonable

to assume if two particle close together provide a thermal field of that of a larger

single particle, then three particle close together could create a thermal field of

an even larger particle, which would in turn, shift the peak in the attenuation

prediction curve further.

Also, whilst the two particle weak thermal scattering solution improves the

predictions for higher concentrations compared with what the single weak ther-

mal scattering model provided, it is not particularly accurate at concentrations,

greater than 30%. Again, we suspect that this is due to only considering two

particle scattering, rather than clusters of larger numbers of particles.

Overall, each of the attenuation predictions at higher concentrations, while

observing the peak shift and the lowering of attenuation at lower frequencies, still

over predicted the levels of attenuation in a similar manner to the single weak

thermal scattering theory. Thus, the next step would be to consider scattering

from an ensemble of clusters of particles. The translation addition theorem ap-

proach could be used to develop a multiple particle scattering calculation, similar

to the singularity method [88].

While there are some limitations to the theory presented in this work, it does

provide a starting point for developing the theory of ultrasonic colloidal scattering

at higher concentrations, that can be extended in a number of ways. These include

the incorporation of visco-inertial effects into the system. While care was taken

to choose samples in this thesis that minimised this effect, there are many other

colloidal systems for which this must be considered. Other developments could

include investigating whether considering multiple particle systems can provide

a more effective prediction of a system. Multiple particle systems also could be

used to investigate structures within colloidal systems, such as those with charged
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particles.

In chapter 7, it was demonstrated that the rotating pair of transducers on a

pipe provided an effective way of detecting sedimentation inside a pipe. The two

simulations provided an effective way to interpret the changes in the sound veloc-

ity and attenuation as the sedimentation levels change. The simple plane wave

solution provides a rapid calculation that maybe of sufficient accuracy for many

applications. The full two-dimensional solution provided by the COMSOL Mul-

tiphysics model provided better results, but took longer to compute. The model

could be extended to a fully three dimensional system, however, computational

restrictions would still be an issue.

8.1 Summary of Conclusions

Overall, it can be seen that one can improve acoustic solutions to the particle

mixing problem in aqueous dispersions, by using thermoacoustics to look at the

pair interactions between particles, and while it does not provide a complete

solution to the problem, it does provide a good foundation and an increased

understanding for expanding the solution further, to one day solve the problem

completely. In summary the principal outputs of the thesis are:

• A full solution of thermoacoustic scattering between a pair of particles, both

in-line and at a general angle to the incident wave.

• An improved multiple scattering prediction for concentrations between 10%

and 30%.

– By introducing two particle scattering with thermoacoustic effects

– Improving multiple scattering theory by considering all pair thermo-

acoustic interactions

• Obtained new experimental data on bi-disperse emulsions.

• Effectively implemented an rotating pair of ultrasonic transducers on a pipe

to detect sedimentation in-line for an opaque suspension.
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Appendices

A Wigner 3− j Symbols

The Wigner 3− j symbols are defined by Edmonds [89] as(
j1 j2 j3

m1 m2 m3

)
. (A.1)

The values j1, j2 and j3, known as angular momenta, are all non-negative integers

or one is a non-negative integer and the other two are half-odd positive integers.

The three values represent three sides of a triangle, as shown in figure A.1, and

thus must also satisfy the triangle conditions

|ja − jb| ≤ jc ≤ ja + jb, (A.2)

where a, b and c are any permutation of 1, 2 and 3. The values m1,m2 and m3 are

known as projective quantum numbers, and shown in figure A.1, and are given by

ma = −ja, ja + 1, · · · , ja − 1, ja, (A.3)

for a = 1, 2, 3, and must satisfy

m1 +m2 +m3 = 0. (A.4)

If either conditions from equations (A.2) and (A.4) are violated then(
j1 j2 j3

m1 m2 m3

)
= 0. (A.5)
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Figure A.1

Visual representation of ja angular momenta and ma projective

quantum numbers for a = 1, 2, 3.

Otherwise,(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3

√
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

j1 + j2 + j3 + 1)!

×
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!

×
∑
s

(−1)s

s!(j1 + j2 − j3 − s)!(j1 −m1 − s)!(j2 +m2 − s)!(j3 − j2 +m1 + s)!(j3 − j1 −m2 + s)!
,

(A.6)

where the summation value s is for all non-negative integers, such that none of

the arguments contained in the factorials are negative.
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B COMSOL Multiphysics Report

The following appendix is the report generated by COMSOL multiphysics.

