Toeplitz and Hankel operators on Hardy

spaces of complex domains

Joshua Malcolm Tattersall

Submitted in accordance with the requirements for the degree of Doctor

of Philosophy

The University of Leeds

Department of Pure Mathematics

June 2015



il

The candidate confirms that the work submitted is his own and that
appropriate credit has been given where reference has been made to the
work of others. This copy has been supplied on the understanding that it is
copyright material and that no quotation from the thesis may be published

without proper acknowledgement.

(©2015 The University of Leeds and Joshua Tattersall



11

Abstract

The major focus is on the Hardy spaces of the annulus {z : s < |z| < 1}, with the
measure on the boundary being Lebesgue measure normalised such that each boundary
has weight 1. There is also consideration of higher order annuli, the Bergmann spaces
and slit domains. The focus was on considering analogues of classical problems in the
disc in multiply connected regions.

Firstly, a few factorisation results are established that will assist in later chapters. The
Douglas-Rudin type factorisation is an analogue of factorisation in the disc, and the
factorisation of H' into H? functions are analogues of factorisation in the disc, whereas
the multiplicative factorisation is specific to multiply connected domains.

The Douglas-Rudin type factorisation is a classical result for the Hardy space of the
disc, here it is shown for the domain {z : s < |z| < 1}. A previous factorisation for

H"'into H? functions exists in [4], an improved constant not depending on s is found here.

We proceed to investigate real-valued Toeplitz operators in the annulus, focusing on
eigenvalues and eigenfunctions, including for higher order annuli, and amongst other
results the general form of an eigenfunction is determined. A paper of Broschinski [10]
details the same approach for the annulus {z : s < |z| < 1} as here, but does not consider
higher genus settings. There exists work such as in [6] and [5] detailing an alternative
approach to eigenvalues in a general setting, using theta-functions, and does not detail the
eigenfunctions.

After this, kernels of a more general symbol are considered, compared to the disc, and
Dyakanov’s theorem from the disc is extended for the annulus.

Hankel operators are also considered, in particular with regards to optimal symbols.
Finally, analogues of results from previous chapters are considered in the Bergman space,

and the Hardy space of a slit annulus.
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Chapter 1

Introduction

This thesis will focus mainly on the Hardy spaces H? for the annulus, mostly in

comparison to the corresponding spaces in the disc.

1.1 Literature Review

Starting with the background on Hardy spaces in the disc, we have Duren’s book [18]
details the H” spaces for a simply connected region, together with some of the important
related spaces, and details some of the important function theory in this area, such as the
construction of Blaschke products and existance of boundary values for the functions. The
book also details how the H” spaces can be constructed in the case of multiply connected
regions, though it does not proceed further in these spaces. The book [24] is also a useful
reference for the H” spaces for the disc, and as well as detailing the basic function theory,
it also details the shift operator in this space.

For the operators on these spaces, the book [17] details Toeplitz operators on the Hardy
spaces of simply connected regions quite well, especially with regards to the spectrum,
and Nikolski’s book [30] also covers Toeplitz operators, as well as providing a useful

reference for Hankel operators, including discussion on the Nehari problem.
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In moving into the spaces for multiply connected regions, the paper [2] by Abrahamse
gives a good deal of information on the H? spaces here, in particular, the inner and outer
factorisation for these spaces is covered, and the associated spaces (of no longer singly
valued functions) are described.

Topelitz operators on these spaces are also discussed here, with Abrahamse detailing some
of the theory of the essential spectra for these, and the failure of Copburn’s lemma (and
thus the possiblity for self-adjoint Toeplitz operators to have eigenvalues) is shown. The
most important result with regards to the essential spectra here appears to be Abrahamse’s
reduction theory, which essentially reduces problems regarding the essential spectra in
multiply connected domains back to the disc.

The older work of Abrahamse [1] covers some of the ideas in [2], but the later paper has
more content, and covers everything in the older paper.

Sarason’s work in [38] is also a good reference for the function theory in the H” spaces of
the annulus, in particular it constructs the formula for the character of an outer function
with given boundary values, and another for the character of a given inner function.

The book [16] also mentions Toeplitz operators defined on multiply connected regions,
mostly following along the same lines as the work in Abrahamse, though a few results are
extended slightly, concerning the algebra generated by Toeplitz operators with continuous
symbol.

For discussion of the eigenvalues of self-adjoint Toeplitz operators on multiply connected
domains, [40] section 4 illustrates the diagonalisation of the Toeplitz operator on the
annulus {z : s < |z| < 1} whose symbol is the indicator function for the boundary
{z : |z| = 1}, giving the eigenvalues and eigenfunctions for this.

The recent paper [10], and the author’s recent (2014) thesis [11] detail the eigenvalues
and eigenfunctions for a general self-adjoint Toeplitz operator on this annulus, using
the same methods that were arrived at here ( though differing in the approach taken
to showing that the eigenfunctions will be outer). The thesis [11] also mentions more

general multiply connected regions, however only symbols that have constant sign on
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each boundary are considered, and the general approach here is in looking for characters
such that an eigenvalue exists for the Toeplitz operator applied to the space of modulus
automorphic functions with character «, which is a different problem than here where the
character is fixed (as 0).

[5] [6] also consider eigenvalues for Toeplitz operators in more general regions, with the
approach here considering the resolvent operator, with the eigenvalues resulting from the
zeros of certain theta functions. The actual eigenfunctions are not considered in these
papers, however, and the eigenvalues are not explicitly calculated, though conditions for
infinite accumulation in an interval are given.

There appear to be few papers on Hankel operators in an annulus, and most of these
appear to deal with Hankel operators on the Bergman space of the annulus, whereas in
this thesis the Hankel operators are only considered with regards to the Hardy space on the
annulus. The paper [4] does focus on Hankel operators for the Hardy space of the annulus,
and includes one of the factorisations that will be presented in the second factor, though
the result presented here will improve on the norms. This paper also does not consider
optimal symbols, but instead uses the factorisation in consideration of the boundedness of
Hankel operators.

With regards to Bergman spaces, the book [23] provides the background for the space.
As with the Hardy space, there has been considerable interest in Toeplitz operators here.
The survey [33] mentions some of the important problems in this area, such as the still
open problem of when a Toeplitz operator is open on the space, and the solved problem
of compactness in terms of Berezin transforms. The approach to these for radial Toeplitz
operators is also mentioned, pointing to the work of the paper [20], detailing compactness
and boundedness of radial Toeplitz operators in the disc.

The paper [22] also considers Toeplitz operators on Bergman spaces, the main results in
this connect the reproducing kernels for the Bergman space with Schatten class norms of
Toeplitz operators and Carleson measures.

Generalisation of Toeplitz operators on the Bergman space of the disc appears mostly
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focused on weighted Bergman spaces and polydiscs, rather than to multiply connected
regions. However, a few papers do exists in the area, mostly focusing on when a Toeplitz
operator is compact, with the strongest result being from the paper [25], which extends the
solution of the problem of finding when a Toeplitz operator is compact from the Bergman
space of the disc to the Bergman space of multiply connected domains.

For the slit domain, the book [3] provides a detailed study of the invariant and nearly
invariant subspaces of the slit disc, with the central results being a complete classification

of the invariant and nearly invariant subspaces under the shift.

1.2 Background

The description of the H? spaces for the disc from in [18], [34], will be outlined here.

Definition 1.2.1 Take A to be the interior of the unit disc- A = {z : |z] < 1}.

Let p € [1,00]. HP(A) is defined as the set of complex valued functions | defined on A
such that f is analytic inside A, and for which ||f||, = lim,_,; My(r, f) < oo, where
My(r, ) = (% O%\f(rewﬂpd&)%for 1 < p < oo, and for p = oo, My (r, f) =

Maxo<g<ar |f(re®)).

These spaces will be Banach spaces for 1 < p < oo, and a Hilbert space when p = 2, as
shown in [24] and [18].

It can be shown (see [24], p.51) that for any f € HP? for p € [1, o], well-defined radial
limits exist almost everywhere on the boundary, and the behaviour of any A” function can
be recovered from its boundary values. Thus, we have a natural embedding of H” into
LP.

The inner product for H? is {f, g) = f‘z|:1 f g, taking the integral with respect to uniform
Lebesgue measure on the boundary of the disc.

HP can be identified with the subset of L” in which all negative Fourier coefficients vanish.
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As aresult, (27)°, will be a basis for these spaces for 1 < p < co.
Since z" are all bounded functions, it follows immediately from this that /7° is dense in

HP forall 1 <p < oco. As well as H?, there also exists the Nevalinna space N (A).

Definition 1.2.2 N(A) is the space of functions [ holomorphic on A with

lim, o f\ler logt |f(2)||dz| < oc.

These are quite important in Hardy space theory. Firstly, we have that H? C N for all
p (see [15] p 273), and thus every f in H? is log-integrable. We also have that for any
f € N, there exist g1, go € H*™ with f = ;j—;.

It follows from these (see [15] theorem 2.11) that we have log | f| € L' whenever f € HP.

1.2.1 Inner-outer factorisation

An important result in the theory of H? spaces is the existence of a unique inner-outer
factorisation for functions in these spaces. Firstly, note that we have the following

restriction on accumulation of zeros at the boundary ([18] p.18):

Theorem 1.2.3 Let f be holomorphic in the disc, with f # 0, and let (z,) be the zeros of
f, repeated according to multiplicity. Then lim,._, fo% log | f(re')|df is bounded only if

2nma (1= [zl) <o

Since fo% log|f|df < oo was seen to be a necessary condition for f € HP?, this is a

necessary condition on the zero set of an H? function.

Furthermore, given any set of a, satisfying the condition » (1 — |a,|) < oo, we have
that there exists B(z) € H* with B(a,) = 0Vn, and |B(z)| = 1 a.e. on {|z| = 1}. The
construction is given in [18] p.19, with B(z) = H;’f’:ll%%.

This is termed a Blaschke product. For any f € H?, if we set (a,) to be the zero set of f,
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and B to be the Blaschke product with zero set (a,,), we have that f/B € H? (see [18]
p-20), and f/B # 0 inside A. Furthermore, || f/B||, = || f

- since |B| = 1 a.e. on OA.
It follows from the previous theorem that ) _,(1 — [z|) < oo is a necessary condition
for A to be the zero set of some H” function. Since we can construct suitable Blaschke

products when this condition holds, it is also sufficient.

We can proceed further and factorise what is left into what is called an outer function and

singular inner function.

Definition 1.2.4 [24] p.61

An outer function is defined to be F' : A — C such that

1 [T e+ 2 ;
F(z)= )\exp(%/ . log f(e?)df).

Where \ € C a constant, and f is a positive real-valued integrable function.

It follows from the definition that an outer function will have no zeros inside the disc.
The following results on outer functions will also be important, a proof of which can be

found in [37] 17.16:

Theorem 1.2.5 Let F' be an outer function as defined in 1.2.4 with respect to f, log f €
L.

1. lim,_; |F(re?)| = f(e?) a.e.
2. F € HP(A) ifand only if f € LP(0A).

We also have that |F'(z)| = | f(2)| almost everywhere on the boundary, and that F' € H?
if and only if f € LP.
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A singular inner function is also defined by a boundary integral, this time against a

singular measure on the boundary. The following is, once again, from [24]:

Definition 1.2.6 A function f is said to be a singular inner function if there exists a

singular, positive, measure [, on OA such that:

f(2) = exp(— [ Sr2dp(0)).

The factorisation theorem for the disc is as follows:

Theorem 1.2.7 Let f # 0 € H'. Then there exists a unique factorisation f = BSF

where B is a Blaschke product, S is singular inner, and F' is an outer function.

Again, this comes from [24] p.67-68.

1.2.2 Toeplitz Operators

Using the equivalence between H? functions and their boundary values, and that H? can
thus be embedded as a closed subspace of L2, there exists orthogonal projection P from

L? onto H?. Thus, given ¢ € L™, we can define a Toeplitz operator T}, as follows:

Definition 1.2.8 T,,f = P(¢f).

In the disc, it can be shown that if ¢ a non-constant real-valued function on the boundary,
then the set of eigenvalues for 7 is empty- this follows from Coburn’s theorem (see [29])-
we will have that either 7" or T is injective, if 7" = 0. Since T = T, it must therefore
have no eigenvalues.

It is interesting to consider the matrix with respect to our basis (2") for a Toeplitz operator.
Since we have (T,z",z™) = (¢z",z™) = (pz"*,z™*1), we will have that a,,,, is

constant on the diagonals of fixed n — m, which will be the infinite diagonals in our
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matrix. As a consequence, we immediately have that no non-trivial compact Toeplitz
operators exist.

We can also note that 7}, f = 0 implies that ¢ is log-integrable.
Lemma 1.2.9 Let f # 0, ¢ € L>®(9A), and Ty f = 0. Then log |¢| € L.

Proof

In the disc, we have that 2" = zH2, and so we have that all functions in H2" have
log-integrable modulus on the boundary.

Now, if T;,f = 0, we have that ¢ f € H?". Since |f| and |¢ f| are log-integrable, |¢| must

also be log-integrable. O

1.2.3 Spectra

This thesis will spend some time on discussion of spectra of operators, so these will be
mentioned here for bounded operators. For 7" a bounded operator o (7') is said to be the

spectrum of 7", where:

Definition 1.2.10 o(7") = {\ € C: (T — A )has no bounded inverse}.

The spectrum has several subsets that are important in operator theory, generally
classified based on why (7" — AI) fails to be invertible.

We have the point spectrum o,(7") = {\ : (T" — AI) not injective}.

If (T'— A1) is not injective, it follows that A must be an eigenvalue for 7', and so the point
spectrum corresponds to the set of eigenvalues.

The essential spectrum of operators will also be considered here. This is taken to be

0. = {A € C: (T — \I) not Fredholm}, where a Fredholm operator is an operator which
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is invertible in the space of operators quotiented out by the compacts.

An introduction to Fredholm operators can be found in [39] chapter 5. This also mentions
essential spectra, briefly.

Some important properties are that 7" a Fredholm operator is equivalent to 7" having finite
dimensional kernel, finite dimensional co-kernel, and closed range.

If we define the index Ind(T) = dim(ker(T")) — dim(coker(7")) on the Fredholm
operators, we will also have Ind(T\T,) = Ind(T)) + Ind(T3).

We do not necessarily have that o, and o, are disjoint here- if we have ) is an eigenvalue
of infinite multiplicity, then A € o, is immediate. A € o, will also follow since 1" — A\
has infinite dimensional kernel, and thus is not Fredholm.

For T’ self-adjoint (and so kernel and co-kernel are both equal in dimension), we have
that 0,(T") U 0.(T") = o(T'), since suppose 0 ¢ o.(T), 0 ¢ o,(T).

Then, we have that 7" has zero kernel and cokernel, and closed range. Thus, T"isa 1 — 1
mapping from our Hilbert space into itself, and it follows that it has bounded inverse.
However, this is not necessarily the case for non self-adjoints. Considering the shift
operator on the Hardy space of the disc 7 it is immediate that 0 is not an eigenvalue
for T,. We have that T,H? = zH?, is a closed subspace of codimension 1. Thus T,
is Fredholm. Thus 0 ¢ 0,(7%.), and 0 ¢ 0.(7,). Yet 0 € o(7},) follows as 7." has a

zero-eigenvalue, and is thus not invertible.

There exist further subsets of the spectrum which are of interest in various parts of
analysis, such as the residual and continuous spectrum, however only the essential and

point spectra are considered in this thesis.

Spectral properties of Toeplitz operators in the disc have long been studied. It is already
known, for instance, that 0,,(7}) is empty for ¢ a real-valued non-trivial symbol, and that
o¢(T}) is the range of ¢ for a continuous symbol ¢, with the Fredholm index given by the

winding number of ¢ (see for example [17] 7.26).
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1.2.4 Hardy space of the annulus

Sarason’s work [38], as well as [2] provide useful references for the Hardy spaces in
multiply connected regions.

We will take the annulus A to be the set {z : s < |2| < 1} where 0 < s < 1 is some
constant.

In this thesis, D will be used to represent a bounded multiply connected region in the
plane. We will consider only D for which D is an open, connected domain in the plane
bounded by at most finitely many analytic Jordan curves.

In both cases, we take I'; to be the connected components of the boundary of our region,
with ['y chosen to correspond to the outermost boundary of our region when possible (so
inthe case of A, 'y = {2z : |z]| = 1}).

There are a couple of different ways to define the hardy spaces on an annulus, both of
which will be detailed for arbitrary multiply connected regions in the plane. In a domain
D whose boundaries consist of finitely many analytic Jordan curves, these definitions will
in fact be equivalent.

Firstly, we can take the definition of H? from [18] p179-183, which defines the space as

follows:

Definition 1.2.11 For D an arbitary domain in the complex plane, H? (D) is the set of

analytic functions f such that | f(2)|P has a harmonic majorant in D.

In [18], the space is then given norm based on the harmonic majorant- here, we have
| £]l, = inf(u(z))'/?, where z, is some fixed arbitrarily chosen point in D, and taking
infimum over u harmonic majorants for | f|P. Our inner product for the p = 2 case will be
(f,9) = | op J gdm for some measure on the boundary of D. An explicit calculation of

this measure can be found in [2] p263.
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To see that this construction gives a Banach space, one can consult [36] p49-50.

For the alternative definition, we can define E?(D) as the set of functions f which are
analytic inside D, and for which there exists a sequence of domains with boundaries
{I',}, consiting of a finite number of rectifiable Jordan curves, which eventually enclose
each compact subset of D, have bounded length, and lim sup,, ., [ [f(2)[?|dz| < oc.
It is shown in [18] that these definitions are in fact equivalent for finitely connected
domains whose boundary curves are analytic. The approach taken there is that if C), is the
domain enclosed by I',,, we have that for every f € HP(D),one has f = fi + ...+ fu,
with f; € HP(Dy,), for either of the definitions, and the same decomposition can be shown
for f € EP(D) also. The equivalence then follows from the equivalence of E? and H?
for simply connected domains- see, for example, [37].

Since defining H” by means of harmonic majorants and by integrals with respect to
uniform lebesgue measure are equivalent, it follows that the harmonic measure dm will
be equivalent to the uniform measure |dz|. More detail on the relationship can be found
in [2] p263.

Whilst normally the space will be considered with respect to the uniform lebesgue
measure, at stated points the harmonic measure will be used. In this case, we will use
P" to denote orthogonal projections with respect to the harmonic measure, and (., .);, to

denote an inner-product with respect to harmonic measure.

It is useful to consider a covering map from the disc to the annulus, 6. For the annulus
{# : s < |z| < 1}, one can define this as follows:

First, let f; : z — ‘%i This is a conformal equivalence from the disc to the right half
plane.

