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Abstract 

This thesis describes the experimental research carried out on avalanche photodiodes 

(APDs) for single photon detection. The work covered (i) 1550 nm wavelength single 

photon detection using InGaAs/InAlAs single photon avalanche diodes (SPADs), and (ii) 

soft X-ray detection using III-V semiconductor photodiodes or APDs.  

 SPADs for 1550 nm single photons detection have numerous applications in 

scenarios where 1550 nm wavelength light detection at very low intensity is essential. 

InGaAs/InAlAs SPADs with mesa structure are designed and fabricated. The first batch 

of SPADs showed a temperature coefficient of breakdown voltage ≤ 7 mV/K, for the 

temperature range of 260 to 290 K. When operated in gated mode, the SPADs exhibited 

SPDE of 10 and 21 % at room temperature and 260 K, respectively. However, the dark 

count rates are high, possibly due to BTB tunnelling current in the avalanche layer. 

Efforts were then made to design and fabricate SPADs with thicker avalanche and 

absorption layer, resulting in the second batch of SPADs. At 210 K, the highest SPDE of 

36 % are achieved. Observing activation energy values deduced from the dark count rates, 

it is likely that tunnelling current persists at the high overbias voltage (required to reach 

the highest SPDE), which could be reduced by increasing avalanche layer thickness. 

Hence, the data from the two batches of InGaAs/InAlAs SPADs show that they can be 

practical alternative to InGaAs/InP SPADs, but with the proven advantage of better 

temperature stability and the promise of greater SPDE potential from impact ionisation 

properties in InAlAs. 

The second part of the thesis describes the investigations of InAs avalanche 

photodiodes (APDs) as X-ray detectors. Combining narrow band gap semiconductor 

materials (lower Fano-limited energy resolution) and avalanche gain (to reduce the 

undesirable effect of pre-amplifier’s noise in energy resolution), the work focused on 

InAs APDs for X-rays detection. The liquid nitrogen-cooled InAs APD achieved its best 

Full width at half maximum (FWHM) of 401eV at 5.9 keV. The optimum operation 

voltage was 10 V, which gave an avalanche gain of 11. The minimum FWHM achieved 

is largely dominated by the measurement system noise and APD leakage current. The 

influence of the APD structure (p-i-n versus n-i-p) on minimum FWHM values was also 
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studied in detail to experimentally prove that InAs APD with p-i-n structure is more 

advantageous for small FWHM.  

The X-ray detector work extended to a study of leakage currents using GaAs mesa p-

i-n diodes for X-ray photon counting. Different wet chemical etching solution and etch 

depth are used in the fabrication of these mesa diodes. Low and uniform leakage currents 

are achieved when the diode fabrication used (i) a combination of main etching solution 

and finishing etching solution for the etching, and (ii) partially etched mesas. The diodes 

fabricated using these methods show well-defined X-ray peaks when illuminated with a 

55Fe radioisotope source.   
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Glossary of terms 

 Electron ionisation coefficient 

abs Absorption coefficient   

 Fitting parameter for BTB tunnelling 

β Hole ionisation coefficient 

 Electron hold pair creation energy 

s Permittivity of the semiconductor 

ρ Density 

 Standard deviation  

p.e. Probability of occurring photoelectric effect 

Compton Probability of occurring Compton scattering 

Rayleigh Probability of occurring Rayleigh scattering 

total Total probability X-ray photon interaction 

 Quantum efficiency 

cp Coupling efficiency 

  Mass attenuation coefficient 

 Deflection angle  

τ Generation carrier lifetime 

µ·τ(e) Electron mobility-lifetime product 

µ·τ(h) Hole mobility-lifetime product 

f The repetition frequency  

fF Fano factor 

fmax Maximum amplitude of the Gaussian peak 

hv Photon energy 

<i2> Noise current spectral density 

k Ionisation coefficient ratio 

kb Boltzmann’s constant 

n Ideality factor 

      𝑛̅ Average number of photon per light pulse 
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nd Average number of carriers in a voltage pulse 

ni Intrinsic carrier concentration 

pdf Probability density function 

q Electron charge 

tdead Dead time 

trecovery Recovery time 

ton Pulse width of the AC voltage pulse 

treset Reset time 

wabs Width of absorption layer 

wava Width of avalanche layer 

wc Charge sheet thickness 

A Area 

AC Alternating current 

APD Avalanche photodiode 

AQC Active quenching circuit 

BTB Band-to-band  

C Capacitance 

Cbd Temperature coefficient of breakdown voltage 

Cf Feedback capacitance 

Ct Total capacitance 

CMOS Complementary metal oxide semiconductor  

CQC Capacitive quenching circuit 

C-V Capacitance-voltage 

CW Continuous wave 

DC Direct current 

DCR Dark count rate 

DUT Device under test 

DMM Digital multimeter 

DNA Deoxyribonucleic acid 

E X-ray photon energy 
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Ec Centroid energy of the energy peak 

Ebind Binding energy of the electron 

ER Energy resolution 

Eth Impact ionisation threshold energy  

EBT Electron beam testing 

EHP Electron hole pair 

F Excess noise factor 

FET Field effect transistor 

FWHM Full width at half maximum 

FWHMEN FWHM due to electronic noise 

FWHMf Fano-limited FWHM 

FPA Focal planar array 

GBP Gain bandwidth product 

HPGe High purity germanium 

HV-CMOS High voltage-complementary metal oxide semiconductor 

I0 Intensity of incident photons 

Is Saturation current 

Idiff Diffusion current 

IF Forward current 

Ig-r Generation-recombination current 

Iava Avalanche current 

Iph Photocurrent 

Ipr Primary photocurrent 

Itunn Band-to-band tunnelling current 

IC Integrated circuit 

I-V Current-voltage 

LADAR Laser detection and ranging 

LIA Lock-in amplifier 

MBE Molecular beam epitaxy 

MCA Multi-channel analyser 
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MOCVD Metal organic chemical vapour deposition 

M Mean avalanche gain 

Me (Mh) Avalanche gain initiated by electron (hole) injection 

Mmix Avalanche gain initiated by electron and hole 

NIM Nuclear instrument module 

NIR Near infrared 

Nc Charge sheet doping density 

Nd Number of measured dark count per second 

N0 Doping concentration of depletion width 

Nt Number of measured total counts per second 

Pabs Absorption efficiency 

Pave Average power  

Pb Breakdown probability 

Pd Dark count probability 

Ploss Probability that carriers are lost before entering the avalanche 

layer 

Pph Probability of a light pulse triggering an avalanche 

Pt Total count probability 

PCR Polymerase chain reaction 

PECVD Plasm-enhanced chemical vapour deposition 

PICA Picosecond imaging circuit analysis 

PMT Photomultiplier tube 

PQC Passive quenching circuit 

QKD Quantum key distribution 

Rs Series resistance 

Rb Biasing resistor 

RB Ballast resistance 

Rd Diode resistance 

Rf Feedback resistor 

Rload Load resistance 

RIE Reactive ion etching 
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RTA Rapid thermal annealing 

SAMAPD Separate absorption multiplication avalanche photodiode 

SI Semi-insulating 

SMU Source-measurement unit 

SNR Signal-to-noise  ratio 

SNSPD Superconducting nanowire single photon detector 

SPAD Single photon avalanche diode 

SPDE Single photon detection efficiency 

SSPD Superconducting single photon detector 

T      Temperature 

TAT Trap-assisted tunnelling 

TCSPC Time correlated single photon counting 

TEC Thermoelectric cooler 

TES Transition edge sensor 

UV Ultra-violet  

V Voltage 

VR Reverse bias voltage 

VAC AC bias voltage 

Vb Bias voltage  

Vbd Breakdown voltage  

Vbi Built-in potential 

VDC DC bias voltage 

Vout Output voltage 

Vp Punch-through voltage 

Vt Total voltage 

VOA Variable optical attenuator 

Wd Depletion width 
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1 Introduction 

In this thesis, two types of APDs, namely SPADs and X-ray APDs, are investigated. 

Hence this chapter will present separate literature reviews relevant to them. 

1.1 Single photon detection 

1.1.1  Applications for single photon detection 

Single photon detectors have drawn increasing interest from a wide range of fields 

due to its versatility in applications requiring low light level detection. Typical 

applications relying on or taking advantage of single photon detectors include quantum 

key distribution (QKD) [1], quantum computing [2], integrated circuit (IC) analysis [3], 

optical time-domain reflectometry [4], fluorescence lifetime spectroscopy [5], DNA 

sequencing [6] and laser detection and ranging (LADAR) [7].  

As the most well-known example of quantum cryptography, QKD has been 

intensively investigated since it was firstly proposed by Bennett and Brassard in 1984 

[8]. QKD utilises the quantum mechanics effect to ensure secure communication between 

authorised users. Security of classical cryptography relies on the complexity of chosen 

mathematical functions (such as factorising the product of two very large prime numbers 

[1]) which is not perfectly secure since this method always faces threats from ongoing 

increase in computing ability. The schematic of a basic QKD system is shown in Figure 

1-1. Unlike the classical cryptography, QKD allows the authorised users to share a secret 

key which is used to encrypt and decrypt the message sent between the users. The key is 

a string of qubit, usually polarised photons, thus the security is ensured by the no-cloning 

theorem which states that quantum mechanics forbid the replication of an unknown 

arbitrary quantum state [9]. The experimental QKD was implemented by Bennett et.al. 

from IBM in 1989 [10]. Afterwards, the performances of QKD, such as distribution 

distance and key generation rate, have significantly improved owing to the efforts from 

many research groups. Two notable examples are: researchers from Toshiba in 

Cambridge have demonstrated a QKD system with record high key rate of 1 Mbit/s using 

an InGaAs/InP SPAD [11] and the QKD system with longest distribution distance of 

148.7 km has been achieved by a collaboration research between Los Alamos National 

Laboratory and National Institute  Standards and Technology using a transition edge 
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sensor (TES) detector [12]. Since 2004 there have been several companies providing 

commercial QKD systems [13-16].  

 

Figure 1-1 Schematic of basic QKD. The sender (Alice) send information to the receiver (Bob) through 

two channels: quantum channel sending secret quantum keys and classic channel sending encoded 

information. Eavesdropper (Eve) cannot tap without alerting Alice and Bob.  

As the CMOS circuit becomes increasingly more compact and complicated, more 

advanced methods for IC debugging and analysis are required. For example, Electron 

Beam Testing (EBT) which is one of the conventional IC failure analysis techniques is 

struggling to cope with increased metal layers and flip-chip packaging that significantly 

reduce its efficiency [17]. Fortunately photon emission effect in the CMOS ICs [18] has 

been utilised to assess the performance of the circuit with the so called picosecond 

imaging circuit analysis (PICA) technique [19]. NIR photon are emitted when the 

transistor is switching on and off [20]. PICA acquires the timing information of the 

emitted photons using time-correlation single photon counting (TCSPC) technique. 

Meanwhile the position can also be recorded thus a scanning of the whole circuit will 

generate a circuit image showing location of the failures. Since the intensity of the 

emitted photon is ultra-low and transistors in the circuit have fast switch speed and high 

repetition frequency, a single photon detector with high single photon detection 

efficiency (SPDE), low timing jitter and fast response is required. Several types of single 

photon detectors have been applied in the PICA system including photomultiplier tube 

(PMT) [19], SPAD [3] and superconducting single photon detector (SSPD) [21]. The 

first two types can provide sufficient gain but they suffer from low detection efficiency 
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at NIR wavelength range and low counting rate [22]. The third one has presented the best 

overall performance including GHz counting rate, 5% detection efficiency at 1300 nm, 

and timing jitter of 35 ps [21].  

In biomedical applications, detection of ultra-low fluorescence has been a useful tool 

to carry out analysis in single molecule level. Two typical examples are: DNA 

sequencing and single molecule detection, both of which can benefit from the advent of 

single photon detectors. DNA sequencing is a technique used to determine the order of 

nucleotides in a piece of DNA. The basic operation principle of a DNA sequence rely on 

the identification of the fluorescence light emitted from the fluorescent labels attached to 

specific nucleotides [23]. Amplification process, such as polymerase chain reaction 

(PCR), is usually used to generate a large quantity of DNA molecules since conventional 

detection technique is not sensitive enough for fluorescence from a single molecule. 

However, the PCR process involves complex preparation steps. This could be eliminated 

by employing single photon counting technique. The most commonly used single photon 

detector in commercial DNA sequencers is Photomultiplier Tube (PMT), which offers 

high sensitivity, low noise and fast response [24]. Owing to the ultra-high gain of single 

photon detectors, they have also been applied to the single molecule detection [25, 26]. 

Instead of measuring the average characteristics of a bulk collection of molecules, single 

molecule detection technique using single photon detector is sensitive enough to measure 

the properties of a single molecule. Apart from the intensity of the fluorescence, more 

information can be extracted by conducting TCSPC measurement (e.g. lifetime) which 

can reflect the environment surrounding the fluorophore [5]. PMTs were the first single 

photon detector used to detect single molecule due to its good timing resolution [27]. 

Later SPADs were demonstrated in single molecule detection technique with higher 

detection efficiency, smaller size and lower operating voltage although they have 

relatively small active area [26].  

As a remote sensing technique, LADAR has been applied to a broad range of fields 

such as aerial mapping, 3D imaging, gaming industry and robotics. Working in a similar 

principle with radar, a LADAR instrument deduces the distance of the target by shining 

laser to the target and measuring the time lapsed at the return signal. The distance 

between the source and the target is given by the product of the speed of light and half of 

the time lapsed. TCSPC technique is also employed to enable detection of single-photon 
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level light (long ranging distance) and picosecond timing resolution (millimetre depth 

resolution) [28]. The operation wavelength of was initially ~ 900 nm mainly due to the 

combination of powerful GaAs-based laser and sensitive Si APD [29]. However high 

power laser at this wavelength causes eye damage concern necessitating an upper limit 

of the laser power and hence the ranging distance. This problem could be solved by using 

longer wavelength laser (>1400 nm) at which human eyes are not sensitive hence called 

eye-safe wavelength. This has driven the researchers to investigate the feasibility of using 

InGaAs/InP SPAD for eye-safe LADAR with notable results of sub-centimetre depth 

resolution at kilometre scale ranging distance [30]. LADAR system with SSPDs have 

also been reported owing to its low DCR and low timing jitter [31] although bulky 

cooling system for the SSPDs is still a major disadvantage. 

1.1.2  Photomultiplier tubes  

Photomultiplier tubes are the first detectors used to detect light at single-photon level 

and convert it to an electrical signal [32]. Although emerging SPADs have shown 

superior performances in some applications, PMTs are still widely applied in fields such 

as medical diagnosis, chemical analysis, high energy physics experiments and industrial 

measurement [23]. A conventional PMT is a vacuum tube which houses a photocathode, 

focusing electrodes, several dynodes (secondary emission electrodes), and an anode, as 

shown in Figure 1-2.  

 

Figure 1-2 Schematic to illustrate the principle of operation for conventional PMTs. 
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Principle of operation of the PMTs is based on two physical phenomena, namely 

photoelectric effect and secondary electron emission.  When the radiation photons strike 

on the photocathode, electrons could be emitted to the vacuum as the result of the 

photoelectric effect, provided the photon has larger energy than the work function of the 

photocathode. Photocathode are generally made of materials with low work functions 

such as alkali metals and alkali metal-activated (e.g. Cesium) III-V semiconductors [33]. 

A high negative voltage in order of 1 kV is applied to the photocathode. A potential 

divider circuit is used to create successively lower voltages for a series of dynodes. The 

photoelectron emitted from the surface of the photocathode is accelerated by the electric 

field towards the first dynode. The process is repeated as the electron moves from the 

first dynode to the second and then the next until the electron is finally collected by the 

anode. Crucially, when the accelerated electron hits a dynode, part of its kinetic energy 

is transferred to some electrons in the dynode. Those electrons with a lower energy could 

then escape from the surface of the dynode and be emitted to the vacuum, resulting in 

secondary electron emission. If a gain of 4 is obtained at each dynode, a PMT with 10 

dynodes will provide an overall gain of 410 (~ 106), which is high enough to generate a 

detectable current pulse when single photon level light is incident on the photocathode. 

PMTs offer large photo-sensitive area (diameter > 10 mm), high gain (> 106), and 

low gain fluctuation [22]. In addition, there exist different PMTs to cover a broad spectral 

range from UV (~ 115 nm) to NIR (~ 1700 nm). Nevertheless, compared with emerging 

single photon detector based on semiconductors, PMTs have several drawbacks 

including bulky size, very high operating voltage, and sensitivity to magnetic field. For 

example NIR PMTs with InGaAs/InP photocathode commercially available from 

Hamamatsu have spectral response up to 1700 nm [34], but they require moderate cooling 

(-60 oC) reduce the dark count rate and a low quantum efficiency of 2 % is obtained at 

1550 nm. 

1.1.3  Superconducting single photon detectors  

Over the past two decades, superconducting devices have emerged as a promising 

candidate for single photon detection. These devices can be used to sense light at single-

photon level by utilizing their very sharp superconductivity transition at temperatures 

near their critical temperature. Below the critical temperature, superconductors consist 

of bonded pairs of electrons, Cooper pairs [35], which can flow without any scattering 
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meaning that the superconductors have essentially zero resistance. The binding energy 

of the Cooper pair is in the order of meV. Then the absorption of a photon with enough 

energy (i.e. photons in visible wavelength with energy of ~ 2 eV) will break the bonds of 

hundreds to thousands Cooper pairs resulting in a non-superconducting region. Two 

common types of superconductor-based single photon detectors are Superconducting 

Nanowire Single Photon Detectors (SNSPDs) and Transition Edge Sensors (TESs). 

 

Figure 1-3 Schematic of operation of a SNSPD.  

Superconducting Nanowire Single Photon Detectors (SNSPDs) based on NbN were 

first developed by Gol’ tsman et al. in 2001 [36]. Generally the detector consists of an 

ultra-thin (~ several nm) and narrow (~ several hundred nm) superconducting wire. The 

wire is arranged in a compact meander pattern to maximise the photo-sensitive area and 

the coupling efficiency from the optical fibre (which delivers the photons) to the detector. 

NbN is the most popular superconducting material for SNSPD due to its fast response 

time and relatively high critical temperature (~ 16 K [37]).  

SNSPDs operate at a temperature just below its critical temperature and are biased 

with a DC current slight lower than its critical current. As shown in Figure 1-3, when a 

photon is incident on the nanowire, absorption of the photon results in a non-

superconducting region termed as “hotspot”. As the DC current flows through this 

resistive region, Joule heating effect further increases the temperature around the hotspot 

and hence size of the hotspot. As a result, the actual conducting area is shrunk, increasing 

the local current density. Once the current density is higher than the critical current 

density a resistive barrier is formed across the whole width of the nanowire, causing a 

sudden drop of the bias current, which can be sensed by a readout circuit generating a 

voltage output. At the same time, the hotspot starts to cool since Joule heating effect is 
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removed by the reduced bias current. Then the hotspot shrinks and the nanowire is 

restored to the superconducting state.  

SNSPDs have demonstrated very promising performance including high detection 

efficiency of 93% [38], DCR below 100 c/s [39], timing jitter of 18 ps [40] and reset 

times of a few of nanoseconds [41]. However, SNSPDs must operate at cryogenic 

temperatures so they are not compatible with applications that cannot tolerate the typical 

size and weight of cryogenic cooling systems. 

 

Figure 1-4 Illustration of operation principle of a TES. 

Transition Edge Sensors (TESs) depicted in Figure 1-4 are thermometers that consist 

of an absorber, a thermometer and a weak thermal link connected to a cold bath. These 

detectors are operated on the sharp edge of the transition between the superconducting 

state (with zero resistance) and normal state (with finite resistance) of the 

superconducting material. This very sharp transition enables the sensor to detect 

temperature change due to very weak radiation absorption, such as a single photon. When 

an incident photon is absorbed in the absorber, the photon’s energy is converted into 

thermal energy, which can be sensed by the thermometer resulting an increase in the 

resistance. In order to detect this change in resistance the sensor is normally biased with 

a DC voltage, so that a change of current due to the photon absorption can be measured 

with a sensitive current amplifier circuit. Meanwhile, the amount of Joule heating is 

reduced due to the increase of resistance, causing the sensor to be cooled back to its 

superconducting state through the thermal link. The thermal conductance of the thermal 

link must be low, ensuring that the heat from photon absorption is sensed by the 

thermometer rather than being conducted through the thermal link to the cold bath.   
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Amongst single photon detectors, optimised TESs exhibited the highest detection 

efficiency. Lita et al. reported detection efficiency at 95% at wavelength of 1556 nm 

using a fibre-coupled TES [42] and 98% at 850 nm with a titanium TES [43]. Another 

advantage of TESs is that these sensors are capable of resolving the number of photons 

because the output signal of a TES is proportional to the total absorbed radiation energy, 

which is unmatched by most other single photon detectors. Similar to SSPDs, the low 

operating temperature is also the biggest weakness of TESs. The most common material 

for TESs, tungsten, has a critical temperature of ~ 100 mK [44], which can only be 

achieved by sophisticated cooling system (e.g. adiabatic demagnetization refrigerators). 

Furthermore, TESs suffer from poor timing performance with large timing jitter of 100 

ns and long thermal recovery time of 4 µs [45] limiting the maximum count rate and the 

fidelity of time-correlated photon counting measurement.    

1.1.4  Single photon avalanche diodes  

SPADs are essentially APDs operated above the breakdown voltage. They are also 

called Geiger-mode APDs due to analogy to Geiger counters (gaseous detectors for 

ionising radiation). At voltage above the avalanche breakdown voltage, the very high 

electric field causes a strong positive feedback effect on the impact ionisation process 

resulting a self-sustaining avalanche current, whose magnitude grows to become 

sufficiently large to be detected by an external readout circuit. However, the avalanche 

current could result in excess heat which will damage the device, necessitating the use of 

a quenching circuit. Operation principles of different types of quenching circuits will be 

discussed in chapter 2. Different materials could be used to fabricate SPADs depending 

on specific applications and a detailed review of SPADs will be presented in section 1.1.5.  

1.1.5  Review of single photon avalanche photodiodes  

Single photon detection using solid state detector was firstly investigated by 

researchers in Shockley Laboratory in the 1960s, in particular Haitz. In order to study the 

physics of avalanche breakdown they designed a Si SPAD with planar technology [46] 

as shown in Figure 1-5. This design uses a shallow n+p junction surrounded by a guard 

ring to define the active area and prevent edge breakdown. However the lateral diffusion 

of the guard ring could reduce the doping in the active area and causes non-uniform SPDE 

across the device. Moreover, this design suffers from long diffusion tail in the photon 

arrival time distribution, because carriers generated by the photon absorption in neutral 
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region below the active pn junction could diffuse back to the depletion region with a 

fluctuating delay. Despite these disadvantages such designs offer low operating voltage 

and monolithic integration with electronic circuits.  

 

Figure 1-5. Cross-section of the planar Si SPAD devised by Haitz et al. (Image from [47]) 

In order to overcome the drawbacks of the early planar Si SPAD many efforts have 

been made [7, 48]. The planar epitaxial devices developed by Lacaita et al. [48] have 

been continuously improved and are now found in PDM series photon counting modules 

from Micro-Photon-Devices (MPD) [49]. The typical structure of the planar epitaxial 

devices is shown in Figure 1-6(a). Firstly a p+/p- double epitaxial layer is grown on top 

of an n-type substrate. The junction between the p+ epitaxial layer and the substrate will 

prevent the photo-generated carrier from diffusing to the active pn junction at the top, 

reducing the long diffusion tail. Photon timing distribution peak with FWHM of 45 ps 

and time constant of the diffusion tail of 270 ps has been achieved [48]. Then unlike the 

lightly doped n-diffusion guard rings used in the early planar devices, a highly p-doping 

region is formed below the n+ region to define the active area of the device. This ensures 

higher electric field in the central region than in the peripheral region, suppressing edge 

breakdown. Commercial PDM series detectors now exhibit best-in-class timing accuracy 

of 35 ps, SPDE of 49% at 550 nm and DCR from 1 to 500 Hz, depending on the diameter 

of the detector (20 to 100 µm) [49]. 

Another type of Si SPAD, Si SPADs with non-planar structure shown in Figure 1-6(b), 

have been developed and produced into commercial devices [51, 52]. The C3092SH 

series SPAD from EG&G (now Excelitas), with a reach-through geometry firstly 

developed by McIntyre and Webb in 1970s, has been extensively characterised as a 

SPAD. A custom-made single photon detector based on C3092SH by Kim et al. [53] 

used a four-stage TEC to cool the detector down to -80o and achieved SPDE of >50% at 
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806 nm and DCR of < 5 Hz. The SLiKTM device fabricated with a modified reach-through 

structure was subsequently released from EG&G and employed in single photon counting 

modules. Instead of using a separated absorption and avalanche layer, SLiKTM devices 

have a high electric field across its whole structure. Thicker depletion region reduces the 

electric field ensuring that the ionisation coefficient ratio, k, is as low as possible. Very 

low value of k (i.e. 0.002) has been obtained which will result in a higher breakdown 

probability (i.e. Pb, which is defined as the ratio of number of carriers triggering 

breakdown to number of injected carrier) and higher SPDE compared with the reach-

through structure (k of 0.02). SPDE of 50% at 830 nm, DCR <1500 Hz and diameter of 

180 µm have been achieved at room temperature [51]. However, SLikTM devices have 

some inherent disadvantages such as high operating voltage, high power dissipation and 

large timing jitter. Also the non-planar fabrication are complex and cannot be used to 

integrate the SPAD with circuits. 

