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Abstract
The major focus is on the Hardy spaces of the annulus {z : s < |z| < 1}, with the

measure on the boundary being Lebesgue measure normalised such that each boundary

has weight 1. There is also consideration of higher order annuli, the Bergmann spaces

and slit domains. The focus was on considering analogues of classical problems in the

disc in multiply connected regions.

Firstly, a few factorisation results are established that will assist in later chapters. The

Douglas-Rudin type factorisation is an analogue of factorisation in the disc, and the

factorisation of H1 into H2 functions are analogues of factorisation in the disc, whereas

the multiplicative factorisation is specific to multiply connected domains.

The Douglas-Rudin type factorisation is a classical result for the Hardy space of the

disc, here it is shown for the domain {z : s < |z| < 1}. A previous factorisation for

H1 intoH2 functions exists in [4], an improved constant not depending on s is found here.

We proceed to investigate real-valued Toeplitz operators in the annulus, focusing on

eigenvalues and eigenfunctions, including for higher order annuli, and amongst other

results the general form of an eigenfunction is determined. A paper of Broschinski [10]

details the same approach for the annulus {z : s < |z| < 1} as here, but does not consider

higher genus settings. There exists work such as in [6] and [5] detailing an alternative

approach to eigenvalues in a general setting, using theta-functions, and does not detail the

eigenfunctions.

After this, kernels of a more general symbol are considered, compared to the disc, and

Dyakanov’s theorem from the disc is extended for the annulus.

Hankel operators are also considered, in particular with regards to optimal symbols.

Finally, analogues of results from previous chapters are considered in the Bergman space,

and the Hardy space of a slit annulus.
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Chapter 1

Introduction

This thesis will focus mainly on the Hardy spaces Hp for the annulus, mostly in

comparison to the corresponding spaces in the disc.

1.1 Literature Review

Starting with the background on Hardy spaces in the disc, we have Duren’s book [18]

details the Hp spaces for a simply connected region, together with some of the important

related spaces, and details some of the important function theory in this area, such as the

construction of Blaschke products and existance of boundary values for the functions. The

book also details how the Hp spaces can be constructed in the case of multiply connected

regions, though it does not proceed further in these spaces. The book [24] is also a useful

reference for the Hp spaces for the disc, and as well as detailing the basic function theory,

it also details the shift operator in this space.

For the operators on these spaces, the book [17] details Toeplitz operators on the Hardy

spaces of simply connected regions quite well, especially with regards to the spectrum,

and Nikolski’s book [30] also covers Toeplitz operators, as well as providing a useful

reference for Hankel operators, including discussion on the Nehari problem.
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In moving into the spaces for multiply connected regions, the paper [2] by Abrahamse

gives a good deal of information on the Hp spaces here, in particular, the inner and outer

factorisation for these spaces is covered, and the associated spaces (of no longer singly

valued functions) are described.

Topelitz operators on these spaces are also discussed here, with Abrahamse detailing some

of the theory of the essential spectra for these, and the failure of Copburn’s lemma (and

thus the possiblity for self-adjoint Toeplitz operators to have eigenvalues) is shown. The

most important result with regards to the essential spectra here appears to be Abrahamse’s

reduction theory, which essentially reduces problems regarding the essential spectra in

multiply connected domains back to the disc.

The older work of Abrahamse [1] covers some of the ideas in [2], but the later paper has

more content, and covers everything in the older paper.

Sarason’s work in [38] is also a good reference for the function theory in the Hp spaces of

the annulus, in particular it constructs the formula for the character of an outer function

with given boundary values, and another for the character of a given inner function.

The book [16] also mentions Toeplitz operators defined on multiply connected regions,

mostly following along the same lines as the work in Abrahamse, though a few results are

extended slightly, concerning the algebra generated by Toeplitz operators with continuous

symbol.

For discussion of the eigenvalues of self-adjoint Toeplitz operators on multiply connected

domains, [40] section 4 illustrates the diagonalisation of the Toeplitz operator on the

annulus {z : s < |z| < 1} whose symbol is the indicator function for the boundary

{z : |z| = 1}, giving the eigenvalues and eigenfunctions for this.

The recent paper [10], and the author’s recent (2014) thesis [11] detail the eigenvalues

and eigenfunctions for a general self-adjoint Toeplitz operator on this annulus, using

the same methods that were arrived at here ( though differing in the approach taken

to showing that the eigenfunctions will be outer). The thesis [11] also mentions more

general multiply connected regions, however only symbols that have constant sign on
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each boundary are considered, and the general approach here is in looking for characters

such that an eigenvalue exists for the Toeplitz operator applied to the space of modulus

automorphic functions with character α, which is a different problem than here where the

character is fixed (as 0).

[5] [6] also consider eigenvalues for Toeplitz operators in more general regions, with the

approach here considering the resolvent operator, with the eigenvalues resulting from the

zeros of certain theta functions. The actual eigenfunctions are not considered in these

papers, however, and the eigenvalues are not explicitly calculated, though conditions for

infinite accumulation in an interval are given.

There appear to be few papers on Hankel operators in an annulus, and most of these

appear to deal with Hankel operators on the Bergman space of the annulus, whereas in

this thesis the Hankel operators are only considered with regards to the Hardy space on the

annulus. The paper [4] does focus on Hankel operators for the Hardy space of the annulus,

and includes one of the factorisations that will be presented in the second factor, though

the result presented here will improve on the norms. This paper also does not consider

optimal symbols, but instead uses the factorisation in consideration of the boundedness of

Hankel operators.

With regards to Bergman spaces, the book [23] provides the background for the space.

As with the Hardy space, there has been considerable interest in Toeplitz operators here.

The survey [33] mentions some of the important problems in this area, such as the still

open problem of when a Toeplitz operator is open on the space, and the solved problem

of compactness in terms of Berezin transforms. The approach to these for radial Toeplitz

operators is also mentioned, pointing to the work of the paper [20], detailing compactness

and boundedness of radial Toeplitz operators in the disc.

The paper [22] also considers Toeplitz operators on Bergman spaces, the main results in

this connect the reproducing kernels for the Bergman space with Schatten class norms of

Toeplitz operators and Carleson measures.

Generalisation of Toeplitz operators on the Bergman space of the disc appears mostly
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focused on weighted Bergman spaces and polydiscs, rather than to multiply connected

regions. However, a few papers do exists in the area, mostly focusing on when a Toeplitz

operator is compact, with the strongest result being from the paper [25], which extends the

solution of the problem of finding when a Toeplitz operator is compact from the Bergman

space of the disc to the Bergman space of multiply connected domains.

For the slit domain, the book [3] provides a detailed study of the invariant and nearly

invariant subspaces of the slit disc, with the central results being a complete classification

of the invariant and nearly invariant subspaces under the shift.

1.2 Background

The description of the Hp spaces for the disc from in [18], [34], will be outlined here.

Definition 1.2.1 Take ∆ to be the interior of the unit disc- ∆ = {z : |z| < 1}.

Let p ∈ [1,∞]. Hp(∆) is defined as the set of complex valued functions f defined on ∆

such that f is analytic inside ∆, and for which ‖f‖p = limr→1Mp(r, f) < ∞, where

Mp(r, f) = ( 1
2π

∫ 2π

0
|f(reiθ)|pdθ)

1
p for 1 ≤ p < ∞, and for p = ∞, M∞(r, f) =

max0≤θ<2π |f(reiθ)|.

These spaces will be Banach spaces for 1 ≤ p < ∞, and a Hilbert space when p = 2, as

shown in [24] and [18].

It can be shown (see [24], p.51) that for any f ∈ Hp for p ∈ [1,∞], well-defined radial

limits exist almost everywhere on the boundary, and the behaviour of anyHp function can

be recovered from its boundary values. Thus, we have a natural embedding of Hp into

Lp.

The inner product for H2 is 〈f, g〉 =
∫
|z|=1

fḡ, taking the integral with respect to uniform

Lebesgue measure on the boundary of the disc.

Hp can be identified with the subset ofLp in which all negative Fourier coefficients vanish.
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As a result, (zn)∞n=0 will be a basis for these spaces for 1 < p <∞.

Since zn are all bounded functions, it follows immediately from this that H∞ is dense in

Hp for all 1 ≤ p <∞. As well as Hp, there also exists the Nevalinna space N(∆).

Definition 1.2.2 N(∆) is the space of functions f holomorphic on ∆ with

limr→∞
∫
|z|=r log+ |f(z)||dz| <∞.

These are quite important in Hardy space theory. Firstly, we have that Hp ⊂ N for all

p (see [15] p 273), and thus every f in Hp is log-integrable. We also have that for any

f ∈ N , there exist g1, g2 ∈ H∞ with f = g1

g2
.

It follows from these (see [15] theorem 2.11) that we have log |f | ∈ L1 whenever f ∈ Hp.

1.2.1 Inner-outer factorisation

An important result in the theory of Hp spaces is the existence of a unique inner-outer

factorisation for functions in these spaces. Firstly, note that we have the following

restriction on accumulation of zeros at the boundary ([18] p.18):

Theorem 1.2.3 Let f be holomorphic in the disc, with f 6= 0, and let (zn) be the zeros of

f , repeated according to multiplicity. Then limr→∞
∫ 2π

0
log |f(reiθ)|dθ is bounded only if∑∞

n=1(1− |zn|) <∞.

Since
∫ 2π

0
log |f |dθ < ∞ was seen to be a necessary condition for f ∈ Hp, this is a

necessary condition on the zero set of an Hp function.

Furthermore, given any set of an satisfying the condition
∑

(1 − |an|) < ∞, we have

that there exists B(z) ∈ H∞ with B(an) = 0 ∀n, and |B(z)| = 1 a.e. on {|z| = 1}. The

construction is given in [18] p.19, with B(z) = Π∞n=1
|an|
an

an−z
1−ānz .

This is termed a Blaschke product. For any f ∈ Hp, if we set (an) to be the zero set of f ,
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and B to be the Blaschke product with zero set (an), we have that f/B ∈ Hp (see [18]

p.20), and f/B 6= 0 inside ∆. Furthermore, ‖f/B‖p = ‖f‖p, since |B| = 1 a.e. on ∂∆.

It follows from the previous theorem that
∑

z∈A(1 − |z|) < ∞ is a necessary condition

for A to be the zero set of some Hp function. Since we can construct suitable Blaschke

products when this condition holds, it is also sufficient.

We can proceed further and factorise what is left into what is called an outer function and

singular inner function.

Definition 1.2.4 [24] p.61

An outer function is defined to be F : ∆→ C such that

F (z) = λ exp(
1

2π

∫ π

−π

eiθ + z

eiθ − z
log f(eiθ)dθ).

Where λ ∈ C a constant, and f is a positive real-valued integrable function.

It follows from the definition that an outer function will have no zeros inside the disc.

The following results on outer functions will also be important, a proof of which can be

found in [37] 17.16:

Theorem 1.2.5 Let F be an outer function as defined in 1.2.4 with respect to f , log f ∈

L1.

1. limr→1 |F (reiθ)| = f(eiθ) a.e.

2. F ∈ Hp(∆) if and only if f ∈ Lp(∂∆).

We also have that |F (z)| = |f(z)| almost everywhere on the boundary, and that F ∈ Hp

if and only if f ∈ Lp.
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A singular inner function is also defined by a boundary integral, this time against a

singular measure on the boundary. The following is, once again, from [24]:

Definition 1.2.6 A function f is said to be a singular inner function if there exists a

singular, positive, measure µ on ∂∆ such that:

f(z) = exp(−
∫

eiθ+z
eiθ−zdµ(θ)).

The factorisation theorem for the disc is as follows:

Theorem 1.2.7 Let f 6= 0 ∈ H1. Then there exists a unique factorisation f = BSF

where B is a Blaschke product, S is singular inner, and F is an outer function.

Again, this comes from [24] p.67-68.

1.2.2 Toeplitz Operators

Using the equivalence between H2 functions and their boundary values, and that H2 can

thus be embedded as a closed subspace of L2, there exists orthogonal projection P from

L2 onto H2. Thus, given φ ∈ L∞, we can define a Toeplitz operator Tφ as follows:

Definition 1.2.8 Tφf = P (φf).

In the disc, it can be shown that if φ a non-constant real-valued function on the boundary,

then the set of eigenvalues for Tφ is empty- this follows from Coburn’s theorem (see [29])-

we will have that either T or T ∗ is injective, if T 6= 0. Since T = T ∗, it must therefore

have no eigenvalues.

It is interesting to consider the matrix with respect to our basis (zn) for a Toeplitz operator.

Since we have 〈Tφzn, zm〉 = 〈φzn, zm〉 = 〈φzn+1, zm+1〉, we will have that an,m is

constant on the diagonals of fixed n − m, which will be the infinite diagonals in our
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matrix. As a consequence, we immediately have that no non-trivial compact Toeplitz

operators exist.

We can also note that Tφf = 0 implies that φ is log-integrable.

Lemma 1.2.9 Let f 6= 0, φ ∈ L∞(∂∆), and Tφf = 0. Then log |φ| ∈ L1.

Proof

In the disc, we have that H2⊥ = z̄H̄2, and so we have that all functions in H2⊥ have

log-integrable modulus on the boundary.

Now, if Tφf = 0, we have that φf ∈ H2⊥. Since |f | and |φf | are log-integrable, |φ| must

also be log-integrable. 2

1.2.3 Spectra

This thesis will spend some time on discussion of spectra of operators, so these will be

mentioned here for bounded operators. For T a bounded operator σ(T ) is said to be the

spectrum of T , where:

Definition 1.2.10 σ(T ) = {λ ∈ C : (T − λI)has no bounded inverse}.

The spectrum has several subsets that are important in operator theory, generally

classified based on why (T − λI) fails to be invertible.

We have the point spectrum σp(T ) = {λ : (T − λI) not injective}.

If (T −λI) is not injective, it follows that λ must be an eigenvalue for T , and so the point

spectrum corresponds to the set of eigenvalues.

The essential spectrum of operators will also be considered here. This is taken to be

σe = {λ ∈ C : (T − λI) not Fredholm}, where a Fredholm operator is an operator which
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is invertible in the space of operators quotiented out by the compacts.

An introduction to Fredholm operators can be found in [39] chapter 5. This also mentions

essential spectra, briefly.

Some important properties are that T a Fredholm operator is equivalent to T having finite

dimensional kernel, finite dimensional co-kernel, and closed range.

If we define the index Ind(T ) = dim(ker(T )) − dim(coker(T )) on the Fredholm

operators, we will also have Ind(T1T2) = Ind(T1) + Ind(T2).

We do not necessarily have that σe and σp are disjoint here- if we have λ is an eigenvalue

of infinite multiplicity, then λ ∈ σp is immediate. λ ∈ σe will also follow since T − λI

has infinite dimensional kernel, and thus is not Fredholm.

For T self-adjoint (and so kernel and co-kernel are both equal in dimension), we have

that σp(T ) ∪ σe(T ) = σ(T ), since suppose 0 /∈ σe(T ), 0 /∈ σp(T ).

Then, we have that T has zero kernel and cokernel, and closed range. Thus, T is a 1− 1

mapping from our Hilbert space into itself, and it follows that it has bounded inverse.

However, this is not necessarily the case for non self-adjoints. Considering the shift

operator on the Hardy space of the disc Tz it is immediate that 0 is not an eigenvalue

for Tz. We have that TzH2 = zH2, is a closed subspace of codimension 1. Thus Tz

is Fredholm. Thus 0 /∈ σp(Tz), and 0 /∈ σe(Tz). Yet 0 ∈ σ(Tz) follows as Tz∗ has a

zero-eigenvalue, and is thus not invertible.

There exist further subsets of the spectrum which are of interest in various parts of

analysis, such as the residual and continuous spectrum, however only the essential and

point spectra are considered in this thesis.

Spectral properties of Toeplitz operators in the disc have long been studied. It is already

known, for instance, that σp(Tφ) is empty for φ a real-valued non-trivial symbol, and that

σe(Tφ) is the range of φ for a continuous symbol φ, with the Fredholm index given by the

winding number of φ (see for example [17] 7.26).
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1.2.4 Hardy space of the annulus

Sarason’s work [38], as well as [2] provide useful references for the Hardy spaces in

multiply connected regions.

We will take the annulus A to be the set {z : s < |z| < 1} where 0 < s < 1 is some

constant.

In this thesis, D will be used to represent a bounded multiply connected region in the

plane. We will consider only D for which D is an open, connected domain in the plane

bounded by at most finitely many analytic Jordan curves.

In both cases, we take Γi to be the connected components of the boundary of our region,

with Γ0 chosen to correspond to the outermost boundary of our region when possible (so

in the case of A, Γ0 = {z : |z| = 1}).

There are a couple of different ways to define the hardy spaces on an annulus, both of

which will be detailed for arbitrary multiply connected regions in the plane. In a domain

D whose boundaries consist of finitely many analytic Jordan curves, these definitions will

in fact be equivalent.

Firstly, we can take the definition of Hp from [18] p179-183, which defines the space as

follows:

Definition 1.2.11 For D an arbitary domain in the complex plane, Hp(D) is the set of

analytic functions f such that |f(z)|p has a harmonic majorant in D.

In [18], the space is then given norm based on the harmonic majorant- here, we have

‖f‖p = inf(u(z0))1/p, where z0 is some fixed arbitrarily chosen point in D, and taking

infimum over u harmonic majorants for |f |p. Our inner product for the p = 2 case will be

〈f, g〉 =
∫
∂D
fḡdm for some measure on the boundary of D. An explicit calculation of

this measure can be found in [2] p263.
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To see that this construction gives a Banach space, one can consult [36] p49-50.

For the alternative definition, we can define Ep(D) as the set of functions f which are

analytic inside D, and for which there exists a sequence of domains with boundaries

{Γn}, consiting of a finite number of rectifiable Jordan curves, which eventually enclose

each compact subset of D, have bounded length, and lim supn→∞
∫

Γn
|f(z)|p|dz| <∞.

It is shown in [18] that these definitions are in fact equivalent for finitely connected

domains whose boundary curves are analytic. The approach taken there is that if Cn is the

domain enclosed by Γn, we have that for every f ∈ Hp(D), one has f = f1 + . . . + fn,

with fi ∈ Hp(Dk), for either of the definitions, and the same decomposition can be shown

for f ∈ Ep(D) also. The equivalence then follows from the equivalence of Ep and Hp

for simply connected domains- see, for example, [37].

Since defining Hp by means of harmonic majorants and by integrals with respect to

uniform lebesgue measure are equivalent, it follows that the harmonic measure dm will

be equivalent to the uniform measure |dz|. More detail on the relationship can be found

in [2] p263.

Whilst normally the space will be considered with respect to the uniform lebesgue

measure, at stated points the harmonic measure will be used. In this case, we will use

P h to denote orthogonal projections with respect to the harmonic measure, and 〈., .〉h to

denote an inner-product with respect to harmonic measure.

It is useful to consider a covering map from the disc to the annulus, θ. For the annulus

{z : s < |z| < 1}, one can define this as follows:

First, let f1 : z → z+1
1−z . This is a conformal equivalence from the disc to the right half

plane.

Let f2 : z → − log s
π

i log z + − log s
2

.

This is a conformal equivalence between the right half plane and the strip

{0 < Re(z) < − log s}.

Let f3 : z → e−z. This maps the previous strip to the set {s < |z| < 1}, i.e. to an

annulus.
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So θ = f3 ◦ f2 ◦ f1 gives us a covering map from the disc to A.

Since f2 and f1 are conformal equivalences, and f3 is ∞ to 1 with the identity

f3(z + 2πi) = f3(z) generating the automorphism group, we see that there exists a

conformal equivalence ψ on the disc generating the group of identities for the map θ,

with ψ(z) = f−1
1 (f−1

2 (f2(f1(z)) + 2πi).

It is useful to consider how our θ acts on the boundary.

Firstly, note that moving from the disc to the annulus has some pathological points— we

have that θ does not extend to the boundary at ±1. This results from the behaviour of f3

around the boundary of the strip at ±∞i (which f2f1 sends ±1 to). In fact, considering

f3 we can see that {z : 0 < Re(z) < − log s, 2πn < Im(z) < 2π(n + 1)} is mapped

1 − 1 into A. So any relatively open region of the boundary of the strip about ±∞i is

mapped in an∞− 1 manner to the entire boundary of A. It follows therefore that on any

arc of ∂∆ relatively open and containing ±1, θ is an∞− 1 map onto the boundary of the

annulus. These are the only such points in ∂∆, since log(z) extends to the boundary of

the strip everywhere except at ±∞i.

This can also be seen from the fact that ψ±n(z) → ±1 as n → ∞ (since we have ψ can

be represented as mapping to the strip, adding 2πi, then mapping back to the disc, and so

accumulates at the points in the disc corresponding to ±∞i in the strip.

If we take t with t 6= 0, t 6= π, consider the effect of θ on eit.