Let fo: 2 — %ilogz%— %.

This is a conformal equivalence between the right half plane and the strip
{0 < Re(z) < —log s}.

Let f3 : z — e *. This maps the previous strip to the set {s < |z| < 1}, i.e. to an

annulus.



Chapter 1. Introduction 12

So 6 = f3 0 fy 0 f1 gives us a covering map from the disc to A.

Since f; and f; are conformal equivalences, and f3 is oo to 1 with the identity
fs(z + 2mi) = f3(2) generating the automorphism group, we see that there exists a
conformal equivalence 1 on the disc generating the group of identities for the map 6,
with (2) = £ (fs ' (fa(f1(2)) + 2mi).

It is useful to consider how our # acts on the boundary.

Firstly, note that moving from the disc to the annulus has some pathological points— we
have that 6 does not extend to the boundary at +1. This results from the behaviour of f3
around the boundary of the strip at +-coi (which f5 f; sends 41 to). In fact, considering
f3 we can see that {z : 0 < Re(z) < —logs,2mn < Im(z) < 2m(n + 1)} is mapped
1 — 1 into A. So any relatively open region of the boundary of the strip about +o00i is
mapped in an co — 1 manner to the entire boundary of A. It follows therefore that on any
arc of OA relatively open and containing 41, € is an co — 1 map onto the boundary of the
annulus. These are the only such points in 0A, since log(z) extends to the boundary of
the strip everywhere except at 001.

This can also be seen from the fact that 1)*"(2) — 41 as n — oo (since we have 1) can
be represented as mapping to the strip, adding 274, then mapping back to the disc, and so
accumulates at the points in the disc corresponding to £007 in the strip.

If we take ¢ with t # 0, t # 7, consider the effect of 6 on e,

it\ _ et41 _ 2isint
We have fi(c") = S = Py

fo takes a log of this, then multiplies and shifts by a constant, so we have

fa(fi(e™)) = i(log( 2sin(?) ))% +0when( <t < .

T_eil|2
fa(fi(e™)) = i(log(ﬁiiz(t?g))$ + (—logs) form < t < 2.

. . L . —i(l 2sin(t) —log s
Finally, f3 is exponentiation, so f(e") = e Hlog(7y itz when 0 < ¢t < m, and

2sin(—t) )) —logs

0(c't) = s "B T for 1 < ¢ < 2m,

So we can see once more that as ¢ approaches 0 or 7w, we are wrapping around the
appropriate boundary of the annulus infinitely many times.

It is also clear that I'j lifts to the set of points on the boundary of the disc with positive
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imaginary part, and I'; to those with negative imaginary part.

If we take a lift f of f an H P(D) function back to the disc under a covering map 6, from
A onto D, we have that f € HP(A). This is trivial in the case p = co. It is proven in [2]
p267 that (for the space defined with respect to Harmonic majorants) that if f is the lift to
the disc of f € H?(D), we have || f||, = || f|l, (the proof is to show that if u is a harmonic
majorant for | f|?, then lifting u gives a suitable majorant for the disc).

Now, since we are working with uniform measure on the boundary, we will not have that
the norms remain equal. However, since the harmonic and lebesgue norms are equivalent,
we will have that || f||, < oo < || f]l, < co.

Abrahamse in [2] in fact proves more than that just the lifts of H?(D) functions are in
HP(A). We in fact have that L”(0D) functions lift to LP(0A) functions.

It follows, for instance, that the functions in H?(A) will have well-defined radial limits
on the boundary of the annulus- one simply has to show that a non-tangential line to the
boundary of the annulus is mapped to a set of non-tangential lines on the boundary of the
disc under 6~ 1.

Let A : [0, 1] — S be our path approaching the boundary of the annulus non-tangentially,
and we can assume w.l.o.g. A(1) = 1.

Since we approach the boundary of the annulus non-tangentially, we must have that our
path is of finite length, and so it can only wind about the annulus at most finitely many
times. Since f; and f, are conformal equivalences, we need only consider f3;. By taking
A'(z) = A(t + (1 — t)z) for ¢ suitably close to 1, we can assume that [(A(z) — 1| < e,
where € is taken so that {z : |z — 1| < €} [ A is simply connected. Now, we have that
f3 restricted to a suitable set is a conformal equivalence between {z : [z — 1| < ¢} A
and the appropriate pre-image, so the pre-images of A must approach the boundary non-

tangentially.

Since we have that boundary values now exist almost everywhere, we have that H? can
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be considered as a subspace of the L? space of the boundary of the annulus, and it must
be closed since H? is complete. From this, we can define orthogonal projection onto H?,
and thus a Toeplitz operator can be defined on the annulus by T f = Pp2(a)(of).

When working with the harmonic measure, we will denote the associated Toeplitz

operator Ty, with 7, f = Pl,(¢f).

1.2.5 Basis for H”(A)

In the disc, we have that (2™)°° , provide an orthonormal basis for H*(A).
For the annulus A, with normalized lebesgue measure on the boundary, we have a very

similar result.

Theorem 1.2.12 (-2 : —0o < n < 00) is an orthonormal basis for H*(A).

2712

Proof
It is immediate that 2" 1 2™ when n # m, since we have that (z", ") =

fol eQiW(n—m)tdt 4 fol Sn—l—meQiﬂ'(n—m)tdt

Now, given any f holomorphic in A, we have a Laurent series [ = Zfz an2".

So. fl._, 12 = 50 laa .

So, for f € H?*(A), we must have Y |a,|*(1 + s**) < oo. However, |2"||? = 1 + s*",
and thus fo:, ~ an2™ is convergent in H?2, and thus converges to f.

It follows that (ﬁ) for —oco < n < oo gives a basis for H(A). O

From this, for instance, it follows that H*° is dense in H? for 1 < p < oo.

For a more general annulus D of genus g, constructing a basis for H?(D) is
somewhat harder. However, we can use the additive decomposition (previously

used in showing the two alternate definitions for H” were equivalent) to show that

{z",(z —a;)™™ : 0 < n < oo} has dense span in H?(D), where a; € C are chosen for
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1 < a; < g such that a; is enclosed by I';, and so it will follow that H*° is dense in H?.

However, even our (z") need not be an orthogonal series in H?(D).

1.2.6 Decomposition of >

In the disc, we have L2(OA) = H*(A) & ZH2(A), and so H*™ = ZH?.

In the case of A, if w is the function with w = 1 on I'y, and w = —1 on I'y, it is easy to
see that wH? | H?, since (f,wg) = (fg,w) = 0.

We also have that H2 @ wH? = L?. To do so, note that 2" + s?*wz " = (1 + s*")e"*? on
[p,andis O on 'y, 2™ —wz""is (1 + s7™)e™? on I'; and 0 on Iy,

Thus, we have that H2 & wH? is dense in L?, and since the space is closed, it is L2. It
follows that H2" = wH?.

We may also wish to consider a similar result in an arbritary annulus D.

We have from [2] Theorem 1.7 that for the Hardy space on D (with Harmonic measure),
we have H2" = 7~ 'H? for some function v, meromorphic on an open set about our
region D, with zeros and poles strictly inside D. We have that v~! is thus continuous,
bounded and non-zero on 9D. Thus, if we are working with uniform Lebesgue measure,

1 _—_qld . )
we have H>~ =7} %, where dm was the previous Harmonic measure.

We know that |dz| and dm are equivalent measures [2], so % will be bounded away from

0 and oo. It is also shown that this is strictly positive in [2].

One consequence is that H 2 will consist of functions whose boundary values have
log-integrable modulus, since |v| is log-integrable on the boundary, as is our change of
measure % and H? (H? having log-integrable boundary values is in [2] Theorem 1.18).
It follows that a necessary condition for 7}, f = 0 will be that |¢| is log-integrable.
Another decomposition shown in Abrahamse is that L? = H? & H2 @ N, with N a g¢-
dimensional set, where g is the genus of D.

Again, this is shown with respect to harmonic norm. If we instead use uniform Lebesgue
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measure, we still have 2+ H2 4+ N = L?, however orthogonality is no longer preserved.

1.2.7 Inner-outer factorisation in the annulus

Inner-outer factorisation in an annulus works somewhat differently than in the disc. By
taking lifts back to the disc, we can produce an inner-outer factorisation in the disc of the
lifted function, however there is no guarantee that the new functions from factorisation
can be passed back down to the disc (since our covering map from the disc will be an
oo-1 mapping, and so we cannot send a general H?(A) function back to D).

Considering the case for an annulus first, we have by a result of [38] that if f is an outer
function, and |f| is ¢-invariant on the boundary, then f will be a modulus automorphic

function, defined as follows:

Definition 1.2.13 f € HP(A) is a modulus automorphic function, and k € (0,1] its

character if we have that f(1 o z) = e*™* f(2) a.e. on DA.

We can take an inner-outer factorisation in the disc of f = fl fo for an arbitrary function
f € HP(A), and we will have that f, will be a modulus invariant function, and thus f;
will also be modulus invariant, with complementary character.

When considering the disc as a covering space of more general regions, we have that the
identity group of our covering map 6p, is no longer generated by a single element.

We can still, however, define modulus automorphic functions, as is done in [2] p267.

Definition 1.2.14 If G is the group of disc automorphisms such that 0p o G = 0p, we

have that f is a modulus automorphic function if we have |f o S| = |f| forall S € G.

Now, [2] states that if f is modulus automorphic, then we have f o S = «(5) f for some

o € G the dual group of GG. We say that « is the character of f.
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If we have f a many-valued function in H?(D) that lifts to a modulus automorphic
function in HP(A), the character of f is taken to be the character of its lift to A.

There are two approaches to defining inner and outer functions in the annulus.

One is to accept many-valued functions that lift to modulus automorphic functions for the
inner and outer factorisation, and proceed as before.

The second is to only accept single-valued functions, and instead cancel out the modulus
automorphism of the lifts of each part by multiplying by ¢ and ¢g~!, with ¢ an outer (by
the former definition) function chosen to have constant modulus on each boundary, and
to have suitable character (in the case of A, these will be z*, with « corresponding to the
character of the previous inner-outer factorisations). The requirement for inner functions
to have | f;| = 1 on the boundary must then be reduced instead to the requirement for | f|
to be constant on each boundary.

In this nomenclature, the functions 2™ are both inner and outer for the H? spaces of A.
Functions that are both inner and outer for an annulus are referred to as units.

In this thesis, the first of these approaches will be taken unless stated otherwise- inner and
outer components of a function may be considered as multivalued. Considering multiply
valued functions whose lifts back to the disc are modulus automorphic in fact generates a

family of spaces related to our H” spaces:

Definition 1.2.15 H?(D) is the set of modulus-automorphic functions in A with

character c.

Further details can be found in [2] p266-267, or in [38]. That these are essentially copies
of H?(D) can be seen from the result H2(D) = s, HE (D), where s, is an outer function,
with modulus bound away from 0 and oo on each boundary, and such that s, has character
a.

The result follows from the observation that multiplying two modulus automorphic
functions will result in a function whose character is the sum of the individual characters

(shown in, for example, [2]).



Chapter 1. Introduction 18

Definition 1.2.16 Let f € H!. Then f is said to be outer/Blaschke/singular inner for
D if f is outer/Blaschke/singular inner for H'(A), where denotes the lift to the disc:

f(2) = f(0(2)), where 0 is our covering map from A to D.

Theorem 1.2.17 Let f € H'(D). Then there exists a unique factorisation f = BSG,
where B is a Blaschke product for D, S is a singular inner function for D, and G is outer
for D.

If a, B, 7y are the corresponding characters for B, S, G, then a +  + v € Z.

This is from [2] p268.
For an outer function with given modulus on the boundary, [38] p.35, Theorem 6, gives the
following technique to calculate its character (modified by a constant to take characters in

the range [0, 1).

Theorem 1.2.18 Let f be a multiply-valued function such that f € HP f(A). We have

I — 1
Jr ogulgfl I od 1)

that oy =

Corollary 1.2.19 2* as a multi-valued function in A has character x (mod 1).

1.2.8 Blaschke products

In A, similar conditions on the zeros accumulating at the boundaries hold as to in the disc,
though the condition instead becomes »__ .\, min{l — |z[, |z| — s} < oco.

This can be seen by taking lifts back to the disc. If f € H?(A), we have that f € H?(A),
and so we have that 7\ (1 —|f[(2)) < oco.

Now, consider some region of A on which 6 gives a 1 — 1 mapping from the annulus.

Such a region will have a boundary consisting of two arcs on the boundary of the disc,
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connected by two paths in the interior of the disc. On this region, our lift § will only
distort distances between the respective boundaries by a finite factor. So, if we restrict
to a sequence of zeros accumulating on the outer boundary of the annulus, we must have
> (1 —|z]) < oo over this sequence.

To show the result for a sequence of zeroes approaching other boundary, apply the
conformal equivalence z — 527! to A to swap the interior and outer boundaries.

We can define Blaschke products in the annulus to be those functions whose lifts back to
the disc are Blaschke products (all such lifts will be infinite Blaschke products in the disc,
since @ is infinity to one).

Consider the Blaschke product in the annulus with a single zero at w, B,,. It is useful to
know what the character of this function is. In order to do so, note that (z — w) = By, fo,
where f, is an outer function with | f,| = |z —w/| almost everywhere on JA. (This follows
since we know the zero set of z —w and there is no singular inner component since |z — w|
does not decay on any radial limit approaching the boundary.)

Now, since (z — w) is single-valued, B,, has character complementary to f,, which by

fFo log |z7w\ffrl log |z—w|
log s :

Theorem 6 of [38] has character
Alternatively, [38] provides a construction of the character of an inner function directly.

There are two things to note:

1. The character of B,, depends only on |w].

2. The character of B, lies in the range (0, 3], attaining 3 only when |w| = /s.

So a single-valued Blaschke-product must have at least 2 zeros (with multiplicity) in the

annulus, and in the case of a single-valued Blaschke with two zeros, both must lie on the

line |z| = +/s.
It is useful to extend here a classical result from the Hardy space of the disc, that for ¢

outer we have gH? is dense in H?2.

Theorem 1.2.20 Let g € H?(A) be outer, and single-valued. Then gH™ is dense in H>.
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Proof

This follows the same way as it does in the disc. We have that Cl(gH>°) is invariant
under M, and M,-1, and closed by definition. Now, Beurling’s theorem has been
extended to a general multiply connected region in [35] p161, and thus we have that
Cl(gH>) = ©H? for some (single-valued, constant modulus on each boundary) inner
function ©. g € ©H?, so we have © divides g. If ¢ is outer, it follows that © must
be a unit, since the lift of © divides an outer function, it is outer, and we have from
before that © has constant modulus on each boundary). However, any outer function
with constant modulus on each boundary is invertible with inverse in H°°, and so
O©H? = H? = Cl(gH™).

O

1.2.9 Reproducing kernels

A Hilbert H consisting of functions on a set X is said to be a reproducing kernel space if,
for all A € X, we have there exists k) € H for which (f, k)) = f(\) forall f € H. k, is
referred to as a reproducing kernel for \.

These can be a useful tool for the study of our space, and it happens that our Hardy spaces
are reproducing kernel spaces.

For seperable Hilbert spaces, it is easy to construct our k) in terms of a given orthonormal

basis by the following well known lemma:

Lemma 1.2.21 Let H be a separable reproducing kernel Hilbert space of functions on
X, X € X, and (e,,) an orthonormal basis for H. Then ky =Y .-, e,(\)e,

Proof

Let f € H,then f =) a,e, for some square summable sequence (ay,).
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Now, we have that (f, > >"  e,(AN)en) = Qoo @mlm, D e En(Nen).
= ZZO:O anen(A) = f(N).

Thus, k) will be a reproducing kernel for H.

O

Applying this lemma, we can construct the well-known reproducing kernels for the disc:

Theorem 1.2.22 For H*(A), we have ky(z) = 5.

Proof
From Lemma 1.2.21 applied to our basis 2", we have that k) (z) = >~ N = 1_%2.
(I

In the case of H2(A), we can apply lemma 1.2.21 with respect to our basis HZ% to obtain
k)\ = Ziz( 1—332" ) 1_5%

This does not have such a pleasing simplification as in the disc, but we can see that the

series converges for all A € A, and so we are once again in a reproducing kernel space.
For a more general annulus D, the reproducing kernels are somewhat harder to construct,
and typically theta functions are used to do so, however we do know that we have a

reproducing kernel space, and that k) are H>°(D) functions (see [8] for instance).

1.2.10 Vector valued Hardy Spaces

The vector valued Hardy Spaces are a classical extension of the Hardy space, whose
elements are vector valued functions on the disc. An introduction to these can be found
in [30] 3.11. In this thesis, only finite dimensional vectors will be considered, so one can

consider these spaces to be defined as follows:

Definition 1.2.23 Forn € Z, n > 1, and taking | f||, = supo<7«<1(fo27r | £ (re?®)||Pdg)*/»

for f € Hol(A,C"), we define the vector valued Hardy spaces as
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HP(A,C") = {f : f € Hol(A,C"), || f]l, < oo}

We will have once again that boundary values exist almost everywhere, and that f tends
to its boundary values a.e. along non-tangential paths. We will thus be able to define
Toepltiz operators, whose symbols in this setting will be matrices as opposed to scalars in
the scalar valued case.

In order to extend this to a multiply-connected region D, it helps to consider defining this
space in terms of harmonic majorants instead. We have from [27] p3 that we can define

our H? space as follows:

Definition 1.2.24
H*(A,C") = {f: f € Hol(D,C"), || f|l2 < o]},

where ||f]ls = inf{v(z0)? : v a harmonic majorant for || f||2}, and zy some arbitrarily

chosen point in D.

We will once again be able to lift back to the disc under a suitable covering map.
In particular, since we already showed that the lifts under ¢ of non-tangential paths
approaching the boundary of A we will have that limits as we approach the boundary are
defined a.e. and will lie in L?, so we can discuss Toeplitz operators for the vector-valued

Hardy space on A.

1.2.11 Bergman spaces

As well as the Hardy spaces, we can also define the Bergman spaces on A , AP(A).

Definition 1.2.25 For 1 < p < oo, we have AP(A) = {f : f € Hol(A,C) : || f||’» =

Sl f(2)[PdA(z) < oo}, where A is Lebesgue area measure.
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[23] provides a good reference to these spaces. Now, we can no longer recover a function
in this space by its boundary values, but instead we have that A?(A) a closed subspace of
LP(A), (the limit of any AP function is in L by definition, and holomorphic in the interior
of A since we have almost uniform convergence), so we can define Toeplitz operators on
the Bergman spaces with symbols a function in L>(A).