PipeUltrasoundParametricsweep.mph

B.1 Global Definitions

B.1.1 Parameters 1

Name Expression Description

freq 5e6[Hz] Frequency

v steel 6100[m/s] Speed of sound in steel

v water 1497[m/s] Speed of sound in water

v silica 5960[m/s] Speed of sound in silica

lambda steel v steel/freq Wavelength in steel

lambda water v water/freq Wavelength in water

lambda silica v silica/freq Wavelength in silica

meshsize steel lambda steel/20 Mesh size in steel

meshsize water lambda water/20 Mesh size in water

meshsize silica lambda silica/20 Mesh size in silica

timestep 1/(freq/20) Time step size

probeangle 20.0 Probe angle rotation

Sed 2.160241634627 Sedimentation height [mm]

Table B.1

Parameters.
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B.1.2 Functions

B.1.2.1 Waveform 1

Function name pulse

Function type Wave

Figure B.1

Waveform 1.

Name Value

Function name pulse

Table B.2

Function name.
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Name Value

Angular frequency 2*pi*freq

Table B.3

Parameters.

B.1.2.2 Rectangle 1

Function name rect

Function type Rectangle

Figure B.2

Rectangle 1.

Name Value

Function name rect

Table B.4

Function name.
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Name Value

Lower limit 0

Upper limit 3/freq

Table B.5

Parameters.

Name Value

Size of transition zone Off

Table B.6

Smoothing.

B.1.2.3 Waveform 2

Function name wv2

Function type Wave

Figure B.3

Waveform 2.
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Name Value

Angular frequency 2*pi*freq/6

Table B.7

Parameters.

B.1.2.4 Analytic 1

Function name an1

Function type Analytic

Figure B.4

Analytic 1.

Name Value

Expression rect(t)*wv2(t)*pulse(t)

Arguments t

Table B.8

Definition.
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B.1.2.5 Interpolation 1

Function name sedheight

Function type Interpolation

Figure B.5

Interpolation 1.

B.2 Component 1 (comp1)

B.2.1 Definitions

B.2.1.1 Probes

Top Probe

Probe type Boundary probe
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Geometric entity level Boundary

Selection Boundaries 2, 4

Table B.9

Selection.

Name Value

Probe variable top

Table B.10

Probe settings.

Name Value

Expression actd.p t

Table and plot unit Pa

Description Total acoustic pressure field

Table B.11

Expression.

Name Value

Output table Probe Table 1

Plot window Probe Plot 1

Table B.12

Table and window settings.
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Figure B.6

Selection.

Bottom Probe

Probe type Boundary probe

Geometric entity level Boundary

Selection Boundaries 7-8

Table B.13

Selection.

Name Value

Probe variable bottom

Table B.14

Probe settings.
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Name Value

Expression actd.p t

Table and plot unit Pa

Description Total acoustic pressure field

Table B.15

Expression.

Name Value

Output table Probe Table 1

Plot window Probe Plot 1

Table B.16

Table and window settings.

Figure B.7

Selection.
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B.2.1.2 Coordinate Systems

Boundary System 1

Coordinate system type Boundary system

Identifier sys1

Name Value

Coordinate names {t1, n, to}
Create first tangent direction from Global Cartesian

Table B.17

Settings.

B.2.2 Geometry 1

Figure B.8

Geometry 1.
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Length unit m

Angular unit deg

Table B.18

Units.

Property Value

Space dimension 2

Number of domains 7

Number of boundaries 25

Number of vertices 20

Table B.19

Geometry statistics.

B.2.2.1 Circle 1 (c1)

Name Value

Position {0, 0}
Radius (25.4/2)[mm]

Table B.20

Position.

B.2.2.2 Circle 2 (c2)

Name Value

Position {0, 0}
Radius ((25.4 - 1.6)/2) [mm]

Table B.21

Position.
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B.2.2.3 Square 1 (sq1)

Name Value

Position {-(0.25/2)[inch], -(25.4/2)[mm]}
Side length 0.25[inch]

Side length 0.25[inch]

Table B.22

Position.

B.2.2.4 Square 2 (sq2)

Name Value

Position {-(0.25/2)[inch], ((25.4/2))[mm] -(0.25)[inch]}
Side length 0.25[inch]

Side length 0.25[inch]

Table B.23

Position.

