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Abstract 

Breast cancer incidence rates are increasing in women worldwide with the highest rates 

reported in developed countries. A combination of screening approaches, Immuno-

histopathology and gene profiling analyses are currently used for diagnosis and typing 

but have their own limitations in understanding disease and its subtypes. Raman 

spectroscopy (RS) has attained great attention from biomedical researchers due to its 

non-invasive and non-destructive detection approach. Chemometrics is one of the 

powerful tools used in spectroscopic research to enhance its sensitivity.  

RS was used to characterise and differentiate two breast cancer and one normal breast 

cell lines (MDA-MB-436, MCF-7 and MCF-10A) and spectra of the cell lines have 

revealed basic differences in the concentration of biochemical compounds such as 

lipids, nucleic acids and proteins Raman peaks were found to differ in intensity and 

principal component analysis (PCA) was able to identify variations that lead to accurate 

and reliable separation of the three cell lines. Linear discriminant analysis (LDA) model 

of three cell lines was predicted with 100% sensitivity and 91% specificity.  

RS studies were extended from single cells to multiple cell spheroids. Human breast 

cancer cell lines (T-47D) were grown as spheroids and a combination of RS and Cluster 

analysis were employed to understand biochemical fingerprint and differentiation of 

normal proliferating, hypoxic and necrotic regions of spheroids. These variations may 

be useful in identifying new spectral markers and further understanding of cancer 

metabolism.   

Finally, Human breast biopsies on Tissue microarray (TMA) slide were analysed using 

RS and Chemometrics approaches. Biopsies were classified as luminal A, luminal B, 

HER2 and triple negative subtypes to understand chemical changes associated with 

breast cancer subtypes. Supervised and unsupervised algorithms were applied on biopsy 

data to explore intra and inter dataset biochemical changes associated with lipids, 

collagen and nucleic acid content.  

In summary, RS has offered great potential understanding breast cancer from cell line 

level to multicellular spheroid to higher architecture of tissue. This study has explored 

new area to understand biochemical fingerprint of breast biopsies, which is 

complementary to current trends of molecular profiling and immuno histopathological 

approaches. 
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Chapter 1 

Introduction  

1.1 Cancer – An Overview 

Cancer is an uncontrolled growth of tissue caused by rapid cell proliferation. It is an 

accumulation of cells that leads to the development of a tumour, also known as a 

neoplasm. Neoplastic cells initially gather as a cluster in the body, which is referred to 

as the benign stage. These types of cancers are stable and recovery can easily be 

attained through surgical excision. Once neoplastic cells start to invade their 

surrounding tissues, this is referred to as the malignant stage, whereby cells have 

developed invasive behaviour and these are generally life threatening. When the tumour 

cells migrate away from primary locations and start forming remote colonies through 

lymphatic or blood circulation, they become metastatic. The classification of a cancer is 

dependent upon the type of cells, and the tissues where the disease originates. 

Carcinomas derive from epithelial tissues, sarcomas can develop from muscles cells and 

leukaemia derives from hemopoiteic cells (Alberts, 2015 ). 

Most types of cancer cells form a mass which is called a tumour and is named after the 

organ of the body where it originated. An estimate across the world in 2008 revealed 

that 12.66 million people were diagnosed with cancer (Figure 1). It was also estimated 

that in the same year 7.56 million cancer deaths occurred out of a world estimated 

population of 6.75 billion people. Furthermore out of 27 cancers, lung cancer remains 

the most common cancer in both diagnosis (1.6millions (12.6)) and death rates (1.37 

million (18.1)) during the same year. This is closely followed by breast cancer, which is 

the second most common cancer overall, with 1.38 million cases (10.9%) but ranks 5
th

 

in terms of deaths 61% (458000). This is followed by colorectal, stomach and prostate 

cancer both in terms of diagnosis and death rates i.e. 1.2 million cases and deaths 
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609900, 990000 cases and deaths 737000 913000 cases and 261000 deaths respectively 

(Ferlay et al., 2010, Reeves et al., 2007). 

1.2 Breast Cancer 

In the 18
th

 century an eminent French Surgeon, Le Dran first reported the case of a 

breast cancer patient, whose previous two generations had experienced a history of the 

disease. In the mid-19
th

 century, it was further reported by another French surgeon, 

Broca, who observed the disease in four previous generations. In l972, Lynch and his 

team reported hereditary breast cancer along with ovarian carcinoma in 34 families. A 

major breakthrough in breast cancer history was the identification of BRCA1 locus to 

17q21 by Mary-Claire King and her colleagues in 1994 (Lindeman and Visvader, 

2011).  

1.3 Epidemiology 

Breast cancer is the most common cancer in American women and it accounts for one in 

three cancers. Breast cancer figures of the year 2011 have revealed the following facts.  

More than one million women were diagnosed as invasive and nearly sixty thousand 

women were diagnosed as in situ breast cancer. Geographical differences also affected 

the occurrence of the disease. For example, those in the New Mexico and Delaware 

region were more prone to breast cancer compared to those in other regions. Incidence 

rates also varied relative to the different ethnic groups in the United States. The highest 

incidence rates were reported in non-hispanic white women in the area of California and 

Columbia whilst the highest mortality rates were reported in African American women 

(Torre et al., 2015). 

Breast cancer is also the most commonly occurring cancer in Australian women, after 

skin cancer. According to studies by the Australian government, the incidence rates of 

breast cancer were increased in women aged between fifty to sixty nine years. The same 

studies found that nearly thirteen and a half thousand women were affected by the 
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disease in 2008. Breast cancer survival rates were lower in West, South and Northern 

regions of Australia compared to other areas. Breast cancer consequently has the second 

highest mortality rate amongst all cancers (Farley et al., 2010). 

Western European countries appear to have the highest incidence rate for breast cancer 

whilst Eastern and Middle Africa account for the lowest values with almost five-fold 

variation in world age-standardised (AS) incidence rates (Figure 1). Amongst 27 

different countries of Europe, Belgium had the highest rate of approximately 145 cases 

per 100,000 for European AS incidence rates in 2008 for female breast cancer whereas 

the lowest rates were noted in Greece with a value of 57 cases per 100,000. The 

incidence rate for females in the UK was found to be sixth amongst all European 

countries (EU-27) (Figure 2). Within United Kingdom, breast cancer is considered to be 

most common malignancy in England, Wales and Northern Ireland. While in Scotland 

breast cancer is second most common malignancy. The lifetime risk of this disease in 

women is 1 in 8, and nearly 50,000 women were diagnosed with breast cancer in UK 

during 2011. Since 1970, the incidence rates of lifetime risk increased by 72%. It was 

also noticed that the lifetime risk increases with age, nearly 8 in 10 women were 

diagnosed with the disease aged 50 or over. Breast cancer incidence AS rates in 

England, Wales, Scotland and Northern Ireland were 124.8, 123.3, 130.2 and 118.4 

respectively. Northern Ireland showed lowest incident AS rates compared to other parts 

of the United Kingdom (Farley et al., 2010, Cancer Research UK.,  2012).   

The economically developed regions of the world have gained a significant increase in 

incidence of female breast cancer rates especially in Central, Eastern and Far Eastern 

parts of Europe and this has been greatly influenced by changes in lifestyle and/or 

reproductive behaviour, weight gain, alcohol consumption and the use of hormone 

replacement therapy (HRT). Similarly the risk has been found to be more pronounced in 

females who migrated from a low risk area to an area with a higher level of risk, thus 
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demonstrating the strong influence of lifestyle and environmental factors (Ferlay et al., 

2010). 

Approximately 10% of the population of developing countries is represented by Latin 

America and the Caribbean. Almost each year 10% of new cases of cancer are 

diagnosed in these countries. However, the total number of breast cancer cases is lower 

as compared to developed countries. Uruguay and Argentina have been shown to 

exhibit the highest number of cancer incidence rates in these parts of the world. 

According to general statistics, there are no regular screening programs available in 

these parts of the world (Cazap et al., 2008). 

 

Figure 1: Worldwide statistics of breast cancer (Farley et al., 2010). 
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Figure 2: Breast cancer statistics of Europe (Farley et al., 2010). 

 

1.4 Etiology 
1.4.1 Geographic difference 

Lifestyle based risk factors and environmental factors may affect the etiology of breast 

cancer.  Breast cancer incidence rates were found to be considerably low in Asian and 

Mediterranean countries in comparison to the Western world. Cancer incidence rates 

were notably increasing in Asian women, whose ancestors migrated to United States a 

few generations previously. This may be due to lifestyle factors, which could have been 

adopted during this time period. In recent years, Japan has reported an increase in the 

incidence rates, perhaps due to the embracing of  the Western lifestyle in their culture 

(Debruin and Josephy, 2002).   

1.4.2 Alcohol consumption 

Alcohol consumption may increase the risk of breast cancer occurrence. Studies have 

found that those women, who do not consume alcohol, show a significantly reduced 

likelihood of breast cancer occurrence, compared to women who consume alcohol. 
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Postmenopausal women, who are habituated to excessive drinking, appear to show an 

elevated risk of developing breast cancer. Alcohol intake may produce higher levels of 

estrogen and insulin like growth factor in the body (Scoccianti et al., 2014).  

1.4.3 Diet 

A number of studies have reported that dietary fat is one of the risk factors for 

developing breast cancer. The evidence is inconclusive in these studies due to a lack of 

definitive correlation between fat intake and the likelihood of cancer development. 

Estrogen exposure may also cause breast cancer risk through dietary factors, alcohol 

consumption, birth control pills and hormone replacement therapy. A Uruguay based 

case-control study has confirmed that consumption of red meat may elevate the risk of 

breast cancer. Recent studies have found carcinogenic materials such as polycyclic 

aromatic hydrocarbon (PAH) and heterocyclic aromatic amines while grilling meat. 

PAH associated DNA adducts were observed in breast cancer tissues and this may be, 

one of the causative agents in breast cancer development. But as of yet there is no clear 

evidence in this regard. Intake of vegetables and fruits may decrease the development of 

breast cancer (Alexander et al., 2010).  

1.4.4 Tobacco Smoking 

A weak relationship exists between smoking and breast cancer development. Recent 

studies have revealed that smoking could increase the risk of breast cancer incidence in 

women who started smoking at an early age. CYP1A1 (Cytochrome P450 family 

polypeptide A) genetic variants with nucleotide transition at specific gene locations 

were observed in these women (Ishibe et al., 1998). However, a very minute percentage 

of breast cancers have shown these risk factors. Scientists have established a correlation 

between smoking and N-Acetyltransferase (NAT 2) genotype. Postmenopausal women 

who have a three year smoking history had developed fast genotype. This will 

consequently result in a higher risk of developing breast cancer. Whereas 
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postmenopausal women, who had a non-smoking history had developed slow genotype, 

thus resulting in a lower risk of developing the disease (Reynolds, 2013). 

1.4.5 Genetic risk factors 

The major genes considered as risk factors for development of breast cancer are BRCA1 

and BRCA2. The proteins, which are synthesized by these genes, could play an 

important role in cancer prevention. These genes, when mutated, contribute to 5 to 10% 

of hereditary breast cancers. The individuals who inherit the mutated copy of these 

genes have a high chance of developing the disease (Katsama et al., 2000). The other 

genes, which could be involved in developing cancer, are ATM, TP53, HER2/neu, 

CHEK2, PTEN, p53, BCL-2, CDH1 and STK 11.  Over expression of BCL-2 gene has 

been observed in 10 to 40% of breast cancers. Mutations in p53 genes were highly 

associated with sporadic breast cancers. Mutated copies of these genes play an 

important role in cell cycle control, nucleic acid repair mechanisms and apoptosis 

pathways. Other risk factors implicated in breast cancer development are not having 

children, obesity, chemical pollutants and hormone therapy (Debruin and Josephy, 

2002)  

1.5 Breast Anatomy and Pathology 

Breast or mammary gland is an important organ in the female body and provides 

nutrition to the infants. The major constituents of breast are adipose tissue, glandular 

tissue, lobes, lobules, alveoli, ducts and nipple. This structure is supported by 

connective tissue also known as cooper’s ligaments (Figure 3). Breast is made up of 

mammary milk glands and it contains fifteen to twenty lobes. Each lobe is further made 

up of lobules, and each lobule made up of ten to hundred alveoli and they are 

interconnected with sequence of branched ducts. Approximately fifteen to twenty five 

ducts join together and form main duct. Histological studies have confirmed that more 

than seventeen main ducts will enter into the nipple.  Recent investigations have 

demonstrated human breast structure using high-resolution ultrasound. Lactating breast 
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(milk production) is principally made up of adipose tissues and normal breast 

accumulates fat as increased with age, and it is glandular during lactation (Geddes, 

2007, Ali and Coombes, 2002). 

  

 

Figure 3: Schematic representation of Human breast. 

The histological analysis of ducts and lobules show that these structures are surrounded 

by myoepithelial cells of transverse orientation. However they are lined by luminal 

epithelial cells of a single layer. The basement membrane serves to separate these 

structures from stroma. The occurrence of a breach in the basement membrane can be a 

distinguishing feature between carcinoma in situ and invasive carcinoma. 

Microenvironment of breast has components of stroma; the stromal components include 

some discrete cells such as immune cells, fibroblasts, adipocytes, extra cellular matrix 

and blood vessels (Bertos and Park, 2011). 
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1.6 Breast Cancer Subtypes and Stages 

Based on morphology and structural organization, the tumours of breast have been 

divided into several categories. The invasive ductal carcinoma is the most commonly 

reported and observed one (approximately 75% cases; IDC NST) followed by invasive 

lobular carcinoma or ILC which is in about 10% of the cases. These two types of 

carcinomas together are responsible for 90% of all breast cancers. Some other types are 

histologically divided into categories such as tubular, medullary, metaplastic, 

neuroendocrine, mucinous (A and B), apocrine, adenoid cystic and micropapillary (The 

Royal College of Pathologists., 2015). The prognosis of cancer is dependant highly 

upon its histological type. It has been observed that the overall outcome of tubular, 

adenoid cystic, mucinous carcinomas is better than the ten year survival rate for ILC, 

medullary, IDC NST and apocrine variants. (Li et al., 2005, Weigelt et al., 2010) 

Breast cancer is divided into four different clinical stages based on tumour, nodes and 

metastases stages (TNM staging) 

TNM stage 1 can be divided into two main phases. In stage 1A the tumour is confined 

to breast area and has a diameter of ≤ 2cm. While in stage 2A the cancer spread to 

lymph nodes that are near to the breast area.  

Similarly, stage 2 is also divided into two phases. In stage 2A the tumour size may 

range from 0 to 2 cm and cancer cells can be found in up to 3 lymph nodes within axilla 

or breast bone. The tumour size greater than 2 cm but less than 5cm with no lymph 

nodes is also considered as stage 2A. While, in stage 2B the tumour is larger than 5cm 

but has not spread into the lymph nodes or breast bone.  

Stage 3 is divided into three phases namely 3A, 3B and 3C. In stage 3A the tumour may 

be of any size or cancer cells can be found in 4 -9 glands under axilla or lymph nodes 

near breast glands. Or if a tumour size ranges from 2-5 cm and small clusters of breast 
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cancer cells are in lymph nodes. Or tumour size greater than 5cm and it has spread up to 

3 lymph nodes. While, stage 3B refers that tumour has spread to the skin of breast or 

chest wall, or made the skin break down or caused swelling, or cancer may have spread 

to 9 lymph nodes in the axilla or in lymph glands near the breast bone. In stage 3C the 

tumour is spread into the 10 or more lymph nodes in the axilla, or to the nodes above or 

below of the collar bone, or near to the breast bone. 

Stage 4 refers to metastatic state with tumour of any size, the lymph nodes may or may 

not be involved but the cancer has spread to other parts body such as bones, lungs, liver 

or brain and distant lymph nodes (Cancer Research UK.,  2014). 

While, the breast cancer subtype classification is depending upon immunoreactivity of 

progesterone receptor (PR), estrogen receptor (ER), and human epidermal Growth 

Factor 2 receptor (HER2) and can be divided into four subtypes; 

 Luminal-A (ER+/PR+/HER2-) 

 Luminal-B (ER+/PR+/HER2+) (or HER2- with high Ki67) 

 HER2 over-expressing subtype (ER-/PR-/HER2+) 

 Basal like/triple negative (ER-/PR-/HER2-) 

1.7 Breast Tumours – Types and subtypes  

Classifications of breast tumour types and subtypes are based on classical pathology of 

diseased tissues, histological variations in terms of structure and localization, 

immunopathology, genomics and transcriptomics. 

Based on morphology and structural organization, breast tumours are classified into 

eleven histological types (Li et al., 2005, Weigelt et al., 2010). The different features of 

these tumour subtypes are mentioned in Table 1.  
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Table 1: Pathological classification based on morphology and structural organization of 

tissue biopsy samples 

S. No Histological type Features 

1 Invasive ductal 

carcinoma 

Cancer starts spreading from wall of milk duct and 

invades breast tissue (≈80% cases) 

2 Invasive lobular 

carcinoma 

Cancer starts in the terminal ductal lobular unit 

(TDLU) and then spread in breast tissue (≈10% cases) 

3 Medullary 

carcinoma 

Cancer starts in the milk ducts and soft tumour 

resembles medulla of brain (≈3-5% cases) 

4 Neuroendocrine 

carcinoma 

Tumours derived from neuroendocrine cells of breast  

(≈0.1% cases) 

5 Tubular 

Carcinoma 

Tumour begins inside milk ducts and cells look tube-

like under microscope (≈2% cases) 

6 Apocrine 

Carcinoma 

Tumour begins inside milk ducts and cells look like 

sweat gland cells under microscope (< 1%) 

7 Metaplastic 

Carcinoma 

Tumour is rapidly growing and consistently larger than 

typical IDC (< 1%) 

8 Mucinous 

Carcinoma 

Tumours begins in the milk ducts and produce mucus 

(< 2-3%) 

9 Adenoid cystic 

Carcinoma 

Resemble salivary gland counterpart and associated 

with ductal epithelium and basal or myoepithelial cells 

(≈0.1%)  

10 Micropapillary 

Carcinoma 

Clusters of tumour cells with predominant clear spaces 

and resemble angiolymphatic vessels (≈6%) 

 

Based on immunopathological parameters, breast tumours are classified on four 

different subtypes. This classification is mainly based on principal markers such as 

progesterone receptor (PR), estrogen receptor (ER) and human epidermal growth factor 

receptor 2 (HER2). Expression of ER and PR markers are characterised by 

immunohistochemistry (IHC) methods whereas HER2 marker is assessed by 

combination of IHC and FISH approaches (Parise et al., 2009, Wolff et al., 2007). The 

features of these subtypes are mentioned in Table 2. 
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Table 2:  Subtype classification based on detection of antigens in cells of tissue section 

and tumour genetic characteristics. 

S. No Subtype Name Features 

1 ER+ ER+/HER2- 

2 HER2+ ER-/HER2+ 

3 Triple positive ER+/PR+/HER2+ 

4 Triple Negative ER-/PR-/HER2- 

 

Based on Micro-array based gene expression studies, breast tumours are classified into 

five subtypes (Table 3). This classification is one step advanced to immunopathological 

classification (Hu et al., 2006, Sorlie et al., 2001).  

Table 3: Subtype classification based on genome-wide expression changes in diagnosis 

of disease. 

S. No Subtype name  Features 

1 Luminal A ER+/PR+/HER2- 

2 Luminal B ER+/PR+/HER2+ 

3 Basal ER-/PR-/HER2- 

4 HER2 ER-/PR-/HER2+ 

5 Molecular apocrine ER-/HER2+ 

 

Genomic aberrations such as DNA copy-number alterations (CNAs) and gene 

expression profiles are useful to dissect disease complexity and stratify breast tumours 

into intrinsic gene expression subtypes (Natrajan et al., 2010, Jonsson et al., 2010).  

Based on gene expression data and CNAs breast tumours are divided into 10 subtypes 

(Table 4). Carlos Caldas group has classified breast cancer based on CNAs and its 

associated gene expression changes. The ten integrative clusters were identified and 

these are distinct in its clinical features and outcomes (Dawson et al., 2013). 
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Table 4: Subtype classification based on alterations of the DNA of a genome of 

diseased biopsies 

Integrative Cluster CNAs Features 

IntClust 1 Amplification of 17q23 and highest prevalence of GATA3 

mutations (Luminal B intrinsic subtype) 

IntClust 2 Amplification of 11q13/14 and this region possess CCND1, 

EMSY, PAK1(ER-positive tumours) 

IntClust 3 Low prevalence of TP53 mutations and high frequency of 

PIK3CA, CDH1 and RUNX1 mutations (Luminal A tumours) 

IntClust 4 Low levels of genomic instability, and CAN-devoid flat copy 

number landscape (both ER-positive and ER-negative tumours) 

IntClust 5 ERBB2 amplification at 17q12, intermediate level of genomic 

instability and high proportion of TP53 mutations (mixture of 

ER-positive, ER-negative and triple negative tumours) 

IntClust 6 Amplification of the 8p12 locus and high levels of genomic 

instability (ER-positive tumours) 

IntClust 7 Intermediate levels of genomic instability including 16p gain and 

16q loss and high frequency of 8q amplification (ER-positive 

luminal A tumours) 

IntClust 8 1q gain/16q loss and high levels of PIK3CA, GATA3, and 

MAP2K4 mutations (ER-positive luminal A intrinsic subtype) 

IntClust 9 8q cis-acting alterations and 20q amplification and deletions of 

PPP2R2A on 8p (Mixture of intrinsic subtypes) 

IntClust 10 Highest rates of TP53 mutations and 5q loss and gains at 8q, 10p 

and 12p (mostly triple negative tumours) 
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1.8 Current Screening and Diagnosis and limitations 

In UK, national screening programmes are open to every woman for breast cancer 

screening. In this process 

1. Palpation 

This is a clinical examination but recommend to patients to physically examine 

any lumps in their own breasts including behind the nipple and axilla. If any 

benign lump is reported in this area, it is reported to doctor (Thistlethwaite and 

Stewart, 2007).  

2. Mammography 

This imaging approach uses x-rays to identify breast cancers based on density 

changes. The limitations of this approach are generally 10-14 percent false 

negatives and it can be quite uncomfortable. Mammogram does not provide 

much information in younger women because of their high density of breast and 

less percentage of fat (Nyström et al., 1993, Bassett et al., 1991, Day, 1991)  

3. Ultrasound  

This approach applies high frequency sound waves to detect breast cancers and 

it is usually helpful in younger women. This technique is widely used along with 

mammography and it is good in identifying breast tumours (Harper et al., 1981). 

4. Biopsy procedures 

a. Core needle biopsy 

X-ray guided core needle is applied to anaesthetized area of breast tissue to collect a 

small portion of lump.  Radiologist uses X-ray to guide the area of tumour and 

occasionally tissue sample needed is not visible on ultrasound. The limitations of 

this technique are slight bleeding, pain, and risk of infections, and sometimes 

missampling the area of suspected cancer (Weinfurtner et al., 2014). 

b. Fine needle aspiration 
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In this approach, fine needle is applied to collect suspected breast cancer 

cells but it can be painful and rarely needs local anaesthesia. This method 

has high sensitivity in discrimination between cysts and sold tumours but it 

cannot discriminate between in situ and IDC (Oyama et al., 2004). 

5. MRI (Magnetic resonance imaging) 

This approach involves radio waves to identify breast lesions. It can reveal the 

size of tumours in lobular breast cancer patients more accurately which can 

guide surgical biopsy. This approach is more accurate than mammography and 

breast ultrasound. The limitations of this approach are high cost and lack of 

potential in visualization of both ductal carcinoma in situ and IDC (Orel, 2001).  

1.9 Vibration Spectroscopy – novel diagnostic approach 

Although vibrational spectroscopy has been used in the structural characterisation of 

biological molecules alongside X-ray diffraction studies since 1940’s, it attained great 

resurge of attention in late 80’s in disease diagnosis and screening approaches. RS is a 

vibrational approach and has allowed electromagnetic radiation such as UV, visible and 

near infrared regions to excite higher energy levels. The energy difference is used to 

vibrate molecules (Rehman, 2012).  

The first vibrational approach towards biological studies was reported in 1930’s in skin 

tissues. Later on this approach was employed to detect microorganisms such as bacteria 

and viruses. Initial studies were concentrated on exploring major biological components 

of tissues such as lipids, carbohydrates and proteins and these were helpful in 

understanding metabolisms. Infrared spectroscopy has attracted many scientists to work 

on biological tissues due to advancement in collection of spectra from aqueous solutions 

and subtraction of water peaks from raw spectra and explore molecular fingerprint of 

biological materials. Overall, the early era of vibrational research was dominated by 

infrared spectroscopy compared to RS.  Raman analysis of biological tissue was 
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hampered with intense fluorescence and high cost of equipment. As time has 

progressed, advancements such as combination of microscopy and FTIR spectroscopy, 

powerful lasers, sensitive detector systems and fast computers have revolutionized 

infrared spectroscopy and it became powerful tool in non-invasive and label free 

approach (Banwell and McCash, 1983). The advent of FT-Raman spectroscopy and 

Nd:YAG lasers has eliminated fluorescence problems in early years and furthermore, 

invention of charge-coupled device (CCD) detectors, efficient filters has solved signal 

to noise ratio problems. Moreover, the advent of Confocal Raman spectroscopy (CRM), 

Surface Enhanced Raman Spectroscopy (SERS) and Coherent Anti-Stokes Raman 

Spectroscopy (CARS) has transformed RS related biological research. Novel diagnostic 

approach of RS in each disease is summarised in the following table.  

Advantages of Spectroscopy 

Optical spectroscopy has played vital role in cancer detection in recent years. The major 

advantages of this approach are mentioned below (Rehman, 2012) 

o This is a non-invasive and label free approach and requires minimal 

sample preparation.  

o Spectra can be acquired in a short space of time that leads to quick 

detection approach. 

o It can provide chemical information.  

o It can elucidate structural information. 

Applications of spectroscopy in tissue imaging and disease diagnosis are pretty exciting. Raman 

has shown promising approach in diagnosis of various cancers on ex vivo biopsies. It may also 

helpful in margin assessment studies and that would reduce the need of reexcision surgeries 

resulting from positive margins. Implementation of these methods as tools in clinical field 

requires large scale of ex vivo and in vivo studies, and further development of diagnostic 

algorithms. Recent developments in Raman systems such as SERS, tip-enhanced Raman and 
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CARS have convinced the usage for in vivo human applications. SERS approach use 

nanoparticles to yield Raman information on the scale of 100nm. Biocompatible and non-toxic 

nanoparticles were used as SERS substrates in mouse models to diagnose cancer and 

inflammation. Tracking of functionalized nanoparticles in human body remains significant 

challenge and clinical usage of nanoparticles in human applications still in research phase.  

1.10 Types of Spectroscopy 

Based on regions of spectrum, molecular spectroscopy can be divided into five types 

namely nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, 

rotational spectroscopy, vibrational spectroscopy and electronic spectroscopy. NMR 

and ESR spectroscopies were observed in radio frequency region. The charged particles 

like nucleus and electron and their dipole associated reversal spin causes an absorption 

or emission spectrum. Rotational spectroscopy was observed in microwave region and 

molecules, which have permanent dipole moment, exhibit changes in rotational levels 

and that energy transitions produce a spectrum. Vibrational spectroscopy lies in infrared 

region and this causes a dipole change. Different types of vibrations such as symmetric 

and anti-symmetric stretch, and bending vibrations make molecules infrared active. 

Electronic spectroscopy exhibit in the visible and UV region and this is caused by 

excitation of valence electrons leading to change in electric dipole.  

Different types of spectroscopic techniques and their important features are summarised 

in Table 5 here below (Rehman, 2012) 
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Table 5: Different types of spectroscopy and features. 

Spectroscopy  Feature Region Wave-

length 

Frequency 

(Hz) 

Energy 

(joules/

mol) 

NMR and 

ESR 

Change of spin Radio-

frequency 

region 

10m 
-1

 cm 3X10
6
 to 

3X10
10

 

10
-3 

to 

10
-1

 

Rotational 

spectroscopy  

Change of 

orientation 

Microwave 

region 

1cm -

100m 

3X10
10

 to 

3X10
12

 

10
2
 

Vibrational 

spectroscopy 

Change of 

configuration 

Infra-red 

region 

100m -

1m 

3X10
12

 to 

3X10
14

 

10
4
 

Electronic 

Spectroscopy 

Change of 

electronic 

distribution 

Visible and 

UV region 

1m -10nm 3X10
14

 to 

3X10
16

 

10
7
 

 

1.10.1 Elastic Scattering Spectroscopy (ESS) 

It is a wavelength dependent scattering approach and it mainly relies on elastic 

scattering. The scattered light provides information regarding normal and cancerous 

tissues. Spectral signatures are unique to cellular and sub cellular organelles depending 

on size, chromatin intensity of nucleus and morphological features of cell organelles 

(Dhar et al., 2006).  

1.10.2 Fluorescence Spectroscopy (FS)  

The basic principle of fluorescence spectroscopy is to quantify intensity of emitted 

photons from sample molecules after collision with incident photons. In this approach, a 

fluorophore, a fluorescent chemical compound that binds to sample, is excited into a 

higher state from ground level after interaction with incident light at specific 

wavelength. Upon reaching higher state, the fluorescence signals are released at longer 

wavelengths than incident absorption. The emitted energy is dependent on both 

fluorophore and its chemical environment. This spectroscopy is applied to investigate 

structural changes and binding interactions between molecules (Lakowicz, 2013). 
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Tryptophan, an aromatic amino acid, is one of the main components of fluorophore and 

is helpful to understand biological interactions using their wavelength. In vivo FS was 

applied on skin biopsies to investigate tumour pathologies in basal and squamous cell 

carcinomas. Increase in Tryptophan and decrease in collagen emission signals related to 

skin malignancies were first reported (Brancaleon et al., 2001). A combination of 

diffuse reflectance and intrinsic fluorescence spectroscopes were used to diagnose 

breast cancer with highest sensitivity and specificity (Zhu et al., 2008, Volynskaya et 

al., 2008) .  

1.10.3 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectroscopy, an infra-red (IR) vibrational spectroscopic approach, can be used to 

explore biochemical changes at molecular level. The basic principle in IR spectroscopy 

is interaction of IR radiation with molecules which results in the transformation of 

signal time domain to frequency domain. Absorption spectrum is the result of FTIR 

spectroscopy whereas scattered spectrum is the result of RS. The energy absorbed by 

the molecules causes vibrations and that leads to net change in dipole moment. FTIR 

has been extensively used in non-aqueous samples due to high absorption of water.  