One key difference is the lack of inner-outer factorisations. Blaschke products fail to be
so useful in Bergman spaces since we can no longer remove a Blaschke product whilst
preserving norm. Moreover, we no longer have the same conditions on how zeros may
accumulate on the boundary, and an analogue of the necessary and sufficient conditions
that we have in the annulus has yet to be found. In the Bergman space, for instance, if we
have a set z,, of zeros of a Bergman space function lie on some radial line in the disc, we
have > 1 — |z,| < oo as in the case of the Hardy space. However, it is quite possible for
> 1 —|z,| > oo for the set of zeros of a Bergman space function. (See [23], chapter 4).

We have that A? is a reproducing kernel space, with ky(z) = (1_%\2)2.

1.2.12  Slit disc

We have G the slitdiscistheset G = {z : |2| <1,z ¢ [0,1)}.

A full description of how to define the Hardy spaces on GG can be found in [3]. The Hardy
space here will be taken as what is referred to as £? and the Hardy-Smirnov class in [3]-
in slit domains, we no longer necessarily have that this is equivalent to the space one
obtains when dealing with harmonic majorants.

As in [3] p11, E*(G) is the spaces for which sup,, [ |f[*ds < oo, with ds arc-length
measure, and (7,,) a sequence of rectifiable Jordan curves, which eventually contain every
compact subset of our domain.

An application of a theorem originally attributed to Keldysh and Lavarentiv, which can
be found in [3] page 11, details that if ¢ is a conformal map from the disc to GG, then

f € E*if and only if supg,.<1 [ (=) |f17ds < oo

{l]
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We can thus take || f[|p2(c) = (8uPo<re1 [yqiz12r) |f|2ds)z.

It will follow from this that f € E*(G) < (f o ¢¢)(¢))2 € H2(A).

We can also see from this, (and since ¢, extends a.e. to the boundary, as will be shown in
chapter 5) that f € E?(G) has boundary values a.e. (considering limits from above and
below on the slit seperately), and || f||g2(c) = [y |f © dcl*|06] = [ | f1?]dz], (Where
we take the integral over the boundary to cover the slit twice, once with limits from above,

once with limits from below) for f € E?, and the inner product can be written similarly.

1.2.13 Hankel operators

Hankel operators have long been studied in the disc, defined as follows:

Definition 1.2.26 For ¢ € L™, T, is defined to be the operator from H* — H? defined
asUyf = Ppof.

[31] provides a useful introduction to the Hankel operators, and covers important
results such as Nehari’s theorem, the Nehari extension problem, and Nevalinna-pick
interpolation. A Hankel operator will, if we represent it as a matrix with respect to our
2" basis, have constant value along the finite length diagonals, a,, ,, with n + m constant,
in contrast to the result with Toeplitz operators constant along diagonals with n — m
constant (shown in [31] p30). Now, as opposed to Toeplitz operators, we no longer
immediately have ||I'4|| = ||¢||, nor do we even have that the symbol of the operator is
unique, for it is immediate that I'y = 0 whenever f is an analytic function.

The problem of finding a symbol of optimal norm is a classic problem in the Hardy
space of the disc. It turns out that there will always exist an optimal symbol ¢ for which

|¢]l« = ||T'4|, and this is easy to construct for a Toeplitz operator achieving its norm:
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Theorem 1.2.27 Sarason’s solution to the Nehari problem
Suppose that T is a Hankel operator on the disc, with | f|la = ||T||oo|| f ||2.Then we have
that ¢ = FTf is an optimal symbol for I with ||¢||c = ||T'||-

This can be seen in [31]. The theorem is quite powerful- while a Hankel operator need
not achieve its norm on H?, there are interesting classes of Hankel operators which will.
Hankel operators with a symbol polynomial in z, for instance— representing these as
a matrix, only finitely many entries are non-zero. So, using finite dimensional linear

algebra, it is easy to construct a function where our Hankel operator achieves its norm.

For multiply connected regions, there are two different ways that a Hankel operator can
be defined, as can be found in [30].

One is to take I'yf = PH2J_ ¢f, which is the definition that will be considered in this
thesis. The other is to take I'y f = Py Of.

These parallel the two approaches that can be taken for Hankel operators defined on the
Bergman spaces, which are referred to as the big and little Hankel operators. These act
rather differently since the L? for Bergman spaces is a far larger space than A2,

In comparison, for the Hardy spaces, L? = H? + H?2 + N where N has dimension equal

to the genus of our annulus, as mentioned earlier.
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Chapter 2

Factorisations

This section will discuss a few factorisation results in the annulus. One of the results
will be an analogue of a factorisation result from the disc— the result that an L'
function can be factorised as fg with f,g € H? whenever it is log-integrable, which
comes from [9]. The next will be a multiplicative analogue of the standard additive

decomposition, and the final one an extension of the H! = H? H? factorisation in the disc.

2.1 Douglas-Rudin in the annulus

The following result is known in the Hardy space of the unit disc:

Theorem 2.1.1 Let f € L>=(0A), log|f| € L*(OA), and € > 0.
Then there exist g,h € H®(A) such that f = gh, with

[flloe < NlgllscllPlloc < (14 €)[[.f[loo-
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The proof of this, which will be outlined here, is that shown in [14]. This section shall
focus on showing that a version of this also holds in the annulus, and the proof will be
given afterwards.

A few preliminary results are shown in [14] with the theme of approximating functions
with the argument of the ratio of two Blaschke products. The first important one is

Theorem 3.2.5. of [14].

Lemma 2.1.2 Let ¢,0,6 € (0,7), n € (0,0/7), a € (e — m,m — €), and
Q={e":—0<w<b}

Then there exist finite Blaschke products By and By with simple zeroes such that:
m({z € Q: |a — arg(By(2)/Ba(2))] > €}) < 1.

with —6 < arg(By(z)/Ba(z)) < 0 for all z € 0A\LY,

and ZZ:Bl(Z)BQ(Z):()(l - "ZD < 2m(Q) 10g(4?ﬂ)

This is then used to show that one can approximate measurable functions with such ratios:

Lemma 2.1.3 Let €,0,6 € (0,7),v € (0,1), Q a relatively open subset of O/, and
Y : Q — (—m, | be a measurable function. Then there exist finite Blaschke products By

and By, with simple zeroes, such that:

m({z € Q: |(z) —arg(Bi1(z)/B2(2))| > €}) <,

while —0 < arg(Bi(z)/B2(z)) < § for all z € A\,

and

S (-] < 2m(@) log(2T),

e
{z:B1(z)B2(z)=0}

Lemma 2.1.3 is then strengthened to the following:
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Lemma 2.1.4 Lete € (0,7, A C OA measurable, and ¢ : OA — (—n, 7| a measurable

function vanishing outside A. Then there exist Blaschke products B, and By such that
| — arg(Bi1/Ba)lloe <€,

with Z{ZZBl(Z)BQ(Z):O}(l - ’ZD < Qm(A) log(g)oTﬂ-)
The approximations are then used to show Theorem 3.2.8 in [14], namely,

Theorem 2.1.5 Let ¢ € L>®(0A, (—n,w|) and € > 0. Then there exist Blaschke products
By and B, such that

| H (¢ — arg(B1/Ba))|| < €,

H denoting Hilbert transform.

The Douglas-Rudin factorisation then appears from Theorem 2.1.5 as Corollary 3.2.9 of
[14], as follows:
Proof

Let v be the outer function with

ole) = esplz [ lomlre S,
ie. [v] = |f|ae.

Then v € H*, and f /v is unimodular. Let f/v = €%, ¢ € L=(A, (—, 7).

Theorem 2.1.5 shows that given any ¢, we have Blaschke products in the disc, B; and
By, and y € L, such that y = ¢ — arg(B;/B>), and ||H (V)| < log(1 + €), where H is
the Hilbert transform.

Thus, letting I = $(y+iH (7)), then F € H*>, and exp(i¢) = By exp(iF) By exp(—iF).
Soif ¢ = vBiexp(iF),h = Byexp(—iF), then f = gh, ||gllc < ||fllocV/1+ €, and
|hlleo < V14e€ O
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Adaptation to the annulus

The following analogue of the result can be shown in the annulus:

Theorem 2.1.6 Let f € L*(0A) be such that log|f| € L'(OA). Then, there exists
g,h € H®(A) with f = gh.

The proof of this will follow most of the method used in [14] for the disc, but several
adaptations need to be made when working with the Hardy spaces for an annulus.

The following preliminary result is needed on outer functions with modulus close to 1.

Lemma 2.1.7 Suppose that f € H?(A) is outer, 1 — e < |f| < 1 on dA, and f(0) > 0,
with [ being the lift to H2(A) under 0 (0 defined in section 1.12).
Then |1 — f||3 < 2e.

Proof

Since taking lifts back to A preserves the given conditions, it is enough to show this is
true for f € H%(A), as H%(A) is equivalent to the subspace of lifts in H%(A).

Since f isouter, and 1 — e < |f| < 1 on OA, we have that 1 — e < |f(2)| < 1Vz € A.
Now, (1= f, 1 f) = L+ || fI=2Re((f, 1)) = 1+||f|P—2Re(£(0)) < 1+1-2(1—¢) <
2e. O

We start with the following lemma:

Lemma 2.1.8 Let

e,t,0 € (0,7),v € (0,t/m),ne(0,1),a€(e—mm—e),Q={e“: ~t<w<t}

Then we have finite Blaschke products By, By € H?(A) with simple zeroes, such that
m({|z € Q:|a —arg(B;/Bs)| > €}) <v,—0 < arg(B;/Bs) < 0 Vz € 0A \ Q except
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on a set of measure at most .

Proof

Let B and B) be the restriction to the annulus of the Blaschke products for the
corresponding theorem for the disc (Lemma 2.1.7). These will not be Blaschke products
in H?(A)— their modulus will be strictly less than 1 on T';.

B/ B}, takes values as required on Iy, by construction. Consider B}/ B} on I'y.

We have that B is a Blaschke product in the disc with zeros at z € Z;, where
Zy = {rV/Ne2mk/IN . 0 <k < N —1}n{r/Ne™ : -3 < w < 8} for some constants
r, N, (3, asin [14].

Now B} has zero set Zo = {e™/Nz: 2z € Z,}.

[1e% 1—weie/N z et /N (p—z 1—WZ— 1—2) (wete/N 4
Then e /Ngl wig(wei“/Nfz) -1 = : )((17152)(we2&/(1\’fz))( )| =

‘2(1 —eta/NY(1—|w|?) ’_‘ | | (1—|w|?)(1—e?/N)
(1—wz)(wete/N —z) (2—s2w) (z—wete/N)|

Now, we have that (1 — |w|?) = (1 —r?/") < 2N"tog(1/r), |1 —e/N| < a/N, as was

the case in the disc. Also, we have that |z — s%w| > (s — s?) and |z — /N| > (1 — s),
for z € I'y.
Thus, we have that |eio/N (w=2l-we®/M2) 4 = 4o N~210g(1/r) Since B,/B) is the

(1—wz)(weie/N —2)

product of N such terms, we have that on these boundaries, |B;/B) — 1| < (1 +
AN~2log(1/r))N — 1) = O(1/N) for large N. However, in this construction, N can
be chosen to be arbitrarily large, so we can make B} /B arbitrarily close to 1 on I';.
Since abound on ) __, (1 — |2|) independent of N from the proof in [14] was used, this
does not affect our bound on for > 5 iz )_o(1 — |2]). Now, the B, B; constructed
are not inner functions for the annulus, however, letting B, = f;f,, B5 = g:g,, inner-
outer factorisations into (potentially multiply-valued) functions, we have that B}/ B} =
fifo/(9i90) = (fo/ 90) fiGi-

Since |B]/Bj| — 1 can be made arbitrarily small, we have that |f,/g,| — 1 can be made

arbitrarily small. However, since |g,| = |Bj|, we have that |g,| is continuous, bounded
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away from 0 and infinity, thus f,/g, € H? and is another outer function.

Since |f,/g,| is close to 1 everywhere, we have from Lemma 2.1.7 that ||f,/g, — 1||
can be made arbitrarily close to 0, and thus have argument close to 0 except on a set of
small measure. We must choose NV sufficiently large that this set has measure less than 7).
(Since we do not necessarily have approximation in co-norm, we no longer have B; /B,

has small argument outside €2 in our final result, as opposed to the case for the disc in

[14]).

Now, f; and g; obtained need not be single valued, however this can be avoided— the zero
sets of f; and g; coincide with those of B} and B/, by construction, and the zero set of B/,
is a rotation of the zero set of Bj.

In H?(A), the character of a Blaschke product with zero at z depends only on |z|, and so
fi and g; will have the same character, call it .

Then, let B; = f;K, and By = ¢g; KK, where K is a finite Blaschke product with character
—~ (the existence of such a K is proven in [2] p269). Then B, By = f.g;, and both have
character 0, i.e. they are single-valued.

(]

From this, we proceed to the following refinement, which is an analogue of Lemma 3.2.6

from [14]:

Lemma 2.1.9 Let ¢,6 € (0,7),v,n € (0,1),Q relatively open, and Q C 0~1(T'y) and
¢ : OA — (—m, 7| a Y-invariant measurable function with support in Q). Then there exist
finite, 1— invariant Blaschke products with m({z € Q0 : |¢ — arg(B1/Bs)| > €}) < v,

with —0 < arg(Bi/Bs) < 0 outside ) except on a set of measure 1, and

Zz:Bl(z)Bg(z):O(l o |Z|) < 2m(Q) log HTW

Essentially, this says that if one takes a function on the outer boundary of the annulus
and lift back to the disc, then one can approximate with Blaschke products that are also

lifts of Blaschke products from the annulus. Unlike in the case of the disc, we no longer
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have arg(B;/Bs) small everywhere outside €2, since our previous approximation in 2.1.8
no longer had this property (as a result of having to multiply by an outer function lying
close to 1 in norm).

Proof

As in [14], simply take an appropriate step function approximating the function that we
wish to target (using lifts of the functions in 2.1.8), and factorise this as a product of

functions of the type dealt with in Lemma 2.1.8. The result then follows. O

Now, since this holds for the outer boundary, it does so after application of conformal
equivalences. So, for I';, we can apply a conformal equivalence to swap I'; and I',
apply the result, then move back via the conformal equivalence. Thus we can drop the

requirement that 2 has support on 6~1(Ty).

So, we have

Lemma 2.1.10 Lete,§ € (0,7),v,nm € (0,1),Q relatively open and ¢ : 0A — (—m, 7| a
W-invariant measurable function. Then there exist finite, 1)—invariant Blaschke products
withm({z € Q:|¢ — arg(B1/Bs)| > €}) < v,

while —§ < arg(By/By) < § outside ) except on a set of measure 1, and

ZZ:Bl(Z)BQ(Z):()(l - ‘Z|) < 2m(Q) 10g 1277"

From this lemma, we can produce the following analogue of [14] Theorem 3.2.7:

Lemma 2.1.11 Let ¢ € (0,7), Q@ C O0A and ¢ a -invariant measurable function

with support ). Then there exist 1)-invariant Blaschke products By and By with
||q5 - a‘rg(Bl/BQ)HOO < 6 ZZ:Bl(Z)Bz(Z):O(]' - |Z|) < 2m(Q) ]'Og(mTﬂ—)'
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The proof is mostly the same as in the disc from [14], except for use of Borel-Cantelli
since our approximations are weaker than in [14].

Proof

Let (v);) and (J;,) be sequences with 2377 | v, < m(Q)log(22) and Y_;7, 0; < €/4.

Let =; be an open set (on the boundary) containing €2, m(=;) < m(£2) + v, and let ¢
be defined by:

di(2) = 8(2) — /2 §(2) > 0

$1(2) = 6(2) + ¢/2 for §(2) < 0

Then, we construct inductively a sequence of open sets =, {1, measurable functions 1/,

and Blaschke products B%k), Bék) such that the following hold:

S (- Je) < 2m(E) lor(),
{z:B{" B{" =0}
m({z € Z; : |arg(B/By)| > di}) < v
3. = contains
Qsr = {2 € Qo : [Un(2) —arg(BY/ By (2))| > ¢/4} | {= € O : | arg(B1/Ba)| > 6}
and also

m(Ek) < m(Qk) + v < 2.

k

Vi = ¢(2) —¢/2 =Y arg(B) — arg(BY) for ¢(z) >

7j=1

=9(2)+e/2- 3 arg(BY)) — arg(BY) for ¢(2) <
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If we let [ be a positive integer, and suppose we have found =1, Vg1, B%k), Bék) for

k<.
Then, applying Lemma 2.1.10 with v = v, § = §;, Q = Z; and ¢ = y]q, € = €/4, we

obtain B, and B, -invariant Blaschke products with
m({z € Z, : [(z) — arg(BY/BP)| > €/4}) < v, and |arg(B./BL))| < &

outside {2 except on a set of measure < v,

and ZBl(z)Bg(z):[)(l — |z]) < 2m(9) 108;(48?”)-

Now, we have that 1, 2, 3, 4 are all satisfied for £ = [, hence by induction we can make
the construction for all integers.

We have that >, | ZBi’“)(z)Bg’“’(z)zo(l — |2]) < 30, 2m(Ey) log(£).

Since m(Zy) < 2uy, this series is summable, so B; = H;OZIBYC) and By = HZ"ZlBék)
exist, and are Blaschke products, with > "5 ), ()0 d(z, 0A) < 2m(Q2) log(291).

To show that we have ||¢ —arg(B;1/Bs)||« < €, note that as m(€2) is summable, we have

that m{z : z € €, infinitely often} = 0 by the Borel-Cantelli Lemma.

Thus, we have that, aside from a null set, for each z € 9/ we have there exists an [ for
which z € Q; and z & QVEk > [.

Thus, ¥,1(2) < €/4, and since | arg(BY/B5)| < 6, all k > [, and Y 6}, < €/4, we have
that ¢ (2) < €¢/2VEk > .

