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Abstract 3

Abstract

This thesis studies the applications of distributed reinforcement learning (RL) based

machine intelligence to dynamic spectrum access (DSA) in future cognitive wireless

networks. In particular, this work focuses on ways of accelerating distributed RL

based DSA algorithms in order to improve their adaptability in terms of the initial and

steady-state performance, and the quality of service (QoS) convergence behaviour.

The performance of the DSA schemes proposed in this thesis is empirically evalu-

ated using large-scale system-level simulations of a temporary event scenario which

involves a cognitive small cell network installed in a densely populated stadium, and

in some cases a base station on an aerial platform and a number of local primary LTE

base stations, all sharing the same spectrum. Some of the algorithms are also theo-

retically evaluated using a Bayesian network based probabilistic convergence analysis

method proposed by the author.

The thesis presents novel distributed RL based DSA algorithms that employ a Win-or-

Learn-Fast (WoLF) variable learning rate and an adaptation of the heuristically accel-

erated RL (HARL) framework in order to significantly improve the initial performance

and the convergence speed of classical RL algorithms and, thus, increase their adapt-

ability in challenging DSA environments. Furthermore, a distributed case-based RL

approach to DSA is proposed. It combines RL and case-based reasoning to increase

the robustness and adaptability of distributed RL based DSA schemes in dynamically

changing wireless environments.
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Chapter 1. Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Overview

One of the fundamental tasks of a wireless network is spectrum management, con-

cerned with dividing the available spectrum into a set of resource blocks or channels

and assigning them to voice calls and data transmissions in a way that provides a good

quality of service (QoS) to the users. Spectrum sharing and flexible dynamic spectrum

access (DSA) techniques play a key role in utilising the given spectrum efficiently in

the face of an ever increasing demand for mobile data capacity [16][84].

Some of the early work on DSA, then commonly referred to as dynamic channel as-

signment (DCA), dates back to the early 1970s. For example, Cox and Reudink [24]

and Anderson [5] demonstrate through simulation experiments that their proposed

DSA algorithms, which give all base stations access to the whole spectrum pool of

a cellular network, significantly increase the capacity of mobile cellular systems com-

pared to the classical, fixed channel allocation approach. More recently the idea of

DSA and the need for efficient spectrum utilisation has given rise to novel wireless

communication systems such as cognitive radio (CR) networks [86] and cognitive cel-

lular systems [34]. Such networks employ intelligent opportunistic DSA techniques

that allow them to access licensed spectrum underutilized by the incumbent users.

An emerging state-of-the-art technique for intelligent DSA is reinforcement learning

(RL); a machine learning technique aimed at building up solutions to decision prob-

lems only through trial-and-error [87]. It has been successfully used for a wide range

of DSA problems and scenarios such as CR networks [43][89], small cell networks
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[7][26], multi-hop backhaul networks [101], and cognitive wireless mesh networks

[18][19]. The chief advantage of the RL approach to DSA is its capability to facilitate

full self-organisation in a wireless network. It eliminates the need for the potentially

challenging and time-consuming spectrum planning process carried out by human ex-

perts, whilst enabling the wireless network to learn flexible and highly efficient spec-

trum management policies [8]. However, an inherent disadvantage of RL algorithms

is their need for the exploration process, which normally involves a large number of

trial-and-error iterations, during which the system exhibits poor performance due to

its lack of initial knowledge of the environment [87].

The purpose of the work described in this thesis is to increase the adaptability of dis-

tributed RL based DSA algorithms by proposing a number of techniques that signifi-

cantly improve their temporal characteristics such as initial performance, convergence

speed and steady-state performance. The ultimate aim of these contributions is to

enable reliable opportunistic RL based DSA methods that are a feasible option for

implementation in real-world commercial wireless networks.

1.2 Hypothesis

The following hypothesis is used to guide the work presented in this thesis:

“Appropriate use of available heuristic information can accelerate distributed rein-

forcement learning algorithms to enable highly adaptable dynamic spectrum access in

cognitive wireless networks.”

The adaptability of cognitive wireless networks is assessed by inspecting the temporal

QoS performance of the proposed RL algorithms in a range of large-scale DSA and

spectrum sharing simulation scenarios. Specifically, it is essential for the cognitive

wireless devices to exhibit sufficiently good performance at the initial stages of learn-

ing and to show a high convergence speed in order to be able to adapt to challenging

and potentially dynamic radio environments. These aspects of the distributed RL based

DSA algorithm performance are the focus of the simulation experiments discussed in

this thesis.
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1.3 Thesis Outline

The rest of the thesis is organised as follows:

• Chapter 2 first reviews the existing research literature on conventional DSA tech-

niques based on heuristic spectrum awareness information, e.g. geo-location

databases, distributed interference measurements and license repositories. It

then discusses a number of distributed machine intelligence methods based on

RL found in the general artificial intelligence literature. Finally, the last sec-

tion of Chapter 2 reviews the state-of-the-art in the applications of RL towards

intelligent DSA in wireless networks.

• Chapter 3 explains the experimental methodology used for empirical evaluation

of the DSA algorithms proposed in this thesis. It presents the details of the cog-

nitive wireless network simulation model, the metrics used to assess the network

performance, and two conventional DSA schemes used for baseline comparison.

• Chapter 4 introduces the distributed Q-learning based DSA algorithm used as the

basis for the DSA schemes proposed in the further chapters of this thesis. It also

introduces the concept of the Win-or-Learn-Fast (WoLF) variable learning rate

principle and empirically demonstrates the network performance improvements

achieved by applying it to every learning agent in the environment. The last

section of Chapter 4 presents the simulation results of using the distributed Q-

learning based DSA algorithm in the context of secondary spectrum sharing.

• Chapter 5 presents a novel empirically validated probabilistic model for con-

vergence analysis of distributed RL based DSA algorithms. It is based on a

Bayesian network that describes a simple generalised inter-cell interference prob-

lem with two base stations and two user equipments.

• Chapter 6 proposes a DSA algorithm designed for Long Term Evolution (LTE)

cellular systems - distributed ICIC accelerated Q-learning (DIAQ). It combines

distributed RL and standardized inter-cell interference coordination (ICIC) sig-

nalling in the LTE downlink, using the framework of heuristically accelerated

RL (HARL). Its purpose is to improve the initial performance and the conver-
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gence speed of distributed RL based DSA algorithms and, thus, to increase their

robustness and adaptability in challenging wireless environments.

• Chapter 7 extends the HARL framework proposed in Chapter 6 and presents a

novel mechanism for dynamic secondary spectrum sharing based on it. It utilises

a radio environment map (REM) as external information for guiding the learning

process of cognitive wireless networks. Furthermore, the novel principle and

the general structure of heuristic functions proposed in the context of HARL are

applicable to a wide range of self-organisation problems beyond the wireless

communications domain.

• Chapter 8 proposes a case-based RL (CBRL) approach that stabilises the per-

formance of intelligent DSA algorithms in dynamic wireless environments. The

proposed algorithm is the combination of classical RL and a novel implementa-

tion of case-based reasoning (CBR) which aims to facilitate a number of learning

processes running in parallel. It is assessed using a number of simulations of a

cognitive wireless network with a dynamically changing topology.

• Chapter 9 presents the conclusions of this thesis, summarises its original contri-

butions, and discusses a number of recommendations for further work.
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2.1 Introduction

Spectrum management is one of the fundamental tasks performed by wireless net-

works. It is concerned with dividing the available spectrum into a set of resource

blocks or channels and assigning them to voice calls and data transmissions in a way

that provides a good quality of service (QoS) to the users. Flexible dynamic spectrum

access (DSA) and spectrum sharing techniques are often considered the key spectrum

management paradigm for utilising the wireless spectrum efficiently in order to accom-

modate the ever increasing demand for mobile data capacity [16][84]. This motivated
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the design of novel wireless communication systems such as CR networks [86] and

cognitive cellular systems [34]. Such networks employ opportunistic DSA techniques

that allow them to access licensed spectrum underutilized by the incumbent users.

2.2 Dynamic Spectrum Access and Spectrum Sharing

This section first introduces a number of well-established DSA methods designed for

cognitive wireless networks that do not involve machine intelligence. It then presents

a simplified adaptation of the Mitola’s cognition cycle of an intelligent wireless device

[61] and discusses how these conventional DSA techniques differ from the intelligent

methods that involve all aspects of the Mitola’s cognitive cycle.

2.2.1 Spectrum Database Approach

The classical application of DSA in cognitive wireless networks is the use spectrum

databases. In particular, the most widely known type of DSA networks that rely on

spectrum databases are TV white space (TVWS) based CR networks. Such networks

aim to reuse the spectrum allocated to TV broadcasters for other wireless communi-

cations, whilst eliminating harmful interference to the incumbent TV receivers, e.g.

[30][35].

The coexistence between the primary TV broadcasting networks and the secondary

wireless networks is facilitated by geo-location databases that describe in detail the

unused TV spectrum bands at given geographical locations, i.e. the white spaces.

Such a setup is depicted in Figure 2.1, where the maintenance of the TVWS database

is controlled by the national telecoms regulator such as Ofcom in the United Kingdom

Secondary NetworkTelecoms Regulator

Spectrum Database

maintain access

Figure 2.1: Secondary dynamic spectrum access facilitated by a geo-location database
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or the Federal Communications Commission (FCC) in the United States [27]. The sec-

ondary cognitive networks are then allowed to gain access to the TV spectrum without

the need for a license, provided that they do not interfere with the primary licensed

users. The key source of information that enables them to satisfy this requirement is

the TVWS database.

The most notable example of the practical use of TVWS technologies aided by geo-

location databases is the IEEE 802.22 standard for license-exempt wireless regional

area networks (WRAN), the first ever world-wide standard for CR and TVWS com-

munications [22]. For example Ishizu et al. [38] have conducted a field experiment

where an IEEE 802.22 WRAN system was used to provide broadband communica-

tions (4.5 Mbps uplink and 5.2 Mbps downlink) to a remote rural area 12.7 km away.

Such wide coverage broadband communications without the need for dedicated spec-

trum is the main application of IEEE 802.22 WRAN networks since the TVWS occur

at appropriately low frequencies to support long distance transmissions, e.g. [52][85].

Such spectrum database DSA methods provide a robust and highly controllable solu-

tion for increasing the spectrum utilisation efficiency by allowing secondary cognitive

devices access to spectrum bands otherwise unused by the incumbent users. However,

there is limited scope for flexibility and adaptability of the secondary wireless devices

employing such DSA methods due to the restrictive and relatively static regulatory

control of the spectrum databases.

2.2.2 Opportunistic Spectrum Sensing Approach

A more flexible and dynamic approach to DSA which is highly popular in the CR

research domain is the use of spectrum sensing for dynamic identification of unused

spectrum eligible for secondary access [86][99]. Here, the cognitive wireless devices

continuously measure the interference levels on the channels potentially available for

secondary reuse and transmit their packets as soon as they detect the unused spectrum

due to the interference on a particular channel dropping below a pre-defined threshold,

e.g. -107 dBmW for TVWS [23]. A simplified scenario that describes this opportunis-

tic approach to DSA is depicted in Figure 2.2. When the CR device has a new packet
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Figure 2.2: Opportunistic spectrum access using spectrum sensing in cognitive radio

(CR) networks

to transmit, it starts sensing the interference levels received from the primary system

transmitters and in some cases from other CR transmitters. As soon as it detects the

lack of primary or secondary transmissions on a particular channel it transmits its own

packet using the detected spectrum hole. If another primary user transmission starts

before the secondary CR transmission finishes, the latter is interrupted and resumed at

the next opportunity.

This “listen-before-talk” principle had already been studied by the wireless commu-

nications research community before the concepts of CR and primary-secondary user

spectrum sharing were first introduced [47]. A classical example of such interference

measurement based DSA algorithms is the scheme proposed by Akerberg and Brouwer

[4]. There, the interference level is measured by the base station (BS) on each channel

to determine whether it is available for assignment. The authors investigate the effects

of varying the interference threshold, which sets the maximum interference level at

which a channel can be assigned to a user, for the least interfered channel scheme, i.e.

where a channel with the lowest level of interference is always chosen if available.

Since then such interference measurement based DSA methods have become a highly

popular approach to spectrum management among CR researchers, as well as among

those investigating more traditional wireless networks without the primary-secondary

spectrum sharing considerations. For example, Cheng and Chuang [20] show that

a simple aggressive least interference DSA algorithm, that always opportunistically

assigns a channel with the least aggregate interference without any admission con-

trol, achieves the best performance in a classical hexagonal cell network compared

to other known interference sensing based approaches. Ramachandran et al. [69]
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propose a dynamic interference-aware algorithm that minimises interference between

routers in wireless mesh networks, as well as between the mesh networks and the other

co-located wireless networks. They also empirically demonstrate the performance im-

provement gained by their algorithm on a physical IEEE 802.11 testbed. A notable

example of research on opportunistic spectrum access in CR networks is the paper

by Huang et al. [37], where the authors give a closed form analysis of the primary

and secondary CR user performance that provides theoretical insight into the capacity

of opportunistic spectrum access under primary user protection constraints. Another

well-known example of theoretical work on opportunistic spectrum access in CR net-

works is a number of cognitive medium access control (MAC) protocols proposed by

Zhao et al. [100] based on the partially observable Markov decision process (POMDP)

model of the DSA problem they develop. These decentralised protocols are designed

to optimise the performance of the secondary users while limiting the interference

perceived by the primary users.

Opportunistic spectrum sensing described in this subsection is a significantly more

dynamic and adaptable approach to DSA which has the potential to achieve higher

spectrum utilisation efficiency, compared with the spectrum database approach. How-

ever, there are also some drawbacks associated with it [99]. For example, the hardware

required to facilitate precise spectrum sensing is likely to cause a significant increase

in the cost and energy consumption of the CR devices. They are also susceptible to the

hidden terminal effect, where a CR node is unable to detect an incumbent transmission

due to the effects of shadowing and multipath fading, which in turn results in harmful

interference for the primary user.

2.2.3 Regulatory Approach

A more recent problem investigated by researchers, mobile network operators (MNOs)

and regulators is LTE/LTE-Advanced spectrum sharing facilitated by an emerging

framework known as licensed shared access (LSA) [58]. Here, licenses for the use of

LTE spectrum are issued upon agreement for a specific geographical area and required

time duration. A successful live field trial of implementing LSA-based spectrum shar-

ing has already taken place in Finland [66]. Here, an LSA controller was used to
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autonomously configure an existing LTE network based on the incumbent spectrum

usage data stored in the LSA Repository, i.e. a process similar to the TVWS database

approach described in Subsection 2.2.1 took place but with a higher degree of regula-

tory control.

This is a static regulatory approach to spectrum sharing that does not involve any

intelligence or cognition in wireless devices and does not require any opportunistic

spectrum access techniques. The advantage of this approach is its reliability and the

same QoS guarantees as those normally provided to the users of conventional LTE

networks with their own exclusive spectrum, but with no need for a permanently owned

LTE spectrum band. However, the focus of this thesis is to investigate more flexible

opportunistic techniques for DSA that have a greater potential in terms of the spectrum

utilisation efficiency, since they are not limited by licenses that restrict the number of

different spectrum users sharing the same geographical area.

2.2.4 Mitola’s Cognition Cycle of a Wireless Device

The three well-established approaches to DSA described in this section so far work

based solely on spectrum awareness information either measured by the wireless de-

vice itself or obtained from a spectrum database or a license repository. They do not

involve all aspects of the cognition cycle of an intelligent wireless device originally

introduced by Mitola in his PhD thesis [61] where the term “cognitive radio” was

coined. This cognition cycle is shown in Figure 2.3. It identifies six fundamental

functions performed by a CR device, specifically by its cognitive engine - observe,

orient, learn, plan, decide and act. The CR device decides which action it needs to

apply to its wireless environment and acts using the chosen action. It then observes

the consequences of taking that action, orients itself, i.e. processes the observation,

and decides upon its next action. In order to decide which action the CR device should

take, e.g. which channel it should select for secondary access, it must have a capability

to plan its own strategy. Utilising different spectrum awareness information sources,

e.g. interference measurements, a geo-location database or an LSA license repository,

can be viewed as the “planning” function of a CR device. In all three different DSA

approaches described in this section the spectrum awareness information is used to
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Figure 2.3: Mitola’s cognitive radio cycle [61]

identify white spaces or spectrum holes eligible for access by the given wireless de-

vice, i.e. this functionality enables the wireless device to plan its spectrum assignment

strategy. A key function of a CR device as defined by Mitola that is missing from the

DSA mechanisms described in this section is the capability to learn from its own ex-

perience, i.e. to enable the wireless device to gradually build up an internal knowledge

base and improve its performance over time.

A close inspection of Mitola’s CR cycle shown in Figure 2.3 reveals a fundamental

mistake in this diagram - the ”learning” function only has incoming arrows and does

not output the learnt information to any other function. A way of fixing this issue

proposed in this subsection is reversing the arrow between “learning” and “planning”,

since it makes sense to base one’s plans on what has been learnt. It is also consistent

with the way humans operate in simple terms - they learn, gain experience and then

plan their future actions based on that knowledge.

Secondly, this diagram can be further simplified by removing or modifying several

links that are optional for describing a machine’s cognition cycle. For example, the

arrow from “orient” to “act” is not required, since the machine always needs to decide

in some way which action to take. Even if it is an immediate random action with no
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Figure 2.4: Simplified Mitola’s cognition cycle of an intelligent wireless device

delay, it can still be classified as a decision. The “observe-learn” link can be replaced

by the “orient-learn” link, since it is the same information feeding into the learning

process, but appropriately processed. The “orient-plan-decide” link can be assumed

to flow either through the “learn” process or bypass ”plan” and straight to ”decide”,

since the learning updates are the only thing that can possibly change the existing plan.

Therefore the arrow between “orient” and “plan” can be removed. Finally, the “decide-

learn” link is equivalent to the “act-learn” link, since it carries the same information

about the chosen action that is fed back to the learning process.

These simplifications result in a considerably more readable and intuitive dual-loop

cognition cycle proposed in Figure 2.4. There is an outer decision loop which simply

looks at the processed outputs of the environment, or its state, and chooses an action to

be taken in this state. The intelligence is provided by the inner learning and planning

loop, where the machine, i.e. an intelligent wireless device, is observing the outputs of

the environment caused by its actions and builds up a knowledge base which describes

its experience in a way which could be used to derive a plan or a policy autonomously.

The rest of this chapter reviews the existing methods of achieving such machine intel-

ligence both in general and specifically in the context of DSA.

2.3 Reinforcement Learning

An emerging state-of-the-art technique for intelligent DSA is reinforcement learning

(RL); a machine learning technique aimed at building up solutions to decision prob-
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lems only through trial-and-error. The fundamental idea behind RL is that learning

processes of all organisms are based on interaction with the environment. The aim of

RL methods is to imitate this behaviour in artificial systems [87]. The key feature of

RL that can potentially enable full self-organisation and high adaptability in cognitive

wireless networks is its lack of need for any a priori knowledge of the environment

model [93]. This feature is the main reason for the widespread use of RL for DSA in

wireless networks, since building an accurate analytical model of an arbitrary wireless

communications environment is often unfeasible or even impossible.

The goal of any RL algorithm is to create a function which maps perceived situations

or states of the environment to actions which need to be taken in them. This is known

as the policy function. It is developed through system experience of trying different

actions in each state and noting the result. This trial-and-error approach does not make

any assumptions about the environment model, e.g. such as its structure or whether

it exhibits the Markov property. Each state or state-action pair receives a numerical

reward which indicates its desirability. Calculating the reward for each state or state-

action pair is handled by the reward function. Another important RL term is the value

function, also referred to as value table, Q-function or Q-table. It maps each state or

state-action pair to the total discounted sum of rewards expected to be accumulated

over the future, starting from that state. This is equivalent to the reward in the long

run, as opposed to an immediate return.

One of the biggest challenges of RL is estimating the value function. The reward

function is often relatively easy to design, since it is only concerned with immediate

benefits of taking a certain action in a certain state. However, estimating the value

function requires predicting the future of the system to some extent, which is a signif-

icantly harder task without the knowledge of a system model.

Another challenge of RL is a trade-off between exploration and exploitation. In each

state an RL algorithm always faces two options:

• Choose a previously known action which guarantees the best reward among all

other known actions, referred to as the greedy action. In this case the system is

exploiting its current knowledge.
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• Choose a previously unknown action which is likely to have a lower reward than

the greedy action. However, there is also a low probability of it being better

and becoming the new greedy action. In this case the system is exploring new

possibilities.

2.3.1 Model-Based Reinforcement Learning

One of the fundamental approaches to RL is model-based RL, where a learning agent

attempts to build up a model of the environment in a form which would allow it to

compute a suitable policy [75][96].

Figure 2.5 shows a flow diagram of the processes involved in model-based RL. There

is an outer output-state-action loop, where outputs of the environment are observed

and processed to yield the environment state information, and then the best action

is chosen for the current state based on the policy of the learning agent. There is

also an inner learning loop, whose role is to learn a good policy to be used by the

learning agent. It achieves this goal by observing the actions taken by the learning

agent and their outcomes and estimating a model of the environment in the form of a

transition probability matrix (TPM) and a transition reward matrix (TRM). The role of

the TPM is to indicate the probability of being in a certain state, executing a certain

action and making a transition to another state. The TRM states the immediate reward

received after a certain state-action-state transition. A policy is then computed from the

estimated TPM and TRM using a dynamic programming (DP) algorithm and used for

Outputs
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Sample

Outputs

EnvironmentAction

State

StateModel

Policy

Figure 2.5: Flow diagram of model-based reinforcement learning
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choosing an action in the current environment state. It can be seen from the diagram

in Figure 2.5 and the description above that model-based RL follows the dual-loop

cognition cycle framework described in Subsection 2.2.4, which supports the fact that

this is an intelligent learning technique.

Model Estimation

One of the methods of building up TPMs and TRMs is by straightforward counting

[75]. It is also referred to as the maximum likelihood model estimation by Wiering

[96]. There, for each state-action pair a learning agent counts how many times it made

a transition to any other state. It can then normalise the counter values to become

a discrete probability distribution. For example, [2, 4, 2] would become [0.25, 0.5,

0.25] which indicates the probabilities of a system to enter one of the three states after

executing a certain action in a certain state.

This is a good method for static environments, i.e. where the environment dynamics

do not change over time. This approach needs to be modified to be adaptable in dy-

namically changing environments which are highly relevant in this thesis, where the

investigated environment is a wireless network. For example, Wiering [96] proposes a

scheme which aims to reset the TPM and TRM counters according to specially derived

formulae and then use prioritised sweeping to update the policy. Prioritised sweeping

is a method of filtering and analysing only a small portion of the state-action space,

to eliminate the need for analysing the full state-action space, most of which might be

irrelevant at a given moment in time [63].

Dynamic Programming

Given the TPMs and TRMs built up by the model estimation algorithm, it is then the

task of a DP algorithm to derive the best policy from them. There is a large number of

DP algorithms for solving the Markov decision processes (MDPs) expressed by TPMs

and TRMs. They all have the same goal - solve the recursive Bellman optimality

equation, given below [87]:
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Q∗(s, a) =
∑

s′

P (s, a, s′)[R(s, a, s′) + γmaxa′Q
∗(s′, a′)] (2.1)

where Q∗(s, a) is the long-term cumulative reward of taking action a in state s (also

referred to as the Q-value), P (s, a, s′) is the probability of going to state s′ after taking

action a in state s (element of TPM), R(s, a, s′) is the expected immediate reward

when an agent takes action a in state s and goes to state s′ (element of TRM), and

γ ∈ [0, 1] is the discount factor which weights the importance of future long-term

rewards with respect to the immediate reward.

It is then straightforward to derive a greedy policy from Q∗(s, a), which maximises

the Q-value for every state of the environment. The choice of actions would follow the

rule given in (2.2), which states that an action with the highest Q-value must be chosen

for every state’s policy.

π(s) = argmaxaQ
∗(s, a) (2.2)

Using the model-based RL approach to DSA could provide valuable insight into the

dynamics of cognitive wireless network environments by explicitly building up the

knowledge about the transition probabilities between various states of the environment,

e.g. discrete probability distributions that describe how particular spectrum assignment

decisions in certain situations are likely to affect the QoS of the network. However, for

the specific purpose of on-line learning and decision making in an arbitrary wireless

environment model-free RL methods described in the next subsection are more flexible

and significantly more popular in the research literature.

2.3.2 Model-Free Reinforcement Learning

An alternative to model-based RL methods is model-free RL [45], where the Q-function,

also known as the Q-table in discrete state-action space, Q∗(s, a) is estimated directly

from received rewards, i.e. without the intermediate step of constructing TPMs and

TRMs. This type of RL is more popular, since it is significantly more computation-

ally efficient and does not require the environment to fit the TRM and TPM model
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Figure 2.6: Flow diagram of model-free reinforcement learning

template.

Figure 2.6 shows a flow diagram of the processes involved in model-free RL. There

is the same outer output-state-action loop as that shown in Figure 2.5, where outputs

of the environment are observed and processed to yield the environment state infor-

mation, and then the best action is chosen for the current state based on the policy of

the learning agent. However, the components of the inner learning loop are different

from those of model-based RL. Instead of estimating an environment model in the

form of TPMs and TRMs, the Q-values of the state-action pairs are directly estimated

and stored in the Q-table. The policy derivation step is then much simpler and does

not require a full DP algorithm, but is simply the last step of a DP algorithm defined

in Equation (2.2). Since model-free RL has an identical dual-loop cognition structure

to model-based RL and the modified Mitola’s cognition cycle defined in Subsection

2.2.4, it can equivalently be viewed as an intelligent learning technique.