 

Figure 1-6 (a) Schematic of planar epitaxial structure reported in [48]. (b) SlikTM devices with reach-

through structure. (Images from [50]) 

Si SPADs are also produced by CMOS technologies used in silicon industry due to 

their potentials of low production cost and achieving complex system on chip. The 

CMOS technologies explored are High-Voltage CMOS (HV-CMOS) and Standard 

Deep-Submicron CMOS. HV-CMOS have drawn more attentions in the fabrication of 

SPAD for red and infrared wavelength due to their thick junction and higher voltage. Si 

SPADs using HV-CMOS technology were reported by ([54] with 0.8 µm technology and 

[55]with 0.35 µm technology). Example performance are SPDE of 35% at 450 nm 

(droping to 15% at 600 nm) and an average DCR of 750 Hz [55]. Through monolithic 

integration of the detector and the quenching circuit, the parasitic capacitance across the 

detector is significantly reduced [56]. This is expected to reduce severity of afterpulsing 

since the total amount of charge during the avalanche event is reduced [57]. The reduced 
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parasitic capacitance also decreases the recharging time when a simple passive quenching 

circuit is used increasing the maximum counting frequency.  

CMOS technology with deep-submicron resolution has been used to produce large-

format dense SPAD arrays integrated with electronic circuits [58-62]. Early results 

indicated problems of lateral diffusion of the guard ring limiting the minimum active area 

of the device [58]. Later efforts employed shallow-trench isolation instead of guard ring 

[60, 61]. SPDE of 25% at 560 nm and <100 Hz DCR were obtained for an 8 µm diameter 

SPAD at room temperature [61]. SPADs produced using 90 nm CMOS, as shown in 

Figure 1-7, also achieved high performances [62] through moving the high field region 

to the junction formed between the deep n-well and the p-type epitaxial layer. SPDE of 

44% at 690 nm and 20% at 850 nm were obtained because the active junction is buried 

deeply at which more photons at longer wavelength are absorbed.  

 

Figure 1-7 A Si SPAD with 90 nm CMOS technology [62]. 

Driven by the demands from applications such as LIDAR, 3-D imaging and 

fluorescence lifetime imaging, development of SPAD arrays fabricated with CMOS 

technology have been made significant progresses. The first large SPAD array (32×32 

pixels) implemented with 0.8 µm HV-CMOS technology was reported by Niclass et al. 

[63]. However, the sequential addressing scheme allows only one pixel to be processed 

at a time limiting the read-out rate. Later efforts were made to overcome this limitation  

resulting in 35% SPDE at 450 nm and DCR of ~ 1000 Hz from a SPAD array of 32×32 

pixels implemented with 0.35 µm HV-CMOS technology [64]. Each pixel in this array 

can detect the photon, digitise the signal and temporarily store the data. Recent advances 

in SPADs implemented in 130 nm technologies allow more functional circuits (e.g. 

picosecond resolution time-digital-converter) to be integrated on a pixel [65, 66].  
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Alternatively, custom technologies have been also used to fabricate SPAD arrays. 

Those devices were used in applications such as protein microarray detection [67] and 

single molecule fluorescence [68]. Since the samples under test in these applications are 

extremely small, SPAD arrays with large-area pixels are preferred to make the alignment 

of the SPAD array easier. SPDE of 50% at 550 nm and DCR in order of 1000 Hz were 

achieved with the 50 µm diameter pixel detectors [67]. 

Despite excellent performance at visible region, Si SPADs are not suitable for NIR 

wavelength because absorption coefficient of silicon from 1 µm onwards are low. Si 

SPADs therefore cannot be used at 1300 nm and 1550 nm, the important fibre based 

telecommunication windows. Germanium, which has a narrower bandgap, is able to 

detect up to 1600 nm wavelength at room temperature. Therefore research has been 

carried out to investigate performance the Ge-based SPADs [4, 69, 70]. But Ge-based 

SPADs require cooling to cryogenic temperature (77 K) in order to manage the dark 

count rate, but cooling shifts the SPADs detection cutoff wavelength to 1450 nm, 

resulting in very low SPDE at 1550 nm telecommunication wavelength. More recently, 

progress in growing Ge on Si has resulted in Ge-on-Si APDs with very impressive 

performances [71]. Ge-on-Si APDs use SAM structure, in which Ge and Si are used in 

absorption and multiplication layer respectively. These detectors are capable of detect 

single photons at wavelength of 1310 nm [72, 73].  

InP based heterostructure APDs, especially the widely used InGaAs/InP SAMAPD 

structure, have been the most promising candidate for practical single photon detectors 

at telecom wavelengths due to its excellent performances at those wavelengths. The 

SAMAPD structure uses a narrow bandgap material InGaAs(P) as the absorption layer 

and a wide bandgap material InP as the multiplication layer, which was first developed 

by Nishida et al. [74] and later improved by Campbell et al. [75]. This design ensures 

that the electric field in absorption layer is low enough to avoid tunnelling current while 

keeping the electric field in avalanche layer high enough to result in high gain. 

Commercial APDs have been available since 1990s. Early research on InP-based SPAD 

were focused on characterisation of commercial InGaAs/InP APDs as SPADs [76-79]. 

Epitaxx-APD was found to yield best performances such as dark count probability in 

order of 10-5, SPDE of 10% and timing jitter of 500 ps at -60 oC although the maximum 

counting rate was limited by the afterpulsing effect [79]. Later, instead of relying on 



Chapter 1 Introduction 

13 

 

selecting the suitable commercial linear APDs, researches began optimising the device 

design for SPADs [80-83]. Donnelly et al. established a model to predict the SPDE and 

DCR versus overbias and temperature for InGaAsP/InP SPAD with different thickness 

of avalanche and absorption layers. Their results indicate that SPADs with thicker 

avalanche layer tend to have lower DCR for a given SPDE, because thicker avalanche 

layer breaks down at a lower electric field, and hence lower DCR induced by tunnelling 

effect [80].  

The first specifically designed planar InGaAs/InP SPAD shown in Figure 1-8 were 

reported by Pellergrini et al. [81]. In anticipation of decreasing breakdown voltage with 

cooling, this device was designed to have enough difference between punch through 

voltage and breakdown voltage to allow operation at 200 K. Double zinc-diffusion and 

floating guard rings were used to suppress the edge breakdown. Although the 

performances of the SPAD (SPDE of 10%, DCR of 100 kHz and timing jitter of 470 ps) 

did not exceed those of selected linear APDs, the work provided valuable insights into 

specific design and fabrication criteria for InGaAs/InP SPADs. Another InGaAs/InP 

SPAD with similar design was reported by Itzler et al. [82] which has been constantly 

improved [83] and is now available from Priceton Lightwave. In addition to the design 

features used in [81], this SPAD also uses back illumination with anti-reflection coating 

to improve the SPDE (SPDE of 20% with DCR ~ 1 kHz at 218 K).  

 

Figure 1-8 Schematic cross section of a planar InGaAs/InP SPAD [81].  

As the wafer growth of InGaAsP material system is less matured than that of silicon, 

afterpulsing problem has limited the maximum counting rate of InGaAs/InP. Several 
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approaches have been proposed to reduce the severity of afterpulsing effect. The first 

successfully strategy is rapid gating technique used by Namekata et al. [84] in which the 

SPAD was gated by a very high frequency sinusoidal (instead of square) voltage signal 

(800 MHz) to reduce the total charge during the avalanche event hence the afterpulsing 

effect. InGaAs/InP SPADs operated at GHz frequency with very low afterpulsing 

probability of 0.63% and SPDE of 10.9% are now used in commercial QKD systems [85]. 

However, applications such as TCSPC prefer ungated operation for more efficient data 

acquisition [86]. Instead of trying to decrease the “on” time, researchers started to reduce 

the quenching time by monolithically integrating a resistor with the SPAD. The parasitic 

capacitance will be significantly minimised, therefore, a SPAD with fast self-quenching 

is achieved (so called Negative Feedback Avalanche Diodes [87]). Furthermore research 

on ungated operation, which uses the very fast quenching (either passive [88] or fast gate 

[89]) to reduce the avalanche charge, have been investigated and subsequently 

commercialised [90, 91].  

InGaAs/InP SPAD in large array format which can be used in 3-D imaging was first 

investigated by researchers in Lincoln lab [92]. The technique was later licensed to two 

companies: Princeton Lightwave [93] and Spectrolab [94]. 3D Lidar cameras with 32×32 

InGaAs/InP (1550 nm) and 128×32 InGaAsP/InP (1064 nm) SPAD FPA are 

commercially available [93].  

A number of groups reported photon counting experiments using APDs with InAlAs, 

instead of InP, as the multiplication layer [95-99]. InGaAs/InAlAs APDs operated in sub-

Geiger (or linear) mode has been characterised in [95, 96]. SPDE of 14% with DCR of 

850 kHz were obtained at 175 K, moreover, no afterpulsing was observed at upto 48 

MHz count rate [96]. However the photon counting performances were still limited by 

the amplifier noise and excess noise of the APD. InGaAs/InAlAs SAPDs have also been 

reported [97-99]. The first InGaAs/InAlAs SPAD, reported by Karve et al. [8], exhibited 

SPDE of 16% at 130 K. Nakata et al. [9] achieved better overall performance with SPDE 

of 10% at 213 K, which was probably partially due to the much smaller SPAD diameter 

(20 μm, typical in recent SPADs) than that in Karve et al. (160 μm). A self-quenching 

InGaAs/InAlAs SPADs operated in sub-Geiger mode was also demonstrated with SPDE 

between 6 and 14% at 240 to 120 K [10]. 
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In recent years, the interest on single photon detection at wavelength >1600 nm is 

increasing. Therefore some new designs have emerged including GaSb-based 

InGaAsSb/AlGaAsSb SAMAPD [100]  and InP-based SAMAPD using InGaAs/GaAsSb 

Type-II superlattice as the absorption layer [101].  

1.1.6  Motivations 

Although InGaAs/InP APDs have been widely applied to NIR applications, InAlAs 

has become an attractive alternative as the multiplication layer [102]. The main reason is 

that InAlAs has more dissimilar ionisation coefficient than InP [103] which leads to 

lower excess noise. Another advantage of InAlAs over InP is that it can withstand higher 

electric field before significant tunnelling effect appears due to its slight higher bandgap  

[103]. Furthermore, the temperature stability of APD using InAlAs as multiplication 

layer was reported to be better than that using InP [104]. Because of the advantages 

mentioned above numbers of research on InGaAs/InAlAs APDs have been carried out 

and high performances (e.g. GBP of 240 GHz and dark current of 1.24 nA [105]) have 

been achieved [105-109]. For imaging applications, InGaAs/InAlAs APD arrays have 

been fabricated and characterised by several groups [96, 110, 111]. Uniformly good 

performances have been demonstrated, i.e. variation of breakdown voltage is less than 

2.5 V and dark current at gain of 10 ranges from 1.5 nA to 2.5 nA, in a InGaAs/InAlAs 

APD array with 256×256 pixels across 1.5 cm×1.5 cm area [96]. As InGaAs/InAlAs 

APDs becomes more mature, currently large format arrays are commercially available 

from two companies (i.e. 1k×1k array in Voxtel [112] and 256×256 in OptoGration 

[113]).  

These advantages brought by InGaAs/InAlAs APD still holds for SPAD. For example, 

a SPAD with a 2.5 m absorber and a 1.0 m avalanche layer (as from [81]) has a 

temperature coefficient of avalanche breakdown voltage, Cbd, of 151 or 57 mV/K, 

depending on whether the avalanche layer is made of InP or InAlAs, as predicted using 

equations 1 and 2 from [104]. Moreover, InAlAs SPADs have potentially higher SPDE, 

which is directly proportional to avalanche breakdown probability, Pb, than InP SPADs. 

It is well established that Pb rises more rapidly with overbias ratio, defined as (V - Vbd)/Vbd, 

in InAlAs than in InP [114-116]. Using 1.0 m avalanche layer as an example, Pb at 5 % 

overbias ratio is 0.72 and 0.58 for InAlAs and InP, respectively, with larger differences 

at smaller overbias ratio [114]. 
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Therefore, in this thesis, InGaAs/InAlAs SPADs for 1550 nm detection have been 

developed in order to take advantage of the benefits associated with InAlAs avalanche 

layer. 

1.2 X-ray detection 

1.2.1  Applications for X-ray detection 

X-rays were firstly discovered and systematically investigated by German physicist 

Wilhelm Rontgen [117]. X-rays are high energy electromagnetic radiation with photon 

energy in the range of 100 eV to 100 keV [118]. They can penetrate opaque objects and 

image the inside with an X-ray detector. So they find significant applications in medical 

imaging, industrial radiography and security scanning. X-ray are also used in other 

applications such as X-ray crystallography and X-ray spectroscopy. X-ray applications 

can be roughly divided into three categories, namely medical applications, industrial 

applications and scientific research.  

Medical applications include radiography and radiotherapy. Medical radiography is 

an imaging technique which uses X-ray detection to generate images of internal parts of 

a patient. This is used to assist the doctors in diagnosing diseases (e.g. dental radiography 

for detecting cavities) or injuries (e.g. X-ray imaging for diagnosing broken bones). 

When X-rays pass through the part to be examined, denser objects (e.g. bones and teeth) 

attenuate more X-rays than soft tissues resulting in a radiograph captured by a 

photographic film or a digital detector. X-ray Computed Tomography is a type of 

advanced radiography which can generate a 3-D image of the inside of a patient giving 

more details than a conventional radiography. In X-ray radiotherapy, X-rays are used to 

kill tumour cells, as part of cancer treatment. Similar to medical radiography, industrial 

radiography makes use of the penetrating property of X-rays to inspect the hidden flaws 

or failures of commercial products which otherwise could not be seen easily. Commercial 

X-ray inspection systems for food quality control are available in [119]. The third 

category of applications is scientific research. A typical example is X-ray crystallography 

which can be used to determine the crystal structures using the diffraction pattern 

produced by X-rays striking on the crystal. A notable example of this application is the 

discovery of DNA molecule by J. Watson and F. Crick in 1953 using X-rays [120].  
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1.2.2  Gas-filled detectors 

A gas-filled detector is an ionising radiation detector that usually consists of a 

cylindrical container filled with noble gases (e.g. argon), a positive electrode along the 

central axis of the cylinder, a negative electrode on the sidewall of the cylinder, and a 

window at the end. When an X-ray photon passes through the gas, the gas atoms or 

molecules could be ionised and electron-ion pairs will be created. External voltage 

applied to the electrodes will then drive the generated electrons and ions to anode and 

cathode, respectively, resulting in a current signal which could be detected by the readout 

circuit. The number of collected carriers, thus pulse height of the resulted current signal, 

varies with the voltages, as shown in Figure 1-9. Three regions have been utilised in three 

different gas-filled detectors namely ionisation chamber, proportional counter and 

Geiger-Muller counter.  

 

Figure 1-9 Different regions of operation of a gas filled detector. The two curves correspond to two 

different energies of incident radiation. 

In an ionisation chamber, all the generated electron-ion pairs are collected and pulse 

height does not vary with the bias voltage. They are widely used in applications such as 

intensity measurement in X-ray crystallography, high dose rate radiation monitoring and 

smoke detectors. However, they require a low noise amplifier, when used to detect low 

energy ionising radiations. 

With higher bias voltage, the gas-filled detector can operate in the proportional region 

in which pulse height is proportional to the bias voltage. The primary charges gain 
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enough energy from high electric field to ionise more gas atoms, creating secondary 

charges, which can initiate further ionisations, finally resulting in an avalanche 

multiplication of the primary charges. Owing to the multiplication in proportional 

counter, there will be less stringent requirements on low-noise amplifier to detect low 

energy ionising radiation.  

If the bias voltage is increased further, the gas-filled detector will be operated in 

Geiger-Muller region where it is called Geiger-Muller counter. Unlike the ionisation 

chamber and proportional counter which have a pulse height proportional to the radiation 

energy, Geiger-Muller counter will output the same pulse height regardless of the 

radiation energy. The reason is that avalanche events in a Geiger-Muller counter could 

emit UV photons due to the relaxation of atoms. The emitted UV photons can hence 

generate new electron-ion pairs which is accelerated under very high electric filed and 

could trigger more avalanches. The new avalanches will in turn produce more UV 

photons. This positive feedback will result in a huge amount of avalanche spreading 

throughout the whole detector. After the avalanches reach a certain size the collective 

effect of ions which have lower mobility than electron will terminate this positive 

feedback effect. This saturation effect makes Geiger-Muller counter not suitable for 

applications requiring energy resolving capability (e.g. X-ray spectroscopy). However, 

due to its ultra-high multiplication the need of amplifier is minimised or even eliminated 

making Geiger-Muller counter an ideal candidate for portable instrument to monitor 

ionising radiations.    

1.2.3  Scintillation based detectors 

Scintillation based detectors use a scintillation material to convert high energy photon 

to visible photons which can be detected with a PMT or APD.  The conversion is a result 

of photoluminescence in which the incident high energy photons interact with the atoms 

in the scintillation material, bringing some of the electrons to an excited state, and then 

visible photons are emitted during the de-excitation of the atoms. The visible photons 

will be detected by a photodetector giving the energy of the incident radiation. Due to 

this two stage process, detection techniques using scintillation based detectors are 

sometimes termed indirect detection techniques as opposed to direct detection techniques 

in which semiconductor can convert the high energy photons into electrical signal 

directly. The scintillation materials can be divided into organic (e.g. anthracene C14H10) 
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and inorganic (e.g. NaI(Tl)). The emission time of inorganic scintillator is much longer 

than that in organic materials, however, inorganic materials have higher density which 

gives higher efficiency in the detection of high-energy radiations. Since visible light 

emitted from the scintillator is very weak, a photodetector with amplification (i.e. PMTs 

or APDs) will be required to generate a measurable electrical signal.  

1.2.4  Semiconductor detectors 

In a semiconductor detector the passage of radiation create electron-hole pairs (EHPs) 

which are swept to the electrodes under electric field generating an electrical signal. The 

process is analogous to that in the gas-filled detectors except that the carriers are electrons 

and holes instead of electrons and ions. The main advantage of semiconductor detectors 

over other radiation detectors is their high energy resolution in X-ray spectroscopy. This 

is a result of smaller average EHP creation energy which reduces the statistical 

broadening of the peak in an energy spectrum. For example, average electron-ion pair 

creation energy is 26 eV for Ar, energy loss for creation of one photon in NaI is 25 eV, 

EHP creation energy is 3.6 eV for Si. Therefore, for a certain incident radiation energy, 

number of charges generated in semiconductor is more than other X-ray detectors 

reducing the lower limit of the energy resolution placed by Fano noise (i.e. a type of noise 

in energy spectroscopy caused by statistical fluctuation in number of generated charges). 

Other advantages of semiconductor X-ray detectors including compact size, insensitive 

to magnetic field and high detection efficiency make them suitable for most of 

applications in radiation detection. However, in some applications, semiconductor 

detectors suffer from small active area and degradation due to radiation damage. 

Different types of semiconductor X-ray detectors in terms of material will be detailed in 

section 1.2.5. 

1.2.5  Review of semiconductor X-ray detectors 

Si and Ge detectors have been the work-horse in almost all radiation detection 

applications due to the maturity in their growth and fabrication techniques and good 

carrier transport properties. Early Si and Ge detectors use the depletion region of a 

reverse biased PN junction as the active region to absorb incident radiations and generate 

electrical signals. One main limitation of this configuration is that the wide depletion 

width, and hence high detection efficiency, relies on very low doping density of the wafer. 

For example, the maximum depletion width is about 1 mm for PN junction detectors and 
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Schottky barrier detector. But in order to get a good detection efficiency at high energy 

X-ray range (>20 keV) at least several mm thick Si is needed. One solution is to make 

use of Lithium ion drifting process to compensate the residual doping achieving an 

“intrinsic” region which could increase the depletion width up to ~ 1 cm. This technique 

has been successfully applied to both Si and Ge X-ray detectors known as Si(Li) and 

Ge(Li) respectively. However at room temperature the drifted lithium tends to 

redistribute making the detectors unusable. Hence they are usually cooled to liquid 

nitrogen temperature continuously. Moreover the dark current of lithium drifted detectors 

is much higher than thinner detector, which again requires the detector to be cooled down 

to cryogenic temperature to reduce the leakage current related noise. Alternatively, more 

advanced techniques capable of achieving impurity concentration as low as 109 

atoms/cm3 have been developed for germanium, which is the so called High Purity 

Germanium (HPGe). These detectors still need to be cooled to liquid nitrogen 

temperature in order to reduce the thermal dark current, but only when they are operated. 

For applications in hard X-ray or Gamma-ray range, HPGe detectors are preferred than 

Si(Li) detectors since Ge has a higher atomic number than Si (32 for Ge, 14 for Si) 

meaning a better detection efficiency at the same radiation energy.  

Table 1-1 Summary of properties of common materials used as radiation detectors [121-123].  

Material Si Ge CdTe Cd0.9Zn0.1Te InAs GaAs 

Atomic number 14 32 48,50 48,30,52 49,33 31,33 

Density (g/cm3) 2.33 5.33 6.20 5.78 5.68 5.32 

Bandgap (eV) 1.12 0.67 1.44 1.57 0.35 1.43 

Pair-creation energy (eV) 3.62 2.96 4.43 4.6 1.6 4.2 

Fano-limited energy  

resolution @ 5.9 keV (eV) 
118 112 142 145 86 129 

Resistivity (Ω·cm) 104 50 109 1010 0.2 107 

µ·τ(e) (cm2/V) >1 >1 10-3 10-3-10-2 0.1 10-5 

µ·τ(h) (cm2/V) ~1 >1 10-4 10-5 10-5 10-6 

 

Although Si and Ge are still dominating the radiation detector market, Si suffers from 

low detection efficiency (due to low atomic number) and Ge cannot work without 

cryogenic cooling (due to narrow bandgap). So many efforts have been made to develop 

radiation detector using compound semiconductors. Compound semiconductors which 
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have been investigated as radiation detector are main from group II-VI such as CdTe and 

CdZnTe, group III-V such as GaAs and InP. Table 1-1 shows the comparison of common 

materials used as radiation detectors.  

CdTe is one of the most popular compound semiconductor radiation detector. It has 

bandgap of 1.44 eV which is large enough to permit room temperature operation. 

Moreover, its high atomic number (48 for Cd, 52 for Te) and high density (5.85 g/cm3) 

results in high detection efficiency than Si and Ge. Takahashi et al. [124] have 

demonstrated FWHM of 1.8 keV at energy of 59.5 keV obtained from a CdTe Schottky 

detector. However this device suffer from temporal instability resulted from polarisation 

effect. This polarisation effect is basically due to the accumulation of trapped carrier 

forming space charges and making the electric field finally collapse. It has been shown 

that this effect could be reduced by applying higher bias voltage and lowing the operating 

temperature. Low carrier mobility-lifetime product is one main disadvantage of CdTe 

detector, and this is mainly caused by the relatively high density of impurities and defects 

which trap the photo-generated carriers. In X-ray spectroscopy applications, low carrier 

mobility-lifetime product will result in low carrier collection efficiency and low energy 

tail (i.e. poor energy resolution). CdTe detectors with epitaxial PIN structure have been 

investigated by several groups in order to obtain wafer with low leakage current. High 

performance CdTe PIN detectors giving FWHM of 270 eV at 5.9 keV were achieved by 

Khusainov et al. [125]. This detector was cooled to -45 oC at which temperature no 

polarisation effect was observed after 10 hours operation. Currently commercial radiation 

detection instruments using CdTe detectors are available in several companies such as 

portable gamma-ray detector from Amptek [126] and dental imaging system from AJAT 

[127]. CdZnTe is a ternary compound which has close atomic number to CdTe and higher 

bandgap (1.44 keV-2.2 keV depending on percentage of Zn). Apart from the higher band 

gap, addition of Zn is also believed to reduce the dislocation density thus the polarisation 

effect [128]. Both of those two effects will increase the resistivity of the material giving 

lower leakage current. FWHM of 240 eV at 5.9 keV at -40oC was reported from a 2×2×2  

mm3 CdZnTe detector by Niemela et al. [129]. However, CdZnTe still suffer from low 

energy tail caused by low hole mobility-lifetime product at higher energy [130]. Several 

methods focusing on single carrier sensing techniques have been developed to solve the 

hole trapping problem [121].    
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As a radiation detector, GaAs has several promising features including relatively high 

average atomic number (Z = 32) and bandgap (1.43 eV). Additionally the growth and 

fabrication techniques of GaAs is more developed than other compound semiconductors 

owing to their broad range of applications in high speed electronics and optoelectronics. 

GaAs detectors are generally realised in two methods: Schottky diodes using semi-

insulating (SI) GaAs and epitaxially grown p-i-n diodes. Early researches have shown 

that SI GaAs detectors have good room temperature capability, however, they suffered 

from high defect density and non-uniform electric field [131]. A typical example is the 

130 µm thick bulk GaAs detector reported by McGregor et al. which demonstrated room 

temperature FWHM of 8 keV at 59.5 keV[132]. Later, with the emerging of Medipix1 

chip (CMOS readout chip designed by Medipix collaboration) an X-ray imaging array 

with 64×64 SI GaAs pixels has been reported [133]. Images from various objects were 

obtained using X-ray with energy in the dental imaging range. Leakage current density 

of 2.7 µA/cm2 was measured. More recently, X-ray imaging detectors using chromium 

(Cr) compensated SI GaAs have been demonstrated by several groups [134, 135]. High 

resistivity in order of 109 Ω has been achieved. More notably, FWHM of ~ 3 keV was 

obtained at near room temperature (280 K) at 59.5 keV [135]. GaAs p-i-n detectors with 

high quality epitaxial GaAs was fabricated by Owens et al. [136, 137]. These detectors 

were produced by growing 40 µm epitaxial layer (with 10 µm p+ deposited on top) on n+ 

substrate by chemical vapour phase deposition. Typical leakage current density of 4 

nA/cm2 at 100V reverse bias was obtained. With improved ultra-low noise charge 

ampfiler design, the best energy resolution (FWHM of 266 eV and 487 eV at 5.9 keV and 

59.5 keV respectively) has been achieved. An array detector with thicker epitaxial GaAs 

(140 µm) was reported by Kostamo et al.[138]. This array detector which has 256×256 

pixels with p-i-n structure and a total area of 1.4×1.4 cm2 was bump-bonded to the 

Medipix2 readout chip for X-ray imaging applications.  

