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Abstract 

Prostate cancer is the second most common cause of death from cancer in 

men in the UK. Localised disease can be treated with surgery or 

radiotherapy, but metastasis remains a great therapeutic challenge. Cancer 

cell migration involves rearrangements of the actin cytoskeleton, which is 

mediated by its interaction with myosins, a large and diverse family of motor 

proteins involved in many processes crucial for cell migration, such as cell 

adhesion, cell polarity or endocytosis. It is likely that the activity of myosins 

contributes to metastatic spread. 

I investigated the myosin expression profile in prostate cancer cell lines and 

found that Myo1b, Myo9b, Myo10 and Myo18a were expressed at higher 

levels in cells with high metastatic potential. Using an siRNA-based 

approach, knockdown of each myosin resulted in distinct phenotypes. 

Myo10 knockdown drastically decreased filopodia of PC3 cells, Myo18a 

knockdown increased filaments of non-muscle myosin 2A, knockdown of 

Myo1b and Myo9b increased stress fibre formation. Loss of Myo10 affected 

cell migration in 2D. In all cases, cell spread area was increased and 3D 

migration potential was decreased for Myo1b, Myo10 and Myo18a. Myo1b, 

Myo10 and Myo18a were also expressed in benign prostatic hyperplasia 

although knockdown of these myosins in benign tissue did not have very 

clear effects. Glioblastoma cells expressed high levels of Myo10 and 

showed decreased protrusions after Myo10 knockdown. 

Taken together, myosins act as molecular motors but also directly influence 

actin organisation and cell morphology and migration, which can contribute 

to the metastatic phenotype of cancer cells. 



- v - 

v 

 

Table of Contents 

Acknowledgements .................................................................................... iii 

Abstract ....................................................................................................... iv 

Table of Contents ........................................................................................ v 

List of Tables .............................................................................................. ix 

List of Figures ............................................................................................. x 

List of Abbreviations ................................................................................. xii 

Chapter 1 Introduction ................................................................................ 1 

1.1  Cancer characterisation ................................................................. 1 

1.1.1 Prostate cancer statistics ...................................................... 1 

1.1.2 Prostate cancer stages and therapies .................................. 3 

1.1.3 Prostate cancer models ........................................................ 5 

1.2 Cell migration .................................................................................. 8 

1.2.1 Cytoskeleton ........................................................................ 8 

1.2.2 Cell motility in metastasis ..................................................... 9 

1.2.3 Filopodia and other protrusions .......................................... 12 

1.3 Myosin superfamily........................................................................ 14 

1.3.1 Myosins: structure and function .......................................... 14 

1.3.2 Conventional myosin: class 2 ............................................. 16 

1.3.3 ATPase activity .................................................................. 17 

1.3.4 Myosin regulation ............................................................... 18 

1.3.5 Myosins in a migrating cell ................................................. 19 

1.4 Objectives of this study ................................................................. 22 

Chapter 2 Materials and methods ............................................................ 23 

2.1 Cell lines and cell culture ............................................................... 23 

2.1.1 Prostate cancer and prostatic hyperplasia cell lines ........... 23 

2.1.2 Matched pair of patient cells ............................................... 23 

2.1.3  Glioblastoma cell culture ................................................... 23 

2.1.3.1  Preparation of B104-conditioned medium for 
glioma cell culture ....................................................... 24 

2.1.3.2 Coating flasks and coverslips with Poly-L-Lysine .... 24 

2.1.4 Cell culture ......................................................................... 25 



- vi - 

vi 

 

2.2 GEO expression analysis .............................................................. 25 

2.3 Reverse transcription – PCR ......................................................... 26 

2.3.1 RNA extraction ................................................................... 26 

2.3.2 cDNA synthesis .................................................................. 27 

2.3.3 PCR Reaction .................................................................... 27 

2.3.4 Analysis of the PCR results: agarose gel 
electrophoresis .................................................................... 29 

2.4 Real-time or quantitative PCR (qPCR) .......................................... 29 

2.5 Antibodies ..................................................................................... 30 

2.6 Western blotting ............................................................................ 31 

2.6.1 Protein extraction ............................................................... 31 

2.6.2 Protein quantification .......................................................... 32 

2.6.3 Separation of proteins by SDS-PAGE ................................ 32 

2.6.4 Immunoblotting ................................................................... 33 

2.7 Immunostaining and imaging of fixed cells .................................... 34 

2.7.1 Measurements within images ............................................. 34 

2.8Transfections .................................................................................. 35 

2.8.1 Transfections using small interfering RNA (siRNA) ............ 35 

2.8.2 Overexpression of GFP-labelled Myo10 ............................. 35 

2.9 Random cell migration assay in 2D ............................................... 36 

2.10 Circular invasion assay (3D-like migration) ................................. 36 

2.11 Statistics ...................................................................................... 37 

Chapter 3 Myosin expression and localisation in prostate cancer ....... 38 

3.1 Introduction ................................................................................... 38 

3.2 Results .......................................................................................... 41 

3.2.1 Analysis of myosin expression in patient tissue using 
the GEO Database shows significant changes in 
expression for some myosin isoforms ................................. 41 

3.2.2 Reverse-transcription PCR (rt-PCR) confirms which 
myosin isoforms are expressed in prostate cancer cell 
models ................................................................................ 43 

3.2.3 Quantitative real-time PCR (qPCR) shows some 
myosin genes are expressed at higher levels in the 
more metastatic PC3 cell lines ............................................ 44 

3.2.4 Western blotting (immunoblotting) confirmed changes 
in expression levels for mRNA at the protein level .............. 48 



- vii - 

vii 

 

3.2.5 Morphology of the cell lines: prevalence of filopodia .......... 50 

3.2.6 Immunostaining shows specific and characteristic 
localisation of each myosin isoform in each cell line ........... 52 

3.3 Discussion ..................................................................................... 60 

Chapter 4 Role of myosins in prostate cancer cell migration ............... 67 

4.1 Introduction ................................................................................... 67 

4.2 Results .......................................................................................... 71 

4.2.1 siRNA-mediated knockdown depletes myosin 
expression ........................................................................... 71 

4.2.2 Knockdown of Myo10 reduces the number of filopodia ...... 73 

4.2.3 Myo10 overexpression in prostate cancer cells 
increases the numbers of filopodia ...................................... 77 

4.2.4 Knockdown of Myo1b, Myo9b, Myo10 and Myo18a 
affects focal adhesions in PC3 cell line ............................... 79 

4.2.5 Isoform-specific changes in NM2A organisation after 
silencing myosins ................................................................ 81 

4.2.6 Knockdown of myosins reduces cell migration in 2D 
and 3D-like environment ..................................................... 85 

4.2.7 Knockdown of Myo1b affects endocytosis in PC3 cell 
line ...................................................................................... 87 

4.2.8 Knocking down DCC, a Myo10 regulator, changes 
morphology of PC3 cells ..................................................... 87 

4.3 Discussion ..................................................................................... 91 

Chapter 5 Myosins in other tissues ......................................................... 98 

5.1 Introduction ................................................................................... 98 

5.1.1 Benign prostatic hyperplasia .............................................. 98 

5.1.2 Glioblastoma ...................................................................... 98 

5.2.1 Levels of myosins in Benign Prostatic Hyperplasia 
(BPH-1) ............................................................................. 100 

5.2.2  Localisation of myosins in BPH-1 cell line ....................... 102 

5.2.3 Knockdown of myosins in benign prostate cell line, 
BPH-1 ............................................................................... 105 

5.2.4 Knockdown of Myo9a in benign prostate cell line, BPH-
1 ........................................................................................ 111 

5.2.5  Myo10 is highly expressed in glioblastoma cell lines....... 113 

5.2.6  Knockdown of Myo10 in p53-/-PTEN-/- glioblastoma 
reduces the number of protrusions and affects focal 
adhesions. ......................................................................... 115 



- viii - 

viii 

 

5.3 Discussion ................................................................................... 118 

5.3.1 Benign prostatic hyperplasia ............................................ 118 

5.3.2 Glioblastoma and its migration ......................................... 120 

Chapter 6. Discussion ............................................................................. 122 

Bibliography ............................................................................................ 130 

 



- ix - 

ix 

 

List of Tables 

Table 1.1  Prostate disorders and prostate cancer cell lines…...…………….8 

Table 2.1 Sequences of primers used for PCR reactions…....………..…….29 

Table 2.2 Primary antibodies used in this project………..…………………...32 

Table 3.1 Expression of myosins in prostate cancer cell lines: LNCaP, 

DU145, PC3, 1535 NP and 1535 CT..…………………………………………44 

 



- x - 

x 

 

List of Figures 

Figure 1.1 Prostate cancer worldwide. ……………………...………………….5  

Figure 1.2 Main steps in the formation of metastasis………..………………13 

Figure 1.3 Schematic representation of a filopodium during cell migration on 

a planar substrate. .………………………………………………………………14 

Figure 1.4 The myosin family tree in humans. ………………………….……16 

Figure 1.5 Schematic diagram of non-muscle myosin 2 (NM2)…………….17 

Figure 1.6 Myosins in a migrating cell…………………………………………21 

Figure 3.1 Analysis of myosin isoform expression in prostate cancer tissue 

from patients, based on GEO Microarray expression profile………………..42 

Figure 3.2 Expression of TP53 and chaperones in prostate cancer tissue 

from patients, based on GEO Microarray expression profile………………..43 

Figure 3.3 Analysis of myosin expression in prostate cancer cell 

lines………………………………………………………………………………..47 

Figure 3.4  Immunoblotting shows expression changes at the protein 

level…………………………………………………….………………………….49 

Figure 3.5  Differences in morphology of 2 prostate cancer cell lines: LNCaP 

and PC3………………………………………………………………..………….51 

Figure 3.6 Localisation of Myo10 in prostate cancer cell lines……………..53 

Figure 3.7 Localisation of Myo10 in prostate cancer cell lines (higher 

magnification)………………………………………………………………..……54 

Figure 3.8 Localisation of Myo1b in prostate cancer cell lines……..56 

Figure 3.9 Localisation of NM2A and Myo18a in prostate cancer cell 

lines………………………………………………………………………………..57 

Figure 3.10 Localisation of and Myo6 and Myo9b in prostate cancer cell 

lines………………………………………………………………………………..59 

Figure 4.1 Diagrammatic representations of Myo1b, Myo9b, Myo10 and 

Myo18a…………………………………………………………………………….70 

Figure 4.2 siRNA-mediated knockdown of myosins in highly metastatic PC3 

cell line…………………………………………………………………...………..72 

Figure 4.3 Knockdown of myosins affects morphology of PC3 cells...........74 

Figure 4.4 Knockdown of Myo10 by individual siRNA reagents……………76 



- xi - 

xi 

 

Figure 4.5 Overexpression of Myo10-EGFP results in increased number of 

filopodia in LNCaP and PC3 cell lines…………...…………………………….78 

Figure 4.6 Effect of myosin knockdown on focal adhesions of PC3 

cells………………………………………………………………………………...80 

Figure 4.7 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in PC3 cells……………………………………………………......82 

Figure 4.8 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in PC3 cells……………………………………………………......83 

Figure 4.9 Levels of Phosphorylated Myosin Light Chain (pMLC) in PC3 

cells………….……………………………………………………………….…….84 

Figure 4.10 Effect of myosin knockdown on cell migration………………….86 

Figure 4.11 Knockdown of Myo1b affects endocytosis in PC3 cells……….88 

Figure 4.12 Knockdown of DCC affects the morphology of PC3 cells…….89 

Figure 5.1 Myosins in BPH-1 cell line……………………………………......101 

Figure 5.2 Localisation of myosins in BPH-1 cell line………………………103 

Figure 5.3 Localisation of myosins in BPH-1 cell line (zoomed in images 

from Figure 5.2)…………………………………………………………………104 

Figure 5.4 siRNA-mediated knockdown of myosins in BPH-1 cells………106 

Figure 5.5 Knockdown of myosins in BPH-1 cells has no visible effect on 

focal adhesions………………………………………………………………….108 

Figure 5.6 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in BPH-1 cells…………………………………………………….109 

Figure 5.7 Effect of Myo18a knockdown on cytoskeleton and NM2A 

organisation in BPH-1 cells…………………………………………………….110 

Figure 5.8 Effect of Myo9a knockdown on morphology of BPH-1 

cells……………………………………………………………………………….112 

Figure 5.9 Myosins in p53-/-PTEN-/- glioblastoma………………………......114 

Figure 5.10 Knockdown of Myo10 affects morphology of p53-/-PTEN-/- 

glioblastoma……………………………………………………………………..116 

Figure 5.11 Knockdown of Myo10 affects focal adhesions of  

p53-/-PTEN-/- glioblastoma……………………..……………………………….117 



- xii - 

xii 

 

List of Abbreviations 

 
 
ADP  Adenosine 5’-diphosphate 
AF  Alexa Fluor 
ANOVA Analysis of Variance 
APS  Ammonium Persulfate 
Arp2/3  Actin Related Protein 2/3 Complex 
ATP  Adenosine 5’-triphosphate 
ATPase Adenosine triphosphatase 
 
BCA  Bicinchoninic Acid 
BPH  Benign Prostatic Hyperplasia 
BSA  Bovine Serum Albumin 
 
cDNA  Complimentary DNA 
C-terminal Carboxy-terminal 
CRPC  Castration-resistant prostate cancer 
 
DAPI  4’,6’-diamidino-2-phenylindole 
DCC  Deleted in Colon Cancer 
DMEM Dulbecco’s Modified Eagles Medium 
DNA  Deoxyribonucleic Acid 
 
EDTA  Ethylenediaminetetraacetic Acid 
EEA1  Early Endosome Antigen-1 
eGFP  Enhanced Green Fluorescent Protein 
ELC  Essential Light Chain 
 
F-Actin Filamentous Actin 
FBS  Foetal Bovine Serum 
 
GAP  GTPase Activating Protein 
GFP  Green Fluorescent Protein 
 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HRP  Horseradish Peroxidase 
 
IF  Immunofluorescence 
 
kDa  Kilodaltons 
 
M  Molar 
MLC  Myosin Light Chain 
 
N-terminal Amino-terminal 



- xiii - 

xiii 

 

 
P (p)  Probability  
PAGE  Polyacrylamide Gel Electrophoresis 
PBS  Phosphate Buffered Saline 
PCR  Polymerase Chain Reaction 
PIP  Phosphatidylinositol Phosphate 
pMLC  Phosphorylated Myosin Light Chain 
 
RLC  Regulatory Light Chain 
RNA  Ribonucleic Acid 
RNAi  RNA Interference 
ROCK  Rho-associated protein kinase 
 
S.D.  Standard Deviation 
S.E.  Standard Error 
SDS  Sodium Dodecyl Sulphate 
siRNA  Small Interfering RNA 
 
TEMED N, N, N’, N’-Tetramethylethylenediamine 
 
v/v  Volume by Volume 
 
WB  Western Blotting 
w/v  Weight by Volume 



 

1 

 

Chapter 1 

Introduction 

 

1.1  Cancer characterisation 

Cancer is not just a single disease, but a group of diseases characterised by 

the uncontrolled growth and spread of abnormal cells. The complexity of this 

group of diseases can be described through the underlying principles, also 

known as the hallmarks of cancer (Hanahan and Weinberg, 2000): 

- Self-sufficiency in growth signals 

- Evading apoptosis 

- Insensitivity to anti-growth signals 

- Tissue invasion & metastasis 

- Limitless replicative potential 

- Sustained angiogenesis 

These have been complemented by the “next generation” hallmarks 

(Hanahan and Weinberg, 2011): 

- Avoiding immune destruction 

- Deregulating cellular energetics 

- Genome instability and mutation 

- Tumour-promoting inflammation 

Even though the field of cancer research has grown extensively, there are 

still many questions that remain unanswered. In my study, I have focused on 

the metastasis of prostate cancer, trying to examine the mechanisms 

underlying this process. 

 

1.1.1 Prostate cancer statistics 

Almost 7.5 million men worldwide were diagnosed with cancer in 2012 

(Torre et al., 2015). Out of these, prostate cancer accounted for 1.1 million 

cases, or 15%, making it the second most common cancer in men 
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worldwide, after lung cancer (Torre et al., 2015). The incidence rates vary up 

to 100-fold across the world, remaining very low in most of Asia and Africa.  

The rates are highest in Australia, North America and Western Europe, 

where almost 70% of all cases occurred (759 000 in 2012) (Figure 1.1) 

(Torre et al., 2015). In the UK, prostate cancer accounts for 25% of male 

cases of cancer and is the most common cancer type (Cancer Research UK 

website) (more than 41 000 out of 167 000 in 2011). Prostate cancer is the 

fifth leading cause of death from cancer in men worldwide (estimated 307 

000 deaths in 2012) (Torre et al., 2015) and second in the UK (around  

10 800 deaths in 2012, Cancer Research UK website). Mortality rates 

worldwide show less variation than incidence, with the number of deaths 

generally high in predominantly black populations (Caribbean and sub-

Saharan Africa, among others), very low in Asia and intermediate in the 

Americas and Oceania (Jemal et al., 2011).  

Much of the variation in incidence reflects differences in cancer detection. 

The high incidence rates reported especially in developed countries largely 

result from the widely used prostate specific antigen (PSA) testing that 

detects clinically important tumours but also slow-growing, benign cancers 

that might otherwise have escaped diagnosis, which in turn creates the 

potential for overdiagnosis (Etzioni et al., 2002). Screening for prostate 

cancer using PSA testing remains a controversial subject, since multiple 

studies into using the test have had conflicting results and there is currently 

no clear evidence that PSA testing reduces prostate cancer mortality (Etzioni 

et al., 2002). By the age of 80, most men will have some cancerous cells in 

their prostate, but only 1 in 25 of them will die from prostate cancer (Cancer 

Research UK website). On the other hand, some prostate cancers will grow 

quickly and spread to other parts of the body within a few years. For 

screening to be most helpful, it should only pick up prostate cancers that are 

faster growing and likely to be a threat to health, but there is currently no test 

that can reliably do this. 

Older age, race (black), and family history remain the only well-established 

risk factors for prostate cancer (Jemal et al., 2011). Currently no preventable 
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risk factors for prostate cancer have been established (Jemal et al., 2011), 

although some studies suggest that, similarly to other cancer types, lifestyle 

could be important in prostate cancer prevention (Holly et al., 2013). The 

reason for the high prostate cancer risk among some populations of African 

descent is still poorly understood, though it may in part reflect differences in 

genetic susceptibility (Zeigler-Johnson et al., 2008).  

 

1.1.2 Prostate cancer stages and therapies 

The majority of prostate tumours are adenocarcinomas, which means they 

originate from the glandular epithelium in the prostate, mostly in the 

peripheral zone (Long et al., 2005). Prostate cancer tends to progress slowly 

(i.e. 83.8% of men experience a 10-year survival in England and Wales 

following diagnosis). Many cancers stay benign, but a fraction become 

metastatic at various stages and an absolute prediction of when a localised 

cancer will spread is not possible. Nonetheless, several factors are used to 

decide if cancer is low or high risk and therefore choose the treatment 

necessary (Cancer Research UK website). These include monitoring the 

levels of PSA in the blood, generating a Gleason score resulting from 

histological analysis of biopsies; the score is low if cells resemble normal 

prostate tissue (low grade cancer) and high if cells appear de-differentiated 

or invading the surrounding tissue (high grade/high risk cancer), and TNM 

staging, which assesses the size of the tumour (T), the spread to lymph 

nodes (N) and secondary cases (Metastases, M). 

Currently used standard of care options for prostate cancer depend on the 

stage at which the disease is detected. Different treatments are optimised for 

the best results at different stages and can be combined to obtain higher 

efficiency. The most popular therapy strategies for localised prostate cancer 

include: surgery (e.g. radical prostatectomy), radiotherapy (external beam 

radiation therapy or radioactive seed implants in the prostate) and/or active 

surveillance or watchful waiting.  
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Figure 1.1 Prostate cancer worldwide. A. Most common cancer sites 

worldwide in males, 2012. Prostate cancer marked by purple colour.  

B. International variation in prostate cancer incidence rates, 2012 (per 

100,000, age standardized to the World Standard Population). (Torre et al., 

2015)   
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The prostate as well as prostate cancer depends on testosterone, the most 

well-known androgen, for growth. This means that hormone therapy can also 

be used to lower the levels of testosterone, especially if the tumour has 

started invading neighbouring tissues or spreading to other organs. 

Androgen deprivation therapy is one of the most effective forms of treatment 

for patients with disseminated disease (Augello et al., 2014). However, 

progression of prostate cancer is also connected with a loss of response to 

androgen levels (Sharifi et al., 2010). As a consequence, hormone therapy is 

therefore efficient for some time, but after 2-3 years cancer can progress into 

castration-resistant prostate cancer (CRPC). At this stage chemotherapy is 

used, such as treatment with taxane, although current methods only extend 

patients life by up to several months (D'Amico et al., 1998; Sharifi et al., 

2010; Wolff and Mason, 2012). Prostate cancer very often metastasises to 

the bone, and in addition to chemotherapy, a new radioactive reagent has 

recently been approved to treat CRPC of the bone (Bishr and Saad, 2013; 

Parker et al., 2013). 

Apart from the risk associated with the tumour itself, the choice of treatment 

depends on the age of the patient and his health (Hoskin et al., 2013). 

However, despite all the strategies available, both for early detection and 

treatment of localised prostate cancer, a number of patients will develop the 

disseminated metastatic disease, which remains largely untreatable 

(Albertsen et al., 2005; Wolff and Mason, 2012). This brings the need to 

study the mechanisms responsible for prostate cancer progression and 

metastasis. Understanding the biology of prostate tumours may help focus 

new research and the development of effective therapies to combat 

metastatic disease, and diagnostic factors to more accurately predict the risk 

of its potential progression. 

 

1.1.3 Prostate cancer models 

Despite considerable scientific effort, relatively little is known about the 

biological events causing the initiation and progression of prostate cancer. 
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To better understand the cellular and molecular events underlying the 

disease, many models of prostate cancer have been developed. These 

include animal models such as genetically engineered mice, xenografts and 

rat models, and transformed human prostate epithelial cell lines, such as 

LNCaP, DU145, PC3 and others.  

Different models have inherent advantages and disadvantages, for example 

animal models can include the important interaction with the tumour 

microenvironment, stroma, immune cells, blood vessels etc., but prostate 

disease can be different in animals than in humans (Grabowska et al., 

2014). Mice are quite resistant to developing invasive prostate cancer, and 

once they have invasive disease, it often does not resemble the human 

disease (reviewed in (Grabowska et al., 2014)). On the other hand, tissue 

culture models, although simplistic, represent human cells and are useful in 

understanding basic biology of prostate cancer or can serve as a good 

means for an initial screen.  

Amongst the most popular cell lines developed and described in prostate 

cancer are the well-characterised “classic” cell lines: LNCaP, DU145 and 

PC3, which were amongst the first to be established. The three cell lines are 

derived from metastatic prostate cancer and have quite different properties 

(Table 1.1). As a model representing benign-like prostate tissue, Benign 

Prostatic Hyperplasia cell line (BPH-1) is also described in the table and will 

be used in this study. 
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Table 1.1  Prostate disorders and prostate cancer cell lines 

 BPH-1 LNCaP DU145 PC3 

Origin 

Benign 

prostate 

hyperplasia 

Metastasis 

from supra-

clavicular 

lymph node 

Metastasis 

from the 

brain 

Metastasis 

from bone 

(Gleason 

grade IV) 

Response to 

androgen 

Androgen-

dependent 

Androgen-

dependent 

Androgen-

independent 

Androgen-

independent 

Invasive-

ness 
None Low Medium High 

Ploidy 
Aneuploid (76 

chromosomes) 
Hypotetraploid Hypotriploid Near-triploid 

p53 status 
wt 

(dysfunctional) 
wt mutant null 

Reference: 
(Hayward et 

al., 1995) 

(Horoszewicz 

et al., 1983) 

(Stone et al., 

1978) 

(Kaighn et al., 

1981) 

 

BPH-1 (Benign Prostatic Hyperplasia) is an epithelial cell line that has been 

established from hyperplastic human prostate tissue. Benign prostatic 

hyperplasia is a prostate disorder that is not considered to act as a precursor 

to prostate cancer (in contrast to prostatic intraepithelial neoplasia, PIN) 

(Orsted and Bojesen, 2013), partly because it appears in a different region of 

the prostate to prostate cancer and PIN. In contrast, the likelihood of 

prostate cancer development in patients exhibiting PIN increases with the 

detection of elevated serum levels of the PSA (Zlotta and Schulman, 1999). 

The BPH-1 cell line has been immortalised but not transformed, and it 

retains some important characteristics of benign prostatic epithelium in vivo. 

In comparison to DU145 and PC3, the LNCaP cell line represents an ‘early’ 

stage of prostate cancer metastasis, because it is still androgen-sensitive 

and has low invasive potential (Horoszewicz et al., 1983). The invasive or 

metastatic potential can be measured by the cell line ability to migrate 

through trans-wells and into matrices, or their ability to form tumours 

(metastases) when injected into nude mice. PC3 cell line is the most 

malignant, highly proliferative and invasive cells (prostate cancer grade IV) 
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(Kaighn et al., 1981). PC3 represent a more advanced/ aggressive phase of 

cancer cell development and possess characteristics of highly malignant 

neoplasm, 100% cells are aneuploid, and this cell line lacks the wild-type 

p53 protein, a tumour suppressor. The PI 3-Kinase/Akt pathway, which is 

one of the major intracellular pathways responsible for promoting cell 

survival, is constantly active in PC3 cells (Goc et al., 2011). 

1.2 Cell migration 

1.2.1 Cytoskeleton 

The cytoskeleton is a highly dynamic, interconnected network that provides 

support, structure and organisation to cells. The main components of 

cytoskeleton include actin filaments and microtubules, which serve as tracks 

for intercellular transport, and intermediate filaments (Hartman and Spudich, 

2012). Both actin filaments and microtubules have a polarity, which means 

that they each have two structurally and functionally distinct ends. In actin 

filaments, one end is known as the plus (or barbed) end as it is the faster 

growing end. The other is known as the minus (or pointed) end (reviewed in 

(Akhmanova and Hammer, 2010)). The cytoskeleton is vital in many aspects 

of cell migration. Both through actin polymerisation and actomyosin 

contractility, the cytoskeleton provides the main driving force for cell motility 

and is involved in establishment and maintenance of cell adhesion (Ridley, 

2011). Cytoplasmic domains of transmembrane cell adhesion receptors 

(integrins in the case of cell-extracellular matrix contacts and cadherins in 

the case of cell-cell contacts) interact with actin binding proteins that link 

them to actin filaments (Krendel and Mooseker, 2005). Although highly 

organized, the cytoskeleton changes upon cues from a wide variety of 

sources, such as entry into mitosis or in response to external signals. The 

cytoskeleton interacts with dozens of associated motor proteins and other 

accessory proteins, which can mediate many such changes (Goode et al., 

2000). 
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1.2.2 Cell motility in metastasis 

The ability to invade other tissues and create metastases is considered one 

of the hallmarks of cancer (Hanahan and Weinberg, 2000). Cancer cells 

become able to change position within the tissues and to enter the lymphatic 

and blood vessels for dissemination into the circulation, and then undergo 

metastatic growth in distant organs (Friedl and Wolf, 2003). To spread within 

the tissues, tumour cells use migration mechanisms that are similar, if not 

identical, to those that occur in normal, non-neoplastic cells during 

physiological processes such as embryonic morphogenesis, wound healing 

and immune-cell trafficking (Friedl and Wolf, 2003). Invasiveness and 

metastasis are very complex processes, and an important field of study, 

since metastasis is the cause of 90% of deaths from solid tumours (Gupta 

and Massague, 2006).  

For the cells to become metastatic, they must overcome numerous 

obstacles barring metastasis, multiple intrinsic mechanisms in the cell, as 

well as extrinsic barriers (Fidler, 2003). Factors in the tumour 

microenvironment that limit its progression include extracellular matrix 

components, basement membranes, reactive oxygen species, the limited 

availability of nutrients and oxygen and attack by the immune system, and 

can be classified as chemical, physical and biological in nature (Gupta and 

Massague, 2006). This means that the cell must meet certain requirements, 

which are reflected in several steps that create the biological cascade of 

metastasis (Gupta and Massague, 2006), summarised in Figure 2. These 

include the growth of the primary tumour (proliferation and angiogenesis), 

followed by a loss of cellular adhesion (detachment from the primary 

tumour), an increased motility and invasiveness, and then entry and survival 

in the circulation (in blood or lymphatic vessels). The cells can then exit into 

new tissue and start to colonise a distant site (survival in a new 

microenvironment). However, growth of the primary tumour is not a 

necessary step before metastasis, as micrometastases can be found even in 

seemingly small cancers (Mitas et al., 2001).  
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Figure 1.2 Main steps in the formation of metastasis. a) Cellular 

transformation and tumour growth. b) Vascularisation. c) Local invasion of 

the stroma by some cells. d) Detachment of some cells and entering the 

blood or lymphatic vessels. The cells can be trapped in the capillary beds of 

distant organs. e) Extravasation or leaving the bloodstream/lymphatic 

vessels. f) Proliferation within the new organ completes the metastatic 

process. To continue growing, the micrometastasis must develop a vascular 

network and evade destruction by host defences. Adapted by permission 

from Macmillan Publishers Ltd: Nature Reviews. Cancer (Fidler, 2003), 

copyright (2003) 
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The described process is broadly regulated by a developmental regulatory 

programme referred to as the ‘epithelial-mesenchymal transition’ (EMT), 

which has become implicated as a means by which transformed epithelial 

cells can acquire the abilities to invade, to resist apoptosis, and to 

disseminate. It is a multistep process where epithelial cells lose their cell-cell 

and cell-substratum adhesions and acquire properties required for 

independent cell migration (Polyak and Weinberg, 2009).   