FTIR applications have shown huge potential in the disease diagnosis such as breast 

cancer, brain cancer, bone cancer, cervical cancer, colon cancer, gastric cancer, lung 

cancer, oral cancer and skin cancer. FTIR applications were also helpful in studies of 

anti-cancer drugs, monitoring cell proliferation and growth, and in vitro glucose 

measurement. The development of fiber-optic probes has opened more avenues to 

investigate disease diagnosis in-vivo and in-vitro biopsies (Movasaghi et al., 2008).   

1.10.4 Raman Spectroscopy  

Raman spectroscopy had been extensively used to detect biochemistry of several 

biological compounds for many years. Raman has received much attention in past 

decade especially in biomedical applications such as diagnosis and monitoring disease 
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progress in various cancers. However, recent advancements in laser and detector 

technology have assisted Raman to become a potential approach in medical diagnostics 

(Mahadevan-Jansen et al., 1997). 

 Principle of Raman Spectroscopy 

The basic principle involved in Raman spectroscopy is interaction between 

monochromatic light and matter. When light interacts with molecule, energy is 

transferred to molecule or vice versa. Most of the light will be scattered with same 

energy as the incident light and this phenomenon was first observed by Lord Rayleigh 

and is known as elastic or Rayleigh scattering (Rehman, 2012). A very minute fraction 

of light will scatter with different energy than the incident light and this was first 

discovered by Sir C. V. Raman in 1928. This phenomenon is commonly known as 

Raman effect or Raman scattering (Hanlon et al., 2000).  
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Figure 4: Schematic representation of Raman spectroscopy. 

Raman scattering occurs when a molecule is excited to a vibrational state and it is 

associated with absorption and emission of a photon. When molecule absorbs energy 

during interaction, the scattered photon has lower energy than incident photon and this 

phenomenon is known as stokes Raman scattering (Rehman, 2012). During the 

interaction, if molecule loses energy, the scattered photon has higher energy than 

incident photon and it is known as anti-stokes Raman scattering (Figure 5). Raman 

spectrum is the representation of Raman scattered light. In graphical representation, x-

axis denotes frequency shifts and y-axis denotes intensity absorption. The conventional 

units for frequency shifts and intensity absorption are wavenumber (cm
-1

) and count per 

seconds (CPU) respectively (Hanlon et al., 2000). The first generation of Raman 



22 
 

instrumentation has used visible laser in their research. The major problems encountered 

here were fluorescence and instrumentation limitations.  Tissue chromophores and 

complex biological compounds cause a lot of fluorescence in the spectra. Later on, 

invention of diode lasers and CCD cameras have diminished much florescence and 

improved spectral interpretations (Figure 4) (Mahadevan-Jansen et al., 1997). 

 

Figure 5: Raman scattering. 

In Raman spectrum, each molecule express unique vibration and these molecular 

vibrations are commonly known as spectral peaks. These molecular vibrations are 

classified in two classes namely stretching and bending vibrations (Figure 6 & 7). In 

stretching vibrations, bond angles between the molecules remain same and bong lengths 

are changing during the vibration. There are two types of stretching vibrations namely 

asymmetric and symmetric. In bending vibrations, the bond length remains the same 

and bond angle changes during the vibration. There are four types of bending vibrations 



23 
 

namely rocking, twisting, wagging and scissoring (Lin-Vien et al., 1991). 

 

Figure 6: Schematic representation of stretching vibrations 

 

Figure 7: Schematic representation of bending vibrations 
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1.11 Types of Raman Systems 

1.11.1 Surface Enhance Raman Spectroscopy 

Surface enhanced Raman Spectroscopy (SERS) was first observed by Fleischmann and 

his colleagues in 1974 (Fleischmann et al., 1974). It involves substrates, which are 

generally rough metal surfaces and used to increase Raman signals by 10
3
 to 10

6
. The 

first use of gold and silver colloids as substrates was reported by Lee and Meisel and 

higher magnitudes up to 10
14

 were reported by Richard van Duyne (Lee and Meisel, 

1982, Haynes et al., 2005).  The frequently used SERS substrates are electrodes such as 

silver (Ag), gold (Au) and copper (Cu). Interactions between the laser and substrate 

results in the generation of plasmons, which creates an electromagnetic enhancement of 

the Raman signal. SERS was successfully applied on detection of breast cancer genes 

(Allain and Vo-Dinh, 2002), diagnosis of oral cancer (Kah et al., 2007), detection of 

CTCs in blood samples (Sha et al., 2008) and diagnosis of gastric and colorectal cancer 

(Feng et al., 2011a, Lin et al., 2011a).  

1.11.2 Coherent Anti-stokes Raman Spectroscopy (CARS) 

CARS is a type of non-linear spectroscopy, which employs multiple photons to generate 

coherent signals, several times the magnitude of spontaneous RS. Single continuous 

wave lasers are utilized in RS, in contrast to CARS, which employs two pulsed lasers 

(Tolles et al., 1977). Stokes scattering creates a photon that is similar to fluorescence 

emission. It hampers the detection of weaker Raman signals whereas anti-stokes 

scattering overcomes this problem. But it is weaker than stokes scattering. Two strong 

collinear lasers are used for irradiation. Frequency of the first laser is usually constant while 

second laser can be tuned create Raman active mode of interest. CARS signal is generated from 

vibrational motion of the molecules in the sample. A robust and directed signal is produced with 

CARS due to the coherent anti-stokes signal. The combination of CARS with laser scanning 

microscopes can provide high spectral images at video time rates (Cheng and Xie, 2004).  

Recent studies using a combination of RS and CARS have gained attention in the 
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biomedical field especially in biomedical imaging of various biological tissues. CARS 

has successfully been employed to study pathological brain tissue (Evans et al., 2007) 

and lipid profiles of nerve cell membranes as well as myelin organization (Wang et al., 

2005). Furthermore, based on myelin signals, CARS has been utilized to examine both 

the qualitative and quantitative distribution of grey matter in surrounding brain tissues 

(Evans et al., 2007). CARS was applied to colon tissue to investigate tumor features 

especially inflammatory margins using imaging (Krafft et al., 2009b).   

 

 Advantages of CARS: 

1. CARS provides very high levels of spontaneous signals (~ 10
7
) 

compared to RS. 

2. It also generates spectra with very high resolution which is 

equivalent to resolution of monochromatic light. 

3. It provides molecular structural characterization with higher 

collection efficiency and excellent spatial resolution compared to RS 

(Cheng and Xie, 2004). 

1.11.3 Resonance Raman Spectroscopy (RRS) 

Resonance Raman spectroscopy (RRS) utilizes specific excitation wavelengths which 

are close to the UV-visible absorption area. Overlapping of excitation wavelengths with 

the UV-visible range can produce higher scattering intensities, sometimes 6 times 

higher than normal RS. This phenomenon is known as Resonance Raman effect and 

optimum resonance depends on choosing the appropriate laser excitations 

corresponding to resonance conditions.  Due to excitation coincidences, RRS shows 

high florescence compared to RS (Robert, 2009).  RRS was applied to normal and 

breast cancer cells to investigate protein and nucleic acid changes (Yazdi et al., 1999) 
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and detection of different grades of brain cancer from normal meningeal tissues (Zhou 

et al., 2012). 

Summary of Raman systems: 

Type of Raman System  Raman features 

Stimulated Raman system   Non-linear phenomena in Raman signal  

 Pulsed lasers with 10
9
 V/cm and improved signal-

to-noise ratio 

 4-5 orders of magnitude enhancement compared 

to the spontaneous Raman scattering  

CARS system  Two strong collinear lasers used for irradiation 

 Two coherent laser beams and resulting signal 

with Anti-stokes frequency 

 Frequency of the first laser is usually constant and 

second one can be tuned to create Raman active 

mode of interest 

Resonance Raman system  Excitation laser frequency crosses electronic 

excited states of samples and resulted into 

resonance  

 solved problems in usage in UV lasers in Raman 

spectroscopy 

 3-6 orders of magnitude of intensity 

SERS  Certain metal surfaces (silver or gold colloids) 

with 5-6 orders of magnitude  

 Chemical enhancement followed by 

electromagnetic enhancement 

 SERS attached fibre optic probe (tip-enhanced 

Raman) applied in in vivo investigations 
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1.12 Chemometrics 

Chemometrics, also known as multivariate data analysis, was first coined by Svante 

Wold in 1971. The use of chemometrics enables the extraction of complex information 

from chemical systems. It uses different disciplines such as applied mathematics, 

statistics and information science to extract crucial chemical information (Osawa et al., 

2002). This can be achieved in two stages. In the first stage, chemical information is 

extracted as concentrations from spectral regions and in the second stage, these 

concentration profiles are compared using supervised and unsupervised algorithms to 

extract covariance factors that might help in understanding tissue pathology (Osawa et 

al., 2002). This form of multivariate data analysis is divided into two classes i.e. 

unsupervised and supervised algorithms.   

1.13 Unsupervised algorithms 

These algorithms are used to separate spectral data into groups based on systematic 

variation. Complex information is extracted from data sets and is commonly known as 

principal components (PCs) and each PC represents the linear combination of original 

spectral data components and these are orthogonal to each other. The most commonly 

used unsupervised algorithms in Raman based cancers studies are Principal component 

analysis (PCA) and Cluster analysis (CS) (Krafft et al., 2009c).  

1.13.1 Principal Component Analysis (PCA) 

As described earlier, this approach is performed on spectral data without any prior 

knowledge. Spectral data is converted into two matrices and are commonly known as 

PCs or scores. These scores are demonstrating the highest amount of variation. These 

are described as PC-1, PC-2 and PC-3 and so on. PC-1 shows highest amount of 

variation and PC-2 shows second highest amount of variation and so on. As the PC 

score increases the amount of variation decreases and latter PCs exhibits higher noise 

levels. PCA was used to separate normal and diseased tissues in breast (Chowdary et al., 
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2006), lung (Magee et al., 2009), oral (Malini et al., 2006a), gastric (Bergholt et al., 

2011b) and  colon (Molckovsky et al., 2003) cancers.  

1.13.2 Cluster Analysis (CA) 

Cluster analysis is another example of an unsupervised approach and it divides data in 

to subsets based on variations.  The aim of this approach is to enhance the degree of 

variation between clusters and reduce the degree of variation within each cluster. The 

amount of variation is defined as distance measure (Krafft et al., 2009c). There are two 

types of cluster analysis approaches, one is hierarchical cluster analysis (HCA) and the 

other is k-mean cluster analysis. HCA algorithm evaluates pairwise similarity from 

number of spectra (n) in order to calculate the symmetric distance matrix. This can be 

achieved in two steps. In the first step, it investigates the minimum distance from all 

spectra and extracts two similar spectra as a first cluster and then recalculates spectral 

differences between all remaining spectra and the first cluster. The second step involves 

searching for further similarity between remaining spectra or clusters and this process 

reiterates (n-1 times) to form a single cluster. This results in the formation of a 2D 

dendrogram, which corresponds to the lessening of clusters on one axis and respective 

spectral distances on the other axis. HCA can be divided into four groups based on the 

way in which the distance between clusters is measured. They are HCA-single linkage 

(nearest samples), HCA-complete linkage (farthest samples), HCA-average linkage 

(between nearest and farthest) and ward’s method (measures homogeneity and 

heterogeneity within each cluster) (Krafft et al., 2009c, Beebe and Kowalski, 1987). 

1.14 Supervised algorithms  

These algorithms use training sets with reference data with prior knowledge of groups 

contained within to test new, unlabelled datasets. Initially few spectra are used to train a 

model with defined classes. The class membership of, unlabelled spectra are then 

predicted based on their proximity to each defined class in the training model. The most 
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commonly used supervised algorithms in Raman studies are linear discriminant analysis 

(LDA) and k-means cluster analysis (Krafft et al., 2009f). 

1.14.1 Linear Discriminant Analysis (LDA) 

LDA is arguably the most popular supervised chemometric tool used for spectroscopic 

studies. It utilizes information to estimate linear discriminant functions that optimally 

differentiate k classes. LDA uses this information to assign unknown spectra to 

predefined classes. Discriminant functions enhance the interclass variance as well as 

intraclass variance. The mahalanobis distance is a measurement of common covariance 

matrix used in LDA, whereas quadratic discriminant analysis is based on distance 

measured from class-specific covariance matrices. Raman associated LDA approach has 

been employed in several cancer studies to classify disease from normal tissues types 

(Kamemoto et al., 2010, Oshima et al., 2010, Li et al., 2012, Feng et al., 2011b, Yu et 

al., 2006, Talari et al., 2015a).  

1.14.2 K-means cluster analysis 

In K-means clustering, the whole data sets are divided into k number clusters and then 

indiscriminate selection of centroids. Each spectrum of cluster is allocated to the nearby 

centroid. New centroids are then calculated and new assignments are made. This 

process repeats until the cluster resolution achieved. K-means produces an averaged 

spectrum for each cluster together with a class membership matrix (Krafft et al., 2009f). 

Most Raman studies involve a k-mean cluster analysis approach based on PCA-

transformed Raman data sets (Kneipp et al., 2003, Koljenović et al., 2002, Draux et al., 

2009, Vogler et al., 2010). 

1.15 Raman spectroscopy in Biological Tissues  

1.15.1 Cervical cancer 

In this study, near- infrared Raman spectroscopy was used as molecular marker 

detective to discriminate between normal and invasive cervical cancer tissue samples. 
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This study has concentrated on the final stage of invasive carcinoma and collected 14 

tissue samples from four healthy individuals with no cervical cancer record and three 

patients with cervical squamous cell carcinoma.  The wavelength of the laser used was 

785nm to excite both normal and cancer cells.  Several prominent bands were reported 

in the normal squamous cells such as  (CCH) aliphatic of collagen (816 cm
−1

), ring 

breathing in tyr & CCH deformation (854 cm
−1

), C-C stretch (922 cm
−1

), C-C skeletal 

stretch (938 cm
−1

), phenylalanine & C-H in-plane bending (1003 cm
−1

), O-P-O 

backbone stretch of DNA (1101 cm
−1

), amide III (1247 cm
−1

),  (C=CH) (1273 cm
−1

), 

CH2 deformation of lipids (1321, 1450 cm
−1

), DNA (1342 cm
−1

) and amide I (1664 

cm
−1

). The outcome of this work has shown two specific differences between normal 

and malignant cells. Dominant Raman bands at 775 to 975 cm
−1

 and the amide III at 

1248 cm
−1

 were present only in normal cell. This investigation has also revealed that C-

H stretching mode at 2800 to 3100 cm
−1

 is six times lower in the factor in cancer cells 

when compared to normal cells (Kamemoto et al., 2010). 

Gonzalez-Solis et al applied Raman spectroscopy along with multivariate approach to 

investigate cervical cancer using blood samples. In this study, serum was obtained by 

fresh blood samples from 20 patients and 10 healthy volunteers and in total 240 spectra 

were collected from these samples. 80 spectra were collected from 10 control patients, 

160 spectra from 10 cervical cancer and 10 early cervical cancer patients. PCA and 

LDA were carried after removing the fluorescence contribution, smoothing and 

applying the baseline correction. Raman spectra have shown clear evidence in peak 

intensities between normal and cervical cancer states.  The peaks of phenyl alanine and 

ß-carotenes of the cervical spectrum are higher than the peaks of the control spectrum. 

This study has also found that peaks of adenine, tryptophan, proline, glutathione, ß sheet 

and phospholipids, ß –carotene were present only in the cancer spectrum, whereas the 

peaks of amide III was present only in the control spectrum. This study has shown vivid 
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chemical variation in the serum samples of healthy and clinically diagnosed patients 

(Gonzalez-Solis et al., 2010). 

1.15.2 Lung cancer 

Oshima et al used Raman spectroscopy to demonstrate differences among cultures of 

normal and cancerous lung cell lines. Low to medium malignant Adenocarcinoma, 

squamous cell carcinoma, high malignant small cell carcinoma and large cell 

carcinoma, cell lines were cultured for Raman measurement. Single cell Raman spectra 

were obtained by using 532nm excitation wavelength instead of 785 or 633nm. High 

quality spectra were obtained at 60 sec/cell without any damage. Raman markers in lung 

cancer cell line and their malignancy were to establish in this study. The spectra has 

shown strong band for cyc-c and laser contributed much resonance in the spectra. PCA 

was successfully applied and 80% accuracy was achieved in discrimination between 

cancer cell lines.  Step-wise LDA was performed on these cell lines to identify 

malignancy type and strain. The cross validation has provided 100% accuracy of 

discrimination. The current study has shown potentiality of 532nm laser in Raman 

diagnosis (Oshima et al., 2010). 

Li et al has employed Surface Enhanced Raman Spectroscopy (SERS) to investigate 

peritoneal fluid, so that diagnosis of lung cancer can be possible at early stages. SERS 

was performed on saliva samples to detect vibrational features of the lung cancer 

pathology. Raman spectra of control and cancerous sample have shown peaks at 791 

cm
−1

 (pyrimidine), 906 cm
−1

 (tyrosine), 1007 cm
−1

 (phenylalanine & carbamide), 1364 

cm
−1

 (tryptophan) and 1720 cm
−1

 (lipid). The only minute differences such as peak 

intensities were found between the both spectra. This group has used multivariate 

analysis, such as, PCA to identify major differences and LDA to distinguish both 

groups. PCA and LDA were successfully employed and 82% total accuracy was 
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achieved.  This study has shown promising approach of SERS in detection of lung 

cancer (Li et al., 2012). 

Raman spectroscopy has been used by Huang et al to chemically characterize different 

organs of mice. This review has stated no spectral differences between blood pellet and 

whole blood. Oxygen saturation in hemoglobin has enhanced specific bands expression 

in the Raman spectra. Lipid and protein related CH2 and CH3 vibrations were expressed 

in the same regions of the spectra of serum, blood pellet and whole blood. Raman 

spectra of adipose tissue have shown much resemblance with spectra of palmitic acid. 

Stomach, colon and intestine has shared many spectral features, only two peaks were 

observed from protein and DNA and the remaining peaks were observed from lipid and 

protein. The spectra of teeth and bone has expressed calcium band at 950 cm
-1 

and it has 

been used as marker for detection of calcium phosphate in arthritis patients.
  
The bands 

observed in this study are representing major biological molecules of those particular 

organs. Few Raman bands were appeared exclusively in those specific organs such as 

1017, 2151 and 2747 cm
-1 

(spleen) 876 cm
-1 

 (kidney) and 921 cm
-1

 (small intestine and 

colon) (Huang et al., 2011). 

Nawaz et al reported that Confocal Raman Micro-spectroscopy (CRM) has the potential 

to analyse the efficacy of chemotherapeutic agent (cisplatin) on A549 adenocarcinoma 

cells. The purpose of this study is to discover chemical changes in cell membrane and 

cytoplasm of A549 cells after 96 hours exposure to cisplatin. Multiple spectra were 

obtained from different regions of cell (i.e. cell membrane, cytoplasm and nucleus), the 

spectral data was used to analyses the difference in cellular components and peak 

changes after Cisplatin treatment, multivariate analysis techniques like PCA (Principal 

component analyser), PLSR (Partial Least Square Regression) and PLS jack-knifing 

were used. They identified a band at 726 cm
-1

 that present in cytoplasm spectrum but 

not in nuclear spectrum, this band is assigned to tryptophan and CH3 stretching to lipids. 
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Similarly, the Raman band at 1423 cm
−1

 (aromatic lipids) and band at 1510 cm
−1 

assigned to tryptophan and tyrosine were observed predominately in cell membrane and 

cytoplasm spectra rather in nuclear membrane spectra.  The result of Cisplatin on the 

spectra of cell membrane illustrated the bands related to proteins at 671 cm
−1

and 728 

cm
−1

 (ring breathing of the tryptophan), 1030 cm
−1

 (C-H bending), 1094 cm
−1

 and 1126 

cm
−1

 (C-N stretching) and 1655 cm
−1

 (amide I). The Raman peaks at 1371 cm
−1

 (CH3 

stretching) and 1448 cm
−1

 (CH deformation), related to cell membrane lipids, also 

undergo shifts 1371 to 1376 cm
−1

 and 1488 to 1450 cm
−1

. They also extracted protein 

from control and treated Cisplatin cells, and analysed the spectral differences. They 

suggested major changes in the Raman bands include an intensification of the 904 cm
−1

 

and 1131 cm
−1 

(C-C skeletal stretching), 1001 cm
−1

 (phenylalanine), 1061 cm
−1

 (C-N 

stretching), 1131 cm
−1

 and 639 cm
−1

 (tyrosine), 961 cm
−1

 and 1199 cm
−1

, 1011 cm
−1

 

(tryptophan), 1323 cm
−1

 and 1404 cm
−1

 (CH deformation), finally 1606 cm
−1

 (C=C 

bending).  PLS Jack-kniffing analysis of cell membrane has demonstrated that cisplatin 

seems interacting with membrane lipids and causes some changes in their structure. 

Jack-kniffing results for cytoplasm have suggested that changes in cell physiology in 

term of ring breathing of tryptophan, RNA and CH bending were observed due to 

Cisplatin action (Nawaz et al., 2011). 

1.15.3 Gastric Cancer  

Feng et al reported combination of surface-enhanced Raman spectroscopy and 

multivariate approach to detect gastric cancer in on plasma samples. Raman spectra 

were collected from healthy and cancerous samples using green laser. Spectral 

differences between normal and cancerous samples were substantial and reproducible. 

Cancerous samples have shown higher intensities at 1330 (v (C-H) of nucleic acids), 

1445 ((CH2) of collagen and phospholipids) and 1580 cm
-1

 ((C=C) of phenylalanine).  

Spectral data was further analysed by principal component analysis and Linear 
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discriminate analysis.  Principal components 1, 2 and 7 have successfully differentiated 

cancer from normal groups. This diagnostic approach has revealed sensitivity and 

specificity of cancer detection were 79.5% and 91% respectively (Feng et al., 2011b). 

1.15.4 Brain cancer 

Sato et al applied Raman spectroscopy to identify changes at molecular level in live 

mice brain tissue. The idea behind this study is to detect structural and molecular 

differences in live animals in response to different physiological changes. This study 

has used near-infrared Raman probe which is made up of ball lens hollow fibres and Ti-

sapphire laser. The purpose of this study is to detect protein and lipid alterations, and 

water cluster conformation under different conditions namely inhalation of sodium 

pentobarbital (SP), diethyl vapour (DE) and after euthanasia. The spectra of SP treated 

has shown peaks at 1664, 1446 and 1003 cm
−1

 are consigned phenylalanine 

respectively. The spectra of DE treated have shown peaks at 2846, 2881, and 2928 cm
−1

 

are associated to the CH stretching vibrations of the protein and lipid groups. The peak 

at 3453 cm
−1

 associated to water cluster and it signify that the variation in 

conformational clusters due to the inhalation of DE. The intensity of the water band has 

decreased approximately 8%  in the spectrum obtained after euthanasia. Fetal analysis 

of the animal has revealed high concentration of water in the olfactory lobes and low 

concentration of water in the frontal cortex. This study has provided new insight for 

Raman approach to carry further analysis in conscious animals (Sato et al., 2009). 

Kirsch et al reported that Raman imaging could be used to investigate inter-cerebral 

tumours in brain metastasis. Ex vivo brain tissues were analysed to examine cerebral 

pathology through Raman mapping. Spectra of normal tissue has shown peaks at 2933 

cm
−1

 is associated with (CH2 and CH3 vibrations) and 3245 cm
−1

 (O-H vibrations of 

water). Other prominent functional groups appeared in the spectra were phenylalanine, 

CH2/CH3 deformations, amide I and fatty acid vibrations. The fingerprint region also 
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possesses peaks related to oxygenated haemoglobin at 750, 1002, 1212, 1546, 1605 and 

1619 cm
−1

.   Raman spectra of the tumour have demonstrated melanin peaks at 597, 

976, 1404 and 1595 cm
−1

. This study has signified the importance of melanin as 

molecular marker for future studies in brain metastases. Hence further development in 

the fibre probe research can increase the prospect of Raman spectroscopy as a 

diagnostic method to detect metastasis in various organs of mice (Kirsch et al., 2010). 

1.15.5 Skin cancer  

Larraona-puy et al has employed Raman microspectroscopy (RMS) in order to access 

its accuracy in detection and imaging basal cell carcinoma (BCC). This automated 

evaluation was carried out on skin tissues excised during normal and Mohs 

micrographic skin surgery. The approach has developed a database from various tissue 

sections from twenty different patients and it was used to construct the multivariate 

classification model. The spectra were categorized into BCC, dermis or epidermis and 

collagen type I spectral features has mainly contributed to differentiate between the 

dermis and BCC. On the other hand DNA peaks provided evidence in discriminating 

BCC from epidermis. Healthy dermis was characterised by proline and C-C backbone 

vibrations of proteins.  This study has shown high sensitivity and specificity in the 

discrimination of normal healthy tissue from BCC. Moreover, this approach has 

developed 2 dimensional biochemical images by using supervised models, which 

further supported a strong correlation with histopathological detection (Larraona-Puy et 

al., 2009). 

Cartaxo et al reported FT-Raman spectroscopy could be used to differentiate cutaneous 

melanoma from pigmented nevus.  Spectral measurements were taken from normal, 

neoplastic and pigmented nevi tissues by using Nd:YAG 1064nm laser (resolution 4 

cm
−1

). Before classification, Raman spectra were first pre-processed by correcting the 

baseline and performing the vector normalization using the Minitab software. The 
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model of variance analysis with a constant factor was used at first phase, and this 

indicated that all variables showed an affiliation with their own group. In the next phase 

of the statistical study a discriminating analysis was used, the results of which 

demonstrated a significant differentiation between the three groups under study. 

Significant differences were found in the region of 800-980 cm
−1

. The bands of 855 and 

937 cm
−1

 are typical characteristics of the collagen spectrum and are mainly because of 

the proline vibration in the protein structure. The Raman peak shift were observed in 

spectra are correspondent to DNA’s vibrational mode also increase in spectral intensity 

was observed in primary melanoma. This is because of the increased duplication of 

genetic material, responsible for the proliferation of malignant cells. This approach has 

shown efficiency of 75% in discrimination among  normal, neoplastic and pigmented 

nevi groups (Cartaxo et al., 2010). 

Larraona-puy et al further reported that RMS could be used to differentiate hair follicles 

from BCC in skin explants during MMS Spectral differences were observed between 

epidermis, BCC and hair follicle. Raman spectral data of hair follicles are very similar 

to epidermis, While BCC Raman spectral data was dissimilar and has shown high 

amount of DNA. Spectral differences can clearly differential between hair follicles and 

BCC. Linear discriminate analysis has detected BCC with specificity and sensitivity of 

around 90% and 85% respectively. This study has developed automated images future 

diagnosis purposes. Raman images have revealed that nucleic acids were abundant in 

hair follicles compared to   epithelial cells and these results have shown greater 

correspondence with histological images (Larraona-Puy et al., 2011). 

Konig et al carried out multiphoton autofluorescence/second harmonics generation and 

Coherent anti-Stokes Raman Scattering (CARS) tomography on skin biopsies to detect 

biochemical changes, tissue architecture, intra-tissue cell morphology and accumulation 

of various products of pharmaceutical and cosmetic industries. This hybrid tomograph 
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has provided valuable information about outer most skin layer. Intracellular lipids of 

stratum corneum have bright polygonal patterns and distribution of keratin was also 

revealed in this study. In vivo CARS was used to study diffusion pattern of water and oil 

on the skin.  These studies have found accumulation of oil in peripheral skin and water 

content in lipid free areas.  CARS was used to distinguish differences between normal 

healthy skin and psoriasis.  This group has noticed that healthy corneocytes were 

enclosed by greater lipid intensities whereas pathological skin lacked such structures 

(Konig et al., 2011). 

1.15.6 Oral cancer 

A Fourier transform near- infrared (FT-NIR) Raman spectroscopy was used to 

differentiate between normal and different oral cell carcinomas. Normal oral mucosa 

was acquired from SCC patients and were characterised into groups by pathologist. 

Raman spectra were recorded by using Nd : YAG laser (1064 nm, resolution of 8 cm
−1

). 

Raman spectra of SCC have shown various molecular vibrations such as amide I 

phenylalanine, tyrosine, CH2 vibrations, C-C skeletal stretching, C-N stretching. 

Support Vector Machine was applied to develop new model for discrimination and this 

model was successfully separated SCC from normal mucosa with greater efficiency 

compared to normal and OLK. Proliferation rate and biochemistry were similar in both 

normal and OLK cells. Hence low efficiency discrimination was noted by multivariate 

approach. Therefore, combination of Raman and data mining approaches has 

demonstrated potentiality in oral cancer detection. Moreover, investigation offered real 

time and label free diagnostic approach for detection of different oral cancers(Li et al., 

2010, Madhavi et al., 2012). 

Su et al applied Raman confocal micro spectroscopy to detect biochemical variations 

between normal and malignant oral tissues and normal and oral squamous cell 

carcinoma. Spectral profiles of normal and malignant have shown many marked 
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differences and multiple Raman markers were identified in this study. These markers 

were mainly associated with DNA and protein vibrational features to distinguish 

between normal and cancerous one. The advantage of unsupervised algorithm is to 

extract spectral differences in the form of principal components and these new scores 

will represent highest variation in the data. The most pronounced differences in the 

Raman spectra were appeared in the region of 700 to 1800 cm
−1

. Normal tissues has 

shown Raman bands at 756 and 1546 cm
−1

 corresponding to tryptophan and 

Phenylalanine at 1004 cm
−1

 was observed both in normal and malignant.  The malignant 

tissue display Raman bands at 1341 and 1655 cm
−1

, which corresponds to purines of 

DNA and amide I of protein respectively. The essential findings of this work have 

proven that Raman spectroscopy offers enormous potential to distinguish normal and 

malignant lesions and it can assist histopathologists in great deal (Su et al., 2012). 

1.15.7 Leukaemia  

Neugebauer et al reported that Raman imaging could be used to detection and 

differentiation of circulating tumour cells (CTC) from peripheral blood. CTCs play 

important role in tumour diagnosis and these can be used as molecular markers for 

tumour therapeutic studies.  The purpose of this investigation is to detect leukocytes, 

myeloid leukaemia cells and solid tumour cells by using combination of Raman 

spectroscopy and statistical approaches. Spectra were taken from dry cell pellet using 

785 nm laser (resolution 4 cm
-1

). General features of CTCs Raman spectra looked alike 

but leukocytes have shown higher intensities. Negative differences were observed due 

to high amount of DNA, lipids and proteins of cancer cells.  Unsupervised statistical 

method such as HCA was employed on fingerprint region of the spectra and the 

resultant dendrogram has well separated leukocytes from other cell types. PCA studies 

were further supported HCA clustering results. Supervised approach such as SVM 

model was classified the cells with greater accuracy of approximately 98%. This 
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pioneering research could assist future studies in cancer detection as well as progression 

(Neugebauer et al., 2010). 

