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Abstract

For an isometrically immersed submanifold f : M → N , the spherical Gauss map

is the induced immersion of the unit normal bundle UM⊥ into the unit tangent

bundle UN . Compact rank one symmetric spaces have the distinguishing feature

that their geodesics are closed with the same period, and so we can define the

manifold of geodesics Q as the quotient of the unit tangent bundle by geodesic

flow. Through this quotient we define the geodesic Gauss map γ : UM⊥ → Q

to be the Lagrangian immersion given by the projection of the spherical Gauss

map. In this thesis we establish relationships between the minimality of isomet-

rically immersed submanifolds of the sphere and complex projective space and

the minimality of the geodesic Gauss map with respect to the Kähler-Einstein

metric on Q. In particular, we establish that for an isometrically immersed holo-

morphic submanifold of CPn, its geodesic Gauss map is minimal Lagrangian if

it has conformal shape form.
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Introduction

In this thesis we shall study minimal submanifolds of the spheres and complex

projective spaces and how we can use a form of Gauss map to relate them to

minimal Lagrangian submanifolds. For an isometric immersion, the mean curva-

ture is equal to the tension field in the sense of harmonic map theory. To this

end we shall be investigating harmonic isometrically immersed submanifolds.

The Ruh-Vilms theorem [25] is a result which links the parallel mean curvature

vector field condition of an isometrically immersed submanifold f : M → Rn with

the harmonicity of its Gauss map. In the specific case of Euclidean space, we can

define the Gauss map to take values in the Grassmannian Gr(m,n) of all m-

dimensional linear subspaces of Rn. The Gauss map associates to each x ∈ M

the m-dimensional subspace df(TxM) ∈ Gr(m,n). The theorem then takes the

following form:

Theorem 0.0.1 (Ruh-Vilms). For an isometrically immersed submanifold f :

M → Rn with Gauss map γ̂f :

τ(γ̂f ) = ∇Hf ,

where Hf is the mean curvature normal vector field.

The immediate implication of this theorem is that γ̂f : M → Gr(m,n) is a

harmonic map if and only if the immersion f has parallel mean curvature. While

this definition of the Gauss map only exists for Euclidean space, Obata [21]

gave one way of generalising it to spaces of constant curvature. Wood [28] then

further extended this to any ambient space as the Gauss section. By considering

only vertical variations he found a Ruh-Vilms like result, that under certain

conditions of the codomain an isometrically immersed submanifold has parallel

mean curvature if and only if the Gauss section is a critical point of the vertical

energy (a harmonic section).
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Another generalisation of the Gauss map to any ambient space was defined

by Jensen and Rigoli [14], the spherical Gauss map. The previous Gauss maps

assign to each point on the submanifold an analogue of its tangent space. The

spherical Gauss map instead considers the immersion of each point of the unit

normal bundle into the ambient unit tangent space. Jensen and Rigoli studied

harmonicity conditions for the spherical Gauss map with respect to the Sasaki

metrics constructed on each of the unit normal bundle and the ambient tangent

bundle (in which case the spherical Gauss map is not an isometric immersion).

Later, Cintract and Morvan [7] instead considered the entire normal bundle as a

submanifold of the ambient tangent bundle. They equipped the ambient tangent

bundle with the Sasaki metric and the normal bundle with the pullback of this

metric, rather than its own Sasaki metric.

In this thesis we shall consider an alternative approach, the geodesic Gauss

map. A compact rank one symmetric space, N , (a CROSS) such as the sphere and

complex projective space, has the distinguishing feature that all of its geodesics

are closed and of equal length. We can thus construct a quotient space of the

unit tangent bundle by the geodesic flow which is itself a manifold, called the

manifold of geodesics, Q. We then define the projection of the spherical Gauss

map under this quotient to be the geodesic Gauss map, γ. We shall be studying

the harmonicity of this map with respect to the pullback to the unit normal

bundle of various metrics on UN , which project to Q such that γ is an isometric

immersion.

The main motivation for this map becomes apparent when we use symplectic

redution to equip Q with a symplectic form λQ induced from the canonical sym-

plectic form on TN . In this case, given an isometrically immersed submanifold

f : M → N , the image γf (UM
⊥) is a Lagrangian submanifold with respect to

the Kähler-Einstein structure on Q. Harmonicity of the geodesic Gauss map with

respect to the Kähler-Einstein metric λQ(·, J(·)) would thus allow for construc-

tion of minimal Lagrangian submanifolds of Q from the more adundant examples
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of minimal submanifolds of compact rank one symmetric spaces.

In Chapter 1 we shall establish a homogeneous geometry approach to working

with symmetric spaces. This shall be advantageous, as for a compact rank one

symmetric space both its unit tangent bundle and manifold of geodesics are

themselves homogeneous spaces. We shall assume that the reader is familiar with

both Riemannian geometry (as discussed for example in [16]) and Lie groups (as

discussed in [27]). From this foundation we shall establish isomorphisms β and β̂

between the tangent bundle of a homogeneous space and subbundles of the bundle

of Lie algebras arising from the transitive group action over the homogeneous

space. This will then allow for easy comparisons between the tangent spaces of

the various manifolds. We shall then use these isomorphisms to study the Levi-

Civita connection of the naturally reductive metric induced on a homogeneous

space by its group action, called the normal metric. For a CROSS, this is the

standard symmetric space metric.

In Chapter 2 we shall introduce some concepts from symplectic geometry. In

particular we shall define symplectic and contact forms, Kähler structures and

symplectic reduction, as these shall be necessary for the construction of the

manifold of geodesics. We identify the unit tangent bundle UN of a CROSS with

a homogeneous space and describe its isotropy subgroup. We use the canonical

symplectic structure on the tangent bundle to define a contact structure for

UN for which the Reeb vector field is the geodesic flow vector field. By using

symplectic reduction we then construct the manifold of geodesics and introduce

its canonical symplectic and complex structures.

We then discuss the Kähler-Einstein structure on the manifold of geodesics.

When our ambient manifold is a sphere, the normal metric on Q ∼= Gr(2, n+ 1)

is compatible with the Kähler-Einstein structure. For the other CROSSes this

isn’t the case, and so we describe the Kähler-Einstein metric on Q and define a

πQ-related metric on the unit normal bundle, which we denote by hQ. We also
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introduce the Sasaki metric on TN and show that it agrees with the normal

metric if and only if N is a sphere.

In Chapter 3, we introduce the concepts of harmonic maps and minimal sub-

manifolds. We then introduce the Ruh-Vilms theorem and discuss previous ex-

tensions of the Gauss map and Ruh-Vilms theorem to non-Euclidean ambient

spaces. We define the spherical Gauss map µ, and with the manifold of geodesics

constructed we are able to use it to define the geodesic Gauss map γ. We then

establish that the spherical Gauss map makes µ : UM⊥ → UN a Legendrian

submanifold with respect to the contact distribution of UN . Since the geodesic

Gauss map is the projection of the spherical Gauss map to Q, we are then able

to prove that γ is harmonic if and only if µ is harmonic.

In Chapter 4, we specialise to the case of a submanifold of a sphere f : M →

Sn. This chapter is based on joint work with my supervisor Ian McIntosh [8].

For Sn, the normal metric, Sasaki metric and hQ are isometric. We calculate

the mean curvature of the geodesic Gauss map using a choice of adapted local

frames, in order to relate it to the mean curvature of f . However, to obtain a

direct relationship requires π⊥ : UM⊥ → M to be horizontally conformal. The

condition of horizontal conformality is equivalent to a condition on the shape

operator of f , which in [8] we named conformal shape form (referred to in [10] as

conformal second fundamental form). This condition amounts to the requirement

that the squares of all the eigenvalues of the shape operator are equal. We thus

prove the following Ruh-Vilms type result for submanifolds of spheres.

Theorem 0.0.2. Let f : M → (Sn, g) be an isometric immersion with respect

to the round metric g, and let hs be the restriction of the Sasaki metric to the

unit tangent bundle USn. Let µ : UM⊥ → USn be the spherical Gauss map, and

let τ(µ) be the tension field of µ with respect to µ∗hs. For any ξ ∈ UM⊥, let

Z,W ∈ Tξ(UM⊥) such that Z is horizontal with respect to π⊥ : UM⊥ →M and
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W is vertical. If f has conformal shape form, then

hs (τ(µ), JZ) = − 1

1 + r(ξ)2
g
(
∇⊥dπN (Z)Hf , ξ

)
,

hs (τ(µ), JW ) =
1

1 + r(ξ)2
g (Hf , dπN(JW )) ,

where r(ξ)2 = 1
dim(M)

trAf (ξ)
2.

Since µ is an isometric Legendrian immersion and τ(µ) is orthogonal to the

Reeb vector field this characterises τ(µ), and thus we establish that for any

minimal surface in a sphere, its geodesic Gauss map is a minimal Lagrangian

submanifold of Gr(2, n+ 1).

In Chapter 5 we proceed to adapt this result to the case of a complex projective

space, CPn. We consider the three metrics we have used for UN , the normal

metric, Sasaki metric and hQ and see that they now disagree. Since the Sasaki

metric doesn’t descend to a metric on Q, we now only use it to aid in calculations

in UN through comparison with the other two metrics. The normal metric no

longer projects to a Kähler-Einstein metric but is easier to work with than hQ,

so we still consider both it and hQ.

A vital component of the proof of the sphere case is that the fibres of the spher-

ical Gauss map are totally geodesic, which is a property of the Sasaki metric. We

thus consider which submanifolds of CPn have a similar property. We establish in

the case that the submanifold is either holomorphic or coisotropic, its spherical

Gauss map has minimal fibres with respect to both the normal metric and hQ.

We then proceed to construct local frames for the immersion f : M → CPn as

in the sphere case, taking extra care to make sure the frame of vector fields also

respects the standard complex structure I on CPn.

In the case of a holomorphic submanifold, the restrictions of the three metrics

to π⊥-horizontal vectors are isometric. We are thus able to adapt the proof of the

sphere case with relative ease. Since every holomorphic submanifold is minimal,

our next Ruh-Vilms type result takes the following form:
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Theorem 0.0.3. Let f : M → CPn be a holomorphic isometrically immersed

submanifold with conformal shape form. Then its spherical and geodesic Gauss

maps are minimal for hQ and minimal Lagrangian for the Kähler-Einstein metric

respectively.

In the case of coisotropic submanifolds, the behaviour of the tension field is

further removed from that of the sphere as the differences in curvature begin to

manifest. In particular, the conditions of conformal shape form and horizontal

conformality for hQ are mutually exclusive and an additional curvature term

appears in the Ruh-Vilms type theorem.

Theorem 0.0.4. Let f : M → (CPn, g) be an isometrically immersed coisotropic

submanifold with respect to the metric hQ on UCPn. Let Z,W ∈ Tξ(UM⊥) such

that Z is horizontal with respect to π⊥ : UM⊥ → M and W is vertical. If π⊥ is

horizontally conformal with conformal factor a2, then

hQ(τQ(µ), JZ)|ξ = −a2
(
g
(
∇⊥dπN (Z)Hf , ξ

)
− trf∗gm((L−1Z)

)
,

hQ(τQ(µ), JW )|ξ = −a2 (g(Hf , dπN(JW )) + trf∗gm(W )) ,

where

L : TM → TM ; X →
(

1− 1

2
g(Z, Iξ)

)
X,

and

m(Z) : TM × TM → R; X, Y 7→ g
(
RN(ξ, Af (ξ)LX)Y, dπN(JZ)

)
.
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1 The homogeneous geometry of symmetric spaces

1.1 Reductive homogeneous spaces

In this thesis we shall assume an awareness of the basic properties of differentiable

manifolds and Lie groups, as can be found in [27]. In particular, we shall be

working with two special types of manifold, homogeneous spaces and symmetric

spaces, which are defined with respect to the action of a Lie group. Throughout

this thesis, unless otherwise stated, all manifolds are assumed to be smooth and

oriented and all maps are smooth.

Definition 1.1.1. Let G be a compact connected Lie group, and let K be a closed

(Lie) subgroup. The coset space

G/K = {[gK] = {gk : k ∈ K} : g ∈ G}

is a differentiable manifold. We equip it with a projection

πK : G→ G/K; g 7→ [gK].

Any manifold of this form is called a homogeneous space.

A particularly common example of a homogeneous manifold that we will make

frequent use of is given by the following result from [27].

Theorem 1.1.2. Let G be a Lie group which acts transitively on the left of a

manifold M . Let K be the isotropy group of a basepoint o ∈M (i.e. K ⊆ G is the

set of elements that preserve o under the group action). Then M is diffeomorphic

to the homogeneous space G/K.

A simple example of such a homogeneous space is the n-sphere, Sn. Using the

standard embedding in Rn+1, we can choose the basepoint to be o = en+1 =

(0, ..., 0, 1)T . The group SO(n + 1) acts transitively on Sn by rotations and the
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isotropy subgroup K for en+1 is isomorphic to SO(n). Thus, Sn ∼= SO(n +

1)/SO(n).

Since K is a Lie subgroup, it has a corresponding Lie subalgebra k ⊂ g. We

will equip G with a bi-invariant metric, 〈·, ·〉. This is a metric which is invariant

under both the left and right actions of G (and hence also invariant under the

adjoint representation, Adg := dLgdR
−1
g ). The tangent space T[K]G/K can then

be identified with m := k⊥.

Definition 1.1.3. Let G/K be a homogeneous space. We say that G/K is re-

ductive if the decomposition

g = k⊕m

is AdK-invariant. Equivalently, [k,m] ⊆ m.

If the decomposition has the additional property [m,m] ⊆ k, then G/K is glob-

ally symmetric.

Note that since K is a Lie subgroup, we have the additional relationship

[k, k] ⊆ k.

To illustrate why we use the term symmetric, let us assume that N is a Rie-

mannian manifold (with connection). Such a manifold is Riemannian symmet-

ric if every point p ∈ N is an isolated fixed point of an involutive isometry

σp : N → N . Locally this isometry is given by the map σp(γ(t)) = γ(−t), where

γ is any geodesic through p and t is sufficiently small. If N is Riemannian sym-

metric, then it is a homogeneous space of the type given in Theorem 1.1.2, where

G is the identity component of the isometry group I(N) and K is the isotropy

group of any point. This homogeneous space N ∼= G/K is globally symmetric.

Conversely, given a globally symmetric space G/K (K compact), there exists a

metric such that G/K is Riemannian symmetric. In general, we will simply use

symmetric to refer to a Riemmanian (and thus globally) symmetric space.

Returning to reductive homogeneous spaces, while we’ve identified the tangent
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space at a basepoint to a Lie subalgebra, when it comes to differentiation this

is only useful if we take the Lie group approach of restricting ourselves to left-

invariant vector fields. In order to work with more general vector fields, we’d like

to take a Lie algebra approach which works anywhere on the manifold. In order

to do this we shall construct an isomorphism between TN (where N = G/K)

and a subbundle of the trivial bundle N×g. Given a K-invariant subspace v ∈ g,

we define the subbundle

[v]K = {([gK],Adg(ξ)) : g ∈ G, ξ ∈ v} ⊆ N × g.

We then define the map

βK : TN → [m]K ;
d

dt

∣∣∣∣
t=0

etξ[gK] 7→ ([gK], ξ).

To see that this is an isomorphism, we use the following result [6, Proposition

3.6].

Lemma 1.1.4. For a Lie group homomorphism φ : G1 → G2, φ(eξ) = edφ(ξ).

If we consider the map

b : N × g→ TN ; ([gK], ξ) 7→ d

dt

∣∣∣∣
t=0

etξ[gK],

we observe that the kernel consists of precisely those vectors for which etξ[gK] is

constant. Since etξ|t=0 = e (the identity element) this means we require

d

dt

∣∣∣∣
t=0

(g−1etξg) = Ad−1
g (ξ) ∈ k.

Given a vector Adg(ξ) ∈ [k]K , etξ is a curve in K, and so

d

dt

∣∣∣∣
t=0

etAdg(ξ)[gK] =
d

dt

∣∣∣∣
t=0

getξ[K] =
d

dt

∣∣∣∣
t=0

[gK] = 0.

Hence, [k]K is the kernel of b and the restriction to [m]K is an isomorphism. Since

βK(b|[m]K ) = id, βK is also an isomorphism.

An alternative approach is to identify TN with the associated bundle G×K m

defined by taking the quotient of G×m by the right adjoint action of K on m,

G×K m =
{

[g, ξ] = [gk,Ad−1
k (ξ)]; (g, ξ) ∈ G×m, k ∈ K

}
.
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We define a map

β̂K : TN → G×K m;
d

dt

∣∣∣∣
t=0

getξ[K] 7→ [g, ξ].

Again, by considering the map

b̂ : G×K g; [g, ξ] 7→ d

dt

∣∣∣∣
t=0

getξ[K],

the kernel is given by G ×K k, and so β̂K = (b|G×Km)−1 is an isomorphism. By

noting that getξ[K] = etAdgξ[gK] we can then identify the two approaches such

that β̂K(X) = [g, ξ] when βK(X) = ([gK],Adgξ).

1.2 The Levi-Civita connection of the normal metric

With these isomorphisms in hand we are now in a position to consider the Rie-

mannian geometry of a reductive homogeneous space.

Definition 1.2.1. Let N = G/K (K compact) be a reductive homogeneous space.

Let G be equipped with a bi-invariant metric 〈·, ·〉. At a point [gK] ∈ N , the

normal metric on N is given by

g(·, ·) = 〈βK(·), βK(·)〉 .

By considering vectors in m corresponding to vectors in TpN , we can observe

a particularly useful property of the normal metric.

Lemma 1.2.2. For ξ, η, ζ ∈ m,

〈[ξ, η]m, ζ〉+ 〈ξ, [ζ, η]m〉 = 0, (1)

where Vm denotes the orthogonal projection of V onto m ⊂ g.

Proof. The adjoint endomorphism ad is defined by dAd. As shown in

[6, Proposition 3.7], adX(Y ) = [X, Y ]. By differentiating the Ad-invariance of

the metric, we obtain

〈adη(ξ), ζ〉+ 〈ξ, adη(ζ)〉 = 0.
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A homogeneous space equipped with a metric that obeys (1) is said to be

naturally reductive. An important property of naturally reductive homogeneous

spaces is that they have homogeneous geodesics, meaning the geodesic generated

by a vector X ∈ Tπ(g)N takes the form

γX(t) = etβK(X)[gK]. (2)

In order to derive the Levi-Civita connection for the normal metric, we will

want to consider the horizontal lift of vector fields on TN to TG. The projection

πK : G → N = G/K gives rise to a decomposition TG = HG ⊕ VG, where

the vertical bundle VG = ker(dπN) and the horizontal bundle is the orthogonal

complement with respect to our bi-invariant metric on G.