A molecular depiction of cell migration in in vitro models involves a 

continuous cycle of interdependent events: dynamic cytoskeletal changes, 

cell-matrix interactions, localised proteolysis, actin-myosin contractions and 

focal contact disassembly (reviewed in (Fidler, 2003; Friedl and Wolf, 2003; 

Gupta and Massague, 2006)). First, the moving cell becomes polarised and 

elongated. It can form filopodia, thin actin-rich protrusions which can probe 

the environment for cues (Heckman and Plummer, 2013). A pseudopod is 

formed via extension of the cell’s leading edge. Then the lamellipodium 

elongates, a process that is driven by actin assembly into filaments, which 

connect to adaptor proteins and push the cell membrane in an outward 

direction. The pseudopod/lamellipodium attaches to the ECM (extracellular 

matrix) substrate and interacts with it via receptors from the integrin family, 

which create so called focal contacts. Surface proteases, such as matrix 

metalloproteinases (MMPs) are employed to cleave elements of the ECM, 

including collagen, laminins or fibronectins, and make space for the cell to 

move. Subsequently, regions of the entire cell body contract, generating 

force that leads to the gradual forward movement of the cell body and its 

trailing edge. This happens as a result of the contractile interaction between 

non-muscle myosin 2 and actin (actomyosin). Finally, at the rear edge of the 

cell, the tail detaches, disassembling the focal contacts, and then recycles all 

the molecules. Unlike physiological processes of cell invasion, the migration 

of tumour cells seems to be activated by a dominance of promigratory 

events in the absence of counteracting stop signals. This imbalance of 

signals allows cancer cells to become continuously migratory and invasive, 

leading to tumour expansion across tissue boundaries, followed by 

metastasis. 
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Cancer cells exhibit various types of cell migration, as individual cells or in 

solid cell groups, strands or clusters in ‘collective cell migration’ (Friedl and 

Wolf, 2003). Individual cells or leading cells in collective migration can use 

mesenchymal cell migration which depends on the cell’s adhesion to 

extracellular matrix (ECM) (Kawauchi, 2012). Individual cells migrating in 

vivo can also have an amoeboid form of cell migration that involves low 

affinity substrate binding and is driven by acto-myosin protrusive forces 

(Friedl and Wolf, 2003; Kawauchi, 2012). 

 

1.2.3 Filopodia and other protrusions 

Migrating cells can exhibit different types of protrusions, including 

invadopodia, which contain proteases, podosomes, and filopodia (Heckman 

and Plummer, 2013). Filopodia are thin, finger-like protrusions that contain 

tightly packed parallel actin filaments and sense the microenvironment 

around the cell (reviewed in (Jacquemet et al., 2015)). The actin filaments 

are tightly packed into bundles by proteins such as fascin, and one of the 

myosins, Myo10, is known to transport various proteins, including 

transmembrane receptors, along actin filaments to the tips of filopodia 

(Figure 1.3). Tips of filopodia contain cell-cell and cell-ECM adhesion 

receptors, as well as cytokine receptors. By transporting integrins, a key 

family of adhesion receptors, filopodia play a central role in modulating cell 

adhesion (Albuschies and Vogel, 2013). Finally, filopodia and filopodial 

proteins make a critical contribution to cancer metastasis and therefore 

constitute attractive therapeutic targets to block cancer dissemination. Thus, 

an important focus for the future will be to identify compounds that inhibit 

filopodia formation and to assess their efficiency to block metastases both in 

vitro and in vivo.  
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 Figure 1.3 Schematic representation of a filopodium during cell 

migration on a planar substrate. Filopodia are in contact with the ECM. 

Filopodia extension is driven by actin polymerisation, mediated by proteins 

such as formins and regulated by actin capping proteins, actin regulators 

such as Ena/VASP (enabled/vasodilator-stimulated phosphoprotein), which 

promote actin filament elongation, and I-Bar proteins like insulin-receptor 

substrate p53 (IRSp53), which deform the plasma membrane (revised in 

(Arjonen et al., 2011)). Source: (Jacquemet et al., 2015). 
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1.3 Myosin superfamily 

1.3.1 Myosins: structure and function 

Myosins are a large family of motor proteins that are able to move along 

actin tracks, powered by adenosine triphosphate (ATP) hydrolysis (reviewed 

in (Berg et al., 2001; Coluccio, 2008). Next to microtubule-based kinesins 

and dyneins, myosins are the only motor proteins linked to actin, and they 

predominantly move to the barbed end of the actin filament. The only 

exception to date is the pointed end-directed motor myosin 6 (Myo6) (Buss 

and Kendrick-Jones, 2011). The myosin superfamily contains more than 20 

distinct classes. In humans, as many as 40 genes for various myosins are 

expressed, which can be divided into 12 classes (Figure 1.4) (Foth et al., 

2006; Peckham and Knight, 2009). Muscle myosins that build the thick 

filaments are the most well-known, but myosins are quite abundant: with 

each cell expressing up to ~20 different non-muscle myosin isoforms, 

depending on the cellular function (Berg et al., 2001). 

The myosin protein family is diverse but all myosins share a similar body 

plan, which consists of 3 domains (e.g. non-muscle myosin 2 in Figure 1.5) 

(Berg et al., 2001; Coluccio, 2008): 

a) Motor domain (‘head’) at the N-terminus, which is conserved among 

isoforms and contains actin- and nucleotide-binding sites 

b) Lever domain (‘neck’), which transmits the force and can be stabilised 

by binding of calmodulin or calmodulin-like regulatory proteins / light chains 

c) C-terminal domain (‘tail’), which is highly diverse among different 

myosin classes and is responsible for cargo binding, thus dictating the 

function of each myosin (Foth et al., 2006)  

Myosins from class 2, class 5 and class 18 can form dimers (reviewed in 

(Allsop and Peckham, 2011)). The remaining myosins are monomeric, which 

does not rule out the possibility that they could become dimerised in cells via 

adaptors. But at least as isolated molecules, these myosins should be 
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considered monomeric, which will have implications for their function and 

regulation (Peckham and Knight, 2009). 

 

 

Figure 1.4 The myosin family tree in humans, generated using multiple 

sequence alignment of the motor domain sequences. The 39 genes 

encoding myosins are organised into 12 classes. Myosins have a variety of 

N-terminal extensions to their motor domains and diverse domains in their 

tail, depending on their function (Source: Peckham and Knight, 2009). 
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1.3.2 Conventional myosin: class 2  

Class 2 skeletal muscle myosin, which plays a role in muscle contraction,  

was the first one to be studied biochemically (Coluccio, 2008). A myosin 2 

molecule is a hexamer composed of two heavy chains and four light chains 

(Figure 1.5) (Bresnick, 1999). Muscle myosin dimers can be further 

assembled into thick filaments that promote the contraction of muscle fibres. 

In skeletal and cardiac muscle, the myosins assemble into bipolar filaments 

that contain 294 myosin molecules (reviewed in (Craig and Woodhead, 

2006)). In smooth muscle, the myosins form side polar filaments that do not 

have a fixed number of myosin molecules (Murphy et al., 1997). Class 2 also 

includes non-muscle myosins, which form short bipolar filaments that contain 

14-20 molecules (Billington et al., 2013). Class 2 myosins are also abundant 

in non-muscle cells, including non-muscle myosins 2a, 2b and 2c in humans 

(NM2A, NM2B and NM2C). Non-muscle myosin 2s are involved in important 

cellular functions, such as cytokinesis, karyokinesis, cell migration, cell 

polarity during migration and morphological changes (Saha et al., 2011). 

Class 2 myosins are known as conventional myosins, while the remaining 

myosins are referred to as unconventional. 

 

 

Figure 1.5 Schematic diagram of non-muscle myosin 2 (NM2). Dimer of 

heavy chains includes: motor and lever domain to the left (light grey) and tail 

domain (two tail domains forming a coiled coil and a C-terminal non-helical 

part of the tail at the end (light grey)). Two essential light chains (black) and 

two regulatory light chains (dark grey) bound to the neck region. Source: 

(Bresnick, 1999) Copyright © 2013 Landes Bioscience  
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1.3.3 ATPase activity 

Binding of myosin to filamentous actin (F-actin) and its conformational 

changes are regulated by hydrolysis of ATP by the actin-activated Mg2+ 

ATPase in the motor domain (ATPase cycle), and subsequent release of 

products (ADP, Pi) (De La Cruz and Ostap, 2004). Briefly, in resting muscle, 

the myosin crossbridges contain ADP.Pi in their nucleotide binding pockets 

(the products of ATP hydrolysis). When the muscle is activated, myosin is 

then able to bind to actin in the thin filaments. Actin catalyses the release of 

phosphate (Pi) from the nucleotide binding pocket (active site), eliciting a 

conformational change in the motor domain which results in the ‘power 

stroke’ and as a result the motor also binds to actin more tightly. ADP is then 

released from the active site and ATP binds, and releases the motor domain 

from actin.  ATP is then hydrolysed in the detached heads, and the cycle can 

continue. The small change in conformation in the motor domain resulting 

from the release of phosphate is amplified by the lever, to generate the 

‘power stroke’.  

This cycle is common for all myosins, but the binding affinities and rate 

constants can be different, properties of each myosin being adapted for their 

cellular function (Allsop and Peckham, 2011; Berg et al., 2001; Hartman and 

Spudich, 2012). The proportion of time that myosin molecule spends 

strongly attached to actin over the entire ATPase cycle is called the duty 

ratio. The duty ratio varies among myosins, with skeletal myosins having a 

low duty ratio, and myosin 5 (Myo5) having one of the highest (De La Cruz 

and Ostap, 2004). The length of the lever arm is different among the classes 

of myosin motors, which results in different ‘step’ sizes (Hartman and 

Spudich, 2012). With each cycle of ATP hydrolysis, myosins take one step. 

Directed motion also depends on the lever arm, the long lever arm of Myo5 

enables a large step of ~20nm, while the shorter lever arm of myosin 2 

results in a shorter step of ~5-10nm.  
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1.3.4 Myosin regulation 

Smooth muscle and non-muscle myosin 2 dimers bind essential light chains 

(ELC) that stabilise the neck domain and regulatory light chains (RLC) that 

stabilise the neck and regulate motor activity (Figure 1.5) (Trybus, 1994). 

Myosin 2 is regulated by phosphorylation of RLC, and in a fully 

dephosphorylated state it adopts a compact, folded structure, where the tail 

interacts with the motor domain (Ankrett et al., 1991). RLC is phosphorylated 

on different residues by several kinases, such as myosin light chain kinase 

(MLCK) or protein kinase C (PKC), suggesting that myosin 2 is subject of 

regulation by various signal transduction pathways (Beach et al., 2011; 

Ikebe and Hartshorne, 1985). Phosphorylation at Serine 19 by MLCK causes 

the myosin to change conformation, increases the actin-activated ATPase 

activity of the motor and promotes myosin 2 filament assembly (Craig et al., 

1983; Dulyaninova and Bresnick, 2013). Several other proteins have been 

reported to regulate NM2 filament assembly, promoting the depolymerisation 

of myosin filaments. These include lethal giant larvae (Lvl) (Vasioukhin, 

2006), MTS1 (S100A4) (Kriajevska et al., 1994) and S100P (Du et al., 2012) 

(reviewed in (Dulyaninova and Bresnick, 2013)).  

Multiple regulatory mechanisms are known for unconventional myosins, 

including cargo binding, binding of calmodulin and calmodulin-like proteins 

(Akhmanova and Hammer, 2010). Similarly to myosin 2, myosins class 5 

and 7 can also form compact molecules that have a very low ATPase activity 

(Umeki et al., 2011; Wang et al., 2008). Myo6 can be regulated by calcium 

binding via calmodulin, which affects its motor activity, or phosphorylation 

which correlates with its translocation in the cell (reviewed in (Buss and 

Kendrick-Jones, 2008)). The function of Myo10 is promoted by DCC 

(Deleted in Colon Cancer) and suppressed by neogenin, showing a 

differential balance through the function of different regulators (Liu et al., 

2012). Two myosin-specific chaperones are also known in mammals, a 

“general cell” Unc45a and muscle-specific isoform, Unc45b (Price et al., 

2002). 
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1.3.5 Myosins in a migrating cell 

Myosins are abundant, with most cells expressing at least 20 different types 

of myosin which include representatives of at least six different classes of 

the myosin superfamily, including several myosin 1 isoforms, non-muscle 

myosin 2 (NM2) isoforms, and myosins 5, 6, 9 and 10 (reviewed in (Allsop 

and Peckham, 2011). Myosin isoforms have different mechanochemical 

properties, such as the duty ratio or processivity (reviewed in (Ouderkirk and 

Krendel, 2014)). For example, myosins with low duty ratio may function in 

rapid contractile events or serve as dynamic, short-lived tethers between 

actin filaments and the cargo, while isoforms with high duty ratio are suited 

to generating sustained tension. This diversity allows myosins to contribute 

to many processes important for cell motility, including cell migration and 

invasion through the extracellular matrix, regulation of protein and organelle 

localization, cell shape changes, and cell signalling.  

Many myosins have multiple or partly overlapping functions which include 

roles in cell adhesion and intracellular motility, including cytoskeleton 

dynamics, endocytosis, exocytosis and secretory pathways (Allsop and 

Peckham, 2011). Myosins localise to a number of intracellular compartments 

and participate in many trafficking and anchoring events (Hartman Spudich 

2012). These functions are often class-dependent and some of them are 

summarised in Figure 1.6. Class 1 myosins contain in their C-terminal tail 

membrane-binding and protein interaction domains. This allows them a 

simultaneous binding to phosphatidyl inositol phospholipids (PIPs) and 

vesicles and/or in the plasma membrane and other proteins necessary for 

active membrane deformation or intracellular vesicle trafficking, as well as 

cytoplasmic domains of transmembrane receptors (McConnell and Tyska, 

2010; Wenzel et al., 2015). Class 5 myosins are well known to be involved in 

trafficking a variety of cargo in cells (Wang et al., 2008). Some myosins have 

a more specialised role, such as myosin 19 (Myo19), shown to traffic 

mitochondria in cells (Quintero et al., 2009) or a role in actin-based 

projections, such as myosin 10 (Myo10) present in filopodia (Liu et al., 
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2012). Myo6 is associated with endocytic vesicles and endosomes (Buss 

and Kendrick-Jones, 2011). During cell migration, non-muscle myosin 2a 

(NM2A) is dynamic and responsible for the movement forward; by contrast, 

NM2B incorporates into preformed F-actin bundles and has a role in defining 

the rear of the migrating cell and tail retraction (Dahan et al., 2012; Swailes 

et al., 2006). The different location and expression levels of different non-

muscle myosins are likely to play a major role in cell shape and cell-cell 

adhesion (Swailes et al., 2006). Myosin 2-dependent contractility may play 

an important role in coordination of cell migration and directional motility by 

preventing formation of lateral pseudopods and limiting 

pseudopodial/lamellipodial protrusion to the leading edge of the cell (Krendel 

and Mooseker, 2005). 
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Figure 1.6 Myosins in a migrating cell. Various myosins have different 

functions (detailed description and references in the main text body). Class 1 

myosins seen at the membrane; Myosin 2 responsible for contractility and 

tail retraction, among others; according to their functions, Myo6 involved in 

endocytosis, Myo10 at the filopodia; Myo18a in the lamellipodium. (From  

M. Peckham, with permission). Yellow boxes represent respective labelled 

processes (from left to right: tail retraction, nuclear function, organelle 

motility, cell-matrix adhesion, endocytosis, cortical and lamellipodial 

functions, exocytosis, phagocytosis/micropinocytosis, filopodium). 
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1.4 Objectives of this study 

Despite multiple approaches available and considerate research effort, 

prostate cancer at metastatic stage remains largely untreatable, bringing the 

need to study the mechanisms responsible for prostate cancer progression 

and metastasis. The main aim of this project is thus to establish if myosins 

contribute to metastasis of prostate cancer. An initial screen identified the 

myosins present in prostate cancer cell lines and tissue, including isoforms 

upregulated in metastatic prostate cancer. This was followed by an analysis 

of chosen myosins on functional level using siRNA technique, to investigate 

their effect on morphology and migration of prostate cancer. Finally, I also 

looked at myosins in other types of tissue, including benign prostate cells 

and another type of cancer (glioblastoma). 
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Chapter 2 

Materials and methods 

 

2.1 Cell lines and cell culture 

2.1.1 Prostate cancer and prostatic hyperplasia cell lines 

LNCaP, DU145 and PC3 cells were obtained from ATCC. The BPH-1 cell 

line was a gift from Dr Sivaprasadarao, University of Leeds. Characteristics 

of the cell lines are described in more detail in Section 1.1.3. The cells were 

grown in RPMI-1640 with GlutaMAX™ (Gibco® Life Technologies™) 

supplemented with 10% heat inactivated FBS (foetal bovine serum) and 

antibiotics (penicillin (100 units/ml) and streptomycin (100 g/ml), Gibco® 

Life Technologies™).  

 

2.1.2 Matched pair of patient cells 

1535 NP (Normal Prostate) and 1535 CT (Cancerous Tissue) cells, originally 

derived from primary adenocarcinomas from the prostate (Bright et al., 

1997), were a gift from Suzanne Topalian, John Hopkins University School 

of Medicine, USA. They were grown in Keratinocyte medium (Gibco® Life 

Technologies™) supplemented with 10% heat inactivated FBS, 1% L-

glutamate, antibiotics (penicillin (100 units/ml) and streptomycin (100 g/ml), 

Gibco® Life Technologies™), bovine pituitary extract (50 g/ml) and 

epidermal growth factor (5 ng/ml). 

 

2.1.3  Glioblastoma cell culture 

p53lox/lox /PTENlox/lox or PTENlox/lox glioma cell line (referred to also as  

glioma p53-/-PTEN-/- and PTEN-/- in the text) derived from a mouse model 

was provided to us as a kind gift from Dr Stephen Rosenfeld, Department of 
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Cancer Biology, Cleveland Clinic Foundation (unpublished). The cells were 

grown in BBFP medium (2 units Basal medium, 1 unit B104-conditioned 

medium (see Section 5.2.2 below), supplemented with 10 ng/ml FGF and 10 

ng/ml PDGF). Basal medium comprises: DMEM w/ 4.5 g Glucose, 

w/glutamine, w/Pyruvate (Gibco® Life Technologies™) with 0.1% (v/v) T3 

(3,3′,5-Triiodo-L-thyronine, 20 μg/ml stock solution in DMEM), 1% (v/v) N-2 

Supplement (Gibco® Life Technologies™), 1% (v/v) PSA (Penicillin, 

Streptomycin, Ampicillin; Invitrogen) and 0.5% (v/v) FBS.  Cells were grown 

at 37°C with 5% CO2 and passaged when reached about 75% confluence. 

Passaging, harvesting and fixing of the cells was performed as previously 

described for other cell types (see Sections 2.1 and 2.4). The glioblastoma 

cells required to grow on surfaces coated with Poly-L-Lysine (as described 

below in Section 2.1.3.2). 

  

2.1.3.1  Preparation of B104-conditioned medium for glioma cell culture 

B104 neuroblastoma cell line (Schechter et al 1984), a gift from Dr Stephen 

Rosenfeld, was recovered into warm D10 medium (DMEM w/ 4.5 g Glucose, 

w/ glutamine, w/ NaPyruvate (Gibco® Life Technologies™), 10% heat-

inactivated FBS, 1% PSA) and grown at 37°C with 5% CO2. After reaching 

confluence (2-3 days), the cells were passaged 1:10 (1 flask into 10, to 

provide high volume for harvesting the conditioned medium) and grown to 

confluence again. D10 medium was then replaced with Basal medium (see 

above Section 5.2.1), in which the confluent B104 cells were incubated for 

48 h. B104-enriched medium was then collected, filter sterilised (0.2 m pore 

size) and frozen for future use. B104 cells were incubated with fresh Basal 

media for another 48 h, collection was repeated and the B104 cells were 

discarded. 

 

2.1.3.2 Coating flasks and coverslips with Poly-L-Lysine 

Poly-L-Lysine stock (Sigma Aldrich) was diluted to 20 g/ml with sterile, 

distilled H2O and added to flasks in according volumes: 7 ml for T75, 2.5 ml 
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for T25, 1 ml for 6-well plates and 0.5 ml or less for 4-well plates. 

Flasks/plates were then incubated for > 15 min at 37 °C, the liquid was 

removed and the dishes were left to dry overnight in the incubator at 37 °C 

without tightly closing the lid if necessary. The plates and flasks were then 

stored at 4 °C degrees for further use, up to 3 months. 

 

2.1.4 Cell culture 

All cells were grown at 37°C with 5% CO2 and passaged when they reached 

about 75% confluence. To passage the cells, the medium was removed and 

the adherent cells were washed once with phosphate buffered saline (PBS, 

Gibco® Life Technologies™). Cells were then incubated with the trypsin 

substitute, TrypLE (Gibco® Life Technologies™) for 1 minute, resuspended 

in fresh medium, centrifuged at 1000 g and resuspended in fresh medium 

again, in a ratio of 1:3 to 1:5. To harvest cells for downstream analysis (i.e. 

RNA or protein extraction), cells were detached from the flask with TrypLE, 

resuspended in fresh medium, centrifuged at 1000 g and washed with PBS. 

EZ-PCR MycoplasmaTest Kit (Geneflow Ltd) was routinely used to check 

the cell lines for the presence of any mycoplasma contamination. To seed 

cells for experiments, the cell density of resuspended cells was estimated 

using a haemocytometer. 

 

2.2 GEO expression analysis 

Gene Expression Omnibus (GEO) Database is a public functional genomics 

data repository (http://www.ncbi.nlm.nih.gov/geo/). Data deposited there is 

compliant with MIAME (Minimum Information About a Microarray 

Experiment) guidelines. In the Database, array- and sequence-based data 

are accepted and tools are provided to help users query and download 

experiments and curated gene expression profiles.  

Gene expression profile GEO GSE 6919 (Chandran et al., 2007; Yu et al., 

2004), comprising 171 patient samples, was one of the largest data sets with 

http://www.ncbi.nlm.nih.gov/geo/
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prostate cancer samples. It was also most comprehensive with regards to 

the number of myosin genes looked at, with data on 15 out of 28 non-muscle 

myosin genes that were of interest. The set included 81 samples of normal, 

benign tissue, 65 localised tumour samples and 25 samples from metastatic 

prostate cancer. The 81 “normal” samples comprised 18 normal prostate 

tissue samples free of any pathological alteration from organ donor and 63 

normal prostate tissue samples adjacent to tumour from patients. These 

were pooled together for clarity after no significant differences in myosin 

expression were noted between the two groups. Similarly to what has been 

previously described (Arjonen et al., 2014), the raw data from a microarray 

was downloaded, transformed into a log2 format and the subsets for 

different myosin isoforms were compared using statistical analysis. 

 

2.3 Reverse transcription – PCR 

2.3.1 RNA extraction 

RNA was extracted using RNeasy Mini Kit (QIAGEN) according to the 

manufacturer’s instructions. Briefly, cell pellets were collected as described 

in Section 2.1.3, washed once with PBS and centrifuged (1000 g, 5 min.). 

Pellets were lysed and homogenised in the presence of denaturing 

guanidine-thiocyanate–containing buffer (with the addition of β-

mercaptoethanol (Sigma-Aldrich)), which inactivates RNases. 70% ethanol 

was added to precipitate RNA and the lysate was applied onto a silica-based 

membrane, which was then centrifuged (10000 g, 15 sec.). In this process, 

RNA binds to the membrane while contaminants, such as the remnants of 

proteins, salts or organic compounds, are washed away. RNA was eluted in 

30 μl of nuclease-free water and a spectrophotometer (NanoDrop™, Thermo 

Scientific) was used to quantify the amount of RNA obtained by measuring 

the absorbance of the samples at 260 nm. 
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2.3.2 cDNA synthesis 

cDNA was synthesised from 2 μg of RNA. The reaction mix contained: AMV 

(Avian Myeloblastosis Virus) Reverse Transcriptase (final concentration  

1 unit/μl, Promega), AMV Reverse Transcriptase Reaction Buffer (Promega), 

dNTP mix (final conc. 1 mM) (Invitrogen Life Technologies™), 0.5 μg 

Oligo(dT)15 Primers (Promega), 0.5 μg Random Primers (Promega) and 

nuclease-free water (Sigma-Aldrich). 2 μg of RNA suspended in 11 μl of 

nuclease-free water was first incubated at 65 °C for 3 minutes to remove any 

secondary structures that could impede cDNA synthesis. The reaction mix 

was then added and the mixture (total volume of 20 μl) was incubated at  

42 °C for 60 minutes, which is the optimum temperature for reverse 

transcriptase activity. The reaction was then stopped by incubating at 95 °C 

for 5 minutes to denature the enzyme. 

 

2.3.3 PCR Reaction 

Out of 39 myosin genes expressed in humans, 28 were tested. Skeletal, 

cardiac and smooth muscle myosin genes (11) were not included as we did 

not expect these genes to be expressed in non-muscle cells. Gene-specific 

primers were designed by Dr Kathryn White (Table 2.1) and used to 

determine the presence of mRNA for each of the myosin genes in the cell 

lines. 

The reaction mix contained: Taq DNA Polymerase (50 units/ml, New 

England Biolabs), ThermoPol Reaction Buffer (New England Biolabs), 

forward and reverse primers (0.4 μM each, see Table 2.1 for sequences), 

template DNA (2 μl of 2 μg/ml solution). The reaction conditions were: 

• Initial denaturation: 96 °C, 2 minutes 

• 30 cycles:  

- denaturation: 96 °C, 20 seconds 

- annealing: 54 °C, 20 seconds 

- extension: 72 °C, 20 seconds 

• Final extension: 72 °C, 7 minutes  



 

28 

 

Table 2.1 Sequences of primers used for PCR reactions. 

MYOSIN FORWARD (5’ → 3’) REVERSE (5’ → 3’) 

MYO1A GGCAGATTTCATCTACAAGAGCA GTTTGTGGATGGCAAATTGTT 

MYO1B GGGCTTACTGGCTTGGATCT ACAGCAACTGCATGCTTACG 

MYO1C CTCATCACCAAGGCCAAGA CCTTTATCACCGAGAATTCAGC 

MYO1D CCCTGCAGACGATTTTCAATA TGCAACCTTTGCCCTGAC 

MYO1E CAAGACCGTCCGGAACAA CCACCTGGACTGAACTGGAT 

MYO1F AGACTGTGCGCAACAACAA CGGCTGAACTGGATCTCAA 

MYO1G CTTCCACGCCTTCTACCAAT TCTCCAAGTGCAGTTCATGC 

MYO1H ATAGCCCGTGACAGACTGCT GGAGCGTTCTGGCATTTC 

NM2A TGGAGGACCAGAACTGCAA GGTTGGTGGTGAACTCAGCTA 

NM2B ATGAACCAGAAACGGGAGGT AAGGACTCCAAGAGGGGTGT 

MYO3A GAAAAATTAATCAACCTGGCAAA TGGTTGTCTCTCTGGCATGA 

MYO3B TGTCTTCTCGGATATGCCATC TGCAAGACCATTTTCTGAACC 

MYO5A GCGTCGGAGCTCTACACAA TTGAGCAGCTCTGCTGACTT 

MYO5B CCTACCAAGGCCTAAAGCAAG CCTCCTCCTCATGCTCCA 

MYO5C AAAGACCTTCACGCTTCTGG GCGGTGATCTGCACATTG 

MYO6 CTCCAGCTTCACCCGTACA CGATCTCCTGTTTCCACTATCC 

MYO7A GCTGGCAGGTCACTGAGAGT AATCACCATGGTCCCAAGTC 

MYO7B CAAGCACGCAGGGAAGTC TTTGGCTCCGTAGTTTGCTC 

MYO9A CAGATAACAAAGAAACCCCTCAG TCCACCGTGAAGCAATCC 

MYO9B CAACCAGCACATCTTCAAGC TGTTGTGCCACGTGATCC 

MYO10 AGGACTTTCCACCTGATTGC CGTGGACCTGACTCAGCA 

MYO15A ATGAACCAGAAACGGGAGGT AAGGACTCCAAGAGGGGTGT 

MYO15B GATGCCTACGGCTTTGAGG GGCTGGAGAAGAGCTGTAGG 

MYO16 CCTGCGTGAGAAGAAGGAAC CACTTTTCGGACTCCCATCT 

MYO18A GGACATGGTGACAAAGTATCAGAA TTTGACAACCAGGACTTGACC 

MYO18B AGCATGGCCATCTCATCAC TCTTGTCCTCTTCCCGAATC 

MYO19 CGCAGACCTTTCTCCAAGAG GATATGGATGGTCTCCACGAG 

HOUSEKEEPING GENES: 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

18S rRNA GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 
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2.3.4 Analysis of the PCR results: agarose gel electrophoresis 

Agarose gel was prepared by dissolving agarose in TAE buffer (40 mM Tris-

Acetate, 1 mM EDTA) at 1% or 2% (w/v) concentration, depending on the 

size of the DNA fragments being compared. 0.01% ethidium bromide 

(Fischer Scientific) was added to the gel to enable the detection of DNA 

using UV light in the GelDoc Image System. The samples were loaded along 

with molecular markers of appropriate size (New England Biolabs). 

 

2.4 Real-time or quantitative PCR (qPCR) 

cDNA was synthesised as described above (Section 2.3.2). Relative myosin 

expression was monitored by Real-time PCR using SYBR® Green to detect 

the reaction product (see Table 2.1 for sequences of primers). Analysis was 

performed using BIO-RAD system and software.  

The reaction mix contained: 12.5 μl of iQ™ SYBR® Green Supermix (2x mix 

containing: dNTPs, iTaq™ DNA polymerase, MgCl2, SYBR® Green I, 

enhancers, stabilizers, fluorescein) (BIO-RAD), 1 μl of forward and reverse 

primers (to final concentration of 0.4 μM), template cDNA (5 μl of 40 ng/ml 

solution (2 μg/ml stock solution diluted 1:50) for the samples; 5 μl of 

respective serial dilutions for the standard curves, as explained below) and 

6.5 μl nuclease-free H2O. qPCR is a method of relative quantification, and so 

standard curves were always run for reference, next to the unknown 

samples. Standard curves were prepared as follows: cDNA (2 μg/ml 

solution) from the tested specimen was mixed in equal amounts. The mix 

was then diluted 1:20 (considered 100%) and diluted into 2x serial dilutions 

of 50%, 25%, down to 3.125%. No template control (NTC) with nuclease-

free H2O instead of cDNA was included in each run. 
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The optimised reaction conditions were as follows: 

• Initial denaturation: 95 °C, 3 minutes 

• 40 cycles:  

- denaturation: 95 °C, 10 seconds 

- annealing: 65 °C, 10 seconds 

- extension: 72 °C, 30 seconds 

• Denaturation: 95 °C, 10 seconds 

• Melt curve:  65 °C to 95 °C, increment 0.5 °C per 5 seconds 

 

SYBR® Green is a general intercalating dye, so melting curves were 

included in each run to ensure reaction specificity. 

 

2.5 Antibodies 

Primary antibodies used in this study can be found in Table 2.2. 

Other used antibody and reagents include: HRP-conjugated secondary 

antibodies for western blotting (Sigma, UK), fluorescent secondary 

antibodies for immunostaining (Molecular Probes), DAPI and fluorescently-

labelled phalloidin for nuclei and F-actin staining, respectively (Sigma, UK). 
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Table 2.2 Primary antibodies used in this project. 

