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Abstract 

Although the principles for the treatment of sensitive teeth are demonstrated 

successfully by many, the current treatments for tooth hypersensitivity are 

not effective in the long term or as a permanent solution.  

The purpose of this research project was to investigate the occlusion of 

dentinal tubules by calcium phosphate minerals doped with erbium, 

aluminium, and fluoride compounds under laser irradiation. The investigation 

included the synthesis and characterisation of calcium phosphate (CaP) 

powders, preparation of hypersensitive dentine sections, and coating of 

dentine sections with CaP powders followed by laser irradiation. 

CaP powders were synthesised by the chemical precipitation and 

hydrothermal methods. These powders were also chemically modified by the 

addition of different compounds (dopants) under various conditions to 

achieve substitutions for calcium, phosphate, and hydroxyl ions in the CaP 

structure. Dopants’ compounds included erbium compounds (erbium oxide 

and erbium nitrate) to produce photoactive CaP minerals, aluminium 

compounds (aluminium phosphate and aluminium nitrate) and fluoride 

compounds (calcium fluoride and ammonium fluoride) to produce CaP 

minerals with high mechanical, chemical, and thermal stability. As well as 

chemically modifying the structure of CaP, the size and shape of CaP 

particles were investigated by varying pH and temperature of the synthesis 

method. The chemically modified CaP minerals were applied onto 

hypersensitive dentine sections by the dip coating method and laser 

irradiated by CW and pulsed lasers to achieve a complete occlusion of open 
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dentinal tubules. CaP powders in the form of pellets were also prepared for 

laser irradiation and acid erosion trials to determine their interaction with 

laser irradiation and solubility behaviour in an acid environment, 

respectively. CaP powders, CaP pellets, and laser irradiated – coated 

dentine sections were characterised using various analysis techniques, 

including SEM, SEM-EDX, static laser scattering, XRD, FTIR, DSC, ICP/MS, 

Micro – hardness, and Profile roughness. 
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Overview of the thesis contents 

There are five chapters in this thesis. Chapter 1 gives a brief introduction of 

present research study. Chapter 2 gives a more detailed overview of dentine 

hypersensitivity, hard dental tissues, particle sintering process, biological 

and synthetic calcium orthophosphates (CaP), and background of laser 

irradiation and doping compounds. A summary of the experimental 

techniques and conditions used in this work are covered in Chapter 3. 

Chapter 4 presents the results of the characterisation of CaP and doped 

CaP powders, including particle size, particle morphology, crystalline 

structure, composition, and thermal behaviour of the synthesised CaP 

particles, as well as the results of the characterisation of laser – irradiated 

CaP and doped CaP coatings for the occlusion of dentinal tubules. Finally, 

Chapter 5 presents the conclusions and future work for this research project. 
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Chapter 1 

Introduction 

Teeth sensitivity (Dentine hypersensitivity) 

Teeth sensitivity or dentine hypersensitivity (DH) is still a challenging 

common condition amongst a large number of dental patients, commonly 

known as having ‘sensitive teeth’. The condition is characterised by short 

and sharp pain in response to external stimuli in the oral environment due to 

dentine exposure. Dentine exposure normally occurs due to enamel loss or 

gum recession, which could be because of poor dental hygiene, vigorous 

brushing or acid erosion. Because dentine has micro – channels, known as 

dentinal tubules, containing a dentinal fluid, external stimuli, such as thermal, 

physical, electric, osmotic, and chemical stimuli can cause movement of the 

fluid within these tubules, whereby stimulating the nerves in the pulp and 

causing pain. 

Dentine hypersensitivity treatments include the use of potassium nitrate as a 

nerve desensitiser, the use of calcium hydroxide particles for dentinal tubule 

occlusion, and the application of lasers to seal dentinal tubules. However, 

recurrence of sensitivity is common, as the current treatments are not ideal, 

and they are effective in the short term only. The most recent approach for 

hypersensitivity treatments involves the occlusion of dentinal tubules using 

toothpastes containing hydroxyapatite such as BioRepair plus toothpaste. 

Various fillers, such as potassium, strontium, stannous, and silica, are used 

in toothpastes. Commercially available toothpastes include Sensodyne 

containing strontium chloride or potassium nitrate, silica – based toothpaste 

containing strontium acetate and fluoride, bioactive glass Sensodyne 



- 2 - 

containing calcium sodium phosphosilicate, Crest sensitivity dentifrice, and 

Colgate toothpastes containing arginine, calcium carbonate, and fluoride. In 

addition, dental lasers are used to reduce tooth sensitivity, as well as other 

various dental procedures such as the removal of tooth decay, tooth 

preparation for a filling, and curing or hardening a filling.  

The proposed technique for the treatment of sensitive teeth involves the 

occlusion of dentinal tubules using Er3+, Al3+, F- – doped CaP under laser 

irradiation. In practice, the procedure would involve the application of Er3+, 

Al3+, F- – doped CaP powder in the form of a paste or gel onto the 

hypersensitive tooth surface, which is then cured or harden by the 

application of laser irradiation to fuse the doped CaP layer to the tooth 

surface and promote its bonding. Calcium phosphate mineral, 

hydroxyapatite (HAp), is chemically similar to the mineral component of 

bones and hard dental tissues, and therefore, it is the most suitable and 

potential biomaterial for the occlusion of dentinal tubules and the 

remineralisation of tooth tissues to prevent tooth sensitivity. 

Aims 

The project follows on from previous projects, investigating the synthesis of 

calcium orthophosphate (CaP) particles for the occlusion of pore channels in 

dentine and the potential treatment of sensitive teeth. In the proposed 

research study, it is intended to modify chemical composition of CaP to 

produce photoactive minerals, which interact with laser irradiation to induce 

photosensitivity and occlude dentinal tubules. The main aim is to 

demonstrate the effective use of CaP powders doped with erbium, 

aluminium, and fluoride compounds under laser irradiation in occluding open 
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dentinal tubules, so that the densification and growth of CaP onto dentine 

surfaces can be initiated by the energy absorbed and released when 

subjected to laser irradiation by a heat dissipation mechanism. 

Objectives 

 Synthesising calcium orthophosphate (CaP) minerals, undoped (CaP) 

and doped with erbium (Er2O3 and Er(NO3)3.5H2H), aluminium (AlPO4 

and Al(NO3)3.9H2H), and fluoride (CaF2 and NH4F) compounds, under 

various conditions, including temperature, pH, and reaction time, for 

bio – dental applications, particularly the occlusion of dentinal tubules.  

 Characterising synthesised CaP minerals, and comparing the doped 

CaP powders to the control CaP powders. Characterisation 

techniques include scanning electron microscopy (SEM), laser 

scattering, energy dispersive X – ray (EDX), and X – ray diffraction 

(XRD) to characterise the morphology, particle size, elemental 

composition, and crystalline structure of synthesised CaP particles, as 

well as Fourier transform infrared spectroscopy (FTIR) and differential 

scanning calorimetry (DSC) to characterise the composition and 

thermal behaviour of CaP powders, respectively. 

 In vitro preparation of human tooth sections, mimicking the conditions 

of tooth/dentine hypersensitivity.  

 Coating of dentine sections with synthesised CaP/doped CaP 

powders for the occlusion of open dentinal tubules and post laser 

irradiation. 

 Characterising CaP/doped CaP coatings and the occlusion of open 

dentinal tubules.  
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 Laser irradiation sintering of dentine sections coated with synthesised 

CaP/doped CaP powders as well as CaP pellets, using continuous 

wave (CW) and pulsed lasers, to promote densification of particles 

and fuse coatings to tooth surface and promote its bonding.  

 Characterising laser – irradiated coatings and their effect on the 

occlusion of dentinal tubules using SEM and XRD.         

 Characterising CaP/doped CaP coated dentine sections by 

measuring the temperature change during laser irradiation, and 

determining their hardness using a micro – hardness indentation 

technique. 

 Characterising acid eroded CaP/doped CaP pellets, using inductively 

– coupled plasma/mass spectroscopy (ICP/MS), SEM-EDX, and 

Profile roughness measurements. 
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Chapter 2 

Literature Review 

2.1 Teeth sensitivity (Dentine hypersensitivity)  

Teeth sensitivity or dentine hypersensitivity is affecting millions of people 

worldwide. The pain occurs during eating and drinking, and sometimes even 

during breathing. It is one of the most common complaints by dental 

patients, especially those suffering from gum recession, and those having 

suffered enamel loss due to abrasion or acid erosion (1, 2, 3). 

Dentine hypersensitivity (DH) is still a challenging common condition 

amongst a large number of dental patients, commonly known as having 

‘sensitive teeth’. It is characterised by short and sharp pain in response to 

external stimuli in the oral environment due to dentine exposure (1, 2, 3). 

Dentine exposure normally occurs due to enamel loss or gum recession, 

which could be because of poor dental hygiene, vigorous brushing, or acid 

erosion. Because dentine has micro – channels, known as dentinal tubules, 

containing a dentinal fluid, external stimuli, such as thermal, physical, 

electric, osmotic, and chemical stimuli, can cause movement of the fluid 

within these tubules, whereby stimulating the nerves in the pulp and causing 

pain (1, 2, 3). 

As shown in Figure 2.1, gum recession exposes cementum and dentine that 

are easily removed and modified, respectively, by abrasion and acid erosion. 

This in turn results in the opening of dentinal tubules in the exposed area (4). 

In addition, periodontal treatments involve the removal of dentine using 

dental scalers, leading to the exposure of dentinal tubules, which in turn 
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increases sensitivity. This is because sensitivity increases with increasing 

the number of dentinal tubules, which increases towards the inner tissue 

(pulp). Enamel loss due to abrasion and acid erosion is usually a result of 

aggressive tooth brushing and intake of acidic food, respectively (5). 

 

 

Figure 2.1 Schematic of a tooth cross section indicating gum recession and exposed 

dentinal tubules. 

 

Several theories are proposed to explain the mechanism of teeth sensitivity. 

These include odontoblastic transduction, neural, and hydrodynamic 

theories. However, the most accepted theory to date is the hydrodynamic 

theory (2, 3, 6). The odontoblast theory suggests that odontoblastic 

processes are exposed on dentine surface and excited by chemical and 

mechanical stimuli, releasing neurotransmitters or impulses towards the 

nerve endings that cause pain. The neural theory suggests that the nerve 

endings are triggered by direct thermal and mechanical stimuli (6). On the 

other hand, the hydrodynamic theory suggests that the change in the flow of 

plasma – like biological fluid (dentinal fluid) inside the dentinal micro – 

channels triggers the nerve endings and causes pain (2, 3, 6). 

Gum 
recession 

Exposed   
dentinal tubules 
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Having sensitive teeth is a very common condition. It often occurs suddenly, 

and may range from a mild discomfort to severe pain when drinking cold, 

hot, or sweet drinks, chewing cold or hot food, and breathing cold air (7). 

Sensitivity is usually due to tooth damage, such as tooth decay, a cracked or 

fractured tooth, or enamel tissue loss, because of abrasion and/or acid 

erosion. Gum damage is another cause, which includes gum recession due 

to incorrect or hard tooth brushing, or gum diseases and other medical 

conditions (7). However, dentine exposure does not always lead to sensitive 

teeth. This is due to the formation of a natural smear layer and the 

continuous formation of secondary dentine as a protection mechanism 

throughout life (8).  

The prevalence of dentine hypersensitivity varies due to the difference in 

populations and investigation techniques used. In addition, dentine 

hypersensitivity varies from one extreme to another, depending on various 

factors such as oral health condition, dietary intake, and individual oral 

hygiene habits (9). Abrasion and erosion are two types of tooth wear that 

can wear away tooth tissues and affect oral health. Tooth abrasion and 

erosion are believed to be the main causes of tooth wear (5). 

Dental erosion is the dissolution of teeth by acids of non – bacterial origin. 

Tooth erosion is caused by chemicals due to dietary intake, which may result 

from foods or drinks containing acids such as citrus fruits, fruit juices, 

carbonated drinks, and wines, or due to the exposure of teeth to gastric 

(stomach) acids, which form in the stomach (5). Other chemicals, such those 

in swimming pools, can also cause erosion over time (5). Tooth abrasion is 

caused by many different activities. It is mainly caused by physical rubbing 
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against the teeth. Incorrect or aggressive brushing is a common cause of 

gum recession, which leads to the exposure of underlying soft tissues. Other 

causes include grinding teeth against each other or chewing on hard things 

(5, 10). 

In order to understand the leading mechanism of the pain associated with 

sensitive teeth based on the hydrodynamic theory, and the potential of CaP 

particles for the treatment of hypersensitivity, knowledge of tooth tissues, 

structure, and morphology are of great importance. Dentine and pulp biology 

are the important tissues in understanding sensitivity and its treatments. 

2.2 Dental tissues (Teeth) 

A tooth consists of a crown and root portion. The crown is covered with 

enamel (the outer layer), whereas the root is covered with cementum, and 

they are joined at the cementoenamel junction (CEJ). The crown is the 

visible part of the tooth exposed in the mouth, whereas the root is the hidden 

part of the tooth that is embedded in the jawbone (8). Only the cervical third 

of the crown, in healthy and young adults, is partly covered by gingiva (gum 

tissue), which is the most affected area by hypersensitivity in the case of 

enamel loss or gum recession by erosion and abrasion. These are usually 

found together due to chemical and mechanical stimuli, respectively (11). 

A natural tooth is composed of four tissues – enamel, dentine, cementum, 

and pulp, which form the crown and root, as shown in Figure 2.2. Enamel, 

dentine, and cementum tissues are classified as hard tissues, whereas the 

pulp is a soft tissue (8). 
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Figure 2.2 Schematic of a tooth cross section indicating main component parts of a natural 

tooth. 

 

2.2.1 Enamel 

Enamel is the outer surface of the anatomic crown. It is thickest over the tip 

of the crown, and becomes thinner until it ends at the cervical line. The 

colour of enamel varies with its thickness and mineralisation. Enamel is the 

most densely mineralised tissue in the human body, with a chemical 

composition of 96% inorganic material (hydroxyapatite crystals (Ca10 

(PO4)6OH2)), 4% organic material (proteins, 90% of low molecular weight 

amelogenins and 10% of high molecular weight non – amelogenins), and 

water (8, 12). The apatite mineral has some impurities/substitutions, 

including Na+, K+, and Mg2+ for Ca2+; CO3
2- for PO4

3- or HPO4
2-, and F- and 

CO3
2- for OH-. This densely mineralised tissue has the ability to resist wear 

that is subjected to a tooth. The mineral content varies within enamel. It is 

lowest at the enamel – dentine Junction (EDJ), and highest at the outer 

surface (12). Enamel has a porous structure. Pores are present between 

HAp crystals, which vary in size, form, orientation, and distribution. HAp 

Pulp 

Periodontium 

Enamel 

Dentine 

Cementum 

Crown 

Root 
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crystals have a hexagonal shape with a mean width of 60 – 70 nm and a 

mean thickness of 20 – 30 nm (12). 

2.2.2 Dentine 

Dentine forms the main body of a tooth; it forms the largest portion of the 

crown and root. Dentine is covered by enamel, which covers the crown, and 

covered by cementum, which covers the root. Dentine is a hard, dense, and 

calcified tissue. It is softer than enamel, and harder than cementum. It is 

yellow in colour and elastic in nature. The chemical composition comprises 

70% inorganic material (hydroxyapatite crystals), 30% organic material 

(mainly of collagen fibrils, with a substance of mucopoly saccharides), and 

water (8, 12). 

Dentine contains micro – sized tubules throughout its structure, known as 

dentinal tubules, which contain a dentinal fluid, as shown in Figure 2.3. The 

tubules vary in size from 1 µm to 3 µm in diameter, and density from 20,000 

to 50,000 tubules per mm² (12). The tubules’ number and diameter increase 

from the outer dentine towards the pulp, as shown in Table 2.1, which 

presents the number and diameter ratios of dentinal tubules on 

hypersensitive and non – sensitive dentine. The data show that the number 

of tubules on hypersensitive dentine is eight times that on non – sensitive 

dentine, and that the diameter of tubules on hypersensitive dentine is two 

times that on non – sensitive dentine (3).  

Table 2.1 Tubules number and diameter ratios of hypersensitive dentine and non – sensitive 

dentine (3) 

 

Tubules Hypersensitive dentine Non – sensitive dentine 

Number – ratio 8 1 

Diameter – ratio 0.83 0.4 
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Figure 2.3 Schematic of dentine surface showing dentinal tubules containing a dentinal fluid. 

 

The dentine area surrounding dentinal tubules is a highly crystallised area, 

known as peritubular dentine, whereas the rest of the dentinal material 

comprises microscopic structures, known as intertubular dentine (8, 13), as 

shown in Figure 2.4. The intertubular dentine consists mainly of type I 

collagen with carbonate apatite crystals, whereas the peritubular dentine 

consists mainly of carbonate apatite (13).  

Unlike enamel, dentine is continually formed within the tooth, known as 

secondary dentine, which continues throughout tooth life. Increasing the 

formation of this type of dentine tends to reduce the overall permeability of 

dentine. This can be explained by open tubules on non – sensitive surfaces, 

being occluded deeper in dentine by secondary dentine. Dentine is also 

produced in the case of a trauma, which is known as reparative dentine (8). 
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Figure 2.4 Schematic of a dentine cross section indicating dentinal tubules, peritubular 

dentine and intertubular dentine. 

 

Another tooth process is the formation of a layer, known as the smear layer. 

When dentine is exposed, the layer forms and occludes dentinal tubules; 

however, it can be easily removed by acid erosion (14, 15) or in the case of 

reduced salivary flow quantity (16). The smear layer can be defined as a 

natural layer of debris consisting of particles of dentine or enamel, which are 

produced as a result of tooth preparation involving tooth cutting (12, 17-19). 

The layer may also contain bacteria and their by – products (12, 18, 19). It 

can also be produced naturally due to tooth fracture, eating/drinking, and 

tooth brushing (12), or by toothpaste, prophylaxis paste, and orangewood 

sticks (18). Smear layers, particularly thick layers, interfere with the adhesion 

capabilities of self – etching and total – etch systems, and the bonding 

between hard tooth tissues and restorative materials (17). 

2.2.3 Cementum  

Cementum is a bone – like substance that covers the root portion; it provides 

a medium for the attachment of tooth to alveolar bone through periodontal 

ligaments (periodontium) (20).  Cementum is less durable than dentine and 

enamel, and it is chemically composed of 45% to 50% inorganic material 

(hydroxyapatite), and 50% to 55% organic material (collagen and protein 

Dentinal tubules 

Peritubular dentine 

Intertubular dentine 
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polysaccharides) (8). It is not as dense or as hard as enamel and dentine; 

however, it is more dense (mass/volume) than bone due to its more compact 

structure (8, 12). 

Cementum is a porous structure that exposes small patches of dentine. It is 

quite thin at the cervical line, but it increases in thickness at the apex of the 

root and inter – radicular surfaces (21). The thickness variation could be 

explained by a continues process throughout the life of a tooth. It involves 

the formation of more cementum in the upper portion and the apical region 

of the root, known as the secondary cementum, which occurs when a tooth 

is subjected to oral forces that transmit to the alveolar bone (20). Therefore, 

the cervical area is considered permeable, and its exposure makes dentine 

more easily exposed to the oral environment (12, 22). 

2.2.4 Pulp and pulp cavity 

Dental pulp is the nourishing, sensory, and dentine – reparative system of 

the tooth. It consists of pulp chamber and pulp canals. It is composed of 

blood vessels, lymphatic vessels, nerves, fibroblasts, collagen fibres, and 

connective tissues (8, 11). The pulp tissue is the centre of a tooth, which is 

covered by dentine. The pulp cavity walls are lined with odontoblast cells, 

which form the secondary dentine or reparative dentine, and are 

continuously activated and supported by the blood vessels. Blood vessels 

also supply the white blood cells to fight bacteria within the pulp, whereas 

the lymphatic tissue acts as a fluid filter. The nerve acts as a sensor, and 

responds to pain only (8, 11). 
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2.3 Assessment and treatments of sensitive teeth 

Teeth hypersensitivity can be assessed by means of simulation methods, 

including thermal stimuli, mechanical (tactile) stimuli, chemical (osmotic) 

stimuli, cold air currents, cold water stimulation, thermoelectric systems, and 

electric stimulation (12, 23). Even though several factors can influence the 

measurement of hypersensitivity, the most common clinical methods are 

thermal and mechanical methods (24). Hypersensitivity is diagnosed after 

other possible conditions are eliminated (12). Diagnostic tests include a 

physical examination of gums and teeth for tenderness, which is done by 

tapping on teeth or with a tongue depressor (25). Radiology examination, 

using X – rays and blood tests (blood cell count), is another test to look for 

dental caries and dental infections, respectively (26). 

Although the principles for treating teeth sensitivity are demonstrated 

successfully by many, the current treatments for teeth sensitivity are not 

effective in the long term or as a permanent solution (27). 

Current treatments for sensitive teeth, as summarised in Table 2.2, result in 

partial pain relief, but recurrence of sensitivity is very common (28). 

Treatments can be divided into two strategies (2). The first strategy is the 

occlusion of exposed dentinal tubules using chemical agents such as 

strontium chloride, sodium fluoride (29), ferric oxalate (30), and calcium 

hydroxide (2, 31), or by using physical agents such as fluoride – releasing 

resin (32) (e.g. fluoride containing prophilaxy paste (33)). The second 

strategy involves the desensitisation of the nerve using potassium nitrate (2, 

34).  Other materials, such as bioglasses, result in excellent occlusion of 

dentinal tubules, and they significantly reduce dentine permeability when 

http://www.wrongdiagnosis.com/test/blood_tests.htm
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incorporated into toothpastes (34, 35). Various toothpaste fillers, such as 

potassium, strontium, stannous, and silica, are reported (34, 36). 

Commercially available toothpastes include Sensodyne containing strontium 

chloride or potassium nitrate, (34) silica – based toothpaste containing 

strontium acetate and fluoride (34), bioactive glass Sensodyne containing 

calcium sodium phosphor – silicate (36), Crest sensitivity dentifrice, and 

Colgate containing arginine, calcium carbonate, and fluoride (34). 

Various toothpastes containing different fillers, such as potassium, strontium, 

stannous, and silica, show various actions and results (34, 36). Sensodyne 

containing strontium acetate and bioactive glass Sensodyne containing 

calcium sodium phosphosilicate cause remineralisation and reduce 

sensitivity (34). On the other hand, toothpastes containing hydroxyapatite 

(37, 38), such as BioRepair plus (39), demonstrate a significant increase in 

oral fluoride and calcium, providing anticaries and anti – erosion benefits 

(37). The increase in oral fluoride is due to the release of fluoride by an 

anticaries agent (sodium monofluorophosphate), whereas the increase in 

calcium is due to the deposition of HAp particulate (37). 

Toothpastes containing potassium salts, such as potassium nitrate, 

potassium chloride, and potassium citrate, as a desensitising agent, and 

Sensodyne containing 10% strontium chloride are less effective than silica – 

based toothpastes such as those containing 8% strontium acetate and/or 

fluoride (34). Colgate toothpastes containing arginine, calcium carbonate, 

and fluoride, known as Pro – Argin™ technology, claim clinically proven 

instant and lasting relief of dentin hypersensitivity (34). Silica – based agents 

containing NovaMin (34, 36), commercially known as Bioglass, are 
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significantly more effective in reducing sensitivity than the commercial 

desensitizing toothpaste containing strontium chloride (34). 

Bioglass is a family of bioactive glasses that contain SiO2, Na2O, CaO, and 

P2O5 in specific proportions. They have different compositions, which 

determine their properties and applications (40-42). Some bioglasses bond 

to bone and soft tissues, and others do not, depending on their 

compositions, particularly their CaO:P2O5 ratios. Bioglasses with lower 

CaO:P2O5 ratios do not bond to bone (40-42).  In addition, there are those 

behaving as “nearly – inert” materials, and others, which are resorbable (40, 

41). Common commercial bioactive glasses include 45S5 Bioglass (40-42), 

Perioglas, Biogran (43), and NovaMin (34, 36, 44). Perioglas and Biograns 

are Bioglass particulates that are used as bone fillers or graft extender (43). 

NovaMin was first developed as a bone regeneration material, but it is used 

for the treatment of dental hypersensitivity and remineralisation of enamel 

(34, 36, 44). It is highly reactive in water, because it consists of amorphous 

sodium – calcium phosphosilicate. The use of a toothpaste containing 

NovaMin Bioglass promotes the repair processes of damaged teeth. It 

deposits a protective layer of calcium phosphate, due to the exchange of 

sodium ions with hydrogen cations (H3O) and the release of calcium and 

phosphate ions (34, 36, 44). Bioactive glasses exhibit class A bioactivity, i.e. 

being osteoproductive materials, they bond to hard and soft tissues, and 

exhibit higher rate of bonding to hard tissues than bioactive ceramics (e.g. 

HAp), the latter which exhibit class B bioactivity, i.e. behaving as 

osteoconductive materials (42). 
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The use of nanotechnology is important in all science fields. The technology 

is used for the development of nanomaterials that “exhibit novel and 

significantly improved physical, chemical, and biological properties, 

phenomena and processes as a result of the limited size of their constituent 

particles or molecules” (45). Nano – structured materials, depending on the 

number of dimensions, which lie within the nanometre range, can be 

classified as those confined in one, two, and three dimensions (45). Those 

confined in three dimensions include nanopores (e.g. nanoporous silicon) 

and nanoparticles (e.g. colloidal particles). The latter can be a single crystal 

or polycrystalline (composed of a number of different crystalline regions or 

grains of differing crystallographic orientations). Those confined in two 

dimensions include nanowires, nanorods, nanofilaments, and nanotubes, 

which can be amorphous, single crystalline, or polycrystalline (with 

nanograins). Those confined in one dimension include discs, platelets, or 

ultrathin films, which can also be amorphous, single – crystalline, or 

nanocrystalline (45). Nanoparticles may also be present within a medium, 

such as nanoprecipitates in a matrix material, which may possess certain 

crystallographic orientation relationships with the atomic arrangement of the 

matrix. The coherence of the interface may lead to coherency strains in the 

particle and matrix (45). 

The use of nanoparticles, particularly in dentistry, has gained a growing 

interest, due to its potential to improve the properties of dental restoratives. 

Inorganic nanoparticles include those based on metal oxides such as zinc 

oxide, iron oxide, and titanium dioxide (46, 47), and those based on metals 

such as gold, silver, iron, copper, and magnesium (46). The use of silicon 

dioxide, aluminium oxide, and alginate nanoparticles is also reported (46, 
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47). These nanoparticles can be used as antibacterial agents and growth 

inhibitors of various microorganisms due to their large surface area to 

volume rations (46, 47). They have unique physical and chemical properties, 

biological properties and functionality due to their nanometre size. They also 

offer different morphologies, such as spheres, rods, and prisms, as well as 

improved biocompatibility (46). The concern of using nanoparticles in dental 

materials, is that they are highly reactive, and if released from dental 

materials, they could penetrate through biological matter (if inhaled or 

ingested) and cause adverse health effects to patients and dental staff (45). 

Nanoparticles of HAp have been successfully demonstrated to occlude 

dentinal tubules in vitro for the potential remineralisation of hard tooth 

tissues (12, 48, 49). It is also reported that (in a short – term – in vitro 

assessment of desensitizing agents) agents containing 20% nano – 

hydroxycarbonate apatite (HCAp) are more effective in occluding dentinal 

tubules than those containing 10% strontium chloride (SrCl2) (50). In 

addition, toothpastes containing hydroxyapatite (37, 38), such as BioRepair 

plus (39), demonstrate a significant increase in oral fluoride and calcium, 

providing anticaries and anti – erosion benefits (37). Toothpastes containing 

HAp are also found to be similarly effective in reducing dentine 

hypersensitivity to benchmark toothpastes for sensitive teeth (49). In 

addition, toothpastes containing monofluorophosphate (MFP) and dicalcium 

phosphate dehydrate (DCPD) are significantly more effective in sensitivity 

studies than those containing monofluorophosphate (MFP) and silica, 

particularly in preventing plaque pH drop and reducing solubility of enamel in 

rats’ teeth, as well as providing extra supersaturation in saliva and plaque 

and enhancing anticaries efficacy in human teeth (49). Moreover, glass 



- 19 - 

ionomer cements containing HAp are light – cured cavity liners, which are 

commercially available such as Cavalite (Kerr Italia S.r.l.) (49). Therefore, 

the occlusion and growth of apatite (e.g. HAp) particles onto hard dental 

tissues, particularly under laser irradiation, could offer potential long – term 

treatment of dentine hypersensitivity and the repair of damaged teeth. 

The use of laser irradiation to treat sensitive teeth is also one of the current 

treatment options (51-56).  However, its effectiveness depends on the laser 

type and treatment conditions (2, 51, 56-59). The use of low – output power 

diode lasers such as helium – neon and gallium aluminium/arsenide (30, 51-

56), and middle – output power lasers such as Nd:YAG and CO2 (51-53, 56), 

with pulsed (52-54) and CW modes (52-56), are reported in conjunction with 

dentinal tubule occlusion for the treatment of sensitive teeth. Several studies 

indicate the potential of lasers for many dental treatments such as diagnosis 

of caries (60), cavity preparation/tissue ablation (61-63), periodontal therapy 

(64), oral surgery, implant dentistry (65), and the treatment of dentine 

hypersensitivity (54-56). However, their effectiveness is still not clear and 

requires further research (51-53, 56, 60-62, 65). 

Table 2.2 Summary of current possible treatments and materials for tooth hypersensitivity 

 

Treatment Materials 

Nerve 
desensitisation Potassium nitrate 

Chemical agents Strontium chloride, Sodium fluoride, ferric 
oxalate and calcium hydroxide 

Physical agents Fluoride – releasing resin and fluoride 
containing prophilaxy paste 

Restorative material Composites, resins and bioglasses 

Lasers Helium – neon and gallium 
aluminium/arsenide,   Nd:YAG, and CO2 

 



- 20 - 

2.4 Sintering process 

Sintering can be defined as the process in which heat is applied to a material 

in order for its particles to adhere and chemically bond to each other, and 

thus, produce a dense material (66, 67). It can also be defined as the 

diffusion of atoms and grain growth under the application of heat (67). The 

sintering outcome of a material depends mainly on sintering temperature 

and particle size, particle size distribution, and composition of the material 

being sintered (66, 67).  

Sintering can be divided into solid – state, liquid – phase, vitrification, and 

viscous sintering based on the material composition and the extent of the 

formation of secondary phases (67). Solid – state sintering involves atomic 

diffusion in the solid state, whereas liquid – phase sintering involves the 

formation of small volume of liquid of the original solid volume upon heating 

and solidification of the liquid phase at lower temperatures. Vitrification 

involves the formation of large volume of liquid of the original solid volume 

upon heating, whereas viscous sintering involves the densification of glass 

particles by a viscous flow under the influence of surface tension (67). 

Sintering can also be referred to as the process that introduces structural 

changes such as decomposition or phase transition. Changes in the 

microstructure can be divided into a primary and secondary process. The 

primary process involves nucleation and new generation grain growth, which 

exhibits continues increase of average grain size during heat treatment 

without a change in grain size distribution. The secondary process involves 

nucleation and growth of some large grains (66).   
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Several mechanisms are responsible for the sintering of crystalline 

materials. These are vapour transport (evaporation/condensation), surface 

diffusion, lattice/volume diffusion, grain boundary diffusion, and dissolution 

motion (67). These mechanisms are responsible for the sintering stages, 

which involve an initial stage where necks are formed between particles, an 

intermediate stage where neck areas increase (neck growth), and a final 

stage where grain growth occurs (67). Therefore, sintering is a surface area 

driven process, which involves the elimination of a solid – vapour interface 

and the formation of solid – solid interface, resulting from the reduction in 

surface area and surface – free energy during sintering (66).  

Particle size plays an important role during structural changes. Material 

transfer is rapidly achieved in smaller particles, due to the difference in 

vapour pressure between the particle surface and the junction between 

particles (neck). The lower the vapour pressure is, the faster the material 

transfer is; the smaller the particles is, the lower the vapour pressure 

difference is, as the contact surface between particles (neck area) increases 

and the surface of particles decreases. With larger particles, the vapour 

pressure difference is higher, as the contact surface between particles 

decreases and the surface of particles increases (66). As well as inducing 

changes in grain size and shape, changes in pore size and shape occur. 

Reduction of porosity results in a transformation from a porous structure to a 

more dense structure, and the material becomes densified (66, 67). 

Therefore, sintering process eliminates porosity and results in a dense 

material, and consequently, increases thermal conductivity of the material. In 

addition, as well as enhancing the thermal conductivity, the strength of the 

material can be enhanced by reducing its porosity (66). 
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Sintering is also applied to produce porous three – dimensional bioceramics 

of calcium orthophosphates. Such process involves more stages beyond the 

formation of a dense structure. This involves initial elimination of all 

moisture, carbonates, and all volatile chemicals such as nitrates and 

ammonia as gases, followed by the formation of a dense material. Further 

stages involve the concurrent increase in crystal size and the decrease in 

specific surface area, followed by chemical decomposition and 

transformation of acidic orthophosphates (PO4
3-) into other phosphates 

(2HPO4
2- / P2O7

4- + H2O) (68, 69). 

The type and structure of a material are very important in determining its 

thermal conductivity. For example, the thermal conductivity of porous 

materials is known to be poor due to the presence of pores within their 

structure, but it can be enhanced by reducing the amount of porosity and 

making it more dense, which can be achieved by sintering, whereby 

reducing pore shape and size, or even eliminating them to achieve optimum 

conductivity. In addition, the more complex the structure is, the more the 

thermal scattering of an atomic lattice wave is produced, and thus, the lower 

the thermal conductivity (66). Generally, thermal energy (heat) is transferred 

by either conduction, convection, or radiation; however, in solids, heat is 

transferred by conduction between atoms or molecules, and/or by 

electromagnetic irradiation interacting with the solid (70). Thermal 

conduction is defined as the process of transferring energy in the form of 

heat by atom interaction, which is measured in watts per Kelvin per meter 

(66). Generally, sintering techniques involve heating schedule and applied 

pressure, including conventional furnace sintering (e.g. rate – controlled 

sintering), plasma – assisted sintering, pressure – assisted sintering (e.g. hot 
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press) (67, 68), microwave sintering (67, 68, 71), and sintering under laser 

irradiation (66, 70, 71).   

Sintering under laser irradiation is the absorption of heat from the incident 

irradiation, which transfers through atomic lattice vibrations (vibration waves) 

due to thermal motion of atoms, such as in most ceramics when movement 

of electrons is restricted within the structure (lattice vibration heat transfer 

systems) (66). Such vibration waves are scattered by atoms and/or defects 

in the structure, and result in thermal energy distribution (70). However, in 

such systems, heat transfer can be affected by the lattice vibration harmony. 

Harmonic vibration eases the heat flow, whereas anharmonic vibration 

creates heat flow resistance, and thus, limits heat transfer through the 

structure (66).  

Moreover, in general, materials in powder form exhibit higher absorptance 

than those in dense/block forms (72). Measurements of absorption 

coefficients of single – and two – component powder materials, using 

Nd:YAG and CO2 lasers, indicates that the powder absorptance is 

dependent on the wavelength of laser irradiation, and that the absorptance 

changes with time during laser processing. For example, the absorptance of 

metals and carbides decreases with increasing wavelength, while that of 

oxides and polymers increases with increasing wavelength (72). 

Laser sintering of a single – component powder material indicates that “the 

particles either do not sinter at all for a given power density, or undergo a 

complete melting at a higher power density. The liquid surface – melt 

contracts to minimise its surface energy, resulting in resolidified droplets” 

(72). The process is described as being complicated due to the very narrow 
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processing window of sintering, particularly for materials with a high melting 

point. High – melting point powders are usually mixed with low – melting 

point powders as a binding material. Therefore, multi – component powder 

materials are considered more suitable for sintering than single – component 

powder materials (72).   

Sintering is of great importance to produce bioceramics calcium 

orthophosphates such as HAp. Unsintered HAp is usually poorly crystalline 

and non – stoichiometric, such as calcium – deficient HAp (69, 73, 74) in the 

case of biological apatites (74), even though high crystalline HAp can be 

produced from aqueous solutions (75). Heat treatment of chemically 

precipitated HAp is usually carried out at 400 – 600°C in order to refine the 

crystal structure and improve crystallinity. However, fully crystallised HAp is 

obtained after sintering at ~ 1200°C (76). Sintering of HAp at ≤ 1000°C 

introduces particle joining, little or no densification, and significant porosity 

reduction, whereas sintering at ≥ 1250°C may lead to the decomposition of 

HAp due to its thermal instability at such elevated temperature. Therefore, 

HAp is preferably sintered up to the theoretical density between 1000°C and 

1200°C (68). On the other hand, other studies report the decomposition of 

HAp at temperatures > 600°C and the transformation of HAp to β – TCP at 

temperature ≥ 700°C (77). Sintering of other calcium orthophosphates, such 

as monetite and brushite, are carried out < 400°C (~ 300°C) and < 100°C, 

respectively, above which the decomposition of these phases occurs (78, 

164). Sintering of non – stoichiometric calcium orthophosphates, such as 

amorphous calcium phosphate (ACP) or calcium – deficient hydroxyapatite 

(CDHAp), at temperatures > 700°C results in the formation of biphasic 

calcium orthophosphates (BCP = HAp + TCP)  (73, 74). Sintering of BCP 
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results in the transformation of α – TCP to β – TCP, and the sintering 

temperature increases with increasing HAp content in BCP (73, 74). 

Therefore, beside the sintering temperature and time, sintering of calcium 

orthophosphates depends on their type and composition (66, 67), particle 

characteristics such as particle size and particle size distribution (66, 67, 79, 

80), and the synthesis rout (79, 80).  

2.5 Laser background 

The word ‘laser’ stands for light amplification by stimulated emission of 

radiation. It is defined as the mechanism for emitting coherent and intense 

beams of light (81-83). Table 2.3 shows the different types of light spectrum 

ranging from far – infrared to deep ultraviolet, with wavelengths in the range 

of 1 nm to 1000 µm. Anything beyond the far – infrared range is considered 

radio waves, and anything beyond the ultraviolet range is considered X – 

rays and gamma rays.  

Light is a transverse electromagnetic wave, as shown by the schematic 

wave in Figure 2.5. “It is a periodic undulation of something – maybe the 

surface of a pond, if it is a water wave – that moves with velocity, v, the 

wavelength, λ, is the length of one period. The frequency of the wave, ƒ, is 

equal to the number of wavelengths that moves in one second past an 

observer” (83). The shorter the wavelength, or the faster the wave moves, 

the higher the frequency of the wavelength (83). The height of a wave 

represents its amplitude. 
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Equation 2.1 represents the relationship between the frequency (ƒ) of a 

wave, its velocity (v) (c, the speed of light), and the wavelength (λ). 

ƒ  = 
v

λ
 = 

c

λ
 ….. (2.1) 

Light waves are transverse, in contrast to sound waves, but similar to those 

of water due to the waving of the electric and magnetic fields in transverse 

direction to the direction of wave propagation (83). 

Table 2.3 Wavelength ranges of different types of light spectrum (81, 82) 

 

Light spectrum Wavelength 

Far – infrared 10 µm – 1000 µm 

Near – infrared 700 nm – 10 µm 

Visible light 400 nm – 700 nm 

Ultraviolet 400 nm – 200 nm 

Deep ultraviolet 200 nm – 1 nm 

 

 

 

Figure 2.5 Schematic of a transverse electromagnetic wave (83). 

 

 

Observer 

Amplitude 

λ V 

90°    180°   270°   360°    90°    180°   270°   360°    90°     180° 
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Lasers are considered electromagnetic radiations through the process of 

stimulated emission, by which an electron (in energy state E2, and its decay 

path is to E1) is disturbed by a passing photon (with energy ~ E2 – E1), 

resulting in a photon being emitted at exactly the same wavelength, 

direction, and phase as the passing photon (81-83). Electromagnetic waves 

range from radio waves of hundreds or thousands of meters long down to 

gamma rays in the order of 10-12 m (83). 

Lasers can be classified according to their gain medium as solid – state (e.g. 

erbium laser), gaseous (e.g. CO2 laser), and liquid (e.g. organic dye laser) 

lasers (83), or according to the laser operating mode as continues wave and 

pulsed lasers (84). They can also be classified according to their spectrum 

region, wavelength range, or colour as infrared (700 nm – 1000 m), visible 

(400 nm – 700 nm), and ultraviolet (1 nm – 400 nm) lasers (81, 82, 85). In 

addition, they can be classified according to their effect on tissues as hard 

lasers (high – level devices) such as surgical and cutting lasers, and soft 

lasers (low – level devices) such as non – surgical lasers (86). 

Medical lasers are required to satisfy three primary properties. These are 

monochromatic emission, collimation, and coherence (87). Monochromatic 

emission refers to the monochromatic light or a single wavelength, which is 

composed of one characteristic colour and associated with an energy gap 

(87). For example, argon laser beams are blue or blue – green, whereas He 

– Ne laser beams are red. Collimation or low – divergence of the laser beam 

is the minimal dispersion of the laser beam as it propagates a matter/tissue 

(87). “When the tissue's absorptive capacity is very high relative to its 

scattering ability, the laser beam remains strongly collimated in the tissue, 
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and the penetration depth is a function of the wavelength – dependent 

absorption coefficient" (87). Coherence refers to the laser light being in 

phase, which is useful for diagnostic applications in medicine (87). 

Some important commercially available lasers, their best – known 

wavelengths or region of spectrum, and their average power range are listed 

in Table 2.4. The lasers can lase at different other wavelengths, and many 

lasers can produce more than a single, pure colour. CO2 and Nd lasers are 

in the infrared region of the spectrum and cannot be seen by the human eye, 

whereas the red and blue lights from He – Ne and argon lasers, respectively, 

are visible, and they can be seen by the human eye (83). 

The standard output of carbon dioxide (CO2) lasers is at 10.6 mm, with an 

output power ranging from ˂ 1 W to ˃ 10 kW (81). Diode lasers are available 

at different wavelengths, ranging from 630 nm to ≥ 1.6 mm, and different 

output powers, ranging from a few milliwatts to several watts (81). Nd:YAG 

lasers have a strong line at 1.06 µm, and they produce wavelengths in the 

visible and ultraviolet regions of the spectrum, whereas diode lasers produce 

wavelengths in the infrared and visible regions of the spectrum (83). Excimer 

lasers have short wavelengths, ranging from 100 to 300 nm (81). Blue argon 

– ion lasers at 488 nm wavelength have also been used for many years. 

Yttrium – aluminium – garnet (YAG), glass, fibre, and diode lasers are solid 

– state lasers, whereas CO2, argon – ion, and excimer lasers are gas lasers. 

Lasers can be run in continues wave and pulsed modes, except glass and 

excimer lasers, which run in a pulsed mode (83). 

In addition, free electron lasers (FELs), as an infrared light source, are 

available and offer advantages over conventional lasers, particularly in the 
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biomedical fields (88, 89). FELs offer a wide wavelength tunability and 

ultrashort – pulse operation. They can be easily tuned in wavelength and 

continuously varied in a wavelength range. They have a pulse structure that 

consists of a chain of macropulses of about 15 µs in width, and each 

macropulse contains a chain of 300 – 400 ultrashort micropulses. The width 

of micropulses of 10 ps is measured in the accelerator operation condition 

for the mid – infrared range. They have a repetition rate of 10 Hz and a 

partition duration of 45 ns. The micropulses have a very high peak power of 

several megawatts and a duty factor as low as 3 x 10-8, which results in a 

very low average power of 20 – 50 mW, and the influence of thermal effects 

is avoided in power transmission (89). 

Table 2.4 Summary of important commercially available lasers (83) 

 

Laser Wavelength Average power 

Carbon 
dioxide 

10.6 µm Milliwatts to tens of kilowatts 

Nd:YAG 
1.06 µm                                                     
532 nm 

Milliwatts to hundreds of watts 
Milliwatts to watts 

Nd:glass 1.05 µm Watts 

Diode Visible and infrared Milliwatts to kilowatts 

Argon – ion 
514.5 nm                                                
488 nm 

Milliwatts to tens of watts       
Milliwatts to watts 

Fibre Infrared Watts to kilowatts 

Excimer Ultraviolet Watts to hundreds of watts 
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2.5.1 Light/photon interaction with energy levels 

Light is made up of particles, known as photons, which exhibit particle – like 

and wave – like properties (81). Each photon has an intrinsic energy, E, 

given by: 

E = ƒ . h ….. (2.2), 

where (ƒ) is the frequency of light, and (h) is Planck’s constant. For a wave, 

the frequency of a wave (ƒ) is given by: 

ƒ  = 
c

λ
 ….. (2.3), 

where (c) is the speed of light in a vacuum, (ƒ) is the frequency of light, and 

(λ) is the wavelength of light. Therefore, the energy of a photon (E) is given 

by: 

E = 
hc

λ
 ….. (2.4), 

where the energy (E) is dependant of the wavelength of light (λ). The longer 

the wavelength, the lower the energy of  a photon, and vice versa. 

Since the interaction of light with matters occurs in detached packets of 

energy (photons), which are absorbed by atoms when the energy of a 

photon is equal to the energy differences between two energy states (e.g. E1 

and E2), the energy of a photon is given by: 

ƒ . h  =  E2 – E1 ….. (2.5), 

and consequently, the wavelength of a photon (λ) is given by:  

λ = 
hc

E2 – E1

 ….. (2.6), 
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where (h) is Planck’s constant (6.626 x 10-34 Js), (ƒ) is the optical frequency 

(c/λ, where (c) is the speed of light, and E2 and E1 are the upper and lower 

energy levels, respectively) (81, 82). 

There are three main processes that occur during the interaction of photons 

with energy levels. 

2.5.1.1 Absorption, decay, and emission 

Electrons in atoms are distributed around the nucleus in groups, known as 

shells (K, L, M, N...) and sub – shells (s, p, d, f, g, h, i...), with a quantum 

number n = 1, 2, 3, 4, ∞ and n – 1, respectively. These shells and sub – 

shells represent the energy levels or states of electrons in an atom, which in 

turn make up energy bands of a solid (70). The atom’s model, (19, 15) in 

which electrons orbit the nucleus of an atom, and the atom has limited of 

fixed orbits that are available to the electrons, is known as Boher atom or 

Boher’s model, as shown in Figure 2.6 (81). 

 

 

Figure 2.6 Schematic indicating Boher atom and its energy levels. 
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Atoms absorb energy, including photons, in many ways and move up to 

higher energy levels, as shown in Figure 2.7. Photons are absorbed when 

their energy is high enough to excite electrons from the ground state to a 

higher energy level. A photon is absorbed by an atom when its energy is 

equal to or greater than the gap energy between two energy levels (e.g. E1 

and E2), and therefore, electrons are excited to a higher energy level (e.g. 

E2), as shown in Figure 2.8. When the energy of a photon is less than the 

energy required to excite that atom, the photon is not absorbed, and the 

matter is said to be transparent (70, 81-83). 

If the energy of a photon is equal to or greater than the energy level (e.g. 

E2), electrons are excited to the energy level (E2). However, if a valence 

electron absorbs energy and moves up to the ionisation level, it is released 

from the attraction forces of the nucleus. The electron is said to become a 

free electron and in the conduction band, which floats between the atoms 

and conducts electricity. Consequently, the atom becomes a positive ion 

(ionised) due to the loss of an electron. When an electron absorbs energy 

that exceeds the ionisation energy, the excess energy is referred to as the 

kinetic energy of the free electron outside the atom (70). Excited electrons at 

a higher energy level (e.g. E2) are unstable and tend to return to their stable 

state (ground state, E1). The decrease in energy is released or emitted as an 

electromagnetic radiation, and it is given by equation 2.7 (70, 81-83). 

E2 – E1  =  h . ƒ  =  
hc

λ
 ….. (2.7), 

where (ƒ) is the frequency of the emitted radiation, (h) is Plank’s constant, 

(c) is the speed of the electromagnetic waves, and (λ) is the wavelength of 

the radiation. 
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2.5.1.2 Spontaneous and stimulated emission 

Most atoms are in their ground states, and therefore, incoming irradiation is 

more likely to be absorbed than to produce stimulated emission. However, if 

an atom is in an excited state, it may spontaneously (in the absence of 

photons) decay into a lower energy level after some time, releasing energy 

in the form of a photon, which is emitted in a random direction. Therefore, 

spontaneous emission occurs when an excited atom spontaneously relaxes 

(decay) to a lower energy in the absence of a photon, as shown in Figure 2.9 

(70, 81-83). On the other hand, in the presence of photons, the emission can 

be stimulated by the incoming photons and emitted in the same direction as 

the incoming photons, which results in the amplification of the incoming 

irradiation (e.g. lasers). Therefore, stimulated emission occurs in the 

presence of a photon of the proper frequency, as shown in Figure 2.10 (70, 

81-83).  

 

 

Figure 2.7 Schematic of atomic energy levels indicating different excitation states, to which 

an electron can be excited from the ground state E1. 
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Figure 2.8 Schematic indicating photon absorption. 

 

 

Figure 2.9 Schematic indicating spontaneous emission. 

 

During photon absorption, the energy difference required (hƒ = E2 – E1) to 

excite an atom to a higher level is obtained from the incident electromagnetic 

wave. Spontaneous emission occurs when an atom is in a higher energy 

level (E2) rather than the ground state (E1); and because E2 is greater than 

E1, the atom tends to relax (decay) to the ground state (E1), resulting in 

energy difference, which is released by the atom in the form of an 

electromagnetic wave (radiative or non – radiative). Therefore, spontaneous 

emission can be characterised by the emission of a photon of energy (E2 – 

E1) (81-83). 
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Figure 2.10 Schematic indicating stimulated emission. 

 

On the other hand, in the case of stimulated emission, an excited atom, in 

the presence of an incident electromagnetic wave of frequency equal to that 

of a spontaneously emitted wave (ƒ = ƒ0, respectively), is forced to decay, 

and the energy difference is released as an electromagnetic wave, which is 

added to the incident wave (81-83).  

The process by which an atom gets from a higher energy level to a lower 

one is known as decay. The difference in energy is released in the form of 

radiative or non – radiative emission, and consequently, radiative and non – 

radiative decay. In radiative decay, the energy difference is released in the 

form of an electromagnetic wave, whereas in non – radiative decay, the 

energy difference is released in the form of kinetic or internal energy (heat) 

(81-83, 90). The photon’s decay/relaxation to the ground state occurs in 

three main routes, as shown in Figure 2.11. Thermalisation or non – 

radiative emission occurs through the collision and vibrational relaxation, 

while radiative emission occurs through a short – lived photon emission, 

known as fluorescence, or through a long – lived photon emission, known as 

phosphorescence (90). 

E2 
 
 
 
 
 
 
 
 
 
 

E1 

hƒ 
hƒ 

hƒ 
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Figure 2.11 Schematic of energy levels showing photon absorption and photon’s 

relaxation/decay routs to the ground level. (a) Thermalisation, through collision and 

vibrational relaxation, (b) fluorescence, through a short – lived photon emission, and 

(c) phosphorescence, through a long – lived photon emission (90). 

 

2.5.2 Laser – tissue interaction 

In principle, five basic phenomena occur when light interacts with 

matter/tissue. These are reflection, refraction, transmission, absorption, and 

scattering (84, 85). These interaction phenomena depend on the absorption 

properties of the tissue being laser irradiated (85). The effect of refraction in 

an opaque medium is difficult to measure due to absorption and scattering 

(84), whereas transmitted light can be detected behind the matter. The ratio 

of transmitted and incident intensities is known as transmittance. Reflection, 

absorption, and scattering of an incident beam depend primarily on the 

material type and the incident wavelength. The latter determines the index of 

refraction, absorption coefficient, and scattering coefficient. The index of 

refraction is important when using highly reflecting surfaces such as metallic 

dental implants (84). 
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Laser – tissue interaction results mostly in absorption and scattering inside 

the tissue, with small reflection of about 3%. The absorption of photons by a 

tissue results in a heat generation inside and around laser beam, whereas 

the absorbed scattered light might result in heat outside laser beam (87). 

The interaction of lasers with hard dental tissues involves the interaction of 

electromagnetic irradiation with tooth mineral, protein, and water, which can 

be determined by the level of absorption and scattering as well as the 

absorption depth (86), as follows:   

 The level of light absorption in a tissue at a specific wavelength 

(absorption coefficient). The higher the absorption coefficient value, 

the higher the absorption of light (86). 

 The level of light scattering in a tissue, which depends on the 

wavelength of light (scattering coefficients) (86). Scattered light is 

absorbed by a tissue and/or re – emerged from a tissue, and 

therefore, it generates heat outside laser beam (87). 

 The absorption or penetration depth (absorbed energy), which is 

converted to heat, is released as a thermal radiation (86). It is defined 

as the depth, at which the collimated light is attenuated by a factor e-1 

(37%). The penetration depth of a collimated light is the sum of 

absorption coefficient and the scattering coefficient of a tissue (87). 
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2.5.2.1 Laser – tissue interaction phenomena 

2.5.2.1.1 Reflection and Refraction 

The returning of laser irradiation by reflecting surfaces, upon which it is 

applied, is known as reflection. It occurs when the density of matter/tissue or 

angle of the incident beam is less than the refractive angle (85). Reflection 

requires that reflected beams lie within one plane, known as plane of 

incident, where the reflection angle is equal to the incident angle, however, 

other several beams do not lie within the plane of incident, and thus, no 

longer applies (84). There are two types of reflections, depending primarily 

on the surface irregularities and the wavelength of laser irradiation. When 

surface irregularities are smaller than the wavelength of laser irradiation, a 

speculum reflection occurs, but only in some cases such as wet tissue 

surfaces. On the other hand, diffuse reflection, which is the common 

phenomenon in all tissues, occurs when surface irregularities are 

comparable or larger than the wavelength of laser irradiation (84).  

The measurement of the amount of reflected laser irradiation represents the 

surface reflectivity, which is the ratio of reflected and incident electric field 

amplitudes. Reflectance is the ratio of corresponding intensities or the 

square of reflectivity. Reflectivity and reflectance depend on the angle of 

incidence and polarisation of laser irradiation as well as the indices of 

refraction of surface. A refracted beam is the total conserved energy in 

incident and reflected beams. “In general, a reflecting surface is the physical 

boundary between two materials of different indices of refraction such as air 

and tissue”, which usually results in the phenomenon refraction (84). It is 

based on the change in the speed of light wave. Indices of refraction are 

difficult to measure because of absorption and scattering (84).  
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2.5.2.1.2 Transmission 

During transmission process, laser irradiation passes through a 

matter/tissue, and thus, no interaction with matter/tissue occurs, and the 

laser propagates unchanged, or it is partially refracted (85). The interaction 

of dental hard tissues with laser irradiation is characterised by their large 

transparency to laser irradiation at the visible and near – infrared 

wavelengths, which results in a minimal reflection, while they reflect laser 

irradiation at the mid – infrared wavelengths (86).  

2.5.2.1.3 Absorption 

Absorption can be defined as the phenomenon, during which the intensity of 

an incident beam passing through a matter is attenuated. The absorbance of 

a matter is the ratio of absorbed and incident intensities. The measure of the 

level of absorption that occurs in hard dental tissues by a specific 

wavelength of laser irradiation is known as the absorption coefficient. Low – 

absorption coefficient values indicate little absorption, whereas high – 

absorption coefficient values indicate high absorption (86). Absorbed energy 

is converted to another form of energy, such as heat, depending on the 

amount of absorbed energy, for example, the absorption of low amount 

energy results in a biostimulation of the receptor tissue sites (85). During 

absorption, the energy of a beam is converted into heat wave or vibration of 

molecules of absorbing matter. Matters that permits light and do not absorb 

it are called transparent such as biological tissues, cornea, and lens. On the 

other hand, in opaque matters, incident laser irradiation is reduced to zero. 

Therefore, transparency and opacity depend on the wavelength of laser 

irradiation (84). 
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General absorption is the reduction in intensity of all wavelengths in the 

considered spectrum by a similar fraction, whereas selective absorption is 

the absorption of specific wavelengths. Absorption depends on the electronic 

constitution of atoms or molecules of absorbing matter, the wavelength of 

laser irradiation, and the thickness of absorbing matter, as well as internal 

factors such as temperature or concentration of absorbing agent. In 

biological tissues, absorption mainly occurs due to water molecules or 

proteins (84). 

Laser irradiation absorption in enamel and dentine is very low at the visible 

and near – infrared wavelengths, while it is very high at the mid – infrared 

wavelengths. The absorption of mid – infrared wavelengths in enamel is 

much higher with CO2 lasers than erbium lasers, particularly at wavelengths 

of 9.6 µm and 9.3 µm (86). Very low – absorption coefficient values result in 

ineffective tissue interaction, unless targeting pigmented carious lesions, 

which have higher absorption coefficient values at the visible and near – 

infrared wavelengths (86). Moreover, Er:YAG laser at 2.94 µm wavelength 

are absorbed by water in hard dental tissues, and thus, it is effective in 

tissue ablation. The absorption coefficient of water by Er:YAG lasers is 104 

cm-1 and ~ 7 x 102 cm-1 at wavelengths of 2.94 µm and 9 – 10 µm, 

respectively (89).  

2.5.2.1.4 Scattering 

Resonance and absorption occur if the frequency of laser irradiation is equal 

to the natural frequency of free vibrations of a particle, however, when the 

frequency of laser irradiation is not equal to the natural frequency of free 

vibrations of particles, scattering occurs. The forced vibration has the same 

frequency and direction of the electric force in incident laser irradiation, with 
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much smaller amplitude and different phase from incident laser irradiation. 

Some scattering may also occur if the interface of matter/tissue is rough or 

non – homogenous (85). There are mainly two types of scattering, elastic 

scattering such as Rayleigh scattering, and inelastic scattering such as 

Brillouin scattering. In elastic scattering, the energy of incident photons is the 

same as that of scattered photons. Most biological tissues scatter photons in 

the forward direction (84). During scattering, uncontrolled direction of laser 

radiation interacts to some extent with matter/tissue, such as back scattered 

irradiation, which is common with short wavelengths (e.g. diode and Nd:YAG 

lasers) (85). Although Nd:YAG lasers at wavelength of 1060 nm deeply 

penetrate tissues, 30 – 50% of laser irradiation re – emerges from tissues 

(87).   

Laser irradiation scattering in enamel and dentine is negligible or not 

measurable at the mid – infrared wavelengths, while it is relatively higher at 

the visible and near – infrared wavelengths. Both CO2 and erbium laser 

irradiation are not scattered in enamel and dentine. Laser irradiation 

scattering at the visible and near – infrared wavelengths is much higher in 

dentine than enamel, with dentine having similar scattering coefficient 

values, while scattering in enamel is relatively higher at the visible 

wavelengths than the near – infrared wavelengths (86). 

The interaction of some lasers (of different light spectra and wavelengths) 

with hard dental tissues (enamel and dentine), determined by absorption 

coefficient and scattering coefficient, are presented in Table 2.5, which can 

be used to determine other optical properties such as penetration depth. 

Optical parameters in enamel and dentine are reported in the ultraviolet, 
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visible, and infrared spectral ranges and at wavelengths between 200 nm 

and 3000 nm (86, 87, 89, 91-99). Absorption in enamel is very weak in the 

visible range 400 – 700 nm, with an absorption coefficient of < 1 cm-1, which 

increases to µa > 10 cm-1 in the ultraviolet range (< 240 nm). Absorption in 

enamel is also very weak under YAG laser irradiation in the near – infrared 

range, at wavelengths of ~ 1060 nm, with an absorption coefficient of < 1 – ~ 

1 cm-1. However, absorption in enamel is very strong under CO2 laser 

irradiation in the near – infrared range, at wavelengths of 930 – 1060 nm, 

with an absorption coefficient of 819 – 8000 cm-1, and erbium laser 

irradiation in the mid – infrared range, at wavelengths of 2078 – 2094 nm, 

with an absorption coefficient of 480 – 1500 cm-1. On the other hand, 

absorption in dentine is stronger than in enamel, with an absorption 

coefficient of 3 – 4 cm-1 under YAG laser irradiation in the visible range 400 

– 700 nm and near – infrared range, at 1060 nm wavelength. Absorption in 

dentine is very strong under CO2 laser irradiation in the near – infrared 

range, at 1060 nm wavelength, with an absorption coefficient of 813 cm-1, 

and erbium laser irradiation in the mid – infrared range, at wavelengths of 

2078 – 2094 nm, with an absorption coefficient of 660 – 2000 cm- 1.         

Scattering in enamel is strong in the near ultraviolet range, at 1300 nm 

wavelength, with a scattering coefficient of 2 – 3 cm-1, which decreases with 

increasing the wavelength (96). Scattering in enamel is much higher in the 

visible range than in the ultraviolet and infrared regions, with a scattering 

coefficient of 15 – 105 cm-1. In contrast, scattering in dentin is strong 

throughout the near ultraviolet (96), visible, and near – infrared regions, with 

a scattering coefficient of 130 – 280 cm-1. The scattering coefficient in 
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enamel and dentine in the mid – infrared range is approximately zero, 

because it is negligible or not measurable.  

The data of absorption and scattering coefficients in Table 2.5 indicate that 

enamel and dentine greatly absorb light in the mid – infrared region of the 

spectrum, with scattering coefficient values of approximately zero, while in 

the near – infrared and visible regions, enamel and dentine transmit light due 

to their low absorption coefficient values, and thus, higher scattering 

coefficient.  Never the less, dentine has an absorption coefficient value three 

to four times that of enamel, and the scattering coefficient values of dentine 

are much larger than that of enamel under the visible and near – infrared 

irradiation. 

Moreover, optical penetration depths in enamel and dentine are reported in 

the ultraviolet, visible, and infrared spectral ranges and at wavelengths 

between 200 nm and 3000 nm (51, 56, 63, 86, 91, 94, 100-104), as 

presented in Table 2.6. The optical penetration depth in enamel is highest in 

the ultraviolet range 250 – 600 nm, with a penetration depth of 60 – 120 µm. 

The optical penetration depth in enamel varies in the visible and infrared 

regions, with penetration depths of ~ 1.8 µm and 1 – 25 µm, respectively. 

Similarly, the optical penetration depth in dentine is highest in the ultraviolet 

range at wavelength of 248 nm, with a penetration depth of 83 µm, however, 

it is low in the visible and infrared regions, with penetration depths of 1.02 

µm and 0.1 – 50  µm, respectively. 

Successful application of lasers in dentistry requires basic knowledge of the 

optical properties of hard dental tissues such as absorption coefficient, 

scattering coefficient, and penetration depth (93), and similarly, the optical 
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properties of dental restorative materials. The degree of absorption and 

scattering of light in dental tissues depends on tissue structure (e.g. enamel 

and dentine) and composition (e.g. content of water and hydroxyapatite) 

(93), and similarly, the structure and composition of dental restorative 

materials such as synthetic apatite minerals. Absorption and scattering of 

light are much stronger in dentin than in enamel, and thus the scattering 

coefficient is much larger than the absorption coefficient (105, 106). 

In general, absorption and transmission of laser irradiation in hard dental 

tissues depend on laser wavelength (107), and particularly, the absorption of 

laser energy by water and hydroxyapatite is wavelength dependent (91). 

Absolute values of absorption coefficient for tissues are in the range 102 – 

104 cm-1 (108). Absorption in water and HAp is low at wavelength of 2 µm 

and high at wavelengths of 3 µm and 10 µm, and it is about 10,000 times 

lower at 1 µm wavelength than that at 3 µm (109-111). On the other hand, 

scattering coefficient is not related to the content of apatite mineral, and the 

mineral crystals are not the main cause of light scattering in dentine (95). 

Since scattering in dentine is low at the EDJ, which has a low density of 

dentinal tubules, and based on the scattering variation between low and high 

– density areas of dentinal tubules, dentinal tubules are responsible for 

scattering of light in dentine (95). 
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Table 2.5 Optical properties (Absorption coefficient μa cm
-1 

and scattering coefficient μs cm
-

1
) for different light spectra and wavelengths in hard dental tissues (enamel and 

dentine) (86, 87, 89, 91-99) 

 

Light irradiation type Dental hard tissue Ref 

Light 
spectrum 

Irradiation 
Type 

Wavelength 
(nm) 

Enamel Dentine 
No. 

μa cm
-1
 μs cm

-1
 μa cm

-1
 μs cm

-1
 

Ultraviolet UV 
< 240 > 10 - - - 

98 
1300 - 2 – 3 - - 

Visible 

UV – Vis 
spectrometer 

400 – 700 
- - 4 

(0.1)
 30 

(0.5)
 

95 
- - 8 

(0.1)
 80 

(1)
 

Visible light 

400 – 700 < 1 - ~ 4 - 98 

400 – 700 * 0.001 - - - 87 

543 (green) 

- 105 ± 30 - 280 ± 84 94 

< 1 105 3 – 4 280 
86, 93 

< 1 45 4 180 

632 (red) 

- 60 ± 18 - 280 ± 84 94 

< 1 60 3 – 4 280 
86, 93 

< 1 25 4 130 

Infrared 

Fibre 
coupled 

1053 - 15 ± 5 - 260 ± 78 94 

Nd:YAG 1064 < 1 15 3 – 4 260 86, 93 

YAG 1060 ~ 1 - - - 87 

Er:YAG 2940 

1500 - 2000 - 91 

1000 - - - 89 

800 ~ zero - ~ zero 86, 97  

0.77 
Des

 - 0.77 
Des

 - 
92 

1 
Nat

 - 1 
Nat

 - 

Er:YSGG 2790 480 ~ Zero - ~ Zero 86 

Er,Cr:YSGG 

2780 
500

 
- 660

 
- 91 

480 - - - 97 

2790 
0.96 

Des
 - 0.55 

Des
 - 

92 
0.96 

Nat
 - 0.68 

Nat
 - 

CO2 

930 5500 ~ Zero - ~ Zero 

86, 99 
960 8000 ~ Zero - ~ Zero 

1030 1125 ~ Zero - ~ Zero 

1060 
825 ~ Zero - ~ Zero 

819 - 813 - 96 

Des = desiccated, Nat = natural, “Des and Nat = absorption coefficients are normalised to 
the values for 2.94 µm in natural dentin and enamel”, and values in brackets 

( )
 are the 

thickness of dentine sections in mm, and (*) is the absorption of water in enamel. 
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Table 2.6 Optical penetration depths for different light spectra and wavelengths in enamel 

and dentine (51, 56, 63, 86, 91, 94, 100-104) 

 

Spectrum type Irradiation type Wavelength (nm) Penetration depth  (µm) Ref 

   Enamel Dentine No. 

Ultraviolet 

KrF excimer 248 - 83 102 

UV – specific EPR 250 – 600 60 – 120 - 104 

Visible 

Fibre coupled light 

543 

* 1.8 ± 0.1 * 1.02 ± 0.01 94 632 

Infrared 

1053 

Diode lasers 800  ** 0.1 63 

Nd:YAG 1060 

- ** ~ 4 101 

- ** < 4 56 

Er lasers - - ** ~ 10 63 

Er:YAG 2940 

7 5 91, 100 

12 - 86 

+
 10 – 20 

+ 
30 – 50 

91 
+
 15 

+
 30 – 40 

Er,Cr:YSGG 2790 

21 15 91, 100 

25 - 86 

- 10 103 

CO2 

930 2 - 

86 

960 1 - 

1030 9 - 

1060 12 - 

 - ** 2 – 8 51, 56 

(*) are the light penetration depth ratios, (**) are the sealing depths of dentinal tubules, and 
(
+
) are the crater’s depths. EPR is the electron paramagnetic resonance. 
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Tissue components that demonstrate higher absorption coefficient for 

particular wavelength or spectrum of light energy are called chromophores 

(93). The absorption and scattering properties at each wavelength are 

important due to the variations in absorption associated with different 

chromophores in a tissue (87). The main biological tissue chromophores 

responsible for light absorption are melanin, haemoglobin, oxyhemoglobin, 

bilirubin, and water (94). Similarly, synthetic dental restorative materials 

have components that demonstrate higher absorption coefficient for 

particular wavelength or spectrum of light energy such as rare earth erbium 

in the present research study. 