1.2.6  Motivations 

Although Si and Ge are still dominating the radiation detector market, they are 

showing limited performances in various applications due to their intrinsic properties. 

An ideal radiation detector will simultaneously satisfy following requirements: large 

active volume, good carrier transport properties, good detection efficiency, capability of 

room temperature operation and high energy resolution. Both Si and Ge perform well in 

the first two aspects, however, Si suffers from low detection efficiency at higher energy 
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and Ge requires cryogenic cooling. Therefore it is necessary to develop radiation detector 

using compound semiconductors which could offer a wide range of candidates with 

properties suitable for almost any application. Cd(Zn)Te are very promising materials for 

X-/γ- ray detector at room temperature, however, difficulties in their growth hindered the 

widespread use of them.   

In contrast, III-V semiconductors have mature growth and processing technologies, 

which motivates me to explore the X-ray performances of III-V semiconductors. InAs, 

is an interesting candidate for high-energy resolution semiconductor X-ray detector since 

it can potentially give better energy resolution (narrow band gap) and higher detection 

efficiency (large atomic number) than Si and Ge. Apart from the interest on this material, 

creating InAs APDs with optimised structure giving the best spectroscopic performances 

is also the aim of this work. 

Another section focuses on study of X-ray detectors using GaAs, which can be used 

as room temperature X-ray detectors and GaAs-based APD X-ray detectors. Previous 

work on GaAs detector have shown promising results in applications such as X-ray 

spectroscopy and X-ray imaging. In these applications, dark current of the diodes play a 

significant role since high dark current will degrade the energy resolution and variation 

of dark current from diode to diode will result in poor image quality. However very 

limited progress in reducing and managing dark current in GaAs has been reported. The 

main motivation of this work is to investigate the effect of wet chemical etchants and 

etch depths on the dark currents of GaAs diodes.  

1.3 Thesis organisation 

The work presented in this thesis focus on the development of InGaAs/InAlAs 

SPADs at NIR wavelength and X-ray detectors using III-V semiconductors. Chapter 2 

introduces the background theory of avalanche photodiodes including impact ionisation, 

avalanche gain and excess noise. This is followed by the principle of operation and figure 

of merits of SPADs. The background of radiation detector is also described. In chapter 3, 

the basic APD characterisation measurements (I-V, C-V and photomultiplication) are 

described. This chapter will also provide the details of characterisation setups for SPADs 

and X-ray detectors. The design, fabrication and characterisation of our InGaAs/InAlAs 

SPADs will be presented in chapter 4. Analysis on the origin of the high DCR will be 
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discussed. According to the modelling results, modifications in the SPAD structure were 

made. The InGaAs/InAlAs SPADs with improved structure have been fabricated and 

demonstrated promising photon counting performances in chapter 5. In chapter 6, InAs 

APDs are demonstrated to detect soft X-ray with an energy resolution of 401 keV. The 

advantage of avalanche gain has been shown by measuring the energy resolution at 

different bias voltages (different avalanche gain). Noise analysis has been carried out to 

assess the significance of electronic noise at different bias voltages. A comparison of 

InAs APDs with p-i-n and n-i-p structures is also discussed. Chapter 7 describes the study 

on influence of etching solution and depth on GaAs mesa diodes for X-ray detection. 

With appropriate etching recipe and partially etched mesa, our GaAs diodes present 

uniformly low dark current. The X-ray spectroscopic results from these diodes are also 

included. Finally, chapter 8 will conclude for the work on InGaAs/InAlAs SPAD and III-

V X-ray detectors and give suggestions for their future directions.  
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2 Background theory 

2.1 Impact ionisation 

Impact ionisation is a key process in APDs, during which energetic carriers (electrons 

or holes) collide with the lattice creating EHPs. In this process, an energetic electron (or 

hole) impart its energy to an electron in the valance band and promote it to the conduction 

band leaving a new hole in the valance band. As shown in Figure 2-1, the photo-generated 

electron and hole (primary carriers) are accelerated under the applied electric field and 

directed to n- and p- layer respectively. During their travel in the i-layer (high electric 

field region), both of them generate a new EHP (secondary carriers) through impact 

ionisation. Both the primary and secondary carriers are swept to the electrodes resulting 

an internal gain of 3. This internal gain is known as multiplication factor or avalanche 

gain.  

The minimum energy gained by carriers to enable an impact ionisation is referred as 

threshold energy, Eth. Eth is larger than the bandgap of the in order to conserve energies 

and momentum of the carriers involved. The impact ionisation process is often described 

by the impact ionisation coefficients (denoted as α and β for electron and hole 

respectively), which are the mean number of EHPs created by the primary carrier per unit 

travelled length. Ionisation coefficients are dependent on material, electric field and 

temperature.  

 

Figure 2-1 Illustration of impact ionisation process in (a) a reverse biased PIN diode and (b) the 

corresponding energy band transition.  
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2.2 Avalanche gain and excess noise 

It has been shown in section 2.1 that a chain of impact ionisations in an APD result 

in avalanche multiplication gain. The multiplication gain is related to ionisation 

coefficients which are position dependent when the electric field is not uniform. The 

mean multiplication factor, M, can be expressed in relation to ionisation coefficients by 

solving current continuity function [1] 

 𝑀(𝑥) =
exp(− ∫ [𝛼(𝑥′) − 𝛽(𝑥′)]𝑑𝑥′𝑥

0
)

1 − ∫ 𝛼(𝑥′)
𝑤

0
exp (− ∫ [𝛼(𝑥′′) − 𝛽(𝑥′′)]𝑑𝑥′′𝑥′

0
) 𝑑𝑥′

, (2-1) 

where the primary carrier is generated in a depletion region with thickness of w and at 

position x.   

For an ideal p-i-n diode, the electric field in i-layer is constant, so the ionisation 

coefficients are no longer dependent on electric field and hence the position. This 

expression then can be simplified as: 

 𝑀(𝑥) =
(𝛼 − 𝛽)exp [−(𝛼 − 𝛽)𝑥]

𝛼 exp[−(𝛼 − 𝛽)𝑤] − 𝛽
 . (2-2) 

Furthermore, it can be seen that when α>β, M(x) decreases with x; and when α<β, 

M(x) increases with x. This gives us two special cases where maximum multiplication 

gain is achieved: x = 0 (pure electron injection) and x = w (pure hole injection) when α>β 

and α<β respectively.  

Due to the intrinsically random nature of impact ionisation process, avalanche 

multiplication has a distribution around a mean gain value, M. This adds additional noise 

other than shot noise which is due to the random motion of discrete charge carriers. 

McIntyre [2] has shown that the mean square noise current spectral density is  

 〈𝑖2〉 = 2𝑞𝐼𝑝𝑟𝑀2𝐹 , (2-3) 

where Ipr is the primary current, F is the excess noise factor used to characterise the 

avalanche noise and given by 



Chapter 2 Background theory 

35 

 

 𝐹 =
〈𝑀2〉

𝑀2
 . (2-4) 

McIntyre’s work also has also shown that F can be expressed as a function of M and 

the ratio of ionisation coefficients (k = β/α) assuming that ionisation coefficients depend 

only on local electric field and k is constant. The expression is given as 

 𝐹 = 𝑘𝑒𝑓𝑓𝑀 + (1 − 𝑘𝑒𝑓𝑓)(2 −
1

𝑀
), (2-5) 

where keff = k = β/α for pure electron injection and keff = 1/k = α/ β for pure hole injection. 

From the above equation, it can be seen that in order to achieve lowest excess noise the 

ionisation coefficient need to be as dissimilar as possible and the initiating carrier should 

have larger ionisation coefficient.  

2.3 SPAD principle of operation 

2.3.1  Operation mode of APDs 

 

Figure 2-2 Left: typical I-V (in dark or under illumination) of an APD showing different operation modes. 

Right: comparison of APD and SPAD.  

As Figure 2-2 shown, APDs can be operated in either linear mode (APDs) or Geiger 

mode (SPADs) depending on the applied voltage. In linear mode, a reverse bias less than 

Vbd is applied to the diode and an avalanche gain <1000 is obtained as the results of a 

series of impact ionisation process. However, this gain is not enough for detection of 

light in single photon level unless additional high-gain amplifiers with low noise are used. 

Geiger mode APDs (SPAD) operate above the breakdown voltage having large enough 

gain for single photon sensitivity. The gain is so high (infinity) that a single primary 

carrier could produce a macroscopic avalanche current which can be detected by the 
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readout circuit. However, the large avalanche current is self-sustaining which will 

destroy the diode due to excessive heat. Therefore a quenching circuit is required to 

reduce the applied bias to be below Vbd and stops the avalanche current.  

Figure 2-3(a) shows a passive quenching circuit (PQC), the most basic form of 

quenching circuits. A DC voltage, which is larger than the Vbd, is applied to the SPAD 

through a ballast resistor, RB. When an avalanche event occurs, there is a large avalanche 

current flowing through the SPAD and the ballast resistor. The avalanche current results 

in a voltage drop across the ballast resistor reducing the bias voltage across the SPAD. 

This negative feedback, with large enough RB, can terminate the avalanche current. 

During the avalanche event, a 50 Ω resistor, impedance matched with coaxial cable and 

input terminal of the readout circuit, gives a potential drop (Vout) which could be sensed 

by readout circuit. After the avalanche current is quenched, the bias voltage across the 

SPAD increases back to the DC voltage and the SPAD is ready for next avalanche event, 

which is known as the recharging process. The recharge time is determined by the time 

constant Ct RB, where Ct is the total capacitance including the SPAD capacitance and any 

parasitic capacitance in the setup. However, in order to quench the avalanche current 

effectively RB usually has a large value (> 100 kΩ), which has the undesirable effect of 

a long recharge time and hence small maximum count rate.  

 

Figure 2-3 schematic of (a) a passive quenching circuit and (b) a gated quenching circuit.  
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Figure 2-4 Bias voltage and avalanche current (Iava) in a SPAD quenched by a PQC during an avalanche 

event.  

Figure 2-4 shows how the voltage and current change with time during an avalanche 

event in a SPAD quenched by a PQC circuit. When an avalanche event is triggered, the 

avalanche current build up quickly. The large current causes a potential drop across the 

ballast resistor, which brings the bias voltage down and quenches the avalanche current. 

During this time, the SPAD is not sensitive to any incoming photons, known as dead time 

(tdead). After the avalanche is quenched, the bias voltage increases back to VDC with a 

reset time (treset) determined by ballast resistor and total capacitance across the SPAD. It 

worth noting that during treset the bias voltage increases from Vbd to VDC and the SPAD is 

capable of detecting single photons with an increasing probability.  The time required to 

recover the bias voltage back to VDC is the recovery time, trecovery. For quenching methods 

giving a very fast reset time, trecovery is approximately the same with tdead, and they are 

usually used interchangeably.  

Gated quenching circuit shown in Figure 2-3(b) is preferred when the incoming 

photons have known and periodic arrival time. The gated operation is realised by biasing 

the SPAD with a DC voltage (VDC < Vbd) superimposed with AC pulses so that (VDC + 

VAC) > Vbd. Thus the SPAD is active only when the total bias is above Vbd (on-time). If 

an avalanche event occurs during the on-time, the falling edge of the AC pulse will 

quench the avalanche current. The AC pulse is usually kept short (several ns), so the dark 

count rate is reduced since the SPAD is active only during the on time. The frequency of 

the AC pulses can be kept low to effectively give a long off-time reducing the afterpulsing 

effect. One main disadvantage of gated quenching is that it cannot be used in applications 
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in which incoming photons have random arrival time. The circuit can be used in 

combination with passive quenching circuit by including RB in series with the SPAD. 

Other more sophisticated quenching circuits, such as active quenching circuit (AQC) 

and capacitive quenching circuit (CQC), have been also investigated [3, 4]. AQC uses 

active components to sense the rising edge of the avalanche current, reduce the bias 

voltage rapidly terminating the avalanche current and then reset the bias voltage back to 

be above breakdown voltage. AQC has fast quenching and recharging time, however, it 

is more complex than other quenching circuits. CQC uses a capacitor instead of a resistor 

to quenching the avalanche current. Fast quenching and clean square AC bias can be 

obtained.  

2.3.2  Single Photon Detection Efficiency  

Single photon detection efficiency is defined as the ratio of the number of avalanche 

pulses triggered by photo-generated carriers and the number of incident photons (in 

single photon level). For SPADs with SAMAPD structure, which is the case studied in 

this work, SPDE is the product of absorption efficiency, collection efficiency and 

breakdown probability,  

 SPDE = Pabs×(1 - Ploss)×Pb, (2-6) 

where Ploss is the probability that photo-generated carriers are lost before entering the 

avalanche layer. 

Absorption efficiency, Pabs, is the probability of an photon being absorbed in the 

absorption layer, which can be calculated as Pabs = 1-exp(-αabs×wabs), where αabs is the 

absorption coefficient and wabs is the width of absorption layer. The exponential term 

indicates that the percentage of the remaining photon flux decays exponentially with the 

distance and with a rate determined by αabs. Absorption coefficient is related to the 

wavelength of the light and material of the absorption layer. Thick absorption layer is 

desirable to achieve high Pabs and hence high SPDE. 

Collection efficiency is the probability that the photo-generated carriers travel to the 

multiplication layer without being trapped or recombined. This comes from the fact that 

SPADs with SAMAPD structure has a heterojunction between the absorption and 

multiplication layers which might cause carrier trapping reducing the SPDE. A grading 
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layer with intermediate bandgap value between those of the absorption and multiplication 

layer is usually used to reduce the band discontinuity.  

 

Figure 2-5 Breakdown probability of an InAlAs SPAD with 0.1 µm thick multiplication layer versus 

overbias voltage ratio.  

Breakdown probability is the probability of having an avalanche breakdown triggered 

by a carrier in the multiplication layer. Pb is usually expressed as a function of overbias 

voltage ratio, which is defined as (Vb-Vbd)/Vbd. Pb increases from zero at Vbd and saturates 

to one for Vb << Vbd. Figure 2-5 shows the calculated Pb as a function of over bias ratio 

for an InAlAs SPAD with 0.1 µm thick multiplication layer.  

2.3.3  Dark count rate 

Dark count rate is the rate of avalanche events (dark counts) triggered by carriers 

generated in absence of light. Readout circuit normally is unable to distinguish between 

the avalanche events from light and dark, so dark counts will result in false counts 

reducing the usefulness of the SPAD in applications. There are three main dark carrier 

generation mechanisms that contribute to dark count: thermal generation, tunnelling 

current and carrier re-emission of trapped carriers [5]. The last one is known as the cause 

of afterpulsing effect and will be discussed in section 2.3.4. 

Thermal generation current is generated from the Shockley-Read-Hall process. The 

generation rate can be expressed as ni/τ, where ni is the intrinsic carrier concentration and 
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τ is the generation carrier lifetime which is related to the material quality [6]. Thermal 

generation usually occurs through local energy levels introduced by defects. Since energy 

levels located within the bandgap act as generation centres, energy required to thermally 

excite an electron from valance band to conduction band is effectively reduced. So the 

density of the defects in the material affects the generation carrier lifetime and thermal 

generation rate. For III-V SPADs, thermal generation current from the absorption layer, 

which is normally made of narrow bandgap material, is dominant. Cooling the SPAD can 

reduce the thermal generation current by reducing ni.  

Since SPAD needs to be operated above breakdown voltage, the electric field in 

multiplication layer might be so high that band-to-band (BTB) tunnelling becomes 

significant. Under very high electric field, the potential barrier that an electron has to 

across from valance to conduction band becomes narrower resulting in BTB tunnelling 

with a certain probability. At lower electric field, tunnelling current can still be 

significant with the assistance of defects with energy level in the bandgap. This is known 

as trap-assisted tunnelling (TAT), which is significantly influenced by the position and 

density of the defects, which are in turn related to by improving the quality of the material 

[7]. Both tunnelling mechanisms are weakly dependent on temperature.  

Similar with SPDE, DCR also increases with overbias voltage due to the increase of 

breakdown probability. Therefore a trade-off always exists between achieving high 

SPDE and low DCR.  

2.3.4  Afterpulsing  

Afterpulsing effect describes the process that a carrier trapped during one avalanche 

event by a defect is subsequently released and triggers an additional avalanche event 

(dark count). Afterpulsing effect introduces additional dark counts hence also known as 

secondary dark counts [3].  

The carriers are trapped by the deep level defects in the material and the time taken 

before they are released is described by an exponential time constant depending on the 

type of defects. The afterpulsing effect can be reduced by minimising the number of 

carriers flowing through the diode during the avalanche event. This can be achieved by 

using a fast quenching technique such as CQC and/or quenching by a very narrow gate. 
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Lower overbias voltage also reduces the total carriers, however, at the price of lower 

SPDE.  

Another method to suppress the afterpulsing effect is to introduce a hold-off time 

(applied voltage is lower than Vb) after an avalanche event. During this hold-off time, the 

trapped carriers get released without triggering new avalanche pulses. Hence longer hold-

off time reduces the severity of the afterpulse effect. However, this method reduces the 

maximum operating rate of the SPAD. Afterpulsing also becomes more severe when the 

detector is cooled since the release process of the trapped carriers become slower at lower 

temperature.  

2.3.5  Timing jitter 

Timing jitter is the fluctuation of time between photon arrival and detection of the 

avalanche pulse triggered by the incident photon. The main fluctuation comes from the 

variation in build-up time of avalanche pulses as a result of stochastic nature of avalanche 

process. The fluctuation of build-up time decreases with increasing overbias voltage. 

This is due to the less spread of ionisation path length probability density function (pdf), 

which directly affect the level of fluctuation in the avalanche process [8].  

Another source of the timing jitter is the difference in the time taken by photo-

generated carriers to travel from absorption layer to the avalanche layer, which depends 

on the positon of photon absorption. When the absorption layer is not fully depleted, 

carriers generated in undepleted region need to diffuse to the avalanche layer. In this case 

the uncertainty of diffusion time might be a significant component of the timing jitter. 

In terms of timing jitter of the system, jitter of the photon arrival time and RC limit 

of the circuit and diode also contribute to the total timing jitter. The jitter of photon arrival 

time is determined by the pulse width of the pulse laser which is usually defined by 

FWHM of the duration time. The RC limit is set by the product of Ct and Rd + Rload, where 

Rd is the diode resistance and Rload is the load resistance of the readout circuit [3].  



Chapter 2 Background theory 

42 

 

2.4 Background of radiation detection 

2.4.1  Interaction of X-rays with matters 

       

Figure 2-6 Energy dependence of different interactions for carbon and lead [9].  

When X-ray photons are passing through matters, three main interactions will occur 

namely photoelectric effect, Compton scattering and pair creation. X-ray photons will 

transfer energy to bound electrons, partially or completely depending on the type of 

interaction, though these interactions. However, the probability (or sometimes called 

cross-sections) that each interaction occurs is different depending on the photon energy 

and material properties. Figure 2-6 shows the probability of different interactions as a 

function of photon energy in carbon and lead. Pair creation is the process that photon 

energy is converted into an electron-positron pair. The interaction usually occurs when 

the photon energy is in MeV range, because the equivalent energy to twice the rest mass 

energy of an electron is 1.02 MeV [10]. In Compton scattering, part of its energy is 

transferred to an electron through collision between them. After the collision the photon 

is usually deflected by an angle, θ, which determines the amount of transferred energy. 

In contrast, photoelectric effect requires the incoming X-ray photon to transfer all of the 

photon energy to an electron, which makes it is preferred when the X-ray detector is used 

in X-ray spectroscopy. In this thesis, GaAs and InAs will be used to detect X-rays in soft 

X-ray range where photoelectric effect is the major interaction, so details of photon 

electric effect will be discussed in the following section. 
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2.4.2  Photoelectric effect 

In the interaction caused by photoelectric effect, a bound electron will be ejected with 

kinetic energy given by hv - Ebind, where hv is the photon energy and Ebind is the binding 

energy of the electron, resulting a photoelectron shown in Figure 2-7(a). Since photon 

energy has to be higher than the binding energy of the electrons at different shells, the 

probability of occurring photoelectric effect (σp.e.) drops abruptly when the photon energy 

is slightly lower than the binding energy resulting “absorption edges” shown in Figure 

2-5. The probability of photoelectric effect also decreases rapidly with the photon energy. 

Moreover, it increases with atomic number (Z) of the absorption material, as shown in 

Figure 2-5 that for a given photon energy, photoelectric effect is more likely to take place 

in lead (Z = 82) than carbon (Z = 6). This relationship can be expressed as [10]: 

 𝜎𝑝.𝑒. ≅ 𝐴 ×
𝑍𝑛

(ℎ𝑣)3.5
 , (2-7) 

where n is a constant that has a value between 4 to 5 and A is a constant independent of 

Z and hv.  

 

Figure 2-7 (a) Photoelectric effect in an atom. (b) Generation of characteristic X-ray.  

The ejection of the photoelectron leaves an ionised atom with a vacancy. This 

vacancy might be filled by an electron from outer shell to stabilise the atom. Meanwhile, 

the energy difference between the two shells can be released in form of photons known 

as characteristic X-rays. The process of generating characteristic X-rays is shown in 

Figure 2-7(b). Although in most cases characteristic X-rays will be absorbed by 

subsequent photoelectric effect, some of them might escape from the surface of the 
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detector resulting in escape peaks. The energy of the escape peaks is given by the 

difference between energy of the incident photon and the escaped characteristic X-ray.  

2.4.3  Energy resolution 

In the spectroscopy measurement, the height distribution of pulses produced in 

detectors provides an energy spectrum of the incident photons. Ideally a delta-like peak 

spectrum is expected for radiation of fixed energy. However the measured peak is a wider 

Gaussian-shape peak due to the fluctuations of pulse height. This fluctuation is the end 

result of the fluctuations in the number of carriers collected by the readout circuit.  

Energy resolution is an importance characteristics of the radiation detector showing 

the limit of distinguishing two closely spaced energy peaks. The energy resolution (ER) 

is defined as the ratio of the FWHM of the energy peak to the centroid energy of the peak 

(EC), 𝐸𝑅 =
𝐹𝑊𝐻𝑀

𝐸𝐶
. Figure 2-8 shows the FWHM of a typical Gaussian function. The 

relationship between the FWHM and standard deviation of the Gaussian function (σ) is 

FWHM = 2.36σ.  

 

Figure 2-8 Example of energy spectrum with peak energy EC = 100 keV. fmas is the maximum amplitude of 

the Gaussian peak. 

2.4.4  Absorption efficiency 

When a beam of monoenergetic photons is passing through the detector, the intensity 

of the photons, I(x), at distance x has an exponential expression as follow: 

 𝐼(𝑥) = 𝐼0 exp(−𝜑 × 𝜌 × 𝑥), (2-8) 
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where I0 is the incident intensity, φ is the mass attenuation coefficient of the material and 

ρ is the density of the material. The mass attenuation coefficient is proportional to σp.e. 

which increases with Z rapidly (4th or 5th power of Z) [11]. Hence materials with high Z 

are desirable for high energy radiation detection. In addition, material with high Z can 

also increase the attenuation probability per distance. The absorption efficiency of a 

detector with thickness of w is given by 

 𝑃(𝑤) = 1 − exp(−𝜑 × 𝜌 × 𝑤). (2-9) 

2.4.5  Fano factor 

Ideally full photon energy is completely converted into EHPs and the number of 

EHPs produced by each absorbed photon do not vary. In reality, a finite amount of the 

photon energy is lost by mechanisms other than EHPs creation process (e.g. scattering 

with lattices) leading to a statistical fluctuation of the number of EHPs generated. The 

distribution of the EHPs numbers generated from a given X-ray photon is firstly thought 

to follow the Poissonian distribution so that σ2 = N, where N is the average number of the 

produced EHPs. However, it has been found that the variance of the number of EHPs is 

actually smaller than the value calculated from the Poissonian distribution. This implies 

that the ionisation events are not completely independent. Fano [12] introduced Fano 

factor,  fF, to characterise the variance of the number of EHPs produced by ionisation of 

gas, which is expressed as  

 σ2 = fFN. (2-10) 

This indicates that the ionisation process lies between two extreme cases which are 

ionisation events are completely independent (fF = 1) and all ionisation events completely 

convert photon energy to EHPs (fF = 0).  

Due to the fluctuation of number of EHPs created during the ionisation event, there 

is a theoretical limit on the lowest possible energy resolution called Fano-limited 

resolution, Ef. The energy peak is assumed to have a Gaussian shape since the number of 

EHPs is a large number. Then the Fano-limited resolution in term of energy can be 

expressed as 
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 𝐹𝑊𝐻𝑀𝑓 = 2.35ε√𝑓𝐹𝑁 = 2.35√𝑓𝐹𝐸ε, (2-11) 

where ε is the average energy required to create an EHP and E is the energy of the incident 

X-ray.  

2.4.6  APD X-ray detector 

In a spectroscopy system, apart from the Fano noise, the electronic noise (e.g. from 

diode’s leakage current, capacitance and preamplifier) also contributes to the spread of 

energy peak. Therefore the total energy resolution of a spectrometer in FWHM is usually 

expressed as 

 (𝐹𝑊𝐻𝑀𝑡𝑜𝑡𝑎𝑙)
2 = (𝐹𝑊𝐻𝑀𝑓)2 + (𝐹𝑊𝐻𝑀𝐸𝑁)2, (2-12) 

where FWHMEN accounts for the electronic noise.  