Definition 1.2.3. Given a submersion π : (M, g) → (N, h), we say that π is

Riemannian if for all horizontal vectors XH, Y H,

g(XH, Y H) = h(dπ(XH), dπ(Y H)).

Definition 1.2.4. A vector field V ∈ Γ(TG) is basic with respect to the Rie-

mannian submersion πN if

1. V ∈ Γ(H) ⊂ Γ(TG),

2. V is πN -related to a vector field X ∈ Γ(TN).

There is a bijective relationship between basic vector fields in Γ(H) and vector

fields in Γ(TN). Given a vector field X ∈ Γ(TN), the corresponding basic vector

field, X̄, is the horizontal lift of X.

By using the Maurer-Cartan form ω = dL−1
g to identify each HG|g with m, we

see that by definition the normal metric is Riemannian.
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Lemma 1.2.5. A horizontal vector field H ∈ Γ(HG) is basic if and only if ω(H)

is AdK-equivariant, i.e.

ωgk(Hgk) = Ad−1
k ωg(Hg)

Proof. To prove this result, we will want to consider the following commutative

diagram:

HG G×m

TN G×K m

dπN

ω|HG

β̂K

π̃

where π̃ is the quotient map (g, ξ) 7→ [g, ξ]. Let us assume that X̄ is the horizontal

lift of a vector field X ∈ TN , and thus basic. Since dπN(X̄) = X, we see that

π̃(ω(X̄)) = β̂K(X). Hence, for all gk, ωgk(X̄gk) ∈ [g,Xg].

Conversely, assume for a horizontal vector field H, ω(H) is AdK-equivariant.

Then,

ωgk(Hgk) = Ad−1
k ωg(Hg)

= dL−1
k dL−1

g dRk(Hg)

= ωgk(dRkHg).

Considering β̂K ◦ dπN :

d

dt

∣∣∣∣
t=0

gketHgk [K] =
d

dt

∣∣∣∣
t=0

gketdRkHg [K] =
d

dt

∣∣∣∣
t=0

getAd−1
k Hg [K],

and so [gk,Hgk] = [g,Ad−1
k Hg]. Thus dπN(Hgk) = dπN(Hg), and H is basic.

In order to describe the Levi-Civita connection for TN in terms of βK and β̂K ,

we shall need two more results:
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Lemma 1.2.6. [23, Lemma 1] Given a Riemannian submersion π : M → N , if

X̄, Ȳ ∈ Γ(TM) are basic vector fields over X, Y ∈ Γ(TN) then

dπ(∇M
X̄ Ȳ ) = ∇N

XY.

Lemma 1.2.7. [6, Corollary 3.19] Let X, Y be left-invariant vector fields in

Γ(TG). Then if 〈·, ·〉 is a left invariant metric and ∇G is the associated Levi-

Civita connection,

∇G
XY =

1

2
([X, Y ]− ad∗XY − ad∗YX) ,

where ad∗XY is defined such that for all Z ∈ Γ(TG):

〈ad∗XY, Z〉 = 〈Y, adX(Z)〉 .

In order to make use of this last lemma, we will need to adjust it to work for

any vector field in Γ(TG). To do this, we can choose E1, ..., Em to be a basis of

left-invariant vector fields for G. Then, for X, Y ∈ Γ(TG):

∇G
XY =

m∑
i,j=1

X i∇Ei(Y
jEj)

=
m∑

i,j=1

X i(EiY
j)Ej +

1

2
X iY j

(
[Ei, Ej]− ad∗EiEj − ad∗EjEi

)
.

Since Ei, Ej are left-invariant vector fields, ω(Ej) is constant and

ω([Ei, Ej]) = [ω(Ei), ω(Ej)], where the bracket on the left is the Lie-bracket

of vector fields and the bracket on the right is the Lie algebra bracket associated

with the Lie group G. Since this is defined on g, not Γ(TG), the functions X i, Y j

can now pass through the bracket and thus

ω(∇G
XY ) = Xω(Y ) +

1

2

(
[ω(X), ω(Y )]− ad∗ω(X)ω(Y )− ad∗ω(Y )ω(X)

)
. (3)

By untwisting β̂K(X) and thinking of it as an AdK-equivariant map from

G → m such that β̂K(X)gk = Ad−1
k β̂K(X)g, then we can view πmωg(X̄g) as

β̂K(X)|g (where πm is the natural projection from G×g→ G×m). Let g denote
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a left-invariant metric on G/K for which πN : G → N = G/K is a Riemannian

submersion, and let ∇N denote its Levi-Civita connection. Then, using Lemma

1.2.6, for basic vector fields X̄, Ȳ ∈ Γ(TG), since [k, k] ⊆ k, (3) implies

β̂K(∇XY ) = X̄β̂K(Y ) +
1

2
Pm

(
[β̂K(X), β̂K(Y )]− ad∗

β̂K(X)
β̂K(Y )

−ad∗
β̂K(Y )

β̂K(X)
)
, (4)

where Pm is the projection onto [m]K ⊂ N × g.

In this untwisted form, β̂K(X)g = Ad−1
g βK(X)gK . Since dπN(X̄g) = XgK , the

curve getβ̂K(X)g = etβK(X)gKg ⊂ G has tangent vector X̄g at t = 0. Hence the first

term in (4) becomes

X̄g

(
Ad−1

g βK(X)gK
)
m

=
d

dt

∣∣∣∣
t=0

(
Ad−1(etβK(X)gKg)(βK(Y )

e
tβK (Y )gK g

)
)
m

= Ad−1
g

((
d

dt

∣∣∣∣
t=0

Ad
e
−tβK (X)gK

)
βK(Y )gK +XgβK(Y )gK

)
m

= Ad−1
g

(
−adβK(X)gKβK(Y )gK +XβK(Y )gK

)
m

Since Ad[·, ·] = [Ad(·),Ad(·)], we have proved the following result.

Lemma 1.2.8. Given a left-invariant metric 〈·, ·〉 on G, let g denote a G-

invariant metric on N = G/K which makes πN : G → G/K a Riemannian

submersion. The Levi-Civita connection for g takes the form

βK(∇N
XY ) = Pm

(
XβK(Y )− 1

2

(
[βK(X), βK(Y )] + ad∗β(X)β(Y ) + ad∗β(Y )β(X)

))
,

(5)

where Pm : N × g→ [m]K ⊆ N × g is the orthogonal projection.

Corollary 1.2.9. When g is the normal metric induced by a bi-invariant metric

〈·, ·〉,

βK(∇N
XY ) = Pm

(
XβK(Y )− 1

2
[βK(X), βK(Y )]

)

Proof. By (1), ad∗β(X)β(Y ) + ad∗β(Y )β(X) = 0.
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For the most part our interest in N is going to be focused on isometrically

immersed submanifolds f : M → N . It is therefore important we understand the

corresponding pullback connection along f . In order to do this, we shall want

to work with a local frame F : U → G on an open contractible neighbourhood

U ⊆M such that f = πK ◦F . We shall make much use of the Lie algebra-valued

1-form α = F ∗ω : TU → g. By considering the untwisted form of β̂K , we observe

f ∗βK = βK(d(πN ◦ F )) = AdF ((β̂K ◦ dπN)(dF ))

= AdF (πmω(dF )) = AdFαm. (6)

For clarity of notation, we shall henceforth define αm(X) = α(X)m.

Lemma 1.2.10. Let f : M → N = G/K be an isometrically immersed submani-

fold, where G is a matrix Lie group and N is equipped with a left-invariant metric

such that π : G → G/K is a Riemannian submersion. Then for

X ∈ Γ(TM), V ∈ Γ(M × g),

XAdF (V ) = AdF ((XV ) + ([α(X), V ])), (7)

where F : U → G is a local frame compatible with f and α = F ∗ω.

Proof. The first term comes directly from the chain rule. To acquire the second

term, we want to consider [α(X), V ]. Since we have assumed G to be a matrix Lie

group, the pullback of the Maurer-Cartan form is given by α = F−1dF , where

we are considering “F” as the action of g(F ) on elements of g by matrix mul-

tiplication. For a matrix Lie group, dLg(X) = gX, and so AdF (X) = FXF−1.

Thus,

AdF [α(X), V ] = AdF (dAdα(X)(V )) = AdF

(
d

dt

∣∣∣∣
t=0

etα(X)V e−tα(X)

)
= AdF

(
d

dt

∣∣∣∣
t=0

∞∑
k,l=0

(
tkα(X)k

k!
V

(−t)lα(X)l

l!

))

= AdF (α(X)V − V α(X))

= dF (X)V F−1 − FV FdF (X)F−1
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Since (dF )F−1 + Fd(F−1) = d(FF−1) = 0,

AdF ([α(X), V ]) = dF (X)V F−1 − FV d(F−1)(X)

=
d

dt

∣∣∣∣
t=0

(
Fexp(tX)V F

−1
exp(tX)

)
= (XAdF )(V )

Corollary 1.2.11. The f -pullback of the Levi-Civita connection takes the form

βK(∇f
Xdf(Y )) = AdF

(
Xαm(Y ) + [αk(X), αm(Y )] +

1

2
[αm(X), αm(Y )]m

−1

2

(
ad∗αm(X)αm(Y ) + ad∗αm(Y )αm(X)

)
m

)
.

For the normal metric this simplifies to

βK(∇f
Xdf(Y )) = AdF

(
Xαm(Y ) + [αk(X), αm(Y )] +

1

2
[αm(X), αm(Y )]m

)

Proof. Using (5) and (7), we acquire

βK(∇f
Xdf(Y )) = AdF

(
Xαm(Y ) + [α(X), αm(Y )]m −

1

2
[αm(X), αm(Y )]m

)
.

Since [k,m] ⊆ m for reductive spaces, we can split the second term into

[αk(X), αm(Y )] + [αm(X), αm(Y )]m.

1.3 Symmetric spaces

Given a compact symmetric space G/K, as shown in [6, Proposition 3.39], the

Killing form B provides a bi-invariant metric

−B(X, Y ) = −tr(adXadY )

onG. For a compact matrix Lie group, the Killing form is proportional to tr(XY ),

and so we can choose our bi-invariant metric on G to be

〈X, Y 〉 = −1

2
tr(XY )
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(while this is proportional to B, the factor of a half isn’t necessarily the coefficient

of proportionality but is our choice for later ease) We shall henceforth call this

metric the Killing form metric.

As with a more general reductive homogeneous space, we can use the Killing

form metric to define a normal metric on G/K. Because a symmetric space has

the additional condition that [m,m] ⊆ k, the Levi-Civita connection for this

metric reduces to βK(∇N
XY ) = Pm(XβK(Y )).

We are able to calculate the curvature by using a second metric connection, de-

fined on any reductive homogeneous space, called the canonical connection. This

given by βK(∇can
X Y ) = PmXβK(Y ). While the canonical connection is normally

only metric and not torsion free, as we can see in the case of a symmetric space

it coincides with the Levi-Civita connection. Hence we can find the curvature of

a symmetric space from the following result.

Lemma 1.3.1. [5, Corollary 1.4] The canonical connection on a reductive ho-

mogeneous space has the following torsion and curvature:

βK(T (X, Y )) = −Pm[βK(X), βK(Y )]

βK(R(X, Y )Z) = −[Pk[βK(X), βK(Y )], βK(Z)]

For a symmetric space we can thus observe that the torsion vanishes, and

βK(R(X, Y )Z) = −[[βK(X), βK(Y )], βK(Z)].

Remark 1.3.2. Here and throughout we have used the curvature convention

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Example 1.3.3. Let us consider the sphere Sn. The special orthogonal group

SO(n + 1) acts transitively on Sn, and K ∼= SO(n) is the isotropy group of the

basepoint en+1 (where Sn ⊂ Rn+1 = Span{e1, ..., en+1}), so Sn ∼= SO(n + 1)/K.

Since so(n) is the space of all skew-symmetric real n×n matrices, we can observe
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that m consists of matrices of the form

X =

0n×n X

−X t 0

 , X ∈ Rn.

We can easily verify that [m,m] ⊆ k and thus Sn is symmetric. The normal metric

is of the form 〈X, Y 〉 = −1
2
tr(XY ) = −1

2
(tr(−XY t) − X tY ) = X · Y . Thus by

identifying m with Ten+1S
n ∈ Ten+1Rn+1 we can observe that it is simply the

round metric.
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2 The Kähler-Einstein structure on the mani-

fold of geodesics

2.1 Symplectic and complex structures

In order to work with the manifold of geodesics, we are going to want to consider

some additional structures on the tangent bundle. First, symplectic structures.

Definition 2.1.1. Let ω ∈ Ω2(N) be a smooth 2-form over a manifold M . The

pair (N,ω) is a symplectic manifold if ω obeys the following conditions:

1. dω = 0 (ω is closed),

2. if ω(v, ·) = 0, then v = 0 (ω is non-degenerate).

We call ω a symplectic structure on N , and say that each (TpN,ωp) is a sym-

plectic vector space.

A consequence of the combination of skew-symmetry and non-degeneracy is

that N must be even dimensional.

Definition 2.1.2. Given symplectic manifolds (M,ω), (N,ω′), a diffeomorphism

ψ : M → N is a symplectomorphism if ω = ψ∗ω′

Given a subspace U ⊆ (V, ω) of a symplectic vector space, we define its sym-

plectic complement

Uω = {v ∈ V : ω(U, v) = 0} .

Two useful properties of the symplectic complement are that

dim(U) + dim(Uω) = dim(V ), and (Uω)ω = U [18, Lemma 2.2].

Definition 2.1.3. Let M ⊆ (N,ω) be a submanifold of a symplectic manifold.

Then M is:
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1. isotropic if TpM ⊆ (TpM)ω,

2. coisotropic if (TpM)ω ⊆ TpM ,

3. Lagrangian if TpM = (TpM)ω,

4. symplectic if TpM ∩ (TpM)ω = {0}

for all p ∈M .

The restriction of ω to a symplectic submanifold is non-degenerate and thus

makes it a symplectic manifold in its own right. We can also observe that La-

grangian submanifolds are the maximal submanifolds on which ω is degenerate,

and that they have dimension 1
2
dim(N).

A related concept, but for odd dimensional manifolds, is that of a contact

structure.

Definition 2.1.4. Let N be a manifold and C ⊂ TN be a smooth distribution

of hyperplanes, locally described as ker θ for a 1-form θ ∈ Ω1(M). If dθ is non-

degenerate on C, then C is a contact structure on N (and θ is a contact form

for C).

The non-degeneracy condition on dθ means that each (Cp, dθp) is a symplectic

vector space, and thus N must be odd dimensional. The choice of a contact form

θ for C defines a vector field ξ ∈ Γ(TN) as the unique vector field such that

dθ(ξ, ·) = 0, θ(ξ) = 1. This vector field is called the Reeb vector field.

Definition 2.1.5. Let N be a 2n+1 dimensional manifold with contact structure

C. An n-dimensional submanifold M ⊂ N is Legendrian if TM ⊂ C.

Lemma 2.1.6. [18, Proposition 3.42] Let N be a 2n+1-dimensional with contact

structure C. Let M ⊂ N be a submanifold such that TM ⊂ C. At each point

TpM ⊂ Cp is an isotropic subspace with respect to the symplectic structure dθ. In

particular, when dim(M) = n, then TpM is Lagrangian.
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Finally, we define a complex structure.

Definition 2.1.7. Let N be a 2n-dimensional manifold. An almost complex

structure on N is an endomorpism J ∈ Γ(End(TN)) for which J2 = −id. If

there exists an atlas (a, Ua) for N such that dap(J) is the standard complex

multiplication given by

 0n −idn

idn 0n

 on R2n = C for all a, p, then J is an

(integrable) complex structure on N .

In order to avoid having to construct such an atlas, the following equivalent

condition for integrability is often used

Theorem 2.1.8. [18, Theorem 4.12] The Nijenhuis tensor NJ : TN×TN → TN

associated to an almost complex structure J is given by

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ].

The almost complex structure is integrable if and only if NJ = 0.

We shall be particularly interested in manifolds for which the metric, symplec-

tic and complex structures interact nicely

Definition 2.1.9. Let (N,ω) by a symplectic manifold with almost complex

structure J . The almost complex structure J is compatible with the symplectic

structure if:

1. ω(JX, JY ) = ω(X, Y ),

2. ω(X, JX) > 0

for all X 6= 0 ∈ TN . If J is integrable, then the triple (N,ω, J) is a Kähler

structure on M .

A Kähler structure induces a compatible metric on M , given by

gJ(X, Y ) = ω(X, JY ),
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for which J is an isometry. With this in mind we can reformulate Definition 2.1.3

in terms of the complex structure.

Lemma 2.1.10. Let M ⊂ (N,ω, J) be a submanifold of a Kähler manifold. Then

M is:

1. isotropic iff JTM ⊆ T⊥M ,

2. coisotropic iff JTM⊥ ⊆ TM ,

3. Lagrangian iff JTM = TM⊥

4. complex iff JTM = TM (in which case we say M is holomorphic) .

Proof. For X ∈ TM⊥, gJ(TM,X) = 0 = ω(TM, JX). Similarly, for Y ∈ TMω,

ω(TM, Y ) = 0 = −gJ(JTM, Y ). Hence, TMω = JTM⊥.

The compatible metric gJ provides us with another interpretation of the inte-

grability of J .

Theorem 2.1.11. [18, Lemma 4.15] Let ω ∈ Ω2(N) be a non-degenerate 2-

form with a compatible almost complex structure J . Let ∇ denote the Levi-Civita

connection for the compatible metric gJ . Then ∇J = 0 if and only if ω is closed

and J is integrable.

Given a symplectic manifold (N,ω), we can use a process called symplectic

reduction to construct lower dimensional symplectic manifolds by way of circle

actions on TN . In order to do this, we first introduce the concept of Hamiltonian

vector fields.