Q-Learning

The most popular RL algorithm is Q-learning introduced by Watkins [94]. It is an

off-policy method, i.e. the learning of an optimum policy does not depend on the

policy followed by a learning agent. It is updating its policy based on the best possible

future scenario, rather than what actually happens after an action is taken. Therefore

this approach is not experimentation-sensitive, i.e. the learning is not affected by the

amount of exploration performed by an agent.
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One of its advantages over other RL algorithms is that it has been mathematically

proven, e.g. [39][90], that it is guaranteed to converge on an optimal policy for an

MDP in a theoretical case where each state is visited and each action is taken an infinite

number of times.

The formula for updating a Q-table entry is given in the equation below [87]:

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a)) (2.3)

where:

• s is the current state of the system,

• a is the action taken in the current state s,

• s′ is the next state of the system,

• a′ is the action that can be taken in the next state s′,

• Q(s, a) is the Q-value of the current state-action pair.

• α ∈ [0, 1] is the learning rate.

• γ ∈ [0, 1] is the discount factor.

• maxa′Q(s′, a′) is the maximum Q-value out of all actions in the next state s′.

The key steps of the Watkins’ Q-learning algorithm are summarised in Algorithm 1.

Algorithm 1 Watkins’ Q-learning algorithm [87]

1: Initialise Q-table arbitrarily

2: while the learning episode has not finished do

3: Detect present state

4: while present state is not terminal do

5: Choose current action according to action selection policy

6: Take this action, observe next state and reward

7: Update Q-table entry for current state-action pair using Equation (2.3)

8: Store next state as the present state

9: end while

10: end while

The simplicity and convergence properties of Q-learning are the key reasons why it

is the most widely used RL algorithm and why most multi-agent RL algorithms are
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derived from it [14]. It is also the most widely used RL algorithm in the DSA literature

reviewed in Section 2.4.

SARSA

The on-policy alternative to Q-learning is the SARSA algorithm [74]. The difference

between Q-learning and SARSA is best described by the difference between their up-

date formulae given in Equations (2.3) and (2.4) respectively. Instead of using the

Q-value of the best action in the next state - maxa′Q(s′, a′), SARSA uses the action

actually chosen in the next state - Q(s′, a′), giving rise to its name {State, Action,

Reward, State, Action}. Therefore, its performance is dependent on the exploration

strategy chosen by the learning agent, i.e. it is experimentation-sensitive.

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (2.4)

Although the fact that SARSA is experimentation-sensitive is often considered as a

drawback compared to the classical Q-learning algorithm, there are certain cases where

SARSA may exhibit better convergence properties than Q-learning, e.g. a simple grid-

world walking problem used by Sutton and Barto [87] throughout their book. There-

fore, it is also one of the most widely used RL algorithms in the general RL literature

and could prove to be effective for DSA in wireless environments.

Actor-Critic Learning

The actor-critic learning methods belong to another popular type of RL, first inves-

tigated by Witten [97]. Their general structure is slightly different from that of Q-

learning and SARSA. They explicitly separate the policy and the value table in the

learning process as shown in Figure 2.7.

The policy is an actor responsible for choosing an action in a given state of the en-

vironment, and the value table is a critic which observes the outcomes and rewards

caused by the chosen actions and critiques them accordingly. If the critique is positive,

then the probability of the actor choosing the same action in the same state in future
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Figure 2.7: Structure of the actor-critic learning methods

should be increased and vice versa [87].

One potential advantage of such methods is their ability to learn an explicitly stochas-

tic policy, i.e. to optimise a probability distribution of selecting various actions in

all environment states, e.g. a probability distribution over the potential channels or

spectrum holes that could be accessed by a cognitive wireless device. However, a

typical disadvantage of the actor-critic methods discussed by Grondman et al. [33]

is the lack of adaptability of the critic part of the algorithm in dynamically changing

environments. This is a significant issue that limits the applicability of such methods

in realistic wireless communications environments which are likely to have a dynamic

nature, e.g. in terms of the offered traffic levels and the network topology.

Stateless Q-learning

In some learning problems where an environment does not have to be represented by

states, the learning agents are stateless and only the action space and a 1-dimensional

Q-table Q(a) can be considered [21][46]. The job of an RL algorithm then becomes

simpler, it aims to estimate an expected value of a single reward for each action avail-

able to the learning agent:

Q(a) = E[rt] (2.5)

where Q(a) is the Q-value of action a and E[rt] is the immediate reward the learning

agent expects to receive after taking action a at time t. An equivalent representation of

the classical RL algorithms such as Q-learning and SARSA that consider environments
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represented by states is the following:

Q(s, a) = E

[

T
∑

t=0

γtrt

]

(2.6)

where Q(s, a) is the Q-value of action a in state s, rt is the numerical reward received

t time steps after action a is taken in state s, T is the total number of time steps until

the end of the learning process or episode, and γ is a discount factor.

Claus and Boutilier [21] propose the stateless Q-learning algorithm for independent

learners in co-operative multi-agent systems, a simplified version of the classical Q-

learning algorithm. Its recursive update equation is given below:

Q(a)← (1− α)Q(a) + αr (2.7)

where Q(a) represents the Q-value of the action a, r is the reward associated with the

most recent trial and is determined by a reward function, and α ∈ [0, 1] is the learning

rate parameter which weights recent experience with respect to previous estimates of

the Q-values.

The advantage of formulating learning environments as stateless decision problems

and employing the stateless Q-learning algorithm instead of its classical counterpart is

the significant reduction in the number of Q-values that need to be estimated by the

learning agent, and, therefore, a potentially dramatic reduction in the number of trials

needed for it to learn a mature strategy. The latter is also likely to be caused by the

fact that the problem of estimating every individual Q-value in stateless Q-learning

is significantly simpler as demonstrated by Equation (2.5), as opposed to classical

Q-learning or SARSA described by Equation (2.6). Such a significant increase in

the speed of the learning process would directly translate into the higher adaptability

of RL based cognitive wireless devices, since it would take them less time to learn

appropriate DSA policies in a new or dynamically changing wireless environment.
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2.3.3 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is concerned with cases when there is

more than one learning agent in the same environment. MARL has strong links with

game theory. An MDP in single-agent RL becomes a stochastic game (SG) in MARL,

sometimes also referred to as a multi-agent MDP. A large number of MARL algorithms

are based on game theory, since it is one of the most suitable frameworks to model the

interactions among several agents in a common environment [55]. This gives rise to the

investigation of the applications of MARL to different types of SGs - fully cooperative,

fully competitive and mixed games.

Extending RL to the multi-agent case presents several challenges investigated by Bu-

soniu et al. [14]. In many cases a formal definition of a multi-agent learning goal

becomes a difficult task. Every learning agent is affected by the actions of the other

learning agents. Therefore, the environment is no longer static, it becomes highly

dynamic from the viewpoint of each individual agent. This significantly increases

the complexity of the learning tasks and invalidates most convergence guarantees of

single-agent RL. A popular way to specify a MARL goal is to use a Nash Equilibrium

(NE), as used in the game theory context, where none of the agents in the environment

has an incentive to deviate from its policy.

Nevertheless, employing the MARL methods also presents a number of benefits [14].

For example, there is scope for experience sharing among the learning agents to im-

prove the initial and steady-state performance of an RL algorithm and, thus, to increase

its adaptability. This paradigm lies within the emerging research topic of transfer

learning (TL), sometimes also referred to as docitive learning in the wireless commu-

nications domain [31]. MARL is also inherently more robust than SARL in that in

a certain type of RL problems the faulty agents can be supported or replaced by new

ones. Finally, there is a high degree of scalability in MARL, because most MARL

algorithms allow easy insertion of new learning agents into the environment.

The rest of this subsection gives examples of several notable MARL algorithms found

in the literature.
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Nash-Q

The Nash-Q algorithm introduced by Hu and Wellman [36] is an extension of Q-

learning to the multi-agent case, where the goal of all agents is to converge to an

NE strategy in every state of the environment. The drawback of this algorithm is that

every learning agent is supposed to observe the actions taken and rewards received by

all other learning agents, and to store all their Q-tables. This is an assumption that may

not be valid in many learning problems. It is also inefficient in terms of memory and

communication overhead among the agents. However, the advantage of this method,

as presented by Hu and Wellman [36], is the proven convergence of this algorithm

towards a mixed strategy NE, which is rare in the MARL domain.

Distributed-Q

The Distributed-Q algorithm for fully cooperative SGs is proposed by Lauer and Ried-

miller [51]. Here, every learning agent senses the entire environment and performs a

single-agent Q-learning algorithm assuming that all other agents will be choosing a

certain greedy action at all times. This works extremely well in deterministic envi-

ronments. However, in the wireless communications domain the real-world learning

problems are bound to be highly stochastic instead, due to random environmental ef-

fects which cannot be modelled and predicted. It also assumes that every learning

agent is able to accurately estimate the greedy actions of the other agents. This may

not be possible in a number of distributed multi-agent learning problems.

Conjecture-Based Reinforcement Learning

A more promising variation of multi-agent Q-learning recently proposed by Chen et al.

[19] is called conjecture-based RL. It deals with the stochastic nature of the learning

process by defining a conjecture term which is used in the Q-table update formula. It

is effectively a probability of all other learning agents in the environment choosing a

particular set of policies, which determines the reward received by the learning agent.

It then calculates the expected reward as a weighted sum of possible rewards depend-

ing on policies chosen by other agents. Chen et al. [19] successfully use this algorithm
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to enable CR devices in a simulated wireless mesh network to learn optimal spectrum

and power allocation strategies for improved energy efficiency of the network. How-

ever, this approach has only been applied to a relatively small and analytically tractable

scenario with six secondary users and five primary users. The scalability of this algo-

rithm has not been tested. For example, it is not clear whether this algorithm would

exhibit good performance during the initial exploration stage of the learning process

in a significantly larger and more complex wireless environment, and whether it would

maintain its property of converging towards optimal strategies.

Independent Single-Agent Reinforcement Learning

The simplest approach to MARL is the “naive” implementation of independent single-

agent RL algorithms for each learning agent in the environment, e.g. [77][88]. Despite

the fact that the independent learning agents are not even aware of the existence of the

other learning agents in the environment, this approach has been successfully applied

to various coordination tasks, e.g. [46][77]. For example, an implementation of inde-

pendent stateless Q-learning agents in a multi-agent environment has also been shown

to exhibit remarkably similar convergence performance in a simple coordination task

as the “joint action learner”, but with significantly less information available to the

learning agents [21].

The fundamental advantage of this approach is the lack of assumptions about each

learning agent’s awareness of the actions performed by the other agents required by

the rest of the MARL algorithms described in this subsection so far. It significantly

increases the breadth of potential applications of this MARL approach with different

information availability constraints, including those in the wireless communications

domain.

Heuristically Accelerated Reinforcement Learning

A common disadvantage of RL algorithms is their need for many learning iterations

to converge on an acceptable solution. A lot of researchers have been addressing

this problem, and one of the more recent promising solutions is the heuristically ac-
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celerated reinforcement learning (HARL) approach. Its goal is to speed up the RL

algorithms, particularly in the multi-agent domain, by guiding the exploration of the

state space using additional heuristic information. According to Bianchi et al. [11],

a heuristic policy is derived from additional knowledge, either external or internal,

which is not included in the learning process. The goal of the heuristic policy is to

influence the action choices of a learning agent, i.e. to modify its current policy in a

way which would accelerate the learning process. For example, the first evidence of

HARL in the literature is the paper by Bianchi et al. [12], where a heuristic function

H(s, a) is defined that dictates which actions should be taken in which states to ex-

plore the state-space more efficiently. This function can be obtained from additional

expert knowledge or “existing clues in the learning process itself” [12]. In [11] the

authors prove the convergence of four multi-agent HARL algorithms and demonstrate

that they outperform their classical RL counterparts.

This approach is particularly relevant in the DSA environment where various stan-

dardised signals with useful spectrum awareness information may be available to the

learning agents.

2.4 Intelligent Dynamic Spectrum Access

This section presents recent developments in the field of intelligent DSA. In the context

of this thesis intelligent DSA methods are defined as those based on machine intelli-

gence techniques which involve all aspects of the modified Mitola’s cognition cycle of

wireless devices discussed in Subsection 2.2.4, particularly the learning and planning

functionality.

A large amount of research on intelligent DSA in wireless networks focuses on RL

techniques, e.g. [7][43][65][89]. The RL algorithms applied to DSA problems can

generally be divided into two groups, centralised and distributed. The centralised

methods employ one RL agent which controls the operation of the whole network,

whereas the distributed methods are multi-agent RL systems which involve signifi-

cantly less network-level information exchange and primarily use local measurements

to make spectrum assignment decisions.
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2.4.1 Centralised Reinforcement Learning Approach

Early research work on RL based DSA largely focuses on centralised methods, which

use a single control unit for the whole network. It has access to all network information

and better suits the original Q-learning algorithm developed by Watkins [94], the most

widely used RL algorithm to date. One of the main advantages of the classical single-

agent Q-learning approach is that it was proven to converge on an optimal solution

in a single-agent MDP context, as explained in Subsection 2.3.2. As soon as other

Q-learning agents are introduced into the environment, this convergence is no longer

guaranteed.

A classical example of the original Q-learning algorithm applied to a centralised DSA

problem is the algorithm proposed by Nie and Haykin [65], where a state of the envi-

ronment is determined by the index of a cell where a call arrival occurs and the num-

ber of channels available for assignment in the given cell. This algorithm is shown

to significantly outperform fixed spectrum assignment schemes using a classical cel-

lular network simulation model. It also produces comparable performance to the best

known DSA scheme to date - MAXAVAIL, but with a significant reduction in com-

putational complexity. Senouci and Pujolle [78] extend the work of Nie and Haykin

[65] and implement a centralised Q-learning algorithm which is capable of learning

DSA policies considering call admission control, channel assignment and two classes

of traffic, all incorporated in their proposed semi-MDP model of the problem. Singh

and Bertsekas [82] model the states of the DSA problem in classical cellular networks

using the list of occupied and unoccupied channels at each cell and the event that can

cause a state transition, i.e. call arrival, departure or hand-off. They then use a tem-

poral difference RL algorithm [87] to enable the cellular network to learn the best

channel reuse patterns depending on the state of the network. These learnt dynamic

channel reuse policies are shown to outperform the best analytical methods found in

the literature to date.

Although all of these early works have been instrumental in generating great interest

in RL based DSA in the wireless communications research community, a crucial part

of the evaluation of their proposed RL algorithms is missing, namely the temporal
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characteristics of the learning process. Since classical RL algorithms are based solely

on the trial-and-error experience of the learning agent, it typically takes a large number

of trials for it to build up a mature knowledge base and to learn an acceptable solution

to the given decision problem [87]. In RL based DSA this initial exploration process

is likely to result in poor QoS provided to the users of the given wireless environment.

Therefore, it is essential to analyse the network performance throughout all stages of

the learning process and to minimise the deterioration in QoS caused by the exploration

process of the RL mechanism in place. The main goal of most contributions of this

thesis is to alleviate this problem of poor temporal performance of RL based DSA

algorithms, and to make them more robust and adaptable in such challenging real-time

decision problems as DSA in wireless networks.

2.4.2 Distributed Reinforcement Learning Approach

Distributed intelligent DSA schemes became significantly more popular than the cen-

tralised methods since the introduction of CR networks which normally involve dis-

tributed decision making by a number of wireless devices [42]. For example, Jiang et

al. [41] apply distributed RL with an explicit random exploration stage to a network of

independent CR transmitter-receiver pairs to enable them to learn efficient spectrum

sharing patterns. In [43] Jiang et al. further improve the performance of this dis-

tributed RL algorithm by combining it with a more efficient weight-driven exploration

scheme. In addition to being fully distributed, the fundamental difference between

the DSA scheme proposed by Jiang et al. [41][43] and the centralised RL methods

discussed in the previous subsection is that the former uses spectrum sensing as the

primary source of information to inform spectrum access decisions, while RL is used

to enable the CR devices to suggest appropriate channels with potentially low inter-

ference on them. Therefore, the poor performance during the exploration stage of the

learning process is not a major issue there, since the opportunistic interference sensing

approach introduced in Subsection 2.2.2 will always be able to achieve adequate QoS

before the knowledge obtained through RL further improves it.

Wu et al. [98] propose a MARL based Q-learning approach where every CR device

in the radio environment learns a spectrum and power allocation strategy using the
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strategies of other CR transmitters as the state information. One of the disadvantages

of this approach is the potentially high communication overhead required to accom-

modate the assumption that every CR device in the environment is always aware of

the current strategy of all other CR devices. Another disadvantage of this approach

which is common to all classical RL algorithms is the poor system performance at the

initial stage of the learning process. It takes a significant amount of time for the CR

devices to learn appropriate DSA strategies that achieve an acceptable probability of

successful transmission.

An example of distributed RL based DSA in cellular networks is the implementation

of the SARSA algorithm proposed by Lilith and Dogancay [54] which is shown to

significantly reduce the call blocking probability in a simulated 49 cell network over

a 24-hour period with the typical time-dependent offer traffic pattern, compared to the

fixed channel allocation approach. In [53] Lilith and Dogancay also show that their

distributed SARSA algorithm with the purposely reduced number of states in the Q-

table exhibits comparable performance to that of the centralised RL approach, but with

no communication overhead associated with the latter. However, the authors have not

compared the performance of their proposed algorithm with any state-of-the-art DSA

methods, nor have they compared the temporal variations of the call blocking proba-

bility using the distributed RL approach to a non-RL based method, e.g. fixed channel

allocation, to verify that a dramatic deterioration in QoS during the traffic peak-times

observed in [54] is not caused by the RL exploration process and is common across all

considered spectrum management schemes.

Figure 2.8 illustrates how such distributed RL based DSA methods operate in cellular

networks. Each BS maintains its own Q-table which, in the case of the stateless Q-

learning algorithm described in Subsection 2.3.2, has a Q-value associated with every

channel available for assignment. After a sufficient number of trials each BS builds up

its own knowledge base which reflects any predictable or unpredictable radio propaga-

tion effects from its trial-and-error experience, and uses this table to make the spectrum

assignment decisions. A significant advantage of this approach is its scalability. It is

not associated with any particular size of the network or its topology. Therefore, if

BSs or other cognitive wireless devices are dynamically inserted or removed from the
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environment, it will be handled completely autonomously by the learning algorithms

implemented in every individual device.

A more modern example of the application of distributed RL based DSA in cellular

networks is the algorithm proposed by Bennis et al. [7]. They first present a game

theoretic model of interference management in heterogeneous networks that involve a

number of small cell BSs underlaying a high power macro-BS considered as the pri-

mary spectrum user. They then use this model to design a distributed RL algorithm that

enables the small cell BSs to learn appropriate transmitter configurations, i.e. spectrum

and power allocation policies, whilst successfully converging towards an equilibrium

where the interference received by the primary macro-BS users is below a pre-defined

limit. The drawback of their algorithm is the inherent problem encountered in all clas-

sical RL algorithms - the poor initial performance due to the lack of prior knowledge

of the environment. In the case of the DSA algorithm proposed by Bennis et al. [7],

at the start of the learning process performed by the small cell BSs the probability of

the primary macro-BS users receiving excessive interference from them is between

0.35 and 0.55 which is unacceptable if strict primary user QoS guarantees have to be

adhered to.

Feki et al. [26] propose an RL algorithm based on the cyclic multi-armed bandit for-

mulation of the spectrum sharing problem in LTE cellular networks. Their algorithm

autonomously steers each cell in the network towards using the most suitable portions

of the available spectrum band, taking into account the spatial offered traffic distri-
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Figure 2.8: Distributed reinforcement learning based dynamic spectrum access in a

cellular network
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bution. Although the authors focus on the speed of convergence of their proposed

distributed RL algorithm, they do not present simulation results that describe the QoS

in the network at various stages of the learning process, which is a key aspect of the

performance of intelligent DSA algorithms investigated in this thesis.

2.4.3 Transfer Learning Approach

An emerging approach for alleviating the problem of limited information availability

and improving the convergence behaviour of distributed RL based DSA algorithms

is transfer learning (TL). The fundamental idea behind TL is depicted in Figure 2.9,

where, instead of learning DSA strategies completely independently as shown in Fig-

ure 2.8, the BSs periodically exchange their acquired knowledge to speed up the learn-

ing process of every individual cognitive BS.

For example, Zhao et al. [104] use this methodology to dramatically improve the

convergence speed and QoS achieved by a distributed stateless Q-learning algorithm

applied to a small cell network covering streets in an urban environment. However,

since in this study the BSs are arranged in lines along the streets, the authors force

the BSs to use a simple reuse pattern by manipulating the Q-table and inverting the

order of preferred spectrum resources of every other BS. Therefore, the transfer of the

knowledge acquired by the BSs purely through distributed RL is not a key source of
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Figure 2.9: Transfer learning based dynamic spectrum access in a cellular network,

where the base stations periodically exchange their knowledge to aid the distributed

learning process
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information used in this particular investigation. In [103] Zhao et al. develop a co-

operation management algorithm that dynamically adapts the amount of information

exchange overhead required during the TL process depending on the learning stage. It

achieves a 90% reduction in the amount of information exchanged among the nodes of

a multi-hop backhaul network with no negative effect on the system QoS and through-

put. However, despite the significant improvement in the system QoS and convergence

speed achieved by TL with relatively little communication overhead compared to fully

coordinated DSA schemes, it still suffers from the issue of poor performance at the

initial stage of learning when none of the learning agents have had enough time to

build up a knowledge base that could be beneficial when transferred to other learning

agents.

Cognitive wireless networks that employ TL are also sometimes referred to as doc-

itive networks. For example, Giupponi et al. [31] introduce the concept of docitive

networks as an extension to previously proposed cognitive wireless networks, where

some opportunistic wireless nodes “teach” other nodes by transferring their knowledge

in exactly the same way as in TL. They implement this paradigm in a simulated IEEE

802.22 WRAN coexisting with a primary TV broadcasting network. The docition pro-

cess is shown to greatly improve the convergence speed of the distributed RL based

DSA approach employed by the secondary WRAN BSs. However, the time response

plot that compares a number of cognitive and docitive DSA algorithms does not start

from zero, but is only given between 300,000 and 400,000 learning iterations. There-

fore, it does not show the initial performance of the docitive approach when the are no

wireless nodes that could be used as “teachers” for other nodes yet.

Shahid et al. [80] extend the distributed Q-learning based joint resource allocation

and power control algorithm to the docitive case, where a number of femto-cell BSs

that underlay a macro-cell share their learnt strategies in order to increase the capacity

of the secondary femto-cell network whilst adhering to the primary macro-cell user

QoS guarantee requirement. Although the docitive approach improves the conver-

gence speed compared to a classical distributed RL approach as expected, the initial

performance of both algorithms is extremely poor - a negligibly small capacity of the

femto-cell network and a large amount of harmful interference for the primary macro-
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cell users is observed. This once again demonstrates that, although TL is a powerful

method for speeding up the learning process of RL based DSA algorithms, it still ex-

hibits the fundamental weakness of all trial-and-error based RL algorithms - the poor

initial performance due to the lack of prior knowledge available at the start of the learn-

ing process. This property of RL based DSA algorithms would also significantly limit

their adaptability in dynamic wireless environments, where the learning agents are re-

quired to rapidly adapt to changes in their environment, i.e. changes in the parameters

of the problem they are trying to solve.

2.5 Conclusion

Spectrum sharing and DSA techniques play a key role in utilising the mobile spectrum

efficiently. A large number of classical approaches to DSA are based on spectrum

databases, dynamic interference measurements and temporary licenses. However, this

thesis focuses on more flexible intelligent DSA techniques that involve the full cogni-

tion cycle of wireless devices originally defined by Mitola [61]. The widely investi-

gated state-of-the-art method for intelligent DSA is RL. This chapter gave an overview

of a range of single-agent and multi-agent RL algorithms found in the literature both

in the general context and those specifically designed for cognitive wireless networks.

Although RL presents a promising solution to enable intelligent DSA, the inherent

disadvantage of all classical trial-and-error based RL algorithms is the poor system

performance at the early stage of the learning process due to the agents’ lack of initial

knowledge about the environment. This property of RL based DSA algorithms also

significantly limits their adaptability in dynamic radio environments.
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3.1 Cognitive Wireless Network Simulator

This thesis proposes a number of intelligent DSA algorithms designed to be adaptable

and robust in realistically challenging wireless environments. In order to empirically

demonstrate their adaptability and robustness, a sufficiently complex simulation model

is required that would appropriately describe a relevant and realistic DSA and spectrum

sharing scenario. Therefore, the simulation scenario chosen for empirical evaluation

of the DSA algorithms proposed in this thesis is the stadium temporary event scenario

considered in the EU FP7 ABSOLUTE project. It involves a temporary heterogeneous

cognitive cellular infrastructure that is deployed in and around a stadium, alongside
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a local primary LTE network, to provide extra capacity and coverage to the mobile

subscribers and event organizers involved in a temporary event, e.g. a football match or

a concert [71]. The details of this scenario and the network architecture are described

in the rest of this section.

3.1.1 Scenario and Network Architecture

The scenario is depicted in Figure 3.1. Here, a small cell LTE network is deployed

inside the stadium to provide ultra high capacity density to the event attendees, and an

eNodeB on an aerial platform (AeNB) is deployed above the stadium to provide wide

area coverage. The AeNB is located above the stadium centre point at 300m altitude.

The model also includes a local LTE network that consists of 3 primary eNBs (PeNBs)

whose coordinates, with respect to the centre point of the stadium, are (−600,−750),

(100, 750) and (750,−800) metres.

The stadium small cell network architecture is depicted in Figure 3.2, where the users

are located in a circular spectator area 53.7 - 113.7m from the centre of the stadium.

The spectator area is covered by 78 eNBs arranged in three rings at 1m height, e.g.

with antennas attached to the backs of the seats or to the railings between the different

row levels. The seat width is assumed to be 0.5m, and the space between rows - 1.5m,

which yields the total capacity of 43,103 seats.