1.15.8 Bladder cancer 

Shapiro et al has employed Raman microscope to detect urothelial carcinoma 

commonly known as bladder cancer (BCa) from normal epithelial cells of the voided 

urine. Previous studies have attempted to discriminate BCa from normal bladder tissue 

by using Raman spectroscopy. Raman spectra were obtained normal and cancerous 

tissues by using 532nm visible laser. A distinct peak at 1584 cm
−1

 was observed in 

malignant tissue and it was absent in normal tissues. This group has developed a model 

based on peak height (1584 cm
−1

) of normalized spectrum and used set of thresholds of 

the height to classify healthy, low and high grade cancers. Raman molecular imaging 

(RMI) yields a 92% of sensitivity and 91% of specificity for detecting BCa. This study 

has shown high accuracy in differentiating low-grade tumours from high-grade tumours 

(Shapiro et al., 2011).  

A summary of important Raman spectroscopic investigations in biological tisses were 

summarised in Table 6.  

Table 6: Raman spectroscopic diagnostic applications in various cancers. 

Disease Raman 

Approach  

Biological tissue/ 

sample 

Results  Ref 

Brain 

Cancer  

Raman 

Spectroscopy  

Healthy and 

cancerous porcine 

tissues 

Lipid content and 

lipid composition has 

differentiated from 

normal to cancerous 

(Koehler et 

al., 2009) 

Cervical 

Cancer 

 Raman micro-

spectroscopy   

Epithelial layers 

of normal and   

cervical biopsies 

Collagen , glycogen 

and DNA peaks were 

differed and 

diagnostic accuracy 

(Keller et 

al., 2008) 
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was nearly 100% 

Lung 

cancer 

Near infrared 

Raman 

spectroscopy 

Normal, 

malignant tissues 

including 

squamous cell 

carcinoma (SCC) 

and 

adenocarcinoma 

Disease classification 

is based on lipids, 

nucleic acids and 

aromatic amino 

acids. Malignant 

tissue have shown 

high nucleic acid and 

aromatic amino acid 

content and low in 

phospholipid and 

collagen based amino 

acid content 

compared to normal 

tissue   

(Huang et 

al., 2005) 

Lung 

Cancer 

Surface Enhanced 

Raman 

Spectroscopy and 

chemometrics 

approach such as 

PCA and LDA 

Saliva samples 

from normal and 

cancerous patient 

Normal and 

cancerous samples 

have shown band 

intensity differences 

in pyrimidine bases, 

tyrosine, tryptophan 

and lipids. 

Multivariate 

approach has shown 

disease accuracy of 

82%  

(Li et al., 

2011) 

Gastric 

Cancer 

Near infrared 

multichannel 

Raman 

spectroscopy and 

chemometrics   

Normal and 

surgically 

resected samples 

from cancerous 

lesions 

Sensitivity, 

specificity and 

overall accuracy of 

diagnostic algorithm 

is 95%, 100% and 

98%, respectively. 

(Kawabata 

et al., 

2011) 
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Approach will be 

helpful to clinicians 

in endoscopic 

submucosa surgery 

Oesoph

ageal 

Cancer 

Raman 

Spectroscopy 

Frozen normal 

and oesophageal 

biopsies   

Biochemical 

components such as 

lipids, glycogen and 

nucleic acid content 

were differed from 

normal to cancerous  

Potential for real-

time diagnosis 

(Shetty et 

al., 2006) 

Nasoph

aryngea

l cancer 

SERS and PCA & 

LDA 

Normal and 

tumour blood 

plasma  

Collagen, 

phenylalanine  and 

phospholipids were 

higher in cancerous 

than normal plasma  

Diagnostic accuracy 

in terms of sensitivity 

and specificity is 79.5 

and 91%, 

respectively 

(Feng et 

al., 2011b) 

 

 

1.16 Raman Spectroscopy in Breast Cancer Research 

Raman spectroscopy has been a successfully applied in breast cancer research. Initially 

Raman was employed to identify biochemical fingerprint of human breast biopsies.  

Near Infrared (IR) lasers successfully recognized major molecular components such as 

lipids including oleic acid and its derivative fatty acids. Visible lasers provided 

information on carotenoids (Frank et al., 1994). Raman was subsequently applied to 

differentiate normal breast from infiltrating ductal carcinoma. Significant and 
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reproducible Raman shifts were observed between normal and cancerous samples, 

associated with both fatty acids and proteins (Frank et al., 1995e). Furthermore, near-IR 

Raman studies identified biochemical components such as amide I, amide III, 

phospholipids, proteins and phenylalanine and consistent peak shifts were observed 

between the normal and cancerous tissues (Manoharan et al., 1998). 

Haka et al has reported Raman to detect different grades of breast cancer by using 

qualitative and quantitative chemical information. This approach has used 

microspectroscopic model, which is built upon nine basic components of breast tissue. 

Modelling method has exactly mimicked the breast tissue and these models were used 

to predict and characterize the disease status of the breast biopsies. This study has 

established correlation between biochemical composition and disease aggressiveness. 

They developed a diagnostic algorithm and it is specific for pathological diagnosis with 

94% sensitivity and 96% specificity (Haka et al., 2005). 

Rehman et al employed Raman spectroscopy to identify chemical changes in ductal 

carcinoma in situ and invasive carcinoma. This study has aimed to differentiate different 

cancer stages in these two carcinomas. Tissue biopsies were analysed using 786 nm 

laser with spectral resolution of 4 cm
-1

. Spectral differences were observed in the 

fingerprint region of normal and the two carcinomas. Spectral features of carcinoma 

biopsies have shown clear shift towards proteins and backwards to lipids and 

triacylglycerides. This is typical picture of cancer progression in malignant tissues. 

Different stages of IDC have shown spectral differences in terms of lipids, protein and 

nucleic acid composition. Different grades of DCIS have shown spectral variations in 

asymmetric and symmetric vibrations of lipids at high frequency region and 

phosphodiester vibrations in fingerprint region. This study has provided unique 

snapshot of chemical fingerprint of different grades of carcinoma (Rehman et al., 2007) 
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Haka et al has investigated in-vitro fresh-frozen tissues of different types of breast 

carcinoma by using Raman spectroscopy. These tissue samples were collected from 

different sites of different patients. Raman spectra were recorded using 830nm laser 

with resolution of 8 cm
-1

.  In order to extract information from the Raman spectra a 

spectroscopic model was employed. The modelling approach has involved fit 

coefficients, which resemble chemical composition of the disease. The results of this 

approach have shown much similarity with pathological diagnosis. The resulting 

diagnostic algorithm which classifies tissues not even as benign or malignant, but also 

according to pathological diagnosis has attained sensitivity of 94%, a specificity of 

96%, and a total test efficiency of 95% for the diagnosis of cancer. Furthermore, their 

results seemed similar to traditional histopathology  (Haka et al., 2009). 

Saha et al applied Raman spectroscopy to identify microcalcifications based on calcium 

deposits present in the breast cell. Raman spectra were acquired from tissue samples 

collected through core biopsy method. Cellular components such as calcium, fat and 

collagen were used to develop new algorithm to identify calcifications. The spectra of 

breast biopsies have shown Raman peaks at 912 cm
−1

 and 1477 cm
−1

 (calcium oxalate) 

and 960 cm
−1

 (calcium hydroxyapatite). This group has detected calcium deposits at the 

depth of up to 2.15 mm depth in the tissue biopsies. This algorithm has shown positive 

and negative predicted value of 85 % and sensitivity of 86% for detection of 

microcalcifications. This study has identified microcalcifications and discriminated type 

I microcalcifications from type II (Saha et al., 2011). 

Abramczyk et al has used Raman imaging to discriminate normal from cancerous breast 

tissue. The main aim of this study is not only to avoid histological studies based on 

biopsies, which are often prone to subjective interpretations, but also to understand 

chemical properties of the tissue.  Optical fibres coupled catheters to micro-Raman 

spectrometer has been used in this study. This Raman images have shown clear 
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differences in carotenoids and fatty acid composition. These images have also revealed 

the differences between metabolic products of cancerous tissue and its surroundings. 

Spectral data has confirmed that non-cancerous tissue is almost identical to 

monosaturated oleic acid, which is common component of triglycerides and adipose 

tissue, whereas cancerous tissue is likely to be dominated by arachidonic acid 

derivatives mainly cyclic eicosanoids catalyzed by cyclooxygenase. This study has 

suggested potential role of carotenoids and lipids in breast cancer detection (Abramczyk 

et al., 2011, Abramczyk et al., 2012). 

A summary of important Raman spectroscopic investigations in breast cancer research 

were summarised in Table 7.  

Table 7: Brief summary of Raman spectroscopy application in breast cancer diagnosis 

S.No Raman Approach  Biological tissue/ 

sample 

Results  Ref 

1 

 

 

 

 

 

 

 

 

Near-IR Raman 

spectroscopy 

 

 

 

 

 

 

  

Human normal 

breast tissue 

specimens  

 

 

 

 

 

 

Major molecular 

components of breast 

such as lipids including 

oleic acid and its 

derivative fatty acids 

identified. Visible 

lasers provided 

information on 

carotenoids 

(Frank et 

al., 1994) 
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2 Raman 

Spectroscopy & 

multivariate 

approach such as 

logistic regression  

Excisional breast 

biopsies including 

normal, fibrocystic 

, fibroadenoma and 

IDC breast tissues 

Major molecular 

components of breast 

such as lipids including 

oleic acid and its 

derivative fatty acids 

identified. Visible 

lasers provided 

information on 

carotenoids 

 

Diagnostic algorithm 

has successfully 

differentiated normal 

and benign tissues from 

cancerous tissues with 

sensitivity and 

specificity of 94 % and 

96%, respectively 

 

Diagnostic 

algorithm has 

successfully 

differentiated 

normal and benign 

tissues from 

cancerous tissues 

with sensitivity and 

specificity of 94 % 

and 96%, 

respectively 

 

 

(Haka et al., 

2009) 

3 Near-IR Raman 

spectroscopy 

 

Breast tissue 

samples of DCIS 

and IDC 

Different stages of IDC 

have shown spectral 

differences in terms of 

major molecular 

components 

Different grades of 

DCIS have shown 

s9pectral variations in 

asymmetric and 

symmetric vibrations of 

lipids at high frequency 

region and 

phosphodiester 

vibrations in fingerprint 

region 

(Rehman et 

al.,  2007) 

4 Portable optical 

fibre probe with 

Fresh stereotactic 

breast needle 

Detection of 

microcalcifications 

(Saha et al., 

file://///windleden/USR32/MAT/Mtp11cst/ManWin/My%20Documents/Post%20Viva%20Correctionstable.docx%23_ENREF_65
file://///windleden/USR32/MAT/Mtp11cst/ManWin/My%20Documents/Post%20Viva%20Correctionstable.docx%23_ENREF_65
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830nm diode laser biopsies (type 1 and 2) in breast 

tissue based on their 

chemical composition 

2011) 

5 Raman 

spectrometer with 

Nd:YAG 532 nm 

and 488, 514 nm 

lasers 

Ductal and lobular 

carcinoma biopsies 

Raman images have 

provided difference 

between metabolic 

products of cancerous 

tissue and its 

surroundings  

(Abramczyk 

et al., 2011) 
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Chapter 2 

 Aim and Objectives 

1. Identification of chemical differences associated with different breast cancer cell lines 

using Raman spectroscopy  

Human normal and breast cancer cell lines (MDA-MB-436 (ER
-
PR

-
), MCF 10A (non-

malignant) and MCF-7 (ER
+
)) were cultured, trypsinized and Agar cell plugs were 

made and fixed in formalin followed by paraffin wax embedding.  

Cell sections were analysed using Thermo Nicolet DXR Raman system equipped with a 

532nm laser at 4cm
-1

 resolution and further analysed by both supervised and 

unsupervised algorithms 

2. Analysis of 2D and 3D models of breast cancer cell line (T47D) using combination of 

Raman Spectroscopy and Chemometrics 

Human breast cancer cells (T47 D) were grown on 1.5% agarose coated 96 well plates 

and change media once in 3-4 days until 21 days. 

Spheroids were analysed using Thermo Nicolet DXR Raman system equipped with a 

532nm laser at 4cm
-1

 resolutions and further analysed by using multivariate approach.  

3. Raman spectroscopic analysis of human different breast cancer subtype biopsies on 

TMA slide 

Human different breast cancer biopsies (0.6 mm in diameter in size) were fixed in 

formalin followed by paraffin wax embedding)  & were de-waxed and sections of each 

biopsy were cut using microtome 

Cell sections were analysed using Thermo Nicolet DXR Raman system equipped with a 

532nm laser at 4cm
-1

 resolution  

Spectra were analysed using ‘The Unscrambler (Multivariate Data Analysis Software)’  
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Chapter 3 

Materials and Methods 

3.1 Raman Analysis of Breast Cancer Cell lines  

3.1.1 Materials 

1. Dulbecco’s modified Eagle Medium (DMEM) - 

It was purchased from Gibco, Invitrogen, Paisley, UK and it contains 4500 mg/ml 

glucose GlutaMAX TM and sodium pyruvate 

2. HAM’S nutrient mix F12  

It was purchased from Gibco, Invitrogen, Paisley, UK and supplemented with L-

glutamine and sodium bicarbonate. 

3. RPMI 1640 media 

4. Horse serum (Gibco, Invitrogen, Paisley, UK),  

5. Fetal bovine serum (FBS) (Gibco, Invitrogen, Paisley, UK)  

6. Penicillin and Streptomycin (Gibco, Invitrogen, Paisley, UK),  

7. Cholera toxin (Calbiochem),  

8. Insulin (Sigma),  

9. Epidermal Growth Factor (EGF) (Sigma),  

10. Fungizone  

11. Trypsin (Invitrogen life technologies) 

12. Hydrocortisol (Sigma) 

13. Dimethyl sulfoxide (DMSO) (Gibco, BRL. Pasiley, UK) 

14. T75 flasks & plastic ware  

All plastic ware were supplied by Nunc, Thermo Scientific, Loughborough, 

Leicestershire, UK. 

DMEM provides nutrients for cells and it constitute basal medium, four folds of amino 

acids (Serine and Glycine), ferric nitrate and vitamins. Similarly, HAM’s nutrient mix 
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provides nutrients for cells. It was initially developed to support growth of several 

clones of CHO (hamster cell lines) and HeLa cell lines. RPMI 1640 media was 

developed by Moore (Rosewell Park Memorial Institute). It is a combination of 

bicarbonate buffering system and amino acids. Pencillin/Streptomycin prevent bacterial 

contamination from both gram negative and positive bacteria. Cholera toxin increases 

cAMP levels in cultured cells, which in turn promotes growth. Insulin will bind insulin 

receptor on cells and increases cell proliferation. Fungizone is used to prevent 

contamination of cell cultures from yeast and multicellular fungi. Trypsin/EDTA 

provides Mg2+ and Ca2+ ions in media and these ions act as chelators. Hydrocortisol is 

steroid and it promotes cell growth and proliferation. Glutamine is used in protein 

metabolism, while DMSO is used in cryopreservation. 

3.1.2 Breast Cancer Cell Lines 

There are three cell lines were used in this experiment. Two breast cancer cell lines 

(MCF-7, and MDA-MB-436) and one normal breast cell line (MCF-10A) were used 

and the cell lines were purchased from American Type Culture Collection (ATCC, 

Manassas, VA, USA).  The brief description of these cell lines was mentioned in Table 

8. 
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Table 8: Breast cancer cell lines. 

Cell line Tissue origin Receptors 

expressed 

Source 

MCF-10A 

(Catalog No: 

CRL-

10317
TM

) 

Mammary gland of 

human breast  

Non tumorigenic and 

EGF positive 

American Type 

Culture Collection 

(ATCC) VA, USA 

MCF-7  

(Catalog No: 

HTB-22
TM

) 

Breast 

adenocarcinoma 

(from metastatic site) 

Estrogen receptor 

positive  

American Type 

Culture Collection 

(ATCC) VA, USA 

MDA-MB-436 

(Catalog No: 

HTB-132
TM

) 

Breast 

adenocarcinoma 

Tumorigenic and 

triple negative (ER
- 

PR
-
) subtype  

American Type 

Culture Collection 

(ATCC) VA, USA 

 

3.1.3 MCF-10A 

The MCF-10A line was isolated from the breast tissue of a 36-year- old female with 

fibrocystic disease. It was established by culturing in serum free media with low 

calcium concentration. It is of non- tumorigenic epithelial origin and expresses receptors 

for epidermal growth factor (EGF). MCF-10A are described as normal breast epithelial 

cell line because of their diploid karyotype and dependent on growth factors for their 

proliferation. This cell line expresses breast specific antigens such as cytokeratins, 

sialomucins and milk fat globules and they were detected by MC-5 and MFA breast 

monoclonal antibodies. MCF-10A has shown 3D growth in collagen and laminins 

mixture and display domes in confluent cultures, which are similar to acini of human 

breast.  

There are three types of media used for MCF-10A cell line, namely; 

1. Growth media 
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2. Resuspension media 

3. Freezing media 

Table 9: Growth media of MCF-10A. 

Media Component Final concentration  Storage 

DMEM/F12 89% 4º C 

Horse serum 10% -20º C 

EGF (100 mg/ml) 5 ng/ml -20º C 

Penicillin/Streptomycin 100 i.u/ml of each    -20º C 

Hydrocortisol 4 ng/ml 4º C 

Insulin (10mg/ml) 5 µg/ml 4º C 

Cholera toxin (1mg/ml) 8.47 ng/ml 4º C 

 

Table 10: Resuspension media of MCF-10A. 

Media Component Final concentration  Storage 

DMEM/F12 89% 4º C 

Horse serum 10% -20º C 

Penicillin/Streptomycin 100 i.u/ml of each    -20º C 
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Table 11: Freezing media of MCF-10A. 

Media Component Final concentration  Storage 

DMEM/F12 89% 4º C 

Horse serum 10% -20º C 

Fetal bovine serum 10% -20º C 

EGF (100 mg/ml) 5 ng/ml -20º C 

Penicillin/Streptomycin 100 i.u/ml of each    -20º C 

Hydrocortisol 4 ng/ml 4º C 

Insulin (10mg/ml) 5 µg/ml 4º C 

Cholera toxin (1mg/ml) 8.47 ng/ml 4º C 

DMSO   

 

3.1.4 MCF-7 

The MCF-7 cell line was isolated from the metastatic site of a 69-year-old female with 

breast adenocarcinoma. It expresses estrogen receptors. 
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Table 12: Media components of MCF-7 cell line. 

Media Component Final concentration  Storage 

RPMI 89% 4º C 

Fetal serum 10% -20º C 

Penicillin 100 i.u/ml -20º C 

Streptomycin 100 i.u/ml  -20º C 

L-Glutamine 2 mM -20º C 

Amphotericin 0.625 µg/ml -20º C 

 

3.1.5 MDA-MB-436 

The MDA-MB-436 cell line was isolated from the breast tissue of a 51-year-old female 

with metastatic adenocarcinoma. It expresses EGF and transforming growth factor alpha 

(TGF alpha) receptors and is considered to reflect the triple negative (ER
- 
PR

-
) subtype 

of breast cancer.  

3.2 Methods 

3.2.1 Culturing of Breast Cancer Cell Lines 

The total cell culture work of this section was carried in laminar flow hoods of Sheffield 

medical school under appropriate aseptic conditions. MCF-10A cell was grown in a 1:1 

mixture of Dulbecco’s modified Eagle Medium (DMEM) and HAM’S nutrient mix F12 

(Invitrogen), 5% horse serum (Invitrogen), 100 IU/ml penicillin, 100 IU/ml 

streptomycin (Invitrogen), 100n/ml cholera toxin (Sigma), 10μg/ml insulin (Sigma), 

20ng/ml EGF (Sigma) and 0.5mg/ml hydrocortisol. MCF 7 and MDA-MB-436 cell 

lines were grown in RPMI media, 5% fetal calf serum, 2mM L-glutamine, 100 IU/ml 

penicillin, 100 IU/ml streptomycin (Invitrogen) and 0.62510μg/ml amphotericin (Talari 

et al., 2015a). The three cell lines were grown as monolayers in T75 tissue culture flasks 
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and kept in incubators at 37
o
C in a humidified atmosphere with 5% CO2. Until 70% 

confluence, Cell culture medium was changed every 2-3 days and subculturing required 

for these cell lines. The three cell lines, which were used in the experiments, were 

between cell passage 5 and 19 cell passage describes the number of times the cell were 

split to grow under cell culture conditions for extended time periods.   

3.2.2 Subculturing of MCF-10A, MCF-7 and MDA-MB-436 cells 

Subculturing by definition is transfer of some cells from a previous culture to fresh 

growth media for the aim of prolonged life and the cell number expansion. This 

procedure involves discarding the culture media from T-75 tissue culture flasks, which 

has 70-80% confluence and briefly rinse the cell layers with PBS. 1ml of 1X trypsin 

EDTA solution was added to flasks and kept flasks at 37
o
C in incubators for 5 minutes. 

Flasks were observed under inverted light microscope to observe detachment of cells 

from flask. 9 ml of growth media was added to each flask and transferred cell 

suspension to centrifuge tube and spin at 100Xg for 5 minutes. Supernatant was 

discarded and resuspend the cells with fresh growth medium and disperse cell 

suspension aliquots to new tissue culture flasks with the ratio of 1:3 to 1:4.  

3.2.3 Preparation of Agar Plugs 

Once cells reached 70-80% confluence, cells were washed with phosphate buffer saline 

(PBS) and the cells were trypsinized to make viable, large pellets with a good number 

of cells for spectroscopic studies that would be representative of large cell clusters. Cell 

pellets were re-suspended with PBS followed by the addition of liquid agarose. Agar 

plugs were fixed in 3.7% formaldehyde for room temperature for at least 24 hours 

before histological processing (Talari et al., 2015a).  
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3.2.4 Histological Processing of Agar Plugs 

Histological processing including paraffin wax embedding was carried out using a Leica 

TP1020 benchtop processor (Leica Microsystems, Milton Keynes, UK). The steps 

involved in histological processing were mentioned in the below Table 13 

Table 13: Histological processing of agar plugs and steps involved. 

Station  Solution Time  Vacuum  

I 10% formalin 120 No 

II 70% ethanol 120 No 

III 70% ethanol 120 No 

IV 95% ethanol 120 No 

V 95% ethanol 120 No 

VI 100% ethanol 120 No 

VII 100% ethanol 120 No 

VIII Xylene 120 No 

IX Xylene 120 No 

X Paraffin wax at 57oC 120 Yes 

XI Paraffin wax at 57oC 120 Yes 

  22 hours +15 min 

drain time 
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Once processing has done, Agar plugs were embedded using Leica EG1160 embedding 

unit, dispenser and hot plate (Leica microsystems, Milton Keynes UK) (Talari et al., 

2015a).   

3.2.5 Raman sample preparation 

Histological sections of each cell line, 20μm thick, were cut using a microtome (Leica 

Microsystems, Milton Keynes, UK). Each section was mounted onto a glass slide and 

firmly fixed. De-waxing was achieved using Xylene treatment for 30 minutes, 50% 

alcohol for 5 minutes, 70 % alcohol for 5 minutes and 100% alcohol for 5 minutes. The 

aim of Xylene treatment is to remove the wax from the sample and alcohol treatment 

rehydrates the sample (Talari et al., 2015a). 

3.2.6 Raman Measurements 

High quality Raman spectra were collected from cell lines using a non-invasive 

dispersive micro-Raman system dxr™ (Thermo Nicolet) equipped with a 532nm laser. 

Before collecting spectral data from cell lines, the system was fully calibrated using 

polystyrene as standard.  The sensitivity in terms of signal to noise ratio of the laser was 

1000:1. Laser power of 10mw was focussed on the sample. A 50x long working 

distance objective was used and a spectrograph aperture was set to 50 micron pinhole. 

Spectral collection exposure time was set to 50 seconds with 5 exposures. Twenty 

spectra were collected from each cell line over the spectral range 400-3400 cm
-1

. 

Thermo Nicolet OMNIC™ software was employed for data acquisition(Talari et al., 

2015a). 

3.2.7 Data Processing and analysis 

Spectral range were analyze between 600-3400 cm
-1

.  Three cell lines were examined 

using DXR Raman confocal microscope. A total of 270 spectra were collected for this 

study (MCF-10 A = 90, MDA-MB-436 = 90 and MCF-7 = 90). A mean spectrum of 

each cell line was collected for comparison studies. Base line corrections and smoothing 
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was accomplished using OMNIC Atlµs 
TM

 software of Thermo Scientific, Madison, WI, 

USA) 

Data analysis was performed using Unscrambler X 10.2software (Camo software, Oslo, 

Norway). Multivariate approach was used to quantitative and qualitative analysis of 

different spectral regions. Quantitative analysis includes peak intensity of lipids, amide I 

and amide III. Both unsupervised and supervised approaches were used in data analysis. 

Principal component analysis (PCA) was performed on full spectral range (3300-200 

cm
-1

), fingerprint range (1800-500 cm
-1

), lipids region (3100-2680 cm
-1

), amide I (1800-

1530 cm
-1

) and amide III (1380-1190 cm
-1

).  

 Linear discrimination analysis (LDA) was applied on classification and prediction 

accuracy. LDA model was setup over full spectral range. Spectral processing for all 

LDA models were baseline correction and unit vector normalization.  Five samples 

from each group were left out at each pass until total number of 20 spectra of each cell 

line predicted (Table 14).  

Table 14: LDA model set up for three breast cell line models. 

Cell line  Number of spectra used 

in LDA model at each 

pass 

Number of spectra 

unknown at each pass 

MCF-7 35 5 

MCF-10 A 35 5 

MDA-MB-436 20 5 
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Diagnostic test evaluation is represented in sensitivity and specificity. Sensitivity of this 

model is calculated using correctly classified false positive, false negative and true 

negative. Formulas used for calculation of sensitivity and specificity are  

 

True positive 

Sensitivity = ------------------------------------------------------- 

True positive + False negative 

 

True negative 

Specificity = ---------------------------------------------------------- 

False positive + True negative 

 

3.3 Raman Analysis of 3D Spheroids 

 

Initially MCF-7, MDA-MB-436 and MCF7 cell lines were used for spheroid cultures. 

None of these cell lines have grown to spheroids until 14 days. T-47D cell line was 

chosen for spheroid culture and spheroids were cultured until 14 days successfully.  

3.3.1 Cell Line 

T-47D epithelial cell line was purchased from American Type Culture Collection 

(ATCC, Manassas, VA, USA). This cell line was isolated from the breast tissue of a 54-

year- old female with infiltrating ductal carcinoma disease. It expresses both receptors 

for estrogen and progesterone. T-47D cell line was cultured in RPMI media 

(Invitrogen), 5% fetal calf serum (Invitrogen), 2mM L-glutamine (Invitrogen), 100 

IU/ml penicillin (Invitrogen), 100 IU/ml streptomycin (Invitrogen) and 0.62510μg/ml 

amphotericin (Invitrogen). This cell line was grown as monolayers in T75 tissue culture 

flasks and kept in incubators at 37
o
C in a humidified atmosphere with 5% CO2. Until 

70% confluence, Cell culture medium was changed every 2-3 days and subculturing 

was done using 1X Trypsin EDTA solution.  
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3.3.2 Culture of Spheroids 

T-47D tumour cell spheroids were made using liquid overlay method (Offner et al 

1993).  1.5 % Agarose (Electrophoresis grade Invitrogen) solution was prepared using 

RPMI media (without FCS) and heated in a microwave until it dissolved. Using a 

Varipipette (Eppendorf), agarose was aliquot into a 96 well plate with 100l/well and 

left 30 minutes to cool and set.  Cells were trypsinized from 70-80% confluence T75 

flasks and seeded into wells at concentration of 2000 cells /200l / well. Cells were fed 

with fresh medium using multi-channel pipette and carefully removed old medium until 

14 days. 

3.3.3 Histology of Spheroids 

After 14 days, T-47D spheroids were washed with PBS and fixed in 3.7% formaldehyde 

at room temperature for a minimum of 24 hours before histological processing. 

Histological processing, sample preparation, Raman measurements and data processing 

were kept constant throughout this project as mentioned in section 3.1 to 3.4, unless 

otherwise stated.   

3.3.4 Chemometric Analysis 

Chemometric methods such as PCA and Cluster Analysis (CA) were used in this study. 

PCA was performed on high-wavenumber region (3200-2600 cm
-1

), finger print region 

(1800-600 cm
-1

), amide I region (1800-1510 cm
-1

), amide II region (1510-1390 cm
-1

), 

amide III region (1390-1140 cm
-1

) and nucleic acid region (980-600 cm
-1

).  CA was 

performed on high-wavenumber, amide I and nucleic acid regions using Wards’s 

method squared Euclidean distance.  

Linear discrimination analysis (LDA) was employed on classification and prediction 

accuracy. LDA model was setup over full spectral range. Spectral processing for all 

LDA models were baseline correction and unit vector normalization. Four or Five 



60 
 

samples from each group were left out at each pass until total number of 20 spectra of 

each spheroid region predicted (Table 15).  

Table 15: LDA model set up for three regions of T-47D models. 

Cell line  Number of spectra 

used in LDA model 

at each pass 

Number of spectra 

unknown at each pass 

Normal proliferating 

region  

20 4 or 5 

Hypoxic region 19 4 or 5 

Necrotic region 21 4 or 5 

 

3.4 Raman Analysis of breast cancer biopsies 

3.4.1 Tissue Micro Array (TMA)  

Section three involves Raman study of breast cancer biopsy samples from tissue micro 

array (TMA) slide. TMA approach has gained much attention in pathological research 

analysis. H. Battifora initially developed this approach in 1986 and later on J.Kononen 

and his colleagues developed it as proper technique in 1998. This approach has 

revolutionized in multiplex histological studies. Results of this approach are reliable and 

provided new platform correlated gene expression studies. The main advantages of this 

approach is as follows 

1. High-throughput analysis of number of tissue biopsies in a single slide within a 

short time. 

2. It will be helpful in comparative analysis of gene and protein expression studies 

of same tissue under same conditions 
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3. It increases research effectiveness with minimal quantities of tissues. 