Using an APD as the X-ray detector will improve the signal to noise ratio and hence 

energy resolution due to the avalanche gain mechanism. However the avalanche gain 

fluctuation, characterised by excess noise factor, can degrade the energy resolution. Work 

in [10, 13, 14] have shown that for an APD X-ray detector the excess noise is added to 

the Fano-limited energy resolution giving the total intrinsic energy resolution as  

 (𝐹𝑊𝐻𝑀𝑡𝑜𝑡𝑎𝑙)2 = (2.35)2 × (𝑓𝐹 + 𝐹 − 1)𝐸𝜀 + (𝐹𝑊𝐻𝑀𝐸𝑁)2. (2-13) 

However, this equation doesn’t show that the electronic noise will be reduced by the 

avalanche gain which is the main advantage of APDs used as X-ray detectors. In order 

to understand the effect of avalanche gain fluctuation on the detector’s intrinsic energy 

resolution and electronic noise, following derivation is carried out. 

Since the energy resolution is related to the fluctuation of number of collected 

electrons, the total number of electrons needs to be considered. If the number of primary 

photo-generated electrons is N0, number of electronic noise charge is NEN and mean 

avalanche gain is 𝑀̅, the number of total collected electron is  

 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁0 ∙ 𝑀̅ + 𝑁𝐸𝑁 . (2-14) 

Assuming NEN is independent with avalanche gain, according to error propagation 

rules, the variance of Ntotal can be expressed as 
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 𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝑀̅2 ∙ 𝜎𝑁0

2 + 𝑁0
2 ∙ 𝜎𝑀̅

2 + 𝜎𝐸𝑁
2, (2-15) 

where 𝜎𝑁0
2, 𝜎𝑀̅

2 and 𝜎𝐸𝑁
2 are the variance of N0 , 𝑀̅ and NEN respectively.  

Again, according to the propagation rules, when 𝑀̅ =
1

𝑁0
∑ 𝑀𝑘

𝑁0
0 , 

 𝜎𝑀̅
2 = (1/𝑁0)𝜎𝑀

2. (2-16) 

By substituting equation (2-16) into equation (2-15), we get  

 𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝑀̅2 ∙ 𝜎𝑁0

2 + 𝑁0 ∙ 𝜎𝑀
2 + 𝜎𝐸𝑁

2. (2-17) 

Since the calibration of pulse height distribution into energy requires the multiplied 

signal peak to be scaled by 𝑀̅, the final variance is  

 𝜎′
𝑡𝑜𝑡𝑎𝑙

2
=

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝑀̅2
= 𝜎𝑁0

2 +
𝑁0

𝑀̅2
∙ 𝜎𝑀

2 +
1

𝑀̅2
∙ 𝜎𝐸𝑁

2. (2-18) 

From equation (2-10) and (2-4), we have 𝜎𝑁0
2 = 𝑁0𝑓𝐹  and 𝜎𝑀

2 = (𝐹 − 1)𝑀̅2. By 

substituting these two equations into equation (2-18), we have 

 𝜎′
𝑡𝑜𝑡𝑎𝑙

2
= 𝑁0𝑓𝐹 + 𝑁0(𝐹 − 1) +

1

𝑀̅2
∙ 𝜎𝐸𝑁

2. (2-19) 

Knowing FWHM = 2.35σε, the total energy resolution is 

 (𝐹𝑊𝐻𝑀𝑡𝑜𝑡𝑎𝑙)2 = (2.35)2 × (𝑓𝐹 + 𝐹 − 1)𝐸𝜀 +
1

𝑀̅2
(𝐹𝑊𝐻𝑀𝐸𝑁)2. (2-20) 

It can be seen from equation (2-20) that avalanche gain could improve the energy 

resolution of a spectroscopy system which is limited by electronics noise.  

2.5 References 

[1] G. E. Stillman and C. M. Wolfe, "Avalanche photodiodes," Semiconductors and Semimetals, 

Academic Press, vol. 12, pp. 291-293, 1977. 

[2] R. J. McIntyre, "Multiplication noise in uniform avalanche diodes," Electron Devices, IEEE 

Transactions on, vol. ED-13, pp. 164-168, 1966. 

[3] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching 

circuits for single-photon detection," Applied Optics, vol. 35, pp. 1956-1976, 1996. 



Chapter 2 Background theory 

48 

 

[4] S. J. Dimler, J. S. Ng, R. C. Tozer, G. J. Rees, and J. P. R. David, "Capacitive Quenching 

Measurement Circuit for Geiger-Mode Avalanche Photodiodes," Selected Topics in Quantum 

Electronics, IEEE Journal of, vol. 13, pp. 919-925, 2007. 

[5] R. H. Haitz, "Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes," Journal 

of Applied Physics, vol. 36, pp. 3123-3131, 1965. 

[6] S. M. Sze and K. K. Ng, "Physics of semiconductor devices," 3rd ed., John Wiley and Sons Inc., 

2007. 

[7] J. P. Donnelly, E. K. Duerr, K. A. McIntosh, E. A. Dauler, D. C. Oakley, S. H. Groves, et al., 

"Design Considerations for 1.06-µm InGaAsP-InP Geiger-Mode Avalanche Photodiodes," 

Quantum Electronics, IEEE Journal of, vol. 42, pp. 797-809, 2006. 

[8] C. H. Tan, J. S. Ng, G. J. Rees, and J. P. R. David, "Statistics of Avalanche Current Buildup Time 

in Single-Photon Avalanche Diodes," Selected Topics in Quantum Electronics, IEEE Journal of, 

vol. 13, pp. 906-910, 2007. 

[9] S. Ahmed, "Physics and Engineering of Radiation Detection," 1st ed., Academic Press Inc., 2007. 

[10] G. Knoll, "Radiation Detection and Measurement," 3rd ed., Wiley, 2000. 

[11] J. H. Hubbell and S. M. Seltzer. Tables of X-Ray Mass Attenuation Coefficients and Mass 

Energy-Absorption Coefficients (version 1.4) [Online]. Available: 

http://www.nist.gov/pml/data/xraycoef/ 

[12] U. Fano, "Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions," Physical 

Review, vol. 72, pp. 26-29, 1947. 

[13] M. Moszyński, M. Szawlowski, M. Kapusta, and M. Balcerzyk, "Large area avalanche 

photodiodes in scintillation and X-rays detection," Nuclear Instruments and Methods in Physics 

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 485, 

pp. 504-521, 2002. 

[14] C. H. Tan, R. B. Gomes, J. P. R. David, A. M. Barnett, D. J. Bassford, J. E. Lees, et al., "Avalanche 

Gain and Energy Resolution of Semiconductor X-ray Detectors," Electron Devices, IEEE 

Transactions on, vol. 58, pp. 1696-1701, 2011. 

 

 

http://www.nist.gov/pml/data/xraycoef/


Chapter 3 Experimental methods 

49 

 

3 Experimental methods 

This chapter will firstly describe several common measurements used to characterise 

the basic performances of APDs including current-voltage (I-V) measurement, 

capacitance-voltage (C-V) measurement and photomultiplication measurement. Then the 

experiment setups and theory for single photon counting and X-ray spectroscopy will be 

presented. 

3.1  I-V measurement 

I-V measurement is the basic characterisation to assess the performances of the 

photodiode. I-V measurement were carried out using a Keithley 236 source–

measurement unit (SMU) or an Agilent B1505A power device analyser. During dark 

current measurements, the device under test (DUT) was placed in dark environment to 

minimise photocurrent.  

The forward current equation of a p-i-n diode is [1] 

 
( )

exp 1t s F
F s

b

q V R I
I I

nk T

 
  

 
, (3-1) 

where Is is the saturation current, Vt is the total voltage drop across the diode, n is the 

ideality factor and kb is the Boltzmann’s constant. Series resistance Rs is taken into 

account since the potential drop across contact resistance between deposited metal 

contact and semiconductor becomes significant at high forward current.  The 

experimental I–V data can be fitted using the forward current equation to deduce values 

of R and n. Ideality factor n has a value between 1 and 2 depending on whether diffusion 

or generation-recombination current are more dominant.  

For the mesa diodes studied in this thesis, the dark current measured could be due to 

current flowing through detector’s bulk region or edge surface. The bulk dark current 

consists of the diffusion (Idiff), generation recombination (Ig-r) and band-to-band 

tunnelling (Itunn) components. Surface dark current can be caused by surface states 

formed on the sidewall of etched mesa due to the abrupt termination of the semiconductor 

material. The bulk- and surface-related dark current should scale with diode area and 
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perimeter respectively. Hence the origin of dark current can be determined by 

normalising the dark current to diode area and perimeter. 

For SPADs, bulk dark current is the main source of the DCR. The surface dark current, 

in contrast, is not believed to contribute to DCR, because the surface carriers will not 

experience such a high electric field and generate avalanche pulses. From the reverse bias 

I-V characteristic, important information, such as breakdown voltage and punch-through 

voltage (Vp), can be obtained. 

For X-ray APDs, dark current contributes to the system noise, which reduces the 

signal to noise ratio and results in poor energy resolution. So the dark current of the diode 

needs to be kept low, for instance, InAs diode need to be cooled down to 77 K to reduce 

the high dark current at room temperature. Dark current has another effect on the detector 

in the spectroscopy measurement. Reverse bias to the detector is always applied with a 

large value resistor in series in order to prevent charge signal discharging through it. 

When the dark current is very high, the voltage drop across the biasing resistor might be 

so large as to prevent further increase in the actual reverse bias applied to the diode.  

3.2  C-V measurement 

C-V measurements were made using Agilent/HP 4275A Multi- Frequency LCR 

Meter with AC test signal of 60 mV rms and frequency of 1 MHz. C-V results were 

mainly used to estimate the depletion width (Wd), doping profile and built-in potential 

(Vbi).  

Using a one sided abrupt junction model, the depletion width Wd is given as  

 
0

2 2
-s b

d bi R

k T
W V V

qN q

  
  

 
, (3-2) 

where εs is the permittivity of the semiconductor, N0 is the doping concentration of the 

depletion region and VR is the reverse bias voltage. 2kbT /q is used to correct the effect of 

majority carrier diffusion at the edge of the depletion region. The capacitance of the 

junction with area of A and depletion width Wd is  



Chapter 3 Experimental methods 

51 

 

 
d

W

A
C


 . (3-3) 

By substituting equation (3-2) into equation (3-3), we get 

 2 2

0

21 2 b
bi

k T
V V

C q N A q

 
   

 
. (3-4) 

The built-in potential can be calculated by firstly plotting the 1/C2 against bias voltage 

V in straight line. Then the intercept of the x-axis and 1/C2 gives the value of 
2 b

bi

k T
V

q
 .  

The expression of doping profile at different depletion width is given as below by 

rearranging equation (3-4), 

 
0 2

2

2
( )

1
d

dV
N W

q A
d

C




 
 
 

. 
(3-5) 

Furthermore, the electric field profile can be estimated by solving Poisson’s equation 

 
𝑑𝐸

𝑑𝑥
=

𝑞𝑁0

𝜀𝑠
 , (3-6) 

where E is the electric field in the region and x is the depletion width of the region. With 

this equation, the depletion width of the diode at a voltage (Vt) can be calculated by 

equating the area under the electric field to Vt. Then the capacitance of the diode can be 

obtained using equation (3-3). The calculated capacitance is then fitted to the 

experimental results by adjusting the doping density in each layer in the diode and 

intrinsic region thickness. When the diode capacitance is small (i.e. less than 1 pF), 

parasitic capacitance can add significant error. So it is necessary to perform an open 

circuit zero to remove the parasitic capacitance. In addition, wet etching might reduce 

the actual size of the diode through isotropic etching, affecting the measured capacitance.  

Hence capacitance data of diodes with different sizes must be measured and compared 

to ensure accurate interpretation of the data.   
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3.3  Photomultiplication measurement 

The multiplication characteristic of the APD used in this work was obtained by using 

photomultiplication measurement. This is calculated with the equation 

 𝑀(𝑉) =
𝐼𝑝ℎ(𝑉)

𝐼𝑝𝑟(𝑉)
 , (3-7) 

where Iph is the measured photocurrent and Ipr is the unmultiplied primary current.  

 

Figure 3-1 Schematic diagram of the setup used to measure photomultiplication. SMU: Keithley 236 

source measurement unit. LIA: Stanford Research 830 Lock-in amplifier.  

Iph was measured using the setup shown in Figure 3-1. Laser beam was focused on 

the optical window of the diode using a microscope lens. The laser spot was confined 

within the top mesa to ensure pure carrier injection. An optical chopper was used to 

modulate the laser at frequency of 180 Hz. The reverse biased APD illuminated by the 

modulated laser generated an AC current signal which was then sensed by measuring the 

voltage drop across the load resistor with the lock-in amplifier. The frequency of the 

optical chopper was fed to the LIA as reference frequency. LIA can only measure signal 

at reference frequency and reject noise at other frequencies. Therefore, for APDs with 

high dark current, photomultiplication measurement using LIA is preferred.  

Iph increases with bias voltage due to two possible reasons: increased multiplication 

gain and higher collection efficiency due to increased depletion region. The latter will 
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increase the Ipr and can be approximated by a linear function 𝐼𝑝𝑟 = 𝑎𝑉 + 𝑏. This equation 

can be used to fit the dependence of Ipr with V at small bias voltage and extrapolate the 

value of Ipr at different bias voltages. The gain curve can then be obtained from above. 

InAs APDs used in this work (chapter 6) have long carrier diffusion length and hence 

there was negligible increase of Ipr with V. For these APDs, Ipr was assumed to be constant 

with V. 

3.4  Single photon counting  

3.4.1 Experimental setup 

 

 

Figure 3-2 Experimental setup for dark counts and photon counts measurements with gated quenching. 

Solid lines and dashed lines represent electrical and optical connections, respectively. 

Due to the need of temperature stabilisation and low temperature characterisation, a 

cryogenic probe station (Janis ST-500) was used to cool the SPAD to desired 

temperatures. The cryostat was cooled by continuous flowing liquid nitrogen from a 

pressurised liquid nitrogen dewar. Before cooling down, the sample chamber was 

evacuated by a turbo pumping station (Pfeiffer High Cube 80) to ~ 2×10-5 mBar (pressure 

near the chamber is < 1×10-3 mBar) to avoid any subsequent moisture condensation. A 

temperature controller was used to control the heater underneath the sample stage and 

stabilise the temperature. The optical window was covered by multi-layer black 

aluminium foil to block the ambient light.  
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Figure 3-3 AC pulses with 10 ns pulse width from the Avtech pulser. Pulses obtained using internal 

amplitude adjustment are shown in solid line, and the pulse generated using external attenuator is shown 

in dash line.  

The setup used is shown schematically in Figure 3-2 and the SPAD was placed inside 

the Janis probe station. In order to pulse-bias the SPAD above the breakdown voltage, a 

commercial bias tee (Picosecond Pulse Labs, 5530B) was used to superimpose AC 

voltage (VAC) pulses on a DC bias (VDC), which was set below the breakdown voltage. 

The DC bias was provided by a Keithley 2400 or an Agilent B2901A SMU. The AC 

voltage pulses was provided by an Avtech AVI-V-2L pulser which was triggered by an 

Agilent 81101A pulse generator. The Avtech pulser can provide AC pulses with 

amplitude up to 40 V and frequency up to 100 kHz. The pulse amplitude is adjustable, 

however, the pulse shape is poorer (i.e. ringing at rising edge) at lower voltage amplitude 

as shown in Figure 3-3. Hence a variable electrical attenuator was used to generate better 

low-amplitude pulses. The pulse width is variable from 1 to 10 ns (FWHM) and the rise 

and fall time is less than 500 ps. The SPAD was reverse biased by a positive 

superimposed voltage connected to the cathode of the SPAD, and then the anode was 

connected to the ground through a 50 Ω resistor. 50 Ω resistor was used to achieve 

impedance matching with the coaxial cable and input impedance of the following circuit. 

Avalanche signals from the SPAD (due to dark or photon-generated carriers) were 

detected by an edge-triggered discriminator (designed and made by Simon Dimler), 

which then generated nuclear instrument module (NIM) signals. The threshold voltage 

of the discriminator was adjusted to be higher than the transient pulses but lower than the 

avalanche pulses. The applied threshold voltage was monitored by a Keithley 2700 

Digital Multimeter (DMM). The NIM signals from the discriminator were supplied to a 
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Canberra 512 counter to yield count rate. The avalanche signals were also monitored 

using a Lecroy Waverunner 204Xl oscilloscope (10GS/s) during measurements. 

 

Figure 3-4 Output power from the fibre when 1 mW input continuous wave (CW) laser is attenuated from 

0 to 70 dB. 

Photon source for the photon counts measurements was a fibre-coupled pulsed laser 

from Picosecond Laser Diode Systems (PiL155), which emits 1550 nm wavelength light 

pulses with 20 ps pulse width (FWHM) at a frequency from 1 Hz to 1 MHz. The light 

pulses were synchronised with the AC voltage pulse by adjusting the delay time between 

them using the Agilent pulse generator. This was done as follow:  

 Firstly reverse bias the SPAD at a voltage higher than punch-through voltage and 

lower than breakdown voltage.  

 Then shine the SPAD with un-attenuated pulsed light and check the positions of 

the photocurrent peak and AC pulse using the oscilloscope.  

 At last, adjust the delay time between the photocurrent peak and AC pulse until 

they are the well synchronised.  

The light was attenuated to a desired level by an Exfo FVA-3100 variable optical 

attenuator (VOA). The attenuation of the VOA along with the fibres connected to the 

input and output of the VOA was calibrated through optical power measurement using 

an InGaAs photodiode with known responsivity. The laser power from the fibre was 

determined by measuring the photocurrent of the InGaAs photodiode generated by 

shining 1550 nm CW laser on it. Figure 3-4 shows the measured laser power from the 
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fibre at attenuation level from 0 to 70 dB. With this figure the laser power output from 

the fibre can be determined if the input laser power and attenuation are known.  

3.4.2 Dark count probability and DCR 

In gated mode, dark count probability of the SPAD, Pd, is defined as the probability 

that a dark count is triggered by at least one dark carrier within the AC pulse duration. 

Since the number of dark carriers per time duration is random, so its distribution needs 

to be considered.  

Assuming the dark carriers follows Poisson distribution [2], if the average number of 

carriers in a pulse is nd, the probability that there are k carriers in a pulse will be  

 𝑃(𝑛𝑑 , 𝑘) =
𝑛𝑑

𝑘 × 𝑒−𝑛𝑑

𝑘!
. (3-8) 

For each k value, the probability of detecting a dark count is 1-(1-Pb)
k. Integrating P(nd , 

k) weighted by [1-(1-Pb)
k] over k from 0 to +∞, we get  

 𝑃𝑑 = ∑[1 − (1 − 𝑃𝑏)𝑘] ×
𝑛𝑑

𝑘 × 𝑒−𝑛𝑑

𝑘!

∞

𝑘=0

. (3-9) 

Simplifying this equation as follow 

𝑃𝑑 = ∑{[1 − (1 − 𝑃𝑏)𝑘] ×
𝑛𝑑

𝑘 × 𝑒−𝑛𝑑

𝑘!

∞

𝑘=0

} 

                              = ∑
𝑛𝑑

𝑘 × 𝑒−𝑛𝑑

𝑘!
 

∞

𝑘=0

− ∑[
𝑛𝑑

𝑘 × 𝑒−𝑛𝑑

𝑘!
 

∞

𝑘=0

× (1 − 𝑃𝑏)𝑘] 

                          = 1 − 𝑒−𝑛𝑑×𝑃𝑏 ∑[
[𝑛𝑑(1 − 𝑃𝑏)]𝑘 × 𝑒−𝑛𝑑(1−𝑃𝑏)

𝑘!
 

∞

𝑘=0

] 

                                                = 1 − 𝑒−𝑛𝑑×𝑃𝑏 

we get the expression of Pd 



Chapter 3 Experimental methods 

57 

 

 𝑃𝑑 = 1 − 𝑒−𝑛𝑑×𝑃𝑏  . (3-10) 

In the gated mode measurement, Pd can be obtained experimentally through 

where Nd is the number of measured dark counts per second and f is the repetition 

frequency of the AC pulses.  

DCR is the number of dark counts per second when the SPAD is operated in free 

running mode with fast quenching and recharging. So for SPADs operated in gated mode, 

DCR is related with Pd with equation 

 𝑃𝑑 = 1 − 𝑒−𝐷𝐶𝑅×𝑡𝑜𝑛  , (3-12) 

where ton is the pulse width of the gate (i.e. on-time). When DCR× ton is << 1, equation 

(3-12) can be rewritten as 

3.4.3 Single Photon Detection Efficiency 

SPDE is used to characterise the ability of the SPAD to detect a single photon. 

However, the number of photons per light pulse follows a distribution which also needs 

to be taken into account. Assuming Poissonian statistics for the arriving photons, the 

probability of a light pulse triggering an avalanche is  

where 𝑛̅ is the average number of photon per light pulse and k is the number of arrived 

photon. Using the same simplification used in section 3.4.2 for Pd, Pph can be given as 

Since we know that the total count probability (i.e. probability to detect a count triggered 

by either a dark carrier or a photo-generated carrier), Pt, can be expressed as 

 𝑃𝑑 =
𝑁𝑑

𝑓
, (3-11) 

 𝐷𝐶𝑅 =
𝑃𝑑

𝑡𝑜𝑛
. (3-13) 

 𝑃𝑝ℎ = ∑[1 − (1 − 𝑆𝑃𝐷𝐸)𝑘] ×
𝑛𝑘 × 𝑒−𝑛̅

𝑘!

∞

𝑘=0

 , (3-14) 

 𝑃𝑝ℎ = 1 − 𝑒−𝑛̅×𝑆𝑃𝐷𝐸  . (3-15) 
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Substituting equation (3-15) into the equation (3-16) and re-arranging the equation, we 

get 

Pt was obtained experimentally from equation 𝑃𝑡 =
𝑁𝑡

𝑓
, where Nt is the total counts 

measured per second when the SPAD is illuminated with light.  

 

 

Figure 3-5 Illustration of coupling efficiency measurement. Diodes with diameter 250 µm (a) and 25 µm 

(b) are shown. 

In order to deduce the SPDE, the average number of photon arriving at the diode (𝑛̅) 

must be determined accurately. Since the average power of the laser coming out from the 

fibre tip (Pave) can be calculated using the relationship shown in Figure 3-4, 𝑛̅ can be 

expressed as 

where ηcp is the optical coupling efficiency from the fibre to the diode. This is due to the 

fact that the diameter of the SPAD device used in this work was 25 μm which is smaller 

than the diameter of the fibre core (65 μm). Moreover, the divergence of the light beam 

at the end of the fibre will further increase the spot size, as shown in Figure 3-5. Thus 

 1 − 𝑃𝑡 = (1 − 𝑃𝑝ℎ) × (1 − 𝑃𝑑). (3-16) 

 𝑆𝑃𝐷𝐸 =
1

𝑛̅
× 𝑙𝑛 (

1 − 𝑃𝑑

1 − 𝑃𝑡
) . (3-17) 

 𝑛̅ = 𝜂𝑐𝑝 ×
𝑃𝑎𝑣𝑒

𝑓 × ℎ𝑣
 , (3-18) 
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photocurrent measurements using 25 and 250 μm diameter InAs photodiodes were taken. 

During the measurement for 250 μm diameter diode, it was found that there was range 

within which the photocurrent is independent with the fibre position indicating the light 

spot was smaller than the optical window. Therefore the coupling efficiency was 

calculated by taking the ratio of photocurrent using 25 and 250 μm diameter diodes. The 

photocurrent results from both diode sizes are summarised in Table 3-1. The coupling 

efficiency was calculated to be 5% at reverse bias of 0.2 V.  

Table 3-1 Photocurrent (µA) measured from two different size diodes at different bias voltages using CW 

laser at 1550 nm. The result from D4 with 25 diameter at 0.5 V reverse bias was probably affected by 

degradation of the diode and hence was excluded. 

Diode diameter Diode 
Photocurrent (µA) 

0V -0.2 V -0.5 V 

ø = 250 μm 
D1 0.59 11.38 12.36 

D2 0.62 11.51 11.77 

ø = 25 μm 

D1 0.21 0.57 0.67 

D2 0.25 0.50 0.55 

D3 0.22 0.63 0.65 

D4 0.24 0.60 9.3 

 

 

Figure 3-6 Probability distribution of photon number per light pulse at different average photon number.  

For the measurement in chapter 4 and 5, Paverage was measured to be 77 fW, so using 

equation (3-15) with ηcp = 0.05, photon energy = 0.8 eV, and f = 100 kHz, n was estimated 

to be 0.3. Since the number of photon per pulse follows Poisson distribution it is 
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important to keep the average photon number low to avoid the case that multiple photons 

present in one light pulse, which will increase the Pph overestimating the SPDE. Figure 

3-6 shows the probability distribution of photon number per light pulse at different 

average photon number. The probability of multiple photon per light pulse are calculated 

to be 0.75, 0.26 and 0.037 for n is 3, 1 and 0.3 respectively.  

3.4.4 Modified CQC for measurements at cryogenic temperature 

CQC can provide well defined over-bias voltage and effective avalanche quenching, 

which are important in the characterisation and analysis of SPAD. But in measurements 

at cryogenic temperature, cables or wires connecting device and CQC, which are 

mounted inside and outside the cryostat respectively, introduce parasitic capacitance 

across the device resulting in large transient pulses and complicating the counting of the 

avalanche pulses.  

