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Abstract 

 

Computational modelling of proteins and their interactions with small molecule ligands 

is a growing field of research.  Such studies provide an understanding of how protein 

structure relates to mechanism and function as well as informing drug discovery and 

design. 

 

This thesis had two main aspects: computational modelling of ciprofloxacin derivatives 

binding to DNA gyrase and homology modelling of the protein IcaB based on sequence 

alignment with a related protein, PgaB.   

 

The inhibitory activity of synthetic ciprofloxacin derivatives (with various linkage to 

citrate groups) was experimentally assessed by gel electrophoresis to examine the effect 

on DNA gyrase binding to a target DNA strand.  Overall, the derivative which possessed 

the greatest inhibition compared to the unmodified ciprofloxacin was the c-gly-

ciprofloxacin derivative, which had a 2 atom linker between the ciprofloxacin and citrate 

groups.  This correlated with the change in interactions seen between ciprofloxacin 

derivatives as computationally modelled by molecular mechanics methods. 

 

The second aspect of the thesis was to generate a model of the protein IcaB to test the 

hypothesis that it is a deactylase of poly-N-acetyl-glucosamine (PNAG) during maturation 

of the poly-glycan in the extracellular matrix responsible for biofilm generation for 

bacteria.  An initial review of deacetylase enzyme structures identified the conserved 

features required for activity.  A homologous protein, Pga,B was then used as a template 

to generate a homology model of IcaB.  The model maintained the orientation and 

positioning of the metal-binding and catalytic residues critical for proper deacetylase 

function.  However, the PNAG binding groove, believed to be involved in the transport of 

the PNAG to the active site of PgaB, was not properly replicated in the IcaB model.  

Further modelling would require improved characterization of the binding groove of 

IcaB. 
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Chapter 1: Introduction and Methods 

 

1.1 Background 

Proteins are involved in almost all biological processes including, but not limited to: 

enzyme catalysed reactions, gene expression, transcription, and cell signalling[1].  The 

study of ligands bound to proteins, particularly small-molecule ligands, has been of 

interest in order to control these reactions.  As a result, drug discovery and design has 

developed through in-depth study of the interactions between the drug and potential 

target proteins both experimentally and computationally[2,3]. 

 

The field of computational protein-ligand interaction modelling has grown thanks to 

advances in modelling techniques and computational power over the past two 

decades[4].  The modelling of proteins interacting with ligands allows for virtual 

screening of a large number of compounds to identify potential candidate compounds 

with lower costs and improved speed, compared to traditional experimental 

screening[5]. In addition, this field has been assisted by improved experimental 

techniques, which have provided a multitude of structural data for proteins and their 

interactions that can be used to improve the computational models[6].  There have been 

a number of review articles that have given a comprehensive summary of the research 

done in this field.  One of the earliest computational methods for modelling these 

interactions was protein docking, a review of which was published in 1996 by Lengauer 

and Rarey[7].  A review by Dill and McCallum from 2012 described the modern paradigm 

of protein structure modelling as divided into ab initio methods, which predict protein 

structure based only on the amino acid sequence, and methods such as homology 

modelling or protein threading, which rely on the protein’s similarity with proteins or 

fragments of known structure[8–12]. Examples of each method are given by Yan et al., 

2015 for use of an ab initio secondary structure prediction method and Semblat et al. 

2015 for comparison with an established homology model[11,12].  Recently, a review 

published by Ghitti et al. in 2014 gave a summary of research done with Nuclear Magnetic 

Resonance (NMR), as well as protein docking and molecular dynamics simulations, to 

characterize interactions between ligands and target proteins in drug discovery[13].   
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In order to understand the results of the models of DNA gyrase and IcaB in this thesis, a 

brief summary of protein structure, protein-ligand interactions, and computational 

modelling of proteins is discussed below. 

 

 

1.2. Protein Structure 

A protein is composed from one or more chains of amino acid residues. Individual amino 

acids are linked together by peptide bonds, amide bonds formed from dehydration, which 

connect the acid carbon of the first amino acid to the amino group of the second amino 

acid[14].  In many proteins, amino acids are modified to allow for interactions that the 

canonical amino acids would be incapable of performing, or as part of an 

induction/repression mechanism.  These modifications are referred to as post-

translational modifications as they occur after translation of mRNA into peptide chains. 

Examples of post-translational modifications include phosphorylation, disulphide bonds, 

acetylation, methylation and glycosylation[15–20].  Removal of acetylated lysine 

residues on histone proteins is performed by histone deacetylases and will be discussed 

in greater detail in Chapter 3[18]. 

 

Hydrogen bonding between amino acid residues is involved in the structure of proteins, 

as well as in interactions of a protein with the bound ligand[21].  Hydrogen bonding is 

defined as an electrostatic attraction between a hydrogen atom bound to a highly 

electronegative atom such as nitrogen (N) or oxygen (O) and another electronegative 

atom[22].  In addition, hydrophobicity, the nature of non-polar groups to cluster together 

to minimize the surface area exposed to a polar solvent, causes amino acids with non-

polar side chains to tend to cluster together and away from the solvent water which 

surrounds the protein.  These interactions work cooperatively to form the three-

dimensional protein structure. 

 

There are four levels of protein structure connected by various interactions.  The primary 

structure is the linear sequence of amino acids transcribed from mRNA.  Hydrogen 

bonding within the main chain of the amino acid residues leads to the secondary 

structure motifs such as α-helices, β-sheets, loops, and turns.  The α-helix structure 

formed by hydrogen bonding between main chain carbonyl oxygens and hydrogens from 
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the main chain amide group was first proposed by Pauling and Corey in 1951, and yields 

a right-handed helical structure with 3.6 amino acid residues per turn of the helix[23].  In 

the same year, β-sheet secondary structure was also proposed as a mechanism for 

satisfying the hydrogen bonding potential of the main chain as the protein is folded.  In 

this case, the polypeptide main chain is in an extended conformation (or strand) with 

hydrogen bonds between the strands which run either parallel or anti-parallel[24].  The 

term random coil is used to refer to a generally unstructured region.  Turns, portions of 

the structure in which the protein sequence reverses direction, are usually associated 

with proline and glycine residues.  In the most common turn structure, β-hairpin turns, 

proline adds a kink to the protein sequence. Glycine, due to having only a hydrogen atom 

as a side chain, allows for greater rotational freedom assisting in the bending of the 

polypeptide chain[25].  An example of helix, sheet, and turn secondary structures are 

shown in Figure 1.1. 

   

Figure 1.1: Peptide α-helix (right), β-sheet (middle), and β-turn (left) in stick diagrams.  

Hydrogen bonds are shown as dotted lines. 

  

 

Side chain hydrogen bonding, van der Waals, and hydrophobic interactions result in the 

tertiary structure, also commonly referred to as folds[26].  Hydrophobic amino acid side 

chains such as phenylalanine, valine, and isoleucine tend to be oriented away from the 

solvent, while hydrophilic side chains such as those of serine, aspartate, and arginine tend 

to be oriented towards the solvent.  This results in a hydrophobic core within a majority 

of globular proteins (i.e. non-membrane proteins)[27].  The tertiary structure, along with 

elements of the secondary structure, forms the overall conformation of a peptide 
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monomer.  In some proteins, the monomer is functionally active.  However, in others, the 

quaternary structure is formed by interactions of individual protein chains to form 

oligomers.  This is necessary for many proteins, which require a full oligomer in order to 

be functional.  There are proteins and domains of proteins that do not possess this 

structural organization, named intrinsically disordered proteins, which perform many 

biological functions including cell division, DNA condensation, and cell signalling.  These 

proteins have emerged recently as a new area for investigation[28]. 

 

The different levels of protein structure can be illustrated by the structure of the protein 

haemoglobin.  Haemoglobin is a protein that binds oxygen molecules within the 

bloodstream to allow for highly efficient transport between the lungs and the body’s 

cells[29].  The transcribed sequence for a single peptide domain is the primary structure.  

Main-chain hydrogen bonding then forms a series of α-helices connected by loops to form 

the secondary structure.  This secondary structure is then folded by interactions between 

side chains.  As this folding occurs, a haem cofactor consisting of a porphyrin ring bonded 

to Fe2+ is added to the structure [30].  The iron atom in this haem is necessary for the 

function of the protein, as the oxygen molecule binds to this iron to be carried by 

haemoglobin[29].   The final protein monomer is then added to three other similar 

peptides to form the active tetramer, as shown in Figure 1.2[31].   

 

 

Figure 1.2: Structure of haemoglobin (colours represent individual monomers and 

haem prosthetic groups are shown in stick format) pdbID: 1GZX[31] 
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As the oxygen molecules bind to a bound haem cofactor, the haemoglobin conformation 

changes to a state with higher binding affinity, resulting in increased binding of oxygen 

at the other haems.  The reverse is also true, as when an oxygen molecule dissociates from 

a haem, the haemoglobin reverts to the original conformation allowing for easier removal 

of the other oxygens.  This change in conformation by binding at a region other than the 

active site is an allosteric transition, first described by name in 1965 by Monod et al. 

regarding the haemoglobin transition[32].  Generally, these sites cause a change in the 

conformation of the protein to enhance or inhibit the binding of the ligand in the active 

site[33]. 

 

The majority of proteins whose structures have been determined by x-ray 

crystallography or NMR methods (discussed below) are globular proteins that are stable 

in solution.  There are several other types of proteins that play a major role in biological 

systems such as integral membrane proteins, membrane glycoproteins and peripheral 

membrane proteins.  In the case of gram-negative bacteria, the cell wall consists of an 

inner membrane composed of peptidoglycan, a polymer of alternating N-

acetylglucosamine and N-muramic acid, and an outer membrane composed of a 

phospholipid bilayer.  Therefore, there is a periplasmic space between the two 

membranes, in which proteins involved in transport and biofilm formation, among 

others, have been shown to be localized[34,35]. 

 

Many protein structures have been identified by X-ray crystallography and Nuclear 

Magnetic Resonance (NMR)[36].  However, all structures referenced in this thesis were 

identified by means of X-ray crystallography.  X-ray crystallography utilizes an X-ray 

beam directed at a crystallized molecule.  By the angle of X-ray scattering, it is possible to 

determine the electron density at various positions, which can then be used to infer the 

atom positions and the bonding interactions in the overall molecule. The relationship 

between the angle between the incident ray and the crystal plane, the wavelength of X-

rays, and the spacing between the planes in the crystal is described by Bragg’s Law 

(Equation 1.1).  
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nλ = 2dsinθ 

Equation 1.1: Bragg’s Law, in which n is an integer, λ is the wavelength of the X-ray beam, 

d is the distance between two planes in the crystal lattice, and θ is the angle between the 

incident X-ray and the crystal. 

 

 

In a single crystal diffraction, a pattern of spots known as a diffraction pattern will emerge 

as a result of this scattering.  Using diffraction patterns from multiple angles, 

mathematical methods known as Fourier transforms can be employed to form a map of 

electron density, which may then be mapped using experimental data or fit to a 

theoretical structure[37,38].  The first published use of X-ray crystallography was to 

determine the protein structure of sperm whale myoglobin in 1958 by John Kendrew and 

coworkers[39].  X-ray and NMR structures of proteins are collected in the Protein Data 

Bank, a crystallographic database that includes proteins, DNA, and RNA structures and 

contained 110 206 biological macromolecular structures as of July 11, 2015[40]. 

 

An important tool for identifying the activity of the protein experimentally is the 

isoelectric point (pI or pH(I)): the point at which a molecule carries no overall charge.  

The pI gives a simple description of the overall charge surface of the molecule expressed 

as an integer.  At low pI, a higher concentration of H+ ions is required to neutralize the 

large negative charge on the protein surface and conversely, as the pI increases, the 

protein gains more positive charge[41].  The theoretical pI was calculated for this thesis 

using the online tool ProtParam from the ExPASy server at the Swiss Institute of 

Bioinformatics[42].  This method sets pKa for certain ionisable groups in proteins, which 

allows for a theoretical calculation of pI if the protein sequence is known[43].   

 

 

1.3 Protein-Ligand Interactions 

There are several types of binding interactions between proteins and small-molecule 

ligands, including enzyme substrates and protein inhibitors.  Enzymes are protein 

catalysts for various biochemical reactions. For example, the enzyme lactase, which is 

found in the human small intestine, catalyzes the breakdown of the disaccharide lactose 

into the simple sugars galactose and glucose for absorption into the bloodstream[44]. 
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Metalloproteins are proteins containing a metal ion as a cofactor.  While some proteins 

contain a structural metal ion to maintain a fold of the protein, certain enzymes use the 

metal in a catalytic mechanism.  For example, Cytochrome P450, a monooxygenase 

enzyme found in the human liver, uses a haem cofactor (a porphyrin ring bound to a Fe2+) 

to perform a monooxygenase reaction to add an alcohol group to an aliphatic chain as the 

first step in breakdown of toxins or drugs in the body[45].  

 

In addition to binding to the native substrate, enzymes as well as other proteins may bind 

inhibitors.  An inhibitor is any molecule that binds to an enzyme and results in lowered 

activity.  The activity of the inhibitor in vitro is generally measured by IC50 (inhibitory 

concentration 50), the concentration at which activity of the protein is reduced by 50% 

(originally referred to as I50)[46]. 

 

Binding sites in the protein some distance away from the active site can result in a change 

to the overall protein conformation.  These are known as allosteric sites when this change 

in conformation affects the thermodynamics and/or kinetics of the activity of the system.  

For example, O2 can act as an allosteric regulator in haemoglobin by enhancing the 

affinity of a separate subunit for another O2 molecule through a change in the protein 

conformation. Therefore, a single O2 molecule binding to a haemoglobin subunit can lead 

to haemoglobin fully saturated with oxygen.  In addition, allostery allows for non-

competitive inhibition, in which the inhibitor does not compete with the native substrate 

in order to inhibit the protein (competitive inhibition), but rather binds to an allosteric 

site in order to alter the active site and prevent binding[31]. 

 

The Allosteric Database (ASD) provides descriptions of structure, function, and disease 

caused by compounds that bind to allosteric sites as well as annotated allosteric sites.  

The ASD is updated regularly and is currently available online[47]. 

 

Proteins such as DNA gyrase bind to DNA to affect transcription of genes, which results 

in a change in gene expression (the proteins or nucleic acids produced from the original 

gene in DNA).  DNA, deoxyribonucleic acid, is a double stranded nucleic acid polymer 
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formed from individual nucleotides[48]. An example of a nucleotide (adenosine) is shown 

in Figure 1.3. 

 

 

Figure 1.3: Structure of adenosine, a nucleotide consisting of a deoxyribose sugar, 

phosphate, and nitrogenous base (adenine)[48] 

 

The sugar-phosphate bonds between the 5’ –OH and phosphate oxygen form the 

backbone of DNA.  Hydrogen bonds between the nitrogenous bases (2 for A-T, 3 for G-C) 

connect two strands of DNA.  DNA forms a double helix due to a rotation within the sugar-

phosphate backbone to prevent steric clashes between the nitrogenous bases.  In 

addition, π-stacking interactions between the nitrogenous bases stabilize the adjacent 

purine/pyrimidine rings. 

 

DNA within the cell is usually packaged during a non-dividing phase of the cell in the form 

of chromatin.  Chromatin is formed by the DNA wrapping around histone proteins to form 

structures known as nucleosomes.  Generally chromatin may be separated into 

heterochromatin, which is tightly bound to the histone proteins, and euchromatin, which 

is more loosely bound and therefore transcription related proteins are able to bind to the 

DNA[49]. Due to modifying the chromatin structure, post-translational modification of 

histone proteins greatly affects DNA transcription. For instance, histone methylation has 

been shown to be involved in the silencing of genes. An example of this is the histone 

methyltransferase EZH2, which methylates Lys27 of histone H3.  Mutation of the Tyr641 

residue in EZH2 has been identified from B-cell lymphomas and has been shown to 

increase the protein’s activity, leading to repression of a tumour suppressor gene[50]. 
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1.4 Computational Modelling of Protein Structure  

One of the earliest methods for providing insight into the shape and energetics of a 

protein active site was the program GRID[51].  The basis for the algorithms used by GRID 

was a series of probes used to interact with the active site surface.  These probes were a 

number of small functional groups including water, a methyl group, an amine nitrogen, a 

carboxyl oxygen, and a hydroxyl group.  The energy contours formed by interaction of 

the probe with the protein surface were calculated.  These contours showed regions of 

attraction with differing groups and could be shown using computer graphics.  Therefore, 

drugs could be designed to maximize the number of contacts with the protein surface 

[51]. 

 

Homology modelling is based on the requirement that the function of a protein is 

conserved from one generation to the next.  This requires conservation of structure, 

which in turn places constraints on the conservation of sequence.  This means that 

proteins of similar sequence have similar structure.  The method works well for proteins 

with greater than about 40% sequence similarity and is discussed further in section 1.6.   

A technique known as threading, or fold-recognition, is used if no protein structure is 

available with >40% sequence identity to the target.  This technique relies on two 

assumptions: 1. the number of unique protein folds in nature is much smaller than the 

number of unique proteins (this is already clear, for example the number of TIM barrel 

structures adopted by proteins of very different evolutionary backgrounds) and 2. the 

protein structures in the PDB sample the possible protein folds [52]. There are a number 

of variants of the technique which test whether a sequence for a new protein fits into a 

known fold, including using empirical scoring functions (see below) or knowledge-based 

scoring functions derived from the analysis of the interactions seen in known structures.   