Definition 2.1.12. Let (N,ω) be a symplectic manifold and H : N → R a

smooth function. We can define a vector field XH ∈ Γ(TN) from the identity

ω(XH , ·) = dH(·).
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A vector field which can be constructed in this manner is called the Hamiltonian

vector field XH associated to the Hamiltonian function H. If N is complete, the

flow generated by the vector field XH (the one-parameter group of symplecto-

morphism ϕ : N × R → N such that ϕ0 = id and d
dt
ϕtp = XH |ϕtp) is called the

Hamiltonian flow associated with H.

Hamiltonian vector fields are thus those vector fields for which ιXω is exact.

Since XHH = ω(XH , XH) = 0, the Hamiltonian flow preserves the level sets

H−1(c).

In the case that the Hamiltonian flow consists of a periodic family of symplec-

tomorphisms ψ : M × R→M ; ψ1 = ψ0, we say that it is a Hamiltonian action

of S1 on M .

Lemma 2.1.13. [18, Lemma 5.2] Suppose that there exists a Hamiltonian action

ψ of S1 on (N,ω) with associated Hamiltionian function H. If S1 acts freely on

the level set H−1(λ) then the quotient

πS : H−1(λ)→ H−1(λ)/S1

is a symplectic manifold with symplectic form ωH such that π∗Sωp = ωH |πS(p).

To see that ωH is well defined, note that since ψ is a family of symplectomor-

phisms, ωp = (ψt)∗ωψtp and thus ωH |[p] = ωH |[ψtp].

2.2 The unit sphere bundle for a CROSS

We shall now restrict our attention to a special class of symmetric spaces, the

compact rank one symmetric spaces (or CROSSes).

Definition 2.2.1. The rank of a symmetric space G/K is the dimension of its

maximal flat, totally geodesic submanifold.
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This means that the curvature tensor (with respect to the Killing form metric)

vanishes over the submanifold and geodesics within the submanifold are also

geodesics of the ambient space. Equivalently, the rank of G/K is the dimension

of the maximal subspace of To(G/K) ∼= m on which the Lie bracket vanishes.

In the case that the rank is 1, the only such submanfiolds are the geodesics

themselves. The simple compact rank one symmetric spaces are classified as

Sn ∼= SO(n+ 1)/SO(n),

RPn ∼= SO(n+ 1)/O(n),

CPn ∼= SU(n+ 1)/S(Un × U1),

HPn ∼= Sp(n+ 1)/Sp(n)× Sp(1)),

CaP2 ∼= F4/Spin(9).

Compact rank one symmetric spaces are particularly useful for us to work with

as their unit tangent bundles are themselves reductive homogeneous spaces, as

we shall prove using the following result.

Lemma 2.2.2. [13, Ch.X-G] Let N be a Riemannian manifold with isotropy

group K for a basepoint o. The isotropy group K acts transitively on the unit

sphere UoN if and only if N is either a Euclidean space or a rank one symmetric

space.

Lemma 2.2.3. Given a compact rank one symmetric space N ∼= G/K, the unit

tangent bundle UN is a reductive homogeneous space.

Proof. The Lie group G acts on TN ∼= [m] ⊆ G/K × g by

g · ([hK], ξ) = ([ghK],Adg(ξ)).

To show that this action is transitive on UN ⊂ TN , we first fix a basepoint

([K], νo) ∈ βK(UoN) such that ν0 ∈ m. The fibre [m]K |[gK] = Adgm, and so given

any ξ ∈ U[gK]N , we observe Adg−1ξ ∈ UoN ⊂ m. By Lemma 2.2.2 we know K

acts transitively on UoN , therefore there exists k ∈ K such that

Adkν0 = Adg−1ξ.
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Hence, for any ([gK], ξ) ∈ βK(UN) there exists gk ∈ G such that

gk · ([K], νo) = ([gkK],Adgkνo) = ([gK], ξ). (8)

Thus, G acts transitively on UN and so UN is a homogeneous space G/H, where

H is the isotropy group of ([K], νo). Since for each CROSS G is semisimple, it

can be equipped with a the bi-invariant Killing form metric. The decomposition

h⊕ h⊥ is AdH-invariant, and thus UN is reductive.

Because H ⊆ K, we can decompose g as

g = k⊕m

= h⊕ h⊥ =: h⊕ p

= h⊕ (k	 h)⊕m =: h⊕ n⊕m.

The following commutative diagram demonstrates the relationship between

G/H and G/K.

G

G/H = UN

G/K = N

...............
...............

...............
........................
............πH

................................................................................ .........
...

πK

............................................................................................................
.....
.......
.....

πN |UN

TUN [p]H

TN [m]K

............................................................................................................................ ............
βH

..................................................................................................................
.....
.......
.....

dπN |TUN

..................................................................................................................
.....
.......
.....

.................................................................................................................................... ............
βK

Since the vertical bundle βH(ker(dπN |TUN)) = [n]H , we can define a horizontal

bundle for TUN such that βH(V ⊕H) = [n]H ⊕ [m]H . Since UN is reductive and

N is symmetric, we obtain the following identities:

1. [h, h] ⊆ h

2. [h, n] ⊆ p ∩ k = n

3. [h, k] ⊆ m

4. [n, n] ⊆ k

5. [n,m] ⊆ m
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6. [m,m] ⊆ k.

We shall now examine the canonical contact structure on UN . We begin with

the canonical one-form θ ∈ Γ(T ∗(TN)). If g is a metric for N , then

θ(X) := g(πTN(X), dπN(X)). (9)

The canonical symplectic structure on TN is then given by λTN := −dθ.

If we consider the restriction of θ to UN , its kernel gives rise to a contact

structure C ∈ UN . As shown in [3, 1-G] the Reeb vector field Zg ∈ Γ(T (UM))

such that dθ(Zg, ·) = 0, θ(Zg) = 1 is given by the geodesic flow vector field

associated with g. This is the Hamiltonian vector field associated with the energy

functional e(ξ) = g(ξ, ξ), such that dθ(Zg, ·) = −de(·).

To visualise Zg we can consider the geodesic flow itself. Given a vector

Xp ∈ TpN , it generates a geodesic γX in N . The geodesic flow is then the

one-parameter group of diffeomorphisms ζ : R × TN → TN such that ζtX =

d
dt
|t=0γX(t). The geodesic flow vector field is then given by Zg|X = d

dt
|t=0ζ

t
X (and

hence θ(Zg) = g(γ′(0), γ′(0)) = 1).

2.3 The manifold of geodesics

Using the geodesic flow, we shall use symplectic reduction to construct a new

manifold associated to each compact rank one symmetric space, the manifold of

geodesics. A geodesic γ ∈ R × N is closed if there exists a constant l > 0 such

that for all t ∈ R, γ(t + l) = γ(t). If in addition the restriction of γ to (0, l] is

not self intersecting, γ is simply closed with length l.

Lemma 2.3.1. [12, Proposition 5.3] Let N be a compact rank one symmetric

space. Then all the unit speed geodesics in N are simply closed and have the same

length.
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The geodesics generated by unit vectors are unit speed, and so the geodesic

flow will preserve UN . The preceeding lemma thus allows us to define a free

Hamiltonian action (one such that g.x = x implies g = id) of the circle group S1

on UN by

S1 × UN → UN ; (eit, Up) 7→
d

dt

∣∣∣∣
t=θ

γUp

(
lt

2π

)
.

The unit sphere bundle is precisely the level set e−1(1) of the energy functional

and so by Lemma 2.1.13, we can use symplectic reduction.

Definition 2.3.2. Let N be a compact rank one symmetric space. The manifold

of geodesics of N is the symplectic manifold

(Q, λQ) := (e−1(1)/S1, π∗QλUN),

where λUN is the restriction of the canonical symplectic form on the tangent

bundle to the unit tangent bundle, and e(·) = 1
2
g(·, ·) is the energy functional on

TN .

Since the isotropy group K acts transitively on the fibres of the unit sphere

bundle for a CROSS, we can combine (2) and (8) to observe that every geodesic on

N takes the form γ(t) = getν0 [K] for some g ∈ G, where ([K], ν0) is the basepoint

for UN = G/H. The circle action on UN thus coincides with the action of a

circle subgroup on G defined by right multiplication by S = {etν0 : t ∈ R}.

In this way we can view the manifold of geodesics as a homogeneous space,

Q = G/(H × S) =: G/L.

This homogeneous space has its own reductive decompostition g = l⊕ q. If we

introduce the additional notation s = {tν0 : t ∈ R} for the Lie algebra of S ⊂ G,

we can further decompose g as

g = l⊕ q = (h⊕ s)⊕ (p ∩ s⊥).

We can achieve a further useful decomposition by considering the operator
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adν0 on g. The map

K → um = {X ∈ m : 〈X,X〉 = 1} ; k 7→ Adk(ν0)

is onto, since AdK acts transitively on the unit sphere, and so its differen-

tial, adν0|k is also onto. The tangent space Tν0um identified with m ∩ s⊥ con-

sists of all vectors orthogonal to ν0. If we define m0 := m ∩ s⊥, we thus have

adν0(k) = m0. Since H is the isotropy group of ([K], ν0), Adh(ν0) = ν0 and this

reduces to [ν0, n] = m0. If we also consider the fact that N is rank one, then on

m, ker(adν0|m) = s. Hence, ker(adν0) = h ⊕ s = l. The restriction adν0 |p is thus

injective and so we can deduce

q = n⊕m0 = [ν0,m0] + [ν0, n].

This operator adν0 is of considerable significance for our understanding of the

unit sphere bundle and manifold of geodesics. Not only does it provide the above

isometry between the horizontal and vertical (with respect to dπN) components of

q, but as we shall see it also describes the symplectic structure on both manifolds

and their compatible complex structures.

Lemma 2.3.3. When restricted to the unit tangent bundle UN , the canonical

one-form θ is of the form

θ(X[gH]) =
〈
Adg(ν0), βH(X[gH])

〉
.

The canonical symplectic form λ|UN is given by

λ(X, Y )|[gH] = 〈[Adg(ν0), βH(X)], βH(Y )〉 .

Proof. If we let βK denote the restriction βK : UN → [um]H , then by the defini-

tion (9), for X ∈ UN, Y ∈ TXUN ,

θX(Y ) = 〈βK(X), βK(dπN(Y )〉 = 〈βK(X), βH(Y )〉 ,

(where we’ve noted that in g, βK(dπN(Y )) is simply the [m]K component of

βH(Y )). By (8), we can locally choose a frame F : UN → G such that
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βK(X) = AdF (ν0). As with (6), this then allows us to describe βH in terms

of the pullback of the Maurer-Cartan form, α = F ∗ω. Hence,

θ(·) = 〈AdF (ν0),AdF (αp(·))〉 = 〈ν0, α(·)〉 .

By the Maurer-Cartan equation dω + [ω, ω] = 0, since ν0 is constant:

dθ(Y, Z) = 〈ν0, [α(Z), α(Y )]〉

Since 〈·, ·〉 is bi-invariant,

〈ν0, [h, p]〉 = −〈[ν0, h], p〉 .

We can also recall that [h, h] ⊆ h. Since h ⊂ ker adν0 , we are left with

λ(Y, Z) = 〈ν0, [αp(Z), αp(Y )]〉 .

The symplectic form λQ is then derived from the restriction of this form.

In order to simplify the notation of these forms, we can use the metric’s left-

invariance to equate them pointwise with forms at the basepoint. We can thus

view λQ as the left-invariant 2-form corresponding to

λ0 : q× q→ R; λ0(ξ, η) = 〈[ν0, ξ], η〉 .

2.4 The canonical complex structure on the manifold of

geodesics

We shall now construct a complex structure on Q. As we’ve seen, adν0 is a

bijective map on q = [ν0, g]. However, since adν0 : m0 ←→ n, it can have no real

eigenvalues. If we instead consider the complexification qC = q⊕ iq, then

adν0(m0 + in) = n + im0,
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and so adν0 has a set of non-zero eigenvalues iqj such that qj ∈ R. The normal

metric extends to the complexification by complex conjugation as 〈ξ, η̄〉. Hence

by skew-symmetry of the adjoint action, given an eigenvector ξj ∈ qC of adν0

with eigenvalue iqj:

iqj =
〈
[ν0, ξj], ξ̄j

〉
= −

〈
[ν0, ξ̄j],

¯̄ξj

〉
,

and so ξ̄j is also an eigenvector with eigenvalue −iqj. If we then consider

σ0 := adν0|q, we can observe that for an eigenvector Xj of adν0 :

σ2
0(Re(ξj) =

1

2
σ2

0(ξj) +
1

2
σ2

0(ξ̄j) = −q2
j .

We can thus decompose q into adν0-invariant eigenspaces

q =
∑
j

qj; σ
2
0(Xj) = −q2

jXj for all Xj ∈ qj.

Given a vector ξ ∈ q, if we let ξj denote the projection onto the eigenspace qj,

we can thus define

J0 : q→ q; ξ 7→ 1

qj
σ0(ξj).

Since l is the centraliser of s, J0 is AdL equivariant and so we can extend this

to an almost complex structure J on Q such that JβL(X) = ([gL],Adg(J0ξ)). To

see that this almost complex structure is integrable, we use the following result.

Lemma 2.4.1. [2, Proposition 8.39] Let G be a compact Lie group acting on

its Lie algebra g by the adjoint representation. Then the canonical G-invariant

almost complex structure on G/Stab(o) for a basepoint o ∈ g is integrable.

Since L = Stab(ν0), this holds for Q = G/L.

Lemma 2.4.2. The canonical complex structure J on Q is an isometry with

respect to the normal metric.
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Proof. Let ξ, η ∈ q. Since adν0 is skew-symmetric:

〈J0ξ, J0η〉 =
∑
j,k

〈
1

qj
[ν0, ξj],

1

qk
[ν0, ηk]

〉
= −

∑
j,k

1

qjqk

〈
σ2

0(ξj), ηk
〉

= −
∑
j,k

1

qjqk

〈
ξj, σ

2
0(ηk)

〉
.

Hence, either q2
j = q2

k or 〈ξj, ηk〉 = 0. The eigenspaces qj are thus orthongonal

and J0 is an isometry.

2.5 Metrics on the unit tangent bundle

While we have seen that the complex structure J is an isometry with respect to

the normal metric on Q, the normal metric on UN (hereby referred to as hn) is

not necessarily compatible with λQ and J in the manner required for a Kähler

structure. To this end, we shall construct a new Kähler metric on Q,

gQ(X, Y ) := λ(X, JY ).

The restriction of this metric to q thus takes the form

gQ|q(ξ, η) = 〈ν0, [ξ, J0η]〉 . (10)

A particularly significant property of this metric is that it is Kähler-Einstein,

as we shall see from the new few results.

Definition 2.5.1. A Riemannian manifold (N, g) is an Einstein manifold if the

Ricci curvature

Ric(X, Y ) := trg(R(·, X)Y, ·)

is proportional to g. If N is also a Kähler manifold (N,ω, J) such that the Kähler

structure is compatible with g, then (N,ω, J) is a Kähler-Einstein manifold.
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Lemma 2.5.2. [2, Proposition 8.85] If the centre c of l is one-dimensional, then

G/L admits, up to scale, only one G-invariant Kähler structure. This struc-

ture coincides with the canonical symplectic structure λcan, and (G/L, λcan, J) is

Kähler-Einstein.

To see how this applies to Q, consider l = h⊕ s. Since l is the centraliser of s,

we already know that c is at least one-dimensional. We must therefore consider

h. To find an explicit form for h, we use the fact that for a CROSS, our isotropy

groups K act transitively on UoN . By the classification of transitive actions on

spheres in [2]

USn ∼= SO(n+ 1)/SO(n− 1)

UCPn ∼= SU(n+ 1)/S(U(n− 1)× S1)

UHPn ∼= Sp(n+ 1)/Sp(n− 1)× Sp(1)

UCaP2 ∼= F4/Spin(7).

For all of these except CPn, the corresponding Lie algebras (so(n − 1),

sp(n− 1) + sp(1), so(7)) are semisimple and thus have trivial centre, so Lemma

2.5.2 applies.

In the case of CPn, we will need to consider the Ricci form,

ρ(X, Y ) := Ric(JX, Y ).

Lemma 2.5.3. [2, Corollary 8.59] Let G be a compact Lie group acting on its

Lie algebra g by the adjoint representation. The quotient G/Stab(o) = G/L for a

basepoint o admits a Kähler-Einstein metric compatible with the complex struc-

ture. If {Ej, J0Ej} is an orthonormal basis for q which consists of eigenvectors

of the adjoint action of the centre c, then the Kähler form (up to scale) is given

by the G-invariant form corresponding to

ρ0(ξ, η) =

〈∑
j

[Ej, J0Ej], [ξ, η]

〉
.

The sum
∑

j[Ej, J0Ej] is indepenent of the choice of basis.
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In the case that
∑

j[Ej, J0Ej] = cν0, we can observe that ρ0(ξ, J0η) = chQ(ξ, η),

and so hQ is the unique (up to scale) Kähler-Einstein metric on Q.

Lemma 2.5.4. For G = SU(n + 1), ρ0 = 〈2nν0, [·, ·]〉. Hence, (Q, λQ, J) is a

Kähler-Einstein manifold.

Proof. We can choose the basepoint o ∈ CPn to be the point

[0, ..., 0, 1] = {(0, ..., 0, z) : z ∈ C}. The Lie algebra u(n) consists of all skew-

hermitian n× n-matrices and su(n) consists of all traceless skew-hermitian ma-

trices. The reductive decomposition g = k ⊕ m corresonding to CPn ∼= SU(n +

1)/S(U(n)× U(1)) therefore takes the form

k =


A 0

0 a

 : A ∈ su(n), a = −tr(A) ∈ iR


m =


 0 u

−uh 0

 : u ∈ Cn

 ,

where uh is the Hermitian transpose. We can then choose our basepoint for G/H

to be

ν0 =


0 . . . 0 0

...
. . .

...
...

0 . . . 0 1

0 . . . −1 0


=

 0 en

−etn 0

 ,

where {e1, ie1, ..., en, ien} is the standard basis for Cn. It follows that

n = adν0(m0) =




0 v 0

−vh ib 0

0 0 −ib

 : v ∈ Cn−1, b ∈ R


q = n⊕m0 =




0 v w

−vh ib ic

−wh ic −ib

 : v, w ∈ Cn−1, b, c ∈ R

 .

By matrix multiplication with ν0 as above, the eigenspace decomposition with
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respect to ad2
ν0

takes the form

q1 = −ad2
ν0

(q1) =




0 v w

−vh 0 0

−wh 0 0

 : v, w ∈ Cn−1


q2 = −1

4
ad2

ν0
(q2) =




0 0 0

0 ib ic

0 ic −ib

 : b, c ∈ R

 ,

with eigenvalues q2
1 = −1 and q2

2 = −4 respectively. We can thus choose a basis

of eigenvectors {Ej, J0Ej} as


0 0 v

0 0 0

−vhj 0 0

 ,


0 v 0

−vhj 0 0

0 0 0

 : vj ∈ {e1, ..., en−1, ie1, ..., ien−1}


for q1 and E2n−1 =


0 0 0

0 0 i

0 i 0

 , J0E2n−1


0 0 0

0 i 0

0 0 −i




for q2. By matrix multiplication again we can calculate

[Ej, J0Ej] =

 ν0, j = 1, ..., 2n− 2

2ν0, j = 2n− 1

Hence,
∑

j[Ej, J0Ej] = 2nν0.

Now that we’ve constructed the Kähler-Einstein metric hQ on Q, the question

arises of whether or not it agrees with the normal metric hn|Q. From [2, 8.86]

we know that the normal metric is Kähler if and only if (G/L, hn) is itself a

symmetric space. In the case of CPn described above, we can observe that


0 0 0

0 0 ic

0 ic 0

 ,


0 0 w

0 0 0

−wh 0 0


 =


0 iaX 0

−iaXh 0 0

0 0 0

 ∈ q,
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and therefore [q, q] is not contained in l. While hn may not be Kähler for CPn,

in the case of Sn, we can choose our decomposition so

q =




0 X Y

−X t 0 0

−Y t 0 0

 : X, Y ∈ Rn−1

 , (11)

and we can observe [q, q] ⊆ l. Hence, for Sn, Q is a symmetric space (indeed,

Q ∼= Gr(2,Rn+1)) and hn|Q = hQ.

Definition 2.5.5. Let UN = G/H be the unit tangent bundle of a CROSS with

contact distribution C = ker(dθ) for the canonical one-form. Let Zg denote the

geodesic flow vector field with respect to the normal metric g on N . The lift of

the Kähler-Einstein metric to UN is defined as

hQ(X, Y ) =


λQ(dπQ(X), JdπQ(Y )), X, Y ∈ C

hn(X, Y ), X, Y ||Zg

0, X ∈ C, Y ||Zg

We shall also lift the complex structure J on Q to C ⊂ UN such that for

X, Y ∈ C, JX = Y when JdπQX = dπQY .

While the Kähler-Einstein metric is useful because of how it interacts with

the symplectic and complex structures, another useful metric for the purpose

of calculation, especially when N = Sn, is the Sasaki metric. Unlike hQ, this

belongs to a family of metrics on UN which interacts nicely with the projection

dπN .

Lemma 2.5.6. Let (N, 〈·, ·〉) ∼= G/K be a CROSS with unit sphere bundle

UN ∼= G/H. Every G-invariant metric on G/H for which π : UN → N is a Rie-

mannian submersion comes from an AdH-invariant inner product on [p] = [h]⊥

of the form

h(ξ, η) = 〈ξm, ηm〉+ hn(ξn, ηn),

where hn is any AdH-invariant metric on n. With respect to such a metric, π has

totally geodesic fibres.

41



Proof. As shown in [6], the G-invariant metrics are in one-to-one correspondence

with AdH-invariant inner products on p. Given such an inner product, h, the

corresponding metric on G/H is such that

(Xπ(g), Yπ(g)) 7→ h(dLg−1(X), dLg−1(Y )).

We will also denote this metric by h.

Since [m]H is the horizontal bundle for UN and N is equipped with the re-

striction of 〈·, ·〉, it is clear that if π is a Riemannian submersion the metric must

take the appropriate form. It remains only to show that π has totally geodesic

fibres. In order to do this, we must first construct the Levi-Civita connection for

h.

To construct the Levi-Civita connection ∇h, we shall first construct a metric h̄

on G such that πH : (G, h̄)→ (G/H, h) is a Riemannian submersion. We define

a left invariant metric on G from the inner product on g:

h̄(ξ, η) = 〈ξh+m, ηh+m〉+ hn(ξn, ηn).

Using the left-invariance of the metric, we observe that the horizontal subbundle

of TG with respect to πH is the set H := ω−1(G× p), and so h̄ agrees with h for

horizontal vectors. Using Lemma 1.2.6 we have

∇h
XY = dπH(∇h̄

X̄ Ȳ ),

where X̄, Ȳ are the horizontal lifts of X, Y ∈ Γ(TUN) (i.e. the unique vector

fields in Γ(H) such that dπH(X̄g) = XπH(g) for all g ∈ G).

To find an explicit form, we use Lemma 1.2.7, which states that for left-

invariant vector fields X, Y on G:

∇h̄
XY =

1

2
([X, Y ]− (adX)∗(Y )− (adY )∗(X)) ,

where (ad)∗ is the adjoint of ad. If we define left-invariant vector fields E1, ..., Eg

which form a basis for g, then there exist functions ξi, ηj : G → R such that
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ω(X̄) = ξiEi, ω(Ȳ ) = ηjEj (using the summation convention). We then calculate:

ω
(
∇h̄
X̄ Ȳ
)

= ω
(
∇h̄
ξiω−1(Ei)

ηjω−1(Ej)
)

= ω
(
ξi(ω−1(Ei))(η

j)Ej + ξiηj∇h̄
ω−1(Ei)

ω−1(Ej)
)

= X̄ω(Ȳ ) + ξiηj∇h̄
Ei
Ej

= X̄ω(Ȳ ) +
1

2
ξiηj

(
[Ei, Ej]− ad∗EiEj − ad∗EjEi

)
= X̄ω(Ȳ ) +

1

2

(
[ω(X̄), ω(Ȳ )]− ad∗ω(X̄)ω(Ȳ )− ad∗ω(Ȳ )ω(X̄)

)
.

Now that we have this form for the Levi-Civita connection, we can show that

π has totally geodesic fibres. At the basepoint, the fibre is Sn−1 ∼= K/H. If

we let X, Y ∈ Γ(TSn−1), then since they are vertical with respect to π, the

corresponding ω(X̄), ω(Ȳ ) take values in n. Since [n, n] ⊆ h, thus

∇h
XY = dπH

(
X̄ω(Ȳ )− 1

2

(
ad∗ω(X̄)ω(Ȳ ) + ad∗ω(Ȳ )ω(X̄)

))
.

Considering the adjoint terms, for ξ ∈ g:

h̄
(
dπH

(
ad∗ω(X̄)ω(Ȳ )

)
, ξ
)

= h̄
(

ad∗ω(X̄)ω(Ȳ ), ξp

)
= h̄

(
ω(Ȳ ), [ω(X̄), ξp]

)
= 0,

since [n, p] ⊆ h + m = n⊥. Hence, since ω(Ȳ ) is a map into n:

∇h
XY = dπH(X̄ω(Ȳ )) ∈ Γ(TS).

By left-invariance, we can observe that this is true for the other fibres. Thus, π

has totally geodesic fibres with respect to h.

Remark 2.5.7. A more general method to generate such metrics is given by [29].

They show that given a G-bundle π : X → (B, g), any associated bundle F with

an Ehresmann connection and G-invariant metric generates a Riemannian metric

on X for which π is a Riemannian submersion with totally geodesic fibres.

Given a horizontal and vertical splitting T (TN) = H ⊕ V such that

V = ker(dπN), there exist isomorphisms between the vector spaces HX ,VX and
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TπN (X)(N). The horizontal identification is given by dπN(HX) = TπN (X)N . The

vertical identification is the standard identification between the vector space

TπN (X) and its own tangent space T (Tπ(X)N).

Let κ : TTN → TN be the connector associated with the Levi-Civita connec-

tion on (N, g) such that ∇XY = κ(dY (X)) (the differential dY : TN → TTN

is defined by viewing Y as a smooth map between manifolds Y : N → TN). If

we let XV denote the projection of X onto the vertical subbundle V , the Sasaki

metric takes the form

hS(X, Y ) = g(dπN(X), dπN(Y )) + g(κ(XV), κ(Y V)).

The inclusion of UN ⊂ TN ∼= [m]K takes the form

ν : G/H → [m]K ; gH 7→ ([gK],Adg(ν0)). (12)

At the basepoint, horizontal vectors ξm can be identified with vectors parallel to

etξm [K], and vertical vectors are ξn are tangent to the curve etξn [H]. Hence, the

differential of this map is given by

(dν)0 : T[H](G/H) ∼= p→ Tm ∼= m + m; ξ 7→ ξm + [ξn, ν0].

The Sasaki metric thus corresponds to taking the normal metric on each copy of

m.

Definition 2.5.8. The (restriction of the) Sasaki metric hs on UN is the G-

invariant metric corresponding to the metric on p given by

p× p→ R; (ξ, η) 7→ 〈ξm, ηm〉+ 〈[ν0, ξn], [ν0, ηn]〉 .

While the Sasaki metric has useful properties, in general it doesn’t descend

to a metric on Q. In the case of a sphere N = Sn, matrix multiplication in the

decomposition (11) tells us ad2
ν0

= −id, and so by the self-adjointness of adν0 ,

hs = hn = hQ. In general it is not possible to define a restriction of hs to Q, as

the following result proves.
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Proposition 2.5.9. Let (N, g) be a complete Riemannian manifold. Let (UN, hs)

be the unit tangent bundle equipped with the restriction of the Sasaki metric. The

geodesic flow acts on UN by isometries if and only if N has constant sectional

curvature equal to 1.

Proof. Let v ∈ TN . We will denote by γv : R → N the geodesic with initial

condition γ̇v(0) = v. The geodesic flow Φ : R × TN → TN is the family of

diffeomorphisms

Φ(t, ·) = ϕt : TN → TN ; ϕt(v) = γ̇v(t)

Φ(·, v) = cv : R→ TN ; cv(t) = γ̇v(t).

Given a unit vector u ∈ UN , g(γ̇u(t), γ̇u(t)) = g(u, u) = 1, so we can restrict the

flow to UN .

Given a vector ξ ∈ TuUN , we can generate a Jacobi field Jξ along the geodesic

γu(t) with initial conditions

Jξ(0) = dπN(ξ)

Dt

∣∣
t=0
Jξ = κu(ξ).

From this Jacobi field we can define a section Jξ ∈ c−1
u (TUN) by

Jξ(t) = (dπN |H)−1
cu(t)(Jξ(t)) + (κcu(t)|V)−1(DtJξ(t)),

where

Jξ(t) := (dπN |H)−1
cu(t)(Jξ(t)),

vlcu(t)(Jξ(t)) := (κcu(t)|V)−1(DtJξ(t))

are the horizontal lift and vertical lift through cu(t) of Jξ(t) (note that dπN

restricted to the horizontal bundle and κ restricted to the vertical bundle are

isometries, so this is well defined).

Since Jξ is a Jacobi field, there exists a geodesic variation a(t, s) of γu such

that Jξ(t) = ∂
∂s

∣∣
s=0

a(t, s). For a fixed s, a(·, s) : R→ N is a geodesic, so for some
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curve X : R→ TN :

a(t, s) = (πN ◦ ϕt)(X(s)).

We would like to choose this curve to be such that ∂
∂s

∣∣
s=0

X(s) = ξ, but must

first check that such a curve fits with the initial conditions for Jξ. We first note

that

∂

∂s

∣∣∣
s=0

a(0, s) =
∂

∂s

∣∣∣
s=0

πN(X(s)) = dπN(ξ) = Jξ(0).

For the second condition, we consider

Dt

∣∣
t=0
Jξ(t) = ∇cu(0)Jξ(t).

Noting that [cu, Jξ] =
[
da( d

dt
), da( d

ds
)
]

= 0, this becomes

Dt

∣∣
t=0
Jξ(t) = ∇Jξ(0)cu(s)

= D
∣∣
s=0

∂

∂t

∣∣∣
t=0
a(t, s)

= D
∣∣
s=0

dπN

(
∂

∂t

∣∣∣
t=0
cX(s)(t)

)
. (13)

Differentiating the geodesic flow, we obtain the geodesic vector field Z. Since this

is the Reeb vector field for the canonical 1-form λ on TN :

dπN(ZX(s)) = πTN(ZX(s)) = X(s).

We thus have

Dt

∣∣
t=0
Jξ(0) = Ds

∣∣
s=0

X(s)

= ∇ ∂
∂s

∣∣
s=0

X(s)

= κ

(
dX0

(
∂

∂s

))
= κ(ξ).

Hence, our geodesic variation a(t, s) is compatible with Jξ. By using the form

Jξ(t) =
∂

∂s

∣∣∣
s=0

a(t, s) = d(πN ◦ ϕt)u(ξ),

we can find a convenient form for the differential of ϕt. Consider (13) without
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evaluating at t = 0:

DtJξ(t) = Ds

∣∣
s=0

dπN

(
∂

∂t
cX(s)(t)

)
= Ds

∣∣
s=0

dπN(Zϕt(X(s)))

= Ds

∣∣
s=0

ϕt(X(s))

= κ

((
dϕt(X)

)
0

(
∂

∂s

))
= κ

(
dϕtu(ξ)

)
.

We can thus easily observe

Jξ(t) = (dπN |H)−1 (dπN (dϕtu(ξ)))+ (κ|V)−1 (κ (dϕtu(ξ)))
=
(
dϕtu(ξ)

)H
+
(
dϕtu(ξ)

)V
= dϕtu(ξ).

To check if the geodesic flow acts by isometries, we can thus consider

d

dt
hs
(
dϕtu(X), dϕtu(X)

)
=

d

dt
(g(Jξ(t), Jξ(t)) + g(DtJξ(t), DtJξ(t)))

= 2
(
g (Jξ(t), DtJξ(t)) + g

(
DtJξ(t), D

2
t Jξ(t)

))
.

Since Jξ is a Jacobi field,

D2
t Jξ = −R(Jξ, cu)cu.

Thus, the geodesic flow acts by isometries on UN if and only if for all u ∈ TUN ,

ξ ∈ TuUN , t ∈ R:

g (Jξ(t)−R(Jξ(t), cu(t))cu(t), DtJξ(t)) = 0. (14)

Let us assume that the geodesic flow acts by isometries on UN . Let X, Y be

orthogonal unit vectors at a point p ∈ N . Given t ∈ R, define u = ϕ−t(X). Then,

X = cu(t). We can define a vector ξ ∈ TuUN by

ξ = dϕ−tX
(
Ȳ + vlX(Y )

)
.

This vector ξ has the property Jξ(t) = DtJξ(t) = Y . Hence by (14)

g (Y −R(Y,X)X, Y ) = 0 = 1−K(Y,X).
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Since X, Y were arbitrary, we have K = 1.

If we instead assume K = 1, then for any vector fields ξ, η along γu,

g (R(ξ,Dtγu)Dtγu, η) = g(ξ, η)

and so d
dt
hs vanishes.
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3 The geodesic Gauss map

3.1 Harmonic maps and the tension field

We shall be concerning ourselves with two related objects: harmonic maps and

minimal submanifolds. Both objects involve the local minimisation of energy,

namely Dirichlet energy for harmonic maps and volume for minimal submani-

folds. The more immediately concrete of the two, growing out of surface theory,

is the concept of minimality.

Given an isometrically immersed submanifold f : M → (N, g,∇), the second

fundamental form of f is given by

IIf ∈ Γ(T ∗M ⊗ T ∗M ⊗ TM⊥); IIf (X, Y ) = (∇f
X(df(Y )))⊥

It serves to relate the curvature of M to the curvature of N , and when IIf = 0 we

say M is totally geodesic since the image of a geodesic of M is itself a geodesic

of N (for example, the totally geodesic submanifolds of Euclidean space are

precisely the subplanes). Minimality comes from a somewhat weaker condition.

Definition 3.1.1. Let f : M → (N, g,∇) be an isometrically immersed subman-

ifold. The mean curvature of f is given by

Hf ∈ Γ(TM⊥); Hf (p) = trgIIf .

We say that f is minimal if Hf ≡ 0

In some conventions the mean curvature is instead defined as 1
dim(M)

trgIIf , but

they still have the same condition for minimality and since for our submanifolds

dim(M) is a constant it is easier for us to ignore this term.

To see how Hf relates to curvature, we can consider the shape operator

Af ∈ Γ(Hom(TM⊥,End(TM, TM))); f ∗g(Af (η)X, Y ) = g(IIf (X, Y ), η). (15)
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In the case of an oriented hypersurface, the eigenvalues κi of the shape operator

are the principal curvatures of M and thus ||Hf || = |
∑m

i=1 κi|.

When considering harmonic maps, we start from the more general position of

a smooth map ϕ : (M, g) → (N, h) between Riemannian manifolds. We define

the energy density of ϕ to be

e(f) =
1

2
〈dϕ, dϕ〉 ,

where 〈·, ·〉 is the induced metric on T ∗M ⊗ ϕ−1(TN).

Definition 3.1.2. Given a smooth map ϕ : (M, g,∇M) → (N, h,∇N), ϕ is a

harmonic map if it is a critical point of the energy

E(ϕ) =

∫
M

e(ϕ)dVolg.

As shown in [15], ϕ is a harmonic map if and only if, for the induced connection

on T ∗M ⊗ ϕ−1(TN), trg∇df ≡ 0. We thus define the tension field

τ(f) ∈ Γ(f−1TN); τ(f) = trg∇df.

We shall be interested in the case where ϕ is an immersion. In this case,

∇dϕ(X, Y ) = ∇ϕ
X(dϕ(Y ))− dϕ(∇M

X Y ).

We can see that this object functions as a generalisation of the second funda-

mental form, measuring the difference between the connection on M and the

ambient connection on N . In fact when ϕ is an isometric immersion this dif-

ference is simply the normal component of the ambient connection, and thus

∇dϕ(X, Y ) = IIϕ(X, Y ). Hence, an isometric immersion is minimal if and only if

it is a harmonic map.

3.2 The Ruh-Vilms theorem

With these concepts in mind, we can now turn to the theorem we shall be ex-

panding on, the Ruh-Vilms theorem [25]. The classical Gauss map, γ̂, for a
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hypersurface f : M → Rn+1 is given by identifying the unit tangent space UpN

with the unit sphere Sn ⊂ Rn+1 and assigning to the point p the (oriented) unit

normal vector in UpM
⊥ ⊂ Uf(p)Rn+1. There are multiple methods of expand-

ing this definition to other spaces. The first, as used by Ruh and Vilms, is to

view the classical Gauss map as instead assigning to the point p the subspace

df(TpM) ⊂ Tf(p)Rn+1 ∼= Rn+1. This now extends to submanifolds of Euclidean

space of higher codimension, in which case the Gauss map is now a map into the

Grassmannian manifold Gr(m,n + 1) of m = dim(M)-dimensional subspaces of

Rn+1.

In [25], Ruh and Vilms consider an m-dimensional isometrically immersed

submanifold f : M → Rn. They construct an isomorphism γ̂−1
f TGr(m,n) ∼=

Hom(TM, TM⊥). Since the mean curvature vector field for f takes values in

TM⊥, we see ∇⊥Hf ∈ Hom(TM, TM⊥). Using this identification, they then

prove the following result.

Theorem 3.2.1 (Ruh-Vilms). For an isometrically immersed submanifold

f : M → Rn with Gauss map γ̂f :

τ(γ̂f ) = ∇⊥Hf .

The immediate implication is that the mean curvature vector field for f is

parallel if and only if γ̂f is a harmonic map. Since minimality implies parallel

mean curvature vector field, we can observe that the classical Gauss map for any

minimal submanifold of Rn is a harmonic map.

An obvious limitation of this result is that it only applies to submanifolds

of Euclidean space. Several variants of the Gauss map have been used since to

establish similar results under less restrictive conditions. In [21], Obata defines a

generalised Gauss map for use on spaces of constant curvature. This assigns to a

point the totally geodesic subspace generated by its tangent space. For example

for a submanifold f : M → Sn ⊂ Rn+1 this would be the intersection of Sn with
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the plane γ̂f (p). This version of the Gauss map was then used to show that a

pseudo-umbilical immersion has a conformal Gauss map.

Wood’s [28] approach was to instead consider an isometric immersion into a

more general manifold N . By considering the bundle of orthonormal frames over

N , the Gauss section, γ̃f can be defined as the equivalence class of frames adapted

to the immersion (which in the relevant cases is equivalent to the previous defi-

nitions). By considering only the vertical component of the tension field, Wood

found that when the Ricci curvature obeys the condition f ∗Ric⊥ = 0 (for exam-

ple on space forms and for hypersurfaces in Einstein manifolds), then τV(γ̃f ) = 0

(γ̃f is a harmonic section) if and only if ∇Hf = 0.

More recently, Jensen and Rigoli [14] defined the spherical Gauss map µf ,

which instead of being a map on M is a map on UM⊥, which assigns to each

unit normal vector its inclusion in UN . They were able to find conditions for µf

to be harmonic with respect to the Sasaki metric induced by π⊥ : UM⊥ →M for

a minimal isometric immersion, namely that T = 0, f ∗Ric⊥ = 0 and the second

fundamental form is conformal, where the tensor T ∈ TM⊥⊗TM⊥⊗f−1(TN) is

given by TαAβ = hαijR
i
βjA where hαij are the components of the second fundamental

form and R is the Riemannian curvature.

In [7], Cintract and Morvan find another condition for the spherical Gauss map

with respect to the Sasaki metric, namely that f is minimal if and only if µf is aus-

tere, meaning that for the eigenvalues of the shape form,∑m
i=1 arctanκi ∼= 0 mod π.

We shall be trying something a bit different, by using different metrics to

obtain symplectic properties of the manifold of geodesics.
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3.3 The spherical and geodesic Gauss maps

Let (N, g) = (G/K, 〈·, ·〉) be a compact rank one symmetric space. Let

f : M → N be an isometrically immersed submanifold. The normal bundle

of M is the manifold

TM⊥ :=
{

(p,X) ∈ f−1(TN) : g(X, df(TpM)) = 0
}
.

The unit normal bundle UM⊥ ⊂ TM⊥ is the unit length subbundle of TM⊥.

We define π⊥ : UM⊥ →M to be the bundle projection.

Definition 3.3.1. The spherical Gauss map µ : UM⊥ → UN is the immersion

induced by f such that πN ◦ µ = f ◦ π⊥.

If we consider the canonical one-form θcan on UM⊥, it clearly vanishes, and so

T (UM⊥) ⊂ C ⊂ TUN . Since

dim(UM⊥) = dim(M) + (dim(N)− dim(M))− 1 = n− 1,

UM⊥ is thus a Legendrian submanifold of UN .

Definition 3.3.2. The geodesic Gauss map of an isometrically immersed sub-

manifold f : M → N of a compact rank one symmetric space is given by

γf : UM⊥ → Q; γf = πQ ◦ µ.

The relationship between our various manifolds can be summed up by the

following commutative diagram.

M N ∼= G/K Q ∼= G/L

UM⊥ UN ∼= G/H

G
...................................................................................
.....
.......
.....

πH

..................................................................................................................
.....
.......
.....

πN

........................................................................ ............
µ

..................................................................................................................
.....
.......
.....

π⊥

...................................................................................................... ............
f

........................................................................................................ ........
....πQ

.............................................................................................................................................................................................................................................................................................
.....
.......
.....

πL
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We are going to study the tension field of the spherical Gauss map in order to

obtain results regarding the harmonicity of the geodesic Gauss map. We will do

this using the following result.

Lemma 3.3.3. [8, Lemma 3.1] Let M,N, S be Riemannian manifolds. Suppose

ϕ : M → N is a smooth immersion and ψ : N → S is a Riemannian submersion.

If ϕ is horizontal, then τ(ϕ) is also horizontal and τ(ψ ◦ ϕ) = ψ∗τ(ϕ). Hence, ϕ

is harmonic if and only if ψ ◦ ϕ is harmonic. Further, if ϕ is isometric then so

is ψ ◦ ϕ, therefore ϕ is minimal if and only if ψ ◦ ϕ is minimal.

Proof. Let γ = ψ ◦ ϕ. We can thus think of ϕ as the horizontal lift of γ. Since ϕ

is a horizontal immersion, γ is also an immersion. Let Ei be a local orthonormal

frame for M . Then using Lemma 1.2.6,

ψ∗τ(ϕ) =
∑
j

ψ∗(∇ϕ
Ej

(dϕ(Ej))− dϕ(∇M
Ej
Ej))

= ∇γ
Ej

(dγ(Ej))− dγ(∇M
Ej
Ej) = τ(γ).

The vertical component of τ(ϕ) is the vertical component of

∇ϕ
Ej

(dϕ(Ej)) = ∇N
dϕ(Ej)

dϕ(Ej),

but ∇N
XX is horizontal for a horizontal lift. Hence, τ(ϕ) is horizontal. Finally,

since ψ is Riemannian it will preserve the isometry.

In this way, whenever πQ is a Riemannian submersion, τ(γ) is determined by

τ(µ).

In cases where we are working with the Kähler-Einstein metric on Q, mini-

mality of µ further implies that γ : UM⊥ → Q is Lagrangian stationary.

Definition 3.3.4. Let (N,ω, g) be a Kähler manifold. Given a Lagrangian iso-

metric immersion ϕ : M → (N,ω, g), ϕ is Lagrangian stationary if it is a critical

point of the volume

V (ϕ) =

∫
M

dVol
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with respect to variations by Lagrangian immersions.

To see that this applies to γ when µ is minimal, we use the following result.

Lemma 3.3.5. [26, Lemma 8.2] Let ϕ : M → (N,ω, g) be a Lagrangian immer-

sion into a Kähler-Einstein manifold. Then ϕ is Lagrangian stationary if and

only if it is minimal.

In the case of a Kähler-Einstein manifold we thus also refer to Lagrangian

stationary manifolds as minimal Lagrangian.
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4 Harmonicity of the geodesic Gauss map over

Sn

Much of the work in this chapter is also present in [8], a joint paper with my

supervisor Ian McIntosh.

4.1 Frames for the unit normal bundle

We shall now restrict our attention to the special case of a sphere, Sn ∼= G/K. As

we have already seen, in this case our three metrics on UN agree, i.e.

hs = hn = hQ. We shall thus equip UN with this metric and will commonly

refer to it as the normal metric hn. The submanifold µ : UM⊥ → UN will then

be equipped with the pullback metric µ∗hn (which agrees with the pullback by γ

of the metric on Q, since πQ is a Riemannian submersion). Since we’ve assumed

M is isometrically immersed it is equipped with the pullback metric f ∗g, where

as usual g is the normal metric on G/K. Since hn is of the form described in

Lemma 2.5.6, πN : UN → N is clearly a Riemannian submersion with totally

geodesic fibres with respect to these metrics.

In order to work on these manifolds we shall want to use local frames into

G = SO(n + 1). We first choose open contractible neighbourhoods U ⊂ M ,

V ⊂ UM⊥ such that π⊥(V ) = U and equip V with a local frame Φ : V → G

over µ. Since πN ◦ µ = f ◦ π⊥, we can define a frame F : U → G such that

(F ◦ π⊥)K = ΦK. (16)

As with (6), we can use the Maurer-Cartan form to define g-valued 1-forms

associated with the frames. We denote these by ϕ = Φ∗ω : TV → g and

α = F ∗ω : TU → g. To see how they relate, we consider the map Ψ : V → K ⊂ G

defined by Φ = (F ◦ π⊥)Ψ, and define the related form ψ : V → k ⊂ g by
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ψ = Ψ−1dΨ. If we consider the forms as matrices:

ϕ = Φ−1dΦ = (Fπ⊥Ψ)−1d(Fπ⊥Ψ)

= Ad−1
Ψ αdπ⊥ + ψ.

Since ψ takes values in k, we can thus observe

ϕm = Ad−1
Ψ (α ◦ dπ⊥)m

AdΦϕm = AdFαm(dπn). (17)

From Corollary 1.2.11 (and noting that N is symmetric) we obtain expressions

for the induced connections:

βH(∇µ
XY ) = AdΦ

(
Xϕp(Y ) + [ϕh(X), ϕp(Y )] +

1

2
[ϕp(X), ϕp(Y )]p

)
(18)

βK(∇f
XY ) = AdF (Xαm(Y ) + [αk(X), αm(Y )]) .

We shall also want to equip µ∗UN locally with an orthonormal moving frame

of vectors adapted to the submanifold UM⊥. In particular, we shall want this

adapted frame to respect the horizontal bundle for π⊥ induced by the connection

on N . First we shall consider the horizontal bundle for dπN : TUN → TN .

Lemma 4.1.1. Given a CROSS (N ∼= G/K, g,∇) equipped with the normal

metric and its Levi-Civita connection, let Z ∈ TξUN have vertical component

ZV ∈ V := ker(dπN) ∼= [n]H . Let ν : G/H → [um]H be the tautological normal

section ν(gH) = (gH,Adgν0). Then

dπN([βH(ZV), ν]) = βK(∇dπN (Z)Y ),

where Y (t) ⊂ UN is any curve satisfying Y (0) = ξ, d
dt
|t=0Y (t) = Z. The vector Z

is horizontal whenever Y (t) is parallel along πN(Y (t)), and hence the horizontal

bundle induced by ∇ is given by H ∼= [m]H .

Proof. If we consider the curve Y (t) ∈ G/H, we can lift it to a curve g(t) ∈ G

such that Y (t) = g(t)H. As we saw earlier, when considering such a lift into G,
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βH(X) = Adg(πG(ω(X̄)). Hence, if we consider the vector η = g−1ġ(0) ∈ g,

βH(Z) = βH(Ẏ (0)) = Adg0ηp,

And thus βH(ZV) = Adg0ηn.

When we restrict βK to UN , it takes the form βK(Y ) = Adg0ν0 ∈ [um]K . Since

M is a symmetric space, βK(∇XY ) = Pm(XβK(Y )). For dπN(Z) = d
dt
|t=0(πN◦Y ),

this gives

βK(∇dπN (Z)Y ) = Pm

(
d

dt

∣∣
t=0
βK(Y (t))

)
= Adg0

(
d

dt

∣∣
t=0
ν0 + adην0

)
m

= Adg0 [η, ν0]m

Since adν0 : m0 ←→ n, we can observe this reduces to

βK(∇dπN (Z)Y ) = Adg0([ηn, ν0]) = dπN([βH(ZV), ν]).

The right hand side of this vanishes when βH(ZV) ∈ [n]H vanishes, and thus the

horizontal bundle coincides with [m]H .

If we now turn our attention to UM⊥, we shall denote the horizontal and

vertical bundles for π⊥ by HM and VM respectively. Clearly VM = T (UM⊥)∩V ,

but it’s not usually the case that HM is contained in H, as we shall soon see. To

distinguish between the two we shall henceforth refer to horizontal vectors with

respect to π⊥ as π⊥-horizontal.

The previous lemma does show us the form of HM , however. If we consider the

canonical complex structure J on C, as we have already seen, UM⊥ is a Legen-

drian submanifold and thus J is well-defined over UM⊥. In the case of a sphere,

we also know ad2
ν0

= −1, and thus J is the G-invariant tensor corresponding to

adν0 . Since J maps [m0]H ←→ [n]H , we can observe the following identities for
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any vector field Z in C:

ϕn(JZ) = J0ϕm(Z),

ϕm(JZ) = J0ϕn(Z).

Lemma 4.1.2. Let f : M → Sn be an isometrically immersed submanifold. Let

Z ∈ Tξ(UM⊥) be a π⊥-horizontal vector. We denote Z = ZH + ZV with respect

to the the horizontal and vertical splitting µ−1H ⊕ µ−1V for dπN . The splitting

takes the form

ZH = dπN(Z)

ZV = −JAf (ξ)dπN(Z),

where Af is the shape operator and X̄ is the horizontal lift of X.

Corollary 4.1.3. The horizontal bundles HM and H agree (i.e. dµ(HM) ⊂ H)

if and only if f : M → N is totally geodesic.

Proof. Using Lemma 4.1.1, we have

ϕm(JZV) = J0ϕn(Z
V)

= [ν0, ϕn(Z
V)]

= −αm(∇dπN (Z)ξ),

where ξ(0) = ξ, ξ̇(0) = Z. Since Z is π⊥-horizontal and J is an isomorphism, for

all W ∈ VM |ξ,

0 = hn(ZV ,W )

= 〈J0ϕn(Z), J0ϕn(W )〉

= −
〈
αm(∇dπN (Z)ξ), αm(dπN(JW ))

〉
= g(∇dπN (Z)ξ, dπN(JW )).

Since g(∇dπN (Z)ξ, ξ) = 0 and dπN(JVM)+Span(ξ) account for all normal vectors,

we observe that

Af (ξ)dπN(Z) = (∇dπN (Z)ξ)
> = ∇dπN (Z)ξ = dπN(JZV).

59



(here we’ve used the definition of the shape operator (15) to observe that

g(Af (ξ)X, Y ) = g(Y,∇Xξ) for X, Y ∈ TM, ξ ∈ TM⊥).

Since UM⊥ is Legendrian in UN , it is Lagrangian in C. Hence from Lemma

2.1.10, hn(JT (UM⊥), T (UM⊥)) = 0, and so the splitting we shall want to con-

struct our adapted frame for is given by

µ−1C = HM ⊕ VM ⊕ JHM ⊕ JVM . (19)

Since VM ⊂ V ∼= [n]H , we can note that JVM ⊂ H.

We shall now construct a local adapted orthonormal moving frame for C

about ξ. We choose a local orthonormal frame for a sufficiently small choice of

V ⊂ UM⊥ as

HM = Span {Ej : j = 1, ...,m} ; VM = Span {Eβ : β = m+ 1, ..., n− 1} . (20)

We then expand this to VC ⊂ C as Ej, Eβ, JEj, JEβ. We shall use the index

conventions i, j ∈ {1, ...,m}, α, β ∈ {m + 1, ..., n− 1} and A,B ∈ {1, ..., n− 1}.

If we define Wj = dπN(Ej) and Wβ = dπN(JEβ), then TM = Span{Wj} and

TM⊥ = Span{Wβ, ξ}. Since JVM ⊂ H, this gives an orthonormal frame for

TξM
⊥, but not one for TM unless f is totally geodesic.

4.2 The tension field of the Gauss map

Now that we have an adapted frame for the splitting of C, we turn our attention

towards the tension field τ(µ) of the spherical Gauss map. In particular, we shall

be looking to prove the following result.

Theorem 4.2.1. At a point ξ ∈ UM⊥ with the adapted frame described in (20)

for a neighbourhood V ⊂ UM⊥ about ξ we have:

hn(τ(µ), JEi) = −
m∑
j=1

g
((
∇dπN (Ei)IIf

)
(dπN(Ej), dπN(Ej)), ξ

)
,

hn(τ(µ), JEβ) =
m∑
j=1

g (IIf (dπN(Ej), dπN(Ej)), dπN(JEβ)) .
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In order to prove this theorem, we shall start by splitting τ(µ) according to

(19). By Lemma 3.3.3, τ(µ) is horizontal with respect to πQ and thus lies in

µ−1C. By noting that (T (UM)⊥)⊥ = (HM ⊕ VM)⊥,

τ(µ) = trµ∗hIIµ =
n−1∑
A=1

IIµ(EA, EA)

=
n−1∑
A=1

(
∇µ
EA
dµ(EA)

)⊥
=

n−1∑
A,B=1

hn(∇µ
EA
dµ(EA), JEB)JEB.

From (18), using the antisymmetry of the Lie bracket to eliminate the last

term:

βH(∇µ
EA
dµ(EA)) = AdΦ (EAϕp(EA) + [ϕh(EA), ϕp(EA)]) .

We shall define a set of functions τ(µ)A : V → R such that

τ(µ) =
m∑
i=1

τ(µ)iJEi +
n−1∑

β=m+1

τ(µ)βJEβ.

Since VM ⊂ V , ϕm(Eβ) = 0, and so

τ(µ)i =
m∑
j=1

〈Ejϕp(Ej) + [ϕh(Ej), ϕp(Ej)], ϕp(JEi)〉

+
n−1∑

β=m+1

〈Eβϕn(Eβ) + [ϕh(Eβ), ϕn(Eβ)], ϕn(JEj)〉 ,

τ(µ)β =
m∑
j=1

〈Ejϕm(Ej) + [ϕh(Ej), ϕm(Ej)], ϕm(JEβ)〉 ,

where we have also made use of the fact that [h,m] ⊆ k. We can use the identities

[h, n] ⊆ k, [h,m] ⊆ m to further decompose τ(µ)i as

τ(µ)i1 =
m∑
j=1

〈Ejϕm(Ej) + [ϕh(Ej), ϕm(Ej)], ϕm(JEi)〉

+
m∑
j=1

〈Ejϕn(Ej) + [ϕh(Ej), ϕn(Ej)], ϕn(JEi)〉 ,

τ(µ)i2 =
n−1∑

β=m+1

〈Eβϕn(Eβ) + [ϕh(Eβ), ϕn(Eβ)], ϕn(JEi)〉 .

We can eliminate the second term by considering the following results.
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Lemma 4.2.2. Let f : M → N ∼= G/K be an isometrically immersed submani-

fold of a CROSS. Let τ(UpM
⊥) denote the tension field for the induced immersion

UpM
⊥ → Uf(p)N ∼= K/H, with the normal metric on the sphere K/H. Then for

any Z ∈ V normal to UpM
⊥,

hn(τ(UpM
⊥), Z) =

n−1∑
β=m+1

〈Eβϕn(Eβ) + [ϕh(Eβ), ϕn(Eβ)], ϕn(Z)〉 . (21)

Corollary 4.2.3. When N = Sn, τ(µ)i2 = 0.

Proof. Using the left action of G, we may assume that f(p) is the basepoint [K]

of G/K, and so consider UpM
⊥ ⊂ K/H. Since F ([K])K = K, the restriction

of Φ to the fibre must also be K-valued. Since TK/H ∼= [n]H , we can therefore

(using Φ : Vp → K as a local frame) calculate the tension field as

n−1∑
β=m+1

(AdΨ (Eβϕn(Eβ) + [ϕh(Eβ), ϕn(Eβ)]))⊥ ,

where the perpendicular is taken within [n]H .

In the case where N = Sn, G = SO(n + 1) and so K/H is the round sphere,

as in Example 1.3.3. The fibres UpM
⊥ are themselves equatorial subspheres of

the totally geodesic fibres of πN , and thus totally geodesic. Comparing (21) with

τ(µ)i2, we see that when this is the case they both vanish.

In order to understand τ(µ)i1, we shall want to use the canonical connection

DX defined in §1.3. By comparing it with the Levi-Civita connection for a re-

ductive homogeneous space and using Corollary 1.2.11, we define an operator

D : T (UM⊥)×C∞(T (UM⊥), p)→ C∞(T (UM⊥), p) such that that its pullback

to V takes the form

βH(∇can
X Y ) = DXϕp(Y ) = Xϕp(Y ) + [ϕh(X), ϕp(Y )]. (22)

In terms of D,

τ(µ)i1 =
m∑
j=1

〈
DEjϕm(Ej), ϕm(JEi)

〉
+

m∑
j=1

〈
DEjϕn(Ej), ϕn(JEi)

〉
.
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If we consider the decomposition of q for Sn given by 11, we can observe that

[n,m0] = s. Since T (UM⊥) lies in the contact distribution, for any

X, Y, Z ∈ T (UM⊥) we can thus note that

〈[ϕn(X), ϕm(Y )], ϕm(JZ)〉 = 0. (23)

By using Lemma 4.1.2,

ϕm(JEi) = J0ϕn(Ei) = J0ϕn

(
Af (ξ)Wj

)
= ϕm

(
Af (ξ)Wj

)
.

Combining these last two observations with (17),

〈
DEjϕm(Ej), ϕm(JEi)

〉
= 〈Wjαm(Wj) + [αk(Wj), αm(Wj)], αm(Af (ξ)Wi)〉

= g
(
∇f
Wj
Wj, Af (ξ)Wi)

)
.

Considering (22), since J0 is AdH-invariant DXϕp(JY ) = J0DXϕp(Y ). As J0

is an isometry, the second term of τ(µ)i1 becomes

〈
DEjϕn(Ej), ϕn(JEi)

〉
=
〈
J0DEjϕn(Ej), J0ϕn(JEi)

〉
= −

〈
DEjϕm(JEj), ϕm(Ei)

〉
= −g

(
∇f
Wj
Af (ξ)Wj,Wi

)
.

Since Af (ξ) is self-adjoint,

τ(µ)i1 = −
m∑
j=1

g
(
∇f
Wj
Af (ξ)Wj − Af (ξ)(∇f

Wj
Wj)

>,Wi

)
= −

m∑
j=1

g
((
∇f
Wj
Af (ξ)

)
Wj,Wi

)
, (24)

where ξ moves along the integral curve of Wj.

We would like to relate τ(µ)i1 with the second fundamental form of f . To do

so, we differentiate (15). On the left hand side:

Wjg(Af (ξ)Wj,Wi) = g
(

(∇f
Wj
Af (ξ))Wj + Af (ξ)(∇f

Wj
Wj)

>,Wi

)
+ g

(
Af (ξ)Wj,∇f

Wj
Wi

)
.
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On the right hand side:

Wjg(IIf (Wj,Wi), ξ) = g
(
∇f
Wj

IIf (Wj,Wi) + IIf ((∇f
Wj
Wj)

>,Wi)

+IIf (Wj, (∇f
Wj
Wi)

>), ξ
)

+ g
(

IIf (Wj,Wi),∇f
Wj
ξ
)
.

As in proof of Lemma 4.1.2,∇f
Wj
ξ is tangent to M , and so the final term vanishes.

Since the shape operator is self-adjoint, by (15) the second and third terms of

each side cancel and so

τ(µ)i1 = −
m∑
j=1

g
((
∇f
Wj
Af (ξ)

)
Wj,Wi

)
= −

m∑
j=1

g
((
∇f
Wj

IIf

)
(Wj,Wi), ξ

)
= −

m∑
j=1

g
((
∇f
Wi

IIf

)
(Wj,Wj), ξ

)
. (25)

For the last step, we have used the following result:

Lemma 4.2.4. [17, Corollary 4.4] Given an isometric immersion

f : M → (N, g), if N is of constant sectional curvature,

(∇f
XIIf )(Y, Z) = (∇f

Y IIf )(X,Z).

Using (23),we can rewrite τ(µ)β as

τ(µ)β =
m∑
j=1

〈Ejϕm(Ej) + [ϕk(Ej), ϕm(Ej)], ϕm(JEβ)〉 .

From (17) this becomes

τ(µ)β =
m∑
j=1

〈Wjαm(Wj) + [αk(Wj), αm(Wj)], αm(Wβ)〉

=
m∑
j=1

g
(
∇f
Wj

(df(Wj)),Wβ

)
. (26)

We can now combine these observations on the various components of τ(µ) to

prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By Corollary 4.2.3 and (25), since by definition

Wi = dπN(Ei), we can observe

τ(µ)i = hn(τ(µ), JEi) = −
m∑
j=1

g
((
∇dπN (Ei)IIf

)
(dπN(Ej), dπN(Ej)) , ξ

)
.
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Since τ(µ) is horizontal with respect to πQ and TM⊥ = Span{Wβ, ξ}, (26)

gives us

τ(µ)β = h(τ(µ), JEβ) =
m∑
j=1

g (IIf (dπN(Ej), dπN(Ej)) , dπN(JEβ)) .

While we have succesfully related the tension field of µ (and thus γ) with the

second fundamental form of f , we have yet to link it to the tension field of f . This

is because, as we see from Lemma 4.1.2, π⊥ is only a Riemannian submersion

when f is totally geodesic. Because of this, the local orthonormal frame {Ei} for

UM⊥ does not necessarily project onto a local orthonormal frame for M with

which to take the trace through f ∗g. In order to relate them, we shall require an

additional condition.

Definition 4.2.5. Let π : (M,h) → (N, g) be a submersion with horizontal

bundle H. We say that π is horizontally conformal if there exists s ∈ C∞(M ;R)

such that for all horizontal vectors XH, Y H ∈ H,

h(XH, Y H) = s2g(dπ(XH), dπ(Y H)).

In the case that π⊥ is horizontally conformal with conformal factor s, the frame

{Ei} on V ⊂ UM⊥ defines a frame {sWi : Wi = dπN(Ei)} for U = π⊥(V ) ⊂ M

such that

g (sWi, sWj) = hn(Ei, Ej) = δij.

Taking the trace of IIf with respect to this frame then gives

τ(f) = s2

m∑
j=1

IIf (dπN(Ej), dπN(Ej)).

In order to better understand the significance of this conformal factor, we shall

consider the following definition.
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Definition 4.2.6. Let f : M → (N, g) be an isometric immersion. The shape

form associated with f is the operator

af : TM⊥ × TM × TM → R; af (ξ)(X, Y ) = g(Af (ξ)X,Af (ξ)Y ).

We say f has conformal shape form when there exists r ∈ C∞(UM⊥,R) such

that af (ξ) = r(ξ)2g for all ξ ∈ UM⊥. Since the shape operator is self-adjoint this

is equivalent to the condition that Af (ξ)
2 = r(ξ)2I (and so r(ξ)2 = 1

m
tr(Af (ξ)

2)).

The equivalent condition of Af (ξ)
2 being proportional to the identity is also

referred to as conformal second fundamental form in [10].

Lemma 4.2.7. [10, Proposition 4.2] Let f : M → (N, g) be an isometric im-

mersion. The projection π⊥ : (UM⊥, µ∗hs)→ (M, f ∗g) is horizontally conformal

if and only f has conformal shape form.

To see how the conformal factors relate, we return to Lemma 4.1.2. If

X1, X2 ∈ HM |ξ have projections Yi = dπN(Xi), then since J is an isometry

for hn:

hn(X1, X2) = hn(Ȳ1, Ȳ2) + hn(JAf (ξ)Ȳ1, JAf (ξ)Ȳ2)

= g(Y1, Y2) + g(Af (ξ)Y1, Af (ξ)Y2).

If π⊥ is horizontally conformal with conformal factor s and thus af is conformal

with conformal factor r:

1

s2
g(Y1, Y2) = (1 + r2)g(Y1, Y2).

By using these conformality conditions, Theorem 4.2.1 gives the following re-

sult.

Theorem 4.2.8. Let f : M → (Sn, g) be an isometrically immersed submanifold

such that Sn ∼= SO(n + 1)/K and USn ∼= SO(n + 1)/H are equipped with the
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normal metric. Let Z,W ∈ Tξ(UM
⊥) such that Z is π⊥-horizontal and W is

vertical. If f has conformal shape form, then

hn (τ(µ), JZ) = − 1

1 + r(ξ)2
g
(
∇⊥dπN (Z)τ(f), ξ

)
,

hn (τ(µ), JW ) =
1

1 + r(ξ)2
g (τ(f), dπN(JW )) ,

where r(ξ)2 = 1
dim(M)

trAf (ξ)
2.

When M is a hypersurface, Tπ(ξ)M
⊥ = Span{ξ}, and so VM = {0}. Using

Lemma 3.3.3 and Lemma 3.3.5, we immediately acquire the following corollary.

Corollary 4.2.9. Let f : M → Sn have conformal shape form. Then µ is

minimal (and γ is minimal Lagrangian) if and only if

1. f is minimal, for codim(M) > 1,

2. f has constant mean curvature, for codim(M) = 1.

In order to understand when examples are possible, let us consider the eigen-

values κi of the shape operator Af (ξ). In order for f to have conformal shape

form, we must have κ2
i = κ2

j for all i,m. If we were also to require minimality,

then
∑m

i=1 κi = 0. Combining these two, f can only be minimal and have con-

formal shape form if each Af (ξ) has the same number of positive and negative

eigenvalues. Thus for an odd-dimensional submanifold of codim(M) > 1, the

only examples occur when f is totally geodesic, and thus each κi = 0.

Example 4.2.10. Every minimal surface f : M → Sn necessarily has conformal

shape form since Af (ξ) only has two eigenvalues, ±κ. Their images γf (M) thus

provide a supply of minimal Lagrangian submanifolds of the oriented Grassman-

nian

Q ∼= Gr(2, n+ 1) ∼= SO(n+ 1)/SO(n− 1)× S1.

Example 4.2.11. In the case of a hypersurface f : M → Sn (n ≥ 3), we can

relate our result with Palmer’s condition [24] that the classical Gauss map of
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any isoparametric hypersurface of Sn ⊂ Rn+1 (i.e. one with constant principal

curvatures) is minimal. To do this, we first observe that if we consider Sn as a

submanifold of Rn+1 by the standard embedding, then the geodesic generated by

a vector v at p is the great circle given by Sn∩Span{p, v}, where we have identified

TpRn+1 with Rn+1. For a hypersurface, π⊥ identifies the connected component of

UM⊥ with M , and so the geodesic Gauss map can thus be identified with the

classical Gauss map

γ̂ : M → Gr(2, n+ 1) ∼= Q; p 7→ Span{p, ξp},

where ξp is the oriented unit normal vector at p. Since γ = γ̂ ◦ π⊥, by the

composition formula for tension fields [9, Proposition 2.20],

τ(γ) = dγ̂(τ(π⊥)) + trgQ∇dγ̂(dπ⊥, dπ⊥).

When f has conformal shape form with conformal factor r(ξ)2, this becomes

τ(γ) = dγ̂(τ(π⊥)) +
1

1 + r(ξ)2
τ(γ̂).

When f has constant mean curvature, by Theorems 3.2.1 and 4.2.8,

τ(γ) = τ(γ̂) = 0,

and so π⊥ is harmonic. By [1, Theorem 5.2], a horizontally conformal submersion

into a manifold of dimension ≥ 3 is harmonic with minimal fibres if and only if it

is horizontally homethetic. Hence, r(ξ) is constant and so when f has conformal

shape form and constant mean curvature, it is isoparametric.

We can in fact reacquire Palmer’s formula [24, Proposition 3.4] for the mean

curvature of the classical Gauss map of a hypersurface in Sn:

gQ(JHγ̂, ·) =
n−1∑
j=1

d(arctan(κj)),

where κj are the principal curvatures of f .

In the case of a hypersurface VM⊕JVM is trivial. We can then choose our frame

{Ei, JEi : i = 1, .., n− 1} for µ−1C such that Wi = dπN(Ei) are eigenvectors of
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the shape operator with eigenvalues κi. In this case Ei = W̄i − κiJW̄i, and so

||Wi||2 = 1
1+κ2i

. From (24), we thus see:

hn(τ(µ), JEi) = −
n−1∑
j=1

g
(

(∇f
Wi
Af )Wj,Wj

)
= −

n−1∑
j=1

g (dκj(Ei)Wj,Wj)

= −
n−1∑
j=1

1

1 + κ2
j

dκj(Ei),

and so

gQ(JHγ̂, ·) =
n−1∑
j=1

d(arctan(κj)).
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5 Harmonicity of the geodesic Gauss map over

CPn

5.1 Decompositions of the contact structure

We shall now turn our attention to the case of submanifolds of the complex

projective space CPn. In the sphere case the situation was simplified somewhat

by the identification of the metrics hs = hn = hQ, but that is no longer the case.

To see why, consider the proof of Lemma 2.5.4. The operator ad2
νo : q → q

has two eigenspaces for g = su(n+ 1). These are the eigenspaces q1 and q2 with

eigenvalues −1 and −4 respectively. As we can see from their decomposition in

Lemma 2.5.4 they take the form

q2 = Span{I0ν0, adν0(I0ν0)}, q1 = q ∩ q⊥2 ,

where I is the standard complex structure on CPn. We define a corresponding

decomposition for the contact structure by

C = C1 ⊕ C2 = β−1
H ([q1]H)⊕ β−1

H ([q2]H),

where

C2|ξ = Span{Iξ, JIξ}.

If we let Zi denote the projection of Z ∈ C onto Ci, we define an operator

L : C → C; Z 7→ Z1 +
1

2
Z2,

with a corresponding operator L0 on q, then the complex structure J on C takes

the form

J0 = L0adν0 .

Remark 5.1.1. In order to understand the geometric significance of the eigen-

values of ad2
ν0

, we can consider the sectional curvature of CPn. Since CPn has
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constant holomorphic sectional curvature, as show in [17, Proposition 7.3], for

S, T, U, V ∈ TN :

g(RN(S, T )U, V ) = −g(S, U)g(T, V ) + g(S, V )g(T, U)− g(S, IU)g(T, IV )

+ g(S, IV )g(T, IU)− 2g(S, IT )g(U, IV ). (27)

For orthonormal U, V ∈ TpN , the sectional curvature of Sp{U, V } is thus given

by

k(U, V ) =
g(RN(U, V )V, U)

||U ||2||V ||2 − g(U, V )2
= 1 + 3g(U, IV )2.

The extremal values of k are thus given by

� k = 1, when Sp{U, V } ⊆ TpN is an isotropic subplane,

� k = 4. when Sp{U, V } ⊆ TpN is a holomorphic subplane.

By Lemma 1.3.1, for X ∈ UpM, ξ ∈ UpM⊥ such that αm(ξ) = ν0:

〈
ad2

ν0
αm(X), αm(X)

〉
= −g(RN(X, ξ)ξ,X)

= −1− g(X, Iξ).

The eigenvalues of ad2
ν0

thus correspond to the extreme values of the sectional

curvature.

From Definition 2.5.8 we can see that when restricted to C,

hs(X, Y ) = hn(XH, Y H)− hn(L−2XV , Y V).

(where we have used the fact that L is clearly self-adjoint, since hn(C1, C2) = 0

and it is simply a scaling within each Ci). We thus define an operator

B : TUN → TUN ; X 7→ XH − L−2XV

such that

hs(X, Y ) = hn(BX, Y ).
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From (10), for vectors X, Y ∈ C:

hQ(X, Y ) = 〈ν0, [ϕp(X), ϕp(JY )]〉

= 〈ν0, [ϕp(X), [ν0, ϕp(LY )]]〉

= −
〈
ad2

ν0
ϕp(X), ϕp(LY )

〉
=
〈
ϕp(L−2X), ϕp(LY )

〉
= hn(L−2X,LY )

= hn(L−1X, Y ).

Hence,

hn(X, Y ) = hQ(LX, Y ) = hs(B
−1X, Y ). (28)

By definition J is an isometry for hQ. If we consider hn:

hn(JX, JY ) = hQ(JX1, JY2) +
1

2
hQ(JX2, JY2).

Since Cj are J-invariant, we observe that J is also an isometry for hn

All three metrics present some issues. As we can see, hn 6= hQ, and by the

uniqueness of the Kähler-Einstein structure on Q, hn|Q is not Kähler-Einstein.

With regards to hQ, since C2 ∩ H 6= {0} the above equation implies πN is not a

Riemannian submersion with respect to hQ. By Lemma 2.5.9, hs doesn’t descend

to a metric on Q.

We shall thus consider separately the cases where UN is equipped with the

metrics hn and hQ. In particular, we shall be studying two types of submani-

folds of CPn, holomorphic and coisotropic submanifolds. As shown in Lemma

2.1.10, these are the submanifolds such that ITM = TM and ITM⊥ ⊆ TM ,

respectively. These submanifolds have the useful property that even though πN

is not Riemannian, its horizontal bundles align with the horizontal bundles for

hn. We can thus still lift vectors from TN to H, although the lift won’t be length

preserving.
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Lemma 5.1.2. Let H and HM be the horizontal distributions with respect to hn

for πN and π⊥ respectively. Then hQ(H,V) = 0 and when f : M → CPn is a

holomorphic or coisotropic submanifold, hQ(dµ(HM), dµ(VM)) = 0.

Proof. For H, simply note that the action of L on V is just rescaling the one-

dimensional subspace V2, and thus LV = V . For HM , we note that the holomor-

phic and coisotropic cases imply that (C2∩T (UM⊥)) is contained within VM and

HM respectively. Hence, LHM = HM for the holomorphic case and LVM = VM

in the coisotropic case.

Because of this, we can adapt Lemma 4.1.2 to provide a description of the

horizontal decomposition of UM⊥ with respect to both metrics.

Lemma 5.1.3. Let f : M → CPn be an isometrically immersed submanifold.

Let Z ∈ Tξ(UM
⊥) be a π⊥-horizontal vector with respect to hn. Then Z splits

with respect to πN as

ZH = d(πN · µ)(Z);

ZV = −JAf (ξ)d(πN · µ)(LZ).

Corollary 5.1.4. When M is a holomorphic submanifold, Z ∈ HM is π⊥-

horizontal with respect to both hs and hQ and the decomposition is given by

ZH = d(πN · µ)(Z)

ZV = −JAf (ξ)d(πN · µ)(Z)

and the restrictions of hn and hQ to HM agree with the restriction of the Sasaki

metric.

Corollary 5.1.5. When M is a coisotropic submanifold, Z ∈ HM is π⊥-horizontal

for both hn and hQ, and the decomposition is given by

ZH = d(πN · µ)(Z)

ZV = −JBf (ξ)d(πN · µ)(Z),
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where Bf is the operator

Bf : UM⊥ × TM → TM ;

(ξ,X) 7→
(
Af (ξ)X −

1

2
g(X, Iξ)Af (ξ)Iξ

)
,

which we shall refer to as the adapted shape operator.

Proof. The proof of the Lemma is identical to the proof of Lemma 4.1.2 using

J0ϕnZ = adν0(LZ), where we have equipped neighbourhoods V ⊂ UM⊥, U ⊂M

with local frames Φ, F as in (16).

For the first corollary we consider the splitting

µ−1C = HM ⊕ VM ⊕ JHM ⊕ JVM .

To see that this is an orthogonal splitting for hn as well as hQ, we note that J

preserves C2 and is thus an isometry for both metrics. For the holomorphic case

Iξ ∈ TM⊥ and so Iξ ∈ JVM . Hence, C2 ⊆ VM ⊕ JVM and L|HM = B|HM = id.

For the second corollary, when M is coisotropic ITM⊥ ⊂ TM , and so

C2 ⊆ HM ⊕ JHM . Since Iξ ∈ TM , Af (ξ)Iξ is well defined and

C2 ∩HM = Span{Iξ}.

Another reason for using holomorphic and coisotropic submanifolds is when

we consider the fibres of UM⊥. When working with spheres we were able to

eliminate the πN -vertical components of the tension field, indexed as τ(µ)i2, by

observing that the spherical Gauss map had minimal fibres, a property of the

Sasaki metric. While the differences between the metrics when working with

complex projective spaces mean this isn’t usually the case, for holomorphic and

coisotropic submanifolds we can prove the following result.

Proposition 5.1.6. Suppose f : M → CPn is an immersion which is either

holomorphic or coisotropic. Then the restriction of µ to the fibres of UM⊥ is

minimal with respect to hn and hQ.
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To prove this, we need a few preliminary results. In the sphere case, the fibres

being minimal was a consequence of the use of the Sasaki metric hs. If we define

um = {ξ ∈ m : 〈ξ, ξ〉 = 1},

then um ∼= K/H. The round metric on um is thus the metric induced by the

inclusion um→ m, and so by Definition 2.5.8 it corresponds to the restriction of

the Sasaki metric.

To relate the tension fields of µ with respect to the various metrics, we’ll want

to consider their Levi-Civita connections. If we define for metrics ha, hb the tensor

Aab = ∇a −∇b, then by (5) and (28):

hs(A
n
s (X, Y ), Z) = −1

2
〈[βH(X), βH(BY )] + [βH(Y ), βH(BX)], βH(Z)〉 , (29)

hQ(AnQ(X, Y ), Z) = −1

2

〈
[βH(X), βH(L−1Y )] + [βH(Y ), βH(L−1X)], βH(Z)

〉
,

(30)

where L−1 : C → C; Z 7→ Z1 + 2Z2.

Lemma 5.1.7. Let v ⊂ m be a proper subspace and Σ = v∩um the corresponding

unit subsphere. Suppose that the tangent bundle TΣ is

1. a B-invariant subbundle of Tum. Then Σ is a minimal submanifold for the

normal metric on um,

2. a (L · B)-invariant subbundle of Tum. Then Σ is a minimal submanifold

for hQ on um.

Proof. Since B (corresponding to the AdH-invariant operator given by id|m and

−ad2
ν0
|n) is self-adjoint for both hn and hs, then TΣ has the same normal bundle

for both metrics and B(TΣ⊥) = TΣ⊥. We now construct an adapted orthonormal

frame W1, ...,Wm−1 about ν ∈ Σ with respect to hn such that W1, ...,Wk ∈ TΣ

and each Wi is an eigenvector of B with eigenvalue λi.
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Since τn(Σ) ∈ TΣ⊥ with respect to both metrics, we only need consider

Wα ∈ TΣ⊥:

hs(τn(Σ),Wα) = hs

( k∑
i=1

∇n
Wi
Wi

)⊥
,Wα


=

k∑
i=1

hs
(
∇s
Wi
Wi − Asn(Wi,Wi),Wα

)
= hs(τs(Σ),Wα)−

k∑
i=1

hs (Asn(Wi,Wi),Wα) . (31)

Since hs is the round metric for um, the proper subsphere Σ is totally geodesic

with respect to hs. Hence, from (30):

hs(τn(Σ),Wα) =
1

2

k∑
i=1

〈[βH(Wi), βH(BWi)] + [βH(Wi), βH(BWi)], βH(Wα)〉

= −
k∑
i=1

λi 〈[β(Wi), β(Wi)], βH(Wα)〉 = 0.

Hence, Σ ⊂ um is minimal with respect to hn.

The proof of the second case is almost identical, except substituting (L·B) for

B, hQ for hn and AsQ for Asn. It diverges however when we reach (31). We now

note that B|V = L−2|V , and thus βH(L−1Wi) = (L ·B)βH(Wi) = λiβH(Wi), and

so

hs(τQ(Σ),Wα) = −
k∑
i=1

hs((A
s
n + AnQ)(Wi,Wi),Wα)

= −
k∑
i=1

〈
[βH(Wi), βH(L−1Wi)]− [βH(Wi), βH(BWi)], βH(Wα)

〉
= −

k∑
i=1

λi 〈[βH(Wi), βH(Wi)]− [βH(Wi), βH(Wi)], βH(Wα)〉 = 0.

Hence, Σ ⊂ um is minimal with respect to hQ.

Proof of Proposition 5.1.6. In order to prove Proposition 5.1.6, we need to con-

sider the eigenspaces of B and L·B. While they differ on H, BV = L−2|V , and so

they both have eigenspaces V1 = C1 ∩ V and V2 = C2 ∩ V . Since

βH(V2) = AdH (Span{adν0I0ν0}) is one-dimensional, given a proper subspace
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v ⊂ m as before, then for TΣ to be B or (L · B)-invariant, either

βH(V2) ∩ TΣ = {0} or βH(V2) ⊆ TΣ.

If we again consider the inclusion (12) ν : UN → TN , then βK(dν0(V2)) =

AdK(Span{I0ν0}). Since AdK(Span{ν0}) is the normal bundle of um ⊂ m, V ⊥2 =

V1 corresponds to the standard contact structure on S2n−1 ⊂ Cn ∼= m, such

that V2 = S2n−1 ∩ IS2n−1, given in [18, Example 3.47]. Hence, by Lemma 2.1.6,

when TΣ ⊂ βH(V1), v is isotropic with respect to the symplectic structure ωN =

−g(I·, ·). In the case that v ∼= TpM
⊥, M is therefore coisotropic.

Given a one-dimensional subspace l ⊂ v, then l ∩ um = ±Adk(ν0), for some

k ∈ K. In the case that βH(V2) ⊆ TΣ, Adk(I0ν0) ∈ TΣ ⊂ Tv, and so v is

I-invariant. Hence, when v ∼= TpM
⊥, ITpM = TpM . We have thus proved Propo-

sition 5.1.6.

5.2 Holomorphic submanifolds

5.2.1 The normal metric

The first case we shall consider is that of a holomorphic submanifold

f : M → CPn when UN is equipped with the normal metric hn.

Theorem 5.2.1. Let f : M → CPn be a holomorphic submanifold with confor-

mal shape form. Then its spherical and geodesic Gauss maps are minimal with

respect to the normal metric.

As was the case with Sn, in order to prove this theorem we shall want to

construct orthonormal adapted local frames with respect to each metric for the

decomposition µ−1C = HM ⊕ VM ⊕ JHM ⊕ JVM . In order to ease calculations,

we shall make some additional considerations in the construction of this frame,

the first being that the frame projects onto eigenvectors of the shape operator.

We would also like the frame to respect I, the standard complex structure on
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CPn.

To ensure that our frame can obey both of these conditions simultaneously, we

need to verify that the shape operator commutes with the complex structure. If

we first note that CPn is a Kähler manifold, then I is a parallel isometry. If we

also note that IIf is symmetric, then for any X, Y ∈ TξM :

g (Af (ξ)(IX), Y ) = g (II(IX, Y ), ξ)

= g
(
∇f
Y (df(IX))− df(∇M

X Y ), ξ
)
.

The second term vanishes, and since I is parallel it passes through the derivative.

Since I is an isometry, we then calculate

g (Af (ξ)(IX), Y ) = g
(
I∇f

Y df(X), ξ
)

= −g (II(X, Y ), Iξ)

= −g (II(Y,X), Iξ)

Retracing the calculations with X and Y now reversed, we thus obtain

g (Af (ξ)(IX), Y ) = g (Af (ξ)X, IY ) .

Hence, when V is an eigenvector of Af (ξ) with eigenvalue κ,

g(Af (ξ)(IV ), Y ) = −κg(IV, Y ), (32)

and so IV is itself an eigenvector with eigenvalue −κ.

Remark 5.2.2. An immediate consequence of this is the well known result that

all holomorphic submanifolds of CPn are minimal, as the paired eigenvalues elim-

inate each other in the trace of Af (ξ).

By (32), we can choose a Hermitian frame of eigenvectors V1, ..., Vm ∈ Tπ(ξ)Mof

the shape operator Af (ξ) with corresponding eigenvalues κj(ξ) such that

IV2i−1 = V2i, κ2i−1 = −κ2i for i = 1, ...,
m

2
.

We define

Ṽj = V̄j − κjJV̄j,
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where V̄j is the horizontal lift with respect to dπN . By Corollary 5.1.4, Ṽj ∈ HM .

Since J is an isometry and πN is a Riemannian submersion with respect to hn:

||Ṽj|| = ||V̄j − κjJV̄j|| =
√

1 + κ2
j .

Let U ⊂M, V ⊂ UM⊥ be a pair of open subsets such that π⊥(V ) = U . We can

thus define a local orthonormal frame for HM |V as{
Ej : Ej|ξ =

Ṽj(ξ)√
1 + κj(ξ)2

j = 1, ...,m

}
, (33)

for a smooth choice of Ṽj : V ⊂ UM⊥ → TU ⊂ TM . We again define

Wj = dπN(Ej). By (32), ||IWi|| = (1 + (−κi)2)−
1
2 = ||Wi||.

For VM we simply choose an hn-orthonormal frame {Em+1, ..., En−1} for V ⊂

UM⊥ with corresponding Wβ = dπN(JEβ) such that at πN(ξ):

� IWβ ∈ {±Wm+1, ...,±Wn−2, }, for β ∈ {m+ 1, ..., n− 2},

� IWn−1 = −ξ.

and Span {Wβ, ξ : β = m+ 1, ..., n− 1} = TξM
⊥. To see that we can do this,

we note that I and J are isometries for g and hn respectively and dπN is a

Riemannian submersion for hn.

By the same argument as in §4.2, we again have an orthonormal frame such

that

τn(µ) =
∑
i

τn(µ)iJEi +
∑
β

τn(µ)βJEβ, (34)

where τn(µ)i = τn(µ)i1 + τn(µ)i2 with:

τn(µ)i1 =

〈∑
j

Ejφm(Ej) + [ϕh(Ej), ϕm(Ej)] , ϕm(JEi)

〉

+

〈∑
j

Ejϕn(Ej) + [ϕh(Ej), ϕn(Ej)] , ϕn(JEi)

〉
, (35)

τn(µ)i2 =

〈∑
β

Eβϕn(Eβ) + [ϕh(Eβ), ϕn(Eβ)] , ϕn(JEi)

〉
(36)
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and

τn(µ)β =

〈∑
j

Ejϕm(Ej) + [ϕh(Ej), ϕm(Ej)] , ϕm(JEβ)

〉
. (37)

Now we can examine each component.

Proposition 5.2.3. When f : M → N = CPn is holomorphic, τn(µ)i2 = 0.

Proof. By Lemma 4.2.2, we see

τn(µ)i2 = hn(τn(UpM
⊥), JEi).

Unlike with spheres, the restriction of µ to the fibres of UM⊥ is not necessarily

minimal with respect to the normal metric. However, as we saw in Proposition

5.1.6, they are minimal for holomorphic submanifolds.

Turning to τ(µ)i1, as in the sphere case, with respect to the canonical connec-

tion:

τ(µ)i1 =
m∑
j=1

〈
DEjϕm(Ej), ϕm(JEi)

〉
+

m∑
j=1

〈
DEjϕn(Ej), ϕn(JEi)

〉
.

For complex projective space, [n,m0]∩q 6= {0}, and so in order to relate the first

term to ∇f , we must utilise the following result.

Lemma 5.2.4. Let f : M → CPn be a holomorphic submanifold. For a local

frame Ei for HM as described above,

〈[ϕn(Ej), ϕm(Ej)], ϕm(·)〉 =
κj√

1 + κ2
j

g(ξ, dπN(·)).

Proof. By Corollary 5.1.4 and Lemma 1.3.1,

〈[ϕn(Ej), ϕm(Ej)], ϕn(·)〉 = −
〈[

[ν0, ϕm(JAf (ξ)Wj)], ϕm(Ej)
]
, ϕn(·)

〉
= g

(
RN(ξ, κjWj)Wj, dπN(·)

)
.
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As in Remark 5.1.1, since CPn has constant holomorphic sectional curvature, for

S, T, U, V ∈ TN :

g(RN(S, T )U, V ) = −g(S, U)g(T, V ) + g(S, V )g(T, U)− g(S, IU)g(T, IV )

+ g(S, IV )g(T, IU)− 2g(S, IT )g(U, IV ).

Since M is holomorphic,

g(ξ,Wj) = g(ξ, IWj) = g(Wj, IWj) = 0, (38)

and so (for Z ∈ TpN) this reduces to

κjg(RN(ξ,Wj)Wj, Z) = κjg(ξ, Z)g(Wj,Wj). (39)

By (33),

g(W,W ) =
1√

1 + κ2
j

.

With this in mind, following the same argument used to acquire (25), we find

τn(µ)i1 = −
m∑
j=1

g
((
∇f
Wj
Af (ξ)

)
Wj,Wi

)
= −

m∑
j=1

g
((
∇f
Wj

IIf

)
(Wj,Wi), ξ

)
.

Unlike with Sn, ∇IIf is not totally symmetric for CPN , but we can still rear-

range the arguments on the right hand side. The Codazzi equation [17, Proposi-

tion 4.3] tells us

∇f
Wj

IIf (Wj,Wi) =
(
RN(Wj,Wi)Wj

)⊥
+∇f

Wi
IIf (Wj,Wj).

If we consider (38) we can see that when M is holomorphic, for any Z ∈ TpM⊥:

g(RN(Wj,Wi)Wj, Z) = 0,

since every term of (27) vanishes. Hence,

τn(µ)i1 =
m∑
j=1

g
((
∇f
Wi

IIf

)
(Wj,Wj), ξ

)
. (40)
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Now we turn to τn(µ)β. By Lemma 5.2.4,

〈[ϕn(Ej), ϕm(Ej)], ϕm(JEβ)〉 = 0,

and so, as in the sphere case,

τn(µ)β =
m∑
j=1

g
(
∇f
Wj
df(Wj),Wβ

)
. (41)

We now have the necessary preparations to prove Theorem 5.2.1

Proof of Theorem 5.2.1. By Corollary 5.1.4, hn|HM = hs|HM and so Lemma 4.2.7

still applies, i.e. π⊥ is hn-horizontally conformal if and only if f has conformal

shape form. As stated in Remark 5.2.2, if f then it is holomorphic it is necessarily

minimal. When f is both minimal and has conformal shape form Af (ξ) has only

two eigenvalues, ±κ. From (40), (41) and Proposition 5.2.3, we thus observe that

when f has conformal shape form:

τn(µ)i = − 1

1 + κ2
g (∇Wi

τ(f), ξ) = 0

τn(µ)β =
1

1 + κ2
g (τ(f),Wβ) = 0.

The statement for the geodesic Gauss map then follows from Lemma 3.3.3.

5.2.2 The lift of the Kähler-Einstein metric

We shall now consider what happens if we instead equip the unit tangent bundle

with hQ. We can use the local frame from the preceding section to easily construct

an hQ-orthonormal frame:

FA :=

 EA, A 6= n− 1

1√
2
En−1, A = n− 1.

Using this frame we can adapt Theorem 5.2.1 for hQ.
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Theorem 5.2.5. Let f : M → CPn be a holomorphic submanifold with confor-

mal shape form. Then its spherical and geodesic Gauss maps are minimal for hQ

and minimal Lagrangian for gQ respectively.

Proof. To prove this result, we will want to compare τQ(µ) and τn(µ). To do this

we use the tensor AnQ = ∇n −∇Q. Using (30), for X,Z ∈ TUN :

hQ(AnQ(X,X), Z) =
〈
[βH(L−1X), βH(X)], βH(Z)

〉
.

Since EA (and thus FA) are eigenvectors of L−1, AnQ(FA, FA) = 0. Hence,

hQ(τQ(µ), JFB) =
n−1∑
A=1

hQ
(
∇QFAFA, JFB

)
=

n−1∑
A=1

hQ
(
∇n
FA
FA − AnQ(FA, FA), JFB

)
= hQ

(
τn(µ)− 1

2
∇n
En−1

En−1, JFB

)
= hn

(
τn(µ)− 1

2
∇n
En−1

En−1,LJFB
)
.

When f is holomorphic with conformal shape form, by Theorem 5.2.1,

τn(µ) = 0.

In order to eliminate the remaining term, we now use Ans = ∇n−∇s. By (29),

for Z ∈ TUN :

hs (Ans (En−1, En−1), Z) = 〈[βH(BEn−1), βH(En−1)], βH(Z)〉 .

Since En−1 lies in VM ⊂ V and it is an eigenvector of L,

BEn−1 = EHn−1 − L−2En−1V = −4En−1.

Hence, Ans (En−1, En−1) = 0. Since En−1 ∈ V , ∇s
En−1

En−1 = 0 (as shown in [4,

9.3]). When f is holomorphic with conformal shape form, we thus see

τQ(µ) = 0.
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Example 5.2.6. When f : M → CPn is a holomorphic surface, it is necessarily

minimal. Since M is 2-dimensional, Af (ξ) only has two eigenvalues ±κ, and so

it necessarily has conformal shape form as well. Therefore γ : UM⊥ → Q is a

minimal Lagrangian submanifold.

Example 5.2.7. If P (X, Y, Z) is an irreducible homogeneous complex polynomial

of degree 3, then the level set

M =
{

[X, Y, Z] ∈ CP2 : P (X, Y, Z) = 0
}

is an elliptic curve. If M is non-singular (meaning ∇P 6= (0, 0, 0) when P = 0),

then M is diffeomorphic to a 2-torus and is thus a Riemann surface. Since every

compact Riemann surface admits a holomorphic embedding into complex projec-

tive space [20, 5.19], we therefore get a family of embedded minimal Lagrangian

submanifolds of Q.

5.3 Coisotropic submanifolds

5.3.1 The normal metric

We shall now consider the case where f : M → CPn is coisotropic, so ITM⊥ ⊂

TM . This case will have some complications due to C2 ∩ HM being non-trivial.

As usual, we begin by constructing a local adapated frame for the decomposition

of C which is orthonormal with respect to hn. To simplify calculations we would

like this frame to also respect the decomposition C1 ⊕ C2.

Given a point (p, ξ) ∈ UM⊥, when M is coisotropic, TN splits into three

components: TM⊥, ITM⊥ and TM ∩ ITM (with the latter component, the

holomorphic tangent space, being trivial when M is Lagrangian). We start by

choosing an orthonormal frame Vm+1, ..., Vn−1, ξ for TpM
⊥. From this we define

vectors Vi = IVm+i for i ∈ {1, ..., n−m− 1}. We then choose an orthonormal

frame {Vn−m, ..., Vm−1} for TpM ∩ ITpM (when M is not Lagrangian). Finally

we define Vm = Iξ.
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We define corresponding vectors in TξUM
⊥ as

Ṽi = V̄i − JBf (ξ)Vi,

Ṽβ = −JV β.

Let U ⊂ M,V ⊂ UM⊥ be a pair of open subsets such that π⊥(V ) = U .

V ⊆ UM⊥. Then for a smooth choice of ṼA : V → TU ⊂ TN , by Corollary 5.1.5

we can define a local adapted orthonormal frame for HM ⊕ VM as

Ei =

{
Ṽi

||Ṽi||
: i = 1, ...,m

}
,

Eβ =
{
Ṽβ : β = m+ 1, ..., n− 1

}
, , (42)

where Bf (ξ) is the adapted shape operator. We also define corresponding Wi =

dπN(Ei) = ||Wi||Vi, Wβ = dπN(JEβ) = Vβ.

We shall turn again to the decomposition (34) for τn(µ). By Proposition 5.1.6,

τ(µ)i2 still vanishes for coisotropic submanifolds.

For the remaining terms, where before we were able to eliminate the terms of

the form 〈[n,m],m〉 by the use of results such as Lemma 5.2.4, for coisotropic

submanifolds this is not generally the case. To this end, for j = 1, ...,m we define

one-forms

mj : TV → R; X 7→ 〈[ϕn(Ej), ϕm(Ej)], ϕm(JX)〉 .

Following the arguments for the sphere and holomorphic case, we acquire:

τn(µ)i = −
m∑
j=1

(
g
((
∇f
Wj
Bf (ξ)

)
Wj,Wi

)
−mj(Ei)

)
,

τn(µ)β =
m∑
j=1

(
g
(
∇f
Wj
df(Wj),Wβ

)
+mj(Eβ)

)
.

In order to relate τn(µ)i to τ(f), we consider

g
((
∇f
Wj
Bf (ξ)

)
Wj,Wi

)
= g

(
∇Wj

(Af (ξ)LWj)− AfL(ξ)(∇f
Wj
Wj)

>,Wi

)
.
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Since we’ve chosen our frame to respect C1 ⊕ C2, this becomes

g
((
∇f
Wj
Bf (ξ)

)
Wj,Wi

)
= g

(
L
(
∇f
Wj
Af (ξ)

)
Wj,Wi

)
= g

((
∇f
Wj

IIf

)
(Wj,LWi), ξ

)
.

To make use of the Codazzi equation, for a vector Z ∈ T⊥p M we consider

g
(
RN(Wj,LWi)Wj, Z

)
= −3g(IWj,LWi)g(IWj, Z).

Since M is coisotropic and by our choice of frame, either IWj ∈ TM or IWj ∈

T⊥M . In either case,

(RN(Wj,LWi)Wj)
⊥ = 0.

We thus have the following result

Lemma 5.3.1. At a point ξ ∈ UM⊥ with the local adapted frame described in

(42) for a neighbourhood V ⊂ UM⊥ about ξ:

hn(τn(µ), JEi) = −
m∑
j=1

(
g
((
∇dπN (LEj)IIf

)
(dπN(Ej), dπN(Ej)) , ξ

)
−mj(Ei)

)
hn(τn(µ), JEβ) =

m∑
j=1

(g (IIf (dπN(Ej), dπN(Ej)) , dπN(JEβ)) +mj(Eβ)) ,

where

mj(X)|ξ = g
(
RN(ξ, Bf (ξ)Wj),Wj, dπN(JX)

)
.

To relate τn(µ) to τ(f), we shall again require horizontal conformality of π⊥.

Lemma 5.3.2. Given a coisotropic submanifold f : M → CPn, π⊥ is hori-

zontally conformal if and only if M has conformal adapted shape operator, i.e.

there exists r : UM⊥ → R such that g(Bf (ξ)X,Bf (ξ)Y ) = r(ξ)2g(X, Y ). The

conformal factor for π⊥ is 1
1+κ̃2

, where ±κ̃ are the only eigenvalues of Bf (ξ).

Proof. Let X1, ..., Xm be orthonormal eigenvectors for Bf (ξ) with eigenvalues κ̃j.

We define corresponding orthonormal vectors Y1, ..., Ym ∈ HM such that

Yj =
X̄j − κ̃jJX̄j√

1 + κ̃2
j

.
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Because πN is Riemannian and J is an isometry,

g (dπN(Yi), dπN(Yj)) = δij − 〈ϕn(Yi), ϕn(Yj)〉

= δij − κ̃iκ̃jg(dπN(Yj), dπN(Yj)).

Hence, if π⊥ is horizontally conformal with conformal factor a2:

κ̃iκ̃jδij =
1− a2

a2
δij,

and so for each i = 1, ...,m, κ̃2
i = 1−a2

a2
=: κ̃2. Thus Bf (ξ) is conformal with

conformal factor r(ξ)2 = κ̃2.

Conversely, if Bf (ξ) is conformal,

δij = (1 + r2)g(dπN(Yi), dπN(Yj)),

and so π⊥ is horizontally conformal with conformal factor 1
1+r2

.

We have thus proven the following result.

Theorem 5.3.3. Let f : M → (CPn, g) be an isometrically immersed coisotropic

submanifold where CPn ∼= SU(n+ 1)/K and USn ∼= SU(n+ 1)/H are equipped

with the normal metric. Let Z,W ∈ Tξ(UM⊥) such that Z is π⊥-horizontal and

W is vertical. If π⊥ is horizontally conformal (and thus f has conformal adapted

shape form), then

hn(τn(µ), JZ)|ξ = − 1

1 + r(ξ)2

(
g
(
∇⊥dπN (LZ)τ(f), ξ

)
− trf∗gm(Z)

)
,

hn(τn(µ), JW )|ξ =
1

1 + r(ξ)2
(g(τ(f), dπN(JW )) + trf∗gm(W )) ,

where r(ξ)2 = 1
dim(M)

Bf (ξ)
2 and

m(Z) : TM × TM → R; X, Y 7→ g
(
RN(ξ, Bf (ξ)X)Y, dπN(JZ)

)
.

Corollary 5.3.4. When f : M → (CPn, g)

� is minimal for codim(M) > 1;
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� has constant mean curvature for codim(M) = 1

with conformal adapted shape form, then µ : UM⊥ → (UCPn, hn) is minimal

(and thus γ : UM⊥ → Q is minimal) if and only if trf∗gm(X) = 0 for all

X ∈ TUM⊥.

To find examples for which µ is minimal, we now want to consider when mj

vanishes.

When X = Eβ, using (27):

mj(Eβ)|ξ = −g(ξ, IWj)g(Bf (ξ)Wj, IWβ)− 2g(ξ, IBf (ξ)Wj)g(Wj, IWβ)

= g(Vm,Wj)g(Bf (ξ)Wj, IWβ) + 2g(Vm, Bf (ξ)Wj)g(Wj, IWβ)

= δjm||Wm||g(Bf (ξ)Wm, IWβ) + 2δj(β−m)||Wj||g(Bf (ξ)Vm,Wj)

(where we have noted that Bf (ξ)WA = qAAf (ξ)WA is self-adjoint with respect

to our choice of frame).

For X = Ei:

mj(Ei)|ξ = −g(ξ, IWj)g(Bf (ξ)Wj, Bf (ξ)Wi) + g(ξ, IBf (ξ)Wi)g(Bf (ξ)Wj, IWj)

+ 2g(ξ, IBf (ξ)Wj)g(Wj, IBf (ξ)Wi)

= −δjm||Wm||g(IBf (ξ)
2Wm,Wi)− g(Bf (ξ)Vm,Wi)g(Bf (ξ)Wj, IWj)

− 2g(Bf (ξ)Vm,Wj)g(IWj, Bf (ξ)Wi).

If we were to impose the condition that Iξ is an eigenvector of Bf (ξ) (and thus

Af (ξ)) with eigenvalue κ̃m, then mj|ξ reduces significantly. Since ξ is orthogonal

to Wj, IWβ

mj(Eβ)|ξ = 0,

mj(Ei)|ξ = − 2κ̃mδim√
4 + κ̃2

m

g(Bf (ξ)Wj, IWj).

Example 5.3.5. When f : M → CPn is totally geodesic, π⊥ is Riemannian, Iξ is

an eigenvector of Af (ξ) = 0 and so mj(X) = 0.
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Example 5.3.6. In the case of a hypersurface, TM∩ITM is the contact structure

orthogonal to Iξ, hence when Iξ is an eigenvector of Bf (ξ) the eigenvectors

orthogonal to Iξ lie in TM ∩ ITM . We can thus choose our V1, ..., Vm so that

they are eigenvectors of Bf (ξ), in which case mj(X) = 0.

Example 5.3.7. When f : M → CPN is Lagrangian, g(Bf (ξ)Wj, IWj) = 0, and

so when Iξ is an eigenvector of Af (ξ), mj(X) = 0.

5.3.2 The lift of the Kähler-Einstein metric

As with the holomorphic case, we can use (30) to acquire a similar result for

τQ(µ).

Theorem 5.3.8. Let f : M → (CPn, g) be an isometrically immersed coisotropic

submanifold such that CPn ∼= SU(n + 1)/K is equipped with the normal metric

and UCPn ∼= SU(n+1)/H is equipped with the lift of the Kähler-Einstein metric

hQ. Let Z,W ∈ Tξ(UM⊥) such that Z is π⊥-horizontal and W is vertical. If f

has conformal adapted shape form, then

hQ(τQ(µ), JZ)|ξ = − 1

1 + r(ξ)2

(
g
(
∇⊥dπN (Z)τ(f), ξ

)
− trf∗gm(L−1Z)

)
− 1

2
hQ (IIµ(Em, Em), JZ) ,

hQ(τQ(µ), JW )|ξ =
1

1 + r(ξ)2
(g(τ(f), dπN(JW )) + trf∗gm(W ))

− 1

2
hQ (IIµ(Em, Em), JW ) ,

where r(ξ)2 = 1
dim(M)

Bf (ξ)
2, Em =

Iξ−JBf (ξ)Iξ
||Iξ−JBf (ξ)Iξ||

and

m(Z) : TM × TM → R; X, Y 7→ g
(
RN(ξ, Bf (ξ)X)Y, dπN(JZ)

)
.

Proof. Given an orthonormal frame EA, ..., EA for (V, hn) as in (42), we can define

an orthonormal frame for (V, hQ) by Ẽ1, ..., Ẽn−1 such that

FA =
EA√
qA

=

 EA, EA ∈ C1

EA√
2
, EA ∈ C2
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With respect to this frame

hQ(AnQ(FA, FB), Z) = −1

2

〈
[βH(FA), βH(L−1FB)] + [βH(FB), βH(L−1FA)], βH(Z)

〉
=
qA − qB

2
〈[βH(FA), βH(FB)], βH(Z)〉 .

Hence, AnQ(FA, FA) = 0. Since hn and hQ share the same decomposition,

IInµ(FA, FA) = IIQµ (FA, FA), and so:

hQ(τQ(µ), JX) = hn(τQ(µ),L−1X)

= hn

(
n−1∑
A=1

IIµ(FA, FA),L−1JX

)

= hn

(
n−1∑
A=1

1

qA
IIµ(EA, EA),L−1JX

)

= hn

(
τ(µ)− 1

2
IIµ(Em, Em),L−1JX

)
.

Unlike in the proof of Theorem 5.2.5, Iξ is not vertical and so we cannot use the

Sasaki metric connection to eliminate the additional term. If we assume f has

conformal shape form, the result then follows from Theorem 5.3.3.

It is important to note that we have not assumed that π⊥ is horizontally

conformal for hQ. If we consider vectors Zi ∈ Ci ∩ HM , then if f has conformal

adapted shape form (and thus π⊥ is horizontally conformal for hn),

hn(Zi, Zi) = a2g(dπN(Zi), dπN(Zi))

hQ(Zi, Zi) =
a2

qi
g(dπN(Zi), dπN(Zi)).

Hence when M is coisotropic, π⊥ cannot be simultaneously horizontally confor-

mal for both metrics.

Example 5.3.9. If we were to again assume that Iξ is an eigenvalue of the adapted

shape operator, then by the decomposition in Lemma 2.5.4 we can calculate

[ϕh(Em), ϕp(Em)] ∈ [h, q2] = {0}.

In this case,

hQ(IIµ(Em, Em), JEA) =
δmA

2
〈Emϕp(Em), ϕp(JEm)〉 .
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Hence, the term vanishes if (∇µ
Em
dµ(Em), JEm) = 0.

If we were to instead assume that π⊥ is horizontally conformal with respect to

hQ, we obtain a result which doesn’t depend on IIµ.

Theorem 5.3.10. Let f : M → (CPn, g) be an isometrically immersed coisotropic

submanifold such that CPn ∼= SU(n + 1)/K is equipped with the normal metric

and UCPn ∼= SU(n+1)/H is equipped with the lift of the Kähler-Einstein metric

hQ. Let Z,W ∈ Tξ(UM⊥) such that Z is π⊥-horizontal and W is vertical. If π⊥

is horizontally conformal with conformal factor a2, then

hQ(τQ(µ), JZ)|ξ = −a2
(
g
(
∇⊥dπN (Z)τ(f), ξ

)
− trf∗gm(L−1Z)

)
,

hQ(τQ(µ), JW )|ξ = −a2 (g(τ(f), dπN(JW )) + trf∗gm(W )) ,

where

m(Z) : TM × TM → R; X, Y 7→ g
(
RN(ξ, Bf (ξ)X)Y, dπN(JZ)

)
.

Proof. As we established in the previous proof, with respect to the frame FA =

q
− 1

2
A EA:

hQ(τQ(µ), JX) =
n−1∑
A=1

hn(IIµ(FA, FA),L−1JX).

By Lemma 5.3.1, we thus have

hQ(τQ(µ), JFi) = −
m∑
j=1

(
g
(
(∇dπN (Fi)IIf )(dπN(Fj), dπN(Fj)), ξ

)
−mj(L−1Fi)

)
hQ(τQ(µ), JFβ) =

m∑
j=1

(
g
(
IIf (dπN(Fj), dπN(Fj))L−1dπN(JFB)

)
+mj(L−1Fβ)

)
.

Hence, if π⊥ is hQ horizontally conformal (and thus a−1dπN(Fj) is an orthonormal

basis for TpM), by noting that Fβ ∈ C1 the result follows.

Corollary 5.3.11. When f : M → (CPn, g)

� is minimal for codim(M) > 1;

� has constant mean curvature for codim(M) = 1
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such that π⊥ is horizontally conformal with respect to hQ, then µ : UM⊥ →

(UCPn, hQ) is minimal (and thus γ : UM⊥ → Q is minimal Lagrangian) if and

only if trf∗gm(X) = 0 for all X ∈ TUM⊥.
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