It thus follows that [|¢ — arg(B1/Bs)||| < €, and (1 — |z]) < 2m(Q)log(>%*). O

We then have that the following analogue of [14] Theorem 3.2.8 holds:

Theorem 2.1.12 Let ¢ € L>®°(0A) be y)-invariant, and € > 0.
Then there exist \-invariant Blaschke products B, and By such that
1H(¢ — arg(B1/B2))le < €.

where H is the Hilbert transform.
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Proof

Let 0 be constant depending on €, ¢g = ¢, hy = 0. Then, by the previous lemma, we have
B

¢1, and Blaschke products B BV, 1]l < S and ¢ = ¢o — Re(hy) — arg(Z o)

with B{" and BY" y-invariant Blaschke products, Z B A=z < log(loo’r)

B(l)(z)
Suppose for k > 1, we have ¢y, 1-invariant, with ||¢p]|. < 27%6.
Then, by Corollary 3.2.4 from [14], we have that there exists hy,, with
[fx — Re(hpsn)l2 < 27F[| k|00 < 2724

and [|hyr1loe < clog(2")l|xlle < #5220

We need to adapt this so that the hj, obtained is modulus-invariant. Let f be a real-valued
bounded ¢ -invariant function, and g; and g, analytic functions such that f = ¢g; + go.
Since f € H™, these will be BMOA functions, and thus lie in H*.

Then we must have that ¢, =g, + A, where A a constant, since f = f thus g; +¢> = g1 +go,
thus g1 — g2 = g1 — g2, andso g1 — go = A

So, (f — A) = g+ g. Since the left hand-side is i)-invariant, we have that Re(g) is
invariant, and thus g must be ¥ -invariant (otherwise, g — 1) o g would be in H? and have
vanishing real part on the boundary).

Now, applying [14] Lemma 3.2.2 to deal with boundedness, the construction involves
multiplying by an outer function whose modulus on the boundary will be invariant, and
thus this yields a modulus-invariant function hj,;. Suppose this has character — (1,
and since hj, approximates an invariant function arbitrarily well for large k£, we must have
that the (3, are tending to 0. So, replacing hy,1 with eq,  hyy1, with e, the lift to the
disc of the function z%* in the annulus, where oy, = [, + m, with m € 7Z chosen so
that —% < o < %, we recover an invariant function. Since —% < qp < %, we at most
increase by a constant multiple of s~ for ||e,, 1 his1]los- We need the following to show

that we still approximate in L, as well:

Lemma 2.1.13 ||¢), — Re(hyi1€q,,,)|l2 < 272 ES for E some constant depending only

on the inner radius of our annulus A.
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Proof

Since we have that || hg11—€ayy Fsall2 = ([P (1—€ay, )2 < s [l (1—€ay,,)
and calculate the integral on the strip S = {z : 0 < Re(z) < —logs} (choosing the
map from disc to strip so that composition with e~* will return our map from the disc to

annulus 6) with measure on the boundary |dz| (which is an equivalent norm

cosh( Im =)
to lebesgue measure in the disc on applying our conformal equivalence, by [7]. Since
%z — e~ 7 is our map from the strip to the annulus, we have that our e, lifts to e™**.

So |1 — eq, 113 < Z?:l(SUPgmgeg%(nH) [1— e + |1 — s ) 1( A, ), where
Ay istheset {it : 2nm <t < 2(n+ D)} U{—logs+ it : 2nw <t < 2(n+ 1)m}.

Now, |1 — s@keirf|2 < |1 — erf|2 4 |1 — s°¢|2, s0 we have that:

11— a5 < 23 i (SUWPsrncocon(ni) 1 — e 02 1(A,)) + (1 — s7%)2.

Using the approximation |1 — ™| < |z| (which follows since the length of the chord
between 1 and €’ on the unit disc is bounded by the length of the arc between them) :

1L = o 13 < 3000 72(s + 1208 oy + 11— 5%

Since > 7 (2m(n + 1))? W = D for D some real constant, it follows that

11— 22|53 < aiD; + (1 — s*)? < aiC for some real constant C' depending only on

our inner radius.

To get bounds for oy, suppose we have that s is the H?(A) function such that
¢r = Sk + S and s5(0) is real.

Then (see [14] Lemma 3.2.1 and corollary 3.2.4), we obtain h; by multiplying s
by the outer function G, the lift of G, € HQ(A) to the disc where |Gx| = 1 on
For = {z:2 € 0A,|s:(071(2))| < 2%}, and |G| = o on Eoe = Fy.

Since s; was invariant, we only need to know the character of (), and

(f\z‘zl log |Gk‘_f‘z‘:5 log ‘GkD
log s

. =

lo 2
Thus ‘Oék’ S \logs| fsk|>log 2Kk) |10g( i’k‘ )>| S #gs f‘SHZIOg(Qk) |10g(|8k‘)| S

—ligs D ohcteoo(t H Du({z 1 28 < [sp(2)] < 2771}).
Now, we have u(z : 2' < [si(2)] < 21) < ghellsl .
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1
Thus Jox| < —glsllsl3 2, G
Now, since [[sill? < lowl? < |l¢wl% (For the first inequality, if ¢, =

S n S — zn __ ao S n
Ym0 @n2" Y7 @y 2", we have s, = 9@ + 3 a,2", and so the result follows),

and the series »_,°, (t;tl ) has a bound independent of &, we have that |oy;| < E(272)3,
where E is a constant depending only on our inner radius.

It will follow that ||y — Re(hryiers1)|2 < |lox — Re(hiia)ll2 + || her1 — hrsi€rrtllz <
E272k§ for some constant £ depending only on inner radius (since J will later be chosen
to be small, we can assume § < 1 and so 6% < §). O

The rest of the proof of this theorem proceeds without further need for modification from

that in [14] Theorem 3.2.8.

Letting gx+1 = hp12°%+!, we have that:

|6r — Re(ger)ll2 < 27 E6

ck log 2
ka

Letting Ay = {z € OA : |¢p — Re(grs1)| > 2726}, we have that this will be -

J.

| Gr+1l]o0 <

invariant, and thus f; = (¢r — Re(hgi12°+1))xa, Will be ¢-invariant, and m(A;) <

(22+E4)? < 16E2k?
2—2(kt2)52 — ~ 92k -

We can, by lemma 2.1.11 construct B¥™! / BE*1 ¢)-invariant, with

1 — arg(By /By ) [l < 2742,

507
> (1= z]) < 2m(Ag) 10%(2_(k—4r2)(5)-
Bi(z)B2(z)=0

Take ¢p1 = ¢ — Re(gpy1) — arg(BIT/BETY).

Then, by evaluating on A;, and A§ separately, we can see that ||¢p1||ec < 2716,

We have that 377 [ox — arg(Br™'/By*) — drille = 2050 [Re(gr) e <
Y reo 19k+1lloo < € for suitably small .

Thus 377 ér — arg(Bf+1/B§+1) — Pkt1 = G0 — arg(H;O:OBfH/BSH).

Also, ||H(¢o — arg(IR2o By /By™))lloe = [H(ZZ0n — arg(By™/By™) —
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Pr+1)lloe = HQ Re(grr1)lloo < 2 IHm(grs1)lloe < D0 [lgrt1llc < € And, we

also have >, > prti ) piei () —o(1 — |2[) < oo. Thus the products of the ¢-invariant
Blaschke factors converge to suitable ¢)-invariant Blaschke products By and Bs. O
From this, we can show the main theorem, which now proceeds in the same way as the

the proof in [14] follows from Theorem 3.2.8. in that book:

Theorem 2.1.14 Whenever f € L>®(0A) with log |f| € L', we have f = gh for some
g,h € H*(A).

Proof

First, lift to the disc so that we have a i)-invariant boundary function in the disc, factor out
an (invariant) outer function so that we can restrict to the case of factorising a unimodular
function (to deal with this outer function having non-integer character, use the fact that
2%8;2%8; = |z|** in the annulus and taking lifts back to the disc, we can adjust for this
(where s; i1s some inner function with the right character to make z“s; single valued).

So f = €'®, with ¢ real valued. Lifting to the disc, we can produce B; and B, invariant
such that ||H (¢ — arg(B1/Bs)l|c < log(1 + ¢).

Then, have that F = I(y + iH(y)) € H> where v = ¢ — arg(B;/B,), and
exp(i¢) = By exp(iF) Byexp(—iF).

Since 7 is t-invariant, so is F' (since otherwise, F' — F' o ¢» would be non-constant,

analytic with constant real part) and thus the decomposition is in terms of invariant

functions, which can then be passed down to the annulus to obtain our factorisation. O

The proof here does not seem to extend to a higher genus annulus, the main problem
being that Lemma 2.1.8 appears difficult to adapt to have B; single-valued for the higher

genus annulus.
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2.2 Multiplicative factorisation

There is a well known additive decomposition for H%(A) into H*(A) & H?((sA)°).
If f=>"_a,2" then f = f1 + fo with f; = [ a,2", and f, = Z:io an ™.
It is immediate that f; € H*(A), fo € H*((sA)%), and f; L fo.

The following gives a multiplicative decomposition which somewhat parallels this.

Theorem 2.2.1 Let f € HP(A), p € [1,00]. Then there exists fi, fo with [ = fifs,
fi € HP(A), and fy € HP((sA)°), such that f = fi fo.

Proof
First, consider the case when |f| > 0 in A. Since [ is analytic and non-zero on A, it has
well-defined winding number about 0. Call this ny. Then, letting f* = fz="f, f’ has

winding number 0 about 0, and thus we have a well-defined logarithm in A.

Let log f" = > _a,z" be the power representation of this function, and
set gi1(2) = S.0anz", goz) = .-l a,2". Since log f is bounded on

{z : (s+ €6} < |z2|] < 1—¢€} forall e > 0, it follows that g; is bounded on
{z:|z] <1—¢€},and go bounded on {z : |z| > s+ €} forall ¢ > 0.

We have that [ = 2"e9 192 = z"e91e92, s0 we have only to verify that e9* € HP(A), and
e € HP((sA)°).

go is analytic and non-zero on {|z| > s + €}, and hence |e??| has non-zero infinum.
Letting Ay = inf|. |- [e%2| # 0, we have that f__ [e? [P < [,y [f'[PAy" < oc.
Hence 9 € HP(A) (since we have a power series consiting of only positive powers of
z, we know that that the integral on |z| = p is strictly increasing with p). By a symmetric
argument, e?> € HP((sA)°).

Thus a function without zeros can be factorised. However, for an arbitrary function f,
we can remove a Blaschke factor to deal with the zeros— let B; be a Blaschke product

in H?(A) with By(z) = 0 < {f(z) = 0,]z| > s2}, and B, a Blaschke product in



Chapter 2. Factorisations 41

HP((sA)°) with By(z) = 0 < {f(2) =0, |2] < s2}.
Then we have that f = By B, f’ with f' € HP?, |f’| > 0in A. Letting f' = f; f> from

before, we have that f = (fy By)(f2B-) factorises the function as required. O

2.2.1 Non-uniqueness

This factorisation fails to be unique— if one takes f with finitely many zeros, the Blaschke
product factor of f can be included it in either factor, and each will yield a different
factorisation (since the method for factorising non-zero functions produces non-zero
functions in their respective domains).

Consider the following example:

Take p(z) = z — 1, assuming that s < 1.

To factorise this, we can take a Blaschke product for A, zero at %, or for (sA)©.

z

_1
The first choice gives the factorisation p(z) = T
2

(1 — 32), we observe that the second

factor already lies in H%(A), so we are done.

Alternatively, we can take the Blaschke product for (sA)¢ with zero at % (= 1=22),

S*EZ
112, 1
So, we have z — 5 = siiz(s 5:7)-

1

$ — 5.2 winds about 0 on any loop in our annulus, so take out a factor z. s — Qisz =

—z(5; — sz71). But - — sz~ ! is already in H?((sA)¢), so we are done. Simplifying

each product we have, z — 3 = (z — 3).1 = z.(1 — 327!) are the two different ways of
writing the product as H?(A)H?((sA)¢), depending on which side the zero goes. These
factorisations differ by multiplication of meromorphic functions, and we can in fact show

that factorisation is unique up to meromorphic functions.

Theorem 2.2.2 Suppose that we have f, f1, fa, f3, fa with f € H*(A), f1, f3 € H*(A),
fo, fa € H*((sA)%), and f = fif2 = fsfa.

Then we have that f3/ fi is meromorphic in C.
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Proof

Eugene Shargorodsky suggested the following proof, which is simpler than the original.

We have that fi — 2 — J5 on A. Now, we have that £ is meromorphic in (sA)C, as it
14 fa 1 fa

is the ratio of analytic functions in that domain. We also have that % is meromorphic in

A. Since % = % we can extend to a meromorphic function on C, as required. O

2.2.2 Extension to higher genus setting

‘We can extend this factorisation as follows:

Theorem 2.2.3 Let D be a general genus g annulus, consisting of the unit disc A with
g components A; removed, with each A; conformally equivalent to the unit disc. Let

f € HP(D). Then there exists f;, 0 < i < g, such that fy € H?(A), and f; € HP(AS).

Proof

We can prove this by induction. Firstly, note that if we are in the case ¢ = 1, we can
apply a conformal equivalence to ensure that the inner disc is centred about 0, and then
apply the case for {z : s < |2| < 1}.

Now, suppose D is an annulus of genus n + 1 constructed as in the theorem. Let
D" = {z: s; < |z| < 1}, where s; is chosen so that D’ is contained in D. Now, if we
have f € H?(D), we also have that f € HP(D’), and applying the g = 1 case, we have
that f = fof1 with fo € HP(A), and f; € HP({z : |z| > s1}.

We can extend f; analytically by f1 = f/fo toyield f; € H?(D|J A°}), with f = fo f1.
Now, D|JA°® is a genus-n annulus. Through application of a conformal equivalence,
we can send this to an annulus consisting of the unit disc with g — 1 removed subdiscs,
and thus f; can be factorised completely. Moving back to the original domain with a

conformal equivalence, we will have that
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f:fOfl-Hfg'

With f; € HP(AS), fo € HP(A). O

2.3 Factorisation of ' function into /2 functions

In the disc, the following result is a well known result following from the inner-outer

decomposition of functions:

Theorem 2.3.1 Let f € H'(A), then there exist g, go with f = g1g2, g; € H*(A), and

1f 1l = llgrllzllg2ll2-

In the annulus, whilst an H' function can still be factorised as a product of H? functions,
the norm of the factorisation is no longer preserved— which is quite important with later

consideration of Hankel operators.

Theorem 2.3.2 Let f € H'(A), then there exist gi,g2, f = 192 ¢i € H?*(A),

lg1ll2llgz2ll2 < Al f]

1, where A € R is a constant.

This has been shown already in [4] for arbitrary multiply connected regions, with the
constant of factorisation depending on the region in question. In the case of an annulus
of the form {z : s < |z| < 1}, this will be improved upon to show that a constant of
factorisation independent of s can be obtained.

A proof of the theorem with the constant A = % depending on the inner radius of A, s,
will first be given. Later, this constant will be made independent of the inner radius of
the annulus A. The method is akin to that in the disc, with a small alteration.

Proof
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Let f = f;f, be the inner outer factorisation of f.

Then let g; = (fif(}/zzam), and gy = (fg/Qz‘aﬂ), where o € (0, 1) is the character of f,.
(The 2°/? term appears to ensure that our g; are still single-valued functions, as foé will
have character 5, thus f; foé would have character —%).

then f = g1go, and [|g1|2[[g2[l2 < 7| f]1. O

This illustrates the difficulty that arises for the annulus— in taking square roots for our
outer part, we are altering the characters, and so the inclusion of 23 is needed to counter
this.

The constant in the following proof comes out as ((14¢)(14-2¢))2, which is independent
of our annulus inner radius.

Proof

Assume w.l.o.g. that fF1 |f| = 1, and fFo |f| > 1 (transform to swap boundaries if
necessary, then scale). Let fFo |f] = B.

Let f = f,f; be the inner-outer factorisation of f, and factorise as f = (g1 f;2")(g22""),
where we have that:

g1 1s an outer function,

lg1| = | f|2 whenever | f| > 1,

91| = || when [f] <1,

and z is chosen so that g, f;2” is a single valued function.

‘fFO IOg |f|_fpl IOg ‘f'
log s

We have from [38] that the character of an outer function is given by
(mod 1).

It thus follows that the difference between the characters of ¢g; and f, is equal to
fFO %10g+ ‘f|_f[‘1 %10g+ |f|

log s :
Now, since [;. |f| =1, we have that [, log™ |f] <1 (since log™ [f] < |f]).

We also have that fl“o log™ |f| < 1+ log B. To see this, consider the problem of finding
a function g € L*(T'g, R) to maximise [}, log™ |g| subject to the constraint [ |g] = B
It is immediate that a maximal function will not take values in the set (0, 1)- otherwise,

we can create a function g’ with ¢’ = 0 where g < 1, which would decrease [ ¢’ without
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changing [log® ¢

Secondly, note that a maximal function will be constant on the set g > 1— otherwise,
choose ¢’ such that ¢ = 1{z:g>1}(fg>1 w=1yy)- Then, we will have Jg=[d,
and by Jensen’s inequality (and noting that log" g = logg on g > 1), we have that
[log* g > [log*g.

Thus, we have that the maximal g will be such that g = 0 on a set of measure 1 — z, and
g = B/x on a set of measure x. The case x = 0 is trivial, and optimising over = we see
that [log™ | f] < sup,e(,)xlog 2.

This is maximised as x approaches 1 for B > e, giving an upper bound of log B in this
case. For 1 < B < e, we can see that 2 is an upper bound, so 1 4 log B is an upper bound
forall A > 1.

1+log B

Itloe B and so 522 < 5 les < eB.
—2log s

Since the character of 27 is =, we have that |z| <
Now, we have that || f||; = (B + 1).