According to the light spectrum, ultraviolet light is well absorbed by water 

and HAp, whereas the mid – infrared light absorption by water and 

hydroxyapatite (HAp) varies depending on the wavelength of light (93). Light 

absorption in the near – infrared region with wavelengths longer than 1000 

nm is dominated by water (94). In the visible and near – infrared regions, 

enamel and dentine show low values of absorption coefficient of 1 – 4 cm-1, 

compared to their high values of scattering coefficient (15 – 280 cm-1). 

Despite such lower values of absorption coefficient, absorption of light by 

enamel and dentine is relatively high (10 – 20%), due to the high efficiency 

of travelling photons absorbed in a scattering medium and caused by the 

longer photon pathways within the scattering medium (108). 

Er:YAG laser irradiation is strongly absorbed by water, while Er:YSGG 

irradiation is absorbed by water and OH group in apatite minerals (93). The 

wavelength of 2094 nm for Er:YAG laser corresponds to water, at which the 

vaporization of water occurs, while the wavelength of 2078 nm for 
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Er,Cr:YSGG laser corresponds to OH groups, at which the transfer of 

conductive heat from the mineral to water occurs (97). Pulsed Er:YSGG 

lasers at 2.79 µm wavelength have a very strong absorption by water, with 

an absorption coefficient of about 7000 cm-1 (92), which is much higher than 

the reported value of ~ 480 cm-1 for CW Er:YSGG lasers in Table 2.5. Pulsed 

Er:YAG lasers, however, have an absorption coefficient of about 13000 cm-1 

(92), which is within the reported values 800 – 1500 cm-1 in Table 2.5. 

Absorption by water in natural (an – hydrated) enamel and dentine is 

stronger at 2.94 µm wavelength than at 2.79 µm wavelength. However, 

absorption in dehydrated dentine decreases significantly, and both lasers 

(Er:YAG and Er:YSGG) have similar effects. The absorption in dehydrated 

enamel is higher at 2.79 µm wavelength than at 2.94 µm wavelength, which 

is caused by a strong absorption by hydroxyapatite (92). In addition, CO2 

laser wavelengths of 9.3 µm, 9.6 µm (86), and 10.6 µm (96) are strongly 

absorbed by hard dental tissues, particularly by the apatite mineral at 

wavelengths  of 9.3 µm and 9.6 µm. The laser wavelength of 9.45 µm 

corresponds particularly to the infrared absorption of phosphate ions (89). 

Such strongly absorbed laser irradiation has the best effect at the lowest 

fluence (energy/surface area) (86).  

The higher the absorption coefficient, the smaller the absorption depth (86). 

The latter is the depth, within which the majority of energy is absorbed 

during a laser pulse for pulsed lasers (86) or irradiation time for CW lasers 

(87). Absorption depth is the sum of tissue absorption and scattering 

coefficients (87). In enamel and dentine, CO2 lasers at 10.6 µm wavelength 

have an absorption coefficient of ~ 800 cm-1, which is smaller than that for 

Er:YAG lasers of ~ 1000 – 2000 cm-1 at 2.94 µm wavelength. Therefore, the 
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wavelength of CO2 lasers penetrates deeper than that of Er:YAG lasers (87). 

The range of wavelengths with deeper light penetration is referred to as the 

tissue optical window or therapeutic window, and it is used for various 

diagnostic and therapeutic treatments (93). Maximum light penetration into 

tissue occurs where water absorption is lowest, particularly, in the mid and 

near – infrared regions of the spectrum (90). Absorption by water is very low 

at wavelength range ~ 600 – 1300 nm, while it is strong at longer 

wavelengths > 1300 nm, which significantly reduces light penetration (93). 

The right amount of laser energy is necessary to obtain desired effects. 

Energy exceeding a required amount results in energy absorption by the 

surrounding tissue and causes thermal stress or pulpal damage (86). 

Absorbed energy is converted to heat, and then heat flows as a thermal 

radiation into or out of tissue (86). Heat generation is determined by the local 

absorption of laser irradiation. Heat transfers to cooler regions by means of 

conduction, which depends on the thermal conductivity and diffusivity of 

tissues (87), and similarly, the thermal conductivity and diffusivity of dental 

restorative materials. Surface temperature of 400°C and above decomposes 

the apatite mineral in enamel and transforms it to a much less soluble 

apatite (112, 113), whereas temperatures of 800°C up to 1200°C melts the 

apatite mineral and transforms it when cooled (114, 115). Er,Cr:YSGG laser 

irradiation, even in the presence of a water spray, causes thermal damage to 

dentine in the form of brownish spots due to laser energy or repetition rate 

(91). This is due to a higher absorption of the Er,Cr:YSGG laser irradiation at 

2.78 µm wavelength, compared to the Er:YAG laser irradiation at 2.94 µm 

wavelength (116), as well as the high content (~ 20%) of the organic material 

in dentine, which is mostly of collagen type I (91). 
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“The higher the penetration depth, the larger the volume of directly heated 

tissue that needs to be rapidly heated up, and the higher the laser pulse 

power that is required for efficient and cold ablation” (91). The 

ablation/removal depths for CW and pulsed lasers in enamel and dentine are 

compared in Table 2.7 (117, 118). The ablation/removal depths using 

ultrashort pulse fibre lasers are much larger in dentine than in enamel, with 

depths of 16 – 108 µm and 5 – 8.6 µm, respectively. They are also larger 

than the ablation/removal depths in dentine using CW CO2 lasers (1 – 49 

µm). Ablation of enamel and dentine requires the right laser wavelength, at 

which absorption is high enough to contain the energy deposition near the 

surface and avoid unnecessary scattering (86). In addition, the right energy 

is required to be above the ablation threshold, and the right pulse duration is 

required to deliver sufficient energy in an optimum period to achieve 

continuous ablation (86). 

Table 2.7 Optical ablation/removal depths for pulsed and CW lasers in hard dental tissues 

enamel and dentine (117, 118) 

 

Irradiation Laser irradiation parameters 
Ablation/removal 

depth  (µm) 
Ref 

 
 

Ultrashort 
pulse fibre 

laser 

Wavelength 
(nm) 

Repetition 
rate (KHz) 

Time-average 
power (W) 

Pulse 
duration (ps) 

Enamel Dentine 

 

 

117 
 

1552 

50 0.15 

1.3 

8.6 16 

62.5 0.18 5.3 28 

100 0.29 6.1 33 

250 0.73 5.0 65 

500 1.31 5.7 108 

 
CW  

CO2 laser 

 
 

1060 

Energy 
density J cm

-2
 

Power density 
W cm

-2
 

Irradiation 
time µs 

Enamel * Dentine 

 

 

118 

5.3 15 x 10
3
 350 - 3 – 8 

8 13 x 10
5
 6 - 1 – 4 

13 95 x 10
3
 140 - 2 – 7 

13 33 x 10
4
 39 - 2 – 5 

50 13 x 10
5
 38 - 11 – 16 

200 52 x 10
5
 38 - 38 – 49 

Ps = picoseconds, (*) dentine sections parallel to DEJ – perpendicular to DEJ. 
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All erbium laser wavelengths operate in the spectrum region where high 

absorption by water occurs, and thus, they are the most suitable for tissue 

ablation. In contrast, CO2 and Ho:YAG laser irradiation show significantly 

lower absorption in water, and thus, they are less suitable for tissue ablation 

(91). Er:YAG laser irradiation at wavelength of 2.94 µm (in the infrared 

region) is absorbed by water molecules in hard dental tissues and results in 

tissue ablation (89). Er:YSGG laser irradiation shows minor ablation effect, 

compared to Er:YAG laser irradiation, due to a lower absorption coefficient 

of hard dental tissues (92). Ablation at 9.4 µm wavelength in the area 

containing phosphate ions improves the crystalline structure of dentine, and 

subsequently, the surface structure of dentine (89). Therefore, erbium lasers 

are considered optimal dental lasers for effective, precise, and minimally – 

invasive ablation of hard dental tissues (116). 

It can be concluded that more laser energy is needed to remove enamel 

tissue than dentine tissue, due to the high water content in dentine, which is 

almost twice that in enamel (8, 97). Differences in the ablation thresholds of 

enamel and dentine may also be due to variations in their structures and the 

presence of dentinal tubules (97). The ablation threshold depends on the 

parameters of hard dental tissue and laser irradiation used (97). 

All infrared lasers (91), particularly Er:YAG and Er,Cr:YSGG lasers (100), 

exhibit the highest absorption by water and hydroxyapatite in hard dental 

tissues, and thus, they are suitable for optical drilling in hard dental tissues 

and dental composite materials (91, 100). The red and near – infrared light 

wavelengths enhance the transmission through sound (surrounding) tissue, 

and thus, they are suitable for caries detection. The latter involves the 
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delivery of low levels of power energy (energy over time) in the milliwatt 

region to a tissue as well as differentiating tissue (86). On the other hand, 

the mid – infrared wavelengths of 2.94 µm and 2.78 µm for Er:YAG and 

Er:YSGG lasers, respectively, are strongly absorbed by tissues, and thus, 

they are suitable for tissue ablation, the latter which requires the fluence to 

be above the ablation threshold (86). CO2 lasers wavelengths of 9.3 – 10.6 

µm are suitable for caries prevention, because they alter the apatite mineral 

and make it less soluble (86). In addition, strongly absorbed laser irradiation 

by water at wavelength of ~ 3 µm may also be useful in caries prevention 

(86). Moreover, Pulsed lasers with a repetition rate of 10 Hz and fluence as 

low as 2.5 J/cm2 have a high inhibition of dental demineralization (86). 

Therefore, the outcome of interaction of laser irradiation with hard dental 

tissues depends primarily on the laser irradiation parameters, including laser 

type, wavelength, power, and irradiation time, as well as the properties of 

tissue being irradiated such as absorption and scattering coefficients. Laser 

parameters include laser wavelength, laser mode (CW or pulsed) absorption 

properties, scattering, energy, fluence (energy/surface area), power density, 

repetition rate, and pulse duration. All these parameters contribute in the 

laser – tissue interaction, however, the extent of laser absorption by a tissue 

is primarily determined by the laser wavelength (84, 86). 

Different wavelengths have different interaction outcomes. For example, 

infrared transmission in enamel is characterised by OH- ion in HAp mineral, 

while absorption by water occurs at 3 µm and in the range 9 – 11 µm. The 

latter is also absorbed by phosphate (PO4
3-) and carbonate (CO3

2-) ions in 

the HAp mineral, whereas carbonate (CO3
2-) substitution for phosphate 
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(PO4
3-) in the HAp mineral as well as absorption of amide groups in the 

protein occurs at 7 µm. (86). In addition, pulsed lasers are preferred to CW 

lasers, since the latter provide unnecessarily extra amount of energy, while 

pulsed lasers allow for the delivery of short and high intensity energy, with 

relaxation periods in order to avoid damaging the surrounding tissues such 

as pulp (86). Pulse durations also facilitate the dissipation of heat in a tissue 

during the relaxation periods (119, 120). Calculation and assessment of CW 

laser applications should include three variables: power, irradiation time, and 

spot size, whereas pulsed lasers are described in terms of the energy 

contained in each pulse – the integrated power of a pulse. “The average 

power pulse instead of being equal to the peak power divided by the pulse 

duration, is closer to one – half of that value” (87). 

Therefore, the laser wavelength is the primary key in laser – tissue 

interaction, which ensures the right absorption of energy and avoid 

unnecessary scattering. Moreover, correct pulse durations are necessary for 

the delivery of the right energy. Longer pulse durations deposit some energy 

in the surface and the remainder in the subsurface, whereas “shorter pulse 

durations closer to the thermal relaxation time of tissues, are expected to 

use much lower fluencies to produce similar effects” (86). The fluence can 

vary depending on the desired effects, for example, the energy/surface area 

ratio should be below the ablation threshold to introduce surface effects, 

such as in caries preventive therapies, and it can exceed the ablation 

threshold to introduce subsurface effects (86). 
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2.5.2.2 Laser – tissue interaction mechanisms  

There are various mechanisms for the interaction of laser irradiation and 

biological tissues, depending on tissue characteristics and laser parameters 

(84, 90). The optical tissue properties, reflection, absorption, and scattering 

coefficients, determine the total transmission of a tissue at a specific 

wavelength (84). Other important parameters include thermal properties of 

tissues such as heat conduction and heat capacity, and laser irradiation 

parameters such as wavelength, exposure time, applied energy, focal spot 

size, energy density, and power density (84, 90). There are three main light 

– tissue interaction mechanisms:  photochemical, photothermal, and 

photoplasma (87). Other possible interaction mechanisms include 

photoablation and photodisruption (84, 90). 

2.5.2.2.1 Photochemical interaction 

The term photochemical indicates the ability of light (absorbed photons) to 

induce chemical effects and reactions within biological tissues (63, 84, 87, 

90). Photochemical interaction takes place at a very low power density of 1 

W/cm2 (84, 87) and long exposure time (from 1 second to continuous wave) 

(84). Mostly, it involves the use of wavelengths in the visible range due to 

their efficiency and high penetration depths (84). During therapeutic 

applications (photodynamic therapy) (63, 84, 90), the use of a 

photosensitizer as a catalyst, such as organic dyes, is important to induce 

selective photochemical reactions for specific biological transformations (84, 

90). Biostimulation is another special application of photochemical 

interaction with biological tissues, which occurs at very low laser powers (1 – 

5 mW). Wound healing and tooth pain relief, using He – Ne and diode 

lasers, are some of biostimulation applications (84). 
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2.5.2.2.2 Photothermal interaction 

The term photothermal indicates the ability of light (absorbed photons) to 

induce thermal effects within tissues, mainly, the increase in temperature 

(63, 84, 87, 90) due to the conversion of photon’s energy into heat (63, 87, 

90).  Photothermal interaction can be induced by pulsed and CW lasers such 

as CO2, Nd:YAG, Er:YAG, and diode lasers (84). It takes place at power 

densities and pulse durations ranging from 10 to 106 W/cm2 and 1 µs to 1 

minute, respectively (84). Different thermal effects, such as coagulation, 

vaporization, melting (63, 84, 87), welding, and cutting (63, 90), depend on 

the laser duration and achieved temperature of biological tissues (63, 84). 

The interaction also involves heat transport to cooler regions by conduction, 

convection, or radiation (84, 87). The latter occurs if power densities of CW 

lasers are ≥ 10 W/cm2, or if pulse duration of pulsed lasers is ˃ 1 µs (84). 

2.5.2.2.3 Photoablation 

The term photoablation indicates the ability of light (absorbed photons) to 

induce ablation effects within tissues (63, 84, 87, 90). It was first identified as 

an ablative photodecomposition, due to the decomposition of materials when 

exposed to high intense laser irradiation (84). It can be defined as the 

removal of a tissue without any thermal damage, and the tissue is said to be 

“etched” (84). It works by direct breaking of molecular bonds by high – 

energy UV photons (84, 87, 90) such as ArF and KrF eximer lasers (84). It 

occurs at power densities and pulse durations ranging from 107 to 1010 

W/cm2 and 10 to 100 ns, respectively (84). Its applications include refractive 

corneal surgery (84, 90). 
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2.5.2.2.4 Plasma – induced ablation 

Plasma – induced ablation or plasma – mediated ablation can be defined as 

the removal of a tissue without any thermal or mechanical damage (84). It 

works by the formation of plasma (ionised molecules) (84, 90), using lasers 

such as Nd:YAG, Nd:YLF and Ti:Sapphire (84). The Plasma is formed at 

irradiance approximately 108 – 109 W/cm2 (87). Plasma generation and 

shock – wave generation are physical effects associated with optical 

breakdown (84, 87). Plasma generation is generally referred to as dielectric 

breakdown (84, 87), however, the term optical breakdown indicates that 

plasma strongly absorbs ultraviolet, visible, and infrared light (84). The 

strength of local electric field is the most important factor, as it determines 

the breakdown, which occurs beyond a certain threshold value (84). It 

occurs if an applied electric field forces the ionization of molecules and 

atoms at power densities and pulse durations ranging from 1011 to 1013 

W/cm2 and 100 fs to 500 ps, respectively (84). Lens capsulotomy (84, 90) 

and dental caries (84) are some of its applications. 

2.5.2.2.5 Photodisruption 

Like plasma – induced ablation, photodisruption originates from optical 

breakdown (84). It can be defined as the mechanical effects associated with 

plasma formation (90), or the removal of a tissue by mechanical effects that 

occur under higher pulse/plasma energies (84). Mechanical effects include 

cavitation, jetting, and shockwaves (90). It occurs at power densities and 

pulse durations ranging from 1011 to 1016 W/cm2 and 100 fs to 100 ns, 

respectively (84). Its applications include lens fragmentation (84) and 

lithotripsy (84, 90). 
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2.5.3. Dental lasers 

Laser types include solid – state lasers, gas lasers (helium neon, helium 

cadmium, and carbon dioxide lasers), diode lasers, chemical lasers, optically 

pumped lasers, etc., all of which have many scientific applications 

(spectroscopy and analysis), industrial applications (cutting and welding), 

and clinical and medical applications (surgical procedures) (81, 82). 

The occlusion of dentinal tubules by the proposed methodology in the 

present research study will require dental practices to buy a new laser 

suitable for the photoactivation of Er3+, Al3+, F- – doped CaP material. In 

addition, Er3+, Al3+, F- – doped CaP material will require a range of regulatory 

approval requirements and standards set out for healthcare products, which 

are fundamental to its success and to ensuring its suitability and safety. 

In dentistry, there are two basic operation modes for dental lasers: 

continuous – wave mode such as carbon dioxide and diode lasers, and 

pulsed mode such as Nd:YAG, Er:YAG and Er,Cr:YSGG lasers (121). 

However, pulsed lasers are preferred to CW lasers, because they help 

minimizing some of the undesirable residual thermal damage associated 

with CW lasers (121). 

There are significant differences in the penetration depth of lasers into dental 

tissues, as shown in Table 2.6. These include the penetration of a few 

millimetres by diode and Nd:YAG lasers, ~ 0.5 mm by CO2 lasers, and just 5 

µm (on tissue’s surface) by erbium lasers (121). The amount of energy 

absorbed by dental tissues depends on characteristics of tissues, laser 

wavelength, and laser mode (63, 84). Hard tissues, such as teeth, are 

characterized by hydroxyapatite, water, and proteins, which interact with 
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laser irradiation (63, 84, 86). Long wavelengths between 2,000 and 10,600 

nm interact more with water and hydroxyapatite (63). Pulsed lasers are 

absorbed more than CW lasers (63, 92), with the largest absorption peak for 

water is at the Er:YAG wavelength just below 3,000 nm (63, 89). Erbium 

lasers are also well absorbed by hydroxyapatite (63). The spot size of laser 

beam determines the concentration of laser energy and power density, 

which can be controlled by moving the beam towards and away from the 

irradiated area (63). 

Available lasers that are used in dentistry are presented in Table.2.8, which 

shows laser name, wavelength, delivery system, and emission mode (122, 

123). These lasers are in the visible, invisible, and non – ionizing region of 

the electromagnetic spectrum, with wavelengths of about 500 nm (0.5 μ) to 

10,600 nm (10.6 μ), and they emit thermal irradiation (63). 

Dental lasers used for the treatment of dentine hypersensitivity are classified 

as low – output power lasers (e.g. diode lasers) and middle – output power 

lasers (e.g. CO2, Nd:YAG and Er:YAG lasers) (51, 52, 56). Lasers as a 

dentine hypersensitivity treatment for the occlusion of dentinal tubules (2, 51 

– 56, 63) are also used in conjunction with other dental treatments such as 

desensitising agents and composites (51-53, 56, 62, 63). Different studies 

on the occlusion of dentinal tubules by laser irradiation (e.g. Nd:YAG, 

Er:YAG, CO2, argon, and diode  lasers) with and without desensitising 

agents (e.g. fluoride varnish/gel containing NaF2/SnF2, Bioglass, and 

carbonate apatite) show different speculations (51-54, 56, 62, 63, 124). 

However, the occlusion of dentinal tubules is more effective using 
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desensitising agents and laser irradiation together (51, 56, 124, 125, 126, 

127, 128, 129).  

The occlusion mechanism of desensitising agents is achieved mechanically 

by the precipitation of insoluble salts, such as calcium fluoride, in the case of 

fluoride gels (128). The occlusion mechanism of laser irradiation can be 

achieved by biostimulation/depolarisation or melting processes. The 

biostimulation/depolarisation process involves the use of low – level lasers, 

which prevents the diffusion of pain into the central nerve system (51, 52, 

62, 128). On the other hand, the melting process involves the 

recrystallisation of the inorganic component of dentine (54, 58, 128, 130), 

the formation of a secondary/tertiary dentine (55, 131, 132), and the 

coagulation of the dentinal fluid (128, 133), using high – level lasers. 

The mechanism of the occlusion of dentinal tubules using Nd:YAG laser 

irradiation alone is due to the narrowing of dentinal tubules (51, 134, 135), 

whereas the occlusion of dentinal tubules using Nd:YAG laser irradiation and 

fluoride desensitising agents is due to the burn out of agents into dentinal 

tubules (136). The mechanism of dentinal tubules occlusion by Er:YAG laser 

irradiation is due to a thermomechanical ablation (51, 52) and the deposition 

of insoluble salts (137). The mechanism of dentinal tubules occlusion using 

CO2 laser irradiation is the same as Nd:YAG laser irradiation, which is by to 

the narrowing of dentinal tubules (51, 52, 138), while the combination of CO2 

laser irradiation and Bioglass 45S5 occludes dentinal tubules by the 

formation of calcium phosphate crystals (139). Also, the use of CO2 laser 

irradiation with fluoride desensitising agents, such as NaF2 (125) and SnF2 

(27, 140), is effective in occluding dentinal tubules (27, 125, 139, 141), due 
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to the formation of a highly resistance layer to external stimuli (142). 

Similarly, the use of Nd:YAG laser irradiation with NaF2 is also a very 

effective treatment (141, 126). The use of diode laser irradiation along with 

fluoride agents, such as NaF2 and SnF2, is more effective than laser 

treatment alone (128, 129, 143). 

In addition, free electron lasers (FELs) at 9.4 µm wavelength transform 

amorphous dentine surface to a crystallised structure (88). The structural 

and crystalline modification of dentine surface by CO2 laser irradiation at 

9.45 µm wavelength is similar to that produced by the 9.4 µm FELs. 

However, at high irradiance, free electron lasers (FELs) promote 

modification, while at high fluence, CO2 lasers promote ablation (89).  

Although the speculations about the occlusion of dentinal tubules using laser 

irradiation are widely reported, the mechanism of action of lasers is also 

controversial (144) and unclear (53, 54, 56, 145). 
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Table 2.8 Lasers and wavelengths used in dentistry (122, 123) 

 

LASER Argon Diode Nd:YAG Ho:YAG CO2 
(Er,Cr:YSGG,        

Er:YAG) 

Active 
medium 

Argon gas 

Solid 
semiconductor 
crystals/wafer 
composed of 
aluminium/ 

indium, gallium 
and arsenic 

GaAlAs, 
InGaAs. 

A solid garnet 
crystal 

combined with 
rare earth 

elements yttrium 
and aluminium 

doped with 
neodymium 

ions. 

A solid crystal 
of YAG 
(yttrium 

aluminium 
garnet) 

sensitized 
with chromium 

(Cr) and 
doped with 

holmium and 
thulium ions. 

A mixture of 
CO2, helium 

(He) and 
nitrogen (N2) 
gases with a 

ratio of 
8:7:1. 

1. Er,Cr:YSGG 
(erbium 

chromium: 
yttrium scandium 
gallium garnet): 
A solid crystal of 

YSGG doped 
with Er and Cr. 

2. Er:YAG 
(erbium : yttrium 

aluminium 
garnet): A solid 
crystal of YAG 
doped with Er.  

Wavelength 

(i) 488 nm 
(blue) 

(ii) 514 nm 
(blue – 
green)  

Two visible 
wavelengths  

 

 (i) 655 nm (a 
visible red 

diode) 
(ii) 800–830 nm 

(AlGaAs) 
(iii) 980 nm 
(InGaAs, 
GaAlAs)  

Wavelengths 
are placed at 

the near – 
infrared portion 
of the invisible 
non – ionizing 

spectrum. 

1,064 nm  
Wavelength is 
placed in the 

invisible near – 
infrared portion 

of the 
electromagnetic 

spectrum. 
 

2,100 nm  
Wavelength is 
placed in the 

near – 
infrared 

portion of the 
invisible non – 

ionizing 
irradiation 
spectrum. 

9,300 nm  
9,600 nm  
10,600 nm  
Wavelength
s are placed 
at the end of 

mid – 
infrared 

invisible non 
– ionizing 
portion of 

the 
spectrum. 

 

(i) 2780 nm 
(Er,Cr:YSGG) 
(ii) 2,940 nm 

(Er:YAG)  
Wavelengths are 

placed at the 
beginning of the 
mid – infrared, 

invisible and non 
– ionizing portion 
of the spectrum. 

 

Delivery 
system 

Fibre-optic 
cable in: 
- Contact 

mode  
- Non – 
contact 
mode 

Fibre-optic 
cable in:  

- Contact mode 
(for soft tissue 
surgery) and  

- Non – contact 
mode (for 

deeper 
coagulation) 

 

Fibre-optic cable 
in: 

- Contact mode  
- Non – contact 

mode 
 

Fibre-optic 
system Hollow 

waveguide 
with a hand 

piece in:  
- Contact  

mode  
- Non – 

contact mode 

Fibre-optic 
cable for 

Er,Cr:YSGG 

Hollow 
waveguide/ fibre-
optic bundle for 

Er:YAG. 

Emission 
mode 

Continuous 
wave and 

gated pulsed 
mode 

Continuous 
wave and 

gated pulsed 
mode 

 

Free running 
pulsed mode 

Free running 
pulsed mode 

Continuous/
gated pulsed 

mode 

Free running 
pulsed 
Mode 
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2.6 Calcium phosphates (CaP) 

There is a large variety of calcium phosphate (CaP) minerals. The type of 

phosphate anion is used to distinguish between calcium phosphates and 

determine their types (69, 73, 74). Anions include orthophosphates (PO4
3-), 

metaphosphates (PO3
-), pyrophosphates (P2O7

4-), and polyphosphates 

((PO3)n
n-). Orthophosphates and pyrophosphates are also distinguished by 

the number of hydrogen ions attached to phosphate anion (69, 73, 74) such 

as in monocalcium phosphates (Ca(H2PO4)2), dicalcium phosphates 

(CaHPO4), tricalcium phosphates (Ca3(PO4)2), and tetracalcium phosphates 

(Ca2P2O7) (49, 68, 69, 146). 

Calcium orthophosphates are very important in many fields of science, 

including biology and medicine (49, 68, 69, 73, 74), due to their chemical 

similarity to the inorganic mineral of bones, teeth, and pathological calcified 

tissues (49, 69, 73, 74). Therefore, calcium orthophosphates are classified 

as biocompatible, bioactive (49, 68, 69, 73), and osteoconductive materials 

(49, 73, 74). Calcium orthophosphates are available in various forms, 

including powders, dense blocks, porous scaffolds, suspensions, pastes, 

and implant coatings. They are used as artificial bone grafts in the form of 

self – setting cements (49, 68, 69, 73), and as coatings (49, 68, 73) for hip 

joint prostheses and tooth substitutes (69, 73, 74). Porous calcium 

orthophosphates are used as scaffolds for tissue engineering applications 

(49, 69, 73). Compared to dense forms, porous forms provide better fixation 

of implants and bone grafts to tissues by a mechanical interlock mechanism, 

which allows tissues to grow into pores (68, 69). Although dense calcium 

orthophosphates have better mechanical properties than porous calcium 

orthophosphates, all calcium orthophosphates are used in low – load – 
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bearing applications due to their poor mechanical properties, compared to 

bones and teeth (68, 69).  

The three major chemical elements of calcium orthophosphates are calcium 

(Ca2+), phosphorus (P5+), and oxygen (O2-). Hydrogen is also present in 

many calcium phosphates as an acidic orthophosphate anion (e.g. HPO4
2-

/H2PO4
-) and/or water (H2O) (69, 73, 74). The family/classification of calcium 

orthophosphates include monocalcium phosphate (MCP), dicalcium 

phosphate (DCP), octacalcium phosphate (OCP), tricalcium phosphate 

(TCP), tetracalcium phosphate (TTCP), amorphous calcium phosphate 

(ACP), hydroxyapatite (HAp), and fluorapatite (FAp) (49, 68, 69, 73, 74). 

2.6.1 Calcium orthophosphates  

2.6.1.1 Monocalcium phosphate (MCP) 

Monocalcium phosphate monohydrate (Ca(H2PO4)2.H2O) and anhydrous 

(Ca(H2PO4)2) are chemically known as calcium dihydrogen orthophosphate 

monohydrate (MCPM) and calcium dihydrogen orthophosphate anhydrous 

(MCPA), respectively. They are not found in biological calcified tissues due 

to their high acidity (69, 73, 74). The monohydrated type transforms into 

anhydrous type above 100°C (69, 73, 74). MCPM and MCPA have similar 

solubility in water of about 18 g/L and 17 g/L at room temperature (~ 25°C), 

respectively (49, 68, 69, 73, 74). Unlike anhydrous monocalcium 

phosphates, with limited applications due to their high hydroscopic 

properties (69, 73, 74), monohydrate monocalcium phosphates have many 

applications in medicine, as a component of many self – hardening cements 

(147-149) and an additive in tooth pastes (69, 73, 74, 150). Other 

applications of MCPM include food industry, as a nutrient and mineral 
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supplement (73, 74, 151, 152), which is marked as additive E341 under the 

European classification of food additives (69, 73, 74).  

2.6.1.2 Dicalcium phosphate (DCP) 

Dicalcium phosphate dihydrate (CaHPO4.2H2O) and anhydrous (CaHPO4) 

are chemically known as calcium hydrogen orthophosphate dihydrate 

(brushite) and calcium hydrogen orthophosphate anhydrous (monetite), 

respectively. They both can be crystallised from aqueous solutions at 100°C 

(69, 73, 74). The dehydrated type (brushite) transforms thermally into 

anhydrous type (monetite) (69, 73, 74, 153) above 80°C (69, 73, 74). Unlike 

monetite, brushite is found in pathological calcifications such as dental 

calculi (69, 154-156) and urinary stones (155-157). They both have many 

medical applications, such as in calcium phosphate cements (158-160), 

polishing agents (69, 151, 160) and anticaries in toothpastes (69, 151, 161, 

162), as well as applications in the food industry, as nutrients and mineral 

supplements (marked as E341) (69, 73, 74, 151, 163). In medicine, brushite 

is also used as an intermediate for tooth remineralisation (73, 74, 164).  

Brushite is a stable form of calcium orthophosphate (165). It is used as a 

precursor to form apatite phases such as hydroxyapatite (69, 73, 74, 166) 

and octacalcium phosphate (166). Brushite crystals consist of CaPO4 

parallel chains and water molecules in between (73, 74). Its crystal growth is 

in the form of platelet – like morphology, which reflects the (010) 

crystallographic plane (166-168). Its solubility in water is about 0.088 g/L at 

room temperature (~ 25°C) (49, 68, 69, 73, 74). On the other hand, Monetite 

is the anhydrous form of calcium hydrogen orthophosphate (69, 73, 74). It is 

less soluble in water than brushite, with a solubility of about 0.048 g/L at 

room temperature (~ 25°C) (49, 68, 69, 73, 74). Monetite may also be used 
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as a component in anticaries biocomposites, because it releases calcium 

and phosphate due to the decrease of its particle dimensions (169). 

2.6.1.3 Octacalcium phosphate (OCP) 

Octacalcium phosphate (Ca8(HPO4)2(PO4)4.5H2O) forms as an unstable 

phase during aqueous precipitation of more stable phases of calcium 

orthophosphates such as calcium – deficient hydroxyapatite (69, 73, 74). Its 

structure composes of HAp – like apatite layers separated by H2O layers 

(155, 156, 170). Its solubility in water is about 0.0081 g/L at room 

temperature (~ 25°C) (49, 68, 69, 73, 74). It is found as a stable component 

in dental and urinary calculi (171-173). OCP was first proposed to precipitate 

as an initial phase in enamel mineral and bone formation, and consequently, 

the hydrolysis of OCP (174-179). It is also proposed as a precursor for 

biological apatite in natural and synthetic heart valves (180-182). In 

dentistry, OCP might be used as a coating (183) and a component of 

biocomposites (184). In surgery, it is used as a bone repair implantation 

(185-187). 

2.6.1.4 Tricalcium phosphate (TCP) 

There are two types of tricalcium phosphates, β – tricalcium phosphate (β – 

Ca3(PO4)2) and α – tricalcium phosphate (α – Ca3(PO4)2), which are also 

known chemically as calcium orthophosphate tribasic beta and calcium 

orthophosphate tribasic alpha, respectively. Pure β – TCP and α – TCP are 

never found in biological calcifications (69, 73, 74), however, magnesium – 

substituted β – TCP is found in dental calculus, urinary calculus, and dental 

caries (154-156). β – TCP can be prepared by the thermal decomposition of 

calcium orthophosphates, such as CDHAp, above 800°C, whereas α – TCP 

can be prepared by the thermal treatment of β – TCP above 1125°C (69, 73, 
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74). They both have the same chemical composition but different crystal 

structure and solubility.  β – TCP is less soluble in water than α – TCP, with 

a solubility of about 0.0005 g/L and 0.0025 g/L at room temperature (~ 

25°C), respectively (49, 68, 69, 73, 74). β – TCP is more stable than α – 

TCP, the latter which is more reactive in aqueous systems (69, 73, 74). β – 

TCP and α – TCP are widely used in biomedicine and dentistry. TCP is the 

first calcium orthophosphate to be used in bone grafting trials (in rabbits) 

(188) and repairing periodontal defects (189). In biomedicine, they are used 

alone as calcium phosphate bone cements (158-160, 190-192), and in 

combination with HAp (a mixture of β – TCP/α – TCP and HAp is known as a 

biphasic calcium phosphate) as bone substitution bioceramics/artificial bone 

grafts (190, 193-197). In dentistry, they are used as bone grafts (198), 

implant coatings (199), and a component of root canal sealers (200). In 

addition, β – TCP is also used as a polishing agent in toothpastes, and as a 

nutrient and mineral supplement (marked as E341) in food industry (69, 73, 

74).   

2.6.1.5 Tetracalcium phosphate (TTCP) 

Tetracalcium phosphate (Ca4(PO4)2O) is also known as the mineral 

hilgenstockite (69). It is considered the most basic calcium orthophosphate 

(69, 73, 74), with a solubility in water of about 0.0007 g/L at room 

temperature (~ 25°C) (49, 68, 69, 73, 74). It is not found in biological 

calcified tissues (69, 73, 74) due to its instability in aqueous solutions, which 

hydrolyses to hydroxyapatite and calcium hydroxide (146, 201, 202). TTCP 

can be prepared only by a solid – state reaction above 1300°C, for example, 

using DCPA and CaCO3 in dry air/nitrogen (146, 201, 202). In biomedicine 

and dentistry, TTCP is used in combination with other calcium phosphates, 
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such as DCPD and DCPA (68, 203), due to its high solubility and acidity 

(68). It is used in biocomposites (203), self – setting calcium phosphate 

cements (203-206), and root canal sealers (207). 

2.6.1.6 Amorphous calcium phosphate (ACP) 

Amorphous calcium phosphate (ACP) is the amorphous form of other 

calcium orthophosphates (74). There are two types of ACP depending on 

the production temperature, low – temperature ACPs and high – 

temperature ACPs (74). Low – temperature ACPs are usually formed as a 

transient phase during the formation of calcium orthophosphates in aqueous 

solutions (69, 73, 74). The amorphous phase increases with increasing the 

concentration of calcium and orthophosphate and pH of solution at low 

temperatures (69, 73, 74). In addition, pyrophosphate, carbonate and/or 

magnesium promote the formation of ACP, whereas fluoride promotes the 

formation of a more crystalline calcium orthophosphate (146, 155, 201, 202). 

ACPs are proposed as an initial phase precipitating from a supersaturated 

solution of calcium and orthophosphate (146, 201, 202), due to their lower 

surface energy than other calcium orthophosphates such as OCP and HAp 

(208-210). However, at elevated temperatures, they transform into a better 

crystalline calcium orthophosphate such as calcium – deficient HAp (146, 

155, 201, 202). High – temperature ACPs are formed at elevated 

temperatures by rapid quenching of melted calcium orthophosphates (74), 

for example, during plasma spraying of HAp (211), which results in 

anhydrous ACP (74). 

Although ACPs have an amorphous structure, as observed by FTIR and 

XRD, SEM of ACPs shows nanospherical particles of 20 – 200 nm with no 

distinct morphology (69, 73, 74). Spherical clusters of ACPs with a chemical 
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composition Ca9(PO4)6 (146, 201, 202) is also proposed as an initial phase 

during HAp crystallisation (212, 213, 214). Their solubility in water cannot be 

precisely measured, however, the solubility values of 0.0025, 0.0029, and 

0.0032 g/L are reported at room temperature (~ 25°C) and pH values of pH 

7.40, pH 6.00, and pH 5.28, respectively (49, 68, 69, 73, 74). ACPs are 

found in biological calcifications, particularly in soft – tissue pathological 

calcifications such as heart valves (154-156). In medicine, ACPs are used in 

calcium phosphate cements (68, 158-160) and bone grafts (215, 216). In 

dentistry, they are used as tooth filling materials (69, 73, 217), a component 

in toothpastes, and in calcium orthophosphate remineralisation systems 

(combined with casein phosphopeptides) (49). They could also be used in 

combination with polymers to form bioactive composites (218-220). In 

addition, ACPs might be used as mineral supplements in culture media, and 

they are used for syrup clearing in the food industry (69, 73, 74). 

2.6.1.7 Apatites 

Apatites are a structural type of calcium orthophosphates, which include 

hydroxyapatite (HAp), calcium – deficient hydroxyapatite (CDHAp), 

fluorapatite (FAp), hydroxycarbonate apatite (HCAp), and chlorapatite (ClAp) 

(49, 69, 73, 74, 221). Therefore, apatites are considered as different 

compounds of calcium orthophosphates with similar structures, but do not 

necessarily have similar compositions. They can be classified into biological 

and synthetic apatites, with a general chemical formula, as given by 

equation 2.8 (221, 222). 

M10 (XO4)6 Y2 ….. (2.8), 

where (M) is usually a bivalent cation such as Ca²+, or monovalent and 

trivalent cations such as K+ and Al³+, respectively, as well as rare earth 
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elements, (XO4) is usually PO4³
-, and it can also be SiO4

4- or CO3²
-, and (Y) 

is a monovalent anion such as OH-, F-, and Cl-, or it can also be CO3²
- (221, 

223). 

2.6.1.7.1 Synthetic apatites 

HAp (Ca5(PO4)3 OH) and FAp (Ca5(PO4)3 F) are the most stable and least 

soluble calcium orthophosphates (49, 68, 69, 73, 74, 221). Their solubility in 

water is about 0.0003 g/L and 0.0002 g/L at room temperature (~ 25°C), 

respectively (49, 68, 69, 73, 74). The crystal unit cell of HAp and FAp, as 

shown in Figures 2.12 and 2.13, respectively, consists of two molecules, and 

therefore, their chemical formula are written as Ca10(PO4)6 (OH)2 and 

Ca10(PO4)6 F2, respectively. Pure apatites, including HAp, CDHAp and FAp, 

are not found in biological calcified tissues (69, 73, 74, 221), due to the fact 

that biological apatites are ion – substituted apatites (e.g. Na+, K+, Mg2+, and 

Sr2+ for Ca2+; CO3
2- for PO4

3- or HPO4
2-; and F-, Cl-, and CO3

2- for OH-) (154-

156).  

Hydroxyapatite (HAp) is white in colour, and it is available in different forms 

such as powders, porous blocks, beads, and aqueous suspensions. 

Chemically, HAp is similar to the mineral component of bones and teeth, and 

therefore, it provides excellent biocompatibility and intergrowth with natural 

bone, and it induces bone formation (224). The crystal structure of HAp is in 

the monoclinic space group P21/b (146, 221, 225, 226), which transforms 

into the most common hexagonal space group P63/m (221) above 250°C 

(146, 201, 202) or at ambient temperature in case of partial substitutions 

(e.g. OH- by F-) (69, 73, 74, 221).  
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Figure 2.12 Schematic of the crystal structure of hydroxyapatite (HAp). 

 

 

Figure 2.13 Schematic of the crystal structure of fluorapatite (FAp). 

 

HAp was first reported as an aggregation of ACP (Ca9(PO4)6) clusters, 

known as Posner’s clusters (227-229). HAp can be synthesised in dense 

and porous forms, both of which have different biomedical and dental 

applications in supporting bone growth (49, 68, 69, 73, 74). Porous HAp, like 

other porous calcium orthophosphates, provides better fixation of implants 

and bone grafts to biological tissues than dense HAp, by allowing bone to 

grow into their pores (68, 69, 230). Therefore, porous HAp is a good 

example of a bioresorbable material, which dissolves completely and allows 
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bone to grow instead, whereas dense HAp is a good example of a bioactive 

material, which dissolves slightly and bonds to bone through a newly formed 

biological apatite (68, 73). However, both forms are used in low – load 

bearing areas due to their poor mechanical properties (68, 231, 232), 

particularly, their poor inelastic ability, which makes them brittle, and 

consequently, results in a fracture at the bone – HAp interface (231).  

HAp and FAp are the most used calcium orthophosphates in dental 

applications (49). They are used in calcium phosphate cements (49, 68), 

toothpastes (49, 68, 69, 73), and as coatings for dental implants (49, 68, 

233-235). They can also be used as a component of dental restorative 

materials such as glass ionomer cements (236), dental biocomposites (237), 

and self – setting formulations (238). In orthopaedic, HAp is used as a 

coating for the fixation of hip implants (68, 233-235) and as a bone 

replacement material (68, 231). In contrast, FAp is rarely used as a bone 

substitution material due to its toxicity of high amounts of fluorides as well as 

its lowest solubility (239-241). Although fluoride is found in biological 

systems, with the highest concentration is in bones and the lowest 

concentration is in teeth, the concentration of fluoride is not enough to form 

FAp (69, 73, 74).   

HAp and FAp can be synthesised by various methods (FAp is prepared in 

the presence of an adequate amount of F- ions using fluoride compounds 

such as NaF or NH4F (69, 73, 74)), which can be divided into solid – state 

reaction and wet methods (69, 242, 243). The most common methods 

include chemical precipitation (69, 73, 74, 248-251), hydrothermal (69, 73, 
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74, 77, 79, 252, 253), hydrolysis of other calcium orthophosphates (69, 73, 

74), and sol – gel (77, 251, 254, 255) methods. 

Calcium – deficient HAp ((Ca10-x (PO4)6 x(OH)2), where 0 < x > 1) is 

considered as HAp with vacancies of Ca2+ and OH- ions (256-258). It is 

found in biological tissues as a substituted CDHA only (154-156). Therefore, 

substituted CDHAp lacks stoichiometry due to the presence of other ions 

(e.g. Na+, K+, Mg2+, and Sr2+ for Ca2+; CO3
2- for PO4

3- or HPO4
2-; F-, Cl-, and 

CO3
2- for OH-) filling the missing ions/vacancies (69, 259, 260), and 

consequently, different Ca:P ratios ranging from 1.5 to 1.67 due to such ion 

substitutions and surface adsorption (261-263). CDHAp is more soluble in 

water than FAp, HAp, OCP, TCP, and TTCP, with a solubility of about 

0.0094 g/L at room temperature (~25°C) (49, 68, 69, 73, 74). Its structure 

and properties are similar to ACP precipitated in an alkaline solution (pH ˃ 

8), such as its poorly crystalline crystals (69, 73, 74). CDHAp can be 

prepared from aqueous solutions of calcium and orthophosphate at elevated 

temperatures, during which ACP, as an initial precipitated phase, transforms 

into CDHAp (69). Depending on its Ca:P ratio, CDHAp with Ca:P ratios of 

1.5 and 1.5 ˂ Ca:P ˂ 1.67 transforms into β – TCP (146, 155, 156, 190, 201, 

202 264-266) and biphasic calcium phosphate (β – TCP and HAp), 

respectively, above 700°C (190, 264-266). 

As discussed above, calcium orthophosphate minerals vary in their chemical 

composition, physical form, Ca:P ratio, and solubility. Properties and 

physical constants (under standard conditions, pressure of 1 atm at room 

temperature ~ 25°C) for calcium orthophosphate minerals are summarised 

in Table 2.9. Ca:P ratio is an important parameter, which is related to the 
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basicity/acidity, solubility, and stoichiometry of calcium orthophosphates. 

Ca:P ratio ranges from 0.5 for MCPM up to 2 for TTCP. The lower the Ca:P 

ratio, the more acidic and water – soluble the calcium orthophosphate 

(MCPM > DCP > TCP > HAp > FAp) (69, 155, 156, 201, 202). Also, 

stoichiometric Ca:P ratio of 1.67 for HAp is in contrast to non – 

stoichiometric Ca:P ratio within 1.5 – 1.67 for calcium – deficient HAp, the 

latter which is due to the presence of vacancies/missing ions (e.g. Ca2+, 

PO4
3 / HPO4

2-, and OH-), or due to their substitution with other ions (69, 259, 

260). In addition, bending, compressive, and tensile strengths increase with 

increasing Ca:P ratio, and decrease with Ca:P > 1.67 (267). 

Table 2.10 shows the crystallographic data of calcium orthophosphate 

minerals, including crystal system, space group (P, R, and C describing a 

Bravais lattice type, followed by point group symmetry), unit cell parameters 

(a, b, c, and α, β, γ), and  formula unites per unit cells. Some calcium 

orthophosphate, such as MCPM, MCPA, DCPA, and OCP, have the same 

crystal system (triclinic), but they have different unit cell parameters, formula 

units per unit cell, and chemical composition. Similarly, HAp and FAp have 

the same crystal system (hexagonal), but they have different chemical 

compositions. On the other hand, α – TCP and β – TCP have the same 

chemical composition, but they have different crystal structures, monoclinic 

and rhombohedral, respectively. These differences give calcium 

orthophosphates different properties, and thus, different applications. 
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Table 2.9 Properties and physical constants of calcium orthophosphates under standard 

conditions (pressure of 1 atm at RT ~ 25°C) (268-276) 

 

CaP Formula Ca:P ratio Mol. W 
Physical 

form 
Decompos
ition (°C) 

Density    
(g cm

-3
) 

Solubility 

MCPM 
Ca(2HPO4)2

.H2O 
0.5 252.06 

Coloured  
triclinic 
plates 

≈ 100 2.22 

Slightly 
soluble in 
H2O and 
soluble in 

diluted acid 

DCPD 
CaHPO4. 

2H2O 
1.0 172 

Monoclinic 
crystalline 

≈ 100 2.31 

Insoluble in 
ethanol 

and soluble 
in diluted 

acid 

DCPA CaHPO4 1.0 136 
White 
triclinic 

crystalline 
~ 400 

a
 2.92 

Insoluble in 
ethanol 

TCP Ca3(PO4)2 1.5 310.17 
White 

amorphous 
powder 

1670 3.14 

Insoluble in 
ethanol 

and soluble 
in diluted 

acid 

HAp 
Ca5(PO4)3.

OH 
1.67 502.3 

Coloured 
hexagonal 
crystalline 

> 900 3.15 

Insoluble in 
ethanol 

and soluble 
in acid 

FAp Ca5(PO4)3.F 1.67 302 
Coloured  
hexagonal 
crystalline 

~ 1650 3.20 
Insoluble in 

H2O 

TTCP Ca4(PO4)2O 2 366 
Monoclinic 

powder 
˂ 660 

b
 3.05 

Soluble in 
aqueous 

solutions 
b
 

(a) Adopted from reference (77) and (
b
) adopted from reference (270). 
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Table 2.10 Crystallographic data of calcium orthophosphates (146, 201, 202, 221, 277-283) 

 

Compound 
Crystal system and 

space group 
Unit cell parameters 

Units per 

unit cell 

MCPM 
Triclinic P 1̅ 

 

a = 5.6261(5), b = 11.889(2), c = 6.4731(8) Å 

α = 98.633(6)° , β = 118.262(6)°, γ = 83.344(6)° 

2 

MCPA Triclinic P 1̅ 

a = 7.5577(5), b = 8.2531(6), c = 5.5504(3) Å 

α = 109.87(1)°, β = 93.68(1)°, γ = 109.15(1)° 

2 

DCPD Monoclinic Ia 

a = 5.812(2), b = 15.180(3), c = 6.239(2) Å 

β = 116.42(3)° 

4 

DCPA Triclinic P 1̅ 

a = 6.910(1), b = 6.627(2), c = 6.998(2) Å 

α = 96.34(2)°, β = 103.82(2)°, γ = 88.33(2)° 

4 

OCP Triclinic P 1̅ 

a = 19.692(4), b = 9.523(2), c = 6.835(2) Å 

α = 90.15(2)°, β = 92.54(2)°, γ = 108.65(1)° 

1 

α – TCP Monoclinic P21/a 

a = 12.887(2), b = 27.280(4), c = 15.219(2) Å 

β = 126.20(1)° 

24 

β – TCP Rhombohedral R3Ch 

a = b = 10.4183(5), c = 37.3464(23) Å 

γ = 120° 

21* 

HAp 

Monoclinic P21/b 

a = 9.84214(8), b = 2a, c = 6.8814(7) Å 

γ = 120° 

4 

hexagonal P63/m 

a = b = 9.4302(5), c = 6.8911(2) Å 

γ = 120° 

2 

FAp Hexagonal P63/m 

a = b = 9.367, c = 6.884 Å 

γ = 120° 

2 

TTCP Monoclinic P21 

a = 7.023(1), b = 11.986(4), c = 9.473(2) Å 

β = 90.90(1)° 

4 

P, R, and C are describing a Bravais lattice type, followed by point group symmetry. 
(*) Per hexagonal unit cell. 
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2.6.1.7.2 Biological apatites 

Biological apatites are ion – substituted calcium orthophosphates with an 

apatitic structure (49, 69, 284-286), which can be considered as ion – 

substituted CDHAp (154-156, 221). They are the inorganic minerals of 

bones and teeth (154-156, 221), which form in vivo by biological 

mineralisation (74, 287, 288). Biological apatites of bone, enamel, and 

dentine are classified as carbonate apatites (221, 289, 290), and they 

consist of crystals that vary in shape from platelets (in bone and dentine) to 

rods (in enamel) (8, 12, 69, 73, 74). They are often poorly crystallised and 

non – stoichiometric due to the presence of impurities/substitutions, such 

those by carbonate, sodium, and magnesium (69, 73, 74, 221), which make 

them less stable and more reactive (69, 73, 74). However, the biological 

apatite of enamel contains fewer impurities (e.g. carbonate and magnesium) 

than that of dentine and bone, and thus, it has a lower solubility and higher 

crystallinity (69, 73, 74) due to its smaller lattice strains (284, 291-293). 

Although the chemical composition and crystal structure of bone, dentine, 

and enamel are similar to that of synthetic apatites (unsubstituted), crystals 

of biological apatites are much smaller (e.g. HAp and CDHAp), which make 

them more soluble than synthetic apatites (69, 259,260). The chemical and 

structural similarity of biological apatites can be seen in XRD (42, 290, 294-

296) and FTIR (42, 294-296) analysis of bone and teeth. However, their 

crystallinity varies from high crystallinity in enamel to low crystallinity in bone 

and dentine (42, 69, 73, 74), which is due to the different amount of 

substitutions, especially by carbonate (CO3
-2) (69, 73, 74, 297, 298). The 

highest amount of carbonate is in bone, while the lowest amount is in 

enamel (69, 73, 74, 297). Bone, dentine, and enamel contain approximately 
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7.4, 5.6 and 3.5 wt% of carbonate, respectively (299). The amount of 

carbonate can determine the morphology of the apatite crystals, as 

demonstrated by Susan Liao et al. (298). The lower the amount, the more 

the crystals are platelet, and the higher the amount, the more the crystals 

are spherical (69, 73, 74, 298). There are two types of carbonate apatite, 

depending on the location of carbonate substitution in the apatite lattice; A – 

type and B – type substitutions (221, 300). The A – type involves the 

substitution of hydroxyl (OH-), while B – type involves the substitution of 

phosphate (PO4
3-) (221, 300).  

According to FTIR spectroscopy, A – type carbonate apatite is characterized 

by a double band at around 1545 cm-1 and 1450 cm-1 that represents an 

asymmetrical stretch vibration (V3), and a band at around 878 cm-1 that 

represents an out – of – plane bend vibration (V2). On the other hand, B – 

type carbonate apatite is characterized by a double band at around 1410 cm-

1 and 1455 cm-1 (V3), and a band at around 873 cm-1 (V2) (300). Biological 

apatites are reported to be B – type carbonate apatite, with a small amount 

of A – type (301), however, a recent study shows that the amount of A – type 

carbonate accounts for up to 50% of the total carbonate (300), with a ratio 

(A:B) in the range 0.7 – 0.9 (302). In addition, substitutions introduce 

changes in the lattice parameters, which depend on the type and size (ionic 

radius) of substituents (e.g. carbonate CO3²
-) (221, 303), and consequently, 

modify the properties of apatite (69, 73, 74, 221, 284, 304). Cell volume 

usually increases or decreases due to an expansion in a – axis or a 

contraction in c – axis, respectively (303). For example, in the case of A – 

type carbonate apatite, expansion of the unit cell occurs, while a contraction 

of the unit cell occurs with B – type carbonate apatite. This is because the 
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CO3 group is larger than the OH group and smaller than the PO4 group 

(303), which could explain the difference in size and shape between 

biological apatites and synthetic HAp. The average lattice parameters of 

bone, dentine, enamel, and synthetic HAp are presented in Table 2.11.  

Table 2.11 Unit cell parameters (average) of bone, dentine, enamel, and synthetic HAp 

 

Cell parameters Bone Dentine Enamel Synthetic HAp 

a – axis Å (±0.003) 9.41
a 9.42

a
 – 9.49

b 9.43
b
 – 9.44

a 9.41
b
 – 9.43

a 

c – axis Å (±0.003) 6.89
a 6.88

a
 – 6.89

b 6.88
a
 – 6.89

b 6.88
b
 – 6.89

a 

              (
a
) Values are adopted from references (155, 202, 305-308). 

              (
b
) Values are adopted from reference (303).   

 

Moreover, coupled substitutions may take place to maintain the charge 

neutrality (charge balance) and provide a geometric fit of the substituents 

within the crystal lattice (221, 309). Maintaining the charge balance means 

that every negative charge has to be balanced out by a positive charge, so 

the ionic compound has a net charge of zero. The charge balance is 

maintained either by a second substitution by an ion with a different charge, 

or by other vacancies in the crystal lattice (e.g. Ca2+ substituted by Na+ plus 

a vacancy in place of OH-) (221, 309). Therefore, unlike A – type 

substitution, B – type substitution requires to be coupled with other 

substitutions (e.g. Mg2+) to maintain the charge balance (221), which may 

suggests that biological apatites are principally B – type carbonate (301). 

However, due to the lack of complete structural analysis, the structure of 

biological apatites remains controversial (221). 

Synthetic A – and B – type carbonate apatites (298, 304, 310, 311) and a 

mixture of A – and B – type carbonate apatite (300, 312) can be prepared in 

the laboratory. A – type carbonate apatite can only be prepared by a solid – 
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state reaction at around 1000°C (310, 311), whereas B – type carbonate 

apatite can be prepared by a precipitation reaction (298, 304) at temperature 

between 50°C and 100°C (310, 311).  

2.6.2 Applications of calcium orthophosphates 

Calcium orthophosphate minerals have many biomedical and dental 

applications as well as other applications. Their chemical compositions, 

structures, and properties are vital in determining their behaviour in relation 

to different applications. The size and shape of calcium orthophosphate 

particles are also the key to their applications. Calcium orthophosphates 

applications are summarised as follows.   

2.6.2.1 Implant coating  

All calcium orthophosphates are used in low – load – bearing applications 

due to their poor mechanical properties, compared to bones and teeth (68, 

69). Therefore, coatings of calcium orthophosphates are commonly applied 

to metallic implants (49, 68, 69, 73, 74, 224) to alter their surface properties, 

and consequently, promote bone growth and improve their bioactivity and 

mechanical stability (313). Porous forms of calcium orthophosphates provide 

a good fixation of implants to tissues by a mechanical interlock mechanism, 

which allows bone to grow into their pores (68, 69). They are used as 

coatings (49, 68, 73) for hip joint prostheses (e.g. HAp coating (68, 233, 234, 

235)) and tooth substitutes (69, 73, 74). 

2.6.2.2 Tissue engineering 

Dense and porous calcium orthophosphates have different applications for 

supporting bone growth in orthopaedic, dental, and maxillofacial applications 

(49, 68, 69, 73, 74, 231). Calcium orthophosphates are used as artificial 

bone grafts for bone repair in the form of self – setting cements (49, 68, 69, 
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73). Monohydrate monocalcium phosphates (147-149), monetite, brushite 

(158-160), ACP (68, 158-160), and TCP (158-160, 190-192) are used as a 

component in calcium phosphate cements, while OCP (185-187),   biphasic 

calcium phosphate (190, 193-197), ACP (215, 216), and HAp (68, 231) are 

used as bone replacement materials or bone grafts. Porous calcium 

orthophosphates also provide a good fixation of bone grafts to tissues (68, 

69), and therefore, they are widely used as scaffolds for tissue engineering 

applications (49, 69, 73). Porous calcium orthophosphates are used to fill 

bone defects and voids due to their ability to promote bone growth (314). In 

addition, OCP is proposed as a precursor for biological apatites in natural 

and synthetic heart valves (180-182). 

2.6.2.3 Dental applications 

HAp and FAp are the most used calcium orthophosphates in dental 

applications (49). They are used in calcium phosphate cements (49, 68) and 

as coatings for dental implants (49, 68, 233-235). They can also be used as 

a component of dental restorative materials such as glass ionomer cements 

(236), dental biocomposites (237), and self – setting formulations (238). 

They are also used in some toothpaste products (37, 49, 68, 69, 73), such 

as BioRepair toothpaste, which uses HAp microparticles (39) to achieve 

better tooth remineralisation and the build – up of enamel tissue.  

Other calcium orthophosphates, including monohydrate monocalcium 

phosphates (69, 73, 74, 150), dicalcium phosphates (96, 151, 160-162), 

ACP (49), and β – TCP (69, 73, 74) are used as an additive in toothpaste 

products. Monetite and brushite are used in toothpastes as polishing agents 

(69, 151, 160) and anticaries (69, 151, 161, 162). Brushite (73, 74, 164) and 
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ACP (combined with casein phosphopeptides) (49) are used in calcium 

orthophosphate remineralisation systems. 

In addition, OCP (183) and TCP (199) can be used as implant coatings, 

while OCP (184) TTCP (203) (in combination with DCPD and DCPA (68, 

203)), and ACP (in combination with polymers) (218-220) are used as a 

component of biocomposites. TCP (200) and TTCP (207) are also used as a 

component of root canal sealers. Moreover, TCP (198) and TTCP (203-206) 

are used as maxillofacial bone grafts and self – setting calcium phosphate 

cements, respectively.   

2.6.2.4 Targeted drug delivery applications 

Calcium orthophosphates, such as HAp, have the potential to be used as a 

drug delivery system for pharmaceutical compounds to achieve therapeutic 

effects (68, 315-320). For example, porous HAp, as carriers for anticancer 

drugs and antibiotics, demonstrates sustained release profiles over 12 days 

(321) and 12 weeks (322), respectively. Calcium orthophosphates could also 

become effective carriers for growth factors, bioactive peptides, and various 

types of cells (e.g. bone cells) for tissue engineering purposes (68, 319, 323, 

324). This is due to its capability of producing small crystal size with a large 

percentage of atoms on the surface of the crystals, which provide a large 

specific surface area for the sorption of ions, proteins, and drugs (325, 326).  

2.6.2.5 Food industry applications 

Some calcium orthophosphates are widely used in food industry, and they 

are marked as additive E341 under the European classification of food 

additives (69, 73, 74). These include MCPM (73, 74, 151, 152), dicalcium 

phosphates (69, 73, 74, 151, 163), and β – TCP (69, 73, 74), which are used 

as nutrients and mineral supplements. 
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2.6.3 Calcium orthophosphate synthesis 

Calcium orthophosphates can be synthesised using various methods, which 

can be divided into solid – state reaction and wet methods (42, 69, 242, 

243). The most common methods include chemical precipitation (42, 69, 73, 

74, 248-251), hydrothermal (42, 69, 73, 74, 77, 252, 253, 327, 328), 

hydrolysis of other calcium orthophosphates (69, 73, 74), and sol – gel 

methods (42, 77, 251, 254, 255, 313). Other synthesis routs include 

mechanochemical (244-246) and electrochemical methods (247).  

The solid – state method, also known as the ceramic method, is the oldest 

and most traditional method for the synthesis of inorganic solids (e.g. 

apatites) (42, 329). It involves a slow solid – solid reaction of starting 

reactants, such as oxides, carbonates, or salts, which are mixed in 

stoichiometric ratios and thermally treated at elevated temperatures for long 

periods to initiate the reaction (42, 329). The reaction starts at the contact 

points between solid reactants, and their chemical reactivity is usually 

determined by their crystalline structure and particle size, as well as the 

presence of defects (42). The smaller the particle size, the lower the number 

of complete unit cells forming the crystal, and thus, shorter diffusion rout and 

higher level of reactivity (42). In addition, decomposition of reactants may 

decrease the particle size, which increases the surface area, and 

consequently, the chemical reactivity (329). Since solid – state methods 

involve elevated temperatures, they can produce very crystalline apatites, 

with particle size ranges between 25 nm and 50 nm (42), however, it is 

difficult for the reaction to proceed to completion, and it rarely results in a 

pure single – phase due to a continuous diffusion and reaction of 

constituents (42, 329). Synthetic crystalline HAp is an example of calcium 
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orthophosphate solids that can be prepared by the solid – state reaction of 

other calcium orthophosphates (e.g. MCPM, DCPA, DCPD, and OCP) with 

carbonate salts (e.g. CaO, Ca(OH)2, or CaCO3) (42, 69) at temperatures 

above 1200°C in an atmosphere of equal volumes of water and nitrogen (69, 

74, 201). Similarly, β – TCP can be prepared by the solid – state reaction of 

DCPA and CaO (73, 74). In addition, TTCP can only be prepared by the 

solid – state reaction of DCPA and CaCO3 above 1300°C in dry air or 

nitrogen (146, 201, 202). 

On the other hand, the wet method is carried out using procurers in aqueous 

solutions, and it depends on the chemical reactivity of its constituents, 

mainly, the diffusion and concentrations of chemical species (42). Compared 

to the solid – state method, the wet method provides higher reactivity, lower 

reaction temperatures, and lower reaction time, as well as producing higher 

– quality, more homogeneous, and higher – density products with smaller 

particle size (particle size > 50 nm) (42). It is a suitable method for the 

synthesis of apatite biomaterials with small particle size and carbonate 

content similar to that of biological apatites (42). Wet methods can produce 

materials with desired crystallinity, morphology, surface area, and particle 

size for specific applications (330). The properties of final material depend 

on the conditions of synthesis (73, 74, 248, 250, 331). 

The synthesis method as well as synthesis parameters (73, 74, 248, 250, 

331), including solution concentration, pH, temperature, reaction time (12, 

73, 74, 248), stirring technique (332), milling technique (333), and 

calcination/heat treatment (248, 334) are of great importance in determining 

the properties of calcium orthophosphates, which are discussed next. 
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2.6.3.1 Chemical precipitation method 

Chemical precipitation is a very important method, because it can be 

considered as an initial reaction in both hydrothermal and sol – gel methods. 

Chemical precipitation from aqueous solutions is a widely used method for 

the synthesis of calcium orthophosphates due to its versatile and economic 

advantages (248), as well as its capability of producing large amounts of 

powder (331). The method involves obtaining a wet precipitate through 

several cycles, including ultrasonic bathing, filtration, and drying (42). It was 

first used by Jarcho and co–worker in 1976 to synthesis HAp (335). The 

precipitation method is conducted at low temperatures, usually room 

temperature, using inexpensive equipment (336-338), and yet can produce 

high percentages of pure materials (337, 338) such as stoichiometric HAp 

(Ca:P ratio of 1.67) (336). However, the precipitation method is not well – 

defined and lack reproducibility of orthophosphates (339, 340). This is due to 

the lack of precise control over the synthesis parameters, such as pH, 

temperature, and Ca:P ratio of reagents, which can result in different 

properties such as morphology, crystallinity, and stoichiometry (42). 

Therefore, the precipitation method can be carried out in a controlled 

system, known as the controlled crystallisation method, to control the 

synthesis parameters (42). The latter is of significant importance to control 

the properties of final product, including composition, impurities, morphology, 

and particle size (42, 73, 74, 248, 250, 331). 

Several publications report the influence of synthesis parameters on final 

calcium orthophosphate product (42, 248-251, 341, 342). The chemical 

precipitation method usually involves the preparation of Ca2+ and HPO4
2- 

aqueous solutions by dissolving reagents in deionised water. The solutions 
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are mixed by a drop – wise addition technique under vigorous stirring at 

room temperature. pH of the mixture can be varied and usually adjusted up 

to pH 12 using NaOH or NH4OH (251, 252). The precipitation reaction is 

usually carried out at room temperature; however, the mixture can be 

thermally treated at low temperatures. Ageing of the mixture can be varied 

from hours to days. The wet precipitate is then washed, filtered, and dried at 

low temperatures ~ 80°C overnight. Heat treatment (calcination) of the 

obtained powder is usually carried out at high temperatures around 1000°C. 

A flow chart for obtaining HAp by the chemical precipitation method is shown 

in Figure 2.14. 

 

 

Figure 2.14 Flow chart for obtaining HAp by the chemical precipitation method. 
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The most common and used precipitation methods for the synthesis of 

calcium orthophosphates, particularly HAp, are Rathje’s method (248, 341, 

342, 251) and Hayek and Newesely’s method (249-251, 341, 342). Rathje’s 

method involves the reaction of calcium hydroxide (Ca(OH)2) and 

phosphoric acid (H3PO4), as shown by equation 2.9, while Hayek and 

Newesely’s method involves the reaction of calcium nitrate (Ca(NO3)2.4H2O) 

and ammonium hydrogen phosphate ((NH4)2HPO4), as shown by equation 

2.10. 