Finally, there are ab initio techniques (see below), in which a fold for the protein is 

derived from basic principles. There has recently been some success with using 

molecular mechanics/dynamics calculations to fold small proteins from sequence 

alone[53–55].  In addition, an overall approach called Rosetta has been developed where 

small segments of secondary structure are assessed for their fit to the sequence which 

are then annealed together to generate a final model[56–58].  None of these ab initio 

approaches are particularly robust, as shown by the most recent CASP (Critical 

Assessment of protein Structure Prediction) competitions, where the methods are 
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applied to new proteins before the structures are published, demonstrating that it 

remains a real challenge to predict the structure[59,60].  The most recent CASP 

competition, CASP X, has shown sustained improvement in refining models using 

molecular dynamics.  Also, for the first time, models that use 3d contact information from 

new experimental techniques were tested.  Although new inter-residue contact 

prediction methods may potentially be useful to provide scaffolds to build protein 

structures on, they remain a challenge to model [61].  Overall, the accuracy of protein 

structure prediction models is improving in non-template based modelling[60]. 

 

 

1.5 Computational Modelling of Protein-Ligand Interactions  

Over the past 40 years, a number of different computational modelling techniques 

emerged for modelling the interactions between proteins and small molecule ligands 

including molecular mechanics and dynamics, virtual screening / docking, and quantum 

mechanics/molecular mechanics [62–64]. The binding of protein P to ligand L can be 

described by the equation PL <-> P + L.  The equilibrium constant (K) can be used to 

approximate the experimental binding affinity as 1/K and is also related to the on and off 

rates (i.e. the rates of binding and dissociation, kon and koff) that describe the kinetics of 

the system as follows: K = koff/kon.  The equilibrium constant is the ratio of 

products/reactants and is dictated by the difference in free energy between the products 

and reactants (ΔG = -RTlnK), which in turn is related to the enthalpy (energy of the 

system) and entropy (disorder in the system) as ΔG = ΔH-TΔS. Most empirical 

computational methods (such as those used in virtual screening) only consider the 

interactions made between protein and ligand as a sum of van der Waals, electrostatic, 

hydrophobic, and hydrogen bonding interactions[3].  More sophisticated approaches 

(such as in molecular mechanics) can explore the contributions of enthalpy and entropy 

on both sides of the equilibrium through the contributions from the free protein and 

ligand in solution as well as the complex[63,64].   

 

Treatment of the solvent can be dealt with by techniques that handle the solvent 

implicitly as a continuum instead of explicit molecules, as these offer reasonable accuracy 

while remaining less computationally intensive[65].  An example of an implicit solvent 

technique is the Generalised Born surface area (GBSA) method, which treats the solvent 
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as a whole as a continuum in a neighbourhood of individual solute centres possessing 

different dielectric constant from the solvent[66,67]. Equation 1.2 describes the 

derivation of the free energy of solvent in this method. 

 

∆Gwater = EMM + ∆Gsolvation − T∆S 

 

Equation 1.2: Calculation of free energy of solvent water; EMM is the molecular mechanics 

calculated energy for the solvent, ∆Gsolvation is the difference in free energy caused by 

dissolving the solute into the solvent, and T is the temperature in Kelvin and S the entropy 

of the system 

 

The molecular mechanics energy is taken from the energies of individual interaction 

types as calculated in Equation 1.3. 

 

EMM = Ebonds + Eangle − Etorsion + Eelectrostatic + EvdW 

 

Equation 1.3: Molecular mechanics energy of water molecules 

 

 

With advancements in modelling techniques as well as improved computational 

hardware, the idea of virtual screening, that is, screening a series of ligands against a 

protein target computationally, became increasingly practical[68].  An example of the 

techniques used was the design of renin inhibitors by Boger et al., which used both 

homology modelling and docking techniques (both of which will be described 

below[69]).  Virtual screening has advantages over traditional experimental screening as 

it is cheaper and allows for a larger ligand library for an initial pass[70].  Docking 

programs such as GOLD and FLEXX have been employed for virtual screening.  Molecular 

docking programs attempt to fit a flexible molecule into a rigid receptor by minimization 

of the ligand energy within restraints set by angles and distances from individual atoms 

from the ligand to the receptor[71,72]. Docking programs treat the protein structure as 

fixed in place and then search for conformations of each ligand that will fit into the 

binding site.  The conformational search can use various computational methods such as 

genetic algorithms or Monte Carlo; the assessment of the quality of fit uses varying levels 
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of sophistication of energy evaluation[72,73].  These are either knowledge-based or 

based on classical physics-based energies such as Lennard-Jones potentials and Coulomb 

energies[74–76]. Docking has been used to investigate both protein-ligand and protein-

protein interactions[77–79].  Once an initial set of so-called “poses” is generated, more 

sophisticated calculations can be used to analyse the results.   

 

A range of more sophisticated methods have been developed to simulate the details of 

protein structure and motion.  Molecular dynamics (MD) uses the molecular mechanics 

description of a molecule and allows for simulated physical motion over time within the 

system using classical or Newtonian physics for the entire structure.  These calculations 

can simulate the motion in a molecular system. The timescale of MD simulations started 

as picoseconds, but now microsecond to millisecond timescales are possible to simulate, 

which can be used to model movement of an enzyme complex as well as the catalytic 

reaction[80]. 

 

In addition to comparative modelling such as homology modelling and protein threading, 

there has been increased research in the area of de novo, or ab initio, protein structure 

prediction.  Ab initio techniques predict the position and energy of molecules based on 

quantum mechanics calculations.  These models are derived from first principles or 

semiempirical methods, neither of which requires a template protein structure.  

Therefore, Ab initio methods allow for modelling of novel families of proteins with few 

related structures.  In addition, quantum mechanics calculations can be used to model 

active sites with high precision.  As no template is required to compare the structure with, 

a model produced may not match the actual 3D structure.  The model may then be 

compared with a comparative model or molecular dynamics may be used to test the 

stability of the predicted conformation.  In addition, quantum mechanics-based methods 

are computationally intensive, especially for larger systems such as complete proteins or 

protein-ligand complexes.  A hybrid quantum mechanics/molecular mechanics 

(QM/MM) model may be used to counteract this, as the active site may be modelled with 

quantum mechanics methods for high precision while treating the remainder of the 

protein with less intensive classical physics-based molecular mechanics[64,81,82].   
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Using binding site mapping by programs such as GRID, programs such as HOOK may be 

used to build novel ligands[83]. HOOK connects potential functional groups that could 

bind to regions of the binding site with molecular skeletons.  These skeletons maximise 

the groups’ contact with the protein and are kept in a database.  Once a skeleton has been 

selected, the resulting molecule’s fit, referred to as the “overlap score”, within the binding 

site is calculated based on a combination of van der Waals interactions.  This process is 

then repeated with a number of potential molecules and then the results are ranked 

based on the score[83]. 

 

Metal and water interactions with the protein-ligand complex may require special 

parameterization.  In particular, the treatment of solvent by methods such as GBSA is of 

great interest as modelling individual solvent molecules may be insufficient and lack 

overall solvent effects[66].  The model may be further complicated by the presence of 

flexible loop regions with less defined structure.  Several programs have techniques to 

attempt to more accurately model these regions through ab initio modelling of loops in 

comparative modelling programs or extending short fragments into full loop domains by 

searching databases for the ends of the loop in ab initio programs [84–86].  

 

 

1.6 Molecular Mechanics Modelling  

 

Molecular mechanics use calculation of bond angles, distances, dihedral angles, and 

charges based on classical (or Newtonian) mechanics to set restraints on the target 

molecule.  The structure is then fit within these restraints using molecular mechanics to 

minimize the potential energy of the system.  This project used such molecular mechanics 

methods as an optimization step to test the stability of the final structures [87].  An 

alternate technique would be to use Monte Carlo methods to sample a series of random 

inputs (such as atom positions in a structure) to achieve an overall probability 

distribution[73].  The modelled structure may become trapped in local energy minima 

i.e. the structure is not globally preferred.  This can be dealt with by varying the starting 

position to determine whether this has an effect on the resulting structure.  In addition, 

there is an implicit assumption that for the overall protein structure, quantum physical 

calculations may be approximated by classical physics calculations.  For the work in 
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Chapter 2, the solvent was not modelled, as there were no explicit solvent atoms in the 

crystal structure (PdbID: 2xct) and the models were meant to be a basic comparison as 

opposed to an in-depth description of the bound ligands[88]. MM calculations are unable 

to simulate motion without using MD, which becomes exponentially difficult as the 

number of atoms in the system increases.  Similarly, MM may not be highly accurate, and 

QM also becomes difficult as the number of potential interactions increases.  This can be 

ameliorated by QM/MM as this allows for more precise QM calculations at the active site 

alone.  QM/MM was not used for the MM model in Chapter 2, as this would be more 

complex and computationally intensive for a short project that was simply used to 

support the experimental findings and provide a comparison between the DNA gyrase 

inhibitors.  Protein-ligand binding is commonly simulated using molecular dynamics and 

Monte Carlo techniques[89]. 

 

 

1.7 Homology Modelling 

 

Homology modelling is a computational method that attempts to model the three-

dimensional structure of a protein based on another protein with which it shares a high 

level of sequence homology.  Sequence homology is calculated as a percentage of amino 

acid residues conserved between the two (or more) proteins.  It has been shown that 

proteins with sequence homology tend to have conserved tertiary structure.  Therefore, 

the homology model uses a related protein (referred to as the template protein) with 

sequence homology to set restraints for the protein sequence with unknown 

structure[90].   These restraints consist of: ϕ and ψ dihedral angles, side chain dihedral 

angles, main chain Cα hydrogen bond distances, main chain N-O distances, and any other 

stereochemical restraints.  >40% sequence homology is required for a trustworthy 

model, as it has been shown that above 40% homology, the structures tend to share a 

majority of the protein folds[91].   

 

The target protein’s sequence must be aligned to the template.  Afterwards, the aligned 

target sequence is fit within the restraints set up for the template.  The fit is scored using 

a probability density function, which attempts to minimize the entropy of the system in 

order to find the native protein structure [90]. 
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Due to the need for high homology between the target and template proteins, homology 

modelling is less useful for proteins in newly discovered families or modelling those in 

families with few available crystal structures.  When there is a well-conserved family of 

proteins, multiple sequence alignment is useful to provide a more accurate alignment 

with respect to the conserved regions of the protein. The difference between homology 

modelling and protein threading is the template used; although both require a template 

structure, homology modelling requires homologous regions of primary structure 

between the template structure and the target sequence while threading requires 

homologous regions of tertiary structure (“folds”).  Homology modelling was performed 

for IcaB in chapters 3 and 4 to attempt to improve the model.  Modeller was used for the 

homology modelling aspects of this thesis as it was one of the first homology modelling 

packages developed and has been well described and updated [90,91].  Automated 

modelling pipelines such as SWISS-MODEL facilitate the use of homology models for use 

in drug design or virtual screening by automating the entire process and providing a free 

and user-friendly web interface[92].  In addition, databases of stored models in SWISS-

PROT (UniProt) and MODBASE may be searched to find existing homology models for the 

target protein[93,94].  Flexibility, particularly in protein side chains, is still a challenge 

for computational modelling in general and specifically homology modelling, despite 

techniques such as addition of molecular dynamics modelling of highly variable loop 

domains[86,95].  Although homology models with low sequence homology (<40%) are 

generally considered poor overall, highly homologous regions around binding sites are 

key and can lead to accurate site models despite poor global quality[95].  This will be 

further explored in this thesis through the homology model of IcaB in Chapter 4. 

 

 

1.8 Outline of Thesis Contents  

The focus of this thesis is on the computational modelling of a number of protein targets 

for structure-based drug design.  While the first chapter gave a review of protein 

structure and function as a basis for molecular modelling in protein-ligand interactions, 

Chapter 2 is dedicated to the study of energy minimization of ciprofloxacin derivatives 

bound to DNA gyrase using CHARMm force fields.  These derivatives were synthesized 

from ciprofloxacin and citrate molecules using linkers of various sizes.  Chapter 3 
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provides a comprehensive review of deacetylase enzymes to elucidate features common 

to this enzyme family.  The deacetylase family can be broadly categorized into two 

groups: lysine deacetylases and carbohydrate esterases.   The conserved active site and 

substrate binding pocket residues of the carbohydrate esterase family 4 were key to 

producing a functionally relevant homology model of a poly-N-acetylglucosamine 

deacetylase, IcaB, by alignment with a related protein, PgaB.  A full description and 

analysis of the homology model is described in Chapter 4. 
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Chapter 2: Modelling of Citric Acid-Ciprofloxacin Conjugates  

 

2.1 Cystic Fibrosis and Opportunistic Infections 

Cystic fibrosis is a congenital disease that is recessively inherited and is commonly 

diagnosed by increased sodium levels in sweat[96].    In cystic fibrosis, mucous builds up 

on the respiratory passages due to a decrease in chloride ion excretion, which is most 

often caused by a malfunctioning chloride channel encoded by the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene found on human chromosome 7[97].   

Biofilms of opportunistic pathogenic gram-negative bacteria such as Pseudomonas 

aeruginosa and Burkholderia cepacia may form in this layer and are difficult to treat even 

with long-term antibiotic therapy[98].  Chronic infection by P. aeruginosa is the primary 

cause of mortality and morbidity in patients with cystic fibrosis[99,100].  It has been well 

documented that bacterial resistance is forming to many antibacterial agents currently 

in use, particularly aminoglycosides, such as tobramycin, and fluoroquinolones, such as 

ciprofloxacin, in bacteria like P. aeruginosa that form biofilms[101–103].   

 

One of the factors causing this resistance is the formation of bacterial biofilms.  A biofilm 

is an aggregation of bacterial cells within an extracellular matrix formed by bacterial 

polymers and proteins[104].  The biofilm provides a mechanical barrier which prevents 

antibody binding and protects against innate host defences such as phagocytosis and 

antimicrobial peptides, including complement fragments[105]. Additionally, the 

presence of persister cells, cells that have entered a non-dividing dormant stage within 

the biofilm, can protect against antibiotics that inhibit DNA replication and processes of 

cell division, even those that diffuse through the biofilm[106].  These cells can then re-

enter an active dividing stage, resulting in an antibiotic resistant population of cells[107].  

As a result of these factors, the Centers for Disease Control and Prevention (CDC) 

estimated biofilms to be involved in 65% of bacterial infections in 1999[108].   

 

In addition to the resistance mechanisms provided by the biofilms, there are a number of 

other methods including protein efflux pumps that remove antibiotics from the cell, 

hydrolytic enzymes (for example, β-lactamases which catalyze the breakdown of 

penicillins), or modification of antibiotic targets (such as methylation of an adenine 

residue in the small ribosome subunit, which lowers the binding affinity of erythromycin 
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and related antibiotics without affecting protein synthesis by the ribosome)[109]. P. 

aeruginosa utilizes all these mechanisms by use of four different multi-protein efflux 

complexes that remove almost all classes of antibiotics from the cell by at least one 

complex, synthesis of β-lactamases to protect against β-lactam based antibiotics such as 

penicillin, and mutation of the DNA gyrase subunit A, a common target of quinolone 

antibiotics[110].   

 

Modification of previously existing antibiotics has shown to be a novel alternative 

strategy for overcoming resistance of cystic fibrosis-associated infections, such as P. 

aeruginosa [96].  Fluoroquinolones are effective antibiotics for many gram-positive and 

gram-negative bacterial infections including P. aeruginosa and B. cepacia, both commonly 

associated with cystic fibrosis[111].  However, fluoroquinolones are not highly localized 

in the bacterial cells due to low uptake across bacterial cell membranes caused by a 

number of protein factors[112].  The lower concentration of fluoroquinolone may 

promote the development of antibiotic-resistant strains by allowing these bacterial 

species to become more resistant[113].  In 2003, Pitt et al. reported that 30% of P. 

aeruginosa strains identified from patients with cystic fibrosis in the UK were found to be 

resistant to ciprofloxacin, a commonly prescribed fluoroquinolone[102].  The chemical 

structure of ciprofloxacin is shown below:  

 

 

 

 

(1): Ciprofloxacin 

 

 

A more recent study by Emerson et al. comparing drug resistance of P. aeruginosa 

between studies performed in the United States in 1995 and 2008 did not show an 

increase in resistance to ciprofloxacin.  However, this may be due to the use of 

aminoglycoside antibiotics such as tobramycin as the primary therapy for cystic fibrosis, 

to which the bacterial strains did show an increase in resistance[114].  This antibiotic 

resistance has led to investigation into alternative routes of administration, such as 

inhalation of aerosolized antibiotics[100,115].   

N

OH

OO

N
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Piperazinyl ring 
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Conjugation of the piperazinyl ring of fluoroquinolones to a small molecule ligand has 

been used to produce a compound which maintained a similar level of antibiotic activity 

as the original fluoroquinolone[116].  As a result of this modification, conjugated 

fluoroquinolone derivatives with siderophore (small Fe3+-chelating compound) ligands 

such as citrate, hydroxamate, and catecholate groups have previously been explored in 

order to increase the intracellular concentration in bacteria[117–119].  In addition, 

monosaccharide ligands such as glucose and galactose have been conjugated to 

ciprofloxacin to utilize bacterial carbohydrate transporter proteins[120].  Examples of 

these proteins include galactose permease (GalP), which forms trimers that transport 

sugars into the cell using the proton gradient produced during cellular respiration, and 

MglBAC, an ATP-dependent transport protein[121,122]. 

 

 

2.2. DNA Gyrase and Ciprofloxacin Activity  

Fluoroquinolones such as ciprofloxacin bind to DNA gyrase, a type II topoisomerase 

enzyme, to inhibit negative supercoiling of DNA by preventing ligation of dsDNA breaks.   

