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Abstract

The objective of this thesis is threefold:

Firstly, to deal with the deterministic problem consisting of non-linear heat

equation of gradient type. It comes out as projecting the Laplace operator with

Dirichlet boundary conditions and polynomial nonlinearly of degree 2n − 1, onto

the tangent space of a sphere M in a Hilbert space H. We are going to deal with

questions of the existence and the uniqueness of a global solution, and the invariance

of manifold M i.e. if the suitable initial data lives on M then all trajectories of

solutions also belong to M .

Secondly, to generalize the deterministic model to its stochastic version i.e.

stochastic non-linear heat equation driven by the noise of Stratonovich type. We

are going to show that if the suitable initial data belongs to manifold M then

M -valued unique global solution to the generalized stochastic model exists.

Thirdly, to investigate the small noise asymptotics of the stochastic model. A

Freidlin-Wentzell large deviation principle is established for the laws of solutions of

stochastic heat equation on Hilbert manifold.

Keywords: evolution equations, projections, Hilbert manifold, Stochastic

evolution equations, large deviation principle, weak convergence approach.
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Introduction

Suppose that H is a Hilbert space and M is its unit sphere. Let f be a vector field

on H (possibly only densely defined) such that the initial value problem

du

dt
= f (u(t)) , t ≥ 0, (0.0.1)

u(0) = x,

has a unique global solution for every x ∈ H. The semi-flow generated by above

initial value problem, denoted by (ϕ(t, x))t≥0 , in general does not stay on M even

though x ∈ M . The reason for this is that, in general, the vector field f is not

tangent to M i.e. does not satisfy the following,

f (x) ∈ TxM, x ∈ D(f) ∩M. (0.0.2)

However, it is easy to modify f to a new f̃ such that property (0.0.2) is satisfied.

This can be achieved by using a map π : H → L(H,H)

π(x) = {H 3 y 7→ y − 〈x, y〉x ∈ H} ∈ L(H,H), for every x ∈ H.

The remarkable property of π is that when x ∈M, the linear map π(x) : H → TxM

is the orthogonal projection so that vector field f̃ defined by

f̃ : D(f) 3 x 7→ π(x) [f(x)] ∈ H. (0.0.3)
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It is indeed easy to see that whenever x ∈M ∩D(f) we have,〈
f̃(x), x

〉
= 〈π(x) [f(x)] , x〉

= 〈f(x)− 〈x, f(x)〉x, x〉

= 〈f(x), x〉 − 〈x, f(x)〉 〈x, x〉

= 〈f(x), x〉 − 〈x, f(x)〉 = 0.

Hence f̃ satisfies property (0.0.2).

If f is globally defined (i.e. D(f) = H) and locally Lipschitz map then f̃ is also

globally defined and locally Lipschitz map. Moreover, the modified equation

du

dt
= f̃ (u(t)) , t ≥ 0, (0.0.4)

u(0) = x,

has a local solution for every x ∈M . This solution stays on M whenever x ∈M.

The situation is not so clear when f is only densely defined. There are two

examples of such an f in concrete case:

Let O ⊂ R2 be a bounded domain with sufficiently smooth boundary,

H = L2(O), A = −∆ ( i.e. negative Laplace operator with Dirichlet boundary

condition so that D(A) = H1,2
0 (O) ∩ H2,2(O) and f(u) = −Au. The first case we

will see that

f̃(u) = −Au+ |∇u|2L2(O) u.

The second case is when f(u) = −u2n−1, in this case one can find that

f̃(u) = −u2n−1 + |u|2nL2n u.

Roughly speaking, the two major aims of the thesis are to give complete treatment

to both examples simultaneously and its generalization to the stochastic case. To

be more precise, we prove that our corresponding initial value problems in the
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deterministic and stochastic cases have the unique global solutions for every

u(0) = x ∈ H1,2(O).

Evolution equations are alternatively called the time-dependent partial

differential equations. Several physical process from natural sciences gives rise to

the nonlinear evolution equations as their mathematical models to represent them.

Some of the well-known evolution equations are, Navier-Stokes Equation from

fluid mechanics, the Schrödinger Equation from quantum mechanics,

Reaction-diffusion equation to model the biological processes and heat transfer

phenomenon, the Black-Scholes equation from finance etc. For a given evolution

equation with some suitable initial data, two fundamental questions can be asked.

The existence of a global solution to the problem and the study of long-term

behaviour of solutions. We will try to address both of the questions for our

proposed model. Some part of this work is motivated by P. Rybka [43], in which

the author dealt with heat flow projected on a manifold M defined by some

integral constraints. In [43], it is proven that solutions to this heat flow converge

to a steady state solution as time t→∞.

The second aim is to study the generalization of deterministic model to stochastic

case i.e.

du

dt
= f̃ (u(t)) + Noise, t ≥ 0, (0.0.5)

u(0) = x ∈ H1,2(O) ∩M.

where f(u) = −Au − u2n−1. For such stochastic evolution equation on the

manifold, fundamentally, we are going to deal with the questions of the existence

of the global solution and develop the large deviation principle.

Historically, the development of the Itō calculus and Itô stochastic ordinary

differential equations can be traced back to 1940 ( see e.g. [24], [25]). In the

decades 1960s and 1970s, we can see the emergence of the theory of the Itô stochastic
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partial differential equations (SPDEs) and its connection with several physical and

biological sciences. In particular, the function spaces-valued evolution equations

were used to model the bosonic quantum fields, some of cosmological processes and

dynamics of the population (for e.g see [41], [31]).

For a long time, the stochastic evolution equation of the form

du(t) = A(t, u(t))dt+B(t, u(t))dW (t)

, has remained an object of interest for mathematicians. When the drift term

satisfies the conditions of monotonicity such equations were first studied by

R.Temam and Bensousssan ([36], [35]). Next, Pardoux in [36] developed the

theory of stochastic evolution equation of above form, when the drift and diffusion

are unbounded nonlinear operators, and showed that such equation is strongly

solvable. Rozovskii and Krylov proved that, if the coefficients in drift and diffusion

terms of the evolution equation are deterministic then its solution satisfies the

Markov property. For the random Lipschitz coefficients, the Itô theorem for the

strong solvability of finite dimensional SDEs was generalized. In the same paper a

very useful version of Itô Lemma was proved in Hilbert spaces, for the square

norm of semi-martingales. To study the stochastic version of our problem we will

rely on the Itô Lemma developed by Pardoux in [37] wherein the author studied

the class of SPDEs of the form

du(t) + A(t, u(t))dt = [B(t, u(t)), dW (t)] , u(0) = u0.

Here A and B are some unbounded partial differential operators in Hilbert spaces,

satisfying some coercivity hypothesis. Moreover (W (t))t≥0 is Rd-valued standard

Brownian motion and [, ] denotes the scalar product in Rd. Existence and uniqueness

of the solution for above class of SPDEs was established in [37].
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Finally, some of classical and modern references on stochastic partial differential

equations on manifolds, are [6], [7], [9], [10], [11], [15], [18], [22].

Let me briefly provide the lay out of the thesis.

In Chapter 1 we provide all necessary preliminaries to the reader which are

important to read rest of the thesis. The preliminaries include definitions and results

(without proof) from functional analysis, semigroup theory, dynamical systems, the

theory of Hilbert manifolds, measure theory and stochastic analysis. The chapter

ends at providing a brief introduction to some important results from Pardoux [37].

Chapter 2 deals with the problem of the existence and uniqueness of a global

solution of the constrained problem (0.0.4), for the case when

f(u) = −Au − u2n−1. To do this, we will introduce an abstract approximate

evolution equation and prove the existence and uniqueness of a solution by Banach

fixed point theorem in appropriately chosen Banach spaces. Next, using the

Kartowski-Zorn Lemma we will prove the existence of a local maximal solution of

approximate evolution equation. Then we show that if the energy norm of initial

data u0 is bounded by some constant R, then the solution (local or maximal) of

approximate evolution equation is equivalent to the main evolution equation. In

Proposition 2.2.11 we prove a sufficient condition for the local mild solution to be

the global solution. The Lemma 2.3.3 is devoted to the proof of the invariance of

manifold i.e. if the initial data lives in manifold then the solution of projected

evolution equation itself lives in the manifold. Finally, we will prove the main

result (see Theorem 2.3.5) of chapter i.e. the existence of the unique global

solution. The chapter ends at studying some dynamical properties of the global

solution.

Chapter 3 is devoted to a study the stochastic generalization of projected heat

flow studied in Chapter 2 i.e. constrained problem (0.0.4). More precisely, we are
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going to study a non-linear parabolic first order in the time (heat) equation on

Hilbert Manifold driven by Wiener process of Stratonovich type. Because of the

constraint condition given by manifold M, it is natural to consider equations in the

Stratonovich form (see also [6]). We prove the existence and the uniqueness of the

global mild solution to the described stochastic evolution equation.

We will begin by introducing the main stochastic problem in both the

Stratonovich and the Itô forms. As in the deterministic case, a truncated version

of the main problem will be introduced. After introducing the main and truncated

problem we will prove the estimates for deterministic (drift) terms and stochastic

(diffusion) terms of the main equation in the Itô form. By employing the fixed

point argument, we will construct a local mild solution of the approximate

equation. After this from this local mild solution we recover the local mild solution

to the original problem. We show next that approximate evolution equation

admits a global solution, which will be useful later to prove the existence and the

uniqueness of the local maximal solution of the main problem.

In last part of the chapter the key results about the main problem will be proved.

By using the set of previously proven results about approximate evolution equation,

we will show that the unique local maximal solution of the main problem exists.

Furthermore, an important result about the life span of the maximal solution i.e.

no explosion result will be proven. We will show an interesting result about the

invariance of the manifold i.e. if initial data belongs to the manifold then almost all

trajectories of solution belong to the manifold. Chapter 3 will end by proving the

existence of global solution to our main stochastic evolution equation. The main

tool for this will be Khashminskii test for non-explosion (Theorem III.4.1 of [30]

for the finite dimensional case) and indeed an appropriate Itô’s formula from [37]

(Theorem 1.2).
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In the 4th and final chapter, we study the small noise asymptotics by proving

the Large deviation principle (LDP). To meet this aim, we will adopt the following

weak convergence approach to prove the Large deviations principle.

Let {uε} be a family of X-valued random variables defined on a probability space

(Ω,F ,P) , where X is a Polish space.

Definition 0.0.1. A function I : X → [0,∞] is called a rate function if I is

lower semi-continuous i.e. for each k ∈ R the set {x ∈ X : I(x) ≤ k} is closed (or

equivalently, the set {x ∈ X : I(x) > k} is open). A rate function I is called good

rate function if the level set {x ∈ X : I(x) ≤ k} is compact for each k ∈ [0,∞) .

Definition 0.0.2. (The Large deviation principle) A family {uε : ε > 0} of

X-valued random variables, is said to satisfy the Large deviation principle

(LDP) with the rate function I if for each Borel subset B of X ,

− inf
x∈
◦
B

I(x) ≤ lim inf
ε→0

ε2 logP (uε ∈ B) ≤ lim sup
ε→0

ε2 logP (uε ∈ B) ≤ − inf
x∈B
I(x),

where
◦
B and B denote the interior and closure of B in X, respectively.

Definition 0.0.3. (Laplace principle) The family {uε} of X-valued random

variables is said to satisfy the Laplace principle (LP) with the rate function I,

if for each real-valued bounded continuous function f defined on X we have:

lim
ε→0

ε2 logE
{
e−

f(uε)
ε2

}
= − inf

x∈X
{f(x) + I(x)} .

The weak convergence method mainly is based on the equivalence of Laplace

principle and Large deviation principle, provided that I is good rate function. This

equivalence was formulated in [40] and can also be obtained as the consequence of

Varadhan’s Lemma [50] and Bryc’s converse theorem [4]. Another elementary proof

of equivalence can be found in [21] and [20].
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Chapter 1

Preliminaries

The prime objective of this chapter is to make the dissertation self-contained and

to make it easily accessible for readers. In this dissertation, I will be studying an

infinite dimensional Non-linear Heat equation on Hilbert Manifold, deterministic

and stochastic both. For deterministic equation, I will be arguing for the existence

and uniqueness of Global solution and then the long-term dynamical behavior of the

solution, so this legitimizes to provide some preliminaries (definition, results, and

remarks) from functional analysis, differential geometry, and infinite dimensional

dynamical systems. After dealing with the deterministic equation, I will then move

towards the existence and uniqueness of stochastic version of the model and the

Large Deviation Principle. Therefore, for the convenience of the reader it will be

16



1.1. Functional Analytic Preliminaries

a good idea to include some of key preliminaries and results from the stochastic

analysis. Let us begin with the functional analytic preliminaries.

1.1 Functional Analytic Preliminaries

In this section we aim to provide all those definitions and classic results which will

be used later throughout the dissertation. Our main source for the this section is

[27].

1.1.1 Normed and Banach spaces

Definition 1.1.1. A normed space X is a vector space over field K (real or

complex) with a norm defined on it. Here a norm on a vector space X is a real-

valued function on X whose value at an x ∈ X, is denoted by ‖x‖ and which has

the following properties:

1. ‖x‖ ≥ 0

2. ‖x‖ = 0 if and only if x = 0

3. ‖αx‖ = |α| ‖x‖ , α ∈ K

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all vectors x, y ∈ X.

Definition 1.1.2. A sequence (xn) in a normed space X is called Cauchy

sequence if for each ε > 0 there is a natural number N = N(ε) such that

‖xn − xm‖ < ε for all n,m > N.

Definition 1.1.3. A sequence (xn) in a normed space X is called convergent if

17



1.1. Functional Analytic Preliminaries

there is an x ∈ X such that

lim
n→∞

‖xn − x‖ = 0.

Definition 1.1.4. A normed space X is called complete normed space or

Banach Space if every Cauchy sequence in X is convergent.

Definition 1.1.5. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces and f : X → Y.

We say f is continuous at x ∈ X, if for each sequence (xn) in X,

‖xn − x‖X → 0 implies ‖f (xn)− f (x)‖Y → 0.

Moreover, if f is continuous at each point x in X then f is continuous.

Another use full observation is the following.

Proposition 1.1.6. If (X, ‖·‖) be normed space then the function ‖·‖ : X → R is

continuous in X.

Now we provide some important examples of the Banach spaces.

Spaces of continuous function:

Assume that D be a compact subset of Rn. Consider the set,

C (D) := {f : f is continuous function on D} ,

this set can be given the structure of the Banach space endowed with norm

‖f‖C(D) := sup
x∈D
|f (x)| .

Indeed, a sequence (fn) converges to f in C (D) if sup
x∈Ω
|fn (x)− f (x)| → 0, i.e.

(fn) converges uniformly to f in D. It is well known that the uniform limit of a

continuous function is continuous, hence C (D) is Banach space.

18



1.1. Functional Analytic Preliminaries

Furthermore, if D is open then the set

Ck (D) =
{
f : f , f ′, ..., f (k) ∈ C (D)

}
with norm

‖f‖Ck(D) = ‖f‖C(D) +
∑

1≤|α|≤k

‖Dαf‖C(D) ,

where α := (αi)
n
i=1 ∈ Zn+, |α| =

∑n
i=1 αi = n, and Dα = ∂α1

∂x
α1
1

∂α2

∂xα21
... ∂

αn

∂xαn1
. Then one

can show that Ck (D) is Banach space.

1.1.2 Compactness in function spaces: Arzela-Ascoli

Theorem

Another important classical result that we need in proving the Large deviation

principle, is the apply Arzela-Ascoli Theorem. Before presenting the result let us

recall some of important definitions.

Definition 1.1.7. ([27],Theorem 5.18) Let (X, ρ) be a compact metric space i.e.

every open cover of X has a finite subcover. A family of functions Λ ⊂ C (X) is

called equicontinuous if for every ε > 0 there is δ > 0 such that for all f ∈ Λ,

|f(u)− f(v)| < ε, for all u, v ∈ X satisfying ρ (u, v) < δ .

The family Λ is called uniformly bounded or equivocated if there is a constant

C such that

|f(u)| ≤ C, for all f ∈ Λ and for all u ∈ X.

Example 1.1.8. Let(X, ρ) be a metric space and let C be a positive constant.

Consider the following family of continuous functions on X

Λ := {f ∈ C (X) : f satisfies |f(u)− f(v)| ≤ Cρ (u, v) , for all u, v ∈ X} .

19



1.1. Functional Analytic Preliminaries

Then this family Λ is equicontinuous. To verify this assertion, consider ε > 0 and

δ = ε/C. One can see that for any v ∈ B (δ : x) i.e. ρ (u, v) < δ and for any f ∈ Λ,

we have the following,

|f(u)− f(v)| ≤ Cρ (u, v) < C · δ = C · ε/C = ε.

Thus Λ is equicontinuous.

Definition 1.1.9. Let (X, ρ) be a metric space, a subset K ⊂ X is called precompact

(or relatively compact) if the closure K of K is compact in X.

Now we present the Arzela-Ascoli Theorem.

Theorem 1.1.10. ([27], Theorem 5.20) Let (X, ρ) be a compact metric space. For

a family of functions Λ ⊂ C (X), then the following statements are equivalent,

i) Λ is relatively compact,

ii) Λ is equicontinuous and uniformly bounded.

The following is an immediate corollary of the last theorem, we can also treat

this as another version of Arzela-Ascoli theorem.

Corollary 1.1.11. ([27], Corollary 5.21) Let (X, ρ) be a compact metric space. If

a sequence of functions (fn) ⊂ C (X) is equicontinuous and uniformly bounded then

this sequence (fn) contains a uniformly convergent subsequence.

1.1.3 Hilbert spaces

In this dissertation, we are mainly concerned with Hilbert spaces so this would a

good idea to review some of basic stuff about Hilbert spaces. Let us begin with

defining and recalling some of the basic results about Hilbert spaces.

20



1.1. Functional Analytic Preliminaries

Definition 1.1.12. Let X be a linear space over R. An inner product in X is

a function 〈·, ·〉 : X × X → R that satisfies the following three properties. For all

x, y, z ∈ X and all scalars α, β ∈ R,

i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0, (Positivity)

ii) 〈x, y〉 = 〈y, x〉 , (Symmetry)

iii) 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 . (Collinearity)

A linear space X endowed with inner product is called an inner product space.

An inner product also induces a norm, in the following manner,

‖x‖ :=
√
〈x, x〉, for all x ∈ X. (1.1.1)

As an immediate consequence of the definition of inner product space and the norm

described in last equation, we can easily prove the following theorem.

Theorem 1.1.13. If X is an inner product space then:

i) For any x, y ∈ X, we have the following inequality, called Cauchy-Schwartz

inequality,

|〈x, y〉| ≤ ‖x‖ ‖y‖ .

Equality holds if and only if x and y linearly dependent.

ii) For any x, y ∈ X, we have the following Parallelogram Law:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

iii) For x, y ∈ X, we have the following triangle inequality,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

Definition 1.1.14. If H be an inner product space then H is called a Hilbert

space if it is complete with respect to induced norm (1.1.1).
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1.1. Functional Analytic Preliminaries

Examples of the Hilbert space The following are some of the important

examples of Hilbert spaces, few of which we are going to encounter in the rest of

chapters.

Example 1.1.15. Rn is inner product space with the following inner product,

〈x, y〉Rn :=
n∑
i=1

xiyi, where x = (xi)
n
i=1 and y = (yi)

n
i=1 belong to Rn.

Moreover, Rn is Hilbert space with the following induced Euclidean norm,

‖x‖ =
n∑
i=1

x2
i .

Example 1.1.16. The space L2 (Ω) is inner product space with respect to inner

product,

〈u, v〉L2(Ω) =

∫
Ω

uv.

and Hilbert space under the following induced norm,

‖u‖L2(Ω) =

∫
Ω

u2.

Some important theorems about Hilbert spaces The orthogonal

projection is going to play an important role in our formulation of main

deterministic and stochastic problem. Therefore, it is worth recalling the classical

projection theorem in Hilbert spaces. The material in this subsection is based

on Chapter 21 of [27].

Definition 1.1.17. If H be a Hilbert space and x, y ∈ H, we say x is orthogonal

to y if 〈x, y〉 = 0. In general, if V ⊂ H then

V ⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ V } .

The set V ⊥ is called orthogonal complement of V.

22



1.1. Functional Analytic Preliminaries

Lemma 1.1.18. If V is closed subspace of a Hilbert space H then orthogonal

complement V ⊥ of V is also closed subspace of H. Moreover

H = V ⊕ V ⊥,

where ⊕ denotes the direct sum.

Theorem 1.1.19. (Projection Theorem) Let V be a closed subspace of Hilbert space

H. Then for each x ∈ H, there exists unique element x̂ ∈ V such that

‖x̂− x‖ = inf
v∈V
‖v − x‖ .

Moreover, the following properties hold:

i) x̂ = x iff x ∈ V,

ii) x− x̂ ∈ V ⊥, and

‖x‖2 = ‖x̂‖2 + ‖x− x̂‖2 .

Corollary 1.1.20. If V is the closed subspace H and x̂ is the unique element as

described in last Projection theorem then there exists a unique map π : x 7−→ x̂,

from H into V, which is linear, bounded and satisfies the following properties:

‖π‖ = sup
x 6=0

‖πx‖
‖x‖

= 1

π2 = π and kerπ = V ⊥.

Remark 1.1.21. The map π described in last corollary is called the orthogonal

projection of H onto V.

The Hilbert spaces that we are going to deal in this dissertation will be separable

Hilbert spaces over the field of real numbers. Let us recall definitions and some basic

properties of separable Hilbert spaces.
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Definition 1.1.22. A Hilbert space H is called separable Hilbert space if it

contains a countable dense subset.

Definition 1.1.23. An orthonormal basis in a separable Hilbert space H is a

sequence (ej)
∞
j=1 ⊂ H such that

〈ej, ek〉 = δjk, where j, k ∈ N

‖ej‖ = 1, for all j ∈ N.

Here δjk denotes the Kronecker delta.

Proposition 1.1.24. Every separable Hilbert space H admits an orthonormal basis.

1.1.4 Linear operators, Duality and Weak Convergence

At several instances in the dissertation, we will deal with several kinds of linear

operators and dual spaces. Moreover, weak convergence will be an important tool to

prove large deviation principle. Therefore, we present these notions and important

related results.

Definition 1.1.25. Let X and Y be normed spaces. A linear operator from X

into Y is a map L : X → Y such that for α, β ∈ R and for x, y ∈ X,

L (αx+ βy) = αL (x) + βL (y) .

Definition 1.1.26. If L : X → Y is a linear operator, the kernel of L, can be

defined as pre-image of null vector in Y i.e.

kerL := {x ∈ X : Lx = 0} .

The range of L is the set of all images i.e.

L (X) := {Lx : x ∈ X} .
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Definition 1.1.27. Let X and Y be normed spaces. A linear operator L : X → Y

is called bounded if there exists a number C such that

‖Lx‖Y ≤ C ‖x‖X

Example 1.1.28. ([52] Example 7.2, 69) i) (Multiplication operator) For any

f ∈ C [a, b] , consider the operator Mf on L2 (a, b) defined in the following manner:

(Mfx) (t) := f(t)x(t), for all x ∈ L2 (a, b) .

One can see that Mf is linear, the boundedness of Mf can be seen in the following

manner,

‖Mfx‖2 =

∫ b

a

|f(t)x(t)|2 dt

≤ sup
t∈(a,b)

|f(t)|2
∫ b

a

|x(t)|2 dt

= ‖f‖2
C[a,b] ‖x‖

2 = C ‖x‖2 , where C := ‖f‖2
C[a,b] <∞.

ii) For a, b, c, d ∈ R and continuous k : [a, b] × [c, d] → R, define an integral

operator K : L2 (a, b)→ L2 (c, d) in the following manner,

(Kx) (t) :=

∫ b

a

k (t, s)x(s)ds, t ∈ (c, d) .

Indeed, K is linear. Moreover, using Cauchy-Schwartz inequality we can obtain

boundedness of K in the following manner, for fixed t ∈ (c, d) ,

|(Kx) (t)|2 =

∣∣∣∣∫ b

a

k (t, s)x(s)ds

∣∣∣∣2 ,
≤

(∫ b

a

|k (t, s)|2 ds
)(∫ b

a

|x (s)|2 ds
)

Integrating both sides on t ∈ (c, d) ,∫ d

c

|(Kx) (t)|2 dt ≤
(∫ b

a

|x (s)|2 ds
)∫ d

c

∫ b

a

|k (t, s)|2 dsdt i.e.

‖Kx‖2 ≤ ‖x‖2 ‖k‖2
C([a,b]×[c,d]) = C ‖x‖2
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where C := ‖k‖2
C([a,b]×[c,d]) <∞.

iii) Let X be a normed space of all polynomials on [0, 1] with norm

‖x‖ = max |x(t)| , t ∈ [0, 1]. A differentiation operator T is defined on X by

Tx(x) = x′(t), where prime denotes the differentiation with respect to t. This

operator is linear but not bounded. Indeed, let xn(t) = tn, where n ∈ N. Then

‖xn‖ = 1 and Txn(t) = x′n(t) = ntn−1 so that ‖Txn‖ = n. Since n ∈ N is arbitrary,

this shows that there is no fixed number c such that ‖Txn‖‖xn‖ ≤ c. Hence T is not

bounded.

Proposition 1.1.29. ([27], Theorem 7.18) Let X and Y be normed spaces. A

linear operator L : X → Y is bounded if and only if it is continuous i.e. for any

xn
X→ x implies Lxn

Y→ Lx.

Definition 1.1.30. ([27], Definition 7.20) By the set L (X, Y ) we denote the set

of all bounded linear operators from X into Y. If X = Y we will write L (X) . On

L (X, Y ) , we can define norm in the following manner, for L ∈ L (X, Y ) ,

‖L‖ := sup
‖x‖=1

‖Lx‖Y
‖x‖X

.

Theorem 1.1.31. ([27], Theorem 7.20) Let X and Y be Banach spaces. Then

L (X, Y ) , with the norm defined in last equation, is also Banach space.

Definition 1.1.32. Let X and Y be normed spaces. Let L ∈ L (X, Y ) . An L(X, Y )-

valued sequence (Ln) of operators is said to:

a) converge in operator norm to L if,

‖Ln − L‖L(X,Y ) → 0 as n→∞.

b) strongly converge to L iff (Lnx) converges strongly in Y for each x in X, i.e.,

‖Lnx− Lx‖Y → 0 as n→∞.
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Definition 1.1.33. Let X be a real Banach space. Then a linear functional

on X is bounded linear mapping from X to R. The dual space denoted by X∗ is

L (X,R) i.e. set of all linear bounded linear functionals on X.

Theorem 1.1.34. ([27], Theorem 21.6) (Riesz Representation Theorem) Let H be

a Hilbert space. Then H∗ is isometrically isomorphic to H. In particular, for every

x ∈ H the linear functional defined by

Lx (y) = 〈x, y〉 , for all y ∈ H,

is bounded with norm ‖Lx‖ = ‖x‖. Moreover, for every L ∈ H∗ there exists a

unique uL ∈ H such that:

Lx = 〈uL, y〉 , for all y ∈ H.

Moreover, ‖L‖ = ‖uL‖ .

Definition 1.1.35. ([27], Theorem 21.7) Let H be a Hilbert space. A sequence

(xn)n∈N ⊂ H is called weakly convergent to x ∈ H if

〈xn, y〉 → 〈x, y〉 , for all y ∈ H.

One can see easily that a sequence converges in usual sense also converges weakly

because,

|〈xn, y〉 − 〈x, y〉| ≤ ‖xn − x‖ ‖y‖ .

Let us state the following simple case of the Banach-Alaoglu Theorem.

Theorem 1.1.36. ([27], Theorem 21.8) Every bounded sequence (xn)n∈N in a

Hilbert space H has a weakly convergent subsequence.

Theorem 1.1.37. ([27], Theorem 21.11) Every weakly convergent sequence (xn)n∈N

⊂ H is bounded.
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Definition 1.1.38. [27] Let X be a normed space over a field K . The double

dual of X , denoted by X∗∗ and defined by X∗∗ = (X∗)∗ i.e. dual of the dual of X.

Definition 1.1.39. ([52], Definition 6.1) Let X be a be a normed space over field

K, X∗ be its dual and X∗∗ be its double dual. Then we have a canonical map x→ x̂

defined by:

x̂(f) = f(x) where f ∈ X∗

gives an isometric linear isomorphism(embedding) from X into X∗∗.

The space X is called reflexive if this map is also surjective.

Closed operators

Definition 1.1.40. ([52], Definition 2.4.1) Let X and Y be normed space and

L : D(T ) → Y is a linear operator, D(L) ⊂ X, then L is called closed linear

operator if its graph

G(L) = {(x, y) : x ∈ D(L), y = Lx}

is closed in the normed space X × Y.

Theorem 1.1.41. [27] Let X and Y be Banach spaces and L : D(L) → Y is a

closed linear operator, D(L) ⊂ X. If D(L) is closed in X then the operator L is

bounded i.e. there exists c > 0 such that

‖Lx‖Y ≤ c ‖x‖X .

Theorem 1.1.42. [27] Let X and Y be normed spaces and L : D(L) → Y is a

linear operator, D(L) ⊂ X.Then L is closed iff it has the following property:

If xn → x, where xn ∈ D(L), and Txn → y, then x ∈ D(L) and Lx = y.

Another useful characterization of closed operators is following:
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Theorem 1.1.43. [27] Let A be a linear operator in Banach space (X, ‖·‖). Define

norm on D(A) by

‖x‖A = ‖x‖+ ‖Ax‖ , for x ∈ D(A).

then (D(A), ‖·‖A) is Banach space iff A is closed.

Adjoint Operators

If X and Y be Hilbert spaces and L ∈ L (X, Y ) then for fixed y ∈ Y , let us define

a map Ty : X → R in the following manner,

Ty (x) := 〈Lx, y〉Y .

Indeed, Ty is linear and in fact bounded i.e. Ty ∈ X∗ because,

|Ty (x)| ≤ |〈Lx, y〉Y | ≤ ‖Lx‖Y ‖y‖X ≤ ‖L‖L(X,Y ) ‖x‖X ‖y‖Y

‖Ty‖ ≤ ‖L‖L(X,Y ) ‖y‖Y .

Hence by the Riesz Representation Theorem there exists w ∈ X depending on y,

we denote this by w = L∗y such that

Ty (x) := 〈x, L∗y〉X ,for all x ∈ X and y ∈ Y.

Definition 1.1.44. ([52], Definition 7.3) For a linear operator L ∈ L (X, Y ) , its

adjoint is an operator L∗ : Y → X that satisfies the identity,

〈Lx, y〉Y = 〈x, L∗y〉X , for all x ∈ X and y ∈ Y.

Example 1.1.45. i) Recall that from the Riesz representation theorem for each

L ∈ H∗ there exist a unique element uL ∈ H. Hence this naturally gives a way to

define a map R : H∗ → H (L 7→ uL), called the Riesz map. One can see that R is

canonical isometry. We claim that R∗ = R−1 : H → H∗.

〈RL, y〉H = 〈L, y〉H×H∗ =
〈
L,R−1y

〉
H∗

= 〈L,R∗y〉H∗ .
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ii) Consider a linear operator L : L2 (0, 1)→ L2 (0, 1) be the linear map

(Lx) (t) =

∫ t

0

x(s)ds, where t ∈ (0, 1) .

From part ii) of Example 1.1.28 we infer that L is bounded. In order to find L∗

consider the following,

〈Lx, y〉 =

∫ 1

0

[
y (t)

∫ t

0

x(s)ds

]
dt

Changing order of integration,

〈Lx, y〉 =

∫ 1

0

[
x (s)

∫ 1

t

y(t)dt

]
ds

= 〈x, L∗y〉

Thus

L∗y =

∫ 1

t

y(t)dt, where t ∈ (0, 1) .

Definition 1.1.46. ([52], Definition 7.17) Let H be a Hilbert space. A densely

defined operator L : D(L)→ H, with D(L) ⊂ H, is called self-adjoint iff L = L∗.

Later in this section we will discuss in detail the Laplace operator, which is an

important example of the self-adjoint operator. We will do this because our both

deterministic and stochastic equations involve Laplace operator with the Dirichlet

boundary condition.

Compact Operators

Compact operators play a significant role in the theory of differential equations. We

will also encounter the some compact operators while proving the large deviation

principle, therefore in this subsection our aim is to review some of basic and useful

results about Compact operators. Let us begin by defining the compact operators.
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Definition 1.1.47. ([52], Definition 8.1) Let X and Y be normed spaces. A linear

operator L : X → Y is called compact if for each bounded sequence (xn)n∈N in X ,

the sequence (Lxn)n∈N has a convergent subsequence in Y.

Example 1.1.48. ([52], Example 8.2) i) Recall that the dimension of range of

linear operator is called its rank. Any bounded linear operator L : X → Y with

finite rank, must be compact. Let me give an informal proof. Since the rank finite

i.e. range L(X) must be finite dimensional subspace of Y and it is normed space

with the restriction of norm of Y. Since closed bounded sets are compact so for

any bounded sequence (xn)n∈N in X the image set of sequence {Lxn : n ∈ N} is

bounded in L(X) and hence {Lxn : n ∈ N} is compact. Therefore, by Weierstrass

theorem {Lxn : n ∈ N} contains a limit point, say x, in L(X). Hence there must

be subsequence of (Lxn)n∈N converging towards x. Thus L is compact.

ii) If H is an infinite dimensional Hilbert space then identity operator I on H is

not compact. Consider an infinite orthonormal sequence (xn) in H, then for m 6= n,

‖xn − xm‖2 = 〈xn − xm, xn − xm〉

= 〈xn, xn〉 − 〈xm, xn〉 − 〈xn, xm〉+ 〈xm, xm〉

= ‖xn‖2 − 0 + 0 + ‖xm‖2 = 2.

Last identity shows that distinct terms of sequence are at distance
√

2. Hence

(Ixn)n∈N = (xn)n∈N contains no Cauchy and hence convergent subsequence. Thus I

is not compact.

Proposition 1.1.49. ([52] Every compact operator is bounded.

Proposition 1.1.50. [52] If X and Y be Banach spaces then LC (X, Y ) set of

all compact operators from X into Y is a closed (and hence complete) subspace of

L (X, Y ) with operator norm.
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It is obvious that to check that whether a given operator is compact or not

by definition is difficult. Sometimes Hilbert-Schmidt operators can rescue in such

situation. Definition and some of the useful results about Hilbert-Schmidt operators

are given below.

Definition 1.1.51. ([52], Definition 8.5) Let X and Y be the Hilbert spaces. A

linear operator L : X → Y is called Hilbert-Schmidt if we can find a complete

orthonormal sequence (en)n∈N in X such that ‖A‖HS :=
∑∞

j=1 ‖Aej‖
2 <∞.

Example 1.1.52. ([52], Example 8.6) The following Voltera operator L defined on

L2 (0, 1) is Hilbert-Schmidt.

(Lx) (t) :=

∫ t

0

x(s)ds, where t ∈ (0, 1) .

In a minute, we are going to present a result that if the kernel of an integral operator

is square integrable then the integral operator is compact. Since kernel in the Volterra

operator is 1, which is indeed square integrable hence L is Hilbert-Schmidt.

Theorem 1.1.53. ([52], Theorem 8.7) Every Hilbert-Schmidt operator is compact.

Theorem 1.1.54. ([52], Theorem 8.8) If k : (c, d) × (a, b) → R be a measurable

function such that ∫ d

c

∫ b

a

|k(s, t)|2 dsdt <∞.

Then the following integral operator K : L2 (a, b)→ L2 (c, d) with kernel k

(Kx) (t) :=

∫ b

a

k (t, s)x(s)ds, t ∈ (c, d) .

is Hilbert Schmidt and hence compact.

1.1.5 Semigroups of Linear operators

Throughout the section X denotes a Banach space. More over ‖·‖ would denote

norm on L (X) .
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Definition 1.1.55. ([51], Definition 2.1.1) A one-parameter family {T (t), t ≥ 0} of

bounded linear operators from X into X is a semigroup of bounded linear operators

on X if

(i) T (0) = I, (I is the identity operator on X).

(ii) T (s + t) = T (s)T (t) for every t, s ≥ 0 (the semigroup property). Here

T (s)T (t) is composition of functions.

Definition 1.1.56. ([51], Remark 2.3.2) A semigroup of bounded linear operators,

T (t), is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0 (1.1.2)

where ‖·‖ is norm on L(X,X) as mentioned earlier.

Definition 1.1.57. ([51], Definition 2.3.1) A semigroup of linear operators

{T (t) : t ≥ 0} is called a semigroup of class C0, or C0− semigroup, if for each

x ∈ X, we have

‖T (t)x− x‖ → 0 as t→ 0. (1.1.3)

Example 1.1.58. ([51], Example 2.3.1) Let Cb,u(R) be the space of uniformly

continuous bounded real-valued functions on R. For t ≥ 0, define an operator

T (t) : Cb,u(R)→ Cb,u(R) as:

(T (t)x) (s) := x(t+ s), for all x ∈ Cb,u(R), s ≥ 0.

Then {T (t) : t ≥ 0} is a C0-semigroup.

Theorem 1.1.59. For f ∈ L2 (R) , and t > 0 define

(T (t)f) (x) =
1√
4πt

∫
R
f(y)e−

|x−y|2
4t dy

and set T (0)f = f . Then {T (t) : t ≥ 0} is a C0-semigroup of contractions.
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Lemma 1.1.60. ([51], Theorem 2.3.1) Let {T (t), t ≥ 0} be a semigroup on Banach

space X. There exist constants ω ∈ R and M ≥ 1 such that the following holds:

‖T (t)‖ ≤Meωt , for 0 ≤ t <∞.

Corollary 1.1.61. ([51], Corollary 2.3.1) If {T (t), t ≥ 0} is a semigroup on Banach

space X, then for each f ∈ X, the map t 7→ T (t)f is a continuous function from

(0,∞) to X.

Definition 1.1.62. [51] Let {T (t), t ≥ 0} be C0 − semigroup. In Lemma 1.1.60 if

ω = 0 then {T (t), t ≥ 0} is called uniformly bounded.

Definition 1.1.63. ([51], Corollary 2.3.2) Let {T (t), t ≥ 0} be C0− semigroup. In

Lemma 1.1.60 if ω = 0, M = 1, i.e. ‖T‖ ≤ 1. Such a semigroup {T (t), t ≥ 0} is

called C0− semigroup of contractions.

1.1.6 Function spaces

In this subsection, my intentions are to introduce all of those function spaces which

we are going to encounter throughout the dissertation. In particular, we are going

to discuss distributions, some of important Sobolev spaces and Bochner spaces. Let

us begin with setting up some notations.

Definition 1.1.64. An open and connected subset Ω of Rn, n ∈ N, is called domain.

We denote closure and boundary of Ω by Ω and ∂Ω respectively.
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Consider the following set of notations:

Zn+ : = {(αi)ni=1 : αi ∈ Z+} ,

x : = (xi)
n
i=1 ∈ Rn,

α : = (αi)
n
i=1 ∈ Zn+,

∂iu : =
∂u

∂xi
,

|α| : =
n∑
i=1

αi,

Dαu : =
∂|α|u

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

∇u : = (Diu)ni=1

|∇u| : =

(
n∑
i=1

|Diu|2
)1/2

.

We now introduce the space of smooth functions with compact support and

convergence in it.

Space of smooth functions with compact support & Distributions

Definition 1.1.65. [51] (Page 15-16) Let Ω be an open subset of Rn and f : Ω→ R.

The following set

suppf := {x ∈ Ω : f(x) 6= 0},

is called the support of function f. By C∞0 (Ω) we mean the set of all functions f

on Ω which are smooth i.e. infinitely differentiable, suppf is compact included in

Ω. Consider a sequence (fn) in C∞0 (Ω) and f ∈ C∞0 (Ω) , we say that fn → f in

C∞0 (Ω) if

i) there exists a compact subset K of Ω such that suppfn ⊂ K for all n ∈ N,

ii) Dαfn → Dαf uniformly on Ω, as n→∞, for all α ∈ Zn+.
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By D (Ω) we mean the space C∞0 (Ω) endowed with above mentioned structure of

convergence, moreover we denote this convergence by fn
D(Ω)→ f.

Definition 1.1.66. [51] (Page 16) By a Cauchy sequence in D (Ω) we a sequence

(fn) in D (Ω) if there exists a compact set K ⊂ Ω such that suppfn ⊂ K and such

that, for all n ∈ N, ‖Dαfn −Dαfm‖C(Ω) → 0 as n,m→∞ for all α ∈ Zn+.

Definition 1.1.67. [51] (Page 16) A linear real-valued continuous functional on

D (Ω) is called distribution on D (Ω) . We denote space of all distributions on

D (Ω) by D′ (Ω) .

Example 1.1.68. i) The Dirac delta function δc : f 7→ f(c) is a distribution for

any c ∈ Rn.

ii) Assume that f is locally integrable i.e. for each compact K ⊂ Rn the integral∫
K
|f | <∞. Define Lf : D (Ω)→ R as:

Lfϕ :=

∫
Rn
f(x)ϕ(x)dx, for ϕ ∈ D (Ω) .

Now consider a sequence ϕn
D(Ω)→ ϕ,

|Lfϕn − Lfϕ| =

∣∣∣∣∫
Rn
f(x) (ϕn(x)− ϕ(x)) dx

∣∣∣∣
≤

∫
suppϕ

|f(x)| |ϕn(x)− ϕ(x)| dx

≤ sup
x
|ϕn(x)− ϕ(x)|

∫
suppϕ

|f(x)| dx

= ‖ϕn − ϕ‖
∫
suppϕ

|f(x)| dx→ 0 as n→∞.

Hence Lf defines a distribution on D (Ω) .

Definition 1.1.69. [51] (Page 16) Let α ∈ Zn+ be a multi-index and u : Ω → R is

a locally integrable function . The α-th order derivative of u, in the sense of
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distribution over on D (Ω), is the distribution Dαu defined by:

(Dαu) (f) := (−1)|α|
∫

Ω

u ·Dαf dω, for all f ∈ D (Ω) .

Sobolev spaces and their properties

In this subsection, we aim to recall some of Sobolev spaces of prime importance in

this dissertation. Before introducing these spaces let me introduce a more

sophisticated notion of derivative known as ”weak derivative”.

Definition 1.1.70. [27] (Page 266) A function f ∈ L1
loc (Ω) if and only if

f ∈ L1 (Ω′), for every bounded Ω′ with Ω′ ⊂ Ω.

Definition 1.1.71. [27] (Page 266) For u ∈ L1
loc (Ω) a function v ∈ L1

loc (Ω) is

called the weak derivative of u in the direction of xi, where x = (xi)
n
i=1 ∈ Rn, if∫

Ω

u(x)∂iϕ(x)dx = −
∫

Ω

v(x)ϕ(x)dx, for all test functions ϕ ∈ C1
0 (Ω) .

In this case we write v = Diu.

Example 1.1.72. [27] (Page 266) For Ω = (−1, 1) ⊂ R,

i) Consider the function u(x) = |x| . We claim the following is equal to the weak

derivative of u,

v(x) = 1, 0 ≤ x < 1

= −1, − 1 < x < 0.

Indeed, if ϕ ∈ C1
0 (Ω) then∫ 1

−1

v(x)ϕ (x) dx = −
∫ 0

−1

ϕ (x) dx+

∫ 1

0

ϕ (x) dx

=

∫ 1

−1

ϕ′ (x) |x| dx.
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ii) We now show that not every function in L1
loc (Ω) has a weak derivative.

Consider

u(x) = 1, 0 < x < 1

= 0, − 1 < x < 0,

Apparently, from above definition we expect ∂u = 0. But this not the case, consider

ϕ ∈ C1
0 (Ω) for which ϕ(0) 6= 0. For such ϕ,

0 =

∫ 1

−1

ϕ (x) · 0 dx = −
∫ 1

−1

ϕ (x) · u(x) dx = −
∫ 1

0

ϕ′ (x) = ϕ(0),

which leads to an absurdity, hence the required does not holds for such ϕ, i.e. weak

derivative exists.

Definition 1.1.73. [27] (Page 267) Let α ∈ Zn+ and u ∈ L1
loc (Ω) . A function

v ∈ L1
loc (Ω) is called the α-th weak derivative of u if∫

Ω

u(x)Dαϕ(x)dx = (−1)|α|
∫

Ω

v(x)ϕ(x)dx, for all test functions ϕ ∈ C |α|0 (Ω) .

In this case we are going to use symbol v = Dαu.

Definition 1.1.74. [27] (Page 267) Let k ∈ N, p ∈ [1,∞) . We say u ∈ W k,p (Ω)

if and only if for any α ∈ Zn+, satisfying |α| ≤ k, the weak derivative Dαu (all

derivatives up to order k) exists and belongs to Lp (Ω). Introduce norm on W k,p (Ω)

in the following manner,

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

.

Remark 1.1.75. Indeed W 0,p (Ω) = Lp (Ω) .

Theorem 1.1.76. [27] (Page 270) The Sobolev space
(
W k,p (Ω) , ‖·‖Wk,p(Ω)

)
is

separable Banach space.
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Corollary 1.1.77. [27] (Page 271) For p = 2, the Sobolev space Hk (Ω) := W k,2 (Ω)

is a Hilbert space with the inner product,

〈u, v〉Hk(Ω) :=

∫
Ω

∑
|α|≤k

Dαu ·Dαvdx.

Definition 1.1.78. [27] (Page 271) By W k,p
0 (Ω) we mean the closure of space

D (Ω) in W k,p (Ω).

Finally, we will end this section by presenting a well-known inequality, known

as Gagliardo-Nirenberg inequality. We are going use consequences of this inequality

very frequently throughout the dissertation. Before that let us recall the definition

of embedding operator.

Definition 1.1.79. [44] (Page 328) Let X and Y be normed linear spaces.

i) X is called continuously embedded into Y if and only if the operator

i : X → Y is injective and continuous i.e. there exists constant c > 0 such that

‖u‖X ≤ c ‖u‖Y , for all u ∈ X.

In this case we denote this embedding symbolically by X ↪→ Y and operator

i : X → Y is called embedding operator.

ii) The embedding X ↪→ Y is compact if and only the operator i : X → Y is

compact i.e. each bounded sequence (un) in X has a subsequence that converges in

Y.

Following inequality is one important inequality that we are going to employ

frequently, throughout the dissertation.

Lemma 1.1.80. (Gagliardo-Nirenberg inequality) [47] (Page 10) Assume that

r, q ∈ [1,∞), and j,m ∈ Z satisfy 0 ≤ j < m. Then for any u ∈ C∞0 (Rn)∣∣Dju
∣∣
Lp(Rn)

≤ C |Dmu|aLr(Rn) |u|
1−a
Lq(Rn) ,
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where 1
p

= j
n

+a
(

1
r
− m

d

)
+(1−a)1

q
for all a ∈

[
j
m
, 1
]
. If m−j− n

r
is a non-negative

integer, then the equality holds only for a ∈
[
j
m
, 1
)
.

1.1.7 Bochner Spaces

Assume that X denotes a Banach space and Ω ⊂ R. Lets us set some important

terminology. The stuff in the following subsection is based on Subsection 1.2 of

[51].

Definition 1.1.81. i) A function f : Ω → X is called Simple function, if there

exist x1, x2, .., xn ∈ X and measurable and mutually disjoint subsets

Γ1,Γ2, ...,Γk ⊂ Ω such that:

f(t) = xi, for all t ∈ Γi and for all i = 1, 2, ..., k.

ii) A function f : Ω → X is called strongly measurable if there exists a

sequence of simple function (fn) such that fn
X→ f a.e. on Ω, i.e.

‖fn(t)− f(t)‖X → 0 as n→∞, a.e. on Ω.

Lemma 1.1.82. Let f : Ω→ X be a strongly measurable function then the function

λ : Ω→ R (t 7→ ‖f(t)‖X) is Lebesgue measurable i.e. for any open set O the inverse

image λ−1 (O) is open.

Definition 1.1.83. A function f : Ω→ X is called Bochner integrable, if there

exists a sequence of simple functions (fn) , such that:

i) f is strongly measurable i.e. ‖fn(t)− f(t)‖X → 0 as n→∞, a.a. t ∈ Ω.

ii) Also
∫

Ω
‖fn(t)− f(t)‖X dt→ 0 as n→∞.

Theorem 1.1.84. If f : Ω→ X is strongly measurable then f is Bochner integrable

iff the Lebesgue integral of ‖f(·)‖X over Ω, is finite.
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Corollary 1.1.85. If f ∈ C
(
Ω;X

)
then f is Bochner integrable iff the Lebesgue

integral of ‖f(·)‖X over Ω, is finite.

Lemma 1.1.86. If f is Bochner integrable over Ω, then

i)
∥∥∫

Ω
f(t)dt

∥∥
X
≤
∫

Ω
‖f(t)‖X dt,

ii) lim
|Γ|→0+

Γ⊂Ω

∫
Γ
f(t)dt = 0 ∈ X.