10Ca(OH)2 + 6H3PO4 → Ca10(PO4)6(OH)2 +18H2O ……………………….(2.9) 

      10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH 

                                      → Ca10(PO4)6(OH)2 + 20NH4NO3 + 6H2O …… (2.10) 

Based on Rathje’s method, the addition rate of reactants affects the 

stabilization and final pH value of suspension (341, 342). The addition rate 

also affects the size, shape, specific surface area, and purity of obtained 

HAp (341, 342). Monocrystalline and polycrystalline HAp are produced at 

temperatures < 60°C and > 60°C, respectively (341, 342). In the presence of 

C3H6O3, the precipitation reaction at room temperature, pH 10, ageing for 24 

hours, and calcination at 1100°C for 1 hour produces nanoparticles and 

homogeneous HAp (343, 344). The precipitation reaction at 90°C for 1 hour, 

pH 11 – 12, stirring for another hour, ageing at room temperature for 72 

hours, and drying at 110°C for 3 hours produces a single phase of non – 

stoichiometric HAp, with a Ca:P ratio < 1.67 (251).  The latter is also 

obtained after calcination up to 850°C for 4 to 6 hours. A homogeneous size 

of HAp clusters is obtained with an average size of 400 nm (251).  
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Furthermore, following the precipitation reaction of Ca(OH)2 and H3PO4 with 

pH > 10.5, ageing time between 2 and 48 hours, drying at 1100°C, and 

calcination at 1200°C for 3 hours, HAp with a high degree of purity and 

crystallinity is obtained (248). The high addition rate of reactants affects the 

pH of suspension, which in turn affects the dissociation of phosphate 

reactant, and therefore, the unavailability of phosphate (PO4
3-) leads to an 

incomplete precipitation of HAp (248). The latter can result in the formation 

of an apatite phase with other phases such as β – TCP. The high addition 

rate can also affect the stoichiometry of HAp, which may result in the 

formation of calcium deficient HAp (248). Therefore, a high addition rate and 

shorter ageing time lead to the formation of undesirable phases such as β – 

CP and CaO (248). In addition, increasing ageing time enhances the 

crystallinity of HAp and allows the crystal growth of HAp (248). However, 

crystallinity degree of about 90% can be obtained by calcination of powder at 

high temperatures around 1200°C (248).  

In addition, the precipitation reaction at temperatures of 20°C and 70°C, pH 

6, 7, 9 and 11, ageing for 20 hours, drying at 105°C, and calcination from 

1000°C to 1300°C for 1 hour produces nanocrystalline agglomerates (grain 

size of 200 – 250 nm) with an apatitic structure (331). The temperature and 

pH parameters are found to significantly affect the crystal size and 

morphology. Increasing temperature increases the crystallinity and particle 

size. Low temperatures result in a smaller crystal size and needle – like 

morphology, while higher temperatures result in a larger crystal size and 

rounded morphology. A needle – like morphology with particle size of ~ 50 – 

100 nm is obtained with pH 6 at 20°C, whereas a circular morphology with 

particle size of ~ 100 nm is obtained with pH 6 at 70°C. More rounded 
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crystal morphology can be obtained at higher temperatures. In addition, 

calcination of powders at 1000°C has a significant effect on phase 

composition and crystallinity. With pH 9 at 70°C, a single HAp phase is 

obtained, whereas with pH 6 at 70°C,  a mixture of HAp and β – TCP 

(biphasic calcium orthophosphate) is obtained. High pH values of pH 9 and 

11 result in the formation of a HAp phase, while a lower pH value of pH 6 

increases the stability of β – TCP phase. Pure HAp is produced with pH 11 

at 20°C and pH 9 at 70°C, while pure β – TCP is produced with pH 6 at 

20°C. Calcination of powders at 1200°C also has a significant effect on 

phase composition and crystallinity. Increasing calcination temperature 

improves crystallinity and increases the content of biphasic phase, grain 

size, and density. 

Other similar reactions involve the reaction of calcium hydroxide (Ca(OH)2) 

with calcium hydrogen phosphate (Ca(H2PO4)2.H2O) and diammonium 

hydrogen phosphate ((NH4)2.HPO4) (instead of H3PO4) (345). The 

precipitation reaction of Ca(OH)2 and Ca(H2PO4)2.H2O with unadjusted pH at 

room temperature results in the precipitation of HAp, whereas the 

precipitation reaction of Ca(OH)2 and (NH4)2.HPO4 with unadjusted pH at 

40°C enhances the reaction kinetics of HAp formation and improves the 

dissolution of Ca(OH)2. 

Based on Hayek and Newesely’s method, the precipitation reaction of 

calcium nitrate (Ca(NO3)2.4H2O), ammonium hydrogen phosphate 

((NH4)2HPO4), and NH4OH at 95°C for 1 hour, ageing for 14 days, and 

drying at 250°C for 3 hours produces a single phase of non – stoichiometric 

HAp, with a Ca:P ratio < 1.67 (251). The latter is obtained even after 
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calcination up to 850°C. A homogeneous size of HAp clusters is obtained 

with an average size of 500 nm. The grain size of HAp can be controlled by 

varying the precipitation time and temperature (346, 347). Stirring at room 

temperature for 24 hours is also essential to obtain grain size of < 100 nm 

(341, 348). In addition, the same precipitation reaction (250) with pH 10, 

stirring for 3 hours at 40°C, ageing for 6 days, and calcination at 1050°C for 

7 hours produces HAp with a high percentage of an amorphous phase. A 

well – crystallised HAp is obtained with a longer calcination period of 15 

hours. The precipitation reaction with pH 10, stirring for 9 hours at 40°C, 

ageing for 3 days, and calcination at 1050°C for 7 hours produces a mixture 

of HAp and TCP phases. However, a single HAp phase is produced with pH 

10, stirring for 3 hours, ageing for 5 days at room temperature, and 

calcination at 1050°C for 1 hour. On the other hand, the reaction with 

unadjusted pH 5 produces an amorphous calcium phosphate. In addition, 

the precipitation reaction with low (0.1:0.06 M) and high (1:0.6 M) solution 

concentrations (249), pH 11, at 100°C, and ageing for 24 hours produces 

powders with high and low densities, respectively. However, a mixture of 

HAp and tricalcium orthophosphate is obtained. Rod – like crystals with 

particle size < 100 nm are produced from both solution concentrations. 

However, a smaller average particle size is produced from high 

concentration solutions rather than low concentration solutions. Also, the 

mount of powder that is produced from low concentration solutions is less 

than that from high concentration solutions. Calcination of powders at 

1200°C for 1 hour improves their crystallinity and grain size distribution, 

particularly, those that are produced from low concentration solutions, while 
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less improvement of crystallinity is associated with powders that are 

produced from high concentration solutions.  

Moreover, in the presence of a synthetic human blood plasma at 

physiological pH and temperature (pH 7.4 and 37°C, respectively), the 

precipitation reaction of (Ca(NO3)2.4H2O) and ((NH4)2HPO4) (349, 350) 

produces a bone – like nanosized hydroxycarbonate apatite. This type of 

synthesis is known as the biomimetic process (42). Under controlled 

conditions, at temperatures of 25 – 37°C and 90°C, apatites with a crystal 

size in the range of adult human bone and enamel, respectively, can be 

obtained (42).  This could be due to uptake and incorporation of minor 

amounts of carbonate into the apatite structure during ageing of wet 

precipitate (42). In addition, Ca:P ratio of apatites can be increased by 

increasing the reaction time (42).  

A different approach of precipitation using different starting reagents at 

different temperatures is also reported (351, 352). The precipitation reaction 

of Ca(EDTA)2- (ethylene diamine tetra acetic) and HPO4
2- in the presence of 

urea (351, 352) produces homogeneous monetite as an initial phase, which 

transforms to HAp between 125°C and 160°C (341, 342). The hydrolysis of 

the urea allows the incorporation of CO3
2- into the HAp structure, and thus, 

the formation of carbonate HAp (341).  

Calcium orthophosphate products with different properties can, therefore, be 

obtained by the chemical precipitation method, using different starting 

reagents and different synthesis conditions, including addition rate, stirring, 

pH, temperature, ageing time, and calcination, which are essential 

parameters in producing the desired product and properties. 
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2.6.3.2 Sol – gel method 

The sol – gel chemical process is based on the hydrolysis and condensation 

or oxidation of precursors (42, 254). The term sol – gel is based on the 

increase in differential viscosity at a given instant, which indicates the gel 

formation (42). The sol – gel of apatites involves the preparation of aqueous 

solutions from calcium and phosphorus precursors (42, 341, 342). This 

method requires the study of synthesis parameters such as pH, 

concentration, and oxidation states (42). The sol – gel method involves 

several physical and chemical processes such as hydrolysis, gelation, 

drying, dehydration, and densification/calcination (42, 77, 254, 341, 342). 

These processes may or may not be adopted depending on the desired 

product (42, 255). The sol – gel method has many advantages, including the 

use of low temperatures, molecular level mixing of calcium and phosphors, 

homogeneity and purity of products (42, 341, 342, 353, 354), and good 

control of size and morphology (42, 353, 354). In addition, it can be used 

easily to produce thin films and coatings on implants (42, 355, 356), which 

improve the stability of interface between an implant and bone tissues (357). 

On the other hand, the main disadvantage of the sol – gel method is the 

possible hydrolysis of phosphates as well as the high cost of raw materials, 

which is overcome by a simpler route using calcium nitrate tetrahydrate 

(Ca(NO3)2.4H2O) and phosphorous pentoxide (P2O5) to synthesise nano 

HAp (42).  

The sol – gel reaction starts with mixing of precursors in solutions, during 

which hydrolysis of precursors takes place. The reaction rate can be 

increased in the presence of a catalyst such as an acid (42). The gelification 

stage involves continuous stirring of the mixture until the formation of a gel 
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containing water and alcohol. The latter are removed during the drying 

stage, which is usually carried out at temperatures < 200°C (42, 77). The 

removal of organic residues (e.g. CaO and CaO3) and chemically bonded 

water usually takes place during the dehydration stage at temperatures 

between 400 – 800°C (42, 77, 251, 254). The latter produces a material in a 

glass or microcrystalline form (42). The densification or calcination stage is 

carried out at high temperatures around 1000°C in order to produce a dense 

material (42) and improve its crystallinity (42, 254). A flow chart for obtaining 

HAp by the sol – gel method is shown in Figure 2.15. 

The influence of synthesis parameters on the final calcium orthophosphate 

product is widely reported (77, 251, 254, 255, 341, 342). The most widely 

used sol – gel reactions for the synthesis of calcium orthophosphates, 

particularly HAp, are those involving the reaction of calcium nitrate 

tetrahydrate (Ca(NO3)2.4H2O) with triethyl phosphite (C2H5O)3P) (77, 251, 

358), diammonium hydrogen phosphate ((NH4)2HPO4) (255), phosphorous 

pentoxide (P2O5) (254), phenyldichlorophosphite (C6H5PCl2) (359, 360), or 

phosphonoacetic acid (HOOCCH2PO(OH)2) (361, 362), as well as the 

reaction of calcium acetate with phosphoric acid (H3PO4), phosphorous 

pentoxide (P2O5) (363, 364), or triethyl phosphite (363-365). Other routes 

involve the reaction of calcium diethoxide (Ca(OEt)2) and triethyl phosphate 

(PO(OEt)3) (366, 367).   
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Figure 2.15 Flow chart for obtaining HAp by the sol – gel method. 
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required to eliminate such undesirable phases, and consequently, HAp 

clusters can be obtained with homogenous particle size of 300 nm (251). 

The formation of undesirable phases, such CaCO3, could be due to the 

evaporation of unreacted triethyl phosphite in the sol or gel, whereas the 

formation of other phases, such as CaO and β – TCP, is due to the 

decomposition of HAp during calcination at 600 – 800°C (77). Recently 

developed sol – gel method (358), using calcium nitrate (Ca(NO3)2.4H2O) 

and triethyl phosphite (C2H5O)3P), involves the hydrolysis of phosphite 

reagent by water for 24 hours, followed by the addition of calcium nitrate 

solution. At temperatures between 300°C and 400°C, a nanosized 

hydroxycarbonate apatite with low crystallinity and grain diameter of 20 – 50 

nm is obtained (341). 

On the other hand, the sol – gel reaction of calcium nitrate tetrahydrate (Ca 

(NO3)2.4H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) (255) at 

75°C, pH 11, stirring for 12 hours, ageing for 24 hours, and drying at 85°C 

overnight produces a single phase of amorphous HAp with a platelet – like 

morphology and particle size of 35 – 65 nm. The sol – gel reaction of 

calcium nitrate tetrahydrate (Ca (NO3)2.4H2O) and phosphorous pentoxide 

(P2O5) (254) with a slow addition rate of reactants, stirring for 10 to 15 hours, 

gel drying and sintering at 400 – 750°C for 8 hours produces HAp and 

additional phases. However, a single – phase nano HAp is obtained with 

enhanced crystallinity after sintering at 750°C. Powders that are precipitated 

from calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) and 

phenyldichlorophosphite (C6H5PCl2) and calcined at 400°C produces poorly 

crystallised HAp with low purity, but can be transformed into a pure and well 

– crystallised HAp at 900°C (359, 360). The sol – gel reaction of calcium 
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nitrate tetrahydrate (Ca(NO3)2.4H2O) and phosphonoacetic acid 

(HOOCCH2PO(OH)2) in aqueous solutions produces a pure HAp at 700°C, 

but its crystallinity can be enhanced at temperatures up to 1100°C (361, 

362). 

Therefore, increasing temperature and reaction time can result in the crystal 

growth of HAp (341), decomposition of HA, and formation of undesirable 

phases, which may greatly depend on the particle characteristics and 

synthesis route (79, 80). In addition, ageing time of > 24 hours during the 

precipitation reaction of calcium diethoxide (Ca(OEt)2) and triethyl phosphate 

(PO(OEt)3) at temperatures > 600°C is essential to stabilize the solution 

system, obtain a monophasic HAp (363, 364), and avoid the formation of 

undesirable phases such as CaO (365). 

Moreover, HAp coatings can be produced by the sol – gel reaction of 

calcium acetate with different precursors, including phosphoric acid (H3PO4), 

phosphorous pentoxide (P2O5), or triethyl phosphite, at temperatures > 

600°C (366, 367). The best result, such as wetting characteristic, is obtained 

using triethyl phosphite (366, 367). However, The reaction of calcium 

acetate (Ca(C2H3O2)2) and triethyl phosphate at 775°C requires further acid 

treatment to eliminate CaO and  form a pure HA phase (368). 

Therefore, different forms of HAp, such as dense forms and thin films, can 

be obtained by the sol – gel method using different starting reactants and 

different synthesis conditions, including pH, temperature, reaction time, 

aging time, and calcination temperature and time. 
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2.6.3.3 Hydrothermal method 

The term hydrothermal was first introduced in the 19th century by the British 

geologist, Sir Rodrick Murchison, to describe the reaction of water at 

elevated temperature and pressure, which simulates the natural 

hydrothermal phenomena (327, 328). However, the method was popularized 

in the 20th century during 1940s by material scientists for the production of a 

wide variety of minerals such as single crystals of quartz and zeolites (327). 

It became commercially important in several branches of science and 

technology for the production of inorganic compounds such as ceramic 

powders (327, 328). Several hydrothermal – related techniques, such as 

hydrothermal synthesis, hydrothermal growth, hydrothermal treatment, 

hydrothermal sintering, and hydrothermal decomposition were developed in 

many interdisciplinary fields of science, including materials, engineering, 

chemistry, and biology (327). The success of the hydrothermal method is 

credited to the advanced development of hydrothermal apparatuses and the 

theories of hydrothermal chemistry and process modelling (327, 328). 

Several definitions of the hydrothermal method are reported. It is usually 

defined as the process that refers to any single or heterogeneous reactions 

in the presence of aqueous solvents at elevated temperature (> 25°C) and 

pressure (> 100 KPa) that crystallise materials from solutions (327, 328, 

370). Morey and Niggli define it as “…in the hydrothermal method the 

components are subjected to the action of water, at temperatures generally 

near though often considerably above the critical temperature of water (~ 

370°C) in closed bombs, and therefore, under the corresponding high 

pressures developed by such solutions.” (371). It is also defined by Rabenau 

as the heterogeneous reactions in aqueous media above 100°C and 1 bar 
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(372). Hydrothermal temperatures and pressures extend over 1000°C and 

500 MPa, respectively (373), except those intended for research studies and 

commercial productions, where temperatures and pressures are usually < 

350°C and < 50 MPa, respectively (12, 328). However, researchers also 

used the hydrothermal term to describe the growth from aqueous solutions 

at ambient conditions (328, 374).   

Despite its different definitions, the hydrothermal method can be used for the 

synthesis of new phases, stabilize new complexes, crystal growth of many 

inorganic compounds, and preparation of micro – crystallites with well – 

defined size and morphology for specific applications (327). It offers many 

advantages over other methods, particularly those for the synthesis of 

ceramic materials such as HAp. It can produce different forms of ceramics, 

such as single crystals, powders, fibres, and coatings (328). Time and 

energy – consuming processing steps, such as calcination, are either not 

required or minimized (77, 328). In addition, it offers an improved control of 

size and morphology of crystallites and degree of agglomeration (327, 328).  

The first attempt to synthesise hydroxyapatite (HAp) was carried out by 

Morey and Ingerson in 1937 (327). Hydrothermal synthesis of HAp offers a 

more controlled morphology, homogeneity in size, and high purity in 

composition, compared to other methods (253, 327, 328, 375). It can 

produce HAp particles with different particle size ranging from a couple of 

nanometres to tens of microns, with a high degree of crystallinity and a Ca:P 

ratio close to the stoichiometric value of 1.67 (12, 327, 328). However, 

obtaining a Ca:P ratio of 1.67 depends on the synthesis route and its 

parameters (77, 252, 376). 
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The hydrothermal method involves the preparation of aqueous solutions by 

dissolving reagents in deionised water, which are mixed by a drop – wise 

addition technique under vigorous stirring at room temperature. pH of the 

mixture can be adjusted up to 12 using NaOH or NH4OH (251, 252). The 

mixture is then transferred to a reactor to be thermally treated at 

temperatures between 50°C and 350°C for a period of up to 72 hours. The 

precipitate is washed by deionised water through centrifugal and ultrasonic 

bath cycles, and it is dried at low temperatures ~ 80°C overnight. A flow 

chart for obtaining HAp by the hydrothermal method is shown in Figure 2.16. 

 

 

Figure 2.16 Flow chart for obtaining HAp by the hydrothermal method. 
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Several publications report the synthesis of HAp using different starting 

reactants and different synthesis parameters (12, 77, 341, 342, 252, 253, 

369, 377, 378). The most widely used hydrothermal reactions for the 

synthesis of HAp involve the reaction of calcium nitrate tetrahydrate 

(Ca(NO3)2.4H2O) (12, 77, 341, 377, 379), calcium carbonate (CaCO3) (369), 

or calcium hydroxide (Ca(OH)2) (253) with diammonium hydrogen 

phosphate ((NH4)2HPO4). Other routes involve the hydrothermal treatment of 

calcium orthophosphates, such as (CaHPO4).H2O, with Ca(OH2) and lactic 

acid (CH3CH(OH)COOH) (12), or cetyl trimethyl ammonium bromide (CTAB) 

(252, 380), or the hydrothermal treatment of calcium pyrophosphate 

(Ca2P2O7) with calcium oxide (CaO) (381, 382). 

The hydrothermal reaction of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) 

and ammonium hydrogen phosphate ((NH4)2HPO4) with different pH values 

in the range  pH 5 – 12, at ~ 200°C for 24 – 72 hours, and drying at ~ 50°C  

for 4 hours produces crystalline HAp with different particle size and 

morphology (12, 377). With pH 5 and 200°C for 24 hours, a single phase of 

HAp is produced, while longer reaction time of > 24 hours produces HAp and 

monetite phases. Rod – like particles with aspect ratios (length/diameter) in 

the range of 100 – 600 nm and 10 – 60 nm are produced with reaction times 

of 24 hours and 48 hours, respectively. On the other hand, higher pH values 

of pH 10 – 12 result in a smaller particle size with an equiaxed or spherical 

morphology. Another reaction with pH 11, at 200°C for 24 hours, and drying 

at ~ 50°C for 4 hours (77) produces rod – like crystalline HAp with lengths of 

≤ 300 nm and aspect ratios (length/width) in the range 1.8 – 7.8. A similar 

reaction with pH 10 – 12 at temperature and pressure of 140°C and 0.3 

MPa, respectively, for 2 hours (379) produces poorly crystallised apatite with 
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a rod – like morphology, crystal size of 23 x 91 nm2, and Ca:P ratio between 

1.5 and 1.67. Calcination of powders at 1100°C results in a biphasic phase 

(HAp and β – TCP). Stoichiometric HAp (Ca:P ratio of 1.67) with similar 

dimensions and morphology (rod – like) can be obtained hydrothermally at 

temperature and pressure of 200°C and 2 MPa, respectively, for 10 hours 

(341). 

The hydrothermal reaction of calcium carbonate (CaCO3) (of marine algae) 

and diammonium hydrogen phosphate ((NH4)2HPO4) (369) with pH 8.5 – 9, 

at 200°C for 48 hours, and drying at 80°C for 30 hours produces phases 

other than HAp, including OCP and TCP. However, in the presence of NH4F 

aqueous solution under the same conditions, a single phase of non – 

stoichiometric CHAp can be obtained. 

The hydrothermal reaction of calcium hydroxide (Ca(OH)2) and 

(CaHPO4.2H2O) (253) with pH 6, 9 (using CH3COOH), and 14 (using KOH), 

at 140°C for 24 hours, and drying at 60 – 100°C for 2 hours produces pure 

HAp powders, except those produced with pH 6, which is accompanied by a 

secondary phase of monetite. However, powders that are obtained from 

solutions with pH 6 and 9 have better crystallinity than those with pH 14. A 

whisker morphology with aspect ratios (diameter:length) of 2 µm:20 µm and 

100 nm:2 µm is obtained with pH 6 and 9, respectively. On the other hand, a 

distinct morphology with an average particle size of 150 nm is obtained with 

pH 14. In addition, the same reaction with pH 9 at low temperatures of < 

120°C results in the formation of HAp and monetite phases. However, a pure 

HAp phase with a needle – like morphology and a median diameter and 
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length of 40 nm and 600 nm, respectively, is obtained at > 120°C for 24 

hours.  

Moreover, the hydrothermal reaction of calcium orthophosphates, such as 

(CaHPO4).H2O, with NaOH and cetyl trimethyl ammonium bromide (CTAB) 

(252, 380) (CTAB, as a cationic surfactant (42)) at 150°C for 2 hours 

produces a single phase of HAp. The hydrothermally treatment of single 

crystals of DCPD in a beaker containing water, with pH 7.5 (using NH4OH), 

at 220°C for 3 hours, and drying at room temperature (252) produces 

whisker particles with an average size of 4 x 45 µm. However, the same 

crystals in an empty glass beaker surrounded by water under the same 

conditions (252) produces hexagonal particles with an average size of 25 

µm. The physicochemical process involved can be explained by the reaction 

of DCPD (CaHPO4.2H2O) with OH- ions produced by the evaporation of 

water (H+ and OH-), which leads to the formation of HAp. The reaction 

reactivity increases with increasing OH- ions due to the increase in 

temperature (383). The incorporation of H2O into HAp structure is not 

observed with HAp obtained from DCPD in the absence of water, which 

results in a higher crystallinity. Also, the addition of NH4OH affects the 

growth rate of HAp crystals by increasing the reaction rate significantly 

(382). In addition, the hydrothermal reaction of calcium pyrophosphate 

Ca2P2O7 with calcium oxide CaO produces a single phase of HAp, with a 

stoichiometric Ca:P ratio of 1.67 (381). 
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2.6.3.4 Synthesis methods used in this work 

The wet method (chemical precipitation and hydrothermal methods) was 

used in the present investigation because it provides high reactivity, low 

reaction temperatures, and low reaction time, as well as it produces high – 

quality, homogeneous, and high – density products with small particle size 

(particle size > 50 nm) (42). It is a suitable method for the synthesis of 

apatite biomaterials with small particle size and carbonate content similar to 

that of biological apatites (42). Wet methods can produce materials with 

desired crystallinity, morphology, surface area, and particle size for specific 

applications (330). 

In particular, the chemical precipitation method was used due to its versatile 

and economic advantages (248), as well as its capability of producing large 

amounts of powder (331). The precipitation method is conducted at low 

temperatures, usually room temperature, using inexpensive equipment (336-

338), and yet can produce high percentages of pure materials (337, 338) 

such as stoichiometric HAp (Ca:P ratio of 1.67) (336). The properties of final 

product, including composition, impurities, morphology, and particle size (42, 

73, 74, 248, 250, 331) can be controlled by controlling the synthesis 

parameters using a controlled system (controlled crystallisation method) 

(42). 

On the other hand, the hydrothermal method was used because it offers a 

more controlled morphology, homogeneity in size, and high purity in 

composition, compared to other methods (253, 327, 328, 375). It can 

produce HAp particles with different particle size ranging from a couple of 

nanometres to tens of microns, with a high degree of crystallinity and a Ca:P 

ratio close to the stoichiometric value of 1.67 (12, 327, 328).   
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2.7 Doping of calcium orthophosphates 

Doping of calcium orthophosphates with chemical elements, particularly 

through ion substitution, is an interesting and potential approach to produce 

materials with required and improved properties. Several metal ions, such as 

magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), and 

silver (Ag) are incorporated successfully into the structure of calcium 

orthophosphates to improve their mechanical and biological properties (384). 

Doping of calcium orthophosphates, particularly HAp, is widely investigated 

for many biomedical and dental applications. For example, FAp exhibits 

excellent properties, and therefore, it is the most used apatite in dental 

applications (49), including calcium phosphate cements (49, 68), toothpastes 

(49, 68, 69, 73), and coatings for dental implants (49, 68, 233-235). 

Aluminium doped calcium phosphate cements are also used in dentistry, as 

non – resorbable fillers (385). Rare earth doped HAp exhibits excellent 

luminescent properties, and thus, it can be used as a biological fluorescent 

probe (386). In addition, europium (Eu3+) doped apatites are reported as 

potential orthopaedic medical materials and drug carriers (386). Therefore, 

the incorporation of RE (Er3+), Al3+, and F- into the structure of calcium 

orthophosphates could offer optimum properties, particularly, for medical 

and dental applications. 
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2.7.1 Rare earths (RE)  

Rare earths consist of 17 elements, fifteen of which are the lanthanides 

(from lanthanum (Ce) to lutetium (Lu)), and the other two are scandium (Sc) 

and yttrium (Y). Rare earths commonly share chemical properties due to the 

similarity in their outer electronic configurations ((3d 4s)3 for Sc, (4d 5s)3 for 

Y, and (5d 6s)3 for La and trivalent lanthanides), which dominate their 

chemical interactions (387, 388). However, lanthanides (lanthanum (La) to 

lutetium (Lu)) are also characterised by the gradual filling of the 4f shell 

(from N = 0 (La) to N = 14 (Lu) in their electronic configurations 4fN5s25p6) 

(387-389). Electrons in the 4f shell give the lanthanides their character (387, 

388, 390) as well as additional properties, such as having magnetic 

structures, that scandium, yttrium, and lanthanum lack (387). Therefore, 

scandium, yttrium, and lanthanum are considered as a prototype of rare 

earths due to the absence of 4f electrons (387, 388). These 4f electrons are 

shielded and localized by the outer 5p, 5s shells (387-390), and therefore, 

they do not participate in the constant electric field conductivity. However, 

they participate in the optical conductivity alongside the 5d and 5s electrons 

(390).   

Rare earths (RE) are classified into light RE (Sc, La, Ce, Pr, Nd, Pm, Sm, 

Eu, and Gd) and heavy RE (Y, Tb, Dy, Ho, Er, Tm, Yb, and Lu). Rare earths 

or lanthanides are commonly in the form of trivalent ions (Ln3+), except for 

cerium, which exhibits a +4 – oxidation state in solutions (387). Rare earth 

ions (RE3+) possess optical properties that have potential photonic 

applications in various fields of science and technology (387, 389, 391, 392). 

The incorporation of RE into the structure of calcium orthophosphates, 

particularly apatites, gives them luminescence properties that are of great 
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utility in laser industries (392). Optical properties of trivalent rare earth ions 

(RE3+) depend primarily on their internal f – f electronic transitions and other 

parameters such as transition cross sections and radiative lifetime. 

2.7.1.1 Internal f – f electronic transitions  

Electronic transitions of rare earths usually occur within the 4f shell (389, 

393). Therefore, their optical properties are generally due to the intra – f – 

shell absorptions and emissions by the optical active electrons in the 4f shell 

(389, 393). The character of the 4f electrons is the most interesting property 

of their electronic structure (387-390). Trivalent rare earth ions exhibit very 

narrow transition lines in the visible spectrum (389). They are characterised 

by the sharpness of many absorption and emission spectral lines (389, 390, 

393), which are as narrow as the spectra of free atoms (388, 389). The 

atomic – like behaviour of their spectra is due to their electronic 

configurations (388, 389). 

Most of absorption lines that are due to parity – forbidden f – f electronic 

transitions (388, 393) result in small absorption cross – sections and 

inefficient direct optical excitation (393). However, indirect excitation can 

optimise their emission in the presence of organic (394) and inorganic (391) 

sensitisers. 

The absorption of an atom or ion can be determined simply by measuring 

the decrease in optical intensity of incident beam as a function of wavelength 

(λ). In linear optics, according to Lambert – Beers law, the absorption 

coefficient (α) for a sample of thickness (L) is given by (395): 

I(λ) = I0(λ) e
(- α(λ)L) …..(2.11), 
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where (I) is the measured intensity in an optical path length (L), and (I0) is 

the intensity of incident beam. 

The absorption coefficient (α) is usually measured in cm−1. The transmission 

and absorbance (optical density) (A(λ)) of an atom or ion can be determined 

by the transmission coefficient (T(λ)) (395): 

T(λ) = 
I(λ)

I0(λ)

 …..(2.12) 

A(λ) = - log (T(λ))  or  T(λ) = 10- A(λ) …..(2.13)  

2.7.1.2 Transition cross sections 

Light absorption and emission can be quantified by cross sections of a 

transition between two states (e.g. 2 and 1) with energy E2 – E1. Cross 

sections describe the ability of an atom or ion to absorb or emit light. 

Absorption (σ12) and emission (σ21) cross sections are proportionality 

constants between absorbed (Pabs)/emitted (Pem) power and incident light 

intensity (I) at a given frequency (396): 

Pabs = I σ12      and      Pem = I σ21 ….. (2.14), 

where (I) is the intensity of light incident upon the ion, (σ12) and (σ21) are the 

absorption and emission cross sections, respectively. Therefore, absorption 

and emission increase with decreasing the area, over which light is focused. 

The absorption bands of RE ions (in solutions) in the visible region are 

schematically shown in Figure 2.17. Absorption cross sections describe the 

ability of an atom or ion to absorb light, and it can be determined by equation 

2.15 (395): 

σ(λ) =
α(λ)

N
 ….. (2.15), 

where (N) is the density of absorbing centres (cm-3). 
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The amount of power (P(λ)) absorbed by an atom or ion at wavelength (λ) is 

given by (395): 

P(λ) = 
σ(λ)

I(λ)

 ….. (2.16), 

where (I) is the intensity of incident beam in Watt cm-2, while the dimension 

of (σ) is that of an area. The relation between absorption and emission cross 

sections is given by (396): 

σ21(ν) = σ12(ν) e(ǫ - hν) / kT ….. (2.17), 

where (ǫ) is the mean transition energy between two manifolds, (k) is 

Boltzmann’s constant, and (hv) is the energy of a photon at a given 

frequency (v) and temperature (T). 

2.7.1.3 Lifetime (Decay time) 

Lifetime or decay time is the time, which an excited electron takes from an 

upper energy level to a lower one. Excited electrons can decay to lower 

energy levels either through radiative or non – radiative decay. Excited state 

lifetime is given by (396): 

1

T
 = (

1

Tr
 )  + (

1

Tnr

) ….. (2.18), 

where (T) is the total lifetime, (Tr) is the radiative lifetime, and (Tnr) is the non 

– radiative lifetime. 

Radiative lifetimes in rare earths are usually long (on the microsecond or 

millisecond order) (397) due to the parity – forbidden f – f electronic 

transitions (388, 393, 396). On the other hand, non – radiative transition 

probability is linked to the number of phonons required to bridge the energy 

gap as well being a temperature dependant. 
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Therefore, non – radiative lifetime can be given by equation 2.19 (396): 

(
1

Tnr

) m.T  = (
1

Tnr

) m.0 [1
-e(-hw/KT)]-m ….. (2.19), 

where (1/Tnr)m,0 is the transition rate at zero temperature, which decreases 

exponentially with the number of phonons required to bridge the energy gap. 

 

 

Figure 2.17 Schematic showing the absorption bands of rare earth ions (in solutions) in the 

visible region (with no absorption for ytterbium) (398). 

 

Calcium phosphate minerals, particularly apatites, are the main host for RE 

elements in geological environments (399, 400) due to their high affinity to 

RE elements and many other metals (401).  

The incorporation of rare earth elements into the structure of calcium 

orthophosphates results in materials with electronoptical (399), 

luminescence (392, 402, 403), and phosphorous (403) properties, which 

have potential technological, photonic, and medical applications (392, 400, 

402-405). Rare earths are used in technological and photonic fields, as 

phosphors and magnetic materials, catalysts, and optical glasses (404, 406, 

407). They can also be used in medical, physiological, and biochemical 

fields, as contrast mediums, for magnetic resonance imaging (404, 408), 

restriction enzymes, biocatalysts (404), and fuel cells (406, 407). The 
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microstructure and optical properties of rare earth – substituted apatite can 

be controlled by varying heat treatment/annealing temperatures (403, 408). 

Heat treatments are also required for the diffusion of rare earths into the 

structure of apatites (408) and the formation of well – crystallised materials 

(403, 409, 410), however, heat treatments, particularly at high temperatures, 

result in the formation of large size apatite particles (408) or large size 

clusters (403) and may increase the concentration of rare earths (404). 

Trivalent rare earth ions are commonly incorporated into the structure of 

apatites (e.g. HAp, FAp, ClAp) at the calcium structural sites (Ca1 and Ca2) 

(399-401, 404, 408, 411). The uptake of rare earths by apatites is not 

uniform throughout the 4f transition metal series (399-401, 411). The highest 

uptake is in the Nd – Gd range for natural apatite and near Nd for synthetic 

FAp (412, 413), and it is lowest for Lu (399, 411). The substitution behaviour 

results in a monotonic decrease in the ratio of RE – Ca2 to RE – Ca1 

through the 4f transition metal series (399, 400, 411). Generally, light REs 

have a strong preference for Ca2 sites (399), whereas heavy REs are 

readily accommodated in Ca1 sites (400). This may be due to the 

incompatibility between trivalent heavy RE and the stereochemical 

environment of Ca2 sites rather than an increasing preference for Ca1 sites 

(400). On the other hand, there is some control by a substitution mechanism 

on the uptake and site preference of light RE (399). The substitution 

behaviour is probably controlled by charge compensation (equalization of 

Ca1 and Ca2 bond valences) and spatial accommodation of substituents 

(399, 400, 411). The apatite anion (OH, F, Cl) can also contribute in the 

selectivity of RE due to its influence on the stereochemical environment and 

effective size of Ca2 sites (399, 411). Therefore, the incorporation of RE into 
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the structure of apatites (HAp, FAp, and ClAp) can be primarily associated 

with charge compensation and spatial accommodation of substituents (399, 

4011). The substitution of RE into HAp and FAp is charge compensated by 

(Si) and (Na and Si), respectively, with a strong and moderate preference of 

La for Ca2 sites, respectively, and significant RE uptake. On the other hand, 

the substitution of RE into CIAp is charge compensated by (Na), with a weak 

preference of La for Ca1 sites and weak RE uptake. Therefore, the 

incorporation of RE into the structure of apatites requires coupled 

substitutions to maintain the charge balance (399, 401, 411), which can be 

demonstrated by those dominate natural and synthetic apatites (412, 414, 

415) as follows: 

RE3+ + Si4+ = Ca2+ + P5+ → Ca10-6xRE6x(P1-xSixO4)6X2 ….. (2.20) 

RE3+ + Na+ = 2Ca2+ → Ca10-2yNayREy(PO4)6X2 ………….. (2.21) 

Similarly, the proposed substitution in synthetic apatites with Er3+, Al3+, and 

F- may follow these coupled substitutions as follows: 

Er3+  +  Al3+ = 3Ca2+ → Ca10-3yAlyRE2y(PO4)6X2 ………………….. (2.22),  

   Er3+  +  2Al3+ = 2Ca2+  + P5+ → Ca10-2yAlyREy(P1-xAlxO4)6X2 ….. (2.23), 

2Er3+  +  Al3+ = 2Ca2+  + P5+ → Ca10-2yAlyREy(P1-xErxO4)6X2 ……. (2.24), 

where (X) is the anion (OH-) in HAp or (F-) in FAp. 

The incorporation of fluoride (F-) along with RE into the HAp structure may 

be of great importance, because the uptake of RE by HAp is about 75% of 

that for FAp (400). The incorporation of RE into the structure of calcium 

phosphates is also reported to be coupled with CO3
2- substitution for OH- 
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and PO4
3-, which results in RE – carbonate apatite (e.g. RE – HCAp) (405, 

416). 

The incorporation of light rare earth ions (La3+, Ce3+, Pr3+, Nd3+, and Sm3+) 

(405) and heavy rare earth ions (Y3+, Gd3+, Dy3+, Er3+, and Yb3+) (416) into 

the apatite structure can be achieved by the precipitation method using rare 

earth nitrates (RE(NO3)3.nH2O) (405, 416). Rare earth nitrate solutions are 

added to and in place of a portion of Ca(OH)2, to which H3PO4 solution is 

added. The reaction is carried out at pH 9.5 (using NH4OH), stirring at room 

temperature for 1 hour, and ageing at 100°C for 48 hours. The precipitates 

are then washed, filtered, and dried at 70°C for 16 hours. The incorporation 

of RE results in the lengthening of short rod – like HAp particles and improve 

their crystallinity, which is also followed by the shortening of particle length 

and the reduction in crystallinity (405, 416). These RE – HAp powders are 

cation – deficient carbonate apatite to maintain the charge balance. They 

contain CO3
 groups instead of OH and PO4 groups, which indicates A – and 

B – type RE – HCAp (405, 416). 

Single crystals of RE – substituted apatites (HAp, FAp, and ClAp) can be 

grown by the hydrothermal method (399, 400, 411). The incorporation is 

coupled with Si substitution via SiO2. Single crystals of RE – substituted HAp 

are grown from volatile – rich melts in a reaction vessel. Calcium RE silicate 

(Ca4RE6(SiO4)6O) is prepared using CaCO3, RE2O3, and SiO2, which are 

decarbonated in a platinum dish at 900°C and mixed with a commercial 

synthetic HAp. Also, single crystals of RE – substituted FAp (La, Nd, Gd, Dy 

– FAp; CaNaRE(PSiO4)F) and double RE – substituted FAp (La.Gd – FAp, 

Ce.Dy – FAp, Pr.Er – FAp, and Eu.Lu – FAp) are grown from a 
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stoichiometric mixture of tribasic calcium phosphate and synthetic HAp, 

RE2O3, CaF2, and amorphous SiO2 under hydrothermal conditions at 900°C 

and 0.17 GPa (400). Similarly, single crystals of RE – substituted ClAp 

(Ca4RE6(SiO4)6Cl2) are hydrothermally grown from a mixture of CaCO3, 

RE2O3, SiO2, and CaCl2 (411). In addition, the incorporation of RE (Eu3+, 

Gd3+, and Yb3+) into the structure of HAp can be achieved by the reaction of 

commercial HAp in a RE – Cl3 aqueous solution at 37°C for 72 hours (404). 

HAp is filtered from a RE – Cl3 solution, dried, and sintered in air at 1100°C 

for 1 hour. The formation of Eu3+ doped HAp can also be obtained from 

solutions of ammonium dihydrogen phosphate ((NH4)2HPO4), calcium nitrate 

(Ca (NO3)2.4H2O), and europium nitrate (Eu(NO3)3.6H2O) (386).  

Rare earth elements can be incorporated into the structure of calcium 

orthophosphates via various rare earth compounds, including nitrates and 

oxides of rare earths. The incorporation of rare earths via nitrates can be 

achieved by the wet chemical methods (405, 416). On the other hand, rare 

earth oxides are insoluble in H2O, but they are soluble in acid solutions (268) 

(e.g. HNO3, HCl and H2SO4) (oxides of Yb3+ and Ce3+ do not dissolve 

completely (405, 416)). Therefore, their incorporation into the structure of 

calcium orthophosphates can be achieved at elevated temperatures by the 

solid – state (42) and hydrothermal methods (399, 400, 411). At high 

temperatures, some oxides lose oxygen, with the creation of anion 

vacancies and associated reduction 2O2− → O2 + 4e−, particularly in a 

reduced atmosphere. These free electrons form a mixed valence state with 

transition metal cations in the structure, which usually results in 

semiconducting or metallic materials (329). 
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Rare earth oxides have various applications, including electronic, optical, 

and glass applications, as well as medical applications (387, 417, 418). For 

example, Er2O3 and Yb2O3 are added as network modifiers to calcium 

aluminosilicate glasses, which replace Al2O3 and decrease their elastic 

modulus (417), whereas Y2O3 is used as a bio – inert substrate in 

orthopaedic implants (418). 

Among rare earth elements of the lanthanide series that of interest to our 

research investigation is erbium and its compounds (erbium nitrate 

tetrahydrate (Er(NO3)3.4H2O) and erbium oxide (Er2O3)). Erbium is found in 

nature in many minerals. It is soft and malleable metal with a shiny silvery 

metallic colour. Its properties depend partially on the impurities present 

(419). It is stable in air, and it does not oxidize as rapidly as some other rare 

earth metals. The addition of erbium (e.g. to vanadium) lowers hardness and 

improves workability (419).  

Erbium nitrate tetrahydrate (Er(NO3)3.4H2O) is very soluble in aqueous 

solutions, and therefore, it is a good source of erbium (Er3+) ions. It provides 

adequate amount of Er3+ ions for the synthesis of erbium – doped apatites. 

On the other hand, erbium oxide Er2O3 is insoluble in water. It has excellent 

chemical and thermal stability, with a melting point of ~ 2430°C (420). It has 

a body – centred cubic (bcc) lattice, which transforms into a hexagonal 

polymorph at high temperatures of ~ 2320°C due to nucleation and growth 

(420). Sintering of Er2O3 at 1800°C modifies its microstructure and produces 

a ~ 91% dense material (421). Er2O3 is characterised by sharp absorption 

spectral bands in the visible, ultraviolet, and near – infrared due to its 

electronic structure, and it gives a pink colour. Erbium (Er3+) ions under laser 
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irradiation with 1.54 µm wavelength show an intra – 4f shell transition from 

its first excited state (4I13/2) to the ground state (4I15/2) (422). Erbium oxide is 

used as a thermal and oxidation – resistant coating (421) and a network 

modifier in some glasses (417). It is used as a colorant in glasses and 

porcelain glazes (419). Erbium – doped materials also have potential optical 

and optoelectronic applications (423). Like most other rare earth oxides, 

erbium oxide is insoluble in water, but it is soluble in acid solutions such as 

HNO3, HCl, and H2SO4 (268, 405, 416). Therefore, the proposed 

incorporation of Er2O3 into the structure of calcium orthophosphates is 

expected to occur under hydrothermal conditions (399, 400, 411). 

2.7.2 Aluminium compounds 

Aluminium is found in nature in most rocks, as aluminosilicate minerals 

(424). Pure aluminium metal has a silvery – white colour, with many 

desirable characteristics. Aluminium and its compounds comprise about 8% 

of the Earth's surface (425). Aluminium is light, soft, and lacks strength, but it 

can be added to other materials to introduce various properties (419). It is 

non – toxic, non – magnetic, and non – sparking. It has a high thermal 

conductivity and excellent corrosion resistance, and it can be easily formed 

or cast (419). When evaporated in a vacuum, it forms a highly reflective 

coating for both visible light and radiant heat, which soon forms a thin layer 

of a protective oxide, and it does not deteriorate as do other coatings, 

particularly silver coatings (419). Aluminium is used in medical products, 

such as antacids and buffered aspirin, and it is considered safe at 

recommended doses (426). It is also used in coatings for decorative papers, 

packages, and toys (419). 
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Aluminium (Al3+) ions are small and highly charged. They seek oxygen 

atoms of anions, such as hydroxide (OH-) (427), and oxygen donor sites, 

such as phosphate (PO4) (e.g. those in biological systems) (425), and they 

form covalent aluminium – oxygen bonds, which resist acid attacks (427).  

Trivalent aluminium ionic compounds are more resistant to acid attacks than 

divalent ones (e.g. zinc ionic compounds) due to the formation of ionic 

crosslinks (427). Their solubility can be controlled by pH due to their high 

affinity to hydroxyl ions (425). Aluminium (Al3+) – terminated surfaces react 

strongly with water (H2O), whereas surface hydroxyl groups interact with 

metal ions (428). 

Common compounds of aluminium include aluminium nitrate (Al(NO3)3), 

aluminium hydroxide (AlOH3), aluminium oxide (Al2O3), and aluminium 

phosphate (AlPO4). Aluminium compounds are essential in materials 

engineering (429). Most of its compounds are solids with high melting points, 

and they are used as pharmaceutical, food additive, and cosmetic products 

(425). Aluminium compounds, such as Al(OH)3, Al2O3, and AlPO4, exhibit 

adsorption properties due to the negative charges of OH-, O2-, and PO4
3-, 

respectively, which can be improved by varying pH and temperature (425). 

Aluminium nitrate (Al(NO3)3) is a soluble compound (268) that forms 

Al(OH)3, which is one of the most common aluminium compounds for 

producing Al2O3 (430-433) under heat treatments (434). Al(OH)3 occurs in 

many crystallographic forms with different surface properties (425). It is used 

as an adsorbent, ion exchanger, and filtering medium, as well as in the 

production of glass, paper, and ceramics (435). It is also used in 

pharmaceutical and cosmetic products (425). 
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Aluminium oxide is a bio – inert bioceramic compound (436). It occurs in 

many crystallographic forms with different surface properties. The main 

forms include α – Al2O3 and γ – Al2O3 (425). The stable α – Al2O3 is very 

hard and resistant to hydration and acid attacks (437). It forms at high 

temperatures by heating Al(OH)3 at ~ 1200°C (425, 438), during which 

excess of Al(OH)3 can be provided at high pH values (439). On the other 

hand, γ – Al2O3 forms at lower temperatures around 500°C. It absorbs water 

and dissolves in acids (425). The structure of α – Al2O3 depends on its 

hydration. It has oxygen anions (O2-) at the surface, which are overlaid by 

water (H+ and OH-) on hydration (425). Al2O3 is used as an adsorbent, 

thermal resistant, food additive, and filtering medium, as well as in the 

production of glass, paper, and ceramics (425, 440, 441). It is also used in 

orthopaedics (442) and dental surgery (436), and it is used as an abrasive 

due to its hardness of up to 30 GPa (436). The addition of Al2O3 to 

hydroxyapatite (HAp) enhances its mechanical properties and improves its 

densification (436). The addition of Al2O3 to P2O5 results in a viscous and 

adhesive mixture, which forms a solid aluminium phosphate under heat 

treatment (443). 

Aluminium phosphate (AlPO4), also known as berlinite, is a pure chemical 

with 200 – mesh granularity (444). It can be synthesised from a solution of 

Al(OH)3 and phosphoric acid (H3PO4) (429), which upon heating at 500 – 

800°C produces aluminium metaphosphate (445). Single crystals of AlPO4 

can also be synthesised under hydrothermal conditions at 130 – 315°C 

(446121). AlPO4 is an inorganic compound that exhibits thermal and 

chemical stability, thermal shock, and oxidation resistance (447). It is 

chemically similar to α – quartz (silica) (448), with a high thermal stability and 
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a melting point over 1500°C (448). It has the ability to form a strong bond 

between organic and inorganic materials due to its great mechanical 

coupling factor, which is greater than that of α – quartz (449). Therefore, 

AlPO4 shares various thermal, chemical, and physical properties with metals 

and ceramics. It has the excellence of metals, including strength, thermal 

and chemical stability, and corrosion resistance (327, 447, 448), as well as 

having similar structure and piezoelectric properties to that of silica (327, 

448). 

Aluminium phosphate has similar uses to Al(OH)3 and Al2O3, including the 

production of paper, ceramics, dental cements, cosmetics, and 

pharmaceutical products (435, 441). AlPO4 is used in composites and 

coatings (450-452), such as AlPO4 – SiC composite, which is used as a heat 

– resistant coating (453). It is also used on graphite to improve its oxidation 

resistance (448, 454), by increasing onset oxidation temperature and 

lowering total mass loss rate (448). It can remain adsorbed to graphite 

materials at temperatures of up to 800°C (448). Its composites can also be 

used as wave – transparent materials, which interact with laser irradiation 

rather than scattering it (444). 

In biomedical applications, AlPO4 has the same role as phosphorus 

pentoxide (P2O5) in glass ceramics (455). Its addition improves their 

mechanical properties (447) and enhances the nucleation of silicate (456). It 

prompts their surface reaction and bioactivity through phosphate groups 

(455), as the bioactivity increases with decreasing calcium ions (455). The 

addition of AlPO4, particularly to fluorrichterite glass ceramics, promotes 

mica formation and bioactivity (457). In vivo, its bonding ability depends on 
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the formation of an apatite phase between bioactive materials (e.g. bioactive 

glass) and tissues (458-460). AlPO4 also provides the necessary PO4
3- for 

calcium phosphate formation, promotes the crystallisation of hydroxyapatite 

(455, 457), and increases the amount of hydroxyapatite powder (455). 

Moreover, aluminium phosphate is also used as a binder (429, 445, 461).  

Its solid phases, Al(PO3)3 and AlPO4, form at high temperatures of 500 – 

800°C (429, 445) and 1200°C (429), respectively, during the application of 

acid aluminium phosphate binders (liquid solution of phosphoric acid and an 

aluminium salt, such as Al(OH)3, with P:Al ratio > 3) (429). The addition of 

aluminium salts to acid phosphate binders enhances their bonding ability 

(462-464). Aluminium phosphate and acid aluminium phosphate binders are 

liquid solutions of phosphoric acid and aluminium salt, for example, Al(OH)3 

with P:Al ratios of ≤ 3 and ˃ 3, respectively (429, 461). Acid aluminium 

phosphate is superior to commercial silica binders (429) for the binding of 

fibrous or particulate materials and coating of materials, particularly graphite 

as an oxidation resistant (429, 448, 454). AlPO4 also improves the chemical 

and abrasion resistance (465), and it provides good strength, thermal 

stability (466), and moisture resistance (448) through its phosphate bonding 

(467). 

Binding of materials in the absence of a binder can be achieved at high 

temperatures, and it is a non – cost effective process. However, the 

presence of a binder is an advantage, but it is more effective in a small 

quantity only (429). Post heat treatments in the presence of a binder is also 

required for the formation of solid phases (429, 445). Sintering of AlPO4 

results in a ceramic cementation (447) with a continuous network structure 
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(444). It results in crystalline and amorphous AlPO4 phases, which depend 

on sintering temperature and reaction of binder with material being bounded 

or coated (429). 

Among aluminium compounds that of interest to our research investigation 

are aluminium nitrate nonahydrate (Al(NO3)3.9H2O) and aluminium 

orthophosphate (AlPO4). Aluminium nitrate nonahydrate (Al(NO3)3.9H2O) is 

very soluble in aqueous solutions, and therefore, it is a good source of Al3+ 

ions. It provides adequate amount of Al3+ ions for the synthesis of aluminium 

– doped apatites. On the other hand, AlPO4 is insoluble in water. However, 

in a base solution, it may form Al(OH)3 precipitate (468). The effect of a heat 

treatment on AlPO4 in a base solution is reported at various pH values (439). 

The precipitation reaction of aqueous solutions of AlPO4 and sodium 

hydroxide results in an amorphous compound (AlPO4.xAl(OH)3.yH2O, where 

x ≤ 1 and y = 2 – 3). 

The thermal decomposition of the precipitate is proposed as follows (439): 

 Amorphous AlPO4. xAl(OH)3. yH2O at ~ 110°C produces 

amorphous AlPO4.Al(OH)3. 

 Amorphous AlPO4. Al(OH)3 at ~ 150°C produces AlPO4 and Al2O3 

in the form of orthorhombic and/or tridymite. 

 AlPO4.Al2O3 at ~ 700°C produces AlPO4 and γ – Al2O3. 

 AlPO4.γ – Al2O3 at ~ 1200°C produces AlPO4 and α – Al2O3. 

The thermal decomposition of the precipitate is also affected by pH variation 

of solution (439). At pH 4, anhydrous amorphous AlPO4 is formed at 400°C, 

crystalline orthorhombic and tridymite structures are formed at 500°C, and 

an orthorhombic form is formed at 1200°C. In contrast, At pH 10, anhydrous 
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amorphous AlPO4 is formed at 700°C, crystalline orthorhombic and tridymite 

structures are formed at 900°C, and α – alumina with an orthorhombic 

structure is formed at 1200°C.  

2.7.3 Fluoride compounds 

Fluorine is a pale yellow and corrosive gas. It is the most electronegative 

and reactive element (469, 419), with desirable structural and optical 

properties (470). It reacts with all organic and inorganic substances (419). It 

occurs mainly in calcium fluoride (CaF2) and sodium hexafluoroaluminate 

(Na2AlF6), as well as other minerals. Fluorine and fluoride ions (F-) are highly 

toxic, and therefore, the recommended maximum allowable concentration is 

1 ppm for a daily eight – hour time – weighted exposure (419). Fluorine, as a 

soluble fluoride, is added to water supplies for the prevention of tooth 

cavities (419, 471, 472). Fluoride is an important element for many living 

organisms, including humans. It is commonly added to drinking water 

(fluoridation), food, and dental products due to its action in preventing tooth 

decay and promoting good oral health (471, 472). It increases the resistance 

of the dental mineral to acid dissolution and decreases its solubility (472). 

However, it is only added in small quantities (the level of fluoride in public 

water supply in some parts of England is 1 mg per litre (471)), because large 

quantities can have adverse effects such as dental fluorosis (469, 471, 472). 

Fluoride has a low structural energy, and therefore, it is very stable in lattice 

sites (473). Fluoride ions (F-) are similar to those of hydroxyl (OH-) in terms 

of their charge and radius, and therefore, F- commonly replaces OH- in 

mineral structures, particularly hydroxyapatite (154-156, 474). They also 

promote the formation of more crystalline calcium orthophosphates (146, 

155, 201, 202). 
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The incorporation of fluoride (F-) into the structure of HAp significantly 

increases its chemical and thermal stability (475, 476) against dental caries 

(477, 478) without affecting its biocompatibility (479-482), and it improves its 

biological properties (473). It reduces its dissolution in acid environments 

(483) by stabilising its crystal structure (484). It does not only restrain its 

decomposition, but it also produces a dense material and increases its 

mechanical properties (485, 486), such as compressive strength, by 

decreasing its porosity (487). Fluoride addition reduces the crystal size and 

growth of the brushite mineral, and it decreases its Ca:P ratio from 1.21 to 

1.06 – 1.08 (469). Besides the applications of Fluorapatite mentioned before, 

it is used in the treatment of osteoporosis (488), because it encourages the 

proliferation and differentiation of bone cells (489). 

Fluoride exists only as compounds (469) such as KF, NaF, NH4F, and CaF2. 

These compounds have different effects on the growth of calcium phosphate 

minerals. For example, KF suppresses the growth of brushite (DCPD) more 

than NaF (469). Among fluoride compounds that of interest to our research 

investigation are ammonium fluoride (NH4F) and calcium fluoride (CaF2). 

Ammonium fluoride (NH4F) is very soluble in aqueous solutions, and 

therefore, it is a good source of fluoride ions (F-). It provides adequate 

amount of F- ions (69, 73, 74) for the synthesis of fluorapatite (FAp) by the 

solid – state reaction and wet methods (69, 242, 243). Its addition also 

promotes the formation of an apatite phase (369). The hydrothermal reaction 

of calcium carbonate (CaCO3) (of marine algae) and diammonium hydrogen 

phosphate ((NH4)2HPO4) with pH 8.5 – 9, at 200°C for 48 hours, and drying 

at 80°C for 30 hours produces phases other than HAp (e.g. OCP and TCP). 

However, in the presence of NH4F under the same conditions, a single 
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phase of non – stoichiometric CHAp is obtained (369). In addition, the 

addition of 2.5 – 7.5 mol% of fluoride (F-) (via NH4F) to calcium phosphates 

reduces grain size and increases fluoride content (473).  

In contrast, calcium fluoride (CaF2) has a negligible solubility in water. The 

addition of CaF2 affects the mechanical properties of HAp composites (e.g. 

HAp – ZrO2 composite), and it results in a cell morphology and proliferation 

rate in osteoblasts similar to that of HAp (485). CaF2 also has an effect on 

the sintering of HAp – ZrO2 composites (485), and it increases the 

densification of HAp significantly (473). Co – precipitated CaF2 is an 

agglomeration of porous particles containing traces of water, the latter which 

can be liberated by a heat treatment without any structural changes (470). 

However, due to its large band gap and transparency, structural defects and 

colour centres can occur under laser irradiation (470).  

The reaction of fluoride (via NaF) with HAp occurs through a double 

decomposition process, which results in CaF2 at high fluoride concentrations 

(20F- = > 2% NaF), as given by equation 2.25, or by an ion exchange 

process with the hydroxyl (OH-) group, which results in FAp at lower fluoride 

concentrations (2F- = ≤ 2% NaF), as given by equation 2.26 (490). 

Ca10(PO4)6(OH)2 + 20F-      →     10CaF2 + 6PO4
3- + 2OH- ….. (2.25) 

Ca10(PO4)6(OH)2 + 2F-     →         Ca10(PO4)6F2 + 2OH- ……... (2.26) 

At high fluoride concentrations (> 2% NaF), the Ca:P ratio increases with 

increasing calcium (Ca2+) ions and decreasing phosphate (PO4
3-), due to the 

formation of CaF2 and the elimination of phosphate in the solution, 

respectively (490). On the other hand, at low fluoride concentrations (≤ 2% 
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NaF), the Ca:P ratio remains unchanged, since the only effect is the 

substitution of OH- by F- ions. 

Low fluoride concentrations can also result in the formation of hydroxyl – 

fluorapatite, with no effect on the Ca:P ratio (490), according to the following 

reaction (491): 

Ca10(PO4)6(OH)2 + F-       →      Ca10 (PO4)6 FOH + OH- …..(2.27)  

Fluoride (F-) can also be incorporated into the apatite structure as 

monofluorophosphate (PO3F), which substitutes the orthophosphate group 

(492-494), but it is followed by the hydrolysis of orthophosphate and fluoride 

(493). The incorporation of (F-) into the structure of HAp occurs at two sites, 

corresponding to the normal halogen site and an oxygen site on the 

phosphate tetrahedron, which indicates the incorporation of two fluorides per 

unit cell of apatite (494). In contrast, the substitution of the orthophosphate 

group by monofluorophosphate (PO3F) is coupled with sodium (Na+) 

substitution, and it results in the formation of monofluorophosphate apatite 

(Ca6Na4(PO3F)6O2) (492). 

Moreover, composites of fluorapatite (FAp) and ceramic oxides (e.g. Y2O3, 

ZrO2, and Al2O3) have improved thermal and decomposition stability, and 

they show similar cell proliferation to that of HAp, with no cytotoxicity effects 

(482). FTIR investigation of heat treatments on Fluorapatite is reported 

(495). Spectra of FTIR reveals that calcination of FAp results in shifting and 

splitting of OH band, due to F- – HO- interactions. On the other hand, FTIR 

spectra of uncalcined FAp are similar to that of HAp, due to the lack of 

diffusion of fluoride ions at room temperature (495). 
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2.8 Properties of calcium orthophosphates and doping 
compounds   

2.8.1 Properties of calcium orthophosphates 

Calcium orthophosphates vary in their chemical formula, crystallographic 

structure, and Ca:P ratio, and therefore, they have different chemical, 

thermal, and mechanical properties. Properties of calcium orthophosphates, 

particularly mechanical properties (e.g. fracture toughness, bending 

strength, compressive strength, tensile strength, and Young’s modulus), 

thermal decomposition, and solubility behaviour are of great importance for 

biomedical and dental applications.  

Thermal decomposition and solubility behaviour of calcium orthophosphates 

depend primarily on their chemical composition and structure, taking into 

account thermal and solubility conditions. Monocalcium phosphate 

monohydrate (MCPM) (~ 18 g/L at ~ 25°C) is slightly more soluble in water 

than monocalcium phosphate monohydrate anhydrous (MCPA) Ca(2HPO4)2 

(~ 17 g/L at ~ 25°C) (49, 68, 69, 73, 74), the former which (MCPM) 

transforms into the less soluble MCPA at temperatures above 100°C (69, 73, 

74). Similarly, the solubility of brushite (DCPD) in water  (~ 0.088 g/L at ~ 

25°C) is twice that of monetite (DCPA) (~ 0.048 g/L at ~ 25°C) (49, 68, 69, 

73, 74), the former which (DCPD) transforms into the less soluble DCPA (69, 

73, 74, 153) at temperatures above 80°C (69, 73, 74). In contrast, α – TCP  

is more soluble in water (~ 0.0025 g/L at ~ 25°C) and more reactive in 

aqueous systems (69, 73, 74) than β – TCP (~ 0.0005 g/L at ~ 25°C) (49, 

68, 69, 73, 74), however, the latter transforms into the more soluble α – TCP 

at temperatures above 1125°C (69, 73, 74). Tetracalcium orthophosphate 

(TTCP) solubility in water (~ 0.0007 g/L at ~ 25°C) is similar to that of β – 
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TCP (49, 68, 69, 73, 74). However, the former is instable in aqueous 

solutions, and it hydrolyses to hydroxyapatite and calcium hydroxide (146, 

201, 202). 

On the other hand, hydroxyapatite (HAp) and Fluorapatite (FAp) are the 

most stable calcium orthophosphates (~ 0.0003 and 0.0002 g/L in H2O at ~ 

25°C, respectively) (49, 68, 69, 73, 74). However, the monoclinic (space 

group P21/b) crystal structure of HAp (146, 221, 225, 226) transforms into 

hexagonal (space group P63/m) structure (221) at temperatures above 

250°C (146, 201, 202) or ambient temperatures through partial substitutions 

(e.g. OH- by F-) (69, 73, 74, 221), whereas the hexagonal crystal structure of 

FAp decomposes at ~ 1650°C (268-276). Calcium deficient hydroxyapatite 

(CDHAp) is more soluble in water (~ 0.0094 g/L in H2O at ~ 25°C) (49, 68, 

69, 73, 74) than other calcium orthophosphates, including FAp, HAp, OCP, 

TCP, and TTCP, and its thermal decomposition depends on its Ca:P ratio. 

CDHAp with Ca:P ratios of 1.5 and 1.5 ˂ Ca : P ˂ 1.67 transforms into β – 

TCP (146, 155, 156, 190, 201, 202 264-266) and biphasic calcium 

phosphate (β – TCP and HAp), respectively, at elevated temperatures above 

700°C (190, 264-266). 

In addition, amorphous calcium orthophosphates (ACP) have lower surface 

energy than other calcium orthophosphates, such as OCP and HAp (208-

210), with solubility in water of 0.0025, 0.0029, and 0.0032 g/L at ~ 25°C and 

pH values of pH 7.40, 6.00, and 5.28, respectively (49, 68, 69, 73, 74). 

However, at elevated temperatures, they transform into better crystalline and 

more soluble calcium – deficient HAp (~ 0.0094 g/L in H2O at ~ 25°C) (146, 

155, 201, 202).  
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It is evident that the Ca:P ratio and chemical composition of calcium 

orthophosphates are related to their basicity/acidity, solubility, and thermal 

decomposition behaviour. The lower the Ca:P ratio, the more acidic and 

water – soluble the calcium orthophosphate (MCPM > DCP > TCP > HAp > 

FAp) (69, 155, 156, 201, 202). Similarly, the lower the Ca:P ratio, the lower 

the thermal decomposition temperature. MCPM and DCPD with Ca:P ratios 

of 0.5 and 1, respectively, decompose at relatively low temperatures around 

100°C, whereas DCPA with a Ca:P ratio of 1.0 decomposes at ~ 400°C. On 

the other hand, TCP, HAp, and FAp with Ca:P ratios of 1.5, 1.67, and 1.67, 

respectively, decompose at higher temperatures of 1670°C, 900°C, and 

1650°C, respectively. Properties, including thermal decomposition, solubility, 

and physical constants, and crystallographic data for calcium 

orthophosphates are presented in Table 2.9 and 2.10, respectively. 

Moreover, Ca:P ratios can significantly influence the mechanical properties 

of calcium orthophosphates (496-499) as well as their biodegradability (497, 

498, 500). For example, sintering of calcium – deficient HAp (Ca:P ratios of 

> 1.67) and calcium rich HAp (Ca:P ratio of < 1.67) results in the formation of 

CaO and TCP, respectively (496, 497), which decreases their mechanical 

strength (496-498) and increases their biodegradation rate, respectively (68, 

497, 498, 500). However, depending on sintering temperature and 

parameters, the formation of these phases, particularly TCP, can be avoided 

(496, 499).    

The mechanical properties of calcium orthophosphates are also influenced 

by the presence and absence of porosities (231). Porosities can be in the 

form of pores and voids of different shapes and sizes (231). Porosity is not a 
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measure of the size of pores or their distribution, but it is a physical property 

that determines the quality and utility of materials. Porous calcium 

orthophosphates are used as scaffolds for tissue engineering applications 

(49, 69, 73). They can provide a firmer fixation to hard tissues by a 

mechanical interlock mechanism, allowing tissues to grow into their pores, 

such as bone tissues growing into porous scaffolds, which increases the 

strength of an implant (68, 69). However, the fixation strength depends on 

the total porosity and pore size. Increasing porosity and pore 

interconnectivity increases bone ingrowth and fixation strength (378). On the 

other hand, the larger the pores, the weaker the fixation, and the smaller the 

pores, the stronger the fixation (501).  

Porous HAp is preferred to dense HAp for the fixation of implants and bone 

grafts to biological tissues (68, 69, 230). It exhibits greater energy absorption 

and indentation creep ability (231). However, large pores of ~ 100 m can 

significantly decrease the mechanical strength of HAp (68), and 

subsequently, the strength of an implant. Therefore, porous calcium 

phosphates are used for low – load – bearing applications (68, 69). The 

mechanical strengths of porous HAp significantly decrease with increasing 

their porosity and vice versa (502, 503), and therefore, the strength of HAp 

can be controlled by controlling the geometry of pores (68). This can be 

achieved by varying the sintering temperature of HAp (231). Increasing the 

sintering temperature increases bulk density and decreases porosity (231). 

Small pore size (e.g. < 10 µm) can be produced by increasing the sintering 

temperature, however, dimensions of pores depend on material’s 

composition, thermal cycle, and sintering time (68). 
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Some mechanical properties of dense and porous HAp, compared to those 

of dentine and enamel are presented in Table 2.12. Typical values of 

mechanical strengths for synthetic dense HAp include bending strength of 

38 – 250 MPa, compressive strength of 120 – 900 MPa, and tensile strength 

of 38 – 300 MPa, which are much greater than those of synthetic porous 

HAp; bending strength of 2 – 11 MPa, compressive strength of 2 – 100 MPa, 

and tensile strength of 3 MPa.  Fracture toughness of dense HAp is 0.8 – 1.2 

MPa, while values of Young’s modulus include those in tension of 35 – 120 

GPa and those in bending of 44 – 88 GPa.  