B.2.2.5 Circle 3 (c3)

Name Value

Position {0, 0}
Radius (25.4/2)[mm]

Table B.24

Position.
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B.2.2.6 Circle 4 (c4)

Name Value

Position {0, 0}
Radius ((25.4 - 1.6)/2) [mm]

Table B.25

Position.

B.2.2.7 Rotate 1 (rot1)

Name Value

Rotation 20

Point on axis of rotation {0, 0}

Table B.26

Selections of resulting entities.

B.2.2.8 Square 3 (sq3)

Name Value

Position {0, Sed[mm]}
Base Center

Side length (25.4 - 1.6)[mm]

Side length (25.4 - 1.6)[mm]

Table B.27

Position.
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B.2.2.9 Circle 5 (c5)

Name Value

Position {0, 0}
Radius ((25.4 - 1.6)/2) [mm]

Table B.28

Position.

B.2.3 Materials

B.2.3.1 Steel

Figure B.9

Steel.
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Geometric entity level Domain

Selection Domains 1, 4-7

Table B.29

Selection.

Name Value Unit

Density 8050 kg/mˆ3

Speed of sound v steel m/s

Table B.30

Material parameters.

Description Value

Density 8050

Speed of sound v steel

Table B.31

Basic Settings.
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B.2.3.2 Water

Figure B.10

Water.

Geometric entity level Domain

Selection Domain 2

Table B.32

Selection.

Name Value Unit

Density 997 kg/mˆ3

Speed of sound v water m/s

Table B.33

Material parameters.
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Description Value

Density 997

Speed of sound v water

Table B.34

Basic Settings.

B.2.3.3 Silica

Figure B.11

Silica.

Geometric entity level Domain

Selection Domain 3

Table B.35

Selection.
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Name Value Unit

Density 2650 kg/mˆ3

Speed of sound v silica m/s

Table B.36

Material parameters.

Description Value

Density 2650

Speed of sound v silica

Table B.37

Basic Settings.

B.2.4 Pressure Acoustics, Transient (actd)

Figure B.12

Pressure Acoustics, Transient.
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Geometric entity level Domain

Selection Domains 1-7

Table B.38

Selection.

Equations

1

ρc2

∂2pt
∂t2

+∇ ·
(
−1

ρ
(∇pt − qd)

)
= Qm, (B.1)

pt = p+ pb, (B.2)

Description Value

Pressure Quadratic

Value type when using

splitting of complex

variables

Complex

Out-of-plane wave number 0

Reference pressure for the

sound pressure level
Use reference pressure for air

Table B.39

Settings.

COMSOL Multiphysics

Acoustics Module

Table B.40

Used products.
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B.2.4.1 Transient Pressure Acoustics Model 1

Figure B.13

Transient Pressure Acoustics Model 1.

Geometric entity level Domain

Selection Domains 1-7

Table B.42

Selection.

Equations (B.1) and (B.2).

Settings

Description Value

Fluid model Linear elastic

Density From material

Speed of sound From material

Table B.43

Settings.
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Property Material Property group

Density Steel Basic

Speed of sound Steel Basic

Density Water Basic

Speed of sound Water Basic

Density Silica Basic

Speed of sound Silica Basic

Table B.44

Properties from material.

Table B.45

Variables.

Name Expression Unit Description Selection

actd.p s actd.p t-actd.p b Pa
Scattered pres-

sure field

Domains

1-7

actd.p b 0 Pa
Background pres-

sure field

Domains

1-7

actd.rho model.input.rho kg/mˆ3 Density
Domains 1,

4-7

actd.rho model.input.rho kg/mˆ3 Density Domain 2

actd.rho model.input.rho kg/mˆ3 Density Domain 3

actd.c model.input.c m/s Speed of sound
Domains 1,

4-7

actd.c model.input.c m/s Speed of sound Domain 2

actd.c model.input.c m/s Speed of sound Domain 3

actd.Q 0 1/sˆ2 Monopole source
Domains

1-7

actd.qx 0 N/mˆ3
Dipole source, x

component

Domains

1-7

Continued on next page
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Table B.45 – Continued from previous page