Specificity 
Size of the 

target [kDa] 
Organism 

Concentration 

used 

Supplier / catalogue 

number 

Myo1b 127 Rbt 
WB 1:2000, 

IF 1:100 

Sigma,  

HPA013607 

NM2A 220 Rbt 
WB 1:10000, 

IF 1:500 

Biolegend,  

PRB-440P 

Myo6 150 Rbt 
WB 1:200, 

IF 1:50 

Santa Cruz,  

sc-50461 

Myo9b 244 Rbt 
WB 1:200 

IF 1:100 

Protein Tech, 

12432-1-AP 

Myo10 237 Rbt 
WB 1:5000, 

IF 1:100 
Sigma, HPA024223 

Myo18a 233 Rbt 
WB 1:500, 

IF 1:50 

Custom made  

by Genscript  

(specific to C-term) 

ERK 44 Rbt WB 1:1000 
Cell Signalling, 

9102S 

GAPDH 36 Rbt WB 1:2000 
Sigma,  

G9545 

Paxillin 65 Mo IF 1:100 
BD Biosciences, 

#610569 

pMLC 18 Mo WB 1:500 
Cell Signaling, 

#3671 

EEA1 162 Rbt IF 1:100 
Cell Signaling, 

Antibody #2411 

DCC 158 Mo WB 1:1000 
Thermo Scientific, 

#3675S 

 

 

2.6 Western blotting 

2.6.1 Protein extraction 

Cells were harvested as described above, cell pellets were then washed 

once with PBS and centrifuged at 1000 g for 5 min. The pellet was 

resuspended in 50 μl of lysis buffer (150 mM NaCl, 0.05 M Tris (pH 8), 1% 

Triton X-100, 1 mM EDTA (pH 8) in double distilled water), which additionally 

contained protease inhibitors (Halt Protease Inhibitors Cocktail, Thermo 

Scientific Pierce), added at the time of experiment. The inhibitors included in 

this cocktail are: AEBSF, aprotinin, bestatin, E-64, leupeptin and pepstatin A. 
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Cells were incubated 30 minutes at 4 °C, with vortexing every 4-5 minutes to 

facilitate lysis. The lysates were clarified by centrifugation at 16 000 g for 20 

min (at 4 °C).  

 

2.6.2 Protein quantification 

Protein samples were quantified using the BCA assay (Micro BCA™ Protein 

Assay Kit, Thermo Scientific) according to the manufacturer’s instructions. 

Samples for the calibration curve were prepared from a stock solution of 

bovine serum albumin (BSA, 2 mg/ml), with serial solutions from 2.5 to 100 

μg/ml in distilled water. Protein extracts (diluted 1:100) and standard curve 

solutions were placed in a 96-well plate (in triplicates). An equal amount of 

working reagent was added to each well, mixed gently by shaking and 

incubated for 2 hours at 37°C. After cooling the plate to room temperature, 

the absorbance was measured at the wavelength of 540 nm using a 

colorimetric plate reader (POLARstar Optima, BMG Labtech). The protein 

concentration in the experimental samples was calculated from the 

calibration curve created with BSA standard samples. 

 

2.6.3 Separation of proteins by SDS-PAGE  

SDS-PAGE (SDS – polyacrylamide gel electrophoresis) separates proteins 

on the basis of their molecular size. To prepare the electrophoresis samples, 

40 μg of each protein sample was mixed with 2x concentrated gel loading 

(Laemmli) buffer (4% (w/v) SDS, 20% glycerol, 120 mM Tris-Cl (pH 6.8) and 

0.02% (w/v) bromophenol blue (BFB)). Samples were then denatured for  

10 min in 100 °C to use on 7.5% or 15% polyacrylamide gels. 

The stacking gel contained: 4% acrylamide/bisacrylamide (37.5:1 ratio), 125 

mM Tris-HCl (pH8), 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulfate 

(APS), 0.1% Tetramethylethylenediamine (TEMED). The separating gel mix 

contained: 7.5% or 15% acrylamide/bisacrylamide (37.5:1 ratio), 375 mM 

Tris-HCl (pH6.8), 0.1% (w/v) SDS, 0.05% (w/v) APS, 0.1% TEMED. APS 

and TEMED were added immediately before pouring the gels to catalyse 
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acrylamide polymerisation. The lower % acrylamide gels were used when 

subsequently blotting for myosin heavy chain, which has a molecular weight 

of ~200-250kDa. The higher percentage acrylamide gels were used when 

subsequently blotting for low molecular weight proteins (e.g. myosin light 

chain). 

The protein samples were loaded along with the molecular markers 

(PageRuler™ Plus Prestained Protein Ladder, Thermo Scientific) and 

electrophoresis was run at 100 V for about 2 hours. Gels were routinely run 

in duplicates, and one of each pair was stained using  Coomassie Blue or 

Instant Blue (Expedeon) and imaged using the Biorad GelDoc® Image 

System. 

 

2.6.4 Immunoblotting 

A fully submerged system was used to transfer the proteins from the gel to a 

nitrocellulose membrane with 0.45 or 0.2 m pore size, depending on the 

size of proteins analysed (Amersham™ Hybond™-ECL, GE Healthcare). 

(The lower pore size was used for low molecular weight proteins). The 

transfer sandwiches were immersed in 1 x transfer buffer (Thermo Scientific, 

#35050) and transfer for carried out at 250 mA for 1-2.5 hours, depending on 

the size of the proteins under investigation. After the transfer, membranes 

were blocked in 5% non-fat milk in PBS (w/v) for 1 hour at room temperature 

and incubated with respective primary antibody solution in 2% non-fat milk in 

PBS (w/v) (Table 2.2) at 4 ºC with rolling overnight. The membranes were 

washed in PBS with 0.05% Tween (3 times for 5 minutes, once for 15 

minutes), once with PBS for 5 minutes. Membranes were then incubated 

with HRP-labelled secondary antibody in 2% non-fat milk in PBS (w/v) for 

1.5 h at room temperature with rolling and washed as previously. 

Chemiluminescence detection was performed according to manufacturers’ 

instructions (West Pico Chemiluminescent, Thermo Scientific). The 

membranes were exposed to light sensitive (X-ray) film, with multiple 

exposure times to ensure the signal was within linear range and over-



 

34 

 

saturation was avoided. The films were then scanned and analysed using 

ImageJ. 

The stripping solution, Restore Western Blot Stripping Buffer (Thermo 

Scientific) was used to re-use and re-probe the membranes if required. After 

stripping, the membrane was again blocked as described above, before use 

in Western blotting.  

 

2.7 Immunostaining and imaging of fixed cells 

Cells were seeded on glass coverslips and grown according to the 

respective experiment. Cells were fixed using 2% paraformaldehyde (PFA) 

for 20 min at 37 °C, washed 3 times with PBS, permeabilised with 0.1% 

Triton X-100 in PBS for 5 min and blocked with 3% BSA in PBS (w/v) for 30 

min at room temperature. Cells were incubated with primary antibody in 3% 

BSA in PBS for 1 h at room temperature, washed 3 times in PBS with 0.05% 

Tween, 2 times with PBS and incubated with fluorescently-labelled 

secondary antibody in 3% BSA in PBS for 1 h at room temperature in the 

dark. Cells were then washed again as above and incubated for a further 20 

min in the dark with phalloidin (labelled with either Alexa Fluor 488 or 546 

(A12379 and A22283, Thermo Scientific) and DAPI in PBS, for actin and 

nuclei staining. This was followed by a final wash (as above) and mounting 

with Prolong Gold mounting medium (Invitrogen). Images of cells were 

obtained either using a Zeiss LSM700 confocal laser scanning microscope, 

using the accompanying LSM software, or using DeltaVision Deconvolution 

inverted system. Images were subsequently processed to generate figures 

using Photoshop. The images presented are representative of at least 3 

separate experiments. 

 

2.7.1 Measurements within images 

Filopodia per cell were counted manually for 20 cells in at least 3 separate 

experiments. Cell area was quantified using ImageJ, using images of cells 
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stained for actin and the ROI (Region of Interest) Manager tool. Actin 

bundles were also quantified in ImageJ using images of cells stained for 

actin. A line scan was drawn across the lamella from edge to middle of the 

cell, followed by an intensity profile and counting the peaks. 

 

2.8Transfections  

2.8.1 Transfections using small interfering RNA (siRNA) 

siGENOME siRNA  SMARTpool Human or Mouse and a non-targeting 

control (GE Healthcare Dharmacon Inc., UK) were used in this study. 

siGENOME individual siRNA reagents were also used in case of Myo10 

where specified. Following the manufacturer’s instructions, siRNA reagents 

were re-suspended to a final concentration of 10 M in siRNA buffer  

(60 mM KCl, 6 mM HEPES-pH 7.5, 200 M MgCl2). Cells were seeded at a 

density of 20 000 cells/ml in growth media, allowed to adhere to the 

coverslips/plates and grown overnight. Before transfection, growth medium 

was replaced with antibiotic-free growth medium. Lipofectamine® RNAiMAX 

Reagent (Invitrogen™, Life Technologies™, UK) was used for transfections, 

following the manufacturer’s instructions. siRNA and the transfection reagent 

were first incubated separately in serum-free media for 5 min (1 pmol for 96-

well plates, 5 pmol for 4-well plates and 25 pmol for 6-well plates) and then 

mixed at a 1:1 ratio and incubated together for 20 min at room temperature. 

The mix was then added to the cells which were grown for further 72 hours 

before analysis (i.e. staining, immunoblotting, migration assays). A time-

course experiment was first performed and it was established that optimum 

knockdown was achieved after 72 hours.  

 

2.8.2 Overexpression of GFP-labelled Myo10 

PC3 and LNCaP cells were transfected with a peGFPC2 plasmid for GFP-

Myo10 expression (Berg and Cheney, 2002). Cells were seeded at a density 

of 75000 cell/ml in growth media on glass coverslips and allowed to grow 
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overnight. FuGENE® 6 Transfection Reagent (Promega) was used for the 

transfections. Cells were then allowed to grow for 24 or 48 hours, fixed and 

immunostained as previously described (see Section 2.7). 

 

2.9 Random cell migration assay in 2D 

Cells were plated into glass-bottomed 96-well plates at 5 000 cells/well and 

transfected as described above. Cells were grown at 37°C for 48 hours, 

serum starved for 24 hours prior to stimulation with HGF (hepatocyte growth 

factor, Sigma), and then treated with HGF (25 ng/ml). The cells (a minimum 

of 3 fields for each replicate or experimental condition) were then filmed 

overnight, capturing images at 5 minutes intervals using a 20x lens (512 x 

512 total pixel size, 2 x 2 binning), and differential interference optics, on a 

DeltaVision Deconvolusion system (inverted) with motorised stage and 

incubator. Cell migration was analysed using ImageJ software (MTrackJ 

plugin).   

 

2.10 Circular invasion assay (3D-like migration) 

3D-like migration was examined using a modified circular invasion assay (Yu 

et al., 2012). Self-adhesive cell-stoppers (Ibidi, #80209) were used to create 

a cell-free space. Cells were seeded and transfected as described above 

(Section 2.5) and after 72 h, the stoppers were removed. The cells were 

then washed gently and covered with a thin layer of Matrigel (4 mg/ml). Pre-

cooled tips and tubes were used when handling Matrigel. Cells with a thin 

layer of Matrigel were left to gelify in the incubator for 20 min in 37 °C and 

then covered with normal media and allowed to grow and migrate into the 

matrix for another 24-48 hours. Cells were then fixed in 2% PFA and stained 

using standard procedures described above. 
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2.11 Statistics 

Data analysis All the data were analysed with the help of GraphPad Prism 

5.0 programme (GraphPad Software, La Jolla, California, USA) and is 

presented as mean with SD or SEM, for at least three separate experiments 

(n ≥ 3). Two-way ANOVA was used to compare differences between groups 

and statistical significance was accepted for P ≤ 0.05.  
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Chapter 3 

Myosin expression and localisation in prostate cancer 

I love rats. 

3.1 Introduction  

Cancer metastasis is a complex process that requires dramatic spatial and 

temporal reorganisation of the cell cytoskeleton (Fife et al., 2014). While the 

cytoskeleton components are well regulated in normal cells, mutations or 

aberrant expression of cytoskeletal and cytoskeleton-associated proteins are 

often observed in cancer cells (Fife et al., 2014). Myosins are an example of 

actin-associated protein family with various, isoform-specific roles in the cell 

(See Section 1.3). Among other functions, myosins play a role in cell polarity 

and motility, cell adhesion, through their functions in endocytosis and 

exocytosis they are involved in recycling of cell-adhesion molecules (Allsop 

and Peckham, 2011). 

It is therefore not surprising that some myosin isoforms have already been 

implicated in cancer. Myosin 1a (Myo1a) has been shown to be frequently 

inactivated in colorectal cancer, which results in higher tumour growth and 

accelerated progression (Mazzolini et al., 2013). Myosin 1b (Myo1b) can 

promote migration of head and neck squamous cell carcinoma (HNSCC) 

(Ohmura et al., 2015). Myosin 1e (Myo1e) is part of gene signature for 

basal-like breast cancer with poor prognosis (Hallett et al., 2012). Mutations 

in Myo1f were found in infant acute leukaemia (Duhoux et al., 2011). NM2A 

is important for breast cancer invasiveness (Derycke et al., 2011) and NM2B 

is down-regulated in non-invasive variant of melanoma cells where it is 

supposed to play a role in melanoma migration by retracting the tail during 

the migratory cycle (Jacobs et al., 2010). Both NM2A and NM2B have been 

connected with invasiveness of ovarian cancer (Iwanicki et al., 2011), 

migration of glioma (Beadle et al., 2008) and development of carcinogen-

induced tumours (Saha et al., 2011). Myosin 5a (Myo5a) is required for 
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cancer cell metastasis by affecting cell motility, and its expression levels 

positively correlate with metastatic capabilities of several human cancer cell 

lines (Lan et al., 2010).  Myosin 5b (Myo5b) is down-regulated in gastric 

cancer, which has to do with enhanced MET signalling (Dong et al., 2013). 

Genetic polymorphisms in myosin 9b (Myo9b) can play a role in aetiology of 

oesophageal cancer, by increasing the permeability of the epithelial barrier 

(Menke et al., 2012). Myosin 10 (Myo10) was recently shown to be 

upregulated in breast cancer with a role in invasiveness and metastasis 

(Arjonen et al., 2014; Cao et al., 2014) and to have a role in metastasis of 

lung cancer (Sun et al., 2015). Changes in expression and mutations of 

myosin 18b (Myo18b) have been correlated to lung, colorectal and ovarian 

cancer (Nakano et al., 2005; Tani et al., 2004; Yanaihara et al., 2004). When 

it comes to prostate cancer, so far a strong link has been found between the 

disease and myosin 6 (Myo6) (Dunn et al., 2006). Myo6 is upregulated in 

medium-grade tumours and in the LNCaP cell line, where it is involved in 

protein secretion (Puri et al., 2010). Myo6 is also overexpressed in ovarian 

cancer (Yoshida et al., 2004). 

It is worth noting that many of the described studies focus on a correlation 

between the disease and expression levels or mutations in myosins, 

whereas the detailed function of myosins in cancer progression remains 

unexplored in many cases. As pointed out in a recent review (Ouderkirk and 

Krendel, 2014), to examine the connections between myosins and cancer, it 

is important to distinguish between data from findings in vitro and genetic, 

epigenetic or transcriptomic studies of samples in vivo. A combination of 

both of these aspects can offer a strong support for a role of myosin isoform 

in tumour suppression or progression, which makes looking at the role of 

myosins in cancer an exciting area of study. At the same time, the 

complexity of processes and cytoskeleton dynamics during metastasis 

poses a great challenge. We decided to tackle this question and look at 

myosins in prostate cancer, to see by a comprehensive study if they are 

involved in tumour cell migration, invasion and metastasis. In the first part of 

the study, I looked at the expression of myosins in prostate cancer. 
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Subsequently, I sought to find out if expression levels of myosin isoforms 

change in prostate cancer models with different metastatic potential. I also 

looked at localisation of several of the upregulated isoforms.  
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3.2 Results 

3.2.1 Analysis of myosin expression in patient tissue using the 

GEO Database shows significant changes in expression for 

some myosin isoforms 

To examine expression of myosins in prostate cancer patients, I first 

performed an in silico analysis of gene expression profile of a large prostate 

cancer data set (GEO GSE6919) (Chandran et al., 2007; Yu et al., 2004). 

The high-throughput screen initially analysed almost 40,000 genes, about 

half of which were consequently discarded (genes whose expression was 

very similar throughout all the samples and genes consistently displaying 

low levels of expression that yielded high error rate). 

Among almost 20,000 genes, data on 15 myosin isoforms were available for 

analysis: MYO1A, MYO1B, MYO1C, MYO1D, MYO1E, MYO1F, MYH9 

(referred to as NM2A), MYH10 (referred to as NM2B), MYO5A, MYO6, 

MYO7A, MYO9B, MYO10, MYO16 and MYO18A. I compared the 

expression levels between normal prostate tissue, localised tumour and 

metastatic tumours, and I found significant differences in expression levels 

of 7 of the isoforms analysed (Figure 3.1).  

MYO1B and MYO10 expression increased significantly from benign tissue to 

localised tumour to metastases. Expression levels of MYO1D and MYO1F 

showed significant increase in metastatic samples in comparison to normal 

tissue. Expression of MYO5A and MYO9B increased significantly in 

localised tumours when compared to benign tissue and seemed to slightly 

decrease in metastatic tumours, although these differences were not 

significant. MYO6 levels were higher in localised and metastatic tumours 

than in normal tissue. Again, the expression levels seemed to be lower in 

metastases than in localised tumours but these differences were not 

significant. The remaining myosins (MYO1A, MYO1C, MYO1E, MYH9 

(NM2A), MYH10 (NM2B), MYO7A, MYO16 and MYO18A) have not shown 

significant differences in their expression levels. 
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Figure 3.1 Analysis of myosin isoform expression in prostate cancer 

tissue from patients, based on GEO Microarray expression profile 

(Accession number: GSE6919). Data for normal prostate tissue (n=81, blue), 

localised tumours (n=65, red) and metastatic tumours (n=25, green) 

presented on a log2 scale using box and whisker plots. Statistical analysis 

was performed using one-way ANOVA. Levels of significance are indicated 

by: p<0.05 statistically significant (*), p<0.01 very significant (**), p<0.001 

extremely significant (***).  
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Figure 3.2 Expression of TP53 and chaperones in prostate cancer 

tissue from patients, based on GEO Microarray expression profile (see 

Figure 3.1 for detailed Legend). 

 

While analysing the cohort I also checked the levels of factors commonly 

correlated with cancer: a well-known tumour suppressor TP53, a chaperone 

HSP90AA1 and, more specifically with myosins in mind, a myosin 

chaperone UNC45A (Figure 3.2). TP53 was significantly decreased in 

metastases in comparison to normal tissue and localised tumours. 

HSP90AA1 showed the contrary trend, being upregulated in metastatic sites, 

and UNC45A was significantly lower in metastases than in benign prostate 

tissue. 

 

3.2.2 Reverse-transcription PCR (rt-PCR) confirms which myosin 

isoforms are expressed in prostate cancer cell models 

Before analysing changes in myosin isoform expression in prostate cancer 

cell models, I performed reverse-transcription PCR (rt-PCR) to determine 

which myosin isoforms were expressed in these cell lines. 3 metastatic 

prostate cancer cell lines were used: LNCaP, DU145, PC3 (see Section 

1.1.3 for detailed description). These cell lines represent prostate cancer 

metastasis to lymph node (LNCaP), brain (DU145) and bone (PC3), and are 

reported to have different metastatic potential (Horoszewicz et al 1983, 

Wilson and Sinha 1997, Pulukuri et al 2005). PC3 cells have the highest 

metastatic potential in comparison to DU145 (moderate) and LNCaP cells 

(low). In addition, I tested a matched pair of cells obtained from the same 

patient, one of which was from normal prostate tissue and the other from 
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cancerous tissue from a localised prostate tumour (1535 NP and 1535 CT, 

respectively) (Bright et al., 1997). 

Rt-PCR showed that 12 myosin genes were expressed in all 5 cell lines 

tested (Table 3.1): MYO1B, MYO1C, MYO1D, MYO1E, MYH9 (NM2A), 

MYO5C, MYO6, MYO9A, MYO9B, MYO10, MYO18A and MYO19. MYO5B 

was only detected in 1535 NP and 1535 CT. MYO16 was only detected in 

PC3, 1535 NP and 1535 CT. MYO1G, MYO3A, MYO5A and MYO7A were 

only expressed in the DU145 cell line. The expression of the remaining 

myosin genes was not detected using rt-PCR in any of the cell lines. 

It is worth noting that the expression of two of the genes only expressed in 

DU145 cells is normally highly restricted to certain tissues. MYO3A 

expression is normally confined to the retina, brain, testis and sacculus 

(Dose and Burnside, 2002), and MYO7A expression is confined to the retina, 

inner ear, kidney, lung and testis (Kelley et al., 1997) with no expression in 

the brain. 

 

3.2.3 Quantitative real-time PCR (qPCR) shows some myosin 

genes are expressed at higher levels in the more metastatic 

PC3 cell lines 

As part of this project, the results for a quantitative real-time PCR (qPCR) 

analysis for LNCaP, DU145 and PC3 cell lines (performed by Dr Kathryn 

White) are presented here for completeness. The 12 myosin genes that 

were detected in all cell lines (Section 3.2.2.) were analysed using this 

approach (Figure 3.3A). This showed that the expression levels for 4 myosin 

genes MYO1B, MYO1D, MYO9B and MYO10 were highest in the more 

highly metastatic PC3 cell line compared with DU145 and LNCaP. Other 5 

myosin isoforms were highest in the DU145 cells: MYO1C, MYO1E, 

MYO9A, MYO18A, as well as NM2A, although that trend was not statistically 

significant. In contrast, expression of one myosin isoform, MYO6, was 

significantly increased in the LNCaP cell line compared with the other two 

cell lines.   
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Table 3.1 Expression of myosins in prostate cancer cell lines: LNCaP, 

DU145, PC3, 1535 NP and 1535 CT. Myosin isoforms were detected (+) or 

not detected (-) by reverse-transcription PCR. 

Myosin LNCaP DU145 PC3 1535 NP 1535 CT 

MYO1A - - - - - 

MYO1B + + + + + 

MYO1C + + + + + 

MYO1D + + + + + 

MYO1E + + + + + 

MYO1F - - - - - 

MYO1G - + - - - 

MYO1H - - - - - 

NM2A (MYH9) + + + + + 

NM2B (MYH10) - - - - - 

MYO3A - + - - - 

MYO3B - - - - - 

MYO5A - + - - - 

MYO5B - - - + + 

MYO5C + + + + + 

MYO6 + + + + + 

MYO7A - + - - - 

MYO9A + + + + + 

MYO9B + + + + + 

MYO10 + + + + + 

MYO15A - - - - - 

MYO15B - - - - - 

MYO16 - - + + + 

MYO18A + + + + + 

MYO18B - - - - - 

MYO19 + + + + + 

  



 

46 

 

We then carried out a further analysis of the matched pair of cell lines 

(1535), looking at genes with particularly high levels in the metastatic PC3 

cell line: MYO1B, MYO1E, MYO6, MYO9B, MYO10 and MYO18A. I 

determined that two of the genes, MYO1B and MYO10, again showed 

significantly higher expression levels by qPCR in the cancerous cell line 

1535 CT compared to the normal prostate cells (1535 NP) (Figure 3.3B). 

Expression of MYO1E, MYO9B and MYO18A was higher in 1535 CT but the 

differences were not statistically significant. Somewhat surprisingly, levels of 

MYO6 expression were higher in 1535 NP, but this difference was not 

statistically significant.  

The unusual expression profile of the DU145 cell (Section 3.2.2) suggested 

to us that it may not be as reliable a model for prostate cancer as the other 

cell lines tested, even though it is used quite commonly. What is more, 

DU145 has been established from a metastatic tumour in the brain, which 

almost never occurs in prostate cancer (Stone et al., 1978). We therefore 

decided to abandon routinely using DU145 cell line as a model, focusing on 

the other cell lines which represent different stages of cancer: LNCaP and 

PC3 represent metastatic cells with different metastatic potential, whereas 

1535 NP and CT model benign prostate tissue and localised cancerous 

tissue, respectively.  
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Figure 3.3 Analysis of myosin expression in prostate cancer cell lines. 

(A) qPCR shows myosin expression levels for LNCaP, DU145 and PC3 

cells, relative to 18S rRNA as internal control. Bars represent mean + 

standard error, n = 3 (B) qPCR shows myosin expression levels in 1535 NP 

and 1535 CT, relative to 18S rRNA as internal control. Bars represent mean 

+ S.E., n = 3. Statistical analysis was performed using two-way ANOVA. 

Levels of significance are indicated by: p<0.05 statistically significant (*), 

p<0.01 very significant (**), p<0.001 extremely significant (***).  
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3.2.4 Western blotting (immunoblotting) confirmed changes in 

expression levels for mRNA at the protein level 

I next investigated if the increase in expression levels of the different myosin 

genes shown by qPCR (MYO1B, MYO6, MYO9B, MYO10 and MYO18A) 

was reflected by changes at the protein level by western blotting. MYO1E, 

although significantly upregulated in PC3 cells, was not included in these 

experiments as good, reliable antibodies were not available at the moment 

of the study. I also examined the expression levels of non-muscle myosin 2a 

(NMMHC-2a, referred to as NM2A), a ubiquitous, highly expressed myosin, 

which did not show changes in expression when analysed by qPCR. It 

should be noted that Myo18a has two isoforms, alpha and beta (Mori et al., 

2005), and in this study I refer to Myo18aas Myo18a. 

I found that higher levels of Myo1b, Myo9b, Myo10 and Myo18a were 

expressed in PC3 cells compared to LNCaP cells (Figure 3.4A, B). In 

contrast, levels of Myo6 were significantly higher in LNCaP than in PC3 

cells. Levels of NM2A did not change. The trends in myosin expression 

between LNCaP and PC3 cells shown by western blotting were thus similar 

to those observed by qPCR. In the matched pair of patient cells 1535 NP 

and 1535 CT, western blotting also showed a similar trend in myosin 

expression compared to that observed by qPCR, however, none of the 

differences were statistically significant (Figure 3.4C, D). Levels of Myo1b 

and Myo10 were higher in 1535 CT than in 1535 NP. Expression of Myo18a 

was slightly higher in 1535 CT, and levels of NM2A and Myo6 did not 

change. Because of time restrictions, expression of Myo9b was not looked at 

in 1535 cell lines. 
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Figure 3.4  Immunoblotting shows expression changes at the protein 

level in (A, B) LNCaP and PC3 cell lines and (C, D) matched pair of 1535 

cell lines. Examples of blots with molecular markers in kDa marked to the 

right. Total ERK was used as loading control. Quantification of expression 

relative to ERK, bars represent mean + SD for at least 3 experiments. 

Statistical analysis was performed using two-way ANOVA. Levels of 

significance are indicated by: p<0.05 statistically significant (*), p<0.01 very 

significant (**), p<0.001 extremely significant (***) 
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3.2.5 Morphology of the cell lines: prevalence of filopodia 

I stained the LNCaP and PC3 cells for actin to compare actin organisation 

and overall cell morphology. Both cell lines are of epithelial origin and are 

adherent, but their morphology shows interesting differences. The LNCaP 

cells grow in clumps or colonies and their shape is usually elongated (Figure 

3.5A). PC3 cells also have an elongated shape but they grow independently 

in a monolayer, without forming colonies (Figure 3.5B).  

There was a clear difference in the numbers of filopodia between LNCaP 

and PC3 cells. Filopodia are thin, actin-rich protrusions with a well-

established connection to cell motility (described in Section 1.2.3). PC3 cells 

exhibited numerous filopodia and some cells seemed to be connected 

through these thin protrusions, which appear to have the features of 

tunnelling nanotubes (Abounit and Zurzolo, 2012). LNCaP cells had few 

filopodia. Quantification of the number of filopodia per cell (Figure 3.5C) 

confirmed that LNCaP cells have a much lower average number of filopodia 

(0.75 ± 1.45 filopodia per cell, mean ± SD, n = 20) compared to PC3 cells 

which have a high number (15.35 ± 7.7 filopodia per cell, mean ± SD,  

n = 20). Interestingly, the increased number of filopodia in PC3 cells 

correlates directly with the increased levels of Myo10 (Figure 3.4A, B). This 

is particularly worth noting because Myo10 is a known filopodia-promoting 

factor (Bohil et al., 2006).  
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Figure 3.5  Differences in morphology of 2 prostate cancer cell lines: 

LNCaP and PC3. Low power images (upper panels) and high power images 

(lower panels) of LNCaP (A) and PC3 (B) cells stained for F-actin using 

fluorescent phalloidin. The images are shown in grey scale, reverse contrast 

for increased clarity. Scale bars as shown. (C) Quantification of filopodia per 

cell, n= 20 cells (from 3 separate experiments), bars represent mean + SD. 

Statistical analysis was performed using unpaired t-test, (***) is for p<0.001. 
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3.2.6 Immunostaining shows specific and characteristic 

localisation of each myosin isoform in each cell line 

Immunostaining was used to gain further insight into the potential differences 

in the localisation of myosins in LNCaP and PC3 cells that might correlate 

with differences in expression levels. Myo10 localises to the tips of the 

numerous filopodia in PC3 cells (arrows in Figure 3.6B and Figure 3.7C), in 

agreement with previous reports for this myosin (Bohil et al., 2006). In the 

LNCaP cells, which express low levels of this myosin, staining for Myo10 

was mostly diffuse and cytoplasmic (Figure 3.6A). Myo10 seems to localise 

to the scarce filopodia formed by LNCaP, although the staining is very weak 

and Myo10 is absent from the filopodia tips (Figure 3.7A). 

While carrying out this work, it was reported that upregulation of Myo10 is 

linked to expression of mutant p53 in breast cancer (Arjonen et al., 2014). 

Protein p53 is a well-known tumour suppressor which can gain tumour-

promoting functions when mutated (Lane and Levine, 2010). However, the 

LNCaP cells express wild-type p53 and PC3 cells are p53-null (Carroll et al., 

1993), and thus we did not find a link between Myo10 overexpression and 

expression of mutant p53. To check whether a prostate cancer cell line 

expressing mutant p53 would show any correlation, I included the DU145 

cell line into this analysis, since they express p53 protein mutated in two 

codons (Carroll et al., 1993). As shown by qPCR, Myo10 expression in 

DU145 is only slightly higher than in the LNCaP cells. DU145 cell line has 

around 8 filopodia per cell (8.75 ± 5.2 filopodia per cell, mean ± SD, n = 20), 

a number increased compared to LNCaP cells, and Myo10 localises to the 

filopodia tips (Figure 3.7B). Both Myo10 levels and filopodia numbers are still 

lower LNCaP and DU145 cells compared to the p53-null PC3 cell line.  
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Figure 3.6 Localisation of Myo10 in prostate cancer cell lines. LNCaP 

(A) and PC3 (B) cells stained for nuclei (DAPI - blue), F-actin (AF546-

phalloidin - red) and Myo10 (green). Arrows in (B) show Myo10 at the tips of 

filopodia in PC3 cells. Scale bar = 30 m. The images are representative of 

at least 3 separate experiments.  