Aerial eNB

Local eNB

User equipment

Stadium with
small cell eNBs

Figure 3.1: Stadium temporary event scenario
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eNodeB

Nominal cell range

Stadium boundaries

Figure 3.2: Stadium small cell network architecture

500 user equipments (UEs) are randomly distributed outside the stadium, in the circu-

lar area from the stadium boundary (5m from the radius of the last row) to 1.5km away

from the stadium centre point. 25% of the stadium capacity is filled with randomly

distributed wireless subscribers, i.e. ≈ 10,776 UEs.

All simulations reported in this thesis use a 20 MHz LTE channel in the 2.6 GHz

frequency band. The 20 MHz bandwidth of an LTE channel is divided into 100 virtual

resource blocks (VRBs), each having a 180 kHz bandwidth [3]. The spectrum entity

that is assigned to any data transmission is referred to as the subchannel and consists of

four consecutive VRBs, according to the standardised LTE Type 0 resource allocation

[3]. Therefore the transmission bandwidth of a subchannel assigned to any given user

is 4 × 180 = 720 kHz.

The simulation experiments are divided into two different spectrum management cases:

1. The stadium small cell network has access to its own dedicated 20 MHz LTE

channel, e.g. using a temporary LSA license for the use of this spectrum as

described in Subsection 2.2.3. In this case its performance is assessed separately,

not considering the AeNB and the PeNBs.
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2. The cognitive small cells and the AeNB have secondary access to a 20 MHz

LTE channel, also used by a local network of three PeNBs. This represents a

more challenging secondary spectrum sharing task, where the primary user QoS

guarantees are also taken into account.

3.1.2 Radio Propagation

An appropriate model for calculating the propagation loss inside the densely populated

stadium is the WINNER II B3 non-line-of-sight model designed for airports, factories,

conference halls etc. [50]. It is described by the following equation:

PL = 37.8log10(d) + 36.5 + 23log10(
fc

5
) + γ (3.1)

where PL is the path loss in dB, d is the propagation distance in metres, fc = 2.6 is

the carrier frequency in GHz and γ is the log-normally distributed shadow fading loss

with 0dB mean and 4 dB standard deviation.

The WINNER II C1 line-of-sight suburban macro-cell model is used for propagation

between the local PeNBs and the users outside of the stadium [50]:

PL = 40log10(d) + 11.65− 16.2log10(hBS)

−16.2log10(hUE) + 3.8log10(
fc
5
) + γ

(3.2)

where hBS = 30m is the base station height, hUE = 1m is the height of the UE

antenna, and the standard deviation of the shadow fading loss γ is 6 dB.

To calculate the propagation loss between outdoor transmitters and indoor receivers

and vice-versa the WINNER C4 II outdoor-to-indoor model is used [50]. However,

the C2 term there is replaced by a C1 term, to represent the same suburban outdoor

environment described by Equation (3.2) instead of an urban one:

PL = PLC1(d) + 17.4 + 0.5din − 0.8hUE (3.3)

where PLC1(d) is the WINNER II C1 path loss described by Equation (3.2) with a

10dB standard deviation of the shadow fading loss, and din is the indoor part of the
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distance between the transmitter and the receiver, i.e. the distance between the stadium

shell and the eNB/UE inside the stadium.

The propagation loss between the AeNB and receivers on the ground is calculated

using the free space path loss model with 8dB log-normal shadow fading:

PL = 20log10(d) + 46.4 + 20log10(
fc

5
) + γ (3.4)

3.1.3 Link Model

A realistic value of the noise floor used for the UE receivers is -124 dBW. It is calcu-

lated using the following formula:

PN = 10log10(kTB) +N (3.5)

where PN is the noise power in dBW, k = 1.38×10−23 m2 kg s−2K−1 is the Boltzmann

constant, T = 290 is the noise temperature in K, B = 2 × 107 is the bandwidth in Hz

and N = 7 is the noise figure in dB.

The link quality is determined by the signal-to-interference-plus-noise ratio (SINR),

i.e. the ratio between the power of the received signal of interest and the sum of the

received powers from interfering transmitters together with the noise power. The SINR

at a given receiver on a given subchannel is calculated as follows:

SINR =
P k
TxG

k
TxGRxPL−1

k
∑NI

i=1
P i
TxG

i
TxGRxPL−1

i + PN

(3.6)

where the signal of interest is received from the transmitter k, Gk
Tx is the antenna

gain of transmitter k, GRx is the receiver antenna gain, PLK is the propagation loss

between transmitter k and the receiver, NI is the number of interfering transmitters,

i.e. all other transmitters that are using the same subchannel, and PN is the receiver

noise floor calculated using Equation (3.5) and converted to W. The antenna gains for

the eNBs and UEs are 3 dB and 0 dB respectively.

Given the SINR level, the link throughput is calculated using the following 3GPP
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truncated Shannon bound model for LTE downlink [2]:

Throughput =



















0, SINR < SINRmin

αBlog2(1 + SINR), SINRmin ≤ SINR < SINRmax

αBlog2(1 + SINRmax), SINR ≥ SINRmax

(3.7)

where α = 0.6 is the attenuation factor due to implementation loss, B is the bandwidth

of the link, SINRmin is the minimum SINR capable of supporting a data transmission,

and SINRmax = 22 dB is the SINR that corresponds to the maximum achievable link

throughput. The minimum SINR allowed to support data transmissions to avoid very

low quality links is 1.8 dB [44].

3.1.4 Traffic Model

The simulated data traffic is generated using the 3GPP File Transfer Protocol (FTP)

model 1 [1]. It is a simple yet realistic model of random bursty traffic that reflects typ-

ical behaviour of internet and mobile network users. It uses the negative exponential

distribution for the calculation of file inter-arrival times and a fixed file size of 4.2 Mb

(≈0.5 MB). The length of each file transmission is calculated by dividing the file size

by the link throughput calculated using Equation (3.7).

3.1.5 Power Control and Cell Association

The local PeNBs use the fixed transmit power of 10W. The cognitive base stations,

i.e. the stadium small cell eNBs and the AeNB, employ open-loop power control

using a constant target received power of -104 dBW, i.e. for a 20 dB signal-to-noise

(SNR) ratio. This is a simple power control mechanism that counteracts the effects of

shadowing and distance losses and provides a fair signal strength distribution across

the whole network [62], e.g. equal received power at the cell centre and the cell edge.

Every UE inside the stadium is associated with a small cell or the AeNB with the

minimum estimated downlink path loss, e.g. based on the Reference Signal Received

Power (RSRP). The UEs outside of the stadium are associated either with a PeNB or
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the AeNB based on the strongest RSRP. The reference signal Tx power of the AeNB is

assumed to be 13 dB lower than that of the PeNBs to avoid potential high power inter-

ference from the AeNB to the primary users. This is also consistent with a maximum

27 dBmW transmit power of the AeNB defined in the ABSOLUTE project [32].

3.1.6 Inter-Cell Interference Coordination Signalling

The cognitive wireless network scenario described in this section is based on LTE;

the current state-of-the-art radio access technology (RAT) for mobile broadband net-

works. One of the key LTE interference management technologies, that is also an

integral part of the DSA algorithms proposed in Chapters 6 and 7 and that features in

most of the other simulation experiments discussed in this thesis, is known as inter-

cell interference coordination (ICIC). The purpose of ICIC is to reduce interference

between adjacent cells by exchanging information between neighbouring eNBs over

the dedicated X2 interface [79]. This ICIC signal exchange is depicted in Figure 3.3

using a generic hexagonal cell network architecture. Here, the central eNB is sending

an ICIC signal to the eNBs around it to let them know in which parts of the spectrum

it is likely to interfere with them.

The format of the messages exchanged between eNBs using ICIC in the LTE downlink

is standardized by the 3GPP and referred to as the Relative Narrowband Transmit

Power (RNTP) indicator [3]. It contains a bitmap which indicates on which resource

blocks an eNB is planning to transmit at high power by setting their corresponding

eNodeB

ICIC signals

Figure 3.3: Inter-cell interference coordination (ICIC) signalling among neighbouring

eNodeBs
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bits to 1, i.e. on which resource blocks it is likely to cause interference in adjacent

cells. For example, in a scenario, where a 20 MHz LTE channel consisting of 100

VRBs is allocated to the network, the length of an RNTP message is 100 bits or 25

hexadecimal characters. In this case every subchannel, a minimum entity allocated to

a file transmission, consists of 4 adjacent resource blocks [3]. Therefore, every group

of 4 bits (i.e. every hexadecimal character) in an RNTP message describes a particular

subchannel. For example, if an eNB is planning to use high transmit power on a given

subchannel, its corresponding bits in the RNTP message are 1111 or 0xF, and 0000 or

0x0 in the opposite case.

The threshold used to decide whether a given transmit power is high or low is derived

using the average transmit power in the cell and the RNTP threshold, which can take

the following set of standardized values [3]:

RNTPthresh ∈ {∞,−11,−10,−9, ..., 1, 2, 3} dB (3.8)

It is measured in dB relative to the average transmit power in a given cell. To avoid

excessive signalling requirements, the minimum allowed time interval between the

ICIC message exchanges is 20 ms [79].

3.2 Empirical Evaluation

An important aspect of the empirical evaluation of the quality of service (QoS) and

capacity performance of cognitive wireless networks is the appropriate choice of the

metrics used to quantify it. The network performance metrics used to analyse the

simulation results presented in this thesis are described in the following subsection.

3.2.1 Performance Metrics

The key metrics used to assess the network performance in this thesis are the probabil-

ity of retransmission P (re− tx), mean and 5% user throughput (UT ), and the overall

system throughput density.
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P (re−tx) is the probability of a file transmission being blocked or interrupted, i.e. the

probability of a retransmission being scheduled. It is calculated using the following

equation:

P (re− tx) =
Nre−tx

Nre−tx +Nsuccessful−tx
(3.9)

where Nre−tx and Nsuccessful−tx are the number of retransmissions and the number of

successfully completed transmissions during one sampling period respectively.

Mean and 5% UT are the metrics that describe the distribution of the average data rates

provided to the users. Mean UT is calculated over all UEs in the network, whereas the

5% UT gives the minimum guaranteed UT for 95% of the users. The latter is obtained

by calculating the 5th percentile of the UT distribution over all UEs, and is the key

metric for ensuring fair QoS distribution across the whole network. The equation for

calculating UT for any given UE, as defined in [1], is given below:

UT =

∑F
f=1

Sf
∑F

f=1
Tf

(3.10)

where F is the number of files downloaded by the given UE, Sf is the size of the f ’th

file, and Tf is the time it took to download it.

System throughput density (STD) of the stadium network is obtained by calculating

the average system throughput during the whole simulation and dividing it by the area

covered by the eNBs, as shown in the equation below:

STD =
Throughput

πR2
outer − πR2

inner

(3.11)

where Throughput is the average system throughput measured throughout the whole

simulation, Router is the outer radius of the spectator area - 113.7 m, and Rinner is its

inner radius - 53.7 m. This performance metric is especially important for small cell

scenarios such as the one described in this section, since it demonstrates the spatial

efficiency of spectrum reuse achieved by employing such small cell sizes.

In simulations involving the stadium network, the AeNB and the primary system,

these metrics are calculated separately for different classes of the users, e.g. based

on whether they are inside or outside the stadium or on the type of base station they
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are connected to.

3.2.2 Statistical Validation of Results

In order to ensure the validity and statistical significance of the key results presented

in this thesis, the following techniques are applied where relevant:

• Data points on the plots of network performance against time or offered traffic

sweeps are obtained by averaging over 50 different simulations with different

random seeds, UE locations and initial file traffic.

• The offered traffic sweep graphs also include error bars showing the difference

between the minimum and the maximum value from 50 different simulations

which correspond to a given data point.

• Furthermore, some results are expressed in the form of box plots [59], a compact

way of depicting key features of probability distributions such as the median, the

1st and 3rd quartile, and the minimum and maximum data point values.

3.3 Heuristic Schemes for Baseline Comparison

This thesis predominantly uses two heuristic DSA schemes for baseline comparison: a

typical approach in standard LTE networks, and an opportunistic approach commonly

used in cognitive radio networks. These schemes are described in the following sub-

sections.

3.3.1 Dynamic ICIC

The dynamic ICIC scheme used for baseline comparison in this thesis is a typical ap-

proach to interference management in conventional LTE networks [28][79]. It assumes

that each eNB always avoids transmitting on the resources used by its neighbours, re-

ported in their ICIC signals explained in Subsection 3.1.6. A given eNB chooses ran-

domly among the subchannels that are not used by any of its neighbours and blocks file
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File arrival Retransmit later

Assign the subchannel

Pick subchannel at random

Mark subchannel as unavailable

Used by a neigh-

bour eNB?

Any subchannels

available?

Yes

No

No

Yes

Figure 3.4: Flow diagram of the dynamic ICIC scheme used for baseline comparison

transmissions when no such subchannels are available for assignment. The flowchart

of this scheme is shown in Figure 3.4.

ICIC signal exchanges are assumed to take place highly frequently - every 20 ms [79].

Therefore, the current subchannel usage of a given eNB is always mapped onto its

ICIC message, since an eNB is highly likely to continue using the same subchannels

for 20 ms until the next ICIC update. All eNBs are assumed to send their ICIC mes-

sages at the same time. However, this scheme would work in exactly the same way, if

they were not synchronised or if the frequency of the ICIC signals was lower. Every

eNB always uses the last received ICIC signal from each of its neighbours, which only

affects spectrum assignment decisions for new file arrivals and does not affect current

file transmissions.

There are two important parameters in this scheme that have a significant influence on

its performance:

• Minimum neighbour received signal strength (MNRSS) - the minimum proxim-

ity of two eNBs in terms of the reference signal strength received from one by

another that qualifies them as ICIC signalling neighbours.

• RNTP threshold - the standardised parameter for the LTE downlink used to de-

termine whether a transmit power on a given subchannel is high enough to cause
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potential inter-cell interference and whether that subchannel should be reported

as busy in the ICIC message the given eNB sends to its neighbours.

The contour plots in Figure 3.5 show the probability of retransmission at the stadium

small cell network with its own dedicated spectrum introduced in Subsection 3.1.1,

when it employs the dynamic ICIC scheme depicted in Figure 3.4 with a range of val-

ues for the MNRSS and the RNTP threshold. The reference signal power transmitted
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Figure 3.5: Probability of retransmission at the stadium network employing dynamic

ICIC with a range of RNTP thresholds and MNRSS levels
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by every eNB for neighbour detection is assumed to be equal to the average power of

data transmissions in its cell. The MNRSS is defined as the power of such signals re-

ceived by the given eNB in dB relative to the receiver noise floor. If a reference signal

received from another eNB is greater or equal to MNRSS, the latter eNB is deemed

to be an ICIC signalling neighbour of the former. The RNTP threshold is measured in

dB with respect to the average transmit power in the cell.

Figure 3.5 contains three different contour plots representing the system performance

at a relatively low (0.6 Gbps), medium (0.9 Gbps) and high (1.2 Gbps) offered traffic

level. Figure 3.5a demonstrates that at low traffic loads, low values of the MNRSS

and the RNTP threshold achieve a better system QoS. The low values of the MNRSS

mean that more eNBs are regarded as each other’s neighbours, thus involving more

proactive ICIC signalling for inter-cell interference avoidance. Low RNTP thresh-

olds cause more subchannels to be reported in the ICIC signals between neighbouring

eNBs, which in turn results in safer and more constrained spectrum assignment poli-

cies. However, Figure 3.5c shows a completely opposite pattern at high traffic loads.

There, low values of the MNRSS and the RNTP threshold tend to cause a dramatic

degradation in the system performance due to an excessive number of subchannels be-

ing marked as unavailable resulting in a large number of blocked transmissions. Figure

3.5b shows that at a medium traffic load the optimal choice for these parameters lies in

a region between the very high and very low values. Therefore, all three contour plots

together demonstrate that the choice of the MNRSS and the RNTP threshold affects

the trade-off between the network performance at low and high traffic loads. The sim-

ulation experiments presented in the rest of this thesis that involve ICIC signalling in

the stadium network use a 5dB MNRSS and the -3 dB RNTP threshold. These values

are low enough to perform well at low and medium traffic loads, yet not too low to

cause excessive performance degradation at higher traffic loads.

3.3.2 Spectrum Sensing

The opportunistic spectrum sensing scheme described by the flowchart in Figure 3.6

represents a typical cognitive radio approach to DSA, such as those introduced in Sub-

section 2.2.2. There, a cognitive eNB has the capability of sensing the interference
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Figure 3.6: Flow diagram of the spectrum sensing based opportunistic spectrum access

scheme used for baseline comparison

levels on the subchannels of interest before making spectrum assignment decisions. It

chooses a subchannel at random, and senses the interference level on it. If the interfer-

ence level is below an admission threshold, the subchannel is assigned, otherwise the

interference level is sensed on another randomly selected subchannel.

The key parameter in this scheme is the admission threshold, i.e. the maximum amount

of interference allowed on the subchannel for it to be deemed safe and eligible for

assignment. Figure 3.7 shows how the probability of retransmission in the stadium

network varies at different traffic loads and with different values of the interference

threshold measured in dB relative to the receiver noise floor. Every data point repre-

sents the mean result of 50 simulations using identical parameters but different random

seeds, with the error bars showing the minimum and maximum of the correspond-

ing 50 values. Similarly to the dynamic ICIC parameters investigated in Subsection

3.3.1, a trade-off between the system performance at low and high traffic loads has

to be achieved. The plot shows that the optimal value for the interference threshold

significantly increases, as the offered traffic increases. Similarly to the MNRSS and

the RNTP threshold for dynamic ICIC, low interference threshold values in spectrum

sensing impose greater restrictions on subchannel selection resulting in better quality

links. However, as the traffic load increases it becomes less feasible due to the increase

in inter-cell interference levels and the lack of such high quality links. In those cases
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Figure 3.7: Probability of retransmission at the stadium network using the spectrum

sensing based DSA scheme with different interference detection thresholds

relaxing the subchannel assignment constraints by raising the interference threshold

improves the QoS. All further experiments that employ the spectrum sensing scheme

depicted in Figure 3.6 for baseline comparison use an 11 dB interference threshold

which is low enough to ensure good QoS at low and medium traffic loads, yet high

enough not to cause excessive performance degradation at higher traffic loads.

3.4 Conclusion

This chapter described the methodology used for empirical evaluation of intelligent

DSA methods proposed in this thesis. A stadium temporary event scenario, that in-

volves a heterogeneous cognitive cellular system and an incumbent LTE network, is

used as the basis for the detailed system-level simulation model of a wireless environ-

ment. The key metrics used to assess the performance of the simulated DSA algo-

rithms are the probability of retransmission, mean and 5th percentile user throughput

and the overall system throughput density. A standard LTE interference management

solution and a spectrum sensing based DSA scheme, typical for CR networks, are

used for baseline comparison in the simulation experiments discussed in the rest of

this thesis.
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4.1 Intelligent Dynamic Spectrum Access

An emerging state-of-the-art technique for intelligent DSA is reinforcement learning

(RL); a machine learning technique aimed at building up solutions to decision prob-

lems only through trial-and-error, discussed in detail in Section 2.3. It has been suc-

cessfully applied to a range of DSA problems and scenarios, such as cognitive radio

networks [43], small cell networks [7] and cognitive wireless mesh networks [18].

The most widely used RL algorithm in both artificial intelligence and wireless com-

munications domains is Q-learning [94]. Therefore, most of the literature on RL based
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DSA focuses on Q-learning and its variations, e.g. [18][102]. Furthermore, this thesis

investigates distributed Q-learning based DSA. The distributed Q-learning approach

has advantages over centralised methods in that no communication overhead is in-

curred to achieve the learning objective, and the network operation does not rely on a

single computing unit. It also allows for easier insertion and removal of base stations

from the network, if necessary. For example, such flexible opportunistic protocols are

well suited to disaster relief and temporary event networks, where rapidly deployable

architectures with variable topologies are required to supplement any local wireless

infrastructure, such as the cognitive wireless network introduced in Section 3.1.

In pure distributed RL based DSA the task of every base station (BS) is to learn to

prioritise among the available subchannels only through trial-and-error, with no fre-

quency planning involved, and with no information exchange with other BSs. In this

way, frequency reuse patterns emerge autonomously using distributed artificial intel-

ligence with no requirement for any prior knowledge of a given environment. The

rest of the section revisits the main principle behind RL and introduces the distributed

Q-learning algorithm used as the basis for all work presented in this thesis.

4.1.1 Reinforcement Learning

RL is a model-free type of machine learning which is aimed at establishing the de-

sirability of taking any available action in any state of the environment only through

trial-and error [87]. This desirability of an action is represented by a numerical value

known as the Q-value - the expected cumulative reward for taking a particular action

in a particular state, as shown in the equation below:

Q(s, a) = E

[

T
∑

t=0

γtrt

]

(4.1)

where Q(s, a) is the Q-value of action a in state s, rt is the numerical reward received

t time steps after action a is taken in state s, T is the total number of time steps until

the end of the learning process or episode, and γ ∈ [0, 1] is a discount factor.

The task of an RL algorithm is to estimateQ(s, a) for every action in every state, which

is then stored in an array known as the Q-table. In some cases where an environment
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does not have to be represented by states, only the action space and a 1-dimensional Q-

table Q(a) can be considered [21]. The job of an RL algorithm then becomes simpler;

it aims to estimate an expected value of a single reward for each action available to the

learning agent:

Q(a) = E[rt] (4.2)

4.1.2 Distributed Stateless Q-Learning

For this reason the stateless Q-learning algorithm, formulated by Claus and Boutilier in

[21], has been chosen as the RL algorithm used for DSA in this thesis. It is a stateless

equivalent of the most widely used RL algorithm - Q-learning developed by Watkins

in [94]. Expressing the DSA environment as a stateless problem and employing the

stateless Q-learning algorithm, as opposed to its classical counterpart, can significantly

simplify and speed up the learning process as discussed in Subsection 2.3.2. Figure

4.1 shows a flowchart for one file transmission of how distributed stateless Q-learning

can be applied to DSA in cellular systems.

Each BS maintains a Q-table Q(a) such that every subchannel a has a Q-value associ-

ated with it. Upon each file arrival, the BS either assigns a subchannel to its transmis-

sion or blocks it if all subchannels are occupied. It decides which subchannel to assign

based on the current Q-table and the greedy action selection strategy described by the

following equation:

â = argmax
a

(Q(a)) (4.3)

where â is the subchannel chosen for assignment, and Q(a) is the Q-value of subchan-

nel a.

The values in the Q-tables are initialised to zero, so all BSs start learning with equal

choice among all available subchannels. A Q-table is updated by a BS each time

it attempts to assign a subchannel to a file transmission in the form of a positive or

a negative reinforcement. The recursive update equation for stateless Q-learning, as

defined in [21], is given below:

Q(a)← (1− α)Q(a) + αr (4.4)
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Figure 4.1: Flowchart of the distributed stateless Q-learning based DSA algorithm

where Q(a) represents the Q-value of the subchannel a, r is the reward associated

with the most recent trial and is determined by a reward function, and α ∈ [0, 1] is

the learning rate parameter which weights recent experience with respect to previous

estimates of the Q-values.

The reward function, which is generally applicable to a wide range of RL problems and

which has been successfully applied to DSA problems in the past [43][104], returns

two values:

• r = −1 (negative reinforcement), if the file transmission fails due to excessive

interference on the selected subchannel.

• r = 1 (positive reinforcement), if the file transmission is completed using the

selected subchannel.
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4.2 Choice of the Learning Rate

The learning rate α is a crucial parameter in RL algorithms that can significantly influ-

ence the dynamics of the learning process. However, discussing the choice of its value

is highly uncommon in the literature on RL based DSA. One of the rare examples

where the value of the learning rate is at least specified is [6], where the authors have

arbitrarily chosen a value of 0.5, which is simply in the middle of its allowed range

of [0, 1]. In [49] the authors have swept all possible values of the fixed learning rate

to compare different exploration strategies, but do not comment on the difference in

performance due to the difference in learning rate values. The majority of other exam-

ples in DSA literature do not even specify the learning rate they have chosen, making

it impossible to replicate their results.

The purpose of this section is to present the concept of the Win-or-Learn-Fast (WoLF)

variable learning rate [13] from the artificial intelligence literature, show how it can be

applied in the DSA context and investigate the performance improvements that can be

achieved using it in terms of the QoS provided to the network users.

4.2.1 Win-or-Learn-Fast Variable Learning Rate

The WoLF principle proposed by Bowling and Veloso in [13] states that the learning

agent should learn faster when it is losing and more slowly when winning. The simple

adaptation of the WoLF principle proposed in this section is to split the value of the

learning rate α into two cases, αwin and αlose, when the subchannel chosen by the BS

successfully supports the file transmission and when it fails (blocking or interruption)

respectively. If αwin < αlose, the WoLF principle holds, since the agent is learning

slower on successful trials (αwin) and faster on the failed ones (αlose).

One of the advantages of using a WoLF variable learning rate is that it encourages

thorough exploration in the early stages of learning. Since all values in the Q-tables

are initially set to zero and the greedy action selection strategy is followed, if a BS has

several successful trials on a particular subchannel, its Q-value will increase and it will

continue to be used. If, later on, the interference from other BSs on this subchannel
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significantly increases, it will take fewer failed trials for its Q-value to fall below zero

than it would if a fixed value of α was used, thus, adapting its policy faster. The rest

of this subsection analytically demonstrates these learning dynamics achieved by the

WoLF variable learning rate.

First, the recursive Q-table update formula from Equation (4.4) is rewritten using sep-

arate terms for the Q-value estimates before (Q(a)) and after the update (Q′(a)) as

follows:

Q′(a) = (1− α)Q(a) + αr (4.5)

Second, splitting the learning rate value into two cases, αwin and αlose, and substituting

the reward values (r = ±1) into Equation (4.5) yields:

Q′(a) =







(1− αwin)Q(a) + αwin, r = 1

(1− αlose)Q(a)− αlose, r = −1
(4.6)

Third, rearranging the terms in Equation (4.6) gives the following expression for the

change in Q-value ∆Q(a) = Q′(a)−Q(a):

∆Q(a) =







−αwinQ(a) + αwin, r = 1

−αloseQ(a)− αlose, r = −1
(4.7)

The magnitude of ∆Q(a) is given by the following equation:

|∆Q(a)| =







−αwinQ(a) + αwin, r = 1

αloseQ(a) + αlose, r = −1
(4.8)

since αwin > 0, αlose > 0 and Q(a) ∈ [−1, 1].