Name Expression Unit Description Selection

actd.qy 0 N/mˆ3
Dipole source, y

component

Domains

1-7

actd.qz 0 N/mˆ3
Dipole source, z

component

Domains

1-7

actd.q totx actd.qx N/mˆ3

Total dipole

source, x compo-

nent

Domains

1-7

actd.q toty actd.qy N/mˆ3

Total dipole

source, y compo-

nent

Domains

1-7

actd.q totz actd.qz N/mˆ3

Total dipole

source, z compo-

nent

Domains

1-7

actd.nacc 0 m/sˆ2
Inward accelera-

tion

Boundaries

1-25

actd.FAco

PerAreax
actd.p t*actd.nx N/mˆ2

Acoustic load per

unit area, x com-

ponent

Boundaries

1-25

actd.FAco

PerAreay
actd.p t*actd.ny N/mˆ2

Acoustic load per

unit area, y com-

ponent

Boundaries

1-25

actd.FAco

PerAreaz
actd.p t*actd.nz N/mˆ2

Acoustic load per

unit area, z com-

ponent

Boundaries

1-25

actd.p t p+actd.p b Pa
Total acoustic

pressure field

Domains

1-7

actd.c c actd.c m/s
Complex speed of

sound

Domains

1-7

Continued on next page
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Table B.45 – Continued from previous page

Name Expression Unit Description Selection

actd.rho c actd.rho kg/mˆ3 Complex density
Domains

1-7

actd.Z actd.rho c*actd.c c Pa*s/m

Characteristic

acoustic

impedance

Domains

1-7

actd.gradpx d(actd.p t,x) N/mˆ3

Gradient of the

total pressure, x

component

Domains

1-7

actd.gradpy d(actd.p t,y) N/mˆ3

Gradient of the

total pressure, y

component

Domains

1-7

actd.gradpz 0 N/mˆ3

Gradient of the

total pressure, z

component

Domains

1-7

actd.grad

testpx
test(px) N/mˆ3

Help variable for

equations, x com-

ponent

Domains

1-7

actd.grad

testpy
test(py) N/mˆ3

Help variable for

equations, y com-

ponent

Domains

1-7

actd.grad

testpz
0 N/mˆ3

Help variable for

equations, z com-

ponent

Domains

1-7

actd.ax

-(actd.gradpx-

actd.q totx)

/actd.rho c

m/sˆ2

Local accelera-

tion, x compo-

nent

Domains

1-7

actd.ay

-(actd.gradpy-

actd.q toty)

/actd.rho c

m/sˆ2

Local accelera-

tion, y compo-

nent

Domains

1-7

Continued on next page
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Table B.45 – Continued from previous page

Name Expression Unit Description Selection

actd.az

-(actd.gradpz-

actd.q totz)

/actd.rho c

m/sˆ2
Local accelera-

tion, z component

Domains

1-7

actd.a inst

sqrt(real(actd.ax)ˆ2

+real(actd.ay)ˆ2

+real(actd.az)ˆ2)

m/sˆ2
Instantaneous lo-

cal acceleration

Domains

1-7

actd.absp
sqrt(realdot(actd.p t

,actd.p t))
Pa Absolute pressure

Domains

1-7

actd.aipx actd.ax m/sˆ2

In-plane acceler-

ation, x compo-

nent

Domains

1-7

actd.aipy actd.ay m/sˆ2

In-plane acceler-

ation, y compo-

nent

Domains

1-7

actd.aipz 0 m/sˆ2
In-plane accelera-

tion, z component

Domains

1-7

actd.aopx actd.ax m/sˆ2

Out-of-plane ac-

celeration, x com-

ponent

Domains

1-7

actd.aopy actd.ay m/sˆ2

Out-of-plane ac-

celeration, y com-

ponent

Domains

1-7

actd.aopz actd.az m/sˆ2

Out-of-plane ac-

celeration, z com-

ponent

Domains

1-7

actd.aip

inst

sqrt(real(actd.aipx)ˆ2

+real(actd.aipy)ˆ2

+real(actd.aipz)ˆ2)

m/sˆ2
Instantaneous in-

plane acceleration

Domains

1-7

Continued on next page
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Table B.45 – Continued from previous page