4. This approach has been useful in semi-quantitative scoring 

immunohistochemistry, FISH and in situ PCR.  

The major limitations of this approach are as follows 

1. Pathological cores may not representative of whole tumour because due to its 

heterogeneity.  

2. It has time consuming steps including preparation of individual paraffin blocks 

and  

3. This approach entails qualified staff and costly equipment 

4. Restricted sample quantity has offered difficulties in interpretation in terms of 

spatio-temporal data analysis of each section 

TMA slide preparation:  

The first step in TMA slide preparation is study of clinical or tumour biopsy before 

making decision on area of investigation.  TMA approach generally allows tissue 

cores as small as 0.6 mm in diameter. 

The major steps involved in the TMA slide preparation are  

1. Selection of donor tissue and identification of areas of interest for arraying  

2. Preparation of paraffin blocks and making array pores in the blocks 

3. Punching tissue cylinders (core biopsies) from marked representative areas of 

donor paraffin block.  

4. Inserting the tissue cylinders into the recipient paraffin block with low or high 

densities.  

5. Embedding recipient block to get TMA paraffin blocks 

6. Cutting TMA sections using a microtome 
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3.4.2 Sample quantity  

In this study we have examined different breast cancer patient biopsies on TMA slide. 

TMA and ethical approval was provided by Clinical Trials Research Unit (CTRU), 

University of Leeds. Clinical trial name was Azure and trial Data Transfer Agreement 

(DTA) ID is Azure_07. TMA slide has provided information about patient trial number, 

ER status, PR status, HER2 status, histological grade and tumour pathology.  

ER and PR status has described as 0-8, where 0-2 is regarded as negative, sometimes 3 

is also considered as negative. HER status has descried as 0-3, where 0 and 1 is 

negative, and 3 is positive. Score 2 are equivocal and need to perform an in situ 

hybridisation method to ascertain true status. Approximately 30% or slightly less of 2+ 

are amplified and therefore considered as positive. Histological grade is represented as 

low grade, moderate and high grade.  Tumour pathology of breast biopsies were ductal 

No Special Type (NST), lobular, mixed (ductal /lobular), mucinous, tubular and other 

types. Majority of breast biopsies belong to ductal NST. A total 132 biopsy samples 

were present on TMA slide and known ER, PR and HER2 status biopsies were used for 

spectral collection. 30 spectra were collected from each biopsy and in total 3,960 

spectra were collected from patient biopsies.  

Sample preparation and Raman spectroscopic measurements were kept constant 

throughout this study as mentioned in section 3.1 to 3.4, unless otherwise stated.   

Chemometric methods such as PCA and Cluster Analysis (CA) were used in this study. 

PCA was performed on high-wavenumber region (3200-2600 cm
-1

), finger print region 

(1800-600 cm
-1

), amide I region (1800-1510 cm
-1

), amide II region (1510-1390 cm
-1

), 

amide III region (1390-1140 cm
-1

) and nucleic acid region (980-600 cm
-1

).  CA was 

performed on high-wavenumber, amide I and nucleic acid regions using Wards’s 

method squared Euclidean distance. Linear discrimination analysis (LDA) was applied 

on classification and prediction accuracy. LDA model was setup over full spectral 
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range. Spectral processing for all LDA models were baseline correction and unit vector 

normalization.  Five samples from each group were left out at each pass until total 

number of 30 spectra of each subtype predicted (Table 16).  

Table 16: LDA model set up for four subtypes of TMA biopsies 

Cell line  Number of spectra used 

in LDA model at each 

pass 

Number of spectra 

unknown at each pass 

Luminal A 30 5 

Luminal B 30 5 

HER2 positive 30 5 

Triple negative 30 5 
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Chapter 4 

Results and Discussion 

4.1 Breast Cancer Cell lines - Results 

In this section, Spectral analysis of normal (MCF-10A) and two breast cancer (MCF-7 

and MDA-MB-436) cell lines was conducted. Raman spectra of the cell lines have 

revealed basic differences in the concentration of biochemical compounds, such as 

proteins, lipids and nucleic acids. Raman peaks differ in peak intensities and shifts in 

normal and cancer cell lines and Chemometric approach may assist in accurate and 

reliable classification with improved sensitivity and specificity. Vibrational 

spectroscopy has gained much attention in recent years in cancer research and especially 

used to explore the chemical fingerprints different biological tissues including normal 

and malignant types. A combination of Raman spectroscopy and multivariate approach 

was used for the first time to identify subtypes at cellular level. 

4.1.1 Raman Peak analysis 

A total of 120 spectra were collected from MCF-10A, MCF-7 and MDA-MB-436 cell 

lines. Mean spectra of three cell lines were extracted and identified peaks assignments 

(Figure 8).  The spectra obtained from each subtype showed significant differences in 

terms of peak heights and peak shifts. All peaks were carefully examined and assigned 

to their respective biological groups. Peak assignments were identified in the entire 

spectral range (400 – 3200 cm
-1

) of each cell line and summarised in table (appendix). 

To understand the chemical structural properties of cell lines and tissues, it is important 

to characterise these as precisely and accurately as possible. Therefore, all possible 

chemical bonds and functional groups were identified and their details are given below: 
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Figure 8: Mean spectra of breast cancer cell lines (MCF-10A, MCF-7 and MDA-MB-

436). 
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4.1.2 C-H region (3200 - 2700 cm-1) 

Spectral peak observed at 3060 cm
-1 

in MDA-MB-436, 3061 cm
-1 

in MCF-7 and 3062 

cm
-1 

MCF-10A was assigned C-H stretching of lipids. A small peak, present as shoulder 

was observed at 2881 cm
-1

 in MCF-7 and MCF-10A and attributed to CH2 asymmetric 

stretching vibrations of lipids and proteins, whereas this shoulder peak was absent in 

MDA-MB-436 (Figure 10). A strong Raman peak observed in high-wavenumber region 

at 2934 cm
-1

 in MCF-10A and MCF-7 assigned to CH2 asymmetric stretching vibrations 

of lipids (Figure 9). A strong Raman band was observed at 2932 cm
-1

 at MDA-MB-436, 

which corresponds to CH2 asymmetric stretch of lipids and fatty acids. A weak band 

was observed in MCF-10A and MCF-7 at 2726 cm
-1

, which represents stretching 

vibrations of CH, NH and OH groups of lipids. A similar weak band was observed in 

MDA-MB-436 at 2722 cm
-1

, which represents stretching vibrations of CH, NH and OH 

groups of lipids (Talari et al., 2015k).  

 

Figure 9: Mean Raman spectra of MCF-10A (blue), MCF-7 (red) and MDA-MB-436 

(green) with major lipid peak shift. 
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Figure 10: Mean Raman spectra of MCF-10A (blue), MCF-7 (red) and MDA-MB-436 

(green) with major lipid shoulder peak shift. 

4.1.3 Amide I region (1670 - 1655 cm-1)  

Raman peaks at 1668 cm
-1

 (MCF-10A), 1659 cm
-1

 (MCF-7) and 1655 cm
-1

 (MDA-MB-

436) are characteristic assignments of C=O stretching vibrations of proteins (Figure 11-

12). These vibrations are mainly due to -helical confirmation of proteins. A significant 

shift was observed in Amide I band in these three cell lines (Talari et al., 2015k).  
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Figure 11: The structure of amide I. 

 

Figure 12: Mean Raman spectra of MCF-10A (blue), MCF-7 (red) and MDA-MB-436 

(green) with major amide I peak shift. 

4.1.4 Amide II region (1650 - 1290 cm-1) 

A Raman peak arising at 1616 cm
-1

 was observed only in MCF-10A and MCF-7 that 

corresponds to C=C stretching vibrations of aromatic amino acids such as tyrosine and 

tryptophan (Figure 13). Peak present at 1605 cm
-1

 was appeared in MCF-10A and 
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MCF-7 which correspond to ring vibration of phenylalanine or tyrosine or C=C 

stretching mode of proteins or NH2 vibrations of cytosine. A Raman band was observed 

inMDA-MB-436 at 1582 cm
-1

 and 1517 cm
-1

, which correspond to  (C=C) vibrations 

of phenylalanine and C-C stretching vibration of  carotene respectively. Raman peaks 

were observed at 1576 cm
-1

 (MCF-10A) and 1577 cm
-1

 (MCF-7) representing nucleic 

acid contents of cells or purine base such as guanine. CH2 and CH2, CH3 deformations 

were observed in MCF-7 at 1448 cm
-1

 and CH vibrations of proteins and lipids were 

observed in MCF-10A at 1449 cm
-1

. Raman band was observed in MDA-MB-436 at 

1442 cm
-1

 that represents either fatty acids or CH2 bending mode or CH3, CH2 

deformations of collagen.  Raman peaks were observed at 1337 cm
-1

 and 1338 cm
-1

 in 

MCF-7 and MCF-10A which corresponds to amide III or CH deformation of proteins or 

CH2 wagging vibrations of amino acids such as glycine and proline or ring breathing 

modes of purine bases such as adenine and guanine. Raman bands at 1334 cm
-1

 and 

1310 cm
-1

 were appeared in MDA-MB-436 that represents tryptophan and lipid specific 

vibrations respectively (Movasaghi et al., 2007a). 
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Figure 13: The structure of amide II. 

4.1.5 Amide III region (1244- 1208 cm-1)  

 Raman bands were appeared between 1243-1245 cm
-1

 in three cell lines representing 

amide III or phosphate backbone of nucleic acids (Figure 14). CH2 wagging and C-N 

stretching vibrations attributed amide III and asymmetric stretching vibrations of 

phosphodiester groups were attributed phosphate backbone. Pyrimidine bases such as 

cytosine and thymine were also contributed towards this peak.  Raman peak at 1208 cm
-

1
 in MCF-10A, MCF-7 and MDA-MB-436 were representing v(C-C6H5) vibrations of 

aromatic amino acids such as phenylalanine, tyrosine and tryptophan of proteins (Figure 

15) (Movasaghi et al., 2007a). 
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Figure 14: The structure of amide III 

 

Figure 15: Mean Raman spectra of MCF-10A (blue), MCF-7 (red) and MDA-MB-436 
(green) with major amide III peak shift. 
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4.1.6 Phenylalanine region (1000 - 1207 cm-1)  

A Raman peak was observed in 1170 , 1153, 1124, 1075, 1058 and  1039 cm
-1

  in 

MDA-MB-436 and representing C-H in-plane bending mode of tyrosine, carbohydrates, 

v(C-C) skeletal of acyl vibrations of lipids, phosphate vibrations (charwat-pessler et al., 

2013) respectively. Raman peak at 1003 cm
-1

 in MCF-10A and MCF-7 and 1000 cm
-1

 

in MDA-MB-436 corresponds C-C aromatic stretching of phenylalanine (Talari et al., 

2015k).  

4.1.7 Nucleic acid and Amino acid region (960 - 750 cm-1)  

Spectral region of 960- 750cm
-1

 has mainly represented vibration modes of either 

aromatic amino acids or nucleic acid components of each cell line. Raman peaks at 936 

cm
-1

 in MCF-7 have represented bio molecular assignment of v(C-C) of -helix 

conformation for proteins whereas MCF-10A and MDA-MB-436 have shown Raman 

peak at 958 cm
-1

, which represents v1 (PO3
-4

) of phosphate peak. Raman bands of 853, 

828, 782 and 758 cm
-1

 in were observed in both MCF-7 and MCF-10A. Raman peak at 

853 cm
-1

 have represented ring-breathing mode of tyrosine and C-C stretching of 

proline or glycogen. The peak that appeared at 828 cm
-1

, has represented either out-of-

plane ring breathing mode or tyrosine or O-P-O stretching vibrations of DNA and RNA. 

O-P-O stretching vibrations are raised from phosphodiester groups of phosphate 

backbone of nucleotides. The peak that appeared at 782 cm
-1

 has represented pyrimidine 

bases of DNA and RNA such as thymine, cytosine and uracil. Indole ring of tryptophan 

has contributed Raman peak at 758 cm
-1

 in both normal and estrogen receptor expressed 

cell lines. Raman peak of 932 cm
-1

 in MDA-MB-436 has represented skeletal vibrations 

of C-C or -helix of proteins. Phospholipids have contributed Raman band at 875 in 

MDA-MB-436, which is mainly raised from antisymmetric stretch vibration of choline 

group. C-O-C skeletal mode vibrations, monosaccharide such as -glucose and 

disaccharides such as maltose has expressed Raman band at 847 in MDA-MB-436 cell 

line.  
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4.1.8 C-C region (750 to 600 cm-1) 

MCF-7 and MCF-10A have shown Raman peaks at 643 and 621 attributed to C-C 

twisting mode of tyrosine and phenylalanine respectively. C-C stretching of proline 

peak was observed in MCF-7 at 726 and in MCF-10A at 725.  

4.1.9 Peak Height Analysis 

Peak height analysis was performed on three spectral regions of among breast cancer 

cell lines. Peak intensities have shown clear differences and quantification of peak 

heights were performed on lipids (2934 cm-1), amide I (1658 cm-1) and amide III (1244 

cm-1) regions. The absolute intensity of each region is increased from MCF-10A to 

MCF-7 and MDA-MB-436 as shown in Figure 16-18. 

 

Figure 16: Peak height analysis of lipid region at 2934 cm-1 for MDA-MB-436 (red), 

MCF-7 (blue) and MCF-10A (green) cell lines 
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Figure 17: Peak height analysis of Amide I region at 1658 cm
-1

 for MDA-MB-436 (red), 

MCF-7 (blue) and MCF-10A (green) cell lines. 

 

 

 

Figure 18: Peak height analysis of lipid region at 2934 cm-1 for MDA-MB-436 (red), 

MCF-7 (blue) and MCF-10A (green) cell lines. 
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4.2. Chemometrics analysis 

A combination of supervised and unsupervised algorithms was used to analyze different 

spectral regions of normal and breast cancer cell lines. Raman peaks were found to 

differ in intensities and peak shifts but chemometric approaches able to identify 

variations that lead to accurate and reliable separation of three cell lines.  

4.2.1 Principal component Analysis (PCA) 

PCA was performed over whole spectral range (3200-600 cm-1), fingerprint range 

(1800-500cm
-1

), lipids (3100-2680 cm
-1

), amide I (1800-1530) and amide III regions 

(1380-1190 cm-1). PCA was conducted among three cell lines to identify chemical 

variations, which can contribute towards cell line separation.  

4.2.1.1 Whole spectral range 

PCA with the whole spectral range have shown good overall separation between the 

three cell lines (Figure 19), In this PCA plot of whole spectral region, the first principal 

component (PC-1) has separated the two cancer cell lines. Whilst the second principal 

component (PC-2) has separated MCF-10A (normal) from MCF-7 and MDA-MB-436. 

In this PCA plot, the first principal component (PC-1) has separated MCF-7A from 

MDA-MB-436 with higher extent. 
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Figure 19: A two-dimensional principal component analysis (PCA) score plot of whole 

spectral range for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines 

based on first (84%) and second (9%) principal components (PC). 

4.2.1.2 Fingerprint region 

The PCA of the fingerprint region shows overall good separation among three cell lines. 

In this PCA plot, first PC (PC-1) separates MCF-7 from less extent with MDA-MB-436 

and MCF-10A whereas the second PC (PC-2) has pretty much separated triple negative 

subtype from the normal cell line and estrogen receptor subtype (Figure 20).  
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Figure 20: A two-dimensional principal component analysis (PCA) score plot of 

Fingerprint range for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell 

lines based on first (46%) and second (23%) principal components (PC). 

 

4.2.1.3 Lipid region  

PCA was performed over the lipid region between 3100 – 2680 cm
-1

. In the first PCA 

plot, the PC-1 (88%) separates MDA-MB 436 from MCF-7. PC-4 separates breast 

cancer subtypes from the normal breast cell line with lesser extent. In the second PCA 

plot, PC-1 has clearly separated triple negative subtype from estrogen receptor subtype 

whereas PC-2 has separated MCF-7 from MDA-MB-436 and MCF-10A cell lines. The 

3D plot has shown 3 clear clusters of cell lines using PC-1, PC-2 and PC-4 (Figures 21-

23). 



78 
 

 

Figure 21: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on 

first (88%) and fourth (1%) principal components (PC). 
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Figure 22: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on 

first (88%) and second (7%) principal components (PC). 

 

Figure 23: A three-dimensional principal component analysis (PCA) plot of lipid region 

for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on first 

(88%), second (2%) and fourth (1%) principal components (PC). 
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4.2.1.4 Amide I 

PCA was used to analyse amide I region between 1800-1530 cm
-1

. The PCA plot of 

amide I indicated that principal component PC-2 has clearly separated MCF-7 cell line 

from IMDA-MB 436 cell line. PC-1 has pretty much separated MCF-7 from MDA-MB-

436 and MCF-10A. In the first PCA plot PC-1 separated normal cell line from estrogen 

receptor expressed cell line. Whereas PC-3 pretty much separated MCF-7 from MDA-

MB-436. The 3D plot of amide I has shown clear cluster formation of three cell lines 

(Figures 24-26). 

 

Figure 24: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based 

on first (51%) and third (10%) principal components (PC). 
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Figure 25: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based 

on first (51%) and second (25%) principal components (PC). 

 

Figure 26: A three-dimensional principal component analysis (PCA) plot of Amide I 

region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on 

first (51%), second (25%) and third (10%) principal components (PC). 
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4.2.1.5 Amide III 

PCA was performed on amide III region (1380-1190 cm
-1

) to identify chemical 

differences between three cell lines. The amide III region provides information on 

lipids, proteins and nucleic acid contents. PCA loading plot of amide III has indicated 

that PC-1 has pretty much separated MCF-7 cell line from MCF-10-A and MDA-

MB436 whereas PC-2 has differentiated MCF-10-A and MCF-7 from MDA-MB436. 

The second PC-A loading plot of amide III has indicated that PC-3 has well separated 

MCF-7A and MDA-MB436 from MCF-10A (Figures 27-29). 

 

Figure 27: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based 

on first (75%) and second (14%) principal components (PC). 
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Figure 28: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based 

on first (75%) and fourth (4%) principal components (PC). 

 

Figure 29: A three-dimensional principal component analysis (PCA) plot of Amide III 

region for MDA-MB-436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on 

first (75%), second(14%) and fourth (2%) principal components (PC). 
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4.2.2 Linear Discriminant Analysis (LDA) 

Linear discriminant Analysis (LDA) models were set up over full spectral range (3300-

200 cm
-1

). Baseline corrections and univector normalization were performed on spectra 

before setting up LDA models. Five spectra from each group were left out at each for 

prediction until a total no of twenty spectra from each group were predicted. LDA 

model of three cell lines was predicted with 100% sensitivity and 91% specificity 

(Figure 30).  

 

Figure 30: A three-dimensional linear discriminant analysis (LDA) plot for MDA-MB-

436 (red), MCF-10A (green) and MCF-7 (blue) cell lines based on predicted sensitivity 

and specificity. 
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4.3 Breast cancer cell lines – Discussion 
Breast cancer is a most multifarious and heterogeneous disease with different clinical 

features and different specific treatments. Classical pathology has described structural 

heterogeneity based on overall morphology and structural organization. But   a 

combination of immunohistochemistry and gene expression profiling studies have 

understood the disease at molecular level, refining classification based on presence of 

specific markers such as estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) (Bertos and Park, 2011). This classification 

method has expressed tumour heterogeneity in to luminal A, luminal B, HER-2 positive 

and triple negative subgroups.  Based on prognostic viewpoint, luminal A and luminal B 

tumours have given better outcome due to hormone therapy whereas HER-2 positives 

have developed overall outcome after discovering potential therapeutic candidate such 

as trastzumab. On the other hand, triple negative tumours have associated with worst 

prognosis due to lack of any specific marker. Cell lines are extensively used in cancer 

research as in vitro models due to ease to handling, unlimited self-replication and high 

degree of homogeneity (Holliday and Speirs, 2011). In our study, for the first time, a 

combination of Raman spectroscopy and multivariate approach was applied to 

investigate and classify three breast cell lines at cellular level (Talari et al., 2015a).  

Spectra obtained for both the normal (MCF-10A) and breast cancer subtypes (MCF-7 

and MDA-MB-436) presented major lipid information in the high wavenumber region 

(3050 - 2800 cm
-1

) (Figures 9-10) and protein information within the fingerprint region 

(1800 – 500 cm
-1

). To demonstrate reproducibility, twenty spectra were collected from 

each cell line. 

The spectra obtained from each subtype showed small visual differences. The 

concentrations of nucleic acid bases were different in these cell lines and MCF-7 spectra 

had relative higher amount of DNA bases. Proteins especially in the amide II and III 
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regions, and lipid ratios were found to be different among these cell lines. The 

differences in amide peaks might be a result of different amounts of proteins in various 

structural conformations.  These conformations are mainly of the α-helix, unordered and 

ß sheet structures of the proteins. 

Mean Raman spectra of normal (MCF-10A), and two breast cancer cell lines (MDA-

MB-436 and MCF-7) showed spectral information about proteins, lipids and nucleic 

acids. Peaks present at higher wave number regions (2980 to 2800 cm
-1

) are mainly due 

to stretching vibrations of lipids and proteins. These peaks are an accumulation of 

vibrations, such as, -CH3, -CH2 and -CH=CH-. These are considered major spectral 

markers in the analysis of the disease states. All these cell lines express major lipid 

peaks at (2940 cm
-1

, 2921 cm
-1

 and 2948cm
-1

) with minor changes in intensity. These 

intensity differences were due to small fluctuations in the concentrations of lipids. 

Raman spectra of this wavenumber region provide very interesting features regarding 

the lipid changes in biological systems. These vibrations are extremely useful in 

assessing lipid peroxidation. At tissue level, it provides crucial information about lipid 

saturation and may be considered as Raman marker for lipid metabolism. The ratio of 

different lipid vibrations (-CH=CH- /CH2) in Raman spectrum will depict disease status 

of the tissue with respect to lipid metabolism. As the cancer progresses, the intensity 

will increase due to increased number of unsaturated fatty acids in the cell. This 

indicates lower degradation of lipids due to decrease in lipid peroxidation. This is the 

one of the common pointers of rapid proliferating cells. Lipid metabolism in a cell 

might be affected by the low rate of lipid synthesis, which results in the decrease 

number of saturated fatty acids. In addition, extreme lipid peroxidation causes higher 

level of lipid degradation. This is a very good marker for the slow growth behaviour of 

a cell. Recent investigations have revealed that high amounts of polyunsaturated fatty 

acids have great influence on transport and signalling pathways, including growth 
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promoting effects of cell adhesion, cell shape and metastatic behaviour of cancer cells 

(Ozek et al., 2010c). High wave number vibrations (3900 – 2850cm
-1

), especially CH2 

stretching vibrations are regarded as best Raman markers to identify the disorder state 

of lipids in diseased tissue.  

Fingerprint region of Raman spectra (1800 to 500 cm
-1

) highlight different biological 

components such as proteins, lipids, nucleic acids and fatty acids. The major Raman 

peaks for Amide I, II and III, C-S stretching, C-H bending, O-P-O vibrations, 

Phenylalanine, Tyrosine, C-C stretching, CH2 twisting, CH2 deformations and C=C 

stretching of lipids were observed in these cell lines (Rehman, 2012). The other Raman 

peaks observed in these cell lines were nucleic acid bases such as adenine, thymine, 

uracil, guanine and cytosine (ring breathing mode), tryptophan (C-C twisting) and   

phenylalanine (C-C aromatic ring stretching), proline (C-C stretching), glycogen, CH2, 

CH3 deformations of lipids (Talari et al., 2015k). Proteins function as powerful Raman 

molecular markers in studies of cancer biology. Raman spectra provide biochemical 

aspects of the protein metabolism such as transcription (RNA synthesis) and translation 

(protein synthesis) with respect to metastasis. Amide I, II and III bands were observed 

in all three breast cancer cell lines. These different amide vibrations result from the 

amide bonds of polypeptide backbones. Amide I band is the result of stretching 

vibrations of C=O vibrations of the amide group and it represent α-helical structures of 

proteins. Bending vibrations of N-H of amide group as well as C-N stretching and C-N-

H in-plane bending modes of amide groups are revealed in the amide II and III bands 

respectively. Amide III represents ß sheets and random coils of proteins. Higher levels 

of RNA and protein content are a fundamental feature of cancer cell. 

Peak intensities have shown clear differences among three cell lines. Quantification of 

peak heights were performed on lipids (2934 cm
-1

), amide I (1658 cm
-1

) and amide III 

(1244 cm
-1

) regions. Peak heights analysis has shown clear differences between cell 
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lines. The absolute intensity of each of the region is increased from MCF-10A to MCF-

7 to MDA-MB-436. PCA with the whole spectral range and the fingerprint range shows 

good overall separation between the three cell lines , suggesting that lipids, proteins and 

nucleic acids might be contributing to the separation. In the PCA of whole spectral 

region, the first principal component (PC-1) has separated the two cancer cell lines 

whereas the second principal component (PC-2) has separated MCF-10A (normal) from 

MCF-7. The PCA of the fingerprint region shows the first PC-1 separates triple negative 

subtype from the normal cell line and PC-2 separates MCF-7 from MDA-MB-436. A 

notable feature is that two separate clusters representing a ‘normal’ class and a 

‘cancerous/diseased’ class do not form. This suggests very large biochemical variation 

even between the two breast cancer cell lines. 

To characterise the biochemical variation in detail, PCA has been further applied to 

narrower spectral regions such as lipids, amide I and amide III. Some spectral regions 

are more sensitive to a low number of these components. And as the PCA of whole and 

fingerprint region have provided sufficient evidence on separation, looking at small 

spectral regions may provide a better understanding of the chemical differences existing 

between these breast cell lines. For example, the Amide I band shoulder can give 

information on the relative concentration of nucleic acids and DNA bases, the high 

wavenumber region can often be used in conjunction with the 1200-1000- cm
-1

 region 

to resolve information on the lipid phase and content. This band approach can 

sometimes provide a clearer picture of the biochemical differences that are of interest to 

us. Loadings plots for these regions are used in conjunction with the PCA scores to 

provide information on the spectral features, which are powering the separation between 

the three cell lines. 

4.3.1 Lipids 

PCA was performed over the lipid region between 3100 – 2680cm
-1

 (Figures 21-23). 
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This region often gives information on the relative amount of proteins and lipids. The 

PC-1 (88%) separates MDA-MB 436 from MCF-7. PC-4 separates breast cancer 

subtypes from the normal breast cell line. The loadings plots suggest that the v(CH2) 

symmetric and asymmetric vibrations of lipids at (2882 cm
-1

), C-H, CH2 symmetric 

vibrations in lipids and proteins (2940 cm
-1

, 2921 cm
-1

 and 2948cm
-1

) appear to be 

powering the separation of the MCF-7 line from the other two lines (Koljenovic et al., 

2005a, Sigurdsson et al., 2004, Shetty et al., 2006, Movasaghi et al., 2007d). The cell 

lines higher in the CH stretching vibrations of proteins (2946cm
-1

), vsCH3 of lipids and 

proteins (2884cm
-1

) are positive for the separation PC-1 describes and it discriminating 

MDA-MB-436. Whereas, the CH3 stretching vibrations (2910cm
-1

) and CH2 symmetric 

stretch of lipids (2886cm
-1

) are contributing to the separation of the MCF-7 and MCF 

10A lines.  In each case, the MDA-MB-436 and the MCF 10A cell lines have higher 

protein contents relative to the MCF-7 line. Whilst both the MDA-MB-436 and MCF 

10A are easily resolved from the MCF-7 cluster due to the much lower lipid content, 

their protein-to-lipid ratio differs significantly. The difference is large enough to further 

separate MDA-MB-436 from MCF 10A.  

4.3.2 Amide I 

 

PCA was used to analyse amide l region between 1800-1530cm
-1 

(Figure 12). The 

Amide I band gives information on the secondary structure of proteins, nucleic 

acids/DNA bases and some amino acids. PC-1 has separated the MCF-7 line from rest 

of the cell lines. 

PC-1 loading plot indicates the C=O stretching of amide I of proteins (1687 cm
-1

), anti-

parallel ß sheets of amide I (1670 cm
-1

), tryptophan or ß sheet of protein  (1621 cm
-1

), 

C=C of phenylalanine ring vibration, tyrosine (1607 cm
-1

), tryptophan (1548 cm
-1

 ) are 

higher in MCF-10A and MDA-MB-436 cell lines whereas nucleic acids (1576cm
-1

 ) are 



90 
 

higher in MCF-7 cell line. MCF-7 separation from the other cell line is therefore likely 

based on the higher concentrations of DNA bases and lower protein content seen in this 

line. The MDA-MB-436 and MCF-10A cell lines contain higher concentrations of 

protein compared to the MCF-7 line. However, the amount seems to vary between the 

two. PC-3 and PC-4 loading plots are also separating MCF-7 in a similar manner. 

Raman peaks of these loading coefficients are 1577cm
-1

 and 1576 cm
-1 

which are 

assigned to nucleic acids and are higher in the MCF-7 cell line. This variation relative to 

the DNA base bands is separating MDA-MB-436 from theMCF-10A (Mahadevan-

Jansen and Richards-Kortum, 1996, Shetty et al., 2006, Dukor, 2002, Cheng et al., 

2005, Lakshmi et al., 2002, Notingher et al., 2004, Stone et al., 2004, Fung et al., 1996). 

4.3.3 Amide III 

 

PCA was performed on amide III region (1380-1190 cm
-1

) to identify chemical 

differences between the cell lines (Figure 15). The Amide III band gives information on 

lipids, proteins, nucleic and amino acid contents. PC-2 has separated MCF-7 from rest 

of the cell lines. MCF-7 separation is largely due to a higher nucleic acid and lipid 

concentration in this cell line relative to the rest. This is also observed in PC-2, which is 

describing positive discrimination with the amide III and nucleic acid bases such as 

adenine and guanine (1337 cm
-1

), CH2 deformation of lipids, adenine and cytosine 

(1258, 1299 and 1304 cm
-1

), methylene twisting vibrations (1294 cm
-1

). The difference 

between the MCF-10A and MDA-MB-436 lines are found in PC-4 where the MDA-

MB-436 are clustered away from the normal line due to a higher protein and lipid 

content (Dukor, 2002, Stone et al., 2004, Chan et al., 2006). 

Linear discriminant analysis (LDA) models were setup over full spectral range 3300-

200 cm
-1

. Baseline corrections and Unit Vector Normalisation were performed on 

spectra before setting up LDA models. Five spectra from each group were left out at 
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each for prediction until a total number of twenty spectra from each group were 

predicted. LDA model of three cell lines was predicted with 100% sensitivity and 91% 

specificity. 