Figure 4.2 shows a plot of both cases from Equation (4.8), i.e. the linear relationship

between the Q-value and the magnitude of its change when a reward of±1 is received

by the learning agent. It demonstrates that the slope of this relationship is equal to

the learning rate α. Therefore, if αwin < αlose, the slope is higher when the agent

“loses” (r = −1). This in turn means that most of the time the changes in the Q-

values (|∆Q(a)|) are bigger when the negative rewards are received. The expression
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Figure 4.2: The magnitude of the change in the Q-value (|∆Q(a)|) after a Q-learning

update using the WoLF variable learning rate (αwin < αlose)

for the Q-value at which they are the same for the negative and the positive rewards,

i.e. the crossing point between the linear functions plotted in Figure 4.2, can be found

by equating the two cases of Equation (4.8) as follows:

− αwinQ(a) + αwin = αloseQ(a) + αlose (4.9)

Solving for Q(a) in Equation (4.9) yields the equilibrium value Qeq(a) where |∆Q(a)|

is the same in both cases:

Qeq(a) =
αwin − αlose

αwin + αlose
(4.10)

Equation (4.10) demonstrates that if αwin < αlose, Qeq(a) is negative, i.e. the changes

in the Q-values are larger when negative rewards are received at the Q(a) = 0 point.

For example, if a regular learning rate was used instead of WoLF, the slopes of the

two linear functions in Figure 4.2 would be the same and the equilibrium point Qeq(a)

would be zero. The larger the difference between αwin and αlose is, the lower Qeq(a)

is and the larger the difference between the Q-value changes for positive and negative

rewards is around the Q(a) = 0 point. The latter feature of the WoLF variable learn-

ing rate is key to avoiding rapid convergence towards local optima at the start of the

learning process, since the BSs learn more slowly and “cautiously” from successful

trials and faster from the failed trials.

The principle of learning faster when “losing” is also relevant in dynamic learning

environments, e.g. when a change in network topology or traffic distribution requires
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the BSs to change and adapt their learned policies. In such cases a BS would start

exploring other subchannels sooner. Another advantage of the WoLF learning rate

is that at any stage of the operation of the network the ratio of successful to failed

trials would need to be higher for a subchannel to maintain a high Q-value and keep

being assigned, which is consistent with the goal of achieving a low probability of

retransmission in a wireless network.

4.2.2 Performance Comparison Using Different Learning Rates

The simulation scenario of a stadium small cell network with its own dedicated spec-

trum described in Subsection 3.1.1 is used in the rest of this section to test the QoS

provided to the UEs, using different combinations of the values of αwin and αlose.

25% of the overall stadium capacity is randomly filled with wireless subscribers, i.e.

on average 10,776 randomly distributed UEs.

The contour plots in Figure 4.3 show the probability of retransmission results after

running the simulations of the distributed Q-learning based DSA algorithm described

in Subsection 4.1.2, using different combinations of αwin and αlose. The simulations

were performed at a relatively low traffic load of 0.7 Gbps and a higher traffic load

of 1.2 Gbps. They lasted 1,000,000 transmissions, which constituted 1,000,000 rein-

forcement learning trials for all eNBs in total. The values of αwin and αlose vary within

[0.005, 0.2]which covers a range between a very low and a relatively high learning rate.
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Figure 4.3: Probability of retransmission using different combinations of learning rates

αwin and αlose
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Both plots demonstrate significant performance improvements when the WoLF vari-

able learning rate principle is used, i.e. the region above and to the left of the 45o

diagonal, where αwin < αlose. The fixed learning rate values lie on the 45o diagonal

(where αwin = αlose), and perform noticeably worse than those in the “WoLF region”.

The plots also show that the further in the WoLF region the combination of αwin and

αlose are from the 45o diagonal, the better the system performs within the range of

investigated learning rate values. The opposite strategy of setting the learning rate for

positive rewards higher than that for the negative rewards, i.e. below and to the right

of the 45o diagonal is shown to perform even poorer than the regular fixed learning

rate values. All of this empirical evidence depicted in Figure 4.3 supports the hypoth-

esis that the WoLF strategy for selecting the learning rate values is the best choice for

distributed RL based DSA.

4.2.3 Temporal Performance

Figure 4.4 shows the difference in the average QoS time response (i.e. how QoS

improves over time) of the distributed Q-learning based DSA algorithm with a typical

choice of the fixed learning rate value of 0.1 [102], and the WoLF variable learning rate

of {0.01, 0.1}. Every data point on the graph is the mean of the corresponding data

points from 50 different simulations with different random seeds and UE locations.

The offered traffic is 1 Gbps.

At the early stages of learning, the WoLF learning rate achieves better QoS due to

its increased adaptability to changes in the policies of all eNBs, which are in turn

affecting the learning process of every individual eNB. Furthermore, after 1,000,000

transmissions, the QoS achieved using the WoLF learning rate is still significantly

better, which suggests that fixed learning rates tend to cause the Q-learning algorithm

to converge towards poorer solutions, compared to the WoLF variable learning rates.

These results confirm the analytical prediction of the WoLF learning rate achieving

superior learning process dynamics discussed in Subsection 4.2.1.
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Figure 4.4: Average probability of retransmission temporal response at 1 Gbps offered

traffic using the distributed Q-learning based DSA scheme with and without the WoLF

variable learning rate

4.2.4 Comparison with Heuristic Schemes

In Figure 4.5 the probabilities of retransmission using the fixed learning rate of 0.1 and

the WoLF learning rate {0.01, 0.1} are shown across a wide range of traffic loads. It

also compares the results with the performance of the following two baseline heuristic

schemes:

• a standard LTE dynamic ICIC scheme described in Subsection 3.3.1,

• an opportunistic spectrum sensing based scheme described in Subsection 3.3.2.

The overall simulation length is 1,000,000 file transmissions. Every data point repre-

sents the mean result of 50 different simulations at a given traffic load with the error

bars showing the minimum and maximum of the corresponding 50 values.

Figure 4.5 shows that the Q-learning based schemes outperform both baseline heuristic

schemes at the whole range of traffic loads, demonstrating the effectiveness of the

application of RL to DSA in cellular systems. It also shows that by simply changing

the fixed learning rate of the Q-learning algorithm (α = 0.1) to a WoLF variable

learning rate of {0.01, 0.1}, a 20-41% reduction in the probability of retransmission is

achieved at the lower half of the traffic loads (below 1.04 Gbps). There is no notable

difference in network performance introduced by the WoLF learning rate at higher
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Figure 4.5: Average probability of retransmission at a range of traffic loads using

different intelligent and heuristic DSA algorithms

traffic loads, where the probability of retransmission is above ≈10%.

Although no heuristic information obtained through spectrum sensing or ICIC sig-

nalling is involved in the “Q-learning + WoLF” approach, it shows a consistent signif-

icant improvement in QoS over the purely heuristic schemes. The only disadvantage

of the Q-learning approach is the initial learning period, where the QoS starts at a rel-

atively poor level due to the lack of information in the Q-tables and it takes the eNBs

time to learn mature DSA policies, as seen in the time responses in Figure 4.4. This

issue is addressed in the later chapters of this thesis.

4.3 Q-Learning Based Dynamic Spectrum Sharing

The simulation experiments discussed in this section assess the performance of the

distributed stateless Q-learning based DSA algorithm with the WoLF variable learning

rate α ∈ {0.01, 0.1} in a dynamic spectrum sharing scenario. There, the additional

feature introduced in Subsection 3.1.1 is the presence of a local primary LTE network

operating in the suburban area around the stadium. The stadium small cell network has

secondary access to the 20 MHz LTE channel used by the primary system. Therefore,

the task of the stateless Q-learning based DSA scheme implemented in the secondary

system is to learn appropriate spectrum management policies which provide adequate
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QoS to the secondary users, and which also avoid harmful interference for the primary

system.

The primary system is assumed to employ a dynamic ICIC scheme such as that de-

scribed in Subsection 3.3.1 for the stadium network, where all three eNBs exchange

their current spectrum usage as ICIC messages every 20 ms, and exclude the subchan-

nels currently used by the other two eNBs from their available subchannel list. The

primary eNBs (PeNBs) always try to assign an available subchannel with the lowest

index if any, e.g. they always scan the availability of the subchannels in the same or-

der from the 1st subchannel to the last. In this way, the primary network would make

its spectrum usage less random and more appropriate for the cognitive stadium small

cell network to share, which is in the interests of both the primary and the secondary

system. However, the distributed Q-learning scheme investigated in this chapter does

not assume this and would also work regardless of the spectrum management strategy

of the primary system.

4.3.1 Spectrum Occupancy Analysis

Figure 4.6 shows the spectrum occupancy patterns that emerge autonomously in the

stadium small cell network through distributed machine intelligence afforded by the

distributed Q-learning approach, in response to a specific spectrum occupancy pattern

used by the local primary LTE network. The simulation lasted a total of 2,000,000

transmissions. The offered traffic in the primary system outside the stadium is 20

Mbps, and 1 Gbps in the stadium small cell network.

Figure 4.6b demonstrates that the outer ring of small cell eNBs depicted in Figure 3.2,

which is most vulnerable to interference from the external primary system, has learnt to

largely avoid parts of the spectrum most heavily used by the PeNBs. In contrast, most

other stadium eNBs have suffered significantly less from the primary system interfer-

ence on those subchannels, and thus learned to fully reuse them without many negative

reinforcements, i.e. blocked/interrupted transmissions. Therefore, the average small

cell eNB subchannel occupancy shown in Figure 4.6a is far more evenly distributed.

These results demonstrate the efficiency of such an autonomous RL approach, where
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Figure 4.6: Subchannel occupancy of the primary eNBs and the stadium small cells

that employ the stateless Q-learning based DSA algorithm

no coordination or spectrum planning is required.

4.3.2 Spatial Distribution of User Throughput

An essential requirement for secondary cognitive cellular systems is to ensure that

they do not have a harmful effect on the QoS in the primary system. The contour

plots in Figure 4.7 show the spatial distribution of user throughput (UT), i.e. data rates

experienced by the primary and the secondary users, achieved by the autonomously

emerging spectrum sharing patterns shown in Figure 4.6.

Figure 4.7a shows that the primary user UT varies insignificantly, 2.95-3.15 Mb/s,

whilst Figure 4.7b shows that at the same time an adequate QoS (≈1.5-2.2 Mb/s UT)
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is provided to the ultra-dense population of secondary users. As expected the primary

UEs closer to the PeNBs have a higher UT due to the higher quality of the links pro-

vided to them in terms of the SINR, whereas the UEs at the cell edge have a slightly

lower SINR and UT. Although the primary UEs in the close vicinity of the stadium

are most vulnerable to the secondary system interference, the degradation in the UT

provided to them is negligible.

The top-right part of the stadium small cell network achieves a poorer QoS than else-

where due to a higher amount of primary system interference received from the PeNB

closest to the stadium. Its location is marked by the white triangle north of the sta-

dium in Figure 4.7a, i.e. north of the (0, 0) coordinate. The stadium network QoS

is also visibly better at the edges of the spectator area due to the reduced amount of

interference from other small cell eNBs. This is because the users located closer to the

middle of the spectator area receive interference from the eNBs in both radial direc-

tions, whereas the users located at the edge do not receive inter-cell interference from

the areas outside of the doughnut-shaped stadium network. No difference between the

QoS at the centre and at the edge of the small cells is observed due to the open-loop

power control scheme described in Subsection 3.1.5 that provides the same SNR to

both cell-centre and cell-edge UEs.

4.3.3 Primary and Secondary User Quality of Service

The spectrum occupancy and spatial QoS distribution results described in Figures 4.6

and 4.7 show that the secondary stadium small cell network successfully adapts to the

spectrum usage of the primary system to minimise the harmful effect of interference

from the latter on the former. They also show that the effects of interference from the

secondary system on the QoS provided to the primary users are negligible. However,

that simulation experiment only considers specific traffic loads outside and inside the

stadium, i.e. in the secondary and primary system respectively. The contour plots in

Figure 4.8 show the capacity and QoS of the stadium small cell network at a range of

primary and secondary system offered traffic values.

Figures 4.8a, 4.8b and 4.8c show that the secondary stadium network is negatively
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Figure 4.8: Capacity and quality of service in the secondary stadium network at a

range of primary and secondary system traffic loads

affected by the interference from the high power local primary system, since its QoS

deteriorates both as its own offered traffic increases and as the primary system offered

traffic increases (in the horizontal direction on the contour plots). However, Figure

4.8d shows that the capacity of the stadium small cell network is independent of the

wide range of primary system traffic load variations investigated in these simulation

experiments. This demonstrates that the distributed Q-learning based DSA algorithm

investigated in this chapter is able to utilise and reuse the spectrum highly efficiently,

even at high primary system traffic loads, where all of it is actively used by the primary

system.

A critical requirement for successful coexistence between a primary network and a

secondary cognitive cellular system is eliminating harmful effects of the secondary

system interference on the primary user QoS. Figure 4.9 contains the same type of

2-dimensional offered traffic sweeps as those in Figure 4.8, but which show the QoS
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and system throughput of the primary network outside of the stadium.

Figure 4.9a shows that the overall mean UT of the primary system is independent

of the offered traffic variations in the stadium small cell network; therefore, it is not

affected by the secondary system interference. Similarly the network-wide probability

of retransmission and the overall system throughput shown in Figures 4.9c and 4.9d

respectively are unaffected by the secondary system interference. Figure 4.9b shows

the mean UT in the area 0-100 m away from the stadium boundary, i.e. the area

most vulnerable to interference from the densely populated stadium small cell network

as shown in Figure 4.7a. In this case, the contour plot shows that there is indeed a

deterioration in the primary user QoS in this area due to an increase in the secondary

system traffic load. The maximum decrease in the mean UT of these primary UEs due

to a full-scale increase in the secondary system offered traffic from 0.23 to 1.6 Gbps is

8.9%. However, the QoS of the secondary system shown in Figure 4.8 at such a high
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Figure 4.9: Capacity and quality of service in the primary network at a range of pri-

mary and secondary system traffic loads
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traffic load is extremely low, so it would not be feasible for it to support it anyway. At

a more feasible stadium offered traffic load of ≈1 Gb/s the maximum deterioration in

the mean UT of the primary users in the 100 m vicinity of the stadium is only 2.8%

which is significantly more negligible.

4.4 Conclusion

In this chapter the concepts of distributed stateless Q-learning and the Win-or-Learn-

Fast (WoLF) variable learning rate principle were introduced. The simulation results

empirically demonstrated that it is possible to achieve significant QoS performance im-

provements and to increase the adaptability of the distributed Q-learning based DSA

algorithm simply by choosing an appropriate WoLF learning rate. This machine in-

telligence based approach was also shown to outperform an opportunistic spectrum

sensing scheme and a dynamic ICIC scheme typical for LTE, but with no spectrum

sensing or ICIC signalling involved.

In addition, the distributed stateless Q-learning approach to DSA was shown to be ef-

fective in a dynamic secondary spectrum sharing scenario, where a stadium small cell

network has only secondary access to an LTE channel used by a local primary network.

The cognitive stadium network employs the distributed Q-learning algorithm to learn

appropriate spectrum management policies that adapt to a specific primary system

spectrum usage pattern. It is shown to provide adequate QoS to the secondary users at

a wide range of traffic loads up to 1 Gb/s and to support high system throughput den-

sities, whilst having a negligible effect on the primary user QoS with no coordination

or spectrum planning involved.
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5.1 Motivation

An important step in designing RL algorithms not only for DSA applications, but also

for any other type of learning problems, is to perform theoretical analysis of their

convergence. There is a large amount of previous work on probabilistic analysis of

RL algorithms applied to wireless communications problems, where the researchers

have stochastically modelled the RL problems to derive their optimal solutions and

compare them with the solutions obtained through learning. For example, Pandana and

Liu [67] model the problem of average throughput maximisation per total consumed

energy in a wireless sensor network as an MDP, derive an optimal solution analytically,

and compare it with ones achieved by an RL algorithm. In another example Song and

Jamalipour [83] model a vertical hand-off decision problem as a semi-MDP and use Q-

learning to solve this model directly. However, none of the stochastic models proposed

in the wireless communications domain provide insight into the dynamics of the RL

algorithms themselves, as opposed to the learning problems they are applied to.
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The purpose of this chapter is to propose a simple Bayesian network model for analysing

convergence properties of distributed RL based DSA algorithms such as stateless Q-

learning introduced in Chapter 4. This model is based on a minimum complexity 2

base station (BS) 2 user equipment (UE) inter-cell interference problem, and provides

a platform for theoretical evaluation of RL algorithms before they are applied to com-

plex real-world DSA problems. In previous work on combining Bayesian networks

and RL, the purpose of Bayesian networks was to enhance the performance of RL al-

gorithms by being used as a framework for reasoning under uncertainty, e.g. [48][68].

There appears to be no evidence in the literature of using Bayesian networks as an

analysis tool for RL algorithms.

5.2 Simple Inter-Cell Interference Model

In DSA networks all BSs are allowed opportunistic access to the whole spectrum pool

available to the network. The main limiting factor for network throughput and QoS

performance in DSA networks is inter-cell interference, since all cells are allowed

to use the same spectrum. This section presents a simple network model used for

theoretical analysis of inter-cell interference.

Figure 5.1 shows a small and analytically tractable DSA network model which can be

related to most inter-cell interference problems in general. The aim of this model is to

provide a small yet sufficiently complex DSA problem for theoretical analysis of RL

algorithms which can then be extrapolated to larger and more realistic scenarios.

The network consists of two BSs and two UEs, each connected to its own BS. If one

of the UEs is located within the interference range of the other BS, it suffers from

harmful co-channel interference from it. The network is assumed to be allocated 2

subchannels, and the task of both BSs is to learn to use their own subchannel through

UE1 UE2BS1 BS2

Signal Interference

Figure 5.1: 2 base station 2 user equipment network model
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distributed machine intelligence.

5.3 Bayesian Network Model

Figure 5.2 presents the Bayesian network which describes the behaviour of the dis-

tributed Q-learning algorithm introduced in Subsection 4.1.2 when applied to the sim-

ple DSA network model shown in Figure 5.1.

The variables used to denote the Bayesian network nodes are the following:

• Πn ∈ {Same,Diff} - the joint policy of the BSs after n learning iterations.

The individual policy of one BS is defined as its preferred subchannel πx ∈

{1, 2} and is derived from the Q-table based on Equation (4.3). The joint policy

Πn takes two values of interest - whether the individual policies of 2 BSs are the

same or different (Πn = Diff is the learning objective).

• IUEx ∈ {Y es,No} - whether or not UE1 or UE2 is located within the interfer-

ence range of the adjacent BS during the current file arrival.

• TxOL ∈ {Y es,No} - whether file transmissions to UE1 and UE2 overlap in

time during the current iteration.

• RUEx ∈ {S, F} - whether a file transmission to UE1 or UE2 was successful

(S), or whether it failed (F ) due to interference. It is conditionally dependent on

Πn, IUEx and TxOL.

• Πn+1 ∈ {Same,Diff} - the joint policy after the Q-learning updates are per-

Πn

Πn+1

RUE1 RUE2

IUE1 IUE2TxOL

Figure 5.2: Bayesian network describing the behaviour of distributed Q-learning
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formed based on Equation (4.4), as a result of the outcome at the current itera-

tion. It is conditionally dependent on Πn, RUE1 and RUE2.

Based on the conditional dependencies described above and depicted in Figure 5.2, the

equation for calculating the joint probability distribution over all variables Pjoint =

P (Πn+1, Πn, RUE1, RUE2, IUE1, IUE2, TxOL) is the following:

Pjoint = P (Πn+1|Πn, RUE1, RUE2)

×P (RUE1|Πn, IUE1, TxOL) P (RUE2|Πn, IUE2, TxOL)

×P (Πn) P (IUE1) P (IUE2) P (TxOL)

(5.1)

which consists of a number of prior probabilities of the form P (X), and conditional

probabilities of the form P (X|Y1...Yn).

5.3.1 Prior and Conditional Probability Distributions

The prior probability distributions that appropriately describe the given 2 BS 2 UE

scenario are defined in Table 5.1. Before any file arrivals at either BS, the Q-tables

of both BSs are initialised to zero for both subchannels. Therefore, there is a 50%

chance of the BSs choosing the same subchannel, since both of them will choose

either subchannel at random, i.e. P (Π0 = Same) = 0.5. Furthermore, it is assumed

that the interference range overlap of the BSs is such that there is a 40% chance of

a UE being located in it, i.e. P (IUEx = Y es) = 0.4. Finally, the offered traffic

level is assumed to produce a 60% chance of transmissions to both UEs overlapping in

time at any given learning iteration, thus potentially resulting in inter-cell interference:

P (TxOL = Y es) = 0.6. The values chosen for P (IUEx) and P (TxOL) only affect

the relative difficulty of the DSA problem. They can be changed without the loss of

generality of the proposed probabilistic model.

Table 5.1: Prior probability distributions used in the Bayesian network model of dis-

tributed stateless Q-learning

P (Π0) P (IUEx) P (TxOL)

Same Diff Y es No Y es No

0.5 0.5 0.4 0.6 0.6 0.4
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The conditional probability distributions are defined in Table 5.2. The values used

for the P (RUEx|Πn, IUEx, TxOL) distribution state that a transmission to UE1 or

UE2 will fail with a probability of 1 (RUEx = F ) only if the given UE is within the

interference range of the other BS (IUEx = Y es), transmissions to both UEs overlap in

time (TxOL = Y es) and both BSs have chosen the same subchannel (Πn = Same).

Whereas, in any other case, i.e. if Πn = Diff , IUEx = No or TxOL = No, the

transmission will be successful: RUEx = S.

The P (Πn+1|Πn, RUE1, RUE2) table defines how the Q-learning policies of both BSs

(Πn+1) are likely to change, given their current joint policy Πn, and the result of trans-

missions to both UEs (RUE1 and RUE2). Both BSs are running a stateless Q-learning

algorithm introduced in Subsection 4.1.2. Firstly, if the transmissions to both UEs

are successful (RUE1 = RUE2 = S), then both BSs will reward their respective sub-

channels and maintain the same policies regardless whether they are the same or dif-

ferent (Πn+1 = Πn). Secondly, if Πn = Same and only a transmission to one of

the UEs failed ({S, F} or {F, S}), this UE is more likely to change its policy due

to the WoLF learning rate used in its Q-learning algorithm, described in Subsection

4.2.1. Therefore, there is a relatively high probability of the policies being different

Table 5.2: Conditional probability distributions used in the Bayesian network model

of distributed stateless Q-learning

P (RUEx|Πn, IUEx, TxOL)

S 0 1 1 1 1 1 1 1

F 1 0 0 0 0 0 0 0

Same Same Same Same Diff Diff Diff Diff

Y es Y es No No Y es Y es No No

Y es No Y es No Y es No Y es No

Πn, IUEx, TxOL

P (Πn+1|Πn, RUE1, RUE2)

Same 1 Low Low High 0

Diff 0 High High Low 1

Same Same Same Same Diff

S, S S, F F , S F , F S, S

Πn, RUE1, RUE2
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at the next iteration: P (Πn+1 = Diff) = High. If transmissions to both UEs fail

({F, F}), both BSs are likely to change their policies to the same other subchannel,

thus making Πn+1 = Same a more likely outcome: P (Πn+1 = Same) = High.

The remaining three combinations of Πn, RUE1 and RUE2 values are not considered,

since they can never occur according to the P (RUEx|Πn, IUEx, TxOL) conditional

probability distribution. Regardless of the values used for these combinations in the

P (Πn+1|Πn, RUE1, RUE2) table, they will be multiplied by zero during the calculation

of the joint probability distribution defined in Equation (5.1).

5.3.2 Bayesian Network Inference

The aim of the Bayesian network model described above is to establish the marginal

likelihood of the joint Q-learning policy at the next iteration P (Πn+1) by taking a sum

over all other variables in Pjoint as follows:

P (Πn+1) =
∑

Πn

∑

RUE1

∑

RUE2

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (5.2)

The resulting distribution can then be substituted as the prior for the next learning

iteration: P (Πn) ← P (Πn+1). This enables iterative evaluation of the Bayesian net-

work model which shows how the probability of transmission failure P (RUEx) and the

probability of BSs using different subchannels P (Πn) change over time, as the learn-

ing process progresses. The individual P (RUEx) distribution can be obtained using

the same principle of marginalisation as follows:

P (RUE1/2) =
∑

Πn+1

∑

Πn

∑

RUE2/1

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (5.3)

This probabilistic analysis is only valid for the 2 BS 2 UE network model described in

Section 5.2, and is not designed to be scalable to larger and more realistic networks.

The purpose of this model is to enable theoretical analysis of the relative behaviour of

RL algorithms using a simple and tractable problem. An additional, useful approach

to evaluating such algorithms used in Chapter 6 is performing realistic large scale sim-

ulations and assessing similarities between the simulation results and the theoretical
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predictions obtained via the method proposed in this chapter.

5.4 Probabilistic Analysis vs Monte Carlo Simulation

Figure 5.3 shows the expected convergence behaviour of distributed Q-learning analyt-

ically derived through iterative evaluation of the Bayesian network model developed in

this chapter. The values for High and Low in the conditional probability distributions

in Table 5.2 are assumed to be {0.9, 0.1} without the loss of generality. The analytical

results are compared with a Monte Carlo simulation, where the Q-learning algorithm

from Subsection 4.1.2 is applied to the 2 BS 2 UE scenario described in Section 5.2. At

every transmission arrival the simulation experiment randomly decided whether each

UE is within the range of an interfering BS, and whether the transmissions to both

UEs overlap in time according to the prior probability distributions defined in Table

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

P
(π

1
 ≠

 π
2
)

Number of iterations

Bayesian network analysis
Monte Carlo simulation

(a) Probability of BSs having different policies

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16 18

P
(t

x
 f

ai
le

d
)

Number of iterations

Bayesian network analysis
Monte Carlo simulation - UE1
Monte Carlo simulation - UE2

(b) Probability of a UE being blocked or interrupted

Figure 5.3: Convergence of distributed Q-learning using Bayesian network analysis

and a Monte Carlo simulation
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5.1. The probabilities plotted for every learning iteration, i.e. every time step, were

obtained by averaging over 10,000 independent runs.

The comparison of the convergence behaviour predicted by the Bayesian network

model and that achieved by the Monte Carlo simulation demonstrates remarkable ac-

curacy of the joint policy transition analysis tool proposed in this chapter. Therefore, it

is seen to be a valid and effective approach for stochastic modelling of RL based DSA

algorithms. It can be used for designing and analysing the convergence and adaptabil-

ity of more sophisticated RL algorithms by adding nodes and edges to the Bayesian

network from Figure 5.2. The added nodes and edges would represent additional func-

tionality and conditional dependencies introduced by the new schemes. This approach

would clearly demonstrate in what ways other schemes designed in future using this

method extend the basic distributed RL approach depicted in Figure 5.2. For example,

this methodology is used for the theoretical analysis of the DSA algorithm proposed

in Chapter 6.

5.5 Absorbing Markov Chain Formulation

Figure 5.4 shows an alternative formulation of the convergence properties of dis-

tributed Q-learning derived from the Bayesian network model introduced in Section

5.3. It is a Markov chain describing the probabilities of transitions between two dif-

ferent states of the joint policy - Same (π1 = π2) and Diff (π1 6= π2). The transition

probabilities are taken from the P (Πn+1|Πn) distribution which, in turn, is calculated

using the following definition of conditional probability:

P (Πn+1|Πn) =
P (Πn+1,Πn)

P (Πn)
(5.4)

where P (Πn+1,Πn) is obtained by marginalising all other variables from the overall

joint distribution as follows:

P (Πn+1,Πn) =
∑

RUE1

∑

RUE2

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (5.5)
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π1 = π2 π1 6= π2

0

10.73

0.27

Figure 5.4: An absorbing Markov chain describing the transitions between two states

of the joint policy derived from Bayesian network model of the 2 base station 2 user

equipment cellular network

Firstly, the Markov chain in Figure 5.4 shows that “π1 6= π2” is an absorbing state,

i.e. a state that cannot be left, since the probability of transition from “π1 6= π2”

to “π1 = π2” is zero. Therefore, this is an absorbing Markov chain which formally

demonstrates that the RL algorithm is guaranteed to converge on the desired absorbing

state “π1 6= π2”. The speed of convergence is controlled by the probability of transition

from “π1 = π2” to “π1 6= π2”, which in this case is 0.27. The objective of future, more

advanced RL algorithms, designed using the method proposed in this chapter, is to

increase this transition probability to speed up their convergence and, thus, increase

their adaptability, whilst preserving the absorbing state “π1 6= π2”.

5.6 Conclusion

The Bayesian network based joint policy transition analysis methodology proposed

in this chapter is able to provide a simple and accurate probabilistic model of dis-

tributed RL algorithms applied to a minimum complexity DSA problem. A Monte

Carlo simulation of a distributed Q-learning based DSA algorithm shows that the pro-

posed approach demonstrates remarkably accurate prediction of the convergence be-

haviour of such algorithms. Furthermore, their behaviour can also be expressed in the

form of an absorbing Markov chain, derived from the novel Bayesian network model.

This representation enables further theoretical analysis of convergence and adaptabil-

ity properties of RL based DSA algorithms. Finally, the main benefit of the analysis

tool presented in this chapter is that it enables the design and theoretical evaluation of

novel RL based DSA algorithms by extending the proposed Bayesian network model,

that describes a standard distributed Q-learning scheme.
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6.1 Motivation

Although RL algorithms such as stateless Q-learning investigated in Chapters 4 and 5

have been shown to be a powerful approach to problem solving, their common disad-

vantage is the need for many learning iterations before convergence on an acceptable

solution, which significantly limits their adaptability in challenging and potentially dy-

namic multi-agent environments. One of the more recent promising solutions to this

issue, proposed in the artificial intelligence domain, is the heuristically accelerated

reinforcement learning (HARL) approach. Its goal is to speed up RL algorithms by

guiding the exploration process using additional heuristic information [11]. In [10],

case-based reasoning is used for heuristic acceleration in a multi-agent RL algorithm
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to assess similarity between states of the environment and to make a guess at what

action needs to be taken in a given state, based on the experience obtained in other

similar states. In [11], Bianchi et al. prove the convergence of four multi-agent HARL

algorithms and show how they outperform the regular RL algorithms. There appears

to be no evidence in the literature of the HARL approach being applied in the wireless

communications domain.

The purpose of this chapter is to alleviate the problem of poor temporal performance of

RL based DSA algorithms and, thus, to improve their adaptability, by proposing a cog-

nitive DSA scheme which combines distributed Q-learning and standardised inter-cell

interference coordination (ICIC) signalling in LTE networks using a novel adaptation

of the HARL framework. Furthermore, it is designed to comply with the current LTE

standards and enables robust distributed machine intelligence to be easily implemented

in current or future LTE releases.

In previous work on combining ICIC and RL, researchers have only considered apply-

ing RL to learning various parameters related to ICIC or radio resource management

in Orthogonal Frequency-Division Multiple Access (OFDMA) cellular systems, such

as LTE or WiMAX. For example, Simsek et al. [81] use RL to learn optimal cell range

bias and power allocation strategies and compare them to static ICIC methods; Dirani

and Altman [25] use a fuzzy Q-learning algorithm and ICIC to learn a coordinated

power allocation strategy; and Vlacheas et al. [91] use a fuzzy RL principle for auto-

matic tuning of the Relative Narrowband Transmit Power (RNTP) indicator, which is

a key ICIC parameter in the LTE downlink. However, no evidence of previous work in

the literature was found on using heuristic ICIC methods to enhance the performance

of RL based DSA algorithms.

6.2 Heuristically Accelerated Reinforcement Learning

Figure 6.1 shows a novel block diagram representation of the processes involved in

HARL. It demonstrates that HARL is an extension of regular RL algorithms. The un-

filled blocks and solid lines constitute a block diagram of regular RL depicted in Figure

2.6, whereas the dashed lines and shaded blocks indicate the additional functionality



Chapter 6. Distributed Heuristically Accelerated Q-Learning 91

Environment
Choose
Action

Derive

Derive

Heuristic
Policy

Policy

Update

Q-Table

External

Sample

Outputs

Information

State

StateQ-Table

Action

Outputs

Heuristic Policy

Policy

Figure 6.1: Block diagram of heuristically accelerated reinforcement learning

afforded by the heuristic acceleration.

The role of the inner RL loop is to learn a good policy to be used by the learning agent.

It achieves this goal by observing the actions taken by the learning agent, sampling the

outputs caused by them, and directly estimating (updating) the entries in the Q-table.

The role of the policy is to map every state of the environment to the most appropriate

action that can be taken in that state. It can be derived from the estimated Q-table and

used for decision making. In the context of the DSA problem, the output of interest is

whether or not a file transmission is blocked or interrupted, and the action is the piece

of resources allocated it.

The key additional element provided by HARL is the derivation of a heuristic policy.

According to [11], a heuristic policy is derived from additional knowledge, either ex-

ternal or internal, which is not included in the learning process. Generally, the goal of

the heuristic policyHt(s, a) is to influence the action choices of a learning agent, i.e. to

modify its current policy πt(s) in a way which would accelerate the learning process.

The format and dimensions of Ht(s, a) should be compliant with the Q-table used by

the given learning agent, such that its new combined policy πc
t (s) can be derived using

the following equation:

πc
t (s) = argmax

a
(Qt(s, a) +Ht(s, a)) (6.1)

where πc
t (s) is the combined policy of the given learning agent for state s at time t

based on its Q-table Qt(s, a) and the heuristic policy Ht(s, a). If Ht(s, a) is always
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zero, the algorithm becomes a regular RL algorithm. In the case of the stateless Q-

learning algorithm described in Subsection 4.1.2, the heuristic function would not have

a state dimension and can be denoted by Ht(a).

6.3 Distributed ICIC Accelerated Q-Learning

This section proposes the distributed ICIC accelerated Q-learning (DIAQ) DSA scheme

that combines distributed Q-learning and ICIC using the HARL framework introduced

in the previous section to mitigate the issue of poor temporal performance characteris-

tics of Q-learning based DSA algorithms.

As described in Subsection 3.1.6, by using ICIC signalling over the X2 interface, every

eNB in an LTE network has the capability of knowing on which virtual resource blocks

(VRBs) the neighbouring eNBs are likely to interfere with it, i.e. transmit at a power

above the RNTP threshold. In a scenario, where a 20 MHz LTE channel consisting of

100 VRBs is allocated to the network, the length of an RNTP message is 100 bits or

25 hexadecimal characters. There, every subchannel consists of 4 adjacent VRBs, if

resource allocation “Type 0” is used [3]. In this case the RNTP messages sent by every

eNB to its neighbours contain 25 hexadecimal characters, stating which subchannels

they need to reserve to avoid inter-cell interference. 0xF denotes that a subchannel is

in use, and 0x0 means it is safe to use by the eNB which receives the RNTP message.

The DIAQ scheme proposed in this section uses these RNTP messages for creating

ICIC bitmasks indicating which subchannels are not safe to use for any given eNB,

as notified by its neighbours, and using these bitmasks for creating heuristic functions

HICIC(a), which in turn influence the spectrum assignment choices made by the dis-

tributed Q-learning based DSA algorithm.

When a request for a new file transmission is received, the eNB starts by aggregating

the latest RNTP messages from its neighbours into an ICIC bitmask using a bitwise

OR operation, as described by the following equation:

MaskICIC =

N
⋃

n=1

RNTPn (6.2)
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where MaskICIC is a 25 hexadecimal character string representing the subchannels

reserved by any of the neighbouring base stations by F , and representing the “safe-to-

use” subchannels by 0, RNTPn is a 25 hexadecimal character RNTP message of the

nth neighbouring eNB, and N is the total number of neighbouring eNBs. The RNTP

message exchanges can take place as often as every 20 ms [79], and they do not have

to be synchronised. Every eNB always uses the latest RNTP message received from a

given neighbour.

After creating the ICIC mask, the eNB derives a heuristic function HICIC(a) as fol-

lows:

HICIC(a) =







hICIC MaskICIC(a) = 0xF

0 MaskICIC(a) = 0x0
(6.3)

where HICIC(a) is the value of the heuristic function for subchannel a, MaskICIC(a)

is the hexadecimal number in the ICIC bitmask that corresponds to subchannel a, and

hICIC is a fixed negative value with a greater amplitude than the full range of possible

Q(a) values. In case of the distributed Q-learning algorithm described in Subsection

4.1.2, Q(a) ∈ [−1, 1], therefore hICIC < −2. HICIC(a) can be employed to create a

temporary masked Q-table Qm(a) using the following equation:

Qm(a) = Q(a) +HICIC(a) (6.4)

Qm(a) is then used for heuristically guided decision making, whilst a normal learning

process takes place using Q(a), as defined in the stateless Q-learning update formula

given in Equation (4.4).

By using the proposed Qm(a) and HICIC(a), the eNB is guaranteed to prioritise the

subchannels marked as “safe” by MaskICIC before the “unsafe” subchannels by shift-

ing the Q-values of the latter to the bottom of the Q-table, whilst still preserving their

respective order in terms of the Q-values (due to the fixed value of hICIC).

The detailed flowchart of the proposed DIAQ scheme is shown in Figure 6.2. The

novel ICIC related algorithm steps are red and use dotted outlines. The rest of the

flowchart describes a regular distributed Q-learning based DSA process introduced in

Subsection 4.1.2. The shaded blue blocks with solid outlines indicate the functions

which drive the RL process, i.e. update the Q-table.
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Figure 6.2: Flowchart of the distributed ICIC accelerated Q-learning (DIAQ) scheme

6.4 Theoretical Evaluation

Before testing the developed DIAQ scheme in a realistic cognitive cellular system

simulation scenario described in Subsection 3.1.1, its expected performance improve-

ments over regular distributed Q-learning are analytically derived using the simple 2

eNB 2 UE inter-cell interference problem from Section 5.2 and a novel extension to

the Bayesian network model proposed in Section 5.3.
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6.4.1 Modified Bayesian Network Model

Figure 6.3 presents an adaptation of the Bayesian network model proposed in Section

5.3 which describes the behaviour of DIAQ when applied to the simple 2 eNB 2 UE

cellular network described Section 5.2. The shaded nodes and dotted edges show

extra dependencies introduced by DIAQ, compared to classical stateless Q-learning

described by the Bayesian network shown in Figure 5.2. The variables used to denote

the Bayesian network nodes are the following:

• RNTP ∈ {Y es,No} - whether or not, at the latest file arrival time, the corre-

sponding eNB has an up-to-date RNTP message from its neighbour.

• IUEx ∈ {Y es,No} - whether or not UE1 or UE2 is located within the interfer-

ence range of the adjacent eNB during the current file arrival.

• Πn ∈ {Same,Diff} - joint policy of the eNBs after n learning iterations. The

policy of an eNB is defined as its preferred subchannel (1 or 2). Πn takes two

values of interest - whether the policies of 2 eNBs are the same or different

(Πn = Diff is the learning objective).

• Πm
n ∈ {Same,Diff} - joint masked policy, i.e. the combination of Πn and the

heuristic functions of both eNBs defined in Equation (6.3). It is conditionally

dependent on Πn and RNTP (Πm
n may be different to Πn, based on the Q-table

transformation described by Equation (6.4)).

• RUEx ∈ {S, F} - whether or not a file transmission to UE1 or UE2 is successful

Πn

Πn+1

Πm
n

RNTP

RUE1

RUE2

IUE1

IUE2

Figure 6.3: Bayesian network describing the behaviour of distributed ICIC accelerated

Q-learning applied to the 2 eNB 2 UE dynamic spectrum access network
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(S), or whether it failed (F ) due to interference. It is conditionally dependent on

Πm
n and IUEx.

• Πn+1 ∈ {Same,Diff} - the updated joint policy for the next iteration as a

result of the outcome at the current iteration. It is conditionally dependent on

Πn, Πm
n , RUE1 and RUE2.

The key difference between this Bayesian network model and the one describing reg-

ular stateless Q-learning shown in Figure 5.2 is the addition of the joint masked policy

node Πm
n , which takes into account the RNTP signal from the neighbouring eNB and

which is now used for decision making instead of the regular joint Q-learning pol-

icy Πn. The environmental TxOL variable from the original Bayesian network that

indicates whether transmissions overlap in time is omitted in the new version for sim-

plicity, since it only affects the convergence speed of the learning process and does not

have any effect on the relative performance of DIAQ compared to regular Q-learning.

It can be viewed as part of the IUE1 and IUE2 variables whose only role is determin-

ing whether either UE receives harmful inter-cell interference from the adjacent eNB

during a pair of transmissions from both eNBs.

Similarly to the Bayesian network model discussed in Section 5.3, based on the con-

ditional dependencies depicted in Figure 6.3, the equation for calculating the joint

probability distribution over all variables Pjoint = P (Πn+1, Πn, Πm
n , RUE1, RUE2,

IUE1, IUE2, RNTP ) is the following:

Pjoint = P (Πn+1|Πn,Π
m
n , RUE1, RUE2) P (RUE1|Π

m
n , IUE1) P (RUE2|Π

m
n , IUE2)

×P (Πm
n |Πn, RNTP ) P (Πn) P (RNTP ) P (IUE1) P (IUE2)

(6.5)

which consists of a number of prior probabilities of the form P (X), and conditional

probabilities of the form P (X|Y1...Yn).

6.4.2 Prior and Conditional Probability Distributions

The prior probability distributions that appropriately describe the 2 eNB 2 UE sce-

nario from Section 5.2 are defined in Table 6.1. The P (Π0) and P (IUEx) distributions

are identical to those proposed in Section 5.3 for classical stateless Q-learning. The
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Table 6.1: Prior probability distributions used in the Bayesian network model of dis-

tributed ICIC accelerated Q-learning (DIAQ)

P (Π0) P (IUEx) P (RNTP )

Same Diff Y es No Y es No

0.5 0.5 0.4 0.6 High Low

probability of an RNTP message exchange RNTP is a new additional environmen-

tal variable that is specific to inter-eNB ICIC signalling used by the DIAQ scheme.

P (RNTP = Y es) = High represents a high chance of an RNTP message exchange

taking place between current file arrivals at the two eNBs. Since these exchanges

can take place as often as every 20 ms, an eNB is highly likely to have an up-to-date

RNTP message from its neighbour. If P (RNTP = Y es) is changed to 0, the Bayesian

network model will describe the regular stateless Q-learning algorithm introduced in

Subsection 4.1.2.

The conditional probability distributions are defined in Table 6.2. The values used for

P (Πm
n |Πn, RNTP ) state that the masked policies Πm

n of the eNBs will be the same

(Same) with a probability of 1, if their Q-learning policies are the same (Πn = Same)

and there was no RNTP exchange between the file arrivals that could change them

(RNTP = No). In all other cases, i.e if the Q-learning policies of the eNB are al-

ready different (Πn = Diff ) or if there has been a timely RNTP signal exchange

(RNTP = Y es) to correct them, the masked policies of the eNBs will always be

different (Diff ). The reasoning behind the P (RUEx|Π
m
n , IUEx) distribution is to indi-

cate, that a transmission to UE1 or UE2 will fail with a probability of 1 (RUEx = F ),

if IUEx = Y es and both eNBs have chosen the same subchannel (Πm
n = Same). If

Πm
n = Diff or IUEx = No, then the transmission will be successful: RUEx = S.

The P (Πn+1|Πn,Π
m
n , RUE1, RUE2) table defines how the Q-learning policies of both

eNBs (Πn+1) are likely to change, given their current Πn and Πm
n , and the result of

transmissions to both UEs (RUE1 and RUE2). Firstly, if both Πn and Πm
n are Same or

both are Diff , and the transmissions to both UEs are successful (RUE1 = RUE2 =

S), then both eNBs will reward their respective subchannels and maintain the same

policies with a probability of 1 (Πn+1 = Πn). Secondly, if both Πn and Πm
n are

Same and only a transmission to one of the UEs failed ({S, F} or {F, S}), this UE is
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Table 6.2: Conditional probability distributions used in the Bayesian network model

of distributed ICIC accelerated Q-learning (DIAQ)

P (Πm
n |Πn, RNTP )

Same 0 1 0 0

Diff 1 0 1 1

Same, Y es Same, No Diff , Y es Diff , No

Πn, RNTP

P (RUEx|Π
m
n , IUEx)

S 0 1 1 1

F 1 0 0 0

Same, Y es Same, No Diff , Y es Diff , No

Πm
n , IUEx

P (Πn+1|Πn,Π
m
n , RUE1, RUE2)

Same 1 Low Low High f(n) 0

Diff 0 High High Low 1− f(n) 1

Same Same Same Same Same Diff

Same Same Same Same Diff Diff

S, S S, F F , S F , F S, S S, S

Πn,Π
m
n , RUE1, RUE2

more likely to change its policy due to the WoLF learning rate used in its Q-learning

algorithm, described Subsection 4.2.1. Therefore, there is a relatively high probability

of the policies being different at the next iteration: P (Πn+1 = Diff) = High. If

transmissions to both UEs fail ({F, F}), both eNBs are likely to change their policies,

thus making Πn+1 = Same a more likely outcome. Lastly, if the Q-learning policies

of both eNBs are the same (Πn = Same), the masked policies are different (Πm
n =

Diff ), and both transmissions are successful (RUE1 = RUE1 = S), the probability of

the Πn+1 = Same at the next iteration is time-dependent. A realistic approximation

of its value at different stages of learning is the following:

f(n) =



















0 n = 0

0.5 n = 1

High n > 1

(6.6)

If this is the first learning iteration (n = 0), the Q-tables of both eNBs are initialised
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to zeros. Therefore, if different subchannels are successfully used (Πm
n = Diff ),

they will be positively reinforced and used at the next iteration with a probability of 1:

P (Πn+1 = Same|...) = 0. After one learning iteration, there is about a 50% chance of

one of the eNBs changing its Q-learning policy, depending on whether its first trial was

a success on its preferred subchannel, or a failure on the other subchannel: P (Πn+1 =

Same|...) = 0.5. Afterwards, the eNB, whose Q-learning policy is overriden by the

RNTP exchange (since Πn 6= Πm
n ), is relatively unlikely to change its policy due to the

effect of the WoLF learning rates, i.e. the Q-values undergo smaller step changes after

successful trials: P (Πn+1 = Same|...) = High.

The remaining ten combinations of Πn, Πm
n , RUE1 and RUE2 values are not considered,

since they can never occur according to the P (Πm
n |Πn, RNTP ) and P (RUEx|Π

m
n , IUEx)

conditional probability distributions. Regardless of the values used for these combi-

nations in the P (Πn+1|Πn,Π
m
n , RUE1, RUE2) table, they will be multiplied by zero

during the calculation of the joint probability distribution defined in Equation (6.5).

6.4.3 Convergence Behaviour of DIAQ

The comparison between the expected convergence behaviour of DIAQ and that of

classical stateless Q-learning is obtained using the same approach of iterative evalu-

ation of the Bayesian network model as that proposed in Section 5.3. It shows how

the probability of transmission failure P (RUEx) and the probability of eNBs using

different subchannels P (Πm
n ) change over time, as the learning process progresses.

Figure 6.4 shows the results of such iterative evaluation of the Bayesian network from

Figure 6.3. It compares the convergence performance of classical stateless Q-learning

and DIAQ with P (RNTP = Y es) values of 0.9 and 0.6, respectively the cases where

ICIC signalling between the neighbouring eNBs is moderately reliable and relatively

unreliable. The values for High and Low in the conditional probability distributions

in Table 6.2 are assumed to be {0.9, 0.1} without the loss of generality.

Figure 6.4 demonstrates how the presence of RNTP message exchanges in DIAQ,

even when they are relatively unreliable (P (RNTP = Y es) = 0.6), dramatically

speeds up the learning process, especially at its early stages. The eNBs become highly
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Figure 6.4: Convergence behaviour of Q-learning and DIAQ, using the probabilistic

model of the 2 eNodeB 2 user equipment cellular network

likely to converge on the optimal solution (Π = Diff ) significantly faster using DIAQ

compared to Q-learning which operates using trial-and-error experience only. Conse-

quently, the temporal performance of the network in terms of the probability of trans-

mission failures shown in Figure 6.4b is also superior using DIAQ.

6.4.4 Absorbing Markov Chain Analysis

Figure 6.5 compares the convergence properties of classical stateless Q-learning and

DIAQ expressed as absorbing Markov chains that represent the joint policy transition

probabilities P (Πn+1|Πn). Similarly to the approach described in Section 5.5, this

transition probability distribution is calculated by marginalising all variables of the

Bayesian network model proposed in Figure 6.3 except Πn+1 and Πn out of Pjoint and

dividing the result by P (Πn) as follows:

P (Πn+1|Πn) =

∑

Πc
n

∑

RUE1

∑

RUE2

∑

IUE1

∑

IUE2

∑

RNTP

Pjoint

P (Πn)
(6.7)
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(a) Classical stateless Q-learning

π1 = π2 π1 6= π2

0

11− g(n)

g(n) ∈ {0.94, 0.49, 0.13}

(b) Distributed ICIC accelerated Q-learning

Figure 6.5: Absorbing Markov chains describing the transitions between two states of

the joint Q-learning policy in the 2 eNodeB 2 user equipment network scenario

The key common feature of both Markov chains in Figure 6.5 is the fact that they

are absorbing, i.e. the probability of staying in the desired state “π1 6= π2” is 1.

This demonstrates that the additional heuristic functionality of the DIAQ scheme does

not break the convergence guarantee of the original stateless Q-learning algorithm

introduced Subsection 4.1.2.

Given the fact that “π1 6= π2” is an absorbing state, the probability of transition from

“π1 = π2” to “π1 6= π2” is directly related to the speed of convergence of the system to

the absorbing state, i.e. the higher it is, the faster the system is likely to converge. Fig-

ure 6.5b shows that due to a time-variant value in the P (Πn+1|Πn,Π
m
n , RUE1, RUE2)

conditional probability distribution from Table 6.2 described by Equation (6.6), the

probability of transition from “π1 = π2” to “π1 6= π2” also varies with time. In the

case where ICIC signalling between the two eNBs is relatively reliable (P (RNTP =

Y es) = 0.9), it is described by the following equation:

P (Πn+1 = Diff | Πn = Same) =



















0.94, n = 0

0.49, n = 1

0.13, n > 1

(6.8)

This equation demonstrates that DIAQ provides a dramatic improvement in initial per-

formance over the classical distributed RL approach, i.e. due to the high value of

the probability of transition from “π1 = π2” to “π1 6= π2” at the first learning itera-

tion. Although afterwards this probability rapidly decreases and becomes significantly
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lower than that achieved by stateless Q-learning, i.e. 0.13 compared to 0.45, by that

time it is highly likely that the system will have already converged. Furthermore, the

decision process in DIAQ is based on the masked policies Πm
n , i.e. the combination

of the Q-learning policies and heuristic ICIC information, as opposed to Q-learning

policies Πn only. Therefore, even in the unlikely cases where the eNBs have not

learned the optimal strategy after several trials, they are still more likely to employ

the correct joint policy “π1 6= π2”. This rapid convergence of the joint masked pol-

icy achieved by the DIAQ scheme is depicted in Figure 6.4a. In the case where ICIC

signalling between the two eNBs is relatively unreliable (P (RNTP = Y es) = 0.6),

the time-variant values of the probability of transition from “π1 = π2” to “π1 6= π2”

are g(n) ∈ {0.78, 0.48, 0.24}. There, the initial probability of convergence is not as

rapid (0.74), yet it is still significantly higher than that achieved by classical stateless

Q-learning (0.45).