 

54 

 

 

Figure 3.7 Localisation of Myo10 in prostate cancer cell lines (higher 

magnification). LNCaP (A), DU145 (B) and PC3 (C) cells stained for nuclei 

(DAPI - blue), F-actin (AF546-phalloidin - red) and Myo10 (green). Arrows in 

(A) show lack of Myo10 at the tips of rare, short filopodia in LNCaP cells; 

arrows in (B) show Myo10 at the tips of filopodia in DU145, and in numerous 

filopodia in PC3 cells (C). Scale bar = 5 m. The images are representative 

of at least 3 separate experiments.  
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Myo1b localised to intracellular vesicles in LNCaP cells (Figure 3.8A, 

arrows), and there was additionally some localisation to the plasma 

membrane, where it co-localised with actin (Figure 3.8A, arrowheads). In 

PC3 cells, Myo1b co-localised with actin and actin-rich areas at the plasma 

membrane, in membrane ruffles and to intracellular vesicles (Figure 3.8B, 

arrows). A similar localisation for Myo1b has been previously reported for 

other cell types (Salas-Cortes et al., 2005; Tang and Ostap, 2001), where 

Myo1b was found to be concentrated in dynamic membrane areas enriched 

with actin and associated with punctate structures in the cytoplasm. The 

intracellular vesicles were previously identified to be endosomes (Raposo et 

al., 1999; Salas-Cortes et al., 2005). In PC3 cells, there was also some 

localisation of Myo1b within the filopodia, as found in other studies (Figure 

3.8C, arrows) (Kim and Flavell, 2008; Komaba and Coluccio, 2010). The 

filopodia-like protrusions, however, were often seen between two cells, 

suggesting it could be tunnelling nanotubes (Abounit and Zurzolo, 2012), 

which can also be present in cancer cells (Ware et al., 2015). 

Neither LNCaP nor PC3 cells showed abundant actomyosin bundles close to 

the plasma membrane (Figure 3.9A, B), they also lack central stress-fibre 

bundles that are found in more adherent, non-colony forming cells such as 

fibroblasts (Vicente-Manzanares et al., 2009). NM2A in the LNCaP cell line 

had a diffuse, cytoplasmic localisation, with some co-localisation with actin 

close to the plasma membrane (Figure 3.9A, arrows). PC3 cells also showed 

some NM2A staining close to the plasma membrane, where it co-localised 

with actin (Figure 3.9B, arrows).  

I found that Myo18a localised to the cytoplasm and in membrane ruffles 

and/or close to the plasma membrane in both PC3 and LNCaP cells (Figure 

3.9C and D, arrows). This localisation is similar to that previously reported 

for Myo18a and is consistent with its role in modifying actin organisation in 

the lamellipodium (Hsu et al., 2010; Tan et al., 2008).   
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Figure 3.8 Localisation of Myo1b in prostate cancer cell lines. LNCaP 

and PC3 cells stained for F-actin (AF546-phalloidin - red), nuclei (DAPI - 

blue) and Myo1b (green). Arrows in (A) and (B) show that Myo1b localises to 

vesicles; arrowhead in (A) shows Myo1b at actin-rich regions close to cell 

border in LNCaP cells; Arrows in (C) point to Myo1b localised in the 

protrusions (filopodia or tunnelling nanotubes between two cells). Scale bar 

= 30 m. The images are representative of at least 3 separate experiments. 
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Figure 3.9 Localisation of NM2A and Myo18a in prostate cancer cell 

lines. LNCaP and PC3 cells stained for nuclei (DAPI), F-actin (AF546-

phalloidin) and NM2A (A, B) or Myo18a (C, D). Arrows in A, B indicate 

NM2A co-localising with dynamic actin close to cell membrane; arrows in C, 

D show Myo18a localising close to actin-rich membrane ruffles. The images 

are representative of at least 3 separate experiments. 
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Myo6 showed a diffuse, cytoplasmic staining both in PC3 and LNCaP cells 

(Figure 3.10A and B). Myo6 has been shown to have a punctate localisation 

in LNCaP cells (Puri et al., 2010) where it co-localises with early endosomes 

and the Golgi. Using the commercial antibody (Santa Cruz), I was unable to 

observe localisation of Myo6 to vesicles. Myo9b was enriched in membrane 

ruffles/lamellipodia in PC3 cells (Figure 3.9D), consistent with its role in cell 

polarity and recruitment of RhoGAP to the lamellipodium (Hanley et al., 

2010), while the staining in LNCaP cells was diffuse and Myo9b was missing 

from actin-rich areas (Figure 3.10C). 
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Figure 3.10 Localisation of and Myo6 and Myo9b in prostate cancer cell 

lines. LNCaP and PC3 cells stained for F-actin (AF546-phalloidin - red), 

nuclei (DAPI - blue) and Myo6 (green) (A, B) or Myo9b (green) (C, D). 

Arrows in (C) indicate lack of Myo9b in actin-rich protrusions.  

Scale bar = 30 m. The images are representative of at least 3 separate 

experiments. 
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3.3 Discussion 

The GEO analysis presented here for patient samples of prostate cancer 

suggests that the expression level of some types of myosin increases as 

cells become more metastatic. The expression levels of some myosin 

isoforms (MYO5A, MYO6, MYO9B) increased in localised tumours, while 

other increased in metastases (MYO1B, MYO1D, MYO1F, MYO10). 

Expression levels of other myosins such as MYH9 (NM2A) or MYO18A did 

not seem to change. Analysing myosin expression levels in commonly used 

prostate cancer cell lines showed a less clear cut change in myosin 

expression. However, an increased level of Myo10 expression in the more 

highly metastatic PC3 cell line was linked to a high level of filopodia, with 

Myo10 localised to the filopodial tips and Myo1b only found in filopodia in the 

PC3 cells. These results raise the possibility that myosin expression level 

and organisation in prostate cancer cell lines are able to influence their 

phenotype. 

Two myosin isoforms, Myo1b and Myo10, showed a clear, significant 

increase in expression in metastases, in tissue arrays and from the analysis 

of prostate cell lines by qPCR. Of particular interest was the increased 

expression of Myo10 in PC3 cell line, which mirrors the increase of Myo10 in 

metastatic tumours, observed in the GEO analysis. Myo10 has a well-

established role in formation of filopodia, which are directly associated with 

cell migration (Sousa et al., 2006). We observed a 2.9-fold increase in levels 

of Myo10 in highly malignant PC3 cells in comparison to LNCaP cell line. 

Interestingly, even though Myo10 is widely expressed in a variety of 

vertebrate tissues, it is quite sparse as it comprises of only about 0.0005% of 

total protein in cells (Berg et al., 2000). It is therefore not surprising that a 3-

fold difference has an appreciable effect on the phenotype. The connection 

of Myo10 to filopodia can also be seen in our study, where protein levels of 

Myo10 (Figure 3.4) correlate neatly with numbers of filopodia in each cell 

line (Figure 3.5).  
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Upregulation of Myo10 has recently been linked to mutant p53 expression 

and invasiveness, where Myo10 was found to be a necessary downstream 

component for mutant p53-driven invasion in breast cancer and pancreatic 

carcinoma (PDAC) cells (Arjonen et al., 2014). Mutant p53 is a stable variant 

of p53 protein, a well-known tumour suppressor and high levels of mutant 

p53 are often associated with cancer (Lane and Levine, 2010). In metastatic 

prostate cancer p53 is often either mutated or lost (Chen et al., 2005). An in 

silico analysis of the GEO data showed a significant decrease of TP53 gene 

in metastatic sites (Figure 3.2). Although highly malignant PC3 cells do not 

express p53 (Carroll et al., 1993), I have found that they still express high 

levels of Myo10 and have numerous filopodia. At the same time, LNCaP 

cells, which show almost no filopodia and low levels of Myo10, express 

normal p53 (Horoszewicz et al., 1983). DU145 cells, which express low 

levels of Myo10 and show medium numbers of filopodia per cell, express 

mutant p53 (Carroll et al., 1993). Taken together, these results confirm that 

there is no link between expression of Myo10 and mutant p53 in prostate 

cancer cells, and that the connection between Myo10 and p53 observed in 

other studies seems therefore to be cancer type-specific. 

Levels of Myo1b were clearly increased in metastatic prostate cancer – both 

in patient tissue and when measured in the cell lines by qPCR and western 

blotting. Out of the matched pair of patient cell lines, 1535 CT had visibly 

higher levels of Myo1b in comparison to normal prostate tissue. Myo1b has 

a role in formation of post-Golgi carriers and in transport of endocytic 

organelles (Raposo et al., 1999; Salas-Cortes et al., 2005). The role of 

Myo1b in cancer has not been well investigated, although it was recently 

found to be upregulated in head and neck squamous cell carcinoma 

(HNSCC) (Ohmura et al., 2015). The same group observed slight 

upregulation of Myo1b in prostate cancer and other types of cancer, 

suggesting that the role of Myo1b in different cancers required further 

investigation (Ohmura et al., 2015). Here, immunostaining has shown that 

Myo1b localises to the actin-rich areas at the plasma membrane, vesicles 

(endosomes) and, somewhat surprisingly, to the filopodia of PC3 cells. Other 
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groups have previously observed similar Myo1b localisation in other cell 

types: Myo1b-eGFP and endogenous Myo1b were found to co-localise with 

actin at the cell periphery, in cytoplasmic punctae and endosomes in normal 

rat kidney epithelial cells and in human melanoma cell line (Salas-Cortes et 

al., 2005; Tang and Ostap, 2001). Interestingly, Myo1b has also been found 

at dynamic actin structures, such as membrane ruffles and large protrusions 

and filopodia / invadopodia in HeLa cells (Kim and Flavell, 2008; Komaba 

and Coluccio, 2010). One of the groups found that motor function and 

binding to phosphatidylinositol 4,5-bisphosphate (PIP2) was necessary for 

Myo1b to localise to filopodia (Komaba and Coluccio, 2010), suggesting that 

binding of Myo1b to phosphoinositides played a role in regulating Myo1b 

localisation to actin-enriched membrane projections.  

Expression of Myo18a observed in the GEO Database was similar across 

different samples, not showing any changes. We did, however, notice 

intriguing changes in the qPCR analysis, the difference between LNCaP and 

PC3 being one of the most obvious, more than 40-fold, as well as a 

noticeable change in the western blotting. The possible role of Myo18a in 

cell migration has been described through its interaction with kinases (Hsu et 

al., 2010). MYO18A was also found in a three-way translocation of Histone-

lysine N-methyltransferase 2A gene (MLL or KMT2A) MLL in child acute 

myeloid leukaemia (Ussowicz et al., 2012). An interesting interaction 

between Myo18a and NM2A, which has many roles in the cell, has recently 

been described (Billington et al., 2015), and will be discussed further in 

Chapter 4. As mentioned previously, Myo18a has two isoforms, alpha and 

beta (Mori et al., 2005). The isoforms show several differences: Myo18a is 

expressed in most tissues, while expression of Myo18a is restricted to 

hematopoietic cells; Myo18alacks a PDZ (PSD-95/Discs-Large/ZO-1) 

domain towards the N-terminus, and therefore has a molecular weight of 

around 190 kDa, in comparison to 230 kDa for Myo18a (Mori et al., 2005). 

Antibodies used in this study to recognize Myo18a were raised against C-

terminus of the protein, but they identified a protein of about 230 kDa, 
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present in prostate tissue (not hematopoietic). This means that the 

recognised isoform expressed in examined cells was Myo18a. 

Looking at patient tissue, levels of Myo9b were significantly higher in primary 

tumours than in normal prostate, as shown by the in silico analysis. Myo9b 

was also significantly upregulated in the malignant PC3 cells, as shown by 

qPCR and immunoblotting. The observed staining, with Myo9b localising to 

lamellipodia and membrane ruffles was consistent with its role in cell polarity 

(Hanley et al., 2010). Myo9b contains in its tail a RhoGAP (GTPase 

Activating Protein) domain (Reinhard et al., 1995), which regulates the Rho 

GTPases, which in turn play a major role in actin reorganisation (Ridley et al 

2003). Myo9b has been connected to progression of oesophageal cancer 

(Menke et al., 2012), and another class 9 isoform, Myo9a, has been 

implicated in migration of epithelial cells (Omelchenko and Hall, 2012). This 

together suggested that Myo9b could be an interesting isoform to explore 

further in context of metastasis. 

Aggressive, metastatic prostate cancer samples showed increased 

expression of several myosin isoforms, but an interesting exception to this 

trend is Myo6, which is highly expressed in localised tumours (Figure 3.1, 

GEO Microarrays). Myo6 is also the only isoform with expression levels 

significantly higher in the LNCaP cells with low metastatic potential in 

comparison to the highly metastatic PC3 cells. This is in agreement with 

earlier findings that Myo6 is frequently overexpressed in prostate and breast 

cancer tissues (Su et al., 2001), with higher levels detected in medium-grade 

androgen-dependent prostate cancers than in more advanced and 

aggressive cancers (Dunn et al., 2006). Loss of Myo6 has been shown to 

reduce the motility of ovarian and prostate cancer cells (Dunn et al., 2006; 

Yoshida et al., 2004), but it is unclear why it is present in very low levels in 

the malignant PC3 cell line. Our immunostaining showed a diffuse, 

cytoplasmic localisation of Myo6 in both LNCaP and PC3 cell lines. Myo6 

has been previously reported to localise to protrusions and membrane ruffles 

(Yoshida et al., 2004), as well as in the perinuclear region around the Golgi 

complex and on endocytic structures (Aschenbrenner et al., 2003; Buss et 
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al., 1998; Maddugoda et al., 2007; Puri et al., 2010). The different staining 

patterns observed depend on the set of antibodies used (commercial or in-

house), and may explain the observed differences between the staining 

pattern we observed and those from other groups. Additionally, one group 

used pre-treatment with saponin, a gentle detergent, to remove the 

unbound, overexpressed Myo6 from LNCaP cells, but the approach was not 

successful in our study (results not shown). 

The connection between Myo6 and human cancer, including prostate 

cancer, has been relatively well explored. It has been suggested that 

because of its role in endocytosis, Myo6 could contribute to cancer cell 

motility by promoting internalisation and recycling of key mediators such as 

integrins and other receptors (Yoshida et al., 2004). Another group showed 

overexpression of Myo6 as an example of molecular alterations of the Golgi 

apparatus in human prostate cancer, with the functional significance to be 

fully characterised (Wei et al., 2008). Since Myo6 levels are highest in 

medium-grade prostate cancers, Dunn and colleagues noted that advanced 

cancers may gain other properties and become less dependent on Myo6 

(Dunn et al., 2006). For example, Myo6 stabilizes E-cadherin, which is 

crucial in border cell migration (Geisbrecht and Montell, 2002), a mode 

employed by well-differentiated prostate cancers. On the other hand, 

advanced prostate cancers show perturbed E-cadherin-mediated cell 

adhesion and express lower levels of E-cadherin (De Marzo et al., 1999). As 

a result, as (Dunn et al., 2006) speculate, Myo6 can be necessary for 

regulating migration of medium grade, E-cadherin-positive prostate cancers, 

but may not be as critical in more advanced cancers (Dunn et al., 2006). 

Finally, one study looked specifically at Myo6 in androgen-dependent 

LNCaP cells (Puri et al., 2010). Importantly, the authors found no connection 

between androgen receptor translocation into the nucleus and Myo6 

expression. They observed that Myo6 is involved in secretion of the 

prostate-specific marker, PSA, and the vascular endothelial growth factor, 

VEGF. PSA can increase cellular migration (by either promoting EMC or by 

cleaving ECM proteins), and VEGF is a key angiogenic factor that mediates 
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the recruitment and cell proliferation of endothelial precursor cells. 

Therefore, an increase in PSA and VEGF secretion caused by Myo6 

overexpression could be a significant factor promoting tumour growth or 

enhancing cell motility. At present, however, it is unclear why Myo6 is 

specifically overexpressed in these secretory adenocarcinomas and how 

exactly upregulation of secretion generates a malignant tissue (Puri et al., 

2010). 

Using the GEO Database to analyse expression of myosins has the 

disadvantage that many genes in the GEO Database were discarded before 

the final analysis (see Section 2.2). Thus some of the myosin isoforms 

detected by rt-PCR in the cell lines are missing in the GEO analysis 

(MYO5B, MYO9A and MYO19). In addition, we did not detect additional 

myosin isoforms identified in patient samples in the GEO database by PCR 

(MYO1A, MYO1F, NM2B, MYO5A, MYO7A). This could be due to a different 

detection threshold of the methods used. Moreover, cancers are very 

diverse and cell lines do not represent all the possible scenarios found in the 

clinic.  

Choosing an appropriate model is crucial for designing relevant experiments, 

which is why I considered all of the cell lines tested here. Even though the 

DU145 cell line is a popular prostate cancer model, it originates from a 

metastatic tumour in the brain, which very rarely occurs in a typical course of 

prostate cancer (Kaighn et al., 1981). rt-PCR analysis of this cell line showed 

that it had an unusual expression profile, with expression of MYO7A and 

MYO3A, myosins that normally only have a restricted tissue expression 

(Coluccio, 2008; Dose and Burnside, 2002; Richardson et al., 1997; Weil et 

al., 1995). Thus, we decided to discontinue using this cell line as a model. 

The LNCaP cells, originally obtained from a tumour in the lymph node, are 

still androgen-sensitive and maintain their malignant properties 

(Horoszewicz et al., 1983). They represent an ‘early’ stage of prostate 

cancer metastasis. The commonly used PC3 cell line is derived from an 

osteolytic metastatic site, which is the most common metastatic site for 

prostate cancer – up to 90% of reported metastases (Bubendorf et al., 2000; 



 

66 

 

Doctor et al., 2014). PC3 cells are already androgen-independent and 

therefore represent a more aggressive phase of cancer cell development 

(Kaighn et al., 1981). PC3 cells do form tumours when injected into nude 

mice (Ma and Waxman, 2009; Pulukuri et al., 2005). In contrast, LNCaP 

cells, do not normally form tumours or metastasise (Wu et al., 1994), 

although there is evidence showing that subpopulations of LNCaP cells form 

tumours in mice (Hurt et al., 2008). Cell lines, even though they have 

obvious limitations, are a useful first step in elucidating molecular 

mechanisms of processes and in identifying potential subjects of interest for 

further research. Because of its insensitivity to androgens and high level of 

malignancy, PC3 cell line is a good model for the study and evaluation of 

metastases of human prostate carcinomas. This is why I chose to focus the 

consequent study of myosins in prostate cancer on this cell line. 

Taken together, the findings from the GEO Database analysis, as well as the 

subsequent analysis of myosin expression by rt-PCR, q-PCR and western 

blotting for a variety of prostate cancer cell lines, I have decided to choose 

four isoforms as the most interesting candidates for further investigation: 

Myo1b, Myo9b, Myo10 and Myo18a. Myo1b and Myo10 are overexpressed 

in both metastatic prostate cancer and in the more highly metastatic PC3 cell 

lines, compared to LNCaP cells, and thus might be expected to contribute to 

the metastatic phenotype. Myo18a is overexpressed in PC3 cells, though not 

in metastatic prostate cancer tissues, but it worthy of further investigation as 

its overexpression may contribute to the PC3 cell phenotype.  
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Chapter 4 

Role of myosins in prostate cancer cell migration 

 

4.1 Introduction 

After analysing expression of myosins in prostate cancer tissue and cell 

lines, I have decided to further focus on four myosin isoforms: Myo1b, 

Myo9b, Myo10 and Myo18a. Experiments focusing on Myo9b were started 

towards the end of the project, and due to time restrictions this myosin 

isoform could not have been fully investigated. General information about 

myosin domains and structure can be found in the introduction (section 1.3). 

The structure of myosins of interest is described in more detail below, since 

looking at structure of the protein can offer a valuable insight into its possible 

mechanism of action. 

Myo1b belongs to class 1 and, like all the class 1 myosins, it has a basic 

myosin tail homology 1 (MyTH1) domain in its tail, which contains a 

pleckstrin homology (PH) domain-like fold (Figure 4.1) (Hokanson et al., 

2006). The PH domain binds selectively to phosphatidyl inositol 

phospholipids (PIPs) (Lemmon and Ferguson, 2001; Tacon et al., 2004), 

and all of the class 1 myosins can bind to PIPs in vesicles and/or in the 

plasma membrane (Lin et al., 2005; Raposo et al., 1999; Ruppert et al., 

1993; Salas-Cortes et al., 2005). Myo1b binds PtdIns(4,5)P2 and 

PtdIns(3,4,5)P3, with higher affinity for PtdIns(4,5)P2 (Komaba and Coluccio, 

2010). 

Myo9b, which forms class 9 together with Myo9a, is not a very well-studied 

myosins isoform but certainly an interesting one. Myo9b contains a RhoGAP 

(GTPase activating protein) domain in its tail (Bement et al., 1994; Reinhard 

et al., 1995). The Rho family of small GTPases includes Rho, Rac and 

CDC42 which cycle between GTP-bound active and GDP-bound inactive 

states. GAPs partially control this by stimulating intrinsic GTP hydrolysing 
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activity of Rho GTPases, inhibiting them by facilitating the shift into inactive 

state (Jaffe and Hall, 2005). Rho GTPases are involved in actin 

reorganisation and various actomyosin-dependent processes, including 

regulation of the protrusion and retraction mechanisms (Ridley and Hall, 

1992; Ridley et al., 2003). Head domain of Myo9b contains quite an unusual 

N-terminal extension of about 60 amino acids, only found in class 9 myosins, 

and its neck region contains 4 IQ motifs (Figure 4.1) (Wirth et al., 1996). 

Myo9b is highly expressed in leukocytes and shows low to moderate level of 

expression in various tissues including spleen, small intestine, testis, 

prostate, brain and others (Wirth et al., 1996).  

Myo10, the only member of class 10, is widely expressed in vertebrate 

tissues, with high levels in developing brain, endothelia and many epithelia 

(Berg et al., 2000; Courson and Cheney, 2015). The tail of Myo10 has three 

PH (pleckstrin homology) domains, a myosin tail homology 4 (MyTH4) 

domain and a band 4.1/ezrin/radixin/moesin (FERM) domain (Figure 4.1) 

(Berg et al 2000). In myo10, the PH domains are responsible for binding of 

this myosin to PIPs, specifically to PtdIns(3,4,5)P3 and PtdIns(3,5)P2 and this 

is required for Myo10-induced filopodial formation (Plantard et al., 2010; 

Tacon et al., 2004), although the underlying molecular mechanism is unclear 

(Liu et al., 2012). The MyTH4 domain is involved in microtubule binding 

(Kerber and Cheney, 2011; Weber et al., 2004), which could mean that 

Myo10 acts as a potential motorised link between actin filaments and 

microtubules. The FERM domain binds β1, β3 and β5 integrins, receptors 

important for cell adhesion, and is thought to be required for transporting the 

integrins to the filopodia tips, which contributes to stability and functionality 

of the protrusions (Zhang et al., 2004). The initial sequence analysis of 

Myo10 identified a putative coiled-coil region in the tail, so the heavy chains 

were predicted to dimerise as a coiled coil. Our lab demonstrated that it is 

actually a stable single -helix (SAH) (Knight et al., 2005), although more 

recently it has been suggested that the distal region of this sequence may 

allow Myo10 to form anti-parallel dimers (Lu et al., 2012). 
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Myo18a together with Myo18b forms class 18. An interesting feature of 

Myo18a is its ATP-insensitive actin binding site in its N-terminal domain 

(Figure 4.1), which suggests that Myo18a might act as a dynamic actin 

tether (Guzik-Lendrum et al., 2013; Isogawa et al., 2005). The N-terminal 

domain contains also a PDZ (PSD-95/Discs-Large/ZO-1) domain, known to 

act as a scaffold for holding signalling protein complexes together. Myo18a 

dimerises through a coiled-coil region in the tail, similarly to myosin 2. These 

two myosins share other similarities, such as two IQ motifs which bind 

essential and regulatory light chain (ELC and RLC) (Guzik-Lendrum et al., 

2013). However, Myo18a does not form filaments like myosin 2 (see Section 

1.3.2), as it lacks the repeating sequences of positive and negative charges 

along its coiled coils that promote the assembly of myosin tails into filaments 

in myosin 2 (Guzik-Lendrum et al., 2013). 

In the second part of the study, I further investigated the putative role of 

Myo1b, Myo9b, Myo10 and Myo18a in prostate cancer. To find out more 

about the function of these myosin isoforms, I used RNA interference (RNAi) 

technology to knock down myosins in the highly metastatic PC3 cell line. I 

then determined the effects of the knockdown on the morphology and 

behaviour of PC3 cells. These included changes in cell shape and area, in 

organisation of actin cytoskeleton and changes in the status of filopodia and 

focal adhesions. Finally, I looked at endocytosis and migration in 2D and 3D-

like environment. 
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Figure 4.1 Diagrammatic representations of Myo1b, Myo9b, Myo10 and 

Myo18a (adapted with permission from (Allsop and Peckham, 2011)). 

Detailed description of the structural features of each myosin in the main 

text. 
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4.2 Results 

 

4.2.1 siRNA-mediated knockdown depletes myosin expression 

I used siRNA to knock down the endogenous levels of four myosins Myo1b, 

Myo9b, Myo10 and Myo18a, in the highly metastatic PC3 cell line. As seen 

in Chapter 3 (Figure 3.3, 3.4), the PC3 cells normally express high levels of 

these myosins, and depletion can help determine how endogenous myosin 

expression affects cell morphology and behaviour. The efficiency of siRNA 

(SMARTpool and single reagents) knockdowns was confirmed by western 

blotting (Figure 4.2).  

To establish the best time point for knockdown efficiency, I first ran a time-

course experiment for Myo10 knockdown (Figure 4.2A). Levels of Myo10 

were decreased by 90% after 72 hours and below the level of detection after 

96 hours when using SMARTpool siRNA. Considering that the cells reached 

very high confluence after 96 hours, I used 72 hours as the standard time-

point for analysis of any effects of knockdown, where I was better able to 

analyse cell shape in subconfluent cultures. I also confirmed that the 

depletion was efficient for the other myosin isoforms (Figure 4.2B). Figure 

4.2B also shows that knockdown of a particular myosin did not affect levels 

of the remaining myosins, including NM2A, which confirms specificity of the 

knockdowns. Myo9b was the last myosin isoform analysed, and because of 

time restrictions its knockdown has been quantified separately, in 

comparison to GAPDH (Figure 4.2C). This also serves to show that GAPDH 

gave similar results to ERK as a loading control. 
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Figure 4.2 siRNA-mediated knockdown of myosins in highly metastatic 

PC3 cell line. A. Time-course experiment for knockdown of Myo10 using 

siGENOME SMARTpool siRNA (Thermo Scientific) after 24, 48, 72 and 96 

hours; and with a single siRNA reagent (siRNA3) after 72 and 96 hours, 

analysed by immunoblotting. B. Knockdown of Myo1b, Myo10 and Myo18a 

in PC3 cell line using siGENOME SMARTpool siRNA after 72 hours, 

analysed by immunoblotting confirms that myosin levels are significantly 

reduced while levels of other myosins are not affected. C. Knockdown of 

Myo9b using siGENOME SMARTpool siRNA after 72 hours. Control cells 

were treated with non-targeting siRNA (NT). Molecular weight markers 

shown to the right. Total ERK (A, B) or GAPDH (C) were used as loading 

control. 
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4.2.2 Knockdown of Myo10 reduces the number of filopodia 

Actin staining revealed that knockdown of myosins results in isoform-specific 

changes in cell morphology (Figure 4.3A). Most interestingly, knockdown of 

Myo10, but not the other myosins, significantly reduced the numbers of 

filopodia by more than 70% (to 4.2 ± 0.84 filopodia per cell, mean ± S.E.M., 

n=20) in comparison to control cells (13.1 ± 1.26 filopodia per cell, mean ± 

S.E.M., n=20, p < 0.05) (Figure 4.3B).  

Knockdown of each of the myosins increased the cell spread area of PC3 

cells significantly, by about 2-3 fold (Figure 4.3A, C). Cell shape was also 

changed, with Myo1b and Myo10 knockdown resulting in a more polygonal 

shape, and Myo9b and Myo18a knockdown resulting in a more rounded 

shape, with prominent membrane ruffles around the edges in case of 

Myo18a depletion, and an actin-rich area at the cell periphery in Myo9b-

depleted cells (Figure 4.3A, arrows). These different results suggested that 

each myosin isoform affects the organisation of actin cytoskeleton in a 

distinct way. 
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Figure 4.3 Knockdown of myosins affects morphology of PC3 cells.  

A. Low power images of PC3 and myosin-depleted PC3 cells (after 72 h) 

stained for F-actin using fluorescent phalloidin to show changes in cell area. 

The fluorescent images are shown in reverse contrast for increased clarity. 

Arrows in the Myo9b KD picture indicate peripheral high density actin 

staining. Arrows in the Myo18a KD picture show numerous membrane 

ruffles. Scale bar = 90 μm or as shown. The images are representative of at 

least 3 separate experiments Control cells were treated with non-targeting 

siRNA (NT). B, C. Quantification of filopodial number (B) and cell area (C), 

bars represent mean + S.E. for n=20 cells from at least 3 separate 

experiments. Statistical analysis was performed using two-way ANOVA. 

Levels of significance are indicated by: p<0.05 statistically significant (*), 

p<0.01 very significant (**), p<0.001 extremely significant (***).  
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To ensure that myosins were being inhibited specifically, and that the 

observed changes were not just a result of off-target effects, I also looked at 

the effect of individual siRNA reagents for Myo10 in PC3 cells. As shown by 

immunoblotting (Figure 4.2B), using individual siRNAs resulted in about 75% 

decrease in levels of Myo10, comparable to SMARTpool, which is a mix 

containing 25% of each of the 4 individual siRNA sequences. Furthermore, 

knockdown by individual reagents in PC3 cells resulted in similar phenotype 

changes (Figure 4.4A), including significantly decreased numbers of 

filopodia (Figure 4.4B) and an increase in cell area (Figure 4.4C). All types of 

treatment produces morphological changes similar to previous SMARTpool 

knockdown, with formation of actin stress fibres and loss of filopodia, which 

confirmed that the observed results are connected specifically to depletion of 

Myo10. This confirmed that the use of SMARTpool is efficiently and 

specifically knocking down the myosin of interest. 
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Figure 4.4 Knockdown of Myo10 by individual siRNA reagents.  