We have f1(eit) = eit+1
eit−1

= 2i sin t
|eit−1|2 .

f2 takes a log of this, then multiplies and shifts by a constant, so we have

f2(f1(eit)) = i(log( 2 sin(t)
|1−eit|2 ))− log s

π
+ 0 when 0 < t < π.

f2(f1(eit)) = i(log( 2 sin(t)
|1−eit|2 ))− log s

π
+ (− log s) for π < t < 2π.

Finally, f3 is exponentiation, so θ(eit) = e
−i(log(

2 sin(t)

|1−eit|2
))− log s

π when 0 < t < π, and

θ(eit) = se
i(log(

2 sin(−t)
|1−eit|2

))− log s
π for π < t < 2π.

So we can see once more that as t approaches 0 or π, we are wrapping around the

appropriate boundary of the annulus infinitely many times.

It is also clear that Γ0 lifts to the set of points on the boundary of the disc with positive
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imaginary part, and Γ1 to those with negative imaginary part.

If we take a lift f̃ of f an Hp(D) function back to the disc under a covering map θD from

∆ onto D, we have that f̃ ∈ Hp(∆). This is trivial in the case p =∞. It is proven in [2]

p267 that (for the space defined with respect to Harmonic majorants) that if f̃ is the lift to

the disc of f ∈ Hp(D), we have ‖f̃‖p = ‖f‖p (the proof is to show that if u is a harmonic

majorant for |f |p, then lifting u gives a suitable majorant for the disc).

Now, since we are working with uniform measure on the boundary, we will not have that

the norms remain equal. However, since the harmonic and lebesgue norms are equivalent,

we will have that ‖f̃‖p <∞⇔ ‖f‖p <∞.

Abrahamse in [2] in fact proves more than that just the lifts of Hp(D) functions are in

Hp(∆). We in fact have that Lp(∂D) functions lift to Lp(∂∆) functions.

It follows, for instance, that the functions in Hp(A) will have well-defined radial limits

on the boundary of the annulus- one simply has to show that a non-tangential line to the

boundary of the annulus is mapped to a set of non-tangential lines on the boundary of the

disc under θ−1.

Let A : [0, 1]→ S be our path approaching the boundary of the annulus non-tangentially,

and we can assume w.l.o.g. A(1) = 1.

Since we approach the boundary of the annulus non-tangentially, we must have that our

path is of finite length, and so it can only wind about the annulus at most finitely many

times. Since f1 and f2 are conformal equivalences, we need only consider f3. By taking

A′(x) = A(t + (1 − t)x) for t suitably close to 1, we can assume that |(A(x) − 1| < ε,

where ε is taken so that {z : |z − 1| < ε}
⋂
A is simply connected. Now, we have that

f3 restricted to a suitable set is a conformal equivalence between {z : |z − 1| < ε}
⋂

A

and the appropriate pre-image, so the pre-images of A must approach the boundary non-

tangentially.

Since we have that boundary values now exist almost everywhere, we have that H2 can
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be considered as a subspace of the L2 space of the boundary of the annulus, and it must

be closed since H2 is complete. From this, we can define orthogonal projection onto H2,

and thus a Toeplitz operator can be defined on the annulus by Tφf = PH2(A)(φf).

When working with the harmonic measure, we will denote the associated Toeplitz

operator Tφ, with Tφf = P h
H2(φf).

1.2.5 Basis for Hp(A)

In the disc, we have that (zn)∞n=0 provide an orthonormal basis for H2(∆).

For the annulus A, with normalized lebesgue measure on the boundary, we have a very

similar result.

Theorem 1.2.12 ( zn

‖zn‖2 : −∞ < n <∞) is an orthonormal basis for H2(A).

Proof

It is immediate that zn ⊥ zm when n 6= m, since we have that 〈zn, zm〉 =∫ 1

0
e2iπ(n−m)tdt+

∫ 1

0
sn+me2iπ(n−m)tdt.

Now, given any f holomorphic in A, we have a Laurent series f =
∑+∞
−∞ anz

n.

So,
∫
|z|=r |f |

2 =
∑∞

n=−∞ |an|2r2n.

So, for f ∈ H2(A), we must have
∑
|an|2(1 + s2n) < ∞. However, ‖zn‖2

2 = 1 + s2n,

and thus
∑N

n=−N anz
n is convergent in H2, and thus converges to f .

It follows that ( zn

‖zn‖2 ) for −∞ < n <∞ gives a basis for H2(A). 2

From this, for instance, it follows that H∞ is dense in Hp for 1 < p ≤ ∞.

For a more general annulus D of genus g, constructing a basis for H2(D) is

somewhat harder. However, we can use the additive decomposition (previously

used in showing the two alternate definitions for Hp were equivalent) to show that

{zn, (z − ai)−n : 0 ≤ n < ∞} has dense span in H2(D), where ai ∈ C are chosen for
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1 ≤ ai ≤ g such that ai is enclosed by Γi, and so it will follow that H∞ is dense in Hp.

However, even our (zn) need not be an orthogonal series in H2(D).

1.2.6 Decomposition of L2

In the disc, we have L2(∂∆) = H2(∆)⊕ zH2(∆), and so H2⊥ = zH2.

In the case of A, if ω is the function with ω = 1 on Γ0, and ω = −1 on Γ1, it is easy to

see that ωH2 ⊥ H2, since 〈f, ωg〉 = 〈fg, ω〉 = 0.

We also have that H2 ⊕ ωH2 = L2. To do so, note that zn + s2nωz−n = (1 + s2n)einθ on

Γ0, and is 0 on Γ1. zn − ωz−n is (1 + s−n)einθ on Γ1 and 0 on Γ0.

Thus, we have that H2 ⊕ ωH2 is dense in L2, and since the space is closed, it is L2. It

follows that H2⊥ = ωH2.

We may also wish to consider a similar result in an arbritary annulus D.

We have from [2] Theorem 1.7 that for the Hardy space on D (with Harmonic measure),

we have H2⊥ = ν−1H2 for some function ν, meromorphic on an open set about our

region D, with zeros and poles strictly inside D. We have that ν−1 is thus continuous,

bounded and non-zero on ∂D. Thus, if we are working with uniform Lebesgue measure,

we have H2⊥ = ν−1 |dz|
dm

, where dm was the previous Harmonic measure.

We know that |dz| and dm are equivalent measures [2], so |dz|
dm

will be bounded away from

0 and∞. It is also shown that this is strictly positive in [2].

One consequence is that H2⊥ will consist of functions whose boundary values have

log-integrable modulus, since |ν| is log-integrable on the boundary, as is our change of

measure |dz|
dm

and H2 (H2 having log-integrable boundary values is in [2] Theorem 1.18).

It follows that a necessary condition for Tφf = 0 will be that |φ| is log-integrable.

Another decomposition shown in Abrahamse is that L2 = H2 ⊕ H2 ⊕ N , with N a g-

dimensional set, where g is the genus of D.

Again, this is shown with respect to harmonic norm. If we instead use uniform Lebesgue
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measure, we still have H2 +H2 +N = L2, however orthogonality is no longer preserved.

1.2.7 Inner-outer factorisation in the annulus

Inner-outer factorisation in an annulus works somewhat differently than in the disc. By

taking lifts back to the disc, we can produce an inner-outer factorisation in the disc of the

lifted function, however there is no guarantee that the new functions from factorisation

can be passed back down to the disc (since our covering map from the disc will be an

∞-1 mapping, and so we cannot send a general Hp(∆) function back to D).

Considering the case for an annulus first, we have by a result of [38] that if f is an outer

function, and |f | is ψ-invariant on the boundary, then f will be a modulus automorphic

function, defined as follows:

Definition 1.2.13 f ∈ Hp(∆) is a modulus automorphic function, and k ∈ (0, 1] its

character if we have that f(ψ ◦ z) = e2πikf(z) a.e. on ∂∆.

We can take an inner-outer factorisation in the disc of f̃ = f̃if̃o for an arbitrary function

f ∈ Hp(A), and we will have that f̃o will be a modulus invariant function, and thus f̃i

will also be modulus invariant, with complementary character.

When considering the disc as a covering space of more general regions, we have that the

identity group of our covering map θD is no longer generated by a single element.

We can still, however, define modulus automorphic functions, as is done in [2] p267.

Definition 1.2.14 If G is the group of disc automorphisms such that θD ◦ G = θD, we

have that f is a modulus automorphic function if we have |f ◦ S| = |f | for all S ∈ G.

Now, [2] states that if f is modulus automorphic, then we have f ◦ S = α(S)f for some

α ∈ Ĝ the dual group of G. We say that α is the character of f .
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If we have f a many-valued function in Hp(D) that lifts to a modulus automorphic

function in Hp(∆), the character of f is taken to be the character of its lift to ∆.

There are two approaches to defining inner and outer functions in the annulus.

One is to accept many-valued functions that lift to modulus automorphic functions for the

inner and outer factorisation, and proceed as before.

The second is to only accept single-valued functions, and instead cancel out the modulus

automorphism of the lifts of each part by multiplying by g and g−1, with g an outer (by

the former definition) function chosen to have constant modulus on each boundary, and

to have suitable character (in the case of A, these will be zα, with α corresponding to the

character of the previous inner-outer factorisations). The requirement for inner functions

to have |fi| = 1 on the boundary must then be reduced instead to the requirement for |f |

to be constant on each boundary.

In this nomenclature, the functions zn are both inner and outer for the Hp spaces of A.

Functions that are both inner and outer for an annulus are referred to as units.

In this thesis, the first of these approaches will be taken unless stated otherwise- inner and

outer components of a function may be considered as multivalued. Considering multiply

valued functions whose lifts back to the disc are modulus automorphic in fact generates a

family of spaces related to our Hp spaces:

Definition 1.2.15 Hp
α(D) is the set of modulus-automorphic functions in ∆ with

character α.

Further details can be found in [2] p266-267, or in [38]. That these are essentially copies

of Hp(D) can be seen from the result Hp
α(D) = s̃αH

p
0 (D), where sα is an outer function,

with modulus bound away from 0 and∞ on each boundary, and such that s̃α has character

α.

The result follows from the observation that multiplying two modulus automorphic

functions will result in a function whose character is the sum of the individual characters

(shown in, for example, [2]).
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Definition 1.2.16 Let f̃ ∈ H1
α. Then f is said to be outer/Blaschke/singular inner for

D if f̃ is outer/Blaschke/singular inner for H1(∆), where˜denotes the lift to the disc:

f̃(z) = f(θ(z)), where θ is our covering map from ∆ to D.

Theorem 1.2.17 Let f ∈ H1(D). Then there exists a unique factorisation f = BSG,

where B is a Blaschke product for D, S is a singular inner function for D, and G is outer

for D.

If α, β, γ are the corresponding characters for B, S,G, then α + β + γ ∈ Z.

This is from [2] p268.

For an outer function with given modulus on the boundary, [38] p.35, Theorem 6, gives the

following technique to calculate its character (modified by a constant to take characters in

the range [0, 1).

Theorem 1.2.18 Let f be a multiply-valued function such that f̃ ∈ Hp
αf

(∆). We have

that αf =
∫
Γ0

log |f |−
∫
Γ1

log |f |
log s

(mod 1).

Corollary 1.2.19 zx as a multi-valued function in A has character x (mod 1).

1.2.8 Blaschke products

In A, similar conditions on the zeros accumulating at the boundaries hold as to in the disc,

though the condition instead becomes
∑

z:f(z)=0 min{1− |z|, |z| − s} <∞.

This can be seen by taking lifts back to the disc. If f ∈ Hp(A), we have that f̃ ∈ Hp(∆),

and so we have that
∑

z:f̃(z)=0(1− |f̃ |(z)) <∞.

Now, consider some region of ∆ on which θ gives a 1 − 1 mapping from the annulus.

Such a region will have a boundary consisting of two arcs on the boundary of the disc,
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connected by two paths in the interior of the disc. On this region, our lift θ will only

distort distances between the respective boundaries by a finite factor. So, if we restrict

to a sequence of zeros accumulating on the outer boundary of the annulus, we must have∑
(1− |z|) <∞ over this sequence.

To show the result for a sequence of zeroes approaching other boundary, apply the

conformal equivalence z → sz−1 to A to swap the interior and outer boundaries.

We can define Blaschke products in the annulus to be those functions whose lifts back to

the disc are Blaschke products (all such lifts will be infinite Blaschke products in the disc,

since θ is infinity to one).

Consider the Blaschke product in the annulus with a single zero at ω, Bw. It is useful to

know what the character of this function is. In order to do so, note that (z − w) = Bwfo,

where fo is an outer function with |fo| = |z−w| almost everywhere on ∂A. (This follows

since we know the zero set of z−w and there is no singular inner component since |z−w|

does not decay on any radial limit approaching the boundary.)

Now, since (z − w) is single-valued, Bw has character complementary to fo, which by

Theorem 6 of [38] has character
∫
Γ0

log |z−w|−
∫
Γ1

log |z−w|
log s

.

Alternatively, [38] provides a construction of the character of an inner function directly.

There are two things to note:

1. The character of Bw depends only on |w|.

2. The character of Bw lies in the range (0, 1
2
], attaining 1

2
only when |w| =

√
s.

So a single-valued Blaschke-product must have at least 2 zeros (with multiplicity) in the

annulus, and in the case of a single-valued Blaschke with two zeros, both must lie on the

line |z| =
√
s.

It is useful to extend here a classical result from the Hardy space of the disc, that for g

outer we have gH2 is dense in H2.

Theorem 1.2.20 Let g ∈ H2(A) be outer, and single-valued. Then gH∞ is dense in H2.
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Proof

This follows the same way as it does in the disc. We have that Cl(gH∞) is invariant

under Mz and Mz−1 , and closed by definition. Now, Beurling’s theorem has been

extended to a general multiply connected region in [35] p161, and thus we have that

Cl(gH∞) = ΘH2 for some (single-valued, constant modulus on each boundary) inner

function Θ. g ∈ ΘH2, so we have Θ divides g. If g is outer, it follows that Θ must

be a unit, since the lift of Θ divides an outer function, it is outer, and we have from

before that Θ has constant modulus on each boundary). However, any outer function

with constant modulus on each boundary is invertible with inverse in H∞, and so

ΘH2 = H2 = Cl(gH∞).

2

1.2.9 Reproducing kernels

A Hilbert H consisting of functions on a set X is said to be a reproducing kernel space if,

for all λ ∈ X , we have there exists kλ ∈ H for which 〈f, kλ〉 = f(λ) for all f ∈ H . kλ is

referred to as a reproducing kernel for λ.

These can be a useful tool for the study of our space, and it happens that our Hardy spaces

are reproducing kernel spaces.

For seperable Hilbert spaces, it is easy to construct our kλ in terms of a given orthonormal

basis by the following well known lemma:

Lemma 1.2.21 Let H be a separable reproducing kernel Hilbert space of functions on

X , λ ∈ X , and (en) an orthonormal basis for H . Then kλ =
∑∞

i=1 en(λ)en

Proof

Let f ∈ H , then f =
∑

n anen for some square summable sequence (an).
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Now, we have that 〈f,
∑∞

n=1 en(λ)en〉 = 〈
∑∞

m=0 amem,
∑∞

n=0 en(λ)en〉.

=
∑∞

n=0 anen(λ) = f(λ).

Thus, kλ will be a reproducing kernel for H .

2

Applying this lemma, we can construct the well-known reproducing kernels for the disc:

Theorem 1.2.22 For H2(∆), we have kλ(z) = 1
1−λ̄z .

Proof

From Lemma 1.2.21 applied to our basis zn, we have that kλ(z) =
∑∞

n=0 λ
n
zn = 1

1−λz .

2

In the case ofH2(A), we can apply lemma 1.2.21 with respect to our basis zn

1+s2n
to obtain

kλ =
∑+∞
−∞( λ

n

1+s2n
) zn

1+s2n
.

This does not have such a pleasing simplification as in the disc, but we can see that the

series converges for all λ ∈ A, and so we are once again in a reproducing kernel space.

For a more general annulus D, the reproducing kernels are somewhat harder to construct,

and typically theta functions are used to do so, however we do know that we have a

reproducing kernel space, and that kλ are H∞(D) functions (see [8] for instance).

1.2.10 Vector valued Hardy Spaces

The vector valued Hardy Spaces are a classical extension of the Hardy space, whose

elements are vector valued functions on the disc. An introduction to these can be found

in [30] 3.11. In this thesis, only finite dimensional vectors will be considered, so one can

consider these spaces to be defined as follows:

Definition 1.2.23 For n ∈ Z, n ≥ 1, and taking ‖f‖p = sup0<r<1(
∫ 2π

0
‖f(reiθ)‖pdθ)1/p

for f ∈ Hol(∆,Cn), we define the vector valued Hardy spaces as
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Hp(∆,Cn) = {f : f ∈ Hol(∆,Cn), ‖f‖p <∞}.

We will have once again that boundary values exist almost everywhere, and that f tends

to its boundary values a.e. along non-tangential paths. We will thus be able to define

Toepltiz operators, whose symbols in this setting will be matrices as opposed to scalars in

the scalar valued case.

In order to extend this to a multiply-connected region D, it helps to consider defining this

space in terms of harmonic majorants instead. We have from [27] p3 that we can define

our H2 space as follows:

Definition 1.2.24

H2(∆,Cn) = {f : f ∈ Hol(D,Cn), ‖f‖2 <∞]},

where ‖f‖2 = inf{ν(z0)
1
2 : ν a harmonic majorant for ‖f‖2}, and z0 some arbitrarily

chosen point in D.

We will once again be able to lift back to the disc under a suitable covering map.

In particular, since we already showed that the lifts under θ of non-tangential paths

approaching the boundary of A we will have that limits as we approach the boundary are

defined a.e. and will lie in L2, so we can discuss Toeplitz operators for the vector-valued

Hardy space on A.

1.2.11 Bergman spaces

As well as the Hardy spaces, we can also define the Bergman spaces on ∆ , Ap(∆).

Definition 1.2.25 For 1 < p < ∞, we have Ap(∆) = {f : f ∈ Hol(∆,C) : ‖f‖pAp =∫
∆
|f(z)|2dA(z) <∞}, where A is Lebesgue area measure.
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[23] provides a good reference to these spaces. Now, we can no longer recover a function

in this space by its boundary values, but instead we have that Ap(∆) a closed subspace of

Lp(∆), (the limit of anyAp function is in Lp by definition, and holomorphic in the interior

of ∆ since we have almost uniform convergence), so we can define Toeplitz operators on

the Bergman spaces with symbols a function in L∞(∆).

One key difference is the lack of inner-outer factorisations. Blaschke products fail to be

so useful in Bergman spaces since we can no longer remove a Blaschke product whilst

preserving norm. Moreover, we no longer have the same conditions on how zeros may

accumulate on the boundary, and an analogue of the necessary and sufficient conditions

that we have in the annulus has yet to be found. In the Bergman space, for instance, if we

have a set zn of zeros of a Bergman space function lie on some radial line in the disc, we

have
∑

1− |zn| <∞ as in the case of the Hardy space. However, it is quite possible for∑
1− |zn| >∞ for the set of zeros of a Bergman space function. (See [23], chapter 4).

We have that A2 is a reproducing kernel space, with kλ(z) = 1
(1−λ̄z)2 .

1.2.12 Slit disc

We have G the slit disc is the set G = {z : |z| < 1, z /∈ [0, 1)}.

A full description of how to define the Hardy spaces on G can be found in [3]. The Hardy

space here will be taken as what is referred to as E2 and the Hardy-Smirnov class in [3]-

in slit domains, we no longer necessarily have that this is equivalent to the space one

obtains when dealing with harmonic majorants.

As in [3] p11, E2(G) is the spaces for which supn
∫
γn
|f |2ds < ∞, with ds arc-length

measure, and (γn) a sequence of rectifiable Jordan curves, which eventually contain every

compact subset of our domain.

An application of a theorem originally attributed to Keldysh and Lavarentiv, which can

be found in [3] page 11, details that if φG is a conformal map from the disc to G, then

f ∈ E2 if and only if sup0<r<1

∫
φ({|z|=r}) |f |

2ds <∞.
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We can thus take ‖f‖E2(G) = (sup0<r<1

∫
φ({|z|=r}) |f |

2ds)
1
2 .

It will follow from this that f ∈ E2(G)⇔ (f ◦ φG)(φ′G)
1
2 ∈ H2(∆).

We can also see from this, (and since φ′G extends a.e. to the boundary, as will be shown in

chapter 5) that f ∈ E2(G) has boundary values a.e. (considering limits from above and

below on the slit seperately), and ‖f‖E2(G) =
∫
∂∆
|f ◦ φG|2|φ′G| =

∫
∂G
|f |2|dz|, (Where

we take the integral over the boundary to cover the slit twice, once with limits from above,

once with limits from below) for f ∈ E2, and the inner product can be written similarly.

1.2.13 Hankel operators

Hankel operators have long been studied in the disc, defined as follows:

Definition 1.2.26 For φ ∈ L∞, Γφ is defined to be the operator from H2 → H̄2 defined

as Γφf = PH̄2φf .