Raman spectral data combined with PCAs proves to be an excellent method that allows 

separation of different types of cell lines based on their lipid, and nucleic acid/DNA, 

and protein contents, as the MCF-7 cell line appears to be much higher in lipids 

compared to MDA-MB 436 and MCF 10A and works well to single out this cell line in 

view of the high wavenumber of amide III bands. It also contains higher nucleic 

acid/DNA base concentrations relative to the other two cell lines. This might indicate 

higher metabolic activity or might simply be due to a higher cell density in the data 

collection volume. Although MCF-7 and MDA-MB-436 are both breast cancer 

subtypes, the MDA-MB-436 does not appear to contain lipids at a concentration vastly 

different to those found in the normal MCF-10A cell line. Instead, the difference lies 

more in the relative protein and amino acid concentrations. Proteins of many different 

conformations overlap to form the Amide bands. It is possible that the compositions of 

α-helix, unordered and β-sheet conformations of proteins in the MDA-MB-436 and 

MCF-10A lines are different. These differences observed in the cell lines may also be 

useful in identifying chemical changes between the different subtypes of breast cancer 

although this needs confirmation in a larger panel of cell lines as well as clinical 

material. 
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Chapter 5  

5.1 T47-D Spheroids – Results 
T-47 D spheroid cultures were grown few millimetres until 14 days. Initially they are composed 

of homogeneous population of normal proliferating cells. As the time progressed, the size of 

spheroid has increased. After 14 days culture, necrotic region was developed in central region of 

the spheroid and this region was clearly observed in microscope. This region was surrounded by 

layer of non-proliferating quiescent cells. The external rim of T-47D spheroid remained normal 

proliferating cells. Based on microscopic observation, three regions were calculated as outer 

region (normal proliferating region), middle region (hypoxic region) and inner region (necrotic 

region) and these regions were well established in previous studies. (Sutherland, 1988, 

Chapman et al., 1981, Carlsson et al., 1979). Raman Spectroscopy has been used as 

potential tool to evaluate biochemical differences among three regions. T-47D spheroids 

biochemical snapshots have shown spatial diversity of macromolecules such as proteins, 

lipids, carbohydrates and nucleic acids. Raman peaks of three regions have differed in 

peak intensities and peak shifts.  Furthermore, three regions of T 47-D spheroid cultures 

models were classified using multivariate approach such as PCA, cluster analysis and 

LDA. Chemometric methods have assisted in accurate and reliable classification with 

improved sensitivity and specificity. Raman spectroscopy has been revealed to be 

accurate in differentiation of normal and cancerous tissues and different breast cancer 

cell lines, such as, MCF-7, MCF-10 A and MDA-MB-436 (Talari et al., 2015a). Results 

presented in this section are to classify three region of T-47D using a combination of 

Raman spectroscopy and multivariate approach.  

A total of 90 spectra were collected from three regions of T-47D spheroids. Mean 

spectra of each region was extracted and carefully analysed for peak identification, and 

corresponding chemical interpretation (figure 31). Mean spectra of whole region 
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(400cm
-1

 - 3600 cm
-1

) and major peak assignments such as Lipid, amide I, II, III and 

phenylalanine regions were shown in table (appendix). 

 

Figure 31: Mean spectra of normal proliferating, hypoxic and necrotic regions of T-47D 

spheroids 

. 

5.2 Raman peak analysis  

A total of forty spectra were collected from normal proliferating region, hypoxic region 

and necrotic regions.  The mean spectra of these three regions were taken and major 

biological component regions are mentioned in table. Raman spectra of three regions 

were analysed qualitatively and quantitatively. The peak assignments for lipid, amide I, 

II and III region are summarised in table (appendix). 

5.2.1 C-H region (3200 - 2700 cm-1) 

A strong Raman peak arising at 2933 cm
-1

 is characteristic assignment of CH2 

asymmetric stretch of lipids. This band is expressed in normal proliferating region and 

hypoxic region, whereas, in the necrotic region this peak appears at 2944 cm
-1

. A weak 
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Raman band is expressed in all three spheroid regions of spheroids at 3061 cm
-1

, 

representing CH stretch of lipids. A strong shoulder peak was observed in all three 

regions has been attributed to CH2 symmetric stretch of lipids and CH2 asymmetric 

stretch of lipids and proteins. A further small shoulder peak was observed in normal 

proliferating region at 2849 cm
-1

, which can be assigned to CH3 symmetric stretch of 

lipids (Figure 32). A weak Raman band observed at 2724 cm
-1

 in normal and necrotic 

regions is assigned to either CH stretching or stretching vibrations of CH, NH and OH 

groups. This was reported in hypoxic regions at 2725 cm
-1

 (Movasaghi et al., 2007d).  

 

Figure 32: Mean Raman spectra of normal proliferating (blue), hypoxic (dark red) and 

necrotic (red) regions with major lipid shoulder peak shift. 

5.2.2 Amide I region (1672-1350 cm-1) 

A strong Raman band of amide I was observed at 1666 cm
-1

 (normal), 1667 cm
-1

 

(hypoxic) and 1668 cm
-1

 (necrotic) region. This may be due to either; C=C stretching of 

proteins (β sheets structure of proteins or carbonyl stretches associated with tumours or 

collagen) (Figure 33). A small Raman peak was observed at 1605 cm
-1

 in hypoxic and 

necrotic regions, which is a contribution from cytosine (NH2), ring (C-C) stretch of 
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phenylalanine, tyrosine, C=C vibrations of proteins, whereas, this band was expressed 

in normal region at 1604 cm
-1

. Weak spectral contributions were noticed at 1580 and 

1584 cm
-1

, which are attributed to C-C stretching and C=C of olefinic acids, 

respectively. Pyrimidine ring of nucleic acid bases was observed at 1579 cm
-1

 in 

hypoxic region. Weak spectral contribution was observed in necrotic region at 1553 cm
-

1
, which is contribution from CH2 stretching/CH3 asymmetric deformation of proteins 

(Talari et al., 2015k).  

 

Figure 33: Mean Raman spectra of normal proliferating (blue), hypoxic (dark red) and 

necrotic (red) regions with major amide I peak shift. 

A strong Raman peak was observed at 1441 cm
-1

 in normal region, attributed to CH2 

scissoring and CH3 bending in lipids, cholesterol and its esters and C-H bending mode 

of lipids. Hypoxic region expressed a strong Raman peak at 1446 cm
-1

, characteristic of 

CH2 bending mode of proteins and lipids and CH2 deformation of proteins. A sharp and 

intense peak observed at 1448 cm
-1

 in hypoxic region due to CH2CH3 deformation and 

CH2 deformations of collagen. A small shoulder peak was observed in three regions at 

1417 cm
-1

 which represents C=C stretching in quinoid (Movasaghi et al., 2007d) . 
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5.2.3 Amide II region (1240-1350 cm-1)  

Normal region has shown Raman peaks at 1337 cm
-1

 due to amide III, CH2 wagging 

vibrations from glycine back bone and proline side chains, ring breathing mode of 

adenine and guanine, C-H deformation of proteins and tryptophan. A similar peak was 

observed at 1339 and 1338 cm
-1

 in hypoxic and necrotic regions respectively.  This 

might be result of C-C stretch of phenyl (1) and C3-C3 stretch and C5-O5 stretch CHα in-

plane bend. The peak arising at 1316 cm
-1

 found in normal and necrotic regions is 

attributed to ring breathing mode of nucleic acid bases. Bands present at 1294 cm
-1

 

(normal and necrotic) and 1295 cm
-1

 (hypoxic) are characteristic of methylene twisting. 

Asymmetric (PO2) stretching modes of nucleic acids are found at 1241 cm
-1

 in necrotic 

region, whereas, this phosphate stretching is found at 1243 cm
-1

 in hypoxic region. A 

characteristic amide III band was found in normal region at 1245 cm
-1

.  Band present at 

1243 cm
-1

 also indicates CH2 wagging, C-N stretching of collagen, cytosine and 

thymine (Talari et al., 2015k).  

5.2.4 Amide III region (1000-1240 cm-1) 

A characteristic amide III band was present on all three regions (normal proliferating, 

hypoxic and necrotic) at 1208 cm
-1

, which indicates v(C-C6H5), tryptophan, 

phenylalanine of protein assignment and ring breathing mode of adenine and thymine. 

A small Raman peak was observed at 1172 cm
-1

, which represents δ(C-H), tyrosine 

whereas this peak was observed at 1171 cm
-1

 in both normal and necrotic regions. Peaks 

present at 1129 and 1130 cm
-1

 are typical assignments of acyl chain vibrations of 

phospholipids. Molecular vibrations at v(C-C) skeletal of acyl back bone in lipids, C-C 

skeletal stretch. Bands present at 1061 and 1062 cm
-1

 are typical assignment of C-C in 

plane bending and C-C skeletal stretching respectively. Hypoxic region expressed a 

Raman peak at 1096 cm
-1

, attributed to Phosphodioxy (PO2) groups. Normal and 

necrotic regions expressed C-C vibrational modes of the gauche-bonded chain, amide 

III and v(C-C) lipids and fatty acids. All three regions of T-47D spheroids show a 
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Raman peak at 1031 cm
-1

, attributed to δ(C-H), p. A sharp and intense peak observed at 

1002 cm
-1

 in normal and necrotic regions and 1003 cm
-1

 in hypoxic region is an 

assignment to ring breathing of aromatic amino acid such as phenylalanine (Figure 34) 

(Movasaghi et al., 2007d). 

 

Figure 34: Mean Raman spectra of normal proliferating (blue), hypoxic (dark red) and 

necrotic (red) regions with phenylalanine peak shift. 

5.2.5 Nucleic acid and aminoacid region (600-1000 cm-1)  

Spectral peaks at 621 and 643 cm
-1

 are typical assignments of C-C twisting mode of 

phenyl and tyrosine respectively. Hypoxic region shows a Raman band at 727 cm
-1

, 

which is associated with C-C stretching and proline (collagen assignment). All three 

regions of (normal proliferating, hypoxic and necrotic) spheroids expresses indole group 

containing aminoacid at 758 cm
-1

. Normal and hypoxic regions express nucleic acid 

bases, such as, thymine, cytosine and uracil at 782 cm
-1

 whereas necrotic region does 

not express this peak. A Raman band at 828 cm
-1

 in normal region is typical assignment 

of out-of-plane ring breathing, tyrosine, O-P-O stretch of phosphodiester.  This peak is 

expressed in hypoxic and necrotic regions at 829 cm
-1

. All three regions of spheroids 
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expresses ring-breathing mode of tyrosine, C-C stretch of proline ring and glycogen at 

853cm
-1

.  Protein peaks of structural proteins modes were expressed in necrotic regions 

at 890cm
-1

, whereas, saccharide spectral peak was reported in normal region at 891 cm
-

1
. Cholesterol peak at 958 cm

-1
 was observed in all three regions of spheroids (figure 

35) (Talari et al., 2015k).  

 

Figure 35: : Mean Raman spectra of normal proliferating (blue), hypoxic (dark red) and 

necrotic (red) regions with nucleic acid region peak changes. 

5.3 Multivariate analysis 

The statistical analysis of this section was done in three stages. Firstly, an unsupervised 

approach, PCA was applied on data matrix of three regions to a lower-dimensional 

space bridged by the loading vectors. Loading vectors were used to analyze three 

regions in terms of lipids, proteins and nucleic acids. Secondly, a partial supervised 

approach, Cluster Analysis was used to study the partition between the three regions in 

high-wave number region, amide I region and nucleic acid region. Thirdly, a supervised 

approach, Linear Discriminant Analysis was performed to assess the sensitivity and 

specificity of spectral features to predict three regions.  
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PCA was performed on high-wavenumber region (3200-2600 cm
-1

), fingerprint region 

(1800-600 cm
-1

), amide I region (1800-1510 cm
-1

), amide II region (1510-1390 cm
-1

), 

amide III region (1390-1140 cm
-1

) and nucleic acid region (980-600 cm
-1

). 

5.3.1 High-wavenumber region 

PCA was performed on the lipid region between 3200-2600 cm
-1

. In the first PCA plot 

of lipid region, PC-2 separated normal proliferating region from necrotic region along 

positive and negative variables of PC-2 axis, whereas, PC-3 has distributed all three 

regions along axis line with positive and negative variables without any separation. In 

the second loading plot, PC-2 has pretty much separated normal proliferating region and 

necrotic region from hypoxic region, whereas, PC-4 has well separated normal 

proliferating and necrotic regions from hypoxic region.  A three dimensional PCA plot 

of lipoid region has shown pretty much cluster separation among three regions using 

PC-2, PC-3 and PC-4 (Figures 36-38).  

Loading plot of high-wavenumber region describes the following biochemical snapshot 

of three regions: Biochemical variation among three regions was increased from PC2 to 

PC4. Firstly, PC-2 loading plot (blue) has shown majority of Raman spectra of normal 

proliferating, hypoxic and necrotic regions in high-wavenumber region has shown high 

lipid contents compared to protein content. PC-4 loading plot (green) has shown that 

necrotic region and normal proliferating regions have high protein contents and low in 

lipid contents compared to hypoxic region. PC-3 loading plot (red) hasn’t provided 

significance changes in biochemical differences among three regions. Based on PC-2 

and PC-4 loading plot analysis, it is evident that lipid variations between normal and 

necrotic regions are similar compared to hypoxic region of T-47D spheroids (Figure 

39).  
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Figure 36: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions based 

on second and third principal components (PC). 

 

Figure 37: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions based 

on second and fourth principal components (PC). 
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Figure 38: A three-dimensional principal component analysis (PCA) plot of lipid region 

for normal proliferating (blue), hypoxic (red) and necrotic (green) regions based on 

second, third and fourth principal components (PC). 

 

Figure 39: Loading plots of lipid region representing principal components PC-2 (blue), 

PC-3 (red) and PC-4 (green). 
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5.3.2 Finger print region 

PCA was performed on Fingerprint region between 1800-1600 cm
-1

. In the first PCA 

plot of the finger Print region, PC-3 has differentiated normal proliferating region, 

hypoxic region and necrotic regions partially.  PC-5 has pretty much separated normal 

proliferating region from necrotic region. In the second PCA plot, PC-5 has pretty much 

separated normal proliferating region from necrotic region, whereas, PC-4 has partially 

separated normal and necrotic regions from hypoxic region. A three dimensional PCA 

plot of fingerprint region has shown clear cluster separation among three regions using 

PC-3, PC-4 and PC-5. PCA loading plot analysis of fingerprint has shown biochemical 

differences among three regions in terms of lipids, proteins, nucleic acids and 

carbohydrates. PCA loading plot of fingerprint region has described biochemical 

snapshot of three regions (Figures 40-42).  

 Firstly, PC-3 loading plot (blue) has suggested that necrotic region has shown high 

lipid content (1606 cm
-1

 – C=C bending of lipids, 1438 cm
-1

 – lipids, 1294 cm
-1

 – 

methylene twisting of lipids ) compared to normal proliferating region. It also described 

that some of hypoxic spectra have shown high lipid content compared to normal 

proliferation region. PC4 loading plot (red) has shown similar results of PC-3 loading 

plot in terms of lipid content of necrotic region. PC-3 also indicated that necrotic region 

has shown less protein content (1668 cm
-1

 – C=O of amide I, 1237 cm
-1

 – amide III and 

1004 cm
-1

 - phenylalanine) as well as nucleic acid content (1374 cm
-1

 – adenine, 

thymine and guanine bases of DNA, 1340 cm
-1

 – nucleic acid modes, 782 cm
-1

 - DNA) 

compared to normal proliferating region. PC-4 loading plot has shown mixed results in 

hypoxic region in terms of protein and nucleic acid contents compared to normal and 

necrotic regions. PC-5 loading plot (green) has shown that normal proliferating region 

has high in protein content (1669 cm-1 – amide I, 1237 & 1204 cm-1 – amide III, 1131 

& 1004 cm-1 – phenylalanine and 756 cm-1 – tryptophan) and nucleic acid content (832 
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cm-1 - O-P-O stretches of nucleotides) and low in lipid content (Movasaghi et al., 

2007a) (Figure 43).  

 

Figure 40: A two-dimensional principal component analysis (PCA) score plot of 

Fingerprint region for normal proliferating (green), hypoxic (red) and necrotic (blue) 

regions based on third and fifth principal components (PC). 
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Figure 41: A two-dimensional principal component analysis (PCA) score plot of 

Fingerprint region for normal proliferating (green), hypoxic (red) and necrotic (blue) 

regions based on fourth and fifth principal components (PC). 

 

Figure 42: A three-dimensional principal component analysis (PCA) plot of fingerprint 

region for normal proliferating (normal), hypoxic (red) and necrotic (blue) regions 

based on third, fourth and fifth principal components (PC). 
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Figure 43: Loading plots of fingerprint region representing principal components PC3 

(blue), PC4 (red) and PC5 (green). 

 

5.3.3 Amide I  

PCA was performed on Amide region between 1800-1510 cm
-1

. In the first PCA plot 

PC-4 has clearly separated normal proliferation region and hypoxic region from necrotic 

region whereas PC-5 separated hypoxic and necrotic regions from normal proliferating 

region. In the second PCA plot, PC-5 hasn’t contributed much towards separation of 

normal, hypoxic and necrotic regions, whereas, PC-3 has partially separated normal 

proliferating region necrotic region. Hypoxic cluster might indicate that amide I region 

has differed from normal and necrotic region. A three dimensional PCA plot of amide I 

region has shown cluster separation among three regions using the principal 

components such as PC-3, PC-4 and PC-5 (Figure 47).  

PCA loading plot analysis of amide I region has described following biochemical 

differences among three regions. Firstly, PC-3 loading plot (blue) has shown low in 

amide I content (anti-parallel β sheets of amide I at 1670 cm
-1

) in necrotic and hypoxic 
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region compared to normal proliferating region. It also indicated high tryptophan 

content (1560 cm
-1

) in normal proliferating region. PC-4 loading plot (red) has shown 

that hypoxic region has high protein contents (α- helix of amide I at 1645 cm
-1

) and 

tryptophan contents (1560 cm
-1

) compared to normal proliferating region. It also 

described that normal proliferating region has low tryptophan contents (1550 cm
-1

) 

compared to hypoxic and necrotic region. PC-5 loading plot (green) has shown that 

normal proliferating region has high protein contents (amide I at 1670 cm
-1

) and 

tryptophan contents (1550 cm
-1

) compared to hypoxic and necrotic regions (Talari et al., 

2015k) (Figure 44-46). 

 

Figure 44: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for normal proliferating (blue), hypoxic (red) and necrotic (green) regions 

based on fourth and fifth principal components (PC). 
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Figure 45: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for normal proliferating (blue), hypoxic (red) and necrotic (green) regions 

based on third and fifth principal components (PC). 

 

Figure 46: A three-dimensional principal component analysis (PCA) plot of amide I 

region for normal proliferating (blue), hypoxic (red) and necrotic (green) regions based 

on third, fourth and fifth principal components (PC). 
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Figure 47: Loading plots of amide I region representing principal components PC3 

(blue), PC4 (red) and PC5 (green). 

 

5.3.4 Amide II  

PCA was applied on Amide II region between 1510-1390 cm
-1

. In the first PCA plot, 

PC-3 has partially separated necrotic region from normal proliferating region and 

hypoxic region from necrotic region, whereas, PC4 has pretty much separated normal 

proliferating region from hypoxic region. In the second PCA plot, PC-4 has pretty much 

separated normal proliferating region from hypoxic region. Necrotic region shares 

similar amide II content with normal and hypoxic regions. PC-2 hasn’t contributed to 

any separation among three regions.  A three dimensional PCA plot of amide II region 

has shown partial cluster separation among three regions using the principal 

components PC-2, PC-3 and PC-4 (Figures 48-51).  

PCA loading plot analysis of amide II region has described the following biochemical 

differences among three regions. Firstly, PC-2 loading plot (blue) has shown low in 

lipid content (lipids at 1438 cm
-1

) in hypoxic region compared to normal proliferating 
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region and necrotic regions and does not contribute much towards separation.PC-3 

loading plot (red) has shown high in protein content (1484 cm
-1

 – amide II) and 

deformation of lipids (1440 cm
-1

 – CH, CH2 and CH3 deformation of lipids, cholesterol 

esters and fatty acids) and stretching of lipids (1416 cm
-1

 – C=C stretching of lipids and 

1410 cm
-1

 – C-H deformation of lipids) all contribute to separation. PC-4 loading plot 

(green) has shown that normal proliferating region has high lipid content (lipids at 1438 

cm
-1

) while  low in CH vibrations of proteins and lipids (1448 cm
-1

) N-H plane 

deformations of proteins (1423 cm
-1

) compared to hypoxic and necrotic regions 

(Movasaghi et al., 2007d).  

 

Figure 48: A two-dimensional principal component analysis (PCA) score plot of amide 

II region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions 

based on third and fourth principal components (PC). 
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Figure 49: A two-dimensional principal component analysis (PCA) score plot of amide 

II region for normal proliferating (blue), hypoxic (red) and necrotic (green) regions 

based on third and fifth principal components (PC). 

 

Figure 50: A three-dimensional principal component analysis (PCA) plot of amide II 

region for normal proliferating (blue), hypoxic (red) and necrotic (green) regions based 

on third, fourth and fifth principal components (PC).  
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Figure 51: Loading plots of amide II region representing principal components PC2 

(blue), PC3 (red) and PC4 (green). 

5.3.5 Amide III  

PCA was performed on Amide III region between 1390-1140 cm
-1

. In the first PCA 

plot, PC-3 positively separated hypoxic region from normal region, whereas, PC-5 has 

contributed to the separation of normal proliferating region from hypoxic region. In the 

second PCA plot, PC-4 has separated normal proliferating region from necrotic region. 

PC-5 has separated hypoxic region positively and normal proliferating region negatively 

along the axis. A three dimensional PCA plot of amide III region has shown partial 

cluster separation in normal proliferating region and good separation between necrotic 

and hypoxic regions using the principal components PC-3, PC-4 and PC-5 (Figures 52-

54).  

PCA loading plot analysis of amide III region has described following biochemical 

differences among three regions. Firstly, PC3 loading plot (blue) has shown high 

methylene twisting in (1294 cm
-1

) in necrotic region compared to hypoxic region. It also 

described that  PC-3 has shown less nucleic acid content in necrotic region (1374 cm
-1

) 

compared to normal proliferating region and necrotic region. PC-4 loading plot (red) 
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has shown that normal proliferating region has shown lower protein content (1236 and 

1204 cm
-1

 – amide III) compared to hypoxic and necrotic regions. PC-5 loading plot 

(green) has shown that necrotic and hypoxic region have been separated using CH3 

stretching (1371 cm
-1

), methylene twisting (1294 cm
-1

), tryptophan & phenylalanine 

(1209 cm
-1

) and cytosine and guanine  (1177 cm
-1

) regions compared to normal 

proliferating regions. PC-5 has also described that normal proliferating region and few 

spectra of necrotic region have shown less CH3, CH2 twisting and wagging of lipids, 

collagen content, adenine and thymine of DNA (1257 cm
-1

) and amide III (1203 cm
-1

) 

compared to hypoxic region and remaining spectra of necrotic region(Talari et al., 

2015k) (Figure 54).   

 

Figure 52: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions 

based on third and fifth principal components (PC). 
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Figure 53: A two-dimensional principal component analysis (PCA) plot of amide III 

region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions based 

on third, fourth and fifth principal components (PC). 

 

Figure 54: A three-dimensional principal component analysis (PCA) plot of amide III 

region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions based 

on third, fourth and fifth principal components (PC). 
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Figure 55: Loading plots of amide III region representing principal components PC3 

(blue), PC4 (red) and PC5 (green). 

5.3.6 Nucleic Acid Region 

PCA was performed on Nucleic Acid region between 980-600 cm
-1

. In the first PCA 

plot PC-3 has partially separated necrotic region from hypoxic and normal proliferating 

regions, whereas, PC-5 has separated normal proliferating region from hypoxic and 

necrotic regions. In the second PCA plot, PC-5 has partially separated normal 

proliferating region from hypoxic and necrotic regions, whereas, PC-4 has separated 

normal proliferating and hypoxic region from necrotic region with lesser extent.  A 

three dimensional PCA plot of  nucleic acid region has shown partial cluster separation 

in normal proliferating region and good separation between necrotic and hypoxic 

regions using principal components such as PC-3, PC-4 and PC-5 (Figures 56-58). 

PCA loading plot analysis of nucleic acid region has described following biochemical 

differences among three regions of T-47D spheroids. The variation, which is 

contributed towards separation, is increased from PC-3 to PC-5. Firstly, PC-3 loading 

plot (blue) has shown that majority of hypoxic region and minority of normal 
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proliferating region have high purine and pyrimidine bases of DNA and RNA (782 and 

728 cm
-1

), whereas, complete necrotic region and majority of normal proliferating 

region have shown less lipids (cholesterol at 958 cm
-1

), proline, hydroxyproline and 

tyrosine (852 and 830 cm
-1

), tryptophan (756 cm
-1

) and tyrosine (643 cm
-1

).  PC4 

loading plot (red) has shown that majority of normal proliferating region and hypoxic 

region have shown high protein content (proline and hydroxyproline – 853, 933 cm
-1

), 

tyrosine (643 cm
-1

) and nucleic acid content (adenine and DNA bases at 782 & 729 cm
-

1
), whereas, necrotic region has shown less methionine aminioacid content (704 and 739 

cm
-1

). PC5 loading plot (green) has shown that necrotic and hypoxic region have shown 

that high phosphate stitching and cholesterol (959 cm-1), tyrosine and proline (830 cm
-

1
) and adenine (729 cm

-1
) , whereas, normal proliferating region has shown less glucose 

(913 cm
-1

) and phosphodiester groups (810 cm
-1

)(Movasaghi et al., 2007d) (Figure 59).  

 

Figure 56: A two-dimensional principal component analysis (PCA) score plot of nucleic 

acid region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions 

based on third and fifth principal components (PC). 
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Figure 57: A two-dimensional principal component analysis (PCA) score plot of nucleic 

acid region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions 

based on fourth and fifth principal components (PC). 

 

Figure 58: A three-dimensional principal component analysis (PCA) plot of nucleic acid 

region for normal proliferating (green), hypoxic (red) and necrotic (blue) regions based 

on third, fourth and fifth principal components (PC). 
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Figure 59: Loading plots of nucleic acid region representing principal components PC3 

(blue), PC4 (red) and PC5 (green). 
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5.3.7 Cluster Analysis  

 High-wavenumber region (3200-2600 cm
-1

) 

 

Figure 60: Dendrogram of Cluster Analysis results for normal proliferating region, 

hypoxic region and necrotic region. CA was performed over the High-wave number 

region using Wards method’s squared Euclidean distance. 

Figure 60 has shown the dendrogram of outer (normal proliferating), middle (hypoxic) 

and inner (necrotic) regions over the high-wavenumber range (3200-2600 cm
-1

). Three 

main clusters were formed. Some of the normal proliferating region spectra were mixed 

with necrotic region. Each region has formed pretty much good cluster and distance 

measurements has suggested that biochemical snapshot of high-wavenumber region has 

shown more similarity between normal proliferating and necrotic regions compared to 

hypoxic region.  
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Amide I region (1800-1510 cm
-1

) 

 

Figure 61: Dendrogram of Cluster Analysis results for normal proliferating region, 

hypoxic region and necrotic region. CA was performed over the Amide I region using 

Wards method’s squared Euclidean distance. 

Figure 61 has shown the dendrogram of outer (normal proliferating), middle (hypoxic) 

and inner (necrotic) regions over the Amide I range (1800-1510 cm
-1

). Three main 

clusters were formed. No spectral mixing was observed within the three regions. Each 

region formed very individual clusters and distance measurements revealed that 

biochemical snapshot of Amide I region shows more similarities between normal 

proliferating and hypoxic regions compared to necrotic region. 
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Nucleic acid region (980-600 cm
-1

) 

 

Figure 62: Dendrogram of Cluster Analysis results for normal proliferating region, 

hypoxic region and necrotic region. CA was performed over the nucleic acid region 

using Wards method’s squared Euclidean distance. 

Figure 62 has shown the dendrogram of outer (normal proliferating), middle (hypoxic) 

and inner (necrotic) regions over the nucleic acid range (980-600 cm
-1

). Three main 

clusters were formed. Some of the normal proliferating region spectra were mixed with 

hypoxic region. Each region formed separate and well-defined clusters. Distance 

measurements suggest that biochemical snapshot of the nucleic acid region is more 

similar between normal proliferating and hypoxic regions compared to necrotic region.  

 

 



121 
 

5.4 Spheroids – Discussion 

This section discusses three aspects of T-47D spheroids. Firstly, a combination of RS 

and multivariate methods can be used as prospective approach to understand 

biochemical fingerprint of T-47D spheroids. Secondly, our hypothetical approach 

ability to differentiate normal proliferating region, hypoxic region and necrotic region 

with high classification efficacy. Thirdly, discussion of important chemical markers can 

contribute towards differentiation of three regions of T-47D spheroids. Spectral data 

analysis is supported by chemometric methods such as PCA, cluster analysis and LDA.   

The study of three-dimensional (3D) cell culture models over two-dimensional (2D) 

monolayers has many advantages. 3D spheroid models mimic tissue specific 

architecture. It can provide extensive knowledge to understand disease progression and 

development of new therapeutic drugs (Holliday, 2010). Generally conventional 2D cell 

culture involves culture of cell lines as monolayers on impermeable plastic surfaces, 

which often cause loss of phenotypic and functional characteristics. One of the main 

feature is ‘loss of differentiation’ and it is mainly happens due to lack of native in vivo 

3D confirmation. These monolayers will also preclude cell lines to respond to chemical 

and molecular gradients in a 3D fashion due to lack of complexity.  3D cell models, 

particularly spheroid models, have many advantages:  

a. Spheroid models will represent 3D architecture of tissues including multicellular 

arrangement and extracellular matrix deposition that provides spectroscopists extra 

space to explore chemical pathways,  

b. Spheroid models will also provide different cellular microenvironments such as 

proliferation, quiescent and hypoxic areas allowing one to study chemical differences 

between these areas,  
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c. Spheroids provide an opportunity to study cell-cell interactions via tight junctions 

between cells providing chemical information regarding extracellular matrix 

(Jaganathan et al., 2014).  