Also, ||g1fiz"||3 < (B + eB) (since |g1|* < | f|), and

lg22="[1 < (B + 1) + (1 + 1)(eB)) (since |gz|* < max{1, [f[}).
So lonfizrllen=l < (LB < (14 €)(1 + 2¢)). O

The constant that arises in these factorisations is entirely due to characters— if you

permit factorisations of the type f = g1g» with i € H2, g» € H?_, a € [0,27) and
HC% the set of analytic functions in the annulus of character « (see, e.g. [38]), one
can factorise with ||g1||2||g2|l2 = || f|li— we can simply take square roots of the outer
component of f, now that we are no longer restricted by characters. The same is also true

in a higher order annulus, with o € G-

Theorem 2.3.3 Let f € H'(D), then there exists gy, gs, with g € H?, go € H? , for

some o some character, and with ||g1||2]|g2]]2 = || f1]1-

Proof

This follows straightforwardly from the inner-outer factorisation. Let f = f;f,. Then
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1 1 1
take g, = fifs, and go = fo, taking f7 to be the outer function with modulus on the

boundary to be the root of the modulus of f,,.
1
It is immediate that f = g;g., and that ||g1]|2 = ||g2l|2 = || f||?. If f, has character ,

1
fife will have character —£, so these are no longer single-valued functions in general. O



47

Chapter 3

Toeplitz operators on the annulus

3.1 Toeplitz Operators with real-valued symbol

3.1.1 Eigenvalues/eigenvectors of Toeplitz operators with real-valued

symbols

The initial motivation at the start of this project was to consider whether a self-adjoint
(and thus real valued) Toeplitz operator on the Hardy space of the annulus could have
eigenvalues, and as to what they would be. The solution to this problem followed
quickly from some of the results in Abrahamse’s paper on Toeplitz operators in multiply
connected domains [2]. Research in a paper of Broschinski also came to the same
conclusions with similar method on the eigenvalues for self-adjoint Toeplitz operators
on the annulus in [10], though they did not consider higher order annuli. An older paper
by Aryana and Clancey [6] describes the eigenvalues of Toeplitz operators in a general
annulus of arbitrary genus, in terms of theta-functions, and a recent paper by Aryana
[5] gives more details in the genus-1 case, giving the same theorems on when infinitely
many eigenvalues accumulate in the spectrum, but not giving explicit calculation of the

eigenvalues. The methods in the Aryana paper were focused on the resolvent of the
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operators in question, as opposed to the methods here. Whilst Brochinski uses much
the same methods, he does not continue to higher genus annuli in his paper. In his recent
(2014) thesis [11], he mentions Toeplitz on a more general multiply connected domain,
but the results stated are in terms of Toeplitz operators on H?, looking for « that give an
eigenvalue given a Toeplitz operator, and so do not immediately provide information on
H?. The results on Toeplitz operators in [11] are also limited to real-valued symbol with
constant sign on each boundary component, and properties of the eigenfunctions are also
not considered in Brochinski’s work on more general domains.

In this chapter, A will be used to refer to the annulus {z : s < |z| < 1}, and D will be used
to refer to an arbitary finitely-connected domain contained in the disc, whose boundary
curves are analytic Jordan curves.

We will take A and D to have uniform Lebesgue measure on the boundary, unless stated

otherwise.

Lemma 3.1.1 Let ¢ be a bounded real-valued symbol of a Toeplitz operator on the Hardy
space of the annulus A:={z : s < |z| < 1}.

LetTo={z:|z| =1}, and 'y = {2z : |z] = s}.

Let ess inf ¢|p, = a; ess sup ¢|r, = b.

Let ess inf ¢|p, = ¢; ess sup ¢|r, = d.

Then we have that:

i 0.(Ty) = [a,b]Ulc,d].

ii Ifa<b<c<d, theno, C[b,c|,andifc <d<a<b,theno, C[d,al.

otherwise, o, = (.

Proof

(1) follows from a corollary of Abrahamse’s reduction theorem, Corollary 3.2 of [2].

Theorem 3.1.2 (Abrahamse) The operator Ty is Fredholm if and only if Ty, is Fredholm
fori=0,...n, and so 0.(Ty) =}y 0e(Ty,)-
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(T4, refers to the Toeplitz operator on the Hardy space of the complement of the area
enclosed by I'; for ¢« > 1, and on the disc for ¢« = 0, with ¢; being the restriction of ¢ to
).

The essential spectrum of a self-adjoint Toeplitz operator on a disc, or any other connected
space, is the essential range of its symbol. Thus (i) follows.O

To prove (i1), we first need the following lemma on the eigenfunctions with eigenvalue 0

of a self-adjoint Toeplitz operator:
Lemma 3.1.3 If ¢ is a real-valued L™ function with Tyf = 0 then ¢|f|*> € H: N HL.

Proof

Tyf =0=(¢f,g)=0forall g e H*.

Thus (¢ f, gf) = 0forall g € H*, and so (¢ff,g) = 0forall g € H*>.

Thus we have that ¢|f|?> € HL.

However, ¢|f|? is real-valued, so on taking conjugates we have orthogonality to H_o%

also.O

Note that this result will work on the Hardy space of any domain. In particular, if we
consider the Hardy space of the disc, this shows that ¢|f|? is perpendicular to both the
analytic and anti-analytic functions, and thus we have no eigenvalues when ¢ is non-zero.
Whilst it is not immediate that H.. " is contained in L' (as L., is not L' in general),
@| f|? will always be in L', so we can take intersection with L' in any case.

Now, for the Hardy space of analytic functions on the annulus under consideration, we
have that the space of functions orthogonal to both analytics and anti-analytic functions

is a 1-dimensional space, spanned by the function w, where w|r, = 1, and w|p, = —1.

Lemma 3.1.4 If his such that (h, f) = 0 forall f € H*,and (h, f) = 0 forall f € H*>,

then h = kw for some k € R.
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Proof
Considering orthogonality against z" and z~" respectively:
/ h(eie)einO + Sn/ h(seié’)einﬁ =0
FQ l_‘1

and

/ h(eie)ein9+s—n/ h(seia)eme —0.
o

I

Taking the difference, when n # 0, we have that all Fourier coefficient apart from the
zeroth are 0 on I'y, i.e. h is a constant on I';, and the same follows for the Fourier
coefficients on I'g. Thus A = k on I'g, and h = [ on I'y, where k£ and [ are constants.

Since (h, 1) = 0, we must have that | = —k,i.e. h = kw. O

Combining these two lemmas, we have that Ty f = 0 = ¢|f|> = \w.

This can be improved upon as follows:

Theorem 3.1.5 If ¢ € L*°(0A) is real-valued, and f € H? f # 0, then T,f = 0 <
f~t e H? and ¢|f]* = kw, with k € C.

Proof
To show the = direction of the statement, we have from the previous that ¢|f|? = kw
on the boundary of the annulus. Thus we have |f| is bounded away from 0 (since ¢ is
bounded), and so f~! € Ls.
We have that Ly(A) = H> @ H? & (w), and so ' = hy + hy + pw, pu € C (where H?'
is taken to be the space quotiented out by the constant functions).
By assumption (T}, f, g) = 0Vg € H.
Then

(Tsf.9) = (o1 g) = (kw, (ha + h2 + pw)g).

We have that k # 0 if ¢ # 0. Taking g = 1, we see that = 0, so f~' = h; + hy.

We have that (w, h1g) = 0 Vg € H? (since w is orthogonal to all H! functions) , and so
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(kw, hag) = 0Vg.

Dropping the k (k # 0 unless ¢ = 0, the trivial case), we have that (wh,, g) = 0Vg € H?,
that is to say, 1,,hs = 0.

Noting that T, = —2(T1Fl — %I) we have that Ty, hy = —%hg.

However, the eigenvalues and eigenfunctions for 7 10, are described in [40], and we
thus have that ho, = A for some constant A. However, we quotient out by the constant
functions, so A = 0. Thus f~! = h,ie. f~' € H?

For the < direction of the statement:

If f is invertible in H?, and ¢|f|* = kw, then f~! € H*, since ¢ is a bounded function.
Now (¢f,g) = (of f, f1g) = 0V¥g € H>, since multiplication by H> functions maps
H™ to itself, and ¢ f f is orthogonal to the analytics by assumption.

Since H* is dense in H?, we thus have T f = 0.0

Since T} = I, we have the following:

Theorem 3.1.6

Forf#0,0#0,Tyf = \f <= f e H?and|f[* (¢ — \) = kw some k € R.

Thus, the problem reduces to finding when f exists with the appropriate modulus on the
boundary. Since f invertible immediately implies that f is an outer function, and outer
functions with modulus bounded away from 0 are invertible, we can restrict our attention
to the problem of finding outer functions with the appropriate modulus on the boundary.

Considering the space of modulus automorphic functions, there will exist a modulus
automorphic function with given boundary values (provided that |, aalog|f] is well-

defined and bounded), and its character, x, is given by

2m 2m
= 1 it _ 1 it ‘
o= gl loglrenlar = [ oglp(sea
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This is proven in [38], p35 (Since here we are consider character in [0, 1), the extra 27

factor appears).

So, we have:

Lemma 3.1.7 X\ is an eigenvalue for T}, if and only if ky € Z, where

«/ —logly [ ~—F—~
27T10gs/O eit) og| A— gbse’t

/ —log|(¢ M|+ log |(A — ¢(se™))|dt.

" 4r log S

In this case the eigenfunction is given by the unique (up to a constant factor) outer function
f in the annulus with boundary values given by | f|> = :I:ﬁ, choosing sign appropriately.
Such an eigenfunction can be constructed by constructing the outer function in the strip
{0 < Re(z) < 1} (or disc) with appropriate modulus on the boundary, given by an
appropriate integration on the boundary. The outer functions whose modulus on the
boundary is invariant are all modulus invariant inside the disc/strip. When the conditions
are met, they will be actually invariant, rather than merely modulus invariant, and so can
be passed back to the annulus, giving the eigenfunction with eigenvalue A by the previous
results.

So, combining the results, we can describe the eigenvalues and eigenfunctions for the

self-adjoint Toeplitz operators on the annulus fully as follows:

Theorem 3.1.8 For ¢, a real-valued symbol, we have \ € c,(Ty) if and only if
sup ¢lr, < A <inf @|r, (or sup ¢|r, < A <inf @|r,) and k) € 27Z.

Furthermore, if these conditions hold, )\ is an eigenvalue of multiplicity 1, f is the
associated eigenfunction if f is a constant multiple of the unique outer function such

that | f|*(¢ — \) = +w, choosing sign appropriately.
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Proof

If we are not in either of the cases ¢|r, < A < ¢|r,(or ¢|r, < A < ¢|r,) then we have
that the sign of ¢ — \ is not constant on some boundary, and thus (¢ — \)| f|* # kw for
any k, a contradiction by Theorem 3.1.6.

Supposing now this condition does hold, then T f = Af if and only if f is an outer
function with | f| =, /k 5.

Since the outer function with given modulus on the boundary is unique up to constant
multiples, we have that f is uniquely determined up to multiplication by constants, i.e.
the eigenvalue has multiplicity one.

Finally, by the result of [38] p.35, we have that such an f is a single-valued function

on the annulus if and only if k) is an integer, since otherwise the appropriate modulus

automorphic function will not correspond to a single valued function in the annulus. O

Theorem 3.1.9 Let ¢ be a real-valued bounded function on our boundary, as before.
Assuming that sup ¢|r, < inf ¢|r,, we have that infinitely many eigenvalues accumulate
at sup @|r, if and only if fFo log |(sup ¢|r, — ¢)| = oo, and infinitely many accumulate at
inf ¢r, if and only if [;. log|(¢ — inf @|r,)| = oc.

Proof

Note that ) is a strictly increasing (decreasing) function in the case a < b < ¢ < d
(c <d<a<b),forb <A< cAssuming we are in the case a < b < ¢ < d, we
thus have that if log |@(e) — b| is not integrable, b # c, then one must have infinitely
many eigenvalues accumulating at b, since — fFo log |p(e) — A| — oo as A | b, and so
k) — —oo thus there are infinitely many ), € 27Z by continuity in \.

In this case, b can not be an eigenvalue since any f € H? has |, on l0g | f| < 0o If f were
to be an eigenfunction with eigenvalue b, then we would have | f|*(¢ — b) = Cw, and thus

171(2) = C|¢(z) — b| "2 for z € A, contradicting the requirement of log integrability.
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If log |¢(e™) — b| is an integrable function, we cannot have eigenvalues accumulating
at this point since k) is strictly decreasing and bounded below by its value at b, so it
can pass through only finitely many integer values between b and k, forany b < k < ¢
(likewise eigenvalues accumulate at ¢ if and only if log(c — ¢(se')) is not integrable,
regardless of the behaviour at b.

If the log integral at A = b does exist, it is possible for b to be an eigenvalue if and only
if x; is well-defined and an integer (even in the case b = ¢, provided the log integrals
on both boundaries are finite as well as x;, being an integer. As, for example, occurs
at 0 in the case of ¢|r, = —¢|r, for any ¢ such that ¢|r, > 0,log ¢|r, integrable, and
essinf @|r, = 0).

Thus one has infinitely many eigenvalues in the case where either (b — ¢|r,) or (¢|r, — ¢)
are not log integrable, and b # c.

By using the conformal equivalence z — sz7!

, or by repeating the above argument
with some relabelling, it can be seen that in the case that ¢ < d < a < b, we instead
have accumulation of eigenvalues at sup ¢r, if and only if frl (sup ¢|r, — ¢) = oo, and

similarly for accumulation at inf ¢|r,. O

3.1.2 Toeplitz operators on vector valued Hardy spaces

The analogue of a Toeplitz operator on the space of vector valued analytic function on the
disc is multiplication by a matrix followed by compression to the Hardy space.

In this situation, the self-adjoint operators will be those for which the representing matrix
is Hermitian.

In this setting we have that an extension of Lemma 3.1.3 still holds:

Lemma 3.1.10 If ¢ is a bounded Hermitian symbol, f # 0, ¢ # 0, thenlyf = 0 =
fiof € W, where W = HL ﬂH_ooL and T denotes the conjugate transpose.
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Proof
Let g € H*, and f be such that T f = 0.

Then (fTof, g) = (3; fi(0.);, 9) = 22;((61);. 9.f3) = 0 (since (¢f); € Hy")
Now (fTéf,g) = 0 follows since ¢ is Hermitian. O

However, this result is not so useful in the context of vector valued Toeplitz operators.

Whilst a necessary condition, there appears to be no obvious way to make this sufficient.
01

10

Consider for example ¢ =

)
Here 0 ¢ 0,(7},) , yet for any f of the form T for g € H?, the conditions of the

lemma are met.

Whilst these difficulties occur in attempting to approach the point spectra of operators
here, the essential spectrum is easier to deduce from the results attained in the scalar case,
in the case where we have the components of the symbol to be continuous functions. The

following result is similar to one proven for the polydisc in [16] p44.

Theorem 3.1.11 Let ¢ be a continuous, hermitian symbol. Then we have:

AE Ue(T¢) & 0€ Ue(Tdet(¢—AI))-

Proof

Let A = B be taken to mean A = B + K, with K a compact operator, i.e. = is equality
modulo the compacts.

We require the following well known lemma on congruence of Toeplitz operators, which

can be found in [16] p38 for (scalar) Toeplitz operators on a multiply connected domain.

Lemma 3.1.12 T}, Ty, = Ty, 4, for o1 and ¢, continuous.
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It suffices prove the theorem in the case A = 0.
The result follows from [28] Theorem 1.1, which shows invertibility of a matrix is

equivalent to invertibility of the determinant under certain conditions:

Theorem 3.1.13 Let K be some ring, anr, € K (for1 < m < n,1 < k < n), and
SUppose [, apq] = 0 all m, k, p, g, where [a, b] denotes the commutator [a, b] = ab— ba.

Then, for a = [a,;] € K™ ™, we have a is invertible if and only if det a is invertible.

Now, to apply this theorem here, we take K to be the Calkin algebra for H?(D), and
apply to the matrix a,,,x, where a,, is I}, modulo the compact operators.
We have that the condition on the commutators is met, by application of Lemma 3.1.12.

The result follows. O

From this we can deduce when a given vector-valued Toeplitz operator will be
diagonalizable, as this condition is equivalent to the essential spectrum consisting of

discrete points for a self-adjoint operator on a separable Hilbert space.

(bll ¢12

Restricting to the case where n = 2, and supposing we have that ¢ = ,

¢_12 ¢22
then we have det(¢ — )\[) = )\2 - (¢11 + (2522))\ + ¢11(Z522 — |¢12|2.

The essential spectrum for the Toeplitz operator with this symbol consists of the A for

which this is zero at some point on 0D, that is

Ar = ((¢11 + ¢o2) \/(¢11 + 092)% + 4]p12|> — 4d11022)) /2

is the condition for A to be in the essential spectrum.
So a symbol with continuous values is diagonalizable if and only if A4 are both constant

on each boundary of D. Thus (¢11 + ¢92) is constant on each boundary, as is (¢11 — ¢2)* +
4|12,
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As an example, we have that in the case where D is the unit disc, 7,

] cosf)  sinf o ) o )
with ¢ = is diagonalizable, since it has essential spectrum {0, 1}.

sinf@ —cosf

Theorem 3.1.11 cannot be extended to the case of a Toeplitz operator with symbol with

discontinuous boundary values.

1
Consider the operator with symbol ¢ = 4 where A is a subset of one
0 1u¢

component of the boundary, with 0 < m(A) < 1.

This has det(¢ — A\I) = A% — ), and 0 is in the essential spectrum of Ty2_, if and only if
A=0orl.

However, T} has essential spectrum [0, 1] (since its symbol is diagonal, simply consider
the essential spectrum of 77, and 77 ,., which is known to be [0, 1] for Toeplitz operators

on the disc). Thus the result cannot be extended to operators with discontinuous symbols.

3.1.3 Toeplitz operators on higher genus annuli

This section will focus on scalar-valued functions once again, this time considering how
these results change when rather than considering Toeplitz operators on the boundary of
the set {z : s < |z| < 1}, instead considering a region D with g removed components.
The result of Lemma 3.1.3 still holds in this setting, however the space H,* ﬂH_ooL is
larger— for an annulus of genus g, this space will be g dimensional (shown by Abrahamse
in [2], which also gives a basis for this space in the case of harmonic, rather than uniform
measure— Theorem 1.6 of [2]).

One consequence is that our eigenfunctions need no longer be invertible, instead we have

the following:

Lemma 3.1.14 Let D be our genus-g annulus. Suppose ¢ is a bounded, real valued
function defined on 9D, 0 ¢ o.(T,), Tyf = 0 for some f € H*(D).

Then f has at most g — 1 zeros in the interior of D.
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Proof

We need the following lemma about the Fredholm index of a Toeplitz operator:

Lemma 3.1.15 Suppose that Ty is Fredholm, with Fredholm index n. Then T(._,)4 has

Fredholm index n — 1 when a € A.

Proof

We have that T, _, is Fredholm (by Abrahamse’s reduction theorem, for instance, and
using continuity on the boundary), with index —1 when a € D (the Fredholm index for
Toeplitz operator with bounded analytic symbol is given in [2] p278 as the number of
zeros inside D).

Now, T(.—ay¢ = T.—aTy, 30 Ind(T(.—a)g) = Ind(T>—a) + Ind(Ty) =n — 1. O

Now, suppose we have a real-valued symbol ¢, f and a; € D such that T, f = 0, and
f=(z—a)...(z—ay)h.

Then we have that Ty(,_q,)...(:—q,)h = 0, and this operator will have Fredholm index —n
(since Ty has Fredholm index 0 from its self-adjointness).

Thus Tm has kernel of dimension at least n + 1.

However, it is an old result from Abrahamse [2] that if T;,f = 0 and T;;h = 0, then
¢fh € W, with W the space orthogonal to the bounded analytics and anti-analytic
functions in D.

Since W is g-dimensional (from [2]), we must therefore have n < g — 1.