[31] provides a useful introduction to the Hankel operators, and covers important

results such as Nehari’s theorem, the Nehari extension problem, and Nevalinna-pick

interpolation. A Hankel operator will, if we represent it as a matrix with respect to our

zn basis, have constant value along the finite length diagonals, an,m with n+m constant,

in contrast to the result with Toeplitz operators constant along diagonals with n − m

constant (shown in [31] p30). Now, as opposed to Toeplitz operators, we no longer

immediately have ‖Γφ‖ = ‖φ‖∞, nor do we even have that the symbol of the operator is

unique, for it is immediate that Γf = 0 whenever f is an analytic function.

The problem of finding a symbol of optimal norm is a classic problem in the Hardy

space of the disc. It turns out that there will always exist an optimal symbol φ for which

‖φ‖∞ = ‖Γφ‖, and this is easy to construct for a Toeplitz operator achieving its norm:
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Theorem 1.2.27 Sarason’s solution to the Nehari problem

Suppose that Γ is a Hankel operator on the disc, with ‖Γf‖2 = ‖Γ‖∞‖f‖2.Then we have

that φ = Γf
f

is an optimal symbol for Γ with ‖φ‖∞ = ‖Γ‖.

This can be seen in [31]. The theorem is quite powerful- while a Hankel operator need

not achieve its norm on H2, there are interesting classes of Hankel operators which will.

Hankel operators with a symbol polynomial in z̄, for instance— representing these as

a matrix, only finitely many entries are non-zero. So, using finite dimensional linear

algebra, it is easy to construct a function where our Hankel operator achieves its norm.

For multiply connected regions, there are two different ways that a Hankel operator can

be defined, as can be found in [30].

One is to take Γφf = PH⊥2 φf , which is the definition that will be considered in this

thesis. The other is to take Γφf = PH2φf̄ .

These parallel the two approaches that can be taken for Hankel operators defined on the

Bergman spaces, which are referred to as the big and little Hankel operators. These act

rather differently since the L2 for Bergman spaces is a far larger space than A2.

In comparison, for the Hardy spaces, L2 = H2 +H2 +N where N has dimension equal

to the genus of our annulus, as mentioned earlier.
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Chapter 2

Factorisations

This section will discuss a few factorisation results in the annulus. One of the results

will be an analogue of a factorisation result from the disc— the result that an L1

function can be factorised as fḡ with f, g ∈ H2 whenever it is log-integrable, which

comes from [9]. The next will be a multiplicative analogue of the standard additive

decomposition, and the final one an extension of theH1 = H2H2 factorisation in the disc.

2.1 Douglas-Rudin in the annulus

The following result is known in the Hardy space of the unit disc:

Theorem 2.1.1 Let f ∈ L∞(∂∆), log|f | ∈ L1(∂∆), and ε > 0.

Then there exist g, h ∈ H∞(∆) such that f = gh̄, with

‖f‖∞ ≤ ‖g‖∞‖h‖∞ < (1 + ε)‖f‖∞.
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The proof of this, which will be outlined here, is that shown in [14]. This section shall

focus on showing that a version of this also holds in the annulus, and the proof will be

given afterwards.

A few preliminary results are shown in [14] with the theme of approximating functions

with the argument of the ratio of two Blaschke products. The first important one is

Theorem 3.2.5. of [14].

Lemma 2.1.2 Let ε, θ, δ ∈ (0, π), η ∈ (0, θ/π), α ∈ (ε − π, π − ε), and

Ω = {eiw : −θ < w < θ}.

Then there exist finite Blaschke products B1 and B2 with simple zeroes such that:

m({z ∈ Ω : |α− arg(B1(z)/B2(z))| > ε}) < η,

with −δ < arg(B1(z)/B2(z)) < δ for all z ∈ ∂∆\Ω,

and
∑

z:B1(z)B2(z)=0(1− |z|) ≤ 2m(Ω) log(4π
ε

).

This is then used to show that one can approximate measurable functions with such ratios:

Lemma 2.1.3 Let ε, θ, δ ∈ (0, π), ν ∈ (0, 1), Ω a relatively open subset of ∂∆, and

ψ : Ω → (−π, π] be a measurable function. Then there exist finite Blaschke products B1

and B2, with simple zeroes, such that:

m({z ∈ Ω : |ψ(z)− arg(B1(z)/B2(z))| > ε}) < η,

while −δ < arg(B1(z)/B2(z)) < δ for all z ∈ ∂∆\Ω,

and ∑
{z:B1(z)B2(z)=0}

(1− |z|) ≤ 2m(Ω) log(
12π

ε
).

Lemma 2.1.3 is then strengthened to the following:
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Lemma 2.1.4 Let ε ∈ (0, π], A ⊂ ∂∆ measurable, and φ : ∂∆→ (−π, π] a measurable

function vanishing outside A. Then there exist Blaschke products B1 and B2 such that

‖φ− arg(B1/B2)‖∞ < ε,

with
∑
{z:B1(z)B2(z)=0}(1− |z|) ≤ 2m(A) log(50π

ε
).

The approximations are then used to show Theorem 3.2.8 in [14], namely,

Theorem 2.1.5 Let φ ∈ L∞(∂∆, (−π, π]) and ε > 0. Then there exist Blaschke products

B1 and B2 such that

‖H(φ− arg(B1/B2))‖∞ < ε,

H denoting Hilbert transform.

The Douglas-Rudin factorisation then appears from Theorem 2.1.5 as Corollary 3.2.9 of

[14], as follows:

Proof

Let v be the outer function with

v(z) = exp(
1

2π

∫ π

−π
log |f(eit)|e

it + z

eit − z
dt),

i.e. |v| = |f | a.e.

Then v ∈ H∞, and f/v is unimodular. Let f/v = eiφ, φ ∈ L∞(∂∆, (−π, π]).

Theorem 2.1.5 shows that given any φ, we have Blaschke products in the disc, B1 and

B2, and γ ∈ L∞ such that γ = φ− arg(B1/B2), and ‖H(γ)‖∞ < log(1 + ε), where H is

the Hilbert transform.

Thus, letting F = 1
2
(γ+iH(γ)), then F ∈ H∞, and exp(iφ) = B1 exp(iF )B2 exp(−iF ).

So if g = vB1 exp(iF ), h = B2 exp(−iF ), then f = gh̄, ‖g‖∞ < ‖f‖∞
√

1 + ε, and

‖h‖∞ <
√

1 + ε. 2
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Adaptation to the annulus

The following analogue of the result can be shown in the annulus:

Theorem 2.1.6 Let f ∈ L∞(∂A) be such that log |f | ∈ L1(∂A). Then, there exists

g, h ∈ H∞(A) with f = gh̄.

The proof of this will follow most of the method used in [14] for the disc, but several

adaptations need to be made when working with the Hardy spaces for an annulus.

The following preliminary result is needed on outer functions with modulus close to 1.

Lemma 2.1.7 Suppose that f ∈ H2(A) is outer, 1 − ε < |f | < 1 on ∂A, and f̃(0) > 0,

with f̃ being the lift to H2(∆) under θ (θ defined in section 1.12).

Then ‖1− f‖2
2 < 2ε.

Proof

Since taking lifts back to ∆ preserves the given conditions, it is enough to show this is

true for f ∈ H2(∆), as H2(A) is equivalent to the subspace of lifts in H2(∆).

Since f is outer, and 1− ε < |f | < 1 on ∂A, we have that 1− ε < |f(z)| < 1 ∀z ∈ ∆.

Now, 〈1−f, 1−f〉 = 1+‖f‖2−2Re(〈f, 1〉) = 1+‖f‖2−2Re(f(0)) ≤ 1+1−2(1−ε) ≤

2ε. 2

We start with the following lemma:

Lemma 2.1.8 Let

ε, t, δ ∈ (0, π), ν ∈ (0, t/π), η ∈ (0, 1), α ∈ (ε− π, π − ε),Ω = {eiω : −t < ω < t}.

Then we have finite Blaschke products B1, B2 ∈ H2(A) with simple zeroes, such that

m({|z ∈ Ω : |α − arg(B1/B2)| > ε}) < ν,−δ < arg(B1/B2) < δ ∀z ∈ ∂A \ Ω except
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on a set of measure at most η.

Also,
∑
{z:B1(z)B2(z)=0}(1− |z|) ≤ 2m(Ω) log(4π

ε
).

Proof

Let B′1 and B′2 be the restriction to the annulus of the Blaschke products for the

corresponding theorem for the disc (Lemma 2.1.7). These will not be Blaschke products

in H2(A)— their modulus will be strictly less than 1 on Γ1.

B′1/B
′
2 takes values as required on Γ0, by construction. Consider B′1/B

′
2 on Γ1.

We have that B′1 is a Blaschke product in the disc with zeros at z ∈ Z1, where

Z1 = {r1/Ne2πik/N : 0 ≤ k ≤ N − 1} ∩ {r1/Neiw : −β < w < β} for some constants

r,N, β, as in [14].

Now B′2 has zero set Z2 = {eiα/Nz : z ∈ Z1}.

Then |eiα/N (w−z)(1−weiα/Nz)
(1−w̄z)(weiα/N−z) − 1| = | e

iα/N (w−z)(1−weiα/Nz)−(1−ω̄z)(ωeiα/N−z)
(1−w̄z)(weiα/N−z) | =

| z(1−e
iα/N )(1−|ω|2)

(1−w̄z)(weiα/N−z) | = |s|
2| (1−|w|2)(1−eiα/N )

(z̄−s2w̄)(z−ωeiα/N )|

Now, we have that (1− |w|2) = (1− r2/N) ≤ 2N−1log(1/r), |1− eiα/N | ≤ α/N , as was

the case in the disc. Also, we have that |z − s2ω| ≥ (s − s2) and |z − eiα/N | ≥ (1 − s),

for z ∈ Γ1.

Thus, we have that |eiα/N (w−z)(1−weiα/Nz)
(1−w̄z)(weiα/N−z) − 1| ≤ AαN−2 log(1/r) Since B′1/B

′
2 is the

product of N such terms, we have that on these boundaries, |B′1/B′2 − 1| ≤ (1 +

AN−2 log(1/r))N − 1) = O(1/N) for large N . However, in this construction, N can

be chosen to be arbitrarily large, so we can make B′1/B
′
2 arbitrarily close to 1 on Γ1.

Since a bound on
∑

z∈Zi(1− |z|) independent of N from the proof in [14] was used, this

does not affect our bound on for
∑

B1(z)B2(z)=0(1 − |z|). Now, the B′1, B
′
2 constructed

are not inner functions for the annulus, however, letting B′1 = fifo, B
′
2 = gigo, inner-

outer factorisations into (potentially multiply-valued) functions, we have that B′1/B
′
2 =

fifo/(gigo) = (fo/go)fiḡi.

Since |B′1/B′2| − 1 can be made arbitrarily small, we have that |fo/go| − 1 can be made

arbitrarily small. However, since |go| = |B′2|, we have that |go| is continuous, bounded
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away from 0 and infinity, thus fo/go ∈ H2 and is another outer function.

Since |fo/go| is close to 1 everywhere, we have from Lemma 2.1.7 that ‖fo/go − 1‖

can be made arbitrarily close to 0, and thus have argument close to 0 except on a set of

small measure. We must choose N sufficiently large that this set has measure less than η.

(Since we do not necessarily have approximation in∞-norm, we no longer have B1/B2

has small argument outside Ω in our final result, as opposed to the case for the disc in

[14]).

Now, fi and gi obtained need not be single valued, however this can be avoided— the zero

sets of fi and gi coincide with those of B′1 and B′2 by construction, and the zero set of B′2

is a rotation of the zero set of B′1.

In H2(A), the character of a Blaschke product with zero at z depends only on |z|, and so

fi and gi will have the same character, call it κ.

Then, let B1 = fiK, and B2 = giK, where K is a finite Blaschke product with character

−κ (the existence of such a K is proven in [2] p269). Then B1B̄2 = fiḡi, and both have

character 0, i.e. they are single-valued.

2

From this, we proceed to the following refinement, which is an analogue of Lemma 3.2.6

from [14]:

Lemma 2.1.9 Let ε, δ ∈ (0, π), ν, η ∈ (0, 1),Ω relatively open, and Ω ⊂ θ−1(Γ0) and

φ : ∂∆→ (−π, π] a ψ-invariant measurable function with support in Ω. Then there exist

finite, ψ− invariant Blaschke products with m({z ∈ Ω : |φ− arg(B1/B2)| > ε}) < ν,

with −δ < arg(B1/B2) < δ outside Ω except on a set of measure η, and∑
z:B1(z)B2(z)=0(1− |z|) ≤ 2m(Ω) log 12π

ε
.

Essentially, this says that if one takes a function on the outer boundary of the annulus

and lift back to the disc, then one can approximate with Blaschke products that are also

lifts of Blaschke products from the annulus. Unlike in the case of the disc, we no longer
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have arg(B1/B2) small everywhere outside Ω, since our previous approximation in 2.1.8

no longer had this property (as a result of having to multiply by an outer function lying

close to 1 in norm).

Proof

As in [14], simply take an appropriate step function approximating the function that we

wish to target (using lifts of the functions in 2.1.8), and factorise this as a product of

functions of the type dealt with in Lemma 2.1.8. The result then follows. 2

Now, since this holds for the outer boundary, it does so after application of conformal

equivalences. So, for Γi, we can apply a conformal equivalence to swap Γi and Γ0,

apply the result, then move back via the conformal equivalence. Thus we can drop the

requirement that Ω has support on θ−1(Γ0).

So, we have

Lemma 2.1.10 Let ε, δ ∈ (0, π), ν, η ∈ (0, 1),Ω relatively open and φ : ∂∆→ (−π, π] a

ψ-invariant measurable function. Then there exist finite, ψ−invariant Blaschke products

with m({z ∈ Ω : |φ− arg(B1/B2)| > ε}) < ν,

while −δ < arg(B1/B2) < δ outside Ω except on a set of measure η, and∑
z:B1(z)B2(z)=0(1− |z|) ≤ 2m(Ω) log 12π

ε
.

From this lemma, we can produce the following analogue of [14] Theorem 3.2.7:

Lemma 2.1.11 Let ε ∈ (0, π], Ω ⊂ ∂∆ and φ a ψ-invariant measurable function

with support Ω. Then there exist ψ-invariant Blaschke products B1 and B2 with

‖φ− arg(B1/B2)‖∞ < ε,
∑

z:B1(z)B2(z)=0(1− |z|) < 2m(Ω) log(50π
ε

).



Chapter 2. Factorisations 34

The proof is mostly the same as in the disc from [14], except for use of Borel-Cantelli

since our approximations are weaker than in [14].

Proof

Let (νk) and (δk) be sequences with 2
∑∞

k=1 νk ≤ m(Ω) log(25
24

) and
∑∞

k=1 δk < ε/4.

Let Ξ1 be an open set (on the boundary) containing Ω, m(Ξ1) < m(Ω) + ν0, and let ψ1

be defined by:

ψ1(z) = φ(z)− ε/2 if φ(z) > 0,

ψ1(z) = φ(z) + ε/2 for φ(z) ≤ 0.

Then, we construct inductively a sequence of open sets Ξk, Ωk, measurable functions ψk,

and Blaschke products B(k)
1 , B(k)

2 such that the following hold:

1. ∑
{z:B(k)

1 B
(k)
2 =0}

(1− |z|) ≤ 2m(Ξk) log(
48π

ε
).

2.

m({z ∈ Ξc
k : | arg(Bk

1/B
k
2 )| > δk}) < νk.

3. Ξk contains

Ωk+1 = {z ∈ Ωk : |ψk(z)−arg(Bk
1/B

k
2 (z))| > ε/4}

⋃
{z ∈ Ωc

k : | arg(B1/B2)| > δk}.

and also

m(Ξk) < m(Ωk) + νk < 2νk.

4.

ψk+1 = φ(z)− ε/2−
k∑
j=1

arg(B
(j)
1 )− arg(B

(j)
2 ) for φ(z) > 0.

= φ(z) + ε/2−
k∑
j=1

arg(B
(j)
1 )− arg(B

(j)
2 ) for φ(z) ≤ 0.
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If we let l be a positive integer, and suppose we have found Ξk+1, ψk+1, B
(k)
1 , B

(k)
2 for

k < l.

Then, applying Lemma 2.1.10 with ν = νl, δ = δl, Ω = Ξl and ψ = ψl|Ω, ε = ε/4, we

obtain B1 and B2 ψ-invariant Blaschke products with

m({z ∈ Ξl : |ψ(z)− arg(B
(l)
1 /B

(l)
2 )| > ε/4}) < νl, and | arg(Bl

1/B
l
2))| < δ

outside Ωk except on a set of measure < ν,

and
∑

B1(z)B2(z)=0(1− |z|) ≤ 2m(Ω) log(48π
ε

).

Now, we have that 1, 2, 3, 4 are all satisfied for k = l, hence by induction we can make

the construction for all integers.

We have that
∑∞

k=1

∑
B

(k)
1 (z)B

(k)
2 (z)=0

(1− |z|) ≤
∑∞

k=1 2m(Ξk) log(48π
ε

).

Since m(Ξk) < 2νk, this series is summable, so B1 = Π∞k=1B
(k)
1 and B2 = Π∞k=1B

(k)
2

exist, and are Blaschke products, with
∑

B1(z)B2(z)=0 d(z, ∂A) ≤ 2m(Ω) log(50π
ε

).

To show that we have ‖φ−arg(B1/B2)‖∞ < ε, note that asm(Ωk) is summable, we have

that m{z : z ∈ Ωk infinitely often} = 0 by the Borel-Cantelli Lemma.

Thus, we have that, aside from a null set, for each z ∈ ∂∆ we have there exists an l for

which z ∈ Ωl and z /∈ Ωk∀k > l.

Thus, ψl+1(z) ≤ ε/4, and since | arg(Bk
1/B

k
2 )| < δk all k > l, and

∑
δk < ε/4, we have

that ψk(z) ≤ ε/2∀k > l.

It thus follows that ‖φ− arg(B1/B2)|‖∞ < ε, and
∑

(1− |z|) < 2m(Ω) log(50π
ε

). 2

We then have that the following analogue of [14] Theorem 3.2.8 holds:

Theorem 2.1.12 Let φ ∈ L∞(∂∆) be ψ-invariant, and ε > 0.

Then there exist ψ-invariant Blaschke products B1 and B2 such that

‖H(φ− arg(B1/B2))‖∞ < ε.

where H is the Hilbert transform.
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Proof

Let δ be constant depending on ε, φ0 = φ, h1 = 0. Then, by the previous lemma, we have

φ1, and Blaschke products B(1)
1 , B

(1)
2 , ‖φ1‖∞ ≤ δ

2
and φ1 = φ0 − Re(h1) − arg(

B
(1)
1

B
(1)
2

),

with B(1)
1 and B(1)

2 ψ-invariant Blaschke products,
∑

B
(1)
1 (z)B

(1)
2 (z)=0

(1− |z|) ≤ log(100π
δ

).

Suppose for k ≥ 1, we have φk ψ-invariant, with ‖φk‖∞ ≤ 2−kδ.

Then, by Corollary 3.2.4 from [14], we have that there exists hk+1 with

‖φk −Re(hk+1)‖2 ≤ 2−k‖φk‖∞ ≤ 2−2kδ.

and ‖hk+1‖∞ ≤ c log(2k)‖φk‖∞ ≤ ck log 2
2k

δ.

We need to adapt this so that the hk obtained is modulus-invariant. Let f be a real-valued

bounded ψ-invariant function, and g1 and g2 analytic functions such that f = g1 + ḡ2.

Since f ∈ H∞, these will be BMOA functions, and thus lie in H1.

Then we must have that g1=g2+A, whereA a constant, since f = f̄ thus g1+ḡ2 = ḡ1+g2,

thus g1 − g2 = g1 − g2, and so g1 − g2 = A

So, (f − A) = g + ḡ. Since the left hand-side is ψ-invariant, we have that Re(g) is

invariant, and thus g must be ψ-invariant (otherwise, g − ψ ◦ g would be in Hp and have

vanishing real part on the boundary).

Now, applying [14] Lemma 3.2.2 to deal with boundedness, the construction involves

multiplying by an outer function whose modulus on the boundary will be invariant, and

thus this yields a modulus-invariant function hk+1. Suppose this has character −βk+1,

and since hk approximates an invariant function arbitrarily well for large k, we must have

that the βk are tending to 0. So, replacing hk+1 with eαk+1
hk+1, with eαk the lift to the

disc of the function zαk in the annulus, where αk = βk + m, with m ∈ Z chosen so

that −1
2
≤ αk ≤ 1

2
, we recover an invariant function. Since −1

2
≤ αk ≤ 1

2
, we at most

increase by a constant multiple of s−1 for ‖eαk+1
hk+1‖∞. We need the following to show

that we still approximate in L2 as well:

Lemma 2.1.13 ‖φk − Re(hk+1eαk+1
)‖2 ≤ 2−2kEδ for E some constant depending only

on the inner radius of our annulus A.
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Proof

Since we have that ‖hk+1−eαk+1
hk+1‖2 = ‖hk+1(1−eαk+1

)‖2 ≤ ‖hk+1‖∞‖(1−eαk+1
)‖2,

and calculate the integral on the strip S = {z : 0 < Re(z) < −logs} (choosing the

map from disc to strip so that composition with e−z will return our map from the disc to

annulus θ) with measure on the boundary |dz| 1
cosh(Im(z))

(which is an equivalent norm

to lebesgue measure in the disc on applying our conformal equivalence, by [7]. Since

z → e−z is our map from the strip to the annulus, we have that our eαk lifts to e−zαk .

So ‖1 − eαk+1
‖2

2 ≤
∑∞

n=1(sup2πn≤θ≤2π(n+1) |1 − eiαkθ|2 + |1 − sαkeiαkθ|2)µ(An), where

An is the set {it : 2nπ < t < 2(n+ 1)π} ∪ {− log s+ it : 2nπ < t < 2(n+ 1)π}.

Now, |1− sαkeiαkθ|2 ≤ |1− eiαkθ|2 + |1− sαk |2, so we have that:

‖1− eαk+1
‖2

2 ≤ 2
∑∞

n=1(sup2πn≤θ≤2π(n+1) |1− eiαkθ|2µ(An)) + (1− sαk)2.

Using the approximation |1 − eix| ≤ |x| (which follows since the length of the chord

between 1 and eix on the unit disc is bounded by the length of the arc between them) :

‖1− eαk+1
‖2

2 ≤
∑∞

n=1 π
2(s+ 1)2α2

k
1

cosh(2πns)
+ |1− sαk |2.

Since
∑∞

n=1(2π(n+ 1))2 1
cosh(2πn)

= D for D some real constant, it follows that

‖1 − zαk‖2
2 ≤ α2

kD1 + (1 − sαk)2 ≤ α2
kC for some real constant C depending only on

our inner radius.

To get bounds for αk, suppose we have that sk is the H2(∆) function such that

φk = sk + s̄k and sk(0) is real.

Then (see [14] Lemma 3.2.1 and corollary 3.2.4), we obtain hk by multiplying sk

by the outer function G̃k, the lift of Gk ∈ H2(A) to the disc where |Gk| = 1 on

F2k = {z : z ∈ ∂A, |sk(θ−1(z))| ≤ 2k}, and |Gk| = 2k

|sk|
on E2k = F2k

c.

Since sk was invariant, we only need to know the character of Gk, and

αk =
(
∫
|z|=1 log |Gk|−

∫
|z|=s log |Gk|)

log s
.

Thus |αk| ≤ 1
| log s|

∫
|sk|≥log(2k)

| log( log(2k)
|sk|

)| ≤ 1
− log s

∫
|sk|≥log(2k)

| log(|sk|)| ≤
1

− log s

∑
k≤t<∞(t+ 1)µ({z : 2t < |sk(z)| < 2t+1}).

Now, we have µ(z : 2t < |sk(z)| < 2t+1) ≤ 1
22t‖sk‖2

2.
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Thus |αk| ≤ 1
−2π log s

‖sk‖2
2

∑∞
t=k

(t+1)
22t .

Now, since ‖sk‖2
2 ≤ ‖φk‖2

2 ≤ ‖φk‖2
∞ (For the first inequality, if φk =∑∞

n=0 anz
n +

∑∞
n=1 ānz̄

n, we have sk = a0

2
+

∑∞
n=1 anz

n, and so the result follows),

and the series
∑∞

t=k
(t+1)
22t has a bound independent of k, we have that |αk| ≤ E(2−2k)δ,

where E is a constant depending only on our inner radius.

It will follow that ‖φk −Re(hk+1ek+1)‖2 ≤ ‖φk −Re(hk+1)‖2 + ‖hk+1 − hk+1ek+1‖2 ≤

E2−2kδ for some constant E depending only on inner radius (since δ will later be chosen

to be small, we can assume δ < 1 and so δ2 < δ). 2

The rest of the proof of this theorem proceeds without further need for modification from

that in [14] Theorem 3.2.8.

Letting gk+1 = hk+1z
αk+1 , we have that:

‖φk −Re(gk+1)‖2 ≤ 2−2kEδ

‖gk+1‖∞ ≤
ck log 2

2k
δ.

Letting ∆k = {z ∈ ∂∆ : |φk − Re(gk+1)| > 2−(k+2)δ}, we have that this will be ψ-

invariant, and thus fk = (φk − Re(hk+1z
αk+1))χ∆k

will be ψ-invariant, and m(∆k) ≤
(2−2kEδ)2

2−2(k+2)δ2 ≤ 16E2k2

22k .

We can, by lemma 2.1.11 construct Bk+1
1 /Bk+1

2 ψ-invariant, with

‖fk − arg(Bk+1
1 /Bk+2

2 )‖∞ < 2−(k+2),∑
B1(z)B2(z)=0

(1− |z|) ≤ 2m(∆k) log(
50π

2−(k+2)δ
).

Take φk+1 = φk −Re(gk+1)− arg(Bk+1
1 /Bk+1

2 ).

Then, by evaluating on ∆k and ∆c
k separately, we can see that ‖φk+1‖∞ ≤ 2−(k+1)δ.

We have that
∑∞

k=0 ‖φk − arg(Bk+1
1 /Bk+1

2 ) − φk+1‖∞ =
∑∞

k=0 ‖Re(gk+1)‖∞ ≤∑∞
k=0 ‖gk+1‖∞ ≤ ε for suitably small δ.

Thus
∑∞

k=0 φk − arg(Bk+1
1 /Bk+1

2 )− φk+1 = φ0 − arg(Π∞k=0B
k+1
1 /Bk+1

2 ).

Also, ‖H(φ0 − arg(Π∞k=0B
k+1
1 /Bk+1

2 ))‖∞ = ‖H(
∑∞

k=0 φk − arg(Bk+1
1 /Bk+1

2 ) −
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φk+1)‖∞ = ‖H(
∑
Re(gk+1))‖∞ ≤

∑
‖Im(gk+1)‖∞ ≤

∑
‖gk+1‖∞ < ε. And, we

also have
∑∞

k=0

∑
Bk+1

1 (z)Bk+1
2 (z)=0(1 − |z|) < ∞. Thus the products of the ψ-invariant

Blaschke factors converge to suitable ψ-invariant Blaschke products B1 and B2. 2

From this, we can show the main theorem, which now proceeds in the same way as the

the proof in [14] follows from Theorem 3.2.8. in that book:

Theorem 2.1.14 Whenever f ∈ L∞(∂A) with log |f | ∈ L1, we have f = gh̄ for some

g, h ∈ H∞(A).

Proof

First, lift to the disc so that we have a ψ-invariant boundary function in the disc, factor out

an (invariant) outer function so that we can restrict to the case of factorising a unimodular

function (to deal with this outer function having non-integer character, use the fact that

zαsiz̄αs̄i = |z|2α in the annulus and taking lifts back to the disc, we can adjust for this

(where si is some inner function with the right character to make zαsi single valued).

So f = eiφ, with φ real valued. Lifting to the disc, we can produce B1 and B2 invariant

such that ‖H(φ− arg(B1/B2)‖∞ < log(1 + ε).

Then, have that F = 1
2
(γ + iH(γ)) ∈ H∞ where γ = φ − arg(B1/B2), and

exp(iφ) = B1 exp(iF )B̄2exp(−iF ).

Since γ is ψ-invariant, so is F (since otherwise, F − F ◦ ψ would be non-constant,

analytic with constant real part) and thus the decomposition is in terms of invariant

functions, which can then be passed down to the annulus to obtain our factorisation. 2

The proof here does not seem to extend to a higher genus annulus, the main problem

being that Lemma 2.1.8 appears difficult to adapt to have Bi single-valued for the higher

genus annulus.
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2.2 Multiplicative factorisation

There is a well known additive decomposition for H2(A) into H2(∆)⊕H2((s∆)c).

If f =
∑∞
−∞ anz

n, then f = f1 + f2 with f1 =
∑∞

0 anz
n, and f2 =

∑−1
−∞ anz

n.

It is immediate that f1 ∈ H2(∆), f2 ∈ H2((s∆)c), and f1 ⊥ f2.

The following gives a multiplicative decomposition which somewhat parallels this.

Theorem 2.2.1 Let f ∈ Hp(A), p ∈ [1,∞]. Then there exists f1, f2 with f = f1f2,

f1 ∈ Hp(∆), and f2 ∈ Hp((s∆)c), such that f = f1f2.

Proof

First, consider the case when |f | > 0 in A. Since f is analytic and non-zero on A, it has

well-defined winding number about 0. Call this nf . Then, letting f ′ = fz−nf , f ′ has

winding number 0 about 0, and thus we have a well-defined logarithm in A.

Let log f ′ =
∑∞
−∞ anz

n be the power representation of this function, and

set g1(z) =
∑∞

0 anz
n, g2(z) =

∑−1
−∞ anz

n. Since log f ′ is bounded on

{z : (s + ε)} < |z| < 1 − ε} for all ε > 0, it follows that g1 is bounded on

{z : |z| < 1− ε}, and g2 bounded on {z : |z| > s+ ε} for all ε > 0.

We have that f = zneg1+g2 = zneg1eg2 , so we have only to verify that eg1 ∈ Hp(∆), and

eg2 ∈ Hp((s∆)c).

g2 is analytic and non-zero on {|z| > s + ε}, and hence |eg2| has non-zero infinum.

Letting A2 = inf |z|=1 |eg2| 6= 0, we have that
∫
|z|=1
|eg1|p ≤

∫
{|z|=1} |f

′|pA−p2 <∞.

Hence eg1 ∈ Hp(∆) (since we have a power series consiting of only positive powers of

z, we know that that the integral on |z| = ρ is strictly increasing with ρ). By a symmetric

argument, eg2 ∈ Hp((s∆)c).

Thus a function without zeros can be factorised. However, for an arbitrary function f ,

we can remove a Blaschke factor to deal with the zeros— let B1 be a Blaschke product

in Hp(∆) with B1(z) = 0 ⇔ {f(z) = 0, |z| ≥ s
1
2}, and B2 a Blaschke product in
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Hp((s∆)c) with B2(z) = 0⇔ {f(z) = 0, |z| < s
1
2}.

Then we have that f = B1B2f
′ with f ′ ∈ Hp, |f ′| > 0 in A. Letting f ′ = f1f2 from

before, we have that f = (f1B1)(f2B2) factorises the function as required. 2

2.2.1 Non-uniqueness

This factorisation fails to be unique— if one takes f with finitely many zeros, the Blaschke

product factor of f can be included it in either factor, and each will yield a different

factorisation (since the method for factorising non-zero functions produces non-zero

functions in their respective domains).

Consider the following example:

Take p(z) = z − 1
2
, assuming that s < 1

2
.

To factorise this, we can take a Blaschke product for ∆, zero at 1
2
, or for (s∆)c.

The first choice gives the factorisation p(z) =
z− 1

2

1− 1
2
z
(1− 1

2
z), we observe that the second

factor already lies in H2(∆), so we are done.

Alternatively, we can take the Blaschke product for (s∆)c with zero at 1
2

(= 1−2z
s− 1

2s
z
).

So, we have z − 1
2

= 1−2z
s− 1

2s
z
(s− 1

2s
z).

s − 1
2s
z winds about 0 on any loop in our annulus, so take out a factor z. s − 1

2s
z =

−z( 1
2s
− sz−1). But 1

2s
− sz−1 is already in H2((s∆)c), so we are done. Simplifying

each product we have, z − 1
2

= (z − 1
2
).1 = z.(1 − 1

2
z−1) are the two different ways of

writing the product as H2(∆)H2((s∆)c), depending on which side the zero goes. These

factorisations differ by multiplication of meromorphic functions, and we can in fact show

that factorisation is unique up to meromorphic functions.

Theorem 2.2.2 Suppose that we have f, f1, f2, f3, f4 with f ∈ H2(A), f1, f3 ∈ H2(∆),

f2, f4 ∈ H2((s∆)c), and f = f1f2 = f3f4.

Then we have that f3/f1 is meromorphic in C.
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Proof

Eugene Shargorodsky suggested the following proof, which is simpler than the original.

We have that f
f1f4

= f2

f4
= f3

f1
on A. Now, we have that f2

f4
is meromorphic in (s∆)c, as it

is the ratio of analytic functions in that domain. We also have that f3

f1
is meromorphic in

∆. Since f2

f4
= f3

f1
, we can extend to a meromorphic function on C, as required. 2

2.2.2 Extension to higher genus setting

We can extend this factorisation as follows:

Theorem 2.2.3 Let D be a general genus g annulus, consisting of the unit disc ∆ with

g components Ai removed, with each Ai conformally equivalent to the unit disc. Let

f ∈ Hp(D). Then there exists fi, 0 ≤ i ≤ g, such that f0 ∈ Hp(∆), and fi ∈ Hp(Aci).

Proof

We can prove this by induction. Firstly, note that if we are in the case g = 1, we can

apply a conformal equivalence to ensure that the inner disc is centred about 0, and then

apply the case for {z : s < |z| < 1}.

Now, suppose D is an annulus of genus n + 1 constructed as in the theorem. Let

D′ = {z : s1 < |z| < 1}, where s1 is chosen so that D′ is contained in D. Now, if we

have f ∈ H2(D), we also have that f ∈ Hp(D′), and applying the g = 1 case, we have

that f = f0f1 with f0 ∈ Hp(∆), and f1 ∈ Hp({z : |z| > s1}.

We can extend f1 analytically by f1 = f/f0 to yield f1 ∈ Hp(D
⋃

∆c}), with f = f0f1.

Now, D
⋃

∆c is a genus-n annulus. Through application of a conformal equivalence,

we can send this to an annulus consisting of the unit disc with g − 1 removed subdiscs,

and thus f1 can be factorised completely. Moving back to the original domain with a

conformal equivalence, we will have that
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f = f0f1 . . . fg.

With fi ∈ Hp(Aci), f0 ∈ Hp(∆). 2

2.3 Factorisation of H1 function into H2 functions

In the disc, the following result is a well known result following from the inner-outer

decomposition of functions:

Theorem 2.3.1 Let f ∈ H1(∆), then there exist g1, g2 with f = g1g2, gi ∈ H2(∆), and

‖f‖1 = ‖g1‖2‖g2‖2.

In the annulus, whilst an H1 function can still be factorised as a product of H2 functions,

the norm of the factorisation is no longer preserved— which is quite important with later

consideration of Hankel operators.

Theorem 2.3.2 Let f ∈ H1(A), then there exist g1, g2, f = g1g2, gi ∈ H2(A),

‖g1‖2‖g2‖2 ≤ A‖f‖1, where A ∈ R is a constant.

This has been shown already in [4] for arbitrary multiply connected regions, with the

constant of factorisation depending on the region in question. In the case of an annulus

of the form {z : s < |z| < 1}, this will be improved upon to show that a constant of

factorisation independent of s can be obtained.

A proof of the theorem with the constant A = 1
s

depending on the inner radius of A, s,

will first be given. Later, this constant will be made independent of the inner radius of

the annulus A. The method is akin to that in the disc, with a small alteration.

Proof
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Let f = fifo be the inner outer factorisation of f .

Then let g1 = (fif
1/2
0 zα/2), and g2 = (f

1/2
0 z−α/2), where α ∈ (0, 1) is the character of fo.

(The zα/2 term appears to ensure that our gi are still single-valued functions, as f
1
2

0 will

have character α
2

, thus fif
1
2

0 would have character −α
2

).

then f = g1g2, and ‖g1‖2‖g2‖2 ≤ s−1‖f‖1. 2

This illustrates the difficulty that arises for the annulus— in taking square roots for our

outer part, we are altering the characters, and so the inclusion of z
1
2
α is needed to counter

this.

The constant in the following proof comes out as ((1+e)(1+2e))
1
2 , which is independent

of our annulus inner radius.

Proof

Assume w.l.o.g. that
∫

Γ1
|f | = 1, and

∫
Γ0
|f | ≥ 1 (transform to swap boundaries if

necessary, then scale). Let
∫

Γ0
|f | = B.

Let f = fofi be the inner-outer factorisation of f , and factorise as f = (g1fiz
x)(g2z

−x),

where we have that:

g1 is an outer function,

|g1| = |f |
1
2 whenever |f | > 1,

|g1| = |f | when |f | ≤ 1,

and x is chosen so that g1fiz
x is a single valued function.

We have from [38] that the character of an outer function is given by
∫
Γ0

log |f |−
∫
Γ1

log |f |
log s

(mod 1).

It thus follows that the difference between the characters of g1 and fo is equal to∫
Γ0

1
2

log+ |f |−
∫
Γ1

1
2

log+ |f |
log s

.

Now, since
∫

Γ1
|f | = 1, we have that

∫
Γ1

log+ |f | ≤ 1 (since log+ |f | ≤ |f |).

We also have that
∫

Γ0
log+ |f | ≤ 1 + logB. To see this, consider the problem of finding

a function g ∈ L2(Γ0,R) to maximise
∫

Γ0
log+ |g| subject to the constraint

∫
|g| = B

It is immediate that a maximal function will not take values in the set (0, 1)- otherwise,

we can create a function g′ with g′ = 0 where g < 1, which would decrease
∫
g′ without
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changing
∫

log+ g′.

Secondly, note that a maximal function will be constant on the set g > 1— otherwise,

choose g′ such that g′ = 1{z:g>1}(
∫
g>1

g
µ({z:g>1})). Then, we will have

∫
g =

∫
g′,

and by Jensen’s inequality (and noting that log+ g = log g on g > 1), we have that∫
log+ g′ >

∫
log+ g.

Thus, we have that the maximal g will be such that g = 0 on a set of measure 1− x, and

g = B/x on a set of measure x. The case x = 0 is trivial, and optimising over x we see

that
∫

log+ |f | < supx∈(0,1) x log B
x

.

This is maximised as x approaches 1 for B > e, giving an upper bound of logB in this

case. For 1 < B < e, we can see that 2 is an upper bound, so 1 + logB is an upper bound

for all A > 1.

Since the character of zx is x, we have that |x| ≤ 1+logB
−2 log s

, and so s2x ≤ s
1+logB

log s ≤ eB.

Now, we have that ‖f‖1 = (B + 1).

Also, ‖g1fiz
x‖2

2 ≤ (B + eB) (since |g1|2 ≤ |f |), and

‖g2z
−x‖ ≤ ((B + 1) + (1 + 1)(eB)) (since |g2|2 ≤ max{1, |f |}).

So ‖g1fiz
x‖22‖g2z−x‖
‖f‖21

≤ ((1+e)B)(1+(1+2e)B)
(1+B)2 ≤ ((1 + e)(1 + 2e)). 2

The constant that arises in these factorisations is entirely due to characters— if you

permit factorisations of the type f = g1g2 with g̃1 ∈ H2
α, g̃2 ∈ H2

−α, α ∈ [0, 2π) and

H2
α the set of analytic functions in the annulus of character α (see, e.g. [38]), one

can factorise with ‖g1‖2‖g2‖2 = ‖f‖1— we can simply take square roots of the outer

component of f , now that we are no longer restricted by characters. The same is also true

in a higher order annulus, with α ∈ Ĝ:

Theorem 2.3.3 Let f ∈ H1(D), then there exists g1, g2, with g̃1 ∈ H2
α, g̃2 ∈ H2

−α for

some α some character, and with ‖g1‖2‖g2‖2 = ‖f‖1.

Proof

This follows straightforwardly from the inner-outer factorisation. Let f = fifo. Then
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take g1 = fif
1
2
o , and g2 = f

1
2
o , taking f

1
2
o to be the outer function with modulus on the

boundary to be the root of the modulus of fo.

It is immediate that f = g1g2, and that ‖g1‖2 = ‖g2‖2 = ‖f‖
1
2
1 . If fo has character κ,

fif
1
2
o will have character −κ

2
, so these are no longer single-valued functions in general. 2
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Chapter 3

Toeplitz operators on the annulus

3.1 Toeplitz Operators with real-valued symbol

3.1.1 Eigenvalues/eigenvectors of Toeplitz operators with real-valued

symbols

The initial motivation at the start of this project was to consider whether a self-adjoint

(and thus real valued) Toeplitz operator on the Hardy space of the annulus could have

eigenvalues, and as to what they would be. The solution to this problem followed

quickly from some of the results in Abrahamse’s paper on Toeplitz operators in multiply

connected domains [2]. Research in a paper of Broschinski also came to the same

conclusions with similar method on the eigenvalues for self-adjoint Toeplitz operators

on the annulus in [10], though they did not consider higher order annuli. An older paper

by Aryana and Clancey [6] describes the eigenvalues of Toeplitz operators in a general

annulus of arbitrary genus, in terms of theta-functions, and a recent paper by Aryana

[5] gives more details in the genus-1 case, giving the same theorems on when infinitely

many eigenvalues accumulate in the spectrum, but not giving explicit calculation of the

eigenvalues. The methods in the Aryana paper were focused on the resolvent of the
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operators in question, as opposed to the methods here. Whilst Brochinski uses much

the same methods, he does not continue to higher genus annuli in his paper. In his recent

(2014) thesis [11], he mentions Toeplitz on a more general multiply connected domain,

but the results stated are in terms of Toeplitz operators on H2
α, looking for α that give an

eigenvalue given a Toeplitz operator, and so do not immediately provide information on

H2. The results on Toeplitz operators in [11] are also limited to real-valued symbol with

constant sign on each boundary component, and properties of the eigenfunctions are also

not considered in Brochinski’s work on more general domains.

In this chapter, A will be used to refer to the annulus {z : s < |z| < 1}, andD will be used

to refer to an arbitary finitely-connected domain contained in the disc, whose boundary

curves are analytic Jordan curves.

We will take A and D to have uniform Lebesgue measure on the boundary, unless stated

otherwise.

Lemma 3.1.1 Let φ be a bounded real-valued symbol of a Toeplitz operator on the Hardy

space of the annulus A:={z : s < |z| < 1}.

Let Γ0 = {z : |z| = 1}, and Γ1 = {z : |z| = s}.

Let ess inf φ|Γ0 = a; ess supφ|Γ0 = b.

Let ess inf φ|Γ1 = c; ess supφ|Γ1 = d.

Then we have that:

i σe(Tφ) = [a, b]
⋃

[c, d].

ii If a ≤ b ≤ c ≤ d, then σp ⊂ [b, c], and if c ≤ d ≤ a ≤ b, then σp ⊂ [d, a].

otherwise, σp = ∅.

Proof

(i) follows from a corollary of Abrahamse’s reduction theorem, Corollary 3.2 of [2].

Theorem 3.1.2 (Abrahamse) The operator Tφ is Fredholm if and only if Tφi is Fredholm

for i = 0, . . . n, and so σe(Tφ) =
⋃n
i=0 σe(Tφi).
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(Tφi refers to the Toeplitz operator on the Hardy space of the complement of the area

enclosed by Γi for i ≥ 1, and on the disc for i = 0, with φi being the restriction of φ to

Γi).

The essential spectrum of a self-adjoint Toeplitz operator on a disc, or any other connected

space, is the essential range of its symbol. Thus (i) follows.2

To prove (ii), we first need the following lemma on the eigenfunctions with eigenvalue 0

of a self-adjoint Toeplitz operator:

Lemma 3.1.3 If φ is a real-valued L∞ function with Tφf = 0 then φ|f |2 ∈ H⊥∞
⋂
H⊥∞.

Proof

Tφf = 0⇒ 〈φf, g〉 = 0 for all g ∈ H2.

Thus 〈φf, gf〉 = 0 for all g ∈ H∞, and so 〈φff̄ , g〉 = 0 for all g ∈ H∞.

Thus we have that φ|f |2 ∈ H⊥∞.

However, φ|f |2 is real-valued, so on taking conjugates we have orthogonality to H⊥∞

also.2

Note that this result will work on the Hardy space of any domain. In particular, if we

consider the Hardy space of the disc, this shows that φ|f |2 is perpendicular to both the

analytic and anti-analytic functions, and thus we have no eigenvalues when φ is non-zero.

Whilst it is not immediate that H∞⊥ is contained in L1 (as L∞⊥ is not L1 in general),

φ|f |2 will always be in L1, so we can take intersection with L1 in any case.

Now, for the Hardy space of analytic functions on the annulus under consideration, we

have that the space of functions orthogonal to both analytics and anti-analytic functions

is a 1-dimensional space, spanned by the function ω, where ω|Γ0 = 1, and ω|Γ1 = −1.

Lemma 3.1.4 If h is such that 〈h, f〉 = 0 for all f ∈ H∞,and 〈h, f̄〉 = 0 for all f ∈ H∞,

then h = kω for some k ∈ R.
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Proof

Considering orthogonality against zn and z̄−n respectively:∫
Γ0

h(eiθ)einθ + sn
∫

Γ1

h(seiθ)einθ = 0

and ∫
Γ0

h(eiθ)einθ + s−n
∫

Γ1

h(seiθ)einθ = 0.

Taking the difference, when n 6= 0, we have that all Fourier coefficient apart from the

zeroth are 0 on Γ1, i.e. h is a constant on Γ1, and the same follows for the Fourier

coefficients on Γ0. Thus h = k on Γ0, and h = l on Γ1, where k and l are constants.

Since 〈h, 1〉 = 0, we must have that l = −k, i.e. h = kω. 2

Combining these two lemmas, we have that Tφf = 0⇒ φ|f |2 = λω.

This can be improved upon as follows:

Theorem 3.1.5 If φ ∈ L∞(∂A) is real-valued, and f ∈ H2, f 6= 0, then Tφf = 0 ⇔

f−1 ∈ H2, and φ|f |2 = kω, with k ∈ C.

Proof

To show the ⇒ direction of the statement, we have from the previous that φ|f |2 = kω

on the boundary of the annulus. Thus we have |f | is bounded away from 0 (since φ is

bounded), and so f−1 ∈ L2.

We have that L2(A) = H2 ⊕ H̄2′ ⊕ 〈ω〉, and so f−1 = h1 + h2 + µω, µ ∈ C (where H2′

is taken to be the space quotiented out by the constant functions).

By assumption 〈Tφf, g〉 = 0∀g ∈ H2.

Then

〈Tφf, g〉 = 〈φfff−1, g〉 = 〈kω, (h1 + h2 + µω)g〉.

We have that k 6= 0 if φ 6= 0. Taking g = 1, we see that µ = 0, so f−1 = h1 + h̄2.

We have that 〈ω, h1g〉 = 0 ∀g ∈ H2 (since ω is orthogonal to all H1 functions) , and so
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〈kω, h2g〉 = 0 ∀g.

Dropping the k (k 6= 0 unless φ = 0, the trivial case), we have that 〈ωh2, g〉 = 0∀g ∈ H2,

that is to say, Tωh2 = 0.

Noting that Tω = −2(T1Γ1
− 1

2
I), we have that T1Γ1

h2 = −1
2
h2.

However, the eigenvalues and eigenfunctions for T1Γ1
are described in [40], and we

thus have that h2 = A for some constant A. However, we quotient out by the constant

functions, so A = 0. Thus f−1 = h1, i.e. f−1 ∈ H2.

For the⇐ direction of the statement:

If f is invertible in H2, and φ|f |2 = kω, then f−1 ∈ H∞, since φ is a bounded function.

Now 〈φf, g〉 = 〈φff̄ , f−1g〉 = 0 ∀g ∈ H∞, since multiplication by H∞ functions maps

H∞ to itself, and φff̄ is orthogonal to the analytics by assumption.

Since H∞ is dense in H2, we thus have Tφf = 0.2

Since T1 = I , we have the following:

Theorem 3.1.6

For f 6= 0, φ 6= 0, Tφf = λf ⇐⇒ f−1 ∈ H2 and |f |2(φ− λ) = kω some k ∈ R.

Thus, the problem reduces to finding when f exists with the appropriate modulus on the

boundary. Since f invertible immediately implies that f is an outer function, and outer

functions with modulus bounded away from 0 are invertible, we can restrict our attention

to the problem of finding outer functions with the appropriate modulus on the boundary.

Considering the space of modulus automorphic functions, there will exist a modulus

automorphic function with given boundary values (provided that
∫
∂A

log |f | is well-

defined and bounded), and its character, κ, is given by

κ =
1

2π log s
[

∫ 2π

0

log |f(eit)|dt−
∫ 2π

0

log |f(seit)|dt].
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This is proven in [38], p35 (Since here we are consider character in [0, 1), the extra 2π

factor appears).

So, we have:

Lemma 3.1.7 λ is an eigenvalue for Tφ if and only if κλ ∈ Z, where

κλ =
1

2π log s

∫ 2π

0

log|

√
1

φ(eit)− λ
| − log|

√
1

λ− φ(seit)
|dt

=
1

4π log s

∫ 2π

0

− log |(φ(eit)− λ)|+ log |(λ− φ(seit))|dt.

In this case the eigenfunction is given by the unique (up to a constant factor) outer function

f in the annulus with boundary values given by |f |2 = ± ω
φ−λ , choosing sign appropriately.

Such an eigenfunction can be constructed by constructing the outer function in the strip

{0 < Re(z) < 1} (or disc) with appropriate modulus on the boundary, given by an

appropriate integration on the boundary. The outer functions whose modulus on the

boundary is invariant are all modulus invariant inside the disc/strip. When the conditions

are met, they will be actually invariant, rather than merely modulus invariant, and so can

be passed back to the annulus, giving the eigenfunction with eigenvalue λ by the previous

results.

So, combining the results, we can describe the eigenvalues and eigenfunctions for the

self-adjoint Toeplitz operators on the annulus fully as follows:

Theorem 3.1.8 For φ, a real-valued symbol, we have λ ∈ σp(Tφ) if and only if

supφ|Γ0 ≤ λ ≤ inf φ|Γ1( or supφ|Γ1 ≤ λ ≤ inf φ|Γ0) and κλ ∈ 2πZ.

Furthermore, if these conditions hold, λ is an eigenvalue of multiplicity 1, f is the

associated eigenfunction if f is a constant multiple of the unique outer function such

that |f |2(φ− λ) = ±ω, choosing sign appropriately.
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Proof

If we are not in either of the cases φ|Γ0 ≤ λ ≤ φ|Γ1( or φ|Γ1 ≤ λ ≤ φ|Γ0) then we have

that the sign of φ − λ is not constant on some boundary, and thus (φ − λ)|f |2 6= kω for

any k, a contradiction by Theorem 3.1.6.

Supposing now this condition does hold, then Tφf = λf if and only if f is an outer

function with |f | =
√
k w
φ−λ .

Since the outer function with given modulus on the boundary is unique up to constant

multiples, we have that f is uniquely determined up to multiplication by constants, i.e.

the eigenvalue has multiplicity one.

Finally, by the result of [38] p.35, we have that such an f is a single-valued function

on the annulus if and only if κλ is an integer, since otherwise the appropriate modulus

automorphic function will not correspond to a single valued function in the annulus. 2

Theorem 3.1.9 Let φ be a real-valued bounded function on our boundary, as before.

Assuming that supφ|Γ0 < inf φ|Γ1 , we have that infinitely many eigenvalues accumulate

at supφ|Γ0 if and only if
∫

Γ0
log |(supφ|Γ0 − φ)| =∞, and infinitely many accumulate at

inf φΓ1 if and only if
∫

Γ1
log |(φ− inf φ|Γ1)| =∞.

Proof

Note that κλ is a strictly increasing (decreasing) function in the case a ≤ b ≤ c ≤ d

(c ≤ d ≤ a ≤ b), for b ≤ λ ≤ c Assuming we are in the case a ≤ b ≤ c ≤ d, we

thus have that if log |φ(eit) − b| is not integrable, b 6= c, then one must have infinitely

many eigenvalues accumulating at b, since −
∫

Γ0
log |φ(eit) − λ| → ∞ as λ ↓ b, and so

κλ → −∞ thus there are infinitely many κλ ∈ 2πZ by continuity in λ.

In this case, b can not be an eigenvalue since any f ∈ H2 has
∫
∂A log |f | <∞. If f were

to be an eigenfunction with eigenvalue b, then we would have |f |2(φ− b) = Cω, and thus

|f |(z) = C|φ(z)− b|− 1
2 for z ∈ ∂A, contradicting the requirement of log integrability.
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If log |φ(eit) − b| is an integrable function, we cannot have eigenvalues accumulating

at this point since κλ is strictly decreasing and bounded below by its value at b, so it

can pass through only finitely many integer values between b and k, for any b < k < c

(likewise eigenvalues accumulate at c if and only if log(c − φ(seit)) is not integrable,

regardless of the behaviour at b.

If the log integral at λ = b does exist, it is possible for b to be an eigenvalue if and only

if κb is well-defined and an integer (even in the case b = c, provided the log integrals

on both boundaries are finite as well as κb being an integer. As, for example, occurs

at 0 in the case of φ|Γ0 = −φ|Γ1 for any φ such that φ|Γ0 ≥ 0, log φ|Γ0 integrable, and

essinf φ|Γ0 = 0).

Thus one has infinitely many eigenvalues in the case where either (b−φ|Γ0) or (φ|Γ1 − c)

are not log integrable, and b 6= c.

By using the conformal equivalence z → sz−1, or by repeating the above argument

with some relabelling, it can be seen that in the case that c ≤ d ≤ a ≤ b, we instead

have accumulation of eigenvalues at supφΓ1 if and only if
∫

Γ1
(supφ|Γ1 − φ) = ∞, and

similarly for accumulation at inf φ|Γ0 . 2

3.1.2 Toeplitz operators on vector valued Hardy spaces

The analogue of a Toeplitz operator on the space of vector valued analytic function on the

disc is multiplication by a matrix followed by compression to the Hardy space.

In this situation, the self-adjoint operators will be those for which the representing matrix

is Hermitian.

In this setting we have that an extension of Lemma 3.1.3 still holds:

Lemma 3.1.10 If φ is a bounded Hermitian symbol, f 6= 0, φ 6= 0, thenTφf = 0 ⇒

f †φf ∈ W , where W = H⊥∞
⋂
H∞

⊥
, and † denotes the conjugate transpose.
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Proof

Let g ∈ H∞, and f be such that Tφf = 0.

Then 〈f †φf, g〉 = 〈
∑

j f̄j(φf)j, g〉 =
∑

j〈(φf)j, gfj〉 = 0 (since (φf)j ∈ H⊥2 .)

Now 〈f †φf, ḡ〉 = 0 follows since φ is Hermitian. 2

However, this result is not so useful in the context of vector valued Toeplitz operators.

Whilst a necessary condition, there appears to be no obvious way to make this sufficient.

Consider for example φ =

 0 1

1 0


Here 0 /∈ σp(Tφ) , yet for any f of the form

 ig

g

 for g ∈ H2, the conditions of the

lemma are met.

Whilst these difficulties occur in attempting to approach the point spectra of operators

here, the essential spectrum is easier to deduce from the results attained in the scalar case,

in the case where we have the components of the symbol to be continuous functions. The

following result is similar to one proven for the polydisc in [16] p44.

Theorem 3.1.11 Let φ be a continuous, hermitian symbol. Then we have:

λ ∈ σe(Tφ)⇔ 0 ∈ σe(Tdet(φ−λI)).

Proof

Let A ∼= B be taken to mean A = B + K, with K a compact operator, i.e. ∼= is equality

modulo the compacts.

We require the following well known lemma on congruence of Toeplitz operators, which

can be found in [16] p38 for (scalar) Toeplitz operators on a multiply connected domain.

Lemma 3.1.12 Tφ1Tφ2
∼= Tφ1φ2 for φ1 and φ2 continuous.
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It suffices prove the theorem in the case λ = 0.

The result follows from [28] Theorem 1.1, which shows invertibility of a matrix is

equivalent to invertibility of the determinant under certain conditions:

Theorem 3.1.13 Let K be some ring, amk ∈ K (for 1 ≤ m ≤ n, 1 ≤ k ≤ n), and

suppose [amk, apq] = 0 allm, k, p, q, where [a, b] denotes the commutator [a, b] = ab−ba.

Then, for a = [amk] ∈ Kn×n, we have a is invertible if and only if det a is invertible.

Now, to apply this theorem here, we take K to be the Calkin algebra for H2(D), and

apply to the matrix amk, where amk is Tmk modulo the compact operators.

We have that the condition on the commutators is met, by application of Lemma 3.1.12.

The result follows. 2

From this we can deduce when a given vector-valued Toeplitz operator will be

diagonalizable, as this condition is equivalent to the essential spectrum consisting of

discrete points for a self-adjoint operator on a separable Hilbert space.

Restricting to the case where n = 2, and supposing we have that φ =

 φ11 φ12

φ̄12 φ22

,

then we have det(φ− λI) = λ2 − (φ11 + φ22)λ+ φ11φ22 − |φ12|2.

The essential spectrum for the Toeplitz operator with this symbol consists of the λ for

which this is zero at some point on ∂D, that is

λ± = ((φ11 + φ22)±
√

(φ11 + φ22)2 + 4|φ12|2 − 4φ11φ22))/2

is the condition for λ to be in the essential spectrum.

So a symbol with continuous values is diagonalizable if and only if λ± are both constant

on each boundary of D. Thus (φ11+φ22) is constant on each boundary, as is (φ11−φ22)2+

4|φ12|2.
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As an example, we have that in the case where D is the unit disc, Tφ,

with φ =

 cos θ sin θ

sin θ − cos θ

 is diagonalizable, since it has essential spectrum {0, 1}.

Theorem 3.1.11 cannot be extended to the case of a Toeplitz operator with symbol with

discontinuous boundary values.

Consider the operator with symbol φ =

 1A 0

0 1AC

 where A is a subset of one

component of the boundary, with 0 < m(A) < 1.

This has det(φ− λI) = λ2 − λ, and 0 is in the essential spectrum of Tλ2−λ if and only if

λ = 0 or 1.

However, Tφ has essential spectrum [0, 1] (since its symbol is diagonal, simply consider

the essential spectrum of T1A and T1Ac , which is known to be [0, 1] for Toeplitz operators

on the disc). Thus the result cannot be extended to operators with discontinuous symbols.

3.1.3 Toeplitz operators on higher genus annuli

This section will focus on scalar-valued functions once again, this time considering how

these results change when rather than considering Toeplitz operators on the boundary of

the set {z : s ≤ |z| ≤ 1}, instead considering a region D with g removed components.

The result of Lemma 3.1.3 still holds in this setting, however the space H∞⊥
⋂
H∞

⊥
is

larger— for an annulus of genus g, this space will be g dimensional (shown by Abrahamse

in [2], which also gives a basis for this space in the case of harmonic, rather than uniform

measure— Theorem 1.6 of [2]).

One consequence is that our eigenfunctions need no longer be invertible, instead we have

the following:

Lemma 3.1.14 Let D be our genus-g annulus. Suppose φ is a bounded, real valued

function defined on ∂D, 0 /∈ σe(Tφ), Tφf = 0 for some f ∈ H2(D).

Then f has at most g − 1 zeros in the interior of D.
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Proof

We need the following lemma about the Fredholm index of a Toeplitz operator:

Lemma 3.1.15 Suppose that Tφ is Fredholm, with Fredholm index n. Then T(z−a)φ has

Fredholm index n− 1 when a ∈ A.

Proof

We have that Tz−a is Fredholm (by Abrahamse’s reduction theorem, for instance, and

using continuity on the boundary), with index −1 when a ∈ D (the Fredholm index for

Toeplitz operator with bounded analytic symbol is given in [2] p278 as the number of

zeros inside D).

Now, T(z−a)φ = Tz−aTφ, so Ind(T(z−a)φ) = Ind(Tz−a) + Ind(Tφ) = n− 1. 2

Now, suppose we have a real-valued symbol φ, f and ai ∈ D such that Tφf = 0, and

f = (z − a1) . . . (z − ag)h.

Then we have that Tφ(z−a1)...(z−an)h = 0, and this operator will have Fredholm index −n

(since Tφ has Fredholm index 0 from its self-adjointness).

Thus Tφ(z−a1)...(z−an) has kernel of dimension at least n+ 1.

However, it is an old result from Abrahamse [2] that if Tφf = 0 and T ∗φh = 0, then

φfh̄ ∈ W , with W the space orthogonal to the bounded analytics and anti-analytic

functions in D.

Since W is g-dimensional (from [2]), we must therefore have n ≤ g − 1.

2

Lemma 3.1.16 LetD be a genus-2 annulus. For all a inD there exists a Toeplitz operator

Tφ, such that (z − a) lies in the kernel of Tφ.

We first need to establish a preliminary condition:
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Lemma 3.1.17 Suppose that f = (z − a)h, where h is invertible in H2, and φ|f |2 ∈ W .

Then we have that Tφf = 0⇔ 〈φf, 1〉 = 0.

Proof

We have that Tφf = 0⇔ 〈φf, g〉 = 0 ∀g ∈ H∞ (since H∞ dense in H2).

Since f = (z − a)h, and φ|f |2 ∈ W , we have that 〈φf, (z − a)g〉 = 〈φ|f |2, gh−1〉 = 0

∀g ∈ H∞.

If 〈φf, 1〉 = 0, then 〈φf, g〉 = 0 ∀g ∈ H∞, since g = g−g(a)
z−a (z − a) + g(a), and so:

〈φf, g(a)〉 = g(a)〈φf, 1〉 = 0, and 〈φf, g−g(a)
z−a (z − a)〉 = 〈φf, (z − a)h〉 = 0 since

h = g−g(a)
z−a ∈ H

∞. 2

Now, we can prove the initial lemma:

Proof

Let w1 and w2 be two basis vectors for our space W , and consider φ = xw1+yw2

|z−a|2 ,

with x and y to be determined later.

Then it follows immediately that φ|z − a|2 ∈ W .

Given φ = xw1+yw2

|z−a|2 we have two linear degrees of freedom in choosing φ, and the

requirement 〈φ(z − a), 1〉 = 0 is a linear function of φ, we can always find non-trivial

choice of x and y such that the condition 〈φf, 1〉 = 0 is met.

2

It can thus be seen that eigenfunctions exist which are no longer invertible.

It will be proven later that if some function in the kernel of a (not-necessarily self-

adjoint) Toeplitz operator has non-trivial singular inner component, then this kernel must

be infinite-dimensional, and so for the g-dimensional annulus we can restrict our attention

to functions (z − a1) . . . (z − ai)h with h invertible and i ≤ g.
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A special case

Whilst the description of the space W is considerably more complicated in even the

g = 2 case than it was for the simple annulus with both circles centred at 0, some of the

behaviour of the eigenvalues can be worked out quite easily for a particular operator on

a genus-2 annulus with certain symmetry, and assuming we define our norm by integrals

with respect to the harmonic measure. So, recall, we will denote our Toeplitz operators

in this setting by T .

Consider an annulus of genus 2, with inner radii of removed circles s, centres at ±r.

Then, we have W = 〈ω1, ω2〉, with ωi ∈ L∞(D) defined to be the derivative with respect

to the normal of the harmonic extension toD of the indicator function for Γi (as in [2]) for

i = 0, 1, 2. (ω0 is not needed in the basis for W since ω0 +ω1 +ω2 = 0 follows since this

will be the derivative of the harmonic extension of the constant function on the boundary

of D, which is clearly 0, since the harmonic extension of a constant is constant).

By symmetry under the map z → −z, which maps Γ1 to Γ2 and vice-versa, we must have

that ω1(z) = ω2(−z), as well as ω0(z) = ω0(−z).

So, if
∫

Γ0
ω0 = A, then

∫
Γ0
ω1 =

∫
Γ0
ω2 = −A/2,

and
∫

Γ1
ω0 =

∫
Γ2
ω0 = −A/2, and letting

∫
Γ1
ω1 = B, we have

∫
Γ1
ω2 = A/2−B.

Lemma 3.1.18 Given real-valued φ ∈ L∞, with φ bounded away from 0, there exists

invertible f ∈ H2 such that Tφf = 0 if and only if there exist a0, a1, a2 ∈ C such that:∫
Γ′j

∂

∂n

̂
(
1

2
log(

∑
aiωi))−

∂

∂n

̂
(
1

2
log φ)|dz| ∈ 2πZ

for 0 ≤ j ≤ 2,

with ŝ denoting the harmonic extension of a boundary function s, and Γ′j a loop homotopic

to Γj . If so, f is the outer function such that φ|f |2 =
∑
aiωi.

If one has suitable convergence at the boundary, then we can simply consider Γj instead



Chapter 3. Toeplitz operators on the annulus 61

of Γ′j .

A single redundant condition exists since Γ0 is homotopic to
∑2

i=1−Γi, (since the

integrals come from [26] and correspond to the change in argument of our multi-valued

function when traversing the contour, and so are constant when distorting the contour by

a continuous deformation.)

Proof

We have that f is a 0-eigenfunction for Tφ if φ|f |2 ∈ W and f is invertible in H2:

〈Tφf, g〉h = 〈φf, g〉h = 〈φ|f |2, fg〉 = 0 for all g ∈ H∞ (since φ|f |2 orthoognal to the

analytics), and we have fH∞ = H∞ (since f invertible).

So, it is enough to seek for φ|f |2 =
∑
aiωi for some ai with f an outer function. If we

take u to be the harmonic extension of log((
∑
aiωi
φ

)
1
2 ) from the boundary to D, v to be

its conjugate, and f = eu+iv, we want f to be single-valued, and so v must have period

conjugate to 0 mod 2π about each component of boundary. From Khavinson’s work on

conjugate functions in multiply connected domains [26], if u is a harmonic function in

D with harmonic conjugate v, v has period around Γj of ∆Γj = −
∫

Γj

∂u
∂n
|dz| (with the

derivative normal to the boundary). The result follows. 2

Now, taking our symbol φ = 1Γ0 , it follows from the definition of ωi that for 0 < λ < 1,
∂
∂n

̂log(φ− λ) = log(1− λ)ω0 + log(λ)ω1 + log(λ)ω2 + iπ(ω1 + ω2).

Taking the result of the lemma, and evaluating on Γ0 and Γ1, we have:

(

∫
Γ0

∂

∂n

̂
(
1

2
log(

∑
aiωi))|dz| −

1

2
(log(1− λ)A− (log λ)A) + iπA) ∈ 2πZ,

(

∫
Γ1

∂

∂n

̂
(
1

2
log(

∑
aiωi))|dz|−

1

2
(
−A
2

log(1−λ)+(log λ)B+(
A

2
−B) log λ)+iπ

A

2
) ∈ 2πZ.

Let C =
∫

Γ0

∂
∂n

̂(1
2

log(
∑
aiωi))|dz|, D =

∫
Γ1

∂
∂n

̂(1
2

log(
∑
aiωi))|dz|, then:

(C − iπA)− A(log
1− λ
λ

) ∈ 2πZ,

(D − iπA/2) +
A

2
(log

1− λ
λ

) ∈ 2πZ.
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So, we have that C + 2D ∈ 2πZ, and C and D depend only on ai in ω|f |2 =
∑
aiωi.

Since ω0 + ω1 + ω2 = 0, we can assume that a2 = 0, and since scaling f by a constant

has trivial effect, we can assume |a0|2 + |a1|2 = 1, and a1 ∈ R and can consider a0 as

our only independent complex variable. Thus if we we fix an n and seek ai such that

C + 2D = 2πn, then we have a finite set of ai which solve this. Taking one such set of

ai, and letting E = (C + iπA), then eigenvalues corresponding to outer eigenfunctions

exist when E − A log(1−λ
λ

) = 2πm, m ∈ Z. So, we have that

λm =
1

1 + e
E−2πm

A

parametrises the set of solutions with the chosen ai.

In comparison, the eigenvalues in the one-holed annulus for φ the indicator of one

component of the boundary are given in [40] to be s2n

(1+s2n)
.

3.2 Kernels of Toeplitz operators

We will consider once again the Hardy space, inner product and associated projections

with respect to uniform Lebesgue measure. When considering Toeplitz operators with

more general, not necessarily real-valued, symbols, some results were found when

considering the kernel of a Toeplitz operator on the annulus.

Once again our annulus A is taken to be {z : s < |z| < 1}.

Theorem 3.2.1 Let f in H2 be continuous and non-zero on the boundary of A, φ be

continuous and non-zero on the boundary of A, and f in the kernel of Tφ.

Then we have that dim ker(Tφ) ≥ max(n, 1), where n is the number of zeros of f inside

of A.
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Proof

We have that Tφ is Fredholm, and [38] gives the Fredholm index to be i(Tφ) = n(φΓ1 , 0)−

n(φ|Γ0 , 0), that is, the difference of the winding number about 0 on the inner and outer

boundaries.

By definition, i(Tφ) = dim kerTφ − dim kerT ∗φ .

If f is in the kernel of T , and g in the kernel of T ∗, then φfḡ = ω, (shown in [2]),

and thus both kernels can only be non-zero if they are one-dimensional (since W is one-

dimensional), and in this case we have index 0.

Thus, if kerTφ 6= 0, then i(Tφ) ≥ 0, and if i(Tφ) > 0, we have i(Tφ) = dim ker(Tφ). If

Tφf = 0, we have that Tφf1 = 0, hence i(Tφf ) ≥ 0, however,

i(Tφf ) = n(φfΓ1 , 0)− n(φf |Γ0 , 0) = n(φΓ1 , 0)− n(φ|Γ0 , 0) + n(f |Γ1, 0)− n(f |Γ0, 0)

= i(Tφ)− n.

Thus i(Tφ) ≥ n, i.e. we have a kernel with at least dimension n. 2

If f is non-zero and continuous on the outer boundary, we can construct a Toeplitz

operator whose kernel contains f and has dimension n. Considering φ = ω
f

, we have

by computing winding numbers, i(Tω/f ) = n, thus our kernel has dimension n if n > 0,

dimension 1 if n = 0, and f lies in the kernel since Tω
f
f = PH2ω = 0.

Infinite-dimensional kernel given singular inner factors

In the disc, it is trivial to show that if Tf̄ is an anti-analytic Toeplitz operator, with f

containing a non-trivial singular inner factor, we have that kerTf is infinite dimensional.

In the setting of the annulus, it appears considerably more difficult to prove— the

complication is caused by the fact that we can no longer take arbitrary powers of a singular

inner function and still obtain single valued functions.

The following proof works for an arbitrary annulus, not just the single-holed case.
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Theorem 3.2.2 Let f ∈ H2(D) be a function with f = fif
′ where fi is a singular inner

function, fi 6= 1, and f ′ ∈ H2.

Then kerTf̄ is infinite-dimensional.

Proof

Let so be an outer function with constant modulus on each boundary, and complementary

character to fi (existence is given by [2], p269 proposition 1.15. In the case of the annulus

{s < |z| < 1} we can take so = zα some α ∈ [0, 1)).

Since Tf̄ = T
f ′s−1

o
Tfiso , it is enough to show that kerTfiso has infinite dimension.

To do so, first we show that 0 ∈ σe(Tfiso). Use the multiplicative factorisation to factor

fis0 = k1k2 with k1 ∈ H∞(∆), and k2 ∈ H∞(D
⋃

∆c).

Proceed using Abrahamse’s reduction theorem ([2] p.282)- σe(Tφ) =
⋃
σe(Tφ|Γi ).

We have that Tfiso|Γ0
= Tk̄1|Γ0

Tk̄2|Γ0
. Now, since k2 is analytic on an open set around

Γ0, it is continuous on Γ0, and since |fiso| = 1 = |k1||k2|, with |k1| bounded, we have

k2 is non-zero, and thus Tk̄2|Γ0
is Fredholm invertible. Since we have that Tk1 is an anti-

analytic Toeplitz operator with non-trivial singular inner component, it is well known that

the kernel must be infinite-dimensional in the Hardy space on the unit disc, and so is

non-Fredholm. Since the product of a Fredholm operator with a non-Fredholm operator

is non-Fredholm, we have that 0 ∈ σe(Tfiso).

Now, if an operator has finite-dimensional kernel, finite-dimensional co-kernel, and

closed range, it must be Fredholm, thus if Tfiso has finite-dimensional co-kernel and

closed range, it must then have infinite-dimensional kernel.

Being an anti-analytic Toeplitz operator, the co-kernel must be trivial, so it remains only

to show the range is closed. The range will in fact be H2:

We have that Ts̄of̄i(sofi)g = PH2(|so|2g) = T|so|2g.

Now, we have by our choice of so that |so|2 is a strictly positive constant on each boundary.

Thus, by the result on essential spectrum, T|so|2 will be a Toeplitz operator whose

essential spectrum consists of discrete points, all of which are positive. Furthermore,
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its eigenvalues will be strictly positive. So, it is an invertible operator, and thus given any

h, we can find g such that T|so|2g = h, and so Ts̄of̄i(sofig) = h. Thus the range is closed,

and therefore Ts̄of̄i has infinite-dimensional kernel, as does Tf̄ .

2

The only results used here were our factorisation (which still holds on changing to

an equivalent norm), and the reduction theorem, which also remains true changing to

equivalent norms, so this will still hold taking Toeplitz operators defined on our space

with equivalent norms, i.e. it will hold true with harmonic norm on our boundary.

We can proceed from here to show a further result on kernels of self-adjoint Toeplitz

operators. The proof requires use of harmonic measure on the boundary of our domain

D.

Theorem 3.2.3 In the Hardy space of the annulus, with norms and inner product given

by integration with respect to a harmonic measure (as is the case in the construction of

H2(D) by harmonic majorants), if φ is real-valued, φ ∈ L∞(∂D), and Tφf = 0, then f

has trivial singular inner component.

We first need to establish a preliminary result on the kernel that was proven to be infinite

dimensional in Theorem 3.2.2

Lemma 3.2.4 Let Tφ be a Toeplitz operator where φ is anti-analytic with non-trivial

singular inner component. Then there exists a sequence (sj)
∞
j=1 such that sj ⊥ sk for

j 6= k, sj ∈ H∞, and Tφsj = 0.

Once this lemma is established, we can prove our theorem as follows:

Proof

Since we are using harmonic measure here, there exists ν such that H⊥2 = ν̄−1H̄2, and ν

is meromorphic on some open set containing the closure of ∆, with n zeros and 1 pole

([2] p263). Thus ν = (z−a1)...(z−an)
(z−b1)

vo, where vo ∈ H∞, v−1
o ∈ H∞.
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Suppose Tφf = 0 with φ real-valued and f having non-trivial singular inner component.

Suppose f = f ′go, where f ′ has constant modulus on each boundary, and go outer, and

suppose f = fif0 is an inner-outer factorisation of f . Let (sj) be the bounded sequence

of orthogonal functions from Lemma 3.2.4, Tf̄ ′sj = 0. Now, we have that f̄ ′sj = ν̄−1t̄j .

We have that φf ∈ ν̄−1H̄2, thus φf t̄j ∈ ν̄−1H̄2.

Now, f t̄j = fν̄f̄ ′sj = fifogoν̄f̄if̄osj ,

= fogo|fo|2 (z−a1)...(z−an)

(z−b1)
v̄osj .

So we have that

P h
H2(φ|fo|2(z − a1) . . . (z − an)fogo

1

(z − b1)
sj ν̄0)

= Tν̄0T(z−a1)...(z−an)T φ|fo|2
(|z−b1|2)

fogo(z − b1)sj = 0

using 1
z−b1

= z−b1
|z−b1|2 , and the identities Th̄Tφ = Th̄φ for h ∈ H∞. By our choice of

sj , the fogo(z − b1)sj are a linear independent sequence. Since Th̄ has 0-kernel for h

an outer function (follows simply from hH∞ dense for h outer), and T(z−a1)...(z−an) has

n-dimensional kernel, it follows that T φ|fo|2
|z−b1|2

has infinite dimensional kernel. However,

T φ|fo|2
|z−b1|2

is a self-adjoint Toeplitz operator, and thus has finite dimensional kernel. Thus we

arrive at a contradiction from our assumptions, thus any f in the kernel of a self-adjoint

Toeplitz operator T has trivial singular inner component.

2

It remains to prove the lemma:

Proof

Let f = uf ′′, where u ∈ H∞(D) has non-trivial singular inner component, |u| bounded

away from 0 and∞ on each boundary, u 6= 0 in D, and f ′′ ∈ H2(D). Let u = uiuo be

the inner-outer factorisation of u. Since Tf̄ = Tf ′′Tū, it is enough to establish the lemma

for Tu.

We have that ker Tū = Ku = H2 	 uH2.

To find the required sequence, we must consider the reproducing kernels for our spaces.

Let kλ be the reproducing kernels for H2(D), fλ for uH2 and gλ for Ku. If we can show
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that gλ are bounded, the lemma will follow. We have that kλ ∈ H∞(A) for all λ— see,

for example, Ball and Clancey paper on reproducing kernels [8].

Thus, we have that gλ bounded follows from fλ being bounded.

Suppose that we have some λ for which fλ is unbounded, let f = fλ. Let (zn) be a

sequence for which f(zn)→∞.

Since u is a bounded function, we have |(f/u)(zn)| → ∞ also.

Let B1 be a finite Blaschke product such that B1 has the same character as ui, and that

B1(λ) 6= 0.

We have that |(fλuoB1/u)(zn)| → ∞ still, and thus |〈fλuoB1

u
, kzn〉h| → ∞.

We have that |ui/B1| = 1 so |〈 ui
B1

fλuoB1

uoui
, kzn

ui
B1
〉h| → ∞.

Thus |〈fλ, kzn uiB1
〉h| → ∞.

Now, were we to have that B1 was a factor of kzn , we would have kzn
ui
B1
∈ uH2, and so a

contradiction would follow since fλ is a reproducing kernel there— we would have:

〈kzn uiB1
, fλ〉h = kzn(λ) ui

B1
(λ) = k̄λ(zn) ui

B1
(λ), and we have already that kλ is bounded,

giving a contradiction.

Since we cannot assume this, suppose that B1 has zeroes at ω1, ω2, . . . ωm, and that these

are distinct points.

We seek to find zna1, . . .zn am such that kzn(ωi)ui(ωi) +
∑m

j=1 znaju
j(ωi) = 0 for each i.

This is the problem, given bi = kzn(ωi)ui(ωi), of finding a polynomial Pm which takes

the values bi at the points u(ωi).

Now, we require u(ωi) to be a distinct set. Supposing they are not, then, we can replace

the factorisation f = uf ′′ with f = (u(z− t)N)(f ′′(z− t)−N), where t /∈ D, and N ∈ Z.

u(z − t)N will still be single-valued, H∞, non-zero in D and the character of ui is

unchanged, and f ′′(z − t)−N also in H∞, so we can apply the previous parts of the

proof, with ωi are unchanged, and there will always exist a choice of N and t such that

u(ωi)(ωi − t)N are distinct points (for instance, if we choose t such that |ωi − t| are

unique, we can then choose N such that |(ωi − t)Nu(ωi)| are all unique, and it follows
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that (ωi − t)Nu(ωi) are unique ).

Thus, we can assume without loss of generality that u(ωi) are distinct points.

Then, since ωi are fixed, and the bi lie in a bounded set (since kz(ω) = kω(z) is bounded

over all z for fixed ω), we can solve this with a universal bound on znai independent of

zn.

We thus have that 〈kziui
B1

, fλ〉h = 〈kznui−
∑
zn
aju

j

B1
+

∑
zn
aju

j

B1
, fλ〉h.

Since the znaj are bounded over all zn, we have

‖
∑m

j=1 znaju
j

B1

‖2 ≤ ‖
∑m

j=1 znaju
j

B1

‖∞ < A1

is a universal bound over all zn.

We also have that kznui−
∑
zn
aju

j

B1
∈ uH2, so that

〈
kznui −

∑
zn
aju

j

B1

, fλ〉h = (
kznui −

∑
zn
aju

j

B1

)(λ),

which is bounded over all zn since kzn(λ) and znaj are.

Thus, we have that fλ(zn) must be bounded.

Since fλ ∈ H∞, we have gλ ∈ H∞.

Since the reproducing kernels have dense closed span, and we have already established

that the space is infinite dimensional, we can pick out a sequence with no linear

dependences. Applying Gram-Schmidt we can produce a suitable orthonormal sequence.

2

We would like to show this result also holds for Toeplitz operators defined onH2(D) with

respect to uniform lebesgue measure on D.

In fact, this follows directly from the result with harmonic measure.

Note that if we consider Tφ a Toeplitz operator symbol φwith respect to projection defined

on the space with uniform Lebesgue measure, and take Tφ to be a Toeplitz operator with

respect to harmonic measure, we have that Tφ dm|dz|f = Tφf for all functions f ∈ H2. ( dm|dz|
is bounded since our measures are equivalent, and if 〈., .〉 is the inner product with respect

to uniform lebesgue measure, and 〈., .〉h with respect to harmonic measure, we have:
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〈Tφ dm|dz|f, g〉 =
∫
∂D
φ dm
|dz|fḡ|dz| =

∫
∂D
φfḡdm = 〈φfḡdm〉h = 〈Tφ, g〉h).

Now, by [2] p263 (3), we have that dm
|dz| is positive, and since our measures are absolutely

continuous, it is bounded away from 0 and∞.

It follows that we can extend the previous theorem to the space with Lebesgue measure.

Theorem 3.2.5 Considering the norm and projections on H2 with respect to uniform

lebesgue measure, we have that if φ ∈ L∞(∂D) real-valued, Tφf = 0, then f has trivial

singular inner component.

Proof

Let φ′ = φ |dz|
dm

. We will have that φ′ is real-valued, and bounded, and Tφf = 0 if and only

if Tφ′f = 0. The result thus follows from the case with respect to harmonic measure. 2

We shall consider an annulus to have uniform Lebesgue norm on the boundary for the

remainder of this thesis. Combining this result, Lemma 3.1.14, and Lemma 3.1.3 we can

state the following on the eigenfunctions of Toeplitz operators with real valued symbol:

Theorem 3.2.6 Considering Toeplitz operators in H2(D) with respect to uniform

lebesgue measure, let φ ∈ L∞(D) be a real-valued function, and suppose we have

f ∈ H2(D) such that Tφf = λf some λ ∈ R. Then we have that f = foB where B

is a finite Blaschke product, of order at most g− 1, where g is the genus of the annulus D,

and fo is an outer function with φ|f |2 ∈ H⊥∞
⋂
H̄∞

⊥.

3.2.1 Minimal kernels

The paper [12] discusses minimal kernels of Toeplitz operators containing a given

function in the setting of the Hardy space of the disc, and the following results concern

attempts to reproduce some of these results in the annulus.
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Theorem 3.2.7 If f = fofi is the inner outer factorisation of f ∈ H2(A), then the symbol

of a Toeplitz operator with minimal kernel containing f is ψ = ωf̄i
f̄o
fo
z̄−α, with α being

the character of fo.

(In comparison, the corresponding symbol for an operator with minimal kernel in the

setting of the disc is known to be f̄i f̄ofo .)

Proof

Let f = fifo be an H2 function with α the character of fo, and φ some symbol such that

Tφfifo = 0.

Then, we must have that φfifo = ωgigo.

Let v be an outer function that |φ| = v on Γ0, and |φ| = Av on Γ1. Then we have

that Tφ = Tv̄Tφ′ , with |φ′|=1 on Γ0, |φ′| = A on Γ1 Since kerTv̄ = {0}, we have

kerTφ = kerTφ′ , so we may assume w.l.o.g.that |φ| = 1 on Γ0, and |φ| = A on Γ1 for

some A.

So |go| = |fo| on Γ0, |go| = A|fo| on Γ1, that is, we have β ∈ R such that |fozβ| = |go|

(on the boundary).

Since modulus on the boundary determines an outer function up to constant factors, we

can take go = foz
β . We will thus have the character of g0 is the character of fo plus β,

i.e. α + β.

So, we have that φ = ω f̄o
fo
gifiz̄

β .

Now, suppose that h lies in the kernel of Tψ.

Then ωf̄i f̄ofo z̄
−αh = ωloli. Thus h=lolifi fof̄o z̄

α,

and so φh=lolifi fofo z̄
αω f̄o

fo
gifiz̄

β = ωloligizβ+α. Since go has character α + β, gi must

have character (−(α + β)), and so loligizβ+α is single valued.

It follows that φh ∈ ωH̄2, thus Tφh = 0.

Hence, kerTφ ⊃ kerTψ, so ψ is the symbol with minimal kernel. 2
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This can be extended to cover an arbitrary g-holed annulus.

Lemma 3.2.8 If we have φ and f such that Tφf = 0, then kerTφ ⊃ kerTψ, where ψ is

the function ψ = fifo
fo
l̄f v̄, with lf the unit, i.e. outer function with constant modulus on

each boundary, such that character(lf ) = −character(fo), and ν the measure such that

H⊥2 = ν̄H̄2.

Proof

First, given any φ, if φ is not log integrable, it has zero kernel, and the result is trivial

(since φf is not log integrable, whereas all of H⊥2 is. Otherwise, we have that there exists

an outer function s such that |φ/s| is constant on each boundary (the existence of such an

s follows from the existence of a (multiple-valued) outer function with given boundary

values, and the work in [2]).

Then, we have that φ = s̄φ′, and so Tφ = Ts̄Tφ′ . Since Ts̄ has zero kernel, we can

restrict attention to Tφ′ , i.e. we can assume without loss of generality that our symbol has

constant modulus on each boundary. We can then proceed as follows:

φfifo = ν̄ḡiḡo, with |go| = |φ|
|fo|
|ν|

.

So, go = folφµ, where µ is the outer function such that |µ| = |ν|−1, and lφ is the outer

function with modulus equal to that of φ on each boundary (which will be constant and

non-zero on each boundary).

Substituting this into the formula for φ, we obtain

φ = νgifilφµ
f̄o
fo
.
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Suppose that we have h such that Tψh = 0, then we must show that Tφh = 0.

Since Tψh = 0, we have that ψhiho = ν̄m̄im̄o, so:

φhiho = νgifilφµ
f̄o
fo
hiho

= ψ ¯l−1
f ḡil̄φhiho

= ν̄m̄im̄o
¯l−1
f l̄φḡi.

Since lf is outer, with constant non-zero modulus on each boundary, we have that l−1
f is

also H∞, and so Tφh = 0, as required. 2

The next problem to consider is what the minimal kernel is for a Toeplitz operator

containing a set of functions, which is a harder problem.

The following is a start to showing whether the existence of a non-trivial kernel

containing a pair of functions exists reduces to showing this in the disc.

Lemma 3.2.9 For f1, f2 ∈ H2(A), there exists non-trivial φ such that Tφf1 = 0, Tφf2 =

0 only if there exists φ′ ∈ L∞(∂∆) such that T ′φ′ f̃i = 0 for each i, where tildes denote lifts

back to the disc, and T ′ indicates that the Toeplitz operator acts on the Hardy space for

the disc.

Proof

By assumption, we have φf1 = ωḡ1 and φf2 = ωḡ2 for some g1,g2.

We have that z̄ ˜(ωφ)f̃1 = z̄ ˜̄g1, and the same for f̃2, so we have z̄ ˜(ωφ) is a symbol for a

Toeplitz operator whose kernel contains f̃1 and f̃2. 2

So, if f1 and f2 lie in a non-trivial Toeplitz kernel in the annulus, their exists a non-trivial

Toeplitz kernel in the disc containing both f̃1 and f̃2. Thus we have a necessary condition

for two functions in the Hardy space on the annulus to lie in a non-trivial kernel.
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In fact, the same will work if, rather than a pair, we instead have an arbitrary set of

functions lying in a non-trivial Toeplitz kernel in the annulus.

Sufficiency has yet to be ascertained.

3.2.2 Dyakonov’s theorem in the annulus

In the paper of Dyakonov [19], the following theorem is proven:

Theorem 3.2.10 Given φ ∈ L∞(∆), there exists B, b, g with B, b Blaschke products and

g with g, g−1 ∈ H∞, such that

kerTφ =
g

b
(KB

⋂
bH2)

(KB denoting the model space H2 	BH2).

In the annulus, a similar result holds, though care has to be taken regarding the characters

of functions in inner-outer factorisations, since these factorisations are no longer single-

valued in the annulus. The theorem in the annulus becomes:

Theorem 3.2.11 Given φ ∈ L∞(A), there exists B, b, g, α, β with B, b Blaschke

products, g with g, g−1 ∈ H∞, α, β ∈ [0, 1] such that:

kerTφ =
gz−α

b
(bzα−βH2 ∩KωzβB).

(α and β will be chosen such that gz
−α

b
, bzα−β, ωzβB are all single-valued.

Proof

First assume that φ is log-integrable (else the kernel is zero), and that |φ| = 1 on Γ0,

|φ| = A on Γ1 (by writing φ = ḡφ′ for g a suitable outer function).

Then, one has that ωφ = ḡ
g
zαbB̄, with g, g−1 ∈ H∞, and B, b Blaschke products. (This
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follows from Theorem 2.1.6).

Letting β be the character of g, then B has character −β, and b will have character β−α.

If Tφf = 0, we have that φf ∈ ωH̄2, and thus ωφf ∈ H̄2.

Then, ḡ
g
zαbB̄f = s̄, and so fzα 1

g
b = s̄B 1

ḡ
.

It follows that:

zαb

g
f ∈ bg−1zαH2 ∩ B

ḡ
H̄2.

We have that 1
g

= 1
zβ

zβ

g
, where zβ

g
is a single-valued analytic and outer. Since z−βg and

zβg−1 are single-valued, lie in H∞ and have inverse in H∞, we have z−βgH∞ = H∞ =

zβg−1H∞, the previous becomes

zαb

g
f ∈ bzα−βH2 ∩ B

z̄β
H̄2.

Lemma 3.2.12 B

zβ
H̄2 = KωBzβ .

Proof

Let f ∈ Bz̄−βH̄2, i.e. f = Bz−β ḡ.

Then 〈f, ωBzβs〉 = 〈Bz−β ḡ, ωBzβs〉 = 〈ḡ, ωs〉 = 0∀s ∈ H2.

Conversely, if f ∈ H2 	 ωBzβH2, then 〈f, ωBzβs〉 = 0∀s ∈ H2, so 〈ωB̄z̄βf, s〉 = 0∀s,

hence ωB̄z̄βf = ωḡ for some g, hence f = Bz̄−β ḡ. Thus B

zβ
H̄2 = KωBzβ . 2

Thus we have that

f ∈ gz
−α

b
(bzα−βH2 ∩KωzβB).

2
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3.2.3 Intertwining

On the Hardy space of the disc, one can characterise the Toeplitz operators as being

those which fulfil a particular intertwining relationship- that T is a Toeplitz operator if

S∗TS = T , where S is the shift operator (i.e. Mz) on the Hardy space for the disc.

It seems natural to ask if there exists any operator for which the same holds in the

annulus, however this is not the case.

Theorem 3.2.13 There does not exist an operator S such that:

S∗TS = T is equivalent to T being a Toeplitz operator on the Hardy space of the annulus

A.

Proof

To start the proof, we first show that no multiplication operator S has this property:

Lemma 3.2.14 ∀µ ∈ H∞(A), {T : Mµ̄TMµ = T} 6= {T : T is Toeplitz}

Proof

Suppose that µ is such that {T : Mµ̄TMµ = T} = {T : T is Toeplitz}. Then, applying

to T1 = I , we have that Mµ̄Mµ = I , and so |µ|2 = 1 almost everywhere.

Thus µ is an inner function. It is then clear that Mµ̄TMµ = T for all Toeplitz operators

T , to prove a contradiction we must show that there exists a non-Toeplitz operator such

that this holds.

DefineA an operator on the subspace generated by µ inH2(A) byA(1) = 1,A(µn) = µn.

Then A satisfies the required conditions on the subspace generated by the closed span of

µn.

However, if A is a Toeplitz operator, we must have that A is uniquely determined—

otherwise, we would have a Toeplitz operator Tφ with φ 6= 0, and Tφµn = 0 for all n,
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leading to a contradiction as follows:

Suppose Tφµn = 0, then Tφ1 = 0, and have that ωφ = s̄ with s analytic.

However, Tφµn = 0, so s̄µn = t̄n for some analytic functions tn, and so s is divided by

arbitrarily large factors of µ. However, this is impossible for s and µ non-zero.

So, we have that the closed span of µn for n ≥ 0 is H2, as otherwise we could extend A

to H2 whilst preserving Mµ̄AMµ = A in at least two different ways- firstly by defining

A to be 0 on the orthogonal complement of the span of µ, and secondly by defining A to

be the identity on the orthogonal complement of their span.

Now, if µ has singular inner factor or multiple zeros, this span cannot equal H2, yet there

are no single valued inner functions in H2(A) with only a single zero.

Thus there is no function µ with the required property in H∞(A).

2

To extend this to the set of all operators on our Hardy space, note that S∗IS = I , so

S∗S = I , and thus we have that S∗SS = S, so S must be a Toeplitz operator if the

intertwining defines the Toeplitz operators. To complete the result, we must show it to be

analytic.

Given that S is a Toeplitz operator, and letting µ be its symbol, we have from S∗S = I

that it must be an isometry (Since Tµ̄Tµ = I)).

We must thus have |µ| ≤ 1 a.e., since ‖µ‖∞ = ‖Tµ‖ = 1 ([2] p276, theorem 2.11).

Now, ‖Tµf‖2 ≤ ‖µf‖2 with equality if and only if µf is analytic. Thus, we have

µf ∈ H2 for all f ∈ H2, and thus µ must be an analytic function. Combined with the

lemma, no such function can exist. 2
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Chapter 4

Hankel Operators

4.1 Nehari for the annulus

This section will outline Hankel operators on multiply-connected domains, and how they

differ from the Hankel operators on the disc.

We take our Hardy space H2(D) as defined in chapter 1, with uniform lebesgue measure

on the boundary.

We define a Hankel operator Γ with symbol φ on H2(D) by Γf = PωH2φf .

φ is said to be an optimal symbol for Γ if ‖φ‖∞ ≤ ‖ψ‖∞ for any ψ a symbol for Γ.

Theorem 4.1.1 Let Γ be a Hankel operator, ‖Γ‖ < ∞. Then we have that there exists

optimal symbol φ for Γ, with ‖Γ‖ ≤ ‖φ‖∞ ≤ A‖Γ‖, where A is the constant in Theorem

2.3.2 for the factorisation of H1 functions as a product of H2 functions.

Proof

The proof parallels the proof in the case of the disc, with the major difference being that

the H1 = H2H2 factorisation now has a constant introduced.

Let φ =
∑∞
−∞ anz

n +
∑∞
−∞ bnωz

n be a symbol for our operator, then we have that
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〈Γzn, ωzm〉 = 〈φzn, ωz̄m〉 = 〈φzn+m, ω〉 = bn+m(1 + s2(m+n)).

It follows that we can produce a linear functional α on products of polynomials

by α(f1f2) = 〈Γ(f1f2), ω〉 = 〈Γ(f2), ωf̄1〉, since we have that |α(f1f2)| ≤

‖Γ‖‖f1‖2‖f2‖2 ≤ A‖f1f2‖1Γ. We will have that ‖α‖ ≤ A‖Γ‖.

Since our operator is bounded, we can extend to H1 by continuity, and then to L1 by

Hahn-Banach, without increasing norm.

We thus have that there exists h such that α(g) =
∫
∂A g(z)h(z).

Taking the expansion ωh =
∑∞
−∞ jiz

i +
∑∞
−∞ kiωz̄

i for some (ji),(ki) square summable

sequences, we have that ki(1 + s2i) = 〈ωh, ωz̄i〉 =
∫
h(z)zi = α(zi) = bi(1 + s2i).

So ωh and φ differ by an analytic function, hence they are both symbols for the same

Hankel operator.

From the integral representation of α, we have that ‖ωh‖∞ = ‖h‖∞ = ‖α‖ ≤ C‖Γ‖.

‖h‖∞ ≥ ‖Γ‖ follows from being a symbol for Γ. To show that this is optimal, we must

show that for any symbol φ of Γ, we have ‖φ‖ ≥ ‖α‖.

For f ∈ H∞, we have |α(f)| = |〈Γ(f), ω〉| = |〈φf, ω〉| ≤ ‖φ‖∞|〈f, ω〉| ≤ ‖φ‖∞‖f‖1.

Thus, ‖α‖ ≤ ‖φ‖ for all symbols φ of Γ.

2

This gives us upper and lower bounds for the optimal symbol, and shows that a (not

necessarily unique) optimal symbol exists.

It is easy to demonstrate a symbol for which the optimal symbol no longer has the same

norm as the Hankel operator, in contrast to the case in the disc where an optimal symbol

with the same norm always exists.

Theorem 4.1.2 There exists Hankel operator Γ, such that for h an optimal symbol, ‖h‖ 6=

‖Γ‖.

Proof
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Consider Γ defined by the symbol φ = ω
z

.

We have that 〈Γzn, ωz̄m〉 = 〈ωzn−1, ωz̄m〉 = 〈zn−1, z̄m〉 = 〈zn−1+m, 1〉.

Thus Γzn = ωanz̄
1−n, with an = 2

1+s2−2n .

Letting en = zn

‖zn‖2 be the orthonormal basis,

Γφen = bnωe1−n =
2

(1 + s2−2n)0.5(1 + s2n)0.5
ωe1−n.

Since the en and ωēn are orthonormal basis for H2 and ωH̄2, we see that ‖Γ‖ = supn bn.

bn achieve their maximum at 0 and 1, so ‖Γ‖ =
√

2√
1+s2

.

Suppose that we have symbol Φ for which ‖Φ‖∞ = ‖Γ‖.

Since we have that Γ achieves its norm at f , where f(z) = z, we have that, as is the case

in this situation in the disc, that:

‖Γ‖‖f‖2 = ‖ΓΦf‖2 ≤ ‖Φf‖2 ≤ ‖Φ‖∞‖f‖2.

As is the case in this situation on the disc, when ‖Γ‖ = ‖Φ‖, we have equality throughout.

So, Γf = Φf , i.e. Φ = Γf
f

= ω
z

.

However, ‖ω
z
‖∞ = s−1 >

√
2√

1+s2
, contradicting our assumption.

Thus, there cannot exist a symbol which achieves the norm of our operator. 2

4.1.1 Finding optimal symbols

Even in the case of Γ which attain their norm at some f ∈ H2, we no longer have that Γf
f

gives an optimal symbol for our Γ— since we no longer necessarily have that the optimal

symbol matches the norm of the operator (though, in the case where they do agree, this

argument works as it does in the disc).
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By considering Γ as an operator on each member of the family of spaces H2
α (the sets of

modulus automorphic functions with character α), some of this difficulty can be averted.

Let Γα,φf̃ = P(H2
α)⊥(φ̃f̃) be the extension onto H2

α.

Then, attempting the Nehari theorem once more, letting β(f1f2) = 〈Γf1f2, ω〉, we have

that |β(f)| = 〈Γαf1, ωf̄2〉 ≤ ‖Γα‖‖f1‖2‖f2‖2.

Since f1 and f2 can now be chosen from H2
α
2

rather than merely H2, we can factorise

while preserving norms (as in 2.3.3).

Thus ‖β‖ ≤ supα∈[0,1] ‖Γα‖.

Thus, for the α giving the maximal value of ‖Γα‖, if we have that Γα takes its norm at

some function f ∈ H2
α, we have that Γαf

f
is an optimal symbol for Γ, as in the case of the

disc (Sarason’s solution of the Nehari problem ).

However, the problem of finding which α to consider, and finding a function f at which

the symbol achieves its norm, appear difficult.

Whilst it can be shown Γk is compact on H2
k for arbitrary k if and only if Γα is compact

on H2
α for all α, and thus we will still have that Γα achieves its norm on all these if our

original Hankel operator is compact, the problem is to find where it achieves its norm.

In the disc, it is interesting to consider Hankel operators with a finite polynomial symbol.

The point at which the norm is attained can then be found easily since the associated

Hankel matrix will have only a finite number of non-zero entries, and thus can be

diagonalized with elementary techniques to find where the norm is achieved.

However, in the case of the annulus, any non-zero Hankel matrix will have an infinite

number of non-zero entries. If one considers the matrix for a Hankel operator,

symbol ψ, with respect to the basis en and ωēn defined earlier, we have that An,m =

〈ψknzn, ωz̄mkm〉, with kn = ‖zn‖−1
2 .

Thus, An,m = knkmψ̂(n + m). Whilst not constant along backwards diagonals due to

the knkm term, if any term on a given backwards diagonal is non-zero, all of them are

non-zero. In the case of the disc, we would have that n,m range from 0 to ∞, and so

these diagonals are finite, but in the annulus they range from −∞ to +∞, so there are
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infinitely many terms on these diagonals.

It seems that finding the optimal symbol in this setting is a more difficult problem.

4.2 Compactness

In the case of Hankel operators on the disc, it is known that the compact Hankel operators

are those with symbol in H∞ + C, where C denotes the space of continuous functions

on the boundary. The result can be found with proof in [32] Chapter 1, section 5.

We can show the same is true in the annulus.

First, note that, as in the case of the disc, symbols of a rational function will correspond

to compact operators.

Lemma 4.2.1 If φ is a rational function, then Γφ is of finite rank.

Proof

Since we have that Γ f
g

= Γ 1
g
Mf , and Γφ1+φ2 = Γφ1 + Γφ2 , we have that by dealing with

partial fractions, it remains only to show that Γ 1
(z−a)n

is compact for a ∈ A.

Now, we have that H2(A) = (z − a)nH2
⊕

((z − a)nH2)⊥. Γ(z−a)−n is the zero

operator on restriction to the first space in the decomposition, and the latter space is finite

dimensional. Thus, Γ is a finite rank operator. 2

In order to show that the whole of C + H∞ gives compact operators, a little more is

needed.

Lemma 4.2.2 If φ is of form φ = ωq, where q is a rational function, then Γφ is compact.

Proof

As before, we can split by partial fractions, and it remains only to consider symbols of
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form ω
(z−a)n

.

Decomposing H2 as before, we have that Γφ is no longer a zero operator on (z − a)nH2,

however, we have on this space that Γ ω
(z−a)n

= Γω ◦M(z−a)−n .

We have that Γω is a compact operator

(on H2 we have that Γω
zn

‖zn‖ =
√

1
(1+s−2n)(1+s2n)

ωz−n

‖ωz−n‖ .)

Thus, it follows that Γ ω
(z−a)n

is compact (but will not be of finite rank).

By considering Γq+ωq where q is a rational function, we can approximate in norm

functions whose restriction to the outer boundary is a continuous function, and zero on

the inner boundary, and thus Hankel operators with such a symbol are compact. The

same holds with the boundaries reversed, and so we have that any continuous function

is compact. Since the Hankel operator with analytic symbol is equivalent to the zero

operator, we thus have that all functions in H∞ + C are symbols for a compact Hankel

operator. 2

Proving the reverse, that any compact operator has symbol in H∞ + C, is a little harder.

Lemma 4.2.3 If Γφ is compact, then φ ∈ Cl(H∞ + C), with Cl denoting closure in

norm (the space will be shown later to in fact be closed.)

Proof

First, note that ‖ΓφMBn‖ → 0 if B is a Blaschke product with finitely many zeroes.

Suppose otherwise, then we have fn with ‖fn‖ = 1 and ‖ΓφBnfn‖ ≥ ε infinitely often

for some ε.

From compactness of Γ, for some subsequence ni we have ΓφB
nifni → ωḡ, for some g

in H2.

By taking our subsequence to include only n with ‖ΓφBnfn‖ ≥ ε, we have g 6= 0.

To show a contradiction, we need to show that Bnifni is tending to 0 weakly. Suppose

this is not the case, that we have g ∈ H2 with |〈Bnifni , g〉| ≥ ε for some subsequence of
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ni, which we will call mi.

Then, letting f ′ denote the lifts back to the disc, and letting κ represent the appropriate

change of measure, we have |〈B′nf ′mi , g
′κ〉D| ≥ ε∀i.

Letting h = PH2(κg′), we have |〈B′nf ′mi , h〉D| ≥ ε∀i.

However, this cannot be as in the Hardy space of the disc, Bnfn tends to 0 in the weak

topology whenB is a Blaschke product and ‖fn‖ bounded, (this follows from [13] lemma

3.3, which shows that TBng tends to 0 in norm for any g).

We thus have 〈Bnfn, ωφḡ〉 → 0, and so 〈ΓφBnfn, ωḡ〉 → 0, contradicting the assumption

ΓφB
nifni → ωg for g 6= 0.

With ‖ΓφMBn‖ → 0, the rest proceeds as the proof does for compactness in the disc:

We have that φBn = sn + kn, with ‖sn‖ → 0, and kn ∈ H∞.

Thus φ = snB̄
n + (kn/B

n).

ForBn a finite Blaschke product, we have that kn/Bn ∈ H∞+C, and thus φ ∈ H∞ + C.

If we can show that H∞ + C is closed, then the result is complete. 2

However, it is an old result that this space is closed in A. It is proven, for example, in [2]

Theorem 1.22. An alternative proof will be given here.

Closedness of H∞ + C

Theorem 4.2.4 H∞ + C is a closed subspace of L∞.

Proof

Suppose we have fn is a Cauchy sequence in h∞ + C, with fn = qn + cn,

qn ∈ H∞, cn ∈ C.

Let F denote the limit function in L∞(A) Now, use additive decomposition of H∞(A),

to have qn = rn + sn, and cn = dn + en, where rn ∈ H∞(∆) , sn ∈ H∞((s∆)c),

dn = cn|Γ0 , en = cn|Γ1 .

Now, consider fn on Γ0. fn|Γ0 will still be Cauchy, and we have that



Chapter 4. Hankel Operators 84

fn|Γ0 = rn|Γ0 + sn|Γ0 + dn|Γ0 .

Now, since sn ∈ H∞((s∆)c), we have that sn is continuous on Γ0.

Thus fn|Γ0 is a sequence in H∞(∆) + C converging to F |Γ0 .

This space is closed in the disc, so F |Γ0 also belongs to it.

Therefore we have R and D with R ∈ H∞(∆), D ∈ C(∂∆), with F |Γ0 = R +D.

We can do the same on Γ1 to attain S and E, S ∈ H∞((s∆)c), E ∈ C(∂s∆), with

F |Γ1 = S + E.

So F = R +D + S + E −R|Γ1 − S|Γ0 .

Now, we have that R|Γ1 is continuous, as is the restriction of S to Γ0.

Thus F ∈ H∞ + C(∂A). 2
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Chapter 5

The Bergman space and the slit disc

Some similar results to those from previous chapters can be extended to other settings, in

particular that of the Bergman space on the annulus.

5.1 The Bergman space

Letting A represent the annulus as before, define the Bergman space of the annulusA2(A)

to be the set of analytic functions on the disc for which
∫
A |f |

2dA(z) < ∞, with A the

Lebesgue area measure, and norm ‖f‖2 =
√∫

A |f |2dA(z).

They are described in [23], for instance.

First, note that we have a factorisation result akin to Theorem 2.2.1-

Theorem 5.1.1 If f ∈ A2(A), we have f = f1f2 with f1 ∈ A2(∆), and f2 ∈ A2((s∆)c).

Proof

The proof is akin to that in the Hardy space. Suppose first that f has no zeros in A. Then

f = znf ′, where f ′ has 0 winding number about 0, and has no zeros in the annulus, and
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thus we can take logarithms.

Say, log f ′ =
∑+∞
−∞ anz

n =
∑∞

0 anz
n +

∑−1
−∞ anz

n = g1 + g2.

We thus have that f = elog f ′ = eg1eg2 = f1f2.

Now, we have that g1 and thus f1 is analytic in ∆, similarly f2 is analytic in (s∆)c. We

must prove that the norms are finite also.

Since f1 and 1
f1

are continuous and thus bounded in an open set about Γ1, f = f1f2,

and f is square integrable, we have that f2 has bounded square integral in some open set

about Γ1. By continuity, on the complement of any such set in (s∆)c, f2 has bounded

square integral, and thus f2 has bounded square integral in s(∆)c, and so f2 ∈ A2((s∆)c).

Similarly f1 ∈ A2(∆).

Now, let f be an arbitrary A2(A) function. We can assume w.l.o.g that all zeros of f lie

in {1 > |z| > 1 − ε}
⋃
{s < |z| < s + ε} for some ε such that these are disjoint sets,

since we have finitely many zeros inside any compact set, and if we can factor f/g for g

a polynomial, then we can factor f .

Now, we have that f has no zeros on the set A2 = {1 − ε > |z| > s + ε}, thus we can

apply the previous factorisation to obtain:

f = f1f2 with f1 ∈ A2({z : |z| < 1− ε}), and f2 ∈ A2({z : |z| > s+ ε)}.

By the domain of f2, we have at most finitely many zeros in the region {1 > |z| > 1−2ε}.

Thus, we can extend f1 across this region by f1 = f/f2, and the resultant function will

have at most finitely many poles. Similarly, we can extend f2 to the boundary |z| = r by

f2 = f/f1, and will have at most finitely many poles.

Finally, since f = f1f2, and f has no poles in the region, we can remove the poles by

factorising instead as f = f1Π(z−ai)
Π(z−bi)

f2Π(z−bi)
Π(z−ai) = g1g2, where ai are the poles of f1, and bi

poles of f2.

Now, g1 is analytic in ∆, g2 analytic in (s∆)c, and by repeating the argument for the case

of no zeros, we have that these belong to the appropriate Bergman spaces. 2
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5.1.1 Toeplitz operators in the Bergman space of the annulus

We have that A2(A) is a closed subspace of L2(A), thus we can define a projection

operator P from L2 to A2, and so define a Toeplitz operator Tφ by PMφ for φ measurable

functions.

In the Bergman space for the disc, it is known that for symbols continuous on the closure

of the disc, up to compact operators only behaviour of φ on the boundary matters, and the

essential spectrum will be the same of that of a Toeplitz operator on the Hardy space with

the same boundary values- for example, [21] p16-17.

We can in fact extend this to A:

Theorem 5.1.2 If U is the isometry from A2(A) to H2(A) defined by U(zn/‖zn‖) =

zn/‖zn‖′, where ‖.‖′ is the Hardy norm and ‖.‖ the Bergman space norm, then we have

that for any φ symbol continuous on the closure of A, we have:

UTφU
∗ = T ′φ|∂A + K, where K is a compact operator fixed by φ, T ′ denotes a Toeplitz

operator on H2(A), and T denotes a Toeplitz operator on A2(A).

Proof

We proceed by first proving the result holds for Tz and Tz−1 From here, we can then

extend to symbols in the closure of the set of polynomials in z, z̄, z−1, z̄−1, since if the

lemma holds for z, it must also hold for z̄ by taking adjoints, and by taking powers of

each side we have it for z̄n and zn all n ≥ 0. Similarly φ = z−1 will give the result for zn

and z̄n for all n < 0, and if it holds for φ1 and φ2 it holds for φ1 + φ2, etc.

Since the closure of these polynomials generate the continuous functions, we have the

required set.

Letting en = zn/‖zn‖, and e′n = zn/‖zn‖′, we have that UTzU∗e′n = U∗zen =

‖zn+1‖/‖zn‖e′n+1, and T ′ze
′
n = ‖zn+1‖′/‖zn‖′e′n+1.

Thus, ‖UTzU∗e′n − T ′zen‖ = ‖zn+1‖
‖zn‖ −

‖zn+1‖′
‖zn‖′ .
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Now, we have that ‖zn‖2 =
∫ 1

s
r2nrdr = 1−s2n+2

2n+2
, and ‖zn‖′2 = 1 + s2n.

Letting n→ +∞, we have that ‖z
n+1‖
‖zn‖ → 1, ‖z

n+1‖′
‖zn‖′ → 1.

Letting n→ −∞, we have that ‖z
n+1‖
‖zn‖ → s, and ‖z

n+1‖′
‖zn‖′ → s.

Thus, we have that ‖UTzU∗e′n − T ′ze′n‖ > ε at most a finite number of times. Applying

the same to z−1 works similarly.

Now, we have that UTznU∗ = (UTzU
∗)n = (T ′z|∂A + K)n = T ′zn|∂A + S, where K is the

compact operator evaluated before, and S is compact as it is a finite sum of products of a

compact operator with bounded operators.

Thus, we can extend to zn. We can extend from z−1 to z−n in the same manner, and

taking adjoints we can show this for z̄−n and z̄n.

It follows immediately that the rsult holds when φ can be written as a finite polynomial

in z, z−1, z̄, z−1.

We can also extend the result to φ which can be uniformly approximated by polynomials

in these (which, by the Stone-Weirstrass theorem, is the space of continuous functions on

the closure of A):

Let pn be a sequence of polynomials uniformly approximating φ in ∞-norm on

L∞(Cl(A)) (with Cl denoting closure).

Then, we have that Tpn → Tφ in operator norm, and also T ′pn|A → T ′φ|A in operator norm.

Thus, UTφU∗ − T ′φ|A = limn→∞Kn, where Kn = UTφU
∗ − T ′φ|A is compact, and the

limit is in operator norm. Thus K will be compact here, and so the result holds for all φ

continuous on the closure of A. 2
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Radial Toeplitz operators

We have in the case of a Toeplitz operator on the Bergman space of the disc that if φ is a

radial symbol, then we have Tφzn = Anz
n ∀n for some An ∈ C, since

〈Tφzn, zm〉 = 〈φzn, zm〉 =

∫ 1

0

∫ 2π

0

φ(r, θ)rn+mrei(n−m)θdrdθ

=

∫ 1

0

rn+m+1φ(r)

∫ 2π

0

ei(n−m)θdθdr.

Here, the θ-integral is 0 when n 6= m.

The same occurs in the case of the annulus, since:

〈Tφzn, zm〉 = 〈φzn, zm〉 =
∫ 1

s

∫ 2π

0
φ(r, θ)rn+mrei(n−m)θdrdθ

=
∫ 1

s
rn+m+1φ(r)

∫ 2π

0
ei(n−m)θdθdr = 0 for n 6= m,

where s is the inner radius of the annulus.

The paper by S. Grudsky, A. Karapetyants, and N. Vasilevski [20] describes bounded

and even compact Toeplitz operators with unbounded radial symbols, and gives some

conditions for an operator to be as such.

In the annulus, the condition for the radial Toeplitz operators to be bounded is quite similar

to the case in the disc:

Theorem 5.1.3 If φ is a radial symbol for a Toeplitz operator on the Bergman space of

the annulus, Tφ is bounded if and only if there exists a bounded Toeplitz operator on the

Bergman space of the disc whose symbol on the disc whose symbol φ′ is equal to φ in some

neighbourhood of 1. The same holds replacing bounded with compact. In other words,

the condition to be bounded/compact is simply that the behaviour at each boundary is

that of a bounded/compact radial Toeplitz operator on the disc.

Proof

Let φ be a radial symbol. It is immediate that 〈φzn, zm〉 = 0 for n 6= m, thus the operator

is diagonal. So, letting an be such that Tφzn = anz
n, we have that Tφ is bounded if {an}
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is bounded, and compact if an → 0 as n→ ±∞.

Suppose first that φ is continuous at s, and that φ′ is a symbol for a bounded Toeplitz

operator on A2(∆) such that φ = φ′|[s,1]. We show that Tφ must now be bounded.

We have that an = 〈φ′zn, zn〉∆/〈zn, zn〉∆ are a bounded sequence by assumption.

Looking at the limiting behaviour as n→ +∞, we have that
∫ 1

0
φ′(r)r2n+1dr(2n + 2) is

bounded.

Now, looking at bn the nth eigenvalue for the Toeplitz operator on the Bergman space of

the annulus, we have that:

bn = 〈φzn, zn〉A/〈zn, zn〉A, and 〈zn, zn〉A = 1
2n+2

(1−s2n+2) > 1
2(2n+2)

for all sufficiently

large n.

We thus have that |bn| = |(
∫ 1

s
φr2n+1dr)/〈zn, zn〉| ≤ 2(2n + 2)|

∫ 1

s
φr2n+1dr| ≤

2|an|+ 2(2n+ 2)|
∫ s

0
φ′r2n+1dr|.

However, |an| is bounded and the latter integral clearly converges to 0 as n→∞.

Thus, we have that the eigenvalues corresponding to positive values of n behave

appropriately.

Now, since we have that φ is approximating C for some constant close to the inner

boundary, and we have that the contribution of z−n

‖z−n‖2 on the outer boundary falls

exponentially as n tends to∞, we have that b−n → C as n→∞

Thus, we have that Tφ is a bounded operator for the Bergman space of the annulus if it is

for the disc and it is continuous about s.

In the case C = 0, the same argument shows that Tφ is compact if T ′φ′ is compact. In

order to deal with a general symbol, we simply need to show that the corresponding

result holds for a symbol continuous at 1 when considering the symbol as the restriction

of a bounded symbol on A2((s∆)c).

From this, the result follows for arbitrary symbols since we can decompose the symbol

as φ = φ1 + φ2 with φ1 continuous at s, and φ2 continuous at 1.

Considering n negative, we have that bn =
∫ 1
s φr

2n+1dr∫ 1
s r

2n+1dr
.

Making the substitution q = s
r
, this becomes bn =

∫ 1
s φ(s/q)q−(2n+3)dq∫ 1

s q
−(2n+3)dq

.
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Hence the boundedness of bn for negative n translates to the question of boundedness of

bn for positive n for the symbol φ̃ with φ̃(r) = φ(s/r). 2

In addition to boundedness/compactness, a result in a similar vein can be shown on

the Hilbert-Schmidt norms of the diagonal Toeplitz operators (which all radial Toeplitz

operators are included in).

A paper of Harper-Smith [22] describes the relation between Hilbert-Schmidt norms for

Toeplitz operators on the Bergman space of the disc, and the following shows that the

same hold in the annulus.

Theorem 5.1.4 Suppose that T is a diagonal operator from the Bergman space of the

annulus into an arbitrary Hilbert Space.

Let T ∈ B(A2(A),H). Then we have ‖T‖2
S2

=
∫ 1

s

∫ 2π

0
‖Tkreiθ‖2rdrdθ, where kz is the

reproducing kernel at z (for the Bergman space here).

Proof

The proof is almost identical to that in the Harper-Smith paper. Let en be an arbitrary

orthonormal basis. Then we have that:∫ 1

s

∫ 2π

0
‖Tkreiθ‖2rdrdθ =

∑∞
n=0

∫ ∫
|(T ∗en)(reiθ)|2rdrdθ,

=
∑

n ‖T ∗en‖2 = ‖T ∗‖2
S2

= ‖T‖2
S2

.

2

The Harper-Smith paper [22] describes the result in general Schatten classes, and the

following will show the proof works in the same way on the annulus. However, the

results have also been proven for Bergman spaces on multiply connected domains in [41]

by means of conformal equivalences.

Theorem 5.1.5 If p > 2 and T ∈ Sp(A2(A),H), then we have:

∫
A
‖T k̃z‖pdm(z) ≤ ‖T‖pSp ,
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where dm(z) = dA(z)‖kz‖2, and k̃z = kz
‖kz‖ .

If 1 < p ≤ 2 and
∫
A ‖T k̃z‖

pdm(z) < ∞, we have that T ∈ Sp and
∫
A ‖T k̃z‖

pdm(z) ≥

‖T‖pSp .

Proof

We have that if A is a positive operator, then Tr(A) =
∫
A〈Ak̃z, k̃z〉dm(z), with the inner

product taken over our Bergman space on A.

This follows identically to the proof in [42] p116:

tr(A) =
∞∑
n=1

〈Aen, en〉 =
∞∑
n=1

∫
A
(Aen)(z)en(z)dA(z)

=
∞∑
n=1

∫
〈Aen, kz〉en(z)dA(z)

=

∫
〈A

∞∑
n=1

enen(z), kz〉dA(z) =

∫
〈Akz, kz〉dA(z)

=

∫
A
〈Ak̃z, k̃z〉dm(z).

From this, and using the fact that for A a positive operator, and f of unit norm,

〈Apf, f〉 ≥ 〈Af, f〉p for p ≥ 1, and 〈Apf, f〉 ≤ 〈Af, f〉p for p ≤ 1, we have that:

‖T‖pSp = Tr((T ∗T )p/2) =

∫
A
〈(T ∗T )

p
2 k̃z, k̃z〉dm(z)

≥
∫
A
(〈T ∗T k̃z, k̃z〉)p/2dm(z),

=

∫
A
‖T k̃z‖pdm(z).

For the case 1 < p ≤ 2, the reverse inequality holds since the direction of inequality for

〈Apf, f〉 is reversed. 2
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5.2 Hardy Space of the slit disc

Consider the domain of the slit disc G, the unit disc with the interval [0, 1) removed.

We will work in the space that was defined in the introduction as E2(G), the Hardy-

Smirnov space. The existence of boundary values, and thus toeplitz operators were

covered in the introduction.

There exists a conformal mapping φG between the disc and the slit disc, given in [3] in

the appendix, defined as φG(z) = (w3(w2(w1(−iz)))2, where

w3(z) = z−1
z+1

, w2(z) =
√
z, w1(z) = i z+1

1−z .

The book [3] also describes the effect on the boundary here— the arc {eiθ : 0 < θ < π/2}

is mapped to the top half of the slit, and the arc {eiθ : −π/2 < 0 < θ} is mapped to the

lower half of the slit.

It is useful know the poles and zeros on the boundary of the derivative of our mapping,

φ′G.

We have that φ′G(z) = 2(w3w2w1(−iz))w′3(w2w1(−iz))w′2(w1(−iz))w′1(−iz).

Considering each factor in turn, w3(w2(w1(−iz))) has no poles on the disc, and has a

zero at z = 1.

Then w′3(z) = 2
(z+1)2 , so w′3(w2(w1(−iz))) has no poles but has a zero of order 1 at z = i.

Next, w′2(z) = 1
2
z−1/2, so w′2(w1(−iz)) has singularity at z = −i, and decays at z = i,

with the local growth/decay that of z−
1
2 and z

1
2 respectively.

Finally, w′1(−iz) = 2
(1+iz)2 has an order 2 pole at z = i, and no zeros in the range we are

interested in. Thus, putting this all together, we have that φ′G has a zero at z = 1 with

φ′G(1− z) = O(z) locally, and we have singularities at ±i with φ′G(z ± i) = O(z−1/2).

The function φ′G is important as it is used to normalize the measure when transforming

between integrals on the boundary of the slit disc and on the boundary of the disc under

the map φG.
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Isomorphism between E2(G) and H2(∆) , and Toeplitz operators

Proposition 5.2.1 Let µ be the isomorphism between E2(G) and H2(∆) considered in

the introcution, µ : f → F , with F (z) = f(φG(z))(dφG
dz

)
1
2 (z).

We have that if T ′ψ is a Toeplitz operator on the Hardy space of the slit disc, with symbol

ψ, then we have that T ′
ψ̃
(µf) = Tψf , where ψ̃(z) = ψ(φG(z)).

Proof

This is simply a consequence of the definition of our space and the toeplitz operators on

it.

Consider the inner product of a Toeplitz operator applied to µf with µg in the disc.

〈ψ̃µf, µg〉∆ =
∫
∂∆
ψ(φG(z))f((φG(z))) ¯g(φG(z))|φ′G(z)||dz|

=
∫
∂G
f(z) ¯g(z)ψ(z)|φ′(φ−1

G (z))||φ′(φ−1
G (z))|−1|dz| = 〈ψf, g〉G = 〈Tψf, g〉G.

Thus, we have that 〈T ′
ψ̃
µf, µg〉∆ = 〈Tψf, g〉G for all g ∈ H2(∆), and so the result

follows.

2

Results about Toeplitz operators in the slit disc can thus be deduced from those in the

disc, and vice-versa.
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