Hence I modified the existing CQC to make it capable of measurements at cryogenic 

temperature. The core parts of the CQC circuit (DUT, dummy capacitor, biasing 

capacitor and Schottky Diode) were moved into a Judson metal dewar along the DUT 

and other parts are mounted outside the cryostat to minimise the capacitance across the 

device and reduce the transient pulses.  

The modified CQC circuit was tested by measuring DCR of a Si SPAD (supplied by 

University College Cork) at 77 K. The transient pulses after cancellation were lower than 

avalanche pulses. A DCR of 12 Hz was obtained with over bias of 4.5 V and pulse width 

of 200 ns at 77 K. This was more than 4 orders of magnitude lower than the DCR of 270 

kHz at room temperature.  

3.5  X-ray spectroscopy 

The X-ray spectroscopy measurement was carried out using the set up shown in 

Figure 3-7. The packaged diode was placed in a shielded chamber approximately 5 mm 

from a 185 MBq 55Fe radioisotope source. A Keithley 2400 SMU was used to reverse 

bias the device. The resultant signal from the diode under test was integrated and 

amplified using an Amptek A250CF charge-sensitive preamplifier, before being further 

amplified and shaped into semi-Gaussian pulses by an Ortec 570 shaping amplifier. The 

output from the shaping amplifier was fed to an Ortec multi-channel analyser (MCA) 
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controlled by a PC. A MCA emulator software (Ortec Maestro-32) was used to generate 

pulse height distributions which can then be converted into energy spectra. 

 

Figure 3-7 Schematic diagram of a X-ray spectroscopy system. MCA: Multi-channel analyser. 

3.5.1 Radioactive source 

A 55Fe radioactive X-ray source from HTSL [3] was used for X-ray characterisations 

in this work. The 55Fe was sealed in a welded Monel capsule with a brazed beryllium 

window. The source was covered in an additional cylindrical Perspex sleeve for handling 

purposes. The diameter of the active aperture was 10 mm. 55Fe decays via electron 

capture to 55Mn with a half-life of 2.7 years. The emissions of the source included Kα X-

ray at 5.9 keV (24.5% probability), and Kβ X-ray at 6.49 keV (3.29 % probability) [4].  

3.5.2 Preamplifier 

Electric signals generated in the semiconductor materials due to absorption of soft X-

ray photons usually have very narrow width and small amplitude. Therefore it is 

necessary to get the signal amplified by a pre-amplifier before being fed to signal 

processing units. Charge-sensitive preamplifier is preferred since its output voltage is 

proportional to the total charge collected by the detector and independent on the input 

capacitance (combination of diode capacitance and parasitic capacitance) which could be 

changing with different operation conditions.  
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Figure 3-8 Block diagram of an Amptek A250 CF charge sensitive preamplifier [5]. 

For a charge-sensitive amplifier with a FET at the input, the capacitance of the FET 

needs to be matched with the detector capacitance to maximise the SNR. The reason is 

that transconductance is proportional to the capacitance of the FET. Transconductance 

of the FET needs to be kept high to reduce the noise of preamplifier, however, the 

capacitance will also be increased and in turn increase the electronic noise. The optimal 

point has been shown to be where the detector capacitance is equal to the FET capacitance 

[6]. As shown in Figure 3-8, Amptek A250 charge sensitive preamplifier has three FETs 

to allow matching to detectors with different capacitances. FET 1 and 2 have a low 

capacitance of 8 pF and FET 3 has a higher capacitance of 30 pF. Since the diodes used 

in this work are generally below than 10 pF, FET with 8 pF capacitance was used. In 

addition, all the three FETs are placed on top of a thermoelectric cooler and enclosed in 

a TO-8 package. Cooling the FET reduces its leakage current and increases the 

transconductance, both of which act to reduce the amplifier noise. 

The detector was reverse biased through a biasing resistor (Rb = 300 MΩ). The value 

of Rb was large so that the photo-generated carriers will not discharge through Rb before 

being collected by the preamplifier. However, for detectors with high leakage current, 

the potential drop across Rb would reduce the actual voltage applied to the detector. In 

the worst case, e.g. the leakage current increases with reverse bias resulting in a potential 

drop larger than the increase in bias itself, limiting the maximum applied voltage. This 

can be solved by reduce the value of Rb (Rb consists of three 100 MΩ resistor in series) 
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by simply remove one or more resistor(s). For coupling configuration, DC coupling could 

offer lower noise than AC coupling, however, extreme caution is required since any 

accidental high DC voltage which could cause fatal damage the preamplifier. In this work 

the input of preamplifier was AC coupled to the detector.  

The feedback resistor (Rf) with resistance of 2 GΩ was used to discharge the feedback 

capacitor (Cf  = 0.5 pF). Hence the output voltage would decay back to baseline with a 

time constant of Rf × Cf  = 1 ms. The feedback resistor contributes to the thermal noise, 

as shown in equation 

where in
2 is the noise current spectral density of thermal noise. Increasing Rf thus 

diminishes in
2. However, large Rf might result in large decay time constant causing pulses 

pile-up at high count rate. Pile-up occurs when the time interval between two adjacent 

signal pulses is less than the decay time of the signal pulses, which results in false 

amplitudes. It is worth noting that each pulse is superimposed on the residual tail of the 

previous pulse whose amplitude depends on the random rate of incoming X-ray photons. 

So at high count rate, pile-up of pulses shown in Figure 3-9 might significantly degrade 

the energy resolution if inappropriate decay time is used. Additionally, gate leakage 

current of the FET flowing through Rf will make the output terminal operate at a negative 

DC level. The DC level should not exceed the clipping level, so Rf needs to be lower than 

a value determined by the ratio of clipping voltage over FET leakage current.  

 

Figure 3-9 Pile-up of pulses with exponential tail from the preamplifier. 

Noise measurement can be performed by connecting a pulse generator (Agilent 

81101-a) to the test input of the preamplifier. Square waves with a rise time of 5 ns and 

pulse width of 50 µs was applied to a 0.5 pF test capacitor (Ctest) to simulate the charges 

induced by X-ray photons. Charges accumulated on the test capacitor (Q) can be express 

as Q = CtestV, where V is the amplitude of square pulses. Detector should be connected 

 𝑖𝑛
2 =

4𝑘𝑇

𝑅𝑓
 , (3-19) 
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to the input terminal to take the noise sources from detector (e.g. leakage current and 

capacitance) into account. Detector should never be connected to test input to avoid any 

large current pulse which causes damage to the FET. The output of preamplifier was 

connected to shaping amplifier with shaping time used in the actually measurement. Test 

pulses with different amplitudes will give peaks at different channel number at the 

spectrum obtained by the MCA. Then the channel number on the spectrum was converted 

to energy by performing procedures listed in Appendix A. After calibration of the 

spectrum, the noise value (FWHM) can be calculated by Gaussian fitting to the noise 

peak. Details of procedures of noise measurement are presented in Appendix B.  

3.5.3 Post shaping amplifier 

Shaping amplifier is used to improve the signal to noise ratio of the system while 

keeping the pulse height information of the signal. The shaping amplifier usually 

employs a CR-(RC)n circuit (i.e. a high-pass filter/differentiator cascaded with a series 

of low-pass filters/integrators) to reduce the bandwidth of the signal. This is very helpful 

to reduce the white noise from amplifier which is independent with frequency and 

proportional with the bandwidth. In addition, the output signal from preamplifier 

generally has a long decay time (e.g. several hundred of µs) due to the large feedback 

resistance, which will limit the maximum count rate. This can be solved by the high-pass 

filter which cuts off the long decay tail by reducing its low frequency component. 

However, the pulse after high-pass filter has a sharp peak which is still not suitable for 

pulse height analysis because of the short peak duration. A stage of low-pass filter will 

increase the rise time of the signal pulse and results in a rounded peak which allows the 

MCA to get pulse high information more easily. Moreover, the low-pass filter can further 

reduce the amplifier noise. Figure 3-10 shows the schematic of the Ortec 570 shaping 

amplifier [7].  

The time constant of the high-pass and low-pass filter are typically set the same, 

which is the so-called shaping time constant. For spectroscopy system with high 

electronic noise, choice of shaping time constant is vital to achieve high energy resolution 

since the electronic noise (i.e. series and parallel noise) is dependent on the shaping time. 

For instance, in Figure 3-11, shaping time constant of 1 and 2 µs give the best energy 

resolution of 1.95 keV. 
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Figure 3-10 Block diagram of the Ortec 570 shaping amplifer. Typical pulse shapes at different nodes in 

the circuit are also shown.  

 

Figure 3-11 Energy spectra (55Fe) from a GaAs p-i-n diode at room temperature using different shaping 

time constants.  

Since the output of preamplifier is an exponentially decaying pulse, this will cause 

an undershoot on the signal (i.e. peak below the baseline) after going through the high-

pass filter. At high count rate this will reduce the pulse height of the following pulse and 

degrade the energy resolution. The ratio of amplitude of the undershoot and the signal 

after the high-pass filter decreases with the decay time of the preamplifier output signal. 
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Therefore, increasing the decay time of preamplifier could suppress the undershoot, 

while at the price of low maximum count rate. In ORTEC 570, a pole-zero (P-Z) 

cancellation circuit, as shown in Figure 3-12, is used to eliminate undershoot. This P-Z 

cancellation circuit introduces a zero which has an adjustable value by changing the 

resistance of R2. By equating RC to the time constant of the decay time of the preamplifier, 

this zero could cancel the pole caused by the preamplifier giving an exponential decay 

without undershoot. Before any high count rate measurement, the P-Z adjustment is 

essential to make sure the falling edge of the output signal from shaping amplifier returns 

to the baseline without any undershoot and overshoot. The output signal can be checked 

by being DC coupled to an oscilloscope. The P-Z cancellation circuit can be adjusted 

using the potentiometer on the front panel of the shaping amplifier. The minimum decay 

time that the P-Z cancellation circuit can cope with is 40 µs. 

 

Figure 3-12 (a) Output signal from a high-pass filter when input signal is a step function. (b) Output signal 

from a high-pass filter when input signal is an exponential decay function. (c) Output signal from a high-

pass filter with P-Z cancellation circuit when input signal is an exponential decay function.  

In terms of the shape of the pulse being sent to the MCA, Gaussian function is an 

ideal choice because it has reasonably high SNR and needs short time to return back to 

baseline. But Gaussian shape requires the number of low-pass filter to be infinite, i.e. n 

= ∞ in a CR-(RC)n circuit. The less n is, the less symmetrical the signal is and the smaller 

the SNR is. ORTEC 570 Spectroscopy Amplifier uses an active filter network which 

includes a high-pass filter and two second-order active low pass filters. Compared with 

(a)

(b)

(c)
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Gaussian shape, this active filter network gives a semi-Gaussian shape which has similar 

SNR and needs only a practical amount of electric circuitry.  
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4 InGaAs/InAlAs single photon avalanche 

diodes 

Advantages of SPAD using InAlAs as the multiplication layer were discussed in 

chapter 1. In this chapter, the investigation on 1550 nm single photon detection using an 

InGaAs/InAlAs SPAD will be presented. Firstly, the wafer structure and fabrication 

details will be described. Then results from DC characterisations (i.e. I-V and C-V) and 

photon counting measurements (on DCR, SPDE and afterpulsing) will be shown and 

discussed.  

4.1 SPAD device detail 

4.1.1 Wafer structure 

 

 

Figure 4-1 Wafer structure of the InGaAs/InAlAs SPAD showing nominal thickness and doping 

concentration for each layer.  

Nominal wafer details of the InGaAs/InAlAs SPADs (M3698) are shown in Figure 

4-1. It was grown by molecular beam epitaxy (MBE) on a semi-insulating InP substrate 

at the EPSRC National Centre for III-V Technologies at the University of Sheffield. The 
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compositions of InGaAs and InAlAs were In0.53Ga0.47As and In0.52Al0.48As for lattice 

matching to InP.  

The wafer consisted of a 600 nm InGaAs absorption layer and a 200 nm InAlAs 

avalanche layer. Both layers were undoped to maintain a uniform electric field 

throughout the layers. Compared to typical InGaAs/InP SPADs (shown in Figure 1-8), 

the InGaAs/InAlAs SPAD structure has the absorption layer placed near the p+ cladding 

since InAlAs has higher ionisation coefficient for electrons than for holes(opposite in 

InP). The absorption and avalanche layers were thinner than those of InGaAs/InP SPADs 

in [1] and [2]. This allows us to achieve very small Cbd, by minimising both the avalanche 

layer width and the total depletion region width (made up of the avalanche layer, 

absorption layer, grading, and charge sheet). The thin absorption layer also makes it 

easier to achieve sufficiently low surface leakage currents from mesa devices. Another 

benefit of using thin avalanche and absorption layer is that lower timing jitter can be 

achieved which is desired by photon timing-related applications, although these 

advantages are at the expense of absorption efficiency.  

 

Figure 4-2 Simplified structure of an InGaAs/InAlAs SAMAPD with its band structure at zero bias.  
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An InAlAs charge sheet (or field control) layer was between the avalanche and 

absorption layers. This layer is used to ensure that the electric field in avalanche layer is 

high enough to result in avalanche breakdown while the electric field in absorption layer 

is low suppressing the tunnelling current. According to the differential form of Gauss’s 

law, the electric field difference between avalanche and absorption layer is determined 

by the doping concentration and width of the charge sheet layer. Normally the electric 

field in absorption layer needs to be kept between 0 to 100 kV/cm when the avalanche 

layer reaches breakdown electric field.    

Figure 4-2 shows that in an InGaAs/InAlAs SAMAPD there is a large conduction 

band offset in the InGaAs/InAlAs heterojunction. This will act an energy barrier which 

hinders the photo-generated electrons from travelling to the multiplication layer reducing 

the collection efficiency and hence the SPDE. Hence the SPAD design in Figure 4-1 uses 

two 50 nm In0.53Al0.29Ga0.18As layers, which are lattice-matched with both InAlAs and 

InGaAs and have intermediate bandgap, to achieve bandgap grading at the 

heterojunctions.  

The top p+-layer has a highly doped 10 nm InGaAs contact layer and a 300 nm p-type 

InAlAs cladding layer. The thin narrow bandgap InGaAs layer ensures good ohmic 

contact without attenuating the incident light significantly. A 300 nm wide bandgap 

InAlAs layer, which is transparent to the 1550 nm light, was used as the electric field 

stop layer. Similarly, the bottom n+ layer consisted of a 100 nm n-type InAlAs cladding 

layer and a 300 nm n-type InGaAs contact layer.  

4.1.2 Device fabrication 

Mesa devices with diameters of 25 to 100 μm were fabricated from the wafer by Dr. 

Shiyu Xie using standard photolithography and wet chemical etching with a solution of 

sulphuric acid: hydrogen peroxide: deionised water (ratio of 1:8:80). Figure 4-3 shows 

the schematic of the mesa device cross section. The etching reached down to n+ InGaAs 

layer for n-contact deposition.  

The p-contacts were formed by thermal evaporation of Ti/Pt/Au with thickness of 

10/30/200 nm. Ti was used to due to its good adhesion to semiconductor. Pt has a large 

work function which is necessary to form a good ohmic contact on the p-type InGaAs 

layer. P-contact metal was annealed at 420 oC for 30 seconds using rapid thermal 
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annealing (RTA) to further reduce the contact resistance. The doping concentration of 

InGaAs layer needs to be high in order to reduce the depletion width in the metal-

semiconductor junction achieving lower contact resistivity. Annular contact was used for 

p-contact to enable top illumination. InGe/Au (20/200 nm) n-contacts were formed by 

thermal evaporation. 

  

Figure 4-3 Cross-section of a fabricated InGaAs/InAlAs mesa diode and the photograph of the mesa diode 

with its bond pads.  

Then an additional etch down to SI substrate was carried out to create an area for p- 

and n- bond pads deposition. Ti/Au bond pads were deposited on the semi-insulating 

substrate. 200 nm thick SiNx was deposited by plasma-enhanced chemical vapor 

deposition (PECVD) at 300 oC to passivate the mesa diode and isolate the bond pads 

from the mesa edge. Reactive ion etching (RIE) was used to open the top optical window 

and bond pads. No anti-reflection coating was employed.  

4.2 Device characterisation 

4.2.1  I-V results 

I-V measurements of the devices at temperatures ranging from 260 to 290 K were 

performed using a Janis ST-500 probe station connected to a Keithley Model 236 source-

measure-unit. To obtain dark current and photocurrent data, the I-V measurements were 

conducted in the dark and with fibre-coupled CW 1550 nm light from an Agilent 8164A 

tunable laser source, respectively. 

mesa diode 

bond pad 
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Figure 4-4 Reverse dark current and photocurrent (1550nm light) data of a 25 µm diameter InGaAs/InAlAs 

SPAD at 260 to 290 K. Dark current of a diode without p-layer bond pad at room temperature is also 

shown (circle). 

Typical dark current and photocurrent data of a 25 μm diameter SPAD at 

temperatures from 260 to 290 K are shown in Figure 4-4. At bias voltage below 15 V, 

the photocurrent is low since the absorption layer is not depleted and the photo-generated 

carriers need to diffuse to the multiplication layer to be collected. As the bias increases 

to be higher than 15 V, the absorption layer is fully depleted, an increased collection 

efficiency of carriers lead to a step increase of the photocurrent. The photocurrent data 

showed similar punch-through voltages (~ 15 V) at different temperatures.  

As the bias continues to increase, the photocurrent experiences avalanche 

multiplication and finally causes an avalanche breakdown at 26 V. For most of 

semiconductors, breakdown voltage decreases with a decrease of temperature because 

the ionisation coefficients increases at lower temperature due to reduced phonon 

scatterings. Also this temperature dependence of breakdown voltage becomes weaker for 

device with thin avalanche layer. Within the temperature range studied, the breakdown 

voltages indicated by dark current data varied by less than 0.2 V, consistent with the 

small Cbd expected from [3]. Thus, there was always at least 10 V difference between the 

breakdown voltage and punch-through voltage, ensuring that the absorption layer of 

SPAD is fully depleted at breakdown voltage even at low temperature. The dark current 

at 90% of breakdown voltage was 54 and 120 nA at 260 and 290 K, respectively.  

Reverse Bias (V)

0 5 10 15 20 25

C
u

rr
en

t 
(A

)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

dark

1550nm light

without bondpads 

260K~290K

Punch-through



Chapter 4 InGaAs/InAlAs single photon avalanche diodes 

73 

 

Also included in Figure 4-4 is the room temperature leakage current of a 25 m 

diameter diode without p-layer bond pad (from the same sample piece), which is at least 

an order of magnitude lower than that of the tested diode. This indicates that leakage 

current due to bond pads contributed significantly to the measured leakage current of the 

tested diode. This could be due to either leakage current from SI substrate or SiNx 

passivation on the mesa sidewall. However the additional leakage currents are not 

expected to influence dark counts since they do not flow through the multiplication layer.  

4.2.2 C-V results 

 

Figure 4-5 C-V data for different-sized InGaAs/InAlAs SPADs at room temperature. 

C-V measurements of the mesa devices were carried out at room temperature using a 

HP4275 LCR meter. Figure 4-5 shows the capacitance results from diodes with diameter 

ranging from 25 to 100 µm. Small diode capacitance is preferred in photon counting 

measurement since transient pulses in the gated mode increases with the diode 

capacitance. The experimental capacitance decreased rapidly with reverse bias at ~ 15 V, 

because of the depletion of absorption layer. This is consistent with the increase in 

photocurrent at 15 V. Metal bond pads will introduce parasitic capacitance and add to the 

measured capacitance, which was estimated to be around 150 fF by comparing the 

measured capacitance of different-sized diodes. 

By fitting to the C-V data using an electrostatic model and assuming abrupt changes 

in doping density from layer to layer, estimated doping profile and electric field profile 

of the SPAD were obtained. The fitting parameters are shown in Table 4-1. C-V data 
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from the largest diodes (100 µm diameter), as shown in Figure 4-6 was used in order to 

maximise accuracy in the measurement.  The fitting is also shown in Figure 4-6.  

 

Figure 4-6 C-V data and fitting result for a 100 µm diameter InGaAs/InAlAs SPAD. 

 

Table 4-1 Summary of parameters used to obtain C-V fitting shown in Figure 4-6 

Layer Material 
Doping(cm-3) Thickness(nm) 

Nominal Fitted Nominal Fitted 

p+ cap InGaAs 5×1018 5×1018 10 10 

p+ cladding InAlAs >5×1018 5×1018 300 300 

Grading In0.53Al0.29Ga0.18As undoped 1×1018 50 50 

i absorber InGaAs undoped 6×1015 600 440 

Grading In0.53Al0.29Ga0.18As undoped 7×1015 50 50 

p charge sheet InAlAs 2×1017 1.8×1017 200 200 

i multiplication InAlAs undoped 1×1016 200 200 

n+ cladding InAlAs >5×1018 2×1018 100 100 

n+ etch stop InGaAs 1×1019 1×1019 300 300 

 

4.2.3 SPDE 

For the photon counting measurement, the device-under-test was operated in gated 

mode and tested with the setup shown in Figure 3-2. The AC voltage pulses had 1.2 ns 

pulse width (FWHM), 6 V pulse height, and 100 kHz repetition frequency. The fixed AC 

voltage pulses ensured constant AC pulse width for all measurements. The avalanche 
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pulses triggered by either photons or dark carriers were monitored using a Lecroy 

Waverunner 204Xl oscilloscope during measurements, as shown in Figure 4-7. The 1550 

nm pulsed laser was triggered at a frequency of 100 kHz, which was synchronised with 

the voltage pulses. The laser power was attenuated to single photon level (𝑛̅ = 0.3) using 

the method described in section 3.4.3.  

 

Figure 4-7 Avalanche pulses recorded using Lecroy Waverunner 204Xl oscilloscope.  

Following the measurement procedures listed in Appendix A. Pt and Pd were 

measured, from which the SPDE was calculated using equation (3-17). SPDE versus DC 

bias obtained from the SPAD at temperatures of 260 to 290 K, are shown in Figure 4-8. 

SPDE of 10% at 290 K and 21% at 260 K were achieved. At each temperature, SPDE 

increases with overbias voltage due to the increased breakdown probability.  

Absorption efficiency, Pabs, for a 600 nm InGaAs absorption layer is estimated at 0.39, 

assuming absorption coefficient of 0.82 µm-1 at 1550 nm [4]. SPDE is the product of Pabs, 

Pb, and (1 - Ploss), where Ploss is the probability that photo-generated carriers are lost 

before entering the avalanche layer. The small difference between the estimated Pabs 

(0.39) and the highest measured SPDE (0.10) at 290 K suggests a small Ploss and/or a 

high Pb at the operating conditions used. This is supported by the Pb ~ 0.4 to 0.5 predicted 

for a 200 nm InAlAs avalanche layer with the conditions used to achieve SPDE of 21 % 

[5]. 
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Figure 4-8 SPDE versus DC bias for the SPAD at 260 to 290 K.  

 

 

Figure 4-9 DCR vs SPDE results in this work compared with previous reports of InGaAs/InAlAs (closed 

symbols) and InGaAs/InP SPADs (open symbols). 

The measured SPDE values are significantly higher than the SPDE values previously 

reported for InGaAs/InAlAs SPADs [6-8] and are approaching or exceeding those for 

InGaAs/InP SPADs [1, 2, 9] as shown in Figure 4-9. Thus, mesa structure 

InGaAs/InAlAs SPADs represent a practical alternative to InGaAs/InP SPADs. The 

former may be particularly advantageous for development of dense arrays of SPADs.  
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4.2.4 DCR 

 

Figure 4-10 DCR versus DC bias for the SPAD at 260 to 290 K. 

 

 

Figure 4-11 Comparison of DCR results from on-wafer and packaged SPADs. AC bias pulses used for 

both devices are 6 V.  

From Figure 4-10, for a given bias condition, DCR was observed to increase 

marginally as temperature decreases. This is likely to be the result of competing effects 

on DCR from tunnelling current and avalanche breakdown probability. As temperature 

decreases, the BTB tunnelling current in the InAlAs layer decreases slightly, because the 

semiconductor material bandgap increases slightly (increasing the tunnelling barrier 

height). However, as temperature decreases, Vbd of the SPAD decreases slightly, which 

may result in a slight increase in Pb and hence DCR, for a given voltage.  

DC voltage (V)

23.0 23.5 24.0 24.5

D
C

R
 (

H
z)

 

107

108

109

Overbias ratio (%)
12 14 16 18

260K

270K

280K

290K

DC bias voltage (V)

21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0

D
C

R

106

107

108

109

packaged

on-wafer



Chapter 4 InGaAs/InAlAs single photon avalanche diodes 

78 

 

A device from the same sample piece as the DUT was packaged and characterised 

with a setup similar to the one shown in Figure 3-2 (an differential amplifier was added 

to suppress the increased transient pulses due to added parasitic capacitance from the TO 

header). IV results from the packaged device shown identical breakdown voltage (26 V) 

with the DUT. In Figure 4-11, DCR results from the on-wafer DUT and packaged device 

show very similar increase over DC bias voltage. However, to reach the same DCR value, 

DUT needs ~ 1.5 V more bias voltage than the packaged device. This is possibly due to 

the biasing signal loss caused by long cable between device and biasing circuit and/or 

reflection at the probe/device interface.  

Figure 4-9 shows that the DCR of this work is higher than those for prior works on 

InGaAs/InAlAs SPADs, namely [6] (7107 s-1 at 130 K) and [8] (3106 s-1 at 160 K), as 

well as for the DCR reported for InGaAs/InP SPADs (e.g. ~ 104 s-1 at 253 K from [10]). 