O

Lemma 3.1.16 Let D be a genus-2 annulus. For all a in D there exists a Toeplitz operator

Ty, such that (z — a) lies in the kernel of T.

We first need to establish a preliminary condition:



Chapter 3. Toeplitz operators on the annulus 59

Lemma 3.1.17 Suppose that f = (z — a)h, where h is invertible in H?, and ¢|f|*> € W.
Then we have that Tyf =0 < (¢f,1) = 0.

Proof

We have that Ty f = 0 < (¢f,g) = 0Vg € H* (since H* dense in H?).

Since f = (2 — a)h, and ¢|f|* € W, we have that (¢f, (z — a)g) = (d|f|*,gh™') =0
Vg € H*.

If (pf,1) = 0, then (¢ f, g) = 0Vg € H*, since g = g;f(a“) (z —a) + g(a), and so:
(0f.9(a)) = g(a)(@f.1) = 0. and (6], 22 (= — a)) = (6. (= — a)h) = 0 since
h=299 ¢ g O

zZ—a

Now, we can prove the initial lemma:

Proof

Let w; and w, be two basis vectors for our space W, and consider ¢ = zﬁ”;_—zy‘é"?,

with z and y to be determined later.

Then it follows immediately that ¢|z — a|> € W.

Given ¢ = % we have two linear degrees of freedom in choosing ¢, and the

requirement (¢(z — a), 1) = 0 is a linear function of ¢, we can always find non-trivial
choice of z and y such that the condition (¢ f, 1) = 0 is met.

O

It can thus be seen that eigenfunctions exist which are no longer invertible.

It will be proven later that if some function in the kernel of a (not-necessarily self-
adjoint) Toeplitz operator has non-trivial singular inner component, then this kernel must
be infinite-dimensional, and so for the g-dimensional annulus we can restrict our attention

to functions (z — aq) ... (2 — a;)h with h invertible and 7 < g.
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A special case

Whilst the description of the space W is considerably more complicated in even the
g = 2 case than it was for the simple annulus with both circles centred at 0, some of the
behaviour of the eigenvalues can be worked out quite easily for a particular operator on
a genus-2 annulus with certain symmetry, and assuming we define our norm by integrals
with respect to the harmonic measure. So, recall, we will denote our Toeplitz operators

in this setting by 7.

Consider an annulus of genus 2, with inner radii of removed circles s, centres at £r.
Then, we have W = (wy, wq), with w; € L*>°(D) defined to be the derivative with respect
to the normal of the harmonic extension to D of the indicator function for I'; (as in [2]) for
1 =0, 1,2. (wg is not needed in the basis for W since wy + w1 + wy = 0 follows since this
will be the derivative of the harmonic extension of the constant function on the boundary
of D, which is clearly 0, since the harmonic extension of a constant is constant).

By symmetry under the map z — —z, which maps I'; to I'; and vice-versa, we must have
that wy (2) = wa(—2), as well as wy(2) = wo(—2).

So, if fFo wo = A, then fFo Wy = fFo wy = —A/2,

and [ wo= [, wo = —A/2, and letting [;. w, = B, we have [ w» = A/2~ B.

Lemma 3.1.18 Given real-valued ¢ € L*°, with ¢ bounded away from 0, there exists

invertible f € H? such that T, f = 0 if and only if there exist ag, a1, ay € C such that:

0,1

— o 1
. %(5 log(z aw;)) — %(5108" ¢)|dz| € 2w

for(0 <5 <2
with s denoting the harmonic extension of a boundary function s, and F;- a loop homotopic
1o T;. If so, f is the outer function such that ¢|f|* = 3 aw;.

If one has suitable convergence at the boundary, then we can simply consider I'; instead
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/
of I';.
A single redundant condition exists since 'y is homotopic to Zl L =L (since the
integrals come from [26] and correspond to the change in argument of our multi-valued
function when traversing the contour, and so are constant when distorting the contour by

a continuous deformation.)

Proof

We have that f is a 0-eigenfunction for 7y if ¢| f|> € W and f is invertible in H>:
(Tofsg)n = (0f, 9)n = (S| f|?, fg) = 0 forall g € H> (since ¢|f|* orthoognal to the
analytics), and we have f H> = H® (since f invertible).

So, it is enough to seek for ¢|f|? = > a;w; for some a; with f an outer function. If we
take u to be the harmonic extension of log((%)%) from the boundary to D, v to be
its conjugate, and f = €%, we want f to be single-valued, and so v must have period
conjugate to 0 mod 27 about each component of boundary. From Khavinson’s work on
conjugate functions in multiply connected domains [26], if « is a harmonic function in
D with harmonic conjugate v, v has period around I'; of Ap, = — frj g—g|dz| (with the
derivative normal to the boundary). The result follows. O

Now, taking our symbol ¢ = 1, it follows from the definition of w; that for 0 < A < 1,
D log(g— A) = log(1 — Nwp + log(Aw; + log(Aws + i (w; + wn).

Taking the result of the lemma, and evaluating on I'y and I';, we have:

0 1
s

0 1 — —A A A
-1 ——(—log(1—X\)+(l B+(=—B)1 T—) € 21/.
( 871 5 log Zawl )|dz]| ( 5 0g(1=A)+(log \) +(2 ) og)\)+z7r2) €27

log(Y " aiws)) dz| — %(log(l — M)A = (log N A) + inA) € 247,

LetC = [ #=( log(Za wi)ldz], D = [1., Z(31log(}" aiw;))|dz], then:

1—
(C —imA) — A(log )\) € 2nZ,
(D —imAJ2) + é(log - )\) € 21Z.
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So, we have that C' + 2D € 27Z, and C and D depend only on a; in w|f|* = > a;w;.

Since wy + w1 + we = 0, we can assume that a; = 0, and since scaling f by a constant
has trivial effect, we can assume |ag|? + |a;|?> = 1, and a; € R and can consider aq as
our only independent complex variable. Thus if we we fix an n and seek a; such that
C + 2D = 2mn, then we have a finite set of a; which solve this. Taking one such set of
a;, and letting £ = (C' + iwA), then eigenvalues corresponding to outer eigenfunctions

exist when E — Alog(152) = 2mm, m € Z. So, we have that

1

E—-2mm

A =
l1+e a

parametrises the set of solutions with the chosen a;.
In comparison, the eigenvalues in the one-holed annulus for ¢ the indicator of one

5271,

component of the boundary are given in [40] to be T -

3.2 Kaernels of Toeplitz operators

We will consider once again the Hardy space, inner product and associated projections
with respect to uniform Lebesgue measure. When considering Toeplitz operators with
more general, not necessarily real-valued, symbols, some results were found when
considering the kernel of a Toeplitz operator on the annulus.

Once again our annulus A is taken to be {z : s < |2| < 1}.

Theorem 3.2.1 Let f in H? be continuous and non-zero on the boundary of A, ¢ be

continuous and non-zero on the boundary of A, and f in the kernel of T.

Then we have that dim ker(Ty) > max(n, 1), where n is the number of zeros of f inside

of A.
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Proof

We have that 7}, is Fredholm, and [38] gives the Fredholm index to be i(7) = n(¢r,,0)—
n(¢|ry, 0), that is, the difference of the winding number about O on the inner and outer
boundaries.

By definition, i(7Ty) = dim ker Ty — dim ker T7.

If f is in the kernel of 7', and g in the kernel of 7™, then ¢fg = w, (shown in [2]),
and thus both kernels can only be non-zero if they are one-dimensional (since W is one-
dimensional), and in this case we have index 0.

Thus, if ker T, # 0, then i(7,;) > 0, and if i(T;) > 0, we have i(7},) = dimker(7}). If

Tysf = 0, we have that T,s1 = 0, hence i(7},5) > 0, however,

i(Tor) = (@ fry,0) = 19 fry, 0) = n(¢r,, 0) — n(dfry, 0) + n(f[I'1,0) = n(f[T'o,0)

= Z(T¢) —n.

Thus i(7,) > n, i.e. we have a kernel with at least dimension n. O

If f is non-zero and continuous on the outer boundary, we can construct a Toeplitz

i
by computing winding numbers, i(7;,/;) = n, thus our kernel has dimension n if n > 0,

operator whose kernel contains f and has dimension n. Considering ¢ = we have

dimension 1 if n = 0, and f lies in the kernel since T% f = Ppw=0.

Infinite-dimensional kernel given singular inner factors

In the disc, it is trivial to show that if T is an anti-analytic Toeplitz operator, with f
containing a non-trivial singular inner factor, we have that ker 7 is infinite dimensional.
In the setting of the annulus, it appears considerably more difficult to prove— the
complication is caused by the fact that we can no longer take arbitrary powers of a singular
inner function and still obtain single valued functions.

The following proof works for an arbitrary annulus, not just the single-holed case.
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Theorem 3.2.2 Let f € H?*(D) be a function with [ = f,f’ where f; is a singular inner
function, f; # 1, and f' € H>.

Then ker T is infinite-dimensional.

Proof
Let s, be an outer function with constant modulus on each boundary, and complementary
character to f; (existence is given by [2], p269 proposition 1.15. In the case of the annulus

{s < |z| < 1} we can take s, = 2% some « € [0, 1)).

Since Tf = TﬁTﬁTw it is enough to show that ker TﬁTo has infinite dimension.
To do so, first we show that 0 € o.(T5;;). Use the multiplicative factorisation to factor
fiso = kiko with ky € H*®(A), and ky € H* (D [J A°).

Proceed using Abrahamse’s reduction theorem ([2] p.282)- 0. (1) = U oe(Tyr,)-

We have that T3 - = T, . T, Now, since ks is analytic on an open set around

|FQ ‘Fo'

Lo, it is continuous on 'y, and since | f;s,| = 1 = |ki||k2|, with |k;| bounded, we have
ks is non-zero, and thus Tj, . -is Fredholm invertible. Since we have that T}, is an anti-
analytic Toeplitz operator with non-trivial singular inner component, it is well known that
the kernel must be infinite-dimensional in the Hardy space on the unit disc, and so is
non-Fredholm. Since the product of a Fredholm operator with a non-Fredholm operator
is non-Fredholm, we have that 0 € o.(TF;).

Now, if an operator has finite-dimensional kernel, finite-dimensional co-kernel, and
closed range, it must be Fredholm, thus if TfTso has finite-dimensional co-kernel and
closed range, it must then have infinite-dimensional kernel.

Being an anti-analytic Toeplitz operator, the co-kernel must be trivial, so it remains only
to show the range is closed. The range will in fact be H?:

We have that T 7.(s.fi)9 = Pu2(|s0*9) = Ts, 29

Now, we have by our choice of s, that |s,|? is a strictly positive constant on each boundary.
Thus, by the result on essential spectrum, 7, > will be a Toeplitz operator whose

essential spectrum consists of discrete points, all of which are positive. Furthermore,



Chapter 3. Toeplitz operators on the annulus 65

its eigenvalues will be strictly positive. So, it is an invertible operator, and thus given any
h, we can find g such that T}, g = h, and so T, j,(s,fig) = h. Thus the range is closed,
and therefore T 7, has infinite-dimensional kernel, as does Tf.

O

The only results used here were our factorisation (which still holds on changing to
an equivalent norm), and the reduction theorem, which also remains true changing to
equivalent norms, so this will still hold taking Toeplitz operators defined on our space
with equivalent norms, i.e. it will hold true with harmonic norm on our boundary.

We can proceed from here to show a further result on kernels of self-adjoint Toeplitz
operators. The proof requires use of harmonic measure on the boundary of our domain

D.

Theorem 3.2.3 In the Hardy space of the annulus, with norms and inner product given
by integration with respect to a harmonic measure (as is the case in the construction of
H?(D) by harmonic majorants), if ¢ is real-valued, ¢ € L>(0D), and Tyf = 0, then f

has trivial singular inner component.

We first need to establish a preliminary result on the kernel that was proven to be infinite

dimensional in Theorem 3.2.2

Lemma 3.2.4 Let T, be a Toeplitz operator where ¢ is anti-analytic with non-trivial
singular inner component. Then there exists a sequence (s;)72, such that s; L s for

j=1
Jj#k, s; € H® and Tys; = 0.

Once this lemma is established, we can prove our theorem as follows:

Proof

Since we are using harmonic measure here, there exists v such that H2L =y 'H2 and v
is meromorphic on some open set containing the closure of A, with n zeros and 1 pole

([2] p263). Thus v = %v where v, € H®, v;! € H*.



Chapter 3. Toeplitz operators on the annulus 66

Suppose 7, f = 0 with ¢ real-valued and f having non-trivial singular inner component.

Suppose [ = f’g,, where f’ has constant modulus on each boundary, and g, outer, and
suppose f = f;fo is an inner-outer factorisation of f. Let (s;) be the bounded sequence
of orthogonal functions from Lemma 3.2.4, 7},sj = 0. Now, we have that f’ 55 = D‘lt_j.

We have that ¢ f € 7~ H2, thus ¢ ft; € v H2.

Now, ft; = fuf's; = fifogol fifos;,

= fogol foPEeCen) g

(z—b1)
So we have that

Pha(o| o7z = a1) - (z — a) fogo(;

Z — 1)

= ﬁonT ool _fogo(z —b1)s; =0

(Iz=b11%)

SjV_())

using ﬁ = |;__bb11|2, and the identities 7373 = Ty, for h € H*. By our choice of

s;, the f,g,(2z — b1)s; are a linear independent sequence. Since 7, has 0-kernel for h

an outer function (follows simply from A H> dense for h outer), and 77 has

(z—a1)...(z—an)

n-dimensional kernel, it follows that 7 ;> has infinite dimensional kernel. However,
l=—b112

T 4.2 1s a self-adjoint Toeplitz operator, and thus has finite dimensional kernel. Thus we

[z—b1 |2
arrive at a contradiction from our assumptions, thus any f in the kernel of a self-adjoint

Toeplitz operator 7 has trivial singular inner component.

|

It remains to prove the lemma:

Proof

Let f = uf”, where u € H° (D) has non-trivial singular inner component, |u| bounded
away from 0 and oo on each boundary, u # 0 in D, and f” € H?(D). Let u = w;u, be
the inner-outer factorisation of w. Since 77 = Tﬁﬂ—t, it is enough to establish the lemma
for 7,.

We have that ker 7, = K, = H?> © uH?.

To find the required sequence, we must consider the reproducing kernels for our spaces.

Let k) be the reproducing kernels for H 2(D), f» for uH? and g, for K,. If we can show
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that g, are bounded, the lemma will follow. We have that ky, € H>(A) for all A— see,
for example, Ball and Clancey paper on reproducing kernels [8].

Thus, we have that g, bounded follows from f) being bounded.

Suppose that we have some A for which f) is unbounded, let f = f,. Let (2,) be a
sequence for which f(z,) — oo.

Since u is a bounded function, we have |(f/u)(z,)| — oo also.

Let B, be a finite Blaschke product such that B; has the same character as u;, and that
By(\) #0.

We have that |( fyu,B1/u)(z,)| — oo still, and thus |(@, k. )n| — oo.

We have that |u;/B;| = 1 so ](g—iﬁ#‘f, Kz o )nl — 00

Thus [(fx, k=, 5-)n| — 00

Now, were we to have that B, was a factor of k.,,, we would have k., 5~ € uH 2, and so a
contradiction would follow since f, is a reproducing kernel there— we would have:
(ke gty n = Kz (M) 55 (A) = ka(za) 55 (A), and we have already that k) is bounded,
giving a contradiction.

Since we cannot assume this, suppose that B; has zeroes at wy, ws, . . . w,, and that these
are distinct points.

We seek to find ., ay, . . .., a, such that k., (w;)u;(w;) + ZTZI 20U (w;) = 0 for each 4.
This is the problem, given b; = k., (w;)u;(w;), of finding a polynomial P,, which takes
the values b; at the points u(w;).

Now, we require u(w;) to be a distinct set. Supposing they are not, then, we can replace
the factorisation f = uf” with f = (u(z —t)N)(f"(z —t)~"), where t ¢ D, and N € Z.
u(z — t)N will still be single-valued, H°°, non-zero in D and the character of u; is
unchanged, and f”(z — t)~" also in H>, so we can apply the previous parts of the
proof, with w; are unchanged, and there will always exist a choice of /N and ¢ such that

u(w;)(w; — t)N are distinct points (for instance, if we choose ¢ such that |w; — t| are

unique, we can then choose N such that |(w; — )N u(w;)| are all unique, and it follows
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that (w; — t)Vu(w;) are unique ).

Thus, we can assume without loss of generality that u(w;) are distinct points.

Then, since w; are fixed, and the b; lie in a bounded set (since k.(w) = k,(z) is bounded
over all z for fixed w), we can solve this with a universal bound on . a; independent of

Zne

k. u; kznuifzzna'uj Zzna.uj
We thus have that ( B‘,? cPon = 5 — + BlJ » Fane

Since the ,a; are bounded over all z,,, we have

m ard m )
z]‘:1 e Zj:l zn Aj
By

| B, l2 < | loe < Ay

is a universal bound over all z,.

kzn 1 z jud
We also have that % € uwH?, so that

- d - )
koui — . aju koui — . aju

< B1 Bl

s = ( )(A),

which is bounded over all z,, since k., (\) and ., a; are.

Thus, we have that f)(z,) must be bounded.

Since f) € H*, we have g, € H™.

Since the reproducing kernels have dense closed span, and we have already established
that the space is infinite dimensional, we can pick out a sequence with no linear
dependences. Applying Gram-Schmidt we can produce a suitable orthonormal sequence.
O

We would like to show this result also holds for Toeplitz operators defined on H?(D) with
respect to uniform lebesgue measure on D.

In fact, this follows directly from the result with harmonic measure.

Note that if we consider Ty a Toeplitz operator symbol ¢ with respect to projection defined

on the space with uniform Lebesgue measure, and take 7, to be a Toeplitz operator with

dm

respect to harmonic measure, we have that 7, . f = T,f for all functions f € H>. (W

is bounded since our measures are equivalent, and if (., .) is the inner product with respect

to uniform lebesgue measure, and (., .), with respect to harmonic measure, we have:
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Ty f19) = [y 085 £3ld2] = [, 655dm = (oF gdmn = (Ty, ghn).
Now, by [2] p263 (3), we have that % is positive, and since our measures are absolutely
continuous, it is bounded away from 0 and oo.

It follows that we can extend the previous theorem to the space with Lebesgue measure.

Theorem 3.2.5 Considering the norm and projections on H? with respect to uniform
lebesgue measure, we have that if ¢ € L>(0D) real-valued, T,,f = 0, then f has trivial

singular inner component.