A. Control and myosin-depleted PC3 cells (after 72 h) stained for F-actin 

using fluorescent phalloidin to show changes in cell area. The fluorescent 

images are shown in reverse contrast for increased clarity. Treatment with 

individual siRNA reagents (siRNA3 as an example) results in the same 

morphology changes as in case of SMARTpool, although some smaller cells 

with filopodia are also visible (arrow points to filopodia). Control cells were 

treated with non-targeting siRNA (NT). Scale bar = 30 μm. The images are 

representative of at least 3 separate experiments. B, C. Quantification of 

filopodial number (B) and cell area (C), bars represent mean + SD for n=20 

cells from at least 3 separate experiments. Statistical analysis was 

performed using two-way ANOVA, p<0.001 extremely significant (***).  
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4.2.3 Myo10 overexpression in prostate cancer cells increases the 

numbers of filopodia 

Considering the striking reduction in filopodia number after Myo10 

knockdown in PC3 cells, I then overexpressed Myo10 fused to GFP (Green 

Fluorescence Protein) (GFP-Myo10) to see whether increased levels of 

Myo10 will correlate with higher filopodia numbers. Myo10 overexpression 

has been shown to increase filopodia numbers in several cell lines (Berg and 

Cheney, 2002; Bohil et al., 2006), but not in prostate cancer cells. I 

overexpressed GFP-Myo10 in both PC3 cell line and the more benign 

LNCaP cells, characterised in Chapter 3 (Figure 4.5A). Similarly to 

endogenous Myo10, GFP-Myo10 localised to the tips of filopodia. Both cell 

lines overexpressing GFP-Myo10 showed increased numbers of filopodia in 

comparison to control cells. This was particularly visible in the LNCaP cell 

line where overexpression of GFP-Myo10 resulted in a significant increase, 

from 0.2 ± 0.6 filopodia per cell (mean ± SD, n=10) to an average of 9.2 ± 

1.81 filopodia per cell, (mean ± SD, n=10, p < 0.05) (Figure 4.5B). These 

results confirmed that numbers of filopodia correlate with levels of Myo10. 
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Figure 4.5 Overexpression of Myo10-EGFP results in increased number 

of filopodia in LNCaP and PC3 cell lines. A. LNCaP and PC3 cells stained 

for F-actin (AF546-phalloidin, red) and nuclei (DAPI, blue).  

Scale bar = 20 μm. The images are representative of at least 3 separate 

experiments. B. Bars represent mean + SD quantified for n = 10 cells, from 3 

separate experiments. Statistical analysis was performed using two-way 

ANOVA, (**) is for p<0.01. 
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4.2.4 Knockdown of Myo1b, Myo9b, Myo10 and Myo18a affects 

focal adhesions in PC3 cell line 

Staining of myosin-depleted PC3 cells for actin and paxillin, a component of 

the focal adhesion complex (Turner, 2000), showed changes to focal 

adhesions and organisation of the F-actin cytoskeleton that depended on 

which myosin was knocked down. Control PC3 cells do not show prominent 

focal adhesions and typically contain low numbers of actin stress fibres 

(Figure 4.6A). After Myo1b depletion long stress fibres appeared throughout 

the cell and the ends of the stress fibres were associated with large, well-

developed focal adhesions (Figure 4.6B, arrows). Myo9b-depleted PC3 cells 

were rounded, with numerous focal adhesions around the cell edges, some 

of them at the end of actin bundles (Figure 4.6C, arrows). Shorter, more 

central stress fibres were visible after knockdown of Myo10, and the ends of 

some of these stress fibres were associated with large focal adhesions 

(Figure 4.6D, arrows). In contrast, in Myo18a depleted cells, somewhat 

centripetal stress fibres were found in the lamella, where they were arranged 

parallel to the plasma membrane. Numerous prominent focal adhesions 

could be observed at the edges of the cell (Figure 4.6E, arrows). Moreover, 

a line profile analysis of the frequency of actin bundles in the lamella showed 

that the frequency of bundles was significantly reduced for Myo1b 

knockdown cells (2.1 ± 0.1 bundles per micron, mean ± S.E.M., n=9) 

compared to controls (2.6 ± 0.2 bundles per micron, mean ± S.E.M., n=9, 

p<0.5%). These results suggested to us that each myosin is able to affect 

the organisation of the actin cytoskeleton in a distinct way, and in particular 

to influence actin filament and focal adhesion formation. 
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Figure 4.6 Effect of myosin knockdown on focal adhesions of PC3 
cells. Control (A) and Myo1b (B), Myo9b (C), Myo10 (D) and Myo18a (E) 
knockdown PC3 cells stained for F-actin (phalloidin – red), paxillin (green) 
and nuclei (DAPI – blue). Arrows indicate large focal adhesions at the ends 
of F-actin bundles (arrowed) in knockdown cells. Scale bar = 30 μm. Red 
lines in (A, B) represent an example of line for the profile analysis of the 
frequency of actin bundles described in Section 4.2.4  
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4.2.5 Isoform-specific changes in NM2A organisation after 

silencing myosins 

Staining of cells for actin filaments and non-muscle myosin 2a (NM2A), 

which is a component of stress fibres, revealed interesting, isoform-specific 

changes in each of the knockdowns. Control PC3 cells typically show a 

punctate distribution of NM2A filaments throughout the cell, with some co-

localisation with actin filaments and the scarce stress fibres (Figure 4.7A, 

arrows and at higher magnification in Figure 4.8A). After Myo1b knockdown, 

NM2A filaments co-localised with the prominent long stress fibres (arrows in 

Figure 4.7B and Figure 4.8B). Following knockdown of Myo9b, visible stress 

fibres appeared across the whole cell area, with NM2A co-localising to the 

stress fibres. The cells also showed a distinctive actin-rich area at the cell 

periphery, from which NM2A was largely missing (Figure 4.7C, arrows in 

Figure 4.8C). Some co-localisation of actin and NM2A was also observed in 

Myo10-depleted PC3 cells (arrows in Figure 4.7D and Figure 4.8D).   

But perhaps the most interesting changes appeared after knocking down 

Myo18a. The dense, centripetal actin filaments in the lamella were 

associated with a large visible increase in NM2A filaments (arrows in Figure 

4.7E and Figure 4.8E). We found this trend really interesting, especially in 

light of the recent finding that Myo18a levels can affect the organisation of 

NM2A (Billington et al., 2015). It is worth noting that, as shown in section 

4.2.1, knockdown of Myo1b, Myo10 and Myo18a did not affect the 

expression levels of NM2A (Figure 4.1B), and thus the changes in NM2A 

organisation we observed are not due to changes in NM2A expression 

levels. Finally, immunoblotting for phosphorylated light chain did not show 

any changes in levels of phosphorylation (Figure 4.9). This suggested that 

NM2A had not become activated by knockdown of Myo1b, Myo10 or 

Myo18a, but was being re-organised. Knockdown of Myo9b, however, 

seems to increase phosphorylation of myosin light chain, in agreement with 

Myo9b RhoGAP function and with what has been observed before for 

Myo9b knockout mice (Figure 4.9) (Hanley et al., 2010).  
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Figure 4.7 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in PC3 cells. Control (A) and Myo1b (B), Myo9b (C), Myo10 

(D) and Myo18a (E) knockdown PC3 cells stained for F-actin (phalloidin – 

red), non-muscle myosin 2A (NM2A, green) and nuclei (DAPI – blue). The 

arrows indicate stress fibres and actin bundles in cells. Scale bar = 30 μm   
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Figure 4.8 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in PC3 cells. Control (A) and Myo1b (B), Myo9b (C), Myo10 

(D) and Myo18a (E) knockdown PC3 cells stained for F-actin (phalloidin – 

red), non-muscle myosin 2A (NM2A, green) and nuclei (DAPI – blue). The 

arrows indicate stress fibres and actin bundles in cells. Scale bar = 5 m 

except for Myo9b KD (B) where the scale bar = 2 m   
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Figure 4.9 Levels of Phosphorylated Myosin Light Chain (pMLC) in PC3 

cells. Levels of pMLC in control and Myo1b, Myo10 and Myo18a depleted 

PC3 cells, analysed by immunoblotting. Due to time restrictions, Myo9b 

knockdown has been analysed separately (I performed the experiment and 

Professor Michelle Peckham has done the immunoblotting). Control cells 

were treated with non-targeting siRNA (NT). Molecular weight markers 

shown to the right. Total ERK or GAPDH (Myo9b) were used as loading 

control.  
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4.2.6 Knockdown of myosins reduces cell migration in 2D and 3D-

like environment 

The changes to the actin cytoskeleton resulting from depletion of Myo1b, 

Myo9b, Myo10 and Myo18a raised the possibility that their depletion might 

also affect cell migration. Due to time restrictions, cell migration after Myo9b 

knockdown was not analysed during this project. As for the other myosin 

isoforms, overnight time-lapse microscopy and cell-tracking of HGF-

stimulated PC3 cells in a 2D random migration assay showed that depletion 

of Myo10, but not Myo1b or Myo18a, affected cell migration speed, with 

tracks from Myo10-depleted cells visibly shorter than control cells (Figure 

4.10A). Myo10 knockdown reduced cell speed significantly, by about 2 fold, 

from 0.49 ± 0.24 m/min to 0.25 ± 0.1 m/min (mean ± SD, n=50, p < 0.05) 

(Figure 4.10B). Directional persistence, defined as the ratio between 

displacement and the total path length, was not affected by knockdown of 

Myo1b or Myo10, but was significantly decreased in Myo18a depleted cells, 

by about 30% from 0.34 ± 0.18 to 0.26 ± 0.12 (mean ± SD, n=50, p < 0.05) 

(Figure 4.10C), suggesting a role for Myo18a in determining directionality of 

migration.  

Using a circular invasion assay that closely mimics 3D invasion (Yu et al., 

2012), I observed that control PC3 cells migrate freely into the matrix, 

whereas migration of myosin depleted cells is visibly decreased (Figure 

4.10D). The control cells (NT, treated with non-targeting siRNA) migrated 

into cell-free area at the rate of about 26.5 ± 4.9 cells per square 250 m x 

250 m (mean ± SD). For the same surface area, the rate for Myo1b 

knockdown cells was 2.6 ± 2.6, 1.4 ± 2.3 after Myo10 knockdown, and 

Myo18a knockdown resulted in 6.1 ± 5.2 cells on average migrating into the 

area (n=10 measured fields of view from at least 2 experiments). As 

represented by the pictures, inhibition of invasion into the cell-free Matrigel 

was most evident in the case of Myo10 (Figure 4.10D).  

  



 

86 

 

Figure 4.10 Effect of myosin knockdown on cell migration. A. Coloured 

lines show representative tracks for individual cells during an overnight time-

lapse microscopy experiment for control (treated with non-targeting siRNA, 

NT) and Myo1b, Myo10 and Myo18a-depleted cells after HGF stimulation. 

Scale bar = 100 μm. B, C. Quantification of speed (B) and directional 

persistence (C) of cell migration, bars show mean + SD for n = 50 cells from 

at least 3 experiments (NT = control cells treated with non-targeting siRNA). 

Statistical analysis was performed using one-way ANOVA. Levels of 

significance are indicated as: p<0.05 for statistically significant (*), p<0.01 

very significant (**), p<0.001 extremely significant (***). D. Circular invasion 

assay showing cells stained for actin filaments (phalloidin - green) and nuclei 

(DAPI - blue). Dashed line marks the border of cell-free space created by 

stoppers. Scale bars as shown. The images are representative of at least 3 

separate experiments.  
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4.2.7 Knockdown of Myo1b affects endocytosis in PC3 cell line 

As previously mentioned, Myo1b plays a role in endocytosis (Salas-Cortes et 

al., 2005), so I looked at this process in PC3 cells using immunostaining for 

EEA1 (early endosome antigen 1), a well-known marker for early 

endosomes (Figure 4.11A). As a control, I also tested endocytosis in cells 

depleted of Myo10, which is not thought to be involved in endocytosis. 

Knockdown of Myo1b, but not Myo10, resulted in noticeable decrease of 

EEA1-positive vesicles in PC3 cells. This is quantified in Figure 4.11B, 

confirming a statistically significant decrease of early endosomes in Myo1b-

depleted cells, while endocytosis in Myo10 KD cells was not affected. 

Ideally, these results should be accompanied by assays looking at uptake of 

particles, but several attempts at experiments using fluorescent dextran or 

transferrin were unsuccessful and their outcomes inconclusive (data not 

shown).  

 

4.2.8 Knocking down DCC, a Myo10 regulator, changes 

morphology of PC3 cells 

As a further test of the involvement of Myo10 in the increase in filopodia, I 

investigated the effect of knockdown of one of its known binding partners. 

Myosins can be regulated by various factors and binding partners (see 

section 1.3.4), and Myo10 interacts with Deleted in Colon Cancer (DCC) 

(Zhu et al., 2007), which promotes movement of Myo10 along actin filaments 

and enhances Myo10-mediated elongation of basal filopodia (Liu et al., 

2012). I silenced DCC in PC3 cells using siRNA (Figure 4.12A). 

Interestingly, analysis of immunostained PC3 cells after DCC knockdown 

showed an increase in cell area and loss of filopodia (quantified data not 

shown, representative images in Figure 4.12B, C). These effects are similar 

to depleting Myo10 and suggest a role for DCC in regulating Myo10 in 

prostate cancer cells. It would be interesting to see the effect of DCC on cell 

migration, although preferably efficiency of the knockdown should be 

optimised first, since knockdown of DCC reduced the protein levels only by 

about 60% in comparison to non-targeting control (Figute 4.12A).  
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Figure 4.11 Knockdown of Myo1b affects endocytosis in PC3 cells.  

A. PC3 cells stained for endosome marker, early endosome antigen (EEA1, 

red) actin filaments (phalloidin - green) and nuclei (DAPI - blue). White 

squares represent example areas where measurements were made for 

quantification (squares 20m x 20 m). Scale bar as shown. The images are 

representative of at least 3 separate experiments. B. EEA1-positive vesicles 

per square 20m x 20 m quantified. Bars show mean + SD for n=25 fields 

from at least 3 experiments. Statistical analysis was performed using one-

way ANOVA. (***) is for p<0.001.   
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Figure 4.12 Knockdown of DCC affects the morphology of PC3 cells.  

A. Knockdown of DCC and Myo10 in PC3 cells using siGENOME 

SMARTpool siRNA after 72 hours, analysed by immunoblotting to confirm 

efficiency. Control cells were treated with non-targeting siRNA (NT). 

Molecular markers shown to the right. Total ERK was used as loading 

control. B. PC3 cells stained for F-actin (phalloidin, green), Myo10 (red) and 

nuclei (DAPI – blue). Scale bar = 20 m. The images are representative of at 

least 3 separate experiments. 
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Our functional studies relied primarily on siRNA technology and off-target 

effects cannot be fully excluded unless a rescue experiment is performed. 

However, two transient transfections (siRNA silencing and overexpression of 

GFP constructs) in succession are very challenging to complete 

successfully, and all my attempts resulted in very high cell death. In addition, 

siRNA-resistant constructs were not available for all the myosins of interest. I 

also found that four individual Myo10 siRNA sequences, each led to a similar 

phenotype (i.e. filopodia loss) (Figure 4.4), and this is distinct from the 

phenotype observed with Myo1b, Myo9b or Myo18a siRNA, arguing against 

off-target effects. Therefore, I concluded that it is unlikely that the off-target 

effects played a dominant role in mediating the biological effect of the 

knockdowns. 
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4.3 Discussion 

The results presented here show that siRNA-mediated knockdown of 

Myo1b, Myo9b, Myo10 and Myo18a have isoform-specific effects on 

morphology and migration of PC3 cell line. High endogenous expression 

levels of Myo10 in PC3 cells are linked to high numbers of filopodia, and a 

more migratory phenotype as shown by immunostaining and cell migration 

assays. High levels of Myo1b influence cell morphology and actin 

organisation, with sparse long actin stress fibres appearing in Myo1b-

depleted PC3 cells, but only contribute to cell migration in 3D, not 2D. High 

levels of Myo9b are linked to low levels of stress fibres and Myo9b 

knockdown increases the appearance of numerous focal adhesions. High 

expression levels of Myo18a affect cell morphology and organisation of 

NM2A, and contribute to 3D migration as well as to directional persistence of 

2D cell migration. Overall, this subset of myosins might contribute to the 

migratory phenotype of PC3 cells, with Myo10 being the most important 

myosin for metastasis of prostate cancer. 

Our knockdown and overexpression experiments confirm a clear relation 

between levels of Myo10 and numbers of filopodia, already observed in 

Chapter 3 when comparing different cell lines. Knockdown of DCC, Myo10 

activator, also resulted in loss of filopodia, offering a further confirmation of 

this link. It has been shown previously that Myo10 is a strong promoter of 

filopodia formation. Overexpressing full-length Myo10 has been shown to 

increase the number and length of filopodia in previous studies, both for 

substrate attached filopodia, dependent on adhesion and Myo10’s ability to 

bind integrins (Berg and Cheney, 2002; Watanabe et al., 2010; Zhang et al., 

2004), and for dorsal filopodia, independently of adhesion or integrin binding 

(Bohil et al., 2006). It has been suggested that the Myo10 tail is mostly 

responsible for stimulating filopodia formation, through a variety of 

mechanisms. These include regulation of motor activity through a motor – 

tail interaction (Umeki et al., 2011) and/or transporting proteins that are 

important for filopodia formation, such as integrins (Bohil et al., 2006). More 

recent reports show that Myo10 is also required for the formation of other 
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actin-based protrusions such as invadopodia and podosomes (McMichael et 

al., 2010; Schoumacher et al., 2010).  

Prostate cancer cells have been reported to exhibit motile responses to HGF 

(Parr et al., 2001; Wells et al., 2005). The reduction in PC3 cell migration in 

2D HGF stimulated migration assays resulting from Myo10 knockdown, 

suggests that Myo10-dependent filopodia formation could be important for 

cell motility. As some cells lacking filopodia are still able to migrate 

(Lundquist, 2009), it has been suggested that filopodia are not essential for 

migration, but promote it, by exploring the environment, and enabling cells to 

decide where to go. Our experiments with PC3 cells, also show that filopodia 

are not absolutely required for cell migration, as even in the absence of 

filopodia, the Myo10-depleted cells were able to move in 2D migration 

assays, albeit more slowly than control cells.  

The increase in cell area we observed when Myo10 is knocked down is 

consistent with that reported previously for other cell types (Bohil et al., 

2006), where overexpression of Myo10 resulted in a significant reduction in 

cell area, and siRNA knockdown of Myo10 in HeLa cells resulted in a ~4 fold 

increase in cell area. It is unclear why Myo10 knockdown results in large 

central stress fibres, which have the appearance of thick bundles, 

reminiscent of bundles of actin in filopodia. However, fascin, an actin 

bundling protein found in filopodia is known to be overexpressed in PC3 

cells (Darnel et al., 2009). Inhibition of fascin blocks filopodial formation 

(Huang et al., 2015). If levels of fascin remain high following Myo10 

knockdown, but filopodia are unable to form, fascin may be able to bundle 

actin filaments in the cell body producing the large central stress fibres we 

observed. 

Our finding that Myo10-dependent filopodia are likely to be important for cell 

migration agrees with the recent findings that Myo10-dependent filopodia are 

important for breast cancer metastasis (Arjonen et al., 2014; Cao et al., 

2014). Myo10 was found to be upregulated in aggressive subtypes of breast 

carcinoma, and it was shown to be required for breast cancer cell adhesion, 
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migration and invasion in vitro, and to regulate dissemination of breast 

cancer cells in vivo in a mouse model (Arjonen et al., 2014; Cao et al., 

2014). In this case, Myo10-induced cell adhesion, migration, and invasion 

were dependent on stabilization of filopodia that protrude into the matrix 

using the cell adhesion receptor β1 integrin.  

One of these groups also reported a new link between Myo10 upregulation 

and mutant p53 expression (Arjonen et al., 2014). Mutant p53, a stable 

variant of p53 (resulting from gain-of-function mutations), is associated with 

increased metastasis, and overexpression of Myo10 is linked to expression 

of p53 in clinical breast cancer samples. Silencing of mutant p53 

downregulated Myo10 expression levels, through the MAPK/ERK pathway, 

as inhibiting this pathway was also able to downregulate Myo10 expression 

levels. In addition, mutant p53 is also associated with an increase in the 

transcription factor ERG1 (early growth response protein 1), and ERG1 

binds to the Myo10 promoter (Arjonen et al., 2014), thus providing a link 

between p53 and Myo10 expression levels. However, PC3 cells do not 

express p53, while they still have high levels of Myo10 expression (Carroll et 

al., 1993).  Therefore, in these cells there must be some other mechanism 

by which Myo10 levels are increased. 

We found that Myo18a affects PC3 cell morphology, migration and 

organisation of actin and NM2A, indicating that Myo18a contributes to cell 

motility. The large re-organisation of actin and NM2A induced by Myo18a 

knockdown may have two possible explanations; its interaction with non-

muscle myosin 2 (NM2A) and its interaction with Myotonic dystrophy kinase-

related Cdc42-binding kinase (MRCK; (Tan et al., 2008)) through the leucine 

rich adaptor protein LRAP35a. Myo18a associates with MRCK, which is 

linked to Cdc42, and works with ROCK to phosphorylate MYPT1 (myosin 

phosphatase target subunit-1). MYPT1 inhibits myosin light chain 

phosphatase (MCP1), thereby increasing MLC2 (myosin light chain 2) 

phosphorylation (Wilkinson et al., 2005), and should therefore increase the 

activity of NM2A and thus cell contractility.  The association of MRCK with 

Myo18a is suggested to increase MLC2 phosphorylation, and increase 
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NM2A assembly in the lamella. MRCK knockdown resulted in a loss of 

lamellar NM2A –actin networks, while Rho mediated stress fibres remained. 

A similar effect was observed when Myo18a was depleted. However, this is 

not consistent with our finding that knockdown of Myo18a in PC3 cells 

results in an increase in NM2A filaments in the lamella. 

Recently, Myo18a was additionally found to interact directly with NM2A in 

vitro, co-assembling into mixed bipolar filaments both in vitro and in vivo 

(Billington et al., 2015). Moreover, this interaction resulted in shorter NM2A 

filaments in vitro (Billington et al., 2015), suggesting that Myo18a is able to 

affect the size and organisation of NM2A filaments. NM2A filaments are 

~314nm long, but mixed NM2A/Myo18a filaments are only 227 nm long. The 

failure to observe this in vivo using super-resolution microscopy was 

attributed to the low levels of Myo18a expression compared to NM2A. 

However, they pointed out that the ratio of Myo18a to NM2A could be higher 

in some cell types or subcellular locations (Billington et al., 2015), in which 

case effects on filament organisation might be observed. This suggests that 

the re-organisation of NM2A that we found to result from Myo18a 

knockdown results from a reduction in the direct interaction between Myo18a 

and NM2A, rather than changes in levels of light chain phosphorylation, or 

levels in NM2A expression.  

Myo18a has also been identified as an interacting partner for the p21-

activated kinase (PAK) though the βPIX/GIT1 complex (Hsu et al., 2010). 

That study showed that knockdown of Myo18a increased the size of focal 

adhesions, increased cell area and the cells became more rounded with 

dense, centripetal actin filaments, similar to the findings reported here. 

These authors suggested that when Myo18a is knocked down, PAK2 

becomes relocalised to focal adhesions contributing to their increase in size 

and number, and the enlarged morphology observed, and that a lower focal 

adhesion turnover explains their lower motility. Consistent with these results, 

we also found that Myo18a knockdown increases the number of cell 

adhesions. Myo18a has also been reported to be required for cell migration 

in 2D and 3D (Hsu et al., 2014; Hsu et al., 2010; Tan et al., 2008), in 
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agreement with our findings that Myo18a knockdown affects directional 

persistence in 2D migration assays, and reduces migration in 3D migration. 

High levels of Myo9b expression in PC3 cells are likely to contribute to lack 

of stress fibres, and thus to enhanced cell migration. The RhoGAP domain in 

Myo9b tail inhibits Rho, which reduces the downstream activity of ROCK (a 

Rho kinase). This in turn increases myosin light chain (MLC) phosphatase 

activity, resulting in lower levels of MLC phosphorylation, thus reducing actin 

stress fibre formation. This would mean that Myo9b knockdown, by 

increasing Rho activity, should increase stress fibre formation and MLC 

phosphorylation, and it’s what was observed in this study. Genetic variation 

in Myo9b has recently been associated with an increased risk of esophageal 

adenocarcinoma, although its exact role remained undefined (Menke et al., 

2012). Even though I did not look at cell migration of Myo9b-depleted cells in 

this project, such analysis was subsequently done by my group and showed 

that Myo9b knockdown significantly decreased cell migration in 2D and 3D, 

further confirming a potential role for Myo9b in motility of prostate cancer 

cells (Makowska et al., 2015). 

Our screening data suggested that Myo1b might also play a role in 

metastasis, and knockdown of this myosin affects cell migration in 3D, cell 

shape and morphology, as well as endocytosis.  Myo1b regulates actin 

assembly at various regions in the cell including the production of post-Golgi 

carriers (Almeida et al., 2011; Gillespie et al., 2001), endocytic organelle 

transport (Cordonnier et al., 2001; Raposo et al., 1999), and in maintaining 

cortical tension at the plasma membrane, where it specifically associates 

with dynamic, non-tropomyosin containing actin filaments (Coluccio and 

Geeves, 1999; Tang and Ostap, 2001). High endogenous levels of Myo1b in 

more highly metastatic cells might therefore increase cortical tension 

allowing cells to move through stiff extracellular matrices in vivo, perhaps 

explaining why knockdown of Myo1b affects migration in 3D, but not on a 2D 

surface. 
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Myo1b has been recently shown to regulate cell motility in human head and 

neck squamous cell carcinoma (HNSCC) (Ohmura et al., 2015). In this 

study, downregulation of Myo1b inhibited metastasis to lymph nodes in a 

model using nude mice. Consistent with our observations, Myo1b 

knockdown in HNSCC was shown not to affect the filopodia, and the authors 

suggested that Myo1b contributes to cancer cell motility through its role in 

the formation of large protrusions at the leading edges of cells (Ohmura et 

al., 2015). Epithelial to mesenchymal transition (EMT) is one of the 

mechanisms of cancer progression, including migration and invasion, the 

researchers also investigated the relation between Myo1b expression and 

some EMT-related molecules, but found no connection, concluding that 

Myo1b has a role in cell motility of HNSCC independent of major EMT 

transcription factors but through a different mechanism (Ohmura et al., 

2015). 

Myo1b has been associated with other types of protrusions than filopodia. 

Some of the protrusions where Myo1b has been observed seem to resemble 

tunnelling nanotubes, which have recently been observed in pancreatic 

cancer cells (Ware et al., 2015). It would be interesting to explore the role of 

Myo1b in these structures, especially that Myo1b plays a role in elongating 

membrane tubules (Almeida et al., 2011; Yamada et al., 2014). Although we 

did not see that Myo1b knockdown affects filopodia, Myo1b was reported to  

contribute to formation of so called ‘repulsive filopodia’ (Prosperi et al., 

2015). Myo1b interacts with EphB2 receptor, and Eph receptors together 

with their ligands, ephrins, are important for cell segregation and cell 

repulsion (Astin et al., 2010). Myo1b is required to initiate the formation of 

long, thin EphB2-enriched filopodia at the interface of ephrinB1 and EphB2 

cells (Prosperi et al., 2015). Myo1b may also regulate membrane tension by 

coupling cortical acto-NMM2 network to the plasma membrane (Diz-Munoz 

et al., 2010) and thus contributes to cell repulsion by regulating NMM2 

distribution (Prosperi et al., 2015). Authors of this study speculate that 

similarly to its role for coupling the actin cytoskeleton to organelle 

membrane, Myo1b may couple mechanically the contractile acto-NMM2 
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fibres to the plasma membrane after its phosphorylation by EphB2 (Almeida 

et al., 2011; Prosperi et al., 2015; Yamada et al., 2014). 

To conclude, these results show that Myo1b, Myo9b, Myo10 and Myo18a all 

contribute to the morphology and/or migration of highly metastatic PC3 cell 

line. Each myosin has an isoform-specific effect on actin organisation, and 

their increased expression in cells with high metastatic potential may allow 

them to work collectively. Together, they help generate a cell with multiple 

protrusions that is better able to migrate through a 3D matrix. In particular 

Myo10, which is important for filopodia in prostate cancer cells as well as in 

breast cancer, is likely to be important for metastasis in a broad range of 

tumours. Many different drugs have now been developed that can inhibit 

specific myosin isoforms including those in classes 1, 2, 5 and 6 (Bond et al., 

2013), and our results additionally suggest that developing drugs to block 

specific myosin function could be useful in preventing metastasis. 

Importantly, these results emphasise that myosins not only use actin as 

tracks to walk along, but are able to actively drive actin organisation in cells. 
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Chapter 5 

Myosins in other tissues 

 

5.1 Introduction 

After analysing myosins in prostate cancer in detail, two major questions 

have arisen: what is the myosin status in non-malignant prostate tissue and 

do myosins also play a role in other types of cancer. In this final 

experimental chapter, I have addressed both these questions: I have 

analysed a cell line representing benign prostate tissue and investigated 

myosins in a glioblastoma cell culture model.  

 

5.1.1 Benign prostatic hyperplasia 

One example of non-malignant prostate tissue is the BPH-1 cell line, which 

is derived from benign prostatic hyperplasia (BPH). This is a very common 

prostate disorder, affecting approximately 70% of men over the age of 70 

(McVary, 2007). BPH is not considered to be a precursor of prostate cancer 

or a premalignant lesion, although the association between the two diseases 

remains unclear (Orsted and Bojesen, 2013). It is likely that although BPH 

does not increase the chances for prostate cancer development, it may 

increase the chance of diagnosing an incidental cancer (Chang et al., 2012).  

 

5.1.2 Glioblastoma 

Tumours of the central nervous system (CNS) can arise from several 

different cellular lineages that include glia, such as astrocytes and 

oligodendrocytes (Ostrom et al., 2014). Glioblastoma is the most common 

and most malignant of all glial tumours (grade IV astrocytoma), accounting 

for 60% of all of them (Ostrom et al., 2014). Malignant gliomas 

(glioblastomas) are primary brain tumours that are resistant to therapy and 

often have poor prognosis (Buckner et al., 2007; Stupp et al., 2007). 
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Interestingly, gliomas rarely metastasise outside the CNS, but they are 

capable of spreading long distances within the brain (Beadle et al., 2008; 

Burger and Kleihues, 1989). This limits effectiveness of local therapies and 

contributes to the high mortality rate seen in these tumours (Lim et al., 

2007). 