Lp (Ω;X) Spaces

We have employed subsection 1.3 of [51] for the following subsection.

Definition 1.1.87. Let X be a Banach space, 1 ≤ p ≤ ∞, Ω ⊂ R. By Lp (Ω;X)

we mean the set of all strongly measurable functions f : Ω → X that satisfies the

following two properties:

i) For 1 ≤ p <∞, ∫
Ω

‖f(t)‖pX dt <∞.

ii) For p =∞,

ess sup
Ω
‖f(t)‖X <∞.

Theorem 1.1.88. The space Lp (Ω;X) described in last definition is the linear

space. By f1 = f2 we mean f1 (t) = f2 (t) , for a.a. t ∈ Ω. Then Lp (Ω;X) are

Banach spaces with the following described norms,

‖f‖Lp(Ω;X) =

(∫
Ω

‖f(t)‖pX dt
)1/p

, where 1 ≤ p <∞,

‖f‖L∞(Ω;X) = ess sup
t∈Ω

‖f(t)‖X <∞, when p =∞.

Moreover, if X is reflexive (or separable) Banach space then for 1 ≤ p < ∞ ,

Lp (Ω;X) is also reflexive (or separable) Banach space.
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Lemma 1.1.89. i) Let Ω be the bounded interval then∥∥∫
Ω
f(t)dt

∥∥
X
≤
∫

Ω
‖f(t)‖X dt ≤ ‖f‖Lp(Ω;X) |Ω|

p−1
p ,

ii) Let Ω be the bounded interval then C∞0 ((0, T ) ;X) is dense in Lp (Ω;X) , for

all 1 ≤ p <∞.

Now we present some well known key inequalities in Lp-spaces.

Theorem 1.1.90. i) (Holder inequality) Let p, q ≥ 1, such that 1
p

+ 1
q

= 1 (and if

p = 1 then set q := ∞ and vice versa). If u ∈ Lp (Ω;X) and v ∈ Lq (Ω;X) then

uv ∈ L1 (Ω;X) and

‖uv‖L1(Ω;X) ≤ ‖u‖Lp(Ω;X) ‖v‖Lq(Ω;X) .

ii) (Minkowski’s inequality) Let 1 ≤ p ≤ ∞. If u, v ∈ Lp (Ω;X) then

u+ v ∈ Lp (Ω;X) and

‖u+ v‖Lp(Ω;X) ≤ ‖u‖Lp(Ω;X) + ‖v‖Lp(Ω;X) .

1.1.8 Some important notions and results from PDE theory

Laplace operator with Dirichlet boundary condition

In this dissertation, both deterministic problem and its stochastic generalization,

involve Laplace operator with Dirichlet boundary conditions. The aim of this

subsection is to recall some basic stuff about the Dirichlet boundary condition in

L2 (Ω) setting.

Definition 1.1.91. ([51], Example 4.1.2) Let Ω be a non-empty and open subset of

Rn. Let us consider the operator A on L2 (Ω) , defined by,

D(A) =
{
u ∈ H1

0 (Ω) : ∆u ∈ L2 (Ω)
}

Au = ∆u, for each u ∈ D(A).
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The operator A is called Laplace operator with Dirichlet boundary condition.

Theorem 1.1.92. ([51], Theorem 4.1.2) The linear operator defined above

generates a C0-semigroup of contractions. Moreover, A is self-adjoint, and(
D(A), ‖·‖D(A)

)
is continuously embedded into H1

0 (Ω) . Further, if Ω is bounded

with C1 boundary, then
(
D(A), ‖·‖D(A)

)
is compactly embedded into L2 (Ω) .

Indeed H1
0 (Ω) ∩ H2 (Ω) ⊂ D(A). One can see that if Ω is bounded with C2

boundary then reverse inclusion also holds i.e.

D(A) = H1
0 (Ω) ∩H2 (Ω) .

Some important results

For existence and uniqueness of the solution, we will employ the following classical

Banach fixed point theorem.

Theorem 1.1.93. ([27],Theorem 4.7) Let (X, d) be a Complete metric space,

K ⊂ H be a closed subset, f : K → K be a function that satisfy the inequality, for

some 0 ≤ α < 1,

d (f(u), f(v)) ≤ αd (u, v) , for all u, v ∈ H,

Then f has uniquely determined fixed point in K i.e. there exists a unique a ∈ K

such that f(a) = a.

Lemma 1.1.94. ([49], Lemma III 1.2) Let V,H be two Hilbert spaces, V ∗ and H∗

be corresponding dual spaces. Assume that V ↪→ H = H∗ ↪→ V ∗ , where embedding

are dense also. If a function u belongs to L2(0, T ;V ) and its weak derivative u′

belongs to L2(0, T ;V ′), then u is a.e. equal to an absolutely continuous function

from [0, T ] into H, and the following equality, which holds in sense of distributions

on (0, T ):
d

dt
‖u(t)‖2

H = 2 〈u′, u〉 .
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Lemma 1.1.95. [47] Let T be given with 0 < T ≤ ∞. Suppose that y(t) and h(t)

are non-negative continuous functions defined on [0.T ] and satisfy the conditions:

dy

dt
≤ A1y

2 + A2 + h(t), (1.1.4)∫ T

0

y(t) ≤ A3 and

∫ T

0

h(t) ≤ A4, (1.1.5)

where Ai, i = 1, 2, 3, 4. Then for any r > 0 with 0 < r < T , the following estimate

hold

y(t+ r) ≤
(
A3

r
+ A2r + A4

)
eA1A2 , t ∈ [0, T − r).

Further, if T = +∞, then

lim
t→+∞

y(t) = 0.

Lemma 1.1.96. [47] (Bellman–Gronwall Inequality) Suppose φ ∈ L1 [a, b] satisfies

φ(t) ≤ f(t) + β

∫ t

a

φ(s)ds,

where f ∈ L1 [a, b] and β is a positive constant, then

φ(t) ≤ f(t) + β

∫ t

a

f(s)eβ(t−s)ds.

In particular if f(t) = α (constant) then

φ(t) ≤ αeβ(t−a), for all t ∈ [a, b] .

1.2 Geometric Preliminaries

In this section, we aim to give the detailed account of all those geometric

preliminaries needed for the dissertation. In particular, our main topic of concern

will be the Hilbert manifold.

We first recall some of basic topological definitions, for this purpose assume that

X and Y are topological spaces.
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Definition 1.2.1. A function f : X → Y is called Homeomorphism iff f is

bijection and bi-continuous i.e. f and f−1 are continuous.

Definition 1.2.2. A cover {Ui}i∈I (not necessarily open) of X is called

Refinement of another cover {Vj}j∈J , of X, if for all i ∈ I there exists j ∈ J

such that Ui ⊂ Vj.

Definition 1.2.3. A family {Ui}i∈I of subsets of X is called Locally finite if for

each x ∈ X there exists a neighborhood N whose intersection with Ui is non-empty

for only finitely many i.

Definition 1.2.4. A Hausdroff space X is called Paracompact if every open cover

{Ui}i∈I of X has an open, locally finite refinement.

1.2.1 Hilbert Manifold

We intend to introduce the formal apparatus required to define Hilbert manifold and

hence the definition of Hilbert manifold itself. Throughout subsection, we assume

that M is paracompact topological space and H is separable Hilbert space. All

results and definitions of this subsection are from Chapter 2, Section 2.1 of [33].

Definition 1.2.5. A chart of M with values in H is a pair (O,ϕ), where O is

an open subset of M and ϕ : O → ϕ (M) is homeomorphism between U and open

subset ϕ (M) of H. The set O is called the domain of chart.

Definition 1.2.6. Let (U,ϕ) and (V, ψ) be charts of M , taking values in H, are

said to be compatible, if either U and V are disjoint, or the map

ψ ◦ ϕ−1 : ϕ (U ∩ V )→ ψ (U ∩ V )

is C∞ diffeomorphism i.e. the map ψ ◦ ϕ−1 is bijection also ψ ◦ ϕ−1 and ϕ ◦ ψ−1

are smooth, between open subsets of ϕ (U ∩ V ) and ψ (U ∩ V ) . The map ψ ◦ ϕ−1 is

said to be a transition map.
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Definition 1.2.7. A family of charts A := {(Ui, ϕi)}i∈I is called Atlas of M with

values in H, if,

i) M = ∪i∈IUi;

ii) for all distinct i, j ∈ I, the charts (Ui, ϕi) and (Uj, ϕj) are compatible.

Definition 1.2.8. If A and B be the two atlases on M , taking values in H, and

A ∪B is also an atlas then A and B are equivalent atlases. Assume that Λ be

the set of all atlases on M. Define a relation ∼ on Λ as:

For A,B ∈ Λ, A ∼ B if and only if A ∪B is also an atlas.

One can see that the relation ∼ is equivalence relation on Λ. Hence this

equivalence relation is going to partition the Λ into equivalence classes. Each such

equivalence class C is called differentiable structure on M and pair (M, C) is called

differentiable manifold modelled on the Hilbert space H i.e. Hilbert

manifold. Moreover, if C is differentiable structure on M, then the set

AC :=
⋃
A∈C

A,

is also an atlas of C, called the maximal atlas of for C.

Example 1.2.9. i) Every Hilbert space H has a canonical structure of Hilbert

manifold modelled on itself. An atlas for this structure is given by only chart

(H, iH), where iH is identity map.

ii) If O be an open subset of Hilbert Manifold M then A inherits the structure

of Hilbert Manifold in the following manner. If A = {(Ui, ϕi)}i∈I denotes an atlas

on M then A|O = {(Ui ∩O,ϕi|Ui∩O)}i∈I is induced atlas on A.

1.2.2 Tangent space on Hilbert Manifold M

Assume that M be Hilbert manifold modelled on Hilbert space H and let A be the

maximal atlas of the structure. Consider an arbitrary point m ∈ M and
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Am = {(Ui, ϕi)}i∈I be the set of charts in A containing m. Set Λm := Am ×H and

define a relation ∼ on Λm, in the following manner.

For (U,ϕ, u) and (V, ψ, v) , we say

(U,ϕ, u) ∼ (V, ψ, v) if and only if
[(
ψ ◦ ϕ−1

)′
(ϕ (m))

]
(u) = v.

The map (ψ ◦ ϕ−1)
′
(ϕ (m)) : H → H denotes the differential of (ψ ◦ ϕ−1) at point

ϕ (m) . One can see that ∼ equivalence relation on Λm.

Definition 1.2.10. Let ∼ be the above described equivalence relation on Λm then

tangent space TmM at point m, is the quotient set:

TmM := Λm/ ∼= {[m]∼ : m ∈M} .

1.3 Dynamical systems preliminaries

In chapter 3 of this dissertation, we will be dealing with the long-term behavior of

the solution of the deterministic problem and we will show that solution converges

to steady state solution as time t → ∞. To do this one should need to know the

following dynamical system preliminaries. The dynamical system that we are

going to consider will be the semigroups defined on Hilbert spaces. The reference

for this section is Section 1 & Chapter 1 of [49].

Definition 1.3.1. Let H be a Hilbert space. A family {S(t) : t ≥ 0} of operators

from H into H, that evolve in time is called Semigroup if it satisfy:

S(0) = I, where I is identity operator on H,

S(t+ s) = S(t)S(s), for all s, t ≥ 0,

Moreover, u(t) := S(t)u0 is continuous in t and u0.
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Definition 1.3.2. For u0 ∈ H, by an orbit/trajectory starting from u0 the set⋃
t≥0

S(t)u0, equivalently {u(t) = S(t)u0 : t ≥ 0} .

Definition 1.3.3. A set A ⊂ H, is called invariant under S(·) if S (t)A = A, for

any t ≥ 0.

Definition 1.3.4. A continuous u(·) : R → H is global solution for S (·) , if it

satisfies S (t)u(s) = S (t+ s)u0, for all t ≥ 0 and s ∈ R.

Lemma 1.3.5. A set A is invariant under S (·) if and only if it consists of collection

of orbits of global solution.

Definition 1.3.6. For u0 ∈ H (or A ⊂ H), the ω-limit set of u0 ∈ H (or A ⊂ H)

can be defined as,

ω(u0) :=
⋂
s≥0

⋃
t≥s

S(t)u0,

(
or ω(A) :=

⋂
s≥0

⋃
t≥s

S(t)A

)
.

Lemma 1.3.7. If u0 ∈ H then ϕ ∈ ω(A) if and only if there exists a sequence of

elements (ϕn) in A and sequence tn → +∞ such that

S(tn)ϕn → ϕ as n→∞.

Definition 1.3.8. A point u0 ∈ H is called fixed/equilibrium or stationary

point of {S(t) : t ≥ 0} if and only if

S(t)u0 = u0, for all t ≥ 0.

Lemma 1.3.9. Assume that ∅ 6= A ⊂ H and for some t0 ≥ 0, the set
⋃
t≥t0

S(t)A is

relatively compact in H. Then ω(A) is non-empty, compact and invariant.

1.4 Miscellaneous Preliminaries

In this section we aim to provide some of fundamentals from classical set theory,

real analysis and measure theory.
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1.4.1 Equivalence relations, Partially ordered set and

Kurtowski-Zorn’s Lemma

Main objective of this subsection is to introduce the Kurtowski-Zorn’s Lemma,

which will play a significant role in the existence of a local maximal solution of

our deterministic Heat equation on Hilbert-Manifold. Let us begin by recalling

fundamentals of relation theory. The primary source for this subsection is Chapter

1 of [32].

Definition 1.4.1. Let A and B be two sets. By a relation (or binary relation)

∼, from a set A into B, is a subset of A× B. Suppose R is a relation from A into

B, if (a, b) ∈ A × B we denote this by aRb or R(a) = b. Moreover, the domain,

denoted by D(R), and the range or image, denoted by I(R), of relation ∼ can be

defined in the following manner,

D(R) : = {x : x ∈ A and there exists y ∈ B such that (x, y) ∈ R} ,

I(R) : = {y : y ∈ B and there exists x ∈ A such that (x, y) ∈ R} .

Example 1.4.2. Let X be a non-empty set. Let R be set of all ordered pairs

(U, V ) ∈ X ×X such that U ⊆ V i.e.

R := {(U, V ) : (U, V ) ∈ X ×X and U ⊆ V } ,

defines a binary relation.

Definition 1.4.3. Let R be a binary relation on set Ξ. Then R is called:

i) Reflexive, if for all x ∈ Ξ we have xRx.

ii) Symmetric, if for all x, y ∈ Ξ, xRy implies yRx,

iii) Transitive, if for all x, y, z ∈ Ξ, xRy and yRz implies xRz.
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Definition 1.4.4. Let E be a relation on Ξ. Then E is called Equivalence relation

on Ξ if R is reflexive, symmetric, transitive relations.

Example 1.4.5. Let X be a non-empty set. Consider ∼ be relation on X defined

as, U ∼ V if and only if U ⊆ V then ∼ is:

i ) Reflexive, because for any U ⊆ X, trivially U ⊆ U i.e. U ∼ U.

ii) Transitive, because for any U, V,W ⊆ X if U ∼ V and V ∼ W i.e.

U ⊆ V ⊆ W implies U ⊆ W i.e. U ∼ W.

But ∼ is not symmetric because U ⊆ V does not necessarily imply V ⊆ U

i.e.U ∼ V does not necessarily imply V ∼ U. Thus ∼ is not equivalence relation.

Definition 1.4.6. Let E be an equivalence on set Ξ. For all x ∈ E, by [x] we mean

the set

[x] = {y ∈ A : yEx}

called the equivalence class determined by x.

Following is an important theorem about the fundamental properties of

equivalence classes.

Theorem 1.4.7. Let E be the equivalence relation on Ξ. Then for all x, y ∈ Ξ :

i) [x] 6= ∅,

ii) if y ∈ [x] then [x] = [y],

iii) either [x] ∩ [y] = ∅ or [x] = [y],

iv) Ξ =
⋃
x∈Ξ

[x].

Definition 1.4.8. Let Ξ be P be non-empty collection of subsets of Ξ. We say that

P is called partition of Ξ if the following properties hold:

i) for all B,C ∈ P either B = C or B ∩ C = ∅,

ii) Ξ =
⋃
B∈P

B.
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Theorem 1.4.9. Let E be the equivalence relation on Ξ. Then

P = {[x] : x ∈ A} ,

defines a partition of Ξ.

Definition 1.4.10. A relation � on Ξ is called partial order if � is:

i) � is reflexive i.e. x � x for all x ∈ Ξ,

ii) � is antisymmetric i.e. for all x, y ∈ Ξ if x � y and y � x then x = y,

iii) � is transitive i.e. for all x, y, z ∈ Ξ if x � y and y � z implies x � z.

In this case (Ξ,�) is called Partially ordered set (or POSET).

Example 1.4.11. Let X be a non-empty set. Consider � a relation on X defined

as, U � V if and only if U ⊆ V then � is:

i ) Reflexive, because for any U ⊆ X, trivially U ⊆ U i.e. U � U,

ii) Antisymmetric, because U � V and V � U i.e. U ⊆ V ⊆ U implies U = V,

iii) Transitive, because for any U, V,W ⊆ X if U � V and V � W i.e.

U ⊆ V ⊆ W implies U ⊆ W i.e. U � W.

Hence � is partial order on X and (X,�) is a POSET.

Definition 1.4.12. A partially ordered set (Ξ,�) is called chain or linearly

ordered set if for all x, y ∈ Ξ either x � y or y � x.

Definition 1.4.13. Let (Ξ,�) be a Poset and B ⊆ Ξ then:

i) an element u ∈ Ξ is called upper bound of B if x � u for all x ∈ B.

ii) an element l ∈ Ξ is called least upper bound of B if the following two are

true:

a) l is upper bound of B,

b) if c ∈ Ξ is upper bound of B then l � c.
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Definition 1.4.14. Let (Ξ,�) be a Poset. An element m ∈ Ξ is called maximal

element of A if there is no element x ∈ Ξ such that m � x and m 6= x.

Following the main result of this subsection i.e. Kurtowski-Zorn’s Lemma.

Lemma 1.4.15. (Kurtowski-Zorn’s Lemma) If every chain in a Poset (Ξ,�) has

an upper bound in Ξ then Ξ contains a maximal element.

1.4.2 Limit theorem in R

In this subsection, we recall one of the basic limit theorem from real analysis, which

we are going to use at several instances throughout the dissertation.

Definition 1.4.16. [27] A sequence of real numbers (an)n∈N is called

monotonically increasing iff an ≤ an+1, for all n ∈ N. Similarly it is called

monotonically decreasing sequence iff an ≤ an+1, for all n ∈ N.

Lemma 1.4.17. [27] A bounded monotonically increasing (resp. decreasing)

sequence (an)n∈N converges to sup
n∈N
{an} (resp. inf

n∈N
{an}).

1.4.3 Measure Theoretic preliminaries

In this subsection, we review some of the basic notions from Measure theory. Our

main reference for this is the Chapter 1 of [42].

Definition 1.4.18. A collection F of subsets of X is said to be σ-algebra in X

if F has the following properties:

a) X ∈ F ,

b) If A ∈ F , then Ac = X\A ∈ F ,

c) If An ∈ F , n = 1, 2, ..., then
∞⋃
k=1

Ak ∈ F .
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If F is a σ-algebra in X then (X,F) is called a measurable space and members

of F are called the measurable sets in X.

Definition 1.4.19. If X is measurable space, Y is a topological space, and f is a

mapping from X into Y, then f is said to be measurable function if for every

open set A in Y, f−1(A) is a measurable set in X.

Theorem 1.4.20. Let
∑

be a collection of subsets of X, then there exists a smallest

σ-algebra F in X such that
∑
⊂ F . This σ-algebra is denoted by σ (

∑
) and called

σ-algebra generated by
∑
.

Definition 1.4.21. Assume that (X, τ) is a topological space,by above theorem there

exists a smallest σ-algebra B such that τ ⊂ B. The space (X, τ) is called Borel

σ-algebra and elements of B are called Borel sets of X.

Remark 1.4.22. Closed sets are Borel because B contains all open sets and being

σ-algebra contains the complements of open sets. Moreover since B is σ-algebra so

it contains countable union of closed sets and countable intersection of open sets and

so these are Borel, denote Fδ by countable union of closed sets Gδ by the countable

intersection of open sets. Since B is σ-algebra in X so (X,B) can be treated as the

measurable space. A function f : X → Y , where Y is topological space, is called a

Borel measurable function if inverse image of each open set in Y , is a Borel

set in X .

Theorem 1.4.23. Suppose F be a σ-algebra in X and Y be a topological space. Let

f be a map from X into Y, then the following holds:

a) If
∑

= {E ⊂ Y : f−1 (E) ∈ F} then
∑

is σ-algebra in Y.

b) The inverse image of Borel set in Y , under a Borel measurable map f , is a

measurable set in X.

c) If Y = R and f−1 (α,∞) ∈ F , for every α ∈ R, then f is measurable.
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d) If f is measurable, if Z is a topological space and if g : Y → Z is Borel

measurable then g ◦ f is also measurable.

Theorem 1.4.24. Let fn : X → R be a measurable function, for each n = 1, 2, 3...,

then sup
n≥1

fn and lim
n→∞

sup fn are also measurable.

Definition 1.4.25. Let (X,F) be the measurable space. A map µ : F → [0,∞] is

called measure on X if:

i) µ (∅) = 0,

ii) Any countable family (Ai)i∈N ⊂ F of pair-wise disjoint sets, satisfies the

following σ-additivity property,

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ (Ak) .

In this case (X,F , µ) is called measure space. The measure µ is called finite if

µ (X) <∞ and is called probability measure if µ (X) = 1.

Theorem 1.4.26. Let µ be a positive measure on the σ-algebra F then:

a) µ (∅) = 0,

b) If A1, A2, ..., An ∈ F and Ai ∩ Aj = ∅, for i 6= j, i, j = 1, 2, ..., n, then

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ (Ai) ,

c) If A1, A2, ... ∈ F and Ai ⊂ Ai+1, for all i ∈ N, then

µ (An)→ µ

(
∞⋃
i=1

Ai

)
as n→∞,

d) If A1, A2, ... ∈ F and Ai ⊃ Ai+1, for all i ∈ N, then

µ (An)→ µ

(
∞⋂
i=1

Ai

)
as n→∞.

and µ (A1) <∞.
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Definition 1.4.27. Let (X,F , µ) be the measure space. A measurable function

φ : X → [0,∞) is called simple function if there exist real valued sequence (φi)
n
i=1

such that φ can be written in form:

φ =
n∑
i=1

φi1Ai ,

where Ai := φ−1 (φi). also 1Ai(x) = 1 if x ∈ Ai and 1Ai(x) = 0 if x ∈ X\A.

For E ∈ F we define, ∫
E

φdµ :=
n∑
i=1

φiµ (Ai ∩ E) .

Note that if for some i, φi = 0 and µ (Ai ∩ E) =∞ then we set φiµ (Ai ∩ E) := 0.

Finally, if f : X → [0,∞] be a measurable function and E ∈ F , we define

Lebesgue integral of f over E, is number in [0,∞] as,∫
E

fdµ := sup
0≤s≤f

∫
E

φdµ.

Theorem 1.4.28. (Monotone Convergence Theorem) Let (fn) be a sequence

of Lebesgue measurable functions on Ω, satisfying

a) 0 ≤ f1 ≤ f2 ≤ ... ≤ ∞

b) fn → f point-wise as n→∞.

Then f is measurable and
∫

Ω
fndµ→

∫
Ω
fdµ as n→∞.

Theorem 1.4.29. If fn : Ω → [0,∞] is measurable for all n ∈ N, and

f(x) =
∑
n

fn(x), for all x ∈ Ω, then∫
Ω

fdµ =
∑
n

∫
Ω

fndµ

Theorem 1.4.30. (Fatou’s Lemma) If fn : Ω → [0,∞] is measurable for all

n ∈ N, then ∫
Ω

(
lim
n→∞

inf fn

)
dµ ≤ lim

n→∞
inf

∫
Ω

fndµ

lim
n→∞

sup

∫
Ω

fndµ ≤
∫

Ω

(
lim
n→∞

sup fn

)
dµ
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Theorem 1.4.31. If f ∈ L1 (µ) i.e.
∫
E
fdµ <∞, then∣∣∣∣∫

Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f | dµ.

Theorem 1.4.32. (Lebesgue Dominated Convergence Theorem) Suppose

(fn) be the sequence of complex measurable functions on Ω such that fn → f point-

wise as n → ∞. If there exists a function g ∈ L1 (µ) such that |fn| ≤ g on Ω then

f ∈ L1 (µ) and

lim
n→∞

∫
Ω

|fn − f | dµ = 0 also lim
n→∞

∫
Ω

fndµ =

∫
Ω

fdµ.

Definition 1.4.33. [46] Let (X,A) and (Y,B) be two measurable spaces. Then

A⊗ B := σ (A× B) = σ ({A×B : A ∈ A, B ∈ B}) .

is called a product σ-algebra, and (X × Y,A⊗ B) is the product of measurable

space.

1.5 Stochastic Preliminaries

This section is very important as we aim to provide preliminaries from stochastic

analysis.

For the section we fix the probability space (Ω,F ,P). Let us begin by reviewing

the basic definitions related to stochastic processes that we are going to encounter

frequently, throughout the dissertation. All results and definitions of this section

we refer to Chapter 1 of [39].

Definition 1.5.1. A continuous-time stochastic process (Xt)t∈T is a family of

H-valued random variables indexed by time t, where H denotes a measurable space,

moreover we treat either T := [0, T ] or T := [0,∞) . For each ω ∈ Ω, the map

X (ω) : t ∈ T→ Xt (ω) is called path (or trajectory) of the process for event ω,

moreover for each t ∈ T the map ω 7→ Xt (ω) is a random variable.
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Definition 1.5.2. A filtration on (Ω,F ,P) is an increasing family F := (Ft)t∈T
of σ-fields of F such that, for all s ≤ t in T, we have Fs ⊂ Ft ⊂ F. A process

(Xt)t∈T is called Adapted w.r.t F , if for all t ∈ T, Xt is Ft-measurable. Further,

the process (Xt)t∈T is called is called Predictable, w.r.t filtration F , if the map

(t, ω) 7→ Xt (ω) is measurable on T × Ω equipped with σ-field generated by the

F-adapted and continuous processes. Moreover, (Xt)t∈T is called progressively

measurable, w.r.t F , if for all t ∈ T, the mapping (s, ω) 7→ Xs (ω) is measurable

on [0, t]× Ω equipped with the product σ-field B⊗Ft.

Remark 1.5.3. i) Any progressively measurable process adapted and measurable on

T× Ω equipped with the product σ-field B (T)⊗F .

ii) Any continuous and adapted process X is predictable.

Lemma 1.5.4. Limits of progressively measurable processes are progressively

measurable. Moreover, if the processes (Xt)t∈T is adapted with right continuous

paths, then it is progressively measurable.

Definition 1.5.5. A random variable τ : Ω → [0,∞] i.e. a random time, is a

stopping time (w.r.t filtration F := (Ft)t∈T) if for all t ∈ T,

{τ ≤ t} := {ω ∈ Ω : τ (ω) ≤ t} ∈ Ft.

A stopping time τ is called accessible (or predictable) if there exists a

sequence of stopping times (τn)n∈N such that: almost surely we have the following:

i) lim
n→∞

τn = τ,

ii) on {τ > 0} we have τn < τ , for all n ∈ N.

We say that sequence (τn)n∈N approximates (announces) τ.

Remark 1.5.6. i ) One can easily see that if τ and σ are two stopping times then

τ ∧ σ, τ ∨ σ and τ + σ are also stopping times.
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ii) Every stopping time τ is Fτ -measurable, where Fτ is the following σ-field

Fτ = {B : B ∩ {τ ≤ t} ∈ Ft, for all t ∈ T} .

iii) A r.v ξ is Fτ -measurable if and only if for all t ∈ T, ξ1{τ≤t} is Ft-measurable.

Proposition 1.5.7. Let (Xt)t∈T be a progressively measurable process, and τ a

stopping time. Then Xτ1{τ≤t} is Fτ -measurable and stopped process Xt∧τ is also

progressively measurable.

Proposition 1.5.8. Let (Xt)t∈T be a progressively measurable process and Γ be an

open subset of Rd. The hitting time of Γ, given by:

σΓ := inf {t ≥ 0 : Xt ∈ Γ} ,with inf ∅ =∞,

is a stopping time. Further, if Γ ∈ B (T) (Borel σ-algebra) then σΓ is still a stopping

time.

Theorem 1.5.9. (Section theorem) Let (Xt)t∈T and (Yt)t∈T be two progressively

measurable processes. Assume that for any stopping time τ, we have

Xτ = Yτ a.s. on {τ <∞} .

Then, the two processes (Xt)t∈T and (Yt)t∈T are indistinguishable i.e.

P ({Xt = Yt, for all t ∈ T}) = 1.

Definition 1.5.10. (Standard Brownian Motion) A Standard d−dimensional

Brownian motion on T is a continuous process valued in Rd,

(Wt)t∈T =
(
W 1
t ,W

2
t , ...,W

d
t

)
t∈T such that:

i) W0 = 0,

ii) For all 0 ≤ s < t in T, the increment in Wt − Ws is independent of

σ ({Wu, u ≤ s}) and follows a centred Gaussian distribution with

variance-covariance matrix (t− s)Id.
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Remark 1.5.11. One obvious deduction is that, i = 1, 2, ..., d, coordinates

(W i
t )t∈T, of d−dimensional Brownian motion, is a real-valued independent

standard Brownian motion. Converse is also true i.e. if (W i
t )t∈T , for each

i = 1, 2, ..., d, be the standard real-valued Brownian motion then

(Wt)t∈T =
(
W 1
t ,W

2
t , ...,W

d
t

)
t∈T is standard d−dimensional Brownian motion on T.

Now we present definition standard vectorial Brownian motion w.r.t a certain

filtration F = (Ft)t∈T .

Definition 1.5.12. A d−dimensional Brownian motion on T w.r.t

F = (Ft)t∈T , is a continuous F-adapted process valued in Rd,

(Wt)t∈T =
(
W 1
t ,W

2
t , ...,W

d
t

)
t∈T such that:

i) W0 = 0,

ii) For all 0 ≤ s < t in T, the increment in Wt −Ws is independent of Fs and

follows a centred Gaussian distribution with variance-covariance matrix (t− s)Id.

Definition 1.5.13. An adapted process (Xt)t∈T , taking values in measurable

space (H,µ) , is called H-valued martingale if it is integrable i.e.

E (|Xt|) =
∫
|Xt| dµ <∞, and

E (Xt|Fs) = Xs a.s., for all 0 ≤ s ≤ t and s, t ∈ T.

Theorem 1.5.14. (Optional sampling Theorem) Let σ and τ be T-valued bounded

stopping times such that σ ≤ τ . If (Xt)t∈T is the martingale with right continuous

paths then,

E (Xτ |Fσ) = Xσ a.s..

Corollary 1.5.15. Let X = (Xt)t∈T be an adapted process with right-continuous

paths. We have the following,
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i) X is martingale iff for any T-valued bounded stopping times σ and τ we have

Xτ ∈ L1 and

E (Xτ ) = X0 a.s. .

ii) If X is martingale and τ is a stopping time, then the stopped process

Xτ = (Xt∧τ )t∈T is also a martingale.

Theorem 1.5.16. (Doob inequalities) Let X = (Xt)t∈T be a non-negative

martingale with right-continuous paths. Then for each stopping time T-valued

stopping time τ , we have,

P
(

sup
0≤t≤τ

|Xt| ≥ λ

)
≤ E (|Xτ |)

λ
, for all λ ≥ 0,

E
(

sup
0≤t≤τ

|Xt|
)p
≤

(
p

p− 1

)p
E (|Xτ |p) , for all p ≥ 1.

Theorem 1.5.17. (Burkholder-Davis-Gundy) For any 1 ≤ p < ∞ there exist

positive constants cp and Cp such that, for all continuous martingales X with

X0 = 0 and stopping times τ , the following inequality holds.

E
[
〈X〉p/2τ

]
≤ E

(
sup

0≤t≤τ
|Xt|

)p
≤ CpE

[
〈X〉p/2τ

]
.

Where 〈X〉 denotes the Quadratic variation of X.

1.5.1 Some Stochastic PDE results from Pardoux [37]

In this last section of preliminaries chapter, we intend to present the existence and

uniqueness results for the most general form of the stochastic partial differential

equation, studied in [37]. Moreover, we also present the corresponding version of

Itô Lemma that we are going to use at several places in the dissertation. Let me

begin by setting up some notion. Assume that (Ω,F ,P) be a probability space and
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(Wt)t≥0 the d−dimensional standard Brownian motion. Let (V, ‖·‖) and (H, |·|H)

be two separable Hilbert spaces, such that

V ⊂ H ⊂ V ′,

where (V ′, ‖·‖∗) be dual of V and also the above inclusions are dense.By 〈, 〉 we

mean the duality product between V and V ′, further by (, ) scalar product in H,

and [, ] denotes the scalar product in Rd. Finally, the norm on Hd will be denoted

by:

|u|Hd =

(
d∑
i=1

|ui|2H

)1/2

.

Hilbert space-valued Stochastic Integrals and Itô Lemma

In this subsection we are up to present the stochastic integral taking values in

Hilbert space and hence the Itô Lemma. For this purpose, we are going to employ

the notation introduced above.

For a Hilbert space X, by M2 (0, T ;X) we mean the space of all of X-valued

measurable processes, (u (t))t∈[0,T ] , which satisfy the following two conditions:

i) u(t) is Ft measurable a.e. in t ∈ [0, T ],

ii) E
∫ T

0
|u(t)|2X dt <∞.

In particular, X can be taken as Rd, H, Hd, V, V d and V ′.

Proposition 1.5.18. [37] The space M2 (0, T ;X) is a closed subspace of

L2 (Ω× (0, T ), dP ⊗ dt;X) and hence complete.

For ς ∈ M2
(
0, T ;Hd

)
and any h ∈ H, let us define a map

h 7−→
∫ t

0
[(h, ς(s)) , dWs], from H into L2 (Ω), where [, ] denotes the scalar product

in Rd. Indeed, this map is linear. Using this map we can define the H-valued
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random variable
∫ t

0
[ς(s), dWs] , in the following manner:(

h,

∫ t

0

[ς(s), dWs]

)
:=

∫ t

0

[(h, ς(s)) , dWs] , for all h ∈ H.

Proposition 1.5.19. [37] The process Mt :=
∫ t

0
[ς(s), dWs] is Continuous

H-martingale and it satisfies the following:

|Mt|2 −
∫ t

0

|ς(s)|2 ds = 2

∫ t

0

[(Ms, ς(s)) , dWs] ,

E |Mt|2 = E
(∫ t

0

|ς(s)|2 ds
)
, for t ∈ [0, T ] .

1.5.2 A generalized version of the Itô Lemma

Following is the version of Itô Lemma that we are going to incorporate at several

places in dissertation.

Theorem 1.5.20. [37] Let u ∈ M2 (0, T ;V ) , u0 ∈ H, v ∈ M2 (0, T ;V ′) and

ς ∈M2
(
0, T ;Hd

)
, all these satisfy

u(t) = u0 +

∫ t

0

v(s)ds+

∫ t

0

[ς(s), dWs] .

Moreover, assume that ψ : H → R be twice differentiable functional, which satisfies

the following:

i) The maps ψ, ψ′ and ψ′′ are locally bounded.,

ii) the maps ψ and ψ′ are continuous on H,

iii) for all Q ∈ L1 (H) , T r (Q ◦ ψ) is a continuous functional H.

iv) if u ∈ V, ψ′(u) ∈ V then the map u 7−→ ψ′(u) is continuous from V (with the

strong topology), into V endowed with the weak topology.

v) there exists k s.t.

‖ψ′(u)‖ ≤ k (1 + ‖u‖) , for all u ∈ V.
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Then for t ∈ [0, T ]:

ψ(u (t))− ψ(u0) =

∫ t

0

〈v(s), ψ′(u(s))〉 ds+

∫ t

0

[(ψ′(u(s)), ς(s)) , dW (s)]

+
1

2

d∑
i=1

∫ t

0

(ψ′′ (u(s)) ςi(s), ςi(s)) ds,

1.5.3 Existence and Uniqueness result

For f ∈M2 (0, T ;V ′), g ∈M2
(
0, T ;Hd

)
and u ∈M2 (0, T ;V ) , the most generalized

form of the problem considered in Pardoux [37] is the following:

du(t) + (A(t)u(t) + f(t))dt = [B(t)u(t) + g(t), dWs]

u(0) = u0 ∈ H.

Theorem 1.5.21. [37] There exists a unique solution of above described problem,

which also satisfies:

i) u ∈ L2 (Ω;C (0, T ;H)) ,

ii)

|u(t)|2 − |u0|2 + 2

∫ t

0

〈Au(s) + f(s), u(s)〉 ds

=

∫ t

0

[(Bu(s) + g(s), u(s)) , dW (s)] +

∫ t

0

|Bu(s) + g(s)|2 ds.
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Chapter 2

Global solution of non-linear Heat

equation on Hilbert Manifold

In this chapter, we are concerned with the problem of existence and uniqueness of

a local, local maximal and global solution for the nonlinear heat flow equation

projected on a manifold (Hilbert) M . In the first section, we are going to begin

with some motivational comments and then we will be setting up some notation

related to spaces, manifold, and operators, which we are going to deal with later in

this chapter. Later, in the first section we will introduce the deterministic

constrained problem (abstract and particular projected evolution equation) of our

interest, we will end the first section by setting up necessary assumptions and
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providing the definition of the solution. In the second section, we aim to construct

the local mild and local maximal solution of main evolution equation. To do this,

we first work on an approximate evolution equation and obtain its solution, with

the aid of Banach fixed point theorem. Next, using the Kartowski-Zorn Lemma we

aim to obtain the local maximal solution of approximate evolution equation. Then

we are going to show that if we can find a constant R such that the energy norm

of initial data u0 is bounded by R, then the solution (local or maximal) of

approximate evolution equation is equivalent to the solution (local and maximal)

of main evolution equation. The third and last section of this chapter begins with

finding a sufficient condition for the local mild solution to be the global solution.

Then we are going to prove invariance of manifold i.e. if the initial data lives in

manifold then the solution, of projected evolution equation, itself lives in the

manifold. Finally, the section and chapter end at the proof of global solution. One

interesting fact about the projected flow is that it possesses a gradient flow

structure.

2.1 Introduction, Main Problem and Motivation

Rybka in [43] has considered the heat equation in L2(O) projected on a manifold

M, where

M =

{
u ∈ L2(O) ∩ C(O) :

∫
Ω

uk(x)dx = Ck, k = 1, 2, ..., N

}
,

and O be a bounded, connected region in Rd. Rybka has shown that solution to this

problem converges to a steady state as a time of motion. Our approach to tackle

the problem is absolutely different from the approach of Rybka [43].
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2.1.1 Notation

Let us set some notation that we are going to follow not only in this chapter but

throughout the dissertation.

Assumption 2.1.1. We assume that (E, |·|E), (V, ‖·‖), (H, |·|H) are Banach spaces

such that

E ↪→ V ↪→ H,

and the embeddings are dense and continuous.

Remark 2.1.2. In our motivating application, we will consider the following choice

of space

E = D(A),

V = H1,2
0 (O) ,

H = L2(O),

where O ⊂ Rd for d ≥ 1, is a bounded domain with sufficiently smooth boundary.

A be the Laplace operator with Dirichlet boundary conditions, defined by

D(A) = H1,2
0 (O) ∩H2,2(O), (2.1.1)

Au = −∆u, u ∈ D(A).

It is well known that, see [51] (Theorem 4.1.2, page 79), that A is a self-adjoint

positive operator in H and that V = D(A1/2), and

‖u‖2 =
∣∣A1/2u

∣∣2
H

=

∫
O
|∇u(x)|2 dx.

Moreover,

E ⊂ V ⊂ H ⊂ V ′ ≡ H−1 (O) ,

and inclusion are continuous and dense. Hence E, V and H satisfy Assumption

2.1.1.
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2.1.2 Manifold and Projection

The version of Hilbert manifold we are going to deal with, is the following

submanifold M of a Hilbert space H (with inner product denoted by 〈·, ·〉),

M =
{
u ∈ H : |u|2H = 1

}
.

Moreover the tangent space, at a point u in H, is of form,

TuM = {v : 〈u, v〉 = 0} .

Let πu : H → TuM be orthogonal projection of H onto tangent space M then

immediately we have the following lemma.

Lemma 2.1.3. Let πu : H → TuM be orthogonal projection then

πu(v) = v − 〈u, v〉u, where v ∈ H.

We aim to study the projection of Laplace operator and polynomial non-linearity

of degree 2n− 1.

Let us pick a u ∈ E. Using the last lemma we calculate an explicit expression

for projection of ∆u−u2n−1 under πu. The below given calculation using integration

by parts, cf. [3] (corollary 8.10, page-82),

πu
(
∆u− u2n−1

)
= ∆u− u2n−1 −

〈
∆u− u2n−1, u

〉
u

= ∆u− u2n−1 + 〈−∆u, u〉u+
〈
u2n−1, u

〉
u

= ∆u− u2n−1 + 〈∇u,∇u〉u+
〈
u2n−1, u

〉
u

= ∆u+
(
‖u‖2 + |u|2nL2n

)
u− u2n−1 (2.1.2)

We now proceed towards introducing the evolution equation that arise from above

mentioned projection.
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2.1.3 Statement of main problem

Let the spaces E, V and H be the Hilbert spaces as in Remark 2.1.2. The following is

the main deterministic evolution equation that we are going to deal in this chapter.

∂u

∂t
= πu(∆u− u2n−1) = ∆u+

(
‖u‖2 + |u|2nL2n

)
u− u2n−1, (2.1.3)

u(0) = u0,

where n is a natural number (or, more generally, a real number bigger than 1
2
), and

u0 ∈ V ∩M.

Assume that E, V,H be the abstract spaces satisfying Assumption 2.1.1. Then

we can also treat above mentioned evolution equation as a special case of the

following evolution equation (of parabolic type) with abstract F

∂u

∂t
(t) + Au(t) = F (u(t)), t ≥ 0, (2.1.4)

u(0) = u0.

Here A is self-adjoint operator, F is map from V into H is locally Lipschitz

and satisfies a certain symmetric estimate, which we are going to describe in next

section.

Remark 2.1.4. We will prove existence of the local and local maximal solution in

abstract spaces E, V, H satisfying Assumption 2.1.1. For the existence of global

solutions we will employ spaces E, V and H described in Remark 2.1.2.

2.1.4 Solution space, assumptions, definition of the solution

We now introduce the most important Banach space that we are going to deal

throughout the dissertation. Assume that E, V and H are the abstract Banach
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space as described in Assumption 2.1.1. For any T ≥ 0, let us denote

XT := L2 (0, T ;E) ∩ C ([0, T ] ;V ) .

It can be easily shown that
(
XT , |·|XT

)
is Banach space with norm

|u|2XT = sup
t∈[0,T ]

‖u(t)‖2 +

∫ T

0

|u(t)|2E dt, u ∈ XT .

Now we state some of important assumptions which we are going to use in the

upcoming sections.

Assumption 2.1.5. Let E ⊂ V ⊂ H satisfy Assumption 2.1.1. Assume that

S(t), t ∈ [0,∞), is an analytic semigroup of bounded linear operators on H, such

that there exist positive constants C1 and C0:

i) For every T > 0 and f ∈ L2(0, T ;H) a function u = S ∗ f defined by

u(t) =

∫ T

0

S(t− r)f(r)dt, t ∈ [0, T ]

belongs to XT and

|u|XT ≤ C1 |f |L2(0,T ;H) (2.1.5)

Note that S∗ : L2(0, T ;H) → XT (f 7−→ S ∗ f) is a linear map and in the view of

(2.1.5) it is also bounded.

ii) For every T > 0 and every u0 ∈ V , a function u = S (·)u0 defined by

u(t) = S(t)u0, t ∈ [0, T ]

belongs to XT and satisfies

|u|XT ≤ C0 ‖u0‖ . (2.1.6)

Now we introduce an auxiliary function which will be used later for truncation

of norm of the solution. Let θ : R+ → [0, 1] be a non increasing smooth function
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with compact support such that

inf
x∈R+

θ′(x) ≥ −1, θ(x) = 1 iff x ∈ [0, 1] and θ(x) = 0 iff x ∈ [2,∞). (2.1.7)

For n ≥ 1 set θn(·) = θ
( ·
n

)
. We have the following easy Lemma about θ as

consequence of previous description.

Lemma 2.1.6. ([13], page 57) If h : R+ → R+ is a non decreasing function, then

for every x, y ∈ R,

θn(x)h(x) ≤ h(2n), |θn(x)− θn(y)| ≤ 1

n
|x− y| . (2.1.8)

Next we are going to define that what we mean by local, local maximal and

global solution of problem (2.1.3).

Definition 2.1.7. For u0 ∈ V , a function u : [0, T1) → V is called local mild

solution to problem (2.1.4) with initial data u0 if the following conditions are

satisfied,

i) for all t ∈ [0, T1), u|[0,t) ∈ Xt,

ii) for all t ∈ [0, T1),

u(t) = S(t)u0 +

∫ t

0

S(t− r)F (u(r)) dr.

A local mild solution (u(t), t ∈ [0, T1)) is called a maximal solution if for any other

local mild solution
(
û(t), t ∈ [0, T̂1)

)
such that:

i) T̂1 ≥ T1,

ii) the restriction of û to [0, T1) agrees with u implies T̂1 = T1.

A local maximal solution (u(t), t ∈ [0, T1)) is called a global solution in T1 =∞.
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2.2 Existence and Uniqueness of local and local

maximal solutions

In order to prove the existence and the uniqueness of local mild and local maximal

solutions to our abstract problem (2.1.4) (in particular projected constrained

Problem (2.1.3), we are first going to study the existence and uniqueness of

solutions to approximate abstract evolution equation given below. Let us assume

T as some positive real number. We are interested in proving the existence and

the uniqueness a local mild and local maximal solution un to the following

evolution equation:

un(t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr, t ∈ [0, T ], (2.2.1)

un(0) = u0, where u0 ∈ V.

All the results proven in this section will be in abstract E, V and H spaces

satisfying Assumption 2.1.1. For the existence of a local solution of (2.2.1), we will

construct a globally Lipschitz. map from XT into L2 (0, T ;H) and then by using this

globally Lipschitz map, we will construct a contraction and hence the existence and

uniqueness of local mild solution are guaranteed by Banach fixed point theorem.

Then using Zorn’s lemma on the set of Local mild solutions, we will imply the

existence of a local maximal solution of (2.2.1).

2.2.1 Important Estimates

In this subsection we are going to treat E, V and H in Remark 2.1.2. The aim of

this subsection is to show that the nonlinear part of our projected heat flow problem
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(2.1.3) i.e. the function F : V → H defined by:

F (u) := ‖u‖2 u− u2n−1 + u |u|2nL2n , (2.2.2)

is locally Lipschitz and satisfies a certain symmetric estimate. Recall the following

well known Gagliardo-Nirenberg-Sobolev inequality.

Lemma 2.2.1. [47] Assume that r, q ∈ [1,∞), and j,m ∈ Z satisfy 0 ≤ j < m.

Then for any u ∈ C∞0
(
Rd
)

∣∣Dju
∣∣
Lp(Rd) ≤ C |Dmu|a

Lr(Rd) |u|
1−a
Lq(Rd) , (2.2.3)

where 1
p

= j
d

+a
(

1
r
− m

d

)
+(1−a)1

q
, for all a ∈

[
j
m
, 1
]
. If m−j− d

r
is a non-negative

integer, then the equality (2.2.3) holds only for a ∈
[
j
m
, 1
)
.

Observe that our projected heat flow problem (2.1.3) involves L2n norm,

therefore at several instances throughout this section and dissertation we will use

the following particular case of Gagliardo-Nirenberg-Sobolev inequality.

For our case we choose r = q = 2, j = 0, m = 1, d = 2, and p = 2n, so

1

p
=

0

2
+ a

(
1

2
− 1

2

)
+ (1− a)

1

2
,

1

2n
= (1− a)

1

2
,

1

n
= 1− a or a = 1− 1

n
.

Plugging values of r, q, j,m, d and p in inequality (2.2.3) we get, with a = 1− 1
n
,

|u|L2n(R2) ≤ C |Ou|aL2(R2) |u|
1−a
L2(R2) , u ∈ H

1,2
0 (O) .

As H = L2 (O) and V = H1,2
0 (O) (i.e.‖u‖ = |Ou|L2(R2)) so above inequality can be

re written as,

|u|L2n(R2) ≤ C ‖u‖a |u|1−aH . (2.2.4)
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Remark 2.2.2. i) From Remark 2.1.2 we know that embedding V ↪→ H is compact

i.e. there exists c > 0 such that

|u|H ≤ c ‖u‖ , u ∈ V.

Hence inequality (2.2.4), simplifies to

|u|L2n(R2) ≤ C ‖u‖ , u ∈ V, (2.2.5)

where C := cC. The last inequality reflects the fact that V ↪→ L2n (R2) continuously,

where n ∈ N.

Before proving the main result of this subsection, consider two useful Lemmas.

Lemma 2.2.3. If a, b ≥ 0 then

(an − bn) ≤ nan−1 (a− b) . (2.2.6)

Proof. Indeed, for a = b required result holds trivially. Now assume the case a 6= b.

Let us begin with the following observation,

an − bn = (a− b)
(
an−1 + an−2b+ ...+ bn−1

)
.

Consider the case when a > b, then from equation above

an − bn = (a− b)
(
an−1 + an−2b+ ...+ bn−1

)
,

< (a− b)
(
an−1 + an−2a+ ...+ an−1

)
,

= (a− b)
(
an−1 + an−1 + ...+ an−1

)
,

= nan−1(a− b).
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Now consider the case a < b i.e. b
a
> 1 then,

an − bn = (a− b)
(
an−1 + an−2b+ ...+ bn−1

)
,

an − bn

a− b
= an−1 + an−2b+ ...+ bn−1,

= an−1

(
1 +

b

a
+ ...+

(
b

a

)n)
> an−1 (1 + 1 + ..+ 1) = nan−1,

an − bn

a− b
> nan−1.

As a < b so a− b < 0 so on multiplying a− b on both sides of above inequality

(an − bn) ≤ nan−1 (a− b) .

Thus the inequality holds in all cases. This completes the proof. �

Lemma 2.2.4. For real number a, b and n ∈ N,

|an − bn| ≤ n

2
|a− b|

(
|a|n−1 + |b|n−1) . (2.2.7)

Proof. Since

|an − bn| =
∣∣(a− b) (an−1 + an−2b+ ...+ bn−1

)∣∣ ,
≤ |a− b|

(
n∑
i=1

|a|n−i |b|i−1

)
. (2.2.8)

Using young’s inequality

xy ≤ xp

p
+
yq

q
, where q =

p

p− 1
,
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for x = |a|n−i, y = |b|i−1, p = n−1
n−i and q = n−1

i−1
we

|a|n−i |b|i−1 , ≤

(
|a|n−i

)n−1
n−i

n−1
n−i

+

(
|b|i−1

)n−1
i−1

n−1
i−1

,

n∑
i=1

|a|n−i |b|i−1 ≤ 1

n− 1

(
|a|n−1

n∑
i=1

(n− i) + |b|n−1
n∑
i=1

(i− 1)

)
,

=
1

n− 1

(
|a|n−1

n∑
i=1

(n− i) + |b|n−1
n∑
i=1

(i− 1)

)
,

=
1

n− 1

(
n(n− 1)

2
|a|n−1 +

n(n− 1)

2
|b|n−1

)
,

=
n

2

(
|a|n−1 + |b|n−1) . (2.2.9)

Using inequality (2.2.9) in (2.2.8) we get

|an − bn| ≤ n

2
|a− b|

(
|a|n−1 + |b|n−1) .

�

Following is the main result of this subsection.

Lemma 2.2.5. Consider a map F : V → H defined by

F (u) = ‖u‖2 u− u2n−1 + u |u|2nL2n. Then there exists a constant C > 0 such that the

map F satisfies:

|F (u)− F (v)|H ≤ G(‖u‖ , ‖v‖) ‖u− v‖ (2.2.10)

Where G : [0,∞) × [0,∞) → [0,∞) is a bounded and symmetric polynomial

map. In fact one can take

G(r, s) := C
[(
r2 + s2

)
+ (r + s)2]+ Cn

 (
2n−1

2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n) + (r2n−2 + s2n−2)

 .
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Proof. Set F (u) = ‖u‖2 u− u2n−1 + u |u|2nL2n =: F1(u)− F2(u) + F3(u). We will now

find the estimate for each of F1, F2 and F3.

Let us begin with considering estimate for F1. Let us fix u, v ∈ V. Then using

triangle inequality,

|F1(u)− F1(v)|H =
∣∣‖u‖2 u− ‖v‖2 v

∣∣
H

=
∣∣‖u‖2 u− ‖u‖2 v + ‖u‖2 v − ‖v‖2 v

∣∣
H

=
∣∣‖u‖2 (u− v) +

(
‖u‖2 − ‖v‖2) v∣∣

H

≤ ‖u‖2 |u− v|H + (‖u‖+ ‖v‖) (‖u‖ − ‖v‖) |v|H

≤
(
‖u‖2 + ‖v‖2) |u− v|H

+ (‖u‖+ ‖v‖) ‖u− v‖ (|u|H + |v|H) .

Since embedding V ↪→ H is continuous so there exists C such that |u|H ≤ C ‖u‖

for all u ∈ V. We infer that ,

|F1(u)− F1(v)|H ≤ C
[(
‖u‖2 + ‖v‖2)+ (‖u‖+ ‖v‖)2] ‖u− v‖ . (2.2.11)

Now consider F3. Again fix u, v ∈ V . Then

|F3(u)− F3(v)|H =
∣∣u |u|2nL2n − v |v|2nL2n

∣∣
H

=
∣∣u |u|2nL2n − u |v|2nL2n + u |v|2nL2n − v |v|2nL2n

∣∣
H

≤
∣∣u (|u|2nL2n − |v|2nL2n

)∣∣
H

+
∣∣(u− v) |v|2nL2n

∣∣
H

= |u|H
∣∣|u|2nL2n − |v|2nL2n

∣∣+ |u− v|H |v|
2n
L2n .
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Using Lemma 2.2.3, and inequality (2.2.5) we get

|F3(u)− F3(v)|H ≤
(

2n− 1

2

)(
|u|2n−1

L2n + |v|2n−1
L2n

)
|u|H |u− v|L2n

+C2n |u− v|H ‖v‖
2n

≤
(

2n− 1

2

)
C2n+1

(
‖u‖2n−1 + ‖v‖2n−1) ‖u‖ ‖u− v‖

+C2n+1 ‖u− v‖ ‖v‖2n

= Cn

 (2n−1
2

) (
‖u‖2n−1 + ‖v‖2n−1) (‖u‖+ ‖v‖)

+
(
‖u‖2n + ‖v‖2n)


· ‖u− v‖ (2.2.12)

where Cn := C2n+1.

Now consider F2. Let us again fix u, v ∈ V. In the following chain of

inequalities we are going to use inequality (2.2.5), Cauchy-Schwartz inequality and

the continuity of embedding of V ↪→ L4 (D) , with Cn =
(

2n−2
2

)
,

|F2(u)− F2(v)|2H =
∣∣u2n−1 − v2n−1

∣∣2
H
≤
∫
D

∣∣u2n−1(x)− v2n−1(x)
∣∣2 dx

≤
∫
D

(
2n− 2

2
|u(x)− v(x)|

(
|u(x)|2n−2 + |v(x)|2n−2))2

dx

=

(
2n− 2

2

)2 ∫
D

(
|u(x)|2n−2 + |v(x)|2n−2)2 |u(x)− v(x)|2 dx

≤
(

2n− 2

2

)2(∫
D

(
|u(x)|2n−2 + |v(x)|2n−2)4

dx

)1/2

(∫
D

|u(x)− v(x)|4 dx
)1/2

|F2(u)− F2(v)|H ≤ C

(∫
D

(
|u(x)|2n−2 + |v(x)|2n−2)4

dx

) 1
4

|u− v|L4

≤ CCn

(∫
D

(
|u(x)|2n−2 + |v(x)|2n−2)4

dx

) 1
4

‖u− v‖ .

Next we going to use the Miknkowski inequality(∫
D

(f(x) + g(x))4dx

)1/4

≤
(∫

D

(f(x)4dx

)1/4

+

(∫
D

g(x)4dx

)1/4
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for f(x) = |u(x)|2n−2,g(x) = |v(x)|2n−2. Moreover, use of the continuity of

embedding V ↪→ L8n−8, it follows that

|F2(u)− F2(v)|H ≤ CCn

[(∫
D

(
|u(x)|8n−8) dx)1/4

+

(∫
D

(
|v(x)|8n−8) dx)1/4

]
‖u− v‖

≤ C
(
|u|2n−2

L8n−8 + |v|2n−2
L8n−8

)
‖u− v‖

≤ CCnc
2n−1

(
‖u‖2n−2 + ‖v‖2n−2) ‖u− v‖ (2.2.13)

where Cn := CCnc
2n−1.

Combining inequalities (2.2.11), (2.2.12) and (2.2.13) we get the desired

inequality. �

2.2.2 Existence and Uniqueness of Local mild solutions of

Approximate abstract evolution equation

In this subsection, we intend to prove the existence and uniqueness of a local mild

solution to evolution equation (2.2.1). Let us begin by proving the following abstract

result.

Proposition 2.2.6. Let E, V and H satisfy Assumption 2.1.1. Assume that

F : V → H be an abstract map that satisfies the following inequality, for all

u1, u2 ∈ V

|F (u1)− F (u2)|H ≤ ‖u1 − u2‖G (‖u1‖ , ‖u2‖) , (2.2.14)

where G : R+ × R+ → R be symmetric function and for all K > 0 there exists

C = CK such that

|G (r, s)| ≤ CK for all r, s ∈ [0, K]. (2.2.15)

Let θ is as described by (2.1.7) and (2.1.8). Define a map Φn
T,F : XT → L2 (0, T ;H)

by, [
Φn
T,F (u)

]
(t) = θn(|u|Xt)F (u(t)), t ∈ [0, T ] .
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Then Φn
T,F is globally Lipschitz and for any u1, u2 ∈ XT , it satisfies,

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

≤ Cn |u1 − u2|XT T
1
2 . (2.2.16)

where Cn = (2n)4 |G (2n, 0)|+G2 (2n, 2n).

Proof. We start by showing that Φn
T,F is well-defined. Let u ∈ XT then

∣∣Φn
T,F (u)

∣∣2
L2(0,T ;H)

=
∣∣θn(|u|Xt)F (u(t))

∣∣2
L2(0,T ;H)

=

∫ T

0

∣∣θn(|u|Xt)F (u(t))
∣∣2
H
dt.

Since |θ|2 ≤ 1 so |θn|2 ≤ 1, using this and the inequality (2.2.15) we infer that,

∣∣Φn
T,F (u)

∣∣2
L2(0,T ;H)

≤
∫ T

0

|F (u(t))|2H dt

≤
∫ T

0

‖u(t)‖2 |G (‖u(t)‖ , 0)|2 dt.

Since XT ⊂ C ([0, T ] ;V ) so ‖u(t)‖ ≤ |u|XT < ∞, for all t ∈ [0, T ]. Also from

(2.2.15) we know that |G (‖u(t)‖ , 0)| ≤ CK . Using this inference in to the last

inequality above it follows that,

∣∣Φn
T,F (u)

∣∣2
L2(0,T ;H)

≤
∫ T

0

|u|2XT C
2
Kdt = |u|2XT C

2
KT <∞.

Hence Φn
T,F is well-defined.

Let us fix u1, u2 ∈ XT . Set

τi = inf
{
t ∈ [0, T ] : |ui|Xt ≥ 2n

}
, i = 1, 2.

WLOG we can assume that τ1 ≤ τ2 . Consider

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

=

[∫ T

0

∣∣Φn
T,F (u1(t))− Φn

T,F (u2(t))
∣∣2
H
dt

] 1
2

,

=

[∫ T

0

∣∣θn(|u1|Xt)F (u1(t))− θn(|u2|Xt)F (u2(t))
∣∣2
H
dt

] 1
2

.
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For i = 1, 2, θn(|ui|Xt) = 0 and for t ≥ τ2

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

=

[∫ τ2

0

∣∣θn(|u1|Xt)F (u1(t))− θn(|u2|Xt)F (u2(t))
∣∣2
H

] 1
2

,

=

∫ τ2

0

∣∣∣∣∣∣ θn(|u1|Xt)F (u1(t))− θn(|u1|Xt)F (u2(t))

+θn(|u1|Xt)F (u2(t))− θn(|u2|Xt)F (u2(t))

∣∣∣∣∣∣
2

H


1
2

,

=

∫ τ2

0

∣∣∣∣∣∣ θn(|u1|Xt) (F (u1(t))− F (u2(t))) +(
θn(|u1|Xt)− θn(|u2|Xt)

)
F (u2)(t)

∣∣∣∣∣∣
2

H


1
2

.

Using Minkowski’s inequality we infer that

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

≤
[∫ τ2

0

∣∣θn(|u1|Xt) (F (u1(t))− F (u2(t)))
∣∣2
H
dt

] 1
2

+

(∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
· F (u2(t))

∣∣2
H
dt

) 1
2

.

(2.2.17)

Set

A : =

[∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
F (u2(t))

∣∣2
H

] 1
2

dt

B : =

[∫ τ2

0

∣∣θn(|u1|Xt) (F (u1(t))− F (u2(t)))
∣∣2
H

] 1
2

dt.

Hence the inequality (2.2.17) can be rewritten as

|ΦT (u1)− ΦT (u2)|L2(0,T ;H) ≤ A+B. (2.2.18)
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Since the function θn is Lipschitz we infer that

A2 =

∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
F (u2(t))

∣∣2
H
dt

≤ 4n2

∫ τ2

0

∣∣|u1|Xt − |u2|Xt
∣∣2
H
|F (u2(t))|2H dt

≤ 4n2

∫ τ2

0

∣∣|u1|Xt − |u2|Xt
∣∣2
H
|F (u2(t))|2H dt

≤ 4n2

∫ τ2

0

|u1 − u2|2Xt |F (u2(t))|2H dt

≤ 4n2 |u1 − u2|2XT

∫ τ2

0

|F (u2(t))|2H dt. (2.2.19)

Next we want to estimate the integral the last inequality. By use of inequality

(2.2.14) ∫ τ2

0

|F (u2(t))|2H dt ≤
∫ τ2

0

‖u2(t)‖2 |G (‖u2(t)‖ , 0)|2 dt

≤ sup
t∈[0,τ2)

‖u2(t)‖2

∫ τ2

0

|G (‖u2(t)‖ , 0)|2 dt.

Since |u2|2Xτ2 = sup
t∈[0,τ2]

‖u2(t)‖2 +
∫ τ2

0
|u2(t)|2E therefore sup

t∈[0,τ2]

‖u2(t)‖2 ≤ |u2|2Xτ2
≤ (2n)2. Thus the last inequality takes the following form∫ τ2

0

|F (u2(t))|2H dt ≤ (2n)2

∫ τ2

0

|G (‖u2(t)‖ , 0)|2 dt = (2n)2 |G (2n, 0)|2 τ2.

Using the last inequality in (2.2.19) we get

A2 ≤ (2n)4 |G (2n, 0)|2 τ2 |u1 − u2|2XT

≤ (2n)4 |G (2n, 0)|2 |u1 − u2|2XT T

A ≤ An |u1 − u2|XT T
1
2 , (2.2.20)

where An = (2n)4 |G (2n, 0)|2 . Since θn(|u1|Xt) = 0 for t ≥ τ1 and τ1 ≤ τ2, we have

B =

[∫ τ2

0

∣∣θn(|u1|Xt) (F (u1(t))− F (u2(t)))
∣∣2
H
dt

] 1
2

=

[∫ τ1

0

∣∣θn(|u1|Xt) (F (u1(t))− F (u2(t)))
∣∣2
H
dt

] 1
2

.

81



2.2. Existence and Uniqueness of local and local maximal solutions

Also since θn(|u1|Xt) ≤ 1 for t ∈ [0, τ1) we infer that

B ≤
[∫ τ1

0

|(F (u1(t))− F (u2(t)))|2H dt
] 1

2

.

Using inequality (2.2.14)

B2 ≤
∫ τ1

0

[‖u1(t)− u2(t)‖G (‖u1(t)‖ , ‖u2(t)‖)]2 dt

≤ sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2

∫ τ1

0

[G (‖u1(t)‖ , ‖u2(t)‖)]2 dt. (2.2.21)

Using the fact that, sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2 ≤ |u1 − u2|2Xτ1 , and using

sup
t∈[0,τ1)

‖ui(t)‖2 ≤ |ui|Xτi ≤ 2n, i = 1, 2, the last inequality takes form

B2 ≤ |u1 − u2|2Xτ1 G
2 (2n, 2n)

∫ τ1

0

dt

≤ τ1G
2 (2n, 2n) |u1 − u2|2XT

≤ Bn |u1 − u2|2XT T,

where B2
n = G2 (2n, 2n) . Thus

B ≤ BnT
1
2 |u1 − u2|XT

Using the last inequality together with inequality (2.2.20) in (2.2.18), we get∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

≤ (An +Bn) |u1 − u2|XT T
1
2 = Cn |u1 − u2|XT T

1
2 ,

where Cn := (An +Bn). This completes the proof of the theorem. �

Now we will prove the main result of this subsection i.e. the existence and the

uniqueness of local mild solution to the approximate evolution equation (2.2.1).

Proposition 2.2.7. Let E, V and H satisfy Assumption 2.1.1. Assume that

Assumptions 2.1.5 are satisfied. Let us consider a map Ψn,u0
T,F : XT → XT defined

by

Ψn,u0
T,F (u) = Su0 + S ∗ Φn

T,F (u) , (2.2.22)
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where Φn
T,F is as described in Proposition 2.2.6 and u0 ∈ V . Then there exists

T0 > 0 such that for all T ∈ [0, T0) , Ψn,u0
T,F is strict contraction. In particular, for

all T ∈ [0, T0) there exists u ∈ XT , such that Ψn,u0
T,F (u) = u.

Proof. The map Ψn,u0
T,F defined by formula (2.2.22). Indeed, for u ∈ XT ,∣∣Ψn,u0

T,F (u)
∣∣
XT

=
∣∣Su0 + S ∗ Φn

T,F (u)
∣∣
XT

≤ |Su0|XT +
∣∣S ∗ Φn

T,F (u)
∣∣
XT

,

Using the inequalities (2.1.6) and (2.1.5) from Assumption 2.1.5 we infer that∣∣Ψn,u0
T,F (u)

∣∣
XT
≤ C0 ‖u0‖+

∣∣Φn
T,F (u)

∣∣
L2(0,T ;H)

.

Next using the inequality (2.2.16) we infer that,∣∣Ψn,u0
T,F (u)

∣∣
XT
≤ C0 ‖u0‖+ CnT

1/2 |u|XT <∞.

Let us fix u1, u2 ∈ XT . Then consider the following,∣∣Ψn,u0
T,F (u1)−Ψn,u0

T,F (u2)
∣∣
XT

=
∣∣Su0 + S ∗ Φn

T,F (u1)− Su0 − S ∗ Φn
T,F (u2)

∣∣
XT

≤
∣∣S ∗ Φn

T,F (u1)− S ∗ Φn
T,F (u2)

∣∣
XT

=
∣∣S ∗ (Φn

T,F (u1)− Φn
T,F (u2)

)∣∣
XT

Next using inequality (2.1.6) with u = S ∗
(
Φn
T,F (u1)− Φn

T,F (u2)
)

and

f = Φn
T,F (u1)− Φn

T,F (u2), we infer that∣∣Ψn,u0
T,F (u1)−Ψn,u0

T,F (u2)
∣∣
XT
≤ C1

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

.

By using inequality (2.2.16) from Proposition 2.2.6 we infer that∣∣Ψn
T,u0

(u1)−Ψn
T,u0

(u2)
∣∣
XT
≤ C1Cn |u1 − u2|XT T

1
2 .

This shows that Ψn,u0
T,F is globally Lipschitz. Observing that C1 and Cn are

independent of T . We can reduce T in such a way that C1CnT
1
2 < 1. Hence there
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2.2. Existence and Uniqueness of local and local maximal solutions

exists T0 := 1
(C1Cn)2

< ∞ such that Ψn,u0
T,F is strict contraction for all T ∈ [0, T0).

Consequently by Banach fixed point theorem, for all T ∈ [0, T0) there exists

u ∈ XT , such that Ψn,u0
T,F (u) = u. This completes the proof. �

2.2.3 Local Maximal solution of approximate evolution

equation

In this subsection, we intend to prove the existence of local maximal solution of

approximate evolution equation (2.2.1), through the Kurtowski-Zorn’s Lemma.

Further, we are going to show that if energy norm of initial data i.e. ‖u0‖ finite

then the local mild solution (resp. maximal) solution to approximate evolution

equations 2.2.1 is equivalent to the local mild solution (resp. maximal) of the main

evolution equation (2.1.4).

Let Ξ be set of all local mild solutions constructed in last subsection. Let

u1, u2 ∈ Ξ be defined on [0, τ1) and [0, τ2) respectively.

Define an order ” � ”on Ξ by

u1 � u2 iff τ1 ≤ τ2 and u2|[0,τ1) = u1.

The following result is about the existence of local maximal solution evolution

equation (2.2.1) has been proven.

Lemma 2.2.8. If Ξ and � are described above then Ξ contains a maximal element.

Proof. In order to show that Ξ contains a maximal element, we are going to use

Kuratowski-Zorn Lemma i.e. we are going to show that Ξ is a partially ordered set

and for every increasing chain in Ξ there exists an upper bound.

Consider three arbitrary elements u1, u2, u3 ∈ Ξ, where ui is local solution on

[0, τi), i = 1, 2, 3, of approximate equation 2.2.1. In order to see that Ξ is partially
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2.2. Existence and Uniqueness of local and local maximal solutions

ordered set we are going to verify that relation � is reflexive, antisymmetric and

transitive.

Reflexivity: Clearly u1 � u1 because τ1 = τ1 and u1|[0,τ1) = u1. Hence � is

reflexive.

Antisymmetry: Let u1 � u2 and u2 � u1 then τ1 ≤ τ2 and τ2 ≤ τ1 so τ1 = τ2.

Moreover u2|[0,τ1) = u1 and u1|[0,τ2) = u2. Hence

u1 = u2|[0,τ1) = u2|[0,τ2) = u2.

This shows that � is antisymmetric.

Transitivity: Let u1 � u2 and u2 � u3 so τ1 ≤ τ2 and τ2 ≤ τ3 therefore τ1 ≤ τ3.

Also moreover u2|[0,τ1) = u1 and u3|[0,τ2) = u2. Therefore

u3|[0,τ1) = u2|[0,τ1) = u1.

and hence � is transitive.

Hence (Ξ,�) is partially ordered set.

Now let u1 � u2 � u3... be an increasing chain in Ξ, where ui : [0, τi)→ XT for

all i ∈ N. We show that this sequence has an upper bound.

Set τ = sup τi
i∈N

. Define u : [0, τ)→ XT by

u|[0,τi) = ui.

Indeed u ∈ Ξ and each [0, τi) ⊂ [0, τ) , for all i ∈ N. Moreover the last equation

implies ui � u, for all i ∈ N. Therefore the chain has an upper bound u in Ξ.

Thus by Kuratowski-Zorn lemma Ξ has a maximal element. This completes the

proof. �

Remark 2.2.9. The maximal solution that we obtained as a consequence of last

lemma is a local maximal solution of (2.2.1).
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2.2. Existence and Uniqueness of local and local maximal solutions

Proposition 2.2.10. For a given R > 0, there exists T0, depending on R, such

that for every u0 ∈ V satisfying ‖u0‖ ≤ R, there exists a unique local solution

u : [0, τ)→ V of the abstract problem (2.1.4).

Proof. Take and fix R > 0 and u0 ∈ V satisfying ‖u0‖ ≤ R. Recall the map

Ψn,u0
T,F : XT → XT given by:

Ψn,u0
T,F (u) = Su0 + S ∗ Φn

F (u) .

By Proposition 2.2.6, we know that this map Ψn,u0
T,F satisfies

∣∣Ψn,u0
T,F (u1)−Ψn,u0

T,F (u2)
∣∣
XT
≤ C1CnT

1
2 |u1 − u2|XT .

Now since Ψn,u0
T,F (0) = Su0, by assumption (2.1.6) we have

∣∣Ψn,u0
T,F (0)

∣∣
XT

= |Su0|XT ≤ C0 ‖u0‖ ≤ C0R.

Observe that the right hand side in the last inequality does not depends on the n.

Choose r in such a way that is satisfies

r ≥ 1

1/2
C0R = 2C0R.

Let us choose a natural number n = b2C1Rc + 1, where C1 is as in assumption

(2.1.5), such that n ≥ r. If T is reduced sufficiently such that T < 1
(2C1Cn)2

=: T0 to

satisfy

∣∣Ψn,u0
T,F (u1)−Ψn,u0

T,F (u2)
∣∣
XT
≤ C1CnT

1
2 |u1 − u2|XT ≤

1

2
|u1 − u2|XT ,

then Ψn,u0
T,F is strict contraction for all T ≤ T0. Then by the Banach fixed point

theorem we can find a unique u ∈ XT which is fixed point of Ψn,u0
T,F i.e. Ψn,u0

T,F (u) = u.

Therefore u satisfies,

u(t) = S(t)u0 +

∫ t

0

S(t− r)
[
θn
(
|u|Xr

)
F (u(r))

]
dr, where t ∈ [0, T0]. (2.2.23)

86



2.2. Existence and Uniqueness of local and local maximal solutions

Moreover, using the inequalities (2.1.6) and (2.1.5) in Assumption 2.1.5 we infer

that the fixed point u satisfies,

|u|XT =
∣∣Ψn,u0

T,F (u)
∣∣
XT
≤ |Su0|XT + |S ∗ Φn

F (u)|XT

≤ C0 ‖u0‖+ C1 |Φn
F (u)|XT = C0R + C1Cn |u|XT T

1
2 .

Therefore

|u|XT ≤ C0R +
1

2
|u|XT

|u|XT ≤ 2C0R ≤ r.

But since

|u|2XT = sup
t∈[0,T ]

‖u(t)‖2 +

∫ T

0

|u(t)|2E ds,

we infer that,

sup
t∈[0,T ]

‖u(t)‖2 ≤ r2.

Hence ‖u(t)‖ ≤ r, for all t ∈ [0, T0].

In particular, ‖u(t)‖ ≤ r ≤ n, for all t ∈ [0, τ). Therefore by definition of θn,

θn
(
|u|Xt

)
= 1, for t ∈ [0, T0].

Thus using last equation in equation (2.2.23), we obtain

u(t) = S(t)u0 +

∫ t

0

S(t− r)F (u(r))dr, where t ∈ [0, T0].

Hence u is a local solution of (2.1.4) on [0, T0]. This completes the proof. �

We are going to end this subsection and section by proving a sufficient condition

for a local mild solution to be the global solution.
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Proposition 2.2.11. If u is maximal local solution of main abstract evolution

equation (2.1.4) on [0, τ) and there exists R such that

sup
t∈[0,τ)

‖u(t)‖ ≤ R.

then τ =∞.

Proof. Suppose contrary that τ <∞. Let R be the positive constant such that every

u0 ∈ V satisfy ‖u0‖ ≤ R. By proposition 2.2.10 there exists a T0 > 0, depends on

R. Take t0 < τ such that τ − t < T0
2

. Now since ‖u (t0)‖ ≤ R, then by Proposition

2.2.10 there exists unique solution v on [t0, t0 + T0] such that v (t0) = u (t0) . So on

the interval [t0, τ) by the uniqueness of solution we must have v = u. Set t0+T0 = τ̃ .

Define z : [0, τ̃ ]→ V in the following manner,

z(t) = u(t), t ∈ [0, t0]

= v(t), t ∈ [t0, τ̃) .

We claim that u is no more a maximal solution i.e. u � z and u 6= z.

Recall that domain of u is [0, τ) and that of z is [0, τ̃ ], also [0, τ) ⊂ [0, τ̃ ] hence

u 6= z. Next we are going to show that z is local mild solution. Let us begin by
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proving that z ∈ Xτ̃ . By using the definition of z consider

|z|2Xτ̃ = sup
t∈[0,τ̃ ]

‖z(t)‖2 +

∫ τ̃

0

|z(t)|2E dt

≤ sup
t∈[0,t0]

‖z(t)‖2 + sup
t∈[t0,τ̃ ]

‖z(t)‖2

+

∫ t0

0

|z(t)|2E dt+

∫ τ̃

t0

|z(t)|2E dt.

= sup
t∈[0,t0]

‖u(t)‖2 + sup
t∈[t0,τ̃ ]

‖v(t)‖2

+

∫ t0

0

|u(t)|2E dt+

∫ τ̃

t0

|v(t)|2E dt

= sup
t∈[0,t0]

‖u(t)‖2 +

∫ t0

0

|u(t)|2E dt

sup
t∈[t0,τ̃ ]

‖v(t)‖2 +

∫ τ̃

t0

|v(t)|2E dt

= |u|2Xt0 + |v|2X[t0,τ̃ ]
<∞.

Finally to prove that z is local mild solution it remains to show that z satisfies the

following integral equation,

z(t) = S(t)z(0) +

∫ t

0

S(t− r)F (z(r)) dr, for all t ∈ [0, τ̃ ] .

Since z(t) = u(t), for all t ∈ [0, t0] and u being solution on [0, τ) (containing [0, t0])

satisfies the above integral equation so does z.

Next consider z on [t0, τ̃ ] . By definition of z we know that z(t) = v(t) for all t ∈

[t0, τ̃ ] , where v is the solution of (2.1.4) on [t0, τ̃ ] . Therefore

z(t) = v(t) = S(t0)v (t0) +

∫ t

t0

S(t0 − r)F (v(r)) dr, t ∈ [t0, τ̃ ] .
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Since u (t0) = v (t0) , and using semigroup property,

z(t) = S(t− t0)

[
S(t0)u (t0) +

∫ t0

0

S(t0 − r)F (u(r)) dr

]
+

∫ t

t0

S(t− r)F (v(r)) dr

= S(t− t0)S(t0)u (t0) +

∫ t0

0

S(t− t0)S(t0 − r)F (z(r)) dr

+

∫ t

t0

S(t− r)F (z(r)) dr

= S(t)z(0) +

∫ t0

0

S(t− t0)S(t0 − r)F (z(r)) dr +

∫ t

t0

S(t− r)F (z(r)) dr

= S(t)z(0) +

∫ t

0

S(t− r)F (z(r)) dr, for all t ∈ [0, τ̃ ] .

Thus z satisfies the required integral equation and hence z is solution to evolution

equation (2.1.4) on [0, τ̃ ] .

So far we have shown that u � z and u 6= z and z is solution of evolution

equation (2.1.4) on [0, τ̃ ] . This clearly is the contradiction to the maximality of u.

Hence our assumption that τ <∞ is absurd. Thus τ =∞. �

2.3 Invariance and Global solution

Throughout this section we assume that E, V and H are the spaces as described in

Remark 2.1.2 i.e. E = D(A), V = D
(
A1/2

)
and H = L2 (O) , where A = −∆ with

D(A) = H1,2
0 (O) ∩H2,2(O). Following is an important remark that gives us a way

to get global solution out of local maximal solution.

Now we mention an important [49] (Lemma 1.2, Chapter 3).

Lemma 2.3.1. Let V,H and V ′ be three Hilbert spaces with V ′ being the dual space

of V and each included and dense in the following one

V ↪→ H ∼= H ′ ↪→ V ′.
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If an abstract function u belongs to L2(0, T ;V ) and its weak derivative ∂u
∂t

belongs

to L2(0, T ;V ′) then u is a.e. equal to a function continuous from [0, T ] into H and

we have the following equality:

|u(t)|2 = |u(0)|2 + 2

∫ t

0

〈u′ (s) , u (s)〉 ds, t ∈ [0, T ] .

Lemma 2.3.2. If u ∈ XT = L2(0, T ;E) ∩ C([0, T ];V ) is a solution to (2.1.3) then

∂u
∂t
∈ L2(0, T ;H).

Proof. In order to show that ∂u
∂t
∈ L2(0, T ;H), let us recall that key evolution

equation (2.1.3) of our concern

∂u

∂t
= ∆u+ |∇u|2H u− u

2n−1 + u |u|2nL2n . (2.3.1)

Also recall that norm on XT can be given as,

|u|2XT = sup
t∈[0,T ]

‖u(t)‖2 +

∫ T

0

|u(t)|2E dt.

In order to show that ∂u
∂t
∈ L2(0, T ;H), it is sufficient to show that each term on

the right hand side of equation (2.3.1), belongs to L2(0, T ;H).

Consider the first term of equation (2.2.4). Since u ∈ XT∫ T

0

|∆u(t)|2H dt =

∫ T

0

|u(t)|2E dt ≤ |u|
2
XT

<∞.

therefore ∆u ∈ L2(0, T ;H), where E = D(A) and H = L2 (D).

Consider the second term i.e.

I1 := |∇u|2H u = ‖u‖2 u.

To see that I1 ∈ L2(0, T ;H) we consider,∫ T

0

|I1(t)|2H dt =

∫ T

0

∣∣‖u(t)‖2 u(t)
∣∣2
H
dt ≤ sup

t∈[0,T ]

‖u(t)‖4

∫ T

0

|u(t)|2H dt. (2.3.2)
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Since embedding is continuous E ↪→ V ↪→ H so there exists C such that

|u(t)|H ≤ C |u(t)|E. we infer that∫ T

0

|u(t)|2H dt ≤ C2

∫ T

0

|u(t)|2E dt ≤ C2 |u|2XT <∞.

Moreover, since

sup
t∈[0,T ]

‖u(t)‖4 ≤

(
sup
t∈[0,T ]

‖u(t)‖2

)2

≤ |u|4XT <∞.

By last two inferences it follows that right hand side of inequality (2.3.2) is finite

and consequently the left hand side, hence I1 ∈ L2(0, T ;H).

Now consider the fourth term of evolution equation (2.3.1),

I2 := u |u|2nL2n

To see that I2 ∈ L2(0, T ;H). By using the Holder inequality,∫ T

0

|I2(t)|2H dt =

∫ T

0

∣∣u(t) |u(t)|2nL2n

∣∣2
H
dt =

∫ T

0

|u(t)|2H |u(t)|2nL2n dt

≤
(∫ T

0

|u(t)|4H dt
) 1

2
(∫ T

0

|u(t)|4nL2n dt

) 1
2

. (2.3.3)

By GN inequality (2.2.4), |u|H ≤ C ‖u‖
1
2 |u|

1
2
E∫ T

0

|u(t)|4H dt ≤ C4

∫ T

0

‖u(t)‖2 |u(t)|2E dt

≤ sup
t∈[0,T ]

‖u(t)‖2

∫ T

0

|u(t)|2E dt <∞

≤ |u|2XT |u|
2
XT

<∞. (2.3.4)

Moreover, since V ↪→ L2n so there exists C > 0 such that |u|L2n ≤ C ‖u‖ . Now
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consider the integral in inequality (2.3.3),∫ T

0

|u(t)|4nL2n dt ≤ C4n

∫ T

0

‖u(t)‖4n dt

≤ C4n sup
t∈[0,T ]

‖u(t)‖4n

∫ T

0

dt

≤ C4n

(
sup
t∈[0,T ]

‖u(t)‖2

)2n

T

≤ C4n |u|4nXT T <∞. (2.3.5)

Hence using inequalities (2.3.4) and (2.3.5) in (2.3.3), it follows that I2 ∈

L2(0, T ;H).

Consider the third term of evolution equation (2.3.1) i.e. I3 := u2n−1. Using fact

that V ↪→ L4n−2, we can see that for t ∈ [0, T ] ,

|I3(t)|2H =

∫
D

(u(t, x))4n−2 dx

= |u(t)|4n−2
L4n−2

≤ C4n−2 ‖u(t)‖4n−2∫ T

0

|I3(t)|2H dt ≤ C4n−2

∫ T

0

‖u(t)‖4n−2 dt

≤ C4n−2 sup
t∈[0,T ]

‖u(t)‖4n−2

∫ T

0

dt

≤ C4n

(
sup
t∈[0,T ]

‖u(t)‖2

)2n−1

T

≤ C4n |u|4n−2
XT

T <∞.

Hence I3 ∈ L2(0, T ;H).

Thus all terms of evolution equation (2.3.1) belong to L2(0, T ;H) and hence

∂u
∂t
∈ L2 (0, T ;H). By this we are done with the proof. �
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The following proposition is a crucial proposition about the invariance of our

manifold M , which is key to obtaining global solution.

Proposition 2.3.3. If u(t), t ∈ [0, τ) with |u0|2H = 1, is the local mild solution

satisfies main problem (2.1.4) then

u (t) ∈M i.e. |u(t)|2H = 1, for all t ∈ [0, τ).

Proof. In order to prove the invariance of manifold we begin with applying Lemmas

2.3.1 and 2.3.2. For t ∈ [0, τ), consider the following chain of equations,

1

2

(
|u(t)|2H − 1

)
=

1

2

(
|u0|2H − 1

)
+

∫ t

0

〈u′(s), u(s)〉H ds

=

∫ t

0

〈u′(s), u(s)〉H ds

=

∫ t

0

〈
∆u(s) + |∇u(s)|2H u(s)− u(s)2n−1 + u(s) |u(s)|2nL2n , u(s)

〉
H
ds

=

∫ t

0

〈∆u(s), u(s)〉H ds+

∫ t

0

〈
|∇u(s)|2H u(t), u(s)

〉
H
ds

−
∫ t

0

〈
u2n−1(s), u(s)

〉
H
ds+

∫ t

0

〈
u(s) |u(s)|2nL2n , u(s)

〉
H

= −
∫ t

0

|∇u(s)|2H ds+

∫ t

0

|∇u(s)|2H 〈u(s), u(s)〉H ds

−
∫ t

0

〈
u2n−1(s), u(s)

〉
H
ds+

∫ t

0

|u(s)|2nL2n 〈u(s), u(s)〉H ds

=

∫ t

0

|∇u(s)|2H |u(s)|2H ds−
∫ t

0

|∇u(s)|2H ds

−
∫ t

0

∫
D

∣∣u2n−1(s, x)u(s, x)
∣∣2 dxds+

∫ t

0

|u(s)|2nL2n 〈u(s), u(s)〉H ds

=

∫ t

0

|∇u(s)|2H
(
|u(s)|2H − 1

)
ds−

∫ t

0

|u(s)|2nL2n ds+

∫ t

0

|u(s)|2nL2n |u(s)|2H ds

or

1

2

(
|u(t)|2H − 1

)
=

∫ t

0

|∇u(s)|2H
(
|u(s)|2H − 1

)
ds+

∫ t

0

|u(s)|2nL2n

(
|u(s)|2H − 1

)
ds
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2.3. Invariance and Global solution

Set

φ(·) := |u(·)|2H − 1.

Then

φ(t) = 2

∫ t

0

(
|∇u(s)|2H + |u(s)|2nL2n

)
φ(s)ds.

Or in stronger form

dφ(t)

dt
= 2

(
|∇u(t)|2H + |u(t)|2nL2n

)
φ(t)

Since
(
|∇u (t)|2H + |u (t)|2nL2n

)
t∈[0,τ)

polynomial so it must be continuous in time

therefore

φ(t) = φ(0)e2(|∇u(t)|2H+|u(t)|2n
L2n)

φ(t) = 0 i.e. |u(t)|2H = 1, for all t ∈ [0, τ) .

This completes the proof. �

In the next lemma we are going to show that energy is of C2-class.

Lemma 2.3.4. The map ψ : V → R defined by

ψ(u) =
1

2
|∇u|2L2(O) +

1

2n
|u|2nL2n(O) , n ∈ N. (2.3.6)

is of C2-class.

Proof. In order to compute the first order derivative we are going to use the following

definition of Fréchet derivative of Ψ at u ∈ V

duψ(h) := lim
t→0

ψ(u+ th)− ψ(u)

t
,
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2.3. Invariance and Global solution

where duψ : V → R is linear with respect to h. Consider

ψ(u+ th) =
1

2
|∇u+ th|2L2(O) +

1

2n
|u+ th|2nL2n(O)

=
1

2

∫
D

(∇u(x) + t∇h(x))2 dx+
1

2n

∫
D

(u(x) + th(x))2n

=
1

2

∫
D

(∇u(x))2 dx+
t2

2

∫
D

(∇h(x))2 dx+
2t

2

∫
D

∇u(x)∇h(x)dx

+
1

2n

∫
D

(u(x))2n +
2nt

2n

∫
D

(u(x))2n−1 h(x)

+
(2n− 1)

2n
t2
∫
D

(u(x))2n−2 (h(x))2 + ...

= ψ(u) +
t2

2

∫
D

(∇h(x))2 dx+ t

∫
D

∇u(x)∇h(x)dx

+
1

2n

∫
D

(u(x))2n dx+ t

∫
D

u(x)2n−1h(x)dx

+
(2n− 1)

2n
t

∫
D

(u(x))2n−2 (h(x))2 dx+ ....

ψ(u+ th)− ψ(u)

t
=

t

2

∫
D

(∇h(x))2 dx+

∫
D

∇u(x)∇h(x)dx

+

∫
D

u(x)h(x)2n−1 +
(2n− 1)

2n
t

∫
D

(u(x))2n−2 (h(x))2 + ...

lim
t→0

ψ(u+ th)− ψ(u)

t
=

∫
D

∇u(x)∇h(x)dx+

∫
D

(u(x))2n−1 h(x)

Integration by parts yields

lim
t→0

ψ(u+ th)− ψ(u)

t
= −

∫
D

∆u(x)h(x)dx+

∫
D

(u(x))2n−1 h(x)

=
〈
−∆u+ u2n−1, h

〉
for all h ∈ V.

We can see that the operator duψ is linear. Next we are going to show that duψ

is bounded. We are going to use integration by parts, Cauchy-Schwartz inequality,

and continuity of embedding V ↪→ L2n in the following chain of inequalities. For all
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2.3. Invariance and Global solution

h ∈ V consider,

|duψ (h)| =
∣∣〈−∆u+ u2n−1, h

〉∣∣
=

∣∣∣∣∫
D

∇u(x)∇h(x)dx+

∫
D

u2n−1(x)h(x)dx

∣∣∣∣
≤

∣∣∣∣∫
D

∇u(x)∇h(x)dx

∣∣∣∣+

∣∣∣∣∫
D

u2n−1(x)h(x)dx

∣∣∣∣
≤ |∇h|H |∇u|H + |u|2n−1

L2n |h|L2n

≤ ‖u‖ ‖h‖+ c2n−1 ‖u‖2n−1 ‖h‖

=
(
‖u‖+ c2n−1 ‖u‖2n−1) ‖h‖ = C ‖h‖ , (2.3.7)

where C = ‖u‖+ c2n−1 ‖u‖2n−1 <∞. Hence duψ is bounded.

Let us compute the second order Frechet derivative at a point. For h1, h2 ∈ V,

we want to compute the following limit,

lim
t→0

ψ (u+ t (h1 + h2))− ψ (u+ th1)− ψ (u+ th2) + ψ (u)

t2
.

To compute this limit let us begin with computing ψ (u+ t (h1 + h2)) . By definition

of ψ,

ψ (u+ t (h1 + h2)) =
1

2
‖u+ t (h1 + h2)‖2 +

1

2n
|u+ t (h1 + h2)|2nL2n (2.3.8)

To make our life easy let us compute the above to norms separately, begin with

1
2
‖u+ t (h1 + h2)‖2

=
1

2

∫
D

(∇u(x) + t (∇h1(x) +∇h2(x)))2 dx

=
1

2

∫
D

(∇u(x))2 dx+
t2

2

∫
D

(∇h1(x) +∇h2(x))2 dx

+t

∫
D

∇u(x) (∇h1(x) +∇h2(x)) dx

=
1

2
‖u‖2 +

t2

2

∫
D

(∇h1(x))2 dx+
t2

2

∫
D

(∇h2(x))2 dx

t2
∫
D

∇h1(x)∇h2(x)dx+ t

∫
D

∇u(x) (∇h1(x) +∇h2(x)) dx

=
1

2
‖u‖2 +

t2

2
‖h1‖2 +

t2

2
‖h2‖2 + t2 〈h1, h2〉V + t 〈u, h1 + h2〉V . (2.3.9)
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2.3. Invariance and Global solution

Next

1
2n
|u+ t (h1 + h2)|2nL2n

=
1

2n

∫
D

(u(x) + t (h1(x) + h2(x)))2n dx

=
1

2n

∫
D

u(x)2ndx+
2nt

2n

∫
D

u(x)2n−1 (h1(x) + h2(x)) dx

+
(2n− 1) t2

2n

∫
D

u(x)2n−2 (h1(x) + h2(x))2 dx+ ...

=
1

2n
|u|2nL2n + t

〈
u2n−1, h1 + h2

〉
+

(2n− 1) t2

2n

∫
D

u(x)2n−2h2(x)2dx

+
(2n− 1) t2

2n

∫
D

u(x)2n−2h2(x)2dx+
(2n− 1) t2

n

∫
D

u(x)2n−2h1(x)h2(x)dx+ ...

=
1

2n
|u|2nL2n + t

〈
u2n−1, h1 + h2

〉
+

(2n− 1) t2

2n

〈
u2n−2, h1

2
〉

+
(2n− 1) t2

2n

〈
u2n−2, h2

2
〉

+
(2n− 1) t2

n

〈
u2n−2, h1h2

〉
+ ... (2.3.10)

Substituting (2.3.10) and (2.3.9) into (2.3.8) we get,

ψ (u+ t (h1 + h2)) = ψ (u) +
t2

2
‖h1‖2 +

t2

2
‖h2‖2 + t2 〈h1, h2〉V + t 〈u, h1 + h2〉V

+t
〈
u2n−1, h1 + h2

〉
+

(2n− 1) t2

2n

〈
u2n−2, h1

2
〉

+
(2n− 1) t2

2n

〈
u2n−2, h2

2
〉

+
(2n− 1) t2

n

〈
u2n−2, h1h2

〉
+ ...(2.3.11)

Next we intend to compute in the similar way ψ (u+ th1) . Consider
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ψ (u+ th1)

=
1

2
‖u+ th1‖2 +

1

2n
|u+ th1|2nL2n

=
1

2
‖u‖2 +

t2

2

∫
D

(∇h1(x))2 dx+ t

∫
D

∇u(x)∇h1(x)dx

+
1

2n

∫
D

u(x)2ndx+
2nt

2n

∫
D

u(x)2n−1h1(x)dx

+
(2n− 1) t2

2n

∫
D

u(x)2n−2h1(x)2dx+ ...

=
1

2
‖u‖2 +

t2

2
‖h1‖2 + t 〈u, h1〉V

+
1

2n
|u|2nL2n + t

〈
u2n−1, h1

〉
+

(2n− 1) t2

2n

〈
u2n−2, h1

2
〉

+ ...

= ψ (u) +
t2

2
‖h1‖2 + t 〈u, h1〉V + t

〈
u2n−1, h1

〉
+

(2n− 1) t2

2n

〈
u2n−2, h1

2
〉

+ ...

(2.3.12)

In the precise same manner we can also compute

ψ (u+ th2)

= ψ (u)+
t2

2
‖h2‖2+t 〈u, h2〉V +t

〈
u2n−1, h2

〉
+

(2n− 1) t2

2n

〈
u2n−2, h2

2
〉
+... (2.3.13)

Using equations (2.3.11),(2.3.12) and (2.3.13) it follows that,

ψ (u+ t (h1 + h2))− ψ (u+ th1)− ψ (u+ th2) + ψ (u)

= t2 〈h1, h2〉V +
(2n− 1) t2

n

〈
u2n−2, h1h2

〉
+ ....

Dividing both sides by t2 and taking limit t→ 0 we infer that

lim
t→0

ψ (u+ t (h1 + h2))− ψ (u+ th1)− ψ (u+ th2) + ψ (u)

t2

= 〈h1, h2〉V +
(2n− 1)

n

〈
u2n−2, h1h2

〉
.

Thus the second order derivative d2
uψ : V × V → R can be give in the following
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duality,

d2
uψ (h1, h2) ≡ 〈ψ′′ (u)h1, h2〉 (2.3.14)

= 〈h1, h2〉V +
(2n− 1)

n

〈
u2n−2, h1h2

〉
.

We can see the above defined operator is linear and also it is bounded because

for (h1, h2) ∈ V × V,∣∣d2
uψ (h1, h2)

∣∣ =

∣∣∣∣〈h1, h1〉V +
(2n− 1)

n

〈
u2n−2, h1h2

〉∣∣∣∣
≤ |〈h1, h1〉V |+

(2n− 1)

n

∣∣〈u2n−2, h1h2

〉∣∣
≤ ‖h1‖ ‖h2‖+

(2n− 1)

n

∣∣u2n−2
∣∣
H
|h1h2|H

= ‖h1‖ ‖h2‖+
(2n− 1)

n
|u|2n−2

L4n−4

(∫
D

h2
1(x)h2

2(x)dx

)1/2

≤ ‖h1‖ ‖h2‖+
(2n− 1)

n
|u|2n−2

L4n−4

·
(∫

D

h4
1(x)dx

)1/4(∫
D

h4
2(x)dx

)1/4

= ‖h1‖ ‖h2‖+
(2n− 1)

n
|u|2n−2

L4n−4 |h1|L4 |h2|L4

≤ ‖h1‖ ‖h2‖+ c2n−2 (2n− 1)

n
‖u‖2n−2 ‖h1‖ ‖h2‖

≤
(

1 + c2n (2n− 1)

n
‖u‖2n−2

)
‖h1‖ ‖h2‖ = C ‖h1‖ ‖h2‖ .

where C = 1 + c2n (2n−1)
n
‖u‖2n−2 <∞. Hence d2

uψ is bounded bilinear form. �

Following is the main result of this section, comprising of proof of a global

solution to the projected constrained problem (2.1.3).