Proof

Let ¢/ = ¢%. We will have that ¢’ is real-valued, and bounded, and T}, f = 0 if and only
if Ty f = 0. The result thus follows from the case with respect to harmonic measure. O
We shall consider an annulus to have uniform Lebesgue norm on the boundary for the
remainder of this thesis. Combining this result, Lemma 3.1.14, and Lemma 3.1.3 we can

state the following on the eigenfunctions of Toeplitz operators with real valued symbol:

Theorem 3.2.6 Considering Toeplitz operators in H?*(D) with respect to uniform
lebesgue measure, let ¢ € L*(D) be a real-valued function, and suppose we have
f € H?*(D) such that T,f = \f some A € R. Then we have that f = f,B where B
is a finite Blaschke product, of order at most g — 1, where g is the genus of the annulus D,

and f, is an outer function with ¢|f|> € HL ( Huoo ™.

3.2.1 Minimal kernels

The paper [12] discusses minimal kernels of Toeplitz operators containing a given
function in the setting of the Hardy space of the disc, and the following results concern

attempts to reproduce some of these results in the annulus.
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Theorem 3.2.7 If f = f,f; is the inner outer factorisation of f € H?(A), then the symbol

f

of a Toeplitz operator with minimal kernel containing f is 1 = w f Z~, with « being
the character of f,.
(In comparison, the corresponding symbol for an operator with minimal kernel in the

setting of the disc is known to be ﬁ% )

Proof

Let f = f;f, be an H? function with « the character of f,, and ¢ some symbol such that
Tyfifo=0.

Then, we must have that ¢ f; f, = wg;g,.

Let v be an outer function that |¢| = v on 'y, and |¢| = Av on I';. Then we have
that T, = T;T4, with |¢'|=1 on Ty, |¢'| = A on I'y Since ker7; = {0}, we have
ker T, = ker Ty, so we may assume w.l.o.g.that [¢| = 1 on Iy, and |¢| = A on I'; for
some A.

So |go| = |fo] on Ty, |go| = Al|f,| on 'y, that is, we have 3 € R such that | f,z"| = |g,|
(on the boundary).

Since modulus on the boundary determines an outer function up to constant factors, we
can take g, = f,2°. We will thus have the character of gy is the character of f, plus /3,
ie. o+ [.

So, we have that ¢ = wf g.f; 2"

Now, suppose that £ lies in the kernel of T7;.

Then wﬁﬁi_o‘h = wl,l;. Thus h=ﬁf¢&20‘,

and so ¢h=l,l; f; &z“w 29 g fiZ° = wl,l;g;zP*. Since g, has character o + 3, ¢; must

have character (—(a + f3)), and so I,l;g;z° is single valued.

It follows that ¢ph € wH?2, thus Tyh = 0.

Hence, ker Ty D ker Ty, so 1) is the symbol with minimal kernel. O
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This can be extended to cover an arbitrary g-holed annulus.

Lemma 3.2.8 If we have ¢ and f such that Ty, f = 0, then ker Ty O ker Ty, where 1 is

the function v = }f o l_f@, with ly the unit, i.e. outer function with constant modulus on

each boundary, such that character(ly) = —character(f,), and v the measure such that

Hi = vH?.

Proof

First, given any ¢, if ¢ is not log integrable, it has zero kernel, and the result is trivial
(since ¢ f is not log integrable, whereas all of Hj is. Otherwise, we have that there exists
an outer function s such that |¢/s| is constant on each boundary (the existence of such an
s follows from the existence of a (multiple-valued) outer function with given boundary

values, and the work in [2]).

Then, we have that ¢ = 5¢', and so Ty = TT,. Since T; has zero kernel, we can
restrict attention to 7y, i.e. we can assume without loss of generality that our symbol has

constant modulus on each boundary. We can then proceed as follows:

o Jo
(bfifo == Vgigoa Wlth ‘go’ == |¢’ ”V” .
S0, go = folyp, Where i is the outer function such that || = |v|™*, and [, is the outer

function with modulus equal to that of ¢ on each boundary (which will be constant and
non-zero on each boundary).

Substituting this into the formula for ¢, we obtain

o= ’/gifilqbﬂé-

o
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Suppose that we have h such that T,/ = 0, then we must show that 7;,h = 0.

Since T}yh = 0, we have that {h;h, = D, so:

ohih, = Vgifiltﬁ:u%hiho

= wljjlg_zl:;ﬁhzho
= Dimaniiol; I
Since [; is outer, with constant non-zero modulus on each boundary, we have that 1]71 1S

also H*°, and so Tyh = 0, as required. O

The next problem to consider is what the minimal kernel is for a Toeplitz operator
containing a set of functions, which is a harder problem.
The following is a start to showing whether the existence of a non-trivial kernel

containing a pair of functions exists reduces to showing this in the disc.

Lemma 3.2.9 For f1, fo € H*(A), there exists non-trivial ¢ such that Tyf; = 0, Ty fo =
0 only if there exists ¢’ € Loo(OA) such that T, f; = 0 for each i, where tildes denote lifts
back to the disc, and T" indicates that the Toeplitz operator acts on the Hardy space for

the disc.

Proof
By assumption, we have ¢ f; = wg; and ¢ fo = wgs for some g1,95.
We have that E(w}b) fi = g1, and the same for f,, so we have Z(LJQS) is a symbol for a

Toeplitz operator whose kernel contains f; and f,. O

So, if f; and f; lie in a non-trivial Toeplitz kernel in the annulus, their exists a non-trivial
Toeplitz kernel in the disc containing both f1 and f,. Thus we have a necessary condition

for two functions in the Hardy space on the annulus to lie in a non-trivial kernel.
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In fact, the same will work if, rather than a pair, we instead have an arbitrary set of
functions lying in a non-trivial Toeplitz kernel in the annulus.

Sufficiency has yet to be ascertained.

3.2.2 Dyakonov’s theorem in the annulus
In the paper of Dyakonov [19], the following theorem is proven:

Theorem 3.2.10 Given ¢ € L®(A), there exists B, b, g with B, b Blaschke products and
g with g, g~ € H™, such that

ker T, = %(KB (MoH?)

(K denoting the model space H*> © BH?).

In the annulus, a similar result holds, though care has to be taken regarding the characters
of functions in inner-outer factorisations, since these factorisations are no longer single-

valued in the annulus. The theorem in the annulus becomes:

Theorem 3.2.11 Given ¢ € L™(A), there exists B,b,g,a,[ with B,b Blaschke
products, g with g, g~ € H*, «, B € [0,1] such that:

—Q

ker T, = %(bzo‘_ﬁhﬂ NK,.sp).

(v and B will be chosen such that %, b2*P w2z’ B are all single-valued.

Proof

First assume that ¢ is log-integrable (else the kernel is zero), and that |¢| = 1 on T,
|¢| = A on Ty (by writing ¢ = g¢' for g a suitable outer function).

Then, one has that w¢ = gzabé, with ¢, g~! € H>, and B, b Blaschke products. (This
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follows from Theorem 2.1.6).
Letting 3 be the character of g, then B has character — (3, and b will have character 5 — «.
If T,f = 0, we have that ¢f € wH?2, and thus wof € H2.
Then, %zo‘b]?f = 5, and so fzaéb = EB%.
It follows that:
“D B -
Z—f € bg '2*H* N =H2.
g g
We have that ~ = Z%%, where % is a single-valued analytic and outer. Since z~%g and
2 g~! are single-valued, lie in > and have inverse in H>, we have » #gH> = H>® =
2P g~ H>°, the previous becomes
2%b

B -
Z _febz*PH*N=H?2.
g 2P

Lemma 3.2.12 Z%ﬁ? = K, p.5.

Proof

Let f € Bz PH?,ie. f = B2""3.

Then (f,wBz"s) = (B2""g,wBz"s) = (g,ws) = 0Vs € H>.

Conversely, if f € H?> © wBz?H?, then (f,wB2’s) = 0Vs € H?, so (wBz’f,s) = 0Vs,

hence wBZ? f = wg for some ¢, hence f = Bz 7. Thus Z%I—ﬁ = K,p,s. O

Thus we have that

fe %(bza*fjfﬁ N K,.op).
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3.2.3 Intertwining

On the Hardy space of the disc, one can characterise the Toeplitz operators as being
those which fulfil a particular intertwining relationship- that 7" is a Toeplitz operator if
S*T'S =T, where S is the shift operator (i.e. M) on the Hardy space for the disc.

It seems natural to ask if there exists any operator for which the same holds in the

annulus, however this is not the case.

Theorem 3.2.13 There does not exist an operator S such that:

S*T'S = T is equivalent to T’ being a Toeplitz operator on the Hardy space of the annulus
A.

Proof

To start the proof, we first show that no multiplication operator S has this property:

Lemma 3.2.14 V€ H®(A), {T : M;TM, =T} # {T : T is Toeplitz}

Proof

Suppose that g is such that {7" : M;TM,, = T} = {T : T is Toeplitz}. Then, applying
to 71 = I, we have that M; M, = I, and so |u|? = 1 almost everywhere.

Thus 4 is an inner function. It is then clear that M;T'M,, = T for all Toeplitz operators
T, to prove a contradiction we must show that there exists a non-Toeplitz operator such
that this holds.

Define A an operator on the subspace generated by yin H?(A) by A(1) = 1, A(u™) = p™.

Then A satisfies the required conditions on the subspace generated by the closed span of

n

T8
However, if A is a Toeplitz operator, we must have that A is uniquely determined—

otherwise, we would have a Toeplitz operator Ty with ¢ # 0, and Typ™ = 0 for all n,
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leading to a contradiction as follows:

Suppose Tyu"* = 0, then Ty, 1 = 0, and have that wgp = 5 with s analytic.

However, Ty, = 0, so su" = t, for some analytic functions t,, and so s is divided by
arbitrarily large factors of ;. However, this is impossible for s and ;. non-zero.

So, we have that the closed span of ;" for n > 0 is H?, as otherwise we could extend A
to H? whilst preserving M;AM,, = A in at least two different ways- firstly by defining
A to be 0 on the orthogonal complement of the span of x, and secondly by defining A to
be the identity on the orthogonal complement of their span.

Now, if 1 has singular inner factor or multiple zeros, this span cannot equal H?, yet there
are no single valued inner functions in H2(A) with only a single zero.

Thus there is no function p with the required property in H>°(A).

O

To extend this to the set of all operators on our Hardy space, note that S*I.S = I, so
S*S = 1, and thus we have that S*SS = S, so S must be a Toeplitz operator if the
intertwining defines the Toeplitz operators. To complete the result, we must show it to be
analytic.

Given that S is a Toeplitz operator, and letting y be its symbol, we have from S*S = I
that it must be an isometry (Since 7;7), = I)).

We must thus have |p| < 1 a.e., since ||pt||oo = ||Z,|| = 1 ([2] p276, theorem 2.11).

Now,

T.fll2 < ||pfll2 with equality if and only if s f is analytic. Thus, we have
wf € H? for all f € H?, and thus p must be an analytic function. Combined with the

lemma, no such function can exist. O
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Chapter 4

Hankel Operators

4.1 Nehari for the annulus

This section will outline Hankel operators on multiply-connected domains, and how they
differ from the Hankel operators on the disc.

We take our Hardy space H?(D) as defined in chapter 1, with uniform lebesgue measure
on the boundary.

We define a Hankel operator I' with symbol ¢ on H*(D) by I'f = P =0 f.

¢ is said to be an optimal symbol for I" if ||¢]|s < |2/ for any 2 a symbol for I'.

Theorem 4.1.1 Let I' be a Hankel operator,
optimal symbol ¢ for T, with ||T'|| < |||l < A||T

[|| < oo. Then we have that there exists

, where A is the constant in Theorem

2.3.2 for the factorisation of H' functions as a product of H? functions.

Proof
The proof parallels the proof in the case of the disc, with the major difference being that
the H' = H?H? factorisation now has a constant introduced.

Let o = > a,z" + Y.>_b,wz" be a symbol for our operator, then we have that
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(T2™, wz™) = (p2", wz™) = (2™ W) = by (1 + s2MHM),

It follows that we can produce a linear functional o on products of polynomials
by a(fife) = (D(fife),w) = (T(f2),wfr), since we have that [a(fifo)| <
ICL £l foll2 < Al folliT. We will have that [la]| < AJIT|.

Since our operator is bounded, we can extend to H' by continuity, and then to L' by
Hahn-Banach, without increasing norm.

We thus have that there exists / such that a(g) = [,, g(2)h(2).

Taking the expansion wh = "> j;2' + > > kwz" for some (j;),(k;) square summable
sequences, we have that k;(1 + s*) = (wh,wz") = [ h(z)z" = a(z") = bi(1 + s*).

So wh and ¢ differ by an analytic function, hence they are both symbols for the same
Hankel operator.

From the integral representation of a, we have that ||wh|« = ||kl = ||| < C|T|.
|h]lo = ||T|| follows from being a symbol for I". To show that this is optimal, we must
show that for any symbol ¢ of I, we have ||¢|| > |||

For f € H>, we have |a(f)| = [(T'(f), w)| = [(¢f, W) < [|@lloo|(f; )| < [[Dl]oc|[f]]1-
Thus, ||a|| < ||| for all symbols ¢ of T'.

O

This gives us upper and lower bounds for the optimal symbol, and shows that a (not
necessarily unique) optimal symbol exists.

It is easy to demonstrate a symbol for which the optimal symbol no longer has the same
norm as the Hankel operator, in contrast to the case in the disc where an optimal symbol

with the same norm always exists.

Theorem 4.1.2
7.

Proof
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Consider I" defined by the symbol ¢ = <.

We have that (['2", wz™) = (wz" "1 wz™) = (2", 2m) = (zn14m 1),

2

Thus ['2" = wa,z" ", with a,, = i

2"

3B be the orthonormal basis,

Letting e,, =

2
(14 52-20)05(1 4 52n)05

Lye, = bwe -, = WEeI_p-

Since the e,, and we,, are orthonormal basis for H? and wH?, we see that ||T'|| = sup,, by,.

V2

b, achieve their maximum at 0 and 1, so ||I'|| = A

Suppose that we have symbol ® for which ||®||., = ||T|-
Since we have that I" achieves its norm at f, where f(z) = z, we have that, as is the case

in this situation in the disc, that:

ITIAll2 = ITefll2 < [[@fll2 < (1@ ool f]2-

As is the case in this situation on the disc, when ||T'|| = ||®||, we have equality throughout.
. r
So,Tf =®f,ie. &=L =2
w -1 V2 . e .
However, ;||Oo =5 > 7 contradicting our assumption.

Thus, there cannot exist a symbol which achieves the norm of our operator. O

4.1.1 Finding optimal symbols

Lf
!

gives an optimal symbol for our ['— since we no longer necessarily have that the optimal

Even in the case of I which attain their norm at some f € H?, we no longer have that

symbol matches the norm of the operator (though, in the case where they do agree, this

argument works as it does in the disc).
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By considering T" as an operator on each member of the family of spaces H? (the sets of
modulus automorphic functions with character «), some of this difficulty can be averted.
Let T o f = P2y: (f) be the extension onto H2.

Then, attempting the Nehari theorem once more, letting 3(f1 f2) = (I'f1f2, w), we have
that [B(F)] = (Tafi,wfa) < [Talll fillo] follo

Since f; and f, can now be chosen from H % rather than merely H2, we can factorise
while preserving norms (as in 2.3.3).

Thus [|6]] < sup,cio [Tl

Thus, for the o giving the maximal value of ||I', ||, if we have that I, takes its norm at
some function f € H?, we have that %f is an optimal symbol for I', as in the case of the
disc (Sarason’s solution of the Nehari problem ).

However, the problem of finding which « to consider, and finding a function f at which
the symbol achieves its norm, appear difficult.

Whilst it can be shown Ty, is compact on H? for arbitrary k if and only if T, is compact
on H 2 for all «, and thus we will still have that I', achieves its norm on all these if our
original Hankel operator is compact, the problem is to find where it achieves its norm.

In the disc, it is interesting to consider Hankel operators with a finite polynomial symbol.
The point at which the norm is attained can then be found easily since the associated
Hankel matrix will have only a finite number of non-zero entries, and thus can be
diagonalized with elementary techniques to find where the norm is achieved.

However, in the case of the annulus, any non-zero Hankel matrix will have an infinite
number of non-zero entries. If one considers the matrix for a Hankel operator,
symbol 1, with respect to the basis e, and wé,, defined earlier, we have that A, ,, =
(Ykn 2", wz™k,,), with k, = [|2"]5".

Thus, A, = knkmiﬂ(n + m). Whilst not constant along backwards diagonals due to
the k, k,, term, if any term on a given backwards diagonal is non-zero, all of them are

non-zero. In the case of the disc, we would have that n, m range from 0 to oo, and so

these diagonals are finite, but in the annulus they range from —oo to +00, so there are
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infinitely many terms on these diagonals.

It seems that finding the optimal symbol in this setting is a more difficult problem.

4.2 Compactness

In the case of Hankel operators on the disc, it is known that the compact Hankel operators
are those with symbol in H* 4 C, where C denotes the space of continuous functions
on the boundary. The result can be found with proof in [32] Chapter 1, section 5.

We can show the same is true in the annulus.

First, note that, as in the case of the disc, symbols of a rational function will correspond

to compact operators.

Lemma 4.2.1 If ¢ is a rational function, then I, is of finite rank.

Proof
Since we have that 'y = I's My, and I'y, 14, = I'y, + I'y,, we have that by dealing with

partial fractions, it remains only to show that I'__ 1 is compact for a € A.

(2—a)

Now, we have that H*(A) = (z — a)"H*@((z — a)"H?*)*. T(,_,-n is the zero
operator on restriction to the first space in the decomposition, and the latter space is finite

dimensional. Thus, I is a finite rank operator. O

In order to show that the whole of C + H* gives compact operators, a little more is

needed.
Lemma 4.2.2 If ¢ is of form ¢ = wq, where q is a rational function, then Iy is compact.

Proof

As before, we can split by partial fractions, and it remains only to consider symbols of
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form (z——a)” .

Decomposing H? as before, we have that T';, is no longer a zero operator on (z — a)"H?,

however, we have on this space thatI' _« __ =T, 0 M(,_g)-n.

(z—a)™

We have that I',, is a compact operator

2 2" 1 wz ™
(on H* we have that F“_IIZ"H = \/ T2y (a2 o] 2

Thus, it follows that I' _« __ is compact (but will not be of finite rank).

G

By considering I';., where ¢ is a rational function, we can approximate in norm
functions whose restriction to the outer boundary is a continuous function, and zero on
the inner boundary, and thus Hankel operators with such a symbol are compact. The
same holds with the boundaries reversed, and so we have that any continuous function
is compact. Since the Hankel operator with analytic symbol is equivalent to the zero
operator, we thus have that all functions in /> 4 C are symbols for a compact Hankel

operator. (I

Proving the reverse, that any compact operator has symbol in H* + C, is a little harder.

Lemma 4.2.3 If I';, is compact, then ¢ € CI(H>™ + C), with Cl denoting closure in

norm (the space will be shown later to in fact be closed.)

Proof

First, note that ||[I'yMpn| — 0 if B is a Blaschke product with finitely many zeroes.
Suppose otherwise, then we have f,, with ||f,|| = 1 and ||['yB"f,|| > e infinitely often
for some e.

From compactness of I', for some subsequence n; we have I';B™ f,,, — wg, for some g
in H?.

By taking our subsequence to include only n with ||[',B"™ f,|| > €, we have g # 0.

To show a contradiction, we need to show that B™ f,,. is tending to 0 weakly. Suppose

this is not the case, that we have g € H? with |(B" f,,., g)| > € for some subsequence of
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n;, which we will call m;.

Then, letting f” denote the lifts back to the disc, and letting x represent the appropriate
change of measure, we have [(B""f; ., ¢'k)p| > €Vi.

Letting h = Pp2(kg’), we have |(B™" f], . h)p| > €Vi.

However, this cannot be as in the Hardy space of the disc, B" f,, tends to O in the weak
topology when B is a Blaschke product and || f,,|| bounded, (this follows from [13] lemma
3.3, which shows that 75~ ¢ tends to 0 in norm for any g).

We thus have (B" f,,, wpg) — 0, and so (I', B" f,,,wg) — 0, contradicting the assumption
I'yB" f,, — wg for g # 0.

With ||I', Mg~ || — 0, the rest proceeds as the proof does for compactness in the disc:

We have that ¢ B" = s,, + k,, with ||s,|| — 0, and k,, € H*°.

Thus ¢ = s, B" + (k,/B").

For B, a finite Blaschke product, we have that k,,/ B" € H*+ C, and thus ¢ € H> + C.
If we can show that H* + C is closed, then the result is complete. O

However, it is an old result that this space is closed in A. It is proven, for example, in [2]

Theorem 1.22. An alternative proof will be given here.

Closedness of £ + C

Theorem 4.2.4 H*° + C is a closed subspace of L.

Proof

Suppose we have f, is a Cauchy sequence in h>* + C, with f, = ¢, + cp,
gn € H®, ¢, € C.

Let F' denote the limit function in L>(A) Now, use additive decomposition of H>(A),
to have ¢, = r, + S, and ¢, = d,, + e,, where r, € H*(A) , s, € H>®((sA)°),
dy, = Culrys €n = Cnlr, -

Now, consider f,, on I'y. f,|r, will still be Cauchy, and we have that
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falre = Tnlre + Snlre + dulr,

Now, since s, € H>®((sA)¢), we have that s,, is continuous on I'y.

Thus f,|r, is a sequence in H*(A) + C converging to F'|r,.

This space is closed in the disc, so F'|r, also belongs to it.

Therefore we have R and D with R € H*(A), D € C(0A), with F|r, = R+ D.

We can do the same on I'; to attain S and E, S € H™((sA)%), E € C(dsA), with
Flr, =S+ E.

SoF=R+D+S+E—R|r, — S]r,-

Now, we have that R|r, is continuous, as is the restriction of S to I'y.

Thus F € H*® + C(9A). O
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Chapter 5

The Bergman space and the slit disc

Some similar results to those from previous chapters can be extended to other settings, in

particular that of the Bergman space on the annulus.

5.1 The Bergman space

Letting A represent the annulus as before, define the Bergman space of the annulus A%(A)

to be the set of analytic functions on the disc for which [, |f|*dA(z) < oo, with A the

Lebesgue area measure, and norm || f||o = 1/ [, | f|?dA(2).

They are described in [23], for instance.

First, note that we have a factorisation result akin to Theorem 2.2.1-
Theorem 5.1.1 If f € A%(A), we have f = fifo with fi € A%(A), and fy € A*((sA)°).

Proof
The proof is akin to that in the Hardy space. Suppose first that f has no zeros in A. Then

f = 2"f", where f’ has 0 winding number about 0, and has no zeros in the annulus, and
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thus we can take logarithms.

Say,log ' = 3 "% a,2" = S0 4,2 + 3271 an2" = g1 + go.

We thus have that f = !¢/ = e9192 = f, f,.

Now, we have that g; and thus f; is analytic in A, similarly f, is analytic in (sA)°. We
must prove that the norms are finite also.

Since f; and f_ll are continuous and thus bounded in an open set about I'y, f = f;fo,
and f is square integrable, we have that f5 has bounded square integral in some open set
about I';. By continuity, on the complement of any such set in (sA)¢, f, has bounded
square integral, and thus f, has bounded square integral in s(A)¢, and so fo € A%((sA)°).
Similarly f; € A%(A).

Now, let f be an arbitrary A?(A) function. We can assume w.l.0.g that all zeros of f lie
in{l >|z] >1—¢€}U{s < |2|] < s+ ¢} for some € such that these are disjoint sets,
since we have finitely many zeros inside any compact set, and if we can factor f/g for g
a polynomial, then we can factor f.

Now, we have that f has no zeros on the set Ay = {1 — ¢ > |z| > s + €}, thus we can
apply the previous factorisation to obtain:

f=fifoewith fi € Ay({z:|2] <1—¢€}),and fo € As({z: |z] > s+¢€)}.

By the domain of f5, we have at most finitely many zeros in the region {1 > |z| > 1—2¢}.
Thus, we can extend f; across this region by f; = f/f2, and the resultant function will
have at most finitely many poles. Similarly, we can extend f5 to the boundary |z| = r by
fo = f/f1, and will have at most finitely many poles.

Finally, since f = fif2, and f has no poles in the region, we can remove the poles by

fill(z—a;) foll(z—b;)

G5 TiG—ay = 9192 where a; are the poles of f;, and b;

factorising instead as f =

poles of f.
Now, g; is analytic in A, g, analytic in (sA)¢, and by repeating the argument for the case

of no zeros, we have that these belong to the appropriate Bergman spaces. O
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5.1.1 Toeplitz operators in the Bergman space of the annulus

We have that A%(A) is a closed subspace of L?*(A), thus we can define a projection
operator P from L? to A%, and so define a Toeplitz operator T by P M, for ¢ measurable

functions.

In the Bergman space for the disc, it is known that for symbols continuous on the closure
of the disc, up to compact operators only behaviour of ¢ on the boundary matters, and the
essential spectrum will be the same of that of a Toeplitz operator on the Hardy space with
the same boundary values- for example, [21] p16-17.

We can in fact extend this to A:

Theorem 5.1.2 If U is the isometry from A*(A) to H?*(A) defined by U(z"/|2"]]) =
2" /|2, where ||.||" is the Hardy norm and ||.|| the Bergman space norm, then we have
that for any ¢ symbol continuous on the closure of A, we have:

Ur,u* =T q;m + K, where K is a compact operator fixed by ¢, T" denotes a Toeplitz

operator on H*(A), and T denotes a Toeplitz operator on A*(A).

Proof
We proceed by first proving the result holds for 7, and 7,-1 From here, we can then

1 z71, since if the

extend to symbols in the closure of the set of polynomials in 2, z, 2~
lemma holds for z, it must also hold for z by taking adjoints, and by taking powers of
each side we have it for 2" and 2™ all n > 0. Similarly ¢ = 2! will give the result for z"
and z" for all n < 0, and if it holds for ¢; and ¢, it holds for ¢ + ¢, etc.

Since the closure of these polynomials generate the continuous functions, we have the
required set.

Letting e, = 2z"/||z"]|, and €, = 2"/||2"|, we have that UT,U*¢e], = U*ze, =
12" /112" € and Tlel, = 2| /(12" 1 € s

n+1 n+11/
Thus, ||[UT,U*e!, — Tle, | = 1 — B

[[2"] =71"*
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Now, we have that || 2"[|> = ['r2"rdr = 155722 Jand || 2% = 1 + 5",

2n+2
. n+1 n+11/
Letting n — +o00, we have that Hﬁ H” — 1, HiZ"II’H 1.
n—+11|/
Letting n — —o0, we have that 12l — s and ”Z I

(B 2|
Thus, we have that |[UT.U*e!, — Te, || > € at most a finite number of times. Applying

the same to 2~! works similarly.

Now, we have that UT;n U™ = (UT.U")" = (T, + K)" = T} 5, + S, where K is the
compact operator evaluated before, and .S is compact as it is a finite sum of products of a
compact operator with bounded operators.

Thus, we can extend to z". We can extend from z~! to =™ in the same manner, and
taking adjoints we can show this for z7" and z".

It follows immediately that the rsult holds when ¢ can be written as a finite polynomial

inz,z %z 21,

We can also extend the result to ¢ which can be uniformly approximated by polynomials
in these (which, by the Stone-Weirstrass theorem, is the space of continuous functions on
the closure of A):

Let p, be a sequence of polynomials uniformly approximating ¢ in oo-norm on
Lo (CI(A)) (with Cl denoting closure).

Then, we have that T),, — T} in operator norm, and also ngnlA — T(;|A in operator norm.

Thus, UT,U™ — = lim,, o Ky, Where K,, = UT,U" — ém is compact, and the

<;7|A
limit is in operator norm. Thus K will be compact here, and so the result holds for all ¢

continuous on the closure of A. O
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Radial Toeplitz operators

We have in the case of a Toeplitz operator on the Bergman space of the disc that if ¢ is a

radial symbol, then we have T,2" = A, 2" Vn for some A,, € C, since

2T
(Tyz",2") = (2", 2™ / o(r, 0)r™ Tl grdg

1
:/ n+m+1¢(r)/ zn m)Gder.
0 0

Here, the #-integral is 0 when n # m.

The same occurs in the case of the annulus, since:

(Typz", 2™m) = (pz", 2™ f f Yyrrtmyet(n=m gy dp

= fsl Pt (r) fo e’ ”_m)ededr =0 forn # m,

where s is the inner radius of the annulus.

The paper by S. Grudsky, A. Karapetyants, and N. Vasilevski [20] describes bounded
and even compact Toeplitz operators with unbounded radial symbols, and gives some
conditions for an operator to be as such.

In the annulus, the condition for the radial Toeplitz operators to be bounded is quite similar

to the case in the disc:

Theorem 5.1.3 If ¢ is a radial symbol for a Toeplitz operator on the Bergman space of
the annulus, Ty is bounded if and only if there exists a bounded Toeplitz operator on the
Bergman space of the disc whose symbol on the disc whose symbol ¢' is equal to ¢ in some
neighbourhood of 1. The same holds replacing bounded with compact. In other words,
the condition to be bounded/compact is simply that the behaviour at each boundary is

that of a bounded/compact radial Toeplitz operator on the disc.

Proof
Let ¢ be a radial symbol. It is immediate that (¢2", z™) = 0 for n # m, thus the operator

is diagonal. So, letting a,, be such that 72" = a,2", we have that T}, is bounded if {a,, }
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is bounded, and compact if a,, — 0 as n — +o0.

Suppose first that ¢ is continuous at s, and that ¢’ is a symbol for a bounded Toeplitz
operator on A%(A) such that ¢ = ¢/|51). We show that T}; must now be bounded.

We have that a,, = (¢'2", 2")a/(2", 2™) A are a bounded sequence by assumption.
Looking at the limiting behaviour as n — +o00, we have that fol & (r)yr*dr(2n + 2) is
bounded.

Now, looking at b,, the nth eigenvalue for the Toeplitz operator on the Bergman space of
the annulus, we have that:

by = (92", 2")a/ (2", 2")a, and (2", 2")y = 55 (1 —5°"12) > m for all sufficiently

large n.
We thus have that |b,| = |(f51 or¥vtidr) /(2" 2")| < 2(2n + 2)|f31 grntidr| <
2an| 4+ 2(2n + 2)| [, ¢'r* T dr].

However, |a,| is bounded and the latter integral clearly converges to 0 as n — oc.

Thus, we have that the eigenvalues corresponding to positive values of n behave
appropriately.

Now, since we have that ¢ is approximating C' for some constant close to the inner
boundary, and we have that the contribution of ﬁ on the outer boundary falls
exponentially as n tends to oo, we have that b_, — C' asn — oo

Thus, we have that 7} is a bounded operator for the Bergman space of the annulus if it is
for the disc and it is continuous about s.

In the case C' = 0, the same argument shows that 7} is compact if 77, is compact. In
order to deal with a general symbol, we simply need to show that the corresponding
result holds for a symbol continuous at 1 when considering the symbol as the restriction
of a bounded symbol on A%((sA)°).

From this, the result follows for arbitrary symbols since we can decompose the symbol

as ¢ = ¢1 + ¢o with ¢ continuous at s, and ¢, continuous at 1.

. fsl ¢T2n+1d7‘

- fsl r2ntlgy

J) #(s/q)q~®n+3dg
[La=@n+3)dg

Considering n negative, we have that b,

Making the substitution ¢ = f, this becomes b,, =
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Hence the boundedness of b,, for negative n translates to the question of boundedness of

b,, for positive n for the symbol ¢ with ¢(r) = ¢(s/r). O

In addition to boundedness/compactness, a result in a similar vein can be shown on
the Hilbert-Schmidt norms of the diagonal Toeplitz operators (which all radial Toeplitz
operators are included in).

A paper of Harper-Smith [22] describes the relation between Hilbert-Schmidt norms for
Toeplitz operators on the Bergman space of the disc, and the following shows that the

same hold in the annulus.

Theorem 5.1.4 Suppose that T is a diagonal operator from the Bergman space of the
annulus into an arbitrary Hilbert Space.

Let T € B(A*(A),H). Then we have ||T|%, = fsl fo% | Tk,cio||*rdrdf, where k., is the

reproducing kernel at z (for the Bergman space here).

Proof

The proof is almost identical to that in the Harper-Smith paper. Let e, be an arbitrary
orthonormal basis. Then we have that:

fsl fo% | Tkpeio||?rdrdd = >0 [ [ |(T*en)(re®)*rdrdd,

=2 1T el = 1713, = T3,

a

The Harper-Smith paper [22] describes the result in general Schatten classes, and the
following will show the proof works in the same way on the annulus. However, the
results have also been proven for Bergman spaces on multiply connected domains in [41]

by means of conformal equivalences.

Theorem 5.1.5 Ifp > 2and T € S,(A*(A),H), then we have:

/A Tk |Pdm(z) < |1,



Chapter 5. The Bergman space and the slit disc 92

where dm(z) = dA(2)||k.||% and k., =

dk, = .
[[F= |l
Ifl<p<2and |, |Tk.||Pdm(z) < oo, we have that T € S, and N | Tk ||Pdm(z) >
175,
Proof

We have that if A is a positive operator, then 77(A) = [ A(Aka, k.)dm(z), with the inner
product taken over our Bergman space on A.

This follows identically to the proof in [42] p116:

() =3 (Aemen) =3 /A (Aey)(2)en(Z)dA(2)

-y / (Aen, k) en(2)dA(2)
- / (A enen(2), k.)dA(z) = / (Ak., k.)dA(2)
:/A(Alz:z,fcz)dm(z).

From this, and using the fact that for A a positive operator, and f of unit norm,

(APf f) > (Af, f)? forp > 1,and (APf, f) < (Af, f)? for p < 1, we have that:

1T, = Tr((TTP2) = / (T T, ) dm(2)

> / (T TR, E.))dm(=),

= /A | Tk |[Pdm(2).

For the case 1 < p < 2, the reverse inequality holds since the direction of inequality for

(APf. f) is reversed. O
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5.2 Hardy Space of the slit disc

Consider the domain of the slit disc G, the unit disc with the interval [0, 1) removed.

We will work in the space that was defined in the introduction as F*(G), the Hardy-
Smirnov space. The existence of boundary values, and thus toeplitz operators were
covered in the introduction.

There exists a conformal mapping ¢ between the disc and the slit disc, given in [3] in
the appendix, defined as ¢¢(z) = (w3(wo (w1 (—iz)))?, where

ws(2) = E, wa(z) = 2, wi(z) = i3,

The book [3] also describes the effect on the boundary here— the arc {e?? : 0 < § < 7/2}

is mapped to the top half of the slit, and the arc {e? : —7/2 < 0 < 0} is mapped to the
lower half of the slit.

It is useful know the poles and zeros on the boundary of the derivative of our mapping,
o

We have that ¢;(2) = 2(wswow; (—i2))w}(wew: (—iz))wh(w(—iz))w|(—iz).
Considering each factor in turn, ws(ws(w;(—iz))) has no poles on the disc, and has a
zeroat z = 1.

Then w}(z) = ﬁ, s0 w} (w2 (wy(—iz))) has no poles but has a zero of order 1 at z = 1.
Next, wh(z) = 22712, so wh(w;(—iz)) has singularity at = = —i, and decays at z = i,
with the local growth/decay that of 272 and 22 respectively.

2 has an order 2 pole at z = 7, and no zeros in the range we are

Finally, w(—i2) = q7552

interested in. Thus, putting this all together, we have that ¢, has a zero at z = 1 with
¢ (1 — 2) = O(z) locally, and we have singularities at &i with ¢, (z £ 1) = O(27/?).

The function ¢y, is important as it is used to normalize the measure when transforming
between integrals on the boundary of the slit disc and on the boundary of the disc under

the map ¢¢.
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Isomorphism between £?(G) and H*(A) , and Toeplitz operators

Proposition 5.2.1 Let p be the isomorphism between E*(G) and H*(A) considered in
the introcution, i : [ — F, with F(z) = f(gbg(z))(%)%(z).

We have that if T}, is a Toeplitz operator on the Hardy space of the slit disc, with symbol
1, then we have that Tl’z(,uf) = Ty f, where 1(2) = ¥ (pa(2)).

Proof

This is simply a consequence of the definition of our space and the toeplitz operators on
it.

Consider the inner product of a Toeplitz operator applied to . f with pg in the disc.

(Wt ng)a = fyn ¥(06(2) f(9a(2)9(¢6(2)|¢6(2)|dz]

= Joo F(2)9(2)0(2)[¢ (65 ()¢ (06" ()| |d2] = (U f. 9)e = (Tuf, 9)c-

Thus, we have that (Tiuf, pg)a = (Typf,g)c for all g € H?*(A), and so the result
follows.

O

Results about Toeplitz operators in the slit disc can thus be deduced from those in the

disc, and vice-versa.
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