Moving glioma cells face particular mechanical constraints in the CNS 

environment they invade, which is packed tightly and has extracellular 

spaces in the sub-micrometre range (Thorne and Nicholson, 2006). The 

exact mode of migrating remains poorly understood. Migration of neural 

progenitor cells before they mature into neurons and glia provides some 

insight into the process: these cells utilise a unique, two-step mechanism not 

described in non-CNS-derived cells: continuous extension of a long finger of 

cytoplasm and separated, salutatory bursts of movements of the cell body 

(Bellion et al., 2005; Kakita and Goldman, 1999; Schaar and McConnell, 

2005). However, changes in development of the brain can affect this 

process, so the mechanism of migration through adult brain has not been 

fully characterised (Beadle et al., 2008). It remains unclear whether invasion 

of the brain by human glioma cells occurs by mechanisms used by other 

non-CNS cells, such as carcinomas, the unique mechanism used by neural 

progenitor cells or in an entirely different way. 

 

 

  



 

100 

 

5.2 Results 

5.2.1 Levels of myosins in Benign Prostatic Hyperplasia (BPH-1) 

I first investigated the expression levels of different myosin isoforms in BPH-

1 cell line. I focused on the myosins previously analysed in prostate cancer 

cell lines (Chapter 3) by immunoblotting Myo1b, NM2A, Myo6, Myo10 and 

Myo18a (Figure 5.1A). Myo9b was not involved in the analysis due to time 

constraints. I found that levels of Myo10 were quite high in BPH-1 cells, in 

comparison, about 50% of what I observed in the PC3 cell line. Myo1b 

expression was particularly high in the BPH-1 cell line, almost 2-fold higher 

than in PC3 cells. Levels of Myo6 and Myo18a were low, comparable to PC3 

cell line (Figure 5.1A and B), and expression of Myo6 were still significantly 

higher in LNCaP cells than the other cell lines. Expression levels of NM2A 

(Figure 5.1) were similar across the examined cell lines (Section 3.2.4). 

I also stained the BPH-1 cells for actin to investigate their overall 

morphology, in particular how actin is organised in these cells and the 

number of filopodia (Figure 5.1C). BPH-1 cells are adherent, rounded and 

grow in round-shaped colonies. Actin filaments are mostly found in bundles 

at the cell borders (Figure 5.1C). The cells display numerous protrusions and 

some ruffles, including protrusions that overlap with the neighbouring cells in 

the colonies. An analysis of filopodia number showed that BPH-1 cells have 

on average 8.1 ± 3.4 filopodia per cell (mean ± SD, n=20), although their 

ability of forming tight colonies can account for some inaccuracies in 

measurement. It is worth noting that this is on average 2 times less filopodia 

per cell than in PC3 cell line (15.35 ± 7.7, see Section 3.2.5), and this ratio 

correlates accurately with the expression levels of Myo10 in BPH-1 and PC3 

cells. 
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Figure 5.1 Myosins in BPH-1 cell line. A. Representative immunoblots for 

a range of myosins in BPH-1. Similar amounts of protein were loaded for 

each blot. Total ERK used as loading control. Molecular markers shown to 

the right. B. Quantification of expression relative to ERK, bars represent 

mean + SD for at least 3 experiments. Statistical analysis was performed 

using two-way ANOVA. Levels of significance indicated by: p<0.05 

statistically significant (*). Data from Figure 3.4 (LNCaP and PC3 cell lines) 

included for comparison. C. Low power (left) and high power (right) images 

of BPH-1 cells stained for F-actin using fluorescent phalloidin to show their 

morphology. The fluorescent images are shown in reverse contrast for 

increased clarity. Black arrows indicate actin bundles around the colonies 

and between cells. White arrow shows filopodia. Black arrowhead indicates 

a membrane protrusion. Scale bars as shown. The images are 

representative of at least 3 separate experiments.  
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5.2.2  Localisation of myosins in BPH-1 cell line 

Next, I used immunostaining to look at the localisation of myosin isoforms in 

BPH-1 cell line. Similarly to PC3 cells, Myo10 in BPH-1 cells localised to the 

tips of filopodia and protrusions (arrows in Figure 5.2D and Figure 5.3D). 

Myo1b is localised close to the plasma membrane between neighbouring 

cells and in membrane ruffles (Figure 5.2A and arrow in Figure 5.3A). NM2A 

co-localised with F-actin bundles at the border of cells towards the edges of 

the colonies (arrows in Figure 5.2B and Figure 5.3B), unlike in prostate 

cancer cell lines LNCaP or PC3. Myo6 showed a somewhat diffuse staining 

in BPH-1 cells (Figure 5.2C and Figure 5.3C) and Myo18a localised to 

membrane ruffles at the border of colonies (arrows in Figure 5.2E and 5.3E). 

The nuclear staining observed for Myo18a was unexpected and may be non-

specific. 
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Figure 5.2 Localisation of myosins in BPH-1 cell line. BPH-1 cells 

stained for F-actin (AF546 phalloidin – red), nuclei (DAPI – blue) and 

myosins: 1b (A), NM2A (B), Myo6 (C), Myo10 (D) and Myo18a (E).  

Scale bar = 30 m. White squares show areas zoomed in in Figure 5.3. The 

images are representative of at least 3 separate experiments.  



 

104 

 

 

Figure 5.3 Localisation of myosins in BPH-1 cell line (zoomed in 

images from Figure 5.2). BPH-1 cells stained for F-actin (AF546 phalloidin 

– red), nuclei (DAPI – blue) and myosins: Myo1b (A), NM2A (B), Myo6 (C), 

Myo10 (D) and Myo18a (E). Scale bar = 10 m. The images are 

representative of at least 3 separate experiments.  
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5.2.3 Knockdown of myosins in benign prostate cell line, BPH-1  

When looking for potential therapeutic targets, it is crucial that they have 

effect over cancer cells while leaving normal, benign cells unaffected. While I 

already confirmed in the previous chapters that Myo1b, Myo10 and Myo18a 

are important for morphology and behaviour of malignant prostate cancer 

cells, I wanted to look at the effect of depleting benign prostate cells of these 

myosin isoforms. Using the same siRNA technology as described previously, 

I knocked down Myo1b, Myo10 and Myo18a in BPH-1 cells (Figure 5.4). 

Staining of BPH-1 cells for paxillin, part of the focal adhesion complex, 

revealed that control BPH-1 cells have numerous, well-developed focal 

adhesions (Figure 5.5A), in contrast to highly motile PC3 cells which do not 

show prominent focal adhesions (Chapter 4). The number or size of focal 

adhesions does not change following the knockdown of Myo1b, Myo10 or 

Myo18a (Figure 5.5B–D).  

Staining the BPH-1 cells for NM2A and F-actin showed some changes after 

myosin knockdown, although not nearly as drastic as seen in cancer PC3 

cells. Control BPH-1 cells show NM2A staining around the border of the cells 

and at the periphery of the colonies, where it co-localises with actin-rich 

areas. The cells at the border of the colony exhibit filopodia and wide 

protrusions, which contain actin and NM2A at their base, and only actin 

towards the edges (Figure 5.6A, arrows). After knockdown of Myo1b or 

Myo10 BPH-1 cells showed dense actin bundles at the edges of the cells (at 

the border between cells) and at the edge of the colonies, with NM2A co-

localising with the actin-rich areas (Figure 5.6B and C). These bundles were 

more prominent in myosin-depleted cells than in control cells. After 

knockdown of Myo1b or Myo10, the cells maintained broad, short 

protrusions containing NM2A at their base. Some differences were visible in 

Myo10-depleted cells, namely they had noticeably increased cell area, 

although exact quantification was hindered due to the fact that BPH-1 cells 

grow in tight colonies and often overlap. Filopodia numbers following Myo10 

knockdown decreased by about 35% and were unaffected in cells lacking 

Myo1b (data not shown). 
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Figure 5.4 siRNA-mediated knockdown of myosins in BPH-1 cells. 

Knockdown of Myo1b, Myo10 and Myo18a in BPH-1 cell line using 

siGENOME SMARTpool siRNA after 72 hours, analysed by immunoblotting. 

Control cells were treated with non-targeting siRNA (NT). Molecular weight 

markers shown to the right. Total ERK was used as loading control. 
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Consistent with what was observed in PC3 cells (Section 4.3.5), Myo18a 

knockdown in BPH-1 cells affected organisation of NM2A, increasing the 

formation of NM2A filaments (Figure 5.7). The filaments seemed to be 

associated along centripetal actin filaments (Figure 5.7A and B, arrows), 

however these were not as clearly visible as in Myo18a-depleted PC3 cells. 

The cells had broad protrusions at the border of the colonies, withNM2A 

filaments at their base and actin-rich, NM2A-free area towards the edge 

(Figure 5.7A and B, arrowheads). Interestingly, Myo18a knockdown slightly 

decreased the numbers of filopodia in BPH-1, by about 20%, although this 

was not statistically significant (data not shown). 

  



 

108 

 

 

Figure 5.5 Knockdown of myosins in BPH-1 cells has no visible effect 

on focal adhesions. Control (A) and Myo1b (B), Myo10 (C) and Myo18a (D) 

knockdown BPH-1 cells stained for F-actin (phalloidin, red), paxillin (green) 

and nuclei (DAPI – blue). Arrows indicate large focal adhesions at the cell 

periphery. Control cells were treated with non-targeting siRNA (NT). Scale 

bar = 30 μm, expect for Myo1b panel (B), where the scale bar is 15 μm. The 

images are representative of at least 3 separate experiments. 
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Figure 5.6 Effect of myosin knockdown on cytoskeleton and NM2A 

organisation in BPH-1 cells. Control (A) as well as Myo1b (B) and Myo10 

(C) knockdown BPH-1 cells stained for F-actin (AF546-phalloidin – red), 

non-muscle myosin 2A (NM2A, green) and nuclei (DAPI – blue). The arrows 

in panel (A) indicate actin-rich protrusions. Control cells were treated with 

non-targeting siRNA (NT). Scale bar = 30 μm. The images are 

representative of at least 3 separate experiments. 

  



 

110 

 

 

Figure 5.7 Effect of Myo18a knockdown on cytoskeleton and NM2A 

organisation in BPH-1 cells. BPH-1 cells after Myo18a knockdown, stained 

for F-actin (AF546-phalloidin – red), non-muscle myosin 2A (NM2A, green) 

and nuclei (DAPI – blue). White square in panel (A) shows the area zoomed 

into in panel (B). The arrows indicate centripetal actin bundles in cells, 

arrowheads point to actin-rich protrusions where NM2A is missing. Control 

cells for this experiment shown in Figure 5.6A. Scale bars as shown. The 

images are representative of at least 3 separate experiments. 
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5.2.4 Knockdown of Myo9a in benign prostate cell line, BPH-1 

I next wanted to check if knockdown of any other myosin isoforms would 

have an effect on the benign cells. BPH-1 cells grow in connected colonies, 

so I looked at another myosin isoform which was not picked up by the 

general screen (see Chapter 3), Myo9a, which has a role in cell-cell 

junctions in epithelial cells (Omelchenko and Hall, 2012). In the preliminary 

screen, Myo9a has been shown by qPCR to be upregulated in the DU145 

cell line (Figure 3.2), which also grows in rounded colonies. Interestingly, 

knocking down Myo9a brought quite drastic changes to BPH-1 cells, 

contrary to other myosins (Myo1b, Myo10 and Myo18a) examined in section 

5.2.3. In contrast to control BPH-1 cells, which grow in tight colonies (Figure 

5.8A), cells after Myo9a knockdown where much more scattered (Figure 

5.8B). This is in agreement to what has been observed before that Myo9a 

regulates collective epithelial cell migration by targeting RhoGAP activity to 

cell-cell junctions (Omelchenko and Hall, 2012). Staining for paxillin showed 

that even though the cells have a different shape and actin organisation, 

numbers of focal adhesions remain comparable between controls (Figure 

5.8C) and cells after Myo9a knockdown (Figure 5.8D). 
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Figure 5.8 Effect of Myo9a knockdown on morphology of BPH-1 cells. 

A, B. Images of control (A) and Myo9a knockdown (B) BPH-1 cells stained 

for F-actin using fluorescent phalloidin to show their morphology. The 

fluorescent images are shown in reverse contrast for increased clarity. Scale 

bar = 30 μm. C, D. Images of control (C) and Myo9a knockdown (D) cells 

stained for F-actin (AF546-phalloidin – red), paxillin (green) and nuclei (DAPI 

– blue). Arrows indicate large focal adhesions, present both in control and in 

the knockdown cells. Control cells were treated with non-targeting siRNA 

(NT). Scale bar = 30 μm. The images are representative of at least 3 

separate experiments. 
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5.2.5  Myo10 is highly expressed in glioblastoma cell lines 

Next, I investigated if Myo1b, Myo10 and Myo18a were upregulated in a 

brain cancer cell line, glioblastoma. Immunoblotting showed that among the 

three myosin isoforms upregulated in prostate cancer, only Myo10 was 

expressed at high levels in glioblastoma cell line (Figure 5.9A and B). I 

compared levels of Myo10 in prostate cancer cell lines and two glioblastoma 

cell lines: glioma p53-/-PTEN-/- and glioma PTEN-/- (Figure 5.9B). So called 

“headless” Myo10 (Hdl-Myo10) isoform is expressed in the nervous system 

(Sousa et al., 2006). Hdl-Myo10 lacks a functional motor domain, has a 

molecular weight of 164 kDa, and it was recognised by the antibody in 

glioblastoma cell lines but not in prostate cancer (Figure 5.9B), in agreement 

with this isoform’s expression pattern (Sousa et al., 2006). Interestingly, 

glioma p53-/-PTEN-/- showed higher levels of Myo10 than glioma PTEN-/-, 

while glioma PTEN-/- showed noticeably higher levels of Hdl-Myo10 in 

comparison to glioma p53-/-PTEN-/- (Figure 5.9B). When stained for Myo10 

and actin, glioblastoma p53-/-PTEN-/- cells showed Myo10 localised at the 

end of their multiple actin-rich protrusions (Figure 5.9D). The glioma PTEN-/- 

cells also showed protrusions although longer and more sparse (Figure 

5.9C). Both cell lines grow as a connected network. 
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Figure 5.9 Myosins in p53-/-PTEN-/- glioblastoma. A. Immunoblotting 

shows levels of Myo1b, Myo10 and Myo18a in the glioblastoma cell line. 

GAPDH used as loading control. B. glioblastoma cells stained for actin 

(AF546-phalloidin – red)  and Myo10 (green). Arrow shows Myo10 punctae 

concentrated at the tips of protrusions. Scale bar = 30 m. The images are 

representative of at least 3 separate experiments. 
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5.2.6  Knockdown of Myo10 in p53-/-PTEN-/- glioblastoma reduces 

the number of protrusions and affects focal adhesions. 

As Myo10, but not Myo1b or Myo18a, was expressed at relatively high 

levels, I used siRNA to deplete Myo10 expression only, in the glioblastoma 

cell line (Figure 5.10A), and examined the effects on the protrusions. 

Staining for F-actin showed that the shape of Myo10-depleted cells was 

altered, numbers of stress fibres increased, and the cell area was also 

slightly increased (Figure 5.10B, quantified in Figure 5.10C). Interestingly, 

knockdown of Myo10 in glioblastoma decreased the number of protrusions 

per cell (Figure 5.10B, quantified in Figure 5.10D), similarly to the phenotype 

changes seen in PC3 cells. 

Staining of glioblastoma cells for actin and paxillin revealed that Myo10 

depletion additionally affected focal adhesions in glioblastoma cells. Control 

cells show some focal adhesions at the tips of protrusions (Figure 5.11A). In 

contrast, after Myo10 knockdown, prominent actin stress fibres appeared in 

the large cells, with large, well-developed focal adhesions at their ends, 

suggesting a more adhesive phenotype (Figure 5.11B, arrows). These 

results suggest that the role of Myo10 in cell migration might be widespread 

among other types of cancer.  
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Figure 5.10 Knockdown of Myo10 affects morphology of p53-/-PTEN-/- 

glioblastoma. A. Immunoblotting confirms that knockdown of Myo10 in  

p53-/-PTEN-/- glioblastoma cell line using murine siGENOME SMARTpool 

siRNA for 72 hours noticeably reduced Myo10 protein level. Control cells 

were treated with non-targeting siRNA (NT). Molecular markers are shown to 

the right. GAPDH was used as loading control. B. Images of control (NT) 

and Myo10-depleted glioblastoma cells stained for F-actin using fluorescent 

phalloidin to show changes in morphology. The fluorescent images are 

shown in reverse contrast for increased clarity. Scale bar = 30 m.  

The images are representative of at least 3 separate experiments.  

C, D. Quantification of filopodial number (C) and cell area (D). Bars show 

mean + SD for n=20 cells from at least 3 separate experiments. Statistical 

analysis was performed using two-way ANOVA. Levels of significance 

indicated by: (***) for p<0.001.   
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Figure 5.11 Knockdown of Myo10 affects focal adhesions of  

p53-/-PTEN-/- glioblastoma. Control (A) and Myo10 knockdown (B) 

glioblastoma cells stained for F-actin (AF546 phalloidin, red) and paxillin 

(green). Arrows indicate large focal adhesions in knockdown cells. Control 

cells were treated with non-targeting siRNA (NT). Scale bar = 30 m The 

images are representative of at least 3 separate experiments.  
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5.3 Discussion 

The results presented here show that myosins are expressed and can be 

important in benign prostate tissue and glioblastoma. BPH-1, a benign 

prostatic hyperplasia cell line, shows high endogenous expression levels of 

some myosins when compared to prostate cancer cell lines. Levels of 

Myo1b are 1.5-fold higher than in PC3 cells, with Myo1b localising to 

membrane ruffles and actin-rich area between neighbouring cells. Levels of 

Myo10 are 2-fold lower in BPH-1 than in PC3 cells, and this number is 

reflected in numbers of filopodia: BPH-1 have on average half the number of 

filopodia seen in the PC3 cell line. High endogenous expression levels of 

Myo10 in another type of cancer, glioblastoma, are also associated with high 

numbers of protrusions. Knockdown of Myo10 in glioblastoma significantly 

decreases the numbers of filopodia, increases the cell area and affects focal 

adhesions. These changes are analogous to those observed in PC3 cells in 

Chapter 4 and suggest a broader role for Myo10 in cancer motility. 

 

5.3.1 Benign prostatic hyperplasia 

The BPH-1 cell line retains many characteristics of a benign prostate 

epithelium in terms of its morphology, enzymatic activity and testosterone 

metabolism (Hayward et al., 1995). However, one has to remember that this 

cell line is delivered from hyperplastic tissue, which means differences to 

normal prostate epithelium could be present. Other differences could occur 

because of the way the cell line has been established. For example, the 

primary cultures from which the cell line was derived showed very low levels 

of p53 (below detection level by immunofluorescence and western blotting), 

while BPH-1 cells show strong nuclear staining for p53 (Hayward et al., 

1995). This upregulation and stabilisation of p53 is typical for SV40-

immortalised cell lines – the SV40 large T antigen makes the p53 protein 

dysfunctional, as a result of sequestration to oncogene products (Ludlow, 

1993), and it cannot be excluded that this changes the cell line behaviour. 
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The cell line shows no tumorigenic or metastatic potential when injected into 

nude mice (Hayward et al., 1995).  

An unexpected observation in the BPH-1 cell line was the high level of 

expression of Myo1b, which was higher than in previously analysed in 

benign tissue (as shown in chapter 3: GEO analysis, Figure 3.1, and in 1535 

NP, Figure 3.3 and 3.4). One could speculate that high proliferation of 

hyperplastic tissue requires intensive endocytosis, hence elevated 

expression of endocytosis-related proteins such as Myo1b. Since Myo1b 

was present in filopodia or tunnelling nanotubes in PC3 cells, it would be 

interesting to check if it plays a role in cell-cell transport, especially that in 

BPH-1 cells in localises particularly on the borders between cells. The BPH-

1 cell line also showed relatively high numbers of filopodia (comparable to 

DU145 cells and 2-fold lower than in PC3 cells), which I did not expect to 

see in a cell line which has no metastatic potential. 

On the other hand, knockdown of Myo1b or Myo10 did not result in large 

changes in the BPH-1 cells. The focal adhesion status remained unchanged, 

and although Myo10-depleted cells seemed to have increased cell area and 

decreased number of filopodia (by ~30%), the changes were not nearly as 

drastic as in the malignant PC3 cells. Together, these results suggest that 

Myo1b and Myo10 might play a different, possibly more important roles in 

cancer cells than benign prostate cells, making them good potential 

candidates for therapeutic targets. Further study of the myosin knockdown 

seems necessary to check whether other processes such as endocytosis 

are affected. On the other hand, after knockdown of Myo18a I observed 

increased formation of NM2A filaments, suggesting that Myo18a is still 

important for NM2A organisation in benign prostate cells. 

In contrast to the myosin isoforms upregulated in prostate cancer, Myo9a 

seems to be important in BPH-1, particularly for cell-cell adhesion as 

previously shown in 16-HBE (human bronchial epithelium) cells 

(Omelchenko and Hall, 2012). Knockdown of Myo9a in 16-HBE cells caused 

increased scattering of epithelial cells, similar to what I observed in the  
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BPH-1 cell line, confirming that Myo9a is important for delivering RhoGAP 

activity to cell-cell junctions (Omelchenko and Hall, 2012). It would be 

interesting to check the effects of Myo9b knockdown on BPH-1 cells, but due 

to time restrictions this analysis was not performed. 

 

5.3.2 Glioblastoma and its migration 

Myo10 has been reported to be expressed in high levels in normal brain 

tissue (Berg and Cheney, 2002). Myo10 in neurons has been shown to 

regulate axonal pathfinding, outgrowth of neurites (neuronal projections, 

axons and dendrites) and related processes (Ju et al., 2014; Zhu et al., 

2007). A Myo10 isoform expressed in the nervous system, “headless” 

Myo10 (Hdl-Myo10), which lacks a functional motor domain, has a role in 

dendritic spine development and in axon outgrowth (Sousa et al., 2006), 

where it has been reported to act as a dominant-negative regulator of full 

length Myo10 (Raines et al., 2012). A consequent study showed that the 

Hdl-Myo10 isoform could also serve as a scaffolding protein and increase 

retention of actin-remodelling protein VASP (vasodilator-stimulated 

phosphoprotein) in dendritic filopodia to promote their maturation into 

dendritic spines (Lin et al., 2013). In the glioma cell lines, I also observed the 

Hdl-Myo10 isoform, with higher levels in glioma PTEN-/- than in glioma p53-/-

PTEN-/-, which could explain why PTEN-/- cells showed longer and less 

frequent, more “mature” protrusions than p53-/-PTEN-/- glioma cells. 

The role of myosins in glial cells has been less well studied, and has been 

focused around the study of malignant gliomas (incl. glioblastomas), primary 

brain tumours that often have poor prognosis (Buckner et al., 2007; Stupp et 

al., 2007). High mortality rates observed in these tumours can be contributed 

to the fact that although they rarely spread outside of the CNS, gliomas are 

able to invade within the brain very efficiently (Lim et al., 2007; Thorne and 

Nicholson, 2006). When gliomas invade the brain they typically migrate 

through white matter and infiltrate cortical and subcortical grey matter 

structures. For this process, but not for 2D migration, glioma cells have been 
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shown to require myosin 2 (Beadle et al., 2008; Gillespie et al., 2001). When 

carcinoma cells invade the brain, they do not infiltrate it but grow as a 

constrained, expansive mass (Beadle et al., 2008). This would suggest that 

gliomas use a different migration mechanism to carcinomas. The authors of 

this study claim the difference stems from the fact that carcinoma cells 

require formation of a broad lamellipodium to migrate and this is impossible 

in the restricted environment of the brain (Beadle et al., 2008). This 

argument does not seem convincing, since formation of a lamellipodium is 

mostly seen in migration on 2D, flat surfaces (Friedl and Wolf, 2003). Even 

glioma cells, when plated on a coverslip, form a broad lamellipodium and 

migrate much like epithelial cells, as reported by the same study (Beadle et 

al., 2008). In 2D environment, human and rat glioma cells migrate into a cell 

free zone with a velocity of 0.13 and 0.19 m/min, a speed that is 

considerably lower than that observed for PC3 cells (Chapter 4, Figure 

4.10), and although the authors also show much higher velocity of 0.5 

m/min for control glioma cells in a separate figure, this discrepancy is never 

explained. I was unable to observe motility for p53-/-PTEN-/- glioblastoma 

cells despite several attempts. This could be due to cell line-specific 

differences or differences in experimental conditions: for example, the study 

describes glioma cells grown to confluence and migrating in a scratch assay, 

while in my knockdown experiments the cells were grown to 30-40% 

confluence.  
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Chapter 6. Discussion 

 

I have presented a novel study that has investigated expression and 

potential roles of myosins in metastatic prostate cancer. The data show that 

a subset of myosins, including Myo1b, Myo9b and Myo10, is upregulated in 

localised and metastatic tumours. Myo1b, Myo9b, Myo10 and Myo18a 

contribute to the morphology and migration of a highly metastatic PC3 cell 

line. Myo10 promotes filopodia formation and has an evident contribution to 

cell migration, not only in prostate cancer but also in other types of cancer, 

including the highly invasive glioblastoma. High levels of Myo9b are linked to 

low levels of stress fibres. Myo1b and Myo18a influence cell morphology and 

actin organization, but have little effect on migration in 2D, while all 4 

isoforms inhibit cell migration of PC3 cells in 3D invasion assays. Thus, 

changes in expression of several myosin isoforms may contribute to 

metastasis in prostate cancer, and myosins could potentially serve as 

therapeutic targets or diagnostic markers for metastatic disease. 

Of all the myosins screened in this study, Myo10 emerges as possibly the 

most important isoform for migration of prostate cancer cells. Levels of 

Myo10 expression clearly correlated with numbers of filopodia in the different 

cell types that I investigated. There was also an evident link between Myo10 

and cell migration and invasion. While filopodia are not necessarily essential 

for migration, high levels of Myo10 increase their numbers, and enhance 

migration and invasion of cancers. In breast cancer, high levels of Myo10 

were shown to be important in transporting integrins to the filopodial tips for 

invasion (Arjonen et al., 2014).  Thus our finding appears to broadly agree 

with the reports that Myo10 overexpression leads to metastasis in breast 

and lung cancer (Arjonen et al., 2014; Cao et al., 2014; Sun et al., 2015). 

The breast cancer study also showed that mutant, but not wild type p53 was 

important for upregulating Myo10 expression levels through upregulation of 
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the MAPK/ERK pathway and increased levels of EGR1 transcription factor 

(Arjonen et al., 2014). Mutant p53 has been shown previously to drive 

random cell motility and increase invasiveness through enhancing recycling 

pathways of β1 integrins (Muller et al., 2009). Mutations of the TP53 tumour 

suppressor gene are one of the most common among cancers and mutant 

p53 promotes cell migration and metastasis (Oren and Rotter, 2010). In 

many types of human cancers, overexpression of mutant p53 is associated 

with a poor prognosis, consistent with the idea of a “gain of function” 

mutation, in contrast to loss of expression of WT p53 seen in other cancers 

(Selivanova and Ivaska, 2009). However, while p53 has a central role in 

preventing cancer in humans (Lane and Levine, 2010), we still do not fully 

understand how it functions.  

In contrast to the breast cancer study, PC3 cells express high levels of 

Myo10, which are linked to numerous filopodia, high motility and 

invasiveness, even though they do not express mutant or wild type p53. 

Similarly, there are high levels of Myo10 in the p53-/-PTEN-/- glioblastoma cell 

line, higher than in the PTEN-/- glioblastoma cells. In addition, an in silico 

analysis of the GEO cohort, previously used to examine myosin expression 

showed a significant drop of p53 levels in the metastatic tumours (Chapter 3, 

Figure 3.2). Loss of p53 alone may promote tumour initiation in some 

tissues, tumour progression in others, and in prostate cancer it is 

preferentially selected for in advanced prostate cancer, where it accelerates 

the progression of tumours (Chen et al., 2005). Thus, there must be a 

different mechanism by which levels of Myo10 are upregulated in those 

cells, which is p53-independent. This suggests that the described connection 

of Myo10 with p53 (Arjonen et al., 2014) is cancer type-specific or cell type-

specific. 

Previous reports have linked expression levels of other myosins to the p53 

status of cells. For example, expression levels of Myo6 were shown to be 

upregulated by p53 (mRNA and protein) in some tumour cell lines such as 

H1299, RKO, and LS174T (Jung et al., 2006), through binding of p53 to the 

promoter of the MYO6 gene. However, in MCF7 cells, increasing p53 
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expression levels reduced Myo6 levels (Cho and Chen, 2010). In MCF7 and 

LNCaP cells, DNA damage increased expression of p53 and decreased 

Myo6 expression. We found that levels of Myo6 are high in LNCaP cells, 

which do express wt p53 and low in PC3 cells, which do not, suggesting that 

p53 may be regulating Myo6 expression levels in these cell types. However, 

these trends can also depend on the way the cell lines have initially been 

established (transformation method), or be more complex since p53 is 

involved in multiple cell signalling events (Cho and Chen, 2010). 

RNAi mediated knockdown of NM2A predisposes mice to squamous cell 

carcinomas (SCC) (Schramek et al., 2014). This was shown to be related 

not only to actin-related processes, as in epithelial cells where NM2A is 

important for cell-cell adhesion, but was additionally linked to stabilisation of 

p53. In that study, knockdown of NM2A exacerbated SCC formation in mice 

in which TβRII (TGFβ receptor II), but had no effect in mice expressing 

mutant p53 in the skin epithelium. Knocking down NM2A function with 

blebbistatin prevented p53 accumulation in the nucleus.  

Our results suggest that each myosin has a specific effect on actin 

organisation, and increasing their expression in cells with metastatic 

potential may allow them to work in concert to generate a torpedo-shaped 

cell with multiple protrusions that is better able to migrate through a 3D 

matrix and thus more able to metastasise in vitro. Alternative explanation to 

some of the changes observed after myosin knockdown could be that they 

are a secondary consequence of myosin loss. For example, changes to 

integrin transport after Myo10 knockdown could cause disrupted signalling 

and thus indirectly result changes in the actin organisation. Further studies 

will be necessary to rule out the unspecific results and discover the exact 

mechanisms behind the observed changes. What is more, how cancer cells 

move depends on their environment, and this is true in case of malignant 

gliomas (Beadle et al., 2008; Wong et al., 2015) but also for other types of 

cancer. It would therefore be interesting to study the role of myosins in 

assays that better reflect the 3D environment in vivo, for example looking at 
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glioma cell motility in an conditions similar to the particular extracellular 

environment found in the brain. 

Several strategies could be used to utilise the role of myosins in therapy. 