Theorem 2.3.5. If u is the local maximal solution, of main problem (2.1.3), defined

on [0, τ), with initial data u0 ∈ V ∩M , then

‖u(t)‖ ≤ 2ψ(u0), for all t ∈ [0, τ),
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2.3. Invariance and Global solution

and τ = ∞, where ψ is the energy defined by (2.3.6). In particular u is global

solution.

Proof. We begin with application of Lemmas 2.3.1 and 2.3.2. Consider the following,

1
2
‖u(t)‖2 − 1

2
‖u0‖2 =

=

∫ t

0

〈
Ou(s),O

du

dt
(s)

〉
ds

=

∫ t

0

〈
−∆(s),

du

dt
(s)

〉
, (here we have used integration by parts.)

= −
∫ t

0

〈
du

dt
(s),

du

dt
(s)

〉
ds+

∫ t

0

〈
du

dt
(s)−∆(s),

du

dt
(s)

〉
ds

= −
∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds+

∫ t

0

〈(
‖u(s)‖2 + |u(s)|2nL2n

)
u(s)− u2n−1(s),

du

dt
(s)

〉
ds

= −
∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds+

∫ t

0

|∇u(s)|2H
〈
u(s),

du

dt
(s)

〉
ds−

∫ t

0

〈
u2n−1(s),

du

ds
(s)

〉
ds

+

∫ t

0

|u(s)|2nL2n

〈
u(s),

du

dt
(s)

〉
ds, for all t ∈ [0, τ).

Since u0 ∈ M so by Lemma 2.3.3 u(t) ∈ M, for all t ∈ [0, τ). Moreover, since

du
dt

= πu (∆u− u2n−1) ∈ TuM , hence
〈
u (t) , du

dt
(t)
〉

= 0, for all t ∈ [0, τ). Therefore

the last equation reduces to

1

2
‖u(t)‖2 − 1

2
‖u0‖2 = −

∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds−
∫ t

0

〈
u2n−1(s),

d

ds
u(s)

〉
ds

= −
∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds−
∫ t

0

d

ds

〈
u2n−1(s), u(s)

〉
ds

= −
∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds− 1

2n
|u(t)|2nL2n +

1

2n
|u0|2nL2n(2.3.15)

ψ(u(t))− ψ(u0) = −
∫ t

0

∣∣∣∣dudt (s)

∣∣∣∣2
H

ds, for all t ∈ [0, τ). (2.3.16)

where

ψ(u) =
1

2
‖u‖+

1

2n
|u|2nL2n(O) .
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From equation (2.3.16) it clearly follows ψ is non increasing function i.e.

ψ(u(t)) ≤ ψ(u0), for all t ∈ [0, τ). Thus in particular we infer that

‖u(t)‖ ≤ 2ψ(u(t)) ≤ 2ψ(u0), for all t ∈ [0, τ).

Hence by Remark 2.2.11 we get τ =∞ i.e. u is global solution. �

2.4 Some auxiliary results

Proposition 2.4.1. Assume we are in framework of Theorem 2.3.5. If u be global

solution then the orbit {u(t), t ≥ 1} is pre-compact in V .

Proof. In order to prove that {u(t), t ≥ 1} precompact, it is sufficient to prove that

{u(t), t ≥ 1} is bounded in D(Aα), for α > 1
2
, where A = −∆. By application of

Aα to u(t) gives the following variation of constant formula,

Aαu(t) = Aαe−Atu0 +

∫ t

0

Aαe−A(t−s)F (u(s))ds

where F (u) = ‖u‖2 u− u2n−1 + u |u|2nL2n := F1 (u)− F2 (u) + F3 (u). Taking H norm

on both sides

|Aαu(t)|H =

∣∣∣∣Aαe−Atu0 +

∫ t

0

Aαe−A(t−s)F (u(s))ds

∣∣∣∣
H

≤
∣∣Aαe−Atu0

∣∣
H

+

∣∣∣∣∫ t

0

Aαe−A(t−s)F (u(s))ds

∣∣∣∣
H

≤
∣∣Aαe−Atu0

∣∣
H

+

∫ t

0

∣∣Aαe−A(t−s)F (u(s))
∣∣
H
ds

By Proposition 1.4.3 of [23] (or Theorem 6.13, inequality 6.25) of [38] , we conclude

that

|Aαu(t)|H ≤Mαt
−αe−δt |u0|H +

∫ t

0

Mα(t− s)−αe−δ(t−s) |F (u(s))|H ds
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But since u0 ∈M i.e. |u0|H = 1 so

|Aαu(t)|H ≤Mαt
−αe−δt +Mα

∫ t

0

e−δ(t−s)

(t− s)α
|F (u(s))|H ds (2.4.1)

We compute the bound for the term |F (u)|H , i.e.

|F (u)|H =
∣∣‖u‖2 u− u2n−1 + u |u|2nL2n

∣∣
H

≤ ‖u‖2 |u|H +
∣∣u2n−1

∣∣
H

+ |u|2nL2n |u|H (2.4.2)

Recall that

ψ (u) =
1

2
‖u‖2 +

1

2n
|u|2nL2n .

In Theorem 2.3.5 we proved that ψ is increasing function with respect to time.

Hence it follows that

‖u‖2 ≤ 2ψ (u) ≤ 2ψ (u0)

and |u|2nL2n ≤ 2nψ (u) ≤ 2nψ (u0) (2.4.3)

Also u0 ∈M then by Lemma 2.3.3 if follows that u (t) ∈M i.e. |u (t)|H = 1, for all

t ≥ 0. Hence invariance of manifold and inequalities (2.4.3) into inequality (2.4.3),

we get

|F (u)|H ≤ 2ψ (u0) +
∣∣u2n−1

∣∣
H

+ 2nψ (u0)

= 2(1 + n)ψ (u0) +
∣∣u2n−1

∣∣
H
. (2.4.4)

Now consider

∣∣u2n−1
∣∣
H

=

(∫
D

u(x)4n−2dx

) 1
2

= |u|
2n−1

L4n−2 .

Using the continuity of embedding V ↪→ L4n−2,

∣∣u2n−1
∣∣
H

= |u|
2n−1

L4n−2 ≤ c2n−1 ‖u‖2n−1 ≤ 22n−1c2n−1ψ (u0)2n−1
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Using above inequality in inequality (2.4.3), it follows that

|F (u)|H ≤ 2(1 + n)ψ (u0) + 22n−1c2n−1ψ (u0)2n−1 =: L <∞.

Using last inequality in (2.4.1),

|u (t)|D(Aα) = |Aαu(t)|H ≤Mαt
−αe−δt +MαL

∫ t

0

e−δ(t−s)

(t− s)α
ds

≤ Mαt
−αe−δt +MαL

∫ ∞
0

e−δ(t−s)

(t− s)α
ds

= Mαt
−αe−δt +MαLΓ (1− α) := Kα <∞

Hence {u(t), t ≥ 1} is bounded in D(Aα), for α > 1
2
. Thus orbit {u(t), t ≥ 1} is

pre-compact in V , this completes the proof of lemma. �

Corollary 2.4.2. The ω-limit set ω(u0) = ∩
r≥1
{u(t) : t ≥ r} exists and is compact

in V.

Proof. From last corollary, {u(t) : t ≥ r} is precompact in V for all r ≥ 1. Since

closure of precompact is also precompact so {u(t) : t ≥ r} is also precompact for

all r ≥ 1. Further {u(t) : t ≥ r} is closed and hence complete in V norm therefore

{u(t) : t ≥ r} being precompact and complete {u(t) : t ≥ r} it follows that

{u(t) : t ≥ r} is compact for all r ≥ 1, in V. Thus ω(u0) being decreasing

intersection of non-empty compact sets in V, is non-empty and compact in V. �

We now going to make an interesting observation that our global solution u is

a gradient flow and (V, S, ψ) is gradient system. Recall, the following definitions of

Lyapunov functional, gradient system and gradient flow.

Definition 2.4.3. [47] Suppose V is a complete metric space and S(t) is a non-

linear C0-semigroup defined on H. A continuous function ψ : V → R is called

Lyapunov function w.r.t S(t) if the following two conditions are satisfied:
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i) For any x ∈ V , ψ (S(t)x) is a monotone non-increasing in t,

ii) ψ is bounded below i.e. there exists a constant C such that ψ(x) ≥ C, for all

x ∈ V .

Definition 2.4.4. [47] Suppose V is a complete metric space and S(t) is a

non-linear C0-semigroup defined on V . Moreover, assume that continuous function

ψ : H → R be a Lyapunov function w.r.t S(t). Then non-linear Semigroup, or

more precisely system (V, S(t), ψ) is called gradient system if the following are

satisfied:

i) For any x ∈ V , there is t0 > 0 such that ∪t≥t0S(t)x is relatively compact in

V .

ii) If for t > 0, ψ (S(t)x) = ψ(x) then x is fixed point of semigroup S(t).

Accordingly, the orbit u(t) is called a gradient flow.

Theorem 2.4.5. (V, S, ψ) is gradient system, where V = D(A1/2), S(t) is C0-

semigroup and ψ : V → R is the energy defined by (2.3.6).

Proof. We begin by showing that ψ : V → R is Lyapunov function. We know

Theorem 2.3.5 that ψ in non-increasing. Moreover since

ψ (u) = 1
2
|∇u|2L2(O) + 1

2n
|u|2nL2n(O) ≥ 0, hence ψ is Lyapunov function. It remains to

verify the condition (i) and (ii) Definition 2.4.4. The Condition (i) have been

already established in Corollary 2.4.1. Let us prove condition (ii) now. From the

end of proof of Theorem 2.3.5 we know that,∣∣∣∣dudt
∣∣∣∣2
H

= − d

dt
ψ(u)

or

∫ t

0

∣∣∣∣duds
∣∣∣∣2
H

ds = ψ(u0)− ψ(u (t)) (2.4.5)

If there is t0 ≥ 0 such that,

ψ(u (t0)) = ψ(S(t)u0) = ψ(u0)
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then for 0 ≤ t ≤ t0, from equation (2.4.5),∫ t

0

∣∣∣∣duds
∣∣∣∣2
H

ds = 0∣∣∣∣dudt
∣∣∣∣2
H

= 0

du

dt
(t) = 0.

u(t) = u(0) = constant.

Therefore u0 is fixed point of semigroup S and thus (V, S(t), ψ) is gradient system.

�
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Chapter 3

Stochastic Heat Flow equation on

Hilbert Manifold: Existence and

Uniqueness of Global Solution

The aim of this chapter is to study the stochastic generalization of projected heat

flow studied in chapter 2. More precisely, we are going to study a nonlinear parabolic

first order in time (heat) equation on Hilbert Manifold driven by Wiener noise of

Stratonovich type. We devote this chapter to existence and uniqueness of the global

solution to described stochastic evolution equation.
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The first section has been devoted to setting up notations related to spaces,

manifold and operators, and certain essential assumptions. Next we will introduce

the main stochastic problem of our concern in this chapter, along with its

approximated version, which are going to solve first. In the end of section 1 we

will provide the definitions of Local mild, maximal and the global solution to our

main problem.

In the section 2 we are primarily concerned with studying the truncated

stochastic evolution equation. In the first part of the section, we prove the

estimates for deterministic (drift) terms and stochastic (diffusion) terms of our

main stochastic evolution equation. Next, by employing fixed point argument we

will construct the local mild solution of approximate evolution equation, after that

from this constructed local mild solution we recover the local mild solution to the

original problem. The second section is going to end at constructing the global

solution of approximate evolution equation.

The section 3, mainly consists of proof of existence and uniqueness of Maximal

local solution to original stochastic evolution equation.

The chapter ends at section 4. The chapter begins with proof of the very

important no explosion result. Further, we will show the invariance of manifold i.e.

if initial data belongs to manifold then almost all trajectories of solution belong to

the manifold. Afterward, we proceed towards proving some of the important

estimates, which will be used for proof for a global solution. The section and

chapter end by providing proof of global solution to our main stochastic evolution

equation. The main tool for proving the global solution will be Khashminskii test

for non-explosion and indeed appropriate Itô’s formula.

3.1 Notation, Assumptions, Estimates and
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Introduction to main problem

The aim of the section is, firstly, to setup all important notations, function spaces,

manifold and state all necessary assumptions. Secondly to state the main

constrained stochastic evolution equation of our concern in this chapter.

3.1.1 Preliminary Notation

Let us begin by introducing some important notation and function spaces which we

are going to use in this and then subsequent chapters of the dissertation.

Assumption 3.1.1. We assume that (E, |·|E), (V, ‖·‖), (H, |·|H) are abstract

Banach spaces such that

E ↪→ V ↪→ H, (3.1.1)

and the embeddings are dense continuous.

Remark 3.1.2. In our motivating application, we will consider the following choice

of space

E = D(A),

V = H1,2
0 (O) ,

H = L2(O)

where D ⊂ Rd for d ≥ 1, is a bounded domain with sufficiently smooth boundary

and A be the Laplace operator with Dirichlet boundary conditions, defined by

D(A) = H1,2
0 (O) ∩H2,2(O) (3.1.2)

Au = −∆u, u ∈ D(A).
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It is well known that, ( cf. [51], Theorem 4.1.2, page 79), that A is a self-adjoint

positive operator in H and that V = D(A1/2), and

‖u‖2 =
∣∣A1/2u

∣∣2
H

=

∫
D

|∇u(x)|2 dx

Moreover V ′ = H−1 (O) and the condition (3.1.1) holds true. Hence the spaces E, V

and H satisfies Assumption 3.1.1.

3.1.2 Manifold and Projection

The version of Hilbert manifold we are going to deal with, is the following

submanifold M of a Hilbert space H (with inner product denoted by 〈·, ·〉),

M =
{
u ∈ H : |u|2H = 1

}
.

Moreover the tangent space, at a point u in H, is of form,

TuM = {v : 〈u, v〉 = 0} .

Let πu : H → TuM be orthogonal projection of H onto tangent space M then we

have the following lemma.

Lemma 3.1.3. Let πu : H → TuM be orthogonal projection then

πu(v) = v − 〈u, v〉u, where v ∈ H.

We aim to study a stochastic evolution equation with drift term consisting of the

projection of difference of the Laplace operator with Dirichlet boundary condition

and the polynomial nonlinearity of degree 2n− 1.

Let us pick a u ∈ E. Using the last lemma, we calculate an explicit expression

for projection of ∆u−u2n−1 under πu. The below-given calculation using integration

by parts, cf. [3] (Corollary 8.10, page-82), to get
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3.1. Notation, Assumptions, Estimates and Introduction to main problem

πu
(
∆u− u2n−1

)
= ∆u− u2n−1 −

〈
∆u− u2n−1, u

〉
u

= ∆u− u2n−1 + 〈−∆u, u〉u+
〈
u2n−1, u

〉
u

= ∆u− u2n−1 + 〈∇u,∇u〉u+
〈
u2n−1, u

〉
u

= ∆u+
(
‖u‖2 + |u|2nL2n

)
u− u2n−1. (3.1.3)

3.1.3 Statement of main and approximate stochastic

evolution equation

Let the spaces E, V and H be the Hilbert spaces as in Remark 3.1.2. The following

is the main stochastic evolution equation that we are going to study in running and

the subsequent chapters.

du = πu
(
∆u− u2n−1

)
dt+

N∑
j=1

Bj(u) ◦ dWj, (3.1.4)

= (∆u+ F (u)) dt+
N∑
j=1

Bj(u) ◦ dWj,

u(0) = u0,

where the map F : V → H is defined by F (u) := ‖u‖2 u− u2n−1 + u |u|2nL2n , with n

being a natural number (or, more generally, a real number bigger than 1
2
). Further,

for fixed elements f1, f2, ...fN from V , the map Bj : V → V is defined by

Bj (u) := πu (fj) = fj − 〈fj, u〉u, j = 1, 2, 3..N. (3.1.5)

Note that noise term in above stochastic partial differential equation involves

the noise of stratonovich type. This is because of the constraint condition given by

manifold M ; it is natural to consider equations in the Stratonovich form (see also
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[6]). To write the equation (3.1.4) in Itô form we can write the Stratonovich term

in the following manner,

Bj(u) ◦ dWj = Bj(u)dWj +
1

2
duBj(Bj(u))dt,

hence the equation (3.1.4) can be rewritten in the following the Itô form,

du =

[
∆u+ F (u) +

1

2

N∑
j=1

κj(u)

]
dt+

N∑
j=1

Bj(u)dWj, (3.1.6)

u(0) = u0,

where

κj(u) ≡ duBj (Bj (u)) , for all u ∈ H and j = 1, 2, ..., N. (3.1.7)

We introduce now an auxiliary function which will be used later for truncation

of the norm of the solution. Let θ : R+ → [0, 1] be a non-increasing smooth function

with compact support such that

inf
x∈R+

θ′(x) ≥ −1, θ(x) = 1 iff x ∈ [0, 1] and θ(x) = 0 iff x ∈ [2,∞). (3.1.8)

For n ≥ 1 set θn(·) = θ
( ·
n

)
. We have the following easy Lemma about θ as

consequence of previous description.

Lemma 3.1.4. ([13], page 57) If h : R+ → R+ is a non decreasing function, then

for every x, y ∈ R,

θn(x)h(x) ≤ h(2n), |θn(x)− θn(y)| ≤ 1

n
|x− y| . (3.1.9)

In order to prove the existence and uniqueness of local mild and local maximal

solutions to our original problem (3.1.6), we first we obtain existence and uniqueness

of the solution of below given approximate evolution equation. Let us assume that
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T is a positive constant. We are interested in proving the existence and uniqueness

of global solution un to the following integral equation:

un(t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr (3.1.10)

1

2

N∑
j=1

∫ t

n

S(t− r)θn
(
|un|Xr

)
κj(u

n)dr

+
N∑
j=1

∫ t

0

S(t− r)
(
|un|Xr

)
Bj (un(r)) dWj(r), t ∈ [0, T ] .

(3.1.11)

3.1.4 Solution spaces, assumptions and definition of

Solution

By L(X, Y ) we mean the space of all bounded linear operators from Banach X to

the Banach space Y.

For any b > a ≥ 0, let us denote L2 (a, b;X) spaces of all equivalence classes of

measurable functions u defined on [a, b], taking values in a separable Banach spaces

X such that:

|u|L2(a,b;X) :=

(∫ b

a

|u(t)|2X dt
)1/2

<∞.

For b > a ≥ 0 we set

Xa,b := L2 (a, b;E) ∩ C ([a, b] ;V ) ,

then it can be shown easily that
(
Xa,b, |·|Xa,b

)
is Banach space with norm,

|u|2Xa,b = sup
t∈[a,b]

‖u(t)‖2 +

∫ b

a

|u(t)|2E dt.

For a = 0 and b = T > 0 we are going to write XT := X0,T . Note that the map

t 7→ |u|Xt is increasing function.
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Let
(
Ω,F, (F t)t≥0 ,P

)
be a filtered probability space consisting of probability

space (Ω,F,P) and filtration (F t)t≥0 contained in F. The filtered space satisfies the

usual conditions i.e. the following conditions are satisfied:

i) (Ω,F,P) is complete,

ii) The σ-algebras Ft contains the all sets in F with probability 0,

iii) The filtration is right continuous.

Assume that N ∈ N. Let (Wj (t))Nj=1 , t ≥ 0 be the RN -valued F-Wiener process.

Throughout this dissertation, and in particular this chapter, we denote M2 (XT ),

the space of all E-valued progressively measurable processes u such that all

trajectories of u almost surely belong to XT . The norm on M2 (XT ) is as under:

|u|2M2(XT ) = E
(
|u|2XT

)
= E

(
sup
t∈[0,T ]

‖u(t)‖2 +

∫ T

0

|u(t)|2E dt

)
<∞. (3.1.12)

Further we have the following main assumptions,

Assumption 3.1.5. Let E ⊂ V ⊂ H satisfy assumption 3.1.1. Assume that

S(t), t ∈ [0,∞), is an analytic semigroup of bounded liner operators on space H,

such that there exist positive constants C0, C1 and C2:

i) For every T > 0 and f ∈ L2(0, T ;H) a function u = S ∗ f defined by:

u(t) =

∫ T

0

S(t− r)f(r)dt, t ∈ [0, T ]

belongs to XT and satisfies

|u|2XT ≤ C1 |f |2L2(0,T ;H) (3.1.13)

Note that S∗ : f 7−→ S ∗ f is a linear and bounded map from L2(0, T ;H) into XT .

ii) For each T > 0, and every process ξ ∈ M2 (0, T ;H) a process u = S♦ξ

defined by:

u(t) =

∫ T

0

S(t− r)ξ(r)dW (r), t ∈ [0, T ]
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belongs to M2 (XT ) and satisfies

|u|2M2(XT ) ≤ C2 |ξ|2M2(0,T ;V ) . (3.1.14)

Note that S♦ : ξ 7−→ S♦ξ is a linear and bounded map from M2 (0, T ;H) into

M2 (XT ) .

iii) For every T > 0 and every u0 ∈ V, a function u = Su0 defined by:

u(t) = S(t)u0, t ∈ [0, T ]

belongs to XT and satisfies

|u|XT ≤ C0 ‖u0‖ . (3.1.15)

Recall the definition of accessible stopping time.

Definition 3.1.6. An stopping time τ is called accessible if there exists an

increasing sequence (τm)m∈N of stopping times such that, on set {τ > 0} , τm < τ

and lim
m→∞

τm = τ . Such a sequence (τm)m∈N is called an approximating sequence

for τ.

Let us now define that what we mean by a local mild, local maximal solution

and global solution of our main problem (3.1.6).

Definition 3.1.7. (Local Mild Solution) Assume that we have been given, V -valued

F0-measurable random variable, u0 with E ‖u0‖2 <∞.

A local mild solution to problem (3.1.6) is a pair (u, τ) such that:

i) τ is an accessible stopping time,

ii) u : [0, τ)× Ω 7→ V is an admissible process,

iii) There exists an approximating sequence (τm)m∈N of finite stopping times such

that τm < τ with lim
m→∞

τm = τ . For m ∈ N and t ≥ 0, we have

|u|2Xt∧τm = E

(
sup

s∈[0,t∧τm]

‖u(s)‖2 +

∫ t∧τm

0

|u(s)|2E

)
<∞,
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and

u(t ∧ τm) = S(t ∧ τm)u0 +

∫ t∧τm

0

S(t ∧ τm − r)F (u(r)) dr

+
1

2

N∑
j=1

∫ t∧τm

0

S(t ∧ τm − r)κj (u (r)) dr

+
N∑
j=1

∫ t∧τm

0

S(t ∧ τm − r)Bj (u(r)) dWj(r),P-a.s.,

(3.1.16)

where Bj and κj are as defined in (3.1.5) and (3.1.7) respectively.

Definition 3.1.8. (Local Maximal & Global Solution) Let (u, τ∞) be a local solution

to the problem (3.1.6) such that

lim
t→τ∞

|u|Xt =∞ P-a.s. on {ω ∈ Ω : τ∞ (ω) <∞} a.s. .

Then (u, τ∞) is called local maximal solution. If τ∞ < ∞ with the positive

probability, then τ∞ is called the explosion time. Moreover, we are going to say that,

a local maximal solution (u, τ∞) is unique if for any other local maximal solution

(v, σ∞) we have τ∞ = σ∞ and u = v on [0, τ∞) P-a.s. . Finally, a local solution

(u, τ∞) is called global solution iff τ∞ =∞.

3.1.5 Existence and Uniqueness of Local Mild Solution

In order to prove the existence and uniqueness of local mild to our main problem

(3.1.6), first we are going to study the existence and uniqueness of the solution to

approximate evolution equation (3.1.11). Let us fix T as the some positive real

number. We are interested in proving the existence and uniqueness solution un to

equation (3.1.11). All the results proven in this section will be in abstract E, V and

H spaces satisfying Assumption 3.1.1. We will see in this section that existence
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and uniqueness of the Local solution to approximate equation (3.1.11) enable us

to construct the local mild solution to original problem (3.1.6). Moreover, in next

section we are going to construct a global solution to approximate evolution equation

(3.1.11). This global solution enables us to prove the existence of a unique local

maximal solution to main problem (3.1.6).

For the existence of the local solution to approximate equation (3.1.11), we

will construct three globally Lipschitz maps by truncating the functions F, κ and

B, involved in drift and diffusion of problem (3.1.6). Then by using these three

globally Lipschitz maps, we will construct a contraction and hence the existence

and uniqueness of local solution are guaranteed by Banach fixed point theorem.

Next we will see that for measurable and V -valued square integrable data u0, the

solution Local solution of approximate equation agrees with the Local mild solution

of our main problem (3.1.6). In the next subsection, we will show that approximate

equation admits a global solution un. The section ends at the show that global

solution un allows us to construct a unique local maximal solution of main problem

(3.1.6).

3.1.6 Important Estimates

The aim of the subsection is to show that non-linear functions F, κ and B, involved

in drift and diffusion terms of main stochastic evolution equation (3.1.6) are locally

Lipschitz and satisfy the symmetric estimates.

Recall the following well known Gagliardo-Nirenberg-Sobolev inequality from

Chapter 1.

Lemma 3.1.9. [47] Assume that r, q ∈ [1,∞), and j,m ∈ Z satisfy 0 ≤ j < m.
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Then for any u ∈ C∞0
(
Rd
)

∣∣Dju
∣∣
Lp(Rd) ≤ C |Dmu|a

Lr(Rd) |u|
1−a
Lq(Rd) , (3.1.17)

where 1
p

= j
d

+a
(

1
r
− m

d

)
+ (1−a)1

q
for all a ∈

[
j
m
, 1
]
. If m− j− d

r
is a nonnegative

integer, then the equality (3.1.17) holds only for a ∈
[
j
m
, 1
)
.

Observe that our projected heat flow problem (3.1.6) involves L2n norm,

therefore at several instances throughout this chapter we will need the following

particular case of Gagliardo-Nirenberg-Sobolev inequality.

For our case we choose r = q = 2, j = 0,m = 1, d = 2, and p = 2n, so

1

p
=

0

2
+ a

(
1

2
− 1

2

)
+ (1− a)

1

2
1

2n
= (1− a)

1

2
1

n
= 1− a or a = 1− 1

n
.

Plugging values of r, q, j,m, d and p in inequality (3.1.17) we get

|u|L2n(R2) ≤ C |Ou|aL2(R2) |u|
1−a
L2(R2)

|u|L2n(R2) ≤ C ‖u‖a |u|1−aH ,where a = 1− 1

n
. (3.1.18)

Remark 3.1.10. i) From Remark 3.1.2 we know that embedding V ↪→ H i.e. there

exists c > 0 such that

|u|H ≤ c ‖u‖

hence inequality (3.1.18), simplifies to

|u|L2n(R2) ≤ C∗ ‖u‖ . (3.1.19)

where C∗ := cC. The last inequality reflects the fact that V ↪→ L2n (R2) , where

n ∈ N.
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Recall the following Lemma 2.1 from chapter 1, which provides provide an

estimate for the non-linear term F , that appears in drift term of stochastic

equation (3.1.6).

Lemma 3.1.11. Consider map F : V → H is the map defined by

F (u) = ‖u‖2 u− u2n−1 + u |u|2nL2n. Then there exists a constant C > 0 such that

|F (u)− F (v)|H ≤ G(‖u‖ , ‖v‖) ‖u− v‖ , u, v ∈ V, (3.1.20)

where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

Next lemma gives the estimate for the diffusion (stochastic) term of stochastic

equation (3.1.6).

Proposition 3.1.12. i) For f ∈ H, consider the map B : H → H, defined by

B(u) = f − 〈f, u〉u. (3.1.21)

Then for all u1, u2 ∈ H, the map B is locally Lipschitz i.e.

|B(u1)−B(u2)|H ≤ |f |H (|u1|H + |u2|H) |u1 − u2|H (3.1.22)

ii) If an addition f ∈ V, then such that,

‖B(u1)−B(u2)‖ ≤ ‖f‖ (‖u1‖+ ‖u1‖) ‖u1 − u2‖ . (3.1.23)
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Proof. Let us fix u1, u2 ∈ H, we have the following chain of equation/inequalities

|B(u1)−B(u2)|H = |f − 〈f, u1〉u1 − f + 〈f, u2〉u2|H

= |〈f, u1〉u1 − 〈f, u1〉u2 + 〈f, u1〉u2 − 〈f, u2〉u2|H

= |〈f, u1〉| |u1 − u2|H + |〈f, u1〉 − 〈f, u2〉| |u2|H

= |〈f, u1〉| |u1 − u2|H + |〈f, u1 − u2〉| |u2|H

≤ |f |H |u1|H |u1 − u2|H + fjH |u1 − u2|H |u2|H

= |f |H (|u1|H + |u2|H) |u1 − u2|H . (3.1.24)

This completes the proof.

ii) Proof goes exactly on same lines of part i). �

In the following lemma, we are going to compute the Frećhet derivative duB,

which we will use subsequent lemma.

Lemma 3.1.13. If B : H → H be the map defined in Lemma 3.1.12 with f ∈ H.

For u ∈ H, the Frećhet derivative duB, exists and satisfies,

duB (h) := −〈f, u〉h− 〈f, h〉u, for all h ∈ H. (3.1.25)

Proof. Consider the following expression

B (h+ u)−B (u) = f − 〈f, u+ h〉 (u+ h)− f + 〈f, u〉u

= 〈f, u〉u− (〈f, u〉+ 〈f, h〉)u− (〈f, u〉+ 〈f, h〉)h

= 〈f, u〉u− 〈f, u〉u− 〈f, h〉u− 〈f, u〉h− 〈f, h〉h

= −〈f, h〉u− 〈f, u〉h+ o(|h|H)

lim
|h|H→0

|B (h+ u)−B (u)− (〈f, h〉u+ 〈f, u〉h)|
|h|H

≤ lim
|h|H→0

o(|h|H)

|h|H
→ 0

and hence the Frećhet derivative duB satisfies (3.1.25). This completes the proof.

�
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In the next Lemma we are going to prove that Frechet derivative

κ (·) ≡ duB (B (·)), is locally Lipschitz and hence satisfies some useful estimate.

Proposition 3.1.14. Assume the framework of Lemma 3.1.13. If κ is as defined

in equation (3.1.7) Then

i) For all u1, u2 ∈ H, the following inequality holds,

|κ (u1)− κ (u2)|H ≤ |f |
2
H

[
2 + |u1|2H + |u2|2H + (|u1|H + |u2|H)2] |u1 − u2|H .

ii) For all u1, u2 ∈ V, the following inequality holds,

‖κ (u1)− κ (u2)‖ ≤ C ‖f‖2 [2 + ‖u1‖2 + ‖u2‖2 + (‖u1‖+ ‖u2‖)2] ‖u1 − u2‖ .

Proof. Let us choose and fix u1, u2 ∈ H. Then we have the following chain of

equations/inequalities

|κ (u1)− κ (u2)|H = |du1B(B(u1))− du2B(B(u2))|H

= |− 〈f, u1〉B (u1)− 〈f,B (u1)〉u1 + 〈f, u2〉B (u2) + 〈f,B (u2)〉u2|H

= |〈f, u2〉B (u2)− 〈f, u1〉B (u1) + 〈f,B (u2)〉u2 − 〈f,B (u1)〉u1|H

=

∣∣∣∣∣∣ 〈f, u2〉B (u2)− 〈f, u2〉B (u1) + 〈f, u2〉B (u1)− 〈f, u1〉B (u1)

+ 〈f,B (u2)〉u2 − 〈f,B (u2)〉u1 + 〈f,B (u2)〉u1 − 〈f,B (u1)〉u1

∣∣∣∣∣∣
H

=

∣∣∣∣∣∣ 〈f, u2〉 (B (u2)−B (u1)) + (〈f, u2〉 − 〈f, u1〉)B (u1)

+ 〈f,B (u2)〉 (u2 − u1) + (〈f,B (u2)〉 − 〈f,B (u1)〉)u1

∣∣∣∣∣∣
H

≤ |〈f, u2〉| |B (u2)−B (u1)|H + |〈f, u2 − u1〉| |B (u1)|H

+ |〈f,B (u2)〉| |u1 − u2|H + |〈f,B (u2)−B (u2)〉| |u1|H

By the Cauchy Schwartz inequality,

|κ (u1)− κ (u2)|H ≤ |B (u2)−B (u1)|H |f |H |u2|H + |f |H |u1 − u2|H |B (u1)|H

+ |f |H |u1 − u2|H |B (u2)|H + |B (u2)−B (u1)|H |f |H |u1|H

= |f |H (|B (u1)|H + |B (u2)|H) |u1 − u2|H

+ |f |H (|u1|H + |u2|H) |B (u2)−B (u1)|H
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Using the definition of B, inequality (3.1.24) and the Cauchy Schwartz inequality

in last inequality,

|κ (u1)− κ (u2)|H ≤ |f |H (|f − 〈f, u1〉u1|H + |f − 〈f, u2〉u2|H) |u1 − u2|H

+ |f |2H (|u1|H + |u2|H)2 |u1 − u2|H

≤ |f |H
(
|f |H + |f |H |u1|2H + |f |H + |f |H |u2|2H

)
|u1 − u2|H

+ |f |2H (|u1|H + |u2|H)2 |u1 − u2|H

= |f |2H
[
2 + |u1|2H + |u2|2H + (|u1|H + |u2|H)2] |u1 − u2|H

This completes the proof of part i).

ii) On the same lines of part i). �

Remark 3.1.15. From last proposition we know that map κ, given by equation

3.1.25, satisfies

|κ (u1)− κ (u2)|H ≤ |f |
2
H

[
2 + |u1|2H + |u2|2H + (|u1|H + |u2|H)2] |u1 − u2|H .

Now since the embedding V ↪→ H is continuous so there exists a constant c such that

|u|H ≤ c ‖u‖ , hence there exists a constant C such that the last inequality becomes

|κ (u1)− κ (u2)|H ≤ C ‖f‖2 [2 + ‖u1‖2 + ‖u2‖2 + (‖u1‖+ ‖u2‖)2] ‖u1 − u2‖ .

(3.1.26)

3.1.7 Existence and Uniqueness of Local mild solution of

stochastic evolution equations

In this subsection, we aim to prove existence and uniqueness of local mild solutions of

truncated (3.1.11) and original evolution equations (3.1.6). In the last subsection we

saw that maps F and κ are locally Lipschitz and satisfy some symmetric estimates,
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next abstract result is going to help us to assert that truncated F and κ are globally

Lipschitz.

Proposition 3.1.16. Assume that Banach spaces E, V and H satisfy Assumption

3.1.1. Assume that Z : V → H be a function such that Z(0) = 0 and satisfies the

following inequality, for all u1, u2 ∈ V,

|Z(u1)− Z (u2)|H ≤ G (‖u1‖ , ‖u2‖) ‖u1 − u2‖ . (3.1.27)

where G : R+ × R+ → R is a symmetric function bounded on compacts i.e. for all

K > 0 there exists C = CK such that

|G (s, t)| ≤ CK for all s, t ∈ [0, R]. (3.1.28)

Assume that θ : R+ → [0, 1] is a non-increasing smooth function satisfying (3.1.8)

and (3.1.9). Define a map Φn
T,Z : XT → L2 (0, T ;H) by(

Φn
T,Zu

)
(t) = θn(|u|Xt)Z(u(t)), where t ∈ [0, T ] and XT = L2 (0, T ;E)∩C (0, T ;V ) .

Then Φn
T,Z is globally Lipschitz. Moreover there exists Dn > 0 such that, for all

u1, u2 ∈ XT ∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

≤ Dn |u1 − u2|XT T
1
2 , (3.1.29)

where Dn := 2 |G (2n, 0)|+G (2n, 2n) .

Proof. We start by showing that Φn
T,F is well-defined. Let u ∈ XT then∣∣Φn

T,Z(u)
∣∣2
L2(0,T ;H)

=
∣∣θn(|u|Xt)Z(u(t))

∣∣2
L2(0,T ;H)

=

∫ T

0

∣∣θn(|u|Xt)Z(u(t))
∣∣2
H
dt.

Since |θ|2 ≤ 1 so |θn|2 ≤ 1, we infer that∣∣Φn
T,Z(u)

∣∣2
L2(0,T ;H)

≤
∫ T

0

|Z(u(t))|2H dt

≤
∫ T

0

‖u(t)‖2 |G (‖u(t)‖ , 0)|2 dt.
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Since XT ⊂ C ([0, T ] ;V ) so ‖u(t)‖ ≤ |u|XT =: K <∞, for all t ∈ [0, T ]. Also from

(3.1.28) |G (‖u(t)‖ , 0)| ≤ CK . It follows from above last inequality∣∣Φn
T,Z(u)

∣∣2
L2(0,T ;H)

≤
∫ T

0

‖u (t)‖2 |G (‖u (t)‖ , 0)|2 dt

≤
∫ T

0

K2C2
Kdt = K2C2

KT <∞.

and hence Φn
T,Z is well-defined. Let us fix u1, u2 ∈ XT . Set

τi = inf
{
t ∈ [0, T ] : |ui|Xt ≥ 2n

}
, i = 1, 2.

WLOG we can assume that τ1 ≤ τ2. Consider

∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

=

[∫ T

0

∣∣Φn
T,Z(u1(t))− Φn

T,Z(u2(t))
∣∣2
H
dt

] 1
2

,

=

[∫ T

0

∣∣θn(|u1|Xt)Z(u1(t))− θn(|u2|Xt)Z(u2(t))
∣∣2
H
dt

] 1
2

.

For i = 1, 2, θn(|ui|Xt) = 0 and for t ≥ τ2

∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

=

[∫ τ2

0

∣∣θn(|u1|Xt)Z(u1(t))− θn(|u2|Xt)Z(u2(t))
∣∣2
H

] 1
2

,

=

∫ τ2

0

∣∣∣∣∣∣ θn(|u1|Xt)Z(u1(t))− θn(|u1|Xt)Z(u2(t))

+θn(|u1|Xt)Z(u2(t))− θn(|u2|Xt)Z(u2(t))

∣∣∣∣∣∣
2

H


1
2

,

=

∫ τ2

0

∣∣∣∣∣∣ θn(|u1|Xt) (Z(u1(t))− Z(u2(t)))

+
(
θn(|u1|Xt)− θn(|u2|Xt)

)
Z(u2)(t)

∣∣∣∣∣∣
2

H


1
2

.

Using Minkowski’s inequality we infer that

∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

≤
[∫ τ2

0

∣∣θn(|u1|Xt) (Z(u1(t))− Z(u2(t)))
∣∣2
H
dt

] 1
2

+

[∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
Z(u2(t))

∣∣2
H
dt

] 1
2

.

(3.1.30)
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Set

A : =

[∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
Z(u2(t))

∣∣2
H

] 1
2

dt,

B : =

[∫ τ2

0

∣∣θn(|u1|Xt) (Z(u1(t))− Z(u2(t)))
∣∣2
H

] 1
2

dt.

and hence the inequality (3.1.30) can be rewritten as

∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

≤ A+B. (3.1.31)

Since the function θn is Lipschitz we infer that

A2 =

∫ τ2

0

∣∣(θn(|u1|Xt)− θn(|u2|Xt)
)
Z(u2(t))

∣∣2
H
dt

≤ 4n2

∫ τ2

0

∣∣|u1|Xt − |u2|Xt
∣∣2
H
|Z(u2(t))|2H dt

≤ 4n2

∫ τ2

0

∣∣|u1|Xt − |u2|Xt
∣∣2
H
|Z(u2(t))|2H dt

≤ 4n2

∫ τ2

0

|u1 − u2|2Xt |Z(u2(t))|2H dt

≤ 4n2 |u1 − u2|2XT

∫ τ2

0

|Z(u2(t))|2H dt. (3.1.32)

Next we want to estimate the integral the last inequality. By use of inequality

(3.1.27) ∫ τ2

0

|Z(u2(t))|2H dt ≤
∫ τ2

0

‖u2(t)‖2 |G (‖u2(t)‖ , 0)|2 dt

≤ sup
t∈[0,τ2)

‖u2(t)‖2

∫ τ2

0

|G (‖u2(t)‖ , 0)|2 dt.

Since |u2|2Xτ2 = sup
t∈[0,τ2]

‖u2(t)‖2 +
∫ τ2

0
|u2(t)|2E therefore

sup
t∈[0,τ2]

‖u2(t)‖2 ≤ |u2|2Xτ2 ≤ (2n)2. Thus the last inequality takes the following form

∫ τ2

0

|Z(u2(t))|2H dt ≤ (2n)2

∫ τ2

0

|G (‖u2(t)‖ , 0)|2 dt = (2n)2 |G (2n, 0)|2 τ2
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Using the last inequality in (3.1.32) we get

A2 ≤ (2n)4 |G (2n, 0)|2 τ2 |u1 − u2|2XT

≤ (2n)4 |G (2n, 0)|2 |u1 − u2|2XT T

A ≤ An |u1 − u2|XT T
1
2 , (3.1.33)

where An = (2n)4 |G (2n, 0)|2 . Since θn(|u1|Xt) = 0 for t ≥ τ1 and τ1 ≤ τ2, we have

B =

[∫ τ2

0

∣∣θn(|u1|Xt) (Z(u1(t))− Z(u2(t)))
∣∣2
H
dt

] 1
2

=

[∫ τ1

0

∣∣θn(|u1|Xt) (Z(u1(t))− Z(u2(t)))
∣∣2
H
dt

] 1
2

.

Also since θn(|u1|Xt) ≤ 1 for t ∈ [0, τ1) we infer that

B ≤
[∫ τ1

0

|(Z(u1(t))− Z(u2(t)))|2H dt
] 1

2

.

Using inequality (3.1.27)

B2 ≤
∫ τ1

0

[‖u1(t)− u2(t)‖G (‖u1(t)‖ , ‖u2(t)‖)]2 dt

≤ sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2

∫ τ1

0

[G (‖u1(t)‖ , ‖u2(t)‖)]2 dt. (3.1.34)

Using the fact that, sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2 ≤ |u1 − u2|2Xτ1 , and using

sup
t∈[0,τ1)

‖ui(t)‖2 ≤ |ui|Xτi ≤ 2n, i = 1, 2, the last inequality takes form

B2 ≤ |u1 − u2|2Xτ1 G
2 (2n, 2n)

∫ τ1

0

dt

≤ τ1G
2 (2n, 2n) |u1 − u2|2XT

≤ Bn |u1 − u2|2XT T,

where B2
n = G2 (2n, 2n) . Thus

B ≤ BnT
1
2 |u1 − u2|XT
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Using the last inequality together with inequality (3.1.33) in (3.1.31), we get

∣∣Φn
T,Z(u1)− Φn

T,Z(u2)
∣∣
L2(0,T ;H)

≤ (An +Bn) |u1 − u2|XT T
1
2 = Dn |u1 − u2|XT T

1
2 ,

where Dn := (An +Bn). This completes the proof of the theorem. �

Corollary 3.1.17. Assume all assumptions of the Proposition 3.1.16 and the map F

be map as defined in the Lemma 3.1.11. Recall that XT = L2 (0, T ;E)∩C (0, T ;V ).

Let Φn
T,F : XT → L2 (0, T ;H) be a map defined by,

Φn
T,F (u(t)) := θn(|u|Xt)F (u(t)).

Then there exists Cn > 0 such that,

∣∣Φn
T,F (u1)− Φn

T,F (u2)
∣∣
L2(0,T ;H)

≤ Cn |u1 − u2|XT T
1
2 , where u1, u2 ∈ V. (3.1.35)

Proof. The result follows directly from Proposition 3.1.16. Indeed, by Lemma 3.1.11

F satisfies the inequality (3.1.27) i.e.

|F (u)− F (v)|H ≤ G(‖u‖ , ‖v‖) ‖u− v‖ ,

where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

Take Z ≡ F . Clearly the map G is symmetric and being polynomial G is bounded.

Hence the required inequality follows from the Proposition 3.1.16. �

Before mentioning next two results probably it will be better to recall some

definition.
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For a given f ∈ V, recall that B is a vector field on H defined by

B(u) = f − 〈f, u〉u, for all u ∈ H.

Recall from Proposition 3.1.12 the Frećhet derivative of map B at u i.e. κ ≡ duB,

can be given as

κ(h) = −〈f, u〉h− 〈f, h〉u, for all h ∈ H.

And obviously XT = L2 (0, T ;E) ∩ C (0, T ;V ) .

Corollary 3.1.18. Let B and κ be maps described above and κ satisfies the

inequality (3.1.14). Define that Λκ,T : XT → L2 (0, T ;H) by,

[Λκ,T (u)] (t) = θn
(
|u|Xt

)
κ (u(t)) , t ∈ [0, T ] .

Then Λκ,T is globally Lipschitz and moreover there exists Kn > 0 such that,

|Λκ,T (u1)− Λκ,T (u2)|L2(0,T ;H) ≤ Kn |u1 − u2|XT T
1/2, u1, u2 ∈ XT . (3.1.36)

Proof. The result follows directly from Proposition 4.2.10. From inequality (3.1.26)

we know that

|κ(u)− κ(v)|H ≤ G(‖u‖ , ‖v‖) ‖u− v‖

Where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, defined as

G(r, s) = C ‖f‖2 [2 + r2 + s2 + (r + s)2]
Take Z ≡ κ . Clearly the map G is symmetric and being polynomial G is bounded.

Hence the required inequality follows from the Proposition 4.2.10. �

In the next result, we will show that truncated diffusion term i.e. B in main

problem (3.1.6) is globally Lipschitz.
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Proposition 3.1.19. Assume that all assumptions of Proposition 3.1.16. Let us

assume that B is defined by (3.1.21). Define a map ΦB,T : XT → L2 (0, T ;V ) by

[ΦB,Tu] (t) = θn
(
|u|Xt

)
B(u (t)), t ∈ [0, T ] .

Then ΦB,T is globally Lipschitz and there exists Mn > 0 such that

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) ≤Mn |u1 − u2|XT T
1
2 , u1, u2 ∈ XT . (3.1.37)

Proof. We start by showing that ΦB,T is well-defined. Pick and fix u ∈ XT then

|(ΦB,T (u)) (t)|2L2(0,T ;V ) =
∣∣θn(|u|Xt)B(u(t))

∣∣2
L2(0,T ;V )

,

=

∫ T

0

∥∥θn(|u|Xt)B(u(t))
∥∥2
dt.

By definition of θ we infer that |θ|2 ≤ 1 and so it follows that |θn|2 ≤ 1. Therefore

using inequality (3.1.23) in last equation,

|ΦB,T (u)|2L2(0,T ;V ) ≤
∫ T

0

‖B(u(t))‖2 dt,

≤ C2 |f |2H
∫ T

0

‖u (t)‖4 dt.

Since u ∈ C ([0, T ] ;V ) there exists K > 0 s.t. ‖u(t)‖ ≤ K for all t ∈ [0, T ], so last

inequality becomes

|ΦB,T (u)|2L2(0,T ;V ) ≤ C2 |f |2H
∫ T

0

K4dt = C2 |f |2H K
4T <∞.

Hence ΦB,T is well-defined. Next we will show that ΦB,T is globally Lipschitz, for

this choose and fix u1, u2 ∈ XT . Set

τi := inf
{
t ∈ [0, T ] : |ui|XT ≥ 2n

}
, i = 1, 2.

WLOG we can assume that τ1 ≤ τ2. Consider

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) =

[∫ T

0

‖[ΦB,T (u1)] (t)− [ΦB,T (u2)] (t)‖2 dt

] 1
2

,

=

[∫ T

0

∥∥θn(|u1|Xt)B(u1(t))− θn(|u2|Xt)B(u2(t))
∥∥2
dt

] 1
2

.
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Since θn(|ui|Xt) = 0 for t ≥ τ2, i = 1, 2 we infer that

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) =

[∫ τ2

0

∥∥θn(|u1|Xt)B(u1(t))− θn(|u2|Xt)B(u2(t))
∥∥2
] 1

2

,

=

∫ τ2

0

∥∥∥∥∥∥ θn(|u1|Xt)B(u1(t))− θn(|u1|Xt)B(u2(t))

+θn(|u1|Xt)B(u2(t))− θn(|u2|Xt)B(u2(t))

∥∥∥∥∥∥
2


1
2

,

=

∫ τ2

0

∥∥∥∥∥∥ θn(|u1|Xt) (B(u1(t))−B(u2(t)))

+
(
θn(|u1|Xt)− θn(|u2|Xt)

)
B(u2)(t)

∥∥∥∥∥∥
2


1
2

.

Therefore, by using the Minkowski inequality we get,

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) ≤
[∫ τ2

0

∥∥θn(|u1|Xt) (B(u1(t))−B(u2(t)))
∥∥2
dt

] 1
2

,

+

[∫ τ2

0

∥∥(θn(|u1|Xt)− θn(|u2|Xt)
)
B(u2(t))

∥∥2
dt

] 1
2

.

(3.1.38)

Set

A : =

[∫ τ2

0

∥∥(θn(|u1|Xt)− θn(|u2|Xt)
)
B(u2(t))

∥∥2
] 1

2

dt,

B : =

[∫ τ2

0

∥∥θn(|u1|Xt) (B(u1(t))−B(u2(t)))
∥∥2
] 1

2

dt.

With the notation previous inequality reads,

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) ≤ A+B. (3.1.39)
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Since θn is Lipschitz constant so

A2 =

∫ τ2

0

∥∥(θn(|u1|Xt)− θn(|u2|Xt)
)
B(u2(t))

∥∥2
dt,

≤ 1

n2

∫ τ2

0

∥∥∥∣∣|u1|Xt − |u2|Xt
∣∣2B(u2(t))

∥∥∥2

dt,

≤ 1

n2

∫ τ2

0

∣∣|u1|Xt − |u2|Xt
∣∣2 ‖B(u2(t))‖2 dt,

≤ 1

n2

∫ τ2

0

|u1 − u2|2Xt ‖B(u2(t))‖2 dt,

≤ 1

n2
|u1 − u2|2XT

∫ τ2

0

‖B(u2(t))‖2 dt. (3.1.40)

By use of inequalities (3.1.23),∫ τ2

0

‖B(u2(t))‖2 dt ≤ C2 |f |2H
∫ τ2

0

‖u2(t)‖4 dt,

≤ C2 |f |2H

(
sup

t∈[0,τ2)

‖u2(t)‖2

)2 ∫ τ2

0

dt,

= C2 |f |2H

(
sup

t∈[0,τ2)

‖u2(t)‖2

)2

τ2.

Since |u2|2Xτ2 = sup
t∈[0,τ2]

‖u2(t)‖2 +
∫ τ2

0
|u2(t)|2E we infer that sup

t∈[0,τ2]

‖u2(t)‖2 ≤ |u2|2Xτ2 ,

and using fact that |u2|Xτ2 ≤ 2n, the last inequality takes form

∫ τ2

0

‖B(u2(t))‖2 dt ≤ C2 |f |2H

(
sup

t∈[0,τ2)

‖u2(t)‖2

)2

τ2

≤ C2 |f |2H
(
|u2|2Xτ2

)2

τ2

≤ (2n)4C2 |f |2H τ2

Using last inequality in (3.1.40),

A2 ≤ 1

n2
|u1 − u2|2XT (2n)4C2 |f |2H τ2 ≤ 4n2C2 |f |2H |u1 − u2|2XT T

A ≤ An |u1 − u2|XT T
1
2 , where An = 2nC |f |H (3.1.41)
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Similarly because, for θn(|u1|Xt) = 0 for t ≥ τ1 and τ1 ≤ τ2, we have

B =

[∫ τ2

0

∥∥θn(|u1|Xt) (B(u1(t))−B(u2(t)))
∥∥2
dt

] 1
2

,

=

[∫ τ1

0

∥∥θn(|u1|Xt) (B(u1(t))−B(u2(t)))
∥∥2
dt

] 1
2

.

Since θn(|u1|Xt) ≤ 1 for t ∈ [0, τ1)

B ≤
[∫ τ1

0

‖(B(u1(t))−B(u2(t)))‖2 dt

] 1
2

.

Therefore, using inequality (3.1.23) we infer that,

B2 ≤ C2 |f |2H
∫ τ1

0

[(‖u1 (t)‖+ ‖u1 (t)‖) ‖u1 (t)− u2 (t)‖]2 dt,

≤ C2 |f |2H sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2

∫ τ1

0

(‖u1(t)‖+ ‖u2(t)‖)2 dt,

≤ C2 |f |2H sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2 sup
t∈[0,τ1)

(‖u1(t)‖+ ‖u2(t)‖)2

∫ τ1

0

dt

again use of Cauchy Schwartz inequality and sup
t∈[0,τ1)

‖u1(t)− u2(t)‖2 ≤ |u1 − u2|2Xτ1 ,

and using sup
t∈[0,τ1)

‖ui(t)‖2 ≤ |ui|2Xτi ≤ (2n)2, i = 1, 2, the last inequality takes form

B2 ≤ C2 |f |2H |u1 − u2|2Xτ1 (2n+ 2n)2

∫ τ1

0

dt,

≤ (4n)2C2 |f |2H |u1 − u2|2XT τ1,

≤ (4n)2C2 |f |2H |u1 − u2|2XT T

≤ B2
n |u1 − u2|2XT T, where Bn = 4nC |f |H ,

B ≤ Bn |u1 − u2|XT T
1
2 . (3.1.42)

Using last inequality together with (3.1.41) in (3.1.42),we get

|ΦB,T (u1)− ΦB,T (u2)|L2(0,T ;V ) ≤ (An +Bn) |u1 − u2|XT T
1
2 = Mn |u1 − u2|XT T

1
2 .

where Mn := (An +Bn) = 2nC |f |H + (4nC |f |H). This completes the proof of the

theorem. �
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Next we prove one of the key results of this subsection i.e. existence and

uniqueness of the local solution to approximate evolution equation (3.1.11).

Proposition 3.1.20. Assume that assumptions of Proposition 3.1.16 as well as

Assumption 3.1.5. For given f1, f2, ..., fN ∈ V and u0 ∈ V. Define a map

Ψn
T,u0

: M2 (XT )→M2 (XT ) defined by:

Ψn
T,u0

(u) = Su0 + S ∗ Φn
T,F (u) +

1

2

N∑
j=1

S ∗ Λκj,T (u) +
N∑
j=1

(
S♦ΦBj,T (u)

)
. (3.1.43)

where Bj and κj, are as defined as (3.1.21) and (3.1.25) respectively, j = 1, 2, ..., N.

Then there exists C(n) > 0 such that

∣∣Ψn
T,u0

(u1)−Ψn
T,u0

(u2)
∣∣
M2(XT )

≤ C(n) |u1 − u2|M2(XT ) T
1/2.

Moreover, there exists T0 > 0 such that for all T ∈ [0, T0) , Ψn,u0
T is strict

contraction. In particular, for all T ∈ [0, T0) there exists u ∈ XT , such that

Ψn,u0
T (u) = u.

Proof. Let begin with proving that Ψn
T,u0

is well-defined. For u ∈ M2 (XT ) , using

triangle inequality consider,

∣∣Ψn
T,u0

(u)
∣∣
M2(XT )

=

∣∣∣∣∣Su0 + S ∗ Φn
T,F (u) +

1

2

N∑
j=1

S ∗ Λκj,T (u) +
N∑
j=1

(
S♦ΦBj,T (u)

)∣∣∣∣∣
M2(XT )

≤ |Su0|M2(XT ) +
∣∣S ∗ Φn

T,F (u)
∣∣
M2(XT )

+
1

2

N∑
j=1

∣∣S ∗ Λκj,T (u)
∣∣
M2(XT )

+
N∑
j=1

∣∣S♦ΦBj,T (u)
∣∣
M2(XT )

=
√
E |Su0|2XT +

√
E
∣∣S ∗ Φn

T,F (u)
∣∣2
XT

+
1

2

N∑
j=1

√
E
∣∣S ∗ Λκj,T (u)

∣∣2
XT

+C2

N∑
j=1

∣∣S♦ΦBj,T (u)
∣∣
M2(XT )

.
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From Assumptions 3.1.5 and inequalities (3.1.35), (3.1.37) and (3.1.36) it follows

that,

∣∣Ψn
T,u0

(u)
∣∣
M2(XT )

≤ C0

√
E ‖u0‖2 + C1

√
E
∣∣Φn

T,F (u)
∣∣2
L2(0,T ;H)

+
C1

2

N∑
j=1

√
E
∣∣Λκj,T (u)

∣∣2
L2(0,T ;H)

+C2

N∑
j=1

√∣∣ΦBj,T (u)
∣∣2
M2(0,T ;V )

= C0

√
E ‖u0‖2 + C1

√
E
∣∣Φn

T,F (u)
∣∣2
L2(0,T ;H)

+
C1

2

N∑
j=1

√
E
∣∣Λκj,T (u)

∣∣2
L2(0,T ;H)

C2

N∑
j=1

√
E
∣∣ΦBj,T (u)

∣∣2
L2(0,T ;V )

≤ C0

√
E ‖u0‖2 + C1CnT

1/4
√

E |u|2XT +
C1

2
T 1/4

N∑
j=1

Kn,j

√
E |u|2XT

+C2T
1/4

N∑
j=1

Mn,j

√
E |u|2XT

= C0

√
E ‖u0‖2 + C1CnT

1/4 |u|M2(XT ) +
C1

2
KnT

1/4 |u|M2(XT )

N∑
j=1

Kn,j

+C2T
1/4 |u|M2(XT )

N∑
j=1

Mn,j

< ∞.

Hence ΨT is well-defined.

Let us choose and fix u1, u2 ∈ M2 (XT ). Using triangle inequality consider the

following,∣∣Ψn
T,u0

(u1)−Ψn
T,u0

(u2)
∣∣
M2(XT )

=

∣∣∣∣∣∣ S ∗
(
Φn
T,F (u1)− Φn

T,F (u2)
)

+ 1
2

∑N
j=1 S ∗

(
Λκj,T (u1)− Λκj,T (u2)

)
+
∑N

j=1 S♦
(
ΦBj,T (u)− ΦBj,T (u)

)
∣∣∣∣∣∣
M2(XT )

,
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≤
∣∣S ∗ (Φn

T,F (u1)− Φn
T,F (u2)

)∣∣
M2(XT )

+
1

2

N∑
j=1

∣∣S ∗ (Λκj,T (u1)− Λκj,T (u2)
)∣∣
M2(XT )

+
N∑
j=1

∣∣S♦ (ΦBj,T (u)− ΦBj,T (u)
)∣∣
M2(XT )

.

From Assumptions 3.1.5, it follows that

≤ C1

√
E
∣∣Φn

T,F (u1)− Φn
T,F (u2)

∣∣2
L2(0,T ;H)

+
C1

2

N∑
j=1

√
E
∣∣Λκj,T (u1)− Λκj,T (u2)

∣∣2
L2(0,T ;V )

+C2

N∑
j=1

√
E
∣∣ΦBj,T (u1)− ΦBj,T (u2)

∣∣2
L2(0,T ;H)

.

Using inequalities (3.1.35), (3.1.37) and 3.1.36 we get,

≤ C1CnT
1
4

√
E |u1 − u2|2XT + T

1
4

N∑
j=1

Mn,j

√
E |u1 − u2|2XT

+C2T
1
4

N∑
j=1

Kn,j

√
E |u1 − u2|2XT

= C1CnT
1
4 |u1 − u2|M2(XT ) + T

1
4 |u1 − u2|M2(XT )

N∑
j=1

Mn,j

+C2T
1
4 |u1 − u2|M2(XT )

N∑
j=1

Kn,j

= C(n)T
1
4 |u1 − u2|M2(XT )

where

C(n) =

[
C1Cn +

C1

2

N∑
j=1

Kn,j + C2

N∑
j=1

Mn,j

]
.

Now we can see that C(n) is independent of time, also we can reduce T in such

a way that C(n)T
1
4 < 1. Hence Ψn,u0

T,F is strict contraction for all T ∈ [0, T0) and

consequently by Banach fixed point theorem, for all T ∈ [0, T0) there exists u ∈ XT ,

such that Ψn,u0
T,F (u) = u.

�
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Before proceeding further, let us recall an important observation from [8] (Page

145-147). We are going to use it at several instances.

Remark 3.1.21. Assume that ψ be a Hilbert space H-valued process such that∫ t

0

‖S (t− r)ψ(r)‖2
HS ds <∞, for all t ≥ 0 P-a.s.,

where (St)t≥0 is analytic semigroup of bounded on H and ‖·‖HS is the

Hilbert-Schmidt norm. The stochastic convolution

I(t) =

∫ t

0

S (t− r)ψ(r)dW (r), t ≥ 0,

is well defined. If τ is some stopping time of our interest then consider the following

stopped process

I(t ∧ τ) =

∫ t∧τ

0

S (t ∧ τ − r)ψ(r)dW (r), t ≥ 0.

Observe that integrand in above stopped process is not adapted and progressively

measurable, hence the integral above does not make sense. To tackle this issue let

us consider the following integral

Iτ (t) =

∫ t

0

S (t− r)
(
1[0,τ)ψ(r ∧ τ)

)
dW (r), t ≥ 0.

It was shown in the Lemma A.1 of [8] (Page 146) that if we assume further that I

and Iτ have continuous paths almost surely, then

S (t− t ∧ τ) Iτ (t ∧ τ) = Iτ (t), for all t ≥ 0 P-a.s.

In particular the integral I(t ∧ τ) make sense in the following manner,

I(t ∧ τ) = Iτ (t ∧ τ), for all t ≥ 0 P-a.s.

136



3.1. Notation, Assumptions, Estimates and Introduction to main problem

In the following result, we intend to prove the existence of the unique local mild

solution to main problem (3.1.6). One can observe that from the following result we

can estimate from below the length of existence time interval with a lower bound,

which depends on the second moment of V -norm initial data, on a large subset of

Ω whose probability does not depend upon the moment. In next section, we will

prove that XT -norm of intimal data converges to ∞ and t converges to lifespan,

provided that life span is finite.

Proposition 3.1.22. If R > 0 and ε > 0, then there exists a number

T ∗ (ε, R) > 0, such that for every F0-measurable V -valued random variable u0

satisfying E ‖u0‖2 ≤ R2, there exists a unique local solution (u(t), t < τ) of 3.1.6

such that P (τ ≥ T ∗) ≥ 1− ε.

Proof. Take and fix R > 0 and ε > 0. Choose n ∈ N such that n2 ≥ 4C2
0R

2

ε
,

where C0 is as in assumption (3.1.14). Let u0 be F0-measurable V -valued random

variable satisfying E ‖u0‖2 ≤ R2. For all n ∈ N and T > 0 we consider a map

Ψn
T,u0

: M2 (XT )→M2 (XT ) given by:

Ψn
T,u0

(u) = Su0 + S ∗ Φn
T,F (u) +

1

2

N∑
j=1

S ∗ Λκj,T (u) +
N∑
j=1

(
S♦ΦBj,T (u)

)
.

Now since Ψn
T,u0

(u0) = Su0 so using assumption (3.1.14). we have

∣∣Ψn
T,u0

(u0)
∣∣
M2(XT )

= E |Su0|2XT ≤ C0E ‖u0‖2 ≤ C0R.

Moreover the map Ψn
T,u0

also satisfies∣∣Ψn
T,u0

(u)
∣∣
M2(XT )

=∣∣∣∣∣Su0 + S ∗ Φn
T,F (u) +

1

2

N∑
j=1

S ∗ Λκj,T (u) +
N∑
j=1

(
S♦ΦBj,T (u)

)∣∣∣∣∣
M2(XT )

.
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Using triangle inequality,

∣∣Ψn
T,u0

(u)
∣∣
M2(XT )

≤ |Su0|M2(XT ) +
∣∣S ∗ Φn

T,F (u)
∣∣
M2(XT )

+
1

2

N∑
j=1

∣∣S ∗ Λκj,T (u)
∣∣
M2(XT )

+
N∑
j=1

∣∣S♦ΦBj,T (u)
∣∣
M2(XT )

=
√
E |Su0|2XT +

√
E
∣∣S ∗ Φn

T,F (u)
∣∣2
XT

+
1

2

N∑
j=1

√
E
∣∣S ∗ Λκj,T (u)

∣∣2
XT

+
N∑
j=1

√
E
∣∣S♦ΦBj,T (u)

∣∣2
XT
.

Using Assumptions 3.1.5,

∣∣Ψn
T,u0

(u)
∣∣
M2(XT )

≤ C0

√
E ‖u0‖2 + C1

√
E
∣∣Φn

T,F (u)
∣∣2
L2(0,T ;H)

+
C1

2

N∑
j=1

√
E
∣∣Λκj,T (u)

∣∣2
L2(0,T ;H)

+C2

N∑
j=1

√
E
∣∣∣ΦBj ,T

(u)
∣∣∣2
L2(0,T ;V )

.

Next Using inequalities (3.1.35), 3.1.37 and 3.1.36 we get,

≤ C0R + Cn

√
E |u|2XTT

1
2 +

C1T
1
2

2

N∑
j=1

Kn,j

√
E |u|2XT + C2T

1
2

N∑
j=1

Mn,j

√
E |u|2XT

= C0R +KnT
1
2 |u|M2(XT ) , (3.1.44)

where Kn := Cn + C1

2

∑N
j=1 Kn,j +C2

∑N
j=1 Mn,j. The above inequality holds for all

u ∈M2 (XT ) , and for all T > 0, n ∈ N.

For any u1, u2 ∈M2 (XT ) from Proposition 1.19, we know that

∣∣Ψn
T,u0

(u1)−Ψn
T,u0

(u2)
∣∣
M2(XT )

≤ CnT
1/2 |u1 − u2|M2(XT ) .

Choose T1 > 0 such that CnT
1
2

1 < 1
2
. This will make Ψn

T,u0
, for all T ≤ T1, is 1

2
-strict

contraction and hence there exists a unique fixed point un ∈ M2 (XT1) such that
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Ψn
T,u0

(un) = un. Choose T2 > 0 such that KnT
1
2 ≤ 1

2
. Now take u in particular as a

fixed point un of Ψn
T1,u0

then from last inequality (3.1.44), we infer that

|un|M2(XT ) ≤ C0R +
|un|M2(XT )

2
.

Hence

|un|M2(XT ) ≤ 2C0R.

Clearly from last inequality it follows that for every T ≤ T1 ∧ T2, the range of

Ψn
T,u0

is a subset of the ball of radius 2C0R, centered at 0, in M2 (XT ) . If we set

T ∗ = T1 ∧ T2. then from last inequality we infer that, infer that

|un|M2(XT∗ ) ≤ 2C0R. (3.1.45)

Consider the stopping time τn defined by,

τn = inf
{
t ∈ [0, T ∗] , |un|Xt ≥ n

}
.

As un (0) = u0 so observe that

if ‖u0 (ω)‖ ≥ n then τn = 0 and

if ‖u0 (ω)‖ < n then τn ∈ (0, T ∗] .

Now we claim that (un, τn) is local mild solution. Then un as a fixed point it satisfies

un (t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t

0

S(t− r)θn
(
|un|Xr

)
Λκj,T (u (r)) dr

+
n∑
j=1

∫ t

0

S(t− r)θn
(
|un|Xr

)
B (un(r)) dWj(r), P-a.s.
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Observe that processes involved in the both sides of above equality are continuous,

so this equality still holds when the deterministic time t is replaced by t ∧ τn. The

stopped equation can be given as, for t ∈ [0, T ], P-a.s.,

un (t ∧ τn) = S(t)u0 +

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
Λκj,T (u (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
B (un(r)) dWj(r), P-a.s.

(3.1.46)

We claim that

θn
(
|un|Xr

)
= 1, for all r ∈ [0, t ∧ τn]. (3.1.47)

In order to do so, let r ∈ [0, t ∧ τn] , where t ∈ [0, T ] , therefore r ≤ τn. Now since

|un|τn = n, if τn < T

≤ n, if τn = T,

and the map r 7−→ |un|r increasing, we infer that |un|r ≤ |un|τn ≤ n, for all r ≤ τn.

Hence by definition of θn it follows that

θn
(
|un|Xr

)
= 1, for all r ∈ [0, t ∧ τn].

Keeping in view the Remark 3.1.21 and using (3.1.47) into (3.1.46), we infer that,

un (t ∧ τn) = S(t)u0 +

∫ t∧τn

0

S(t ∧ τn − r)F (un(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)Λκj,T (u (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)B (un(r)) dWj(r),P-a.s.
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for all t ∈ [0, T ∗). Therefore, (un, τn) is local mild solution to our main problem

(3.1.6). By the definition of stopping time τn,

{ω ∈ Ω : τn (ω) ≤ T ∗ (ω)} ⊂
{
ω ∈ Ω : |un|XT∗(ω) ≥ n

}
.

Indeed τn ≤ T ∗ iff there exists t ≤ T ∗ such that |un|Xt ≥ n . Since s 7→ |·|Xs
increasing so |un|XT∗ ≥ |u

n|Xt ≥ n, for all t ≤ T ∗, hence the above inclusion holds.

By using the Chebyshev inequality and inequality (3.1.45), moreover using choice

of n in the beginning of the proof i.e. n2 ≥ 4C2
0R

2

ε
, we get

P {τn ≤ T ∗} ≤ P {|un|T ∗ ≥ n}

≤
E |un|2XT∗

n2

=
|un|2M2(XT∗ )

n2

≤ 4C2
0R

4

n2
≤ ε,

Equivalently

P {τn ≥ T ∗}<1− ε.

If we set τ = τn and u = un then we have the required result. This completes the

proof. �

3.1.8 Global solution to Approximate Evolution equation

Let us begin by defining a sequence of stopping times (τn)n∈N in the following

manner,

τn := inf
{
t ∈ [0, T ] : |u|Xt ≥ n

}
∧ T.

Theorem 3.1.23. Suppose Assumptions 3.1.2 and assumptions of Proposition

3.1.20 hold and (τn)n∈N be the above sequence of stopping time. Then for each
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n ∈ N, the truncated evolution equation (3.1.11) admits a unique global solution

un ∈ M2 (XT ). Moreover (un, τn) is local mild solution to the main problem

(3.1.6).

Proof. Let us fix n ∈ N , T ∈ (0,∞) and u0 ∈ L2 (Ω,P;V ) . Let Ψn
T,u0

be a map on

M2 (XT ) defined by,

Ψn
T,u0

(u) = Su0 + S ∗ Φn
T,F (u) +

1

2

N∑
j=1

S ∗ Λκj,T (u) +
N∑
j=1

(
S♦ΦBj,T (u)

)
.

From Proposition 3.1.20 we know Ψn
T,u0

maps M2 (XT ) into M2 (XT ) and it is

globally Lipschitz. Moreover, for sufficiently small T Ψn
T,u0

is strict contraction.

Hence we can find η := η (n) > 0 such that Ψn
T,u0

is a 1
2
-contraction. Let

(η
k
)k∈N∪{0} be a sequence of times defined by η

k
= kη, where k ∈ N ∪ {0} . Since

Ψn
η,u0

: M2 (Xη) → M2 (Xη) is a 1
2

-contraction, there exists a unique

un,1 ∈M2
(
X[0,η]

)
:= M2 (Xη) such that

un,1 = Ψn
η,u0

(
un,1
)

= Su0 + S ∗ Φn
η,F (un,1) +

1

2

N∑
j=1

S ∗ Λκj,η(u
n,1) +

N∑
j=1

(
S♦ΦBj,η

(
un,1
))
.

As un,1 ∈ M2 (Xη) and un,1 is Ft-measurable so by definition of M2 (Xη) we infer

that un,1 (η) ∈ L2 (Ω,P;V ) .

Now by replacing u0 by un,1 (η) by repeating the same argument as above we

can find un,2 ∈M2
(
Xη,Fη1

)
such that

un,2 = Ψn
η,un,1(η1)

(
un,2
)

= Sun,1 (η1) + S ∗ Φn
η,F (un,2) +

1

2

N∑
j=1

S ∗ Λκj,η(u
n,2) +

N∑
j=1

(
S♦ΦBj,η

(
un,2
))
.

In the same fashion, arguing inductively one can find sequence
(
un,k

)∞
k=1

such that
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un,k ∈M2
(
Xη,Fη

k−1

)
which satisfies

un,k = Ψn
η,un,k−1(ηk−1)

(
un,k

)
= Sun,k

(
η
k−1

)
+ S ∗ Φn

η,F (un,k) +
1

2

N∑
j=1

S ∗ Λκj,η(u
n,k) +

N∑
j=1

(
S♦ΦBj,η

(
un,k

))
.

Let us define a process un in the following manner:

un(t) : = un,1(t), for t ∈ [0, η1)

: = un,2(t), for t ∈ [η1, η2)

...

: = un,k(t), for t ∈ [ηk, ηk+1) and k =

[
T

η
k

]
+ 1.

We claim that for un ∈M2 (XT ) such that Ψn
T,u0

(un) = un.

|un|M2(XT ) = E

(
sup
t∈[0,T ]

‖un(t)‖2 +

∫ T

0

|un(t)|2E dt

)

≤ E

[∑
k

(
sup

t∈[ηk,ηk+1)

∥∥un,k(t)∥∥2
+

∫ ηk+1

ηk

∣∣un,k(t)∣∣2
E
dt

)]

=
∑
k

E

(
sup

t∈[ηk,ηk+1)

∥∥un,k(t)∥∥2
+

∫ ηk+1

ηk

∣∣un,k(t)∣∣2
E
dt

)
=

∑
k

∣∣un,k∣∣
M2
(
X[ηk,ηk+1)

) <∞.
Hence un ∈ M2 (XT ) . Next we aim to show that Ψn

T,u0
(un) = un i.e. the following

evolution equation is satisfied for all t ∈ [0, T ] ,

un(t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t

0

S(t− r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
N∑
j=1

∫ t

0

S(t− r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dWj(r),P-a.s, t ∈ [0, T ].

(3.1.48)
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By definition un(t) = un,1(t), for all t ∈ [0, η1) and since un,1 satisfies above equation

on [0, η1) so does un.

Since un,1(η−1 ) = un,2(η+
1 ), using semigroup property the following chain of

equations hold for all t ∈ [η1, η2),

un(t) = S(t− η1)


S(η1)u0 +

∫ η1
0
S(η1 − r)θn

(
|un,1|Xr

)
F (un,1(r)) dr

+1
2

∑N
j=1

∫ η1
0
S(η1 − r)θn

(
|un,1|Xr

)
Λκj,T (un,1 (r)) dr∑N

j=1

∫ η1
0
S(η1 − r)θn

(
|un,1|Xr

)
ΦBj,T (un,1 (r)) dWj(r)


+

∫ t

η1

S(t− r)θn
(∣∣un,2∣∣

Xr

)
F
(
un,2(r)

)
dr

+
1

2

N∑
j=1

∫ t

η1

S(t− r)θn
(∣∣un,2∣∣

Xr

)
Λκj,T

(
un,2 (r)

)
dr

+
N∑
j=1

∫ t

η1

S(t− r)θn
(∣∣un,2∣∣

Xr

)
ΦBj,T

(
un,2 (r)

)
dWj(r),P-a.s,

= S(t)u0 +

∫ η1

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr +

∫ t

η1

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ η1

0

S(η1 − r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
1

2

N∑
j=1

∫ η1

0

S(η1 − r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
N∑
j=1

∫ η1

0

S(η1 − r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dWj(r)

+
N∑
j=1

∫ t

η1

S(t− r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dWj(r),P-a.s.
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un(t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t

0

S(η1 − r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
N∑
j=1

∫ t

0

S(η1 − r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dWj(r),P-a.s,

for all t ∈ [η1, η2). In the similar manner we can show that un satisfies (3.1.48) for

all t ∈ [ηk, ηk+1), for all k ∈ N.

Thus, un is global solution of truncated evolution equation (3.1.11). We now

move towards proving the uniqueness of global solution. Let (v, τ) be another global

solution of truncated evolution equation (3.1.11). We claim that P (un = v) = 1 on

(0, τ ] . Set βk = τ∧ η
k
, where (η

k
) is as in first paragraph of proof. Clearly βk → τ ,

almost surely, as k →
[
T
η

]
. By contraction argument and uniqueness

P (un (t) = v(t)) = 1, for allt ∈ (0, τ ∧ η] ,

and P (un (t) = v(t)) = 1, for all t ∈ (0, βk] .

Proceeding limit k →∞, it follows that

P (un(t) = v(t)) = 1, for all t ∈ (0, τ ] .

Next we aim to show that (un, τn) is local mild solution to the main problem 3.1.6.

Let us begin by observing that processes involved in the both sides of equality

(3.1.48) are continuous, so the equality (3.1.48) still holds when the deterministic

time t is replaced by t ∧ τn. The stopped equation can be given as, for t ∈ [0, T ],
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P-a.s.,

un(t ∧ τn) = S(t ∧ τn)u0 +

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dWj(r).

(3.1.49)

We claim that

θn
(
|un|Xs

)
= 1, for all s ∈ [0, t ∧ τn]. (3.1.50)

In order to do so, let s ∈ [0, t ∧ τn] , where t ∈ [0, T ] , therefore s ≤ τn. Now since

|un|τn = n, if τn < T

≤ n, if τn = T,

and the map s 7−→ |un|s increasing, we infer that |un|s ≤ |un|τn ≤ n, for all s ≤ τn.

Hence by definition of θn it follows that

θn
(
|un|Xs

)
= 1, for all s ∈ [0, t ∧ τn].

Hence using previous observation the integrand of Riemann integrals of equation

(3.1.49),

θn
(
|u|Xr

)
F (u(r)) = F (u(r)) , for r ∈ [0, t ∧ τn] (3.1.51)

and

θn
(
|u|Xr

)
Λκj,T

(u (r)) = Λκj,T
(u (r)) , for r ∈ [0, t ∧ τn], t ∈ [0, T ] . (3.1.52)

In the view of Remark 3.1.21 and (3.1.50), we conclude that for any t ∈ [0, T ] ,∫ t∧τn

0

S(t∧τn−r)
[
θn
(
|u|Xr

)
ΦBj,T (u (r))

]
dW (r) =

∫ t∧τn

0

S(t∧τn−r)ΦBj,T (u (r)) dWj(r),

(3.1.53)
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Using the (3.1.51) (3.1.52) and (3.1.53) into (3.1.49) it follows that, P-a.s., t ∈ [0, T ]

u(t ∧ τn) = S(t ∧ τn)u0 +

∫ t∧τn

0

S(t ∧ τn − r)F (u(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)Λκj,T (u (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)ΦBj,T (u (r)) dWj(r).

This proves that (u, τn) is local solution of main problem (3.1.6). This completes

the proof. �

3.2 Construction of Local Maximal Solution

In this subsection, we are going to show that the existence global solution of the

truncated evolution equation (3.1.11) enables us to construct the local maximal

solution of main problem (3.1.6).

Theorem 3.2.1. Suppose Assumptions 3.1.2 and assumptions of Proposition 3.1.20

and 3.1.22 hold. Then there exists a unique local maximal solution (u, τ∞) to main

problem (3.1.6).

Proof. Let us fix T > 0. We aim to show that there exists a solution (u, τ∞) to main

problem (3.1.6) that satisfies Definition 3.1.8. Let us recall from Theorem 3.1.23

that there exists a unique global solution un of approximate equation (3.1.11).

We begin by constructing a sequence of stopping times (τn)n∈N in the following

manner.

τn := inf
{
t ∈ [0, T ] : |un|Xt ≥ n

}
∧ T, where n ∈ N. (3.2.1)

Let us fix natural numbers k and n such that k > n and

τn,k := inf
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ n

}
∧ T. (3.2.2)
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We claim that

τn,k ≤ τk.

To prove above inequality we are going to show that{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ n

}
⊃
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ k

}
, (3.2.3)

holds.

Take r ∈
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ k

}
then

∣∣uk∣∣
Xr
≥ k.

but k > n implies that ∣∣uk∣∣
Xr
> n.

Therefore

r ∈
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ n

}
.

Hence the inclusion (3.2.3) is true. Taking infimums on both sides of (3.2.3) we

infer that,

inf
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ n

}
≤ inf

{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ k

}
,

and so

inf
{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ n

}
∧ T ≤ inf

{
t ∈ [0, T ] :

∣∣uk∣∣
Xt
≥ k

}
∧ T

Hence

τn,k ≤ τk. (3.2.4)

Next we claim that
(
uk, τn,k

)
is local solution equation (3.1.11) and going to

satisfy the Definition 3.1.7. Recall the fact that
(
uk, τk

)
is local solution to equation
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(3.1.11) (See Theorem 3.1.23). Consider the following, for all t ∈ [0, T ] ,

|u|2Xt∧τn,k = E

 sup
s∈[0,t∧τn,k]

‖u(s)‖2 +

∫ t∧τn,k

0

|u(s)|2E


≤ E

(
sup

s∈[0,t∧τk]

‖u(s)‖2 +

∫ t∧τk

0

|u(s)|2E

)
= |u|2Xt∧τk <∞.

Further, we can repeat the argument from the last part of proof of Theorem

3.1.23 to see that
(
uk, τn,k

)
satisfies ii) of Definition 3.1.7.

But since (un, τn) is the unique solution (3.1.11) proved in Theorem 3.1.23 so we

uk(t) = un(t) a.s. for all t ∈ [0, τn,k ∧ τn] . (3.2.5)

Next we claim that

uk(t) = un(t) a.s. for all t ∈ [0, τn] . (3.2.6)

To see this we need to see two cases:

Case a) When τn,k(ω) ≥ τn (ω) , for ω ∈ Ω. Then τn,k (ω) ∧ τn (ω) = τn (ω) , for

ω ∈ Ω. Hence (3.2.6) holds trivially.

Case b) When τn,k(ω) < τn (ω) , for ω ∈ Ω. Then since the map t 7−→ |un|Xt is

increasing therefore,

|un|Xτn,k(ω) < |u
n|Xτn(ω)

, for ω ∈ Ω

Now as τn(ω) ≤ T therefore

|un|Xτn(ω)
≤ n, for ω ∈ Ω. (3.2.7)

But since τn,k(ω) < τn (ω) ≤ T i.e. we infer that

∣∣uk∣∣
Xτn,k(ω)

= n, for ω ∈ Ω.
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Using (3.2.5) and (3.2.7) it follows that

|un|Xτn,k(ω) = n ≥ |un|Xτn(ω)
, for ω ∈ Ω.

But this is a contradiction to |un|Xτn,k(ω) < |u
n|Xτn(ω)

. Hence Case b) is not possible

so the Case a) is true. Thus claim (3.2.6) is true.

From the inequality τn,k ≥ τn above and (3.2.4) it also follows that for all k > n ,

τn ≤ τn,k ≤ τk.

Thus the sequence (τn)n∈N being bounded and increasing sequence of real

numbers and hence has a limit τ∞ := lim
n→∞

τn = sup
n∈N

τn a.s.

Now let us define a stochastic processes (u (t))t∈[0,τ∞) in the following manner:

u(t) := un (t) , for all t ∈ [τn−1, τn] and n ∈ N, (3.2.8)

where τ0 = 0.

It follows from (3.2.6) and (3.2.8) that,

u(t ∧ τn) = un(t ∧ τn) a.s. for all t ∈ [0, T ] . (3.2.9)

Next we are going to prove that

θn
(
|u|Xs

)
= 1, for all s ∈ [0, t ∧ τn]. for all t ∈ [0, T ] (3.2.10)

In order to do so, let s ∈ [0, t ∧ τn] , where t ∈ [0, T ] , therefore s ≤ τn. Now since

|un|τn = n, if τn < T

≤ n, if τn = T,

and the map s 7−→ |un|s increasing, we infer that |un|s ≤ |un|τn ≤ n, for all s ≤ τn.

Hence by definition of θn it follows that

θn
(
|u|Xs

)
= 1, for all s ∈ [0, t ∧ τn], for all t ∈ [0, T ] .
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Now (un, τn) is solution to (3.1.11) so it must satisfies the following evolution

equation for t ∈ [0, T ],

un(t ∧ τn) = S(t ∧ τn)u0 +

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
F (un(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
Λκj,T (un (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)θn
(
|un|Xr

)
ΦBj,T (un (r)) dW (r),P-a.s.

Using (3.2.10), (3.2.9) and Remark 4.2.55 into last equation we get, for all t ∈ [0, T ] :

u(t ∧ τn) = S(t ∧ τn)u0 +

∫ t∧τn

0

S(t ∧ τn − r)F (u(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)Λκj,T (u (r)) dr

+
N∑
j=1

∫ t∧τn

0

S(t ∧ τn − r)ΦBj,T (u(r)) dW (r),P-a.s. . (3.2.11)

This proves that (u, τn) is local solution of main problem (3.1.6). Observe that

all processes F,Λκj,T and ΦBj,T are have almost surely continuous trajectories so

it follows from [37] (cf. Theorem 1.4) that above evolution equation (3.2.11) also

holds in strong form i.e.

u(t ∧ τn) = u0 +

∫ t∧τn

0

F (u(r)) dr

+
1

2

N∑
j=1

∫ t∧τn

0

Λκj,T (u (r)) dr

+
N∑
j=1

∫ t∧τn

0

ΦBj,T (u(r)) dW (r),P-a.s. (3.2.12)

Next we are going to show that local solution (u, τ∞) satisfies the Definition

3.1.8 of local maximal solution. We can formulate this part of proof in two cases
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i.e. the case when τ∞ = T and τ∞ < T. In the case of τ∞ = T the conclusion is

trivial. Let us concentrate on the case when τ∞ < T.

Let us begin with fact that τ∞ = lim
n→∞

τn = sup
n∈N

τn and so τn ≤ τ∞. Also since

s 7−→ |un|s , it follows that

|u|Xτn ≤ |u|Xτ∞ , for all n ∈ N,

or

lim
n→∞

|u|Xτn ≤ lim
t→τ∞

|u|Xt . (3.2.13)

Moreover using (3.2.9), we infer that

lim
n→∞

|un|Xτn ≤ lim
n→∞

|u|Xτn . (3.2.14)

Since τn ≤ τ∞ < T so it follows that

|un|Xτn = n. (3.2.15)

Combining inferences (3.2.13), (3.2.14) and (3.2.15) we have the following chain on

{τ∞ (ω) < T},

lim
t→τ∞

|u|Xt ≥ lim
n→∞

|u|Xτn ≥ lim
n→∞

|un|Xτn = lim
n→∞

n→∞.

Hence the Definition 3.1.8 of local maximal solution for (u, τ∞) .

Thus (u, τ∞) is a local maximal solution to main problem 3.1.6.

Now we prove the uniqueness of local maximal solution. Assume that there

is another (v, σ∞) be another maximal local solution and (σn)n≥0 a sequence of

stopping times converges to σ∞ defined by,

σn = inf
{
t ∈ [0, T ] : |v|Xt ≥ n

}
∧ σ∞ ∧ T.

By the following same set of arguments as above, we can see that,

u(t) = v(t), for all t ∈ [0, τn ∧ σn] a.s. .
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Taking limits n→∞ in last equation,

u(t) = v(t), for all t ∈ [0, τ∞ ∧ σ∞] a.s. .

We claim that τ∞ = σ∞ a.s. If this claim is not true then either τ∞ < σ∞ or

τ∞ > σ∞ i.e. either the following is true

lim
t→σ∞

∣∣1{τ∞<σ∞}v∣∣Xt = lim
n→∞

∣∣1{τ∞<σ∞}v∣∣Xσn = lim
n→∞

∣∣1{τ∞<σ∞}u∣∣Xτn =∞, (3.2.16)

or

lim
t→τ∞

∣∣1{τ∞>σ∞}u∣∣Xt = lim
n→∞

∣∣1{τ∞>σ∞}u∣∣Xτn = lim
n→∞

∣∣1{τ∞>σ∞}v∣∣Xσn =∞. (3.2.17)

The equation (3.2.16) is a contradiction to fact that u is maximal so does not

explode before time τ∞. Similarly equation (3.2.17) is contradiction to the fact that

v is maximal so does not explode before time τ∞. Thus both cases σ∞ < σ∞ and

τ∞ > σ∞ leads to contradiction so hence τ∞ = σ∞ is true and we achieved the

uniqueness of maximal solution. This completes the proof of theorem. �

3.3 No explosion and Global Solution

Finally, in this section we are going to prove the no explosion result and then using

this result we will prove the existence of a unique global solution to the main problem

(3.1.6).

3.3.1 No Explosion result

Theorem 3.3.1. For every V -valued and F0− measurable initial data u0 satisfying

E ‖u0‖2 < ∞. There exists the unique local maximal solution (u, τ∞) to the main
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problem 3.1.6. Moreover,

P

(
{τ∞ <∞} ∩

{
sup

t∈[0,τ∞)

‖u(t)‖ <∞

})
= 0

and on {τ∞ <∞} ,

lim sup
t→τ∞

‖u(t)‖ =∞, a.s.

Proof. The existence of unique maximal (u, τ∞) solution is guaranteed by Theorem

3.2.1.

To prove the second statement we argue by the contradiction. Suppose there

exists ε > 0 such that

P

(
{τ∞ <∞} ∩

{
sup

t∈[0,τ∞)

‖u(t)‖ <∞

})
= 4ε.

For R > 0, let us define an stopping time σR := inf {t ∈ [0, τ∞) : ‖u(t)‖ ≥ R}

and Ω̃ = {σR = τ∞ =∞} . Set

Ω̃R = {τ∞ <∞} ∩ {‖u(t)‖ ≤ R for all t ∈ [0, τ∞)} .

We claim that

Ω̃ =
∞⋃
R=1

Ω̃R.

The inclusion Ω̃ ⊃
∞⋃
R=1

Ω̃R is obvious. For the reverse inclusion, if ω ∈ Ω̃ then τ∞(ω)

and sup
t∈[0,τ∞)

‖u(t)‖ are both finite i.e. there exists natural number n such that

‖u(t)‖ ≤ n, for t ∈ [0, τ∞] ,

this implies that ω ∈ Ω̃n ⊂
∞⋃
R=1

Ω̃R. Hence Ω̃ =
∞⋃
R=1

Ω̃R. Clearly Ω̃R ⊆ Ω̃R+1, for

everyR. Hence by the σ-additivity,

lim
R→∞

P
(

Ω̃R

)
= P

(
∞⋃
R=1

Ω̃R

)
= P

(
Ω̃
)
.
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Hence we find R > 0 such that,

P
(

Ω̃R

)
≥ 3ε. (3.3.1)

For this R and ε let us choose T ∗ (ε, R) as in Proposition 3.1.22. Put α := T ∗(ε,R)
2

.

Recall that τ∞ = lim
n→∞

τn = sup
n∈N

τn a.s. where

τn = inf
{
t ∈ [0, τ∞) : |u|Xt ≥ n

}
.

Set Ωn :=
{
ω ∈ Ω̃ : τ∞ (ω)− τn (ω) < α

}
. We claim that

Ω̃R =
∞⋃
n=1

Ωn.

The inclusion Ω̃R ⊃
∞⋃
n=1

Ωn is obvious. For the reverse inclusion, if ω ∈ Ω̃R then

τ∞ (ω) <∞ and

‖u(t)‖ ≤ R, for t ∈ [0, τ∞] .

Since lim
n→∞

τn (ω) = τ∞ (ω) < ∞, there exists a natural number m such that

τ∞ (ω)− τm (ω) < α. This implies that ω ∈ Ωm ⊂
∞⋃
n=1

Ωn, hence Ω̃R ⊂
∞⋃
n=1

Ωn. Since

(τn)n∈N is increasing i.e. for all n ∈ N, τn ≤ τn+1, and therefore Ωn ⊂ Ωn+1. Hence,

lim
n→∞

P (Ωn) = P

(
∞⋃
n=1

Ωn

)
= P

(
Ω̃R

)
.

Thus we can find δ > 0 and a natural number m such that

P (Ωm) ≥ (1− δ)P
(

Ω̃R

)
, (3.3.2)

If we choose δ = 1
3

we infer from (3.3.1) that

P (Ωm) ≥ 2

3
P
(

Ω̃R

)
≥ 2ε. (3.3.3)
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Set T0 = τm and

v0 = u (T0) on Ωm,

= 0 other wise.

As T0 = τm < τ∞ and ‖u(t)‖ < R, for all t ∈ [0, τ∞) , so in particular for t = T0, we

have

E ‖v0‖2 = E ‖u (T0)‖2 ≤ R2.

By Theorem 3.1.22 there exists a unique solution v to the problem 3.1.6 with

initial condition v0 on the interval [T0, T0 + T1) , where T1 is the lifespan of

solution. Further,

P (T1 ≥ T ∗ (ε, R)) ≥ 1− ε. (3.3.4)

By Theorem 3.2.1 v is the local maximal solution of the problem 3.1.6 with the

initial condition v0.

Set Ω̂ := Ωm ∩ {T1 ≥ T ∗ (ε, R)} . It follows from (3.3.3) and (3.3.4) that

P
(

Ω̂
)

= P (Ωm ∩ {T1 ≥ T ∗ (ε, R)})

= P (Ωm) + P ({T1 ≥ T ∗ (ε, R)})− P (Ωm ∪ {T1 ≥ T ∗ (ε, R)})

≥ 2ε+ 1− ε− 1

= ε > 0.

Now define a process z in the following manner,

z(t, ω) =


u(t, ω), if ω ∈

(
Ω̂
)c

and t ∈ [0, τ∞) ,

v(t, ω), if ω ∈ Ω̂ and t > T0,

u(t, ω), if ω ∈ Ω̂ and t ∈ [0, T0] .

Indeed, the process z defined above is local solution to the problem 3.1.6 with the

initial condition u0. Keeping in view the inequality (3.3.4) and the fact that the map
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t→ |u|Xt is increasing. It follows that the process z satisfies the following chain of

inequalities,

E
(
|z|X

τ∞+1
2T
∗(ε,R)

· 1Ω̂

)
≤ E

(
|z|XT0+T∗(ε,R)

· 1Ω̂

)
,

≤ E
(
|u|XT0 · 1Ω̂ +

∣∣1[T0,T0+T ∗(ε,R)]v
∣∣
XT0+T∗(ε,R)

· 1Ω̂

)
,

≤ E
(
|u|XT0 · 1Ω̂

)
+ E

(∣∣1[T0,T0+T ∗(ε,R)]v
∣∣
XT0+T∗(ε,R)

· 1Ω̂

)
,

≤ E
(
|u|XT0 · 1Ωm

)
+ E

(
|v|X[T0,T0+T

∗(ε,R)]
· 1Ω̂

)
. (3.3.5)

Recall that T0 := τm = inf
{
t ∈ [0, τ∞) : |u|Xt ≥ m

}
. Clearly T0 < τ∞ < ∞ on

Ωm :=
{
ω ∈ Ω̃ : τ∞ (ω)− T0 (ω) < α

}
hence it follows that |u|XT0 = m on Ωm.

Thus

E
(
|u|XT0 · 1Ωm

)
= mE (1Ωm) = mP (Ωm) ≤ m <∞. (3.3.6)

Also recall that v (·) is solution such that v (t) ∈ M2
(
XT0+T ∗(ε,R)

)
, for all

t ∈ [T0, T0 + T1) and its life span T1 satisfies

P (T0 + T1 > T0 + T ∗ (ε, R)) ≥ ε

we infer that

E
(∣∣1[T0,T0+T ∗(ε,R)]v

∣∣
XT0+T∗(ε,R)

)
≤ E

(∣∣1[T0,T0+T ∗(ε,R)]v
∣∣2
XT0+T∗(ε,R)

)
<∞.

Thus

E
(
|v|X[T0,T0+T

∗(ε,R)]
· 1Ω̂

)
<∞. (3.3.7)

Using (3.3.6) and (3.3.7) into inequality (3.3.5) we infer that,

E
(
|z|X

τ∞+1
2T
∗(ε,R)

· 1Ω̂

)
<∞ on Ω̂ ⊂ {τ∞ <∞} .

The last conclusion above is a clear contradiction to the maximality of u. This

completes the proof of theorem. �
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3.3.2 Invariance of Manifold

The objective of this subsection is to prove invariance of manifold i.e. if the initial

data belongs to submanifold M then almost all trajectories of solution to main

problem (3.1.6) also belong to M. Moreover, we prove a lemma about the energy

which is going to be used in proving the existence of the global solution is next

subsection. Recall, the following result (Itô Lemma) from [37].

Lemma 3.3.2. Suppose u ∈ M2 (0, T ;E) , u0 ∈ V, v ∈ M2 (0, T ;H),

ϕ = (ϕi)
d
i=1 ∈M2

(
0, T ;V d

)
with

u(t) = u0 +

∫ t

0

v(s)ds+
d∑
i=1

∫ t

0

ϕi(s)dWi (s) .

Let ψ be a functional on V, which is twice differentiable at each point, and

satisfies:

i) ψ, ψ′ and ψ′′ are locally bounded,

ii) ψ and ψ′ are continuous on V,

iii) for all Q ∈ L1 (V ) , T r [Q ◦ ψ′′] is continuous functional on V,

iv) If u ∈ V, ψ′ (u) ∈ V ; the map u 7→ ψ′ (u) is continuous from V (with strong

topology), into V endowed with weak topology.

v) there exists k s.t. ‖ψ′ (u)‖ ≤ k (1 + ‖u‖) , for all u ∈ V.

Then:

ψ (u (t)) = ψ (u0) +

∫ t

0

ψ′ (u (s)) (v (s)) ds+
d∑
i=1

∫ t

0

ψ′ (u (s)) (ϕi(s)) dWi (s)

+
1

2

d∑
i=1

∫ t

0

ψ′′ (u (s)) (ϕi(s), ϕi(s)) ds.

Following is an important lemma needed for proving the invariance of manifold.
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Lemma 3.3.3. Consider a map γ : H → R by,

γ (u) =
1

2
|u|2H , for all u ∈ H.

Then the map γ is of C2-class and for all u, h, h1, h2 ∈ H,

duγ (h) : = 〈u, h〉

d2
uγ (h1, h2) : = 〈h1, h2〉 .

Moreover, for f ∈ V if

B (u) = f − 〈f, u〉u

and

κ(u) = −〈f,B (u)〉u− 〈f, u〉B (u)

then

〈γ′(u), B (u)〉 = 〈u, f〉
(
1− |u|2H

)
, (3.3.8)

〈γ′(u),∆u+ F (u)〉 =
(
‖u‖2 + |u)|2nL2n

) (
|u|2H − 1

)
, (3.3.9)

〈γ′(u), κ(u)〉 = − |f |2H |u|
2
H + 〈u, f〉2

(
2 |u|2H − 1

)
, (3.3.10)

γ′′(u) (B (u) , B (u)) = |f |2H + 〈u, f〉2
(
|u|2H − 2

)
. (3.3.11)

Proof. Let us begin with calculating the first and second order Fréchet derivatives

of γ. For any u and h ∈ H, let us calculate the following limit

lim
t→0

γ (u+ th)− γ (u)

t
= lim

t→0

1
2
|u+ th|2H −

1
2
|u|2H

t

= lim
t→0

1

2

|u|2H + t2 |h|2H + t 〈u, h〉 − 1
2
|u|2H

t

= lim
t→0

1

2

t2 |h|2H + t 〈u, h〉
t

= 〈u, h〉 , for all h ∈ H.
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Thus we have the first order Fréchet derivative duγ : H → R, which can be

described as the following duality,

duγ (h) ≡
〈
γ
′
(u) , h

〉
= 〈u, h〉 , for all h ∈ H. (3.3.12)

Clearly, duγ is linear. Moreover to prove continuity it is sufficient to prove

boundedness. So for h ∈ H, observe that,

|duγ (h)| = |〈u, h〉| ≤ |u|H |h|H = M |h|H ,

where M = |u|H <∞.

Now lets turn towards computing second order derivative, for any u, h1 and

h2 ∈ H,

lim
t→0

γ′ (u+ th)− γ′ (u)

t
= lim

t→0

u+ th− u
t

= h.

Hence for every u ∈ H, we have the map γ′′ (u) : H → H,

γ′′ (u, h) := γ′′ (u)h = h, for all h ∈ H.

Thus the second order derivative d2
uγ : H ×H → R can be given as,

d2
uγ (h1, h2) ≡ 〈γ′′ (u)h1, h2〉 = 〈h1, h2〉 , for all h1, h2 ∈ H. (3.3.13)

Clearly d2
uγ is bilinear, moreover it is bounded since,

∣∣d2
uγ (h1, h2)

∣∣ = |〈h1, h2〉| ≤ |h1|H |h2|H .

Now to obtain equality (3.3.8), for u ∈ H,

〈γ′(u), B (u)〉 = 〈u, f − 〈f, u〉u〉 ,

= 〈u, f〉 − 〈f, u〉 〈u, u〉 ,

= 〈u, f〉
(
1− |u|2H

)
.
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To get equality (3.3.9) using integration by parts consider the following,

〈γ′(u),∆u+ F (u)〉 = 〈u,∆u+ F (u)〉

=
〈
u,∆u+

(
‖u‖2 + |u|2nL2n

)
u− u2n−1

〉
= 〈u,∆u〉+

(
‖u‖2 + |u|2nL2n

)
〈u, u〉 −

〈
u, u2n−1

〉
= −‖u‖2 − |u|2nL2n +

(
‖u‖2 + |u|2nL2n

)
|u|2H

=
(
‖u‖2 + |u|2nL2n

) (
|u|2H − 1

)
, where u ∈ E = D(A).

To prove the equality (3.3.10) for an arbitrary u ∈ H, consider,

〈γ′(u), κ(u)〉 = 〈u,−〈f,B (u)〉u− 〈f, u〉B (u)〉 ,

= −〈f,B(u)〉 〈u, u〉 − 〈f, u〉 〈u,B(u)〉 ,

= −〈f, f − 〈f, u〉u〉 〈u, u〉 ,

−〈f, u〉 〈u, f − 〈f, u〉u〉 ,

= −
(
|f |2H − 〈u, f〉

2) |u|2H ,
−〈u, f〉

(
〈u, f〉 − 〈u, f〉 |u|2H

)
,

= − |f |2H |u|
2
H + 〈u, f〉2 |u|2H ,

−〈u, f〉2 + 〈u, f〉2 |u|2H ,

= − |f |2H |u|
2
H + 〈u, f〉2

(
2 |u|2H − 1

)
, where u ∈ H.

In order to prove the last required equality (3.3.11), consider

γ′′(u) (B (u) , B (u)) = 〈f − 〈f, u〉u, f − 〈f, u〉u〉 ,

= 〈f, f〉 − 〈f, u〉2 − 〈f, u〉2 + 〈f, u〉2 〈u, u〉

= |f |2H + 〈u, f〉2
(
|u|2H − 2

)
, where u ∈ H.

We are done with the proof. �
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We will now prove now main invariance result of this subsection. For this we

will use the following stopping time,

τk := inf {t ∈ [0, T ] : ‖u(t)‖ ≥ k} , where k ∈ N. (3.3.14)

Proposition 3.3.4. Assume that we are in the framework of Lemma 3.3.3. If

u0 ∈M then u (t ∧ τk) ∈M, for all t ∈ [0, T ] .

Proof. Let us choose and fix u(0) = u0 ∈ V ∩M, and t ∈ [0, T ]. Our intentions are

to apply the Itô Lemma, (Lemma 3.3.2), to the map γ : H 3 u 7→ 1
2
|u|2H ∈ R. For

the convenience let us recall the main evolution equation under consideration,

du(t) =

[
∆u(t) + F (u(t)) +

1

2

N∑
j=1

κj(u (t))

]
dt+

N∑
j=1

Bj (u(t)) dWj (t) , P-a.s..

where F,Bj and κj are as defined in equations (3.1.11) and (3.1.12), respectively.

For stopping time τk described by equation (3.3.14) let us apply Itô’s Lemma to the

process γ (u (t ∧ τk)) ,. It follows that,

γ (u (t ∧ τk))− γ (u0) =
N∑
j=1

∫ t∧τk

0

〈γ′(u(s)), Bj (u(s))〉 dWj (s)

+

∫ t∧τk

0

〈γ′(u(s)),∆u(s) + F (u(s))〉 ds

+
1

2

N∑
j=1

∫ t∧τk

0

〈γ′(u(s)), κj(Bj(u(s)))〉 ds

+
1

2

N∑
j=1

∫ t∧τk

0

γ′′(u(s)) (Bj (u(s)) , Bj (u(s))) ds, P-a.s.

Substituting equations (3.3.8), (3.3.9), (3.3.10) and (3.3.11) with u = u(s) into last
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equation and using fact that |u0|2H = 1 we get

1

2

(
|u (t ∧ τk)|2H − 1

)
=

N∑
j=1

∫ t∧τk

0

〈u (s) , fj〉
(
|u(s)|2H − 1

)
dWj (s)

+

∫ t∧τk

0

(
‖u(s)‖2 + |u(s)|2nL2n

) (
|u(s)|2H − 1

)
ds

+
1

2

N∑
j=1

∫ t∧τk

0

[
− |fj|2H |u(s)|2H + 〈u (s) , fj〉2

(
2 |u(s)|2H − 1

)]
ds

+
1

2

N∑
j=1

∫ t∧τk

0

[
|fj|2H + 〈u (s) , fj〉2

(
|u(s)|2H − 2

)]
ds, P-a.s.

Combining all three Riemann integrals of last equation,

|u (t ∧ τk)|2H − 1 =
N∑
j=1

∫ t∧τk

0

2 〈u (s) , fj〉
(
|u(s)|2H − 1

)
dWj (s)

+

∫ t∧τk

0

 2
(
‖u(s)‖2 + |u(s)|2nL2n

)
− |fj|2H + 3 〈u (s) , fj〉2

(|u(s)|2H − 1
)
ds, P-a.s.

(3.3.15)

To simplify argument we treat N = 1, and for t ≥ 0 define the following functions,

ϕ(t) : = |u (t ∧ τk)|2H − 1

α(t) : = 2 〈u (t ∧ τk) , f1〉

β(t) : = 2
(
‖u(t ∧ τk)‖2 + |u(t ∧ τk)|2nL2n

)
− |fj|2H + 3 〈u (t ∧ τk) , f1〉2

F (t, ϕ(t)) : = α(t)ϕ(t)

G(t, ϕ(t)) : = β(t)ϕ(t)

The last equation (3.3.15) can be rewritten as, for t ≥ 0

ϕ(t) =

∫ t∧τk

0

F (s, ϕ(s))dW1(s) +

∫ t∧τk

0

G(s, ϕ(s))ds (3.3.16)

and ϕ(0) : = |u (0)|2H − 1 = 0
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To get the desired result it is sufficient to show existence and uniqueness of lastly

presented problem, and for this it is enough to that F and G are Lipschitz in the

second argument (See Theorem 7.7, [5]). For x, y ∈ R, t ≥ 0 and ω ∈ Ω,

|F (t, x)− F (t, y)| = |α(t, ω)x− α(t, ω)y| = |α(t, ω)| |x− y|

and |G(t, x)−G(t, y)| = |β(t, ω)x− β(t, ω)y| = |β(t, ω)| |x− y|

Hence, to show that F and G are Lipschitz it is only needed to show that maps

α and β are bounded. Let us begin with α, using Cauchy-Schwartz inequality it

follows that,

|α(t, ω)| ≤ 2 |〈u (t ∧ τk, ω) , f1〉| ≤ 2 |u (t ∧ τk, ω)|H |f1|H

f1 ∈ H so |f1|H < ∞, also using continuity of embedding V ↪→ H and definition

of τk it follows that |u (t ∧ τk, ω)|H ≤ C ‖u (t ∧ τk, ω)‖ ≤ Ck, where k ∈ N. Hence

from last inequality we achieve the bounded ness of α.

Next, for t ≥ 0 and ω ∈ Ω, again using continuity of embeddings V ↪→ H and

V ↪→ L2n , and the definition of τk, we infer the boundedness of map β in the

following manner,

|β(t)| =
∣∣2 (‖u (t ∧ τk, ω)‖2 + |u (t ∧ τk, ω)|2nL2n

)
− |fj|2H + 3 〈u (t ∧ τk) , f1〉2

∣∣
≤ 2

(
‖u (t, ω)‖2 + |u (t, ω)|2nL2n

)
+ |f1|2H + 3 |u (t, ω)|2H |f1|2H

≤ 2
(
‖u (t, ω)‖2 + c2n ‖u (t, ω)‖2n)+ (1 + 3 ‖u (t, ω)‖2) |f1|2H

≤ 2
(
k2 + c2nk2n

)
+ (1 + 3k2) |f1|2H <∞.

Hence the unique solution v of linear equation (3.3.16) exists and since ϕ(t) = 0

for all t ∈ [0, T ] also satisfies (3.3.16), so by uniqueness v(t) = ϕ(t) = 0 for all

t ∈ [0, T ] , i.e. |u (t ∧ τk)|2H = 1 for all t ∈ [0, T ] . This completes the proof. �

Remark 3.3.5. In this remark we will show that the map satisfies

γ : H 3 u 7→ 1
2
|u|2H ∈ R the Itô Lemma 3.3.2. For this we show that it satisfies
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i)-v). Recall from Lemma 3.3.3 that for u ∈ H, we calculated γ
′
(u) = u and

γ′′ (u)h = h, for all h ∈ H.

i) We proved in the Lemma 3.3.3 that γ′ and γ′′ are bounded hence both are

locally bounded.

ii) We saw in the Lemma 3.3.3 that γ′, γ′′exists and hence γ and γ′ are

continuous on H.

iii) For every Q ∈ L1 (H) ,

T r [Q ◦ ψ′′ (u)] =
∞∑
j=1

〈Q ◦ ψ′′ (u) ej, ej〉

=
∞∑
j=1

〈Qej, ej〉

which is a constant in R, so the map H 3 u 7→ Tr [Q ◦ ψ′′ (u)] ∈ R is a continuous

functional on H.

iv) Next we want to show that for any u ∈ H and γ′(u) ∈ H, the map

u 7→ γ′(u) is continuous from H (with strong topology) into H (with weak

topology).

For any h∗ ∈ H∗ = (L2 (D))
∗

= H, and u ∈ H, the duality product,

H 〈γ′(u+ h)− γ′(u), h∗〉H = H 〈u+ h− u, h∗〉H = H 〈h, h∗〉H .

This shows that γ′ is weakly continuous. Let τ and τw be the strong and weak

topologies on H respectively. Now the weak continuity of γ′ implies that for every

B ∈ τw we must have (γ′)−1 (B) ∈ τw ⊂ τ i.e. (γ′)−1 (B) ∈ τ. Thus we have iv).

v) The required inequality is trivial as γ
′
(u) = u for all u ∈ H i.e.∣∣∣γ′ (u)

∣∣∣
H

= |u|H ≤ (1 + |u|H) .

Recall, the spaces E = D(A), V = H1,2
0 (O) , H = L2(O) from Remark 3.1.5.

Now let us define the energy functional ψ : V → R, in the following manner

ψ (u) =
1

2
‖u‖2 +

1

2n
|u|2nL2n , for all u ∈ V.
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Lemma 3.3.6. The energy function ψ : V → R defined above is of C2-class and

for all u, h, h1, h2 ∈ V

〈ψ′ (u) , h〉 ≡ duψ (h) = 〈u, h〉V +
〈
u2n−1, h

〉
=
〈
−∆u+ u2n−1, h

〉
,

(3.3.17)

〈ψ′′ (u)h1, h2〉 ≡ d2
uψ (h1, h2) = 〈h1, h2〉V +

(2n− 1)

n

〈
u2n−2, h1h2

〉
. (3.3.18)

Moreover, for f ∈ V if

B (u) = f − 〈f, u〉u

and

κ(u) = −〈f,B (u)〉u− 〈f, u〉B (u)

then

〈ψ′ (u) ,∆u+ F (u)〉 = −
∣∣πu (∆u− u2n−1

)∣∣2
H
, (3.3.19)

〈ψ′ (u) , B (u)〉 = 〈u, f〉V +
〈
u2n−1, f

〉
−〈f, u〉

(
‖u‖2 + |u|2nL2n

)
(3.3.20)

〈ψ′ (u) , κ(u)〉 =
(
‖u‖2 + |u|2nL2n

) [
2 〈f, u〉2 − |f |2H

]
(3.3.21)

−〈f, u〉
[
〈u, f〉V +

〈
u2n−1, f

〉]
.

〈ψ′′ (u)B (u) , B (u)〉 = ‖B (u)‖2 +
(2n− 1)

n

〈
u2n−2, (B (u))2〉 . (3.3.22)

Proof. The proof that the energy functional ψ is of C2 has been already done in

Chapter 2 Lemma 2.3.4. Here we only focus on computing the required duality

products i.e. required equalities (3.3.19)-(3.3.22).

Let us begin with recalling the equation (3.1.3) i.e.

πu
(
∆u− u2n−1

)
= ∆u+ F (u),
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where πu : H → TuM is orthogonal projection. Now using (3.3.17) and integration

by parts,

〈ψ′ (u) ,∆u+ F (u)〉 = 〈u,∆u+ F (u)〉V +
〈
u2n−1,∆u+ F (u)

〉
=

〈
−∆u, πu

(
∆u− u2n−1

)〉
+
〈
u2n−1, πu

(
∆u− u2n−1

)〉
= −

〈
∆u− u2n−1, πu

(
∆u− u2n−1

)〉
= −

〈
∆u− u2n−1, πu

(
∆u− u2n−1

)〉
= −

〈
πu
(
∆u− u2n−1

)
, πu

(
∆u− u2n−1

)〉
= −

∣∣πu (∆u− u2n−1
)∣∣2
H

above is required equality (3.3.19). Next,

〈ψ′ (u) , B (u)〉 = 〈u,B (u)〉V +
〈
u2n−1, B (u)

〉
,

= 〈u, f − 〈f, u〉u〉V +
〈
u2n−1, f − 〈f, u〉u

〉
,

= 〈u, f〉V − 〈f, u〉 〈u, u〉V +
〈
u2n−1, f

〉
− 〈f, u〉

〈
u2n−1, u

〉
,

= 〈u, f〉V +
〈
u2n−1, f

〉
− 〈f, u〉

(
‖u‖2 + |u|2nL2n

)
,

which is required equality (3.3.20). For the equality (3.3.21),

〈ψ′ (u) , κj(u)〉 = 〈u, κj(u)〉V +
〈
u2n−1, κj(u)

〉
= 〈u,−〈fj, Bj (u)〉u− 〈fj, u〉Bj (u)〉V

+
〈
u2n−1,−〈fj, Bj (u)〉u− 〈fj, u〉Bj (u)

〉
= −〈fj, Bj (u)〉 〈u, u〉V − 〈fj, u〉 〈u,Bj (u)〉V

−〈fj, Bj (u)〉
〈
u2n−1, u

〉
− 〈fj, u〉

〈
u2n−1, Bj (u)

〉
= −〈fj, Bj (u)〉

(
‖u‖2 + |u|2nL2n

)
− 〈fj, u〉

(
〈u,Bj (u)〉V +

〈
u2n−1, Bj (u)

〉)
= −〈fj, fj − 〈fj, u〉u〉

(
‖u‖2 + |u|2nL2n

)
− 〈fj, u〉

·
(
〈u, fj − 〈fj, u〉u〉V +

〈
u2n−1, fj − 〈fj, u〉u

〉)
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= −
(
〈fj, fj〉 − 〈fj, u〉2

) (
‖u‖2 + |u|2nL2n

)
− 〈fj, u〉

[
〈u, fj〉V − 〈fj, u〉 〈u, u〉V

]
−〈fj, u〉

[〈
u2n−1, fj

〉
− 〈fj, u〉

〈
u2n−1, u

〉]
〈ψ′ (u) , κj(u)〉 =

(
‖u‖2 + |u|2nL2n

) [
2 〈fj, u〉2 − |fj|2H

]
−〈fj, u〉

[
〈u, fj〉V +

〈
u2n−1, fj

〉]
.

Next lets go for the last equality (3.3.21). Using (3.3.18),

〈ψ′′ (u)Bj (u) , Bj (u)〉 = 〈Bj (u) , Bj (u)〉V +
(2n− 1)

n

〈
u2n−2, (Bj (u))2〉

= ‖Bj (u)‖2 +
(2n− 1)

n

〈
u2n−2, (Bj (u))2〉 .

This completes the proof. �

3.3.3 Proof of Global solution

Recall the stopping time,

τk := inf {∈ [0, T ] : ‖u(t)‖ ≥ k} ,where k ∈ N.

Next we are going to prove the existence of unique global solution to our original

problem (3.1.6).

Theorem 3.3.7. Suppose we are in Assumptions 3.1.5 and framework of Lemma

3.3.6. Then for every F0 -measurable V -valued square integrable random variable

u0 ∈M there exists a unique global solution to the main problem (3.1.6).

Proof. Let us by recalling from Lemma 3.2.1 and Proposition 3.3.1 there exists a

unique local maximal solution u = (u(t), t ∈ [0, τ)) to problem (3.1.6), which also

satisfies lim
t→τ
‖u(t)‖ =∞, P−a.s. on {τ <∞} .

We going to develop argument similar to the proof of Theorem 1.1 of [8] (page

7), based on Khashminskii test for non-explosion (See Theorem III.4.1 of for the

finite-dimensional case). To prove that τ = ∞, P-a.s., it is sufficient to prove the

following:
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i) ψ ≥ 0 on V,

ii) qR := inf
‖u‖≥R

ψ(u)→∞ as R→∞,

iii) ψ(u(0)) <∞

iv) For t > 0, there exists a constant Ct > 0 such that

E (ψ (u(t ∧ τk))) ≤ Ct, where k ∈ N.

We are going to use the following inequalities at several instances in proof.

‖u‖2 ≤ 2ψ (u)

|u|2nL2n ≤ 2nψ (u) (3.3.23)

Lets begin proving conditions i)-iv).

i) By definition ψ(u) = 1
2
‖u‖2 + 1

2n
|u|2nL2n ≥ 0 is obvious.

ii) If u ∈ V such that ‖u‖ ≥ R then by (3.3.23)

ψ (u) ≥ 1

2
‖u‖2 ≥ R2

2
→∞ as R→∞.

iii) This is also easy as u0 is V -valued square integrable and continuity of

embedding V ↪→ L2n, it follows that

ψ(u0) =
1

2
‖u0‖2 +

1

2n
|u0|2nL2n ≤

1

2
‖u0‖2 +

c2n

2n
‖u0‖2n <∞.

iv) Finally, to get desired inequality in required condition iv) we will use Itô

Lemma 3.3.2.

Application of the Itô Lemma to the process (ψ (u (t ∧ τk)))t∈[0,T ] , gives us the
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following

ψ (u (t ∧ τk))− ψ (u0) =
N∑
j=1

∫ t∧τk

0

〈ψ′ (u(s)) , Bj (u (s))〉 dWj (s)

+

∫ t∧τk

0

〈ψ′ (u(s)) ,∆u(s) + F (u(s))〉 ds

+
1

2

N∑
j=1

∫ t∧τk

0

〈ψ′ (u(s)) , κj(u (s))〉 ds

+
1

2

N∑
j=1

∫ t∧τk

0

〈ψ′′ (u(s))Bj (u (s)) , Bj (u (s))〉 ds,

=
N∑
j=1

I1,j + I2 + I3 +
N∑
j=1

I4,j,P-a.s., t ∈ [0, T ] . (3.3.24)

Next we are going to deal with each integral in above sum.

Let us begin with I1.We intend to show that I1 is a martingale. In order to show

that I1,j is martingale, it is sufficient to show that

E
(∫ T∧τk

0

〈ψ′ (u(s)) , Bj (u (s))〉2 ds
)
<∞.

Let us verify the above condition. Using (3.3.17) and elementary inequality

(a+ b)2 ≤ 2 (a2 + b2), we infer that

E
(∫ T∧τk

0
〈ψ′ (u(s)) , Bj (u (s))〉2 ds

)
= E

(∫ T∧τk

0

(
〈u (s) , Bj (u (s))〉V +

〈
u2n−1, Bj (u (s))

〉)2
ds

)
= E

(∫ T∧τk

0

〈u (s) , Bj (u (s))〉2V ds
)

+ E
(∫ T∧τk

0

〈
u2n−1, Bj (u (s))

〉2
ds

)
+2E

(∫ T∧τk

0

〈u (s) , Bj (u (s))〉V
〈
u2n−1, Bj (u (s))

〉
ds

)
≤ 2E

(∫ T∧τk

0

‖u (s)‖2 ‖Bj (u (s))‖2 ds

)
+ 2E

(∫ T∧τk

0

∣∣u (s)2n−1
∣∣2
H
|Bj (u (s))|2H ds

)
(3.3.25)
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Now consider ∣∣u2n−1
∣∣2
H

=

∫
D

u4n−2(x)ds = |u|4n−2
L4n−2 (3.3.26)

Using fact that embedding V ↪→ L4n−2 is continuous so there exists constant c such

that |u|L4n−2 ≤ c ‖u‖ . Using this fact in above equation we get

∣∣u2n−1
∣∣2
H
≤ c4n−2 ‖u‖4n−2 . (3.3.27)

Using inequality (3.3.27) and (3.1.23) into (3.3.25) we infer that,

E
(∫ T∧τk

0
〈ψ′ (u(s)) , Bj (u (s))〉2 ds

)
≤ 2C2 ‖fj‖2 E

(∫ T∧τk

0

‖u (s)‖4 ds

)
+ 2c4n−2C2 ‖fj‖2 E

(∫ T∧τk

0

‖u(s)‖4n ds

)
By definition of τk,we know that ‖u (s)‖ ≤ k, for all s ≤ τk. Using this fact along

with fj ∈ V into last inequality we infer that

E
(∫ T∧τk

0

〈ψ′ (u(s)) , Bj (u (s))〉2 ds
)
≤ 2k4C2 ‖fj‖2 (T ∧ τk) + 2k4nc4n−2C2 ‖fj‖2 (T ∧ τk)

< ∞.

Hence the Itô integral I1,j is martingale and hence

E (I1,j) = 0. (3.3.28)

Next consider the integral I2. Using equation (3.3.19) it follows that, for t ∈ [0, T ] ,

I2 =

∫ t∧τk

0

〈ψ′ (u(s)) ,∆u(s) + F (u(s))〉 ds

= −
∫ t∧τk

0

∣∣πu (∆u(s)− u(s)2n−1
)∣∣2
H
ds (3.3.29)

Let us turn towards the third integral I3 and simplify its integrand. Using (3.3.21),
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continuity of embedding V ↪→ H and (3.3.26),

〈ψ′ (u) , κj(u)〉 =
(
‖u‖2 + |u|2nL2n

) [
2 〈fj, u〉2 − |fj|2H

]
− 〈fj, u〉

[
〈u, fj〉V +

〈
u2n−1, fj

〉]
≤

(
‖u‖2 + |u|2nL2n

) [
2 |fj|2H |u|

2
H − |fj|

2
H

]
+ |fj|H |u|H

[
‖u‖+ |fj|H

∣∣u2n−1
∣∣
H

]
≤ ‖fj‖2 (‖u‖2 + |u|2nL2n

) [
2 |u|2H − 1

]
+c2 ‖fj‖2 [‖u‖2 +

∣∣u2n−1
∣∣
H
|u|H

]
. (3.3.30)

Let us settle the term |u2n−1|H in the above inequality. Consider,∣∣u2n−1
∣∣2
H

=

∫
D

u(x)4n−2dx

Apply the Holder inequality for p = 2n
4n−2

and q = n
n−1

, it follows that,

∣∣u2n−1
∣∣2
H
≤

(∫
D

(
u(x)4n−2

) 2n
4n−2 dx

) 4n−2
2n
(∫

D

1dx

) 1−n
n

= C̃2 |u|4n−2
L2n∣∣u2n−1

∣∣
H
≤ C̃ |u|2n−1

L2n ≤ C̃ max
{
|u|2nL2n , 1

}
≤ C̃

(
|u|2nL2n + 1

)
.

where C̃2 :=
(∫

D
1dx
) 1−n

n <∞. Using the last inequality into (3.3.30),

〈ψ′ (u) , κj(u)〉 ≤ c2 ‖fj‖2 (‖u‖2 + |u|2nL2n

) [
2 |u|2H − 1

]
+c2 ‖fj‖2

[
‖u‖2 + C̃

(
|u|2nL2n + 1

)
|u|H

]
Using the above estimate into I3 we get,

∫ t∧τk

0

〈ψ′ (u(s)) , κj(u (s))〉 ds ≤
∫ t∧τk

0

c2 ‖fj‖2 (‖u(s)‖2 + |u(s)|2nL2n

) [
2 |u(s)|2H − 1

]
+c2 ‖fj‖2

[
‖u(s)‖2 + C̃

(
|u(s)|2nL2n + 1

)
|u(s)|H

]
ds

Using the fact of invariance i.e. u(t) ∈M for all t ∈ [0, T ] into above inequality we

infer that∫ t∧τk
0
〈ψ′ (u(s)) , κj(u (s))〉 ds

≤
∫ t∧τk

0

[
c2 ‖fj‖2 (‖u(s)‖2 + |u(s)|2nL2n

)
+ c2 ‖fj‖2

[
‖u(s)‖2 + C̃

(
|u(s)|2nL2n + 1

)]]
ds

= c2 ‖fj‖2

∫ t∧τk

0

[
2 ‖u(s)‖2 + (1 + C̃) |u(s)|2nL2n + C̃

]
ds
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Now using the inequality (3.3.23) in the inequality above we get∫ t∧τk

0

〈ψ′ (u(s)) , κj(u (s))〉 ds ≤ c2 ‖fj‖2

∫ t∧τk

0

[
2ψ (u(s)) + 2n(1 + C̃)ψ (u(s)) + C̃

]
ds

≤ c2 ‖fj‖2
(

2 + 2n(1 + C̃)
)∫ t∧τk

0

ψ (u(s))ds

+C̃c2 ‖fj‖2 (t ∧ τk)

= C1

∫ t∧τk

0

ψ (u(s))ds+ C2 (t ∧ τk) (3.3.31)

where C1 := c2 ‖fj‖2
(

2 + 2n(1 + C̃)
)
<∞ and C2 := C̃c2 ‖fj‖2 <∞.

Now turn towards the final integral i.e. I4,j. Let us start by considering the

integrand of I4. Using equation (3.3.22)

〈ψ′′ (u)Bj (u) , Bj (u)〉 = ‖Bj (u)‖2 +
(2n− 1)

n

〈
u2n−2, (Bj (u))2〉

≤ ‖fj − 〈fj, u〉u‖2 +
(2n− 1)

n

〈
u2n−2, (Bj (u))2〉

≤
(
‖fj‖+ |fj|H |u|H ‖u‖

)2

+
(2n− 1)

n

〈
u2n−2, (Bj (u))2〉 (3.3.32)

Now let us deal with term
〈
u2n−2, (Bj (u))2〉 involved in inequality above. Below

we have used elementary inequality (a− b)2 ≤ 2 (a2 + b2) . Consider

〈
u2n−2, (Bj (u))2〉 =

〈
u2n−2, (fj − 〈fj, u〉u)2〉

≤
〈
u2n−2, 2

(
f 2
j + 〈fj, u〉2 u2

)〉
= 2

〈
u2n−2, f 2

j

〉
+ 2 〈fj, u〉2

〈
u2n−2, u2

〉
= 2

〈
u2n−2, f 2

j

〉
+ 2 |fj|2H |u|

2
H |u|

2n
L2n

= 2

∫
D

u(x)2n−2fj(x)2dx+ 2 |fj|2H |u|
2
H |u|

2n
L2n
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Using the Holders inequality for p = n
n−1

and q = n, on the first term we infer that,

〈
u2n−2, (Bj (u))2〉 ≤ 2

(∫
D

u(x)2ndx

)n−1
n
(∫

D

fj(x)2ndx

) 1
n

+ 2 |fj|2H |u|
2
H |u|

2n
L2n

= 2 |u|2n−2
L2n |fj|2L2n + 2 |fj|2H |u|

2
H |u|

2n
L2n

≤ 2c ‖fj‖2 |u|2n−2
L2n + 2 |fj|2H |u|

2
H |u|

2n
L2n

≤ 2c ‖fj‖2 max
{
|u|2nL2n , 1

}
+ 2 |fj|2H |u|

2
H |u|

2n
L2n

≤ 2c ‖fj‖2 (|u|2nL2n + 1
)

+ 2 |fj|2H |u|
2
H |u|

2n
L2n

=
(
2c ‖fj‖2 + 2 |fj|2H |u|

2
H

)
|u|2nL2n + 2c ‖fj‖2 .

Using the last two inequalities into (3.3.32) we get

〈ψ′′ (u)Bj (u) , Bj (u)〉 ≤ (‖fj‖+ c ‖fj‖ |u|H ‖u‖)
2

+
(2n− 1)

n

[(
2c ‖fj‖2 + 2 |fj|2H |u|

2
H

)
|u|2nL2n + 2c ‖fj‖2] .

Finally we are position to use above estimate in I4,j,

I4,j =

∫ t∧τk

0

〈ψ′′ (u(s))Bj (u (s)) , Bj (u (s))〉 ds

≤
∫ t∧τk

0

 ‖fj‖2 (1 + c |u (s)|H ‖u (s)‖)2

+ (2n−1)
n

2c ‖fj‖2 [(1 + |u|2H
)
|u|2nL2n + 2c ‖fj‖2]

 ds
Since almost all trajectories u(t) ∈ M, hence the above inequality can be further

simplified to

I4,j ≤
∫ t∧τk

0

 ‖fj‖2 (1 + c)2 ‖u (s)‖2

+ (2n−1)
n

2c ‖fj‖2 [2 |u|2nL2n + 2c ‖fj‖2]
 ds

Finally use of inequality (3.3.23) gives

I4,j ≤
∫ t∧τk

0

 2 ‖fj‖2 (1 + c)2 ψ (u(s))

+ (2n−1)
n

2c ‖fj‖2 [2ψ (u(s)) + 2c ‖fj‖2]
 ds

=

∫ t∧τk

0

[[
2 ‖fj‖2 (1 + c)2 + 4c

(2n− 1)

n
‖fj‖2

]
ψ (u(s)) +

(2n− 1)

n
(2c)2 ‖fj‖2

]
ds

= C3

∫ t∧τk

0

ψ (u(s))ds+ C4(t ∧ τk) (3.3.33)
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where C3 := 2 ‖fj‖2 (1 + c)2 +4c (2n−1)
n
‖fj‖2 <∞ and C4 := (2n−1)

n
(2c)2 ‖fj‖2 <∞.

Now combining the inequalities (3.3.33), (3.3.31), (3.3.29) into (3.3.24) we infer

that

ψ (u (t ∧ τk))− ψ (u0) ≤
N∑
j=1

I1,j −
∫ t∧τk

0

∣∣πu (∆u(s)− u(s)2n−1
)∣∣2
H
ds

+C1

∫ t∧τk

0

ψ (u(s))ds+ C2 (t ∧ τk)

+
N∑
j=1

(
C3

∫ t∧τk

0

‖u (s)‖2 ds+ C4 (t ∧ τk)
)

Since the integrand in the second is non-negative so hence we can drop this term

from sum. It follows that,

ψ (u (t ∧ τk))− ψ (u0) ≤
N∑
j=1

I1,j + C1

∫ t∧τk

0

ψ (u(s))ds+ C2 (t ∧ τk)

+NC3

∫ t∧τk

0

ψ (u(s))ds+NC4 (t ∧ τk)

=
N∑
j=1

I1,j + C5

∫ t∧τk

0

ψ (u(s))ds+ C6 (t ∧ τk) ,

where C5 = NC3 +C1 <∞, and C6 := NC4 +C2 <∞. Taking expectation on both

sides and using equation (3.3.28), we infer that

E (ψ (u (t ∧ τk))) ≤ E (ψ (u0)) + C6T + C5E
(∫ t∧τk

0

ψ (u(s))ds

)
Thus using the Gronwall lemma we infer that

E (ψ (u (t ∧ τk))) ≤ E (ψ (u0)) + C6T +

∫ t∧τk

0

(E (ψ (u0)) + C6 (t ∧ τk))

·C5 exp

(∫ t∧τk

s

C5ds

)
: = Ct <∞.

Hence, the all four condition of Khashminskii test for non-explosion is true.

Thus τ =∞, P-a.s. .

This completes the proof. �
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Chapter 4

Large Deviation Principle

4.1 General introduction to LDP and weak

convergence Method

In the modern probability theory, the notion of the theory of large deviation is an

attempt to understand the asymptotic behavior of remote tails of families of

probability distributions. In the beginning, the theory of large deviations was

developed and employed for computing asymptotics of rare i.e. small probability

events on an exponential scale. This precise computation of the probabilities of

such small events plays a pivotal role in studying several important problems. For
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4.1. General introduction to LDP and weak convergence Method

instance, in the insurance business, from the perspective of the insurance

company, the revenue per month is constant but claims can pop up randomly at

any instant in a month. Indeed, for an insurance company to be in the profit over

a specific period of time, its total revenue should be greater than the total claims.

Therefore, insurance companies must be interested in knowing the premium P

over the n months so that total claims should stay less then nP, hence this

problem demands to study the asymptotic behavior of small probability events of

claims. The answer of this question was developed by Cramér (see [19]), and this

answer becomes the first rigorous attempt to develop large deviation theory. Some

of the beautiful applications of large deviation theory can also be found in

statistical mechanics, thermodynamics, risk management and information theory

and quantum mechanics.

4.1.1 An overview of weak convergence method for LDP

The aim of this subsection is to introduce the general framework of weak

convergence, which we will use in latter subsections to prove the large deviation

principle for our stochastic evolution equation of concern. Let us begin our

introduction to weak convergence approach.

Throughout the subsection we are going to treat {uε} as family of X-valued

random variables defined on probability space (Ω,F ,P) , where X is a Polish space

i.e. separable Banach space.

Definition 4.1.1. A function I : X → [0,∞] is called a rate function if I is

lower semi-continuous i.e. for each k ∈ R the set {x ∈ X : I(x) ≤ k} is closed

(equivalently, the set {x ∈ X : I(x) > k} is open). A rate function I is called good

rate function if the level set {x ∈ X : I(x) ≤ k} is compact for each finite number
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4.1. General introduction to LDP and weak convergence Method

k.

Definition 4.1.2. (Large deviation principle) The family {uε} of X-valued random

variables, is said to satisfy the large deviation principle (LDP) with the rate

function I if for each Borel subset B of X, we have:

− inf
x∈
◦
B

I(x) ≤ lim inf
ε→0

ε2 logP (uε ∈ B) ≤ lim sup
ε→0

ε2 logP (uε ∈ B) ≤ − inf
x∈B
I(x),

where
◦
B and B denotes the interior and closure of B in X.

Definition 4.1.3. (Laplace principle) The family {uε} of X-valued random

variables, is said to satisfy Laplace principle (LP) with the rate function I, if

for each real-valued bounded continuous function f defined on X we have:

lim
ε→0

ε2 logE
{
e−

f(uε)
ε2

}
= − inf

x∈X
{f(x) + I(x)} .

Remark 4.1.4. The weak convergence method mainly is based on equivalence of the

Laplace principle and the large deviation principle, provided that X is Polish space

and I is good rate function. This equivalence was formulated in [40] and can also be

deduced as a consequence of Varadhan’s Lemma [50] and Bryc’s converse theorem

[4]. Another elementary proof of equivalence can be found in [21] and [20].

In the light of last remark we now intend to present sufficient conditions to prove

the Laplace principle. Suppose that W = (Wt)t≥0 be Wiener process on a separable

Hilbert space Y with respect to complete filtered probability space (Ω,F,P) , i.e.

trajectories of W take values in C ([0, T ] ;Z) where Z is another Hilbert space such

that embedding of Y into Z is Hilbert-Schmidt. Suppose gε : C ([0, T ] ;Z) → X is

measurable map and Xε = gε (W ) .

Let

Λ :=

{
v : v is Y -valued F = (Ft)t∈[0,T ] predictable process s.t.

∫ T

0

|vt (ω)|2Y dt <∞ a.s.

}
,
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4.1. General introduction to LDP and weak convergence Method

and

SN :=

{
φ ∈ L2 ([0, T ] , Y ) :

∫ T

0

|φ (t)|2Y dt ≤ N

}
.

The set SM endowed with the weak topology, is a Polish space. Define

ΛN := {v ∈ Λ : v (ω) ∈ SN , P-a.s.} .

One of the crucial step in proving Laplace principle is based on the following

variational representation formula obtained in [16]:

− logE
{
e−f(W·)

}
= inf

v∈Λ
E
(

1

2

∫ T

0

|v (t)|2Y dt+ f

(
W· +

∫ ·
0

v(s)ds

))
, (4.1.1)

where f is any bounded Borel measurable function C ([0, T ] ;Z) into R. In case

of the finite dimensional Brownian motion the formula (4.1.1) was proven in [2].

In [16] the following sufficient conditions, for Laplace principle (equivalently, large

deviation principle) of {uε} as ε→ 0, were proved.

Condition 4.1.5. One can find a measurable map g0 : C ([0, T ] ;Z)→ X such that

the following two conditions hold:

A1) For each finite constant N , the set

KN =

{
g0

(∫ ·
0

φ(s)ds

)
: φ ∈ SM

}
is a compact subset of X.

A2) Let {vε : ε > 0} ⊂ ΛM for some M <∞. If vε converges to v in the sense of

distributions as SM -valued random elements, then gε
(
W· +

1
ε

∫ ·
0
vε (s) ds

)
converges

to gε
(∫ ·

0
vε (s) ds

)
in the sense of distributions as ε→ 0.

Lemma 4.1.6. ([16], Theorem 4.4) If {gε} satisfies A1) and A2) of condition

(4.1.5), then family {uε} satisfies the Laplace principle (and hence LDP) on X with

good rate function I given by:

I(f) := inf
φ∈L2([0,T ]:Y ):f=g0(

∫ ·
0 φ(s)ds)

{
1

2

∫ T

0

|φ(s)|2Y ds
}
, where f ∈ X.

179



4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

Thus, the last lemma provides us a beautiful way to achieve the LDP by just

verifying the assumptions A1) and A2) of Condition (4.1.5). Indeed, one of the key

advantage to employ this weak convergence method to prove LDP is that one can

avoid the exponential probability estimates, which can be possibly complicated in

the case of infinite-dimensional models.

4.2 LDP for the Stochastic Heat equation on

Hilbert Manifold

Recall that E = D(A), V = D(A1/2) , H = L2 (O) and the embeddings

E ↪→ V ↪→ H are dense and continuous. The primary aim of this section is to

prove the large deviation principle for a family of distribution of solutions the

following small noise problem.

duε = (∆uε + F (uε)) dt+
√
ε

N∑
j=1

Bj(u
ε) ◦ dWj (4.2.1)

=

[
∆uε + F (uε) +

ε

2

N∑
j=1

κj(Bj(u
ε))

]
dt+

√
ε

N∑
j=1

Bj(u
ε)dWj

uε(0) = u0,

where ε ∈ (0, 1] , the map F : V → H is defined by

F (uε) := ‖uε‖2 uε − (uε)2n−1 + uε |uε|2nL2n ,

where n is a natural number (or, more generally, a real number bigger than 1
2
).

Moreover, for each j = 1, 2, 3..N , the map Bj : V → V defined by,

Bj (uε) = fj − 〈fj, uε〉uε,
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4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

where f1, f2, ...fN are fixed elements from V. Finally u0 is F0-measurable V -valued

square integrable random variable which belongs to manifold M.

Let us begin by collecting all necessary notions needed to state our main

result. The first such object is to prove the existence of a Borel measurable map

=ε : C ([0, T ] : R) → XT such that action of =ε on the Wiener process i.e. =ε (W·)

is a strong solution to (4.2.1).

Since problem (4.2.1) is particular case of the main problem (3.1.6) studied in

chapter 3, so from Chapter 3 Theorem 3.3.7 we may infer that, in particular, there

exists a unique strong solution {uε} of the taking values in

C ([0, T ] ;V ∩M) ∩ L2 ([0, T ] , E) of problem (4.2.1).

Let us begin with an important proposition about proving the path-wise

uniqueness of solutions of problem (4.2.1), this will lead us to the existence of our

required Borel measurable map.

Proposition 4.2.1. Let (Ω,F,P) be a filtered probability space and with filtration

F = (Ft)t∈[0,T ] . Let u1, u2 : [0, T ]→ H be F-progressively measurable processes such

that, for i = 1, 2, the paths of ui lie in C ([0, T ] ;V ∩M) ∩ L2 ([0, T ] , E) and each

ui satisfies

uεi (t) =

[
∆uεi + F (uεi ) +

ε

2

N∑
j=1

κj(Bj(u
ε
i ))

]
dt+
√
ε

N∑
j=1

Bj(u
ε
i )dWj, for all t ∈ [0, T ] , P-a.s.

Then

uε1 (·, ω) = uε2 (·, ω) , P-a.e.

Proof. To show path-wise uniqueness, let uε1 and uε2 be the two solutions to the

problem 4.2.1 i.e.

uεi (t) = u0+

∫ t

0

(∆uεi (s)+F (uεi (s)))ds+
ε

2

N∑
j=1

∫ t

0

κj(u
ε
i (s))ds+

√
ε

N∑
j=1

∫ t

0

Bj(u
ε
i (s))dWj(s).
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4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

where i = 1, 2. Set Zε = uε1 − uε2. The integral equation for Z can be written as,

Zε(t) =

∫ t

0

∆Zε(s)ds+

∫ t

0

[F (uε1(s))− F (uε2(s))] ds

+
ε

2

N∑
j=1

∫ t

0

[κj(u
ε
1(s))− κj(uε2(s))] ds

+
√
ε

N∑
j=1

∫ t

0

[Bj(u
ε
1(s))−Bj(u

ε
2(s))] dWj(s).

Next we want to apply the Itô Lemma to the process 1
2
|Zε(t)|2H , we get

1

2
|Zε(t)|2H =

∫ t

0

〈Zε(s),∆Zε(s)〉 ds+

∫ t

0

〈Zε(s), F (uε1(s))− F (uε2(s))〉 ds

+
ε

2

N∑
j=1

∫ t

0

〈Zε(s), κj(u
ε
1(s))− κj(uε2(s))〉 ds

+
√
ε

N∑
j=1

∫ t

0

〈Zε(s), Bj(u
ε
1(s))−Bj(u

ε
2(s))〉 dWj(s)

+
ε

2

N∑
j=1

∫ t

0

|Bj(u
ε
1(s))−Bj(u

ε
2(s))|2H ds

= I1 (t) + I2 (t) +
ε

2

N∑
j=1

I3,j(t) +
√
ε

N∑
j=1

I4,j(t)

+
ε

2

N∑
j=1

I5,j(t). (4.2.2)

Let estimate each of the integral involved in above equation. Let us begin with I1,

using integration by parts,

I1(t) =

∫ t

0

〈Zε(s),∆Zε(s)〉 ds

= −
∫ t

0

〈∇Zε(s),∇Zε(s)〉 ds

= −
∫ t

0

‖Zε(s)‖2 ds

≤ −1

2

∫ t

0

‖Zε(s)‖2 ds (4.2.3)
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Next consider I2,

I2(t) =

∫ t

0

〈Zε(s), F (uε1(s))− F (uε2(s))〉 ds

≤
∫ t

0

|Zε(s)|H |F (uε1(s))− F (uε2(s))|H ds

≤
∫ t

0

|Zε(s)|H G(‖uε1(s)‖ , ‖uε2(s)‖) ‖uε1(s)− uε2(s)‖ ds

=

∫ t

0

G(‖uε1(s)‖ , ‖uε2(s)‖) |Zε(s)|H ‖Z
ε(s)‖ ds

Application of the Young inequality gives,

I2(t) ≤ 1

2

∫ t

0

‖Zε(s)‖2 ds+
1

2

∫ t

0

G(‖uε1(s)‖ , ‖uε2(s)‖)2 |Zε(s)|2H ds (4.2.4)

Consider I3,j,

I3,j(t) =

∫ t

0

〈Zε(s), κj(u
ε
1(s))− κj(uε2(s))〉 ds

≤
∫ t

0

|Zε(s)|H |κj(u
ε
1(s))− κj(uε2(s))|H ds

≤
∫ t

0

|Zε(s)|2H G1 (|uε1(s)|H , |u
ε
2(s)|H) ds (4.2.5)

where

G1,j (|uε1(s)|H , |u
ε
2(s)|H) := |fj|2H

[
2 + |uε1(s)|2H + |uε2(s)|2H + C (|uε1(s)|H + |uε2(s)|H)2] .

Consider I5,j,

I5,j(t) =

∫ t

0

|Bj(u
ε
1(s))−Bj(u

ε
2(s))|2H ds

= C |fj|2H
∫ t

0

(|uε1(s)|H + |uε2(s)|H)2 |Zε(s)|2H ds

= C |fj|2H
∫ t

0

(|uε1(s)|H + |uε2(s)|H)2 |Zε(s)|2H ds. (4.2.6)
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Using (4.2.3)-(4.2.6) in equation 4.2.2 we get,

1

2
|Zε(t)|2H ≤ −1

2

∫ t

0

‖Zε(s)‖2 ds+
1

2

∫ t

0

‖Zε(s)‖2 ds

+
1

2

∫ t

0

G(‖uε1(s)‖ , ‖uε2(s)‖)2 |Zε(s)|2H ds

+
ε

2

N∑
j=1

∫ t

0

|Zε(s)|2H G1,j

(
|uε1(s)|2H , |u

ε
2(s)|2H

)
ds

+
√
ε

N∑
j=1

I4,j(t)

+
ε

2

N∑
j=1

∫ t

0

C |fj|2H (|uε1(s)|H + |uε2(s)|H)2 |Zε(s)|2H ds.

Hence above simplifies to

1

2
|Zε(t)|2H ≤

∫ t

0

ϕ(s) |Zε(s)|2H +
√
εξ(t),

where

ϕ(s) : = G(‖uε1(s)‖ , ‖uε2(s)‖)2 +
ε

2

N∑
j=1

G1,j

(
|uε1(s)|2H , |u

ε
2(s)|2H

)
+
ε

2

N∑
j=1

C |fj|2H (|uε1(s)|H + |uε2(s)|H)2 .

and ξ is the following process R-valued process,

ξ(t) :=
N∑
j=1

I4,j(t) =

∫ t

0

N∑
j=1

[Bj(u
ε
1(t))−Bj(u

ε
2(t))] dWj(t).

By applying the Itô Lemma to the following R-valued process

Y (t) := |Zε(t)|2H e
−
∫ t
0 ϕ(s)ds, t ∈ [0, T ],

we may infer that,

Y (t) ≤
∫ t

0

e−
∫ t
0 ϕ(s)dsdξ(t)

=
√
ε

N∑
j=1

e−
∫ t
0 ϕ(s)ds 〈Bj(u

ε
1)−Bj(u

ε
2), Zε(s)〉 dWj(s), t ∈ [0, T ].
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Since uε1, u
ε
2 and Z are uniformly bounded and Bj is locally Lipschitz so it follows

that the right-hand side of the above inequality is an F-martingale. Hence taking

expectation into last inequality gives us,

EY (t) ≤ 0.

But from definition we see that Y (t) ≥ 0 and hence it follows that Y (t) = 0, for all

t ∈ [0, T ] , P-a.s. If we substitute Y = 0 in definition of Y we infer that

|Zε(t)|2H = 0, for all t ∈ [0, T ] ,P− a.s.

i.e. Zε(t) = 0, for all t ∈ [0, T ] ,P− a.s.

This completes the proof of the Theorem �

Lemma 4.2.2. Let (Ω,F,P) be a filtered probability space and with filtration

F = (Ft) . There exists a Borel measurable map =ε : C ([0, T ] : R) → XT such that

=ε (W·) (i.e. action of =εon Wiener process) is a strong solution to (4.2.1).

Proof. Our argument is essentially on same lines of Theorem 4.2 and 4.4 of [14].

Note that small Noise problem (4.2.1) is a particular case of the main Problem

3.1.6. Hence by Theorem 3.3.7 there exists a

C ([0, T ] ;V ∩M) ∩ L2 (0, T ;E)-valued unique strong solution uε to the problem

(4.2.1). Moreover we explicitly shown the pathwise uniqueness in Lemma 4.2.1 for

small noise problem. Once we have pathwise uniqueness then the existence of

required Borel measurable =ε is guaranteed Yamada-Watanabe Theorem for mild

solutions from [34] such that =ε (W·) = uε is

C ([0, T ] ;V ∩M) ∩ L2 (0, T ;E)-valued strong solution to the problem (4.2.1). �

Next important notion of studying is the skeleton equation. In order to state our

main result, we introduce first the following skeleton/controlled problem associated

with equation (4.2.1).
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For h = (hj)
N
j=1 ∈ L

2
(
0, T ;RN

)
consider the following problem,

d

dt
uh(t) = ∆uh(t) + F (uh(t)) +

N∑
j=1

Bj (uh(t))hj (t) , t ∈ [0, T ] , (4.2.7)

uh (0) = u0, where u0 ∈ V ∩M.

In the next subsection, we are going to show that for any h ∈ L2
(
0, T ;RN

)
there

exists a unique global solution to above problem. Moreover, we will see that if initial

data u0 belongs to manifold M then all trajectories of solution uh also belong to M.

Next define a map =0
h : L2

(
[0, T ] : RN

)
→ XT in the following manner,

=0
h (h) = uh, for all h ∈ L2

(
[0, T ] : RN

)
, (4.2.8)

where uh is the solution to the skeleton problem (4.2.7) i.e. for t ∈ [0, T ] it satisfies

the following mild form,

uh (t) = u0 +

∫ t

0

(∆uh (s) + F (uh (s))) ds+
N∑
j=1

∫ t

0

Bj (uh(t))hj (s) ds. (4.2.9)

In the subsequent subsections we are going to show that =0
h (h) lies in XT for each

h ∈ L2
(
[0, T ] : RN

)
and then we will show that family of laws

{L (=ε0 (W )) = uε, ε ∈ (0, 1]} on XT satisfies the large deviation principle with the

rate function I : XT → [0,∞] defined by:

I (u) := inf

{
1

2
|h|2L2(0,T ;RN ) : h ∈ L2

(
0, T ;RN

)
and u = =0

h (h)

}
, ∀ u ∈ XT .

(4.2.10)

To prove the large deviation principle we are going to adopt the weak convergence

method introduced in previous section. For K ∈ (0,∞) , set

BK :=

{
h ∈ L2

(
0, T ;RN

)
:

∫ T

0

|h(s)|2RN ds ≤ K

}
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with the weak topology of L2
(
0, T ;RN

)
. We are going to also prove that the map

=0
h is Borel-measurable. Hence, analogous to Condition (4.1.5), we can state the

following two sufficient conditions to obtain the Laplace principle (and hence large

deviation principle).

(C1) For each K ∈ (0,∞) , the set{
=0
h (h) : h ∈ L2

(
0, T ;RN

)
and

∫ T

0

|h(s)|2RN ds ≤ K

}
is compact subset of XT .

(C2) Let (εn) is sequence of real numbers from (0, 1] that converges 0 and let

(hn)n∈N =
(

(hn,j)
N
j=1

)
n∈N

is a sequence of predictable process such that

∫ T

0

|hn (s, ω)|2RN ds ≤ K,

for all ω ∈ Ω and for all n ∈ N. If (hn)n∈N converges in distribution on BK to h then

=εnhn
((
εnWj (·) +

∫ ·
0
hn,j (s) ds

)N
j=1

)
converges in distribution on XT to =0

h (h) .

Remark 4.2.3. Recall from the beginning of running subsection (page 78) that

=ε (W·) is a strong solution to (4.2.1). By Girsanov theorem (cf. Theorem of

5.1 [29]) the process
((
εnWj +

∫ ·
0
hn,j (s) ds

)N
j=1

)
is F-Wiener process on probability

space
(

Ω, P̃
)

, where P̃ is a certain probability measure. Hence using this conclusion

of Girasanov theorem and the uniqueness of solution we are going to interpret each

process yn (t) := =εnhn
((
εnWj +

∫ ·
0
hn,j (s) ds

)N
j=1

)
as the solution of the following

problem, for t ∈ [0, T ],

yn (t) = u0 +

∫ t

0

(∆yn (s) + F (yn (s))) ds+
N∑
j=1

∫ t

0

Bj (yn (s))hn,j (s) ds

+
εn
2

N∑
j=1

∫ t

0

κj(yn (s))ds+
√
εn

N∑
j=1

∫ t

0

Bj (yn (s)) dWj (s) ,

yn (0) = u0.

187



4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

Before ending the subsection let us recall some of the important propositions

proved in chapter 1 and chapter 3, which we are going to need at several instances

later.

Lemma 4.2.4. Consider a map F : V → H defined by

F (u) = ‖u‖2 u− u2n−1 + u |u|2nL2n. Then the map F satisfies:

|F (u)− F (v)|H ≤ G(‖u‖ , ‖v‖) ‖u− v‖ (4.2.11)

Where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, given by,

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

Proposition 4.2.5. i) For f ∈ H, consider the map B : H → H, defined by

B(u) := f − 〈f, u〉u.

The map B satisfies

|B(u1)−B(u2)|H ≤ |f |H (|u1|H + |u1|H) |u1 − u2|H , ∀u1, u2 ∈ H. (4.2.12)

ii) For f ∈ V, consider the map B : V → V , defined above, satisfies

‖B(u1)−B(u2)‖ ≤ ‖f‖ (‖u1‖+ ‖u1‖) ‖u1 − u2‖ ,∀u1, u2 ∈ V. (4.2.13)

Lemma 4.2.6. If B : H → H be the map as defined in Lemma 4.2.5. For u ∈ H,

then Fréchet derivative duB of map B exists and can be given as,

κ(h) ≡ duB (h) := −〈f, u〉h− 〈f, h〉u, for all h ∈ H. (4.2.14)
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Proposition 4.2.7. Assume the framework of Lemma 3.1.13. If κ is as defined in

equation (3.1.7) Then

i) For all u1, u2 ∈ H, the following inequality holds,

|κ (u1)− κ (u2)|H ≤ |f |
2
H

[
2 + |u1|2H + |u2|2H + (|u1|H + |u2|H)2] |u1 − u2|H .

ii) For all u1, u2 ∈ V, the following inequality holds,

‖κ (u1)− κ (u2)‖ ≤ ‖f‖2 [2 + ‖u1‖2 + ‖u2‖2 + (‖u1‖+ ‖u2‖)2] ‖u1 − u2‖ .

(4.2.15)

Moreover, we are going to use the following version of the Gronwall Lemma and

Young’s inequality.

Lemma 4.2.8. (Gronwall’s Lemma) Let F, α, β : [0, T ] → R+ be Lebesgue

measurable and β be locally integrable such that∫ T

0

β(t)F (t)dt <∞.

If

F (t) ≤ α(t) +

∫ t

0

β(s)F (s)dt, t ∈ [0, T ]

then we have

F (t) ≤ α(t) +

∫ t

0

α(s)β(s)
(
e
∫ t
s β(r)dr

)
ds, t ∈ [0, T ] .

In addition if α is non-decreasing then

F (t) ≤ α(t) exp

(∫ t

0

β(r)dr

)
, t ∈ [0, T ] .

Lemma 4.2.9. (Young’s inequality) If p, q > 1 satisfy 1
p

+ 1
q

= 1, then for any

positive number σ, a and b we have

ab ≤ σ
ap

p
+ σ−

q
p
bq

q
.
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4.2.1 Solution of Skeleton Problem

In this subsection, we aim to study invariance of manifold M , the existence, and

uniqueness of the global solution to skeleton problem (4.2.7). We are going to adopt

the precisely same strategy that we used in chapter 2 to study are the deterministic

model. We now introduce the following approximate skeleton problem, for t ∈ [0, T ],

unh(t) = S(t)u0 +

∫ t

0

S(t− r)θn
(
|unh|Xr

)
F (unh(r)) dr (4.2.16)

+
N∑
j=1

∫ t

0

S(t− r)θn
(
|unh|Xr

)
Bj (unh(r))hj (r) dr,

unh(0) = u0, where u0 ∈ V.

Let us begin by proceeding towards proof of existence of local mild solution.

Throughout the subsection we assume that h = (hj)
N
j=1 ∈ L

2
(
0, T ;RN

)
and there

exists positive constant K such that,∫ T

0

|h(s)|2RN ≤ K

On the same lines of chapter 2, we intend to run a fixed point argument for the

existence of local mild solution to approximate skeleton problem 4.2.16. To do so,

we need map F and Bj (·)hj (involved in to be 4.2.16) locally Lipschitz. For F

we already know from Lemma 4.2.4 that it is locally Lipschitz. In the following

lemma we show that Bj (·)hj is locally Lipschitz and truncated Bj (·)hj is globally

Lipschitz. Whenever we use j we are going to assume it as j = 1, 2, 3...N.

Proposition 4.2.10. Define that Γhj ,T : XT → L2 (0, T ;H) by

[
Γhj ,T (u)

]
(t) =

[
θn
(
|u|Xt

)]
Bj (u (t))hj(t), where t ∈ [0, T ] .
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Then there exists Kn > 0 such that,

∣∣Γhj ,T (u1)− Γhj ,T (u2)
∣∣
L2(0,T ;H)

≤ Kn |u1 − u2|XT T
1/2, where u1, u2 ∈ XT .

(4.2.17)

In particular, Γhj ,T is globally Lipschitz.

Proof. Keeping in view the inequality 4.2.12 we can observe that the map Bj is

locally Lipschitz. Since hj(t) is real number for every t ∈ [0, T ] , hence the map

Bj (·)hj is indeed locally Lipschitz and satisfies the following inequality, for all

t ∈ [0, T ] ,

|B(u1(t))hj(t)−B(u2(t))hj(t)|H = |hj(t)| |B(u1(t))−B(u2(t))|H

≤ |f |H |hj(t)| (|u1(t)|H + |u1(t)|H) |u1(t)− u2(t)|H , ∀u1, u2 ∈ H.

Thus proof of required inequality directly follows from abstract Proposition 3.1.16

by particularly taking Z = B(·)hj and G(r, s) = |f |H |hj| (r + s), for all r, s ≥ 0.

�

Proposition 4.2.11. Assume that we are in framework of Proposition 4.2.10 as

well as assumptions 2.1.5 of chapter 2 are true. For given f1, f2, ..., fN ∈ V and

u0 ∈ V. Define a map Ψn
T,u0

: XT → XT defined by:

Ψn
T,u0

(uh) = Su0 + S ∗ Φn
T,F (uh) +

N∑
j=1

(
S ∗ Γhj ,T (uh)

)
. (4.2.18)

where Γhj ,T (·) ≡ Bj(·)hj, for j = 1, 2, ..., N, and h = (hj)
N
j=1 ∈ RN . Then there

exists C(n) > 0 such that

∣∣Ψn
T,u0

(uh)−Ψn
T,u0

(vh)
∣∣
XT
≤ C(n) |uh − vh|XT T

1/2.

In particular for sufficiently small T > 0, the map Ψn
T,u0

is contraction.
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Proof. The proof can be done exactly on the same lines of proof of Proposition

2.2.7. �

To construct local and local maximal solution of constrained problem 4.2.7,

we can follow the precisely same methodology employed in chapter 2 i.e. we can

easily prove the analogs of Lemma 2.2.8 and Proposition 2.2.10. We skip their

proofs because they should contain precisely same argument. We focus ourselves

on providing a complete proof of the invariance, the existence and the uniqueness

of the global solution to problem 4.2.7, because the skeleton problem here is not

gradient-flow like the deterministic model studied in chapter 2.

Proposition 4.2.12. If u0 ∈ V ∩ M and (uh, τ) be the local maximal solution

satisfies skeleton problem (4.2.7) then

uh(t) ∈M i.e. |uh(t)|2H = 1, t ∈ [0, τ).

Proof. We are going to begin with Temmam Lemma III.1.2 of [49]. For t ∈ [0, τ),

using equation (4.2.7), consider the following,

1

2

(
|uh(t)|2H − 1

)
=

∫ t

0

〈
duh
dt

(s), uh(s)

〉
H

ds

=

∫ t

0

〈∆uh (s) + F (uh (s)) , uh(s)〉 ds

+
N∑
j=1

∫ t

0

〈Bj (uh (s))hj (s) , uh(s)〉 ds, (4.2.19)

Consider the computations for uh = uh(t),

〈uh, Bj (uh)hj〉 = 〈uh, fj − 〈fj, uh〉uh〉hj

= [〈uh, fj〉 − 〈fj, uh〉 〈uh, uh〉]hj

= −
(
|uh|2H − 1

)
〈fj, uh〉hj. (4.2.20)
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Moreover for uh = uh(t),

〈uh,∆uh + F (uh)〉 =
〈
uh,∆uh +

(
‖uh‖2 + |uh|2nL2n

)
uh − u2n−1

h

〉
= 〈uh,∆uh〉+

(
‖uh‖2 + |uh|2nL2n

)
〈uh, uh〉+

〈
uh,−u2n−1

h

〉
= −‖uh‖2 +

(
‖uh‖2 + |uh|2nL2n

)
|uh|2H − |uh|

2n
L2n

=
(
‖uh‖2 + |uh|2nL2n

) (
|uh|2H − 1

)
. (4.2.21)

Using equations (4.2.20) and (4.2.21) into equation (4.2.19) we get

1

2

(
|uh(t)|2H − 1

)
=

∫ t

0

(
‖uh (s)‖2 + |uh (s)|2nL2n

) (
|uh (s)|2H − 1

)
ds

−
N∑
j=1

∫ t

0

hj (s) 〈uh (s) , fj〉
(
|uh (s)|2H − 1

)
ds, t ∈ [0, τ).

Set

φ(t) : = |u(t)|2H − 1, t ∈ [0, τ),

β(t) : =

[
‖uh (t)‖2 + |uh (t)|2nL2n −

N∑
j=1

hj (t) 〈uh (t) , fj〉

]
, t ∈ [0, τ).

then

φ(t) = 2

∫ t

0

β(s)φ(s)ds, t ∈ [0, τ).

or in stronger form
dφ(t)

dt
= 2β(t)φ(t), t ∈ [0, τ).

The solution of above differential is form,

φ(t) = φ(0) exp

(∫ t

0

β(s)ds

)
, t ∈ [0, τ).

But since |uh(0)|2H = 1 i.e. φ(0) = 0, hence

φ(t) = 0 for all t ∈ [0, τ),

or |uh(t)|2H = 1, for all t ∈ [0, τ).
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The above argument is true provided that
∫ t

0
β(s)ds <∞. To see this consider the

following for t ∈ [0, τ),∫ t

0

β(s)ds =

∫ t

0

‖uh (s)‖2 ds+

∫ t

0

|uh (s)|2nL2n ds−
N∑
j=1

∫ t

0

hj (t) 〈uh (t) , fj〉 ds.

≤ sup
s∈[0,t]

‖uh (s)‖2

∫ t

0

ds+

∫ t

0

|uh (s)|2nL2n ds+
N∑
j=1

∫ t

0

hj (t) 〈uh (t) , fj〉 ds

= sup
s∈[0,t]

‖uh (s)‖2 t+

∫ t

0

|uh (s)|2nL2n ds+
N∑
j=1

∫ t

0

hj (t) 〈uh (t) , fj〉 ds

Since uh ∈ XT = C ([0, T ] ;V ) ∩ L2 (0, T ;E) therefore sup
s∈[0,T ]

‖uh (s)‖2 < ∞. Using

the continuity of embedding V ↪→ L2n and V ↪→ H, the Young inequality on the

third integral, the inequality (4.2.1), and the fact that fj ∈ V ⊂ H, we get∫ t

0

β(s)ds ≤ sup
s∈[0,t]

‖uh (s)‖2 t+ c2n

∫ t

0

‖uh (s)‖2n ds

+
N∑
j=1

1

2

∫ t

0

hj (s)2 ds+
N∑
j=1

∫ t

0

〈uh (s) , fj〉2 ds

≤ sup
s∈[0,t]

‖uh (s)‖2 t+ c2n sup
s∈[0,t]

‖uh (s)‖2n t

+
N∑
j=1

Kj

2
+

N∑
j=1

|fj|2H
∫ t

0

|uh (s)|2H ds

≤ sup
s∈[0,t]

‖uh (s)‖2 t+ c2n sup
s∈[0,t]

‖uh (s)‖2n t+
N∑
j=1

Kj

2

+
N∑
j=1

|fj|2H sup
s∈[0,t]

|uh (s)|2H t

≤ sup
s∈[0,t]

‖uh (s)‖2 t+ c2n sup
s∈[0,t]

‖uh (s)‖2n t+
N∑
j=1

Kj

2

+
N∑
j=1

c2 |fj|2H sup
s∈[0,t]

‖uh (s)‖2 t

< ∞.
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This completes the proof. �

Proposition 4.2.13. If u0 ∈ V ∩ M and (uh, τ) be the local maximal solution

satisfies main problem (4.2.7) then there exists a constant C (u0, T,K) such that

‖uh (t)‖ ≤ C (u0, T,K) , for all t ∈ [0, τ),

and τ =∞ i.e. uh is global solution.

Proof. Let us begin by employing Temmam Lemma III.1.2 of [49]. For all t ∈ [0, τ)

consider the following chain of equations,

1

2
‖uh (t)‖2 =

1

2
‖u0‖2 +

∫ t

0

〈
−∆uh(s),

duh
dt

(s)

〉
ds

=
1

2
‖u0‖2 −

∫ t

0

〈
duh
dt

(s),
duh
dt

(s)

〉
+

∫ t

0

〈
duh
dt

(s)−∆(s),
duh
dt

(s)

〉
ds

=
1

2
‖u0‖2 −

∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds

+

∫ t

0

〈(
‖uh(s)‖2 + |uh(s)|2nL2n

)
uh(s)− u2n−1

h (s),
duh
dt

(s)

〉
ds

+
N∑
j=1

∫ t

0

hj (s)

〈
Bj (uh (s)) ,

duh
dt

(s)

〉
ds

=
1

2
‖u0‖2 −

∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds

+

∫ t

0

(
‖uh(s)‖2 + |uh(s)|2nL2n

)〈
uh(s),

duh
dt

(s)

〉
ds

− 1

2n

〈
u2n−1
h (t), uh(t)

〉
+

1

2n

〈
u2n−1

0 (t), u0(t)
〉

+
N∑
j=1

∫ t

0

〈
hj (s) (fj − 〈fj, uh(s)〉uh(s)) ,

duh
dt

(s)

〉
ds

1

2
‖uh (t)‖2 − 1

2
‖u0‖2 = − 1

2n
|uh(t)|2nL2n +

1

2n
|u0|2nL2n −

∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds

+
N∑
j=1

∫ t

0

〈
hj (s) (fj − 〈fj, uh(s)〉uh(s)) ,

duh
dt

(s)

〉
ds
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Φ (u (t))− Φ (u0) = −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+

∫ t

0

(
‖uh(s)‖2 + |uh(s)|2nL2n

)〈
uh(s),

duh
dt

(s)

〉
ds

+
N∑
j=1

∫ t

0

[〈
hj (s) fj,

duh
dt

(s)

〉
+ hj (s) 〈fj, uh(s)〉

〈
uh(s),

duh
dt

(s)

〉]
ds,

where Φ(uh) := 1
2
‖uh‖2 + 1

2n
|uh|2nL2n . Since u0 ∈M so by Lemma 4.2.12 uh(t) ∈M

and indeed duh
dt
∈ TuM therefore

〈
uh,

duh
dt

〉
= 0. Hence last equation reduces to,

Φ (u (t))− Φ (u0) = −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+
N∑
j=1

∫ t

0

〈
hj (s) fj,

duh
dt

(s)

〉
ds

Φ (u (t))− Φ (u0) ≤ −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+
N∑
j=1

∫ t

0

|hj (s)| |fj|H

∣∣∣∣duhdt (s)

∣∣∣∣
H

ds

= −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+ c
N∑
j=1

∫ t

0

|hj (s)|
∣∣∣∣duhdt (s)

∣∣∣∣
H

ds

where c = max
{
|fj|H

}N
j=1

<∞. Let us apply the Young inequality on second term

right hand side of last inequality, for p = q = 2, σ = Nc
2
, a = |hj| and b =

∣∣duh
dt

∣∣
H
.

It follows that

Φ(uh(t))− Φ(u0) ≤ −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+ c
N∑
j=1

Nc

2

∫ t

0

|hj (s)|2

2
ds

+c
N∑
j=1

2

Nc

∫ t

0

∣∣duh
dt

(s)
∣∣2
H

2

= −
∫ t

0

∣∣∣∣duhdt (s)

∣∣∣∣2
H

ds+
Nc2

4

N∑
j=1

∫ t

0

|hj (t)|2 ds

+
N

N

∫ t

0

∣∣∣∣duhdt (t)

∣∣∣∣2
H

ds

=
Nc2

4

N∑
j=1

∫ t

0

|hj (t)|2 s =
Nc2

4
K

Φ(uh(t)) ≤ Φ(u0) +
Nc2

4
K

2Φ(uh(t)) ≤ 2Φ(u0) +
Nc2

2
K.
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But since 2Φ(uh) = ‖uh‖2 + 1
n
|uh|2nL2n ≥ ‖uh‖2 . It follows from last inequality

that

‖uh(t)‖2 ≤ 2Φ(u0) +
Nc2

2
K =: C (u0, T,K) , for all t ∈ [0, τ). (4.2.22)

Hence the sufficient condition 2.2.11 is satisfied. Thus τ = ∞ i.e. uh is global

solution. �

4.2.2 Proof of (C1)

Recall that the map =0
h : L2

(
0, T ;RN

)
→ XT defined by (4.2.8) i.e. for each

h ∈ L2
(
0, T ;RN

)
, satisfying

∫ T
0
|h(s)|2RN ds ≤ K,

=0
h (h) := uh

where uh satisfies the equation,

uh (t) = u0 +

∫ t

0

(∆uh (s) + F (uh (s))) ds+
N∑
j=1

∫ t

0

Bj (uh (s))hj (s) ds. (4.2.23)

Our main task in this subsection is to prove condition C1) (see page 184) in the

form of the following theorem.

Theorem 4.2.14. For each K ∈ (0,∞) , the set{
=0
h (h) : h ∈ L2

(
0, T ;RN

)
and

∫ T

0

|h(s)|2RN ds ≤ K

}
is a compact subset of XT .

We prove the above result in the form of the following series of Lemmas.

Before proving the lemmas let us set some more use full notation. Throughout

this subsection we will assume that (hn)n∈N be a weakly convergent sequence in
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L2
(
0, T ;RN

)
with limit h ∈ L2

(
0, T ;RN

)
. Let us set writing uhn := =0

hn
(hn),

uh := =0
h (h) and

Kn :=

∫ T

0

|hn(s)|2RN ds <∞, for all n ∈ N. (4.2.24)

Lemma 4.2.15. There exists constant C (u0, T,K) such that for all n ∈ N and for

all h ∈ L2
(
0, T ;RN

)
satisfying

∫ T
0
|h(s)|2RN ds ≤ K,

sup
t∈[0,T ]

‖uh (t)‖2 ≤ C (u0, T,K) , (4.2.25)∫ T

0

|∆uh (s)|2H ds ≤ C (u0, T,K) . (4.2.26)

Proof. From Proposition 4.2.13 (see inequality (4.2.22)) we know that there exist a

constant C (u0, T,K) such that

‖uh (t)‖2 ≤ C (u0, T,K) , for all t ∈ [0, T ] . (4.2.27)

Recall that,

uh (t) = u0 +

∫ t

0

(∆uh (s) + F (uh (s))) ds+
N∑
j=1

∫ t

0

Bj (uh (s))hj (s) ds, t ∈ [0, T ] .

Using Lemma III.2.1 from [49],

‖uh (t)‖2

2
=

∫ t

0

〈∆uh (s) ,−∆uh (s)〉 ds+

∫ t

0

〈F (uh (s)) ,−∆uh (s)〉 ds

+
N∑
j=1

∫ t

0

〈Bj (uh (s)) ,−∆uh (s)〉hj (s) ds

= I1(t) + I2 (t) +
N∑
j=1

I3,j(t), t ∈ [0, T ] . (4.2.28)

Let us compute and estimate each of integral in last sum. Consider the first integral

i.e. I1,

I1(t) =

∫ t

0

〈∆uh (s) ,−∆uh (s)〉 ds

= −
∫ t

0

|∆uh (s)|2H ds, t ∈ [0, T ] . (4.2.29)
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Now consider the second integral i.e. I2 in (4.2.28), for t ∈ [0, T ],

I2 (t) =

∫ t

0

〈F (uh (s)) ,−∆uh (s)〉 ds

≤
∫ t

0

|F (uh (s))|H |∆uh (s)|H ds, t ∈ [0, T ] .

Using inequality (4.2.11), for t ∈ [0, T ] ,

I2 (t) ≤
∫ t

0

G (‖uh (s)‖ , 0) |∆uh (s)|H ds,

=

∫ t

0

G (‖uh (s)‖ , 0) |∆uh (s)|H ds (4.2.30)

Where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

From inequality (4.2.27), we infer that there exists a constant C1 (u0, T,K, ) such

that

G (‖uh (t)‖ , 0) ≤ C1 (u0, T,K) , t ∈ [0, T ].

By using this inference into inequality (4.2.30), we get for t ∈ [0, T ] ,

I2 (t) ≤ C1

∫ t

0

|∆uh (s)|H ds

We are going to apply now the Young inequality (4.2.9) to the integrand in above

inequality. Choose a = C1, b = |∆uh|H , p = q = 2 and σ = 1
2
. Using this into last

inequality,

I2 (t) ≤ 2C2
1

∫ t

0

ds+
1

4

∫ t

0

|∆uh (s)|2H ds

≤ CT +
1

4

∫ t

0

|∆uh (s)|2H ds, (4.2.31)
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where C := 2C2
1 .

Now consider the 3rd integral i.e. I3,j of equation (4.2.28). Using Cauchy-Schwartz

inequality together with embedding V ↪→ H and (4.2.12), we infer that,

I3,j =

∫ t

0

〈Bj (uh (s)) ,−∆uh (s)〉hj (s) ds

≤
∫ t

0

|Bj (uh (s))|H |∆uh (s)|H hj (s) ds

≤
∫ t

0

c |fj|H ‖uh (s)‖ ‖uh (s)‖ |∆uh (s)|H hj (s) ds

=

∫ t

0

c |fj|H ‖uh (s)‖2 |∆uh (s)|H hj (s) ds (4.2.32)

Set k := max
{
|fj|H

}N
j=1

< ∞. Using estimate (4.2.27) we infer that there exists a

positive constant C2 such that

c |fj|H ‖uh (s)‖2 ≤ ckC =: C2.

Therefore the inequality (4.2.32) simplifies to

I3,j ≤ C2

∫ t

0

|∆uh (s)|hj (s) ds.

Applying the Young inequality (4.2.9) to the integrand in the last integral, with

a = C2hj, b = |∆un|H , p = q = 2 and σ = 1
2N
, the last inequality becomes

I3,j ≤ 2NC2

∫ t

0

h2
j (s) ds+

1

4N

∫ t

0

|∆uh (s)|2 ds

= C

∫ t

0

h2
j (s) ds+

1

4N

∫ t

0

|∆uh (s)|2 ds, 2C2 =: C.

Taking sum over j on both sides and using (4.2.24),

N∑
j=1

I3,j ≤ C
N∑
j=1

∫ t

0

h2
j (s) ds+

N∑
j=1

1

4N

∫ t

0

|∆uh (s)|2 ds

= CK +
1

4

∫ t

0

|∆uh (s)|2 ds. (4.2.33)
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Using inequalities (4.2.29), (4.2.31) and (4.2.33) into we get

‖uh (t)‖2

2
≤ −

∫ t

0

|∆uh (s)|2H ds+ CT +
1

4

∫ t

0

|∆uh (s)|2H ds

+CK +
1

4

∫ t

0

|∆uh (s)|2 ds.

‖uh (t)‖2 +

∫ t

0

|∆uh (s)|2H ds ≤ 2CT + 2CK =: C (u0, T,K) , for all t ∈ [0, T ].

In particular, ∫ T

0

|∆uh (s)|2H ds ≤ C (u0, T,K) .

�

Lemma 4.2.16. Every subsequence of (uhn) has a convergent subsequence that

converges in C ([0, T ] ;H) .

Proof. We aim to apply Arzelà–Ascoli Theorem (see [27], Corollary 5.21) to get

the desired result. From Proposition 4.2.15 we know that there exits a constant

C (u0, T,K) such that,

‖uhn (t)‖ ≤ C (u0, T,K) , for all t ∈ [0, T ]. (4.2.34)

From the boundedness of uhn in V -norm and compactness of embedding V ↪→ H,

it follows that for each fixed t ∈ [0, T ], the set {uhn(t), n ∈ N} is relatively compact

in H. Hence by employing the diagonal argument we can find a subsequence (nk)

such that (uhnk (t)) is converges to some point in H , for each rational t ∈ [0, T ].

It remains to show that {uhn(t), n ∈ N} is a uniformly equi-continuous subset of

C ([0, T ] ;H) , once we are done with proving this, the required will follow from
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Arzelà–Ascoli Theorem. For s, t ∈ [0, T ] , satisfying s ≤ t

uhn(t)− uhn(s) = u0 +

∫ t

0

(∆uhn (r) + F (uhn (r))) dr

+
N∑
j=1

∫ t

0

Bj (uhn (r))hn,j (r) dr

−u0 −
∫ t

0

(∆uhn (r) + F (uhn (r))) dr

−
N∑
j=1

∫ t

0

Bj (uhn (s))hn,j (r) dr

=

∫ t

s

(∆uhn (r) + F (uhn (r))) dr

+
N∑
j=1

∫ t

s

Bj (uhn (r))hn,j (r) dr

Taking H norm on both sides and using triangle inequality,

|uhn(t)− uhn(s)|H ≤
∫ t

s

|∆uhn (r)|H dr +

∫ t

s

|F (uhn (r))|H dr

+
N∑
j=1

∫ t

s

|Bj (uhn (r))|H hn,j (r) dr

Using the Young inequality on first integral and inequality (4.2.11), we infer that,

|uhn(t)− uhn(s)|H ≤ 1

2

∫ t

s

dr +

∫ t

s

|∆uhn (r)|2H dr

+

∫ t

s

G(‖uhn (r)‖ , 0) ‖uhn (r)‖ dr

+
N∑
j=1

∫ t

s

|Bj (uhn (r))|H hn,j (r) dr.

Using inequalities (4.2.25), (4.2.26) , (4.2.34) and holder inequality afterwards, for

p = q = 2, into above inequality, we get

|uhn(t)− uhn(s)|H ≤ 1

2
(t− s) + C (u0, T,K) + C (u0, T,K) (t− s)

+
N∑
j=1

(∫ t

s

hn,j (r)2 dr

)1/2(∫ t

s

|Bj (uhn (r))|2H dr
)1/2

,
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Finally using inequalities (4.2.13), (4.2.24) and (4.2.25), we conclude that,

|uhn(t)− uhn(s)|H ≤ 1

2
(t− s) + C (u0, T,K) + C (u0, T,K) (t− s)

+
N∑
j=1

K
1
2
n,j

(∫ t

s

(
C |fj|H ‖uhn (r)‖

)2
dr

)1/2

,

≤ 1

2
(t− s) + C (u0, T,K) + C (u0, T,K) (t− s)

+
N∑
j=1

K
1
2
n,jC

2 |fj|H (t− s)1/2.

where s, t ∈ [0, T ] .

Thus {uhn(t), n ∈ N} is a uniformly equi-continuous subset of C ([0, T ] ;H) . This

completes the proof. �

Lemma 4.2.17. If γ : [0, T ] → H be measurable function which satisfies∫ T
0
|γ(s)|2H ds <∞, then

sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈γ(s), uhn (s)− uh(s)〉 (hn (s)− h(s))ds

∣∣∣∣→ 0 as n→∞.

Proof. We prove this by contradiction. Assume contrary that there is an ε > 0 and

a subsequence (nk) such that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
γ(s), uhnk (s)− uh(s)

〉
(hnk (s)− h(s))ds

∣∣∣∣ ≥ ε, for all k ∈ N. (4.2.35)

By last Lemma the subsequence
(
uhnk

)
converges to a point u ∈ C ([0, T ] ;H) . Now

consider

sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
γ(s), uhnk (s)− uh(s)

〉
(hnk (s)− h(s))ds

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫ t

0

〈
γ(s), uhnk (s)− u(s)

〉
(hnk (s)− h(s))ds

∣∣∣∣
+ sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈γ(s), u (s)− uh(s)〉 (hnk (s)− h(s))ds

∣∣∣∣
: = Ank +Bnk (4.2.36)
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We claim that Ank → 0 and Bnk → 0, as k → ∞ and hence we are going to reach

at a contradiction to inequality (4.2.35). Consider Ank , using Cauchy Schwartz

inequality, we infer that,

Ank = sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
γ(s), uhnk (s)− u(s)

〉
(hnk (s)− h(s))ds

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫ t

0

|γ(s)|H
∣∣uhnk (s)− u(s)

∣∣
H

(hnk (s)− h(s))ds

∣∣∣∣
≤ sup

t∈[0,T ]

∫ t

0

|γ(s)|H
∣∣uhnk (s)− u(s)

∣∣
H

[hnk (s)− h(s)] ds

≤ sup
t∈[0,T ]

∣∣uhnk (t)− u(t)
∣∣
H

sup
t∈[0,T ]

∫ t

0

|γ(s)|H [hnk (s)− h(s)] ds

By Holder inequality with p = q = 2,

Ank ≤ sup
t∈[0,T ]

∣∣uhnk (t)− u(t)
∣∣
H

sup
t∈[0,T ]

(∫ t

0

|γ(s)|2H ds
)1/2

sup
t∈[0,T ]

(∫ t

0

|hnk (s)− h(s)|2 ds
)1/2

From equation (4.2.24) and assumption I :=
∫ T

0
|γ(s)|2H ds <∞, we infer that

Ank ≤ sup
t∈[0,T ]

∣∣uhnk (t)− u(t)
∣∣
H

√
KnI.

Now since
(
uhnk

)
converges to a point u ∈ C ([0, T ] ;H) so,

Ank ≤
√
KI sup

t∈[0,T ]

∣∣uhnk (t)− u(t)
∣∣
H
→ 0 as k →∞.

To proceed with Bnk , let us define an operator Th : L2
(
0, T ;RN

)
→ C ([0, T ] ;H)

by,

(Thf)(t) : =

∫ t

0

K(s, t)f(s)ds, f ∈ L2
(
0, T ;RN

)
, (4.2.37)

where K(s, t) = 〈γ(s), u (s)− uh(s)〉 , for 0 ≤ s ≤ t

= 0, for s > t.

We claim that this operator is compact and to show it we show that it is Hilbert-

Schmidt i.e. its kernel satisfies
∫ T

0

∫ T
0
K(s, t)2dsdt < ∞. (see Theorem 1.1.54 in
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Chapter 1 or ([52], Theorem 8.8). Consider,∫ T

0

∫ T

0

〈γ(s), u (s)− uh(s)〉2 dsdt =

∫ T

0

dt

∫ T

0

〈γ(s), u (s)− uh(s)〉2 ds

= T

∫ T

0

〈γ(s), u (s)− uh(s)〉2 ds

≤ T

∫ T

0

|γ(s)|2H |u (s)− uh(s)|2H ds

≤ sup
r∈[0,t]

|uh(r)− u(r)|2H
∫ T

0

|γ(r)|2H ds

Since u ∈ C ([0, T ] ;H) and I :=
∫ t

0
|γ(s)|2H ds < ∞ from assumption , and

uh = = (h)0 ∈ XT , it follows that,∫ T

0

∫ T

0

〈γ(s), u (s)− uh(s)〉2 dsdt ≤ sup
s∈[0,t]

|uh(s)− u(s)|2H
∫ t

0

|γ(s)|2H ds <∞.

Hence operator T defined in equation (4.2.37) is compact. Recall from the beginning

of the section that (hn) is weakly convergent sequence to h in L2
(
0, T ;RN

)
. As T

is compact so (Thn)n∈N converges to Th i.e.∫ t

0

〈γ(s), u (s)− uh(s)〉 (hnk (s)− h(s))ds→ 0 as k →∞.

Subsequently Bnk → 0 as k →∞.

Summing the proof by noticing that as Bnk → 0 as k →∞ and Ank → 0 as k →∞

so from inequality (4.2.36),

sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
γ(s), uhnk (s)− uh(s)

〉
(hnk (s)− h(s))ds

∣∣∣∣→ 0 as k →∞,

which is contradiction to (4.2.35). This completes the proof. �

Remark 4.2.18. In the following result we are going to use Lemma 4.2.17 for the

particular γ(uh) := ∆B(uh) where

B(uh) = f − 〈f, uh〉uh, where f ∈ E = D(A).
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We are going to verify in this remark that
∫ T

0
|γ(s)|2H ds <∞. Consider∫ T

0

|γ(s)|2H ds =

∫ T

0

|∆B(uh (s))|2H ds

=

∫ T

0

|∆f − 〈f, uh (s)〉∆uh (s)|2H ds

Using elementary inequality (a− b)2 ≤ 2 (a2 + b2) , we infer that,∫ T

0

|γ(s)|2H ds ≤ 2

∫ T

0

(
|∆f |2H + 〈f, uh (s)〉2 |∆uh (s)|2H

)
ds

≤ 2 |f |2E T + 2

∫ T

0

|f |2H |uh (s)|2H |∆uh (s)|2H ds

≤ 2 |f |2E T + 2 |f |2H
∫ T

0

|uh (s)|2H |∆uh (s)|2H ds.

Using the continuity of embedding V ↪→ H so it follows that,∫ T

0

|γ(s)|2H ds ≤ 2 |f |2E T + 2c |f |2H
∫ T

0

‖uh (s)‖2 |∆uh (s)|2H ds

≤ 2 |f |2E T + 2c |f |2H sup
s∈[0,T ]

‖uh (s)‖2

∫ T

0

|∆uh (s)|2H ds

Using the inequalities (4.2.25) and (4.2.26) it follows that,∫ T

0

|γ(s)|2H ds ≤ 2 |f |2E T + 2c |f |2H C(u0, T,K)2.

Since f ∈ E ⊂ H so hence∫ T

0

|γ(s)|2H ds ≤ 2 |f |2E T + 2c |f |2H C(u0, T,K)2 <∞.

Lemma 4.2.19. If (hn) be a weakly convergent sequence in L2
(
0, T ;RN

)
with limit

h ∈ L2
(
0, T ;RN

)
, where (hn) and h satisfies (4.2.24). Then (uhn)n∈N converges to

uh in XT -norm as n→∞.

Proof. Let us begin by recalling the expression for uh and uhn . Recall from (4.2.23),

uh (t) = u0 +

∫ t

0

(∆uh (s) + F (uh (s))) ds+
N∑
j=1

∫ t

0

Bj (uh (s))hj (s) ds, t ∈ [0, T ] .
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and

uhn (t) = u0+

∫ t

0

(∆uhn (s) + F (uhn (s))) ds+
N∑
j=1

∫ t

0

Bj (uhn (s))hn,j (s) ds, t ∈ [0, T ].

Set un := uhn − uh, then using last two equations, for t ∈ [0, T ],

un (t) =

∫ t

0

∆un (s) ds+

∫ t

0

[F (uhn (s))− F (uh (s))] ds

+
N∑
j=1

∫ t

0

[Bj (uhn (s))hn,j (s)−Bj (uh (s))hj (s)] ds

=

∫ t

0

∆un (s) ds+

∫ t

0

[F (uhn (s))− F (uh (s))] ds

+
N∑
j=1

∫ t

0

[Bj (uhn (s))−Bj (uh (s))]hn,j (s) ds

+
N∑
j=1

∫ t

0

Bj (uh (s)) (hn,j (s)− hj (s)) ds

Using Temmam Lemma III.1.2 of [49],

‖un (t)‖2

2
=

∫ t

0

〈∆un (s) ,−∆un (s)〉 ds+

∫ t

0

〈F (uhn (s))− F (uh (t)) ,−∆un (s)〉 ds

+
N∑
j=1

∫ t

0

〈Bj (uhn (s))−Bj (uh (s)) ,−∆un (s)〉hn,j (s) ds

+
N∑
j=1

∫ t

0

〈Bj (uh (s)) ,−∆un (s)〉 (hn,j (s)− hj (s)) ds

= I1(t) + I2 (t) +
N∑
j=1

I3,j(t) +
N∑
j=1

I4,j(t), t ∈ [0, T ] . (4.2.38)

Let us compute and estimate each of integral in last sum. Consider the first integral

i.e. I1,

I1(t) =

∫ t

0

〈∆un (s) ,−∆un (s)〉 ds

= −
∫ t

0

|∆un (s)|2H ds, t ∈ [0, T ] . (4.2.39)
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Now consider the second integral i.e. I2 in (4.2.38), for t ∈ [0, T ],

I2 (t) =

∫ t

0

〈F (uhn (s))− F (uh (s)) ,−∆un (s)〉 ds

≤
∫ t

0

|F (uhn (s))− F (uh (s))|H |∆un (s)|H ds, t ∈ [0, T ] .

Using inequality (4.2.11), for t ∈ [0, T ] ,

I2 (t) ≤
∫ t

0

G (‖uhn (s)‖ , ‖uh (s)‖) ‖uhn (s)− uh (s)‖ |∆un (s)|H ds,

=

∫ t

0

G (‖uhn (s)‖ , ‖uh (s)‖) ‖un(s)‖ |∆un (s)|H ds (4.2.40)

Where G : [0,∞)× [0,∞)→ [0,∞) is a bounded and symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

From inequality (4.2.25), we infer that there exists a constant C1 (u0, T,K) such

that

G (‖uhn (t)‖ , ‖uh (t)‖) ≤ C1 (u0, T,K) , t ∈ [0, T ].

By using this inference into inequality (4.2.40), we get for t ∈ [0, T ] ,

I2 (t) ≤ C1

∫ t

0

‖un(s)‖ |∆un (s)|H ds

We are going to apply now the Young inequality (4.2.9) to the integrand in above

inequality. Choose a = C1 ‖un‖, b = |∆un|H , p = q = 2 and σ = 1
4
. Using this into

last inequality,

I2 (t) ≤ 2C2
1

∫ t

0

‖un(s)‖2 ds+
1

4

∫ t

0

|∆un (s)|2H ds

= C

∫ t

0

‖un(s)‖2 ds+
1

4

∫ t

0

|∆un (s)|2H ds, (4.2.41)
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where C := 2C2
1 .

Now consider the 3rd integral i.e. I3,j of equation (4.2.38). Using Cauchy-Schwartz

inequality together with (4.2.12)

I3,j =

∫ t

0

〈Bj (uhn (s))−Bj (uh (s)) ,−∆un (s)〉hn,j (s) ds

≤
∫ t

0

|Bj (uhn (s))−Bj (uh (s))|H |∆un (s)|H hn,j (s) ds

≤
∫ t

0

C |f |H (‖uhn (s)‖+ ‖uh (s)‖) ‖uhn (s)− uh (s)‖hn,j (s) ds

=

∫ t

0

C |fj|H (‖uhn (s)‖+ ‖uh (s)‖) ‖un(s)‖ |∆un (s)|hn,j (s) ds(4.2.42)

Set c := max
{
|fj|H

}N
j=1

< ∞. Using estimate (4.2.25) we infer that there exists a

positive constant C2 such that

C |fj|H (‖uhn (s)‖+ ‖uh (s)‖) ≤ Cc(C + C) =: C2.

Therefore the inequality (4.2.42) simplifies to

I3,j ≤ C2

∫ t

0

‖un(s)‖ |∆un (s)|hn,j (s) ds.

Applying the Young inequality (4.2.9) to the integrand in the last integral, with

a = C2 ‖un‖hn,j, b = |∆un|H , p = q = 2 and σ = 1
4N
, the last inequality becomes

I3,j ≤ 2NC2

∫ t

0

‖un(s)‖2 h2
n,j (s) ds+

1

4N

∫ t

0

|∆un (s)|2 ds

= C

∫ t

0

‖un(s)‖2 h2
n,j (s) ds+

1

4N

∫ t

0

|∆un (s)|2 ds,

where 2C2 =: C. Taking sum over j on both sides

N∑
j=1

I3,j ≤ C
N∑
j=1

∫ t

0

‖un(s)‖2 h2
n,j (s) ds+

N∑
j=1

1

4N

∫ t

0

|∆un (s)|2 ds

= C
N∑
j=1

∫ t

0

‖un(s)‖2 h2
n,j (s) ds+

1

4

∫ t

0

|∆un (s)|2 ds. (4.2.43)
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We are going to keep I4,j, of equation (4.2.38) as it is, because we intend to

apply Lemma 4.2.17 to it.

Using inequalities (4.2.39), (4.2.41) and (4.2.43) into (4.2.38) we get

‖un (t)‖2

2
≤ −

∫ t

0

|∆un (s)|2H ds+ C

∫ t

0

‖un(s)‖2 ds+
1

4

∫ t

0

|∆un (s)|2H ds

+C
N∑
j=1

∫ t

0

‖un(s)‖2 h2
n,j (s) ds+

1

4

∫ t

0

|∆un (s)|2 ds+
N∑
j=1

I4,j(t).

‖un (t)‖2 +

∫ t

0

|∆un (s)|2H ds ≤ 2

∫ t

0

(
C + Ch2

n,j (s)
)(
‖un (s)‖2 +

∫ s

0

|∆un (r)|2H dr
)
ds

+2
N∑
j=1

I4,j(t)

Set

F (t) : = ‖un (t)‖2 +

∫ t

0

|∆un (s)|2H ds

α(t) : = 2
N∑
j=1

I4,j(t)

β(t) : = 2
(
C + Ch2

n,j (s)
)

hence the last inequality becomes

F (t) ≤
∫ t

0

2β(s)F (s)ds+ α(t)

Finally Grownwall Lemma 4.2.8 and equation (4.2.24) we get

sup
t∈[0,T ]

‖un (t)‖2 +

∫ t

0

|∆un (s)|2H ds ≤ α(t) + 2

∫ t

0

α(s)β(s) exp

(
2

∫ t

s

β(r)dr

)
ds

= α(t) + 2

∫ t

0

α(s)β(s) exp

(
2

∫ t

s

(
C + Ch2

n,j (s)
)
dr

)
ds

= α(t) + 2

∫ t

0

α(s)β(s) exp (2C (t− s+Kn)) ds

Taking limit n→∞, and using Lemma 4.2.17, Remark 4.2.18 α(t)→ 0. Moreover,

using the Lebesgue dominated convergence theorem (see Theorem 1.4.32), the right

hand side of above inequality goes to zero. This completes the proof of Lemma. �
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4.2.3 Proof of (C2) and Large Deviation Principle

In this subsection we intend to show that the family of laws {L (=ε0 (W )) , ε ∈ (0, 1]}

on XT , satisfies the large deviation principle with rate function I : XT → [0,∞]

defined as in (4.2.10). For K ∈ (0,∞) , set

BK :=

{
hn ∈ L2

(
0, T ;RN

)
:

∫ T

0

|hn (s)|2RN ds ≤ K

}
.

From Theorem 4.2.14 it follows that the map =0
h, defined by equation (4.2.23), is

Borel measurable. To prove family of laws {L (=ε0 (W )) , ε ∈ (0, 1]} on XT , satisfies

the large deviation principle with rate function I, if the following theorem (condition

C2) is true.

Theorem 4.2.20. Let (εn) and let sequence of real number from (0, 1] that converges

0 and if (hn)n∈N be sequence of predictable process such that∫ T

0

|hn (s, ω)|2RN ds ≤ K (4.2.44)

, for all ω ∈ Ω and for all n ∈ N. If (hn)n∈N converges in distribution on BK to h

then =εnhn
((√

εnWj +
∫ ·

0
hn,j (s) ds

)N
j=1

)
converges in distribution on XT to =0

h (h) .

We prove the above theorem in the form of the following set of Lemmas. Set

un := =0
hn

(hn) and yn := =εnhn
((√

εnWj +
∫ ·

0
hn,j (s) ds

)N
j=1

)
and ξn := yn − un.

Let us fix m ∈ (‖u0‖ ,∞) . For each n ∈ N, define an (Ft) -stopping time,

τn (ω) := inf {t ∈ [0, T ] : ‖yn (t, ω)‖ ≥ m} ∧ T, (4.2.45)

for all ω ∈ Ω.

Proposition 4.2.21. For t ∈ [0, T ], if u0 ∈ M then yn (t ∧ τn) ∈ M, where τn is

stopping time described above.
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Proof. We begin by recalling evolution equation satisfied by yn,

yn (t) = =εn
(
√
εnWj +

∫ t

0

hn,j (s) ds

)
= u0 +

∫ t

0

(∆yn (s) + F (yn (s))) +
εn
2

N∑
j=1

∫ t

0

κj(yn(s))ds

+
N∑
j=1

∫ t

0

Bj (yn (s))hn,j (s) ds+
√
εn

N∑
j=1

∫ t

0

Bj (yn (s)) dWj (s) , t ∈ [0, T ] .

where u(0) = u0 ∈ V ∩M.

Our intentions are to apply the Itô Lemma to the map γ : H 3 u 7→ 1
2
|u|2H ∈ R.

For stopping time τn described by equation (4.2.45) and ∈ [0, T ] , let us apply Itô’s

Lemma [37] to the process(γ (u (t ∧ τn)))t∈[0,T ] ,

γ (u (t ∧ τn))− γ (u0) =

∫ t∧τn

0

〈yn(s),∆yn(s) + F (yn(s))〉 ds

+
εn
2

N∑
j=1

∫ t∧τn

0

〈yn(s), κj(Bj(yn(s))〉 ds

+
N∑
j=1

∫ t∧τn

0

〈yn(s), Bj (yn(s))〉hn,j (s) ds

+
εn
2

N∑
j=1

∫ t∧τn

0

(Bj (yn(s)) , Bj (yn(s))) ds,

+
√
εn

N∑
j=1

∫ t∧τn

0

〈yn(s), Bj (yn(s))〉 dWj (s)(4.2.46)

Let us compute the inner products involved in above explicitly. For the sake of

convenience we set yn = yn(s).
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〈yn,∆yn + F (yn)〉 = 〈yn,∆yn〉+ 〈yn, F (yn)〉

= −‖yn‖2 +
〈
yn,
(
‖yn‖2 + |yn|2nL2n

)
yn − y2n−1

n

〉
= −‖yn‖2 +

(
‖yn‖2 + |yn|2nL2n

)
〈yn, yn〉 −

〈
yn, y

2n−1
n

〉
= −‖yn‖2 +

(
‖yn‖2 + |yn|2nL2n

)
|yn|2H − |yn|

2n
L2n

=
(
|yn|2H − 1

) (
‖yn‖2 + |yn|2nL2n

)
. (4.2.47)

Next

〈yn, Bj (yn)〉 = 〈yn, fj − 〈fj, yn〉 yn〉 ,

= 〈yn, fj〉 − 〈fj, yn〉 〈yn, yn〉 ,

= 〈yn, fj〉
(
1− |yn|2H

)
. (4.2.48)

Now using equation (4.2.48),

〈yn, κj(yn)〉 = 〈yn,−〈fj, yn〉Bj(yn)− 〈fj, Bj(yn)〉 yn〉

= −〈fj, yn〉 〈yn, Bj(yn)〉 − 〈fj, Bj(yn)〉 〈yn, yn〉

= −〈fj, yn〉 〈yn, fj〉
(
1− |yn|2H

)
− 〈fj, fj − 〈fj, yn〉 yn〉 |yn|2H

= 〈yn, fj〉2
(
|yn|2H − 1

)
− [〈fj, fj〉 − 〈fj, yn〉 〈fj, yn〉] |yn|2H

= 〈yn, fj〉2
(
|yn|2H − 1

)
− |fj|2H |yn|

2
H + 〈fj, yn〉2 |yn|2H

= 〈yn, fj〉2
(
2 |yn|2H − 1

)
− |fj|2H |yn|

2
H (4.2.49)

Finally,

〈Bj (yn) , Bj (yn)〉 = 〈fj − 〈fj, yn〉 yn, fj − 〈fj, yn〉 yn〉 ,

= 〈fj, fj〉 − 〈fj, yn〉2 − 〈fj, yn〉2 + 〈fj, yn〉2 〈yn, yn〉

= |fj|2H + 〈fj, yn〉2
(
|yn|2H − 2

)
. (4.2.50)
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Substituting equations (4.2.47), (4.2.48), (4.2.49) and (4.2.50) into equation

(4.2.46) with yn = yn(s) and using fact that |u0|2H = 1, it follows that,

1

2

(
|yn (t ∧ τn)|2H − 1

)
=

∫ t∧τn

0

(
|yn|2H − 1

) (
‖yn‖2 + |yn|2nL2n

)
ds

+
εn
2

N∑
j=1

∫ t∧τn

0

[
〈yn, fj〉2

(
2 |yn|2H − 1

)
− |fj|2H |yn|

2
H

]
ds

−
N∑
j=1

∫ t∧τn

0

〈yn, fj〉
(
|yn|2H − 1

)
hn,j (s) ds

+
εn
2

N∑
j=1

∫ t∧τn

0

[
|fj|2H + 〈fj, yn〉2

(
|yn|2H − 2

)]
ds,

+
√
εn

N∑
j=1

∫ t∧τn

0

〈yn, fj〉
(
|yn|2H − 1

)
dWj (s)

Combining first, third and second, fourth Riemann integrals into a single Riemann

integral of last equation, we get

1

2

(
|yn (t ∧ τn)|2H − 1

)
=

∫ t∧τn

0

(
|yn (s)|2H − 1

) (
‖yn (s)‖2 + |yn (s)|2nL2n − 〈yn(s), fj〉hn,j (s)

)
ds

+
εn
2

N∑
j=1

∫ t∧τn

0

 〈yn (s) , fj〉2
(
2 |yn (s)|2H − 1

)
− |fj|2H |yn (s)|2H

+ |fj|2H + 〈fj, yn〉2
(
|yn|2H − 2

)
 ds

+
√
εn

N∑
j=1

∫ t∧τn

0

〈yn, fj〉
(
|yn|2H − 1

)
dWj (s) .

Simplifying the integrand of the second integral we get,

1

2

(
|yn (t ∧ τn)|2H − 1

)
=

∫ t∧τn

0

(
|yn (s)|2H − 1

) (
‖yn (s)‖2 + |yn (s)|2nL2n − 〈yn(s), fj〉hn,j (s)

)
ds

+
εn
2

N∑
j=1

∫ t∧τn

0

[(
3 〈yn (s) , fj〉2 − |fj|2H

) (
|yn (s)|2H − 1

)]
ds

+
√
εn

N∑
j=1

∫ t∧τn

0

〈yn, fj〉
(
|yn|2H − 1

)
dWj (s) .
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Combining the first two Riemann integrals,

1

2

(
|yn (t ∧ τn)|2H − 1

)
=

∫ t∧τn

0

 ‖yn (s)‖2 + |yn (s)|2nL2n − 〈yn(s), fj〉hn,j (s)

εn
2

(
3 〈yn (s) , fj〉2 − |fj|2H

)


·
(
|yn (s)|2H − 1

)
ds

+
√
εn

N∑
j=1

∫ t∧τn

0

〈yn, fj〉
(
|yn|2H − 1

)
dWj (s) .

(4.2.51)

To simplify argument we treat N = 1, and for t ∈ [0, T ] let us define the following

functions,

ϕ(t) : = |yn (t)|2H − 1

α(t) : = 〈yn (t) , f1〉

β(t) : = ‖yn (t)‖2 + |yn (t)|2nL2n − 〈yn (t) , fj〉hn,j (t)

+
εn
2

(
3 〈yn (t) , fj〉2 − |fj|2H

)
F (t, ϕ(t)) : = α(t)ϕ(t)

G(t, ϕ(t)) : = β(t)ϕ(t)

The last equation (4.2.51) can be rewritten as, for t ∈ [0, T ] ,

ϕ(t)

2
=

∫ t∧τn

0

F (s, ϕ(s))dW1(s) +

∫ t∧τn

0

G(s, ϕ(s))ds, (4.2.52)

and ϕ(0) : = |u (0)|2H − 1 = 0

To get the desired result it is sufficient to show existence and uniqueness of above

presented the linear problem, and for this it is enough to that F and G are Lipschitz

in the second argument (See Theorem 7.7, [5]). For x, y ∈ R, t ∈ [0, T ] and ω ∈ Ω,

|F (t, x)− F (t, y)| = |α(t, ω)x− α(t, ω)y| = |α(t, ω)| |x− y|

and |G(t, x)−G(t, y)| = |β(t, ω)x− β(t, ω)y| = |β(t, ω)| |x− y|
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Hence to show that F and G are Lipschitz it is only needed to show that maps α

and β are bounded. Let us start with α. Using the Cauchy-Schwartz inequality, we

infer that

|α(t)| ≤ |〈yn (t ∧ τn) , f1〉| ≤ |yn (t ∧ τn)|H |f1|H , t ∈ [0, T ] .

As f1 ∈ V ⊂ H so |f1|H < ∞, also using continuity of embedding V ↪→ H and

definition of τn it follows that

|α(t, ω)| ≤ c ‖yn (t ∧ τn)‖ ≤ m |f1|H , t ∈ [0, T ] .

Hence α is bounded.

Next, for t ∈ [0, T ] and ω ∈ Ω, again using continuity of embeddings V ↪→ H

and L2n ↪→ V , f1 ∈ V ⊂ H, for the fixed t ∈ [0, T ] the |hn,j (t)| < ∞, and the

definition of τn, we infer the boundedness of map β in the following manner,

|β(t)| =

∣∣∣∣∣∣ ‖yn (t ∧ τn)‖2 + |yn (t ∧ τn)|2nL2n + εn 〈yn (t ∧ τn) , f1〉2

− εn
2
|f1|2H − 〈yn (t ∧ τn) , f1〉hn,j (t)

∣∣∣∣∣∣
≤ ‖yn (t ∧ τn)‖2 + c2n ‖yn (t ∧ τn)‖2n + εn |yn (t ∧ τn)|2H |f1|2H

+
εn
2
|f1|2H + |〈yn (t ∧ τn) , f1〉| |hn,j (t)|

≤ ‖yn (t ∧ τn)‖2 + c2n ‖yn (t ∧ τn)‖2n + c2εn ‖yn (t ∧ τn)‖2 |f1|2H

+
εn
2
|f1|2H + |yn (t ∧ τn)|H |f1|2H |hn,j (t)|

≤ m2 + c2nm2n + c2εnm
2 |f1|2H +

εn
2
|f1|2H +m |f1|H |hn,j (t)| .

Hence β is bounded.

This completes the proof. �

Lemma 4.2.22. There exists a constant C (u0, T,K) such that, for all n ∈ N and

for all hn ∈ L2
(
0, T ;RN

)
satisfying

∫ T
0
|hn(s)|2RN ds ≤ K, we have

lim sup
n→∞

E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+

∫ T∧τn

0

|∆yn(s)|2H ds

]
≤ C (u0, T,K) . (4.2.53)
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Proof. Before going towards proof of the required inequality let us see that by

Definition 4.2.45 of τn we have the following inequality,

‖yn (t)‖ ≤ m, 0 ≤ t ≤ τn. (4.2.54)

Let us fix t ∈ [0, T ] . Recall that, P-a.s.,

yn (t) = =εn
(
εnWj(t) +

∫ t

0

hn,j (s) ds

)
= u0 +

∫ t

0

(∆yn (s) + F (yn (s))) +
εn
2

N∑
j=1

∫ t

0

κj(yn(s))ds

+
N∑
j=1

∫ t

0

Bj (yn (s))hn,j (s) ds+
√
εn

N∑
j=1

∫ t

0

Bj (yn (s)) dWj (s) .

Our intentions are to apply Itô Lemma, to process
(
‖yn(t ∧ τn)‖2)

t∈[0,T ]
. For

t ∈ [0, T ], by Itô Lemma we have the following

‖yn(t ∧ τn)‖2 = −2

∫ t∧τn

0

〈∆yn(s),∆yn(s)〉 ds+ 2

∫ t∧τn

0

〈−∆yn(s), F (yn (s))〉 ds

+εn

N∑
j=1

∫ t∧τn

0

〈−∆yn(s), κj(yn (s))〉 ds

+2
N∑
j=1

∫ t∧τn

0

〈−∆yn(s), Bj (yn (s))〉hn,j (s) ds

+2
√
εn

N∑
j=1

∫ t∧τn

0

〈−∆yn(s), Bj (yn (s))〉 dWj (s)

+εn

N∑
j=1

∫ t∧τn

0

〈Bj (yn (s)) , Bj (yn (s))〉V ds, P-a.s.

= : −2I1 + 2I2 + εn

N∑
j=1

I3,j + 2
N∑
j=1

I4,j + 2
√
εn

N∑
j=1

I5,j + εn

N∑
j=1

I6,j.

(4.2.55)
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Let us estimate the each of integral in last equation,

I1 =

∫ t∧τn

0

〈∆yn(s),∆yn(s)〉 ds

=

∫ t∧τn

0

|∆yn(s)|2H ds (4.2.56)

Now consider the second integral I2, using Cauchy-Schwartz, continuity of

embedding V ↪→ H and inequalities (4.2.11), (4.2.54) we infer that,

I2 =

∫ t∧τn

0

〈−∆yn(s), F (yn (s))〉 ds

≤
∫ t∧τn

0

|F (yn (s))|H |∆yn(s)|H ds

≤ c

∫ t∧τn

0

‖F (yn (s))‖ |∆yn(s)|H ds

≤ c

∫ t∧τn

0

G (‖yn (s)‖ , 0) ‖yn(s)‖ |∆yn(s)|H ds

≤ cG (m, 0)m

∫ t∧τn

0

|∆yn(s)|H ds

= C

∫ t∧τn

0

|∆yn(s)|H ds, (4.2.57)

where C := cG (m, 0)m < ∞ and G : [0,∞) × [0,∞) → [0,∞) is a bounded and

symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

By taking a = C, b = |∆yn(s)|H , p = q = 2 and σ = 1
2

for the Young inequality

(4.2.9) and using it into (4.2.57) we get,

I2 ≤ C2

∫ t∧τn

0

ds+
1

4

∫ t∧τn

0

|∆yn(s)|2H ds.
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= C2 (t ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds

= C2 (t ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds

≤ C2 (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds,

where C2 := C2 <∞.

Now consider the third integral I3,j, using Cauchy Schwartz inequality and

(4.2.15), we infer

I3,j =

∫ t∧τn

0

〈−∆yn(s), κj(yn (s))〉 ds

≤
∫ t∧τn

0

|κj(yn (s))|H |∆yn(s)|H ds

≤
∫ t∧τn

0

|f |2H
[
2 + |yn (s)|2H + |yn (s)|2H

]
|yn (s)| |∆yn(s)|H ds.

Using continuity of embedding V ↪→ H and (4.2.54) we get

I3,j ≤ c |f |2H
∫ t∧τn

0

[
2 + 2c2 ‖yn (s)‖2 +

]
‖yn (s)‖ |∆yn(s)|H ds,

≤ C

∫ t∧τn

0

|∆yn(s)|H ds,

where C := c |f |2H [2 + 2c2m2]m < ∞. By taking a = C, b = |∆yn(s)|H , p = q = 2

and σ = 1
2εnN

for the Young inequality (4.2.9), the last inequality becomes,

I3,j ≤ Nεn

∫ t∧τn

0

C2ds+
1

4εnN

∫ t∧τn

0

|∆yn(s)|2H ds

= NεnC
2 (t ∧ τn) +

1

4εnN

∫ t∧τn

0

|∆yn(s)|2H ds

= εnC (T ∧ τn) +
1

4εnN

∫ t∧τn

0

|∆yn(s)|2H ds,
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where C := NC2. Taking sum on j on both sides and multiplying εn we get

εn

N∑
j=1

I3,j ≤ ε2
nC

N∑
j=1

(t ∧ τn) +
1

4N

N∑
j=1

∫ t∧τn

0

|∆yn(s)|2H ds

= Nε2
nC (t ∧ τn) +

1

4

∫ t∧τn

0

|∆yn(s)|2H ds

= ε2
nC3 (T ∧ τn) +

1

4

∫ t∧τn

0

|∆yn(s)|2H ds,

where C3 := NC <∞.

Now consider the 4th integral i.e. I4,j. Use of Cauchy-Schwartz and inequality

(4.2.12), we get

I4,j =

∫ t∧τn

0

〈−∆yn(s), Bj (yn (s))〉hεnj (s) ds

≤
∫ t∧τn

0

|∆yn(s)|H |Bj (yn (s))|H hn,j (s) ds

≤
∫ t∧τn

0

|∆yn(s)|H C |f |H ‖yn (s)‖2 hn,j (s) ds

Using fact that f ∈ V ⊂ H and (4.2.54) , we infer C |f |H ‖yn (s)‖2 ≤ CKm2 =: C,

therefore the last inequality simplifies to the following,

I4,j ≤ C

∫ t∧τn

0

|∆yn (s)|H hn,j (s) ds,

By taking a = Chn,j, b = |∆yn|H , p = q = 2 and σ = 1
4N

into the Young inequality

and applying to last inequality,

I4,j ≤ 2NC2

∫ t∧τn

0

(hn,j (s))2 ds+
1

8N

∫ t∧τn

0

|∆yn(s)|2H ds

= 2NC2K (T ∧ τn) +
1

8N

∫ t∧τn

0

|∆yn(s)|2H ds.

In the last first term of inequality we have used (4.2.44). Taking sum on j on both
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sides and multiplying 2 we get

2
N∑
j=1

I4,j ≤ 2N2C2K (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds, (4.2.58)

= C4 (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds.

where C4 := 2N2C2K <∞.

Consider the 5th integral i.e. I5,j.

I5,j =

∫ t∧τn

0

〈−∆yn(s), Bj (yn (s))〉 dWj (s)

Taking expectation supremum and taking expectation on both sides I5,j

E

(
sup
t∈[0,T ]

I5,j

)
= E

(
sup
t∈[0,T ]

∫ t∧τn

0

〈−∆yn(s), Bj (yn (s))〉 dWj (s)

)
Using the Burkholder-Davis-Gundy inequality p = 1 i.e.

E

(
sup
t∈[0,T ]

∣∣∣∫ t0 ψ(u(s))dWj (s)
∣∣∣) ≤ 3E

(∣∣∣∫ T0 ψ(u(s))2ds
∣∣∣)1/2

, (see Theorem 1.1.6,

[39]) we infer that

E

(
sup
t∈[0,T ]

I5,j

)
≤ 3E

(∫ T∧τn

0

〈−∆yn(s), Bj (yn (s))〉2 ds
)1/2

≤ 3E
(∫ T∧τn

0

|∆yn(s)|2H |Bj (yn (s))|2H ds
)1/2

Now using inequalities 4.2.13 and (4.2.54) we infer that for s ≤ τn, we have

|Bj (yn (s))|2H ≤ C |fj|H ‖yn (s)‖2 ≤ C |fj|H m =: C5

Hence

E

(
sup
t∈[0,T ]

I5,j

)
≤ 3C5E

(∫ T∧τn

0

|∆yn(s)|2H ds
)1/2

≤ 3C5 max

{
E
∫ T∧τn

0

|∆yn(s)|2H ds, 1
}

≤ 3C5

(
1 + E

∫ T∧τn

0

|∆yn(s)|2H ds
)

= 3C5 + 3C5E
∫ T∧τn

0

|∆yn(s)|2H ds. (4.2.59)
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Consider the last 6th integral i.e. I6,j. Use of inequality (4.2.12), we get

I6,j =

∫ t∧τn

0

〈Bj (yn (s)) , Bj (yn (s))〉V ds

=

∫ t∧τn

0

‖Bj (yn (s))‖2 ds

≤ C

∫ t∧τn

0

|f |H ‖yn (s)‖2 ds

Use of inequality gives (4.2.54),

I6,j ≤ C |f |H m
2 (T ∧ τn) .

Taking sum on j on both sides and multiplying εn we get

εn

N∑
j=1

I6,j ≤ εn

N∑
j=1

C |f |H m
2 (T ∧ τn)

= εnNC |f |H m
2 (T ∧ τn)

= εn (T ∧ τn)C6, (4.2.60)

where C6 := NC |f |H m2 <∞.

Adding inequalities (4.2.56)-(4.2.60) and using it into (4.2.55) we get

‖yn(t ∧ τn)‖2 ≤ −2

∫ t∧τn

0

|∆yn(s)|2H ds+ C2 (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds

εnC3 (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds

C4 (T ∧ τn) +
1

4

∫ t∧τn

0

|∆yn(s)|2H ds

+2εn

N∑
j=1

I5,j + εn (T ∧ τn)C6

= −5

4

∫ t∧τn

0

|∆yn(s)|2H ds+ (C2 + εnC3 + C4εnC6) (T ∧ τn)

+ 2εn

N∑
j=1

I5,j
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Taking supremum on both sides,

sup
t∈[0,T ]

‖yn(t ∧ τn)‖2 ≤ −5

4

∫ t∧τn

0

|∆yn(s)|2H ds

+ (C2 + εnC3 + C4εnC6) (T ∧ τn)

+ 2εn

N∑
j=1

sup
t∈[0,T ]

I5,j

Taking expectations on both sides we get

E sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2) ≤ −5

4
E
(∫ t∧τn

0

|∆yn(s)|2H ds
)

+ (C2 + εnC3 + C4εnC6) (T ∧ τn)

+ 2εnE

(
sup
t∈[0,T ]

I5,j

)
.

Using inequality (4.2.59),

E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+

(
5

4
−N6εnC5

)(∫ T∧τn

0

|∆yn(s)|2H ds
)]

≤ (C2 + εnC3 + C4 + 6εnC5 + εnC6) (T ∧ τn)

Now we can find a natural number n0 such that
(

5
4
−N6εnC5

)
≥ 1

2
, for all n ≥ n0.

It follows that,

E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+

1

2

(∫ T∧τn

0

|∆yn(s)|2H ds
)]

≤ E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+ (1−N6εnC5)

(∫ T∧τn

0

|∆yn(s)|2H ds
)]

≤ (C2 + εnC3 + C4εn + 6εnC5 + C6) (T ∧ τn) (T ∧ τn)

for all n ≥ n0. Hence using the inequality above we infer that, for all n ≥ n0,

E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+

∫ T∧τn

0

|∆yn(s)|2H ds

]
≤ C,

where C := (C2 + εnC3 + C4εn + 6εnC5 + C6) (T ∧ τn). This completes the proof of

the theorem. �
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In the framework of Theorem 4.2.20, we prove the following key Lemma.

Lemma 4.2.23. Assume that m ∈ (‖u0‖ ,∞) . If τn be the stopping times defined

by equation (4.2.45), and ξn := yn − un = =εnhn

((
εnWj +

∫ t
0
hn,j (s) ds

)N
j=1

)
−=0

hn
.

Then

lim
n→∞

E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ T∧τn

0

|ξn(s)|2E ds

)
= 0

Proof. Let us begin by giving expressions for un and yn respectively. For t ∈ [0, T ] ,

un(t) = =0
hn (hn) (t)

= u0 +

∫ t

0

(∆un (s) + F (un (s))) ds+
N∑
j=1

∫ t

0

Bj (un (s))hn,j (s) ds

and

yn (t) = =εnhn

((
εnWj +

∫ t

0

hn,j (s) ds

)N
j=1

)

= u0 +

∫ t

0

(∆yn (s) + F (yn (s))) +
εn
2

N∑
j=1

∫ t

0

κj(yn(s))ds

+
N∑
j=1

∫ t

0

Bj (yn (s))hn,j (s) ds+
√
εn

N∑
j=1

∫ t

0

Bj (yn (s)) dWj (s) , P-a.s.

As we denote ξn := yn − un, so by taking difference of last equations, for t ∈ [0, T ] ,

ξn =

∫ t

0

(∆ξn(s)) ds+

∫ t

0

(F (yn (s))− F (un (s))) ds

+
εn
2

N∑
j=1

∫ t

0

κj(yn (s))ds

+
N∑
j=1

∫ t

0

[Bj (yn (s))−Bj (un (s))]hn,j (s) ds

+
√
εn

N∑
j=1

∫ t

0

Bj (yn (s)) dWj (s) ,P-a.s. (4.2.61)

Our intentions are to apply Itō Lemma, to process
(
‖ξn(t ∧ τn)‖2)

t∈[0,T ]
.
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For t ∈ [0, T ], by Itô Lemma we have the following,

‖ξn(t ∧ τn)‖2 = −2

∫ t∧τn

0

〈∆ξn(s),∆ξn(s)〉 ds

+2

∫ t∧τn

0

〈−∆ξn(s), F (yn (s))− F (un (s))〉 ds

+εn

N∑
j=1

∫ t∧τn

0

〈−∆ξn(s), κj(yn (s))〉 ds

+2
N∑
j=1

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))−Bj (un (s))〉hn,j (s) ds

+2εn

N∑
j=1

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

+ε2
n

N∑
j=1

∫ t∧τn

0

〈Bj (yn (s)) , Bj (yn (s))〉V ds, P-a.s.

= : −2I1 + 2I2 + εn

N∑
j=1

I3,j + 2
N∑
j=1

I4,j (4.2.62)

+2εn

N∑
j=1

I5,j + ε2
n

N∑
j=1

I6,j.

Before proceeding further let us recall the following inequalities, which we are

going to use frequently in rest of proof. From definition of τn i.e. (4.2.45), it follows

that,

‖yn (t)‖ ≤ m, t ∈ [0, τn], (4.2.63)

and from Lemma 4.2.15,

‖un (t)‖ ≤ C (u0, T,K) , t ∈ [0, T ]. (4.2.64)

Also set

K := max
{
|fj|2H , ‖fj‖

2}N
j=1

<∞. (4.2.65)
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Consider the first integral I1 in last equation,

I1 =

∫ t∧τn

0

〈∆ξn(s),∆ξn(s)〉 ds

=

∫ t∧τn

0

|∆ξn(s)|2H ds (4.2.66)

Now consider the second integral I2, using Cauchy-Schwartz and inequalities

(4.2.11), (4.2.63) and (4.2.64),

I2 =

∫ t∧τn

0

〈−∆ξn(s), F (yn (s))− F (un (s))〉 ds

≤
∫ t∧τn

0

G (‖yn (s)‖ , ‖un(s)‖) ‖ξn(s)‖ |∆ξn(s)|H ds

≤
∫ t∧τn

0

G (m,C) ‖ξn(s)‖ |∆ξn(s)|H ds

= C

∫ t∧τn

0

‖ξn(s)‖ |∆ξn(s)|H ds, (4.2.67)

where C := G (m,C). Here G : [0,∞) × [0,∞) → [0,∞) is a bounded and

symmetric map, defined as

G(r, s) : = C2
(
r2 + s2

)
+ (r + s)2 + C2n+1

 (2n−1
2

)
(r2n−1 + s2n−1) (r + s)

+ (r2n + s2n)


+C2n−1

(
2n− 2

2

)(
r2n−2 + s2n−2

)
.

We are now going to apply the Young inequality (4.2.9) to integrand in inequality

(4.2.67). By taking a = C ‖ξn‖ , b = |∆ξn(s)|H , p = q = 2 and σ = 1
2

for the Young

inequality (4.2.9) and using it into (4.2.67) we get,

I2 ≤ C2

∫ t∧τn

0

‖ξn(s)‖2 ds+
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds

= C2

∫ t∧τn

0

‖ξn(s)‖2 ds+
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds,

where C2 := C2.
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Now consider the third integral I3,j, using Cauchy Schwartz inequality and

(4.2.15), we infer

I3,j =

∫ t∧τn

0

〈−∆ξn(s), κj(yn (s))〉

≤
∫ t∧τn

0

|∆ξn(s)|H |κj(yn (s))|H

≤
∫ t∧τn

0

|f |2H
[
2 + |yn (s)|2H + C |yn (s)|2H

]
|yn (s)|H |∆ξn(s)|H ds,

Using continuity of the embedding V ↪→ H , inequalities (4.2.63) and (4.2.65) we

get

I3,j ≤
∫ t∧τn

0

K
[
2 +m2 + Cm2

]
m |∆ξn(s)|H ds,

=

∫ t∧τn

0

C |∆ξn(s)|H ds

Where C := K [2 +m2 + Cm2]m. By taking a = C, b = |∆ξn(s)|H , p = q = 2 and

σ = 1
2εnN

for the Young inequality (4.2.9), the last inequality becomes,

I3,j ≤ Nεn

∫ t∧τn

0

C2ds+
1

4εnN

∫ t∧τn

0

|∆ξn(s)|2H ds

= NεnC
2 (t ∧ τn) +

1

4εnN

∫ t∧τn

0

|∆ξn(s)|2H ds

Taking sum on j on both sides and multiplying by εn we get

εn

N∑
j=1

I3,j ≤ NεnC
2

N∑
j=1

(t ∧ τn) +
1

4εnN

N∑
j=1

∫ t∧τn

0

|∆ξn(s)|2H ds

= Nε2
nC

2 (t ∧ τn) +
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds

= ε2
nC3 (t ∧ τn) +

1

4

∫ t∧τn

0

|∆ξn(s)|2H ds,

(4.2.68)

where C3 := NC2.

Now consider the 4th integral i.e. I4,j. Use of Cauchy-Schwartz and inequality
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(4.2.12), we get

I4,j =

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))−Bj (un (s))〉hn,j (s) ds

≤
∫ t∧τn

0

|∆ξn(s)|H |Bj (yn (s))−Bj (un (s))|H hn,j (s) ds

≤
∫ t∧τn

0

|∆ξn(s)|H C |f |H (‖yn (s)‖+ ‖un (s)‖) ‖yn (s)− un (s)‖hn,j (s) ds

=

∫ t∧τn

0

C |f |H (‖yn (s)‖+ ‖un (s)‖) |∆ξn(s)|H ‖ξn(s)‖hn,j (s) ds.

Using (4.2.63), (4.2.64) and (4.2.65) we infer

C |f |H (‖yn (s)‖+ ‖un (s)‖) ≤ CK (m+ C) =: C, therefore the last inequality

simplifies to the following,

I4,j ≤
∫ t∧τn

0

C |∆ξn(s)|H ‖ξn(s)‖hn,j (s) ds.

By taking a = C ‖ξn‖hn,j, b = |∆ξn(s)|H , p = q = 2 and σ = 1
4N

into the Young

inequality and applying to last inequality,

I4,j ≤ 2NC2

∫ t∧τn

0

‖ξn(s)‖2 (hn,j (s))2 ds+
1

8N

∫ t∧τn

0

|∆ξn(s)|2H ds

= 2NC2

∫ t∧τn

0

‖ξn(s)‖2 (hn,j (s))2 ds+
1

8N

∫ t∧τn

0

|∆ξn(s)|2H ds,

Taking sum on j on both sides and multiplying 2 we get

2
N∑
j=1

I4,j ≤ C4

N∑
j=1

∫ t∧τn

0

‖ξn(s)‖2 (hn,j (s))2 ds+
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds,

where C4 := 4NC2 <∞.

Since I5,j is the Itô integral so we deal it later and keep it as it is.
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Consider the last 6th integral i.e. I6,j,. Using inequality (4.2.12) it follows that,

I6,j =

∫ t∧τn

0

〈Bj (yn (s)) , Bj (yn (s))〉V ds

≤
∫ t∧τn

0

‖Bj (yn (s))‖2 ds

≤ C

∫ t∧τn

0

|f |H ‖yn (s)‖2 ds

Using inequality (4.2.63) and (4.2.65) into last inequality,

I6,j ≤ CKm (t ∧ τn)

Taking sum on j on both sides and multiplying εn we get

εn

N∑
j=1

I6,j ≤ εn

N∑
j=1

CKm(t ∧ τn) = C6εn(T ∧ τn), (4.2.69)

where C6 := CKm.

Adding inequalities (4.2.66)-(4.2.69) and using it into (4.2.63) we get

‖ξn(t ∧ τn)‖2 ≤ −2

∫ t∧τn

0

|∆ξn(s)|2H ds+ C2

∫ t∧τn

0

‖ξn(s)‖2 ds+
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds

+ε2
nC3 (t ∧ τn) +

1

4

∫ t∧τn

0

|∆ξn(s)|2H ds

+2C4

N∑
j=1

∫ t∧τn

0

‖ξn(s)‖2 (hn,j (s))2 ds+
1

4

∫ t∧τn

0

|∆ξn(s)|2H ds

+2
√
εn

N∑
j=1

I5,j + C6εn(T ∧ τn)

≤ −
∫ t∧τn

0

|∆ξn(s)|2H ds+ 2
√
εn

N∑
j=1

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

+

∫ t∧τn

0

(
C2 + 2C4 (hn,j (s))2) ‖ξn(s)‖2 +

(
C6εn + ε2

nC3

)
(T ∧ τn)
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‖ξn(t ∧ τn)‖2 +

∫ t∧τn

0

|∆ξn(s)|2H ds ≤ 2
√
εn

N∑
j=1

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

+
(
C6εn + ε2

nC3

)
(T ∧ τn)

+

∫ t∧τn

0

(
C2 + 2C4 (hn,j (s))2)

·
(
‖ξn(t ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

Taking supremum on both sides,

sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + 2

√
εn

N∑
j=1

sup
t∈[0,T ]

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

+ sup
t∈[0,T ]

∫ t∧τn

0

(
C2 + 2C4 (hn,j (s))2) · (‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +
∫ t∧τn

0
|∆ξn(s)|2H ds

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + 2

√
εn

N∑
j=1

sup
t∈[0,T ]

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

+

∫ T∧τn

0

sup
s∈[0,T ]

(
C2 + 2C4 (hn,j (s))2) · sup

s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds.

Taking expectations on both sides we get

E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)
≤

(
C6εn + ε2

nC3

)
(T ∧ τn) + 2

√
εnC

N∑
j=1

(
E sup
t∈[0,T ]

∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉 dWj (s)

)

+

∫ t∧τn

0

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
t∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

Using the Burkholder inequality for p = 1,
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E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + 12εnC

2

N∑
j=1

E
(∫ t∧τn

0

〈−∆ξn(s), Bj (yn (s))〉2 ds
)

+

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + 12εnC

2

N∑
j=1

E
(∫ t∧τn

0

|−∆ξn(s)|2H |Bj (yn (s))|2H ds
)

+

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

Now using inequalities (4.2.13), (4.2.63) and (4.2.65) we infer that for s ≤ τn, we

have

|Bj (yn (s))|2H ≤ C |f |H ‖yn (s)‖2 ≤ CKm =: C7

Hence the last inequality simplifies to

E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)

≤ C6εn(T ∧ τn) + 12εnC7

N∑
j=1

E

(
sup
t∈[0,T ]

∫ t∧τn

0

|∆ξn(s)|2H ds

)

+

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

or
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E

(
sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 + (1− 12εnC7)

∫ τn
0
|∆ξn(s)|2H ds

))

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + E

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

Next, we can find a natural number n0 such that (1− 12εnC7) ≥ 1
2
, for all n ≥ n0.

It follows that for all n ≥ n0,

E

(
sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 + 1

2

∫ τn
0
|∆ξn(s)|2H ds

))

≤
(
C6εn + ε2

nC3

)
(T ∧ τn) + E

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

2C

N
+ 2C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds

Multiplying both sides of inequality by 2, we get

E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)

≤ 2
(
C6εn + ε2

nC3

)
(T ∧ τn) +

∫ t∧τn

0

sup
s∈[0,T ]

(
N∑
j=1

4C

N
+ 4C (hn,j (s))2

)

·E sup
s∈[0,T ]

(
‖ξn(s ∧ τn)‖2 +

∫ s∧τn

0

|∆ξn(r)|2H dr
)
ds,

for all n ≥ n0. Set

F (t) : = E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn

0

|∆ξn(s)|2H ds
)

α(t) : = 2
(
C6εn + ε2

nC3

)
(T ∧ τn)

β(t) : = sup
s∈[0,T ]

(
N∑
j=1

4C

N
+ 4C (hn,j (s))2

)
Using this notation the last inequality becomes,

F (t) ≤ α(t) +

∫ t∧τn

0

β(s)F (s).
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Observe that α is non-decreasing and β is non-negative, hence using Gronwall

Lemma 4.2.8 and using assumption
∫ T

0
hn,j (s)2 ds ≤ K,

F (t) ≤ α(s)e
∫ t∧τn
0 β(r)dr

i.e.

E sup
t∈[0,T ]

(
‖ξn(t ∧ τn)‖2 +

∫ t∧τn
0
|∆ξn(s)|2H ds

)

≤ 2
(
C6εn + ε2

nC3

)
(T ∧ τn) exp

[∫ t∧τn

0

(
N∑
j=1

4C

N
+ 4Chn,j (s)2

)]

≤ 2
(
C6εn + ε2

nC3

)
(T ∧ τn) exp

[
N∑
j=1

4C

N
(T ∧ τn) + 4CK

]
.

Passing the limit n → ∞ i.e. εn → 0 , we infer that the right hand side of above

inequality tends to zero. Thus

lim
n→∞

E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ t∧τn

0

|∆ξn(s)|2H ds

)
= 0 .

This completes the proof. �

The last Lemma 4.2.20 was one of the key results towards the proving main

result of the section Theorem 4.2.20. Before going towards the proof of the main

result, let us prove the following important corollary.

Corollary 4.2.24. Assume that m ∈ (‖u0‖ ,∞), τn be the stopping time defined

by equality (4.2.45) and ξn := yn − un is as described in equation (4.2.61). The

sequence of XT -valued process (ξn)n∈N converges in probability to 0.

Proof. We want show that for all δ > 0,

P

({
sup
t∈[0,T ]

‖ξn(t)‖2 +

∫ T

0

|∆ξn(s)|2H ds > δ

})
→ 0 as n→∞.
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i.e. for all δ > 0 and for all ε > 0 there exists n0 such that

P

({
sup
t∈[0,T ]

‖ξn(t)‖2 +

∫ T

0

|∆ξn(s)|2H ds ≥ δ

})
< ε, for all n ≥ n0.

Recall that, in Lemma 4.2.23 we concluded that,

lim
n→∞

E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ τn

0

|ξn(s)|2E ds

)
= 0.

Also recall from 4.2.22 that there exists constant C (u0, T,K) such that, for all

n ∈ N and we have

lim sup
n→∞

E

[
sup
t∈[0,T ]

(
‖yn(t ∧ τn)‖2)+

∫ τn

0

|∆yn(s)|2H ds

]
≤ C (u0, T,K) .

Let δ > 0 and ε > 0. Choose an auxiliary m > ‖u0‖ and n0 = n0 (ε, δ) such that,

1

m
sup
n∈N

E

(
sup
t∈[0,T ]

‖yn (t)‖

)
<
ε

2
, for all n ≥ n0, (4.2.70)

and

E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ τn

0

|ξn(s)|2E ds

)
<
δε

2
, for all n ≥ n0. (4.2.71)

Employing the Lemma 4.2.23 and for sufficiently large n consider the following set

of inequalities

P

({
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ T

0

|∆ξn(s)|2H ds ≥ δ

})

≤ P

({
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ τn

0

|∆ξn(s)|2H ds ≥ δ, τn = T

})

+P

({
sup
t∈[0,T ]

‖yn (t)‖ ≥ m

})
.

Using Chebyshev inequality on both two terms, on right hand side of, last inequality,
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we get

P

({
sup
t∈[0,T ]

‖ξn(t)‖2 +

∫ T

0

|∆ξn(s)|2H ds ≥ δ

})

≤ 1

δ
E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ τn

0

|∆ξn(s)|2H ds

)

+
1

m
E

(
sup
t∈[0,T ]

‖yn (t)‖

)

≤ 1

δ
E

(
sup
t∈[0,T ]

‖ξn(t ∧ τn)‖2 +

∫ τn

0

|∆ξn(s)|2H ds

)

+
1

m
sup
n∈N

E

(
sup
t∈[0,T ]

‖yn (t)‖

)

Using inequalities (4.2.70)) and (4.2.71) into last inequality,

P

({
sup
t∈[0,T ]

‖ξn(t)‖2 +

∫ T

0

|∆ξn(s)|2H ds ≥ δ

})
<
ε

2
+
ε

2
= ε.

This completes the proof. �

Recall that, we shown in the Lemma 4.2.19 that, if (hn)n∈N is a sequence in

L2
(
0, T ;RN

)
that converges weakly to h in L2

(
0, T ;RN

)
on BK then

(uhn)n∈N :=
(
=0
hn

)
n∈N converges in distribution to uh := =0

h (4.2.72)

in XT -norm. This implies that =0
h : L2

(
0, T ;RN

)
→ XT is Borel measurable.

Next let (εn)n∈N be a sequence from (0, 1] that converges to zero as n→∞. Let

(hn)n∈N be a sequence of predictable processes that converges in distribution on

BK :=

{
h ∈ L2

(
0, T ;RN

)
:

∫ T

0

|h (s)|2RN ds ≤ K <∞
}
,

to h. We shown in Lemma 4.2.23 and Corollary 4.2.24

(yn − un)n∈N converges to 0 in probability, (4.2.73)

235



4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

as a sequence of random variables in XT , where yn (·) = =εnhn
(
εnWj +

∫ ·
0
hεnj (s) ds

)
and un = =0

hn
.

Also recall the following Skorohod Theorem from [28]

Theorem 4.2.25. ([28] , Theorem 3.30, page 56). Let ξ, ξ1, ξ2, ξ3, ... be random

elements in superable metric space (S, ρ) such that ξn
d→ ξ. Then on a suitable

probability space, there exists some random elements η
d
= ξ and ηn

d
= ξn, n ∈ N,

with ηn → η a.s.

Finally, we give a proof of main Theorem 4.2.20 of subsection.

Proof. (of Theorem 4.2.20) Let us begin by noticing the fact that BK is a

separable metric space so we can employ the Skorohod Theorem. If (hn)n∈N

converges in distribution to h i.e.

L (hn)→ L (h) on BK .

By the Skorohod theorem (4.2.25) there exist new probability space
(

Ω̃, F̃ , P̃
)

and

random elements h̃n, h̃ : Ω̃→ BK such that

L
(
h̃n

)
= L (hn) for all n ∈ N, (4.2.74)

and

L
(
h̃
)

= L (h) , (4.2.75)

with

h̃n (ω̃)→ h̃ (ω̃) on BK , for all ω̃ ∈ Ω̃. (4.2.76)

Next we claim that

L (uhn) = L
(
uh̃n
)

for all n ∈ N . (4.2.77)
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To see the last equality, observe that uhn = =0
hn

= =0 ◦ hn and

uh̃n = =0

h̃n
= =0 ◦ h̃n, where =0 : BK → XT . Let us pick a Borel set B in XT , and

consider the following,

L (uhn) (B) = L
(
=0 ◦ hn

)
(B)

= P
((
=0 ◦ hn

)−1
(B)
)

= P
(
h−1
n ◦

(
=0
)−1

(B)
)

= P
(
h−1
n

[(
=0
)−1

(B)
])

Since B is Borel set and =0 : BK → XT is continuous therefore (=0)
−1

(B) is Borel

in BK . Hence the last equation turns into

L (uhn) (B) = L (hn)
((
=0
)−1

(B)
)

Using (4.2.75) it follows that

L (uhn) (B) = L
(
h̃n

)((
=0
)−1

(B)
)

= P
((

h̃n

)−1 [(
=0
)−1

(B)
])

= P
((

h̃n

)−1

◦
(
=0
)−1

(B)

)
= P

((
=0 ◦ h̃n

)−1

(B)

)
= L

(
=0 ◦ h̃n

)
(B)

= L
(
uh̃n
)

(B), for all B.

Hence we are done with proving the equality (4.2.77). By the similar argument we

can show that

L (uh) = L
(
uh̃
)

. (4.2.78)

Next we are going to show that two convergence results i.e. (4.2.72) and (4.2.73)

together imply that yn converges in distribution to uh on XT i.e.

L (yn)→ L (uh) as n→∞.

237



4.2. LDP for the Stochastic Heat equation on Hilbert Manifold

For a bounded and uniformly continuous function ψ : XT → R , we have the

following∣∣∫ ψdL (yn)−
∫
ψdL (uh)

∣∣ =

=

∣∣∣∣∫
Ω

ψ (yn) dP −
∫
XT

ψdL (uh)

∣∣∣∣
=

∣∣∣∣∫
Ω

ψ (yn) dP −
∫
XT

ψdL (uhn) +

∫
XT

ψdL (uhn)−
∫
XT

ψdL (uh)

∣∣∣∣
≤

∣∣∣∣∫
Ω

ψ (yn) dP −
∫
XT

ψdL (uhn)

∣∣∣∣
+

∣∣∣∣∫
XT

ψ(x)dL (uhn)−
∫
XT

ψ(x)dL (uh)

∣∣∣∣
≤

∣∣∣∣∫
Ω

ψ (yn) dP −
∫

Ω

ψ(uhn)dP

∣∣∣∣
+

∣∣∣∣∫
XT

ψdL (uhn)−
∫
XT

ψdL (uh)

∣∣∣∣ =: An +Bn. (4.2.79)

We claim that An and Bn both goes to 0 as n→∞.

Let us begin with An. By (4.2.73) we know that (yn − uhn)n∈N converges to 0

in probability as n → ∞. But since convergence in probability implies the weak

convergence and since ψ is bounded continuous so hence

An =

∣∣∣∣∫
Ω

ψ (yn) dP −
∫

Ω

ψ(uhn)dP

∣∣∣∣→ 0 as n→∞. (4.2.80)

Next, consider that Bn from (4.2.79). Using (4.2.77) and (4.2.78)

Bn =

∣∣∣∣∫
XT

ψdL (uhn)−
∫
XT

ψdL (uh)

∣∣∣∣
=

∣∣∣∣∫
XT

ψdL
(
uh̃n
)
−
∫
XT

ψdL
(
uh̃
)∣∣∣∣

=

∣∣∣∣∫
Ω̃

ψ
(
uh̃n(ω̃)

)
dP̃−

∫
Ω̃

ψ
(
uh̃(ω̃)

)
dP̃ (ω̃)

∣∣∣∣
=

∣∣∣∣∫
Ω̃

[
ψ
(
uh̃n(ω̃)

)
dP̃− ψ

(
uh̃(ω̃)

)]
dP̃ (ω̃)

∣∣∣∣ (4.2.81)

Note that uh = =0
h = =0◦h. From (4.2.74) and the fact that the map =0 : BK → XT
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is continuous it follows that for all ω̃ ∈ Ω̃,

uh̃n(ω̃) → uh̃(ω̃) as n→∞.

Since ψ is continuous and bounded function it follows that for all ω̃ ∈ Ω̃,∣∣∣ψ (uh̃n(ω̃)

)
− ψ

(
uh̃(ω̃)

)∣∣∣→ 0 and as n→∞.

Next from above convergence and application of Lebesgue dominated convergence

theorem (see 1.4.32), we infer that,

Bn =

∣∣∣∣∫
Ω̃

[
ψ
(
uh̃n(ω̃)

)
− ψ

(
uh̃(ω̃)

)]
dP̃ (ω̃)

∣∣∣∣→ 0 as n→∞. (4.2.82)

Thus using convergence (4.2.80) and (4.2.82) into (4.2.79) we get the desired

convergence.

This completes the proof of Theorem 4.2.20. �

Thus as a result of Theorem 4.2.14 and Theorem 4.2.20 we establish the following

Large deviation principle.

Theorem 4.2.26. The family of laws {L (=ε0 (W )) : ε ∈ (0, 1]} on XT satisfies the

Large deviation principle with rate function I, where I is as defined in equation

(4.2.10).
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[10] Z. Brzeźniak and M. Ondrejat, Weak solutions to stochastic wave equations with

values in Riemannian manifolds., Comm. Part. Diff. Eqs. 36 (9), 1624–1653,

2011.
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Actualitiés scientifiques et industrielles., Coloque consacré à la thérie des
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[36] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires
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