Name Expression Unit Description Selection

actd.aop

inst

sqrt(real(actd.aopx)ˆ2

+real(actd.aopy)ˆ2

+real(actd.aopz)ˆ2)

m/sˆ2

Instantaneous

out-of-plane

acceleration

Domains

1-7

actd.diss

visc
0 W/mˆ3

Viscous power

dissipation den-

sity

Domains

1-7

actd.diss

therm
0 W/mˆ3

Thermal power

dissipation den-

sity

Domains

1-7

actd.diss

tot

actd.diss visc

+actd.diss therm
W/mˆ3

Total thermo-

viscous power

dissipation den-

sity

Domains

1-7

Name Shape function Unit Description Shape frame Selection

p
Lagrange

(Quadratic)
Pa Pressure Material Domains 1-7

Table B.46

Shape functions.
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Weak expression Integration frame Selection

(-actd.gradpx

*actd.gradtestpx-

actd.gradpy

*actd.gradtestpy-

actd.gradpz

*actd.gradtestpz-

d(d(actd.p t,t),t)

*test(p)/actd.c cˆ2)

/actd.rho c

Material Domains 1-7

actd.delta*actd.Q*test(p) Material Domains 1-7

actd.delta*(actd.q totx

*actd.gradtestpx

+actd.q toty

*actd.gradtestpy

+actd.q totz

*actd.gradtestpz)/actd.rho c

Material Domains 1-7

Table B.47

Weak expressions.
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B.2.4.2 Sound Hard Boundary (Wall) 1

Figure B.14

Sound Hard Boundary (Wall) 1.

Geometric entity level Boundary

Selection No boundaries

Table B.48

Selection.

Equations

−n ·
(
−1

ρ
(∇pt − qd)

)
= 0. (B.3)
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B.2.4.3 Initial Values 1

Figure B.15

Initial Values 1.

Geometric entity level Domain

Selection Domains 1-7

Table B.49

Selection.

Description Value

Pressure 0

Pressure, first time derivative 0

Table B.50

Settings.
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B.2.4.4 Plane Wave Radiation 1

Figure B.16

Plane Wave Radiation 1.

Geometric entity level Boundary

Selection Boundaries 7-8

Table B.51

Selection.

Equations

−n ·
(
−1

ρ
(∇pt − qd)

)
+

1

ρ

(
1

c

∂p

∂t

)
= Qi. (B.4)

Name Expression Unit Description Selection

actd.p i 0 Pa Incident pressure field Boundaries 7-8

Table B.52

Variables.
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Weak expression
Integration

frame
Selection

test(p)*(-pt/actd.c+(d(actd.p i,t)

+actd.c*(actd.nx*d(actd.p i,x)

+actd.ny*d(actd.p i,y)))/actd.c

+actd.nx*mean(d(actd.p b,x))

+actd.ny*mean(d(actd.p b,y))

+actd.nz*mean(0))/actd.rho

Material Boundaries 7-8

Table B.53

Weak expressions.

Incident Pressure Field 1

Figure B.17

Incident Pressure Field 1.
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Geometric entity level Boundary

Selection Boundaries 7-8

Table B.54

Selection.

Equations (B.4) and

Qi =
1

ρ

(
1

c

∂pi
∂t

)
+ n · 1

ρ
∇pi. (B.5)

Name Expression Unit Description Selection

actd.p i an1(t) Pa Incident pressure field Boundaries 7-8

Table B.55

Variables.

B.2.4.5 Plane Wave Radiation 2

Figure B.18

Plane Wave Radiation 2.
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Geometric entity level Boundary

Selection Boundaries 2, 4

Table B.56

Selection.

Equation (B.4).

Name Expression Unit Description Selection

actd.p i 0 Pa Incident pressure field Boundaries 2, 4

Table B.57

Variables.

Weak expression
Integration

frame
Selection

test(p)*(-pt/actd.c +(d(actd.p i,t) +actd.c

*(actd.nx*d(actd.p i,x)

+actd.ny*d(actd.p i,y)))/actd.c

+actd.nx*mean(d(actd.p b,x))

+actd.ny*mean(d(actd.p b,y))

+actd.nz*mean(0))/actd.rho

Material Boundaries 2, 4

Table B.58

Weak expressions.
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B.2.4.6 Impedance 1

Figure B.19

Impedance 1.

Geometric entity level Boundary

Selection Boundaries 1, 5-6, 9-11, 17-18, 21, 25

Table B.59

Selection.