There was no sufficient information in [7] to extract its DCR. The DCR data are 

insensitive to changes in temperatures within the range studied. This suggests that the 

dominant mechanism is unlikely to be diffusion or generation recombination current, 

both of which increase exponentially with temperature. BTB tunnelling current, which 

depends weakly on temperature, is thus a possible significant source of dark carrier 

generation.  

 

Figure 4-12  Calculated electric field profiles at 26 and 30.5 V.  

In order to assess the significance of BTB tunnelling current in the SPAD, electric 

field profiles were calculated for 26 and 30.5 V. These are the breakdown voltage and 
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maximum voltage applied in the measurements, respectively. The field profiles are 

shown in Figure 4-12.  

The peak electric field in the InAlAs avalanche layer reaches 725 kV/cm at 30.5 V. 

Such fields were shown to cause significant BTB tunnelling current for a 200 nm InAlAs 

avalanche layer [11]. Hence the high DCR of the SPAD is attributed to excessive 

tunnelling current from the InAlAs avalanche layer.  

4.2.5 Afterpulsing 

 

Figure 4-13 DCR of the SPAD versus AC voltage pulse repetition frequency at room temperature with 

4.5 V overbias. No after-pulse problem was observed. 

Since SPADs sensitive to 1550 nm light can suffer from significant after-pulse 

problem, dark counts measurements were repeated at room temperature for f ranging 

from 1 to 100 kHz (the maximum repetition frequency of the pulse generator). The data 

for 4.5 V overbias (24.5 V DC with 6 V AC bias) are shown in Figure 4-13. No significant 

dependence on frequency could be observed, confirming afterpulsing is not the dominant 

source of the dark counts within this temperature range. 

4.3 Summary 

Mesa structure SPADs using InGaAs absorption layer and InAlAs avalanche layer 

have been designed, fabricated and characterised. The 25 µm diameter SPAD was 

demonstrated to have good temperature stability (< 0.2 V change over 30 K). In gated 

mode, the SPDE of 10% and 21% was achieved at 290 K and 260 K, respectively.  
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However high DCR over the temperature range studied was observed and its 

temperature insensitivity implies its origin being tunnelling current. This is supported by 

the electric field profile estimation for the avalanche layer. Further improvements, such 

as thicker avalanche layer, will be necessary to reduce the breakdown electric field in the 

InAlAs layer. No noticeable after-pulse problem was observed in the frequency range 

(up to 100 kHz) studied. Overall the results indicate InGaAs/InAlAs has considerable 

potential for operation at (or near) room temperature. 
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5 InGaAs/InAlAs SPADs with improved 

performances 

An InGaAs/InAlAs SPAD with promising SPDE at near room temperatures and 

very small temperature coefficient of breakdown voltage was presented in the previous 

chapter. Nevertheless, the SPAD exhibited high DCR caused by BTB tunnelling 

current in the thin avalanche layer. In this chapter, the design, fabrication and 

characterisation of an improved InGaAs/InAlAs SPAD are presented.  

5.1 Design criteria 

The thickness of avalanche layer is one of the crucial parameters in the SPAD 

design, because the electric field required to achieve avalanche breakdown is very 

sensitive to the avalanche thickness, which in turn has influence on many performance 

factors of the SPAD. For instance, a thicker avalanche layer will result in lower 

breakdown electric field and hence lower tunnelling current in avalanche layer. 

Meanwhile, the timing jitter will be larger due to the longer transit time and smaller k 

value [1]. Also higher operating voltage will be required since breakdown voltage 

increases with avalanche layer thickness. In addition, temperature dependence of 

breakdown voltage is greater in SPADs with thicker avalanche layers [2]. 

   

Figure 5-1 Breakdown voltage and electric field for InAlAs p-i-n diodes with different i-layer thickness. 
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Figure 5-2 Tunnelling current calculated for InAlAs p-i-n diodes with different i-layer thickness. 

In order to make a decision on what avalanche layer thickness to choose, Vbd and 

breakdown electric field (Ebd) of an InAlAs p-i-n diode with i-layer thickness of 0.2, 

0.5, 1.0 and 1.5 µm was estimated from avalanche gain simulation, as shown in Figure 

5-1. Vbd and Ebd are defined as the voltage and electric field at which the avalanche 

gain is 100, respectively. The ionisation coefficients used are from ref. [3]. From 

Figure 5-1 it can be seen that Ebd decreases from 700 kV/cm for 0.2 µm i-layer 

thickness to 450 kV/cm for 1.5 µm i-layer thickness. This is due to the fact that thinner 

avalanche layer needs higher electric field to achieve the same average gain as the 

thicker avalanche layer. BTB tunnelling currents versus electric field for each 

avalanche layer thickness were also calculated. Figure 5-2 shows the calculated 

tunnelling current for different avalanche layer thickness. Tunnelling current was 

calculated using equation (1) with a fitting parameter value (αT) of 1.26 in ref. [4]. The 

tunnelling current curves for each thickness end at the voltage of 1.1×Vbd, which is 

sufficient to achieve high Pb (0.8 to 0.9, for avalanche layer thickness of 0.2 to 1.0 m, 

[5]). It is clear that as the i-layer thickness increases from 0.2 to 1.0 µm the tunnelling 

current at 1.1×Vbd reduces by five orders of magnitude, with less dramatic decrease 

for further increase in avalanche thickness. On the other hand, the breakdown voltage 

increases almost linearly with i-layer thickness (Vbd will be even higher when 

absorption layer is taken into consideration). Higher Vbd will require higher operating 

voltage, increasing the height of capacitive transient pulses and complicating the 

measurement. So there is a trade-off between lower tunnelling current and lower 

operating voltage. The device investigated in this chapter has an avalanche layer 
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thickness (wava) of 1.0 µm, which offers a reasonable compromise in having a 

reasonably low operating voltage while avoid excessive tunnelling current.   

The thickness of absorption layer determines the absorption efficiency and hence 

the SPDE of the SPAD. Figure 5-3 shows the calculated absorption efficiency for an 

InGaAs layer with different thickness, using absorption coefficient reported in ref. [6]. 

Thicker absorption layer will give high absorption efficiency, however, the thermal 

generation current will also be higher for thick device. So the choice of absorption 

layer thickness will be a results of trade-off between high SPDE and high DCR. 

Moreover, thicker absorption layer will also increase the risk of having undepleted 

absorption layer if low background doping is not assured. Considering above factors, 

absorption layer thickness (wabs) of 1.7 µm was chosen, which gives reasonably high 

absorption efficiency (75 %).  

 

Figure 5-3 Absorption efficiency of InGaAs layers with different thickness. 

The electric field in InGaAs absorption layer need to be low to reduce the field-

related dark carrier generation mechanisms (e.g. tunnelling and field-assisted thermal 

generation). For an InGaAs p-i-n diode with 1.7 m i-layer thickness, using the BTB 

tunnelling current equation and fitting parameter constant of 1.34 in ref. [7], the 

tunnelling current density is 10 nA/cm2 (the tunnelling current density of a 1.0 µm 

InAlAs p-i-n diode at reverse bias of 1.1×Vbd) at electric field of 165 kV/cm. This 

places an upper limit of the electric field in InGaAs.  
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Since the SPAD might need to be cooled to reduce the thermal generation current, 

the decrease of breakdown voltage (Vb) at lower temperature might result in 

undepleted absorption layer during breakdown. To avoid this problem, there should 

be ~ 10 V difference between the Vbd and Vp to enable measurement down to 100 K. 

This sets the lower limit of electric field in InGaAs. The 10 V difference is calculated 

as the product of temperature coefficient of Vb, 50 mV/K, as calculated using equations 

(1b) and (2) in [2] and a temperature difference of 200 K.    

Therefore, the design of SPAD requires that, when the InAlAs layer reaches its 

1.1×Ebd,, the electric field in the InGaAs layer is < 165 kV/cm and the (Vbd - Vp) > 10 

V. Electric field profile calculations (using electrostatic model) were performed to 

work out the desirable doping density and thickness for the charge sheet, Nc  and wc, 

respectively. The key parameters used were wava = 1.0 µm, wabs = 1.7 µm, Ebd = 484 

kV/cm, and Nc = 3.85×1017 cm-3. The values of Vbd, Vp and Eab at 1.1×Ebd versus wc 

are plotted in Figure 5-4. The lower and upper limits of wc are indicated by the red 

lines in the plot.  

 

Figure 5-4 Calculated Vbd, Vp and Eab using the electrostatic model with design parameters versus 

different charge sheet width.  

5.2 Growth and fabrication 

The InGaAs/InAlAs SPAD (SF0817) was grown by MBE on a semi-insulating InP 

substrate by Dr. Shiyong Zhang at the EPSRC National Centre for III-V Technologies 

at the University of Sheffield. As shown in Figure 5-5, the wafer consisted of a 1700 
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nm InGaAs absorption layer and a 1000 nm InAlAs avalanche layer. Compared to the 

design used in chapter 4, the wafer had thicker absorption and avalanche layers, 

increasing the photon absorption efficiency and reducing the tunnelling current from 

InAlAs, respectively. A thin InAlAs charge sheet layer with high doping density (> 

1×1017 cm-3) was used to achieve a large difference in the electric fields in absorption 

layer and avalanche layer. InAlGaAs layers with intermediate bandgaps were included 

for bandgap grading at InGaAs/InAlAs heterojunctions. 

Top-illuminated mesa devices with diameters of 10 to 50 μm were fabricated from 

the wafer using standard photolithography and wet chemical etching with a solution 

of sulphuric acid: hydrogen peroxide: deionized water (ratio of 1:8:80). The p-contacts 

and n-contacts were formed by annealed metals of Ti/Pt/Au (10/30/200 nm). The 

devices were passivated by silicon nitride deposited using PECVD at 150 ºC. Bond 

pads to the p- and n-contacts were formed by depositing Ti/Au (10/500 nm). No anti-

reflection coating was applied. Results shown in following sections were obtained 

from the 25 µm diameter SPADs, which is the typical size for commercial SPADs at 

1550 nm. 

 

Figure 5-5 Structure details and electric field profile of InGaAs/InAlAs SPAD. 

5.3 Characterisation results  

Figure 5-6(a) shows the typical dark I-V data of a 25 μm diameter SPAD at 

temperatures from 210 to 293 K as well as the photocurrent at 210 K when the SPAD 
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was illuminated with a 1550 nm continuous-wave laser with ~ 40 nW power. The dark 

current at 95% of breakdown voltage was 17 pA and 2.6 nA at 210 and 293 K, 

respectively. The photocurrent data indicate a punch-through voltage, the minimum 

voltage to fully deplete the entire SPAD structure, of ~ 42 V. At room temperature the 

responsivity of the SPAD at punch-through voltage is 0.7 A/W, giving an external 

quantum efficiency of 56 %. This gives an upper limit of 56 % for SPDE (because 

probability of photo-generated carriers reach the avalanche layer and probability of 

avalanche breakdown do not exceed unity). 

  

Figure 5-6 (a) Dark currents (solid lines) of a 25 µm diameter InGaAs/InAlAs SPAD at 210, 230,250, 

270, and 294 K (bottom to top). Photocurrent (dashed line) at 210 K when the SPAD is illuminated with 

1550 nm laser with optical power of ~ 40 nW. Inset: Breakdown voltage versus temperature. (b) Dark 

current density of SPADs with diameter of 94, 194 and 394 µm fabricated in a separate fabrication run. 

These diameter values were obtained from results shown in Figure 5-7(b). 

Plotting breakdown voltage (the voltage at which current reaches 10 µA) from the 

dark I-V data versus temperature in the inset of Figure 5-6(a), its temperature 

coefficient was found to be 45 mV/K. This is close to the design value (50 mV/K), 

and about half of that obtained from InGaAs/InP SPADs (~ 100 mV/K [8]). This small 

Cbd ensures that the breakdown voltage is always higher than the punch-through 

voltage, over the temperature studied in this work.  

Based on dark current measurements on large diodes with diameters of 94 to 394 

µm shown in Figure 5-6(b), we estimated bulk dark current density at punch-through 

voltage to be 20 µA/cm2. This is supported by bulk dark current density data from 

another InGaAs p-i-n diode wafer (grown under highly similar conditions), which 

yield 23 µA/cm2 at 0.5 V reverse bias.  
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Figure 5-7 (a) C-V data measured from a 394 µm diameter SPAD (symbol) and the fitted result (line). 

(b) Capacitance divided by area results of different-sized SPADs. Diameters used for calculation are 

394, 194 and 94 µm.  

Table 5-1 Summary of parameters used in C-V fitting shown in Figure 5-7(a). 

Layer Material 
Doping(cm-3) Thickness(nm) 

Nominal Fitted Nominal Fitted 

p+ cap InGaAs 1×1019  100  

p+ cladding InAlAs 2×1018 2×1018 100 100 

grading InAlAs undoped 

5.2×1014 

100 

1850 
grading In0.53Al0.29Ga0.18As undoped 25 

grading In0.53Al0.15Ga0.32As undoped 25 

i absorber InGaAs undoped 1700 

grading In0.53Al0.15Ga0.32As undoped 

1.1×1016 

25 

75 grading In0.53Al0.29Ga0.18As undoped 25 

grading InAlAs undoped 25 

p charge sheet InAlAs 3.85×1017 3.78×1017 69 69 

i multiplication InAlAs undoped 1.5×1015 1000 980 

n+ cladding InAlAs 2×1018 2×1018 100 100 

n+ etch stop InGaAs 5×1018 1×1019 1000  

 

C-V data from a 394 µm diameter SPAD are shown in Figure 5-7(a). By doing C-

V fitting using model described in section 3.2 (fitted results also shown in Figure 

5-7(a)), the doping concentration and thickness of the main layers were deduced, as 

shown in Table 5-1. For the C-V fitting, corrected diameters instead of the nominal 

values were used (i.e. 394, 194 and 94 µm instead of 400, 200 and 100 µm). The 6 µm 
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difference was deduced from comparison of the capacitance scaled by diode area from 

different-sized diodes, as shown in Figure 5-7(b). Having ~ 6 µm reduction in diameter 

is expected because the etching used in the SPAD device fabrication was isotropic.  

 

Figure 5-8 DCR versus repetition frequency of the AC pulse at different overbias voltages. 

 

Figure 5-9 DCR and SPDE versus overbias voltage at different temperatures (150 to 294 K). 

Selection of the frequency of the electrical pulses for subsequent characterisation 

was based on measurements of DCR versus frequency ranging from 1 kHz to 100 kHz 

(maximum operating frequency of the pulser), as a function of overbias. The data 

obtained from our device at 210 K, with overbias up to 18.5 V, are shown in Figure 

5-8. The data were not dependent on frequency so afterpulsing effect was negligible. 

This is expected because the narrow AC pulses used limit the total number of carriers 

generated during an avalanche breakdown event, and hence the number of trapped 
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carriers, which are responsible for afterpulsing effect. Repetition frequency of 100 and 

10 kHz were used at operating temperatures from 210 to 294 K and from 150 to 170 

K. 

DCR and SPDE versus overbias of the device are plotted as functions of 

temperature in Figure 5-9. At 293 K, the highest SPDE achieved is 17%. Cooling the 

SPAD down to 210 K reduces the DCR at 12 V overbias by nearly two orders of 

magnitude, indicating that the DCR is not dominated by tunnelling currents from 

avalanche layer as results in chapter 4. The lower DCR at 210 K allows higher overbias 

voltage to be applied, yielding SPDE as high as 36 %.  

Possible origins of the dark counts were investigated through deduction of 

activation energy. Activation energy for the DCR at two temperature ranges, 150 to 

210 K and 250 to 293 K, were obtained from linear fittings to ln(DCR) versus 1/kT 

characteristics, as shown in Figure 5-10. Activation energies of ~ 0.1 and 0.3 eV were 

deduced for the two temperature ranges, respectively, for overbias upto 12 V 

(corresponding to SPDE upto ~ 15%). An activation energy of 0.3 eV for the higher 

temperatures is consistent with those reported on InGaAs/InP SPADs at similar 

temperature range [9-11] (0.3 to 0.5 eV), which are attributed to thermal generation 

current in the InGaAs absorption layer. At lower temperatures, the lower activation 

energy indicates that the dominant origin of dark counts is likely to be tunnelling-

related mechanism [11], which is less temperature dependent and more prominent at 

low temperatures [12]. Furthermore, the increase in activation energy with 

temperature is in line with the general trend of other works, including refs. [10, 11]. 

Observing Figure 5-10, as overbias increases, the activation energy decreases 

down to ~ 0.04 eV at the highest overbias used. This is likely to be caused by 

tunnelling-related current growing in significance with overbias. This is similar to the 

observation made by Karve et al., who found their InGaAs/InAlAs SPADs with high 

band-to-band tunnelling current from the InAlAs avalanche layer exhibiting a small 

activation energy (0.12-0.15 eV) even at high temperatures (up to 280 K). However, 

it does not necessarily mean that the same dominant dark count mechanism applies to 

our SPAD at high overbias, because other tunnelling-related mechanisms, such as 

TAT, can also give rise to very small activation energy. 
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Figure 5-10 ln(DCR) plotted as a function of 1/kT at different overbias voltages. 

5.4 Comparison with other reports  

DCR and SPDE of this work are compared to results from various reports on 

InGaAs/InAlAs SPADs [13, 14] and InGaAs/InP SPADs [8, 15, 16] in  Figure 5-11. 

Compared with the previous InGaAs/InAlAs SPAD in chapter 4, this work 

demonstrates significantly improved maximum SPDE (from 21% to 36%) and reduced 

DCR (~ two orders of magnitude) for a given SPDE. The increase in maximum SPDE 

is attributed to the thicker absorption layer (1700 nm instead of 600 nm) that gives 

higher absorption efficiency and SPDE. The thicker avalanche layer is responsible for 

the reduction in DCR.  

    

Figure 5-11 Left: comparison of DCR versus SPDE results of InGaAs/InAlAs (closed symbols) and 

InGaAs/InP (open symbols) SPADs from various works. Right: progress in the development of 

InGaAs/InAlAs SPADs.  
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Work (Year) Temperature DCR SPDE 

ref. [14] (2003) 130 K 7.0×107 16.0 % 

ref. [13] (2008) 160 K 3.3×106 11.5 % 

chapter 4 (2014) 260 K 6.0×108 21.3 % 

chapter 5 (2015) 210 K 2.6×108 36.0 % 
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In comparison with other works, this work reports the highest SPDE among all 

InGaAs/InAlAs SPADs, while being competitive with the recent InGaAs/InP SPADs 

with impressive SPDE [8, 15]. However, the DCR values remain much higher than 

those of InGaAs/InP SPADs. This is in part related to the quality of InGaAs layer in 

our device. The bulk dark current density of our SPADs (20 µA/cm2) is more than two 

orders of magnitude higher than typical values from commercially available InGaAs 

photodiodes at low reverse bias (~ 0.1 µA/cm2). 

5.5 Summary 

InGaAs/InAlAs SPADs with 1.7 µm thick absorption layer and 1.0 µm thick 

avalanche layer have been demonstrated with promising SPDE value (36%). They also 

exhibit Cbd value that is only half of that of InGaAs/InP, offering greater flexibility in 

the SPAD operation temperature. Through a study on the dependence of DCR on 

temperatures (from 250 to 294 K), the measured DCR was attributed to thermal 

generation current in InGaAs layer. However, at temperatures below 210 K, 

tunnelling-related mechanism is the dominant origin of DCR. The design criteria 

described should continue to provide guidance in future design of InGaAs/InAlAs 

SPADs.     
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6 InAs APD X-ray detector 

6.1 Introduction 

Measurement of X-ray fluorescence with Si detectors is an established technique to 

perform elemental analysis in a wide range of applications, such as treatments of liquid 

hazardous wastes [1], environmental analysis of water and soil samples [2], in vivo tests 

on human patients [3], and food safety assessments [4]. The elements of interest often 

include heavy metals, such as Hg and Pb, requiring X-ray photon detection up to 80 keV. 

On the other hand, some toxic elements, such as Li and Be, emit X-rays that are < 100 

eV in energy. 

Although Si is the dominant material used to make soft X-ray detectors, the energy 

resolution of current commercial Si X-ray detectors is approaching its Fano limit. For 

example, an Amptek Si drift detector (SDD) has an energy resolution of 125 eV at 5.9 

keV [5], while Fano-limited energy resolution is 118 eV (calculated assuming 3.65 eV 

electron-hole-pair creation energy and 0.117 Fano factor [6]). Moreover, Si has a 

relatively small atomic number and crystal density, limiting its absorption coefficient at 

high X-ray energies. Thus alternative semiconductor materials to achieve low Fano-

limited energy resolution and high absorption efficiency are desirable.  

These criteria are met by certain compound semiconductors with narrow band gaps, 

Eg, such as InSb (Eg = 0.17 eV [7]) and InAs (Eg = 0.35 eV [8]). They have relatively 

high atomic numbers (49/51 for InSb and 49/33 for InAs) and densities (5.78 g/cm3 for 

InSb and 5.68 g/cm3 for InAs [9]). Some progress has been made in using these narrow 

band gap materials for X-ray detectors. 

InSb Schottky diodes fabricated from epitaxially grown crystals had been studied as 

radiation detectors [10-12]. Cooling the Schottky diode to 42 K, alpha particles (5.5 MeV 

in energy) were detected with 1.8 % FWHM [12]. These diodes also detected Gamma 

rays (59.5 keV in energy), however the gamma ray peaks were not resolved, due to noise 

caused by the extremely high detector’s leakage currents even at cryogenic temperatures 

[10],[11]. In addition, in order to minimise the leakage current, the detectors were 

operated without bias, causing undesirably narrow depletion region and hence low 

collection efficiency. In another work, Zn diffusion was employed to fabricate InAs p-n 
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diodes, which detected alpha particles when cooled by liquid nitrogen, but again high 

detector’s leakage currents prohibited energy resolution assessment [13].  

Si APDs have been extensively investigated for X-ray detection and demonstrated an 

energy resolution of 360 eV at 5.9 keV at -20 oC [14]. There are also reports of APDs 

made with a wide bandgap material, Al0.8Ga0.2As, showing promising results at room 

temperature (or elevated temperatures) [15], [16]. The improvement in SNR is brought 

by the APD’s avalanche gain, when the signal is weak and/or the amplifier’s noise is 

dominant. Both conditions apply to soft X-ray detection applications, where fewer EHPs 

are created by each photon compared to X-rays with higher energies. Having an 

appreciable M may improve the FWHM of the detected peak, with very little negative 

effect from the associated avalanche noise (often known as excess noise), if the APD is 

appropriately designed [17]. Appropriate designs need to be guided by the impact 

ionisation properties of the semiconductor materials used. As an example, consider an 

avalanche material with α > β, i.e. electrons yield higher gain than holes. Then the X-ray 

photons need to enter the APD from its p-layer, so that the majority of photo-generated 

carriers initiating the avalanche gain are electrons, rather than holes. This will ensure that 

the avalanche gain applicable to the photo-generated carriers is as high as practically 

possible.  

An InAs APD with an n-i-p structure for X-ray detection has been previously reported 

[18]. When cooled to 77 K, FWHM of the 5.9 keV peak reduced from 2.02 keV to 950 

eV, as M increased from 1.58 to 5.3. This represented a significant progress in 

semiconductor APDs made with narrow bandgap materials for X-ray detection, given 

that other works on InSb and InAs X-ray detectors were and are still hindered by leakage 

currents. However, since α > β  in InAs, an InAs APD requires a p-i-n structure to 

maximise the value of M experienced by the absorbed X-ray photons for a given reverse 

bias. Furthermore, the n-i-p structure led to considerable absorption in the n-layer and 

avalanche layer, degrading the peak-to-background ratio in the X-ray spectra [18]. Thus 

appropriate changes to InAs APD designs can bring further improvements in their X-ray 

detection performance. In this chapter, the soft X-ray detection performance of InAs 

APDs with p-i-n structure is reported, followed by a comparison between InAs APDs 

with p-i-n and n-i-p structure.    
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6.2 Device detail and electrical characterisation 

The InAs APDs were fabricated from an InAs p-i-n diode wafer (SF0810) grown on 

a 2” n-type InAs substrate by molecular beam epitaxy by wafer grower Dr. Shiyong 

Zhang. Be and Si were used as the p- and n-type dopants respectively. The wafer structure, 

shown schematically in Figure 6-1(a), consisted of a 300 nm p-layer, a 3.5 µm InAs layer 

with graded p-doping, a 6.0 µm InAs i-layer and a 1.0 µm InAs n-layer. The 3.5 µm InAs 

layer had doping grading (light to heavy from bottom to top) to help improve collection 

of minority electrons originally generated by X-ray photon absorption within the p-layer. 

In addition, a very thin AlAs0.16Sb0.84 p+-layer was included to reduce diffusion of 

electrons from the p-contact into the graded, reducing the bulk leakage current.  

         

Figure 6-1  (a) Wafer structure of the InAs APD, showing the thickness and doping concentration for each 

layer. (b) Photograph of the mesa APD and its bond pad.    

Standard photolithography and wet chemical etching were used to create circular 

mesa diodes from the wafer (fabrication was done by Dr. Xinxin Zhou at the National 

III-V centre, Sheffield). Ti/Au (20/200 nm) were deposited to form p- and n- contacts for 

the diodes. The main wet chemical etchant used was a mixture of phosphoric acid, 

hydrogen peroxide and de-ionised water (ratio of 1: 1: 1). The main mesa etching was 

followed by finishing etches using a solution of sulphuric acid, hydrogen peroxide and 

de-ionised water (ratio of 1: 8: 80) [19], and diluted hydrofluoric acid. Sidewalls of the 

mesas were then passivated with negative photoresist SU8, minimizing surface leakage 

currents degradation [20]. SiNx was then deposited before the final step of bond pad 

deposition. The device fabrication yielded diodes with diameters ranging from 15 to 200 

m. The 75 m diameter diodes, whose top view is shown in Figure 6-1(b), offered the 
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best trade-off between minimizing capacitance and maximizing the sensitive area for X-

ray detection. Hence X-ray data presented later were obtained from diodes with 75 µm 

diameter, which were wire-bonded onto TO-5 packages to facilitate low temperature X-

ray measurements.  