One approach, for example, could be to target particular myosins, for 

example using small-molecule inhibitors. Small molecule myosin inhibitors, if 

selective and sufficiently potent, could be a useful resource for developing 

treatments for diseases involving myosin dysfunction or overactivity. So far, 

small-molecule inhibitors have been developed for myosins in class 2 

(muscle and non-muscle) and classes: 1, 5 and 6 (Bond et al 2013). Most of 

the inhibitors operate by hindering ADP/Pi release by the myosin ATPase 

(Bond et al., 2013). Blebbistatin, the most well-known inhibitor, specific to 

non-muscle myosin 2, has been shown to inhibit migration, invasion and 

spreading of cancerous cells such as pancreatic adenocarcinoma and breast 

cancer in culture (Derycke et al., 2011; Duxbury et al., 2004). Despite efforts 

in the scientific field, there are not that many inhibitors and none of them 

have been applied or tested in therapeutic aspects. Limitations when using 

inhibitors include lack of specificity as well as the range of concentrations at 

which the compound would have to be available in the patient to work 

efficiently. 

Additionally, small-molecule myosin inhibitors can serve as a useful tool for 

understanding myosin function. An interesting addition to the field would also 

be a complementary design of small-molecule myosin activators. Specific 

myosin inhibitors (and even activators) could provide valuable, 

complementary experiments to this study. One can imagine analysis of 

certain myosins, such as Myo10 and/or Myo9b, activated in the LNCaP cell 

line, effect of Myo6 activation in the PC3 cell line, or an experiment where 

several myosins could be inhibited in the PC3 cells at once. This approach 

could also be studied using established cell lines missing or overexpressing 

certain myosin isoforms, although the inhibitors offer an advantage of time- 

efficiency. 
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Rather than looking at particular molecules, a different tactic in cancer 

therapy is to take a broader, “blanket” approach. Although cancers are a 

group of diverse diseases, they can often be summarised by categories of 

dysfunctions such as the “hallmarks of cancer” (Hanahan and Weinberg, 

2000). Besides, as shown by the example of Myo18a and NM2A, myosins 

can work together and they often have overlapping functions. This general 

approach can target proteins involved in regulatory processes or in cell 

migration, especially when targeting metastatic cancer. One example of a 

therapy that targets a cytoskeletal protein are the taxanes, such as 

docetaxel, which inhibit polymerisation of tubulin (Dreicer, 2006). Taxane-

based chemotherapy is one of the few therapeutic options that have proven 

to be somewhat effective in metastatic castration-resistant prostate cancer, 

although for a very limited period of time (Dreicer, 2006). In general, 

prostatic adenocarcinoma tumours respond poorly to standard 

chemotherapeutic intervention (Augello et al., 2014; Berthold et al., 2005; 

Dreicer, 2006).  

Another common strategy general across various types of cancer includes 

Heat shock protein 90 (Hsp90) as a potential therapeutic target. Hsp90 is an 

evolutionary conserved molecular chaperone that stabilises and activates 

many proteins essential for cell signalling and adaptive responses to stress 

(Zhao et al., 2005). Cancer cells can use the Hsp90 chaperone to protect 

mutated or overexpressed oncoproteins from misfolding and degradation, 

and it is often recognised as a crucial facilitator of cancer cell survival 

(Trepel et al., 2010). Hsp90 is therefore often upregulated in advanced 

cancers, and I have also observed this to be the case in the in silico analysis 

of the GEO profiles for prostate cancer (Figure 3.2).  

Considerable progress has been made in the field of Hsp90 inhibitors, and 

even though none of them are approved, a number of inhibitors are currently 

undergoing clinical evaluation in cancer patients (Jhaveri and Modi, 2015; 

Trepel et al., 2010). Therapy can also target Hsp90 clients, such as protein 

kinases, involved in the proliferation and survival of cancer cells, which 

depend on chaperone activity of Hsp90 (Miyata et al., 2013). One example is 
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cell surface receptor tyrosine kinases, such as ErbB2/HER2 overexpressed 

in breast cancer which are targeted by Trastuzumab (Herceptin), monoclonal 

antibody drug which binds to ErbB2/HER2 and prevents the ErbB2/HER2-

dependent progression of metastatic breast cancer (Sachdev and Jahanzeb, 

2012). In prostate cancer, however, it seems that the tumour 

microenvironment and target complexity may complicate clinical efficacy. 

Initial preclinical observations suggested that castrate-resistant prostate 

cancer might respond well to IPI-504 (retaspimycin), a Hsp90 inhibitor 

therapy, since Hsp90 regulates the activity of androgen receptor (AR) 

(Saporita et al., 2007). However, the inhibitor was not effective in 

monotherapy of castration-resistant prostate cancer (Oh et al., 2011). This is 

similar to what has been reported for an analogous inhibitor, 17-AAG (Heath 

et al., 2008). These results could be explained by a study which showed that 

inhibition of Hsp90 by 17-AAG activates osteoclast Src kinase and promotes 

Src-dependent osteoclast maturation, and as a consequence, instead of 

acting against prostate cancer growth, Hsp90 inhibitor stimulates the growth 

of prostate carcinoma cells in the bone (Yano et al., 2008). By contrast, 

more promising results have been reported for multiple myeloma and for 

subtypes of breast cancer (Augello et al., 2014). These differences 

emphasise the value of choosing a cancer that is driven by an Hsp90 “client” 

protein (such as HER2 in breast cancer), as well as the importance of 

possible long-term impact of Hsp90 inhibitors on normal tissues (Augello et 

al., 2014; Yano et al., 2008).  

Apart from the general chaperones, another protein that could potentially be 

targeted in therapy is myosin chaperone, UNC-45A. UNC-45A is an isoform 

of UNC-45 expressed in non-muscle cells, specific to non-muscle myosins, 

while UNC-45B is a chaperone specific to muscle (Price et al., 2002). 

Elevated levels of UNC-45A have been found in ovarian tumours, with 

higher levels exhibited by metastatic tumours (Bazzaro et al., 2007). Another 

study showed that not only is UNC-45A accumulation increased in breast 

carcinoma specimens and cell lines, but also its knockdown in cell lines 

decreases proliferation and invasion rates (Guo et al., 2011). UNC-45A also 
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co-localises with NM2A in the centrosome and regulates proliferation of 

HeLa cells (Jilani et al., 2015). However, my in silico analysis showed that 

UNC-45A was significantly decreased in metastatic prostate cancer and no 

reports exist on the role of myosin chaperones in prostate cancer. Future 

study of the regulatory mechanisms of UNC-45A expression and biological 

action could improve its potential function in prostate cancer. 

Despite advances in early diagnosis, surgical techniques, systemic 

therapies, and patient care, modern anticancer therapy is still challenged 

greatly by metastatic dissemination. Metastasis frequently occurs prior to 

diagnosis of a primary tumour, which is why surgical excision is not curative. 

Continual empiricism in the treatment of cancer also seems unlikely to 

produce significant improvements and therefore understanding the 

mechanisms responsible for cancer metastasis should be a primary goal of 

research (Fidler, 2011). Indeed, incredible recent progress has been 

achieved in the field and new knowledge has been gained of the 

pathogenesis of metastasis on the systemic, cellular and molecular levels. 

Multiple other approaches and strategies are being taken on by researchers 

in the fight against cancer metastasis. In case of prostate cancer, targeting 

the androgen receptor or subpopulations of cancer stem-like cells 

(Bhattacharya et al., 2015; Frame et al., 2013). More generally, it could also 

mean targeting stroma interaction and tumour-associated cells (Calvo and 

Sahai, 2011), inhibiting various molecules in signalling pathways involved in 

regulation of cell migration (Hotary et al., 2003; Vega et al., 2012; Wellbrock 

and Hurlstone, 2010), looking at aneuploidy or chromatin regulations 

(Donnelly et al., 2014; Zhu et al., 2015). To date, however, many of these 

approaches render inefficient.  

This is partly because, depending on their molecular repertoire, tumour cells 

possess notable plasticity to change between different invasion modes and 

adjust migration mechanisms to cope with therapeutic challenge (Friedl and 

Wolf, 2003). The spectrum of adaptation responses observed for invasive 

migration implicates diverse mechanical and signalling programs in cancer 
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cell migration that adapt to molecular challenge during disease progression 

and, possibly, during therapeutic challenge (Alexander and Friedl, 2012). 

This means that there is still an urgent need to improve our understanding of 

cancer metastasis. We believe myosins might be an attractive object of 

study in this context, because of their ubiquity and multiple specific 

functions, some possibly dysregulated in cancer. This might present an 

opportunity for myosins to serve as ‘crucial points’ of the network of 

interactions involved in metastasis. An ideal therapy would not leave the 

cancerous cell an option to omit the challenge, but compensatory changes 

negating the effect would be available in normal cells. This is why it would be 

interesting to expand this study to check whether the analysed subset of 

myosins could be potential targets for therapy in other types of cancer or 

more specifically in prostate cancer.  

 

  



 

130 

 

Bibliography 

 

Abounit, S., and Zurzolo, C. (2012). Wiring through tunneling nanotubes--
from electrical signals to organelle transfer. Journal of cell science 125, 
1089-1098. 
Akhmanova, A., and Hammer, J.A., 3rd (2010). Linking molecular motors to 
membrane cargo. Current opinion in cell biology 22, 479-487. 
Albertsen, P.C., Hanley, J.A., and Fine, J. (2005). 20-year outcomes 
following conservative management of clinically localized prostate cancer. 
JAMA : the journal of the American Medical Association 293, 2095-2101. 
Albuschies, J., and Vogel, V. (2013). The role of filopodia in the recognition 
of nanotopographies. Scientific reports 3, 1658. 
Alexander, S., and Friedl, P. (2012). Cancer invasion and resistance: 
interconnected processes of disease progression and therapy failure. Trends 
in molecular medicine 18, 13-26. 
Allsop, G., and Peckham, M. (2011). Cytoskeleton and Cell Motility. 
Comprehensive Biotechnology. . 
Almeida, C.G., Yamada, A., Tenza, D., Louvard, D., Raposo, G., and 
Coudrier, E. (2011). Myosin 1b promotes the formation of post-Golgi carriers 
by regulating actin assembly and membrane remodelling at the trans-Golgi 
network. Nature cell biology 13, 779-789. 
Ankrett, R.J., Rowe, A.J., Cross, R.A., Kendrick-Jones, J., and Bagshaw, 
C.R. (1991). A folded (10 S) conformer of myosin from a striated muscle and 
its implications for regulation of ATPase activity. Journal of molecular biology 
217, 323-335. 
Arjonen, A., Kaukonen, R., and Ivaska, J. (2011). Filopodia and adhesion in 
cancer cell motility. Cell adhesion & migration 5, 421-430. 
Arjonen, A., Kaukonen, R., Mattila, E., Rouhi, P., Hognas, G., Sihto, H., 
Miller, B.W., Morton, J.P., Bucher, E., Taimen, P., et al. (2014). Mutant p53-
associated myosin-X upregulation promotes breast cancer invasion and 
metastasis. The Journal of clinical investigation 124, 1069-1082. 
Aschenbrenner, L., Lee, T., and Hasson, T. (2003). Myo6 facilitates the 
translocation of endocytic vesicles from cell peripheries. Molecular biology of 
the cell 14, 2728-2743. 
Astin, J.W., Batson, J., Kadir, S., Charlet, J., Persad, R.A., Gillatt, D., Oxley, 
J.D., and Nobes, C.D. (2010). Competition amongst Eph receptors regulates 
contact inhibition of locomotion and invasiveness in prostate cancer cells. 
Nature cell biology 12, 1194-1204. 
Augello, M.A., Den, R.B., and Knudsen, K.E. (2014). AR function in 
promoting metastatic prostate cancer. Cancer metastasis reviews 33, 399-
411. 
Bazzaro, M., Santillan, A., Lin, Z., Tang, T., Lee, M.K., Bristow, R.E., Shih Ie, 
M., and Roden, R.B. (2007). Myosin II co-chaperone general cell UNC-45 
overexpression is associated with ovarian cancer, rapid proliferation, and 
motility. The American journal of pathology 171, 1640-1649. 



 

131 

 

Beach, J.R., Licate, L.S., Crish, J.F., and Egelhoff, T.T. (2011). Analysis of 
the role of Ser1/Ser2/Thr9 phosphorylation on myosin II assembly and 
function in live cells. BMC cell biology 12, 52. 
Beadle, C., Assanah, M.C., Monzo, P., Vallee, R., Rosenfeld, S.S., and 
Canoll, P. (2008). The role of myosin II in glioma invasion of the brain. 
Molecular biology of the cell 19, 3357-3368. 
Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M., and Metin, C. (2005). 
Nucleokinesis in tangentially migrating neurons comprises two alternating 
phases: forward migration of the Golgi/centrosome associated with 
centrosome splitting and myosin contraction at the rear. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 25, 5691-
5699. 
Bement, W.M., Hasson, T., Wirth, J.A., Cheney, R.E., and Mooseker, M.S. 
(1994). Identification and overlapping expression of multiple unconventional 
myosin genes in vertebrate cell types. Proceedings of the National Academy 
of Sciences of the United States of America 91, 11767. 
Berg, J.S., and Cheney, R.E. (2002). Myosin-X is an unconventional myosin 
that undergoes intrafilopodial motility. Nature cell biology 4, 246-250. 
Berg, J.S., Derfler, B.H., Pennisi, C.M., Corey, D.P., and Cheney, R.E. 
(2000). Myosin-X, a novel myosin with pleckstrin homology domains, 
associates with regions of dynamic actin. Journal of cell science 113 Pt 19, 
3439-3451. 
Berg, J.S., Powell, B.C., and Cheney, R.E. (2001). A millennial myosin 
census. Molecular biology of the cell 12, 780-794. 
Berthold, D.R., Sternberg, C.N., and Tannock, I.F. (2005). Management of 
advanced prostate cancer after first-line chemotherapy. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 23, 
8247-8252. 
Bhattacharya, S., Hirmand, M., Phung, and van Os, S. (2015). Development 
of enzalutamide for metastatic castration-resistant prostate cancer. Annals of 
the New York Academy of Sciences. 
Billington, N., Beach, J.R., Heissler, S.M., Remmert, K., Guzik-Lendrum, S., 
Nagy, A., Takagi, Y., Shao, L., Li, D., Yang, Y., et al. (2015). Myosin 18A 
coassembles with nonmuscle myosin 2 to form mixed bipolar filaments. 
Current biology : CB 25, 942-948. 
Billington, N., Wang, A., Mao, J., Adelstein, R.S., and Sellers, J.R. (2013). 
Characterization of three full-length human nonmuscle myosin II paralogs. 
The Journal of biological chemistry 288, 33398-33410. 
Bishr, M., and Saad, F. (2013). Overview of the latest treatments for 
castration-resistant prostate cancer. Nature reviews Urology 10, 522-528. 
Bohil, A.B., Robertson, B.W., and Cheney, R.E. (2006). Myosin-X is a 
molecular motor that functions in filopodia formation. Proceedings of the 
National Academy of Sciences of the United States of America 103, 12411-
12416. 
Bond, L.M., Tumbarello, D.A., Kendrick-Jones, J., and Buss, F. (2013). 
Small-molecule inhibitors of myosin proteins. Future medicinal chemistry 5, 
41-52. 
Bresnick, A.R. (1999). Molecular mechanisms of nonmuscle myosin-II 
regulation. Current opinion in cell biology 11, 26-33. 



 

132 

 

Bright, R.K., Vocke, C.D., Emmert-Buck, M.R., Duray, P.H., Solomon, D., 
Fetsch, P., Rhim, J.S., Linehan, W.M., and Topalian, S.L. (1997). 
Generation and genetic characterization of immortal human prostate 
epithelial cell lines derived from primary cancer specimens. Cancer research 
57, 995-1002. 
Bubendorf, L., Schopfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., 
Gasser, T.C., and Mihatsch, M.J. (2000). Metastatic patterns of prostate 
cancer: an autopsy study of 1,589 patients. Human pathology 31, 578-583. 
Buckner, J.C., Brown, P.D., O'Neill, B.P., Meyer, F.B., Wetmore, C.J., and 
Uhm, J.H. (2007). Central nervous system tumors. Mayo Clinic proceedings 
82, 1271-1286. 
Burger, P.C., and Kleihues, P. (1989). Cytologic composition of the 
untreated glioblastoma with implications for evaluation of needle biopsies. 
Cancer 63, 2014-2023. 
Buss, F., and Kendrick-Jones, J. (2008). How are the cellular functions of 
myosin VI regulated within the cell? Biochemical and biophysical research 
communications 369, 165-175. 
Buss, F., and Kendrick-Jones, J. (2011). Multifunctional myosin VI has a 
multitude of cargoes. Proceedings of the National Academy of Sciences of 
the United States of America 108, 5927-5928. 
Buss, F., Kendrick-Jones, J., Lionne, C., Knight, A.E., Cote, G.P., and Paul 
Luzio, J. (1998). The localization of myosin VI at the golgi complex and 
leading edge of fibroblasts and its phosphorylation and recruitment into 
membrane ruffles of A431 cells after growth factor stimulation. The Journal 
of cell biology 143, 1535-1545. 
Calvo, F., and Sahai, E. (2011). Cell communication networks in cancer 
invasion. Current opinion in cell biology 23, 621-629. 
Cao, R., Chen, J., Zhang, X., Zhai, Y., Qing, X., Xing, W., Zhang, L., Malik, 
Y.S., Yu, H., and Zhu, X. (2014). Elevated expression of myosin X in 
tumours contributes to breast cancer aggressiveness and metastasis. British 
journal of cancer 111, 539-550. 
Carroll, A.G., Voeller, H.J., Sugars, L., and Gelmann, E.P. (1993). p53 
oncogene mutations in three human prostate cancer cell lines. The Prostate 
23, 123-134. 
Chandran, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., 
Michalopoulos, G., Becich, M., and Monzon, F.A. (2007). Gene expression 
profiles of prostate cancer reveal involvement of multiple molecular 
pathways in the metastatic process. BMC cancer 7, 64. 
Chang, R.T., Kirby, R., and Challacombe, B.J. (2012). Is there a link 
between BPH and prostate cancer? The Practitioner 256, 13-16, 12. 
Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., 
Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role 
of p53-dependent cellular senescence in suppression of Pten-deficient 
tumorigenesis. Nature 436, 725-730. 
Cho, S.J., and Chen, X. (2010). Myosin VI is differentially regulated by DNA 
damage in p53- and cell type-dependent manners. The Journal of biological 
chemistry 285, 27159-27166. 
Coluccio, L.M. (2008). Myosins. A superfamily of molecular motors 
(Springer). 



 

133 

 

Coluccio, L.M., and Geeves, M.A. (1999). Transient kinetic analysis of the 
130-kDa myosin I (MYR-1 gene product) from rat liver. A myosin I designed 
for maintenance of tension? The Journal of biological chemistry 274, 21575-
21580. 
Cordonnier, M.N., Dauzonne, D., Louvard, D., and Coudrier, E. (2001). Actin 
filaments and myosin I alpha cooperate with microtubules for the movement 
of lysosomes. Molecular biology of the cell 12, 4013-4029. 
Courson, D.S., and Cheney, R.E. (2015). Myosin-X and disease. 
Experimental cell research 334, 10-15. 
Craig, R., Smith, R., and Kendrick-Jones, J. (1983). Light-chain 
phosphorylation controls the conformation of vertebrate non-muscle and 
smooth muscle myosin molecules. Nature 302, 436-439. 
Craig, R., and Woodhead, J.L. (2006). Structure and function of myosin 
filaments. Current opinion in structural biology 16, 204-212. 
D'Amico, A.V., Whittington, R., Malkowicz, S.B., Schultz, D., Blank, K., 
Broderick, G.A., Tomaszewski, J.E., Renshaw, A.A., Kaplan, I., Beard, C.J., 
et al. (1998). Biochemical outcome after radical prostatectomy, external 
beam radiation therapy, or interstitial radiation therapy for clinically localized 
prostate cancer. JAMA : the journal of the American Medical Association 
280, 969-974. 
Dahan, I., Yearim, A., Touboul, Y., and Ravid, S. (2012). The tumor 
suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion 
morphology to optimize cell migration. Molecular biology of the cell 23, 591-
601. 
Darnel, A.D., Behmoaram, E., Vollmer, R.T., Corcos, J., Bijian, K., Sircar, K., 
Su, J., Jiao, J., Alaoui-Jamali, M.A., and Bismar, T.A. (2009). Fascin 
regulates prostate cancer cell invasion and is associated with metastasis 
and biochemical failure in prostate cancer. Clinical cancer research : an 
official journal of the American Association for Cancer Research 15, 1376-
1383. 
De La Cruz, E.M., and Ostap, E.M. (2004). Relating biochemistry and 
function in the myosin superfamily. Current opinion in cell biology 16, 61-67. 
De Marzo, A.M., Knudsen, B., Chan-Tack, K., and Epstein, J.I. (1999). E-
cadherin expression as a marker of tumor aggressiveness in routinely 
processed radical prostatectomy specimens. Urology 53, 707-713. 
Derycke, L., Stove, C., Vercoutter-Edouart, A.S., De Wever, O., Dolle, L., 
Colpaert, N., Depypere, H., Michalski, J.C., and Bracke, M. (2011). The role 
of non-muscle myosin IIA in aggregation and invasion of human MCF-7 
breast cancer cells. The International journal of developmental biology 55, 
835-840. 
Diz-Munoz, A., Krieg, M., Bergert, M., Ibarlucea-Benitez, I., Muller, D.J., 
Paluch, E., and Heisenberg, C.P. (2010). Control of directed cell migration in 
vivo by membrane-to-cortex attachment. PLoS biology 8, e1000544. 
Doctor, S.M., Tsao, C.K., Godbold, J.H., Galsky, M.D., and Oh, W.K. (2014). 
Is prostate cancer changing?: evolving patterns of metastatic castration-
resistant prostate cancer. Cancer 120, 833-839. 
Dong, W., Wang, L., and Shen, R. (2013). MYO5B is epigenetically silenced 
and associated with MET signaling in human gastric cancer. Digestive 
diseases and sciences 58, 2038-2045. 



 

134 

 

Donnelly, N., Passerini, V., Durrbaum, M., Stingele, S., and Storchova, Z. 
(2014). HSF1 deficiency and impaired HSP90-dependent protein folding are 
hallmarks of aneuploid human cells. The EMBO journal 33, 2374-2387. 
Dose, A.C., and Burnside, B. (2002). A class III myosin expressed in the 
retina is a potential candidate for Bardet-Biedl syndrome. Genomics 79, 621-
624. 
Dreicer, R. (2006). Chemotherapy for advanced prostate cancer: docetaxel 
and beyond. Hematology/oncology clinics of North America 20, 935-946, x. 
Du, M., Wang, G., Ismail, T.M., Gross, S., Fernig, D.G., Barraclough, R., and 
Rudland, P.S. (2012). S100P dissociates myosin IIA filaments and focal 
adhesion sites to reduce cell adhesion and enhance cell migration. The 
Journal of biological chemistry 287, 15330-15344. 
Duhoux, F.P., Ameye, G., Libouton, J.M., Bahloula, K., Iossifidis, S., 
Chantrain, C.F., Demoulin, J.B., and Poirel, H.A. (2011). The 
t(11;19)(q23;p13) fusing MLL with MYO1F is recurrent in infant acute 
myeloid leukemias. Leukemia research 35, e171-172. 
Dulyaninova, N.G., and Bresnick, A.R. (2013). The heavy chain has its day: 
regulation of myosin-II assembly. Bioarchitecture 3, 77-85. 
Dunn, T.A., Chen, S., Faith, D.A., Hicks, J.L., Platz, E.A., Chen, Y., Ewing, 
C.M., Sauvageot, J., Isaacs, W.B., De Marzo, A.M., et al. (2006). A novel 
role of myosin VI in human prostate cancer. The American journal of 
pathology 169, 1843-1854. 
Duxbury, M.S., Ashley, S.W., and Whang, E.E. (2004). Inhibition of 
pancreatic adenocarcinoma cellular invasiveness by blebbistatin: a novel 
myosin II inhibitor. Biochemical and biophysical research communications 
313, 992-997. 
Etzioni, R., Penson, D.F., Legler, J.M., di Tommaso, D., Boer, R., Gann, 
P.H., and Feuer, E.J. (2002). Overdiagnosis due to prostate-specific antigen 
screening: lessons from U.S. prostate cancer incidence trends. Journal of 
the National Cancer Institute 94, 981-990. 
Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the 'seed and 
soil' hypothesis revisited. Nature reviews Cancer 3, 453-458. 
Fidler, I.J. (2011). The biology of cancer metastasis. Seminars in cancer 
biology 21, 71. 
Fife, C.M., McCarroll, J.A., and Kavallaris, M. (2014). Movers and shakers: 
cell cytoskeleton in cancer metastasis. British journal of pharmacology 171, 
5507-5523. 
Foth, B.J., Goedecke, M.C., and Soldati, D. (2006). New insights into myosin 
evolution and classification. Proceedings of the National Academy of 
Sciences of the United States of America 103, 3681-3686. 
Frame, F.M., Pellacani, D., Collins, A.T., Simms, M.S., Mann, V.M., Jones, 
G.D., Meuth, M., Bristow, R.G., and Maitland, N.J. (2013). HDAC inhibitor 
confers radiosensitivity to prostate stem-like cells. British journal of cancer 
109, 3023-3033. 
Friedl, P., and Wolf, K. (2003). Tumour-cell invasion and migration: diversity 
and escape mechanisms. Nature reviews Cancer 3, 362-374. 
Geisbrecht, E.R., and Montell, D.J. (2002). Myosin VI is required for E-
cadherin-mediated border cell migration. Nature cell biology 4, 616-620. 



 

135 

 

Gillespie, P.G., Albanesi, J.P., Bahler, M., Bement, W.M., Berg, J.S., 
Burgess, D.R., Burnside, B., Cheney, R.E., Corey, D.P., Coudrier, E., et al. 
(2001). Myosin-I nomenclature. The Journal of cell biology 155, 703-704. 
Goc, A., Al-Husein, B., Kochuparambil, S.T., Liu, J., Heston, W.W., and 
Somanath, P.R. (2011). PI3 kinase integrates Akt and MAP kinase signaling 
pathways in the regulation of prostate cancer. International journal of 
oncology 38, 267-277. 
Goode, B.L., Drubin, D.G., and Barnes, G. (2000). Functional cooperation 
between the microtubule and actin cytoskeletons. Current opinion in cell 
biology 12, 63-71. 
Grabowska, M.M., DeGraff, D.J., Yu, X., Jin, R.J., Chen, Z., Borowsky, A.D., 
and Matusik, R.J. (2014). Mouse models of prostate cancer: picking the best 
model for the question. Cancer metastasis reviews 33, 377-397. 
Guo, W., Chen, D., Fan, Z., and Epstein, H.F. (2011). Differential turnover of 
myosin chaperone UNC-45A isoforms increases in metastatic human breast 
cancer. Journal of molecular biology 412, 365-378. 
Gupta, G.P., and Massague, J. (2006). Cancer metastasis: building a 
framework. Cell 127, 679-695. 
Guzik-Lendrum, S., Heissler, S.M., Billington, N., Takagi, Y., Yang, Y., 
Knight, P.J., Homsher, E., and Sellers, J.R. (2013). Mammalian myosin-18A, 
a highly divergent myosin. The Journal of biological chemistry 288, 9532-
9548. 
Hallett, R.M., Dvorkin-Gheva, A., Bane, A., and Hassell, J.A. (2012). A gene 
signature for predicting outcome in patients with basal-like breast cancer. 
Scientific reports 2, 227. 
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 
57-70. 
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next 
generation. Cell 144, 646-674. 
Hanley, P.J., Xu, Y., Kronlage, M., Grobe, K., Schon, P., Song, J., Sorokin, 
L., Schwab, A., and Bahler, M. (2010). Motorized RhoGAP myosin IXb 
(Myo9b) controls cell shape and motility. Proceedings of the National 
Academy of Sciences of the United States of America 107, 12145-12150. 
Hartman, M.A., and Spudich, J.A. (2012). The myosin superfamily at a 
glance. Journal of cell science 125, 1627-1632. 
Hayward, S.W., Dahiya, R., Cunha, G.R., Bartek, J., Deshpande, N., and 
Narayan, P. (1995). Establishment and characterization of an immortalized 
but non-transformed human prostate epithelial cell line: BPH-1. In vitro 
cellular & developmental biology Animal 31, 14-24. 
Heath, E.I., Hillman, D.W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, 
F., Gaskins, M., Pitot, H.C., Tan, W., Ivy, S.P., et al. (2008). A phase II trial 
of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-
refractory metastatic prostate cancer. Clinical cancer research : an official 
journal of the American Association for Cancer Research 14, 7940-7946. 
Heckman, C.A., and Plummer, H.K., 3rd (2013). Filopodia as sensors. 
Cellular signalling 25, 2298-2311. 
Hokanson, D.E., Laakso, J.M., Lin, T., Sept, D., and Ostap, E.M. (2006). 
Myo1c binds phosphoinositides through a putative pleckstrin homology 
domain. Molecular biology of the cell 17, 4856-4865. 



 

136 

 

Holly, J.M., Zeng, L., and Perks, C.M. (2013). Epithelial cancers in the post-
genomic era: should we reconsider our lifestyle? Cancer metastasis reviews 
32, 673-705. 
Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, 
T.M., Mirand, E.A., and Murphy, G.P. (1983). LNCaP model of human 
prostatic carcinoma. Cancer research 43, 1809-1818. 
Hoskin, P.J., Rojas, A.M., Ostler, P.J., Hughes, R., Lowe, G.J., and Bryant, 
L. (2013). Quality of life after radical radiotherapy for prostate cancer: 
longitudinal study from a randomised trial of external beam radiotherapy 
alone or in combination with high dose rate brachytherapy. Clinical oncology 
(Royal College of Radiologists (Great Britain)) 25, 321-327. 
Hotary, K.B., Allen, E.D., Brooks, P.C., Datta, N.S., Long, M.W., and Weiss, 
S.J. (2003). Membrane type I matrix metalloproteinase usurps tumor growth 
control imposed by the three-dimensional extracellular matrix. Cell 114, 33-
45. 
Hsu, R.M., Hsieh, Y.J., Yang, T.H., Chiang, Y.C., Kan, C.Y., Lin, Y.T., Chen, 
J.T., and Yu, J.S. (2014). Binding of the extreme carboxyl-terminus of PAK-
interacting exchange factor beta (betaPIX) to myosin 18A (MYO18A) is 
required for epithelial cell migration. Biochimica et biophysica acta 1843, 
2513-2527. 
Hsu, R.M., Tsai, M.H., Hsieh, Y.J., Lyu, P.C., and Yu, J.S. (2010). 
Identification of MYO18A as a novel interacting partner of the 
PAK2/betaPIX/GIT1 complex and its potential function in modulating 
epithelial cell migration. Molecular biology of the cell 21, 287-301. 
Huang, F.K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., Reinhart-
King, C.A., Zhang, J.J., and Huang, X.Y. (2015). Targeted inhibition of fascin 
function blocks tumour invasion and metastatic colonization. Nature 
communications 6, 7465. 
Hurt, E.M., Kawasaki, B.T., Klarmann, G.J., Thomas, S.B., and Farrar, W.L. 
(2008). CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells 
that provide a model for patients with poor prognosis. British journal of 
cancer 98, 756-765. 
Ikebe, M., and Hartshorne, D.J. (1985). Phosphorylation of smooth muscle 
myosin at two distinct sites by myosin light chain kinase. The Journal of 
biological chemistry 260, 10027-10031. 
Isogawa, Y., Kon, T., Inoue, T., Ohkura, R., Yamakawa, H., Ohara, O., and 
Sutoh, K. (2005). The N-terminal domain of MYO18A has an ATP-insensitive 
actin-binding site. Biochemistry 44, 6190-6196. 
Iwanicki, M.P., Davidowitz, R.A., Ng, M.R., Besser, A., Muranen, T., Merritt, 
M., Danuser, G., Ince, T.A., and Brugge, J.S. (2011). Ovarian cancer 
spheroids use myosin-generated force to clear the mesothelium. Cancer 
discovery 1, 144-157. 
Jacobs, K., Van Gele, M., Forsyth, R., Brochez, L., Vanhoecke, B., De 
Wever, O., and Bracke, M. (2010). P-cadherin counteracts myosin II-B 
function: implications in melanoma progression. Molecular cancer 9, 255. 
Jacquemet, G., Hamidi, H., and Ivaska, J. (2015). Filopodia in cell adhesion, 
3D migration and cancer cell invasion. Current opinion in cell biology 36, 23-
31. 