Table 2.12 Mechanical properties of biological and synthetic calcium phosphates (504) 

 

Mechanical property Dentine Enamel 

Hydroxyapatite 

Dense Porous 

Compressive Strength (MPa) 250 – 350 95 – 370 120 – 900 2 – 100 

Young’s modulus in compression (GPa) 11 – 17 9 – 84 - - 

Tensile strength (MPa) 21 – 53 10 38 – 300 3 

Young’s modulus in tension (GPa) 11 – 19 - 35 – 120 - 

Flexural strength (MPa) 245 – 268 76 - - 

Young’s modulus in bending (GPa) 12 131 44 – 88 - 

Fracture toughness (MPa) - - 0.8 – 1.2 - 

Bending strength (MPa) - - 38 – 250 2 – 11 

Vickers hardness (GPa) - - 3.0 – 7.0 - 
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2.8.2 Properties of doping compounds   

Properties and physical constants of doping compounds (Er2O3, 

Er(NO3)3.4H2O, AlPO4, Al(NO3)3.9H2O, CaF2, and NH4F), including physical 

form, density, melting point, and solubility under standard conditions 

(pressure of 1 atm at RT ~ 25°C) are presented in Tables 2.13 and 2.14. 

The tables show simple descriptive formula, molecular weight (relative molar 

mass), descriptive physical forms (e.g. structure and colour), melting point 

/decomposition (°C), density (g/cm3), aqueous solubility (grams per 100g of 

solvent at room temperature) in water, and qualitative solubility in other 

solvents such as ethanol. These set of values of basic constants are 

recommended by the committee on data for science and technology 

(CODATA) (419, 505). Er2O3 is a red powder with a cubic structure, while 

AlPO4 and CaF2 are white powders with rhombohedral and cubic structures, 

respectively. These compounds (Er2O3, AlPO4, and CaF2) have a high 

melting point around 2344°C, > 1460°C, and 1418°C, respectively (268, 

505). Er(NO3)3.4H2O is red crystals, while Al(NO3)3.9H2O and NH4F are 

white hygroscopic crystals with monoclinic and hexane structures, 

respectively. Er(NO3)3.4H2O and Al(NO3)3.9H2O decompose at relatively low 

temperatures of ~ 130°C and ~ 135°C, respectively, while NH4F has a 

melting point around 238°C (268, 505).   

All ammonium salts and nitrates are soluble in water, except for oxides, 

according to the general roles of solubility, even though some compounds 

are more soluble under different conditions such as pH and temperature. It is 

well known that Er2O3, AlPO4, and CaF2 are insoluble (268, 419, 505), or 

they show negligible solubility in water, and therefore, they would form a 

composite with calcium orthophosphates/apatites. Therefore, the diffusion of 



- 130 - 

Er3+, Al3+, and F- ions into the structure of calcium orthophosphate is unlikely 

to be achieved at ambient temperatures, but it is likely to be achieved at 

elevated temperatures (408, 495, 506) such those under solid – state (42) 

and hydrothermal conditions (399, 400, 411). On the other hand, 

Er(NO3)3.4H2O, Al(NO3)3.9H2O, and NH4F show significant solubility in water 

(268, 419, 505). Therefore, the incorporation of Er3+, Al3+, and F- ions is likely 

to be achieved at low temperatures by the wet methods (chemical 

precipitation and hydrothermal), which would result in the substitution of 

Ca2+ by trivalent ions Er3+ and Al3+, as well as the substitution of OH- by F- 

ions. 

Table 2.13 Physical constants of erbium oxide, aluminium phosphate, and calcium fluoride 

under standard conditions (pressure of 1 atm at RT ~ 25°C) (268, 505) 

 

Compound Formula Mol. W 
Physical 

form 

Melting 
point 
(°C) 

Density 
(g/cm

3
) 

Solubility 
in H2O 

(g/100g) 

Other 
solubility 

Erbium 
oxide 

Er2O3 382.5 
Pink cubic 

powder 
2344 8.64 Insoluble 

Soluble in  
acid 

Aluminium 
phosphate 

AlPO4 121.9 
White 

rhombo-
hedral plates 

>1460 2.56 Insoluble 
Slightly 

soluble in 
acid 

Calcium 
fluoride 

CaF2 78.07 
White cubic 
crystals or 

powder 
1418 3.18 0.0016 

Slightly 
soluble in 

acid 

 

Table 2.14 Physical constants of erbium nitrate pentahydrate, aluminium nitrate 

nonahydrate and ammonium fluoride under standard conditions (pressure of 1 atm at 

RT ~ 25°C) (268, 505) 

 

Compound Formula Mol. W 
Physical 

form 
Melting 

point (°C) 
Density 
(g/cm

3
) 

Solubility 
in H2O 

(g/100g) 

qualitative 
solubility 

Erbium nitrate 
pentahydrate 

Er(NO3)3

.5H2O 
443.3 Red crystals 

Decompose    
~ 130 

- 240.8 
Soluble in 

ethanol and 
acetone 

Aluminium 
nitrate 

nonahydrate 

Al(NO3)3

.9H2O 
375.1 

white 
monoclinic 

hygroscopic 
crystals 

Decompose    
~ 135 

1.72 68.9 

Very soluble 
in ethanol 

and 
insoluble in 

pyridine 

Ammonium 
fluoride 

NH4F 37.03 
white hexane 
hygroscopic 

crystals 
238 1.015 83.5 

Slightly 
soluble in 
ethanol 
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Various issues related to the occlusion of dentinal tubules/tooth surfaces for 

the treatment of tooth/dentine hypersensitivity, particularly using calcium 

orthophosphate/apatite materials and/or laser irradiation are reported. 

Several methodologies are reported for the treatment of dentine 

hypersensitivity, including the use of chemical agents such as strontium 

chloride, sodium fluoride (29), ferric oxalate (30), and calcium hydroxide (2, 

31), physical agents such as fluoride – releasing resin (32) (e.g. fluoride 

containing prophilaxy paste (33)) and bioglasses (34, 35), and 

desensitisation of the nerve using potassium nitrate (2, 34). However, 

recurrence of sensitivity is common, as the current treatments are not ideal, 

and they are effective in the short term only (27, 28). 

The most recent approach for the treatment of dentine hypersensitivity 

involves the occlusion of dentinal tubules with hydroxyapatite, such as 

toothpastes – containing hydroxyapatite (37-39), which demonstrate a 

significant increase in oral fluoride and calcium, and thus, provide anticaries 

and anti – erosion benefits (37). However, acid dissolution is still an issue 

and disadvantage of calcium orthophosphate/hydroxyapatite (4, 5), even 

though it is improved by the incorporation of fluoride to form fluorapatite. The 

latter, however, is still soluble in highly erosive environments below pH 4.5, 

which is the approximate critical pH for fluorapatite (507). 

The other option for the treatment of dentine hypersensitivity is the 

application of laser irradiation to seal dentinal tubules (2, 51-56). Biologically, 

laser irradiation interacts mainly with apatite mineral, water, and proteins 

(63, 84, 86). However, long wavelengths between 2,000 and 10,600 nm 

interact more with hydroxyapatite mineral and water (63). In addition, pulsed 
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laser irradiation is absorbed more than CW (63, 92), with the largest 

absorption peak for water is at the Er:YAG wavelength just below 3,000 nm 

(63, 89). The occlusion mechanism of laser irradiation can be achieved by 

biostimulation/depolarisation using low – level lasers, which prevent the 

diffusion of pain to the central nerve system (51, 52, 62, 128), or by melting 

using high – level lasers, which recrystallise the dentine inorganic 

component (54, 58, 128, 130), form a secondary/tertiary dentine (55, 131, 

132), and coagulate the dentinal fluid (128, 133). Surface temperatures of 

400°C and above decompose the enamel mineral and transform it to a much 

less soluble apatite (112,113), while temperatures of 800°C up to 1200°C 

melt the enamel mineral and transform it when cooled (114,115). On the 

other hand, exceeding the required energy amount results in energy 

absorption by surrounding tissues, which causes undesirable outcomes such 

as thermal stresses or pulpal damage (86). Similarly, laser irradiation 

interacts with synthetic calcium orthophosphates/apatites, including their 

water and impurity contents, and alters their structure and surface, and 

subsequently, their properties (508-516). Alterations include decomposition, 

phase transformation, and surface melting and cracking, as well as 

alterations in surface area, grain size, and solubility.  

High – energy laser irradiation (CO2 laser at energy densities ranging from 

21 to 500 J/cm2) causes crystalline transformations in apatites, which may 

lead to the formation of tricalcium phosphates (513). The transformation of 

HAp into TCP is reported at an energy density of > 4.0 J/mm2 (509). Under 

CW CO2 laser (λ = 10.6 µm with a beam diameter of 300 µm) at 

temperatures 1200 – 1500°C (with an onset of 1350°C for the transformation 

of HAp to TCP), the transformation of HAp into TCP is accompanied by the 
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release of water (508). In addition, the phase transformation of HA to FA 

occurs in the presence of NaF under CO2 laser, with a threshold energy 

density of 38 J/cm2 (513). CO2 Laser irradiation (20 – 50 W with a beam 

diameter of 14 mm for a total of 10 – 400 s) of HAP reduces its specific 

surface area (511). Selective laser sintering (a spot diameter of 1 mm and 

energy density of 2 – 5 J/mm2) of nano – hydroxyapatite powder increases 

its average grain size from ~ 0.211 µm to ~ 0.979 µm with increasing laser 

energy density from 2.0 to 5.0 J/mm2, respectively (509). 

ER, CR:YSGG laser irradiation with an energy density of 5.79 – 13.84 J/cm2 

also causes changes in the crystalline structure of HAP (514, 516). Above 

600°C, the Ca:P ratio of HAp decreases to levels close to the theoretical 

ones, and the amount of carbonate decreases significantly without any 

phase transformation (514). The decrease in carbonate is also accompanied 

by a decrease in water and hydroxyl contents (516). The dominant phase in 

the centre of the laser crater is also reported to be a dehydrated apatite 

(515).  

Such alterations by laser irradiation affect the solubility of HAp (511, 513, 

516), which is also reported for dental enamel after laser irradiation (513). 

CO2 laser irradiation (20 – 50 W with a beam diameter of 14 mm for a total 

of 10 – 400 s) of HAP reduces the dissolution rate in an acetate buffer (511). 

Like dental enamel, synthetic hydroxyapatite is affected/altered more with 

pulsed laser irradiation than CW laser irradiation. The latter has a much 

weaker effect on the atomic structure of synthetic HAp (515). Laser sintering 

of HAp results in a distortion more than shrinkage, particularly under direct 

laser sintering, which involves high temperatures (508). Er:YAG laser 
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irradiation (with an intensity of 100 mJ/pulse, 10 Hz) of HA – coated implants 

for 1 minute has no clear effects (510, 512). However, surface alterations, 

such as surface melting/flattening and cracks/micro – fractures are observed 

after laser irradiation for ≥ 1.5 minutes (510, 512). Surface alterations 

increase with increasing pulse energy and irradiation time (510). With 

intensities of 140 mJ/pulse and 180 mJ/pulse, surface melting and cracking 

are greatly increase with increasing irradiation time (512). 

Melting, fusion, and transformation of inorganic compounds by laser 

irradiation are also dependent on the colour of surface being irradiated 

(517). For example, opaque porcelain, hydroxyapatite, and alumina are 

difficult to melt, particularly with 8000 Nd:YAG apparatus (0 – 60 W energy, 

2.0 – 9.9 s exposure time, and 300 mm distance). This is due to the 

reflection of laser irradiation by white pigments (responsible for the whitish 

colour of opaque porcelain), which may affect the melting and fusing 

process. However, the addition of metal oxides, such as iron oxide, is 

effective in melting and fusing such dental porcelain (517). 

The fusion of various calcium phosphates and doped calcium phosphates to 

dental enamel occurs under CO2 and Nd:YAG laser irradiation (518-524). 

This include the fusing of hydroxyapatite – containing fluoride to dental 

enamel using CO2 laser irradiation (519), and the fusing of α – tricalcium 

phosphate to dental enamel using Nd:YAG laser irradiation (520). In 

addition, other materials that fuse to enamel under laser irradiation include 

Bioglass (521, 522), calcium phosphate – glass, and low – melting porcelain 

(523).  



- 135 - 

Dental sealant materials preferably undergo melting and fusing under dental 

laser irradiation. A sealant material needs to melt at a low energy density to 

avoid damaging tooth surface, and it needs to have a Ca:P ratio lower than 

that of enamel or hydroxyapatite due to a possible rapid evaporation of 

phosphorus by laser irradiation (518). Such sealants, including MCPM and 

DCPD, melt at 971°C and 1348°C, respectively. Upon heating, MCPM 

transforms into γ – metacalcium phosphate, β – metacalcium phosphate, 

and δ – metacalcium phosphate, whereas DCPD transforms into DCPA, γ – 

calcium pyrophosphate, β – calcium pyrophosphate, and α – calcium 

pyrophosphate (518). Fusing of MCPM and DCPD under CO2 laser 

irradiation with energy densities of 45.6 J/cm2 (1.0 W for 0.1 s) and 365 

J/cm2 (8.0 W for 0.1 s), respectively, is characterised by a crater on the 

surface of MCPM and none on the surface of DCPD. The latter indicates that 

damage to enamel surface can be avoided with DCPD (518). In addition, 

solubility of laser – irradiated MCPM and DCPD in a 200 mM acetic acid 

buffer is found to be higher in MCPM than DCPD. Moreover, the fusion of a 

sealant, consisting of hydroxyapatite, to enamel without damaging enamel 

tissue requires an eutectic fluoride compound, such as CaF2, to lower the 

sintering temperature of HA (524), which is about 1400 – 1500°C (525). 

To collectively tackle and improve the mentioned issues related to calcium 

orthophosphate/apatite materials, particularly for the occlusion of dentinal 

tubules/tooth surfaces under laser irradiation, a novel approach is needed to 

improve the properties of these materials, particularly their photosensitivity 

and acid resistance. This is proposed by the addition of erbium, aluminium, 

and fluoride compounds to calcium orthophosphate/apatite. Based on the 

properties of erbium, aluminium, and fluoride compounds, their addition to 
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calcium orthophosphate/apatite offers great potential for the treatment of 

tooth sensitivity, particularly their fusion to tooth surface under laser 

irradiation, chemical stability, and solubility resistance in acid environments.  

The proposed methodology offers a simple laboratory preparation of doped 

calcium orthophosphate/apatite powders, by 24 – hour reactions through the 

chemical precipitation and hydrothermal methods, without purification of 

reagents and calcination/heat treatment of powders. Sintering of calcium 

orthophosphate powders is designed to take place under CW and pulsed 

laser irradiation, after being coated onto dentine surfaces. The methodology 

is based on the incorporation of erbium (Er3+) into the structure of apatite via 

a soluble compound such as Er(NO3)3.5H2O, or the formation of a composite 

with calcium orthophosphate/apatite by the addition of erbium oxide (Er2O3). 

Erbium (Er3+) would act as an active medium (as in solid – state lasers) and 

facilitate the sintering of calcium orthophosphate/apatite layer onto dentine 

surface. The methodology also involves the incorporation of aluminium (Al3+) 

and fluoride (F-) into the structure of apatite via soluble compounds such as 

Al(NO3)3.9H2O and NH4F, or the formation of a composite with calcium 

orthophosphate/apatite by the addition of aluminium phosphate (AlPO4) and 

calcium fluoride (CaF2). Aluminium (Al3+) and fluoride (F-) would facilitate the 

incorporation of erbium (Er3+) (for charge balance) and improve the acid 

resistance of calcium orthophosphate/apatite against non – bacterial acids 

(e.g. acidic drinks, which casus dental erosion) and bacterial acids (e.g. 

reaction of sugar with oral bacteria, which cause dental caries). In addition, 

the pink colour of erbium would be an advantage in facilitating the sintering 

of calcium orthophosphate/apatite, as well as matching the colour of gingiva 

(gum). The latter is important, particularly for the treatment of tooth 
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sensitivity due to a gum recession, where a restorative material is to be 

placed. In practice, the procedure would involve the application of doped 

calcium orthophosphate/apatite powder in the form of a paste or gel onto the 

hypersensitive tooth surface, and followed by the application of laser 

irradiation to cure and fuse the apatite layer onto tooth surface and promote 

its bonding. 
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Chapter 3 

Experimental Techniques 

 

In order to produce calcium orthophosphate/apatite powders with specific 

characteristics, as highlighted in the literature, synthesis parameters are 

required to be effectively adopted and investigated in the presence of the 

doping compounds. Therefore, to investigate and evaluate the effect of the 

doping compounds and different synthesis conditions on the properties of 

final calcium phosphate/apatite, various experimental techniques were used, 

which are covered in this chapter. 

The present research study involved various experimental techniques, 

including powder synthesis, sample/tissue preparation, and characterisation, 

in order to meet its objectives. Most of these experimental techniques are 

well – known and common techniques in the field of materials engineering. 

These include the synthesis of calcium orthophosphates, undoped (CaP) 

and doped with erbium, aluminium, and fluoride compounds, under various 

conditions, including temperature, pH, and reaction time, in vitro preparation 

of dentine sections and their coating with CaP/doped CaP powders, laser 

irradiation of coated dentine sections, and characterisation of powders and 

dentine sections, using SEM, laser scattering, SEM-EDX, XRD, FTIR, and 

DSC. Other characterisation techniques include temperature change during 

laser irradiation, micro – hardness, ICP/MS, and Profilometry. A detailed 

summary of powder synthesis, sample/tissue preparation, and 

characterisation techniques used in this research study are described next. 
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3.1 Calcium phosphate powder synthesis 

Powders that were synthesised include CaP minerals, as control samples, 

and CaP doped with erbium compounds (Er2O3 and Er(NO3)3.5H2H) (Fisher 

Scientific), aluminium compounds (AlPO4 and Al(NO3)3.9H2H) (Fisher 

Scientific), and fluoride compounds (CaF2 and NH4F) (Fisher Scientific). 

These powders were synthesised by the chemical precipitation and 

hydrothermal methods. The chemical precipitation method was adopted to 

investigate the effects of chemical reaction of CaP and doped CaP solutions 

at room temperatures, and to produce CaP/doped CaP powders for the post 

– heat treatment by laser irradiation. The hydrothermal method was adopted 

to investigate the effects of hydrothermal reaction of CaP and doped CaP 

solutions at elevated temperatures, and because it has the ability to produce 

crystalline nano – CaP powders without the need for a post – heat treatment 

(77). 

Synthesis of CaP powders, as control samples, was performed at room 

temperature, by preparing solutions (320 ml in volume) with 0.1 molar 

concentrations of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) (Fisher 

Scientific) and diammonium hydrogen phosphate ((NH4)2HPO4) (Fisher 

Scientific) in distilled water. The two solutions were mixed under stirring, by 

the addition of a diammonium hydrogen phosphate solution drop by drop 

into a calcium nitrate tetrahydrate solution, to yield a suspension with a Ca:P 

molar ratio of 1.67, which is similar to that of HAp. Calcium phosphate 

powders were synthesised under different conditions, as shown in Table 3.1, 

in order to investigate their effects on CaP properties such as composition, 

crystal structure, particle size, and particle morphology. 
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Table 3.1 Synthesis conditions for calcium phosphates 

 

Condition Description 

Synthesis method Chemical precipitation and hydrothermal 

pH 5.4 ± 0.2  and 10 ± 0.2 

Temperature RT ~ 25°C and hydrothermal 200°C 

Solution dropping time 15 and 30 minutes 

Solution stirring time 30 and 60 minutes 

 

3.1.1 Chemical precipitation of calcium phosphates 

The chemical precipitation synthesis was carried out at room temperatures. 

It involved the preparation of 150 ml of 0.1 M solution of calcium nitrate 

tetrahydrate (Ca(NO3)2.4H2O) (Fisher Scientific) and 90 ml of 0.1 M solution 

of diammonium hydrogen phosphate ((NH4)2HPO4) (Fisher Scientific), which 

were mixed to yield a Ca:P molar ratio of 10:6. The solutions were mixed by 

the drop – wise technique for 15 – 30 minutes and stirred magnetically at ~ 

400 rpm for 30 – 60 minutes to produce a milky mixture. The pH of as – 

prepared mixtures was recorded (pH 5.4 ± 0.2) as well as adjusted to pH 10 

± 0.2 using ammonium hydroxide (NH4OH) (Fisher Scientific). The mixtures 

was left on standby in a fume cupboard at room temperature for 24 hours, 

for the precipitation to take place. The suspensions were then transferred to 

centrifugal tubes to be washed and decanted. This involved centrifugal 

sedimentation at 6000 rpm for 5 minutes and ultrasonic bathing for 5 

minutes. Both cycles were repeated 6 times whilst monitoring the pH value 

of suspensions, until they reached pH 6.5 – 7.  The final cycle was carried 

out using methanol to limit the agglomeration of CaP particles. The wet CaP 

sediment was collected and dried in an oven at 80°C for about 24 hours. 
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3.1.2 Hydrothermal synthesis of calcium phosphates 

The hydrothermal synthesis involved the same initial preparations used in 

the chemical precipitation synthesis. After preparing a milky mixture, only 80 

ml of the mixture was transferred to a Teflon – lined reactor with a capacity 

of 125 ml. The reactor was placed in a furnace over periods of 24 to 72 

hours, at temperatures 80°C – 200°C, and at a heating rate of 5°C/minute. 

The reactor was then naturally cooled at room temperature. The suspension 

was treated the same way as in the chemical precipitation synthesis. 

Suspensions were transferred to centrifugal tubes to be washed and 

decanted. This involved centrifugal sedimentation at 6000 rpm for 5 minutes 

and ultrasonic bathing for 5 minutes. Both cycles were repeated 6 times 

whilst monitoring the pH value of suspension, until it reached pH 6.5 – 7.  

The final cycle was carried out using methanol to limit the agglomeration of 

CaP particles. The wet CaP sediment was collected and dried in an oven at 

80°C for at about 24 hours. 

3.1.3 Doping of calcium phosphates 

Calcium phosphates were doped with different compounds under various 

conditions to investigate the formation of ion – substituted calcium 

phosphates and CaP composites. Chemical compounds that were 

investigated in the present study are presented in Table 3.2.  

Table 3.2 List of various compounds investigated in the present study 

 

Erbium compounds Aluminium compounds Fluoride compounds 

Erbium oxide Er2O3 and erbium 
nitrate Er(NO3)3.5H2O 

Aluminium phosphate AlPO4 and 
aluminium nitrate Al(NO3)3.9H2O 

Calcium fluoride CaF2 and 
ammonium fluoride NH4F 
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The first batch of powders (batch A) was prepared with erbium oxide (Er2O3) 

(Fisher Scientific), aluminium phosphate (AlPO4) (Fisher Scientific), and 

calcium fluoride (CaF2) (Fisher Scientific) to produce CaP composites due to 

the poor solubility of these compounds. The second batch (batch B) was 

prepared with erbium nitrate pentahydrate (Er(NO3)3.5H2O) (Fisher 

Scientific), aluminium nitrate nonahydrate (Al(NO3)3.9H2O) (Fisher 

Scientific), and ammonium fluoride (NH4F) (Fisher Scientific) to produce 

doped CaP due to their excellent solubility and their ability to produce 

nanoscale and high – purity materials. A solubility chart for CaP synthesis 

under a pressure of 1 atm at room temperature is shown in Table 3.3.  

Table 3.3 Solubility chart for CaP synthesis at room temperature under pressure of 1 atm 

 

 CO3
2-
 F

-
 OH

-
 NO

3-
 O

2-
 PO4

3-
 

Ca
2+

 I S sS S sS I 

Al
3+

 - S I S I I 

Er
3+

 - S I S I I 

NH4
+
 S S S S - S 

              I = insoluble, sS = slightly soluble, S = soluble 

Soluble ions result in an aqueous product, while slightly soluble and 

insoluble ions result in a solid product (precipitate). From the solubility chart 

(Table 3.3), it can be seen that eight possible products are expected. 

Calcium (Ca2+) ions seem to precipitate as CaP and/or CaCO3, while Al3+ 

and Er3+ ions are expected to form hydroxide, oxide, and/or phosphate 

compounds. Therefore, batch (A) dopants, Er2O3 and AlPO4, are expected to 

precipitate together with CaP phase. On the other hand, batch (B) dopants, 

Er(NO3)3.5H2H and Al(NO3)3.9H2H are expected to produce a single – doped 

CaP phase.  
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Dopants of the first batch (A) (Er2O3, AlPO4, and CaF2) (Fisher scientific) and 

dopants of the second batch (B) (Er(NO3)3.5H2O, Al(NO3)3.9H2O, and NH4F) 

(Fisher scientific) in solutions (distilled H2O) were added to CaP solution. A  

7.5 ml of 0.1 M solution of each dopant (7.5 ml x 3, 22.5 ml of batch A 

dopants and 22.5 ml of batch B dopants) was added to 240 ml of 0.1 M CaP 

solution. The mixture containing erbium, aluminium, and fluoride compounds 

was stirred for 1 hour at ~ 400 rpm. The mixture was covered to minimise 

the absorption of atmospheric CO2 and left on standby at room temperature 

for 24 hours. Finally, the wet precipitate was collected and dried in an oven 

at 80°C for 24 hours. 

3.2 Calcium phosphate pellet preparation 

Calcium phosphate powders were also prepared in the form of pellets. 20 

mg of each powder was pressed into a pellet of about 2 mm in thickness, 

using uniaxial press under a pressure of about 1 tonne for 30 minutes. 

These pellets were prepared for the laser irradiation sintering trials and the 

investigation of CaP/doped CaP erosion in an acid environment. 

3.3 Dentine section preparation 

Preparation of dentine sections aimed at mimicking naturally exposed 

dentine surface in extreme cases of sensitivity. Tooth cross – sections were 

prepared from clinically extracted human premolars/molars, which were 

collected from the tissue bank at the University of Leeds, School of Dentistry 

(Ethical approval No 270409/EE/22), after being sterilised by gamma 

irradiation. Sections of about 1 – 2 mm in thickness were cut from a region 
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beneath the enamel dentine junction, using a diamond – cutting machine 

(Well Precision Vertical Diamond Wire Saw, Model 3242).  

After sectioning, tooth sections were polished by hand using 2500 grit silicon 

carbide (SiC) paper in the presence of water for 2 minutes per side, followed 

by a wash with distilled water for 20 seconds and an ultrasonic bath in 

distilled water for 1 minute. The sections were then etched with a 35% w/v 

phosphoric acid solution for 1 minute in a stirred bath to remove the natural 

smear layer and smear plugs, followed by a wash with distilled water in an 

ultrasonic bath for 1 minute. The sections were finally dehydrated using 

alcohol/water mixtures containing 50%, 70%, 90%, and 100% absolute 

ethanol for 30 minutes in each mixture, to minimise any tissue shrinkage by 

absolute alcohol. The sections were then left to dry in air, followed by 

reduced pressure in a vacuum desiccator containing calcium sulphate, as a 

desiccant, for 24 hours. “The resultant sections should mimic the surface of 

naturally exposed dentine common to extreme cases of dentine 

hypersensitivity, albeit with no fluid present within the tubules, as would be 

the case in vivo” (12). 

3.4 Dentine section coating and dentinal tubule occlusion 

Coating of dentine cross – sections with CaP and doped CaP powders 

involved the preparation of 5% w/v suspensions, by suspending CaP 

powders in methanol, as a liquid dispersion medium. These suspensions 

were then treated ultrasonically for ~ 10 minutes before being applied onto 

dentine sections. Dentine sections were coated by the dip coating technique 

manually and using a dipping machine. Manual dipping was carried out in 

the initial coating trials, under which the withdrawal of sections was kept at a 
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constant speed of ~ 1 cm per second. The sections were immersed in a 

beaker containing 20 ml CaP – methanol suspension (equal to ~ 3 cm in 

height). The withdrawal time of sections from the bottom of beaker and out 

of suspension was maintained at ~ 3 seconds. All other coating trials were 

then carried out using a mechanical manipulator, which allowed better 

control of the process of dipping and withdrawal. The withdrawal speed was 

set to 1 cm per second. The process was repeated for a maximum of 5 

minutes. Moreover, the same suspension was applied drop – wise onto the 

dentine sections using a syringe (1 – 2 drops), in order to provide thicker and 

uniform coatings for laser irradiation trials. This was due to difficulties 

associated with the manual dipping. Finally, after the application of coatings, 

the coated dentine sections were left on standby to dry in air and then stored 

in a reduced pressure desiccator containing calcium sulphate. 

3.5 Laser irradiation sintering 

Laser irradiation experiments were carried out at the Institute for Materials 

Research, University of Leeds as well as the Department of Physics and 

Astronomy, University of St. Andrews. Initial laser irradiation trials were 

performed on CaP and doped CaP – coated dentine sections, using a CW 

laser at ~ 980 nm wavelength (output power of ~ 150 mW). Post – initial 

laser trials involved laser irradiation of CaP and doped CaP – coated dentine 

sections, using ~ 1520 nm CW (output power of ~ 150 mW) and ~ 1520 nm 

femto – second (fs) – pulsed lasers (beam power of ~ 130 mW, pulse 

duration of 100 fs, and repetition rate of 2.5 GHz). Although pulsed lasers 

have a higher energy, and they are expected to provide higher absorption 

and better distribution of energy than CW lasers, the latter were also 



- 146 - 

investigated despite their thermal accumulation, which was initially assumed 

to cause damage to calcium phosphate coatings and dentine tissue. 

Laser irradiation trials were carried out using CW and pulsed lasers at two 

wavelength bands around 980 nm and 1500 nm. In these regions, erbium 

has strong absorption bands due to its electronic structure. The two 

wavelength bands at 980 nm and 1520 nm overlap with the corresponding 

ground state absorptions (4 I15/2 → 4 I11/2 and 4 I15/2 → 4 I13/2) of Er3+ 

ions (526,527), which was chosen as the photoactive component in the 

doped calcium orthophosphate. The chosen laser sources were a 980 nm 

CW laser, a 1520 nm CW laser, and a 1520 nm pulsed laser (120 fs). The 

femto – second – pulsed source was with an output power of 130 mW and a 

repetition rate of 2.5 GHz, implying that the 2.5 billion pulses per second 

were incident at the focal spot. The output powers of the 980 nm and 1520 

nm CW lasers were at 150 mW. Since the ground state absorption at 1520 

nm wavelength (from overall ground state 4 I15/2 → 4 I13/2 optical 

transition) is much smaller than at 4 I15/2 → 4 I11/2 (527), the erbium – 

doped CaP absorbs much smaller fraction of CW laser energy at 1520 nm 

wavelength than that at 980 nm wavelength. This is because of a resonant 

condition at 4 I15/2 → 4 I11/2. 

Since the melting – induced – surface modification using 980 nm CW laser 

requires at least 5 minutes over 100 – 250 µm2  area, it was decided that for 

clinical application such an approach might prove too slow for ultimate 

treatment. Therefore, it was necessary also to compare the response of 

these minerals when irradiated with an ultra – fast laser (120 fs, 130 mW). 

Since a femto – second laser at 980 nm wavelength was unavailable; we 
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investigated the structural changes using a femto – second laser at 1520 nm 

wavelength only.  

Laser irradiation sintering trials were also performed on CaP pellets for the 

investigation of laser – CaP interaction. The pellets were laser irradiated with 

CW lasers at 980 nm and 1500 nm wavelengths (output power of ~ 150 mW) 

and pulsed laser at 1520 nm wavelength. In addition, since erbium ions can 

also be excited at various optical frequencies, including 800 nm, CaP pellets 

were laser irradiated with 800 nm femto – second – pulsed laser (beam 

power of ~ 130 mW, pulse duration of 100 fs, and repetition rate of 250 – 1 

KHz) for the investigation of CaP minerals in an acid environment. The laser 

parameters that were used in the laser irradiation trials are presented in 

Table 3.4. In addition, temperature change measurements were carried out 

during laser irradiation of uncoated and coated dentine sections (1 – 2 mm), 

using a CW laser at 980 nm wavelength. A chromel – alumel thermocouple 

was attached onto the back – side of dentine sections and pellets to record 

the increase or decrease in temperature.  

Table 3.4 Pulsed and CW laser parameters used in the laser irradiation sintering of coated 

dentine sections and CaP/doped CaP pellets 

 

Sample Laser type Wavelength Exposure time CaP powder 

Pellets 

CW laser ~ 980 nm 5 minutes 

CaP–undoped       
and                       

CaP–doped (batch A) 
CW laser ~ 1500 nm 1 minute 

Pulsed laser 
(KHz) 

~ 800 nm 5 minutes 

Dentine 
sections 

CW laser ~ 980 nm 5 minutes CaP–undoped       
and                     

CaP–doped (batch A) Pulsed laser 
(GHz) 

~ 1520 nm 
30 seconds, 2 and 5 

minutes 

Pulsed laser 
(GHz) 

~ 1520 nm 1 and 2 minutes CaP–undoped       
and                     

CaP–doped (batch B) CW laser ~ 1520 nm 1 and 2 minutes 
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3.6 Acid erosion of CaP pellets 

Acid erosion trials were carried out on CaP powders in the form of pellets. 

Pellets of CaP powders were prepared as described before. The 

investigated powders comprised CaP and Er2O3. AlPO4. CaF2 – doped CaP. 

The pellets were unsintered, furnace sintered at around 1000°C for 5 

minutes, and laser irradiated with 800 nm pulsed laser for 5 minutes.  

The pellets were mounted on a glass substrate, and they were then 

immersed in a 0.3% citric acid (C6H8O7) solution with pH 3.60 ± 0.02 at room 

temperature (T = 23.3 ± 0.02). The solutions were then covered to minimise 

the absorption of atmospheric CO2, and they were left on standby for 24 

hours under static conditions.  

A citric acid erosive solution was prepared by mixing 15g of citric acid 

(C6H8O7) powder with 5 litres of distilled water, which resulted in a citric acid 

solution with 0.3% concentration. The pH of acid solution was adjusted to pH 

3.60 by the addition of 15 – 25% potassium hydroxide (KOH) solution, in 

order to mimic the acidity of many drinks such as fruit juices. 

The 24 hour – reaction was initially investigated by monitoring the pH of citric 

acid solution containing CaP/doped CaP pellets. Surface roughness of 

CaP/doped CaP pellets was measured using a surface roughness 

profilometry, whereas leached out elements/components of CaP and doped 

CaP pellets in the citric acid solutions were measured using inductively – 

coupled plasma/mass spectrometry (ICP/MS) and SEM-EDX. 
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3.7 Characterisation techniques  

Characterisation of synthesised powders, suspensions, pellets, and coated 

dentine sections involved the use of thermo – analytic, electron, and photo 

absorption spectroscopic techniques. The spectroscopy type, model, and 

analysis parameters are presented in Table 3.5. Powder characterisation 

involves the analysis of several properties such as particle size, particle 

morphology, crystal structure, and composition. Particle size can be 

measured by various methods such as sedimentation and microscopy. For 

statistical distribution of particle size, optical or electron microscopy can be 

used. Measurements are carried out by sedimentation on laser 

diffraction/scattering of a dilute suspension containing the powder sample. 

Phase/s and composition of sample material can be determined by various 

techniques, including XRD and FTIR spectroscopy. 

CaP/doped CaP powders were characterised by their composition, crystal 

structure, particle size, particle size distribution, and particle morphology. 

The particle morphology and elemental composition of CaP powders were 

determined by SEM and SEM-EDX, while the crystal structure was 

determined by XRD. Particle size analysis was carried out by means of static 

laser scattering, using the Malvern Mastersizer 2000E. The composition and 

photo absorption properties of CaP/doped CaP powders were determined by 

FTIR, while their thermal behaviour was investigated by DCS. Laser – 

irradiated CaP/doped CaP – coated dentine sections and CaP/doped CaP 

pellets were characterised using SEM, SEM-EDX, and XRD. The hardness 

of coated dentine sections was determined by the micro – hardness test, 

using an computer – aided indenter machine.  
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Coatings of CaP/doped CaP were also characterised in terms of 

temperature change during laser irradiation. Moreover, CaP/doped CaP 

pellets were undergone acid erosion trials to determine their behaviour in an 

acid environment. Characterisation of eroded CaP/doped CaP pellets and 

solutions containing leached out elements/components included monitoring 

pH variation, inductively – coupled plasma/mass spectrometry (ICP/MS), 

SEM-EDX, and surface profile roughness. 

Table 3.5 List of analysis techniques and parameters used for characterisation 

 

Analysis technique Type and model Analysis parameters 

Static laser scattering 
Mastersizer 2000 E, Malvern 

Instruments 

Size range 0.02 µm to 2000 µm, beam 
length 2.35 mm, water as the 
dispersant medium with a refractive 
index of 1.33. The refractive index and 
absorption index for CaP were 1.629 
and 0.1, respectively. 

SEM LEO 1530 Gemini FEGSEM plus EDX  
An accelerating voltage of 3 – 20 kV, 
an aperture of 30 µm, and working 
distance of 3 – 8 mm 

XRD PANalytical X’Pert MPD, Philips 
0.154 nm CuKα, 2 theta range 5º – 
90°, step size of 0.05, time per step of 
99.6 s, and scan speed of 0.06 °/s 

FTIR VETEX 70, Bruker 

Absorption at ambient conditions, 
using near – and mid - IR source in the 
wavelength range 4000 – 400 cmˉ

1 

with a spectral resolution of 0.4 cm
-1
 

DSC Perkin Elmer DSC 8000 
10 mg of sample, from room 
temperature up to 600°C at a heating 
rate of 10°C/min  

ICP/MS Perkin Elmer, Elan DRCe 

Total quantitative mode for the 
determination of a large number of 
elements at ppb levels. Amount (ppm) 
in 1:5 diluted 0.3% citric acid – 
component solutions 

Profile roughness 
LOT – ORIEL Alpha Step IQ Surface 

Profiler 

Diamond stylus with radius of 20 nm – 
25 µm, vertical range of 10 nm – 1 mm 
and force range of 1 – 50 mg 

Micro – hardness 
Computer – aided Duramin Indenter 

Machine, Struers A/S, DK 26-10 
Knoop diamond with a 25g load for an 
indentation time of 30 seconds 
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A particle is defined as “any relatively small subdivision of matter, ranging in 

diameter from a few angstroms to a few millimetres” (528). Particles (e.g. 

solid particles, liquid droplets, or gas bubbles) are three – dimensional 

objects with various shapes. Particle shapes include acicular (needle – like), 

angular (sharp edged or polyhedral – like), crystalline (a freely developed 

particle in a fluid medium of geometrical shape), dendritic (branched 

crystalline shape), fibrous (regular or irregular thread – like), flaky (plate – 

like), granular (equidimensional irregular shape), irregular (lacking any 

symmetry), nodular (rounded and irregular shape), and spherical (globular 

shape) (529). 

The size and shape of particles cannot be fully described with a single 

dimension or figure, such as a radius or diameter, except in the case of 

perfect spherical objects that involves employing the concept of equivalent 

spheres (530). In the case of spherical particles, particle size can be defined 

by the diameter of an equivalent sphere, having the same property as the 

actual particle such as volume or mass. This concept is suitable for many 

types of particles with regular shapes. However, it may not always be 

appropriate for irregular shaped particles, such as needles or plates, where 

one dimension is significantly different from their other dimensions (530). In 

the case of rod shaped particles, a volume equivalent sphere would give a 

particle diameter that is not a very accurate description of its true 

dimensions. Therefore, the particle size of rod – like particles can be defined 

as a cylinder with the same volume, which has a length and width. This 

approach describes the particle size more accurately and in a meaningful 

way (530). 



- 152 - 

Techniques for the characterisation of particle shape are classified into 

physical and aerodynamic/hydrodynamic techniques (12). Aerodynamic or 

hydrodynamic techniques measure the equivalent spherical diameter based 

on Stoke’s Law, whereas physical techniques, such as electron microscopy, 

measure the particle diameter based on characteristics such as length and 

width. The number of measurements depends on complexity of shape. Most 

shape factors work on ratios (12). These include aspect ratio (length to 

width), elongation/flatness (length, width and thickness of the particle), 

roundness (perimeter of a spherical particle with the same area as the 

particle, to the actual particle perimeter), and sphericity (surface area of a 

spherical particle with the same volume as the particle, to the actual particle 

surface area) (12).   

There is no single comprehensive standard definition for particle size, which 

applies to any particle (531). For example, a definition based on geometry 

cannot apply to regular and irregular shapes and measurement techniques 

used. In the case of the geometry of a sphere and visual inspection, 

microscopy or image analysis is the simplest measurement technique. A 

sphere with its projected cross – sectional area, surface area, and volume 

can be described by the diameter of projected cross-section. The projected 

cross – sectional diameter is constant at all angles of view (geometrically 

isotropic). 

Other regular and irregular shapes do not project the same cross – section 

at all angles of view, and therefore, surface area and volume cannot be 

determined from the cross – section (531). Irregular shaped particles can 

present different cross – sections, depending on their orientation. They have 
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different diameters, depending on where the chord is drawn. In this case, 

statistical geometric diameters can be employed by averaging over a large 

number of measurements (531). These include Martin’s diameter (the length 

of the chord divides the cross – sectional shape into two equal areas), 

Feret’s diameter (the distance between two parallel lines tangent to the 

projected cross – section), and area diameter (expresses particle size as the 

diameter of a circle that has the same projected area as the particle) (531). 

Another approach is to determine the perimeter of the projected cross – 

section and assign it to the diameter of a circle having the same perimeter 

(531). In addition, determining the volume of an irregular – shaped particle 

can define its diameter as the diameter of a sphere having the same volume 

(531).   

Particle size can be determined indirectly from direct measurements of some 

parameters associated with a physical phenomenon involving the particles 

(531). These parameters are related to the particle geometry by a law (e.g. 

Ohm’s law; equation 3.1, and Stoke’s law; equation 3.2) and a theory or 

model (e.g. Mie theory) describing the physical phenomenon. These include 

particle’s sedimentation velocity in a fluid and the pattern of scattered light 

by the particle. Table 3.6 presents the characteristics of particles related to 

size, a particular measurable behaviour that varies as a function of particle 

size, other variables that affect particle size, and measurement techniques 

utilizing the behaviour of attribute. 

J = σ . E ….. (3.1), 

where (J) is the current density, (σ) is the conductivity of material, and (E) is 

the electric field. 
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Vt =  
gd

2(ρp – Pm)

18µ
 ….. (3.2), 

where (Vt) is the terminal velocity, (g) is gravity, (d) is the particle diameter, 

(ρp) is the particle density, (Pm) is the medium density, and (µ) is the medium 

viscosity. 

The concept of equivalent spherical size is employed in almost all particle 

size analysis, because the theory describing the behaviour of a particle or 

describing the interaction with a particle is solved for spherical particles only 

(531). In this case, particles behave as a spherical particle or have the same 

behaviour – controlling properties. For examples, particles pass through the 

same size aperture, settle at the same velocity, scatter light with the same 

intensity at the same angles, or displace the same volume of a liquid. 

Table 3.6 Particle characteristics related to size, a particular measurable behaviour that 

varies as a function of particle size, and other variables that affect the size (531) 

 

Characteristic 
Behaviour/attribute 

related to size 

Properties other than size 
that can affect the related 

behaviour or attribute 

Measurement techniques utilizing 
the behaviour of attribute 

Geometrical 

Area or perimeter of 
cross section 

Shape combined with 
Orientation 

Microscopy, image recognition, and 
sieving 

Displacement 
volume 

Porosity, wettability Electrozone sensing 

Some linear 
dimension such as 
the diameter or 
statistical geometric 
diameter 

Shape, orientation Microscopy and image recognition 

Hydrodynamic 
/ Aerodynamic 

Settling velocity 
Drag (resistance to 
motion) 

Shape and density combined 
with properties of the 
surrounding fluid; Reynolds 
number; molecular 
homogeneity 

Elutriation and sedimentation 

Optical 
Light scattering 
Characteristics 

Refractive index, isotropy, 
shape, orientation and 
surface detail of particle. 
Refractive index of medium. 
Wavelength and polarity of 
incident light. 

Static light scattering (Mie and 
Fraunhofer diffraction) 
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On the other hand, irregular shaped particles can produce different results 

(531). For example, particles that settle with the same velocity have the 

same Stoke’s size, but they can scatter light differently, and thus, have 

different Mie’s size. In addition, particles that have the same sieve size may 

have different volumetric size. Theoretically, in the case of spherical 

particles, all analysis techniques should give the same results, particularly 

when the instrument is applied correctly (531). However, there are other 

assumptions of the theoretical model of a particle other than being spherical 

that must be fulfilled, as shown in Table 3.7. Fulfilling these requirements 

and knowing or controlling the value of all other parameters required by the 

model, the results of spherical particles by different analysis techniques 

should be similar, particularly when the fundamental measurement data are 

of comparable quality (531). 

Table 3.7 Size measurement techniques, theoretical models and their assumptions (531) 

 

Measurement 
Technique 

Model 
Assumptions About the 

Particle System 
Other Parameters of the 

Model 

Image recognition Plane geometry 
Particles are spherical, 
cubical or of other regular 
solid geometry 

Known relationship 
between particle size and 
image size 

Electrozone 
sensing 

Ohm's law expressed in 
terms of electrolyte 
resistivity, cross sectional 
area of aperture, and 
volume of displaced 
electrolyte (particle 
volume) 

Spherical particles that are 
much less conductive than 
the electrolyte 

Size of aperture through 
which particles pass 

Sedimentation 

Stoke’s Law for the 
settling velocity of a 
spherical particle in a fluid 
medium 

Spherical particle, laminar 
flow of fluid around settling 
particle, all particles in 
system of same density 

Particle density, density 
and viscosity of medium 
at analysis temperature, 
gravity 

Static light 
scattering 

Mie theory of light 
scattering by a spherical 
particle (includes 
Fraunhofer theory) 

Spherical particle, optically 
isotropic, no multiple 
scattering, monochromatic 
light, coherent light, plane 
wave 

Refractive index of 
particle, refractive index of 
medium, wavelength of 
light, size and position of 
scattering pattern 
projected onto detector 
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In addition, the molecular structure (organic or inorganic molecules), 

homogeneity (homogeneous or inhomogeneous), state (solid or liquid), 

isotropy (isotropic or anisotropic), particle shape, and suspension medium 

may cause different size analysis techniques to respond differently to one 

particle (531).  

Errors occur when measuring some attributes arising from a particle other 

than a spherical particle, and reducing data from those measurements using 

a spherical model (531). The extent of error depends on the analysis 

technique, data reduction method, and shape of particles. The mathematical 

complexities introduced by non – spherical geometry usually prevent models 

from being derived for other shapes, and prevent predicting how the error 

will affect the values (531). The effect can be negligible or severe, 

depending on the analysis technique and shape of particles. For example, 

particle sedimentation velocities are measured by employing Stoke’s law, 

assuming that the particle density, liquid density, and liquid viscosity are 

accurately known (531). If the values of such parameters contain error (e.g. 

± 5%), then the error will affect the calculation of particle size. In addition, 

light scattering measurements reduced by Mie theory produce yet more 

complex results of deviating from the assumptions of the model, which 

require the refractive index of the sample to be known. A refractive index 

with an uncertainty of ± 5% in relation to the error exhibited in the reported 

size distribution is considerably more complex (531).  

Light scattering measurements, including low angle laser light scattering and 

dynamic light scattering may not be always suitable (532). In the case of low 

angle laser light scattering, no homogeneous and/or non – spherical 
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particles can lead to incorrect results. In addition, strongly absorbing 

particles can present problems, because they may not produce usable 

scattering signals. On the other hand, dynamic light scattering has extremely 

low resolution, and particles must usually differ in size by 50% or more to 

detect two peaks reliably. The method does not really provide much size 

distribution data. In addition, small size particles can easily be hidden in 

large size particles (532). 

Light may scatter elastically or inelastically. Elastic scattering involves no 

energy loss/transfer, but changes in direction of incident beam may occur. 

On the other hand, inelastic scattering involves energy loss/transfer of 

incident particle, as well as a possible change in direction of incident beam 

(533). In addition, light scattering can be coherent, such as small angle 

elastic scattering (e.g. diffraction from solids), or incoherent, such as 

inelastic scattering, as well as large angle elastic scattering that becomes 

rapidly incoherent (e.g. backscattering). In the case of coherent scattering, 

the scattered beam is in phase, whereas in incoherent scattering, the 

scattered beam is not in phase (533). 

X – rays, electrons, and neutrons are radiations that can be described as 

wave – like (v = ƒ.λ, where v is the velocity, ƒ is the frequency, and λ is the 

wavelength) and particle – like (E = hv, packets of energy such as photons 

of electromagnetic radiation) (533). X – rays are produced by X – ray tubes, 

and they are generated by electron bombardment of a metal target (anode) 

such as copper (Cu), aluminium (Al), and silver (Ag). The interaction of X – 

rays with matter involves inelastic collisions of incident electrons with inner 

shell electrons in the atoms of a sample (533). Energy transfers from 
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incident electrons and excites inner shell electrons to higher energy levels, 

creating a hole in the inner shell. De – excitation may occur by other 

electrons from higher energy levels to fill the hole, during which the excess 

energy is released as an X – ray photon. The difference in energy between 

energy levels involved in the de – excitation represents the energy of X – ray 

photon (533). A set of X – rays can be produced, including α and β X – rays, 

depending on the energy level electrons filling the hole. An X – ray beam is 

made parallel by collimators, and it may be restricted to one wavelength 

(monochromated) using filters or crystal monochromators. High intensity X – 

ray beams may also be produced by accelerating electrons around a storage 

ring of synchrotron as well as wiggling and undulating their trajectories (533). 

X – rays that are elastically scattered by electrons in matter involve an 

interaction between negatively charged electrons and electromagnetic field 

of incident X – rays, which cause electrons to oscillate and emit an 

electromagnetic X – ray identical in wavelength and phase to that of incident 

X – ray (533). On the other hand, inelastically scattered X – rays involve a 

transfer of all energy of X – ray photons to individual electrons in atoms, and 

consequently, ionise or excite these electrons to higher energy levels, which 

are released as photoelectrons (e.g. X – ray photoelectron spectroscopy) 

(533). De – excitation of atoms in matter produces secondary 

electrons/signals (533). In addition, inelastically scattered X – rays can also 

transfer some of their energy to an electron in a high – energy collision 

(Compton scattering). Such scattering increases with increasing wavelength 

(533).  
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The interaction of neutrons with matter in materials analysis mainly involves 

an interaction of low energy (~ 0.1 eV) thermal neutrons with atomic nuclei 

through nuclear and magnetic forces (533). Elastic and inelastic scattering of 

such neutrons induce atomic vibrations, which are known as phonons. 

Elastic scattering can be coherent at low angles (1 – 10°), in which electrons 

interact with the electron cloud of atoms, or it can be incoherent at high 

angles (10 – 180°), in which electrons interact with nuclei (533). On the other 

hand, inelastic scattering occurs at smaller angles than elastic scattering. It 

involves the excitation of atomic vibrations (phonons), oscillations of valence 

electron cloud in solid (plasmons), single electron excitation (ionisation), and 

emission of X – ray bremsstrahlung (breaking radiation) (533). De – 

excitation of atoms in matter produces many secondary electrons/signals, 

which are used in analysis (533). The cross section for elastic and inelastic 

scattering varies as atomic number Z2 and Z, respectively. In crystalline 

solids, atoms are arranged periodically in regular unit cells, and thus, a 

periodic distribution of electrons. Therefore, coherent elastic – scattered 

waves from different periodically arranged particles can undergo diffraction 

in specific directions (533).  

The important parameter that describes the amplitude of elastically scattered 

waves at a particular angle by one scattering particle is the atomic scattering 

amplitude (factor) (f(θ)) (533). It describes the diffraction degree of a 

particular set of atoms in matter. For incident X – rays and electrons, the 

atomic scattering factor depends on the atomic number Z and Z–fx (where fx 

is the atomic scattering factor for X – rays), respectively, whereas neutrons 

have no dependence on the atomic number (533).  
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The volume, within which 95% of electrons are brought to rest by scattering, 

is known as the interaction volume (533). The electron interaction volume 

has a teardrop shape for low atomic number elements, and a spherical 

shape for large atomic number elements (534). The electron range is 

calculated from the point where beam electrons enter a sample and the point 

where they lose their energy and leave the sample as sample current (534). 

The electron interaction range can be calculated using Kanaya – Okayama 

formula (µm), as given by equation 3.3, taking into account the effects of 

elastic and inelastic scattering. 

R = 
K . E0

n

ρ
 ….. (3.3), 

where (R) is the depth penetration, (K) = 0.0276A / Z0.889 (A is the atomic 

weight (g/mole) and Z is the atomic number), (ρ) is the density (g/cm3), (E0) 

is the incident beam energy (keV), and (n) = 1.67.  

The electron interaction volume decreases with increasing the atomic 

number, but it increases with increasing the energy of incident beam, the 

latter which decreases elastic scattering, and consequently, electrons 

penetrate deeper (533, 534). The X – ray range (µm) is smaller than the 

electron range, because characteristic X – rays are only produced when the 

energy of incident beam exceeds the excitation energy (Ec) (534). 

Therefore, with increasing the penetration depth, the electrons lose their 

energy and become unable to ionize the inner shells (534). The X – ray 

range can be calculated using Anderson and Hassler formula as follows: 

R = 
K . (E0

n – EC
n)

ρ
 ….. (3.4), 

where (K) = 0.064 and (n) = 1.68. 



- 161 - 

3.7.1 Particle size analysis 

Measuring the particle size of CaP and doped CaP powders was a 

challenging task due to the formation of agglomerates.  CaP powders have 

the tendency to form agglomerates of irregular shape and dimensions, which 

caused problems during measurements. Similarly, the doped CaP, 

particularly batch A, has the tendency to bind because of the presence of 

AlPO4. Measurements of particle size (length and width) using SEM images 

were attempted, but were unsuccessful due to the agglomeration of particles 

in most powders. The agglomerates were formed even after the suspension 

of particles in methanol, which usually minimise agglomeration. 

Despite the tendency of CaP in forming agglomerations and the presence of 

more than one phase, particularly in the case of doped CaP (batch A) 

powders, the particle size analysis was carried out by means of static laser 

scattering, using the Malvern Mastersizer 2000E. The Mastersizer is made 

up of an optical unit (detection system and light source), sample dispersion 

unit, and data management software. The detection system involves a red 

light (forward scattering, side scattering, and back scattering) and blue light 

(wide angle forward and back scattering), while the light source involves a 

red light (helium – neon laser) and blue light (solid – state light source) 

(530). Measurements involve dispersing particles in distilled water and 

passing them through a focused laser beam, which scatter light at an angle 

that is inversely proportional to their size (530). The angular intensity of the 

scattered light is measured by a series of photosensitive detectors. The 

particle size is calculated from a map of scattering intensity versus angle. 

The scattering of particles is predicted by the Mie scattering model, which is 

applied within the Malvern software (530). Successful measurements 
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depend on the optical performance as well as good performance of the 

sample dispersion unit (532). 

Before measuring the samples, the background was measured for every 

sample, which was used to subtract the ambient light signals from the total 

scattering received from the sample. Each sample was then made into a 

paste using distilled water, before being placed into the dispersion unite to 

be analysed. The stirring rate was set at 2000 rpm, and each sample was 

measured 10 times. The measurements were then averaged to produce the 

particle size distribution. The particle size distribution was carried out in the 

size range 0.02 – 2000 µm, using a beam length of 2.35 mm and water as 

the dispersant medium with a refractive index of 1.33. The refractive index 

and absorption index for CaP used in these measurements were 1.629 and 

0.1, respectively. The value of the refractive index for doped CaP was 

assumed as equal to CaP (1.629). This was because the refractive index is 

not known for most systems, particularly for new materials, as well as it is 

more complicated for multiphase systems such as doped CaP (batch A).  

Results are based on a number of fundamental concepts, including the 

volume based particle size distribution and equivalent spheres based 

measurement (Mie theory) (530-532). Measurements are based on using the 

particle volume to measure its size. The particle volume is used to calculate 

the diameter of an imaginary particle that is equivalent in volume (Mie 

theory). The fundamental distribution is based on expressing the distribution 

in a set of size classes (532). It is used to calculate the distribution 

parameters and derived diameters, using the total contributions from each 

size band (532).  
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The distribution statistics are calculated from the derived diameters, using an 

international method of defining the mean and other values of particle size. 

The most common percentile measurements are d(0.5), d(0.1), and d(0.9) 

(530). The percentile d(0.5) is known as the median particle size by volume 

(mass median diameter), which gives a particle size at which 50% of the 

sample is smaller and 50% is larger than this size. The measure of the 

absolute deviation from median is known as the uniformity. The percentile 

d(0.1) and d(0.9) is the particle size for which 10% and 90% of the sample, 

respectively, is below this size. Therefore, d(0.1), d(0.5), and d(0.9) values 

indicate that 10%, 50%, and 90% of particles, respectively, are less than or 

equal to the size stated. In addition, the volume weighted mean d[4,3] 

represents the volume mean diameter (mean particle diameter), which is 

mathematically given by equation 3.5.  

Dv = 
∑Di

4 Ni

∑Di
3 Ni

 ….. (3.5), 

where (Di) is the diameter of individual particles and (Ni) is the number of 

particles corresponding to the specific diameter. 

The width of the distribution is known as the span, and it is calculated using 

equation 3.6. Smaller span values indicate narrower distribution, while larger 

span values indicate broad distribution.  

Span = 
d(0.9) – d(0.1)

d(0.5)
 ….. (3.6) 
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3.7.2 Scanning electron microscope (SEM) 

A scanning electron microscope is a very useful electron microscopy 

technique for the analysis of surfaces and subsurfaces of nanostructures. It 

has high resolution due to its accelerated electrons, which interact strongly 

with matter, and gives it imaging ability to scan surfaces and particles and 

determine their morphology and size (533). SEM uses a focused electron 

beam to scan samples in a raster way. The beam sweeps horizontally left to 

right and then blanks and moves back (one horizontal sweep per line and 

one vertical sweep per image) (533). The electron source of SEM is usually 

tungsten. Electrons are accelerated and then focused on a sample by 

condenser lenses. These electrons interact with the atoms in a sample, and 

a signal is produced as an image. These signals contain information about 

surface morphology and composition (533). They are commonly detected as 

secondary electrons, backscattered electrons, and energy dispersive X – 

ray. Secondary electrons are those electrons that emitted by atoms excited 

by primary electrons. They result from inelastic interaction with atoms, which 

involve energy loss (533). On the other hand, backscattered electrons 

involve the reflection of waves, particles, or signals back to the direction they 

came from. They result from elastic interaction with the nuclei of atoms, 

which involve no energy loss. Their intensity depends on the atomic number, 

and they reveal differences in composition (533).  

SEM is commonly equipped with an analytical technique, known as energy 

dispersive X – ray (EDX) spectroscopy. EDX is used for elemental or 

chemical analysis to determine the composition and weight percentage ratio 

of substances in a sample (semi – quantitatively) (533). It involves the 

investigation of a sample through interactions between electromagnetic 
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radiation and matter, analysing X – rays emitted by matter in response to 

incident charged particles. EDX reveals the elemental composition of a 

sample, based on the unique atomic structure for each element. It involves 

the emission of a stimulated emission of X – ray beam by a sample. When a 

high – energy X – ray beam is focused on a sample, it excites an electron in 

the inner shell, which is ejected to create a hole, the latter which is filled by 

an electron from the outer shell. The difference in energy (E2 – E1) is 

released as X – rays and measured by an energy dispersive spectrometer.  

The elemental composition of a sample is measured based on the difference 

in energy between two energy levels and the atomic structure of the 

element. EDX composes of a beam source (a cathode and magnetic lenses 

to create and focus a beam of electrons), X – ray detector (convert X – ray 

energy into voltage signals), pulse processor (measures signals), and 

analyser (data display and analysis).  

EDX measurements can be affect by many variants. EDX detector cannot 

detect elements with atomic number less than 5 (e.g. H, He, Li, or Be), due 

to the absorption of low – energy X – rays by the windows in front of silicon – 

lithium detector (535). Differing the over – voltage of EDX results in different 

peak sizes, while raising the over – voltage on SEM shifts the spectrum to 

the larger energies, making higher – energy peaks larger and lower – energy 

peaks smaller. Also, overlapping of peaks occurs for many elements. In 

addition, the nature of samples can affect the accuracy of EDX 

measurements. For example, X – rays emitted in all directions may not 

escape the sample. This depends on the X – ray energy and the amount and 

density of sample. Inhomogeneous and rough samples are examples of 

reduced accuracy of EDX. 
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Common complications related to EDX usually occur during data collection 

or analysis (536). Problems arising during data collection include poor 

sample preparation (particularly for thin films, which must be less than 10 nm 

in thickness), incorrect sample geometry (incorrectly tilted sample may result 

in blocking the path between the detector and sample, which reveals an 

inordinately low number of X – rays or absence of low energy X - rays), and 

contamination (collected X – rays can originate from areas other than that of 

interest such as sample holder). On the other hand, problems arising during 

data analysis include escaped peaks (some of X – rays generated in the 

sample and compacting the solid state detector may inadvertently knock out 

Si K – shell electrons in the detector, reducing the measured energy of X – 

rays), sum peaks (when two X – rays impact the detector instantaneously, 

the pulse created and measured is the sum of two X – ray energies), peak 

overlaps (poor separation of peaks), and excessive deadtime (during pulse 

pileup, the software cannot keep up with the X – rays impacting the detector, 

and therefore, adjust for the uncounted X – rays by calculating a deadtime 

correction; the larger the correction, the greater the margin of error).  

SEM (LEO 1530 Gemini FEGSEM) was carried out with an accelerating 

voltage of 20 kV, an aperture of 30 µm, and working distance of ~ 8 mm. An 

accelerating voltage of 3 kV and working distance of ~ 3 mm were only 

adopted during the initial investigation of powders and coatings. In addition, 

the working distance was adjusted to ~ 25 mm during the analysis of coated 

dentine sections, in order to scan the entire dentine surface. Preparation of 

CaP/doped CaP samples for SEM and EDX analyses involved the 

suspension of powders in ~ 10 ml 100% absolute methanol, followed by an 

ultrasonic bath for ~ 10 minutes. A drop of the suspension was mounted on 
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an aluminium stub using a pipette, dried using a gentle hot air, and finally 

coated in a thin film of Pt/Pd (5 – 10 nm) using a high – resolution coater. 

Due to the doping of CaP powders with aluminium compounds, the 

aluminium mounting stubs were coated with carbon to minimise the 

interaction of X – rays with aluminium stub. EDX spectra (using TEM) 

showed elements that were discounted from the analysis, because they 

provided no information, particularly to CaP samples. These elements were 

silicon (Si), copper (Cu), and carbon (C), as shown by the spectra of CaP 

and doped CaP in Figure 3.1. 

 

 

Figure 3.1 TEM-EDX spectra of CaP and doped CaP powders, showing discounted element 

(Si, Cu, and C) from the analysis. 

     

CaP-undoped 

CaP-doped 
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3.7.3 X – ray diffraction (XRD) 

X – ray diffraction is a powder diffraction technique that is useful in 

determining the crystallographic structure and crystallite size, as well as 

identifying substances based on the scattering of X – rays from powders. 

The intensity of peaks is due to the crystallographic structure and position of 

atoms as well as their thermal vibration, whereas the broadening and shape 

of peaks may be due to instrumental broadening, crystallite size broadening, 

and strain broadening (537).  

XRD equipment consists of an X – ray tube as an electron source (e.g. 

copper), sample holder (moves with angle θ), and detector (moves with 

angle 2θ). Sample preparation involved packing powders in various sample 

holders, such as flat plate and spinner holders, which are designed for 

different XRD analysis. X – ray diffraction was carried out using XRD 

PANalytical X’Pert MPD, Philips, with CuKa (λ = 1.54 Å) radiation, in the 2 

theta range 5° – 90°, a step size of 0.05, time per step of 99.6 second, and a 

scan speed of 0.06 °/second. Hot stage XRD was carried out under 

atmospheric conditions from ~ 25°C up to 800°C, with CuKa (λ = 1.54 Å) 

radiation, in the 2 theta range 5° – 55°, a step size of 0.033, time per step of 

99.6 second, and a scan speed of 0.04 °/second.     

XRD is used to determine the atomic and molecular structure of a crystal 

(537). It uses a beam of X – rays that diffracts by atoms or set of planes (in a 

sample) into specific directions. Since atoms in a crystal are arranged in a 

regular pattern, a constructive interface in phase waves results in very few 

directions. Diffracted beams are large number of scattered rays reinforcing 

one another. The difference in path length between set of planes (e.g. 1 to 1̅ 

and 2 to 2̅) is an integral number of wavelength. By measuring the angles 
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and intensities of diffracted beams, the density of electrons can be 

calculated, and consequently, the atom positions and bonds. X – ray – 

matter interaction involves elastic scattering, in which electrons oscillate at 

frequencies of incoming beam and become a source of radiation.  

Using X – ray diffraction technique, the unit cell parameters,  a – axis, b – 

axis, and c – axis, for a hexagonal structure can be calculated using 

equation 3.7. 

1

d2  = (
4

3
) [

h2 + hk + k2

a2 ]  + (
l2

c2)  ….. (3.7), 

where (h, k, l) are the Miller indices of peaks, (a) and (c) are cell parameters 

(a = b ≠ c), and (d) is the d – spacing, the latter which can be calculated 

using Bragg’s law, as given by equation 3.8. 

nλ = 2d sinθ ….. (3.8) 

The unit cell volume (V) can be calculated using equation 3.9. 

V = 
√3a2c

2
….. (3.9) 

The crystallite size (D) can be calculated using Scherrer equation 3.10. 

D = 
K . λ

β cosθ
 ….. (3.10), 

where (k) is the shape factor ~ 0.9, (λ) is the wavelength of X – ray (1.54 Å), 

and (β) is the line broadening (full width at half maximum (FWHM)) of 

intensity. 
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3.7.4 Fourier transform infrared spectroscopy (FTIR) 

The technique is known as FTIR, because it is commonly used in the near,  

mid, and far – infrared spectrum regions. It is an absorption spectroscopy 

technique, which involves infrared, visible, and ultraviolet radiations with very 

high frequencies (˃ 600 GHz) (538). The technique uses a Fourier transform 

(FT) data processer that is used to process raw data into light output as a 

function of IR wavelength, and it is a complex mathematical function that 

converts an interferogram into a spectrum (539). FTIR has the ability to 

collect spectra, which can be used to identify compounds and their 

structures or investigate powder composition. An IR spectrum consists of 

characteristic absorption bands with known position and intensity, 

corresponding to functional groups of matter (538). An IR spectrum 

(transmittance or absorbance) is generated by passing a beam of IR light 

through a sample. The transmitted light reveals absorbed energy at each 

wavelength. Absorption characteristics contain details about the molecular 

structure of a sample. The incident beam passes through an interferometer 

and sample, and then onto a detector, the latter which detects a signal that 

results in an interferogram. Samples absorb specific frequencies of 

wavelengths that are subtracted from those in the interferogram. The 

variations in energy against time are detected by the detector and then 

converted by the FT into intensity against frequency (539).  

FTIR analysis was carried out using FTIR VETEX 70 Bruker, in the near – 

and mid – IR spectrum regions, wavelength range 4000 – 400 cmˉ1, and a 

spectral resolution of 0.4 cm-1. Sample preparation involved mixing powders 

with a mulling agent, known as Nujol, using a marble mortar and pestle. The 

paste/mix was applied onto and sandwiched between two plates of a high 
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purity salt of potassium bromide (KBr). The plates were then placed in a 

holder to be analysed.  

Infrared spectra are formed due to the absorption of electromagnetic 

radiation at frequencies corresponding to the vibration of specific molecular 

bonds or functional groups in a molecule. Molecules rotate or vibrate at 

specific frequencies, corresponding to specific wavelengths of energy. 