The vast majority of the characterizations were carried out on two packaged InAs 

APDs, namely D1 and D2. Prior to X-ray measurements, reverse leakage currents of D1 

and D2 were measured at room temperature, as shown in Figure 6-2(a). At room 

temperature, due to the narrow band gap of InAs, the diodes’ reverse leakage currents 

are prohibitively high. Comparison with on-wafer measurement data also indicates 

degradation in leakage currents caused by the packaging process. Cooling the device to 

77 K reduces the bulk leakage current significantly [20], also shown in Figure 6-2(a), 

making the detection of X-rays possible. On-wafer Capacitance-Voltage dependence of 

the 75 µm diameter InAs APD at 77 K, plotted in Figure 6-2(b), showed that the 

capacitance decreased rapidly with reverse bias voltage from zero to 4 V, but remained 

relatively unchanged for higher reverse bias (0.18 pF at 10 V). 

 

Figure 6-2 (a) Reverse leakage current of packaged InAs APDs with 75 µm diameter at room temperature 

(solid lines) and 77 K (dashed lines). Data from TO-5 packages (black for D1 and red for D2) are higher 

than those from on-wafer measurements (blue line). (b) Capacitance-Voltage curve from on-wafer 

measurements at 77 K. 

6.3 X-ray response 

In the X-ray measurement setup, a TO-5 package containing the InAs APD was 

mounted onto the cold plate of a liquid nitrogen dewar to cool the APD down to ~ 77 K. 

A 55Fe radioisotope with ~ 40 MBq activity was the irradiation source. The measurement 

setup used is described in section 3.5. Spectra obtained with different shaping time 
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constants were compared, as shown in Figure 6-3. Shaping time constant of 0.5 μs gave 

the narrowest peak so was selected for subsequent X-ray measurements. The acquisition 

time was 360 seconds for all measurements.  

 

Figure 6-3 Energy spectra collected using D2 with different shaping time constants. 

   

Figure 6-4 (a) Spectra in channel numbers collected using APD D2 cooled to 77K, at reverse bias voltages 

from 0.4 to 10.0 V. Inset: same data from channels 30 to 90. (b) Avalanche gain obtained from X-ray 

spectra of the InAs APDs at 77 K, in agreement with that from 1550 nm laser measurements. 

Figure 6-4(a) shows the 55Fe spectra collected using the cooled APD D2, reverse 

biased at different voltages. The 5.9 keV energy peaks can be observed in all spectra. The 

peak position at a bias voltage of 0.4 V (channel 50) was assigned as the unity gain peak, 

because the peak position did not vary from 0 to 0.6 V reverse bias (data not shown here). 

As reverse bias voltage is increased beyond 0.6 V, the energy peak shifts to higher 

channel number, moving away from the noise peak, which is expected for an APD. Inset 

of Figure 6-4(a) shows the unity gain peak (channel 50) in the spectra at 3.0, 4.0 and 6.0 

V reverse bias voltages. As reverse bias increased beyond 6 V, it was increasingly 
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difficult to resolve the unity gain peak from the growing noise peak (attributed to 

increasing leakage current shown in Figure 6-2(a)).   

For spectra at reverse bias voltages of 3.0, 4.0 and 6.0 V, the peak at channel 50 can 

be attributed to the fraction of incident X-ray photons absorbed in the InAs n-layer. These 

correspond to pure hole injection and the charge would experience an avalanche gain of 

Mh. For InAs APDs, Mh remains at unity for the entire range of reverse bias considered 

for this work [19]. Thus these unity gain peaks are expected to be present in the spectra 

for all reverse bias voltages. X-rays absorbed solely in the InAs p-layer will undergo a 

gain of Me, which gives rise to the shifted main peak. Absorption of X-ray photons within 

the InAs i-layer will give rise to an avalanche gain of Mmix, whose values range between 

unity and Me, which accounts for the majority of the events between the Mh and Me peaks, 

Figure 6-4(a). Photon absorption in this region is clearly undesirable since it widens the 

main Me peak, degrading the energy resolution. 

Ratio of the channel number of shifted peaks to the unity gain channel number (50) 

gives Me as a function of reverse bias, as shown in Figure 6-4(b). The results are 

compared to Me data obtained using conventional photomultiplication measurements 

(photocurrent measurement with a 1550 nm laser as photon source) on a device from the 

same sample. The two sets of data are in agreement, confirming that the shifted peaks 

were indeed due to avalanche gain. 

 

Figure 6-5 Energy spectra collected using the APD D2 cooled to 77 K, at reverse bias voltages from 0.4 

to 10.0 V.  
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With the noise peak (channel number 11) and 5.9 keV peak (channel number varies 

due to varying Me) as references, the spectra in Figure 6-4(a) were also converted from 

channel numbers into energy. The resultant normalised spectra for different reverse bias 

voltages are compared in Figure 6-5. As reverse bias voltage increases, the energy peak 

becomes narrower, with better energy resolution. Meanwhile, the influence of noise tail 

is diminishing due to the positive effect of avalanche gain, achieving an overall increased 

signal to noise ratio. Note that for different bias voltages the calibrated spectra have 

different bin size in energy (spectrum at higher bias has smaller bin size) making the 

spectra at higher bias seem artificially noisier than those at lower bias. To overcome this 

artefact, data for different bias voltages were further processed to have identical bin size 

to energy resolution ratio (6%).  

 

Figure 6-6 Gaussian fitting for spectra obtained from APD D2 biased at (a) 0.4 V and (b) 10.0 V. 

 

Figure 6-7 Energy resolution (FWHM) versus reverse bias from 55Fe spectra measured with APDs D1 and 

D2. Noise value obtained with and without detector are also shown. 
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Gaussian fitting to data in Figure 6-5 yields FWHM values for the 5.9 keV peaks in 

each spectra (examples of Gaussian fitting shown in Figure 6-6). The deduced FWHM 

versus reverse bias of the InAs APDs is shown in Figure 6-7. For APD D1, FWHM 

reduces from 2.12 keV at 0.5 V to a minimum of 660 eV at 6 V. APD D2 exhibits even 

smaller FWHM, a minimum of 401 eV at 10 V, which is significantly smaller than the 

value of 950 eV from ref. [18]. The decreasing FWHM with reverse bias observed from 

figure 6 is attributed to increasing M that reduces the effect of electronic noise, which is 

one of the dominant noise sources at small reverse bias. Reduction in FWHM with reverse 

bias is less significant at higher reverse bias, or even reversed in the case of APD D1, 

which is most likely caused by the increasing APD dark current, which grew in 

significance as a noise source (as seen in Figure 6-2(a) and discussed later in section 6.4). 

The better energy resolution of D2 (compared to D1) was attributed to its lower leakage 

current at the operating temperature, as shown in Figure 6-2(a).  

6.4 Noise analysis 

To assess in detail the significance of electronic noise to the measured energy 

resolution, measurements were conducted to assess the noise of the X-ray detection 

experimental setup used. To facilitate the noise measurements, a few modifications were 

made to the setup. The X-ray source was absent and square wave signals (from a pulse 

generator) were fed into a test capacitor (0.5 pF) within the preamplifier. The InAs APD 

(D2) remained connected to the input of the preamplifier, so that the noise contributions 

from detector leakage current and capacitance were included in the noise measurements. 

Data were also taken without the detector to allow assessment of the influence of leakage 

current of the setup noise. 

The noise spectra obtained with or without APD D2 at different reverse bias voltages, 

calibrated using the same references used for the 0.4 V data in figure 5, are compared in 

Figure 6-8. Unsurprisingly, it shows peaks widened with reverse bias (beyond 4.0 V), 

since leakage current continues to increase but capacitance remains relatively constant 

beyond 4.0 V. Then the FWHM values associated with these peaks, again obtained 

through Gaussian peak fitting, are plotted in Figure 6-7 for comparison with the values 

from X-ray peaks.   
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Figure 6-8 Energy spectra from noise measurements obtained with APD D2 at different reverse bias 

voltages. Noise spectrum taken without the detector is also shown.    

The advantage of having avalanche gain without excessive leakage current is 

illustrated clearly in the comparison in Figure 6-7. At 0.4 V (no avalanche gain), the 

small difference between the FWHM values from X-ray peaks and noise measurements 

are likely to be caused by fluctuations in the number of EHP created and incomplete 

collection of carriers created by photon absorption in the partially depleted InAs i-layer. 

FWHM from the X-ray peak reduces quickly with reverse bias up to 4 V, above which 

FWHM from noise starts to increase due to increased leakage current. Despite this, the 

APD’s avalanche gain continues to significantly reduce the detrimental effect of 

electronics noise (3.52 keV at 10 V), achieving an overall energy resolution of 401 eV. 

6.5 Comparison of InAs p-i-n and n-i-p diodes 

In addition to the InAs APDs with p-i-n structure presented above, measurements 

were also carried out on an InAs APD with n-i-p structure (D3) to allow straightforward 

comparison, which offer valuable insights. Table 6-1 summarises the basic 

characteristics of the APD D1 and D3 at 10 V reverse bias at 77 K. They have identical 

InAs i-layer thickness as designed and similar dark current. However the actual depletion 

region is wider (calculated from capacitance data shown in Figure 6-9) in APD D1 than 

in APD D3, due to differences in unintentional doping in the InAs i-layers. Also, the 

structure of APD D3 does not have doping grading in the p-layer.  
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Table 6-1 Characteristics of the packaged InAs APDs with p-i-n or n-i-p structure at 10 V reverse bias and 

77 K. 

 APD D1  APD D3  

Wafer number SF0810 MR3234 

Main layer thickness (μm) 
3.5/6.0/1.0 

(p/i/n) 

2.0/6.0/2.0 

(n/i/p) 

Device diameter (μm) 75 103.5 

Dark current (nA) 1.9 1.2 

On-wafer device capacitance (pF) 0.18 0.45 

Depletion width (μm) 7.7 3.4 

FWHM (keV) at 5.9 keV 0.68 1.06 

 

 

Figure 6-9 Capacitance-Voltage curve of APD D1 and D3 from on-wafer measurement at 77 K. 

 

Figure 6-10 Spectra in channel numbers collected using APD D3 cooled to 77 K, at reverse bias voltages 

from 0.4 to 10 V. Inset: same data from channels 30 to 130.  
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X-ray spectra were obtained from APD D3 using the same setup and conditions used 

for APD D1 and D2, as shown in Figure 6-10. The resultant FWHM versus reverse bias 

data are included in Figure 6-11 and they are clearly larger than those from APD D1 for 

all reverse bias voltages. This is due to APD D3 producing a lower avalanche gain than 

APD D1 for a given reverse bias voltage (as shown in Figure 6-12), which were deduced 

from X-ray spectra. 

 

Figure 6-11 Energy resolution (FWHM) at different bias voltages from the APDs D1 (triangle) and D3 

(circle). 

 

Figure 6-12 Avalanche gain deduced from X-ray spectra of the APD D1 (black) and D3 (red) structures.  

Despite the identical i-InAs layer, their avalanche gains for a given reverse bias do 

differ, owing to different depletion widths. The avalanche gain for APD D1 is found to 

be ~ 5.8 at 6 V, which gives the smallest FWHM in Figure 6-11. 
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Figure 6-13 Spectra from APD D1 (black) and D3 (red) at 77 K reverse-biased at 3.1 and 4.0 V, 

respectively. 

 

Figure 6-14 Comparison of the absorption profile in InAs APD D3 (top) and D1 (bottom). The red curve 

following equation I0 exp(-φx), where I0 is the initial intensity of the incident X-ray photons, φ is the 

attenuation coefficient and x is the distance. 

With the knowledge of M, it is then possible to ensure similar avalanche gains (~ 3) 

for APD D1 and D3 by selecting the appropriate reverse bias conditions (3.1 and 4.0 V, 

respectively), as shown in the spectra plotted in channel numbers in Figure 6-13. Both 

APD D1 and D3 exhibits energy peaks around channel 153. Due to a larger optically 

sensitive area in APD D3 than D1, the data for the former showed higher counts for all 

channel numbers. Nonetheless, the APD D1 exhibits (1) better peak-to-valley ratio for 

the peak related to Me (X-ray absorption in the InAs p-layer) and (2) significantly reduced 
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magnitude for the peak related to Mh (X-ray absorption in the InAs n-layer), compared 

to APD D3. These improvements result from better APD design in D1, because less 

photon absorption now takes place in the i- and n-layer in the p-i-n structure compared 

with p-layer, as depicted in Figure 6-14.  

6.6 Summary 

InAs APDs with a p-i-n structure have been fabricated and demonstrated to detect 

soft X-rays. An energy resolution as small as 401 eV FWHM at 5.9 keV (with an 

avalanche gain of 11) has been achieved, significantly smaller than previously reported 

value (950 eV). This is mainly due to their higher avalanche gain which greatly improved 

the signal-to-noise ratio and energy resolution. A comparison of InAs APDs with p-i-n 

and n-i-p structures experimentally confirmed that InAs APD with p-i-n structure has 

better peak-to-valley ratio for Me peak and lower amplitude for Mh peak, which result 

from less dominant photon absorption in i- and n-layer compared to the p-layer in the p-

i-n structure. 

Although the InAs APD with p-i-n structure shows significantly improved X-ray 

performances, the measured energy resolution is still much larger than the Fano-limited 

energy resolution. Noise analysis revealed that the energy resolution achieved in this 

work was largely limited by the APD leakage current and measurement system noise. 

Hence further improvement should focus on reducing electronic noise and leakage 

current of the diode. In addition, more APD-specific modifications such as minimising 

X-ray photon absorption within the InAs avalanche layer are required. 
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7 GaAs mesa diodes for X-ray photon counting 

7.1 Introduction 

GaAs is the most investigated III-V material for direct X-ray detection since it has 

several promising properties. It has moderately large band gap (1.42 eV) which ensures 

low dark current at room temperature. Meanwhile, its bandgap is similar to that of Si 

resulting in a relatively low Fano-limited energy resolution of 129 eV (FWHM) at 

5.9 keV. This energy resolution is calculated using EHP creation energy and Fano factor 

from [1]. In addition GaAs has high attenuation coefficients, which offers high detection 

efficiency, due to its high atomic number (Ga = 31 and As = 33) and crystal density 

(5.3176 g/cm3). 

Simulation [2] and experimental results [3, 4] have shown that as X-ray detectors, 

well-designed APDs could improve the signal-to-noise ratio and energy resolution with 

little added noise from avalanche gain fluctuation. The improvement originates from the 

APD’s avalanche gain. In order to minimise the noise from avalanche gain, pure injection 

of carrier with higher impact ionisation coefficient is required. This can be achieved by 

utilising SAMAPD structure.  

A GaAs-based SAMAPD for X-ray detection uses a GaAs absorption layer and a 

wide bandgap avalanche layer. Several wide bandgap semiconductor alloys with well-

characterised impact ionisation properties, such as AlGaAs [5, 6], InGaP [7] and AlInP 

[8], can be grown lattice matched to GaAs. GaAs is chosen as the absorption layer 

because it has higher attenuation coefficient than its lattice-matched materials to achieve 

higher detection efficiency. In addition its narrower bandgap (compared with avalanche 

layer) could result in lower Fano noise. For the avalanche layer, wide bandgap materials 

are preferred since they enables very thin structure which gives better X-ray energy 

resolution and lower excess noise, while maintaining acceptably low tunnelling current.   

Results in [4] have shown that the X-ray performances of GaAs/AlGaAs SAMAPD 

is limited by the thin absorption layer (i.e. lower detection efficiency, higher capacitance 

and unwanted secondary peak). Prior to fabricating a SAMAPD with thicker GaAs 

absorption region it is necessary to optimise the dark current characteristic of thick GaAs 

diodes first.  Moreover, in X-ray imaging arrays with a mesa structure for the pixel, part 
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or all of the thick undoped GaAs absorption layer between pixels must be etched away, 

leading to a large surface area that will likely cause significant leakage current. Large 

variation in the leakage current from pixel to pixel is also highly undesirable as it leads 

to poor image quality or requires extensive signal processing. Hence it is vital to optimise 

the fabrication procedures to minimise (i) surface leakage current of thick GaAs mesa 

diodes, and (ii) variation in leakage current from diode to diode. These are the main 

contribution of this work, whose application lies in portable medical X-ray detectors [9]. 

The leakage currents of GaAs X-ray diodes with mesa structures have been reported 

[10-14]. Although [10] mentioned that etch depth greatly influence the magnitude of 

leakage current of diodes, very limited information on the wet chemical etchants (type 

and solution ratio) or dry etching gases (gases’ flow rates and sample’s temperature) used 

in etching their GaAs diodes was given in [10-14]. There is no evidence in [10-14] that 

their GaAs diodes exhibited bulk-only leakage currents. 

The very thick (>100 µm) epitaxially grown GaAs p-i-n diodes of [10] and [11] were 

produced using wet chemical partial etching without passivation for the mesa. They 

exhibited dark current density of between 300 nA/cm2 to 500 µA/cm2. Slightly lower 

dark current density at 100 nA/cm2 was achieved in [13]. Later, Kostamo et al. fabricated 

a GaAs p-i-n diode array using dry etching and passivated the etched diodes with 

dielectric materials, which yielded dark current density between 40 and 400 mA/cm2 [12]. 

These values are much higher than the dark current density of 5.6 nA/cm2 reported by 

Erd et al. [14], whose array consisted of 32×32 GaAs p-i-n diodes with partially-etched 

mesa (p layer removed between pixels) and guard rings.  

In this chapter, the influence of wet chemical etchant solutions and etch depths on the 

dark currents of GaAs diodes are investigated and discussed. The X-ray response of the 

fabricated diodes from a 55Fe source is also presented. 

7.2 Device structures 

The GaAs homojunction p-i-n wafer was grown on a 3-inch n-type conducting GaAs 

substrate (350 µm thick) by metal organic chemical vapour deposition (MOCVD) by 

wafer grower Dr. Ben Stevens. The structure, as summarised in Table 7-1, consists of a 
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510 nm highly doped p+ GaAs layer, a 7 µm intrinsic layer and a 1 µm n+ GaAs layer. 

The p- and n-type dopants used were C and Si respectively.  

A series of five samples, namely samples A, B, C, D, and E, was fabricated from the 

wafer (carried out by other group members). First, Ti/Au (20/200 nm) were deposited 

onto the samples, which were then annealed in a rapid thermal annealer at 420 oC for 60 

s to form ohmic p- and n-contacts. Chemical etching was then used to create circular 

mesas with diameters, d, of 400, 200, 100 and 50 µm. The five samples differ in the 

chemical etchant used and/or the etch depth (as measured from the top of the wafer), as 

summarised in Table 7-2. No surface passivation was used in the samples, in order to 

avoid possible variation in leakage currents due to the passivation material/process used, 

which will unnecessarily complicate analyses of leakage currents. Surface passivation 

optimisation for thick mesa is beyond the scope of this work.  

Table 7-1 Structure details of the GaAs p-i-n wafer. 

Material Thickness (nm) Type Doping density (cm-3) 

GaAs 10 p+ (C) 1×1019 

GaAs 500 p+ (C) 2×1018 

GaAs 7000 i undoped 

GaAs 1000 n+ (Si) 2×1018 

GaAs substrate --- n+ --- 

 

Table 7-2 Summary of the five samples. 

Sample 

Etch 

Depth 

(nm) 

Remarks 

Mean leakage current 

density (A/cm2) 

Median of leakage 

current density (A/cm2) 

d = 400 m d = 200 m All diameters 

A 8300 
Fully 

etched 
2  10-4 2  10-4 2  10-4 

B 8300 
Fully 

etched 
4  10-7 5  10-3 1  10-7 

C 1000 
Partially 

etched 

4  10-8 2  10-7 1  10-7 

D 2000 2  10-8 9  10-8 6  10-8 

E 2500 8  10-8 5  10-7 2  10-7 
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Figure 7-1 GaAs p-i-n diodes with (a) fully, or (b) partially etched circular mesas. 

While the mesas in all samples were created using a solution of phosphoric acid : 

hydrogen peroxide : deionised water (H3PO4:H2O2:H2O with ratio of  1:1:1) to achieve 

the intended etch depths, samples B to E had an additional finishing etch using a solution 

of sulphuric acid : hydrogen peroxide : deionised water (H2SO4: H2O2:H2O with ratio of 

1:8:80) for 10 s. Diodes in samples A and B have been fully etched and diodes in sample 

C, D, and E have been partially etched, as shown in Figure 7-1(a) and Figure 7-1(b), 

respectively. No substrate removal was carried out. 

The sulphuric acid-based finishing etch was included in this study because it was 

found to improve reverse leakage currents of mesa diodes made of InAs [15]. Note that 

relying on sulphuric acid-based solution for deep etching is generally avoided as it is 

known to produce anisotropic etch profiles [16], which affected the circular geometry (to 

avoid surface leakage current and premature edge breakdown) in the diodes in 

preliminary etching trials. The ratios for the phosphoric acid-based etchant were chosen 

to achieve a sufficiently high yet controllable etch rate, following etching trials with a 

few other ratios.   

On-wafer measurements of Current-Voltage (I-V) and Capacitance-Voltage (C-V) 

characteristics were performed to select promising devices to be packaged for subsequent 

X-ray measurements. An I-V setup with a Keithley 236 source-measure-unit was used to 

measure leakage currents ranging from 0.1 pA to 10 mA. The samples were measured at 

room temperature and in a dark environment to minimise photocurrent generated by stray 

light. Most of the I-V data were obtained from d = 200 and 400 µm diodes because these 

sizes are more relevant to the targeted application. C–V measurements were carried out 
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using a HP 4275A Multi- Frequency LCR Meter with a sinusoidal test signal of 60 mV 

rms magnitude and 1 MHz frequency. The data allow determination of the minimum 

reverse bias required to fully deplete the i-GaAs layer.  

7.3 Results 

7.3.1 C-V results 

Typical C-V data for d = 400 µm diodes are shown in Figure 7-2(a) which also 

includes the depletion width versus V deduced from the data. Very similar C-V data for 

same-sized diodes from the different samples, when V > 10 V, have been found. For 

example, at reverse bias of 15 V, capacitance values of 400 µm diameter diodes were 

between 1.99 and 2.15 pF, within the tolerance of the measurement setup. This similarity 

indicates negligible unwanted lateral depletion in the diodes and hence complete isolation 

of the diodes.  

 

Figure 7-2 (a) Typical C-V data (right axis, circles) and deduced depletion width (right axis, triangles) of 

a d = 400 µm p-i-n diodes. (b) Secondary Ion Mass Spectroscopy data showing the p (carbon) and n 

(silicon) doping profiles of the GaAs p-i-n wafer. 

Observing Figure 7-2(a), analyses of the C-V data also revealed that the i-GaAs layer 

thickness is ~ 6.7 µm, slightly thinner than the intended value of 7.0 µm. The deviation 

was confirmed by data from Secondary Ion Mass Spectroscopy, as shown in Figure 

7-2(b), carried out elsewhere on the wafer. The thinner than intended i-GaAs layer is 

likely to be due to a combination of slight uncertainty in growth rate and dopant diffusion 

from the highly-doped p- or n-layer into the i-layer, which had taken place during the 

epitaxial growth. Note that as the instrument background of this measurement is high for 
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carbon (~ 2×1016 atom/cm3), exact extent of carbon diffusion from the p-layer into the i-

layer could not be accurately determined. 

7.3.2 Dark current distribution 

 

Figure 7-3 (a) Dark current density versus reverse bias, and (b) distribution of dark current density at 15 

V for samples A and B, which have fully etched mesas. There were 23 and 12 diodes with diameters of 200 

µm and 400 µm diodes, respectively. 

To observe if the finishing etch had any noticeable effect on the leakage current, 

leakage current density of the two samples with fully etched mesas are compared in 

Figure 7-3(a). Data of 35 diodes (23 of d = 200 µm and 12 of d = 400 µm) are shown for 

each sample. Mean dark current values for diodes with d = 200 or 400 µm are also shown 

in Table 7-2. It has been found that sample A exhibited moderately uniform but high 

leakage current density, whereas sample B generally had lower leakage current density 

(10 to 100 nA/cm2) although some diodes were very poor (1 to 10 mA/cm2). In Figure 

7-3(b), the distribution of leakage current density at 15 V for samples A and B are 

compared. Although sample B had a wider distribution than sample A, ~ 46 % of the 

diodes tested in sample B had leakage current density < 0.1 µA/cm2, with some having 

current densities as low as 20 nA/cm2. Hence the finishing etch appears to reduce leakage 

currents in diodes with fully etched mesas. Note that as the current does not scale with 

diode area, the measured current was dominated by surface leakage current component.  

Since samples C, D, and E all had a finishing etch for their partially-etched mesas 

with different etch depths, they can be studied to observe effects of etch depth on the 

leakage current density and its distribution. Figure 7-4(a) and Figure 7-4(b) compare their 

leakage current densities, and distributions of leakage current, based on data of 12 diodes 
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(8 of d = 200 µm and 4 of d = 400 µm) from each sample. Mean dark current values for 

diodes with d = 200 or 400 µm are also shown in Table 7-2. Among these three samples, 

sample D exhibited the lowest leakage current densities, with 75% of the diodes tested 

having dark current density < 100 nA/cm2 and a very low mean dark current density of 

20 nA/cm2 for d = 400 µm diodes. This compares favourably to mean leakage current 

densities of samples C and E, at 40 and 80 nA/cm2, respectively (for d = 400 µm diodes). 