6.5 Simulation Results

This section presents the results of simulating the proposed DIAQ scheme using the

stadium small cell network model with its own dedicated spectrum introduced in Sub-

section 3.1.1. The performance of this scheme is compared to that of a pure dis-

tributed Q-learning algorithm from Subsection 4.1.2 and the typical dynamic ICIC

based scheme described in Subsection 3.3.1. The comparison with these two schemes

is most appropriate, since they represent two key components of the DIAQ scheme

separately - the RL part and the heuristic inter-eNB coordination part. The latter

represents a standard approach in LTE [28][79]. Therefore, the results evaluate the

importance of both of these components in the proposed DIAQ scheme.

6.5.1 Temporal Performance

Figure 6.6 compares the temporal response of the network in terms of the probability

of retransmission at 1 Gbps offered traffic, using dynamic ICIC, pure distributed Q-

learning and DIAQ schemes for DSA. The graph shows the average of 50 simulations

with different random seeds and UE locations in order to mitigate the noise introduced
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Figure 6.6: Probability of retransmission time response using dynamic ICIC, pure Q-

learning and distributed ICIC accelerated Q-learning (DIAQ)

by the bursty nature of the traffic, and to produce a more statistically valid temporal re-

sponse. Firstly, the graph shows that both Q-learning and DIAQ schemes converge on

better DSA policies than the ICIC scheme. Secondly, the DIAQ scheme achieves a sig-

nificant improvement in the initial performance compared to the classical Q-learning

approach. The highly efficient guided exploration process of the DIAQ scheme results

in a substantial reduction in initial P (re − tx) by a factor of ≈2.5, compared to pure

Q-learning. This improvement is consistent with the theoretically predicted outcome

shown in Figure 6.4b.

Figure 6.6 also shows that DIAQ still has a significantly lower probability of retrans-

mission compared to both schemes after 1,000,000 trials, when it is approaching its

steady state. Therefore, using ICIC to enhance the stateless Q-learning algorithm in

this way dramatically speeds up its convergence, and substantially improves both its

initial and steady-state performance. Such acceleration of the learning process is cru-

cial in more realistic dynamically changing environments explored in Chapter 8, e.g.

with time-varying traffic distributions and topologies. The impact of DIAQ, compared

to regular distributed Q-learning, is that it can adapt to new interference environments

considerably faster.
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6.5.2 Initial and Final Performance

Figure 6.7 shows the difference in initial and final P (re − tx) performance of these

schemes at a wide range of traffic loads. It is plotted against the system throughput

density to evaluate both the QoS and the system capacity in the same graphs. The

initial P (re− tx) in Figure 6.7a is calculated using the first 20,000 transmissions, and

the final P (re−tx) in Figure 6.7b is calculated from the last 20,000 file transmissions.

The overall simulation length is 1,000,000 file transmissions. Every data point repre-

sents the mean result of 50 different simulations at a given traffic load with the error

bars showing the minimum and maximum P (re− tx) in those simulations.
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Figure 6.7: Initial and final probabilitiy of retransmission using pure ICIC, pure

Q-learning and distributed ICIC accelerated Q-learning (DIAQ) at different system

throughput densities
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Figure 6.7a shows that the dramatic improvement in initial performance using DIAQ

instead of the classical Q-learning approach is consistent at most traffic loads. DIAQ

introduces a 29-69% reduction in the initial probability of retransmission at system

throughput densities below 45 Gbps/km2. Only at ultra-high system throughput den-

sities does the difference in their performance become negligible. DIAQ also shows

a significantly better performance in initial and final probability of retransmission,

compared to the dynamic ICIC scheme. Furthermore, the latter only supports system

throughput densities of up to 48 Gbps/km2, whereas DIAQ and Q-learning are signif-

icantly more robust at extremely high offered traffic densities. They both manage to

support system throughput densities of up to 58 Gbps/km2. This demonstrates that it

is better to take opportunistic spectrum assignment decisions, based on reinforcement

learning, instead of blocking transmissions based on ICIC signalling, since the prob-

ability of a subchannel not being occupied by any of the neighbouring eNBs tends

to zero. In these cases, the heuristic ICIC approach “blindly” blocks most file trans-

missions, whereas Q-learning is still capable of providing some insight into which

subchannels could result in successful transmissions.

6.6 Conclusion

The novel DIAQ scheme proposed in this chapter combines distributed RL and stan-

dardized ICIC signalling in the LTE downlink, using the framework of HARL. It is

theoretically evaluated using a novel extension of the Bayesian network model pro-

posed in Chapter 5, which explains a predicted improvement in convergence behaviour

achieved by DIAQ, compared to classical distributed RL. Large scale simulation exper-

iments of a stadium small cell network show that it provides superior QoS compared to

a typical heuristic ICIC approach and a state-of-the-art distributed RL based approach.

It achieves a significantly lower probability of retransmission and supports higher sys-

tem throughput densities of up to 58 Gbps/km2. A comparison of the probability of

retransmission time response characteristics of DIAQ and pure distributed Q-learning

reveals a dramatic improvement in performance at the initial stage of learning, a 29%

to 69% improvement ranging across all but ultra-high traffic loads, due to the use of

heuristics for guiding the exploration process. This result confirms the theoretical pre-
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dictions made using the Bayesian network model of the algorithm. DIAQ also exhibits

excellent final performance and convergence speed. The dramatic improvements in

the initial performance and convergence speed achieved by the heuristic acceleration

of the learning process significantly increases the adaptability of the distributed RL

based approach to DSA, since the cognitive eNBs are able to adapt to each other’s dy-

namically changing policies considerably faster. Finally, the DIAQ scheme is designed

to comply with the current LTE standards. Therefore, it allows easy implementation of

robust distributed machine intelligence for full self-organisation in existing commer-

cial networks.
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7.1 Motivation

The key feature of the novel distributed ICIC accelerated Q-learning (DIAQ) scheme

proposed in Chapter 6 is the use of heuristic spectrum awareness information for a

significant increase in the adaptability and robustness of distributed RL based DSA in

terms of the QoS convergence behaviour. The purpose of this chapter is to report on

the novel application of the HARL framework to a more complex DSA problem where
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the cognitive cellular system shares spectrum with other independent primary and sec-

ondary wireless networks. The dynamic spectrum sharing (DSS) scenario described in

Subsection 3.1.1 represents a relevant and realistic context for this problem and is used

for the development and evaluation of the novel algorithms described in this chapter.

The heuristic acceleration for the RL based DSA algorithms developed in this chap-

ter is provided by a dynamically updated spectrum usage database, also known as the

radio environment map (REM), which is a commonly used component in secondary

cognitive wireless networks [60]. In previous work on combining RL and dynamic

spectrum databases, such as REMs, researchers have considered employing RL al-

gorithms solely for obtaining information that can be stored in these databases, e.g.

[17][56]. There appears to be no evidence of previous work in the literature on using

REM databases to enhance the performance of RL based DSA and DSS algorithms.

7.2 HARL for Dynamic Spectrum Sharing

The stadium temporary event spectrum sharing scenario described in Subsection 3.1.1

and shown in Figure 7.1 consists of a network of primary eNBs (PeNBs) operating in

a suburban area and a secondary cognitive cellular system that itself consists of two

separately operating entities - an aerial eNB (AeNB) for wide area coverage and a

small cell network for high capacity density inside the stadium.

Aerial eNB

Local eNB

User equipment

Stadium with
small cell eNBs

Figure 7.1: Dynamic spectrum sharing scenario designed for stadium temporary events
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A study in Section 4.3 has demonstrated that successful dynamic secondary spec-

trum sharing between a low power stadium small cell system and a relatively high

power local PeNB infrastructure can be facilitated using an independent distributed

Q-learning algorithm implemented in the former at network-wide traffic loads of up

to 1 Gbps. This is largely because the interference between the two systems is at-

tenuated by the stadium shell. However, the scenario investigated in this chapter also

involves an AeNB serving line-of-sight (LoS) users both inside and outside the sta-

dium. Therefore, it presents two additional challenges - spectrum sharing between the

PeNBs and the AeNB, and spectrum sharing between the AeNB and the stadium small

cell network.

The way of achieving these two spectrum sharing tasks proposed in this chapter is to

use a REM to continuously monitor and store the information about spectrum usage

of the PeNBs and the AeNB. In this way, the AeNB has the means to avoid interfer-

ing with the primary system, and the small cell network can avoid interfering with

the AeNB. This type of setup is depicted in Figure 7.2, which is a classical way of

achieving coexistence between cognitive radio networks and primary spectrum users,

especially in the TV white space context as described in Subsection 2.2.1.

The task of the spectrum monitoring system with a REM database is to detect the

occupancy of the spectrum resources used by the PeNBs and the AeNB. It is then

possible to estimate the probability of spectrum occupancy at every eNB on every

individual subchannel that, in turn, can be used to influence the spectrum assignment

decisions of the secondary systems.

Small cell network Aerial eNB

Primary system

REM server Spectrum monitoring system

use for decision making

store measurements monitor spectrum usage

Figure 7.2: Secondary spectrum sharing using a spectrum monitoring system and a

radio environment map (REM)
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7.2.1 Spectrum Monitoring

One way of implementing reliable spectrum monitoring in such LTE cellular systems

is for the primary system to grant the secondary system access to its ICIC signals. The

ICIC signals standardized for the LTE downlink are explained in Subsection 3.1.6. In

this way, the binary spectrum occupancy information about the PeNBs and the AeNB

could be logged at the REM server and used to make predictions about the spectrum

availability. Such a protocol is easily implementable, especially if both systems are

controlled by the same mobile network operator (MNO). However, if the secondary

cognitive network is not controlled by the primary system’s MNO, it may not be al-

lowed to access the ICIC signals of the primary system. In such cases, dynamic spec-

trum monitoring could be achieved by deploying a sensor network around the stadium

to detect spectrum usage of every PeNB and AeNB, e.g. using an algorithm for multi-

ple signal classification [76].

Regardless of the detection mechanism, the algorithms proposed in this section assume

that the spectrum monitoring system is able to periodically detect whether or not a

particular subchannel is being used by a particular PeNB or AeNB. It is designed to

return 1 if it is currently occupied, or 0 otherwise.

7.2.2 Spectrum Occupancy Estimation

Given the mechanism for obtaining a stream of binary spectrum occupancy data, it is

then important to estimate the probability of subchannel occupancy at every observed

eNB, i.e. a probability of a particular subchannel being occupied at a particular eNB

based on the previous observations.

A simple and appropriate way of tracking the mean of a data sequence, whilst simul-

taneously giving more recent observations higher weight compared to older estimates,

is the exponentially weighted moving average (EWMA) method [73]. It is described

by the following recursive equation:

y ← (1− λ)y + λx (7.1)
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where y is the mean estimate of the data sequence x, and λ is a factor which con-

trols how quickly the estimated mean adapts to new observations. The role of λ in

EWMA estimation is identical to that of the learning rate α in the stateless Q-learning

update formula from Equation (4.4). In fact, comparing Equations (4.4) and (7.1)

demonstrates that stateless Q-learning is, in fact, an EWMA estimation algorithm of

the rewards received by a learning agent.

We propose adapting the EWMA method to estimate the probability of subchannel

occupancy p(occupied) in the following way:

p(occupied)← (1− λ)p(occupied) + λb, b ∈ {0, 1} (7.2)

where b is a current binary subchannel occupancy measurement, i.e. b = 1 if the given

subchannel is occupied, b = 0 if it is not. In this way, the EWMA equation is used to

estimate the mean of a stream of 1’s and 0’s, representing p(occupied) ∈ [0, 1].

7.2.3 REM Based Heuristic Function

A threshold Pmin to determine whether a particular subchannel should be avoided,

based on an estimate of p(occupied), can then be defined to obtain the following

heuristic function:

HREM(a) =







hREM pa(occupied) ≥ Pmin

0 pa(occupied) < Pmin

(7.3)

where HREM(a) is the value of the REM based heuristic function for subchannel a,

pa(occupied) is the EWMA estimate of p(occupied) for subchannel a, hREM is a fixed

negative value which shifts the Q-values of the undesirable subchannels down, such

that the others are prioritized before them. This heuristic function follows the same

principle of shifting Q-values as the one used in DIAQ proposed in Chapter 6.

Such a heuristic function HREM(a) aims to guide the learning process of the cognitive

eNBs in a direction desirable for secondary spectrum sharing. The small cell eNBs

can coexist with the AeNB by applying the heuristic function from Equation (7.3) to

the AeNB subchannel occupancy observations, hereafter referred to as HAeNB
REM (a). The
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AeNB can coexist with the PeNBs by applying the same principle to PeNB subchannel

occupancy observations. In the latter case, since the wide area coverage AeNB is going

to interfere with all PeNBs in the area of interest, the probability of subchannel a being

occupied by any PeNB is obtained by calculating the sum of pa(occupied) values of

every individual PeNB:

pPeNBs
a (occupied) =

N
∑

n=1

pn
th PeNB

a (occupied) (7.4)

where N is the total number of PeNBs. The REM based heuristic function from (7.3)

can then be calculated using pPeNBs
a (occupied), hereafter referred to as HPeNBs

REM (a).

7.2.4 Superimposed Heuristic Functions

With the introduction of the REM based heuristic function for secondary spectrum

sharing, a framework for using several heuristic functions simultaneously is required.

For example, in addition to using an ICIC based heuristic function HICIC(a) intro-

duced in Section 6.3 for internal dynamic spectrum access, the small cell eNBs are

now also required to share spectrum with the AeNB using another heuristic function

HAeNB
REM (a), such that their masked Q-tables Qm(a) could be constructed using the

following principle:

Qm(a) = Q(a) +HICIC(a) +HAeNB
REM (a) (7.5)

where Q(a) ∈ [−1, 1] is an original Q-table of a given eNB maintained using the state-

less Q-learning algorithm described in Subsection 4.1.2. There, two heuristic functions

HICIC(a) and HAeNB
REM (a) have to be superimposed to modify a learning eNB’s policy,

such that it incorporates both ICIC and REM information into its learning process.

The author proposes a novel method where every new heuristic function superimposed

on the Q-table splits the Q-values into two non-overlapping regions, as shown in Fig-

ure 7.3. The normal range of Q-values Q(a) maintained by the stateless Q-learning

algorithm from Subsection 4.1.2 is [−1, 1]. If the hICIC parameter of the HICIC(a)

heuristic function is -3, it shifts Qm(a) values of disapproved subchannels into a non-
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REM

(a) = −7

Q(a)

Figure 7.3: The effect of superimposed heuristic functions HICIC(a) ∈ {0,−3} and

HAeNB
REM (a) ∈ {0,−7} on the range of masked Q-table values

overlapping region of (Q(a) − 3) ∈ [−4,−2], thus prioritising them below the sub-

channels with Qm(a) ∈ [−1, 1]. If another heuristic function HAeNB
REM (a) is used and

its hREM constant is -7, it will split Qm(a) into two regions - Qm(a) ∈ [−4, 1] and

(Qm(a) − 7) ∈ [−11,−6]. In this way, the subchannels disapproved by HAeNB
REM (a)

are guaranteed to be prioritised below any other subchannel. This approach allows an

unlimited number of further heuristic functions superimposed on top of each other, as

long as their respective importance is known. For example, in this case HAeNB
REM (a) re-

sponsible for spectrum sharing is prioritised above HICIC(a) responsible for internal

stadium network DSA by setting hREM < hICIC −∆Q, where ∆Q = 2 is the differ-

ence between the minimum and the maximum possible value in the original Q-table.

7.2.5 Q-Value Based Admission Control

The HARL algorithm required for the AeNB to coexist with the primary system only

includes one heuristic function HPeNBs
REM (a), since it is a separately controlled entity

with no ICIC-compatible neighbouring base stations. Therefore, it uses the following

masked Q-table for guiding its learning process:

Qm(a) = Q(a) +HPeNBs
REM (a) (7.6)

However, another important aspect of secondary spectrum sharing is the primary user

protection [29], i.e. making sure the secondary system, in this case the AeNB, does not

produce harmful interference for the primary system, in this case the users connected

to the PeNBs. A simple technique that could be easily and effectively embedded into
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the HARL framework developed in this chapter, i.e. where HPeNBs
REM (a) shifts part of

the Q-values by a fixed negative number hPeNBs
REM , is the introduction of Q-value based

admission control (Q-AC) [64]. A Q-value admission threshold qAC can be defined

such that all subchannels whose masked Q-values are below it are deemed unavailable

for assignment, as follows:

Aallowed = {a | a ∈ A′ ∧ Qm(a) ≥ qAC} (7.7)

where A′ is the set of currently unoccupied subchannels, i.e. those available for as-

signment, and Aallowed ⊂ A′ is the set of subchannels allowed for assignment based

on the admission threshold qAC . In this way, the subchannels with Qm(a) < qAC are

never assigned to data transmissions, which are blocked instead.

The value of qAC can be chosen such that:

qmax − hPeNBs
REM < qAC < qmin (7.8)

where qmin and qmax are the minimum and the maximum possible value of the Q-table

Q(a) before the transformation respectively. In this way, the subchannels disapproved

by the heuristic function HPeNBs
REM (a) are always forbidden for assignment at the AeNB,

due to their Q-values being shifted below qAC , thus guaranteeing protection of the

PeNBs from secondary interference.

7.2.6 HARL Algorithms for Spectrum Sharing

Algorithms 2 and 3 summarize the HARL schemes for dynamic secondary spectrum

sharing developed in this section. Algorithm 2 shows the sequence of steps in the

distributed REM and ICIC accelerated Q-learning (DRIAQ) scheme, designed for sta-

dium small cells to mitigate interference among themselves and the AeNB, using two

superimposed heuristic functions. Algorithm 3 shows the REM accelerated Q-learning

algorithm with Q-value based admission control (RAQ-AC), designed for the AeNB

to share spectrum and avoid interference with the primary system. Lines {2, 8, 9} of

Algorithm 2 and lines {2, 8-12, 14} of Algorithm 3 are specific to the HARL frame-

work developed in this section. If they are removed and Qm(a) is replaced by Q(a),
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the algorithms are simplified down to stateless Q-learning from Subsection 4.1.2.

Algorithm 2 Distributed REM and ICIC accelerated Q-learning (DRIAQ) for stadium

small cells

1: Initialise Q-table to all zeros

2: Set hICIC = −3 and hAeNB
REM = −7

3: while eNB is on do

4: Wait for a file arrival

5: if all subchannels are occupied then

6: Block transmission

7: else

8: Update HICIC(a) and HAeNB
REM (a) based on latest ICIC and REM information,

using Equations (6.3) and (7.3)

9: Combine Q(a) with HICIC(a) and HAeNB
REM (a) into a masked Q-table Qm(a)

using Equation (7.5)

10: Assign the best subchannel using Qm(a) and Equation (4.3)

11: Observe the outcome, calculate the reward r = ±1
12: Update Q(a) using Equation (4.4)

13: end if

14: end while

Algorithm 3 REM accelerated Q-learning with Q-value based admission control

(RAQ-AC) for the aerial eNB

1: Initialise Q-table to all zeros

2: Set hPeNBs
REM = −7 and qAC ∈ (−6,−1) as shown in Equation (7.8)

3: while eNB is on do

4: Wait for a file arrival

5: if all subchannels are occupied then

6: Block transmission

7: else

8: Update HPeNBs
REM (a) based on latest REM information, using Equation (7.3)

9: Combine Q(a) with HPeNBs
REM (a) into a masked Q-table Qm(a) using Equation

(7.6)

10: if all subchannels with Qm(a) ≥ qAC are occupied then

11: Block transmission

12: else

13: Assign the best subchannel using Qm(a) and Equation (4.3)

14: end if

15: Observe the outcome, calculate the reward r = ±1
16: Update Q(a) using Equation (4.4)

17: end if

18: end while
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7.2.7 Choice of Parameters

The final details required to complete the design of the REM and the REM based

heuristic functions are the values of the EWMA algorithm parameter λ from Equation

(7.1) and the probability of subchannel occupancy threshold Pmin for HAeNB
REM (a) and

HPeNBs
REM (a) as used in Equation (7.3). The author proposes using Pmin = λ and λ =

0.008, while the REM is updated every 200 ms, which is frequent enough to capture

the traffic variations of the PeNBs and the AeNB, yet not too frequent to introduce a

large overhead of additional REM information that has to be broadcast to all cognitive

eNBs. However, other values can be used for these parameters without the loss of

generality.

The value λ = 0.008 is chosen based on the rate of decay of a pa(occupied) estimate,

e.g. the time it would take for a once heavily used subchannel to be assumed unused,

if the eNB of interest stopped using it. For example, if pa(subchannel) = 0.99 and

afterwards subchannel a is not used for 600 consecutive REM updates, i.e. 2 minutes,

the new pa(occupied) estimate, based on Equation (7.2), is the following:

pa(occupied) = 0.99× (1− λ)600 = 0.00799 (7.9)

which is just below Pmin = λ = 0.008. Therefore subchannel a would no longer be

undesirable for secondary reuse, based on the heuristic function from Equation (7.3).

This value of λ is high enough to be applicable in dynamic environments where the

monitored spectrum usage patterns change over time, yet not high enough to dismiss

valuable historical spectrum usage information too quickly. This trade-off between

the speed and accuracy of the EWMA algorithm, controlled by the λ parameter, is

essential and must be carefully considered, e.g. using numerical examples such as the

one described in Equation (7.9).

The value Pmin = λ is proposed because it is crucial that, if interference is de-

tected on a previously unused subchannel with p(occupied) = 0, the new estimate

of p(occupied) is such that this subchannel is recognised as busy straightaway. In this

case the p(occupied) estimate will change from 0 to λ = Pmin which is high enough

to be flagged by the REM based heuristic function described by Equation (7.3).
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7.3 Simulation Results

The spectrum sharing problem described in Subsection 3.1.1 and depicted again in

Figure 7.1 involves an AeNB and a network of small cell eNBs that have to share

spectrum among themselves and with a primary system of local eNBs operating in the

area.

The primary system is assumed to employ the same dynamic ICIC scheme as that

used in the simulation experiments in Section 4.3. There, all three PeNBs exchange

their current spectrum usage as RNTP messages every 20 ms, and exclude the sub-

channels currently used by the other two PeNBs from their available subchannel list.

However, the DSS schemes developed for the secondary systems in this chapter do not

assume this and would also work regardless of the spectrum management strategy of

the primary system.

The results of implementing the following three schemes in the secondary cognitive

system are discussed in this section:

• “Dynamic ICIC” - all systems use ICIC signalling as described in Subsection

3.3.1. The stadium eNBs receive ICIC messages from the AeNB and from their

neighbouring small cells. They only report subchannels used at a Tx power

above -3 dB with respect to the average power in the cell, and choose randomly

among the subchannels deemed “safe”. The AeNB randomly assigns subchan-

nels not used by the primary system, based on the ICIC messages of the latter.

• “DIAQ + Q-learning” - all networks are working independently. The stadium

network employs the DIAQ scheme proposed in Chapter 6, and the AeNB is us-

ing the stateless Q-learning algorithm from Subsection 4.1.2. This scheme repre-

sents a state-of-the-art distributed RL solution to the spectrum sharing problem.

• “DRIAQ + RAQ-AC” - the combination of novel HARL based schemes devel-

oped in Section 7.2 and summarized in Algorithms 2 and 3.

500 UEs are randomly distributed outside the stadium, in the circular area from the

stadium boundary (5 m from the radius of the last row) to 1.5 km away from the

stadium centre point. 25% of the stadium capacity is filled with randomly distributed
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wireless subscribers, i.e. 10,776 UEs on average. The offered traffic is 20 Mb/s outside

of the stadium and 1 Gb/s inside. All simulations last 2,000,000 transmissions, most of

which take place inside the densely populated stadium. This corresponds to ≈2 hours.

7.3.1 Spectrum Occupancy Analysis

Figure 7.4 shows the subchannel occupancy distribution of the PeNBs, the AeNB, and

the small cell eNBs using three different spectrum sharing strategies described in the

beginning of this section. The distributions are calculated by measuring the amount

of time every eNB spends occupying every subchannel and dividing it by the total

simulation time.

Figure 7.4a shows that in the case of “dynamic ICIC” implemented in all systems,

the reverse relationship between the spectrum mostly used by the AeNB and that pre-

ferred by the primary system is observed, demonstrating the effect of frequent ICIC
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Figure 7.4: Subchannel occupancy of primary eNBs, aerial eNB and small cells using

different spectrum sharing schemes



Chapter 7. Robust Intelligent Dynamic Spectrum Sharing 119

signalling for interference avoidance between the two. It also shows that the small cell

network uses the whole spectrum approximately uniformly. Figure 7.4b demonstrates

the difference made by introducing distributed Q-learning into the DSS process. The

two challenging spectrum sharing relationships associated with this scenario tend to be

addressed through distributed machine intelligence. The AeNB learns to avoid using

the primary spectrum more than the “dynamic ICIC” approach, whilst the small cell

eNBs tend to learn to use the subchannels preferred by the AeNB less than the others,

i.e. they learn to avoid interfering with the AeNB, since it often results in blocked and

interrupted file transmissions.

Figure 7.4c shows how the novel heuristically accelerated approach further improves

the autonomously emerging spectrum sharing pattern by guiding the learning process

of the AeNB to avoid interfering with the PeNBs, and discouraging the small cell eNBs

from exploring and assigning the subchannels frequently used by the AeNB. Firstly,

there is no overlap in the spectrum used by the AeNB and the PeNBs. Secondly,

the AeNB uses fewer subchannels (less spectrum), since the small cells successfully

adapt their policies to avoid using the AeNB’s most preferred subchannels. This in

turn positively reinforces the use of the same subchannels by the AeNB through the

stateless Q-learning algorithm.

7.3.2 Primary User Quality of Service

Figure 7.5 shows contour plots of the spatial distribution of user throughput (UT)

across the area outside of the stadium, covered by the PeNBs and the AeNB. They

indicate that the area most susceptible to harmful interference is that in the vicinity of

the stadium, where the UEs are connected to the AeNB as well as the PeNBs. There is

also interference radiating from the ultra-dense stadium small cell network. Fig. 7.5a

shows that the “dynamic ICIC” approach, with a relatively even spectrum occupancy

distribution seen in Figure 7.4a, performs poorly and results in a significant decrease

in UT in the vicinity of the stadium. Such performance degradation of the UEs located

outside of the stadium is unacceptable from the viewpoint of secondary spectrum shar-

ing. A significant improvement in the spatial UT distribution is achieved by using the

learning based “DIAQ + Q-learning” approach. The performance is further improved
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Figure 7.5: Spatial distribution of user throughput (Mb/s) outside of the stadium (the

triangles represent the primary eNB locations)

by using the novel “DRIAQ + RAQ-AC” approach proposed in this chapter due to its

ability to autonomously achieve the significantly more adaptable spectrum partitioning

patterns seen in Figure 7.4c.

7.3.3 Statistical Analysis

The results in Figure 7.6 break down the QoS provided to the primary and secondary

system users using the three different DSS strategies. Furthermore, they also verify

the statistical significance of performance improvements gained by using the HARL

based “DRIAQ + RAQ-AC” scheme proposed in Section 7.2. It shows the results

from 50 different simulation setups, i.e. with different random seeds, UE locations and

initial traffic, in the form of box plots [59], a compact way of depicting key features

of probability distributions. The box boundaries represent the first and third quartile

of the distribution, the line between them marks the median result, and the whiskers
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Figure 7.6: Boxplots of the primary and secondary system performance from 50 dif-

ferent simulations

show the minimum and the maximum point within 1.5 × IQR distance from the box

boundaries. IQR is the inter-quartile range, the difference between the first and third

quartile (the width of the box). Any results further than 1.5× IQR away from the box

are considered the outliers and are plotted as individual data points.

Figure 7.6a shows that the variation in mean UT outside the stadium is negligibly

small, when comparing different DSS strategies. However, the box plots of 5% UT

outside the stadium in Figure 7.6b reveal a more significant difference in the perfor-

mance of the simulated DSS schemes. 5% UT for a single simulation is obtained by

calculating the 5th percentile of the UT values of 500 users outside the stadium. It is

a more important metric than the mean UT, since it represents a minimum QoS guar-

anteed to 95% of the users, and thus shows how fair the spatial QoS distribution is.

Introducing the learning algorithms into the spectrum sharing strategies (“DIAQ + Q-

learning”) results in an 8.9% increase in median 5% UT outside the stadium compared

to “dynamic ICIC”, whereas the novel ”DRIAQ + RAQ-AC” scheme improves it by
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11%. These improvements are statistically significant since there is no overlap be-

tween the boxes in the plot. The same improvement pattern is observed in Figure 7.6c

which shows the mean UT of the users located in the vicinity of the stadium (0-100m

from the boundary), the region most vulnerable to the interference between the small

cell network, the AeNB and the PeNBs.

Figure 7.6d demonstrates the most notable performance improvement achieved by

“DRIAQ + RAQ-AC”. It almost entirely eliminates the retransmissions, i.e. the

blocked and interrupted file transmissions, at the AeNB. It results in a 98% decrease

in the probability of retransmission compared to “dynamic ICIC” and a 97% decrease

compared to a significantly better “DIAQ + Q-learning” scheme. This improvement

is achieved due to the high controllability of the exploration process provided by the

heuristic functions designed in Section 7.2. They successfully steer the learning pro-

cess of the AeNB such that it avoids interfering with the PeNBs, whereas the small

cell eNBs are continuously discouraged from occupying the resources preferred by

the AeNB, as demonstrated by the spectrum occupancy patterns in Figure 7.4c.

Figures 7.6e and 7.6f show that the improvements in QoS, provided by the “DRIAQ

+ RAQ-AC” scheme to the PeNB and AeNB users, come at the cost of a 10-12%

decrease in mean UT and a 13-14% decrease in 5% UT provided to the small cell

users, compared with the two baseline schemes. However, this concession made by

the stadium small cell network is relatively insignificant and essential in the context

of dynamic secondary spectrum sharing. It results in the increased feasibility of sec-

ondary LTE spectrum reuse by a temporarily deployed eNB on an aerial platform and

an ultra-high capacity density stadium small cell network, that is able to accommodate

a vast increase in capacity (1 Gb/s in addition to the primary system’s 20 Mb/s offered

traffic). Furthermore, the “DRIAQ + RAQ-AC” scheme achieves remarkable reliabil-

ity of AeNB communications (due to the lack of retransmissions). For example, this

could be highly useful in the temporary event scenario for providing a robust dedicated

access network to event organizers both inside and outside the stadium.
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Figure 7.7: Probability of retransmission time response at the aerial eNB

7.3.4 Temporal Performance

Figure 7.7 shows the temporal performance of the two learning based schemes, “DIAQ

+ Q-learning” and “DRIAQ + RAQ-AC”, in terms of the probability of retransmission

at the AeNB. All data points are obtained by averaging over 50 different simulations.

The time response of “DIAQ + Q-learning” demonstrates that it behaves as a classical

RL algorithm, i.e. starts at a relatively poor performance level and gradually improves

over time, while the AeNB and the small cell eNBs are learning appropriate spec-

trum sharing patterns. In contrast, the “DRIAQ + RAQ-AC” time response is a great

demonstration of the improvements in the adaptability of cognitive eNBs achieved

by introducing heuristic acceleration into the learning process. It starts at a superior

probability of retransmission level and maintains it throughout the whole simulation.

7.4 Conclusion

The HARL based framework proposed in this chapter utilises a REM as external infor-

mation for guiding the learning process of cognitive cellular systems, which are thus

able to reuse the LTE spectrum owned by another cellular network. The performance

of the DSS and DSA schemes developed in this chapter is assessed using system level

simulations of the stadium temporary event scenario described in Subsection 3.1.1. It

involves an eNodeB on an aerial platform, a small cell stadium network and a local
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primary LTE network, all sharing the same LTE spectrum. Two novel DSS schemes

are described in detail - distributed REM and ICIC accelerated Q-learning (DRIAQ)

used by the small cell network, and REM accelerated Q-learning with Q-value based

admission control (RAQ-AC) used by the aerial eNodeB. These schemes are shown to

achieve high controllability of spectrum sharing patterns in a fully autonomous way.

They also result in a significant decrease in primary system QoS degradation due to

the interference from the secondary cognitive systems, compared to a state-of-the-art

RL solution and a purely heuristic typical LTE solution. The spectrum sharing patterns

that emerge by using the proposed schemes also result in remarkable reliability of the

cognitive aerial eNodeB due to a 97% decrease in the probability of retransmission

compared to a classical RL approach.

Furthermore, the novel principle of superimposed heuristic functions proposed in the

context of HARL, as well as the general Q-table mask structure of these functions, are

not specific to the investigated spectrum sharing scenario, and are generally applicable

to a wide range of self-organization problems beyond the wireless communications

domain.
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8.1 Motivation

All DSA algorithms and simulation experiments discussed in this thesis so far only

consider static environments, i.e. environments with the same network topologies and

the same traffic load levels and distributions. However, the vast majority of real-world
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wireless environments are likely to be dynamic, e.g. with variable traffic load distri-

butions and/or network topologies depending on the time of the day. The purpose of

this chapter is to assess the performance of distributed RL based DSA algorithms in

such dynamic environments, and to propose a way of improving their stability and

adaptability. The technique investigated for solving this problem is case-based rein-

forcement learning (CBRL), a combination of RL and case-based reasoning (CBR).

CBR is broadly defined as the process of solving new problems by using the solutions

to similar problems solved in the past [95]. In CBRL these solutions are obtained

through an RL algorithm.

This combination of RL and CBR has been successfully applied to various decision

problems, e.g. dynamic inventory control [40], RoboCup Soccer [15] and control of

a simulated mountain car [9]. For example, Jiang and Sheng [40] propose an effec-

tive dynamic inventory control algorithm that uses CBR for analysing the similarity

between different states of a dynamic multi-agent RL problem. In [9] and [15] the

authors develop transfer learning algorithms that transfer knowledge between similar

learning tasks whilst using CBR to make this process faster. There appears to be no

evidence in the literature of the CBRL approach being applied in the wireless commu-

nications domain.

8.2 Dynamic Wireless Environments

A key challenging aspect of the wireless environment considered in this chapter is

its dynamic nature due to the variable network topology. The stadium small network

introduced in Subsection 3.1.1 adapts its topology to temporal non-uniform variations

in the traffic load. In the full secondary spectrum sharing scenario, the dynamic nature

of the environment is also caused by periodic deployments of the AeNB. All of these

paradigms are explained in more detail in the following subsections.
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Decrease in
traffic load

Figure 8.1: A simple topology management case, where a number of eNBs are

switched off after a decrease in the overall traffic load

8.2.1 Dynamic Topology Management

Topology management is an increasingly popular area of research, particularly in green

communications, where a trade-off between the QoS provided to the users and the en-

ergy savings of the network is achieved by dynamically switching various base stations

on/off, e.g. [57][70]. A simple illustrative example discussed in [57] is portrayed in

Figure 8.1. It involves a classical hexagonal cell layout, where all base stations sur-

rounding the middle one temporarily enter a sleep mode at times when the traffic load

is lower, e.g. night time. The users from all seven cells can then be served by the

middle base station that would expand its coverage area accordingly. Employing such

topology management schemes can result in significant energy savings, since a major

part of energy in telecommunications systems is consumed by base stations [57][72].

8.2.2 Dynamic Non-Uniform Traffic Load

Another source of the network’s dynamic nature considered in this study is the pres-

ence of a dynamically moving traffic hotspot area. For example, a rapid increase in

the traffic load in a specific part of the stadium small cell network may be observed if

a particular event happens close to the given area, e.g. teams walking out at the open-

ing ceremony of the Olympic Games or a goal at a football match etc. In such cases,

the topology management algorithm would cause the network to be fully switched on

in the hotspot area (left side of Figure 8.1), and only partially deployed in other ar-

eas of lower traffic intensity (right side of Figure 8.1). Furthermore, the experiments

described in this chapter assume that the geographical location of this hotspot area

varies with time, making the wireless environment asymmetric and dynamic in both
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the offered traffic distribution and the network topology.

8.2.3 Rapidly Deployable Aerial Platform

The full secondary spectrum sharing scenario described in Subsection 3.1.1 also in-

volves a local primary LTE network and a cognitive eNB on an aerial platform (AeNB)

for wide area coverage, all sharing the same LTE spectrum with the stadium small cell

network. The AeNB can be switched on and off several times throughout the duration

of the event [71]. For example, it can be switched on for providing the event organizers

with a dedicated access network when required, and switched off to have its batteries

recharged or to minimise the energy consumption in general. Therefore the additional

challenge faced by the cognitive small cell eNBs is to adapt to these sudden changes

in their radio environment, while not affecting the QoS in the local primary system.

8.3 Distributed Case-Based Q-Learning

The technique investigated in this chapter for enhancing the stability of RL based DSA

algorithms under challenging dynamic conditions of wireless environments is case-

based RL (CBRL). Its general principles are introduced in the following subsection.

8.3.1 Case-Based Reinforcement Learning

CBRL is a combination of RL and case-based reasoning (CBR), where the solutions

to previously known problems are used to help learning solutions to new problems

[95]. Figure 8.2 shows a flow diagram of the processes involved in CBRL. It also

demonstrates that it is an extension of classical single-agent RL, i.e. the latter can be

viewed as a special case of CBRL.

The unfilled blocks and solid lines in Figure 8.2 constitute a flow diagram of a classical

RL algorithm introduced in Figure 2.6. There is an outer output-state-action loop,

where outputs of the environment are observed and processed to yield the environment

state information, and the best action is chosen for the current state based on the policy
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Figure 8.2: Block diagram of case-based reinforcement learning

of the learning agent. In the context of DSA problems, the output of interest is whether

or not a given transmission is blocked, interrupted or successfully completed, and the

action is a spectrum resource allocated to it. There is also an inner learning loop, whose

role is to learn a good policy to be used by the learning agent. It achieves this goal

by observing the actions taken by the learning agent and their outcomes, and directly

estimating the entries in the Q-table, e.g. using Equation (4.4) in the case of stateless

Q-learning. A policy is then derived from the estimated Q-table and used for choosing

an action in the current environment state, e.g. as shown in Equation (4.3).

The highlighted blocks and dotted arrows represent additional functionality afforded

by CBR to enable the system to learn several solutions to different cases of the environ-

ment at once. It introduces another parallel inner loop which continuously observes the

input/output relationship of the environment, and identifies its current model or case.

It may also have access to other information supplied from elsewhere to aid the iden-

tification process. The idea is that for different cases of the environment the estimated

models will be sufficiently different to be detected by the identification algorithm, and

for every identified model of the environment there will be a stored Q-table associated

with it. In this way, a CBRL algorithm always knows what phase the environment is

currently in and is always able to use a Q-table most suitable for it.
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8.3.2 Case Identification

A crucial part of the CBRL process is an appropriate mechanism for case identifica-

tion, such that the dynamically changing environment could be described by a finite

number of distinct configurations, i.e. cases. All changes in the network environment

described in Section 8.2 involve changes in the network topology, e.g. triggered by the

temporally and spatially variable traffic load or the periodically deployed eNB on the

aerial platform. Therefore, case identification based on network topology is proposed

in this section.

In order to limit the potential number of identifiable topology cases and to make this

approach scalable and generally applicable to any cellular system, the proposed topol-

ogy identification process is localised to the second order neighbourhood (2ON) of a

given eNB. We define the 2ON of an eNB as the set of its neighbouring eNBs and

all their neighbouring eNBs as illustrated in Figure 8.3 for a generic hexagonal cell

layout.

The 2ON based topology identification process is localised enough to be scalable and

generally applicable in arbitrary cellular networks, yet not too limited to disregard

valuable information about the radio environment surrounding a given eNB. To use

the example in Figure 8.3, the spectrum management policy of the middle eNB will

eNB

OnOff

Figure 8.3: Example of a second order neighbourhood used for case identification by

the middle eNodeB
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be heavily influenced by the on/off configurations of its neighbouring eNBs with their

own cognitive spectrum management policies. Equivalently, the latter will be signif-

icantly influenced by all of their own neighbouring eNBs, thus potentially having a

noticeable impact on the original middle eNB. It is possible to extend this argument

to higher orders of neighbouring eNBs, however, their impact on the original eNB in

question is likely to be diminishing. In future adaptations of the approach proposed in

this chapter further neighbourhoods of eNBs, up to the whole network topology, can

also be included in the case identification process without the loss of generality.

The author proposes expressing the on/off configurations of a given eNB’s 2ON as a

binary string, each bit corresponding to a particular eNB in the 2ON. For example,

the following binary string would be used to describe the asymmetric topology case

surrounding the middle eNB in Figure 8.3:

T2ON = 10100001001111111112 (8.1)

where T2ON is the binary string describing the network topology surrounding the given

eNB. The order of the bits in T2ON corresponds to the sequence of the eNBs in the 2ON

depicted in Figure 8.3 counting from the left-hand column of eNBs downwards and ex-

cluding the middle eNB itself. Every eNB is assumed to have access to the information

about the on/off configuration of its 2ON through a small-scale periodically broadcast

radio environment map (REM), which is one of the key features of intelligent cognitive

cellular systems [60].

8.3.3 Case Retrieval

Another fundamentally important function that has to be performed by an intelligent

CBR agent is case retrieval, i.e. selecting a solution, e.g. a Q-table, that corresponds

to the most appropriate stored case to be used at any given moment as shown in Figure

8.2. To facilitate this functionality, a method for comparing a currently identified case

with the stored cases and calculating a degree of similarity between them is required.

Since every case is expressed in terms of the on/off configuration of the 2ON of a given

eNB as shown in the example in Equation (8.1), the similarity measure between any
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two cases is defined as the number of eNBs in the 2ON with the same on/off status.

In order to calculate it, first, a binary string Tsame indicating which eNBs in the 2ON

are active/idle in both compared cases must be obtained. It is done by performing

a bitwise exclusive NOR operation between the binary strings describing the current

case T current
2ON and one already stored in the case base T stored

2ON :

Tsame = T current
2ON ⊕ T stored

2ON (8.2)

The similarity measure β is then defined as the number of eNBs in the 2ON that have

the same active/idle status, thus representing how similar two 2ON topologies are. It

is calculated by adding up the bits in Tsame as follows:

β =

N
∑

n=1

Tsame(n) (8.3)

where Tsame(n) is the nth bit of Tsame, and N is the number of eNBs in the 2ON.

In this way, for any currently identified case the retrieval function will return a stored

case using the following principle:

k̂ = argmax
k

(βk), k ∈ {1, 2, ..., K} (8.4)

where k̂ is the index of the retrieved case, βk is the similarity measure between the kth

stored case and the currently identified case, and K is the total number of stored cases.

8.3.4 Multi-Criteria Case Identification

The case identification and retrieval technique described in this section so far only

considers the topology of a homogeneous network, e.g. it can be applied to an iso-

lated stadium small cell network from Figure 3.1. However, if the secondary spectrum

sharing scenario from Subsection 3.1.1, which also involves a dynamically deployable

AeNB, is considered, then the network environment becomes heterogeneous and an

extension to the proposed case identification and retrieval framework is required.

The presence/absence of an entity such as the wide area coverage AeNB in the net-
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work environment can be viewed as a separate major criterion for case identification,

in addition to localised homogeneous topologies as shown in Figure 8.3. Therefore,

the author proposes a bias variable βbias introduced into the case similarity assessment

formula given in Equation (8.3), such that the cases with the same AeNB status are

recognised as more similar to each other than those with a different AeNB status. The

presence/absence of the AeNB is chosen to be a primary criterion for case identifi-

cation and retrieval, since it represents a significantly more substantial change in the

radio environment than changes in the active/idle mode of an eNB’s local 2ON from

Figure 8.3. Therefore, the extended multi-criteria similarity measure formula is the

following:

β =
N
∑

n=1

Tsame(n) + βbias (8.5)

where the bias variable βbias > N , i.e. a value higher than the maximum possible

unbiased similarity measure, when the AeNB status of the two given cases is the same,

and βbias = 0 otherwise.

8.3.5 The Case-Based Q-Learning Algorithm

Algorithm 4 summarises the steps of the proposed case-based Q-learning approach

to DSA in dynamic wireless environments. The extra functionality specific to CBR

is described by steps 5, 6, 7 and 11, i.e. if these steps are taken out, the algorithm

simplifies down to classical stateless Q-learning described in Subsection 4.1.2.

Algorithm 4 Subchannel assignment using case-based Q-learning in dynamic cellular

environments

1: Wait for a file arrival

2: if all subchannels are occupied then

3: Block transmission

4: else

5: Identify current case k

6: Find most similar stored case k̂ using Equation (8.4)

7: Retrieve Q-table Q(a) associated with k̂

8: Assign a subchannel using Q(a) and (4.3)

9: Observe the outcome, calculate the reward r = ±1
10: Update Q(a) using Equation (4.4)

11: Store Q(a) in case base, associate it with k

12: end if
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8.4 Simulation Results

The simulation experiments discussed in this section consider both the scenario where

the stadium small cell network has exclusive access to a 20 MHz LTE channel, and

the full spectrum sharing scenario described in Subsection 3.1.1 which also involves

an AeNB and a primary system of local eNBs all sharing the same 20 MHz LTE

spectrum.

The primary system is assumed to employ the same dynamic ICIC scheme as that

used in the simulation experiments in Sections 4.3 and 7.3. There, all three PeNBs

exchange their current spectrum usage as RNTP messages every 20 ms, and exclude

the subchannels currently used by the other two PeNBs from their available subchan-

nel list. However, the CBRL scheme proposed in Algorithm 4 does not assume this

and would also work regardless of the spectrum management strategy of the primary

system.

The results of implementing the following five schemes in the secondary cognitive

system are discussed in this section:

• “Dynamic ICIC” - all systems use ICIC signalling as described in Subsection

3.3.1 and above for the primary system. The stadium eNBs receive ICIC mes-

sages from the AeNB and from their neighbouring small cells. They only report

subchannels used at a Tx power above -3 dB with respect to the average power

in the cell, and choose randomly among the subchannels deemed “safe”. The

AeNB randomly assigns subchannels not used by the primary system, based on

the ICIC messages of the latter. This approach represents a heuristic baseline

DSA scheme, typical for LTE networks [79].

• “Reinforcement learning (RL)” - the AeNB and the stadium small cells run the

distributed Q-learning algorithm introduced in Subsection 4.1.2.

• “Case-based reinforcement learning (CBRL)” - the AeNB is still running clas-

sical stateless Q-learning, whereas the stadium small cells run the distributed

case-based Q-learning algorithm proposed in this chapter and summarised in

Algorithm 4.
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• “Heuristically accelerated reinforcement learning (HARL)” - the HARL based

schemes proposed in Chapters 6 and 7, i.e. the DIAQ scheme in the scenario

with the stadium small cell network only, and “DRIAQ + RAQ-AC” in the full

spectrum sharing scenario exactly as used in Chapter 7.

• “Case-based heuristically accelerated reinforcement learning (CBHARL)” - The

HARL based schemes proposed in Chapters 6 and 7 augmented with the CBR

functionality proposed in this chapter. This is achieved by replacing the regular

Q-table Q(a), used in step 8 of Algorithm 4 for making a spectrum assignment

decision, by the masked Q-table Qm(a) which takes into account the heuristic

ICIC and/or REM information as described in Section 7.2. This approach com-

bines all schemes proposed in this thesis in one and, therefore, represents the

entire contribution made by this thesis towards improving the adaptability and

robustness of distributed RL based DSA.

25% of the stadium capacity is filled with randomly distributed wireless subscribers,

i.e. 10,776 UEs on average. In the full spectrum sharing scenario 500 UEs are ran-

domly distributed outside the stadium in a circular area from the stadium boundary out

to 1.5 km from the stadium centre point, producing the total offered traffic of 20 Mb/s.

8.4.1 Topology Management

Figure 8.4 shows how the principle of traffic load dependent dynamic topology man-

agement described in Subsection 8.2.1 is adapted to the stadium small cell network

used in simulation experiments in this chapter. The following relationship between the

network-wide offered traffic density (OTD) and the topology patterns from Figure 8.4

was experimentally found to achieve an appropriate trade-off between the number of

eNBs switched off for potential energy savings and the QoS provided to the users:

• all eNBs are active if OTD > 27 Gbps/km2

• 5/6 eNBs are active if OTD ∈ (21, 27] Gbps/km2

• 2/3 eNBs are active if OTD ∈ (15, 21] Gbps/km2

• 1/3 eNBs are active if OTD ∈ (8, 15] Gbps/km2
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(a) 5/6 eNBs active (b) 2/3 eNBs active

(c) 1/3 eNBs active (d) 1/6 eNBs active

Figure 8.4: Traffic load based partial deployments of the stadium small cell network

(centralised topology management)

• 1/6 eNBs are active if OTD ≤ 8 Gbps/km2

In this way the stadium network is able to provide adequate QoS to the users across

a wide range of traffic loads, whilst achieving significant energy savings when the

offered traffic is low by employing these partial small cell network deployments.

8.4.2 Dynamic Traffic Hotspot Area

Another feature of the simulation scenario investigated in this chapter is the presence

of a traffic hotspot area within the stadium that changes its geographical location with

time. An example of such a hotspot area and its effect on the topology of the sta-

dium network is shown in Figure 8.5. If an increased user activity in the 60 degree

sector is observed, while the offered traffic density is lower elsewhere, the topology

management algorithm detects the possibility of deploying all available eNBs in the
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Hotspot area

Figure 8.5: Asymmetric network topology due to a local traffic hotspot area

hotspot area and keeping a number of them switched off according to one of the partial

deployment patterns from Figure 8.4.

Figure 8.6 shows the probability of retransmission time response in the stadium small

cell network inspected individually with its own dedicated spectrum (20 MHz LTE

channel). The location of the 60◦ hotspot area is randomly changed every 100,000

transmissions to one of its six possible locations - {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.

The offered traffic density within the hotspot is 34 Gbps/km2, and 13 Gbps/km2 else-

where. The topology management algorithm is assumed to detect a change in the

offered traffic distribution with a delay of 5000 file transmissions. All eNBs within

15◦ of the edges of the user hotspot area are switched on to make sure it is covered by

fully deployed small cells. The plots are obtained by averaging every data point using

the results from 50 simulations with different randomly generated UE locations and

initial traffic.

Firstly, all RL based schemes significantly outperform the dynamic ICIC approach,

demonstrating the effectiveness of applying distributed RL to DSA in cellular net-

works. Secondly, although the classical RL and CBRL schemes start at the identical

QoS level, the latter goes on to gradually improve its performance due to its increased

adaptability in the dynamic environment. In contrast, the classical RL process is dis-
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(b) Quality of service inside the hotspot area

Figure 8.6: Probability of retransmission of the small cell stadium network with a

dynamically moving traffic hotspot

turbed by the environment changes frequently enough not to show any notable perfor-

mance improvement over time. As a result, by the end of the simulation the proposed

case-based Q-learning scheme shows an ≈22% reduction in the network-wide num-

ber of retransmissions shown in Figure 8.6a, compared with the classical Q-learning

alternative. However, both plots in Figure 8.6 also shows that, if the ICIC signalling

information is available to the cognitive eNBs, employing the HARL based DIAQ

scheme proposed in Chapter 6 instead of the CBRL approach results in a far more
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significant 50% reduction in the number of retransmissions both network-wide and

inside the moving hotspot area only. Augmenting the HARL approach with CBR re-

sults only in a marginal further improvement in performance, demonstrating that the

heuristic acceleration provided by ICIC signalling in the CBHARL approach plays a

significantly more important role.

8.4.3 Temporal Network-Wide Traffic Variations

A further challenge introduced into the simulation experiments hereafter is the vari-

able network-wide traffic load shown in Figure 8.7. These variations in the offered

traffic density result in changes in the network topology according to the topology

management scheme described in Subsection 8.4.1. Figure 8.8a shows the probability

of retransmission time response of the stadium network with such uniform temporal

variations in the network-wide traffic load. Due to the uniform nature and a lower

number of possible topology cases compared to the dynamic traffic hotspot scenario

from the previous subsection, the difference in performance between CBRL and clas-

sical RL is larger than that observed in Figure 8.6, especially at times shortly after

the network topology transitions. Incorporating CBR into the learning process often

results in as much as a two-fold reduction in the probability of retransmission.

Figure 8.8b shows the probability of retransmission time response of the stadium net-

work both with uniform variations in the offered traffic density shown in Figure 8.7

and with the dynamically moving traffic hotspot area shown in Figure 8.5. There,
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Figure 8.7: Temporal variations in the stadium network-wide offered traffic density
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(b) With a dynamic hotspot area

Figure 8.8: Probability of retransmission of the stadium network with temporal varia-

tions in the network-wide offered traffic

in contrast to the results in Figure 8.8a, the increase in the complexity of the prob-

lem and the number of potential network topology cases reduces the magnitude of the

performance improvements gained by CBRL compared to classical RL. Nevertheless,

the CBR functionality is still able to provide a consistent noticeable decrease in the

number of retransmissions experienced by the UEs in the stadium network.

Both plots in Figure 8.8 once again show that the HARL approach significantly out-

performs the CBRL approach due to the availability of additional valuable spectrum
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awareness information. However, the difference made by introducing CBR into the

heuristically accelerated Q-learning approach is visibly bigger, yet still relatively small,

in Figure 8.8a, where previously learned Q-tables are reused to improve the system

stability and speed-up the process of adapting the policies of the small cell cognitive

eNBs shortly after major changes in the network topology.

8.4.4 Spectrum Sharing with Dynamic Aerial eNB Deployment

The last set of simulation results discussed in this chapter considers the performance

of both the primary and the secondary network in the full spectrum sharing scenario

described in Subsection 3.1.1. In addition to the dense stadium small cell network, it

involves an AeNB and a local network of PeNBs, all sharing the same 20 MHz LTE

channel. The stadium small cell network includes both dynamic environment features

investigated in the previous subsections:

• a dynamic 34 Gbps/km2 offered traffic density area depicted in Figure 8.5

• an updated version of the temporal variations in the network-wide traffic load

shown in Figure 8.9

The variable network-wide traffic loads are slightly lower than those used in the previ-

ous experiments and shown in Figure 8.7, since the 20 MHz LTE channel is no longer

fully dedicated to the stadium network, but is shared with the primary system and the
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Figure 8.9: Temporal variations in the stadium network-wide offered traffic density in

the full spectrum sharing scenario
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cognitive AeNB. The latter is running a classical Q-learning algorithm described in

Subsection 4.1.2 and is periodically deployed and redeployed into the network.

Figure 8.10 shows how the probability of retransmission changes over time in the two

independent secondary systems involved in the spectrum sharing scenario - the sta-

dium small cell network and the AeNB. All simulations start with the AeNB switched

off, and the vertical dash-dot lines in Figure 8.10a mark the times when it is switched

on and off again. It shows that the performance gap between case-based and classical
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(b) Aerial eNB

Figure 8.10: Probability of retransmission of the stadium network and the Aerial eNB

in a dynamically changing radio environment
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Q-learning in the stadium network is further reduced due to an even more compli-

cated scenario, the presence of an interfering primary network and a higher number

of possible network topologies. However, Figure 8.10b shows that employing the

CBRL approach in the stadium network dramatically improves the QoS provided by

the AeNB shortly after it is switched on for the second and third time, compared to

classical RL. This is due to the capability of cognitive small cell eNBs to distinguish

between various network topologies, including whether or not the AeNB is switched

on. In this way, the stadium small cells are able to revert their Q-learning DSA policies

to those most appropriate for the AeNB to share spectrum with them, resulting in the

QoS improvement in both of these secondary access networks.

At times when the AeNB is switched off and the small cell network shares the spec-

trum only with the local PeNBs, the performance of the HARL approach is still consis-

tently better than that of the classical and the case-based RL approach. This confirms

that even with the presence of the primary system interference the DIAQ scheme pro-

posed in Chapter 6 produces the best QoS in the stadium small cell network of all

schemes investigated in this thesis. However, when the AeNB is switched on, the

probability of retransmission at the stadium network achieved by both HARL and

CBHARL dramatically increases and becomes slightly higher than that achieved by

classical and case-based RL. This is precisely the effect of efficient spectrum sharing

patterns shown in Figure 7.4 achieved by the HARL based spectrum sharing schemes

proposed in Chapter 7. The QoS decrease at the stadium network is caused by the

heuristically accelerated policies of the small cell eNBs that avoid interference with

the AeNB, as a result making the latter dramatically more reliable in terms of its own

probability of retransmission. This dramatic improvement in the QoS provided to the

AeNB users is observed in Figure 8.10b. Introducing CBR into the heuristically accel-

erated Q-learning approach has a negligible effect on the system performance due to

the increased complexity of the learning problem in terms of the number of potential

network topology cases. This confirms that the introduction of the heuristic acceler-

ation into the learning process as proposed in Chapters 6 and 7 makes a significantly

bigger contribution towards improving the system QoS and its adaptability, than the

novel CBR functionality introduced in this chapter.
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Table 8.1: Primary user quality of service (QoS) with and without the presence of the

secondary network (SN)

QoS metric Without SN With SN

Mean user throughput (UT), Mb/s 3.03 3.07

95th percentile UT, Mb/s 3.16 3.16

5th percentile UT, Mb/s 2.76 2.91

Mean UT 0-100 m from the stadium, Mb/s 2.95 2.96

An essential requirement for cognitive wireless networks is to ensure that they do not

have a harmful effect on the QoS in the primary system. Table 8.1 compares the

QoS provided to the users outside of the stadium with and without the presence of the

stadium users and the secondary network which runs the CBHARL algorithm, i.e. the

final product of all contributions of this thesis. It describes the statistical distribution

of user throughput (UT) achieved by the primary network.

Table 8.1 shows that the introduction of the secondary stadium network and the AeNB

results in no degradation in the overall mean UT, the 5th and 95th percentile UT, and

the mean UT provided to the primary users in the 100 m vicinity of the stadium. Inter-

estingly, it even achieves an improvement in the 5th percentile UT, which represents

the lowest UT provided to at least 95% of the users and which is an important met-

ric for ensuring fair QoS distribution across the whole network. This is because the

AeNB manages to provide higher quality opportunistic links to some primary users

than those that could be provided by the local eNBs. The results in Table 8.1 emphati-

cally show that it is possible to develop a temporary heterogeneous cognitive network

that is capable of servicing a dramatic increase in the mobile data capacity (544 Mb/s

overall throughput compared to 19.8 Mb/s in the primary system only) in a challeng-

ing dynamic radio environment, but with no need for additional spectrum and with no

degradation in the primary user QoS.

8.5 Conclusion

The CBRL technique proposed in this chapter is an effective and feasible approach to

DSA in cognitive cellular systems with dynamic topologies. Large-scale system level
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simulations of a stadium small cell network with an asymmetric time-variant topology

show that augmenting classical distributed stateless Q-learning with the CBR func-

tionality in this way results in increased adaptability of the cognitive cellular system

to changes in its radio environment. For example, it is capable of achieving a two-fold

reduction in the number of retransmissions, compared to the classical RL approach,

shortly after transitions between different network topologies. However, as the com-

plexity of the dynamic environment and the possible number of network topologies

increase, the performance gap between classical and case-based RL decreases. Never-

theless, the proposed distributed case-based Q-learning approach achieves a consistent

improvement in the system QoS and its stability in the dynamic cellular environment

considered. However, a far more significant contribution towards improving the QoS

and its adaptability and robustness in cognitive wireless networks is achieved by the

HARL based schemes proposed in Chapters 6 and 7. Therefore, if the heuristic spec-

trum awareness information used by these schemes is available to the cognitive eNBs,

introducing CBR into the learning process has a small effect on system performance.

Simulations of a spectrum sharing scenario, where the stadium small cell network

shares the same LTE channel with a cognitive AeNB and a local primary network,

show that the CBHARL algorithm, i.e. the final product of all technical contributions

proposed in this thesis, achieves a significant improvement in the QoS of the stadium

network without the presence of the AeNB, and a dramatic improvement in the relia-

bility of the AeNB at the cost of a small QoS decrease inside the stadium, compared

to the classical RL algorithm. Furthermore, these simulations show that the cognitive

cellular system that employs the CBHARL DSA scheme with only secondary access

to an LTE channel, is able to accommodate a 28-fold increase in the total primary and

secondary system throughput, but with no need for additional spectrum and with no

degradation in the QoS of the primary users.
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9.1 Conclusions

Cognitive wireless networks that employ flexible DSA methods are considered one

of the key technologies for utilising the wireless spectrum efficiently and, thus, ac-

commodating the ever increasing demand for mobile data capacity. Distributed RL

is a powerful and widely used approach to DSA due to its capability to facilitate full

self-organisation in wireless networks. It eliminates the need for the potentially chal-

lenging and time-consuming spectrum planning process carried out by human experts,

whilst enabling the wireless networks to learn flexible and highly efficient spectrum

management policies. However, an inherent disadvantage of RL algorithms is their

need for the exploration process, which normally involves a large number of trial-and-

error iterations, during which the system exhibits poor performance due to its lack of

initial knowledge of the environment. This property of classical RL algorithms signifi-

cantly limits their applicability in challenging real-world wireless environments where

the primary and/or secondary user QoS guarantees must be accommodated.

The work presented in this thesis has therefore focused on accelerating distributed

RL based DSA algorithms and, thus, improving their adaptability in realistic cog-

nitive wireless network environments. First, an adaptation of the Win-or-Learn-Fast

(WoLF) variable learning rate principle was proposed to improve the initial and steady-

state performance of classical RL based DSA algorithms in cellular networks without

the use of any external heuristic information. Next, the heuristically accelerated RL
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(HARL) framework developed in Chapter 6 was analytically and empirically shown

to achieve significant further improvements in the initial performance and the conver-

gence speed of distributed RL based DSA algorithms. The proposed HARL based

DSA scheme utilises the ICIC signals in LTE networks as external heuristic infor-

mation to accelerate the learning process of every individual base station. After that,

the novel HARL framework was extended to the dynamic spectrum sharing scenario

which considers both the QoS provided to the users of the cognitive wireless networks

as well as their effect on the primary user QoS. The proposed DSA algorithms based

on the extended HARL framework make use of the radio environment map (REM) to

enable the cognitive base stations to learn efficient DSA patterns, whilst successfully

coexisting with the other primary and secondary wireless networks in their environ-

ment. Finally, a distributed case-based RL approach to DSA was proposed. It com-

bines RL and case-based reasoning (CBR) to increase the robustness and adaptability

of distributed RL based DSA schemes in dynamically changing wireless environments.

A more detailed chapter-by-chapter discussion of the original contributions of this

thesis towards the enhanced adaptability of distributed RL based DSA algorithms is

given in the following subsection.

9.1.1 Original Contributions

Win-or-Learn-Fast Variable Learning Rate

A novel adaptation of the Win-or-Learn-Fast (WoLF) variable learning rate approach

for distributed RL based DSA algorithms is proposed in Chapter 4. It uses two fixed

values for the learning rate parameter: a lower value when the learning agent receives

positive rewards, i.e. due to successful transmissions, and a higher value for negative

rewards which correspond to blocked or interrupted transmissions. In this way every

learning agent, i.e. base station, in the wireless environment is learning faster when

it is “losing” and more slowly and cautiously when “winning”. This simple variable

learning rate approach is empirically shown to improve the speed of convergence of a

distributed stateless Q-learning based DSA algorithm at the early stage of the learning

process. Interestingly, it also tends to converge on better solutions, i.e. those that
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result in a better steady-state system QoS, compared to the identical RL algorithm

with a traditional, fixed learning rate. This suggests an improvement in adaptability of

the distributed learning agents due to larger negative step changes in the Q-tables that

enable them to escape local optima.

Bayesian Network Based Convergence Analysis Method

Chapter 5 proposes a Bayesian network based joint policy transition analysis method-

ology that is able to provide a simple and accurate probabilistic model of distributed

RL based DSA algorithms applied to a minimum complexity generalised inter-cell

interference problem. A Monte Carlo simulation of the distributed Q-learning based

DSA algorithm introduced in Chapter 4 shows that the proposed approach demon-

strates remarkably accurate prediction of the convergence behaviour of such algo-

rithms. Furthermore, their behaviour can also be expressed in the form of an absorbing

Markov chain, derived from the novel Bayesian network model. This representation

enables further theoretical analysis of convergence properties of RL based DSA algo-

rithms. Finally, the main benefit of this analysis tool is that it enables the design and

theoretical evaluation of novel RL based DSA algorithms by extending the proposed

Bayesian network model, that describes a standard distributed Q-learning scheme.

Distributed ICIC Accelerated Q-Learning

The distributed ICIC accelerated Q-learning (DIAQ) scheme proposed in Chapter 6

combines distributed RL and standardized ICIC signalling in the LTE downlink, using

the framework of heuristically accelerated RL (HARL). It is theoretically evaluated

using a novel extension of the Bayesian network model proposed in Chapter 5, which

explains a predicted improvement in convergence behaviour achieved by DIAQ, com-

pared to classical distributed RL. Large scale simulation experiments of a stadium

small cell network show that it provides superior QoS compared to a typical heuris-

tic ICIC approach and the distributed RL based approach introduced in Chapter 4. A

comparison of the probability of retransmission time response characteristics of DIAQ

and pure distributed Q-learning reveals a dramatic improvement in performance at

the initial stage of learning due to the use of heuristics for guiding the exploration
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process. This result confirms the theoretical predictions made using the Bayesian net-

work model of the algorithm. DIAQ also exhibits excellent steady-state performance

and convergence speed, thus, dramatically increasing the adaptability of the distributed

RL approach to DSA. Finally, it is designed to comply with the current LTE standards.

Therefore, it allows easy implementation of robust distributed machine intelligence for

full self-organisation in existing commercial networks.

HARL for Dynamic Secondary Spectrum Sharing

Chapter 7 extends the HARL framework proposed in Chapter 6 and presents a novel

mechanism for dynamic spectrum sharing (DSS) based on it. It utilises a radio environ-

ment map (REM) as external information for guiding the learning process of cognitive

wireless networks. The DSA and DSS schemes proposed in Chapter 7 are shown to

achieve high controllability of spectrum sharing patterns in a fully autonomous way.

They also result in a significant decrease in primary system QoS degradation due to

the interference from the secondary cognitive systems, compared to a state-of-the-art

RL solution and a purely heuristic typical LTE solution. The spectrum sharing patterns

that emerge by using the proposed schemes also result in remarkable reliability of the

wide coverage cognitive eNodeB on an aerial platform in a scenario where it has sec-

ondary access to LTE spectrum shared with a local primary network and a secondary

high capacity density small cell network. Furthermore, the novel general structure of

heuristic functions proposed in the context of HARL are applicable to a wide range of

self-organisation problems beyond the wireless communications domain.

Case-Based RL for Dynamic Wireless Environments

The case-based RL (CBRL) technique proposed in Chapter 8 is an effective and fea-

sible approach to DSA in cognitive cellular systems with dynamic topologies. Large-

scale system level simulations of a stadium small cell network with an asymmetric

time-variant topology show that augmenting classical distributed stateless Q-learning

with the CBR functionality in this way results in increased adaptability of the cogni-

tive cellular system to changes in its radio environment. However, as the complexity

of the dynamic environment and the possible number of network topologies increase,
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the performance gap between classical and case-based RL decreases. Nevertheless,

the proposed distributed case-based Q-learning approach achieves a consistent im-

provement in the system QoS and its stability in the dynamic cellular environment

considered. However, a far more significant contribution towards improving the QoS

and its adaptability and robustness in cognitive wireless networks is achieved by the

HARL based schemes proposed in Chapters 6 and 7. Therefore, if the heuristic spec-

trum awareness information used by these schemes is available to the cognitive eNBs,

introducing CBR into the learning process has a small effect on system performance.

9.1.2 Hypothesis Revisited

The hypothesis stated at the beginning of this thesis is the following:

“Appropriate use of available heuristic information can accelerate distributed rein-

forcement learning algorithms to enable highly adaptable dynamic spectrum access in

cognitive wireless networks.”

The key contributions of this thesis described in Subsection 9.1.1 can be summarised

in the context of the above hypothesis as follows:

• The WoLF variable learning rate proposed in Chapter 4 increases the adaptabil-

ity of the distributed RL based DSA approach by making it more difficult for the

distributed learning agents to converge on local optima and, thus, encouraging

them to keep looking for better DSA policies.

• The DIAQ scheme proposed in Chapter 6 uses standard ICIC signalling in LTE

networks as an additional heuristic information source to dramatically improve

the temporal characteristics of the distributed RL based DSA approach, such

as its initial and steady-state performance, as well as its convergence speed, all

of which contribute towards its significantly increased adaptability in a wireless

environment.

• Similarly to the ICIC-aided DIAQ scheme, the HARL based DSS approach pro-

posed in Chapter 7 uses a REM as a heuristic information source to increase the

robustness and adaptability of distributed RL based DSA algorithms in scenar-
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ios that involve several independent primary and secondary wireless networks

sharing the same spectrum.

• The HARL based DSS approach proposed in Chapter 7 also includes a novel

framework for utilising an arbitrary number of heuristic information sources to-

gether to accelerate the learning process based on several criteria, e.g. incorpo-

rating both the REM content and the ICIC signals to increase the adaptability of

the small cell eNBs to their neighbouring eNBs as well as to the independently

operating aerial eNB.

• The CBRL approach proposed in Chapter 8 uses the network topology infor-

mation to enable the distributed learning agents to identify different configura-

tions of a dynamic wireless environment, adapt their learning processes to these

changes more rapidly and, thus, stabilise their performance.

These contributions are empirically, and in some cases analytically, shown to cause

dramatic improvements in the adaptability of distributed RL based DSA methods ap-

plied to complex cognitive wireless network environments, thus, proving the hypothe-

sis of this thesis.

9.2 Recommendations for Further Work

This section gives a number of recommendations for further work on the areas ex-

plored in this thesis. They predominantly involve extending the applicability of the

proposed techniques to a wider range of scenarios beyond the scope of this work.

Effect of WoLF Learning Rate in Different DSA and DSS Scenarios

Although the WoLF principle for varying the learning rate of the distributed stateless

Q-learning algorithm is analytically justified, it is empirically evaluated only using the

stadium small cell network scenario investigated in this thesis. In order to verify that

the WoLF variable learning rate scheme proposed in Chapter 4 is generally applicable

to RL based DSA in wireless networks, it has to be tested using a range of differ-

ent network architectures and DSA/DSS scenarios. Furthermore, since the proposed
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WoLF principle is not specific to the stateless Q-learning algorithm used for simulation

experiments in this thesis, it would also be interesting to assess the benefits of imple-

menting the WoLF variable learning rate for other RL algorithms applied to wireless

communications problems.

Bayesian Network Analysis of Secondary Spectrum Sharing

The Bayesian network based method for theoretical convergence analysis of distributed

RL based DSA algorithms proposed in Chapter 5 uses a simple inter-cell interference

model with two co-primary spectrum users. It would also be possible to modify the

structure of joint policy transition probabilities to adapt this model to a secondary

spectrum sharing scenario which involves a primary user with a conventional non-RL

based spectrum management policy and a cognitive secondary user learning to avoid

interference with the primary user. This method would then have the potential to pro-

vide theoretical insight into the effects of the RL based DSS approach on both the

primary and the secondary user performance.

Bayesian Network Analysis of CBRL

Another potential application of the Bayesian network based convergence analysis

technique proposed in Chapter 5 is the CBRL algorithm for DSA in dynamic wireless

environments proposed in Chapter 8. The fundamental difference between the inter-

cell interference scenario considered in the Bayesian network model used in Chapters

5 and 6 and one that would describe CBRL is the fact that the application scenario of

the latter is dynamic rather than static. Therefore, its main purpose would be to pro-

vide theoretical insight into the adaptability of the CBRL-enabled cognitive wireless

devices to changes in their radio environment that disrupt their learning process.

Heuristic Acceleration Applied to Different RL Algorithms

The heuristic functions designed to guide the learning process of the HARL algorithms

for intelligent DSA and DSS proposed in Chapters 6 and 7 are shown to be highly ef-

fective when combined specifically with the stateless Q-learning algorithm introduced
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in Chapter 4. It would be beneficial to generalise the mask-based heuristic accelera-

tion principle developed in this thesis to a range of different RL algorithms, such as

classical Q-learning, SARSA and actor-critic learning. The classical RL algorithms

normally involve a state space in addition to the action space considered by the state-

less Q-learning approach. Therefore, the structure of the heuristic functions will likely

need to be adapted to their state-action space specifications. However, the author be-

lieves that the core principle of creating a temporary Q-table modified by the heuristic

function and using it for decision making, as proposed in this thesis, is an approach

that would be generally applicable to any centralised or distributed RL algorithm used

for DSA in wireless networks.

HARL in Different Spectrum Sharing Scenarios

The stadium temporary event scenario used for the development and simulations of

the HARL based DSS methods in Chapter 7 is an appropriately complex and realistic

problem. However, the proposed distributed REM and ICIC accelerated Q-learning

(DRIAQ) and REM accelerated Q-learning with Q-value based admission control

(RAQ-AC) algorithms are specific to that particular scenario. Since the novel HARL

framework that forms the basis for these algorithms is generally applicable to arbitrary

DSA and DSS problems, a thorough empirical evaluation of different DSS problems

solved by similar algorithms based on this framework would significantly widen its

impact and applicability.

Different Heuristic Information Sources for HARL

Another possible direction for future work on extending the HARL framework for

DSA and DSS proposed in this thesis is to adapt it to other heuristic information

sources. For example, the schemes developed in this thesis use standardised ICIC

signalling and a specific form of a REM database for the heuristic acceleration of RL

algorithms. This framework could be extended to be compatible with other potentially

available heuristic information sources, such as interference power measurements, or

Q-tables of other distributed learning agents, i.e. combining the HARL framework

with transfer learning introduced in Subsection 2.4.3. Adapting the HARL framework
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to various heuristic information sources and performing a thorough comparative anal-

ysis of their performance would provide new valuable insight into the magnitude of its

potential benefits.

CBRL in More Complex Dynamic Environment Scenarios

The work on CBRL based DSA in dynamic cellular environments presented in Chap-

ter 8 only considers scenarios where the wireless network switches between a limited

number of possible topologies depending on the traffic load distribution. More com-

plex scenarios with a larger number of potential topologies may require more sophis-

ticated methods for case identification and retrieval. For example, the detected cases

may need to be divided into dynamically configured clusters to avoid an excessive

number of immature learning processes taking place in parallel, which in turn may

have a detrimental effect on the system performance. Therefore, although Chapter

8 shows promising preliminary results, there is scope for developing more advanced

CBRL schemes that further enhance the stability and adaptability of cognitive wireless

networks in dynamic radio environments.

Exploiting Similarities between Cases in CBRL

One way of increasing the effectiveness of the CBRL approach to DSA not investigated

in this thesis is exploiting the similarities between different cases of the environment.

For example, the information learnt through the RL process at a particular network

topology is likely to be valuable at a different, yet largely identical network topology.

A way of updating several Q-tables at once, based on the similarity between the cases

they correspond to, may significantly improve the maturity of the information stored

in the case base, since each case base entry will take into account a significantly larger

amount of the learning agent’s trial-and-error experience. A technique that could po-

tentially facilitate this functionality is fuzzy logic [92], since it is based on the fuzzy

set theory which allows varying degrees of individual’s membership in a particular set.

For example, a value between 0 and 1 that represents the degree of membership of a

particular network topology in a particular case could be defined such that it could be

used to weigh the RL updates performed on the given case.
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Glossary

2ON Second Order Neighbourhood

AC Admission Control

AeNB Aerial eNodeB

BS Base Station

CBR Case-Based Reasoning

CBHARL Case-Based Heuristically Accelerated Reinforcement Learning

CBRL Case-Based Reinforcement Learning

CR Cognitive Radio

DIAQ Distributed ICIC Accelerated Q-Learning

DRIAQ Distributed REM and ICIC Accelerated Q-Learning

DCA Dynamic Channel Assignment

DP Dynamic Programming

DSA Dynamic Spectrum Access

DSS Dynamic Spectrum Sharing

eNB Evolved NodeB

EWMA Exponentially Weighted Moving Average

HARL Heuristically Accelerated Reinforcement Learning

ICIC Inter-Cell Interference Coordination

LoS Line-of-Sight

LSA Licensed Shared Access

LTE Long Term Evolution

MDP Markov Decision Process
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MNO Mobile Network Operator

MNRSS Minimum Neighbour Received Signal Strength

NE Nash Equilibrium

PeNB Primary eNodeB

POMDP Partially Observable Markov Decision Process

QoS Quality of Service

RAQ-AC REM Accelerated Q-Learning with Q-Value Based Admission Control

RAT Radio Access Technology

REM Radio Environment Map

RL Reinforcement Learning

RNTP Relative Narrowband Transmit Power

RSRP Reference Signal Received Power

SG Stochastic Game

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

TL Transfer Learning

TPM Transition Probability Matrix

TRM Transition Reward Matrix

TVWS TV White Space

UE User Equipment

UT User Throughput

VRB Virtual Resource Block

WoLF Win-or-Learn-Fast

WRAN Wireless Regional Area Network
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