Molecular motions (transitions) include electronic motions (changing energy 

levels of electrons or their directions of spin), translational motions 

(displacement of molecules to a new position in space), rotational motions 

(rotation of a molecule around its centre of mass, as a result of energy 

absorption in the microwave region), and vibrational motions (individual 

atoms within a molecule change position relative to one another without 

moving or rotating the molecule) (539, 540). The energy of infrared is weak 

on the electrons within an atom and does not affect them, and therefore, it 

corresponds to the energy required for translational, rotational, and 

vibrational motions (539). The latter are the strongest and most important in 

infrared spectroscopy. Vibrational energy is the result of energy absorption 

by a molecule, due to the vibration of component atoms around the mean 

centre of their chemical bonds (540). Molecular vibrations are commonly 

characterised by various modes, which contribute to the overall absorption 

spectrum (539, 540). These include stretching (increases or decreases the 

length of atom bonds), torsional (twisting of the backbone of a molecule), 

and bending (changes the bond angles of atoms relative to one another or to 

the rest of molecule). Vibration modes can also be symmetric or asymmetric.  



- 172 - 

Since atoms in a molecule are constrained by molecular bonds and move 

together in specific directions (degrees of freedom/number of normal 

modes), molecular transitions of a known molecular structure can be 

predicted (539, 540). A minimum set of fundamental motions, based on a 

threefold set of coordinate axes (x, y, z) are used to describe models (540). 

All molecules have three translational degrees of freedom, since the centre 

of mass of a molecule can move in x, y, and z directions. A non – linear 

molecule also has three rotational degrees of freedom, since it can spin 

around x, y, and z axes, whereas a linear molecule has only two rotational 

degrees of freedom, since two rotation directions are the same (539). The 

number of normal modes/degrees of freedom of vibration, for a given 

molecule with N (number) atoms, is 3N – 6 and 3N – 5 for non – linear and 

linear molecules, respectively (539, 540). 

The number of normal modes (degrees of freedom) specifies the maximum 

number of fundamental/first order vibrations (change from the molecular 

ground state to the first energy level) for a molecule (539). Absorption of 

energy must be infrared active to be seen as an absorption band in the 

infrared spectrum. Active infrared absorptions primarily require a net change 

in dipole moment during the vibration of a molecule or functional group (539, 

540). Asymmetrical vibrations (in a heteronuclear molecule) change the 

dipole moment by changing the distance between the two nuclei, which 

creates a dipolar electric field that absorbs a specific energy corresponding 

to that transition. On the other hand, symmetrical vibrations (in a 

heteronuclear molecule) and vibrations in a homonuclear diatomic molecule 

cannot be seen in the infrared spectrum, because they do not change their 

dipole moment (539). Therefore, the number of modes observed in an 
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infrared spectrum is far less corresponding to asymmetric and symmetric 

stretching and bending modes (540). Observed absorption bands can be 

affected by the occurrence of two vibrational modes at identical frequencies 

(degeneracy), overlapping or weak absorptions, or vibrational modes outside 

the instrument range (abundant) (539. 540). Absorption bands may also be 

affected by the detection of weak/forbidden absorptions, known as overtones 

(transitions beyond the first order), and/or combination of absorption bands 

(539, 540).  

All functional groups have characteristic vibrational frequencies, which are 

used to identify materials and determine their structure in a compound. The 

position (frequency/wavenumber) of an absorption band depends on the 

mass of atoms in the absorbing group as well as the strength of molecular 

bonds (539, 540). 

Absorption and transmission are the main interactions in FTIR analysis. 

Energy absorbed by a molecule does not reach the detector, the latter which 

reproduces missing absorptions as absorption bands. On the other hand, 

photons transmitted by a sample reach the detector intact. The two 

interactions are inversely related, as given by equation 3.11 (539). 

A = 
log1

T
 ….. (3.11), 

where (A) is absorbance and (T) is transmittance (% T/100). 

Most of analytical applications are found in the mid – infrared region (~ 4000 

– 400 cm-1). The near – infrared region (~ 14000 – 4000 cm-1) is useful for 

quantitative work, including in situ monitoring of reactions, due to the fact 

that qualitative band assignments are quite impossible because of many 
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overlapping bands of all organic species in this region. On the other hand, 

the far – infrared region (~ 400 – 10 cm-1) is useful for detecting molecular 

vibrations that are sensitive to changes in the overall structure of a molecule 

and difficult to detect in the mid – infrared region (539). 

In the mid – infrared region, the region between 4000 and 1300 cm-1 is 

known as the group frequency region, while the region between 1300 and 

500 cm-1 is known as the fingerprint region (539). The main absorption 

bands in the group frequency region are assigned to vibrational modes and 

correspond to individual functional groups, including NH – OH (4000 – 3000 

cm-1), C – H stretch region (3000 – 2800 cm-1), window material region 

(2800 – 1800 cm-1), and carbonyl region (1800 – 1500 cm-1). On the other 

hand, in the fingerprint region, absorption bands are due to single – bond 

and skeletal vibrations of polyatomic systems. Assignment of individual 

bands is difficult, however, the overall pattern is useful for material 

identification when matched to a reference spectrum (539). Some functional 

groups and their absorption band frequencies, as well as common inorganic 

ions (anionic groups) and their vibrational (stretching and bending) 

frequencies are presented in Tables 3.8 and 3.9, respectively.  

Absorption bands produced by molecular vibrations within an anion 

functional group, known as internal vibrations, are very useful for 

characterising inorganics. Complex anion – attached cations (e.g. Ca2+ or 

Mg2+) have a slight effect on the position of absorption bands, while heavier 

cations usually shift bands to a lower frequency (539). 
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Table 3.8 Common functional groups and their absorption band frequencies (539, 540) 

 

Functional group Formula Absorption band frequencies 

Hydroxyl - OH 
A broad-envelope-type band centred at 3400 cm

-1
 (3570 – 3200 cm

-

1
) Hydrogen bonding can change position and shape. 

Unsaturated CH 
- H - ϕC,                           

- H - C ═ C - 
CH stretches from aromatic hydrocarbons at 3100 – 3000 cm

-1
.                       

CH stretches from a carbon double bond at ~ 3030 cm-1. 

Aliphatic CH-
methylene 

- CH2 - 

CH stretches at ~ 2925 cm
-1
 (2935 – 2915 cm

-1
) (asymmetric) and 

2850 cm
-1
 (2865 – 2845 cm

-1
) (symmetric). Vibrations for bending at 

~ 1465 cm
-1
 (1485 – 1445 cm

-1
) and rocking at ~ 730 cm

-1
 (750 – 

720 cm
-1
) (only for CH2 sequences greater than 4).  

Aliphatic CH-
methyl 

- CH3 

CH stretches at ~ 2962 cm
-1
 (2970 – 2950 cm

-1
) (asymmetric) and ~ 

2872 (2880 – 2860 cm
-1
) (symmetric) cm

-1
. Vibrations for CH 

bending at ~ 1450 cm
-1
 (1470 – 1430 cm

-1
) (asymmetric) and 1380 

cm
-1
 (1380 – 1870 cm

-1
) (symmetric). 

Carbon – carbon 
multiple bonds 

- C ═ C -, - C ≡ C - 

A carbon double bond stretch at ~ 1640 cm
-1
 (1680 - 1620 cm

-1
) and 

a carbon triple bond at ~ 2120 cm
-1 

(2140 - 2100 cm
-1
). Aromatic 

carbon stretching vibrations at ~ 1600 cm
-1
 (1615 - 1580 cm

-1
) and 

1500 cm
-1
 (1510 – 1450 cm

-1
). Out-of-plane bending mode vibrations 

may produce strong sharp bands at 1000-650 cm
-1
, depending on 

the pattern of substitution. 

Carbon – nitrogen 
- C ≡ N, - N ═ C ═ O,   

- S – C ≡ N 

A nitrile stretch at ~ 2240 cm
-1
 an isocyanate stretch at ~ 2265 cm

-1
 

(2276 – 2240 cm
-1
) and a thiocyanate at ~ 2160 cm

-1
 (2175 – 2140 

cm
-1
). 

Carbonyl - C ═ O 
The highly polar carbonyl bond produces a strong absorption at 
1850-1 650 cm

-1
. Carbonyl type ester at 1740 and ketone at 1710 

cm
-1
. 

Amide - CONH - 
N-H stretch at ~ 3350 cm

-1
. Primary amide I at ~ 1650 cm

-1
, 

secondary amide at ~ 1550 cm
-1
, and tertiary amide at ~ 1450 cm

-1
 

“in stair-step-type intensities”. 

Acid salts - CO2
-
 

Asymmetric stretch for the carbon-oxygen bonds at ~ 1650-1540 cm
-

1
, depending on structure. 

Carbonate - CO3
-
 

Broad stretching band at ~ 1450 cm
-1
 (1490 – 1410 cm

-1
) with sharp 

bands at 900-700 cm
-1
, depending on cation. 

Carbon – oxygen - C – O - 
C-O stretch at 1200-1000 cm

-1
. Varies with hydrogen bonding and 

molecular structure. 

 

Table 3.9 Common inorganic ions (anionic groups) and their vibrational (stretching and 

bending) group frequencies (539, 540) 
 

Anion Stretching cm
-1
 Bending cm

-1
 

Water of hydration (H2O) 3800 – 3200 1700 – 1600 

Carbonate (CO3
2-
) 1550 – 1350 900 – 650 

Nitrate (NO3
-
) 1500 – 1250 850 – 700 

Sulphate (SO4
2-
) 1200 – 1050 680 – 600 

Phosphate (PO4
3-
) 1300 – 900 600 – 550 

Silicate (SiO3
4-
) 1200 – 800 800 – 400 
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3.7.5 Thermal analysis 

Thermal analysis can be defined as the measurement of physical properties 

of a material as a function of temperature as it is subjected to a controlled 

temperature programme, such as heating and cooling at a constant rate 

and/or isothermal holds. Measurements can be absolute, differential, or 

derivative measurements, with an output in the form of a curve representing 

thermal events (changes in a material such as phase transitions, 

decomposition, oxidation, and sintering) in the form of reaction peaks or 

discontinuities (541). Common thermal analysis techniques include 

differential thermal analysis (DTA), differential scanning calorimetry (DSC), 

and thermogravimetric analysis (TGA). 

DSC was the main thermal analysis technique used for Cap/doped CaP 

powders. It involves controlled heating of a sample and inert reference to 

determine any temperature difference between them in the form of heat 

absorption or development (541). It measures the difference in heat flow. 

Samples may undergo phase transition (endothermic reaction) or 

crystallisation (exothermic reaction), the latter which involves less heat flow 

(541). CaP/doped CaP powders were characterised using DCS Perkin Elmer 

8000 fitted with TS0801RO automated sample robot. The analyses were 

carried out in the temperature range ~ 25 – 600°C and at a heating rate of 

10°C/min. The working temperature is controlled by a water bath. It provides 

an inlet for nitrogen gas to purge the system whilst operated. It also has an 

automatic carousel sample loading system for automatic analyses. Sample 

preparation involved loading a weighted 10 mg of powder into an aluminium 

crucible pan (40 microlitre) to be heated. 
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3.7.6 Micro – hardness measurements 

Micro – hardness measurements involve micro – indentation using a 

diamond indenter, Vickers or Knoop, as shown in Figure 3.2 and Figure 3.3, 

respectively. Measurements of hardness (hardness number) of materials are 

carried out under known applied forces of ≤ 1 kgf (ASTM standards) usually 

for ~ 15 seconds (542). A hardness number can be calculated from the 

surface area of an indent divided by the applied force (kgf/mm2, which is 

then converted to N/m2), but expressed without units in the form of a 

hardness number (HV/force value). Vickers (HV) and Knoop (HK) hardness 

numbers are calculated using equations 3.12 and 3.13, respectively (542). 

HV = 
1854 . F

d2  ….. (3.12), 

where (F) is the force and (d) is the mean of the two diagonals of the indent.  

HK = 
P

CpL
2  ….. (3.13), 

where (P) is the load, (Cp) is the correction factor (0.0702), and (L) is the 

length of indentation along its long axis.  

 

 

Figure 3.2 Schematic of Vickers diamond indenter. 

 

h 

d2 

d1 136° 
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Figure 3.3 Schematic of Knoop diamond indenter. 

 

Micro – hardness measurements were carried out at the University of Leeds, 

Paediatric Dentistry Department, School of dentistry, using a computer – 

aided Duramin indenter machine (Knoop diamond indenter), to determine 

the effect of laser irradiation sintering on coated dentine sections, in terms of 

their resistance to permanent deformation. Measurements were taken after 

two indentations per section, under a 25g load for 30 seconds, and the 

indents were measured in microns by an image analysis software. 

3.7.7 Inductively – coupled plasma/mass spectrometry (ICP/MS) 

ICP/MS is an elemental analysis technique that is used to determine the 

level of traces of elements in a solution. A Perkin Elmer Elan DRCe ICP/MS 

(543) allows the determination of major and trace metals and other elements 

at ppb levels. It can also be used to determine the presence of metals in 

organic liquids. The instrument is capable of precisely determining a small or 

large number of elements in a solution. It is an important method for 

chemistry – based compositional analyses of various materials. It relies on 

separating materials into different compositional groups, and it can provide 

172°-30’ 

130° W 

L 

h 
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compositional data for over 130 isotopes, including rare earth, as well as 

measuring individual/specific isotopes of an element (543). Most ICP/MS 

analysis are quantitative, but an excellent semi quantitative analysis can also 

be performed, providing it is within ± 30% of the quantitative values (543). In 

addition, ICP/MS can provide isotope dilution and isotope ratio analysis 

(543). 

ICP/MS consists of a sample introduction system (a nebulizer and spray 

chamber), ICP torch and RF coil (generates an argon plasma, as an ion 

source), vacuum system (high vacuum for ion optics, quadrupole, and 

detector), interface (links the ICP ion source to the vacuum mass 

spectrometer), collision cell (removes interferences that can degrade the 

detection limits achieved), ion optics (direct the desired ions into the 

quadrupole), mass spectrometer (a mass filter, which separates ions by their 

mass – to – charge ratio), detector (counts individual ions leaving the 

quadrupole), and data handling and system controller (produces final 

concentration results) (543).  

Samples are introduced as aerosol droplets (particle or liquid droplets in 

air/gas) into the argon plasma. The latter dries the aerosol, separates the 

molecules, and removes electrons to form ions (single charge) (543). The 

ions are then directed into the mass spectrometer, which separate the ions 

based on their mass – to – charge ratio. At any given time, one mass – to – 

charge ratio passes through the mass spectrometer (543). The ions then 

reach the detector (dynode of electron multiplier) and release electrons, 

which are amplified to produce a measurable pulse (543). ICP/MS 

measurements were carried out at the University of Leeds, energy and 
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resources research institute, using Perkin Elmer Elan DRCe ICP/MS in total 

quantitative mode for the determination of elements at ppb levels. 

3.7.8 Profile roughness (Profilometry)  

Profile roughness, also known as profilometry, is a surface profile technique. 

It uses an optical or contact profilometer. The optical profilometer uses a 

beam of light to measure the surface roughness by comparing the optical 

path difference between a sample surface and reference surface. On the 

other hand, the contact profilometer uses a diamond stylus with radius of 20 

nm to 25 µm (544). The stylus moves vertically (height range from 10 nm to 

1 mm) and then horizontally (horizontal resolution is controlled by the scan 

speed and data signal sampling rate) across the sample for a specified 

distance under a specified contact force (tracking force from < 1 to 50 mg) 

(544). Small surface variations in vertical stylus displacement are measured 

as a function of position. An analogue signal is produced from the height 

position of the stylus and converted into a digital signal (544).  

The surface roughness measurements were carried out at the University of 

Leeds, School of Electronic and Electric Engineering, using LOT – ORIEL 

Alpha Step IQ Surface Profiler. The latter is a surface roughness profiler that 

provides 2D high accurate measurements, by scanning a sharp diamond 

tipped stylus (5 µm in radius) across a substrate surface. It can determine 

topography information such as thin step heights and surface micro 

roughness. It can measure heights of 400 µm with an accuracy of 5 nm and 

maximum scan length of 10 mm. The surface roughness measurements 

were carried out on CaP/doped CaP pellets before and after immersion in a 

citric acid solution. Surface roughness is determined by measuring 

roughness profile parameters, roughness average (Ra) and root mean 
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square roughness (Rq).  Roughness profile parameters (Ra and Rq) are the 

functions of the profile deviations from a mean line (545), as shown in Figure 

3.4. The mean line is given by equation 4.3.14 (546). 

Z̅ =
1

L
 ∑ Zx

L-1

X=0
   ….. (3.14) 

 

 

Figure 3.4 Schematic of roughness profile parameters Ra and Rq. 

 

Roughness average (Ra) is the arithmetic average of the absolute values of 

the roughness profile ordinates, as given by equation 4.3.15 (546).  

Ra =
1

L
 ∑ (|Zx – Z̅|)

L-1

X=0
 ….. (3.15) 

Root mean square roughness (Rq) is the root mean square average of the 

roughness profile ordinates, as given by equation 4.3.16 (546).  

Rq =√ 
1

L
 ∑ (Zx - Z̅)2

L-1

X=0
   ….. (3.16), 

where (Z) is the surface profile height, (L) is the the sampling length, (x) is a 

reference mean line, over which the topographical heights are measured, 

and (Zx) is the height amplitude at each iteration over the entire 

measurement length from X = 0 to L – 1 (546).   

Mean line 

Ra 
Rq 

X 

Z 
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Roughness average (Ra) values indicate whether a friction coefficient is high 

or low, and thus, the weariness of a surface. A surface with a large 

roughness average (Ra) value has a high friction coefficient, and thus, wear 

quickly. On the other hand, a surface with a small roughness average (Ra) 

value has a low friction coefficient, and thus, wear slowly. Statistically, the 

relation between roughness parameters (Ra) and (Rq) is given by Rq ≥ Ra, 

which depends on the sample surface profile. The difference between (Ra) 

and (Rq) values is an indication of the uniformity of a surface. 
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Chapter 4 

Results and Discussions 

 

Chapter 4 is divided into three sub chapters. Each chapter has a summary at 

the end, detailing the principle findings. The first chapter (4.1) is on the 

synthesis of calcium orthophosphates, via the chemical precipitation and 

hydrothermal methods under various synthesis conditions. The second 

chapter (4.2) is on the synthesis of doped calcium orthophosphates, via the 

chemical precipitation and hydrothermal methods under various synthesis 

conditions. The second chapter is divided into two parts. The first part is on 

the synthesis of doped calcium phosphates, via Er2O3, AlPO4, and CaF2 

compounds (batch A), while the second part is on the synthesis of doped 

calcium phosphates, via Er(NO3)3.5H2O, Al(NO3)3.9H2O, and NH4F 

compounds (batch B). The third chapter (4.3) is on the laser irradiation 

sintering investigation, which includes the characterisation of as prepared 

dentine, CaP/doped CaP – coated – dentine, and laser irradiation sintering 

of CaP/doped CaP pellets and CaP/doped CaP – coated – dentine sections. 

The third chapter also includes temperature change measurements during 

laser irradiation of CaP/doped CaP pellets and CaP/doped CaP – coated – 

dentine sections, acid erosion of CaP and doped CaP pellets, and micro – 

hardness measurements of as prepared dentine sections and CaP/doped 

CaP – coated – dentine sections. 
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Chapter 4.1 
Synthesis and characterisation of calcium phosphates 

 

Calcium orthophosphate (CaP) powders were synthesised as control 

samples, and they were prepared by the chemical precipitation and 

hydrothermal methods under different conditions, as shown in Table 4.1.1. 

CaP powders were investigated in terms of their particle size, morphology, 

composition, phase purity, and thermal behaviour, using SEM, SEM-EDX, 

static laser scattering, XRD, FTIR, and DSC analysis techniques. 

Table 4.1.1 Synthesis conditions for CaP powders 

 

Powder Synthesis method As – prepared 
pH 

Adjusted 
pH Temperature Reaction 

time 

CaP 
Chemical precipitation 5.4 ± 0.2 10 ± 0.2 RT 

24 hours 
Hydrothermal 5.4 ± 0.2 10 ± 0.2 200°C 

 

The synthesis conditions in Table 4.1.1, including the synthesis method, pH, 

temperature, and reaction time were adopted based on an initial 

investigation, involving the synthesis of CaP powders via the chemical 

precipitation and hydrothermal methods under different synthesis conditions. 

These conditions included temperature, pH, reaction time, and ageing time. 

The initial investigation involved the characterisation of CaP Powders by 

SEM and XRD analysis techniques, to investigate the effect of such 

conditions on the morphology of particles and CaP phase, which are 

presented and discussed next. 
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Figure 4.1.1 shows SEM of CaP particles that were prepared by the 

chemical precipitation method.  The particles were allowed to precipitate for 

24 hours, under room temperature and as – prepared pH 5.4 ± 0.2 

conditions. The CaP particles were in the micrometre scale, with a platelet – 

like morphology. The particles appeared to be poorly crystallised, which was 

probably due to the slow rate of nucleation at room temperature. Figure 

4.1.2 shows the XRD pattern of CaP synthesised by the chemical 

precipitation method under room temperature and as – prepared pH 5.4 ± 

0.2 conditions. The XRD pattern indicated the formation of a monetite phase, 

as compared to monetite JCPDS file 01-070-1425. The formation of the 

monetite phase was credited to the room temperature and as – prepared pH 

5.4 ± 0.2 conditions. The formation of the monetite phase was also 

supported by the formation of platelet – like particles, which is usually linked 

to monetite. 

 

 

Figure 4.1.1 SEM of CaP particles prepared by the chemical precipitation method under 

room temperature and as – prepared pH 5.4 ± 0.2 conditions, showing platelet – like 

morphology of particles. 
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Figure 4.1.2 XRD pattern of CaP powder prepared by the chemical precipitation method 

under room temperature and as – prepared pH 5.4 ± 0.2 conditions. Marked peaks 

(●) were assigned to monetite JCPDS file 01-070-1425. 

 

Figure 4.1.3 shows SEM of CaP particles that were synthesised under as – 

prepared pH 5.4 ± 0.2 and 80°C hydrothermal conditions. The particles were 

synthesised for 24, 48, and 72 hours, as shown in Figure 4.1.3 (a), (b), and 

(c), respectively. The hydrothermal synthesis at 80°C resulted in the 

formation of elongated particles, which indicated particle growth at the c – 

axis. The particles appeared to be well crystallised, which was probably due 

to the increase in the rate of nucleation. This indicated that the micrometre 

platelet – like particles that were produced at room temperature with the 

same pH 5.4 ± 0.2 were not favoured under 80°C hydrothermal conditions, 

and instead, elongated particles with reduced particle size and enhanced 

crystallinity were formed. The particles also varied in size and shape, 

depending on the reaction time. Figure 4.1.3 (a) shows a mixture of 

elongated platelet – like and needle – like particles that were synthesised 
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hydrothermally at 80°C for 24 hours. Increasing the reaction time to 48 hours 

resulted in the formation of needle – like particles with relatively decreased 

particle size, as shown in Figure 4.1.3 (b). on the other hand, increasing the 

reaction time to 72 hours resulted in the formation of elongated rod – like 

particles with increased particle dimension, compared to those synthesised 

for 48 hours. This suggested that prolonging the reaction time to 48 hours 

reduced the mean width of CaP particles significantly, while prolonging the 

reaction time to 72 hours increased the mean length of CaP particles 

significantly.  

 

  

 

Figure 4.1.3 SEM of CaP particles synthesised under as – prepared pH 5.4 ± 0.2 and 80°C 

hydrothermal conditions for (a) 24 hours, (b) 48 hours, and (c) 72 hours.  

 

 

b a 

c 
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CaP powders were also synthesised under as – prepared pH 5.4 ± 0.2 and 

200°C hydrothermal conditions for 24 and 72 hours. The hydrothermal 

reaction for 24 hours resulted in the formation of a mixture of elongated 

platelet – like and needle – like particles, as shown by SEM in Figure 4.1.4 

(a). On the other hand, the hydrothermal reaction for 72 hours resulted in 

needle – like particles with relatively reduced particle size (aspect ratio; 

length:width), as shown by SEM in Figure 4.1.4 (b). This suggested that 

prolonging the reaction time to 72 hours reduced the aspect ratio 

(length:width) of CaP particles significantly without affecting the morphology. 

 

  

Figure 4.1.4 SEM of CaP particles synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions for (a) 24 hours and (b) 72 hours. 

 

CaP powders were also synthesised under as – prepared pH 5.4 ± 0.2 and 

200°C hydrothermal conditions for 24 hours, after initial ageing of the 

starting CaP mixture under static conditions for 2, 4, and 6 weeks, as shown 

by SEM in Figure 4.1.5 (a), (b), and (c), respectively. Ageing of the starting 

CaP mixture had a slight effect on the particle size and morphology. 

Particles with elongated platelet – like and needle – like morphology were 

produced after ageing of the starting CaP mixture for 2, 4, and 6 weeks. The 

a b 
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CaP particles appeared to be slightly altered in size and morphology after 

ageing for 4 and 6 weeks, compared to ageing for 2 weeks. After ageing for 

4 and 6 weeks, the shape of particles appeared to favour the needle – like 

morphology, with a slight reduction in their aspect ratio (length:width).  

 

     

 

Figure 4.1.5 SEM of CaP particles synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions for 24 hours, after initial ageing of CaP mixture for (a) 2 

weeks, (b) 4 weeks, and (c) 6 weeks. 

 

The XRD patterns of these particles (CaP aged 2wks 200°C, CaP aged 

4wks 200°C, and CaP aged 6wks 200°C) indicated the formation of a 

monetite phase, as compared to monetite JCPDS file 01-070-1425, after 

ageing of the starting CaP mixture for 2, 4, and 6 weeks, as shown in Figure 

4.1.6. However, the XRD peaks at 2 theta 32.39°, 32.82° and 35.85°, in 

c 

a b 
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particular, were significantly reduced, whereas peaks at 2 theta 13°, 26.5°, 

and 40° were in good agreement with those of monetite JCPDS file 01-070-

1425.  The main slight difference between CaP XRD patterns was the 

reduction of peak intensities after ageing of the starting CaP mixture for 4 

and 6 weeks, compared to that for 2 weeks. This was probably because 

ageing of the starting CaP mixture was carried out under static conditions, 

and therefore, the ageing stage hardly affected the CaP particles. The 

results under hydrothermal conditions indicated that CaP particles grew at 

the c – axis, which was accompanied by a decrease in growth at the other 

directions. This was in good agreement with the increase of c – axis with 

increasing hydrothermal temperatures (547).  

 

 

Figure 4.1.6 XRD patterns of CaP powders prepared from solutions aged for 2, 4, and 6 

weeks and treated hydrothermally at 200°C for 24 hours. Marked peaks (●) were 

assigned to monetite JCPDS file 01-070-1425. 
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Moreover, CaP particles were also synthesised under hydrothermal 

conditions, after adjustment of pH of the starting CaP mixture. This resulted 

in significant alteration of particle size and morphology. CaP particles that 

were synthesised under 200°C hydrothermal conditions for 24 hours, with 

different pH values of pH 8 ± 0.2, 9 ± 0.2, 10 ± 0.2, and 11 ± 0.2, are shown 

by SEM in Figure 4.1.7 (a), (b), (c), and (d), respectively. Figure 4.1.7 (a) 

and (b) shows SEM of needle – like particles that were synthesised with pH 

8 ± 0.2 and pH 9 ± 0.2, respectively, with reduced particle size, compared to 

those synthesised with pH 5.4 ± 0.2. Figure 4.1.7 (c) and (d) shows SEM of 

rod – like particles that were synthesised with pH 10 ± 0.2 and pH 11 ± 0.2, 

respectively, with further reduction in particle size, compared to those 

synthesised with pH 8 ± 0.2 and pH 9 ± 0.2. All particles had aspect ratios in 

the nanoscale. This indicated that increasing the pH of CaP starting mixture 

reduced the mean aspect ratio (length:width) of CaP particles significantly. 

The change in size and shape as a function of pH is due to the provision of 

OH- ions. High concentration of OH- ions tends to reduce the diameter of 

CaP particles, particularly the mean length of particles, and drive the 

particles’ shape close to rod – like or spherical morphology (547). The 

preferential adsorption of OH- ions, from the starting mixture at pH ≥ 9, onto 

nuclei appeared to guide the crystal growth along preferential plane (547). 

This suggested that there was no an oriented crystal growth in alkaline 

conditions (547).  This was because CaP nuclei have a high tendency to 

grow at the c – axis in moderate acidic conditions (547). Under room 

temperature and low pH (~ 5.4) conditions, the particles grew at the c – axis 

along (001) direction, which led to the formation of platelet – like particles. 

The platelet – like particles also exhibited [110] orientation, growing along 
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the (211) direction (548). Under high temperature (> RT) and low pH 

conditions, the particles grew at the c – axis in unidirectional growth, which 

resulted in elongated platelet – like and needle – like particles. Under high 

pH conditions (> 5.4), the growth of particles in the c – axis appeared to be 

inhibited, which led to the formation of short rod – like particles. Elongated 

rod – like particles exhibited [2̅21] orientation and grew along the (102) 

direction (550). 

The dependence of particle morphology on the pH of starting mixture can be 

explained by the supersaturation of solution and particles’ surface charge 

(549). The increase of supersaturation tends to decrease the nucleation 

activation energy, and consequently, increases the nucleation rate (549). 

Therefore, the increase of supersaturation with increasing pH levels may 

increase the nucleation rate, and consequently, reduces the particle size.  

Under high pH conditions, the adsorption of more negatively charged OH- 

ions tends to increase the particle shell negative charge, causing particle 

repulsion and preventing particle agglomeration, which may help maintaining 

the nanosize of particles (549). 

XRD patterns of CaP powders that were hydrothermally synthesised at 

200°C for 24 hours with different pH values are shown in Figure 4.1.8. Under 

pH 8 ± 0.2 conditions, the XRD pattern (pH8 200°C 24h) indicated the 

formation of two phases of HAp and monetite, as compared to HAp JCPDS 

file 009-0432 and monetite JCPDS file 01-070-1425, respectively. Under pH 

≥ 9 conditions, the XRD patterns (pH9 200°C 24h, CaP pH10 200°C 24h, 

and CaP pH11 200°C 24h) indicated the formation of a single HAp phase, as 

compared to HAp JCPDS file 009-0432. 
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Figure 4.1.7 SEM of CaP particles synthesised under 200°C hydrothermal conditions for 24 

hours, with (a) pH 8 ± 0.2, (b) pH 9 ± 0.2, (c) pH 10 ± 0.2, and (d) pH 11 ± 0.2. 
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Figure 4.1.8 XRD patters of CaP powders synthesised from mixtures with pH 8 ± 0.2, 9 ± 

0.2, 10 ± 0.2, and 11 ± 0.2 by the hydrothermal method at 200°C for 24 hours. 

Marked peaks (●) were assigned to HAp JCPDS file 009-0432, and (♦) were assigned 

to monetite JCPDS file 01-070-1425. 

 

Since a single HAp phase, with nanosized and rod – like particles, was 

formed under pH ≥ 9 and 200°C hydrothermal conditions, the starting CaP 

mixture with pH 10 ± 0.2 was investigated at a lower hydrothermal 

temperature of 140°C for 24 and 72 hours, as shown by SEM in Figure 4.1.9 

(a) and (b), respectively. The hydrothermal synthesis at 140°C for 24 hours 

produced rod – like CaP particles in the nanoscale, which were relatively 

reduced in size after 72 hours. Although rod – like nanoparticles were 

obtained at 140°C after 24 and 72 hours, the hydrothermal synthesis at 

200°C for 24 hours produced much smaller nanoparticles, as shown in 

Figure 4.1.7 (c). 
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Figure 4.1.9 SEM of CaP particles synthesised under pH 10 ± 0.2 and 140°C hydrothermal 

conditions for (a) 24 hours and (b) 72 hours.  

 

The initial investigation can be summarised as follows. Temperature and 

reaction time affected the particles’ size and shape, producing poorly 

crystallised and platelet – like particles at room temperature, and well – 

crystallised and elongated – shaped particles, with reduced particle size, at 

hydrothermal temperature. The reaction time of 24 hours was concluded 

most adequate, as the reaction time over 24 hours insignificantly affected 

the particles’ size and shape. Ageing of the starting CaP mixture and post 

hydrothermal treatment (200°C) barely affected the particles’ size and 

morphology, and it had no effect on the obtained CaP phase. In contrast, 

adjusting the pH of starting CaP mixture (pH ≥ 9) and post hydrothermal 

treatment (200°C) significantly affected the particles’ size and shape, 

producing nanosized and rod – like particles of a single HAp phase. The 

results indicated the importance of temperature, pH, and reaction time in 

modifying the size and shape of CaP particles (12), and therefore, they were 

adopted to investigate the synthesis of CaP and doped CaP powders under 

room temperature, 200°C hydrothermal temperature, as – prepared pH 5.4 ± 

0.2, adjusted pH 10 ± 0.2, and a reaction time of 24 hours. 

b a 



- 196 - 

4.1.1 CaP (pH 5.4 ± 0.2, RT)  

CaP with as – prepared pH 5.4 ± 0.2 was synthesised at room temperature 

by two different reactions to investigate the effect of addition and stirring time 

on CaP particles, as follows:  

 First reaction: A solution of diammonium hydrogen phosphate 

((NH4)2HPO4) was added to a solution of calcium nitrate tetrahydrate 

(Ca(NO3)2.4H2O) by a fast dropping/addition technique for 15 minutes 

whilst being magnetically stirred at ~ 400 rpm for 30 minutes. 

 Second reaction: A solution of diammonium hydrogen phosphate 

((NH4)2HPO4) was added to a solution of calcium nitrate tetrahydrate 

(Ca(NO3)2.4H2O) by a slow dropping/addition technique for 30 

minutes whilst being magnetically stirred at ~ 400 rpm for 60 minutes. 

The mixtures were then treated as described before, covered to minimise 

the absorption of atmospheric CO2, left on standby at room temperature for 

24 hours, and finally, the wet precipitate was collected and dried in an oven 

at 80°C for 24 hours. 

Representative SEM of CaP particles that were synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions by the first and 

second reactions is shown in Figure 4.1.10 (a) and (b), respectively. SEM 

showed the formation of platelet – like particles under both reactions. Figure 

4.1.10 (a) shows SEM of CaP particles that were synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions by the fast addition 

of ((NH4)2HPO4) solution to (Ca(NO3)2.4H2O) solution. The fast addition of 

phosphate solution took 15 minutes whilst being magnetically stirred at ~ 

400 rpm for 30 minutes. On the other hand, Figure 4.1.10 (b) shows SEM of 
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CaP particles that were synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions by the slow addition of ((NH4)2HPO4) 

solution to (Ca(NO3)2.4H2O) solution. The slow addition of phosphate 

solution took 30 minutes whilst being magnetically stirred at ~ 400 rpm for 60 

minutes. 

The platelet – like particles that were synthesised by the slow dropping 

technique appeared to be well crystallised, compared to those synthesised 

by the fast dropping technique. The latter appeared to be poorly crystallised 

due to the presence of grooves, indicating incomplete crystallinity of 

particles, which was probably due to the short addition and stirring time of 

reactants. This suggested that the crystallinity was influenced by the addition 

time of solution – containing PO4
3- to solution – containing Ca2+, while the 

stirring time influenced the particles’ size and shape (12). This was 

supported by the unchanged morphology of needle – like particles (Figure 

4.1.5) that were aged under static conditions (non – stirred) for 2, 4, and 6 

weeks. Figure 4.1.11 shows the volume – based distribution of CaP particles 

(second reaction), as measured by the Malvern Mastersizer 2000E, with 

standard percentile values d(0.1), d(0.5), d(0.9), and volume weighted mean 

D[4,3]. The particles had a volume weighted mean D[4,3] of 51.2 µm with ± 1 

standard deviation error bar, as shown in Figure 4.1.12. 

SEM-EDX measurements (element weight percentage) of CaP powders that 

were synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions by the first (fast addition for 15 minutes and stirring for 30 

minutes) and second (slow addition for 30 minutes and stirring for 60 

minutes) reactions are shown in Table 4.1.2. The SEM-EDX measurements 
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indicated a Ca:P ratio of 1.0 for CaP powders that were precipitated from the 

first and second reactions. 

 

 

  

Figure 4.1.10 SEM of CaP particles synthesised under room temperature and pH 5.4 ± 0.2 

conditions, by (a) the first reaction (fast addition for 15 minutes and stirring for 30 

minutes) and (b) the second reaction (slow addition for 30 minutes and stirring for 60 

minutes. 

 

 

 

Figure 4.1.11 Particle size distribution of CaP synthesised under room temperature and pH 

5.4 ± 0.2 conditions, by the second reaction (slow addition for 30 minutes and stirring 

for 60 minutes). 
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Figure 4.1.12 Statistics graph of CaP synthesised under room temperature and pH 5.4 ± 0.2 

conditions by the second reaction (addition for 30 minutes and stirring for 60 minutes), 

showing the mean with ± 1 standard deviation error bar. 

 

 

Table 4.1.2 SEM-EDX measurements (element weight percentage) for CaP synthesised 

under room temperature and as – prepared pH 5.4 ± 0.2 conditions (first and second 

reactions) 

 

Element 

CaP-undoped pH5 RT              
first reaction 

CaP-undoped pH5 RT          
second reaction 

Weight % 

O K 50.09 46.82 

P K 20.48 18.90 

Ca K 21.71 20.37 

Ca:P ratio 1.06 1.07 

  

 

 

 

Particle size (µm) 
0.01                0.1                    1                     10                   100                 1000              10000 

V
o
lu

m
e

 (
%

) 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Mean with +/- 1 standard deviation error bar 



- 200 - 

XRD patterns of CaP powders that were synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions by the first (CaP-

undoped pH5 RT 1st reaction) and second (CaP-undoped pH5 RT 2nd 

reaction) reactions are shown in Figures 4.1.13 and 4.1.14, respectively. The 

XRD patterns indicated the formation of a monetite phase in the case of CaP 

powder that was synthesised by the first reaction, and the formation of a 

brushite phase in the case of CaP powder that was synthesised by the 

second reaction. The XRD patterns are in good agreement with monetite 

and brushite JCPDS files 01-070-1425 and 01-072-0713, respectively. The 

XRD pattern of CaP powder that was synthesised by the second reaction 

(CaP-undoped pH 5 RT 2nd reaction) showed a negligible monetite peak at 2 

theta 26.3°, compared to the major peaks of brushite. The main Miler indices 

(hkl) in Table 4.1.3 and Table 4.1.4 correspond to monetite JCPDS file 01-

070-1425 and brushite JCPDS file 01-072-0713, respectively, which 

confirmed the crystallographic data of the synthesised monetite and brushite 

phases, respectively. 

The Miler indices (hkl) and 2 theta of CaP that was synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions (CaP-undoped pH5 

RT) by the first and second reactions (monetite and brushite, respectively) 

were refined in the triclinic and monoclinic systems, respectively, using 

UnitCell program (Tim Holland’s software), to determine the crystallographic 

parameters. The latter were calculated using 1.54 Å wavelength and 

minimising the sum of squares of residuals in 2 theta. 
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Figure 4.1.13 XRD pattern of CaP synthesised under room temperature and as – prepared 

pH 5.4 ± 0.2 conditions by the first reaction (addition for 15 minutes and stirring for 30 

minutes). Marked peaks (●) were assigned to monetite JCPDS file 01-070-1425. 

 

 

Figure 4.1.14 XRD pattern of CaP synthesised under room temperature and as – prepared 

pH 5.4 ± 0.2 conditions by the second reaction (addition for 30 minutes and stirring for 

60 minutes). Marked peaks (●) were assigned to brushite JCPDS file 01-072-0713, 

while one peak (♦) was assigned to monetite JCPDS file 01-070-1425. 
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Table 4.1.3 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices (hkl) 

for monetite JCPDS file 01-070-1425 and CaP-undoped pH5 RT (1
st
 reaction) 

 

Miler indices 
Monetite  JCPDS file                  

01-070-1425 
CaP-undoped pH5 RT            

(1
st

 reaction) 

h k l 2θ [°] d [A°] I [%] 2θ [°] d [A°] I [%] 

0 0 1 13.09 6.75 23.1 13.19 6.70 12.1 

1 1 1 25.60 3.47 14.5 - - - 

0 0 2 26.36 3.37 93.2 25.93 3.43 10.95 

-1 0 2 26.59 3.34 100 26.47 3.36 100 

-1 -1 2 28.5 3.12 28.5 28.60 3.12 5.54 

1 2 0 30.18 2.95 86.9 30.22 2.95 12.04 

-1 -2 1 30.39 2.93 45.5 30.46 2.93 5.37 

1 0 2 32.39 2.76 19 31.80 2.81 45.1 

2 0 1 32.53 2.74 36.4 32.23 2.77 21.22 

-2 0 2 32.82 2.72 59.3 32.93 2.71 39.34 

0 -2 2 35.85 2.50 20.4 35.48 2.52 3 

2 1 1 35.94 2.49 14.9 36.05 2.49 4.31 

0 0 3 40.01 2.25 18.6 39.83 2.26 14.57 

-1 2 2 40.25 2.23 14.6 40.13 2.24 27.45 

2 -2 1 41.68 2.16 16.2 41.97 2.15 4.7 

-3 2 0 49.11 1.85 24.6 49.48 1.84 16.83 

 

Table 4.1.4 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices (hkl) 

for brushite JCPDS file 01-072-0713 and CaP-undoped pH5 RT (2
nd

 reaction) 

 

Miler indices 
Brushite  JCPDS file                

01-072-0713 
CaP-undoped pH5 RT            

(2
nd

 reaction) 

h k l 2θ [°] d [A°] I [%] 2θ [°] d [A°] I [%] 

0 2 0 11.65 7.59 100.0 11.6 7.62 100 

1 2 -1 20.94 4.23 79.5 20.88 4.25 15.02 

0 4 0 23.42 3.79 4.6 23.36 3.80 5.4 

- - - - - - 26.33 3.38 1.98 

1 4 -1 29.29 3.04 53.7 29.22 3.05 17.36 

1 2 1 30.54 2.92 34.9 30.44 2.93 4.87 

1 5 0 34.17 2.62 32.4 34.07 2.63 5.73 

2 0 0 34.43 2.60 19.9 34.34 2.61 2.21 

1 4 1 36.92 2.43 10.2 36.80 2.44 1.86 

1 5 -2 41.58 2.17 12.4 41.48 2.17 3.3 

2 4 0 42.06 2.14 10.9 41.95 2.15 1.85 
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Unit cell parameters of CaP that were synthesised by the first (CaP-undoped 

pH5 RT, 1st reaction) and second (CaP-undoped pH5 RT, 2nd reaction) 

reactions are shown in Table 4.1.5. The results indicated that the crystal 

structure of CaP (CaP-undoped pH 5 RT, 1st reaction) was in a triclinic 

system with space group P-1, whereas the crystal structure of CaP (CaP-

undoped pH 5 RT, 2nd reaction) was in a monoclinic system with space 

group Ia. Unit cell parameters of CaP-undoped pH 5 RT, 1st reaction are in 

good agreement with those of monetite JCPDS file 01-070-1425, whereas 

those of CaP-undoped pH 5 RT, 2nd reaction are in good agreement with 

those of brushite JCPDS file 01-072-0713, except that a – axes (6.35 Å) and 

c – axes (5.83 Å) are opposite to those of brushite JCPDS file 01-072-0713, 

5.81 Å and 6.23 Å, respectively. This indicated particle growth in a – axes 

rather than reported growth in c – axes  (548). The results also indicated that 

the synthesis of CaP by the second reaction (CaP-undoped pH 5 RT, 2nd 

reaction) led to the formation of brushite with smaller cell volume by 184.8 

Å3.   

Table 4.1.5 Unit cell parameters for CaP-undoped pH5 RT (1st reaction) and CaP-undoped 

pH5 RT (2nd reaction), compared to those of monetite JCPDS file 01-070-1425 and 

brushite JCPDS file 01-072-0713 

 

Cell parameter 
CaP-undoped        

pH5 RT                   
(1st reaction) 

Std.D 
Monetite  

JCPDS file                  
01-070-1425 

CaP-undoped      
pH5 RT                 

(2nd
 
reaction) 

Std.D 
Brushite  

JCPDS file                
01-072-0713 

a (Å) 6.91 0.001 6.91 6.35 0.0006 5.81 

b (Å) 6.63 0.001 6.62 15.18 0.001 15.18 

c (Å) 6.99 0.002 6.99 5.83 0.0005 6.23 

Alpha (°) 95.99 0.02 96.34 90 - 90 

Beta (°) 103.82 0.01 103.82 118.6 0.007 116.43 

Gamma (°) 88.21 0.01 88.33 90 - 90 

Cell volume (Å
3
) 310.06 0.06 309.28 494.86 0.05 492.91 

  Std.D = Standard deviation 
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CaP powders that were synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions by the second reaction were investigated 

by hot stage XRD from ~ 25°C up to 800°C. The hot stage XRD patterns are 

shown and compared to JCPDS file references in Figures 4.1.15 – 4.1.18. 

The XRD pattern in Figure 4.1.15 indicated that the brushite phase was 

transformed into monetite phase upon heating at 200°C due to the 

dehydration of brushite, which is in good agreement with monetite JCPDS 

file 01-070-1425. The XRD pattern in Figure 4.1.16 indicated the formation 

of calcium pyrophosphate phase (β-Ca2P2O7) at 400°C, which is in good 

agreement with calcium pyrophosphate JCPDS file 00-009-0346. The XRD 

patterns in Figures 4.1.17 and 4.1.18 indicated that calcium pyrophosphate 

phase (β-Ca2P2O7) remained unchanged at 600°C and 800°C, respectively. 

The phase transformations from brushite to monetite at around 200°C and 

from monetite to calcium pyrophosphate (β-Ca2P2O7) at around 400°C are 

also in good agreement with the reported phase transformations between 

200°C and 800°C (550, 551).  

Since CaP powder that was synthesised by the second reaction had 

relatively better crystallinity, the second reaction parameters (addition for 30 

minutes and stirring at ~ 400 rpm for 60 minutes) were adopted to synthesis 

all CaP powders. The slow addition for 30 minutes and longer stirring time 

for 60 minute appeared to allow sufficient time for the reaction of reactants to 

take place, and consequently, the formation of a particular CaP phase with 

improved crystallinity. These parameters were adopted alongside other 

synthesis parameters, as stated before, including pH 5.4 ± 0.2, pH 10 ± 0.2, 

room temperature, 200°C hydrothermal conditions, and reaction time for 24 

hours. 
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Figure 4.1.15 Hot stage XRD at 200°C of CaP synthesised under room temperature and as 

– prepared pH 5.4 ± 0.2 conditions by the second reaction, compared to monetite 

JCPDS file 01-070-1425. Marked peaks (●) were assigned to monetite. 

 

 

Figure 4.1.16 Hot stage XRD at 400°C of CaP synthesised under room temperature and as 

– prepared pH 5.4 ± 0.2 conditions by the second reaction, compared to calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to calcium 

pyrophosphate (β-Ca2P2O7). 
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Figure 4.1.17 Hot stage XRD at 600°C of CaP synthesised under room temperature and as 

– prepared pH 5.4 ± 0.2 conditions by the second reaction, compared to calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to calcium 

pyrophosphate (β-Ca2P2O7). 

 

 

Figure 4.1.18 Hot stage XRD at 800°C of CaP synthesised under room temperature and as 

– prepared pH 5.4 ± 0.2 conditions by the second reaction, compared to calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to calcium 

pyrophosphate (β-Ca2P2O7). 
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4.1.2 CaP (pH 10 ± 0.2, RT) 

Representative SEM of CaP powder that was synthesised under room 

temperature and pH 10 ± 0.2 conditions is shown in Figure 4.1.19. Figure 

4.1.19 (a) shows micrometre agglomerates with platelet – like morphology. 

The agglomerates (clusters) appeared to show platelet – like particles in the 

nanoscale, as shown in Figure 4.1.19 (b). The micrometre particles 

appeared to have an amorphous – like morphology, which was probably due 

to the agglomeration of fine platelet – like particles, as shown in Figure 

4.1.19 (b). 

The particles varied in size from micrometre agglomerates to nanometre 

platelet – like particles. Figure 4.1.20 shows the volume – based distribution 

of CaP particles, as measured by the Mastersizer 2000E, with standard 

percentile values d(0.1), d(0.5), d(0.9), and volume weighted mean D[4,3]. 

The particles had a volume weighted mean D[4,3] of 81.4 µm with a ± 1 

standard deviation error bar, as shown in Figure 4.1.21. The values seem to 

be in good agreement with the agglomerates shown by SEM.   

SEM-EDX measurements (element weight percentage) of CaP that was 

synthesised under room temperature and pH 10 ± 0.2 conditions are shown 

in Table 4.1.6. The SEM-EDX measurements of five spectra, as shown by 

SEM in Figure 4.1.22, indicated a mean Ca:P ratio of 1.29 (~ 1.3).  
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Figure 4.1.19 SEM of CaP particles synthesised under room temperature and pH 10 ± 0.2 

conditions, showing (a) micrometre agglomerated particles and (b) nanometre platelet 

– like CaP particles. 

 

 

 

Figure 4.1.20 Particle size distribution of CaP synthesised under room temperature and pH 

10 ± 0.2 conditions. 
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Figure 4.1.21 Statistics graph of CaP synthesised under room temperature and pH 10 ± 0.2 

conditions, showing the mean with ± 1 standard deviation error bar. 

 

 

Table 4.1.6 SEM-EDX measurements (element weight percentage) for CaP synthesised 

under room temperature and pH 10 ± 0.2 conditions 

 

Spectrum O P Ca Ca:P ratio 

Spectrum 1 50.22 15.71 21.06 1.34 

Spectrum 2 62.2 11.59 14.35 1.23 

Spectrum 3 61.33 11.79 14.31 1.21 

Spectrum 4 58.67 11.19 15.53 1.38 

Spectrum 5 62.33 10.31 13.48 1.30 

Mean 58.95 12.12 15.75 1.29 

Std. Deviation 5.1 2.09 3.06 0.07 
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Figure 4.1.22 SEM of CaP synthesised under room temperature and pH 10 ± 0.2 conditions, 

showing the obtained EDX spectra.  

 

XRD pattern of CaP synthesised under room temperature and pH 10 ± 0.2 

conditions (CaP-undoped pH 10 RT) is shown in Figure 4.1.23. The XRD 

pattern indicated the formation of HAp and brushite phases, which are in 

good agreement with HAp JCPDS file 009-0432 and brushite JCPDS file 01-

072-0713. Reduced peak intensities were observed, particularly at 2 theta 

13°, which could be due to inhibition of particle growth in the c – axis under 

high pH levels (550). The main Miler indices (hkl) in Table 4.1.7 correspond 

to HAp JCPDS file 009-0432 and brushite JCPDS file 01-072-0713, which 

confirmed the crystallographic data of the synthesised HAp and brushite 

phases. The broadening of HAp peaks reflected the nanosize of platelet – 

like particles, shown by SEM in Figure 4.1.19 (b). The XRD indicated that 

increasing the pH of CaP starting mixture to pH 10 ± 0.2 promoted the 

formation of HAp phase, but together with a brushite phase, the latter which 

was formed under as – prepared pH 5.4 ± 0.2 conditions.  
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Figure 4.1.23 XRD pattern of CaP synthesised under room temperature and pH 10 ± 0.2 

conditions. Marked peaks (●) were assigned to HAp JCPDS file 009-0432 and (♦) 

were assigned to brushite JCPDS file 01-072-0713. 

 

Table 4.1.7 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices (hkl) 

for HAp JCPDS file 009-0432, brushite JCPDS file 01-072-0713, and CaP pH 10 RT 

 

Miler indices HAp  JCPDS file 009-0432 CaP pH10 RT 

h k  l  2θ [°] d [A°] I [%] 2θ [°] d [A°] I [%] 

1 1 1 22.90 3.88 10 22.70 3.91 4.92 

0 0 2 25.87 3.44 40 25.87 3.44 48.93 

2 1 1 31.77 2.81 100 31.65 2.82 93.58 

1 1 2 32.19 2.77 60 32.13 2.78 100 

2 0 2 34.04 2.63 25 34.11 2.62 58.7 

3 1 0 39.81 2.26 20 39.70 2.27 19.54 

2 2 2 46.71 1.94 30 46.53 1.95 23.84 

3 1 2 48.10 1.89 16 48.42 1.87 24.29 

2 1 3 49.46 1.84 40 49.33 1.84 38.98 

0 0 4 53.14 1.72 20 53.16 1.72 28.39 

3 0 4 64.08 1.45 13 63.96 1.45 23.89 

Miler indices Brushite JCPDS file 01-072-0713 CaP pH10 RT 

h k l 2θ [°] d [A°] I [%] 2θ [°] d [A°] I [%] 

0 2 0 11.65 7.59 100.0 11.60 7.62 32.47 

1 2 -1 20.94 4.23 79.5 20.90 4.24 48.12 

1 4 -1 29.29 3.04 53.7 29.2 3.05 60.23 

1 2 1 30.54 2.92 34.9 30.47 2.93 46.03 

1 4 1 36.92 2.43 10.2 36.84 2.43 10.09 

1 5 -2 41.58 2.17 12.4 41.54 2.17 19.11 

2 4 0 42.06 2.14 10.9 42.01 2.15 14.89 
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4.1.3 CaP (pH 5.4 ± 0.2, 200°C hydrothermal) 

Representative SEM of CaP powder that was synthesised under as – 

prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions is shown in Figure 

4.1.24. Figure 4.1.24 (a) shows micrometre agglomerates of CaP particles, 

while Figure 4.1.24 (b) shows rod – like particles in the nanometre scale. 

The CaP agglomerates (Figure 4.1.24 b) appeared to have an amorphous – 

like morphology, which was probably due to the agglomeration of nanosized 

particles. The particle size varied from micrometre agglomerates to 

nanometre rod – like particles. Figure 4.1.25 shows the volume – based 

distribution of CaP particles, as measured by the Malvern Mastersizer 

2000E, with standard percentile values d(0.1), d(0.5), d(0.9), and volume 

weighted mean D[4,3]. The particles had a volume weighted mean D[4,3] of 

101 µm with a ± 1 standard deviation error bar, as shown in Figure 4.1.26. 

The values seem to be in good agreement with the agglomerates shown by 

SEM. 

SEM-EDX measurements (element weight percentage) of CaP powder that 

was synthesised under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal 

conditions are shown in Table 4.1.8. The SEM-EDX measurements of five 

spectra, as shown by SEM in Figure 4.1.27, indicated a mean Ca:P ratio of 

1.73. Although the spectra were taken from CaP particles at the time of the 

measurement, spectrum number three was way out, compared to the other 

spectra, which could be because it was not centred onto the CaP particle, 

and thus, it was influenced by the carbon – based SEM stub.    
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Figure 4.1.24 SEM of CaP synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, showing (a) micrometre agglomerates/clusters of CaP 

particles and (b) nanometre rod – like CaP particles.  

 

 

 

Figure 4.1.25 Particle size distribution of CaP synthesised under pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions. 
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Figure 4.1.26 Statistics graph of CaP synthesised under pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, showing the mean with ± 1 standard deviation error bar. 

 

 

Table 4.1.8 SEM-EDX measurements (element weight percentage) for CaP synthesised 

under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions 

 

Spectrum O P Ca Ca:P ratio 

Spectrum 1 46.07 15.03 27.62 1.83 

Spectrum 2 48.34 14.33 26.34 1.83 

Spectrum 3 60.49 3.72 5.78 1.55 

Spectrum 4 67.42 6.27 10.2 1.62 

Spectrum 5 52 12.46 22.95 1.84 

Mean 54.87 10.36 18.58 1.73 

Std. Deviation 8.91 5.07 9.94 0.1 
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Figure 4.1.27 SEM of CaP synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, showing the obtained EDX spectra. 

 

XRD pattern of CaP (CaP-undoped pH5 200°C hydrothermal) that was 

synthesised under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal 

conditions is shown in Figure 4.1.28. The XRD pattern indicated the 

formation of a HAp phase, which is in good agreement with HAp JCPDS file 

009-0432. The formation of HAp is also in good agreement with Ca:P ratio of 

1.73. 

The main Miler indices (hkl) in Table 4.1.9 correspond to HAp JCPDS file 

009-0432, which confirmed the crystallographic data of the synthesised HAp 

phase. The peaks of XRD pattern appeared to be broad enough to reflect 

the nanosize of HAp particles shown by SEM in Figure 4.1.24 (b), even 

though the particle size analysis indicated the particle size in the micrometre 

scale. 

 

 

 



- 216 - 

 

Figure 4.1.28 XRD pattern of CaP synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, compared to HAp JCPDS file 009-0432. Marked peaks (●) 

were assigned to HAp. 

 

Table 4.1.9 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices (hkl) 

for HAp JCPDS file 009-0432 and CaP pH5 200°C hydrothermal 

 

Miler indices HAp  JCPDS file 009-0432 CaP pH5 200°C hydrothermal 

h k  l  2θ [°] d [A°] I [%] 2θ [°] d [A°] I [%] 

1 0 0 10.82 8.17 12 10.74 8.23 3.1 

2 0 0 21.82 4.07 10 21.71 4.09 3.17 

1 1 1 22.90 3.88 10 22.83 3.89 3.93 

0 0 2 25.87 3.44 40 25.85 3.44 42.24 

1 0 2 28.12 3.17 12 28.10 3.17 9.16 

2 1 0 28.96 3.08 18 28.88 3.09 13.86 

2 1 1 31.77 2.81 100 31.72 2.82 100 

1 1 2 32.19 2.77 60 32.17 2.78 64.37 

3 0 0 32.90 2.72 60 32.86 2.72 61.61 

2 0 2 34.04 2.63 25 34.03 2.63 25.46 

3 1 0 39.81 2.26 20 39.74 2.26 27.04 

2 2 2 46.71 1.94 30 46.66 1.94 42.11 

3 1 2 48.10 1.89 16 48.03 1.89 17.78 

2 1 3 49.46 1.84 40 49.45 1.84 52.6 

3   2 1 50.49 1.80 20 50.43 1.80 22.42 

4 1 0 51.28 1.78 12 51.21 1.78 16.37 

4 0 2 52.10 1.75 16 52.03 1.75 18.83 

0 0 4 53.14 1.72 20 53.17 1.72 29.62 

3 0 4 64.08 1.45 13 63.96 1.45 20.76 
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4.1.4 CaP (pH 10 ± 0.2, 200°C hydrothermal) 

Representative SEM of CaP that was synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions is shown in Figure 4.1.29. Figure 4.1.29 (a) 

shows micrometre agglomerates of CaP particles, whereas Figure 4.1.29 (b) 

shows platelet – like and needle – like particles. The platelet – like particles 

appeared to be trapped in a mesh of needle – like particles, as shown in 

Figure 4.1.29 (b). The particle size varied from micrometre platelet – like 

particles to nanometre needle – like particles. Figure 4.1.30 shows the 

volume – based distribution of CaP particles, as measured by the Malvern 

Mastersizer 2000E, with standard percentile values d(0.1), d(0.5), d(0.9), 

and volume weighted mean D[4,3]. The particles had a volume weighted 

mean D[4,3] of 58.2 µm with a ± 1 standard deviation error bar, as shown in 

Figure 4.1.31. The values seem to be in good agreement with the 

agglomerates shown by SEM. 

SEM-EDX measurements (element weight percentage) of CaP powder that 

was synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions are 

shown in Table 4.1.10. The SEM-EDX measurements of four spectra, as 

shown by SEM in Figure 4.1.32, indicated a mean Ca:P ratio of 1.66. 
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Figure 4.1.29 SEM of CaP powder synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions, showing (a) micrometre agglomerates/clusters of CaP particles and (b) 

platelet – like and needle – like particles. 
 

 

 

Figure 4.1.30 Particle size distribution of CaP synthesised under pH 10 ± 0.2 and 200°C 

hydrothermal conditions. 
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Figure 4.1.31 Statistics graph of CaP synthesised under pH 10 ± 0.2 and 200°C 

hydrothermal conditions, showing the mean with ± 1 standard deviation error bar. 
 

 

Table 4.1.10 SEM-EDX measurements (element weight percentage) for CaP synthesised 

under pH 10 ± 0.2 and 200°C hydrothermal conditions 

 

Spectrum O P Ca Ca:P ratio 

Spectrum 1 55.05 10.76 18.01 1.67 

Spectrum 2 58.26 9.57 15.53 1.62 

Spectrum 3 52.38 11.48 20.07 1.74 

Spectrum 4 55.6 10.45 17.2 1.64 

Mean 55.32 10.57 17.7 1.66 

Std. Deviation 2.41 0.79 1.89 0.05 
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Figure 4.1.32 SEM of CaP synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions, showing the obtained EDX spectra. 

 

The reasons for the formation of platelet – like particles together with needle 

– like particles under pH 10 ± 0.2 and 200°C hydrothermal conditions are 

unclear; however, this was most likely due to an incorrect pH reading of the 

CaP starting mixture. This conclusion was based on the comparison of XRD 

pattern (CaP-undoped pH10 200°C hydrothermal) with those obtained 

during the initial investigation (CaP-undoped pH10 200°C hydrothermal 

(initial investigation) and CaP-undoped pH8 200°C hydrothermal (initial 

investigation)), as shown in Figure 4.1.33. The XRD pattern (CaP-undoped 

pH10 200°C hydrothermal) is in good agreement with that (CaP-undoped 

pH8 200°C hydrothermal (initial investigation)) from the initial investigation. 

Although the XRD patterns (CaP-undoped pH10 200°C hydrothermal) and 

(CaP-undoped pH8 200°C hydrothermal (initial investigation)) are in good 

agreement, the SEM for (CaP-undoped pH8 200°C hydrothermal (initial 

investigation)) showed needle – like particles only (Figure 4.1.7 a). 

Repetition of the synthesis of this CaP batch (CaP-undoped pH10 200°C 
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hydrothermal) was not carried out, because the effect of pH 10 and 200°C 

hydrothermal conditions was already demonstrated during the initial 

investigation, which resulted in a single HAp phase with nanometre rod – like 

particles. 

XRD pattern of CaP powder (CaP-undoped pH10 200°C hydrothermal) that 

was synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions is 

shown and compared to HAp JCPDS file 009-0432 and monetite JCPDS file 

01-070-1425 in Figure 4.1.34. The XRD pattern indicated the formation of 

two phases of HAp and monetite, which are in good agreement with HAp 

JCPDS file 009-0432 and monetite JCPDS file 01-070-1425, respectively. 

The main Miler indices (hkl) in Tables 4.1.11 and 4.1.12 correspond to 

monetite JCPDS file 01-070-1425 and HAp JCPDS file 009-0432, 

respectively, which confirmed the crystallographic data of the synthesised 

monetite and HAp phases. This is also in good agreement with the formation 

of monetite platelet – like particles and HAp needle – like particles shown by 

SEM in Figure 4.1.29. 
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Figure 4.1.33 XRD pattern of CaP synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions, compared to the CaP synthesised under pH 8 ± 0.2, pH 10 ± 0.2 and 

200°C hydrothermal conditions from the initial investigation. Marked peaks (●) were 

assigned to HAp and (♦) were assigned to monetite.  

 

 

Figure 4.1.34 XRD pattern of CaP synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions, compared to HAp JCPDS file 009-0432 and monetite JCPDS file 01-070-

1425. Marked peaks (●) were assigned to HAp and (♦) were assigned to monetite. 
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Table 4.1.11 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices 

(hkl) for Monetite JCPDS file 01-070-1425 and CaP pH10 200°C hydrothermal 

 

Miler indices 
Monetite JCPDS file              

01-070-1425 
CaP pH10 200°C hydrothermal 

h  k l 2θ d [A°] I [%] 2θ d [A°] I [%] 

0 0 1 13.09 6.75 23.1 13.04 6.78 9.77 

0 0 2 26.36 3.37 94.4 26.32 3.38 100 

-1 0 2 26.59 3.34 100 26.59 3.35 56.83 

-1 -1 2 28.5 3.12 28.5 28.47 3.13 19.98 

1 2 0 30.18 2.95 86.9 30.10 2.96 70.76 

1 0 2 32.39 2.76 19 32.43 2.76 37.13 

-2 0 2 32.82 2.72 59.3 32.79 2.73 80.47 

2 1 1 35.94 2.49 14.9 35.96 2.49 19.84 

0 0 3 40.01 2.25 18.6 40.01 2.25 34.73 

-1 2 2 40.25 2.23 14.6 40.96 2.20 17.75 

2 -2 1 41.68 2.16 16.2 41.78 2.16 12.18 

-3 2 0 49.11 1.85 24.6 49.40 1.84 31.06 

 

 

Table 4.1.12 XRD 2 theta (2θ [°]), d – spacing (d [A°]), intensity (I [%]), and Miler indices 

(hkl) for HAp JCPDS file 009-0432 and CaP pH10 200°C hydrothermal 

 

Miler indices HAp JCPDS file 009-0432 CaP pH10 200°C hydrothermal 

h k l 2θ d [A°] I [%] 2θ d [A°] I [%] 

1 0 0 10.82 8.17 12 10.73 8.23 3.03 

2 0 0 21.82 4.07 10 21.77 4.08 2.31 

1 1 1 22.90 3.88 10 22.79 3.90 3.66 

0 0 2 25.87 3.44 40 25.81 3.45 28.87 

1 0 2 28.12 3.17 12 28.05 3.18 5.58 

2 1 0 28.96 3.08 18 28.83 3.09 11.92 

2 1 1 31.77 2.81 100 31.68 2.82 69.54 

1 1 2 32.19 2.77 60 32.11 2.78 40.3 

3 0 0 32.90 2.72 60 32.79 2.73 80.47 

2 0 2 34.04 2.63 25 33.99 2.63 16.62 

3 1 0 39.81 2.26 20 40.01 2.25 34.73 

2 2 2 46.71 1.94 30 46.62 1.94 22.96 

3 1 2 48.10 1.89 16 48.01 1.89 7.91 

2 1 3 49.46 1.84 40 49.40 1.84 31.06 
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CaP powders that were synthesised at different temperatures (room 

temperature and 200°C hydrothermal conditions) and different pH values (as 

– prepared pH 5.4 ± 0.2 and adjusted pH 10 ± 0.2) are compared in terms of 

their particle size distribution in Table 4.1.13. The refractive index and 

absorption index for CaP used in these calculations are 1.629 and 0.1, 

respectively. The measured median particle diameter d(0.5), absolute 

deviation from median (uniformity), span, and the 10% and 90% size 

distribution by volume percentage (v%) for CaP particles are presented in 

Table 4.1.13. 

The results indicated that the mean diameter D[4,3] was lowest (51.2 µm) in 

the case of CaP-undoped pH5 RT and highest (101 µm) in the case of CaP-

undoped pH5 200°C hydrothermal. In the case of CaP-undoped pH10 RT 

and CaP-undoped pH10 200°C hydrothermal, the mean diameter D[4,3] was 

81.4 µm and 58.2 µm, respectively. These values seem to be in good 

agreement with SEM of CaP agglomerates. Since the CaP powders (CaP-

undoped pH10 RT and CaP-undoped pH10 200°C hydrothermal) are 

agglomerates of nanoparticles, the accuracy of particle size measurements 

depend on the quality of the powder dispersion. 