 

Figure 7-4 (a) Dark current density versus reverse bias, and (b) distribution of dark current density at 15 

V for samples C, D, and E, which have partially etched mesas. There were 8 and 4 diodes with diameters 

of 200 µm and 400 µm diodes, respectively. 

 

Figure 7-5 Dark current density versus reverse bias for 6, 6, 8, and 4 diodes with diameters of 50, 100, 

200, and 400 µm, respectively, from sample E. 

For a given sample, comparisons of leakage current density from different sized 

diodes were made and the data from sample E are shown as an example in Figure 7-5. 

As the diode’s diameter and hence junction area decreased, the leakage current density 
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increased, indicating that sidewall-related leakage current became increasingly 

significant compared to the bulk-related leakage current. 

Results from diodes with fully etched mesas showed that using only a solution H3PO4: 

H2O2: H2O for etching produces high surface leakage currents in the resultant diodes. 

Adding a finishing etch using a solution of H2SO4: H2O2: H2O can substantially lower 

the surface leakage currents although the uniformity is still not satisfactory. The variation 

of dark currents of fully etched diodes on sample B is undesirable for a detector array 

since it would lead to a large proportion of non-useable pixels. This variation may be 

caused by variation in surface states on the sidewalls of the mesas, which may be reduced 

if mesa passivation optimised for GaAs X-ray diodes is available.  

The partially etched diodes suffer from this problem at a much lower extent, because 

the mesa sidewalls are much shorter, resulting in significantly smaller exposed area on 

the mesa sidewalls. The mean dark current density of sample D at 20 nA/cm2 (for d = 

400 µm diodes) is much lower than those from refs [10-13], but is slightly higher than 

one of the lowest dark current densities in the literature, 5.6 nA/cm2 at 50 V at room 

temperature [14]. The very low dark current density in [14] might be due to the use of 

guard rings, which can help to suppress surface leakage currents.  Nevertheless these 

results demonstrated that, by adopting appropriate chemical etchants (H3PO4: H2O2: H2O 

followed by H2SO4: H2O2: H2O) and etch depth, low leakage currents with good 

uniformity can be achieved for progress towards detector array. 

Although each of the three samples with partially etched diodes show reasonably 

uniform dark currents, the mean dark currents from the three samples do differ in 

magnitude. While this observation is consistent with previous works [10-12], there has 

been no discussion on this in the literature. Hence it is worthwhile analysing the data for 

partially etched diodes further. Sample C had an etch depth of 1000 nm for a wafer 

designed to have 510 nm of p-type layer. This would have removed all p-type material 

between the diodes, thus achieving good level of isolation between the diodes. However, 

a variation in the etch depth across the sample and dopant diffusion from the p-layer into 

the i-layer may mean having conducting path along some remaining thin p-type material 

between the diodes. This will compromise isolation between the diodes and cause 

additional leakage currents. Therefore a more reliable etch depth would be one that is 

deeper than the p-type layer thickness by some margins.  
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 For sample E, its higher leakage current density (compared to that of sample D) is 

probably due to the advantage of reduced surface damage in partially etch diode being 

lost as the etch depth increases to 2500 nm. 

7.3.3 X-ray spectrum 

For preliminary evaluation of the diodes’ performance when imaging high energy X-

ray photons, packaged GaAs p-i-n diodes were individually tested with a 55Fe source. 

The measurement was carried out using the setup described in section 3.5. The shaping 

time constant was 2 µs. The system was kept at room temperature. 

 

Figure 7-6 A 55Fe X-ray spectrum accumulated with a 400 µm diameter diode from sample D is shown in 

solid line. Spectrum from a 400 µm diameter diode from sample B obtained using setup in Leicester 

University is shown in dash line. 

Figure 7-6 shows a 55Fe X-ray spectrum accumulated with a 400 µm diameter diode 

from sample D. The diode was reverse biased at 15 V (depletion width of 6.7 µm), to 

maintain a low leakage current of 0.95 pA. Using Beer-Lambert Law and assuming that 

the active layer was limited to the i-layer of the device, it was calculated that the 

probability of photoelectric interactions taking place within the depleted region (width = 

6.7 µm) of the diode at 5.9 keV is 42 %, as shown in Figure 7-7. The spectral resolution, 

as given by the FWHM of the combined 5.9 keV and 6.49 keV peaks is 1.84 keV. A 

diode with the same size (400 µm diameter) and similar dark current has been tested 

using a setup in Leicester University. The spectrum, also plotted in Figure 7-6, shows an 

energy resolution of 1 keV. This better FWHM is mainly due to the lower system noise 

in the setup of Leicester University (~ 800 eV), compared to the ~ 1.1 keV for the 

Sheffield setup (see Figure 6-7). 
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Figure 7-7 Calculated probability of photoelectric interactions taking place within the depleted region 

(width = 6.7 µm) of the diode versus X-ray photon energy. 

In this X-ray measurement, the measured FWHM is far from the Fano limited case of 

129 eV at 5.9 keV at room temperature and the best experimental reports (266 eV FWHM 

at 5.9 keV [17]). The noise beyond the Fano limit reported here is due to a combination 

of electronic noise (including parallel white, series white, dielectric, and 1/f noise) from 

both the preamplifier [18] and detector, and also possibly charge trapping noise [19]. Full 

shaping time noise analysis of these noise sources and the contributions to the achievable 

energy resolution is planned for future work. If the reported photodiodes are to be 

practical options for use in high energy resolution X-ray spectroscopy in the future, the 

achievable energy resolution must be improved by reducing these noise contributions. 

However, the detectors reported here are part of early development for imaging arrays, 

where the energy resolution requirements are more modest. 

7.4 Summary 

GaAs p-i-n mesa diodes have been fabricated using different wet chemical etching 

solutions and etch depths. It has been shown that the surface leakage current of diodes 

with mesa structures can be reduced by adopting appropriate chemical etchants and 

partially etched mesa. Partially etched diodes with different etch depths have also been 

studied. The best partially etched sample which has etch depth of 2000 nm showed 

uniformly low dark currents, with a low mean value of 20 nA/cm2.  

The fabricated GaAs diodes have been characterised using a 55Fe radioisotope source. 

The presented X-ray results show that the devices reported are capable of photon 
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counting soft X-ray spectroscopy with a 1 keV spectral resolution at room temperature. 

Further improvements in the noise performance of the X-ray spectroscopy setup used in 

this work are required.  
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8 Conclusions and future works 

8.1 Conclusions 

For most photon counting applications in NIR range, SPADs, a variant of APDs, 

remain the detector of choice. This is primarily due to the fact that NIR SPADs operate 

within the temperature range achievable by multi-stage thermoelectric cooler compared 

to its main competitor, SSPDs, which is normally operated down to several Kelvins. The 

vast majority of NIR SPADs being used and/or developed have a planar structure similar 

to those of fibre-optic telecommunication InGaAs/InP APDs, that use an InGaAs 

absorption layer and an InP multiplication layer. Within the past decade, significant 

improvements in SPAD design, quenching and readout circuits have been made. Despite 

these improvements, the performances of the InGaAs/InP SPADs are still largely limited 

by the material quality. For example, defects in InP layer will result in severe trap-

assisted tunnelling and afterpulsing effects, especially at low temperature. However, 

most of the previous efforts were on the optimisation of electronic circuit to improve the 

SPAD performances. It is worth considering if other semiconductor materials have 

greater potential as the avalanche layer of SPADs at 1550 nm wavelength. In this thesis, 

NIR SPADs using InAlAs, instead of InP, have been designed, fabricated and 

characterised.  

Firstly, an experiment setup for photon counting performance characterisation was 

established. This setup was used to characterise the InGaAs/InAlAs SPADs described in 

chapter 4 and another improved one detailed in chapter 5. In chapter 4, mesa structure 

InGaAs/InAlAs SPADs were designed and fabricated. Linear-mode characterisations, 

such as I-V, C-V and photocurrent, were performed. Due to better temperature stability 

of avalanche breakdown in InAlAs, breakdown voltage of a 25 µm diameter SPAD 

varied by less than 0.2 V over the 30 K temperature range studied, which corresponds to 

a temperature coefficient of breakdown voltage less than 7 mV/K. When operated in 

gated mode, the SPAD demonstrated an SPDE of 10% and 21% at 290 K and 260 K, 

respectively. It is worth mentioning that in the temperature range studied the bias voltage 

has not been adjusted according to temperature change, which is practically impossible 

for InGaAs/InP SPAD due to their poorer temperature stability. However, the measured 

DCR result was high and hardly reduced when the SPAD was cooled. Estimation of the 



Chapter 8 Conclusions and future works 

120 

 

electric field profile of the SPAD reveals that electric field in InAlAs layer at the highest 

total bias voltage is so high that significant BTB tunnelling current is present and this is 

believed to be the source of the high DCR.  

In order to achieve lower DCR and higher SPDE, the design of InGaAs/InAlAs SPAD 

was modified. In chapter 5, SPADs with thicker avalanche layer and thicker absorption 

layer (i.e. 1.0 and 1.7 µm compared with 0.2 and 0.6 µm in the previous generation) were 

fabricated and characterised. With 1.7 µm thick absorption layer, external quantum 

efficiency of ~ 56% was obtained. The highest measured SPDE was 36% which could 

be further improved by utilising anti-reflection coating. For temperatures ranging from 

250 to 294 K, the measured DCR was no longer limited by BTB tunnelling current in 

InAlAs. This was confirmed by activation energy results (~ 0.3 eV) at this temperature 

range. However, tunnelling-related current remains a problem at very high overbias 

voltage. This could be solved by further increasing the avalanche layer thickness. 

In this thesis, the experimental investigation into InAs X-ray detectors was also 

presented. Without any avalanche gain, the InAs diodes (with p-i-n structure) show an 

energy resolution of ~ 2 keV. This poor energy resolution is largely caused by high 

electronic noise and diode’s high leakage current. As avalanche gain increases, the 

energy peak shifts to higher channel number giving a better signal-to-noise ratio. The 

measured FWHM decreases with avalanche gain, and the best energy resolution achieved 

is 401 eV at gain of 11. However, increase of leakage current with bias voltage also leads 

to higher noise compromising the positive effect of avalanche gain.   

A comparison was also made to illustrate the advantages of InAs APDs with p-i-n 

structure over those with n-i-p structure. Results show that with the same avalanche gain 

InAs APD with p-i-n structure presents spectrum with better peak-to-valley ratio for Me 

peak and lower amplitude for Mh peak. This is due to the less photon absorption in i- and 

n-layer of the p-i-n structure. Reduction in system noise and diode’s leakage current are 

necessary for further improvements.  

Lastly, optimised fabrication techniques to obtain GaAs mesa p-i-n diodes with 

uniformly low leakage current for X-ray photon counting is presented. Influence of both 

different chemical etching solutions and etch depths on diodes’ leakage current were 

investigated. The leakage current results show that a combination of main etching 
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solution (H3PO4:H2O2:H2O = 1:1:1) and finishing etching solution (H2SO4: H2O2:H2O = 

1:8:80) can significantly reduce the leakage current. Partially etched diodes with different 

etch depths have also been studied. The best sample, partially etched sample which has 

etch depth of 2000 nm, exhibited uniformly low leakage currents, with a low mean value 

of 20 nA/cm2. Using the diodes, a room temperature energy resolution of 1 keV FWHM 

at 5.9 keV has been measured. Further improvements in the energy resolution could be 

achieved by reducing the system noise of the measurement setup.  

8.2 Future work 

Chapter 5 demonstrated that InGaAs/InAlAs SPADs have better temperature stability 

than InGaAs/InP SPADs. Their SPDE value are approaching the best InGaAs/InP 

SPADs although the DCR is still much higher. Further modifications on the SPAD 

structure design and characterisation setup (quenching and readout circuits) are needed 

to further improve the SPAD performances. 

It has been shown that high DCR from tunnelling-related mechanism is still limiting the 

SPAD performance, especially at low temperature and high over bias voltage. In order 

to reduce the tunnelling current, electric field in both avalanche and absorption layer 

needs to be lowered. Thicker InAlAs layer could further reduce the breakdown electric 

field hence any field-related carrier generation. DCR from InAlAs PIN diodes with 

different intrinsic layer are worth investigating. This will give valuable insights of the 

DCR contribution from avalanche layer with different thickness. The comparison of their 

DCR should also cover afterpulsing effect, since thicker avalanche layer is expected to 

suffer from more severe afterpulsing effect [1]. Apart from the thickness of avalanche 

layer, its background doping also affect the electric field. For instance, for two InAlAs 

PIN diodes with the same i-layer thickness, the one with higher background doping will 

have higher peak electric field at breakdown voltage. To reduce the electric field in 

absorption layer, charge sheet thickness and/or doping need to be increased. Another 

advantage of keeping electric field in absorption layer low is to lower the field-enhanced 

generation current which is a main source of dark current especially in an InGaAs layer 

with high defect density [2, 3].  

The quantum efficiency and SPDE could be improved by applying anti-reflection coating 

on the top of mesa diodes. This will be expected to increase the SPDE by 30%. Another 
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approach to increase the SPDE is to deposit a layer of gold contact at the bottom of 

substrate. This gold layer will help increase the photon absorption by reflecting 

unabsorbed photon back to the absorption layer increasing the SPDE [4].  

The quenching method used in this work relies on the falling edge of AC bias pulse. This 

method work is not suitable for applications requiring a long on time (e.g. unknown 

photon arrival time). Hence future development should focus on incorporating a fast 

quenching circuit (i.e. CQC [5]) into the existing setup. Following the work described in 

section 3.4.4, the modified CQC circuit should be used in future SPAD characterisation 

to achieve fast quenching, accurate AC bias monitoring and better transient cancellation. 

In addition, the dummy capacitor could even be replaced by a SPAD device (from the 

same sample piece as the DUT) operated below breakdown voltage to provide better 

transient cancellation.  

Capability in timing characterisation needs to be added to the current setup. I have built 

a basic timing characterisation setup using a time to amplitude convertor and MCA. 

However, the preliminary result from devices in section 4.1 obtained using this setup was 

poor (~ 1ns). Further efforts are required to locate the cause(s) of poor timing resolution 

and improve the system timing performance.  

For the X-ray detection work, although avalanche gain can greatly reduce the effect of 

electronic noise, the lowest FWHM measured was still largely limited by noise from the 

preamplifier. A full noise analysis (i.e. FWHM versus shaping time) is required to assess 

the noise contribution from different noise components (i.e. noise of the input FET, 

detector’s leakage current and capacitance, capacitance of FET, dielectric noise) [6]. The 

noise analysis result will give us a useful guide in which noise sources need to be reduced. 

InAs APD with p-i-n structure demonstrated a significantly better energy resolution than 

previous reported results. In order to achieve Fano-limited energy resolution, several 

research directions are proposed. In term of APD structure, a thicker p+ layer is necessary 

to improve the detector’s spectral performance. This will reduce the photon absorption 

in i-layer and n+-layer which will broaden the signal peak and cause the unity gain peak, 

respectively. Off course, this method is based on the fact that minority carrier in p+ layer 

(electron) has sufficiently long diffusion length [7] to travel to depleted region.  
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Another area to be investigated is the optimisation of packaging process. Figure 6-2(a) 

shows that packaged InAs APDs have higher leakage current than the on-wafer device at 

both room temperature and 77 K, indicating a degradation caused by the packaging 

process (e.g. epoxy curing and wire bonding). Moreover, in terms of device fabrication, 

diode’s surface leakage current can be potentially mitigated by fabricating planar InAs 

APDs. This advantage will be more obvious at low temperature since surface leakage of 

mesa diodes becomes more dominant as temperature decreases. Therefore, X-ray 

detection with InAs planar APD will aid in improving energy resolution. 

Fabrication process of GaAs mesa diode has been optimised leading to diodes with 

uniformly low dark currents. This enables the fabrication of array format GaAs diodes 

suitable for X-ray imaging. So linear or two dimensional GaAs detector array should be 

fabricated and characterised for the development into room temperature portable X-ray 

imaging array.    
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Appendix A: single photon counting measurement 

1. Load the sample and set to the desired temperature. 

 Load the sample into the chamber of Janis probe station. Start evacuating the 

chamber with the pump and continue pumping until the pressure reaches around 

2×10-5. 

 Cool down the sample to desired temperature. Turn on the temperature 

controller to stabilise the temperature. 

2. Aligning the fibre to the SPAD 

 Connect the Agilent 1550 nm CW laser to the multimode fibre of the Janis probe 

station through a FC/PC to SMA optical adapter.  

 Bias the diode with Keithley 236 SMU and do a DC sweep. 

 Shine the laser on the optical window of the diode and keep adjusting the 

position of the fibre until maximum photocurrent is obtained. 

 Disconnect the fibre from the CW laser and switch it to the Picosecond pulsed 

laser. 

3. Electrical connections in the setup 

 Connect the Keighley 2400 SMU to the DC input of the Picosecond Bias Tee.  

 Use the “trigger out” signal of Agilent 81101A pulse generator to trigger the 

Avtech ultra-fast pulser. Attenuate the output of the pulser using a variable 

electrical attenuator. Adjust the pulse width and amplitude of the AC pulse by 

checking it on the oscilloscope. Connect the desired AC pulse to the AC input 

of the bias tee. 

 Connect the DC+AC output of the bias tee to one of the probe arm of which 

probe tip has probed on the cathode terminal of the SPAD. The other probe arm 

of which probe tip has probed the anode terminal is fed into the discriminator 

through a 50 ohms feed-through load termination.  

 The “monitor output” on the discriminator can be connected to the oscilloscope 

to monitor the input signal of the discriminator. The NIM output signal is fed 

into the Canberra 512 Dual Timer/Counter to count the number of avalanche 

pulses. 

 In case that transient pulses due to rising edge of AC pulse are larger than the 

avalanche pulses, a differential amplifier is needed. A power splitter is 
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connected to the output of the bias tee. One signal branch goes into the probe 

station as mentioned above. The other one is connected to a variable dummy 

capacitor which is used to generate transient pulses used to cancel out those in 

the diode branch. Signal from diode and dummy capacitor are connected to the 

“+” and “-” input of the differential amplifier. Output from the differential 

amplifier is then connected to the discriminator. The following procedures are 

the same as the case without differential amplifier. 

4. Optical connections in the setup 

 Turn on the pulse laser and let it be warmed up for ~ 20 mins. 

 Adjust the pulse width and amplitude of output of the Agilent pulse generator 

to meet the TTL standard and use it to trigger the PiLas Picosecond pulsed laser. 

Set the delay time to be around 260 ns. This delay time is the time interval from 

“trigger out” to “pulse out”. Later in the measurement delay time need to be 

checked since the actual delay time caused by the optical fibre or coaxial cable 

might not be the same. 

 Attenuate the pulsed laser with the variable Exfo FVA-3100 optical attenuator. 

Select the desired attenuation to attenuate the laser to single photon level.  

5. Dark counting and photon counting 

 Make the lab as dark as possible (e.g. turn off the light, cover all the displays 

and LEDs).  

 Bias the diode with a DC voltage which is 1 V below the breakdown voltage. 

Apply an AC voltage with an amplitude lower than 1 V and slowly increase the 

voltage until avalanche pulses emerges.  

 Reduce the DC voltage to make sure the total bias voltage is lower than the 

breakdown voltage. Then adjust the threshold voltage on the discriminator to a 

value just higher than the transient pulses. Then increase the DC voltage back 

to the original value and start to count the number of avalanche pulse (dark 

count). 

 Switch the pulsed laser on and measure the total number of avalanche pulse 

(total count). 

 Adjust the AC voltage to carry out DCR and TCR measurement at different over 

bias voltages. 

6. Measurement at different temperatures 
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 Change the setting on temperature controller to heat or cool the sample to 

desired temperatures and perform the same procedures in step 5. 
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Appendix B: X-ray spectroscopy measurement 

1. Load the radioisotope source and TO-5 header to the dewar 

 Take out the radioisotope source from the shielded box using the handling tong. 

Place it into the source holder and seal it (high energy source, i.e. 241Am, will 

need to be covered by lead sheets). 

 Remove the cap of the TO-5 header and clamp it to the cold finger in the 

chamber. Solder the header to the wires connected to the SMA connector. The 

detector is around 5mm away from the source. 

2. Pump down and cool down the dewar  

 Install the vacuum valve operator (VOM-1) and tighten the gland seal nut. 

 Screw in the valve operator stem into the valve insert (~ 10 turns in clockwise 

direction ) and pull out the insert from the valve. 

 Pump down the system using the rotary pump until the pressure of 10-4 Torr is 

achieved.  

 Pour some liquid nitrogen through a funnel into the dewar. Do not rush to pour 

liquid nitrogen since the boiling liquid nitrogen may splash and cause frostbite 

injury. Fill the dewar gradually or lift the funnel to let the gas comes out.  

 Cover the filling port with the cap. Wait for around 25 minutes to let the 

temperature in the dewar stabilise at 77 K. If the duaration time of your 

measurement is longer than 2 hours remember to refill the dewar. Keep the cap 

on the filling port to prevent air and moisture. 

3. Connect the SMA connector from the dewar to the detector input of the Amptek 

preamplifier. Short cable is preferred since longer cable will increase the parasitic 

capacitance and electronic noise. 

4. Connect the bias supply to the bias input of the preamplifier. 

5. Connect the energy output of the preamplifier to the input of the shaping amplifier 

whose output is fed to the MCA which is controlled by a PC. The busy output of the 

shaping amplifier is connected the BUSY of the MCA for dead time correction. 

6. The test input of the preamplifier is used for system test (i.e. noise measurement).  

7. MCB properties setting 

 Under the ADC tab, the conversion gain can be entered in powers of 2 (i.e. 1024, 

4096). Conversion gain sets the maximum channel number of the spectrum. 
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Larger conversion gain will give more accurate spectrum at the price of longer 

accumulation time. 

 The upper and lower discriminator are used to set a level of the lowest and 

highest amplitude pulse to be stored respectively. Lower discrimination level is 

suggested to set above the noise floor to increase the useful throughput. 

 Under the Preset tab, the collection time can be preset by four means namely 

real time, live time, ROI peak and ROI integral. You need to enable one of them 

by entering a count number. When the count number reaches the preset value 

the MCA detector will stop counting automatically. Check the preset limit on 

the right side of the maestro window whether it shows the value you entered. If 

none of them is enabled the detector will continue counting until it is manually 

stopped. 

8. Start the acquisition. Adjust the gain on the shaping amplifier to ensure that the desired 

spectrum area is fully displayed. 

9. After the collection of the spectrum is finished pour the remaining liquid nitrogen back 

into the storage dewar. Turn off the pump and remove the valve operator from the 

dewar. 

10. Calibrate the spectrum. 

 Select a region of interest (ROI) by pressing the left button of the mouse and 

dragging it to the other side until the rectangular covers the region you are 

interested in. Right click the mouse and select mark ROI.  

 Place the marker on the ROI. Click Calibrate under the Calculate menu. On the 

prompt window, type into the energy value corresponding to the peak of the 

ROI. If warning prompt you need to enter the energy for the marker channel 

manually.  

 Repeat the above steps to calibrate the second peak. Click destroy calibration to 

reset the calibration if you need. 

 Enter the unit for the calibrated channels (i.e. keV). 

 If two peaks are entered, a linear calibration will be performed. More than two 

peaks can be entered to perform a quadratic fitting for more a more accurate 

calibration. 

 Save the calibrated spectrum in ASCII file (.CHN) format. The calibration data 

is saved at the end of the file in form of (c, b and a). These three coefficient can 
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be used to convert the channel number x to energy in keV by using equation 

ax2+bx+c. 

11. Energy resolution calculation. Plot out the energy spectrum using the saved data. 

Normalise the maximum count number of the peak you are interested in to one and 

do a Gaussian fitting to determine the energy resolution.  
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Appendix C: X-ray noise measurement using test pulser 

In the noise measurement, the detector must be connected to the Test input of the 

preamplifier to include the noise contribution from both its leakage current and 

capacitance. It can be seen from Figure C.1(a) that connecting the detector broadens the 

energy peak leading to worse energy resolution. 

1. Couple the pulser to the Test input of the A250CF preamplifier through a test 

capacitor of 0.5 pF. 

2. Set up the pulser to generate a square wave with rise/fall time less than 20 ns and 

proper amplitude (depending on the simulated energy value). Note that FWHM 

of the simulated energy peak is independent with the amplitude of square pulses 

(i.e. simulated energy). Figure C.1(b) shows that the input square pulses with 

different amplitudes give the same broadness in channel number (FWHM = 14). 

3. Connect the preamplifier Energy Output (E) to the post amplifier with proper 

shaping time. 

4. Connect the post amplifier output to the MCA input. 

5. Obtain the spectrum of two energy peaks formed by two test pulses with different 

known amplitudes. 

6. Calibrate the MCA using the two energy peaks. 

7. Export the spectrum data as an ASCII file. The peak resolution can be determined 

by doing Gaussian fitting to the spectrum data in Sigmaplot. 

 

Example:  

To simulate the generated charges by a photon with energy of 60 keV in Si 

detector, the amplitude of the pulse should be V = Q/Ctest, where Q is the generated 

charges and Ctest is the capacitance of the test capacitor.  

The generated charges can be calculated as 1560
2.63 10

keV
Q q C



   , where ε is 

the EHP creation energy (3.65 keV) in silicon. If the test capacitor has a capacitance 

of 0.5 pF, the required amplitude of the pulse is 2.63×10-15 C/0.5 pF = 5.3 mV.  
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Figure C.1. (a) Comparison of noise spectra obtained with (solid line) and without (dash line) detector. 

(b) Noise spectra obtained using input signals with different amplitudes (detector not connected). 
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