A combination of two or more cells in spheroid culture (multicellular spheroids) was 

originally developed by Sunderland in 1970’s. Multicellular spheroids possess well-

ordered spherical symmetry and mimic in vivo tumour microenvironment. Recent 

studies in breast cancer have revealed that 3D cell models are ideal source to explore 

embryo morphogenesis. They have established that 3D breast cancer cell line models 

allow studying different aspects of cell biology such as proliferation, differentiation, 

apoptosis and luminal formation (do Amaral et al., 2011, Holliday, 2010).  

In our first part of research, a combination of RS and multivariate approach was applied 

on three different breast cell lines to explore biochemical changes on 2D monolayer cell 

agar plugs. T-47D models in turn, were prepared to understand biochemical fingerprint 

of three different regions of spheroids. PCA 2D scores and loading plots were used 

extensively to understand biochemical nature of spheroids. Although it is impossible to 

get sensible chemical information from each loading plot but group of loading plots in 

shorter region is studied in detail to understand biochemical differences.  

High-wavenumber region has shown lipid differences in shoulder peak intensities.  

Hypoxic region has shown lower lipid intensities for CH3 symmetric stretch of lipids 

compared to normal and necrotic regions. It is also evident that the nature of lipids 

present in normal and necrotic region more similar than ones in hypoxic region. 

Hypoxia, deficient oxygen (O2) supply, is one of the prominent features of tumour 

microenvironments. This condition is generated in a cell or tissue due to lack of O2 

required for aerobic respiration. This will lead to development oxidative stress and 

resulting in production of high lipid peroxidation rate in biological systems (Rauchova 
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et al., 2012). Mitochondrial metabolism is directly affected during hypoxia because of 

low amount of O2 availability at cytochrome oxidases. This condition causes the 

generation of reactive oxygen species (ROS) in respiratory chain by auto-oxidation. 

ROS groups are generally known as superoxide (O
2-

), hydroxyl (HO
-
) and peroxyl 

(RO2
-
) radicals (Naqui et al., 1986). Apart from mitochondrial enzymes, enzymes such 

as nitric oxide synthase and xanthine oxidase will also enhance production ROS species 

during hypoxia. ROS play very important role in activation of transcriptional regulators 

such as hypoxia-inducible factor 1 (HIF-1), nuclear factor kB (NF-kB), activator protein 

1 (AP-1) and mitogen-activated protein kinases (MAPK) (Gilkes et al., 2014, Poyton et 

al., 2009, Semenza, 2000).   

Lipid peroxidation in hypoxic region might cause oxidative degradation of lipids. Cell 

membrane lipids will contribute electrons to ROS groups generate chain reaction (Reed 

2011). Chain reaction involves three stages namely generation of fatty acid ROS, 

reaction of free fatty acid ROS with O2 to generate peroxyl-fatty acid radical (chain 

reaction) and radical reaction of two free fatty acid radicals (Esterbauer et al., 1991). 

Lipid peroxidation directly affects poly-unsaturated fatty acid content of cells because 

of having high number of reactive hydrogens. As unsaturation increases, lipid content 

holds high number of multiple double bonds between methylene bridges (-CH2-) and 

cause cell damages as well (Ronen et al., 1990).  

Amide I region has shown clear differences among three different regions of T-47D 

spheroids. Normal proliferating region has shown low intensity compared to hypoxic 

and necrotic regions. Figure 33 has shown that hypoxic region has different collagen 

content compared to normal and necrotic regions. Amide I peak position of normal 

region also suggests more α-helix form proteins compared to other regions too. Loading 
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plot results also suggest that normal proliferating region is separated from hypoxic and 

necrotic regions due to low amide I and high tryptophan contents.  

Amide I represent majority of collagen content in breast tissues. Collagen offers 

structural integrity and strength to human body. The major protein content of 

Extracellular matrix (ECM) is fibrous proteins which include collagens, elastins, 

laminins and fibronectins. ECM is made up of 90% of collagen proteins and protein 

contents of human body collagen. ECM plays very important role in tumour progression 

and metastasis(Conklin and Keely, 2012). It is made up of different proteins that can 

control tissue development, homeostasis and disease progression. Breast cancer studies 

have revealed that protein metabolism related to ECM remodelling is enhanced during 

disease. Histological studies have identified excessive ECM accumulations in solid 

tumours. The prominent feature of ECM deposition in tumour tissue is accumulation of 

collagen(Conklin and Keely, 2012).   

Central dogma of protein biology includes three major processes, such as, replication 

(Synthesis of DNA from DNA), transcription (synthesis of RNA from DNA) and 

translation (synthesis of protein from mRNA). Hypoxia plays an important role in 

transcriptional status of collagen gene expression. Research in collagen biosynthesis has 

shown interesting facts about hypoxia influence. For example, under hypoxic 

conditions, increased expressions of type I procollagen genes are reported in fibroblasts 

cultures. Moreover, hypoxic conditions have also enhanced type I, II and IV 

procollagen levels in lung and pulmonary cells (Gilkes et al., 2014) (Berg et al., 1998, 

Falanga et al., 1993).  

During hypoxia, cancer cell secrete a growth factor known as hypoxia-inducible factor 

(HIF-1). HIF-1 plays a vital role in production of growth factors from tumour cells. 

Collagen deposition in hypoxic environment is regulated by three kinds of cells namely 
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fibroblasts, macrophages and mesenchymal cells. HIF-1 supports the recruitment of 

macrophages and fibroblasts at hypoxic regions. Macrophages generate growth factors 

that help fibroblasts to motivate collagen deposition (Wynn and Barron, 2010). Under 

hypoxic conditions, mesenchymal stem cells will also contribute towards collagen 

deposition. HIFs control the maturation of collagen fibril by modifying enzymes such as 

prolyl hydroxylase, lysyl oxidase, lox like protein 2 and 4. A combination of these 

pathways enhances collagen maturation and production that may help tumour cells to 

further metastatic dissemination. Spectral differences in peak shifts and peak intensities 

among three regions have suggested that Amide I position and tryptophan content is 

sensitive to separate all three regions of T-47D spheroids (Gordon and Hahn, 2010, 

Gilkes et al., 2014). 

Collagen constitutes the majority of pathological breast tissue proteins. The major 

amino acids of collagen are proline, valine, glycine and phenylalanine. Collagen 

synthesis involves multiple steps, firstly endoplasmic reticulum host post-translational 

modifications, such as, hydroxylations and glycosylations. Amino acids, such as, 

proline, hydroxyproline, lysine and hydroxylysine play important role in thermal 

stability of the collagen structures ((Myllyharju and Kivirikko, 2004). In Figure 35, 

hypoxic and necrotic regions have shown high concentration of amino acid and nucleic 

acid contents compared to normal region. Loading plots of PCA over this region also 

suggested that these regions were sensitive particularly to necrotic versus hypoxic areas. 

The high concentration of nucleic acid and amino acid content might suggest that 

protein and genetic metabolic pathways would assist hypoxic cells to face necrosis due 

to stress. Along with proline and hydroxyproline intensities, phenylalanine has also 

shown relative higher intensities in hypoxic and necrotic regions compared to normal 

region. Hypoxic and necrotic regions have shown higher amino acid and nucleic acid 

contents and this might suggest that more nucleic acid and amino acids were 
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synthesized.  This may be due to fact that some genetic pathways are changing in the 

cancer cells in hypoxic and necrotic regions that may arrive from hypoxic stress in T-

47D spheroids.  

Dendrogram of high-wavenumber region has also confirmed that lipids in normal and 

necrotic regions have shown more similarities compared to hypoxia region. Amide I 

region is unique in each region and it may suggest that conformational changes are 

distinctive to each region. Similarity between normal and hypoxic region may suggest 

that amide I region is undergoing changes during hypoxic condition and it might be 

completely different from necrotic region. Nucleic acid region has shown more 

similarities between normal proliferating region and hypoxic regions compared to 

necrotic regions whereas loading plots suggest that hypoxic and necrotic regions are 

sensitive in separation based on nucleic acid content. This may suggest that nucleic acid 

content is unique in both regions and hypoxic region is related to survival region 

whereas necrotic region adopts apoptosis due to stress.  

In conclusion, Raman spectra combined to multivariate approach proves to be an 

exceptional approach that allows separation of normal proliferating, hypoxic and 

necrotic regions based on lipids, amide I, III and nucleic acid content. These differences 

observed in three different regions might be useful in identification of chemical changes 

associated stress or strain faced by each region progressing towards necrosis. Loading 

plots suggested that normal proliferating region is separated with low amide I content 

and high tryptophan content compared to hypoxic and necrotic regions. Peak intensity 

and peak shifts have suggested that amide I content is unique in each region with 

regards to conformation and quantity. Amide III region, especially nucleic acid and 

amino acid content, is particularly sensitive to necrotic and hypoxic regions. This might 

be due to stress or strain associated with hypoxic and necrotic regions.  



127 
 

Chapter 6  

6.1 Tissue Micro Array (TMA) breast biopsies – Results 
In this section, full spectral analysis of luminal a, luminal b, HER2 positive and triple 

negative breast cancer subtypes were conducted. Raman Spectroscopy has been used as 

prospective approach to evaluate biochemical differences among four subtypes of tissue 

microarray samples. Intra biopsy and inter biopsy chemical changes were reported using 

combination of chemometric methods. Each biopsy has produced unique biochemical 

snapshots regarding spatial diversity of macromolecules such as proteins, lipids, 

carbohydrates and nucleic acids. Raman spectra of each subtype have differed in peak 

intensities and peak shifts.  Furthermore, all four subtypes were classified using 

multivariate approach such as PCA, cluster analysis and LDA. Chemometric methods 

have assisted in accurate and reliable classification with improved sensitivity and 

specificity.  
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TMA Biopsies slide de-wax and H&E staining:  

 

Figure 63: TMA Biopsies slide de-waxing and staining 
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Few H&E stained images of TMA biopsies (Scale bar indicates 100 µm):  

 

Figure 64: Ductal carcinoma NST of TMA biopsy 

 

Figure 65: Ductal carcinoma NST of TMA biopsy 
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Figure 66: Ductal carcinoma of TMA biopsy 

 

 

Figure 67: Ductal carcinoma NST of TMA biopsy 
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6.2 Raman peak analysis  

Four hundred spectra were collected from luminal A, luminal B, HER2 and triple 

negative subtypes and mean spectra of each subtype was extracted (Figure 69).  The 

band numbers across the whole spectral range of each subtype and their corresponding 

biological component assignments are summarised in table (appendix). Peak 

assignments for the lipid region, amide I, amide II and amide III regions are discussed 

in the next section. 

 

Figure 68: Mean spectra of luminal a, luminal b, HER2 positive and triple negative 

subtypes of tissue microarray breast cancer biopsies. 

6.2.1 C-H region (3200 - 2700 cm-1) 

A small band at 3061 cm
-1

 was observed in all four subtypes representing C-H stretch of 

lipids. A strong Raman peak was observed at 2936 cm
-1

 in luminal B and HER2 

positive, attributed to v(CH3) of lipids whereas similar peak was observed in luminal A 

at 2937 cm
-1

 and in triple negative at 2938 cm
-1

 corresponding  to v(CH3) of proteins 

and CH stretching of lipids and proteins. A strong shoulder peak was observed in three 
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subtypes at (luminal A, HER2 positive and triple negative) at 2881cm
-1

 attributed to 

CH2 symmetric stretch of lipids and CH2 asymmetric stretch of lipids and proteins. A 

similar shoulder peak was observed in luminal B at 2880 cm
-1

 corresponding to CH2 

stretching of lipids (Figures 70-72). 

 

Figure 69: Lipid intensity differences at high-wavenumber region in individual ductal 

NST biopsy. 
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Figure 70: Lipid peak intensity differences at amide II region in individual ductal NST 

biopsy. 

 

Figure 71: Lipid peak intensity differences at amide III region in individual ductal NST 

biopsy. 
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6.2.2 Amide I & II region (1670-1350 cm-1) 

A strong Raman peak of amide I was observed at 1665 cm
-1

 in luminal A and B, 

whereas this peak is shifted to 1666 cm
-1

 in HER2 and 1667 in triple negative subtypes. 

Collagen is the prominent contributor of this peak in breast cancer tissues. This is due to 

either C=C stretching of proteins, α-helical structure of proteins or carbonyl stretches of 

tumours or collagen. A small Raman peak was observed at 1605 cm
-1

 in triple negative, 

whereas this peak is shifted in luminal A, B and HER2 subtypes. This peak is attributed 

to cytosine (NH2), ring C-C stretch of phenylalanine, tyrosine, C=C vibrations of 

proteins. Weak spectral contributions were noticed at 1584 and 1583 cm
-1

, which are 

attributed to C-C stretching and C=C bending mode of phenylalanine of proteins. C-H 

vibration of proteins and lipids were expressed in all four subtypes at 1449 cm
-1

. Triple 

negative subtype have shown Raman peak at 1339 cm
-1

, attributed to C-C stretch of 

phenyl (I) and C3-C3 stretch and C5-O5 stretch CHα in-plane bend. The other three 

subtypes have expressed this peak at 1338 cm
-1

. Luminal A and Triple negative have 

shown Raman peak at 1317 cm
-1

, whereas luminal B and HER2 have shown Raman 

band at 1316 cm
-1

. The assignment of this band is purine base such as guanine (Figures 

73-74).  
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Figure 72: Amide I peak intensities and shifts of different subtypes of breast cancer. 

 

Figure 73: Amide I shoulder peak intensities and shifts of different subtypes of breast 

cancer. 
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Figure 74: Amide II peak intensities and shifts of different subtypes of breast cancer. 

6.2.3 Amide III region (1250-1170 cm-1)  

Amide III peak has been present in all four types at 1245 cm
-1

.  Amide III represents 

stretching vibrations of C-N and bending vibrations of N-H. It denotes disordered 

protein confirmation. All four subtypes have shown Raman peak at 1207 cm
-1

 attributed 

to hydroxyproline and tyrosine. Triple negative subtype has shown very weak Raman 

peak at 1174 cm
-1

 representing δ(C-H) and tyrosine. This peak is shifted in luminal A 

and HER2 subtype at 1173 cm
-1 

representing tyrosine of collagen type I, cytosine and 

guanine bases. The same peak is shifted in luminal B at 1172 cm
-1

 attributed to δ(C-H) 

and tyrosine. All four subtypes have reported shoulder peak at 1125 cm
-1

 attributed to 

C-C of nucleic acid peaks (Figure 76-77).  
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Figure 75: Collagen differences at amide I and III regions in individual ductal NST 

biopsy. 

 

Figure 76: Amide III peak intensities and shifts of different subtypes of breast cancer. 

6.2.4 Phenylalanine (1170-1000 cm-1) 

A characteristic amide III band was present in luminal A subtype at 1100 cm
-1

, which 

indicates (C-C) vibration modes of gauche-bonded chain and v(C-C) of lipids and fatty 



138 
 

acids. A medium Raman peak was observed in luminal B and HER2 subtypes at 1099 

cm
-1

 attributed (v(C-N)) and this peak shifted to 1097 cm
-1

 in triple negative subtypes. A 

medium Raman peak is observed in triple negative subtype at 1063 cm
-1

 and this peak is 

shifted in luminal A at 1062 cm
-1

. HER2 and triple negative subtypes have shown 

medium Raman peak at 1032 cm
-1

 attributed to CH2 and CH3 bending modes of 

collagen and phospholipids. This peak is shifted in luminal A and B at 1031 cm
-1

. A 

sharp, intense and typical peak has been observed at 1002 cm
-1

 (luminal and HER2 

subtypes) 1003 cm
-1

 (triple negative) is a characteristic assignment of ring breathing of 

aromatic amino acid such as phenylalanine (Figure 78). 

 

Figure 77: Phenylalanine peak intensities and shifts of different subtypes of breast 

cancer. 

6.2.5 Nucleic acid and amino acid region (1000 - 600 cm-1)  

Luminal and triple negative subtypes have expressed a medium Raman peak at 938 cm
-1

 

attributed to proline, hydroxyproline, v(C-C) skeletal collagen backbone and C-C 

stretch of polypeptide backbones whereas luminal A subtype expressed at 937 cm
-1

.  A 

medium Raman peak observed in triple negative subtypes at 921 cm
-1

 attributed to 
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proline ring, glucose and lactic acid molecules. A medium Raman peak observed in 

luminal B, HER2 and triple negative subtypes at 877 cm
-1

 is attributed to C-C-N
+
 

symmetric stretch of lipids, C-O-C ring of carbohydrates. All four subtypes of breast 

cancer expressed Raman peak at 854 cm
-1

 is attributed to C-O-C skeletal mode of α-

anomers (polysaccharides, pectin), ring breathing mode of tyrosine. HER2 subtype has 

expressed Raman peak at 782 cm
-1 

attributed to DNA, Thymine, Cytosine, Uracil, and 

RNA. Triple negative subtype have expressed at 781 cm
-1

 attributed to ring breathing 

mode of cytosine and uracil, whereas luminal B expressed 780 cm
-1

. A very weak 

Raman peak observed in HER2 and triple negative subtypes at 759 cm
-1

 attributed to 

Tryptophan and ethanolamine group of phosphatidylethanolamine. Luminal subtypes 

have expressed Raman peak at 758 cm
-1

 attributed to tryptophan. A weak Raman peak 

at 643 cm
-1

 in luminal B, HER2 and triple negative subtype attributed to C-C twisting 

mode of tyrosine and it is shifted to 642 cm
-1

 in luminal A subtypes. HER2 and triple 

negative subtypes have expressed C-C twisting mode of phenylalanine and disulphide 

bridges of cysteine amino acid content. This peak is shifted to 620 cm
-1

 in luminal 

subtypes. 

6.3 Multivariate analysis 

PCA was performed on luminal A, B, HER2 positive and triple negative subtype spectra 

in order to focus on variability existing among subtypes. In this process, we extracted 

loading plots from each score plot. These describe the amount of variation for each 

variable for a given principal component. Loading plots not only provide variations of 

data sets but also provide correlation of loading point and position of the spectra.  

Examination of loading plots will offer information regarding origin of variability with 

in the dataset and based on this information we can explore biochemical components 

and its contribution towards variations among subtypes. 
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6.3.1 Full spectral range 

PCA was performed on full spectral range (3200-600 cm
-1

) of four subtypes. Four 

subtypes formed really dense clusters and are not clearly separated. In the first score 

plot, PC-2 has differentiated luminal B from rest of the subtypes but separation of other 

subtypes were not much clear. In the second score plot every subtype was grouped at 

both positive and negative sides of PC-3 axis indicating large inner group variation. PC-

2 and PC-3 have described little or no discrimination among these subtypes. In both 

PCA score plots, majority spectra of luminal A and luminal B have shown positive and 

negative extremes, respectively. A three dimensional PCA plot of full spectral range has 

shown good cluster formation in luminal B, HER2 positive and triple negative subtypes 

and weak cluster formation in luminal A subtype. A 3D PCA plot has shown good 

separation in luminal A and luminal B subtypes, whereas, HER2 positive and triple 

negative subtypes are overlapped using the principal components PC-1, PC-2 and PC-3 

(Figures 79-81).  
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Figure 78 A two-dimensional principal component analysis (PCA) score plot of full 

spectral range for luminal A (red), luminal B (green), HER2 (blue) and T-Negative 

(dark red) based on first and second principal components (PC). 

 

 

Figure 79: A two-dimensional principal component analysis (PCA) score plot of full 

spectral range for luminal A (red), luminal B (green), HER2 (blue) and T-Negative 

(dark red) based on first and third principal components (PC). 
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Figure 80: A three-dimensional principal component analysis (PCA) plot of full spectral 

range for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on first, second and third principal components (PC). 

 

PCA loading plot analysis of full spectral range has described that PC-2 loading plot 

(red) has differentiated majority of luminal B subtypes from other subtypes. It is 

difficult to interpret loadings information in full spectral range. Because variation 

associated with each PC is dependent on so many peaks being in unison with regards to 

a vast number of different features, such as, peak position, shift, width and height.  

Based on this, we extended PCA analysis to narrower regions, such as, lipids, amide I, 

III and nucleic acid regions to identify biochemical variations within subtypes (Figure 

82).  
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Figure 81: A loading plot of principal component analysis (PCA) for nucleic acid region 

representing first (blue), second (red) and third (green) principal components (PC). 

 

6.3.2 Lipids 

PCA analysis was performed on lipid region (3200 -2600 cm
-1

). In the first score plot, 

PC2 has pretty much separated luminal A from triple negatives, whereas, HER2 

positive and luminal B was dispersed. Notably, luminal A were grouped at positive 

sides on the PC-2 axis, whereas, triple negatives were on both axes.  PC-3 has shown 

whole distribution subtype clusters on positive side of axis whereas a subset of luminal 

B has distributed on negative side of the axis. The second score plot has shown huge 

mixture of subtype spectra along PC-3 axis rather than clusters. A three dimensional 

PCA plot of high-wavenumber range has shown good cluster formation in HER2 and 

triple negative subtypes and weak cluster formation in luminal A and B subtypes. A 3D 

PCA plot has shown good separation in luminal B subtype whereas luminal A, HER2 

and triple negative subtypes are overlapped using the principal components PC-1, PC-2 

and PC-3 (Figures 83-85).  
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Figure 82: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on second and third principal components (PC). 
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Figure 83: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on first and third principal components (PC). 

 

Figure 84: A three-dimensional principal component analysis (PCA) plot of lipid region 

for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) based on 

first, second and third principal components (PC). 
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PCA loading plot analysis of high-wavenumber region has described biochemical 

differences among four subtypes. Firstly, PC-1 loading plot (blue) describes variations 

in protein specific symmetric CH3 vibrations of all subtypes. PC-2 loading plot (red) has 

pretty much positively separated luminal A and majority of triple negatives subtype on 

2991 and 2848 cm
-1

 (CH3 symmetric vibration of lipids and proteins) compared to 

remaining subtypes. PC-2 has also negatively separated triple negative, luminal B 

subtypes and minority of HER2 subtype with 3060 cm
-1

, 2914 cm
-1

 (CH stretching of 

proteins) and 2869 cm
-1

 (CH2 symmetric and asymmetric stretch of lipids, and CH2 

asymmetric stretch of proteins). PC-3 loading plot (green) has shown that majority of all 

subtypes and except minority of luminal B has positively separated with 2918 cm
-1

 (CH 

stretching of proteins) and 2881 cm
-1

 (CH2 symmetric and asymmetric stretching 

vibrations) (Figure 86). 

 

Figure 85: A loading plot of principal component analysis (PCA) for lipid region 

representing first (blue), second (red) and third (green) principal components (PC). 
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6.3.3 Amide I 

PCA was performed over amide I region at 1750 to 1500 cm
-1

. The first score plot has 

shown overall distribution of four subtypes clusters. PC-2 describes a variation that is 

considerably different between luminal A and luminal B. PC-3 has seen almost four 

subtype cluster distribution both negative and positive side of the axis. The second score 

plot has also shown pretty different to first plot. PC-1 and PC-2 that are good for 

separating luminal A from luminal B, PC-3 doesn’t really separate any subtype except 

may be triple negative from the  rest and PC-4 certainly separates triple negative from 

the rest. Interestingly, PC-2 has pretty much separated luminal B from luminal A from 

luminal B. PC-3 doesn’t really separate any subtype except may be triple negative from 

rest of the subtypes. PC-4 certainly separates triple negative from the rest of subtypes. A 

three dimensional PCA plot of amide I range has shown good cluster formation for 

luminal A, HER2 positive and triple negative subtypes and weak cluster formation in 

luminal B subtype. A 3D PCA plot has shown good separation in luminal A, HER2 

positive and triple negative subtypes whereas luminal B is overlapped with luminal A 

using the principal components PC-1, PC-3 and PC-4 (Figures 87-90).  
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Figure 86: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on second and third principal components (PC). 

 

Figure 87: A two-dimensional principal component analysis (PCA) score plot of lipid 

region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on second and third principal components (PC). 
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Figure 88: A two-dimensional principal component analysis (PCA) score plot of amide 

I region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on first and fourth principal components (PC). 

 

Figure 89: A three-dimensional principal component analysis (PCA) plot of amide I 

region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on first, third and fourth principal components (PC). 
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PCA loading plot analysis of amide I region has described biochemical differences 

among four subtypes. Firstly, PC-1 loading plot (blue) has sensitive in protein 

conformation of different subtypes. Every PC of this region is sensitive to protein 

conformation. Collagen at 1667 cm
-1

 (either unordered or β sheets) is positively 

separated triple negative and majority of HER2 subtypes. PC-3 loading plot (red) has 

pretty much sensitive in 1654 cm
-1

  (-helical confirmation of collagen), 1614 cm
-1

  

(tyrosine), 1604 cm
-1

  (phenylalanine and tyrosine) and 1576 cm
-1

  (guanine) and 1634 

cm
-1

  (amide I). PC-4 loading plot (green) has shown that majority of triple negative, 

luminal A and HER2 subtypes are positively separated at 1671 ( sheet structures of 

protein conformation) and 1575 (ring breathing mode of DNA bases), and some of the 

luminal Band HER2 and luminal A are negatively separated at 1601 (phenylalanine)  

and 1547 (proline). Collagen was important for separating luminal A and luminal B 

from rest of the subtypes but nucleic acids and amino acids were more important in 

separating triple negatives from rest of the subtypes. In a nut shell, PCA of amide I 

region is sensitive to protein conformation of different subtypes (Figure 91).  
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Figure 90: A loading plot of principal component analysis (PCA) for amide I region 

representing first (blue), third (red) and fourth (green) principal components (PC). 

 

6.3.4 Amide III 

PCA was employed on amide III region at 1400- 1200 cm
-1

. In the first score plot, PC-2 

has pretty much separated luminal A from triple negative subtype, whereas, HER2 

positive and luminal B are widely distributed. All four subtypes were randomly 

distributed along the PC-3 axis both positive and negative side. A three dimensional 

PCA plot of Amide III range has shown better cluster formation in triple negative 

subtypes and weak cluster formation in luminal A, B and HER2 positive subtypes. A 

3D PCA plot has shown a weak separation in luminal A whereas luminal B, HER2 

positive and triple negative subtypes are overlapped using the principal components PC-

1, PC-2 and PC-3 (Figures 92-95). 
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Figure 91: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for luminal A (red), luminal B (green), HER2 positive (blue) and T-Negative 

(dark red) based on first and fourth principal components (PC). 

 

Figure 92: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for luminal A (red), luminal B (green), HER2 positive (blue) and T-Negative 

(dark red) based on first and third principal components (PC). 
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Figure 93: A two-dimensional principal component analysis (PCA) score plot of amide 

III region for luminal A (red), luminal B (green), HER2 positive (blue) and T-Negative 

(dark red) based on first and second principal components (PC). 

 

Figure 94: A three-dimensional principal component analysis (PCA) plot of amide III 

region for luminal A (red), luminal B (green), HER2 positive (blue) and T-Negative 

(dark red) based on first, second and third principal components (PC). 
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PCA loading plot analysis of Amide III region has described biochemical differences 

among four subtypes. Firstly, PC-2 loading plot (red) describes a variation that is 

sensitive to protein conformation of different subtypes. It has positively separated 

majority of luminal B, HER2 and triple negative subtypes at 1269 and 1244 and 

negatively at 1336 cm
-1

 (purine bases and collagen assignment). PC-3 loading plot 

(green) has pretty much sensitive in 1377 cm
-1

  (lipid assignments), 1339 cm
-1

  (C-C 

stretch of phenylalanine), 1279 cm
-1

  (amide III of  helix) and 1277 cm
-1

  (amide III of 

 helix) (Figure 96). 

 

Figure 95: A loading plot of principal component analysis (PCA) for amide III region 

representing first (blue), second (red) and third (green) principal components (PC). 

 

6.3.5 Nucleic Acid region 

PCA was performed on nucleic acid region at 980 – 610 cm
-1

. The first and third score 

plot has shown clear separation between triple negative and luminal A subtypes, 

whereas, HER 2 and luminal B were distributed on both sides of PC-2 axis. 

Interestingly, each subtype can be observed as almost subsets of clusters except few 
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spectra of luminal A and luminal B. The second score plot has shown indiscriminate 

separation of four subtypes across the PC-3 axis. A three dimensional PCA plot of 

nucleic acid range has shown weak two-subset cluster formation in HER2, three-subset 

cluster formation in triple negative subtype and weak cluster formation in luminal A and 

B subtype. A 3D PCA plot has shown good separation in luminal A subtype, whereas, 

luminal B, HER2 and triple negative subtypes are overlapped using the principal 

components PC-1, PC-2 and PC-3 (Figures 97-100).  

 

Figure 96: A two-dimensional principal component analysis (PCA) score plot of nucleic 

acid region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark 

red) based on first and second principal components (PC). 
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Figure 97: A two-dimensional principal component analysis (PCA) score plot of nucleic 

acid region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark 

red) based on first and third principal components (PC). 

 

Figure 98: A two-dimensional principal component analysis (PCA) score plot of nucleic 

acid region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark 

red) based on second and third principal components (PC). 
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Figure 99: A three-dimensional principal component analysis (PCA) plot of nucleic acid 

region for luminal A (red), luminal B (green), HER2 (blue) and T-Negative (dark red) 

based on first, second and third principal components (PC). 

 

PCA loading plot analysis of nucleic acid region has described biochemical differences 

among four subtypes. Firstly, PC-1 loading plot (blue) is sensitive in 938, 921, 877 and 

855 cm
-1

regions. PC2 loading plot (red) is pretty much sensitive in 939 and 827 cm
-1

.  

PC-3 loading plot (green) has shown positive separation at 960 cm
-1

 (phosphate 

vibrations), 903 cm
-1

 (C-C skeletal stretchings), 829 cm
-1

 (O-P-O stretching of DNA 

and RNA), 783 cm
-1

 (thymine, uracil and cytosine), 758 cm
-1

 (tryptophan and 

ethanolamine of phosphatidylethanolamine), 643 cm
-1

 (C-C twisting mode of tyrosine), 

and 621 cm
-1

 (disulphide bridges of cysteine content). It has negatively separated for 

920 cm
-1

 (proline/glucose/lactic acid), 870 cm
-1

 (proline/hydroxyproline/valine and 

polysaccharides), 814 cm
-1

 (proline/hydroxyproline/tyrosine/ phosphodiester of RNA), 

and 770 cm
-1

 (sugar backbones or cyclic ring of nucleic acid bases) (Figure 101).  
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Figure 100: A loading plot of principal component analysis (PCA) for nucleic acid 

region representing first (blue), second (red) and third (green) principal components 

(PC). 
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6.3.6 Cluster Analysis 

 

Figure 101: Dendrogram of Cluster Analysis results for luminal A (L-A), luminal B (L-

B), HER2 (Her 2) and T-Negative (T-N) subtype (four sets of each subtype) samples. 