The small span values in the case of CaP-undoped pH5 RT, CaP-undoped 

pH5 200°C hydrothermal, and CaP-undoped pH10 200°C hydrothermal 

indicated a narrow distribution, while the large span value in the case of 

CaP-undoped pH10 RT indicated a broad distribution. This indicated that the 

particles of CaP-undoped pH5 RT, CaP-undoped pH5 200°C hydrothermal, 

and CaP-undoped pH10 200°C hydrothermal are more uniform in size than 

CaP-undoped pH10 RT. 
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Table 4.1.13 Particle size data for CaP powders 

 

Sample d(0.1) µm d(0.5) µm d(0.9) µm Uniformity Span D[4,3] µm 

CaP-undoped                
pH5 RT 

8.73 45 102.63 0.64 2.08 51.28 

CaP-undoped            
pH10 RT 

2.87 14.14 255 5.33 17.83 81.41 

CaP-undoped pH5 
200°C hydrothermal 

4.52 61.72 258.83 1.29 4.12 101.72 

CaP-undoped pH10 
200°C hydrothermal 

8.9 35.2 123.82 1.15 3.26 58.2 

 

The SEM and XRD results indicated that temperature and pH of starting 

mixture are of great importance in producing a particular CaP phase with 

desired particle size and shape. The effect of pH of starting mixture on the 

CaP particle morphology was explained by the solution supersaturation and 

particles’ surface charge (549). The increase of supersaturation with 

increasing pH levels may increase the nucleation rate, and consequently, 

reduces the particle size. Under high pH conditions, an increase in the 

particle shell negative charge causes particle repulsion, which may help 

maintaining the nanosize of particles. In addition, post heat treatments are 

also important in introducing phase transformations, which were 

demonstrated by the hot stage XRD investigation between ~ 25°C and 

800°C. 

XRD and FTIR are two important techniques that complement each other in 

determining the structure of the synthesised CaP, phase composition, and 

functional groups. XRD patterns provide data about the crystal structure and 

its phase composition. On the other hand, FTIR is effective in detecting 

functional groups and characterizing covalent bonding data. It provides data 

about chemical bonds in a molecule by producing IR spectra. The latter 

produce a distinctive molecular fingerprint, which is used to analyse samples 
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for many different components. FTIR spectra provide data about sample 

composition and degree of atoms’ order in the unit cell, based on location of 

absorption band and bandwidth, respectively. 

Characteristic absorption bands of functional groups for HAp, brushite, and 

monetite phases are widely reported (552, 553), as shown in Tables 4.1.14, 

4.1.15, and 4.1.16, respectively. Vibrational modes can be symmetrical 

stretching (v1), asymmetrical stretching (v2), bending in and out of plane 

(v3), and bending in plane (v4). Absorption bands of functional groups that 

indicate the formation of a typical HAp structure are widely reported (554-

558). Absorption bands at 3570 cm-1 and 631 cm-1 are assigned to the 

stretching and liberation modes of structural OH group (O–H). An absorption 

band at 472 cm-1 is assigned to the O–P–O bending variation of PO4 (v2) 

group, which is characteristic to HAp tetrahedral structure. A double band at 

570 cm-1 and 602 cm-1 is assigned to the O–PO asymmetric and symmetric 

deformation modes of PO4 group (v4). An absorption band at 963 cm-1 is 

assigned to the symmetric stretching mode of PO4 group. Strong absorption 

bands at 1090 cm-1 and 1040 cm-1 are assigned to the P–O asymmetrical 

stretching mode of PO4 group (v3). An absorption band with a weak intensity 

in the range 2100 – 1950 cm-1 is assigned to both PO4 (v3) and PO4 (v1) 

modes.  

Absorption bands at 2365 cm-1 and 2344 cm-1 are due to the absorption of 

atmospheric CO2. Absorption bands in the range 1600 – 1400 cm-1 and at 

875 cm-1 are assigned to CO3 group. Absorption bands with a weak intensity 

at 1418 cm-1 and 1458 cm-1 are assigned to the C–O symmetrical and 

asymmetrical stretching modes of CO3 group (v3). An absorption band at ~ 



- 227 - 

875 cm-1 is assigned to the stretching mode of CO3 group (v2) or HPO4 

group (555, 557). The CO3 group (v2) may be difficult to observe, particularly 

when it is covered by the absorption band of HPO4 group. The absorption 

band of CO3 group (v2) determines the absorption of atmospheric CO2 in 

alkaline solutions (552). 

The presence of absorption bands of CO3 group (v3) around 1460 cm-1 and 

875 cm-1 indicates B – type substitution of PO4 group with CO3 group, 

whereas the presence of absorption band of CO3 group (v3) around 1460 

cm-1 indicates A – type CO3 substitution for OH group (555, 559). An 

absorption band of CO3 group at 875 cm-1 indicates AB – type substitution of 

PO4 and OH groups with CO3 group. A weak absorption band at 3571 cm-1 

can also indicate AB – type substitution (559). A wide absorption band in the 

range 3600 – 3100 cm-1 is assigned to the stretching modes of H2O 

molecules (v3) and (v1), while an absorption band at 1629 cm-1 is assigned 

to the deformation mode of H2O molecules (v2) (555), indicating the 

presence of adsorbed water (552). 

Table 4.1.14 Characteristic absorption bands of functional groups for HAp (552) 

 

Chemical groups  Absorption bands (cm
-1
) 

PO4 472, 570, 602, 963, and 1140 – 1000 

H2O adsorbed 3600 – 3100 

OH 631 and 3570 

HPO4 875 

CO3 875, 1418, 1458, 1632, 1650, and 1994 
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Absorption bands of functional groups that indicate the formation of a 

brushite structure are reported (553). An absorption band at 3492 cm-1 is 

assigned to the O–H stretching mode of H2O molecules, while a shoulder at 

2964 cm-1 is assigned to the stretching mode of OH group.  In addition, an 

absorption band at 1651 cm-1 is assigned to the bending mode of H2O 

molecules, and an absorption band at 1218 cm-1 is assigned to the in – 

plane – bending mode of OH group, while an absorption band at 795 cm-1 is 

assigned to the liberation mode of H2O molecules. Absorption bands at 1066 

cm-1, 875 cm-1, and 530 cm-1 are characteristics of PO4 group. Absorption 

bands at 1066 cm-1 and 875 cm-1 are assigned to the stretching modes of 

PO4 (P–O) and PO4 (P–O(H)), respectively, while an absorption band at 530 

cm-1 is assigned to the P–O bending mode of PO4 group. 

Table 4.1.15 Characteristic absorption bands of functional groups for brushite (553) 

 

Absorption bands (cm
-1
) Functional groups and mode 

3492 OH, O–H Stretching of water 

2964 OH, O–H Stretching (shoulder) 

1651 H2O Bending 

1218 OH, O–H in-plane bending 

1066 PO4, PO Stretching 

875 PO4, P–O(H) Stretching 

795 H2O Liberation 

530 PO4, PO Bending 

 

Absorption bands of functional groups that indicate the formation of a 

monetite structure are reported (553). Absorption bands at 3415 cm-1, 1404 

cm-1, and 866 cm-1 are characteristics of OH group. An absorption band at 

3415 cm-1 is assigned to the stretching mode of OH group, while absorption 
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bands at 1404 cm-1 and 866 cm-1 are assigned to the in – plane and out – of 

– plane bending modes of OH group, respectively. Absorption bands at 2369 

cm-1 and 893 cm-1 are assigned to the stretching modes of P–O(H) and P–

O(H) (v3), respectively. Absorption bands in the range 1176 – 996 cm-1 and 

584 – 430 cm-1 are assigned to the stretching and bending modes of PO4 

group, respectively. Absorption bands at 1132 cm-1 and 1070 cm-1 as well as 

a shoulder at 1176 cm-1 are assigned to the P–O stretching mode of PO4 

group (v3), whereas an absorption band at 996 cm-1 is assigned to the P–O 

stretching mode of PO4 group (v1). Absorption bands at 584 cm-1 and 531 

cm-1 are assigned to the O–P–O bending mode of PO4 group (v4), whereas 

those at 430 cm-1 and 405 cm-1 are assigned to the O–P–O bending mode of 

PO4 group (v2).  

Table 4.1.16 Characteristic absorption bands of functional groups for monetite (553) 

 

Absorption bands (cm
-1
) Functional groups and mode 

3415 OH, O–H Stretching 

2369 PO–H Stretching 

1404 OH, O–H in plane bending 

1176 PO4, PO Stretching (v3) (shoulder) 

1132 PO4, PO Stretching (v3) 

1070 PO4, PO Stretching (v3) 

996 PO4, PO Stretching (v1) 

893 P–O(H) Stretching (v3) 

866 OH, O–H out-of-plane bending 

584 PO4, PO Bending (v4) 

531 PO4, PO Bending (v4) 

430 PO4, PO Bending (v2) 

405 PO4, PO Bending (v2) 
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Moreover, absorption bands can also be donated to impurities that are 

absorbed by KBr pellets. These are usually OH group and H2O molecules at 

3500 cm-1 and 1630 cm-1, NO2 at 1390 cm-1, and SO4 at 1160 – 1140 cm-1. 

Wide water absorption bands in the spectrum are donated to the absorbed 

water molecules by KBr pellets from the environment (552). 

FTIR spectra of CaP powders were obtained in the wavenumber range 1300 

– 400 cm-1, 2500 – 1400 cm-1, and 4000 – 3000 cm-1, as shown in Figures 

4.1.35, 4.1.36, and 4.1.37, respectively. FTIR absorption bands and their 

assigned references are in good agreement, and they are presented in 

Table 4.1.17. The FTIR spectra in the entire wavenumber range 4000 – 400 

cm-1 showed characteristic absorption bands for CaP powders. These 

include PO4 group (v1) (P–O) at 960 cm-1, PO4 group (v2) (O–P–O) at 500 – 

450 cm-1, PO4 group (v4) (O–P–O) at 650 – 450 cm-1, PO4 group (v3) (P–O) 

at 1200 – 960 cm-1, HPO4 group at 875 cm-1, CO3 group (v3) (C–O) at 1550 

cm−1, absorbed CO3 at 2400 – 2100 cm-1, absorbed H2O molecules at 1650 

– 1600 cm-1, and structural OH group (O–H) at 3540 cm-1.  

The PO4 group (v2) (O–P–O) was observed with a very weak intensity in all 

powders, except that synthesised under as – prepared pH 5.4 ± 0.2 and 

200°C hydrothermal conditions. The absorption band at 720 cm-1 was 

assigned to the Nujol agent, and it was observed in all samples. The 

absorption band of PO4 group (v1) (P–O) at 960 cm-1 was only observed with 

CaP powder that was synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions.  The absorption band of CO3 group (v3) at 

1550 cm-1 was donated to the substitution of CO3 group for OH group (A – 

type). 
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The absorption bands at 1650 – 1600 cm-1 and 3450 – 3400 cm-1 were 

assigned to the absorbed water (H2O) molecules, while the absorption band 

at 3470 cm-1 was assigned to the structural OH group. The water absorption 

bands gradually changed as the synthesis conditions changed, particularly 

as temperature increased. The absorption bands of absorbed H2O at 1650 – 

1600 cm-1 and 3540 cm−1 were absent in powders that were synthesised 

under 200°C hydrothermal conditions, which indicated the liberation of 

absorbed water. The latter powders showed the characteristic stretching of 

structural OH group for HAp at 3570 cm-1. 

 

 

Figure 4.1.35 FTIR spectra of CaP powders in the mid – infrared region and wavenumber 

range 1300 – 400 cm
-1

. 
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Figure 4.1.36 FTIR spectra of CaP powders in the mid – infrared region and wavenumber 

range 2500 – 1400 cm
-1

. 

 

 

 

Figure 4.1.37 FTIR spectra of CaP powders in the mid – infrared region and wavenumber 

range 4000 – 3000 cm
-1

. 
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Under room temperature and as – prepared pH 5.4 ± 0.2 conditions, the 

synthesised brushite (CaHPO4.2H2O) showed broad absorption bands of 

PO4 group (v2) (O–P–O) and PO4 group (v1) (P–O)  at 500 – 450 cm-1 and 

960 cm-1, respectively, as well as PO4 group (v4) (O–P–O) and PO4 group 

(v3) (P–O) at 650 – 550 cm-1 and 1200 – 1100 cm-1, respectively. The 

absorption band of HPO4 group at 870 cm-1 was the characteristic absorption 

band for brushite. A weak absorption band of CO3
 group was observed 

around 1480 – 1420 cm-1, which indicated A – type substitution, whereas the 

absorption bands of CO3 group at 2400 – 2100 cm-1 are due to the 

absorption of atmospheric CO2. The absorption band at 1650 cm-1 was 

assigned to the bending mode of absorbed H2O. The double band at 3482 

cm-1 and 3565 cm-1 was attributed to the two H2O molecules in the brushite 

unit cell (553).  

Under room temperature and pH 10 ± 0.2 conditions, the PO4 group (v1) (P–

O) was absent, and the PO4 group (v4) (O–P–O) and PO4 group (v3) (P–O) 

started taking shape and merged as one band with shoulders. The 

absorption band at around 660 – 630 cm-1 was assigned to the liberation 

modes of structural OH group. The characteristic absorption band of HPO4 

group was observed at 875 cm-1, which indicated the presence of brushite 

alongside HAp, as revealed by XRD. The absorption band of absorbed H2O 

molecules at 1650 cm-1 was small and sharp. A weak absorption band of 

CO3
 group was observed around 1480 – 1420 cm-1, which indicated A – type 

substitution, while the absorption bands of CO3 group at 2400 – 2100 cm-1 

are due to the absorption of atmospheric CO2. 
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Under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, the 

absorption bands of PO4 group (v2) (O–P–O) and PO4 group (v1) (P–O) 

were absent, while the characteristic absorption bands of PO4 group (v4) 

(O–P–O) and PO4 group (v3) (P–O) were well defined and sharp. The 

absorption band at 660 – 630 cm-1 was assigned to the structural OH group. 

The strong absorption band of CO3 group was observed at 1550 cm-1, which 

indicated the substitution of OH group with CO3
 group (A – type), while the 

absorption bands of CO3 group at 2400 – 2100 cm-1 were due to the 

absorption of atmospheric CO2. The absorption band of adsorbed H2O 

molecules at 1634 cm−1 was absent, and the absorption band for OH group 

at 3470 cm-1 was defined and sharp.  

Under pH 10 ± 0.2 and 200°C hydrothermal conditions, the PO4 group (v2) 

(O–P–O) and PO4 group (v1) (P–O) were absent, while the characteristic 

absorption bands of PO4 group (v4) (O–P–O) and PO4 group (v3) (P–O) 

were well defined and sharp. The small absorption band of HPO4
 group at 

870 cm-1 was assigned to the presence of a monetite phase alongside HAp, 

as revealed by XRD. The absorption band at 660 – 630 cm-1 was assigned 

to the structural OH group. A weak absorption band of CO3
 group was 

observed at 1480 – 1420 cm-1, which indicated A – type substitution, while 

the absorption bands of CO3 group at 2400 – 2100 cm-1 were due to the 

absorption of atmospheric CO2. The absorption band of adsorbed H2O 

molecules at 1634 cm−1 was absent, and the absorption band of OH group at 

3470 cm-1 was small and sharp.   

The absorption band of CO3
 group at 1480 – 1420 cm-1 was observed with 

all powders, which indicated A – type CO3 substitution for OH group. 
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However, a strong absorption band was observed only under as – prepared 

pH 5.4 ± 0.2 and 200°C hydrothermal conditions. The absorption band of 

absorbed H2O molecules at 3450 cm-1 and stretching of OH group at 3471 

cm-1 were observed with CaP powders that were synthesised under 200°C 

hydrothermal conditions. The absorption band of absorbed H2O molecules 

was reduced under 200°C hydrothermal conditions, while the stretching of 

OH group (O–H) increased under 200°C hydrothermal conditions.  
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Table 4.1.17 Characteristic IR Absorption Frequencies (cm
-1

) of CaP powder functional 

groups, compared to reported data (552, 553) as a reference 

 

Functional 
group and 

Absorption cm
-1
 

(References) 

CaP-undoped 
pH5 RT 

CaP-undoped 
pH10 RT 

CaP-undoped pH5 
200°C Hydrothermal 

CaP-undoped pH10 
200°C Hydrothermal 

cm
-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity 

500–450 cm
-1
 

PO4 v2 
431 v. weak 474 v. weak 472 v. weak 474 v. weak 

650–550 cm
-1
 

PO4 v4 

532 Small 526 Small - - - - 

561 Small 563 Medium 565 Strong 561 Small 

 
- 601 Small 603 Strong 601 Medium 

634 cm
-1
 

Structural OH 
 - - - 632 Medium 634 Small 

720 cm
-1
 Nujol 723 Small 721 Small 721 Small 721 Small 

875 cm
-1
 HPO4 875 Weak 873 Weak - - - - 

960 cm
-1
 PO4 v1 

973 Small 962 weak-sh 962 Small 962 
weak, 
small 

991 weak-sh - - - - - - 

1200–1000 cm
-1
 

PO4 v3 

1066 Small 1029 medium 1033 Strong 1029 Medium 

1128 weak-sh 1106 Sh 1091 Small 1091 Small 

1149 Small - - - - - - 

1650–1400 cm
-1
  

CO3 v3 
1548 v. weak 1547 

medium–
sharp 

1550 v. weak 1548 v. weak 

1650–1600 cm
-1
 

H2O absorbed 
1641 

medium–
broad 

1648 
medium–

sharp 
1641 

small–
broad 

1641 Weak 

2400–2100 cm
-1
 

CO2 absorbed 

2339 
medium, 

broad 
2341 

strong, 
sharp 

2341 
strong, 
sharp 

2341 
strong, 
sharp 

2358 
medium, 

broad 
2360 

strong, 
sharp 

2360 
strong, 
sharp 

2360 
strong, 
sharp 

3600–3100 cm
-1
 

H2O absorbed 

3160 Small 3164 Small - - - - 

3482 
small–
sharp 

3484 
small–
sharp 

3405 
weak–
broad 

3375 
weak–
broad 

3600 – 3400 cm
-1
 

H2O stretching 
3565 

v. small – 
sharp 

3565 
Medium – 

sharp 
- - - - 

3571 cm
-1
 OH 

stretching 
 - - - 3569 

strong–
sharp 

3571 
small–
sharp 

v = very, sh = shoulder, vibrational modes (v1 = symmetrical stretching, v2 = asymmetrical 
stretching, v3 = bending in and out of plane, and v4 = bending in plane) 
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Thermal behaviour of CaP powders was investigated using differential 

scanning calorimetry (DSC). The latter was used to measure the difference 

in heat flow rate (mW = mJ/sec) between CaP sample and inert reference, 

as a function of time and temperature. Any temperature difference that 

would result from a thermal event in CaP sample is compensated for (541). 

For example, during an exothermic process, more heat is supplied to the 

reference (equivalent to withdrawing energy from CaP sample), whereas 

during an endothermic process, additional amount of energy is supplied to 

the CaP sample heater. The difference in heat supplied to CaP sample and 

reference is recorded as a function of temperature. This signal is 

proportional to the CaP sample specific heat, which determines the amount 

of heat that is necessary to change the temperature of CaP sample by a 

given amount (541).  

DSC of CaP powders are compared in Figure 4.1.38, and DSC peak centres 

are presented in Table 4.1.18. Heat flow of DSC measurements was set to 

Endo up, which indicates that endothermic changes are peaked up, while 

exothermic changes are peaked down. CaP powder (CaP-undoped pH5 RT) 

that was synthesised under room temperature and as – prepared pH 5.4 ± 

0.2 conditions showed an endothermic peak at 493.4°C, which was assigned 

to the explosion of lattice water (560), whereas CaP powder (CaP-undoped 

pH10 RT) that was synthesised under room temperature and pH 10 ± 0.2 

conditions showed a small endothermic peak at 190.9°C and an even 

smaller exothermic peak at 301.7°C, which were assigned to the liberation of 

water and elimination of CO3, respectively (560).  
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Under 200°C hydrothermal conditions, CaP powder (CaP-undoped pH5 

200°C hydrothermal) that was synthesised with as – prepared pH 5.4 ± 0.2 

showed a negligible broad endothermic peak around 185.3°C, which was 

assigned to the liberation of water. The broad peak indicated gradual and 

continuous liberation or elimination of absorbed water and explosion of 

lattice water (560). CaP powder (CaP-undoped pH10 200°C hydrothermal) 

that was synthesised with pH 10 ± 0.2 showed a small endothermic peak at 

501.5°C, which was assigned to the explosion of lattice water (560). 

The explosion of lattice water in CaP powders (CaP-undoped pH5 RT) and 

(CaP-undoped pH10 200°C hydrothermal) and the liberation of water in CaP 

powders (CaP-undoped pH10 RT) and (CaP-undoped pH5 200°C 

hydrothermal) were due to the chemical reaction of OH radicals, which were 

liberated from the CaP structure during heating. These results indicated that 

CaP powders were hydrated, and that the endothermic peaks were duo to 

dehydration of powders. In addition, the results may support hot stage XRD 

phase transformations upon heating from room temperature up to 800°C. 

The endothermic reactions at 493°C and 501°C in CaP powders (CaP-

undoped pH5 RT) and (CaP-undoped pH10 200°C hydrothermal), 

respectively, are good agreement with hot stage XRD phase transformation 

from monetite to calcium pyrophosphate (β-Ca2P2O7) between 400°C and 

800°C. In addition, the endothermic reaction at 190°C  in CaP powders 

(CaP-undoped pH10 RT) is in good agreement with hot stage XRD phase 

transformation from brushite to monetite at 200°C. 

 

 



- 239 - 

 

 

 

 

 

Figure 4.1.38 DSC of CaP powders (Endo up). 

 

Table 4.1.18 DSC peak centres of CaP powders (second reaction) 

 

CaP-undoped  
pH5 RT 

CaP-undoped 
pH10 RT 

CaP-undoped  
pH5 200°C 

hydrothermal 

CaP-undoped    
pH10 200°C 

hydrothermal 

493.4°C 190.9°C 185.3°C 501.5°C 

- 301.7°C - - 
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4.1.5 Main findings 

Based on the initial investigation of synthesis conditions (temperature, pH, 

reaction time, and ageing time), temperature, pH, and reaction time were the 

most effective parameters in modifying the size and shape of CaP particles. 

In particular, the temperature, pH, and reaction time of 200°C, pH ≥ 9, and 

24 hours, respectively, were the most effective parameters in producing CaP 

particles in the nanometre size and forming a single HAp phase. Adjusting 

the pH of starting CaP mixture and followed by a hydrothermal treatment at 

200°C was the most effective route in modifying the size and shape of CaP 

particles, which produced nanosized and rod – like particles. Therefore, 

temperature and pH are of great importance, particularly in obtaining the 

desired phase, size, and shape of CaP particles. In addition, it was important 

to allow sufficient time for the reaction of reactants to take place. This was 

demonstrated by the improved crystallinity of brushite particles that were 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions by the slow addition technique, compared to the poorly 

crystallised monetite particles that were synthesised by the fast addition 

technique.  

A brushite phase with micrometre platelet – like morphology was obtained 

under room temperature and as – prepared pH 5.4 ± 0.2 conditions, as 

revealed by SEM, XRD pattern and FTIR characteristic bands. The latter 

were those of HPO4 group at 870 cm-1 and two H2O molecules at 3482 cm-1 

and 3565 cm-1. Adjusting the pH of CaP starting mixture to pH 10 ± 0.2 

resulted in the formation of fine platelet – like particles (in clusters) in the 

nanometre size, which indicated the effectiveness of high pH levels (pH 10) 

in reducing the particle size. However, the pH 10 ± 0.2 resulted in the 
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formation of HAp and brushite phases, which were revealed by XRD pattern. 

The brushite phase was confirmed by FTIR characteristic absorption band of 

HPO4 group at 875 cm-1. The hydrothermal treatment at 200°C of CaP 

starting mixture with as – prepared pH 5.4 ± 0.2 resulted in the formation of 

rod – like particles in the nanometre size and the formation of a single HAp 

phase, which indicated the effectiveness of hydrothermal treatments in 

reducing the particle size and the formation of a single HAp phase. The latter 

was revealed by XRD pattern and confirmed by FTIR characteristic 

absorption bands of structural OH group at 634 cm-1 and 3470 cm-1. 

Adjusting the pH of CaP starting mixture to pH 10 ± 0.2 and followed by a 

hydrothermal treatment at 200°C resulted in the formation of monetite 

platelet – like particles together with HAp needle – like particles, which was 

donated to an incorrect pH reading of CaP starting mixture. This was in 

contrast to CaP (CaP-undoped pH10 200°C hydrothermal (initial 

investigation)) that was obtained during the initial investigation, which 

resulted in the formation of a single HAp phase and rod – like particles. 

Although SEM revealed the formation of agglomerates of CaP nanoparticles 

in the case of CaP-undoped pH10 RT and CaP-undoped pH5 200°C 

hydrothermal powders, the particle size analysis revealed the particle size in 

the micrometre scale, which is in good agreement with micrometre 

agglomerates. This is because the measurement of nanoparticles depends 

on the deagglomeration of CaP particles. However, agglomerates of CaP 

particles were observed after dispersion of CaP powders in methanol and 

distilled water under ultrasonic bath conditions for ~ 10 minutes. This might 

indicate the formation of hard agglomerates of CaP particles or that a longer 

deagglomeration treatment was required.   
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The absorption band of CO3
 group around 1480 – 1420 cm-1 was observed 

with all powders, which indicated that all CaP powders are A – type 

carbonate CaP. Under 200°C hydrothermal conditions, the absorption band 

of absorbed H2O molecules was reduced, while the stretching of structural 

OH group increased, which indicated the formation of less hydrated powders 

and the formation of HAp.  

The Hot stage XRD results (CaP-undoped pH5 RT) indicated that a phase 

transformation from brushite to monetite occurred at 200°C, while a phase 

transformation from monetite to calcium pyrophosphate (β-Ca2P2O7) 

occurred at 400°C up to 800°C. Similarly, DSC results indicated that phase 

transformations may have taken place upon heating from room temperature 

up to 600°C, and that CaP powders were hydrated, due to the endothermic 

reactions corresponding to dehydration of powders. 
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Chapter 4.2 
Synthesis and characterisation of doped calcium 

phosphates 

 

Doped calcium phosphates were synthesised by the chemical precipitation 

and hydrothermal methods under different conditions, as shown in Table 

4.2.1. Doped CaP powders were investigated in terms of their particle size, 

morphology, composition, phase purity, and thermal behaviour, using SEM, 

SEM-EDX, static laser scattering, XRD, FTIR, and DSC. 

Table 4.2.1 Synthesis conditions for doped calcium phosphate powders 

 

Powder Synthesis method As – prepared pH Adjusted pH Temperature 
Reaction 

time 

Doped 
CaP 

Chemical precipitation 5.4 ± 0.2 10 ± 0.2 RT 

24 hours 

Hydrothermal 5.4 ± 0.2 10 ± 0.2 200°C 

 

Doping of calcium phosphate was carried out with different compounds, 

which was divided into two batches (A and B). Batch A powders were doped 

with Er2O3, AlPO4, and CaF2, which are considered insoluble compounds, 

while batch B powders were doped with Er(NO3)3.5H2O, Al(NO3)3.9H2O, and 

NH4F, which are highly soluble compounds.  

It is well known that Er2O3, AlPO4 and CaF2 are insoluble (268, 419, 505) or 

can show negligible solubility in water, and therefore, they would form a 

composite with calcium orthophosphates/apatites. Consequently, the 

diffusion of Er3+, Al3+, and F- ions into calcium orthophosphate structure is 

unlikely to be achieved at room temperature, but it is likely to be achieved at 
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elevated temperatures (495, 506) such those under solid – state (42) and 

hydrothermal conditions (399, 400, 411). 

On the other hand, Er(NO3)3.4H2O, Al(NO3)3.9H2O, and NH4F show 

significant solubility in water (268, 419, 505), and therefore, the incorporation 

of Er3+, Al3+, and F- ions is likely to be achieved at low temperatures by the 

wet methods (chemical precipitation and hydrothermal), which would result 

in the substitution of Ca2+ by trivalent ions Er3+ and Al3+ as well as the 

substitution of OH- by F- ions. 

Doped CaP powders were synthesised the same way as CaP powders. A 

solution of ((NH4)2HPO4) was added to a solution of (Ca(NO3)2.4H2O) by the 

slow dropping/addition technique for 30 minutes whilst being magnetically 

stirred at ~ 400 rpm for 60 minutes. 7.5 ml of 0.1 M solution of each dopant 

(22.5 ml in total) was then added to 240 ml of CaP mixture under stirring, 

covered to minimise the absorption of atmospheric CO2, and left on standby 

at room temperature for 24 hours, or hydrothermally treated at 200°C for 24 

hours. Finally, the wet precipitate was collected and dried in an oven at 80°C 

for 24 hours. 
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4.2.1 Doped CaP powders (batch A) 

4.2.1.1 Doped CaP batch A (pH 5.4 ± 0.2, RT) 

Representative SEM of doped CaP powder (batch A) that was synthesised 

under room temperature and as – prepared pH 5.4 ± 0.2 conditions is shown 

in Figure 4.2.1. SEM showed well – crystallised particles with platelet – like 

morphology. The platelet – like particles appeared to have spherical particles 

incorporated and fused to their surfaces. These morphological changes were 

due to the addition of dopants (Er2O3, AlPO4, and CaF2), which increase the 

particles’ surface area for greater sintering. The particle size varied from 

micrometre platelet – like particles to nanospherical particles. Figure 4.2.2 

shows the volume – based distribution of CaP particles, as measured by the 

Malvern Mastersizer 2000E, with the standard percentile values d(0.1), 

d(0.5), d(0.9), and volume weighted mean D[4,3]. The particles had a 

volume weighted mean D[4,3] of 30.5 µm with a ± 1 standard deviation error 

bar, as shown in Figure 4.2.3. The values appears to be in good agreement 

with the platelet – like particles shown by SEM. 

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch A) that was synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions are shown in Table 4.2.2. The SEM-EDX 

measurements of four spectra, as shown by SEM in Figure 4.2.4, indicated a 

mean Ca:P ratio of 1.06. Spectra number three and four were way out, 

compared to spectra number one and two, which was probably due to the 

area where the spectra were obtained from, as shown by SEM in Figure 

4.2.4. Spectrum number three does not appear to be centred onto CaP 

particle, and spectra number four appears to include a large area of carbon 

– based SEM stub. Therefore, the Ca:P ratios were possibly influenced by 
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SEM carbon – coated SEM stub. However, obtaining a range of Ca:P ratios 

can also indicate a nonhomogeneous distribution of elements (Ca, P, and 

dopants) in the powder. 

 

    

Figure 4.2.1 SEM of doped CaP powders (batch A) synthesised under room temperature 

and as – prepared pH 5.4 ± 0.2 conditions, showing (a) platelet – like particles and (b) 

nanoparticles fused to surface of platelet – like particles. 

 

 

 

Figure 4.2.2 Particle size distribution of doped CaP (batch A) synthesised under room 

temperature and pH 5.4 ± 0.2 conditions. 
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Figure 4.2.3 Statistics graph of doped CaP (batch A) synthesised under room temperature 

and pH 5.4 ± 0.2 conditions, showing the mean with ± 1 standard deviation error bar. 

 

 

Table 4.2.2 SEM-EDX measurements (element weight percentage) for doped CaP (batch A) 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 conditions 

 

Spectrum O F Al P Ca Er Ca:P ratio 

Spectrum 1 54.3 0.2 0.1 7.41 7.91 0.05 1.06 

Spectrum 2 51.3 0.1 0.2 11.2 13.0 0.07 1.15 

Spectrum 3 25.7 0.6 0.7 1.8 1.13 37.1 0.61 

Spectrum 4 35.9 0.3 0.4 3.51 3.47 - 0.98 

Mean 41.8 0.3 0.4 6.01 6.39 9.31 1.06 

Std. Deviation 13.4 0.1 0.2 4.2 5.2 18.5 0.2 
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Figure 4.2.4 SEM of doped CaP synthesised under room temperature and as – prepared pH 

5.4 ± 0.2 conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP powder (CaP-doped batch A pH5 RT) that was 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions is shown in Figure 4.2.5 and compared to that of CaP powder 

(Cap-undoped pH5 RT) under the same conditions in Figure 4.2.6. The XRD 

pattern of doped CaP (Cap-doped batch A pH5 RT) in Figures 4.2.5 and 

4.2.6 indicated the formation of multiple phases of brushite and monetite, 

and that brushite was the dominant phase, which is in good agreement with 

brushite JCPDS file 01-072-0713 and monetite JCPDS file 01-070-1425. 

The XRD pattern also indicated the presence of dopants’ phases. The 

dopants’ peaks appeared to overlapped with some brushite and monetite 

peaks, as shown in Figure 4.2.5. This is in good agreement with the major 

peaks at 2 theta 29.9° and 34.7° for Er2O3 JCPDS file 00-026-0604, 2 theta 

20.7° and 26.4° for AlPO4 JCPDS file 01-072-1064, and 2 theta 28.2° and 

46.9° for CaF2 JCPDS file 03-065-0535. It was noted that peaks at higher 2 
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theta angles were undetected or present with reduced intensities, which 

could be due to the preferred orientation of particles. 

 

Figure 4.2.5 XRD pattern of doped CaP powder (batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to brushite, 

monetite, Er2O3, AlPO4, and CaF2 JCPDS files. Marked peaks (●) were assigned to 

brushite, (▼) were assigned to monetite, (♦) were assigned to Er2O3, (▲) were 

assigned to AlPO4, and (■) were assigned to CaF2.  
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Figure 4.2.6 XRD pattern of doped CaP (batch A) synthesised under room temperature and 

as – prepared pH 5.4 ± 0.2 conditions, compared to that of CaP (CaP-undoped pH5 

RT). Marked peaks (●) were assigned to brushite, (▼) were assigned to monetite, (♦) 

were assigned to Er2O3, (▲) were assigned to AlPO4, and (■) were assigned to CaF2.  

 

It must be noted that the formation of multiple phases and the overlapping of 

peaks made it very difficult to assign the peaks. The formation of the 

brushite phase together with the dopants’ phases may indicate that the 

doping resulted in a composite of Er2O3, AlPO4, CaF2, monetite and 

brushite, which is in good agreement with spherical particles fused to platelet 

– like particles shown by SEM.  

The Miler indices (hkl) and 2 theta of doped CaP powder (batch A) that was 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions were refined in the monoclinic system by UnitCell (Tim Holland’s 

software), using 1.54 Å wavelength and minimising the sum of squares of 

residuals in 2 theta, to determine the crystallographic parameters. Unit cell 

parameters for doped CaP powder are shown in Table 4.2.3.  
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The results indicated that the crystal structure of doped CaP (batch A) was 

in the monoclinic system with space group Ia. Unit cell parameters of CaP-

doped pH 5 RT are similar to those of CaP-undoped pH 5 RT, 2nd reaction 

(Table 4.1.5), with a – axes (6.36 Å) and c – axes (5.81 Å) opposite to those 

of brushite JCPDS file 01-072-0713, 5.81 Å and 6.23 Å, respectively, which 

also indicated particle growth in the a – axes rather than c – axes. However, 

compared to unit cell parameters of CaP-undoped pH 5 RT, 2nd reaction 

(brushite), there was a shrinkage of the cell volume of 0.54 Å. In addition, 

the unit cell parameters, a – axes, b – axes, and c – axes, of doped CaP 

(CaP-doped batch A pH5 RT) were modified slightly, with an increase of 

0.01 Å in a – axes and 0.02 Å in b – axes, and decrease of 0.02 Å in c – 

axes.      

Table 4.2.3 Unit cell parameters for doped CaP powder (Batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to those of brushite 

JCPDS file 01-072-0713 

  

Cell parameter CaP-doped pH5 RT (batch A)    Std.D 
Brushite JCPDS file 

01-072-0713 

a (Å) 6.36 0.0007 5.81 

b (Å) 15.20 0.001 15.18 

c (Å) 5.81 0.0005 6.23 

Alpha (°) 90 - 90 

Beta (°) 118.56 0.007 116.43 

Gamma (°) 90 - 90 

Cell volume (Å
3
) 494.32 0.05 492.91 

           Std.D = Standard deviation 
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Doped CaP powder (CaP-doped batch A pH5 RT) was also investigated by 

hot stage XRD from ~ 25°C up to 800°C. The hot stage XRD patterns at 

200°C, 400°C, 600°C, and 800°C are compared to and in good agreement 

with JCPDS files, as shown in Figures 4.2.7 – 4.2.10.  

The XRD pattern in Figure 4.2.7 indicated that the brushite phase was 

transformed into a monetite phase upon heating at 200°C, due to the 

dehydration of brushite, which is in good agreement with monetite JCPDS 

file 01-070-1425. The XRD patterns in Figures 4.2.8, 4.2.9, and 4.2.10 

indicated the formation of calcium pyrophosphate (β-Ca2P2O7) at 400°C, 

600°C, and 800°C, which is in good agreement with calcium pyrophosphate 

(β-Ca2P2O7) JCPDS file 00-009-0346. On the other hand, peaks of dopants’ 

phases were not detected under hot stage XRD between 200°C and 800°C. 

The disappearance of peaks of dopants’ phases is unclear, however, it was 

most probably due to the diffusion of dopants’ ions (Er3+, Al3+, and F-) into 

CaP structure at elevated temperatures (408, 495, 506), which resulted in 

the substitution of Er3+ and Al3+ for Ca2+ and F- for OH-. 

The phase transformations from brushite to monetite at 200°C and from 

monetite to calcium pyrophosphate (β-Ca2P2O7) from 400°C to 800°C  are 

also in good agreement with CaP phase transformations between 200°C and 

800°C (550, 551). Doped CaP powder (batch A) behaved in the same 

manner as CaP powder. 
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Figure 4.2.7 Hot stage XRD at 200°C of doped CaP (batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to monetite 

JCPDS file 01-070-1425. Marked peaks (●) were assigned to monetite. 

 

 

 

Figure 4.2.8 Hot stage XRD at 400°C of doped CaP (batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to β – 

calcium pyrophosphate. 
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Figure 4.2.9 Hot stage XRD at 600°C of doped CaP (batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to β – calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to β – 

calcium pyrophosphate. 

 

 

 

Figure 4.2.10 Hot stage XRD at 800°C of doped CaP (batch A) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to β – calcium 

pyrophosphate JCPDS file 00-009-0346. Marked peaks (●) were assigned to β – 

calcium pyrophosphate. 
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4.2.1.2 Doped CaP batch A (pH 10 ± 0.2, RT) 

Representative SEM of doped CaP powder (batch A) that was synthesised 

under room temperature and pH 10 ± 0.2 conditions is shown in Figure 

4.2.11. SEM showed well – crystallised spherical particles, which appeared 

to be fused together (Figure 4.2.11 b), forming a continuous and uniform 

layer (Figure 4.2.11 a). The particles appeared to be in the nanometre size, 

which would be ideal for the occlusion of dentinal tubules, because they 

would provide a uniform coating with a large surface area for optimum laser 

irradiation sintering. Figure 4.2.12 shows the volume – based distribution of 

doped CaP particles, as measured by the Malvern Mastersizer 2000E, with 

the standard percentile values d(0.1), d(0.5), d(0.9), and volume weighted 

mean D[4,3]. The particles had a volume weighted mean D[4,3] of 122.3 µm 

with a ± 1 standard deviation error bar, as shown in Figure 4.2.13. Although 

the values are not in good agreement with the nanoscale of particles (Figure 

4.2.11), they seem to be in good agreement with doped CaP agglomerates, 

as shown by SEM in Figure 4.2.14. 

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch A) that was synthesised under room temperature and pH 10 ± 

0.2 conditions are shown in Table 4.2.4. The SEM-EDX measurements of 

four spectra, as shown by SEM in Figure 4.2.14, indicated a mean Ca:P ratio 

of 1.68. The four spectra were in agreement, which indicated that the doped 

CaP powder consists of more homogeneous phases than previous one.  
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Figure 4.2.11 SEM of doped CaP (batch A) synthesised under room temperature and pH 10 

± 0.2 conditions, showing (a) continuous and uniform layer and (b) spherical particles 

that seem to be fused together.  

 
 

 

Figure 4.2.12 Particle size distribution of doped CaP (batch A) synthesised under room 

temperature and pH 10 ± 0.2 conditions. 
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Figure 4.2.13 Statistics graph of doped CaP (batch A) synthesised under room temperature 

and pH 10 ± 0.2 conditions, showing the mean with ± 1 standard deviation error bar. 

 

 

Table 4.2.4 SEM-EDX measurements (element weight percentage) for doped CaP (batch A) 

synthesised under room temperature and pH 10 ± 0.2 conditions 

 

Spectrum O F Al P Ca Er Ca:P ratio 

Spectrum 1 16.4 0.3 0.03 0.3 0.6 0.04 1.82 

Spectrum 2 20.6 0.9 0.2 3.8 6.2 - 1.64 

Spectrum 3 18.5 0.05 0.2 4.2 6.7 - 1.57 

Spectrum 4 16.6 0.1 0.1 1.6 2.7 - 1.69 

Mean 18.0 0.3 0.1 2.5 4.0 - 1.68 

Std. Deviation 1.9 0.4 0.1 1.8 2.9 0.04 0.1 
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Figure 4.2.14 SEM of doped CaP synthesised under room temperature and pH 10 ± 0.2 

conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP powder (CaP-doped batch A pH10 RT) that was 

synthesised under room temperature and pH 10 ± 0.2 conditions is shown in 

Figure 4.2.15 and compared to that of CaP (CaP-undoped pH10 RT) under 

the same conditions in Figure 4.2.16. The XRD pattern in Figure 4.2.15 

indicated the formation of an apatite phase together with Er2O3, AlPO4, and 

CaF2 phases, which is in good agreement with HAp JCPDS file 009-0432, 

Er2O3 JCPDS file 00-026-0604, AlPO4 JCPDS file 01-072-1064, and CaF2 

JCPDS file 03-065-0535, respectively, but with a slight shift of Er2O3 peaks 

at higher 2 theta angle (49.9°, 59.2°, and 62.3°) to lower 2 theta angle. The 

presence of AlPO4 might explain the fusing of spherical particles, as shown 

by SEM in Figure 4.2.11 (b), because of its binding role (429, 445, 461).  
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Figure 4.2.15 XRD pattern of doped CaP (batch A) synthesised under room temperature 

and pH 10 ± 0.2 conditions, compared to HAp, Er2O3, AlPO4, and CaF2 JCPDS files. 

Marked peaks (●) were assigned to brushite, (♦) were assigned to Er2O3, (▲) were 

assigned to AlPO4, and (■) were assigned to CaF2. 
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Figure 4.2.16 compares the XRD pattern of doped CaP (CaP-doped batch A 

pH10 RT) to that of CaP (CaP-undoped pH10 RT). The XRD patterns 

indicated that the XRD peaks of doped CaP (CaP-doped batch A pH10 RT) 

were well – defined and modified due to the addition of dopants. The 

brushite phase (together with HAp) that was formed with CaP (CaP-undoped 

pH10 RT) was not formed in the case of doped CaP (CaP-doped batch A 

pH10 RT), which indicated the effect of dopants’ addition on the phase 

formation of CaP. The dopants’ effect was also observed with SEM in Figure 

4.2.11, which indicated the significant transformation, particularly in terms of 

phases’ homogeny and morphology of particles.   

 

 

Figure 4.2.16 XRD pattern of doped CaP (batch A) synthesised under room temperature 

and pH 10 ± 0.2 conditions, compared to that of CaP (CaP-undoped pH 10 RT). 

Marked peaks (●) were assigned to brushite, (♦) were assigned to Er2O3, (▲) were 

assigned to AlPO4, and (■) were assigned to CaF2. 
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4.2.1.3 Doped CaP batch A (pH 5.4 ± 0.2, 200°C hydrothermal) 

Representative SEM of doped CaP (batch A) that was synthesised under as 

– prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions is shown in 

Figure 4.2.17. SEM indicated the formation of particles with various 

morphologies, mainly rod – like, rounded – like, and platelet – like particles, 

as shown in Figure 4.2.17 (a). The particles appeared to be fused together in 

agglomerates, as shown in Figure 4.2.17 (b), and their particle size varied 

from nanometre to micrometre. Figure 4.2.18 shows the volume – based 

distribution of doped CaP particles, as measured by the Malvern Mastersizer 

2000E, with the standard percentile values d(0.1), d(0.5), d(0.9), and volume 

weighted mean D[4,3]. The particles had a volume weighted mean D[4,3] of 

54.3 µm with a ± 1 standard deviation error bar, as shown in Figure 4.2.19. 

The values seem to be in good agreement with the agglomerates shown by 

SEM. 

SEM-EDX measurements (element weight percentage) of doped CaP (batch 

A) that was synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions are shown in Table 4.2.5. The SEM-EDX 

measurements of five spectra, as shown in Figure 4.2.20, indicated a mean 

Ca:P ratio of 1.29. However, since spectrum number two, three, and four 

were way out, compared to spectrum number one and five, the 

measurements were not reliable, but they indicated that the phases were not 

homogenous, as established by SEM. As stated before, obtaining a range of 

Ca:P ratios indicates a nonhomogeneous distribution of elements (Ca, P, 

and dopants) in the powder. 
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Figure 4.2.17 SEM of doped CaP (batch A) synthesised under as – prepared pH 5.4 ± 0.2 

and 200°C hydrothermal conditions, showing (a) non – uniform morphology of 

particles and (b) fusion and agglomeration of particles.   

 

 

 

Figure 4.2.18 Particle size distribution of doped CaP (batch A) synthesised under pH 5.4 ± 

0.2 and 200°C hydrothermal conditions. 
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Figure 4.2.19 Statistics graph of doped CaP (batch A) synthesised under pH 5.4 ± 0.2 and 

200°C hydrothermal conditions, showing the mean with ± 1 standard deviation error 

bar. 

 

 

Table 4.2.5 SEM-EDX measurements (element weight percentage) for doped CaP (batch A) 

synthesised under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions 

 

Spectrum O F Al P Ca Er Ca:P ratio 

Spectrum 1 24.6 2 0.1 11.3 20.6 - 1.81 

Spectrum 2 12.2 0.5 0.5 3.53 1.8 47.5 0.52 

Spectrum 3 39 0.4 3.5 5.47 1.6 0.1 0.30 

Spectrum 4 10.4 0.3 0.3 2.53 0.8 66.4 0.34 

Spectrum 5 27.2 1.6 0.07 4.91 8.6 0.86 1.76 

Mean 22.7 1 0.9 5.55 6.7 22.9 1.29 

Std. Deviation 11.7 0.7 1.4 3.4 8.3 31.7 0.7 
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Figure 4.2.20 SEM of doped CaP synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP (CaP-doped batch A pH5 200°C hydrothermal) 

that was synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions is shown in Figure 4.2.21. The XRD pattern of 

doped CaP (Cap-doped batch A pH5 200°C hydrothermal) indicated the 

formation of a brushite phase together with dopants’ phases (Er2O3, AlPO4, 

and CaF2), which is in good agreement with brushite JCPDS file 01-072-

0713, Er2O3 JCPDS file 00-026-0604, AlPO4 JCPDS file 01-072-1064, and 

CaF2 JCPDS file 03-065-0535, respectively, but with a slight shift of Er2O3 

peaks at higher 2 theta angle (59.2°, and 62.3°) to lower 2 theta angle.  
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Figure 4.2.21 XRD pattern of doped CaP (batch A) synthesised under as – prepared pH 5.4 

± 0.2 and 200°C hydrothermal conditions, compared to brushite, Er2O3, AlPO4, and 

CaF2 JCPDS files. Marked peaks (●) were assigned to brushite, (♦) were assigned to 

Er2O3, (▲) were assigned to AlPO4, and (■) were assigned to CaF2.  
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The XRD pattern of doped CaP (batch A) (CaP-doped batch A pH5 200°C 

hydrothermal) is compared to that of CaP (CaP-undoped pH5 200°C 

hydrothermal) under the same conditions in Figure 4.2.22. The as – 

prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions (Cap-undoped 

pH5 200°C hydrothermal) resulted in the formation of a HAp phase, which 

was not the case in the presence of dopants, and instead, a brushite phase 

was formed together with dopants’ phases. This indicated that the presence 

of dopants prohibited the formation of HAp under as – prepared pH 5.4 ± 0.2 

and 200°C hydrothermal conditions. In other words, the 200°C hydrothermal 

conditions were unable to produce HAp phase in the presence of dopants. 

This was unclear, however, it was probably because the hydrothermal 

energy was absorbed by dopants, particularly Er2O3 and AlPO4. 

 

 

Figure 4.2.22 XRD pattern of doped CaP (batch A) synthesised under as – prepared pH 5.4 

± 0.2 and 200°C hydrothermal conditions, compared to that of CaP (HAp) (CaP-

undoped pH5 200°C hydrothermal). Marked peaks (●) were assigned to brushite, (♦) 

were assigned to Er2O3, (▲) were assigned to AlPO4, and (■) were assigned to CaF2.  
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4.2.1.4 Doped CaP batch A (pH 10 ± 0.2, 200°C hydrothermal) 

Representative SEM of doped CaP (batch A) that was synthesised under pH 

10 ± 0.2 and 200°C hydrothermal conditions is shown in Figure 4.2.23. SEM 

showed agglomerations (clusters) of spherical particles, as shown in Figure 

4.2.17 (a), as well as the presence of rod – and/or needle – like particles, as 

shown in Figure 4.2.20 (b). The spherical particles appeared to be in the 

nanometre scale, while the rod/needle – like particles appeared to be in the 

micrometre scale. Figure 4.2.24 shows the volume – based distribution of 

doped CaP particles, as measured by the Malvern Mastersizer 2000E, with 

the standard percentile values d(0.1), d(0.5), d(0.9), and volume weighted 

mean D[4,3]. The particles had a volume weighted mean D[4,3] of 85.9 µm 

with a ± 1 standard deviation error bar, as shown in Figure 4.2.25. The 

values seem to be in good agreement with the agglomerates shown by SEM 

in Figure 4.2.26. 

SEM-EDX measurements (element weight percentage) of doped CaP (batch 

A) that was synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions are shown in Table 4.2.6. The SEM-EDX measurements of six 

spectra, as shown in Figure 4.2.26, indicated a mean Ca:P ratio of 1.73. 

Spectrum number four was not taking into account, because it was way out, 

compared to the other spectra.  
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Figure 4.2.23 SEM of doped CaP (batch A) synthesised under pH 10 ± 0.2 and 200°C 

hydrothermal conditions, showing (a) spherical particles and (b) rod/needle – like 

particles.  

 

 

 

Figure 4.2.24 Particle size distribution of doped CaP (batch A) synthesised under pH 10 ± 

0.2 and 200°C hydrothermal conditions. 
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Figure 4.2.25 Statistics graph of doped CaP (batch A) synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions, showing the mean with ± 1 standard deviation error 

bar. 

 

 

Table 4.2.6 SEMEDX measurements (element weight percentage) for doped CaP (batch A) 

synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions 

 

Spectrum O F Al P Ca Er 
Ca:P 
ratio 

Spectrum 1 28.5 1.2 0.05 4.1 7.3 0.1 1.77 

Spectrum 2 26.5 0.7 0.1 5 9 - 1.80 

Spectrum 3 21.8 1.1 0.4 7.5 13.3 - 1.75 

Spectrum 5 28 1.4 0.3 6 10.1 0.1 1.68 

Spectrum 6 22.5 1.1 0.1 3.5 5.8 - 1.66 

Mean 22.5 1 0.2 4.5 7.7 8.8 1.73 

Std. deviation 7.8 0.3 0.1 2.2 4.2 21.6 0.0.5 
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Figure 4.2.26 SEM of doped CaP synthesised under pH 10 ± 0.2 and 200°C hydrothermal 

conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP (CaP-doped batch A pH10 200°C hydrothermal) 

that was synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions 

is shown in Figure 4.2.27 and compared to that of CaP (CaP-undoped pH10 

200°C hydrothermal) under the same conditions in Figure 4.2.28. The XRD 

pattern in Figure 4.2.27 indicated the formation of an apatite phase together 

with dopants’ phases, which is in good agreement with HAp JCPDS file 009-

0432, Er2O3 JCPDS file 00-026-0604, AlPO4 JCPDS file 01-072-1064, and 

CaF2 JCPDS file 03-065-0535, respectively, but with a slight shift of Er2O3 

peaks at higher 2 theta angle (49.9°, 59.2°, and 62.3°) to lower 2 theta 

angle. The formation of HAp phase was also in good agreement with the 

XRD pattern of CaP (HAp) synthesised during the initial investigation (CaP-

undoped pH10 200°C hydrothermal (initial investigation)) under the same 

conditions (Figure 4.2.28). The latter XRD pattern comparison also 

confirmed the presence of dopants’ phases in the doped CaP (CaP-doped 

batch A pH10 200°C hydrothermal).  
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Figure 4.2.27 XRD pattern of doped CaP (batch A) synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions, compared to HAp, Er2O3, AlPO4, and CaF2 JCPDS 

files. Marked peaks (●) were assigned to HAp, (♦) were assigned to Er2O3, (▲) were 

assigned to AlPO4, and (■) were assigned to CaF2. 
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Figure 4.2.28 XRD pattern of doped CaP (batch A) synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions, compared to that of CaP (CaP-undoped pH10 200°C 

hydrothermal) synthesised under the same conditions. Marked peaks (●) were 

assigned to HAp, (♦) were assigned to Er2O3, (▲) were assigned to AlPO4, and (■) 

were assigned to CaF2. 

 

SEM and XRD of doped CaP (batch A) indicated the formation of different 

CaP phases and different particle morphologies under different conditions. 

The crystallised platelet – like particles with nanospherical particles of doped 

CaP (batch A) that were synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions (Figure 4.2.1) seem to be in good 

agreement with the XRD pattern of brushite, monetite, and dopants’ phases 

(Er2O3, AlPO4, and CaF2). The XRD pattern (Figure 4.2.5) indicated multiple 

phases, and that the doping may have resulted in a composite of Er2O3, 

AlPO4, CaF2, monetite, and brushite. The presence of secondary phases 

was supported by transmission electron microscopy (TEM) and TEM – EDX 

measurements, as shown in Figure 4.2.29 and Table 4.2.7, respectively. 
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Under room temperature and pH 10 ± 0.2 conditions, the formation of well – 

crystallised spherical particles (Figure 4.2.11), fused together and forming a 

continuous and uniform layer, indicated homogenous phases. The XRD 

pattern (Figure 4.2.15) indicated the formation of HAp together with dopants’ 

phases. The presence of AlPO4 phase, as a binder, explained the fusing of 

the spherical particles. Under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, the formation of particles with various morphology, 

mainly rod – like, rounded – like, and platelet – like particles (Figure 4.2.17) 

is in good agreement with XRD pattern (Figure 4.2.21), which indicated the 

formation of a brushite phase together with dopants’ phases. Under pH 10 ± 

0.2 and 200°C hydrothermal conditions, the formation of spherical particles 

as well as the presence of rod – and/or needle – like particles (Figure 4.2.23) 

are in good agreement with their XRD pattern (Figure 4.2.27), the latter 

which indicated the formation of HAp together with dopants’ phases. 

The results indicated that the effective addition of dopants was observed 

under high pH levels (pH 10 ± 0.2), which resulted in homogenous phases 

and affected the size and shape of particles. As stated before, the reduction 

of particle size was probably due to the increase of the nucleation rate with 

increasing pH levels (549).  

Table 4.2.8 compares the volume – based distribution of doped CaP (batch 

A) powders. The refractive index and absorption index for doped CaP (batch 

A) used in these calculations were the same as those for CaP (1.629 and 

0.1, respectively). The measured median particle diameter d(0.5), absolute 

deviation from median (uniformity), span, and 10% and 90% size distribution 
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by volume percentage (v%) for doped CaP particles (batch A) are presented 

in Table 4.2.8. 

 

 

 

Figure 4.2.29 TEM of doped CaP synthesised under room temperature and as – prepared 

pH 5.4 ± 0.2 conditions, showing the obtained EDX spectra.  

 

 

Table 4.2.7 TEM – EDX measurements (element weight percentage) for doped CaP 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 conditions 

 

Element CaP-doped batch A pH5 RT (Weight %) Mean Std. Deviation 

 Spectrum 1 Spectrum 2 Spectrum 3   

O K 10.67 19.14 40.52 23.44 15.38 

F K 30.42 20.22 0.20 16.94 15.37 

Al K 2.25 6.25 0.37 2.95 3 

P K 3.08 6.07 17.91 9.02 7.84 

Ca K 36.42 21.62 24.25 27.43 7.89 

Er L 2.17 -0.82 -0.66 0.23 1.68 
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The results indicated that the mean diameter D[4,3] was lowest (30.5 µm) in 

the case of CaP-doped batch A pH5 RT and highest (122.3 µm) in the case 

of CaP-doped batch A pH10 RT. In the case of CaP-doped batch A pH5 

200°C hydrothermal and CaP-doped batch A pH10 200°C hydrothermal, the 

mean diameter D[4,3] was 54.3 µm and 85.9 µm, respectively. These values 

are in good agreement with doped CaP (batch A) particles that were 

synthesised under room temperature and pH 5.4 ± 0.2 conditions and doped 

CaP agglomerates in the rest of doped CaP (batch A) powders. Although the 

particles that were synthesised under 200°C hydrothermal and/or pH 10 ± 

0.2 conditions were shown to be in the nanoscale by SEM, the mean 

diameter was affected by the formation of agglomerations. As stated before, 

this is because the accuracy of these measurements depends on the quality 

of the powder dispersion.     

Moreover, the small span value (2.76) in the case of CaP-doped batch A 

pH5 RT indicated a narrow distribution, while the large span values (4.44, 

4.47, and 8.8) in the case of CaP-doped batch A pH10 RT, CaP-doped 

batch A pH5 200°C hydrothermal, and CaP-doped batch A pH10 200°C 

hydrothermal indicated a broader distribution. This indicated that the 

particles of CaP-doped batch A pH5 RT were more uniform in size than 

those of the rest of powders (CaP-doped batch A pH5 200°C hydrothermal, 

and CaP-doped batch A pH10 200°C hydrothermal and CaP-doped batch A 

pH10 RT). 
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Table 4.2.8 Particle size data for doped CaP (batch A) powders 

 

Sample d(0.1) µm d(0.5) µm d(0.9) µm Uniformity Span D[4,3] µm 

CaP-doped batch A pH5 RT 4.17 13.8 42.3 1.66 2.76 30.55 

CaP-doped batch A pH10 RT 4.07 69.5 313 1.42 4.44 122.32 

CaP-doped batch A pH5 
200°C hydrothermal 

3.92 30.16 138.8 1.43 4.47 54.34 

CaP-doped batch A pH10 
200°C hydrothermal 

3.58 27.8 249 2.72 8.8 85.94 

 

Doped CaP powders (batch A) were also characterised by FTIR in order to 

detect their functional groups and bonds. FTIR spectra of doped CaP 

powders (batch A) in the wavenumber range of 4000 – 400 cm-1 are 

compared and shown in Figures 4.2.30, 4.2.31, and 4.2.32. FTIR absorption 

bands and their assigned references are presented in Table 4.2.9.  

Erbium oxide (Er2O3) has a fingerprint region that shows characteristic 

absorption bands at 563 cm-1 and 471 cm-1 , which correspond to Er–O–Er 

and Er–O, respectively, while absorption bands in the range 1200 – 4000 

cm-1 correspond to the surface activity of Er2O3 (564). Aluminium phosphate 

(AlPO4) has two types of tetrahedral structures AIO4 and PO4, which 

correspond to stronger P–O and weaker Al–O bonds (565). However, FTIR 

spectrum of AlPO4 shows tetrahedral basic structural elements of AlPO4 with 

P–O symmetric stretching mode at 1100 cm-1, asymmetric stretching mode 

at 1250 cm-1, symmetric bending mode at 480 cm-1, and asymmetric bending 

mode at 695 cm-1 (565). Absorption bands in the region 1270 – 1200 cm−1 

correspond to asymmetric stretching of bridging of PO–2 (O═P–O–), while 

absorption bands around 900 cm−1 correspond to asymmetric stretching of 

P–O–P (566). Absorption bands in the region 1120 – 1080 cm−1 correspond 

to asymmetric stretching of PO3 group, while absorption bands in the region 
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1030 – 1000 cm−1 correspond to symmetric stretching of PO3 group (566). In 

addition, AlPO4 has a strong and narrow absorption peak at 690 cm-1 as well 

as a broad absorption peak in the region 520 – 400 cm-1 (567). FTIR 

spectrum of CaF2 shows an absorption band at 443 cm-1, which corresponds 

to stretching mode of Ca–F (568). In the case of fluoride – doped CaP/HAp, 

absorption bands at 647 – 630 cm-1, 680 – 673 cm-1, and 720 – 713 cm-1 are 

due to the substitution of fluoride ion for OH group (495). In the presence of 

CaF2, absorption bands at 744 cm-1, 716 cm-1, 713 cm-1, 674 cm-1, and 666 

cm-1 are associated with the formation of OH–F–OH bonds, while an 

absorption band at 3538 cm-1 is associated with the formation of OH–F 

bonds (569). 

FTIR spectra of doped CaP powders (batch A) showed CaP absorption 

bands of PO4
 group at 600 – 550 cm-1, 1100 – 960 cm-1, and 2100 cm-1; 

HPO4
 group at 875 cm-1, CO3

 group at 2400 – 2300 cm-1, absorbed H2O 

molecules at 1650 – 1600 cm-1, and OH group at 3570 and 634 cm-1 (552, 

553). The PO4
 group around 2100 cm-1 and OH group at 634 cm-1 are the 

characteristic absorption bands for hydroxyapatite, as observed with control 

CaP powders. The effect of dopants was associated with absorption bands 

at 1250 cm-1, 780 cm-1, 660 cm-1, and 522 cm-1, which were only observed 

with doped CaP powder (CaP-doped batch A pH5 RT), as compared to CaP 

powder (CaP-undoped pH5 RT). The absorption band at 3540 cm-1 was 

observed with (CaP-doped batch A pH5 RT) and (CaP-doped batch A pH10 

200°C hydrothermal), which was assigned to the formation of OH–F bonds 

(569). FTIR spectra of (CaP-doped batch A pH10 RT), (CaP-doped batch A 

pH5 200°C hydrothermal), and (CaP-doped batch A pH10 200°C 

hydrothermal) were similar to those of CaP powders under the same 
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conditions. The absorption bands around 2400 cm-1 and 1545 cm-1 that were 

assigned to CO3 group in the case of CaP powders were significantly 

decreased with all doped CaP powders (batch A). This may indicate that the 

doped CaP powders (batch A) are less carbonated than undoped CaP 

powders.  

Under room temperature and as – prepared pH 5.4 ± 0.2 conditions, the 

doped CaP (CaP-doped batch A pH5 RT) showed absorption bands of PO4 

group (v1) (P–O) at 985 cm-1, PO4 group (v4) (O–P–O) at 574 and 601 cm-1, 

and PO4 group (v3) (P–O) at 1054 – 1035 cm-1. These bands were sharper, 

defined, and more developed than those of CaP (CaP-undoped pH5 RT). 

The PO4 group (v2) (O–P–O) at 425 cm-1 that was observed with CaP 

powder (CaP-undoped pH5 RT) was absent in doped CaP powder (CaP-

doped batch A pH5 RT). The characteristic absorption band of HPO4 group 

at 871 cm-1 confirmed the presence of DCP brushite/monetite, as revealed 

by XRD. The absorption bands at 1230 cm-1 and 1132 cm-1 were assigned to 

P–O asymmetric stretching and symmetric stretching of AlPO4, respectively, 

while the absorption band at 522 cm-1 was assigned to Er–O–Er of Er2O3. In 

addition, the absorption bands around 784 cm-1 and 665 cm-1 were assigned 

to the formation of OH–F–OH bond. The absorption band of absorbed H2O 

at 1650 cm-1 was sharp, and it was assigned to the bending mode of 

absorbed H2O. The absorption band of CO3 group at 2300 cm-1 was smaller 

than that of CaP (CaP-undoped pH5 RT). In the region 4000 – 3000 cm-1, 

the absorption bands of stretched and absorbed H2O were observed at 3490 

cm-1 and 3160 cm-1, respectively, while the absorption band at 3538 cm-1 

was assigned to the formation of F–OH bond.  
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Under room temperature and pH 10 ± 0.2 conditions, the absorption band of 

PO4 group (v3) (P–O) at 1150 – 950 cm-1 was shaped and merged as one 

band with shoulders, as occurred with CaP powder (CaP-undoped pH10 

RT). The absorption bands of PO4 group (v4) (O–P–O) at 600 – 550 cm-1 

were shaped into two absorption bands, instead of three absorption bands 

that were observed with CaP powder (CaP-undoped pH10 RT). The 

absorption band at 634 cm-1 was assigned to the structural OH group, which 

was absent in the CaP powder (CaP-undoped pH10 RT). On the other hand, 

the absorption band of HPO4 group at 875 cm-1 that was observed with the 

CaP powder (CaP-undoped pH10 RT) was absent. The absorption band of 

absorbed H2O at 1650 cm-1 was broader and more intense, and the 

absorption band of CO3 group at 2350 cm-1 was significantly reduced, 

compared to the CaP powder (CaP-undoped pH10 RT). The absorption 

bands in the region 4000 – 3000 cm-1, corresponding to the stretched and 

absorbed H2O molecules at 3490 cm-1 and 3160 cm-1, respectively, were 

very weak and broad. The absorption band of structural OH group and F–

OH were observed at 3570 cm-1 and 3538 cm-1, respectively, with very weak 

intensities. 

Under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, the 

absorption band of PO4
 group (v1) was absent, while the characteristic 

absorption bands of PO4 group (v3) (P–O) at 1150 – 950 cm-1 and PO4 

group (v4) (O–P–O) at 600 – 550 cm-1 were broader than those of CaP 

powder (CaP-undoped pH5 200°C hydrothermal). The absorption band of 

structural OH group at 634 cm-1 was absent, which was observed with the 

CaP powder (CaP-undoped pH5 200°C hydrothermal). The absorption band 

of HPO4 group at 875 cm-1 was observed with weak intensity, which 
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confirmed the presence of brushite, as revealed by XRD. The absorption 

band of absorbed H2O molecules at 1650 cm-1 was similar to that of CaP 

powder (CaP-undoped pH5 200°C hydrothermal). On the other hand, the 

absorption band of CO3 group at 2350 cm-1 was significantly reduced, and 

the absorption band of CO3 group (v3) at 1550 cm-1 was absent, compared 

to the CaP powder (CaP-undoped pH5 200°C hydrothermal). The absorption 

bands in the region 4000 – 3000 cm-1, corresponding to the stretched and 

absorbed of H2O molecules at 3490 cm-1 and 3160 cm-1, respectively, as 

well as the absorption bands of structural OH group and F–OH bond were 

observed at 3570 cm-1 and 3538 cm-1, respectively, with weak intensities. 

Under pH 10 ± 0.2 and 200°C hydrothermal conditions, the absorption band 

of PO4
 group (v1) was absent, and the characteristic absorption bands of 

PO4 group (v3) (P–O) at 1150 – 950 cm-1 and PO4 group (v4) (O–P–O) at 

600 – 550 cm-1 were broader than those of CaP powder (CaP-undoped 

pH10 200°C hydrothermal). The absorption band of structural OH group was 

observed at 634 cm-1, as with the CaP powder (CaP-undoped pH10 200°C 

hydrothermal). The absorption band of HPO4 group at 875 cm-1 was absent. 