Equation

−n ·
(
−1

ρ
(∇pt − qd)

)
=

1

Zi

∂pt
∂t

(B.6)
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Name Expression Unit Description Selection

actd.Zi 1.2[kg/mˆ3]*343[m/s] Pa*s/m Impedance

Boundaries 1,

5-6, 9-11, 17-18,

21, 25

Table B.60

Variables.

Weak expression Integration frame Selection

-mean(d(actd.p t,t))*test(p)/actd.Zi Material

Boundaries 1,

5-6, 9-11, 17-18,

21, 25

Table B.61

Weak expressions.

B.2.5 Mesh 1

Property Value

Minimum element quality 2.647E-5

Average element quality 0.9819

Triangular elements 154934

Edge elements 2604

Vertex elements 20

Table B.62

Mesh statistics.
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Figure B.20

Mesh 1.

B.2.5.1 Size (size)

Name Value

Maximum element size meshsize water

Minimum element size 7.62E-6

Curvature factor 0.3

Maximum element growth rate 1.3

Custom element size Custom

Table B.63

Settings.
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B.2.5.2 Free Triangular 1 (auto f1)

Geometric entity level Remaining

Table B.64

Selection.

B.3 Study 1

B.3.1 Parametric Sweep

probeangle

Sed

Table B.65

Parameter names.

Parameter names Parameter value list

probangle range(0,10,90)

Sed 3.473758029929, 2.160241634627 , 0

Table B.66

Parameters.

B.3.2 Time Dependent

Property Value

Include geometric nonlinearity Off

Table B.67

Study settings.

Times: range(0,8.0e-5/14,8.0e-5)
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Geometry Mesh

Geometry 1 (geom1) mesh1

Table B.68

Mesh selection.

Physics Discretization

Pressure Acoustics, Transient (actd) physics

Table B.69

Physics selection.

B.3.3 Solver Configurations

B.3.3.1 Solver 1

Compile Equations: Time Dependent (st1)

Name Value

Use study Study 1

Use study step Time Dependent

Table B.70

Study and step.

Dependent Variables 1 (v1)

Name Value

Defined by study step Time Dependent

Table B.71

General.
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Name Value

Solution Zero

Table B.72

Initial values of variables solved for.

Name Value

Solution Zero

Table B.73

Values of variables not solved for.

Pressure (comp1.p) (comp1 p)

Name Value

Field components comp1.p

Table B.74

General.

Time-Dependent Solver 1 (t1)
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Name Value

Defined by study step Time Dependent

Time

{0, 5.7142857142857145E-6,

1.1428571428571429E-5,

1.7142857142857145E-5,

2.2857142857142858E-5,

2.857142857142857E-5,

3.428571428571429E-5, 4.0E-5,

4.5714285714285716E-5,

5.142857142857143E-5,

5.714285714285714E-5,

6.285714285714286E-5,

6.857142857142858E-5,

7.428571428571429E-5, 8.0E-5}
Relative tolerance 0.0001

Table B.75

General.

Name Value

Method Generalized alpha

Table B.76

Time stepping.

Fully Coupled 1 (fc1)

Name Value

Linear solver Direct

Table B.77

General.
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B.4 Results

B.4.1 Data Sets

B.4.1.1 Solution 1

Name Value

Solution Solver 1

Component Save Point Geometry 1

Table B.78

Solution.

Figure B.21

Data set: Solution 1.

B.4.1.2 Probe Solution 2
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Name Value

Solution Solver 1

Component Save Point Geometry 1

Table B.79

Solution.

Figure B.22

Data set: Probe Solution 2.

B.4.1.3 Top Probe

Geometric entity level Boundary

Selection Boundaries 2, 4

Table B.80

Selection.

244



Name Value

Data set Probe Solution 2

Table B.81

Data.

Name Value

Method Integration

Integration order 4

Integration order On

Table B.82

Settings.

B.4.1.4 Bottom Probe

Geometric entity level Boundary

Selection Boundaries 7-8

Table B.83

Selection.

Name Value

Data set Probe Solution 2

Table B.84

Data.
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Name Value

Method Integration

Integration order 4

Integration order On

Table B.85

Settings.

B.4.2 Plot Groups

B.4.2.1 Acoustic Pressure (actd)

Figure B.23

Time=8e-5 s Surface: Total acoustic pressure field (Pa).
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B.4.2.2 Probe 1D Plot Group 2

Figure B.24

Probe 1D Plot Group 2.
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