CA was performed over the full spectral range using Wards method’s Squared 

Euclidean distance 

 

Figure 102 has shown the dendrogram of luminal A (L-A), luminal B (L-B), HER2 (Her 

2) and T-Negative (T-N) subtype (four sets of each subtype) samples over full spectral 

range (3200-400 cm
-1

). Four main clusters were formed. Some of the luminal B spectra 

were mixed with triple negative and HER2 subtypes. Each region has formed pretty 

much good cluster and distance measurements has suggested that biochemical snapshot 

of full spectral region has shown more similarity between luminal A and subset of 

luminal B, and HER2 and triple negative subtype. One subset of luminal B has shown 

similarity with triple negative subtype. Distance measurements have shown luminal A 

and B chemically more distant from HER2 and triple negative subtypes.   
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Figure 102: Dendrogram of Cluster Analysis results for luminal A (L-A), luminal B (L-

B), HER2 (Her 2) and T-Negative (T-N) subtype (four sets of each subtype) samples. 

CA was performed over the full spectral range using Wards method’s using Squared 

Euclidean distance. 

 

Figure 103 has shown the dendrogram of luminal A (L-A), luminal B (L-B), HER2 (Her 

2) and T-Negative (T-N) subtype (five sets of each subtype) samples over full spectral 

range (3200-400 cm
-1

). Four main clusters were formed. This was done to check 

luminal B chemical nature. Each region has formed pretty much good cluster and 

distance measurements has suggested that biochemical snapshot of full spectral region 

has shown more similarity between luminal A and subset of luminal B, and HER2 and 

triple negative subtype. One subset of luminal B has shown similarity with triple 

negative subtype. Distance measurements have shown luminal A and B chemically 

more distant from HER2 and triple negative subtypes.   

6.3.7 Linear Discrimination Analysis (LDA) 

A total 120 spectra (30 spectra each subtype) was selected and processed using baseline 

correction and normalization for predictive classification with LDA.  LDA models were 
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setup over the full spectral range 3200-600 cm
-1

. Five samples from each group were 

left out at each pass until a total number of 30 spectra from each group were tested 

against the training group. LDA fusion matrix of four subtypes of TMA breast biopsies 

were mentioned in Table 17.   

Luminal A subtype was predicted with a sensitivity of 70% where 8 spectra were 

predicted as Luminal B and 1 spectra predicted as HER2 positive subtype. None of the 

Luminal A subtype spectra were misclassified in the triple negative subtype. Luminal B 

subtype was predicted with sensitivity of 100% where none of the luminal B spectra 

were predicted wrongly. HER2 positive subtype was predicted with sensitivity of 90% 

with 3 spectra were misclassified as luminal B. Triple negative subtype was predicted 

with sensitivity of 96.67% where only one spectrum was predicted as luminal B.  

Table 17: LDA fusion matrix of Luminal A, B, HER2 positive and triple negative 

subtypes 

 Actual  HER2 Luminal A Luminal B Triple 

Negative 

Predicted      

HER2  27 1 0 0 

Luminal A  0 21 0 0 

Luminal B  3 8 30 1 

Triple 

Negative 

 0 0 0 29 

Total  30 30 30 30 
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6.4 TMA Biopsies - Discussion 
Breast Cancer diagnosis takes two steps, namely screening approaches followed by 

biopsy procedures. Screening methods such as mammography, ultrasound and magnetic 

resonance imaging, and biopsy procedures such as fine needle, core needle and surgical 

biopsies are in lead. A combination of histopathology, immunohistochemical methods 

and gene profile approaches are considered as gold standard methods in breast cancer 

subtype identification. Diagnosis approaches have limitations such as surgical 

inventions; false positives, time delays, pain and trauma of patient and risk of infections 

have allowed researchers to explore new non-invasive, reagent-free and less painful 

approaches (Haka et al., 2005).  Raman spectroscopy, a vibrational spectroscopic 

approach, not only provides real time biochemical fingerprint of tissues but also 

understanding the disease as it progresses. Raman spectra can acquire in less time and 

spectroscopic approach can also eliminates intraobserver and inerobserver variability 

that commonly related with histopathological diagnosis (Swain and Stevens, 2007).   

In our study, for the first time, a combination of Raman and multivariate approach have 

been applied on different breast cancer biopsies to identify chemical changes associated 

with different subtypes of breast cancer. Characteristic Raman markers were used to 

differentiate luminal A, B, HER2 positive and triple negative subtypes of breast cancer 

and in addition intra and inter biochemical changes of biopsies using different spectral 

features, was also identified.   

Breast Cancer biopsies which we were analysed in our study were mainly ductal 

carcinoma No Special Type (NST). Multiple genetic mutations and protein dysfunction 

are the main cause of breast cancer (Rakha et al., 2008). It is a well-known fact that 

cancer tissues have higher cell proliferation and metabolic activity that result in changes 

of concentration and oxidation states of different chemical species. The major biological 

activities observed in cancer cells are loss of differentiation, nuclear enlargement 
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especially increasing in genetic material (Kang, 2002). Spectral changes were identified 

especially at lipids, amide I and III regions among luminal A, B, HER2 and triple 

negatives subtypes. Furthermore, subtypes were also classified using supervised and 

unsupervised algorithms. Significant spectral variations in terms of peak shifts, shapes 

and intensities in four subtypes of breast biopsies were observed. Raman studies have 

also identified chemical differences in individual biopsies as well.  

6.4.1 High-wavenumber region – Lipids prospective view  

High-wavenumber region of Raman spectra represents stretching vibrations of lipids 

and proteins. Biochemical fingerprint of this region deals with metabolic status of fatty 

acids and hydrophobic interactions. The major molecular vibrations are symmetric and 

asymmetric stretches of CH3, CH2 and -CH=CH-. These vibrations represent lipid 

metabolism and are helpful in assessing lipid peroxidation in biological systems (Talari 

et al., 2015a). Deregulated lipid biosynthesis is a characteristic feature of cancerous 

tissues. Lipid and protein peaks are expressed in triple negative and luminal A at 2938 

and 2937 cm
-1

, respectively, whereas, in HER2 positive and luminal B is expressed at 

2936 cm
-1

. Changes in peak intensities and shifts are a result of differences in structural 

conformations and concentration of lipids in different subtypes of cancerous biopsies. 

Lipid synthesis plays a vital role in cancer development and progression (Hirsch et al., 

2010). Lipid requirements of mammalian tissues are fulfilled by uptake of fatty acids 

and lipoproteins from the blood stream. Fatty acids and cholesterol production is 

restricted to a subset of tissues such as lactating breast, liver and adipose tissue. 

Nevertheless, reactivation of lipid synthesis has been reported in tumorous tissues 

(Ozek et al., 2010a).  

Initial studies demonstrated that cancerous tissues use de novo lipogenesis to produce 

lipids, including fatty acids and phospholipids (Swinnen et al., 2002). Type of lipid 

content in breast tumour tissue is related to liver tissue in terms of fatty acid levels. 



164 
 

Although tumour tissue is capable of uptaking lipids from the tissue environment, initial 

studies have concluded that de novo lipogenesis plays vital role in rapid proliferation of 

cancer cells (Milgraum et al., 1997). In recent years, combination of gene expression 

and genome scale metabolic studies of breast cancer has revealed two important 

concepts of lipid synthesis in cancerous tissues (Hilvo et al., 2011). Firstly, biosynthesis 

of fatty acids is a characteristic feature of early stages of tumour formation because 

these play important role in rapid proliferation of cancer cell. Secondly, advanced stages 

of cancer have shown antioxidant nature for detoxification of reactive oxygen species 

(ROS)(Germain et al., 1998). 

Raman peak at 2938 cm
-1

 in triple negative subtype is located at 2937 and 2936 cm
-1 

in 

luminal A and luminal B & HER2 subtypes respectively. Peak position differences in 

luminal A and triple negative have shown variations in stretching vibrations of lipids in 

CH and CH3. Peak shifts have differentiated luminal A and triple negative from HER2 

and luminal B. Raman band at 2881 cm
-1

, 
 
which are assignments of CH2 symmetric and 

asymmetric stretch of lipids are found in luminal A, HER2 and triple negative subtypes. 

CH2 stretching lipids of high-wave number of luminal B was reported at 2880 cm
-1

. 

Lipid biosynthesis is correlated with saturated lipid content in cells. Lipid peroxidation 

is directly proportional to lipid degradation and synthesis of lipids is decreased in low 

number saturated fatty acids (Ozek et al., 2010a). Low amount of saturated lipids also 

represents slow growth behaviour of cell. Unsaturated fatty acid content is directly 

proportional to the cancer progress. High-unsaturated fatty acid content is present in 

metastatic stages (Bartsch et al., 1999). This Raman approach has even identified 

stromal lipid peak intensity differences in individual TMA biopsies (Figures 70-72). 

These lipid intensity differences and structural information were helpful in 

understanding these four subtypes of breast cancer as well classification.  
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6.4.2 High-wavenumber region – Proteins prospective view  

High-wavenumber region (2940 – 2930 cm
-1

) plays an important role in understanding 

cancer at biochemical molecular level. Biochemical fingerprint of this region deals with 

denaturation and conformational changes of proteins. Normal breast tissue is dominated 

by lipid predominant peaks because adipose tissue is distributed around lobules and 

ducts. Cell and nuclear membranes also contribute to lipid peaks due to their 

triglyceride composition (Shafer‐Peltier et al., 2002). The cancerous breast tissue is 

subjugated by protein content and high-wavenumber is useful to study protein 

vibrations in terms of amino acid nature. Increase in protein content and its contribution 

towards carcinogenesis is evident in breast cancer and nearly 30% cases are having 

amplified gene as protein product in HER2 positive subtypes (Olayioye, 2001). The 

main difficulty in this region is the interpretation of Raman bands. The major problem is 

that most of the lipid and fatty acid bands overlap with protein bands. Overlap is 

generally between CH of lipids with CH3, CH2 and CH of amino acid side chains. 

Previous Raman spectroscopic studies on based breast cancer studies have reported that 

this region includes not only aliphatic and aromatic amino acids but also other amino 

acids such as histidine, threonine and proline (Surmacki et al., 2013).    

Fingerprint region of all subtypes spectra represents a combination of protein, lipid and 

nucleic acid information. Majority of information comes from proteins distributed in 

three regions, namely amides I, II and III. Protein peak assignments for C=O 

stretchings, C-H bendings, CH2 deformations and CH2 twisting provide secondary 

structural information. Peak assignments for ring breathing modes of aromatic amino 

acids such as phenylalanine, tyrosine and tryptophan provide information on side chain 

vibrations of proteins. Nucleic acids represent molecular vibrations of DNA and RNA 

bases, and phosphate backbones.  Purine bases such as adenine and guanine, 

pyrimidines bases such as thymine, cytosine and uracil, and phosphate PO3
2-

 represent 
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breathing modes and asymmetric and symmetric phosphate stretchings. Lipids are also 

present in fingerprint region as CH2 deformations and C=C stretching of lipids. In a 

nutshell, fingerprint region plays vital role in understanding chemical changes 

associated with different subtypes using building blocks of biological molecules of 

tissues (Talari et al., 2015a, Talari et al., 2015k).   

Protein metabolism plays a key role in cancer biology in terms of cell differentiation 

and cell proliferation, hence, considered as potential Raman markers in disease 

identification. The second and third steps of central dogma, such as, transcription (DNA 

to mRNA synthesis) and translation (mRNA to protein synthesis) signatures were 

captured in fingerprint region through molecular vibrations (Thomas Jr, 1999). 

Aromatic amino acids such as tryptophan and tyrosine plays crucial role in various 

metabolic processes and are required for rapidly proliferating cancer cells. Previous 

studies have reported that high amount of tryptophan in cancerous tissues is also evident 

and tryptophan peak can be specifically observed in Raman spectrum at 1583 cm
-1

 

(Takeuchi, 2003). Normal breast tissue has shown characteristic tryptophan between 

amide I and amide II and peak intensity is increased as cancer progresses in tissues. 

Peak intensity of tryptophan is increased in cancerous tissues. Tryptophan peak 

intensity differences and peak shifts were observed in four subtypes. Luminal B have 

shown tryptophan peak at 1583 cm
-1

,
 
whereas, luminal A, HER2 positive and triple 

negative subtypes have observed in peak shift.   Peak intensity is similar between HER2 

and luminal B subtypes whereas luminal A has shown low intensity and triple negative 

is further lowest. Significant tryptophan changes were observed and luminal B and 

HER2 have 10 fold increase compared to triple negative and 5 fold increase compared 

to luminal A. Protein content changes will be helpful in different subtypes of breast 

tissues. Normal breast tissue has shown less tryptophan content compared to cancerous 

tissues. Tryptophan Peak shift was observed in luminal B subtype and intensity 
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difference identified in luminal A and triple negative subtypes because they are lower in 

intensity. Recent studies have confirmed that tryptophan metabolic pathway has 

significant role in cancer progression. Indoleamine 2,3-dioxygenase (IDO), rate-limiting 

enzyme of tryptophan metabolic pathway, expression profile is associated with 

advancement of breast cancer. Raman can be helpful in identification of tryptophan 

signatures in different subtypes of breast cancer.  

Proteins peaks, majority of them amide peaks, result from carbonyl stretchings from 

polypeptide backbones. Amide I represents protein secondary structural information and 

the mainly contributor to 80% C=O stretching vibrations. The information provided by 

Amide I peak is mainly dependent on their position and shape.  Triple negative subtype 

has shown amide I peak with high intensity next to Luminal B subtype whereas 

Luminal A and HER2 subtypes have shown less amide I peak intensities (Figure73). 

The higher intensity of amide I represent higher amount of collagen. Ductal carcinoma 

in situ and fibroadenoma samples usually shows large number of cells compared to 

other lesions of the breast. Increasing cell nucleus size is one of the important factors in 

cancer. Pathologists consider higher nuclear to cytoplasm ratio is the best way to 

diagnose the disease. Amide I peak appeared to 1667 cm
-1 

in triple negative subtype and 

it represents β-sheets of collagen protein. The structural modes of malignant breast 

tissue proteins have shown this peak in previous studies. (Hanlon et al., 2000) Amide I 

vibrations of tumour proteins were shifted to 1666 cm-1 in HER2 subtype and to 1665 

cm
-1 

at luminal A and B. SERS studies of saliva have also described this peak as C=O 

stretching vibrations, whereas, spectra of brain tumours have attributed this peak to 

C=C stretching vibrations (Farquharson et al., 2005). Lung cancer studies have shown 

that Raman peak at 1666 cm
-1

 was only present in cancerous tissue and it is assigned to 

collagen. In this study it was suggested that collagen content plays important role not 

only in breast cancer but also other cancers as well. Collagen content can be used as 
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quantitative Raman markers in disease identification especially in subtype classification 

(Kaminaka et al., 2001) and our studies also confirmed the importance of collagen 

contents both in identification of cancer and classification of subtypes. 

6.4.3 Collagen 

Collagen is a chief component of connective tissue made up of tropocollagen subunits. 

Each subunit is made up of three polypeptide chains of about 1000 amino acids and 

whole collagen is made up of at least 28 genetically distinct species. Each polypeptide 

chain represents ‘Glycine – X – Y’ repeat where X and Y represents proline and 4- 

hydroxyproline respectively. N-H group of Glycine amino acid forms hydrogen bond 

with C=O group of proline. In addition, water and hydroxyproline also form hydrogen 

bonds to stabilize the collagen network. These bonds in collagen help to maintain a 

triple helical conformation.  Based on supra molecular structures, collagen is classified 

into different subgroups and are summarized in Table 18. 

Table 18: Different types of collagen 

S.No Name of collagen Type of collagen  

1 Fibril-forming collagens I, II, III, V, XI, XXIV and 

XXVII 

2 Fibril-associated collagens with interrupted 

triple helices (FACITs) 

IX, XII, XIV, XVI, XIX, 

XX, XXI, XXII and XXVI 

3 Collagen with transmembrane domain XIII, XVII, XXIII and 

XXV 

4 Hexagonal network forming collagens X 

5 Basement membrane collagen IV 

6 Multiplexins  XV and XVIII 

7 Beaded filaments-forming collagens  VI 

8 Anchoring fibrils-forming collagens VII 
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Due to desmoplastic reaction, stroma of neoplastic breast tissue starts to accumulate 

dense fibrous tissue possessing newly formed ECM components, and predominantly, 

collagen. Previous studies has established that invasion sites of ductal infiltrating 

carcinoma have shown accumulation of type I and III collagens whereas protein 

extraction studies have revealed that type V collagen increases by nearly 10 % in DIC 

compared to normal breast tissue. In recent years, gene expression studies have explored 

tumour associated collagen structures (TACS) related to breast cancer 

progression(Provenzano et al., 2008, Campagnola et al., 2001). Optical approaches such 

as Multiphoton and second harmonic generation microscopy show that TACS is 

important in cancer progression using mouse tumour explants and microarrays. TACS 1 

is a limited density collagen and usually appears at small tumour foci. TACS 2 is 

tangentially oriented collagen towards the smooth boundary of tumour and TACS 3 is 

perpendicularly oriented towards irregular invasive tumour boundary. TACS 3 is 

described as a consistent and powerful marker in disease identification especially in 

triple negatives (Provenzano et al., 2006). This marker is going to be considered as an 

independent prognosis key irrespective of tumour grade, size and receptor status. In 

recent years, second harmonic generation (SHG) microscopy is used to quantify 

collagen amount and evaluated abnormal collagen fibrils to study malignancy in 

different stages of breast cancer. Apart from SHG microscopy, X-ray scattering 

approaches have also proved that collagen content and its structural associated changes 

differ in different stages of breast cancer and also predicted invasion directions in terms 

of cancer spreading (Conklin and Keely, 2012, Campagnola et al., 1999).  

Multivariate approach (PCA) was applied on whole spectral range and much overlap 

was observed in luminal A, HER2 and triple negative subtypes. Luminal B subtype has 

separated very well using PC2 and it formed very good cluster, and this might be due to 

less intervariation in biopsies. Overlapping of three subtypes might indicate that 
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biopsies among these groups possess many similarities in whole spectral range and this 

lead us to go for a closer look to explore small spectral regions. Lipids, amide I, amide 

III and nucleic acid regions were explored using PCA. This is the first time, breast 

cancer biopsy data was explored based on subtype classification. Previous studies have 

identified malignant tissues from normal and benign in various cancers such as  lung 

cancer (Huang et al., 2003, Kaminaka et al., 2001),  skin cancer (Cheng et al., 2005, de 

Oliveira et al., 2010), brain cancer (Kirsch et al., 2010), gastro intestinal cancer (Tan et 

al., 2003, Shetty et al., 2006) and oral cancer (Malini et al., 2006b).  Recent studies 

involving combination of Raman and multivariate approaches have classified normal 

from malignant tissue in lung cancer (Li et al., 2012) 

Nuclear magnetic resonance studies have revealed that phospholipids and mitochondrial 

metabolism were affected in breast cancer cells and phosphocholine content was 

increased nearly 20 fold in primary breast cancer cell lines and nearly 30 fold in 

metastatic breast cell lines. In addition to that, genetic alterations increase choline 

transport and enhance the synthesis of phosphocholine and betaine and decline the 

choline derived ether lipids in breast cancer cells. Decreased levels of ATP, 

phosphocreatine and influx of pyruvate have clearly shown that mitochondrial 

metabolism was damaged in breast cancer cells. Genetic alterations increased choline 

transport and enhanced the synthesis of phosphocholine and betaine and decline the 

choline derived ether lipids in breast cancer cells.  

Initially, Raman studies identified changes in fatty acid content and β carotene between 

normal cancerous biopsies. Later studies proved that protein changes in normal and 

ductal carcinoma were observed as peak shifts. Normal breast tissue has shown C-H 

protein vibration at 1439 cm
-1

, whereas, ductal carcinoma NST samples have shown this 

peak at 1449 cm
-1

. Here, all four subtypes have expressed this peak at 1449 cm
-1 

and it 
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clearly shows that all of biopsies were in malignant state. This wavenumber shift is 

probably indicative of large lipid accumulation in the malignant state compared to 

normal breast. 

The spectral region between 1400-800 cm
-1 

has represented six different amino acids 

such as glycine, alanine, proline, tyrosine, valine and phenylalanine. These amino acids 

are basic backbones of primary structure of proteins. The principal component of breast 

tissue is collagen and it is mainly composed of glycine, valine, proline and 

phenylalanine. It is clear that the intensity of these amino acids is increased in Triple 

negative subtype compared to the other subtypes. Alanine, glycine, proline and tyrosine 

peak intensities were observed high in triple negative subtypes and low in Luminal B 

subtypes. The order in which these amino acid peak intensities decrease is triple 

negative to luminal A to HER2 positive to luminal B.  Collagen peak intensity variation 

is observed in amide I and amide III regions within individual biopsies (Figure 76).  

The intensity of collagen among different breast cancer subtype was much varied; this 

difference was due to various concentration of collagen among the investigated 

subtypes.  Our Raman spectral data has shown that invasive triple negative cancer has 

the highest intensity of collagen among all other subtypes. Raman spectra also reported 

high collagen associated amino acids in fibroadenoma and invasive lobular carcinomas 

(Haka et al., 2005). Based on this relative higher amount of collagen content in triple 

negative subtype compared to other subtypes have indicated that this is one of the most 

pathogenic subtype, Raman could be in useful in identification of  new chemical 

pathogenic marker in terms of collagen content.   

Fingerprint range of Raman spectra not only provides major protein information at 

amide I, II and III region but also provides biochemical information regarding amino 

acids sidechains, functional groups of aromatic amino acids, such as, phenylalanine, 
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tyrosine and tryptophan, functional groups of carotenoids, acidic residues and sulphur 

containing residues from cysteine and methionine.  Amide I region of triple negative 

subtype has shown β- sheets modes and these might be coming from structural modes of 

tumour. A majority of carbonyl stretches and a minority of C=C stretchings vibrations 

might be a major source for this peak.  

Amide I peak is shifted gradually towards lower wavenumber in HER2 and luminal 

subtypes. Maiti et al reported that amide I peak at 1667 cm
-1

 has contributed from β 

sheet structures. A sharp peak also represents increased hydrogen bonding in β sheets of 

proteins (Figure 97-99). Three shoulder peaks were observed in amide I region namely 

1621, 1605 and 1584 cm
-1

. The first two shoulder peaks attributed from amino acids 

and, later from aminoacids and nucleic acids. Raman peak at 1605 cm
-1

 in triple 

negatives, 1604 cm
-1

 at HER2 and luminal subtypes have attributed to aromatic 

aminoacids such as phenylalanine and tyrosine. CARS based colorectal tissue studies 

have suggested that Raman peak at 1584 cm
-1

 is attributed to nucleic acids, whereas, RS 

based nasopharyngeal tissue studies attributed to C=C bending mode of phenylalanine 

(Krafft et al., 2009a, Lau et al., 2003a). Previous studies have reported that these peak 

intensities are decreased in cancerous tissue compared to normal. HER2 and luminal B 

subtypes have shown increased intensities compared to luminal A and triple negative 

subtypes.  

Earlier breast cancer studies have reported significant and reproducible peak shifts in 

amide II region. Raman Spectra of normal breast tissue have expressed amide II peak at 

1439 cm
-1

,
 
whereas, invasive ductal carcinoma biopsies at 1449 cm

-1
. All four subtypes 

have expressed this peak at 1449 cm
-1

 with peak intensity differences. This is due to 

CH2 deformations of fatty acid and proteins (Figure 75).  
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Fatty acid composition varies in breast cancerous tissues. Triglyceride content is 

reduced nearly more than half in cancerous tissues compared to normal, whereas, 

phospholipid content is increased four folds in cancerous biopsies. Overall reduced lipid 

content in cancerous biopsies was reported. Triple negative and luminal B subtypes 

have shown increased peak intensities compared to luminal A and HER2 subtypes. 

Phospholipid metabolic studies have revealed that membrane lipids, such as, 

phosphatidylethanolamine and phosphatidylcholine plays vital role in breast cancers. 

Membrane lipid content might assist breast tumour invasion as well.  Low levels 

phosphatidylethanolamine act as marker in early prediction of visceral metastasis. A 

later phase of metastasis was predominated by low levels of phosphatidylcholine (Frank 

et al., 1995a).  

Amide III region has shown three major peaks at 1339, 1317, 1245 and 1207 cm
-1

. 

Triple negative subtype has shown amide III peak at 1339 cm
-1

, whereas, remaining 

subtypes have expressed at 1338 cm
-1

. Normal mice mammary gland haven’t expressed 

Raman peak at 1339 cm
-1

 but mammary tumours have expressed and it is attributed to 

hydrated α-helix δ (N-H) and v(C-N) of elastin proteins.  

It might also be attributed to purine bases (adenine and guanine) of nucleic acid content 

(Kast et al 2007). Raman peak at 1317 cm
-1

 represents v(C-H), CH2 of aliphatic amino 

acids. All four subtypes have shown Amide III peak (Figure 77) at 1245 cm
-1

 and 

shoulder peak at 1207 cm
-1 

attributed to hydroxyproline and tyrosine. Amide III region 

represents major vibrations such as N-H bending and C-N stretching and minor 

vibrations of C=O in-plane bending and C=C stretching vibrations (Socrates, 2004). 

Protein conformation in amide III region (Figure 100) is more complex because it relies 

on side chain of amino acids, where N-H bending is responsible for many modes of 

vibrations in this region. Polypeptide backbone and amino acid side-chain vibrations 
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significantly vary in this region making it difficult to interpret secondary structure of 

proteins (Mikhonin et al., 2004). Overall, higher intensity of amide III is observed in 

triple negative subtype and higher protein content with tyrosine and hydroxyproline was 

observed in HER2 subtype.  Amide III region has shown triple negative and luminal B 

has higher protein content than HER2 and luminal A subtype.  

A strong phenylalanine peak was observed at 1003 cm
-1

 for triple negative subtype and 

at 1002 cm
-1

 in luminal and HER2 subtypes. Luminal B has showed the highest 

intensity of phenylalanine compared to other subtypes (Figure 102). The region between 

1000-600 cm
-1

 has shown significant collagen associated amino acid content (Frank et 

al., 1995a). Proline and tyrosine are observed in higher quantities in triple negative 

subtypes compared to luminal and HER2 subtypes. It is well-known fact that an 

increase in collagen content is a key marker in carcinogenesis (Haka et al., 2005). In the 

case of breast cancer, desmoplastic reaction leads to deposition of collagen known as 

reactive fibrosis. Collagen deposition is a stromal indicator to invasive carcinoma. Two 

prominent peaks observed around 642 and 620 cm
-1

 representing C-C twisting of 

tyrosine and C-S stretching vibrations.  Peak intensities for these two peaks differed in 

all four subtypes of breast cancer.  
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Chapter 7 

7.1 Conclusions  

 

A combination of Raman spectroscopy and chemometrics methods was applied for the 

first time in three levels of breast cancer studies. In the first phase, normal and breast 

cancer cell lines were studied in 2D level to explore potentiality of Raman spectroscopy 

in chemical fingerprint and classification. In the second level, the hierarchy has 

increased and RS was applied on 3D spheroid models to investigate chemical changes 

in normal proliferating region, hypoxic region and necrotic regions of T-47D spheroids. 

In the third level, RS was further employed on tissue microarray (TMA) breast biopsies 

to identify chemical changes associated with different subtypes of breast cancer. The 

conclusions drawn from each study is described as follows.  

7.1.1 Breast cancer cell lines (2D approach): 

Cell lines are used as in vitro models in breast cancer research. Cell lines have shown 

various advantages including unlimited self-replication potential, high degree of 

homogeneity and ease of handling. One normal and two breast cancer subtypes were 

used in this study with the aim to identify chemical differences among breast cancer cell 

lines using dispersive Raman spectroscopy combined with chemometrics.  

RS was used to characterise and differentiate two breast cancer and one normal breast 

cell lines (MDA-MB-436, MCF-7 and MCF-10A) and spectra of the cell lines revealed 

basic differences in the concentration of biochemical compounds, such as, lipids, 

nucleic acids and proteins.  

Raman peaks were found to differ in intensity and principal component analysis (PCA) 

was able to identify variations that lead to accurate and reliable separation of the three 

cell lines. Linear discriminant analysis (LDA) model of three cell lines was predicted 

with 100% sensitivity and 91% specificity.  
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Raman spectral data combined with PCAs proves to be an excellent method that allows 

separation of different types of cell lines based on their lipid, and nucleic acid/DNA, 

and protein contents, as the MCF-7 cell line appears to be much higher in lipids 

compared to MDA-MB 436 and MCF 10A and works well to single out this cell line in 

view of the high wavenumber of amide III bands. It also contains higher nucleic 

acid/DNA base concentrations relative to the other two cell lines. This might indicate 

higher metabolic activity or might simply be due to a higher cell density in the data 

collection volume. Although MCF-7 and MDA-MB-436 are both breast cancer 

subtypes, the MDA-MB-436 does not appear to contain lipids at a concentration vastly 

different to those found in the normal MCF-10A cell line. Instead, the difference lies 

more in the relative protein and amino acid concentrations. Proteins of many different 

conformations overlap to form the Amide bands. It is possible that the compositions of 

α-helix, unordered and β-sheet conformations of proteins in the MDA-MB-436 and 

MCF-10A lines are different. These differences observed in the cell lines may also be 

useful in identifying chemical changes between the different subtypes of breast cancer 

although this needs confirmation in a larger panel of cell lines as well as clinical 

material (Talari et al 2015).  

7.1.2 T-47D spheroids (3D approach) 

The study of three-dimensional (3D) cell culture models over two-dimensional (2D) 

monolayers has several advantages. 3D spheroid models mimic tissue specific 

architecture. It can provide extensive knowledge to understand disease progression and 

development of new therapeutic drugs. Generally conventional 2D cell culture involves 

culture of cell lines as monolayers on impermeable plastic surfaces, which often cause 

loss of phenotypic and functional characteristics. One of the main features is ‘loss of 

differentiation’ and it mainly happens due to lack of native in vivo 3D confirmation. 

These monolayers will also preclude cell lines to respond to chemical and molecular 
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gradients in a 3D fashion due to lack of complexity.  3D cell models, particularly 

spheroid models, have many advantages:  

a. Spheroid models will represent 3D architecture of tissues including multicellular 

arrangement and extracellular matrix deposition that provides spectroscopists extra 

space to explore chemical pathways,  

b. Spheroid models will also provide different cellular microenvironments such as 

proliferation, quiescent and hypoxic areas allowing one to study chemical differences 

between these areas,  

c. Spheroids provide an opportunity to study cell-cell interactions via tight junctions 

between cells providing chemical information regarding extracellular matrix 

(Jaganathan et al., 2014).  