The structure of the DNA gyrase-ciprofloxacin complex, which was used as a starting 

point for modelling, was taken from the Protein Data Bank pdbID: 2xct [88].  The 

structure of DNA gyrase from Staphylococcus aureus is shown in Figures 2.1 and 2.2 

below and the binding site of ciprofloxacin in DNA gyrase is shown in Figure 2.3. 
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 Figure 2.1 Figure 2.2 

Top (Figure 2.1) and side (Figure 2.2) view of structure of Staphylococcus aureus DNA 

gyrase complexed to ciprofloxacin (ciprofloxacin represented as a space filling model, 

pdbID: 2xct)[88].  The red and green chains represent individual protein monomers of a 

gyrase A-gyrase B fusion.  The turquoise helix represents a DNA segment. 

 

 

 

 

 

Figure 2.3: The ciprofloxacin-binding site with annotated 

adjacent amino acid and nucleotide residues 
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Type II topoisomerases use ATP to introduce negative supercoiling into DNA strands by 

creating double stranded breaks in a segment of DNA known as the G, or gate, strand 

through which the T, or transfer, strand of DNA may then be passed[88,123].  This 

inhibition occurs due to intercalation of the ciprofloxacin into DNA, which prevents 

binding of exposed phosphate groups in both strands of the broken DNA backbone to 

Tyr122, a tyrosine residue in DNA gyrase[111].  This double strand broken DNA prevents 

DNA synthesis by preventing the introduction of negative supercoils into the DNA 

backbone.  Without DNA synthesis, apoptosis of the cell occurs through the fragmentation 

of bacterial chromosomes[124]. 

 

In order to enhance the gyrase inhibition of ciprofloxacin, conjugates of ciprofloxacin and 

citrate have been prepared[117,125].  An advantage of citrate as a ligand is that citrate 

has been shown to be used as a siderophore by bacteria.  This has been best explored in 

Escherichia coli through the FecA membrane transporter[126,127].  The membrane porin 

OmpF (outer membrane protein F), an integral membrane protein that acts as a non-

specific channel, has been shown to be an important factor in the uptake of ciprofloxacin 

and other fluoroquinolones[128].  A method of antibiotic resistant adaptation in E. coli is 

to reduce levels of OmpF transcription, which in turn reduces permeability to and 

intracellular concentration of fluoroquinolones[112].  However, iron uptake using a 

siderophore and FecA is unaffected and may then be exploited for fluoroquinolone 

uptake[129].  Thus, the presence of a citrate group on the target antibiotic may mediate 

transport of this antibiotic across cellular membranes even in the presence of low levels 

of OmpF.  In addition, ciprofloxacin has been shown to retain its antimicrobial activity 

when conjugated to citrate[117]. 

 

While citrate’s activity as a siderophore is best understood in Escherichia coli, no 

complete DNA gyrase X-ray crystallographic structure for E. coli exists in the Protein 

DataBank. As a result, the homologous Staphylococcus aureus DNA gyrase was selected as 

a model for the E. coli gyrase (43.2% sequence identity)[125].   A sequence alignment 

between the full S. aureus sequence and the E. coli sequence of a fusion protein combining 

the GyrA and GyrB subunits is shown in Figure 2.4.  
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S. aureus       ------------------------------------------------------------ 

E. coli Fusion  GLIAVVSVKVPDPKFSSQTKDKLVSSEVKSAVEQQMNELLAEYLLENPTDAKIVVGKIID 

 

 

S. aureus       --------------------MDVASLPGKLADCSSKSPEECEIFLVEGDSAGGSTKSGRD 

E. coli Fusion  AARAREAARRAREMTRRKGALDLAGLPGKLADCQERDPALSELYLVEGDSAGGSAKQGRN 

                                    :*:*.********..:.*  .*::**********:*.**: 

 

S. aureus       SRTQAILPLRGKILNVEKARLDRILNNNEIRQMITAFGTGIG-GDFDLAKARYHKIVIMT 

E. coli Fusion  RKNQAILPLKGKILNVEKARFDKMLSSQEVATLITALGCGIGRDEYNPDKLRYHSIIIMT 

                 :.******:**********:*::*..:*:  :***:* *** .:::  * ***.*:*** 

 

S. aureus       DADVDGAHIRTLLLTFFYRFMRPLIEAGYVYIAQPPTGYKGLGEMNADQLWETTMNPEHR 

E. coli Fusion  DADVDGSHIRTLLLTFFYRQMPEIVERGHVYIAQPP------------------------ 

                ******:************ *  ::* *:*******                         

 

S. aureus       ALLQVKLEDAIEADQTFEMLMGDVVENRRQFIEDNAVYANLDFAELPQSRINERNITSEM 

E. coli Fusion  -LYKVKKG------------------KQEQYIKD-------------------------- 

                 * :**                    ::.*:*:*                           

 

S. aureus       RESFLDYAMSVIVARALPDVRDGLKPVHRRILYGLNEQGMTPDKSYKKSARIVGDVMGKY 

E. coli Fusion  DEAMDQYQISIALD------------------------GATLHTNASKSARVVGDVIGKY 

                 *:: :* :*: :                         * * ... .****:****:*** 

 

S. aureus       HPHGDSSIYEAMVRMAQDFSYRYPLVDGQGNFGSMDGDGAAAMRFTEARMTKITLELLRD 

E. coli Fusion  HPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMAD 

                ******::*:::***** ** ** **********:***.*****:** *::**: **: * 

 

S. aureus       INKDTIDFIDNYDGNEREPSVLPARFPNLLANGASGIAVGMATNIPPHNLTELINGVLSL 

E. coli Fusion  LEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAY 

                ::*:*:**:*****.*: *.*:*:::****.**:******************:*** *:  

 

S. aureus       SKNPDISIAELMEDIEGPDFPTAGLILGKSGIRRAYETGRGSIQMRSRAVIEERGG-GRQ 

E. coli Fusion  IDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRE 

                 .: ****  ***.* *******.:* *: **..**.****.: :*:** :*  .  **: 

 

S. aureus       RIVVTEIPFQVNKARMIEKIAELVRDKKIDGITDLRDETSLRTGVRVVIDVRKDANASVI 

E. coli Fusion  TIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDE-SDKDGMRIVIEVKRDAVGEVV 

                 *:* ***:******:********::*:::**: **** * : *:*:**:*::** ..*: 

 

S. aureus       LNNLYKQTPLQTSFGVNMIALVNGRPKLINLKEALVHYLEHQKTVVRRRTQYNLRKAKDR 

E. coli Fusion  LNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDR 

                *****.** **.***:**:** :*:**::***: :. ::.*:: ** *** ::****:** 

 

S. aureus       AHILEGLRIALDHIDEIISTIRESDTDKVAMESLQQR----------------------- 

E. coli Fusion  AHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEW 

                *****.* :** :** **. **.: *   *  :*  .                        

 

S. aureus       -----------FKLSEKQAQAILDMRLRRLTGLERDKIEAEYNELLNYISELETILADEE 

E. coli Fusion  LEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSAD 

                           : *:*:*******:**::*****::*:  **:***: *:**  **.. : 

 

S. aureus       VLLQLVRDELTEIRDRFGDDRRTEIQLG-------------------------------- 

E. coli Fusion  RLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSE 

                 *::::*:**  :*::***.*****  .                                 

 

S. aureus       ------------------------------------------------------------ 

E. coli Fusion  YEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARG 

                                                                               

 

S. aureus       ------------------------------------------------------------ 

E. coli Fusion  RPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKL 

                                                                               

 

 

S. aureus       ------------------------------------------------------------ 

E. coli Fusion  VEGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLI 
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S. aureus       ------------------------------------------------------------ 

E. coli Fusion  VPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIM 

                                                                               

 

S. aureus       ------------------------------------------------------------ 

E. coli Fusion  MITDAGTLVRTRVSEISIVGRNTQGVILIRTSEDENVVGLQRVAEPVDEEDLDTIDGSAA 

                                                                               

 

S. aureus       -------------------------------------------------------- 

E. coli Fusion  EGDDEIAPEVDVDDEPEEE------------------------------------- 

 

Figure 2.4: Sequence alignment, derived using ClustalX 2.1, of S. aureus DNA gyrase with 

E. coli DNA gyrase (protein sequence is formed from a construct between the GyrA and 

GyrB subunits)[130] (* = identical, : = conserved, .= semiconserved) 

 

 

Conservation in Clustal is defined by the Gonnet Pam250 scoring matrix in which the 

conserved groups have a score above 0.5 and semiconserved groups have a score of 0.5 

and below[130]. 

 

 

2.3 Structure of Ciprofloxacin Derivatives  

Derivatives of ciprofloxacin, 1, were prepared with citrate conjugated to the C7-

piperazinyl ring 2[117].  To determine whether the length of the C7-piperazinyl attached 

group affected the DNA gyrase inhibition, a spacer group was added between the 

piperazinyl ring and the citrate group to yield c-gly-ciprofloxacin 3 and c-ava-

ciprofloxacin 4.  All compounds were prepared by the research group of Dr. Anne-Katrin 

Duhme-Klair and Dr. Anne Routledge, Department of Chemistry, The University of 

York[125].  
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(3): c-gly-ciprofloxacin 

 

 

 (4): c-ava-ciprofloxacin  

 

 

The synthesis of c-ciprofloxacin from the conjugate of citrate and ciprofloxacin is shown 

in Md-Saleh et al., 2009[117]. The synthesis of the c-gly-ciprofloxacin, 3, and the c-ava-

ciprofloxacin, 4, are similarly described in Milner et al., 2006[131].  All syntheses were 

performed by the research group of Drs. Anne-Katrin Duhme-Klair and Anne Routledge 

in the Department of Chemistry at the University of York. 

 

 

2.4 DNA Gyrase Inhibition Assays 

Electrophoresis gel assays of DNA gyrase inhibition were performed for all compounds 

as described in the Inspiralis DNA gyrase inhibition assay protocol[132].  
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2.4.1 Methodology 

All compounds were synthesized by the research group of Drs. Anne-Katrin Duhme-Klair 

and Anne Routledge in the Department of Chemistry at the University of York.  All 

compounds were soluble at a concentration of 500 μM in 50mM Tris/HCl at pH 8.   

 

 500 μM stock solutions in 50mM Tris/HCl at pH 8 were prepared for all compounds.  

These solutions were diluted to 30 μM in the same solvent before use in the gyrase 

inhibition assay. 1% TAE (Tris-acetate-EDTA) gels were made to test compounds using 

concentrations of ciprofloxacin or ciprofloxacin derivatives between 20 and 0.5 μM, as 

described in the Inspiralis DNA gyrase inhibition assay protocol[132].  One lane for the c-

ava-ciprofloxacin gel was lost during the experiment due to damage to the gel. 

 

 

2.4.2 Results 

DNA gyrase assays were performed for a range of concentrations between 20 and 0.5M 

for each of the test compounds using the Inspiralis Escherichia coli DNA gyrase assay kit 

1[132].  The results of these assays are shown in Figure 2.5.  A second set of assays was 

performed for all compounds except ciprofloxacin and the average was used for further 

analysis.   

 

 

 

 

               20       10         5         1        0.5        0            (-) Concentration (μM) 

a)  

b)  

Supercoiled DNA 

Relaxed DNA 
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c)  

d)  

Figure 2.5: DNA gyrase assay electrophoresis gel a) ciprofloxacin; b) c-ciprofloxacin; c) c-

gly-ciprofloxacin; d) c-ava-ciprofloxacin. The negative control lane contained only the 

DNA without any added gyrase 

 

For each compound, the intensity of the supercoiled bands was measured using the 

ImageJ image-processing program[133].  The maximum intensity of these bands in each 

gel was set to 100% and all band intensities were normalized to the background intensity 

of each lane, which was then plotted with respect to the concentration of the compounds 

(Figures 2.6-2.9).  To calculate the IC50 (the concentration in μM at which 50% inhibition 

is achieved) from each graph, Equation 2.1 was minimized using the Solver add-in from 

Microsoft Excel. 

 

y = Bot + (
Top − Bot

1 + 10k(IC50−x)
)   

Equation 2.1: Curve to which data was fit for Figures 2.6-2.9.   Top and Bot yield the limits 

on the y-axis of the curve, k represents the slope of the graph, and the IC50 is as stated 

above. 
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Figure 2.6:  Effect of ciprofloxacin concentration on gyrase activity 

 

 

Figure 2.7: Effect of c-ciprofloxacin concentration on gyrase activity 
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Figure 2.8: Effect of c-gly-ciprofloxacin concentration on gyrase activity 

 

 

 

Figure 2.9: Effect of c-ava-ciprofloxacin concentration on gyrase activity 

 

 

The steepest curve, which represents the compound that had the greatest effect at a lower 

concentration, was c-gly-ciprofloxacin.  The IC50 for each compound was calculated 

(Table 2.1).    
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Table 2.1: IC50 calculated for each ciprofloxacin derivative based on electrophoresis gel 

assay data 

 

 

 

 

 

 

 

2.4.3 Discussion 

As the intensity of the supercoiled DNA increased with concentration of all ciprofloxacin 

derivatives, and DNA gyrase would have introduced negative supercoils to form the 

relaxed DNA structure, all compounds showed a concentration-dependent inhibitory 

effect on the DNA gyrase.  This suggests that the ciprofloxacin derivatives have a similar 

mechanism to that of ciprofloxacin.  Also, it can be shown qualitatively that, as the length 

of the linker increases, inhibition of DNA gyrase decreases.  While one lane for the c-ava-

ciprofloxacin gel was lost during the experiment, the overall pattern of the gel 

represented concentration-dependent inhibition. 

 

IC50 values were lowest for ciprofloxacin and c-gly-ciprofloxacin and therefore these 

compounds yielded the greatest DNA gyrase inhibition.  As a result of the small dataset 

and only two repeats of the experiment, these IC50 values are only useful for comparison 

between the various derivatives.  More repeats of the gel assay would yield more accurate 

IC50 values. 

 

 

2.5 Energy Minimization of Gyrase-Ciprofloxacin Complexes 

Accelrys Discovery Studio 3.0 was used to compare these results to the computational 

energy of binding in the ciprofloxacin-gyrase complex.  

 

The forcefield used in this thesis was the CHARMm forcefield and Momany-Rone partial 

charges to minimize structures in the Accelrys Discovery Studio 3.0 software 

package[134,135].  CHARMm (Chemistry at HARvard Molecular mechanics) is a 

Compound IC50 (μM) 
Ciprofloxacin 1.04 
c-ciprofloxacin 7.35 
c-gly-ciprofloxacin 1.01 
c-ava-ciprofloxacin 7.26 
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commercially available application of the CHARMM forcefield[134]. The potential energy 

of intermolecular and intramolecular interactions is calculated from this forcefield, which 

is a set of parameters governing the potential energy of various interactions, including 

electrostatics, Van der Waals, and hydrogen bonding as shown in Equation 2.2.  

 

U(R⃗⃗ ) = ∑ Kb(b − b0)
2

bonds

+ ∑ Kθ(θ − θ0)
2

angles

+ ∑ KUB(S − S0)
2

Urey−Bradley

+ ∑ Kφ(1 + cos(nφ − δ))

dihedral

+ ∑ Kω(ω − ω0)
2

impropers

+ ∑ {εij
min [(

Rij
min

rij
)

12

− 2(
Rij

min

rij
)

6

] +
qiqj

4πε0εrij
}

non−bonded
pairs

+ ∑ UCMAP(φ,ψ)

residues

 

Equation 2.2: CHARMm energy calculation equation[134]. 

 

 

The first three terms represent the effect of bond distances (b), bond angles (θ), and 

dihedral angles (φ) on the overall potential energy (U).  The Urey–Bradley term is a 

quadratic function of the distance between atoms A and C in a system of three bonded 

atoms A-B-C (S).  The improper dihedral angle term represents a pseudo-dihedral angle 

at a branchpoint in which atoms B, C and D are all bound to the central atom A expressed 

as a quadratic function defined by B-C-A-D (ω). The improper and Urey-Bradley terms 

are used to account for vibrational spectra as well as out-of-plane motions in the molecule 

observed empirically through spectroscopy.  The nonbonded term is a combination of the 

Coulombic interactions between point charges and Lennard-Jones potentials, which take 

into account Van der Waals attraction and core-core repulsion interactions between 

atoms.  The point charges are represented as qi and qj and the distance is rij.  The CMAP 

term is a 2-dimensional dihedral energy correction term used to optimize the protein 

backbone using the dihedral angles φ and ψ[134]. 
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The structures of the ciprofloxacin derivatives bound to DNA gyrase were minimized in 

this forcefield using fixed atom constraints for all protein and DNA atoms by the Smart 

Minimizer algorithm in Accelrys Discovery Studio 3.0[135].  The algorithm consists of 

two aspects: the Steepest Descent method, a simple method that uses only the first 

derivative of the potential energy surface and saves only the positions between individual 

iterations for a quick removal of unfavourable positions, followed by the Conjugate 

Gradient method, an iterative method that records all previous minimization steps as 

well as the energy gradient, in order to come to a faster convergence than using the 

Steepest Descent Method alone.   

 

Fixed atom constraints fix the positions of selected atoms during energy minimization or 

a molecular dynamics simulation.  As a result, the CHARMm forcefield calculation will not 

cover these atoms.  While the terms constraint and restraint have been used 

synonymously in some programs, a constraint as used by this algorithm completely fixes 

the positions of the atoms, while a restraint applies an additional penalty function to the 

calculated energy if the fixed atoms move from the starting positions. 

 

 

 2.5.1 Methodology 

The ciprofloxacin and Staphylococcus aureus DNA gyrase complex structure (pdb: 2xct) 

was modeled computationally using Accelrys Discovery Studio 3.0[135]. To prepare the 

citrate derivatives, individual ligands were manually added to the ciprofloxacin one atom 

at a time.  Appropriate hydrogen atoms and formal charges for pH 7 were added to 

simplify calculations.  If necessary for future work, the effect of pH would then be varied 

using the structure yielded.  The ciprofloxacin and ciprofloxacin derivative structures 

were parameterized using CHARMm forcefields and associated Momany-Rone partial 

charges[134].  

 

All water molecules were removed to simplify calculations and avoid impact of solvent 

on the metal or hydrogen bonding interactions, as the resolution of this structure was 

3.35Å.  To be fully confident in the positions of the water molecules, a minimum 

resolution of ~2Å would be needed; therefore the water positions may not be highly 

reliable to use for modelling.  The structure was minimized using fixed atom constraints 
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for all protein and DNA atoms.  The Smart Minimizer algorithm of Discovery Studio 3.0 

was employed using a maximum of 200 steps. Molecular dynamics simulations were then 

performed with no fixed atom positions, in order to determine the stability of the 

minimized structure[134].  The simulations were set to reach equilibrium by a maximum 

of 1000 steps of 0.001s at a target temperature of 300 K, followed by another 

minimization step, to ensure this structure was stable.  The final structures derived for 

each protein-ligand complex were within an all-atom RMSD <1.0 Å.  The minimized 

energy was calculated based on the overall CHARMm energy of the complex.  The 

manganese ion coordinated to the ciprofloxacin was not fixed during minimization for 

simplicity as a full parameterization of the metal ion was beyond the scope of this project. 

 

2.5.2 Results 

The ciprofloxacin derivative-DNA gyrase complex was minimized using the CHARMm 

force field with Momany-Rone partial charges and optimized using molecular dynamics 

calculations in Accelrys Discovery Studio 3.0[135]. 

 

The manganese ion coordinated to the ciprofloxacin was not fixed during minimization 

and was found to change its position during minimization, which would not be expected 

due to coordination with the acid group of the quinoline ring as well as solvent water 

molecules.  This may cause incorrect positioning of the metal due to incorrect 

parameterization of the manganese ion.  This ion may need to maintain bonding with 

residues and/or water molecules.  In addition, water molecules binding to the metal can 

be treated as fixed molecules or as a water bath.  If the ion was fixed, a distance constraint 

could be used to maintain the bonding geometry.  However, a full parameterization of all 

minimized groups was beyond the scope of this project.   

 

The minimized structures of ciprofloxacin and its derivatives are shown in Figures 2.10-

2.19.  Note that the ciprofloxacin was minimized but retained its structure within 1Å 

RMSD of the crystal structure 2xct.  c-ava-ciprofloxacin had two differing conformations 

within the same protein and both are described.  
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Figure 2.10: Computationally derived structure of the ciprofloxacin-DNA gyrase complex. 

The green and orange ribbons represent Gyrase A and B fusion protein subunits of DNA 

gyrase. The DNA sugar-phosphate backbone is in white while the bases are as follows: 

red = adenine, green= guanine, cyan = thymine, and magenta = cytosine. 

 

 

Figure 2.11: Hydrogen bonding interactions of ciprofloxacin-DNA gyrase complex.  Note 

that the fluoroquinolone ring of all ciprofloxacin derivatives remains intercalated 

between the Thymine 8 and Guanine 9 residues of the DNA segment (Nucleotide residue 

numbers taken from the crystal structure). 
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Figure 2.12: Computationally derived structure of the c-ciprofloxacin-DNA gyrase 

complex. The green and orange ribbons represent Gyrase A and B fusion protein subunits 

of DNA gyrase. The DNA sugar-phosphate backbone is in white while the bases are as 

follows: red = adenine, green= guanine, cyan = thymine, and magenta = cytosine. 

 

 

The citrate attached to the ciprofloxacin piperazinyl ring caused increased hydrogen 

bonding between c-ciprofloxacin and arginine, lysine, and asparagine residues as shown 

in Figure 2.13. 

 

 

Figure 2.13: Hydrogen bonding interactions of the c-ciprofloxacin-DNA gyrase complex  
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Figure 2.14: Computationally derived structure of the c-gly-ciprofloxacin-DNA gyrase 

complex. The green and orange ribbons represent Gyrase A and B fusion protein subunits 

of DNA gyrase. The DNA sugar-phosphate backbone is in white while the bases are as 

follows: red = adenine, green= guanine, cyan = thymine, and magenta = cytosine. 

 

 

Figure 2.15: Hydrogen bonding interactions of the c-gly-ciprofloxacin-DNA gyrase 

complex  
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As shown in Figure 2.15, the c-gly-ciprofloxacin maintains the hydrogen bonding with the 

Arg458. In addition, Arg479 and Asn476 residues form hydrogen bonds with the c-gly-

ciprofloxacin to further stabilize this structure. 

 

 

 

 

Figure 2.16: Computationally derived structure of conformation 1 of the c-ava-

ciprofloxacin-DNA gyrase complex.  The green and orange ribbons represent Gyrase A 

and B fusion protein subunits of DNA gyrase. The DNA sugar-phosphate backbone is in 

white while the bases are as follows: red = adenine, green= guanine, cyan = thymine, and 

magenta = cytosine. 
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Figure 2.17: Hydrogen bonding interactions of the conformation 1 of c-ava-

ciprofloxacin-DNA gyrase complex 

 

 

This conformation of c-ava-ciprofloxacin shown in Figure 2.17 is directed away from the 

solvent towards the surface of the DNA gyrase due to hydrogen bonding with an arginine, 

Arg458, which bends the spacer group to allow maximum contact. 
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Figure 2.18: Computationally derived structure of conformation 2 of the c-ava-

ciprofloxacin-DNA gyrase complex.  The green and orange ribbons represent Gyrase A 

and B fusion protein subunits of DNA gyrase. The DNA sugar-phosphate backbone is in 

white while the bases are as follows: red = adenine, green= guanine, cyan = thymine, and 

magenta = cytosine. 
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Figure 2.19: Hydrogen bonding interactions of the conformation 2 of c-ava-

ciprofloxacin-DNA gyrase complex 

 

 

The group attached to the piperazinyl ring of this conformation of c-ava-ciprofloxacin 

shown in Figure 2.19 remained solvent-oriented, as it did not form the hydrogen bond 

with the arginine residue bound to c-ava-ciprofloxacin conformation 1 (Arg458). 
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the interactions of these ciprofloxacin derivatives with DNA gyrase.   The c-gly-

ciprofloxacin complex had the greatest number of hydrogen bonding interactions.  The 

stabilizing effects of this hydrogen bonding may explain the smaller change in energy 

between c-ciprofloxacin and c-gly-ciprofloxacin compared to the difference between c-

gly-ciprofloxacin and c-ava-ciprofloxacin (Table 2.2).  Despite the increase in spacer size 

from c-ciprofloxacin to c-gly-ciprofloxacin, the additional hydrogen bonding may 

stabilize the binding, resulting in a lower energy minimized structure for c-gly-

ciprofloxacin than expected.  Some of these hydrogen-bonding interactions are lost when 

the length of the spacer increases to c-ava-ciprofloxacin, which causes a larger increase 

in energy. 

 

 

Table 2.2:  Computationally determined energies of minimized DNA gyrase-ciprofloxacin 

derivative complexes 

 

Compound Minimized Energy (kcal/mol)  
Ciprofloxacin -2385 
c-ciprofloxacin -2273 
c-gly-ciprofloxacin -2218 
c-ava-ciprofloxacin -1750 

 

 

2.5.3 Discussion 

The compounds with groups conjugated to the piperazinyl ring had a higher energy than 

ciprofloxacin.  The compound with the highest energy of the ciprofloxacin derivatives 

was the c-ava-ciprofloxacin, which also had the longest carbon chain linker.  Therefore, 

the length of the linker is inversely proportional to the stability of the complex with DNA 

gyrase.  Note that this was a crude modelling study and therefore, these energy values 

would require additional parameterization and correction to be accurate. However, as a 

qualitative comparison, this energy data reflects the experimental results of increasing 

energy of binding, and therefore decreased binding affinity, with length of the spacer.   

 

Molecular dynamics simulations were performed on the minimized structures of the test 

compounds (Figures 2.10-2.19) using default parameters for CHARMm forcefields with 
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the positions of all atoms unfixed[134].  However, the structures derived from 

minimization were fairly stable and the structures achieved were almost identical (within 

RMSD of 1Å) to the original minimized structures.   

 

c-ava-ciprofloxacin has two possible conformations due to a difference in binding, as 

shown in Figures 2.16-2.20.  Conformation 2 forms fewer hydrogen bonds with the 

protein than conformation 1.  The other ciprofloxacin derivatives do not show multiple 

conformations, likely due to the length of the aminovaleric acid spacer group introducing 

flexibility into the conjugated ligand, which may make the c-ava-ciprofloxacin more 

difficult to bind to the protein.  

 

The length of the spacer group attached to the piperazinyl ring was found to be 

proportional to the energy of binding to the DNA gyrase.  The c-gly-ciprofloxacin 

possessed the greatest number of hydrogen bonding interactions and added three atoms 

to the length of the spacer group.  As a result, the optimal spacer group should not contain 

more than 1-3 atoms.  This is further supported by comparison to an experimental screen 

of reference and clinical bacterial isolates against the derivatives to test for inhibition of 

growth by the research group of Drs. Anne-Katrin Duhme-Klair and Anne Routledge in 

the Department of Chemistry at the University of York[125].  In five out of the seven 

Gram-negative species tested, c-gly-ciprofloxacin was found to be more effective than c-

ciprofloxacin.  In Gram-positive species, both c-ciprofloxacin and c-gly-ciprofloxacin 

caused similar inhibition.  In all strains, c-ava-ciprofloxacin possessed lower inhibitory 

activity or the strain was completely resistant to this compound.  In all cases, the 

compounds tested still had less DNA gyrase inhibitory activity than ciprofloxacin[136]. 

 

Future work could be performed using other spacer groups to determine whether 

differing conformations of the same compound also have a difference in energy.  It would 

also be useful to produce a ciprofloxacin derivative with a highly sterically hindered 

conjugate ligand to provide a negative control for further DNA gyrase assays with 

ciprofloxacin derivatives, as the steric hindrance at the solvent exposed region should 

prevent binding with high affinity to the DNA gyrase. Finally, proper parameterization of 

the manganese ion coordinated to the ciprofloxacin may result in a more accurate 

structure. A restraint on the distance between the manganese ion and the active site 
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residues as well as any solvent water molecules bound to the manganese may be required 

in order to maintain this distance during construction of the model.  An important aspect 

of modelling the metal ion is to properly model the charge of the ion, which would require 

a higher resolution structure containing bound solvent atoms[137].  The solvent was not 

modelled, as there were no explicit solvent atoms in the crystal structure (PdbID: 2xct) 

and the models were meant to be a basic comparison as opposed to an in-depth 

description of the bound ligands. 

 

Using other modelling techniques such as protein docking could provide a more precise 

model than using simple molecular mechanics, as well as a method to screen the DNA 

gyrase for inhibitory action of other ciprofloxacin derivatives.  Alternatively, a QM/MM 

model could be used to continue the modelling performed, while increasing the precision 

by inclusion of quantum mechanical terms for the ciprofloxacin active site[82]. 

 

Unaltered ciprofloxacin was found to be the most effective inhibitor in the experimental 

assays as well as to possess the lowest energy structure in a computational model of DNA 

gyrase-ligand binding.  The compound containing the longest spacer group, c-ava-

ciprofloxacin, had the highest energy conformation, suggesting a proportional 

relationship between the size of the spacer and the energy of binding.  The energy 

difference transition from the c-gly-ciprofloxacin to the c-ava-ciprofloxacin was much 

greater than from the c-ciprofloxacin to the c-gly-ciprofloxacin in the computational 

model.  This was most likely due to additional stability in the c-gly-ciprofloxacin 

generated by increased hydrogen bonding interactions with DNA gyrase.  This supports 

the experimental result that c-gly-ciprofloxacin had the lowest IC50 and therefore the 

greatest in vitro inhibition of the derivatives.  
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Chapter 3: Review of deacetylase enzymes 

 

3.1 Introduction 

IcaB was shown to have metal-dependent deacetylase activity from Staphylococcus 

epidermidis and was under study in the Potts lab at the University of York[138].  The 

description of deacetylase enzymes in the literature is divided into individual enzymes as 

opposed to a general summary.  As a result, this chapter begins with an overview of 

bacterial deacetylase enzymes to summarize the structural and mechanistic features of 

such enzymes, with a particular focus on carbohydrate esterase family 4, of which IcaB is 

a member[139].  These features will then be used to evaluate the homology model 

produced in Chapter 4. 

 

Deacetylase enzymes catalyze the removal by hydrolysis of an acetyl group from a 

substrate[140,141].  The removal of such acetyl groups is widely used for affecting many 

different biological mechanisms and processes including gene regulation via packing of 

DNA into heterochromatin, the breakdown of substrates for metabolic pathways, and 

production of cell surface carbohydrates involved in the formation of 

biofilms[140,142,143].   

 

Many bacteria including Streptococcus pneumoniae and Staphylococcus epidermidis form 

carbohydrate-dependent biofilms using partially deacetylated exopolysaccharides 

(biofilms have been previously described in chapter 2).  Synthesis of these functional 

polysaccharides includes partial deacetylation by deacetylase enzymes [144,145].  In 

addition, deacetylation of peptidoglycan in the bacterial cell wall has evolved as a 

mechanism for evading the host immune response, by conferring resistance to lysozyme.   

The removal of the N-acetyl group prevents binding with specific amino acids in the 

substrate binding site[146,147].  Deacetylation of lysine residues of histone proteins is 

essential for silencing of nuclear signalling because acetylated lysine residues are less 

positive, which reduces interactions with the phosphodiester backbone, thereby forming 

heterochromatin[148].  As described in Chapter 1, heterochromatin is a more condensed 

form of chromatin, which prevents binding of proteins to initiate DNA transcription. 

While the original pattern of acetylation is required for DNA attachment to the histone 
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proteins, its removal by deacetylase enzymes is required for proper formation of 

heterochromatin[149]. 

 

There are a number of deacetylase families based on substrate and sequence 

similarity[139,140]. The first deacetylase enzymes discovered were histone 

deacetylases, the structures of which were first reported in 1996[150].  The two major 

categories can be classified as carbohydrate esterases, which act on acetylated 

carbohydrates, and histone deacetylases including sirtuins.  Sirtuins were initially 

believed to act on acetyl-lysine residues of histone proteins, similar to histone 

deacetylases.  However, recent evidence has suggested an alternative function of 

hydrolysis of fatty acid chains from lysine residues Lys19 and Lys20 of TNFα to regulate 

TNFα secretion[151].  

 

Table 3.1 summarizes the number of sequences and structures available for the families 

of deacetylase enzymes.  The carbohydrate esterase protein families were found in CAZy, 

the Carbohydrate Active Enzymes database (http://www.cazy.org, Updated 2014-11-

13)[152,153]. The sequences were listed in CAZy, and full descriptions were linked to 

GenBank, (Version 204.0)[154].  

http://www.cazy.org/
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Table 3.1: Sequences and structures of known families of deacetylase enzymes as of June 

8, 2015[152] 

 

Family Class Sequences Structures 

Lysine Deacetylases 

Histone Deacetylases 2443 91 

Sirtuins 81 31 

Citrulline deacetylase 2 2 

Carbohydrate esterases 

CE-1 3886 9 

CE-2 186 4 

CE-3 146 1 

CE-4 8582 18 

CE-5 868 0 

CE-6 165 1 

CE-7 495 4 

CE-8 932 4 

CE-9 3242 4 

CE-10 N/A N/A 

CE-11 2585 7 

CE-12 552 1 

CE-13 1 0 

CE-14 2571 2 

CE-15 105 0 

CE-16 89                     0 

 

 

 

3.2 Histone Deacetylases and Sirtuins 

The first major category of deacetylase enzymes is the family containing both the histone 

deacetylase and sirtuin enzymes, which show deacetylase activity against acetylated 

lysine residues. 
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3.2.1 Histone Deacetylases 

Histone deacetylation, specifically deacetylation of lysine residues in histones H3 and H4, 

is associated with reduced levels of transcription[18,155].  As a result, histone 

deacetylase enzymes (HDACs) have been investigated as targets for cancer 

treatment[156,157].  HDAC class I is found in a majority of cell types, whereas class II has 

shown higher levels of expression in certain cell types such as brain, ovary, pancreas and 

heart cells than others.  The difference in the levels of class I and II expression in different 

tissues suggests a role of HDACs in cellular differentiation[140].  The catalytic domain of 

histone deacetylase 4 is an eight-stranded parallel β-sheet fold, as seen in Figure 3.1. 

 

 

Figure 3.1: Histone deacetylase 4 bound to a triflouromethylketone inhibitor (the 

inhibitor is shown in stick form; pdbID: 2vqj)[158] 

 

Conserved residues in loops L4 and L7 coordinate to a single Zn2+ ion at the active site.  

The surface residues leading to the active site vary between different HDAC isoforms, but 

the Zn2+ ion and attached residues are generally conserved[158,159].  The general 

histone deacetylase mechanism involves a divalent metal ion bound to a triad of negative 
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residues (Asp178, His180, and Asp267) as well as a catalytic acid residue and catalytic 

base residue.  These residues, in addition to a hydrophobic tunnel for binding of the 

substrate, are common in most deacetylases.  A proposed general catalytic mechanism 

for histone deacetylases is shown in Scheme 3.1. 

 

 

 

Scheme 3.1: A generic histone deacetylase Zn2+-dependent mechanism as reproduced 

from the description of Lombardi et al. with amino acid residue numbers taken from 

human HDAC8[159] 

 

 

The catalytic base (His143) attacks a water molecule to form a nucleophile, which results 

in the release of an acetate molecule and a lysine residue with a free amine.   In order to 

stabilize the histidine positions in the active site, these residues are hydrogen-bonded to 

aspartate residues (Asp176 and Asp183) elsewhere in the protein[159]. 