The absorption band of absorbed H2O molecules at 1650 cm-1 was more 

intense and broader than that of CaP powder (CaP-undoped pH10 200°C 

hydrothermal). On the other hand, the absorption band of CO3 group at 2350 

cm-1 was significantly reduced, compared to CaP powder (CaP-undoped 

pH10 200°C hydrothermal). In the region 4000 – 3000 cm-1, the stretching of 

H2O molecules was observed at 3490 cm-1 with a broad absorption band, 

whereas the absorbed H2O molecules at 3160 cm-1 was absent. In addition, 

the absorption bands of structural OH group and the formation of F–OH 

bond were observed at 3570 cm-1 and 3538 cm-1, respectively. 
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The P–O bond at 1230 – 1132 cm-1 and Er–O–Er bond at 522 cm-1 

confirmed the presence of Er2O3 and AlPO4, respectively, in the doped CaP 

powder (CaP-doped batch A pH5 RT), whereas the OH–F–OH and F–OH 

bonds at 784 – 665 cm-1 and 3438 cm-1, respectively, indicated the possible 

incorporation of F- into the structure of CaP. On the other hand, in the rest of 

doped CaP powders (batch A), the broadening of absorption bands of PO4 

group (v3) (P–O) at 1150 – 950 cm-1 and PO4 group (v4) (O–P–O) at 600 – 

550 cm-1 could be due to the presence of dopants, or it might indicate the 

possibility of some degree of incorporation of Er3+ and Al3+. The formation F–

OH bond at 3438 cm-1 in the case of doped CaP powders that were 

synthesised under pH 10 ± 0.2 conditions (RT and 200°C hydrothermal 

conditions) indicated the possible incorporation of F- into the structure of 

HAp, and thus, the formation of fluorohydroxyapatite. Although FTIR of 

doped CaP (batch A) indicated the possible incorporation of F- into the CaP 

structure, the formation of F – doped phases, such as fluorohydroxyapatite, 

was not observed in the XRD patterns. The latter indicated the formation of 

CaP phase/s together with dopants’ phases (Er2O3, AlPO4, and CaF2). 

 

 

 

 

 

 

 

 

 



- 282 - 

 

 

 

Figure 4.2.30 FTIR spectra of doped CaP powders (batch A) in the MIR region and 

wavenumber range 1300 – 400 cm
-1

. 

 

 

 

Figure 4.2.31 FTIR spectra of doped CaP powders (batch A) in the MIR region and 

wavenumber range 2500 – 1400 cm
-1

.  
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Figure 4.2.32 FTIR spectra of doped CaP powders (batch A) in the NIR region and 

wavenumber range 4000 – 3000 cm
-1

.  
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Table 4.2.9 Characteristic IR absorption frequencies (cm
-1

) of functional groups for doped 

CaP powder (batch A), compared to those of reported data (552, 553, 564-566, 569) 

 

Functional 
group and 

Absorption cm
-1
 

(Reference) 

Doped CaP A 
pH5 RT 

Doped CaP A           
pH10 RT 

Doped CaP A                 
pH5 200°C 

hydrothermal 

Doped CaP A                 
pH10 200°C 

hydrothermal 

cm
-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity 

Er-O-Er 522 
Medium-
strong 

- - - - - - 

550–650 cm
-1
 

PO4 v4 

574 
Small-

medium 
563 

Small-
medium 

565 
Small-

medium 
565 Medium 

601 
Weak-
small 

603 Small 603 
Small-

medium 
603 Medium 

634 cm
-1
 

Structural OH 
- - 634 weak-sh - - 634 

weak–
small 

666 cm
-1
 OH-F-

OH 
663 

Weak-
small 

- - - - - - 

720 cm
-1
 Nujol 721 weak 721 Small 723 Small 721 Small 

780 cm
-1
 OH-F-

OH 
780 weak - - - - - - 

875 cm
-1
 

HPO4 
873 Small - - - - - - 

960 cm
-1
 PO4 v1 

985 
Small-

medium 
962 

small-like 
sh 

964 
small-like 

sh 
964 

small-like 
sh 

1035 Sh 1031 Strong 1031 Strong 1031 Strong 

1000–1200 cm
-1
 

PO4 v3 
1054 Strong 1095 

small-like 
sh 

1097 
small-like 

sh 
1095 

small-like 
sh 

1100 cm
-1
 PO 

(AlPO4) 
1132 Strong - - - - - - 

1250 cm
-1
 PO 

(AlPO4) 
1224 small - - - - - - 

1600–1650 cm
-1
 

H2O absorbed 
1650 

Strong-
sharp 

1641 
Strong 
broad 

1648 
Small 
broad 

1645 
Medium 
broad 

2000–2100 cm
-1
 

PO4 

- - - - 2053 v. weak 2050 v. weak 

- - 2080 weak 2080 
Weak-
small 

2080 Small 

2100–2400 cm
-1
 

CO2 absorbed 
2348 small 2348 small 2348 Small 2348 Small 

3100–3600 cm
-1
 

H2O absorbed 
3158 

Small-
medium 

- - 3166 v. weak - - 

3580–3600 cm
-1
 

H2O stretching 
3492 

Weak-
small 

3374 
Weak 
broad 

3349 v. weak  3374 
Weak 
broad 

3535 cm
-1
 F-OH 3538 Small - - - - 3538 Small 

3571 cm
-1
 

Structural OH 
- - 3570 weak 3570 v. weak 3570 Small 

v = very, sh = shoulder, vibrational modes (v1 = symmetrical stretching, v2 = asymmetrical 
stretching, v3 = bending in and out of plane, and v4 = bending in plane) 
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Thermal behaviour of doped CaP powders was investigate using differential 

scanning calorimetry (DSC). As with CaP powders, the heat flow of DSC 

measurements was set to Endo up, which indicates that endothermic 

changes are peaked up, while exothermic changes are peaked down. DSC 

of doped CaP powders (batch A) are compared in Figure 4.2.33, and DSC 

peak centres are presented in Table 4.2.10. CaP powder (CaP-doped batch 

A pH5 RT) that was synthesised under room temperature and as – prepared 

pH 5.4 ± 0.2 conditions showed a sharp and intense endothermic peak at 

168.2°C and a very weak endothermic peak at 434.5°C, which were 

assigned to the liberation of water and explosion of lattice water, respectively 

(560). 

Although no endothermic peaks around 168.2°C were observed with CaP 

powder (CaP-undoped pH5 RT), the endothermic peaks at 168.2°C and 

434.5°C in the doped CaP powder (CaP-doped batch A pH5 RT) are in good 

agreement with the reported phase transformations from brushite to 

monetite at ~ 200°C and from monetite to calcium pyrophosphate (β-

Ca2P2O7) at ~ 400°C (550, 551). As with CaP powders, the explosion of 

lattice water and the liberation of water were probably due to the chemical 

reaction of OH radicals, which were liberated from doped CaP structure 

during heating. This indicated that the doped CaP powder was hydrated, and 

that the endothermic peaks were duo to dehydration of powder, as 

established with CaP powders. 

The rest of doped CaP powders (CaP-doped batch A pH10 RT), (CaP-

doped batch A pH5 200°C hydrothermal), and (CaP-doped batch A pH10 

200°C hydrothermal) showed no reactions. This was in contrast to the CaP 
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powders under the same conditions, which showed weak endothermic peaks 

that corresponded to the liberation of water and the explosion of lattice 

water. This indicated that these doped CaP powders were an – hydrated and 

thermally stable, and that no phase transformation took place upon heating 

from room temperature up to 600°C.  

 

 

Figure 4.2.33 DSC of doped CaP powders (batch A) (Endo up). 

 

 

Table 4.2.10 DSC peak centres for doped CaP (batch A) powders  

 

CaP-doped batch A 
pH5 RT 

CaP-doped batch A 
pH10 RT 

CaP-doped batch A 
pH5 200°C 

hydrothermal 

CaP-doped batch A 
pH10 200°C 

hydrothermal 

168.2°C - - - 

434.5°C - - - 
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Thermogravimetric analysis (TGA) of doped CaP powder CaP-doped batch 

A pH5 RT (CaP-AlPO4.Er2O3.CaF2) is compared to that of CaP powder CaP-

undoped pH5 RT (CaP-only) and doped CaP powders (CaP-AlPO4 and 

CaP-AlPO4.Er2O3), as shown in Figure 4.2.34. TGA measurements were 

performed using a laboratory – built TGA instrument, to determine changes 

in weight in relation to the change in temperature. Powders were heated up 

from room temperature to 1100°C (in air) at 5°C/min heating rate. Figure 

4.2.34 shows weight losses of 22.7%, 16.8%, 7.3%, and 7.2% that 

correspond to (CaP-only / CaP-undoped pH5 RT), (CaP-AlPO4 and CaP-

AlPO4.Er2O3), and (CaP-AlPO4.Er2O3.CaF2 / CaP-doped batch A pH5 RT), 

respectively. Doped CaP (CaP-AlPO4.Er2O3.CaF2 / CaP-doped batch A pH5 

RT) showed the lowest weight loss percentage by about 15% less than CaP 

powder (CaP-only / CaP-undoped pH5 RT). This indicated that the addition 

of dopants (AlPO4, Er2O3, and CaF2) improved the thermal stability of CaP 

powder significantly. 

 

Figure 4.2.34 TGA of CaP-doped batch A pH5 RT (CaP-AlPO4.Er2O3.CaF2), compared to 

CaP-undoped pH5 RT (CaP-only), CaP-AlPO4, and CaP-AlPO4.Er2O3. 
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4.2.2 Doped CaP powders (batch B) 

4.2.2.1 Doped CaP batch B (pH 5.4 ± 0.2, RT) 

Representative SEM of doped CaP powder (batch B) that was synthesised 

under room temperature and as – prepared pH 5.4 ± 0.2 conditions is shown 

in Figure 4.2.35. SEM showed the formation of micrometre platelet – like 

particles, as shown in Figure 4.2.35 (a), as well as presence of needle – like 

particles that may be associated with the formation of platelet – like particles. 

This was based on a platelet – like particle that appeared to be formed by 

the lateral aggregation of needle – like particles, as shown in Figure 4.2.35 

(b). Bonding of particles may occur by the diffusion of atoms to the interface 

of particles due to a driving energy. The formation of doped CaP platelet – 

like particles is in good agreement with the formation of CaP platelet – like 

particles under the same conditions. The platelet – like morphology could be 

beneficial, not only in the occlusion of dentinal tubules, but also in enhancing 

heat transfer during laser irradiation, as well as reducing the risk of tissue 

damage. Figure 4.2.36 shows the volume – based distribution of doped CaP 

particles, as measured by the Malvern Mastersizer 2000E, with the standard 

percentile values d(0.1), d(0.5), d(0.9), and volume weighted mean D[4,3]. 

The particles had a volume weighted mean D[4,3] of 54.1 µm with a ± 1 

standard deviation error bar, as shown in Figure 4.2.37. The values seem to 

be in good agreement with doped CaP platelet – like particles shown by 

SEM. 

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch B) that was synthesised under room temperature and as – 

prepared pH 5.4 ± 0.2 conditions are shown in Table 4.2.11. The SEM-EDX 
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measurements of five spectra, as shown in Figure 4.2.38, indicated a mean 

Ca:P ratio of 0.94 (~ 1.0). 

 

 

  

Figure 4.2.35 SEM of doped CaP powder (batch B) synthesised under room temperature 

and as – prepared pH 5.4 ± 0.2 conditions, showing (a) platelet – like and needle – 

like particles and (b) the formation of a platelet – like particle by the lateral 

aggregation of needle – like particles and bonding of particles by the diffusion of 

atoms to the interface of particles due to a driving energy.  

 

 

 

Figure 4.2.36 Particle size distribution of doped CaP powder (batch B) synthesised under 

room temperature and as – prepared pH 5.4 ± 0.2 conditions. 
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Figure 4.2.37 Statistics graph of doped CaP powder (batch B) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, showing the mean with ± 1 

standard deviation error bar. 

 

 

Table 4.2.11 SEM-EDX measurements (element weight percentage) for doped CaP powder 

(batch B) synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions 

 

Spectrum O F Al P Ca Er 
Ca:P 
ratio 

Spectrum 1 39.1 0.5 0.5 10.8 9.4 3.6 0.86 

Spectrum 2 43.6 0.5 0.3 11.3 10.8 1.5 0.95 

Spectrum 3 38.3 0.8 0.5 10.4 9.5 2.9 0.91 

Spectrum 4 43.3 0.9 0.2 8.1 8.4 1.2 1.03 

Spectrum 5 35.4 1.3 0.5 7.1 6.8 3.1 0.96 

Mean 40 0.8 0.4 9.5 9 2.4 0.94 

Std. 
Deviation 

3.4 0.3 0.1 1.8 1.4 1.0 0.06 
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Figure 4.2.38 SEM of doped CaP powder (batch B) synthesised under room temperature 

and as – prepared pH 5.4 ± 0.2 conditions, showing the obtained EDX spectra.  

 

XRD pattern of doped CaP powder (CaP-doped batch B pH5 RT) that was 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions is shown in Figure 4.2.39 and compared to that of CaP (CaP-

undoped pH5 RT) in Figure 4.2.40. The XRD pattern indicated the formation 

of a single monetite phase, which is in good agreement with monetite 

JCPDS file 01-070-1425. The peaks at 2 theta 26.5°, 30.3°, 32.5°, 40°, 

47.5°, 49°, 53°, and 59° appeared to be in good agreement with major peaks 

of dopants and monetite, with a slight shift of dopants’ peaks, which 

indicated that Er3+, Al3+, and F- were incorporated into the structure of 

monetite. The slight shift in peak positions and change in peak intensities 

are usually associated with the incorporation of a dopant into CaP structure 

(570). This indicated that Er3+ and Al3+ substituted a certain amount of Ca2+ 

in the monetite structure, as well as the incorporation of F- by the possible 

formation of F–OH bond, as observed in the FTIR spectrum of doped CaP 

powder (batch A), which will be verified by FTIR. Figure 4.2.40 compares the 

XRD pattern of doped CaP powder (batch B) (CaP-doped batch B pH5 RT) 
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to that of CaP (CaP-undoped pH5 RT), which indicated the formation of 

doped monetite and brushite phases, respectively. On the other hand, in the 

case of doped CaP powder batch A (CaP-doped batch A pH5 RT), a 

brushite phase was formed together with dopants’ phases (multiple phases). 

Therefore, the formation of a single doped monetite phase indicated the 

effective addition of batch B dopants, and that batch B dopants were more 

successful in doping CaP than batch A dopants under room temperature and 

pH 5.4 ± 0.2 conditions. 

The Miler indices (hkl) and 2 theta of doped CaP powder (batch B) that was 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions were refined in the monoclinic system by UnitCell program (Tim 

Holland’s software), using 1.54 Å wavelength and minimising the sum of 

squares of residuals in 2 theta, to determine the crystallographic parameters. 

Unit cell parameters for doped CaP powder pH5 RT (batch B) are shown in 

Table 4.2.12. The results indicated that the crystal structure of doped CaP 

(batch B) was in the triclinic system with space group P-1. Unit cell 

parameters of CaP-undoped batch B pH 5 RT are in good agreement with 

those of monetite JCPDS file 01-070-1425, however, compared to unit cell 

parameters of CaP-undoped pH 5 RT, 1st reaction (monetite), there was a 

shrinkage of the cell volume of 1.06 Å3. The unit cell parameters, a – axes, b 

– axes, and c – axes, of doped CaP (CaP-doped batch B pH5 RT) were 

modified, with an increase of 0.02 Å in b – axes, and decrease of 0.04 Å in a 

– axes, whereas 6.99 Å in c – axes was the same as that of CaP (CaP-

undoped pH5 RT). In addition, compared to doped CaP (CaP-doped batch A 

pH5 RT), the cell volume of doped CaP (CaP-doped batch B pH5 RT) is 

smaller by 185.32 Å3. 
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Table 4.2.12 Unit cell parameters for doped CaP powder (batch B) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to those of 

monetite JCPDS file 01-070-1425 

 

Cell parameter CaP-doped pH5 RT ( batch B) Std.D Monetite JCPDS file 01-070-1425 

a (Å) 6.87 0.001 6.91 

b (Å) 6.65 0.001 6.62 

c (Å) 6.99 0.0005 6.99 

Alpha (°) 97.12 0.017 96.34 

Beta (°) 103.57 0.009 103.82 

Gamma (°) 88.34 0.012 88.33 

Cell volume (Å
3
) 309 0.043 309.28 

  Std.D = Standard deviation 
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Figure 4.2.39 XRD pattern of doped CaP powder (batch B) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions, compared to monetite 

JCPDS file 01-070-1425. Marked peaks (●) were assigned to doped monetite. 

 

 

 

Figure 4.2.40 XRD pattern of doped CaP powder (batch B) synthesised under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions (doped monetite), compared 

to that of CaP-undoped pH5 RT (brushite). Marked peaks (●) were assigned to doped 

monetite. 
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4.2.2.2 Doped CaP batch B (pH 10 ± 0.2, RT) 

Representative SEM of doped CaP powder (batch B) that was synthesised 

under room temperature and pH 10 ± 0.2 conditions is shown in Figure 

4.2.41. SEM shows the formation of agglomerations (clusters) of rounded – 

like particles, as shown in Figure 4.2.41 (a and b). The rounded – like 

particles appeared to be in the nanometre scale. Figure 4.2.42 shows the 

volume – based distribution of doped CaP particles, as measured by the 

Malvern Mastersizer 2000E, with the standard percentile values d(0.1), 

d(0.5), d(0.9), and volume weighted mean D[4,3]. The particles had a 

volume weighted mean D[4,3] of 97.2 µm with a ± 1 standard deviation error 

bar, as shown in Figure 4.2.43. The values are not in good agreement with 

the nanoscale of particles, but they seem to be in good agreement with the 

agglomerations of rounded – like particles shown by SEM.  

The particles are very similar to those synthesised by Ramesh et al. (571), 

which are described as loosely packed particles, and they are reported to 

attain a final density of ~ 98% when sintered above 1050°C. The 

agglomerates were also observed with CaP powder that was synthesised 

under the same conditions. Agglomerates of particles are undispersed 

clusters of aggregates necking/held together by weak (van der Waals) forces 

or binders (572). Necking of particle refers to the bonding of particles by the 

diffusion of atoms to the interface of particles due to a driving force such as 

heat. Powders produced commercially by aerosol reactors are usually 

agglomerates of particles held together by necks due to sintering (572).  

Necking of particles and neck growth by surface diffusion and grain 

boundary usually occur at the initial stage of sintering (573). The latter 

involves surface transport by surface diffusion and evaporation – 
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condensation mechanism, which leads to neck formation and neck growth 

without densification (574). Sufficiently small sized – particles in contact may 

lead to higher sintering activity, which in turn allows sintering at relatively 

lower temperatures. The neck formation and growth may also lead to 

shortening the initial stage of sintering (575). Therefore, under laser 

irradiation sintering, much of the thermal energy can be employed for grain 

growth rather than necking of particles. 

The rounded – like nanoparticles would be ideal for the occlusion of dentinal 

tubules, because they would provide excellent infiltration and occlusion of 

dentinal tubules, with a uniform coating and large surface area for optimum 

sintering. As indicated above, they would also be beneficial under laser 

irradiation, as they would sinter at a relatively low temperature, and 

consequently, shorten the initial stage of sintering.  

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch B) that was synthesised under room temperature and pH 10 ± 

0.2 conditions are shown in Table 4.2.13. The SEM-EDX measurements of 

five spectra, as shown in Figure 4.2.44, indicated a mean Ca:P ratio of 1.5.   
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Figure 4.2.41 SEM of doped CaP powders (batch B) synthesised under room temperature 

and pH 10 ± 0.2 conditions, showing (a) agglomeration of rounded – like particles and 

(b) necking of nanoparticles. 

 

 

 

Figure 4.2.42 Particle size distribution of doped CaP powder (batch B) synthesised under 

room temperature and as – prepared pH 10 ± 0.2 conditions. 
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Figure 4.2.43 Statistics graph of doped CaP powder (batch B) synthesised under room 

temperature and pH 10 ± 0.2 conditions, showing the mean with ± 1 standard 

deviation error bar. 

 

 

Table 4.2.13 SEM-EDX measurements (element weight percentage) for doped CaP (batch 

B) synthesised under room temperature and pH 10 ± 0.2 conditions 

 

Spectrum O F Al P Ca Er 
Ca:P 
ratio 

Spectrum 1 24.2 0.7 0.3 6.75 10.2 3.30 1.52 

Spectrum 2 30.5 1 0.4 7.7 11.7 2.44 1.51 

Spectrum 3 42.0 1.5 0.5 7.9 11.2 3.58 1.41 

Spectrum 4 36.7 1.1 0.5 10.1 15.7 4.65 1.55 

Spectrum 5 35.6 1 0.5 9.6 14.5 3.55 1.51 

Mean 33.8 1.1 0.5 8.4 12.7 3.50 1.5 

Std. 
Deviation 

6.7 0.3 0.08 1.4 2.3 0.7 0.05 
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 Figure 4.2.44 SEM of doped CaP powder (batch B) synthesised under room temperature 

and pH 10 ± 0.2 conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP (CaP-doped batch B pH10 RT) that was 

synthesised under room temperature and pH 10 ± 0.2 conditions is shown in 

Figure 4.2.45 and compared to that of CaP (CaP-undoped pH10 RT) under 

the same conditions in Figure 4.2.46. The XRD pattern indicated the 

formation of a hydroxyapatite phase, which is in good agreement with HAp 

JCPDS file 009-0432. There was also a change in peak intensities, which 

indicated that Er3+ and Al3+ substituted a certain amount of Ca2+ in the HAp 

structure, as well as the incorporation of F- by the possible formation of F–

OH bond, which will be verified by FTIR. The XRD peaks were broad and 

reflected the nanometre size of particles, which is in good agreement with 

the nanometre rounded – like particles shown by SEM.  

Figure 4.2.46 compares the XRD pattern of doped CaP powder (batch B) 

(CaP-doped batch B pH10 RT) to that of CaP (CaP-undoped pH10 RT), the 

latter which was identified as multiple phases of HAp and brushite. The 

formation of a single doped HAp (CaP-doped batch B pH10 RT) indicated 

the effect of dopants’ addition on the phase formation of CaP.  
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Figure 4.2.45 XRD pattern of doped CaP (batch B) synthesised under room temperature 

and pH 10 ± 0.2 conditions. Marked peaks (●) were assigned to doped HAp. 

 

 

 

Figure 4.2.46 XRD pattern of doped CaP (batch B) synthesised under room temperature 

and pH 10 ± 0.2 conditions, compared to that of CaP (CaP-undoped pH10 RT). 

Marked peaks (●) were assigned to doped HAp. 
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4.2.2.3 Doped CaP batch B (pH 5.4 ± 0.2, 200°C hydrothermal) 

Representative SEM of doped CaP powder (batch B) that was synthesised 

under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions is 

shown in Figure 4.2.47. SEM showed the formation of rounded – like 

particles, as shown in Figure 4.2.47 (a and b). The particles were different to 

those of CaP that were synthesised under the same conditions, which had 

fine platelet – like particles. Irregular particle morphology was also observed, 

which appeared to be due to the agglomeration and necking of few particles. 

The particles appeared to be in the nanometre scale. Figure 4.2.48 shows 

the volume – based distribution of doped CaP particles, as measured by the 

Malvern Mastersizer 2000E, with the standard percentile values d(0.1), 

d(0.5), d(0.9), and volume weighted mean D[4,3]. The particles had a 

volume weighted mean D[4,3] of 38.5 µm with a ± 1 standard deviation error 

bar, as shown in Figure 4.2.49. The values are not in good agreement with 

the nanoscale of particles, but they are in good agreement with the 

agglomerates shown by SEM in Figure 4.2.50. Similar to doped CaP (CaP-

doped batch B pH10 RT), these nanoparticles would be ideal for the 

occlusion of dentinal tubules, because they would provide excellent 

infiltration and occlusion of dentinal tubules, with a uniform coating and large 

surface area for optimum sintering. 

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch B) that was synthesised under as – prepared pH 5.4 ± 0.2 

and 200°C hydrothermal conditions are shown in Table 4.2.14. The SEM-

EDX measurements of five spectra, as shown in Figure 4.2.50, indicated a 

mean Ca:P ratio of 0.93 (~ 1.0). 
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Figure 4.2.47 SEM of doped CaP powder (batch B) synthesised under as – prepared pH 5.4 

± 0.2 and 200°C hydrothermal conditions, showing rounded – like particles at (a) 

lower magnification at 1 µm scale and (b) higher magnification at 200 nm scale. 

 

 

 

Figure 4.2.48 Particle size distribution of doped CaP powder (batch B) synthesised under as 

– prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions. 
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Figure 4.2.49 Statistics graph of doped CaP powder (batch B) synthesised under as – 

prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, showing the mean with ± 1 

standard deviation error bar. 

 

 

Table 4.2.14 SEM-EDX measurements (element weight percentage) for doped CaP powder 

(batch B) synthesised under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal 

conditions 

 

Spectrum O F Al P Ca Er 
Ca:P 
ratio 

Spectrum 1 34.4 2.2 0.3 5.5 5.3 7.2 0.96 

Spectrum 2 36.1 2.2 0.4 6.2 6.7 7.9 1.07 

Spectrum 3 28.2 0.9 0.3 4.1 3.8 9.1 0.92 

Spectrum 4 36.3 1.7 0.2 3.6 3.4 5.9 0.94 

Spectrum 5 32.9 1 0.3 3.9 3.1 8.3 0.78 

Mean 33.6 1.6 0.3 4.7 4.5 7.7 0.93 

Std. 
Deviation 

3.3 0.6 0.06 1.1 1.5 1.2 0.1 
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Figure 4.2.50 SEM of doped CaP powder (batch B) synthesised under as – prepared pH 5.4 

± 0.2 and 200°C hydrothermal conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP (CaP-doped batch B pH5 200°C hydrothermal) 

that was synthesised under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions is shown in Figure 4.2.51 and compared to that of 

CaP (CaP-undoped pH5 200°C hydrothermal) under the same conditions in 

Figure 4.2.52. The XRD pattern indicated the formation of a hydroxyapatite 

phase, which is in good agreement with HAp JCPDS file 009-0432. The 

XRD peaks were broad and reflected the nanometre size of particles, which 

is in good agreement with the nanometre scale of rounded – like particles 

shown by SEM.  

The XRD pattern of doped CaP (CaP-doped batch B pH5 200°C 

hydrothermal) is also in good agreement with that of CaP (CaP-undoped 

pH5 200°C hydrothermal), as shown in Figure 4.2.52. However, a slight shift 

in peak positions and change in peak intensities were observed, which 

indicated that Er3+ and Al3+, and F- substituted a certain amount of Ca2+ and 

OH-, respectively, in the HAp structure. 
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Figure 4.2.51 XRD pattern of doped CaP powder (batch B) synthesised under as – 

prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions. Marked peaks (●) were 

assigned to doped HAp. 

 

 

 

Figure 4.2.52 XRD pattern of doped CaP powder (batch B) synthesised under as – 

prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, compared to that of CaP 

under the same conditions. Marked peaks (●) were assigned to doped HAp.  
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4.2.2.4 Doped CaP batch B (pH 10 ± 0.2, 200°C hydrothermal) 

Representative SEM of doped CaP powder (batch B) that was synthesised 

under pH 10 ± 0.2 and 200°C hydrothermal conditions is shown in Figure 

4.2.53. SEM showed agglomeration (clusters) of doped CaP particles in the 

micrometre scale, as shown in Figure 4.2.53 (a). However, the particles in 

clusters appeared to have a rod – like morphology in the nanometre scale, 

as shown in Figure 4.2.53 (b). Figure 4.2.54 shows the volume – based 

distribution of doped CaP particles, as measured by the Malvern Mastersizer 

2000E, with the standard percentile values d(0.1), d(0.5), d(0.9), and volume 

weighted mean D[4,3]. The particles had a volume weighted mean D[4,3] of 

62 µm with a ± 1 standard deviation error bar, as shown in Figure 4.2.55. 

The values are not in good agreement with the nanoscale of particles, but 

they are in good agreement with the agglomerates shown by SEM, 

particularly in Figure 4.2.56. 

SEM-EDX measurements (element weight percentage) of doped CaP 

powder (batch B) that was synthesised under pH 10 ± 0.2 and 200°C 

hydrothermal conditions are shown in Table 4.2.15. The SEM-EDX 

measurements of five spectra, as shown in Figure 4.2.56, indicated a mean 

Ca:P ratio of 1.58.  
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Figure 4.2.53 SEM of doped CaP powder (batch B) synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions, showing (a) agglomerations/clusters of particles and 

(b) rod – like nanoparticles. 

 

 

 

Figure 4.2.54 Particle size distribution of doped CaP powder (batch B) synthesised under 

pH 10 ± 0.2 and 200°C hydrothermal conditions. 
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Figure 4.2.55 Statistics graph of doped CaP powder (batch B) synthesised under pH 10 ± 

0.2 and 200°C hydrothermal conditions, showing the mean with ± 1 standard 

deviation error bar. 

 

 

Table 4.2.15 SEM-EDX measurements (element weight percentage) for doped CaP powder 

(batch B) synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions 

 

Spectrum O F Al P Ca Er 
Ca:P 
ratio 

Spectrum 1 34.6 1 0.6 11 18.1 4.3 1.63 

Spectrum 2 39.8 1.5 0.5 9.7 14.7 3.2 1.51 

Spectrum 3 32.3 0.8 0.7 9.8 15.8 2.8 1.6 

Spectrum 4 33.7 1 0.6 8.4 13.5 2.7 1.6 

Spectrum 5 25.5 0.3 0.09 1.3 2.1 0.4 1.57 

Mean 33.2 0.9 0.5 8 12.8 2.7 1.58 

Std. 
Deviation 

5.1 0.4 0.2 3.8 6.2 1.4 0.04 
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Figure 4.2.56 SEM of doped CaP powder (batch B) synthesised under pH 10 ± 0.2 and 

200°C hydrothermal conditions, showing the obtained EDX spectra. 

 

XRD pattern of doped CaP (CaP-doped batch B pH10 200°C hydrothermal) 

that was synthesised under pH 10 ± 0.2 and 200°C hydrothermal conditions 

is shown in Figure 4.2.57 and compared to those of CaP (CaP-undoped 

pH10 200°C hydrothermal and CaP-undoped pH10 200°C hydrothermal 

(initial investigation)) under the same conditions in Figure 4.2.58. The XRD 

pattern indicated the formation of a hydroxyapatite phase, which is in good 

agreement with HAp JCPDS file 009-0432. The XRD peaks were broad and 

reflected the nanometre size of particles, which is in good agreement with 

the nanometre scale of rod – like particles shown by SEM (Figure 4.2.53 b).  

The XRD pattern of doped CaP powder (CaP-doped batch B pH10 200°C 

hydrothermal) is also in good agreement with that of CaP synthesised in the 

initial investigation under the same conditions (CaP-undoped pH10 200°C 

hydrothermal (initial investigation)), as shown in Figure 4.2.58. However, as 

stated before, shift in peak positions and change in peak intensities were 

observed, which indicated that Er3+ and Al3+, and F- substituted a certain 

amount of Ca2+ and OH-, respectively, in the HAp structure. 
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Figure 4.2.57 XRD pattern of doped CaP powder (batch B) synthesised under pH 10 ± 0.2 

and 200°C hydrothermal conditions. Marked peaks (●) were assigned to doped HAp. 

 

 

 

Figure 4.2.58 XRD pattern of doped CaP powder (batch B) synthesised under pH 10 ± 0.2 

and 200°C hydrothermal conditions, compared to those of CaP (CaP-undoped pH10 

200°C hydrothermal and CaP-undoped pH10 200°C hydrothermal (initial 

investigation)). Marked peaks (●) were assigned to doped HAp.  
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XRD patterns of doped CaP powders (batch B) indicated the formation of 

single CaP phases under all conditions, which were the doped monetite 

phase in the case of doped CaP powder (CaP-doped batch B pH5 RT) and 

doped HAp phase in the rest of doped CaP powders (CaP-doped batch B 

pH10 RT), (CaP-doped batch B pH5 200°C hydrothermal), and (CaP-doped 

batch B pH10 200°C hydrothermal). This was supported by the SEM of 

doped CaP powders (batch B), which showed homogenous particle size and 

morphology. The crystallised platelet – like particles of doped CaP powder 

that was synthesised under room temperature and as – prepared pH 5.4 ± 

0.2 conditions (Figure 4.2.35) were in good agreement with the XRD pattern 

of doped monetite phase (Figure 4.2.39). Under pH 10 ± 0.2 conditions, the 

particles had rounded – like morphology of a single doped HAp phase, as 

revealed by SEM (Figure 4.2.41) and XRD (Figure 4.2.45), respectively. 

Under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, 

rounded – like nanoparticles  were formed (Figure 4.2.47), and the formation 

of a doped HAp phase was confirm by XRD (Figure 4.2.51), particularly 

when compared to that of CaP under the same conditions  (Figure 4.2.52). 

Similarly, under pH 10 ± 0.2 and 200°C hydrothermal conditions, rod – like 

nanoparticles were formed (Figure 4.2.53), and the formation of a doped 

HAp phase was confirm by XRD (Figure 4.2.57), particularly when compared 

to that of CaP synthesised in the initial inevestigation under the same 

conditions  (Figure 4.2.58).  

As estabished with CaP powders, SEM and XRD patterns of doped CaP 

(batch B) indicated the effectiveness of elavated pH and/or hydrothermal 

conditions in reducing the particle size and modifying the particle 

morphology. In addition to the reduction of particle size due to the increase 
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of the nucleation rate with increasing pH levels (549), the ionic radius of Ca2+ 

(1.14 Å) is smaller than that of Er3+ (1.03 Å) and Al3+ (0.53 Å) (561), and 

therefore, any substitution of Er3+ and Al3+ for Ca2+ would cause a decrease 

in lattice parameters, and thus, the unit cell volume. For example, 

substitutions of Ca2+ by smaller cations, such as Mg2+, Zn2+, and Y3+, cause 

a shrinkage of the HAp crystal, whereas larger cations, such as La3+, cause 

an expansion of the HAp crystal (562). Similarly, fluoride ion (F-) is smaller 

than hydroxyl ion (OH-), and thus, the substitution of F- for OH- would cause 

a shrinkage of the HAp crystal (563). 

Table 4.2.16 compares the volume – based distribution of doped CaP (batch 

B) powders. The refractive index and absorption index for doped CaP (batch 

B) used in these calculations were the same as for CaP (1.629 and 0.1, 

respectively). The measured median particle diameter d(0.5), absolute 

deviation from median (uniformity), span, and 10% and 90% size distribution 

by volume percentage (v%) for doped CaP particles (batch B) are presented 

in Table 4.2.16. 

The results indicated that the mean diameter D[4,3] was lowest (38.5 µm) in 

the case of CaP-doped batch B pH5 200°C hydrothermal and highest (97.2 

µm) in the case of CaP-doped batch B pH10 RT. In the case of CaP-doped 

batch B pH5 RT and CaP-doped batch B pH10 200°C hydrothermal, the 

mean diameter D[4,3] was 54.1 µm and 62 µm, respectively. These values 

are in good agreement with doped CaP (batch B) particles that were 

synthesised under room temperature and pH 5.4 ± 0.2 conditions and doped 

CaP (batch B) agglomerates under the rest conditions. Although the 

particles that were synthesised under 200°C hydrothermal and/or pH 10 ± 
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0.2 conditions were shown to be in the nanoscale by SEM, the mean 

diameter was affected by the formation of agglomerations. As stated before, 

this is because the accuracy of these measurements depends on the quality 

of the powder dispersion.      

The small span values (4.12, 3.26, and 4.28) in the case of CaP-doped 

batch B pH5 200°C hydrothermal, CaP-doped batch B pH10 RT, and CaP-

doped batch B pH10 200°C hydrothermal indicated a narrow distribution, 

while the large span value (9.08) in the case of CaP-doped batch B pH5 RT 

indicated a broader distribution. This indicated that the particles of CaP-

doped batch B pH5 RT were less uniform in size than those of the rest of 

doped CaP (CaP-doped batch B pH10 RT, CaP-doped batch B pH5 200°C 

hydrothermal, and CaP-doped batch B pH10 200°C hydrothermal). 

Table 4.2.16 Particle size data for doped CaP (batch B) powders  

 

Sample d(0.1) µm d(0.5) µm d(0.9) µm Uniformity Span D[4,3] µm 

CaP-doped batch B pH5 RT 2.49 16.75 154.76 2.85 9.08 54.133 

CaP-doped batch B pH10 RT 4.73 58 244 1.3 4.12 97.29 

CaP-doped batch B pH5 
200°C hydrothermal 

3.76 26.38 89.96 1.02 3.26 38.51 

CaP-doped batch B pH10 
200°C hydrothermal 

3.5 35.76 156.7 1.39 4.28 62 

 

Doped CaP powders (batch B) were also characterised by FTIR in order to 

detect their functional groups and bonds. FTIR spectra of doped CaP 

powders (batch B) in the wavenumber range 4000 – 400 cm-1 are compared 

and shown in Figures 4.2.59, 4.2.60, and 4.2.61. FTIR absorption bands and 

their assigned references are presented in Table 4.2.17.  
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FTIR spectra of doped CaP powders (batch B) showed CaP absorption 

bands of PO4
 group at 2100 cm-1, 1200 – 960 cm-1, and 600 – 500 cm-1, CO3

 

group at 2400 – 2300 cm-1 and 1546 cm-1, HPO4 group at 870 cm-1, 

absorbed H2O molecules at 3600 – 3100 cm-1 and 1650 – 1600 cm-1, and 

OH group at 3570 cm-1 (552, 553). The absorption band of PO4
 group was 

observed around 2100 cm-1, which is the characteristic absorption band for 

hydroxyapatite, as observed with control CaP powders. The characteristic 

absorption band of OH group at 634 cm-1 for HAp was absent, and instead, 

an absorption band around 644 cm-1 was observed with all powders, 

however, the absorption band was more defined in the case of doped CaP 

powder (CaP-doped batch B pH5 200°C hydrothermal). The absorption band 

at 644 cm-1 was assigned to F, and it is in good agreement with the 

substitution of F- for OH- in the HAp structure (495). In the case of doped 

CaP powder (CaP-doped batch B pH5 RT), the absorption band at 644 cm-1 

indicated the incorporation of fluoride ion (F-) into the monetite structure 

through the formation of OH–F–OH bond (569). In addition, weak absorption 

bands at 3540 cm-1 were observed with all powders, which also indicated the 

incorporation of fluoride ions into CaP structure (569). FTIR spectra of (CaP-

doped batch B pH10 RT), (CaP-doped batch B pH5 200°C hydrothermal), 

and (CaP-doped batch B pH10 200°C hydrothermal) were similar to those of 

CaP and doped CaP (batch A) powders, but with modifications due to 

dopants’ substitution. 
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Figure 4.2.59 FTIR spectra of doped CaP powders (batch B) in the MIR region and 

wavenumber range 1300 – 400 cm
-1

. 

 

 

   

Figure 4.2.60 FTIR spectra of doped CaP powders (batch B) in the MIR region and 

wavenumber range 2500 – 1400 cm
-1

. 
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Figure 4.2.61 FTIR spectra of doped CaP powders (batch B) in the NIR region and 

wavenumber range 4000 – 3000 cm
-1

. 

 

Under room temperature and as – prepared pH 5.4 ± 0.2 conditions, doped 

CaP powder (CaP-doped batch B pH5 RT) showed the characteristic 

absorption band of HPO4 group at 878 cm-1, which is in good agreement with 

the formation of a monetite phase (CaHPO4), as revealed by XRD. The 

absorption band of PO4 group (v3) (P–O) at 1200 – 1100 cm-1 appeared as 

one band with shoulders, and similarly, the absorption band of PO4 group 

(v4) (O–P–O) at 600 – 550 cm-1, which were in contrast to those of CaP 

powder (CaP-undoped pH5 RT) and doped CaP powder (CaP-doped batch 

A pH5 RT). This was most likely due to the incorporation of Er3+ and Al3+ into 

the monetite structure, as revealed by XRD. The absorption band of PO4 

group (v1) (P–O) was observed as a shoulder at 960 cm-1, while the 

absorption band of PO4 group (v2) (O–P–O) was observed at 425 cm-1 with 

a very weak intensity. Weak absorption bands around 666 – 644 cm-1 were 

observed, and they were assigned to the incorporation of fluoride ions 
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through the formation of OH–F–OH bond. The absorption band of absorbed 

H2O was observed at 1650 cm-1, and it was similar to that of CaP (CaP-

undoped pH5 RT). The absorption band of CO3 group at 2300 cm-1 was 

increased, compared to that of CaP (CaP-undoped pH5 RT) and doped CaP 

(CaP-doped batch A pH5 RT). In the region 4000 – 3000 cm-1, the 

absorption band of absorbed H2O molecules was observed at 3160 cm-1, 

while the absorption band of F–OH bond at 3538 cm-1 was weak.  

Under room temperature and pH 10 ± 0.2 conditions, the absorption band of 

PO4 group (v3) (P–O) at 1200 – 960 cm-1 was merged as one band with 

shoulders, as occurred with CaP (CaP-undoped pH10 RT) and doped CaP 

(CaP-doped batch A pH10 RT). The absorption band of PO4 group (v1) (P–

O) was observed as a shoulder at 960 cm-1. The absorption bands of PO4 

group (v4) (O–P–O) at 600 – 500 cm-1 were shaped into two bands, instead 

of three bands that were observed with CaP powder (CaP-undoped pH10 

RT). The absorption bands of PO4 group (v4) (O – P – O) at 600 – 500 cm-1 

were similar to those of doped CaP (CaP-doped batch A pH10 RT). The 

absorption band of structural OH group at 634 cm-1 was absent, however, a 

weak absorption band at 644 cm-1 was observed, and it was assigned to the 

incorporation of fluoride ions and the substitution of F- for OH-. The 

absorption band of absorbed H2O at 1650 cm-1 was broader and stronger, 

and the absorption band of CO3 group at 2350 cm-1 was smaller, compared 

to that of CaP (CaP-undoped pH10 RT). The absorption bands in the region 

4000 – 3000 cm-1, corresponding to the stretched and absorbed H2O 

molecules at 3490 cm-1 and 3160 cm-1, respectively, were weak and broad. 

These absorption bands were similar to those of doped CaP (CaP-doped 

batch A pH10 RT). The absorption band of structural OH group and F–OH 
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bond at 3570 cm-1 and 3540 cm-1, respectively, were observed with weak 

intensities.  

Under as – prepared pH 5.4 ± 0.2 and 200°C hydrothermal conditions, the 

characteristic absorption band of PO4 group (v3) (P–O) at 1200 – 960 cm-1 

was broader than that of doped CaP (CaP-doped batch A pH5 200°C 

hydrothermal), with the development of a third shoulder – like. These were 

most likely due to the incorporation of Er3+ and Al3+ into the HAp structure, 

as indicated by XRD. The absorption band of PO4 group (v1) (P–O) was 

observed as a shoulder at 960 cm-1. A new absorption band at 525 cm-1 was 

developed near the absorption bands of PO4 group (v4) (O–P–O) at 600 – 

500 cm-1, which was not observed with CaP (CaP-undoped pH5 200°C 

hydrothermal) and doped CaP (CaP-doped batch A pH5 200°C 

hydrothermal). The absorption band at 525 cm-1 is in good agreement with 

the reported Er–O–Er bond (564), however, it was probably due to the 

incorporation of Er3+ into the HAp structure through the formation of ErPO4 

(416). The absorption band of structural OH group at 634 cm-1 was absent, 

but a small absorption band was observed at 644 cm-1, which was assigned 

to the incorporation of fluoride ions and the substitution of F- for OH-. The 

absorption band of absorbed H2O molecules at 1650 cm-1 was stronger than 

that of CaP (CaP-undoped pH5 200°C hydrothermal) and doped CaP (CaP-

doped batch A pH5 200°C hydrothermal). On the other hand, the absorption 

bands of CO3 group at 2350 cm-1 and CO3 group (v3) at 1546 cm-1 were 

significantly reduced, compared to those of CaP (CaP-undoped pH5 200°C 

hydrothermal). The absorbed H2O molecules were observed with a small 

and broad absorption band at 3160 cm-1, while weak absorption bands of 
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structural OH group and F–OH bond were observed at 3570 cm-1 and 3538 

cm-1, respectively. 

Under pH 10 ± 0.2 and 200°C hydrothermal conditions, the characteristic 

absorption bands of PO4 group (v3) (P–O) at 1200 - 960 cm-1 and PO4 group 

(v4) (O–P–O) at 600 – 550 cm-1 were similar to those of doped CaP (CaP-

doped batch A pH10 200°C hydrothermal). However, a third shoulder – like 

was developed at the absorption band of PO4 group (v3) (P–O) at 1200 – 

960 cm-1, with the broadening of absorption bands of PO4 group (v3) (P – O) 

at 1200 – 1100 cm-1 and PO4 group (v4) (O–P–O) at 600 – 550 cm-1. These 

changes indicated the incorporation of Er3+ and Al3+ into the HAp structure, 

as indicated by XRD. The absorption band of structural OH group at 634 cm-

1 was absent, but a weak absorption band was observed at 644 cm-1, which 

was assigned to the incorporation of fluoride ions (F-) and the substitution of 

F- for OH-. The absorption band of absorbed H2O molecules at 1650 cm-1 

was stronger than that of CaP (CaP-undoped pH10 200°C hydrothermal), 

but similar to that of doped CaP (CaP-doped batch A pH10 200°C 

hydrothermal). Like doped CaP (CaP-doped batch A pH10 200°C 

hydrothermal), the absorption bands of CO3 group at 2350 cm-1 and CO3 

group (v3) at 1546 cm-1 were significantly reduced, compared to those of 

CaP (CaP-undoped pH5 200°C hydrothermal), which indicated that they 

were less carbonated. The absorbed H2O molecules were observed with a 

small and broad absorption band at 3160 cm-1, while weak bands of 

structural OH group and F–OH bond were observed at 3570 cm-1 and 3538 

cm-1, respectively. 
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Table 4.2.17 Characteristic IR absorption frequencies (cm
-1

) of functional groups for doped 

CaP powders (batch B), compared to those of reported data (495, 552, 553, 569)  

 

Functional 
group and 

absorption cm
-1
 

(References) 

CaP-doped B                  
pH5 RT  

CaP-doped B              
pH10 RT 

CaP-doped B pH5 
200°C hydrothermal 

CaP-doped B pH10 
200°C hydrothermal 

cm
-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity cm

-1
 Intensity 

450-500 cm
-1
   

PO4 v2 
468 Weak 470 Weak 470 weak 472 weak 

500-600 cm
-1
  

PO4 v4 

528 
small-like 

sh 
528 

v. weak 
sh 

524 small 526 
v. weak-
like sh 

565 
small-

medium 
563 

Small-
medium 

565 
small-

medium 
563 

small-
medium 

601 weak-sh 605 
Small-

medium 
601 

Small-
medium 

605 
small-

medium 

647-630 cm
-1
               

F
-
 incorporation 

640 v. Weak 644 v. weak  644 Small 644 v. weal 

720 cm
-1
 Nujol 721 Small 721 Small 723 Small 721 Small 

875 cm
-1
   HPO4 878 

Weak-
small 

- - - - - - 

960 cm
-1
 PO4 v1 964 weak-sh 964 weak-sh 964  weak-sh 964 

weak-like 
sh 

1000-1200 cm
-1
 

PO4 v3 

1033 Strong 1031 Strong 1031 Strong 1029 Strong 

- - - - - - 1062 Sh 

1124 small-sh 1097 small-sh 1093 small-sh 1097 
small-like 

sh 

1400-1650 cm
-1
  

CO3 v3 
1548 Weak 1546 Weak 1548 Weak 1546 Weak 

1600-1650 cm
-1
 

H2O absorbed 
1641 

Small-
medium 

1641 medium 1641 
Small-

medium 
1641 

small-
medium 

2000-2100 cm
-1
 

PO4 
2038 

weak-
small 

2038 
weak-
small 

2050 
weak-
small 

2034 Small 

2100-2400 cm
-1
 

absorbed CO3 
  

2341 
Small-

medium 
2341 Small 2343 v. weak 2343 v. weak 

2360 
Small-

medium 
2360 Small 2366 

weak-
small 

2360 
Weak-
small 

3100-3600 cm
-1
 

absorbed H2O 
3137 

medium-
broad 

3182 
small-
broad 

3139 
medium-

broad 
3151 

medium-
broad 

3580-3600 cm
-1
 

H2O stretching 
- - 3400 

smaller-
broad 

- - 3400 
Weak-
broad 

3535 cm
-1
 F-OH 3540 v. weak 3540 v. weak 3540 v. weak 3540 v. weak 

3571 cm
-1
 

structural OH 
3570 v. weak 3570 v. weak 3570 Weak 3570 Weak 

v = very, sh = shoulder, vibrational modes (v1 = symmetrical stretching, v2 = Asymmetrical 
stretching, v3 =  bending in and out of plane and v4 = bending in plane) 
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Thermal behaviour of doped CaP powders (batch B) was investigate using 

differential scanning calorimetry (DSC). As with CaP and doped CaP (batch 

A) powders, the heat flow of DSC measurements was set to Endo up, which 

indicates that endothermic changes are peaked up, while exothermic 

changes are peaked down. DSC of doped CaP powders (batch B) is 

compared in Figure 4.2.62, and DSC peak centres are shown in Table 

4.2.18. Doped CaP powders (CaP-doped batch B pH5 RT) and (CaP-doped 

batch B pH10 RT) showed negligible broad endothermic peaks at 439°C and 

111°C, respectively, which were assigned to the explosion of lattice water 

and liberation of water, respectively (560). The endothermic peak at 439°C is 

in good agreement with the reported phase transformation from monetite to 

calcium pyrophosphate (β-Ca2P2O7) around 400°C (551). As stated before, 

the explosion of lattice water was due to the chemical reaction of OH 

radicals, which were liberated from the CaP structure during heating. This 

indicated that the powders were hydrated, and that the endothermic peaks 

were duo to dehydration of powders, as established with CaP and doped 

CaP (batch A) powders. 

The other two doped CaP powders (CaP-doped batch B pH5 200°C 

hydrothermal and CaP-doped batch B pH10 200°C hydrothermal) showed 

no reactions. This was in contrast to CaP powders, but similar to doped CaP 

(batch A) powders under the same conditions. This indicated that these 

doped CaP powders were an – hydrated and thermally stable, and that no 

phase transformations took place upon heating from room temperature up to 

600°C. 
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Figure 4.2.62 DSC of doped CaP powders (batch B) (Endo up). 

 

 

Table 4.2.18 DSC peak centres for doped CaP (batch B) powders 

 

CaP-doped batch B 
pH5 RT 

CaP-doped batch B 
pH10 RT 

CaP-doped batch B 
pH5 200°C 

hydrothermal 

CaP-doped batch B 
pH10 200°C 

hydrothermal 

439°C 111°C - - 
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Doping of CaP via batch A and B dopants can be summarised as follows. 

Under room temperature and as – prepared pH 5.4 ± 0.2 conditions, SEM of 

doped CaP (batch A) powder showed nanospherical particles fused to the 

surface of platelet – like particles, corresponding to CaP (brushite and 

monetite) and dopants’ phases (Er2O3, AlPO4, and CaF2), as indicated by 

XRD, whereas SEM of doped CaP (batch B) powder showed platelet – like 

particles, corresponding to a homogeneous doped monetite, as indicated by 

XRD. Under room temperature and pH 10 ± 0.2 conditions, SEM of doped 

CaP (batch A) powder showed well – crystallised spherical particles fused 

together, forming a continuous and uniform layer, corresponding to the 

formation of  homogenous HAp and dopants’ phases, the latter which 

(phases) were revealed by XRD. On the other hand, SEM of doped CaP 

(batch B) powder showed rounded – like particles (necking together), 

corresponding to the formation of Er+3, Al3+, and F- – doped HAp, as 

indicated by XRD. Under as – prepared pH 5.4 ± 0.2 and 200°C 

hydrothermal conditions, SEM of doped CaP (batch A) powder showed 

platelet – like, rod – like, and rounded – like particles, corresponding to the 

formation of brushite and dopants’ phases, as indicated by XRD, whereas 

SEM of doped CaP (batch B) powder showed rounded – like particles, 

corresponding to the formation of Er+3, Al3+, and F- – doped HAp, as 

indicated by XRD. Under pH 10 ± 0.2 and 200°C hydrothermal conditions, 

SEM of doped CaP (batch A) powder showed spherical particles and 

rod/needle – like particles, corresponding to the formation of HAp and 

dopants’ phases, as indicated by XRD. On the other hand, SEM of doped 

CaP (batch B) powder showed rod – like particles, corresponding to the 

formation of Er+3, Al3+, and F- – doped HAp, as indicated by XRD. 
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In the case of doped CaP (batch A) (CaP-doped batch A pH5 RT), the P–O 

bond at 1230 – 1132 cm-1 and Er–O–Er bond at 522 cm-1 confirmed the 

presence of Er2O3 and AlPO4 phases, respectively. The OH–F–OH and F–

OH bonds at 784 – 665 cm-1 and 3438 cm-1, respectively, indicated the 

possible incorporation of F- into the CaP structure. In the case of the rest of 

doped CaP (batch A) powders, the F–OH bond at 3438 cm-1 indicated the 

incorporation of F- into CaP structure, while the broadening of absorption 

bands of PO4 group (v3) (P–O) at 1150 – 950 cm-1 and PO4 group (v4) (O–

P–O) at 600 – 550 cm-1 was donated to the presence of dopants’ phases 

(Er2O3 and AlPO4) or that some degree of substitution by Er3+ and Al3+ for 

Ca2+ may have taken place. On the other hand, in the case of doped CaP 

powder (batch B) (CaP-doped batch B pH5 RT), the absorption bands 

around 666 – 644 cm-1 and 3538 cm-1 indicated the incorporation of fluoride 

ion into the monetite structure through the formation of OH–F–OH and F–OH 

bonds, respectively. In the case of the rest of doped CaP (batch B) powders, 

the absence of characteristic OH group at 634 cm-1 for HAp and the 

presence of absorption bands at 644 cm-1 and 3538 cm-1 indicated the 

substitution of F- for OH- in the HAp structure and the formation of F–OH 

bond, respectively. FTIR spectra of (CaP-doped batch B pH10 RT), (CaP-

doped batch B pH5 200°C hydrothermal), and (CaP-doped batch B pH10 

200°C hydrothermal) were similar to those of doped CaP (batch A) powders. 

However, the former powders showed broader absorption bands of PO4 

group (v3) (P–O) at 1150 – 950 cm-1 and PO4 group (v4) (O–P–O) at 600 – 

550 cm-1, and the development of new absorption bands, which indicated 

clearer incorporation of Er3+ Al3+, and F- into the HAp structure.  
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DSC results of doped CaP (batch A) powders indicated that CaP-doped 

batch A pH5 RT was hydrated, and supported phase transformations from 

brushite to monetite and from monetite to calcium pyrophosphate (β-

Ca2P2O7) at 168.2°C and 434.5°C, respectively, that were revealed by hot 

stage XRD at 200°C and 400°C. The rest of doped CaP (batch A) powders 

(CaP-doped batch A pH10 RT), (CaP-doped batch A pH5 200°C 

hydrothermal), and (CaP-doped batch A pH10 200°C hydrothermal) showed 

no reactions, which indicated that these doped CaP powders were 

anhydrous, and that no phase transformations took place upon heating from 

room temperature up to 600°C. On the other hand, DSC results of doped 

CaP (batch B) powders indicated that CaP-doped batch B pH5 RT and CaP-

doped batch B pH10 RT were hydrated, and supported a phase 

transformation from monetite to calcium pyrophosphate (β-Ca2P2O7) at 

439°C (CaP-doped batch B pH5 RT) that was revealed by hot stage XRD at 

400°C. The other two doped CaP (batch B) powders (CaP-doped batch A 

pH5 200°C hydrothermal and CaP-doped batch A pH10 200°C 

hydrothermal) showed no reactions, which indicated that these doped CaP 

powders were anhydrous, and that no phase transformations took place 

upon heating from room temperature up to 600°C.  

The results indicated that doped CaP (batch B) powders are more promising 

than doped CaP (batch A) powders. This is because the doping of CaP with 

soluble compounds (Er(NO3)3.5H2O, Al(NO3)3.9H2O, and NH4F) was more 

effective and evident than with insoluble compounds (Er2O3, AlPO4, and 

CaF2). Doping of CaP  powders (batch B) resulted in the formation of 

homogeneous single phase and particle morphology, while doping of CaP 

powders (batch A) resulted in the formation of inhomogeneous phases and 
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particle morphology, except that synthesised under room temperature and 

pH 10 ± 0.2 conditions (CaP-doped batch A pH10 RT), which resulted in the 

formation of homogeneous phases and particle morphology. The latter 

would be effective in occluding dentinal tubules, and most importantly, they 

would sinter homogeneously under laser irradiation than the rest of doped 

CaP (batch A) powders. Similarly, doped CaP (batch B) powders, 

particularly those synthesised under pH 10 ± 0.2 and/or 200°C hydrothermal 

conditions, would be effective in occluding and infiltrating dentinal tubules, 

with or without the application of laser irradiation, but they would probably 

sinter homogeneously, and they would be more effective in occluding 

dentinal tubules under laser irradiation.  

4.2.3 Main findings 

The results indicated the formation of inhomogeneous phases in the case of 

doped CaP (batch A) powders, except that synthesised under room 

temperature and pH 10 ± 0.2 conditions (CaP-doped batch A pH10 RT), 

which resulted in the formation of homogeneous phases. On the other hand, 

a single homogenous phase was formed in the case of doped CaP (batch B) 

powders. The results indicated the formation of a single CaP phase under all 

conditions with no secondary phases, which was the doped monetite phase 

in the case of doped CaP powder (CaP-doped batch B pH5 RT) and doped 

HAp phase in the rest of doped CaP (batch B) powders. 

The results also indicated that the incorporation of dopants (batch A) was 

most effective under room temperature and high pH conditions (CaP-doped 

batch A pH10 RT), which resulted in the formation of homogenous phases 

and significantly affected the size and shape of particles, compared to CaP 
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powder (CaP-undoped pH10 RT). On the other hand, the results indicated 

that the incorporation of dopants (batch B) was effective under all conditions, 

which resulted in the formation of a single doped CaP phase. 

Although SEM revealed the formation of nanoparticles (in agglomerates), 

particularly in the case of CaP and doped CaP (batch B) powders, the 

particle size analyses revealed the particle size in the micrometre scale, 

which was in good agreement with the micrometre agglomerates. As 

established with CaP powders, this is because the measurement of 

nanoparticles depends on the deagglomeration of doped CaP particles. 

These agglomerates were formed in methanol and distilled water under 

ultrasonic bath conditions for ~ 10 minutes, which might indicate the 

formation of hard agglomerates of particles or that a further deagglomeration 

treatment was required.   

The FTIR results of powders that were synthesised under room temperature 

and as – prepared pH 5.4 ± 0.2 conditions indicated the incorporation of 

fluoride ions into CaP structure through the formation of OH–F–OH and F–

OH bonds in the case of doped CaP powders (batch A) and (batch B). The 

P–O bond at 1230 – 1132 cm-1 and Er–O–Er bond at 522 cm-1, 

corresponding to the presence of Er2O3 and AlPO4 phases, were observed 

with doped CaP (CaP-doped batch A pH5 RT), while the incorporation of 

Er3+ and Al3+ was observed with doped CaP (batch B) powders (monetite). In 

the case of the rest of doped CaP powders (batch A and B), other than those 

synthesised under room temperature and as – prepared pH 5.4 ± 0.2 

conditions, FTIR results indicated that the incorporation of Er3+, Al3+, and F- 
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into the CaP structure was clearer and more evident in the case of doped 

CaP (batch B) powders than doped CaP (batch A) powders.  

The DSC results indicated that doped CaP powders (batch A and B) that 

were synthesised under 200°C hydrothermal conditions were an – hydrated, 

and they had better thermal stability than those synthesised under room 

temperature conditions. This was in contrast to the hydrated CaP powders 

that were synthesised under 200°C hydrothermal conditions. This indicated 

the effectiveness of 200°C hydrothermal conditions and the addition of 

dopants in driving off water molecules and improving the thermal stability of 

CaP powders. 
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Chapter 4.3 
Laser irradiation sintering investigation 

 

4.3.1 Characterisation of prepared dentine sections 

Preparation of dentine sections was aimed at mimicking the naturally 

exposed dentine surface to extreme cases of sensitivity, as shown in Figure 

4.3.1. These dentine cross – sections ( ~ 1 – 2 mm in thickness) were 

prepared from clinically extracted human teeth (University of Leeds, School 

of Dentistry, tissue bank No: 270409/EE/22), after they were sterilised by 

gamma irradiation.   

Figure 4.3.1 (a and b) shows the prepared dentine surfaces, which were 

used for the coating and laser irradiation sintering trials. SEM showed open 

dentinal tubules, after the dentine sections were subjected to acid etching 

treatments to mimic the condition of hypersensitivity associated with teeth. 

 

  

Figure 4.3.1 SEM of as – prepared dentine section of 1 – 2 mm in thickness, showing open 

dentinal tubules after acid etching treatments. (a) Low magnification at 2 µm and (b) 

high magnification at 1 µm. 

 
 

a b 
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4.3.2 Characterisation of coatings 

Dentine sections were coated with 5% w/v CaP and doped CaP powder 

suspensions (in methanol) by the dip coating technique, manually and using 

a dipping machine. The manual dipping was carried out in the initial coating 

trials, under which the withdrawal of all sections was kept at a constant 

speed of ~ 1 cm per second. Although the manual dipping technique was 

manageable, the withdrawal speed of dentine sections was difficult and time 

consuming. All other coating trials were then carried out using a dipping 

machine. The withdrawal speed of dentine sections was set to 1 cm per 

second. The dipping of dentine sections was carried out for a maximum of 5 

minutes. The coatings were further improved by the application of the same 

suspension, drop wise onto dentine sections using a syringe, which provided 

thicker coatings for laser irradiation sintering trials. The coated dentine 

sections were stored in a reduced pressure desiccator, until they were laser 

irradiated and characterised. 

Quality check of the coatings was carried out by the naked eye to examine 

their physical appearance, and by scanning electron microscopy to assess 

their morphology. The colour contrast between the coatings (white powders 

in the case of CaP and pink powders in the case of doped CaP) and dentine 

sections made it possible to examine the coatings by the naked eye, 

particularly after they were dried in a reduced pressure desiccator.   

The coating/occlusion of dentinal tubules was characterised by SEM. Figure 

4.3.2 and Figure 4.3.3 show platelet – like particles of CaP and doped CaP 

powders, respectively, occluding open dentinal tubules, after initial trails with 

a single dip coating.  Although a better and uniform coating was achievable 
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using a dipping machine, the initial coating with both powders provided a 

satisfactory CaP/doped CaP coating to interact with post laser irradiation.  

 

 

 

Figure 4.3.2 SEM of a dentine section coated with CaP powder, showing open dentinal 

tubules and non – uniform occlusion with CaP particles. 

 

 

 

Figure 4.3.3 SEM of a dentine section coated with doped CaP (batch A) powder, showing 

occluded dentinal tubules with doped CaP particles. 
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4.3.3 Laser irradiation sintering trials 

Laser irradiation sintering experiments were carried out at the University of 

Leeds, Institute for Materials Research as well as the University of St. 

Andrews, Department of Physics and Astronomy. Initial laser irradiation trials 

were performed on CaP – and doped CaP – coated dentine sections, using 

a continuous wave (CW) laser at 980 nm wavelength (output power of ~ 150 

mW). Both doped CaP powders (batch A and B) were investigated under 

laser irradiation. Post – initial laser irradiation trials involved laser irradiation 

sintering of CaP – and doped CaP – coated dentine sections with ~ 1520 nm 

CW laser (output power of ~ 150 mW) and ~ 1520 nm femto – second (fs) – 

pulsed laser (beam power of ~ 130 mW, pulse duration of 100 fs, and 

repetition rate of 2.5 GHz).  

Laser irradiation sintering trials were also performed on CaP/doped CaP 

pellets for the investigation of laser – CaP interaction. The pellets were laser 

irradiated with CW lasers at 980 nm and 1500 nm wavelengths and pulsed 

laser at 1520 nm wavelength. In addition, CaP/doped CaP pellets were laser 

irradiated with 800 nm femto – second – pulsed laser (beam power of ~ 130 

mW, pulse duration of 100 fs, and repetition rate of 250 – 1 KHz) for the 

investigation of CaP/doped CaP pellets in an acidic environment. 

Laser type, CaP/doped CaP sample (coatings and pellets), and exposure 

time were reported in Table 3.4 (chapter 3). The effects of CW and pulsed 

laser irradiation on CaP/doped CaP particles in the form of pellets and on 

coated and uncoated dentine sections were characterised mainly by SEM. 

Other characterisation techniques, such as XRD, micro – hardness, 

profilometry, and ICP/MS were also used in some trials.  



- 333 - 

4.3.3.1 Characterisation of laser – irradiated CaP pellets 

The use of CaP/doped CaP powders in the form of pellets was aimed at 

investigating the interaction between CaP particles and laser irradiation. 

Although the pressed pellets would sinter different to coatings onto dentine 

sections, sintering of pellets would allow comparing the behaviour of CaP 

and doped CaP particles under laser irradiation. The effect of 1520 nm 

pulsed laser irradiation and 980 nm CW laser irradiation for 1 minute and 5 

minutes, respectively, on CaP/doped CaP particles were demonstrated on 

pressed pellets of ~ 1 – 2 mm in thickness. The laser – irradiated areas were 

examined by SEM for morphological changes.  

During the early stages of this research study, rare earth oxide (Tm2O3) was 

involved in the initial investigation only. The single dopant of rare earth 

(Tm2O3) was used to assess the effect and interaction of rare earth – doped 

CaP powder with laser irradiation. Therefore, the interaction of Tm2O3 – 

doped CaP pellet under laser irradiation, particularly 1520 nm pulsed laser, 

was included in this section to demonstrate the effectiveness of rare earths 

in improving the laser irradiation sintering of CaP. In the case of CaP 

powder, the pellet showed poor interaction with the 1520 nm pulsed laser 

irradiation for 1 minute, as shown by the poorly sintered area and 

insignificant change in surface morphology in Figure 4.3.4 (a) and (b), 

respectively. On the other hand, in the case of rare earth doped CaP 

powder, the Tm2O3 – doped CaP pellet showed a significant interaction with 

the 1520 nm pulsed laser irradiation for 1 minute, as shown by the well – 

sintered area and significant change in surface morphology in Figure 4.3.5 

(a) and (b), respectively. This indicated the strong absorption of thulium 

(Tm3+) at 1520 nm wavelength, which resulted in a densified surface with 



- 334 - 

increased thickness, as shown in Figure 4.3.5 (b). On the other hand, in the 

case of Er2O3.AlPO4.CaF2 – doped CaP powder, the doped CaP pellet 

showed some degree of interaction with the 980 nm CW laser irradiation for 

5 minutes, as shown by the sintered area and change in surface morphology 

in Figure 4.3.6 (a) and (b), respectively. However, the change in surface 

morphology was not significant, compared to that with Tm2O3 – doped CaP 

pellet under 1520 nm pulsed laser irradiation, which was probably due to the 

weak absorption of erbium (Er3+) at 980 nm as well as the CW laser mode. 