RS studies were extended to single cells to multiple cell spheroids. Human breast cancer 

cell lines (T-47D) were grown as spheroids and a combination of RS and Cluster 

analysis were employed to understand biochemical fingerprint and differentiation of 

normal proliferating, hypoxic and necrotic regions of spheroids. These variations may 

be useful in identifying new spectral markers and further understanding of cancer 

metabolism.   

Raman spectra combined to multivariate approach prove to be an exceptional approach 

that allows separation of normal proliferating, hypoxic and necrotic regions based on 

lipids, Amide I, Amide III and nucleic acid content. These differences observed in three 

different regions might be useful in identification of chemical changes associated stress 

or strain faced by each region progressing towards necrosis. Loading plots suggested 

that normal proliferating region is separated with low amide I content and high 

tryptophan content compared to hypoxic and necrotic regions. Peak intensity and peak 

shifts have suggested that Amide I content is unique in each region with regards 
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conformation and quantity. Amide III region, especially nucleic acid and amino acid 

content, is particularly sensitive to necrotic and hypoxic regions. This might be due to 

stress or strain associated with hypoxic and necrotic regions. 

7.1.3 TMA breast cancer biopsies  

Human breast biopsies on TMA slide were analysed using RS and Chemometrics 

approaches. Biopsies were classified as luminal A, luminal B, HER2 positive and triple 

negative subtypes to understand chemical changes associated with breast cancer 

subtypes. Supervised and unsupervised algorithms were applied on biopsy data to 

explore intra and inter dataset biochemical changes associated with lipids, collagen and 

nucleic acid content.  

TMA breast subtypes have shown huge chemical heterogeneity not only in different 

subtypes but also with in each individual subtype. Fatty acids, amide I and III content 

have contributed many variations among four subtypes of breast biopsies. Lipid region 

PCA plots have shown good separation for luminal B subtype from remaining subtypes,  

whereas amide I plots have shown considerable differences between luminal A and B. 

Amide III plots have considerably differentiated luminal A from triple negative subtype, 

whereas nucleic acid content plots have shown clear separation between triple negative 

and luminal A subtypes. Cluster analysis on full spectral range  have revealed that each 

subtype has formed good cluster and shown more similarity between luminal A and 

subset of luminal B, and HER2 and triple negative subtype. One subset of luminal B has 

shown similarity with triple negative subtype. Distance measurements have shown 

luminal A and B chemically more distant from HER2 and triple negative subtypes.  

LDA predicted specificity accuracy of luminal A, B HER2 and triple negative subtypes 

were 70%, 100%, 90% and 96.7%, respectively. 
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7.2 Future Work 

Breast Cancer diagnosis takes two steps, namely, screening approaches followed by 

biopsy procedures. Screening methods such as mammography, ultrasound and magnetic 

resonance imaging, and biopsy procedures such as fine needle, core needle and surgical 

biopsies are in the lead. A combination of histopathology, immunohistochemical 

methods and gene profile approaches are considered as gold standard methods in breast 

cancer subtype identification. Limitations associated with diagnostic approaches such as 

surgical intervention, time delays, pain and trauma to the patient and risk of infections 

have lead researchers to explore new non-invasive, reagent-free and less painful 

approaches.  Raman spectroscopy, a vibrational spectroscopic approach, not only 

provides real time biochemical fingerprint of tissues but can also provide an 

understanding of the aggressiveness of the disease. Raman spectra can be acquired in 

less time and can also eliminate intraobserver and interobserver variability that is 

commonly related with histopathological diagnosis. This PhD work has explained the 

potentiality of a Raman approach in identifying chemical changes at the cellular level, 

spheroid level and biopsy level.  

 Future studies involve increasing the number of TMA biopsies and employing 

Raman spectroscopic studies on different subtypes, which could help in 

understanding clinical and histologic growth patterns of subtypes. 

 Raman studies in this work were helpful in differentiating breast cancer cell 

lines, different areas of breast spheroids and in the identification of chemical 

differences between breast subtypes.  Therefore it would be valuable to employ 

to study monitoring of the disease, which would certainly helpful in 

understanding cancers chemical pathways. 
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 Area mapping of a larger number of biopsies of different subtypes will be 

helpful to track changes in collagen and lipid profiles in each subtypes and to 

establish a larger database based on these profiles.  

 This work has identified chemical differences starting from the cellular level to 

tissue level. It would be useful to identify changes that arise in the chemical 

fingerprints following drug treatment. This would further aid understanding of 

the chemical nature of the interaction of drugs on cancer pathways.  

 Raman has great potential in margin assessment of cancer tissues. It can further 

help clinicians to establish borders during breast cancer surgery.  

This PhD work has evaluated the Raman approach in identification of chemical 

fingerprint from breast cancer cell lines level to microarray biopsy level. This optical 

approach helps to understand structural and chemical changes of biological 

macromolecules in disease and it could be helpful in not only in cancer diagnosis but 

also to understand the chemical nature of metastatic stages as well.  Development of 

Real-time Raman systems with hand held Raman probes in breast cancer studies has the 

potential to collect diagnostic information in terms of molecular markers such as 

proteins, lipids and nucleic acids. These systems may provide immediate feedback to 

clinicians during biopsy procedures and significantly improve patient care. Moreover, 

Raman approach has potential in improving diagnostic accuracies and early disease 

diagnosis as well as long term monitoring during therapy.  
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th

 NCRI conference, Liverpool, UK. 

 27 April 2013: 5NEONC Breast Cancer Symposium, Staff House, University of 

Hull, UK. 

 12-14 May 2013: 5th WMRIF (World Materials Research Institutes Forum) 

Symposium, EMPA AKADEMIE. 
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 22 March 2013: Inaugural cancer research forum (ICRF), The Ridge Ranmoor 

Student Village Sheffield, UK 

 20 May 2014: 2
nd

 year poster presentation, Department of material sciences and 

engineering, University of Sheffield, UK 

Conferences and Seminars 

 Research in Progress (RIP) seminars at Kroto Research Institute (KRI), 

Sheffield and Weekly Seminars of Research skills and communications  

 Raman Analysis of Different subtypes of Breast Cancer cell lines  

Talari A. C. S., Coleman. R.E. and Rehman I. U. 8
th

 NCRI Cancer Conference 

BT Convention Centre, Liverpool L3 4FP UK 4-7 November 2012. 

 Raman Analysis of Different subtypes of Breast Cancer cell lines Rehman S., 

Talari A. C. S. and Rehman I.U. 5NEONC Breast Cancer Symposium, Staff 

House, University of Hull HU6 7RX UK 27 April 2013 

 Spectroscopy of Cancer: Raman Analysis of Different Subtypes of Breast 

Cancer Tissues and Cell Lines Talari A. C. S., Evans, C.A., Holen, I., 

Coleman. R.E. and Rehman I. U. 5th WMRIF (World Materials Research 

Institutes Forum) Symposium, EMPA AKADEMIE, 12-14 May 201. 

 207
th

 IRDG meeting (16 Oct 2014) on From Cancer diagnostics to drug 

release: vibrational spectroscopy in biomedical sciences. AstraZeneca, 

Macclesfield. 

 Guest speaker in seminar on Spectroscopy in Biomaterials and Tissue 

Engineering at Kroto Research Institute, University of Sheffield, conducted by 

Thermo Fisher Scientific (8th July 2015).  

 EPSRC Studentship 

 I have received fully funded EPSRC studentship during my PhD programme. 
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Raman peak and its assignments 

Peak 

No 

Assignment References 

618 C-C twisting of proteins  (Chan et al., 2006) 

620 C-C twist aromatic ring (O Faolain et al., 2005) 

621 C-C twisting mode of Phenylalanine (Stone et al., 2004, Stone et al., 2002, 

Notingher et al., 2004) 

637 v(C-S) gauche of Methionine (Shetty et al., 2006) 

642 C-C twist mode of Tyrosine (Sathuluri et al., 2011) 

643 C-C twisting mode of Tyrosine (Stone et al., 2004, Cheng et al., 2005, 

Binoy et al., 2004) 

671 Ring breathing mode of Guanine (Kim et al., 1986) 

722 DNA (Binoy et al., 2004) 

725 Ring breathing mode of Adenine (Chan et al., 2006) 

727 C-C stretching, Proline (collagen 

assignment) 

(Frank et al., 1995e) 

726 C-S (protein), CH2 rocking, Adenine (Stone et al., 2004) 

746 Ring breathing mode of Thymine (Chan et al., 2006) 

758 vs indole ring breathing of Tryptophan (Chen et al., 2014) 

759 Tryptophan, Ethanolamine group, 

Phosphatidylethanolamine 

(Stone et al., 2004, Krafft et al., 2005) 

779 Ring vibration of nucleic acids (Lyng et al., 2007) 

780 Ring breathing mode of Uracil (Farquharson et al., 2005) 

782 DNA, Thymine, Cytosine, Uracil, RNA (Binoy et al., 2004, Notingher et al., 
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2004) 

821 v(CC) backbone of collagen (Crane et al., 2013) 

828 Ring breathing mode of Tyrosine, 

Phosphodiester, Tyrosine / O-P-O stretch 

DNA 

(Stone et al., 2002, Stone et al., 2004, 

Ruiz-Chica et al., 2004) 

829 Aliphatic and aromatic deformation of 

CCH 

(Larraona-Puy et al., 2011) 

847 Monosaccharides (α-glucose), (C-O-C) 

skeletal mode, disaccharides (maltose),  

(Shetty et al., 2006) 

852 Proline, Hydroxyproline, Tyrosine, 

Tyrosine ring breathing, Glycogen 

(Cheng et al., 2005, Binoy et al., 2004, 

Chan et al., 2006) 

853 C-C stretch of Proline ring, Tyrosine ring 

breathing mode, Glycogen 

(Binoy et al., 2004, Stone et al., 2002, 

Stone et al., 2004) 

854 (C-O-C) skeletal mode of α-anomers 

(polysaccharides, pectin), ring breathing 

mode of tyrosine 

(Shetty et al., 2006, Notingher et al., 

2004) 

875 Antisymmetric stretch vibrations of 

Choline group, Phospholipids, 

Phosphatidylcholine, Sphingomyelin 

(Krafft et al., 2005) 

877 C-C-N+ symmetric stretch of lipids, C-O-

C ring of carbohydrates 

(Notingher et al., 2004) 

895 Phosphodiester, deoxyribose  (Ruiz-Chica et al., 2004) 

890 Protein peaks, structural protein modes of 

tumours, -anomers 

(Hanlon et al., 2000, Dukor, 2002, 

Utzinger et al., 2001, Krafft et al., 

2005) 

891 Saccharide band  (overlaps with acyl band) (Krafft et al., 2005) 

892 Backbone, C-C skeletal (Chan et al., 2006) 
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921 Proline ring, glucose, lactic acid (Kaminaka et al., 2002) 

932 Skeletal, C-C, α-heix (Stone et al., 2004) 

936 v(C-C) of -helix conformation for 

proteins 

(Bergholt et al., 2011a) 

937 Proline (Collagen Type I), amino acid side 

chain vibrations of Proline and 

Hydroxyproline, C-C vibration of collagen 

backbone, glycogen, v(C-C) residues of  

helix of proteins, C-C stretching of 

proteins, C-O-C glycosides of 

carbohydrates 

(Cheng et al., 2005, Frank et al., 

1995e, Binoy et al., 2004, Lakshmi et 

al., 2002, Notingher et al., 2004) 

938 Proline, Hydroxyproline, v(C-C) skeletal 

of collagen backbone, C-C stretch 

backbone 

(Cheng et al., 2005, Stone et al., 2004) 

958 Carotenoids, cholesterol (Stone et al., 2004) 

1000 Phenylalanine, bound and free NADH (Malini et al., 2006b) 

1002 C-C aromatic ring stretching, 

Phenylalanine, Phenylalanine 

(O Faolain et al., 2005, Malini et al., 

2006b) 

1003 Symmetric ring breathing mode of 

phenylalanine, C-C skeletal stretch  

(Frank et al., 1995e) (Chan et al., 

2006) 

1031 CH3 CH2 bending modes of collagen and 

phospholipids, phenylalanine of collagen, 

proline, C-H in-plane bending mode of 

phenylalanine, C-H stretching of proteins 

(Huang et al., 2003, Stone et al., 2002, 

Dukor, 2002, Chan et al., 2006, Stone 

et al., 2004) 

1032 CH3 CH2 bending modes of collagen and 

phospholipids, Phenylalanine of collagen, 

Proline, 

(Huang et al., 2003, O Faolain et al., 

2005, Cheng et al., 2005, Frank et al., 

1995e) 

1039 Phenylalanine (Ferraro et al., 2003) 



213 
 

1058 C-N stretching of amide III (Bankapur et al., 2012) 

1061 C-C in-plane bending (O Faolain et al., 2005) 

1062 C-C skeletal stretching (Seballos et al., 2005) 

1063 C-C skeletal stretch  (Koljenovic et al., 2005a) 

1075 Symmetric stretching vibrations of 

phosphate group  

(Sauer et al., 1994) 

1096 Phosphodioxy (PO2
-
) groups (Krafft et al., 2005) 

1097 v(C-C), phospholipids (Polomska et al., 2010) 

1099 v(C-N) (Cheng et al., 2005) 

1100 C-C vibration mode of the gauche-bonded 

chain, amide III, v(C-C)- Lipids, fatty 

acids 

(Seballos et al., 2005, Lakshmi et al., 

2002, Shetty et al., 2006) 

1124 v(C-C) skeletal of acyl backbone in lipids  (Cheng et al., 2005) 

1125 Glucose, v(C-O) +v(C-C), disaccharides 

sucrose 

(Shao et al., 2012) 

1126 Paraffin, v(C-C) skeletal of acyl backbone 

of lipids, C-N stretching of proteins, v(C-

O) v(C-C), disaccharides, sucrose 

(Dukor, 2002, Cheng et al., 2005, 

Chan et al., 2006, Shetty et al., 2006) 

1129 v(C-C) skeletal of acyl backbone in lipid 

lipids 

(Cheng et al., 2005) 

1130 C-C skeletal stretch transformation, 

Phospholipid structural changes (trans 

versus gauche isomerism), Acyl chains 

(O Faolain et al., 2005, Andrus and 

Strickland, 1998, Krafft et al., 2005) 

1156 C-C, C-N stretching of proteins (Chan et al., 2006) 

1153 Carbohydrates (Dukor, 2002) 
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1170 C-H in-plane bending mode of tyrosine  (Stone et al., 2002, Stone et al., 2004) 

1171 Tyrosine (collagen type I), (CH) 

Phenylalanine 

(Cheng et al., 2005, Lakshmi et al., 

2002) 

1172 (C-H), Tyrosine (protein assignment) (Huang et al., 2003) 

1173 Cytosine, Guanine, Tyrosine (collagen 

type I) 

(Ruiz-Chica et al., 2004, Cheng et al., 

2005) 

1174 Tyrosine, phenylalanie, C-H bendings 

protein 

(Chan et al., 2006) 

1207 Hydroxyproline, Tyrosine (Raniero et al., 2011) 

1208 v(C-C6H5), tryptophan, phenylalanine, 

Adenine, Thymine, Amide III 

(Huang et al., 2003, Huang et al., 

2005, Chan et al., 2006) 

1241 Asymmetric (PO2
-
) stretching modes of 

nucleic acids of malignant tissues 

(Cheng et al., 2005) 

1243 Amide III, asymmetric PO2 
–
 stretching 

modes of Phosphodiester, CH2 wagging 

and C-N stretching of collagen, Pyrimidine 

bases such as thymine and cytosine 

(Dukor, 2002, Cheng et al., 2005, 

Schulz and Baranska, 2007, Stone et 

al., 2004) 

1244 (NH), v(C-N) and v(C-C) of amide III 

proteins   

(Movasaghi et al., 2007d) 

1245 Amide III (Shetty et al., 2006) 

1295 Amide III (Carter et al., 2004) 

1310 Lipid specific peaks (Sigurdsson et al., 2004) 

1316 Guanine (Ruiz-Chica et al., 2004) 

1317 Guanine (B,Z-maker) (Ruiz-Chica et al., 2004) 

1318 Guanine (ring breathing modes of the (Chan et al., 2006, Lakshmi et al., 
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DNA/RNA bases. C-H deformation of 

proteins, Amide III of -helix 

2002) 

1334 Tryptophan (Rodrigues et al., 2010) 

1337 Amide III, and CH2 wagging vibrations 

from glycine backbone and proline side 

chains, Ring breathing mode of Adenine 

and Guanine bases, C-H deformation of 

proteins 

(Dukor, 2002) 

1338 Adenine (Lin et al., 2011b) 

1339 C-C stretch of Phenyl (I) and C3-C3 stretch 

and C5-O5 stretch CH in-plane bend 

(Fung et al., 1996) 

1441 CH2 scissoring & CH3 bending in lipids, 

cholesterol and its esters, C-H bending 

mode of lipids 

(Lau et al., 2005, Silveira et al., 2002) 

1442 Fatty acids, CH2 bending mode, CH3, CH2 

deformation of collagen assignment, 

Triglycerides  

(Hanlon et al., 2000), (Mahadevan-

Jansen et al., 1997), (Frank et al., 

1995e), (Silveira et al., 2002) 

1446 CH2 bending mode of proteins & lipids, 

CH2 deformation 

(Stone et al., 2004, Stone et al., 2002, 

Frank et al., 1995e) 

1448 CH2 CH3 deformation, CH2 deformation, 

CH2, collagen  

(Cheng et al., 2005, Frank et al., 

1995c, Malini et al., 2006b, Kaminaka 

et al., 2001) 

1449 C-H vibration of proteins and lipids (Notingher et al., 2004) 

1517 Β-carotene accumulation (C-C stretching 

mode) 

(Silveira et al., 2002) 

1553 Tryptophan, v(C=C), tryptophan (protein 

assignment), v(C=C), porphyrin 

(Huang et al., 2003) 
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1576 Nucleic acid mode (Mahadevan-Jansen et al., 1997, Barr 

et al., 1998) 

1577 Bound and free NADH, IgG (Malini et al., 2006b, Lakshmi et al., 

2002) 

1579 Pyrimidine ring of nucleic acid bases (Stone et al., 2004) 

1580 C-C stretching (Laska and Widlarz, 2005) 

1582 δ(C=C), Phenylalanine,  (Huang et al., 2003) 

1583 C=C bending mode of phenylalanine (Lau et al., 2003b) 

1584 C=C bending mode of phenylalanine, C=C 

olefinic stretch 

(Lau et al., 2003b, O Faolain et al., 

2005) 

1604 Cytosine (NH2), Phenylalanine, tyrosine (Naumann, 1998, Chan et al., 2006) 

1605 Cytosine (NH2), ring C-C stretch of 

Phenyl, phenylalanine, tyrosine, C=C 

(protein) 

(Ruiz-Chica et al., 2004, Schulz and 

Baranska, 2007, Chan et al., 2006, 

Lakshmi et al., 2002) 

1616 C=C stretching mode of tyrosine and 

tryptophan 

(Stone et al., 2004, Stone et al., 2002) 

1655 Amide I of collagen, C=C of lipids in 

normal tissues, v(C=O) amide I, α-helix, 

collagen 

(Cheng et al., 2005, Malini et al., 

2006b, Huang et al., 2003, Tan et al., 

2003) 

1658 Amide I (-helix) (Lakshmi et al., 2002) 

1659 Amide I vibration of collagen like proteins, 

C=O stretching vibration of α-

polypeptides, cholesterol peak of 

atherosclerotic spectrum  

(Min et al., 2005, Shaw and Mantsch, 

1999, Silveira et al., 2002) 

1665 Amide I of collagen (Cheng et al., 2005, Frank et al., 

1995c) 
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1666 Collagen (Kaminaka et al., 2001) 

1667 Protein band, C=C stretching vibrations, -

helical structure of Amide I, structural 

protein modes of tumours, carbonyl stretch 

C=O vibrations 

(Hanlon et al., 2000, Dukor, 2002, 

Mahadevan-Jansen et al., 1997, Huang 

et al., 2003, Utzinger et al., 2001, 

Farquharson et al., 2005) 

1668 Amide I (Huang et al., 2003) 

2722 Combination of s(CH2 )+ t(CH2) of fatty 

acids 

(Van De Ven et al., 1984) 

2724 C-H stretches, stretching vibrations of CH, 

NH and OH groups 

(Conroy et al., 2005, Krafft et al., 

2005) 

2725 C-H stretches, stretching vibrations of CH, 

NH and OH groups 

(Krafft et al., 2005, Conroy et al., 

2005) 

2726 v(C-H) stretches, Stretching vibrations of 

CH, NH and OH groups 

(Gallier et al., 2011) 

(Krafft et al., 2005) 

2731 C-H stretches, stretching vibrations of CH, 

NH and OH groups 

(Conroy et al., 2005, Krafft et al., 

2005) 

2732 C-H stretches, stretching vibrations of CH, 

NH and OH groups 

(Conroy et al., 2005, Krafft et al., 

2005) 

2734 C-H stretches, stretching vibrations of CH, 

NH and OH groups 

(Conroy et al., 2005, Krafft et al., 

2005) 

2849 CH3 symmetric stretch of lipids (Koljenovic et al., 2005a) 

2880 CH2 stretching of lipids (Mazurek and Szostak, 2006) 

2881 CH2 asymmetric stretch of lipids and 

proteins  

(Koljenovic et al., 2005f) 

2932 CH2 asymmetric stretch of  lipids and 

proteins 

(Koljenovic et al., 2005a) 
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2933 CH2 symmetric stretch (Koljenovic et al., 2005a) 

2936 v(CH3) of lipids (Sigurdsson et al., 2004, Shetty et al., 

2006) 

2937 CH3 stretching of proteins, CH stretching 

of proteins and lipids 

(Sigurdsson et al., 2004, Shetty et al., 

2006) 

2934 CH2 asymmetric stretch  (Koljenovic et al., 2005f) 

2938 CH stretch of lipids and proteins (Sigurdsson et al., 2004, Shetty et al., 

2006) 

3060 CH olefinic stretch (Camerlingo et al., 2011) 

3061 CH olefinic stretch (lipids) (Camerlingo et al., 2011), (Zenone et 

al., 2007) 

3062 Aromatic C-H stretching (Sebag et al., 1993) 
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TMA Biopsy data 

Patients 

trial 

number 

TMA 

location 

ER 

status  

PR 

status  

HER2 

status 

Histological 

grade  

Tumour pathology 

59 G02 1 3 4 2 Lobular 

92 H07 1 1 4 1 Ductal NST 

104 H08 1 1 4 3 Ductal NST 

119 A01 1 3 4 2 Ductal NST 

235 H09 1 1 4 2 Mixed, 

tubular/lobular 

237 H10 1 1 4 1 Ductal NST 

250 A03 1 3 4 2 Ductal NST 

251 H11 1 1 1 3 Ductal NST 

255 G03 1 3 4 3 Ductal NST 

282 G04 1 1 4 2 Lobular 

290 A04 1 3 4 1 Ductal NST 

303 H13 2 2 4 2 Ductal NST 

306 A05 1 3 4 3 Ductal NST 

324 H14 1 1 2 2 Ductal NST 

334 H15 1 1 2 2 Ductal NST 

351 G05 1 3 4 3 Ductal NST 

365 H16 1 1 3 1 Ductal NST 

366 H17 1 1 2 1 Ductal NST 

433 I01 1 1 2 1 Ductal NST 

435 I03 1 2 2 3 Ductal NST 

455 E04 1 2 1 2 Ductal NST 

481 G07 1 3 4 2 Ductal NST 

502 I02 1 1 4 3 Ductal NST 

504 E13 1 1 4 2 Ductal NST 

510 I04 1 1 4 3 Ductal NST 

565 I05 1 3 2 2 Ductal NST 

607 I07 1 3 9876 3 Ductal NST 

643 I08 1 3 3 3 Ductal NST 
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653 G08 2 3 2 3 Ductal NST 

669 A07 1 3 4 2 Ductal NST 

768 I09 1 1 4 2 Ductal NST 

769 I10 2 2 4 3 Ductal NST 

784 E05 1 3 4 2 Mucinous 

790 E14 1 1 4 2 Ductal NST 

797 B07 2 3 4 3 Ductal NST 

815 I11 1 1 4 1 Ductal NST 

816 C14 1 1 3 2 Ductal NST 

822 A08 1 3 4 1 Ductal NST 

868 C15 1 1 4 2 Ductal NST 

871 A09 1 3 4 1 Lobular 

872 C16 2 2 4 2 Ductal NST 

877 C17 1 1 4 2 Ductal NST 

894 I13 1 3 2 3 Lobular 

902 G09 1 3 4 2 Ductal NST 

904 B08 1 3 4 3 Ductal NST 

910 I14 1 1 1 3 Ductal NST 

916 I15 1 2 2 2 Ductal NST 

919 I16 1 1 2 2 Ductal NST 

942 D01 1 1 4 2 Mixed, ductal/lobular 

974 D02 1 1 4 3 Mixed, ductal/lobular 

979 D03 1 1 2 3 Lobular 

995 B09 1 3 4 3 Ductal NST 

1046 I17 1 3 2 3 Ductal NST 

1070 J01 2 1 1 3 Ductal NST 

1072 E15 1 1 4 3 Ductal NST 

1080 E07 1 3 4 2 Ductal NST 

1084 B10 2 3 4 3 Ductal NST 

1096 J02 1 1 3 2 Ductal NST 

1120 J03 1 2 1 2 Ductal NST 

1123 J04 1 1 4 2 Ductal NST 

1144 J05 2 2 1 2 Ductal NST 

1158 G10 1 3 4 3 Ductal NST 
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1165 J07 2 2 2 3 Ductal NST 

1170 J08 1 1 2 1 Ductal NST 

1183 J09 2 2 1 3 Ductal NST 

1212 J10 1 1 2 1 Ductal NST 

1229 G11 1 3 4 2 Ductal NST 

1240 J11 2 2 4 2 Ductal NST 

1254 J13 1 1 4 2 Lobular 

1256 J14 1 1 2 2 Ductal NST 

1274 D04 2 2 1 3 Ductal NST 

1294 G13 1 3 4 3 Ductal NST 

1335 B11 2 3 4 3 Ductal NST 

1379 G14 1 2 4 3 Ductal NST 

1412 J15 1 1 4 2 Ductal NST 

1414 J16 1 1 2 3 Ductal NST 

1415 J17 1 1 4 3 Ductal NST 

1426 G15 1 3 4 3 Ductal NST 

1429 G16 1 3 4 2 Ductal NST 

1441 E08 1 3 4 3 Ductal NST 

1474 B13 1 3 4 2 Ductal NST 

1482 E03 1 3 4 9876 Missing 

1494 E09 1 3 1 3 Ductal NST 

1508 K01 1 1 4 2 Ductal NST 

1520 B14 2 3 2 3 Ductal NST 

1547 E10 2 2 2 3 Ductal NST 

1569 D05 2 2 2 3 Ductal NST 

1607 K02 1 3 3 3 Ductal NST 

1616 E16 2 2 1 3 Ductal NST 

1622 E17 and 

G01 

1 1 4 2 Other  

1635 K03 1 1 4 3 Ductal NST 

1648 D07 2 2 1 3 Ductal NST 

1650 B15 1 3 4 3 Ductal NST 

1692 B16 1 3 4 2 Ductal NST 

1693 B17 1 3 4 3 Ductal NST 
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1709 D08 1 1 1 3 Ductal NST 

1747 K04 1 1 4 2 Ductal NST 

1751 D09 1 2 2 3 Ductal NST 

1764 A02 1 3 4 2 Ductal NST 

1795 C01 1 3 4 3 Ductal NST 

1866 K05 1 1 3 2 Ductal NST 

1939 E11 1 3 3 2 Mixed, ductal/lobular 

1948 D10 1 1 2 3 Ductal NST 

1973 G17 1 3 4 2 Lobular 

1981 K07 1 1 3 2 Lobular 

1987 K08 1 1 2 2 Ductal NST 

2000 K09 1 1 4 2 Ductal NST 

2022 D11 2 2 1 2 Ductal NST 

2028 K10 1 1 2 3 Ductal NST 

2082 D13 1 1 4 2 Ductal NST 

2139 K11 1 2 3 2 Ductal NST 

2148 C02 1 3 4 3 Ductal NST 

2162 K13 1 1 2 3 Ductal NST 

2235 D14 1 1 1 2 Ductal NST 

2244 K14 1 1 2 3 Ductal NST 

2246 D15 1 1 2 3 Ductal NST 

2251 D16 1 1 1 3 Ductal NST 

2289 C03 2 3 4 3 Ductal NST 

2303 H01 1 3 4 2 Ductal NST 

2390 K15 1 1 3 3 Ductal NST 

2401 K16 1 1 2 2 Ductal NST 

2419 A10 1 1 2 4 Ductal NST 

2427 D17 2 2 1 2 Ductal NST 

2482 C04 1 3 2 3 Ductal NST 

2496 K17 1 2 4 3 Ductal NST 

2715 C05 1 3 2 3 Ductal NST 

2716 H02 2 1 4 3 Ductal NST 

2750 A11 1 2 2 4 Ductal NST 

2767 C07 1 3 2 3 Ductal NST 
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2773 A13 1 1 4 1 Tubular 

2792 C08 1 3 2 3 Ductal NST 

2811 A14 2 2 2 2 Ductal NST 

2844 E01 1 1 2 3 Ductal NST 

2857 C09 2 3 2 3 Ductal NST 

2858 B05 1 1 1 1 Ductal NST 

2894 H03 1 3 4 2 Mixed, ductal/lobular 

2933 A15 2 2 2 3 Ductal NST 

2940 H04 1 3 4 2 Mixed, ductal/lobular 

2974 C10 1 3 2 3 Ductal NST 

3007 C11 1 3 1 3 Ductal NST 

3020 A16 1 1 4 2 Lobular 

3051 C13 1 3 1 3 Ductal NST 

3098 H05 1 3 4 2 Ductal NST 

3180 A17 1 1 4 3 Ductal NST 

3204 E02 2 2 1 3 Ductal NST 

3209 B01 1 1 4 2 Ductal NST 

3234 B02 1 1 4 2 Ductal NST 

3239 B03 1 1 4 2 Ductal NST 

3289 B04 1 1 2 2 Ductal NST 

 