 

 

3.2.2 Sirtuins 

In bacteria, sirtuins target a variety of DNA regulatory proteins and metabolic enzymes.   

Similar to histone deacetylases, sirtuins deacetylate lysine residues by a Zn2+-dependent 
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mechanism but also use NAD+ (nicotinamide adenine dinucleotide) as a cofactor.  The 

catalytic core of sirtuin proteins is composed of a Zn2+-binding domain, a larger 

Rossmann-fold domain and four loops that form the catalytic cleft. Within this cleft is a 

hydrophobic tunnel in which the lysine residue and NAD bind. Several intermediates and 

transition states along the reaction mechanism have been proposed; however, the exact 

catalytic mechanism for formation of the 2’-O-acetyl-ADP-ribose reaction product is 

structurally and biochemically unknown[160].  However, Hirsch et al. suggested a water 

molecule may act as the nucleophile activated by the residue Asp184[161].  Recent 

research has suggested that some sirtuins may not be deacetylases but instead remove 

fatty acid groups from Lys19 and Lys20 of Tumour Necrosis Factor-α in order to promote 

its secretion[151].  

 

 

3.3 Carbohydrate Esterases 

The second major group of deacetylase enzymes are carbohydrate esterases; a group of 

16 families of deacetylase enzymes based upon amino acid sequence similarities[153].  

These enzymes are responsible for deacetylation of cell surface carbohydrates such as 

chitin, peptidoglycan, and poly-N-acetylglucosamine[162]. The general active site for 

carbohydrate esterases is a catalytic triad of polar or negatively charged residues, which 

binds divalent ions with a preference for Zn2+[152].  The esterase mechanism is started 

by nucleophilic attack from a catalytic base residue and a catalytic acid residue provides 

a free H+ for the reaction, similar to the histone deacetylase mechanism.  The other active 

site commonly used by carbohydrate esterases involves a Ser-His-Asp triad and the 

mechanism is similar to that used by serine proteases using a histidine as a catalytic 

acid/base residue while a serine performs a nucleophilic attack on the acetyl 

carbon[163]. 

 

Many of these proteins contain a hydrophobic tunnel region leading the substrates to the 

active site, as will be shown in sections 3.3.1-3.3.12.  Families CE-1, CE-2, CE-3, CE-5, and 

CE-6 are all acetylxylan esterases with a Ser-His-Asp triad in the active site[164]. 
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3.3.1 CE-2  

Cellvibrio japonicus acetylxylan esterase (CjCE2B) is a CE2 family enzyme involved in the 

breakdown of xylan from plant matter[165].  Xylan is a polymer of the monosaccharide 

xylose as shown below: 

 

 

(1): generic xylan structure 

 

R groups may include functional groups such as acetyl groups or other saccharide units 

in branched xylan chains.  The structure of the CjCE2B enzyme is an N-terminal β-barrel 

domain of around 130 residues linked to a C-terminal domain of approximately 220 

residues. The C-terminal domain consists of an α/β-hydrolase fold.  This fold, in turn, 

consists of repeating β-α-β motifs to form a five-stranded parallel β-sheet, (β2, β1, β3, β4, 

and β5).  In addition, this sheet is located next to two α-helix regions on one side of the 

sheet and three α-helices.   All helices run antiparallel to the β-strands.  The C-terminal 

catalytic domain performs the deacetylation, whereas the N-terminal domain is believed 

to play a role in substrate recognition by forming part of the binding cleft[166].  The 

structure of CjCE2B is shown in Figure 3.2[166]. 

 

 

Figure 3.2: Structure of CjCE2B at 2.0Å resolution (pdbID: 2W9X).  Blue represents the 

N-terminal domain and green the C-terminal domain[166]. 
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As with CE1 and CE6 enzymes, CjCE2B contains a Ser-His-Asp triad.  Ser151 acts as a 

nucleophile, His336 has a role as an acid/base residue, and the main chain carbonyl of 

Cys333 makes a hydrogen bond with His335 to stabilize and activate it.  This triad 

resembles the Ser-His-Asp triad in serine proteases and therefore suggests a serine 

protease-like mechanism for this enzyme. 

 

 

3.3.2 CE-3 

The acetylxylan esterase CtCes3 from Clostridium thermocellum catalyzes the 

degradation of plant cell wall xylan as a nutrient source.  The breakdown products have 

been investigated for use as biofuels[167].  The crystal structure shows a dimer interface 

near the active site that takes up 9% of the overall surface area.  This suggests the enzyme 

may be a homodimer in solution, which shields the active site from the solvent.  The 

monomer displays an α/β hydrolase fold, consisting of a central deformed five-stranded 

parallel β-sheet surrounded by six α-helices (Figure 3.3). 

 

 

Figure 3.3: Structure of the CtCes3 N-terminal domain at 2.0Å resolution (pdbID: 

2VPT)[168]. 

 

 

The active site of this enzyme contains the Ser-His-Asp catalytic triad common to 

enzymes with a serine-protease-like mechanism (Ser44, His208, and Asp205).   
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3.3.3 Carbohydrate Esterase Family 4 

CE4 was selected as the main focus for this project as IcaB is a member of this family.  As 

a result, several specific enzymes were examined to fully define the necessary properties 

of the CE4 family.  Carbohydrate esterase family 4 includes chitin deacetylases, 

chitooligosaccharides, peptidoglycan deacetylases specific to both N-acetyl glucosamine 

(NAG) and N-acetylmuramic acid (NAM), and enzymes responsible for deacetylation of 

polysaccharides necessary for biofilm formation (such as IcaB in staphylococci and PgaB 

in Escherichia coli). Carbohydrate esterase family 4 (CE-4) enzymes possess the most 

structures and sequences available in CAZy compared to other carbohydrate esterases 

and are classified by the presence of a nodB homology domain (Pfam ID: PF01522).  The 

nodB homology domain is any domain showing high sequence homology to nodB, a 

chitooligosaccharide deacetylase from rhizobia, which forms a 7-stranded β-barrel 

structure[169,170].  This nodB homology domain is generally found as part, or all, of the 

catalytic domain in CE-4 enzymes.  

 

 

3.3.3.1 Chitin Deacetylase 

Chitin deacetylases are involved in the chitin breakdown pathway.  Chitin is a N-

acetylglucosamine polymer found in the exoskeleton of many arthropods, including crabs 

and shrimp, as well as the fungal cell wall[171].  The structure of chitin, a polymer of β-

1,4-linked N-acetylglucosamine residues, 1, is shown below.  

 

 

(2): Chitin[171] 

 

Bacterial chitin deacetylases are found in Vibrionaceae, which are marine bacteria 

responsible for recycling nitrogen present in chitinous debris found in sediment[172].  

Chitin deacetylases catalyse the reaction of chitin into chitosan, which has applications in 

a number of industries including biomedicine, food ingredients, cosmetics and 

pharmaceuticals[173].  Chitin deacetylases recognize a sequence of four GlcNAc units in 
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the substrate, one of which undergoes deacetylation, producing chitosan with a regular 

deacetylation pattern[143].  Chitin deacetylase was found to be active on both xylan and 

several chitin-like substrates.  In addition, the activity was significantly increased in the 

presence of Co2+ addition to these chitin-like substrates.  However, the presence of Co2+ 

in the enzymes did not affect the activity when xylan was used as a substrate, which 

suggests a metal-dependent mechanism for the deacetylation of chitin[139].  There are 

no reported structures of chitin deacetylases in bacteria in the Protein Data Bank.   

 

 

3.3.3.2 GlcNAc Peptidoglycan Deacetylase 

Streptococcus pneumoniae peptidoglycan GlcNAc deacetylase (SpPgdA, Figure 3.4) 

deacetylates GlcNAc residues in peptidoglycan in order to protect the Gram-positive 

bacterial cell wall from host lysozyme.  This lysozyme hydrolyzes β-(1,4)-glycosidic 

linkages between MurNAc and GlcNAc residues in the glycan backbone.  Reduced activity 

of host lysozyme enzyme has been shown to be associated with increased deacetylation 

of peptidoglycan caused by PgdA in Enterococcus faecalis[174].  SpPgdA is able to accept 

an oligomer of three GlcNAc residues as a substrate, in which the nitrogen-bonded acetyl 

group of the middle sugar is removed by the enzyme. The structure of SpPgdA shows that 

it uses a Zn2+-binding triad composed of one aspartate and two histidine residues with a 

nearby aspartate and histidine acting as the catalytic base and acid, respectively, as 

shown in Scheme 3.2[175].  This is somewhat similar to the mechanism of histone 

deacetylases as well as other carbohydrate esterases containing a zinc ion such as 

LpxC[176].  The efficiency of SpPgdA is approximately 80% deacetylation for the N-

acetylglucosamine[146]. The C-terminal domain of this enzyme contains the deacetylase 

activity while the functions of the mid and N-terminal domain are currently unknown.  
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Figure 3.4: Structure of SpPgdA from S. pneumoniae at 1.75Å from (pdbID: 2C1G).  Blue 

represents the N-terminal domain, green the C-terminal domain, and pale green the 

linker domain[175]. 

 

 

 

Scheme 3.2: Proposed Zn2+-dependent deacetylase mechanism of SpPgdA in 

Streptococcus pneumoniae where Asp275 acts as a catalytic base and His417 acts as the 

catalytic acid[175]. 
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3.3.3.3 MurNAc Peptidoglycan deacetylase 

A peptidoglycan deacetylase from Bacillus subtilis, PdaC (originally YjeA), deacetylates N-

acetylmuramic acid (MurNAc) as well as GlcNAc.  PdaC shares only 25.8% sequence 

identity with SpPgdA (Genbank IDs: AIX0697.1 and COT19452.1, respectively).  Although 

the biological function of this N-acetylmuramic acid deacetylation is unknown, it has been 

shown that a mutant deacetylase conferred higher sensitivity to lysozyme, as in 

PgdA[174,177].  This may suggest a role for PdaC in immune evasion.  Unlike the 

Streptococcus pneumoniae PgdA, a highly Zn2+-dependent GlcNAc peptidoglycan 

deacetylase, there was less dependence on the Zn2+ ion for deacetylation of peptidoglycan 

by PdaC than other divalent metal ions such as Mn2+, Mg2+, and Ca2+.  PdaC was also found 

to possess deacetylase activity against N-acetylglucosamine (GlcNAc) oligomers. 

Therefore, PdaC possesses GlcNAc deacetylase activity toward GlcNAc oligomers and 

MurNAc deacetylase activity toward B. subtilis peptidoglycan[177].  However, there is no 

structure available for PdaC in the Protein Data Bank as of July 11, 2015. 

 

 

3.3.3.4 Chitooligosaccharide Deacetylase  

 

ChbG encodes a monodeacetylase that is essential for growth on the acetylated 

chitooligosaccharides chitobiose and chitotriose but is not required for growth on 

cellobiose and chitosan, the deacetylated form of chitobiose[178].  The chb operon, 

originally known as the cel operon, of E. coli is involved in the utilization of the β-

glucoside chitobiose in the E. coli chitin breakdown pathway[179].  The gene products of 

chbB, chbC, and chbA form a permease that transports chitobiose across the inner 

membrane and phosphorylates it to chitobiose-6-P, while chbG codes for a deacetylase 

and chbR codes a repressor/activator protein[180–182].  It is believed that deacetylation 

of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as 

inducers of function, by changing the conformation of ChbR to an active form[183].   

 

ChbG is active as a homodimer. Putative metal-binding residues that are conserved across 

the YdjC family of proteins, of which ChbG is a member, are a triad formed by an aspartate 

and two histidines.  A recent report in 2014 by Andrés et al. has shown that the catalytic 

site of chitooligosaccharide deacetylase from Vibrio cholerae resembles those of other 
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CE4 enzymes, containing both this divalent metal-binding triad and catalytic acid and 

catalytic base residues.  The structure of the active homodimer is shown in Figure 3.5 and 

the proposed mechanism in Scheme 3.3[178]. 

 

 

Figure 3.5: Structure of the chitooligosaccharide deacetylase homodimer from Vibrio 

cholerae at 1.88Å (pdbID: 4NY2). Individual monomers are shown in blue and green and 

the active site residues in stick form[178]. 
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Scheme 3.3: Proposed mechanism of action for chitooligosaccharide deacetylase from 

Vibrio cholerae in which Asp39 acts as the catalytic base and His295 as the catalytic 

acid[178]. 

 

 

3.3.3.5 Poly-N-acetylglucosamine Deacetylases (PgaB and IcaB) 

Although there were a large variety of additional polysaccharide deacetylases examined 

for features common to deacetylases in general at the beginning of this project, the 

carbohydrate esterase family 4 (CE4) became the main focus, as IcaB is classified as a CE4 

enzyme[184]. IcaB partially deacetylates the growing poly-N-acetylglucosamine chain 

(PNAG) to yield the deacetylated form, dPNAG (also known as PIA, Polysaccharide 

Intercellular Adhesin), as shown in Scheme 3.4[144].   
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Scheme 3.4: Deacetylation of poly-N-acetyl glucosamine (left) yielding randomly 

deacetylated PNAG (right)[37] 

 

 

The structure of PgaB is shown in Figure 3.6.  The N-terminal domain of PgaB in 

Escherichia coli (residues 1-310) performs the same function as IcaB for Staphylococcus 

epidermidis[186].   

 

 

Figure 3.6: Structure of PgaB with Ni2+ as the active site metal from E. coli from pdbID: 

4f9d (blue=N-terminal domain, green=C-terminal domain) containing the active site 

residues, Ni2+ ion and bound acetate in stick form[142]. 
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The active site of PgaB consists of an aspartate, histidine, histidine (His184, His189, 

Asp115) metal binding triad to bind the active site divalent metal ion as well as an 

aspartate residue, Asp114, which acts as a catalytic base, and a histidine residue, His55, 

which acts as a catalytic acid (Scheme 3.5). The catalytic base is held in place in the active 

site by an arginine residue, Arg289, by hydrogen bonding.  The backbone nitrogen of a 

methionine residue, Met67, helps to hold the substrate carbonyl in place during the 

reaction by hydrogen bonding to the carbonyl oxygen. 

 

 

Scheme 3.5: Active site mechanism of deacetylation of PNAG by PgaB in which the 

catalytic base residue is Asp114 and His55 is the catalytic acid residue[142]. 

 

 

Unlike other carbohydrate esterase family 4 enzymes (11 structures known), in PNAG 

deacetylases such as PgaB, the catalytic acid histidine residue is not activated by an 

aspartate residue farther away in the structure, but by a water molecule.  This 

substitution may explain the partial deacetylation of PNAG caused by these enzymes as 

the polar water molecule does not lower the pKa of the histidine as effectively as a 
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negatively charged aspartate[143,175]. The optimal substrate length was determined by 

a length-specific oligomer assay to measure the degree of de-N-acetylation by measuring 

free amine production using fluorescamine.  Fluorescamine reacts with free amines to 

produce a fluorescent product proportional to the concentration of free amine[187].  The 

fluorescence is then compared to the length of the deacetylated GlcNAc oligomer. The 

highest enzymatic activity for PgaB was achieved when the active site contained five 

monosaccharide units at one time with a kcat/Km of β-1,6-(GlcNAc)5 = 0.25 M-1s-1.  This is 

indicative of much lower activity compared to other CE4 enzymes such as SpPgdA 

(0.00015M-1s-1)[142].  The N-terminal deacetylase domain resembles the C-terminal 

domain of other CE4 enzymes such as SpPgdA. It is currently unknown whether the 

position of this domain at the C- or N-terminal affects the deacetylase function[175]. A 

series of hydrophobic residues in PgaB (Phe154, Tyr190, Ile192, Leu200, Tyr209, and 

Tyr216 from β6–7, β9–10, and β11-12) form a binding groove to hold the substrate 

PNAG[142].  The surface of this groove is shown in Figure 3.7.  

 

 

Figure 3.7: Hydrophobic PgaB binding groove surface.  Regions of positive charge are 

shown in blue and negative charge in red, while the green region represents the 

hydrophobic residues that form the binding groove[142]. 

 

 

3.3.4 CE-7 

CE-7 enzymes, such as cephalosporin C deacetylase, display activity towards both 

acetylated xylooligosaccharides and cephalosporin C, unlike other carbohydrate esterase 
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enzymes.  In addition to the breakdown of acetylated xylan, these enzymes have been 

investigated for use in the synthesis of novel cephalosporin antibiotics[188]. The 

structure of cephalosporin C deacetylase is a classical α/β hydrolase fold. Substrates bind 

predominantly through non-specific contacts with protein hydrophobic residues. Protein 

residues involved in catalysis are held in place by interactions from the α/β hydrolase 

fold.  This fold also contains interactions between individual monomers to form dimers, 

three of which in turn form the catalytically competent hexamer containing six active 

centres aimed towards the central pore.  The entrance to the binding channel of 

cephalosporin C deacetylase may function to block access of sterically hindered 

substrates to the active site. This would explain the observation that the enzyme is active 

only on small, acetylated molecules[189]. The structure of a cephalosporin C deacetylase 

dimer is shown in Figure 3.8. 

 

 

Figure 3.8: Structure of the cephalosporin C deacetylase dimer from Bacillus subtilis with 

acetate in the active site at 1.9Å resolution (pdbID: 1ODT).  Blue and green represent 

individual monomer subunits[189]. 

 

 

The substrate is held in place by residues Ser181, Tyr91, and His298.  Tyr206 may be 

involved in a stacking interaction with the substrate necessary for stability in the active 

site[189].  The active site of cephalosporin C deacetylase is shown in Scheme 3.6.   The 
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Ser181, His298, Asp269 triad in the active site suggests a serine protease-like 

mechanism. 

 

 

Scheme 3.6: Active site residues bound to acetate in an X-ray crystal structure of 

cephalosporin C deacetylase[189].  

 

 

3.3.5 CE-8 

Pectin methylesterases, enzymes responsible for demethylesterification of pectins from 

plant cell walls, form family CE-8[190].  In pathogenic bacteria infecting plants, this 

allows for breakdown of the cell walls allowing the bacteria to invade plant tissues. 

Pectins are polysaccharides rich in D-galacturonic acid.  Pectin methylesterases remove 

methyl groups in the breakdown of pectin[191,192]. 

 

The structure of pectin methylesterase in Erwinia chrysanthemi shown in Figure 3.9 was 

determined to be a β-helix protein characterized by parallel β sheets coiled into a large 

right-handed barrel connected by surface α helices, similar to other proteins of the 

parallel β-helix family[193].  
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Figure 3.9: Structure of pectin methylesterase from Erwinia chrysanthemi containing a 

hexamer of D-galacturonic acid in stick form (green) and binding site residues 

(grey)(pdbID: 2NTB)[192] 

 

 

The organization of the binding site, as well as the substrate binding positions, is shown 

in Figure 3.10. 
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Figure 3.10: Binding cleft residues with labelled D-galacturonic subunit positions set to 

+1 at the position adjacent to Gln177[192] 

 

 

It should be noted that within carbohydrate esterases, CE8 is very different 

mechanistically, relying on the catalytic triad Gln177, Asp178 and Asp199 (kept in place 

by Arg267) as shown in scheme 3.7. 
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Scheme 3.7: Mechanism of pectin methylesterase in Erwinia chrysanthemi[192] 

 

This mechanism is unique in carbohydrate esterases as it requires neither the Ser-His-

Asp triad of serine proteases nor the active divalent metal required in CE4 enzymes. 

 

 

3.3.6 CE-9  

N-Acetylglucosamine-6-phosphate deacetylase catalyses the hydrolysis of the N-acetyl 

group of GlcNAc-6-P to yield glucosamine 6-phosphate and a free acetate[194].  This is 

the first step in the synthesis of amino-sugar-nucleotides necessary for biosynthesis of 

both peptidoglycan and teichoic acids in the Gram-positive bacterial cell wall[195,196]. 

The structure of this protein consists of a (β/α)8 domain containing active residues and a 
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small β-barrel domain, which contains a carboxylated lysine that bridges the metal ions 

in the active site.  N-Acetylglucosamine-6-phosphate deacetylase uses a deacetylation 

mechanism with a catalytic acid and catalytic base with two Fe2+ ions to hold the acetyl 

group in place, which differs from the general carbohydrate esterase active site by 

containing two metal ions as opposed to one.  The metal ion is held in place by a triad of 

amino acid residues[194].  The structure is shown in Figure 3.11 and the mechanism in 

Scheme 3.8. 

 

 

 

Figure 3.11: Structure of NAG-6-P deacetylase from Bacillus subtilis at 2.05A  resolution 

(pdbID: 1UN7)[194] 

 

 

 

Scheme 3.8: Proposed mechanism of deacetylation for NAG-6-P deacetylase[194]  
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3.3.7 CE-10  

Members of this family originally in the CAZy database included arylesterase, sterol 

esterase, carboxyl esterase and acetylcholinesterase.  As the majority of CE-10 esterases 

act on non-carbohydrate substrates, the information has been withdrawn from the CAZy 

website[197].  Cholinesterases inhibit nerve transmission in eukaryotes by catalysing the 

breakdown of the neurotransmitter acetylcholine.  These enzymes have similar 

mechanisms to serine protease enzymes as previously described[198]. Since this review 

is an overview of bacterial deacetylases, CE10 was not a focus of study within this 

chapter. 

 

 

3.3.8 CE-11 

LpxC is an N-acetylglucosamine deacetylase that catalyses the hydrolysis of an acetyl 

group from UDP-3-hydroxymyristoyl-N-acetylglucosamine to UDP-3-O-(R)-3-

hydroxymyristoylglucosamine.  This hydrolysis is needed for lipid A of 

lipopolysaccharide (LPS) on the gram-negative cell wall.  Lipid A acts as an anchor for LPS 

in the cell wall and this is most likely why strains that contain defective lipid A have been 

shown to possess greater susceptibility to antibiotics[199].  The structure of a single LpxC 

monomer consists of two homologous domains containing two α-helices and a five-

stranded β-sheet.  LpxC monomers form a homotrimer when complexed with an 

inhibitor, as shown by the position of the Zn2+ ions on the interfaces between monomers.  

One α-helix and two β-sheet strands from each subunit form a hydrophobic tunnel 

leading to the active site.  The active homotrimer of LpxC from Pseudomonas aeruginosa 

is shown in Figure 3.12.   
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Figure 3.12: Structure of LpxC homotrimer from Pseudomonas aeruginosa containing 

inhibitor BB-78485 (sticks) and zinc ions (balls) in the active site at 1.9Å resolution 

(pdbID: 2VES)[176]. 

 

 

The active site of LpxC contains a Zn2+ coordinated to one aspartate and two histidine 

residues, as well as a glutamine residue which is within hydrogen bonding distance and 

may therefore serve as a catalytic acid/base. This active site suggests a metalloprotease 

mechanism related to CE4 enzymes and is shown in Scheme 3.9 complexed with an 

inhibitor[176]. 
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Scheme 3.9: A schematic representation of LpxC in complex with an inhibitor BB-

78485[176]. 

 

 

3.3.9 CE-12 and CE-13 (Pectin Acetylesterases) 

Both families CE-12 and CE-13 consist of pectin acetylesterases.  Pectin acetylesterases 

are involved in the regulation of plant growth and reproduction[200].  These enzymes 

assist in degradation of pectin in plant cell walls by pathogenic bacteria which infect 

various plants[201].  A structure of a CE-12 enzyme from Bacillus subtilis is in the Protein 

Data Bank, yet to be published (pdbID: 2O14). This protein (Protein YXIM_BACsu from 

Bacillus subtilis) contains an N-terminal beta barrel and a C-terminal beta sheet 

sandwiched between two alpha helical regions (Figure 3.13).   
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Figure 3.13: Structure of pectin acetylesterase at 2.1Å resolution from B. subtilis (pdbID: 

2O14).  The N-terminal domain is shown in blue and the C-terminal domain in green.  

 

 

3.3.10 CE-14 

The enzyme MshB from Mycobacterium tuberculosis (an N-acetyl-1-D-myo-inosityl-2-

amino-2-deoxy-α-D-glucopyranoside deacetylase) is involved in the biosynthesis of 

mycothiol, which is used for defence against electrophilic toxins and oxidative stress.  

Specifically, MshB performs the rate-limiting step, which is the removal of the N-acetyl 

group from N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside (GlcNAc-

Ins) to form the free amine GlcN-Ins.  Mycothiol is specific to actinobacteria, which is why 

MshB has been investigated as a potential drug target for tuberculosis infections[202].  

The newest crystal structure of MshB containing glycerol and acetate in the active site for 

a better active site structure at a resolution of 1.85Å is in the Protein Data Bank (pdbID: 

4EWL).  The overall structure of the protein is an N-terminal domain containing a lactate 

dehydrogenase-like Rossman fold and a C-terminal domain consisting of two β-sheets 

and two α-helices, as shown in Figure 3.14[203]. This structure suggests a mechanism in 

which a general base (in its deprotonated form) and a general acid (in its protonated 

form) are involved in the deacetylation mechanism[204].   
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Figure 3.14: Structure of MshB at 1.85Å  (pdbID: 4EWL). Blue represents the N-terminal 

domain and green the C-terminal domain[204].  

 

 

Acetate, which represents the N-acetyl group of GlcNAc-Ins in the crystal structure, is 

held in position by interactions with the active site Zn2+ as well as the residues Asp15 and 

Tyr142. The glycerol representing alcohol groups on the lower section of the substrate is 

positioned by interactions with the side chains of His144, Asp95 and Arg68, while 

Asp146 stabilizes the position of Asp95 through interactions with Ser96.  The active site 

containing glycerol and acetate is illustrated in Figure 3.15. 
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Figure 3.15: Active site of MshB containing glycerol and acetate to simulate mycothiol 

binding[204] 

 

 

The deacetylation reaction performed is similar to that of other metal-dependent 

carbohydrate esterases, with Asp15 acting as a catalytic acid/base residue to activate a 

water molecule as a nucleophile.  The His13, Asp16, His147 triad holds the active site Zn2+ 

in position, while Tyr142 hydrogen bonds to the acetyl oxygen to stabilize the negative 

charge during the reaction.  The mechanism of MshB is shown in Scheme 3.10. 
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Scheme 3.10: Mechanism of deacetylation of GlcNAc-Ins (native substrate) by MshB[204] 

 

 

3.3.11 CE-15 

Glucuronoyl esterase is an enzyme from the fungus Hypocrea jecorina, which has been 

shown to hydrolyse alkyl and arylalkyl esters of D-glucuronic acid and 4-O-methyl-D-

glucuronosyl.  This enzyme plays an important role in microbial digestion of plant tissues 

containing 4-O-methyl-d-glucuronoxylan in the xylan metabolism pathway[205].  There 

are currently no structures of glucuronoyl esterases in bacteria in the Protein Data Bank. 

 

3.3.12 CE-16 
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Acetyl esterase is an enzyme involved in a step further along the biosynthesis pathway of 

Hypocrea jecorina, mentioned above, as glucoronyl esterases by deacetylation of several 

positions on 4-O-methyl-d-glucuronoxylan[206].  As with glucoronyl esterase, there are 

currently no bacterial structures of acetyl esterase available in the Protein Data Bank.  

The mechanism of these enzymes is currently unknown. 

 

 

3.4 Citrulline Deacetylase 

Citrulline deacetylase is a tetrameric protein responsible for conversion of N-acetyl-

citrulline to citrulline in an arginine biosynthetic pathway of Xanthomonas campestris. 

This model is similar to those of serine proteases as well as carbohydrate esterases, 

involving a metal ion attached to two histidine residues and one aspartate residue. The 

monomer has a two-domain fold consisting of a catalytic domain (residues 1-166 and 

286-365) and a dimerization domain (residues 167-285), as shown in Figure 3.16. The 

catalytic domain is a six-stranded β sheet between α helices forming the hydrophobic 

core and a three-stranded β sheet on the solvent-exposed surface, while the dimerization 

domain is composed of a four-stranded anti-parallel β sheet facing two α helices. The two 

domains are linked through the H7 helix. 

 

 

Figure 3.16: Structure of citrulline deacetylase from Xanthomonas campestris at 1.75Å 

(pdbID: 2F7V). The catalytic domain is labelled in green and the dimerization domain in 

blue[207]. 
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Glu130 functions as a general acid–base catalyst, activating a water molecule coordinated 

to the Co2+ ion, while the ion itself interacts with the acetyl group to polarize the amide 

bond. The departing amino group is then protonated by Glu130, leading to the 

breakdown of the tetrahedral intermediate, as shown in Scheme 3.11[207].  

 

Scheme 3.11: Mechanism of deacetylation in citrulline deacetylase[207]. 

 

 

3.5 Common Features of Deacetylase Enzymes  

Two common features present in the majority of deacetylase enzymes are a hydrophobic 

binding pocket and a series of amino acid residues.  The majority of deacetylases can be 

divided into two mechanistic families: serine protease-like and metal-dependent 

deacetylases.  The serine protease mechanism uses a serine residue as a nucleophile, 

which is activated elsewhere in the protein by an aspartate residue.  A histidine residue 

acts as a catalytic acid/base residue, similar to histidine residues in the histone 

deacetylase mechanism.   A generic version of the serine protease mechanism is shown 

in Scheme 3.12. 
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Scheme 3.12: Serine protease mechanism[163].  Histidine is activated by hydrogen 

bonding to an aspartate residue further in the sequence and carries a H+ during the 

mechanism, while serine acts as a nucleophile to the carboxyl carbon of the acetyl group.   

 

 

The metal-dependent mechanism was used by IcaB and therefore was the focus of this 

review.  In the metal-dependent mechanism, these residues consist of a divalent metal-

binding triad, a catalytic acid, and a catalytic base.  This metal-dependent mechanism was 

used by histone deacetylases, citrulline deacetylases, and carbohydrate esterase families 

4 and 11.  In this mechanism, the triad of negatively charged or polar residues, such as 

glutamate, serine, aspartate, or histidine, binds a divalent metal ion in the active site of 

deacetylases to assist in the binding of the substrate.  This triad stabilizes the position of 

the active site metal, allowing for binding of substrate and a water molecule to the metal 
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ion. Catalytic acid and base residues are involved in the general deacetylase mechanism.  

In specific enzymes, additional amino acid residues stabilize the transition state 

molecule.  An example of this is the main chain nitrogen atom from Tyr367 in SpPgdA, 

which holds the carbonyl oxygen in place during the mechanism[175]. In this mechanism, 

the catalytic base acts as a nucleophile on a water molecule.  This in turn attacks the 

carbonyl carbon of the acetyl group.  After the acetate group is released, the acid provides 

a proton for the nitrogen atom to yield an amine.  An example of a general metal-

dependent deacetylase mechanism is shown in Scheme 3.13. 

 

 

Scheme 3.13: A proposed general metal-dependent mechanism of deacetylase enzymes.  

The triad of amino acid residues that bind the metal ion as well as the divalent ion itself 

varies between different enzymes[142,175,178,204] 

 

 

3.6 Discussion of deacetylase review with focus on IcaB 

 

Table 3.2 below shows a summary of which deacetylase families fit into which 

mechanistic group as well as presence of catalytic metal ions and active site residues. 

Table 3.2: Deacetylase enzyme summary 
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Family Targets Mechanism 
Divalent 

Metal Atom 
Active site 
Residues 

HDAC Histone lysines Serine prot None  Ser His Asp 
Sirtuins TNF-alpha (possibly) Unknown N/A N/A 
CE-1 Acetylxylan  Serine prot None Ser His Asp 
CE-2 Acetylxylan  Serine prot None Ser His Asp 
CE3 Acetylxylan  Serine prot None Ser His Asp 

CE4 Acetylated sugars 
Metal-
dependent Varies 

His His Asp Triad 
 
Catalytic Asp 

CE5 Acetylxylan  Serine prot None Ser His Asp 
CE6 Acetylxylan  Serine prot None Ser His Asp 

CE7 

Acetylated 
oligosaccharides 
 
Cephalosporin C Serine prot None Ser His Asp 

CE8 
Pectin methylester 
groups 

Gln-Asp-
Asp Triad None Gln Asp Asp 

CE9 

N-
acetylglucosamine-6-
Phosphate 

Two metal 
centres Two Fe2+ Unknown 

CE11 

UDP-3-
hydroxymyristoyl-N-
acetylglucosamine 

Metal-
dependent Zn2+ 

His His Asp Triad 
 
Catalytic Glu 

CE12 
pectin 
acetylesterases N/A N/A N/A 

CE13 
pectin 
acetylesterases N/A N/A N/A 

CE14 GlcN-Ins 
Metal-
dependent Zn2+ 

His His Asp Triad 
 
Catalytic Asp 

CE15 Unknown N/A N/A N/A 
CE16 Unknown N/A N/A N/A 

 

 

While deacetylases in general may be divided into two groups mechanistically, the 

carbohydrate esterases vary greatly in protein structure.  Also, although both 

mechanisms are found in deacetylases, the group of proteins has such a broad range of 

targets and activity that CE8 and CE9 enzymes have unique mechanisms not found in any 

other deacetylase families.   Of the carbohydrate esterases, CE4 enzymes contain the most 

available experimental structures, whereas carbohydrate esterase families 12, 13, 15 and 

16 in bacteria have no crystal structures available and therefore little is known about 
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their mechanisms.  Finally, while sirtuins have been historically considered to have 

histone deacetylase activity, newer research has suggested that they may hydrolyse fatty 

acid groups from lysine residues of TNF-α to enhance secretion[151]. 

 

Searching the Pfam and PROSITE databases for the IcaB sequence (GenBank Acession 

Number AAQ88122.1) showed the presence of a nodB homology domain specific to the 

CE4 family (Pfam ID: PF01522, PROSITE: PS51677)[170,208].  Therefore, IcaB is a 

member of the CE4 family and therefore should share the metal-binding triad of residues 

composed of His and Asp residues as well as a catalytic Asp residue.  PgaB from E. coli has 

the same target, namely deacetylation of PNAG, and therefore was used as the template 

for modelling in chapter 4. 

 

CE10 enzymes were originally proposed as a family based on sequence homology with 

other carbohydrate esterases, but were removed from CAZy as they do not possess 

deacetylase activity or act on carbohydrates.  In addition, deacetylases as a family have 

generally been divided into histone deacetylases and carbohydrate esterases.  There has 

been little discussion of these enzymes as a group, as the focus of most reviews is either 

on histone deacetylases or carbohydrate esterases. 

 

For both mechanisms, a hydrophobic binding pocket is formed from non-polar residues, 

such as phenylalanine, tryptophan, or leucine.  This allows the polar substrate 

(carbohydrates for carbohydrate esterases and the lysine residue for HDACs) to travel 

and bind to the active site without binding to residue sidechains elsewhere in the protein. 

 

The binding pocket and active site residues are important to the activity of deacetylase 

enzymes and therefore, any deacetylase modelling must maintain these features.  Both 

these features are essential for proper activity of the enzyme and will play a role in 

guiding the development of the IcaB model. 
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Chapter 4: Homology Modelling of IcaB 

 

4.1 Biofilm Formation In staphylococcus Infections 

Staphylococci such as Staphylococcus capitis, S. aureus, and S. epidermidis form biofilms 

on indwelling medical devices such as heart valves and catheters, which lead to chronic 

infections that are responsible for serious costs to the public health system[209,210].  If 

allowed to breach the epithelial barrier, staphylococci can cause chronic opportunistic 

infections[211].  Staphylococcal infections in the United States result in additional costs 

up to around $56 000 per person per year, as well as prolonged hospital stays [212].  In 

the UK, approximately 1 in 3300 individuals will develop an invasive staphylococcal 

infection per year[213].   In addition, neonatal infections are commonly due to infection 

with staphylococci[214].  Of the coagulase negative staphylococci, S. epidermidis is of 

particular interest since it is one of the most common bacteria that cause infections of 

indwelling medical devices[215].  Biofilms such as those formed by S. epidermidis are 

resistant to almost all antibiotics, which is a hindrance in treating these 

infections[103,215]. 

 

 

4.2 Structure and Activity of Partially Deacetylated Poly-N-acetylglucosamine 

In biofilms of S. epidermidis, the extracellular bacterial coat is made of a combination of 

matrix proteins and non-protein polymers including polysaccharides and teichoic 

acids[216]. A linear polymer of partially deacetylated N-acetylglucosamine (dPNAG) is 

found on the bacterial cell surface and makes up the majority of the extracellular 

polysaccharide coat[144].  This polysaccharide has multiple roles in immune evasion. For 

example, mutant strains of S. epidermidis lacking dPNAG were much more vulnerable to 

being killed by human polymorphonuclear lymphocytes as well as by antibacterial 

peptides[184].  Biofilms containing dPNAG have been shown to be physically stronger, as 

well as less susceptible to antibody binding than those containing only protein factors 

such as Aap (accumulation associated protein)[217].   

 

 

 

 



 80 

4.3 The ica Operon of staphylococcus 

dPNAG is synthesized by the products of the ica operon: IcaA, IcaB, IcaC and IcaD.  IcaA 

adds GlcNAc residues to growing poly-N-acetylglucosamine (PNAG) chains, which may 

be secreted through IcaC.  This hypothesis is due to the presence of multiple 

transmembrane helices in IcaC and the fact that an icaC mutant was unable to form long 

chains of PNAG[218].  However, given that IcaC is classified as an acyltransferase (Pfam 

ID: PF01757) and there is a lack of evidence for export through IcaC, it is possible that 

this transport activity may have been misassigned[170]. Recently, it has been proposed 

that IcaC is responsible for O-succinylation of PNAG, which is necessary for the active 

form of PNAG specific to staphylococci[219].  IcaD is required for optimal PNAG synthesis 

activity of IcaA, but its role is currently unknown[216].   A diagram of the proposed 

organization of the ica operon gene products is shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Proposed functions of gene products of the ica Operon.  IcaA and IcaD form a 

polymer of N-acetylglucosamine, which is then O-succinylated by IcaC.  Finally, PNAG is 

exported from the cell and the N-acetyl group is removed by IcaB  (modified from Otto et 

al., 2012)[216,219]. 
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After export from the cell, 16.5% of GlcNAc residues are then deacetylated by 

IcaB[216,220].  In 2014, Little et al. have demonstrated that the related protein PgaB, 

which shares the PNAG deacetylase function of IcaB, remains associated with dPNAG 

during transport across the bacterial cell membrane[34].  As a result, it is possible that 

IcaB may be responsible for dPNAG transport instead of IcaC. 

 

 

4.4 Structure and Function of IcaB and PgaB  

IcaB-dependent deacetylation has been implicated in the virulence of staphylococci.  An 

IcaB mutant strain that produced non-deacetylated PNAG was unable to attach to the 

bacterial cell surface, presumably due to a lack of positive charge.  Also, no biofilm 

formation occurred in this strain and there was a lack of resistance to antimicrobial 

peptides and phagocytosis by neutrophils provided by dPNAG[220].  As a result, this 

protein has been identified as a potential target for novel therapies.  However, the 

structure of IcaB, as well as a detailed mechanism of deacetylation by IcaB, was unknown 

at the beginning of this project. 

 

 

4.4.1 IcaB and PgaB domain structure 

The domain structure of IcaB resembles that of PgaB; however, IcaB lacks a C-terminal 

glycoside hydrolase domain.  This supports the similarity between IcaB and the PgaB N-

terminal domain despite the low sequence homology between the two proteins.  Figure 

4.2 shows the domain structures for IcaB and PgaB, both of which are taken from Pfam: 

Polysacc_deac_1 (PF01522)[170]. 
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Figure 4.2: a) IcaB domain structure from Staphylococcus epidermidis; b) PgaB domain 

structure from Escherichia coli (strain K12).  The domains are represented by Yellow = 

signal sequence, light green = coiled coil, green = deacetylase domain, GHL13 = Glycoside 

Hydrolase-Like C-terminal domain [170].  

 

 

Both proteins contain a deacetylase domain; PgaB also contains a C-terminal glycoside 

hydrolase domain.  Due to the role of the C-terminal domain in transport of PNAG in PgaB, 

this may imply a different export mechanism for PNAG through IcaB in staphylococci[34].  

The outer membrane of Gram-negative E. coli may require the PgaB C-terminal domain 

to aid in PNAG transport, while the Gram-positive S. epidermidis will require a different 

mechanism. 

 

 

4.4.2 Structures of PgaB 

There are currently three structures of PgaB in the Protein Database: 3vus, a fragment 

containing only the N-terminal domain of PgaB with an additional gap at residue 155, as 

well as 4f9d and 4f9j, which both have a truncated N-terminus and include N-terminal 

and C-terminal domains (resolutions: 3vus = 1.65Å, 4f9d = 1.90 Å, and 4f9j = 

2.10Å.)[142,221]. Other CE4 enzymes have preference for Co2+ and Zn2+, but PgaB only 

shows higher activity in an activity-based metal screen with Co2+ and Ni2+ and the 

addition of Zn2+ causes a reduction in activity[142,222]. One structure of PgaB contains a 

Ni2+ ion as the active site metal (4f9d).   The second structure is similar, but with a Fe2+ 

ion in the active site (4f9j)[142].   The N-terminal domain in all three structures is 

identical, except for a few gaps caused by missing amino acids from low-resolution 

structures.  An alignment of all three structures’ sequences is shown in Figure 4.3. 
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Figure 4.3: Alignment of all sequences of PgaB in Protein Databank (3vus, 4f9d, and 4f9j); 

active site residues are blue, and binding groove residues are red[142,221]. 4f9j has 

methionine residues replaced by selenomethionine for crystallization, which are 

represented by the letter X in the sequence. 

 

 

The RMSD (Root Mean Square Deviation) of all heavy atoms between the 4f9d and 4f9j 

structures is 0.674Å and there are no dramatically differing regions between both 

structures.  4f9d and 4f9j contained crystals with orthorhombic space groups (P 21 21 21), 

while the crystals in 3vus were monoclinic (P 1 21 1).  There are two identical proteins 

per asymmetric unit (asu) in each structure, which is believed to be an artefact of 

crystallization[142,221].  The region in the crystal where the helix α26 should be located 

is instead replaced by the α1 helix from the second protein in the asu.  This provides 

further evidence that the appearance of two molecules in PgaB (residues 43-646 in 4f9d/j 

and 42-309 in 3vus) seen in the asu is an artefact of crystallization, because the two 

structures would be unable to pack into a single asymmetric unit if the α26 helix was 

present.  The N-terminal domain of 4f9d was selected for further modelling as it was the 

most complete structure and the iron-containing structure, 4f9j, was not stable at 

ambient conditions[142].  Therefore, the activity of PgaB with Fe2+ would be difficult to 

test experimentally[142].  The PDB structures 3vus, 4f9d, and 4f9j are overlapped and 

shown in Figure 4.4. 
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Figure 4.4: Comparison of PgaB structures available in the Protein Data Bank (3vus in 

blue, 4f9d in green, and 4f9j in red)[142,221]  

 

 

The active site and N-terminal binding groove of PgaB from 4f9d are shown in Figure 4.5. 

 

Figure 4.5: Active site and N-terminal binding groove of PgaB from 4f9d.  The active site 

is shown in green (His55, Asp114, Asp115, His184, His189) and the hydrophobic binding 

groove in blue (Phe-154, Tyr-190, Ile-192, Leu-200, Tyr-209, and Tyr-216)[142]. 
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4f9d and 4f9j contain the C-terminal domain of PgaB, which contains a beta barrel (β/α)8 

motif.  The NodB homology domain is generally present as a unique domain on its own in 

CE4 enzymes.  This is not the case in PgaB, which implies an important role for the C-

terminal domain.  There is little homology between the complete sequence of IcaB and 

the C-terminal domain of PgaB, which supports the existence of a different export 

mechanism in S. epidermidis.  However, since the C terminus of PgaB was truncated to 

facilitate crystallization, the eighth helix of the C-terminal domain, α26, is missing in the 

PDB structures, which may impact the overall structure of this domain. The role of this 

region is currently unclear, but is important for the ratio of deacetylated to acetylated 

residues in vivo, as removing it from the protein causes a reduction from 22% to 1%[223].  

Eight short helices in this domain create a negatively charged surface groove 45Å long 

and 10Å wide, which may be involved in binding PNAG upstream of the site of 

deacetylation.  Residues Phe-154, Tyr-190, Ile-192, Leu-200, Tyr-209, and Tyr-216 from 

β6–7, β9–10, and β11-12 provide a hydrophobic environment in the C-terminal domain.  

This groove is structurally similar to glycoside hydrolases such as β-amylase[224].  This 

may imply a role for this domain in hydrolysis of the polysaccharide chain or simply to 

assist in binding of the PNAG substrate.  However, this domain has recently been 

suggested to bind PNAG as part of the export from the bacterial cell[34]. 

 

 

4.5 IcaB Alignment with PgaB 

The goal of this research was to produce a homology model of IcaB from S. epidermidis 

using sequence alignment with a related protein, PgaB, from E. coli.   

 

The Clustal multiple sequence alignment program was used to align sequences of IcaB 

and PgaB[130].  Clustal is based on derivation of a phylogenetic tree from a sequence 

similarity score matrix between individual sequences and the template sequence to be 

aligned.  A multiple alignment may be formed by organizing individual pairwise 

alignments in the order of most to least homologous sequences compared to the 

template[225]. The alignment at each amino acid residue is then scored, with the highest 

score being identical to the template sequence and the lowest score being a residue with 

a different structure and charge/polarity. 
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4.5.1 Methods 

Several sequence alignments of IcaB from S. epidermidis (GenBank Accession number: 

AAQ88122.1) with the N-terminal domain of PgaB containing a Ni2+ ion in the active site 

(residues 42-310 of pdbID: 4f9d) were produced by the Clustal program[154,225]. The 

sequence of PgaB was taken from the PDB file 4f9d and individually aligned with the 

sequence of IcaB.  In this alignment, the active site residues of the PgaB sequence were 

not aligned with the target IcaB sequence.  As a result, the PgaB sequence from GenBank 

(ZP_03070115.1) was aligned with the target sequence and the active site residues of 

PgaB were aligned with identical residues in the target alignment, which differed due to 

missing signal sequence residues in the PDB sequence.  The GenBank sequence was then 

truncated to match the 4f9d; the alignment was very similar to the other 

alignments[226].  This alignment was then manually adjusted to retain the structure of 

alpha helix 7. 

 

 

4.5.2 Sequence Alignment 

All alignments had low sequence identity: 13.7% for the original alignment, 16.4% for the 

truncated GenBank sequence, and 15.7% for the manually adjusted alignment. In both 

the alignment with the truncated GenBank sequence and the manual alignment, the 

active site residues of the target IcaB sequence were properly aligned with those of PgaB. 

In addition, the sequence similarity was higher than the identity in each case: 36.2% for 

the original alignment, 41.5% for the truncated GenBank sequence, and 39.3% for the 

manual alignment.  While the identity may be low, the sequence is fairly similar, which 

may lead to a sufficiently similar environment for binding.  For example, if an 

electronegative residue such as glutamate were to be replaced by a negatively charged 

and sterically similar aspartate residue, the binding environment may continue to be 

negative and in the same position.  

 

There were minor differences between alignments, but only by a few residues, with the 

most important difference in the large α7 helix.  This may be the most problematic region 

for the model, as the automatic alignment inserted a gap into this region, which caused 

the long helix structure to be lost.  When the gap was moved manually upstream, the helix 

was retained with little loss of sequence identity (Figure 4.6).  
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a)  

b)  

c)  

 

Figure 4.6: a) Sequence alignment of IcaB with 4f9d N-terminal domain; b) Sequence 

alignment of IcaB aligned with PgaB N-terminal domain NCBI sequence and truncated to 

match 4f9d (residues 1-42 removed); c) Sequence alignment from b) manually adjusted 

to preserve α7 helix. Dark blue represents fully conserved residues, light blue strongly 

conserved residues and pale blue weakly conserved residues.  The secondary structure 

is shown as orange cylinders for α-helices and blue arrows for β-strands.  

 

 

As the N-terminal domain was truncated by 43 residues to facilitate crystallization, Pro1 

of the PDB sequence is equivalent to Pro43 of the GenBank sequence, which was used for 
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the residue numbering in this project.  The N-terminal groove residues were not 

conserved in IcaB. The only similarities were Phe154, which was replaced by a leucine, 

and Tyr190 by an alanine, but otherwise these residues were different, several even 

aligning within the added gap.  This may be an issue with the alignment or it may be that 

the groove is different in IcaB, which may compensate for the lack of C-terminal domain 

if the groove is larger in IcaB.  Unfortunately, without more information about a structure 

of IcaB or characterization of the export mechanism of PNAG in staphylococci, the effect 

of this groove is still unknown. The active site and N-terminal groove residues from the 

final alignment are shown in Figure 4.7. 

 

 

Figure 4.7: Active site and N-terminal groove residues in the final alignment; active site 

residues are blue and binding groove residues are red. The secondary structure is shown 

as orange cylinders for α-helices and blue arrows for β-strands. 

 

 

4.6. Homology Model of IcaB 

A homology model of IcaB using the program MODELLER was constructed using the 

sequence alignment with PgaB as described above. 

 

MODELLER is a homology modelling program that calculates theoretical protein 

structure based on alignment with a related protein with high sequence identity.  

MODELLER restraints include Cα-Cα bonds (d), main chain N-O distances (h), 

stereochemical restraints (e), main chain dihedral angles (φ and ψ), and side chain 

dihedral angles (χ1, χ2, χ3, and χ4, referred to in the equations as “c”).  These restraints are 

defined through sequence alignment with structures of related proteins.  Therefore, a 
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sequence identity of >40% is generally needed to produce a model with a high degree of 

confidence.  Restraints are used to make molecular probability density functions (pdfs) 

for conformations of target sequence.  Pdfs contain more information than bounds for 

bond distances only, including restrictions on bond angles, dihedral angles, 

stereochemical restraints and solvent accessibility[90].  Descriptions of these functions 

are shown in Equations 4.1-4.5. 

 

pD(d) = pv(d)∑ωipi
d

i

(d|a, b, … ) 

Equation 4.1: Cα-Cα bonds 

 

pH(h) = pv(h)∑ωipi
h(h|a, b, … )

i

 

Equation 4.2: Main chain N-O bonds 

 

pE(e) = pe(e) 

Equation 4.3: Stereochemical restraints 

 

pM(θ) = {
∑ωipi

m(θ|a, b, … )

n

i=1

    n > 0

pM(θ|R)                            n = 0

 

Equation 4.4: Main chain dihedral angles 

  

pS(c) = {
∑ωipi

s(c|a, b, … )

n

i=1

    n > 0

pS(c|R)                            n = 0

 

Equation 4.5: Side chain dihedral angles 

 

Optimization of these functions uses a combination of two methods: conjugate gradients, 

as previously described, and molecular dynamics with simulated annealing. Molecular 

dynamics with simulated annealing finds a decreasing probability of high-energy 

solutions over time, leading to a global maximum at the most stable structure. Simulated 
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annealing is so named because it simulates the effect of lowering temperature to find the 

most probable conformation[227].   

 

DOPE (Discrete Optimized Protein Energy) is a statistical potential used by the program 

MODELLER to calculate the minimized energy of a homology model produced. DOPE is 

implemented in Python and may be run through the MODELLER environment [228].  Due 

to the specificity of the parameters used to calculate this energy, DOPE can only be used 

to compare different iterations of the same model structure. 

 

The secondary structure in the homology model of IcaB was calculated using the Kabsch-

Sander method, as implemented in Accelrys Discovery Studio.  This method calculates the 

secondary structure based on recognition of patterns of hydrogen bonding that result in 

specific secondary structure motifs.  Hydrogen bonds are treated as electrostatic 

interactions between two sets of partial charges, i.e. positive partial charge for the 

carbonyl carbon and a negative for the oxygen, and a negative partial charge for the amino 

nitrogen and a positive for the hydrogen.  Patterns of hydrogen bonding are divided into 

“turns” and “bridges”.  A “turn” is defined as a hydrogen bond between a carbonyl carbon 

of a given residue and an amino nitrogen 3-5 residues away from it in the backbone, while 

a “bridge” is a hydrogen bond between two residues that are further apart.  Patterns of 

these hydrogen-bonding interactions are used to determine secondary structure.  For 

example, repeating “turns” that are 4 residues apart are classified as α-helices, while 

repeating “bridges” form individual β-strands, which if connected, form a β-sheet.  The 

computer program DSSP (Define Secondary Structure of Proteins), included in Discovery 

Studio, implements these algorithms to predict secondary structure from a given 

sequence[229].   

 

In addition, the secondary structure was predicted from the sequence using PSIPRED 

prediction methods.  These use a pair of neural networks to analyse PSI-BLAST scoring 

matrix and to predict the secondary structure based on the most conserved 

residues[230].  PSI-BLAST (Position-Specific Iterative-Basic Local Alignment Search 

Tool) performs alignments with the NCBI database to determine the most homologous 

sequences.  Next, a position specific scoring matrix is calculated to store the pattern of 
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conserved residues.  This is then used for additional iterations of BLAST searches until a 

threshold for convergence is met[231].   

 

The prediction method used to determine the secondary structure by the neural 

networks in PSIPRED is the Benner and Gerloff method.  This method uses patterns of 

amino acid polarity to determine secondary structure elements such as α-helices and β-

strands[232].  For example, to determine whether a protein segment is an α-helix, a 

helical wheel is set up to identify whether an amphiphilic pattern may be achieved 

(namely, hydrophobic residues oriented towards the protein core and hydrophilic 

towards the protein surface).  If not, positions are removed from the ends of the chain 

until a region within the segment showing a 3.6 residue periodicity is achieved.  If this 

periodicity does not appear, a helix is not assigned to any section of this protein segment.  

For PSIPRED, this method is applied to the conserved residues predicted via the PSI-

BLAST scoring matrix. 

 

 

4.6.1 Methods 

The structure of IcaB from S. epidermidis (GenBank Accession number: AAQ88122.1) was 

modelled by the homology modelling program MODELLER, using the manually adjusted 

alignment with the N-terminal domain of PgaB containing a Ni2+ ion in the active site 

(residues 42-310 of pdbID: 4f9d)[90].  Default settings in MODELLER were used and the 

Discrete Optimized Protein Energy (DOPE) was calculated for individual iterations of the 

model.  Additional support for the model was provided by comparison with predicted 

secondary structure by PSIPRED[233]. 

 

 

4.6.2 Results 

Homology models were produced for the manually adjusted alignment of IcaB with the 

N-terminal domain of PgaB (residues 43-310) from 4f9d structure using the program 

MODELLER[90].  Five models were produced and the model with the lowest DOPE is 

shown in Figure 4.8[228].  The RMSD between the lowest and second lowest DOPE 

structures was 3.244Å.  The long N-terminal region that was truncated in the PgaB 

structure was not properly modelled and therefore is not shown. 
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Figure 4.8: Homology model of IcaB using manually adjusted 4f9d NCBI alignment as a 

template (red = 4f9d template, blue = IcaB model) 

 

 

4.7 Discussion and Analysis of IcaB Model  

The model may have varied between individual runs[234].  To determine whether the 

model would have varied given different starting positions, five models were produced 

in MODELLER, and the RMSD (between 4f9d and IcaB) for the main chain and side chain 

residues of each model was calculated (Table 4.1).  

 

 

Table 4.1: RMSD comparison between multiple models of IcaB with manually adjusted 

4f9d template 

 

Model Number Main Chain RMSD 
(Å) 

Side Chain RMSD 
(Å) 

DOPE score 

1 1.99 2.19 -26400 
2 2.19 2.57 -26400 
3 2.23 2.26 -26200 
4 2.28 2.56 -26300 
5 2.08 2.27 -26700 
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All RMSD are under 3Å and similar enough to be only minor changes to the structure on 

average. The active site residues in IcaB (His50, Asp121, Asp122, His180 and His185) 

have a lower RMSD than the average RMSD for all residues, which supports conservation 

of active site residues in the proper orientation.  The charge surface of the IcaB model is 

shown in Figure 4.9. 

 

a)  

b)  

Figure 4.9: a) Charge surface of IcaB homology model (left) and 4f9d template (right) in 

which red indicates regions of negative charge and blue indicates regions of positive 

charge b) Charge surface from a) rotated by 180°. 

 

 

The theoretical pI was calculated by the ExPASy server to be 9.20 for IcaB compared to 

5.80 for PgaB, which suggests a more positive surface for IcaB at neutral pH[42].  This is 

well shown in the surface of the IcaB model when compared to the PgaB surface (Figure 

4.9).   There are no regions in the hydrophobic core of the protein with large 

positive/negative charge. Both these points indicate reliability for the structure, as the 

charge distribution appears normal for a monomeric protein[235].   
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A hydrophobic moment is a representation of hydrophobicity by searching for 

recurrence of hydrophobic residues in a one dimensional function[236].  The strongest 

hydrophobic moments are in the core of the protein and the weakest (most hydrophilic) 

are on the surface (as shown in Figure 4.10), which agrees with the charge surface in 

Figure 4.9.  The exception is the α7 helix, which has a strongly hydrophobic region in the 

middle of the helix; this is lacking from the PgaB structure.  This may be a problem with 

manual alteration and may require fine-tuning of the manual alignment or may provide 

a starting point for the hydrophobic groove of IcaB. 

 

a)   

b)                

Figure 4.10: a) Hydrophobic moments in IcaB model (left) and PgaB (pdbID: 4f9d, 

right); b) Hydrophobic moments from a) rotated 180°. 
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In both properly aligned models, the hydrophobic core of the protein is well conserved, 

particularly the nodB homology domain containing the active site residues.  The α7 helix 

only maintained its alpha helix character in IcaB when the alignment was manually 

altered.  Most of the structure that differed were the solvent-exposed loops and external 

helices.  Several short β-sheets 2-3, 6-7, 9-10, and 11-12 differ from similar sheets in PgaB 

(Figure 4.11).  However, these sheets are regions unique to the PgaB structure, which 

implies that, like other CE4 enzymes such as SpPgdA, IcaB has different folds in these 

regions of the protein[142].  However, as several residues in these folds are important 

for forming the hydrophobic binding groove, this difference in IcaB may either be a 

difference caused by the modelling process or it may be due to a different binding groove 

for the PNAG substrate in IcaB. The reason for this difference is unknown, but may help 

to explain why IcaB lacks the second C-terminal domain found in PgaB.  The active site 

residues in IcaB (His50, Asp121, Asp122, His180 and His185) were within 2Å of the 

corresponding PgaB residues and in similar orientations (as shown in Figure 4.12).  

Although the standard sequence identity required is 40% for a homology model to 

prevent large deviations away from the template, the important features of PgaB (namely 

the hydrophobic core and active site residues) were conserved in the IcaB models as seen 

in Figures 4.11 and 4.12[90].    

 

 

Figure 4.11: Regions of PgaB (red, 4f9d) that differed most from the IcaB model (blue).  

Pink represents β-sheets 2-3, 6-7, 9-10, and 11-12 and green represents the α7 helix.  
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Figure 4.12: Overlap between active site residues of PgaB (red, 4f9d) and the IcaB 

homology model (blue).  Residue labels are shown in the format IcaB/PgaB.  Bound Ni2+ 

and acetate structures were taken from the 4f9d structure and both proteins are 

represented by Cα wires. 

 

 

When compared with the PSIPRED predicted secondary structure (Figure 4.13), the 

manually adjusted alignment was found to be more similar than the other 4f9d 

alignments, particularly near the α7 helix[233].  This alignment only differed in several 

small regions from the PSIPRED structure. While there appears to be a break in a helix at 

Asn129, this may be due to incorrect secondary structure prediction due to the algorithm 

used, which may also explain the presence of several small helices, such as one directly 

after the α7 helix.  Comparison with the PSIPRED secondary structure provides further 

evidence that the original alignment is flawed because the PSIPRED predicted secondary 

structure possesses more secondary structure elements of the manually adjusted 

alignment, particularly in the α7 helix region.  

 

 

Acetate 

Ni2+ 

His180/His184 

His185/His189 

Asp115/Asp121 

Asp114/Asp120 

His50/His55 
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Figure 4.13: Comparison of manually adjusted IcaB alignment with PSIPRED predicted 

secondary structure; active site residues are blue, and binding groove residues are red  

 

 

The manually adjusted structure of the IcaB model was best aligned with the PgaB 

sequence from the NCBI database.  IcaB was found to contain the NodB homology domain 

common to carbohydrate esterase family 4 enzymes.  The homology model structure of 

IcaB possessed a conserved triad of metal binding as well as catalytic acid/base residues 

necessary for a deacetylase.  The pattern of hydrophobicity suggests a stable globular 

protein.  The model still has two main concerns: the location of the α7 helix and the loss 

of the N-terminal binding groove.  This will require additional study (both experimental 

and computational) to determine whether these are features of the IcaB protein or if the 

model requires further adjustment.  Until such time as an X-ray structure of IcaB from S. 

epidermidis is determined, this model should be refined and used to aid in structure 

determination, as well as providing a starting point for molecular docking.  Protein 

threading could be used to create a model of IcaB to compare features of the protein with 

the homology model in order to further refine the model.  The main challenge towards 

refining the homology model would be the lack of highly homologous proteins (>40% 

sequence identity) to align with the IcaB sequence.  A multiple sequence alignment with 

several CE4 enzymes may provide additional confidence in the resulting IcaB homology 

model. 

 

After the conclusion of this project, additional research regarding IcaB structure and 

characterization has been published.  The catalytic efficiency and residue specificity of 

IcaB has been characterized by Pokrovskaya et al., who demonstrated the position-

specific deacetylation of N-acetylglucosamine pentamers and hexamers.  In addition, the 
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low rate of turnover for IcaB deacetylation was confirmed, which resembles other related 

proteins such as PgaB[138].   On October 30, 2014, Nitz and co-workers reported an X-

ray crystal structure of IcaB from Ammonifex degensii (IcaBAD)[237].  From their report, 

it is clear that the structure of IcaBAD is similar to the homology model's overall structure.   

While the protein was derived from a different organism and will therefore have a 

difference in sequence, the overall protein structure should be similar.  The metal ion 

found to associate greatest with this protein was Ni2+.  However, IcaBAD was best 

crystallized with Zn2+ and therefore the structure of IcaBAD shown in Figure 4.14 was co-

crystallized with a Zn2+ ion. 

 

 

Figure 4.14: Structure of IcaB from Ammonifex degensii at 1.70Å reproduced from pdbID: 

4WCJ[237] 

 

 

The larger hydrophobic loop found in both the model, due to positioning of the α7 helix, 

as well as the IcaBAD structure, has been theorized to attach the protein to the cell 

membrane.  This may help to explain the lack of a C-terminal domain, as this loop may 

take the place of the C-terminal domain for attachment to and transport across the 

bacterial cell membrane.  Another aspect of the structure that is similar is the 

organization of the deacetylase active site residues.  The triad of metal binding residues 

and catalytic acid/base residues in the IcaBAD structure are oriented in the same position 

as the IcaB homology model.  
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In order to compare the experimental IcaB structure with the homology model produced 

in this chapter, a simple alignment between the model and the A. degensii sequence taken 

from pdbID: 4WCJ was performed and is shown in Figure 4.15. 

 

IcaB      MKPFKLIFISALMILIMTNATPISHLNAQANEENKKLKYEKNSALALNYHRVRKKDPLND 

4wcj      ------------------------------------THLQGDGLVVLCYHRVL------- 

                                               : : :. :.* ****         

 

IcaB      FISLLSGSKEIKNYSVTDQEFKSQIQWLKAHDAKFLTLKEFIKYK-EKGKFPKRSVWINF 

4wcj      ---------PSSRYAISRREFAQQLDYLRQVGVRFVTPQEAEDYLAGRIHLPGKLVLVTF 

                     ..*::: :** .*:::*:   .:*:* :*  .*   : ::* : * :.* 

 

IcaB      DDMDQTIYDNASPVLKKYHIPATGFLITNHIGSTNFHNLNLLSKKQLDEMYETGLWDFES 

4wcj      DDGDLSVYRHAFPVLKKRKIPFLFFVIAGQVGR-KWEGFSMCSWEQIKEMVASGLCVVGL 

          ** * ::* .* ***** :**   *:*: ::*  ::. :.: * :*:.**  :**  .   

 

IcaB      HTHDLHALKKGNKSK-FL-DSSQSVASKDIKKSEHYL-NKNYPKERALAYPYGLINDDRI 

4wcj      HTYDLHYWDSQAKKPVFLLPGRERLFAEDTARGTACLKEHLGLKTRYFAYPYGFGTPTTD 

          **:***  ..  *.  **  . : : ::*  :.   * ::   * * :*****: .     

 

IcaB      KAMKKNGIQYGFTLQEKAVTPDADNYRIPRILVSNDAFETLIKEWDGFDEEK 

4wcj      EILRTQGFSLVFTLRAKVNRPGDAPF-VGRVLVTPDSWPQV-AAWAQA---- 

          : ::.:*:.  ***: *.  *    : : *:**: *::  :   *        

 
Figure 4.15: Alignment of IcaB sequences from S. epidermidis (top) and A. degensii 

(bottom) (* = identical, : = conserved, .= semiconserved)[130,237] 

 

 

All active site residues (S. epidermidis His50, Asp120, Asp121, His180 and His185) were 

identical in both sequences. The sequence identity is still very low at 22.8% even 

factoring in the unfolded N-terminal in model (removing this region only increases 

identity to 26.2%).  A comparison of the S. epidermidis IcaB homology model and the A. 

degensii IcaB crystal structure is shown in Figure 4.16. 
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Figure 4.16: Comparison of S. epidermidis IcaB homology model (blue) and A. degensii 

IcaB crystal structure from pdbID: 4WCJ (green) [237] 

 

 

The overall structure is similar, although the loop domains are much more variable and 

the position of the helices is slightly different.  Most importantly, the nodB homology 

domain containing the catalytic and metal-binding residues is found in both structures.  

The active site residues are shown in Figure 4.17. 

 

 

Figure 4.17: IcaB active site residue overlap.  Numbering is in the format S. epidermidis 

structure (blue)/A. degensii structure (green) [237] 

 

His50/His44 

Asp121/Asp115 

Asp120/Asp114 

His180/His173 

His185/His178 
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The RMSD between all heavy atoms for the main chain is 4.42Å and 5.49Å for the side 

chains.  However, RMSD for the active site residues of both structures is 1.65Å, which is 

within the 3Å threshold. As a result, the 4WCJ structure could potentially be used in 

future research as a template for further homology models of the S. epidermidis 

structure.  Although the low homology means that the homology model is still below the 

necessary threshold to be accurate, a multiple sequence alignment using the PgaB N-

terminal domain and the IcaBAD structure could be used to provide a more accurate 

alignment on which to base the model. 
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Chapter 5: Conclusions 

 

Computational modelling of proteins and their interactions with small molecule ligands 

is a field of increasing importance [92,238,239].  Potential applications of this research 

includes virtual screening of therapeutic agents to reduce experimental load, ab initio 

design of enzymes and inhibitors, and insight into protein mechanisms[240–242].  This 

thesis is divided into two main projects: modelling of ciprofloxacin derivatives binding to 

DNA gyrase and the production of a homology model of the protein IcaB by sequence 

alignment with PgaB. 

 

Three derivatives of the antibiotic ciprofloxacin using a citrate group were prepared in 

order to improve the pharmacodynamics and pharmacokinetics of ciprofloxacin while 

maintaining its antibiotic activity.  The activity of these derivatives to inhibit the activity 

of DNA gyrase was experimentally determined using a gel electrophoresis assay.  In 

addition, the structure of the derivatives bound to DNA gyrase was computationally 

modelled using molecular mechanics methods with the CHARMm forcefield optimized by 

molecular dynamics simulations.  In both experimental and modelled systems, the lowest 

energy and highest binding affinity of the ciprofloxacin derivatives belonged to the c-gly-

ciprofloxacin.  Therefore, the ideal linker group was theorized to be 1-2 atoms long in 

order to prevent steric clashes and maximize interactions between the DNA gyrase 

enzyme and the citrate group of the ciprofloxacin derivative. Although the solvent and 

metal atoms in the system were not fully computationally modelled, the resulting 

structures were considered to be sufficient for a qualitative comparison between the 

ciprofloxacin derivatives. A sterically hindered derivative could be also used in order to 

further test the steric environment of the DNA gyrase binding site. 

 

IcaB, a protein necessary for synthesis of active poly-N-acetylglucosamine (dPNAG) from 

Staphylococcus epidermidis, was chosen as a target for computational modelling as PNAG 

is an important factor in the formation of staphylococcal biofilms and IcaB had no 

structures available in the Protein Data Bank.  A literature review of deacetylase enzymes 

was performed to identify key features required for proper modelling.  Although 

deacetylase enzymes are a large superfamily of proteins, the majority were divided into 

two mechanistic families: a serine protease-like mechanism and a metal-dependent 
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mechanism using a catalytic acid and a catalytic base residue.  The hydrophobic 

substrate-binding region and active site residues specific to the mechanism were 

determined to be essential for the activity of deacetylase enzymes.   

 

The IcaB sequence from S. epidermidis was aligned with the sequence of PgaB, a protein 

with similar function from E. coli with an X-ray structure available.  Using this alignment 

and the structure of the PgaB N-terminal domain, a homology model was constructed for 

IcaB.  The model resembled PgaB with the exception of several small surface loops and 

strands.  Importantly, the metal-binding and catalytic residues kept their orientation 

similar to that of PgaB, which would be necessary for proper deacetylase function.  

However, the binding groove involved in the transport of the PNAG to the active site of 

PgaB was not replicated in the IcaB model.  Without a structure of IcaB from S. 

epidermidis, it is unclear whether this is a modelling error or whether the binding groove 

consists of differing amino acids.   

 

After completion of this project, an X-ray structure of IcaB from Ammonifex degensii was 

achieved by Little et al.  Despite the low sequence identity between the IcaB structure 

from A. degensii and the IcaB from S. epidermidis (22.8%), both structures were quite 

similar and the active site is within 2Å of the IcaB model residues.  Therefore, a full 

comparison or use of the IcaBAD structure to produce a new homology model for IcaB 

from S. epidermidis would be of interest.   
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