In addition, XRD was carried out on CaP and Tm2O3 – doped CaP pellets, 

which were irradiated with 1500 nm CW and 1520 nm pulsed lasers, as 

shown in Figures 4.3.7 and 4.3.8. The XRD patterns indicated reduced peak 

intensities of CaP and doped CaP pellets under CW and pulsed laser 

irradiation, compared to those of unsintered CaP pellets. The reduction in 

peak intensities was relatively higher under CW laser irradiation than pulsed 

laser irradiation, which might explain the heat accumulation during CW laser 

irradiation. In addition, the XRD patterns indicated that no phase 

transformation took place under CW and pulsed laser irradiation. 
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                  Figure 4.3.4 SEM of CaP Pellet of 1 – 2 mm in thickness that was irradiated with 1520 nm 

pulsed laser, showing (a) the sintered area, and (b) change in surface morphology.  

 

  

Figure 4.3.5 SEM of thulium oxide – doped CaP pellet of 1 – 2 mm in thickness that was 

irradiated with 1520 nm pulsed laser, showing (a) the sintered area, and (b) change in 

surface morphology. 

 

  

Figure 4.3.6 SEM of erbium oxide, aluminium phosphate, and calcium fluoride – doped CaP 

pellet of 1 – 2 mm in thickness that was irradiated with 980 nm CW laser, showing (a) 

the sintered area, and (b) change in surface morphology. 

a 

a b 

a b 

b 
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Figure 4.3.7 XRD patterns of CaP pellets irradiated with 1500 nm CW and 1520 nm pulsed 

lasers, compared to that of unsintered CaP pellet. 

 

 

Figure 4.3.8 XRD patterns of Tm2O3 – doped CaP pellets irradiated with 1500 nm CW and 

1520 nm pulsed lasers, compared to that of unsintered Tm2O3 – doped CaP pellet. 
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4.3.3.2 Characterisation of laser – irradiated uncoated/coated 
dentine sections 

4.3.3.2.1 First laser irradiation sintering trial 

The first laser irradiation sintering trial was carried out to investigate the 

effectiveness of CW and pulsed laser irradiation, in terms of their interaction 

with CaP/doped CaP coatings. The first laser irradiation trial was carried out 

on uncoated and CaP (CaP and doped CaP batch A) – coated dentine 

sections, as shown in Figures 4.3.9 – 4.3.11. 

The uncoated dentine section that was irradiated with 980 nm CW laser for 5 

minutes showed no evidence of occlusion/sealing of dentinal tubules, as 

shown in Figure 4.3.9. On the other hand, the dentine sections coated with 

CaP and Er2O3.AlPO4.CaF2 – doped CaP (batch A) powders that were 

irradiated with 980 nm CW laser for 5 minutes showed some level of 

interaction, as shown in Figure 4.3.11 (a-d) and Figure 4.3.10 (a-b), 

respectively. 

The post solidification structure of CaP and Er2O3.AlPO4.CaF2 – doped CaP 

showed poorly densified area and rosette – like structure, respectively, as 

shown in Figure 4.3.11 (b) and Figure 4.3.10 (b), respectively. This clear 

evidence of poor absorption and non – uniform densification by both 

powders was most probably because the energy was not evenly distributed 

and due to the weak absorption at 980 nm wavelength, particularly by 

erbium (Er3+).  

Moreover, CaP – coated dentine section that was irradiated with 980 nm CW 

laser for 5 minutes exhibited heat accumulation, which caused distortion to 

CaP layer, as shown in Figure 4.3.11 (b), which was because the energy 

was not evenly absorbed and distributed to induce a uniform densification. 
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The laser irradiation interacted with CaP coating and poorly densified it, but 

it also melted the dentine surface, as shown in Figure 4.3.11 (c-d). On the 

other hand, in the case of Er2O3.AlPO4.CaF2 – doped CaP – coated dentine 

section, the interaction of laser irradiation with doped CaP particles caused 

them to grow like rosettes, which occluded large areas of dentinal tubules, 

as shown in Figure 4.3.10 (b). The difference between 980 nm CW laser – 

irradiated and non – irradiated areas of CaP and doped CaP coatings is 

shown in Figure 4.3.11 (c) and Figure 4.3.10 (a), respectively. 

 

Figure 4.3.9 SEM of a dentine section of 1 – 2 mm in thickness that was irradiated with 980 

nm CW laser, showing the modification of dentine surface morphology without the 

occlusion/sealing of  open dentinal tubules. 

 

  

Figure 4.3.10 SEM of dentine section coated with Er2O3.AlPO4.CaF2 – doped CaP (batch A) 

that was irradiated with 980 nm CW laser, showing (a) unsintered and sintered areas 

and the change in surface morphology of doped CaP coating, and (b) the formation of 

rosette – like particles that are occluding large area of dentinal tubules.  

a b 
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Figure 4.3.11 SEM of a dentine section coated with CaP that was irradiated with 980 nm 

CW laser, showing the change in surface morphology of CaP coating without 

occluding dentinal tubules, (a) sintered area, (b) heat accumulation and non – uniform 

absorption and distribution of energy, (c) difference between laser irradiated and non-

irradiated areas, and (d) melted dentine surface and partially sealed dentinal tubules. 

 

 

 

 

 

 

a b 

c d 
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4.3.3.2.2 Second laser irradiation sintering trial 

The second laser irradiation sintering trial involved laser irradiation of CaP – 

and doped CaP (batch A) (Er2O3, AlPO4, and CaF2) – coated dentine 

sections, using 1500 nm CW laser and 1520 nm pulsed laser for an 

exposure time from 30 seconds up to 5 minutes, as shown in Figures 4.3.12 

– 4.3.15. The results of 1500 nm CW laser irradiation were not included due 

to a lack of clear evidence of effects. One of the characteristics of laser 

irradiation sintering is the formation of a crater, due to a plastic deformation 

and projection of coating and/or dentine surface. A crater is usually filled 

back due to the fall back of projected coating, crater lip, and crater wall. 

Therefore, the crater should ideally be as shallow and spread wide as 

possible, with optimum sintering effects on the surrounding areas. 

Doped CaP – coated dentine sections that were irradiated with 1520 nm 

pulsed laser for 30 seconds and 2 minutes are shown in Figure 4.3.12 (a-d). 

In contrast to 980 nm CW and 1500 nm CW (not included) laser irradiation, 

1520 nm pulsed laser irradiation of doped CaP – coated dentine sections for 

30 seconds and 2 minutes exhibited better interaction. The laser irradiation 

resulted in a more uniform densification and the occlusion of dentinal tubules 

in and around the laser – irradiated area, which probably was due to the 

wave – like energy distribution shown in Figure 4.3.12. 

The laser irradiation sintering for 2 minutes resulted in a less – uniform 

densification of CaP coating, and it caused a minor distortion in the form of a 

crack – like, as shown in Figure 4.3.12 (a and b), which probably was due to 

the long exposure time of 2 minutes. On the other hand, the laser irradiation 

sintering for 30 seconds resulted in a uniform and excellent densification of 

CaP coating without distortion, which in turn resulted in a complete occlusion 



- 341 - 

of dentinal tubules, as shown in Figure 4.3.12 (c and d). The difference 

between the 1520 nm pulsed laser – irradiated and non – irradiated areas of 

doped CaP – coated dentine sections is shown in Figure 4.3.13 (b) and (a), 

respectively. Open dentinal tubules were observed in the unsintered areas 

away from the laser – irradiated area, as shown in Figure 4.3.13 (a), 

whereas a complete occlusion of dentinal tubules was observed in and 

around the laser – irradiated area, as shown in Figure 4.3.13 (b). 

  

  

 

  

Figure 4.3.12 SEM of dentine sections coated with doped CaP that were irradiated with 

1520 nm pulsed laser. (a-b) for 2 minutes, showing the crater surrounded by a wave – 

like effect with a minor distortion to the coating in the form of a crack – like, and (c-d) 

for 30 seconds, showing the crater surrounded by a wave – like effect without any 

distortion to the coating.   

 
 

a b 

c d 
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Figure 4.3.13 SEM of unaffected and effected areas by the 1520 nm pulsed laser irradiation, 

showing (a) open dentinal tubules away from the laser – irradiated area, and (b) 

completely occluded dentinal tubules around the laser – irradiated area. 

 

Moreover, doped CaP – coated dentine section that was irradiated with 1520 

nm pulsed laser for 5 minutes is shown in Figures 4.3.14. The laser 

irradiation sintering resulted in the formation of a deep crater without a wave 

– like effect, which indicated the possible penetration of dentine surface. 

Since the crater was deep and did not spread wide, the laser irradiation 

sintering for 5 minutes was concluded ineffective. 

 

  

Figure 4.3.14 SEM of doped CaP – coated dentine section that was irradiated using 1520 

nm pulsed laser for 5 minutes. 

a b 
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The first and second laser irradiation trials can be summarised as follows. 

CaP pellet interacted poorly with the 1520 nm pulsed laser irradiation for 1 

minute, which resulted in insignificant changes in surface morphology. In 

contrast, Tm2O3 – doped CaP pellet interacted very well with the 1520 nm 

pulsed laser irradiation for 1 minute, which resulted in significant changes in 

surface morphology with a densified surface and increased thickness. 

Similarly, Er2O3.AlPO4.CaF2 – doped CaP pellet showed some degree of 

interaction with the 980 nm CW laser irradiation for 5 minutes, however, the 

change in surface morphology was not significant, compared to that with 

Tm2O3 – doped CaP pellet under 1520 nm pulsed laser irradiation. In 

addition, CaP and Er2O3.AlPO4.CaF2 – doped CaP coatings under 980 nm 

CW laser irradiation for 5 minutes showed poor absorption and non – 

uniform densification, which was due to poorly distributed energy and weak 

absorption at 980 nm wavelength. In contrast, the 1520 nm pulsed laser 

irradiation for 30 seconds was more effective than that for 2 and 5 minutes, 

as it resulted in a uniform and excellent densification of coating without any 

distortion, and thus, it resulted in a complete occlusion of dentinal tubules. 

Therefore, pulsed lasers were preferred to CW lasers due to the heat 

accumulation associated with CW lasers. Despite the laser type (CW and 

pulsed), doped CaP coatings were superior to CaP coating. The doped CaP 

coating interacted more effectively with CW laser irradiation and was 

densified uniformly under pulsed laser irradiation without any distortion, 

which indicated the protection of the underlying dentine surface. The pulsed 

laser irradiation for 30 seconds was the most effective irradiation time, due 

to the formation of a shallow and spread crater without causing any damage 

to the CaP coating. 
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4.3.3.2.3 Third laser irradiation sintering trials 

The third and final laser irradiation sintering trial was carried out on dentine 

sections uncoated and coated with CaP and doped CaP powders (batch B) 

(Er(NO3)3, Al(NO3)3, and NH4F). Laser irradiation sintering was carried out 

using CW and pulsed lasers at ~ 1500 nm wavelength, exposure time of 1 

and 2 minutes, and beam diameters of 125 µm and 250 µm. The final laser 

irradiation sintering trial was carried out to investigate the interaction of CaP 

and doped CaP powder (batch B), as well as to investigate the different 

effects of laser irradiation with beam diameters of 125 µm and 250 µm for 1 

and 2 minute exposure time.  

Under 1520 nm pulsed laser irradiation with a beam diameter of 250 µm for 

exposure time of 1 and 2 minutes, no morphological signs of laser craters 

were observed, as shown in Figure 4.3.15 and Figure 4.3.16. However, the 

highly charged areas are in good agreement with the laser irradiation spots, 

which showed the growth and densification of doped CaP particles/coatings. 

Although the effect of laser irradiation was superficial, the doped CaP 

particles were packed together with no sign of open dentinal tubules in and 

around the laser – irradiated area, as shown in Figure 4.3.17 (a and b). 

Under 1520 nm pulsed laser irradiation with a beam diameter of 125 µm, 

clear morphological signs of laser craters were observed after exposure time 

of 1 and 2 minutes, as shown in Figures 4.3.18 – 4.3.20. Laser irradiation for 

exposure time of 1 minute formed a crater that appeared to spread in all 

directions with a superficial effect. The particles were packed together with 

no open dentinal tubules in and around the laser – irradiated area, as shown 

in Figure 4.3.19 (c and d). 
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Figure 4.3.20 (a and b) shows the difference between laser irradiation 

exposure time of 1 and 2 minutes. The exposure time of 2 minutes resulted 

in a deep penetration of doped CaP coating, which indicated the possible 

damage to the underlying dentine tissue. In contrast, the exposure time of 1 

minute resulted in a laser crater with no signs of damage or open dentinal 

tubules. The exposure time of 1 minute also resulted in a crater with a 

smaller diameter than that under the exposure time of 2 minutes. 

 

  
 

  

Figure 4.3.15 SEM of doped CaP coated dentine section that was irradiated for 1 minute 

using 1520 nm pulsed laser with a beam diameter of 250 µm, showing (a-b) laser – 

irradiated area, compared to non – irradiated areas, and (c-d) in and around laser – 

irradiated area.    

 

 

 

a b 

c d 
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Figure 4.3.16 SEM of doped CaP coated dentine section that was irradiated for 2 minutes 

using 1520 nm pulsed laser with a beam diameter of 250 µm, showing (a-b) laser – 

irradiated area, compared to non – irradiated areas, and (c-d) in and around laser – 

irradiated area. 

 

  

Figure 4.3.17 SEM of doped CaP coated dentine section that was irradiated using 1520 nm 

pulsed laser with a beam diameter of 250 µm, showing (a) the densification of laser – 

irradiated particles/coating, and (b) the area surrounding laser – irradiated area.  

 
 

a 

d c 

b 

a b 
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The laser – irradiated areas of doped CaP – coated dentine sections for 

exposure time of 1 and 2 minutes, using 1520 nm CW laser with a beam 

diameter of 250 µm, are shown in Figure 4.3.21. Under 1520 nm CW laser 

irradiation with a beam diameter of 250 µm for 1 minute, no clear signs of 

laser craters were observed, however, the highly charged areas are in good 

agreement with the laser – irradiated areas, as shown in Figure 4.3.22 (a). 

The particles were densified and packed together with no sign of open 

dentinal tubules in and around the laser – irradiated area, as shown in 

Figure 4.3.22 (b). Under CW laser irradiation with a beam diameter of 250 

µm for 2 minutes, a deep crater was observed, as shown in Figure 4.3.23 (a 

and b). The deep crater indicated the penetration of coating and possible 

damage to the underlying dentine surface. However, the area around the 

laser irradiation spot indicated the densification and packing of particles with 

no sign of open dentinal tubules, as shown in Figure 4.3.23 (b). 

 

 

Figure 4.3.18 SEM of doped CaP coated dentine section that was irradiated for 1 and 2 

minutes (bottom to top, respectively), using 1520 nm pulsed laser with a beam 

diameter of 125 µm.  
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Figure 4.3.19 SEM of doped CaP coated dentine section that was irradiated for 1 minute, 

using 1520 nm pulsed laser with a beam diameter of 125 µm, showing (a-b) the laser 

– irradiated area and densification of sintered area, and (c-d) the area surrounding 

and around the laser irradiation spot. 

 

  

Figure 4.3.20 SEM of doped CaP coated dentine section that was irradiated with 1520 nm 

pulsed laser with a beam diameter of 125 µm, showing (a-b) the difference between 

exposure time of 1 and 2 minutes (left to right, respectively). 

 

a 

c d 

b 

a b 
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Figure 4.3.21 SEM of doped CaP coated dentine section that was irradiated for 1 and 2 

minutes, using 1520 nm CW laser with a beam diameter of 250 µm. 

 

  

Figure 4.3.22 SEM of doped CaP coated dentine section that was irradiated for 1 minute, 

using 1520 nm CW laser with a beam diameter of 250 µm, showing (a) laser – 

irradiated area, and (b) the densification of CaP coating with no open dentinal tubules.  

 

  

Figure 4.3.23 SEM of doped CaP coated dentine section that was irradiated for 2 minutes, 

using 1520 nm CW laser with a beam diameter of 250 µm, showing (a) the laser – 

irradiated area, and (b) a deep crater and the densification of CaP coating around it 

with no open dentinal tubules.  

a b 

a b 



- 350 - 

Under 1520 nm CW laser irradiation with a beam diameter of 125 µm for 

exposure time of 1 and 2 minutes, clear morphological signs of laser craters 

were observed, as shown in Figure 4.3.24 (a and b). The highly charged 

areas are in good agreement with the area around the laser irradiation spots. 

Although the craters appeared deep, the particles around the laser 

irradiation spots were densified and packed together with no sign of open 

dentinal tubules, as shown in Figure 4.3.24 (c and d). 

Under 1520 nm pulsed laser irradiation with a beam diameter of 250 µm for 

an exposure time of 2 minutes, morphological signs of a laser crater were 

observed, as shown in Figure 4.3.25 (a). Although a shallow crater was 

formed, melted dentine surface surrounding the laser irradiation spot and 

open dentinal tubules with few CaP particles surrounding the melted dentine 

surface were observed, as shown in Figure 4.3.25 (b). This indicated the 

poor interaction of CaP coating with laser irradiation as well as the possible 

damage to dentine surface under the exposure time of 2 minutes. 

Under 1520 nm pulsed laser irradiation with a beam diameter of 250 µm for 

an exposure time of 1 minute, a laser – irradiated area with a superficial 

irradiation effect and without the formation of a crater was observed, as 

shown in Figure 4.3.26 (a). The CaP coating in and around the laser – 

irradiated area was not affected, with the presence of open dentinal tubules 

and few CaP particles in and around the laser – irradiated area, as shown in 

Figure 4.3.26 (b and c). 

 

 

 



- 351 - 

 

 

 

 

   

 

  

Figure 4.3.24 SEM of doped CaP coated dentine section that was irradiated for 1 and 2 

minutes (bottom to top, respectively) using 1520 nm CW laser with a beam diameter 

of 125 µm, showing (a-b) the laser – irradiated areas, and (c-d) the densified areas 

around the laser – irradiated areas.   
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Figure 4.3.25 SEM of CaP coated dentine section that was irradiated for 2 minutes using 

1520 nm pulsed laser with a beam diameter of 250 µm, showing (a) the laser 

irradiation spot, and (b) melted dentine surface surrounding the laser irradiation spot 

and open dentinal tubules with few CaP particles surrounding melted dentine surface. 

  

 

  

Figure 4.3.26 SEM of CaP coated dentine section that was laser irradiated for 1 minute, 

using 1520 nm pulsed laser with a beam diameter of 250 µm, showing (a) the laser – 

irradiated area with a superficial effect, and (b-c) open dentinal tubules with few CaP 

particles in and around the laser – irradiated area.  

a b 

a 

c b 
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CaP – coated dentine section that was irradiated for exposure time of 1 and 

2 minutes, using 1520 nm pulsed laser with a beam diameter of 125 µm, are 

shown in Figure 4.3.27 (a and b). A laser crater was observed with exposure 

time of 2 minutes, as shown in Figure 4.3.28 (a), while no laser crater was 

observed with exposure time of 1 minute, as shown in Figure 4.3.29 (a).  As 

with the previous CaP – coated dentine sections, the pulsed laser irradiation 

formed a crater without affecting CaP coatings, as shown in Figure 4.3.28 

(b-d). Melted dentine surface and partially sealed dentinal tubules were 

observed surrounding the laser – irradiated spot, as shown in Figure 4.3.28 

(c), while open dentinal tubules with CaP platelet – like particles were 

observed around the laser – irradiated spot, as shown in Figure 4.3.28 (d). 

On the other hand, under exposure time of 1 minute, no laser crater was 

observed, however, a laser – irradiated area with a melting effect was 

observed, as shown in Figure 4.3.29 (a), with the presence of partially 

sealed dentinal tubules within the laser – irradiated area, as shown in Figure 

4.3.29 (c and d). Open dentinal tubules with few CaP particles were 

observed around the laser – irradiated area, as shown in Figure 4.3.29 (b). 

 

  

Figure 4.3.27 SEM of CaP coated dentine section that was laser irradiated for (a) 1 minute 

and (b) 2 minutes, using 1520 nm pulsed laser with a beam diameter of 125 µm.  

a b 
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Figure 4.3.28 SEM of CaP coated dentine section that was irradiated for 2 minutes, using 

1520 nm pulsed laser with a beam diameter of 125 µm, showing (a) laser irradiation 

spot, (b) area surrounding the laser irradiation spot, (c) melted dentine surface and 

partially sealed dentinal tubules surrounding the laser irradiation spot, and (d) open 

dentinal tubules and CaP particles around the laser – irradiated area.    
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Figure 4.3.29 SEM of CaP coated dentine section that was irradiated for 1 minute, using 

1520 nm pulsed laser with a beam diameter of 125 µm, showing (a) the laser – 

irradiated area with a melting effect, (b) open dentinal tubules with few CaP particles 

around the laser – irradiated area, and (c-d) melted dentine surface and partially 

sealed dentinal tubules within the laser – irradiated area. 
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Under 1520 nm CW laser irradiation with a beam diameter of 125 µm for 

exposure time of 1 and 2 minutes, laser craters were observed, as shown in 

Figure 4.3.30 (a and b). However,  the craters resulted in a modified and 

melted dentine surface and partially sealed dentinal tubules, with the 

presence of few CaP platelet – like particles, as shown in Figure 4.3.30 (c 

and d). Under 1520 CW laser irradiation with a beam diameter of 250 µm for 

exposure time of 2 minutes, a laser crater was observed, as shown in Figure 

4.3.31 (a and b).  However, the CaP coating area around the crater was 

unaffected, and the laser irradiation resulted in a melted dentine surface 

surrounding the laser – irradiated spot and open dentinal tubules and CaP 

platelet – like particles around the laser – irradiated spot, as shown in Figure 

4.3.31 (c and d). Under 1520 nm CW laser irradiation with a beam diameter 

of 250 µm for an exposure time of 1 minute, no signs of laser effects were 

observed (not included). 

Finally, in the case of uncoated dentine sections, under 1520 nm pulsed 

laser irradiation with a beam diameter of 250 µm, a clear morphological sign 

of laser crater was observed after an exposure time of 2 minutes, as shown 

in Figure 4.3.32 (a and b).  Although the pulsed laser irradiation modified the 

structure of dentine surface, as shown in Figure 4.3.33 (a), open dentinal 

tubules inside and outside the laser irradiation spot were observed, as 

shown in Figure 4.3.33 (b). 
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Figure 4.3.30 SEM of CaP coated dentine section that was laser irradiated for (a) 1 and (b) 

2 minutes, using 1520 nm CW laser with a beam diameter of 125 µm, showing (a-b) 

the laser – irradiated spots, and (c-d) modified dentine surface and partially sealed 

dentinal tubules.  
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Figure 4.3.31 SEM of CaP coated dentine section that was laser irradiated for 2 minutes, 

using 1520 nm CW laser with a beam diameter of 250 µm, showing (a-b) the laser – 

irradiated area, and (b-c) melted dentine surface surrounding the laser – irradiated 

area and open dentinal tubules and CaP particles around the laser – irradiated area.  
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Figure 4.3.32 SEM of uncoated dentine section that was laser irradiated for 2 minutes, using 

1520 nm pulsed laser with a beam diameter of 250 µm, showing (a) the laser – 

irradiated area (left hand side of image), and (b) higher magnification of the laser – 

irradiated area. 

 

  

Figure 4.3.33 SEM of uncoated dentine section that was laser irradiated for 2 minutes, using 

1520 nm pulsed laser with a beam diameter of 250 µm, showing (a) the laser 

irradiation spot, and (b) open dentinal tubules around the laser – irradiated area. 
 

 

 

 

 

a 
 

b 

a b 



- 360 - 

Under 1520 nm pulsed laser irradiation with a beam diameter of 125 µm for 

exposure time of 1 and 2 minutes, no morphological signs of laser craters or 

minor effects were observed, as shown in Figure 4.3.34. On the other hand, 

under 1520 nm CW laser irradiation with a beam diameter of 125 µm for 

exposure time of 1 and 2 minutes, clear morphological signs of laser craters 

were observed, as shown in Figure 4.3.35 (a).  The laser irradiation resulted 

in a very deep crater, which penetrated the dentine surface, particularly 

under 2 minute exposure time, as shown in Figure 4.3.35 (b and c). The 

areas surrounding and around the laser irradiation spot were partially 

affected, as shown in Figure 4.3.35 (d). Modification of dentine surface and 

partially sealed dentinal tubules were observed surrounding the laser 

irradiation spot, as shown in Figure 4.3.35 (e), while open dentinal tubules 

were observed around the laser irradiation spot, as shown in Figure 4.3.35 

(f). Finally, under 1520 CW laser irradiation with a beam diameter of 250 µm 

for exposure time of 1 and 2 minutes, no morphological signs of laser craters 

or minor effects were observed, as shown in Figure 4.3.36. 

 

 

Figure 4.3.34 SEM of uncoated dentine section that was laser irradiated for 1 and 2 

minutes, using 1520 nm pulsed laser with a beam diameter of 125 µm, showing no 

signs of laser irradiation effects. 
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Figure 4.3.35 SEM of uncoated dentine section that was laser irradiated for 1 and 2 

minutes, using 1520 nm CW laser with a beam diameter of 125 µm, showing (a) the 

laser irradiation spot, (b-c) higher magnification of laser irradiation spot with a very 

deep crater penetrating dentine surface, (d) area surrounding and around the laser 

irradiation spot, (e) area surrounding the laser irradiation spot with a modified dentine 

surface and partially sealed dentinal tubules, and (f) area around the laser irradiation 

spot with open dentinal tubules. 
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Figure 4.3.36 SEM of uncoated dentine section that was laser irradiated for 1 and 2 

minutes, using 1520 nm CW laser with a beam diameter of 250 µm, showing no signs 

of any laser effects. 

 

The laser irradiation sintering trials can be summarised as follows. The 980 

nm CW laser irradiation for 5 minutes resulted in poor absorption and non – 

uniform densification of CaP and doped CaP coatings, which was due to the 

poor distribution of energy and weak absorption at 980 nm wavelength. The 

980 nm CW laser irradiation introduced heat accumulation, which caused 

distortion to CaP coating and melting of dentine surface.  

The 1520 nm pulsed laser irradiation for 5 minutes resulted in the formation 

of a deep crater in the doped CaP coating without a wave – like effect, which 

indicated the possible penetration of dentine surface. The 1520 nm pulsed 

laser irradiation for 2 minutes resulted in a less uniform densification of 

doped CaP coating than that for 1 minute exposure time, and it caused a 

minor distortion to CaP coating in the form of a crack – like, which was 

probably due to the long exposure time. In the case of CaP coatings, the 

1520 nm pulsed laser irradiation with both beam diameters (125 µm and 250 

µm) for 1 and 2 minute – exposure time resulted in poor absorption and 
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densification of CaP coating, melted dentine surface surrounding the laser 

irradiation spot, and open dentinal tubules with few CaP particles 

surrounding the melted dentine surface. The 1520 nm CW laser irradiation 

with beam diameters of 125 µm and 250 µm for 1 and 2 minute – exposure 

times resulted in a modified and melted dentine surface and partially sealed 

dentinal tubules with the presence of few CaP platelet – like particles.  

The 1520 nm pulsed laser irradiation of doped CaP coating with exposure 

time of 30 seconds was concluded the most effective laser treatment, due to 

the formation of a shallow and spread crater, without causing any damage to 

the CaP coating. The laser irradiation resulted in a uniform and excellent 

densification of CaP coating without any distortion, which in turn resulted in a 

complete occlusion of dentinal tubules in and around the laser irradiation 

spot. 

In addition, in terms of the laser beam diameter, the beam diameter of 250 

µm was more effective than 125 µm, because the latter exhibited higher 

power density and resulted in deep craters, with the possible penetration of 

dentine surface in most coatings. By contrast, the beam diameter of 250 µm 

resulted in a deep crater under 2 minute – exposure time only. Therefore, 

the 1520 nm pulsed laser irradiation of doped CaP coating with a beam 

diameter of 250 µm and an exposure time of 1 minute was also concluded 

the most effective treatment.  
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4.3.3.2.4 Characterisation of laser – irradiated CaP coatings 

Following the microstructural investigations, more analysis was carried out 

on the coated and occluded regions of dentinal tubules to determine the 

effectiveness of the pulsed laser irradiation sintering. The microstructure of 

interface between the dentine surface and laser – irradiated CaP and doped 

CaP coatings are shown in Figure 4.3.37 and Figure 4.3.38, respectively.  

The 1520 nm pulsed laser irradiation of CaP – coated dentine section 

resulted in open dentinal tubules and crack – like morphology in the dentine 

tissue, as shown by the cross – sectional SEM micrograph in Figure 4.3.37. 

On the other hand, the 1520 nm pulsed laser irradiation of doped CaP – 

coated dentine section resulted in a sintered coating and the occlusion of 

dentinal tubules, as shown by the cross – sectional SEM micrograph in 

Figure 4.3.38.    

It appeared that the densification of CaP and doped CaP coatings, using 

1520 nm pulsed laser, did not follow a melting and solidification process. In 

the case of doped CaP coating, there was a clear evidence of the formation 

of a two – layer structure, one of which was the occluded region with 10 µm 

across and above the dentinal tubules, as shown in Figure 4.3.38. The layer 

appeared to be much denser and continuous without any defects in the 

doped CaP coating (Figure 4.3.38) than that in the CaP coating (Figure 

4.3.37). The second layer was a partially dense over layer, which appeared 

to extend across the micrograph with brighter undissolved Er2O3 particles 

(Figure 4.3.38). The over layer appeared less sintered than the underlying 

layer, however, the occlusion of dentinal tubules appeared quite uniform in 

the doped CaP coating than in the CaP coating. 
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Figure 4.3.37 Cross – sectional SEM micrograph of 1520 nm pulsed laser – irradiated 

dentine section with a coating of CaP, showing open dentinal tubules as well as the 

presence of crack – like morphology in the dentine tissue.  

 

 

 

Figure 4.3.38 Cross – sectional SEM micrograph of 1520 nm pulsed laser – irradiated 

dentine section with a coating of doped CaP, showing the laser – irradiated coating 

with no open dentinal tubules. 

  
 

 

           40 µm                                                Electron image 

        100 µm                                                          Electron image 
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4.3.3.3 Temperature change during laser irradiation sintering 

Although pulsed lasers provide more energy than CW lasers, the latter were 

used to irradiate uncoated and CaP (CaP and Er2O3.AlPO4.CaF2 – doped 

CaP batch A) – coated dentine sections to measure the temperature change 

as the laser irradiation being applied. Since the residual absorption at 1520 

nm wavelength is much less than that at 980 nm wavelength, the 

temperature change was recorded using 980 nm CW laser only. The change 

in temperature for an exposure time of 5 minutes was recorded by a 

temperature reader in the presence of a thermocouple in contact with the 

backside of dentine sections. The temperature change measurements are 

shown in Table 4.3.1 and Figure 4.3.39.  

The temperature change measurements during 980 nm CW laser irradiation 

indicated that CaP – coated dentine sections absorbed more energy than 

uncoated dentine section, and that Er2O3.AlPO4.CaF2 – doped CaP coating 

absorbed 3 times the energy absorbed by CaP coating, as shown in Figure 

4.3.39. This could be beneficial for the densification of CaP coating over 

dentine surface and the protection of dentine surface from any damage by 

the laser irradiation. 

Table 4.3.1 Temperature change measurements during 980 nm CW laser irradiation 

 

Dentine section 
Initial temperature 

(T1) 
Final temperature 

(T2) 
ΔT (T2 – T1) 
error ± 0.5°C 

Uncoated dentine 
section 

22.8°C 26°C 3.2°C 

Undoped CaP – coated 
dentine section 

22.8°C 24.9°C 2.1°C 

Doped CaP – coated 
dentine section 

22.8°C 23.2°C 0.4°C 
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Figure 4.3.39 Temperature change (± 0.5) during 980 nm CW laser irradiation for 5 minutes 

on uncoated dentine section and CaP – and doped CaP (batch A) – coated dentine 

sections. 

 

4.3.3.4 Micro – hardness of uncoated/coated dentine sections  

Micro – hardness measurements were carried out on laser – irradiated 

uncoated and CaP (undoped and Er2O3.AlPO4.CaF2 – doped CaP batch A) – 

coated dentine sections, as shown in Table 4.3.2. All sections were laser 

irradiated using 980 nm CW laser for an exposure time of 5 minutes. Micro – 

hardness measurements were performed using a computer –controlled 

Duramin Indenter Machine (Struers A/S, DK 26- 10, Ballerup, Denmark). 

The micro – hardness measurements presented in Table 4.3.2 were taken 

after two indentations per section with a Knoop diamond under a 25g load 

for 30 seconds, and the indents were measured in microns by an image 

analysis software. The measurements indicated that the laser – irradiated 

dentine section coated with doped CaP (batch A) had the highest hardness 

number of 1104.71 MPa, which was almost twice that of laser – irradiated 

dentine section coated with CaP (681.56 MPa), and four times that of 

Uncoated dentine 
section 

ΔT °C 

Undoped CaP 
coated dentine section 

Doped CaP 
coated dentine section 

3.5 

  3 

2.5 

  2 

1.5 

  1 

0.5 

  0 

Temperature change during laser irradiation 
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uncoated dentine surface (240.75 MPa), as shown in Figure 4.3.40. The 

micro – hardness results indicated that the laser – irradiated doped CaP 

coating significantly enhanced the resistance of the dentine section to 

permanent deformation. The enhanced resistance of doped CaP coating to 

permanent deformation can be credited to the addition of dopants 

(Er2O3.AlPO4.CaF2) and the application of laser irradiation. 

Table 4.3.2 Micro – hardness measurements of laser – irradiated dentine sections 

 

Dentine section Indent Size (µm)      
KH        

error ± 0.5 
Average MPa 

Uncoated                     
dentine  section 

126.4 22.3 

24.55 240.75 

115.3 26.8 

Undoped CaP coated  
dentine section 

71 70.5 

69.5 681.56 

76 68.5 

Doped CaP coated      
dentine section 

56.6 110.9 

112.65 1104.71 

55.8 114.4 

 

 

Figure 4.3.40 Micro – hardness indentation measurements (± 0.5) comparing the hardness 

number of uncoated dentine section and laser – irradiated – coated (CaP and doped 

CaP) dentine sections.  
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4.3.3.5 Characterisation of acid eroded CaP pellets 

The dissolution of CaP and doped CaP powders in an acidic environment 

was carried out in citric acid solutions, using pellets only. The dissolution of 

CaP – and doped CaP – coated dentine sections was not carried due to the 

quantity limitation of tooth samples from the tissue bank. The teeth samples 

were used for coating and laser irradiation trials. In addition, the coated and 

laser – irradiated dentine sections could not be reused, because they were 

primarily characterised by SEM. The latter also required the application of a 

Pt/Pd coating, which would have influenced the dissolution behaviour of 

coatings. Three pellets of CaP and three of doped CaP were investigated, 

which were unsintered, furnace sintered, and laser sintered. CaP and doped 

CaP pellets were furnace sintered between 850°C and 1000°C for 5 minutes 

and laser sintered with 800 nm pulsed laser for 5 minutes. A moving stage 

was used during the 800 nm pulsed laser sintering to achieve a uniform 

sintering of the entire surface of CaP and doped CaP pellets.    

The dissolution of CaP and doped CaP pellets in citric acid (C6H8O7) 

solutions was investigated mainly as a function of solution calcium and 

phosphate concentrations. Many citric drinks and food have a pH value 

below the critical pH 5.5 (576), at which the hydroxyapatite mineral of 

enamel dissolves. However, the critical pH varies depending on the 

concentrations of calcium and phosphate in a solution (577). The dissolution 

of HAp mineral in water and acidic solutions are described by equation 4.3.1 

(577) and equation 4.3.2, respectively (578). 

Ca10 (PO4)6 (OH)2     ↔     10Ca2+ + 6PO4
3- + 2OH- ………….. (4.3.1)  

Ca10 (PO4)6 (OH)2 + 8H+     →     10Ca2+ + 6HPO4
3- + 2H2O ….. (4.3.2) 
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The dissolution of HAp mineral depends primarily on pH and saturation of 

solutions with respect to the HAp mineral (577). When pH of solution is 

above the critical pH, the solution is supersaturated with respect to the HAp 

mineral, the latter which tends to precipitate out. On the other hand, when 

pH of solution is below the critical pH, the solution is unsaturated with 

respect to the HAp mineral, the latter which tends to dissolve until the 

saturation of solution (577).  

The solubility of HAp mineral increases with decreasing pH of solution and 

vice versa. The solubility of HAp in water is due to the removal of OH- ions 

by H+ ions to form H2O. The removal of OH- ions increases in acidic 

solutions due to the increase in H+ ions (577, 578). Similarly, the 

concentration of PO4
3- decreases with decreasing pH of solution (577, 578). 

On the other hand, concentration of Ca2+ ions is unaffected (577), but a 

complexation between Ca2+ ions and the buffer anion may occur (578, 579). 

Citric acid (C6H8O7) has a complex interaction with HAp mineral. Citric acid 

solution exists as H+ ions, acid anions (citrate), and undetached acid 

molecules, and their amounts are determined by the acid dissociation 

constant (pKa) and pH of solution (579). Besides the activity of H+ ions in 

removing OH- and PO4
3- from the crystal surface (577-579), the citrate anion 

may also remove Ca2+ from the crystal surface and/or saliva and form a 

calcium – citrate complex (579). Mineral loss by acid attack takes place in a 

repeated cycle of lowering pH at the enamel surface and dissolving calcium 

and phosphate components, which results in softening of the enamel surface 

(579). In the absence of a remineralisation component, such as fluoride, the 

cycle is repeated and the mineral continues to dissolve (579). 
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The surface loss of CaP and doped CaP pellets was investigated and 

characterised based on pH variation during acid – CaP pellets interaction, 

surface roughness of CaP and doped CaP pellets, and amount of leached 

out components in the citric acid solution. The pH values were recorded 

every 30 minutes for 24 hours without agitation (static conditions). The 

surface roughness was measured using a surface profilometry, while the 

leached out components/elements were measured using inductively – 

coupled plasma/Mass spectrometry (ICP/MS) and SEM-EDX spectroscopy. 

4.3.3.5.1 pH variation measurements 

The pH variation of citric acid solutions that contained the pellets (three 

pellets of CaP and three of doped CaP, unsintered, furnace sintered, and 

laser sintered) was monitored and recorded during a 24 hour reaction (static 

conditions), starting with as – prepared pH 3.60 ± 0.02. The final pH 

readings after 24 hours are shown in Table 4.3.3 and Figure 4.3.41. It must 

be noted that CaP and doped CaP pellets exhibited no phase 

transformations under laser irradiation, as established by XRD (Figure 4.3.7 

and Figure 4.3.8).     

The activity or transfer of hydrogen (H+) ions between chemical species 

determines pH of a solution, which can be determined by measuring their 

concentration in the solution. The increased pH readings from pH 3.6 to pH 

4 in the case of CaP pellets indicated that the acidity of the citric acid 

solution was decreased, which was probably due to the activity of H+ ions 

and the removal of OH- to form H2O, as well as the removal of PO4
3- (577-

579). The increased pH values could also be due to the removal of 

impurities, such as carbonates, which make HAp mineral more soluble in 

acidic environments (577, 579). In addition, the activity of pH variation was 
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probably due to the uptake of Ca2+ ions from CaP pellets by the carboxyl 

groups (-COOH) of the citric acid, which resulted in the precipitation of a Ca 

– complexed carboxylate compound and/or metal complexed carboxylate 

groups (metal+ -OOC–), such as calcium citrate (Ca3(C6H8O7)2) (579), as 

given by equation 4.3.3.  

           CH2―COO– H+                                    CH2―COO– 

              │                                                         │ 

     HO―C―COO– H+   +   Ca2+    →    2 [   HO―C―COO– ] . (Ca2+ )3 ……. (4.3.3) 

              │                                                         │ 

           CH2―COO– H+                                    CH2―COO– 

               (Citric acid)                                   (Calcium citrate) 

 

On the other hand, the pH readings of solutions that contained doped CaP 

pellets were reduced slightly, which indicated a slight hydrogen activity. The 

pH values were reduced to pH 3.54 in the case of unsintered and laser – 

sintered pellets, and pH 3.45 in the case of furnace – sintered pellet. The 

slight reduction in the pH values indicated a slight increase in H+ 

concentration in the solutions, which was probably due to a further 

dissociation of H+ from the citric acid. Based on the pH variation readings, it 

can be concluded that the doped CaP pellets were more stable in the citric 

acid environment than the CaP pellets. 

Table 4.3.3 pH values of 0.3% citric acid solution that contained the CaP and doped CaP 

pellets (unsintered, furnace sintered, and laser sintered) after 24 hour reaction 

 

Sample Unsintered 
Furnace sintered       

850-1000°C                   
for 5 minutes 

800 nm pulsed laser 
sintered                          

for 5 minutes 

Undoped CaP 

pH ± 0.02 4.01 4.07 4.12 

Doped CaP (batch A) 

pH ± 0.02 3.54 3.45 3.54 
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Figure 4.3.41 pH variation during immersion of CaP and doped CaP pellets (unsintered, 

furnace sintered, and laser sintered) in 0.3% citric acid solution with as – prepared pH 

3.60 ± 0.02 for 24 hours. 

 

Furthermore, to investigate the behaviour of CaP and doped CaP pellets in 

the citric acid solutions after 24 hours, the solutions were analysed for any 

leached out components, using inductively – coupled plasma/mass 

spectrometry (ICP/MS) and SEM-EDX (element weight percentage). 

4.3.3.5.2 Inductively – coupled plasma/mass spectroscopy 

The Amount of components (ppm in 1:5 diluted solutions) that leached out 

from the pellets (three pellets of CaP and three of doped CaP, which were 

unsintered, furnace sintered, and laser sintered) to the citric acid solutions 

after a 24 hour reaction without agitation (static conditions) were analysed by 

ICP/MS. The measurements of CaP and doped CaP pellets are presented in 

Tables 4.3.4 and 4.3.5, and Figures 4.3.42 and 4.3.43, respectively. The 

measurements indicated that a large amount of cations and anions were 

leached from all CaP pellets, compared to the doped CaP pellets. The 
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doped CaP pellets, as a group, showed an improved solubility resistance, 

compared to the CaP pellets, however, the furnace – sintered doped CaP 

pellet showed the least amount of leached out components, whereas the 

laser – sintered doped CaP pellet showed an improved solubility resistance, 

compared to the unsintered doped CaP pellet.  

As a function of solution calcium and phosphate concentrations, the doped 

CaP pellets showed less leached out components, compared to CaP pellets, 

as shown in Table 4.3.6 and Figures 4.3.44 – 4.3.45. The furnace – sintered 

pellets, as a group, were found to leach out the least amount of calcium and 

phosphate in both samples (CaP and doped CaP). On the other hand, the 

laser – sintered pellets were found to leach out fewer components in the 

case of doped CaP pellets and slightly more in the case of CaP pellets. In 

addition, the unsintered doped CaP pellet showed much less leached out 

components than the unsintered CaP pellet. The results indicated that the 

doping of CaP improved the solubility resistance of CaP (unsintered pellet 

group), and that the laser irradiation sintering improved the solubility 

resistance of doped CaP pellets more than CaP pellets.  
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Table 4.3.4 Inductively – coupled plasma/mass spectrometry (ICP/MS) of the acid solutions 

that contained CaP pellets for 24 hours 

 

Sample Undoped CaP pellets 

Component 
leached out 

Unsintered 
Furnace sintered 850-1000°C 

for 5 minutes 
800 nm pulsed laser 

sintered for 5 minutes 

 
Amount (ppm) in 1:5 diluted 0.3% citric acid – component solutions 

Cations 
 

Calcium 55.47 45.86 65.61 

Sodium 0.33 0.25 0.37 

Potassium 100.01 103.85 101.17 

Magnesium 0.41 - 0.3 

Anions 
 

Phosphate 311.21 114.65 314.53 

Chloride 2.74 2.03 1.92 

 

 

 

Figure 4.3.42 Leached out component comparison between the acid solutions that 

contained unsintered, furnace sintered, and laser sintered CaP pellets with standard 

error bars.   
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Table 4.3.5 Inductively – coupled plasma/mass spectrometry (ICP/MS) of the acid solutions 

that contained doped CaP pellets for 24 hours 

 

Sample Er2O3.AlPO4.CaF2 – CaP pellets 

Component 
leached out 

Unsintered 
Furnace sintered 850-1000°C 

for 5 minutes 
800 nm pulsed laser sintered 

for 5 minutes 

 
Amount (ppm) in 1:5 diluted 0.3% citric acid – component solution 

Cations 
 

Calcium 22.63 4.77 21.44 

Sodium 0.39 0.37 0.37 

Potassium 95.48 98.27 96.64 

Ammonium 6.15 - 4.08 

Anions 
 

Phosphate 201.76 66.83 191.52 

Fluoride 2.2 1.5 1.95 

Chloride 2.04 2.06 1.75 

 

 

 

Figure 4.3.43 Leached out component comparison between the acid solutions that 

contained unsintered, furnace sintered, and laser sintered doped CaP pellets with 

standard error bars. 
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Table 4.3.6 ICP/MS comparison between the acid solutions that contained CaP pellets and 

those contained doped CaP pellets, as a function of solution calcium and phosphate 

concentrations 

 

Component 
leached out 

Unsintered 
Furnace sintered 850-1000°C 

for 5 minutes 
800 nm pulsed laser sintered 

for 5 minutes 

 
Undoped CaP pellets 

Calcium 55.47 45.86 65.61 

Phosphate 311.21 114.65 314.53 

 
Er2O3.AlPO4.CaF2 – CaP pellets 

Calcium 22.63 4.77 21.44 

Phosphate 201.76 66.83 191.52 

 

 

 

Figure 4.3.44 Leached out calcium and phosphate comparison between of the acid 

solutions that contained unsintered, furnace sintered, and laser sintered CaP pellets 

with standard error bars. 
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Figure 4.3.45 Leached out calcium and phosphate comparison between of the acid 

solutions that contained unsintered, furnace sintered, and laser sintered doped CaP 

pellets with standard error bars. 

 

Inductively – coupled plasma/mass spectrometry (ICP/MS) of the acid 

solutions that contained CaP pellets and those contained doped CaP pellets 

revealed the leaching out of components, mainly calcium (Ca2+), phosphate 

(PO4
3-), sodium (Na+), potassium (K+), and chloride (Cl-), as well as fluoride 

(F-) from the doped CaP pellets, but it did not reveal the leaching out of 

erbium (Er3+) and aluminium (Al3+) cations from the doped CaP pellets. 

Therefore, due to the limitation of ICP/MS in detecting the leached out Er3+ 

and Al3+ cations in the case of doped CaP pellets, samples of the acid 

solutions that contained doped CaP pellets were further analysed by energy 

dispersive X – ray spectroscopy (SEM-EDX). 
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4.3.3.5.3 SEM-EDX measurements 

SEM-EDX measurements (element weight percentage) of the acid solutions 

that contained the doped CaP pellets (unsintered, furnace sintered, and 

laser sintered) are shown in Table 4.3.7 and compared in Figure 4.3.46. 

Although the SEM-EDX measurements indicated that the furnace – sintered 

– doped CaP pellet leached out the least amount of elements, compared to 

the unsintered doped CaP pellet and laser – sintered – doped CaP pellet, 

the latter showed less amount of leached out elements than unsintered 

doped CaP pellet. This indicated that laser – sintered – doped CaP pellet 

showed an improved solubility resistance in the citric acid environment, 

compared to unsintered doped CaP pellet. These findings are in good 

agreement with the results obtained by pH variation and ICP/MS 

measurements. Although the furnace – sintered pellets were the most stable 

in the citric acid environment, it can be concluded that the dissolution of CaP 

(pellets) was significantly reduced in the case of doped CaP pellets 

(unsintered and laser sintered), due to the presence of dopants  and the 

application of laser irradiation. 

Table 4.3.7 SEM-EDX measurements (element weight percentage) of the citric acid 

solutions that contained doped CaP pellets after a 24 – hour reaction 

 

Element 
citric acid-doped CaP 

unsintered pellet 
solution 

citric acid-doped CaP 
furnace sintered pellet 

solution 

citric acid-doped CaP 
laser sintered pellet 

solution 

 
Weight % 

O 59.18 1.13 29.78 

F 11.49 0.06 4.17 

Al 1.92 1.46 0.35 

P 4.06 0 1.14 

K 5.73 0 1.03 

Ca 6.45 0 3.24 

Er 11.17 0.01 3.82 
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Figure 4.3.46 Leached out element (SEM-EDX element weight percentage) comparison 

between the citric acid solutions that contained unsintered, furnace sintered, and laser 

sintered doped CaP pellets with standard error bars.  

 

4.3.3.5.4 Profile roughness measurements 

Roughness, also known as surface roughness, is a measure of the texture of 

a surface, which is determined by vertical variations of a real surface from its 

ideal form. Large variations indicate that a surface is rough, whereas small 

variations indicate that a surface is less rough or smooth. A surface with a 

large roughness average (Ra) value has a high friction coefficient, and thus, 

wears quickly and vice versa. Roughness as in surface irregularities may act 

as nucleation sites for cracks or corrosion, and therefore, the surface wears 

quickly; however, a rough surface may also promote adhesion, providing 

mechanical interlocking when interacting with its environment (580). 

Profile roughness parameters, root mean square roughness (Rq) and 

roughness average (Ra), of CaP and doped CaP pellets (unsintered, furnace 

sintered, and laser sintered), before and after the acid erosion trials, were 
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Step IQ Surface Profiler). Roughness parameters (Rq) and (Ra) before and 

after immersion of CaP and doped CaP pellets in the citric acid solution are 

presented in Table 4.3.8. 

Table 4.3.8 Profile roughness parameters (Rq and Ra) for CaP and doped CaP pellets 

(unsintered, furnace sintered. and laser sintered) before and after citric acid erosion 

 

Sample Roughness Undoped CaP pellet Doped CaP pellet 

  
Before 

erosion (nm) 
After  

erosion (nm) 
Before 

erosion (nm) 
After  

erosion (nm) 

Unsintered 
Rq              

Ra 

1040 

831 

1412 

1075 

1744 

1309 

1174 

913 

Furnace 
sintered 

Rq 

Ra 

1511 

1127 

216 

172 

1349 

1035 

279.9 

224 

Laser 
sintered 

Rq 

Ra 

1435 

1099 

440 

361 

1026 

848 

429 

336 

            Rq is the root mean square roughness and Ra is the roughness average. 

 

Roughness average (Ra) values indicated that the roughness of unsintered 

CaP pellet increased after acid erosion and decreased in the case of furnace 

– and laser – sintered CaP pellets. On the other hand, the roughness of all 

doped CaP pellets (unsintered, furnace sintered, and laser sintered) 

decreased after citric acid erosion. 

Before citric acid erosion, the unsintered CaP pellet had a smaller Ra value 

than that of unsintered – doped CaP pellet. However, in the case of the 

furnace – sintered and laser – sintered pellets, the doped CaP pellets 

showed less Ra values than the CaP pellets. This indicated that the sintering 

was more effective with doped CaP pellets than CaP pellets. 
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After citric acid erosion, the unsintered CaP pellet had a larger Ra value than 

that of unsintered – doped CaP pellet, and similarly, in the case of laser 

sintered pellets. However, this unexpectedly was not the case with the 

furnace – sintered pellets, as the furnace – sintered CaP pellets had a 

smaller Ra value than that of doped CaP pellets. Although the highest Ra 

value was assigned to the unsintered – doped CaP pellet, the doped CaP 

pellet showed smaller Ra values than the CaP pellet under laser irradiation 

sintering, which is in good agreement with the effective use of laser 

irradiation in the presence of dopants. The difference between Ra and Rq 

values is an indication of the uniformity of a surface, since the Rq is more 

weighted by large values of peak height and valley depth (581). All Rq values 

were higher than the Ra values, which indicated that the surface was not 

entirely uniform. However, the most uniform surface before acid erosion was 

that of laser – irradiated doped CaP pellet. After acid erosion, the surfaces 

were more uniform in the case of furnace and laser sintered pellets, as a 

group. 

Table 4.3.9 Surface uniformity of CaP and doped CaP pellets (unsintered, furnace sintered 

and laser sintered) before and after citric acid erosion 

 

Sample Surface 
uniformity 

Undoped CaP pellet Doped CaP pellet 

 
 

Before erosion  After erosion  Before erosion After erosion 

Unsintered  Rq – Ra  209 337 435 261 

Furnace 
sintered 

Rq – Ra  384 44 314 55.9 

Laser 
irradiated  

Rq – Ra  336 79 178 93 
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4.3.4 Comparison between none and laser – irradiated 
coatings 

The non – laser – irradiated coatings (Figure 4.3.2 and Figure 4.3.3) 

indicated that the doped CaP particles exhibited better and more uniform 

occlusion of dentinal tubules than the CaP particles. However, both coatings 

were quite ineffective in occluding the dentinal tubules completely, because 

the particles were not packed together. Although the coatings were improved 

using the dipping machine and the application of additional drops of CaP 

suspensions, the lack of particles’ packing still revealed open dentinal 

tubules away from laser – irradiated area (Figure 4.3.13 a). 

In contrast, the laser – irradiated coatings showed improved packing and 

densification of particles and the occlusion of dentinal tubules, particularly 

with the doped CaP coatings under 1520 nm pulsed laser irradiation. The 

CaP and doped CaP coatings that were irradiated with 980 nm CW laser 

were densified non – uniformly and resulted in open dentinal tubules (Figure 

4.3.11 and Figure 4.3.10, respectively), with the melting of dentine surface in 

the case of CaP coating (Figure 4.3.11 d). Similarly, the CaP coatings that 

were irradiated with 1520 nm CW and pulsed lasers (Figures 4.3.25 – 

4.3.31) were poorly densified, without the occlusion of dentinal tubules in 

and around the laser – irradiated areas. On the other hand, the doped CaP 

coating that was irradiated with 1520 nm pulsed laser for 30 seconds (Figure 

4.3.13 b) was well densified, with a complete occlusion of dentinal tubules in 

and around the laser – irradiated area. Similarly, the doped CaP coating that 

was irradiated with 1520 nm pulsed laser with a beam diameter of 250 µm 

for 1 minute (Figure 4.3.17) was well densified, with a complete occlusion of 

dentinal tubules in and around the laser – irradiated area. 
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4.3.5 Main findings 

The CW and pulsed laser irradiation sintering at wavelengths of 980 nm and 

1520 nm, respectively, for an exposure time of 5 minutes were concluded 

ineffective. The CaP and doped CaP coatings under 980 nm CW laser 

irradiation showed poor absorption and non – uniform densification. The 980 

nm CW laser irradiation introduced heat accumulation, which caused 

distortion to the CaP coating and melting of dentine surface. Similarly, the 

1520 nm pulsed laser irradiation sintering for 5 minutes was concluded 

ineffective, because it resulted in the formation of a deep crater in the doped 

CaP coating, with the possible damage of underlying dentine tissue. 

On the other hand, the 1520 nm pulsed laser irradiation for 30 seconds and 

2 minutes exhibited much better interaction with the doped Cap coatings 

than 980 nm CW and 1520 nm pulsed laser irradiation for 5 minutes. It 

resulted in a uniform densification and the occlusion of dentinal tubules in 

and around the laser – irradiated area, which was due to the wave – like 

energy distribution. However, the 1520 nm pulsed laser irradiation of doped 

CaP coating for 30 seconds – exposure time was concluded the most 

effective treatment, due to the formation of a shallow and spread crater, 

without causing any damage to the doped CaP coating. The laser irradiation 

sintering resulted in a uniform and excellent densification of CaP coating 

without distortion, which in turn resulted in a complete occlusion of dentinal 

tubules in and around the laser irradiation spot. 

The CaP and doped CaP coatings under 1520 nm CW laser irradiation with 

beam diameters of 125 µm and 250 µm for exposure time of 1 and 2 

minutes exhibited deep craters and the penetration of coatings, with the 
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possible damage of underlying dentine tissue. This was most likely due to 

the heat accumulation by CW laser mode. In particular, the CaP coatings 

exhibited poor absorption and densification, which led to the melting of 

dentine surface and open dentinal tubules surrounding and around the laser 

irradiation spot. 

On the other hand, the doped CaP coatings under 1520 nm pulsed laser 

irradiation with beam diameters of 125 µm and 250 µm for exposure time of 

1 and 2 minutes exhibited better densification and sintering than under 1520 

nm CW laser irradiation. However, the exposure time of 1 minute resulted in 

more uniform densification of the doped CaP coating than the exposure time 

of 2 minutes, the latter which caused a minor distortion to the coating. 

Moreover, the beam diameter of 250 µm was concluded more effective than 

the beam diameter of 125 µm, the latter which exhibited higher power 

density and resulted in deep craters, with the possible damage of underlying 

dentine tissue in most coatings. By contrast, the beam diameter of 250 µm 

resulted in a deep crater under the exposure time of 2 minutes only. 

Therefore, the beam diameter of 250 µm for an exposure time of 1 minute 

was also concluded the most effective treatment. This indicated that the 

effectiveness of laser irradiation sintering increased with increasing the 

beam diameter (around 200 µm) and decreasing the exposure time 

(between 30 seconds and 1 minute).  

The microstructure of interface between the dentine surface and the 1520 

nm pulsed laser – irradiated coatings revealed that the occlusion of dentinal 

tubules under laser irradiation was much more effective with doped CaP 

coating than CaP coating. The latter exhibited open dentinal tubules with 
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crack – like morphology in underlying dentine tissue, while the doped CaP 

coating exhibited a sintered and densified coating and the occlusion of 

dentinal tubules. 

The temperature change measurements indicated that the doped CaP 

coating absorbed 3 times the energy absorbed by the CaP coating during 

980 nm CW laser irradiation sintering, which could be beneficial in the 

densification of coatings and the protection of dentine surface from any 

damage by laser irradiation. In addition, the micro – hardness 

measurements indicated that the laser – irradiated – doped CaP coating had 

a hardness number (1104.71 MPa) almost twice that of laser – irradiated 

CaP coating (681.56 MPa) and four times that of dentine surface (240.75 

MPa). This indicated that the laser – irradiated – doped CaP coating 

significantly enhanced the resistance of dentine section to permanent 

deformation, and similarly, the addition of dopants (Er2O3, AlPO4, and CaF2) 

enhanced the resistance of CaP coating to permanent deformation. 

Moreover, following the acid erosion trial, the pH variations indicated that 

doped CaP pellets were more stable in the citric acid environment than CaP 

pellets. The laser – irradiated – doped CaP pellets were also found to leach 

out fewer components than the laser – irradiated CaP pellets, which 

indicated that the laser irradiation sintering was more effective with doped 

CaP pellets than CaP pellets. Similarly, the unsintered doped CaP pellets 

were found to leach out fewer components than the unsintered CaP pellets, 

which indicated that doped CaP pellets were more stable in the citric acid 

solution than CaP pellets. This was revealed by ICP/MS and SEM-EDX 

measurements, which indicated an improved solubility resistance of the 
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unsintered – and laser irradiated – doped CaP pellets in the citric acid 

environment, compared to the unsintered – and laser irradiated – CaP 

pellets. Moreover, the roughness profile measurements indicated that the 

laser – irradiated doped CaP pellets had smaller Ra values than the laser – 

irradiated CaP pellets, which indicated the effectiveness of laser irradiation 

sintering in the presence of dopants. 
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Chapter 5 

Conclusions and Future Work 

 

5.1 Conclusions 

The present research study reported the results of a research methodology 

for the treatment of tooth sensitivity. The main aim of research study was to 

demonstrate the effective use of calcium orthophosphates doped with 

erbium, aluminium, and fluoride compounds and laser irradiation for the 

occlusion of dentinal tubules. The research study involved various 

experimental techniques, which provided reliable information about the 

composition, particle size and morphology, crystal structure, and thermal 

behaviour of powders and coatings. However, SEM-EDX provided semi 

quantitative analyses, which were not reliable in some cases. In addition, hot 

stage XRD and DSC analyses offered limited temperature ranges, from 

room temperature up to 800°C and 600°C, respectively, which limited the 

investigation of phase transformations beyond these temperatures. 

Following the synthesis of control CaP powders, temperature, pH, and 

reaction time played an important role, particularly in obtaining the desired 

phase, size, and shape of CaP particles. The temperature, pH, and reaction 

time of 200°C, pH ≥ 9, and 24 hours, respectively, were the most effective 

parameters in the modification of particle morphology and the production of 

CaP particles in the nanometre size, as well as the formation of a single 

phase of HAp. In addition, allowing sufficient time for the reaction of 

reactants to take place was very important to produce the desired phase and 

improve the crystallinity of CaP. 
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In the case of doped CaP powders, doping of CaP with Er(NO3)3.5H2O, 

Al(NO3)3.9H2O, and NH4F compounds was more effective and promising 

than with Er2O3, AlPO4, and CaF2 compounds. Doping of CaP with Er2O3, 

AlPO4, and CaF2 compounds resulted in the formation of inhomogeneous 

phases, except that synthesised under room temperature and high pH 

conditions (pH 10), which resulted in the formation of homogeneous phases 

and significantly affected the size and shape of particles. On the other hand, 

doping of CaP with Er(NO3)3.5H2O, Al(NO3)3.9H2O, and NH4F compounds 

resulted in a homogenous single phase under all conditions. In addition, the 

incorporation of Er3+, Al3+ and F- ions into the CaP structure was evidently 

observed with doped CaP powders (batch B). 

The doped CaP powders (batch A and B) that were synthesised under 

hydrothermal conditions were anhydrous and had better thermal stability (up 

to 600°C) than those synthesised under room temperature conditions. This 

indicated the effectiveness of the hydrothermal treatment at 200°C and the 

addition of dopants in driving off water molecules and improving the thermal 

stability of CaP powders. In addition, the phase transformation of doped CaP 

(batch A) during hot stage XRD indicated that Er2O3, AlPO4, and CaF2 can 

be diffused into CaP structure at ≥ 200°C.  

The micrometre platelet – like particles that were obtained under room 

temperature and as – prepared pH 5.4 ± 0.2 conditions were beneficial in the 

occlusion of dentinal tubules and heat transfer during laser irradiation 

sintering, particularly with the doped CaP coatings. However, the nanometre 

spherical particles in the case of doped CaP (batch A) and the nanometre 

rounded – like and rod – like particles in the case of doped CaP (batch B) 
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are more promising in the infiltration and occlusion of dentinal tubules, and 

most importantly, the provision of larger surface area for laser irradiation 

sintering. Although SEM revealed the formation of nanoparticles in 

agglomerations (clusters), the particle size analysis revealed the particle size 

in the micrometre scale, which was in good agreement with the micrometre 

agglomerates. Agglomerations of particles were observed after the 

dispersion of CaP and doped CaP powders in methanol and distilled water 

under ultrasonic bath conditions for ~ 10 minutes, which might indicate the 

formation of hard agglomerates, or that a further deagglomeration treatment 

was required.  

Following the characterisation of coated dentine sections, the doped CaP 

powders exhibited better coating than the CaP powders, despite the fact that 

manual dipping technique was not an ideal coating technique to obtain a 

uniform coating. however, both coatings were quite ineffective in occluding 

the dentinal tubules completely. In contrast, laser irradiation improved the 

packing of particles, densification, and occlusion of dentinal tubules, 

particularly in the case of doped CaP coatings under 1520 nm pulsed laser 

irradiation. In addition, the laser – irradiated doped CaP coating exhibited 

more energy absorption than CaP coating during 980 nm CW laser 

irradiation, which is important in facilitating the densification of coatings and 

the protection of underlying dentine tissue. This was demonstrated by the 

microstructure of interface between dentine surface and 1520 nm pulsed 

laser – irradiated coatings, which revealed that the sintering of coating and 

occlusion of dentinal tubules were much more effective, without damaging 

dentine tissue, with doped CaP coating than CaP coating. In addition, the 

laser – irradiated doped CaP coating significantly enhanced the resistance of 
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dentine section to permanent deformation. Also, following the citric acid 

erosion of pellets, the doping of CaP and laser irradiation sintering of doped 

CaP were effective in improving the solubility resistance of CaP powders. 

Following laser irradiation of coatings, the 980 nm CW laser irradiation for 5 

minutes was concluded ineffective treatment, due to the poor densification of 

coatings and occlusion of dentinal tubules. Also, the pulsed 1520 nm and 

CW 1520 nm (beam diameters of 125 µm and 250 µm) laser irradiation for 5 

minutes and 1 – 2 minutes, respectively, were concluded ineffective 

treatments, due to the formation of deep craters and possible damage of 

underlying dentine tissue. 

In contrast, the 1520 nm pulsed laser irradiation of doped CaP coatings for 

30 seconds and 2 minutes exhibited excellent interaction. However, the 

1520 nm pulsed laser irradiation for 30 seconds was the most effective 

sintering treatment, due to the formation of a shallow crater, and uniform and 

excellent densification of coating without distortion, which resulted in a 

complete occlusion of dentinal tubules in and around laser irradiation spot. 

Moreover, the pulsed 1520 nm beam diameter of 250 µm was more effective 

than the beam diameter of 125 µm, particularly for 1 minute. This indicates 

that the effectiveness of laser irradiation sintering increases with increasing 

beam diameter (~ 200 µm) and decreasing exposure time (30 seconds – 1 

minute). Therefore, 1520 nm pulsed laser irradiation of doped CaP coating, 

with exposure time of 30 seconds – 1 minute and beam diameter of 250 µm, 

was concluded the most effective treatment in achieving a uniform 

densification and completely occlusion of dentinal tubules, without inducing 

distortion to coating and underlying tissue. 
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Adequate laser irradiation trials were successfully carried out, however, it 

was difficult to laser irradiate the samples using a static stage, and more 

difficult to analyse the laser – irradiated areas and determine microstructural 

changes. A laser moving stage would have been ideal to achieve a uniform 

laser irradiation of entire coated dentine section, and most importantly, to 

investigate microstructural changes more clearly on a larger scale.  

Although calcium orthophosphate minerals, such as HAp, are suitable 

candidate for promoting bone growth and remineralisation of hard dental 

tissues, erbium, aluminium, and fluoride – doped CaP minerals offer greater 

mechanical and thermal behaviour as well as improved solubility resistance 

in citric acid environments, particularly under laser irradiation, for the 

occlusion of dentinal tubules. Although the mechanism of laser irradiation 

sintering with high repetition rate pulsed laser is much different from the CW, 

and this aspect is a subject of ongoing research investigation, ultra – pulsed 

lasers and doped CaP minerals offer a good opportunity for bringing a new 

application for the occlusion of dentinal tubules and the treatment of dentine 

hypersensitivity.  

5.2 Suggestions for future work 

Future experiments of laser irradiation sintering of doped calcium 

orthophosphates are required, which must have a firm idea about the 

"dosage" of radiation required to expose a spot (or an area) adequately, to 

avoid overexposure and inadequately exposing samples, which might 

damage dental tissues. The following variables are ought to be investigated 

in details in future work. 
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 The use of doped calcium phosphate minerals synthesised under 

elevated temperature and pH conditions rather than those 

synthesised under room temperature and as – prepared pH 

conditions. 

 Laser irradiation power and spot size to establish the exact threshold, 

below which no damage occurs to coatings and hard dental tissues. 

 Dwell time on each spot to be exposed (e.g. 3x10 seconds and 1x30 

seconds) to investigate whether it has a cumulative effect or not. 

 Comparison between continuously moving and static scans (dwelling 

on spots). 

 Investigating phase transformations induced by laser irradiation, by 

analysing changes in laser – irradiated samples, using XRD for any 

modified XRD peaks, FTIR, e.g., for the disappearance of absorption 

band of HPO4 group after laser irradiation, and DTA/GTA for any loss 

of water and organic materials. 

 Investigating acid erosion of laser – irradiated – doped CaP – coated 

dentine sections to determine their effectiveness in improving 

solubility resistance. 
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