 

137 

 

Jaffe, A.B., and Hall, A. (2005). Rho GTPases: biochemistry and biology. 
Annual review of cell and developmental biology 21, 247-269. 
Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. 
(2011). Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90. 
Jhaveri, K., and Modi, S. (2015). Ganetespib: research and clinical 
development. OncoTargets and therapy 8, 1849-1858. 
Jilani, Y., Lu, S., Lei, H., Karnitz, L.M., and Chadli, A. (2015). UNC45A 
localizes to centrosomes and regulates cancer cell proliferation through 
ChK1 activation. Cancer letters 357, 114-120. 
Ju, X.D., Guo, Y., Wang, N.N., Huang, Y., Lai, M.M., Zhai, Y.H., Guo, Y.G., 
Zhang, J.H., Cao, R.J., Yu, H.L., et al. (2014). Both Myosin-10 isoforms are 
required for radial neuronal migration in the developing cerebral cortex. 
Cerebral cortex (New York, NY : 1991) 24, 1259-1268. 
Jung, E.J., Liu, G., Zhou, W., and Chen, X. (2006). Myosin VI is a mediator 
of the p53-dependent cell survival pathway. Molecular and cellular biology 
26, 2175-2186. 
Kaighn, M.E., Kirk, D., Szalay, M., and Lechner, J.F. (1981). Growth control 
of prostatic carcinoma cells in serum-free media: interrelationship of 
hormone response, cell density, and nutrient media. Proceedings of the 
National Academy of Sciences of the United States of America 78, 5673-
5676. 
Kakita, A., and Goldman, J.E. (1999). Patterns and dynamics of SVZ cell 
migration in the postnatal forebrain: monitoring living progenitors in slice 
preparations. Neuron 23, 461-472. 
Kawauchi, T. (2012). Cell Adhesion and Its Endocytic Regulation in Cell 
Migration during Neural Development and Cancer Metastasis. International 
journal of molecular sciences 13, 4564-4590. 
Kelley, P.M., Weston, M.D., Chen, Z.Y., Orten, D.J., Hasson, T., Overbeck, 
L.D., Pinnt, J., Talmadge, C.B., Ing, P., Mooseker, M.S., et al. (1997). The 
genomic structure of the gene defective in Usher syndrome type Ib 
(MYO7A). Genomics 40, 73-79. 
Kerber, M.L., and Cheney, R.E. (2011). Myosin-X: a MyTH-FERM myosin at 
the tips of filopodia. Journal of cell science 124, 3733-3741. 
Kim, S.V., and Flavell, R.A. (2008). Myosin I: from yeast to human. Cellular 
and molecular life sciences : CMLS 65, 2128-2137. 
Knight, P.J., Thirumurugan, K., Xu, Y., Wang, F., Kalverda, A.P., Stafford, 
W.F., 3rd, Sellers, J.R., and Peckham, M. (2005). The predicted coiled-coil 
domain of myosin 10 forms a novel elongated domain that lengthens the 
head. The Journal of biological chemistry 280, 34702-34708. 
Komaba, S., and Coluccio, L.M. (2010). Localization of myosin 1b to actin 
protrusions requires phosphoinositide binding. The Journal of biological 
chemistry 285, 27686-27693. 
Krendel, M., and Mooseker, M.S. (2005). Myosins: tails (and heads) of 
functional diversity. Physiology (Bethesda, Md) 20, 239-251. 
Kriajevska, M.V., Cardenas, M.N., Grigorian, M.S., Ambartsumian, N.S., 
Georgiev, G.P., and Lukanidin, E.M. (1994). Non-muscle myosin heavy 
chain as a possible target for protein encoded by metastasis-related mts-1 
gene. The Journal of biological chemistry 269, 19679-19682. 



 

138 

 

Lan, L., Han, H., Zuo, H., Chen, Z., Du, Y., Zhao, W., Gu, J., and Zhang, Z. 
(2010). Upregulation of myosin Va by Snail is involved in cancer cell 
migration and metastasis. International journal of cancer Journal 
international du cancer 126, 53-64. 
Lane, D., and Levine, A. (2010). p53 Research: the past thirty years and the 
next thirty years. Cold Spring Harbor perspectives in biology 2, a000893. 
Lemmon, M.A., and Ferguson, K.M. (2001). Molecular determinants in 
pleckstrin homology domains that allow specific recognition of 
phosphoinositides. Biochemical Society transactions 29, 377-384. 
Lim, D.A., Cha, S., Mayo, M.C., Chen, M.H., Keles, E., VandenBerg, S., and 
Berger, M.S. (2007). Relationship of glioblastoma multiforme to neural stem 
cell regions predicts invasive and multifocal tumor phenotype. Neuro-
oncology 9, 424-429. 
Lin, T., Tang, N., and Ostap, E.M. (2005). Biochemical and motile properties 
of Myo1b splice isoforms. The Journal of biological chemistry 280, 41562-
41567. 
Lin, W.H., Hurley, J.T., Raines, A.N., Cheney, R.E., and Webb, D.J. (2013). 
Myosin X and its motorless isoform differentially modulate dendritic spine 
development by regulating trafficking and retention of vasodilator-stimulated 
phosphoprotein. Journal of cell science 126, 4756-4768. 
Liu, Y., Peng, Y., Dai, P.G., Du, Q.S., Mei, L., and Xiong, W.C. (2012). 
Differential regulation of myosin X movements by its cargos, DCC and 
neogenin. Journal of cell science 125, 751-762. 
Long, R.M., Morrissey, C., Fitzpatrick, J.M., and Watson, R.W. (2005). 
Prostate epithelial cell differentiation and its relevance to the understanding 
of prostate cancer therapies. Clinical science (London, England : 1979) 108, 
1-11. 
Lu, Q., Ye, F., Wei, Z., Wen, Z., and Zhang, M. (2012). Antiparallel coiled-
coil-mediated dimerization of myosin X. Proceedings of the National 
Academy of Sciences of the United States of America 109, 17388-17393. 
Ludlow, J.W. (1993). Interactions between SV40 large-tumor antigen and the 
growth suppressor proteins pRB and p53. FASEB journal : official 
publication of the Federation of American Societies for Experimental Biology 
7, 866-871. 
Lundquist, E.A. (2009). The finer points of filopodia. PLoS biology 7, 
e1000142. 
Ma, J., and Waxman, D.J. (2009). Dominant effect of antiangiogenesis in 
combination therapy involving cyclophosphamide and axitinib. Clinical 
cancer research : an official journal of the American Association for Cancer 
Research 15, 578-588. 
Maddugoda, M.P., Crampton, M.S., Shewan, A.M., and Yap, A.S. (2007). 
Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell 
cell contacts in mammalian epithelial cells. The Journal of cell biology 178, 
529-540. 
Makowska, K.A., Hughes, R.E., White, K.J., Wells, C.M., and Peckham, M. 
(2015). Specific Myosins Control Actin Organization, Cell Morphology, and 
Migration in Prostate Cancer Cells. Cell Reports. 
Mazzolini, R., Rodrigues, P., Bazzocco, S., Dopeso, H., Ferreira, A.M., 
Mateo-Lozano, S., Andretta, E., Woerner, S.M., Alazzouzi, H., Landolfi, S., 



 

139 

 

et al. (2013). Brush border myosin Ia inactivation in gastric but not 
endometrial tumors. International journal of cancer Journal international du 
cancer 132, 1790-1799. 
McConnell, R.E., and Tyska, M.J. (2010). Leveraging the membrane - 
cytoskeleton interface with myosin-1. Trends in cell biology 20, 418-426. 
McMichael, B.K., Cheney, R.E., and Lee, B.S. (2010). Myosin X regulates 
sealing zone patterning in osteoclasts through linkage of podosomes and 
microtubules. The Journal of biological chemistry 285, 9506-9515. 
McVary, K.T. (2007). A review of combination therapy in patients with benign 
prostatic hyperplasia. Clinical therapeutics 29, 387-398. 
Menke, V., Van Zoest, K.P., Moons, L.M., Pot, R.G., Siersema, P.D., 
Kuipers, E.J., and Kusters, J.G. (2012). Myo9B is associated with an 
increased risk of Barrett's esophagus and esophageal adenocarcinoma. 
Scandinavian journal of gastroenterology 47, 1422-1428. 
Mitas, M., Mikhitarian, K., Walters, C., Baron, P.L., Elliott, B.M., Brothers, 
T.E., Robison, J.G., Metcalf, J.S., Palesch, Y.Y., Zhang, Z., et al. (2001). 
Quantitative real-time RT-PCR detection of breast cancer micrometastasis 
using a multigene marker panel. International journal of cancer Journal 
international du cancer 93, 162-171. 
Miyata, Y., Nakamoto, H., and Neckers, L. (2013). The therapeutic target 
Hsp90 and cancer hallmarks. Current pharmaceutical design 19, 347-365. 
Mori, K., Matsuda, K., Furusawa, T., Kawata, M., Inoue, T., and Obinata, M. 
(2005). Subcellular localization and dynamics of MysPDZ (Myo18A) in live 
mammalian cells. Biochemical and biophysical research communications 
326, 491-498. 
Muller, P.A., Caswell, P.T., Doyle, B., Iwanicki, M.P., Tan, E.H., Karim, S., 
Lukashchuk, N., Gillespie, D.A., Ludwig, R.L., Gosselin, P., et al. (2009). 
Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327-
1341. 
Murphy, R.A., Walker, J.S., and Strauss, J.D. (1997). Myosin isoforms and 
functional diversity in vertebrate smooth muscle. Comparative biochemistry 
and physiology Part B, Biochemistry & molecular biology 117, 51-60. 
Nakano, T., Tani, M., Nishioka, M., Kohno, T., Otsuka, A., Ohwada, S., and 
Yokota, J. (2005). Genetic and epigenetic alterations of the candidate tumor-
suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. 
Genes, chromosomes & cancer 43, 162-171. 
Oh, W.K., Galsky, M.D., Stadler, W.M., Srinivas, S., Chu, F., Bubley, G., 
Goddard, J., Dunbar, J., and Ross, R.W. (2011). Multicenter phase II trial of 
the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in 
patients with castration-resistant prostate cancer. Urology 78, 626-630. 
Ohmura, G., Tsujikawa, T., Yaguchi, T., Kawamura, N., Mikami, S., 
Sugiyama, J., Nakamura, K., Kobayashi, A., Iwata, T., Nakano, H., et al. 
(2015). Aberrant Myosin 1b Expression Promotes Cell Migration and Lymph 
Node Metastasis of HNSCC. Molecular cancer research : MCR 13, 721-731. 
Omelchenko, T., and Hall, A. (2012). Myosin-IXA regulates collective 
epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. 
Current biology : CB 22, 278-288. 
Oren, M., and Rotter, V. (2010). Mutant p53 gain-of-function in cancer. Cold 
Spring Harbor perspectives in biology 2, a001107. 



 

140 

 

Orsted, D.D., and Bojesen, S.E. (2013). The link between benign prostatic 
hyperplasia and prostate cancer. Nature reviews Urology 10, 49-54. 
Ostrom, Q.T., Bauchet, L., Davis, F.G., Deltour, I., Fisher, J.L., Langer, C.E., 
Pekmezci, M., Schwartzbaum, J.A., Turner, M.C., Walsh, K.M., et al. (2014). 
The epidemiology of glioma in adults: a "state of the science" review. Neuro-
oncology 16, 896-913. 
Ouderkirk, J.L., and Krendel, M. (2014). Non-muscle myosins in tumor 
progression, cancer cell invasion, and metastasis. Cytoskeleton (Hoboken, 
NJ) 71, 447-463. 
Parker, C.C., Pascoe, S., Chodacki, A., O'Sullivan, J.M., Germa, J.R., 
O'Bryan-Tear, C.G., Haider, T., and Hoskin, P. (2013). A randomized, 
double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 
223) in patients with bone metastases and castration-resistant prostate 
cancer. European urology 63, 189-197. 
Parr, C., Davies, G., Nakamura, T., Matsumoto, K., Mason, M.D., and Jiang, 
W.G. (2001). The HGF/SF-induced phosphorylation of paxillin, matrix 
adhesion, and invasion of prostate cancer cells were suppressed by NK4, an 
HGF/SF variant. Biochemical and biophysical research communications 285, 
1330-1337. 
Peckham, M., and Knight, P.J. (2009). When a predicted coiled coil is really 
a single alpha-helix, in myosins and other proteins. Soft Matter 5, 2493–
2503. 
Plantard, L., Arjonen, A., Lock, J.G., Nurani, G., Ivaska, J., and Stromblad, 
S. (2010). PtdIns(3,4,5)P(3) is a regulator of myosin-X localization and 
filopodia formation. Journal of cell science 123, 3525-3534. 
Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and 
mesenchymal states: acquisition of malignant and stem cell traits. Nature 
reviews Cancer 9, 265-273. 
Price, M.G., Landsverk, M.L., Barral, J.M., and Epstein, H.F. (2002). Two 
mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-
specific functions. Journal of cell science 115, 4013-4023. 
Prosperi, M.T., Lepine, P., Dingli, F., Paul-Gilloteaux, P., Martin, R., Loew, 
D., Knolker, H.J., and Coudrier, E. (2015). Myosin 1b functions as an 
effector of EphB signaling to control cell repulsion. The Journal of cell 
biology 210, 347-361. 
Pulukuri, S.M., Gondi, C.S., Lakka, S.S., Jutla, A., Estes, N., Gujrati, M., and 
Rao, J.S. (2005). RNA interference-directed knockdown of urokinase 
plasminogen activator and urokinase plasminogen activator receptor inhibits 
prostate cancer cell invasion, survival, and tumorigenicity in vivo. The 
Journal of biological chemistry 280, 36529-36540. 
Puri, C., Chibalina, M.V., Arden, S.D., Kruppa, A.J., Kendrick-Jones, J., and 
Buss, F. (2010). Overexpression of myosin VI in prostate cancer cells 
enhances PSA and VEGF secretion, but has no effect on endocytosis. 
Oncogene 29, 188-200. 
Quintero, O.A., DiVito, M.M., Adikes, R.C., Kortan, M.B., Case, L.B., Lier, 
A.J., Panaretos, N.S., Slater, S.Q., Rengarajan, M., Feliu, M., et al. (2009). 
Human Myo19 is a novel myosin that associates with mitochondria. Current 
biology : CB 19, 2008-2013. 



 

141 

 

Raines, A.N., Nagdas, S., Kerber, M.L., and Cheney, R.E. (2012). Headless 
Myo10 is a negative regulator of full-length Myo10 and inhibits axon 
outgrowth in cortical neurons. The Journal of biological chemistry 287, 
24873-24883. 
Raposo, G., Cordonnier, M.N., Tenza, D., Menichi, B., Durrbach, A., 
Louvard, D., and Coudrier, E. (1999). Association of myosin I alpha with 
endosomes and lysosomes in mammalian cells. Molecular biology of the cell 
10, 1477-1494. 
Reinhard, J., Scheel, A.A., Diekmann, D., Hall, A., Ruppert, C., and Bahler, 
M. (1995). A novel type of myosin implicated in signalling by rho family 
GTPases. The EMBO journal 14, 697-704. 
Richardson, G.P., Forge, A., Kros, C.J., Fleming, J., Brown, S.D., and Steel, 
K.P. (1997). Myosin VIIA is required for aminoglycoside accumulation in 
cochlear hair cells. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 17, 9506-9519. 
Ridley, A.J. (2011). Life at the leading edge. Cell 145, 1012-1022. 
Ridley, A.J., and Hall, A. (1992). The small GTP-binding protein rho 
regulates the assembly of focal adhesions and actin stress fibers in 
response to growth factors. Cell 70, 389-399. 
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., 
Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: 
integrating signals from front to back. Science (New York, NY) 302, 1704-
1709. 
Ruppert, C., Kroschewski, R., and Bahler, M. (1993). Identification, 
characterization and cloning of myr 1, a mammalian myosin-I. The Journal of 
cell biology 120, 1393-1403. 
Sachdev, J.C., and Jahanzeb, M. (2012). Blockade of the HER family of 
receptors in the treatment of HER2-positive metastatic breast cancer. 
Clinical breast cancer 12, 19-29. 
Saha, S., Dey, S.K., Das, P., and Jana, S.S. (2011). Increased expression of 
nonmuscle myosin IIs is associated with 3MC-induced mouse tumor. The 
FEBS journal 278, 4025-4034. 
Salas-Cortes, L., Ye, F., Tenza, D., Wilhelm, C., Theos, A., Louvard, D., 
Raposo, G., and Coudrier, E. (2005). Myosin Ib modulates the morphology 
and the protein transport within multi-vesicular sorting endosomes. Journal 
of cell science 118, 4823-4832. 
Saporita, A.J., Ai, J., and Wang, Z. (2007). The Hsp90 inhibitor, 17-AAG, 
prevents the ligand-independent nuclear localization of androgen receptor in 
refractory prostate cancer cells. The Prostate 67, 509-520. 
Schaar, B.T., and McConnell, S.K. (2005). Cytoskeletal coordination during 
neuronal migration. Proceedings of the National Academy of Sciences of the 
United States of America 102, 13652-13657. 
Schoumacher, M., Goldman, R.D., Louvard, D., and Vignjevic, D.M. (2010). 
Actin, microtubules, and vimentin intermediate filaments cooperate for 
elongation of invadopodia. The Journal of cell biology 189, 541-556. 
Schramek, D., Sendoel, A., Segal, J.P., Beronja, S., Heller, E., Oristian, D., 
Reva, B., and Fuchs, E. (2014). Direct in vivo RNAi screen unveils myosin 
IIa as a tumor suppressor of squamous cell carcinomas. Science (New York, 
NY) 343, 309-313. 



 

142 

 

Selivanova, G., and Ivaska, J. (2009). Integrins and mutant p53 on the road 
to metastasis. Cell 139, 1220-1222. 
Sharifi, N., Gulley, J.L., and Dahut, W.L. (2010). An update on androgen 
deprivation therapy for prostate cancer. Endocrine-related cancer 17, R305-
315. 
Sousa, A.D., Berg, J.S., Robertson, B.W., Meeker, R.B., and Cheney, R.E. 
(2006). Myo10 in brain: developmental regulation, identification of a 
headless isoform and dynamics in neurons. Journal of cell science 119, 184-
194. 
Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., and Paulson, D.F. 
(1978). Isolation of a human prostate carcinoma cell line (DU 145). 
International journal of cancer Journal international du cancer 21, 274-281. 
Stupp, R., Hegi, M.E., Gilbert, M.R., and Chakravarti, A. (2007). 
Chemoradiotherapy in malignant glioma: standard of care and future 
directions. Journal of clinical oncology : official journal of the American 
Society of Clinical Oncology 25, 4127-4136. 
Su, A.I., Welsh, J.B., Sapinoso, L.M., Kern, S.G., Dimitrov, P., Lapp, H., 
Schultz, P.G., Powell, S.M., Moskaluk, C.A., Frierson, H.F., Jr., et al. (2001). 
Molecular classification of human carcinomas by use of gene expression 
signatures. Cancer research 61, 7388-7393. 
Sun, Y., Ai, X., Shen, S., and Lu, S. (2015). NF-kappaB-mediated miR-124 
suppresses metastasis of non-small-cell lung cancer by targeting MYO10. 
Oncotarget 6, 8244-8254. 
Swailes, N.T., Colegrave, M., Knight, P.J., and Peckham, M. (2006). Non-
muscle myosins 2A and 2B drive changes in cell morphology that occur as 
myoblasts align and fuse. Journal of cell science 119, 3561-3570. 
Tacon, D., Knight, P.J., and Peckham, M. (2004). Imaging myosin 10 in 
cells. Biochemical Society transactions 32, 689-693. 
Tan, I., Yong, J., Dong, J.M., Lim, L., and Leung, T. (2008). A tripartite 
complex containing MRCK modulates lamellar actomyosin retrograde flow. 
Cell 135, 123-136. 
Tang, N., and Ostap, E.M. (2001). Motor domain-dependent localization of 
myo1b (myr-1). Current biology : CB 11, 1131-1135. 
Tani, M., Ito, J., Nishioka, M., Kohno, T., Tachibana, K., Shiraishi, M., 
Takenoshita, S., and Yokota, J. (2004). Correlation between histone 
acetylation and expression of the MYO18B gene in human lung cancer cells. 
Genes, chromosomes & cancer 40, 146-151. 
Thorne, R.G., and Nicholson, C. (2006). In vivo diffusion analysis with 
quantum dots and dextrans predicts the width of brain extracellular space. 
Proceedings of the National Academy of Sciences of the United States of 
America 103, 5567-5572. 
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, 
A. (2015). Global cancer statistics, 2012. CA: a cancer journal for clinicians 
65, 87-108. 
Trepel, J., Mollapour, M., Giaccone, G., and Neckers, L. (2010). Targeting 
the dynamic HSP90 complex in cancer. Nature reviews Cancer 10, 537-549. 
Trybus, K.M. (1994). Role of myosin light chains. Journal of muscle research 
and cell motility 15, 587-594. 



 

143 

 

Turner, C.E. (2000). Paxillin and focal adhesion signalling. Nature cell 
biology 2, E231-236. 
Umeki, N., Jung, H.S., Sakai, T., Sato, O., Ikebe, R., and Ikebe, M. (2011). 
Phospholipid-dependent regulation of the motor activity of myosin X. Nature 
structural & molecular biology 18, 783-788. 
Ussowicz, M., Jaskowiec, A., Meyer, C., Marschalek, R., Chybicka, A., 
Szczepanski, T., and Haus, O. (2012). A three-way translocation of MLL, 
MLLT11, and the novel reciprocal partner gene MYO18A in a child with 
acute myeloid leukemia. Cancer genetics 205, 261-265. 
Vasioukhin, V. (2006). Lethal giant puzzle of Lgl. Developmental 
neuroscience 28, 13-24. 
Vega, F.M., Colomba, A., Reymond, N., Thomas, M., and Ridley, A.J. 
(2012). RhoB regulates cell migration through altered focal adhesion 
dynamics. Open biology 2, 120076. 
Vicente-Manzanares, M., Ma, X., Adelstein, R.S., and Horwitz, A.R. (2009). 
Non-muscle myosin II takes centre stage in cell adhesion and migration. 
Nature reviews Molecular cell biology 10, 778-790. 
Wang, Z., Edwards, J.G., Riley, N., Provance, D.W., Jr., Karcher, R., Li, 
X.D., Davison, I.G., Ikebe, M., Mercer, J.A., Kauer, J.A., et al. (2008). 
Myosin Vb mobilizes recycling endosomes and AMPA receptors for 
postsynaptic plasticity. Cell 135, 535-548. 
Ware, M.J., Tinger, S., Colbert, K.L., Corr, S.J., Rees, P., Koshkina, N., 
Curley, S., Summers, H.D., and Godin, B. (2015). Radiofrequency treatment 
alters cancer cell phenotype. Scientific reports 5, 12083. 
Watanabe, T.M., Tokuo, H., Gonda, K., Higuchi, H., and Ikebe, M. (2010). 
Myosin-X induces filopodia by multiple elongation mechanism. The Journal 
of biological chemistry 285, 19605-19614. 
Weber, K.L., Sokac, A.M., Berg, J.S., Cheney, R.E., and Bement, W.M. 
(2004). A microtubule-binding myosin required for nuclear anchoring and 
spindle assembly. Nature 431, 325-329. 
Wei, S., Dunn, T.A., Isaacs, W.B., De Marzo, A.M., and Luo, J. (2008). 
GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi 
apparatus. The Prostate 68, 1387-1395. 
Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., 
Mburu, P., Varela, A., Levilliers, J., Weston, M.D., et al. (1995). Defective 
myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60-
61. 
Wellbrock, C., and Hurlstone, A. (2010). BRAF as therapeutic target in 
melanoma. Biochemical pharmacology 80, 561-567. 
Wells, C.M., Ahmed, T., Masters, J.R., and Jones, G.E. (2005). Rho family 
GTPases are activated during HGF-stimulated prostate cancer-cell 
scattering. Cell motility and the cytoskeleton 62, 180-194. 
Wenzel, J., Ouderkirk, J.L., Krendel, M., and Lang, R. (2015). Class I myosin 
Myo1e regulates TLR4-triggered macrophage spreading, chemokine 
release, and antigen presentation via MHC class II. European journal of 
immunology 45, 225-237. 
Wilkinson, S., Paterson, H.F., and Marshall, C.J. (2005). Cdc42-MRCK and 
Rho-ROCK signalling cooperate in myosin phosphorylation and cell 
invasion. Nature cell biology 7, 255-261. 



 

144 

 

Wirth, J.A., Jensen, K.A., Post, P.L., Bement, W.M., and Mooseker, M.S. 
(1996). Human myosin-IXb, an unconventional myosin with a chimerin-like 
rho/rac GTPase-activating protein domain in its tail. Journal of cell science 
109 ( Pt 3), 653-661. 
Wolff, J.M., and Mason, M. (2012). Drivers for change in the management of 
prostate cancer - guidelines and new treatment techniques. BJU 
international 109 Suppl 6, 33-41. 
Wong, S.Y., Ulrich, T.A., Deleyrolle, L.P., MacKay, J.L., Lin, J.M., 
Martuscello, R.T., Jundi, M.A., Reynolds, B.A., and Kumar, S. (2015). 
Constitutive activation of myosin-dependent contractility sensitizes glioma 
tumor-initiating cells to mechanical inputs and reduces tissue invasion. 
Cancer research 75, 1113-1122. 
Wu, H.C., Hsieh, J.T., Gleave, M.E., Brown, N.M., Pathak, S., and Chung, 
L.W. (1994). Derivation of androgen-independent human LNCaP prostatic 
cancer cell sublines: role of bone stromal cells. International journal of 
cancer Journal international du cancer 57, 406-412. 
Yamada, A., Mamane, A., Lee-Tin-Wah, J., Di Cicco, A., Prevost, C., Levy, 
D., Joanny, J.F., Coudrier, E., and Bassereau, P. (2014). Catch-bond 
behaviour facilitates membrane tubulation by non-processive myosin 1b. 
Nature communications 5, 3624. 
Yanaihara, N., Nishioka, M., Kohno, T., Otsuka, A., Okamoto, A., Ochiai, K., 
Tanaka, T., and Yokota, J. (2004). Reduced expression of MYO18B, a 
candidate tumor-suppressor gene on chromosome arm 22q, in ovarian 
cancer. International journal of cancer Journal international du cancer 112, 
150-154. 
Yano, A., Tsutsumi, S., Soga, S., Lee, M.J., Trepel, J., Osada, H., and 
Neckers, L. (2008). Inhibition of Hsp90 activates osteoclast c-Src signaling 
and promotes growth of prostate carcinoma cells in bone. Proceedings of 
the National Academy of Sciences of the United States of America 105, 
15541-15546. 
Yoshida, H., Cheng, W., Hung, J., Montell, D., Geisbrecht, E., Rosen, D., 
Liu, J., and Naora, H. (2004). Lessons from border cell migration in the 
Drosophila ovary: A role for myosin VI in dissemination of human ovarian 
cancer. Proceedings of the National Academy of Sciences of the United 
States of America 101, 8144-8149. 
Yu, X., Zech, T., McDonald, L., Gonzalez, E.G., Li, A., Macpherson, I., 
Schwarz, J.P., Spence, H., Futo, K., Timpson, P., et al. (2012). N-WASP 
coordinates the delivery and F-actin-mediated capture of MT1-MMP at 
invasive pseudopods. The Journal of cell biology 199, 527-544. 
Yu, Y.P., Landsittel, D., Jing, L., Nelson, J., Ren, B., Liu, L., McDonald, C., 
Thomas, R., Dhir, R., Finkelstein, S., et al. (2004). Gene expression 
alterations in prostate cancer predicting tumor aggression and preceding 
development of malignancy. Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology 22, 2790-2799. 
Zeigler-Johnson, C.M., Spangler, E., Jalloh, M., Gueye, S.M., Rennert, H., 
and Rebbeck, T.R. (2008). Genetic susceptibility to prostate cancer in men 
of African descent: implications for global disparities in incidence and 
outcomes. The Canadian journal of urology 15, 3872-3882. 



 

145 

 

Zhang, H., Berg, J.S., Li, Z., Wang, Y., Lang, P., Sousa, A.D., Bhaskar, A., 
Cheney, R.E., and Stromblad, S. (2004). Myosin-X provides a motor-based 
link between integrins and the cytoskeleton. Nature cell biology 6, 523-531. 
Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., 
Krogan, N., Cagney, G., Mai, D., Greenblatt, J., et al. (2005). Navigating the 
chaperone network: an integrative map of physical and genetic interactions 
mediated by the hsp90 chaperone. Cell 120, 715-727. 
Zhu, J., Sammons, M.A., Donahue, G., Dou, Z., Vedadi, M., Getlik, M., 
Barsyte-Lovejoy, D., Al-awar, R., Katona, B.W., Shilatifard, A., et al. (2015). 
Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer 
growth. Nature 525, 206-211. 
Zhu, X.J., Wang, C.Z., Dai, P.G., Xie, Y., Song, N.N., Liu, Y., Du, Q.S., Mei, 
L., Ding, Y.Q., and Xiong, W.C. (2007). Myosin X regulates netrin receptors 
and functions in axonal path-finding. Nature cell biology 9, 184-192. 
Zlotta, A.R., and Schulman, C.C. (1999). Clinical evolution of prostatic 
intraepithelial neoplasia. European urology 35, 498-503. 

 

Cancer Research UK, http://www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer, 

Accessed September 2015 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer

